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Abstract

Autonomous Underwater Vehicle (AUV) is a relevant technology for the sustainable
use of ocean resources. AUV can be used as an important ocean observing platform to
collect information on marine environmental characteristics for research and industry
fields. In order to improve the observation quality and increase the navigation ability,
many issues should be addressed and considered simultaneously.

Achieve necessary maneuverability depends on two key factors: an accurate hy-
drodynamic model and an advanced control system. However, the cost to develop
an accurate hydrodynamic model, which shrinks the uncertainty intervals, is usually
high. Meanwhile, when the robot geometry is complex, it becomes very difficult to
identify its dynamic and hydrodynamic parameters. In addition, according to the
quadratic damping factor, underwater vehicle dynamic and hydrodynamic model is
nonlinear from the control point of view. Moreover, unmodeled dynamics, parameter
variations and environmental disturbances create significant uncertainties among the
nominal model and the reality. Sensor noise, signal delay as well as unmeasured states
also affect the stability and control performance of the motion control system.

In many of our underwater competitions, it has been confirmed that the traditional
Proportional-Integral-Derivative (PID) regulation is less efficient for low mass AUV.
In this case, our scope is more focused on the combination of numerical modeling
approaches and robust control schemes.

In this work, we proposed a model based robust motion control scheme. With-
out loss of generality, a robust heading controller was implemented and validated in
the sea on cubic-shaped CISCREA AUV. The proposed solution uses cost efficient
Computational Fluid Dynamic (CFD) software to predict the two hydrodynamic key
parameters: The added mass matrix and the damping matrix. Four Degree of Free-
dom (DOF) model is built for CISCREA from CFD calculation. Numerical and
experimental results are compared. Besides, the proposed control solution inherited
the numerically obtained model from previous CFD calculation. Numerically pre-
dicted the actuator force compensates the nonlinear damping behavior result in a
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linear model with uncertainties. Based on the bounded linear nominal model, we
proposed �∞ approach to handle the uncertainties, we used kalman filter to estimate
unmeasured states such as angular velocity and we developed smith compensator to
compensate the sensor signal delay.

The proposed robust heading control application uses only one compass as feed-
back sensor. This is important while AUV is working at certain depth where only
magnetic sensors still work. Our robust control scheme was simulated in Matlab and
validated in the sea near Brest. Simulation shows obvious advantage of the proposed
robust control approach. Meanwhile, the proposed robust heading control is much
faster than PID controller. The robust controller is insensitive to uncertainties and
has no overshot. From both simulations and real sea experiments, we found our pro-
posed robust control approach and the one compass heading control application are
efficient for low mass and complex-shaped AUV CISCREA.

Thesis Supervisors: Huajun LI, Benoit CLEMENT, Ali MANSOUR, Ming LI
Title: Professors
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Chapter 1

Introduction

Contents

1.1 Context and General Introduction . . . . . . . . . . . . . 3

1.2 State of Art in AUV modeling and control . . . . . . . . 15

1.3 Motivation and Major Work . . . . . . . . . . . . . . . . . 24

1.4 Thesis Outlines . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . 30

1.1 Context and General Introduction

The ocean covers a vast stretch of surface on the earth, around 71% according to the

National Oceanic and Atmospheric Administration (NOAA) [1], it is rich in natural

resources, and it is still considered to be largely unrevealed. As marine technology

evolves rapidly [2], develop the sustained ability of marine activities is more important

than ever before. Indeed, sustainable use of the ocean becomes a pressing problem

that concerns the immediate benefits of every nation. This paper undertakes the

study of modeling and control problems of AUV. In fact, AUV is currently a key

technology to answer a variety of marine challenges in the sustainable use of ocean
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resources and space. Nowadays, major marine activities deploy underwater vehicles,

and these vehicles are widely involved in surveillance, inspection and survey missions

[2, 3].

Fully explore the ocean is challenging. Every year abundant of ocean biological

discoveries and marine technology innovations prove that the ocean mysteries are far

beyond our imagination [4, 5, 6]. In order to improve the sustained ability of marine

activities, it is required to expand both the width and depth of undersea monitoring

and exploration. Actually, the ocean environment is generally harsh and complex.

There is a fundamental necessity of using underwater vehicles to solve the problems

such as: operating at harsh weather, limited communication bandwidth and high

pressure or high temperature regions, etc. Meanwhile, a lot of unknown physical

and ecological ocean mechanism are waiting to be revealed by mean of autonomous

underwater robots [7, 8].

At the same time, modern societies face new challenges. Human civilization prod-

ucts are now to some extent threatens to the ocean environment. Before the great

strides of industry, human and ocean relation depends on pure natural phenomena,

including hurricanes, tsunami, algal bloom and offshore erosions, etc. However, today

many industrial activities are double edge sword. They can go out of our control such

as Gulf of Mexico oil spill [9], floating garbages, Fukushima nuclear accident [10, 11]

and global warming, etc. The ocean is an essential part to support life on the earth,

understand and protect its self-balance will save life from fatal disaster. Therefore,

many countries and organizations are inspired by the past man-made accidents. They

post realistic disaster scenarios to the autonomous air, land, surface and underwa-

ter robots [12, 13]. New kind of ocean safety guards are expected from potential

autonomous underwater vehicle designs.

Researches on AUV show recently a large amount of alarming results. In fact,

these studies prove the existence of a blank territory to improve the robustness of

future AUV designs.

In this chapter, the following contents are described:

- review of underwater vehicle evolution, applications and related researches.
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- the state of art in modeling and control of underwater vehicles.

- proposed algorithms and thesis organizations.

1.1.1 Underwater Vehicles Brief Review

Extending the ability of human-being to explore the ocean with man-made products

date back to 1531. Indeed, two men dive into the water using Halley’s bell as it was

shown by the design of Leonardo da Vinci [2]. Nowadays, thousands of underwater

vehicles are designed with different types for a wide range of underwater missions. A

brief underwater vehicle history is described here based on the report of Lapierre [2]

and Caiti [14].

Researches accelerate the steps to explore the underwater world. At the beginning,

they focus on the design of Human Occupied Vehicle (HOV). In 1776, David Brushell

designed the first submarine Turtle to attack surface vessels. In 1960, Jacques Piccard

and Lt. Don Walsh pilot the HOV, Trieste of USA, reached the deepest point in the

sea (10916 � Mariana Trench). In 2012, the Jiao Long HOV of China reached a

depth of 7000 � near Mariana Trench.

To avoid HOVs accident and minimize the risk, people began to show interest

in developing Unmanned Underwater Vehicle (UUV). Like HOVs, UUV designs also

pass through a long history. In 1866, Robert Whitehead design the first torpedo in

the world. In 1960s and 70s, USA and France respectively design the earliest SPURV

(Self-Propelled Underwater Research Vehicle) and Epaulard UUV. Nowadays, UUV

Blue fin 21 was used for MH370 blackbox searching mission.

Differences between HOV and UUV are mainly the design, the cost and the au-

tonomy efficiency. Comparing to UUV, HOV should be designed to have critical life

support systems for safety reasons. The cockpit is to some extent a high-risk and

tight space for pilots. The first aim is always guaranteeing the safety of pilots, which

induces very high cost to build the HOV. However, the HOV is operated by the on-

board pilots, which requires less autonomy on the vehicles. Instead, the autonomy

level of UUV improves rapidly, UUV currently shows more flexibility than the HOV,

and a large amount of UUV designs have emerged [3]. UUVs can operate at harsh

5







AUV is the most common UUV. AUVs are wildly used for the autonomous mis-

sions under depth range from hundreds up to thousands meters. AUVs can fully run

without human intervention for tens of hours. In figure 1-6, it is shown the Blue

Fin 9 AUV, of which its predecessor Blue Fin 21 is deployed to find the missing

blackbox of the MH370 airplane [18, 19]. Characterized by appearance and dynamic

properties, AUVs can be divided into Torpedo-shaped AUV and Cubic-shaped AUV.

Torpedo-shaped AUVs are distinct from cubics, and they are generally designed for

long range missions. Under-actuated actuation configuration (control fins and surge

propellers) determine that torpedo-shaped AUV is usually unable to hover and make

a pivot steering. It is difficult for Torpedo-shaped AUV to achieve precise movement

inside a small space. But there are few exceptional torpedo-shaped AUV designs

which are not limited by the under-actuated issues, such as Avalon [20] and Sparus II

[21] shown in figures 1-9 and 1-10. Cubic-shaped AUVs are generally fully actuated,

therefore they are good at hovering, pivot steering and short range low speed mis-

sions. In figure1-7, the OCEAN Modules V8 robot has 8 thrusters, and allows 6 DOF

movement. In our application, CISCREA AUV is equiped with 6 thrusters, which

allows 4 DOF motion, see figure 1-8 (Two vertical thrusters are connected without

differential actuation ability). Actually, hovering and pivot steering motion are crit-

ical for some specific underwater applications: undersea pipeline inspection, offshore

infrastructure surveillance and large vessel maintenance. Indeed, small AUVs can

be deployed to explore areas which are not accessible to HOVs and ROVs. Mean-

while, a large number of the cubic-shaped AUVs enjoy more degrees of freedom than

under-actuated torpedo-shaped AUVs.

The abundant distinct designs of underwater vehicles closely rely on the require-

ments of its specific applications. Therefore, in the next section, we will briefly

introduce the major underwater vehicle applications.

1.1.2 Underwater Vehicles Applications

Underwater vehicle (underwater robot) is a highly integrated product which involves

the frontier of many high-tech research fields. Hence, the past underwater robots
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by autonomous robots. According to the reports [2, 3], there are an estimation of

around 2000 billion tons of manganese nodules near the Hawaiian Islands. Hence,

many countries such as France and Canada are inspired to develop UUVs for the

emerging robot mining industries.

Military is another big buyer of underwater vehicles, and they focus on cultivating

a new kind of autonomous forces by UUVs. Modern UUVs are born with good

invisible properties. Instead of acting as a weapon, UUVs can save many lives in

future conflicts. Some UUVs have already been used in the anti-terrorist battles

[23, 24]. Meanwhile, the military UUV Blue Fin 21 was also used in the civilian

search of MH370 airplane. As global economy boost, the future territory safety will

be an essential issue of a sustainable ocean. We believe that the UUV will be an

important mean to save life.

According to Lapierre [2], coastal activities depends on UUVs. The port security

and safety burden are increasing rapidly, the monitoring and evidence gathering work

will finally exceed the limit of human efficiency. The 24-hours rest-free underwater

robot is indeed a good candidate as future autonomous port guards. It is impor-

tant to have a tool such as UUV, that can monitor leaking vessels for environmental

protection, rescue people from harsh weather or dangerous regions, and inspect auto-

matically the sedimental condition of critical transport channels. Besides, develop the

maintenance ability of UUVs for large vessels, can save currently limited dock space

and docking time [25]. Wet maintenance technology is critical for large scale ports.

In addition, coastal man-made structures require periodic and regular inspections.

For example, European dams have to be totally checked every ten years [25]. Note

that, after the Fukushima accident, people pay more attention on using autonomous

underwater vehicles for missions to monitor nuclear pollution and shut down critical

valves [13].

As the cost of UUV drops down, aquaculture UUV applications emerge. Indeed,

there are examples using an UUV and ultra sonar to detect fishing net damages

[25]. Meanwhile, biological and ecological study requires more UUVs. For example,

scientists use onboard sonar to identify different fishes. UUVs are indeed important
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in learning and understanding the ecological and biological mysteries of the sea.

Scientific data collection is the driving force to develop inspection UUVs. For

instance, to answer the global warming phenomenon, many organizations proposed

monitoring networks using multiple UUVs. The main concern is that UUVs can move

like a moving buoy, from one location to another where it is needed most. Besides,

it is necessary to have UUVs in many other scientific studies, such as learning the

acoustic characteristics of deep water or under the arctic ice cover, collecting high

temperature samples near undersea volcano, and monitoring coral reefs [26, 27].

UUVs face challenges to achieve above applications. The essential research issues

are briefly listed in the next section.

1.1.3 Research Issues of Underwater Vehicles

Underwater vehicles are highly integrated. Miniature, low-cost, robust and multiple

vehicle design are the current trend of new underwater vehicles. In this thesis, four

levels of researches are considered to be critical to construct an efficient underwa-

ter vehicle: physical level, control level, guidance and navigation level, and mission

control level.

Physical Level: the designers should have enough knowledge about the ocean

environment and robotic systems, to predict precisely the physical limit of the un-

derwater vehicle. For instance, the physical level issues include: vehicle stability

analysis (naval architecture point of view), pressure container design, thruster de-

sign, hydrodynamic fairing design, embedded system, sensors integration and battery

management, etc. Like all ordinary ocean vehicles, the ability to maintain stability

without capsizing the hull is essential for underwater vehicles to handle the turbu-

lent ocean environment. Then, it is necessary to select correct materials to prevent

the corrosion of underwater vehicles. In deep water, the pressure is extremely high,

the pressure container faces tons of force. Besides, collision protections are also con-

sidered to prevent data lost during unexpected collisions. For long range missions,

optimizing the fairing design will obviously reduce the hydrodynamic damping drag,

and extend the working range. For hovering tasks, precisely design the thrusters and
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fairing structures can provide an accurate model for better hovering and pivot steer-

ing ability. As we know, sensors are the eyes of the underwater robots to explore its

unknown surroundings. The sensor integration plays an important role in AUV de-

sign. New trends are to integrate more sensing devices in an even smaller space. The

sensors should guarantee enough data for the underwater vehicle to make decisions

by itself. Breakthroughs are expected on the above issues.

Control Level: the ocean environment is complex and full of uncertain distur-

bances. Therefore, the two important control level researches: modeling and con-

trol of underwater vehicles, are essential for a fully equipped underwater vehicle to

achieve high quality maneuverability. Indeed, underwater vehicles with precise con-

trol algorithms would have distinct advantage in reducing the complexity of high level

researches, such as localization and navigation.

Generally, an accurate hydrodynamic model of the underwater vehicle can reveal

the physical details and emphasize the focus of control design [28]. The control per-

formance can be obviously improved, as there is less parameter uncertainties in the

accurate underwater vehicle model. However, the cost of current modeling methods

to obtain an accurate underwater vehicle is always expensive. It is even more diffi-

cult to be accurate when the underwater vehicle has complex structures and shapes.

We believe high cost is one of the major reasons, only large organizations have the

modeling ability of high performance underwater vehicles.

To control the underwater vehicle is not straight forward, many issues should

be addressed [29]. The hydrodynamic model of the underwater vehicle is usually

nonlinear, which means traditional control algorithms are not efficient to handle the

damping efforts (cross-coupling damping terms and the linear damping terms are

neglected under the low speed assumption). Then, dynamic parameters have uncer-

tainties, and they are usually different from the nominal model. For example, the

mass inertia matrix will increase when payloads are added to the underwater vehicle.

Unmodeled dynamics, environmental disturbance as well as obsolete components also

induce modeling uncertainties. At last, sensor noise, signal transmission delay, and

unmeasured states would also affect the control stability and tracking performance.
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In order to build an efficient and approachable underwater vehicle control system,

this thesis addresses the modeling and robust control problems simultaneously. State

of art in AUV modeling and control works are described in the next section.

Guidance and Navigation Level: underwater vehicle autonomy are endeav-

oring to get rid of human interventions. Future UUV can analyze environmental

information onboard, and make decisions by itself. To this case, the UUV autonomy

requires the guidance and navigation level researches. First, localization is considered

to be one of the most difficult underwater problems. It is essential for the UUV to

first find its position and attitude using limited underwater information. Note that,

for most of the UUV inspection data, the information is only clear and valuable if

the localization information and time stamps are accurate. No straight forward and

efficient solutions exist to invert realistic inspection information by inaccurate local-

ization data. The navigation system analyzes the realtime environmental data, and

optimizes reasonable path for the UUV controller to avoid obstacles. UUV guidance

system will finally push the robot in the correct track.

Underwater localization is a difficult task since there exist no GPS and radio

signal. Territorial methods can not be applied to underwater localization [30]. Gen-

erally, electronic magnetic compass, gyroscopic compass, fiber-optic gyro-compass,

inertia navigation unit, Doppler Velocity Log (DVL), Long Base-line (LBL), and Ul-

tra Short Base-Line (USBL) are used for underwater localization [31, 32]. Classical

methods such as Dead Reckoning (DR) use initial UUV position and current acceler-

ation information to predict locations. However, the disadvantage of DR is the error

accumulates as the time passes. DR is simple and efficient for some UUV applica-

tions. For Gliders, it is possible to float to the surface, and make corrections on the

DR system periodically. For some UUVs that equipped with DVL, the DR method

will have an obvious performance lift [31, 33]. LBL and USBL methods depend on

static reference, which limit the operating range of the UUVs in few kilometers. Ac-

cording to the report of Pascoal [34], the main work of localization is around the

estimation of positions using Kalman filter (KF), Extended Kalman filter (EKF) and

complementary filters. The difficulty is to obtain the nonlinear state space equation
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and noise properties [35, 36, 37, 38]. Besides, localization methods using a group of

AUV [31, 39] or using acoustic cooperations between ASV and UUV are also popular

today [40, 13]. An important UUV localization algorithm is Simultaneous Localiza-

tion and Mapping (SLAM) [41, 42]. SLAM creates and identifies the landmarks to

improve its knowledge about the environment and its position. Many works exist on

UUV SLAM algorithms in [43, 44, 45, 46]. Currently, navigation works are mainly

mathematical optimizations, as described in [47, 48]. Navigation methods include

way-point navigation, line of sight method and nonlinear guidance [49, 50], etc. Gen-

erally, the navigation system optimizes a group of desired way points that avoids

obstacles, based on the knowledge of operating environment in advance.

Mission Control Level: the mission level concerns more about behaviors and

human interaction. Construct the mission level includes: onboard mission operating

system, objective laguage human interface, swarms and intelligence research, etc.

UUV operating works can be defined into different missions, hence, many softwares

are developed to manage the robot missions. For example, MOOS-IvP is one of the

widely used UUV mission control system, that transfers information among operators

and executive UUV hardwares. The IvP-Helm of MOOS is an optimization program

based on interval programming [51]. To solve in real time, the UUV heading and

speed, MOOS-IvP can achieve a frequency of 4 ��. The CISSAU AUV utilizes

the MOOS-IvP software as a mission control system, see Figure 6-2. Future UUV

human interfaces are expected to understand the scientific or engineering language

from difference professions, which will unify and ease the UUV deployment process

of overall ocean observation networks. Moreover, UUVs are expected to operate

in the swarm formation, which have more robustness and efficiency than a single

UUV. Except our modeling and robust control work, swarm can be another important

solution to increase the robustness and stability of UUVs. UUV swarms are efficient

to assign optimal numbers of sensors and flexible missions, meanwhile, the failure of

one or several UUVs will not affect the underwater mission.

Robustness is an essential issue for future UUV designs. This thesis focuses on

the modeling and control solutions to increase UUV robustness. The state of art in
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AUV modeling and control works are described in the next section.

1.2 State of Art in AUV modeling and control

Achieving good maneuverability of small AUV depends on two key factors: an ac-

curate hydrodynamic model and an advanced control system. In [52], Yamamoto

pointed out that a model-based control system is more effective if the vehicles’ dy-

namics are modeled to some extent. Meanwhile, in [53], Ferreira �� ��. showed that an

empirical linear model often fails to represent the dynamics of the AUV over a wide

operating region. Indeed, obtaining hydrodynamic models of the complex-shaped

cubic AUV is one of the key points for better maneuverability. In addition, inside

the virtual environment engineers can replay many dynamic and hydrodynamic phe-

nomenons with seldom limit to time, space and cost. In this section, we first introduce

the current underwater modeling works.

1.2.1 Modeling of Underwater Vehicles

Actually, many methods exist to model underwater vehicles, including full-scale ex-

periments, scaled experiments, empirical formula approximations and computational

approaches.

The advantage of a full-scale experiment is high accuracy, especially, for obtaining

the added mass and damping parameters. However, high cost is a fatal drawback

of full-scale experiment, it requires very expensive devices, such as towing tanks. In

addition, the full-scale experiment is not control oriented, which means the modeling

results can not be directly used for control design. Some experimental methods

without towing tanks also exist, as presented in [54, 55], and free decay approach is

presented by Ross in [56].

Scaled experiments compromise the cost and modeling accuracy. It is less expen-

sive than full-scale experiment, as it only implements a scaled (eg. small size) model

in the hydrodynamic experiment. Generally, modeling results of scaled experiments

are more reliable than empirical and computational methods. However, the accuracy
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of scaled experiment is subtle due to the scale effect. A ROV modeling application

using scaled experiment of free decay method is presented in [57], and its experimental

results are compared with computational solutions.

Empirical formula approximation is well proved on torpedo-shaped AUVs, usually

slender bodies, as mentioned in [55, 58, 28]. The advantage of this method is the

simplicity in estimating slender UUV hydrodynamic parameters, which uses only an

ellipsoid shape. Nonetheless, empirical formula method requires deeper knowledge

and experiences to simplify the UUV into elementary components. Meanwhile, the

estimation accuracy is not always reliable, because simplified geometry may neglect

many details. Especially, for a complex-shaped UUV (sometimes has open-frame

structure) the simplification is hard to achieve.

Depend on basic mass, momentum, and energy conservation axiom, the potential

theory and finite element theory based CFD softwares are well developed. Although

there is no direct solution for the Navier-Stokes equation [59], the computational

approaches can convert a physical fluid problem into applied mathematical problem.

Then, hydrodynamic phenomena or parameters can be approximated by iterative

calculations. In the beginning, CFD programs were popular to analyze large marine

structures and transportation vessels. Nowadays, more and more UUVs apply the

CFD modeling methods.

Computational methods have many obvious advantages. Theoretically, the ac-

curacy of CFD approximation can be infinitely small if the calculation amount is

unlimited. Meanwhile, CFD is able to reveal some physical details which is difficult

to observe in the experiments. In other words, using CFD can replay many invis-

ible dynamic and hydrodynamic phenomena without any cost. More importantly,

CFD requires less experiences to simplify the complex-shaped AUVs. CFD modeling

complexity are lower, and this is favorable to spread miniature and low-cost AUVs.

Although the CFD reliability is not as good as experimental solutions, currently, there

are still reliable models obtained by mixing CFD and experimental approaches [60].

Indeed, the computational modeling approach is a potential trend for future UUV

design.
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As mentioned by Newman in [59], UUV hydrodynamic forces can be linearly su-

perimposed. Therefore, the UUV hydrodynamic effects can be separately analyzed by

different softwares. There are CFD softwares such as: WAMIT, Marine Craft Char-

acteristics (MCC), which is created by ENSTA Bretagne and it can be downloaded

at [61], SHIPMO, ANSYS-CFX, ANSYS-FLUNT, ANSYS-AQWA, STAR- CCM+

and SeaFEM. These softwares can predict hydrodynamic parameters for a complex-

shaped AUV with a very low cost. In [57], it is shown the efficiency of WAMIT to

predict the added mass matrix. In [62], ANSYS-CFX was employed for AUV damping

analysis.

Regardless of modeling issues, the value of a UUV model depends on how robust

and efficient your control scheme can adapt to the hydrodynamic model. In next

section, current UUV control methods are presented.

1.2.2 Control of Underwater Vehicles

Underwater vehicles are generally designed to operate in the ocean environments.

Therefore, numerous uncertainties exist, including parameter variations, nonlinear hy-

drodynamic damping effects, sensor transmit delays and ocean current disturbances.

To solve the UUV control issues, a large amount of underwater vehicle motion con-

trol algorithms are proposed, including: classical PID control, robust control, adap-

tive control, sliding mode control, back-stepping control, Linear Quadratic Gaussian

(LQG), predictive control, gain scheduling, fuzzy control, neural network control, and

other hybrid control methods. High quality reviews of underwater vehicle control re-

searches can be found in the works of Yuh [3], Johansen [63] and Budiyono [64]. An

exhaustive report is given by Maalouf in [25], which summarizes the performance

current underwater vehicle controllers.

To control an underwater vehicle is complex. The dynamic and hydrodynamic

properties involves: nonlinear damping, uncertain parameters variations, environmen-

tal disturbance, sensor noise, and signal delay, etc. The early UUV control methods

are usually simple to implement. Controllers was designed without the UUV model

or assuming that the UUV model is time invariant. Linearization is generally im-
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plemented assuming the equivalent linear system has the same performance as the

realistic nonlinear UUV behaviors. However, the robustness was not considered in

early methods, which is critical to maintain UUV stability and control performance

in the presence of uncertainties. Nowadays, to achieve faster, accurate and robust

control performance, it is required to address modeling and control issues simultane-

ously. In the following, we briefly introduce the underwater vehicle controllers by two

kind: model-free and model based controllers.

PID controller and its variations are the most classical underwater vehicle control

algorithms. Even today, a lot of UUVs (equipped with high precision navigation and

guidance devices) still use PID controllers, as PID is less complex and simple to be

implemented. For example, in [65] MacPhail et al. implements a PD controller on the

Autosub-1 robot. In our paper [66], the CISSAU AUV used PID controller for depth

control in SAUCE 2014 and euRathlon 2014 competitions. Ostafichuk implement a

hybrid PD controller on the Dolphin AUV in [67].

The implementation of a PID controller only depends on tuning three gains: pro-

portional, integral, and derivative gains. Proportional gain contributes to the response

speed. Integral gain attenuates the static error, which affected the tracking perfor-

mance. Derivative gain can reduce overshoot while keep the response fast. PID is

a model-free controller, the implementation is a process of an iterative filed tuning

of the three gains. However, according to the uncertain and nonlinear behaviors of

UUV, PID control is insufficient in robustness. The disadvantages of PID are:

∙ PID gain tuning requires intuitive experiences.

∙ PID control stability can be affect by uncertain disturbance.

∙ The gains are fixed after tuning, controller is not adaptive to unpredict changes.

∙ PID is inefficient to handle nonlinearity, usually nonlinearity brings in response

oscillations.

∙ The control output is not optimal, which waste onboard energy and shorten

thruster lifespan.
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For specific underwater vehicle applications, there exist many improved PID con-

trollers, which consider the nonlinearity, the wave disturbance, and the current dis-

turbance. In [68], Perrier et al. proposed an improved AUV PID controller that

considers nonlinearity and disturbance attenuation. ODIN AUV applied a PID con-

troller which involves shallow water wave disturbance rejection [69]. Refines et al.

designed a PID controller robot which concerns current disturbance for Minesniper

MKII [70]. Based on the nonlinear model Mirhosseini builds a PID depth controller

in [71]. The above PID controllers show faster response and disturbance rejection

ability. However, the performance is sensitive to the specific applications, the model

accuracy and disturbance characteristics. In this thesis, PID is not considered to be

enough to solve the nonlinear and robust issues of underwater vehicles.

LQG is a model based Multi Input Multi Output (MIMO) optimal state feedback

controller. It can be considered as the combination of Kalman filter and a linear

quadratic regulator. The linear optimal controller is derived under a quadratic cost

function of minimal energy consumptions as well as other performance constrains.

LQG applications on underwater vehicles can be found in [72]. The advantage of LQG

is the theoretically optimal and accurate control design. However, the disadvantages

are, LQG is sensitive to model accuracy, meanwhile LQG is inefficient to handle

nonlinearity. For example, the linearization of UUV model on equivalent point is not

accurate, that makes the implementation of LQG controllers very hard.

Gain scheduling control is a model based linear feedback controller, first proposed

by Silvestre in [73]. The objective of gain scheduling is to approximate the original

nonlinear system by a group of linear systems obtained around many equilibrium

points. For each linear system in the group, the control design is a regular linear

feedback control problem. While operating on the plant, the group of controllers will

switch among them according to the working states, i.e. equilibrium points. On each

working region near the equilibrium points, gain scheduling can achieve very high

performance, as if the nonlinear system is exactly the linearized system. However,

the control stability and performance apparently rely on the model accuracy. The

gain scheduling controller is sensitive to the uncertainties in the model and ocean
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environment. UUV gain scheduling application is given in [74].

The performance of classical control methods are sensitive to the UUV model

accuracy, i.e., they are inefficient to handle the model changes, such as parameter

variations, external disturbances and sensor noise. In SAUC-E [12] and euRathlon [13]

competition, we found PID yaw controller is less efficient than robust control method

for low mass AUV. However, realistic UUVs applications face a lot of uncertainties

in the complex ocean environment, and the above mentioned control methods are

not robust to those uncertainties. Hence, in the early 1981, Zames had proposed the

�∞ control methods to solve the robust issues, guaranteeing both stability and high

performance. �∞ control method constrains the energy gains from system input to

output using �∞ norms. �∞ theory combines the advantage of MIMO state space

description and frequency domain analysis. Actually, there is a long history, people

begin to notice the importantance of sensitivity, i.e., disturbance rejection, using

high gain feedback control to attenuate model variation effects (Single Input Single

Output (SISO)). Then, in the 60s, the state space feedback control theory made

many breakthroughs, and LQG seems to be theoretically perfect. However, LQG

relies on the modeling accuracy. While LQG controllers are implemented in many

industrial applications, they still suffer from low robustness performance. According

to Doyle [75], the LQG can not guarantee stability in presence of uncertainties. Note

that, Doyle et al. made great contributions to simplify the robust controller synthesis

process. They also proposed a synthesizing method using only two Riccati equations,

which is simple and clear for spreading �∞ robust control applications.

Robustness means the controller achieves the performance specifications as well

as robust stability in presence of uncertainties. In other words, inside all robust

stable solutions, the robust control design searches for the optimal controller, which

satisfies the performance specifications. The robust control theory can be found in

[76, 77]. In this thesis, linear �∞ robust controller was used. Besides, there are

many types of robust controllers. For instance, the �2 and �2 robust controllers for

nonlinear system, applications are given in [78, 79]. Meanwhile, gain scheduling �∞

methods are developed for Linear Parameter Varying (LPV) systems. Importantly,
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the � analysis of �∞ control are used to solve the conservative issues.

There are many robust control applications on UUVs. Pan has implemented

an indirect robust controller for depth control on the REMSUS AUV [80]. Roche

designed a hierarchical �∞ controller for depth control of AsterX AUV in [81], and

a LPV �∞ controller in [82]. In [83], Clement proposed a robust controller for

the VAIMOS robots. Reduced order �∞ controller for a torpedo-shaped AUV is

shown successfully in [84]. The robust �∞ yaw controller of CISCREA AUV can

be found in [66]. Apparently, robust control methods show more robustness than

other controllers. There are the advantages such as: control performance reduce the

effect of model parametric uncertainty, i.e., require less expensive models; the control

output is optimal, i.e., save onboard propulsion energy and expand thruster lifespan;

and controllers have high-frequency noise rejection ability [85], etc. Nevertheless,

the robust control methods have some disadvantages. First, to define the weighting

functions for robust synthesis, it is necessary to have in advance the knowledge of

the noise and disturbance properties, and the uncertain boundaries. Then, robust

synthesis is currently a time consuming process, which is always offline. In addition,

the synthesis results are sometimes high order controllers, and usually local optimal

results (no guarantee for global answers).

Sliding mode control method is presented in [86]. This control algorithm special-

izes in handling the uncertainties and nonlinearities of control systems. The sliding

surface (an equation) is a critical notion that derived based on the tracking errors.

Then, the control outputs are calculated to move the system states towards the slid-

ing surface, which keep the tracking errors to be infinitely small. Typically, there is

the sliding mode control application on the Taipan AUV, presented by Vaganay et

al. in [87]. Fossen also proposed an adaptive sliding mode controller in [88]. More

applications can be found in [89, 90, 91]. The advantage of sliding mode is its insen-

sitivity to model accuracy and external disturbances. In contrary, the disadvantage

are the complexity in implementation and its oscillation issues on the sliding surface

(chattering effect).

Backstepping control is a nonlinear control algorithm based on Lyapunov method,
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which generates asymptotically stable controllers. It has the robustness property, as it

is insensitive to the model parametric uncertainties. UUV backstepping applications

can be found in [92], and the theory is described in [93, 94].

Adaptive control changes its control parameters, according to the realtime para-

metric variations and uncertainties of the controlled systems. The control parameters

adapts to the plant base on the principle of minimizing closeloop performance eval-

uations. There are two kind of adaptive control methods: direct methods and indi-

rect methods. The direct methods evaluate the controllers’ parameters, and directly

change the controllers using the estimated results. In contrast, indirect methods use

the estimated plant parameters to calculate required controller designs. Compare to

robust control, adaptive control does not need a priori information about the bounds

of uncertain parameters. Adaptive control is more flexible and concerned with control

law changing themselves, meanwhile, robust control is fixed and guarantees control

performance of the systems inside the priori knowledge. Accordingly, adaptive con-

trollers have the advantages of robustness, and requires little about the UUV models.

However, there are the drawbacks and limitations. The control plants should not have

high-frequency or high-amplitude parametric variations, as the adaptive algorithm at-

tempts to meet the robustness specifications, the controller might not converge.

For UUV systems, the parameter variation is common, e.g., adding or remove

a payload, changing working environment from fresh water to sea water, etc. Many

adaptive control applications were shown successfully on real underwater vehicle tests.

In [95] adaptive controller was used to control the diving process of UUV. In [25, 96]

Maalouf introduced several adaptive controllers for the depth control of a mini ROV.

Many other UUV adaptive control application can be found in [97, 98, 99, 88]. A clear

review that summarized and compared the current UUV adaptive control applications

is given by Antonelli in [100].

Outside the state space feedback control framework, artificial intelligence plays

an important role in the control field. The ideas are to mimic either the neural

structures or the evolutionary process, etc. There are the techniques like neural

networks control, fuzzy logic control, and genetic algorithms, etc. Intelligent controls
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can handle nonlinearity and uncertainty issues by universal approximations, however,

the calculation is generally very heavy. Neural network control basically involves

two steps: system identification and control. The controller iteratively learns the

weightings (links between neurons) of structured neural networks from a set of input-

output data pairs. It is supposed to capture the dynamics of any system. Then, the

system steady state can be used to control the nonlinear plant. The UUV application

of a neural network control can be found in [101, 102]. Fuzzy logic control is common

for nonlinear underwater vehicle control. Rather than fixing and exact reasoning, the

logics approximate the value of input and output data between complete true and

complete false. UUV fuzzy logic control applications are given in [103, 104]. The

genetic algorithm randomly searches the globe optimal controllers by the process of

natural selections. Relevant genetic UUV control application was presented in [105].

It is obvious that the above mentioned control methods all have their advantages

and their disadvantages. This makes a good reason to develop hybrid control methods,

which combines the advantages of different algorithms. In [88], Fossen presented a

hybrid adaptive sliding mode controller for UUV. In [101], a neural network control

is mixed with adaptive algorithms. Other hybrid UUV control applications can be

found in [106, 107].

For UUVs, it is worth to mention some other studies. For example, in [108] pre-

dictive control was used for the depth control of UUV. Like gain scheduling control,

a feedback linearization method was proposed in [59, 86]. Smallwood et al. discussed

the importance of model accuracy in the control design. Importantely, Jaulin had ver-

ified a robust Lyapunov controller using interval analysis algorithm on the VAIMOS

USV [109].

In the underwater vehicle control field, a pressing need is to improve the robust-

ness of UUV control methods. Potential trends are robust and fast controllers that

can assist the pilot or autopilot with better accuracy. It is expected to see optimal

propelling actions that save more battery power as well as increasing propeller lifes-

pan. Regulated AUV motions are expected to be less complex for high level guidance,

navigation and swarm research.
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Table 1.1: CISCREA AUV Characteristics

Size 0.525m (L) 0.406m (W) 0.395m (H)
Weight in air 15.56kg (without payload and floats)
Degrees of Freedom Surge, Sway, Heave and Yaw
Propulsion 2 vertical and 4 horizontal propellers
Speed 2 knots (Surge) &1 knot (Sway, Heave)
Depth Rating 50m
On-board Battery 2-4 hours

high level researches. Therefore, it is important to propose the method combining

computational modeling and �∞ robust control algorithms for complex-shaped un-

derwater vehicles. It is critical to first enhance the AUVs with high performance

controllers.

Using AUV, the goal of this thesis is to inspect the underwater oil pipeline leaks,

meanwhile, monitor the sedimental conditions. Robustness is the first essential issue

to construct this long-term running AUV monitoring networks. The control perfor-

mance determine the robustness and reliability of underwater vehicles, especially, for

underwater environment, the uncertainties make the control design more difficult.

Hence, in order to improve the AUV maneuverability, we focus on the two critical

issues: accurate model and advanced robust controller.

Although there are many modeling and control applications in the field, and some

of them were verified successfully on realistic sea tests, the combination of computa-

tional modeling and robust control works are rare. In order to move the AUV design

initiatives outside large organizations, i.e., to popularize the underwater vehicles to

more civilian applications, we proposed a low-cost and more accessible modeling and

control solution. Note that, it is always important to low the cost to build one AUV

in order to create a huge network. In the following the major works and contributions

of this thesis are presented.

First, according to the complex shapes of the CISCREA AUV and many others,

we proposed the use of computational modeling methods, for the following reasons:

∙ Compare to the full-scale and scaled experiments, computational modeling re-
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quires no experimental devices. The cost is much lower, and the modeling

process is faster.

∙ Compare to empirical formulas, the computational modeling method is more

efficient to handle complex shapes. There is no complex geometry simplification

process during the modeling.

∙ The accuracy and reliability of computational modeling method is decent. It is

generally less accurate than experimental methods, but better than the empir-

ical formulas for complex-shaped AUVs. As �∞ robust control is used, there

is only the necessity to understand the uncertain bounds of the dynamic model

rather than the exact nominal model.

∙ Computational modeling methods can replay many physical details, which is

useful to locate the focus of control design.

∙ In this thesis, although the hydrodynamic experiments do not improve the mod-

eling accuracy, instead, it guarantees the reliability of the computational results.

∙ The computational modeling results can be control oriented, which is convenient

to build state space equations and easy to make simulations. It can greatly speed

up the model analysis and even design work of high performance UUVs.

In this thesis, we build a dynamic and hydrodynamic model on CISCREA AUV

using many computational softwares. And the CFD calculation results are compared

with experimental data. The major work includes:

∙ Mass inertia matrix�RB of CISCREA AUV is calculated using PRO/ENGINEERTM.

∙ Added mass matrix �A is calculated using radiation/diffraction program MCC

[110] and WAMITTM [61].

∙ Hydrodynamic programs ANSYS-CFXTM and STAR-CCM+TM are studied to

predict damping behavior �(|�|).
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∙ The bollard thrusts of CISCREA AUV are measured. Several motion experi-

ments are designed to verify the reliability of CFD results.

∙ Damping is found to be the major nonlinearity in the model. A model based

linear compensation solution is proposed to linearize the AUV model for robust

control design.

In order to handle the uncertainties, we proposed the linear �∞ control method

to guarantee the stability and achieve expected control performance. The reasons for

this method are:

∙ Due to the modeling errors and parameter variations, there are many uncer-

tainties in the mathematical descriptions of the UUV dynamics. Especially, the

damping is theoretically hard to precisely predict. Traditional control methods

are sensitive to the model accuracy, however, �∞ robust control is efficient and

insensitive to the modeling uncertainties.

∙ Robust control has disturbance rejection ability, which is important for the

ocean environment that with unpredictable wind, wave and currents.

∙ Damping is the major nonlinearity in the dynamics. Linear �∞ theory can

not directly adapt to the nonlinear model. However, the robustness allows

the nonlinear compensation solution, which turns the nonlinear system into a

linear system with uncertainties. Although the velocity estimation of damping

compensation is not accurate, there is almost no reduce of the robust control

performance.

∙ Sensor noise rejection is important to prevent unnecessary thruster propulsions.

Compare to the traditional control methods, robust control is very efficient to

filter the noise with a prior knowledge.

∙ Signal delay effects the control stability and causes serious oscillations. By im-

plementing the Smith compensation, we turn the delay problem into a negligible

uncertainty that can be tackled using �∞ control algorithm [111].
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�∞ robust control method is proposed to the control of low-mass and complex-

shaped CISCREA AUV and others. Without lose of generality, the robust heading

controller was implemented and validated in the sea. The major work include:

∙ A yaw model derived for robust heading control design.

∙ Linear compensation proposed based on CFD modeling results, which yield a

linear system with uncertainties.

∙ Linear �∞ controller synthesized and implemented on the CISCREA AUV for

heading control.

∙ Kalman filters based on CFD model, which numerically estimates unmeasured

as well as noisy states such as angular velocity.

∙ To handle the signal delay of the electronic compass, we proposed two delay

compensation algorithms.

∙ Proposed yaw control experiments were implemented in the testing pool. Re-

sults are compared with PID solutions.

∙ We conducted several sea tests for the proposed robust yaw controller in Brest

port (France) and in La Spezia port (Italy) respectively. Control performance

are compared to PID controllers.

1.4 Thesis Outlines

This thesis is organized into 7 chapters. The reminder of the thesis are:

Chapter 2 AUV Modeling

The underwater vehicle modeling notions and basics are introduced in this chap-

ter. The mathematical descriptions utilize the marine vehicle formulations that

are proposed by Fossen. 6 DOF underwater vehicle model, and its derivative

equations, and CISCREA AUV model simplifications are given in the end.

Chapter 3 Numerical CISCREA AUV Model
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This chapter presents the model identification of CISCREA AUV. The major

work is numerically calculating the dynamic and hydrodynamic parameters of:

Mass inertia matrix �RB, added mass matrix �A and damping matrix �(|�|).
This chapter establishes the 4 DOF CFD model for CISCREA AUV. Our identi-

fication results showed that the quadratic damping is the dominant component

of all damping terms, and it is the major nonlinearity in CISCREA model.

Some elements of the added mass matrix �A are found larger than the mass

inertia matrix �RB elements, which means the added mass matrix �A is not a

negligible parameter during the acceleration movement.

Chapter 4 CISCREA AUV Hydrodynamic Experiment

This chapter is dedicated to validate the numerical model obtained in chapter

3. Bollard thrusts of CISCREA propellers were measured, and real world exper-

iments were conducted on the open-loop CISCREA to verify the translational

and rotational damping parameters. The moving processes were captured by

cameras, then analyzed for damping terms. Second order polynomial lines are

implemented to approximate the relationship between damping and velocities.

Finally, experimental results are compared to the CFD results.

Chapter 5 AUV �∞ Controller and Simulations

Proposed �∞ controller is described and simulated in chapter 5. We inherited

the numerically obtained model from our previous CFD works. Numerically

predicted the actuator force compensates the nonlinear damping behavior result

in a linear model with uncertainties. Based on the bounded linear nominal

model, we proposed �∞ approach to handle the uncertainties. In the end, we

demonstrates the Matlab simulation results of �∞, �∞ without linearization

compensations and PID controllers.

Chapter 6 Applicable �∞ Controller at Sea

For realistic AUV implementations, we improved the �∞ with kalman filter to

estimate unmeasured states, and we developed delay compensators to compen-

sate the sensor delay. Finally, the proposed �∞ were validated by CISCREA in

the sea near Brest, and compared to PID control method.
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Chapter 7 General Conclusion and Perspectives

Finally, conclusions are drawn in Chapter 7, and future directions of this thesis

are given in the end.

1.5 Main Contributions

The main contributions of this thesis are the design and validation of an AUV �∞

robust control approach using numerical hydrodynamic modeling techniques. We

address the numerical AUV dynamic modeling methods and the robust control algo-

rithms simultaneously. For any low-mass and complex-shaped AUVs, the proposed

modeling and control approach is demonstrated to have sufficient modeling accuracy

and efficiency as well as control robustness and performance. Comparing to PID con-

trollers, the AUV motion control performance can be improved in face of inevitable

modeling and environmental uncertainties, dynamic nonlinearities, sensor delay and

unmeasured system states. A low mass and complex-shaped CISCREA AUV is used

to validate the proposed numerical modeling and �∞ robust control approach in real

sea test. In particular, this thesis presents the following points:

∙ For complex-shaped and low-mass AUV, traditional modeling methods are gen-

erally insufficient to reveal the hydrodynamic characteristics. Therefore, the

computational fluid dynamic method is suggested to avoid implementing hy-

drodynamic experiments using expensive equipments. We concluded several

important AUV dynamic and hydrodynamic parameters for the AUV control

design:

– Added mass matrix �A is calculated and compared using radiation/d-

iffraction program WAMIT and MCC.

– Hydrodynamic programs ANSYS-CFX and STAR-CCM+ are studied to

predict damping behavior �(|�|) on the surge, sway, and heave directions.

Rotational damping effects are numerically built using moving reference

and overset mesh techniques in STAR-CCM+.
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– Mass inertia matrix �RB and the center of gravity �� are approximated

using Computer Aided Design (CAD) PRO/ENGINEER (PRO/E).

Based on these numerical estimations, a four degree-of-freedoms model is de-

rived for the CISCREA AUV, which provides the foundations for the hydrody-

namic experiment and control design simulations.

∙ A 4 DOFs (Surge, Sway, Heave, and Yaw) experiment is designed to validate the

CFD models and its hydrodynamic parameters. The numerical AUV modeling

method is concluded efficient for the complex-shaped underwater vehicles (Using

robust control scheme). The hydrodynamic experiment confirms the damping

effect is nonlinear, and it is mainly caused by the quadratic damping.

∙ A model based nonlinear compensated �∞ control approach is proposed for the

of CISCREA AUV and others to solve the following issues:

– Dynamic and hydrodynamic parametric uncertainties.

– External disturbance from the ocean environment and sensor noise.

– Nonlinear damping compensation errors.

The nonlinear damping and parametric uncertainty issues are the two critical

problems that solved in the proposed approach.

∙ To solve the applicable issues in real sea AUV control applications, we proposed

an improved nonlinear compensated �∞ control scheme to handle the sensor

delay as well as unmeasured states. The proposed approach is validated as

efficient in the CISCREA AUV heading control simulations, pool and sea tests.

The control performance of the proposed method are compared with traditional

PID controllers.
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Part II

AUV Modeling
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Chapter 2

AUV Modeling

Contents

2.1 Modeling Introduction . . . . . . . . . . . . . . . . . . . . 34

2.2 Kinematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Rigid-Body Dynamic of Underwater Vehicles . . . . . . 37

2.4 Hydrodynamics of Underwater Vehicles . . . . . . . . . . 40

2.5 Environmental Disturbances . . . . . . . . . . . . . . . . . 46

2.6 Thruster modeling . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 6 DOFs Underwater Vehicle Model . . . . . . . . . . . . . 48

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

The mathematical description of underwater vehicle dynamics is essential for the

robust control design. A model is necessary to analysis the dynamic and hydrody-

namic behaviors of UUVs, i.e., the interactive physics between the underwater vehi-

cle and fluid. In addition, the UUV model provides the foundation for the efficient

simulations, which verify different control schemes including PID and �∞ robust

controllers. The reminder sections describe the mathematical modeling process of

CISCREA AUV.
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2.1 Modeling Introduction

Modeling of underwater vehicles involves two parts of study: kinematics and dynam-

ics. Kinematics describe the motion of underwater vehicles without concerning the

forces and torques that act on it. That is to say, kinematics describe only the geomet-

rical relations of underwater vehicle position, velocity and accelerations. Dynamics

present the accelerating motion of the underwater vehicles, especifically, consider the

forces and torques. To be accurate, the dynamic study (kinetic) is divided into classi-

cal rigid body dynamics and hydrodynamics. There are many marine vehicles model-

ing articles and books, and typical descriptions can be found in [59, 112, 113, 114, 115].

In this chapter, 6 DOFs underwater vehicle dynamics are represented by the ma-

rine vehicle formulation proposed by Fossen, in [114] and [115], using the Society of

Naval Architects and Marine Engineers (SNAME) [1950] notions in [116]. For marine

systems, usually two coordinate systems, Body Fixed Reference (B-frame) and North

East Down Reference (NED-frame) are introduced for convenience as presented by

Fossen in [114] and shown in Figure 2-1. Positions, angles, linear and angular ve-

locities, force and moment definitions are defined in Tab 2.1. The position vector

� ∈ R
6×1, velocity vector � ∈ R

6×1 and force and torque vector � ∈ R
6×1 are defined

as equation 2.1, 2.2 and 2.3:

� = [�, �, �, �, �, �]T (2.1)

� = [�, �, �, �, �, �]T (2.2)

� = [�, �, �,�,�,� ]T (2.3)

Here, � denotes the position and orientation of the underwater vehicles in the

NED-frame, � denotes the linear and angular velocity with coordinates definitions in

the B-frame, and � is used to describe the forces and moments acting on the vehicle

in the B-frame.
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2-1. The last three coordinates of � and �, i.e., (�, �, � ) and (�, �, �), represent

respectively the orientation and rotational motion. NED-frame is fix to an absolute

location on the earth, it can be considered as the internal reference for the B-frame.

The moving coordinate reference B-frame is fixed to the vehicle, which describes the

relative underwater vehicle motion. B-frame origin is usually chosen to coincide with

the Center of Gravity (CG) of the vehicle. To summarize, all suggest the kinematic

rules are mainly the transformation relationship between the two coordinate references

NED-frame and B-frame.

It is known that kinematic relation of velocity vector � and position vector � is

expressed as the vectorial equation 2.4 [114]:

� = �(Θ)�̇ (2.4)

where, �(Θ) ∈ R
6×6, stands for a transformation matrix between B-frame and NED-

frame, Θ = [�, �, �]T , is the vector of the euler angles on roll, pitch and yaw directions,

shown in Figure 2-1.

In equation 2.4, �(Θ) ∈ R
6×6 matrix relates the time derivative of underwater

vehicle position and angle to the translational and rotational velocities. �(Θ) is a

rotational matrix to change the basis of position vector derivative (�̇) from NED-frame

to B-frame (where defines the velocity vector, �), it is a function of Θ = [�, �, �]T .

The formulation of �(Θ) is presented as equation 2.5:

�(Θ) =

⎡
⎣�(Θ) 03×3

03×3 � (Θ)

⎤
⎦ (2.5)

where, �(Θ) ∈ R
3×3 is the linear velocity transformation matrix, and � (Θ) ∈ R

3×3

is the angular velocity transformation matrix. Assume that, �(·) = ���(·), �(·) =

���(·) and �(·) = ���(·), then, we have respectively the �(Θ) and � (Θ) definitions in
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equation 2.6 and 2.7:

� (Θ) =

⎡
⎢⎢⎢⎣

1 ���� ����

0 �� ��

0
sφ

cθ

cφ

cθ

⎤
⎥⎥⎥⎦ (2.6)

�(Θ) =

⎡
⎢⎢⎢⎣

���� −����+ ������ ����+ ������

���� ����+ ������ −����+ ������

−�� ���� ����

⎤
⎥⎥⎥⎦ (2.7)

Note that � (Θ) is not defined at the pitch angle of π
2
, which is called the sin-

gularity problem of euler angle representation. Consequently, there is an alternative

representation of kinematic equations using quaternion. However, for most of the

underwater applications such as all ASVs and our CISCREA AUV, it is not allowed

to approach the singularity condition. Hence, the mathematical descriptions of the

quaternion is only mentioned in the appendix A.2.

Depending on [114], rigid-body hydrodynamic forces and moments can be linearly

superimposed. Therefore, the overall non-linear underwater model can be character-

ized by two parts, the rigid-body dynamic and hydrodynamic formulations (hydro-

statics included). In the next section, underwater vehicle rigid-body dynamic is first

introduced.

2.3 Rigid-Body Dynamic of Underwater Vehicles

Without concerning the hydrodynamics, the underwater vehicles are considered as a

rigid body moving in the free space. That is to say, the underwater vehicle is rigid and

6 DOFs rigid-body dynamics obey the Newton-Euler formulation (Newton’s second

law) or alternatively Lagrangian Formulation (momentum and energy conservations).

In this section the translational and rotational motion of underwater vehicles are

derived according to classical Newtonian mechanics. The derivations of equations

can be found in the appendix A.3.

It is shown that the 6 DOFs rigid-body dynamic equations of underwater vehicle
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motion can be conveniently expressed as a vectorial form in equation 2.8:

�RB �̇ + �RB(�)� = �env + �pro (2.8)

where, all the definitions are presented in Table 2.2

Table 2.2: Nomenclature of the notations of rigid-body dynamics

Parameter Description
�RB ∈ R

6×6 AUV rigid-body mass and inertia matrix
�RB ∈ R

6×6 Rigid-body induced coriolis-centripetal matrix
�env ∈ R

6×1 Environmental disturbances (wind, waves and currents)
�pro ∈ R

6×1 B-frame resulting forces and torques induced by the
thrusters

� linear and angular velocity vector

As mentioned before, underwater vehicle rigid-body dynamics are represented in 6

DOFs. Therefore, the equation 2.8 actually presented six equilibrium equations of all

the forces and torques that acting on the rigid body underwater vehicle under the B-

frame reference. The decomposition of equation 2.8 can be found in the Appendix A.4.

The above vectorial forces and torques are considered to act on the vehicle’s center of

gravity, and they are balanced, including: the inertia induced force and torque vector

�RB �̇ (Newton second law); the Coriolis force and torque vector �RB(�)�, which

is caused by the rotation of the earth; thruster propulsion �pro in 6 DOFs; and the

external disturbance �env like wind, waves and currents. For most of the underwater

vehicles with hard structures, rigid assumption is common and efficient, which yields

a simple formulation on a single mass point and eliminates the consideration of forces

acting between individual elements of mass [114]. Note that for the underwater robots

with flexible structures or segments, like underwater snake robots, the dynamics are

different, which is not mentioned in this thesis.

Rigid-body mass inertia matrix �RB ∈ R
6×6 is a symmetric and positive definite

matrix, which is defined in equation 2.9 and 2.10, where � is the mass, �3×3 is the

identity matrix, and �G = [�G, �G, �G]
T is the vector from �b (origin of B-frame) to

CG. If �G = 0, i.e., �b ≡ ��, then the matrix �RB will be simplified. �(�bg) is a
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skew-symmetric matrix according to the definition 2.2 in [114]. Moreover, symmetric

properties of cubic AUV, in � = 0 and � = 0 planes, can be used to simplify the

inertia components to a rough diagonal form.

�RB =�T
RB =

⎡
⎣ ��3×3 −��(�bg)
��(�bg) �0

⎤
⎦ (2.9)

�RB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� 0 0 0 ��G −��G
0 � 0 −��G 0 ��G

0 0 � ��G −��G 0

0 −��G ��G �x −�xy −�xz
��G 0 −��G −�yx �y −�yz
−��G ��G 0 −�zx −�zy �z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.10)

Here, �0 = �T0 > 0 is the inertia matrix, which is also symmetric and positive

definite [114]. The definition of �0 are given as equation 2.11:

�0 = �T0 =

⎡
⎢⎢⎢⎣

�x −�xy −�xz
−�yx −�y −�yz
−�zx −�zy −�z

⎤
⎥⎥⎥⎦ (2.11)

�RB ∈ R
6×6 is a skew-symmetric matrix, which contributes to the centrifugal

force on the rigid body. Decompose �RB as equation 2.12, then, we can derived the

definition of �RB in equation 2.13.

�RB =

⎡
⎣�11 �12

�21 �22

⎤
⎦ (2.12)

�(�) =

⎡
⎣ 03×3 −�(�11�1 +�12�2)

−�(�11�1 +�12�2) −�(�21�1 +�22�2)

⎤
⎦ (2.13)

Here we know, �RB depends on the mass inertia matrix �RB, and the translational

and rotational velocities, �1 = [�, �, �]T , �2 = [�, �, �]T , of the underwater vehicles.
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Matlab function “m2c.m” is a practical way to calculate the �RB using �RB and �

information, which is introduced in Marine System Simulator (MSS) in [117]. In our

case, �RB are neglected, because the underwater vehicle speed is low enough to be

considered, �RB ≈ 0.

2.4 Hydrodynamics of Underwater Vehicles

The ocean environment is complex, and the hydrodynamics play an import role in the

control design of underwater vehicles. Actually, the hydrodynamic effects make the

control design very difficult, which separate the underwater control design from air

and land robots. In the following it is introduced the different types of hydrodynamic

forces and torques that the underwater vehicles would encounter in the ocean:

∙ Radiation Induced Forces (neglecting second order coupling terms):

– Added Mass due to the inertia of the surrounding fluid.

– Hydrodynamic Damping due to energy consumption of surrounding fluid.

– Restoring Forces due to Archimedes (weight and buoyancy).

∙ External disturbance: wind, wave and current.

∙ Thruster propulsions

As mentioned in [59] and [118], it is common to assume that the hydrodynamic

forces and moments on a rigid body can be linearly superposed by considering two

sub-problems (Faltinsen, 1990). Therefore, the underwater vehicle hydrodynamic

force and torque vector, �hydro ∈ R
6×1 can be superposed to the rigid-body dynamic

equation 2.8, and as a result, derives the equation 2.14.

�RB �̇ + �RB(�)� = �env + �hydro + �pro (2.14)

It is presented in the Fossen marine vehicle model [114], the total acting hydrody-

namic of the underwater vehicle, i.e., �hydro, can be decomposed into the sum of
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sub-hydrodynamic effects in equation 2.15:

�hydro = −�A�̇ − �A(�)� −�(|�|)� − �(�) (2.15)

Here, the definitions of the various types of hydrodynamic effects in equation 2.15 are

given in Table 2.3.

Table 2.3: Nomenclature of the notations of hydrodynamics

Parameter Description
�A ∈ R

6×6 Added mass matrix
�A ∈ R

6×6 Added mass induced coriolis-centripetal matrix
�(|�|) ∈ R

6×6 Damping matrix
�(�) ∈ R

6×1 Restoring forces and moments vector
�hydro ∈ R

6×1 Vector of hydrodynamic forces and moments
� linear and angular velocity vector

Actually, the hydrodynamic effects of the fluid acting on the marine structure

can be divided into two kind: radiation forces and diffraction forces. For underwater

water vehicles, as the vehicle size is usually small, it is common to avoid diffraction

forces, and concerns mainly the radiation forces. In our case, diffraction forces of

wind, wave and current effects are discussed in the reminder thesis. In the following,

we first presented the three major radiation induce forces: restoring force �(�), added

mass �A�̇ + �A(�)�, and hydrodynamic damping �(|�|)�.

2.4.1 Restoring Force

Underwater vehicles are constrained by two hydrostatic forces: gravitational and

buoyant forces, i.e, � ∈ R and � ∈ R , which are called restoring forces. Generally,

the floating equilibrium is achieved by � and � is equal and working on the same

straight vertical line. For an underwater vehicle with neutral buoyancy, the weight

� is approximately equal to the buoyancy force � (� is slightly larger). In equation

2.16, it is presented the oldest engineering result, the gravity law and Archimedes

law.
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� = ��,� = ��∇ (2.16)

Here, � is the gravity acceleration, � is the fluid density, and ∇ is the displaced fluid

volume.

For the underwater vehicles, it is common to design the vehicles to be neutrally

buoyant, which saves the floating energy and keep the vehicle safe from sinking. As

pointed out by Fossen, [114], the restoring forces and moments vector �(�) ∈ can

be simplified into equation 2.17, if the underwater vehicle is neutrally buoyant (full

definition of the restoring forces and moments vector �(�) is given in the Appendix

A.6).

In equation 2.17, �� = [��x, ��y, ��z]
T is the distance from the CG to Center

of Buoyancy (CB). Actually, �(�) is a function of the vehicle’s position and attitude,

it decides the stability of the underwater vehicle. When the AUV is driven away from

the equilibrium states under external disturbance, �(�) can provide the torques to

return to the equilibrium states. It is like a spring system, the buoyancy center CB is

always higher than the center of gravity CG, which can generate a torque to oscillate

back to equilibrium. For CISCREA AUV, CB and CG can be located using trial and

error method on adding and removing the payload and floats.

�(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−��y���������+��z���������

−��z����� +��x���������

−��x���������− ��y�����

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.17)

2.4.2 Added Mass

Added mass forces and moments, i.e., {�A�̇ + �A(�)�} ∈ R
6, are induced by the

surrounding fluid inertia. It is common to separate the added mass forces and mo-

ments in terms which belong to an added mass matrix �A ∈ R
6×6 and a matrix of
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hydrodynamic Coriolis terms denoted �A ∈ R
6×6. The added mass matrix �A should

be understand as ‘pressure-induced’ virtual conception which are proportional to the

acceleration �̇ of the body [114]. For underwater vehicles, added mass �A in some

directions are even larger than the mass and inertias of the rigid body on the 6 DOFs.

To derive the expressions for these added mass matrix, an energy approach in terms

of Kirchhoff’s equations will be used [114]. Alternatively, we can depict the added

mass forces and moments provide the energy to make an empty space from the fluid

ahead of the underwater vehicle, and fill the space by fluid in the tail of the robot, in

order to make the vehicle accelerating forward. The added mass matrix �A is defined

in equation 2.18.

Generally, the added mass matrix �A ∈ R
6×6 is positive definite (fully sub-

merged), and the diagonal elements of the matrix are positive. Only in a few cases,

the diagonal elements are negative, which can be found in [114]. In real fluid the 36

elements of �A may all be distinct, and experience has shown �A =�T
A is actually

a good approximation in (Wendel 1956) [114]. For underwater vehicles, as the vehicle

speed is very slow, the off-diagonal elements of the added mass matrix �A induced

negligible effects compared to the diagonal elements. For most practical applications,

the off-diagonal elements of �A will be small compared to the diagonal elements.

Therefore, in most of the underwater vehicles, we can use the diagonal form of the

added mass matrix �A, which is described in equation 2.19.

� full
A = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�u̇ �v̇ �ẇ �ṗ �q̇ �ṙ

�u̇ �v̇ �ẇ �ṗ �q̇ �ṙ

�u̇ �v̇ �ẇ �ṗ �q̇ �ṙ

�u̇ �v̇ �ẇ �ṗ �q̇ �ṙ

�u̇ �v̇ �ẇ �ṗ �q̇ �ṙ

�u̇ �v̇ �ẇ �ṗ �q̇ �ṙ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.18)

�A = −����
︁
�u̇ �v̇ �ẇ �ṗ �q̇ �ṙ

︁
(2.19)

The added mass matrix �A ∈ R
6×6 can be derived by applying potential theory,
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under the assumption of inviscid fluid, no circulation and that the body is completely

submerged in an unbounded fluid [114]. Meanwhile, the �A parameters can be nu-

merically calculated by applying strip theory. The strip theory divides the submerged

surface of the underwater vehicle into infinity strips or pieces, and sum all the hydro-

dynamic coefficients on each pieces together. In the next chapter, numerical softwares

are introduced to calculated the added mass parameters of CISCREA AUV.

As mentioned before, the added mass corilois matrix �A(�) ∈ R
6×6 can be ne-

glected in front of �RB(�) ∈ R
6×6, hence, the definitions of �A(�) is only mentioned

in appendix A.5 in case of high speed underwater vehicle applications.

2.4.3 Damping

Hydrodynamic damping matrix, �(|�|) ∈ R
6×6, should be carefully involved in the

underwater vehicle model. �(|�|) is the parametric matrix of hydrodynamic forces

and moments, �(|�|)� ∈ R
6, which is a function of linear and angular velocities

� ∈ R
6. No matter from theoretically or practically point of view, the damping

effects of complex shaped underwater vehicles are hard to be precisely predicted.

As described in equation (2.20), damping in the fluid consists of four parts: Po-

tential damping �P (|�|) ∈ R
6×6, skin friction �S(|�|) ∈ R

6×6, wave drift damping

�W (|�|) ∈ R
6×6 and vortex shedding damping �M(|�|) ∈ R

6×6.

�(|�|) = �P (|�|) +�S(|�|) +�W (|�|) +�M(|�|) (2.20)

Potential damping �P (|�|) ∈ R
6×6 is a radiation induced damping term, which is

negligible comparing to the viscous damping.

Skin friction damping �S(|�|) ∈ R
6×6 is generated by the laminar effects on the

boundary layer. Generally, �S(|�|) is important for the low frequency motion analysis

of marine vessels, and should be considered for the control design. In addition to

the linear laminar effects, usually high frequency turbulence on the boundary layer

contributes to the quadratic or highly nonlinear skin friction damping.

Wave drift damping �W (|�|) ∈ R
6×6 consumes the advancing energy of the un-
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derwater vehicle in the form of generating waves on the free surface. However, for

underwater vehicle, the wave drift damping �W (|�|) is generally negligible, because

the robot works underwater most of the time.

Vortex shedding damping �M(|�|) ∈ R
6×6 assumes the fluid is viscous, and con-

sumes the advancing energy of the constant speed underwater vehicles by inducing

vortex phenomenon. According to D’Alambert paradox: constant speed underwater

vehicle encounters no forces and torques in the non-viscous fluid. However, in viscous

fluid, the vortex will consume a large part of the vehicle’s energy, and induced re-

sistance to the advancing motion of underwater vehicles. �M(|�|) is also considered

as an important term of the Morison equation. In the model identification chap-

ters, vortex shedding damping �M(|�|) and Morison equation are discussed on the

CISCREA AUV.

As presented in [114], in real fluid the 6 DOFs damping of underwater vehicles

are highly nonlinear and coupled, it is difficult to separate these effects. Therefore,

the Fossen model assumes that high order damping effects can be neglect, and prac-

tically proposes that different damping terms contribute to either linear or quadratic

damping. Then, the damping decomposition equation (2.21) is introduced,

�(|�|) = � +�n(|�|) (2.21)

where, � ∈ R
6×6 is the linear damping matrix and �n(|�|) ∈ R

6×6 is a quadratic

damping matrix. According to [114], if the underwater vehicle’s velocities are suf-

ficiently high � can be neglected. Otherwise, �n(|�|) is negligible. Assume the

damping elements is not coupled, i.e., off-diagonal elements are negligible, then, the

damping matrix �(|�|) ∈ R
6×6 can be simplified into a diagonal form in equation

2.22

�(|�|) = −����
︁
�u �v �w �p �q �r

︁

−����
︁
�u|u||�| �v|v||�| �w|w||�| �p|p||�| �q|q||�| �r|r||�|

︁ (2.22)

45



2.5 Environmental Disturbances

The marine disturbances, such as the wind, waves and current contribute to the

environmental disturbances �env ∈ R
6×1. Generally, environmental disturbances �env

is a large part of the underwater vehicle dynamic uncertainties. It is clear that

predictions of the ocean wind, wave and current can improve the AUV modeling and

control design quality. Therefore, the models of environmental disturbances at real

sea are discussed in [114].

Actually, the wind, wave and current of the ocean are really complex, including

additive and multiplicative types of random disturbances. However, in practice a

good assumption according to [114] are, the wind, wave and currents are considered

to be linearly superposed for marine vehicles, which separates the effects into linear

components.

First, the current plays major role and has many different types. Wind gener-

ated currents are induce by the interaction of atmosphere and ocean surface. Then,

thermohaline currents are generate by the thermal and salinity balancing process of

difference ocean regions. Thermohaline currents varies a lot and result in the distinct

properties of currents in different ocean regions. The tidal components of the ocean

circulation also induced obvious random currents, which can be up to 2 − 3 �/�

in some region. To summarize, the current disturbances must be considered in the

control design of underwater vehicles.

Then, we should notice that for an underwater vehicle in deep water, wind and

waves are considered to be less important than current disturbance. In contrast, for

most shallow-water underwater vehicle control designs, the wind and wave effects are

considered to be disturbances adding to the dynamics. Note that, wind and wave are

indeed critical for the control design of shallow water underwater vehicles, such as

[119]. The modeling process of ocean wind and waves can be found in [115, 114].
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2.6 Thruster modeling

The dynamics properties of the underwater vehicles thrusters are highly nonlinear and

complex [3]. To achieve better control performance, it is advised to get an accurate

thrust model in order to adequately map the required thrust to the propeller’s rota-

tional speed [120, 25]. In order to derive an accurate thruster model, it is necessary

to precisely measure the flow velocity to [25]. Currently, one of the main obstacles

is there exist no efficient instruments to measure this flow velocity. Therefore, most

control designs for underwater vehicles tend to neglect the thruster dynamics. It is

common to treat thruster modeling errors as unknown disturbances in [25]. In this

section, we will present the thruster mathematical model, more underwater vehicle

thruster modeling articles can be found in [25], [114].

According to the Fossen model, the thruster force and torque vector �pro ∈ R
6 is

a nonlinear function of the linear and angular velocity vector � ∈ R
6, and propeller

revolution vector � ∈ R
p(� > 6), which is presented in equation 2.23.

�pro = �(�, �) (2.23)

First, Blanke derives a 1st-order approximation of the induced thrust � and torque

� for a single screw propeller as equations 2.24, 2.25, and 2.26 [114].

� = ��4�T (�0)|�|�(�0) (2.24)

� (�, �a) = �|u|u|�|�+ �|u|Va
|�|�a (2.25)

�(�, �a) = �|u|u|�|�+�|u|Va
|�|�a (2.26)

Here , �p denotes the propeller diameter, � the water density and �a the advance

speed at the propeller (speed of the water going into the propeller). �0 is the advance

number and �T is the thrust coefficient present in equations 2.27 and 2.28
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�0 =
�a
��p

(2.27)

�T = �1 + �2
�a
��p

(2.28)

Although the forward and backward thrusts will be non-symmetrical, for most

of the applications it is efficient to make a symmetric assumption [114]. Meanwhile,

in most practical applications the bilinear model can be approximated by an affine

model, that is a system which is linear in its input, as equation 2.29.

�pro = �� (2.29)

In the reminder of this thesis, we will consider the affine model with uncertainties

is enough for the following underwater vehicle robust control design.

2.7 6 DOFs Underwater Vehicle Model

In order to put forward the 6 DOFs dynamic and hydrodynamic underwater vehicle

model, i.e., equations 2.14 (NED-frame) and 2.15(B-frame), in the same inertial co-

ordinate, the previous mentioned kinematic transformation �−1(Θ is used to derived

equation 2.30 (* stands for the variables in NED-frame):

�*�̈ +�*(|�|)(�̇) + �*(�) = � *pro + � *env (2.30)

Here, the definitions are given in the following equations 2.31, 2.32, 2.33, 2.34, 2.35,

and 2.36.

� =�RB +�A (2.31)

�* = �−T (Θ)��−1(Θ) (2.32)

�*(|�|) = �−T (Θ)�(|�|)�−1(Θ) (2.33)

�*(�) = �−T�(�) (2.34)
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� *pro = �−T � *pro (2.35)

� *env = �−T � *env (2.36)

It should be notice that, the added mass matrix �A and the damping matrix

�(|�|) are two major hydrodynamic components of underwater vehicles. They are

generally difficult to obtain with good precision. In the next chapter, the hydrody-

namic parameter identification work will focus on the identification of added mass

matrix �A and damping matrix �(|�|).

2.8 Conclusion

In this chapter, the mathematical representation of the dynamic and hydrodynamic

underwater vehicle model is given base on the Fossen marine vehicle formulations.

First, the kinematics, i.e, the transformation rules between body-fix reference and

inertial reference, are discussed. Then, the kinetics including classical rigid-body

dynamic and hydrodynamic components are presented assuming all parts can be

linearly superposed. Furthermore, the environmental disturbance and thruster model

are given in the end. Finally, the 6 DOFs underwater vehicle model is presented

in the inertial reference. To summarize all, this chapter provides the mathematical

foundation for the identification and control design of underwater vehicles.

49



50



Chapter 3

Numerical CISCREA AUV Model

Contents

3.1 Rigid-body Mass Inertia Matrix . . . . . . . . . . . . . . 52

3.2 Added Mass Matrix . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Damping Approximation . . . . . . . . . . . . . . . . . . . 65

3.4 Four CFDs model of CISCREA AUV . . . . . . . . . . . 83

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

This chapter is dedicated to describe the CISCREA AUV model as well as its ma-

jor dynamic and hydrodynamic parameters: Mass inertia matrix �RB, added mass

matrix�A and damping matrix�(|�|). Due to the complex structure, traditional em-

pirical formula approximation is not as efficient as it performes on the slender shaped

AUVs [55]. Meanwhile, full-scale and scaled hydrodynamic experiments are generally

expensive [55, 58, 28]. Therefore, to solve the modeling problems of complex-shaped

underwater vehicles, we propose to numerically derive the hydrodynamic parameters

using CFD software. In order to calculate each hydrodynamic parameter of the CIS-

CREA AUV for the robust heading control design, the following CFD software is used

in this section:

∙ Mass inertia matrix �RB and the center of gravity �� are approximated using
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CAD software PRO/ETM. PRO/ETM was chosen for its convenient interface

with hydrodynamic programs ANSYS-CFXTM and STAR-CCM+TM, which are

used for advanced hydrodynamic behavior analysis of the underwater robots.

Hydrodynamic analysis applications using PRO/ETM and ANSYS-CFXTM on

AUVs and ROVs can be found in [111, 121].

∙ Added mass matrix �A is calculated using radiation/diffraction program MCC

and WAMITTM. The approximations of CISCREA AUV added mass param-

eter given by MCC and WAMITTM are compared. WAMITTM is a leading

commercial program in the offshore industry, this program is well proved in the

hydrodynamic analysis of offshore platforms and vessels. In contrast, MCC is

an open source program that is dedicated to the numerical analysis of marine

objects added mass parameters.

∙ Hydrodynamic programs ANSYS-CFXTM and STAR-CCM+TM are studied to

predict damping behavior �(|�|) on the direction of surge, sway, and heave.

Note that rotational damping effects are numerically built using moving refer-

ence and overset mesh techniques in STAR-CCM+TM.

3.1 Rigid-body Mass Inertia Matrix

Due to different density components, the inertia tensor �0 matrix (equation 3.2) and

the coordinates of the center of gravity CG of CISCREA AUV can not be extracted

using the direct calculation of equation (3.1), see [114].

� =

︁

V

�m��, � =

︁

V

�2�m�� (3.1)

Here, �m is the density of the related elementary volume �� , � is the total volume

of the body, � is the distance between volume element �� and CG,� is the robot mass,

�0 is the inertia tensor referred to the B-frame (and its 9 elements are the moments of

inertia about the three B-frame axes, for more details about the underwater vehicle

rigid body derivations, please check appendix A.3).
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we used the CAD software PRO/E. First, the CISCREA AUV is disassembled into

many large pieces, and measured in size and weight, as shown in Figure 3-1. The

disassembled components are assumed to have a constant density. Then, the measured

data is assigned to each 3D component of a simplified underwater vehicle CAD model

in PRO/E. The explode view of the 3D underwater vehicle is shown in Figure 3-2. At

last, the mass inertia matrix �RB and CG are numerically calculated by the PRO/E

software. Note that, the CISCREA AUV is symmetric on surge and sway directions,

therefore, the measurement errors of each component should have little effect to the

�RB estimation.

In Figure 3-2, the CISCREA AUV is disassembled or simplified into the following

components: 6 propellers, the blue waterproof box of control electronics, the black

waterproof tube of electronic sensors, the battery group, the LED lens, the PVC

supports at the bottom, the PVC main framework and the top fairing. As the floatings

and payloads are often changed for different missions, therefore, they are neglected

in the estimation of �RB. The mass distributions of CISCREA AUV are presented

in table 3.1. By fixing the volumes of the components in the PRO/E configurations,

hence, we evaluated the density parameters for each part in order to meet the mass

results in table 3.1. Then, the software PRO/E can calculate the coordinates of

gravity CG and inertia tensor �0 matrix (the output data of PRO/E are given in

appendix B.1).

Table 3.1: The mass distribution of the CISCREA AUV

Components Mass (��)
Battery group 3.65
Waterproof tube of electronic sensors 2.48
Top fairing 0.79
2 LED lens 0.46
PVC main framework 2.62
PVC supports at the bottom 1.63
6 propellers 0.6
Waterproof box of control electronics 3.42
Total AUV weight 15.65

In figure 3-3, the PRO/E calculations show that the CG of CISCREA AUV is
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negligible for slow vehicles. For CISCREA AUV, the moving speed in any direction

is less than 2 knots. Therefore, we assumed that the rotational and translational

motion is not coupled (AUV has 3 planes of symmetry). To summarize, because the

mass of the CISCREA AUV is 15.643 ��, the PRO/E approximation of mass inertia

matrix �RB for CISCREA around CG (�b) is given as equation (3.4) (���� : ��,

������� : �� ·�2 ).

�RB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15.643 0 0 0 0 0

0 15.643 0 0 0 0

0 0 15.643 0 0 0

0 0 0 0.2473 0 0.0029

0 0 0 0 0.3698 0

0 0 0 0.0029 0 0.3578

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

By neglecting the small off-diagonal inertia elements, the above matrix can be

simplified to be a diagonal matrix in equation 3.5:

�RB = ����(
︁
15.643 15.643 15.643 0.2473 0.3698 0.3578

︁
) (3.5)

3.2 Added Mass Matrix

It is mentioned in [122], that variations of underwater vehicle geometry play indeed

a role on the added mass matrix �A ∈ R
6×6 of the underwater vehicles. For a

torpedo shaped AUV, empirical formulas prediction is validated in [55] and [28] by

approximating the hull to an elementary ellipsoid or slender shape. However, the

empirical formulas predicting is inaccurate for a complex-shaped AUV, such as cubic

shape CISCREA. Note that, CISCREA AUV is a typical cubic shaped underwater

vehicle that has various sharp and uneven outlines as well as an open framework. In

order to estimated the added mass matrix �A of CISCREA AUV, the computational

fluid dynamic software WAMIT [110] and MCC [61] are introduced in this section.

WAMIT is a leading computational software in the offshore oil industry. It is
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developed for analyzing wave interactions with offshore platforms, vessels and other

structures. WAMIT utilizes the potential theory, and it calculates the fluid effects on

each small panels of the structures that is divided by the strip method. WAMIT pro-

vides a variety of functions, including the functions to calculate added mass, damping

and static center of gravity and buoyancy, etc.

MCC is developed by ENSTA Bretagne for calculating the hydrodynamic char-

acteristics of marine objects. It uses the same strip method as WAMIT does, which

slices the robot into a large amount of connected small surfaces. Each individual

surface pieces are superposed to obtain the total fluid effects on the marine robot.

One important focus of MCC is to calculate the added mass of submerged vehicles.

In this thesis, WAMIT and MCC results are compared in order to guarantee the re-

liability of the added mass matrix �A calculations. We should mention that, WAMIT

is widely used in the offshore industry applications, and it gains widespread recogni-

tion for its ability to analyze complex structures with a high degree of accuracy and

efficiency. Compare to MCC, WAMIT is considered to be more reliable as it has far

more successful industry applications. Therefore, the objective of MCC comparison is

to verify the configurations and input files of the WAMIT calculations are correct. In

the following sections, we introduce the calculation procedures of underwater vehicle

added mass using WAMIT and MCC.

3.2.1 WAMIT Calculating CISCREA Added Mass

In this section, we introduce the basics of using WAMIT analyzing the added mass

matrix �A of the underwater vehicles, especially the CISCREA AUV. For reference,

the WAMIT manual is given in [110], and an application approximating added mass

matrix of a ROV is presented in [57]. In addition, MSS provides several Floating

Production, Storage and Offloading (FPSO) applications using WAMIT in [123, 117,

124].

First, the principal input files for a WAMIT calculation are:

∙ Geometry Data File (.gdf): a closed surface geometry of the structure sur-
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rounded by the fluid

∙ Potential Control File (.pot): specifies parameters including the fluid depth,

wave periods, and wave heading angles for the POTEN sub-program

∙ Force Control File (.frc): specifies inputs regarding the body dynamics for the

FORCE sub-program

∙ Configuration File (cfg): specifies certain options and other information used

by the program

∙ Files list (.wam): specifies the input files to be used in the analysis

∙ Result file (.out): stores the analysis results

Actually, there are two options to represent the potential and geometries of the

underwater vehicles to be analyzed: the high order method and low order method.

The high order method allows to use B-Splines to represent the velocity potential

and pressure continuously on the body surface, and to represent the geometry of

the body surface in various manners. Alternatively, the low order method is less

accurate than the high order method for most of applications, and it has more number

of unknowns. In early WAMIT versions, the low-order method was used, where

the geometric form of the submerged body surface is defined by flat quadrilateral

elements, and the velocity potential or source strength solutions are assumed to be

constant on each panel. As our robust control application is not sensitive to the slight

compromise of added mass modeling accuracy, we chose low-order method to reduce

the calculation complexity. In this thesis, MULTISURF (or Rhino 3D) was considered

to represent the CISCREA AUV outline using the low-order method. Figure 3-4 shows

the geometry of the CISCREA AUV represented as a set of quadrilateral surfaces, and

the direction of those surfaces all pointing out of the underwater vehicle. Note that,

simplification of the AUV model are important to obtain reliable results including

removing sharp corners and complex curves (For example , the sharp corner between

the connections of the CISCREA framework and supports, or the complex thruster

blade geometries).
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Table 3.2: Added Mass Results of Standard Sphere in the Surge Direction (Radius
1�, density 1 ��/�3, depth 10 �, Geometry: 1024 surfaces)

Theoratical WAMIT MCC
Surge(��) 2.0944 2.084236 2.106

Appendix B.2 gives the configurations and output data of the WAMIT added mass

calculation for CISCREA AUV, including: potential control configurations (.pot),

force control file (.frc), and calculation result file (.out). For the definitions of the

configuration parameters, please see the WAMIT manual [110]. It is worthy mention-

ing that the WAMIT output file only provides the added mass coefficient result. The

elements of the added mass matrix �A can be obtained by multiplying the fluid den-

sity on the WAMIT output coefficients. The added mass calculation using WAMIT

is actually an iterative process, which involves several times of model simplification

and re-calculations. For instance, the damaged surface (areas not closed or covered),

the inverse directions of strips or panels on the vehicle surface, and exceeding maxi-

mum strip numbers can increase the processing time and it may result in pausing or

collapsing of the WAMIT program. Indeed, the calculation requires efforts and an

experience to simplify the model and run the program. However, compare to exper-

imental solutions, WAMIT definitely saves time and efforts, especially for small-size

and complex shaped underwater vehicles.

3.2.2 MCC Calculating CISCREA Added Mass

MCC software is introduced in [61]. To calculate the added mass matrix �A of

the underwater vehicles, MCC requires a closed surface model to be striped. Like

WAMIT, the model simplification is important to guarantee the quality of calculation

accuracy. For MCC, the widely used CFD mesh tool GAMBIT is utilized to generate

the strips or panels of the underwater vehicles. Note that, during the mesh procedure

in GAMBIT software, the mesh representations need to be transformed and saved

to the neutral format. The neutral format is adapted to MCC as well as other

hydrodynamic programs that have no special geometric representation standards.
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In equation 3.7, �A2 is the added mass matrix of CISCREA AUV calculated using

fluid program MCC (���� : ��, ������� : �� ·�2 ).

�A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11.8 4.08 9.41 0.326 0.349 −0.267

4.53 17.9 −10.3 0.492 −0.913 0.233

8.6 −12.3 52.7 −2.88 −7.94 1.49

0.256 0.676 −2.74 0.91 0.573 0.0087

−0.067 −0.628 −9.17 0.655 1.54 0.04

−0.184 0.162 1.29 −0.0289 −0.0252 0.0854

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.7)

According to [114], the off-diagonal elements of the added mass matrix �A are also

negligible for slow vehicle. For CISCREA AUV, the moving speed in all the directions

are less than 2 knots, which is considered to be slow. Hence, by neglecting small

off-diagonal elements, the above matrices can be simplified into diagonal matrices

respectively in equation 3.8, 3.9. The coupling between translational and rational

directions are assumed to be negligible.

�A1 = ����(
︁
11.99 20.26 67.14 0.385 0.791 0.138

︁
) (3.8)

�A2 = ����(
︁
11.80 17.90 52.70 0.910 1.540 0.086

︁
) (3.9)

Apparently, the added mass prediction from WAMITTM coincides with MCC to

some extent. This result confirms the efficiency of WAMITTM and the possibility of

MCC to calculate the added mass matrix for complex-shaped underwater vehicles. In

next chapter, the numerical added mass results are validated in moving experiments.

Furthermore, for robust control scheme, the numerical calculation errors of WAMIT

and MCC added mass results can be considered to be mass-inertia uncertainties.

We should mention that, the added mass matrix �A has indeed an important

hydrodynamic effect for the control design. As it is obviously shown the added mass

elements of CISCREA AUV on the surge, sway and heave directions are respectively

11.985 ��, 20.261 ��, and 67.141 ��, some of them are even larger than the mass
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of the AUV 15.643 ��. Similar conclusion can be yielded for the inertia parameters.

This indicate the added mass effect can not be ignored during the AUV accelerating

process.

3.3 Damping Approximation

As mentioned in chapter 2, in real fluid the 6 CFD damping �(|�|) ∈ R
6×6 of un-

derwater vehicles are highly nonlinear and coupled, it is difficult to separate the

contributed effects. Especially, different damping terms contribute to either linear or

quadratic damping in the Fossen damping formula (equation 2.21). Either practically

or theoretically, it is very hard to precisely approximate the 6 CFD damping effects

for complex-shaped underwater vehicles. However, it is critical to study and estimate

the accurate damping matrix �(|�|) in order to improve the maneuverability as well

as the navigation or localization abilities of advanced underwater vehicles.

Therefore, in this section computational fluid dynamic software ANSYS-CFX

and STAR-CCM+TM are introduced to estimate the damping matrix �(|�|) for the

complex-shaped CISCREA AUV. We proposed two CFD software in order to improve

the reliability of the numerical CFD results. Configuration errors can be avoid from

the numerical calculations stage, that provides more confidence to conduct a realistic

hydrodynamic and control experiment.

Among the damping analysis methods that mentioned in chapter 2, we select

numerical solutions, i.e. the CFD software ANSYS-CFX and STAR-CCM+ for un-

derwater vehicle damping analysis for the following reasons:

∙ CISCREA AUV has complex-shaped outlines as well as an open frame struc-

ture. Empirical formulas are inefficient and inaccurate to estimate the damping

matrix �(|�|) for CISCREA AUV, as it requires complex model simplifications

that may effect the estimation accuracy.

∙ Full-scale and scaled experiments are expensive, and they are usually one-shoot

results. Comparing to the CFD software, which allows easily the modifications
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of the physical details, the experiment efficiency is not flexible for low-cost and

small-size underwater vehicles.

∙ Although the damping analysis accuracy of CFD software is not as high as the

experimental hydrodynamic results, generally the CFD solutions are sufficient

for control design using a robust control scheme. Actually, the robust control

scheme requires only the uncertain boundaries instead of an accurate damping

result.

In the following, the damping analysis work of CISCREA AUV are divided into

five parts:

∙ Morison equation is introduced to identify the main contribution from linear

and quadratic damping effects of the underwater vehicles.

∙ ANSYS-CFX is used to approximate the relationship among damping forces

and vehicle velocities on the translational directions of surge, sway and heave.

∙ STAR-CCM+TM are used to estimate the relationship among damping forces

and vehicle velocities on the translational directions of surge, sway and heave.

∙ The rotational damping effect on the AUV yaw direction is analyzed by the

moving reference technique of STAR-CCM+ [125], which is relatively simple

and efficient to simulate.

∙ Finally, the numerical damping estimation �(|�|) of CISCREA AUV using

ANSYS-CFX and STAR-CCM+ are compared.

3.3.1 Morison Equation Analysis

As mentioned in previous chapters, four elements contribute to the damping matrix

�(|�|) of the marine vehicles: the potential damping �P (|�|); skin friction damping

�S(|�|); waves drift damping �W (|�|); vortex shedding damping �M(|�|). Generally,

they can be linearly superposed, see equation 3.10:

66



�(|�|) = �P (|�|) +�S(|�|) +�W (|�|) +�M(|�|) (3.10)

Three of the four damping elements contribute to the viscous damping �v(|�|)
given by equation 3.11:

�v(|�|) = �S(|�|) +�W (|�|) +�M(|�|) (3.11)

According to [114], viscous damping �v(|�|) dominates the damping effects of ma-

rine vehicles, while on the contrary potential damping �P (|�|) is comparably small

and negligible. In addition, as waves are assumed to act on surface vehicles, and AUVs

are considered to work at certain depth, therefore, waves drift damping �W (|�|) is

also negligible for CISCREA. Reminder the robust control scheme to the CISCREA

AUV, �P (|�|) and �W (|�|) can be considered as additive uncertainties for the con-

trol design. To summarize, the skin friction damping �S(|�|) and vortex shedding

damping �M(|�|) are the only effective parameters.

According to Fossen’s damping model (see equation 3.12), it is assumed that

high order damping effects can be neglected, and low order damping effects are not

coupled.

�(|�|) = � +�n(|�|) (3.12)

Here, � ∈ R
6×6 is the linear damping matrix and �n(|�|) ∈ R

6×6 is the quadratic

damping matrix, defined as follows:

�(|�|) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|�|T�1

|�|T�2

|�|T�3

|�|T�4

|�|T�5

|�|T�6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.13)

Here, velocity vector is defined as |�|T = [|�|, |�|, |�|, |�|, |�|, |�|], and damping matrix
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are decomposed into �i ∈ R
6×6. According to [114], if the underwater vehicle’s

velocities are sufficiently high the� can be neglected. Otherwise, �n(|�|) is negligible.

For AUV modeling and control design, the critical issue is that both skin friction

damping �S(|�|) and vortex shedding damping �M(|�|) contribute to the linear and

quadratic damping matrix simultaneously. In this case, it is difficult to identify

the dominate effect. Therefore, we used Morison formula to roughly determine the

damping behaviors of CISCREA AUV. Morison damping formula �(�) is presented

in equation 3.14 [126]:

�(�) = −1

2
�d�D(�n)�� |� | (3.14)

Here, � is the vehicle velocity, �d is the fluid density, � is the cross-sectional area

projected on the fluid and �D(�n) is the damping coefficient, which is a function of

Reynolds number �n.

�n =
�d��CL

�is
(3.15)

where �is is the fluid viscosity and �CL is the characteristic length, which is the

lenth of the object that the flow is going through or around. Generally, �D(�n) of

spheres and cylinders are obtained by experiments of various moving velocities and

data fitting.

In our application, the fluid is considered to be sea water, therefore, its �is is

1.56× 10−6��/(� ·�) at 5∘C and salinity 3.5%, density �d = 1023��/�3 [114]. CIS-

CREA generally operates at a speed � range from 0 to 1�/� (0 to 2 knots) in any

translational direction. Meanwhile, the robot characteristic length is approximately

0.5 �. In this case, the �n of CISCREA is generally around 108 to 109. According

[126], in the standard damping experiments of spheres and cylinders, there should

be a distinct switch between the laminar and the turbulent flows when the Reynolds

number is between 105 to 106, i.e. the critical area, and damping coefficient �D(�n)

becomes instable (damping coefficient �D(�n) chart with respect to �n is given in

appendix A.9). On the contrary, the damping coefficient �D(�n) converges to a

constant value, when the Reynolds number is much higher than 106 or far from the

critical area. In our case, we can assume the CISCREA AUV as a cylinder shape of
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0.5� radius. Then, the damping coefficient �D(�n) of the underwater vehicle can

be approximated by a constant �D. In this case, the damping effect �(�) becomes

quadratic with respect to the vehicle velocity � , see equation (3.16).

�(�) = −1

2
�d�D�� |� | (3.16)

Theoretically, we can predict that the nonlinear quadratic damping �n(|�|) should

dominate the damping matrix �(|�|) of the CISCREA AUV. However, the Morison

equation can not give accurate damping estimations, as the CISCREA AUV has

complex-shaped structures and open framework. Therefore, in the following sections

CFD software ANSYS-CFX and STAR-CCM+ are considered to calculate more pre-

cise and quantitive damping effects.

3.3.2 ANSYS-CFX Damping Analysis

The damping analysis of underwater vehicles using ANSYS-CFX CFD software can

be divided into five steps:

∙ Create the simplified 3D model of the underwater vehicle as well as the water

tank for hydrodynamic analysis

∙ Mesh the water tank and the underwater vehicle for the FEM (Finite Element

Method) calculation

∙ Set the boundary and stop conditions for the FEM calculation

∙ Execute iterative FEM calculations until the convergence

∙ Post-process the FEM data to obtain the concerned hydrodynamic parameters

First, simplify the closed surface 3D underwater vehicle model is essential for the

CFD analysis. As shown in figure 3-8, the CISCREA AUV has a complex shape.

For instance, the thrusters, LED lens, battery group, and the recovery handle are

neglected in the CFD damping analysis. Usually, the geometrical details are removed
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Setting the boundary conditions is essential for the damping analysis. For CIS-

CREA AUV, the turbulence model is chosen as the � − � ��� (Shear Stress Trans-

port) equations, which represents the separation phenomena on the boundary layer

from laminar to turbulence flows [57]. Then, the water tank boundary is chosen to

be free slip wall that reduces the space constrains as much as possible. Furthermore,

the submerged surface of the CISCREA AUV is considered as non-slip wall having

roughness parameters using PVC materials. The fluid injection speed varies from 0

to 0.5 �/�, and the turbulence intensity coefficient of the inlet fluid boundary is set

to 1%. The outlet fluid boundary is configured to be a static pressure 0 ��.

Actually, the initial conditions do not effect the convergence of the CFD calcu-

lation, but they impact on convergence speed. In order to speed up the damping

calculation, the initial fluid speed are usually given equal to the speed at the inlet

fluid boundary.

The convergence criterions and time step are used to determine the solver stop

behaviors. For CISCREA AUV, the convergence criterion is set to be 10−4. To achieve

different accuracy specifications, more sophisticated configurations can be found in

[57]. To summarize, the configurations or parameters that used in ANSYS-CFX are

presented in Tab 3.3.

Table 3.3: Configurations of ANSYS-CFX

Parameter ANSYS-CFX Configurations
Tank 10.5m (L) 4.5m (W) 4.5m (H)
Fluid steady
Density � = 1023��/�3

Viscosity 1.56× 10−6��/(� ·�)
Turbulence 1% at inlet boundary, (�-�)
Mesh 588221 elements for heave (around for surge and

sway)
Convergence 10−4

Roughness PVC 0.0015 - 0.007 (mm)

The post-process stage of ANSYS-CFX analyzes the CFD data, and yields some

information: the damping forces and moments, the velocities, and the pressures,

etc. Figure 3-11 presents the stream-line view of the fluid velocities surround the
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3.3.4 STAR-CCM+ Rotational Damping Analysis

In [29], both ANSYS-CFX and STAR-CCM+ are employed to calculate translational

damping coefficients for the damping matrix �(|�|) in surge, sway and heave direc-

tions. The rotational damping coefficients are not approximated using CFD solutions,

as it is generally hard to predict precisely the damping effects of roll, pitch, and yaw

directions.

For rotational motions, the CFD calculation are considered to be difficult, and

inappropriate for damping analysis of underwater vehicles. Floc’h in [127] shows that

the re-mesh calculation is too expensive even for 2D rotational simulation. Each

calculation cycle requires more than 24 hours to be done. In this thesis, we use the

move reference technique of STAR-CCM+ to approximate the rotational damping of

CISCREA AUV [111, 125]. The idea is to estimate rotational damping torque and

angular velocity relationships with less expensive calculation.

In STAR-CCM+, three ways exist to analyze rotational motion [128, 125]:

∙ Moving reference method

∙ DFBI (Dynamic Fluid Body Interaction) or similarly rotation motion method

∙ Overset mesh method

Moving reference approach converts an unsteady motion problem into a steady-

state problem by imposing a moving frame on a static mesh. In this case, steady fluid

is available to solve fast the rotational problems. Rotation motion or DFBI involves

actual displacement of regions. Moving regions and static regions exchange physics

among contacting interfaces. Overset mesh method applies real time displacement

between background mesh and overlap mesh. It is a recent mesh technique widely

implemented on the complex motion analysis applications in free space. In every

calculation iteration, overset mesh interacts with background mesh through overset

boundaries. The last two methods bind to implicit unsteady fluid, and calculation

load is generally heavier than in the moving reference method. Therefore, in our work,

moving reference method is selected for rotational damping simulation. To achieve
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involves the translational and rotational motions in the surge, sway, heave and yaw

directions.

First, the 4 CFDs CISCREA AUV model is given in equation 3.17.

(�RB +�A)�̇ +�(|�|)� + �(�) = �env + �pro (3.17)

Here, the mass inertia matrix �RB is approximated by the CAD software PRO/E,

as shown in equation 3.18 (mass: ��, moment of inertia: �� ·�2).

�RB =

⎡
⎢⎢⎢⎢⎢⎢⎣

15.643 0 0 0

0 15.643 0 0

0 0 15.643 0

0 0 0 0.3578

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.18)

Added mass matrix �A of CISCREA AUV is represented by the WAMIT estima-

tion results:

�A =

⎡
⎢⎢⎢⎢⎢⎢⎣

11.985 −0.091 −0.105 0.012

0.149 20.261 −0.147 −0.758

0.111 −0.129 67.141 0.064

−0.003 −0.758 0.064 0.138

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.19)

The damping matrix �(|�|) of CISCREA AUV is estimated using the STAR-

CCM + (equation 3.20):
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�(|�|) = �+�n(|�|)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2406 0 0 0

0 0.4512 0 0

0 0 0 0

0 0 0 0.0013

⎤
⎥⎥⎥⎥⎥⎥⎦

+ ����{|�|}T

⎡
⎢⎢⎢⎢⎢⎢⎣

25.75 0 0 0

0 48.39 0 0

0 0 82.440 0

0 0 0 0.1479

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.20)

The propulsion �pro forces and torques of the CISCREA AUV of equation 3.17

will be given in the hydrodynamic experiment in next chapter. The environmental

disturbances �env are considered as uncertainties in the robust control design. In

addition, since CISCREA AUV only has four degree-of-freedoms, i.e. the pitch and

roll stability is guaranteed by the structural design of vehicle’s gravity and buoyancy,

instead of the control propulsions. Therefore, the restoring force �(�) can be neglected

for the CISCREA AUV robust control design.

3.5 Conclusion

In this chapter, we employed a variety of numerical methods and software to identify

CISCREA AUV’s major dynamic and hydrodynamic parameters: mass inertia matrix

�RB, added mass matrix �A and damping matrix �(|�|). Based on the estimation or

calculation of numerical parameters, a four degree-of-freedoms model is derived for the

CISCREA AUV, which provides the foundations for the hydrodynamic experiment

and control design simulations.

In our numerical analysis of CISCREA AUV added mass matrix �A, the WAMIT

and MCC results show that the mass and inertia elements of the added mass matrix

�A are even larger than those in the mass inertia matrix �RB. These results indicate
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that the added mass matrix �A is indeed an important hydrodynamic effects for the

control design. The damping analysis of the CISCREA AUV damping matrix �(|�|)
shows that the quadratic damping components dominates the damping effects, and

the linear damping component is negligible. Numerical results confirm the perdition

of Morison equation. We can conclude that the quadratic damping is the major non-

linearity in the underwater vehicle dynamics, which should be carefully considered to

prevent control response oscillations. In order to verify the above mentioned conclu-

sions, real world experiments have been conducted on the open-loop CISCREA AUV.

These results are given in the following chapter.
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Chapter 4

CISCREA AUV Hydrodynamic

Experiment
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In order to evaluate the numerical model as well as its dynamic and hydrodynamic

parameters obtained in Chapter 3, real world experiments about the translational and

rotational motion characteristics have been conducted on the open-loop CISCREA

AUV [60, 29].

As it is mentioned before, numerical calculation and simulations are insufficient

comparing to a real-world hydrodynamic experiment. To completely validate the ef-
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ficiency of the numerical model (the computational hydrodynamic approximations),

an independent experimental comparison is indeed required. It is necessary to imple-

ment hydrodynamic experiments in terms of the need for the following robust control

design, and the experimental results should provide the nonlinearity and uncertainty

information or properties of the CISCREA AUV. The main concern of this chapter is

to validate the numerical estimations, i.e., the major hydrodynamic characteristics:

the added mass and the damping effects of the CISCREA AUV in the surge, sway,

heave and yaw directions.

Note that the main objective of our study consists in the use of robust control

method to reduce the control sensitivity about the hydrodynamic modeling accuracy.

Therefore, this chapter is dedicated to validate the numerical models required for

the CFD software of complex-shaped underwater vehicles. Actually, the experimen-

tal results in this chapter is not capable to improve the modeling accuracy. To our

perspective, the numerical estimation of the dynamic and hydrodynamic parame-

ters should only describe approximately the dynamic behavior as well as uncertainty

boundaries. Our goals are to avoid implementing hydrodynamic experiments using

expensive equipments.

4.1 Bollard Thrust

In this part, we measured the bollard thrusts and torques of the CISCREA propellers.

According to Figure 4-1, the CISCREA AUV has six fixed thrusters four of them

are installed in the horizontal plane, and they have a 30∘ angle align to the AUV

center line. The other two vertical thrusters are on each side of the AUV body to

control uniquely the heave motion.

Typically, the four horizontal thrusters simultaneously generate the force and

torque vectors on the AUV body, which results in the movement on surge, sway and

yaw directions. However, the two vertical thrusters of the CISCREA AUV can only

rotate in the same direction to control the heave motion. The power and control

signal of the vertical thrusters were designed to be connected, which limit the control
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since the gravity center is much lower than the buoyancy center. Any small error of

perpendicular propulsion (perpendicular to the gravity direction) can be restrained

by a strong restoring force.

For the surge motion, the two front horizontal propellers are used, see Table 4.2.

In the contrary, as the horizontal propellers have a 30∘ angle to the center line of the

CISCREA AUV body, the propulsion force in the sway direction becomes smaller than

the one in the surge direction. Therefore, we activated the four horizontal propellers

together for the sway motion. The bollard thrusts results for the sway direction are

given in Table 4.3. The torque measurement of the yaw rotation is shown in Figure

4-5, and the torque results using the four propellers are given in Table 4.4.
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Figure 4-6: Measurements of propulsion forces and torques of the CISCREA AUV

AUV bollard thrust data are shown in Figure 4-6. It is seen clearly that the

PWM signal is approximately linear to the AUV bollard thrust forces and torques.

According to a previous propulsion model [99], the AUV motion can affect the speed

of the fluid that injected into the propellers, which results in some reduction of the

AUV propulsion efficiency. As we use the robust control scheme in the following

chapters, the modeling assumption or the measurement errors of bollard thrusts can

be considered as adding uncertainties for the robust controller. Therefore, we have

made the following assumptions for the research:
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∙ There is no propulsion efficiency reduction of the AUV in a moving fluid envi-

ronment.

∙ The effect of the propulsion difference between the propeller blade clockwise

and courter-clockwise rotation is neglected.

∙ The CISCREA AUV PWM signal is linear to the propulsion force, which is

acting in realtime without any delay.

4.2 Experiment Design

During the experiment, the open-loop CISCREA AUV is driven in the surge, sway,

heave or yaw directions in the pool with setting propeller PWM values, related to

known propulsion forces or torques measured in the bollard thrust section. Then, the

AUV motions were captured by several cameras, both on top of the pool ceiling and

underwater. The AUV motion video may derive the hydrodynamic characteristics

during the analysis of each video-frame. Finally, the experimental hydrodynamic

results (include added mass and damping properties) should be compared to the

computational CISCREA model calculated in chapter 3.

As shown in Figures 4-7, 4-8, 4-9, 4-10, the bollard thrust measurement data

(Figure 4-6) is used to drive the CISCREA AUV moving in 4 DOFs in the pool.

The size of the pool is 4� (length) × 4 � (width) × 3.5 � (height). A 15-fps

camera is installed on top of the pool on the laboratory wall, to capture the AUV

motion in surge, sway and yaw directions. Meanwhile, a 25-fps camera is used and

installed underwater to capture the AUV heave motion. For the surge and sway

directions, the CISCREA AUV is driven in the pool from one end to another using a

constant propulsion force. For the heave direction, the CISCREA AUV is driven by

the constant vertical propulsion force moving downward in the pool from the top to

the bottom. For the yaw rotation, the CISCREA is spinning and accelerating by a

constant propulsion torque until it reaches a constant angular velocity.

Actually, the experimental goal of this part is to build a map relating different
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AUV damping forces or torques to their corresponding converged AUV velocities or

angular velocities. Then, the experimental results can be compared to the computa-

tional damping and velocity relationship calculated in chapter 3. By neglecting the

uncertainty or the disturbance, the AUV added mass force or torque is only active in

the acceleration process. For a a constant speed AUV the added mass becomes zero,

and the primary hydrodynamic effect affects merely the damping force or torque. As

the CISCREA AUV is driven by many constant propulsion forces and torques during

the experiment, the AUV would accelerate and finally reaches its steady regime speed,

namely the equilibrium condition when the damping force or torque is equivalent to

the propulsion force or torque. Note that, this propulsion force or torque, equivalent

to the damping force or torque, is known from the bollard thrust measurement in

previous section. In additional, the motion video provides the velocities and angular

velocities information corresponding to each propulsion configuration. In practice,

the velocity or angular velocity are derived from the AUV position or angle in each

video frame. As mentioned before, the propulsion force, the pool size and the time

hitting the wall or single rotational lap are known. Therefore, the expected experi-

mental damping and velocity map can be approximated using the bollard thrust and

video velocity data.

4.3 Experiment Analysis

In order to validate the experiment designed in previous parts, it is necessary to verify

two issues for the comparison of computational and experimental AUV hydrodynamic

parameters:

∙ Is the pool large enough for the AUV to reach the equilibrium condition, i.e.,

accelerate to the converged constant velocity?

∙ How to measure or derive the final converged speed of the AUV from the cap-

tured video frames?

First, let us simply assume that the CISCREA AUV has a linear dynamic equation
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4.1:

(�RB +�A)�̈+�L�̇ = �m (4.1)

where �L is the unknown linear damping vector (coefficients), �m is the propulsion

force or the torque vector, � is the position and angle vector of the CISCREA AUV,

and �RB and �A are defined in chapter 2.

By only considering the surge direction, and the initial conditions and 4 necessary

assumptions can be described as follows:

∙ The rigid body mass in the surge direction of �RB of the CISCREA AUV is

15.643 �� (See chapter 3).

∙ The added mass in the surge direction of �A of the CISCREA AUV is 11.985

�� (Calculated using WAMIT, see chapter 3).

∙ Initial AUV velocity in all translational directions are 0 �/� (surge, sway,

heave). During the experiment, the only speed considered is related to the

surge motion.

∙ Initial position is 0 � (surge direction).

As a result of those modeling information, the unknown linear damping coefficient

in the surge direction of �L can be calculated, since the start and end moment of the

AUV surging in the pool are known from the video, and the distance traveled in the

experiment is equal to the pool length 4 � minus the AUV size 0.525 �. Note that,

as the surge motion is approximated by linear dynamics, it can provide information

as the estimation of the steady speed for further purposes.

In Figure 4-11, the surge motion is approximated using 10 data points of the bol-

lard thrust measurements, using equation 4.1. It is clear in Figure 4-11 the CISCREA

AUV can converge to steady speeds (or equilibrium velocities) after nearly 10 � with

all possible surge propulsions configurations. The convergence in Figure 4-11 indi-

cates that the pool size is large enough for the CISCREA AUV to reach a constant

speed, and the average speed can be measured after a specific time. For example,

the average surge speed is measured after the red mark which is shown in Figure 4-7.

97



0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
V

e
lo

c
it
y
 o

f 
th

e
 L

in
e
a
r 

M
o
d
e
l 
(M

/s
)

time (s)

Figure 4-11: Convergence of velocities after 10s for 10 constant bollard force points

In additional, the converged speed, derived from the video with the aid of the linear

dynamic equation 4.1, can also provide an estimation of the final velocity while the

final speed is impossible to be measured using regular average speed method.

Similar conclusions can be draw for the sway, heave and yaw directions. The

equilibrium speeds are estimated from the video related to the damping forces and

torques (equal to the bollard thrust). We should mention that, the average speed

(converged) are measured from the video for CISCREA AUV’s surge, sway and yaw

motion. The speed approximation of equation (4.1) is used to represent the converge

speed for the heave motion. We used the heave approximation instead of the average

speed method because the distance for calculating average speed is hardly identified

on our underwater camera.

4.4 Experiment Results

From the hydrodynamic experiment of the CISCREA AUV, we get 40 discrete data

points representing the following damping and velocity relationships in surge, sway,

heave and yaw, in addition, we implement 4 second order polynomial approximation
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curves to compare the hydrodynamic charateristics:

∙ Surge: experimental damping and velocity relationship are given in Table 4.5,

and its comparison to the ANSYS-CFX and STAR-CCM+ approximation is

shown in Figure 4-12. Note that an average nominal model is proposed for

further robust control design.

∙ Sway and Heave: experimental results are given respectively in Table 4.6 and

4.7, and its comparisons to ANSYS-CFX and STAR-CCM+ results are shown

in Figure 4-13 and 4-14.

∙ Yaw: experimental results are given in Table 4.8, and its comparison to STAR-

CCM+ results is shown in Figure 4-15. As mentioned in Chapter 3, only STAR-

CCM+ provides the numerical damping estimation for the yaw rotation.

Table 4.5: Surge direction using 2 front horizontal propellers

Force (�) 1.4 2.0 2.8 3.4 3.9 4.7 5.2 6.2 6.9 7.5
Speed (�/�) 0.11 0.15 0.18 0.23 0.25 0.27 0.30 0.35 0.36 0.40

Table 4.6: Sway direction using 4 horizontal propellers

Force (�) 1.9 3.0 4.2 5.4 6.2 7.6 8.9 9.9 11.0 12.3
Speed (�/�) 0.13 0.16 0.20 0.22 0.25 0.28 0.30 0.32 0.35 0.39

Table 4.7: Heave direction using 2 vertical propellers

Force (�) 1.3 2.0 3.1 4.1 5.1 6.8 8.3 9.2 9.9 11.3
Speed (�/�) 0.12 0.18 0.21 0.26 0.28 0.31 0.32 0.33 0.35 0.39

Table 4.8: Yaw direction rotation both clockwise (CW) and counter-clockwise
(CCW) using 4 horizontal propellers, around the center of the AUV body

Torque (� ·�) 2.0 3.0 3.9 4.9 5.8 7.1 8.0 9.1 10.1 11.2
CW (���/�) 1.57 1.99 2.33 2.69 3.00 3.24 3.38 3.61 3.83 3.98

CCW (���/�) 1.54 1.90 2.29 2.62 2.93 3.18 3.44 3.63 3.79 3.95
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Figure 4-12: Experimental and computational comparison of damping and velocity
relationship in the surge direction of the CISCREA AUV
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Figure 4-13: Experimental and computational comparison of damping and velocity
relationship in the sway direction of the CISCREA AUV
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Figure 4-14: Experimental and computational comparison of damping and velocity
relationship in the heave direction of the CISCREA AUV
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Figure 4-15: Experimental and computational comparison of damping and velocity
relationship in the yaw direction of the CISCREA AUV
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Table 4.9: Experimental results of curves fitting (�: velocity �/� or angular veloc-
ity ���/�, �: propulsion force � or torque � · �, CW: clockwise, CCW: Counter-
clockwise)

Experiment & RMSE
Surge � = 21.4�2 + 10.75� 0.214
Sway � = 61.39�2 + 9.775� 0.3817

Heave(dive) � = 83.42�2 0.5924
Yaw(CW) � = 0.3513�2 + 0.0321� 0.119

Yaw(CCW) � = 0.3338�2 + 0.1081� 0.117

Table 4.10: STAR-CCM+ results curve fitting (�: velocity �/� or angular velocity
���/�, �: propulsion force � or torque � ·�)

Experiment & RMSE
Surge � = 25.75�2 + 0.2406� 0.02294
Sway � = 48.39�2 + 0.4512� 0.0595

Heave(dive) � = 82.44�2 0.1144
Yaw � = 0.1479�2 + 0.001328� 0.009881

Table 4.11: ANSYS-CFX results curve fitting (�: velocity �/� or angular velocity
���/�, �: propulsion force � or torque � ·�)

Experiment & RMSE
Surge � = 28.6�2 + 0.0089� 0.0177
Sway � = 53.52�2 0.0018

Heave(dive) � = 83.42�2 0.103

Table 4.12: Assumed nominal model (�: velocity �/� or angular velocity ���/�, �:
propulsion force � or torque � ·�)

Surge � = 25�2 + 5.379�
Sway � = 57.48�2 + 4.88�

Heave(dive) � = 80.37�2

Yaw(left) � = 0.2496�2 + 0.021�

The second order polynomial approximation of the experimental damping and

velocity relationship is given in Table 4.9, while the polynomial approximation of

the computational STAR-CCM+ and ANSYS-CFX results are shown respectively in

Table 4.10 and 4.11.

Finally, we can conclude from the comparison of the experimental and the com-

putational hydrodynamic results that:
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∙ According to Figures 4-12, 4-13, 4-14, 4-15, the numerical models in Chapter

3 give the principal hydrodynamic characteristics of the complex-shaped CIS-

CREA AUV. It is efficient to provide approximately the major hydrodynamic

information such as damping, added mass, and uncertain boundaries for the

robust controller synthesize.

∙ Although the numerical modeling accuracy is not considered to be very high,

for example to be used for precise physical phenomena analysis, the modeling

errors can be assigned as the uncertainties in further robust control loop.

∙ The gap in Figures 4-12 and 4-13, are mainly caused by the drag of the cables

and ropes, which are playing opposite efforts in Figure 4-14. In addition, moving

fluid causes the decrease of the propulsion also contributes to some experiment

error ([114]).

∙ Rotational damping results of the STAR-CCM+ and experiment are compared

in Figure 4-15. Obviously, there is a considerable difference between the two

results. However, the numerical model is still validated, and considered to

be enough for the robust controller in real sea test. In the next chapter, we

introduce an improved robust control scheme to handle this difference. An

efficient robust controller is synthesized based on the numerical hydrodynamic

model. Form the practical view, the rotational CFD results can be improved

by more intensive calculations or simulations, which is out of our scope.

Considering propulsion decrease and rope drag, etc., real AUV hydrodynamic

damping should be smaller than the experimental results. Therefore, we proposed

an ideal nominal models for the robust control design by taking average of the CFD

and experimental results. The nominal model is shown in Table 4.12 representing the

4DOFs hydrodynamics.
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4.5 Four DOFs Model of CISCREA

Considering the experimental hydrodynamic results and the proposed nominal model,

a 4 DOFs AUV model as well as its dynamic and hydrodynamic parameters are

presented for the CISCREA AUV (equation 4.2):

(�RB +�A)�̇ +�(|�|)� + �(�) = �env + �pro (4.2)

Here, the mass inertia matrix �RB is approximated by the CAD software PRO/E,

as shown in equation 4.3 (mass: ��, moment of inertia: �� ·�2).

�RB =

⎡
⎢⎢⎢⎢⎢⎢⎣

15.643 0 0 0

0 15.643 0 0

0 0 15.643 0

0 0 0 0.3578

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.3)

Added mass matrix �A of CISCREA AUV is estimated by WAMIT software:

�A =

⎡
⎢⎢⎢⎢⎢⎢⎣

11.985 −0.091 −0.105 0.012

0.149 20.261 −0.147 −0.758

0.111 −0.129 67.141 0.064

−0.003 −0.758 0.064 0.138

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.4)

The nominal damping matrix �(|�|) (equation 4.5) of the CISCREA AUV is

replaced by the average of the ANSYS-CFX, STAR-CCM + (equation 3.20) and

experimental results:
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�(|�|) = � +�n(|�|)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

5.379 0 0 0

0 4.88 0 0

0 0 0 0

0 0 0 0.021

⎤
⎥⎥⎥⎥⎥⎥⎦
+

����{|�|}T

⎡
⎢⎢⎢⎢⎢⎢⎣

25 0 0 0

0 48.39 0 0

0 0 82.440 0

0 0 0 0.1479

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.5)

4.6 Yaw Model

Without lose of generality, a yaw model is derived in this section for the robust heading

control design of the next chapter. Actually, the goal of our work is to validate

the method that combines an improved robust control scheme with the numerical

dynamic and hydrodynamic AUV models. Therefore, we only demonstrate the robust

controller in the yaw direction to keep a simple and small problem that can prove

our approach. Although the robust control scheme is a MIMO control method, it

does not prevent the validated SISO robust yaw control (heading control) algorithm

extending to 6 DOFs.

Moreover, the heading control problem is one of the most important or critical

issues for the hovering underwater vehicles. It is the foundation for the hovering

AUVs to achieve fast, accurate and stable control performance, which increase their

maneuverabilities to enter complex space, observe precise underwater targets, and

make accurate survey or operating actions. For example in SAUCE competition

[12], the AUVs are required to monitor and take precise pictures of a man-made

underwater structure from fixed distances and attitudes. In this case, the key issue to

accomplish the task is to install a precise controller that can handle the environmental

and modeling uncertainties as well as the hydrodynamic nonlinearities.
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As mentioned before, the pitch and roll directions of the CISCREA AUV are

stable and self-balanced by the restoring force. Therefore, the attitude of CISCREA

AUV is assumed to be always vertical, which neglecting buoyancy and gravity effects.

The rotational model can then be simplified as follows (equation (4.6)):

(�Y RB + �Y A)�̈r +�Y N |�̇|�̇+�Y L�̇r = �i (4.6)

Definitions and parametric values, such as inertia and damping coefficients, are

listed in Table 4.13.

Table 4.13: Rotational model notions of yaw direction

Parameter Description Value
�Y RB Rigid-body inertia 0.3578�� ·�2

�Y A Added mass inertia 0.138�� ·�2

�Y N Nominal quadratic damping factors Ideal 0.2496
�Y L Nominal linear damping factors Ideal 0.021
�̇r Angular Velocity 0 to 4rad/s
�i Torque input 0 to 6� ·�

It is clear from equation 4.6, the CISCREA AUV yaw model is nonlinear, and

the quadratic damping effect plays a major role in the hydrodynamic nonlinearity.

Notice that, all the parameters have uncertainties, as they are either measured or

numerically calculated. There also exit many un-modeled physics in the real ocean

environment. In the following chapters, those uncertainties will be carefully discussed

and treated using �∞ control method.

4.7 Conclusion

In chapter 4, we designed a 4 DOFs (Surge, Sway, Heave, and Yaw) experiment to

validate the CFD models and its hydrodynamic parameters that obtained in Chap-

ter 3. Conclusion can be made according the experimental results: the numerical

AUV modeling method (Chapter 3) is concluded sufficient for the complex-shaped

underwater vehicles under the scope using the robust control scheme.
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During the experiment, the bollard thrust of CISCREA AUV propellers are mea-

sured and studied. The results show an approximately linear propulsion behavior, and

lead to the assumption of a linear propulsion model (with uncertainties) for further

robust control synthesis.

With the aid of the linear dynamic approximation (equation 4.1), we verified the

pool size is large enough for the CISCREA AUV to reach a constant speed, and

the experiment provides the specific position region to measure the average speed to

represent the converged AUV velocity.

Finally, 4 DOFs (Surge, Sway, Heave, and Yaw) damping and velocity relation-

ships were derived from the recorded videos. Second order polynomial curves are

implemented to approximate damping and velocity results, in addition, they are com-

pared to CFD results from ANSYS-CFX and STAR-CCM+. The comparison shows

the hydrodynamic damping is nonlinear, and mainly consisted of or caused by the

quadratic damping. This nonlinear damping issue is essential and critical for the

further control design.
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Part III

AUV Control
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Chapter 5

AUV �∞ Controller and Simulations
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AUV is not a new invention now, but the world is making ever-greater demands

of intelligent, agile and reliable AUV or swarm of AUVs to work in deep water for

long periods. The underwater space is a complex, un-modeled or even unknown

environment. Therefore, AUV robustness becomes one of the key challenges for long

term working AUVs in the presence of uncertainties. Currently, the AUV controller

is a hot issue [81, 84, 111], and its robustness is important for high performance

AUVs. In fact, the robust control schemes for AUVs should be stable with not only

one specific AUV dynamic and hydrodynamic model, it should handles at any time a

group of models which represent any changing behaviors or parameters with the real

ocean environment.

In reality, the uncertainties are ubiquitous for any controlled plant. In addition,
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they are inevitable in the ocean environment, and they introduce difficulties in the

AUV controller design, such as: unpredictable wind, wave, current, turbulence or

obstacles. Generally, an automatic system consists of two parts: the controller part

and the controlled plant. Control schemes can modify the controller part and change

the closed-loop behavior. However, it can be very difficult to accurately estimate the

parameters or dynamics of the controlled plants or models in real time. In addition, it

is hard for traditional controllers to handle those unknown uncertainties. Concerning

the uncertainties in the real ocean environment, many mathematically perfect AUV

control solutions can be less efficient, and sometime the controller can be unstable

and damage the AUV.

A robust AUV requires a motion controller that can achieve both the control

performance and the closed-loop stability in the presence of ocean uncertainties. Ac-

tually, the �∞ control theory handles the uncertainty issues using �∞ norms in the

frequency domain [77, 76]. Recently, the �∞ control method has been adopted more

frequently in marine activities.

Consider the robust control problems of the CISCREA AUV, several issues matters

[129]:

∙ Parametric uncertainties and un-modeled dynamics in the AUV models

∙ Quadratic damping effects

∙ External disturbance as well as sensors’ noise

As mentioned in Chapter 1, most of traditional control schemes can not prevent

the inefficiency of the control performance as well as the stability reduction in the

presence of dynamic uncertainties. Meanwhile, the few nonlinear control schemes

are generally complex and limited to specific assumptions. Therefore, we proposed

a simple AUV linear �∞ control scheme. The proposed robust control approach

inherited a numerical model from previous CFD works [129]. Numerically predicted

the actuator force compensates the nonlinear damping behavior, thereby results in a

linear AUV model with uncertainties. Based on the bounded linear nominal model,
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the classical �∞ approach [76] was used to handle the uncertainties raising from the

modeling and compensating process, etc. A linear AUV behavior can be derived,

which is critical and convenient for both control design and navigation improvement.

Deep inside the ocean, the earth magnetic signal is one of the merely existing infor-

mation that tells the heading of robots with very good cost efficiency. It is important

the AUV can control its heading using only one magnetic compass as feedback sen-

sor. Without lose of generality, a robust heading controller using the proposed linear

�∞ approach was implemented and simulated for the CISCREA AUV. Simulation

results provided, mainly including: proposed model based �∞ approach, classical �∞

approach without nonlinearity compensation, and classical PID control scheme.

5.1 Robust Control Theory

The robust controller handles the uncertainty issues by building the nominal model

based closed-loop feedback control, and it satisfies for every plant belonging to the

uncertainty model set, two conditions:

∙ Robust stability,

∙ Robust performance.

The robust control can be related to two problems: robust analysis and robust

synthesize problems. The analysis problem pushes the controller to satisfy the de-

sired properties for all admissible noises, disturbances, and model uncertainties. The

synthesis problem designs a controller satisfying the desired properties for admissi-

ble noises, disturbances, and model uncertainties [77, 76]. A standard �∞ problem is

shown in Figure 5-1. The AUV dynamic and hydrodynamic models, uncertainties and

disturbances, the weighting functions are all describe in a Linear Fractional Trans-

formation (LFT) form, representing as the generalized system �, robust controller �

and the uncertainties block ∆.

In historical reviews of robust control theory [130, 76, 77, 131], Zames et al. intro-

duced the first robust control breakthrough in early 1980s [132, 133]. They considered

111





for the nonlinear AUV plant in face of uncertainties. The complete robust control

theory can be found in [76, 77, 131], and the mathematical conceptions used in our

approach are described in the Appendix C.

5.1.1 �∞ Robust Analysis

In this part, the �∞ criteria for robust stability and the robust performance that can

handle the uncertainties in control design are discussed. The unstructured uncertain-

ties are considered as generic errors in all robust control designs.

Generally, the uncertainties of the controlled plant can be classified into two cat-

egories: internal dynamic perturbations and external disturbances. The internal dy-

namic perturbations represent the discrepancy between the mathematical model and

the actual dynamic, including the parametric uncertainties, un-modeling dynamics,

neglected nonlinearity, etc. In contrast, the external disturbances refer to environmen-

tal input and output disturbances, including unspecified currents or obstacle effects,

sensor or actuator noise, etc. Hence, it is quite complex to built a model represent-

ing the reality. Traditional control schemes handle the uncertainties by assuming

that the real uncertainties are instant disturbances added to the initial states of the

nominal model. The nominal model is the single physical description trusted in the

traditional control designs. Using the stability margin analysis based on the nomi-

nal model, the traditional controller considers a stable closed-loop system as the real

plant. However, in reality the practical uncertainties are far different from assump-

tions, and the control stability can not be guaranteed. The response of the single

model might not match the varying true plant. Therefore, a set of models is a mini-

mum requirement to describe model dynamics in reality. Besides the stability issue,

the performance reduction causing by the uncertainties are unmeasured in the tradi-

tional control designs. Note that, the robust performance analysis is inevitable in the

real world control applications, and this is another important reason to introduce the

robust control algorithms. In conclusion, it is essential to bring in the uncertainty

descriptions and their relevant analysis method.

In general, the actual controlled-plant � can be described into different compo-
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nents, where �0 denotes the nominal model of the physical system, and ∆� the

perturbations associated with the nominal model. In case of a LTI system of �,

the uncertainties ∆� are characterized by: unstructured uncertainties (the uncertain

block is represented by an unknown transfer matrix [76, 77]) and structured uncer-

tainties (i.e., parametric uncertainties, whose behavior can be written in to a fix order

model by a LFT form [77]). By considering the controlled plant � as a LTI system, we

can derive the state space representation of the structured uncertainties, in equation

5.1, and unstructured uncertainties by equation 5.2.

⎡
⎣�̇
�

⎤
⎦ =

⎡
⎣�(�) �(�)

�(�) �(�)

⎤
⎦
⎡
⎣�
�

⎤
⎦ (5.1)

⎡
⎣�̇
�

⎤
⎦ =

⎡
⎣�+∆� � +∆�

� +∆� � +∆�

⎤
⎦
⎡
⎣�
�

⎤
⎦ (5.2)

In equation 5.1, � ∈ R
n denotes the states of the system, � ∈ R

m is the input

vector, � ∈ R
p is the output vector, � ∈ R

s is the vector of the uncertain parameters,

�(�) ∈ R
n×n, �(�) ∈ R

n×m, �(�) ∈ R
p×n, �(�) ∈ R

p×m are the system matrices

(�,�, �, � ∈ R). Meanwhile, in equation 5.2, ∆�, ∆�, ∆�, ∆� are the unstructured

perturbations in form of unknown matrices. The key issue is to make robust analysis

(stability anlaysis) under small gain theorem [76] with different types of uncertainties.

In fact, there are various types of uncertainties, including: additive or multiplica-

tive uncertainties, and inverse perturbations, etc. [76].

Generally, it is difficult or impossible to get an exact frequency response or a high

accuracy Laplace transfer function approximation of uncertainty characteristics in

∆�(�). Therefore, a bounding method using a less complex weighting functions � (�)

that covers ∆�(�) (covers the group of the uncertainty characteristics) is introduced

in equation 5.3 (SISO system for example).

�max(∆�(��)) 6 |� (��)|, ∀� ∈ R (5.3)

Here, �max(·) is the maximum singular value of the uncertainties, � stands for fre-
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quency variable, ∆�(·) represents perturbations, � (·) is the weightings. The exact

perturbations ∆�(��) is bounded inside the set of models described by the weighting

functions � (�) (upper boundary) using �∞ norms inequality (or the peak singular

value inequality). Note that, the guidelines for the selection of the weighting functions

� (�) are a key open challenge in the robust control design. The inefficient of the

weighting functions describing the uncertainties might cause conservative controllers

or invalidated control results for real world controlled plants. If the weighting func-

tions are close to the exact true plant, the synthesized robust controller can be less

conservative, more accurate and efficient.

There are several methods proposed to estimate the weighting functions for regular

robust control design, such as the system identification method which implements the

experimental frequency response tests, the empirical formula approximation method

which recreates the model characteristics based on low-level physical principals, etc.

According to Zhou [76]: “In many occasions, the weights are chosen purely as a

design parameter without any physical basis, so these weights may be treated as

tuning parameters chosen by the designer to achieve the best compromise between the

conflicting objectives”. Given a specific weighting function � (�), the stability tests

in face of various type of uncertainties is actually of central importance before all the

robust control design process. Here, the small gain theorem [77, 76] is introduced as

the foundation to achieve the stability tests.

Small Gain Theorem [77]: if there is an unknown bounded unstructured pertur-

bation ∆(�), ||∆(�)||∞ < 1, i.e., ∆(�) ∈ �∞, and a stable nominal controlled plant

�0(�), the closed-loop feedback system is robust stable if and only if there is a con-

troller�(�) stabilizes the nominal model�0(�) and the condition ||{�0(�), �(�)}||∞ <

1 holds (equation 5.4, 5.5). Here, the {�0(�), �(�)} is the closed-loop nominal system.

||∆�(� +�0�)−1||∞ < 1 (5.4)

||�(� +�0�)−1∆||∞ < 1 (5.5)

By another word, the robust controller internally stabilizes every plant belonging to
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the set of models bounded by the weightings when the above �∞ norm inequality

stands. Depend on different types of uncertainties, some important closed-loop robust

stable conditions are summarized in table 5.1.

Table 5.1: Robust stable conditions under different types of uncertainties, given by
the small gain theorem

Uncertainty type Uncertainty Boundary Robust Stable Condition
Multiplicative uncertainty

(� +∆)�0

||∆(��)||∞ < �k(��) ||�k� ||∞ 6 1

Inverse multiplicative
uncertainty (� +∆)−1�0

||∆(��)||∞ < �mo(��) ||�mo��||∞ 6 1

Additive uncertainty
(�0 +∆)

||∆(��)||∞ < �a(��) ||�a��||∞ 6 1

Inverse additive
uncertainty

�0(� +∆�0)
−1

||∆(��)||∞ < �mi(��) ||�mi��0||∞ 6 1

Here, �k, �a, �mi, �mo are the prior knowledge of weightings or replacement of

original uncertainties about the upper bound as mentioned in equation 5.3. � (�)

stands for the sensitivity function, and �(�) denotes the complementary sensitivity

function:

� (�) = (� +�0�)−1 (5.6)

�(�) = �0�(� +�0�)−1 (5.7)

Consider a system as described in figure 5-1, if a bounded ∆(��) exists and has

||∆(��)||∞ < 1, then, the robust stability is equivalent to the internally stability of

the closed-loop system (�0(�), �(�)) , and the closed-loop transfer function �rw(�) =

�{�0(�), �(�)} (�{·} is a transfer function), from the perturbation input � (see figure

5-1) to the evaluation output �, satisfies ||�rw||∞ < 1. In the contrary, if the closed-

loop system {�0(�), �(�)} is internal stable and ||�rw||∞ < 1 stands, then, for any

stable ∆(�) connected to the system, that has ||∆(�)||∞ < 1 robust stability stands.

The second important issue of robust control design is the robust performance rep-

resented by �∞ norms. According to [77]: “the �∞ design and relevant approaches
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first formulate the stability as well as performance design specifications as a robust

stabilization problem and then solve the robust stabilization problem to find a con-

troller”. For a regular closed-loop robust control system in figure 5-1, whose inputs

and outputs are energy bounded, it is generally required the following performance

specifications:

∙ tracking performance, ���||(� +�0�)−1||∞.

∙ disturbance attenuation, ���||(� +�0�)−1||∞ (same as above).

∙ noise rejection, ���|| − (� +�0�)−1�0�||∞.

∙ energy consumption, ���||�(� +�0�)−1||∞.

For the robust performance analysis, the weighting functions as well as its formu-

lation of �∞ problems are also of central importance to achieve desired objectives

about the control performance. The weighting selections are actually the active en-

gineering tuning to reject unwanted dynamics and perturbations. Let a SISO system

as in equation 5.8:

�1(�) = �(�)�1(�) (5.8)

where, �1(�) ∈ C denotes the system input, �1(�) ∈ C the system output, and �(�)

is a stable close loop transfer function of the SISO system. Then, the �∞ norm of

the transfer function from input to output are given in equation 5.9:

||�(�)||∞ = ���||u1||2 ̸=0
||�1||2
||�1||2

= ���ω|�(��)| (5.9)

Here, the norm ||�(�)||∞ can be considered as an energy amplifier from the input to

the output under certain frequency. Define a constant � > 0 as the expected energy

gain for the closed-loop system �(�) that confined the effect of the input signal to

the output behavior, then we have:

||�(�)||∞ < � (5.10)
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Let �(�) be a disturbance, whose frequency response can be covered by a weighting

function � (�) (gain upper boundary):

|�(��)| < |� (��)|, ∀� ∈ R (5.11)

Meanwhile, if the following �∞ norm inequality stands:

||�(�)� (�)||∞ < � (5.12)

then, the energy reflection of the disturbance �(�) through the closed-loop system

�(�) to the output becomes less than �, namely, the restrain of the disturbance �(�)

in the robust system �(�) is capable to achieve the range of �.

5.1.2 �∞ Robust Design

The robust control design is to find a stable controller that simultaneously achieves

the robust stability and certain robust performance in the face of uncertainties. As a

result, the �∞ optimization methods are proposed and validated as efficient tools in

the last decades, to solve the robust control design problem for LTI system.

As mentioned in the robust stability theorem, a MIMO system as shown in figure

5-1, engineering selected weightings can generally guarantee a stable bounded form

of ∆(��) (i.e. ||∆(��)||∞ < 1), then, the robust control design problem of � is

equivalent to the �∞ design problem on the weighted nominal model �0 without

concerning the perturbation block ∆(�). Therefore, the LFT representation of the

robust system is given in equation 5.13:

⎡
⎣�
�

⎤
⎦ = �(�)

⎡
⎣�
�

⎤
⎦ =

⎡
⎣�11(�) �12(�)

�21(�) �22(�)

⎤
⎦
⎡
⎣�
�

⎤
⎦ (5.13)

and the controller �(�) is given in equation 5.14:

� = �(�)� (5.14)
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We summaries the definitions in figure 5-1 as follows:

∙ ∆(�) denotes the perturbation set, which is the mathematical approximation of

the uncertainties and disturbances.

∙ �(�) stands for the robust controller, which is yielded from the �∞ optimiza-

tion.

∙ �(�) is the generalized model, which consists of the nominal model �0 as well

as the weighting functions that guarantees the stability and performance con-

strains.

∙ � is the control signal representing the control command that is given to the

generalized plant �(�).

∙ � is the output signal representing the dynamic data of �(�) that is obtained

by the feedback sensors.

∙ � represents the external uncertainty, including disturbance, noise, etc.

∙ � is the error signal which evaluates the closed-loop signal attenuation perfor-

mance about the uncertaintys or disturbances.

As shown in equation 5.13, the generalized system �(�) is generally described

by the LFT form with several block matrices (�11(�), �12(�), �21(�), �22(�)). The

closed-loop transfer function �rw(�) = �{�0(�), �(�)} relates the external uncertainty

� (input) to the error signal �:

�rw(�) = �11(�) +�12(�)�(�)[� −�22(�)�(�)]−1�21(�) (5.15)

Moreover, the state space representation of the generalized model �(�) and the robust

controller �(�) are respectively shown in equations 5.16 and 5.17:
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�(�) =

⎡
⎣�11(�) �12(�)

�21(�) �22(�)

⎤
⎦ = �G + �G(�� − �G)

−1�G

=

⎡
⎣�11 �12

�21 �22

⎤
⎦+

⎡
⎣�1

�2

⎤
⎦ (�� − �)−1

︁
�1 �2

︁
(5.16)

�(�) = �K + �K(�� − �K)
−1�K (5.17)

where, the �G, �K , �G, �K , �G, �K , �G and �K are appropriately dimensioned

real constant matrices.

Thereby, the state space realization of the closed-loop transfer function �rw(�) can

be given by the following equations:

�(�,�) = �BF + �BF (�� − �BF )
−1�BF (5.18)

�BF =

⎡
⎣�+�2(� −�K�22)

−1�K�2 �2(� −�K�22)
−1�K

�K(� −�22�K)
−1�2 �K +�K(� −�22�K)

−1�22�K

⎤
⎦ (5.19)

�BF =

⎡
⎣�1 +�2(� −�K�22)

−1�K�21

�K(� −�22�K)
−1�21

⎤
⎦ (5.20)

�BF =
︁
�1 +�12(� −�K�22)

−1�K�2 �12(� −�K�22)
−1�K

︁
(5.21)

�BF =
︁
�11 +�12(� −�K�22)

−1�K�21

︁
(5.22)

According to the stability theorem [139], the closed-loop transfer function �rw(�)

is internally stable if all the poles of the system matrix �BF are on the left panel of

120



the � surface, i.e., all the eigenvalues satisfy ��(�i(�BF )) < 0. As a matter of fact,

it is not suitable to use analytic formula to derive robust control solutions for MIMO

systems. Therefore, the robust design goals are to optimize a stable control result,

i.e., finding a stabilizing controller with the performance limited to a given positive

number � > 0 (the expected energy gain from the input signal � to the error signal

�). By taking the tracking performance of the closed-loop robust system for example,

the performance constrain can be presented by:

||�rw||∞ < � (5.23)

In fact, the synthesis objective for good tracking performance is to minimize the

constrain value � which results in better disturbance attenuation. The optimal goal

can be achieved by guaranteeing the stability of the closed-loop transfer function

�rw. In this case, the above robust design problem becomes a �∞ optimization

problem. Given an initial value � > 0, then, gradually decreases the � and tests

the stability condition until it reaches a minimum value, this is to say the optimal

gain �opt. Theoretically, the robust performance is satisfied as a result of disturbance

attenuation under the minimum transfer amplification.

The robust control design is actually a constrained optimization problem. The

�∞ robust synthesis solves the optimal controller by recursive calculations. According

to [77], the solution to the optimization problem is not unique except in the scalar

case. During the past decades, many algorithms are developed to solve the �∞

optimization problems. In the following part, we would introduce two important

methods for robust control systhesis: ARE and LMI [140], [141].

5.1.3 �∞ Synthesis: ARE

"Lyapunov eqautions are most useful in system analysis while AREs are most useful

in control system synthesis." said Zhou in [76]. For�∞ synthesis, Doyle first proposed

the two ARE synthesis method in 1980s [138].

Let the state-space description of the generalized system �(�) in equation 5.24:
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⎡
⎢⎢⎢⎣

�̇

�

�

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

� �1 �2

�1 �11 �12

�2 �21 �22

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�

�

�

⎤
⎥⎥⎥⎦ (5.24)

where � ∈ R
n is the state vector, � ∈ R

m2 is the control input vector, � ∈ R
p2 is

the measurement vector, � ∈ R
m1 stands for the disturbance input vector, � ∈ R

p1

denotes the error evaluation output vector, �12 ∈ R
p1×m2 , �21 ∈ R

p2×m1 , with �1 >

�2, and �2 6 �1. In practical applications, �22 is generally zero.

According to Glover and Doyle [77], the necessary and sufficient conditions for the

existence of a �∞ suboptimal solution are obtained under the following assumptions

(solvability conditions).

∙ (�,�2) is stabilisable and (�2, �) is detectable.

∙

⎡
⎣�− ��� �2

�1 �12

⎤
⎦ has full column rank for all � ∈ R.

∙

⎡
⎣�− ��� �2

�2 �21

⎤
⎦ has full row rank for all � ∈ R.

∙ �12 =
︁
0 �

︁
, �21 =

⎡
⎣0
�

⎤
⎦

Consider the two following Riccati equations:

(�− ��−1�T
1·�1)

T� +�(�− ��−1�T
1·�1)−���−1�T�

+�T
1 (� −�1·�

−1�T
1·)�1 = 0

(5.25)

(�− �1�
T
·1�︀

−1�)� + � (�− �1�
T
·1�︀

−1�)T − � �T �︀−1��

+�1(� −�T
·1�︀

−1�·1)�
T
1 = 0

(5.26)

where,
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� = �1·
T�1· −

⎡
⎣−�

2� 0

0 0

⎤
⎦ , �1· = [�11, �12] (5.27)

�︀ = �·1�
T
·1 −

⎡
⎣−�

2� 0

0 0

⎤
⎦ , �·1 =

⎡
⎣�11

�21

⎤
⎦ (5.28)

Partition �11 =

⎡
⎣�1111 �1112

�1121 �1122

⎤
⎦, where �1122 has �2 rows and �2 columns.

Let us suppose that the generalized plant � satisfies the above four assumptions,

then, there exists an internal stabilizing controller �(�) such that

||�rw(�) = �{�(�), �(�)}||∞ < �

if and only if :

∙ � > ���(�[�1111, �1112], �[�1111
T , �1121

T ]) (�(·) is the singular value)

∙ the two Riccati equations 5.25 and 5.26 respectively have a stable solution �

and � .

∙ the Riccati equations 5.25 has a positive semidefinite solution � > 0 that

guarantee a stable matrix (�− ��−1�T
1·�1 − ��−1�T�).

∙ the Riccati equation 5.26 has a positive semidefinite solution � > 0 that guar-

antee a stable matrix (�− �1�
T
·1�︀

−1� − � �T �︀−1�).e

∙ �(�� ) < �2 (�(·) denotes the spectral radius)

The existence of the solutions to a �∞ problem depends on the selected constant

� > 0. Limited to the structure and performance requirements, the control system

can not achieve an arbitrary small �, and for some small �, the �∞ problem might

not be feasible.

Generally, the control performance is better if the � value remains small. There-

fore, the control design process is the � bisection as well as its robust test until �

reaches the smallest feasible value. For the �∞ problem of robust control synthesis,

the ARE method executes the following steps (dichotomic procedure):
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1. Initial: select a sufficient large �max that guarantees the �∞ problem is ad-

missible, meanwhile, chose a sufficient small �min that makes the �∞ problem

infeasible. Select a small enough ∆�s value to stop the optimization process.

2. Iterative: calculate the expected energy gain � for the incoming robust test,

i.e., the feasible conditions for AREs.

� =
�min + �max

2
(5.29)

3. Check: if the�∞ problem with expected � has solutions (i.e. AREs are feasible),

then updates �max = �, if not update �min = �.

4. Stop: check if stop criteria �max − �min < ∆�s is satisfied, then stop the opti-

mization process, if not turn to step 2 for further calculations.

Using the ARE robust control synthesis method, the �∞ problem or the gener-

alized plant �(�) should first meet the four constrain assumptions. Meanwhile, the

optimization calculation depends on the empirical selection of energy gains �min and

�max. When the control plant is complex and the parameters are not well known, the

AREs solution might consume a lot of time to be optimized, and feasible solutions

are not guaranteed.

5.1.4 �∞ Synthesis: LMI

In the past decades, LMI theory was validated as an efficient convex algorithm to solve

�∞ problems for LTI systems [142, 141]. Typical LMI method is flexible in choosing

the performance specifications as it provides better solvability conditions, i.e., it re-

quires less assumptions than the Riccati method. A richer body of controlled-plants

can be treated using LMI method. LMI algorithms also allows to directly minimize

� in order to find the best upper bound [141]. In fact, the LMI approach turns

the �∞-norm constrains into linear matrix inequalities (LMI problems). Thereby,

the �∞ synthesis problems can be solved with matured mathematical LMI tools.
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In the following, we would introduce the derivation of the �∞ problems using LMI

techniques.

The generalized plant �(�) and its minimal state-space realization is presented in

equation 5.30:

�(�) = �SG + �SG(�� − �SG)
−1�SG (5.30)

where, the �S�, �S�, �S� and �S� are appropriately dimensioned real constant

matrices.

According to the LMI theory, if � > 0 and matrix �SG is stable and of minimal

realization, there is ||�||∞ < � if and only if, there exists a positive definite matrix

� > 0 satisfying:

⎡
⎢⎢⎢⎣

�T� +�� �� �T

�T� −�� �T

� � −��

⎤
⎥⎥⎥⎦ < 0 (5.31)

The �∞ control problem is transformed into a standard LMI problem in equation

5.31. The above lemma is considered as the foundation of the LMI method, its proof

can be found in [143].

To solve a robust controller �(�) using the LMI theory, there is the following

lemma: If the generalized system �(�) satisfies the assumption ( (�,�2) is stabilis-

able and (�2, �) detectable), there exists a stable controller �(�) and its closed-loop

system has ||�rw||∞ < �, if and only if, the following LMIs has a symmetric solution

matrix � > 0 and � > 0:

⎡
⎣�

T
X

�nw

⎤
⎦

⎡
⎢⎢⎢⎣

�� +��T ��T
1 �1

�1� −�� �11

�T
1 �T

11 −��

⎤
⎥⎥⎥⎦

⎡
⎣�

T
X

�nw

⎤
⎦ < 0 (5.32)

⎡
⎣�

T
Y

�nz

⎤
⎦

⎡
⎢⎢⎢⎣

� �+ �T� � �T
1 �T

1

�T
1 � −�� �T

11

�1 �11 −��

⎤
⎥⎥⎥⎦

⎡
⎣�

T
Y

�nz

⎤
⎦ < 0 (5.33)
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⎡
⎣� �

� �

⎤
⎦ 6 0,

⎡
⎣� �

� �

⎤
⎦ > �+ �k (5.34)

In equations 5.32∼5.34, � and �k respectively, represent the dimension of the

generalized system and the robust controller. Matrix definitions are given as : �X =

[�1, �21], �Y = [�T
2 , �

T
12].

Note that, in the LMI method the solvability condition, (�,�2) is stabilisable

and (�2, �) detectable, is the only requirement. The performance specifications can

be chosen with more flexibility, and the dimension of the control input, disturbance

input, evaluation and control outputs can be arbitrary.

The technical steps to solve a �∞ controller using LMI methods are given as

follows:

1. Solve the LMIs of equation 5.32 and 5.33, to get the symmetric solutions � > 0

and � > 0.

2. Find the matrix � such as �� T = � −�−1

3. Let

� =

⎡
⎣ � �

� T �

⎤
⎦ (5.35)

and then move � into equation 5.36 and 5.37 (* denotes the matrix of any

values that fits the size),

⎡
⎣� �T

� *

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

�
T
� + �� ��1 �

T

1 ��2

�
T

1 � −�� �
T

11 0

�1 �11 −�� �12

�2 �21 0 *

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.36)

�+ �TΘ� + � TΘ� < 0 (5.37)
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4. A parametric matrix Θ can be found, and its state space realization consists of

the elements of the robust controller �(�).

Θ =

⎡
⎣�K �K

�K �K

⎤
⎦ (5.38)

In practice, the robust control toolbox in Matlab software provides two �∞ con-

troller synthesis algorithms: Riccati method and LMI method, and its relevent appli-

cations can be found in [77].

5.2 Control of the CISCREA AUV

Without lose of generality, �∞ control approach is prensented and adapted to the

CISCREA AUV for a heading control. A major problem is that the yaw model is

nonlinear with serious uncertainties. In reality, the AUVs nonlinearity and uncer-

tainty issues are mainly caused by: nonlinear damping effects, changing parameters,

unmodelled dynamics, external disturbances, sensor noise, etc. Therefore, we propose

a framework to change the nonlinear yaw model to a linear system with uncertainties

based on previous CFD modeling work. By then, we can solve a �∞ controller for the

linear system. At the end, the simulation results of the �∞ control and the classical

PID control schemes are compared.

5.2.1 Yaw model and its linearization

In order to validate the proposed �∞ robust control approach, and reduce the com-

plexity to implement the controller, we abstract the yaw model from the full di-

mensional CISCREA AUV dynamics. In fact, previous dynamic and hydrodynamic

modeling work is control-oriented, and it brings a lot of convenient benefits. For

example, it is possible to build model based Kalman filters for unobservable states

that faces considerable noise [144]. Otherwise, the dynamic and hydrodynamic infor-

mation can be used to design the Smith compensators in order to handle the signal
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delay and its response oscillation consequence [145].

Most importantly, in this part, we propose a method to deal with system nonlin-

earities for robust control scheme. We discuss the AUV nonlinear dynamic problem

without concern of parametric uncertainties, such as inertia, added mass and damp-

ing coefficient errors. As found in Chapter 3 and 4, damping is a major nonlinear

component in an underwater vehicle hydrodynamic model. Therefore, we propose

to compensate nonlinear behaviors by creating a linear behavior. The compensation

error is assigned to be an extra uncertainty beside parametric uncertainties.

The reason to introduce such a linearization method is that most of the control

theories assume the controlled-plant as a linear time invariant system [144]. The

major �∞ control methods are developed on linear theories. Only in some specific

linearizable assumptions, a few nonlinear systems can be treated using linear methods

[144]. Generally, the control performance are dramatically reduced to directly fit a

linear �∞ controller on the nonlinear AUV dynamics, such as CISCREA AUV. The

linearization of the yaw model is critical and essential for the robust control design

of underwater vehicles. Generally, there are several essential linearization methods to

implement linear control algorithms on the nonlinear control applications:

∙ Equilibrium approximation: First, formulate the nonlinear dynamic model of

the nonlinear system according to the physical knowledge or input-output data

analysis. Thereby, the engineers determine the steady-state operating point

or a group of operating points about which to linearize. Derivations are made

about the operating points to obtain an approximate linear model. The equilib-

rium approximation has one disadvantage. The states of the closed-loop system

should be near the operating pionts, otherwise, the controller can be invalid.

∙ Perturbation method: Using �∞ control scheme, the nonlinear damping effect

can be directly defined as a parametric uncertainty adding to the linear be-

haviors. Describe the whole nonlinearity into the uncertainty set ∆, the �∞

synthesis can yield a stable control system with some compromise to the per-

formance conservation.
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∙ Nonlinear compensation method: The nonlinear damping behaviors are esti-

mated using numerical physics on CFD software. The CFD modeling estima-

tion results are used to create an artificial linear AUV dynamic behavior as

the robust control nominal model. The CFD model guides the AUV actuators

to execute the compensations about damping forces and torques on real world

AUV dynamics. Obviously, comparing to the perturbation method the damp-

ing compensations errors are generally small. Small linearization errors leads

to small uncertainty set ∆. Therefore, �∞ synthesis are finally implemented

based on small ∆ to obtain a stable robust controller with less compromise on

performance conservation.

In chapter 4, we abstract the nonlinear yaw model from the 4 DOFs CISCREA

AUV dynamics for further �∞ research. For the convenience of model linearization,

we present the yaw model again in equation 5.39 (neglecting buoyancy and gravity).

Relevent linearization variable definitions are given in table 5.2. The three mentioned

linearization methods will be compared in the following.

(�Y RB + �Y A)�̈r +�Y N |�̇r|�̇r +�Y L�̇r = �i (5.39)

Table 5.2: Rotational model notions of yaw direction

Parameter Description Value
�Y RB Rigid-body inertia 0.3578�� ·�2

�Y A Added mass inertia 0.138�� ·�2

�Y N Nominal quadratic damping factors Ideal 0.2496
�Y L Nominal linear damping factors Ideal 0.021
�̇r Angular velocity 0 to 4rad/s
�i Torque input 0 to 6� ·�
�c�� Compensation torque 0 to 6� ·�
�̇r0 Steady-state operating point (Equilib-

rium velocity)
0 to 4rad/s

�Y ND CFD quadratic damping factors 0.1479
�Y LD CFD linear damping factors 0.0013
�Y LA Artificial linear factors <thrust limit (select 1.2)

For traditional AUV applications, the equilibrium approximation method is usu-
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ally the first option for model linearization. Assume the steady-state angular velocity

of the AUV is �̇r0, thereby, the linearization about equilibrium point results in equa-

tion 5.40.

(�Y RB + �Y A)�̈r + (�Y L + 2�Y N |�̇r0|)�̇r −�Y N |�̇r0|�̇r = �i (5.40)

Generally, the equilibrium state of a regular system is either zero or a constant value.

Unfortunately, the equilibrium state of the AUV (angular velocity) is not steady and

varies in a wide range from 0 ���/� to 4 ���/�. A real dynamic system does not stay

around the equilibrium point as supposed. As a result, the control performance is

significantly disturbed.

The second perturbation method is more straight forward, as shown in equation

5.41:

(�Y RB + �Y A)�̈r + (�Y N |�̇r|+�Y L)�̇r = �i (5.41)

Nonlinear damping coefficient �Y N |�̇r| is supposed to be an uncertainty adding to the

linear coefficient �Y L. As found in previous modeling work, the nonlinear quadratic

damping component dominates the damping effect, and the linear damping is compa-

rably negligible. In this case, there is a large error about the damping model using the

linear nominal that derived with only the linear damping coefficient �Y L. The syn-

thesized �∞ controller can be seriously conservative by assuming nonlinear damping

is an uncertainty.

To the last, the proposed linearization approach uses nonlinear CFD yaw model

as feedback to real world propellers, see Figure 5-2. The main idea is to compensate

the original nonlinear behavior, and creates a rough artificial linear damping behavior

as robust control nominal.

According to the suggested nonlinear compensation methods of linearization, the

compensation propulsion is derived in equation 5.42.

�com = (�Y LA −�Y LD −�Y ND|�̇r|)�̇r (5.42)
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added on the artificial linear factor �Y LA, and it remains small.

� = �Y N |�̇r0| −�Y ND|�̇r|+�Y L −�Y LD (5.44)

To validate the nonlinear compensation method, we can consider the yaw model

in chapter 4 is an ideal model that has no errors comparing to the reality. Calculate

� using the following parameters,

�̇r ∈ [−4, 4]���/�; �Y LA = 1.8; �Y N = 0.2496;

�Y L = 0.021; �Y ND = 0.1479; �Y LD = 0.0013;
(5.45)

then, we can result in that �Y LA only has the dynamic uncertainty of 23.7%.

In additional, we can derive the linear nominal model for robust control design in

equation 5.46:

(�Y RB + �Y A)�̈r + (�Y LA + �)�̇r = �i; � ∈ [−0.4265, 0.4265] (5.46)

Table 5.3: Linear Damping Uncertainty Margin

Methods Nominal Linear Factor Uncertainty Margin
Compensation �Y LA:1.8 (for instance) �Y LA : [1.3735, 2.2265], 23.7%

In previous hydrodynamic study, we concluded that only in the yaw direction nu-

merical damping results has the worst error comparing to the experimental one, see

figure 4-15. The surge, sway and heave directions have better numerical results, which

means the yaw model is the most difficult one for robust control deign. Considering

the nominal models derived by nonlinear compensation, the worst case of the paramet-

rical uncertainty that adding to the linear factor �Y LA is only 23.7%. The proposed

model, equation 5.46, is therefore a linear system with uncertainties. However, in the

following �∞ robust control design the parametric uncertainty boundary is generally
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selected higher than 40% > 23.7%, i.e., the linearized model with uncertainties is well

bounded and is feasible for further �∞ robust control design.

5.2.2 �∞ control design

The �∞ control theory achieves the advantage of robustness and MIMO control char-

acteristics by combining frequency domain techniques and the state space feedback

theory. Both the robust stability and robust performance can be simultaneously

achieved after founding such a fix controller using optimizing algorithms. For the

MIMO AUV control problem, robust control theory can result in accurate control

performance in face of many bounded uncertainties. Therefore, for the AUVs control

problem, the �∞ controller is proposed to solve the following issues:

∙ Dynamic and hydrodynamic parametric uncertainties.

∙ Nonlinear damping compensation errors.

∙ External disturbance from the ocean environment and sensor noise.

Based on the linearized yaw model that derived from the nonlinear damping com-

pensation, a �∞ control scheme is proposed for the heading control of the CISCREA

AUV, see figure 5-3. The thruster compensates the nonlinear damping behavior by

calculating its propulsion value using equation 5.42 and the AUV angular velocity

�̇r. From the controller perspective, the compensated AUV controlled-plant is a first

order linear system with minor uncertainties. As a result of the improved linear AUV

dynamic behavior, the robust issues can be conveniently solved by essential �∞ con-

trollers. Although, for few AUVs, the angular velocity �̇r is not measured or indirectly

sensed, the proposed modeling based robust control scheme could easily solve the de-

tection issue by building Kalman filters. This technique of estimating unmeasured

states would be introduced in the next chapter for real world AUV robust control in

the sea.

Generally, the nominal model is derived from the LFT technique, which separates

uncertainties into an individual block [76]. Denotes the CISCREA AUV yaw model,
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finding such a � are represented by �∞ norms of the closed-loop transfer functions

from � to �, see equation 5.47.

���
Kstable

⃦⃦
⃦⃦
⃦⃦
⃦⃦
⃦

�p(� +�0�)−1

�e(� +�0�)−1

�u�(� +�0�)−1

⃦⃦
⃦⃦
⃦⃦
⃦⃦
⃦
∞

< � (5.47)

Here, � is the robust controller in figure 5-3, �0 is the above obtained linear nominal

yaw model from LFT interpretation, �e, �u, and �p are the weighting functions. In

addition, �(�), and �k(�) and � (�) stand for different types of sensitivity functions:

�(�) = �0�(� +�0�)−1 (5.48)

�k(�) = �(� +�0�)−1 (5.49)

� (�) = (� +�0�)−1 (5.50)

In general, weighting functions as well as relevant sensitivity functions would be used

in the minimization to meet the design specifications.

In �∞ control design, the weighting functions are introduced for setting control

specifications. Generally, it is difficult to get the accurate frequency characteristics of

external input signal. In addition, the real signal characteristics generally have com-

plex transfer function representations for the control design. Therefore, the weighting

functions, which have simple transfer representations, are proposed as upper bound

constrains that cover original signals, see figure 5-4. All the weighting functions �e,

�u, and �p are connected to the generalized control plant �0. The weighting func-

tion �p represents the frequency characteristics of the external disturbance. Usually,

it is used to describe output disturbance rejection ability. Without �p, the gener-

alized system (only has �e and �u) is actually a classical �∞ synthesis problem.

Satisfying the above norm inequality (equation 5.47), indicates that the closed-loop

system indeed reduces the disturbance effects to a prescribed level.
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order transfer functions [77]:

�p(�) = ��
�2 + �n1�+ �n2
�2 + �d1�+ �d2

(5.51)

�e(�) = ��
�+ �n1
�+ �d1

(5.52)

�u(�) = �� (5.53)

where, ��, ��, ��, �n1, �n2, �d1, �d2, �n1 and �d1 are the constant parameters to be

configured.

The above �∞ control design can be concluded as three parts.

1. The energy gain of the concerned closed-loop is restrained in a specific �∞ norm

inequality, which are generally the performance goal interpretation.

2. Finding a controller � such that the �∞ norm inequality is satisfied after

defining relevant weighting functions (or to say the description set of signal

characteristics).

3. To solve the �∞ problem, one can use the Riccati method or Linear Matrix

Inequality (LMI) approach [76, 77] to implement the mathematical optimization

calculation. It was mentioned before, we prefer to choose LMI approach, since

it requires less initial conditions [77].

5.2.3 PID control design

In order to validate the �∞ AUV controller, we compare the �∞ controller with

the widely used PID control method. In this part, some essentials of PID control

algorithms are introduced.

The PID control method can be given by the following equations:

�(�) = �p�(�) +�i

︁ t

0

�(�)��+�d�̇(�) (5.54)

�(�) = �(�)− �(�) (5.55)
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where, �(�) is the error signal between the system output �(�) and the reference input

�(�), �(�) stands for the control input, �p, �i, and �d denote the coefficients for

the proportional, integral, and derivative terms. The PID controller can achieve the

desired set-point by minimizing the error �(�). Generally, the PID controller calculates

the control adjustment based on the existing error �(�) and PID coefficients �p, �i,

and �d. As the PID controller only depends on the system output measurement, and

no model is required, therefore, it is broadly applicable. However, tuning the three

PID coefficients are critical, but empirically relies on the system response (overshoots,

steady-state error, or response oscillation). The tuning of the PID controller can not

guarantee an optimal control or even stability. During the PID tuning process, there

are the following physical characteristics:

∙ �p represents the error adjustment ability, it determines the response speed and

the control stability.

∙ �i reduces the steady-state error, it accumulates the past errors over time, and

bring in sufficient control to reduces any small error.

∙ �d prevents the overshoot and oscillations of the control output, it predicts the

future error and reduces redundant control.

Currently, PID control is still widely used in most of AUV control applications. Mean-

while, there are new trends of advanced PID control methods to optimize the PID

tuning process [146]. In the following simulations, we introduce the PID control

design for the CISCREA AUV.

5.3 CISCREA AUV Yaw Control Simulations

In this part, the yaw control simulations as well as the design details of the �∞ and

PID controller are presented.
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5.3.1 �∞ Yaw Controller

For the convenience, the compensated linear yaw model of the CISCREA AUV is

given again in equation 5.56:

(�Y RB + �Y A + �1)�̈r + (�Y LA + �2)�̇r = �i (5.56)

where, �1 and �2 respectively represent the uncertainties adding to the inertia �Y RB +

�Y A and compensated damping coefficient �Y LA.

As mentioned in the modeling work, the major uncertainties of the CISCREA

AUV dynamics mainly consists of three parts:

∙ �Y RB: The inertia of the AUV rigid body, estimated by PRO/E software.

∙ �Y A: The added mass inertia of the AUV, calculated by the fluid dynamic

program WAMIT.

∙ �Y LA: The artificial linear damping coefficient is compensated using the nu-

merical damping coefficients (�Y N , �Y L) of ANSYS-CFX and StarCCM+ cal-

culations.

In the �∞ yaw control simulation, the inertia �Y RB + �Y A are considered to be

two varying parameters, which have a total 30% of variations. In the contrary, linear

damping coefficient �Y LA is bounded by the variation limit of 40%. As we know

from the �∞ control design analysis, the �Y LA uncertainty boundary 40% > 23.7%

is sufficiently large to guarantee the control performance goals. In fact, in face of the

parametric uncertainties, we consider that AUV dynamics belonging to an uncertain

systems family on the bode plots, see figure 5-5.

During the CISCREA AUV �∞ synthesis, weighting function are tuned by many

trials, and its results are given in the following equations:

�p(�) = 0.95
�2 + 1.8�+ 10

�2 + 8�+ 0.01
(5.57)

�e(�) = 0.5
�+ 0.92

�+ 0.0046
(5.58)
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Figure 5-5: Bode Plot of Open-loop Perturbed Plants

�u(�) = 0.01 (5.59)

�u(�) is selected to be a very small scalar (�� = 0.01) for simply disturbance

rejection. �e(�) and �p(�) are chosen carefully considering that: the tracking error

should be less than < 1%; fast control response time (around 2 ∼ 3 seconds); the

robust margins, etc. The principal of weighting function selections are given in [77,

76].

For the CISCREA AUV yaw controller, we execute the �∞ synthesis using the

LMI method. Figure 5-6, shows that the found feedback controller � (five states, one

input and one output) satisfies the �∞ norm inequality with � = 1.075. Closed-loop

sensitivity functions (�(�), � (�)) are well covered by the inverse of chosen weightings

1/�p(�), 1/�e(�), 1/�u(�). The output log files are of the �∞ synthesis process are

given in the Appendix D.1.

The �∞ yaw robust controller is finally implemented on the embedded system

of the CISCREA AUV, and it runs with the frequency of 10Hz. Therefore, the

discrete state space realization of the �∞ CISCREA yaw controller �(�) is given in

equation 5.60 ∼ 5.64. The continuous state space realization of the �∞ CISCREA

yaw controller �(�) is given in the Appendix D.2.

�(�) = �ZK + �ZK(�� − �ZK)
−1�ZK (5.60)
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�ZK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1973 1.5954 4.498 −3.7178 −0.3001

−0.0062 0.7597 −0.6852 −0.5474 −0.0451

0.0146 −0.1709 0.5505 0.0406 −0.0156

−0.0015 −0.0363 −0.0211 0.3053 0.0297

0.0003 0.0003 0.0002 0.0277 0.9984

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.61)
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�ZK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2731

−0.0179

0.2065

0.1106

0.0005

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.62)

�ZK =
︁
−16.0063 58.3996 178.6582 −258.9466 16.8046

︁
(5.63)

�ZK = 0 (5.64)

5.3.2 PID Yaw Controller

Based on the designed control performance Matlab provides an interface to automat-

ically tune the PID parameters. Hence, we obtained an original PID controller . The

automatic PID results with the considerations of the overshoot, response speed, and

etc. Finally, the PID three parameters for CISCREA AUV yaw control are obatined:

�p = 16, �i = 0.1, �d = 10 (5.65)

5.4 Simulation Results

In order to validate the �∞ AUV control approach, we proposed a yaw control sim-

ulation of step response on the CISCREA AUV. The CISCREA AUV is ordered to

rotate from 1.8 ��� to 4.8 ���. In order to compare different scenarios, the many sim-

ulations are implemented including: control of nominal yaw model, the yaw model

with parametric variation, and the yaw model with disturbance.

In figure 5-8, step responses of three scenarios are represented: PID control, damp-

ing compensated �∞ approach and �∞ control. From the simulation comparison, we

can conclude that the compensated �∞ controller handles the nonlinearity with the

fastest response. Compensated �∞ controller has no overshot or oscillations during
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the rotation process. The tracking error achieves the specification less than 1%. The

response speed is inside the performance design goal of 2�. The compensated �∞

control output has no overshoot. In the contrary, PID controller is less efficient, it

has obvious overshoot and slow step response speed. The proposed compensated �∞

AUV control approach can be several times faster than the transitional PID con-

troller. In addition, the energy waste on inefficient thrust using the PID controller

are seldom seen on the compensated �∞ controller. Note that, the �∞ control has no

damping compensation, and it connects directly on the nonlinear yaw model. The re-

sults show that the �∞ control is also less efficient to handle the AUV hydrodynamic

nonlinearity, clear oscillations can be found in the control output.
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Figure 5-8: Step Response of three scenarios: PID control, damping compensated
�∞ approach and �∞ control

During the design process, 30% of inertia variations are chosen as the uncertain

boundary for �Y RB + �Y A. Therefore, in figures 5-8 and 5-9, we respectively demon-

strate the robust performance of our controller handling the nominal yaw model and

the yaw model with 30% inertia variations. The control output, i.e., the AUV thruster

torque of three different types of controllers are given in the subplot of figures 5-8

and 5-9. As it is shown clearly, in face of the inertia variations (to the worst case),

the proposed �∞ AUV control approach achieved all the designed performances. The

response speed is inside 2�, tracking error less than 1%, and there is no obvious os-
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Figure 5-9: Step Response and Propeller Output on Nominal Yaw Model

cillations during the motion. In the contrary, the PID controller and the �∞ control

are all sensitive to the parametric changes such as the inertia variations. Performance

decrease can be clearly seen from the comparison with the nominal model scenarios.

The response speed becomes slow, and control response oscillation is more serious for

both the PID controller and the �∞ control algorithm. In conclusion, the proposed

�∞ AUV control approach is insensitive to the inertia variations within 30%. This

result indicates, the compensated �∞ AUV control approach is robust to the WAMIT

and MCC estimation errors.

To emphasize the speed and robustness of our approach, we inject a small distur-

bance of 0.5 rad on the output at 50s. Both figure 5-7 and figure 5-8 demonstrate our

compensated �∞ AUV controller is capable to handle the disturbance efficiently. In

the simulation, the compensated �∞ AUV controller is stable, fast in response, and

robust to the uncertainties and disturbances.

Note that, the compensated �∞ AUV control simulations consider the following
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Figure 5-10: Step Response and Propeller Output with 30% of inertia variation

assumptions: there is no delay in the sensor measurements, and the yaw angular

velocity �̇r is accurately measured for linear compensation. However, in real AUV

control applications, such as the CISCREA AUV, the vehicle might not be equipped

with sensors to detect the yaw angular velocity �̇r. Meanwhile, the electronic mag-

netic compass output has an obvious 0.5s delay in measuring yaw angles. In the next

chapter, we will propose to use CFD model based Kalman filters, numerically esti-

mating unmeasured as well as noisy states. In addition, model based compensation

algorithms are recommended to deal with the sensor delay.

5.5 Conclusion

In this chapter, the nonlinear compensated �∞ control approach as well as its heading

control simulations are introduced for the CISCREA AUV and others. Nonlinear

damping and parametric uncertainties are the two critical problems that are solved
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in the proposed approach. We propose the framework in figure 5-3 to change the

nonlinear yaw model to a linear system with uncertainties based on previous CFD

modeling work. By then, we can solve a �∞ controller for the linear system.

In details, the proposed linearization approach uses nonlinear CFD yaw model

as feedback to real world propellers. The AUV propellers compensate the original

nonlinear damping behavior, and create a rough artificial linear damping behavior

as robust control nominal. From the controller perspective, the compensated AUV

controlled-plant is a first order linear system with minor uncertainties. Linear �∞

control theory are introduced to solve the minor uncertainty control problems, includ-

ing parametric variations, damping compensation errors, modeling errors, external

disturbance, etc. Comparing the step response simulation results, the proposed non-

linear compensated �∞ control approach can achieve fast response speed (2� < 15�),

better tracking errors (< 1%), and no overshoot transition. Both the PID and �∞

control approach fails to maintain good performance in handling the nonlinearity

and uncertainty problems. The following conclusions can be observed based on our

simulations:

∙ The proposed nonlinear compensated �∞ control approach is robust stable.

∙ The proposed nonlinear compensated �∞ control approach has the fastest re-

sponse speed, and it is several times faster than the PID control method.

∙ The control commands of the proposed �∞ approach is optimal, seldom energy

waste can be found in the propulsions. Compared to PID controllers, this is

critical to save battery and thruster life.

∙ The proposed �∞ approach can achieve the performances (response speed in

2�, tracking errors < 1%) in face of parametric variations such as substantial

inertia change.

∙ The proposed �∞ approach is insensitive to the hydrodynamic estimation er-

rors, which is important to make the numerical modeling solutions more ap-
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plicable. The added mass estimation using WAMIT, and damping estimations

using ANSYS-CFX and STAR-CCM+ is more reliable in the �∞ approach.

∙ Nonlinear damping issues are solved using the numerical damping estimations.

The overshoot and oscillations on regular �∞ control method is eliminated.

In this chapter, the focus is to validate the proposed �∞ approach in simulations.

Therefore, the yaw angular velocity �̇r is assumed to be accurately measured, and

there is no delay in the sensors. However, in real AUV applications the above assump-

tions can’t be satisfied. Several model based complementary techniques are essential

to generate an applicable �∞ approach for real AUV control applications. Hence, in

the next chapter, the CFD model based Kalman filters as well as delay compensa-

tion algorithms are recommended to deal with the further control problems. A fully

applicable nonlinear compensated �∞ control approach is introduced for the robust

control of classic AUVs.
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Chapter 6

Applicable �∞ Controller at Sea
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In the previous chapter, an AUV hydrodynamic model based on �∞ control ap-

proach is proposed to solve the nonlinearity and uncertainty issues. The proposed

nonlinear compensated �∞ control approach is validated as an ideal method in the

CISCREA AUV heading control simulations. Comparing to the other controllers, it

has the advantages, such as:

∙ The�∞ controller effectively eliminates the nonlinear quadratic damping caused

control overshoot and oscillations.

∙ The controller can be insensitive to the disturbances and hydrodynamic mod-

eling errors. In fact, the numerical fluid modeling results from the WAMIT,
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ANSYS-CFX and STAR-CCM+ software are directly applicable for the �∞

control approach.

∙ Comparing to the traditional PID controller, the �∞ control approach is several

times faster (can be more than 10 times faster).

∙ The�∞ control commands are generally optimal (or suboptimal), which reduces

the energy waste on inefficient propulsions and battery consumptions.

∙ The �∞ controller is comparably accurate, and it can have a steady-state error

less than 1% in the CISCREA AUV heading control application.

However, in real AUV control applications, the theoretical �∞ control approach is

insufficient, and it can possibly failed. For example, in the CISCREA AUV heading

control simulations, the theoretical �∞ control approach assumes the yaw angular

velocity �̇r is accurately or sufficiently measured to calculate the critical nonlinear

damping compensations. Meanwhile, the yaw angle �r measurements are assumed

to be adequate to complete the feedback control loop. In addition, there should be

no delay in the AUV yaw angle �r measurements. Unfortunately, in the CISCREA

AUV heading control sea test, neither of the above assumptions are satisfied. The

low configuration CISCREA AUV only provides an electronic magnetic compass that

measures the yaw angle �r with considerable delay of 0.5�. The yaw angular velocity

�̇r is not measured. In general AUV tasks, such a magnetic compass is only capa-

ble to distinguish very rough AUV directions such as north or south. To solve the

applicable issues in CISCREA AUV heading control application, we proposed an im-

proved nonlinear compensated �∞ control scheme. Our solution can be implemented

using numerical modifications, and no hardware or device upgrades are required. The

improved �∞ controller integrates three components:

∙ As mentioned in the previous chapter, a model based �∞ controller handles the

nonlinearity and uncertainty issues with the aid of numerical CFD modeling

compensation and the robust control design on the linearized system in face of

minor uncertainties.
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∙ The Kalman filter estimates the yaw angular velocity �̇r for nonlinear quadratic

damping compensation. The numerical estimation avoids the need to add ex-

pensive sensors.

∙ The model based delay compensator eliminates the stability lost and oscillations

in the feedback control performance.

The sections are organized as follows: The CISCREA underwater vehicle is first

introduced. After, the improved�∞ control algorithm is presented. Then,�∞ control

design as well as its simulations are given. Finally, the improved �∞ controller are

validated in CISCREA AUV heading control experiments in the lab pool and sea.

The experimental heading control results are compared with PID controllers. For the

convenience of control simulations and vehicle display, a 3D virtual environment is

created for future physical analysis of the CISCREA AUV.

6.1 CISCREA AUV

We demonstrate throught our works that the improved �∞ control approach is ap-

plicable for the real sea environment with several CISCREA underwater vehicles, see

figure 6-1. These vehicles are manufactured by the CISCREA company [147], and

the heading control experiments are mainly implemented in the Lab-STICC (CNRS

6285 laboratory, OSM team, ENSTA Bretagne [148]) in France.

6.1.1 CISCREA AUV Brief Introduction

As shows in figure 6-1, the CISCREA AUV has two working modes: ROV and AUV

modes. While in the ROV mode, the cable is only used as an information channel to

transmit control signals and video data, etc. The CISCREA AUV has independent

onboard battery supply for electronic devices and thruster propulsions. There is

no power supply go through the communication cable, and this feature allows the

CISCREA ROV to be a ready-to-use as an AUV. During the �∞ control experiment,

the cable disturbances to the AUV dynamics are considered as negligible and bounded
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The CISCREA AUV is flexible and small. It is a hovering underwater robot

suitable for object identification and pipeline surveillance missions, etc. For example,

in the SAUCE competition [12], the CISSAU AUV is deployed for target identification

missions. In the ROV mode, we found a router in the competition port after its

lost one year before, see figure 6-3. Figure 6-4 shows the mission of euRatholon

competition [13] to turn the valves using the underwater vehicles. The big picture

behind the task is a real scenario of the fukushima nuclear accident, and one of the

hardest challenge is the AUV motion control problem. As the CISCREA AUV is

small, complex-shaped and requires accurate maneuverability, its dynamic control is

indeed critical and far more difficult than the other AUVs.

6.1.2 CISCREA AUV Hardware and Software

The major hardware components of the CISCREA AUV are listed as follows:

∙ Battery package: 48 NiMH units, and each charge provides the energy of 24 �ℎ

at 9.6 � (AUV battery at 12 � ).

∙ Thrusters: 4 horizontal vector propellers, and 2 vertical propellers.

∙ Wide-angle underwater camera: support 530 line PAL signal, normally has the

sensitivity of 0.3���/�1.2, and in Feel Up mode of 0.002���.

∙ The camera has vertical ±40∘ of turning freedom, and it is equipped with two

5 � LED lens, 440 �����.

∙ Depth meter: Maximum depth is about 100 �. Resolution is 1 ��, and the

accuracy is 10 ��.

∙ Electronic magnetic compass: Resolution is 1∘, and its accuracy is 1.5∘.

∙ Communication cable: 6.2 �� in diameter, and 80 � in length, weight is 0.052

��/�.

∙ Computational units: ��� �20, Armadeus APF27_DEV (Core frequency:

400Mhz).
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the following sensors:

∙ Underwater acoustic modem: Tritech Micron Acoustic.

∙ Sonar: Tritech MiniKing sonar (range 100m, waterproof 1000m).

∙ Hydrophone: Aquarian Audio H2a-XLR.

∙ INS: AHRS gyro (9 axes).

∙ Surface sensor: power wifi(1��), GPS.

The diagram of the hardware and software hierarchies of the CISCREA AUV is

given in figure 6-5. The CISSAU robot uses MOOS-IvP [51] as its top-level mis-

sion control software. The MOOS-IvP software can be divided into the MOOS, a

mission oriented operating system with a tailorable topology, and the IvP core, a

multi-objective optimization program for intelligent AUV behaviors. For the CIS-

SAU robot, each program of control (acoustic communication, navigation, guidance,

and behavior) can be package and joint into the MOOS-IvP framework. For the CIS-

CREA AUV, a python shell is also available. For the convenience, the python version

of the �∞ heading control code is given in appendix D.3.

6.2 Improved �∞ Yaw Controller

In order to solve the applicable issues of the CISCREA AUV heading control appli-

cation, we design an improved �∞ control approach in figure 6-6. The new design is

fully numerical and solves the CISCREA AUV heading control problem using only one

magnetic compass as feedback sensor. Note that, in deep ocean, the earth magnetic

signal is one of the merely existing information about the heading of the robot with

a very good cost efficiency. Therefore, the �∞ heading control application can show

obviously the benefits to address AUV modeling and control issues simultaneously.

Two components play the important role in the improved �∞ approach: the

Kalman fitler and delay compensator. As the dynamic and hydrodynamic model of
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6.2.1 Kalman Filter Estimation

The main application of the Kalman filters is to estimate the noisy states when the

noise has known probability characteristics. This Kalman technique is widely used for

linear system in the space, military and robotic areas. In case of nonlinear systems,

the extended Kalman filters are presented. For the Kalman filter, there are only two

input information: noisy measurements come from sensors and the inaccurate model

prediction. The Kalman filter estimates the most possible state under an optimal

noise principle.

Let us consider the discrete system described in equation 6.1:

⎧
⎨
⎩
�k+1 = �k�k +�k�k + �k

�k = �k�k + �k

(6.1)

where, �k is the state vector, �k is the control input vector, �k is the system output

vector, �k and �k respectively denote the known independent white noises with known

Probability Density Function (PDF).

Then, define the following equations 6.2 ∼ 6.4:

�(�|�) = �(�|�0 · · · �l) (6.2)

�︀k|l = �(�k|�) (6.3)

Γk|l = �(�︀k�︀
T
k |�) (6.4)

According to the Kalman theory [35], Prediction and Update process are two

critical steps for the Kalman filter, see figure 6-7. In each clock period interval, the

Kalman filter iteratively executes two steps using the following equations:

�︀k+1|k = �k�︀k|k +�k�k (6.5)
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(�Y RB + �Y A + �1)�̈r + (�Y LA + �2)�̇r = �i (6.12)

According to the compensated linear dynamics (equation 6.12) as well as its pre-

vious modeling results, the 10 �� discrete state space realization of the compensated

CISCREA AUV yaw dynamics are given as follows:

�(�) = �ZG + �ZG(�� − �ZG)
−1�ZG (6.13)

�ZG =

⎡
⎣ 0.8174 0

0.0906 1

⎤
⎦ (6.14)

�ZG =

⎡
⎣ 0.1826

0.0094

⎤
⎦ (6.15)

�ZG =
︁
0 1

︁
(6.16)

Furthermore, the covariance matrices are chosen to be: � = 1 and � = 1 (mag-

netic compass sensor). Thereby, the 10 �� discrete state space realization of the

Kalman filter are derived by equation 6.17 ∼ 6.21:

�a(�) = �ZKA + �ZKA(�� − �ZKA)
−1�ZKA (6.17)

�ZKA =

⎡
⎣ 0.8174 −0.027

0.0906 0.9175

⎤
⎦ (6.18)

�ZKA =

⎡
⎣ 0.1826 0.027

0.0094 0.0825

⎤
⎦ (6.19)

�ZKA =

⎡
⎢⎢⎢⎣

0 0.9205

1 −0.0331

0 0.9205

⎤
⎥⎥⎥⎦ (6.20)
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�ZKA =

⎡
⎢⎢⎢⎣

0 0.0795

0 0.0331

0 0.0795

⎤
⎥⎥⎥⎦ (6.21)

In summary, the Kalman fitler estimates the unmeasured states such as the CIS-

CREA AUV yaw angular velocity �̇r, and its yaw angle �r from the noisy magnetic

compass signal. The Kalman estimation of yaw angular velocity �̇r provides essential

input to realize necessary damping compensations of the proposed �∞ approach. In

fact, the estimation errors of the yaw angular velocity indeed results in damping com-

pensation errors. However, it can be considered as a minor parametric uncertainty

during the �∞ control design. Besides, the Kalman estimation of yaw angular �r

eliminates some of the sensor noise, and it provides a clear yaw angle information for

the �∞ feedback control.

Without considering signal delay, a yaw control simulation is implemented adding

the Kalman filter to the compensated �∞ control approach, see figure 6-8. The im-

proved �∞ control approach with Kalman filter aiding is validated in the simulations.

The unmeasured and noisy states in the AUV dynamics can be efficiently estimated

using the linear compensated model based Kalman filters.

6.2.2 Signal Delay Compensator

Signal delay is an ubiquitous phenomenon for every sensor. However, excessive signal

delay can result in control performance reduction and stability lost in regular model

based control algorithms. See figure 6-9, the previous Kalman filter aided �∞ control

approach fails to achieve the desired control performance in the CISCREA AUV

heading control pool test. There are obvious control response oscillations comparing

to the simulation expectations in figure 6-8.

In figure 6-9, at the beginning of step jump (around 24�), the magnetic compass

measurements of the AUV yaw angle shows a delay of 0.5� comparing to the Kalman

yaw angle estimations. Normally, there is no delay in the Kalman yaw angle esti-

mations. The Kalman prediction model is theoretically derived from the numerical
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Figure 6-8: �∞ heading control of the CISCREA AUV with the aid of Kalman
filter that estimates the angular velocity �̇r. The above subplot shows the yaw angle
control step response, and the down one shows the thruster propulsions.

.

calculations. Therefore, it can be concluded that the onboard electronic magnetic

compass of the CISCREA AUV should have the signal transmission delay of around

0.5∼1�. With the aid of measuring devices, it can be proved the magnetic compass

indeed suffers from a signal delay issue. A simulation is designed to reveal the signal

delay issues of the CISCREA AUV. In our simulations, a feedback signal delay of

0.5� is added to the yaw angle measurements. The similar signal delay caused control

oscillations is found in figure 6-10 (comparing to figure 6-9).

As a result of the signal delay issues, it is essential to design the delay compen-

sators in the following. The compensating method for signal delay should be the

second critical issue to extend our proposed �∞ control approach to real AUV con-

trol applications in the sea. In fact, delay control system is actually a very large

research branch in the control theory. There are many delay control design algo-

rithms and techniques presented in Zhong ’s book [145]. However, our research focus

is AUV modeling and control study, hence, the delay control algorithms are out of the
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Figure 6-9: Sensor signal transmission delay issue (magnetic compass) and its oscil-
lation consequences about the �∞ heading control during the water tank experiment
of the CISCREA AUV. Subplot (a) shows the yaw angle control step response, sub-
plot (b) shows the thruster propulsions, and subplot (c) shows the Kalman angular
velocity estimations. A clear time delay of 0.5s can be seen between the yaw angle
Kalman estimation and the magnetic compass measurements.

scope of this chapter. Moreover, normal AUVs are generally equipped with sufficient

sensors, and they are usually fast enough to avoid delay issues. The reason we choose

the electronic magnetic compass as feedback sensor is to push the experiment to the

worst limit and show the adequacy of the �∞ approach (implement fully numerical

control using only one compass for heading control). To keep our approach bright,
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Figure 6-10: The simulation result of the CISCREA AUV �∞ heading control
method in face of a virtually adding delay of 0.5 � on the magnetic compass sensor.
The above subplot shows the yaw angle control step response, the down one shows
the thruster propulsions. A similar oscillation pattern can be drawn comparing to
the CISCREA AUV heading control pool test.

only basic Smith predicting method and a Kalman velocity compensating method is

introduced as engineering solutions to improve our �∞ control approach in face of

sensor delay.

The Smith predictor was first introduced in 1950s [145], and its main idea is to

design a controller that keeps the closed-loop system in form of C(s)G(s)
1+C(s)G(s)

�−τs, as a

result, a delay-free model �(�) can be equivalently seen from the controller perspec-

tive, see figure 6-11. The Smith predictor turns the delay system �(�)�−τs control

design problem to a regular control design for �(�) without concerning delay effect.

The closed-loop system should be C(s)G(s)
1+C(s)G(s)

�−τs. Adding the Smith compensator to

the CISCREA AUV �∞ approach, the AUV delay issues can be conveniently solved.

The delay compensating errors between the Smith predition model �0(�) and the real

system �(�) can be assumed as a minor uncertainty in the �∞ control scheme.
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�0(�) =
2.0158

�2 + 2.0158�
(6.24)

Note that, the prediction model �0(�) uses the linear nominal model of the �∞

controller. The nonlinear damping compensation should have some errors, hence,

there are indeed some errors between �0(�) and �(�). As a result, the delay com-

pensation also has minor errors. However, the above errors caused effect can be

largely handled using the �∞ control design. In order to validate the fully improved

�∞ algorithm, the step response simulation was implemented first, see figure 6-12. In

summary, the unmeasured and noisy states are estimated by the model based Kalman

filter, meanwhile the Smith compensator compensates the 0.5� delay of the magnetic

compass. The �∞ controller inherits from our previous design to eliminate the un-

certainty and nonlinearity issues. It is shown, the fully improved �∞ algorithm is

efficient to solve the AUV heading control issues.

In order to facilitate the delay compensating method without using a model, we

proposed an engineering solution to compensate the compass sensor delay using the

Kalman estimation of the angular velocity �̇r. The Kalman delay compensating

method assumes a robust controller to handle the compensating errors (such as �∞

controller). As mentioned before, the idea of Smith predictor is to estimate current

delay free output �2(�) from the delay sensor output �(�) = �1(� − �) + � (� is a

small modeling error, � is the delay interval) and the model output prediction �1(�) =

�−1[�0(�)�(�)]. A model based compensation value �−1[� (�)�(�)] is calculated and

add to the delay sensor signal �(�).

�2(�) = �−1[� (�)�(�)] + �(�) = �−1[� (�)�(�)] + �1(�− �) + � (6.25)

Here, � (�) is the compensator given in equation 6.22, and �0(�) is the prediction

model, �(�) stands for the control input. In equation 6.25, a physical model is always

required to implement such delay compensations.

In the contrary, the CISCREA AUV heading control uses �∞ controllers, the out-

put estimation �2(�) allows minor errors. The model based compensation �−1[� (�)�(�)]
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Figure 6-12: The simulation result of the improved CISCREA �∞ heading controller
(Smith Compensation). The above subplot shows the yaw angle control step re-
sponse, the down one shows the thruster propulsions. Both Kalman filter and Smith
compensators are used to eliminate the applicable issue for the original �∞ control
design.

is relevant to a function of the AUV angular velocity �̇r, see equation 6.26. Moreover,

we can simply assume that the approximation function �(�̇r) is proportional to the

AUV angular velocity �̇r, see equation 6.27.

�2(�) = �−1[� (�)�(�)] + �(�) = �(�̇r) + �(�) (6.26)

�2(�) = �(�̇r) + �(�) = ��̇r + �(�), � > 0 (6.27)

Thereby, the delay compensation becomes a problem to find such a constant �,

that roughly compensates the sensor delay. The compensating errors are handled

in the �∞ control design. In the delay compensating simulations, we tuned a � =
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0.57 to provide a good compensation to the compass sensor delay, and the control

performance is sufficient, see figure 6-13.
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Figure 6-13: The simulation result of the improved CISCREA �∞ heading controller
(Kalman Compensation). The above subplot shows the yaw angle control step re-
sponse, the down one shows the thruster propulsions.

6.2.3 Improved �∞ Control Approach

This section summarizes the entire improved �∞ control approach for the CISCREA

AUV heading control application.

According to the nonlinear yaw model of the CISCREA AUV in equation 6.28:

(�Y RB + �Y A)�̈r +�Y N |�̇r|�̇r +�Y L�̇r = �i (6.28)

The nonlinear quadratic damping compensation method is proposed. The improved

�∞ control approach calculates the compensating torques based on equation 6.29,
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and sends the results to the AUV propellors:

�com = (�Y LA −�Y LD −�Y ND|�̇r|)�̇r (6.29)

The nonlinear compensation results in a linear AUV dynamic with minor uncertain-

ties, see equation 6.30:

(�Y RB + �Y A + �1)�̈r + (�Y LA + �2)�̇r = �i (6.30)

Based on the derived LTI AUV model, the �∞ controller is synthesized, its 10��

discrete state-space realization �(�) is given in equations 6.31 ∼ 6.34:

�(�) = �ZK + �ZK(�� − �ZK)
−1�ZK (6.31)

�ZK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1973 1.5954 4.498 −3.7178 −0.3001

−0.0062 0.7597 −0.6852 −0.5474 −0.0451

0.0146 −0.1709 0.5505 0.0406 −0.0156

−0.0015 −0.0363 −0.0211 0.3053 0.0297

0.0003 0.0003 0.0002 0.0277 0.9984

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.32)

�ZK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2731

−0.0179

0.2065

0.1106

0.0005

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.33)

�ZK =
︁
−16.0063 58.3996 178.6582 −258.9466 16.8046

︁
(6.34)

For the applicable reasons, a Kalman filter is designed to estimate unmeasured

AUV angular velocity �̇r and noisy yaw angle �r. The 10�� discrete state space
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realization of the Kalman filter is given in equations 6.35 ∼ 6.39:

�a(�) = �ZKA + �ZKA(�� − �ZKA)
−1�ZKA (6.35)

�ZKA =

⎡
⎣ 0.8174 −0.027

0.0906 0.9175

⎤
⎦ (6.36)

�ZKA =

⎡
⎣ 0.1826 0.027

0.0094 0.0825

⎤
⎦ (6.37)

�ZKA =

⎡
⎢⎢⎢⎣

0 0.9205

1 −0.0331

0 0.9205

⎤
⎥⎥⎥⎦ (6.38)

�ZKA =

⎡
⎢⎢⎢⎣

0 0.0795

0 0.0331

0 0.0795

⎤
⎥⎥⎥⎦ (6.39)

At last, the Smith predictor is used to compensate magnetic sensor delay, see

equations 6.40 and 6.41:

� (�) = �0(�)−�0(�)�
−0.5s (6.40)

�0(�) =
2.0158

�2 + 2.0158�
(6.41)

In figure 6-6, three important components consist of the improved applicable �∞

control approach: the compensated �∞ controller to handle uncertainty and nonlin-

earity, the Kalman filter for state estimations, and the delay compensator to eliminate

oscillations. The proposed �∞ control approach only uses one magnetic compass as

a feedback sensor in deep sea AUV heading control. The rest of the control scheme

is fully numerical program that derived or designed according to the CFD modeling

results, the �∞ control algorithm, Kalman filter technique, and delay control theory.
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The AUV heading control simulations proved that the improved applicable �∞ con-

trol approach is robust stable, fast response, and accurate. Note that, the above �∞

control approach is initially proposed for AUV 6 DOFs control, the robust features

are expected to be validated in further control research on coupled 6 DOFs dynam-

ics. In order to validate the improved �∞ control approach in real sea environment,

several experiments are implemented in the following.

6.3 CISCREA AUV Sea Test

Two scenarios are proposed for the CISCREA AUV heading control experiments:

∙ �∞ heading control pool test in the laboratory of ENSTA Bretagne.

∙ �∞ heading control sea test near the Brest harbor, France.

Classical PID control method is tested for control performance comparisons.

6.3.1 Pool Test of �∞ heading controller

The pool is located at ENSTA Bretagne (CNRS 6285) for underwater testing, with

an area of 16 �2 and a depth of 3.5�, see figure 6-14. As the concrete wall is built

with some metal supports that impact the magnetic compass, therefore, the AUV

was maintained in the center of the pool during the underwater test.

During the pool test, two control methods are used in the heading control exper-

iments: classical PID control method, and improved �∞ control approach. The PID

as well as the �∞ controller python code can be found in the appendix D.3. The

experimental results of the PID heading control method are shown in figure 6-15. The

results show that the PID controller is slow in step response, and rotating from 2 ���

to 4.8 ��� can take around 15 �. The yaw rotating step response shows that the PID

controller has obvious overshoot, and the rotation motion is abnormal with sawtooth

in face of the external environment disturbance and sensor noise. The PID control

command has clear oscillations, and the reason can be the noise of the magnetic com-

pass measurements. In fact, the AUV propellers lifespan is dramatically decreased as
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difficult to notice this delay issue immediately without a model analysis or essential

sensor check.
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Figure 6-15: Experimental heading control results of the CISCREA AUV using the
PID control approach in the water pool of ENSTA Bretagne laboratory (CNRS 6285),
the subplots respectively show the robot yaw angle and control output propulsions

In the contrary, the improved �∞ control approach is implemented and validated

to be efficient in the AUV heading control pool test, see figure 6-16. The experimen-

tal results demonstrate that the improved �∞ control approach achieved the robust

design performances as it was shown in simulations. First, the �∞ control approach

has a fast response speed, to rotate from 2 ��� to 4.8 ��� only need 2∼3 � (the re-

sponse speed specification of the robust synthesis is 2 �). The �∞ control approach is

several times faster than the traditional PID control method. Comparing to the PID

AUV heading controller, the �∞ control approach has no overshoot, and the tracking

accuracy is obviously improved. In figure 6-16, the unmeasured AUV angular veloc-

ity �̇r is clearly estimated by the designed Kalman filter. Therefore, corresponding
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nonlinearity compensator can efficiently eliminate the nonlinear quadratic damping

to result in the linear AUV dynamics with minor uncertainties. In addition, the AUV

yaw angle �r is well filtered by the Kalman design. From the controller perspective,

the smooth yaw angle measurements bring in the benefit of notable noise attenuation

on the magnetic compass output. Correspondingly, the optimal and smooth control

command can extend the AUV propeller lifespan and dramatically reduce the battery

consumption. Comparing to the PID control method, the �∞ control approach is in-

deed optimal, and the efficiency of propulsion utilization and battery consumption is

dramatically improved.
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Figure 6-16: Experimental heading control results of the CISCREA AUV using
the proposed fully compensated �∞ control approach in the water pool of ENSTA
Bretagne laboratory (CNRS 6285) , the subplots show the robot yaw angle, the control
output propulsions, and the Kalman estimation of the yaw angular velocity �̇r
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AUV control system, such as the water density and temperature change, the salinity

variations, unpredictable wind, wave and currents, etc. From the interior perspective,

the AUV control changes include:

∙ In each sea test, the payload of the CISCREA AUV is different with the AUV

buoyancy adjustment.

∙ During the missions, there are possible AUV propeller damage or malfunction

in face of underwater algae, etc.

∙ The transport, re-assembly and deploy of the AUV to the sea sometimes cause

propeller and sensor damage or malfunctions.

∙ The propulsion capability and hydrodynamic characteristic should be slightly

different between sea water and fresh water.

∙ Complex sea environment can cause more disturbances to the AUV sensors.

∙ The most importantly, the battery power drop is a critical uncertainty in the

control of underwater vehicles.

In summary, the AUV can be less efficient in the sea if the controller can not adapt

to the above uncertainties. Therefore, it is important to design and validate the

improved �∞ control approach for the AUV control applications in the sea.

The sea experiment results of the PID heading control method are shown in figure

6-18. The results show that the PID controller is slow in step response, and it can

hardly converge to the desired reference angle (takes around 15 �). Similar to the pool

test results, the PID controller has obvious overshoot, and the control commands mix

a lot of sawtooth in face of the external environment disturbance and sensor noise.

Note that, as many physical parameters change in the sea environments, and more

unpredictable disturbances are induced, therefore, the un-robust fixed PID controllers

can not adapt to the new environment, and it shows irregular control commands and

behaviors comparing the pool test. Different types of oscillations can be seen on

the control output, i.e., the sea environment indeed brings in more disturbance and
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Figure 6-18: Experimental heading control results of the CISCREA AUV using the
PID control approach near Brest harbour, France. The subplots respectively show
the robot yaw angle and control output propulsions.

uncertainties to the AUV control problem. In this case, no matter a good PID control

performance is tuned in the laboratory conditions, it might fail in the changing sea

environment. The robust and adaptive ability is essential for high precision AUV

control in the real sea.

The sea test results of the improved �∞ approach is shown in figure 6-19. In order

to emphasis the robust ability of the improved �∞ control approach, the experimental

heading control results in figure 6-19 extract the time slot while the CISCREA AUV is

at low battery power. First, the �∞ control approach is still faster than PID response

speed, rotating from 2 ��� to 4.8 ��� only needs 5∼8 � in face of obvious battery

power drop. Comparing to the PID AUV heading controller sea test, the �∞ control

approach has no overshoot, and the tracking accuracy is also improved. In figure

6-19, the unmeasured AUV angular velocity �̇r is clearly estimated by the designed

177



240 250 260 270 280

2

4

A
n
g
le

 (
ra

d
)

 

 

Compass

Desired Angle

Kalman Estimation

240 250 260 270 280
0

2

4

6

T
o
rq

u
e
 (

N
*m

)

 

 

Hinf Thrust

240 250 260 270 280

0

2

4

Time (second)A
n
g
lu

la
r 

V
e
lo

c
it
y
 (

ra
d
/s

)

 

 
Kalman Velocity Estimation

Figure 6-19: Experimental heading control results of the CISCREA AUV using the
proposed fully compensated �∞ control approach the near Brest harbour, France.
The above and down subplots respectively show the robot yaw angle, the control
output propulsions, and the Kalman estimation of the yaw angular velocity �̇r. During
the selected time slot, the CISCREA AUV is of low battery. However, the robot is
still shows good robust capability.

Kalman filter. Meanwhile, the AUV yaw angle �r is well filtered by the Kalman design.

There is notable noise attenuation on the magnetic compass output, which extend

the AUV propeller lifespan and dramatically reduces the battery consumption. In the

sea test, the �∞ control approach has proved its optimal advantages. In summary,

the experimental results of the CISCREA AUV heading control demonstrate that the

improved �∞ control approach can adapt to the real sea changes. Our approach can

almost maintain the same robust performances comparing to the AUV simulations

and pool tests. In this case, the improved �∞ approach can dramatically improve

178



the AUV controller design efficiency. The �∞ controller, that obtained from the

numerical modeling and control synthesis, can directly validated in the pool test, and

the same control design would have almost the same control performance in face of

real sea uncertainties and disturbance. In short, the �∞ AUV control design can be

an one-shoot calculation procedure.

In order to show the long term performance of the improved �∞ CISCREA AUV

heading control approach, the long period sea test results are shown in figure 6-21.

The proposed control approach demonstrated sufficient robust ability in presence

of various real sea uncertainties and disturbances in a long peroid. Note that, for

simplicity, we have not developed the obstacle avoidance program for the CISCREA

AUV during the sea test. Moreover, there exist minor bugs in the compass reading

function. Therefore, several inessential AUV behavior malfunctions can be seen in

figure 6-21. Label A stands for the inconsiderable kayak collision with the CISCREA

AUV. In addition, Label B denotes respectively the CISCREA AUV communication

cable hooked by an underwater concrete structure, and at the same time, the program

triggered a bug while the compass switches instantly between the maximum range

and the minimum. As the magnetic compass output ranges from 0 ∼ 6.28 ���, there

is the instant jump when the robot cross the two limits. In summary, the irregular

curves are caused by irrelevant issues, and our experimental goal to validate the AUV

CFD modeling and �∞ control design approach is achieved.

6.4 AUV Virtual Simulation Program

As mentioned before, the proposed CFD modeling and �∞ control can be a fully nu-

merical one-shoot design procedure on normal PC, therefore, a virtual environment

is essential for the physical control validations and AUV display. Currently, there are

many matured virtual simulation programs for the ocean vehicle designs, such as the

open-source Fossen’s MSS for large vessels and oil platforms [117]. In fact, the phys-

ical AUV virtual visualization programs can facilitate many high level researches,

such as: mission control program validation, artificial intelligence algorithm, and
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in real sea environment. Only one magnetic compass is used as the feedback sensor

for the CISCREA AUV heading control application.

The principles of the proposed improved �∞ control approach are:

∙ A model based �∞ controller handles the AUV dynamic nonlinearity and un-

certainty issues with the aid of numerical CFD modeling prediction and the

robust control design.

∙ Kalman filter estimates unmeasured yaw angular velocity �̇r in order to provide

nonlinear quadratic damping compensation input information. Meanwhile, the

noisy magnetic compass yaw angle �r measurement is efficiently filtered for

control feedback. The numerical Kalman estimations avoid the need to add

expensive sensors.

∙ A delay compensator is derived using the AUV model, which eliminates the 0.5�

delay of the magnetic compass. Generally, excessive signal transmission delay

can cause control performance decrease and even stability lost.

To validate the improved �∞ control approach, heading control simulations, pool

and sea tests are implemented for the CISCREA AUV. The simulations and exper-

imental results demonstrate the adequacy of the robust ability using the proposed

improved �∞ AUV control approach in real sea environments.

In summary, the �∞ control approach has fast response speed, and it is several

times faster than the traditional PID control method. Rotating from 2 ��� to 4.8

��� only needs 2∼3 � (the response speed specification of the robust synthesis is 2

�). Comparing to the PID AUV heading controller, the �∞ control approach has no

overshoot, and the tracking accuracy is largely improved. Unmeasured AUV angular

velocity �̇r is clearly estimated by the designed Kalman filter, which provides the

input information to eliminate the nonlinear quadratic damping terms. The AUV

yaw angle �r is also well filtered by the Kalman design, which provides notable noise

attenuation on the magnetic compass output. Comparing to the PID control method,

the�∞ control approach is optimal, as a result, it improves the of propulsion efficiency

and reduce battery power consumptions.
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Chapter 7

General Conclusion and Perspectives

Contents

7.1 Summary of the work . . . . . . . . . . . . . . . . . . . . . 186

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 189

The scopes of this dissertation are the numerical AUV modeling and robust con-

trol approaches. The fundamental goal is to provide sufficient AUV robustness and

control performance for the future intelligent, agile and reliable AUV or AUV group

to work under the deep-sea for long periods. However, the traditional modeling meth-

ods are generally insufficient to reveal the hydrodynamic characteristics of the low

mass and complex-shaped underwater vehicles. Moreover, the past AUV modeling

results are not directly oriented for the robust control scheme. Generally, the un-

derwater environment is complex, un-modeled or even unknown. AUV robustness

becomes one of the key challenges for long term working AUVs in the presence of

uncertainties. Due to complex and coupling AUV modeling and control issues, we

address the numerical AUV dynamic modeling methods and the �∞ robust control

algorithms simultaneously. A low mass and complex-shaped CISCREA AUV is used

to validate the proposed numerical modeling and �∞ robust control approach in real

sea test.
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7.1 Summary of the work

The major contributions of the dissertation are concluded as follows:

1. After review currently available AUV modeling methods, our focus has been on

the computational fluid dynamic method. The goal is to avoid implementing

hydrodynamic experiments using expensive equipments. Meanwhile, sufficient

modeling accuracy are necessarily required to reveal the robust control oriented

AUV dynamic characteristics. For an AUV such as the CISCREA, the robot

geometry is complex, and it becomes very difficult to identify its dynamic and

hydrodynamic parameters. Therefore, we estimated the AUV models as follows:

∙ Added mass matrix �A is calculated using radiation/diffraction program

WAMIT and MCC.

∙ Hydrodynamic programs ANSYS-CFX and STAR-CCM+ are studied to

predict damping behavior �(|�|) on the surge, sway, and heave directions.

Rotational damping effects are numerically built using moving reference

and overset mesh techniques in STAR-CCM+.

∙ Mass inertia matrix �RB and the center of gravity �� are approximated

using CAD program PRO/E.

Based on these numerical estimations, a four degree-of-freedoms model is de-

rived for the CISCREA AUV, which provides the foundations for the hydrody-

namic experiment and control design simulations. WAMIT and MCC results

show that the mass and inertia elements of the added mass matrix �A are

even larger than those in the mass inertia matrix �RB. Therefore, the added

mass matrix �A is an inevitable hydrodynamic effects for the control design.

The analysis of the CISCREA AUV damping matrix �(|�|) shows that the

quadratic damping components dominates the damping effects, and the linear

damping component is negligible. Numerical results confirm the prediction of

Morison equation, that the quadratic damping is the major nonlinearity in the

underwater vehicle dynamics.
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2. A 4 DOFs (Surge, Sway, Heave, and Yaw) experiment is designed to validate the

CFD models and its hydrodynamic parameters. The numerical AUV modeling

method is concluded efficient for the complex-shaped underwater vehicles (Using

robust control scheme). The hydrodynamic experiment confirms the damping

effect is nonlinear, and it is mainly caused by the quadratic damping. This

nonlinear damping issue is essential and critical for the further control design.

3. A model based nonlinear compensated �∞ control approach is proposed for the

CISCREA AUV and others to solve the following issues:

∙ Dynamic and hydrodynamic parametric uncertainties.

∙ External disturbance from the ocean environment and sensor noise.

∙ Nonlinear damping compensation errors.

In general, the nonlinear damping and parametric uncertainty issues are the

two critical problems that solved in the proposed approach. In the proposed ap-

proach, the thruster compensates the nonlinear quadratic damping behavior by

calculating its propulsion value using equation 5.45 and the AUV angular veloc-

ity �̇r. From the controller perspective, the compensated AUV controlled-plant

is a first order linear system with minor uncertainties. Finally, the parametric

uncertainty issues can be conveniently solved by essential �∞ controllers. The

following conclusion can be draw after the heading control simulations:

∙ The theoretical compensated �∞ control approach is robust stable. It

eliminates the control overshoot with the aid of CFD model based nonlinear

compensation. The controller has good robust ability to handle the 30%

inetria variations.

∙ The proposed �∞ control approach has the fast response speed, and it is

generally several times faster than the PID controller.

∙ The control commands of the proposed �∞ approach is optimal, which

can extend the propeller lifespan and reduce battery consumptions.
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∙ �∞ approach can achieve accurate tracking performance, for example, the

CISCREA AUV heading control tracking errors is less than 1%.

∙ The proposed �∞ approach is insensitive to the hydrodynamic estimation

errors, such as the numerical AUV parameters of WAMIT, ANSYS-CFX,

and STAR-CCM+ results.

4. To solve the applicable issues in real sea AUV control applications, we pro-

posed an improved nonlinear compensated �∞ control scheme. The proposed

approach is validated as efficient in the CISCREA AUV heading control simu-

lations, pool and sea tests. The principles of the proposed improved �∞ control

approach are:

∙ A model based �∞ controller handles the AUV dynamic nonlinearity and

uncertainty issues with the aid of numerical CFD modeling prediction.

∙ Kalman filter estimates unmeasured yaw angular velocity �̇r in order to

provide information for nonlinear quadratic damping compensation. Mean-

while, the noisy magnetic compass yaw angle �r measurement is efficiently

filtered for control feedback. The numerical Kalman estimations avoid the

need to add expensive sensors.

∙ A delay compensator is derived using the AUV model, which eliminates

the 0.5� delay of the magnetic compass. Generally, signal transmission

delay can cause control performance decrease and even stability lost.

In summary, the CISCREA AUV heading control simulation, pool and sea tests

all demonstrate that:

∙ Unmeasured AUV angular velocity �̇r is clearly estimated by the designed

Kalman filter, which provides the input information to eliminate the non-

linear quadratic damping terms. The AUV yaw angle �r is also well fil-

tered by the Kalman design, which provides notable noise attenuation on

the magnetic compass output.
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∙ The �∞ control approach has fast response speed. Rotating from 2 ��� to

4.8 ��� only needs 2∼3 � .

∙ Comparing to the PID AUV heading controller, the �∞ control approach

eliminates the overshoot, and the tracking accuracy is largely improved.

Moreover, the �∞ control approach is optimal, as a result, it improves the

AUV lifespan and its working range.

7.2 Future Work

This dissertation is actually a beginning of further AUV modeling and robust con-

trol research. A lot of work is still needed to solid the AUV robustness fundations.

Therefore, some recommendations are given as follows:

1. The principals for weighting function selection in the �∞ control synthesis is

still empirical with the AUV control applications. However, it is a critical issue

that decide the robust performance of the synthesized controller. Therefore, it

is urgent to create the relationship between the AUV dynamic characteristics

and the weighting function selections.

2. In this dissertation, the �∞ control approach can generate high dimensional

controllers. For example, three weighting functions are chosen for the �∞ AUV

heading control applications, and it results in a high dimensional controller of 5

states. Therefore, relevant dimension reduction robust control algorithm should

be considered.

3. Current �∞ control approach generally uses either the Riccati equations or the

LMI approach for controller synthesize. The synthesize controller are usually

suboptimal, and sometimes has no solution. Therefore, the interval analysis

theory (un-convex theory) can be considered to improve the synthesize results.
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Appendix A

AUV Modeling

Contents

A.1 Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.2 Quaternion . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.3 Dynamics Essentials . . . . . . . . . . . . . . . . . . . . . . 197

A.4 Six DOFs AUV Model . . . . . . . . . . . . . . . . . . . . 198

A.5 Rigid Body Coriolis Force . . . . . . . . . . . . . . . . . . 199

A.6 Restoring Force . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.7 Added Mass Expression . . . . . . . . . . . . . . . . . . . . 201

A.8 Added Mass Coriolis Expression . . . . . . . . . . . . . . 202

A.9 Damping coefficients . . . . . . . . . . . . . . . . . . . . . . 203

A.1 Euler Angles

Generally, the AUV motion or flight path in the body-fixed frame (B-frame) is de-

scribed relative to an inertial reference frame (NED-frame). Therefore, the Euler

angle is necessary to represent the transformation.
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According to [115], a simple rotation denotes that frame � relative to � (or B-

frame and NED-frame), and there exists the axis of rotation � = [�1, �2, �3]
T (|�| = �,

unit vector), after the rotation of angle �, the orientation of � to � and � remains

unaltered.

Let � be a vector fixed in frame �, and its representation � in frame �. Hence,

the rotation can be described by equation A.1:

� = �����+ (1− ����)��T�− ���� × � (A.1)

Consequently, the rotation from � to � can be given in equation A.2:

� = �� (A.2)

where, C can be interpreted as a rotation matrix, see equation A.3.

� = ����� + (1− ����)��T�− �����(�) (A.3)

�(�) is a skew-symmetric matrix defined such that �× �
∆
= �(�)�, that is:

�(�) =

⎡
⎢⎢⎢⎣

0 −�3 �2

�3 0 −�1
−�2 �1 0

⎤
⎥⎥⎥⎦ (A.4)

Expanding equation A.3 yields the rotation matrix elements �ij in equation A.5:
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�11 = (1− ����)�21 + ����

�22 = (1− ����)�22 + ����

�33 = (1− ����)�23 + ����

�12 = (1− ����)�1�2 + �3����

�21 = (1− ����)�2�1 + �3����

�23 = (1− ����)�2�3 + �1����

�32 = (1− ����)�3�2 + �1����

�31 = (1− ����)�3�1 + �2����

�13 = (1− ����)�1�3 + �2����

(A.5)

By setting � = [1, 0, 0]T , � = [0, 1, 0]T , � = [0, 0, 1]T , we can obtain the principal

rotation matrix around the three axis �, �, �. The rotation angles are defined as �,

�, � (Euler angle Θ = [�, �, �]T ). The principal rotation around � axis is given in

equation A.6:

�x,φ =

⎡
⎢⎢⎢⎣

1 0 0

0 ���(�) ���(�)

0 −���(�) ���(�)

⎤
⎥⎥⎥⎦ (A.6)

around � axis in equation A.7:

�y,φ =

⎡
⎢⎢⎢⎣

���(�) 0 −���(�)
0 1 0

���(�) 0 ���(�)

⎤
⎥⎥⎥⎦ (A.7)

around � axis in equation A.8:

�z,φ =

⎡
⎢⎢⎢⎣

���(�) ���(�) 0

−���(�) ���(�) 0

0 0 1

⎤
⎥⎥⎥⎦ (A.8)
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Generally the linear velocity transformation �(Θ) is described by three rotations.

Note that, the order in which these rotation is carried out is not arbitrary. It is

common to use the xyz-convention specified in terms of Euler angles for the rotation.

The rotation sequence is written in equation A.9 and A.10:

�(Θ) = �T
z,φ�

T
y,φ�

T
x,φ (A.9)

�−1(Θ) = �T
x,φ�

T
y,φ�

T
z,φ (A.10)

The B-fixed angular velocity vector �2 = [�, �, �]T and the Euler rate vector Θ̇ =

[�̇, �̇, �̇] , are related through a transformation matrix � (Θ) according to equation

A.11:

�2 = �−1(Θ)Θ̇ (A.11)

� (Θ) is written in equation A.12:

�−1
Θ =

⎡
⎢⎢⎢⎣

1 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦+ �x,φ

⎡
⎢⎢⎢⎣

0 0 0

0 1 0

0 0 0

⎤
⎥⎥⎥⎦+ �x,φ�y,θ

⎡
⎢⎢⎢⎣

0 0 0

0 0 0

0 0 1

⎤
⎥⎥⎥⎦ (A.12)

Summarizing the Euler angle results, the kinematic equations can be expressed in

vector form in equation A.13:

� = �(Θ)�̇ =

⎡
⎣�(Θ) 03×3

03×3 � (Θ)

⎤
⎦ �̇ (A.13)

Note that, as the � (Θ) matrix has the element of 1
cos(θ)

, therefore, the singularity

issue is encountered when � = ±90∘. To solve this issue the Quaternion representation

can be used.
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A.2 Quaternion

An alternative to the Euler angle representation is a four-parameter method based

on unit quaternions. The Quaternion representation do not has the singularity issue.

A quaternion � is defined as a complex number in equation A.14:

� = �1�+ �2� + �3� + �4 (A.14)

where, �, �, � are three orthogonal unit vectors, �i(� = 1, 2, 3, 4) are the real parameters.

In fact, a quaternion � can be seen as the linear combination of a scalar �4 and a vector

�0 = [�1, �2, �3]
T :

� = �0 + �4 (A.15)

The Euler parameters or unit quaternions are defined as:

� = [�1, �2, �3]
T = ����

�

2

� = ���
�

2

(A.16)

where � = [�1, �2, �3]
T is:

� = ± �√
�T �1

︀
�T �1 ̸= 0 (A.17)

Consequently, the Euler parameters can be expressed in the form:

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

�1

�2

�3

�

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎣ ����β

2

���β
2

⎤
⎦ 0 6 � 6 2� (A.18)

From A.18, A.16 and A.3, we obtain the following coordinate transformation matrix
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for the Euler parameters:

� = (�2 − �T �)� + 2��T − 2��(�)� = ���
�

2
(A.19)

The transformation �−1
1 (�) = �T

1 (�) relating the linear velocity vector in the

NED-frame to the velocity in the B-frame can be expressed as equation A.20 and

A.21:

�̇ = �1(�)�1 (A.20)

�1(�) =

⎡
⎢⎢⎢⎣

1− 2(�22 + �23) 2(�1�2 − �3�) 2(�1�3 + �2�)

2(�1�2 + �3�) 1− 2(�21 + �23) 2(�2�3 − �1�)

2(�1�3 − �2�) 2(�2�3 + �1�) 1− 2(�21 + �22)

⎤
⎥⎥⎥⎦ (A.21)

The angular velocity kansformation can be derived in equation A.22 and A.23

�̇ = �2(�)�2 (A.22)

�2(�) =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

� −�3 �2

�3 � −�1
−�2 �1 �

−�1 −�2 −�3

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.23)

Consequently, the kinematic equations of motion can be expressed as:

�̇E =

⎡
⎣ �̇1

�̇

⎤
⎦ = �(�E)� =

⎡
⎣ �1(�) 03×3

03×3 �2(�)

⎤
⎦
⎡
⎣ �1

�2

⎤
⎦ (A.24)
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A.3 Dynamics Essentials

All the AUV dynamics follows the Newton’s Second Law which relates mass �, ac-

celeration �̇c and force �c, see equation A.25:

��̇C = �C (A.25)

Meanwhile, Euler’s First and Second Axioms, respectively describes the conserva-

tion of both linear �C and angular momentum ℎC .

�̇C
∆
= �C �C

∆
= ��C

ℎ̇C
∆
= �C ℎC

∆
= �C�

(A.26)

It will be assumed that the mass is constant in time (�̇ = 0). For a rigid body

satisfying this the distance from the origin � of the body-fixed coordinate system to

the vehicle’s center of gravity can be defined as [115]:

�G =
1

�

︁
��A�� (A.27)

AUV motion can be respectively described as translational motion and rotational

motion. The translational motion of a marine vehicle is described as equation A.28:

�(�̇0 + � × �0 + �̇ × �G + � × (� × �G)) = �0 (A.28)

where, � is the angular velocity vector, �0 is the velocity vector in B-frame. If the

origin of the B-frame is chosen to coincide with the AUV center of gravity ��, we

have �G = 0. Hence, equation A.28 with �0 = �C , �0 = �C yields equation A.29:

�(�̇C + � × �C) = �C (A.29)

Here, �C is defined according to ��, and the mass is � =
︀
V
�A�� . Rotational
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motion has the similar representation in equation A.30:

�0�̇ + � × (�0�) +��G × (�̇0 + � × �0) = �0 (A.30)

where, �0 is the input torque, �0 is the inertia tensor in B-frame, and defined as

follows (equation A.31 ∼ A.34):

�0� =

︁

V

� × (� × �)�A�� (A.31)

�x =

︁

V

(�2 + �2)�A�� �xy =

︁

V

���A�� =

︁

V

���A�� = �yx (A.32)

�y =

︁

V

(�2 + �2)�A�� �xz =

︁

V

���A�� =

︁

V

���A�� = �zx (A.33)

�z =

︁

V

(�2 + �2)�A�� �yz =

︁

V

���A�� =

︁

V

���A�� = �zy (A.34)

If the origin of the B-frame coincide with AUV center of gravity ��, equation

A.30 is simplified as equation A.31:

�C�̇ + � × (�C�) = �C (A.35)

A.4 Six DOFs AUV Model

The nonlinear equations of the translational and rotational motion are given in equa-

tion A.36 ∼ A.42:

�[�̇− �� + �� − �G(�
2 + �2) + �G(�� − �̇) + �G(�� + �̇)] = � (A.36)
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�[�̇ − ��+ �� − �G(�
2 + �2) + �G(�� − �̇) + �G(��+ �̇)] = � (A.37)

�[�̇ − �� + ��− �G(�
2 + �2) + �G(��− �̇) + �G(�� + �̇)] = � (A.38)

�x�̇+ (�z − �y)�� − (�̇ + ��)�xz + (�2 − �2)�yz + (�� − �̇)�xy

+�[�G(�̇ − �� + ��)− �G(�̇ − ��+ ��)] = �
(A.39)

�y �̇ + (�x − �z)��− (�̇+ ��)�xy + (�2 − �2)�zx + (��− �̇)�yz

+�[�G(�̇− �� + ��)− �G(�̇ − �� + ��)] =�
(A.40)

�z �̇ + (�y − �x)�� − (�̇ + ��)�yz + (�2 − �2)�xy + (�� − �̇)�zx

+�[�G(�̇ − ��+ ��)− �G(�̇− �� + ��)] = �
(A.41)

The three first equations represent the translational motion while the three last equa-

tions represent the rotational motion.

A.5 Rigid Body Coriolis Force

For a rigid-body moving through an ideal fluid the hydrodynamic Coriolis and cen-

tripetal matrix �RB(�) can always be parameterized such that �RB(�) is skew-

symmetrical [115], that is:
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�RB(�)
∆
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

−�(�G� + �G�) �(�G�+ �) �(�G�− �)

−�(�G�− �) −�(�G� + �G�) �(�G� + �)

�(�G� + �) �(�G� − �) −�(�G�+ �G�)

�(�G� + �G�) −�(�G� − �) −�(�G� + �)

−�(�G�+ �) �(�G� + �G�) −�(�G� − �)

−�(�G�− �) −�(�G� + �) �(�G�+ �G�)

0 −�yz� − �xz�+ �z� �yz� + �xy�− �y�

�yz� + �xz�− �z� 0 −�xz� − �yz� + �x�

−�yz� − �xy�+ �y� �xz� + �xy� − �x� 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.42)

A.6 Restoring Force

The Euler angle representation of the hydrostatic forces and moments is given in

equation A.43 (neutrally buoyant underwater vehicle):

�(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−��y����(�)���(�) + ��z����(�)���(�)

−��z����(�) + ��x����(�)���(�)

−��x����(�)���(�)− ��y����(�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.43)
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A.7 Added Mass Expression

The following equations A.44 ∼ A.48 shows the added mass terms (Imlay 1961) [115]:

�A = �u̇�̇+�ẇ(�̇ + ��) +�q̇ �̇ + �ẇ�� + �q̇�
2 +�v̇�̇ +�ṗ�̇+�ṙ�̇−

�v̇�̇� − �ṗ��− �ṙ�
2 −�v̇�� − �ẇ�� + �ẇ�� + �ṗ��−

(�q̇ − �ṙ)��

(A.44)

�A = �v̇�̇+�ẇ�̇ + �q̇ �̇ + �v̇�̇ + �ṗ�̇+ �ṙ�̇ +�v̇�� − �ẇ��+�ṙ�
2+

(�ṗ − �ṙ)��− �ṗ�
2 −�ẇ(��− ��) +�u̇�� − �ẇ��−

�q̇�� +�q̇��

(A.45)

�A = �ẇ(�̇− ��)+�ẇ�̇ + �q̇ �̇ −�u̇�� −�q̇�
2 + �ẇ�̇ + �ṗ�̇+ �ṙ�̇+

�v̇��+ �ṙ��+ �ṗ�
2 +�v̇��+ �ẇ��−�v̇��−

(�ṗ − �q̇)�� −�ṙ��

(A.46)

�A = �ṗ�̇+ �ṗ�̇+�q̇ �̇ −�v̇��+�ṙ�� − �ẇ�
2 − (�q̇ − �ṙ)��+

�ṙ�
2 + �ṗ� +�ṗ�̇+�ṙ�̇ + �ẇ�

2 − (�q̇ − �ṙ)��+

�ṗ��−�ṙ�
2 −�q̇��+�ẇ�� − (�v̇ − �ẇ)��−

(�ṙ + �q̇)�� − �ṗ��−�q̇�� + (�ṙ + �q̇)��+

�ṙ�� − (�q̇ −�ṙ)��

(A.47)
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�A = �q̇(�̇+ ��) + �q̇(�̇ − ��) +�q̇ �̇ −�ẇ(�
2 − �2)

− (�ẇ −�u̇)��+ �q̇�̇ +�q̇�̇+�ṙ�̇ + �ṗ�� − �ṙ��

−�ṙ(�
2 − �2) + (�ṗ −�ṙ)��− �ẇ�� +�v̇��

− (�ṙ + �ṗ)(��− ��) + (�ṗ − �ṙ)(��+ ��)

−�ṙ�� +�q̇��

(A.48)

�A = �ṙ�̇+ �ṙ�̇ +�ṙ�̇ +�v̇�
2 + �ẇ��− (�ṗ − �q̇)�� − �ṗ��

−�q̇�
2 + �ṙ�̇ +�ṙ�̇+�ṙ�̇ −�v̇�

2 −�ṙ��

− (�ṗ − �q̇)��+�ṙ��+�q̇�
2 − (�u̇ − �v̇)�� −�ẇ��

+ (�q̇ + �ṗ)��+ �ṙ�� + �q̇��− (�q̇ + �ṗ)��

− (�ṗ −�q̇)�� −�ṙ��

(A.49)

A.8 Added Mass Coriolis Expression

For a rigid-body moving through an ideal fluid the added mass hydrodynamic Coriolis

and centripetal matrix �A(�) can always be parameterized such that �A(�) is skew-

symmetrical, that is:

�A(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −�3 �2

0 0 0 �3 0 −�1
0 0 0 −�2 �1 0

0 −�3 �2 0 −�3 �2

�3 0 −�1 �3 0 −�1
−�2 �1 0 −�2 �1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.50)
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where,

�1 =�u̇�+�v̇� +�ẇ� +�ṗ�+�q̇� +�ṙ�

�2 =�v̇�+ �v̇� + �ẇ� + �ṗ�+ �q̇� + �ṙ�

�3 =�ẇ�+ �ẇ� + �ẇ� + �ṗ�+ �q̇� + �ṙ�

�1 =�ṗ�+ �ṗ� + �ṗ� +�ṗ�+�q̇� +�ṙ�

�2 =�q̇�+ �q̇� + �q̇� +�q̇�+�q̇� +�ṙ�

�3 =�ṙ�+ �ṙ� + �ṙ� +�ṙ�+�ṙ� +�ṙ�

(A.51)

A.9 Damping coefficients

The damping coefficient diagram of sphere and cylinder drag test are given in figure

A-1 (Polezhaev ’s experimental work).
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Figure A-1: The damping coefficient �� of Cylinder and Sphere under different
Reynold number �� scenarios

204



Appendix B

Parameter Identification

Contents

B.1 PRO/E Report of CISCREA AUV . . . . . . . . . . . . . 205

B.2 CISCREA WAMIT Configuration and Output . . . . . . 209

B.1 PRO/E Report of CISCREA AUV

The rigid body mass matrix �RB and the vehicle center of gravity �� are estimated

by the PRO/E software, its estimation results are given as follows:

1

2 VOLUME = 1.7593886e+07 MM^3

3 SURFACE AREA = 2.4735707e+06 MM^2

4 AVERAGE DENSITY = 8.8913622e−04 GRAM / MM^3

5 MASS = 1.5643361e+04 GRAM

6

7 CENTER OF GRAVITY with respect to ORINGIN_NORM coordinate frame:

8 X Y Z 3.1029524e+01 −2.8276873e−02 −6.9961429e+00 MM

9

10 INERTIA with respect to ORINGIN_NORM coordinate frame: (GRAM * MM^2)

11
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12 INERTIA TENSOR:

13 Ixx Ixy Ixz 2.4803007e+08 2.1257730e+04 −4.3343827e+05
14 Iyx Iyy Iyz 2.1257730e+04 3.8562086e+08 1.7392295e+04

15 Izx Izy Izz −4.3343827e+05 1.7392295e+04 3.7283113e+08

16

17 INERTIA at CENTER OF GRAVITY with respect to ORINGIN_NORM coordinate

frame: (GRAM * MM^2)

18

19 INERTIA TENSOR:

20 Ixx Ixy Ixz 2.4726438e+08 3.4983495e+04 2.9625318e+06

21 Iyx Iyy Iyz 3.4983495e+04 3.6979326e+08 2.0487006e+04

22 Izx Izy Izz 2.9625318e+06 2.0487006e+04 3.5776920e+08

23

24 PRINCIPAL MOMENTS OF INERTIA: (GRAM * MM^2)

25 I1 I2 I3 2.4718500e+08 3.5784853e+08 3.6979330e+08

26

27 ROTATION MATRIX from ORINGIN_NORM orientation to PRINCIPAL AXES:

28

29 0.99964 0.02678 −0.00033
30 −0.00028 −0.00179 −1.00000
31 −0.02678 0.99964 −0.00178
32

33

34 ROTATION ANGLES from ORINGIN_NORM orientation to PRINCIPAL AXES (

degrees):

35 angles about x y z 90.102 0.000 −1.535
36

37 RADII OF GYRATION with respect to PRINCIPAL AXES:

38 R1 R2 R3 1.2570311e+02 1.5124624e+02 1.5374977e+02 MM

39

40 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41

42 MASS PROPERTIES OF COMPONENTS OF THE ASSEMBLY

43 (in assembly units and the ORINGIN_NORM coordinate frame)

44 DENSITY MASS C.G.: X Y Z

45 VOLUME = 1.7593886e+07 MM^3
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46 SURFACE AREA = 2.4735707e+06 MM^2

47 AVERAGE DENSITY = 8.8913622e−04 GRAM / MM^3

48 MASS = 1.5643361e+04 GRAM

49

50 CENTER OF GRAVITY with respect to ORINGIN_NORM coordinate frame:

51 X Y Z 3.1029524e+01 −2.8276873e−02 −6.9961429e+00 MM

52

53 INERTIA with respect to ORINGIN_NORM coordinate frame: (GRAM * MM^2)

54

55 INERTIA TENSOR:

56 Ixx Ixy Ixz 2.4803007e+08 2.1257730e+04 −4.3343827e+05
57 Iyx Iyy Iyz 2.1257730e+04 3.8562086e+08 1.7392295e+04

58 Izx Izy Izz −4.3343827e+05 1.7392295e+04 3.7283113e+08

59

60 INERTIA at CENTER OF GRAVITY with respect to ORINGIN_NORM coordinate

frame: (GRAM * MM^2)

61

62 INERTIA TENSOR:

63 Ixx Ixy Ixz 2.4726438e+08 ă3.4983495e+04 ă2.9625318e+06

64 Iyx Iyy Iyz 3.4983495e+04 ă3.6979326e+08 ă2.0487006e+04

65 Izx Izy Izz 2.9625318e+06 ă2.0487006e+04 ă3.5776920e+08

66

67 PRINCIPAL MOMENTS OF INERTIA: ă(GRAM * MM^2)

68 I1 I2 I3 2.4718500e+08 3.5784853e+08 3.6979330e+08

69

70 ROTATION MATRIX from ORINGIN_NORM orientation to PRINCIPAL AXES:

71 0.99964 0.02678 −0.00033
72 −0.00028 −0.00179 −1.00000
73 −0.02678 0.99964 −0.00178
74

75 ROTATION ANGLES from ORINGIN_NORM orientation to PRINCIPAL AXES (

degrees):

76 angles about x y z 90.102 0.000 −1.535
77

78 RADII OF GYRATION with respect to PRINCIPAL AXES:

79 R1 R2 R3 1.2570311e+02 1.5124624e+02 1.5374977e+02 MM
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80

81 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82

83 MASS PROPERTIES OF COMPONENTS OF THE ASSEMBLY

84 (in assembly units and the ORINGIN_NORM coordinate frame)

85

86 DENSITY MASS C.G.: X Y Z

87

88 BATTERYFINI

89 1.79967e−03 3.63499e+03 −3.71642e+01 −2.58660e−02 −5.34932e+01
90 TUBE

91 6.08005e−04 2.48000e+03 −3.75000e+01 −3.33779e−03 ă2.07051e+00

92 TOPCASE

93 8.97370e−04 7.87744e+02 −3.77574e+01 −8.95838e−02 ă1.14168e+02

94 BOXFINI

95 1.02974e−03 3.42999e+03 −3.24817e+01 −6.65864e−02 ă8.94431e+01

96 LEDFINI

97 3.66046e−03 4.60000e+02 ă1.76496e+02 −3.73462e−01 −6.30027e+01
98 LOAD

99 1.00000e−10 2.40277e−04 ă1.37115e+02 ă0.00000e+00 −1.40000e+02
100 MIDCASEFINI

101 8.97370e−04 2.62059e+03 −4.34468e+01 ă6.12507e−02 ă1.22148e+01

102 LOWCASEFINI

103 8.97370e−04 1.63005e+03 −3.75311e+01 −1.07202e−02 −2.00591e+02
104 MOTOCORDIFINI

105 2.83108e−02 1.00000e+02 ă1.61137e+02 −9.94919e+01 ă0.00000e+00

106 MOTOCORDIFINI

107 2.83108e−02 1.00000e+02 −2.35707e+02 −9.97912e+01 ă0.00000e+00

108 MOTOCORDIFINI

109 2.83108e−02 1.00000e+02 ă1.61050e+02 ă9.94291e+01 ă0.00000e+00

110 MOTOCORDIFINI

111 2.83108e−02 1.00000e+02 −2.35623e+02 ă9.97306e+01 ă0.00000e+00

112 MOTOCORDIFINI

113 2.83108e−02 1.00000e+02 −3.70005e+01 −1.44998e+02 ă3.54481e+01

114 MOTOCORDIFINI

115 2.83108e−02 1.00000e+02 −3.69995e+01 ă1.44998e+02 ă3.54481e+01
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B.2 CISCREA WAMIT Configuration and Output

WAMIT program is used to estimate the added mass matrix �A of the CISCREA

AUV, and its configuration and output files are given as follows:

1. pot file:

1 CISCREA.POT −− CISCREA R=1, ILOWHI=0, IRR=0

2 −1. HBOT

3 1 −1 IRAD,IDIFF

4 CISCREA.POT −− CISCREA R=1, ILOWHI=0, IRR=0

5 −1. HBOT

6 1 −1 IRAD,IDIFF

2. frc file

1 CISCREA.FRC CISCREA, ILOWHI=0, IRR=0

2 1 0 0 0 0 0 0 0 0

3 0.000000 VCG

4 1.000000 0.0000000 0.0000000

5 .0000000 1.000000 0.0000000

6 0.0000000 0.0000000 1.000000 XPRDCT

7 0 NBETAH

8 0 NFIELD

3. cfg file

1 ! CISCREA.CFG −− CISCREA R=1, T=0.5, ILOWHI=0, IRR=0

2 ipltdat=5

3 ISOR=1 (omit ISOR in POT file, include source formulation)

4 ISOLVE=0 (use iterative solver)

5 ISCATT=0 (solve for total diffraction potential, not scattering)

6 ILOG=1 (omit ILOG in POT file, integrate log singularity)

7 IRR=0 (omit IRR in POT file, no irregular−frequency removal)

8 MONITR=0 (do not write FORCE output data to monitor)

9 NUMHDR=1 (write headers to numeric output files)
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4. output file

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 WAMIT Version 7.023

3 Copyright (c) 1999−2012 WAMIT Incorporated

4 Copyright (c) 1998 Massachusetts Institute of Technology

5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 The WAMIT software performs computations of wave interactions

7 with floating or submerged vessels. WAMIT is a registered

8 trademark of WAMIT, Incorporated. This demonstration version

9 of WAMIT and the User Manual may be downloaded from the

10 wamit.com website as shown below. This is a complete

11 implementation of WAMIT V7PC, which may be used with any

12 of the standard geometry inputs used for the Test Runs described

13 in the User Manual. The other inputs may be modified by the

14 user. This version may be used only for educational purposes, or

15 for demonstration of the WAMIT software. Please refer to the

16 website for a complete statement of these conditions and for

17 further information. Email requests for end−user licenses

18 should be sent to <info@wamit.com>

19

20

21 <http://www.wamit.com> Release date: 21 Mar 2012

22

23 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24

25 Low−order panel method (ILOWHI=0)

26

27 Input from Geometric Data File: ciscrea.gdf

28 Model 3STL Ciscrea Real Model 06−Feb−2014 01:15:32

29

30 Input from Potential Control File: ciscrea.pot

31 ciscrea.POT −− ciscrea R=1, ILOWHI=0, IRR=0

32

33

34 POTEN run date and starting time: 26−Feb−2014 −− 21:16:26

35 Period Time RAD DIFF (max iterations)
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36 −1.0000 21:16:36 21 (24)

37 0.0000 21:16:37 21 (24)

38

39 Gravity: 9.80665 Length scale: 1.00000

40 Water depth: infinite

41 Logarithmic singularity index: ILOG = 1

42 Source formulation index: ISOR = 1

43 Diffraction/scattering formulation index: ISCATT = 0

44 Number of blocks used in linear system: ISOLVE = 0

45 Number of unknowns in linear system: NEQN = 1468

46 Irregular frequency index: IRR = 0

47

48 BODY PARAMETERS:

49

50 Total panels: 1468 Waterline panels 0 Symmetries: none

51 Irregular frequency index: IRR = 0

52

53 XBODY = 0.0000 YBODY = 0.0000 ZBODY = −10.0000 PHIBODY = 0.0

54 Volumes (VOLX,VOLY,VOLZ): 0.258101E−01 0.258100E−01 0.258088E−01
55 Center of Buoyancy (Xb,Yb,Zb): −0.037376 0.000221 0.023391

56 Hydrostatic and gravitational restoring coefficients:

57 C(3,3),C(3,4),C(3,5): −0.12706E−06 −0.28522E−08 −0.61273E−08
58 C(4,4),C(4,5),C(4,6): 0.30990E−03 0.29859E−03 0.0000

59 C(5,5),C(5,6): 0.61812E−03 0.0000

60 Center of Gravity (Xg,Yg,Zg): −0.037376 0.000221 0.000000

61 Radii of gyration: 1.000000 0.000000 0.000000

62 0.000000 1.000000 0.000000

63 0.000000 0.000000 1.000000

64

65

66 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 Output from WAMIT

68 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
69 FORCE run date and starting time: 26−Feb−2014 −−

21:16:37

70 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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71 I/O Filenames: ciscrea.frc ciscrea.p2f ciscrea.out

72 ciscrea.FRC , ILOWHI=0, IRR=0

73

74 ***************************
75 Wave period = infinite Wavenumber = zero

76 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77 ADDED−MASS COEFFICIENTS

78 I J A(I,J)

79

80 1 1 1.171528E−02
81 1 2 −8.942108E−05
82 1 3 −1.029174E−04
83 1 4 3.796293E−05
84 1 5 3.006848E−04
85 1 6 1.212778E−05
86 2 1 1.458955E−04
87 2 2 1.980570E−02
88 2 3 −1.433134E−04
89 2 4 8.338600E−05
90 2 5 −1.279987E−05
91 2 6 −7.411116E−04
92 3 1 1.086597E−04
93 3 2 −1.263564E−04
94 3 3 6.563238E−02
95 3 4 −3.253423E−05
96 3 5 2.473420E−03
97 3 6 6.278550E−05
98 4 1 1.192901E−04
99 4 2 3.118029E−04

100 4 3 −5.490492E−05
101 4 4 3.764071E−04
102 4 5 2.914943E−06
103 4 6 −1.116816E−05
104 5 1 3.976160E−04
105 5 2 −1.363751E−06
106 5 3 2.486089E−03
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107 5 4 −2.378708E−06
108 5 5 7.736886E−04
109 5 6 1.648271E−06
110 6 1 −2.633395E−06
111 6 2 −7.410161E−04
112 6 3 6.288557E−05
113 6 4 −3.072417E−06
114 6 5 3.585445E−06
115 6 6 1.352324E−04
116 ************************
117 Wave period = zero Wavenumber = infinite

118 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
119 ADDED−MASS COEFFICIENTS

120 I J A(I,J)

121

122 1 1 1.171527E−02
123 1 2 −8.942225E−05
124 1 3 −1.029206E−04
125 1 4 3.796255E−05
126 1 5 3.006848E−04
127 1 6 1.212765E−05
128 2 1 1.458927E−04
129 2 2 1.980564E−02
130 2 3 −1.433154E−04
131 2 4 8.338643E−05
132 2 5 −1.279964E−05
133 2 6 −7.411097E−04
134 3 1 1.086725E−04
135 3 2 −1.263412E−04
136 3 3 6.563196E−02
137 3 4 −3.253357E−05
138 3 5 2.473410E−03
139 3 6 6.278532E−05
140 4 1 1.192890E−04
141 4 2 3.118026E−04
142 4 3 −5.490580E−05
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143 4 4 3.764074E−04
144 4 5 2.914843E−06
145 4 6 −1.116817E−05
146 5 1 3.976155E−04
147 5 2 −1.363049E−06
148 5 3 2.486073E−03
149 5 4 −2.378656E−06
150 5 5 7.736896E−04
151 5 6 1.648279E−06
152 6 1 −2.633213E−06
153 6 2 −7.410133E−04
154 6 3 6.288552E−05
155 6 4 −3.072432E−06
156 6 5 3.585429E−06
157 6 6 1.352323E−04
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Appendix C

�∞ Control Theory Essentials

Contents

C.1 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

C.2 Linear Fractional Transformation . . . . . . . . . . . . . . 220

The robust control theory can be found in Zhou’s book [76]. Here, we selected

some important conception for this dissertation.

C.1 Norms

Let vector � = [�1, �2, · · · �n]T ∈ �, then we can define the follows vector norms in

equation C.1 ∼ C.3:

(1) 2- norm (Euclidean distance)

||�||2 =
√
�T� = (

n︁

i=1

�2i )
1

2 (C.1)

(2) ∞-norm

||�||∞ = max
16i6n

|�i| (C.2)
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(3) �-norm

||�||p = (
n︁

i=1

�pi )
1

p , 1 6 � 6 � (C.3)

Let matrix � = (�ij) ∈ �m×n, then we can define the follows matrix norms in

equation C.4 ∼ C.6:

(1) 1-norm

||�||1 =
n︁

i,j=1

|�ij| (C.4)

(2) 2-norm (Frobenius)

||�||2 = (
n︁

i,j=1

|�ij|2)
1

2 (C.5)

(3) ∞-norm

||�||∞ = �max
i,j

|�ij| (C.6)

Let � = (�ij) ∈ �m×n, and �T� should has � number of eigen values �i, and the

singular value � =
√
�1. According to the singular value decomposition lemma, there

exist unitary matrices:

� = [�1, �2, · · · , �m] ∈ �m×m

� = [�1, �2, · · · , �n] ∈ �n×n
(C.7)

such that

� = ���, � =

⎡
⎣ �� 0

0 0

⎤
⎦ (C.8)

and � ∈ �m×n should consist of all the singular values �i in the descending order, see

equation C.9.

�� = ����(�1, �2, · · · , �r, · · · )

�1 > �2 > · · · �r > · · · , � = ����, �
(C.9)

Let matrix � ∈ �m×n, vector � ∈ �n, and ��� is supremum, ��� denotes infimum,
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then, we have equation C.10 and C.20 stands:

���
||x||2=1

||��||2 = ���
x̸=0

||��||2
||�||2

= �max(�) (C.10)

���
||x||2=1

||��||2 = ���
x ̸=0

||��||2
||�||2

= �min(�) (C.11)

In fact, the singular values denotes the maximum or minimum gain to the vector

� in its length ||�||2 by the matrix �, see equation C.12. Therefore, the matrix norms

induced by vector p-norms are sometimes called induced p-norms.

�min(�)||�||2 6 ||��||2 6 �max(�)||�||2 (C.12)

Consider a signal �(�), � ∈ � space instead of vector (length) and matrix (gain).

The system can be seen as a mathematical operator that transform the input signal

to another output space. Define the linear signal space as the set of the signals

�(�), � ∈ � that meet the homogeneous and additive property.

Then, the regular signal space are given as follows:

1) �p space

The set of signals � : �+ → �, �+ ∈ [0,∞) that satisfied:

︁ ∞

0

|�(�)|p�� <∞, � ∈ [1,∞) (C.13)

2) �∞ space

The set of signals � : �+ → �, �+ ∈ [0,∞) that satisfied:

���
t∈R+

|�(�)| <∞ (C.14)

3) �2 space

The set of signals � : � → � (analytic on the right complex surface) that
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satisfied: ︁ ∞

−∞

� *(��)�(��)�� <∞ (C.15)

4) �∞ space

The set of signals � : � → � (analytic on the right complex surface) that

satisfied:

���
ω

|�(��)| <∞ (C.16)

Define the norm for the above signal spaces � . If exist a real number function

||� || : � → � meets the homogeneous and additive property, then it can be call the

norm of correspond space � .

The �p-norm of the �p space is :

||� ||p = (

︁ ∞

0

|�(�)|p) 1

p (C.17)

The �∞-norm of the �∞ space is :

||� ||∞ = ���
t∈R+

|�(�)| (C.18)

The �2-norm of the �2 space is :

||� ||2 = (
1

2

︁ ∞

−∞

� *(��)�(��)��)
1

2 (C.19)

The �∞-norm of the �∞ space is :

||� ||∞ = ���
ω

|�(��)|, �(�) ∈ �∞ (C.20)

Specifically, the �∞-norm of the function � (�) in the �∞ space is :

||� (�)||∞ = ���
ω

|�max|� (��)|, � (�) ∈ �∞ (C.21)

Consider two signal � and � in the �2 space, then define its interior product as

⟨� |�⟩ =
︀∞

−∞
�T (�)�(�)��, and the �2 norm is ||� ||2 = (⟨� |�⟩) 1

2 (the energy of the
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signal �).

Consider two signal � and � in the �2 space, then define its interior product as

⟨� |�⟩ =
︀∞

−∞
� T (��)�(�)��, and the �2 norm is ||� ||2 = (⟨� |� ⟩) 1

2 .

As the �2 space and �2 space is relative Laplace transform (or inverse transform)

�()̇ and �−1()̇, hence, there is:

∀�(�) ∈ �n
2 , � (�) = �(�(�)) ∈ �n

2 (C.22)

∀� (�) ∈ �n
2 , �(�) = �−1(�(�)) ∈ �n

2 (C.23)

As a result, there is the Parseval lemma stands:

||�(�)||2 = ||� (�)||2

∀�(�) ∈ �n
2 , � (�) = �(�(�)) ∈ �n

2

(C.24)

Consider a control system, it transforms the input signal from input signal space

Ω to the output signal space �����, and we can define the norms as equation C.25:

||�|| = ���
u∈Ω

||�� ||
||� || (C.25)

If exist the transfer matrix �(�) ∈ �∞, input signal �(�) ∈ �n
2 , and output signal

� (�) ∈ �m
2 , then the �∞ norm of �(�) is:

||�(�)||∞ = ���
U ̸=0

||� (�)||2
||�(�)||2

= ���
ω

�max(�(��)) (C.26)

The �2 norm of �(�) is

||�(�)||2 = ���
U ̸=0

||� (�)||2
||�(�)||∞

= (
1

2�

︁ ∞

−∞

��(�*(��)�(��))��)
1

2 (C.27)

In short, the signal norm is the energy property, and system norm is the gain of the

signals during the transform from input to output.
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Appendix D

Yaw Control Experiment

Contents

D.1 H∞ Robust Control Synthesis . . . . . . . . . . . . . . . . 221

D.2 CISCREA AUV H∞ Heading Controller . . . . . . . . . . 223

D.3 CISCREA AUV Control Code . . . . . . . . . . . . . . . 224

D.1 �∞ Robust Control Synthesis

The CISCREA AUV heading control �∞ synthesis report is given as follows:

1

2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Synthesis Hinf Controller

4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5

6 Minimization of gamma:

7

8 Solver for linear objective minimization under LMI constraints

9

10 Iterations : Best objective value so far

11
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12 8 13.778424

13 9 8.847459

14 10 7.144456

15 11 5.148941

16 12 5.148941

17 13 1.577334

18 14 1.577334

19 15 1.247157

20 16 1.247157

21 17 1.105779

22 18 1.105779

23 19 1.085374

24 20 1.085374

25 21 1.085374

26 22 1.076968

27 23 1.076968

28 24 1.075859

29 25 1.075859

30 26 1.075859

31 *** new lower bound: 1.071807

32

33 Result: feasible solution of required accuracy

34 best objective value: 1.075859

35 guaranteed relative accuracy: 3.77e−03
36 f−radius saturation: 0.980% of R = 1.00e+08

37

38 Optimal Hinf performance: 1.074e+00

39

40

41 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 Controller:

43 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 system: 5 states 1 outputs 1 inputs
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D.2 CISCREA AUV �∞ Heading Controller

The continuous state space realization of the CISCREA AUV �∞ heading controller

is given in equation D.1 ∼ D.4:

�(�) = �K + �K(�� − �K)
−1�K (D.1)

�K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−34.2773 117.5721 359.5323 −521.3096 33.8238

0.4552 −5.3277 −16.0319 20.431 −1.3867

0.9887 −5.6593 −16.4799 16.8002 −1.2409

−0.0444 −0.7728 −0.8041 −11.4784 0.4766

0.0114 −0.0106 −0.0646 0.5909 −0.032

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(D.2)

�ZK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0948

0.2193

2.711

1.9683

−0.0281

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(D.3)

�ZK =
︁
−16.0063 58.3996 178.6582 −258.9466 16.8046

︁
(D.4)

�K = 0 (D.5)
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D.3 CISCREA AUV Control Code

The python program of the PID and improved �∞ CISCREA AUV heading con-

trollers are given as follows:

1 #PID Controller

2 def psi_control(psi, target_psi):

3 #global variable

4 global P

5 global D

6 global I

7 global yold

8 global psilist

9 # psi: the yaw angle in rad

10 # target_psi: the expected orientation in rad

11 # psilist.append(psi)

12 y=psi

13 r=target_psi

14 psi_err=r−y
15 # Pre compute PID controller parameters

16 #gain

17 kp=15

18 ki=0.6

19 kd=10

20 N=2.59

21 #interval 0.1s

22 h=0.1

23 bi=ki*h
24 Tf=kd/(kp*N)
25 ad=Tf/(Tf+h)

26 bd=kd/(Tf+h)

27 P=kp*psi_err
28 D=ad*D−bd*(y−yold)
29 v=P+I+D

30 I=I+bi*(psi_err)
31 yold=y

32 moto_ref_psi =v
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33 print("PID:",psi, target_psi, moto_ref_psi)

34 return moto_ref_psi

35

36 # Kalman filter: estimation of angular velocity

37 def kalmf_ang_vel(psi, moto_ctrler,comp_damp):

38 global ang_vel

39 global moto_limit

40 global kalxk

41 global kalmf_ang

42 global kalmfinput

43 # use compensation and moto limit calculate the kalman input

44 moto_max=moto_limit

45 moto_min=−moto_limit
46 kalmfinput=moto_ctrler

47 Motoinput=moto_ctrler−comp_damp
48 if Motoinput>moto_max:

49 kalmfinput=moto_max+comp_damp

50 elif Motoinput<moto_min:

51 kalmfinput=moto_min+comp_damp

52 #kalman iteration

53 a=np.matrix(" 0.817434207010430 −0.0270295049541631;
0.0905652303625428 0.917467766665371")

54 b=np.matrix(" 0.182565792989570 0.0270295049541631;

0.00943476963745717 0.0825322333346289")

55 c=np.matrix("0 0.920462421552291; 1 −0.0330662758205544; 0

0.920462421552291")

56 d=np.matrix(" 0 0.0795375784477090; 0 0.0330662758205544; 0

0.0795375784477090")

57 uk=np.matrix([kalmfinput, psi])

58 uk=uk.transpose()

59 xkk=a*kalxk+b*uk
60 yk=c*kalxk+d*uk
61 kalxk=xkk

62 #write campass and control command

63 ang_vel=yk[1,0]

64 kalmf_ang=yk[0,0]

225



65 #print on screen

66 print("Input",kalmfinput,"Psi:",psi,"y", yk[0,0], "Ang_Vel:",yk

[1,0],"x2:", yk[2,0])

67 return ang_vel

68

69 # Nonlinear Compensator

70 def nonlin_compensator(ang_vel):

71 global comp_damp

72 global fedfwd

73 global DN

74 # make a feed back

75 comp_damp=fedfwd*ang_vel−DN*abs(ang_vel)*ang_vel
76 return comp_damp

77

78 # Hinfinity Controller

79 def psi_hinf_control(psi, target_psi):

80 global xk

81 global v

82 # psi: the yaw angle in rad

83 # target_psi: the expected orientation in rad

84 y=psi

85 r=target_psi

86 psi_err=r−y
87 uk=np.matrix(psi_err)

88 #hinf controller

89 a=np.matrix("0.197256482648792 1.59540314598849

4.49798010253664 −3.71776829599392 0.300123924813506;

−0.00621131141495130 0.759731533313859

−0.685176910215340 0.547387817981330

−0.0450683664607837; 0.0146347815053511 −0.170901816165014
0.550453855157298 0.0406100731570936

−0.0155990464674315; −0.00153580351247490
−0.0362653741260259 −0.0211178973384089
0.305283481543664 0.0296900874424064; 0.000293001798299378

0.000255776045928881 0.000246755112570867

0.0276890693987905 0.998376332616215")
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90 b=np.matrix("0.273103219717465; −0.0179292130016475;
0.206521330295216; 0.110601840954218; 0.000521323997792441")

91 c=np.matrix("−16.0062512802928 58.3996253615540

178.658222489516 −258.946581201241 16.8045790623509")

92 xkk=a*xk+b*uk
93 yk=c*xk
94 xk=xkk

95 #write campass and control command

96 moto_ref_psi=yk[0,0]

97 print(’psi:’, psi, ’tar:’, target_psi, ’ctrl:’, moto_ref_psi*
moto_cmd_limit/moto_limit)

98 return moto_ref_psi

99

100 # smith compensator

101 def smith_compensation(control_input,psi):

102 global smith_xk

103 global smithlist

104 a=np.matrix(" 0.8174 0;0.0906 1.0000")

105 b=np.matrix(" 0.1826; 0.0094")

106 c=np.matrix(" 0 1")

107 d=np.matrix(" 0")

108 uk=np.matrix(control_input)

109 xkk=a*smith_xk+b*uk
110 yk=c*smith_xk+d*uk
111 smith_xk=xkk

112 smithlist.append(yk)

113 comp_smith_psi=yk−smithlist.popleft()+psi
114 return comp_smith_psi
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Résumé

L’utilisation des AUV pour une exploitation durable des ressources océaniques est

pertinente. Un robot sous-marin peut être utilisé comme plateforme pour observer,

recueillir des informations sur l’environnement marin. Afin d’améliorer la qualité

des observation et d’augmenter la capacité de navigation, de nombreuses questions

doivent être abordées et examinées simultanément. Nous abordons ici le problème du

pilotage de ces robots autonomes.

Atteindre la maniabilité nécessaire dépend de deux facteurs clés: un modèle hy-

drodynamique précis et un système de contrôle performant. Cependant, le coût de

développement d’un modèle précis est généralement très élevé. De plus, lorsque la

géométrie du robot est complexe, il devient très difficile d’identifier de manière perti-

nente les paramètres dynamiques et hydrodynamiques. En outre, du point de vue de

la commande, les modèles obtenus sont non linéaire, en particuliers pour les amortisse-

ments. De nombreux phénomènes dynamiques ne sont pas modélisés: dynamiques

internes au robot, environnementales, liées aux bruits des capteurs, aux retards in-

trinsèques.

Dans les concours de robotique sous-marine, il est confirmé que le traditionnel

régulateur Proportionnel-Intégral-Dérivé (PID) est peu efficace pour les robot légers.

Dans ce cas, notre champ d’application est plus axé sur la combinaison des approches

de modélisation numérique et la commande robuste.

Dans ce travail, nous proposons un schéma de régulation basé sur la commande

robuste et la modélisation. La régulation robuste a été mise en place et validée en mer

sur un AUV de la marque CISCREA et la solution proposée utilise Computational

Fluid Dynamic (CFD) pour caractériser les deux paramètres hydrodynamiques (ma-
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trice de masse ajoutée et matrice d’amortissement). Puis un modèle à quatre degrés

de liberté est construit pour le CISCREA. Les résultats numériques et expérimentaux

sont alors comparés.

La commande robuste proposée est basée sur une compensation non linéaire et

de la commande �∞. La validation de la robustesse a été testée par simulation

en Matlab et finalement validée par des essais en mer à Brest. La simulation et

l’expérience montrent que l’approche en plus d’être robuste est plus rapide que les

régulateurs précédemment proposés.
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