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Chapter 1

Introduction

1.1 Background and motivation

Today, most of the industrial robot manipulators (Figure 1.1), are totally integrated, the
mechanical structure, electronics components, actuators, sensors and operation systems
are pre-integrated before the delivery. Due to high-precision actuators and components
machining, these manipulators provide effective operational performance for specified tasks,
but are less flexible with regard to task variations. Besides, due to their big size, high
price, costly maintenance and repairing, we can only find these manipulators in factories,
laboratories, for specific purposes. In addition, these machines can only be controlled by
technicians who followed certain training, in case of security problem during human-machine
interaction. Therefore, these manipulators are far less accessible for individuals. This is
exactly the same situation for early computers before 1970s, where computers were huge,
expensive and only used for military or research purposes.

It is true that “robolution” or “robotisation” is on the way, but right now is it possible
for everyone to have a robot manipulator, like the generalization of personal computers? To
answer this question, we should first know what properties the future “personal” manipulators
should have.

In the author’s opinion, in contrast to the nowadays industrial manipulators, the fu-
ture “personal” manipulators should be low-cost, small size, light-weight but with high
load-to-weight ratio, user-reconfigurable, user-friendly, flexible for security during human
interference, easy to maintain and repair... This kind of manipulators can be applied for
research, entertainment, people assistance, medical, education..., where the industrial manip-
ulators are not suitable, e.g., someone can be terrified in front of a feeding robot which is of
an industrial manipulator.
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Fig. 1.1 ABB industrial manipulators and the control device

In fact, there are already some low-cost manipulators commercialized in the market.
They are of low cost, small size and light weight. A comparison between such a manipulator
(PhantomX Pincher Robot Arm from Trossen Robotics© , Figure 5.1) and the latest KUKA
light-weight robot (Figure 5.2) is illustrated in Table 5.1.

Fig. 1.2 A low-cost manipulator Fig. 1.3 A Kuka light-weight robot

However, we cannot expect a manipulator designed and fabricated with a lower budget
to be as powerful as one with a 20-times budget. The weaknesses of low-cost manipulators
include position error in joint space, oscillation and position error in end-effector space, these
drawbacks may come from hardware and/or software aspects, like controller limitation, joint
and/or link elasticity, backlash, etc.

This thesis is motivated by low-cost manipulators which adopt limited “all-in-one” actua-
tors. These actuators are integrated with DC motor, sensors, transmission system, position
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Table 1.1 Comparison between low-cost manipulator and industrial manipulator

Low-cost robot arm Kuka light-weight robot
Price 378$ +20 000C

Weight 550g 48kg
Max. Reach 31cm 70.7cm

control unit and network, provide high load-to-weight ratio and relieve the practitioners from
designing reduction and control systems. However, for some cheap but not powerful enough
actuators, due to the limitation of the the feedback information and the built-in controller
design (e.g., independent joint PD or P controller), steady state errors are presented. Besides,
since the material which forms the motor shaft is not stiff enough, in most cases, it’s plastic,
joint-flexibility are introduced, as a result, oscillation and mismatch between the link position
and the feedback joint position are observed.

The objective of this thesis includes:

• to eliminate the steady state error in rigid-body case,

• to estimate and to control the link position in flexible-joint case, and to attenuate the
oscillation,

for low-cost manipulators equipped with limited “all-in-one” actuators.

1.2 Previous work

This section presents a detailed survey of past and present researches related to the problem
of manipulator control. The aim of this section is to lay a foundation for the remainder
of the thesis by identifying what has been done, in order to propose innovative control
methodologies to fill the knowledge gap identified in the published literature.

1.2.1 Robot Dynamics

Rigid Robot Dynamics

In a rigid dynamic model, the links and gearboxes are assumed to be rigid. The mass and
inertia of the actuators and gearboxes are added to the corresponding link parameters. The
model consists of a serial kinematic chain of n links modelled as rigid bodies as illustrated in
Figure 1.4.
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Fig. 1.4 A rigid dynamic model with 3 DOF

The model based approach to controller design systematically uses the equations de-
scribing the system dynamics. The most commonly used description is the inverse dynamic
equations. These equations give the torque required to achieve a given trajectory of the
robot manipulator. The most commonly used technique to derive the inverse dynamics is the
Euler-Lagrange formulation based on the energy in the system.

Consider an ideal system without friction or elasticity, exerting neither forces nor mo-
ments on the environment. Then the Lagrange equations are written in the matrix form
as:

τ =
d
dt

(
∂L
∂ q̇

)T

−
(

∂L
∂q

)T

, (1.1)

where τ is the vector of generalized forces or torques, q is the state position vector, L is the
Lagrangian of the manipulator defined as the difference between the kinetic energy E and
the potential energy U of the system:

L = E −U. (1.2)

The derivation of the Lagrange formulation leads to a compact form of the inverse
dynamics:
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τ = M(q)q̈+C(q, q̇)q̇+G(q), (1.3)

where:

M(q) is the inertia matrix,

C(q, q̇) represents the Coriolis and centripetal effects,

G(q) is the vector related to gravity.

In reality, a robot arm is always affected by friction and disturbances. Therefore, we shall
generalize the above arm model by writing the manipulator dynamics as

τ = M(q)q̈+C(q, q̇)q̇+F(q̇)+G(q)+D, (1.4)

where F(q, q̇) stands for the friction vector and D denotes the disturbance vector. The friction
F(q̇) is generally of the form:

F(q̇) = Fvq̇+Fd(q̇), (1.5)

with Fv the coefficient matrix of viscous friction, and Fd a dynamic friction term. The friction
coefficients are among the parameters most difficult to determine for a given arm and, in
fact, (1.5) represents only an approximate mathematical model for their influence. For more
discussion, see [77].

Flexible-Joint Robot Dynamics

Consider the robot described previously with elastic gearboxes or elastic motor output-side
shaft, i.e., elastic joints. This robot can be modelled by the so called flexible-joint model
which is illustrated in Figure 1.5. The rigid bodies are connected by torsional spring pairs.

If the friction and inertial couplings between the motors and the rigid links are neglected
we get the simplified flexible joint model. If the gear ratio is high, this is a reasonable
approximation as described in, e.g., [82]. The motor mass and inertia are added to the
corresponding rigid body. The total system has 2n DOF. The model equations of the
simplified flexible joint model are expressed as:

M(q)q̈+C(q, q̇)q̇+G(q) = τl, (1.6a)

τl = K(θ −q), (1.6b)

τm = Iθ̈ + τl, (1.6c)
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Fig. 1.5 A flexible joint dynamic model with 6 DOF

where link and motor angular positions are denoted as q ∈ Rn and θ ∈ Rn, respectively.
τm ∈ Rn is the motor torque and τl ∈ Rn is the gearbox output torque. K ∈ Rn×n is the
stiffness matrix and I ∈ Rn×n is the motor inertia matrix.

If the friction, the viscous damping and the couplings between the links and the motors
are included we get the complete flexible joint model [22]:


M(q)q̈+S(q)θ̈ +C1(q, q̇, θ̇)q̇+G(q) = τl, (1.7a)

τl = K(θ −q)+D(θ̇ − q̇), (1.7b)

τm = Iθ̈ +ST (q)q̈+C2(q, q̇)+ f (θ̇)+ τl, (1.7c)

where S ∈ Rn×n is a strictly upper triangular matrix of coupled inertia between links and
motors. The structure of S depends on how the motors are positioned and oriented relative to
the joint axis directions.

The flexible joint models can formally be derived in the same way as the rigid model,
e.g., by the Lagrange equation. The potential energy of the springs must then be added to the
potential energy expressions as
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Vs(q,θ) =
1
2
(q−θ)T K(q−θ), (1.8)

where Vs is the elastic potential energy related to the joint elasticity, and the kinetic energy of
the rotating actuators must be added as well.

1.2.2 Robot Dynamics Properties

As mentioned earlier, the equations describing the robot manipulators are highly nonlinear.
However, articulated mechanics have some common inherent properties and a careful analysis,
followed by a judicious use of these properties, leads to very effective controllers, as suggested
by Slotine [79]. The five most commonly used properties for manipulators are: the symmetric
and positive definiteness of the inertia matrix, the boundedness of the dynamical terms, the
skew-symmetry, the parametrization and the passivity of the system.

Symmetric Positive Definite Inertia Matrix

The manipulator inertia matrix M(q) is always symmetric and positive definite [6]. The
positive definiteness implies that the quadratic form of the manipulator inertia is always a
positive scalar. Physically, it means that the kinetic energy is always positive for non-zero
velocity. Mathematically, this property can be expressed as:

E =
1
2

q̇T M(q)q̇ > 0, q̇ ̸= 0, (1.9)

where E denotes the kinetic energy.

Boundedness Property

The dynamic terms M(q), C(q, q̇), G(q) and F(q̇) in the inverse dynamics formulation vary
with respect to the joint angles and their first derivatives. Since the range of variation for the
joint angles is physically limited, the inertia, Coriolis/centripetal, gravitational and friction
matrices are bounded with respect to q and q̇. The disturbance term D which could represent
inaccurately modelled dynamics, and so on, could also be assumed bounded. So we have:

m1 ≤∥ M(q) ∥≤ m2, (1.10)

∥C(q, q̇) ∥≤ cb ∥ q̇ ∥2, (1.11)
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∥ G(q) ∥≤ gb, (1.12)

∥ Fvq̇+Fd(q̇) ∥≤ v ∥ q̇ ∥+k, (1.13)

∥ D ∥≤ d, (1.14)

where:

m1 and m2 are positive constants,

cb is positive constant,

gb is positive constant,

v and k are positive constants,

d is positive constant, and,

∥ · · · ∥ denotes the euclidean norm.

Skew-symmetry

The skew-symmetry gives the following property:

xT [Ṁ(q)−2C(q, q̇)
]

x = 0, ∀ x ∈ Rn. (1.15)

The derivation of this property can be referred to [52]. In fact, it is simply a statement that
the forces, defined by C(q, q̇)q̇, do no work on the system [69]. An important consequence
of this is the following passive property.

Passive Nature of Manipulator

The passivity concept originated from electric circuits theory; a system is said to be passive if
it does not create energy. A system is passive if for equal number of inputs U(t) and outputs
Y (t), the following inequality is satisfied for some α >−∞:

ˆ t

0
Y (τ)TU(τ)dτ ≥ α, ∀ t > 0. (1.16)

For a robot manipulator, considering the input as the torque vector and the output as the
vector of joint velocities, the system defines a passive mapping from the input to the output.
Using the Hamiltonian term H defined as the sum of the kinetic energy and the potential
energy of the manipulator [69], the following holds:
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dH
dt

= q̇τ, (1.17)

where:

q̇ is the vector of joint velocities,

τ is the input torque vector.

Then we have
ˆ t

0
q̇(τ)T

τ(τ)dτ = H(t)−H(0)≥−H(0), ∀ t > 0. (1.18)

This proves the passivity property of the manipulator. This last property has been
unconsciously used for some time in control engineering. By closing the loop between the
joint velocity and the torque, with a passive system, the whole system remains passive. Since
the new system is dissipative, it is stable. Recently the passivity property has been used
considerably as a systematic design philosophy for robot controllers [68].

Linearity in Parameters

By a suitable reformulation of the dynamic equations, the constant parameters defining the
dynamics of the system, e.g. link masses, moments of inertia, etc, may appear as coefficients
of a general coordinate function. By defining each coefficient as a separate parameter, the
dynamic equations can be written as in (1.19), which illustrates a linear relationship in
parameters. Since all these constant parameters are usually subject to inaccuracies, this linear
formulation of the dynamic equation is very useful for adaptive control. This reformulation
that separates the unknown or partially unknown parameters from the known time functions,
is used for the formulation of the adaptive update rules [52].

τ = M(q)q̈+C(q, q̇)q̇+G(q) = Y (q, q̇, q̈)δ , (1.19)

where:

Y (q, q̇, q̈) is an (n×n) matrix of known functions, called regressor functions, and,

δ is an (n×1) vector containing the basic constant parameters.

1.2.3 Control of rigid manipulators

In general, the problem of controlling a manipulator is to determine the time history of
the generalised forces (forces or torques) to be developed by the joint actuators so as to
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guarantee execution of the commanded task while satisfying given transient and steady-state
requirements.

Demand for high-performance robots has led to the development of various advanced
control techniques. Two general controller approaches can be distinguished for robot ma-
nipulators, the model based approaches and the non-model based approaches. The model
based controllers consider some of the structures of the system in their design procedures.
This group of controllers concerns mainly the computed torque controllers, which rely on
cancellation of the non-linearities in the robot dynamics by inverting its dynamic equations.
In contrast, non-model based controllers do not take into account the system dynamics. This
kind of controllers were popular during the early days of robotics [71] since it allows a de-
coupled analysis of the closed-loop system using single-input/single-output (SISO) classical
techniques, it is also called independent joint control. To deal with model uncertainties, vari-
ous adaptive and robust controllers have been developed for both model based and non-model
based controllers.

Computed Torque Control

The controller uses the general inverse dynamic equation of the robot manipulator as the
basic design starting point. Usually the controller is composed of two parts, the feed-forward
and the feedback elements. The feedforward part attempts to cancel the non-linearities
in the system, while the feedback is used to stabilise the system and drives the error to
zero. Considering the simplified model (1.3), given the current position and velocity of the
manipulator, the computed torque control law is described as:

τ = M(q)(q̈d −Kvė−Kpe)+C(q, q̇)q̇+G(q), (1.20)

where q̈d is the desired acceleration, e = q−qd , and Kv and Kp are constant gain matrices.
When substituted into (1.3), the error dynamics can be written as:

M(q)(ë+Kvė+Kpe) = 0. (1.21)

Since M(q) is always positive definite, we have

ë+Kvė+Kpe = 0. (1.22)

This is a linear differential equation which governs the error between the actual and
desired trajectories. It can be proved that, if Kv,Kp ∈ Rn×n are positive definite, symmetric
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matrices, then the control law (1.20) applied to the system (1.3) results in exponential
trajectory tracking [63].

The computed torque control law consists of two components. We can write (1.20) as

τ = M(q)q̈d +C(q, q̇)q̇+G(q)︸ ︷︷ ︸
τ f f

+M(q)(−Kvė−Kpe)︸ ︷︷ ︸
τ f b

, (1.23)

where τ f f is the feedforward component. It provides the amount of torque necessary to drive
the system along its nominal path. The term τ f b is the feedback component. It provides
correction torques to reduce any errors in the trajectory of the manipulator.

However, the controller (1.20) needs the exact knowledge of M(q), C(q, q̇) and G(q).
The named PD-Plus-Gravity Controller [5], requires only to compute the gravity terms G(q).

The PD-plus-gravity controller takes the form as

τ =−Kvė−Kpe+G(q), (1.24)

where Kv,Kp ∈ Rn×n are positive definite, symmetric matrices.
It can be proven that, the controller (1.24) is asymptotically stable for the regulation

control problem [5].
In summary, the computed torque approach is based on the feedback linearisation concept.

Such controllers are designed in two steps. Initially, the structure of the feedforward term that
provides linearisation is established, with an estimate of the system dynamics. The second
step consists of defining the feedback term such that the control objective is achieved.

Independent Joint Control

The design of computed torque method based on (1.20) is generally complicated due to
the model uncertainty or computational load. A more realistic controller design strategy
that can be thought of is to decompose an n-joint manipulator into n-independent systems
allowing independent joint control. This control approach has been used since the early age
of robotics, and is referred to as independent joint control. The effectiveness of SISO control
is confirmed for manipulators with relatively low joint interaction reflected at the actuators.
This situation is only valid for slowly moving links and highly geared transmissions. The
reduction ratios in the transmissions reduce the link interactions and the variation in inertia
as seen by the actuators. For manipulators with directly driven links (gear ration = 1) or
lowly geared transmissions, the interaction between links may be significant [7]. In this case,
the independent joint control may not provide acceptable results and the interaction between
the links has to be accommodated in the controller design via a model-based like approach.
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An example of this design methodology is a proportional plus derivative (PD) control
law for a robot manipulator. In its simplest form, a PD control law for each joint i can be
written as:

τi =−Kdiėi −Kpiei, (1.25)

where Kdi,Kpi are positive constant.
However, with the PD controller, due to gravity or other disturbance, there is always a

residual error at steady state. A common modification is to add an integral term to eliminate
steady-state errors. This introduces additional complications to maintain stability and avoid
integrator windup. The introduction of integral term gives rise to PID controller:

τi =−Kdiėi −Kpiei −Kii

ˆ
ei, (1.26)

where Kdi,Kpi,Kii are positive constant.
For these independent joint controllers, the coupling effects between joints due to vary-

ing configurations during motion are treated as disturbance, effective rejection of these
disturbances is usually achieved by either a large gain or an integral action [57].

Usually for industrial robots, independent joint control gives reasonably good results for
set point regulation as well as for trajectory following. Although, the validity of the scheme
can be appreciated from an engineering point of view, and the large number of applications
confirm its effectiveness [12], [4], and theoretical proofs have justified the application and
the stability of such schemes in robotic applications [75], [83].

Robust Controllers

Many of the previously discussed classes of controllers exist in robust versions or are
intrinsically robust, e.g., PID controller. The aim of the robustness property for the controller
is to render the system insensitive to parameter mismatches, i.e. uncertainty in the dynamic
terms of the model-based controller; and to disturbances, e.g. joint interactions, measurement
noises and noises affecting the system itself.

The control of uncertain systems is usually accomplished using either an adaptive control
or a robust control philosophy. In the adaptive approach, one designs a controller that attempts
to learn the uncertain parameters of the system and, if properly designed, will eventually be a
“best” controller for the system in question. In the robust approach, the controller has a fixed
structure that yields acceptable performance for a class of plants which includes the plant in
question. In general, the adaptive approach is applicable to a wider range of uncertainties,
but robust controllers are simpler to implement.
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The computed torque control law (1.20) cannot usually be implemented due to its
complexity or to uncertainties present in M(q), C(q, q̇), G(q), and due to disturbances.
Instead, one applies (1.27) below:

τ = M̂(q)(q̈d +u)+Ĉ(q, q̇)q̇+ Ĝ(q), (1.27)

where:

M̂(q), Ĉ(q, q̇) and Ĝ(q) are estimates of M(q), C(q, q̇) and G(q),

q̈d is the desired acceleration, and,

u is the feedback error signal, can be the P, PD or PID type.

The system uncertainties do not cause problems in terms of control as long as the
estimated model is sufficiently close to the real one. The feedback loop is used to correct
for the system uncertainties and to guarantee acceptable performance. As the uncertainties
increase however, the system performance decays rapidly such that the system may become
unstable [30], [81]. When the uncertainties are within an acceptable range, the feedback loop
can be designed in such a way that the error converges to an acceptable range.

The effectiveness of the controller (1.27), is very much dependent on the accuracy of the
estimated model used as the feedforward term. This dependence has motivated engineers
and scientists to search for a way to render the system more insensitive to model uncertainty.
As a result, various methodologies have been suggested to design the robust control scheme
[1], [52]. The Lyapunov approach is one in which a candidate Lyapunov function is selected
to define the robustness of the controller. The most commonly selected Lyapunov function is
the pseudo-kinetic energy function [32]. It is formed using a function of the error and the
inertia matrix of the manipulator. The stability and robustness of the scheme are guaranteed
by establishing a strictly negative bound on the derivative of the Lyapunov function. This
must be valid for any point in the operating range of the manipulator. This approach is
very conservative (there is no toot to design a Lyapunov function for a generic nonlinear
time-varying system), but it may nevertheless be a starting point for further refinements.

Adaptive Controllers

Adaptive control is another main approach for dealing with uncertainties. Research in adap-
tive control started in the early 1950’s in response to the development of high performance
aircraft, but research did not progress very much due to the lack of a global theory. It was
abandoned until the late 1960’s, when interest in adaptive controllers started again.

In many robot control problems where some form of model based control is used, some
of the parameters of the plant to control are partially or totally unknown (the inertia, mass,
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length, etc.). It may also happen that the process, during its normal operation, is subject to
changes in parameters. The robot may be required to manipulate loads which may vary in
size, weight and mass distribution. In order to give consistent responses in terms of speed
and accuracy in any of these situations, the controller has to adapt itself to cope with these
varying or uncertain parameters. One of the basic idea in adaptive control is to estimate the
uncertain model parameters and adjust the controller parameters, this is also called Indirect
Adaptive Control. To illustrate the difference of this idea from the general controller design
ideas, we first look at the general principles of model-based controller design procedure
given in Figure 1.6.

Fig. 1.6 Principles of general model-based controller design

Generally, in order to design and tune a good controller, one needs to:
(1) Specify the desired control loop performances.
(2) Pre-know or identify the dynamic model of the plant to be controlled.
(3) Possess a suitable controller design method making it possible to achieve the desired

performance for the corresponding plant model.
To cope with model uncertainty, the indirect adaptive control scheme (Figure 1.7) can

be viewed as a real-time extension of the controller design procedure represented in Figure
1.6. The basic idea is that a suitable controller can be designed online if a model of the plant
is estimated online from the available input-output measurements. The scheme is termed
indirect because the adaptation of the controller parameters is done in two stages:

(1) on-line estimation of the plant parameters;
(2) on-line computation of the controller parameters based on the current estimated plant

model.
Other adaptive control schemes include the direct adaptive control and model-reference

adaptive control, usually referred to as MRAC [49]. In direct adaptive control, the controller
parameters are calculated directly according to the plant input/output, without intermediate
calculations involving plant parameter estimates. In the MRAC, a model of the plant is used
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Fig. 1.7 Principles of indirect adaptive control

to generate the ideal output that the plant response must follow. The controller parameters
are updated in a way that the plant achieves perfect tracking of the reference model response.

Using the linearity in parameters property, a number of adaptive controllers for robotics
have been proposed [14], [39], [17], [59], [76]. A number of important refinements to this
initial result are possible [81], [80], [38], [69].

1.2.4 Control of flexible-joint manipulators

Early Control Approaches

Since the first clear demonstration in 1984 that robot manipulators were exhibiting flexible
effects in their joints [85], new control strategies developed specifically for this new class
of robot systems started to emerge. One of the first studies on flexible-joint control was
published two years later in [92], in which an adaptive controller based on an approximate
linearized model of the flexible-joint dynamics was proposed. With this linear dynamics
approximation, the Coriolis and Centrifugal forces were neglected. Using a similar linearized
dynamics representation, a predictive controller was designed [46], but the performance was
not satisfying. By this time, most of the research efforts were focused on linear control
methodologies. In 1986, for the first time, a nonlinear control method was considered for a
single-link flexible-joint manipulator [60]. In that paper, the authors proved that a single-link
flexible-joint robotic manipulator under static nonlinear state feedback acts like a controllable
linear system.

PID controller

Due to the simplicity and ease of implementation, proportional-derivative (PD) controllers
have been widely used. Similar to that used for rigid robots, a simple PD regulator with
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gravity compensation was proposed for flexible-joint robots [90], and simulation results for
a set-point control problem are provided. An adaptive version of this simple PD regulator
was derived by the same author in [89]. For the sake of simplicity, actuators dynamics and
friction were neglected in the control algorithms in those two PD regulation approaches.
An extension of the PD regulator for robot manipulator considering simultaneously joint
flexibility, actuators dynamics as well as friction was presented in [55]. A PD controller
with on-line gravity compensation was proposed for regulation tasks in [23]. One of the
features of this controller is to allow more flexibility in the tuning of the proportional gains,
as compared with the original controller proposed in [90].

Feedback Linearization

Feedback linearization is one of the most powerful approaches for nonlinear control system
design. Essentially, the objective of this approach is to transform a nonlinear dynamic system
into a fully or partly linear model, so that linear control techniques can be applied. In 1987,
Spong [82] introduced the well-known linear joint stiffness dynamics model and showed
that it is globally feedback linearizable, and can be reduced to that of the standard rigid-joint
robots as the joint stiffness reaches infinity. This property led to the early development
of several control approaches based on feedback linearization [65], [20]. Dynamic state
feedback control techniques for a particular class of flexible-joint robots are suggested in
[56] and [22], since conventional static state feedback approaches failed to achieve exact
linearization. Experimentally, a static state feedback linearization approach was applied in
[29] to a class of flexible-joint robots to guarantee global asymptotic stability. Furthermore,
linearization with static and dynamic state feedbacks was also investigated in [19] for robots
with mixed flexible/rigid joints.

Adaptive Control

Among the different flexible-joint control techniques available in the literature, adaptive
control methods have generated the greatest interest. An adaptive control scheme which is
applicable to manipulators with weak joint stiffness coefficients is proposed in [62], in the
proposed scheme, a Lyapunov candidate function is defined to guarantee asymptotic stability,
and bounded parameter errors. In [62], an adaptive control scheme is introduced for which
asymptotic stability was ensured without restriction to low joint elasticity. Furthermore,
the values of the joint stiffness coefficients were not assumed to be known. Joint position
and velocity tracking errors were shown to asymptotically converge to zero. Similarly,
in [98], an adaptive control law which considers uncertainties in the inertia parameters
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is established. The asymptotic stability of the adaptive controller was established in the
sense of Lyapunov. In [67], an adaptive trajectory tracking control law for a single-link
robot with one revolute elastic joint whose parameters were assumed to be unknown is
proposed. In another paper [44], the authors derived a tracking controller for an uncertain
parameter robot system without using link and actuator velocity measurements. Specifically,
the controller used joint stiffness matrix estimates to overcome the overparametrization
problem, that is, the number of parameter estimates becomes the same as the number of
unknown parameters. An adaptive output feedback controller based on a backstepping design
was developed in [97]. The parameters of the system were assumed to be unknown and
only link and motor position measurements were used for the synthesis of the controller.
In [28], a Lyapunov-based adaptive control technique framework for flexible-joint robot
with time-varying uniformly bounded disturbances is proposed, where the disturbances were
characterized by a combination of unknown and known constants. [53] studied the regulation
problem of flexible-joint robot with uncertain kinematics and proposed adaptive regulation
scheme which considered kinematic uncertainties as well as uncertainties in actuator dynamic
parameters, such as the constant joint stiffness coefficients. Simulation results were provided
to confirm the effectiveness of the proposed adaptive regulator. However, the adaptive control
scheme required a nonlinear observer which mat complexify the design process.

Robust Control

Besides adaptive control techniques, several robust control techniques have been proposed
in the literature to cope with uncertainties, such as the robust controller derived in [91]
for elastic-joint robots with uncertain kinematic and dynamic parameters and subject to
unknown disturbances. Similarly, [18] presents a robust tracking controller which achieves
global uniform ultimate bounded tracking despite the presence of bounded disturbances
and parameter uncertainties. Similarly, a robust controller for a flexible-joint robot with
both parametric and dynamic uncertainties is proposed in [37]. However, although rejection
of any bounded disturbances entering the system was demonstrated, asymptotic stability
could not be guaranteed. More recently, a robust controller was developed in [87] using the
singular perturbation-based dynamics representation, under which the system acts on a two
time-scale. In their work, a simple PD controller was used to stabilize the fast dynamics
while a robust controller designed with the quantitative feedback theory was used in addition
to an integral manifold corrective term to stabilize the slow dynamics. On the other hand, in
[95] and [96], a robust controller containing two steps is proposed. First, a robust controller
for the link dynamics is designed for the case when the link dynamics could be controlled
independently of the motor dynamics. Second, a robust controller is designed recursively by
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using the Lyapunov second method. The resulting robust controller was applied to a two-link
flexible-joint robot. Also, the authors in [94] presented the design of a robust control scheme
which comprised two parts: a model-based computed torque control part, and robust control
part to maintain the tracking performance. The resulting robust controller was applied in
numerical simulations for a six DOF flexible-joint robot manipulator.

Nonlinear Control

Many researchers have proposed various nonlinear control design techniques for flexible-
joint robot manipulators. Some early nonlinear control techniques include a nonlinear dy-
namic feedback developed in [21] and a feedback linearization controller based on coordinate
transformations in [43]. A nonlinear backstepping approach was proposed in [43]. How-
ever, the drawback of the backstepping control technique is that the closed-loop system
becomes easily unstable if the system is subject to parametric uncertainties. To overcome
this limitation, an adaptive backstepping method using tuning function was developed in
[58]. In this work, the performance was assessed against a simple PD controller in tracking a
15cm×15cm square trajectory. A nonlinear regulator for flexible-joint robots which achieved
constant torque disturbance rejection was derived in [2]. The design of the regulator used
the nonlinear integrator backstepping technique. Lyapunov-based nonlinear controllers have
also been considered in the past years. In [66], the authors investigated a nonlinear control
law which guarantees global convergence either for regulation about a constant reference
position or for tracking a desired trajectory. The proposed nonlinear control law was applied
to a single-link robot. In addition, it was shown how the approach could be extended to cases
where the robot parameters are not known. In [10], seven different schemes were experimen-
tally implemented for a two-link planar manipulator, including a PD controller, a rigid-joint
adaptive controller, a singular perturbation-based algorithm, and four nonlinear controllers
derived from the nonlinear backstepping and energy-shaping design methodologies. One
of the main conclusions of this study was that the complex structure of certain nonlinear
controllers for flexible-joint robots (e.g. nonlinear backstepping and energy-shaping schemes)
may be an obstacle to their closed-loop behaviour enhancement. The experimental results
clearly showed that the inputs of such schemes chatter and result in control input magnitudes
larger than the simpler controllers. Moreover, the authors did not succeed in finding feedback
gains to stabilize the nonlinear backsteeping controllers. According to the authors, this is
due to a too-large input magnitude that hampers stabilization. This confirms the observations
made in [8] and showed that a slight modification of the backstepping controller gains has
a significant influence on the obtained performance. The same authors performed further
experimentations on a linear but highly flexible manipulator system made of two pulleys



1.3 Contribution of the thesis 19

linked by a spring in [9]. This second experiment completed the previous one in [10] in the
sense that the manipulator used in the first experiment was nonlinear but with higher joint
stiffness, whereas the system in the second experiment was linear but with highly flexible
joints.

1.3 Contribution of the thesis

This thesis considers the control problem of low-cost light-weight position-controlled robot
arms.

First, the set-point control problem of low-cost rigid manipulators with “all-in-one”
actuators is addressed in this chapter. For the derivation of the dynamics model linking the
input with the state variables, the effect of the driven motor and the transmission system is
considered, as a result, a second-order differential equation with constant parameters and
bounded disturbance is obtained, then identification method of a nominal model is proposed,
based on the identified model parameters, a model-based adaptive controller is developed.
In simulation, the ability of error reduction is validated, and advantage on performance
robustness with respect to model change is observed with comparison to PID controller with
constant gains. Implementation on a real robot arm validates the performance of the proposed
adaptive controller.

Then, the point-to-point control of single-link position-controlled robot with joint flexi-
bility, to obtain link side information, an EMES gyroscope is used to provide link angular
velocity. An identification scheme of the model parameters is presented, based on the classic
model of flexible-joint robots. As a benchmark, a modified simple PD plus gravity com-
pensation controller is considered, of which the regulation error depends on two parameter
estimates. Too improve the robustness with regard to parameter uncertainties, a two-stage
adaptive controller is proposed, with which the final position error depends on the precision
of only one parameter estimate, provided that the initial static link position can be measured.
Simulation results illustrate that, the proposed two-stage controller is more robust than the
PD one, with regard to parametric uncertainty. Efficacy of the proposed identification and
control algorithms is also demonstrated in experiments on real robot.

Finally, the problem of model identification and output control has been studied in this
work for linear time-invariant SISO system with completely unknown parameters, external
disturbances, while the output is represented by high-order derivative corrupted by a bounded
noise. It is shown that by introducing n recursive integrals and using a simple identification
algorithm, some estimates on vector of unknown parameters and states can be obtained. Next,
these information can be used in control, adaptive or robust, to provide boundedness of the
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state vector of the system. Due to integration drift all results are obtained on final intervals
of time. Efficacy of the proposed identification and control algorithms is demonstrated in
simulations.

1.4 Outline of the thesis

The outline of the main chapters is shown in Figure 1.8. In Chapter 2, we focus on rigid-
joint case, independent joint modelling, model identification, auxiliary controller design
and the simulation results are presented. In Chapter 3, we study the flexible-joint case,
for simplification, only single-link flexible-joint manipulator is investigated. This chapter
includes dynamic modelling, model identification, state estimation and controller design
using link angular velocity measurement, simulation result is also given. In Chapter 4, still for
flexible-joint case, but we use link acceleration measurement for the identification, estimation
and control, simulation result is also provided. This method of using second-order derivative
measurement is generalized to the identification and control problem for linear system, by
using high-order derivative measurement. Chapter 5 presents the experimental results of
the proposed controllers (proposed in Chapter 2 and Chapter 3) implemented on a low-cost
manipulator.
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Chapter 2

Auxiliary controller design for low-cost
rigid manipulator with built-in controller

2.1 Introduction

From a commercial and marketing point of view, “personal robots” must be cheap and
user-friendly. A common practice for the current low-cost manipulators in the market is
to adopt “all-in-one” actuators, e.g., Dynamixel AX-12A actuators from ROBOTIS. These
actuators are integrated with DC motor, sensors, transmission system and position control
unit, provide high load-to-weight ratio and relieve the practitioners from designing reduction
system and control unit.

However, constrained by the budget, some low-cost manipulators adopt limited-performance
all-in-one actuators, for which the built-in controllers are usually simple independent joint
controllers, such as PID, PD or even P controller (if no velocity sensor or observer is avail-
able). Since the coupling dynamic effects between joints are ignored [13], this leads to
limited performance and control precision of the manipulator [100].

The most used closed-loop controller of a servo system is PD (proportional-derivative)
controller [31]. Linear analysis suggests that with high gains, precise tracking performance
can be achieved. However, high gains drive easily actuators into saturation, besides, for
low-cost actuators, reliable velocity feedback with high frequency is hard to obtain. That is
why some commercial smart actuators (e.g., Dynamixel AX-12 and AX-18 series) use only
P controller, in this case, undesirable static error cannot be avoid when a large load on the
motor axis is exerted.

To improve the control performance for position controlled robot manipulators, many
works have been done to provide them with torque control capability, since torque controlled
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robots are preferred to achieve high performance [78]. Approach to use torque sensors, such
as strain gauge [33] or optical torque sensor [34] techniques, is proposed in [35], this joint
torque sensing method is adopted in [54]. However, since strain gauges are sensitive to
ambient temperature variations, varying offset are often generated. For optical torque sensors,
artificial flexibility inside a joint usually needs to be performed to convert the joint torque
to joint deformation, while introducing joint flexibility may cause undesired performance
such as vibration. In [41], a torque-position transformer for position controlled robots is
introduced, with which desired joint torque is converted into instantaneous increments of
joint position inputs, this approach has been implemented on the Honda ASIMO robot arm.
However, this transformer is based on the total knowledge of the built-in controller, which,
designed by the manufacturer of the actuators, is usually unknown or partly unknown to
individual users. Besides, to calculate the desired torque, the model of the whole manipulator
is indispensable, if it is not available, identification of the whole system model should be
considered.

In this chapter, we consider the set-point regulation for a low-cost manipulator equipped
with built-in controller. The objective is to design an auxiliary controller, without any
additional sensors, to reduce the steady-state error which could not be handled by the built-in
controller.

The remainder of this chapter is organized as follows: the statement and analysis of
the control problem for low-cost rigid position-controlled manipulators are introduced in
Section 2.2. In Section 2.3, dynamics model and model parameter identification method are
given. Section 2.4 details the adaptive controller design and its implementation on discrete
systems. Simulation results are presented in Section 2.5 with comparison to an auxiliary PID
controller. Finally, the conclusion is given in Section 2.6.

2.2 Problem statement and analysis

2.2.1 Problem statement

Consider a n-DOF revolute robot manipulator, each joint is driven by an all-in-one actuator,
each actuator is embedded with a controller.

For each joint, Figure 2.1 shows the system under the built-in controller. u is the input
for the system, which could be the desired angular position. x denotes the joint position and
serves as the feedback, corrupted with measurement noise. τm is the torque working on the
motor, controlled by the built-in controller, based on the position error e, where e = u− x.

The following assumptions are made:
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Fig. 2.1 Joint plus controller system

Assumption 2.1. The model of the built-in controller is of an order less than 2, without
integral term. More concretely, the controller can be expressed as a PD part with high gains
plus bounded unmodeled error, as:

τm = P(u− x)−Dẋ+ν , (2.1)

where P > 0 is the proportional gain, D ≥ 0 is the derivative gain, while ν denotes the
unmodeled error and is bounded.

Assumption 2.2. The manipulator is rigid and time delay is not considered.

Assumption 2.3. The manipulator is of light weight and of small size.

Assumption 2.4. The gear ratio of the manipulator is rather small (e.g., less than 1:200).

Assumption 2.5. The angular velocity and acceleration of the manipulator are limited.

Assumption 2.6. Parameters of the dynamic model of the manipulator, e.g. joint mass, initial
moments, first moments, etc, are unknown.

Assumption 2.7. Only joint angular position feedback is available for the user and is
corrupted with noise.

The objective is to reduce the steady-state error which could not be done by the built-in
controller, without any additional sensors.

2.2.2 Problem analysis

Since the built-in controller presents steady state error with u = xd , where u denotes the input
for any joint, and xd is the desired position for this joint, to reduce the position error, the way
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is to design an auxiliary controller u based on xd and position feedback x (and the derivatives
of x if necessary), u will afterwards serve as the input for the previous joint plus controller
system, the idea is illustrated in Figure 2.2.

Fig. 2.2 Introduction of an auxiliary controller

Most of the model-based controller design methods are based on the centralized inverse
dynamic model (1.3) of manipulators, which relates the input torque vector to the state
variable vectors. However, in our case, as we have neither direct or indirect torque input (the
torque to be exerted on the motor is decided by the built-in controller of which the model is
unknown), nor torque measurements, centralized control seems impossible, as a result, we
resort to independent joint control.

The most used independent joint controller is the PID controller. However, from a linear
control theory point of view, PID controller with constant gains may not be suitable for a
nonlinear and time-varying system. To seek a better performance, a model-based independent
joint controller could be a better choice.

2.3 Modelling and identification

2.3.1 Dynamics modelling

Generally, the inverse dynamics model of an n-DOF robot arm with viscous friction can be
denoted as:

τ = M(q)q̈+C(q, q̇)q̇+F(q̇)+G(q), (2.2)

where q is the joint variable n-vector and τ is the n-vector of the forces or torques. M(q) is
the inertia matrix, C(q, q̇)q̇ is the Coriolis/centripetal n-vector, F(q̇) is friction vector, and
G(q) is the gravity vector. One of the properties of (2.2) is that M(q), C(q, q̇), F(q̇), G(q), τ

are bounded, as summarized in Section 1.2.2.
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The model (2.2) is highly coupled, to get a decoupled independent joint model for joint i,
we extract:

τi =
n

∑
j=1

Mi j(q)q̈ j +
n

∑
j=1

Ci j(q, q̇)q̇ j +Fi(q̇)+Gi(q). (2.3)

Most robot manipulators are driven by servo motors. The motors are connected to the
manipulator links through gear trains, where the robot dynamics appear as dynamic load, as
illustrated in Figure 2.3. The dynamics of a DC motor can be represented by a second-order
linear differential equation. For the ith joint, the dynamics of the motor can be written as
[75]:

Fig. 2.3 Joint with motor and transmission system

Jiq̈mi +Biq̇mi = τmi − riτi, (2.4)

where Ji is the total inertia for the motor and gear transmission system, Bi is the corresponding
effective damping coefficient, q̇mi and q̈mi are the motor-side shaft angular velocity and
acceleration, ri is the gear ratio (ri ≤ 1). The link is driven by the gear train with relation:

q̇i = riq̇mi,

from which we derive

ri =
q̇i

q̇mi
=

q̈i

q̈mi
. (2.5)

Substitute (2.5) into (2.4), we obtain

Jiq̈i +Biq̇i = riτmi − r2
i τi. (2.6)
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From Assumption 2.1, we have

τmi = Pi(ui −qi)−Diq̇i +νi. (2.7)

Substitute (2.7) into (2.6), it yields

Jiq̈i +(Bi + riDi)q̇i + riPiqi = riPiui + riνi − r2
i τi. (2.8)

Reminder that, for most of today’s robot manipulators, large gear reductions are adopted,
thus ri is rather small. From (2.8), it shows that the load torque τi expressed in (2.3) is
largely reduced by r2

i and the controller unmodeled error νi is reduced by ri, since ri is rather
small according to Assumption 2.4. In fact, by Assumption 2.3 and Assumption 2.5, τi is
bounded. On the other hand, since Di and Pi are of rather high value, riDi and riPi can not be
ignored, besides, here we consider light-weight and small-size manipulators, thus the inertial
parameters of the motor and the transmission systems (Ji and Bi) are not negligible compared
to the link inertial parameters. This is a very important observation since it allows us to
treat afterwards τi and νi as bounded disturbance and the drive system tends to dominate the
dynamics [86], [50]. Then (2.8) can finally turned into:

q̈i = ai(ui −qi)−biq̇i +λi, (2.9)

where ai =
riPi

Ji
, bi =

Bi + riDi

Ji
and λi =

riνi − r2
i τi

Ji
. ai and bi are constants and λ is bounded.

At steady state (q̇ = q̈ = 0), we have τi = Gi(q) and νi = νssi, define the steady state error
esi = ui −qi, then

esi =−λi

ai
=

riGi(q)−νssi

Pi
. (2.10)

This result explains the existence of the steady state error (ui − qi), and according to
this expression, if νssi can be neglected, then this error depends mainly on the gear ratio
ri, the proportional gain Pi and the gravity torque value Gi(q), this last one depends on the
mechanical structure and the configuration of the manipulator.

As a summary, for each joint, we established a second-order differential equation with
constant parameters and highly bounded disturbance, this result allows us to design inde-
pendent joint controllers. For simplification and generality, this model can be rewritten
as:

ẍ =−a1x−a2ẋ+ ku+λ , (2.11)
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where x = qi, a1 = k =
riPi

Ji
, a2 =

Bi + riDi

Ji
and λ =

riνi − r2
i τi

Ji
. a1, a2 and k are unknown

constants and λ is bounded disturbance. (2.11) will be used for model-based controller
design in the following text of this chapter.

Remark 2.1. We can get the same form of the system dynamic model as in (2.11) if the
built-in controller in (2.11) is of a P element instead of PD elements, in this case, only a2 in

(2.11) changes and becomes
Bi

Ji
.

2.3.2 Model Identification

Considering a linear nominal model of (2.11) as follows:

ẍ =−ā1x− ā2ẋ+ k̄u, (2.12)

where ā1, ā2, k̄ are constant. Write (2.12) in the following matrix form:

ẍ =
[

x ẋ u
][

−ā1 −ā2 k̄
]T

. (2.13)

Denoting

A =


ẍ(t1)
ẍ(t2)

...
ẍ(tm)

 ,B =


x(t1) ẋ(t1) u(t1)
x(t2) ẋ(t2) u(t2)

...
...

...
x(tm) ẋ(tm) u(tm)

 ,H =

 −ā1

−ā2

k̄

 ,

where m is the number of samplings and t1, t2, . . . , tm are the sampling instants, A and B
are composed of known signals (input u, position feedback q, first-order and second-order
derivatives of q estimated by differentiator). Then (2.13) is equivalent to

A = BH. (2.14)

There exist many methods to solve the equation (2.14) with respect to H minimizing the
disturbance influence [47]. The simplest one consists in multiplication of both sides in (2.14)
by BT ,

BT H = BT BA.

and sample till the instant that the matrix BT B becomes nonsingular, then by least square
method, we get
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H = (BT B)−1BT A. (2.15)

It is worth noting that the above method is based on the knowledge of the velocity ẋ and
the acceleration ẍ, since we have only position information x, therefore, we need to estimate
ẋ and ẍ by using observers.

If the system is sufficiently excited by a pre-designed input signal u, with observers of
the fist-order and second-order derivatives, then ā1, ā2, k̄ can be estimated.

2.3.3 Derivative estimation

Let y(t) = x(t)+w(t) be a noisy observation on a finite time interval of a signal x(t) where
w(t) represents noise, and we need to estimate the ith order derivative of x(t). For this, a
large amount of literatures about high-order differentiation have been published, like high-
gain differentiator [15], [16], high-order sliding mode differentiator (HOSM) [51], [26],
homogeneous finite-time differentiator (HOMD) [73], [74], algebraic-based differentiator
(Alge) [27], [61]. The following gives a brief recall of them.

Algebraic-based differentiation

The basic idea of this approach is to approximate the noisy signal by a suitable polynomial dur-

ing a small time window. Write x(t) by its convergent Taylor expansion: x(t) =∑
∞
i=0 x(i)(0)

t i

i!
,

then consider the following truncated Taylor expansion:

xN(t) =
N

∑
i=0

x(i)(0)
t i

i!
,

where N is the freely chosen order of the approximated polynomial. By taking Laplace
transform of the above equation, it gives

xN(s) =
N

∑
i=0

x(i)(0)
sN+1 ,

which is equivalent to:

sN+1xN(s) = sNx(0)+ sN−1ẋ(0)+ · · ·+ x(N)(0). (2.16)

In order to estimate the ith order derivative, which is exactly the coefficient x(i)(0) of
the above equation, it is necessary to annihilate the remaining coefficients x( j)(0), j ̸= i, by
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multiplying both sides of (2.16) by the following linear differential operator:

Π
N,i
κ =

di+κ

dsi+κ
· 1

s
· dN−i

dsN−i , κ ≥ 0,

it yields the following estimator for x(i)(0):

x(i)(0)
sν+i+κ+1 =

(−1)n+κ

(i+κ)!(N − i)!
1
sν

Π
N,i
κ (sN+1xN), (2.17)

which is strictly proper if ν = N + 1+ µ with µ > 0. After transferring (2.17) back into
the time domain and with several calculations, we can obtain the estimation of the ith order
derivative of x(t) (see [74] for details).

In a practical way, the first-order and second-order derivative estimates can be expressed
as (refer to [61] for details):

ˆ̇y(t) =− 6
T
´ 1

0 (1−2τ)y(t − τT )dτ,

ˆ̈y(t) =
60
T 2

´ 1
0 (6τ2 −6τ +1)y(t − τT )dτ,

(2.18)

where y is the corrupted signal and T is the selected window.

High-gain, HOSM and HOMD differentiators

The recursive schemes of the High-Gain, HOSM (High-order sliding mode) and HOMD (Ho-
mogeneous finite-time) differentiators are of a similar formulation, which can be described
as follows:

ż1 = −k1pz1 − yyα + z2,
...
żi = −kipz1 − yyiα−(i−1)+ zi+1,
...
żn−1 = −kn−1pz0 − yy(n−1)α−(n−2)+ zn,

żn = −knpz0 − yynα−(n−1),

(2.19)

where payb = |a|bsign(a) and ki is the chosen gain. Then zi represents the estimation of the
ith order derivative of y. According to [74], there are three cases:

• α = 1, then (2.19) represents a high-gain differentiator;

• α ∈ (
n−1

n
,1), then (2.19) represents a HOMD differentiator;
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• α =
n−1

n
, then (2.19) represents a HOSM differentiator.

2.4 Auxiliary adaptive controller design

2.4.1 Adaptive controller design

The model of the controller-plus-joint system (2.11) can be rewritten in the following form:

ẍ =−ā1x− ā2ẋ+ k̄(u+ϕ
T

θ +d), (2.20)

where ā1, ā2, k̄ are the nominal parameters of (2.12), and

ϕ =
[

x ẋ u
]T

,θ =

[
ā1 −a1

k̄
ā2 −a2

k̄
k− k̄

k̄

]T

,

where θ represents the unknown constant parameter uncertainties, and d = λ/k̄ represents
the disturbance as introduced in (2.11).

Take xd as the trajectory reference, particularly, for a set-point regulation problem,
ẍd = ẋd = 0. We suppose ā1 > 0 and ā2 > 0, from [7], the control law is given by

u = k̄−1ā1xd −ϕ
T

θ̂ , (2.21)

where θ̂ denotes the estimate of θ and will be derived hereafter.

After substituting the control law above into (2.20), we can form the error system

ë =−ā1e− ā2ė+ k̄(ϕT (θ − θ̂)+d),

where e = x− xd . Denote E =

[
e
ė

]
and θ̃ = θ − θ̂ , then we get

Ė = AE +B(ϕT
θ̃ +d), (2.22)

with A =

[
0 1

−ā1 −ā2

]
and B =

[
0
k̄

]
.

Now select the positive-definite Lyapunov function

V = ET PE + θ̃
T

γ
−1

θ̃ , (2.23)
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where P is a positive-definite symmetric matrix and γ > 0. The time derivative of V equals:

V̇ =−ET QE +2(ET PBϕ
T + γ

−1 ˙̃
θ

T )θ̃ +2ET PBd, (2.24)

where Q is a positive definite matrix defined by

Q =−(PA+AT P).

By taking
˙̃
θ =−γ(ϕBT PE −κθ̂), (2.25)

where κ > 0, then (3.38) becomes:

V̇ =−ET QE −κθ̃
T

θ̃ +κθ
T

θ −κθ̂
T

θ̂ +2ET PBd. (2.26)

Apply Young’s inequality, we have

2ET PBd = 2
1√
2

ET Q0.5
√

2Q−0.5PBd

≤ 1
2

ET QE +2dT BT PT Q−1PBd.
(2.27)

Denote λmin(Q) , λmax(P) and δ the minimal eigenvalue of Q, the maximal eigenvalue
of P and the maximal eigenvalue of BT PT Q−1PB respectively, since P and Q are positive
definite, λmin(Q)> 0 and λmax(P)> 0, then we have

−ET QE ≤−λmin(Q)|E|2 ≤−λmin(Q)

λmax(P)
ET PE, (2.28)

and
2dT BT PT Q−1PBd ≤ 2δ |d|2 ≤ 2|δ ||d|2. (2.29)

With (3.29), (3.30) and (3.31), we get

V̇ ≤− λmin(Q)

2λmax(P)
ET PE −κθ̃

T
θ̃ +κθ

T
θ +2|δ ||d|2.

Since θ and d are bounded, then we can define β = sup(κθ T θ + 2|δ ||d|2) and α =

min(
λmin(Q)

2λmax(P)
,κ), it is obvious that α > 0 and β > 0, then we have

V̇ ≤−αV +β . (2.30)
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As time tends to infinity, Vt→∞ will be bounded by
β

α
, from (3.6.2), we derive

λmin(P)|Et→∞|2 ≤ ET
t→∞PEt→∞ ≤Vt→∞ ≤ β

α
,

where λmin(P) is the minimal eigenvalue of P. This gives

|Et→∞| ≤

√
β

αλmin(P)
. (2.31)

So, finally Et→∞ will be bounded.

Finally, by recalling that the actual unknown parameter θ is constant, i.e., θ̇ = 0, we
obtain the adaptive update rule for θ̂ as

˙̂
θ =− ˙̃

θ = γ(ϕBT PE −κθ̂). (2.32)

Further more, θ depends on the precision of the parameter identification results, a better
identification results give a smaller θ . From (2.32), κ is used to avoid θ̂ from being unstable,
can be tuned by the practitioner. P can also be adjusted to increase αλmin(P).

Remark 2.2. The input u depends on the estimate θ̂ , while θ̂ depends on u from (3.40)
since φ includes u, for the implementation on discrete system, as a common practice in
digital devices, just need to take the value one step before of u to calculate the current θ̂

and then derive current u. In fact, a form u = b̄1x− b̄2ẋ+ b̄3ẍ+ϕT θ +d instead of (2.20)

with ϕ =
[

x ẋ ẍ
]T

can avoid this issue, but results in the estimation of the second order
derivative ẍ, which can hardly be reliable if x is corrupted by a noise.

2.4.2 Numerical implementation of the adaptive controller

Write θ̂ =
[

θ̂1 θ̂2 θ̂3

]T
, then from the control law (2.21), we have

u =−(xθ̂1 + ẋθ̂2 +uθ̂3),

this gives

u =
−xθ̂1 − ẋθ̂2

1+ θ̂3
, θ̂3 ̸=−1. (2.33)

According to the adaptive update rule (3.40), with BT PX a scalar, we have
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
˙̂
θ1 = −γ(BT PXx−κθ̂1),
˙̂
θ2 = −γ(BT PXẋ−κθ̂2),
˙̂
θ3 = −γ(BT PXu−κθ̂3).

(2.34)

However, to calculate ˙̂
θ3 in the last equation of (2.34), u is not known a prior, thus we

need an estimate û of u. Here, we propose to let û(t) at time t be simply equal to a slightly
time-delayed past value of u(t) to implement the controller in discrete system [36]:

û(t) = u(t −T ),

where the small time delay T can be viewed as the measurement delay time or, simply, the
sampling period of the digital controller. Clearly, the accuracy of the estimate û improves as
T decreases. Then for implementation, (2.34) is replaced by

θ̂1i = θ̂1i−1 − γ(BT PXixi −κθ̂1i−1),

θ̂2i = θ̂2i−1 − γ(BT PXiẋi −κθ̂2i−1),

θ̂3i = θ̂3i−1 − γ(BT PXiui−1 −κθ̂3i−1),

where θ̂1i = θ̂1(t0 + iT ) and θ̂1i−1 = θ̂1(t0 +(i−1)T ), same for the other variables. Then
(2.33) is replaced by

u =


−xiθ̂1i − ẋiθ̂2i

1+ θ̂3i
, if |1+ θ̂3i|> ε,

ui−1, if |1+ θ̂3i| ≤ ε,

(2.35)

where ε > 0 is a tolerance constant, which has to be selected close to zero.

2.5 Simulation

2.5.1 Model description

A 2DOF light-weight small-size robot manipulator is considered, which is driven by all-in-
one actuators with geared transmission. The manipulator is illustrated in Figure 2.4.

For the i− th link, qi is the associated joint position variable, mi is the link mass, Ii is link
inertia, about an axis through the center of mass (CoM) and perpendicular to the x− y plan,
Li is the length of the link, di is the distance between joint i and the CoM of the link i, Fvi

is the viscous friction coefficient, τi is the torque on joint i. Denote also g the gravitational
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Fig. 2.4 2 DOF Manipulator

acceleration along -y axis. Then the dynamics relating τ and the joint variables q can be
expressed as (See Appendix A for the derivation):

τ1 = (m1d2
1 +m2L2

1 +m2d2
2 +2m2L1d2 cosq2 + I1 + I2)q̈1

+(m2d2
2 +m2L1d2 cosq2 + I2)q̈2

−m2L1d2(2q̇1 + q̇2)q̇2 sinq2 +Fv1q̇1

−(m1d1 +m2L1)gsinq1 −m2d2gsin(q1 +q2),

τ2 = (m2d2
2 +m2L1d2 cosq2 + I2)q̈1 +(m2d2

2 + I2)q̈2

+m2L1d2q̇2
1 sinq2 +Fv2q̇2

−m2d2gsin(q1 +q2).

(2.36)

The built-in controller for joint i is supposed to be a PD controller as:

τmi = Pi(ui −qi)−Diq̇i, (2.37)

where τmi is the torque applied to the motor i, ui is the input for joint i, Pi and Di are the
gains.

Denote Ji, Bi, ri respectively the total inertia for the motor and gear transmission system,
the damping coefficient and the gear ratio for joint i, then from (2.8), we get:{

J1q̈1 +(B1 + r1D1)q̇1 + r1P1q1 = r1P1u1 − r2
1τ1,

J2q̈2 +(B2 + r2D2)q̇2 + r2P2q2 = r2P2u2 − r2
2τ2,

(2.38)
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where τ1 and τ2 are detailed in (2.36).

For simulation, we consider the set-point control problem. The initial joint position and
the desired joint position for joint i are respectively denoted as q0i and qdi. All the parameters
are set as shown in Table 2.1. In addition, a noisy signal with SNR = 30dB is introduced to
the position measurement signal.

Table 2.1 Parameters of 2DOF manipulator for simulation

Parameter Value Unit
r1 = r2 0.01
I1 = I2 0.5 kg.m2

m1 = m2 0.5 kg
L1 = L2 0.1 m
d1 = d2 0.05 m

Fv1 = Fv2 0.25 N.m.s.rad−1

J1 = J2 0.1 kg.m2

B1 = B2 0.2 N.m.s.rad−1

P1 = P2 2 N.m.rad−1

D1 = D2 0.5 N.m.s.rad−1

q01 = q02 0 rad
q̇01 = q̇02 0 rad.s−1

qd1 = qd2 0.5 rad
g 9.8 m.s−2

With these parameters, from (2.11), the two links share a model of the same form as:

ẍ =−2x−2.5ẋ+2u+λ , (2.39)

where λ denotes the disturbance.

In what follows in this chapter, we will compare the control performance among built-in
controller, auxiliary PID controller and auxiliary adaptive controller, all the simulation are
performed in Matlabr Simulink.

2.5.2 Constant input

Denote qdi as the desired position for joint i, without any auxiliary controller, the input is
constant and takes form as

ui = qdi.
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Figure 2.5 presents the control performance of the built-in controller with constant input.
From which we can see that position errors are presented for both joints. From (2.10), the
lower link has a bigger error due to a bigger gravity torque.
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Fig. 2.5 Performance with constant input

2.5.3 Model parameter identification

The model identification is conducted based on the position output from Section 2.5.2. To
get the velocity and acceleration estimates, the four derivative observers presented in Section
2.3.3 are tested, for the first link, the result is illustrated in Figure 2.6 and Figure 2.7.
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Fig. 2.6 Velocity estimation
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Fig. 2.7 Acceleration estimation

From Figure 2.6, the velocity can be well estimated with all the four differentiators, while
the high-gain one is more chattering than the others and the HOSM one presents a lower
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convergence speed, the algebraic-based one gives the best result which is quite close to the
real velocity. However, for the acceleration estimation in Figure 2.7, only the algebraic-based
one gives good results. As a result, we will use the algebraic-based differentiator for the
parameter identification.

With the velocity and acceleration estimation results, according to (2.15), we get the
nominal model of the first link dynamics as:

q̈1 =−2.23q1 −2.88q̇1 +2.32u1, (2.40)

compared to the real model in (2.39), the error rates for the three parameters are respectively
11.5%, 15.2% and 16.0%.

The robustness with respect to noise of the algebraic-based differentiator owns to its
integration operation during an interval, however, in real-time computation, this will also
leads to delay. For off-time task, the delay can be compensated by shifting the results, as it
was done here.

2.5.4 Auxiliary adaptive controller

The auxiliary controller proposed in Section 2.4.1 is simulated for the first link, with the
identified model parameters in (2.40). A and B are determined by the identity results, then P
is chosen such that AT P+PA =−I2 where I2 is the 2×2 identical matrix. γ and κ are taken
as 3 and 0.35. The initial value of θ̂ is (0, 0, 0). Figure 2.8a shows the performance of the
proposed controller, with which the es1 reduced to 0.0048rad.
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Fig. 2.8 Performance with auxiliary adaptive controller
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To test the robustness of the controller with respect to model and configuration changes,
now m1 and I1 are changed respectively to 1m and 1kg.m2, while q1d switches to 1 rad,
Figure 2.8b shows the performance of the same adaptive controller after the change.

2.5.5 Auxiliary PID controller

The classic PID controller with constant gains is also considered for the first link as a
benchmark. The PID controller is described as:

ui = 3.2(qd1 −q1)−1.5q̇1 +1.15
ˆ

(qd1 −q1). (2.41)

The performances of the PID controller under the initial condition and after the model
change are respectively illustrated in Figure 2.9a and Figure 2.9b. Compared to the perfor-
mance of the auxiliary adaptive controller, both of these two are capable of reducing the
steady state error to an acceptable range, however, the PID controller with constant gains
may work very well only in one case (Figure 2.9a), but the performance may degrade after
system model changes, such as prolongation of the convergence time (Figure 2.9b).

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time s

p
o
s
it
io

n
 r

a
d

 

 

q1
q2
qd

(a) First configuration

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

time s

p
o
s
it
io

n
 r

a
d

 

 

q1
q2
qd1
qd2

(b) Second configuration

Fig. 2.9 Performance with auxiliary PID controller

2.6 Conclusion

The set-point control problem of low-cost rigid manipulators with “all-in-one” actuators
is addressed in this chapter. For the derivation of the dynamics model linking the input
with the state variables, the effect of the driven motor and the transmission system is
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considered, as a result, a second-order differential equation with constant parameters and
highly bounded disturbance is obtained, then identification method of a nominal model
is proposed, based on the identified model parameters, a model-based adaptive controller
is developed. In simulation, the ability of error reduction is validated, and advantage on
performance robustness with respect to model change is observed with comparison to PID
controller with constant gains.





Chapter 3

Identification and control of single-link
flexible-joint robots using velocity
measurement

3.1 Introduction

In some case, limited by the cost and weight, plastic shafts which link the actuator to the
link side are adopted, e.g., Dynamixel AX-12A actuators, this leads to the consideration
of torsional elasticity of the shaft, especially with a high link load. With the presence of
joint-flexibility, the joint position measured by the motor-side encoder matches no more the
link position, and oscillation is also evoked.

Based on the model for FJR (flexible-joint robot) proposed by Spong in [82], both
the motor position and the link position are used as generalized coordinates. However,
most industrial robots are generally only equipped with motor-side encoders [93], accurate
estimation of the link position is thus difficult, due to joint flexibility. To obtain information
about the link-side part, additional sensors are needed. For example, in addition to motor
position sensors, DLR light-weight robot III (Figure 3.1) is equipped with joint torque sensors
and link position sensors [35].

However, limited by the cost, these additional sensors seem impossible to be adopted
by low-cost robot manufacturers. However, for individual users, mounting of sensors like
encoders or strain gauges can be a challenge, since they have to be strictly attached to the
link-side shaft, which is generally inside the robots. An alternative solution is to use inertial
sensors (e.g., accelerometer, gyroscope, compass, etc.), which are of low cost and small size,
and used in various robotic applications, as in [84]. With MEMS (Micro Electro-Mechanical
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Fig. 3.1 DLR light weight robot III

Systems) technology, an IMU (Inertial Measurement Unit) including a gyroscope and an
accelerometer with printed circuit board, can be made into just a coin’s size (Fig. 3.2), or
even smaller. Besides, due to their inertial property, they just need to be fixed on the surface
of the link, and can be easily removed.

Fig. 3.2 A MEMS IMU

Considerable researches have been conducted on the control of FJR, a recent survey
can be found in [70]. Most existing control methods need exact knowledge of the plant
model parameters, while to dealt with parameter uncertainties, adaptive controllers have been
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proposed, like in [53]. From theoretical point of view, these control schemes are complete,
however, in practice, most of them are difficult to implement due to: lack of sensors or
limited performance of observers, weak robustness on parameter uncertainties, deficiency of
computational power of the control unit, difficulties in interpreting and debugging, nonlinear-
ities like torque saturation, etc. As pointed out in [3], even on the latest DLR light-weight
robot, the full feedback linearization algorithm cannot be implemented in real time. As a
result, the simple PD controller proposed by Tomei in [90], and variations of it, for example
[23], are still widely used in industrial robots [88], as this controller uses only motor-side
position and velocity.

In Chapter 2, we considered a rigid low-cost manipulator with light weight and small
size. In practice, the materials used for such kind of manipulators cannot be absolutely
rigid, they can be considered as rigid since for light-weight and small-size robots, the inertial
parameters of each link (mass, inertial moment, first moment,etc) is rather small compared to
the stiffness of the materials, i.e. the stiffness can be regarded as infinite with respect to those
tiny dynamic parameters. However, if the stiffness of the motor shaft or of the gear system
is not that dominant (e.g. plastic shaft or harmonic gears) and the link inertial parameters
increase (e.g. the link gets longer and/or heavier), then the joint flexibility should be taken
into account.

In this chapter, we consider a low-cost single-link manipulator equipped with all-in-one
actuators, of which the built-in controller is a P controller, and joint flexibility is presented.
The objective is to realize link position control and attenuate oscillation, by using first-order
derivative measurement, for set-point regulation.

The remainder of this chapter is organized as follows: first of all, the problem statement is
clarified with assumptions. Then the dynamics of single-link FJR is presented and followed
by parameter identification method using link velocity measurement. After that, a simple PD
controller and a two-stage controller are proposed and the stability is analysed. Finally, the
simulation results are given.

3.2 Problem statement

Consider a single-link joint-flexible robot driven by actuator with built-in controller. The
built-in controller generates output torque τm, based on the input position u and the motor
position feedback θ , τm works on the motor to drive the motor shaft and the load link, due
to the joint flexibility of the shaft, two output are presented: the motor position θ and the
link position q, as shown in Figure 3.3. The motor position θ is measured by the motor-side
encoder, and it is supposed that the velocity of the link can be measured.
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Fig. 3.3 Actuator with built-in controller

Specifically, the following assumptions are made:

Assumption 3.1. The link is rigid.

Assumption 3.2. With the standard assumptions in [82], the joint elasticity is modelled as a
linear torsional spring, introduced between the motor and the link, with unknown constant
stiffness K, as illustrated in Fig. 3.4. Denote τ as the torque exerted on the link side, then we
have

τ = K(θ −q). (3.1)

Fig. 3.4 Flexible-joint robot model

Assumption 3.3. The built-in controller of the actuator is a PD controller with with unknown
gains P and D, as described by

τm = P(u−θ)−Dθ̇ . (3.2)

Assumption 3.4. The manipulator is of light weight and of small size.

Assumption 3.5. The motor position θ and link angular velocity q̇ can be measured. Besides,
the manipulator moves in a vertical plan, and the link position at static state can be measured.
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Assumption 3.6. Inertial parameters of both the motor and the link, i.e., masses, initial
moments, first moments, etc, are unknown.

3.3 System model

Denote I and J as the inertial moment of the link and of the motor, F and H are the viscous
friction parameter on the link side and on the motor side, m is the mass of the link, l is the
distance between the mass center of the link and the rotational axe, g is the gravitational
acceleration, τm and τ are the torque exerted on the motor and on the link.Then the dynamic
model of the single-link flexible-joint robot is given by{

Jθ̈ +Hθ̇ + τ = τm,

Iq̈+Fq̇−mgl sinq = τ.
(3.3)

Substitute (3.1) and (3.2) into (3.3), and denote G = mgl for simplicity, then we have{
Jθ̈ +Hθ̇ +K(θ −q) = P(u−θ)−Dθ̇ ,

Iq̈+Fq̇−Gsinq = K(θ −q).
(3.4)

Suppose P ̸= 0 and K ̸= 0, then (3.4) can be transformed into
J
P

θ̈ +
H +D

P
θ̇ +

K
P
(θ −q) = u−θ , (3.5a)

I
K

q̈+
F
K

q̇− G
K

sinq = θ −q. (3.5b)

For simplicity, denote Jp =
J
P

, Hp =
H +D

P
, Kp =

K
P

, Ik =
I
K

, Fk =
F
K

, Gk =
G
K

, recall
Assumption 3.5, without measurement noise, then the system can be summarized as



Jpθ̈ +Hpθ̇ +Kp(θ −q) = u−θ ,

Ikq̈+Fkq̇−Gk sinq = θ −q,
Y1 = θ ,

Y2 = q̇,
Y3 = q, i f q̇ = 0,

(3.6)

where Yi (i = 1,2,3) denotes the output measurements.
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3.4 Parameter identification using angular velocity mea-
surement

Assumption 3.7. The static link position can be measured.

In fact, there are several sensors on the market which can can be used for precise angular-
position measurements, like accelerometers [72], fibre-optic sensors [42], 3-D silicon hall
sensor [11], etc.

For simplicity, assume t0 = 0 and q̇(t0) = 0, denote q0 = q(t0), by Assumption 3.7, q0

can be measured, recall the fact that we have also measurement of q̇, then we have

q = q0 +

ˆ
q̇dt, (3.7)

then the first equation of (3.6) is equivalent to

(θ̈ , θ̇ ,θ −q)(Jp,Hp,Kp)
T = u−θ , (3.8)

from which Jp, Hp, Kp can be estimated by using least square method as in Section 2.3.2,
provided that θ̈ and θ̇ can be obtained using numerical differentiation. The estimates of
Jp, Hp, Kp, are denoted as Ĵp, Ĥp, K̂p.

With (3.7), the second equation of (3.6) is equivalent to

(q̈, q̇,−sinq)(Ik,Fk,Gk)
T = θ −q, (3.9)

from which Ik, Fk, Gk can then be estimated by using least square method, provided that q̈
can be obtained using numerical differentiation. The estimates of Ik , Fk and Gk are denoted
as Îk, F̂k, Ĝk.

Remark 3.1. With the proposed identification method, we cannot identify the real physique
parameters, like the inertial moment, the stiffness, friction coefficients or other parameters
appearing in (3.4), but we can identify the ratios between the parameters, which essentially
determine the dynamics of the system.

Remark 3.2. The proposed identification method involves estimation of θ̈ and θ̇ from θ , and
q̈ from q̇, 4 differentiators are presented in Section 2.3.3.

Remark 3.3. With the proposed identification method, we can identify directly Ĵp, Ĥp, K̂p,
Îk, F̂k, Ĝk, and other ratios can be derived from these results, e.g. Ĝp = ĜkK̂p.
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3.5 PD controller with gravity compensation

3.5.1 Without parameter uncertainty

To be applicable to our studied case, a modified PD plus gravity compensation controller
based on the one proposed in [90] is expressed as{

u =−K1(θ −θd)−K2θ̇ −Gp sinqd +θ , (3.10a)

θd = qd −Gk sinqd, (3.10b)

where Gp =
G
P
= GkKp and Gk =

G
K

as defined previously, qd is the desired set-point link
position, K1 and K2 are constant positive gains.

To investigate the stability of the controller (3.10a) and (3.10b), first we give the following
preliminary: For a matrix A ∈ Rn×n the vector of its eigenvalues is denoted as λ (A), Amin =

minλ (A), and ||A||=
√

maxi=1,n λi(ATA) (the induced L2 matrix norm).

Introduce the matrix

C =

[
K +PK1 −K
−K K

]
,

then the following theorem holds:

Theorem 3.1. Consider the system (3.4) with the control law (3.10a) and (3.10b), if Cmin >G,
then the point (θ = θd,q = qd, θ̇ = 0, q̇ = 0) is the unique equilibrium point, and this
equilibrium point is globally asymptotically stable.

Proof. The equilibrium points of (3.4) and (3.10a) are the solutions of
K(θ −q)+PK1(θ −θd)+Gsinqd = 0,

K(θ −q)+Gsinq = 0.
(3.11)

From (3.10b) we have K(θd −qd)+Gsinqd = 0, this allows us to subtract K(θd −qd)+

Gsinqd from the left sides of (3.11), and it yields
(K +PK1)(θ −θd)−K(q−qd) = 0,

K(θ −θd)−K(q−qd)+G(sinq− sinqd) = 0,
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which can be rewritten in matrix form as

C

[
θ −θd

q−qd

]
=

[
0

G(sinq− sinqd)

]
. (3.12)

Using the theorem assumption, for all (θ ,q) ̸= (θd,qd), we have∥∥∥∥∥C
[

θ −θd

q−qd

]∥∥∥∥∥ ≥ Cmin

∥∥∥∥∥
[

θ −θd

q−qd

]∥∥∥∥∥
> G

∥∥∥∥∥
[

θ −θd

q−qd

]∥∥∥∥∥
≥ G ∥ q−qd ∥

≥ G ∥ sinq− sinqd ∥

=

∥∥∥∥∥
[

0
G(sinq− sinqd)

]∥∥∥∥∥ ,
hence (θd,qd) is the unique equilibrium point. Now, define a position-dependent energy
function

H(θ ,q) =
1
2

K(θ −q)2 +
1
2

PK1(θ −θd)
2 +Gcosq+θGsinqd, (3.13)

its gradient can be expressed as

∇H(θ ,q) =


∂H
∂θ

∂H
∂q


T

=

 K(θ −q)+PK1(θ −θd)+Gsinqd

−K(θ −q)−Gsinq


T

.

The stationary points of H(θ ,q) such that ∇H(θ ,q) = 0 are given by the solutions of
∂H
∂θ

= 0,

∂H
∂q

= 0,
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which coincides exactly with (3.11), thus (θd,qd) is the unique stationary point of H(θ ,q).
Moreover, the second order gradient of H(θ ,q) (Hessien matrix) is

∇
2H(θ ,q) =


∂ 2H
∂θ 2

∂ 2H
∂θ∂q

∂ 2H
∂q∂θ

∂ 2H
∂q2

=

 K +PK1 −K

−K K −Gcosq

 ,

from which it yields

∇
2H(θd,qd) =C−

 0 0

0 Gcosqd

 .
For any vector x = [x1,x2]

T ∈ R2 and x ̸= 0, we have

x∇2H(θd,qd)xT = xCxT − x

 0 0

0 Gcosqd

xT

≥ CminxxT −Gx2
2 cosqd

> G(x2
1 + x2

2)−Gx2
2 cosqd

≥ Gx2
2(1− cosqd)

≥ 0,

thus ∇2H(θd,qd) is positive definite, as a result, (θd,qd) is an absolute minimum for H(θ ,q).
Now, take a candidate Lyapunov function as

V (θ ,q, θ̇ , q̇) =
1
2

Jθ̇
2 +

1
2

Iq̇2 +H(θ ,q)−H(θd,qd),

then V is positive definite with respect to (θ = θd,q = qd, θ̇ = 0, q̇ = 0), the time derivative
of V is given by

V̇ = Jθ̇ θ̈ + Iq̇q̈+ Ḣ(θ ,q)
= θ̇ [−PK1(θ −θd)−PK2θ̇ −Gsinqd −Dθ̇ −Hθ̇ −K(θ −q)]+

K(θ −q)(θ̇ − q̇)+PK1(θ −θd)θ̇ −Gq̇sinq+Gθ̇ sinqd+

q̇[K(θ −q)+Gsinq−Fq̇]
= −(PK2 +D+H)θ̇ 2 −Fq̇2

≤ 0.
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Since V̇ = 0 implies q̇ = 0 and θ̇ = 0, from the first part of the proof, the unique
solution to q̇ = 0 and θ̇ = 0 is q = qd and θ = θd , then the proof is completed using LaSalle
Theorem.

3.5.2 With parameter uncertainty

However, in practice, there is no guarantee that the parameters appearing directly in the
controller design, here as Gp and Gk, can be known exactly. Using the parameter identification
results, we have only access to Ĝp and Ĝk, then the controller becomes{

u =−K1(θ − θ̂d)−K2θ̇ − Ĝp sinqd +θ , (3.14a)

θ̂d = qd − Ĝk sinqd, (3.14b)

where Ĝp and Gk are respectively the estimates of
G
P

and
G
K

. Then the following theorem
holds:

Theorem 3.2. Consider the system (3.4) with the control law (3.14a) and (3.14b), if Cmin >G,
then the system has only one equilibrium point, denoted as (θ = θ̄d,q = q̄d, θ̇ = 0, q̇ = 0).
Moreover, this unique equilibrium point is globally asymptotically stable.

Proof. The equilibrium points of (3.4) and (3.14a) are the solutions of
K(θ −q)+PK1(θ − θ̂d)+ Ĝsinqd = 0,

K(θ −q)+Gsinq = 0,
(3.15)

where Ĝ = PĜp. (3.15) can be rewritten as:
K(θ −q)+PK1(θ −θd)+PK1(θd − θ̂d)+ Ĝsinqd = 0,

K(θ −q)+Gsinq = 0,
(3.16)

where θd is defined as in (3.10b). Subtracting K(θd −qd)+Gsinqd which is null by (3.10b)
to the left sides of (3.16), we obtain

(K +PK1)(θ −θd)−K(q−qd)+PK1(θd − θ̂d)+ Ĝsinqd −Gsinqd = 0,

K(θ −θd)−K(q−qd)+Gsinq−Gsinqd = 0,



3.5 PD controller with gravity compensation 53

which can be rewritten in matrix form as

C

[
θ −θd

q−qd

]
=

[
PK1(θ̂d −θd)+Gsinqd − Ĝsinqd

G(sinq− sinqd)

]
. (3.17)

Now, define a position-dependent energy function

H(θ ,q) =
1
2

K(θ −q)2 +
1
2

PK1(θ −θd)
2 +Gcosq+θ [PK1(θd − θ̂d)+ Ĝsinqd], (3.18)

its gradient can be expressed as

∇H(θ ,q) =


∂H
∂θ

∂H
∂q


T

=

 K(θ −q)+PK1(θ −θd)+PK1(θd − θ̂d)+ Ĝsinqd

−K(θ −q)−Gsinq


T

,

and the second order gradient of H(θ ,q) (Hessien matrix) is

∇
2H(θ ,q) =


∂ 2H
∂θ 2

∂ 2H
∂θ∂q

∂ 2H
∂q∂θ

∂ 2H
∂q2

=

 K +PK1 −K

−K K −Gcosq

 ,

as shown in the proof of Theorem 3.1, ∇2H(θ ,q) > 0, thus H(θ ,q) is a convex function
which allows only one absolute minimum. Denote the unique absolute minimum as (θ̄d, q̄d),
then (θ̄d, q̄d) is the unique stationary points of H(θ ,q) such that ∇H(θ ,q) = 0, i.e, the
solutions of 

∂H
∂θ

= 0,

∂H
∂q

= 0,

which coincides exactly with (3.16), thus we have

C

[
θ̄d −θd

q̄d −qd

]
=

[
PK1(θ̂d −θd)+Gsinqd − Ĝsinqd

G(sin q̄d − sinqd)

]
. (3.19)
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Subtracting (3.19) from (3.17), we obtain

C

[
θ − θ̄d

q− q̄d

]
=

[
0

G(sinq− sinqd)

]
. (3.20)

As indicated in the proof of Theorem 3.1, with the assumption of Cmin > G, (3.20) owns
the unique solution (θ = θ̄d,q = q̄d). Now, the first part of this theorem is proved.

The global asymptotic stability of the equilibrium point (θ = θ̄d,q = q̄d), θ̇ = 0, q̇ = 0
can be proved by considering the following Lyapunov function:

V (θ ,q, θ̇ , q̇) =
1
2

Jθ̇
2 +

1
2

Iq̇2 +H(θ ,q)−H(θ̄d, q̄d),

and proceeding the same way as in the proof of Theorem 3.1.

By comparing (3.12) to (3.19), we can see that if PK1(θ̂d −θd)+Gsinqd − Ĝsinqd ̸= 0,
then the actual equilibrium position (θ̄d, q̄d) differs from the desired one (θd,qd).

From the left-hand side of (3.19), we have∥∥∥∥∥C
[

θ̄d −θd

q̄d −qd

]∥∥∥∥∥≥Cmin

∥∥∥∥∥
[

θ̄d −θd

q̄d −qd

]∥∥∥∥∥ . (3.21)

From the right-hand side of (3.19), we have∥∥∥∥∥
[

PK1(θ̂d −θd)+Gsinqd − Ĝsinqd

G(sin q̄d − sinqd)

]∥∥∥∥∥ ≤ ∥ G(sin q̄d − sinqd) ∥+

∥ PK1(θ̂d −θd)+Gsinqd − Ĝsinqd ∥

≤ G ∥ q̄d −qd ∥+ ∥ PK1(Gk sinqd − Ĝk sinqd)+

P(Gp sinqd − Ĝp sinqd ∥

≤ G

∥∥∥∥∥
[

θ̄d −θd

q̄d −qd

]∥∥∥∥∥+
P ∥ sinqd ∥∥ K1(Gk − Ĝk)+Gp − Ĝp ∥ .

(3.22)

Combining (3.21) and (3.22), we obtain

Cmin

∥∥∥∥∥
[

θ̄d −θd

q̄d −qd

]∥∥∥∥∥≤ G

∥∥∥∥∥
[

θ̄d −θd

q̄d −qd

]∥∥∥∥∥+P ∥ sinqd ∥∥ K1(Gk − Ĝk)+Gp − Ĝp ∥,
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from which we obtain∥∥∥∥∥
[

θ̄d −θd

q̄d −qd

]∥∥∥∥∥≤ P
Cmin −G

∥ sinqd ∥∥ K1(Gk − Ĝk)+Gp − Ĝp ∥ . (3.23)

Remark 3.4. From (3.23), we can see that with parameter uncertainties, the error between
the actual equilibrium point and the desired one is bounded, and the boundedness is influ-
enced by the precision of the estimates Ĝk and Ĝp. As pointed out in Remark 3.3, Ĝp can
not be directly identified, but can be obtained as Ĝp = ĜkK̂p, thus essentially, the error is
affected by the estimates Ĝk and K̂p. Ĝk ̸= Gk or K̂p ̸= Kp

Remark 3.5. The estimation of K̂p by (3.8) includes the estimation of the second-order
derivative of θ , of which the precision can hardly be guaranteed in practice.

3.6 Two-stage adaptive controller using inertial sensors

The advantage of the PD controller is that only motor-side information is needed for the
implementation, while the control precision is less robust with respect to parameter uncer-
tainties. As commonly acknowledged, the more sensor information is used, a better result
should be obtained. Here we propose a two-stage adaptive controller, to proceed we need the
following assumption:

Denote q(t0) the initial static position of the link, which can be measured by the ac-
celerometer, then we have

q(t) = q(t0)+
ˆ t

t0
q̇dt, (3.24)

where q̇ is measured by the gyroscope. Thus the state variable q and q̇ are available.

The single-link flexible-joint robot dynamics can be regarded as two subsystems on
cascade, as described by (3.5a) and (3.5b). In this section, we propose a controller based
on the two-stage control design method. Firstly, based on the link-side subsystem (3.5b), a
motor-side position reference denoted by θd is established, which, if well followed, should
drive the link to the desired set-point position qd , within an acceptable error. Secondly, to
guarantee that θd can be well tracked, an adaptive controller is formulated for the motor-side
subsystem (3.5a), considering model parameter uncertainties, with which asymptotic stability
can be guaranteed.
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3.6.1 Motor position reference design

Introduce θd as the desired motor position trajectory, then (3.5b) can be rewritten as

Ikq̈+Fkq̇−Gk sinq = θd −q+ θ̃ , (3.25)

where θ̃ = θ −θd . (3.25) can be considered as controlled by θd with presence of an actuator
perturbation θ̃ , which will be coped with in the next subsection by the controller u exerted
on the motor-side subsystem. Here, we suppose that θ̃ is bounded.

Suppose Ik and Fk are positive, based on the identification results, giving θd as

θd =−Ĝk sinq+qd + kp(q−qd), (3.26)

where qd is the desired link position and Kp is a dumping factor with Kp ≤ 1. Substitute
(3.26) into (3.25), we can obtain

q̈ =−
1− kp

Ik
(q−qd)−

Fk

Ik
q̇+

(Gk − Ĝk)sinq+ θ̃

Ik
.

Note eq = q−qd , Eq =

[
eq

ėq

]
, M =

 0 1

−
1− kp

Ik
−Fk

Ik

, N =

[
0
1

]
and

d =
(Gk − Ĝk)sinq+ θ̃

Ik
, M is Hurwitz. For a set-point regulation problem, it yields

Ėq = MEq +Nd. (3.27)

Choose the Lyapunov function as:

Vq = ET
q PqET ,

where Pq is symmetric and Pq > 0. The time derivative of V equals:

V̇q =−ET
q QqEq +2ET

q PqNd, (3.28)

where Qq > 0 and satisfies Qq =−(PqM+MT Pq). By Young’s inequality, we have

2ET
q PqNd = 2ET

q
Q0.5

q√
2
∗
√

2Q−0.5
q PqNd

≤ 1
2

ET
q QqEq +2dT NT PT

q Q−1
q PqNd.

(3.29)
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Denote λmin(Qq) , λmax(Pq) and δ the minimal eigenvalue of Qq, the maximal eigenvalue
of Pq and the maximal eigenvalue of NT PT

q Q−1
q PqN respectively, since Pq and Qq are positive

definite, λmin(Qq)> 0 and λmax(Pq)> 0, then we have

−ET
q QqEq ≤−λmin(Qq)|Eq|2 ≤−

λmin(Qq)

λmax(Pq)
ET

q PqEq, (3.30)

and
2dT NT PT

q Q−1
q PqNd ≤ 2δ |d|2. (3.31)

With (3.29), (3.30) and (3.31), we get

V̇q ≤−
λmin(Qq)

2λmax(Pq)
ET

q PqEq +2|δ ||d|2. (3.32)

By the definition of d, since θ̃ is bounded, |(Gk − Ĝk)sinq| ≤ |Gk − Ĝk| is also bounded,
thus d is bounded, then it exists dsup > 0 such that

|d| ≤ dsup.

Define β = 2|δ |d2
sup and α =

λmin(Q)

2λmax(P)
, it is obvious that α > 0 and β > 0, then we have

V̇q ≤−αV +β .

As time tends to infinity, Vqt→∞ will be bounded by
β

α
, then we derive

λmin(Pq)|Eqt→∞|2 ≤ ET
qt→∞PqEqt→∞ =Vqt→∞ ≤ β

α
,

where λmin(P) is the minimal eigenvalue of Pq. This gives

|Eqt→∞| ≤

√
β

αλmin(Pq)
. (3.33)

So, finally Eqt→∞ will be bounded.

Remark 3.6. The boundedness depends on the precision of Ĝk, and the disturbance θ̃ . If
Gk = Ĝk and θ̃ = 0, then d = 0 and asymptotic stability can be guaranteed.
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3.6.2 Adaptive input design

It is proved in the previous subsection that, if the desired motor position trajectory θd can
be well tracked, then the regulation task can be achieved with certain boundedness. Now,
we need to propose a control input u for the motor-side subsystem, which will guarantee the
convergence of the motor position to θd .

Equation (3.5a) is equivalent to

θ̈ =−K +P
J

θ − H +D
J

θ̇ +
P
J

u+
K
J

q.

Denote a0 =
K +P

J
, a1 =

H +D
J

, b =
P
J

and c =
K
J

, then we have

θ̈ =−a0θ −a1θ̇ +bu+ cq.

The estimates of a0,a1,b,c, denoted respectively as ā0, ā1, b̄, c̄ can all be derived from

the previous parameter estimates (e.g. ā0 =
K̂p +1

Ĵp
). Then we get

θ̈ =−ā0θ − ā1θ̇ + b̄(u+
c̄
b̄

q+ϕ
T

ω),

with

ϕ =


θ

θ̇

u
q

 ,ω =


(ā0 −a0)/b̄
(ā1 −a1)/b̄
(b− b̄)/b̄
(c− c̄)/b̄

 ,
where ω stands for the constant parameter uncertainties.

Recall the reference θd defined in (3.26) and denote e = θ −θd , then it yields

ë =−ā0e− ā1ė+ b̄(u+ v+ϕ
T

ω), (3.34)

with
v =− ā0

b̄
θd −

ā1

b̄
θ̇d −

1
b̄

θ̈d +
c̄
b̄

q. (3.35)

Denote E =

[
e
ė

]
, A =

[
0 1

−ā0 −ā1

]
and B =

[
0
b̄

]
, ā1 is chosen such that A is

Hurwitz. Then (3.34) can be rewritten as

Ė = AE +B(u+ v+ϕ
T

ω). (3.36)
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From [7], the control law is given by

u =−v−ϕ
T

ω̂, (3.37)

where ω̂ denotes the estimate of ω and will be derived hereafter. Note ω̃ = ω − ω̂ , then
(3.36) becomes

Ė = AE +Bϕ
T

ω̃.

Choosing the following Lyapunov function candidate as:

V = ET PE + ω̃
T

ω̃,

where P is a positive definite symmetric matrix, so V is positive definite. The time derivative
of V equals:

V̇ = ET (PA+AT P)E +2(ET PBϕ
T + ˙̃ωT )ω̃. (3.38)

Defining a positive-definite, symmetric matrix Q that satisfies equation

Q =−(PA+AT P),

and taking
˙̃ω =−ϕBT PE,

then (3.38) becomes:
V̇ =−ET QE ≤ 0.

From this last expression of V̇ , we can conclude that V is lower bounded by zero in the
time interval [0,+∞) and V̇ (t) is uniformly continuous, and non positive. Therefore, by
Barbalat’s lemma, we have

lim
t→+∞

V̇ = 0,

which means that by the Rayleigh-Ritz Theorem

lim
t→+∞

λmin{Q}∥E∥2 = 0,

where λmin{Q} is the minimal eigenvalue of Q. As λmin{Q}> 0, it is clear that

lim
t→+∞

E = 0. (3.39)
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Finally, by recalling that the parameter uncertainty ω is constant, i.e., ω̇ = 0, we obtain
the adaptive update rule for ω̂ as

˙̂ω =− ˙̃ω = ϕBT PE. (3.40)

Remark 3.7. Equation (3.26), (3.37) and (3.40) form the controller for the whole system,
from which it can be found that θ̈ is avoided for the controller.

Remark 3.8. The proposed adaptive input design guarantees asymptotic stability despite
of parameter uncertainties, i.e, limt→+∞ θ̃ = 0, then by Remark 3.6, the final error of q will
only depend on the precision of Ĝk, which is an advantage over the PD controller.

3.7 Simulation

3.7.1 Model specification

For a light-weight and small-size single-link flexible-joint robot, select:

Jp = 0.0020, Hp = 0.0370, Kp = 3.667, Ik = 0.0010, Fk = 0.0190, Gk = 0.0870,

θ0 = 0, θ̇0 = 0, q0 = 0, q̇0 = 0.

Besides, uniformly distributed pseudorandom noise of magnitude bounded by 0.001 exerts
on both the motor position θ and link velocity q̇ measurements.

For the off-line identification, the algebraic-based estimator (2.18) is used to estimate
θ̇ and θ̈ from θ , and q̈ from q̇. While for the control implementation, θ̈ and q̈ are no more
needed, thus homogeneous differentiator (2.19) is adopted to estimate θ̇ in real time.

3.7.2 Identification results

For the identification, adopt the input

u(t) = 0.1sin(5t)+0.1cos t −0.1sin
t
3
.

The output θ and q during the first 3 seconds, and the estimation performance are
illustrated in Figure 3.5, from which we can see that θ and q differ from each other due to
joint elasticity, and the first-order derivative estimates ˆ̇

θ and ˆ̈q have higher precision than the
second-order derivative estimate ˆ̈

θ .
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Fig. 3.5 Derivative estimates for identification

Based on (3.8) and (3.9), the identification results are presented in Table 3.1, from which
it can be concluded that second-order derivative estimates bring lower precision.

Table 3.1 Identification result with velocity measurement

Jp Hp Kp Ik Fk Gk
Real 0.0020 0.0370 3.6670 0.0010 0.0190 0.0870

Estimated 0.0015 0.3154 4.3263 0.0009 0.0185 0.0855

3.7.3 Controller performance

Using the identified parameters, the performance of the PD controller and the two-stage
adaptive controller are illustrated respectively in Figure 3.6 and Figure 3.7, the initial static
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link position is supposed to be known due to measurement. For the PD controller, since
two parameter estimates (K̂p and Ĝk) are involved in the controller, we can see that θd is
not well tracked and position error on q is evident. While for the adaptive controller, θd is
well tracked and q is of good precision, as Ĝk is the only parameter concerned, and Ĝk is of
relatively high precision.
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Fig. 3.7 Two-stage adaptive controller

3.8 Conclusion

This chapter considers point-to-point control of single-link position-controlled robot with
joint flexibility, to obtain link side information, link angular velocity measurement is assumed
to be provided. An identification scheme of the model parameters is presented, based on the
classic model of flexible-joint robots, and with the measurement of initial link angles. As
a benchmark, a modified simple PD plus gravity compensation controller is considered, of
which the regulation error depends on two parameter estimates. To improve the robustness
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with respect to parameter uncertainties, a two-stage adaptive controller is proposed, with
which the final position error depends on the precision of only one parameter estimate,
provided that the initial static link position can be measured. Simulation results illustrate
that, the proposed two-stage controller is more robust than the PD one.





Chapter 4

Identification and control using
measurements of higher order
derivatives

4.1 Introduction

In Chapter 3, we proposed identification and control methods using angular velocity and tilt
measurements, for single-link flexible-joint robots, in this chapter, we introduce identification
and control methods using angular acceleration and tilt measurements.

The idea of using second order derivative measurement can also be generalised to any
high order derivative measurement, for the identification, estimation and control problems of
linear systems, with the presence of measurement noise.

The outline of this chapter is as follows. The identification and control for single-link
flexible-joint robots using angular acceleration measurement is addressed in Section 4.2, and
simulation result is also included. In Section 4.3, we discuss the identification, estimation and
control problems for linear systems, with high order derivative measurement. Two controller,
adaptive controller and robust controller have been prosed, and simulation result is given.

4.2 Identification and control for single-link flexible-joint
robots with acceleration measurement

Consider the same problem in Chapter 3, but we will use angular acceleration measurement
instead of angular velocity measurement, then the system can be expressed as
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

Jpθ̈ +Hpθ̇ +Kp(θ −q) = u−θ ,

Ikq̈+Fkq̇−Gk sinq = θ −q,
Y1 = θ ,

Y2 = q̈,
Y3 = q, i f q̇ = 0,

(4.1)

where Yi (i = 1,2,3) denotes the output measurements without noise.

4.2.1 Identification

Define variables for t0 ≥ 0:

ψ1(t) =

ˆ t

t0
q̈(s)ds,

ψ2(t) =

ˆ t

t0
ψ1(s)ds,

then we have {
q̇(t) = ψ1(t)+ q̇(t0),
q(t) = ψ2(t)+ q̇(t0)(t − t0)+q(t0).

(4.2)

To proceed, the following assumption is made:

Assumption 4.1. q̇(t0) = 0 and q(t0) can thus be measured.

For simplicity, assume t0 = 0, denote q0 = q(t0), by Assumption 4.1, (4.2) can be rewritten
as {

q̇ = ψ1,

q = ψ2 +q0.
(4.3)

From (4.2.2), the first equation of (4.1) can be rewritten as

Jpθ̈ +Hpθ̇ +Kp(θ −ψ2 −q0) = u−θ ,

which is equivalent to

(θ̈ , θ̇ ,θ −ψ2 −q0)(Jp,Hp,Kp)
T = u−θ , (4.4)
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from which Jp, Hp, Kp can be estimated by using least square method as in Section 2.3.2,
provided that θ̈ and θ̇ can be obtained using numerical differentiation. The estimates of
Jp, Hp, Kp are denoted as Ĵp, Ĥp, K̂p.

In the same way, the second equation of (4.1) becomes

Ikq̈+Fkψ1 −Gk sin(ψ2 +q0) = θ −ψ2 −q0,

which is equivalent to

(q̈,ψ1,−sin(ψ2 +q0))(Ik,Fk,Gk)
T = θ −ψ2 −q0, (4.5)

from which Ik, Fk, Gk can then be estimated, the estimates of Ik , Fk, Gk are denoted as
Îk, F̂k, Ĝk.

4.2.2 Two-stage adaptive controller using accelerometer

Under Assumption 4.1, the same controller proposed in Section 3.6 can be performed, with
only modification as {

q̇ = ψ1,

q = ψ2 +q0.

4.2.3 Simulations for single-link flexible-joint robots

Here we use the same model and initial condition as in Section 3.7. On the measurement of
θ , uniformly distributed pseudorandom noise with limited magnitude of 0.001 is performed,
while on the measurement of q̈, a sinusoidal noise denoted by nacc is expressed as

nacc = 0.02sin(3t).

Identification

For the identification task, the same input as in Section 3.7 is adopted and the same algebraic-
based estimator is used, thus we get the same plots as in figures 3.5a, 3.5c and 3.5d, while
the estimation performances of q̇ and q are illustrated in Figure 4.1. We can see that ˆ̇q by
integration is of high precision, while for q̂ by twice integration, the drift accumulates with
time.

Based on (4.4) and (4.5), the identification results are presented in Table 4.1, from which
it can be concluded that second-order derivative estimates bring lower precision.
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Fig. 4.1 Velocity and position estimates by integration

Table 4.1 Identification result with acceleration measurement

Jp Hp Kp Ik Fk Gk
Real 0.0020 0.0370 3.6670 0.0010 0.0190 0.0870

Estimated 0.0026 0.0268 3.6059 0.0009 0.0218 0.0917

Control performance

Using the identified parameters, the performance of the two-stage adaptive controller using
accelerometer is illustrated in Figure 4.2. Since the same controller is used, the performance
is similar to the performance shown in Figure 3.7.

4.3 Generalisation to linear system with high-order deriva-
tive measurement

4.3.1 Preliminaries

The real numbers are denoted by R, R+ = {τ ∈ R : τ ≥ 0}. Euclidean norm for a vector
x ∈ Rn will be denoted as |x|, and for a measurable and locally essentially bounded input
u : R+ → R the symbol ||u||[t0,t1] denotes its L∞ norm:

||u||[t0,t1] = ess sup
t∈[t0,t1]

|u(t)|,
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Fig. 4.2 Two-stage adaptive controller using accelerometer

if t1 = +∞ then we will simply write ||u||∞. We will denote as L∞ the set of all inputs
u with the property ||u||∞ < ∞. The symbols In, En×m and Ep denote the identity matrix
with dimension n× n, the matrix with all elements equal 1 with dimensions n×m and
p×1, respectively. For a matrix A ∈ Rn×n the vector of its eigenvalues is denoted as λ (A),
λmin(A) = minλ (A), and ||A||2 =

√
maxi=1,n λi(ATA) (the induced L2 matrix norm). The

conventional results and definitions on L2/L∞ stability for linear systems can be found in
[40].

4.3.2 Problem statement

Let us consider a SISO linear uncertain system of the form:

y(n)(t) =
n−1

∑
i=0

aiy(i)(t)+b0[u(t)+ϖ(t)], (4.6)

where y(t)∈R is the system “position”, y(i)(t) for i= 1, . . . ,n are derivatives of y(t) = y(0)(t),
the vector x= [y, ẏ, . . . ,y(n−1)] represents the state of (4.6); u(t)∈R is the system control input
and ϖ ∈ L∞ is the input disturbance. It is assumed that the coefficients ai, i = 0, . . . ,n−1
and b0 are unknown constants, b0 ̸= 0.

In this work we will assume the signal as

ψ(t) = y(n)(t)+ v(t), (4.7)
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which is available for measurements, where v ∈ L∞ is the measurement noise. For the case
of a mechanical system, when y(t) is a position of some component of a robot, usually n = 2
and ψ(t) is the measured acceleration signal with some noise v(t).

Assumption 4.2. The case y(n)(t) = ∑
n−1
i=0 aiy(i)(t)+∑

m
j=0 b ju( j)(t)+ϖ(t) for some 1 ≤ m ≤

n can be also treated by the proposed below approach. However, for brevity of presentation
only the case of (4.6) is considered.

It is required to stabilize the system (4.6), (4.7) at the origin for the case ϖ(t) = v(t) = 0
for all t ≥ 0, and ensure boundedness of all trajectories for bounded disturbances and noises.

To solve this problem it is necessary to design identification, estimation and control
algorithms for (4.6), (4.7), that is done in the next section.

To proceed we need the following assumptions.

Assumption 4.3. For all i = 1, . . .n, consider the signals

vi(t, t0) =
ˆ t

t0
vi−1(s, t0)ds,

where v0(t, t0) = v(t) are essentially bounded for all t ≥ t0 ≥ 0.

In this work for dependence in the second argument we will use the convention vi(t) =
vi(t,0).

Assumption 4.4. There is a known constant V∞ > 0 such that max{||ϖ ||∞, ||v0||∞, . . . , ||vn||∞}
≤V∞.

Note that integration of a high frequency noise v(t) (usual for inertial sensors) leads to
amplitude decreasing for vi(t) with i ≥ 1, i.e. integration acts as a filter in this case.

4.3.3 Identification

Define variables for t0 ≥ 0:

ψ0(t, t0) = ψ(t),

ψi(t, t0) =

ˆ t

t0
ψi−1(s, t0)ds ∀i = 1, . . .n,

then by recursive integration for all i = 1, . . .n we obtain that

y(i)(t) = ψn−i(t, t0)+
n−i

∑
j=1

y(n− j)(t0)
(t − t0)n−i− j

(n− i− j)!
− vn−i(t, t0). (4.8)
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Substituting the obtained expressions for the derivatives y(i)(t) in (4.6) we get:

ψ0(t, t0) =
n−1

∑
i=0

ai

(
ψn−i(t, t0)+

n−i

∑
j=1

y(n− j)
t0

(t − t0)n−i− j

(n− i− j)!

)
+b0[u(t)+d(t)],

where y(i)t0 = y(i)(t0) and

d(t) = ϖ(t)+b−1
0 [v0(t, t0)−

n−1

∑
i=0

aivn−i(t, t0)],

is a new essentially bounded disturbance by Assumption 4.3, and ||d||∞ ≤ (1+ |b−1
0 |[1+

∑
n−1
i=0 |ai|])V∞ according to Assumption 4.4. Performing a direct expansion we can observe

that

n−1

∑
i=0

ai

n−i

∑
j=1

y(n− j)
t0

(t − t0)n−i− j

(n− i− j)!
=

n−1

∑
i=0

(t − t0)i

i!

n−i

∑
j=1

an−i− jy
(n− j)
t0 ,

then

ψ0(t, t0) =
n−1

∑
i=0

aiψn−i(t, t0)+
n−1

∑
i=0

(t − t0)i

i!

n−i

∑
j=1

an−i− jy
(n− j)
t0 +b0[u(t)+d(t)]

= ω(t, t0)θ +b0d(t), (4.9)

where the regressor vector

ω(t, t0) = [ψn(t, t0), . . . ,ψ1(t, t0),
(t − t0)n−1

(n−1)!
,
(t − t0)n−2

(n−2)!
, . . . , t − t0,1,u(t)],

is composed by known signals (integrals of the measurable output ψ0(t, t0), functions of time
t and u(t)), and the vector

θ = [a0, . . . ,an−1,

a0y(n−1)
t0 ,a1y(n−1)

t0 +a0y(n−2)
t0 , . . . ,

n−1

∑
j=1

an− j−1y(n− j)
t0 ,

n

∑
j=1

an− jy
(n− j)
t0 ,b0]

T ,

contains all unknown parameters of the regression model (4.9), which is an equivalent
representation of (4.6).

There exist many methods to solve the equation (4.9) with respect to θ minimizing the
noise influence [48]. The simplest one consists in multiplication of both sides in (4.9) by
ωT (t, t0),

ω
T (t, t0)ψ0(t, t0) = ω

T (t, t0)ω(t, t0)θ +ω
T (t, t0)b0d(t),
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and integration till the instant that the matrix M(t, t0) =
´ t

t0
ωT (s, t0)ω(s, t0)ds becomes

nonsingular, then

θ̂(t, t0) = M−1(t, t0)
ˆ t

t0
ω

T (s, t0)ψ0(s, t0)ds, (4.10)

is an estimate of θ with the estimation error:

|θ − θ̂(t, t0)| ≤ |b0|λ−1
min(M(t, t0))||ωT (·, t0)||[t0,t]||d||∞.

The non-singularity of M(t, t0) is related with the property of persistence of excitation in
(4.9) [64], which we have to impose.

Assumption 4.5. For any t ≥ 0 there exist T > 0 and µ > 0 such that λmin(M(t +T, t))≥ µ .

Note that the norm ||ω(·, t0)||[t0,t] is growing with time, thus a minimal imposition of T is
desirable by a selection of u(t).

Remark 4.1. In order to minimize the estimation error |θ − θ̂(t, t0)| one can filter the both
sides of (4.9) in order to minimize the influence of the disturbance d(t), then we obtain:

ψ̃0 = ω̃
T
θ +b0d̃,

where ψ̃0 = Wf (s)ψ0, ω̃ = Wf (s)ω , d̃ = Wf (s)d and Wf (s) is transfer function of a filter.
It is well-known [64] that linear filters do not destroy persistence of excitation condition
(Assumption 4.5 stays true for ω̃ for some T̃ > 0 and µ̃ > 0), while the amplitude of the noise
d̃ can be much reduced with respect to d by Wf . In order to keep the notation compact this
step is omitted.

Proposition 4.1. Let Assumptions 4.3, 4.4, 4.5 be satisfied and there exist T> 0 such that
||x||[0,T]+ ||u||[0,T] <+∞. Then there exists Θ > 0 such that in (4.10),

|θ − θ̂(kT,(k−1)T )| ≤ Θ, ∀1 ≤ k ≤ T
T
.

Proof. By construction and imposed assumptions |θ − θ̂(kT,(k−1)T )| ≤ |b0|µ−1||ω(·,(k−
1)T )||[(k−1)T,kT ]||d||∞. By assumptions 4.3 and 4.4, ||d||∞ <+∞, and µ is a real by Assump-
tion 4.5, the same is b0 ̸= 0. It is necessary to evaluate ||ω(·,(k−1)T )||[(k−1)T,kT ], but all com-
ponents dependent explicitly on time are bounded on the interval [(k−1)T,kT ], u is bounded
by conditions of the proposition, and ψi are bounded by construction and due to boundedness
of x. Therefore, ||ω(·,(k− 1)T )||[(k−1)T,kT ] < +∞ while ||x||[(k−1)T,kT ]+ ||u||[(k−1)T,kT ] <

+∞, that was necessary to prove.
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Consequently, according to Proposition 4.1 on any finite time interval (4.6) is a linear
system, thus no finite-time escape is possible and for any finite T> 0 the property ||x||[0,T]+
||u||[0,T] < +∞ is satisfied) the identification algorithm (4.10) provides a solution with a
bounded error. The crucial step in (4.10) is resetting of all integrators after T period of time,
in order to avoid integration drift and unboundedness of the regressor ω .

Assume that for t0 ≥ 0 in the conditions of Proposition 4.1 (Assumptions 4.3, 4.4, 4.5 are
satisfied) the estimate θ̂(t0 +T, t0) is obtained and |θ − θ̂(t0 +T, t0)| ≤ Θ for some Θ > 0,
then from the definition of θ it is easy to check that the estimate η̂(t0 +T, t0) of the constant
vector

η = [a0, . . . ,an−1,y
(0)
t0 , . . . ,y(n−1)

t0 ,b0],

can be calculated with the property

|η − η̂(t0 +T, t0)| ≤ Θ
′,

for some Θ′ > 0 related with Θ. Indeed, a0, . . . ,an−1 and b0 are the first and the last elements
of θ , respectively, next y(n−1)

t0 can be found from the value of n+1 element of θ , and next

recursively all y(i)t0 . Denote

η̂ = [â0, . . . , ân−1, ŷ
(0)
t0 , . . . , ŷ(n−1)

t0 , b̂0],

then for all i = 0, . . . ,n−1

ŷ(i)(t) = ψn−i(t, t0)+
n−i

∑
j=1

ŷ(n− j)
t0

(t − t0)n−i− j

(n− i− j)!
,

and defining the state estimation error ei(t) = y(i)(t)− ŷ(i)(t) we obtain that

ei(t) =
n−i

∑
j=1

(y(n− j)
t0 − ŷ(n− j)

t0 )
(t − t0)n−i− j

(n− i− j)!
− vn−i(t, t0). (4.11)

Denote x̂ = [ŷ(0), ŷ(1), . . . , ŷ(n−1)] and e = [e0, . . . ,en−1]. Finally, from (4.6) the estimate of
ϖ(t) can be derived as follows:

ϖ̂(t) = b̂−1
0 [ψ0(t, t0)−

n−1

∑
i=0

âiŷ(i)(t)]−u(t).
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4.3.4 State space representation for control design

To simplify forthcoming analysis we will suppose that the control gain is given (or the value
of b̂0 after identification has been obtained correctly).

Assumption 4.6. The value b0 ̸= 0 is known.

In such a case the discrepancy |b0 − b̂0| can be used for the constant Θ′ evaluation.

In the state space form the system (4.6) can be written as follows:{
ẋ = Ax+B(u+ϖ),

Y = ŷ(n−1) = y(n−1)+δ =Cx+δ ,
(4.12)

where x = [y, y(1), . . . , y(n−1)]T is the state vector, Y ∈ R is the estimate of y(n−1), served as
a new measured output with new measurement noise δ , and

A =


0
... In−1

0
a0 a1 . . . an−1

 , B =


0
...
0
b0

 ,
C = [0, . . . ,0,1].

Specifically, we have

δ = ŷ(n−1)− y(n−1)

= ψ1(t, t0)+ ŷ(n−1)
t0 − (ψ1(t, t0)+ y(n−1)

t0 − v1(t, t0)

= ŷ(n−1)
t0 − y(n−1)

t0 + v1(t, t0),

thus, despite the estimates x̂ for the complete vector x are available (if (4.10) has been used
in advance) and can be considered as measurable, only the last component y(n−1) is selected
since it is estimated with a bounded estimation error. In fact, from 4.11, we have

δ =−en−1 =
n−i

∑
j=1

(ŷ(n− j)
t0 − y(n− j)

t0 )
(t − t0)n−i− j

(n− i− j)!
+ vn−i(t, t0),

so for 0 ≤ i ≤ n−2, δ depends on powers of t.
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4.3.5 Adaptive control

There exists an unknown vector k = [k1, k2, . . . , kn]
T ∈Rn such that D = A−BkT is a given

matrix in the canonical controllability form with desired eigenvalues, then (4.12) becomes:

ẋ = Dx+B(u+ kTx+ϖ). (4.13)

By the definition of k and x, and from 4.8, we have

kT x =
n−1

∑
i=0

ki+1y(i)

=
n−1

∑
i=0

ki+1

(
ψn−i(t, t0)+

n−i

∑
j=1

y(n− j)(t0)
(t − t0)n−i− j

(n− i− j)!
− vn−i(t, t0)

)

=
n−1

∑
i=0

ki+1ψn−i(t, t0)+
n−1

∑
i=0

ki+1

(
n−i

∑
j=1

y(n− j)(t0)
(t − t0)n−i− j

(n− i− j)!

)
−

n−1

∑
i=0

ki+1vn−i(t, t0).

Introduce m = i+ j, then we have

n−1

∑
i=0

ki+1

(
n−i

∑
j=1

y(n− j)(t0)
(t − t0)n−i− j

(n− i− j)!

)
=

n−1

∑
i=0

n−i

∑
j=1

(
ki+1y(n− j)(t0)

(t − t0)n−i− j

(n− i− j)!

)
=

n

∑
m=1

m

∑
j=1

(
km− j+1y(n− j)(t0)

(t − t0)n−m

(n−m)!

)

=
n

∑
m=1

(t − t0)n−m

(n−m)!

(
m

∑
j=1

km− j+1y(n− j)(t0)

)
.

Then it yields

kT x+
n−1

∑
i=0

ki+1vn−i(t, t0) =
n−1

∑
i=0

ki+1ψn−i(t, t0)+
n

∑
m=1

(t − t0)n−m

(n−m)!

(
m

∑
j=1

km− j+1y(n− j)(t0)

)
.

(4.14)

Denote ω̄T (t, t0) as

ω̄
T (t, t0) = [ψn(t, t0),ψn−1(t, t0), . . . ,ψ1(t, t0),

(t − t0)n−1

(n−1)!
,
(t − t0)n−2

(n−2)!
, . . . , t − t0,1], (4.15)
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and θ̄ as

θ̄ = [k1,k2, . . . ,kn,k1yn−1(t0),
2

∑
j=1

k3− jy(n− j)(t0), . . . ,
n

∑
j=1

kn− j+1y(n− j)(t0)]T , (4.16)

where ω̄T (t, t0) is the new regressor vector and θ̄ ∈ R2n is the vector of unknown constant
parameters, then from (4.14) we have

kT x+
n−1

∑
i=0

ki+1vn−i(t, t0) = ω̄
T (t, t0)θ̄ . (4.17)

Define a new perturbation signal φ(t) = ϖ(t)−∑
n−1
i=0 ki+1vn−i(t, t0) and substitute (4.17)

into (4.13), we obtain

ẋ = Dx+B(u+ ω̄
T(t, t0)θ̄ +φ(t)). (4.18)

Choose the control law in the form

u(t) =−ω̄
T(t, t0) ˆ̄

θ(t), (4.19)

where ˆ̄
θ ∈ R2n is an estimate of θ̄ to be calculated, then the system (4.12) with the control

(4.19) takes the form:

ẋ(t) = Dx(t)+B
[
ω̄

T(t, t0)[θ̄ − ˆ̄
θ(t)]+φ(t)

]
.

There are many ways to derive ˆ̄
θ using direct or indirect adaptive control theory [24], for

example, by designing an adaptive observer [45, 99] (the only difficulty is to select a solution
providing a better robustness with respect to vi and ϖ):

ż(t) = Dz(t)−Bω̄
T(t, t0) ˆ̄

θ(t),

Ω̇(t) = DΩ(t)−Bω̄
T(t, t0), (4.20)

˙̄̂
θ(t) = −γΩ

T(t)CT[Y (t)−Cz(t)+CΩ(t) ˆ̄
θ(t)],

where γ > 0 is a tuning parameter, z ∈ Rn and Ω ∈ Rn×2n are two auxiliary variables. For
(4.12), (4.19) with the adaptive observer (4.20) for an error ε = x− z+Ωθ̄ we obtain

ε̇(t) = Dε(t)+Bφ(t),
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which explains the structure of the used adaptation law:

˙̄̂
θ(t) =−γΩ

T(t)CT[Cε(t)+δ (t)+CΩ(t){ ˆ̄
θ(t)− θ̄}].

Since D is a Hurwitz matrix and φ ∈ L∞ by Assumption 4.4, then also ε ∈ L∞ with the
norm asymptotically proportional to ||φ ||∞, and the discrepancy θ̄ − ˆ̄

θ(t) possesses the same
property [25] provided that the variable ΩT(t)CT is persistently excited.

Assumption 4.7. For any t ≥ 0 there exist T ′ > 0 and ν > 0 such that

ˆ t+T ′

t
Ω

T(s)CTCΩ(s)ds ≥ νI2n.

In general Assumptions 4.5 and 4.7 are related, but we prefer to state them separately,
one for identification and one for control phase, respectively.

The following result has been proven.

Theorem 4.1. Let Assumptions 4.3, 4.4, 4.6 and 4.7 be satisfied. Then in the system (4.6),
(4.7) with the control (4.19) and the adaptive observer (4.20) for any t0 ≥ 0 and T> 0, the
variables x, z, Ω, ˆ̄

θ stay bounded on the interval [t0, t0 +T].

Proof. Note that on any finite time interval [t0, t0 +T] the regressor ω̄ is bounded (con-
sequently, Ω has the same property since D is Hurwitz) and using Lemma 1 of [25] and
Assumption 4.7 we obtain boundedness of the discrepancy θ̄ − ˆ̄

θ(t). Boundedness of the
variables x and z follows Hurwitz property of D and boundedness of all external signals in
the right-hand side of the differential equations describing dynamics of these variables.

Note that in the considered case it is hard to state an asymptotic result, or consider the
system on unbounded interval [0,+∞], since the regressor ω̄ depends on powers of t for
n ≥ 2 and it is asymptotically unbounded.

Remark 4.2. If the identification algorithm (4.10) has been applied, then the value for
ˆ̄
θ(t0) can be properly selected (minimizing the initial error) and the measurement noise bias
y(n−1)

t0 − ŷ(n−1)
t0 can be decreased.

Remark 4.3. The identification algorithm (4.10) can also be used in parallel with the
adaptive control algorithm (4.19), (4.20), providing an independent update on values of all
parameters. In addition, due to integration applied for calculation of the variables ψi, it is
necessary to perform a persistent resetting of that integrators using corresponding estimates
obtained by (4.10).
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4.3.6 Robust control

If the identification algorithm (4.10) is applied periodically at instants tm, m = 0,1, . . . , then
a simple static feedback can be applied:

u =−κ
Tx̂, (4.21)

where the vector of coefficients κ ∈ Rn is selected in a way to ensure that the matrix
H = A−BκT is Hurwitz. For example, if it is possible to evaluate the value of Θ′, then
taking into account uncertainty on the values of a0, . . . ,an−1,b0 given by Θ′, the choice of κ

is simple.

Theorem 4.2. Let Assumptions 4.3 and 4.4 be satisfied. Then in the system (4.6), (4.7) with
the control (4.21) for any t0 ≥ 0 and T > 0, the variable x stays bounded on the interval
[t0, t0 +T].

Proof. Substituting the control (4.21) in (4.12) (an equivalent representation of (4.6), (4.7))
we obtain:

ẋ = Ax+B(−κ
Tx̂+ϖ)

= Hx+B(κTe+ϖ).

On any finite time interval the error e is bounded, the same property has the signal ϖ , while
the matrix H is Hurwitz, thus the state variable is bounded.

In this case the identification algorithm (4.10) can also be used in parallel providing a
persistent resetting of integrators for ψi.

Both results, for the adaptive control in Theorem 4.1 and for the robust control in
Theorem 4.2, guarantee just boundedness of the state for the system (4.6), (4.7). Their
efficiency comparison is given in the next section using computer numerical experiments.

4.3.7 Simulations for linear system

Model specification

In robotic applications, accelerometers are largely used to measure the linear acceleration, as
the second-order derivative of the position. Thus we select n = 2, t0 = 0 and the model is
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specified as:

a0 = 2, a1 =−4, b0 = 2,

v(t) = 0.0025sin(25t), ϖ(t) = 0.002sin(t),

x(0) = [0.5 5]T.

In state space representation, we have

A =

[
0 1
2 −4

]
, B =

[
0
2

]
,

C = [0, 1],

then the system is unstable.

Identification

During the identification phase, choosing the control as

u(t) =−cos(8t)+ sin(
1
4

t)− cos(5t).

The step time is set to be 1ms, after 1000 samples (1 second), based on (4.10), we obtain
the estimates as:

â0 = 2.015, â1 =−3.997, b̂0 = 2.000,

y(0)0 = 0.468, y(1)0 = 4.991.

This result is very close to the model parameters and initial state variables. According to
(4.11), the state estimation error can be expressed as

e(t) = y(t)− ŷ(t) = (y(1)0 − ŷ(1)0 )t + y(0)0 − ŷ(0)0 − v2(t)
= 0.009 t +0.032− v2(t),

ė(t) = ẏ(t)− ˆ̇y(t) = y(1)0 − ŷ(1)0 − v1(t)
= 0.009− v1(t).
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Adaptive controller

Giving D such that D = A−BkT where k = [k1 k2]
T , then from 4.15 and 4.16, we have

ω̄
T (t, t0) = [ψ2(t, t0), ψ1(t, t0), t − t0, 1],

and
θ̄ = [k1, k2, k1y(1)(t0), k2y(1)(t0)+ k1y(0)(t0)]T .

For the proposed adaptive control scheme, taking

D =

[
0 1
−4 −4

]
, γ = 0.4,

as parameters of the adaptive control algorithm (4.19), (4.20).
To minimize the initial error of the adaptive error, ˆ̄

θ(t0) can be estimated using the
identification results, to do this, define k̂ = [k̂1 k̂2]

T the estimate of the unknown vector k,
then by the definition of D, k̂ is given as

k̂ = (B̂T B̂)−1B̂T (Â−D), (4.22)

where

Â =

[
0 1
â0 â1

]
, B̂ =

[
0
b̂0

]
.

Then we have
ˆ̄
θ = [k̂1, k̂2, k̂1ŷ(1)0 , k̂2ŷ(1)0 + k̂1ŷ(0)0 ]T .

The results of application of the adaptive controller during the 9 seconds after the
identification process are shown in Figure 4.3. We observed that the error e(t) increased with
time while ė(t) stays always quite close to zero.

Robust controller

We take the same desired matrix, i.e. H = D, and then κ = k̂ as the gains of the robust control
(4.21), while k̂ is determined by (4.22), the results of the robust controller are shown in figure
4.4. Compared to the performance of the adaptive controller, as we can conclude, the robust
control converges more quickly than the adaptive one, and it is easier to implement.
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Fig. 4.3 The simulation result for adaptive controller
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Fig. 4.4 The simulation result for robust controller

4.4 Conclusion

In this chapter, firstly, the control problem of single-link flexible-joint robots using link angu-
lar acceleration has been studied. With also tilt angle measurement, identification algorithm
based on linear square method and the same two-stage adaptive controller are proposed, simu-
lation result showed similar performance as using angular velocity measurement in Chapter 3.
Secondly,the problem of model identification and output control has been discussed for linear
time-invariant SISO system with completely unknown parameters, external disturbances, and
output measurement noise. It is shown that by introducing recursive integrals and using a
simple identification algorithm, some estimates on vector of unknown parameters and states
can be obtained. Next, these information can be used in control, adaptive or robust, to provide
boundedness of the state vector of the system. Due to integration drift all results are obtained
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on final intervals of time. Efficacy of the proposed identification and control algorithms is
demonstrated in simulations.



Chapter 5

Experiment results

5.1 Introduction

In this chapter, for experiment validation, a 5-DOF low-cost manipulator with light weight
and small size, is used as test platform. Each joint of the manipulator is driven by an all-
in-one actuator, of which the built-in controller is a programmable P like controller, but the
proportional gain is unknown, besides, the shaft inside the actuator which couples the joint
part to the link part is of some kind of plastic, thus the stiffness is limited. As a 5-DOF
manipulator, the inertial parameters of each link (mass, inertial moment, first moment,etc)
is rather small compared to the stiffness of the shaft, i.e. the stiffness can be considered as
infinite with respect to other dynamic parameters, thus the manipulator can be regarded as
rigid. Under this configuration, the controller proposed in Chapter 2 for rigid manipulators is
implemented, and no additional sensors are demanded.

However, when the last three links and the end-effector are constrained as one link, the
whole manipulator becomes a single-link manipulator driven by the first actuator, and the
inertial parameters for this single link are several times of those for each link in the 5-DOF
manipulator (the mass becomes 4 times and inertial moment becomes 64 times if all the links
are identical), in this case, the shaft stiffness can no longer be considered as infinite with
comparison to the inertial parameters, and the manipulator should be treated as joint-flexible.
Under this configuration, the controllers proposed in Chapter 3 and Chapter 4 for single-link
flexible-joint manipulator are concerned.

In Chapter 3, to proceed the proposed identification and two-stage adaptive controller,
angular velocity and static angle measurements are demanded, this can be satisfied by using
gyroscope and accelerometer, the former is used to measure the angular velocity and the later
measures static angle position [72].
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In Chapter 4, the proposed identification and adaptive controller need angular acceleration
and static angle measurements. For the moment, there is no low-cost and MEMS device which
can measure angular acceleration directly. Although the angular acceleration can be measured
indirectly using either a rotating angle sensor or a velocity sensor, the noise-amplification
problem related to the differentiation process limits the precision. Direct measuring of
linear acceleration is in wide use, which can be converted to angular acceleration provided
that the projection of the gravitational acceleration on the measurement axis is known, i.e.
the link angular position need to be known, thus this task cannot be performed with only
accelerometer, and addition of more additional sensors complicate the problem. As a result,
the methods proposed in Chapter 4 is not implemented.

5.2 Introduction of the experiment plate-form

5.2.1 Description of the robot arm

The test robot arm is of 5 degrees of freedom, as shown in Figure 5.1. All links and the
end-effector are driven by AX-12A Dynamixel Actuators, all the actuators are connected to
an Arduino printed circuit board by a daisy chain bus. The PCB is connected to PC via a
FTDI programming cable.

Ax-12A  
Actuator

Arduino 
PCB    

Daisy Chain  
 Bus        

FTDI     
Cable    

Fig. 5.1 Test manipulator



5.2 Introduction of the experiment plate-form 85

The robot is a light-weight and small-size robot arm, the physical specifications are
shown in Table 5.2.

Table 5.1 Specifications of the robot arm

Weight 550 G
Vertical Reach 35 CM

Horizontal Reach 31 CM

5.2.2 All-in-one actuator

The Dynamixel AX-12A robot actuator (Figure 5.2) is a smart, modular actuator that in-
corporates a gear reducer, a precision DC motor and a control circuitry with networking
functionality, all in a single package. Despite its compact size, it can produce high torque
and is made with high quality materials to provide the necessary strength and structural
resilience to withstand large external forces. Position, temperature and input voltage are
provided as feedback with reliable precision. It also has the ability to detect and act upon
internal conditions such as changes in internal temperature or supply voltage.

Fig. 5.2 AX-12A all-in-one actuators

5.2.3 Built-in controller

According to the manual of the AX-12A actuator, the compliance of the built-in controller is
defined by setting the compliance Margin, Slope and Punch. This feature can be utilized for
absorbing shocks at the output shaft. The following graph shows how each compliance value
(length of A, B, C, D and E) is defined by the Position Error and applied torque, as illustrated
in Figure 5.3, where:

τmax is the maximal output torque the actuator can produce,
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Table 5.2 Specifications of AX-12A actuator

Weight (g) 54.6
Gear Reduction Ratio 1/254

Input Voltage (V) 7 ~10
Final Max Holding Torque (kgf.cm) 12 (7V) 16.5 (10V)

No-load Speed (sec/60◦) 0.269 (7V) 0.196 (10V)
Resolution (degree) 0.29

Operating Angle (degree) 300
Command Signal Digital Packet

Communication Speed (bps) 7343 ~1M
Material Engineering Plastic

Fig. 5.3 Built-in controller

D and E are the output torque corresponding to the minimum current supplied to the
motor during operation,

B is the compliance margin, means the acceptable error between goal position and present
position,

A and C are the compliance slope which set the changing rate of output torque with
respect to the position error.

A, B, C, D and E are programmable, can be set by the user. For modelling and
analysis simplicity, by setting B, D and E close to zero and A = C ≥ 0 (A ∈ 0.29◦ ×
{2,4,8,16,32,64,128}), then the built-in controller becomes a P controller with output
torque saturation, as shown in Figure 5.4.

For this controller, denote u the desired angular position, serves as the input of the system.
x denotes the current joint position and serves as the feedback, then the output torque τ can
be expressed as
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Fig. 5.4 P controller with saturation

τ =



τmax, if x−u ≤−A,

τmax

A
(u− x) = P(u− x), if |x−u| ≤ A,

−τmax, if x−u ≥ A.

(5.1)

where P is the proportional gain.

5.2.4 Propositions and physical constraints

To test our algorithms proposed in the previous chapters, several propositions are introduced:

Proposition 5.1. The motor shaft is considered as rigid with small-size and light-weight link,
and should be regarded as flexible when the link inertial parameters become large.

Proposition 5.2. The non-saturated part of the built-in controller is a P controller, as
illustrated in Figure 5.4.

Due to the hardware and software limitations, following constraints are imposed:

Constraint 5.1. The inertial parameters of the actuators and the links are unknown.

Constraint 5.2. The maximal output torque τmax the actuator can produce is unknown, thus
the proportional gain P in (5.1) is unknown.

Constraint 5.3. The built-in controller is saturated by unknown value, and the proportional
part range is quite limited (A ≤ 37.12◦).

Constraint 5.4. The angular velocity is bounded and the boundedness is unknown.

Constraint 5.5. Only motor position feedback is of interest and reliable, and the sampling
frequency is limited to 143Hz.
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5.3 Rigid case

If each link is driven by a corresponding actuator, then the robot can be regarded as rigid, due
to the small size and light weight of each link, which makes the inertial parameters ignorable
compared to the plastic motor shaft elasticity.

5.3.1 Built-in controller performance

Since the built-in controller works as a P controller within the compliance slope region, at
steady state, the final position error is mainly caused by the gravity load torque. As the first
link rotates around a vertical axis on which the projection of the gravity load torque is zero,
there will be no steady state error. Thus we focus on the middle 3 joints without considering
the open and close of the grasper.

The performance of the built-in controller under constant input for the middle 3 revolute
joints is shown in Figure 5.5, two departure-destination configurations are considered, and
for each configuration, without and with an additional load of 18g on the grasper are tested.

It can be observed that, evident steady state errors are presented for the second and the
third joints, and the second one has a bigger error than the third one due to a greater gravity
load torque, while the error on the fourth joint is ignorable for all case due to a minor gravity
load torque. Besides, a somehow uniform-velocity motion is presented due to the output
torque saturation beyond the short compliance slope region. As a result, we focus on the
second and the third joints for the auxiliary controller implementation.

5.3.2 Model identification

Observer performance

All the four observer candidates are tested for a measured trajectory (Figure 5.6(a)). For
algebraic-based observer, the result is shifted with half of the window size to compensate
for the delay. The performance of the observers for velocity and acceleration estimation are
illustrated respectively in Figure 5.6(b) and Figure 5.6(c).

Algebraic-based observer gives smoother results than the others, however, for real-time
estimation, the delay cannot be compensated, thus we use it to do off-line identification. For
velocity estimation, all the results are close to each other, while for acceleration estimation, the
results differ and get chattering for HOMD, HOSM and High-gain differentiators. Fortunately,
the proposed auxiliary controller needs only the velocity estimates, HOMD is chosen for its
quicker convergence.
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(a) Configuration 1 without additional load
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(b) Configuration 1 with additional load
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(c) Configuration 2 without additional load
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(d) Configuration 2 with additional load

Fig. 5.5 Built-in controller performance

Identification result

To identify the nominal model of each joint, excite the system with an increasing sequence
of the input signal u in proportional range. (5.2) is obtained for the nominal model for the
second and the third joint.


ẍ2 =−32.52x2 −3.07ẋ2 +33.13u2,

ẍ3 =−34.86x3 −4.42ẋ3 +34.26u3.

(5.2)
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(a) Measured trajectory position
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Fig. 5.6 Observer performance
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5.3.3 Control strategy

The performance degrades under closed-loop control with saturation. Since the proportional
region of the built-in controller is known, so we design a switching control strategy as
described in Figure 5.7.

Fig. 5.7 Switched control strategy

For this, let us firstly define a neighbourhood Ω around the desired position xd:

Ω = {x : |x− xd| ≤ ω},

where ω is a pre-defined distance, chosen by us. Outside of this region, i.e. x /∈ Ω, we
use only the built-in controller, since trajectory tracking is not considered, the advantage of
this switching strategy is the rapidity, as either the torque or the velocity is saturated at an
early stage. Within this region, we activate this auxiliary controller which generates desired
position u2. This switching method can be summarized as below:

u =


xd, if x /∈ Ω,

u2, if x ∈ Ω.

(5.3)

5.3.4 Performance with auxiliary controller

With the control strategy described in (5.3), the activated range for the auxiliary controller
is very limited, thus for the implementation of the PID controller, we will only consider an
integral term for simplicity. Both the integral controller and the adaptive controller are tested
in the same case as the built-in controller is, the performance with auxiliary controllers for
the two configurations is illustrated in Figure 5.8 and 5.9. A video recording the performance
with auxiliary controller is available at https://youtu.be/UQwLV0V_VZ4.

Both the adaptive and integral auxiliary controller can finally eliminate the steady state
error, however, since the gain for integral controller is constant, the performance degrades
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when operational condition changes, obvious overshoot and prolonged convergence time are
observed. While for the proposed adaptive controller, the good performance persists even
operational condition changes.
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(a) Integral controller
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(b) Adaptive controller
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(c) Integral controller with additional load
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(d) Adaptive controller with additional load

Fig. 5.8 Auxiliary controller for Configuration 1

5.4 Flexible-joint case

With larger and heavier link, the elasticity of the plastic motor shaft can no longer be ignored.
To get link-side information, a MEMS IMU (Inertial Measurement Unit) composed of an
accelerometer and a gyroscope is mounted on the link side, the accelerometer is used to
measure static link angular position and gyroscope gives link angular velocity measurement.
The sensor information communication and controller computation are performed under
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(a) Integral controller
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(b) Adaptive controller
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(c) Integral controller with additional load
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(d) Adaptive controller with additional load

Fig. 5.9 Auxiliary controller for Configuration 2

ROS (Robot Operating System) framework. As discussed previously in this chapter, the iden-
tification and control methods proposed in Chapter 3 are implemented. For the experiment,
the sampling frequency of the motor encoder and the gyroscope are set to 100Hz.

5.4.1 Inertial sensors

A simple breakout (Figure 5.10) for the ADXL345 MEMS accelerometer and the ITG-3200
MEMS gyroscope is adopted, for its tiny size and ease to mount. The sensors communicate
with the PC through I2C interface.

The ITG-3200 Gyroscope from InvenSense features three 16-bit analog-to-digital con-
verters (ADCs) for digitizing the gyro outputs, a user-selectable internal low-pass filter
bandwidth, and a Fast-Mode I2C (400kHz) interface. Additional features include an embed-
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Fig. 5.10 6 DOF IMU Digital Combo Board

ded temperature sensor and a 2% accurate internal oscillator. This breakthrough in gyroscope
technology provides a dramatic 67% package size reduction, delivers a 50% power reduction,
and has inherent cost advantages compared to competing multi-chip gyro solutions.

The ADXL345 accelerometer from ANALOG DEVICES is a small, thin, low power,
3-axis accelerometer with high resolution (13-bit) measurement at up to ±16g. Digital output
data is formatted as 16-bit twos complement and is accessible through either a SPI or I2C
digital interface. The ADXL345 is well suited for mobile device applications. It measures
the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration
resulting from motion or shock. Its high resolution (4 mg/LSB) enables measurement of
inclination changes less than 1.0◦.

5.4.2 Built-in controller performance

For a point-to-point link position control problem, denote qd the desired position of the link,
with the built-in controller, the input is by default

u = qd, (5.4)
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and the performance is illustrated in Figure 5.11, in which θ is the joint motor position,
q0 is the initial static position and q f the final static position of the link, both measured by
the accelerometer, q̇ is the angular velocity of the link captured by the gyroscope, the real
time link position q is considered as the sum of the initial position and the integration of the
angular velocity (q0 +

´
q̇). To avoid output torque saturation, qd (input u) is set to be within

the proportional range of the built-in P-like controller.
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(b) Link angular velocity measurement

Fig. 5.11 Performance of built-in controller for single-link flexible-joint robot

(5.4) intends to control the position of the motor, the steady state error between qd and θ

is due to the P controller, as in the rigid case, and the error magnitude depends on the link
gravity torque. The error between θ and q justifies the joint flexibility. In Figure 5.11(a),
the convergence of q to q f confirms the reliability of the measurement (after filtering) of the
gyroscope and accelerometer, at least during the experiment duration, while integration drift
may occur for a longer duration. In Figure 5.11(b), oscillation of the link is observed, as a
common consequence of the joint flexibility.

5.4.3 Model identification

To avoid the output torque saturation, the input is designed such that the error between the
input and the current motor feedback position stays always in the proportional zone, as shown
in Figure 5.12(a), where the error is set to be constant for most of the time. The initial link
position q0 is measured by the accelerometer, and then q is given as q0+

´
q̇, algebraic-based

differentiator is used to get the estimates q̈, θ̇ and θ̈ from q̇ and θ . The measurements and
the estimation performance are illustrated in Figure 5.12(b), 5.12(c) and 5.12(d).
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(b) q and θ
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Fig. 5.12 Identification for single-link flexible-joint robot

Based on the data obtained, (3.8) and (3.9) are used to identify the parameters, several
scenarios are tested and the average is taken as the final result, as shown in Table 5.3.

Model validation

Based on the estimated parameters in Table 5.3, we simulate the behaviour of the system
under the same input and the same initial conditions, the behaviour of the system is given in
Figure 5.13, which shows large conformity with the real behaviour of the robot.

5.4.4 Controller performance

Based on the parameters estimated shown in Table 5.3, the PD controller (3.14a) and
(3.14b) can be designed, and the performance is shown in Figure 5.14(a) and 5.14(b).
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Table 5.3 Identification results for flexible-joint robot

Jp Hp Kp Ik Fk Gk
Estimates 0.0020 0.0370 3.6670 0.0010 0.0190 0.0870

The proposed two-stage adaptive controller described as (3.26), (3.37) and (3.40) is also
implemented, for which the performance is illustrated in Figure 5.14(c) and 5.14(d). For
both two controllers, homogeneous finite-time differentiator (HOMD) is used to estimate
the derivatives. A video recording the performance with auxiliary controller is available at
https://youtu.be/l7lW7F0pJpI.

Compared to the built-in controller, both controllers reduce the link position error and the
oscillation of the link is somehow attenuated. Further more, the two-stage adaptive controller
gives a better control precision, corresponds to the fact that the two-stage controller is more
robust with respect to parameter uncertainties.

5.5 Conclusion

In this chapter, a low-cost, small-size and light-weight test robot arm is introduced, for which
the plastic motor shaft brings in torsional elasticity, and the built-in controller is a P-like
controller with output saturation. Firstly, with each joint driven independently by the attached
actuator, the stiffness of the motor shaft can be considered as infinite compared to those tiny
inertial parameters of each link, and thus the robot is regarded as rigid, the performance of the
mere built-in controller is investigated and evident steady state error is presented, to reduce
the position error, the controllers proposed in Chapter 2 are implemented and compared, the
result shows that the position error can be effectively reduced for both integral and adaptive
controller, besides, the later preserves quick convergence while the former is more subject to
configuration changes. Secondly, if only the second joint is driven, the attached rest part can
be considered as a whole link, for which the inertial parameters multiply and thus the shaft
elasticity must be taken into account for controller design. The identification and control
methods proposed in Chapter 3 can be implemented using gyroscope and accelerometer, the
identification result is given and the model parameters are validated. Both the PD controller
and the two-stage adaptive controllers are implemented and the later gives better regulation
precision. As a pity, the similar methods presented in Chapter 4 have not been implemented
due to the difficulty to obtain the angular acceleration.
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Fig. 5.13 Simulation of the model based on the identification result
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(a) PD controller: θ and q
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(b) PD controller: q̇
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(c) Two-stage controller: θ and q
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(d) Two-stage controller: q̇

Fig. 5.14 Performances of PD controller and two-stage controller





Conclusions and Perspectives

The purpose of this chapter is to summarize the contributions presented in the thesis and
propose some perspectives for future work.

Conclusions

This thesis investigates the control problem of low-cost light-weight position-controlled robot
arms.

In Chapter 1, the background and the motivation of this thesis is introduced, then a survey
of the previous work concerning the control of both rigid and flexible-joint robot arms is
given.

In Chapter 2, we focus on the rigid case. The set-point control problem of low-cost rigid
manipulators with “all-in-one” actuators is addressed in this chapter. For the derivation of the
dynamics model linking the input with the state variables, the effect of the driven motor and
the transmission system is considered, as a result, a second-order differential equation with
constant parameters and highly bounded disturbance is obtained, then identification method
of a nominal model is proposed, based on the identified model parameters, a model-based
adaptive controller is developed. In simulation, the ability of error reduction is validated,
and advantage on performance robustness with respect to model change is observed with
comparison to PID controller with constant gains.

In Chapter 3, we consider point-to-point control of single-link position-controlled robot
with joint flexibility, to obtain link side information, link angular velocity measurement is
assumed to be provided. An identification scheme of the model parameters is presented,
based on the classic model of flexible-joint robots, and with the measurement of initial link
angles. As a benchmark, a modified simple PD plus gravity compensation controller is
considered, of which the regulation error depends on two parameter estimates. To improve
the robustness with respect to parameter uncertainties, a two-stage adaptive controller is
proposed, with which the final position error depends on the precision of only one parameter
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estimate, provided that the initial static link position can be measured. Simulation results
illustrate that, the proposed two-stage controller is more robust than the PD one.

In Chapter 4, firstly, the control problem of single-link flexible-joint robots using link
angular acceleration has been studied. With also tilt angle measurement, identification
algorithm based on linear square method and the same two-stage adaptive controller are
proposed, simulation result showed similar performance as using angular velocity measure-
ment in Chapter 3. Secondly,the problem of model identification and output control has
been discussed for linear time-invariant SISO system with completely unknown parameters,
external disturbances, and output measurement noise. It is shown that by introducing re-
cursive integrals and using a simple identification algorithm, some estimates on vector of
unknown parameters and states can be obtained. Next, these information can be used in
control, adaptive or robust, to provide boundedness of the state vector of the system. Due to
integration drift all results are obtained on final intervals of time. Efficacy of the proposed
identification and control algorithms is demonstrated in simulations.

In Chapter 5, a low-cost, small-size and light-weight test robot arm is introduced, for
which the plastic motor shaft brings in torsional elasticity, and the built-in controller is a P-like
controller with output saturation. Firstly, with each joint driven independently by the attached
actuator, the stiffness of the motor shaft can be considered as infinite compared to those tiny
inertial parameters of each link, and thus the robot is regarded as rigid, the performance of the
mere built-in controller is investigated and evident steady state error is presented, to reduce
the position error, the controllers proposed in Chapter 2 are implemented and compared, the
result shows that the position error can be effectively reduced for both integral and adaptive
controller, besides, the later preserves quick convergence while the former is more subject to
configuration changes. Secondly, if only the second joint is driven, the attached rest part can
be considered as a whole link, for which the inertial parameters multiply and thus the shaft
elasticity must be taken into account for controller design. The identification and control
methods proposed in Chapter 3 can be implemented using gyroscope and accelerometer, the
identification result is given and the model parameters are validated. Both the PD controller
and the two-stage adaptive controllers are implemented and the later gives better regulation
precision. As a pity, the similar methods presented in Chapter 4 have not been implemented
due to the difficulty to obtain the angular acceleration.
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Perspectives

At the end of this thesis, some issues remain unresolved, and some other methods can be
developed. The theoretical concepts introduced in this thesis can lead to several extensions
and future applications.

In Chapter 2, for the rigid case, only the point-to-point regulation problem is addressed,
it is also worthy to investigate the tracking problem and its implementation. Besides, control
in task space (end-effector) instead of joint space can also be considered.

In Chapter 3 and Chapter 4, for flexible-joint case, firstly, the proposed identification
and control methods limited to single-link configuration, some work can be done to extend
them to n-DOF flexible-joint robot arms. Secondly, controller design for trajectory tracking
remains unconsidered.

In Chapter 5, the identification and control for single-link flexible-joint manipulators has
not been implemented, for the difficulty of direct or indirect angular acceleration measure-
ment, this may be realisable for the future work.
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Appendix A

Dynamic of a 2DOF Rigid Robot
Manipulator

Consider the 2DOF manipulator in Figure 2.4, denote (x1,y1) as the position of the CoM of
the first link and (x2,y3) the position of the second link, then we have:


x1 = d1 sinq1,

y1 = d1 cosq1,

x2 = L1 sinq1 +d2 sin(q1 +q2),

y2 = L1 cosq1 +d2 cos(q1 +q2),

which gives


ẋ1 = d1q̇1 cosq1,

ẏ1 =−d1q̇1 sinq1,

ẋ2 = L1q̇1 cosq1 +d2(q̇1 + q̇2)cos(q1 +q2),

ẏ2 =−L1q̇1 sinq1 −d2(q̇1 + q̇2)sin(q1 +q2).

The Kinetic Energy K1 and K2 could be formed as


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1)+
1
2
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The Potential Energy P1 and P2 are:
P1 = m1gd1 cosq1,

P2 = m2gL1 cosq1 +m2gd2 cos(q1 +q2).

The Lagrangian is taken as L = K−P = K1 +K2 −P1 −P2. Consider the viscous friction
as Fi = Fviq̇i, then by the Lagrangian formulation

τi =
d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
+Fviq̇i,

we get finally



τ1 = (m1d2
1 +m2L2

1 +m2d2
2 +2m2L1d2 cosq2 + I1 + I2)q̈1 +(m2d2

2 +m2L1d2 cosq2 + I2)q̈2

−m2L1d2(2q̇1 + q̇2)q̇2 sinq2 +Fv1q̇1 − (m1d1 +m2L1)gsinq1 −m2d2gsin(q1 +q2),

τ2 = (m2d2
2 +m2L1d2 cosq2 + I2)q̈1 +(m2d2

2 + I2)q̈2 +m2L1d2q̇2
1 sinq2 +Fv2q̇2

−m2d2gsin(q1 +q2).



Résumé étendu en français

Motivation de la recherche

Aujourd’hui, la plupart des robots manipulateurs industriels sont totalement intégrés, la struc-
ture mécanique, composants électroniques, actionneurs, capteurs et systèmes d’exploitation
sont pré-intégrés avant la livraison. Grâce à des actuateurs à haute précision et des com-
posants modernes, ces manipulateurs fournissent une performance opérationnelle efficace
pour des tâches déterminées, mais sont moins flexibles pour d’autres tâches. En outre, en rai-
son de leur grande taille, prix élevé, entretien et réparation coûteuse, nous ne pouvons trouver
ces manipulateurs que dans des usines, des laboratoires, pour des missions spécifiques. De
plus, pour éviter des accidents lors de l’interaction homme-machine, ces machines ne peuvent
être opérés que par des techniciens qui ont suivi certaines formations. Par conséquent, ces
manipulateurs sont beaucoup moins accessibles pour les particuliers. Ceci est exactement la
même situation pour les ordinateurs avant 1970, où ils étaient énormes, coûteux et utilisés
uniquement à des fins militaires ou de recherche.

De l’avis de l’auteur, contrairement aux manipulateurs aujourd’hui industriels, manipula-
teurs personnels de l’avenir devrait être de coût bas, de petite taille, de poids léger, mais avec
un rapport élevé de charge-poids, utilisateur-reconfigurable, conviviale , flexible et sécuritaire
pendant l’intervention humaine, facile à entretenir et à réparer ... Ce genre de manipula-
teurs peut être appliqué pour la recherche, le divertissement, l’assistance aux personnes,
l’éducation ..., où les manipulateurs industriels ne sont pas adaptés, par exemple, quelqu’un
peut être effrayé en face d’un robot d’alimentation qui est d’un manipulateur industriel.

En fait, il y a déjà des manipulateurs à prix-bas commercialisés dans le marché. Ils sont
de faible coût, de petite taille et de poids léger. Une comparaison entre un manipulateur
comme ça (PhantomX Pincher Robot Arm from Trossen Robotics© , Figure 5.1) et le récent
KUKA light-weight manipulateur (Figure 5.2) est illustrée dans Table 5.1.

Cependant, ce n’est pas faisable d’exiger d’un manipulateur une performance aussi
puissante qu’en un autre conçu et fabriqué avec un budget 20 fois de plus. Les faiblesses
des manipulateurs à bas prix comprennent erreur de position dans l’espace des joints, dans
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Fig. 5.1 A low-cost manipulator Fig. 5.2 A Kuka light-weight robot

Table 5.1 comparaison entre manipulateur low-cost et manipulateur industriel

Manipulateur low-cost Kuka light-weight robot
Prix 378$ +20 000C

Poids 550g 48kg
Portée Maximale 31cm 70.7cm

l’espace des liens et oscillation. Ces défauts peuvent être à l’origine des matériaux, des
composants et / ou des logiciels.

Cette thèse est motivée par des manipulateurs à bas prix qui adoptent actionneurs “tout-
en-un”. Ces actionneurs sont équipés de moteurs, capteurs, systèmes de transmission, unités
de contrôle et réseaux de communication, fournissent un rapport charge-poids élevé, et
exemptent les praticiens de la conception et de la lise en œuvre des systèmes de transmission
et de contrôle. Cependant, parmi ces actionneurs, il y en a certain assez bon-marchés avec
contrôleur simple (par exemple, régulateur PD ou P), dans ces cas, les erreurs de positions
sont provoqués. En outre, si le matériau qui forme le rotor du moteur est en plastique, alors le
rotor n’est pas assez rigide et la flexibilité des joints est pressente, par conséquent, oscillation
des liens et inadéquation entre la position de lien et celle de joint sont observés.

Cette thèse se concentre sur des manipulateurs à bas prix équipés des actionneurs “tout-
en-un”. L’objectif comprend l’élimination de l’erreur de position en cas de joints rigides et
aussi en cas de joints flexibles, et l’atténuation d’oscillation en cas de joints flexibles.
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Conception de commande pour manipulateurs rigides à bas
prix équipés d’actionneurs “tout-en-un”

Le problème de contrôle des manipulateurs rigides à bas prix équipés d’actionneurs “tout-
en-un” est abordé. Un modèle classique de manipulateurs avec système d’entraînement
est considéré, donc le contrôleur embarqué est de type PD. Pour la dérivation du modèle
dynamique reliant l’entrée avec des variables d’état, l’effet de l’entraînement par un moteur et
le système de transmission est considéré, par conséquent, une équation différentielle d’ordre
2 avec des paramètres constants et une perturbation bornée est obtenue, puis une méthode
d’identification des paramètres nominaux est proposée, basé sur des paramètres identifiés,
une commande adaptative est développée. Dans la simulation, la capacité de la réduction
d’erreur de la commande proposée est validée, et une robustesse plus forte sur le changement
des paramètres de modèle est observée, en comparaison avec le régulateur PID avec des
gains constants.

Identification et contrôle des robots avec joints flexibles en
utilisant mesures de vitesse de lien

Ici, nous examinons le problème de régulation pour un robot manipulateur de 1DOF, avec
lequel la flexibilité des joints est présente. Si seulement un joint est considéré, le modèle du
système est composé de deux équation différentielle d’ordre deux avec paramètres constants.
Afin d’obtenir des informations du côté de lien, la mesure de vitesse angulaire de lien est
supposée être fournie. Avec hypothèse que la position statique puisse aussi être mesurée,
une méthode d’identification des paramètres du modèle est présentée. Premièrement, une
variation de commande PD classique est considérée avec laquelle l’erreur de régulation
dépend de la précision de deux estimations de paramètres. Pour améliorer la robustesse par
rapport aux incertitudes de paramètre, une commande adaptative deux-étapes est proposée,
avec laquelle l’erreur de position finale dépend seulement de la précision d’une paramètre
estimé. Les résultats de simulation est présentés et comparés, qui montrent que la commande
adaptative deux-étapes proposée est plus robuste que la commande PD.
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Estimation et contrôle en utilisant mesures de dérivées d’ordre
élevé

Avec la même hypothèse que positions statiques de lien sont également mesurées, de la
même façon, une méthode d’identification basée sur feed-back d’accélération angulaire de
lien et une commande adaptative deux-étapes sont proposées, résultats de la simulation
montrent des performances similaires par rapport aux résultats obtenus en utilisant des
mesures de vitesse angulaire de lien. Ensuite, l’idée d’identification et de contrôle en utilisant
des mesures de dérivée d’ordre élevée est généralisée pour un système linéaire, donc des
paramètres sont constants mais complètement inconnus, des perturbations externes et le bruit
de mesure sont également considérés. Il est démontré que par l’introduction d’intégration
récursive et en utilisant un algorithme d’identification simple, des paramètres inconnus et
des variables d’états peuvent être estimés. ces résultats d’estimation peuvent être utilisés
dans la conception de commande, des commandes adaptatives et des commandes robustes
sont proposées. L’efficacité des algorithmes d’identification et de commandes proposées est
démontrés par simulation.

Résultats expérimentaux

Dans cette partie, comme la plate-forme expérimentale, un robot manipulateur à bas prix
(Figure 5.3), de petite taille et de poids léger est introduit. Chaque lien du robot est entrainé
par l’actionneur Ax-12A (Figure 5.4), qui est de type “tout-en-un”, pour lequel le rotor
du moteur est en plastique qui apporte l’élasticité de torsion, et la commande intégrée est
proportionnelle avec saturation de sortie.

Ax-12A  
Actuator

Arduino 
PCB    

Daisy Chain  
 Bus        

FTDI     
Cable    

Fig. 5.3 Manipulateur low-cost Fig. 5.4 Actionneur AX-12

Tout d’abord, parce que le robot expérimental est de petite taille et de poids léger, chaque
lien est tellement petit et léger que les paramètres inertiels de chaque lien est de magnitude
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très petit, même si le rotor du moteur est de matériel plastique, sa rigidité peut être considérée
comme infinie par rapport à ces petits paramètres inertiels, par conséquent, si chaque lien est
entraîné individuellement, le robot peut être considéré comme rigide. La performance de
régulation sous le contrôleur intégré est étudiée qui présente une erreur statique évidente,
pour réduire cette erreur de position, la commande adaptative proposée et une commande
intégrale sont mises en œuvre et les performances sont comparées entre eux, les résultats
montrent que l’erreur de position peut être réduit pour tous les deux, en outre, le temps de
convergence pour la commande intégrale varie avec la configuration et avec le modèle de
système, qui peut être très long dans certains cas, par contre, le temps de convergence pour la
commande adaptative est beaucoup plus robuste.

Les méthodes d’identification et de contrôle proposées en utilisant mesures de vitesse
angulaire de lien peuvent être mises en œuvre en utilisant un gyroscope et un accéléromètre
(Figure 5.5), le résultat d’identification est donné et validé par un modèle construits par les
paramètres estimés. La commande PD et la commande adaptative deux-étapes sont réalisées
basé sur les paramètres estimés, les résultats montrent que la dernière donne une meilleure
précision de régulation. Comme dommage, les méthodes similaires proposées en utilisant
des mesures d’accélération angulaire de lien n’ont pas pu être mises en œuvre en raison de la
difficulté d’obtenir l’accélération angulaire.

Fig. 5.5 Capteur IMU

Contributions et perspectives

Contributions

D’abord, pour des robots manipulateurs rigides, la modélisation dynamique en lien avec le
système d’actualisation est établie, qui forme une équation différentielle avec paramètres
constants et perturbation. Une méthode d’identification des paramètres en utilisant des
observateurs et une commande adaptative sont proposées, et des résultats de simulation et
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d’expérimentation sont donnés. Ensuite, pour le cas d’articulation flexibles, pour simplifier,
le modèle 1DOF est pris en compte. Premièrement, avec la mesure de la vitesse de lien,
une méthode d’identification et une loi deux-étages adaptative sont proposées à condition
que la position statique de lien puisse également être mesurée, des résultats de simulation
sont donnés. Deuxièmement, en utilisant des mesures d’accélération de lien, une méthode
d’identification et la même loi deux-étages adaptative sont proposées, cette idée est général-
isée à l’identification et au contrôle de systèmes linéaires avec mesures de dérivées d’ordre
élevé, des résultat de simulation sont présentés. Pour la mise en œuvre, des capteurs inertiels
(gyroscopes et accéléromètres) sont utilisés et des résultat expérimentaux sont présentés.

Perspectives

Dans le cas de robot rigide, nous ne considérons que le problème de régulation point-à-
point, il est aussi intéressant d’étudier le problème de suivi de trajectoire et sa mise en
œuvre. En outre, le contrôle dans l’espace de tâche (effecteur) à la place de l’espace de
joint peut également être étudié. Dans le cas de joints flexibles, premièrement, des méthodes
d’identification et de contrôle proposées se limitent à la configuration de lien seul, une
généralisation vers un robot de joints flexibles avec n-DOF est attendue. Deuxièmement,
comme dans le cas rigide, le problème de suivi de trajectoire n’est pas considéré. Pour
l’expérimentation, les méthodes d’identification et de contrôle pour manipulateurs à joints
flexibles en utilisant mesure d’accélération n’a pas été mises en œuvre, par la difficulté de la
mesure d’accélération angulaire directe ou indirecte.
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Title: Identification and control of low-cost position-controlled robot manipulators

Abstract: Unlike industrial robot manipulators which are huge in size and of high price, many low-cost

robot manipulators have already entered the market, with small size and light weight, this type of robots are

more accessible to the public. However, limited by the cost, the components adopted (materials, actuators,

controllers, etc.) are also limited, this often leads to less robust control performance. This thesis focuses on the

controller design to improve the performance for such kind low-cost robot manipulators. To start with, for rigid

case, dynamic modeling considering the actuator system is established, which forms a differential equation with

constant parameters and disturbance, a method to identify the model parameters using observers and then an

adaptive controller are proposed, simulation and experimental results are given. Then, in case of flexible joints,

for simplicity, a single-link case model is considered. Firstly, link velocity measurement is assumed to provide

link information, and an identification method and a two-stage adaptive control low are proposed provided that

the static link position can also be measured, simulation result is given. Secondly, by using link acceleration

measurement, an identification method and the same two-stage adaptive control low are proposed, this idea is

generalized to identification and control of linear system using high-order derivative measurements, simulation

result is presented. For implementation, inertial sensors (gyro and accelerometer) are used and experimental

result is presented.

Keywords: Low-cost robot manipulators; Modeling; Parameter identification; Flexible joint; Adaptive

control; State estimation

Titre: Identification et commande des robots manipulateurs à bas prix

Résumé: Contrairement aux robots manipulateurs industriels qui sont de taille énorme et de prix élevé,

beaucoup de robots manipulateurs à bas prix sont déjà entrés dans le marché, avec une petite taille, un poids

léger, ce type de robots est plus accessible pour les particuliers. Cependant, limité par le coût de revient,

des accessoires (matériaux, actuateurs, contrôleurs, etc) adoptés sont aussi limités, cela conduit souvent à la

performance moins robuste au niveau de contrôle. Cette thèse se concentre sur la conception de contrôleur

pour améliorer la performance des robots manipulateurs à bas prix. D’abord, pour des robots manipulateurs

rigides, la modélisation dynamique en lien avec le système d’actualisation est établie, qui forme une équation

différentielle avec paramètres constants et perturbation. Une méthode d’identification des paramètres en utilisant

des observateurs et une commande adaptative sont proposées, et des résultats de simulation et d’expérimentation

sont donnés. Ensuite, pour le cas de joints flexibles, pour simplifier, le modèle 1DOF est pris en compte.

Premièrement, avec la mesure de la vitesse de lien, une méthode d’identification et une loi deux-étages

adaptative sont proposées à condition que la position statique de lien puisse également être mesurée, des

résultats de simulation sont donnés. Deuxièmement, en utilisant des mesures d’accélération de lien, une

méthode d’identification et la même loi deux-étages adaptative sont proposées, cette idée est généralisée à

l’identification et au contrôle de systèmes linéaires avec mesures de dérivées d’ordre élevé, des résultats de

simulation sont présentés. Pour la mise en œuvre, des capteurs inertiels (gyroscopes et accéléromètres) sont

utilisés et des résultats expérimentaux sont présentés.

Mots-clefs: Robots manipulateurs à bas prix; Modélisation; Identification des paramètres; Joints flexibles;

Commande adaptative; Estimation d’état


