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Resumé

Le succès dans l'utilisation de méthodes exactes dans l'optimisation combinatoire à grande échelle est encore limité à certains problèmes, et peut-être des classes spécifiques d'instances de problèmes. Le moyen alternatif consiste soit à utiliser des métaheuristiques ou des mathématiques qui utilisent des méthodes exactes à certains égards. Le concept d'hyperheuristique (HH) est une généralisation de celle des métaheuristiques. Dans le contexte de l'optimisation combinatoire, nous nous intéressons à l'heuristique pour choisir l'heuristique. Les deux catégories hyperheuristiques principales de la classification précédente sont: 1) la sélection heuristique, qui considère une méthode pour sélectionner des heuristiques à partir d'un ensemble d'heuristiques existantes, et 2) la génération heuristique qui consiste à générer de nouvelles heuristiques à partir des composantes des heuristiques existantes.

Dans cette thèse, nous nous concentrons sur l'optimisation hyperheuristique des problèmes logistiques. Nous présentons une revue de littérature détaillée sur les termes origine, concept, domaine d'application, etc. Ensuite, deux problèmes logistiques ont été choisis pour lesquels nous avons proposé HH. Sur la base de la structure générale d'une solution réalisable et en exploitant les informations cachées dans les données d'entrée, nous définissons un ensemble d'heuristiques possibles pour chaque problème. Nous nous concentrons ensuite sur la proposition d'un cadre hyperheuristique qui effectue une recherche dans l'espace des algorithmes heuristiques et apprend comment changer l'heuristique en place d'une manière systématique le long du processus de telle sorte qu'une bonne séquence d'heuristiques produit des solutions de haute qualité. Notre cadre hyperheuristique est équipé d'un mécanisme d'apprentissage qui apprend l'environnement et guide la transition d'une heuristique historique à une autre jusqu'à ce que l'algorithme global se termine.

Le premier problème abordé est le problème d'ordonnancement de la plateforme de workover (WRSP), qui consiste à trouver le meilleur horaire pour un certain nombre de plates-formes de workover pour minimiser la perte de production, associée à un grand nombre de puits en attente de maintenance. Un algorithme d'hyperheuristique de sélection est proposé, qui est guidé par un mécanisme d'apprentissage conduisant à un choix approprié de mouvements dans l'espace des heuristiques qui sont appliquées pour résoudre le problème. Nos expériences numériques sont menées sur des exemples d'une étude de cas de Petrobras, la Société nationale brésilienne du pétrole, et ont été comparées avec une méthode exacte prouvant son efficacité.

Le deuxième problème est une variante du problème de routage d'emplacement de concentrateur, qui cherche à diviser les noeuds en moyeux et rayons. Deux HH différentes ont été appliquées à deux variantes de ce problème, qui sont dérivées d'un problème d'acheminement de localisation de concentrateur de capacité d'allocation unique et diffèrent principalement dans la définition de la capacité.

Dans le premier, le nombre de rayons pouvant être attribué à chaque hub est limité; Tandis que dans la seconde, c'est le volume de l'écoulement circulant sur la voie du rayon-niveau. De plus, cinq relaxations lagrangiennes (LR) ont été proposées pour le premier problème afin d'utiliser certains résultats pendant le processus de HH. Les résultats de calcul prouvent l'efficacité de HH et la pertinence d'inclure l'information LR. Enfin, nous comparons les performances de plusieurs HH proposées dans la littérature pour le problème précédemment abordé, avec différentes méthodes de sélection heuristique telles que la sélection aléatoire, la fonction de choix, Q-Learning et la colonie de fourmis. The term Optimization, according to Merriam Webster 1 , is a process or methodology of making something as fully perfect, or effective as possible. We seek a state from among the set of possible states with the most cost effective or highest achievable performance under given constraints. In mathematical optimization with one single objective, we search a maximum or a minimum value of an objective function of several variables over a set of feasible solutions defined by a set of constraints. When both the objective function and the search space could be described by means of linear terms and linear system, respectively, linear programming based techniques are used to solve such models and find the optimum (optima).
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A combinatorial problem (COP) is defined as a problem of finding an optimal solution from a finite set or possibly countable infinite set of searching area [START_REF] Schrijver | Combinatorial optimization: Polyhedra and efficiency[END_REF]. Usually, COPs involve grouping, ordering, or assignment of a discrete finite set of objects with some predefined conditions. Many problems in the real-life from telecommunications, transportation, logistics and energy sectors to modeling of social networks, bio-informatics and even archeology and beyond are modeled as COPs. Some classical and well-studied problems of COPs that often appear as subproblem in other more complex problems includes: knapsack problems [START_REF] Martello | Knapsack problems: algorithms and computer implementations[END_REF], traveling salesman problems [START_REF] David L Applegate | The traveling salesman problem: a computational study[END_REF], vehicle routing problems [START_REF] Toth | Vehicle routing: problems, methods, and applications[END_REF] and variants of facility location problems [START_REF] Drezner | Facility location: applications and theory[END_REF]) among many others.

In this thesis, we focus on a couple of problems arising in logistics and network design for management of the flow of resources between the point of origin and the point of consumption in order to meet some requirements. Such problems, like many other problems in logistics, are categorized as COPs and they also include continuous decision variables. These problems are often modeled as mixed integer programming (MIP) models which can be expressed as follows:

Objective : min c T x + d T y

Constraints :

Ax + By = b linear constraints x ∈ R m 1 l ≤ x ≤ u bound constraints y ∈ Z m 2 integrality constraints
The optimization techniques proposed in the literature, are classified in two main categories: exact method and non-exact method(variants of heuristic approaches).

Exact optimization methods provide provably optimal solutions, when exists, while the non-exact methods (which might also be based on MIP models and mathematical programming). Yet, there is a serious bottleneck when dealing with exact methods including general-purpose solvers: Small instances of real-life problems can be often solved to optimality in reasonable times when a good description of polytope (in terms of tightness of LP relaxation, additional valid inequalities are available etc) is available while moderate size instances may be solved using efficient and specialized methods in reasonable times. However, the larger ones are very less likely to be solved to optimality and often even finding a feasible solution for such problems may become very difficult task for exact approaches.

At this point, non-exact methods such as those combining heuristic techniques with mathematical programming techniques such as Lagrangian heuristics, LP-based heuristic and primal-dual heuristic. or the different approaches such as specialize ad-hoc heuristics, evolutionary or metaheuristic approaches that are developed to find very good feasible solutions become inevitable. Sometimes in exact methods, an indication of optimality can be provided, the non-exact often do not provide any indication.

In the remainder of this chapter, we elaborate further on heuristic optimization and explain some differences among different techniques and paradigms. We then focus on the context of hyperheuristic, the paradigm, general framework, steps, and different components.

Heuristics, Metaheuristics and Matheuristics

Heuristics are often problem-dependent techniques that are usually adapted to the problem at hand and they try to take full advantage of the particularities (structure or other kind of information) of the problem. However, since they are often too biased, they usually get trapped in a local optimum and thus fail, in general, to obtain the global optimum solution, and no guarantee if it get the optimal solution or not.

Metaheuristic is a class of approximate methods developed in the early 1980s.

Metaheuristics are designed to solve complex optimization problems; in fact, the classical heuristics were not always effective and efficient, as they were time consuming or there were some limitation to help them escape from a local optima.

Metaheuristics are problem-independent techniques, pattern or paradigms. For example Simulated Annealing (SA) [START_REF] Kirkpatrick | Optimization by simulated annealing: Quantitative studies[END_REF] imitates the cooling of material in a heat bath and maps the objective function optimal of the optimization problem on the optimal energy level function of the hot material such that annealing is the process in which the temperature of a molten substance is slowly reduced until the material crystallises to give a large single crystal.

Metaheuristic, can be defined as an iterative generation of a process, which guides a subordinate heuristic by combining intelligently different concepts for exploring and exploiting the search space [START_REF] Ibrahim | Metaheuristics: A bibliography[END_REF].

As such, the metaheuristics are independent of any specificity of the problem and, therefore, can be used as general paradigm. In general, they are less greedy approaches in characteristic. In fact, they may even accept a temporary deterioration of the solution (e.g. SA), which allows them to explore more thoroughly the solution space and thus to get a hopefully better solution (that sometimes will coincide with the global optimum). Although a metaheuristic is a problem-independent technique, it is nonetheless necessary to do some fine-tuning of its associated parameters in order to adapt the technique to the problem at hand.

To illustrate the concept of metaheuristic, we should first distinguish between heuristic algorithms and metaheuristic algorithm. The main objective of heuristics is to obtaining a solution at an acceptable cost for a wide range of problems.

Heuristics do not have an approximation guarantee on the quality of the obtained solutions. On the other hand, Metaheuristics are general-purpose algorithms that can be regarded as upper level general methodologies employed as guiding strategy for the heuristics.

In metaheuristics approach, two strategies must be taken in account [START_REF] Talbi | Metaheuristics: from design to implementation[END_REF]):

1. Diversification: that explores the search space to avoid getting stuck in the same or similar areas of feasible space.

2. Intensification: that emphasizes on concentrating search in the promising regions previously found, in order to exploiting the potentials.

Several families of metaheuristic algorithms are proposed in the literature such as simulated annealing (SA) [START_REF] Aarts | Simulated annealing and boltzmann machines[END_REF], tabu search (TS) [START_REF] Glover | Tabu search-part i[END_REF], genetic algorithm (GA) [START_REF] Davis | Handbook of genetic algorithms[END_REF], GRASP (Dyall et al., 1989), variable neighborhood search (VNS) (Mladenović and Hansen, 1997a), adaptive large neighborhood search (ALNS) [START_REF] Ravindra K Ahuja | Very large-scale neighborhood search[END_REF], path relinking [START_REF] Glover | A template for scatter search and path relinking[END_REF], particle swarm optimization (PSO) [START_REF] Russ C Eberhart | A new optimizer using particle swarm theory[END_REF], scatter search (SS) [START_REF] Glover | A template for scatter search and path relinking[END_REF], ant colony [START_REF] Dorigo | Ant algorithms and stigmergy[END_REF], among others.

Metaheuristic algorithms can be categorized with respect to different characteristics as follows. The deterministic ones offer the same results for several runs while the non-deterministic ones may report different results per different invocations.

One can distinguishes among metaheuristic algorithms by the algorithm that use single solution (trajectory methods) at each iteration of the search such as local search, SA, TS, VNS, ALNS, GRASP, path relinking, etc, and those which use multiple solutions (population-based methods) and contain more than one (partial) solution such as GA, Ant colony, PSO, scatter search, etc.

One can also distinguishes between the metaheuristics that make use of some kind of long-term or short term memories and the memory-less ones. Memory based methods are the methods where the search moves are recorded and the future moves should use those information to avoid cycling, previous solution, worse solution etc. such as Tabu Search, PSO, Scatter, Path relinking, Genetic Algorithm, Ant Colony, etc., while others such as GRASP, VNS, etc. are originally memory-less.

Matheuristic optimization [START_REF] Bartolini | Algorithms for the non-bifurcated network design problem[END_REF] algorithms are a combination between (meta)heuristic approaches and different techniques of mathematical programming. Whether mathematical programming is in charge of solving the problem at hand and (meta)heuristics exploit the primal/dual information to generate better primal bounds or mathematical programming techniques are employed within (meta)heuristics to solve a sub-problem after some variable being fixed (for example a capacitated flow problem, or a linear part of an initially non-linear model where part of variables are fixed by the (meta)heuristic) we are talking about the matheuristics. Such techniques become very popular as MIP solvers or customized MIP codes have become more effective as primary solvers or as sub-procedures which is due to the advancements that were achieved in the research on mathematical programming, and in particular on discrete optimization.

Hyperheuristics

Hyperheuristics (HH) aims to solve hard computational search problems by automating the design of heuristic methods. The term itself appeared for the first time in 1997, in a study about automated theorem proving [START_REF] Denzinger | High performance ATP systems by combining several AI methods[END_REF]. It was given to a protocol that combines several artificial intelligence methods. It was then more adequately used in the year 2000 in connection with combinatorial optimization [START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF]: heuristics to choose heuristics. In this context, a hyperheuristic is a high-level approach that solves hard computational search problems, given a particular problem instance and a number of low-level heuristics, by selecting and applying an appropriate low-level heuristic at each decision point.

Even though the term is relatively new, the idea itself dates back to the 1960s [START_REF] Wallace B Crowston | Probabilistic and parametric learning combinations of local job shop scheduling rules[END_REF]. A number of researchers developed the automation of the design process of heuristic methods during the 1990s [START_REF] Fang | A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems[END_REF].

Hyperheuristics however go a step beyond metaheuristics. The particularity of hyperheuristics is that their search space is not the usual space of the solutions but is rather the space of heuristics or metaheuristics.

The concept of Hyperheuristic may be seen a generalization of that of (Meta)heuristics and facilitates classifying a large body of literature of heuristics and metaheuristics that was rather difficult to classify before this. Many definition of the term was found in the literature. Özcan et al. (2010) defines hyperheuristics as methodologies for searching the feasible space, which is generated by a set of low level heuristics while [START_REF] Haluk Rahmi Topcuoglu | A hyper-heuristic based framework for dynamic optimization problems[END_REF] defines it as methods for automation of the process of selecting and generating multiple low-level heuristics.

When we are dealing with certain variants of optimization problems, hyperheuristics are most useful since they only require general knowledge of the problem domain. [START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF] defined the term hyperheuristic as heuristics to choose heuristics. [START_REF] Ochoa | Analyzing the landscape of a graph based hyper-heuristic for timetabling problems[END_REF] stated that in hyperheuristics research, the importance of increasing the efficiency of the solution method is more important than bettering the solution itself. They also stated that what distinguishes metaheuristics from hyperheuristics is that the latter has a search space of heuristics not of problem solutions, which was previously mentioned by [START_REF] Ross | Search Methodolgies, chapter Hyper-heuristics[END_REF].

Recently, the definition of hyperheuristics has been recently extended to refer to the search method or learning mechanism to select or generate heuristic to solve combinatorial problem. The main objective is to design a generic method which can apply in several problem domains. This method should produce a solution of high quality but the emphasis, in this method, is on the use of low level heuristics that are easy to implement.

The hyperheuristic framework requires a set of predefined materials. The hyper-heuristic framework is provided with a set of preexisting simple heuristics, and the challenge is to select or generate the heuristic or the operator that is somehow the most suitable for the current problem state. This process continues until the termination criteria is met.Figure 1.1 depicts a generic hyperheuristic process, which represents the strategy plan in the high level and the major components such as the termination criteria, Low-level heuristics (LLH)/operator selection methods, the acceptance criteria etc. Until the termination criteria is met, HH selects the corresponding LLH (or operator) from an a priori known set according a predefined selection rule and apply it subsequently. The resulted solution at each iteration may or may not be accepted which depends on the predefined acceptance criteria.

Heuristic1 Heuristic 2 …

Operator 1

Operator 2 … HYPERHEURISTIC Apply the candidate heuristic (selected or generated)

Solution

Unless termination criteria

Will be accepted or not? Evaluation Figure 1.1: The general scheme of hyperheuristic framework.

Hyperheuristic Classification

A variety of hyperheuristic approaches was defined in the literature. In this subsection, we present an overview of the different categorizations of hyperheuristic with respect to I) the nature of heuristic search space, II) if it is constructing a solution from scratch or starting from a feasible solution in order to improve it, and III) and the use of learning mechanisms during the search process. Interested readers are referred to see [START_REF] Burke | A classification of hyperheuristic approaches[END_REF](Burke et al., , 2009a;;[START_REF] Bader-El-Den | Generating sat local-search heuristics using a gp hyper-heuristic framework[END_REF] for further details.

Nature of heuristic search space: While in the beginning the hyperheuristics were to uses (select from among) the pool of existing low-level heuristics, in the late of 2000's genetic programming started being used for hyperheuristics. This has introduced a new way in which the low-level heuristics were not only selected but also being generated from existing heuristic components. Such an emerging perspective has led to a revised definition: as an automated methodology to select or generate heuristic in order to solve hard problems [START_REF] Burke | A classification of hyperheuristic approaches[END_REF]. Hence, the HH are now belong to either heuristic selection category or the heuristic generation ones. We are not aware of any work that try to propose any hybrid method.

Akin to the heuristic selection HH class of hyperheuristics, the other category requires a set of heuristics that are suitable to the problem at hand. The difference is that these heuristics will not be supplied directly to the framework, they will be fragmented into their basic building-blocks so that new heuristics can be generated from them, all in the hopes of achieving a good feasible solution. This class of hyperheuristics led researchers to distinguish between reusable and disposable heuristics. The latter refers to heuristics that were built to be used on a specific problem and cannot be used on others.

Solution Target: construction vs. perturbation: If no initial feasible solution is at hand we talk about the Selection based construction hyperheuristics which aim at select and use construction heuristics in a smart and efficient way that it builds a good solution from the scratch progressively. It starts with an empty solution and uses the hopefully most suitable heuristic, from a pool of pre-existing problem specific construction heuristics, to solve the current problem instance. This process terminates when it reaches the complete feasible solution. This highlights the importance of choosing the best heuristic at each problem instance, because the sequence is not infinite.

On the other hand, when a feasible solution is indeed at hand, one talks about the selection based perturbation hyperheuristics that require a complete solution to start with. This solution could be generated randomly or using a construction heuristic (not directly related to the HH). Afterwards, the higher-level selection hyperheuristic is supplied with a pool of neighborhood structures and/or simple local search routines. It selects and applies those heuristics to the starting solution in an iterative manner until a stopping condition has been met, unlike the constructive class where the process is ended after a certain number of choices.

Selection Methods: with learning or without: Researchers also classified hyperheuristics based on whether they include learning mechanisms or not [START_REF] Soubeiga | Development and application of hyperheuristics to personnel scheduling[END_REF]. Hyperheuristics with learning are methods that record the historical performance of the heuristics available in the search pool, and use learning mechanisms to study those records and manage the selection process of the heuristics based on it.

The Hyperheuristics without learning, select the heuristics from the search pool in a predetermined manner. In Chapter 4, we will elaborate further on different selection methods with and without learning.

The 2-dimension hyperheuristic classification by [START_REF] Burke | A classification of hyperheuristic approaches[END_REF], shown in Figure 1.2, presents a classification of hyperheuristics according the nature of heuristic search space and the source of feedback during the process. The first dimension distinguishes between heuristic selection and heuristic generation, which could both be constructive or local search hyperheuristics using construction and perturbation low-level heuristics, respectively. The second dimension however, points out towards another classification, which is orthogonal to the first one. It distinguishes between new categories according to the source of feedback during learning.

The first class is referred to as online learning hyperheuristics, where the learning mechanism is active during the solution process of an instance of the problem.

The higher-level strategy selects or generates the appropriate low-level heuristic according to their real-time performances.

The second class are the off-line learning hyperheuristics, which use a set of training instances in order to extract hidden knowledge in the form of programs or rules, all in the hopes of generalizing the process to the stage where it becomes fully capable of solving unseen instances.

Apart from the aforementioned classes, there are non-learning hyperheuristics that are the one that do not employ any learning mechanisms of any sort. .

There are also other classification schemes such as the one in (Chakhlevitch and Cowling, 2008a) that will be more elaborated in chapter 4.

Move Acceptance Criteria

The decision of whether or not accepting a new solution during the search, which known as move acceptance strategy, is regarded as a crucially important decision in the recent studies such the selection methods. The acceptance strategies themselves are divided into two categories: Deterministic and non-deterministic.

Deterministic methods make the same acceptance decision for the same candidate situations and no random elements exists in this category. Few deterministic methods, which are used in [START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF](Cowling et al., , 2002a)), are summarized in the following:

i) All Moves(AM): deals with accepting the candidate solution regardless of its quality.

ii) Only Improvements (OI): accepts only the improving solutions.

iii) Improving and Equal (IE): the same of Only Improvements except that accepting candidates with the same quality as of the current but significantly different from the incumbent, as a kind of diversification. Cowling et al. (2002a) present a variety of hyperheuristic in order to compare the performance of different combinations of heuristics selection methods and acceptance strategies. Two acceptance methods were tested: AM and OI. The choice function hyperheuristic with AM acceptance criteria is shown to be the better one in their experimental results. To the best of our knowledge the AM is only considered in [START_REF] Nareyek | Choosing search heuristics by non-stationary reinforcement learning[END_REF] as the acceptance criteria with reinforcement learning technique.

On the other hand, non-deterministic methods might make different decision for the same input at different decision point. Therefore, non-deterministic methods require additional parameter such as the time stamp. Several non-deterministic acceptance strategies are proposed in the literature, some of which are listed in the sequel:

1. Exponential Monte Carlo (MC) (Ayob and Kendall, 2003a), allows the nonimproving solution to be accepted with a probability e -δ , where δ is the difference between the objective function value of the current solution and that of the candidate. The probability of a non-improving solution to be accepted decreases as the δ increases.

2. Simulated Annealing (SA) [START_REF] Bai | An investigation of automated planograms using a simulated annealing based hyper-heuristic[END_REF], accepts any worsening solution with a probability of e -δ/t . The probability of a non-improving solution being accepted decreases as δ/t increases, where t is the time stamp.

3. Exponential Monte Carlo With Counter (EMCQ) (Ayob and Kendall, 2003a), is a variant of simulated annealing, but the probability of accepting a candidate solution follows the equation exp( -θ τ ), where θ = δt, τ = p(Q), t is the time. θ and τ were defined in a manner to ensure that the probability of accepting worsening solution decrease as t increase and δ decrease. Q is a parameter which it is represented as a counter of consecutive non-improved iterations. With the smaller values of Q the probability of accepting nonimproving solution increases which ensures some kind of diversification.

4. Record to Record Travel (RRT), [START_REF] Dueck | New optimization heuristics: the great deluge algorithm and the record-to-record travel[END_REF], which allows worsening solutions to be accepted with respect to a threshold value, which depends on the objective function deviation from the current best solution.

5. Great Deluge, [START_REF] Dueck | New optimization heuristics: the great deluge algorithm and the record-to-record travel[END_REF], which is similar to the RRT while the threshold τ , presented in the following, decreases in time linearly. maxIter represents the maximum number of iterations or the time limit, t is the elapsed time or iterations, and ∆R is an expected range between the initial objective function value and the best one.

T = f opt + ∆R(1 - t maxIter ) (1.1)
6. Naive Acceptance, [START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF], where non-improving solutions are accepted with a probability of 0.5.

7.

Adaptive Acceptance, which authorizes worsening moves being accepted with a probability of 1 -1 C , C > 0. C is considered as a counter, which increases to N consecutive operation without improving the solution. C is reset to 1 each time an improvement in the solution is observed. 8. Late Acceptance (LA), is a generic optimisation method [START_REF] Edmund | A late acceptance strategy in hill-climbing for exam timetabling problems[END_REF] which is an extension of simple hill-climbing and requires a unique parameter with a memory based approach. Such in hill-climbing, accepted new solution should be better than the incumbent one, LA accepts a solution if it is of better quality than the solution n iterations previously, where n is the size of a memory of previously seen solutions.

The non-deterministic acceptance criteria have received a lot of attentions so far. Ayob and Kendall (2003b) proposed three move acceptance strategies based on Monte Carlo move acceptance method, which are based on the change of the fitness value, time and the number of consecutive non-improving moves. The heuristic selection method was a simple random method, forms with one of the three move acceptance methods a hyperheuristic approach, which aims to solve the component placement problem. Authors demonstrate that the best move acceptance strategies for this problem within the used heuristic selection method, is exponential Monte Carlo with counter method.

Other SA-based acceptance method were also applied in the literature. [START_REF] Bai | An investigation of automated planograms using a simulated annealing based hyper-heuristic[END_REF] demonstrates good performance of a simple random hyperheuristic with SA acceptance criteria in the problem of shelf space allocation. Reheating schema was embedded into the SA move acceptance, and applied to the problem of travelling tournament problem in [START_REF] Anagnostopoulos | A simulated annealing approach to the traveling tournament problem[END_REF]. Moreover, a hyperheuristic, consists of SA with reheating and a reinforcement learning method, was applied in [START_REF] Bai | A simulated annealing hyper-heuristic methodology for flexible decision support[END_REF] for nurse roistering, course timetabling and 1D bin packing problem. It must be noted that SA differs from EMCQ by using a cooling schedule.

In [START_REF] Dueck | New optimization heuristics: the great deluge algorithm and the record-to-record travel[END_REF], simple random heuristic selection was combined with four acceptance strategies including monte carlo, AM, OI and RRT, in order to compare their performances. RRT move acceptance provides the better solution among the three others.

Another performance study for several heuristic selection methods and acceptance strategies was employed by [START_REF] Bilgin | An experimental study on hyper-heuristics and exam timetabling[END_REF] for the problem of exam timetabling. The hyperheuristic comprised of a choice function heuristic selection method and SA acceptance mechanism, is demonstrated as the best method. While, simple random with great deluge hyperheuristic has the second place with respect to the performance.

The great deluge, which is a threshold based acceptance method, is proposed by [START_REF] Dueck | New optimization heuristics: the great deluge algorithm and the record-to-record travel[END_REF]. It was applied by [START_REF] Kendall | Random Descent (Gradient) Random descent or random gradient declare the heuristic selection strategy as choosing a low-level-heuristic randomly and employ it as long as the candidate solution in hand is improved[END_REF] with simple random selection method to a mobile telecommunication network problem. The great deluge with greedy heuristic selection was also applied in order to solve a problem of job shop scheduling in [START_REF] Mcmullan | An extended implementation of the great deluge algorithm for course timetabling[END_REF].

Three variants of great deluge move acceptance strategies with a reinforcement learning was presented in [START_REF] Ei | Hyper heuristic based on great deluge and its variants for exam timetabling problem[END_REF] in order to solve a problem of exam timetabling problem. Özcan et al. (2009) applied late acceptance strategy with several heuristic selection method for solving exam timetabling problem. Simple random selection method, which select one of four perturbation low-level heuristics, with late acceptance method is shown as the best proposed approach compared to the performance of using tabu search or choice function selection methods.

Termination Criteria

Termination criteria deal with defining a special condition(s) as search stopping criteria. The termination condition tries to avoid useless computations and also avoid early termination. The most known proposed termination criteria include time limit, number of iterations, number of non-improvement steps, performance changes of each existing heuristic etc.

The different (combination of) termination criteria in different contexts were proposed in literature, e.g. (Özcan et al., 2010), (Burke et al., 2008a), [START_REF] Raghavjee | A genetic algorithm selection perturbative hyperheuristic for solving the school timetabling problem[END_REF], [START_REF] Shmygelska | An ant colony optimisation algorithm for the 2d and 3d hydrophobic polar protein folding problem[END_REF][START_REF] Shmygelska | An ant colony optimisation algorithm for the 2d and 3d hydrophobic polar protein folding problem[END_REF][START_REF] Sm Girirajkumar | Real time application of ants colony optimization[END_REF] among others.

State of the art

The hyperheuristic approach has been successfully applied to solve many combinatorial problems in Scheduling (see e.g. [START_REF] Ahmed | Solving high school timetabling problems worldwide using selection hyperheuristics[END_REF][START_REF] Zheng | Emergency railway transportation planning using a hyperheuristic approach[END_REF][START_REF] Rajni Aron | A hyperheuristic approach for resource provisioning-based scheduling in grid environment[END_REF], Routing (Danach et al., 2015a,b;[START_REF] Rahimeh Neamatian Monemi | Solution methods for scheduling of heterogeneous parallel machines applied to the workover rig problem[END_REF][START_REF] Richard | Developing a hyperheuristic using grammatical evolution and the capacitated vehicle routing problem[END_REF][START_REF] Garrido | Dvrp: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyperheuristic[END_REF][START_REF] Garrido | A flexible and adaptive hyperheuristic approach for (dynamic) capacitated vehicle routing problems[END_REF]), Bin Packing (see [START_REF] Sim | A lifelong learning hyperheuristic method for bin packing[END_REF][START_REF] Beyaz | Robust hyperheuristic algorithms for the offline oriented/non-oriented 2d bin packing problems[END_REF][START_REF] Ross | Hyperheuristics: learning to combine simple heuristics in bin-packing problems[END_REF]), Telecommunications (see [START_REF] Kendall | Random Descent (Gradient) Random descent or random gradient declare the heuristic selection strategy as choosing a low-level-heuristic randomly and employ it as long as the candidate solution in hand is improved[END_REF][START_REF] Keles | Ant based hyper heuristic for physical impairment aware routing and wavelength assignment[END_REF][START_REF] Segura | Parallel hyperheuristics for the frequency assignment problem[END_REF] (Chakhlevitch and Cowling, 2008b) for a classification and review of the recent developments in hyperheuristics including real-world applications. The authors identified three distinct attributes that define a hyperheuristic method. According to the authors, a hyperheuristic is 1) a high level heuristic that manages lower level ones, 2) its goal is to find a good solution method instead of finding a good solution, and 3) it makes use of problem-specific information uniquely. The authors emphasize on the importance of the last attribute. Burke et al. (2009a) elaborates on some of the possible methodologies that use sets of promising heuristic components to generate new heuristics. These methodologies are highly influenced by Genetic Programming techniques. Many points were highlighted in this chapter, the authors described the steps to properly apply this approach along with some case studies. Furthermore, some of the issues faced by this type of HH are discussed and a brief literature review is presented. Kendall et al. (2002a) presents an approach to solve three personnel scheduling problems by ranking heuristics using a performance-rating function. Burke et al. (2003) combined Tabu-search and HH has been proposed as a hybrid method that was then applied on eleven university course timetabling problems and on variants of a nurse scheduling problem. Burke et al. (2002[START_REF] Burke | Case-based heuristic selection for timetabling problems[END_REF]; [START_REF] Petrovic | Case-based reasoning as a heuristic selector in a hyper-heuristic for course timetabling problems[END_REF] reported the effectiveness of case based reasoning when employed in timetabling problems as a heuristic selection methodology.

The following approaches are based on the work by [START_REF] Ross | Hyperheuristics: learning to combine simple heuristics in bin-packing problems[END_REF] on uni-dimensional bin packing and are categorized as evolutionary approaches in generating HH for solving the 2D-Regular Cutting Stock Problems: in (Terashima-Marín et al., 2005a), HH was generated by using the XCS Classifier System; in (Terashima-Marín et al., 2005b), the authors made use of a GA with integer and fixed-length representation in order to produce HH. The results achieved by both of these HH were significantly superior to the ones delivered by ordinary heuristics, proving efficiency of HH for many different problem instances.

In [START_REF] Ross | Hyperheuristics: learning to combine simple heuristics in bin-packing problems[END_REF], the authors focused on learning methods that could be applied to many problem instances rather than learning and improving individual solutions. This method selects a heuristic at each problem state, in order to solve the problem. The selected heuristic is the most appropriate one and has the biggest chance of solving that specific state. The method proceeds progressively in this manner; selecting different heuristics for different states of problems, until eventually, the problem reaches a solved state. This is consistent with the attributes that make every HH (Chakhlevitch and Cowling, 2008b).

In [START_REF] Stewart W Wilson | Generalization in the xcs classifier system[END_REF], an accuracy-based Learning Classifier System (XCS) was employed to learn a set of rules that allows the method to associate characteristics of the current problem state with eight different heuristics. This application on the one-dimensional bin packing problem was the first attempt at using such HH model.

In [START_REF] Schulenburg | A hyperheuristic approach to single and multiple step environments in bin-packing prob-lems[END_REF], improvements were made over the initial method.

A new heuristic that randomly selects heuristics was introduced to the method in order to compare results. The HH method gave results that greatly supersede those achieved by the proposed heuristics. During the learning process of HH, two different reward systems were applied to the process, creating and evolving individual processes. This work gave much importance to those individual processes and focused mainly on them. The authors continued to analyze and compare the performance of the HH method to that of single heuristics.

The promising results led to further examine the idea on the other problem domains. A HH method was proposed by [START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF](Cowling et al., , 2002a,b,c) ,b,c) with an even higher level of abstraction than that of metaheuristic local search methods.

It selects different neighborhoods according to a choice function of which the goal is to determine the most appropriate neighborhood for the current problem.

Previously, several time consuming trial and error experimentations were carried out to select the correct neighborhoods. This in turn, highlights the importance of this HH method in reducing the computational time, and perform results quality. [START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF]Cowling et al. ( , 2002a,b,c,b,c) also stressed the importance of choice functions, and their integral role in the success of HH. [START_REF] Burke | A new adaptive heuristic framework for examination timetabling problems[END_REF] proposed a HH approach aiming at improving an initial heuristic ordering in examination timetabling problems. The adaptive heuristic functions works as follows: First, it schedules the exams in an order specified by the original heuristic in order to create an initial solution. An exam is prompted up the order in a later construction in the case where the use of this ordering hinders the process of acceptably scheduling an exam. The termination criteria of this process are either achieving the goal, which is effectively ordering the exams in a manner that they all can be acceptably scheduled, or reaching a pre-determined time limit. The process will continue until at least one of them is met. The results obtained from the experiments prove that the quality of the solution method achieved by this process is greatly better than the quality achieved by the original heuristic. According to the authors, the method can still find acceptable results relatively quickly even if the initial heuristic was poor. Cowling et al. (2002c) studied a trainer scheduling using a genetic algorithm based hyperheuristic (hyper-GA) in order to schedule several geographically distributed training staff and courses. The aim of the hyper-GA is to evolve a good-quality heuristic for each given instance of the problem and use this to find a solution by applying a suitable ordering from a set of low-level heuristics.

Since the user only supplies a number of low-level heuristics and an objective function, the proposed hyperheuristic can be re-implemented for a different type of problem. The method's results appear much better than those of conventional genetic and memetic algorithm methods, and it is expected to be robust across a wide range of problem instances.

Existing and the Proposed Framework

The hyperheuristic system is consist of two levels separated by the domain barrier: Hyper Level and Base Level. A set of predefined heuristics, a specific fitness function and search space was encapsulated in the base level [START_REF] Swan | A comparison of acceptance criteria for the daily car-pooling problem[END_REF].

The main decision of the hyper level is to decide which base level heuristics must solve the defined problem [START_REF] Ryser | A review of hyper-heuristic frameworks[END_REF]. The hyperheuristic architecture represented by the two level concept, answers not only the question about the degree of generality, but also paves the way of plug and play concept in heuristic domain. Many hyperheuristic frameworks were proposed in the literature such as in the following:

1. SATzilla: is proposed by [START_REF] Nudelman | Satzilla: An algorithm portfolio for sat[END_REF] for SAT solvers, is focused on the concept of algorithm portfolio, which aims at predicting the executing time of algorithms in order to solve the problem with a reduced time. It uses an off-line learning in order to develops heuristics portfolios. A Matlab code of this framework has been developed.

2.

Single Neighborhood-based Algorithm Portfolio in Python (Snappy): adopts the algorithm portfolio. The main different issue with SATzilla is using online learning methods in order to improve its own performances [START_REF] Samulowitz | Snappy: A simple algorithm portfolio[END_REF].

3. Hyflex: is a library proposed by (Burke et al., 2009b), implemented in java, which includes a set of methods, the communication protocols between the solver and the problem domain. It is an efficient tools to build new cross-domain hyperheuristic.

4. parHyFlex: is a parallel implementation of Hyflex framework allowing to run a hyperheuristic in a parallel setting [START_REF] Van Onsem | Parhyflex: A framework for parallel hyperheuristics[END_REF]. 5. Generic Intelligent Hyperheuristic (GIHH): is an improved version of Hyflex, proposed as a generic framework for online selective hyperheuristic, which equipped with several online learning methods [START_REF] Misir | Intelligent hyper-heuristics: a tool for solving generic optimisation problems[END_REF]. With Counter (EMCQ), Record to Record Travel, Naive Acceptance, Late Acceptance etc. In addition, concerning the termination criteria, three possible methods are defined which are the time limit, a defined number of non improvement consecutive iterations and termination based on the heuristics performance. Finally, the hyperheuristic system can opt for any selection method among the aforementioned ones (with/without learning). We elaborate further on the selection methods in 4. 

Contributions and Overview

This thesis is organized as follows: in chapter 2 we deal with the Workover Rig Problem. We review the state of the arts and propose a new mathematical model and several valid inequalities. We then propose a selective hyperheuristic application with two learning methods applied in real instances of the problem.

The following contributions summarize the results of this chapter.

1. Monemi, R. N., Danach, K., Khalil, W., Gelareh, S., Lima, F. C., & Aloise, D. J. (2015). Solution methods for scheduling of heterogeneous parallel machines applied to the workover rig problem. Expert Systems with Applications, 42(9), 4493-4505 2. Danach, K. M., Khalil, W., Junior, F., & Gelareh, S. (2014). Routing parallel heterogeneous machines in maintenance planning:A hyperheuristic approach.

ICCSA, (p. 441). Le Havre, France. The following contribution is the outcome of this chapter:

1. Danach, K., Khalil, W., Gelareh, S., Semet, F., & Junior, F. (2015). Capacitated Single location P-Hub Location Routing : Hyperheuristic Approach.

ROADEF. Marseille, France.

In chapter 4 we study the impact and effectiveness of several heuristic selection methods on the overall performance of HHs proposed for our problems in the previous chapter. This includes the approaches including learning mechanisms and without it.

The following contribution is the outcome of this chapter:

1. Danach, K., Gelareh, S., Khalil, W., & Semet, F. (2016) During this thesis, we have also produced other contributions that make use of the knowledge of HH we have obtained during this thesis.

Chapter 2

Workover Rig Problem

Introduction

One of the most important natural resources of the world since late XIX century is oil, which shapes our lives in many ways, not only by being the main energy source of our era, but also its uses on plastics, road construction, pharmaceutical drugs, etc. The process of finding, drilling, producing, transporting and refining oil provides a wide range of research fields, from geology to biochemistry and so on.

Many land (onshore) oil fields are composed of many wells, which are distributed geographically. Occasionally, failures happen on these wells, requiring an intervention inside them to return to their original condition. Such operation normally includes substituting the production equipments (cleaning) or stimulating the reservoir itself (stimulation), to name a few. Those interventions require the use of workover rigs, big structures that can be dismounted, transported and mounted from one well to another, providing safety and accuracy conditions to the intervention. Renting of workover rigs come at great cost, thus having them at standby availability is expensive. This chapter boards the problem of prioritizing onshore interventions using workover rigs to minimize production loss associated with the wells awaiting service. The problem in study here can be classified like a particular case of machine scheduling problem.

A classical problem of machine scheduling represents a set of tasks (or jobs) to be processed, where each task consists of a sequence of operations to be performed using a given number of machines. The processing of an operation requires the use of a specific machine for a particular processing time, and each operation must be executed in the order given by the sequence. Each machine must process only one operation at a time. The objective is to arrange the wells so that the global performance measures can be optimized.

A vast body of literature is dedicated to the classical problems of scheduling (job-shop and flow-shop), but in specific applications, the quantity of publications is rather limited. Two well-known samples of historical papers for the classical problems are related to the problems with 10 wells and 10 workover rigs proposed by Muth J.F. (1963), which was only solved 26 years later by [START_REF] Carlier | An algorithm for solving the job-shop problem[END_REF]. In this problem, each task has to be processed on each of the given workover rigs exactly once -classical job-shop scheduling problem.

Here we are concerned by a particular case of machine scheduling, an application to the problem of Workover Rigs Scheduling (WRS) for maintenance services in oil wells of onshore fields. The problem consists in finding the best schedule for a small number of workover rigs to minimize the production loss, associated with a large number of wells waiting for service. [START_REF] Smith | Various optimizers for single-stage production[END_REF] showed that if the problem has only one rig and no time windows, the optimal sequencing is obtained, independent of the quantity of wells, by sorting the wells in an increasing order of value P i Et i , where P i is the rate of daily production loss of well i and Et i is the estimated maintenance service time of well i. [START_REF] Barnes | Scheduling a backlog of oil well workovers[END_REF] provided lower bounds for workover rigs problem. The authors consider m rigs and n wells, and show that a lower bound can be obtained as M ax{B(1), B(n)} where B(n) is the total production loss with n rigs and
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B(1) = 1 2m [(m -1)B(n) + 2B(1)
] is the total production loss with only one single rig. [START_REF] Noronha | Um algoritmo heurístico guloso aplicado ao problema do gerenciamento das intervenções em poços petrolíferos por sondas de produção terrestre[END_REF] presented a greedy heuristic algorithm for the workover rigs problem. The authors consider priorities for the wells as G ij = P i T ij , where, P i is the daily rate of production loss of well i, and T ij is the estimated maintenance service time of the well i by the rig j. In their greedy approach, the authors consider also the environmental risks corresponding to the service. The proposed algorithm was later used a constructive phase of a GRASP metaheuristic. [START_REF] Aloise | Scheduling workover rigs for onshore oil production[END_REF] proposed a variable neighborhood search (VNS) metaheuristic. In the VNS algorithm the authors, have used the constructive heuristic H1, proposed by [START_REF] Noronha | Um algoritmo heurístico guloso aplicado ao problema do gerenciamento das intervenções em poços petrolíferos por sondas de produção terrestre[END_REF], which adds one well at-a-time to the routes computed for the workover rigs. The local search procedure proposed for the VNS is based on a swap neighborhood defined by all solutions, which can be obtained by the exchange of a pair of wells from the current solution. The numerical experiments were performed with real-life instances showing a loss reduction of 16.4% on average. This VNS metaheuristic approach is currently being used as an operational scheduling tool at Petrobras S. A (Brazilian National Petroleum Corporation).

Mattos Ribeiro et al. (2011) proposed a simulated annealing (SA) for a variant of the WRS where the travel time is not considered. The authors have used CPLEX 12. 1 (IBM, 2009) to solve instances with up to 50 wells. They have also reported that the proposed SA presents a low deviation (the worst case, 0.037%) from optimality and takes, approximately, 10 seconds for solving real-life instances composed of 25, 50, 75, 100 and 125 wells, with 2, 4, 6, 8 and 10 rigs.

In [START_REF] Duhamel | Models and hybrid methods for the onshore wells maintenance problem[END_REF], three mixed integer linear models are proposed. The first model improves an existing scheduling-based formulation. The second one, uses an open vehicle routing approach and the third one is an extended model for which a column generation strategy is developed. The models were tested using CPLEX 12.0 under default parameters and the instances were composed with up to 60 wells, the number of rigs varies from 2 to 5 and the time horizon is set to 15 days. The authors report optimal values for medium-size instances of WRS. an adaptive large neighborhood search (ALNS), and a hybrid genetic algorithm (HGA). They managed to solve up to 10 rigs and 300 wells.

Objective and contribution

We propose a new model, which is based on an arc-time-indexed formulation inspired by the work in [START_REF] Pessoa | Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems[END_REF]. We also propose several classes of valid inequalities in order for tightening the MIP polytope.

The work was motivated by the industrial application and the need for an efficient and scalable solution framework that can exploit the knowledge hidden in all the heuristics proposed for the problem at hand.

Here, a heuristic selection type of hyperheuristics is proposed, which is a selfadaptive mechanism in the sense that the selection of heuristic algorithm (chosen from a pool of constructive, improvement and destructive ones) iteratively applied to the problem is based on a proposed learning method. Our main goal is to show that the self-adaptive nature of the learning mechanism controlling the heuristic selection type hyperheuristic allows a very efficient exploration of neighborhoods using several heuristics. This helps us to identify the classes of heuristic, among those applied here, which fit best for solving instances of WRS.

While we only focus on the HH heuristic in this thesis, however, in order to evaluate the performance and measure the quality of solutions reported by our solution framework, the outcome of the HH has been injected into an exact solution method which is a branch-and-price algorithm. The best solution reported by the HH constitutes the initial columns of a branch-and-price algorithm and helps accelerating convergence. With a fast convergence or within a given time limit when the branch-and-price decide to terminate we are able to show whether the solution reported by the HH is optimal or will have an indication of distance from optimality. We must emphasize that this branch-and-price have been developed by a different group of researchers and is independent of the work in this thesis.

Details of this approach can be found in [START_REF] Rahimeh Neamatian Monemi | Solution methods for scheduling of heterogeneous parallel machines applied to the workover rig problem[END_REF].

Problem Description

The problem is described as following: A set of wells requiring maintenance, J = {1, . . . , n}, scattered within a geographical area. [d ij ] |J |×|J | represents the distance in term of travel time between every ordered pair of wells (i, j) ∈ J × J .

A set of workover rigs (i.e. mobile maintenance heterogeneous workover rigs) are available to serve the wells upon need and there is a service capacity q r associated to each workover rig r ∈ R such that q 1 ≤ • • • ≤ q |R| . Every workover rig r can offer all the services offered by rig r , q r ≤ q r . To every well j ∈ J a required service level l j is associated and there is a smallest r for which every rig r : r ≥ r can serve the well j. At time 0, all the rigs are at their initial locations and the production is already interrupted (or significantly deteriorated) at all the wells requiring maintenance. Duration of maintenance on well i ∈ J is p i and production revenue per time unit has a monetary value of g i , i ∈ J . The objective is to minimize the total lost production revenue that is to minimize the total completion time of maintenance activities.

Mathematical Model

Our modeling framework relies on a set of assumptions as in the following: i) A field of work is comprised of a set of wells and a set of workover rigs within this field dedicated to serve wells inside it. Normally, the area of this field as well as the travel time between every pair of wells is limited. This suggests that a workover rigs does not need to travel a very long distance between pairs of well.

ii) The process takes place on a discrete-time planning horizon. Moreover, we assume that dismounting (equivalently mounting) of all workover rigs are equal and equivalent to one unit of time, δt, iii) the dismounting (equivalently mounting) time is already included in the processing time of every workover rig, and, iv) without loss of generality, we assume that the rigs are heterogeneous meaning that no two machines have the same compatibility list (otherwise, the subproblems per those similar machines will collapse to one as explained in [START_REF] Pessoa | Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems[END_REF]).

The necessary parameters and variables are listed in Table 3.4: 

Parameters:

J : the set of well to be serviced, R: the set of workover rigs to service the wells, T : the time horizon periods, 1, . . . , T , p i : the process time of task i, d ij : the travel distance between the location of task i and the location of task j, 0: the dummy task, which is the first and last task on every machine.

Variables:

x ijrt : 1, if task i is finished and task j is started at period t on machine r, 0, otherwise.

We define J + = J ∪ {0}. To this end, we use workover rig (WOR) and machine, alternatively. The well and tasks/job are also used alternatively.

Workover Rig Scheduling (WRS) Problem

In our modeling approach at t = 0, every machine is processing dummy task 0.

(W RS) min r∈R t∈T i∈J j∈J + g i (t + p j )x ijrt (2.1) s. t. j∈J x 0jr p 0 +d 0j + x 00r p 0 = 1, ∀r ∈ R, (2.2) i∈J |T | t=p i +1 x i0rt + x 00r p 0 = 1, ∀r ∈ R, (2.3 
)

r∈R i∈J + :j =i |T | t=p i x ijrt = 1, j ∈ J , (2.4 
)

r∈R i∈J + :j =i |T | t=p j x jirt = 1, j ∈ J , (2.5) 
x ijrt ≤ l∈J t+d jl +p j ≤|T | x jlr t+d jl +p j , + x j 0 r t+p j ∀t ∈ T , r ∈ R, i ∈ J + , j ∈ J : j = i, (2.6 
)

x ijrt ∈ {0, 1} |J + |×|J + |×|T |×|R| . (2.7)
The objective function (2.1) accounts for the minimizing the lost production revenue.

Constraints (2.2) ensure that for every machine, either it start working on a task j at p 0 + d 0j (assuming that |R| ≤ |J |) or x 00r0 = 1 meaning that the task 0 is being treated after the task 0 and terminated at time p 0 . If a real job i = 0

started, then such a first task on every machine r does not start before p 0 + d 0i , which accounts for the process time of dummy job 0 plus travel time from the initial location (where the dummy job takes place) to i.

The last job on every machine is actually the dummy task 0, which is executed after the last real task i. Such a task does not occur during [0, p 0 + d oi ], evidently. This is ensured in constraints (2.3).

Constraints (2.4) ensure that the real task j will start at some point in time after another task i ∈ J + on one of the available workover rigs. However, this cannot start earlier than p 0 + d 0i . Analogously, constraints (2.5) ensure that a real task j is followed by a task i ∈ J + on the same machine and this cannot occur within

[0, p 0 + d oi ].
For task j executed after a real task i on machine k and time t there must be a consecutive task l ∈ J + , which starts at t + p j + d jl ≤ |T | (starts at t + p j + d jl : l = 0). This has been ensured by constraints (2.6).

Valid inequalities

Constraints (2.2)-( 2.6) describe the polytope of the problem including all the feasible solutions given the fact that all the variables have positive cost in the objective function. However, there are some other constraints which, can be added to the model as following: a) Every task i is excused at some point in time on one machine:

t∈T j∈J + r∈R x ijrt = 1, ∀i ∈ J + (2.8) b)
For two distinct well i, j on the same machine k, either of them is executed before the other one:

t∈T r∈R (x ijrt + x jirt ) = 1, i, j ∈ J (2.9) c) The total number of variables x ijrt , i, j = i ∈ J + , r ∈ R, t ∈ T taking 1 in
any feasible solution is constrained as following:

i,j =i∈J r∈R t∈T

x ijrt = |J |, (2.10) i,j =i∈J + r∈R t∈T x ijrt = |J | + 2|R|.
(2.11) d) a real task i ∈ J must be followed (precede) by a another task j ∈ J + : j = i:

|T | t=p 0 j∈|J + | x ijrt ≤ |T | t=p 0 j∈|J + | x jirt , ∀r ∈ R, i ∈ J , ( 2 

.12)

e) There is no 3-cycle in the order of jobs on a give machine:

|T | t=p 0 (x ijrt + x jlrt + x lirt ) ≤ 2, ∀r ∈ R, {i, j, l} j =i,l =i,l =j ∈ J , (2.13) 
f) On the same machine no two wells can be executed at the same time:

i∈J + j∈J + :j =i x ijrt ≤ 1, ∀r ∈ R, t ∈ {p 0 , . . . , , |T |} (2.14) i∈J + j∈J + :j =i x jirt ≤ 1, ∀r ∈ R, t ∈ {p 0 , . . . , , |T |} (2.15)
g) On every rig r either at some point t ∈ T a task j ∈ J is started (finished) as the first (last) task or x 00r0 = 1:

j∈J t∈T x 0jrt + x 00r0 = 1, ∀r ∈ R, (2.16) j∈J t∈T x j0rt + x 00r0 = 1, ∀r ∈ R, (2.17) 
The aforementioned constraints are particularly useful when due to some relaxations or reduced cost updates, the pricing problem or Lagrangian subproblem objective has variables with negative cost. There, these constraints serve to avoid too many variables take 1 and will tighten the pricing problem/Lagrangian relaxation polytop.

Preprocessing

Some of the variables can be set to zero in advance. The total number of variables eliminated in this way depends on the instance of problem being solved.

Lemma 1. None of the wells i ∈ J can receive service during [0, min

j∈J {p 0 + d 0j } - 1] on any machine.
Analogously, we have: 

variable fixing by task-machine feasibility

As stated in the problem description, the workover rigs of larger size can serve those wells of equal size or smaller while the inverse does not hold.

Let R(j) represents the set of all workover rigs that can serve task j. The following constraint ensures the feasibility of task assignment.

x ijrt = 0 ∀i, j ∈ J : j = i, r / ∈ R(i) ∨ r / ∈ R(j) (2.18)

Illustrative example

We have considered |R| = 3, |J + | = 7 and a time horizon |T | = 16. We have run the model in CPLEX 12.60 for a TiLim = 1000 seconds.

g i = 1, ∀i ∈ J + , d ij = (i×j+(n-i)(n-j)) 10
, ∀i, j ∈ J + and p i = i, ∀ ∈ J + . 

Hyperheuristic for WRS Problem

The mathematical model of WRS becomes intractable even with small |T |, few wells and rigs. Therefore, in order to solve more realistic size instances, we have to resort to other techniques, which are efficient and provide good approximation of optimal solutions. From among such techniques, we have chosen to use the concept of Hyperheuristic (Burke et al., 2009a(Burke et al., , 2008b[START_REF] Burke | Hyper-heuristics: A survey of the state of the art[END_REF] The low-level heuristics are categorized as follows:

1. constructive ones, which produce complete feasible solutions from the scratch, 2. improvement methods that accept a feasible solution and try to improve it within a predefined neighborhood, 3. perturbation procedures that try to inject some noises to the process in order to produce solutions, which might help in finding better solutions and possibly escaping from local optima, and finally 4. reconstructive mechanisms to (randomly or deterministically) destroy and reconstruct part of solutions again, hoping to jump to some unexplored part of the search space that might involve better solutions.

Low Level Heuristic

In the following, we briefly explain how each of these low-level heuristics performs.

1) constructive heuristic: we construct an initial feasible solution, step-by-step, according to a set of predefined rules without any effort to improve this solution.

i) C1 construct a solution by exploiting the instance information. Here, we sort wells based on the decreasing production parameter. Subsequently, we start from the wells with highest production and allocated each well i to the compatible rig r that is less utilized among others (see Algorithm 4).

2) improvement heuristics:

The improvement algorithm starts from a feasible solution and improve it by applying successive changes within a given neighborhood. Our neighborhoods are characterized by the following moves:

i) better-sequence-on-the-same-rig: For a given rig, we reorder (one task per time) the sequence of allocated wells to be served by this rig (see Algorithm 2) and among the improving solution found, we move to the best found feasible solution in a greedy manner.

ii) inset/drop-between-two-different-rigs: aiming at making a balanced utilization and fair distribution of tasks among rigs, for two randomly chosen rigs r i , r j = i, we consider three moves: 1) move one tasks from rig r i to rig r j = r i such that the difference between the objective functions of rig r i and rig r j , i.e. ∆ = (OF (r i ) -OF (r j )), being minimized. 2) removing a well from the list of wells being served by a given rig and insert it in a proper place within the sequence of wells being served by the rig with the least objective function. 

S M ← [S M , J i ] 12:
end for The perturbation phase assures a diversification strategy during the search; it tries to explore the search space via randomized efforts to escape search from local optimum. In this study, we implement different perturbation heuristics as the following:

1. Mutation-like: it resembles the genetic operator used to maintain diversified population from one generation to another. This operator corresponds to a perturbation in the configuration of a chromosome (a sequence of wells on every rig), that prevents the risk of premature convergence and allows the exploration of other areas in the search space. The operator is applied with two chromosomes that are selected randomly in the current population.

2. Crossover: In this case, the swapping of 'genetic material' is made with the rigs (part of the chromosome), while in the mutation operator is made with two wells, one in each chromosome.

3. SequenceRandomSwap: This operator is a kind of mutation-like operator.

But here, the perturbation is made in the same chromosome, which is carried out randomly.

4) Destroy-and-reconstruct heuristic:

In order to better exploit the search space (diversify the search process), we define an operator that destroys and reconstructs part of a solution, which is randomly chosen. Thus the operator Reconstructive1 destroys a part of the current solution and then reconstruct it by using constructive algorithms presented previously.

Reinforcement learning

A reinforcement learning method in an selection-type hyperheuristic, selects a heuristic that has the maximal utility value (Burke et al., 2008b). Thus, it is a mechanism that chooses corresponding actions given some information about its performance, and update this performance at each time it is applied. The process takes into consideration when to diversify and when to intensify in the search process. In chapter 4, we will elaborate more the concept, techniques, and methods of reinforcement learning.

Here, we employ two different methods of learning: 1) the built-in method of generic intelligent hyperheuristic -GIHH (Misir, 2012) 1 and 2) our improved method called Alternative Learning Method (A.L.M.).

Both methods rely on using Hyperheuristics Flexible framework (Hyflex), which is an well-defined library incorporating a set of methods that assure the communication between the problem domain and the solver components.

In GIHH, The number of new best solutions and time spent by each heuristic are determinant to update the probability vector in the selection operation. In addition, an acceptance criterion is defined to balance intensification and diversification processes. In general, diversification is occurred at the beginning of the search, followed by intensification towards the end.

Our proposed hyperheuristic, is based on constructing a feasible solution and consequently applying of heuristics that are chosen following a specific criteria.

Then we design a tabu list that prevents some heuristics, in particular conditions, to be applied, in order to guide the search to apply heuristic series to reach the optimal solution.

We define a so-called heuristic weight variable as the following:

Ψ i = ∆f = (f in -f out )/f in
A Heuristic H i weight is equal to the negative sum (for minimization case) of the objective function values taken by the application of H i divided by the total number of times that H i has been applied during the search.

Our tabu list T l is designed as the following: Given our time limit, we initially set T l = ∅ and at each iteration, T l is updated as follows: if the CPU time spend is less than the half of the time limit, we put all heuristics that, in mean more frequently used than the other my suggestion. Also, all heuristics with too small weights in T l . In case of the consumed time is greater than the half of the time limit, T l will contain all heuristics expect those having the best improvement and those having their weight greater than the mean of heuristics weights. The Tabu list is updating with change of quality of each heuristic -calculation of Ψ i . To simplify our tabu strategy, we represent it as a learning method in Algorithm 3.

Algorithm 3 Alternative Learning Method end while OUTPUT: heuristic selected 24: end procedure 

Numerical experiments

Our computational experiments are based on a set of perturbed data from Petrobras and within the Brazilian territory. The data relates to a particular field of operation within which the total number of wells is around 200 wells and are densely distributed in such a moderate size field. A geographical presentation of spatial distribution of wells within this field for an aggregated instance of size |J | = 100

is presented in Figure 2.2.
Our order of business is as follows: we run our hyperheuristic on the instances of the problem. We compare our method against that of GIHH and present an analysis of the results. In addition, HH results are compared with result of an exact method called branch, price and cut algorithm which uses the best-known solution of our hyperheuristic as an initial column in the branch, price and cut algorithm in [START_REF] Rahimeh Neamatian Monemi | Solution methods for scheduling of heterogeneous parallel machines applied to the workover rig problem[END_REF].

All experiments were performed on an Intel 2.54 GHz core i5 CPU and 4

Gb of memory running on Windows 7. All instances are named in a format instance_i_j where i indicates the number of wells, and j indicates the number of workovers in the instance.

There are, in total, 37 instances ranging from 10 tasks and 3 workover rigs to 200 tasks and 12 workover rigs. Table 2.2 reports the numerical experiments.

The first column reports the instance name, the second one indicates the objective value of the initial solution. The third (resp. fifth) column reports the objective function value of the best solution found when using the learning mechanism of GIHH framework (resp. A.L.M.). The computational times of GIHH and that of A.L.M. are reported in the fourth and sixth columns, respectively.

We further assume p 0 = 0, d 0j = 0, ∀j in our experiments. We introduce ν a , a ∈ {GIHH, A.L.M.} defined as in (2.19) to be the accumulated relative improvement of each of the two methods over all the 37 instances.

ν t = 37 i=1 InitObj a -BestObj a InitObj a (2.19)
For GIHH , ν GIHH is equal to 61.205 while for A.L.M., ν A.L.M. is equal to 63.497. This confirms that in average our method is superior to that of GIHH.

The solution method is ended in accordance with the termination criteria. The termination condition takes in consideration avoiding useless computation and tries to avoid early termination.

The proposed termination criteria, sets a global time limit:

T l = max{10000, 1000 N umberof W ells N umberof W orkovers } seconds for the overall computation time while for every low-level heuristic the termination criteria relies on the number non-improving solutions,

L i = 100 N umberof W ells N umberof W orkovers
. In addition, we set a third termination criteria to terminate the whole algorithm once W = 10 N umberof W ells N umberof W orkovers non-improving iterations is observed. Clearly, almost always, when the number of wells is less than 50, the CPU time is almost less than 5 seconds and when the number of wells is greater than 50, the consumed time is around 10 seconds using GIHH. However, the result shows that, except for four instances, still our computational times are always inferior to those of GIHH. For instances that have more than 50 wells in it, our computational times remains around 7 seconds.

Instances Instance_200_12 Instance_200_10 Instance_200_7 Instance_175_12 Instance_175_10 Instance_175_7 Instance_150_12 Instance_150_10 Instance_150_7 Instance_125_12 Instance_125_10 Instance_125_7 Instance_100_12 Instance_100_10 Instance_100_9 Instance_100_7 Instance_75_10 Instance_75_9 Instance_75_7 Instance_50_10 Instance_50_9 Instance_50_7 Instance_50_5 Instance_35_7 Instance_35_5 Instance_35_3 Instance_30_7 Instance_30_5 Instance_30_3 Instance_25_7 Instance_25_5 Instance_25_3 Instance_20_5 Instance_20_3 Instance_15_5 Instance_15_3 Instance_10_3
Computational Time (sec.) An absolute majority of the calls is associated with the order improvement heuristic in A.L.M. and a minor part belongs to the reconstructive heuristic. In the Table 2.3 we report our numerical experiments. The first column reports the instance name, followed by the column reporting best objective function of the solutions found by our hyperheuristic and the CPU times in the column immediately next to it.

In column 4 and 5 , reports the number of branching performed and number of columns added before termination [START_REF] Rahimeh Neamatian Monemi | Solution methods for scheduling of heterogeneous parallel machines applied to the workover rig problem[END_REF]. The relative gap between the solution of our hyperheuristic and that found by the branch, price and cut upon termination was shown in the sixth column. In general, the solutions found by hyperheuristic are practically very good solutions. The CPU time is reported in the next column, which shows that while we can obtain a high quality solution with our heuristic very quickly, a similar quality solution with branch, price and cut take much longer. This may confirm that the proposed hyperheuristic is a good and reliable alternative for a mathematical programming-based method.

Summary, conclusion and outlook to future work

Workover rig scheduling problem is an important problem in the highly sensitive petroleum production industry as it seeks to maintain the optimal production level of a company. There is a huge investment involved in acquiring, training, staffing and operations of workover rigs while the oil production itself plays direct role in the economy growth, welfare and the GDP of a country.

We have proposed a new mixed integer linear model for the workover rig scheduling problem that is based on a time-arc indexed formulation. We proposed several valid inequalities. The results of hyperheuristic were used for setting the initial columns of an exact method. We have shown that as long as the optimal solution (or the optimal interval) is known, the solutions reported by the hyperheuristic are very near to optimal solutions. This confirms the particular efficiency of our learning mechanism in controlling the selection of heuristics and allowing the right heuristic to search the right part of the solution space at appropriate iterations.

However, a major limitation of this work is that we have to keep a very small size set of heuristic as the search in the space of heuristics and neighborhoods becomes very time consuming and deteriorates the efficiency. Moreover, the discretization of planning horizon also needs to be done cleverly in order to avoid unnecessarily enlargement of search space for every heuristic. Some authors also distinguish between the cases where cardinality of the set of selected hub nodes is defined exogenously and when it is an endogenous part of the problem. This topic has been one of the very active areas of research in the past two decades.

We consider the previously defined graph G, a fixed number, p, of hubs node to be installed, Γ, the minimum number of spokes associated to each hub, C, the capacity that can be installed on each feeder route, w ij , the demand to be transferred from i to j, and t ij , the cost between any two node i and j, which is taken in this study as the time needed to travel between node i and j. We also define d i as the load of transporter after leaving node i on a spoke-level route (the load at arrival minus the total demand of i from every other node plus the total supply of i to every other node). We seek to construct from the scratch a hub-and-spoke network, which is consist of a complete hub-level subgraph with p hub nodes and In this work we are dealing with a problem that fits within the category of This work is also distinguished from [START_REF] Gelareh | Capacitated bounded cardinality hub routing problem: Model and solution algorithm[END_REF], by the fact that we do not take into account any upper/lower bound on the number of hubs, rather we assume a fixed cardinally, p, as an exogenous parameter.

To the best of our knowledge, so far, the non-exact methods applied to variants In order to avoid local optima in p-hub location problem, [START_REF] Klincewicz | Avoiding local optima in the p-hub location problem using tabu search and grasp[END_REF] proposed two metaheuristic: tabu search and GRASP algorithm. The considered objective was to minimize the total costs of sending traffic over links. In these two methods, local search procedure is based on the 2-exchange neighborhood.

A p-median Problem was treated by [START_REF] Rolland | An efficient tabu search procedure for the p-median problem[END_REF] that proposed a tabu search algorithm which uses short term and long term memory, and a strategic oscillation for random tabu list sizes.

Abdinnour-Helm (1998) developed a hybrid method based on a combination of genetic algorithm and tabu search in order to solve an uncapacitated hub location problem with single allocation. Genetic Algorithm is used to choose hubs, while Tabu Search is used to assign spokes to hubs.

A two phases of tabu search algorithm (location and routing phases with short term memory) has been considered by [START_REF] Tuzun | A two-phase tabu search approach to the location routing problem[END_REF], in order to solve capacitated hub location problem with single allocation. Table 3.1 summarizes some key features in closely related contributions. This work contributes to the state-of-the-arts as follows: First, we present a formulation where the number of hubs is fixed. We then propose a particular Lagrangian relaxation of the problem allowing to exploit the reduced cost of spoke level variables. The outputs of this relaxation scheme are then used in our proposed hyperheuristic framework. To the best of our knowledge, this is the first work tackling a variant of hub location problems using a hypereutectic approach (in particular exploiting Lagrangian relaxation information in hyperheuristic). The proposed hyperheuristic is comprised of a portfolio of low level heuristics (some of which use the Lagrangian relaxation information) and a heuristic selection method that learns in the course of process how to choose among the existing heuristics the one leading to a higher likelihood of success and improvement. The later is in fact a reinforcement learning method that has been inspired from the concept of association rules in the business data mining world. To further expand our research, we have also tackled the problem presented by [START_REF] Rodríguez-Martín | A branch-and-cut algorithm for the hub location and routing problem[END_REF].

For this problem, we propose a hyperheuristic method with another method of reinforcement learning methods called Q-learning, in order to guide in selection heuristic to be applied during the search.

The two aforementioned problems are distinct in the sense that as the first one is a transportation problem, the capacity concerns the volume of flow on the arcs (spoke-level arc) while the second treats the capacity as the maximum number of spokes along a cycle presenting the limited number of ports on switches, routers etc.

in a telecommunications network. We denote the first problem as CSApHLRP-1, and the second CSApHLRP-2.

The remainder of this paper is organized as in the following: In section 3. Computational experiments and discussions are reported in section 3.4. Finally, in section 3.5, we conclude our work and present the possible future work.

Mathematical Formulation

We present two mathematical models for the first variant of HLRP problem. The following parameters and variables are used in models, CSApHLRP-1-F1 and CSApHLRP-1-F2. The only difference in variables in these two models, refers to variable r, which will be declared as 2-index or 3. w ij : the flow from i to j, t ij : the distance/time on a direct link on the edge (arc) i -j, α: the factor of economies of scale (the factor of travel time efficiency over hub edges), p:

the upper bound on the number of hubs (depots), Γ:

the minimum number of spokes allocated to each hub/depot node, C v : the capacity of each vehicle for each feeder network, ϕ k : the (fixed) average transshipment time at hub k.

Table 3.3: The decision variables for CSApHLRP-1-F1 and CSApHLRP-1-F2.

x ijkl : the fraction of flow from i to j traversing inter-hub edge {k, l}, s ijkl : the fraction of flow from i to j traversing non-hub edge {k, l}, r ij (r ijk ): 1, if the arc (i, j) belongs to a spoke-level route (i and j are allocated to hub k in CSApHLRP-1-F1), 0 otherwise. z ik :

1, if the node i is allocated to node k where k is a hub, 0 otherwise.

(CSApHLRP

-1-F1) (CSApHLRP-1-F1) min i,j,k,l (t kl (s ijkl + αx ijkl )) + i,j,k,l:(k =i∨l =j) (ϕ k + ϕ l )x ijkl (3.1) s. t. k z kk ≤ p (3.2) l z kl = 1 ∀k ∈ V (3.3) r ijk ≥ Γz kk ∀k (3.4) j r ijk = z ik ∀i, k (3.5) j r jik = z ik ∀i, k (3.6) j:l =j r jlk = j:l =j r ljk ∀l, k (3.7) r ijk + r jik ≤ z ik ∀i, j, k : j = i (3.8) r ijk + r jik ≤ z jk ∀i, j, k : j = i (3.9) z ik ≤ z kk ∀i, k ∈ V : k = i (3.10) k =i (x ijik + s ijik ) = 1, ∀i, j ∈ V : j = i (3.11) l =j (x ijlj + s ijlj ) = 1, ∀i, j ∈ V : j = i (3.12) l =i,k (x ijkl + s ijkl ) = l =j,k (x ijlk + s ijlk ), ∀i, j, k ∈ V, k ∈ {i, j, } (3.13) l =k x ijkl ≤ z kk ∀i, j, k ∈ V : j = i, k < l (3.14) l =k x ijlk ≤ z kk ∀i, j, k ∈ V : j = i, k < l (3.15) s ijkl ≤ m r klm ∀i, j, k, l ∈ V : l = k (3.16) ijl:j =i w ij s ijkl ≤ C, ∀k ∈ V (3.17) r ∈ B |V | 2 , z ∈ B |V |×|V | , x ijkl , s ijkl ∈∈ R |V | 4 [0,1]
(3.18)

The represents a hub depot i. If a node is designated as a hub node, there must be at least Γ nodes (including itself) allocated to it (making the route) as stated in (3.4).

Here, we assume that Γ = 3. Constraints (3.5) (3.6) ensure that every spoke node that is assigned to a hub node will not be part of more than one route (i.e. will be part of exactly one route ) ensure that the flows on the route (spoke) edges will traverse in the correct direction and on an existing feeder edge. Constraints (3.17) ensure that the volume of flow on every leg of the routes associated to the hub nodes is constrained to the capacity of vehicles. Given that the flow leaving a spoke node will traverse a unique link encompassed from that spoke node, the term on the left side determines the whole flow leaving the spoke node k no matter originated from k itself or passing through it.

(CSApHLRP-1-F2)

A 2-index (design variables) was proposed in [START_REF] Gelareh | Capacitated bounded cardinality hub routing problem: Model and solution algorithm[END_REF] for the Bounded Cardinality Capacitated Hub Routing Problem (BCCHRP). In this model, definition of variable r does not indicate the allocation for end-nodes to any hub. More precisely, r ij does not determine to which hub it belongs. This somehow helps to get rid of some of the constraints in the preceding model, however, in order to make sure that both end-points belong to the same hub node one needs to add some additional constraints.

(CSApHLRP-1-F2) 

min i,j,k,l (t kl (s ijkl + αx ijkl )) + i,j,k,l:(k =i∨l =j) (ϕ k + ϕ l )x ijkl (3.19) s. t. k z kk ≤ p (3.20) l z kl = 1 ∀k ∈ V (3.21) z ik ≤ z kk ∀i, k ∈ V : k = i (3.22) i z ik ≥ Γz kk ∀k ∈ V (3.23) j =i r ij = 1 ∀i ∈ V (3.24) j =i r ji = 1 ∀i ∈ V (3.25) r ij + r ji ≤ 2 -z ik -z jl ∀i, j, k, l ∈ V : j = i, k = l (3.26) r ij + r ji ≤ 1 ∀i, j ∈ V : j = i, (3.27) k =i (x ijik + s ijik ) = 1, ∀i, j ∈ V : j = i, (3.28) l =j (x ijlj + s ijlj ) = 1, ∀i, j ∈ V : j = i, (3.29) l =i,k (x ijkl + s ijkl ) = l =j,k (x ijlk + s ijlk ), ∀i, j, k ∈ V, k ∈ {i, j, } , (3.30) l =k x ijkl ≤ z kk ∀i, j, k ∈ V : j = i, k < l (3.31) l =k x ijlk ≤ z kk ∀i, j, k ∈ V : j = i, k < l (3.32) s ijkl ≤ r kl ∀i, j, k, l ∈ V : l = k (3.33) ijl:j =i w ij s ijkl ≤ C, ∀k ∈ V (3.34) r ∈ B |V | 2 , z ∈ B |V |×|V | , x ijkl , s ijkl ∈∈ R |V | 4 [0,1] (3 

(CSApHLRP-2)

Let E = {[i, j] : i, j ∈V, i = j}, the following parameters and variables are used in this model. V set of nodes, w ij the traffic demand from i to j, c jl cost of routing from node j to l, o i total amount of demand originate at node i, d i total amount of demand with destination at node i, q the maximum number of nodes assigned spokes to a hub, f e cost of using the edge e ∈ E in a cycle, β factor of changing the relative weight of the cycle edge costs in the objective function. x e edge variable in a cycle with at least three edges, δ(S) set of edges with exactly one end point in S and E(S) z 1 jj 1, if node j ∈ V is a hub and no other node is assigned to j, z 1 ij 1, if node j ∈ V is a hub and i is assigned to j with i = j, z 2 ij 1, if node j ∈ V is a hub and i is assigned to j, g i jl Amount of traffic that originates at node i ∈ V and travels from hub j ∈ V to hub l ∈ V -{j} 

(CSApHLRP-2) min i∈V j∈V -{j} (c ij o i + c ji d i ) z 1 ij + z 2 ij + α j∈V l∈V -{j} c jl i∈V g i jl + β   i∈V j∈V -{j} 2f ij z 1 ij + e∈E f e x e   (3.36) s. t. j∈V -{i} z 1 ij z 1 ii + j∈V -{i} z 1 ji + j∈V z 2 ij = 1 ∀i ∈ V (3.37) i∈V z 2 ij ≤ qz 2 jj ∀j ∈ V (3.38) j∈V i∈V z 1 ij + z 2 jj = p (3.39) l∈V -{j} g i jl - l∈V -{j} g i lj = m∈V -{i,j} z 1 ij + z 2 ij -z 1 mj -z 2 mj + w ij z 1 ij + z 2 ij - k∈V z 1 kj -z 2 jj ∀i, j ∈ V, i = j (3.40) l∈V -{j} g j jl - l∈V -{j} g j lj = m∈V -{j} k∈V z 1 kj + z 2 jj -z 1 mj -z 2 mj ∀j ∈ V (3.41) x(δ(i)) = 2 j∈V z 2 ij ∀i ∈ V (3.42) x(δ(S)) ≥ 2 j∈V -{S} z 2 ij ∀S ⊂ V, i ∈ S (3.43) x ii + z 2 ij + z 2 i j ≤ 2 ∀[i, i ] ∈ E, j, j ∈ V, j = j (3.44) x e ∈ {0, 1} ∀e ∈ E (3.45) z 1 ij ∈ {0, 1} ∀i, j ∈ V (3.46) z 2 ij ∈ {0, 1} ∀i, j ∈ V (3.47) g i jl ≥ 0 ∀i, j ∈ V, l ∈ V -{j} ( 

Solution algorithm

The proposed solution algorithm, for CSApHLRP-1, is a lower/upper bound solution method. We examine several Lagrangian relaxation schemes of this problem with respect to the quality of their bounds. Each relaxation behaves independently regarding the convergence of dual multipliers as well as development of

Lagrangian relaxation objective function variable coefficients. Therefore, the information stored in objective function variable coefficients can be used to guide different heuristic algorithms that are part of a hyperheuristic framework.

Lagrangian relaxation

Lagrangian relaxation for solving (mixed) integer programming problems was first proposed in [START_REF] Geoffrion | Lagrangian relaxation and its uses in integer programming[END_REF]; [START_REF] Geoffrion | Lagrangean relaxation applied to capacitated facility location problems[END_REF] and later in Fisher (1981,2004). The idea behind this method is to relax complicating constraints by penalizing the objective function upon violation of these constraints. The relaxed problem is expected to be easier to solve than the original problem and provides a dual bound on the optimal value (as well as valuable information about the dual)

of the problem (see [START_REF] Guignard | Lagrangian relaxation[END_REF] for a comprehensive survey of the method.).

Three well-known methods are commonly practiced in the literature for solving the Lagrangian relaxation problems. The oldest and most well-known one is the subgradient method as an iterative method for solving convex minimization problems. The subgradient method was originally proposed in the 60's in the former Soviet Union. Almost at the same time, a very similar method has been also proposed in [START_REF] Held | The traveling-salesman problem and minimum spanning trees: Part II[END_REF] for solving traveling salesman problem. Later, [START_REF]An extension of Davidon methods to non differentiable problems[END_REF] proposed the well-known bundle methods as an extension to the simple subgradient. The volume algorithm was later proposed in [START_REF] Barahona | The volume algorithm: producing primal solutions with a subgradient method[END_REF] as a methods which simultaneously produces a primal feasible solution and a dual bound for the problem. A further analysis of volume algorithm and its relation with bundle methods has been studies in [START_REF] Bahiense | The volume algorithm revisited: relation with bundle methods[END_REF].

Several variants of the subgradient-based methods have been proposed in the literature. Here, based on some observation from our preliminary computational experiments, we opted to use the well-known bundle method of [START_REF] Frangioni | Solving semidefinite quadratic problems within nonsmooth optimization algorithms[END_REF] and the corresponding code (publicly available).

Dualizing some constraints of a MIP model, in Lagrangian fashion, may result in a Lagrangian problem that is easier to solve and its optimal value is a lower bound on the original problem (case of minimization problems) Fisher ( 2004).

In brief, Lagrangian relaxation decomposes constraints of the problem into two separate group:1) The first group, usually named as hard constraints, which are dualized (are transferred and penalized in the objective function), and 2) The remaining subset of constraints that remain in the subproblem.

Let u * * , u * * * and u * * * * are the Lagrangian multipliers with the proper dimensions and sign (unsigned for the equality constraints and nonnegative for the inequalities, i.e. ≤). In the following, we present five different lagrangian relaxations for the mathematical model of in CSApHLRP-1.

LRX1: design relaxation

The aim of this relaxation is 1) to accommodate the hub location variables (z kk ) in the objective function problem with a cost as a function of Lagrangian multipliers,

2) to obtain a subproblem that can be efficiently solved using a general-purpose MIP solver, and 3) determining the values of flow variables by inspection.

The new costs for design variables are calculated byij:j =i (u 4 ijk + u 5 ijk ) for every z kk . These costs are going to be used as guiding information in the heuristic algorithm to bias the search space exploration. 

min i,j,k,l (t kl (s ijkl + αx ijkl )) + i,j,k,l:(k =i∨l =j) (ϕ k + ϕ l )x ijkl + i,j =i u 1 ij k =i (x ijik + s ijik ) -1 + i,j =i u 2 ij l =j (x ijlj + s ijlj ) -1 + i,j,k =(i,j) u 3 ijk l =i,k (x ijkl + s ijkl ) - l =j,k (x ijlk + s ijlk ) + ijk:j =i,k<l u 4 ijk l =k x ijkl -z kk + ijk:j =i,k<l u 5 ijk l =k x ijlk -z kk i,j,k,l =k u 6 ijkl (s ijkl -r kl ) + k u 7 k ( ijl:j =i w ij s ijkl -C) (3.49) s. t.
r ∈ B |V | 2 , z ∈ B |V |×|V | , x ijkl , s ijkl ∈∈ R |V | 4 [0,1]
(3.50)

LRX2: z-relaxed

This relaxation aims at accommodating all the z ij (but no r ij ) variables in the objective function in addition to the already existing flow variables. In this way, the dual information will be contained in the coefficients of z ij variables and such modified costs can be exploited in guiding the heuristic algorithm by allowing better identifying location of hub nodes and allocation of spoke nodes to the hub nodes.

min i,j,k,l (t kl (s ijkl + αx ijkl )) + i,j,k,l:(k =i∨l =j) (ϕ k + ϕ l )x ijkl + u 1 ij k z kk -p + k u 2 k l z kl -1 + ik:k =i u 3 ik (z ik -z kk ) k u 4 k Γz kk - i z ik + ijk,j =i,k<l u 5 ijk l =k x ijkl -z kk + ijk,j =i,k<l u 6 ijk l =k
x ijlk -z kk 

r ∈ B |V | 2 , z ∈ B |V |×|V | , x ijkl , s ijkl ∈∈ R |V | 4 [0,1]
(3.52)

LRX3: r-relaxed

This relaxation aims at accommodating all the r ij (but no z ij ) variables in the objective function in addition to the already existing flow variables. By doing so, the dual information will be contained in the coefficients of r ij variables. Such information can partially describe the network and route structures and can be used to either constructing a partial initial solution or, in general, to guide the heuristic by a given frequency. 

min i,j,k,l (t kl (s ijkl + αx ijkl )) + i,j,k,l:(k =i∨l =j) (ϕ k + ϕ l )x ijkl + i,j =i u 1 ij j =i r ij -1 + i,j =i u 2 ij j =i r ji -1 + ijkl:k =l,j =i u 3 ijkl (r ij + r ji -2 + z ik + z jl ) + i,j =i u 4 ij (r ij + r ji -1)+ ijkl,l =k u 5 ijkl (s ijkl -r kl )+ (3.53) s. t.
r ∈ B |V | 2 , z ∈ B |V |×|V | , x ijkl , s ijkl ∈∈ R |V | 4 [0,1]
(3.54)

LRX4: z, r-relaxed

The idea is almost the same as that of LRX2 except that in addition to the z ij variables, all r ij will also appear in the objective function and their modified costs can be used to guide the heuristic algorithms. Moreover, the resulting subproblem is a computationally inexpensive problem to solve using any of the general-purpose solvers (even often by inspection). Some partial information such as location of hub nodes, allocation of spokes to the routes and some edges along routes can be exploited by using this relaxation.

min i,j,k,l (t kl (s ijkl + αx ijkl )) + i,j,k,l:(k =i∨l =j) (ϕ k + ϕ l )x ijkl + u 1 k z kk -p + k u 2 k l z kl -1 + i,k =i u 3 ik (z ik -z kk ) k u 4 k Γz kk - i z ik + i u 5 i j =i r ij -1 + i u 6 i j =i r ji -1 + ijkl,l =k,j =i u 7 ijkl (r ij + r ji -2 -z ik -z jl ) + i,j =i u 8 ij (r ij + r ji -1) (3.55) s. t.
(3.28), (3.29), (3.30)

(3.31), (3.32), (3.33), (3.34)

r ∈ B |V | 2 , z ∈ B |V |×|V | , x ijkl , s ijkl ∈∈ R |V | 4 [0,1]
(3.56)

LRX5: Lagrangian decomposition

The aim is to decompose the LR into two separate problems, one in the space of design variables z, r and another one in the space of flow variables x, s. 

min i,j,k,l (t kl (s ijkl + αx ijkl )) + i,j,k,l:(k =i∨l =j) (ϕ k + ϕ l )x ijkl + i,j =i,k,l =k u 1 ijkl (r ij + r ji -2 + z ik + z jl ) + i,j =i,k<l u 2 ijk l =k x ijkl -z kk + i,j =i,k<l u 3 ijk l =k x ijlk -z kk + ijkl:k =l u 4 ijkl (s ijkl -r kl ) (3.57)
r ∈ B |V | 2 , z ∈ B |V |×|V | , x ijkl , s ijkl ∈∈ R |V | 4 [0,1]
(3.61)

Hyperheuristic for CSApHLRP-1 and CSApHLRP-2

Our proposed hyperheuristic-selection method is in fact a reinforcement learning method and has been inspired from the concept of association rules in the business data mining world [START_REF] Aguinis | Using market basket analysis in management research[END_REF].

In the following, we propose a hyperheuristic framework (based on the defin-ition of [START_REF] Burke | A classification of hyperheuristic approaches[END_REF]) that: 1) is a heuristic-selection type (as opposed to heuristic-generation type), 2) applies an online learning, and 3) is a hybrid construction-perturbation heuristic.

The overall flow of algorithm is described in the following: First an initial solution is constructed using a constructive heuristic. Then through a learning process, the hyperheuristic proposes a series of perturbation, constructive and/or improvement heuristics in order to optimize the solution.

In the CSApHLRP-1, The first heuristic, which is a constructive one, optionally exploits the Lagrangian dual (for the first problem) information to construct the initial (probably partial) solution. In the next step, such a solution can be partially destructed and reconstructed, perturbed and improved, directly improved or any other combination. A potential improvement made by a transition from the first constructive heuristic to another heuristic is measured. An acceptance criteria then decides on the transition from the current state to another state.

Here, we use a simulated annealing move acceptance method, where the decision regarding the transition (move) to be accepted depends on the quality of solution obtained from applying heuristics (amount of improvement) and the elapsed CPU time. All improved moves are always accepted, and worsening moves might be accepted in accordance with the Metropolis criterion [START_REF] Kirkpatrick | Optimization by simulated annealing: Quantitative studies[END_REF]:

exp(-∆f /T ) > R(0, 1) (3.62)
where ∆f is the difference between the post-transition and pre-transition objective functions, T is a synthetic temperature and R(0, 1) is a uniform random number between 0 and 1. T represents the global temperature. When T is larger, many non-improving or even deteriorating transitions (moves) are accepted while when it tends to zero exp(-∆f /T ) tends to zero, too. Therefore, for sufficiently small values of T , only improvement moves are accepted.

The algorithm starts with solving one or more (in parallel) Lagrangian relaxation(s) of the mathematical model (CSApHLRP-1-F2) using bundle algorithm [START_REF] Frangioni | Solving semidefinite quadratic problems within nonsmooth optimization algorithms[END_REF]. The outputs are in form of one (probably partially) feasible solution as well as one set of the coefficients of variables in the objective function, per relaxation.

In the CSApHLRP-2, the general scheme of the hyperheuristic has some similarity with the proposed hyperheuristic for CSApHLRP-1, expect it does not have any kind of information like results of Lagrangian Relaxation. In addition, the applied acceptance criteria is the so called Great Deluge. Great Deluge accepts solutions according to a dynamic threshold. We elaborate on further details in Chapter 1.

Low level heuristics

A rather large set of heuristics categorized in three classes, constructive, improvement, and perturbation are used within our hyperheuristic framework. In the following we describe every heuristic, proposed for CSApHLRP-1, with sufficient details.

Constructive heuristics build a solution from the scratch, based on several predefined rules. In this study, two constructive algorithms are implemented CS1 and CS2.

CS1 that is detailed in Algorithm4, perform as in the following : it chooses p hubs that have the highest flow transshipment. Then it allocates at least Γ nearest spokes to every hub (by partially respecting the capacity constraint as the volume of demand/supply arriving/departing at the hub for the spoke on route must not violate the capacity). Finally, it incrementally constructs each feeder route by sequencing the spokes allocated to a given hub taking into consideration the capacity constraint.

The second constructive heuristic, CS2, is distinguished from the first one, i.e.

CS1, in the way it chooses the set of p hubs candidates. CS2 uses the information accumulated in the course of solving the third Lagrangian relaxation (LR3) (i.e.

the coefficient of z ik in LR3 objective function) as well as some statistics collected about the frequency that a given node appeared as a hub during the iterations of bundle method and the history of hyperheuristic process, if any. It then allocates at least Γ spokes to each hub then allocate remainder spokes. To construct the spoke-level route and sequencing the hub and its allocated spokes along it, we start from the hub and add the arcs incrementally. Let l be the last node already added to the partial spoke-level route and S L be the set of remaining spokes to put on the route, unless S L is a singleton, the next candidate spoke node, which we call it R_N earest, to be added to the existing partial route is i

* = argmin i∈S L {a 1 t s l sc + a 2 r s l sc }, 0 ≤ a 1 + a 2 ≤ 1, a 1 , a 2 ≥ 0. Where t s l sc
represents the travel time between the last spoke s l in the cycle of the feeder network allocated to h and the candidate spoke s c . r(s l , s c ) corresponds to the r coefficient between s l and s c resulted from LR3. As long as a 2 increases, the influence of LR3 increases.

Algorithm 4 CS1 Improvement heuristics start from a complete solution and apply some moves in order to improve the objective function value. In our study, different improvement heuristics are proposed: IMP 1) In Rotate, given a route (a hub and a sequence of spokes along the route), it rotates (clock-wise or counter clock-wise) the string. Such rotation of size k will designate the k-th spoke node after the current hub as a hub and renders the current hub as a spoke. This heuristic is useful when the order of nodes on the route is rather correct but the choice of hub is the cause of infeasibility or sub-optimality.

IMP 2) Re-order tries to re-sequence the nodes (hub and spokes) in order to find a better order of nodes along the route. While re-ordering, a sequence of {H, S 1 , S 2 , . . . , S m } may turn to {S 3 , S 1 , H, S m , . . . , S 2 } wherein S 3 becomes a hub and H turns to a spoke node. This heuristic takes into the capacity on the route and the total volume of demand and supply of nodes such that by some intelligent re-sequencings, either a feasible solution is obtained or an already feasible solution is improved.

IMP 3) Re-allocate tries to remove an allocated port from a feeder network that has the maximum number of feeder nodes, and inserts it to another feeder network. This node can be a hub or spoke in its original route and can be equivalently hub or spoke in the devotional route. If it becomes hub at the destination then the hub at the destination turns to spoke on the route. Normally, such nodes can be the one in an irreducible subset of the nodes on the route that are the cause of infeasibility or the nodes that are far from each other but lie on the same spoke-level arc (imposing high transportation time).

IMP 4) SW1ffImp randomly swaps two allocated ports from two different feeder networks, if and only if the solution improves the incumbent. This heuristic can be seen as a kind of search that tries to diversify and sample from different parts of the search space.

IMP 5) SW2ffImp randomly swaps tree ports belonging to three different feeder networks, if and only if the solution improves over the incumbent.

Perturbation heuristics start with a complete solution and do some changes in order to inject some diversification. In our study, we implement different perturbation heuristics in a manner of all changes will be in the solution must respect that to connect a pair of spokes i and j, they should have r(j, j) less than a defined PRT 3) SW1hf, swaps a random feeder and its corresponding hub. The hub becomes a spoke and the spokes turns to a hub.

PRT 4) SW2hf a fast local search that swaps a random feeder and a random hub which should not be its corresponding hub.

PRT 5) SWhh, a fast local search swapping two hubs. This can be done by taking into account the supply/demand of the entering hub that can violate the capacity (if we seek generating feasible solutions from perturbation).

PRT 6) Insert/Delete, removes an allocated spoke from a route, and inserts it to another one either with respect to the residual capacity available on another route or even randomly .

It must be emphasized that the perturbation heuristics aim at introducing some diversifications. Therefore, we do not expect a perturbed solution be a feasible one.

Rather, we hope that it can help exploring unvisited regions in the solution space.

For the CSApHLRP-2, most of the components proposed (such as low-levelheuristics etc.) for CSApHLRP-1, are adapted for this problem. The main modification are:

1. The concept of edges is converted to arc in the feeder networks.

2. The problem has constraint capacity on the vertices rather than on the flow.

3. Add a check on the number of spokes allocated to each hub specially in CS1, Insert/Delete and Re-allocate.

4. LR3 results does not intervene in the process of CS2.

Heuristic Selection Methods

As mentioned in chapter 1, several heuristic-selection methods are introduced in the literature. In this study, we work with reinforcement learning mechanism in order to select the corresponding heuristic to be applied during the hyperheuristic process.

Proposed Learning for the CSApHLRP-1

Here, learning mechanism, which is presented in Algorithm 5, is inspired from a data mining technique called Association Rules (AR) guided by a Tabu Search (TS). When looking at the principles of AR, one can observe that AR is actually a kind of reinforcement learning that helps in respecting the dependency order of heuristic applications. The AR was first introduced by Agrawal et al. (1993) and is a technique in data mining that has attracted a lot of attention from the researchers and practitioners. Extracting interesting correlation, frequent patterns, associations or casual structures from group of items in the transaction databases or data repositories are the purpose of association rules technique. The technique of association rules finds interesting relationships among large set of data items. It

shows attribute value conditions that occur frequently together in a given dataset.

Traditionally, AR has been widely-used in Market Basket Analysis [START_REF] Aguinis | Using market basket analysis in management research[END_REF] in order to find how items purchased by customers are related . In association analysis, there are two sets of items (called itemsets): 1) the antecedent (the if part), and 2) the consequent (the then part). Moreover, an association rule has two more values that express the degree of uncertainty about the rule. The first value is called the support for the rule. The support is defined as the proportion of task-relevant data transactions for which the pattern is true. The second one is known as the confidence of the rule. The so called confidence is a measure of certainty or trustworthiness associated with each discovered pattern. Here, our goal is to find some relationships between the different implemented heuristics, in order to find the best series of heuristics to be applied. The numerical reward is not going to be assigned to a single heuristic but to a series of them. Association Rules heuristic selection method deals with two main variables: support and confidence.

These variables are used to measure the performance of a series of heuristics. If a heuristic does not have the required support at a certain time, or if it does not have enough confidence, the Tabu Search metaheuristic method prevents it from being selected. The relevant variables and parameters are explained in the following: Tabu list T l : Given our time limit, we initially set T l = ∅ and at each iteration, T l is Proposed Learning for the CSApHLRP-2

From among several methods for solving the reinforcement learning problem, temporal-difference methods serve our purpose the best as they do not require a complete description of the environment and are fully incremental.

The well-known Q-learning algorithm [START_REF] John | Learning from delayed rewards[END_REF] which falls within this category uses the following update formula:

Q t+1 (s t , a t ) = Q t (s t , a t ) old value + α t (s t , a t ) learning rate •     learned value R t+1 reward + γ discount factor max a Q t (s t+1 , a)
estimate of optimal future value

-Q t (s t , a t ) old value    
where R t+1 is the reward collected after taking action a t in state s t , α t (s, a)(0 < α ≤ 1) is the learning factor (may be the same for all pairs) and γ ≥ 1. wherein s is the current state, a is the action taken in the state s, r is the immediate reward received for executing action a in state s, s is the new state, γ ≥ 1, and 0 < α q < 1 is the learning factor.

In a choice scheme as -greedy (see [START_REF] Christopher | Q-learning[END_REF] for explanations and the proof of convergence), an agent will select the action resulting in the highest reward Q with probability 1and a random action with probability .

The learning rate determines how the newly information will replace the old information. Two extreme cases are '0' in which the agent will not learn anything and '1' in which the agent takes into account only the most recent information.

Here we use α t (s, a) = 0.1∀t.

A discount factor γ close to 0 will make the agent short-sighted by only considering current rewards, while a factor approaching 1 will make it strive for a long-term high reward.

A higher initial condition will encourage further exploration in any case of action update rule will cause it to have lower values than the other alternative and increases the probability of being chosen.

The process of Q-learning algorithm is shown in Algorithm 6. 

Q[s, a] ← Q[s, a] + α(r + γmax a Q[s , a ] -Q[s, a]) s ← s' until Termination
Q-learning based hyperheuristic was applied by [START_REF] Falcao | Q-learning based hyperheuristic for scheduling system self-parameterization[END_REF], in a problem of scheduling. Results proof that using Q-learning improve siginificantly the solution quality compared by solutions got from no-learning hyperheuristic.

Q-LA is used in secondary control to calculate microgrid regulation error (MRE), which is the regulated power, for real time operation. Economy and environmental benefits are so necessary in real time modification process of the generation sched-ule of distributed generators (DGs) like batteries with the MRE by the fuzzy theory and particle swarm optimization method [START_REF] Xi | Q-learning algorithm based multi-agent coordinated control method for microgrids[END_REF]. Q-learning is applied in [START_REF] Boyan | Packet routing in dynamically changing networks: A reinforcement learning approach[END_REF] to packet routing, where it is able to discovering efficiently different routing policies in a dynamic change of network with no information needed about the network topology, traffic patterns and etc. A modified version of Q-learning was proposed to plan pathes for mobile robots because it must be able to autonomous complete various intelligent tasks [START_REF] Gao | Mobile robot global path planning based on improved augment ant colony algorithm[END_REF].

For interested researchers, [START_REF] Dorigo | Ant-q: A reinforcement learning approach to the traveling salesman problem[END_REF], Ho et al. (2006), Choi and[START_REF] Choi | Predictive q-routing: A memory-based reinforcement learning approach to adaptive tra c control[END_REF] and [START_REF] Gaskett | Q-learning in continuous state and action spaces[END_REF] are among good examples of work considering this reinforcement learning method.

Computational experiments

We have generated our instances based on the the well-known Australian Post (AP) dataset, for CSApHLRP-1. The transhipment times are generated randomly for some real values within [START_REF] Danach | Routing Heterogeneous Mobile Hospital With Different Patients Priorities: Hyperheuristic Approach[END_REF]5] for the given time unit. The existing capacities of the original data (see [START_REF] Ernst | Solution algorithms for the capacitated single allocation hub location problem[END_REF]) are not used because they do not always results in feasible solutions as the problem structures are different.

In CSApHLRP-2, the data sets was Civil Aeronautics Board (CAB), which is proposed by O'kelly (1987) The termination criteria are chosen in such a way to avoid useless computation as well as premature convergence. The proposed termination criterion, sets a global time limit T limit = max {6000, n 2 × p × 250} m.s. for the overall computation. In addition, we set a second termination criterion for terminating the whole algorithm once 10 × n × p non-improving iterations have been observed.

CSApHLRP-1 Computational experiments

We assume that our fleet of vehicles is homogenous and therefore with a unique capacity size. Let O i = j W ij and D j = j W ij and let p is the number of hubs.

The capacity is generated as

C = i O i + i D i p .
All instances are named in a format ni_pj_k where i indicates the number of nodes, j indicates the number of hubs and k indicates the factor of economies of scale. While a fair comparison between a heuristic algorithm and an exact decomposition is rather non-trivial, in Table 3.6, we report the results of our computational experiments with hyperheuristic (HH), with and without using results of LR, next to the results of Bender decomposition from [START_REF] Gelareh | Capacitated bounded cardinality hub routing problem: Model and solution algorithm[END_REF]. There are, in total, 24 instances ranging from 10 nodes with 3 hubs to 20 nodes with 6 hubs. The first column reports the instance name, the second(resp. seventh) one indicates the computational times of Bender Decomposition method (resp. HH.).

The best solution found by HH without LR (resp. Bender Decomposition) are reported in the fifth (resp. third). The fourth column reports the Cplex status when apply Bender decomposition method. The gap between HH without LR results (resp. LR HH) and Benders Decompositions are reported in the seventh (resp. ten).

The last column indicates the gap between the best objective function value taken by HH with and without using LR results.

One observes that the relative gaps between the solution reported by Benders decomposition and those of HH never exceeded 0.08% if HH use LR results, otherwise it does not exceed 0.32%. In this table, the negative gaps indicate that such HH solutions are better than the feasible solution obtained by applying the Benders decomposition method in [START_REF] Gelareh | Capacitated bounded cardinality hub routing problem: Model and solution algorithm[END_REF]. When compared with the computational time elapsed to obtain such high quality solutions, it is confirmed that the proposed HH framework is capable of obtaining high quality solutions in very reasonable computational times, specially within LR results.

The gap between HH with and without LR results reaches 3.92%, proves the additional value of using the LR variable coefficient into the process of HH. LR variable coefficient shown in the objective function of LR3, appears very well during the process of HH. In construction phases (resp. in perturbation phase), all routes between any pairs have the coefficient greater than a number ι (resp. ν) are excluded. Furthermore, during the improvement phases pairs with small coefficients are favored to be connected. Table 3.7 reports the total number of iterations every heuristic has worked on each instance. Rotate improvement heuristic has worked the most in all instances. Next, it comes to the constructive heuristics CS1 and CS2 which have more or less similar number of iterations for many instances. This may indicate that the information collected in the course of Lagrangian optimization in LR3, the statistics collected during HH process, and the construction by taking into account demand (i.e. CS1) when choosing the hubs, have some similarities. Among the perturbation heuristics SW2hf contributes in the most number of iterations.

We have applied the proposed HH framework on a wider ranger of problem instance sizes. Table 3.9 reports the statistics of applying the proposed HH on a tested composed of instances of up to 100 nodes.

In Table Table 3.8, initials objective functions of the HH with and without LR results are reported. In general initial objective function using LR results is better than without LR results. The average relative gap between the initial and the best found objective function value for instances of table without using LR results is 21.45% (resp. 19.36% using LR results) while this becomes 26.66% for the instances between greater than 20 nodes Table 3.9. This on one hand is due to a much larger solution space in larger instances which in turn increases the probability of finding better solutions during the search and on the other hand, may show that the HH is capable of benefiting from such a much larger search space to better improve the initial solutions. Another pessimistic view might question the performance of construction heuristics and quality of initial solution constructed by them.

In order to ensure the quality of the solution, we reserve only information about the allocation resulted from LR HH and ignore all spokes routes information. The problem has some similarities with the picked-up delivery vehicle routing problem with multiple depots. Each hub is considered as depot, and the objective is to construct a feeder network for each hub from its allocated spokes. We inject all allocation information into solver, which find feeders network. All constraints related to the number of hubs and allocations was ignored. This process, which use some data resulted from a heuristic approach and complete the solution using a solver is referred to as Matheuristic chapter 1.

Results of matheuristic are reported in Table 3.10, within the gap with the LR HH objective function, and the execution time. All instances for which we do not have BD optimal solution or that have negative gap between HH and BD objective function were tested, in addition to some medium size instances. The gap reaches 2.66% in instance n20_p5_0.8, in addition it finds optimal solution for given allocations to some instances such as n15_p3_0.7, n15_q3_0.8, n15_q3_0.9, etc. The added value of matheuristic, which appears in instances less than 20 nodes, does not appear much pertinent in the medium instances within time limit of 1 hour. Table 3.10 report these results and showing the quality gained, while the negative gaps proves the deteriorated quality by matheuristic. In Table 3.11, we report results of applying iterative method for solving the five variants of Lagrangian relaxation methods proposed in subsection 3.3.1. The different relaxations were solved by using bundle. The bundle method is known for its higher precision and faster convergence compared to the simpler versions of subgradient method. We have initialized the Lagrangean multipliers with the corresponding dual values of the LP relaxation, wherever possible.

In Table 3.11, for every relaxation we have reported the CPU time as well as the best bound obtained for the given amount of CPU time. For some relaxations (for example LR2) the computational time for the very small instances was several order of magnitude higher than other relaxations and the bound quality was not really dominating. Therefore, we have not gone further with the larger instances as the run times were increasing exponentially. From among all five relaxations, only LR3 was able to converge for the problem until size of 20 nodes in reasonable times.

Furthermore, LR3 offers bests bounds among other relaxations. LR1 was able to solve problem up to 15 nodes and 4 hubs but for 15 nodes and 5 hubs, it could just terminated in reasonable time for α = 0.9 from among other values. As mentioned earlier, LR2 is the most expensive relaxation in terms of computational time as it was able to solve instances of 10 nodes with 3 hubs in reasonable time. LR4 and LR5 appear effective in terms of computational time only until instances with 15 nodes and 5 hubs. When doing iterations of bundle algorithm, the subproblem was solved using CPLEX 12.6.2, the time limit was set to 3600 seconds and the number of iterations was set to 100. In Table 3.12, Table 3.13, Table 3.14 and Table 3.15, we report the results of branch and cut in [START_REF] Rodríguez-Martín | A branch-and-cut algorithm for the hub location and routing problem[END_REF], next the HH results. The gap between CPLEX and HH never exceeds 1%. Furthermore, the average of the gap between initial objective and the best found is 21.01%, which inherits some similarity to CSApHLRP-1. Execution time for AP instances with 40 and 50 nodes, was show in Figure 3.8. It is clear that HH process for for these instances doesn't exceed 4.5 sec.

Figure 3.5 -Figure 3.7 sketch the optimal solution for a CAB instance, as proven in [START_REF] Rodríguez-Martín | A branch-and-cut algorithm for the hub location and routing problem[END_REF] and offered by the proposed HH, having 25 nodes, q = 13, α=0.8, β=0.01 or 0.05 or 0.2. Due to the influence of the objective function, while β increase while cycles try be more large.

Conclusion and future work

We proposed a hyperheuristic approach for solving two variants of Hub Location Routing Problems, CSApHLRP-1 and CSApHLRP-2. Given a set of nodes and a set of O-D demands, the problem seeks designating p hubs, allocating each non-hub (spoke) node to one hub while each hub lies on a Hamiltonian path comprised of 
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Computational Time (sec.) the hub and its spokes. The allocation of nodes and the construction of Hamiltonian paths is done in such a way that the transported volume on the route respects a given capacity in CSApHLRP-1, and not exceed a certain number of spokes in CSApHLRP-2 and the hub-level network is a connected one. While exact methods have shown a very limited success, for CSApHLRP-1, when dealing with instances of problem and the instances of moderate size remain still very intractable, one has to resort to non-exact (heuristic-based) methods for obtaining solutions to the moderate-to-large size instances. We applied five Lagrangian Relaxation on the model of CSApHLRP-1, and we use the results of the best one in the process of HH. LR HH has proven in the numerical results as better than HH without LR results, even its initial fitness. We proposed hyperheuristic method for the two problem, in order to solve large instances. The proposed hyperheuristic consists of several low level heuristics guided by means of a learning method, which is inspired from a topic in business data mining world known as Association Rules for CSApHLRP-1, and Q-Learning method for CSApHLRP-2.

Our numerical results, for the two problems, show that in the case of instances for which an optimal solution or a solution with known quality is known, the proposed method is capable of providing high quality solutions. In all cases, such solutions are obtained in a very reasonable CPU times. Therefore, it is expected that for larger size instances for which finding an optimal solution needs an effort beyond the capacity of current hardware resources, the proposed framework that is equipped with advances learning mechanisms performs sufficiently well.

In our future work we will add further aspects of real-life application to the model and consider solving problem taking into account heterogeneous fleet of vessels with different route capacities, inter-route transshipment etc. Selection Methods

Introduction

In the context of combinatorial problem, hyperheuristic is defined as heuristics to select heuristics [START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF]. While the objective of a heuristic is to offer a feasible (near-optimal) solution, selective heuristic aims at identifying a series of heuristics to be applied. The selection process can be totally random or based on some historical performances. Statistical performances should be related to the solution quality offered by each heuristic and the computational time taken by each low-level-heuristic. When these accumulated statistical performance intervene in the selection process, we talk about learning mechanism. Learning is defined as the act of acquiring new, or modifying and reinforcing existing knowledge and information. According to the Oxford dictionaries, it is the acquisition of knowledge or skills through study, experience, or being taught. Hence, The science of enabling computer to learn is known as machine learning (ML), that is considered as the capacity of a computer to learn from historical experiences.

In the context of hyperheuristic, machine learning contributes in selecting an incumbent heuristic to be applied based on historical performances. ML appears in different aspects such as reinforcement learning, choice function, metaheuristic etc, which will be elaborated in the second section. The problem of selection heuristics during hyperheuristic process is closely related to other problems such as Algorithm Selection Problem [START_REF] Rice | The algorithm selection problem[END_REF], MetaLearning [START_REF] Smith-Miles | Cross-disciplinary perspectives on meta-learning for algorithm selection[END_REF] and etc. Algorithm Selection Problem deals with the selecting the best algorithm among a pool to solve a given problem. According to [START_REF] Rice | The algorithm selection problem[END_REF], The broad methodology which binds problems and solution methods with performance and problem characteristics is the algorithm selection framework. Three important dimensions should be taken into consideration when addressing algorithm selection problems: (i) the problem space; (ii) the algorithm space, and (iii) the performance measure. It is an abstract model as shown in Figure 4.1, which limits its wide application and it did not provide a specific implementation methods. However, metalearning has been successfully applied in different problem domains [START_REF] Smith-Miles | Cross-disciplinary perspectives on meta-learning for algorithm selection[END_REF]. Metalearning is a subfield of Machine learning [START_REF] Hilario | A data mining ontology for algorithm selection and meta-mining[END_REF], which exploits metadata (metafeatures) resulted from previous experiments by constructing models that can be used for prediction. In that situation in which no additional knowledge of available algorithms or problem structure exist, the automation of the whole process will then be called the hyperheuristic. 

The Proposed Selection Methods

Several selection methods have been proposed in the literature. Chakhlevitch and Cowling (2008a) categorizes such methods as in the sequel: i) random selection, ii) greedy selection, iii) peckish selection iv) metaheuristic-based hyperheuristic, and v) hyperheuristic with learning.

In this chapter, we will present and propose several heuristic selection methods, which are categorized in two main class: i) random selection (i.e. pure random selection, random descent, and etc.) (see in [START_REF] Özcan | A hyperheuristic based on random gradient, greedy and dominance[END_REF], [START_REF] Kendall | Random Descent (Gradient) Random descent or random gradient declare the heuristic selection strategy as choosing a low-level-heuristic randomly and employ it as long as the candidate solution in hand is improved[END_REF])), and ii) intelligent method, which it is based on some accumulated historical performances (i.e. choice function (see in (Kendall et al., 2002a), [START_REF] John H Drake | A modified choice function hyperheuristic controlling unary and binary operators[END_REF]), metaheuristic (see in [START_REF] Kendall | Random Descent (Gradient) Random descent or random gradient declare the heuristic selection strategy as choosing a low-level-heuristic randomly and employ it as long as the candidate solution in hand is improved[END_REF], (Burke and Soubeiga, 2003)), etc.). In the other way, selection methods can be categorized as sequential selection(i.e. Random Permutation Descent [START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF], Bayes (our proposition), Association Rules (our proposition), etc.) and parallel selection (i.e. peckish (see in [START_REF] Cowling | Hyperheuristics for managing a large collection of low level heuristics to schedule personnel[END_REF], [START_REF] Peter | Using a large set of low level heuristics in a hyperheuristic approach to personnel scheduling[END_REF]), greedy (see in [START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF], (Cowling et al., 2002b)), [START_REF] Özcan | A hyperheuristic based on random gradient, greedy and dominance[END_REF])) , etc.). Some of them perform by applying a selected heuristic until a worsening move is hit.

Random Selection Based Hyperheuristic

The term Random can be defined as "made, or occurring without definite aim, reason, or pattern". Selecting a random item from a predefined set, expects that all items have the same probability to be selected.

Randomness is the loss of pattern or predictability in activities. Therefore, random heuristic selection method is based on selecting one of existing heuristic with no data based input. For that, expected running time depends on the random choices only, not on any input distribution. Random selection algorithms are often simpler and faster than other algorithms. Another important feature of this method, is the inherit diversification in the process.

The disadvantages can be summarized as: i) lack of intensification strategy in the algorithm, ii) The solution quality can vary among more than one execution, and

iii) heuristic selection probability is totaly independent of its performance.

In the following, we present three approaches of random selection regularly used in the literature: i) Pure random, ii) Random descent, and iii) Random permutation descent.

Random Permutation Descent (Gradient)

Random Permutation Descent selection chooses randomly a set of low-levelheuristics, which form a cyclic list. It then applies the first heuristic and employ it until a worsening move is observed. It then applies the next ones in the order dictated by the cycle. Examples of such selection strategy can be found in Özcan and Kheiri (2012), [START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF] and Burke and Soubeiga (2003).

Greedy Based Hyperheuristic

Greedy selection applies all low-level-heuristics independently at each iteration, to the same solution candidate and chooses the one that generates the best solution quality. No diversification type is considered, while only improvement moves are accepted (see Cowling et al. (2002b), [START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF] and [START_REF] Özcan | A hyperheuristic based on random gradient, greedy and dominance[END_REF] for examples of such strategies).

The limitation of this approach is mainly the limited capacity to explore the search space in order to avoid local optima (Chakhlevitch and Cowling, 2008a).

Peckish Based Hyperheuristic

The term Peckish follows the same concepts as a greedy selection, but a subset of low-level-heuristics is considered instead of all low-level-heuristics. [START_REF] Cowling | Hyperheuristics for managing a large collection of low level heuristics to schedule personnel[END_REF] and [START_REF] Peter | Using a large set of low level heuristics in a hyperheuristic approach to personnel scheduling[END_REF] are among the examples of work considering this selection method.

In this chapter, we will present more than one method of Peckish selection based on the way of choosing subset of low-level-heuristic to be applied in a parallel manner. There are as the following:

1. Peckish selection based on Tabu Search (TS), where TS, selects a predefined number of heuristics to be applied in parallel at each iteration.

2. Peckish selection based on Simulated Annealing (SA), where SA, selects predefined number of heuristics.

3. Peckish selection based on Association Rules (AR), where AR, selecst the subset of heuristics to be applied in parallel at each iteration. The approach mentioned above is prevented from reaching its full potential by several obstacles. The first obstacle being that it requires a warm-up period during which the values of the choice functions will be initialized by randomly selected heuristics. The second one, is that achieving the best results requires the weights α, β, and δ of individual components in the choice function to be manually tuned. 
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Reinforcement Learning

In reinforcement learning we are dealing with an agent that learns its behavior through some interaction with a so called dynamic environment. Such interaction is usually realized in trial-and-error efforts fashion. At each point in time, t, an agent is in a given state s t ∈ S and can choose an action a t , eventually from among several, to make a transition to another state s t+1 ∈ S . In this work, we deal with the sets S and A of bounded cardinality, i.e. card(|A|)+card(|S|) < card(R) = ℵ.

More precisely, where we work with a finite number of transition that can be made.

When an action is taken, a numerical reward, r t+1 is attributed. Such reward is a feedback from the environment that depends on the quality of action taken by the agent. An agent that wants to maximize the total reward attributed to it, has to be able to exploit the experiences it has obtained so far and also be able to explore other parts of the environment and identify better actions [START_REF] Sutton | Introduction to Reinforcement Learning[END_REF].

In general, there are two types of reinforcement learning:

1. Online Learning: heuristic rewards are updated online (i.e. dynamically) throughout the search according to the performance of every heuristic.

2. Off-line Learning: heuristics rewards are retrieved from a database, which stores the historical performance of every heuristic in the past.

Naive Bayes Classifier based Hyperheuristic

In the context of probability science, inverse probability is an obsolete term for the probability distribution of an unobserved variable. Hence, Thomas Bayes (1701 1761) proposed a solution to a problem of inverse probability. The proposed solution was presented in "An Essay towards solving a Problem in the Doctrine of Chances" which was read to the Royal Society in 1763 after Bayes' death.

Today, the problem of determining an unobserved variable (by whatever method) is called inferential statistics, the method of inverse probability (assigning a probability distribution to an unobserved variable) is called Bayesian probability, the "distribution" of an unobserved variable given data is rather the likelihood function (which is not a probability distribution), and the distribution of an unobserved variable, given both data and a prior distribution, is the posterior distribution. The development of the field and terminology from "inverse probability" to "Bayesian probability" is described by Fienberg (2006).

Bayesian probability is one interpretation of the concept of probability. In contrast to interpreting probability as frequency or propensity of some phenomenon, Bayesian probability is a quantity that we assign to represent a state of knowledge, Jaynes (1986) or a state of belief [START_REF] De | Theory of Probability: A critical introductory treatment[END_REF] In the Bayesian view, a probability is assigned to a hypothesis, whereas under frequentist inference, a hypothesis is typically tested without being assigned a probability. chance of 0.2 is acceptable by the search space in the case where the heuristic is selected randomly. In the last period, V 3, the selected heuristic h i must have P (h i |class = Improvement) greater than 0.6, or it may be selected in a probability of 0.1.

Bayesian approach is usually used in the domain of data mining, such as in Heckerman (1997), [START_REF] Kirkos | Data mining techniques for the detection of fraudulent financial statements[END_REF], and [START_REF] Kantarcıoglu | Privacy preserving naive bayes classifier for horizontally partitioned data[END_REF]. Also, many researches applied bayesian approach in the context of optimization such as [START_REF] Inza | Feature subset selection by bayesian network-based optimization[END_REF], [START_REF] Mockus | Bayesian approach to global optimization: theory and applications[END_REF][START_REF] Pelikan | Bayesian optimization algorithm[END_REF].

Metaheuristics Based Hyperheuristic

Metaheuristic, as mentioned in the chapter 1, can be defined as an iterative generation of a process, which guides a subordinate heuristic by combining intelligently different concepts for exploring and exploiting the search space Osman and Laporte (1996). Here, the role of metaheuristic is not to search in a solution space, but to search in the space of heuristics in order to guide HH to choose heuristics during HH process. We implement different metaheuristic methods: Simulated Annealing, Ant Colony, Variable Neighborhood Search and Genetic Algorithm.

Simulated Annealing Based Hyperheuristic

Simulated Annealing (SA) as an idea is inspired from a paper published by [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF], is motivated by an analogy to annealing in solids. It describes an algorithm that simulates the process called 'annealing' which is the cooling of materials in a heat bath. Cooling a solid after heating it past its melting point makes its structural properties dependent on the cooling rate. It is also possible to notice the formation of crystals in the case where the cooling process was slow enough. If cooling the materials was achieved rapidly then there is a high chance that the crystals will contain imperfections. The materials used in Metropolis's algorithm were simulated as a system of particles. The simulation lowered the system's temperature gradually until it converged to a steady, frozen state. In 1982, optimization problems were subjected to SA for the first time in [START_REF] Kirkpatrick | Optimization by simulated annealing: Quantitative studies[END_REF].

Simulated annealing was used to search for feasible solutions that could converge into an optimal solution.

The law of thermodynamics express that at temperature, t, the likelihood of an expansion in vitality of greatness, δE, is given by

P (δE) = exp(-δE/kT ) (4.6)
Where k is a consistent known as Boltzmann's steady. The reenactment in the Metropolis calculation computes the new vitality of the framework. On the off chance that the vitality has diminished then the framework moves to this state. In the event that the vitality has expanded then the new state is acknowledged utilizing the likelihood returned by the above recipe. A specific number of emphases are done at every temperature and afterward the temperature is diminished. This is rehashed until the framework solidifies into an unfaltering state. This mathematical statement is specifically utilized as a part of reenacted toughening, in spite of the fact that it is common to drop the Boltzmann consistent as this was just acquainted into the comparison with adapt to various materials. Along these lines, the likelihood of tolerating a more terrible state is given by the mathematical statement P = exp(-c/t) ≥ r (4.7)

Where: c = the adjustment in the assessment capacity.

t = the present temperature.

r = an irregular number somewhere around 0 and 1.

The likelihood of tolerating a more terrible move is a component of both the temperature of the framework and of the adjustment in the cost capacity. It can be valued that as the temperature of the framework diminishes the likelihood of tolerating a more terrible move is diminished. This is the same as slowly moving to a solidified state in physical annealing. Additionally take note of, that if the temperature is zero then just better moves will be acknowledged which successfully makes recreated strengthening act like slope climbing.

SA was widely applied in many different combinatorial problem, such as scheduling problem (see Ma et al. (2016), Bouleimen andLecocq (2003) SA heuristic selective hyperheuristic was applied as a tool to select a heuristic of a reward r ,0 < r < 1, having exp( -r t ) > random(0, 1). Annealing schedule is considered as linear, where: With time, evaporation of pheromone trail will take place and its attractive strength will be minimized. The pheromone evaporates more as the time taken by the ants to stroll the path back and forth increases. For clarification, the pheromone density becomes higher on shorter paths, which is the more frequent marched path, than longer ones. Pheromone evaporation is the key process of searching for optimal solution. However, if evaporation process does not exist, all ants will follow the first path chosen by first ants. Therefore, the exploration of the solution space would be constrained. In such cases, when one ant finds the shortest path from colony to a food source, all ants are aiming to follow this single path with their positive leading feedback. The goal of the ant colony algorithm is to avoid such a behaviour with a kind of 'simulated ants' walking around the graph representing the problem to solve. Successful applications of ACO has been reported in hub location routing problem [START_REF] Randall | Solution approaches for the capacitated single allocation hub location problem using ant colony optimisation[END_REF], Ting and Chen ( 2013)), vehicle routing problem [START_REF] Chávez | A multi-objective pareto ant colony algorithm for the multi-depot vehicle routing problem with backhauls[END_REF], [START_REF] Gajpal | An ant colony system (acs) for vehicle routing problem with simultaneous delivery and pickup[END_REF]), timetable problem (Dowsland and [START_REF] Dowsland | Ant colony optimization for the examination scheduling problem[END_REF], [START_REF] Ayob | Hybrid ant colony systems for course timetabling problems[END_REF]) etc.

T (t) = T 0 -ηt ( 
This technique has been used as a heuristic selection method in hyperheuristic approaches. The ant based hyperheuristic, proposed by [START_REF] Kiraz | An ant-based selection hyper-heuristic for dynamic environments[END_REF], is proven to be better than the choice function hyperheuristic on some problem domains. Another ant-based hyperheuristic proposed by [START_REF] Ferreira | An ant colony based hyper-heuristic approach for the set covering problem[END_REF]. A hybrid flow shop scheduling problem is solved by an ant colony optimization-based hyperheuristic combined with a genetic algorithm, which forms a hyperheuristic that generate and select heuristics.

Our proposed method is the following:

1. An arc is formed between every two heuristic, which allows the transition between any heuristic to another.

2. A pheromone τ ij and a visibility function η ij were defined for each vertex <i,j>, and they are updated after each heuristic application using (4.10) and (4.9). The visibility function in our proposition is inspired from the choice function hyperheuristic.

η ij = β I(h i , h j ) T (h i , h j (4.9)

τ ij =        ρ × η ij + C best C k
if ant k chooses heuristic j after heuristic i ρ × η ij Otherwise (4.10)

It should be to note that, the ρ coefficient indicates the evaporation rate.

3. Since the hyperheuristic starts with no knowledge about the existing lowlevel-heuristics, it must be initially unbiased and impartial while continuously adaptive.

4. The probability of selecting a heuristic j after a applying heuristic i is defined in (4.11).

P ij = η ij × τ ij i j η ij × τ ij (4.11)
Variable Neighborhood Search based Hyperheuristic

Variable neighborhood search (VNS), proposed by Mladenović and Hansen (1997b), is another kind of metaheuristics for COPs. It explores neighborhoods, which ap-plied on solution space, and moves from there randomly or intelligently. VNS includes two main phases: I) shaking phase and II) local search phase. The first one aims to diversify the search space in order to escape from local optima, while the objective of the second phase is to intensify the search around the current solution in order to improve it. Figure 4.2 shows how each combination of these two phases contributes in avoiding a local optimum and tries to explore and exploit the search space in order to achieve a near optimal solution. Each phase contains more than one heuristic, which necessitates a definition of the heuristic selection method.

VNS appears an affective tool when it is combined with hyperheuristic methods. 

Numerical Results

In order to examine performance of different selection methods, every method is in turn examined on the same problem in chapter 3, CSApHLRP-1, and the same testbed.

Results of HH within different heuristic selection methods are reported in this section (including Tabu Search method proposed in chapter 2, Association Rules and Q-learning proposed in chapter 3) in 4.4 (and further elaborated in Overall, pure random and greedy selection methods were the worst one, while the Association Rules selection method was the better. Note that, for small instances, the solution quality differences between most selection methods is minimal.

Random Descent and Random Permutation Descent are better than pure random method. Peckish based on Bayes theorem was proven to be exceptionally effective compared with the most other methods. Reinforcement learning and metaheuristic method have a good solutions compared with the other, specially Association Rules, Q-learning and Tabu Search.

In general, SA acceptance criteria with the different selection methods is the better, while minimal differences exists when using the other acceptance criteria. It should be note that:

1. Association Rules with SA is indeed better than with Great Deluge by an 2. In all selection methods, almost any other acceptance criteria is better than random acceptance in 0.62% except the choice function in 0.38%.

3. Choice function with SA is better than OI in 0.84%.

4. Choice function with SA is better than IE in 0.24%.

5. Q-learning with Great Deluge is better than with SA in 0.102%.

Furthermore, if we expand the execution time no additional gain was observed.

Conclusion

In this chapter, we presented and proposed different heuristic selection methods in order to integrate them in HH framework. We propose different learning and moves method, naive method, great deluge, etc. The performance of the overall performance of methods; even the random and greedy selection which is the last effective one; appears very promising, which proves the effectiveness of the other strategies of HH as well as robustness of LLHs. AR methods, which is well stablished in business data mining application, has proven to be the most effective learning method to select subsequent heuristics during the process of HH.

Chapter 5

General Conclusion

In this thesis, we have studies the Hyperheuristic (Burke et al., 2008b[START_REF] Burke | Hyper-heuristics: A survey of the state of the art[END_REF], which is a search method or learning mechanism to select or generate heuristic in order to solve a specific combinatorial problem. Hyperheuristic is considered as a high-level approach that, given a problem and a number of low-level heuristics, can select/generate and apply a suitable low-level heuristic at each iteration. Topcuoglu et al. ( 2014) defines it as methods for automation of the process of selecting and generating multiple low-level heuristics. Clearly, the difference between metaheuristics and hyperheuristics lies in the fact that metaheuristics search directly on the solution space while hype-heuristics work on the heuristic space. This work proposes a selective hyperheuristic framework, which is comprised of a set of low-level heuristics and a heuristic selection mechanisms.

In our study, we are dealing with problems in logistics. For general business concept, logistics is the administration of the flow of any matters between the point of origin and that of consumption orderly to convene the customers or corporations needs. The managed resources in logistics may involve some physical matters like food, materials, animals, equipments and liquids, and some abstract matters like time and information. The logistics of physical matters can include the gathering of information flow, material handling, production, packaging, inventing, transportation, warehousing, and mainly security. Logistics management, which represented as an important part of supply chain management, focuses on planing, implementing, and controlling the efficient, effective forward, and reverse flow and storage of goods, services, and related information between the origin point to reach the destination.

In the first thesis phase, we are invited to be a member with Brazilian collaboration group, that is interested in a real logistic problem: Workover Rig Problem. The Workover Rig Routing Problem (WRRP) arises on onshore oil fields that can have a large number of wells spread over a wide region and relatively few number of the mobiles maintenance machines called workover rigs. To serve wells that demand every type of maintenance, WRRP aims to determine over the next finite horizon of time H, a feasible routes of workover rigs that minimize the sum of oil production lossRibeiro et al. (2013). WRRP states on finding the best routes of rigs in order to serve all wells, in an accepted time and the oil production loss is minimized Ribeiro et al. (2012c). For this problem, we propose a mathematical formulation model, several valid inequalities, and finally a hyperheuristic method based on a proposed tabu search metaheuristic method as a learning method. Our proposed learning has been proven its effectiveness when compared with an exact method [START_REF] Rahimeh Neamatian Monemi | Solution methods for scheduling of heterogeneous parallel machines applied to the workover rig problem[END_REF], as long as the optimal solution (or the optimal interval) is known, the solutions reported by the hyper-heuristic produce very near optimal solutions. Our learning method outperforms a generic intelligent hyper-heuristic (GIHH) proposed earlier in the literature both in terms of time and quality. In addition, the proposed hyper-heuristic output has served as the initial columns for the proposed branch-and-price in [START_REF] Rahimeh Neamatian Monemi | Solution methods for scheduling of heterogeneous parallel machines applied to the workover rig problem[END_REF].

On the other hand, another logistic problem has been studied in this thesis: Hub Location Routing Problem. Hub Location Routing Problem dealing with selecting from several nodes (e.g. ports), which will be considered as hub and which

will not be (spoke), then design the full network according a given rules. Many transportation operators and logistics service providers operate on hub-and-spoke structures. In this way, the long haul (in national or international scale) transport of their cargo is done by using larger transporters (with higher volume concentration) circulating between major hubs. In a short-distance level, transportation service is realized by means of smaller transporters. In this thesis, we was interested on pHub location routing problem, which fix the number of hubs as p. A hyperheuristic approach has been proposed as an effective solution for a recently introduced two we use the results of the best one in the process of HH. HH with Lagrangian Relax-ation results has been proven in the numerical results as better than HH without LR results, even in the initial fitness. A part of HH results has been injected to the solver, in order to find an optimal solution for some given allocation information, as a Matheuristic method. As well as the HH has been proven its effectiveness by the too minimal gap with the proposed Matheuristic.

Finally, in order to examine how different heuristic selection mechanism can impact the performance of a hyperheuristic framework and quality of solution for a given problem, several exiting methods were studied and some new ones are proposed.

Through an extensive computational experiment, we could identify some of the methods that outperform the others for the problem at hand. Naive Bayes, ACO, SA, VNS, etc. that guide in selection of heuristics. these methods was examined with several solution acceptance criteria such as SA, Great Deluge, IO, etc. Association Rules method, an intelligent tools used in business data mining application, was the most effective method in selection of heuristics during HH process when combined with SA solution acceptance criteria.

Our future directions consider solving these two problems with taking into consideration more real-world aspects such as task time window, constraints related to the environment such that related to green logistics, etc. In addition, we are very interested to faced problems of Emergency Logistics (or Humanitarian Logistics), which deals with denote specific time-critical modes of transport used to move service or goods or objects rapidly in the event of an emergency. This motivation has been introduced in a our contribution Danach et al. (2015a). Furthermore, we will be more interested to develop more intelligent methods, that are proposed in artificial intelligence science such as Neural Network (NN), Decision Tree (DT), etc. in order to perform heuristic selection phase in the HH framework. Finally, developing a hybrid method that combine metaheuristic and hyperheuristic, in order to relate the heuristic to be applied to the solution state in addition to its performance, can be intervenes in our future work.

Hyperheuristics in Logistics

Success in using exact methods for large scale combinatorial optimization is still limited to certain problems or to specific classes of instances of problems. The alternative way is either using metaheuristics or matheuristics.In the context of combinatorial optimization, we are interested in heuristics to choose heuristics invoked to solve the addressed problem.

In this thesis, we focus on hyperheuristic optimization in logistic problems. We focus on proposing a hyperheuristic framework that carries out a search in the space of heuristic algorithms and learns how to change the incumbent heuristic in a systematic way along the process.We propose HHs for two optimization problems in logistics: the workover rig scheduling problem and the hub location routing problem. Then, we compare the performances of several HHs described in the literature for the latter problem, which embed different heuristic selection methods such as a random selection, a choice function, a Q-Learning approach, and an ant colony based algorithm. The computational results prove the efficiency of HHs for the two problems in hand, and the relevance of including Lagrangian relaxation information for the second problem. Keywords: Metaheuristic, Heuristic, Hyperheuristic, Matheuristic, Reinforcement learning, Hub location problem, Workover rig scheduling problem, Association rules.

Hyperheuristiques pour des problèmes d'optimisation en logistique

Le succeès dans l'utilisation de méthodes exactes d'optimisation combinatoire pour des problèmes de grande taille est encore limité à certains problèmes ou à des classes spécifiques d'instances de problèmes. Une approche alternative consiste soit à utiliser des métaheuristiques ou des matheuristiques.Dans le contexte de l'optimisation combinatoire, nous nous intéressons des heuristiques permettant de choisir les heuristiques appliquées au problème traité. Dans cette thèse, nous nous concentrons sur l'optimisation à l'aide d'hyperheuristiques pour des problèmes logistiques. Nous proposons un cadre hyperheuristique qui effectue une recherche dans l'espace des algorithmes heuristiques et apprend comment changer l'heuristique courante de manière systématique tout au long du processus. Nous étudions plus particulièrement deux problèmes d'optimisation en logistique pour lesquels nous proposons des HHs: un problème de planification d'interventions sur des puits de forage et un problème conjoint de localisation de hubs et de routage. Ensuite, nous comparons les performances de plusieurs HH décrites dans la littérature pour le second problème abordé reposant sur différentes méthodes de sélection heuristique. Les résultats numériques prouvent l'efficacité de HHs pour les deux problèmes traités, et la pertinence d'inclure l'information venant d'une relaxation de Lagrangienne pour le deuxième problème. Mots-clefs: Metaheuristique, Heuristique, Hyperheuristique, Matheuristique, Apprentissage par renforcement, Problème de localisation des concentrateurs, Problème d'ordonnancement de workover, Règles d'association.
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 12 Figure 1.2: A classification of hyperheuristic approaches[START_REF] Burke | A classification of hyperheuristic approaches[END_REF] 

  ) and Constraint Satisfaction Terashima-Marín et al. (2008); Ortiz-Bayliss et al. (2010) from among others. The interested readers are referred to

  Our proposed heuristic selection hyperheuristic framework, shown in Figure 1.3, ic comprised of two main classes: HyperLevel and BaseLevel. The first one represents the hyperheuristic process methods and attributes, while the second one represents the problem properties. Heuristics, which are predefined for the given problem, are categorized by type using HeuristicTypes abstract class. Hyperheuristic can use any acceptance criteria in the set of All Moves, Only Improvements, Improving and Equal, Exponential Monte Carlo (MC), Simulated Annealing (SA), Exponential Monte Carlo
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 13 Figure 1.3: The Proposed Hyperheuristic Framework.

  chapter 3 is composed of two parts. The first part introduces a new variant of hub location routing problem which is referred to as p-Hub Location Routing Problem. After a through literature review, we propose a 3-index design variable model for this problem. We then propose a Lagrangian relaxation for a 2-index version of the problem. We then propose a HH that exploits information from the Lagrangian Multipliers to solve the problem. Two learning mechanisms were employed within our HH. The second part, examines the effectiveness of the aforementioned HH (together with its learning mechanisms) on instances of another variant of Hub Location Routing Problem proposed in Rodríguez-Martín et al. (2014).

  Ribeiro et al. (2012a) presented the WRS as a workover rig routing problem, a particular case of vehicle routing problem with time windows, in context of the operations of onshore oil fields. The authors have proposed three metaheuristics for the problem: an iterated local search, a clustering search, and an Adaptive Large Neighborhood Search (ALNS). They have carried out experiments with 50, 100 and 500 wells, and 5 and 10 rigs, testing a total of 60 instances. The authors reported a superior performance of ALNS on larger instances. Mattos Ribeiro et al. (2012), in this work the authors propose a branch, price and cut algorithm as the first exact algorithm for the WRS, which is modeled as a workover rig routing problem. The computational experiments relies on a set of 40 instances (with 100 and 200 wells, 5 and 10 rigs, and 200 to 300 units of time for the horizon). For the larger instances (200 wells), 12 of the 40 instances could not be solved, in particular, all instances with 200 wells,10 rigs, and horizon time of 300 hours were unsolvable. Ribeiro et al. (2012b) look at the problem as a routing problem and proposes a branch, price and cut algorithm for solving instances of this problem up to 200 wells and 10 rigs. Recently, Ribeiro et al. (2014) proposed three different heuristics such as branch-price-and-cut (BPC) heuristic version of Ribeiro et al. (2012b),
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 2 None of the wells i ∈ J can receive service during [T -min j∈J {p j + d j0 } + 1, T ] on any machine.
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 21 Figure 2.1: Illustrative example with |R| = 3, |J + | = 7 and |T | = 16. Every machine starts by processing job 0 at t = 0 and terminates at the same job as the job processed on it.
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 1 Constructive ir < p iM ) then p ir is the processing time of well i by rig r

  s ≤ Lv p ) then Lv s is the production loss value of sequence s
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 22 Figure 2.2: The wells are uniformly distributed within a given geographical zone.
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 2 Figure 2.3 presents the execution time behavior as a function of number of wells. Clearly, almost always, when the number of wells is less than 50, the CPU
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 23 Figure 2.3: Execution time of each method.
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 2 Figure 2.4, Figure 2.5 and Figure 2.6 report the statistics of heuristic calls by each proposition for each instance. In Figure 2.4, the largest percentage is
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 24 Figure 2.4: The constructive and improvement heuristics calls distribution by each method.
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 2 Figure 2.5: the mutation and crossover heuristics calls distribution by each proposition.
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 2 Figure 2.6: insert/drop and reconstructive heuristics calls distribution by each method.

  The research on this problem is very often limited to modeling it as a routing problem while perhaps scheduling is the dominating part of the problem. The literature is unaware of any multi-agent or distributed optimization techniques applied to this problem given an inherent distributed nature (in larger scale the wells are scattered within dispersed zones with long distances among the zones).Further research on minimizing workover CO 2 emission, incorporating more real aspects such as workforce scheduling, task time window and ensuring robustness in the solution.The term hub is commonly used in different domains such as transportation, logistics and telecommunication systems, among others. In almost all such areas, the hubs serve as consolidation, switching and sorting centers. In transportation and logistics, the hub-and-spoke structures are present in almost all modes of transport (cross-docks in national level, major airports and container ports in continental and inter-continental level). Hubs are facilities at which arriving flows of commodities in smaller volumes originated from the spokes are consolidated, sorted and re-distributed (repartitioned) in a larger volumes on fewer highly utilised links and sent to either the final destinations that are hubs or the hubs where the spoke destinations are allocated to them. The main motivation for deploying such a flow network structures is in exploiting economies of scale (in terms of time and/or cost) in transporting higher volumes on much more efficient corridors (connecting hubs).Given a graph G(V, A) where V is the set origins and destinations and A is the set of all possible arcs, Hub Location Problem (HLP) seeks a partition of nodes in V into hub and spokes. Consequently, each spoke is associated to one or more hubs. In classical models, two main classes are distinguished[START_REF] Alumur | Network hub location problems: The state of the art[END_REF]: 1) Single Allocation: wherein each spoke node is assigned to only one hub, and 2) Multiple Allocation: offering the possibility that a spoke be allocate to more than one hub node. Moreover, one also distinguishes between capacitated and uncapacitated variants depending on where the capacity is being imposed.

p

  spoke-level directed cyclic routes each of which composed of a hub node and all the spoke nodes allocated to it. The hub-level network is a complete subgraph where each two connected hub have a bidirectional link. The objective function of our problem seeks minimizing the total transit time composed of transportation plus transhipment time in the whole network provided that the total volume of flow on the spoke-level arcs does not violate the capacity of transporter on it, given a homogenous fleet of transporters.This problem is a special case of the Bounded Cardinality Capacitated Hub Routing Problem (BCCHRP) proposed in[START_REF] Gelareh | Capacitated bounded cardinality hub routing problem: Model and solution algorithm[END_REF] in which the lower and upper bounds on the number of hub nodes coincide. We refer to this problem as Capacitated Single Allocation p-Hub Location Routing Problem (CSApHLRP-1).

Figure 3 .

 3 Figure 3.1 represents a solution for an instance with |V | = n = 10 nodes and p = 3 fully interconnected hub nodes. The nodes 4, 5 and 7 represent hubs while all the remaining nodes considered as spokes. One observes that each hub together with spoke nodes allocated to it forms a directed cycle. In this solution, three cycles are define: i) 4 → 0 → 2, ii) 7 → 9 → 8 → 6, and iii) 5 → 3 → 1.

Figure 3 . 1 :

 31 Figure 3.1: A solution of network with 3 hubs and 10 nodes.

  of hub location problems were either metaheuristics (population-based or trajectorybased) or classical heuristics.[START_REF] Kratica | Genetic algorithm for solving uncapacitated multiple allocation hub location problem[END_REF] proposed a genetic algorithm (GA) for solving an uncapacitated multiple allocation problem. Binary encoding and genetic operators are used and the run-time is optimized by a caching technique.[START_REF] Rabbani | Solving uncapacitated multiple allocation p-hub center problem by dijkstraŠs algorithm-based genetic algorithm and simulated annealing[END_REF] proposed a genetic algorithm and a simulated annealing for solving an uncapacitated multiple allocation p-hub center problem wherein the objective function is calculated based on Dijkstra's algorithm.A heuristic based on (GA) is proposed by[START_REF] Stanimirovic | An efficient genetic algorithm for the uncapacitated multiple allocation p-hub median problem[END_REF] in order to solve uncapacitated multiple allocation p-hub median problem. Described GA uses binary representation of the solutions. A mutation operator with frozen bits and a caching technique, all of that contribute to improve the solution quality.[START_REF] Randall | Solution approaches for the capacitated single allocation hub location problem using ant colony optimisation[END_REF] proposed an ant colony metaheuristic optimization method. Four variations exploring different construction modelling choices are developed to solve the capacitated single allocation hub location problem. Multiple Ant Colony Optimization (MACO) algorithm is proposed by Ting and Chen (2013) to solve a capacitated location routing problem, which is decomposed into two subproblems: 1) facility location problem and 2) multiple depot vehicle routing problem. The two subproblems are treated together within MACO where collaboration of colonies is operated by interchanging information through pheromone renewing the chosen location and costumer assignment.

  Simulated annealing (SA) and iterated local search (ILS) were proposed by Zarandi et al. (2015) in order to solve single-allocation hub median problem. Another simulated annealing for single-allocation capacitated hub location problem was proposed by Vincent et al. (2010), given that routes and hubs are constrained by capacity. Uncapacitated single allocation p-hub median problem was studied by Ilić et al. (2010). They proposed a Variable Neighborhood Search (VNS) where variable neighborhood descent (VND) based local search uses three different neighborhood structures. Another VNS was proposed by Jarboui et al. (2013) but for uncapacitated single allocation hub location problem. VND is used as local search and it consists of five neighborhood structures, including insertion and swap operators.

Figure 3 . 2 :

 32 Figure 3.2: A solution of network with 3 hubs and 10 nodes.

  2, we propose a mathematical model is a 3-index design MIP and present the 2-index design formulation for CSApHLRP-1 in Gelareh et al. (2015). Than we present the mathematical formulation of the problem in Rodríguez-Martín et al. (2014), CSApHLRP-2. The section 3.3 is divided into two parts. In the first part we propose five Lagrangian relaxations for the CSApHLRP-1 2-index design model, which is capable of offering approximation of reduced costs of the spoke-level network variables. In the second part a hyperheuristic solution approach and its components exploiting information of Lagrangian dual to guide are presented for the CSApHLRP-1 problem, and another one for the CSApHLRP-2 problem.

  For the first problem, CSApHLRP-1, we propose a 3-index design variable mathematical formulation CSApHLRP-1-F1, and we present another model proposed by Gelareh et al. (2015) with 2-index design variable, CSApHLRP-1-F2. Considering CSApHLRP-2, we present the model proposed by Rodríguez-Martín et al. (2014).

  objective function (3.1) is comprised of two parts; the first accounts for the total transportation times and the second part is the transshipment times. The transportation part is composed of travel times on the hub-level edges as well as spoke-level arcs. The travel time on the hub-level edges is discounted by α because the transporters offer faster services. The transhipment time is measured twice for every O-D flow; once at the first hub visited along O-D path and once at the last hub along the same path. Constraints (3.2) sets a limit on the number of hub nodes (depots) that can be installed while constraints (3.3) guarantee that every node is allocated to exactly one hub depot. A self-allocation of i (i.e. z ii = 1)

  threshold T H : PRT 1) SW1ff, The search tries to randomly swap two spokes allocated to the two different hubs In the end, it either returns the feasible solution with the maximum Hamming distance (with respect to the binary design variables) from the input solution or one of the solutions among the p farthest ones. PRT 2) SW2ff, tries to randomly swap three spokes belonging to three different routes. It follows the same principle as in SW1ff, except that a very limited number (n 2 < |.| n 3 ) of samples are examined as a complete 3-opt is very expensive,

  , and based on airline passenger flow among 25 important cities in the US (in addition to AP data set). CAB and AP nodes distributions shown respectively in Figure 3.3 and Figure 3.4. All experiments were performed on an Intel 2.54 GHz core i5 CPU and 4 Gb of

Figure 3

 3 Figure 3.3: Civil Aeronautics Board data with 25 nodes.

Figure 3 . 4 :

 34 Figure 3.4: Australia post data with 200 nodes.

  Instances was named in a format Cabi_j_α β where i indicates the number of nodes, j indicates the number of hubs, α indicates the factor of economies of scale and β the factor of changing the relative weight of the cycle.
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 35 Figure 3.5: Optimal solution for CAB25 with p=5, q=13, α=0.8, β=0.01.

Figure 3 . 6 :

 36 Figure 3.6: Optimal solution for CAB25 with p=5, q=13, α=0.8, β=0.05.

Figure 3 . 7 :

 37 Figure 3.7: Optimal solution for CAB25 with p=5, q=13, α=0.8, β=0.2.

Figure 3 . 8 :

 38 Figure 3.8: HH execution time in CSApHLRP-2.

Figure 4 . 1 :

 41 Figure 4.1: Algorithm selection model taken by Rice (1976).

4.

  Peckish selection based on Bayes Theorem (BT) 5. Peckish selection based on Q-Learning (QL) 4.2.4 Choice Function Based Hyperheuristic Choice function heuristic selection methods, defined by Cowling et al. (2001), addresses learning as a model selection problem. The choice function selects a low-level-heuristic to be applied according to a weight resulted from a combination of three different measures. Therefore, selection of such low-level-heuristic at each iteration depends on its corresponding choice function. For that reason, score computations for the low-level-heuristics are repeated at each iteration. The low-level heuristics are ranked according to several measures. The heuristic ranking technique is based on: I) the heuristic's individual performance (Equation (4.1)), II) improvement observed as a results of invoking a heuristic subsequent to another one (Equation (4.2)), and III) the time elapsed since it was last called (Equation (4.3)). I n (y) and T n (y)(I n (x, y) and T n (x, y)) indicate the change of evaluation function and the amount of execution time, when the n th last time the heuristic y was chosen and applied immediately after heuristic x.Intensification strategies were provided by the first two components, while the diversification was assured by the third on. α, β, and δ, represents the weights of the three components and their relative influence on the choice function. Both α and β ∈ [0, 1] reflect the greater influence attached to recent performance.

  4.4)[START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF],Cowling et al. (2002b),Kendall et al. (2002b) and[START_REF] Soubeiga | Development and application of hyperheuristics to personnel scheduling[END_REF] are examples of work considering this heuristic selection method.

  and Schlünz and Van Vuuren (2013)), hub location problem (see Sedehzadeh et al. (2014), Parvaresh et al. (2013) and Rabbani and Kazemi (2015)), routing problem (see Grosse et al. (2014),BañOs et al. (2013) and Vincent and Lin (2014)), workover rig problem (see Ribeiro et al. (2011) and Paiva et al. (2000)) and etc. SA was used in hyperheuristic approaches in a two manners: I) in selection heuristics and II) in accepting a candidate solution. SA as an accepting criteria was explained in Chapter 1.

  4.8)[START_REF] Dowsland | A simulated annealing based hyperheuristic for determining shipper sizes for storage and transportation[END_REF],[START_REF] Bai | A simulated annealing hyper-heuristic methodology for flexible decision support[END_REF],[START_REF] Konstantinos | A simulated annealing hyperheuristic for construction resource levelling[END_REF] are examples of SA selective hyperheuristic.Ant Colony Based HyperheuristicAnt colony optimization (ACO) is among the well-known population-based metaheuristics that has been extensively proposed to solve difficult optimization problems. In the natural world, ants move randomly, and then they lay down pheromone trails by the way of finding food and returning to their colony. Other ants stop wandering randomly upon discovering such a path by following the trail.

  [START_REF] Hsiao | A vns-based hyper-heuristic with adaptive computational budget of local search[END_REF] propose a VSN based hyperheuristic method for solving more than one problem such as job shop scheduling, bin packing, and etc[START_REF] Hansen | Variable neighborhood search[END_REF].[START_REF] Remde | Exact/heuristic hybrids using rvns and hyperheuristics for workforce scheduling[END_REF] proposed a VNS hyperheuristic in order to solve workforce scheduling problem. In this work, hyperheuristic appears a powerful tools compared with the solution quality resulted by a genetic algorithm.The proposed VNS hyperheuristic, shown in Figure4.3, aims to constructs a feasible solution at the beginning, then construct the shaking and finally the local search phases. In the shaking phase, the tabu search method, which is proposed in chapter 2, selects a low level heuristic from the set of perturbation heuristic. In the second phase, a random cycle of the existing predefined improvement heuristics is formed. It applies improvement heuristic while it is still improving the solution and switches to the next one in the cycle in case it stops improving the solution. It keeps on repeating this process until reaching n consecutive non-improving solution.
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 42 Figure 4.2: A general schema of the VNS algorithm.

Figure 4 . 3 :

 43 Figure 4.3: The process of the proposed VNS Hyperheuristic.

  Figure 4.6 and Figure 4.7) while the acceptance criteria employe here is SA and all methods have the same input. Low gaps between the different methods, even the pure random selection method, prove the effectiveness of the hyperheuristic.

Figure 4 . 4 :

 44 Figure 4.4: HH results within different heuristic selection methods

Figure 4 . 5 :

 45 Figure 4.5: HH results within different peckish selection methods

Figure 4 . 6 :

 46 Figure 4.6: HH results within different RL selection methods

Figure 4 . 7 :

 47 Figure 4.7: HH results within simple random, random descent, random permutation descent, greedy and choice function selection methods

  variant of Hub Location Routing Problems proposed by Gelareh et al. (2015) and Rodríguez-Martín et al. (2014), with two different learning methods: Association Rules and Q-learning. Furthermore, two solution acceptance criteria, for the two problems, was in the HH high level strategies: Simulated Annealing and Great Deluge. Five Lagrangian Relaxation have been proposed for the first problem, and

  Özcan et al. (2010) categorizes such methods as the following: i) Purely Random selection, ii) Random Descent selection, iii) Random Permutation Descent selection, iv) Greedy selection, v) Peckish selection, vi) Metaheuristic-based and vii) Reinforcement Learning. Here, all these categories were implemented. Hence, we propose different reinforcement learning and metaheuristic methods such as

Table 2 . 1 :

 21 Model Parameters and variables.

Table 2 . 2 :

 22 Best solution and execution time results of the two methods.

	Instance Name	Init. Obj.	Best Obj. (GIHH)	CPU Time (GIHH)	Best Obj. A.L.M.	CPU Time A.L.M.
	Instance_10_3	38223	21578	0.534	19683	0.117
	Instance_15_3	96179	50020	0.431	40054	1.143
	Instance_15_5	51415	26055	5.019	28965	1.093
	Instance_20_3	165681	90499	0.841	86809	0.241
	Instance_20_5	97214	52314	5.206	45985	1.164
	Instance_25_3	245356	136401	0.949	124236	1.045
	Instance_25_5	214666	102923	5.636	97772	0.638
	Instance_25_7	123666	64582	5.11	63494	0.150
	Instance_30_3	559221	165326	4.697	162479	0.566
	Instance_30_5	231082	126291	0.593	117757	0.220
	Instance_30_7	186164	124002	0.367	94619	0.155
	Instance_35_3	521748	181936	5.672	180341	1.074
	Instance_35_5	396655	172343	0.603	159223	0.304
	Instance_35_7	245830	119389	0.549	104206	0.208
	Instance_50_5	768691	286110	5.013	276221	0.705
	Instance_50_7	549441	221749	5.296	201456	0.556
	Instance_50_9	413259	204595	5.561	200710	0.362
	Instance_50_10	241935	170762	0.589	154070	0.295
	Instance_75_7	1357179	503698	10.079	493423	0.658
	Instance_75_9	790796	440775	9.921	445433	0.826
	Instance_75_10	849473	386271	10.008	367835	4.203
	Instance_100_7	6284802	1748851	10.145	1719752	4.273
	Instance_100_9	6302564	2151156	1.471	2020055	4.118
	Instance_100_10	5062012	1792773	10.052	1728323	4.276
	Instance_100_12	4287143	1519804	9.711	1448339	1.116
	Instance_125_7	27388184	5136775	6.914	5010572	4.228
	Instance_125_10	21967460	5351825	9.785	5185172	2.503
	Instance_125_12	13899045	4166687	1.864	4109715	1.064
	Instance_150_7	39577184	7413717	11.093	6959831	3.179
	Instance_150_10	29616360	6922348	6.695	6778345	4.183
	Instance_150_12	25065540	6590526	9.561	6234537	3.162
	Instance_175_7	96465248	17056898	10.187	16443304	5.112
	Instance_175_10	75896016	16379125	5.017	15493673	4.186
	Instance_175_12	59023100	14735414	10.104	14380174	4.139
	Instance_200_7	109649824	18386244	10.017	17943176	4.143
	Instance_200_10	87850240	19201584	10.033	18810648	6.427
	Instance_200_12	83277888	17716744	4.71	17785952	4.295

Table 2 .

 2 3: Computational results of our branch, price and cut.

		min(A.L.M., GIHH)			branch, price and cut(Monemi et al., 2015)	
	Instance Name	Best Obj.	CPU (sec. )	#bb.nodes	#cols	( f A.L.M -f B&p&C f B&p&C	) × 100	CPU (sec.)	Term. Cond.
	Instance_10_3	19683	0.117	0	26	0.00		1133.20	opt.
	Instance_15_3	40054	1.143	0	31	0.00		1298.46	opt.
	Instance_15_5	26055	5.019	0	37	0.00		1413.76	opt.
	Instance_20_3	86809	0.241	2	40	0.00		3044.17	opt.
	Instance_20_5	45985	1.164	2	53	0.00		3734.80	opt.
	Instance_25_3	124236	1.045	2	74	0.00		4331.15	opt.
	Instance_25_5	97772	0.638	2	88	0.00		4783.87	opt.
	Instance_25_7	63494	0.150	0	105	0.01		5163.40	tlim.
	Instance_30_3	162479	0.566	5	110	0.03		6415.23	tlim.
	Instance_30_5	117757	0.220	6	156	0.10		6335.19	tlim.
	Instance_30_7	94619	0.155	5	201	0.24		7561.65	tlim.
	Instance_35_3	180341	1.074	10	226	3.55		7820.65	tlim.
	Instance_35_5	159223	0.304	8	269	4.04		8214.07	tlim.
	Instance_35_7	104206	0.208	5	318	5.23		9384.43	tlim.
	Instance_50_5	276221	0.705	12	470	3.75		9633.20	tlim.
	Instance_50_7	201456	0.556	11	512	11.55		10041.21	tlim.
	Instance_50_9	200710	0.362	8	556	6.93		9792.10	tlim.
	Instance_50_10	154070	0.295	10	601	9.36		9645.43	tlim.

Table 3 .

 3 1: A summary of main elements of the relevant contributions in literature.

	Work	Allocation Scheme	No. Hubs	Objective	Capacity	Cycle Length	No. Vehicles	Solution method
	Nagy and Salhi (1998)	pickup/delivery routes	endogenous	cost	yes	yes	endogenous	MIP + heuristic
	Cetiner et al. (2006)	multiple allocation	endogenous	cost+fleet	no	yes	endogenous	heuristic
	de Camargo et al. (2013)	single allocation	endogenous	cost	no	yes	endogenous	MIP + Benders decomposition
	Wasner and Zäpfel (2004)	multiple allocation	endogenous	cost	yes	yes	endogenous	MIP + heuristic
	Rodríguez-Martín et al. (2014)	single allocation	exogenous	cost	#. spoke per route	no	one per route	MIP + branch-and-cut
	Gelareh et al. (2013b)	single allocation	exogenous	cost+fleet	yes	multiple of weeks	variable	MIP+Lagrangian decomposition
	Gelareh et al. (2015)	single allocation	q = 3 ≤ .. ≤ p	time	yes	≥ 2 spokes	one per route	MIP+branch-and-cut+Benders
				(transit+transshipment)				
	current work	single allocation	exogenous	time	yes	≥ 2 spokes	one per route	MIP+Lagrangian Relaxation
				(transit+transshipment)				+ Hyperheuristic
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 3 

2: CSApHLRP-1-F1 and CSApHLRP-1-F2 Models Parameters.

  ). Constraints (3.7) ensure that, the number of arcs arriving to a spoke node is equal to the number of outgoing ones. Constraints (3.8)-(3.9) ensure that a leg on a given route can be established only if both end-nodes are allocated to the same hub depot. A spoke node can only be allocated to a hub node

	as in constraints (3.10). Constraints (3.11)-(3.13) stand for the flow conservation
	for every O-D pair. Constraints (3.11)-(3.15) state that traversing a hub edge is
	equivalent to traversing an edge where both end-points are hub nodes. Constraints
	(3.16

Table 3 .

 3 4: CSApHLRP-2 Model Parameters.

Table 3

 3 

.5: CSApHLRP-2 Decision Variables.

  3.48)In order to have a feasible solution, we need pq ≥ |V |. c ij o i + c ji d i represents the cost of assigning node i to hub j. Where i and j are hubs then the routing cost is discounted by a factor of α, the same as the previous problem. Two nodes form a cycle with a cost of 2f ij . The objective function (3.36) accounts for the total

	installation cost of the edges and the routing of flows. Constraints (3.37) ensure
	that a node i can be in one of the four different situations: 1) the unique node
	allocated to another hub (case j∈V -{i} z 1 ij = 1), 2) a hub without other node
	allocated to it (case z 1 ii = 1), 3) it is a hub with one other node specified to it (case
	j∈V -{i} z 1 ji = 1), 4) a hub is specified to another hub at least two other nodes
	(case j∈V z 2

ij = 1).

Constraints (3.38) 

are capacity constrains to guarantee that a cycle does not contain more than q nodes. p is the number of hubs to open in constraint (3.39). The flow balance constraints for the traffic on the hub network is due to constraints (3.40) and (3.41). Constraints (3.42) states that two edges must be incident to a node that is on a ring containing at least two other nodes.

Constraints (3.43) maintain the connectivity of the cycles. In case, node i ∈ S is allocated to a hub in set V /S, then the cycle which holds node i has to cross the cut declared by subset S and x(δ(S)) ≥ 2. Constraints (3.44) prohibit nodes allocated to different hubs to be on the same cycle.

It must be note that, the constraints (3.36)-(3.48) is a model for the SApHMP (Single Allocation p Hub Median Problem) as β = 0.

  . A support of a suggested H s is equal to the summation of the heuristic series (H 1 , . . . , H s ) reward in the precedent transactions divided by the summation of all heuristic series rewards.3. The confidence of a suggested H s in such series (H m , . . . , H n ) is equal to the support of H s divided by the support item set (H m , . . . , H n ).

1. A heuristic series (H m , . . . , H n ) weight (reward) is equal to the negative summation (for minimization case) of the objective function value divided by the number of the application of this heuristic. 2

Table 3

 3 

			Gap(% between HHs)		0.00	0.00	0.00	0.00	2.37	0.00	3.92	0.00	0.00	0.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.67	0.00	0.00	0.38	1.56
	.6: Comparison of the quality between benders decompositions and the	proposed hyperheuristic with and without LR	Hypeheuristic without LR HH with LR	CplexStatus Obj. Val. HH Ex. Time(sec.) Gap(%) with BD Obj. Val. HH Ex.Time(sec.) Gap(%) with BD	OptimalTol 3235.99 4.075 0.00 3235.99 3.11 0.00	Optimal 3315.81 6.127 0.00 3315.81 5.01 0.00	Optimal 3395.63 6.064 0.00 3395.63 5.01 0.00	OptimalTol 10990.48296 5.003 -1.18 10990.48 4.10 -1.18	OptimalTol 11194.96 6.109 -0.54 10929.41 6.10 -2.99	OptimalTol 10421.16 6.058 -7.90 10421.16 5.11 -7.90	OptimalTol 8532.44 6.06 -25.21 8198.31 6.08 -30.31	OptimalTol 7966.52 5.076 -27.66 7966.52 4.10 -27.66	OptimalTol 8949.29 6.089 -1.32 8949.29 6.11 -1.32	Optimal 6921.75 6.068 0.32 6905.00 5.10 0.08	Optimal 6921.75 5.064 -3.20 6921.75 4.19 -3.20	Optimal 7387.35 5.028 0.00 7387.35 5.00 0.00	OptimalTol 23380.95 6.06 -6.13 23380.95 5.09 -6.13	failed 22411.66225 6.044 -22411.66225 5.10 -	OptimalTol 23316.54777 6.045 -6.94 23316.54777 5.11 -6.94	failed 19382.47479 8.11 -19382.47479 7.99 -	OptimalTol 17519.51325 7.077 -21.49 17519.51325 7.00 -21.49	Optimal 21585.4 8.129 0.00 21585.40 7.01 0.00	Optimal 16933.63 9.26 0.00 16933.63 8.21 0.00	OptimalTol 16365.60 10.076 -7.69 16256.34 8.07 -8.42	Optimal 17441.26 10.146 0.00 17441.26 8.24 0.00	OptimalTol 14397.56 12.145 -9.31 14397.56 11.13 -9.31	AbortUser 14495.69 11.233 -16.74 14440.86 9.06 -17.19	AbortUser 14894.40 12.252 -15.98 14662.78 11.19 -17.81
			Bender Decompositio	Ex. Time(sec.) Obj. Val.	17 3235.99	14 3315.81	14 3395.63	929 11120.2	1395 11255.74	398 11244.2	1073 10683.44	883 10170.06	899 9067.25	626 6899.27	591 7143.31	1615 7387.35	15307 24814.09	--	28673 24935.81	â ȂŤ â ȂŤ	14432 21284.45	15767 21585.4	6470 16933.63	19572 17624.7	19051 17441.26	27531 15738.56	46695 16922.59	98991 17274.12
			instance		n10_q3_0.7	n10_q3_0.8	n10_q3_0.9	n15_q3_0.7	n15_q3_0.8	n15_q3_0.9	n15_q4_0.7	n15_q4_0.8	n15_q4_0.9	n15_q5_0.7	n15_q5_0.8	n15_q5_0.9	n20_q3_0.7	n20_q3_0.8	n20_q3_0.9	n20_q4_0.7	n20_q4_0.8	n20_q4_0.9	n20_q5_0.7	n20_q5_0.8	n20_q5_0.9	n20_q6_0.7	n20_q6_0.8	n20_q6_0.9

Table 3 .

 3 8: Comparison of the quality between the initial objective function taken by the proposed hyperheuristic with and without LR

	instance	HH Initial Obj. Val.	LR Initial Obj. Val	Gap
	n10_q3_0.7	4113.93	4113.93	0.00
	n10_q3_0.8	3732.68	3732.68	0.00
	n10_q3_0.9	4281.89	4281.89	0.00
	n15_q3_0.7	11967.42	11967.42	0.00
	n15_q3_0.8	14148.48	12075.56	14.66
	n15_q3_0.9	14267.24	14267.24	0.00
	n15_q4_0.7	12287.22	11194.78	8.89
	n15_q4_0.8	12460.91	11373.32	8.73
	n15_q4_0.9	11551.86	11551.86	0.00
	n15_q5_0.7	7942.10	7942.10	0.00
	n15_q5_0.8	9341.05	8160.33	12.64
	n15_q5_0.9	7583.26	7583.26	0.00
	n20_q3_0.7	30247.17	30093.41	0.51
	n20_q3_0.8	28804.76	28804.76	0.00
	n20_q3_0.9	29559.33	29559.33	0.00
	n20_q4_0.7	28564.87	26512.51	7.18
	n20_q4_0.8	29230.58	23481.05	19.67
	n20_q4_0.9	24569.19	24569.19	0.00
	n20_q5_0.7	22584.80	22584.80	0.00
	n20_q5_0.8	24364.62	24364.62	0.00
	n20_q5_0.9	21354.40	21354.40	0.00
	n20_q6_0.7	15949.97	15949.97	0.00
	n20_q6_0.8	17950.91	17950.91	0.00
	n20_q6_0.9	18522.41	18522.41	0.00

Table 3 .

 3 9: HH results for large instances of pHub location problem.

	instance	HH Initial Obj. Val.	HH Obj. Val.	HH Execution Time (sec.)
	n30_p3_0.7	105144.53	75757.20	21.08
	n30_p3_0.8	114888.19	76278.81	21.05
	n30_p3_0.9	104911.22	72447.12	21.02
	n30_p5_0.7	69112.47	53366.71	35.09
	n30_p5_0.8	78602.46	54171.46	35.03
	n30_p5_0.9	73163.24	54901.29	35.03
	n40_p3_0.7	202842.00	164427.72	31.63
	n40_p3_0.8	212202.17	170884.40	31.54
	n40_p3_0.9	206603.16	178590.38	31.53
	n40_p5_0.8	184960.11	132972.45	52.58
	n40_p5_0.9	189692.00	117903.04	52.54
	n40_p6_0.7	140120.51	106682.03	63.13
	n50_p3_0.7	370022.47	283335.66	36.09
	n50_p3_0.8	357808.84	290623.44	36.12
	n50_p3_0.9	374514.09	225264.35	36.19
	n50_p5_0.7	291375.19	208124.35	60.10
	n50_p5_0.8	287717.05	208912.96	60.50
	n50_p5_0.9	288860.51	232705.22	60.09
	n70_p3_0.7	808406.46	638821.53	51.28
	n70_p3_0.8	805167.64	617315.20	51.07
	n70_p3_0.9	880752.26	617315.20	51.14
	n70_p5_0.7	789712.18	484787.83	85.14
	n70_p5_0.8	693946.36	542097.71	85.14
	n70_p5_0.9	717687.40	551465.33	85.16
	n80_p3_0.7	1129687.50	905846.24	61.64
	n80_p3_0.8	1128080.39	919430.31	61.74
	n80_p3_0.9	1172538.60	853701.87	61.73
	n80_p5_0.7	902766.77	676355.62	102.69
	n80_p5_0.8	908105.30	713127.24	102.84
	n80_p5_0.9	949987.94	723792.60	102.77
	n90_p3_0.7	1430318.33	1265909.60	66.10
	n90_p3_0.8	1594559.93	1186128.92	66.29
	n90_p3_0.9	1407958.75	1166788.83	66.38
	n90_p5_0.7	1085625.40	959702.73	110.30
	n90_p5_0.8	1288459.47	971146.25	110.34
	n90_p5_0.9	1126831.55	988784.52	110.15
	n100_p3_0.7	1679715.79	1484907.58	76.69
	n100_p3_0.8	1692753.82	1491646.31	76.96
	n100_p3_0.9	2061323.94	1512299.50	76.88
	n100_p5_0.7	1839058.26	1251859.24	127.96
	n100_p5_0.8	1499370.20	1291282.92	127.77
	n100_p5_0.9	1450410.23	1275010.77	127.75
	n100_p10_0.7	1095903.40	980333.22	255.55
	n100_p10_0.8	1185961.32	967479.92	255.37
	n100_p10_0.9	1143466.25	952694.14	255.30

Table 3 .

 3 10: A comparison between results of Matheuristic with that of LR HH.

			Matheuristic			
	instance	Status	Time	OF	LR HH Obj. val.	GAP(%) LR HH and Math.
	n10_q3_0.7	Optimal	0.30	3235.991	3235.99	0.00
	n15_q3_0.7	Optimal	13.82	10990.48	10990.48	0.00
	n15_q3_0.8	Optimal	40.30	10902.53	10929.41	0.25
	n15_q3_0.9	Optimal	16.97	10276.65	10421.16	1.39
	n15_q4_0.7	Optimal	1.76	8198.31	8198.31	0.00
	n15_q4_0.8	Optimal	11.56	7966.52	7966.52	0.00
	n15_q4_0.9	Optimal	2.00	8945.09	8949.29	0.05
	n20_q3_0.7	Feasible	3605.57	23213.17	23380.95	0.72
	n20_q3_0.8	Feasible	3605.70	22411.66	22411.66	0.00
	n20_q3_0.9	Feasible	3605.73	23316.55	23316.55	0.00
	n20_q4_0.7	Optimal	3675.79	19382.47	19382.47	0.00
	n20_q4_0.8	Optimal	484.40	17519.51	17519.51	0.00
	n20_q5_0.8	Optimal	7304.80	15824.26	16256.34	2.66
	n20_q6_0.7	Optimal	12.45	14397.56	14397.56	0.00
	n20_q6_0.8	Optimal	26.89	14321.04	14440.86	0.83
	n20_q6_0.9	Optimal	33.88	14662.78	14662.78	0.00
	n30_p3_0.7	Feasible	3672.64	80871.04	75757.20	-6.75
	n30_p3_0.8	Feasible	4118.88	81845.67	76278.82	-7.30
	n30_p3_0.9	Feasible	7756.06	78998.28	73284.34	-7.80
	n40_p3_0.7	Feasible	3770.47	292132.10	164427.72	-77.67
	n40_p3_0.8	Feasible	3787.60	352933.80	170884.40	-106.53
	n40_p3_0.9	Feasible	3796.32	316753.50	178590.38	-77.36

Table 3

 3 

		nbIterations	100	100	100	100	100	100	100	100	100	100	
			BestLB	2049.61	2066.57	2032.45	5312.45	5380.57	5293.16	5038.77	5071.04	4957.92	4787.32	4738.18
		LR5	Time (sec.)	25.419	24.662	23.965	113.771	114.311	113.224	114.761	114.53	116.671	115.739	112.559
	Lagrangian relaxation results.	LR3 LR4	Time (sec.) BestLB Time (sec.) BestLB	228.177 2384.16 23.317 2123.11	231.55 2319.98 22.153 2088.45	219.116 2239.29 21.091 2031.92	1665.9 5785.28 118.179 5352.14	1704.89 5732.76 107.336 5275.19	1744.7 5580.06 105.078 5152.99	1901.39 5593.87 103.942 4983.24	2020.9 5418.13 112.094 5026.48	1937.78 5253.88 108.545 4916.29	2164.69 5332.59 104.984 4881.33	2246.72 5134.72 104.874 4854.58
	.11:		BestLB	2325.97	2228.71	2133.36	-	-	-	-	-	-	-	-
		LR2	Time (sec.)	1987.52	1806.25	1537.42	-	-	-	-	-	-	-	-
			BestLB	2068.61	2020.86	1956.84	5253.67	5089.8	4969.5	4975.18	4842.1	4688.62	4770.47	-
		LR1	Time (sec.)	231.69	195.81	182.26	993.1	947.26	1009.9	2467.3	2027.5	2431.2	51424	-
		instance	n10 p3 0.9	n10 p3 0.8	n10 p3 0.7	n15 p3 0.9	n15 p3 0.8	n15 p3 0.7	n15 p4 0.9	n15 p4 0.8	n15 p4 0.7	n15 p5 0.9	n15 p5 0.8

Table 3 .

 3 12: Comparison of the quality between results of HH and B&C Obj.

	Value Rodríguez-Martín et al. (2014), cab instance with 25 nodes
	Instance	q	B&C Obj. Value Rodríguez-Martín et al. (2014)	HH. Obj. Value	Gap (%)
	Cab25_3_0.2_0.01	|V|	858.76	858.76	0.00
	Cab25_3_0.2_0.05	|V|	1193.41	1193.41	0.00
	Cab25_3_0.2_0.2	|V|	2448.35	2448.35	0.00
	Cab25_3_0.4_0.01	|V|	998.04	998.04	0.00
	Cab25_3_0.4_0.05	|V|	1332.69	1332.69	0.00
	Cab25_3_0.4_0.2	|V|	2587.63	2587.63	0.00
	Cab25_3_0.8_0.01	|V|	1254.02	1254.02	0.00
	Cab25_3_0.8_0.05	|V|	1605.91	1605.91	0.00
	Cab25_3_0.8_0.2	|V|	2827.03	2827.03	0.00
	Cab25_4_0.2_0.01	|V|	720.84	720.84	0.00
	Cab25_4_0.2_0.05	|V|	1041.09	1041.09	0.00
	Cab25_4_0.2_0.2	|V|	2227.04	2227.04	0.00
	Cab25_4_0.4_0.01	|V|	876.30	876.30	0.00
	Cab25_4_0.4_0.05	|V|	1206.25	1206.25	0.00
	Cab25_4_0.4_0.2	|V|	2392.19	2392.19	0.00
	Cab25_4_0.8_0.01	|V|	1176.44	1176.44	0.00
	Cab25_4_0.8_0.05	|V|	1528.42	1528.42	0.00
	Cab25_4_0.8_0.2	|V|	2615.26	2615.26	0.00
	Cab25_5_0.2_0.01	|V|	626.71	626.71	0.00
	Cab25_5_0.2_0.05	|V|	947.54	947.54	0.00
	Cab25_5_0.2_0.2	|V|	2027.18	2027.18	0.00
	Cab25_5_0.4_0.01	|V|	795.61	795.61	0.00
	Cab25_5_0.4_0.05	|V|	1120.99	1130.89	0.88
	Cab25_5_0.4_0.2	|V|	2179.65	2179.65	0.00
	Cab25_5_0.8_0.01	|V|	1126.18	1126.18	0.00
	Cab25_5_0.8_0.05	|V|	1446.56	1446.56	0.00
	Cab25_5_0.8_0.2	|V|	2457.77	2457.77	0.00
	Cab25_3_0.2_0.01	|V|/2	865.42	865.42	0.00
	Cab25_3_0.2_0.05	|V|/2	1213.10	1223.16	0.82
	Cab25_3_0.2_0.2	|V|/2	2495.76	2495.76	0.00
	Cab25_3_0.4_0.01	|V|/2	999.62	999.62	0.00
	Cab25_3_0.4_0.05	|V|/2	1359.94	1359.94	0.00
	Cab25_3_0.4_0.2	|V|/2	2648.59	2648.59	0.00
	Cab25_3_0.8_0.01	|V|/2	1254.02	1254.02	0.00
	Cab25_3_0.8_0.05	|V|/2	1623.26	1623.26	0.00
	Cab25_3_0.8_0.2	|V|/2	2917.72	2917.72	0.00
	Cab25_4_0.2_0.01	|V|/2	720.84	727.50	0.92
	Cab25_4_0.2_0.05	|V|/2	1041.09	1041.09	0.00
	Cab25_4_0.2_0.2	|V|/2	2227.04	2227.04	0.00
	Cab25_4_0.4_0.01	|V|/2	876.30	876.30	0.00
	Cab25_4_0.4_0.05	|V|/2	1206.25	1206.25	0.00
	Cab25_4_0.4_0.2	|V|/2	2392.19	2392.19	0.00
	Cab25_4_0.8_0.01	|V|/2	1176.44	1176.44	0.00
	Cab25_4_0.8_0.05	|V|/2	1528.42	1528.42	0.00
	Cab25_4_0.8_0.2	|V|/2	2716.52	2716.52	0.00
	Cab25_5_0.2_0.01	|V|/2	626.71	626.71	0.00
	Cab25_5_0.2_0.05	|V|/2	947.54	947.54	0.00
	Cab25_5_0.2_0.2	|V|/2	2040.02	2040.02	0.00
	Cab25_5_0.4_0.01	|V|/2	795.61	795.61	0.00
	Cab25_5_0.4_0.05	|V|/2	1120.99	1120.99	0.00
	Cab25_5_0.4_0.2	|V|/2	2208.83	2208.83	0.00
	Cab25_5_0.8_0.01	|V|/2	1126.18	1126.18	0.00
	Cab25_5_0.8_0.05	|V|/2	1446.56	1446.56	0.00
	Cab25_5_0.8_0.2	|V|/2	2514.93	2514.93	0.00
	Cab25_3_0.2_0.01	|V|/p	943.25	943.25	0.00
	Cab25_3_0.2_0.05	|V|/p	1348.93	1348.93	0.00
	Cab25_3_0.2_0.2	|V|/p	2789.59	2789.59	0.00
	Cab25_3_0.4_0.01	|V|/p	1089.05	1089.05	0.00
	Cab25_3_0.4_0.05	|V|/p	1494.95	1496.75	0.12
	Cab25_3_0.4_0.2	|V|/p	2926.27	2926.27	0.00
	Cab25_3_0.8_0.01	|V|/p	1302.98	1302.98	0.00
	Cab25_3_0.8_0.05	|V|/p	1708.64	1708.64	0.00
	Cab25_3_0.8_0.2	|V|/p	3099.42	3099.42	0.00
	Cab25_4_0.2_0.01	|V|/p	721.98	721.98	0.00
	Cab25_4_0.2_0.05	|V|/p	1063.03	1063.03	0.00
	Cab25_4_0.2_0.2	|V|/p	2341.94	2341.94	0.00
	Cab25_4_0.4_0.01	|V|/p	881.26	881.26	0.00
	Cab25_4_0.4_0.05	|V|/p	1222.30	1222.30	0.00
	Cab25_4_0.4_0.2	|V|/p	2501.22	2501.22	0.00
	Cab25_4_0.8_0.01	|V|/p	1178.69	1178.69	0.00
	Cab25_4_0.8_0.05	|V|/p	1531.41	1531.41	0.00
	Cab25_4_0.8_0.2	|V|/p	2810.33	2822.19	0.42
	Cab25_5_0.2_0.01	|V|/p	686.85	686.85	0.00
	Cab25_5_0.2_0.05	|V|/p	1050.38	1050.38	0.00
	Cab25_5_0.2_0.2	|V|/p	2393.88	2393.88	0.00
	Cab25_5_0.4_0.01	|V|/p	857.24	857.24	0.00
	Cab25_5_0.4_0.05	|V|/p	1221.48	1221.48	0.00
	Cab25_5_0.4_0.2	|V|/p	2564.98	2564.98	0.00
	Cab25_5_0.8_0.01	|V|/p	1165.79	1165.79	0.00
	Cab25_5_0.8_0.05	|V|/p	1532.11	1532.11	0.00
	Cab25_5_0.8_0.2	|V|/p	2875.61	2885.14	0.33
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 3 13: Comparison of the quality between results of HH and B&C Obj. Value Rodríguez-Martín et al. (2014), AP instance for 25 nodes

	Instance	q	B&C Obj. Value Rodríguez-Martín et al. (2014)	HH. Obj. Value	Gap (%)
	AP25_3_0.75_1	|V|	155482.14	155539.68	0.04
	AP25_3_0.75_100	|V|	177838.26	177838.26	0.00
	AP25_3_0.75_500	|V|	262544.57	262544.57	0.00
	AP25_3_0.75_1000	|V|	366638.05	366638.05	0.00
	AP25_4_0.75_1	|V|	139430.10	139773.20	0.25
	AP25_4_0.75_100	|V|	161485.26	161485.26	0.00
	AP25_4_0.75_500	|V|	243004.56	243004.56	0.00
	AP25_4_0.75_1000	|V|	344903.68	344903.68	0.00
	AP25_5_0.75_1	|V|	123802.90	123802.90	0.00
	AP25_5_0.75_100	|V|	145099.06	145099.06	0.00
	AP25_5_0.75_500	|V|	227204.68	227204.68	0.00
	AP25_5_0.75_1000	|V|	327043.26	327043.26	0.00
	AP25_3_0.75_1	|V|/2	155482.14	155482.14	0.00
	AP25_3_0.75_100	|V|/2	177838.26	177838.26	0.00
	AP25_3_0.75_500	|V|/2	262544.57	262591.10	0.02
	AP25_3_0.75_1000	|V|/2	366638.05	366638.05	0.00
	AP25_4_0.75_1	|V|/2	139430.10	139430.10	0.00
	AP25_4_0.75_100	|V|/2	161485.26	161485.26	0.00
	AP25_4_0.75_500	|V|/2	243004.56	243004.56	0.00
	AP25_4_0.75_1000	|V|/2	344903.68	344903.68	0.00
	AP25_5_0.75_1	|V|/2	123802.90	123802.90	0.00
	AP25_5_0.75_100	|V|/2	145099.06	145099.06	0.00
	AP25_5_0.75_500	|V|/2	227204.68	227204.68	0.00
	AP25_5_0.75_1000	|V|/2	327043.26	327567.38	0.16
	AP25_3_0.75_1	|V|/p	156287.34	156287.34	0.00
	AP25_3_0.75_100	|V|/p	178328.06	178328.06	0.00
	AP25_3_0.75_500	|V|/p	267381.48	267381.48	0.00
	AP25_3_0.75_1000	|V|/p	376932.18	376998.36	0.02
	AP25_4_0.75_1	|V|/p	139876.23	139876.23	0.00
	AP25_4_0.75_100	|V|/p	161720.99	161720.99	0.00
	AP25_4_0.75_500	|V|/p	249982.62	249995.77	0.01
	AP25_4_0.75_1000	|V|/p	359669.90	359899.70	0.06
	AP25_5_0.75_1	|V|/p	130727.14	130986.57	0.20
	AP25_5_0.75_100	|V|/p	154151.28	154222.44	0.05
	AP25_5_0.75_500	|V|/p	245105.99	247225.09	0.86
	AP25_5_0.75_1000	|V|/p	357731.82	359951.33	0.62
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The code is publicly available at https://code.google.com/p/generic-intelligent-hyperheuristic/
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updated as follows: if the elapsed CPU time is less than a certain milestone (e.g. the the time limit divided by a given number v 1 ), heuristics are chosen randomly in order to establish a historical heuristic series performance. Otherwise, if the elapsed CPU time is greater than the milestone /v1, T l will contain all heuristics for each series expect those for which the support value is greater than a threshold th S . In the case that the elapsed time is greater than the milestone /v2, T l will contain all heuristics for each series expect those for which the confidence value is greater than a threshold th C . It must be noted that the tabu list is updated with changes of quality of each heuristic series, i.e. calculation of W H S . Naive Bayes classifier assumes that all the features are conditionally independent of each other. This therefore permits us to use the Bayesian rule for probability.

Algorithm 5 Association Rules Heuristic Selection Method

Usually this independence assumption works well for most cases, if even in actuality they are not really independent. Bayesian rules is stated mathematically as the following equation De Finetti (1974):

A and B are events, products, actions or etc. P (A) and P (B) are the probabilities of A and B without regard to each other. P (A|B), a conditional probability, is the probability of observing event A given that B is true. P (B|A), is the probability of observing event B given that A is true.

In our proposed method, after each heuristic being applied, the frequency of worsening moves and the frequency of improvement move was accumulated. Therefore, in our hand we have at each iteration, the number of times each heuristic has improved/worsened the solution. Hence, we can calculate the probability of a heuristic h i given that the solution is improved.

The method is based on dividing the time horizon into three portion (V 1, V 2 and V 3). In V 1, which represents the time when the process starts till the time limit (T l ) divided by 5, heuristics are selected totaly random. In V 2, which is bounded between V 1 and 3T l divided by 5, a heuristic h i will be selected in the case of having the probability of being applied given that the solution was improved (P (h i |class = Improvement)) is grater than 0.4. In addition, a