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Chapter 1

Introduction
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1.1 Motivation and Problem Statement . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Labex CAMI Context . . . . . . . . . . . . . . . . . . . . . . . 5

With the advent of Minimally Invasive Surgery (MIS), the gaze of medicine on

the patient health has become wider and start focusing not only on the success of

the operation, but also on the post-operative and aesthetic sides. The dimension

and number of scars after operation is, now, a sort of evaluation paradigm of the

operation: the less invasive the operation is, the scanter the blood loss, the less the

surgery and post-operative pain and the shorter the convalescence period are.

The first example of MIS dates back to 1985, when Eric Muhe performed the

first LC (Laparoscopic Cholecystectomy). He encountered great skepticism by the

German Medical Community, where the general surgical thinking was oriented to the

concept that big problems required big incisions [Litynski 1998]. Eric Muhe work on

LC was never published and for many years the merit for the first LC was attributed

to Philippe Mouret who performed it in 1987 [Cuschieri 1991]. However, even in the

case of Mouret the work had weak responses and the diffusion of these techniques

was more due to private communities or private practice surgeons. Nowadays, on

the contrary, Laparoscopy is a diffuse technique and, probably, the most performed

among the MIS techniques. In conventional Laparoscopy three or four incisions are

made on the skin of the patient to access the body cavity: one is usually for the

camera (laparoscope) and the other for rigid instruments. With the aim of limiting

the invasiveness, LESS (Laparo-Endoscopic Single Site) surgery reduces the incisions

to a single one: in this procedure all the instruments and the camera are inserted

in the body cavity through a single port [Curcillo 2010].

Along the same line, in the last decade, new surgical techniques have been de-

veloped with the aim of having no scar at all (or, at least, no external scar) leading

to a family of techniques such as endoluminal surgery or natural orifice transluminal

surgery (also known as NOTES). The idea underneath both of these techniques is

to exploit the natural orifices and tracts to access the wanted surgical site by the
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interior of the body. In endoluminal surgery, the operation is carried out in the inte-

rior of a tubular anatomical structure (lumen) such as urethra, colon or esophagus

and no superficial incision is necessary since these structure are accessible through

natural orifices. In the transluminal surgery, the lumen is used as a via to approach

the site of the operation which is finally reached performing an incision in the wall

of the tract that has been walked through.

These kinds of techniques are made possible by the utilization of flexible systems.

Thanks to their compliance, they can reach the zone of interest in a really non-

invasive way. Differently from the rigid instruments, they can enter through the

natural orifices and walk through tortuous paths adapting to anatomical constraints

and assuring almost atraumatic endoluminal movements. For these purposes, several

devices are being developed which, often, are extension or adaptation of the already

available technologies (e.g. endoscopes) whose main use was for diagnostic tasks

(see Ch. 2)..

With respect to conventional surgical operations, the techniques using flexible

instruments present a higher degree of difficulty. The relationship between the hand

gestures and the actual instruments trajectories are not easily intelligible if the

surgeon only relies on the endoscopic image and, furthermore, the large distance

between operator and end-effectors, which is typical in flexible endoscopy, limits

haptic feedback. Maneuverability also decreases due to the narrow space where

camera and instruments are constrained. Moreover, positioning and field of view

are maintained by a complex coordination of positioning-wheels and locking mech-

anism which are usually controlled by an assistant, while the surgeon operates the

endoscopic instruments which move inside the channels of the endoscope. The prox-

imity of instruments controlling handles and navigation/view control elements and

the linkage of camera and instruments movements (due to the fact that the same

flexible system houses the camera and the instruments) requires a solid team inter-

action which is not obvious. Additionally, mental workload will likely be increased

by fluctuating visual frames of reference and angles of approach associated with

NOTES procedures.

1.1 Motivation and Problem Statement

In this context, robotic assistance can provide large advantages in terms of manipula-

tion easiness, ergonomics, accuracy in the gesture and repeatability [Dogangil 2010].

In the majority of the robotic systems for endoscopic (flexible or laparoscopic)

surgery, the robot is thought within a teleoperation framework where the surgeon

remotely controls the bedside slave system (cf. Ch. 2). In simple Master - Slave

configuration, the robot is just another instrument that repeats the gestures per-

formed by the physician with the specific human-machine interface. To upgrade the

robot to be an assistant for the surgeon, autonomous movements control must be
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contemplated in the medical robot scenario. The next challenge, then, is providing

the robots with automatic control that can help following a particular trajectory,

limit the permitted movement to the zone of interest, pre-positioning the instrument

for a better incipit of a specific action during an operation or, later on, accomplish-

ing some tasks autonomously. This could both increase the precision of the surgeon

movements and considerably decrease the fatigue of the surgeon. Furthermore, the

movements of a specific operation can be recorded and an a-posteriori analysis of

them can be exploited for educational scopes.

To accomplish this project, the configuration of the robot must be known accu-

rately to compute the appropriate control action. Nevertheless, obtaining the actual

configuration and pose of these robotized flexible instruments is difficult. Mainly

because of the transmission of the movement inside the flexible body, these systems

have often a complex behavior with strong and variable non-linearities depending

on several parameters. It is difficult, then, to determine a precise model and, con-

sequently, model-based open-loop control strategies are not satisfactory. To obtain

a good accuracy in instrument positioning, an external measurement seems to be

necessary to close the loop.

1.2 Objectives

In this context, our main objective is to study the potentialities of using the em-

bedded monocular vision to provide the 3D pose measurement of flexible surgical

instruments.

Vision-based methods usually rely on particular visual features related to the 3D

object whose pose has to be estimated and the precision of the pose estimation is

indirectly affected by the accuracy attain in extracting these features. Therefore, the

second objective of this thesis is the development of a feature extraction method that

has to be effective in in-vivo environment and robust to the peculiar illumination

conditions (strong central enlightenment and darker border zone) and possibly able

to manage a partial loss of visual information.

In this work, the attention will be focused on those flexible systems provided

by an embedded monocular vision system and at least one working channel where

an instrument can slide. The flexible instrument in question is considered to be a

conventional surgical instrument currently used in manually performed NOTES or

endoluminal surgery characterized by a single bendable section, a small diameter.

As a first approximation it is supposed to move within a free space and no contacts

nor occlusion are considered.
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1.3 Thesis Overview

The solutions proposed to attain the enunciated objectives is presented in details in

this manuscript which is structured in 5 main chapters.

One introductory chapter (chapter 2) is dedicated to the description of the

medical context underlying the role of flexible systems and the robotic solutions

existing in this field. This kind of robots is usually inscribed in the continuum robot

category and presents strong peculiarities both in the structure and drive. After a

brief presentation of their characteristics and the main issues, state of the art works

are presented concerning the measurements used for controlling continuum robots.

The four other chapters are arranged in two parts coinciding with two of the

aspects of a visual-based pose estimation process: (I) choice and segmentation of

visual features for pose estimation and (II) actual 3D pose inferring from a single

2D image visual features.

The beginning of Part I is dedicated to the detailed description of the flexible

system taken as specimen, focusing on the visual perception of the flexible instru-

ment by the endoscopic camera.

In Chapter 3, a preliminary theoretical study is carried out to investigate the

suitability of some visual features for pose estimation. The suitability of the visual

feature is defined based on the sensitivity of the 3D pose estimation with respect

to the error in the segmentation process. Within this scope, the direct and inverse

kinematics of a conventional single bending section flexible instrument are discussed

assuming a constant curvature model. Furthermore, the geometric Jacobian (relat-

ing the variation of the robot degrees of freedom to the variation of a point of the

robot) and the image Jacobian (relating the velocity of a 3D point with the velocity

of its projection in the image) are computed considering, also, the effects of camera

lens distortion.

The problem of extracting the visual features suggested by the theoretical study

(i.e. the apparent corners of colored markers attached to the bendable section of the

instrument) is detailed in Chapter 4. The possibility of using color information

for feature segmentation is analyzed trying to manage those cases where color in-

formation is only partially available (e.g. overexposure regions due to strong frontal

illumination). The main proposed idea is to detect the corners points as those points

along the superior and inferior apparent borders where color transition (between two

markers) occurs. A continuous representation of the instrument borders is proposed

to achieve a subpixel accuracy in extracting these points. The results of in-vivo

experiments are finally shown and commented.
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In part II two novel methods are described to infer 3D information from 2D

images for flexible instruments with the monocular endoscopic camera.

In Chapter 5 we analyze the potentialities of estimating the 3D pose relying

on the use of a parametrized kinematic model of the system. This problem can be

formulated as an optimization problem intended to minimize the differences between

the synthetic (built starting from camera and kinematic model) and the actual

image.

The interest of considering additional degrees of freedom in the kinematic model

is also addressed with the intention of modeling the mechanical play between the

instrument and its housing working channel. These plays are essential for the instru-

ment to slide inside the channel (and therefore somehow unavoidable) and influence

the relative position and orientation of the instrument exiting the channel and,

consequently, the appearance of the instrument.

In a robotic setup, the possibility of exploiting motor encoder data to reinforce

the pose estimation is finally explored together with the effectiveness of such pro-

posal in in-vivo environment.

To avoid all the possible errors deriving from an uncertain and potentially in-

complete model, a model-free strategy has been evaluated in Chapter 6. The main

intent is to learn “from experience” the function relating the 3D position of the

instrument tip to the image features.

Two common learning methods for regression have been taken into consideration

to study the suitability of such solution in pose estimation of flexible instruments

and discuss the main issues usually deriving from high input dimensionality and

poor or noisy (and therefore untrustworthy) training set.

Several simulation experiments led to the final learning method which is tested

on a robotic flexible system in a laboratory environment.

1.4 Labex CAMI Context

This thesis is part of Labex (LABoratoire d’EXcellence, an ANR project) CAMI

program “Investissement d’avenir” (french expression for “future investments”). This

laboratory is actually a consortium of laboratories that share the common conviction

that an integrated approach will strongly increase the quality of medical interven-

tion and the common aspiration of diffusing CAMI (Computer Assisted Medical

Intervention) technologies in routine clinical intervention.

CAMI LABEX Network intensively works in 5 areas of interests:

• Augmented Perception. Offering the operator the possibility to see beyond

the immediately visible by innovative fusion of multi-modal data obtained by

novel or classical sensors.
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• Augmented Decision. Offering assistance to real-time decision-making through

high-level planning and monitoring of the intervention.

• Augmented Action. Offering the operator a new dimension in intervention

performance with miniaturized robots and solutions for augmented dexterity.

• Augmented Learning. Reducing the learning curve by offering User-centered

learning strategies exploiting the educational potentialities of CAMI technolo-

gies.

• Innovative Methods for medical benefit demonstration. Developing and vali-

date an adapted methodology for the demonstration of the Medical Benefit of

CAMI techniques.

This thesis can be ascribed to the first listed area since the proposed solution can

be considered as a “peculiar” sensor that could eventually allows gesture guidance or

autonomous positioning decreasing mental and physical burden of physicians with

consequent benefit also for the patients.
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2.1 Medical Context

Despite the great skepticism reserved to the first laparascopy [Litynski 1998], Mini-

mally Invasive Surgery (MIS) is becoming the new paradigm for surgical operations.

The strength behind this revolution has been the great benefits for the patient: small

scars, reduced blood loss during the surgery, shorten recovery time and decrease

post-operative pain convinced the patients to ask for MIS indirectly promoting the

development of these techniques as they are known today. Since then, the surgery

seems to focus the attention on the minimization of the invasiveness towards, ideally,

a no-scar surgery.

In the last decade, flexible systems have acquired a fundamental role in this field

due to their capacities of adapting to human body structures allowing the access of

even remote surgical sites in the interior of the body through natural orifices and

tracts.
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In this direction, NOTES is considered as maybe the most revolutionary concept

of surgery between the MIS techniques but it does not find yet a large acceptance

among the physicians. In fact, despite the enthusiasm after the first pioneering works

on animal [Kalloo 2004] and humans [Reddy 2004, Zorrón 2007, Marescaux 2007],

it is still object of a controversial discussion. The transluminal approach appears

to have tremendous potential, but several important issues, including the safety

of this approach and whether it will provide significant patient benefit in terms of

postoperative recovery compared with other procedures, must be resolved before the

new technique is widely introduced into clinical use. As Podolsky stated: “Patients’

desire for the cosmetic benefit is important, but the price cannot be increased risk

or complication.” [Podolsky 2010].

Dhumane et al. suspect that the benefits, at this point in its development, may

be limited and the appropriate technology should be waited. They believe that the

ultimate form of Minimally Invasive Surgery will be a hybrid form of Minimally

Invasive Single Site surgery and Natural Orifice Transluminal Endoscopic Surgery,

complimented by technological innovations from the fields of robotics and computer-

assisted surgery [Dhumane 2011]. The necessity of an improved instrumentation is

also underlined in the white paper on NOTES produced in 2006 by the working group

of surgeons and gastroenterologists (known as Natural Orifice Surgery Consortium

for Assessment and Research (NOSCAR)) promoted by the American Society for

Gastrointestinal Endoscopy (ASGE) and the Society of American Gastrointestinal

and Endoscopic Surgeons (SAGES). In these documents several guidelines are pro-

posed for research to make NOTES a viable clinical application for patient. These

areas included development of a reliable closure technique for the internal incision,

prevention of infection in addition to the creation of advanced endoscopic surgical

tools [Rattner 2006, Swanström 2008]. This same necessity gave stimulus to the

creation of advanced flexible systems to use for single port or NO-SCAR surgery

which, in turn, can be either NOTES or endoluminal surgery.

2.1.1 Flexible Systems for NO - SCAR Surgery

The first systems were just a composition of already existing endoscopic and surgical

instruments: this composite repurposed equipment were rudimentary for these ap-

plications and usually implied the participation of several surgeons in the operation

and totally uncomfortable positions (Fig. 2.1).

Thus, since the first successful cases of NOTES the interest of having more

specific and ergonomic instruments increased and led to redesign the endoscopic

access device itself [Swanström 2008]. Most prototypes were modified based on the

therapeutic endoscopes by augmenting the number and the diameter of the channels.

One of the first platforms to be used in NOTES on animal models was the

“R-scope” by Olympus later called NOTES scope. It consists in a dual channel

endoscope (DCE) with two bending segments. The primary segment is lockable
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Figure 2.1: First flexible system for surgical intervention were a composition of existing

tools which implied the participation of several surgeons during the operation

(photo: IRCAD France).

Figure 2.2: Tip of the R-Scope by Olympus. The two working channel has lifting gates

that are orthogonally position wrt to each other allowing simultaneous lifting

and dissection movements. The head also present two bending sections where

the primary one is lockable (photo: http://www.wjgnet.com).

allowing a better angle of approach and more precise tissue manipulation with the

maneuvering of the second segment. The peculiarity of this endoscope were the two

working channels which has lifting gates orthogonally position with respect one an-

other allowing simultaneous lifting (vertical) and dissection (horizontal) movements

(Fig. 2.2). This endoscope improves the characteristic of a conventional DCE pro-

viding a better positioning and a small degree of triangulation of the instruments

but, its characteristics were not optimal for NOTES such as the limited field of view

or the complexity of maneuvering the two independent sections.

From a surgical point of view, though, these two movements are not sufficient

since more dexterity is needed and triangulation must be assured to carry out a

complete surgical intervention. With the term triangulation is meant the fact that

the surgical tools should form a triangle pointing towards the organ so as to permit

traction on tissues to facilitate dissection along normal anatomical planes. If, on

the other hand, the instruments are inserted close to each other and almost parallel,
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the applicable forces in the horizontal direction are weak and the collisions between

the two instruments are almost unavoidable complicating the manipulation of the

organs.

Another important aspect in MIS is the position of the camera wrt the surgical

plane1 The ideal solution would be to maintain the camera outside the surgical

plane so as to allow visualization of the surgical plane and prevents the camera to

physically interfering with the surgical plane itself.

A more surgery-aimed example by Olympus is the EndoSAMURAI designed

to operate within the flexible-laparoscopic paradigm. This specialized endoscope

is manipulated by a remote working station and is provided with a locking over-

tube and two independent arms in the distal part of the scope. These arms have

5 degrees of freedom (DOF) and serve as conduit for different end-effectors. In

addition to that, there is a third channel that can be used for auxiliary equipment

or for suction/irrigation. The triangulation assured by these arms makes them

suitable for tying sutures in addition to providing traction (Fig. 2.3). The locking

overtube confers to this device more stability than the DCE but always presents

the same image-perspective limitations since the arms are married to the camera.

The methodology employed by the EndoSAMURAI is a “drive, park and move”

methodology. Once the target is achieved, the user locks the scope position with

the over-tube and proceed to the user-interface: the assistant should solely adjust

the image (as in conventional laparoscopic) without worrying of the configuration of

the endoscope. The idea beneath this was to avoid the necessity of great physicians

coordination which often result difficult.

An alternative to endoSAMURAI is the flexible-laparoscopic platform from Boston

Scientific called direct drive endoscopic system (DDES). The guide sheath houses 3

working channels and the user interface is an ergonomic rail-guided drive handles.

By these handles the physician can move all the 7 dof of the system. The instru-

ments can be inserted in the lumens and the depth of insertion is independent of

the image. The scope is inserted in one of the channels and it can be freely rotated

independently of the instruments and DDES, adjusting the horizon. Contrarily to

the endoSAMURAI, it does not present a dedicated channel for irrigation/suction

(which may not be adequate for intra-abdominal surgery) and the maintenance of

the visualisation may require endoscope and DDES adjustments during manipula-

tion of tissues (see Fig. 2.4).

A similar philosophy is the one of the IOP (Incision Operating platform) system

by USGI Medical (Fig. 2.5). It is a flexible device with 4 lumens which are used

as guides for the scope (N-scope by Olympus), specialized instruments or for high-

flow carbon dioxide insufflation. If on one hand the triangulation is improved with

respect to the DCE, on the other hand the in-line channel orientation still favors

1Plane formed by the access point of the instruments (trocars position in case of Laparoscopy

or working channels end in case of flexible systems) and - ideally - the point of the organ that has

to be operated.
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(a) Tip of EndoSAMURAI (b) Master Console

Figure 2.3: EndoSAMURAI by Olympus endoscopic head with instruments and master

consoles (right). A locking overtube make it more stable than DCE but always

present the same image-perspective limitations since the camera is married with

the instrument (photo: http://www.wjgnet.com).

(a) (b)

Figure 2.4: Boston Scientific’s Direct Drive Endoscopic System. The sheath houses three

channel where two instrument and a scope can be inserted. The two handles

let the user control all the 7 DOFs of the system. No irrigation/suction channel

is present but instrument movements are independent from the camera. The

scope is not integrated in the system and, then, it can rotate and translate

independently from DDES (photo: http://www.wjgnet.com).
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Figure 2.5: Incision Operating Platform by USGI Medical. It presents 4 lumens that can

be used to house a scope in addition to specialized instruments or for carbon

dioxide insufflation. The in-line channel orientation favors parallelism (photo:

http://www.wjgnet.com).

parallelism. Work load for the IOP is high and requires skilled assistants as the

primary operator shares responsibilities for instrument exchange, device orientation

and scope positioning.

In parallel to the NOSCAR, the New European Surgical Academy (NESA) es-

tablished in Berlin in 2004 the first European working group over NOS (Natural Ori-

fice Surgery) which includes NOTES but also all the surgical procedures performed

through all the body natural openings. After the first meeting they decided to focus

their attention to vaginal/douglas route, which they considered more promising for

its safety and cost-effectiveness. They claimed that this approach presented several

advantages with respect to transgastrical way. Among them: a simple entry and

straight view for upper abdominal procedures, the flexibility of the vaginal walls

which allow inserting wide instruments without causing mechanical damage, an ad-

equate working space (the diameter of the pouch of Douglas is suited to operative

intervention) and an increased surgeon comfort which can perform the procedure

seated [Ramesh 2013]. The NESA drew attention on the lack of adequate instru-

mentation in this context and develop a new device called TED (Transdouglas En-

doscopic Device) conceived to adapt to the pelvic anatomy (Fig.2.6). Even though

it is not a flexible instrument, it is interesting to mention it here since its application

is no-scar surgery and it represents an alternative to purely flexible endoscopic and

instruments.

TED is a multichannel articulated rigid endoscope which can assume two differ-

ent operational configurations: S and U shaped. The S-shape was designed to reach

the upper abdomen (for cholecystectomy, splenectomy, ...) bending first anteriorly

and then posteriorly and the U-shape variant for lower abdomen operations (ap-

pendicectomy, hysterectomy, ...). The controllable instruments (pincer and scissors)

are hidden in the head of the device and, once the TED is positioned inside the

body, the arms with the instruments are deployed. They can be pivoted and partly
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Manual Flexible Platforms

# of

working

channels

DOFs Pros Cons

R-Scope

2 1 x 2 end

effectors

(EE)

• 2 orthogonal Lifting gates

in the working channels

→ vertical and horizontal

movements allowed

• Instruments arms mar-

ried to the camera

• 2 bending segments - 1

lockable

EndoSAMURAI

3 5 x 2 EE • Remote working station • No control on insertion

depth

• Locking/Stiffening over-

tube

• Suction/Irrigation chan-

nel

DDES

3 7x2 EE • Ergonomic Interface • Not self supporting

• Instrument Depth of in-

sertion independent from

the image

IOP

4 depending

from used

instruments

• Effector can enter the op-

erative field

• in-line channels orienta-

tion

• Built in shaft - stiffening

system

• no irrigation/suction

dedicated channel

TED

4 2 for the

body

• articulated rigid links →
high forces are applicable

• specific for one applica-

tion (not flexible)

3x2 instr. • Good triangulation and

positioning (for the specific

operation)

Anubis

3 3 x 2 instru-

ments

• Last part of instrument

channels deviated → trian-

gulation assured

• Not self supporting

2 for endo-

scopic head

• suction/irrigation chan-

nel

Table 2.1: The main commercial manual flexible platforms for medicine.
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(a) (b)

Figure 2.6: Transdouglas Endoscopic Device in the S-shape operational configuration. It is

3 rigid links device with 4 working channels. Once positioned, the arms with

the instruments are deployed as shown in (b). Moreover, the head of TED

houses also a camera, a light and a dedicated channel for flushing and sucking

(image: http://www.nesacademy.org).

rotated and also moved forwards and backwards. This enables tissue manipulation

with traction and counter-traction in all planes. Besides the instruments, the TED

head houses a camera, a light and a channel dedicated to flushing and sucking. A

further channel is available as working channel. In 2009 preclinical studies should

have started [Stark 2008] but no further publication are available yet.

In 2009 from the synergy of Karl Storz and IRCAD - France 2 born the Anubis

Scope (Fig. 2.7): a flexible endoscope specifically conceived for NOTES. It is larger

than the conventional endoscope and it houses different channels: in addition to the

dedicated channel for irrigation and suction, it has two main channels on each side

of the camera and a third channel beneath it. The two main channels are used to

insert two flexible instruments (usually a grasper and an electric tool) which can

smoothly slide and rotate. These instruments are endowed with an additional degree

of freedom: the distal part can be bent on a plane (+/− 120o) by a lever integrated

on the handle of the instruments (cf. Fig. 2.7 (a)). Finally, the triangulation is

assured by the fact that the final section of the main channels is slightly deviated

(10o) with respect to the camera axis. More precisely, the tip of the endoscope is

composed by two jaws (Fig. 2.7) that, once closed, confer to it an arrow-like shape,

which eases the insertion of the device through natural orifices and wall incisions.

However, as already pointed out in the introduction, these manual systems of-

ten lack of maneuverability and ergonomics, not to mention the difficulties relating

to staff coordination when carrying out an operation. Robotics offered and is still

offering several solutions to these needs easing the task of the surgeon and, conse-

quently, decreasing physicians’ physical and mental burden and increasing their and

their patients’ safety. Some of these examples are described in the next sections fo-

cusing on flexible robotic system after presenting a brief evolution review of medical

robotics.

2Institut de Recherche contre les Cancers de l’Appareil Digestif [Institute of Digestive Cancer

Research]
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(a) (b)

Figure 2.7: Anubis Scope by Karl Storz. Wider than the conventional endoscope, its body

houses two main channels (one at each side of the camera) where surgical in-

strument can be inserted and an additional channel beneath the camera. The

triangulation is assured by the slight deviation of the main channels wrt the

camera axis. Thanks to the knobs on the main shaft handle shown in (a), the

head of the endoscope can be oriented. In (a) also the instrument handles are

shown with the integrated lever that allows to bend the tip of the instruments.

2.1.2 Medical Robotics for MIS

Differently from laparoscopy, which can be defined an already mature field, surgical

operation using flexible instruments and devices is still an open field which is at the

center of many researches. That is the reason why the most numerous examples of

commercial medical robots are in the field of laparoscopy or medical operation with

rigid instruments.

Nowadays, the most known medical robot for laparoscopic surgery is probably

the DaVinci platform, but it represents the last step of a long pathway, which

is worth mentioning here and which is still in vivid evolution presenting new less

invasive solutions for surgery.

2.1.2.1 Medical Robotics Evolution

It was 1985 when the first robot was introduced in an operative room to perform

biopsies [Kwoh 1988]. But in that case it was an industrial robot (PUMA 560)

employed for medical purposes.

The first robot designed for medical application was ROBODOC which was actu-

ally capable of autonomous movements, assisting in Total Hip Arthroplasty (THA).

In the same period (1994), Computer Motion got the FDA clearance for AESOP

(Automated Endoscopic System for Optimal Positioning): a robotic arm holding

an endoscopic camera which could be voice controlled by the surgeon. This robot

represented the first try to solve the problem of team interaction and coordination

even though voice control may be not always easy and practical within a surgery
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(a) (b) (c)

Figure 2.8: Example of robots for performing laparoscopic surgery. The open-architecture

robot Raven II in (a) (photo:www.washington.edu) and the two European

robots: ALF-X (photo:alf-x.com) by NESA and SOFAR S.p.A in (b) and MIRO

by DLR - Germany in (c) (photo:tilo-wuesthoff.de).

and operating room (OR) context.

An important breakthrough arrived with the first teleoperated surgical platforms

for laparoscopy: Zeus by Computer Motion (finally incorporated in Intuitive Surgi-

cal) and DaVinci by Intuitive Surgical. The first was composed of a surgeon control

console and of a patient cart where three robotic arms were mounted. The right

and left 7-dof robotic arms replicate the movements of the right and left hands of

the user while the third arm is an AESOP voice-controlled endoscope holder used

for visualization. The surgeon is seated upright in front of a video screen and the

instrument handles are adjusted to maximize comfort and dexterity. The idea un-

derneath DaVinci is similar to Zeus: the system is composed by three robotic arms

(one for the dual camera and two for the instruments) which can be controlled re-

motely at a console. One of the peculiarities is that the image is a 3D image which

is displayed above the hands of the surgeon so that it gives the surgeon the illusion

that the tips of the instruments are an extension of the control grips, thus giving

the impression of being at the surgical site.

The Master-Slave paradigm seems to be one of the most diffuse paradigm for

medical robotics for surgery: the robot is just a more precise and comfortable tool

that is always controlled by the surgeon.

Since then, new robots for general laparoscopy were presented and conceived.

Two further examples worth mentioning can be the Raven II and the European

MIRO and ALF-X. The Raven is an open-architecture surgical robot for laparoscopic

surgery research from Applied Dexterity. It has two cable-driven 7 DOF arms (6

DOF + grasp) and it is intended to facilitate collaborative research on advances in

surgical robot [Kehoe 2014]. An upgrade of the Raven II is the Raven IV which

is composed of 4 arms and two cameras allowing the collaboration of two surgeons

interacting with the surgical site in teleoperation.

Together with the more known MIRO (DLR, Germany), the TELEALAP ALF-X

is one of the newest european proposal for robotic laparoscopy [Gidaro 2012]. ALF-

X was born from the collaboration of NESA with the Joint Research Center of the
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(a) (b) (c)

Figure 2.9: Example of robots for single port surgery. The Sp system by DaVinci in

(a) (photo: medgadget) and SPORT by Titan Medical in (b) (photo: twit-

ter.com/simnovate) which derives from IREP project by Columbia University

(c) (photo: linazeldovich.com).

European Commission and SOFAR S.p.A. (Milan, Italy). The great peculiarities of

this system are the tactile sensing and the eye-tracking system which not only allow

to control the camera view just by looking in the wanted direction but also to activate

the instruments by merely looking at them. Further advantages are the universality,

wide range of application for every-day usage and cost-effectiveness. Preliminary

good clinical results have already been achieved [Fanfani 2015, Gidaro 2014].

In the single port approach, two products are about to be launched on the

market: Da Vinci’s Sp system and Titan Medical Inc’s SPORT. The former appears

as a rigid tube where three instruments and a stereo camera are allocated. Once in

the body the instruments exit the tube and thanks to their distal bendable sections

can assure triangulation during the operation. The stereo camera can be controlled

as well, providing a 3D image from an overhead point of view. It is meant to work

with the Da Vinci Console and should be launched in late 2015.

The latter derives from IREP (Insertable Robotic Effector Platform) project by

Columbia University who signed an exclusive agreement with Titan Medical. It is

a rigid tubular structure that, once inserted in the body through a single incision

can be deployed. In the unfold configuration three parts can be distinguished: two

dexterous flexible arms and an upper view stereo camera. Each flexible instrument

is composed of a two-segment continuum robot, a parallelogram mechanism for

improved rigidity and a distal wrist for improved dexterity during suturing.

Other examples for single port surgery are ARAKNES SPRINT which is a dual-

arm robot with six degrees of freedom per arm plus one tool or gripper [Piccigallo 2010]

and, very similar to this, the Virtual Incision’s new robot for general abdominal

surgery.

A totally different paradigm in this field, is bringing the entire robot where the

operation is needed. In this direction, the project ARES had the objective to develop

modular miniature robots being able to re-assemble once got to the desired position

(the main application was the gastrointestinal surgery). The idea is that the patient
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(a) (b)

Figure 2.10: In (a) another example of robot for single port surgery (ARAKNES SPRINT,

photo: sssa.bioroboticsinstitute.it). In (b), the concept of ARES project is

shown: a miniature-modular robot able to reassemble once got to the desired

site inside the human body (photo: Scuola Superiore Sant’Anna).

could swallow different pills (i.e. the different components of the robot) which will

self-assemble thanks to magnetic anchoring. Each component has its particular role

(image control, communication, diagnostics and others) inserted in a collaborative

framework to carry out a specific task. As one can imagine seen the complexity of

the concept, this clever idea has several implementation issues and it is still under

investigation.

2.1.2.2 Flexible Robots in Medicine

Differently from robotic laparoscopy with rigid instruments, the market does not

offer many examples of flexible robotics for surgery because of the great challenges

that robotizing miniaturized flexible instruments entails. On the other hand, the

research in this field is fervid indicating the great interests of both roboticians and

physicians on this subject. Many different architectures have been proposed in the

last years for medical applications and more specifically for NOTES or endoluminal

surgery [Traeger 2014, Seneci 2014, Simaan 2004]. In the next paragraphs we will

describe some representative examples to show the philosophy beneath 3 different

categories of conception.

The first category could be defined as those robots being born by the assemblage

and automatization of conventional endoscopes with the necessary instruments.

A well known system in this category is the MASTER system entirely developed

in NTU (Nanyang Technological University) by the group leaded by prof. Phee

(Fig. 2.11). For sake of intuitiveness in using the robot, they decided that the in-

struments should mimic the arm movements. Therefore, they conceived the attached

instruments with 5 dof (plus one additional for manipulating the end effector) and

tendon-sheath actuation is used to assure flexibility. The anthropomorphic data of
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Robotic Flexible Instruments: Commercial Examples

SeseiX/Magellan

Application DOFs Characteristics

Electrophysiology

/ Intravascular

1 • Master installed far from patient → less ra-

diations exposure

• 2 guides: 1 stiffer to get to the site of in-

terest, 1 with larger bending range for the

operation

• Force sensor → tip of catheter always in

contact with tissue

Amigo System

Electrophysiology

/ Intravascular

1 • Master installed far from patient → less ra-

diations exposure

• Commercial Catheter can be docked in the

system (no need of proprietary catheter)

NES

Colonoscopy 16 • Sensor in the tip.

• Physician controls the tip trajectory, the

system measures tip position and instructs

the 16 articulations to follow the leader.

FLEX

General Endo-

scopic Surgery

30 • Self Supporting ← location and point of

view can be chosen properly.

• 2 side-channels for MANUAL instruments.

Table 2.2: Principal commercial flexible robotic platform for medicine.
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Robotic Flexible Instruments: Research Experimental Platform

MASTER

Application DOFs Characteristics

General Endoscopic

Surgery

5

(+1)

x 2

instr.

• Master console controlled by sur-

geon arms.

• An endoscopist must hold the

camera.

STRAS

General Endoscopic

Surgery

10 • Robotization of Anubis.

3x2

instr.

• Not self supporting.

• All DOFs can be telemanipulated.

• Instrument insertion independent

from camera.

Heart Lander

Heart Operations • No lumen constraint needed.

• Adheres to organ walls (inchworm-

like locomotion).

• No scope → external imagery sys-

tem needed for guidance.

Bio-Inspired

Abdominal Single Port

Surgery

- • Still of big dimensions (wrt

STRAS for example).

• Possibility to modify stiffness →
alternatively compliant and high

forces application.

Table 2.3: Principal flexible robotic platforms for medical application (Research).
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Figure 2.11: Scheme and photo of the tip of MASTER system. A gripper and a hook

are located beneath the endoscopic camera and telemanipulated (photo from

[Phee 2009]).

(a) (b)

Figure 2.12: STRAS system global view (a) and tip (b). It is the robotic version of the

Anubis scope where all its DOFs can be tele-manipulated.

the surgeon’s arms are measured by the master console and transmitted to the robot

as inputs.

Another example in this category is the STRAS (Single access and Transluminal

Robotic Assistant for Surgeons) robot (Fig. 2.12). Also conceived for a tele ma-

nipulation framework, the slave robot resulted from the robotisation of the Anubis

platform by Karl Storz (which has been presented previously). The master interface

is composed by two handles whose degrees of freedom are similar to those of the

flexible instruments so as to assure an easy mapping between the two. The shape of

this handle is conceived to be familiar to the surgeon and it is an adapted version

of the flexible instruments of the Anubis platform. An additional joystick is added

on the tip of the handle for controlling the endoscope movement during operation

without the need of switching pedals or any assistant [De Donno 2013] (cf. Part I

for more details).

University of Twente has also developed his solution consisting in 3 add-on steer-

ing modules: a tip steering module, a shaft manipulator and an instrument module.

Together they allow to control the degrees of freedom (required to position and
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Figure 2.13: TeleFLEX system by the University of Twente. The (green) steering mod-

ules are attached to the conventional flexible system (e.g. Anubis) (photo:

demcon.nl).

(a) FLEX system (b) FLEX system (c) HARP system

Figure 2.14: The FLEX system in (a) and (b) is composed by an endoscope and

two working channels where specific instruments can be inserted (photos:

medrobotics.com). The scope is self supporting and take inspiration from

the HARP system in (c) (photo:carnegie mellon.)

stabilize the endoscopic tip and the instruments) with a master console (Fig.2.13).

The unique example of commercial flexible robot for surgery is Flex by Medrobotics

(Raynham, Massachusetts), which received the CE mark in 2014 and started to be

sold in Europe and only in 2015 the FDA clearance. This robotic endoscope (Fig.

2.14(a)) can be manipulated with a joystick and, thanks to its more than 30 dof,

enhances the physician ability to reach hard to access areas of the inner body.

Moreover, it is self supporting and can generate a unique shape in 3D following the

user input. The necessity of working inside a natural lumen constraint is avoided

and a better point of view or location can be chosen properly. The two side chan-

nels can house two flexible instruments (usually to grasp or cut) manipulated by

the physician. Conversely, FLEX can also become limp to adapt to the surrounding

anatomical structures. Originally conceived for heart surgery, a recent study showed

its utility also in transoral surgery [Johnson 2013].

The original idea behind FLEX is HARP, which was developed in Carnegie

Mellon by Choset and Degani [Degani 2006]. HARP (highly articulated robotic

probe) was conceived to fuse in the same device the advantages of both rigid and
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(a) Global view (b) Follow-the-leader endo-

scope

Figure 2.15: NES system used in colonoscopy (a) (photo: intechopen). A follow-the-leader

strategy make the endoscope follow the path described by the tip (b) which is

controlled by the physician (photo: nature.com).

flexible instruments (Fig. 2.14(c)). The probe was actuated by four cables and

the distal link was relayed to a camera by a fiber optic endoscope attached to the

outer mechanism. The HARP consisted in two concentric tubes that can alternate

between rigid and limp states. The self sustainability is assured by alternating the

motion and state of the inner and outer mechanisms. The same robot is at the base

of the CardioARM developed by the startup Cardiorobotics located in Pittsburgh.

It has 102 dof and can follow whatever 3D curve in the space (A Novel Highly

Articulated Robotic Surgical System for Cardiac Ablation).

Enlarging the boundaries of this group including colonoscopy, NeoGuide pre-

sented the Navigator Endoscopy System (NES) which allows to avoid the looping

problem which occurs when the forces of the scope stretches the colon (Fig. 2.15).

Looping is associated with pain and need for sedation and consequent procedural

difficulty and procedural time. The physician inserts the scope and controls the tip

of the scope, the sensor attached to the tip measure its position and create a 3D map

of the colon (actually the map of the path it made) and, based on this information,

the system instructs the 16 articulating segments composing the scope to follow the

path.

A second category is the one of robots for cardiovascular intervention. No endo-

scope is employed here since smaller structures are needed in order to walk along

veins or through membranes. The guidance of these tools is usually performed using

an external imagery system (X-ray or others).

The most popular in this category may be Sensei X for electrophysiology opera-

tions and the Magellan (both by Hansen Medical, Inc) for intravascular operations.

A bedside robotic arm is holding the catheter which is teleoperated by the physi-
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(a) (b)

Figure 2.16: Sensei X system and associated catheter. The force sensor integrated in the

tip allows to maintain the tip in contact with the tissue increasing the efficacy

of the therapy (photo: Hansen Medical).

cians acting on the master console. Sensei X catheter (Fig. 2.16) is composed by

two guides with different stiffness and magnitude of deflection. In beating heart

operations, the outer stiffer guide is used till reaching the atrium of heart when the

inner guide is drawn to allow more articulated movements. Thanks to the accurate

force sensor embedded on the tip, Sensei X is capable of keeping the tip in con-

tact with the tissue or applying a desired pressure autonomously. The stability of

the catheter and even the pressure it exercises on heart tissues are of great utility,

above all in complex ablation procedures such as atrial fibrillation [Di Biase 2009].

The master console can be installed far from the slave cart preventing the physi-

cians of being repeatedly exposed to noxious radiations. The basic structure is the

same for Magellan for which just the catheter changes which are more adequate for

intravascular procedures.

Another interesting proposal comes from Catheter Robotics, Inc. with its Amigo

System (Fig. 2.17). It was designed to be easy to use and cost effective. Contrarily to

Sensei X, it does not require proprietary catheter: the slave component is actually

a simple mechanical interface to selected commercially available catheters whose

handle can be placed in the robot docking station. A particular handle replicating

the one of the conventional catheter allows the remote control of the catheter as if

it were manipulated manually. Thanks to the remote control (up to 30.5 meters )

the radiation exposure of the physician is reduced. Unfortunately, no force sensor

is embedded in the tip.

In addition to the mentioned commercial examples of teleoperated catheters,

one robot for heart surgery worth mentioning is the Heart Lander born by the

collaboration of Carnegie Mellon and Pittsburgh Medical Center. Much bigger than

a catheter, it can be inserted through a small incision below the xiphoid process of

the sternum, avoiding any intervention to the lung. It adheres to the epicardium
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(a) (b)

Figure 2.17: The Amigo System is a support where commercial catheter can be positioned.

The particular handle in (b) is employed to control the movements of the

catheter (photo: catheter robotics).

using suction, and navigates via inchworm-like locomotion, using flexible pushwires

connected to motors located outside the patient.

The last category, which brings the flexible/compliant robot to its extreme dec-

lination, can be composed by bio-inspired robots whose shape and stiffness can be

controlled. In the original idea of [Stilli 2014, Maghooa 2015], the body of the robot

is a conic-shape air chamber where the TCP (Tool Center Point) is represented by

the cone vertex. Three pairs of nylon tendons are attached on the surface of the

cone and with proper actuation on them the robot can assume different shapes (see

Fig. 2.18).

Another renown example is STIFF FLOP, a soft robotic arm that can squeeze

through a standard 12mm diameter Trocar-port, reconfigure itself and stiffen by

hydrostatic actuation to perform compliant force control tasks (Fig. 2.19). The

project objective is to design a soft manipulator with a gripper at the tip, dis-

tributed sensing, biologically inspired actuation and control architectures, learning

and developing cognition through interaction with a human instructor, and manip-

ulating soft objects in complex and uncertain environments.

The idea within the surgical framework is to insert the uninflated robot inside

the body and modify its stiffness regulating the internal air pressure or the shape

actuating on cables. In fact, the flexible instrument present an intrinsic “contra-

diction”: they need to be soft enough to be compliant with anatomical structure

but hard enough for effective force transmission and weight resistance [Loeve 2010].

In the studied context, then, the possibility of changing this quality can be very
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Figure 2.18: Examples of possible configuration of the bio-inspired manipulator: actuation

of the middle and tip sections (a), the base and middle sections (b), the tip

section (c), all sections (d), and elongation/shrinkage capability (e)-(h) (photo

from [?]).

Figure 2.19: STIFF FLOP prototype. The robot can extend and compress and cable actua-

tion allows to determine the shape of the two flexible sections (photo: National

Museums Scotland - https://vimeo.com/97913172).
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valuable .

All the cited robots differ from the conventional rigid link robots in several

aspects concerning actuation, dynamic and shape variability. They are usually clas-

sified in a specific family called continuum robots. If the final aim is trying to assist

the surgeon improving his/her skills by the means of the robot, the characteris-

tics and behavior of continuum robots must be known, so that automatic control

actions can be applied to these systems. In the next sections, continuum robots

are presented (Sec. 2.2) and state-of-the-art solutions for the control are described,

focusing on the surgical environment (Sec. 2.3).

2.2 Continuum Robots

From the classification of Robinson and Davies [Robinson 1999], a continuum robot

does not contain rigid links or rotational joints and their structures can bend con-

tinuously along their length via elastic deformation. Continuum robots must not

be confused with Serpentine Robots which combine very short rigid links with a

large density of joints. These robots are not very common and the only commer-

cial example are the snake-like arms by OC Robotics [oc 2015]. In this manuscript,

though, serpentine robots will be considered as continuum robots in the case they

are under-actuated or, more specifically, when the joints and links are passive and

function only as a support structure (the backbone) which is deformed by external

actuation.

Within continuum robots, a broad classification is proposed according to where

the actuators are placed on the robot. They are named intrinsic if the actuators are

on the structure of the robot and form part of the body of the mechanism, extrinsic

if all the actuators are separated from the body and the movements is transmitted

via a mechanical linkage and hybrid if a combination of the two strategies is used.

As it can be deduced also from the previous examples, extrinsic actuation seems

to be more suitable for surgery since it allows obtaining smaller and more lightweight

structures which are fundamental characteristics in this field.

In this class, two families can be distinguished according to how the robot shape is

obtained. The first is formed by the concentric pre-bent tubes where the shape is

obtained as result of the interaction of the different component of the robot. The

other one includes those robots usually composed by a passive backbone whose shape

is obtained by an external actuation e.g. using forces (which can be transferred using

either cables or muscular hydrostats) or Shape Memory Alloy (SMA) actuators.

2.2.1 External Actuation

Tendons are maybe the most direct way of external actuation. Group of tendons

are usually routed along the backbone and terminate at different levels along it:
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all the tendons of a same group terminate at the same level dividing the structure

into so-called bending sections. The forces applied at the base of the tendons are

translated in torques at the termination points, hence, producing bending. The

final shape of the backbone is then resulting by the different shape of the different

sections. Tendon driven systems are usually conceived as extrinsic continuum robots

and the actuators driving the cables are usually located at the base of the robot.

One possibility of realization is using spring backbone [Mehling 2006, Zhao 2010]

but the intrinsic natural compliance increases the difficulty in controlling them:

control efforts intended for bending are lost in compression. A solution is using

incompressible backbones using rigid vertebrae [Bardou 2010, Shang 2012], but this

means loosing extension capability. In this design, the use of tendons allow high

forces transmission but it implies finding some method to prevent backslash and

slack.

Alternatively to cable driven instruments, SMA (Shape Memory Allow) can be

used as external actuation for a continuum robot. In [Szewczyk 2001], two SMA

springs, mounted in an antagonist configuration, are used to change the relative ori-

entation of two consecutive backbone segments. The idea under SMA is that SMA

actuators undergo a micro-structural transformation from their austenite phase to

their martensite phase. Heating and cooling the material or applying an exter-

nal stress, this transformation is activated and the actuator changes its shape and

stiffness. However, they may not provide a large enough deflection range and their

performances seem to be not sufficient yet when carrying weights or when submitted

to strong traction.

A third actuation modality is using muscular hydrostats. In the Bionic Handling

Assistant by FESTO [festo 2015], for example, the 3D printed structure is used as

air chamber that can longitudinally extend or compress. In the OctArm by the

Penn State research team [McMahan 2006], instead, “air muscle” actuators are used

which consist of particular covering latex tube with a plastic mesh sheath conferring

to the muscle a large strength. By combining three or more of these actuators and

combining the pressure in each of the chambers extension/compression or bending

of each section of the robot is achieved. A similar concept was used by Rosa et

al. [Rosa 2011] to perform confocal endomicroscopy. Three balloons catheter, po-

sitioned with 120 deg between them, were used to orient the endomicroscopic laser

probe in the space.

2.2.2 Concentric Tube Design

An alternative design is to use a backbone composed by concentric tubes that are

free to rotate and translate one with respect to the other. The structure can ex-

tend/contract by longitudinal translation and rotate by rotational sliding of the

tubes. Backbone shape modification is usually achieved by using pre-curved com-

pliant tubes in combination with directly controllable relative translation and rota-
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tion. This kind of actuation allows having thin design but, contrarily to the tendon

driven system, the bending cannot be actively controlled. They encountered a high

diffusion in medical field for their smaller profile and great compliance, even though

they provide less forces with respect to tendon-driven mechanism. In this context

they are also known as active cannulas and have been used to carry out various

MIS operations permitting task oriented designs [Torres 2012] or MRI image-guided

operation [Su 2012].

2.3 Control of Continuum Robots

The design of automatic controllers is a fundamental issue for any robotic system

and become more complicated for underactuated systems such as the described con-

tinuum robots. Additional difficulties derive from the usual absence of adequate

sensors along the structure, the fact that actuators do not coincide with space vari-

ables and, above all, the complexity of their dynamic models.

Slack and backlash are two main phenomena which complicate the achievement

of a precise model of tendon driven systems. If the cables are not properly preten-

sioned, there is a delay between the start of the motor movement and the actual

deformation of the body of the robot. The initial movement of the motor is used to

tension the slack cable in order to transfer the motion to the robot section through

the cable. Same phenomena can be observed when a change in the direction of the

motor occurs. For example, if antagonistic cable are employed for achieving bending

in a plane, when the direction of rotation is changed the cable that was passive is

slack and the initial movement of the motor is dedicated to recover from this loss of

tension.

Friction between cables and backbones vertebrae and between cables and the sheath

is the other main factor of complexity. In presence of friction, the relationship be-

tween traction forces and the shape of the robot body becomes more and slack

becomes more severe [Agrawal 2010a].

Active cannulas do not have totally predictable behavior neither and, also suffer

of friction between the tube surfaces. This can lead to torsion and traction of the

tubes making a precise modeling of the motor to end effector relationship difficult.

To overcome these problems, several control strategies have been adapted for

continuum robots throughout the years. The employed strategies can be classified

mainly in three categories: model-based open loop approaches (1), closed-loop con-

trol strategies where the position/shape measurement is performed using attached

external sensors (2) or using vision-based methods (3). Camera is still an external

sensor but, given the specificity of the information processing they require, it has

been chosen to separate them from category (2).
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2.3.1 Kinematic and Dynamic Model-Based Methods

Despite the difficulties in obtaining a precise model, many studies have been made

to transfer kinematic and dynamic control from rigid link to continuum robots,

investing strong efforts to obtain general kinematic [Chirikjian 1994, Jones 2006,

Gravagne 2000] and dynamic [Chirikjian 1993, Mochiyama 2003] models.

In [Ivanescu 1995], Ivanescu et al. proposed a variable structure controller for a

tentacle manipulator, whose structure was made of flexible materials in conjunction

with active controllable electro-rheological fluids. A non-linear observer, based on

a simplified discrete spatial model, was adopted to know the “shape” state variable

on the whole length of the arm. To avoid the complexity of dynamic model, the

same authors introduced in [Ivanescu 2004] an energy based control law relying only

on those relations of the dynamic model that determines the energy stored in the

system. In both cases, only simulation results were presented.

Inverse kinematic and dynamic models are also at the base of the work in

[Kapadia 2011], where the first task space controller for continuum robot is pre-

sented. The trajectory is defined in terms of contact point (position, velocity and

acceleration) between the Octarm robot [Tatlicioglu 2007] and the manipulated ob-

ject, allowing, then, grasping and manipulation instead of only shape configuration

tracking.

Other works in cable-driven continuum robots try to directly compensate the

sources of error in the model of mechanical transmission of the movements. Usually,

actuator and tip positions are measured and the hysteresis loop, due mainly to

backlash and frictions, is determined and, then, used in a feedforward control scheme

[Kesner 2010, Agrawal 2010b]. Furthermore, decoupled inverse kinematics has been

described to allow for independent control of multiple sections [Camarillo 2009].

In medical field, model based approaches (with or without backlash compensa-

tion) have been extensively studied and applied for different designs and actuation

modalities: active cannulas [Webster 2009, Dupont 2010] and tendon driven catheter

or instrument [Camarillo 2008b, Agrawal 2010b, Xu 2006].

The works cited here are just a small panorama of all the model based solutions

for the continuum robot control. However, it seems that this approach presents some

inherent limitations deriving from the complexity of describing all the phenomena

occurring in mechanical transmission. They still suffer from lack of accuracy due to

unavoidable kinematic approximation and consequent modeling mismatches (at the

time of implementation), actuation coupling between the different vertebrae not to

mention the friction, extension and torsion of the actuation lines. Moreover, in the

case where the continuum robot to control is inserted in a flexible shaft (such as for

STRAS) the backlash behavior of the flexible instruments changes with the shape

of the housing flexible shaft. Trying to model all these behaviors seems to result in

ad-hoc solutions which are not smoothly transferable to other systems.

This suggests the necessity of having an external measurement of the robot tip
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position or shape configuration to trustfully close the control loop. Some authors

who proposed specific model based controllers, showed, in later works, the interest

for combining model a priori knowledge with actual measurements [Agrawal 2012]

or trying being independent from dynamic model [Yip 2014].

2.3.2 External Sensors

External sensing of continuum robot shape has also been demonstrated for example

using electromagnetic (EM) field sensors. The electromagnetic sensor system is

usually composed by a magnetic field generator and several (up to 5-7) sensor coils

whose position and orientation can be retrieved when immersed in the generated

magnetic field.

In [Agrawal 2012], the authors propose an adaptive robust control which com-

bines EM sensors feedback with the actuator feedback. They obtain better results

than using pure open-loop approach, but they also denote the necessity of improving

the used dynamic model (of cable actuation) to make the results applicable to other

flexible instruments.

In [Bardou 2010] and [Bardou 2012], the EM sensors are applied in a tendon-

driven flexible system similar to STRAS: one coil attached at the endoscope head

and another at the flexible instrument tip. Thanks to the sensed positions and

taking into account the non-linearities, the entire shape of the flexible instrument is

computed improving the control of such instrument. EM sensors were also adopted

in [Penning 2011] to retrieve the tip location for completing a Cartesian control of

the catheter prototype. Nevertheless, the reliability of their position and orientation

measurements decreases if the sensor coil is outside the center of the generated

magnetic field. To overcome this problem Reichl et al. [Reichl 2013] proposed to

utilize a robotic arm to move the magnetic field generator so as to follow the sensor

coil attached to a catheter, showing the feasibility of electromagnetic tracking in an

extended workspace.

Despite this artifice, EM sensors still remain very sensitive to electromagnetic

disturbances and are affected by metallic tools, which limits their usefulness in

clinical applications. In addition, mounting an EM tracker in the distal part of a tool

which is inserted in the human body is a challenging task. Moreover, some actuated

flexible instruments achieve high curvature radius and the continual solicitation due

to repetitive deflections may lead to break the filament of the sensor.

The same problem can occur integrating fiber optics into the flexible instru-

ments for pose estimation purposes. It seems that small curvature radius cannot be

achieved and that the bulky structure necessary as support is not yet suitable for

surgical applications where the possibility of downscaling the instrument is funda-

mental [Roesthuis 2013].

An interesting alternative is shape sensing using vision by mono or multi camera

systems, which can be external or embedded. In the next section, some examples
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will be presented, taking into account the medical context and the objectives of the

thesis which are focused in founding trustful measurements for controlling flexible

instruments in flexible endoscopic surgery.

2.3.3 Pose estimation of continuum robots using vision

One of the first and most cited work where vision is employed to sense the shape

of continuum robots is the one by Hannan and Walker [Hannan 2003], where they

show their results using the multi-section Elephant’s Trunk Manipulator. In this

work, they use the robot as a planar robot moving on a plane perpendicular to

the optical axis of the camera. The vertebrae of each section are detected in the

image and the total shape of the robot is retrieved by fitting circumferences to the

segmented vertebrae: one circumference for each set of vertebrae pertaining to the

same robot section.

The same camera-robot configuration is employed in [Yip 2014], where a single

bending section planar robot is controlled even in case of contact with obstacles.

Here the camera is used to compute the displacement of a colored optical marker

attached to the tip. After initialization, the estimation of the jacobian of the ma-

nipulator is updated according to the measured displacements from actuators and

end-effector sensors.

To estimate the pose for any 3D configuration (not only planar movement) Ca-

marillo et al. [Camarillo 2008a] investigated the potentiality of a voxel carving tech-

nique to retrieve the 3D shape of a single section bendable catheter. In this work,

they use 3 cameras orthogonally placed and looking at the same scene surrounded

by a green background to ease the detection.

A different multi camera approach is used in [Weber 2012] where micro cameras

are mounted on the body of the flexible robot and their relative positions are com-

puted by performing a bundle adjustment over tracked features visible by multiple

cameras.

Unfortunately, these approaches would be difficult to directly transfer in surgical

application since they rely on hypothesis hardly verifiable in-vivo: usually the back-

ground and point of view are not as favorable as in [Hannan 2003] and [Yip 2014]

or multiple view techniques would mean more laparoscopes insertion in the case

of [Camarillo 2008a]. The interesting work in [Yip 2014] should be extended for

3D movements assuring the visibility of the marker whatever the robot configura-

tion is (even outside the plane). For [Weber 2012], the integration of cameras on

the flexible instruments would be difficult and relative motion between camera and

environment may complicate tracking and features correspondence.

Another possibility is to use stereo-vision to retrieve a more precise depth infor-

mation. Stereo vision is used by Croom et al. to detect the shape of a concentric

tube based on Self-Organizing-Maps [Croom 2010]. Also researchers developing the

IREP robot have opted for embedded stereo vision to catch a more trustful depth
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information. In [Reiter 2011, Reiter 2012], they proposed to learn the relationship

between the visual information and the 3D position of the instrument. Some colored

rings where attached around the flexible instruments to ease the detection and the

computation of the visual information, which results from the composition of 2D

descriptors on each of the stereo image.

Shape estimation of deformable instruments is a problem similar to that of es-

timating pose and shape of threads or tubes. In [Padoy 2012] a textured thread is

tracked by modeling the thread as a B-spline directly in 3D and optimizing the 2D

error between the actual detected thread and the reprojected B-spline. Here, stereo

vision was adopted to discriminate ambiguous configurations. In [Caglioti 2006],

the 3D pose of a tube is retrieved using solely one image and geometrical properties

related to the apparent borders of the tube. The image of the tube is thought like

the projection on the image plane of a series of circumferences. Flex and bitangent

points are taken as “fiducials” points for creating the correspondence between upper

and lower border points along all the apparent borders. The position of each cou-

ple of points and the tangents at these points are used to retrieve the position and

orientation of the associated 3D circumference.

In the domain of endoscopy, where, usually, only monocular vision is available,

the works in the literature become more rare. The only example, at the best of

our knowledge, is the work by Reilink et al. [Reilink 2011, Reilink 2012]. They

propose to use the monocular camera of ANUBIScope to estimate the pose of the

flexible instruments inserted in the lateral channels. Supposing known the mechani-

cal structure of the system, they retrieve the 3D tip position of the instrument from

fitting the virtual model to the actual image. They actually present two methods:

one is marker-less and the other one is relying on green markers attached on the

instrument to ease features extraction.

Conclusion

Robotics solution for flexible endoscopic surgery are making inroad in the MIS

scenario due to the increasing interest on no-scar or single-scar surgery techniques.

One common possibility is to imagine the robotic system within a teleoperation

framework where the surgeon closes the feedback loop correcting his/her movements

according to what he/she observes in the endoscopic image.

To convert the robot into a real assistant for the physician (providing gesture

guidance, autonomous positioning, ...) an automatic control strategy should be

adopted. Due to the complexity in defining a complete and precise dynamic model

and the dependency of such model to the particular system (or even configuration),

open-loop control strategies are not the most adequate solution for retrieving real

robot 3D pose.
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The need of an external measurement arises, but the difficulty of attaching ex-

ternal sensors (e.g. EM sensors) and their fragility and possible incompatibility with

other OR devices, bring to the idea of using only the embedded endoscopic camera

to retrieve the 3D position of the flexible instruments.

Stereo-vision would permit to capture a precise depth information, but, since

we are interested in conventional flexible endoscopic systems, which usually mount

a monocular camera, some a-priori information must be considered to retrieve 3D

pose from a 2D image. Pure geometrical and perspective based approach, though,

seems to be very sensitive to noise (as will be explained next) and the use of a fix

mechanical model would fail in case of mechanical plays, which would modify the

mechanical model.

Thus, a new method is needed, which must be effective with conventional en-

doscopic systems configurations and robust even in in-vivo conditions. Two novel

solutions are proposed to retrieve the 3D pose of the instrument from a single image.

The first proposes to extend the mechanical model so as to take into account pos-

sible mechanical plays or model changes during the operation. Given the difficulty

to satisfactorily model how the instrument is perceived by the camera, the second

solution is a model-free approach to avoid problems related to model uncertainties.

As the visual based technique accuracy is strictly related to the chosen feature and

the precision with which these features are extracted, we decided to focus in both

the aspects of the “pose from image” problem. Therefore, the first part of this thesis

is dedicated to the selection of adequate features for 3D pose estimation and the

segmentation of these features even in in-vivo scenario. The second part details the

mentioned 3D pose estimation solutions.



Part I

Visual Features Selection and

Extraction





Introduction

As described in the introduction. the main objective of this thesis is the pose estima-

tion of flexible miniaturized instruments using monocular vision. However, as also

remarked in [Azizian 2014], a good control or estimation require also a good choice

and high precision in visual feature extraction. Therefore, both these objectives,

feature extraction and pose estimation, are equally important and constitute the

main contributions of this work. In this part, the focus is set on feature selection

and extraction, whilst the second part will deal with the proper pose estimation

problem.

In the previous chapter, several systems adopted in flexible endoscopic surgical

procedures have been described and their controlling issues have been presented.

Although a common thread can be individuated in the control and pose measurement

strategies, the peculiarities that such systems present lead to the necessity of state

the problem in details. Stereo vision instead of monocular, different points of view,

absence of endoscopic camera (for catheter) are only a few of the reasons that make

the problem to slightly change for each situation.

In this work, it has been decided to focus on devices for endoluminal or abdom-

inal single port surgery or NOTES where their particular configuration of camera,

lights and instruments are considered as general constraints worth to be studied and

taken into consideration to validate possible solutions.

Thus, to comprehend the considered framework and the main contributions, it

is fundamental to start with the description of the device taken as reference and

present the main issues.

System Description

The device taken as reference is STRAS, a robotic system based on a short version of

the manual Anubis platform developed by Karl Storz (Tüttlingen, Germany). The

Anubis platform is a totally flexible system (in the sense that there are no discrete

joints), initially developed for NOTES surgery. The short version consists of a main

endoscope and two instruments, which can be used simultaneously. Instruments and

main endoscope consist of a flexible passive shaft and are equipped with a bendable

distal part, which is controlled from the proximal side using tendons. Each tendon

runs inside a sheath inside the shaft of the endoscope (and instruments). The sheath

is free to move inside the shaft so as to allow a good flexibility of the shaft itself

and it is attached at the beginning of the bendable section of the endoscope (and

instrument). At the base of this distal section the cables exit the shaft and are made

to pass through dedicated supports attached to the support structure (backbone)

before being attached to the tip of the bendable part.
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Figure 2.20: Mechanics of the bendable section of the instrument. A sequence of cilin-

drical vertebrae are linked together to form the backbone whose shape can

be changed by two antagonist cables (in red) attached to the end of the last

vertebra

The main endoscope has a diameter of 16 mm and it is equipped with a camera

at the distal tip and a lighting system composed by two spots one on each side of

the camera. The distal part of the endoscope can be deflected along two orthogonal

directions and is actuated by two antagonistic pairs of tendons made of braided steel

arranged in quadrature.

Three channels are available in the endoscope, which acts as a guide, for passing

surgical instruments. One channel is located at the core of the shaft of the scope,

while two channels (called lateral channels) are at the sides of the shaft. The in-

struments can be inserted in the lateral channels of the endoscope and thanks to

the mechanical play between them and the channel, they can smoothly translate

and rotate. The instruments have long flexible shafts (length 900 mm) and a bend-

able distal part (length 18.35 mm, diameter 3.5 mm). This part consists of hollow

cylindrical-shaped vertebrae linked one another in two diametrically opposed points

forming a rotational joint (see Fig. 2.20). A pair of antagonist tendons made of

braided steel allow bending the distal part in a plane.

As the instruments are hollow, they can receive inserts equipped with distal

tools. Tools can be mechanical (grasper, scissors) or electrical (knife, ball, hook).

STRAS Concept

The conceptual idea for STRAS was to design a teleoperated modular platform,

which could be easily setup at the operating table side. It was also decided to keep

as much of the original design of the Anubis platform in order to keep the sealing of

the endoscope and the fluid management (water for irrigation and camera washing,

air for insufflation and aspiration).

The main scope and the two instruments are held by a cart (see Fig. 2.21). This
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Figure 2.21: Overview of the system with the motorization of the different modules. Each

color represents one module: endoscope, instruments, whole system (main

endoscope + instruments) and cart. With the same colors are marked the

movement that each motor of each module confer to the corresponding part of

the system. Excluding the cart inclination and vertical translation (which are

controlled by a wire remote-control), all the other DoF can be tele-operated

and controlled by a master interface.

platform supporting the instruments and the endoscope has two motorized DoFs

(up/down and inclination), which allows to position the whole system in a large

variety of configurations depending on the access port to the operating area.

The entire slave system (main scope + instruments) can be translated and ro-

tated, as one entity, around the entrance direction at the proximal side. Thanks

to this combined translation of the endoscope and the instruments, the friction ef-

forts of the instruments at the entrance of the channels of the endoscope decrease

considerably.

All manual wheels and knobs on the instruments and scope have been replaced

by small electrical motors (see scheme on Fig. 2.22) and the whole slave system can

be controlled from a master console. The head of the endoscope has two DoFs and

can be deflected along two orthogonal directions. Both instruments have 3 DOFs:

they can be translated and rotated inside the channels of the main scope and their

extremity can be bent in one direction. Moreover, mechanical instruments (such as

graspers) can be opened and closed conferring an additional DOF.

The overall system has 12 motorised DoFs of whom 10 (those regarding trans-

lation, rotation and bending of endoscope and 2 instruments) are also teleoperable.

Modularity is another important concept beneath the design of STRAS slave

system (see Fig. 2.21). The endoscope holds the motorization for its deflection and

it can easily be attached to / detached from the cart. Two fixed modules contain the

motorization for the translation and the rotation of the instruments. Instruments

handles have been replaced by cylindrical bull-nose shaped casings containing the

motorization for bending and grasper opening / closing. These modules can be
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Figure 2.22: Motorization scheme of STRAS.

easily plugged onto the translation / rotation modules. This modular structure

allows changing instruments during operations, while limiting the weight of the

instrument modules to be manipulated and the required number of motors for a

given set of surgical effectors.

Using visual perception in this context is challenging and the need of new ap-

proaches arises to extract the required visual information for pose estimation. In

the next section, the main issues and the derived hypotheses are described and

compared with state-of-the-art solutions.

Problem Statement

As the instruments bodies are uniformly black, the only element that presents visual

features that can be related to 3D physical points is the attached surgical tool.

Unfortunately, during the operation, the tool is often hidden since it continuously

interacts with tissue for grasping or cutting. The focus, then, must be displaced

to the body of the instrument bendable section which is textureless, though. It is

not uncommon, then, to employ colored markers to overcome such problems and, in

addition, to strengthen the features mainly for in-vivo environments where smoke

or other fluids often corrupt the quality of the image making the features to appear

less clear or fuzzy.

Additionally, the strong frontal lighting creates three zones in the image: a cen-

tral zone where the light is very intense, an intermediate zone with soft lighting and

a border zone where the image is almost dark. As one may expect, if the instru-

ment is located in front of the camera, the intense light and its reflective material
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Figure 2.23: Example of in-vivo image grabbed by the endoscopic camera in the abdomen

of a porcine model. In this example, the main characteristics of such kind

of images are visible: distortion, strong central enlightment and consequent

specularity effects in the middle of the instrument and mirror effect on the

shiny surface of the organs.

cause strong specularity effects that modify the color appearance of the instrument,

causing a wide white region in the middle of its bendable section (Fig. 2.23). This

effect is not very attenuated even using a matte painting for the markers. Only

when the instrument is no more exposed to this strong direct light, the specularity

disappears.

Finally, the small elevation angle of the camera wrt to the instruments does not

allow a clear vision of the surgical plane and increases the difficulty at perceiving the

depth of the instruments. This particular point of view, indeed, impedes to clearly

capture the shape of the instrument whose deflection is often perceivable only for

the sheath (and consequently the markers’) surface deformation while the outline

stays almost unvaried for certain configurations.

In in-vivo environments further problems arise: the strong reflectance of the

organ surfaces produces mirroring effects of the instrument, increasing the ambiguity

of visual information (Fig. 2.23).

In the solution proposed here, all these remarks are taken into account, the only

constraining hypotheses made are to consider that the instruments move in a free

space and that no occlusions of the bendable section occur (neither occlusions due

to external objects nor self-occlusions).

As shown in the precedent chapter, solutions regarding the pose estimation in

such configuration are rare in the literature. However, this problem can be contex-

tualised in a wider framework letting aside the in-vivo or surgical constraints. This

framework is therefore the pose estimation of deformable objects using 2D images.
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Depth Information from 2D images

The main issue in monocular vision is related to the retrieval of depth informa-

tion which must be inferred from 2D visual measurements. The question is then

which visual features contain shape information or how to combine features to recre-

ate the 3D scene. Gibson, in his studies on animal/human visual perception, ar-

gued that humans obtain a lot of information on depth and environment structure

by moving inside it. The structure from motion framework recalls this concept

[Longuet-Higgins 1986] and aims to retrieve 3D information from a sequence of im-

ages. Usually, some features are tracked through the sequence and, based on them,

the motion and the structure can be obtained by a projection model [Tomasi 1992]

or using 2 or 3 views at a time [Hartley 2004]. A final bundle adjustment is made to

find the best structure and movement explaining the scene observed in the sequence.

The outline of an object can be also used for shape retrieval even using uncali-

brated camera. Different approaches have been developed [Cipolla 1992, Wong 2004,

Utcke 2003] for object that can be described by circular cross-section (of differ-

ent radius) where the axis goes through the center of the cross-section, and the

cross-section is orthogonal to the axis which is usually straight and constant. They

exploit revolution surface invariant to calibrate the camera and specific geometri-

cal/projective properties to retrieve the shape from the surface outline [Cipolla 1992,

Wong 2004] or the outline and two cross-section [Utcke 2003]. For depth determina-

tion, the dimension of at least one section [Wong 2004] or the outline deformation

from several known point of view [Cipolla 1992] must be given.

Other authors proposed interactive methods for depth estimation with uncali-

brated cameras. In [Sturm 1999], the user is meant to provide 3D constraints in

terms of coplanarity, perpendicularity and parallelism which are then used to cali-

brate the image and perform the 3D reconstruction. In [Criminisi 1999], instead, the

proposed solution needs a reference plane and a reference direction not parallel to

the plane to compute respectively the vanishing line and the vanishing point. With

this information, 3D affine measurement can be computed in terms of distances

between planes parallel to the reference plane, area and length ratio on any plane

parallel to the reference plane. Given the value of a reference distance or height, the

real 3D position of other points can be computed and a 3D model can be created

from these points.

For automatic structure determination using only one image, Shape-from-Shading

(SfS) is another interesting approach. The original idea by Horn [Horn 1970] was

to obtain the shape of a smooth opaque object from one view, given the knowledge

of the surface photometry (which must be uniform), the position of the light source

and other additional information such as the position of the observer with respect

to the object and the light source.

Alternatively to shading, if all the possible deformations of the object pertain

to a limited set, another solution is to determine the shape as a linear combination
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of the elements of that set. In [Blanz 1999] this concept of morphable models is

applied to faces, where the set of basic shapes is composed by 3D scanned head of

200 people including color information. Obviously, this process is applicable only to

a specific category whose database is available.

If no information on the illumination source or no prior information is available

on the kind of deformation, none of the previous framework would work. An alterna-

tive can be Shape-from-Template provided that a template is known. For template

is meant a prior knowledge over the appearance (texture of the object), the shape

(the resting position) and the material of the object (implying the dynamic of the

deformation). Feature such as SIFT are extracted both in the template and the

actual image and a warping is done based on these features. After that, the possible

deformation of the object that would generate the actual image is computed taking

into account the deformation law of the template according to its material. A strong

hypothesis in this process is the isometry of the object even though more complex

deformation law can be taken into consideration [Bartoli 2015].

Taking into consideration the problem we want to address (see problem statement

section), in structure from motion the observed objects in the scene are supposed to

be rigid which is not the case here. Non-Rigid Shape-from-Motion [Chhatkuli 2014]

can be considered, but it is still a complicate and open problem. In the aim of

performing automatic control, interactive methods are evidently unsuitable and

shape from shading can lead to imprecise solutions due to the fact that material

reflectance and illumination models are not easy to obtain for this kind of systems

and, especially, in in-vivo environment. It is true, though, that do exist shape from

shading methods that need less a-priori knowledge [Barron 2015]. Shading is, then,

parametrized as a function of shape and reflectance which are considered unknown.

To compensate this information loss, plausible constraints (about surface smooth-

ness, uniformity of paint and illumination) are added to the original SfS problem

to find the final solution. Unfortunately, in our problem, the strong saturation due

to specular component of light make the most of instrument white, loosing, in this

manner, important structure information.

On the other hand, the use of morphable models would mean to create a suffi-

ciently dense database considering all the possible deformations of the instruments.

Doing so, with the will of obtaining high precision, there can be the risk of creating a

self-exhaustive set that would convert the approach almost to a look-up table mak-

ing morphable model to lose their “interpolating role”. In addition, the instruments

in question are textureless and some new features must be found for the correspon-

dence. Furthermore, the authors need a rough interactive alignment of the model

with the actual photo and suppose some strong a-priori: camera distance, surface

shininess and light direction remain fixed to the value estimated by the user.

Finally, neither an easy adaptation of shape from template is possible in the

studied case due to its strong dependency on clear texture for initial warping, which

the considered instrument does not present.
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However, assuming that the intrinsic parameters of the camera are computed

and some a priori information about the environment is known, neither the user

interaction nor texture or lighting knowledge are needed for pose estimation. It is

quite easy for a rigid object (with easy recognizable physical features) [Lepetit 2005],

but further considerations must be added for solids of revolution (such as cylinders

or sphere) [Doignon 2007] or freely deformable objects such as threads or flexible

tubes (as described in Sec. 2.3). In [Caglioti 2006] a completely geometrical based

method is used to estimate the position of a flexible tube in the space. After border

extraction, upper and lower correspondence is settled based on bitangent and flex

points. Each couple of points (upper and lower border points) is considered to be two

points on the tube section, knowing, then, the 2D tangent to these points (computed

numerically) gives information on the vanishing point which is used to compute the

position and orientation of each section and, finally, composing all these sections,

the entire tube. This approach, though, shows its weakness in those cases where the

borders appear as almost parallel lines which is often the case with the ending part

of the bending section of the considered surgical instruments. In this case, in fact,

strong noise on the detected points could bring to a wrong estimation of tangents

and, in turn, to the corresponding section orientation.

In the light of what discussed so far, a dual necessity arises:

1. Find which are the most suitable visual features for pose estimation.

2. Find a manner to obtain such features in the enunciated conditions while, as

a first approximation, considering the instrument moving in free space.

These two problems are addressed in the next chapters: in section 3.5 the choice

of a suitable image features for pose estimation is argued on simulation data and a

novel method to obtain the selected feature is presented in chapter 4.

The suitable feature will be defined as that visual feature which, considering a

given 2D error in its extraction, allows having a smaller estimation error on the

3D position of the surgical Tool Center Point (TCP). To carry out such study, the

relationship between the robot configuration and image features and between the

image feature and 3D tip must be known. This means knowing:

• the kinematic model of the instrument wrt the camera, that relates the

values of its DOFs to its 3D shape.

• the camera model for being able to create the image relative to a specific

3D configuration of the instrument.

• an extended Image Jacobian that describes the relationship between the

instrument joint velocities and feature movement in the image. The inverse

of this Jacobian provides the relationship between the feature movements (or

uncertainty) in the image and the instrument DOFs variations and, indirectly,

on the 3D tip position variations.
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Figure 2.24: Scheme of the relationships between instrument pose and image projection.

Number one indicates the kinematic model wrt the camera relating a point

on the body of the instrument or the TCP 3D position to the world reference

frame (i.e. the camera origin). Number two: with the camera model the

projection of the 3D point of the image is computed. Finally (number three)

the image Jacobian relates the 3D point velocity to the 2D image variation.

Composing 1 and 2, an extended image Jacobian can be computed relating the

robot DOFs velocity with the apparent velocity of the corresponding features

in the image.

The next chapter (3), then, will clarify and formalize all these elements which

will be fundamental tools all along this manuscript and not only for this preliminary

study (chapter 4).
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3.1 Geometric and Kinematic Model

For computing the model of the instrument, the attention will be focused on the

tip of the endoscope and the camera-to-end-effector kinematic chain. This can be

divided into two parts: one consists of the properly-said kinematic model defined

by the controllable DoFs (marked in blue in Fig. 3.1(b)) of the instruments and

the other represents the geometrical relationship between the channel exit and the

endoscopic camera, i.e. the position and orientation of Fch wrt Fc in Fig. 3.1(a).

For the former part, the 3 DOFs of the instrument are considered (translation λ and

rotation φ with respect to their axis and deflection θ) and for the latter the position

of the exit of the channel (xch, ych) housing the instrument and its orientation (angles

(ψ, µ) marked in green in Fig. 3.1(a)) with respect to the endoscopic camera optical

axis are taken into account. The instrument can slightly move inside the channel and

to entirely describe the instrument position wrt to the camera these parameters are

needed. The only two restrictive yet reasonable hypotheses are that the instrument

bends in a plane and that it conserves a constant curvature all along the bendable

section.
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Figure 3.1: In (a) the picture of the tip of the endoscope with the instruments and in

(b) the corresponding scheme. For sake of easiness and completeness in the

representation, the scheme shows the instrument in the particular configuration

with φ = 0, this implies that the bending plane of the instrument is parallel to

the one of the (x, z) camera. In (b) it can be seen that the estimated position

of the end of the instrument duct does not coincide with its actual end, in fact

it has been chosen to consider the end of the duct on the same plane (x, y) of

the camera, to eliminate a sort of redundancy between λ and z−coordinate of

the channel.
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To formalize what discussed so far, the reference coordinate frames showed in

Fig. 3.1 are defined. Fc indicates the camera frame, the frame associated to the end

of the instrument channel is called Fch, whereas the one associated to the beginning

of the bendable part is Fb. The torus-like bendable part can be discretized in

sections whose reference frame are Fseci . For the last section, the one corresponding

to the tip of the instrument, Ftip is used. Depending on the attached surgical tool,

the distance from the tip to the surgical Tool Center Point (TCP) can vary and the

frame associated to it (FTCP ) would result in a rigid translation of Ftip along its

z-axis.

Without losing sight of the main objective of using the camera for pose estima-

tion, the camera frame will be considered as the world reference frame and all the

other frames will be expressed with respect to it. Thus, Fch can be obtained from

Fc by a 3D translation and two subsequent elementary rotations: one of angle ψ

around the camera y−axis and one of angle µ around the resulting x−axis.

The vector defining the mentioned translation is known from the CAD model of

the instrument provided by the manufacturer and it will be denoted as tcc,ch meaning

the translation from the origin of Fc to the origin of Fch (the two ordered subscript

elements) expressed in the camera frame Fc (the superscript element). A similar

notation will be used for the rotation matrix: Rc
ch express the orientation of Fch

with respect to Fc coordinate system. The frame of the base of the bendable section

(Fb), in turn, can be defined from Fch by a translation along Fch z− axis with λ

(first instrument DOF) and a rotation around the same axis of an angle φ (second

instrument DOF).

The affine map components between the camera and the base of the bendable

part can, then, be expressed as follows:

tcc,b = tcc,ch + λ zcb (3.1)

=

⎡

⎢
⎣

xch
ych
0

⎤

⎥
⎦+ λ

⎡

⎢
⎣

sinψ cosµ

sinµ

cosψ cosµ

⎤

⎥
⎦ (3.2)

Rc
b = Ry(ψ)Rx(µ)Rz(φ) (3.3)

where zcb is the third column of Rc
b, i.e. the unit length vector (also called versor)

of the z−axis of the channel frame (whose direction coincides with the one of the

base frame), whereas Rx(.), Ry(.) and Rz(.) are the matrix form of rotations around

x, y and z axis with angles µ, ψ and φ, respectively. Finally, it has been chosen to

consider the end of the instrument duct fixed and on the same plane (x, y) of the

camera, so as to eliminate a sort of redundancy between λ and z−coordinate of the

channel. Consequently, the third component of tcc,ch is equal to zero.

Assuming a constant curvature along the bending section and the fact that the

instrument axis pertains to the (z, y) plane of Fb, the relation between the base
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frame and Ftip (Fig. 3.1(b)) can be easily decomposed as a rotation around Fb

y−axis with angle θ and a translation defined by the vector:

tbb,tip =

⎡

⎢
⎣

Rcurv(1− cosθ)

0

Rcurvsinθ

⎤

⎥
⎦ (3.4)

The curvature radius Rcurv is gathered from the definition of radians: Rcurv =

L/θ where L is the length of the arc corresponding to θ. In this case L is the length

of the whole bending section of the instrument (arc connecting Fb to Ftip in Fig.

3.1(b)) and θ the bending angle.

Finally, the orientation and translation of the tip with respect to Fc results to

be:

Rc
tip = Rc

bRy(θ) (3.5)

and

tcc,tip = tcc,b +Rc
bt

b
b,tip (3.6)

where Rtip
b = [Ry(θ)]

T .

Camera to i-th section

The geometrical transformation between the camera coordinate frame and the frame

Fseci associated to a possible section of the bendable part of the instrument is

obtained from Fb as

Rc
seci = Rc

bRy(θi) (3.7)

tcc,seci = tcc,b +Rc
b(t

b
b,seci) (3.8)

where

tbb,seci =

⎡

⎢
⎣

Li/θi(1− cosθi)

0

Li/θisinθi

⎤

⎥
⎦ , (3.9)

and Li are the arc length defined by the angle θi associated to the section in question.

Thus, Li/θi is the curvature radius Rcurv.

Every point Pi of the surface of the torus can be expressed as a point pertaining

on the circumference or radius r (radius of the instrument) individuated by a specific

section (Fseci) perpendicular to the instrument axis. Knowing the coordinate of

P
seci
i with respect to Fseci , the coordinates on the surface wrt to camera frame can

be computed straightforward using (3.8):

Pc
i = Rc

seciP
seci
i + tcc,seci



3.1. Geometric and Kinematic Model 51

θi

z

x

θi Pi

Fb

Oseci

Li

Figure 3.2: Scheme showing the geometrical relations between the different elements in a

section.

Referring to Fig. 3.2, a relation between the base and the points of the sections

can be defined. In fact

tbOseci
,Pi

=

⎡

⎢
⎣

P sec
ix

cosθi
Piy

−P sec
ix sinθi

⎤

⎥
⎦ (3.10)

and, joining the two results (3.8) and (3.9) :

tbb,Pi
= tbb,seci + tbOseci

,Pi

tbb,Pi
=

⎡

⎢
⎣

Rcurv(1− cosθi)

0

Rcurvsinθi

⎤

⎥
⎦+

⎡

⎢
⎣

P sec
ix cosθi
Piy

−P sec
ix

sinθi

⎤

⎥
⎦ . (3.11)

Once obtained the expression in the base frame it is easy to find the one with

respect to the camera frame, which is, for the translation component:

tcc,Pi
= tcc,b + Rc

b t
b
b,Pi

(3.12)

and for the rotation component:

Rc
seci = Rc

b R
b
seci . (3.13)
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Figure 3.3: Graphic of the numerically computed relationship between the deflection angle

θ and the distance of the TCP wrt to instrument rotation axis zb.

Camera to TCP

The extension for the TCP is straightforward. In fact, its reference coordinate

frame shares the same orientation as the frame associated to the tip (expressed by

the rotation matrix in 3.13) and the position is obtained as a translation along the

tip z-axis. The resulting orientation and translation wrt the camera are:

Rc
TCP = Rc

tip

tcc,TCP = tcc,tip +Rc
b R

b
tip

⎡

⎢
⎣

0

0

ltool

⎤

⎥
⎦

(3.14)

where ltool is the distance between the end of the bendable part (i.e. the instrument

tip) and the surgical tool center point (TCP).

3.2 Inverse Position Kinematic Model

No closed form solution is available for this problem and numerical optimization

approach such as Gauss Newton algorithm using the inverse of the Jacobian would

return only one solution. However, for obtaining all possible solutions the following

procedure can be adopted.

First, the desired Cartesian position of the TCP is expressed with respect to Fch
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with coordinates P∗ = (X∗, Y ∗, Z∗):

tchch,TCP =

⎡

⎢
⎣

0

0

λ

⎤

⎥
⎦+Rch

b tbb,tip

where Rch
b = Rz(φ). Therefore, the distance of the point from the instrument

rotation axis can be expressed as:

fd(θ) =
√

X∗2 + Y ∗2 =

∣
∣
∣
∣

L

θ
(1− cosθ)ltool sin(θ)

∣
∣
∣
∣

(3.15)

Fig. 3.3 shows the relationship fd(θ) between angle θ and the distance of the TCP

from the instrument rotation axis, the maximum is reached for θsing which is approx-

imatively 101.77◦. Looking at this figure (obtained with L = 18.35 and ltool = 15.8),

it can be seen that the previous equation generally has two solutions (θ1 and θ2),

one on each side of θsing plus their opposite negative solutions. In fact, if a point

in the workspace (without taking into account orientation) is attained by a specific

deflection θ1 and a specific rotation angle φ1, it can be attained also by deflection

equal to −θ1 and rotation φ1 + π. Finding the deflection angles is equivalent to

solve:

θ1,2 = argmin
θ

√

X∗2 + Y ∗2 − fd(θ).

This problem can be solved numerically. One solution is obtained initialising the

optimization next to θ = 0 and, for the second, near to θ = θmax where θmax is the

maximum deflection that the instrument can achieve (equal to 120 ◦in this case).

The corresponding rotation angles φ is computed directly from P∗
1 coordinates as

φ1 = atan 2(Y ∗,X∗);

Finally, the translation parameters λ1 (λ2) are computed directly from the direct

kinematic model relations:

λ1,2 = Z∗ − L

θ1,2
sin θ1,2 − ltool cos θ1,2.

For the scope of the preliminary study, only one solution will be considered such

that θ is positive and smaller than θsing.

3.3 Camera Projection Model

To relate the 3D shape of the instrument with visual features, a model of the camera

is needed so as to know how the 3D points are projected onto the image plane. The

pinhole model is a simple way to describe this mathematical relationship. In this

model the camera aperture is described as an infinitesimal point where no lenses are

used to collect the light and no distortion or blurring are taken into account.
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Figure 3.4: Scheme of the adopted pinhole model and image formation. For easing the

representation of the image formation the plane is considered positioned at +f

with respect the optical center reference coordinate frame.
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The rays of light coming from the environment travel along a single path through

the pinhole and intersect the image plane where its upside-down image is formed.

The reference frame associated to the camera is usually a right-handed coordinate

system where the x-axis is taken as the horizontal direction and the y-axis as the

vertical (downward) direction. This means that the optical axis (gaze direction) is

the positive z-axis. The image plane is parallel to the camera sensor plane (x, y)

and positioned at −f along the camera z-axis where f is the apparent focal distance

of the camera. A totally equivalent representation is chosen in Fig. 3.4 which does

not pretend to be a physical representation of a camera. The fact of positioning the

image plane at +f is just for easing the representation since it avoids the forma-

tion of an upside down image. The intersection of the optical axis with this plane

individuates the principal point of the image plane marked as (u0, v0).

The camera realizes the projection of a point Pi ∈ R
3 of the Euclidean space

into a point pi ∈ I
2 of the image plane whose homogeneous coordinates (ui, vi, 1)

are expressed in pixels. Assuming the point is expressed with respect to the camera

frame, the projection in metric units of such point (Xi, Yi, Zi) onto the image plane

can be written as: [

ũi
ṽi

]

=
f

Zi

[

Xi

Yi

]

. (3.16)

The corresponding image coordinates (ui, vi) in pixel units are obtained from

(ũi, ṽi) with the following relation:

[

ui
vi

]

=

[

Dusuũi −Du cot(ϕ)ṽi
Dv ṽi/ sin(ϕ)

]

+

[

u0
v0

]

(3.17)

where Du and Dv are needed to change from metric units to pixels, su is the possible

scale factor between the vertical and horizontal sizes of the sensor and ϕ is the angle

between the image reference frame axis (usually ϕ = π/2). The addition of [u0, v0]
T

moves the principal point to the top left corner. This principal point can be taken

as origin of the image coordinate system.

These expressions can be summarized in matricial form as:

pi =
1

Zi
K [I3x3O3x1]Pi = K [I3x3O3x1] m̃i (3.18)

where

m̃i =
1

Zi
Pi =

⎡

⎢
⎣

x̃i
ỹi
1

⎤

⎥
⎦

K =

⎡

⎢
⎣

αx −αx cot(ϕ) u0
0 αy/ sin(ϕ) v0
0 0 1

⎤

⎥
⎦ , (3.19)
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αx = Dusuf and αy = Dvf are the apparent focal distances expressed in horizontal

and vertical pixels respectively.

To increase the field of view of the surgeon, flexible endoscopies usually mount a

wide angle lens which return a highly distorted image both tangentially and, above

all, radially. It is denominated radial distortion when the projected point suffers a

deviation along the line connecting it to the principal point, whose value depends on

its distance with the principal point and it arises because the “thin lens” hypothesis

considered in the pin-hole model is not valid anymore.

Another source of image distortion is the fact that centers of curvature of lens

surfaces are not always strictly collinear. This distortion type, called decentering

distortion, has both a radial and tangential component [Slama 1980, Heikkila 1997].

The model just presented then becomes insufficient to describe the whole phe-

nomena of image formation, therefore a more accurate model must be developed

which derives from the combination of the pinhole model with radial and tangential

distortions, obtaining:

mi =

⎡

⎢
⎣

xi
yi
1

⎤

⎥
⎦ =

⎡

⎢
⎣

x̃i + δx
(r)
i + δx

(t)
i

ỹi + δy
(r)
i + δy

(t)
i

1

⎤

⎥
⎦ (3.20)

The radial distortion contribution is [Heikkila 1997]:

[

δx
(r)
i

δy
(r)
i

]

=

[

x̃i(k1r
2
i + k2r

4
i + k5r

6
i + · · · )

ỹi(k1r
2
i + k2r

4
i + k5r

6
i + · · · )

]

(3.21)

and the tangential contribution is:

[

δx
(t)
i

δy
(t)
i

]

=

[

2k3x̃iỹi + k4(r
2
i + 2x̃2i )

k3(r
2
i + 2ỹ2i ) + 2k4x̃iỹi

]

(3.22)

where ri =
√

x̃2i + ỹ2i is the distance of the normalized points from the principal

point.

The parameters k1, k2, k5 are the coefficients for radial distortion (sixth order is

usually sufficient) and k3, k4 are the ones for tangential distortion. To completely

define the projection transformation, these parameters must be known together

with the so called intrinsic parameter αx, αy and (u0, v0). It is fundamental, then,

a preliminary calibration step of the camera to estimate that parameters. For this

purpose, the methods of Doignon [Doignon 1999], Zhang [Zhang 1999] and Hiekkilä

[Heikkila 1997] can be used. The last two have been implemented by Yves Bouguet

and are available as a Matlab Toolbox [Bouguet 2013] which has been employed

here.

Several views of the same known calibration grid are grabbed and camera-grid

relative pose (so called extrinsic parameters), distortion and intrinsic parameters
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are optimized to obtain the least reprojection error defined as the 2D error between

the detected grid corners and the reprojected corners using the estimated model

parameters.

Knowing the distortion parameters, the inverse of the distortion transformation

can be computed and applied to the image obtaining its rectified version. Once

rectified, the pinhole model is a good approximation of the camera behavior and

the perspective projection relation are valid and can be possibly utilized to infer 3D

information from image measurements.

3.4 Extended Image Jacobian

The last step is to relate the 3D velocity of given 3D points with the image motion of

their projections. The transformation matrix describing such relationship is called

Image Jacobian:

ṗi = JIiṖi (3.23)

where Pi is a point defined in the task space (camera frame: Pi = tcc,Pi
) and ṗi is

the feature parameter rate of change in the feature (image) space.

Since camera and endoscope guides are linked together, the relative movement

of a point Pi on the instrument surface (wrt the camera) depends solely on the

movements of the flexible instrument itself:

Ṗi = Jgi ṙ. (3.24)

Jgi is the geometrical Jacobian relating the joint velocities (ṙ) to the velocity of the

chosen point on the instrument.

Thus, defining the 3D point Pi = [Xi, Yi, Zi]
T and its relative 2D visual feature

point pi = [xi, yi, 1]
T and considering equation (3.24), the relationship described in

(3.23) can be written as:

ṗi = JIiJgi ṙ (3.25)

where r = [λφ θ]T is a specific instrument configuration.

The product between JIi and Jgi can be considered an extended image Jacobian

Li:

Li = JIiJgi (3.26)

which relates the joint velocity of the instrument with the image motion of a point

of the instrument itself.

3.4.1 Image Jacobian

Considering only the 3D translational effects on the 2D features, the computation

of the image Jacobian is equivalent to find the gradient:

JIi =

[
∂m̃i

∂Xi
,
∂m̃i

∂Yi
,
∂m̃i

∂Zi

]

.
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The final expression, then, can be derived from 3.18 and 3.19 resulting in:

JIi = K

⎡

⎢
⎣

1
Zi

0 −Xi

Z2

i

0 1
Zi

−Yi

Z2

i

0 0 0

⎤

⎥
⎦ = K

⎡

⎢
⎣

1
Zi

0 −x̃i

Zi

0 1
Zi

−ỹi
Zi

0 0 0

⎤

⎥
⎦ (3.27)

3.4.2 Distortion Effect

Pi P ′
i

C

x

z

ΠI

ΠId

pi p′i

pd p′d

∆x

∆xd

Figure 3.5: Scheme for the computation of the Distortion Gain. The plane Π represents

the image plane as if no distortion ocurred whereas in image plane Π
′ the image

formation is done taking into account radial and tangential distortions. The

Distortion Gain is computed as the relative image displacement seen on the two

image planes.

To take into account the distortion effect an equivalent gain is computed which

expresses a magnification factor between the displacement on the image plane with-

out distortion with respect to the same displacements on the image plane with

distortion. In fig 3.5, the principle is schematized for the x coordinate on the plane

(x, z). The ray of light passing through the optical center intersects the ideal (= no

distortion effects) image plane at a point pi which can be computed with the pro-

jective relationships described in the precedent section with equations (3.16) and

(3.17) (to obtain the result in pixel units).
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For the effect of wide angle lenses, though, the ray of light is “bent” before inter-

secting the real image plane (ΠId). As showed in precedent section, the projection

of Pi onto this plane can be computed with (3.18) considering m (from eq. (3.20))

instead of m̃:

pd = K [I3x3O3x1]mi. (3.28)

The distorted projection in metric units m can be computed through (3.21) and

(3.22) which, in turn, require the knowledge of the distortion parameters usually

available after a the calibration stage.

Let us, now, suppose that PI moves outside the projection line achieving the new

position P ′
I and let us indicate the perceived corresponding motion on the image

plane ΠI with (∆x,∆y). The corresponding new position (p′d) on the real image

plane ΠId can be computed relying on eq. (3.28). Afterwards, the displacement vec-

tor (∆xd,∆yd) describing the translation between pd and p′d can be easily retrieved.

The equivalent distortion gain is then defined as:

Gd =

⎡

⎢
⎣

∆xd

∆x
∆yd
∆y

1

⎤

⎥
⎦ (3.29)

and, post-multiplying it by JI , the new Image Jacobian JId taking into account

distortion effects is obtained as:

JId = GT
d JI . (3.30)

3.4.3 Geometric Jacobian

As explained before, the geometric Jacobian is the matrix transformation which

describes the relationship between the joint velocity and the end-effector velocity.

Since the considered robot has 3 DOFs the Jacobian can be thought as a block matrix

where each block is the contribution of each joint action onto the 3D position of the

chosen instrument point.

Ṗi =
[

Aλ Aφ Aθ

]

i

[

λ̇ φ̇ θ̇
]T

(3.31)

where Ark = ∂Pi/∂rk, with rk being alternatively λ, φ or θ. The final expression,

then, would result by the computation of these three blocks separately.

A variation of λ affects the position of Pi according to the channel direction.

Indeed, when computing ∂tcc,Pi
/∂λ the only element depending on λ is tcb i.e. the

position of the base with respect to the camera finally giving

Aλ =
∂tcc,Pi

∂λ
=

∂tcc,b
∂λ

=

⎡

⎢
⎣

sinψ cosµ

− sinµ

cosψ cosµ

⎤

⎥
⎦ (3.32)
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which is the channel z-axis direction which correspond to zbc (the 3rd column of Rc
b).

The rotation around the channel axis can be considered as a revolute joint and,

as for any revolute joint, the effect of this joint on another point of the kinematic

chain is equal to the cross product between the angular velocity screw and the vector

joining the center of rotation and the point of interest. Since the rotation is around

the Fb z−axis the angular velocity screw will correspond to the third column of Rc
b

and the radius is P c
i − tcc,b always with respect to the camera frame, obtaining:

Aφ = −[(P c
i − tcc,b)× zcb)]. (3.33)

The last block concerns the variation of θ. Since

tcc,Pi
= tcb,c +Rc

bPi
b

= tcb,c +Rc
b

⎛

⎜
⎝

⎡

⎢
⎣

Li/θi(1− cos θi)

0

Li/θi sin θi

⎤

⎥
⎦+

⎡

⎢
⎣

P sec
ix cos θi
Piy

−P sec
ix

sin θi

⎤

⎥
⎦

⎞

⎟
⎠

(3.34)

the only non constant element with respect to θ is Pi
b. The variation of Pi co-

ordinates with respect to the camera can be computed pre-multiplying the same

variation expressed with respect to the base of the bendable part by Rc
b:

Aθ =
∂tcc,Pi

∂θ
= Rc

b

∂Pb
i

∂θ

with

∂Pi
b

∂θ
=

⎡

⎢
⎣

kθL/θ sin θi − P sec
ix

kθ sin θi − L/θ2(1− cos θi)

0

kθL/θ cos θi − P sec
ix kθ cos θi − L/θ2 sin θi

⎤

⎥
⎦

where θi = θkθ being kθ = (i − 1)/(nsec − 1) where nsec is the number of section

and i = 1, · · · , nsec is the considered section.

3.4.3.1 Point on the axis and TCP

The computation of the different blocks for a point on the axis of the instrument

bendable segment or for the TCP is totally similar to the one described previously.

Actually, the block Aλ and Aφ are equal to the previous ones (substituting Pi

with a point in the axis), whereas Aθ needs to be recomputed or derived from

the precedent without considering instrument thickness (i.e. P sec
i = [0 0 0]T ) and a

further transformation in the case of the TCP. Finally, for a general point on the

axis

Aθ = Rc
b

⎡

⎢
⎣

kθL/θ sin θi − L/θ2(1− cos θi)

0

kθL/θ cos θi − L/θ2 sin θi

⎤

⎥
⎦
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and for the TCP

Aθ = Rc
b

⎡

⎢
⎣

L/θ sin θ − L/θ2(1− cos θ) + ltool cos θ

0

kθL/θ cos θ − L/θ2 sin θ − ltool sin θ

⎤

⎥
⎦

Both 3.27 and 3.31 still require the knowledge of the 3-D point depth. The only

issue is that the considered points do not have a direct physical sense in 3D but are

only apparent features depending on the pose of the instrument with respect to the

camera. Their 3D position can be computed for a specified robot configuration r

(see Appendix A for details) giving to the extended Jacobian only a local meaning.

The dependency of the apparent points on the pose of the instrument with respect

to the camera affects also their velocity. This effect has to be taken into account in

the geometrical 3D Jacobian and further details are given in Appendix A.

All these relationships between robot (i. e. the robotized instrument) configu-

ration and the image are of fundamental importance for any control or pose estima-

tion approach based on image measurements. This result will have a duple utility:

studying the pose estimation problem in simulated data for choosing a proper vi-

sual feature to use for such purpose and also providing a model of instrument visual

perception that will be exploited in the first proposed solution (Sec. 5).

3.5 Theoretical Study for Features Selection

The precision of vision based methods is inherently linked to the intrinsic parameters

of the camera and with the accuracy of the image features location. To know

which precision can be achieved with such methods and, based on that, which visual

features to adopt, a preliminary study has been carried out. It consists in quantifying

the error on the pose estimation when a misplacement of one pixel is done on the

image.

For sampled test positions, the Inverse Kinematic Model (see section 3.2) of the

instrument is used to compute the corresponding Degrees of Freedom (DoFs) of the

instrument. Then Jgtip the Jacobian from the DoFs variations to the 3D position

changes of the TCP of the instrument and JI the Jacobian from the DoFs to the

image features are computed.

The local variance of the estimated TCP position is computed as

ΣTCP = (JgtipJ
T
Id
Σ2DJId)

−1JT
gtip

with

Σ2D = I2nfeat

assuming a uniform independent one pixel covariance error on each coordinate of

the feature location.
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Three cases are now studied: (1) Considering markers centroids and 3DOFs (the

instrument is totally constrained in the channel, case reported in [Reilink 2012]),

(2) Considering instrument borders, (3) Considering the apparent corners of some

visual markers which divide the body of the instrument in equally spaced sections.

For sake of result visualization, the focus has been centered on the estimation of the

TCP coordinates in the central (x, z) plane of the instrument work-space, which is

defined by the origin of Fch and two vectors parallel to the x and z coordinate of

FC .

A first analysis can be done on the outline of the variance on the defined principal

(x, z) instrument plane (Fig. 3.6). A sort of symmetry can be observed with respect

to the instrument channel axis and, focusing on those configurations where φ ∈
[−π/2,π/2] and θ > 0 (in the work-space on the right of the blue line), its tendency

shows a loss of accuracy on the tip position estimation for instrument positions

farther from the endoscopic camera. This is quite an expected behavior due to the

perspective projection which makes the size of the object in the image to decrease

as the distance from the camera increases. In fact, when the object is far away, the

resolution on the object given by the image is lower, since one pixel represents a

wider region on the object itself. Thus, a larger movement or deformation would be

necessary so that to be visible in the image, at a pixel scale.

A second level analysis is to compare the different descriptors in terms of mean

and maximum errors on the TCP position estimation. For each robot configuration

the direction with the largest variance in the TCP position estimation are taken

and sorted (Fig. 3.7(a)). It can be straightforwardly seen that the use of centroids

only does not permit a proper discrimination of different configurations, whereas

the other considered descriptor seems to provide better results.

Features based on the borders only does not seem to be a robust choice, either.

This can be explained by the fact that more than one optimal solution can be found

where the estimated borders are inside the actual apparent border of the instrument:

in this case, in fact, the image residual is zero even if the estimated border does not

really represent the real apparent border. Two points on each apparent border could

be enough to know the scale to correctly identify the configuration. The use of the

term scale here is not the most adequate since the instruments are deformable and

the relative distances between points vary. Knowing some physical points on the

border, actually, gives an information on the shape of the instrument: for example,

if the beginning and the end of the instrument positions are known and visible in

the image, this information can be used to improve the definition of image residuals,

by constraining the estimated border to recover the totality of the actual border.

To strengthen this shape information, one can think to mark more than two

points on the instruments that can be easily detected in the image and that carry

shape information for example using the apparent corners of colored markers. Using

markers painted on the whole surface of the instrument is, at the same time, a

mean to ensure the visibility of the feature point for any rotation of the instrument
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(which would be not the case if dots are painted in specific positions). This seems

to significantly help the pose estimation as can be seen when zooming on the worst

cases of each approach (Fig. 3.7(b)).

Among the available corners, the ones associated to the end of the bendable

part seem to carry an important part of the information about the pose. In fact,

observing the results obtained without the consideration of these corners (green line

in Fig. 3.7(b)) the imprecision is higher with respect the other cases. One can

therefore think to give more confidence to these points to improve the robustness of

the estimation. However, an exaggerate confidence on these points’ locations may

bring to higher errors (such that obtained with a weight of 10 on the tip, traced

green line).

The discussion conducted so far is just a local analysis of sensitivity and it

does not allow to discuss if the problem is a ill-posed problem i.e. if two or more

configuration have the same visual representation (whatever the selected features

are). Also the set of possible features is reduced and other features or composition

of such features can be imagined; in the next sections, when talking about “best

features” for pose estimation purpose is always referred to these 3 cases.

In light of this discussion, the best solution is taking into account reference

points on the apparent borders which have some physical meaning and for whom a

3D relationship can be determined.

To increase the robustness, several points can be chosen over the border and to

relate the image feature points and the 3D object positioning, a ruler-like pattern

is painted on the instrument alternating blue and yellow markers (Fig. 3.8). This

does not only creates salient object related features, it also provides correspondences

between upper and lower border points which can be used as trustful features for

the pose estimation (cf chapter 5).

The choice of using markers is quite extended in surgical robotics, where ro-

bustness of feature extraction and tracking is really challenging especially in-vivo

scenarios where the illumination is non-uniform and varying, and where smoke,

blood or other fluids may degrade the quality of the image. The choice of the colors

allows to augment the discriminance between the instrument and almost any inter-

nal tissues and also to get good inter-markers distinction as they are complementary

colors and, thus, their chromaticity values occupy opposite positions in most of the

color representation spaces.

In the next chapter, the algorithm developed to extract the mentioned feature

is presented with the studies and theoretical basis over which it is built.
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Figure 3.6: Result of the variance propagation in the representative plane parallel to (x, z)

of FC and passing through the origin of Fch. The common expected tendency

is a variance growing with the distance to the camera. The depicted blue line

is representing the direction of the housing channel.
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Figure 3.7: For each robot configuration the direction with the largest variance in the tip

position estimation are taken and sorted. The result for different chosen de-

scriptors is shown in (a). In (b), a zoom on the worst cases is done: the best

solution seems to be the one considering the corners of some markers (5 markers

of equal dimensions in this case).
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Figure 3.8: Anubis tip with the camera, the flexible surgical instruments with the visual

markers.
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As evinced from the precedent chapter, adequate features for pose estimation

are the corners of colored markers attached to the bendable part of the instrument.

As already pointed out, the choice of locating the markers on the bendable part is

due to the fact that this is the most visible part during an operation. Indeed, the

surgical tool is continuously interacting with the tissues and, therefore, hidden by

them, whereas the instrument section located upstream wrt to the bendable section

is inside the channel most of the time.

The extraction of the apparent corners of the markers is quite challenging. The

conventional approaches (e.g. Harris, maximum curvature of the borders, ...) are

not efficient because the object has not sharp vertexes and the images are of low

quality and highly distorted. The apparent corners can be defined as the points

in correspondence with the color transitions on the upper (or lower) instrument

apparent contours.

To exploit this property, we propose to first roughly segment the instrument in

the image so as to to define a region of interest where the contours are detected. In

order to reject falsely segmented areas and retrieve the whole instrument structure,
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an interpretation step is performed (see section 4.2), which label the segmented

regions according to the marker they pertain. Finally, a continuous definition of the

upper and lower ordered border points must be obtained so as to be able to detect

the color transitions with a subpixel accuracy. This process also allows to label the

extracted corners according to the markers they pertains, which makes the matching

with their 3D counterparts possible.

This chapter describes in detail the method used for the extraction of the wanted

features. After a discussion over color segmentation for the adopted markers, the

two keyparts of the algorithm are detailed in sections 4.2 and 4.3. Finally, the

algorithm implementation is described before showing the results in both controlled

and in-vivo environment.

4.1 Color model and segmentation

Thanks to the adoption of colored markers, the color itself can be used for the first

broad segmentation to retrieve the instrument ROI. In Fig. 4.1 the distribution of

yellow, blue and background colors are represented in the RGB (8-bit color repre-

sentation) space for two common scenarios within the abdominal cavity: intestine

and liver. Analyzing these distributions, it can be seen that the chosen colors for the

markers are distinguishable from both the backgrounds. Furthermore, blue and yel-

low distributions show a large inter-distance between them confirming also visually

the complementarity of the two chosen colors.

However, the limits between the three categories (yellow, blue and background -

depicted in black in the figure) are not always clear: for example, in the zone of the

RGB space representing whiter hues (i. e. R, G and B values next to 255). This

is may due to the strong illumination which degrades the color perception having

almost a whitening action and conferring to the same marker different hues including

white (see sec. 4.1.1).

In endoscopy, the camera sensor is usually a mono-CCD with Bayes filter and

the acquired image is in RGB format. This color space, though, is not ideal for

color-based segmentation since its channels intrinsically contain luminance informa-

tion which makes color perception (and consequent RGB values) sensitive to light

[Doignon 2004]. For retrieving a true color information, the chroma component,

which is independent from luminance variation, must be extracted.

In the L*a*b color space, the chrominance is separated from lightness informa-

tion (L) and is represented by two channels a and b (Fig. 4.2): along axis a are

represented the red - green colors and along b blue - yellow colors.

This color space provides a pure chrominance representation and, on theory,

carries all the needed color information on the same coordinate b. Moreover, blue and

yellow are represented on the extrema of this channel and therefore they should be

easily distinguishable using this representation making this color space very suitable
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Figure 4.1: The distribution of yellow, blue and background colors are represented in the

RGB (8-bit color representation) space for two common scenarios within the

abdominal cavity: intestine (a) and liver (b).

Figure 4.2: Chromatic representation for L*a*b space. Along axis a are represented the

red - green colors and along b blue - yellow opponent colors.
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for the aforementioned color segmentation.

However, as it can be deducted from Fig. 4.3, the blue paint is not a pure blue

and, consequently, only one channel is not enough to represent the entire variability.

The color “blue” seems to contain some green components (negative values along the

a axis) and this fact obliges the use of the entire bidimensional chrominance space

for having the real color representation. Despite the fact that blue is not pure, the

two colors still cover two separate areas in the a ∗ b space, which only partially

overlap the background gamut in the whiter zone (the same behavior present in the

RGB space).

Given the quite large inter-distance between the different distributions, a model

for each apparent color content of the markers can be determined, so as to use it for

detecting the same color in further video frames. Observing the distribution of the

two color clusters, it seems that the density of the point cloud decreases with the

distance from the center of the cluster, that can be considered the nominal (or real)

paint color. This fact suggests that the probability of one pixel to pertain to one of

these two class can be modeled like a Gaussian centered on the nominal value (the

barycenter of the point cloud) and whose shape is determined by the variance of

the specific color samples. The obtained (blue and yellow) Gaussian Models (GM)

(represented as a confidence ellipse in Fig. 4.3) can be used with the pixels a ∗ b

values of a new image frame providing, as a result, a probability image where the

pixel intensity represent the probability of that pixel of being yellow marker (or blue

marker).

According to the dataset used in this work, the centers (c) and the variance

matrixes (C) of the fitted Gaussians are the following (respectively for yellow -yw-

and blue -bl-):

cyw = [−6.3190, 54.7758]T , Cyw =

[

103.3870 0

0 246.0974

]

cbl = [−18.4591,−13.6889]T , Cbl =

[

34.3313 0

0 52.7258

]

.

In the literature, assigning a probability value instead of a “hard” label is known

as “soft” segmentation. In our case, the combination of a “soft” segmentation with

a dynamic threshold determination based on image information demonstrated to

bring more repeatable and robust results than a conventional “hard” segmentation

where a specific label is assigned to each pixel [Chen 2007].

The soft segmentation step, in fact, impedes to have a priori exclusion of some

pixels that can result to be useful according to a higher-level classification or seg-

mentation criteria. The error due to “hard” decision, instead, cannot be changed

and bring difficulties for image analysis.

A hard classifier such as ADABOOST [Schapire 1990] was also experimented but

the described drawbacks make it less suitable for such application. This learning
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Figure 4.3: Color distribution in L ∗ a ∗ b space. The yellow and blue values are depicted

by the same colors whereas black is used for the background. The two ellipses

represents the iso-contours of the Gaussian distributions corresponding to a

confidence of 90%.

algorithm learns the boundary which best divides (with the greatest clearance) the

background from the foreground according solely to the training set. If a case was

not “seen ” during the training, the classification could fails make it necessary to

learn the markers color in different scenarios according to the operation which is

carried out.

On the other hand, in a probabilistic approach, if the color is slightly different

from the model the response would be weaker but thanks to a dynamic threshold

such information can be recovered (and not negatively labeled from the off). How-

ever, a minimum threshold should be settled anyway to be able to determine when

the instrument is absent.

A color-based segmentation, though, loose its effectiveness if the captured color

changes during the video sequence or in cluttered environment where other object

can have the same color. In these cases, solutions have been proposed either updat-

ing the color model [Raja 1998] or considering the structure of the object itself or

border information [Moreno-noguer 2003].

However, the most critical issue for color-based segmentation is, obviously, when

the color information is corrupted or totally absent. As already pointed out at the

beginning of this section, the strong illumination degrades the color information

even causing strong specular reflectance on the body of the instrument removing

any color information.
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4.1.1 Effect of Specular Reflectance

When the specular component of the reflected light hitting the camera sensor is of

high intensity, the sensor saturates and a white region is formed in the image at the

portion of surface responsible of that specular reflection.

As described before, the light is emitted by two punctual sources very close to

the camera which provides high intensity in the center of the observed scene letting

the border regions darker. The material of the instrument is very reflective, but even

using matte painting for the markers, the high intensity of the light illuminating the

center of the scene corrupts the instrument image showing wide white zones on the

colored markers.

However, assuming that the bendable part of the instrument is a torus, its

apparent contours correspond to physical points where the normals to the instrument

surface are perpendicular to the line of view. Thus, the rays of light hitting that

portion of surface cannot be reflected directly to the camera sensor which will collect

only the diffuse reflection component for that portion. It can be stated, then, that

the white zones deriving from direct reflectance are only present in the “middle” of

the imaged instrument when it is exposed to direct high intensity illumination. As

a result, each marker is partitioned into, at most, two yellow/blue parts.

This decomposition of the instrument body and the issue of distinguishing the

instrument region by other regions with the same colors (false positive) brings to

the need of a specific classification stage. It has the role of “understanding” each

detected region recognizing which of them really pertain to the instrument and, in

that case, to what marker they pertain.

4.2 Regions Interpretation

Looking at the aspect of the instrument and considering only the color, we decided

to described the instrument as a multi-part object formed by the ordered sequence

of the colored markers from the base to the tip. However, due to light saturation,

the appearance of these parts may change due to the division of a single marker in

multiple regions.

A post-processing stage, then, is needed to classify the real object parts with

the right order (based on a topological criterion) and taking into account possible

parts variations.

Global optimal solution methods such as Graph-Cuts or hierarchical structure

do not fit exactly the problem due the complexity (or impossibility) of defining (and

optimize) a global cost function that takes into account order relationship. Further-

more, the shape and the appearance of the instrument is subjected to changes during

the operations and, for this additional reason, pictorial structure [Felzenszwalb 2005]

based methods cannot be straightforwardly applied to our case and would return

high score false positives due to the effect of specularities.
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Figure 4.4: Tree building with the specified connectivity. In case 1 the branch is not created

since it does not fulfill condition 1, whereas cases 2 and 3 does not respect

condition 2 since the orientation of the possible branch strongly differs from

the preceding outline. This prevents connecting outliers (case 2) and forming

internal loop which correspond to physically unfeasible configurations (case 3).

We propose here to simplify the problem and solve it locally, in two steps: firstly,

a tree is created according to the regions topology and, secondly, that tree is pro-

cessed till obtaining a directed path from the base (the root) to the tip marker (the

unique leaf).

To build the tree, a neighboring connectivity (4- or 8-connected) is not suffi-

cient to determine the correct relationship between the regions and, consequently,

the right order. Therefore, a new connectivity is defined, based on two structural

characteristics of the bendable section:

1. The markers are adjacent to one another alternating between blue and yellow

2. The centroids of the different markers in the image should lay on an hyperplane

whose tangent at each point should not present strong discontinuities.

More specifically, starting from the root, a new node is connected to its parent only

if it satisfies these two properties, i.e. assuring the alternation of colors and avoiding

strong discontinuities on the orientation of subsequent branches (Fig. 4.4). Building

the tree this way allows to order the regions from the base to the tip and to have,

on each generation (cfg. Fig. 4.4), all the candidate regions associated to the same

marker.

Moreover, for each generation, the nodes are considered 2 by 2 and a putative

node is created which represents the region resulting by the possible fusion of the

two considered regions, eventually providing the tree in the first line of Fig. 4.6.
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Figure 4.5: The appearance of each marker can be represented by two factors: one shape

factor and a topological factor. The first is defined as the length and width of

each marker according to its principal axis (left) and the second as the distance

from the considered marker and its parent (right).

The final aim, though, is to obtain the directed path composed by the markers

of the bendable part of the instrument. For pruning the tree, a time consistency

criterion is used, assuming that from one frame to the following, the shape of the

markers substantially stays unchanged.

To exploit this consideration, two marker descriptors are proposed to be taken

into account:

• a shape factor depending on the second order moments of the region (computed

along its principal component directions);

• a topological factor depending on the distance of the considered node (real or

putative) from its parent node (=region).

These two factors are modeled as stochastic variables. Defining a as the event of

being a particular marker A, s the event of having a particular shape S (shape factor)

and d the event of having a specific distance D from the parent node (topological

factor), the shape/topological frame-to-frame similarity can be defined in terms of:

p(A|S,D).

As a first approximation, we can consider both shape and topological events as

Gaussian processes which can be defined as:

p(S(1)|A) ∼ 1

2πσ
(1)
sa

exp(−(si − µ
(1)
sa )

2

2[σ
(1)
sa ]2

) (4.1)

p(S(2)|A) ∼ 1

2πσ
(2)
sa

exp(−(si − µ
(2)
sa )

2

2[σ
(2)
sa ]2

) (4.2)

for the shape (Fig. 4.5(a)) and

p(D|A) ∼ 1

2πσda
exp(−(di − µda)

2

2σ2
da

) (4.3)

for the topology (Fig. 4.5(a)), where µ and σ are respectively the mean and the

standard deviation of the observed values of, respectively:
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• the euclidean distance from the father region centroid (µda ,σda)

• the second order central moment computed along the principal components

directions of the specific marker (µ
(1)
sa ,σ

(1)
sa ) and (µ

(2)
sa ,σ

(2)
sa ).

These quantities are specific for each marker from 1 to 5. To take into account

the variation of size and shape during instrument movement, these parameters are

updated at each frame considered the observations on the last 10 frames.

Except for the root, the joint probability value of each region (putative or real)

of being marker given the shape and topological observation can be considered as

the reward associated to each branch of the tree:

p(A|S,D) ∼ 1

2
(p(S(1)|A) + p(S(2)|A)) p(D|A). (4.4)

The tree pruning, then, can be solved generation by generation (see Fig. 4.6) by

selecting the branch with the highest probability. If the chosen branch is associated

to a putative node, then, the two involved nodes are deleted and substituted by

the putative node where the centroid and shape factor are computed for the region

resulting from the merging of the two involved regions. Subsequently, the tree

structure and the branches values are updated.

If, in one generation, there are more than 2 candidates then the process is iterated

till no better (i.e. with higher probability) solution can be found.

At the end of this process, the tree will be the sequence of the 5 centroids

coordinates ordered from the base to the tip of the bendable section (see second

step of Fig. 4.7 with the corresponding labeled image).

4.3 Bézier Curve Representation of the Borders

Once the ROI and the skeleton (composed connecting the marker centroids) have

been determined, the idea is to exploit that information to retrieve the superior and

inferior apparent borders of the instrument so as to look for the color transition

along them (see Sec. 4.4).

The conventional edge detection methods usually return a cloud of points which

usually must be post-processed to eliminate outliers and select only the wanted

edges.

Parametric curve fitting can be used to smooth contours extracted from local

maximum gradient extraction, thus providing sub-pixel precision, and helping re-

jecting outliers. According to several test on synthetic data, we decided to use

quadratic Bézier curves which resulted to be sufficient to represent the apparent

borders of the projection of a torus, at least from the particular point of view of the

considered endoscopic system. Therefore, we propose here a complete framework

for robustly fitting Bézier curve to bidimensional data using an M-estimator.
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Figure 4.6: Scheme for the tree updating process. At each generation, the branch to whom

the maximum likelihood is associated is selected (highlighted in green). If, as

in the represented case, the most likely branch is that of a putative node (i.e.

the node representing a fusion of two regions. The nodes of the corresponding

two regions are deleted and the putative node turn into a real node. If the

generation presents more than two regions, the new nodes and branch values

are computed and the process is repeated on the updated tree (third line)
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A Bézier curve of degree n is a parametric curve defined as follows:

B(t) =
n∑

i=0

bi,nβi (4.5)

where the polynomials

bi,n =

(

n

i

)

ti(1− t)n−i, i = 0, 1, ·, n (4.6)

are the Bernstein basis polynomials of degree n. The points βi are the so called

control points of the curve. The polygon formed by connecting the control points

from β0 to βn is called the control polygon and the resulting curve is contained in

the convex hull convex hull of the control polygon.

The best fitting Bézier curve can be defined in several manners depending on the

objective function. The objective function must be chosen properly and, especially

in computer vision problems, with particular attention to the robustness it confers

to the estimation. Different measures of robustness are proposed in the literature,

but the most common are the breakdown point and the influence function. The

former represent the minimum fraction of outlying data that can cause an estimate

to diverge arbitrarily far from the true estimate. The latter is the change in an

estimate caused by the insertion of outlying data as a function of the distance of

the data from the (not corrupted) estimate.

The ideal situation for a robust fitting is having a breakdown point of 0.5 and

an influence function which tends to zero with increasing distance. The breakdown

point cannot achieve higher values because, when more than the half of the data

are “outliers”, it is impossible to determine which ones are the true data to fit.

The commonly used estimators become, then, insufficient to get a robust fitting,

according to these two indicators. Indeed, in the case of least mean square (LMS),

a single bad point can bring the solution far from the real fitting (i.e. breakdown

point equal to 0) and the influence of a point is proportional with its distance. An

alternative (not ideal though) is using least absolute deviation as fitting quality

function which presents a bounded influence function (it is the derivative of a piece-

wise linear function).

A robust solution in computer vision is represented by M-Estimators, which

are a generalization of Maximum Likelihood Expectation and Least Squares. We

propose, here, a possible formalization for computing the “best” fitting Bézier curve

using M-estimators.

4.3.1 M-estimator for Bézier Curve Fitting

Let X = {xi} be a set of data points and let a a k-dimensional vector of the

parameters to estimate. The M-estimate of a is

â = argmin
β

∑

xi∈X

ρ(ri,a/σi) (4.7)
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where ri,a is the error distance or residual function relative to xi and ρ(q) is a robust

loss function that grows subquadratically and is monotonically nondecreasing with

increasing |q|. In addition, σ2
i is the variance (scale) of the scalar value ri,a.

The solution in (4.7) is solved by finding a such that

∑

xi∈X

ψ(ri,a/σi)
dri,a
da

1

σi
= 0 (4.8)

where ψ(q) is the derivative of ρ(q). The same problem can be translated in solving

∑

xi∈X

w(ri,a/σi)
dri,a
da

1

σi
ri,a = 0 (4.9)

where w is a particular weighting function such that w(q)q = ψ(q). This leads to

a process known as “Iterative Re-weighted Least Squares” (IRLS), which alternates

steps of computing the weights wi = w(ri,β , /σi) using the current estimate of the

parameters and solving (4.9) to compute a new a with given weights.

Following the M-estimator approach, an objective function can be conceived to

fit the Bézier curve on the extracted borders:

nb∑

ib=0

ρ(Bx(tbi ,βx)− p
(x)
bi

) +

nb∑

ib=0

ρ(By(tbi ,βy)− p
(y)
bi

) (4.10)

where βx and βy are the vector of the x and y coordinates of the control points:

βx = [β
(x)
0 ,β

(x)
1 ,β

(x)
2 ]

βy = [β
(y)
0 ,β

(y)
1 ,β

(y)
2 ]

and pbi
= (p

(x)
bi

, p
(x)
bi

)T are the superior (inferior) detected border points, and tb is the

parameter of the Bézier curve such that B(tbi ,β) is equal to pbi for some β that must

be found. Comparing (4.10) with (4.7), the vector of parameters a is represented

by the coordinates of the Bézier control points a = [β0xβ1xβ2xβ0yβ1yβ2y ]
T and the

residuals are expressed as the distances along each coordinates of corresponding

points ri,a = [Bx(tib ,βx)− p
(x)
bi

, By(tib ,βy)− p
(y)
bi

]T .

As previously stated, this could be solved by means of the IRLS algorithm but

thanks to the adopted formalism with Bézier curves, a closed form solution can be

found for (4.9) once the weights are known.

A matrix form solution is presented here to find the best fit according to the

M-estimator framework.

Rewriting the Bézier curve (4.5) as

β0 + t(−2β0 + 2β1) + t2(β0 − 2β1 + β2)

it can be expressed, for each coordinate (x or y), in a matrix form as:

Bx(t) = T C βx
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where C is the matrix of the Bézier coefficients:

C =

⎡

⎢
⎣

1 −2 1

−2 2 0

1 0 0

⎤

⎥
⎦

and each line i of T is composed by [t2bitbi1] corresponding to each detected point i.

For a quadratic Bézier curve (n = 2), the lines defining the control polygon

are the tangents to the Bézier curve in the first and last control points. As the

Bézier curve must fit the border points, it is plausible to state that ideally the

control polygon must be tangent to the apparent borders at its terminal points.

This property indirectly suggests that the first and last control point must lie on

the terminal parts of the apparent superior and inferior contour of the object.

This characteristic allows to define the different tb as the curvilinear coordinate

over the curve connecting all the points in the given order. Its value will be 0 for the

first (superior/inferior) border point and 1 for the last. A proper way to compute

these values is assigning:

tib =
|di − di−1|

∑nb

i=1 |di − di−1|

where {

d1 = 0

di =
∑i

j=2

∥
∥pbj − pbj−1

∥
∥
2

Thus, at each iteration and for each coordinate x and y, the β solving the least

square problem is defined as:

β(j+1)
x = argmin

βx

n∑

i=1

w(j)
∣
∣
∣p

(x)
bi

− TiCβx

∣
∣
∣

2
= ((TC)TW (j)(TC))−1 (TC)TW (j)p

(x)
b

where p
(x)
b is the vector containing all the x-coordinates of the detected border

points and W is a diagonal matrix gathering the weights computed at step j for

each border point. The problem has a closed form solution and the new weights can

be computed after each IRLS iteration.

Considering that the whole a = [β0xβ1xβ2xβ0yβ1yβ2y ]
T is taken into account and

permitting an over-definition of the variables, the whole problem can be defined (and

solved) in a matrix way by composing the matrices defined so far. Thus, new Ti is

[t2ibtib1 0 0 0] for residual along x-coordinate and Ti = [0 0 0 t2ib tib1] for ones along y;

the matrix of coefficient

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −2 1 0 0 0

−2 2 0 0 0 0

1 0 0 0 0 0

0 0 0 1 −2 1

0 0 0 −2 2 0

0 0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Figure 4.7: Steps of the feature extraction. (1) GM are used to select blue and yellow

regions. (2) Creation of the tree using the specified connectivity: Branch 2

is not created since it does not fulfill condition 1, whereas branch 1 does not

respect condition 2 because the orientation of this branch strongly differs from

the preceding outline. The tree is finally processed to get a directed path. (3)

The skeleton is used for searching border points. These are fitted with Bézier

curves along which color discontinuities are searched and considered as corners

(4).

At each iteration, then, the searched β is

β(j+1) = ((TC)TW (j)(TC))−1 (TC)TW (j)a.

Thanks to this formalization and solution by M-estimator, a continuous repre-

sentation of the border can be computed which is able to filter the outliers due to

image noise of miss-detection (see Sec 4.5).

4.4 Overview of the whole process

4.4.1 First Stage: Candidate Regions

For any new frame the L*a*b representation of each pixel is retrieved and its prob-

ability of being either yellow or blue is computed according to the built Gaussian

Models.

Subsequently, the image is labelled (yellow / blue / background) according to

two thresholds (one for blue and one for yellow) iteratively computed to assure a

reasonable number of candidate regions according to the considerations on light

saturation and markers division: at most 8 yellow and 6 blue regions. The initial

thresholds are increased (or decreased) if the number of binarized regions is higher

(or lower) of the admitted quantity.
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entering direction

Figure 4.8: The green line represent the estimated instrument entering direction. The first

yellow marker encountered walking along this line is considered to be the root

(i.e. the first marker) of the tree.

A further control is performed to check if each connected region actually pertains

to a single marker. The convex hull of each binary region must contain, in prevalence,

one color only (it may contain background or neighbor marker little portion). If it

is not the case it means that two different markers resulted in only one region which

must be divided by an erosion.

4.4.2 Second Stage: Image Interpretation

For building the tree, the root node must be firstly detected. Actually, it can be

defined as the first yellow marker encountered walking through the projection in

the image of the instrument tube which precedes the bendable part (cfr. Fig. 4.8).

Indeed, in STRAS the axis of the passive part of the instruments wrt the camera

is constrained by the mechanical structure and its projection in the image can be

coarsely estimated. This defines the entering direction of the instrument in the image

which may vary during the operation for example when the tip of the instrument is

pushing and organ. To be robust to these possible entering direction variations, the

root position at step i is used to define the direction along which searching the root

at step i+ 1.

Moreover, the marker associated to the base of the bendable section (the root

of the tree) is generally well detected because it lies in a part of the workspace that

does not receive much direct illumination.

The tree is then built and processed till obtaining the sequence of the 5 centroids

coordinates ordered from the base to the tip of the bendable section.

4.4.3 Third Stage: Apparent Borders extraction

At this stage, a local approach is adopted to extract the upper and lower apparent

borders of the instrument. The skeleton obtained by connecting the ordered cen-

troids is evenly sampled and gradient magnitude local maxima are searched along

the normal to the skeleton. The candidate contours points are selected according to



82 Chapter 4. Extraction of Features for Pose Estimation

their gradient direction (along the normal to the skeleton) and their position (near

the boundaries of the labelled image obtained in the previous step).

More in details, for each ordered couple (ci, ci+1) of subsequent centroids, the

segment connecting them is uniformly sampled and for each sampled point, a line

gi,j is built, which passes through this point and which is perpendicular to ci+1 − ci

(see step three in Fig. 4.7). The instrument edges can then be defined as composed

by the points satisfying the following three properties:

• Being a local maxima in the gradient magnitude (computed along x and y of

each RGB channel) along gi,j.

• The orientation of the gradient of the candidate point should be close to the

orientation of gi,j relative orientation between the phase of the gradient of

the candidate point and the direction of gi,j should be within a little interval

around zero.

• The candidate point should be contained within the crown defined around the

final binary image obtained in the previous step. Such crown can be obtained

by subtracting the binary erosion of the image obtained in step two (Fig. 4.7)

to its dilation: this results in a thick crown where most probably the borders

are.

Along each gi,j the outline of the gradient is analysed and the local maxima are

recorded both in upper and lower directions.

Once collected all the upper and lower border candidate points, only those re-

specting the three aforementioned properties are kept. If some ambiguity is still

present, the furthest pixel from the ci+1 − ci segment is chosen. In fact, when walk-

ing along gj from the centroid to the outer zone, two peaks in the gradient can be

encountered if the marker in question is affected by saturation: from white (satu-

rated) central zone to yellow (blue) marker and from yellow (blue) to the background

color. But only the external transition is the one describing the apparent border.

4.4.3.1 Bézier Fitting

In fitting the borders, the outliers have small residual magnitude, therefore a strong

rejection of outliers has been adopted. This can be achieved with the so-called “hard-

descenders” whose loss functions quickly tend to zero outside a certain threshold.

One example is the Beaton and Tukey loss function [Beaton 1974] (Fig. 4.9) but,

unfortunately, this usually means that the objective function is non convex, imply-

ing that the IRLS method can converge to a local minimum. Furthermore, using

Beaton and Tukey function still implies a breakdown of 0 due to possible leverage

points [Stewart 1999]: outliers positioned far from the remainder of the data in the

independent variables as well as far from the fit to the uncorrupted points. How-

ever, thanks to a good initialization and, especially, to the formalization with Bézier
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Figure 4.9: In blue the loss function known as Beaton and Tukey and in red the corre-

sponding weight function.

curves, non-sense local minima can be avoided and higher breakdown values can be

achieved. In fact, the order of the extracted edge points and the topological infor-

mation (where the border begin and where it ends) give further information that

have been integrated in the optimization thanks to how the t parameter of Bézier

curve is computed.

According to Beaton and Tukey loss function, the updated weights can be cal-

culated as:

w(j+1) =

⎧

⎨

⎩

[

1−
(
r/σ
c

)2
]2

, |r| ≤ c

0, |r| > c

If the scale σ of the residuals is not known a priori, it can be estimated (and, if

needed, re-estimated after some iterations) in several manners. The most adopted

and less sensitive to noise is taking the median of the residuals. Optimal c must be

chosen according to the application (even though suggested values exist). Here the

value c = 1.5 pixels seems to be the most appropriate.

4.4.4 Fourth Stage: Corner Localization

To finally extract the markers corners, the color transitions along the Bézier curves

should be found. Since blue and yellow are complementary colors, the boundaries

between two consecutive markers appears on the image as a gradual transition from

yellow to blue (or vice-versa), provided the absence of overexposure (where color

information disappear).
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As a first approach, one may think to use the probability images resulted by

the application of GM and search the local minima along the mentioned curves.

Although, the pixels pertaining to the intermarkers frontiers does not fit any of the

GM and, therefore, the resulting probability image present wide low value regions in

correspondence of these frontiers. Thus, searching the local minimum on this wide

flat valley would have no sense and surely lead to corners mislocation.

For this reason, in this step, we consider again the L ∗ a ∗ b image. As yellow

and blue are defined in opposite position along the b axis of the L ∗ a ∗ b color

representation, the same gradual color transition between two markers should be

observable in the b channel of the image. In other words, in correspondence of

yellow marker there would be a high b value which smoothly decreases in the blue

zone. Considering the origin of the b axis as the frontier between the yellowish and

bluish colors, the intermarker frontier points (i.e. the marker corners) can be defined

as the zero-cross points of b values along the superior or inferior borders.

To help the detection of such point avoiding possible outliers, the binary masks

of the yellow and blue markers (Fig. 4.10(c)) are used to limit the region where to

search the color transition points (Fig. 4.10(d)). Finally, the outline of the absolute

value of the b signal along the border (blue line in Fig. 4.10(d)) is retrieved (Fig.

4.10(e)) and the global minimum is computed (which is equivalent to the zero-cross

point) leading to the final result in Fig. 4.10(f).

If the interpolated line does not overlay the transition (for example when a more

external border is detected) the corners are retrieved in another way. By realizing a

weighted interpolation between the two Bézier borders, one obtains a set of similar

curves inside the instrument image which cross all the markers (Fig. 4.11(a)). The

previously defined blue-yellow transitions are then searched on these lines (Fig.

4.11(c)), hence providing a sampled version of these transition limits (Fig. 4.11(d)).

An average tangent direction of the upper-most (resp. lower-most) points of each

blue-yellow limit is then computed to estimate the direction of the limit near the

borders (green line in Fig. 4.11(d)). The intersection with the upper (resp. lower)

border then gives the upper (resp. lower) corner point for each transition.

For the corners corresponding to the tip, the same procedure described in the

third stage is employed. Since no skeleton information is available in the last seg-

ment, the g5,j are built using the same inter-distance and direction of g4,j . This

is repeated till detecting the absence of yellow information. The last point of the

superior and inferior border points are taken as the final corners.

4.5 Results and Comments

Using Bézier curves has, in fact, a triple purpose: obtaining a continuous represen-

tation of the borders with consequent sub-pixel precision, filtering the outliers of

the local gradient-based border detection and complete the possible missing infor-
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Figure 4.10: Detection of transition points for a particular region in (a). In (b) the abso-

lute value of the b channel of this region is shown. The space between two

consecutive segmented markers (shown in (a)) is used to limit the searching

zone of the corner as in (d). The chrominance values on the marked profile

are shown in (e) where the global minimum is taken as the limit between the

two markers obtaining the result in (f).
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Figure 4.11: Detection of transition points for a specfic region when a more external upper

boarder is detected. In (b) other Bézier curves are computed interpolating the

upper and lower borders and the blue/yellow profile along them are computed

in (c). The intersections between yellow and blue profile are computed over

these lines. An average direction is computed (green line in (d)) and the

intersection of this straight line with the outer border is considered to be the

corner location.

mation. These last two properties are not that noticeable in controlled environment

but they become more useful in in-vivo environment. To study these capabilities,

two artificial cases are artificially generated: the first where 60% randomly chosen

detected border points were randomly misplaced within a range of
√
152 + 152 pixels

and the other where some randomly chosen misplaced border points (60% of them)

were deleted. The results are shown respectively in Fig. 4.12(a) and Fig. 4.12(b).

The analysis of the breakdown point shows, somehow, the plausibility of the

constraints on the control points and the effectiveness of the whole algorithm. Even

though a strong noise (50 pixels) is added to the 30% of the detected points, the

IRLS solution (cyan curve in Fig. 4.12(c) ) is not affected. This is thanks to

the synergy between the outliers rejection capacity of the Beaton and Tukey loss

function with an added robustness (in terms of breakdown point) thanks to the

Bézier formalization and implicit constraint of considering the first and last control

points to be near to the first and last detected border points.

The same figure also shows the comparison of this method with a classical least

mean square solution highlighting the good quality of the proposed solution even

with highly corrupted information.

However, this last constraint is the bottom line of such formalization. When

the initial and ending points of the detected borders are strongly misplaced, the

algorithm needs the other border information to be correct and dense to succeed

(Fig.4.13(a) and (b)).

The same process has been used in in-vivo cases showing good results in free

space without occlusion and demonstrate to be quite robust to strong specularity

effects (Fig. 4.14) and mirroring effect on the organs (Fig. 4.14(c) and 4.14(d)).

As it does not take into consideration any template of the object nor multiframe

analysis, the evident limit of this approach is occlusion (Fig. 4.14(f) and 4.14(e))

which should be taken into consideration in future work (see 7.2).
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Figure 4.12: Bézier curves efficiency in presence of outliers or non dense information. In

(a) a random error was added to 60% of the detected border points (showed in

red). In (b) only 40% of the points (with randomly added noise) are considered

in the Bézier curve fitting. The green line is the optimal curve and the green

rings are the corresponding control points. In (c) the IRLS and conventional

LMS are compared when strong outliers are present in the border detection.

(a) (b)

Figure 4.13: Bézier curve seems to be more sensitive to noise if all the initial and ending

points of the apparent border are strongly misplaced (a). A higher density

(even though with noisy points) is requested to mitigate this effect and have

a good representation (b) .
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: In-vivo results of the presented method. The green dot is the reprojection of

the center of the grasper. In (a), despite the strong specularities the instrument

structure is recovered. In (c) and (d), thanks to the local border extraction

and the Beaton Tukey loss function the outliers are eliminated and the real

instrument is correctly discriminated from its reflection on the organ. In (e)

and (f) the segmentation process partly fails for the lower border because the

instrument is hidden.
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Introduction

Once chosen the suitable features, two opposite approaches have been studied to

determine strengths and weaknesses of each of them in the purpose of pose estima-

tion.

Firstly, a model-based approach is described which considers some a priori infor-

mation about the mechanical structure of the system and the shape of the instrument

to compute the extrinsic parameters of the endoscopic camera and, consequently,

the entire pose of the instrument.

Secondly, a learning based method is presented which considers the image to pose

system like a black box where the relationship between two quantities can be learned

provided that they are measurable and a set of this input-output measurement is

available.
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For the model-based approaches, the model of the object geometry is supposed

to be known and the features of interest are usually geometric (vertexes, edges,

distances between vertexes, ...). A complementary problem, then, is to find the

correspondence between the 3-D model features with all or part of the corresponding

2-D image features. This process is referred to as interpretation or correspondence

problem [Doignon 2007]. Once this correspondence has been solved, the best pose

is defined in term of a chosen similarity criterion between the projected 3-D features

and the 2-D features.

Many works have been presented on this topic with simple shape rigid objects

[Doignon 2007]. Fewer solutions, instead, have been proposed regarding articulated

[Hel-Or 1994] and shape varying objects [Croom 2010, Padoy 2012] even though,

nowadays, this topic has acquired a superior interest also because of the increasing

use of flexible tools in many applications.

In our work, the pose estimation problem is seen as the dual problem of an image

based visual servoing [Marchand 2002]. Assuming that the kinematic and camera

models are known, for a given instrument configuration, a synthetic (virtual) image

of the flexible instrument can be computed. The aim, then, will be to find the pose

that minimizes the visual measurement error between the virtual and actual feature

points. This has not a closed-form solution but can be solved iteratively by moving
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the virtual camera towards the real one along the (locally) best direction given by

the minimization process.

In part I the correspondence problem has already been addressed and in this

chapter the attention will be seeking a solution as an optimization problem.

As a first hypothesis, the geometrical mechanical model of the system is con-

sidered to be known (Sec. 5.1). However, since the system is designed with a play

between the channel and the instrument so as to allow the instrument to smoothly

slide inside it, a second model is used so as to improve the pose accuracy (in sec. 5.2).

This extended model takes into account the described variability on the parameters

defining the instrument position and orientation.

With a single view, the accuracy of the extrinsic parameters estimates relies on

the ability to extract the perspective effect in a reliable fashion from the imaged

3-D objects. Sometimes, the noise or the partial view of the instrument (and con-

sequently partial visual information) can affect the correctness of the estimation

because the visual information is insufficient or ambiguous. To overcome such is-

sues, multi-frame continuity and coherence with the motor data can be taken into

account (sec. 5.4).

The approach is firstly validated with synthetic data and then tested on our

robotic experimental cell and on a manual version in in-vivo scenario.

For the rest of this chapter, the following notation is used: Pi indicates any

3D point coordinates of the i-th section in the camera frame, Pi,u and Pi,l are the

3D upper and lower points of the i-th section, where i = 1 is the base and i = 6

is the end of the bending part. Furthermore, P = [P1,u · · ·P6,u,P1,l · · ·P6,l]
T ,

Pu = [P1,u · · ·P6,u] and Pl = [P1,l · · ·P6,l]
T . The same notation but with a little

p will be used to express the coordinates in pixels of the same points projected in

the image. The hat symbol (̂·) is used for the estimated values.

5.1 Fixed Mechanical Model Parameters

As announced, a first solution is to consider that the mechanical structure param-

eters are totally known and that the only movements of the instrument are due to

its 3 DOFs (λ,φ, θ). This approach is inspired of that of [Reilink 2012], where they

adopt a visual measurement error based on the centroid of 4 markers attached to

the instrument (3 on the bendable part and 1 on the instrument).

Translating this very approach to our case (no markers on the tip and corner

related features), the problem would be to find:

r = argminχ2

where the considered cost function χ2 can be written, for N image points, as :

χ2 =
1

2

N∑

i=1

wi [pi − p̂i(r̂)]
2 . (5.1)
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For each feature point, the following well known relation can be written:

ṗi(r) = Li(r)ṙ, (5.2)

where Li is the extended image Jacobian as defined in the precedent chapter. Once

stacked all the Li into what can be called the global extended jacobian matrix L,

the optimization problem can be solved iteratively by Gauss-Newton approach as

proposed in [Reilink 2012]. From given initial conditions, the correction to apply to

r at iteration n to decrease the visual measurement error is calculated as follow:

δr = cL†
W e = c (L̂TWTWL̂)−1WTWe (5.3)

where e is the visual measurement error (a column vector containing the 2D errors

pi − p̂i(r̂)), LW
† is the weighted Moore-Penrose pseudo inverse of an approximation

of the global extended jacobian matrix (L̂), c is a fix gain and W is a weighting

matrix. The interest of having a weight associated to the measurement error is

the possibility to weight the confidence associated to some feature wrt to others.

In [Reilink 2012], they empirically determined that the information associated to

the tip worth higher confidence (somehow confirmed by our preliminary sensitivity

study) and, therefore, W is a diagonal matrix with all ones except for those entries

corresponding to the coordinates of the upper and lower points of the tip where it

is set to the value 4.

In simulation, where the model used to create the reference image is the same as

the one used for the optimization process, this approach has very nice results either

using marker centroids (as in [Reilink 2012]) or the corner based features proposed

in chapter 4.

The limits of this approach show up when applied in real contexts: observing

the results in Fig. 5.1(g), it can be noticed that the image corresponding to the

best configuration (in the terms of minimizing the cost function) is not coinciding

with the original endoscopic image. To confirm that the obtained solution were

not local minima, several starting configurations have been considered. Taking into

account the last row case (cf Fig. 5.1), using the different initial conditions listed in

table 5.1 the optimization process leads to exactly the same result both in terms of

residual error (root mean square error computed considering the distances between

extracted corners and estimated corners) and robot configuration. This suggests

that the found solution is not a local minimum1.

As one can expect, the bad convergence in the image is confirmed by high errors

in the estimation of the 3D position of the tip of the instruments: in a test sequence

of 116 images where the Ground Truth (GT) was made with a electro-magnetic (EM)

tracker attached to the end of the bendable part, the resulting RMS deviations are

3.16, 4.54 and 5.45 mm respectively for x (horizontal), y (vertical) and z (depth)

coordinates in the camera frame. These visual and numerical results suggest that

1Alternatively, it could be a local minimum with a wide attraction basin.
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Initial Conditions 2D error Estimated Pose

(λ [mm], φ [deg], θ [deg] ) [pixels] [λ,φ, θ]

[40, 0, 50]

[10, 10, 0]

[20,−90, 90] 13.12 [24.78 79.66 5.44]

[30, 90, 30]

[50,−20, 15]

Table 5.1: This table shows, in its first column, the configurations used to initialize the op-

timization algorithm (described in section 5.1) for a specific case (cf. last row of

Fig. 5.1). The initial condition, in this case, seems not to affect the final solution

both in term of image residuals (2nd column) and estimated configuration.

some of the hypotheses made are not reliable either on the geometric or on the

camera model.

The low reprojection error obtained during the camera calibration (RMS error of

[0.48 0.49] pixels over 15 different points of view) suggests that the large error in the

image space cannot be linked only to a poor camera calibration. The main reason,

then, seems to be an incorrect geometrical model and, consequently, we decided to

extend this model by incorporating new “spurious” DOFs corresponding to those

mechanical parameters whose real values are difficult to measure correctly or can

vary during the manipulation due to the described mechanical plays. These DOFs,

that will be called mechanical DOFs, are the position of the instrument channel exit

([xch, ych]) and its orientation (angles (ψ, µ)), both wrt to the camera.

5.2 Variable mechanical parameters

With the will of including the four mechanical DOFs, a new vector of DOFs can be

defined as re = [xch, ych,ψ, µ,λ,φ, θ]
T (cf. Fig. 3.1(a) and (b)). The zch coordinate

is considered to be constant and equal to the nominal value. In fact, considering

the possible movements along zch would be redundant with variation of the λ DOF:

variations of zch (ceteris paribus) only regulates how much the instrument exit its

housing channel which results to be similar to the effect achieved with variation of

λ.

When the number of parameters to estimate increases, the probability of run

into local minima increases as well. In addition to that, even when there are more

matches than unknown free parameters, it is often the case that some of the matches

have some relationships which lead to an ill-conditioned problem. In this case, the

considered parameters are not totally independent in terms of effect on the image

features: one needs only to consider, as example, xch and ψ parameters which both

produce an horizontal apparent displacement in the image.

Within this context, Gauss-Newton’s method as described above can present
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Figure 5.1: Reprojected instrument borders (green spots) after the optimization process.

The reference image features are the markers apparent corners (red spots). On

the left the result considering the theoretical CAD parameters. On the right

the solution with some tolerances on the mechanical parameters.



98 Chapter 5. Model-Based Pose Estimation

some problems of convergence. Thus, to assure convergence and speed up the opti-

mization process, a Levenberg-Marquardt (LM) approach has been chosen instead

of the described Gauss-Newton.

The formalization is exactly the same with the only difference that the proposed

optimal step is a combination of the Gauss-Newton solution with a gradient steepest

descent step. The combinatorial weights ∋ are varying according to the cost value

at each iteration: if, with the computed step, the cost χ2 decreases ∋ is divided by

a factor greater than 1, whilst, on the contrary situation, the weight related to the

gradient descent is increased. The equation (5.3) becomes:

δr = c (L̂TWTWL̂+ νI)−1L̂TWTWe. (5.4)

5.2.1 Managing the mechanical parameters

In addition to the adoption of LM, with the aim to improve the results and limit

local minima due to partial redundancy on some parameters, prior constraints can

be introduced to define the default to use in case of absence of further information

[Lowe 1991]. Lowe proposes to add these constraints to the previous system of

equations (5.2), obtaining2:
[

I

L

]

ṙe =

[

d

e

]

where the identity matrix I add one row for each parameter whose displacement can

be specified a priori and the vector d collects all the desired default displacement

values of each parameter. The problem in such solution is that there is no specifi-

cation on the trade-offs between meeting the default values or the actual external

constraints coming from the image. The solution proposed in [Lowe 1991] is to

weight each row so that each element on the right-hand side has the same standard

deviation: [

W

L

]

ṙe =

[

Wd

e

]

where W is a diagonal matrix whose elements are the inverse of the standard de-

viation of each parameter. Doing so, during the optimization step each component

will contribute in proportion to the number of standard deviation from its nominal

value.

For the pose computation of the flexible instrument, no prior information is

available for the 3 DOFs of the instruments, but it can be reasonable to assume that

the actual values of the mechanical parameters are close to their nominal values

defined by the CAD model furnished by the manufacturer (xch = −13.3, ych = 6.2,

ψ = 10◦ and µ = 0◦).

2The notation here is simplified and details will be given later on. L is computed from (5.8)

where 4 blocks are added corresponding to the new DOFs.
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As already mentioned, the variation of the mechanical parameters is mainly

due to the necessary mechanical play between instrument and housing channel.

Constant weights as in [Lowe 1991], then, would not model this phenomena properly:

a mechanical play lets almost a free movement in a small interval around the resting

position whereas the constraints get stronger as it gets far from its resting state

(described by the nominal value furnished by the manufacturer).

A peculiar weighting function, then, is used in the cost function (cf. eq. (5.1))

to maintain the estimation of these parameters (rm = [xch, ych,ψ, µ]
T ) close to

their nominal values r∗m = [x∗ch, y
∗
ch,ψ

∗, µ∗]T . To replicate the mechanical play

description, this weighting function should have almost a “dead-zone” around the

parameters’ nominal values and an increasing steepness as getting far from them.

Furthermore, it must be C1 in its whole domain (R in this case) so as to be used in

the optimization process.

The function we propose is the modulus of a cubic function where dead-band

and steepness are parametrized:

ρ(u) =
kw
3a3

|u|3, a ∈ R
+, kw ∈ R

+ (5.5)

Its corresponding weighting function is:

ζ(u) =

√

kw
a3

|u|, a ∈ R
+, kw ∈ R

+ (5.6)

where kw determines the steepness of the function outside the dead-zone whose

width is defined by parameter a. Going back to the Lowe’s framework, it would

result in:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζ(x∗ch − x̂ch) 0 0 0

0 ζ(y∗ch − ŷch) 0 0 O4×3

0 0 ζ(ψ∗ − ψ̂) 0

0 0 0 ζ(µ∗ − µ̂)

L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ṙe =

[

ζ(r∗m − rm)T (r∗m − rm)

e2d

]

where ζ(r∗m − rm) = [ζ(x∗ch − x̂ch), ζ(y
∗
ch − ŷch), ζ(ψ

∗ − ψ̂), ζ(µ∗ − µ̂)].

From the point of view of the optimization process, the similarity criterion also

changes so as to take into account the weighted distances of the estimated mechanical

parameters from their nominal values. The new cost function to minimize is:

χ2 =
1

2

N∑

i=1

wi [pi − p̂i]
2+ρxch

(x∗ch− x̂ch)+ρych(y
∗
ch− ŷch)+ρψ(ψ

∗− ψ̂)+ρµ(µ
∗− µ̂)

(5.7)

and the new visual measurement error vector is re-defined as:

e =
[

(rm
∗ − r̂m)T e2d

]T
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where e2d is the row vector containing the errors committed on the visual features

(upper and lower corners points) along each image coordinate:

e2d = [(pu,1 − p̂u,1)x (pu,1 − p̂u,1)y · · · (pu,n − p̂u,n)x (pu,n − p̂u,n)y
(pl,1 − p̂l,1)x (pl,1 − p̂l,1)y · · · (pl,n − p̂l,n)x (pl,n − p̂l,n)y]

Since the variable parameters have increased (vector r now include the mechani-

cal parameters), an extended version of the geometrical Jacobian must be considered.

Equation (3.31) now becomes (see Appendix C for the computation details of the

different blocks Ai):

Ṗ = Jgṙe =
[

Axch
Aych Aψ Aµ Aλ Aφ Aθ

]

ṙe. (5.8)

According to (5.8), the global geometrical Jacobian will have at most 24 rows (it

may be less according to the number of the extracted visual feature points) and 7

columns. Considering the same ordering as in the error vector, the first 4 rows relate

the variations of the mechanical parameters rm to the variations of the deviation

from their nominal values (r∗m − rm). Since these quantities depend only on rm

itself, the top left corner of the global Jg (4× 4 matrix) will be the opposite of the

identity matrix. The rest of this matrix is made up of the composition of the Jgi

calculated for each upper (Ji,u) and lower (Ji,l) border point of the i−th section of

the bending part of the instrument. The corresponding weighting matrix is:

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ζ(e1) 0 0 0

0 ζ(e2) 0 0 O4×20

0 0 ζ(e3) 0

0 0 0 ζ(e4)

O20×4 W2d

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

5.2.2 Expressing the error wrt the Bézier curve

Observing more closely the images and the extracted features, it has been seen that

the fitting of Bézier curve gives precise results whereas the exact placement of the

corner point along the Bézier curve turns out to be more complicated. The strong

frontal illumination seems to modify how the color is received by the endoscopic

camera, consequently the inter-marker color transition in the image becomes wider

(or even absent in case of saturation) and, therefore, a sharp limit is more complex to

detect. Therefore, it can be stated that the misplacement error of the corner points

location along the direction of the real border is greater than the one along the

perpendicular direction. This aspect has been included to improve the optimization

result. The idea is to express the 2D error vector (pi − p̂i) wrt a new frame whose

axes are parallel (s∥) and perpendicular (s⊥) to the Bézier curve at the corresponding

feature point (pi) as shown in Fig. 5.2.

This allows to weight differently the two new coordinates according to the ex-

perimental considerations explained earlier.
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x

y

s∥

s⊥

Figure 5.2: Scheme showing the reference frame used to express the visual error on the

marker corners. s∥ and s⊥ are computed analytically based on the expression

of the first derivative of the Bézier curve computed for each instrument border.

This improvement can be smoothly added to the optimization framework ex-

plained so far. Indeed, (3.25) is equivalent to:

Tiṗi = TiJIiJgi
ṙ (5.9)

where Ti is the 2D homogeneous transformation between the image frame and the

local frame associated to the i-th feature point. Thus, for each point pi it can be

written:

δr = c (L̂i
T
Ti

TWi
TWiTiL̂i + νI)−1L̂TTiWi

TWiTiei (5.10)

where ẽ = Tiei is the error expressed in the Bézier -based coordinate frame and

Wi will have different weights for each component. The generalization considering

more than one corner point pi is straightforward.

To compute Ti, the tangent to the points of the Bézier curve must be known.

This can be computed from the curve derivative

B′(t) = 2(t− 1)(F1 − F0) + 2t(F2 − F1)

provided that the value of t corresponding to the considered pi is known.

5.3 Simulation Study

Before applying the algorithm to real video sequences, some simulations tests have

been executed. The aim of these test was simply to verify if the proposed mechanical

parameters tolerances could cope with the uncertainties on the model. Therefore,

no Bézier reference frame is employed. For these tests, two models have been con-

sidered: the first model (correct model) is considered to be the real one and it is

fixed and used to create the virtual reference images (synthetic images substituting
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C (JTWJ)−1JTW
∫

Supposed Kinematic
Model

Camera
Projection

(rm,p)

(r̂m, p̂)

e ṙ

-
+

r̂

P̂

r̂m

Offset

Correct Kinematic
Model

Camera
Projection

P Robot

Configuration

Figure 5.3: Scheme adopted for the simulation where the kinematic model used for the pose

estimation has an offset on rm wrt to the reference kinematic model.

the real endoscopic images) and the supposed model which differs from the reference

model by some error (offset) on the mechanical parameters and which is used in the

optimization process to estimate the 3D pose (scheme of Fig. 5.3). Obviously, the

proposed weighting functions are centered around the supposed mechanical values.

To decouple the effects of the errors, the offset was added either on the channel

position or on the channel orientation with respect to the camera (the cases are

listed in table 5.2, the considered correct values are (xch, ych) = (−13.3, 6.6) and

ψ = −10◦) and µ = 03. For each of the listed cases, the optimization algorithm was

tested on 500 robot configurations and using two different settings for the weighting

function (5.6):

Narrow DB Large DB

kw = 15, a = 1 for both ζch kw = 5, a = 3 for both ζch

kw = 100, a = π/180 for ζψ kw = 10, a = π/60 for ζψ

As suspected, in case of uncertainty on the model (either on the ψ or channel

position), considering a fixed mechanical model does not provide good results neither

in terms of 3D position estimation (Fig. 5.4(a) and (b)) nor in terms of image

convergence (Fig. 5.4(c) and (d)). On the other hand, the proposed method seems

to be able to mitigate the counteracting effect deriving by model uncertainties. A

fundamental role on this method, though, is played by the weighting policy. The

dead-band (DB), indeed, must be chosen according to the expected error on the

mechanical parameters: in the case where the DB is smaller than the error on

the model, the optimal solution is far from being the correct one (red line in Fig.

5.4(a)). On the other hand, if the dead band is correctly centered, the convergence

3The mechanical parameters µ is considered known in this study. The chosen parameters are

sufficient to discuss the point. Variation of µ would lead to totally similar results
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Figure 5.4: Results of simulation considering an error in the model on the instrument chan-

nel position. The graphic shows the outline of the RMS error on the tip 3D

position estimation (top line) and of the 2D error over all the corners (bottom

line) for different cases (cf 5.2). In (a) and (c) the error is introduced in the

instrument channel position and in (b) and (d) the error is introduced only in

the orientation of the channel wrt to the camera.
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Test case Channel on Test Case ψ on

Test case supposed model [mm] Test Case supposed model [deg.]

1 (xch − 5, ych − 5) 12 ψ − 5

2 (xch − 4, ych − 4) 13 ψ − 4

3 (xch − 3, ych − 3) 14 ψ − 3

4 (xch − 2, ych − 2) 15 ψ − 2

5 (xch − 1, ych − 1) 16 ψ − 1

6 (xch, ych) 17 ψ

7 (xch + 1, ych + 1) 18 ψ + 1

8 (xch + 2, ych + 2) 19 ψ + 2

9 (xch + 3, ych + 3) 20 ψ + 3

10 (xch + 4, ych + 4) 21 ψ + 4

11 (xch + 5, ych + 5) 22 ψ + 5

Table 5.2: Offsets used for the simulation tests. The supposed kinematic model used to

estimate the 3D pose is equal to the correct model used to create the synthetic

image except for the 3D position of the instrument channel (which is displaced)

or the orientation of the channel wrt to the camera axis.

to the optimal solution is faster and slightly more precise (given an equal number

of iterations) when the dead-band is narrow (Fig. 5.5(a) and (b)) .

Although, choosing an arbitrarily large DB would probably increase the number

of local minima (increasing the risk of getting no optimal solution at all) due to the

already mentioned redundancy between different DOFs. In fact, the variations of

some components of re have similar effect on the image and, since the optimization

criterion is based on image features only regarding the bendable part, a compen-

sation between two or more parameters may occur leading to only slightly changes

or no effect on the cost. This is the case, for example, of xch and ψ which do not

have the same effect in 3D but several combinations of the two can lead to the

same image. This is somehow confirmed by the results in Fig. 5.6(a): even though

the model error is introduced only on ψ (cases 12-22 of table 5.2), the estimated

channel exit position is farer from the actual value when a larger DB is used. In

this case, the algorithm cannot identify the actual mechanical value and both ψ

and the channel position seem to loose their physical meaning in favor of the global

criteria. The risk of such behavior would be more evident in a larger scale. Let us

consider, for example, an horizontal and bent instrument, very similar images can

be obtained with the nominal values (xch = −13.3 and ψ = −10◦ wrt the camera

coordinate reference frame) but also with an xch far from the camera on the left and

a positive ψ, as if the instrument were outside the channel and positioned almost

parallel to the (x, y) camera plane. If the mechanical parameters are not limited

around their nominal values, such solutions would be valid even though they would
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Figure 5.5: Zoom on the origin of Fig. 5.4(a) and (b). If the dead band is correctly centered

(i.e. small uncertainty on the model), the convergence to the optimal solution

is faster and slightly more precise (given an equal number of iterations) when

the dead-band is narrow.

not have any physical meaning. This could be solved if the non-controllable part of

the instrument were taken into account, but this is often not possible since, most of

the time, only the bendable part is outside the channels during operations.

The beforehand mentioned behaviors are amplified when noise is added to the

visual measurements. The results in Fig. 5.7(a) and 5.7(b) underline again the

importance of the a priori knowledge for the centering of the dead-band. With the

effect of noise, though, this aspect acquire more importance. In fact, in case of smal

uncertainty, the adoption of a large DB policy provides lower accuracy results with

respect to a narrow DB policy. However, large DB is applicable when the a priori

is really untrustworthy or when large movement are expected to occur during the

operation. Even though, in this case, would be better to update the center of the

weight function (according to some data) and use a strict DB policy.

Also the forementioned parameters compensation issue is more evident in pres-

ence of image noise: when a large tolerance is admitted, the estimation error on the

mechanical parameters consistently increases (channel position in Fig. 5.7(c) and ψ

in Fig.5.7(d)) loosing their physical meaning.

Since, for biomedical applications, high accuracy is needed even with noisy data

and considering that we can quite precisely centering the weighting function (i.e.

assuming that the mechanical parameters nominal values furnished by the provider

are sufficiently precise), the most adapt weighting policy is using a narrow DB.
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Figure 5.6: RMS errors committed in the estimation of the channel position when the

supposed channel position correspond to the correct value (cases 12-22) (a)

and those committed in the estimation of the ψ when the supposed ψ is equal

to the correct value (cases 1-11) (b).

5.4 Motor Sensor Data Fusion

Earlier it was stated that no a priori was available for the real DOFs of the in-

strument, but this is not totally true. In fact, if on one hand no prior hypothesis

or considerations can be done on the configuration, on the other hand robot sensor

data can be exploited to have an initial guess of the instrument position. Actually, a

good confidence can be given to the rotation and translation encoders values whilst

encoders value of the deflection are difficult to relate to real instrument deflection

value due to all the phenomena in the transmission chain (friction, cable extension

or slack).

As pointed out previously, it is difficult to have a high precision on TCP position

looking only at the encoders values, but it can be thought to exploit their informa-

tion to discriminate those cases where the visual measurements are only partially

available or in those positions of the visual features space where the uncertainty on

the estimation is high (cf. sec. 3.5). In other words, the idea is to fusion the encoder

data (or better said the instrument pose variation deriving by the encoder data vari-

ations) with the visual measurement. For this scope, a Kalman filter framework is

used where the increment of encoder value is used to update the state prediction

and the visual-based pose estimation is used as the measurement.

Thanks to this formalization, wrong estimations based on the image can be de-

tected and mitigated. Furthermore, this allows to inherently consider a smoothness

and continuity in the movement, although the precision on the encoders is not such

to allow an accurate estimation in case of hidden instruments (and consequence lost

of all the visual information).

For applying the Kalman framework, the state space model and the measure-
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Figure 5.7: Effect of adding noise at the visual measurements (i.e. the position of the

markers’ corners) and considering uncertainty on both ψ and channel position

(xch, ych). In (a) the RMS of the 3D position estimation errors, in (b) the RMS

errors between actual and reprojected corners in the image (after convergence

of the optimization algorithm). RMS error on channel position and orientation

are shown respectively in (c) and (d).
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ment model of the process are supposed to be known and both corrupted by noise

which is usually considered to be additive, white, Gaussian and with zero mean.

In mathematical terms, considering a linear, discrete-time dynamical system, the

process equation is:

xk+1 = Fk+1,kxk +wk (5.11)

where Fk+1,k is the transition matrix bringing the state x from time k to k + 1

and wk is the process noise such that

E[wnw
T
k ] =

{

Qk for n = k

0 for n ̸= k
.

The measurement can be described by a similar equation:

yk = Hkxk + vk (5.12)

where yk is measurable at time k and Hk is the measurement matrix. For measure-

ment noise vk the same hypothesis hold and

E[vnv
T
k ] =

{

Rk for n = k

0 for n ̸= k
.

In the case an external action has to be consider, the system model (5.11) can

be extended as follows:

xk+1 = Fk+1,kxk +Buk +wk (5.13)

where uk is the aforementioned external control action and B describes how uk acts

on the state evolution.

The presented framework can be adapted to our purpose of data fusion in the

following manner:

• The process can be considered like a time-discrete process whose sampling

time coincide with the camera frame rate.

• It can be expressed as a linear process if the DOFs vector is chosen as state

(xk = [λ,φ, θ, xch, ych,ψ, µ]
T ) and the measured variable is the state itself.

Focusing on the “natural” DOFs (λ,φ, θ), it reasonable to assume that the

state changes only if a motor action occurs. On the other hand, the mechanical

parameters do not seem to follow any deterministic evolution law, therefore we

preferred not to perform any update to this part of the state either. For these

reasons, we decided to consider the transition matrix equal to the identity

and take as measurement the state estimated by the visual information, this

means: Fk+1,k = Hk = I, ∀k.
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• The motor velocity can be considered as the external action uk which updates

the state (i.e. the DOFs values). Consequently,

B =

⎡

⎢
⎢
⎢
⎣

1 0 0

0 1 0 O3×4

0 0 1/r

O3×4 O4×4

⎤

⎥
⎥
⎥
⎦

The mechanical parameters, although estimable from visual information, are

not real controllable DOFs and, thus, no motor velocity is available for them

and neither their variation has a clear relationship with the encoder data

variation. Thus, the last four component of u (encoder data) and the last four

rows of B ( relationship between motor variation and state) will be equal to

zero. Anyway, considering true the supposition of the mechanical play and the

movements in free space, the robot configuration (measured by the encoders)

and the estimated values of the mechanical parameters should be related i.e.

the position of the instrument inside the channel depends on the particular

configuration.

Since the bending is obtained by actuation on antagonist cables (cf Fig. 2.20

and 3.1(b)), the related encoder returns the difference between the two cables

lengths. Dividing by radius of the instrument bendable section r, the deflection

angle in radians is obtained.

• The measurement and prediction confidence trade-off can be made vary in

function of the available quantity of the visual information. Logically, if the

visual information is only partially available (only few corners are detected),

the confidence of the model should be increased to the detriment of the con-

fidence on the measurement.

To obtain a linear system, we have considered the estimated state as measure-

ment. If on one hand, this choice allows to have an easy formalization of the Kalman

filter on the other it threatens the hypothesis over the measurement noise. In fact,

even though the image noise can be considered white Gaussian and zero mean, noth-

ing can be told about the noise associated to a measurement (like the one proposed)

that depends, in turn, of the image noise level. Therefore, it cannot be certainly

stated that the measurement noise is still additive, white, Gaussian and with zero

mean.

5.5 Experimental Results

To evaluate the accuracy and relevance of the proposed method for pose estimation,

a sequence of instrument configurations was generated spanning the whole visible

left instrument workspace. At each configuration (defined by three values of the 3
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DOFs) an image was acquired simultaneously by the endoscopic camera and by the

two cameras of a stereo system. The sequence of configurations was chosen such

that the instrument makes a continuous movement in the picture too as if it were

a real trajectory. Thanks to stereo vision the 3D position of a white ball in-built

with the tip of the instrument is determined and used as Ground Truth (GT) (see

appendix B for more details on the set-up for creating the 3D GT). The accuracy is,

then, evaluated as the 3D distance between the estimated white ball position (based

on instrument model and image features) and the GT.

To obtain some meaningful statistics on the accuracy of the proposed method,

a sequence of 295 poses is considered. Over the corresponding images the segmen-

tation process failed on 14 images which gives a useful set of 281 images. A strict

Dead-Band policy (cf table in sec. 5.3) is used for the admitted tolerances of the

mechanical DOFs using for µ the same weighting function as ψ. Following the Bézier

-based reference frame, the weight associated to all the parallel components of the

2D errors is 8 and the one associated to the perpendicular components is 10.

Moreover, the analysis of several videos of surgical operations using the Anubis

platform shows that the instruments displacements can be considered very small

between successive frames. Thus, the solution configuration for the image frame j

is used as initial guess for the optimization problem in frame j + 1, with the result

of speeding up the computation time for the pose estimation.

The good quality results over these images (Fig. 5.8) are supported by the

round mean square (RMS) errors over each coordinate (in mm): 2.03 ± 1.65 on x,

2.07 ± 2.07 on y and 2.78 ± 2.57 on z axis.

To obtain these results, all the images have been considered including those

where the features where only partially visible. In fact, when the instrument is very

near to the camera the initial part of the instrument bendable section is hidden inside

the channel or is outside the image. Moreover, in order to use projective geometry

in pose estimation, the reference image must be rectified. It is a well known issue

that for high-distorsion lenses the reliability of the camera model is weak near the

border of the image. In the rectification process, then, the “reliable” field of view is

limited and, usually, a part of the border is not taken into consideration causing a

partial exclusion of the painted bendable section from the image.

When the validation 3D point is near a set of visual features (the corners asso-

ciated to the tip in this case) used in the similarity criterion, a good convergence on

this feature is likely to correspond to a good estimation of such point (3D position)

no matter the estimated orientation is. In this case, a good 2D convergence on the

corners associated to the tip of the instrument would suffice to have a good estima-

tion on the x and y 3D coordinates of the instrument central axis terminal point

(the tip of the instrument). Furthermore, since the instrument diameter is known,

a quite good estimation on the scale and, indirectly, of the depth of the tip can

be obtained. However, performing the validation on such point does not give any

information on the orientation of the end-effector and, consequently, on the robot
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Figure 5.8: On the left: pose estimation result over a trajectory along x (top), y (middle)

and z (bottom) coordinates: the blue line is the ground truth position retrieved

by the stereo-vision system and the red line is the estimated position.

On the right column: distribution of the estimation absolute error along the

different coordinates.
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Method
Inspired by

[Reilink 2012]
Ours

on x : 3.64 2.03

RMS 3D err on y : 3.45 2.07

[mm] on z : 10.45 2.78

Max 3D Err

[mm]
19.74 11.93

2D Error

[pixel]
24.12 10.77

Table 5.3: Quantitative results comparison of the proposed model based method with the

one inspired by the work of [Reilink 2012].

configuration, which can be wrong.

We have then chosen to employ a reference point (the white ball) distant from

the ending of the bendable part so as to have a large 3D position error in those cases

where the estimated orientation is wrong. This makes the RMS errors on the 3D

position to represent, somehow, also the quality of the entire pose estimation.

Looking at the RMS it can be stated that our method provides a more precise

orientation wrt the fix model approach. In fact, the RMS error over this same

sequence using fix mechanical parameters increases abruptly when considering the

white ball as the validation 3D point (instead of a EM sensor attached at the end

of the bendable part) getting to [3.35, 3.59, 10.54] mm respectively along x, y and z

coordinates.

Even if the RMS error of the fix mechanical model approach are computed with

a GT 3D reference point nearer to the instrument tip (as done in sec. 5.1 with EM

sensors), the result is still worse than the one obtained by the proposed method.

Once demonstrated the effectiveness of the consideration of the mechanical plays

in the optimization process, another interesting result is the one concerning the

contributions of each one of the proposed implementation aspects: Bézier refer-

ence frame for the error and motor encoder data fusion. Table 5.4 and Fig. 5.9

summarize these aspects showing the sorted norms of the errors committed in the

estimation of the TCP 3D position. Bézier based reference frame seems to improve

the pose estimation only slightly and the major contribution is in term of maximum

error. Maybe, further improvement could be achieved with a more exhaustive study

over the trade-off between the parallel/perpendicular error components. What is

evident from data, though, it is the capacity of the Kalman filter with dynamic

confidence adjustment of mitigating the aberration in pose-estimation errors taking

into account temporal data when visual information is incomplete.

The aforementioned problem deriving by the low reliability of the deflection en-

coder data is also visible in Fig. 5.10(b) where the 3D TCP positions are represented

and a color code is used to represent the norm of the error (the more reddish the
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Figure 5.9: The three lines represent the sorted estimation errors norms made on a sequence

of the different contribution of the proposed method: pose estimation using a

simple LM optimization (blue line), LM optimization expressing the error wrt

to a Bézier -based reference frame (red line) and adding motor encoder data to

filter the results (yellow line).

Method LM LM Bézier Frame Complete

on x : 3.22 2.98 2.03

RMS 3D err on y : 1.76 1.89 2.07

[mm] on z : 3.76 3.43 2.77

Max 3D Err

[mm]
16.72 11.84 11.93

Table 5.4: Numercial results of the different contributions of the proposed method. The

three column (from left to rith) represent: pose estimation using a simple LM

optimization, LM optimization expressing the error wrt to a Bézier -based ref-

erence frame and using motor encoder data to filter the results.
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Figure 5.10: Representation of the 3D TCP positions of the validation sequence and the

associated position estimation error considering (in (a) ) or not (in (b)) the

kalman filtering. The error norm is color coded: the more reddish the higher

is the norm of the estimation 3D error.

higher is the error). In this graphic, it can be noticed that some of the highest errors

are located on a crown which correspond to those instant where an inversion of the

deflection movement occurs. In this case, as already explain in precedence, the lack

of the antagonist cable must be recovered before appreciating an actual movement

of the instrument. This means that the motor is moving and, consequently, the state

is update whereas the instrument stays still. Therefore, a high error is accumulated

which, inevitably, affects the pose estimation in the successive frames.

Indeed, this “crown” of high errors is not visible in Fig. 5.10(a) where the

Kalman filter is not employed and therefore the real behavior of the proposed model

based method can be analyzed. Here, the highest errors seem to be concentrated

in a specific region corresponding to those poses where the instrument is deflected,

pointing upward/downward and near to the camera. The same behavior can be

noticed even if the motor data are considered. This behavior can be explained by

the fact that, in these configurations, the instrument appears in the left border of

the image where the distortion is higher. This may make the visual measurements

less reliable indirectly compromising the estimation pose.

5.5.1 In-vivo Qualitative Results

The same process has been applied on in-vivo video sequences, acquired in the

abdomen of a pig during single port surgery realized with the manual short Anubis

platform. No ground truth was available in this case and the proposed analysis

is only qualitative. In Fig. 5.11 some examples are shown, where the instrument

is first detected (as shown in the precedent chapter) and subsequently its 3D pose

is computed based on the extracted corners (green crosses). The corresponding

virtual image of the instrument is then reprojected in the image with the estimated



5.6. Conclusion 115

2D position of the center of the grasper (green dot).

These results seems to confirm the capability of the proposed method to estimate

the pose of flexible instrument basing on the corners of colored markers.

Furthermore, the consideration of mechanical plays in the model allows the pose

estimation process to converge even when the instrument is pushing on the organs

and its position inside the channel is consequently modified (Fig. 5.11(a) and (b)).

In this case the estimation of the position of the tip is biased because of the defor-

mation of the instrument.

The adaptability of the proposed pose estimation scheme is also demonstrated

by the fact that the flexible system used for in vivo experiments is different of the

one used in the laboratory. Nonetheless the pose estimation works without any

modification of the algorithm.

Finally, as also shown in the precedent chapter, the feature extraction algorithm

fails when most of the instrument is hidden (Fig. 5.11(e)), since it does not take into

consideration any template of the object nor multi-frame analysis. However, even

with partial information the computed 3D pose is acceptable in terms of reprojection,

indirectly demonstrating the interest of using a model in terms of segmentation.

5.6 Conclusion

This chapter has presented the comparison between two model based methods: the

first considers the geometrical model known, whereas the second takes into account

the possible mechanical plays between the instruments and the housing channel.

Given the evident difference between the two approaches’ results, it can be stated

that the introduced tolerances on the mechanical parameters allow to account for

the mentioned mechanical plays and help compensate uncertainties in the kinematic

model (including those regarding the real position of the camera axis wrt to the axis

of the channel) or, going a step further, the instrument deviation due to contact

with organs (even though, in this case, the weighting function parameters should

be adapted or modified along the operation such that the dead band could admit

larger displacement either in term of translation or orientation).

Discrete qualitative results have been obtained also in in-vivo environment using

a different system wrt the one used in laboratory. These results shows the adaptabil-

ity of the proposed method to different (although similar) systems and, even, when

the geometric structure is modified e.g. when the instrument is slightly pushing on

the organ. Moreover, from a visual point of view, the same framework could be

adapted to recover the instrument outline in case of partial occlusion.

Nevertheless, the observed errors are still large for a surgical application and

they are probably the sum of intrinsic issues this approach presents. In addition to

segmentation errors which obviously affect the pose accuracy, a part of the error may

be explained by the fact that Kalman hypothesis are not totally satisfied. Other
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: in-vivo results of the presented method: (Left) the segmentation process and

(right) the reprojection of the instrument from the estimated pose. The green

dot is the reprojection of the center of the grasper. In (a), the considered

mechanical play allows to fit the instrument even when it is pushing on the

organ. In (c), the real instrument is correctly discriminated from its reflection

on the organ. Even though in (e) the segmentation process partly fails, an

acceptable result is obtained in the instrument fitting and reprojection (f).
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errors, then, can arise from considering an incorrect model (e.g. uniform curvature

for the bending part, bending on a plane, ...) or can be partly explainable from

imperfections in the registration between the camera and the Stereo system Ground

Truth.

A learning approach can help avoiding many of these mentioned problems, since

it learns the model from the input and output data without making any hypothesis

on the system model. The next chapter presents a study of the potentialities of two

learning approaches in the context of position estimation from a single 2D image.
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It can be said that a machine learns when it can improve its performances

through its experiences. Nowadays, there are many aspects that can be learned

conferring to learning a wider and wider variety of meanings according to its ap-

plications: model identification, image segmentation, interpretation of data (scenes,

situations,..), etc. However, two main categories of learning problems can be distin-

guished based on the kind of the output variables: in regression the objective is to

learn a function and return a numerical data output, whereas classification aims at

inferring a quality or category based on some input features/characteristics/quality.

Learning algorithm are usually divided into two phases: the machine is first

trained on a specific set of known samples to learn the rules which it will apply to

new samples to determine its output numerical value or its class.

For example, let us imagine that a function f has to be learned and denote h

the hypothesis that can be made on the shape of f and x = (x1, · · · , xn) the vector-

valued input. Thus, h can be thought as being implemented by a device that has

x as input and h(x) as output (which, again, can be either a numerical value or a

class according to the problem that has to be solved). The only needed a-priori is
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on the class of function H to whom h pertains. The best h is selected on a training

set Ξ of M input vector samples which is usually built according to experiments.

In this framework, there are two major settings in which the function can be

learned. In supervised learning, both input (x) and corresponding output (y) values

of each sample of the training set are known. The optimization criteria, then, can

be defined by comparing h(x) and the associated output y.

In unsupervised learning the training set is composed only with input vectors

without function values. The problem in this case is usually to find the best parti-

tioning of the training set, obtaining some meaningful categories of the input data.

The output values in this case will be the category name or the pertaining cluster

of the input data.

Once the best guess among the hypothesis H is learned (based on the training

set), this can be used with new samples to estimate the output value.

An important role in learning is played by the training set and how much it

is representative of the general problem. It can be asserted that the higher is the

cardinality (M) of the training set and the diversity of its samples, the better this

algorithm performs in terms of estimation accuracy. This fact is quite intuitive: in

fact, the more representative cases are considered in the training set the higher is

the probability that the new unseen sample is near (or similar) to those already

“seen” during machine training. On the other hand, learning method would loose its

sense if the training set contains all the possible cases that can occurs: in this case,

in fact, the approach would be more similar to a look-up table and no “estimation”

is needed.

In the context of pose estimation, the basic idea is to learn the function relating

an image feature with the 3D position of the TCP. As enunciated at the end of

the previous chapter, the principal aim of adopting a learning approach is to try

avoiding all those sources of error deriving by an incorrect system model. Achieving

high accuracy in the geometrical model can become hard in the case of flexible

instrument which can present several behaviors difficult to detect and, consequently,

describe mathematically (e.g.: non constant curvature, no planar curvature, different

behavior according to the shape of the rest of the body, ...).

In this case, though, the class (H) of the regression function is hard to be known

a priori for this kind of problem. Moreover, since the input vector derive from image

features, the training set is affected by noise.

Taking into account these characteristics, the searched solution should avoid

noise over-fitting and should be able to easily adapt to any shape, allowing local

variations fitting without affecting the whole approximation. For this reason, poly-

nomials or linear fitting are unsuitable. A good choice in these terms is the use of a

network of Radial Basis Function (RBF) with Gaussian Kernels [Broomhead 1988],

[Moody 1989] which provides the desired local approximation (according to an ini-

tial cluster computation) and, thanks to the chosen kernels, can easily approximate

any smooth function.
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Although, the not satisfying quality of the RBF results and the particular shape

of the considered function brought us to investigate better approaches both for the

clustering (Sec. 6.2) and for position estimation (Sec. 6.4). The proposed methods

are first tested with synthetic data with a particular attention to input noise effect

on the learning process (Sec. 6.5). Finally, the experimental results are presented

and analyzed.

6.1 Radial Basis Functions Network

6.1.1 Principle

The idea underneath this method is very simple: it proposes to address, in a local

way, the global problem of approximating an unknown function. Basically, the

desired function is expressed as a combination of local functions (named Kernels)

which are responsible of the shape of only a portion of the original function domain.

These kernels are defined radial functions since their influence diminishes with the

increasing distance from their centers.

Therefore, the regression result is a Network of Radial Basis Function (RBF)

which, in turn, can be thought as a 2-layers artificial neural network (ANN) that

employs RBF as activation functions.

Thus, given x = [x1, · · · , x2n]
T the 2n dimensional input vector, the estimation

of the output (ŷ) set up by RBF network is a weighted sum of K kernel functions

ϕk:

ŷ = h(x) =

K∑

k=1

γkϕk(x) + γK+1 (6.1)

where γk are the learned coefficients which describe the contribution of the k-th

kernel to the estimation of the output. In the case of Gaussian kernels, ϕk takes the

form [Bors 2001, Lendasse 2003]:

ϕk(x) = Yk e
− 1

2
(x−Ck)

T
Σ

−1

k
(x−Ck) (6.2)

where Ck is the center of the Gaussian kernel, Σk its variance and Yk its amplitude.

As any other learning approach, a training phase is needed for both layers: firstly

the location and shape of Gaussian kernels are computed through unsupervised

learning (first layer) and, secondly, the best linear combination of these kernels

is computed by supervised learning to approximate the function. Before giving

the implementation details for the case concerning image-to-3D-position, an one-

dimensional example is presented to clarify and visualize what the different layers

mean and how they are built.

6.1.1.1 Example

Let say that we want to approximate with a RBF Network the function in Fig. 6.1(a)

which describes the behavior of the system that has to be learned. Obviously, we do
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not know the continuous outline of that function, what we do know, instead, is a set

of measurements each of whom is composed by the input value and the associated

system response to such input. This collection of data represents the training set

which is visualized in Fig. 6.1(b).

As previously described, the first stage of training is to compute the location and

shape of the Gaussian kernels. A technique of unsupervised learning (e.g. k-means)

is used to cluster the input data of the training set into subsets containing “similar”

data (indicated by the different colors in fig 6.1(c)). Several similarity criteria can

be used also depending on which unsupervised learning method is going to be used.

Once obtained the clusters, the barycenters of the data composing each cluster are

taken as the centers of the Gaussian kernels (Ck) whereas their covariance matrix

is taken as Σk. The amplitude Yk, instead, is computed as the average of the

corresponding output values pertaining to each cluster k.

Thus, to each cluster a Gaussian kernel is associated which represents a local

model of the corresponding data (Fig. 6.1(d)). From the same picture it can be

observed the local influence of each Gaussian which decreases in radial direction

with the distance from the center.

The second stage is to compute the optimal combination (i.e. compute γk) of

these local models according to a global criteria, such that it minimizes the residual

error wrt the collected output values (supervised learning) obtaining the final result

in Fig. 6.1(e) (green curve). Now, an approximation of the searched function is

known and it can be used to compute the value of any new sample even if it did

not pertain to the training set. What is evident, though, it is the fact that the

approximation is poor in that portion of the input space where few or no training

samples are available.

6.1.2 Learning the 3D position from image

In the case of 3D position estimation, the input vector x is composed by some image

descriptors of the instrument and the output values will be one of the 3D coordinates

of the tip.

The input space is composed by salient visual features (as state vector compo-

nents) coming from the visual measurements.

To simplify the learning process, the entire problem has been subdivided into

three sub-problems aiming to learn three single-output functions describing the re-

lationship between the image features and each of the coordinates of the 3D tip

position. More precisely, the objective is to compute the function relating the 2n

dimensional column vector x composed by the 2n (x, y) coordinates of the n chosen

salient image features to, alternatively, one of the three coordinates of the 3D TCP

position i.e. X, Y or Z (depending on the considered case).

More formally, defining y = [X,Y,Z], the function hi of each sub-problem is

responsible of computing the estimation of the i-th output variable ŷi (alternatively
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Figure 6.1: Different steps of the learning process for a single input single output function.
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K Number of clusters

M
Number of elements

in the training set

Nk
Number of elements

in each cluster:
∑

k Nk = M

Ck,i
Center of gravity of each cluster k

in the estimation problem of the i-th 3D coordinate.

γk,i
Coefficient weighting the influence of the k-th kernel

for the estimation of the i-th 3D coordinate.

xm
Elements of the training set

m = 1 · · ·M

xmk

Elements of the training set

pertaining to cluster k

ŷi
Estimation of the i-th coordinate

y1 = X, y2 = Y and y3 = Z

ŷm,i
i-th component of the output sample

corresponding to xm

Table 6.1: Symbols used in the RBF formalization and their meanings.

X, Y or Z):

ŷi = hi(x).

Consequently, equation (6.1) can be rewritten as follows for each 3D coordinate

ŷi:

ŷi = hi(x) =

K∑

k=1

γk,iϕk,i(x) + γK+1,i (6.3)

where, this time, γk,i are the learned coefficients that describe the contribution of

the k-th kernel to the estimation of the i-th output. The Gaussian kernel (6.2), ϕk,i

takes the form:

ϕk,i(x) = Yk,i e
− 1

2
(x−Ck,i)

T
Σ

−1

k,i
(x−Ck,i) (6.4)

The training process must, then, be repeated three times to solve the three sub-

problems. Therefore, three training sets are needed: each of them contains the M

samples composed by the 2n dimensional input vector xm (with m going from 1 to

M) and the corresponding output ym,i that must be learned.

The steps described in the one-dimensional example can be straightforwardly

adapted and employed to this case. Firstly, the input data xm are divided into

clusters: one cluster for kernel. For this aim, K randomly selected xm have been

taken as initial centers for a k-mean-like algorithm. Once the algorithm converged,

for each of the found K clusters the center of gravity, the variance and amplitude are
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calculated from the points composing the specific clusters. These values are respec-

tively used as centers (Ck,i), amplitude (Yk,i) and variance (Σk,i) of the Gaussian

kernels (cf. equation (6.4)):

Ck = 1
Nk

∑Nk
mk=1 xmk

Yk = 1
Nk

∑Nk
mk=1 ymk

Σk = XT
kXk

where xmk
and ymk

are the xm and ym,i samples pertaining to the k-th cluster, Nk

is the number of elements of each cluster (
∑

k Nk = M), whereas Xk is the matrix

containing the different xmk
in its columns:

Xk =
[

x1| · · · |xNk

]

Secondly, the K coefficients γk,i (cf. (6.3)) are computed so as to minimize the

difference between the estimation ŷi and the corresponding training set values ym,i:

γk,i = argmin

M∑

m=1

(ym,i − ŷm,i)

For each 3D coordinate, the problem can be translated in minimizing the fol-

lowing cost function:

χ2
i =

1

2

M∑

m=1

(

ym,i −
K∑

k=1

γk,iϕk,i(xm) + γK+1,i

)2

which, in matrix form, can be written as:

χ2
i = [Yi − Φ

T
i Γi]

T [Yi − Φ
T
i Γi] (6.5)

where Yi is the vector containing all the M 3D i-th coordinate output values of the

training set, Γi is the vector of the K + 1 regression coefficients

Γi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ1,i
...

γk,i
...

γK,i

γK+1,i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.6)

and

Φi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕ1,i(x1) · · · ϕ1,i(xM )
...

...
...

ϕk,i(x1) · · · ϕk,i(xM )
...

...
...

ϕK,i(x1) · · · ϕK,i(xM )

1 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.7)
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contains the kernels (computed for the i-th 3D output coordinate) evaluated in the

distinct input samples of the training set xm. Each row is corresponding to one

kernel k.

Since the cost function (6.5) is linear wrt to the coefficients, the minimization

has a closed form solution given by:

Γi = (Φi
T
Φi)

−1
Φi

TYi (6.8)

Such a function approximation is efficient as long as enough points are available

so as to finely follow the function variations (consider Fig. 6.1(e) in the region

where no training point are available). Indeed, the reconstructed function drops to

zero as soon as there is no more points to support it [Benoudjit 2003]. Counter-

balancing this behavior by increasing the number of kernels would result in less

smooth functions with, possibly, large oscillations (with the risk of overfitting).

Since RBF are efficient locally and since linear approximation better fits slow and

global variations, a combination of both is proposed. Thus, the role that the RBF

network assumes is to refine the linear estimation. The training process is totally

similar to what described so far with the only difference that the new fitting data

for the RBF network are expressed with respect to the linear estimation result. So

the new training output data for the RBF network will be:

ỹm,i = ym,i −α
Txm

where α is the vector of the global linear regression:

α = (XTX)−1XTYi

where X is the matrix containing the training input samples in its rows.

Gaussian kernel has great versatility in function approximation but, given its

shape, it seems to provide a better fit for continuous functions with smooth outline,

whereas it seems to be less adapt for piecewise linear or discontinuous functions.

To obtain a good local representation of the data, it must be assured that the

clusters used for computing the Gaussian kernels gather samples whose output out-

line (i.e., in this case, one of the three 3D coordinates of the TCP) is smooth enough

to be adequately approximated by a Gaussian. In other words, to achieve a good

approximation when performing the clustering on the input domain, we should en-

sure that proximity and smoothness in the output domain (3D space) is reflected in

the input domain (visual feature space). However, this is not always the case when

the input samples derive from the perspective projection and this is even amplified

due to the peculiar deformation of the instrument.

Let us consider, for example, the case where the instrument is deflected and

rotating around the channel axis: the depth wrt to the camera plane only slightly
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changes, whereas the input vector deriving from visual features coordinates related

to the instrument body (such as the markers centroids or corners) would be subjected

to a substantial variation. This leads to the following

Consideration 1. Proximity in the output domain (3D space) is not always re-

flected in the image feature space.

With the aim of managing this kind of situation and group together all those

data pertaining to a smooth 3D manifold, the output should be taken into account in

the clustering step. A new clustering domain is then defined and it will be described

in next section.

6.2 Improved Clustering Domain

In the previous section the conventional procedure to built a network of RBF has

been presented pointing out the risks of a clustering performed only on input domain

and the consequent necessity of considering the output value in forming the clusters.

Indeed, if we retake the example of a bent instrument rotating around its prin-

cipal axis and we consider the x coordinate of the last marker as the input of our

function and the distance of the instrument tip from the camera as the output, we

would obtain the outline described in Fig. 6.2(b). This behaviour would be correctly

described by a very wide Gaussian as shown in Fig. 6.2(d). Unfortunately, if the

clustering algorithm take into account solely the input domain, there can be the risk

of obtaining a result more similar to the one of Fig. 6.2(c). In this case, even the

combination of the radial basis functions cannot properly describe the tendency of

the function in this portion of the domain.

We then propose to perform the clustering algorithm in a joint input/output

domain so that the distance among the samples is influenced also by the output

values. The objective is to promote results similar to those in Fig. 6.2(d) where

the data which are near in the output domain are gathered together in the same

sub-set. In this case, the gaussian describing the cluster will take into account the

variance of those new data assuming a wider shape.

Before going on with the discussion, we should distinguish, at this point, between

clustering and training domains. With clustering domain is intended the set where

the k-means-like algorithm is applied and its dimensionality will be indicated with

qcl, whereas the training domain will be the one containing the input samples used

to retrieve the 3D coordinate estimation and it will be of dimension qtr.

To have also in the clustering domain the same dimensionality as the input,

PCA analysis can be carried out so as to take into consideration only those principal

components necessary to complete (or not) the output information.

The transformation of the data to this new clustering domain is easily achieved

by taking the first q′cl principal components (according to the system DOFs or a

more exhaustive cross validation on the training set) and stacking them to the three
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Figure 6.2: Example illustrating the problem related with the initial clustering of the RBF

approach. Let us suppose that the instrument is bent and turn around its

main axis (a) and that we want to approximate the relationship between the x

coordinate of the tip of the instrument and its distance from the camera z (b).

If the clustering algorithm (k-means like) is applied considering only the input

data (x coordinate), it would lead to a bad estimation (c). If, on the other

hand, we take into account also the output data (the z coordinate describing

the depth), it will be more probable to obtain a final clustering result similar to

the one shown in (d) which leads to a Gaussian whose shape better describes

the tendency of the x-to-z relationship.
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coordinates (qout = 3) of the TCP position. Thus, qcl = q′cl + 3. In the next table

and section this case will be referred to as q′cl(+3): for example, if the clustering set

samples are composed by the first four PCs and the 3 output variables, then it will

be denoted as 4(+3).

An alternative could be to take into consideration solely the concerned i-th

coordinate of the TCP position (qout = 1). In that case, qcl = q′cl + 1 and, in

the next sections, it will be referred to as q′cl(+1) as described in the precedent

paragraph.

To proceed with the clustering in this joint-space, some precautions should be

taken. Since the measurement units between the input and output spaces are differ-

ent, recentering the data wrt their means and normalizing the coordinates by their

standard deviation (computed over all the samples) helps to even out the clustering

space in the sense that each sample will contribute with the number of standard

deviation from its mean.

The new samples, then, can be defined as

x′
m = ΣxPCA

xPCAm

y′ = Σy(y − µy)

where Σ. is a diagonal matrix whose elements are the reciprocal of the standard

deviation of each component (PC or output variable) computed over all the samples

and µy is the column vector of the means of each output coordinate.

The new clustering set is composed by the samples formed as follows:

xclm = [ x′1, · · · , x
′
q′
cl

︸ ︷︷ ︸

input first q′
cl

principal component

, y′1, · · · , y
′
qout

︸ ︷︷ ︸

output variables

]Tm (6.9)

therefore qcl = q′cl + qout. On the other hand, the input training set is composed by

samples composed by solely input data parameters:

xtr = [x′1, · · · , x
′
qtr ]

T
m. (6.10)

where qtr can be chosen no matter the value assigned to qcl.

The k-means-like algorithm is applied to the clustering set of samples xcl which

corresponds to a clustering domain of dimension qcl. The indexes of the samples

composing each cluster (m) are retained and used to recreate the same clusters in

the training space (made by samples xtrm)) where the centers of gravity are finally

computed.

For sake of clearness, it may be useful to reiterate that we want to learn the

relationship between the visual measurement (input set) and one of the coordinate

of the 3D TCP position (output set) whose value is not directly available. The input

training set must be formed, then, by the same kind of samples of the wanted input

set (i.e. visual measurement) and xtrm cannot contain output information which

will be unavailable when testing. For the same region, the cluster computed in the
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joint space, must be reformed in the training input space taking into account only

the visual measurements.

6.3 RBF: Simulation Result

With the aim to reduce the input domain dimensionality so as to ease the regression

process, we consider, as input, the vector formed by the coordinates of the apparent

2D centroids of the colored markers.

Given the difficulty of imagining the shape of such learned function, a simula-

tion study is done to interpret the role of each parameter, the influence of the input

dimension and to retrieve more details on the centroids-to-3D-TCP-coordinates re-

lationship.

For this simulation, a synthetic training set has been built. The space of the

flexible instrument DOFs ([λ,φ, θ]) is uniformly sampled and, using kinematic and

camera model, the coordinates of the markers centroids with the corresponding 3D

TCP position is recorded.

A test set has been built in the same way but for different instrument configurations

so as to test the learned function over a set of “unseen” positions. In other words,

the intersection between the set of the tip 3D position of the training set with that

of the 3D positions of the test set is empty.

However, a special attention must be conferred in choosing the training test ac-

cording to the expected test set so as to avoid extrapolation. Indeed, as already

mentioned, RBF network tends to zero in absence of training samples and, there-

fore, good estimation results cannot be attained for those test samples that fall in

a region of the input domain where no training samples are present.

Let us define the visited workspace as that portion of the workspace visited by the

TCP 3D positions given a set of robot configuration [λi,φi, θi]. To avoid extrap-

olation, then, the test visited workspace must be included in the training visited

workspace which must be dense enough to prevent from the presence of wide empty

regions1.

More specifically, both for training and testing set used in simulation, the same

visited workspace is considered and defined by

λ ⊆ [25, 45]

φ ⊆
[
−π

2 + π
10 ,

π
2 − π

10

]

θ ⊆
[
π
10 ,

π
2 − π

10

]
.

The training set is composed of 280 samples whose corresponding configurations are

recovered by taking respectively 5, 8 and 7 equally spread values inside the described

intervals. For the test set, the considered robot configuration were defined by taking

1Actually, the described problem could be solved by iterative learning and reinforcement learn-

ing, but this is not in the scope of this thesis.
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set # # DOFs considered feature (n) input dim. (2n) # samples

1 3 3 centroids 6 280

2 3 3 centroids 6 180

3 3 5 centroids 10 280

4 3 5 centroids 10 180

5 6 5 centroids 10 280

6 6 5 centroids 10 180

Table 6.2: Sets used for the simulations considering only 3 or 6 DOFs. Sets 2, 4 and 6 are

used to asses the accuracy of the function learned respectively on sets 1, 3 and

5.

5 equally expatiated values for λ, 5 for φ and 6 for θ leading to a set of 180 samples.

Building the sets in this way allows to obtain a test set with no common elements

with the training set assuring, though, that the test visited workspace is included

in the training visited workspace (which means that no extrapolation problems will

be considered).

A first batch of simulation tests were carried out considering only three DOFs

for the instruments (so no variability in the mechanical parameters) and, as visual

features, either the three centroids of the yellow markers (set 1 and 2 table 6.2) or

all the five centroids (set 3 and 4 of the same table).

Thus, two input spaces were considered: one of six and the other of ten dimensions.

Set 1 and 3 in table 6.2 are both derived by exactly the same instrument configura-

tions, the only thing that changes is the input dimension. For set 1 the position of

the 3 yellow centroids is considered, whilst for set 3 the input data is the vector of

the 5 centroids coordinates. The same discussion is valid for set 2 and 4.

With the scope of presenting results independent by the random initialization,

the RMS errors committed over each 3D coordinate are computed considering the

estimation results over 20 different random initialization as a unique sequence. This

means that the whole training and test process is repeated 20 times with 20 different

initialization and the RMS error (given in mm) is computed over 20×180 estimations

(in the case where the validation set is either set 2, 4 or 6).

For each simulation test, in addition to this RMS error, the worst 3D error norm for

the best initialization (in terms of RMS error) will be given (Worst 3D err column

in the tables of the next sections).

6.3.1 Cluster Initialization

Due to the particular manner of building the training set, the input samples compos-

ing it do not uniformly cover the input domain. Indeed, the uniform discretization

used over the robot DOFs does not correspond to a uniform allocation of the marker

centroids in the image. It can occur, then, that portions of the input space do not
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train: 280 elements; test: 180

K
Avg number of elements

per cluster
3D RMS error

5 56 2.3659

10 28 1.9970

15 18.67 1.9

20 15.0556 1.9868

train: 140 elements; test: 90

K
Avg number of elements

per cluster
3D RMS error

3 46.6667 2.7574

5 28 2.4408

8 17.5000 2.4512

10 15.1 2.8070

Table 6.3: Effect of the number of cluster over the 3D position estimation accuracy.

contain any sample. That is the reason why the initialization of the cluster centers

for the k-means is done by randomly choosing K training set samples rather than

opting for a uniform sampling in the input domain with the risk of having empty or

not representative clusters.

6.3.2 Choice of K

A first clear result that can be extrapolated from simulation concerns the proper

choice of K value which was not discussed so far. The best value for K (in terms

of estimation error on the test set) seems to strongly depend on the density and

the quantity of samples composing the training set. The choice of K value can be

described by the number of elements per cluster, which resulted to be between 15

to 30 per cluster. Analyzing the results, fewer samples per cluster are not enough to

have a good generalization and representation for building the Gaussians, whereas

too many samples results in an exaggerate smoothing effect.

The study of the best K value has been carried out using set no. 1 for training

and the no. 2 to test and the results are shown in table 6.3).

As an alternative solution, a k-fold cross-validation step can be used to determine

the best number of clusters according to the available training set. Before starting

the training process, the same training set can be divided into, for example, 4

subsets. One of these subsets is retained as the validation data for testing the model

trained over the other 3 sub-sets. The cross-validation process is then repeated

3 times (the folds), with each of the 3 subset samples used exactly once as the

validation data. The 4 results from the folds can be combined together and the
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3D estimation error can be computed. This can be repeated as many time as it is

desired according to how precise the value of K is wanted to be know, without the

need of creating a validation (test) set.

6.3.3 Input Domain

The interest of study the effect of input domain dimensionality arises from the

following

Consideration 2. Taking into account only three DOFs in building the training and

test set, inherently, implies that the shape of the instrument depends only by three

factors or three variables. This should be, somehow, reflected also in the image-to-

pose function provided that the chosen feature can fully capture the 3D shape. In this

case, the domain of the function relating the 2n-dimensional input space with one

3D coordinate (either X, Y or Z) of the TCP should lie on a manifold of dimension

3.

However, this is not always true, since it depends on the chosen feature and

information representation. Most of the time, this consideration would lead to the

conclusion that the input domain dimensionality should be at least equal to the

number of DOFs. Moreover, in certain conditions, spatial localization can become

meaningless in high dimensional domains because, typically, with increasing dimen-

sionality all data points tend to have the same distance to each other [Beyer 1999]

and this could have side effects on the good convergence of the k-means-like algo-

rithm.

In this case, though, domain dimensionality is not critical but we want to study

which is the needed quantity of visual information to have an accurate 3D position

estimation. This could also be useful with noisy visual features to isolate only the

information useful for 3D position retrieval.

A dimension reduction can be carried out performing a Principal Component

Analysis (PCA) over the input samples so as to observe if the first 3 principal

components (PCs) are enough to estimate the 3D position.

Consideration 2 seems to be confirmed analyzing the results when using set 1

and 2 (respectively for the training and for the test). In fact, there is no substantial

difference between the RMS error using 3 PCs or the whole information given by

the three centroids (case 10 and 11)2.

However, this assertion is contradicted when 5 markers (set 3 and 4) are used

instead of 3. In fact, even if case 10 and 20 are comparable, the results improve

considerably when qcl and qtr are equal to 6 (cf case 21 and 11). Nevertheless

no further improvement is appreciable when the whole 5 centroids information is

used (case 22) except for the estimation of Y coordinates which seems to get some

2After taking the three PCs of each sample of set 1 and 2, the clustering and input domain are

equals between each other but their dimension has decreased from 6 to 3 (qcl = qtr = 3).
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Case trained on tested on qcl qtr 3D RMS Worst 3D err

10 1 2 3 3 0.5914 0.7039 1.5546 6.2484

11 1 2 6 6 0.6312 0.4797 1.7528 5.2821

20 3 4 3 3 0.4384 0.5231 1.3416 6.5967

21 3 4 6 6 0.5971 0.4689 0.8496 3.1330

22 3 4 10 10 0.5446 0.2705 0.7006 3.1936

Table 6.4: Quantitative results of pose estimation accuracy when considering 3DOFs, dif-

ferent clustering and training domains and different visual features. Cases 10

and 11 exploit the 3 yellow markers centroids whereas cases 20, 21 and 22 the all

5 centroids. The worst 3D error value is computed (as for all the other tables)

selecting the estimation result deriving by the best initialization in terms of the

RMS of the norms of estimation errors.
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Figure 6.3: Sorted 3D error norms for the cases listed in table 6.4.
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advantage from the additional information. The observed behavior suggests a first

conclusion:

Conclusion 1. Other things being equal, the use of 5 centroids brings about some

piece of information useful for position and, mainly, for depth estimation.

Furthermore, comparing cases 20 and 21 one can observe that 3 components

are not sufficient to get the best position estimation result. This is may due to

the fact that PCA is not the right choice to reduce dimensionality in this case.

Indeed, directions with high variance become a principal component even though

such direction has no influence or relation with the output.

6.3.3.1 Mechanical Parameters Variations

As already analyzed in the precedent chapter, considering only 3 DOFs does not

allow to represent all the kinematics of the instrument. Mechanical play between

instrument and its housing channels must be taken into account since they influence

the appearance of the instrument itself in the image.

If the effect of the mechanical plays want to be considered, the training and test

sets must be modified taking into account 7 DOFs.

There are many possibilities to extended the proposed 3 DOFs sets. The first

can be to consider that the mechanical parameters variations are totally random. In

such a case, to create the synthetic data set, it is sufficient to perturb the mechanical

nominal values before computing the 3D instrument pose with the kinematic model.

If. instead, the mechanical DOFs are considered as real “controllable” DOFs, a

new workspace should be defined based on these 7 DOFs. The training and test

sets, then, would be composed as set 3 and 4 by uniformly sampling the 7 DOFs.

A third possibility, the one employed here, is to consider that the position and

orientation of the instrument in the channel depends on the particular instrument

configuration. In this case, similarly to the first option, the values of the 4 mechan-

ical parameters are computed before retrieving the entire pose with the kinematic

model (and, finally, the synthetic image by the camera model). Thus, the new

training and test set (indicated respectively as set 5 and 6) are computed in the

exact same manner as for sets 3 and 4, the only different aspect is that the mechani-

cal parameters are assuming variable values depending on the specific configuration

[λ,φ, θ]:

• xch = x∗ch + 3 ∗ sin(φ)

• ych = y∗ch + 2 ∗ sin(φ)

• ψ = ψ∗ + π/90 ∗ sin(θ − π/4)

• µ = 0: as for the model-based simulation tests, is considered fix and equal to

0.
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Case trained on tested on qcl qtr 3D RMS Worst 3D err

30 5 6 3 3 0.5369 0.8704 2.9192 9.0981

31 5 6 6 6 0.6423 0.8574 2.0556 5.1269

32 5 6 7 7 0.5658 0.8904 1.3337 4.6466

33 5 6 10 10 0.3545 0.3829 1.3150 3.8549

Table 6.5: Tendency of RMS and worst 3D estimation errors using RBF Network according

to the clustering (qcl) and training (qtr) domain dimensionality. The highest

accuracy is achieved when exploiting the entire visual information qtr = 10

(which corresponds to the 2× 5 2D coordinates of the markers’ centroids).
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Figure 6.4: Sorted 3D error norms for the cases listed in table 6.5.

Obviously, we have no guarantee that these functions describe the real rela-

tionship between the instrument configuration and the mechanical parameters, but

they allows to implement a more realistic set that takes into account the mechanical

plays.

Consideration 2 may be referred also to this case with 6 DOF3. Therefore, 3

PCs does not seem to be sufficient to have a good estimation. This is confirmed

also by simulation results (cf. table 6.5), where six or even better seven PCs (cases

31 and 32) already give an acceptable result even though augmenting the clustering

and training domain dimensionality (i.e. using more visual information) seems to

increase also the estimation accuracy.

However, the achieved precision is not satisfying considering that no noise has

been added yet to the data. The possible reasons could be that the shape of the

kernel is not correctly computed (maybe due to an imperfect clustering) or that the

chosen kernel are not suitable to approximate the function. These two problems are

now addressed and possible solutions are proposed.

3Let us remind that the fifth mechanical DOF is considered fix and equal to its nominal value.



6.3. RBF: Simulation Result 137

Case no. trained on tested on qcl qtr 3D RMS Worst 3D err

31 5 6 6 6 0.6423 0.8574 2.0556 5.1269

40 5 6 3(+3) 6 0.5281 0.7827 1.7625 5.1788

41 5 6 5(+1) 6 0.5910 0.8719 1.7874 5.5241

Table 6.6: Average and maximum errors (cases 40-41) for two different clustering domains:

considering the first 3 input PCs and the whole output (qcl = 3(+3)) or the first 5

input PCs and the output variable that is wanted to be estimated (qcl = 5(+1)).

These strategies seem to slightly benefit the average accuracy above all in Z (wrt

to case 31) supporting the hypothesis that such clustering domains help gathering

together those data whose output are better represented by a Gaussian.
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6.3.3.2 Clustering the data

To improve the computation of the Gaussian shapes, consideration 1 has been taken

into account and, consequently, decided to carry out the clustering algorithm in the

input-output joint space obtained as described in Sec. 6.2.

The adoption of this alternative clustering space seems to bring only small im-

provements in terms of 3D estimation accuracy (cf. tab. 6.6). In fact, the clus-

tering and training domain dimension being equal (case 40, 41 and 42 have all

qcl = qtr = 6), the 3D RMS error and even the worst 3D err are comparable. Nev-

ertheless, the result over Z seems to improve when considering the output (either

the 3 coordinates or the specific coordinate), confirming somehow the adequacy of

such clustering domain.

This leads to the following consideration

Consideration 3. It seems that the output carries some information that can sub-

stitute (or even improve) the input principal components.

This fact can be exploited in those cases where the confidence on the output
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of the training set is higher than the confidence on the input samples (the image

features in this case). One can think to substitute the input information with the

output without any substantial loss of accuracy in the estimation.

Consideration 1 does not only suggest a clustering strategy but, also, that the

RBF Gaussian kernel can be inadequate to describe the 2D-to-3D Z-coordinate

relationship. In fact, considering again the case of the instrument rotating with a

fix deflection, the function describing the relationship between the centroids and the

Z 3D coordinate would appear as an hyperplan in the 2n+ 1 dimensional domain.

That is why another approach has been investigated where another kernel such

as hyperplanes is used instead of Gaussians. Directly substituting the Gaussian

kernels by planes would result in a piecewise linear function which presents strong

discontinuities in correspondence of the inter-clusters frontiers.

Another approach, then, could be investigated. We propose to use Locally

Weighted Regression which are described in the next section.

6.4 Locally Weighted Regression (LWR) Method

To understand how LWR works, a step backward is necessary to introduce linear

regression. Assuming, without loss of generality, that the input x and output yi are

zero-mean, the model function in linear regression is:

yi = γTx+ εy (6.11)

where x is the qtr-dimensional input vector, yi is the output value, γ are the regres-

sion coefficients and εy is a noise variable independent of x.

Furthermore, let M be the number of training data points such that Xtr =

{(xm, ym,i)}
M
m=1. The coefficients γ can be obtained by minimizing the squared

error χ2:

χ2 =
1

2

M∑

m=1

||ym,i − γTxm||2 (6.12)

which results in the conventional least square solution:

γ = (XTX)−1XTyi

where the rows of X are the input vector of the training set (image centroids coordi-

nates) and yi the corresponding output values (one of the three space coordinate).

Locally Weighted Regression is funded on the principle that each data of the

training set should contribute to the computation of the linear regression propor-

tionally to its distance from the point where the regression has to be computed (also

called query point) [Atkeson 1997].

Even though all the data of the training set are used to compute such regression,

the term “locally” stays for describing the fact that each term in (6.12) is weighted
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according to the distance from the query point xq. Therefore, the new cost function

has the form:

χ2 =
1

2

M∑

m=1

wm(xq) ||ym,i − γTxm||2 (6.13)

and the weights can be expressed as

wm(xq) = exp

(

−1

2
(xm − xq)

TD(xm − xq)

)

(6.14)

where D is a positive semi-definite matrix computing a distance metric that deter-

mines the region of influence of the so-defined local model (but that still depend on

all the xm).

In this case, the solution for the regression coefficients is:

γ = (XTWX)−1XTWy (6.15)

where W is a diagonal matrix containing the wm on its diagonal.

Recalling the one-dimenional example used for RBF, in the case of LWR, when

the estimation for a new sample has to be computed (red line in Fig.6.6(a)), a

weight is assigned to all the data of the training set according to (6.14) (resulting

for example in the distance metrics of Fig. 6.6(b)) so as to find the “local” version of

the linear regression coefficients (cf. eq. (6.15)) obtaining the local approximation

(green line of Fig. 6.6(a)). This kind of learning method is also named Memory-

Based learning since it needs the entire training set to estimate a new sample.

The two main problems of such approaches lie

• in the inversion of the covariance matrix eq. (6.15), which cannot handle

redundant information,

• and the high computational cost due to the weights computation, which has

to be done for all the data of the training set.

To solve the described problems, the dimensionality of the training domain can

be reduced with PCA (to avoid the use of redundant information which may bring

to singularities) and the weights computation may be limited to the first j nearest

neighbors of the query points to lighten the whole process.

Taking into account considerations 1 and 3, our proposal is to take into account

the output in computing the nearest neighbors. Since no information on the output

is furnished for the query point, no input-output joint distance can be computed

for deriving the weights. A way to consider the output is to pre-cluster the training

data in the input-output joint space as described in sec. 6.2.

In the training space (defined as (6.10)), a distance metric can be defined and,

consequently, the distance from the query point (expressed wrt to its principal com-

ponents) to the clusters centers can be computed. The 2 nearest clusters are selected

and the weights are computed only for the sample composing such clusters.
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Figure 6.6: Principle of the LWR approach on a one-dimensional example. For a new

query point, the weights associated to the all training set samples are computed

according to a distance metric (such as the one in (b)) and with respect to

the query point in question. After that, equation (6.15) to obtain the linear

approximation valid only in a neighborhood of the query point.
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Case no. trained on tested on qcl qtr 3D RMS Worst 3D err

31 2 6 6 6 0.2320 0.3156 0.7800 2.5978

32 2 6 7 7 0.2003 0.2301 0.6230 1.4606

33 2 6 10 10 0.1496 0.1334 0.5665 1.4581

40 2 3 3(+3) 6 0.2964 0.3597 1.0054 2.9219

41 2 3 5(+1) 6 0.3453 0.4231 1.1592 3.8243

Table 6.7: LWR Approach: simulation results using 6 DOFs and 5 centroids and various

clustering and training domain dimensionality.

The objective of this pre-clustering is to group the data according also to the

output values and transfer, somehow, this output influence in defining the query

point neighborhood where no output information is available.

However, consideration 1 was more related with the Gaussian shape and the

necessity of clustering together smooth data which should be better represented by

the local Gaussian models. The choice of using planes for the regression has its

origin in trying to deal with cases similar to consideration 1 and more specifically

the case of centroids-to-Z 3D coordinate relationship. If this is the case, the effect

of considering the output would not be as much important as for the RBF Network.

Output consideration, though, can be useful in the perspective of consideration 3 to

“substitute” noisy data with the possibly more trustful output data.

6.4.1 Simulation Results

As before, the LWR-based method is tested in simulation and actually the achieved

accuracy is better than that achieved with RBF Network. The same tendency as

before reappears here showing that the higher the dimensionality the better the

performance is (see Tab. 6.7 and Fig. 6.7).

The results here seems to be in contradiction with the previous assertion about

the need of dimensionality reduction. However, in case of higher redundancy (using

3 DOFs and a training and clustering set of dimension 10) the described singularity

problems arise more often.

We can observe, though, that considering output in the clustering domain does

not improve the estimation precision as in the other case.

6.5 Counteracting the noise

The effect of noise deserves a different section since it changes the results observed

so far above all for RBF and conclusions are less intuitive and difficult to generalize.

A first result is over accuracy. Indeed, as one may expect, when considering in-

put noise (which is unavoidable in image), the position estimation accuracy drops.
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Figure 6.7: Sorted 3D error norms for the cases listed in table 6.7.

Case trained on tested on qcl qtr 3D RMS Worst 3D err

50 5 6 6 6
RBF 1.1411 1.5936 3.5830

LWR 0.9030 1.3017 2.3512

11.0444

7.6843

51 5 6 10 10
RBF 1.2365 1.7560 4.0120

LWR 0.9993 1.4225 2.6475

12.2903

8.1172

52 5 6 3 3
RBF 0.8489 1.4579 3.2583

LWR 0.8276 1.2487 2.2021

9.2711

7.1378

Table 6.8: Simulation test results considering image noise (and consequent error on visual

feature extraction) both in training and test set. In this case, higher training

and clustering domain dimensionality does not imply a higher accuracy.

Moreover, with the introduction of noise, augmenting the dimension does not coin-

cide any more with increasing the estimation precision, on the contrary it decreases

when passing from 3 to 6 PCs to 10 (cf. cases 50, 51 and 52). This fact is appreciable

above all looking at the worst error in Tab. 6.8.

In this simulation tests (where both image features and TCP 3D position are

computed using camera and kinematic models), a uniformly distributed random

noise between 0 and 5 pixels was added to each feature point (both to train and test

set input) whereas no noise were added to the TCP position.

To counteract the effect of noise we propose two strategies. The first one is to

increase the trustworthiness of the clustering data by relying on more trustful data

and the second one is to “learn” the effect of the noise.
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Figure 6.8: Sorted 3D error norms for the best initialization of the cases listed in table 6.8.

Improved Clustering

For the first solution, consideration 3 provides already a possible trustful informa-

tion to use i.e. the output value. In fact, the output value is a measurement issued

from a stereoscopic system which usually furnish very trustful results (provided that

the cameras intrinsic parameters are known). Therefore, using the same framework

described beforehand, the clustering space would be composed by the first princi-

pal component of the input (image feature) vector and the output (3D coordinate)

variables. Moreover, the fact of using PCA relegate the noise contribution to the

last component allowing to eliminate a part of the noise by taking only the first

components (cf. cases 50 and 52).

This correction improves the results for RBF when considering all the output

values. On the other hand, the same case (qtr = 3(+3)) it seems to have almost

no effect for LWR, even though a slight improvement in the maximum error is

noticeable (cf. cases 60, 61, Tab. 6.9 and Fig. 6.9(a)).

This capability of noise reduction when using the output is confirmed also when

comparing the results obtained using the output space as clustering with those

obtained using the 3 input PCs (Fig. 6.9(b) and Tab. 6.10). Also in this case the

effect is more appreciable for the RBF approach leading to the conclusion that planes

may better represent the image-to-3D function being capable of filtering outliers.

The results deriving from the consideration of the output alone imply suggest

that the benefits go beyond the noise counteraction especially for RBF. It seems

that the output information is better for clustering purpose than the information

carried by input principal component. The simulation results show that the accuracy

that can be achieved with a lower clustering and training dimensionality (case 70,
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Case trained on tested on qcl qtr 3D RMS Worst 3D err

60 5 6 5(+1) 6
RBF 1.0931 1.6832 3.3868

LWR 0.9189 1.3978 2.7112

11.8784

8.1118

61 5 6 3(+3) 6
RBF 0.9928 1.4646 2.7167

LWR 0.8304 1.3211 2.3229

8.5503

6.8322

62 5 6 4(+3) 7
RBF 0.9571 1.6823 2.8944

LWR 0.8460 1.3820 2.1930

8.6669

5.4759

Table 6.9: Effect of the image noise on the accuracy of the 3D position estimation for

various clustering domains. The output, which is supposed to be less affected

by noise, can be used to build the clustering set to improve the Gaussian shape

and, consequently, the position estimation. The same effect is less evident when

using LWR whose shape seems to be more adequate for this regression problem.
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Figure 6.9: Sorted 3D error norms for the cases listed in table 6.9 in (a) and table 6.10 in

(b).

Case trained on tested on qcl qtr 3D RMS Worst 3D err

70 5 6 0(+3) 3
RBF 0.8247 1.435 2.4534

LWR 0.8358 1.3471 2.2032

7.0378

6.6369

52 5 6 3 3
RBF 0.8489 1.4579 3.2583

LWR 0.8276 1.2487 2.2021

9.2711

7.1378

Table 6.10: Comparison of accuracy results considering 3-dimensional clustering and train-

ing domains. When using the 3D output samples as clustering set, the global

accuracy seems to improve above all for RBF network suggesting a higher re-

liability of the output GT information wrt to the visual information which are

more corrupted by noise.
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90 5 6 6 6
RBF 0.8530 1.4258 2.6253

LWR 0.8275 1.3685 1.9785

7.1746

6.6369

91 5 6 3(+3) 6
RBF 0.7290 1.3650 2.0916

LWR 0.8244 1.3964 2.1033

6.7925

6.0101

92 5 6 5(+1) 6
RBF 0.8207 1.4104 2.3777

LWR 0.8685 1.4210 2.4416

6.7114

7.1330

Table 6.11: Accuracy results with domain enrichment to “learn” the noise effect on the

image centroids. Comparing them with cases from 50 to 52 (Tab. 6.8), such

enrichment seems to help the position estimation precision above all for RBF

Network and also in terms of maximum 3D error. As for the other cases, the

maximum 3D error is computed over the best initialization in terms of RMS

error.

Tab. 6.10) can be as good as (or even better) the one obtained considering higher

dimensionality (e.g. case 62, Tab. 6.9).

Training Set Enrichment

The second proposal is a kind of training set enrichment. The idea is to “teach” to

the regression machine that the same output can be obtained with different input

configurations due to noise effect. For this aim, the cardinality of the training set

can be increased by adding for each original training sample a new sample with the

same output value (as the original one) but with the input value corrupted by the

expected noise e.g. the error in extracting the visual feature. This average error

can be determined empirically analyzing a sequence of images. The benefit of such

enrichment is evident comparing result in Tab. 6.11 with cases 50, 51 and 52. The

positive effect is more evident for the RBF Network (cf. Fig. 6.10(a)) even though a

(more slight) improvement can be noticed also for the LWR (Fig. 6.10(b) and (c)).

The other objective of the training set enrichment is to adequately add samples

in the case where the training set is not dense enough. At the beginning of the

chapter and also in Sec. 6.1 has been underlined how local learning approaches

need a representative and “dense” training set to avoid to drop to zero if no data

are present. Cases 100 and 101 (Tab. 6.12) confirm this aspect. In case 100, an

uniformly sampled subset of set 5 is used for training (subset of cardinality 140)

whereas the test is always done on test 6 (180 samples). In case 101, domain

enrichment is used to “complete” the training set finally obtaining a slightly better

result (cf. table 6.12).

The simulation results show that the two proposed improvements increase the

average accuracy of both RBF and LWR methods even when training set is affected

by noise. However, the two methods do not response in the same way to the same
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Figure 6.10: Sorted 3D error norms for the cases listed in table 6.11 and comparison with

cases from 50 to 52 where no domain enrichment was performed. In (c), a

zoom on the last samples of (b) is shown.
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100 5 6 6 6
RBF 1.1329 1.6025 3.8530

LWR 0.9342 1.3813 2.8512

10.6994

7.8852

101 5 6 3(+3) 6
RBF 0.9778 1.6017 2.7073

LWR 0.8923 1.4183 2.1218

9.3821

6.5195

Table 6.12: Effect of domain enrichment used to increase the cardinality of the training

test. In case 100, only 140 samples are used to train the regression machine

which is tested on a sequence of 180 samples. In case 101, the training domain

density is increased as in the case of the domain enrichment and output is used

to form the clustering set.
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Figure 6.11: Sorted 3D error norms considering the best initialization for the cases listed

in table 6.12.



148 Chapter 6. Learning Based Pose Estimation

action.

According to simulations where noise is taken into account, joint cluster domain

brings a higher benefit on RBF than LWR-based method (cf cases 52 and 70). This

may be explainable reminding consideration 1. In fact, LWR is already adequate

to fit (hyper-)planes to the data, whilst, adding output shape information obliges,

somehow, the Gaussian to take a flatter shape in the case of depth estimation.

These simulation experiments suggest three interesting cases to test with the

data retrieved from the robotic experimental cell:

• qcl = 3(+3), qtr = 6

• qcl = 6, qtr = 6

• qcl = 0(+3), qtr = 3

always considering the training enrichment.

6.6 Experimental Results

As emerged from the preceding discussion, the needed data set for the RBF network

training is composed of the image coordinates of the five markers centroids and the

corresponding measurements of the 3D position of the tip of the instrument.

The method described in Ch. 4 can be directly applied for extracting the 5

centroids of the markers by using the nodes of the resulting directed path (without

the need of border and corner detection).

The GT of the 3D position is obtained using the same experimental setup as detailed

in appendix B.

With the aim to compare model-based and learning-based methods the same set

is used here to perform the experimental validation.

In this case, a 4-fold cross validation process is adopted for obtaining the quan-

titative results of the estimation error. The available data are partitioned into 4

subsets whose components are randomly chosen. The train/test process is repeated

4 times: each time 75% of the data (three packages) are used for the training and

the remaining 25% for performing the test. The RMS errors are then computed

considering the errors over all the 4 testing packages (i.e. over the whole available

data set).

In the precedent chapter the mechanical parameters were modeled as additional

DOFs. However, provided that no contacts occur between instruments and environ-

ment, these are “passive” DOFs and, consequently, one can think that their values are

associated to the particular configuration of the robot. The simulations were carried

out along the line of this reasoning and, based on that, the best result parameters

have been chosen for the experimental tests i.e. qcl = 3(+3) and qtr = 6.

With such choices, the result is poor in terms of RMS estimation error (computed

over 237 values):
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qcl qtr RMS err Worst 3D err

0(+3) 3
RBF 0.8295 1.1266 2.6353

LWR 0.8539 0.802 2.0959

9.5452

7.0924

3(+3) 6
RBF 0.8274 1.2193 2.8493

LWR 0.747 0.7019 1.803

9.089

6.1562

6 6
RBF 0.9285 1.5184 3.0284

LWR 0.7749 0.7634 1.6569

8.6384

5.3356

Table 6.13: RMS and maximal errors computed for the two different strategies (RBF and

LWR-like approaches) for an in-laboratory sequence of 237 configurations with

input domain enrichment. The best results for RBF are obtained considering

the output in the clustering domain (qcl = 0(+3)), whereas LWR is capable of

approximating the function only with input information (qcl = 6).

• for (Pre-Clustered) LWR: [0.815, 1.03, 2.4] ± [0.54, 0.73, 1.57]

• for RBF: [1.02, 1.98, 4.15] ± [0.65, 1.28, 2.57]

but an important improvement is noticed when the training set enrichment is per-

formed by adding 3 (other values can be used as well) samples for each original

sample. Doing so, the obtained RMS errors are:

• (Pre-Clustered) LWR: [0.7, 0.74, 1.74] ± [0.43, 0.49, 1.08]

• RBF: [0.92, 1.2, 2.49] ± [0.61, 0.72, 1.49]

As also explained before, the choice of the value of parameter K changes accord-

ing to the cardinality of the training set. The results shown for the original training

set are obtained with K = 10 and for the case of the enriched training K = 18.

As announced in the simulation section, other experiments has been carried out

which are summarized in table 6.13. These last results confirm the expectation of the

simulation tests. Indeed, LWR is definitively better than RBF in approximating the

2D-to-3D function above all in terms of depth retrieving. Even if output information

is not considered in the clustering domain (qcl = 6), a good approximation of the

Z coordinate is achieved thanks to LWR endorsing, somehow, the consideration 1

concerning the particular almost planar shape of the 2D-to-Z-coordinate function.

Comparing the experimental results with those obtained in simulation, the ten-

dency of the RMS error in the different cases (clustering domain, training set en-

richment, ...) is almost maintained (Fig. 6.12) whereas the RMS value are lower

for the experimental RMS. This difference in value can be explained by the fact

that, maybe, the hypothesis made over noise magnitude (both for input or output

measurement) or over the modeling of the mechanical DOFs are only partially true

and maybe exaggerate wrt to reality.
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Figure 6.12: Effect of the two improvement proposed for the learning based method. On the

graphic, we can observe that the training set enrichment improves the quality

of the position estimation obtained by the RBF (cf. curves RBF classic vs

RBF enrich) and by LWR (cf. LWR classic vs LWR enrich). Finally, in the

case of RBF, realizing the clustering in the input/output joint domain (curve

RBF enrich inout) provides better results than those obtained with only the

training set enrichment.
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Comme montré en figure 6.12, ces deux modifications apportent des bénéfices

aux deux approches en améliorant la précision de l’estimation de la position 3D du

bout de l’instrument.

6.7 Comparison with Model-Based Method

Comparing the root mean square errors of the model-based and learning-based meth-

ods suggests that the latter approach seems to be more capable of capturing the

intrinsic nature of the image-to-TCP relationship. The same tendency is confirmed

by the maximum error which is almost 3 mm worse in the case of model based (Fig.

6.13(a)). In terms of maximum error, though, both approaches are still far from the

possibility of being used in the envisaged biomedical applications.

Differently of what observed with the model based approach, here, there is not

a clear pattern in the distribution of the highest 3D errors in the 3D space. The

largest error are on isolated points and are usually derived from the fact that no

dense information is available in that specific portion of the space.

The substantial advantage of learning approach is that it does not require to

model all the different relationships of the considered system. This allows to reduce

the errors deriving from incomplete models, which often result to be incorrect due

to uncertainty or identification issues. This can also avoid camera calibration step

and camera distortion estimation since these procedures are inherently considered

in the learning process. In fact, the coordinates of the features extracted in the

original images and used during the training do not need any rectification. The

2D-to-3D function, then, is retrieved directly with the distorted information. This

does not imply any problem as far as the image distortion is the same for all the

sequences where the trained regression is wanted to be applied. Furthermore, the

needed features (markers centroids) are easier (and faster) to extract wrt to markers

corners.

On the other hand, learning-based approaches are strictly dependent on the

ground-truth they have been trained on: the GT must be trustful and complete

to achieve satisfactory precision and its obtaining is often laborious and time-

demanding. If, during test, a “not seen” sample shows up the trained machine

cannot give any trustful estimation. This is also confirmed by the fact that the

largest errors are on the frontier of the training set i.e. where the information is less

dense (cf. Fig. 6.13(b)). In this aspect, a model-based approach beats the learning-

based because it does not need to see any specimen and, nevertheless, thanks to

model hypotheses, can infer pose information even if the information is only par-

tially available. Furthermore, it shows a more adaptability with different systems

(in Ch. 5 the same model worked for experimental cell and manual flexible system

used in-vivo), whereas in the learning based method another training set should be

created.
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Figure 6.13: The norm of the 3D error committed with the different approaches is sorted

and shown in (a) (red: Model Based, blue: RBF and green: LWR). In (b) a

color code is used to highlight the norm of the error in the workspace. The

more red they are the higher is the error committed in its estimation. The

highest errors seem to be located at the borders of the training set.

Considering a scenario where the instruments interact with the environment

(tissues, organs, ...) a model-based approach would allow to still interpret the scene,

with the only necessity of upgrading the model accordingly to the deformation that

have to be taken into account (e.g. considering more DOFs for being able to estimate

non-constant curvature configurations or additional bending sections). From the

learning point of view, a complex training action should be performed if all the

possible deformations have to be taken into account.

Since the model-based approach estimates the best joint configuration, it allows

to estimate the entire pose of the instrument which could be useful for motion plan-

ning purposes or if the TCP orientation has to be controlled. This is an important

aspect in surgery, since cutting or sewing action generally requires a particular tool

orientation to perform the most adequate gesture and, then, attain the optimal re-

sult. The approach adopted here in the learning-based solution only allows to have

the TCP position estimation. It could be thought to extend the proposed solu-

tion considering orientation data. However, a precise orientation GT seems difficult

to obtain. With respect to this aspect several attempts were made with electro-

magnetic sensors but their reliability is limited and even drops when interact with

metallic parts (which are difficult to avoid in endoscopic surgical contexts).
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7.1 Conclusion

The control of continuum robots is a challenging task and it becomes even more chal-

lenging in the context of surgical operations carried out with flexible miniaturized

instruments. Without accounting for the difficulties linked to in-vivo operations, the

complex models needed to describe their dynamics lead to the necessity of external

measurements of the instrument pose to close the feedback position control loop.

With this final aim, we have proposed and compared in this manuscript, two vision

based methods for measuring the 3D position of flexible instruments.

The problem has been tackled in all its stages: from camera and flexible endo-

scopic system modeling, through the selection and segmentation of suitable visual

features and to the inferring of 3D information from such 2D features.

7.1.1 Chapter 3

The whole kinematic chain from the camera till the TCP of the instrument has been

identified and expressed in the camera reference frame. Based on this formalization,

a theoretical study has been carried out over different descriptors to find the most

suitable (among them) to infer 3D information from monocular vision. In spite of
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the fact that the described study has only a local validity, it allowed to quantify

the sensitivity of certain features and, consequently, make the decision of using the

corners of some colored markers located on the body of the bendable section of the

surgical instrument.

7.1.2 Chapter 4

Although these features are always visible whatever is the orientation of the instru-

ments, they resulted to be difficult to automatically segment in in-vivo environ-

ments. We proposed, then, a novel segmentation algorithm that is easily adaptable

to any marked bendable instrument with few a-priori information on the object.

It showed its robustness to strong specularities present in in-vivo environment and

false-positive reflection of the instrument on glossy surfaces contiguous to the in-

strument. The core of this algorithm is composed by two stages. The first is a

graph-based method which allows defining the relationship between regions of in-

terest for selecting solely the true positive and combining them according to some

visual criteria. In our case, topological and shape criteria have been used, but the

same formalization can be used for other criteria. Thanks to this method, the par-

tial markers regions can be recomposed till obtaining the entire instrument body in

the image.

The second stage takes advantage of the skeleton of the segmented instrument (de-

fined as the piecewise linear curve connecting the marker centroids) to search its

upper and lower borders points in the proper directions. Our proposal of using

M-estimator to fit Bézier curves to such points allowed a two-fold action: to filter

border outliers out and to get a continuous representation of the border to achieve

sub-pixel precision in corner extraction. Moreover, it also help to recover partially

missing information. The method, though, is not robust to external or self occlu-

sions, yet.

One model-based and one model-free approaches have been advanced in this

report to tackle the 3D pose estimation starting from 2D information and some

a-priori information either represented by model knowledge or training set.

7.1.3 Chapter 5 and 6

The model-based approach improves the state-of-the-art solution, by considering

an extended kinematic model with additional “spurious” DOF. This factor allows to

model the mechanical plays that the considered system may have and, consequently,

enhance the adaptability of such method, providing good results even when the

geometrical model (camera-to-instrument-channel chain) changes during the surgical

operation.

It has been also shown how, in a robotic context, motor encoder information can

be exploited (within a Kalman filter framework) to strengthen or complete visual
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information throughout an image sequence.

On one hand this method provides the complete pose information, but, on the

other hand, it showed accuracy limits in terms of RMS TCP position estimation

errors, whose main cause seemed to be due to model uncertainties (for example a

non constant curvature).

To overcome model uncertainties, a learning based algorithm has been developed

to approximate the image-to-TCP-position relationship. Given the difficulty of ob-

taining an a-priori information on the nature of such relationship, local regression

approaches have been preferred over regression methods based on global costs, since

they can easily fit local variability without affecting the outline of the function in

the whole domain. Two methods were conceived inspired by Radial Basis Function

(RBF) and Locally Weighted Regression (LWR). The first one approximates the

function with a linear combination of Gaussians fitted on pre-clustered data. The

second one fits a plane on the training data weighted according to the distance from

the query point. Differently from conventional LWR the neighborhood is composed

by those samples pertaining to the two nearest clusters of the query points.

To mitigate the known issues of local approaches when dealing with high-dimensional

domains, the choice of performing the clustering (needed by both methods) in the

space defined by the first k principal components of the input-output joint space

showed to be effective. The proposed training set enrichment showed an important

effect on counteracting the noise.

Comparing the RMS error results, the learning approaches are more accurate

(in average). Moreover, since the regression is based solely on input/output data,

easier-to-extract (but still coherent) visual features, such as the centroids, can be

chosen wrt the model-based approach. However, the difficulty here lies in creating

a representative and dense training set, which can be laborious.

The choice of one method over the other, though, still depends on the meant

application. In endoscopic surgery, for example, the orientation of the surgical tool

(TCP) is as important as the position to ensure the right gesture and perform

the operation faster. In other cases where the trajectories of the tool need to be

controlled or its workspace to be limited, only the position is sufficient and the

learning method proposed here can be utilized as it is.

Both model-based (thanks to the modular way in which the Jacobian is written)

and learning based (for its intrinsic independence from the model) can be adapted

to other camera-to-instrument configurations, e.g. conventional endoscopy where

a single working channel is provided usually located underneath the camera or to

flexible unarticulated instruments by fixing the parameter θ.
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7.2 Future Work

A list of complementary works can be drawn up, starting from the current identified

limits of the presented solution.

7.2.1 Feature Segmentation

The algorithm for extracting visual information, for example, can be made more

robust to occlusion by introducing a tracking algorithm. The more direct solution

would be to consider the model of the instrument itself and use a Kalman or particle

filter [Isard 1998] to predict the position of the features in the image. In this case,

of 3D tracking, a good 2D measurement or, alternatively, a good drift detection

should be individuated. An example for such measurement can be the distance

of the estimated outline to the actual apparent contour of the instrument both

labeled according to which markers they pertain. This allows to have some 3D

instrument related features which can be employed as harder constraints to possibly

help limiting tracking drifting. Using a model, though, always presents the same

limits related to the quality of the model and, consequently, can jeopardize the

tracking accuracy. An alternative would be to consider the Bézier curves that can

adapt at any shape even though loose the 3D meaning. Another approach could

be to use 2D feature tracking (Bézier or others) for a preliminary raw estimation

that can be refined with dense information (such as Mutual Information). However,

in this case, a precise model of instrument appearance should be known. In any

case, as a first approximation, a constant velocity model can be considered or, in

alternative, take the motor encoder data increment to compute the prediction.

Regarding the segmentation, it would be worth keeping on working on the for-

malization of the graph-based method described in Sec. 4. Such scheme could be

inscribed in a pictorial structure framework (or the more general deformable part

model) which is presently used, for example, to detect person skeleton [Felzenszwalb 2005].

Firstly, the image is processed with a specific detector for each body part and, sub-

sequently, a global cost function is used to combine the “candidate” body parts in

one person skeleton. The difference with our problem is the difficulty of having char-

acteristic features for each marker (for example, the first and last markers are not

distinguishable between them, except for their relative position wrt the instrument)

and the fact that the structure of the skeleton may changes (in fact, saturation

does not always affect the instrument and, therefore, the instrument body can be

composed by 5 or more elements). Therefore, two aspects should be enriched: a suit-

able characteristic to train the markers detectors (or put a particular color for each

marker) and a global cost function allowing the right ordering and (re-)composition

of the candidate regions.
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7.2.2 Model-Based Approach

The considerable error resulting from the model-based approach can be mainly im-

puted to the imperfect modelling of the instrument. As future work, the possible

improvement deriving from the employment of a more complete model should be ver-

ified. The weakest hypothesis seems to be the one regarding the constant curvature

of the instrument in a plane. One solution would be considering all the vertebrae

as independent joints, but this would dramatically increase the number of parame-

ters over which perform the optimization. An alternative is to study, thanks to the

stereoscopic system used for Ground Truth, the specific curvature of the instrument

so as to describe it with a limited number of parameters.

Another improvement would be considering, in addition to corners points, the

entire apparent contour of the instrument or the computed Bézier curve to reinforce

the visual information and help convergence to the right solution following the works

in [Colombo 2005].

Also a more clever image-motor data-fusion could be foresee. An example could

be, at least, detecting by vision the histeresis characterizing the deflection: avoid-

ing state update when no motion on the image is perceived even though a motor

increment is detected.

7.2.3 Learning-Based Approach

On the other hand, the learning approach lacks of the orientation of the TCP. Given

its acceptable precision on 3D position estimation, the result of the learning-based

method could be used, in turn, as a new constraint for the optimization process

in the model-based method. This should improve the local-minima avoidance in

addition to provide an idea of the orientation of the tool.

One can also imagine to learn solely the shape of the instrument, separating

it from the translational (and scale) component of the base of the bendable part.

The idea would be to learn the relationship between the image features and the

two parameters (φ and θ) responsible for modifying the aspect and orientation (in

the image) of the bendable part. In this way, the shape can be learned even on

synthetic data and, consequently, it could be easier to insert in the training set

some non-conventional poses that can be assumed in case of interaction with the

environment. Bézier curves parameters can be a good input vector for such new

learning approach, since the control points inherently contain the apparent shape

and orientation information.

In this learning based method there is the space of another improvement related

to the way the domain dimensionality is reduced. Indeed, PCA is not the best way

to choose efficient projections: components with high dispersion will be considered

as principal component even though they have no effect on the output. One alterna-

tive could be PLS (Partial Least Square) which recursively performs single variable
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regression along input projection and residual errors of the previous step. The key

ingredient of PLS is on the choice of such projection direction, which coincides with

the direction of maximal correlation between the residual errors and the input data.

In the same perspective used in our work of considering output data for cluster-

ing, PLS assures that the main input projections are those that have the greatest

influence on the output.

Other clustering initializations can also be studied maybe based on the output

outline (or variation), for example, locating the initial centers according to the

gradient of the training samples output. Alternatively, an incremental clustering

can be adopted to avoid agglomerating initial guesses in one region of the space

with the risk, though, to create clusters with almost no data.

7.2.4 Simulation Experiments

To strengthen the conclusions derived from results and simulations, further tests

and theoretical studies can be envisaged. For example, other features or descriptors

can be considered in the sensitivity preliminary study or additional tests with other

state-of-the-art learning algorithm (e.g. Random Forest) could be performed to see

the actual potentiality of the proposed solution. From the segmentation point of

view, the strengths and weaknesses of graph-based segmentation and Bézier fitting

of the borders could be tested on additional video sequences to verify its robustness

in cluttered scenes or in different in-vivo background. It will be interesting, as well,

applying the framework developed here to other robotic or manual systems used in

general endoscopy or, even, concentric tubes (single bending section concentric tube

at a first instance) to test its inter-class applicability.

7.2.5 Instrument Control

Although, the real flowering of this work (already evoked in the title) would be the

exploitation of pose estimation for controlling the flexible instrument with visual ser-

voing. The most direct implementation would be an Image Based Visual Servoing

(IBVS), where the reference can be a picture of the instrument in a given config-

uration. At each time step a control action can be computed in a similar manner

to the optimization process used in pose estimation and the resulting increment for

the DOF values can be used as velocity reference for those motors actuating the 3

DOF of the flexible instrument.

7.2.6 Possible Further Application

Another really interesting application of such work would be contact detection with

the environment or force sensing. If the force applied on the tip causes movements

of the bendable section which can be attributed to the conventional movements (i.e.

that can be explained with the kinematic model), the contact can be detected looking
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at the difference between the encoder incremental values and the increment of the

DOF revealed from the image. More precisely, if the estimated DOFs experience a

variation which is not reflected by encoders data, one can attribute such movements

to external forces acting on the instrument.

As the reliability of deflection encoders is poor for retrieving the real instrument

deflection, the data referring to this DOF would not be trustful enough to associate

a force estimation.

Nevertheless, in all the cases, the resolution and accuracy reachable with such tech-

nique is not clear a priori and probably would not be sufficient for high-precision

applications, but would only give an idea on the force magnitude or increment.





Appendix A

Apparent Border Points

A.1 Computation of the 3D Corresponding Points

In chapter 3 we pointed out the dependency of the extended image Jacobian from

the depth of the point for which it is computed. Therefore, we have to be capable

of computing such point for different configurations of the instrument.

The instrument can be considered as a torus of internal radius r which changes

its 3D shape according to the variations of the 3 natura DOFs (λ,φ, θ). Knowing

the instrument kinematic model and r these points can be computed according to

perspective projective relationship for the torus. Fig. A.1 shows the profile of a

traversal section of the instruments and the projection rays of its boarders towards

the camera. Looking at the scheme of this figure, we can define some properties for

those point whose projection will form the apparent border of the instrument:

• The projection rays are tangent to the circumference in the points Pi,u and

Pi,l and pass through the principal point of the camera C.

• Unlike C, Pi,u and Pi,l will lay on the same plane defined by the circumference

(which is the same defined by the x and y axis of Fsec).

• The distance of Pi,u and Pi,l from S will be equal to r.

To make all the computation easier, these geometrical relationships can be ex-

pressed taking as reference frame the one associated to the center of the circumfer-

ence (i.e. Fsec). Therefore, defining

P sec
i =

⎡

⎢
⎣

Xi

Yi

0

⎤

⎥
⎦ , Csec =

⎡

⎢
⎣

Xc

Yc

Zc

⎤

⎥
⎦

the following equations can be written:

X2
i + Y 2

i = r2 (A.1)

since P1 and P2 pertain to the circumference and

[Xi Yi 0]

⎡

⎢
⎣

Xi −Xc

Yi − Yc

−Zc

⎤

⎥
⎦ = 0 (A.2)
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Figure A.1: Perspective projection of a torus shaped instrument.

for the perpendicularity condition.

Executing the multiplication in equation (A.2) and considering equation (A.1),

Xi can be expressed as

Xi =
r2 − YiYc

Xc
.

Then, equation (A.1) can be written as follows:

Y 2
c Y 2

i + (X2
c − 2R2Yc)Yi + r4 − r2 − r2X2

c = 0

which is a second order equation with two solutions: one is the upper boarder point

Psec
u = (Xu, Yu, 0) and the other is the lower Psec

l = (Xl, Yl, 0).

The position with respect to the camera frame can be easily found from the

solutions just obtained as:

Pc
u = tcc,sec +Rc

sec

⎡

⎢
⎣

Xu

Yu

0

⎤

⎥
⎦

and the same thing for Pl.

A.2 Computation of the Jacobian for Apparent Points

Corners of the markers are not completely defined physically. Their actual position

on a section varies depending on the pose of the instrument with respect to the

camera, and as a consequence the velocity of the apparent point on the section



A.2. Computation of the Jacobian for Apparent Points 163

In Appendix A
dV c

a/b velocity between Fa and Fb computed in c

and expressed wrt Fd
aC 3D position of C wrt Fa reference frame
bRa Matrix expressing the orientation of Fa wrt Fb

Table A.1: New notation used in section A.2

is also affected. This effect has to be taken into account in the geometrical 3D

Jacobian.

In this section, a change in the notation is performed to precisely express all the

relationships needed for the computation of the Jacobian for apparent points (cf.

Tab. A.1).

A.2.1 Velocity of an apparent point onto its section

Let consider an apparent point A (either Pi,u or Pi,l), which can slide onto a given

section of the instrument of center S. Then

camV A
A/cam = camV A

A/sec +
camV A

sec/cam,

where the first term of the right side of the equation is the velocity of the apparent

point with respect to physical points of the considered section, and the second term

is the velocity of the physical point with respect to the camera.

The second term can be expressed conventionally in function of the joint veloc-

ities as : camV A
sec/cam = JA

3Dṙ.

To express the velocity of the apparent point A onto the section it pertains (the

first term), one first expresses the constraint of a point on the section to be an

apparent point: orthogonality between SA and CA.

In the frame of the section, one has :

r(cos(κ),±sin(κ), 0)(secC − r

⎛

⎜
⎝

cos(κ)

±sin(κ)

0

⎞

⎟
⎠) = 0

which can be rewritten as:

Q = r(cos(κ),±sin(κ), 0) secC − r2 = 0

By noting secC = (xc, yc, zc)
T and stating that the previous relation should be

constant with respect to time, one has dQ
dt = 0 and one obtains:

dQ

dt
=

∂Q

∂ secC

⎛

⎜
⎝

ẋc
ẏc
żc

⎞

⎟
⎠+

∂Q

∂κ
κ̇ = 0
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which gives (considering, without loss of generality, only the lower apparent

point):

κ̇ =
−cos(κ)ẋc − sin(κ)ẏc
yccos(κ)− xcsin(κ)

.

Noting that secωA/sec = (0, 0, κ̇)T , and that

camV A
A/sec = camRsec

secV A
A/sec =

camRsec(
secV S

A/sec +
secωA/sec ∧ secSA)

= camRsec

⎛

⎜
⎝

−κ̇rsin(κ)

κ̇rcos(κ)

0

⎞

⎟
⎠

one gets

camV A
A/sec =

camRsecM

⎛

⎜
⎝

ẋc
ẏc
żc

⎞

⎟
⎠

with

M =
1

yccos(κ) − xcsin(κ)

⎛

⎜
⎝

rsin(κ)cos(κ) rsin(κ)2 0

−rcos(κ)2 −rsin(κ)cos(κ) 0

0 0 0

⎞

⎟
⎠ .

One also has (ẋc, ẏc, żc)
T = secV c

cam/sec = −secRcam
camV C

sec/cam.

We note camV C
sec/cam = Jg_genṙ where Jg_gen is the Jacobian relating the joint

velocities to the velocity of point C, considered as a point attached to Fsec. This

Jacobian is close to the one of eq. 3.24, although it is different because C does not

generally belong to the plane of the considered section.

Actually, the effect of λ̇, φ̇, ψ̇, ˙xch, ˙ych and µ̇ are not modified by this fact. Only

the effect of θ̇ (Aθ) is modified, because θ̇ produces different effects on different

sections of the instrument.

For deriving the component Aθ for Jg_gen, one can follow the same process as

for Jg, but taking into account a non null third component for tbS,C:

tbS,C =

⎡

⎢
⎣

xccosθi + sin(θi)zc
yc

−xcsinθi + cos(θi)zc

⎤

⎥
⎦ (A.3)

tbb,C =

⎡

⎢
⎣

Rcurv(1− cosθi)

0

Rcurvsinθi

⎤

⎥
⎦+

⎡

⎢
⎣

xccosθi + sin(θi)zc
yc

−xcsinθi + cos(θi)zc

⎤

⎥
⎦ . (A.4)

Aθ = Rc
b

∂Cb

∂θ
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with

∂Cb

∂θ
=

⎛

⎜
⎝

kθL/θ sin θi − Csec
x kθ sin θi + Csec

z kθ cos θi − L/θ2(1− cos θi)

0

kθL/θ cos θi − Csec
x kθ cos θi − Csec

z kθ sin θi − L/θ2 sin θi

⎞

⎟
⎠

Finally
camV A

A/cam = JA
gapp ṙ

with

JA
gapp = − camRsecMJC

g_gen + JA
g .

The 3D geometric Jacobian of the apparent point A can hence be obtained from

the usual 3D Jacobian of the same point but considered as a physical point attached

to the section, the generalized Jacobian expressed at the origin of the camera C

(considering C as part of the instrument), from the rotation between the camera

and the section the point A belongs to, and matrix M . M depends on the position

of the apparent point on the section and the position of the camera with respect to

the section.





Appendix B

Validation Process

For the validation process to be meaningful, the estimated quantity (3D TCP pose)

needs to be compare with the value obtained with an alternative measurement

method. A possibility for retrieving such measurement is attaching an external

sensor, such as electromagnetic sensors, to the tip of the instrument. However, in

previous experiments, poor quality results have been provided probably due to the

effect of metallic parts of the Anubis and its motorization on the electromagnetic

field.

To avoid these problems, an alternative method is used here based on stereo

vision. A system composed by two cameras has been placed looking towards the

left instrument workspace so that the white ball was visible in both images.

To build the ground truth (GT), a sequence of several instrument configurations

is created. For each of them the endoscopic image is stored together with 3D position

of the white ball of the electric tool (as shown in Fig. 3.8) estimated using stereo

vision.

The pose estimation based on endoscopic images provides the 3D pose wrt to

the endoscopic camera whereas the ground truth as defined so far is expressed wrt

the stereo-vision system. A registration step between the stereo system and the

endoscopic camera is needed to be able to compute the root mean square (RMS)

estimation errors over the 3D position of the electric tool tip (white ball).

To carry out this registration, the particular object shown in Fig. B.1(b) is placed

so that one grid is captured by the endoscopic camera and the other is captured

by the stereo system as shown in (Fig. B.1. Knowing the intrinsic parameters of

the cameras (thanks to a previous calibration process for both stereoscopic system

and endoscopic cameras) and detecting the corners of the corresponding grids, the

extrinsic parameters can be computed for both endoscopic and stereoscopic system

defining, respectively, T left
grid2

and T endo
grid1

.

To finalize the registration, the transformation (T grid1
grid2

) between the reference

frame of the two grids (whose origins is the common corner of the green yellow

colored squares) must be known. This depends on the geometry of the chosen

object which has been retrieved using the stereo-vision system.

In this manner, the global transformation between one camera of the stereo

system and the endoscopic camera can be computed as follows:

T endo
left = T endo

grid1 T
grid1
grid2

[T left
grid2

]−1.
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Figure B.1: (a) Scheme of the validation test-bed. The stereo-vision system returns the 3D

position of the white ball. The calibration grid object in (b) allows to know

the transformation from the endoscopic camera and the stereo system.



Appendix C

Computation of Jacobian Block

for the Mechanical Parameters

When assuming tolerances on the mechanical parameters (xch, ych,ψ, µ), their vari-

ability effect on the image has to be taken into account in the optimization process

of the model-based method. For that reason, the geometrical Jacobian (that is used

to compute the extended image Jacobian) must include the relationship describing

the 3D point velocity due to the mechanical parameters variations.

We just list here the blocks Ai related to the mechanical parameters which are

employed in equation (5.8).

The variation of the channel position directly modify the position of any 3D

point pertaining to the instrument obtaining:

Axch
=

∂tcc,Pi

∂xch
=

∂tcc,b
∂xch

=

⎡

⎢
⎣

1

0

0

⎤

⎥
⎦ (C.1)

and

Aych =
∂tcc,Pi

∂ych
=

∂tcc,b
∂ych

=

⎡

⎢
⎣

0

1

0

⎤

⎥
⎦ . (C.2)

For ψ and µ the same principle used for φ is employed here, obtaining:

Aψ =
∂tcch,Pi

∂φ
= −[(Pi − tcc,ch)× ycch)]. (C.3)

and

Aµ =
∂tcch,Pi

∂µ
= −[(Pi − tcc,ch)× [cos(ψ) 0 − sin(ψ)]T )]. (C.4)
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Nomenclature

λ Instrument translation (Natural DOF)

φ Instrument rotation around channel axis (Natural DOF)

θ Instrument deflection angle (Natural DOF)

(xch, ych) Channel position on the camera plane (Spurious DOF)

ψ Opening angle of the instrument wrt the Camera axis (Spurious DOF)

µ Tilt angle of the instrument wrt the Camera axis (Spurious DOF)

F[·] Reference frame associated to the different parts

of the kinematic/geometrical chain.

tca,b Column vector describing the translation from Fa to Fb

expressed wrt to Fc

Rb
a Matrix representing the orientation of Fa wrt Fb

Rx(·), Ry(·), Rz(·) Matrix expressing the rotation around

(respectvely) x, y and z of the angle indicated as argument

Pi
a 3D point corresponding to the i-th section

of the instrument bendable part (determined by the markers)

expressed wrt Fa

Pi,u 3D point corresponding to the i-th upper (lower) apparent corner

Pi,l defined by the i-th section

pi,u i-th upper (lower) apparent corner

pi,l defined by the i-th section

·̂ estimated value of the argument





Chapter 6

K Number of clusters

M
Number of elements

in the training set

Nk

Number of elements

in each cluster:
∑

k Nk = M

Ck,i

Center of gravity of each cluster k

in the estimation problem of the i-th 3D coordinate.

γk,i
Coefficient weighting the influence of the k-th kernel

for the estimation of the i-th 3D coordinate.

y function output: in our case the three coordinates

of the TCP 3D position (X,Y,Z)

x function input: in our case the coordinates

of the n corners position in the image (x1, · · · , x2n)

xm

Input samples of the training set

m = 1 · · ·M

xmk

Elements of the training set

pertaining to cluster k

ŷi
Estimation of the i-th coordinate

y1 = X, y2 = Y and y3 = Z

ŷm,i

i-th component of the output sample

corresponding to xm
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1 Introduction

Avec les progrès des techniques de chirurgie minimalement invasive, les systèmes flexibles et à sections

continues sont maintenant utilisés pour des opérations chirurgicales. En chirurgie endoscopique flexible, les

instruments utilisés sont longs, fins et leur extrémité distale pliable est habituellement actionnée par câbles.

Leur manipulation est complexe et une assistance robotique est intéressante pour l’utilisation pendant des

tâches chirurgicales [5].

La commande robotique de ces systèmes flexibles continus est difficile. En effet, l’information fournie

par les capteurs proximaux n’est pas fiable en raison des interactions mécaniques complexes entre câbles de

transmissions et gaines. Par ailleurs, intégrer des modèles de ces interactions dans la commande résulte en

général en des solutions très spécifiques difficilement transférables à d’autres systèmes.

Pour implémenter des modes de commande efficaces, il serait souhaitable de fermer la boucle en utili-

sant des capteurs externes. Cela est notamment nécessaire pour permettre des mouvements autonomes et

améliorer les modes de télémanipulation des robots flexibles.

En raison de contraintes liées à la taille, à la compatibilité avec l’environnement chirurgical et à la résis-

tance à la déformation, il n’existe pas de capteurs standard qui puissent être utilisés in vivo pour les systèmes

flexibles. Par conséquent, utiliser la caméra endoscopique embarquée semble être une façon intéressante de

mesurer la position des instruments, tout en fournissant des informations relatives à l’environnement. Cette

approche a été utilisée précédemment dans [9]. Toutefois, les méthodes décrites dans ce travail ne fonc-

tionnent correctement que si le modèle géométrique du système est parfaitement connu, ce qui n’est pas le

cas en pratique.

1.1 Objectifs

Notre objectif est de proposer des outils pour l’estimation de la position 3D d’instruments flexibles, qui

puissent être utilisés dans un environnement chirurgical réel, et qui se basent principalement sur les images

de la caméra endoscopique embarquée. De plus on souhaite qu’ils soient adaptés aux contraintes suivantes :

– système de vision monoculaire,

– instruments flexibles à section continue béquillable non texturée,

– point de vue défavorable (cas des endoscopes classiques utilisés en chirurgie) : azimut et élévation

faibles entre les instruments et l’axe optique de la caméra,

– transmission mécanique par câbles sur de grandes longueurs, ce qui signifie que les mesures données

par les codeurs proximaux ne représentent pas correctement la position distale,

– le bout de l’instrument n’est habituellement pas visible dans les images endoscopiques car il se trouve

en contact avec les tissus.

Ces conditions sont notamment représentatives des systèmes flexibles utilisés actuellement en chirurgie

mini-invasive (aussi bien manuelle que robotique), comme par exemple le système robotique STRAS (ICube

/ Storz) présenté en Fig. 1(a) [4].

Après avoir discuté la modélisation cinématique des instruments flexibles et le banc de test expérimental

utilisé dans ce travail, nous présentons les trois principales parties de la thèse : la détermination et l’extraction

de primitives pour l’estimation de pose (sec. 3), une approche basée modèle permettant une estimation de

pose robuste aux variations de modèle (sec. 4) et l’étude d’une approche alternative, sans modèle, basée sur

1



l’apprentissage de la relation entre des primitives visuelles (entrée) et la position 3D de l’instrument (sortie)

(sec. 5).

2 Cellule expérimentale et système cible

La partie distale du système Anubis est composée d’une caméra endoscopique et de deux instruments qui

sortent de deux canaux inclus dans le corps de l’endoscope (Fig. 1(a)). Ces instruments ont trois degrés de

liberté (DDL) : translation et rotation par rapport à l’axe du canal et flexion (indiqués respectivement par λ,

φ and θ sur la Fig. 1(b)). La partie pliable de l’instrument est composée de multiples vertèbres parcourues par

deux câbles antagoniste : quand le câble attaché à la vertèbre la plus distale est tiré, toute la partie pliable

change de courbure de sorte à minimiser son énergie mécanique. Ces systèmes flexibles sont normalement

modélisés par des tronçons de tore avec un angle de courbure (θ) variable [10].

Pour décrire entièrement le système, quatre autres paramètres (appelés mécaniques) ont été introduits :

la position de la terminaison du canal de l’instrument ([xch, ych]) et l’orientation de ce dernier par rapport

à l’axe optique (z) de la caméra, décrite comme la composition de deux rotations consécutives : la première

d’angle ψ autour de l’axe y de la camera et la deuxième d’un angle µ autour de l’axe x résultant.

Afin d’évaluer la précision des méthodes présentées par la suite, une cellule expérimentale a été conçue,

composée de la plateforme STRAS [4] et deux caméras conventionnelles positionnées au-dessus du système

robotique et formant un système de vision stéréoscopique. Pour chaque configuration d’un des instruments

flexibles, une image est prise par la camera endoscopique et simultanément par les caméras du système stéréo

(Fig. 2). La précision de mesure endoscopique est évaluée comme la distance 3D entre la position du bout de

l’instrument (TCP) estimée à partir des indices visuels de l’image endoscopique et la vérité terrain donnée

par le système stéréo. Le choix d’utiliser un point de référence distant de l’extrémité de la partie pliable (la

boule blanche visible en Fig. 1(a)) permet de valider non seulement l’estimation de la position mais aussi de

l’orientation du corps de l’instrument.

µ

[xch, ych]

x
zy

x

z
y

C

(a) Extremité Isiscope

C

[xch, ych]

φ

λ

θ

ψ

Rcurv

tip

TCP

x

z

x

x

x

z
z

x

z

z

(b) Schéma de l’extremité de l’Isiscope

Figure 1 – En (a) la photo de la pointe de l’endoscope avec les instruments et en (b) le schéma correspondant.
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(a) (b)

Figure 2 – (a) : cellule expérimentale composée de la plateforme STRAS et deux caméras conventionnelles

positionnées au-dessus du système robotique et formant un système de vision stéréoscopique ; (b) : pour

chaque configuration une image est prise par la camera endoscopique (bas) et simultanément par les caméras

du système stéréo (haut).

3 Choix des primitives visuelles pour un instrument flexible

La précision des méthodes basées image utilisant une caméra monoculaire dépend fortement de la capacité

des primitives choisies à décrire l’effet perspectif. En ces termes, le concept de pertinence d’une primitive

pour l’estimation de pose peut être défini en se basant sur la sensibilité de l’estimation de pose 3D par

rapport à l’erreur sur la segmentation des primitives dans l’image.

Une étude préliminaire a été menée afin de déterminer les primitives les plus adaptées pour ce type de

problèmes. Considérant le fait que le bout de l’instrument est souvent caché pendant l’opération, seules

des primitives attachées à la section flexible de l’instrument ont été prises en comptes, tout en incluant la

possibilité d’utiliser des marqueurs.

Cette étude de propagation d’incertitude a suggéré l’adoption d’indices visuels liés aux bords apparents

de l’instrument, à condition qu’ils aient une véritable signification physique par rapport à l’instrument. Le

choix d’utiliser des marqueurs est assez commun dans le contexte des opérations in-vivo en raison du besoin

de robustesse à la présence de fumée ou de fluides. Des marqueurs de dimensions connues enroulés autour

du corps de l’instrument ont donc été utilisés et leurs coins ont été sélectionnés pour servir de primitives.

Ces marqueurs permettent la segmentation des primitives quelle que soit la rotation de l’instrument.
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Figure 3 – Pour chaque configuration du robot, la direction avec la plus grande variance sur l’estimation

de la position du bout de l’instrument est sélectionnée et les normes des erreurs obtenues sont ordonnées. Le

résultat pour différentes primitives est montré, la meilleure solution consistant à considérer les coins apparent

des différents marqueurs (5 marqueurs dans ce cas).

4 Extraction des primitives d’un instrument flexible

Une fois les primitives sélectionnées, l’autre point clef pour obtenir un bon résultat d’estimation est

d’atteindre une robustesse et une précision d’extraction suffisantes. Cette tâche présente plusieurs difficultés,

en particulier pour des instruments déformables et dans des conditions in-vivo. Comme cela est montré dans

la fig. 4, l’illumination intense (nécessaire pour avoir une bonne visibilité de toute la scène) provoque de fortes

spécularités qui effacent toute l’information de couleur ou de texture présente sur le corps de l’instrument.

En outre, les reflets qui se produisent sur les organes peuvent amener à la détection de faux positifs. Enfin,

le mouvement respiratoire rend inefficace les techniques de soustraction de fond.

A notre connaissance, il n’existe pas de méthodes de segmentation pour ce type d’instruments et, en

particulier, dans ces conditions. Nous avons donc proposé une nouvelle approche composée de 4 étapes (Fig.

5). Après une segmentation basée couleur qui extrait des régions candidates (1ère étape), une méthode

basée sur des graphes permet d’assigner, selon des critères topologiques et de forme, une étiquette indiquant

à quelle classe (c’est-à-dire à quel marquer) appartient chaque région (2ème étape). Les points des bords

apparents supérieur et inférieur sont alors extraits (3ème étape) et filtrés en leur ajustant une courbe de

Figure 4 – Exemple de scène in-vivo capturée par la caméra endoscopique. On peut observer la forte

spécularité au milieu de l’instrument due à l’ illumination intense et le reflet de l’instrument sur l’organe.
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Figure 5 – Étapes de la méthode de segmentation. (1) Le résultat donné par les modèles Gaussiens des

couleurs est binarisé pour déterminer les régions jaune et bleu dans l’image. (2) Création d’un arbre en

utilisant la connectivité spécifiée : la branche 2 n’est pas connectée parce qu’elle ne respecte pas la condition

1 ; la branche 1 ne respecte pas la condition 2 parce que l’orientation de la branche diffère sensiblement de

l’orientation des branches qui la précèdent. Finalement, l’arbre est traité pour obtenir un chemin orienté. (3)

Le squelette est utilisé pour chercher localement les points de bords, en recherchant les maximas locaux du

gradient le long des perpendiculaires à la section du squelette. Ces points candidats sont ensuite décrits avec

des courbes de Bézier . Les coins apparents des marqueurs sont finalement en recherchant les discontinuités

de couleur le long des courbes de Bézier (4).

Bézier , en se basant sur la théorie des M-estimateurs. Finalement, les coins des marqueurs sont extraits

comme les transitions entre les couleurs bleu et jaune le long des courbes de Bézier estimées (4ème étape).

Grâce à cette définition continue des bords apparents, une précision sub-pixelique de la position des coins

peut être attendue.

4.1 Interprétation de l’image

Le coeur de ce procédé est la deuxième étape, qui permet de recomposer le corps de l’instrument dans

l’image, en assignant à chaque région candidate une étiquette représentant le marqueur auquel elle appartient.

Cette phase se base sur le concept qu’un objet peut être représenté comme un ensemble de parties connectées

entre elles. Dans notre cas, la partie pliable de l’instrument peut être vue comme la séquence ordonnée des

cinq marqueurs. Toutefois, en raison des fortes spécularités, le résultat de la segmentation basée couleur

présente plus de régions candidates que de marqueurs (cf. stage 1 fig. 5).

Cette étape vise donc à résoudre ce problème en réassemblant les régions dans les parties originales de

l’objet de sorte à obtenir l’objet complet. Elle est composée de deux phases : la construction de l’arbre et

son traitement.

Pour mener à bien la première phase, il n’est pas suffisant de considérer une connectivité classique à 4
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Figure 6 – Construction de l’arbre avec la connectivité spécifiée. Dans le premier cas, la branche n’est

pas créée parce qu’elle ne respecte pas la condition 1. Dans le cas 2 et 3, c’est la condition 2 qui n’est pas

respectée, parce que l’orientation de la branche considérée diffère sensiblement de l’orientation donnée par

les branches qui la précèdent. Cela permet de ne pas connecter des faux-positifs (cas 2) ou de former des

boucles internes qui correspondent à configurations qui n’ont aucune signification physique (cas 3).

ou 8 voisins pour décrire la relation entre les régions. Une nouvelle connectivité a donc été définie, basée sur

deux caractéristiques structurelles de la section béquillable, c’est à dire :

1. Les marqueurs sont adjacents l’un avec l’autre et les couleurs bleu et jaune s’alternent ;

2. Les centres des différents marqueurs dans l’image doivent définir une courbe qui ne présente pas de

fortes discontinuités de direction.

Plus spécifiquement, en commençant de la racine, un nouveau nœud est connecté a son parent s’il respecte

ces deux propriétés (fig. 6). Construire l’arbre de cette manière permet d’ordonner les régions de la base au

bout et d’obtenir, à chaque niveau (cfg. fig. 6), toutes les régions candidates pouvant être associées à un

même marqueur.

Une fois l’arbre obtenu, pour chaque niveau les nœuds sont considérés deux à deux et un nœud artificel

est créé, qui représente la région résultant de la fusion possible entre les deux régions correspondant aux

nœuds initaux. On obtient ainsi l’arbre montré en fig. 8 (en haut).

Cependant, l’objectif final est d’obtenir un chemin dirigé composé par les marqueurs de la partie pliable

de l’instrument. Un critère de cohérence temporelle est utilisé pour traiter l’arbre et en extraire ce chemin.

En supposant que, d’une image à la suivante, la forme de l’instrument reste substantiellement la même,

l’apparence de chaque marqueur peut être décrite par deux facteurs :

– un facteur de forme dépendant du moment de second ordre de la région (calculé selon ses axes princi-

paux) : s(1) et s
(2) ;
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Figure 7 – L’apparence de chaque marqueur peut être décrite par deux facteurs : un facteur de forme et une

facteur topologique. Le premier est défini comme la longueur et largeur de chaque marqueur selon ses axes

principaux (gauche) et le deuxième comme la distance du marqueur considéré à son prédécesseur (droite).

– un facteur topologique dépendant de la distance du nœud considéré (réel ou artificiel) à son nœud

parent (ou région) : d.

Ces deux facteurs ont été modélisés comme des variables stochastiques. En définissant a comme l’événe-

ment qu’une région soit un marqueur particulier A, s l’événement qu’elle ait la forme S (facteur de forme) et

d l’événement que la distance à son nœud parent soit D (facteur topologique), la probabilité conditionnelle

est définie par : p(A|S,D).

En première approximation, nous pouvons considérer que, connaissant le marqueur A, les événements de

forme et de topologie sont des variables Gaussiennes qui peuvent être définies comme :

p(S(1)|A) ∼
1

2πσ
(1)
sa

exp(−
(si − µ

(1)
sa )2

2[σ
(1)
sa ]2

) (1)

p(S(2)|A) ∼
1

2πσ
(2)
sa

exp(−
(si − µ

(2)
sa )2

2[σ
(2)
sa ]2

) (2)

pour la forme (fig. 7(a)) et

p(D|A) ∼
1

2πσda

exp(−
(di − µda

)2

2σ2
da

) (3)

pour la topologie (fig. 7(a)), où µ et σ sont respectivement la moyenne et l’écart type des valeurs observées

dans un passé proche :

– du moment central de second ordre calculé le long des composantes principales du marqueurs en

question (µ
(1)
sa ,σ

(1)
sa ) et (µ

(2)
sa ,σ

(2)
sa ),

– de la distance Euclidienne depuis le centre de la région parent (µda
,σda

).

Ces valeurs sont déterminées pour chaque marqueur (de 1 à 5). Pour tenir en compte de la variation de taille

et de forme perçues dans l’image pendant le mouvement de l’instrument, ces paramètres sont actualisés à

chaque image en considérant les observations sur une fenêtre glissante des 10 dernières images.

A partir des caractéristiques d’un nœud (réel ou artificiel), on peut alors calculer la valeur de la probabilité

de ce nœud d’être le marqueur du niveau considéré :

p(A|S,D) ∼
1

2
(p(S(1)|A) + p(S(2)|A)) p(D|A). (4)

A l’exception de la racine (le marqueur de la base de la partie pliable), cette probabilité conditionnelle

peut être considérée comme une récompense associée à chaque branche de l’arbre en provenance du niveau
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supérieur. L’arbre peut être traité niveau par niveau (cf. Fig. 8) en sélectionnant la branche avec la probabilité

la plus haute. Dans le cas d’un nœud artificiel, les facteurs de forme et topologique sont calculés en considérant

une région résultant de la fusion des deux régions candidates impliquées. Si la région avec la plus haute

probabilité est celle associée à un nœud artificiel, les deux nœuds impliqués sont éliminés et remplacés par

le nœud artificiel.

Si le niveau présente plus de deux régions, le même procédé peut être appliqué itérativement jusqu’au

moment où aucune meilleure solution ne peut être trouvée.

A la fin de ce procédé, l’arbre est une séquence de 5 centres, ordonnés de la base au bout de la section

bequillable de l’instrument (deuxième étape en fig. 5).

Ce traitement définit une sorte de squelette de l’instrument, qui sert ensuite à détecter les points des

bords supérieur et inférieur comme décrit auparavant. Ces points de bord sont ensuite approchés par des

courbes de Bézier , puis les coins des marqueurs sont extraits en analysant les variations de couleurs le long

de ces courbes.

Cette méthode a fourni de bons résultats, même en conditions in-vivo, lorsque l’instrument se déplace

dans un espace libre et sans occultation. La méthode est robuste aux fortes spécularités et est capable de

discriminer l’instrument de ses éventuels reflets sur les organes (Fig. 11(c)).

Comme cette méthode ne prend pas en compte de modèles de l’instrument, l’algorithme est peu robuste

aux occlusions, ce qui pourrait être pris en considération dans des travaux futurs.
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Figure 8 – Schéma du procédé de traitement de l’arbre. Pour chaque niveau, la branche avec la valeur la

plus grande (celle associée à la région avec la plus grande probabilité d’être le marqueur du niveau considéré)

est sélectionnée (colorée en vert). Si, comme dans le cas en question, la branche la plus probable est celle

d’un nœud artificiel (le nœud qui représente l’union de deux régions candidates), les nœuds associés à ces

deux régions sont effacés et le nœud artificiel est converti en un nœud réel. Si le niveau présente plus de deux

régions, le même procédé est appliqué itérativement jusqu’à obtenir un seul nœud.
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Figure 9 – Résultats in-vivo de la méthode présentée. En (a), malgré les fortes spécularités, la structure

de l’instrument est retrouvée. En (c), grâce à l’extraction locale des bords et à l’approximation robuste

utilisant une fonction de coût Beaton-Tukey, la plupart des points aberrants sont éliminés et l’instrument

est correctement discriminé de son reflet sur l’organe.

5 Approche basée modèle

La première approche que nous avons proposé pour estimer la pose de l’instrument à partir des primitives

image consiste à utiliser un modèle géométrique paramétré du système.

En supposant que les modèles géométriques de l’instrument et de la caméra sont connus, une image

synthétique (virtuelle) de la scène peut être calculée pour une configuration donnée de l’instrument. En

conséquence, le problème de l’estimation de la pose 3D peut être formalisé comme un problème d’optimisa-

tion, dont l’objectif est de trouver la meilleure configuration de l’instrument selon un “critère visuel ”, par

exemple basé sur la différence entre l’image virtuelle courante (position des points dans l’image calculée) et

l’image de référence (position des indices visuels dans l’image vidéo acquise) [7].

Nous avons montré que l’hypothèse considérant que l’état actuel de l’instrument dépend seulement de

3 DDL (comme dans [9]) n’est pas adaptée : en effet, certaines parties du modèle peuvent varier en raison,

par exemple, des jeux mécaniques entre les instruments et les canaux qu’ils traversent. Ces jeux ne sont pas

négligeables ni évitables puisque ils sont indispensables afin que l’instrument puisse se déplacer à l’intérieur

du canal.

Nous avons donc décidé de considérer une tolérance sur les paramètres mécaniques et, en conséquence,

nous avons développé une nouvelle méthode d’optimisation se fondant sur des fonctions de pondération, qui

aide à contraindre l’estimation de ces paramètres dans un voisinage de leurs valeurs nominales. Le critère

d’optimisation, donc, n’est plus strictement visuel, mais tient compte de ces contraintes sur les paramètres

mécaniques :

χ2 =
1

2

N∑

i=1

wi [pi − p̂i]
2 + ρxch

(x∗

ch − x̂ch) + ρych
(y∗ch − ŷch) + ρψ(ψ

∗

− ψ̂) + ρµ(µ
∗

− µ̂) (5)

où pi est l’état de référence et p̂i est l’état estimé. Les astérisques indiquent les valeurs nominales des

paramètres mécaniques et .̂ les valeurs estimées. Le choix de la forme de ρ dérive de la nature des tolérances.
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Figure 10 – Comparaison entre les deux approches basées modèle. Les deux courbes représentent les normes

des erreurs commises sur l’estimation de la position 3D pour différentes configurations dans l’espace de travail

et ordonnées de façon croissante. La considération des jeux mécaniques (courbe rouge) permet obtenir une

estimation nettement meilleure à celle obtenue avec une méthode plus classique comme celle de Reilink

(courbe bleu).

En fait, un jeu mécanique laisse un mouvement presque libre autour de la position de repos, alors que les

contraintes deviennent fortes lorsque l’instrument s’éloigne de son état de repos (décrit par la valeur nominale

fournie par le fabricant). Pour répliquer ce comportement, la fonction adéquate doit présenter une zone morte

autour des valeurs nominales et une valeur croissant rapidement en dehors de cet intervalle. De plus, elle doit

être au moins C1 dans tout son domaine pour pouvoir procéder à l’optimisation. Nous avons donc proposé

d’utiliser le module d’une fonction cubique :

ρ(u) =
kw

3a3
|u|3, a ∈ R

+, kw ∈ R
+ (6)

où kw détermine la pente en dehors de la zone morte dont la largeur est définie par le paramètre a.

Dans le contexte robotique, les informations visuelles ont été fusionnées avec les données moteur de sorte

à les compléter et les renforcer. Ceci est réalisé au travers d’un filtre de Kalman dont les confiances sur la

mesure et l’état sont basées sur la quantité disponible d’information visuelle. En effet, si l’information visuelle

n’est que partiellement disponible (i.e. seulement quelques coins sont détectés), la confiance du modèle devrait

être augmentée au détriment de la confiance sur la mesure (résultat de l’asservissement virtuel).

Cette approche a été testée sur une séquence de 295 images acquises sur le dispositif expérimental. Le

processus d’extraction de caractéristiques a échoué sur 16 images. L’erreur moyenne quadratique (RMS)

obtenue sur chaque coordonnée (en mm) est : 1.87 ± 1.65 sur x , 2.12 ± 2.07 sur y et 2.69 ± 2.57 sur l’axe

z. Ces erreurs ne diminuent que légèrement si les poses pour lesquelles l’information visuelle est incomplète

sont exclues, ce qui démontre la capacité de cette approche à gérer des informations partielles. La précision

est bien meilleure que celle qui peut être obtenue à partir des approches plus classiques (fig. 10).

Cette même méthode a été testée sur deux séquences vidéo in-vivo acquises dans l’abdomen d’un cochon.
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Sur la figure 11 quelques exemples significatifs sont montrés, où les instruments sont premièrement détectés

(comme expliqué dans la section précédente) puis où la pose 3D est calculée en se basant sur les coins extraits

(croix vertes). L’image virtuelle de l’instrument est reprojetée dans l’image originale avec la position estimée

du centre de la pince (point vert).

Ces résultats semblent confirmer la capacité de la méthode proposée à estimer la pose d’un instrument

béquillable en se basant sur les coins des marqueurs colorés.

En outre, l’introduction des tolérances pour les paramètres mécaniques permet au procédé de converger

même si l’instrument est en train de pousser sur les organes et que, en conséquence, sa position dans le canal

est modifiée (fig. 11(a) et (b)).

L’adaptabilité du schéma proposé est aussi démontrée par le fait que le système flexible utilisé pour les

expériences in vivo est différent de celui employé en laboratoire. Néanmoins l’estimation de la pose fonctionne

sans aucune modification de l’algorithme.

Finalement, même si l’information visuelle est partielle (fig. 11(e)), la pose 3D calculée est acceptable en

termes de reprojection dans l’image.
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(a) (b)

(c) (d)

4

(e) (f)

Figure 11 – Résultats in-vivo de la méthode présentée : (gauche) le résultat de la segmentation et (droite)

la reprojection de l’instrument à partir de la pose estimée. Le point vert est la reprojection du centre de la

pince. Dans (a), les jeux mécaniques considérés permettent d’approcher l’instrument même s’il est en train

de pousser sur l’organe. Dans (c), l’instrument réel est correctement discriminé de son reflet sur l’organe.

Même si la segmentation échoue partiellement (e), la pose estimée peut être considérée acceptable du point

de vue qualitatif en termes d’erreur de reprojection (cf. (f)).
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6 Approche basée apprentissage

Les erreurs résiduelles de l’approche basée modèle peuvent être expliquées en partie par l’utilisation d’un

modèle paramétrique du système. En effet, la tâche de déterminer et décrire tous les aspects qui influent

sur le comportement de l’instrument est ardue et le résultat serait un modèle complexe et difficilement

exploitable ou transférable à d’autres systèmes. Pour éviter l’utilisation de modèles, nous avons étudié une

deuxième approche où l’idée de base est d’ apprendre la fonction qui relie les indices visuels dans l’image

avec la position 3D du TCP.

La forme de ce type de fonctions est difficilement déterminable a priori. Pour cette raison nous avons

choisi d’étudier les potentiels de plusieurs méthodes générales parmi lesquelles nous avons choisi les deux qui

ont donné les meilleurs résultats : un réseau de fonctions à base radiale (RBF) et une régression localement

pondérée (LWR). La première approche modélise la fonction comme une somme pondérée de K noyaux

gaussiens ϕk (modèle local) dont les poids sont calculés d’après un critère global [3, 8]. Plus en détails, étant

donné x = [x1, · · · , x2n]
T le vecteur d’entrée, l’estimation d’une sortie ŷ obtenue par un réseau de fonctions

à base radiale peut être écrite comme :

ŷ = h(x) =

K
∑

k=1

γkϕk(x) + γK+1 (7)

où γk sont les coefficients appris qui décrivent la contribution du k-ème noyau à l’estimation de la sortie.

Dans le cas de noyaux gaussiens, ϕk est défini comme [2, 6] :

ϕk(x) = Yk e
−

1

2
(x−Ck)

T
Σ

−1

k
(x−Ck) (8)

où Ck est le centre de chaque noyau, Σk sa variance et Yk son amplitude.

Cette méthode nécessite une étape initiale d’apprentissage divisée en deux pas. Le premier pas répartit

les donnée d’entrée en clusters (en utilisant un algorithme type k-means) et, selon les composants de chaque

cluster, calcule la forme et la position des gaussiennes ; le deuxième pas détermine la pondération des noyaux

qui permet de décrire au mieux la relation entrée/sortie.

La seconde approche effectue une approximation linéaire en fonction de l’information locale de l’ensemble

d’apprentissage [1]. Cette méthode ne nécessite pas d’étape d’entraînement car toutes les données de l’en-

semble d’apprentissage sont utilisées lors d’une nouvelle estimation. Comme visualisé en figure 13(a), la

valeur estimée de la sortie pour un nouvel échantillon d’entrée (query point) est le résultat d’une approxi-

mation linéaire où la contribution de chaque échantillon de l’ensemble d’entraînement (xm) est déterminée

selon sa distance à la nouvelle entrée (query point) xq. En appliquant ce critère, la fonction de coût qui en

résulte est :

χ
2 =

1

2

M
∑

m=1

wm(xq) ||ym,i − γ
T
xm||2 (9)

où les poids peuvent être exprimés comme

wm(xq) = exp

(

−

1

2
(xm − xq)

TD(xm − xq)

)

(10)

où D est une matrice semi-définie positive, qui définit une métrique de distance determinant l’influence de

chaque element de l’ensemble d’entraînement dans le calcul du model de regression.
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Figure 12 – Illustration de l’entraînement d’un réseau RBF dans le cas de la fonction montrée en (a) avec

une seule entrée et sortie. L’ensemble d’entraînement, composé par plusieurs échantillons d’entrées et sorties

(dans notre cas, coordonnées des centres et position 3D de l’instrument respectivement) (b), est réorganisé

en clusters (c) à travers un algorithme d’apprentissage non supervisé de type k-means. Ensuite, selon les

composantes de chaque clusters, la forme et les centres de chaque noyau sont calculés (d). Finalement, la

meilleure pondération est déterminée par la méthode des moindres carrés.
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Figure 13 – Principe de l’approche LWR pour un cas monodimensionnel. Pour une nouvelle entrée (query

point) (red line in (a)), les poids associés à tous les échantillons de l’ensemble d’entraînement sont calculés

en fonction de la mesure de distance adoptée (comme celle proposée en (b)) et par rapport à l’entrée

considérée (query point). Ensuite, l’équation (11) est utilisée pour obtenir l’approximation linéaire, qui est

valide seulement dans le voisinage du query point.

Les coefficients de régression peuvent ensuite être calculés comme :

γ = (XTWX)−1XTWy (11)

où W est une matrice diagonale contenant les poids wm.

Pour limiter la redondance d’information qui semble s’opposer à l’efficacité de ces méthodes, la dimension

du domaine d’entrée a été réduite. Pour cela nous avons utilisé les 5 centres des marqueurs au lieu des coins

de ceux-ci.

En outre, deux améliorations ont été apportées par rapport aux méthodes originales. La première vise

à mitiger l’effet du bruit en l’intégrant dans l’ensemble d’entraînement. L’idée est d’enrichir l’ensemble de

données d’entraînement (composé par les coordonnées des centres x et la position donnée par la vision

3D stéréo Y ) en tenant en compte des possibles erreurs de segmentation. Cet enrichissement est obtenu

en ajoutant, pour chaque élément de l’ensemble d’entraînement X = (x, Y ), deux (ou plus) échantillons

artificiels ayant la même sortie Y (position 3D) que l’élément original et comme entrées les coordonnées

originales des centres perturbées par un bruit uniforme (x+∆x).
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La deuxième amélioration concerne le réseau de RBF et plus spécifiquement le clustering initial. En

effet, si le clustering est réalisé en ne considérant que les données d’entrée, il est possible que les données de

sortie associées à chaque cluster ne soient pas représentables par une gaussienne. Un exemple simple de ce

phénomène se visualise quand l’instrument est plié et tourne autour de son axe principal. Si on considère,

comme entrée de notre fonction, la coordonnée x du dernier marqueur et comme sortie la distance du bout de

l’instrument par rapport à la camera, on obtienne une tendance décrite par la fig. 14(b). Ce comportement

serait bien décrit par une gaussienne très ample comme montré en fig. 14(d). En revanche, si l’algorithme de

cluster se base seulement sur le domaine d’entrée, le risque est d’obtenir un résultat de la forme donnée à

la fig. 14(c). Dans ce cas, la combinaison des fonctions à base radiale n’arrive pas à décrire correctement la

tendance de la fonction dans cette portion du domaine. Nous avons donc proposé d’appliquer l’algorithme de

clustering dans un domaine conjoint entrée/sortie afin que la distance des données dans le domaine de sortie

soit prise en compte pour le clustering. L’objectif est de favoriser un résultat similaire à celui de la fig. 14(d)

où les données proches dans le domaine de sortie sont rassemblées dans le même sous-ensemble. Dans ce

cas, la gaussienne qui décrit le cluster prend en compte la variance de ces nouveaux clusters en prenant une

forme plus aplatie. Ce domaine étendu est composé par les échantillons obtenus en rajoutant les variables

de sortie Y = (y1, y2, ...ym) aux coordonnées d’entrée x. On obtient alors x
′ = [x1, · · · , x2n, y1, y2, ..., ym]T .

Dans notre cas, cela consiste à ajouter les coordonnées 3D de l’instrument à la séquence des coordonnées 2D

(image) des centres des cinq marqueurs.

Comme montré en figure 15, ces deux modifications apportent des bénéfices aux deux approches en

améliorant la précision de l’estimation de la position 3D du bout de l’instrument.

La validation a été effectuée sur le même ensemble d’images que pour la solution basée modèle, en utilisant

une partie des données pour l’apprentissage. L’erreur RMS entre les valeurs estimées et les coordonnées de

référence est (respectivement pour les coordonnées x, y et z du TCP) : 0.92± 0.61, 1.2± 0.62 et 2.49± 1.49

mm pour le réseau de RBF et 0.7± 0.43, 0.74± 0.49 et 1.74± 1.08 pour le LWR (fig. 16).

Les méthodes proposées donnent des résultats comparables et offrent une précision supérieure aux ap-

proches précédemment proposées dans la littérature. Néanmoins chacune d’entre elles présente des inconvé-

nients : d’un côté le traitement d’image nécessaire à l’approche basée modèle est critique. D’un autre côté,

les besoins pour l’approche d’apprentissage sont plus exigeants, car elle nécessite un système spécifique pour

la création d’un ensemble d’entraînement fiable contenant la position 3D du TCP. En outre, ce dernier type

d’approches fournit seulement la position 3D de l’outil alors que l’approche basée modèle rend également

compte de son orientation qui peut être utile dans certaines opérations. Toutefois, dans le contexte considéré,

ce dernier aspect n’est pas critique puisque l’instrument possède seulement 3 DDL et seule sa position dans

l’espace peut être commandée, l’orientation dépendant de celle-ci. Le choix final dépendra donc fortement

de l’utilisation recherchée.
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Figure 14 – Exemple illustrant la problématique liée au clustering initial avec l’approche RBF. En supposant

que l’instrument est plié et tourne autour de son axe (a) et que nous voulons estimer la relation entre la

coordonnée x du bout de l’instrument et sa distance à la camera z (b), l’algorithme de clustering (type

k-means) utilisé en considérant seulement les données d’entrée (coordonnée x) produit un résultat qui amène

à une mauvaise approximation (c). Si, au contraire, on prend en compte aussi les données de sortie (la

coordonnée z qui décrit la profondeur), il sera plus probable d’obtenir un résultat de clustering comme celui

de la fig. (d) qui amène à une gaussienne dont la forme décrit mieux la tendance de la relation position-

profondeur.
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Figure 15 – Effet des amélioration apportées aux deux méthodes basées apprentissage. Sur le graphique, nous

pouvons observer que l’enrichissement de l’ensemble d’entraînement améliore la capacité d’approximation

des RBF (cf. courbes RBF classic vs RBF enrich) et du LWR (cf. courbes LWR classic vs LWR enrich).

Finalement, dans le cas du RBF, le clustering réalisé dans le domaine conjoint entrée/sortie (courbe RBF

enrich inout) améliore le résultat obtenu avec l’enrichissement seul.
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Figure 16 – Comparaison entre les trois approches proposées pour l’estimation de la position 3D du bout de

l’instrument. Les trois courbes représentent les normes des erreurs commises sur l’estimation de la position

3D pour différentes configurations dans l’espace de travail et ordonnées. La méthode de régression localement

pondérée (LWR) semble donner le meilleur résultat par rapport aux RBF et la méthode basée modèle.
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7 Conclusion

Dans ce travail, le problème de l’estimation de la position 3D d’un instrument flexible de chirurgie

endoscopique a été traité dans son ensemble : choix et segmentation de primitives visuelles et obtention

d’informations 3D à partir de celles-ci. Une méthode spécifique de segmentation d’image a été présentée dans

le cadre de l’endoscopie flexible, qui permet d’extraire le squelette et les coins apparents de marqueurs colorés

sur un instrument flexible en environnement in-vivo. Deux solutions pour l’estimation de la pose à partir de

l’image ont été décrites : une méthode basée modèle et une méthode sans modèle, basée apprentissage. La

première permet d’estimer la configuration complète du robot et est robuste aux changements de la géométrie

du système dus, par exemple, aux jeux mécaniques entre l’instrument et les canaux. La deuxième permet de

surmonter les problèmes dérivants d’une connaissance partielle du système et donne une meilleure estimation

de la position 3D du TCP. En revanche, aucune information sur la configuration n’est obtenue.

Une suite logique à ce travail serait l’implémentation d’un système de suivi multi-images pour rendre

la détection des primitives visuelles plus robuste, ainsi que l’estimation de la position 3D. Cela permettrait

aussi de rendre tout le procédé plus rapide pour ensuite utiliser l’estimation de pose pour commander un

instrument flexible en boucle fermée.

Enfin, une extension intéressante pourrait être d’utiliser la forme et la position détectées par la vision

pour déterminer (et éventuellement estimer) les forces externes (par exemple dues à l’interaction avec les

tissus) appliquées sur l’instrument.
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Résumé

Grâce à leur dextérité, les systèmes flexibles et endoscopiques peuvent atteindre des zones distales à l’intérieur du

corps, d’une manière vraiment micro-invasive à travers des orifices naturels, permettant ainsi la réalisation d’un

geste chirurgicale sans ou avec une seule cicatrice. Etre capable de mesurer la position 3-D de ces instruments

peut être utile pour diverses tâches, telles que le contrôle automatique des instruments robotisés ou le guidage

des gestes du chirurgien. Dans cette thèse, nous présentons plusieurs méthodes automatiques pour déduire la

pose 3-D d’un instrument à section de pliage unique en utilisant seulement les images fournies par la caméra

monoculaire intégrée à l’extrémité de l’endoscope. Les deux méthodes que nous proposons reposent sur l’emploi

de marqueurs de couleur attachés à la section pliable de l’instrument. L’image acquise est segmentée en utilisant

une méthode basée sur les graphes et, successivement, les coins des marqueurs sont extraits par la détection de la

transition de couleur le long des courbes de Bézier qui modélisent les contours. Ces primitives visuelles servent

alors à l’estimation de la pose 3-D de l’instrument à l’aide d’un modèle adaptatif de ce dernier qui prend en

compte le jeu entre l’instrument et son canal de logement. Les fortes incertitudes sur la modélisation géométrique

d’un tel instrument robotisé et les nombreuses variabilités inhérentes à l’environnement in-vivo affectent

grandement la précision du résultat. Par conséquent, deux approches basées sur de l’apprentissage ont été

étudiées pour bien refléter la relation entre la position 3-D du bout de l’instrument et l’image associée à sa

projection: un réseau de fonctions à base radiale (RBF) et une régression localement pondérée (LWR). La

première approche modélise la fonction comme une somme pondérée de gaussiennes dont les poids sont calculés

d’après un critère global. La seconde approche effectue une approximation linéaire en fonction de l’information

locale de l’ensemble d’apprentissage. Toutes les méthodes proposées ont été validées sur une cellule expérimentale

robotique au laboratoire ICube et sur des séquences in-vivo. De l’analyse des résultats obtenus, les avantages et

inconvénients de chaque méthode sont énoncés et décrits.

Mots-clés: Robotique Medicale Flexible, Estimation de la pose 3D à partir d’une seule image, extraction des

primitives pour instrument flexible in in-vivo, apprentissage.

Abstract

Thanks to their dexterity and compliance, flexible systems can reach distal body zone in a real non-invasive way

through natural orifice allowing no-scar or single scar surgery. Being able to measure the 3D position of such

instruments can be useful for various tasks, such as controlling automatically the robotized instruments or

providing gesture guidance. In this thesis, we propose two automatic methods to infer the 3D pose of a single

bending section instrument using only the images provided by the monocular camera embedded at the tip of the

endoscope. Both methods relies on colored markers attached onto the bending section. The image of the

instrument is segmented using a graph-based method and the corners of the markers are extracted by detecting

the color transition along Bézier curves fitted on edge points. These features are then used to estimate the 3D

pose of the instrument using an adaptive model that takes into account backlash between the instrument and its

housing channel. Strong model uncertainties can affect the result of such model-based method. Therefore, two

learning approaches have been studied that approximate image features-to-3D function according to a training

set: Radial Basis Function (RBF) Network and Locally Weighted Regression (LWR). The first proposal

approximate the function as a weighted sum of Gaussians whose weights are computed according to a global

criteria. The other approach, instead, performs a linear approximation according to local information of the

training set. The proposed methods are validated on a robotic experimental cell and in in-vivo sequences.

Advantages and inconveniences of each method are presented and commented.

Key-words: Medical Flexible Robotics, Single-Image-Based 3D Pose Estimation, In-vivo Flexible Instrument

Segmentation, Learning Regression.


