
HAL Id: tel-01485160
https://theses.hal.science/tel-01485160

Submitted on 8 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hyperheuristics in Logistics
Kassem Danach

To cite this version:
Kassem Danach. Hyperheuristics in Logistics. Combinatorics [math.CO]. Ecole Centrale de Lille,
2016. English. �NNT : 2016ECLI0025�. �tel-01485160�

https://theses.hal.science/tel-01485160
https://hal.archives-ouvertes.fr

No d’ordre: 315

Centrale Lille

THÈSE

présentée en vue d’obtenir le grade de

DOCTEUR

en

Automatique, Génie Informatique, Traitement du Signal et des Images

par

Kassem Danach

DOCTORAT DELIVRE PAR CENTRALE LILLE

Hyperheuristiques pour des problèmes

d’optimisation en logistique

Hyperheuristics in Logistics

Soutenue le 21 decembre 2016 devant le jury d’examen:

President: Pr. Laetitia Jourdan Université de Lille 1, France

Rapporteurs: Pr. Adnan Yassine Université du Havre, France

Dr. Reza Abdi University of Bradford, United Kingdom

Examinateurs: Pr. Saïd Hanafi Université de Valenciennes, France

Dr. Abbas Tarhini Lebanese American University, Lebanon

Dr. Rahimeh Neamatian Monemin University Road, United Kingdom

Directeur de thèse: Pr. Frédéric Semet Ecole Centrale de Lille, France

Co-encadrant: Dr. Shahin Gelareh Université de l’ Artois, France

Invited Professor: Dr. Wissam Khalil Université Libanais, Lebanon

Thèse préparée dans le Laboratoire CRYStAL

École Doctorale SPI 072 (EC Lille)

2

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Frédéric

Semet, Dr. Shahin Gelareh and Dr. Wissam Khalil for their continuous support of

my Ph.D study and related research, for their patience, motivation, and immense

knowledge. Their guidance helped me in all the time of research and writing of

this thesis.

I would also like to thank my parents for their wise counsel and sympathetic ear.

I would like express appreciation to my beloved wife Jomana Al-haj Hasan who

spent sleepless nights with and was always my support in the moments when there

was no one to answer my queries.

Finally, there are my children, who have given me much happiness and keep me

hopping. My son, Mahdi, has grown up watching me study and juggle with family

and work. Abbass, the little one, who always try to do everything to make his

presence felt. I hope I have been a good father and that I have not lost too much

during the tenure of my study.

3

Resumé

Le succès dans l’utilisation de méthodes exactes dans l’optimisation combinatoire

à grande échelle est encore limité à certains problèmes, et peut-être des classes

spécifiques d’instances de problèmes. Le moyen alternatif consiste soit à utiliser

des métaheuristiques ou des mathématiques qui utilisent des méthodes exactes à

certains égards. Le concept d’hyperheuristique (HH) est une généralisation de

celle des métaheuristiques. Dans le contexte de l’optimisation combinatoire, nous

nous intéressons à l’heuristique pour choisir l’heuristique. Les deux catégories

hyperheuristiques principales de la classification précédente sont: 1) la sélection

heuristique, qui considère une méthode pour sélectionner des heuristiques à partir

d’un ensemble d’heuristiques existantes, et 2) la génération heuristique qui consiste

à générer de nouvelles heuristiques à partir des composantes des heuristiques

existantes.

Dans cette thèse, nous nous concentrons sur l’optimisation hyperheuristique

des problèmes logistiques. Nous présentons une revue de littérature détaillée sur

les termes origine, concept, domaine d’application, etc. Ensuite, deux problèmes

logistiques ont été choisis pour lesquels nous avons proposé HH. Sur la base de

la structure générale d’une solution réalisable et en exploitant les informations

cachées dans les données d’entrée, nous définissons un ensemble d’heuristiques

possibles pour chaque problème. Nous nous concentrons ensuite sur la propos-

ition d’un cadre hyperheuristique qui effectue une recherche dans l’espace des

algorithmes heuristiques et apprend comment changer l’heuristique en place d’une

manière systématique le long du processus de telle sorte qu’une bonne séquence

4

d’heuristiques produit des solutions de haute qualité. Notre cadre hyperheuristique

est équipé d’un mécanisme d’apprentissage qui apprend l’environnement et guide

la transition d’une heuristique historique à une autre jusqu’à ce que l’algorithme

global se termine.

Le premier problème abordé est le problème d’ordonnancement de la plate-

forme de workover (WRSP), qui consiste à trouver le meilleur horaire pour un

certain nombre de plates-formes de workover pour minimiser la perte de production,

associée à un grand nombre de puits en attente de maintenance. Un algorithme

d’hyperheuristique de sélection est proposé, qui est guidé par un mécanisme

d’apprentissage conduisant à un choix approprié de mouvements dans l’espace

des heuristiques qui sont appliquées pour résoudre le problème. Nos expériences

numériques sont menées sur des exemples d’une étude de cas de Petrobras, la

Société nationale brésilienne du pétrole, et ont été comparées avec une méthode

exacte prouvant son efficacité.

Le deuxième problème est une variante du problème de routage d’emplacement

de concentrateur, qui cherche à diviser les nœuds en moyeux et rayons. Deux

HH différentes ont été appliquées à deux variantes de ce problème, qui sont

dérivées d’un problème d’acheminement de localisation de concentrateur de capa-

cité d’allocation unique et diffèrent principalement dans la définition de la capacité.

Dans le premier, le nombre de rayons pouvant être attribué à chaque hub est limité;

Tandis que dans la seconde, c’est le volume de l’écoulement circulant sur la voie

du rayon-niveau. De plus, cinq relaxations lagrangiennes (LR) ont été proposées

pour le premier problème afin d’utiliser certains résultats pendant le processus de

5

HH. Les résultats de calcul prouvent l’efficacité de HH et la pertinence d’inclure

l’information LR. Enfin, nous comparons les performances de plusieurs HH pro-

posées dans la littérature pour le problème précédemment abordé, avec différentes

méthodes de sélection heuristique telles que la sélection aléatoire, la fonction de

choix, Q-Learning et la colonie de fourmis.

6

Contents

Acknowledgements 2

Contents 6

List of Tables 11

List of Figures 13

1 Hyperheuristic: A General Overview 15

1.1 Introduction . 15

1.2 Heuristics, Metaheuristics and Matheuristics 18

1.3 Hyperheuristics . 22

1.3.1 Hyperheuristic Classification 25

1.3.2 Move Acceptance Criteria 29

1.3.3 Termination Criteria . 34

1.4 State of the art . 35

1.5 Existing and the Proposed Framework 39

1.6 Contributions and Overview . 42

8 CONTENTS

2 Workover Rig Problem 45

2.1 Introduction . 45

2.2 Literature review . 47

2.2.1 Objective and contribution 49

2.3 Problem Description . 51

2.4 Mathematical Model . 51

2.4.1 Workover Rig Scheduling (WRS) Problem 52

2.4.2 Valid inequalities . 55

2.4.3 Preprocessing . 57

2.4.4 Illustrative example . 58

2.5 Hyperheuristic for WRS Problem 58

2.5.1 Reinforcement learning 63

2.6 Numerical experiments . 66

2.7 Summary, conclusion and outlook to future work 74

3 Capacitated Single Allocation p-Hub Location Routing Problem 77

3.1 Introduction . 77

3.2 Mathematical Formulation . 87

3.2.1 (CSApHLRP-1-F1) . 88

3.2.2 (CSApHLRP-1-F2) . 91

3.2.3 (CSApHLRP-2) . 94

3.3 Solution algorithm . 97

3.3.1 Lagrangian relaxation 98

CONTENTS 9

3.3.2 Hyperheuristic for CSApHLRP-1 and CSApHLRP-2 . . . 104

3.4 Computational experiments . 117

3.4.1 CSApHLRP-1 Computational experiments 118

3.4.2 CSApHLRP-2 Computational experiments 129

3.5 Conclusion and future work . 129

4 Selection Methods 137

4.1 Introduction . 137

4.2 The Proposed Selection Methods 139

4.2.1 Random Selection Based Hyperheuristic 140

4.2.2 Greedy Based Hyperheuristic 142

4.2.3 Peckish Based Hyperheuristic 142

4.2.4 Choice Function Based Hyperheuristic 143

4.2.5 Reinforcement Learning 145

4.2.6 Metaheuristics Based Hyperheuristic 148

4.3 Numerical Results . 156

4.4 Conclusion . 157

5 General Conclusion 161

Bibliography 167

10

List of Tables

2.1 Model Parameters and variables. 52

2.2 Best solution and execution time results of the two methods. . . . 68

2.3 Computational results of our branch, price and cut. 73

3.1 A summary of main elements of the relevant contributions in liter-

ature. 84

3.2 CSApHLRP-1-F1 and CSApHLRP-1-F2 Models Parameters. . . . 87

3.3 The decision variables for CSApHLRP-1-F1 and CSApHLRP-1-F2. 88

3.4 CSApHLRP-2 Model Parameters. 95

3.5 CSApHLRP-2 Decision Variables. 95

3.6 Comparison of the quality between benders decompositions and

the proposed hyperheuristic with and without LR 121

3.7 Number of each heuristic in each instance was applied. 123

3.8 Comparison of the quality between the initial objective function

taken by the proposed hyperheuristic with and without LR 124

3.9 HH results for large instances of pHub location problem. 125

12 LIST OF TABLES

3.10 A comparison between results of Matheuristic with that of LR HH. 126

3.11 Lagrangian relaxation results. 128

3.12 Comparison of the quality between results of HH and B&C Obj.

Value Rodríguez-Martín et al. (2014), cab instance with 25 nodes 133

3.13 Comparison of the quality between results of HH and B&C Obj.

Value Rodríguez-Martín et al. (2014), AP instance for 25 nodes . . 134

3.14 Comparison of the quality between results of HH and B&C Obj.

Value Rodríguez-Martín et al. (2014), AP instance for 40 nodes . . 135

3.15 Comparison of the quality between results of HH and B&C Obj.

Value Rodríguez-Martín et al. (2014), AP instance for 50 nodes . . 136

List of Figures

1.1 The general scheme of hyperheuristic framework. 25

1.2 A classification of hyperheuristic approaches (Burke et al., 2010) . 29

1.3 The Proposed Hyperheuristic Framework. 42

2.1 Illustrative example with |R| = 3, |J +| = 7 and |T | = 16. Every

machine starts by processing job 0 at t = 0 and terminates at the

same job as the job processed on it. 58

2.2 The wells are uniformly distributed within a given geographical

zone. 66

2.3 Execution time of each method. 70

2.4 The constructive and improvement heuristics calls distribution by

each method. 71

2.5 the mutation and crossover heuristics calls distribution by each

proposition. 72

2.6 insert/drop and reconstructive heuristics calls distribution by each

method. 72

14 LIST OF FIGURES

3.1 A solution of network with 3 hubs and 10 nodes. 80

3.2 A solution of network with 3 hubs and 10 nodes. 85

3.3 Civil Aeronautics Board data with 25 nodes. 118

3.4 Australia post data with 200 nodes. 119

3.5 Optimal solution for CAB25 with p=5, q=13, α=0.8, β=0.01. . . . 130

3.6 Optimal solution for CAB25 with p=5, q=13, α=0.8, β=0.05. . . . 130

3.7 Optimal solution for CAB25 with p=5, q=13, α=0.8, β=0.2. . . . 130

3.8 HH execution time in CSApHLRP-2. 131

4.1 Algorithm selection model taken by Rice (1976). 139

4.2 A general schema of the VNS algorithm. 155

4.3 The process of the proposed VNS Hyperheuristic. 155

4.4 HH results within different heuristic selection methods 157

4.5 HH results within different peckish selection methods 158

4.6 HH results within different RL selection methods 158

4.7 HH results within simple random, random descent, random per-

mutation descent, greedy and choice function selection methods . 159

Chapter 1

Hyperheuristic: A General

Overview

1.1 Introduction

The term Optimization, according to Merriam Webster1, is a process or method-

ology of making something as fully perfect, or effective as possible. We seek a

state from among the set of possible states with the most cost effective or highest

achievable performance under given constraints. In mathematical optimization with

one single objective, we search a maximum or a minimum value of an objective

function of several variables over a set of feasible solutions defined by a set of con-

straints. When both the objective function and the search space could be described

by means of linear terms and linear system, respectively, linear programming based

1www.merriam-webster.com/dictionary/mW

16 Hyperheuristic: A General Overview

techniques are used to solve such models and find the optimum (optima).

A combinatorial problem (COP) is defined as a problem of finding an optimal solu-

tion from a finite set or possibly countable infinite set of searching area (Schrijver,

2005). Usually, COPs involve grouping, ordering, or assignment of a discrete finite

set of objects with some predefined conditions. Many problems in the real-life

from telecommunications, transportation, logistics and energy sectors to modeling

of social networks, bio-informatics and even archeology and beyond are modeled

as COPs. Some classical and well-studied problems of COPs that often appear

as subproblem in other more complex problems includes: knapsack problems

(Martello and Toth, 1990), traveling salesman problems (Applegate et al., 2011),

vehicle routing problems (Toth and Vigo, 2014) and variants of facility location

problems (Drezner and Hamacher, 2001) among many others.

In this thesis, we focus on a couple of problems arising in logistics and network

design for management of the flow of resources between the point of origin and

the point of consumption in order to meet some requirements. Such problems, like

many other problems in logistics, are categorized as COPs and they also include

continuous decision variables. These problems are often modeled as mixed integer

1.1 Introduction 17

programming (MIP) models which can be expressed as follows:

Objective : min cTx+ dTy

Constraints : Ax+By = b linear constraints

x ∈ Rm1l ≤ x ≤ u bound constraints

y ∈ Zm2 integrality constraints

The optimization techniques proposed in the literature, are classified in two main

categories: exact method and non-exact method(variants of heuristic approaches).

Exact optimization methods provide provably optimal solutions, when exists, while

the non-exact methods (which might also be based on MIP models and mathem-

atical programming). Yet, there is a serious bottleneck when dealing with exact

methods including general-purpose solvers: Small instances of real-life problems

can be often solved to optimality in reasonable times when a good description

of polytope (in terms of tightness of LP relaxation, additional valid inequalities

are available etc) is available while moderate size instances may be solved using

efficient and specialized methods in reasonable times. However, the larger ones

are very less likely to be solved to optimality and often even finding a feasible

solution for such problems may become very difficult task for exact approaches.

At this point, non-exact methods such as those combining heuristic techniques with

mathematical programming techniques such as Lagrangian heuristics, LP-based

heuristic and primal-dual heuristic. or the different approaches such as specialize

ad-hoc heuristics, evolutionary or metaheuristic approaches that are developed to

18 Hyperheuristic: A General Overview

find very good feasible solutions become inevitable. Sometimes in exact methods,

an indication of optimality can be provided, the non-exact often do not provide any

indication.

In the remainder of this chapter, we elaborate further on heuristic optimization

and explain some differences among different techniques and paradigms. We then

focus on the context of hyperheuristic, the paradigm, general framework, steps,

and different components.

1.2 Heuristics, Metaheuristics and Matheuristics

Heuristics are often problem-dependent techniques that are usually adapted to the

problem at hand and they try to take full advantage of the particularities (structure

or other kind of information) of the problem. However, since they are often too

biased, they usually get trapped in a local optimum and thus fail, in general, to

obtain the global optimum solution, and no guarantee if it get the optimal solution

or not.

Metaheuristic is a class of approximate methods developed in the early 1980s.

Metaheuristics are designed to solve complex optimization problems; in fact, the

classical heuristics were not always effective and efficient, as they were time con-

suming or there were some limitation to help them escape from a local optima.

1.2 Heuristics, Metaheuristics and Matheuristics 19

Metaheuristics are problem-independent techniques, pattern or paradigms. For

example Simulated Annealing (SA) (Kirkpatrick, 1984) imitates the cooling of

material in a heat bath and maps the objective function optimal of the optimization

problem on the optimal energy level function of the hot material such that annealing

is the process in which the temperature of a molten substance is slowly reduced

until the material crystallises to give a large single crystal.

Metaheuristic, can be defined as an iterative generation of a process, which

guides a subordinate heuristic by combining intelligently different concepts for

exploring and exploiting the search space (Osman and Laporte, 1996).

As such, the metaheuristics are independent of any specificity of the problem

and, therefore, can be used as general paradigm. In general, they are less greedy

approaches in characteristic. In fact, they may even accept a temporary deteriora-

tion of the solution (e.g. SA), which allows them to explore more thoroughly the

solution space and thus to get a hopefully better solution (that sometimes will coin-

cide with the global optimum). Although a metaheuristic is a problem-independent

technique, it is nonetheless necessary to do some fine-tuning of its associated

parameters in order to adapt the technique to the problem at hand.

To illustrate the concept of metaheuristic, we should first distinguish between

heuristic algorithms and metaheuristic algorithm. The main objective of heurist-

ics is to obtaining a solution at an acceptable cost for a wide range of problems.

Heuristics do not have an approximation guarantee on the quality of the obtained

20 Hyperheuristic: A General Overview

solutions. On the other hand, Metaheuristics are general-purpose algorithms that

can be regarded as upper level general methodologies employed as guiding strategy

for the heuristics.

In metaheuristics approach, two strategies must be taken in account (Talbi,

2009):

1. Diversification: that explores the search space to avoid getting stuck in the

same or similar areas of feasible space.

2. Intensification: that emphasizes on concentrating search in the promising

regions previously found, in order to exploiting the potentials.

Several families of metaheuristic algorithms are proposed in the literature such

as simulated annealing (SA) (Aarts and Korst, 1988), tabu search (TS) (Glover,

1989), genetic algorithm (GA) (Davis, 1991), GRASP (Dyall et al., 1989), vari-

able neighborhood search (VNS) (Mladenović and Hansen, 1997a), adaptive large

neighborhood search (ALNS) (Ahuja et al., 2000), path relinking (Glover, 1998),

particle swarm optimization (PSO) (Eberhart et al., 1995), scatter search (SS)

(Glover, 1998), ant colony (Dorigo et al., 2000), among others.

Metaheuristic algorithms can be categorized with respect to different char-

acteristics as follows. The deterministic ones offer the same results for several

runs while the non-deterministic ones may report different results per different

invocations.

1.2 Heuristics, Metaheuristics and Matheuristics 21

One can distinguishes among metaheuristic algorithms by the algorithm that

use single solution (trajectory methods) at each iteration of the search such as local

search, SA, TS, VNS, ALNS, GRASP, path relinking, etc, and those which use

multiple solutions (population-based methods) and contain more than one (partial)

solution such as GA, Ant colony, PSO, scatter search, etc.

One can also distinguishes between the metaheuristics that make use of some

kind of long-term or short term memories and the memory-less ones. Memory

based methods are the methods where the search moves are recorded and the

future moves should use those information to avoid cycling, previous solution,

worse solution etc. such as Tabu Search, PSO, Scatter, Path relinking, Genetic

Algorithm, Ant Colony, etc., while others such as GRASP, VNS, etc. are originally

memory-less.

Matheuristic optimization (Bartolini and Mingozzi, 2009) algorithms are a

combination between (meta)heuristic approaches and different techniques of math-

ematical programming. Whether mathematical programming is in charge of solving

the problem at hand and (meta)heuristics exploit the primal/dual information to

generate better primal bounds or mathematical programming techniques are em-

ployed within (meta)heuristics to solve a sub-problem after some variable being

fixed (for example a capacitated flow problem, or a linear part of an initially

non-linear model where part of variables are fixed by the (meta)heuristic) we are

22 Hyperheuristic: A General Overview

talking about the matheuristics. Such techniques become very popular as MIP

solvers or customized MIP codes have become more effective as primary solvers

or as sub-procedures which is due to the advancements that were achieved in the

research on mathematical programming, and in particular on discrete optimization.

1.3 Hyperheuristics

Hyperheuristics (HH) aims to solve hard computational search problems by auto-

mating the design of heuristic methods. The term itself appeared for the first time

in 1997, in a study about automated theorem proving (Denzinger et al., 1996). It

was given to a protocol that combines several artificial intelligence methods. It

was then more adequately used in the year 2000 in connection with combinatorial

optimization (Cowling et al., 2001): heuristics to choose heuristics. In this context,

a hyperheuristic is a high-level approach that solves hard computational search

problems, given a particular problem instance and a number of low-level heuristics,

by selecting and applying an appropriate low-level heuristic at each decision point.

Even though the term is relatively new, the idea itself dates back to the 1960s

(Crowston et al., 1963). A number of researchers developed the automation of the

design process of heuristic methods during the 1990s (Fang et al., 1993).

Hyperheuristics however go a step beyond metaheuristics. The particularity of

hyperheuristics is that their search space is not the usual space of the solutions but

is rather the space of heuristics or metaheuristics.

1.3 Hyperheuristics 23

The concept of Hyperheuristic may be seen a generalization of that of (Meta)-

heuristics and facilitates classifying a large body of literature of heuristics and

metaheuristics that was rather difficult to classify before this. Many definition of

the term was found in the literature. Özcan et al. (2010) defines hyperheuristics as

methodologies for searching the feasible space, which is generated by a set of low

level heuristics while Topcuoglu et al. (2014) defines it as methods for automation

of the process of selecting and generating multiple low-level heuristics.

When we are dealing with certain variants of optimization problems, hyperheur-

istics are most useful since they only require general knowledge of the problem

domain. Cowling et al. (2001) defined the term hyperheuristic as heuristics to

choose heuristics. Ochoa et al. (2009) stated that in hyperheuristics research, the

importance of increasing the efficiency of the solution method is more important

than bettering the solution itself. They also stated that what distinguishes meta-

heuristics from hyperheuristics is that the latter has a search space of heuristics not

of problem solutions, which was previously mentioned by (Ross, 2005).

Recently, the definition of hyperheuristics has been recently extended to refer to

the search method or learning mechanism to select or generate heuristic to solve

combinatorial problem. The main objective is to design a generic method which

can apply in several problem domains. This method should produce a solution of

high quality but the emphasis, in this method, is on the use of low level heuristics

that are easy to implement.

The hyperheuristic framework requires a set of predefined materials. The hyper-

24 Hyperheuristic: A General Overview

heuristic framework is provided with a set of preexisting simple heuristics, and

the challenge is to select or generate the heuristic or the operator that is somehow

the most suitable for the current problem state. This process continues until the

termination criteria is met.Figure 1.1 depicts a generic hyperheuristic process,

which represents the strategy plan in the high level and the major components

such as the termination criteria, Low-level heuristics (LLH)/operator selection

methods, the acceptance criteria etc. Until the termination criteria is met, HH

selects the corresponding LLH (or operator) from an a priori known set according

a predefined selection rule and apply it subsequently. The resulted solution at each

iteration may or may not be accepted which depends on the predefined acceptance

criteria.

1.3 Hyperheuristics 25

Heuristic1 Heuristic 2 …

Operator
1

Operator
2

…

HYPERHEURISTIC

1 • Acceptance Criteria

2 • Termination Criteria

3 • Selection RulesCase of

“generate

heuristics”

Case of “select heuristics”

Apply the candidate heuristic
(selected or generated)

Solution

Unless termination
criteria

Will be accepted or not?

Evaluation

Figure 1.1: The general scheme of hyperheuristic framework.

1.3.1 Hyperheuristic Classification

A variety of hyperheuristic approaches was defined in the literature. In this subsec-

tion, we present an overview of the different categorizations of hyperheuristic with

respect to I) the nature of heuristic search space, II) if it is constructing a solution

from scratch or starting from a feasible solution in order to improve it, and III) and

the use of learning mechanisms during the search process. Interested readers are

26 Hyperheuristic: A General Overview

referred to see (Burke et al., 2010, 2009a; Bader-El-Den and Poli, 2008) for further

details.

Nature of heuristic search space: While in the beginning the hyperheuristics

were to uses (select from among) the pool of existing low-level heuristics, in the

late of 2000’s genetic programming started being used for hyperheuristics. This

has introduced a new way in which the low-level heuristics were not only selected

but also being generated from existing heuristic components. Such an emerging

perspective has led to a revised definition: as an automated methodology to select

or generate heuristic in order to solve hard problems (Burke et al., 2010). Hence,

the HH are now belong to either heuristic selection category or the heuristic gener-

ation ones. We are not aware of any work that try to propose any hybrid method.

Akin to the heuristic selection HH class of hyperheuristics, the other category

requires a set of heuristics that are suitable to the problem at hand. The difference

is that these heuristics will not be supplied directly to the framework, they will be

fragmented into their basic building-blocks so that new heuristics can be generated

from them, all in the hopes of achieving a good feasible solution. This class of

hyperheuristics led researchers to distinguish between reusable and disposable

heuristics. The latter refers to heuristics that were built to be used on a specific

problem and cannot be used on others.

1.3 Hyperheuristics 27

Solution Target: construction vs. perturbation: If no initial feasible solution

is at hand we talk about the Selection based construction hyperheuristics which aim

at select and use construction heuristics in a smart and efficient way that it builds

a good solution from the scratch progressively. It starts with an empty solution

and uses the hopefully most suitable heuristic, from a pool of pre-existing problem

specific construction heuristics, to solve the current problem instance. This process

terminates when it reaches the complete feasible solution. This highlights the

importance of choosing the best heuristic at each problem instance, because the

sequence is not infinite.

On the other hand, when a feasible solution is indeed at hand, one talks about

the selection based perturbation hyperheuristics that require a complete solution

to start with. This solution could be generated randomly or using a construction

heuristic (not directly related to the HH). Afterwards, the higher-level selection

hyperheuristic is supplied with a pool of neighborhood structures and/or simple

local search routines. It selects and applies those heuristics to the starting solution in

an iterative manner until a stopping condition has been met, unlike the constructive

class where the process is ended after a certain number of choices.

Selection Methods: with learning or without: Researchers also classified hy-

perheuristics based on whether they include learning mechanisms or not (Soubeiga,

2003). Hyperheuristics with learning are methods that record the historical perform-

ance of the heuristics available in the search pool, and use learning mechanisms to

28 Hyperheuristic: A General Overview

study those records and manage the selection process of the heuristics based on it.

The Hyperheuristics without learning, select the heuristics from the search pool

in a predetermined manner. In Chapter 4, we will elaborate further on different

selection methods with and without learning.

The 2-dimension hyperheuristic classification by (Burke et al., 2010), shown

in Figure 1.2, presents a classification of hyperheuristics according the nature of

heuristic search space and the source of feedback during the process. The first di-

mension distinguishes between heuristic selection and heuristic generation, which

could both be constructive or local search hyperheuristics using construction and

perturbation low-level heuristics, respectively. The second dimension however,

points out towards another classification, which is orthogonal to the first one. It

distinguishes between new categories according to the source of feedback during

learning.

The first class is referred to as online learning hyperheuristics, where the learn-

ing mechanism is active during the solution process of an instance of the problem.

The higher-level strategy selects or generates the appropriate low-level heuristic

according to their real-time performances.

The second class are the off-line learning hyperheuristics, which use a set of

training instances in order to extract hidden knowledge in the form of programs or

rules, all in the hopes of generalizing the process to the stage where it becomes

1.3 Hyperheuristics 29

fully capable of solving unseen instances.

Apart from the aforementioned classes, there are non-learning hyperheuristics

that are the one that do not employ any learning mechanisms of any sort.

Figure 1.2: A classification of hyperheuristic approaches (Burke et al., 2010)
.

There are also other classification schemes such as the one in (Chakhlevitch

and Cowling, 2008a) that will be more elaborated in chapter 4.

1.3.2 Move Acceptance Criteria

The decision of whether or not accepting a new solution during the search, which

known as move acceptance strategy, is regarded as a crucially important decision in

30 Hyperheuristic: A General Overview

the recent studies such the selection methods. The acceptance strategies themselves

are divided into two categories: Deterministic and non-deterministic.

Deterministic methods make the same acceptance decision for the same can-

didate situations and no random elements exists in this category. Few deterministic

methods, which are used in (Cowling et al., 2001, 2002a), are summarized in the

following:

i) All Moves(AM): deals with accepting the candidate solution regardless of its

quality.

ii) Only Improvements (OI): accepts only the improving solutions.

iii) Improving and Equal (IE): the same of Only Improvements except that ac-

cepting candidates with the same quality as of the current but significantly

different from the incumbent, as a kind of diversification.

Cowling et al. (2002a) present a variety of hyperheuristic in order to compare

the performance of different combinations of heuristics selection methods and

acceptance strategies. Two acceptance methods were tested: AM and OI. The

choice function hyperheuristic with AM acceptance criteria is shown to be the

better one in their experimental results. To the best of our knowledge the AM is

only considered in (Nareyek, 2004) as the acceptance criteria with reinforcement

learning technique.

On the other hand, non-deterministic methods might make different decision for

1.3 Hyperheuristics 31

the same input at different decision point. Therefore, non-deterministic methods

require additional parameter such as the time stamp. Several non-deterministic

acceptance strategies are proposed in the literature, some of which are listed in the

sequel:

1. Exponential Monte Carlo (MC) (Ayob and Kendall, 2003a), allows the non-

improving solution to be accepted with a probability e−δ, where δ is the

difference between the objective function value of the current solution and

that of the candidate. The probability of a non-improving solution to be

accepted decreases as the δ increases.

2. Simulated Annealing (SA) (Bai and Kendall, 2005), accepts any worsening

solution with a probability of e−δ/t. The probability of a non-improving

solution being accepted decreases as δ/t increases, where t is the time stamp.

3. Exponential Monte Carlo With Counter (EMCQ) (Ayob and Kendall, 2003a),

is a variant of simulated annealing, but the probability of accepting a can-

didate solution follows the equation exp(−θ
τ

), where θ = δt, τ = p(Q), t is

the time. θ and τ were defined in a manner to ensure that the probability of

accepting worsening solution decrease as t increase and δ decrease. Q is a

parameter which it is represented as a counter of consecutive non-improved

iterations. With the smaller values of Q the probability of accepting non-

improving solution increases which ensures some kind of diversification.

4. Record to Record Travel (RRT), (Dueck, 1993), which allows worsening

32 Hyperheuristic: A General Overview

solutions to be accepted with respect to a threshold value, which depends on

the objective function deviation from the current best solution.

5. Great Deluge, (Dueck, 1993), which is similar to the RRT while the threshold

τ , presented in the following, decreases in time linearly. maxIter represents

the maximum number of iterations or the time limit, t is the elapsed time or

iterations, and ∆R is an expected range between the initial objective function

value and the best one.

T = fopt + ∆R(1− t

maxIter
) (1.1)

6. Naive Acceptance, (Cowling et al., 2001), where non-improving solutions

are accepted with a probability of 0.5.

7. Adaptive Acceptance, which authorizes worsening moves being accepted

with a probability of 1 − 1
C
, C > 0. C is considered as a counter, which

increases to N consecutive operation without improving the solution. C is

reset to 1 each time an improvement in the solution is observed.

8. Late Acceptance (LA), is a generic optimisation method (Burke and Bykov,

2008) which is an extension of simple hill-climbing and requires a unique

parameter with a memory based approach. Such in hill-climbing, accepted

new solution should be better than the incumbent one, LA accepts a solution

if it is of better quality than the solution n iterations previously, where n is

the size of a memory of previously seen solutions.

1.3 Hyperheuristics 33

The non-deterministic acceptance criteria have received a lot of attentions so far.

Ayob and Kendall (2003b) proposed three move acceptance strategies based on

Monte Carlo move acceptance method, which are based on the change of the fitness

value, time and the number of consecutive non-improving moves. The heuristic

selection method was a simple random method, forms with one of the three move

acceptance methods a hyperheuristic approach, which aims to solve the component

placement problem. Authors demonstrate that the best move acceptance strategies

for this problem within the used heuristic selection method, is exponential Monte

Carlo with counter method.

Other SA-based acceptance method were also applied in the literature. Bai and

Kendall (2005) demonstrates good performance of a simple random hyperheuristic

with SA acceptance criteria in the problem of shelf space allocation. Reheating

schema was embedded into the SA move acceptance, and applied to the problem

of travelling tournament problem in (Anagnostopoulos et al., 2006). Moreover, a

hyperheuristic, consists of SA with reheating and a reinforcement learning method,

was applied in (Bai et al., 2007) for nurse roistering, course timetabling and 1D bin

packing problem. It must be noted that SA differs from EMCQ by using a cooling

schedule.

In (Dueck, 1993), simple random heuristic selection was combined with four

acceptance strategies including monte carlo, AM, OI and RRT, in order to compare

their performances. RRT move acceptance provides the better solution among the

three others.

34 Hyperheuristic: A General Overview

Another performance study for several heuristic selection methods and accept-

ance strategies was employed by (Bilgin et al., 2007) for the problem of exam

timetabling. The hyperheuristic comprised of a choice function heuristic selection

method and SA acceptance mechanism, is demonstrated as the best method. While,

simple random with great deluge hyperheuristic has the second place with respect

to the performance.

The great deluge, which is a threshold based acceptance method, is proposed

by (Dueck, 1993). It was applied by (Kendall and Mohamad, 2004) with simple

random selection method to a mobile telecommunication network problem. The

great deluge with greedy heuristic selection was also applied in order to solve a

problem of job shop scheduling in (Mcmullan, 2007).

Three variants of great deluge move acceptance strategies with a reinforcement

learning was presented in (Sin and Kham, 2012) in order to solve a problem of

exam timetabling problem.

Özcan et al. (2009) applied late acceptance strategy with several heuristic se-

lection method for solving exam timetabling problem. Simple random selection

method, which select one of four perturbation low-level heuristics, with late accept-

ance method is shown as the best proposed approach compared to the performance

of using tabu search or choice function selection methods.

1.3.3 Termination Criteria

Termination criteria deal with defining a special condition(s) as search stopping

criteria. The termination condition tries to avoid useless computations and also

1.4 State of the art 35

avoid early termination. The most known proposed termination criteria include

time limit, number of iterations, number of non-improvement steps, performance

changes of each existing heuristic etc.

The different (combination of) termination criteria in different contexts were

proposed in literature, e.g. (Özcan et al., 2010), (Burke et al., 2008a), (Raghavjee

and Pillay, 2015), (Shmygelska and Hoos, 2005) and (GiriRajkumar et al., 2010)

among others.

1.4 State of the art

The hyperheuristic approach has been successfully applied to solve many combin-

atorial problems in Scheduling (see e.g. (Ahmed et al., 2015; Zheng et al., 2015;

Aron et al., 2015), Routing (Danach et al., 2015a,b; Monemi et al., 2015; Marshall

et al., 2014; Garrido and Riff, 2010; Garrido and Castro, 2012)), Bin Packing (see

(Sim et al., 2015; Beyaz et al., 2015; Ross et al., 2002)), Telecommunications (see

(Kendall and Mohamad, 2004; Keles et al., 2010; Segura et al., 2011)) and Con-

straint Satisfaction Terashima-Marín et al. (2008); Ortiz-Bayliss et al. (2010) from

among others. The interested readers are referred to (Chakhlevitch and Cowling,

2008b) for a classification and review of the recent developments in hyperheuristics

including real-world applications. The authors identified three distinct attributes

that define a hyperheuristic method. According to the authors, a hyperheuristic

is 1) a high level heuristic that manages lower level ones, 2) its goal is to find a

36 Hyperheuristic: A General Overview

good solution method instead of finding a good solution, and 3) it makes use of

problem-specific information uniquely. The authors emphasize on the importance

of the last attribute.

Burke et al. (2009a) elaborates on some of the possible methodologies that

use sets of promising heuristic components to generate new heuristics. These

methodologies are highly influenced by Genetic Programming techniques. Many

points were highlighted in this chapter, the authors described the steps to properly

apply this approach along with some case studies. Furthermore, some of the issues

faced by this type of HH are discussed and a brief literature review is presented.

Kendall et al. (2002a) presents an approach to solve three personnel scheduling

problems by ranking heuristics using a performance-rating function. Burke et al.

(2003) combined Tabu-search and HH has been proposed as a hybrid method that

was then applied on eleven university course timetabling problems and on variants

of a nurse scheduling problem. Burke et al. (2002, 2006); Petrovic and Qu (2002)

reported the effectiveness of case based reasoning when employed in timetabling

problems as a heuristic selection methodology.

The following approaches are based on the work by Ross et al. (2002) on

uni-dimensional bin packing and are categorized as evolutionary approaches in

generating HH for solving the 2D-Regular Cutting Stock Problems: in (Terashima-

Marín et al., 2005a), HH was generated by using the XCS Classifier System; in

(Terashima-Marín et al., 2005b), the authors made use of a GA with integer and

fixed-length representation in order to produce HH. The results achieved by both of

1.4 State of the art 37

these HH were significantly superior to the ones delivered by ordinary heuristics,

proving efficiency of HH for many different problem instances.

In (Ross et al., 2002), the authors focused on learning methods that could be

applied to many problem instances rather than learning and improving individual

solutions. This method selects a heuristic at each problem state, in order to solve

the problem. The selected heuristic is the most appropriate one and has the biggest

chance of solving that specific state. The method proceeds progressively in this

manner; selecting different heuristics for different states of problems, until eventu-

ally, the problem reaches a solved state. This is consistent with the attributes that

make every HH (Chakhlevitch and Cowling, 2008b).

In (Wilson et al., 1998), an accuracy-based Learning Classifier System (XCS)

was employed to learn a set of rules that allows the method to associate character-

istics of the current problem state with eight different heuristics. This application

on the one-dimensional bin packing problem was the first attempt at using such

HH model.

In (Schulenburg et al., 2002), improvements were made over the initial method.

A new heuristic that randomly selects heuristics was introduced to the method

in order to compare results. The HH method gave results that greatly supersede

those achieved by the proposed heuristics. During the learning process of HH, two

different reward systems were applied to the process, creating and evolving indi-

vidual processes. This work gave much importance to those individual processes

38 Hyperheuristic: A General Overview

and focused mainly on them. The authors continued to analyze and compare the

performance of the HH method to that of single heuristics.

The promising results led to further examine the idea on the other problem

domains. A HH method was proposed by (Cowling et al., 2001, 2002a,b,c) with an

even higher level of abstraction than that of metaheuristic local search methods.

It selects different neighborhoods according to a choice function of which the

goal is to determine the most appropriate neighborhood for the current problem.

Previously, several time consuming trial and error experimentations were carried

out to select the correct neighborhoods. This in turn, highlights the importance of

this HH method in reducing the computational time, and perform results quality.

Cowling et al. (2001, 2002a,b,c) also stressed the importance of choice functions,

and their integral role in the success of HH.

Burke and Newall (2002) proposed a HH approach aiming at improving an ini-

tial heuristic ordering in examination timetabling problems. The adaptive heuristic

functions works as follows: First, it schedules the exams in an order specified by

the original heuristic in order to create an initial solution. An exam is prompted up

the order in a later construction in the case where the use of this ordering hinders

the process of acceptably scheduling an exam. The termination criteria of this

process are either achieving the goal, which is effectively ordering the exams in a

manner that they all can be acceptably scheduled, or reaching a pre-determined

time limit. The process will continue until at least one of them is met. The res-

ults obtained from the experiments prove that the quality of the solution method

1.5 Existing and the Proposed Framework 39

achieved by this process is greatly better than the quality achieved by the original

heuristic. According to the authors, the method can still find acceptable results

relatively quickly even if the initial heuristic was poor.

Cowling et al. (2002c) studied a trainer scheduling using a genetic algorithm

based hyperheuristic (hyper-GA) in order to schedule several geographically distrib-

uted training staff and courses. The aim of the hyper-GA is to evolve a good-quality

heuristic for each given instance of the problem and use this to find a solution by

applying a suitable ordering from a set of low-level heuristics.

Since the user only supplies a number of low-level heuristics and an objective

function, the proposed hyperheuristic can be re-implemented for a different type

of problem. The method’s results appear much better than those of conventional

genetic and memetic algorithm methods, and it is expected to be robust across a

wide range of problem instances.

1.5 Existing and the Proposed Framework

The hyperheuristic system is consist of two levels separated by the domain barrier:

Hyper Level and Base Level. A set of predefined heuristics, a specific fitness

function and search space was encapsulated in the base level (Swan et al., 2013).

The main decision of the hyper level is to decide which base level heuristics

must solve the defined problem (Ryser-Welch and Miller, 2014). The hyperheuristic

architecture represented by the two level concept, answers not only the question

40 Hyperheuristic: A General Overview

about the degree of generality, but also paves the way of plug and play concept in

heuristic domain. Many hyperheuristic frameworks were proposed in the literature

such as in the following:

1. SATzilla: is proposed by (Nudelman et al., 2004) for SAT solvers, is focused

on the concept of algorithm portfolio, which aims at predicting the executing

time of algorithms in order to solve the problem with a reduced time. It uses

an off-line learning in order to develops heuristics portfolios. A Matlab code

of this framework has been developed.

2. Single Neighborhood-based Algorithm Portfolio in Python (Snappy): adopts

the algorithm portfolio. The main different issue with SATzilla is using on-

line learning methods in order to improve its own performances (Samulowitz

et al., 2013).

3. Hyflex: is a library proposed by (Burke et al., 2009b), implemented in java,

which includes a set of methods, the communication protocols between

the solver and the problem domain. It is an efficient tools to build new

cross-domain hyperheuristic.

4. parHyFlex: is a parallel implementation of Hyflex framework allowing to

run a hyperheuristic in a parallel setting (Van Onsem and Demoen, 2013).

5. Generic Intelligent Hyperheuristic (GIHH): is an improved version of Hyflex,

proposed as a generic framework for online selective hyperheuristic, which

equipped with several online learning methods (Misir, 2012).

1.5 Existing and the Proposed Framework 41

Our proposed heuristic selection hyperheuristic framework, shown in Fig-

ure 1.3, ic comprised of two main classes: HyperLevel and BaseLevel. The

first one represents the hyperheuristic process methods and attributes, while the

second one represents the problem properties.

Heuristics, which are predefined for the given problem, are categorized by type

using HeuristicTypes abstract class. Hyperheuristic can use any acceptance

criteria in the set of All Moves, Only Improvements, Improving and Equal, Expo-

nential Monte Carlo (MC), Simulated Annealing (SA), Exponential Monte Carlo

With Counter (EMCQ), Record to Record Travel, Naive Acceptance, Late Accept-

ance etc. In addition, concerning the termination criteria, three possible methods

are defined which are the time limit, a defined number of non improvement consec-

utive iterations and termination based on the heuristics performance. Finally, the

hyperheuristic system can opt for any selection method among the aforementioned

ones (with/without learning). We elaborate further on the selection methods in 4.

42 Hyperheuristic: A General Overview

Figure 1.3: The Proposed Hyperheuristic Framework.

1.6 Contributions and Overview

This thesis is organized as follows: in chapter 2 we deal with the Workover Rig

Problem. We review the state of the arts and propose a new mathematical model and

several valid inequalities. We then propose a selective hyperheuristic application

with two learning methods applied in real instances of the problem.

The following contributions summarize the results of this chapter.

1. Monemi, R. N., Danach, K., Khalil, W., Gelareh, S., Lima, F. C., & Aloise,

1.6 Contributions and Overview 43

D. J. (2015). Solution methods for scheduling of heterogeneous parallel

machines applied to the workover rig problem. Expert Systems with Applic-

ations, 42(9), 4493-4505

2. Danach, K. M., Khalil, W., Junior, F., & Gelareh, S. (2014). Routing parallel

heterogeneous machines in maintenance planning:A hyperheuristic approach.

ICCSA, (p. 441). Le Havre, France.

chapter 3 is composed of two parts. The first part introduces a new variant of hub

location routing problem which is referred to as p-Hub Location Routing Problem.

After a through literature review, we propose a 3-index design variable model for

this problem. We then propose a Lagrangian relaxation for a 2-index version of

the problem. We then propose a HH that exploits information from the Lagrangian

Multipliers to solve the problem. Two learning mechanisms were employed within

our HH. The second part, examines the effectiveness of the aforementioned HH

(together with its learning mechanisms) on instances of another variant of Hub

Location Routing Problem proposed in Rodríguez-Martín et al. (2014).

The following contribution is the outcome of this chapter:

1. Danach, K., Khalil, W., Gelareh, S., Semet, F., & Junior, F. (2015). Capa-

citated Single location P-Hub Location Routing : Hyperheuristic Approach.

ROADEF. Marseille, France.

In chapter 4 we study the impact and effectiveness of several heuristic selection

methods on the overall performance of HHs proposed for our problems in the

previous chapter. This includes the approaches including learning mechanisms and

44 Hyperheuristic: A General Overview

without it.

The following contribution is the outcome of this chapter:

1. Danach, K., Gelareh, S., Khalil, W., & Semet, F. (2016). Capacitated

Single Allocation p-Hub Location Problem:Hyperheuristic Approaches with

different Selection Methods. ROADEF. Compiegne, France.

During this thesis, we have also produced other contributions that make use of

the knowledge of HH we have obtained during this thesis.

1. Danach, K., Khalil, W., & Gelareh, S. (2015). Multiple Strings Planing

Problem in Maritime Service Network: Hyperheuristic Approach. TAEECE.

Beirut, Lebanon.

2. Danach, K., Haj Hassan, J., Khalil, W., Gelareh, S., & Kalakish, A. (2015).

Routing Heterogeneous Mobile Hospital With Different Patients Priorities:

Hyperheuristic Approach. DICTAP. Beirut, Lebanon.

Chapter 2

Workover Rig Problem

2.1 Introduction

One of the most important natural resources of the world since late XIX century

is oil, which shapes our lives in many ways, not only by being the main energy

source of our era, but also its uses on plastics, road construction, pharmaceutical

drugs, etc. The process of finding, drilling, producing, transporting and refining oil

provides a wide range of research fields, from geology to biochemistry and so on.

Many land (onshore) oil fields are composed of many wells, which are dis-

tributed geographically. Occasionally, failures happen on these wells, requiring

an intervention inside them to return to their original condition. Such operation

normally includes substituting the production equipments (cleaning) or stimulat-

ing the reservoir itself (stimulation), to name a few. Those interventions require

the use of workover rigs, big structures that can be dismounted, transported and

46 Workover Rig Problem

mounted from one well to another, providing safety and accuracy conditions to

the intervention. Renting of workover rigs come at great cost, thus having them at

standby availability is expensive. This chapter boards the problem of prioritizing

onshore interventions using workover rigs to minimize production loss associated

with the wells awaiting service. The problem in study here can be classified like a

particular case of machine scheduling problem.

A classical problem of machine scheduling represents a set of tasks (or jobs) to

be processed, where each task consists of a sequence of operations to be performed

using a given number of machines. The processing of an operation requires the

use of a specific machine for a particular processing time, and each operation must

be executed in the order given by the sequence. Each machine must process only

one operation at a time. The objective is to arrange the wells so that the global

performance measures can be optimized.

A vast body of literature is dedicated to the classical problems of scheduling

(job-shop and flow-shop), but in specific applications, the quantity of publications

is rather limited. Two well-known samples of historical papers for the classical

problems are related to the problems with 10 wells and 10 workover rigs proposed

by Muth J.F. (1963), which was only solved 26 years later by Carlier and Pinson

(1989). In this problem, each task has to be processed on each of the given workover

rigs exactly once —classical job-shop scheduling problem.

Here we are concerned by a particular case of machine scheduling, an applica-

tion to the problem of Workover Rigs Scheduling (WRS) for maintenance services

in oil wells of onshore fields. The problem consists in finding the best schedule for

2.2 Literature review 47

a small number of workover rigs to minimize the production loss, associated with

a large number of wells waiting for service.

2.2 Literature review

Smith (1956) showed that if the problem has only one rig and no time windows, the

optimal sequencing is obtained, independent of the quantity of wells, by sorting the

wells in an increasing order of value Pi

Eti
, where Pi is the rate of daily production

loss of well i and Eti is the estimated maintenance service time of well i.

Barnes et al. (1977) provided lower bounds for workover rigs problem. The

authors consider m rigs and n wells, and show that a lower bound can be obtained

as Max{B(1), B(n)} where B(n) is the total production loss with n rigs and

B(1) = 1
2m

[(m−1)B(n)+2B(1)] is the total production loss with only one single

rig.

Noronha et al. (2001) presented a greedy heuristic algorithm for the workover

rigs problem. The authors consider priorities for the wells as Gij = Pi

Tij
, where, Pi

is the daily rate of production loss of well i, and Tij is the estimated maintenance

service time of the well i by the rig j. In their greedy approach, the authors consider

also the environmental risks corresponding to the service. The proposed algorithm

was later used a constructive phase of a GRASP metaheuristic.

Aloise et al. (2006) proposed a variable neighborhood search (VNS) meta-

heuristic. In the VNS algorithm the authors, have used the constructive heuristic

H1, proposed by Noronha et al. (2001), which adds one well at-a-time to the

48 Workover Rig Problem

routes computed for the workover rigs. The local search procedure proposed for

the VNS is based on a swap neighborhood defined by all solutions, which can

be obtained by the exchange of a pair of wells from the current solution. The

numerical experiments were performed with real-life instances showing a loss

reduction of 16.4% on average. This VNS metaheuristic approach is currently

being used as an operational scheduling tool at Petrobras S. A (Brazilian National

Petroleum Corporation).

Mattos Ribeiro et al. (2011) proposed a simulated annealing (SA) for a variant

of the WRS where the travel time is not considered. The authors have used CPLEX

12.1 (IBM, 2009) to solve instances with up to 50 wells. They have also reported

that the proposed SA presents a low deviation (the worst case, 0.037%) from

optimality and takes, approximately, 10 seconds for solving real-life instances

composed of 25, 50, 75, 100 and 125 wells, with 2, 4, 6, 8 and 10 rigs.

In Duhamel et al. (2012), three mixed integer linear models are proposed. The

first model improves an existing scheduling-based formulation. The second one,

uses an open vehicle routing approach and the third one is an extended model for

which a column generation strategy is developed. The models were tested using

CPLEX 12.0 under default parameters and the instances were composed with up

to 60 wells, the number of rigs varies from 2 to 5 and the time horizon is set to 15

days. The authors report optimal values for medium-size instances of WRS.

Ribeiro et al. (2012a) presented the WRS as a workover rig routing problem, a

particular case of vehicle routing problem with time windows, in context of the

operations of onshore oil fields. The authors have proposed three metaheuristics

2.2 Literature review 49

for the problem: an iterated local search, a clustering search, and an Adaptive

Large Neighborhood Search (ALNS). They have carried out experiments with 50,

100 and 500 wells, and 5 and 10 rigs, testing a total of 60 instances. The authors

reported a superior performance of ALNS on larger instances.

Mattos Ribeiro et al. (2012), in this work the authors propose a branch, price

and cut algorithm as the first exact algorithm for the WRS, which is modeled as a

workover rig routing problem. The computational experiments relies on a set of 40

instances (with 100 and 200 wells, 5 and 10 rigs, and 200 to 300 units of time for

the horizon). For the larger instances (200 wells), 12 of the 40 instances could not

be solved, in particular, all instances with 200 wells,10 rigs, and horizon time of

300 hours were unsolvable.

Ribeiro et al. (2012b) look at the problem as a routing problem and proposes

a branch, price and cut algorithm for solving instances of this problem up to 200

wells and 10 rigs. Recently, Ribeiro et al. (2014) proposed three different heuristics

such as branch-price-and-cut (BPC) heuristic version of Ribeiro et al. (2012b),

an adaptive large neighborhood search (ALNS), and a hybrid genetic algorithm

(HGA). They managed to solve up to 10 rigs and 300 wells.

2.2.1 Objective and contribution

We propose a new model, which is based on an arc-time-indexed formulation

inspired by the work in Pessoa et al. (2010). We also propose several classes of

valid inequalities in order for tightening the MIP polytope.

The work was motivated by the industrial application and the need for an

50 Workover Rig Problem

efficient and scalable solution framework that can exploit the knowledge hidden in

all the heuristics proposed for the problem at hand.

Here, a heuristic selection type of hyperheuristics is proposed, which is a self-

adaptive mechanism in the sense that the selection of heuristic algorithm (chosen

from a pool of constructive, improvement and destructive ones) iteratively applied

to the problem is based on a proposed learning method. Our main goal is to show

that the self-adaptive nature of the learning mechanism controlling the heuristic

selection type hyperheuristic allows a very efficient exploration of neighborhoods

using several heuristics. This helps us to identify the classes of heuristic, among

those applied here, which fit best for solving instances of WRS.

While we only focus on the HH heuristic in this thesis, however, in order to

evaluate the performance and measure the quality of solutions reported by our

solution framework, the outcome of the HH has been injected into an exact solution

method which is a branch-and-price algorithm. The best solution reported by

the HH constitutes the initial columns of a branch-and-price algorithm and helps

accelerating convergence. With a fast convergence or within a given time limit

when the branch-and-price decide to terminate we are able to show whether the

solution reported by the HH is optimal or will have an indication of distance from

optimality. We must emphasize that this branch-and-price have been developed

by a different group of researchers and is independent of the work in this thesis.

Details of this approach can be found in (Monemi et al., 2015).

2.3 Problem Description 51

2.3 Problem Description

The problem is described as following: A set of wells requiring maintenance,

J = {1, . . . , n}, scattered within a geographical area. [dij]|J |×|J | represents the

distance in term of travel time between every ordered pair of wells (i, j) ∈ J × J .

A set of workover rigs (i.e. mobile maintenance heterogeneous workover rigs) are

available to serve the wells upon need and there is a service capacity qr associated

to each workover rig r ∈ R such that q1 ≤ · · · ≤ q|R|. Every workover rig

r can offer all the services offered by rig r′, qr′ ≤ qr. To every well j ∈ J a

required service level lj is associated and there is a smallest r̂ for which every

rig r : r ≥ r̂ can serve the well j. At time 0, all the rigs are at their initial

locations and the production is already interrupted (or significantly deteriorated)

at all the wells requiring maintenance. Duration of maintenance on well i ∈ J is

pi and production revenue per time unit has a monetary value of gi, i ∈ J . The

objective is to minimize the total lost production revenue that is to minimize the

total completion time of maintenance activities.

2.4 Mathematical Model

Our modeling framework relies on a set of assumptions as in the following: i)

A field of work is comprised of a set of wells and a set of workover rigs within

this field dedicated to serve wells inside it. Normally, the area of this field as

well as the travel time between every pair of wells is limited. This suggests that a

workover rigs does not need to travel a very long distance between pairs of well.

52 Workover Rig Problem

ii) The process takes place on a discrete-time planning horizon. Moreover, we

assume that dismounting (equivalently mounting) of all workover rigs are equal

and equivalent to one unit of time, δt, iii) the dismounting (equivalently mounting)

time is already included in the processing time of every workover rig, and, iv)

without loss of generality, we assume that the rigs are heterogeneous meaning that

no two machines have the same compatibility list (otherwise, the subproblems

per those similar machines will collapse to one as explained in Pessoa et al. (2010)).

The necessary parameters and variables are listed in Table 3.4:

Table 2.1: Model Parameters and variables.

Parameters:

J : the set of well to be serviced,
R: the set of workover rigs to service the wells,
T : the time horizon periods, 1, . . . , T ,
pi: the process time of task i,
dij: the travel distance between the location of task i and the location of task j,
0: the dummy task, which is the first and last task on every machine.

Variables:

xijrt: 1, if task i is finished and task j is started at period t on machine r, 0, otherwise.

We define J + = J ∪ {0}. To this end, we use workover rig (WOR) and

machine, alternatively. The well and tasks/job are also used alternatively.

2.4.1 Workover Rig Scheduling (WRS) Problem

In our modeling approach at t = 0, every machine is processing dummy task 0.

2.4 Mathematical Model 53

(WRS)

min
∑
r∈R

∑
t∈T

∑
i∈J

∑
j∈J+

gi(t+ pj)xijrt (2.1)

s. t. ∑
j∈J

x0jr p0+d0j + x00r p0 = 1, ∀r ∈ R,

(2.2)

∑
i∈J

|T |∑
t=pi+1

xi0rt + x00r p0 = 1, ∀r ∈ R,

(2.3)

∑
r∈R

∑
i∈J+:j 6=i

|T |∑
t=pi

xijrt = 1, j ∈ J ,

(2.4)

∑
r∈R

∑
i∈J+:j 6=i

|T |∑
t=pj

xjirt = 1, j ∈ J ,

(2.5)

xijrt ≤
∑
l∈J

t+djl+pj≤|T |

xjlr t+djl+pj ,

+ xj 0 r t+pj ∀t ∈ T , r ∈ R, i ∈ J +, j ∈ J : j 6= i,

(2.6)

xijrt ∈ {0, 1}|J
+|×|J+|×|T |×|R|. (2.7)

54 Workover Rig Problem

The objective function (2.1) accounts for the minimizing the lost production

revenue.

Constraints (2.2) ensure that for every machine, either it start working on a

task j at p0 + d0j (assuming that |R| ≤ |J |) or x00r0 = 1 meaning that the task

0 is being treated after the task 0 and terminated at time p0. If a real job i 6= 0

started, then such a first task on every machine r does not start before p0 + d0i,

which accounts for the process time of dummy job 0 plus travel time from the

initial location (where the dummy job takes place) to i.

The last job on every machine is actually the dummy task 0, which is executed

after the last real task i. Such a task does not occur during [0, p0 + doi], evidently.

This is ensured in constraints (2.3).

Constraints (2.4) ensure that the real task j will start at some point in time after

another task i ∈ J + on one of the available workover rigs. However, this cannot

start earlier than p0 + d0i. Analogously, constraints (2.5) ensure that a real task j

is followed by a task i ∈ J + on the same machine and this cannot occur within

[0, p0 + doi].

For task j executed after a real task i on machine k and time t there must

be a consecutive task l ∈ J +, which starts at t + pj + djl ≤ |T | (starts at

t+ pj + djl : l = 0). This has been ensured by constraints (2.6).

2.4 Mathematical Model 55

2.4.2 Valid inequalities

Constraints (2.2)-(2.6) describe the polytope of the problem including all the

feasible solutions given the fact that all the variables have positive cost in the

objective function. However, there are some other constraints which, can be added

to the model as following:

a) Every task i is excused at some point in time on one machine:

∑
t∈T

∑
j∈J+

∑
r∈R

xijrt = 1, ∀i ∈ J + (2.8)

b) For two distinct well i, j on the same machine k, either of them is executed

before the other one:

∑
t∈T

∑
r∈R

(xijrt + xjirt) = 1, i, j ∈ J (2.9)

c) The total number of variables xijrt, i, j 6= i ∈ J +, r ∈ R, t ∈ T taking 1 in

any feasible solution is constrained as following:

∑
i,j 6=i∈J

∑
r∈R

∑
t∈T

xijrt = |J |, (2.10)

∑
i,j 6=i∈J+

∑
r∈R

∑
t∈T

xijrt = |J |+ 2|R|. (2.11)

56 Workover Rig Problem

d) a real task i ∈ J must be followed (precede) by a another task j ∈ J + : j 6= i:

|T |∑
t=p0

∑
j∈|J+|

xijrt ≤
|T |∑
t=p0

∑
j∈|J+|

xjirt, ∀r ∈ R, i ∈ J , (2.12)

e) There is no 3-cycle in the order of jobs on a give machine:

|T |∑
t=p0

(xijrt + xjlrt + xlirt) ≤ 2, ∀r ∈ R, {i, j, l}
j 6=i,l 6=i,l 6=j

∈ J , (2.13)

f) On the same machine no two wells can be executed at the same time:

∑
i∈J+

∑
j∈J+:j 6=i

xijrt ≤ 1, ∀r ∈ R, t ∈ {p0, . . . , , |T |} (2.14)

∑
i∈J+

∑
j∈J+:j 6=i

xjirt ≤ 1, ∀r ∈ R, t ∈ {p0, . . . , , |T |} (2.15)

g) On every rig r either at some point t ∈ T a task j ∈ J is started (finished) as

the first (last) task or x00r0 = 1:

∑
j∈J

∑
t∈T

x0jrt + x00r0 = 1, ∀r ∈ R, (2.16)

∑
j∈J

∑
t∈T

xj0rt + x00r0 = 1, ∀r ∈ R, (2.17)

The aforementioned constraints are particularly useful when due to some re-

laxations or reduced cost updates, the pricing problem or Lagrangian subproblem

objective has variables with negative cost. There, these constraints serve to avoid

2.4 Mathematical Model 57

too many variables take 1 and will tighten the pricing problem/Lagrangian relaxa-

tion polytop.

2.4.3 Preprocessing

Some of the variables can be set to zero in advance. The total number of variables

eliminated in this way depends on the instance of problem being solved.

Lemma 1. None of the wells i ∈ J can receive service during [0,min
j∈J
{p0 +d0j}−

1] on any machine.

Analogously, we have:

Lemma 2. None of the wells i ∈ J can receive service during [T − min
j∈J
{pj +

dj0}+ 1, T] on any machine.

variable fixing by task-machine feasibility

As stated in the problem description, the workover rigs of larger size can serve

those wells of equal size or smaller while the inverse does not hold.

Let R(j) represents the set of all workover rigs that can serve task j. The

following constraint ensures the feasibility of task assignment.

xijrt = 0 ∀i, j ∈ J : j 6= i, r /∈ R(i) ∨ r /∈ R(j) (2.18)

58 Workover Rig Problem

2.4.4 Illustrative example

We have considered |R| = 3, |J +| = 7 and a time horizon |T | = 16. We have

run the model in CPLEX 12.60 for a TiLim = 1000 seconds. gi = 1, ∀i ∈ J +,

dij = b (i×j+(n−i)(n−j))
10

c, ∀i, j ∈ J + and pi = i, ∀ ∈ J +.

Figure 2.1: Illustrative example with |R| = 3, |J +| = 7 and |T | = 16. Every
machine starts by processing job 0 at t = 0 and terminates at the same job as

the job processed on it.

2.5 Hyperheuristic for WRS Problem

The mathematical model of WRS becomes intractable even with small |T |, few

wells and rigs. Therefore, in order to solve more realistic size instances, we have

to resort to other techniques, which are efficient and provide good approximation

of optimal solutions. From among such techniques, we have chosen to use the

concept of Hyperheuristic (Burke et al., 2009a, 2008b, 2013)

2.5 Hyperheuristic for WRS Problem 59

The low-level heuristics are categorized as follows:

1. constructive ones, which produce complete feasible solutions from the

scratch,

2. improvement methods that accept a feasible solution and try to improve it

within a predefined neighborhood,

3. perturbation procedures that try to inject some noises to the process in

order to produce solutions, which might help in finding better solutions and

possibly escaping from local optima, and finally

4. reconstructive mechanisms to (randomly or deterministically) destroy and

reconstruct part of solutions again, hoping to jump to some unexplored part

of the search space that might involve better solutions.

Low Level Heuristic

In the following, we briefly explain how each of these low-level heuristics performs.

1) constructive heuristic: we construct an initial feasible solution, step-by-step,

according to a set of predefined rules without any effort to improve this solution.

i) C1 construct a solution by exploiting the instance information. Here, we

sort wells based on the decreasing production parameter. Subsequently, we

60 Workover Rig Problem

start from the wells with highest production and allocated each well i to the

compatible rig r that is less utilized among others (see Algorithm 4).

2) improvement heuristics:

The improvement algorithm starts from a feasible solution and improve it by

applying successive changes within a given neighborhood. Our neighborhoods

are characterized by the following moves:

i) better-sequence-on-the-same-rig: For a given rig, we reorder (one task

per time) the sequence of allocated wells to be served by this rig (see

Algorithm 2) and among the improving solution found, we move to the

best found feasible solution in a greedy manner.

ii) inset/drop-between-two-different-rigs: aiming at making a balanced utiliz-

ation and fair distribution of tasks among rigs, for two randomly chosen

rigs ri, rj 6= i, we consider three moves: 1) move one tasks from rig ri to

rig rj 6= ri such that the difference between the objective functions of rig

ri and rig rj , i.e. ∆ = (OF (ri)−OF (rj)), being minimized. 2) removing

a well from the list of wells being served by a given rig and insert it in a

proper place within the sequence of wells being served by the rig with the

least objective function.

Algorithm 1: Constructive Heuristic 1 (C1)

1: procedure CONSTRUCTIVE1(J ,R) . INPUT: sets of wells and rigs

2: Ss ← ∅, ∀s = 1, . . . ,m, (m = |R|)

3: i← 0

2.5 Hyperheuristic for WRS Problem 61

4: M ← 0

5: piM ←∞

6: for i = 1, . . . , n (n = |J |) do

7: for r = 1, . . . ,m do

8: if (pir < piM) then . pir is the processing time of well i by rig

r

9: M ← r

10: end if

11: SM ← [SM ,Ji]

12: end for

13: end for

14: return S . OUTPUT: sequence of wells associated to each rig r

15: end procedure

Algorithm 2: Order Improvement Operator

1: procedure ORDERIMPROVE(S) . INPUT: sequences associating wells to

rigs

2: L← ∅

3: G← ∅

4: Mid← ∅

5: p← SelectPivot(S)

6: for s = 1, . . . ,m (m = |S|) do

7: if (Lvs ≤ Lvp) then . Lvs is the production loss value of sequence

s

62 Workover Rig Problem

8: Append(L, s)

9: else

10: Append(G, s)

11: end if

12: end for

13: S ← Concatenate(ORDERIMPROVE(L),

Mid(p),ORDERIMPROVE(G))

14: return S . OUTPUT: Ordered sequences by best objective function

value

15: end procedure

3) Perturbation heuristics:

The perturbation phase assures a diversification strategy during the search; it tries

to explore the search space via randomized efforts to escape search from local

optimum. In this study, we implement different perturbation heuristics as the

following:

1. Mutation-like: it resembles the genetic operator used to maintain diversified

population from one generation to another. This operator corresponds to a

perturbation in the configuration of a chromosome (a sequence of wells on

every rig), that prevents the risk of premature convergence and allows the

exploration of other areas in the search space. The operator is applied with

two chromosomes that are selected randomly in the current population.

2. Crossover: In this case, the swapping of ’genetic material’ is made with the

2.5 Hyperheuristic for WRS Problem 63

rigs (part of the chromosome), while in the mutation operator is made with

two wells, one in each chromosome.

3. SequenceRandomSwap: This operator is a kind of mutation-like operator.

But here, the perturbation is made in the same chromosome, which is carried

out randomly.

4) Destroy-and-reconstruct heuristic:

In order to better exploit the search space (diversify the search process), we define

an operator that destroys and reconstructs part of a solution, which is randomly

chosen. Thus the operator Reconstructive1 destroys a part of the current solution

and then reconstruct it by using constructive algorithms presented previously.

2.5.1 Reinforcement learning

A reinforcement learning method in an selection-type hyperheuristic, selects a

heuristic that has the maximal utility value (Burke et al., 2008b). Thus, it is a

mechanism that chooses corresponding actions given some information about its

performance, and update this performance at each time it is applied. The process

takes into consideration when to diversify and when to intensify in the search

process. In chapter 4, we will elaborate more the concept, techniques, and methods

of reinforcement learning.

Here, we employ two different methods of learning: 1) the built-in method

of generic intelligent hyperheuristic - GIHH (Misir, 2012) 1 and 2) our improved

1The code is publicly available at https://code.google.com/p/generic-intelligent-hyperheuristic/

64 Workover Rig Problem

method called Alternative Learning Method (A.L.M.).

Both methods rely on using Hyperheuristics Flexible framework (Hyflex),

which is an well-defined library incorporating a set of methods that assure the

communication between the problem domain and the solver components.

In GIHH, The number of new best solutions and time spent by each heuristic are

determinant to update the probability vector in the selection operation. In addition,

an acceptance criterion is defined to balance intensification and diversification

processes. In general, diversification is occurred at the beginning of the search,

followed by intensification towards the end.

Our proposed hyperheuristic, is based on constructing a feasible solution and

consequently applying of heuristics that are chosen following a specific criteria.

Then we design a tabu list that prevents some heuristics, in particular conditions,

to be applied, in order to guide the search to apply heuristic series to reach the

optimal solution.

We define a so-called heuristic weight variable as the following:

Ψi =
∑

∆f =
∑

(f in − f out)/f in

A Heuristic Hi weight is equal to the negative sum (for minimization case) of

the objective function values taken by the application of Hi divided by the total

number of times that Hi has been applied during the search.

Our tabu list Tl is designed as the following: Given our time limit, we initially

set Tl = ∅ and at each iteration, Tl is updated as follows: if the CPU time spend

2.5 Hyperheuristic for WRS Problem 65

is less than the half of the time limit, we put all heuristics that, in mean more

frequently used than the other my suggestion. Also, all heuristics with too small

weights in Tl. In case of the consumed time is greater than the half of the time

limit, Tl will contain all heuristics expect those having the best improvement and

those having their weight greater than the mean of heuristics weights. The Tabu list

is updating with change of quality of each heuristic - calculation of Ψi. To simplify

our tabu strategy, we represent it as a learning method in Algorithm 3.

Algorithm 3 Alternative Learning Method
1: procedure LEARNINGMETHOD(t) . INPUT: time limit
2: α← 0.7
3: P ← Proba(Random)
4: while (consumed_time < t) do
5: if (consumed_time < t/2) then
6: if (h == SearchHightImproveBestHeuris()) then
7: return h
8: end if
9: if (HeurisWeight[h] > CalcWeightMean()) then

10: return h
11: end if
12: else
13: if ((HeurisNbOfCall[h] < CalcCallMean())) then
14: return h
15: end if
16: if (HeurisWeight[h] > CalcWeightMean()) then
17: return h
18: end if
19: if (h == SearchHightImproveBestHeuris()) then
20: return h
21: end if
22: end if
23: end while . OUTPUT: heuristic selected
24: end procedure

66 Workover Rig Problem

Figure 2.2: The wells are uniformly distributed within a given geographical
zone.

2.6 Numerical experiments

Our computational experiments are based on a set of perturbed data from Petrobras

and within the Brazilian territory. The data relates to a particular field of opera-

tion within which the total number of wells is around 200 wells and are densely

distributed in such a moderate size field. A geographical presentation of spatial

distribution of wells within this field for an aggregated instance of size |J | = 100

is presented in Figure 2.2.

Our order of business is as follows: we run our hyperheuristic on the instances

of the problem. We compare our method against that of GIHH and present an

analysis of the results. In addition, HH results are compared with result of an exact

method called branch, price and cut algorithm which uses the best-known solution

of our hyperheuristic as an initial column in the branch, price and cut algorithm in

2.6 Numerical experiments 67

Monemi et al. (2015).

All experiments were performed on an Intel 2.54 GHz core i5 CPU and 4

Gb of memory running on Windows 7. All instances are named in a format

instance_i_j where i indicates the number of wells, and j indicates the num-

ber of workovers in the instance.

There are, in total, 37 instances ranging from 10 tasks and 3 workover rigs

to 200 tasks and 12 workover rigs. Table 2.2 reports the numerical experiments.

The first column reports the instance name, the second one indicates the objective

value of the initial solution. The third (resp. fifth) column reports the objective

function value of the best solution found when using the learning mechanism of

GIHH framework (resp. A.L.M.). The computational times of GIHH and that of

A.L.M. are reported in the fourth and sixth columns, respectively.

We further assume p0 = 0, d0j = 0, ∀j in our experiments.

68 Workover Rig Problem

Table 2.2: Best solution and execution time results of the two methods.

Instance Name Init. Obj. Best Obj. (GIHH) CPU Time (GIHH) Best Obj. A.L.M. CPU Time A.L.M.

Instance_10_3 38223 21578 0.534 19683 0.117

Instance_15_3 96179 50020 0.431 40054 1.143

Instance_15_5 51415 26055 5.019 28965 1.093

Instance_20_3 165681 90499 0.841 86809 0.241

Instance_20_5 97214 52314 5.206 45985 1.164

Instance_25_3 245356 136401 0.949 124236 1.045

Instance_25_5 214666 102923 5.636 97772 0.638

Instance_25_7 123666 64582 5.11 63494 0.150

Instance_30_3 559221 165326 4.697 162479 0.566

Instance_30_5 231082 126291 0.593 117757 0.220

Instance_30_7 186164 124002 0.367 94619 0.155

Instance_35_3 521748 181936 5.672 180341 1.074

Instance_35_5 396655 172343 0.603 159223 0.304

Instance_35_7 245830 119389 0.549 104206 0.208

Instance_50_5 768691 286110 5.013 276221 0.705

Instance_50_7 549441 221749 5.296 201456 0.556

Instance_50_9 413259 204595 5.561 200710 0.362

Instance_50_10 241935 170762 0.589 154070 0.295

Instance_75_7 1357179 503698 10.079 493423 0.658

Instance_75_9 790796 440775 9.921 445433 0.826

Instance_75_10 849473 386271 10.008 367835 4.203

Instance_100_7 6284802 1748851 10.145 1719752 4.273

Instance_100_9 6302564 2151156 1.471 2020055 4.118

Instance_100_10 5062012 1792773 10.052 1728323 4.276

Instance_100_12 4287143 1519804 9.711 1448339 1.116

Instance_125_7 27388184 5136775 6.914 5010572 4.228

Instance_125_10 21967460 5351825 9.785 5185172 2.503

Instance_125_12 13899045 4166687 1.864 4109715 1.064

Instance_150_7 39577184 7413717 11.093 6959831 3.179

Instance_150_10 29616360 6922348 6.695 6778345 4.183

Instance_150_12 25065540 6590526 9.561 6234537 3.162

Instance_175_7 96465248 17056898 10.187 16443304 5.112

Instance_175_10 75896016 16379125 5.017 15493673 4.186

Instance_175_12 59023100 14735414 10.104 14380174 4.139

Instance_200_7 109649824 18386244 10.017 17943176 4.143

Instance_200_10 87850240 19201584 10.033 18810648 6.427

Instance_200_12 83277888 17716744 4.71 17785952 4.295

We introduce νa, a ∈ {GIHH,A.L.M.} defined as in (2.19) to be the accu-

mulated relative improvement of each of the two methods over all the 37 instances.

2.6 Numerical experiments 69

νt =
37∑
i=1

InitObja −BestObja
InitObja

(2.19)

For GIHH , νGIHH is equal to 61.205 while for A.L.M., νA.L.M. is equal to

63.497. This confirms that in average our method is superior to that of GIHH.

The solution method is ended in accordance with the termination criteria. The

termination condition takes in consideration avoiding useless computation and tries

to avoid early termination.

The proposed termination criteria, sets a global time limit:

Tl = max{10000, 1000
NumberofWells

NumberofWorkovers
}

seconds for the overall computation time while for every low-level heuristic the

termination criteria relies on the number non-improving solutions,

Li = 100
NumberofWells

NumberofWorkovers

. In addition, we set a third termination criteria to terminate the whole algorithm

once W = 10 NumberofWells
NumberofWorkovers

non-improving iterations is observed.

Figure 2.3 presents the execution time behavior as a function of number of

wells. Clearly, almost always, when the number of wells is less than 50, the CPU

70 Workover Rig Problem

time is almost less than 5 seconds and when the number of wells is greater than 50,

the consumed time is around 10 seconds using GIHH. However, the result shows

that, except for four instances, still our computational times are always inferior to

those of GIHH. For instances that have more than 50 wells in it, our computational

times remains around 7 seconds.

Instances

I
n
s
t
a
n
c
e
_
2
0
0
_
1
2

I
n
s
t
a
n
c
e
_
2
0
0
_
1
0

I
n
s
t
a
n
c
e
_
2
0
0
_
7

I
n
s
t
a
n
c
e
_
1
7
5
_
1
2

I
n
s
t
a
n
c
e
_
1
7
5
_
1
0

I
n
s
t
a
n
c
e
_
1
7
5
_
7

I
n
s
t
a
n
c
e
_
1
5
0
_
1
2

I
n
s
t
a
n
c
e
_
1
5
0
_
1
0

I
n
s
t
a
n
c
e
_
1
5
0
_
7

I
n
s
t
a
n
c
e
_
1
2
5
_
1
2

I
n
s
t
a
n
c
e
_
1
2
5
_
1
0

I
n
s
t
a
n
c
e
_
1
2
5
_
7

I
n
s
t
a
n
c
e
_
1
0
0
_
1
2

I
n
s
t
a
n
c
e
_
1
0
0
_
1
0

I
n
s
t
a
n
c
e
_
1
0
0
_
9

I
n
s
t
a
n
c
e
_
1
0
0
_
7

I
n
s
t
a
n
c
e
_
7
5
_
1
0

I
n
s
t
a
n
c
e
_
7
5
_
9

I
n
s
t
a
n
c
e
_
7
5
_
7

I
n
s
t
a
n
c
e
_
5
0
_
1
0

I
n
s
t
a
n
c
e
_
5
0
_
9

I
n
s
t
a
n
c
e
_
5
0
_
7

I
n
s
t
a
n
c
e
_
5
0
_
5

I
n
s
t
a
n
c
e
_
3
5
_
7

I
n
s
t
a
n
c
e
_
3
5
_
5

I
n
s
t
a
n
c
e
_
3
5
_
3

I
n
s
t
a
n
c
e
_
3
0
_
7

I
n
s
t
a
n
c
e
_
3
0
_
5

I
n
s
t
a
n
c
e
_
3
0
_
3

I
n
s
t
a
n
c
e
_
2
5
_
7

I
n
s
t
a
n
c
e
_
2
5
_
5

I
n
s
t
a
n
c
e
_
2
5
_
3

I
n
s
t
a
n
c
e
_
2
0
_
5

I
n
s
t
a
n
c
e
_
2
0
_
3

I
n
s
t
a
n
c
e
_
1
5
_
5

I
n
s
t
a
n
c
e
_
1
5
_
3

I
n
s
t
a
n
c
e
_
1
0
_
3

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

 (
s

e
c

.)

12

10

8

6

4

2

0

A.L.M.

GIHH

Figure 2.3: Execution time of each method.

Figure 2.4, Figure 2.5 and Figure 2.6 report the statistics of heuristic calls

by each proposition for each instance. In Figure 2.4, the largest percentage is

2.6 Numerical experiments 71

dedicated to the order improvement heuristic in both cases (GIHH and A.L.M.).

An absolute majority of the calls is associated with the order improvement heuristic

in A.L.M. and a minor part belongs to the reconstructive heuristic.

Figure 2.4: The constructive and improvement heuristics calls distribution by
each method.

72 Workover Rig Problem

Figure 2.5: the mutation and crossover heuristics calls distribution by each
proposition.

Figure 2.6: insert/drop and reconstructive heuristics calls distribution by each
method.

2.6 Numerical experiments 73

Table 2.3: Computational results of our branch, price and cut.

min(A.L.M., GIHH) branch, price and cut(Monemi et al., 2015)

Instance Name Best Obj. CPU (sec.) #bb.nodes #cols (f
A.L.M−fB&p&C

fB&p&C)× 100 CPU (sec.) Term. Cond.

Instance_10_3 19683 0.117 0 26 0.00 1133.20 opt.

Instance_15_3 40054 1.143 0 31 0.00 1298.46 opt.

Instance_15_5 26055 5.019 0 37 0.00 1413.76 opt.

Instance_20_3 86809 0.241 2 40 0.00 3044.17 opt.

Instance_20_5 45985 1.164 2 53 0.00 3734.80 opt.

Instance_25_3 124236 1.045 2 74 0.00 4331.15 opt.

Instance_25_5 97772 0.638 2 88 0.00 4783.87 opt.

Instance_25_7 63494 0.150 0 105 0.01 5163.40 tlim.

Instance_30_3 162479 0.566 5 110 0.03 6415.23 tlim.

Instance_30_5 117757 0.220 6 156 0.10 6335.19 tlim.

Instance_30_7 94619 0.155 5 201 0.24 7561.65 tlim.

Instance_35_3 180341 1.074 10 226 3.55 7820.65 tlim.

Instance_35_5 159223 0.304 8 269 4.04 8214.07 tlim.

Instance_35_7 104206 0.208 5 318 5.23 9384.43 tlim.

Instance_50_5 276221 0.705 12 470 3.75 9633.20 tlim.

Instance_50_7 201456 0.556 11 512 11.55 10041.21 tlim.

Instance_50_9 200710 0.362 8 556 6.93 9792.10 tlim.

Instance_50_10 154070 0.295 10 601 9.36 9645.43 tlim.

In the Table 2.3 we report our numerical experiments. The first column reports

the instance name, followed by the column reporting best objective function of the

solutions found by our hyperheuristic and the CPU times in the column immediately

next to it.

In column 4 and 5 , reports the number of branching performed and number of

columns added before termination Monemi et al. (2015). The relative gap between

the solution of our hyperheuristic and that found by the branch, price and cut upon

termination was shown in the sixth column. In general, the solutions found by

hyperheuristic are practically very good solutions. The CPU time is reported in the

next column, which shows that while we can obtain a high quality solution with

74 Workover Rig Problem

our heuristic very quickly, a similar quality solution with branch, price and cut

take much longer. This may confirm that the proposed hyperheuristic is a good and

reliable alternative for a mathematical programming-based method.

2.7 Summary, conclusion and outlook to future work

Workover rig scheduling problem is an important problem in the highly sensitive

petroleum production industry as it seeks to maintain the optimal production level

of a company. There is a huge investment involved in acquiring, training, staffing

and operations of workover rigs while the oil production itself plays direct role in

the economy growth, welfare and the GDP of a country.

We have proposed a new mixed integer linear model for the workover rig

scheduling problem that is based on a time-arc indexed formulation. We proposed

several valid inequalities. The results of hyperheuristic were used for setting the

initial columns of an exact method. We have shown that as long as the optimal

solution (or the optimal interval) is known, the solutions reported by the hyperheur-

istic are very near to optimal solutions. This confirms the particular efficiency of

our learning mechanism in controlling the selection of heuristics and allowing the

right heuristic to search the right part of the solution space at appropriate iterations.

However, a major limitation of this work is that we have to keep a very small

size set of heuristic as the search in the space of heuristics and neighborhoods

2.7 Summary, conclusion and outlook to future work 75

becomes very time consuming and deteriorates the efficiency. Moreover, the dis-

cretization of planning horizon also needs to be done cleverly in order to avoid

unnecessarily enlargement of search space for every heuristic.

The research on this problem is very often limited to modeling it as a routing

problem while perhaps scheduling is the dominating part of the problem. The

literature is unaware of any multi-agent or distributed optimization techniques

applied to this problem given an inherent distributed nature (in larger scale the

wells are scattered within dispersed zones with long distances among the zones).

Further research on minimizing workover CO2 emission, incorporating more

real aspects such as workforce scheduling, task time window and ensuring robust-

ness in the solution.

76 Workover Rig Problem

Chapter 3

Capacitated Single Allocation p-Hub

Location Routing Problem

3.1 Introduction

The term hub is commonly used in different domains such as transportation, logist-

ics and telecommunication systems, among others. In almost all such areas, the

hubs serve as consolidation, switching and sorting centers. In transportation and

logistics, the hub-and-spoke structures are present in almost all modes of transport

(cross-docks in national level, major airports and container ports in continental

and inter-continental level). Hubs are facilities at which arriving flows of com-

modities in smaller volumes originated from the spokes are consolidated, sorted

and re-distributed (repartitioned) in a larger volumes on fewer highly utilised links

and sent to either the final destinations that are hubs or the hubs where the spoke

78 Capacitated Single Allocation p-Hub Location Routing Problem

destinations are allocated to them. The main motivation for deploying such a flow

network structures is in exploiting economies of scale (in terms of time and/or

cost) in transporting higher volumes on much more efficient corridors (connecting

hubs).

Given a graph G(V,A) where V is the set origins and destinations and A is the

set of all possible arcs, Hub Location Problem (HLP) seeks a partition of nodes

in V into hub and spokes. Consequently, each spoke is associated to one or more

hubs. In classical models, two main classes are distinguished Alumur and Kara

(2008): 1) Single Allocation: wherein each spoke node is assigned to only one

hub, and 2) Multiple Allocation: offering the possibility that a spoke be allocate to

more than one hub node. Moreover, one also distinguishes between capacitated

and uncapacitated variants depending on where the capacity is being imposed.

Some authors also distinguish between the cases where cardinality of the set of

selected hub nodes is defined exogenously and when it is an endogenous part of

the problem. This topic has been one of the very active areas of research in the past

two decades.

We consider the previously defined graph G, a fixed number, p, of hubs node

to be installed, Γ, the minimum number of spokes associated to each hub, C, the

capacity that can be installed on each feeder route, wij , the demand to be transferred

from i to j, and tij , the cost between any two node i and j, which is taken in this

study as the time needed to travel between node i and j. We also define di as

3.1 Introduction 79

the load of transporter after leaving node i on a spoke-level route (the load at

arrival minus the total demand of i from every other node plus the total supply

of i to every other node). We seek to construct from the scratch a hub-and-spoke

network, which is consist of a complete hub-level subgraph with p hub nodes and

p spoke-level directed cyclic routes each of which composed of a hub node and

all the spoke nodes allocated to it. The hub-level network is a complete subgraph

where each two connected hub have a bidirectional link. The objective function of

our problem seeks minimizing the total transit time composed of transportation

plus transhipment time in the whole network provided that the total volume of flow

on the spoke-level arcs does not violate the capacity of transporter on it, given a

homogenous fleet of transporters.

This problem is a special case of the Bounded Cardinality Capacitated Hub

Routing Problem (BCCHRP) proposed in Gelareh et al. (2015) in which the lower

and upper bounds on the number of hub nodes coincide. We refer to this problem

as Capacitated Single Allocation p-Hub Location Routing Problem (CSApHLRP-1).

Figure 3.1 represents a solution for an instance with |V | = n = 10 nodes and

p = 3 fully interconnected hub nodes. The nodes 4, 5 and 7 represent hubs while

all the remaining nodes considered as spokes. One observes that each hub together

with spoke nodes allocated to it forms a directed cycle. In this solution, three cycles

are define: i) 4→ 0→ 2, ii) 7→ 9→ 8→ 6, and iii) 5→ 3→ 1.

In this work we are dealing with a problem that fits within the category of

80 Capacitated Single Allocation p-Hub Location Routing Problem

Figure 3.1: A solution of network with 3 hubs and 10 nodes.

capacitated single allocation hub location problems (CSAHLP). In the following,

we review some of the related work in the literature with particular emphasis on

the single allocation scheme and exogenous number of hubs in modeling part

and (Meta)heuristic approaches in solution methods. Ebery et al. (2000) proposed

a hybrid method that combines evolutionary algorithm (EA) with a branch-and-

bound method (B&B) in order to solve a capacitated single allocation hub location

problem. In this work, the proposed EA selects the set of hubs while B&B continues

with the allocation part of the problem by allocating the non-hubs to the located

hubs.

Correia et al. (2009) proposed a Mixed Integer Programming (MIP) formulation

for the problem of single allocation where hub capacity is not an exogenous

value but it is a variable with discrete choices of value. Several variants of this

problem have been proposed including: capacitated and uncapacitated for single

allocation problem, and capacitated flow splitting (Campbell et al., 2007) for

3.1 Introduction 81

multiple allocation.

A MIP formulation and branch-and-cut algorithm were proposed by Rodríguez-

Martín et al. (2014), which consider a single allocation model, the capacity con-

straint in terms of number of spokes per route, and a fixed number of hubs.

Ebery et al. (2000) proposed a MIP formulation and a heuristic for capacitated

multiple allocation hub location problem. Uncapacitated p-Hub problem wherein

each spoke should be connected to r hubs, is studied by Peiró et al. (2014). The

authors proposed a GRASP method as a solution method.

An Uncapacitated p-Hub Single Allocation Location problem, has been pro-

posed in Ge et al. (2007) that seeks p hubs in the network and single allocation

of non-hubs to the hubs in a manner to minimize the total cost of transporting

between all origin-destination pairs in the network. In this work, the spokes are

simply connected to the hub and there is no particular topology imposed on the

spokes allocated to the same hub.

A MIP formulation has been proposed by Gelareh et al. (2013a) for a hub and

spoke network design and fleet deployment of liner shipping, in order to minimize

weighted sum of transit times and the fixed deployment costs. The proposed MIP

is based on 4-index formulation of HLPs and allocated spokes form directed cycles

(the so called string). On every string, the vessel class or capacity to be installed to

accommodated the volume of flow on the string must be determined from a given

heterogeneous fleet.

The current work has some similarity with the one studied in Rodríguez-Martín

82 Capacitated Single Allocation p-Hub Location Routing Problem

et al. (2014) but it s distinguished from it, as follows: In Rodríguez-Martín et al.

(2014) the objective function is only to minimize the total transportation cost while

in this work transshipment cost(time) has also been taken into account. In the

former, the spoke-level routes are undirected while we consider that flow on the

spoke-level route circulates in only one direction. Finally, in Rodríguez-Martín

et al. (2014), the capacity is defined as the maximum number of spokes along

a spoke-level route while we define it as the volume of flow circulating on the

spoke-level route that needs to respect the capacity of transporter on it.

This work is also distinguished from Gelareh et al. (2015), by the fact that we

do not take into account any upper/lower bound on the number of hubs, rather we

assume a fixed cardinally, p, as an exogenous parameter.

To the best of our knowledge, so far, the non-exact methods applied to variants

of hub location problems were either metaheuristics (population-based or trajectory-

based) or classical heuristics.

Kratica et al. (2012) proposed a genetic algorithm (GA) for solving an unca-

pacitated multiple allocation problem. Binary encoding and genetic operators are

used and the run-time is optimized by a caching technique.

Rabbani and Kazemi (2015) proposed a genetic algorithm and a simulated

annealing for solving an uncapacitated multiple allocation p-hub center problem

wherein the objective function is calculated based on Dijkstra’s algorithm.

A heuristic based on (GA) is proposed by Stanimirovic (2008) in order to

solve uncapacitated multiple allocation p-hub median problem. Described GA uses

3.1 Introduction 83

binary representation of the solutions. A mutation operator with frozen bits and a

caching technique, all of that contribute to improve the solution quality.

Randall (2008) proposed an ant colony metaheuristic optimization method.

Four variations exploring different construction modelling choices are developed

to solve the capacitated single allocation hub location problem.

Multiple Ant Colony Optimization (MACO) algorithm is proposed by Ting

and Chen (2013) to solve a capacitated location routing problem, which is decom-

posed into two subproblems: 1) facility location problem and 2) multiple depot

vehicle routing problem. The two subproblems are treated together within MACO

where collaboration of colonies is operated by interchanging information through

pheromone renewing the chosen location and costumer assignment.

In order to avoid local optima in p-hub location problem, Klincewicz (1992)

proposed two metaheuristic: tabu search and GRASP algorithm. The considered

objective was to minimize the total costs of sending traffic over links. In these two

methods, local search procedure is based on the 2-exchange neighborhood.

A p-median Problem was treated by Rolland et al. (1997) that proposed a tabu

search algorithm which uses short term and long term memory, and a strategic

oscillation for random tabu list sizes.

Abdinnour-Helm (1998) developed a hybrid method based on a combination of

genetic algorithm and tabu search in order to solve an uncapacitated hub location

problem with single allocation. Genetic Algorithm is used to choose hubs, while

Tabu Search is used to assign spokes to hubs.

A two phases of tabu search algorithm (location and routing phases with short

84 Capacitated Single Allocation p-Hub Location Routing Problem

term memory) has been considered by Tuzun and Burke (1999), in order to solve

capacitated hub location problem with single allocation.

Simulated annealing (SA) and iterated local search (ILS) were proposed by

Zarandi et al. (2015) in order to solve single-allocation hub median problem.

Another simulated annealing for single-allocation capacitated hub location problem

was proposed by Vincent et al. (2010), given that routes and hubs are constrained

by capacity.

Uncapacitated single allocation p-hub median problem was studied by Ilić et al.

(2010). They proposed a Variable Neighborhood Search (VNS) where variable

neighborhood descent (VND) based local search uses three different neighborhood

structures. Another VNS was proposed by Jarboui et al. (2013) but for uncapacit-

ated single allocation hub location problem. VND is used as local search and it

consists of five neighborhood structures, including insertion and swap operators.

Table 3.1 summarizes some key features in closely related contributions.

Table 3.1: A summary of main elements of the relevant contributions in literat-
ure.

Work Allocation Scheme No. Hubs Objective Capacity Cycle Length No. Vehicles Solution method

Nagy and Salhi (1998) pickup/delivery routes endogenous cost yes yes endogenous MIP + heuristic

Cetiner et al. (2006) multiple allocation endogenous cost+fleet no yes endogenous heuristic

de Camargo et al. (2013) single allocation endogenous cost no yes endogenous MIP + Benders decomposition

Wasner and Zäpfel (2004) multiple allocation endogenous cost yes yes endogenous MIP + heuristic

Rodríguez-Martín et al. (2014) single allocation exogenous cost #. spoke per route no one per route MIP + branch-and-cut

Gelareh et al. (2013b) single allocation exogenous cost+fleet yes multiple of weeks variable MIP+Lagrangian decomposition

Gelareh et al. (2015) single allocation q = 3 ≤ .. ≤ p time yes ≥ 2 spokes one per route MIP+branch-and-cut+Benders

(transit+transshipment)

current work single allocation exogenous time yes ≥ 2 spokes one per route MIP+Lagrangian Relaxation

(transit+transshipment) + Hyperheuristic

This work contributes to the state-of-the-arts as follows: First, we present a

3.1 Introduction 85

Figure 3.2: A solution of network with 3 hubs and 10 nodes.

mixed integer linear formulation with 2-index design variables that is basically

similar to the model in Gelareh et al. (2015) and we proposed a 3-indexed design

formulation where the number of hubs is fixed. We then propose a particular

Lagrangian relaxation of the problem allowing to exploit the reduced cost of spoke

level variables. The outputs of this relaxation scheme are then used in our proposed

hyperheuristic framework. To the best of our knowledge, this is the first work

tackling a variant of hub location problems using a hypereutectic approach (in

particular exploiting Lagrangian relaxation information in hyperheuristic). The

proposed hyperheuristic is comprised of a portfolio of low level heuristics (some of

which use the Lagrangian relaxation information) and a heuristic selection method

that learns in the course of process how to choose among the existing heuristics

the one leading to a higher likelihood of success and improvement. The later is in

fact a reinforcement learning method that has been inspired from the concept of

86 Capacitated Single Allocation p-Hub Location Routing Problem

association rules in the business data mining world. To further expand our research,

we have also tackled the problem presented by Rodríguez-Martín et al. (2014).

For this problem, we propose a hyperheuristic method with another method of

reinforcement learning methods called Q-learning, in order to guide in selection

heuristic to be applied during the search.

The two aforementioned problems are distinct in the sense that as the first one

is a transportation problem, the capacity concerns the volume of flow on the arcs

(spoke-level arc) while the second treats the capacity as the maximum number of

spokes along a cycle presenting the limited number of ports on switches, routers etc.

in a telecommunications network. We denote the first problem as CSApHLRP-1,

and the second CSApHLRP-2.

The remainder of this paper is organized as in the following: In section 3.2, we

propose a mathematical model is a 3-index design MIP and present the 2-index

design formulation for CSApHLRP-1 in Gelareh et al. (2015). Than we present

the mathematical formulation of the problem in Rodríguez-Martín et al. (2014),

CSApHLRP-2. The section 3.3 is divided into two parts. In the first part we

propose five Lagrangian relaxations for the CSApHLRP-1 2-index design model,

which is capable of offering approximation of reduced costs of the spoke-level

network variables. In the second part a hyperheuristic solution approach and

its components exploiting information of Lagrangian dual to guide are presented

for the CSApHLRP-1 problem, and another one for the CSApHLRP-2 problem.

Computational experiments and discussions are reported in section 3.4. Finally, in

section 3.5, we conclude our work and present the possible future work.

3.2 Mathematical Formulation 87

3.2 Mathematical Formulation

We present two mathematical models for the first variant of HLRP problem. For the

first problem, CSApHLRP-1, we propose a 3-index design variable mathematical

formulation CSApHLRP-1-F1, and we present another model proposed by Gelareh

et al. (2015) with 2-index design variable, CSApHLRP-1-F2.

Considering CSApHLRP-2, we present the model proposed by Rodríguez-

Martín et al. (2014).

The following parameters and variables are used in models, CSApHLRP-1-F1 and

CSApHLRP-1-F2. The only difference in variables in these two models, refers to

variable r, which will be declared as 2-index or 3.

Table 3.2: CSApHLRP-1-F1 and CSApHLRP-1-F2 Models Parameters.

wij: the flow from i to j,
tij: the distance/time on a direct link on the edge (arc) i− j,
α: the factor of economies of scale (the factor

of travel time efficiency over hub edges),
p: the upper bound on the number of hubs (depots),
Γ: the minimum number of spokes allocated

to each hub/depot node,
Cv: the capacity of each vehicle for each feeder network,
ϕk: the (fixed) average transshipment time at hub k.

88 Capacitated Single Allocation p-Hub Location Routing Problem

Table 3.3: The decision variables for CSApHLRP-1-F1 and CSApHLRP-1-F2.

xijkl: the fraction of flow from i to j
traversing inter-hub edge {k, l},

sijkl: the fraction of flow from i to j
traversing non-hub edge {k, l},

rij(rijk): 1, if the arc (i, j) belongs to a spoke-level
route (i and j are allocated to hub k in CSApHLRP-1-F1),
0 otherwise.

zik: 1, if the node i is allocated to node k where k is a hub,
0 otherwise.

3.2.1 (CSApHLRP-1-F1)

(CSApHLRP-1-F1)

min
∑
i,j,k,l

(tkl(sijkl + αxijkl)) +
∑

i,j,k,l:(k 6=i∨l 6=j)

(ϕk + ϕl)xijkl (3.1)

s. t. ∑
k

zkk ≤ p (3.2)

∑
l

zkl = 1 ∀k ∈ V

(3.3)

rijk ≥ Γzkk ∀k

(3.4)∑
j

rijk = zik ∀i, k

(3.5)

3.2 Mathematical Formulation 89

∑
j

rjik = zik ∀i, k

(3.6)∑
j:l 6=j

rjlk =
∑
j:l 6=j

rljk ∀l, k

(3.7)

rijk + rjik ≤ zik ∀i, j, k : j 6= i

(3.8)

rijk + rjik ≤ zjk ∀i, j, k : j 6= i

(3.9)

zik ≤ zkk ∀i, k ∈ V : k 6= i

(3.10)∑
k 6=i

(xijik + sijik) = 1, ∀i, j ∈ V : j 6= i

(3.11)∑
l 6=j

(xijlj + sijlj) = 1, ∀i, j ∈ V : j 6= i

(3.12)∑
l 6=i,k

(xijkl + sijkl) =
∑
l 6=j,k

(xijlk + sijlk), ∀i, j, k ∈ V, k 6∈ {i, j, }

(3.13)∑
l 6=k

xijkl ≤ zkk ∀i, j, k ∈ V : j 6= i, k < l

(3.14)

90 Capacitated Single Allocation p-Hub Location Routing Problem

∑
l 6=k

xijlk ≤ zkk ∀i, j, k ∈ V : j 6= i, k < l

(3.15)

sijkl ≤
∑
m

rklm ∀i, j, k, l ∈ V : l 6= k

(3.16)∑
ijl:j 6=i

wijsijkl ≤ C, ∀k ∈ V

(3.17)

r ∈ B|V |2 , z ∈ B|V |×|V |, xijkl, sijkl ∈∈ R|V |
4

[0,1] (3.18)

The objective function (3.1) is comprised of two parts; the first accounts for the

total transportation times and the second part is the transshipment times. The

transportation part is composed of travel times on the hub-level edges as well as

spoke-level arcs. The travel time on the hub-level edges is discounted by α because

the transporters offer faster services. The transhipment time is measured twice

for every O-D flow; once at the first hub visited along O-D path and once at the

last hub along the same path. Constraints (3.2) sets a limit on the number of hub

nodes (depots) that can be installed while constraints (3.3) guarantee that every

node is allocated to exactly one hub depot. A self-allocation of i (i.e. zii = 1)

represents a hub depot i. If a node is designated as a hub node, there must be at

least Γ nodes (including itself) allocated to it (making the route) as stated in (3.4).

Here, we assume that Γ = 3. Constraints (3.5) (3.6) ensure that every spoke node

that is assigned to a hub node will not be part of more than one route (i.e. will be

3.2 Mathematical Formulation 91

part of exactly one route). Constraints (3.7) ensure that, the number of arcs arriving

to a spoke node is equal to the number of outgoing ones. Constraints (3.8)-(3.9)

ensure that a leg on a given route can be established only if both end-nodes are

allocated to the same hub depot. A spoke node can only be allocated to a hub node

as in constraints (3.10). Constraints (3.11)-(3.13) stand for the flow conservation

for every O-D pair. Constraints (3.11)-(3.15) state that traversing a hub edge is

equivalent to traversing an edge where both end-points are hub nodes. Constraints

(3.16) ensure that the flows on the route (spoke) edges will traverse in the correct

direction and on an existing feeder edge. Constraints (3.17) ensure that the volume

of flow on every leg of the routes associated to the hub nodes is constrained to

the capacity of vehicles. Given that the flow leaving a spoke node will traverse a

unique link encompassed from that spoke node, the term on the left side determines

the whole flow leaving the spoke node k no matter originated from k itself or

passing through it.

3.2.2 (CSApHLRP-1-F2)

A 2-index (design variables) was proposed in Gelareh et al. (2015) for the Bounded

Cardinality Capacitated Hub Routing Problem (BCCHRP). In this model, definition

of variable r does not indicate the allocation for end-nodes to any hub. More

precisely, rij does not determine to which hub it belongs. This somehow helps

to get rid of some of the constraints in the preceding model, however, in order to

make sure that both end-points belong to the same hub node one needs to add some

additional constraints.

92 Capacitated Single Allocation p-Hub Location Routing Problem

(CSApHLRP-1-F2)

min
∑
i,j,k,l

(tkl(sijkl + αxijkl)) +
∑

i,j,k,l:(k 6=i∨l 6=j)

(ϕk + ϕl)xijkl (3.19)

s. t. ∑
k

zkk ≤ p (3.20)

∑
l

zkl = 1 ∀k ∈ V

(3.21)

zik ≤ zkk ∀i, k ∈ V : k 6= i

(3.22)∑
i

zik ≥ Γzkk ∀k ∈ V

(3.23)∑
j 6=i

rij = 1 ∀i ∈ V

(3.24)∑
j 6=i

rji = 1 ∀i ∈ V

(3.25)

rij + rji ≤ 2− zik − zjl ∀i, j, k, l ∈ V : j 6= i, k 6= l

(3.26)

rij + rji ≤ 1 ∀i, j ∈ V : j 6= i,

(3.27)

3.2 Mathematical Formulation 93

∑
k 6=i

(xijik + sijik) = 1, ∀i, j ∈ V : j 6= i,

(3.28)∑
l 6=j

(xijlj + sijlj) = 1, ∀i, j ∈ V : j 6= i,

(3.29)∑
l 6=i,k

(xijkl + sijkl) =
∑
l 6=j,k

(xijlk + sijlk), ∀i, j, k ∈ V, k 6∈ {i, j, } ,

(3.30)∑
l 6=k

xijkl ≤ zkk ∀i, j, k ∈ V : j 6= i, k < l

(3.31)∑
l 6=k

xijlk ≤ zkk ∀i, j, k ∈ V : j 6= i, k < l

(3.32)

sijkl ≤ rkl ∀i, j, k, l ∈ V : l 6= k

(3.33)∑
ijl:j 6=i

wijsijkl ≤ C, ∀k ∈ V

(3.34)

r ∈ B|V |2 , z ∈ B|V |×|V |, xijkl, sijkl ∈∈ R|V |
4

[0,1] (3.35)

The objective function (3.19) and all constraints (3.20)- (3.22) remain the same as

in the previous model. Constraints (3.23), are in fact equivalent to the constraints

(3.4) in terms of z variables. Constraints (3.24) and (3.25) ensure that one arc

94 Capacitated Single Allocation p-Hub Location Routing Problem

departs and one arc arrives at every node, respectively. Constraints (3.26), ensure

that a spoke arc cannot exist if its end-points are allocated to different hubs and

constraints (3.27) guarantee that an arc can appear only in either directions. The

flow conservation constraints (3.28))-(3.32) are the same as in the previous model.

Constraints (3.33) make sure that a spoke flow will traverse an existing spoke arc.

The capacity constraints ((3.34)) are the same as in the previous model. It must be

noted that in the 2-indexed formulation, the constraints (3.8)-(3.9) are no longer

applicable. Instead, we needed to introduce constraints (3.26). Briefly speaking,

approximately 2n3 constraints and (n− 1)(n2 − n) variables are removed in favor

of 2n(n− 1) + 2n2(n− 1)2 constraints and n(n− 1). Moreover, less number of

integer variables in the primal is expected to facilitate resolution and convergence

of a branch-and-bound-based method.

3.2.3 (CSApHLRP-2)

Let E = {[i, j] : i, j ∈V, i 6= j}, the following parameters and variables are used

in this model.

3.2 Mathematical Formulation 95

Table 3.4: CSApHLRP-2 Model Parameters.

V set of nodes,
wij the traffic demand from i to j,
cjl cost of routing from node j to l,
oi total amount of demand originate at node i,
di total amount of demand with destination at node i,
q the maximum number of nodes assigned spokes to a hub,
fe cost of using the edge e ∈ E in a cycle,
β factor of changing the relative weight of the cycle

edge costs in the objective function.

Table 3.5: CSApHLRP-2 Decision Variables.

xe edge variable in a cycle with at least three edges,
δ(S) set of edges with exactly one end point in S and E(S)
z1jj 1, if node j ∈ V is a hub and no other node is assigned to j,
z1ij 1, if node j ∈ V is a hub and i is assigned to j with i 6= j,
z2ij 1, if node j ∈ V is a hub and i is assigned to j,
gijl Amount of traffic that originates at node i ∈ V

and travels from hub j ∈ V to hub l ∈ V − {j}

(CSApHLRP-2)

min
∑
i∈V

∑
j∈V−{j}

(cijoi + cjidi)
(
z1ij + z2ij

)
+

α
∑
j∈V

∑
l∈V−{j}

cjl
∑
i∈V

gijl + β

∑
i∈V

∑
j∈V−{j}

2fijz
1
ij +

∑
e∈E

fexe

 (3.36)

s. t. ∑
j∈V−{i}

z1ijz
1
ii +

∑
j∈V−{i}

z1ji +
∑
j∈V

z2ij = 1 ∀i ∈ V (3.37)

96 Capacitated Single Allocation p-Hub Location Routing Problem

∑
i∈V

z2ij ≤ qz2jj ∀j ∈ V (3.38)

∑
j∈V

(∑
i∈V

z1ij + z2jj

)
= p (3.39)

∑
l∈V−{j}

gijl −
∑

l∈V−{j}

gilj =

∑
m∈V−{i,j}

(
z1ij + z2ij − z1mj − z2mj

)
+ wij

(
z1ij + z2ij −

∑
k∈V

z1kj − z2jj

)
∀i, j ∈ V, i 6= j

(3.40)∑
l∈V−{j}

gjjl −
∑

l∈V−{j}

gjlj =
∑

m∈V−{j}

(∑
k∈V

z1kj + z2jj − z1mj − z2mj

)
∀j ∈ V

(3.41)

x(δ(i)) = 2
∑
j∈V

z2ij ∀i ∈ V (3.42)

x(δ(S)) ≥ 2
∑

j∈V−{S}

z2ij ∀S ⊂ V, i ∈ S (3.43)

xii′ + z2ij + z2i′j′ ≤ 2 ∀[i, i′] ∈ E, j, j′ ∈ V, j 6= j′ (3.44)

xe ∈ {0, 1} ∀e ∈ E (3.45)

z1ij ∈ {0, 1} ∀i, j ∈ V (3.46)

z2ij ∈ {0, 1} ∀i, j ∈ V (3.47)

gijl ≥ 0 ∀i, j ∈ V, l ∈ V − {j} (3.48)

In order to have a feasible solution, we need pq ≥ |V |. cijoi + cjidi represents

the cost of assigning node i to hub j. Where i and j are hubs then the routing cost

is discounted by a factor of α, the same as the previous problem. Two nodes form

3.3 Solution algorithm 97

a cycle with a cost of 2fij . The objective function (3.36) accounts for the total

installation cost of the edges and the routing of flows. Constraints (3.37) ensure

that a node i can be in one of the four different situations: 1) the unique node

allocated to another hub (case
∑

j∈V−{i} z
1
ij = 1), 2) a hub without other node

allocated to it (case z1ii = 1), 3) it is a hub with one other node specified to it (case∑
j∈V−{i} z

1
ji = 1), 4) a hub is specified to another hub at least two other nodes

(case
∑

j∈V z
2
ij = 1). Constraints (3.38) are capacity constrains to guarantee that

a cycle does not contain more than q nodes. p is the number of hubs to open in

constraint (3.39). The flow balance constraints for the traffic on the hub network

is due to constraints (3.40) and (3.41). Constraints (3.42) states that two edges

must be incident to a node that is on a ring containing at least two other nodes.

Constraints (3.43) maintain the connectivity of the cycles. In case, node i ∈ S is

allocated to a hub in set V/S, then the cycle which holds node i has to cross the cut

declared by subset S and x(δ(S)) ≥ 2. Constraints (3.44) prohibit nodes allocated

to different hubs to be on the same cycle.

It must be note that, the constraints (3.36)-(3.48) is a model for the SApHMP

(Single Allocation p Hub Median Problem) as β = 0.

3.3 Solution algorithm

The proposed solution algorithm, for CSApHLRP-1, is a lower/upper bound solu-

tion method. We examine several Lagrangian relaxation schemes of this problem

98 Capacitated Single Allocation p-Hub Location Routing Problem

with respect to the quality of their bounds. Each relaxation behaves independ-

ently regarding the convergence of dual multipliers as well as development of

Lagrangian relaxation objective function variable coefficients. Therefore, the in-

formation stored in objective function variable coefficients can be used to guide

different heuristic algorithms that are part of a hyperheuristic framework.

3.3.1 Lagrangian relaxation

Lagrangian relaxation for solving (mixed) integer programming problems was

first proposed in Geoffrion (1974); Geoffrion and Bride (1978) and later in Fisher

(1981, 2004). The idea behind this method is to relax complicating constraints by

penalizing the objective function upon violation of these constraints. The relaxed

problem is expected to be easier to solve than the original problem and provides a

dual bound on the optimal value (as well as valuable information about the dual)

of the problem (see Guignard (2003) for a comprehensive survey of the method.).

Three well-known methods are commonly practiced in the literature for solving

the Lagrangian relaxation problems. The oldest and most well-known one is

the subgradient method as an iterative method for solving convex minimization

problems. The subgradient method was originally proposed in the 60’s in the

former Soviet Union. Almost at the same time, a very similar method has been also

proposed in Held and Karp (1971) for solving traveling salesman problem. Later,

Lemarechal (1975) proposed the well-known bundle methods as an extension to

the simple subgradient. The volume algorithm was later proposed in Barahona

3.3 Solution algorithm 99

and Anbil (2000) as a methods which simultaneously produces a primal feasible

solution and a dual bound for the problem. A further analysis of volume algorithm

and its relation with bundle methods has been studies in Bahiense et al. (2002).

Several variants of the subgradient-based methods have been proposed in the

literature. Here, based on some observation from our preliminary computational

experiments, we opted to use the well-known bundle method of Frangioni (1995)

and the corresponding code (publicly available).

Dualizing some constraints of a MIP model, in Lagrangian fashion, may result

in a Lagrangian problem that is easier to solve and its optimal value is a lower

bound on the original problem (case of minimization problems) Fisher (2004).

In brief, Lagrangian relaxation decomposes constraints of the problem into two

separate group:1) The first group, usually named as hard constraints, which are

dualized (are transferred and penalized in the objective function), and 2) The

remaining subset of constraints that remain in the subproblem.

Let u∗∗, u
∗
∗∗ and u∗∗∗∗ are the Lagrangian multipliers with the proper dimensions

and sign (unsigned for the equality constraints and nonnegative for the inequalities,

i.e. ≤). In the following, we present five different lagrangian relaxations for the

mathematical model of in CSApHLRP-1.

LRX1: design relaxation

The aim of this relaxation is 1) to accommodate the hub location variables (zkk) in

the objective function problem with a cost as a function of Lagrangian multipliers,

100 Capacitated Single Allocation p-Hub Location Routing Problem

2) to obtain a subproblem that can be efficiently solved using a general-purpose

MIP solver, and 3) determining the values of flow variables by inspection.

The new costs for design variables are calculated by −
∑

ij:j 6=i(u
4
ijk + u5ijk) for

every zkk. These costs are going to be used as guiding information in the heuristic

algorithm to bias the search space exploration.

min
∑
i,j,k,l

(tkl(sijkl + αxijkl)) +
∑

i,j,k,l:(k 6=i∨l 6=j)

(ϕk + ϕl)xijkl+

∑
i,j 6=i

u1ij

(∑
k 6=i

(xijik + sijik)− 1

)
+
∑
i,j 6=i

u2ij

(∑
l 6=j

(xijlj + sijlj)− 1

)
+

∑
i,j,k 6=(i,j)

u3ijk

(∑
l 6=i,k

(xijkl + sijkl)−
∑
l 6=j,k

(xijlk + sijlk)

)
+

∑
ijk:j 6=i,k<l

u4ijk

(∑
l 6=k

xijkl − zkk

)
+

∑
ijk:j 6=i,k<l

u5ijk

(∑
l 6=k

xijlk − zkk

)
∑

i,j,k,l 6=k

u6ijkl(sijkl − rkl) +
∑
k

u7k(
∑
ijl:j 6=i

wijsijkl − C)

(3.49)

s. t.

(3.20), (3.21), (3.22),

(3.23), (3.24), (3.25), (3.26),

(3.27)

r ∈ B|V |2 , z ∈ B|V |×|V |, xijkl, sijkl ∈∈ R|V |
4

[0,1] (3.50)

3.3 Solution algorithm 101

LRX2: z-relaxed

This relaxation aims at accommodating all the zij (but no rij) variables in the

objective function in addition to the already existing flow variables. In this way,

the dual information will be contained in the coefficients of zij variables and such

modified costs can be exploited in guiding the heuristic algorithm by allowing

better identifying location of hub nodes and allocation of spoke nodes to the hub

nodes.

min
∑
i,j,k,l

(tkl(sijkl + αxijkl)) +
∑

i,j,k,l:(k 6=i∨l 6=j)

(ϕk + ϕl)xijkl+

u1ij

(∑
k

zkk − p

)
+
∑
k

u2k

(∑
l

zkl − 1

)
+
∑
ik:k 6=i

u3ik (zik − zkk)

∑
k

u4k

(
Γzkk −

∑
i

zik

)
+

∑
ijk,j 6=i,k<l

u5ijk

(∑
l 6=k

xijkl − zkk

)
+

∑
ijk,j 6=i,k<l

u6ijk

(∑
l 6=k

xijlk − zkk

)

(3.51)

s. t.

(3.24), (3.25), (3.26), (3.27),

(3.28), (3.29), (3.30),

(3.33), (3.34),

r ∈ B|V |2 , z ∈ B|V |×|V |, xijkl, sijkl ∈∈ R|V |
4

[0,1] (3.52)

102 Capacitated Single Allocation p-Hub Location Routing Problem

LRX3: r-relaxed

This relaxation aims at accommodating all the rij (but no zij) variables in the

objective function in addition to the already existing flow variables. By doing so,

the dual information will be contained in the coefficients of rij variables. Such

information can partially describe the network and route structures and can be used

to either constructing a partial initial solution or, in general, to guide the heuristic

by a given frequency.

min
∑
i,j,k,l

(tkl(sijkl + αxijkl)) +
∑

i,j,k,l:(k 6=i∨l 6=j)

(ϕk + ϕl)xijkl+

∑
i,j 6=i

u1ij

(∑
j 6=i

rij − 1

)
+
∑
i,j 6=i

u2ij

(∑
j 6=i

rji − 1

)
+

∑
ijkl:k 6=l,j 6=i

u3ijkl (rij + rji − 2 + zik + zjl) +
∑
i,j 6=i

u4ij(rij + rji − 1)+

∑
ijkl,l 6=k

u5ijkl(sijkl − rkl)+

(3.53)

s. t.

(3.20), (3.21), (3.22), (3.23)

(3.28), (3.29), (3.30)

(3.31), (3.32), (3.34)

r ∈ B|V |2 , z ∈ B|V |×|V |, xijkl, sijkl ∈∈ R|V |
4

[0,1] (3.54)

3.3 Solution algorithm 103

LRX4: z, r-relaxed

The idea is almost the same as that of LRX2 except that in addition to the zij

variables, all rij will also appear in the objective function and their modified costs

can be used to guide the heuristic algorithms. Moreover, the resulting subproblem

is a computationally inexpensive problem to solve using any of the general-purpose

solvers (even often by inspection). Some partial information such as location of

hub nodes, allocation of spokes to the routes and some edges along routes can be

exploited by using this relaxation.

min
∑
i,j,k,l

(tkl(sijkl + αxijkl)) +
∑

i,j,k,l:(k 6=i∨l 6=j)

(ϕk + ϕl)xijkl+

u1

(∑
k

zkk − p

)
+
∑
k

u2k

(∑
l

zkl − 1

)
+
∑
i,k 6=i

u3ik (zik − zkk)

∑
k

u4k

(
Γzkk −

∑
i

zik

)
+
∑
i

u5i

(∑
j 6=i

rij − 1

)
+
∑
i

u6i

(∑
j 6=i

rji − 1

)
+

∑
ijkl,l 6=k,j 6=i

u7ijkl (rij + rji − 2− zik − zjl) +
∑
i,j 6=i

u8ij (rij + rji − 1)

(3.55)

s. t.

(3.28), (3.29), (3.30)

(3.31), (3.32), (3.33), (3.34)

r ∈ B|V |2 , z ∈ B|V |×|V |, xijkl, sijkl ∈∈ R|V |
4

[0,1] (3.56)

104 Capacitated Single Allocation p-Hub Location Routing Problem

LRX5: Lagrangian decomposition

The aim is to decompose the LR into two separate problems, one in the space of

design variables z, r and another one in the space of flow variables x, s.

min
∑
i,j,k,l

(tkl(sijkl + αxijkl)) +
∑

i,j,k,l:(k 6=i∨l 6=j)

(ϕk + ϕl)xijkl+

∑
i,j 6=i,k,l 6=k

u1ijkl (rij + rji − 2 + zik + zjl) +
∑

i,j 6=i,k<l

u2ijk

(∑
l 6=k

xijkl − zkk

)
+

∑
i,j 6=i,k<l

u3ijk

(∑
l 6=k

xijlk − zkk

)
+
∑

ijkl:k 6=l

u4ijkl (sijkl − rkl)

(3.57)

s. t.

(3.20), (3.21), (3.22) (3.58)

(3.23), (3.24), (3.25), (3.27) (3.59)

(3.28), (3.29), (3.30), (3.34) (3.60)

r ∈ B|V |2 , z ∈ B|V |×|V |, xijkl, sijkl ∈∈ R|V |
4

[0,1] (3.61)

3.3.2 Hyperheuristic for CSApHLRP-1 and CSApHLRP-2

Our proposed hyperheuristic-selection method is in fact a reinforcement learning

method and has been inspired from the concept of association rules in the business

data mining world (Aguinis et al., 2012).

In the following, we propose a hyperheuristic framework (based on the defin-

3.3 Solution algorithm 105

ition of Burke et al. (2010)) that: 1) is a heuristic-selection type (as opposed

to heuristic-generation type), 2) applies an online learning, and 3) is a hybrid

construction-perturbation heuristic.

The overall flow of algorithm is described in the following: First an initial

solution is constructed using a constructive heuristic. Then through a learning

process, the hyperheuristic proposes a series of perturbation, constructive and/or

improvement heuristics in order to optimize the solution.

In the CSApHLRP-1, The first heuristic, which is a constructive one, optionally

exploits the Lagrangian dual (for the first problem) information to construct the

initial (probably partial) solution. In the next step, such a solution can be partially

destructed and reconstructed, perturbed and improved, directly improved or any

other combination. A potential improvement made by a transition from the first

constructive heuristic to another heuristic is measured. An acceptance criteria then

decides on the transition from the current state to another state.

Here, we use a simulated annealing move acceptance method, where the de-

cision regarding the transition (move) to be accepted depends on the quality of

solution obtained from applying heuristics (amount of improvement) and the

elapsed CPU time. All improved moves are always accepted, and worsening moves

might be accepted in accordance with the Metropolis criterion Kirkpatrick (1984):

exp(−∆f/T) > R(0, 1) (3.62)

106 Capacitated Single Allocation p-Hub Location Routing Problem

where ∆f is the difference between the post-transition and pre-transition objective

functions, T is a synthetic temperature and R(0, 1) is a uniform random number

between 0 and 1. T represents the global temperature. When T is larger, many

non-improving or even deteriorating transitions (moves) are accepted while when

it tends to zero exp(−∆f/T) tends to zero, too. Therefore, for sufficiently small

values of T , only improvement moves are accepted.

The algorithm starts with solving one or more (in parallel) Lagrangian relax-

ation(s) of the mathematical model (CSApHLRP-1-F2) using bundle algorithm

(Frangioni, 1995). The outputs are in form of one (probably partially) feasible

solution as well as one set of the coefficients of variables in the objective function,

per relaxation.

In the CSApHLRP-2, the general scheme of the hyperheuristic has some

similarity with the proposed hyperheuristic for CSApHLRP-1, expect it does not

have any kind of information like results of Lagrangian Relaxation. In addition,

the applied acceptance criteria is the so called Great Deluge. Great Deluge accepts

solutions according to a dynamic threshold. We elaborate on further details in

Chapter 1.

Low level heuristics

A rather large set of heuristics categorized in three classes, constructive, improve-

ment, and perturbation are used within our hyperheuristic framework. In the

following we describe every heuristic, proposed for CSApHLRP-1, with sufficient

details.

3.3 Solution algorithm 107

Constructive heuristics build a solution from the scratch, based on several

predefined rules. In this study, two constructive algorithms are implemented CS1

and CS2.

CS1 that is detailed in Algorithm4, perform as in the following : it chooses p

hubs that have the highest flow transshipment. Then it allocates at least Γ nearest

spokes to every hub (by partially respecting the capacity constraint as the volume of

demand/supply arriving/departing at the hub for the spoke on route must not violate

the capacity). Finally, it incrementally constructs each feeder route by sequencing

the spokes allocated to a given hub taking into consideration the capacity constraint.

The second constructive heuristic, CS2, is distinguished from the first one, i.e.

CS1, in the way it chooses the set of p hubs candidates. CS2 uses the information

accumulated in the course of solving the third Lagrangian relaxation (LR3) (i.e.

the coefficient of zik in LR3 objective function) as well as some statistics collected

about the frequency that a given node appeared as a hub during the iterations of

bundle method and the history of hyperheuristic process, if any. It then allocates

at least Γ spokes to each hub then allocate remainder spokes. To construct the

spoke-level route and sequencing the hub and its allocated spokes along it, we

start from the hub and add the arcs incrementally. Let l be the last node already

added to the partial spoke-level route and SL be the set of remaining spokes

to put on the route, unless SL is a singleton, the next candidate spoke node,

which we call it R_Nearest, to be added to the existing partial route is i∗ =

108 Capacitated Single Allocation p-Hub Location Routing Problem

argmini∈SL
{a1tsl sc + a2rsl sc}, 0 ≤ a1 + a2 ≤ 1, a1, a2 ≥ 0. Where tsl sc

represents the travel time between the last spoke sl in the cycle of the feeder

network allocated to h and the candidate spoke sc. r(sl, sc) corresponds to the

r coefficient between sl and sc resulted from LR3. As long as a2 increases, the

influence of LR3 increases.

Algorithm 4 CS1
1: procedure CONSTRUCTIVE1(N ,p,Sigma)
2: Hubs = ChooseHubAccordingDemand()
3: getFeeders(Hubs)
4: for i = 1, . . . , p (p = |H |) do
5: j=0
6: while j < Sigma do
7: f= R_Nearest(Hub[i],feeders,tabu)
8: temp TempTabu← f
9: if CapacityConstraint(AssignFeederToHub(Hub[i],f)) then

10: AssignFeederToHub(Hub[i],f)
11: Tabu← f
12: j = j + 1
13: end if
14: end while
15: TempTabu = Tabu
16: end for
17: TempTabu = Tabu
18: for i = 1, . . . , p (p = |H |) do
19: j=0
20: while true do
21: f= R_Nearest(Hub[i],feeders,tabu)
22: if f==Null then Break;
23: end if
24: TempTabu← f
25: if CapacityConstraint(AssignFeederToHub(Hub[i],f)) then
26: AssignFeederToHub(Hub[i],f)
27: Tabu← f
28: j = j + 1
29: end if
30: end while
31: TempTabu = Tabu
32: end forreturn Hubs
33: end procedure

3.3 Solution algorithm 109

Improvement heuristics start from a complete solution and apply some moves in

order to improve the objective function value. In our study, different improvement

heuristics are proposed:

IMP 1) In Rotate, given a route (a hub and a sequence of spokes along the route),

it rotates (clock-wise or counter clock-wise) the string. Such rotation of

size k will designate the k-th spoke node after the current hub as a hub

and renders the current hub as a spoke. This heuristic is useful when the

order of nodes on the route is rather correct but the choice of hub is the

cause of infeasibility or sub-optimality.

IMP 2) Re-order tries to re-sequence the nodes (hub and spokes) in order to find

a better order of nodes along the route. While re-ordering, a sequence

of {H,S1, S2, . . . , Sm} may turn to {S3, S1, H, Sm, . . . , S2} wherein S3

becomes a hub and H turns to a spoke node. This heuristic takes into the

capacity on the route and the total volume of demand and supply of nodes

such that by some intelligent re-sequencings, either a feasible solution is

obtained or an already feasible solution is improved.

IMP 3) Re-allocate tries to remove an allocated port from a feeder network that

has the maximum number of feeder nodes, and inserts it to another feeder

network. This node can be a hub or spoke in its original route and can

be equivalently hub or spoke in the devotional route. If it becomes hub

at the destination then the hub at the destination turns to spoke on the

route. Normally, such nodes can be the one in an irreducible subset of

110 Capacitated Single Allocation p-Hub Location Routing Problem

the nodes on the route that are the cause of infeasibility or the nodes that

are far from each other but lie on the same spoke-level arc (imposing high

transportation time).

IMP 4) SW1ffImp randomly swaps two allocated ports from two different feeder

networks, if and only if the solution improves the incumbent. This heuristic

can be seen as a kind of search that tries to diversify and sample from

different parts of the search space.

IMP 5) SW2ffImp randomly swaps tree ports belonging to three different feeder

networks, if and only if the solution improves over the incumbent.

Perturbation heuristics start with a complete solution and do some changes in order

to inject some diversification. In our study, we implement different perturbation

heuristics in a manner of all changes will be in the solution must respect that

to connect a pair of spokes i and j, they should have r(j, j) less than a defined

threshold TH :

PRT 1) SW1ff, The search tries to randomly swap two spokes allocated to the two

different hubs In the end, it either returns the feasible solution with the

maximum Hamming distance (with respect to the binary design variables)

from the input solution or one of the solutions among the p farthest ones.

PRT 2) SW2ff, tries to randomly swap three spokes belonging to three different

routes. It follows the same principle as in SW1ff, except that a very limited

number (n2 < |.| � n3) of samples are examined as a complete 3-opt is

very expensive,

3.3 Solution algorithm 111

PRT 3) SW1hf, swaps a random feeder and its corresponding hub. The hub be-

comes a spoke and the spokes turns to a hub.

PRT 4) SW2hf a fast local search that swaps a random feeder and a random hub

which should not be its corresponding hub.

PRT 5) SWhh, a fast local search swapping two hubs. This can be done by taking

into account the supply/demand of the entering hub that can violate the

capacity (if we seek generating feasible solutions from perturbation).

PRT 6) Insert/Delete, removes an allocated spoke from a route, and inserts it to

another one either with respect to the residual capacity available on another

route or even randomly .

It must be emphasized that the perturbation heuristics aim at introducing some

diversifications. Therefore, we do not expect a perturbed solution be a feasible one.

Rather, we hope that it can help exploring unvisited regions in the solution space.

For the CSApHLRP-2, most of the components proposed (such as low-level-

heuristics etc.) for CSApHLRP-1, are adapted for this problem. The main modific-

ation are:

1. The concept of edges is converted to arc in the feeder networks.

2. The problem has constraint capacity on the vertices rather than on the flow.

3. Add a check on the number of spokes allocated to each hub specially in CS1,

Insert/Delete and Re-allocate.

112 Capacitated Single Allocation p-Hub Location Routing Problem

4. LR3 results does not intervene in the process of CS2.

Heuristic Selection Methods

As mentioned in chapter 1, several heuristic-selection methods are introduced in

the literature. In this study, we work with reinforcement learning mechanism in

order to select the corresponding heuristic to be applied during the hyperheuristic

process.

Proposed Learning for the CSApHLRP-1

Here, learning mechanism, which is presented in Algorithm 5, is inspired from

a data mining technique called Association Rules (AR) guided by a Tabu Search

(TS). When looking at the principles of AR, one can observe that AR is actually

a kind of reinforcement learning that helps in respecting the dependency order

of heuristic applications. The AR was first introduced by Agrawal et al. (1993)

and is a technique in data mining that has attracted a lot of attention from the

researchers and practitioners. Extracting interesting correlation, frequent patterns,

associations or casual structures from group of items in the transaction databases

or data repositories are the purpose of association rules technique. The technique

of association rules finds interesting relationships among large set of data items. It

shows attribute value conditions that occur frequently together in a given dataset.

Traditionally, AR has been widely-used in Market Basket Analysis (Aguinis et al.,

2012) in order to find how items purchased by customers are related . In association

analysis, there are two sets of items (called itemsets): 1) the antecedent (the if

part), and 2) the consequent (the then part). Moreover, an association rule has

3.3 Solution algorithm 113

two more values that express the degree of uncertainty about the rule. The first

value is called the support for the rule. The support is defined as the proportion

of task-relevant data transactions for which the pattern is true. The second one

is known as the confidence of the rule. The so called confidence is a measure of

certainty or trustworthiness associated with each discovered pattern. Here, our

goal is to find some relationships between the different implemented heuristics, in

order to find the best series of heuristics to be applied. The numerical reward is not

going to be assigned to a single heuristic but to a series of them. Association Rules

heuristic selection method deals with two main variables: support and confidence.

These variables are used to measure the performance of a series of heuristics. If a

heuristic does not have the required support at a certain time, or if it does not have

enough confidence, the Tabu Search metaheuristic method prevents it from being

selected. The relevant variables and parameters are explained in the following:

1. A heuristic series (Hm, . . . , Hn) weight (reward) is equal to the negative

summation (for minimization case) of the objective function value divided

by the number of the application of this heuristic.

2. A support of a suggested Hs is equal to the summation of the heuristic series

(H1, . . . , Hs) reward in the precedent transactions divided by the summation

of all heuristic series rewards.

3. The confidence of a suggested Hs in such series (Hm, . . . , Hn) is equal to

the support of Hs divided by the support item set (Hm, . . . , Hn).

Tabu list Tl: Given our time limit, we initially set Tl = ∅ and at each iteration, Tl is

114 Capacitated Single Allocation p-Hub Location Routing Problem

updated as follows: if the elapsed CPU time is less than a certain milestone (e.g.

the the time limit divided by a given number v1), heuristics are chosen randomly

in order to establish a historical heuristic series performance. Otherwise, if the

elapsed CPU time is greater than the milestone /v1, Tl will contain all heuristics

for each series expect those for which the support value is greater than a threshold

thS . In the case that the elapsed time is greater than the milestone /v2, Tl will

contain all heuristics for each series expect those for which the confidence value

is greater than a threshold thC . It must be noted that the tabu list is updated with

changes of quality of each heuristic series, i.e. calculation of WHS
.

Algorithm 5 Association Rules Heuristic Selection Method
procedure CHOOSEHEURISTIC(Elapsed_Time)

if (ElapsedT ime < V1) then
Return Random(NbOfHeuristic)

end if
if (Elapsed_Time > V1) then

while TRUE do
Suggested_Heuristic_ID = Random(Nb_Of_Heuristic)
S = Support(Suggested_Heuristic_ID)
if (S > S_Threshold) then

Return Suggested_Heuristic_ID
end if

end while
end if
if (Elapsed_Time > V2) then

while TRUE do
Suggested_Heuristic_ID = Random(Nb_Of_Heuristic)
C = Confidence(Suggested_Heuristic_ID)
if (C > C_Threshold) then

Return Suggested_Heuristic_ID
end if

end while
end if

end procedure

3.3 Solution algorithm 115

Proposed Learning for the CSApHLRP-2

From among several methods for solving the reinforcement learning problem,

temporal-difference methods serve our purpose the best as they do not require a

complete description of the environment and are fully incremental.

The well-known Q-learning algorithm Watkins (1989) which falls within this

category uses the following update formula:

Qt+1(st, at) = Qt(st, at)︸ ︷︷ ︸
old value

+ αt(st, at)︸ ︷︷ ︸
learning rate

·


learned value︷ ︸︸ ︷

Rt+1︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

max
a
Qt(st+1, a)︸ ︷︷ ︸

estimate of optimal future value

−Qt(st, at)︸ ︷︷ ︸
old value


where Rt+1 is the reward collected after taking action at in state st, αt(s, a)(0 <

α ≤ 1) is the learning factor (may be the same for all pairs) and γ ≥ 1. wherein s

is the current state, a is the action taken in the state s, r is the immediate reward

received for executing action a in state s, s′ is the new state, γ ≥ 1, and 0 < αq < 1

is the learning factor.

In a choice scheme as ε− greedy (see Watkins and Dayan (1992) for explanations

and the proof of convergence), an agent will select the action resulting in the

highest reward Q with probability 1− ε and a random action with probability ε.

The learning rate determines how the newly information will replace the old in-

formation. Two extreme cases are ’0’ in which the agent will not learn anything

116 Capacitated Single Allocation p-Hub Location Routing Problem

and ’1’ in which the agent takes into account only the most recent information.

Here we use αt(s, a) = 0.1∀t.

A discount factor γ close to 0 will make the agent short-sighted by only considering

current rewards, while a factor approaching 1 will make it strive for a long-term

high reward.

A higher initial condition will encourage further exploration in any case of action

update rule will cause it to have lower values than the other alternative and in-

creases the probability of being chosen.

The process of Q-learning algorithm is shown in Algorithm 6.

Algorithm 6 Q-Learning Controller Algorithm
Inputs(set of state S, set of actions A, γ the discount factor, α the step size)
Inputs(real array Q[S,A], previous state s, previous action a)
repeat

Select and Carry out an action a
Calculate reward r
get state s’
Q[s, a]← Q[s, a] + α(r + γmaxa′Q[s′, a′]−Q[s, a])
s← s’

until Termination

Q-learning based hyperheuristic was applied by Falcao et al. (2015), in a prob-

lem of scheduling. Results proof that using Q-learning improve siginificantly the

solution quality compared by solutions got from no-learning hyperheuristic.

Q-LA is used in secondary control to calculate microgrid regulation error (MRE),

which is the regulated power, for real time operation. Economy and environmental

benefits are so necessary in real time modification process of the generation sched-

3.4 Computational experiments 117

ule of distributed generators (DGs) like batteries with the MRE by the fuzzy theory

and particle swarm optimization method Xi et al. (2015). Q-learning is applied

in Boyan and Littman (1994) to packet routing, where it is able to discovering

efficiently different routing policies in a dynamic change of network with no in-

formation needed about the network topology, traffic patterns and etc. A modified

version of Q-learning was proposed to plan pathes for mobile robots because it

must be able to autonomous complete various intelligent tasks Gao et al. (2008).

For interested researchers, Dorigo and Gambardella (2014), Ho et al. (2006), Choi

and Yeung (1996) and Gaskett et al. (1999) are among good examples of work

considering this reinforcement learning method.

3.4 Computational experiments

We have generated our instances based on the the well-known Australian Post (AP)

dataset, for CSApHLRP-1. The transhipment times are generated randomly for

some real values within [2, 5] for the given time unit. The existing capacities of

the original data (see Ernst and Krishnamoorthy (1999)) are not used because they

do not always results in feasible solutions as the problem structures are different.

In CSApHLRP-2, the data sets was Civil Aeronautics Board (CAB), which is pro-

posed by O’kelly (1987), and based on airline passenger flow among 25 important

cities in the US (in addition to AP data set). CAB and AP nodes distributions

shown respectively in Figure 3.3 and Figure 3.4.

All experiments were performed on an Intel 2.54 GHz core i5 CPU and 4 Gb of

118 Capacitated Single Allocation p-Hub Location Routing Problem

Figure 3.3: Civil Aeronautics Board data with 25 nodes.

memory running on Windows 7.

The termination criteria are chosen in such a way to avoid useless computation

as well as premature convergence. The proposed termination criterion, sets a global

time limit Tlimit = max {6000, n2 × p× 250} m.s. for the overall computation. In

addition, we set a second termination criterion for terminating the whole algorithm

once 10× n× p non-improving iterations have been observed.

3.4.1 CSApHLRP-1 Computational experiments

We assume that our fleet of vehicles is homogenous and therefore with a unique

capacity size. Let Oi =
∑

jWij and Dj =
∑

jWij and let p is the number of hubs.

The capacity is generated as C =
∑

iOi+
∑

iDi

p
.

All instances are named in a format ni_pj_k where i indicates the number of nodes,

j indicates the number of hubs and k indicates the factor of economies of scale.

3.4 Computational experiments 119

Figure 3.4: Australia post data with 200 nodes.

While a fair comparison between a heuristic algorithm and an exact decompos-

ition is rather non-trivial, in Table 3.6, we report the results of our computational

experiments with hyperheuristic (HH), with and without using results of LR, next

to the results of Bender decomposition from Gelareh et al. (2015). There are, in

total, 24 instances ranging from 10 nodes with 3 hubs to 20 nodes with 6 hubs. The

first column reports the instance name, the second(resp. seventh) one indicates the

computational times of Bender Decomposition method (resp. HH.).

The best solution found by HH without LR (resp. Bender Decomposition) are

reported in the fifth (resp. third). The fourth column reports the Cplex status when

apply Bender decomposition method. The gap between HH without LR results

(resp. LR HH) and Benders Decompositions are reported in the seventh (resp. ten).

The last column indicates the gap between the best objective function value taken

by HH with and without using LR results.

120 Capacitated Single Allocation p-Hub Location Routing Problem

One observes that the relative gaps between the solution reported by Benders

decomposition and those of HH never exceeded 0.08% if HH use LR results,

otherwise it does not exceed 0.32%. In this table, the negative gaps indicate that

such HH solutions are better than the feasible solution obtained by applying the

Benders decomposition method in Gelareh et al. (2015). When compared with the

computational time elapsed to obtain such high quality solutions, it is confirmed

that the proposed HH framework is capable of obtaining high quality solutions in

very reasonable computational times, specially within LR results.

The gap between HH with and without LR results reaches 3.92%, proves the

additional value of using the LR variable coefficient into the process of HH. LR

variable coefficient shown in the objective function of LR3, appears very well

during the process of HH. In construction phases (resp. in perturbation phase),

all routes between any pairs have the coefficient greater than a number ι (resp.

ν) are excluded. Furthermore, during the improvement phases pairs with small

coefficients are favored to be connected.

3.4 Computational experiments 121
Ta

bl
e

3.
6:

C
om

pa
ri

so
n

of
th

e
qu

al
ity

be
tw

ee
n

be
nd

er
s

de
co

m
po

si
tio

ns
an

d
th

e
pr

op
os

ed
hy

pe
rh

eu
ri

st
ic

w
ith

an
d

w
ith

ou
tL

R

in
st

an
ce

B
en

de
rD

ec
om

po
si

tio
H

yp
eh

eu
ri

st
ic

w
ith

ou
tL

R
H

H
w

ith
L

R
G

ap
(%

be
tw

ee
n

H
H

s)
E

x.
Ti

m
e(

se
c.

)
O

bj
.V

al
.

C
pl

ex
St

at
us

O
bj

.V
al

.
H

H
E

x.
Ti

m
e(

se
c.

)
G

ap
(%

)w
ith

B
D

O
bj

.V
al

.
H

H
E

x.
Ti

m
e(

se
c.

)
G

ap
(%

)w
ith

B
D

n1
0_

q3
_0

.7
17

32
35

.9
9

O
pt

im
al

To
l

32
35

.9
9

4.
07

5
0.

00
32

35
.9

9
3.

11
0.

00
0.

00
n1

0_
q3

_0
.8

14
33

15
.8

1
O

pt
im

al
33

15
.8

1
6.

12
7

0.
00

33
15

.8
1

5.
01

0.
00

0.
00

n1
0_

q3
_0

.9
14

33
95

.6
3

O
pt

im
al

33
95

.6
3

6.
06

4
0.

00
33

95
.6

3
5.

01
0.

00
0.

00
n1

5_
q3

_0
.7

92
9

11
12

0.
2

O
pt

im
al

To
l

10
99

0.
48

29
6

5.
00

3
-1

.1
8

10
99

0.
48

4.
10

-1
.1

8
0.

00
n1

5_
q3

_0
.8

13
95

11
25

5.
74

O
pt

im
al

To
l

11
19

4.
96

6.
10

9
-0

.5
4

10
92

9.
41

6.
10

-2
.9

9
2.

37
n1

5_
q3

_0
.9

39
8

11
24

4.
2

O
pt

im
al

To
l

10
42

1.
16

6.
05

8
-7

.9
0

10
42

1.
16

5.
11

-7
.9

0
0.

00
n1

5_
q4

_0
.7

10
73

10
68

3.
44

O
pt

im
al

To
l

85
32

.4
4

6.
06

-2
5.

21
81

98
.3

1
6.

08
-3

0.
31

3.
92

n1
5_

q4
_0

.8
88

3
10

17
0.

06
O

pt
im

al
To

l
79

66
.5

2
5.

07
6

-2
7.

66
79

66
.5

2
4.

10
-2

7.
66

0.
00

n1
5_

q4
_0

.9
89

9
90

67
.2

5
O

pt
im

al
To

l
89

49
.2

9
6.

08
9

-1
.3

2
89

49
.2

9
6.

11
-1

.3
2

0.
00

n1
5_

q5
_0

.7
62

6
68

99
.2

7
O

pt
im

al
69

21
.7

5
6.

06
8

0.
32

69
05

.0
0

5.
10

0.
08

0.
24

n1
5_

q5
_0

.8
59

1
71

43
.3

1
O

pt
im

al
69

21
.7

5
5.

06
4

-3
.2

0
69

21
.7

5
4.

19
-3

.2
0

0.
00

n1
5_

q5
_0

.9
16

15
73

87
.3

5
O

pt
im

al
73

87
.3

5
5.

02
8

0.
00

73
87

.3
5

5.
00

0.
00

0.
00

n2
0_

q3
_0

.7
15

30
7

24
81

4.
09

O
pt

im
al

To
l

23
38

0.
95

6.
06

-6
.1

3
23

38
0.

95
5.

09
-6

.1
3

0.
00

n2
0_

q3
_0

.8
-

-
fa

ile
d

22
41

1.
66

22
5

6.
04

4
-

22
41

1.
66

22
5

5.
10

-
0.

00
n2

0_
q3

_0
.9

28
67

3
24

93
5.

81
O

pt
im

al
To

l
23

31
6.

54
77

7
6.

04
5

-6
.9

4
23

31
6.

54
77

7
5.

11
-6

.9
4

0.
00

n2
0_

q4
_0

.7
âĂ

Ť
âĂ

Ť
fa

ile
d

19
38

2.
47

47
9

8.
11

-
19

38
2.

47
47

9
7.

99
-

0.
00

n2
0_

q4
_0

.8
14

43
2

21
28

4.
45

O
pt

im
al

To
l

17
51

9.
51

32
5

7.
07

7
-2

1.
49

17
51

9.
51

32
5

7.
00

-2
1.

49
0.

00
n2

0_
q4

_0
.9

15
76

7
21

58
5.

4
O

pt
im

al
21

58
5.

4
8.

12
9

0.
00

21
58

5.
40

7.
01

0.
00

0.
00

n2
0_

q5
_0

.7
64

70
16

93
3.

63
O

pt
im

al
16

93
3.

63
9.

26
0.

00
16

93
3.

63
8.

21
0.

00
0.

00
n2

0_
q5

_0
.8

19
57

2
17

62
4.

7
O

pt
im

al
To

l
16

36
5.

60
10

.0
76

-7
.6

9
16

25
6.

34
8.

07
-8

.4
2

0.
67

n2
0_

q5
_0

.9
19

05
1

17
44

1.
26

O
pt

im
al

17
44

1.
26

10
.1

46
0.

00
17

44
1.

26
8.

24
0.

00
0.

00
n2

0_
q6

_0
.7

27
53

1
15

73
8.

56
O

pt
im

al
To

l
14

39
7.

56
12

.1
45

-9
.3

1
14

39
7.

56
11

.1
3

-9
.3

1
0.

00
n2

0_
q6

_0
.8

46
69

5
16

92
2.

59
A

bo
rt

U
se

r
14

49
5.

69
11

.2
33

-1
6.

74
14

44
0.

86
9.

06
-1

7.
19

0.
38

n2
0_

q6
_0

.9
98

99
1

17
27

4.
12

A
bo

rt
U

se
r

14
89

4.
40

12
.2

52
-1

5.
98

14
66

2.
78

11
.1

9
-1

7.
81

1.
56

122 Capacitated Single Allocation p-Hub Location Routing Problem

Table 3.7 reports the total number of iterations every heuristic has worked

on each instance. Rotate improvement heuristic has worked the most in all

instances. Next, it comes to the constructive heuristics CS1 and CS2 which have

more or less similar number of iterations for many instances. This may indicate

that the information collected in the course of Lagrangian optimization in LR3, the

statistics collected during HH process, and the construction by taking into account

demand (i.e. CS1) when choosing the hubs, have some similarities. Among the

perturbation heuristics SW2hf contributes in the most number of iterations.

3.4 Computational experiments 123

Table 3.7: Number of each heuristic in each instance was applied.

instance In
se

rt
/D

el
et

e

R
e-

A
llo

ca
te

R
e-

or
de

r

R
ot

at
e

SW
1f

fI
m

p

SW
2f

fI
m

p

SW
2h

f

SW
1f

f

SW
2f

f

C
S1

C
S2

SW
hh

SW
1h

f

n10_q3_0.7 3605 3568 3613 14331 3550 3641 3621 3570 3491 3542 3542 3553 3572
n10_q3_0.8 3864 3899 3900 15481 3861 3794 3898 3815 3846 3731 3769 3884 3843
n10_q3_0.9 3770 3895 3853 15165 3856 3786 3897 3796 3706 3821 3751 3868 3838
n15_q3_0.7 2513 2520 2458 9969 2470 2533 2533 2461 2427 2490 2464 2481 2500
n15_q3_0.8 2471 2534 2437 9938 2505 2551 2497 2458 2421 2443 2460 2501 2439
n15_q3_0.9 2466 2515 2482 9876 2394 2561 2483 2467 2436 2428 2437 2427 2461
n15_q4_0.7 2571 2519 2532 10129 2549 2621 2518 2469 2490 2494 2522 2550 2528
n15_q4_0.8 2381 2388 2348 9263 2348 2423 2412 2287 2252 2328 2334 2341 2296
n15_q4_0.9 2451 2509 2427 9824 2474 2529 2502 2391 2426 2483 2422 2454 2472
n15_q5_0.7 2561 2577 2562 10079 2511 2518 2554 2463 2474 2511 2561 2591 2491
n15_q5_0.8 2468 2418 2495 9898 2485 2576 2495 2401 2459 2467 2460 2494 2427
n15_q5_0.9 2483 2479 2469 9917 2514 2579 2478 2407 2449 2405 2442 2505 2443
n20_q3_0.7 1055 1072 1021 4148 1056 1058 1108 1013 1021 1046 1058 1036 1011
n20_q3_0.8 1195 1127 1105 4582 1160 1235 1181 1087 1115 1177 1179 1198 1093
n20_q3_0.9 1164 1124 1112 4602 1181 1194 1161 1126 1133 1118 1152 1158 1122
n20_q4_0.7 1642 1603 1601 6323 1612 1690 1682 1532 1569 1642 1625 1610 1605
n20_q4_0.8 1584 1601 1515 6242 1516 1578 1612 1530 1553 1602 1542 1531 1547
n20_q4_0.9 1672 1614 1581 6444 1500 1624 1693 1552 1578 1608 1587 1637 1554
n20_q5_0.7 1973 1956 1931 7716 1923 2041 1933 1884 1854 1939 1936 1978 1956
n20_q5_0.8 1974 1951 1926 7638 1902 2034 1962 1861 1831 1926 1934 1944 1968
n20_q5_0.9 1928 1973 1995 7687 1889 1951 1914 1928 1882 1892 1942 1942 1881
n20_q6_0.7 2211 2226 2233 8769 2193 2253 2214 2161 2115 2139 2181 2241 2123
n20_q6_0.8 2187 2156 2152 8650 2155 2241 2225 2154 2104 2162 2164 2189 2136
n20_q6_0.9 2156 2159 2172 8707 2148 2196 2172 2137 2147 2184 2123 2157 2067

We have applied the proposed HH framework on a wider ranger of problem

instance sizes. Table 3.9 reports the statistics of applying the proposed HH on a

tested composed of instances of up to 100 nodes.

In Table Table 3.8, initials objective functions of the HH with and without LR

results are reported. In general initial objective function using LR results is better

than without LR results. The average relative gap between the initial and the best

found objective function value for instances of table without using LR results is

21.45% (resp. 19.36% using LR results) while this becomes 26.66% for the in-

stances between greater than 20 nodes Table 3.9. This on one hand is due to a much

larger solution space in larger instances which in turn increases the probability of

finding better solutions during the search and on the other hand, may show that the

HH is capable of benefiting from such a much larger search space to better improve

the initial solutions. Another pessimistic view might question the performance of

124 Capacitated Single Allocation p-Hub Location Routing Problem

Table 3.8: Comparison of the quality between the initial objective function
taken by the proposed hyperheuristic with and without LR

instance HH Initial Obj. Val. LR Initial Obj. Val Gap
n10_q3_0.7 4113.93 4113.93 0.00
n10_q3_0.8 3732.68 3732.68 0.00
n10_q3_0.9 4281.89 4281.89 0.00
n15_q3_0.7 11967.42 11967.42 0.00
n15_q3_0.8 14148.48 12075.56 14.66
n15_q3_0.9 14267.24 14267.24 0.00
n15_q4_0.7 12287.22 11194.78 8.89
n15_q4_0.8 12460.91 11373.32 8.73
n15_q4_0.9 11551.86 11551.86 0.00
n15_q5_0.7 7942.10 7942.10 0.00
n15_q5_0.8 9341.05 8160.33 12.64
n15_q5_0.9 7583.26 7583.26 0.00
n20_q3_0.7 30247.17 30093.41 0.51
n20_q3_0.8 28804.76 28804.76 0.00
n20_q3_0.9 29559.33 29559.33 0.00
n20_q4_0.7 28564.87 26512.51 7.18
n20_q4_0.8 29230.58 23481.05 19.67
n20_q4_0.9 24569.19 24569.19 0.00
n20_q5_0.7 22584.80 22584.80 0.00
n20_q5_0.8 24364.62 24364.62 0.00
n20_q5_0.9 21354.40 21354.40 0.00
n20_q6_0.7 15949.97 15949.97 0.00
n20_q6_0.8 17950.91 17950.91 0.00
n20_q6_0.9 18522.41 18522.41 0.00

construction heuristics and quality of initial solution constructed by them.

In order to ensure the quality of the solution, we reserve only information about

the allocation resulted from LR HH and ignore all spokes routes information. The

problem has some similarities with the picked-up delivery vehicle routing problem

with multiple depots. Each hub is considered as depot, and the objective is to

construct a feeder network for each hub from its allocated spokes. We inject all

allocation information into solver, which find feeders network. All constraints

related to the number of hubs and allocations was ignored. This process, which

use some data resulted from a heuristic approach and complete the solution using a

solver is referred to as Matheuristic chapter 1.

Results of matheuristic are reported in Table 3.10, within the gap with the

LR HH objective function, and the execution time. All instances for which we

3.4 Computational experiments 125

Table 3.9: HH results for large instances of pHub location problem.

instance HH Initial Obj. Val. HH Obj. Val. HH Execution Time (sec.)
n30_p3_0.7 105144.53 75757.20 21.08
n30_p3_0.8 114888.19 76278.81 21.05
n30_p3_0.9 104911.22 72447.12 21.02
n30_p5_0.7 69112.47 53366.71 35.09
n30_p5_0.8 78602.46 54171.46 35.03
n30_p5_0.9 73163.24 54901.29 35.03
n40_p3_0.7 202842.00 164427.72 31.63
n40_p3_0.8 212202.17 170884.40 31.54
n40_p3_0.9 206603.16 178590.38 31.53
n40_p5_0.8 184960.11 132972.45 52.58
n40_p5_0.9 189692.00 117903.04 52.54
n40_p6_0.7 140120.51 106682.03 63.13
n50_p3_0.7 370022.47 283335.66 36.09
n50_p3_0.8 357808.84 290623.44 36.12
n50_p3_0.9 374514.09 225264.35 36.19
n50_p5_0.7 291375.19 208124.35 60.10
n50_p5_0.8 287717.05 208912.96 60.50
n50_p5_0.9 288860.51 232705.22 60.09
n70_p3_0.7 808406.46 638821.53 51.28
n70_p3_0.8 805167.64 617315.20 51.07
n70_p3_0.9 880752.26 617315.20 51.14
n70_p5_0.7 789712.18 484787.83 85.14
n70_p5_0.8 693946.36 542097.71 85.14
n70_p5_0.9 717687.40 551465.33 85.16
n80_p3_0.7 1129687.50 905846.24 61.64
n80_p3_0.8 1128080.39 919430.31 61.74
n80_p3_0.9 1172538.60 853701.87 61.73
n80_p5_0.7 902766.77 676355.62 102.69
n80_p5_0.8 908105.30 713127.24 102.84
n80_p5_0.9 949987.94 723792.60 102.77
n90_p3_0.7 1430318.33 1265909.60 66.10
n90_p3_0.8 1594559.93 1186128.92 66.29
n90_p3_0.9 1407958.75 1166788.83 66.38
n90_p5_0.7 1085625.40 959702.73 110.30
n90_p5_0.8 1288459.47 971146.25 110.34
n90_p5_0.9 1126831.55 988784.52 110.15
n100_p3_0.7 1679715.79 1484907.58 76.69
n100_p3_0.8 1692753.82 1491646.31 76.96
n100_p3_0.9 2061323.94 1512299.50 76.88
n100_p5_0.7 1839058.26 1251859.24 127.96
n100_p5_0.8 1499370.20 1291282.92 127.77
n100_p5_0.9 1450410.23 1275010.77 127.75

n100_p10_0.7 1095903.40 980333.22 255.55
n100_p10_0.8 1185961.32 967479.92 255.37
n100_p10_0.9 1143466.25 952694.14 255.30

do not have BD optimal solution or that have negative gap between HH and BD

objective function were tested, in addition to some medium size instances. The

gap reaches 2.66% in instance n20_p5_0.8, in addition it finds optimal solution for

given allocations to some instances such as n15_p3_0.7, n15_q3_0.8, n15_q3_0.9,

etc. The added value of matheuristic, which appears in instances less than 20

nodes, does not appear much pertinent in the medium instances within time limit

of 1 hour. Table 3.10 report these results and showing the quality gained, while the

126 Capacitated Single Allocation p-Hub Location Routing Problem

negative gaps proves the deteriorated quality by matheuristic.

Table 3.10: A comparison between results of Matheuristic with that of LR HH.

instance
Matheuristic

LR HH Obj. val. GAP(%) LR HH and Math.Status Time OF
n10_q3_0.7 Optimal 0.30 3235.991 3235.99 0.00
n15_q3_0.7 Optimal 13.82 10990.48 10990.48 0.00
n15_q3_0.8 Optimal 40.30 10902.53 10929.41 0.25
n15_q3_0.9 Optimal 16.97 10276.65 10421.16 1.39
n15_q4_0.7 Optimal 1.76 8198.31 8198.31 0.00
n15_q4_0.8 Optimal 11.56 7966.52 7966.52 0.00
n15_q4_0.9 Optimal 2.00 8945.09 8949.29 0.05
n20_q3_0.7 Feasible 3605.57 23213.17 23380.95 0.72
n20_q3_0.8 Feasible 3605.70 22411.66 22411.66 0.00
n20_q3_0.9 Feasible 3605.73 23316.55 23316.55 0.00
n20_q4_0.7 Optimal 3675.79 19382.47 19382.47 0.00
n20_q4_0.8 Optimal 484.40 17519.51 17519.51 0.00
n20_q5_0.8 Optimal 7304.80 15824.26 16256.34 2.66
n20_q6_0.7 Optimal 12.45 14397.56 14397.56 0.00
n20_q6_0.8 Optimal 26.89 14321.04 14440.86 0.83
n20_q6_0.9 Optimal 33.88 14662.78 14662.78 0.00
n30_p3_0.7 Feasible 3672.64 80871.04 75757.20 -6.75
n30_p3_0.8 Feasible 4118.88 81845.67 76278.82 -7.30
n30_p3_0.9 Feasible 7756.06 78998.28 73284.34 -7.80
n40_p3_0.7 Feasible 3770.47 292132.10 164427.72 -77.67
n40_p3_0.8 Feasible 3787.60 352933.80 170884.40 -106.53
n40_p3_0.9 Feasible 3796.32 316753.50 178590.38 -77.36

In Table 3.11, we report results of applying iterative method for solving the

five variants of Lagrangian relaxation methods proposed in subsection 3.3.1. The

different relaxations were solved by using bundle. The bundle method is known

for its higher precision and faster convergence compared to the simpler versions

of subgradient method. We have initialized the Lagrangean multipliers with the

corresponding dual values of the LP relaxation, wherever possible.

In Table 3.11, for every relaxation we have reported the CPU time as well as

the best bound obtained for the given amount of CPU time. For some relaxations

(for example LR2) the computational time for the very small instances was several

order of magnitude higher than other relaxations and the bound quality was not

really dominating. Therefore, we have not gone further with the larger instances as

the run times were increasing exponentially. From among all five relaxations, only

3.4 Computational experiments 127

LR3 was able to converge for the problem until size of 20 nodes in reasonable times.

Furthermore, LR3 offers bests bounds among other relaxations. LR1 was able to

solve problem up to 15 nodes and 4 hubs but for 15 nodes and 5 hubs, it could just

terminated in reasonable time for α = 0.9 from among other values. As mentioned

earlier, LR2 is the most expensive relaxation in terms of computational time as

it was able to solve instances of 10 nodes with 3 hubs in reasonable time. LR4

and LR5 appear effective in terms of computational time only until instances with

15 nodes and 5 hubs. When doing iterations of bundle algorithm, the subproblem

was solved using CPLEX 12.6.2, the time limit was set to 3600 seconds and the

number of iterations was set to 100.

128 Capacitated Single Allocation p-Hub Location Routing Problem

Ta
bl

e
3.

11
:L

ag
ra

ng
ia

n
re

la
xa

tio
n

re
su

lts
.

in
st

an
ce

L
R

1
L

R
2

L
R

3
L

R
4

L
R

5
nb

It
er

at
io

ns
Ti

m
e

(s
ec

.)
B

es
tL

B
Ti

m
e

(s
ec

.)
B

es
tL

B
Ti

m
e

(s
ec

.)
B

es
tL

B
Ti

m
e

(s
ec

.)
B

es
tL

B
Ti

m
e

(s
ec

.)
B

es
tL

B
n1

0
p3

0.
9

23
1.

69
20

68
.6

1
19

87
.5

2
23

25
.9

7
22

8.
17

7
23

84
.1

6
23

.3
17

21
23

.1
1

25
.4

19
20

49
.6

1
10

0
n1

0
p3

0.
8

19
5.

81
20

20
.8

6
18

06
.2

5
22

28
.7

1
23

1.
55

23
19

.9
8

22
.1

53
20

88
.4

5
24

.6
62

20
66

.5
7

10
0

n1
0

p3
0.

7
18

2.
26

19
56

.8
4

15
37

.4
2

21
33

.3
6

21
9.

11
6

22
39

.2
9

21
.0

91
20

31
.9

2
23

.9
65

20
32

.4
5

10
0

n1
5

p3
0.

9
99

3.
1

52
53

.6
7

—
—

16
65

.9
57

85
.2

8
11

8.
17

9
53

52
.1

4
11

3.
77

1
53

12
.4

5
10

0
n1

5
p3

0.
8

94
7.

26
50

89
.8

—
—

17
04

.8
9

57
32

.7
6

10
7.

33
6

52
75

.1
9

11
4.

31
1

53
80

.5
7

10
0

n1
5

p3
0.

7
10

09
.9

49
69

.5
—

—
17

44
.7

55
80

.0
6

10
5.

07
8

51
52

.9
9

11
3.

22
4

52
93

.1
6

10
0

n1
5

p4
0.

9
24

67
.3

49
75

.1
8

—
—

19
01

.3
9

55
93

.8
7

10
3.

94
2

49
83

.2
4

11
4.

76
1

50
38

.7
7

10
0

n1
5

p4
0.

8
20

27
.5

48
42

.1
—

—
20

20
.9

54
18

.1
3

11
2.

09
4

50
26

.4
8

11
4.

53
50

71
.0

4
10

0
n1

5
p4

0.
7

24
31

.2
46

88
.6

2
—

—
19

37
.7

8
52

53
.8

8
10

8.
54

5
49

16
.2

9
11

6.
67

1
49

57
.9

2
10

0
n1

5
p5

0.
9

51
42

4
47

70
.4

7
—

—
21

64
.6

9
53

32
.5

9
10

4.
98

4
48

81
.3

3
11

5.
73

9
47

87
.3

2
10

0
n1

5
p5

0.
8

—
—

—
—

22
46

.7
2

51
34

.7
2

10
4.

87
4

48
54

.5
8

11
2.

55
9

47
38

.1
8

10
0

n1
5

p5
0.

7
—

—
—

—
21

85
.9

49
92

.3
7

10
5.

49
5

46
87

.7
8

11
3.

27
4

46
48

.1
2

10
0

n2
0

p3
0.

9
—

—
—

—
10

81
8

10
23

9.
6

—
—

—
—

10
0

n2
0

p3
0.

8
—

—
—

—
10

69
3

10
06

6.
4

—
—

—
—

10
0

n2
0

p3
0.

7
—

—
—

—
10

24
0

10
01

4.
9

—
—

—
—

10
0

n2
0

p4
0.

9
—

—
—

—
12

87
9

99
33

.4
2

—
—

—
—

10
0

n2
0

p4
0.

8
—

—
—

—
13

40
7

96
36

.5
7

—
—

—
—

10
0

n2
0

p4
0.

7
—

—
—

—
12

40
8

94
26

.4
—

—
—

—
10

0
n2

0
p5

0.
9

—
—

—
—

22
19

4
95

86
.6

6
—

—
—

—
10

0
n2

0
p5

0.
8

—
—

—
—

19
66

0
93

89
.5

3
—

—
—

—
10

0
n2

0
p5

0.
7

—
—

—
—

15
49

5
91

88
.1

3
—

—
—

—
10

0
n2

0
p6

0.
9

—
—

—
—

33
29

0
93

66
.4

5
—

—
—

—
10

0
n2

0
p6

0.
8

—
—

—
—

23
06

2
89

91
.4

1
—

—
—

—
10

0
n2

0
p6

0.
7

—
—

—
—

17
11

2
86

52
.7

9
—

—
—

—
10

0

3.5 Conclusion and future work 129

3.4.2 CSApHLRP-2 Computational experiments

Instances was named in a format Cabi_j_αβ where i indicates the number of

nodes, j indicates the number of hubs, α indicates the factor of economies of scale

and β the factor of changing the relative weight of the cycle.

In Table 3.12, Table 3.13, Table 3.14 and Table 3.15, we report the results

of branch and cut in (Rodríguez-Martín et al., 2014), next the HH results. The

gap between CPLEX and HH never exceeds 1%. Furthermore, the average of the

gap between initial objective and the best found is 21.01%, which inherits some

similarity to CSApHLRP-1. Execution time for AP instances with 40 and 50 nodes,

was show in Figure 3.8. It is clear that HH process for for these instances doesn’t

exceed 4.5 sec.

Figure 3.5 - Figure 3.7 sketch the optimal solution for a CAB instance, as

proven in Rodríguez-Martín et al. (2014) and offered by the proposed HH, having

25 nodes, q = 13, α=0.8, β=0.01 or 0.05 or 0.2. Due to the influence of the

objective function, while β increase while cycles try be more large.

3.5 Conclusion and future work

We proposed a hyperheuristic approach for solving two variants of Hub Location

Routing Problems, CSApHLRP-1 and CSApHLRP-2. Given a set of nodes and a

set of O-D demands, the problem seeks designating p hubs, allocating each non-hub

(spoke) node to one hub while each hub lies on a Hamiltonian path comprised of

130 Capacitated Single Allocation p-Hub Location Routing Problem

Figure 3.5: Optimal solution for CAB25 with p=5, q=13, α=0.8, β=0.01.

Figure 3.6: Optimal solution for CAB25 with p=5, q=13, α=0.8, β=0.05.

Figure 3.7: Optimal solution for CAB25 with p=5, q=13, α=0.8, β=0.2.

3.5 Conclusion and future work 131

Instances

A
P
5
0
_
5
_
0
.
7
5
_
5
0
0

A
P
5
0
_
5
_
0
.
7
5
_
1
0
0
0

A
P
5
0
_
5
_
0
.
7
5
_
1
0
0

A
P
5
0
_
5
_
0
.
7
5
_
1

A
P
5
0
_
4
_
0
.
7
5
_
5
0
0

A
P
5
0
_
4
_
0
.
7
5
_
1
0
0
0

A
P
5
0
_
4
_
0
.
7
5
_
1
0
0

A
P
5
0
_
4
_
0
.
7
5
_
1

A
P
5
0
_
3
_
0
.
7
5
_
5
0
0

A
P
5
0
_
3
_
0
.
7
5
_
1
0
0
0

A
P
5
0
_
3
_
0
.
7
5
_
1
0
0

A
P
5
0
_
3
_
0
.
7
5
_
1

A
P
4
0
_
5
_
0
.
7
5
_
5
0
0

A
P
4
0
_
5
_
0
.
7
5
_
1
0
0
0

A
P
4
0
_
5
_
0
.
7
5
_
1
0
0

A
P
4
0
_
5
_
0
.
7
5
_
1

A
P
4
0
_
4
_
0
.
7
5
_
5
0
0

A
P
4
0
_
4
_
0
.
7
5
_
1
0
0
0

A
P
4
0
_
4
_
0
.
7
5
_
1
0
0

A
P
4
0
_
4
_
0
.
7
5
_
1

A
P
4
0
_
3
_
0
.
7
5
_
5
0
0

A
P
4
0
_
3
_
0
.
7
5
_
1
0
0
0

A
P
4
0
_
3
_
0
.
7
5
_
1
0
0

A
P
4
0
_
3
_
0
.
7
5
_
1

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

 (
s

e
c

.)

5

4

3

2

1

0

Figure 3.8: HH execution time in CSApHLRP-2.

the hub and its spokes. The allocation of nodes and the construction of Hamiltonian

paths is done in such a way that the transported volume on the route respects a

given capacity in CSApHLRP-1, and not exceed a certain number of spokes in

CSApHLRP-2 and the hub-level network is a connected one. While exact methods

have shown a very limited success, for CSApHLRP-1, when dealing with instances

of problem and the instances of moderate size remain still very intractable, one

has to resort to non-exact (heuristic-based) methods for obtaining solutions to the

moderate-to-large size instances. We applied five Lagrangian Relaxation on the

model of CSApHLRP-1, and we use the results of the best one in the process of

HH. LR HH has proven in the numerical results as better than HH without LR

results, even its initial fitness. We proposed hyperheuristic method for the two

problem, in order to solve large instances. The proposed hyperheuristic consists

132 Capacitated Single Allocation p-Hub Location Routing Problem

of several low level heuristics guided by means of a learning method, which is

inspired from a topic in business data mining world known as Association Rules

for CSApHLRP-1, and Q-Learning method for CSApHLRP-2.

Our numerical results, for the two problems, show that in the case of instances

for which an optimal solution or a solution with known quality is known, the

proposed method is capable of providing high quality solutions. In all cases, such

solutions are obtained in a very reasonable CPU times. Therefore, it is expected

that for larger size instances for which finding an optimal solution needs an effort

beyond the capacity of current hardware resources, the proposed framework that is

equipped with advances learning mechanisms performs sufficiently well.

In our future work we will add further aspects of real-life application to the model

and consider solving problem taking into account heterogeneous fleet of vessels

with different route capacities, inter-route transshipment etc.

3.5 Conclusion and future work 133

Table 3.12: Comparison of the quality between results of HH and B&C Obj.
Value Rodríguez-Martín et al. (2014), cab instance with 25 nodes

Instance q B&C Obj. Value Rodríguez-Martín et al. (2014) HH. Obj. Value Gap (%)
Cab25_3_0.2_0.01 |V| 858.76 858.76 0.00
Cab25_3_0.2_0.05 |V| 1193.41 1193.41 0.00
Cab25_3_0.2_0.2 |V| 2448.35 2448.35 0.00
Cab25_3_0.4_0.01 |V| 998.04 998.04 0.00
Cab25_3_0.4_0.05 |V| 1332.69 1332.69 0.00
Cab25_3_0.4_0.2 |V| 2587.63 2587.63 0.00
Cab25_3_0.8_0.01 |V| 1254.02 1254.02 0.00
Cab25_3_0.8_0.05 |V| 1605.91 1605.91 0.00
Cab25_3_0.8_0.2 |V| 2827.03 2827.03 0.00
Cab25_4_0.2_0.01 |V| 720.84 720.84 0.00
Cab25_4_0.2_0.05 |V| 1041.09 1041.09 0.00
Cab25_4_0.2_0.2 |V| 2227.04 2227.04 0.00
Cab25_4_0.4_0.01 |V| 876.30 876.30 0.00
Cab25_4_0.4_0.05 |V| 1206.25 1206.25 0.00
Cab25_4_0.4_0.2 |V| 2392.19 2392.19 0.00
Cab25_4_0.8_0.01 |V| 1176.44 1176.44 0.00
Cab25_4_0.8_0.05 |V| 1528.42 1528.42 0.00
Cab25_4_0.8_0.2 |V| 2615.26 2615.26 0.00
Cab25_5_0.2_0.01 |V| 626.71 626.71 0.00
Cab25_5_0.2_0.05 |V| 947.54 947.54 0.00
Cab25_5_0.2_0.2 |V| 2027.18 2027.18 0.00
Cab25_5_0.4_0.01 |V| 795.61 795.61 0.00
Cab25_5_0.4_0.05 |V| 1120.99 1130.89 0.88
Cab25_5_0.4_0.2 |V| 2179.65 2179.65 0.00
Cab25_5_0.8_0.01 |V| 1126.18 1126.18 0.00
Cab25_5_0.8_0.05 |V| 1446.56 1446.56 0.00
Cab25_5_0.8_0.2 |V| 2457.77 2457.77 0.00
Cab25_3_0.2_0.01 |V|/2 865.42 865.42 0.00
Cab25_3_0.2_0.05 |V|/2 1213.10 1223.16 0.82
Cab25_3_0.2_0.2 |V|/2 2495.76 2495.76 0.00
Cab25_3_0.4_0.01 |V|/2 999.62 999.62 0.00
Cab25_3_0.4_0.05 |V|/2 1359.94 1359.94 0.00
Cab25_3_0.4_0.2 |V|/2 2648.59 2648.59 0.00
Cab25_3_0.8_0.01 |V|/2 1254.02 1254.02 0.00
Cab25_3_0.8_0.05 |V|/2 1623.26 1623.26 0.00
Cab25_3_0.8_0.2 |V|/2 2917.72 2917.72 0.00
Cab25_4_0.2_0.01 |V|/2 720.84 727.50 0.92
Cab25_4_0.2_0.05 |V|/2 1041.09 1041.09 0.00
Cab25_4_0.2_0.2 |V|/2 2227.04 2227.04 0.00
Cab25_4_0.4_0.01 |V|/2 876.30 876.30 0.00
Cab25_4_0.4_0.05 |V|/2 1206.25 1206.25 0.00
Cab25_4_0.4_0.2 |V|/2 2392.19 2392.19 0.00
Cab25_4_0.8_0.01 |V|/2 1176.44 1176.44 0.00
Cab25_4_0.8_0.05 |V|/2 1528.42 1528.42 0.00
Cab25_4_0.8_0.2 |V|/2 2716.52 2716.52 0.00
Cab25_5_0.2_0.01 |V|/2 626.71 626.71 0.00
Cab25_5_0.2_0.05 |V|/2 947.54 947.54 0.00
Cab25_5_0.2_0.2 |V|/2 2040.02 2040.02 0.00
Cab25_5_0.4_0.01 |V|/2 795.61 795.61 0.00
Cab25_5_0.4_0.05 |V|/2 1120.99 1120.99 0.00
Cab25_5_0.4_0.2 |V|/2 2208.83 2208.83 0.00
Cab25_5_0.8_0.01 |V|/2 1126.18 1126.18 0.00
Cab25_5_0.8_0.05 |V|/2 1446.56 1446.56 0.00
Cab25_5_0.8_0.2 |V|/2 2514.93 2514.93 0.00
Cab25_3_0.2_0.01 |V|/p 943.25 943.25 0.00
Cab25_3_0.2_0.05 |V|/p 1348.93 1348.93 0.00
Cab25_3_0.2_0.2 |V|/p 2789.59 2789.59 0.00
Cab25_3_0.4_0.01 |V|/p 1089.05 1089.05 0.00
Cab25_3_0.4_0.05 |V|/p 1494.95 1496.75 0.12
Cab25_3_0.4_0.2 |V|/p 2926.27 2926.27 0.00
Cab25_3_0.8_0.01 |V|/p 1302.98 1302.98 0.00
Cab25_3_0.8_0.05 |V|/p 1708.64 1708.64 0.00
Cab25_3_0.8_0.2 |V|/p 3099.42 3099.42 0.00
Cab25_4_0.2_0.01 |V|/p 721.98 721.98 0.00
Cab25_4_0.2_0.05 |V|/p 1063.03 1063.03 0.00
Cab25_4_0.2_0.2 |V|/p 2341.94 2341.94 0.00
Cab25_4_0.4_0.01 |V|/p 881.26 881.26 0.00
Cab25_4_0.4_0.05 |V|/p 1222.30 1222.30 0.00
Cab25_4_0.4_0.2 |V|/p 2501.22 2501.22 0.00
Cab25_4_0.8_0.01 |V|/p 1178.69 1178.69 0.00
Cab25_4_0.8_0.05 |V|/p 1531.41 1531.41 0.00
Cab25_4_0.8_0.2 |V|/p 2810.33 2822.19 0.42
Cab25_5_0.2_0.01 |V|/p 686.85 686.85 0.00
Cab25_5_0.2_0.05 |V|/p 1050.38 1050.38 0.00
Cab25_5_0.2_0.2 |V|/p 2393.88 2393.88 0.00
Cab25_5_0.4_0.01 |V|/p 857.24 857.24 0.00
Cab25_5_0.4_0.05 |V|/p 1221.48 1221.48 0.00
Cab25_5_0.4_0.2 |V|/p 2564.98 2564.98 0.00
Cab25_5_0.8_0.01 |V|/p 1165.79 1165.79 0.00
Cab25_5_0.8_0.05 |V|/p 1532.11 1532.11 0.00
Cab25_5_0.8_0.2 |V|/p 2875.61 2885.14 0.33

134 Capacitated Single Allocation p-Hub Location Routing Problem

Table 3.13: Comparison of the quality between results of HH and B&C Obj.
Value Rodríguez-Martín et al. (2014), AP instance for 25 nodes

Instance q B&C Obj. Value Rodríguez-Martín et al. (2014) HH. Obj. Value Gap (%)
AP25_3_0.75_1 |V| 155482.14 155539.68 0.04

AP25_3_0.75_100 |V| 177838.26 177838.26 0.00
AP25_3_0.75_500 |V| 262544.57 262544.57 0.00

AP25_3_0.75_1000 |V| 366638.05 366638.05 0.00
AP25_4_0.75_1 |V| 139430.10 139773.20 0.25

AP25_4_0.75_100 |V| 161485.26 161485.26 0.00
AP25_4_0.75_500 |V| 243004.56 243004.56 0.00

AP25_4_0.75_1000 |V| 344903.68 344903.68 0.00
AP25_5_0.75_1 |V| 123802.90 123802.90 0.00

AP25_5_0.75_100 |V| 145099.06 145099.06 0.00
AP25_5_0.75_500 |V| 227204.68 227204.68 0.00

AP25_5_0.75_1000 |V| 327043.26 327043.26 0.00
AP25_3_0.75_1 |V|/2 155482.14 155482.14 0.00

AP25_3_0.75_100 |V|/2 177838.26 177838.26 0.00
AP25_3_0.75_500 |V|/2 262544.57 262591.10 0.02

AP25_3_0.75_1000 |V|/2 366638.05 366638.05 0.00
AP25_4_0.75_1 |V|/2 139430.10 139430.10 0.00

AP25_4_0.75_100 |V|/2 161485.26 161485.26 0.00
AP25_4_0.75_500 |V|/2 243004.56 243004.56 0.00

AP25_4_0.75_1000 |V|/2 344903.68 344903.68 0.00
AP25_5_0.75_1 |V|/2 123802.90 123802.90 0.00

AP25_5_0.75_100 |V|/2 145099.06 145099.06 0.00
AP25_5_0.75_500 |V|/2 227204.68 227204.68 0.00

AP25_5_0.75_1000 |V|/2 327043.26 327567.38 0.16
AP25_3_0.75_1 |V|/p 156287.34 156287.34 0.00

AP25_3_0.75_100 |V|/p 178328.06 178328.06 0.00
AP25_3_0.75_500 |V|/p 267381.48 267381.48 0.00

AP25_3_0.75_1000 |V|/p 376932.18 376998.36 0.02
AP25_4_0.75_1 |V|/p 139876.23 139876.23 0.00

AP25_4_0.75_100 |V|/p 161720.99 161720.99 0.00
AP25_4_0.75_500 |V|/p 249982.62 249995.77 0.01

AP25_4_0.75_1000 |V|/p 359669.90 359899.70 0.06
AP25_5_0.75_1 |V|/p 130727.14 130986.57 0.20

AP25_5_0.75_100 |V|/p 154151.28 154222.44 0.05
AP25_5_0.75_500 |V|/p 245105.99 247225.09 0.86

AP25_5_0.75_1000 |V|/p 357731.82 359951.33 0.62

3.5 Conclusion and future work 135

Table 3.14: Comparison of the quality between results of HH and B&C Obj.
Value Rodríguez-Martín et al. (2014), AP instance for 40 nodes

Instance q B&C Obj. Value Rodríguez-Martín et al. (2014) HH. Obj. Value Gap (%)
AP40_3_0.75_1 |V| 159131.34 159307.66 0.11

AP40_3_0.75_100 |V| 188910.27 190118.62 0.64
AP40_3_0.75_500 |V| 306243.01 309118.03 0.93
AP40_3_0.75_1000 |V| 445218.18 449552.36 0.96

AP40_4_0.75_1 |V| 144269.55 145531.86 0.87
AP40_4_0.75_100 |V| 174036.22 174210.98 0.10
AP40_4_0.75_500 |V| 291653.08 294126.26 0.84
AP40_4_0.75_1000 |V| 430540.90 432062.32 0.35

AP40_5_0.75_1 |V| 134569.34 135248.65 0.50
AP40_5_0.75_100 |V| 164038.24 165552.92 0.91
AP40_5_0.75_500 |V| 277247.49 277838.75 0.21
AP40_5_0.75_1000 |V| 411710.46 413003.15 0.31

AP40_3_0.75_1 |V|/2 159131.34 160361.65 0.77
AP40_3_0.75_100 |V|/2 188910.27 190482.33 0.83
AP40_3_0.75_500 |V|/2 306243.01 307611.19 0.44
AP40_3_0.75_1000 |V|/2 445218.18 448957.91 0.83

AP40_4_0.75_1 |V|/2 144269.55 144898.52 0.43
AP40_4_0.75_100 |V|/2 174036.22 175315.75 0.73
AP40_4_0.75_500 |V|/2 291653.08 294172.56 0.86
AP40_4_0.75_1000 |V|/2 430540.90 434211.48 0.85

AP40_5_0.75_1 |V|/2 134569.34 134937.21 0.27
AP40_5_0.75_100 |V|/2 164038.24 165195.15 0.70
AP40_5_0.75_500 |V|/2 277247.49 278422.13 0.42
AP40_5_0.75_1000 |V|/2 411710.46 413651.82 0.47

AP40_3_0.75_1 |V|/p 161989.74 163463.58 0.90
AP40_3_0.75_100 |V|/p 191404.41 191537.87 0.07
AP40_3_0.75_500 |V|/p 309484.80 312184.78 0.86
AP40_3_0.75_1000 |V|/p 454614.67 455895.18 0.28

AP40_4_0.75_1 |V|/p 145732.10 145926.45 0.13
AP40_4_0.75_100 |V|/p 176241.71 177536.93 0.73
AP40_4_0.75_500 |V|/p 295787.67 296627.18 0.28
AP40_4_0.75_1000 |V|/p 443393.74 444343.50 0.21

AP40_5_0.75_1 |V|/p 139032.42 140286.01 0.89
AP40_5_0.75_100 |V|/p 168736.29 169422.29 0.40
AP40_5_0.75_500 |V|/p 286728.55 289342.59 0.90
AP40_5_0.75_1000 |V|/p 453254.27 455785.30 0.56

136 Capacitated Single Allocation p-Hub Location Routing Problem

Table 3.15: Comparison of the quality between results of HH and B&C Obj.
Value Rodríguez-Martín et al. (2014), AP instance for 50 nodes

Instance q B&C Obj. Value Rodríguez-Martín et al. (2014) HH. Obj. Value Gap (%)
AP50_3_0.75_1 |V| 158880.67 159311.06 0.27

AP50_3_0.75_100 |V| 189643.25 190608.90 0.51
AP50_3_0.75_500 |V| 313509.45 314390.99 0.28

AP50_3_0.75_1000 |V| 461294.25 464755.89 0.74
AP50_4_0.75_1 |V| 143692.01 143819.90 0.09

AP50_4_0.75_100 |V| 174356.01 174676.08 0.18
AP50_4_0.75_500 |V| 297364.38 297604.55 0.08

AP50_4_0.75_1000 |V| 444031.52 445899.83 0.42
AP50_5_0.75_1 |V| 132689.72 133359.01 0.50

AP50_5_0.75_100 |V| 163460.64 163743.78 0.17
AP50_5_0.75_500 |V| 281644.93 283820.89 0.77

AP50_5_0.75_1000 |V| 426543.08 430379.06 0.89
AP50_3_0.75_1 |V|/2 158880.67 160187.65 0.82

AP50_3_0.75_100 |V|/2 189643.25 190272.34 0.33
AP50_3_0.75_500 |V|/2 313509.45 315496.93 0.63

AP50_3_0.75_1000 |V|/2 468204.82 471234.36 0.64
AP50_4_0.75_1 |V|/2 143692.01 145047.48 0.93

AP50_4_0.75_100 |V|/2 174356.01 175116.27 0.43
AP50_4_0.75_500 |V|/2 297364.38 300110.39 0.92

AP50_4_0.75_1000 |V|/2 444031.52 446973.31 0.66
AP50_5_0.75_1 |V|/2 132688.63 133157.79 0.35

AP50_5_0.75_100 |V|/2 163460.64 164354.90 0.54
AP50_5_0.75_500 |V|/2 281644.93 282177.99 0.19

AP50_5_0.75_1000 |V|/2 426543.08 430587.17 0.94
AP50_3_0.75_1 |V|/p 162358.48 163567.25 0.74

AP50_3_0.75_100 |V|/p 193611.51 194612.66 0.51
AP50_3_0.75_500 |V|/p 318506.03 321222.49 0.85

AP50_3_0.75_1000 |V|/p 487540.97 490968.03 0.70
AP50_4_0.75_1 |V|/p 144210.66 145604.69 0.96

AP50_4_0.75_100 |V|/p 175349.65 177053.61 0.96
AP50_4_0.75_500 |V|/p 300103.26 302645.79 0.84

AP50_4_0.75_1000 |V|/p 462471.69 463936.61 0.32
AP50_5_0.75_1 |V|/p 140093.97 140132.69 0.03

AP50_5_0.75_100 |V|/p 173088.85 173680.76 0.34
AP50_5_0.75_500 |V|/p 311508.49 311727.23 0.07

AP50_5_0.75_1000 |V|/p 524502.41 528222.94 0.70

Chapter 4

Selection Methods

4.1 Introduction

In the context of combinatorial problem, hyperheuristic is defined as heuristics to

select heuristics Cowling et al. (2001). While the objective of a heuristic is to offer

a feasible (near-optimal) solution, selective heuristic aims at identifying a series

of heuristics to be applied. The selection process can be totally random or based

on some historical performances. Statistical performances should be related to the

solution quality offered by each heuristic and the computational time taken by each

low-level-heuristic. When these accumulated statistical performance intervene in

the selection process, we talk about learning mechanism. Learning is defined as the

act of acquiring new, or modifying and reinforcing existing knowledge and inform-

ation. According to the Oxford dictionaries, it is the acquisition of knowledge or

skills through study, experience, or being taught. Hence, The science of enabling

138 Selection Methods

computer to learn is known as machine learning (ML), that is considered as the

capacity of a computer to learn from historical experiences.

In the context of hyperheuristic, machine learning contributes in selecting an in-

cumbent heuristic to be applied based on historical performances. ML appears in

different aspects such as reinforcement learning, choice function, metaheuristic

etc, which will be elaborated in the second section. The problem of selection

heuristics during hyperheuristic process is closely related to other problems such

as Algorithm Selection Problem Rice (1976), MetaLearning Smith-Miles (2008)

and etc. Algorithm Selection Problem deals with the selecting the best algorithm

among a pool to solve a given problem. According to Rice (1976), The broad

methodology which binds problems and solution methods with performance and

problem characteristics is the algorithm selection framework. Three important

dimensions should be taken into consideration when addressing algorithm selection

problems: (i) the problem space; (ii) the algorithm space, and (iii) the performance

measure. It is an abstract model as shown in Figure 4.1, which limits its wide

application and it did not provide a specific implementation methods. However,

metalearning has been successfully applied in different problem domains Smith-

Miles (2008). Metalearning is a subfield of Machine learning Hilario et al. (2009),

which exploits metadata (metafeatures) resulted from previous experiments by

constructing models that can be used for prediction. In that situation in which

no additional knowledge of available algorithms or problem structure exist, the

automation of the whole process will then be called the hyperheuristic.

4.2 The Proposed Selection Methods 139

Figure 4.1: Algorithm selection model taken by Rice (1976).

4.2 The Proposed Selection Methods

Several selection methods have been proposed in the literature. Chakhlevitch and

Cowling (2008a) categorizes such methods as in the sequel: i) random selection,

ii) greedy selection, iii) peckish selection iv) metaheuristic-based hyperheuristic,

and v) hyperheuristic with learning.

In this chapter, we will present and propose several heuristic selection methods,

which are categorized in two main class: i) random selection (i.e. pure random

selection, random descent, and etc.) (see in (Özcan and Kheiri, 2012), (Kendall

and Mohamad, 2004)), and ii) intelligent method, which it is based on some ac-

cumulated historical performances (i.e. choice function (see in (Kendall et al.,

2002a), (Drake et al., 2015)), metaheuristic (see in (Kendall and Mohamad, 2004),

(Burke and Soubeiga, 2003)), etc.). In the other way, selection methods can be cat-

egorized as sequential selection(i.e. Random Permutation Descent (Cowling et al.,

2001), Bayes (our proposition), Association Rules (our proposition), etc.) and

parallel selection (i.e. peckish (see in (Cowling and Chakhlevitch, 2003), Cowling

140 Selection Methods

and Chakhlevitch (2007)), greedy (see in (Cowling et al., 2001), (Cowling et al.,

2002b)), (Özcan and Kheiri, 2012)) , etc.). Some of them perform by applying a

selected heuristic until a worsening move is hit.

4.2.1 Random Selection Based Hyperheuristic

The term Random can be defined as "made, or occurring without definite aim,

reason, or pattern". Selecting a random item from a predefined set, expects that all

items have the same probability to be selected.

Randomness is the loss of pattern or predictability in activities. Therefore, random

heuristic selection method is based on selecting one of existing heuristic with no

data based input. For that, expected running time depends on the random choices

only, not on any input distribution. Random selection algorithms are often simpler

and faster than other algorithms. Another important feature of this method, is the

inherit diversification in the process.

The disadvantages can be summarized as: i) lack of intensification strategy in the

algorithm, ii) The solution quality can vary among more than one execution, and

iii) heuristic selection probability is totaly independent of its performance.

In the following, we present three approaches of random selection regularly used

in the literature: i) Pure random, ii) Random descent, and iii) Random permutation

descent.

4.2 The Proposed Selection Methods 141

Pure Random

Pure random hyperheuristic is the most straightforward way to implement a of

hyperheuristic. It is based on randomly selecting one of the existing low-level-

heuristic from a set of predefined low-level-heuristics at each decision point

Chakhlevitch and Cowling (2008a).

Pure random hyperheuristics have been applied in many problem domains such as

scheduling problems (see Cowling et al. (2001), Cowling et al. (2002b), Cowling

et al. (2002a)), space allocation problems (see Bai and Kendall (2005), Burke

and Kendall (2005)), channel assignment in mobile communication problems(see

Kendall and Mohamad (2004)) and time tabling problems(see Burke and Kendall

(2005)).

Random Descent (Gradient)

Random descent or random gradient declare the heuristic selection strategy as

choosing a low-level-heuristic randomly and employ it as long as the candidate

solution in hand is improved Özcan et al. (2012). Hence, the improving low-level-

heuristic is applied repeatedly until a worsening move is hit.

Random Descent method was applied in many domains (see Cowling et al. (2001),

Soubeiga (2003) for examples of such a selection strategy).

142 Selection Methods

Random Permutation Descent (Gradient)

Random Permutation Descent selection chooses randomly a set of low-level-

heuristics, which form a cyclic list. It then applies the first heuristic and employ

it until a worsening move is observed. It then applies the next ones in the order

dictated by the cycle. Examples of such selection strategy can be found in Özcan

and Kheiri (2012), Cowling et al. (2001) and Burke and Soubeiga (2003).

4.2.2 Greedy Based Hyperheuristic

Greedy selection applies all low-level-heuristics independently at each iteration, to

the same solution candidate and chooses the one that generates the best solution

quality. No diversification type is considered, while only improvement moves are

accepted (see Cowling et al. (2002b), Cowling et al. (2001) and Özcan and Kheiri

(2012) for examples of such strategies).

The limitation of this approach is mainly the limited capacity to explore the search

space in order to avoid local optima (Chakhlevitch and Cowling, 2008a).

4.2.3 Peckish Based Hyperheuristic

The term Peckish follows the same concepts as a greedy selection, but a subset

of low-level-heuristics is considered instead of all low-level-heuristics. (Cowling

and Chakhlevitch, 2003) and (Cowling and Chakhlevitch, 2007) are among the

examples of work considering this selection method.

In this chapter, we will present more than one method of Peckish selection based

4.2 The Proposed Selection Methods 143

on the way of choosing subset of low-level-heuristic to be applied in a parallel

manner. There are as the following:

1. Peckish selection based on Tabu Search (TS), where TS, selects a predefined

number of heuristics to be applied in parallel at each iteration.

2. Peckish selection based on Simulated Annealing (SA), where SA, selects

predefined number of heuristics.

3. Peckish selection based on Association Rules (AR), where AR, selecst the

subset of heuristics to be applied in parallel at each iteration.

4. Peckish selection based on Bayes Theorem (BT)

5. Peckish selection based on Q-Learning (QL)

4.2.4 Choice Function Based Hyperheuristic

Choice function heuristic selection methods, defined by Cowling et al. (2001),

addresses learning as a model selection problem. The choice function selects a

low-level-heuristic to be applied according to a weight resulted from a combination

of three different measures. Therefore, selection of such low-level-heuristic at

each iteration depends on its corresponding choice function. For that reason, score

computations for the low-level-heuristics are repeated at each iteration.

The low-level heuristics are ranked according to several measures. The heuristic

ranking technique is based on: I) the heuristic’s individual performance (Equation

(4.1)), II) improvement observed as a results of invoking a heuristic subsequent

144 Selection Methods

to another one (Equation (4.2)), and III) the time elapsed since it was last called

(Equation (4.3)). In(y) and Tn(y)(In(x, y) and Tn(x, y)) indicate the change of

evaluation function and the amount of execution time, when the nth last time the

heuristic y was chosen and applied immediately after heuristic x.

Intensification strategies were provided by the first two components, while the

diversification was assured by the third on. α, β, and δ, represents the weights of

the three components and their relative influence on the choice function. Both α

and β ∈ [0, 1] reflect the greater influence attached to recent performance.

The approach mentioned above is prevented from reaching its full potential by

several obstacles. The first obstacle being that it requires a warm-up period during

which the values of the choice functions will be initialized by randomly selected

heuristics. The second one, is that achieving the best results requires the weights α,

β, and δ of individual components in the choice function to be manually tuned.

f1(hj) =
∑
n

αn−1(
In(hj)

Tn(hj)
) (4.1)

f2(hk, hj) =
∑
n

βn−1(
In(hk, hj)

Tn(hk, hj)
) (4.2)

f3(hj) = elapsedT ime(hj) (4.3)

4.2 The Proposed Selection Methods 145

f(hj) = αf1(hj) + βf2(hk, hj) + δf3(hj) (4.4)

Cowling et al. (2001), Cowling et al. (2002b), Kendall et al. (2002b) and Soubeiga

(2003) are examples of work considering this heuristic selection method.

4.2.5 Reinforcement Learning

In reinforcement learning we are dealing with an agent that learns its behavior

through some interaction with a so called dynamic environment. Such interaction

is usually realized in trial-and-error efforts fashion. At each point in time, t, an

agent is in a given state st ∈ S and can choose an action at, eventually from among

several, to make a transition to another state st+1 ∈ S . In this work, we deal with

the sets S andA of bounded cardinality, i.e. card(|A|)+card(|S|) < card(R) = ℵ.

More precisely, where we work with a finite number of transition that can be made.

When an action is taken, a numerical reward, rt+1 is attributed. Such reward is

a feedback from the environment that depends on the quality of action taken by the

agent. An agent that wants to maximize the total reward attributed to it, has to be

able to exploit the experiences it has obtained so far and also be able to explore

other parts of the environment and identify better actions Sutton and Barto (1998).

In general, there are two types of reinforcement learning:

1. Online Learning: heuristic rewards are updated online (i.e. dynamically)

throughout the search according to the performance of every heuristic.

146 Selection Methods

2. Off-line Learning: heuristics rewards are retrieved from a database, which

stores the historical performance of every heuristic in the past.

Naive Bayes Classifier based Hyperheuristic

In the context of probability science, inverse probability is an obsolete term for

the probability distribution of an unobserved variable. Hence, Thomas Bayes

(1701 1761) proposed a solution to a problem of inverse probability. The proposed

solution was presented in "An Essay towards solving a Problem in the Doctrine of

Chances" which was read to the Royal Society in 1763 after Bayes’ death.

Today, the problem of determining an unobserved variable (by whatever method)

is called inferential statistics, the method of inverse probability (assigning a prob-

ability distribution to an unobserved variable) is called Bayesian probability, the

"distribution" of an unobserved variable given data is rather the likelihood function

(which is not a probability distribution), and the distribution of an unobserved

variable, given both data and a prior distribution, is the posterior distribution. The

development of the field and terminology from "inverse probability" to "Bayesian

probability" is described by Fienberg (2006).

Bayesian probability is one interpretation of the concept of probability. In con-

trast to interpreting probability as frequency or propensity of some phenomenon,

Bayesian probability is a quantity that we assign to represent a state of knowledge,

Jaynes (1986) or a state of belief.De Finetti (1974) In the Bayesian view, a probab-

ility is assigned to a hypothesis, whereas under frequentist inference, a hypothesis

is typically tested without being assigned a probability.

4.2 The Proposed Selection Methods 147

Naive Bayes classifier assumes that all the features are conditionally independent

of each other. This therefore permits us to use the Bayesian rule for probability.

Usually this independence assumption works well for most cases, if even in actual-

ity they are not really independent. Bayesian rules is stated mathematically as the

following equation De Finetti (1974):

P (A|B) =
P (A)P (B|A)

P (B)
, (4.5)

A and B are events, products, actions or etc. P (A) and P (B) are the probabilities

of A and B without regard to each other. P (A|B), a conditional probability, is the

probability of observing event A given that B is true. P (B|A), is the probability

of observing event B given that A is true.

In our proposed method, after each heuristic being applied, the frequency of worsen-

ing moves and the frequency of improvement move was accumulated. Therefore,

in our hand we have at each iteration, the number of times each heuristic has

improved/worsened the solution. Hence, we can calculate the probability of a

heuristic hi given that the solution is improved.

The method is based on dividing the time horizon into three portion (V 1, V 2

and V 3). In V 1, which represents the time when the process starts till the time

limit (Tl) divided by 5, heuristics are selected totaly random. In V 2, which

is bounded between V 1 and 3Tl divided by 5, a heuristic hi will be selected

in the case of having the probability of being applied given that the solution

was improved (P (hi|class = Improvement)) is grater than 0.4. In addition, a

148 Selection Methods

chance of 0.2 is acceptable by the search space in the case where the heuristic

is selected randomly. In the last period, V 3, the selected heuristic hi must have

P (hi|class = Improvement) greater than 0.6, or it may be selected in a probabil-

ity of 0.1.

Bayesian approach is usually used in the domain of data mining, such as in Heck-

erman (1997), Kirkos et al. (2007), and Kantarcıoglu et al. (2003). Also, many

researches applied bayesian approach in the context of optimization such as Inza

et al. (2000), Mockus (2012), and Pelikan (2005).

4.2.6 Metaheuristics Based Hyperheuristic

Metaheuristic, as mentioned in the chapter 1, can be defined as an iterative genera-

tion of a process, which guides a subordinate heuristic by combining intelligently

different concepts for exploring and exploiting the search space Osman and Laporte

(1996). Here, the role of metaheuristic is not to search in a solution space, but to

search in the space of heuristics in order to guide HH to choose heuristics during

HH process. We implement different metaheuristic methods: Simulated Annealing,

Ant Colony, Variable Neighborhood Search and Genetic Algorithm.

Simulated Annealing Based Hyperheuristic

Simulated Annealing (SA) as an idea is inspired from a paper published by Metro-

polis et al. (1953), is motivated by an analogy to annealing in solids. It describes

an algorithm that simulates the process called ’annealing’ which is the cooling

4.2 The Proposed Selection Methods 149

of materials in a heat bath. Cooling a solid after heating it past its melting point

makes its structural properties dependent on the cooling rate. It is also possible

to notice the formation of crystals in the case where the cooling process was slow

enough. If cooling the materials was achieved rapidly then there is a high chance

that the crystals will contain imperfections. The materials used in Metropolis’s

algorithm were simulated as a system of particles. The simulation lowered the

system’s temperature gradually until it converged to a steady, frozen state. In 1982,

optimization problems were subjected to SA for the first time in Kirkpatrick (1984).

Simulated annealing was used to search for feasible solutions that could converge

into an optimal solution.

The law of thermodynamics express that at temperature, t, the likelihood of an

expansion in vitality of greatness, δE, is given by

P (δE) = exp(−δE/kT) (4.6)

Where k is a consistent known as Boltzmann’s steady. The reenactment in the

Metropolis calculation computes the new vitality of the framework. On the off

chance that the vitality has diminished then the framework moves to this state. In

the event that the vitality has expanded then the new state is acknowledged utilizing

the likelihood returned by the above recipe. A specific number of emphases are

done at every temperature and afterward the temperature is diminished. This is

rehashed until the framework solidifies into an unfaltering state. This mathematical

150 Selection Methods

statement is specifically utilized as a part of reenacted toughening, in spite of

the fact that it is common to drop the Boltzmann consistent as this was just

acquainted into the comparison with adapt to various materials. Along these lines,

the likelihood of tolerating a more terrible state is given by the mathematical

statement

P = exp(−c/t) ≥ r (4.7)

Where:

c = the adjustment in the assessment capacity.

t = the present temperature.

r = an irregular number somewhere around 0 and 1.

The likelihood of tolerating a more terrible move is a component of both the temper-

ature of the framework and of the adjustment in the cost capacity. It can be valued

that as the temperature of the framework diminishes the likelihood of tolerating a

more terrible move is diminished. This is the same as slowly moving to a solidified

state in physical annealing. Additionally take note of, that if the temperature is zero

then just better moves will be acknowledged which successfully makes recreated

strengthening act like slope climbing.

SA was widely applied in many different combinatorial problem, such as schedul-

ing problem (see Ma et al. (2016), Bouleimen and Lecocq (2003) and Schlünz and

Van Vuuren (2013)), hub location problem (see Sedehzadeh et al. (2014), Parvaresh

et al. (2013) and Rabbani and Kazemi (2015)), routing problem (see Grosse et al.

4.2 The Proposed Selection Methods 151

(2014),BañOs et al. (2013) and Vincent and Lin (2014)), workover rig problem

(see Ribeiro et al. (2011) and Paiva et al. (2000)) and etc.

SA was used in hyperheuristic approaches in a two manners: I) in selection heur-

istics and II) in accepting a candidate solution. SA as an accepting criteria was

explained in Chapter 1.

SA heuristic selective hyperheuristic was applied as a tool to select a heuristic of

a reward r ,0 < r < 1, having exp(−r
t

) > random(0, 1). Annealing schedule is

considered as linear, where:

T (t) = T0 − ηt (4.8)

Dowsland et al. (2007), Bai et al. (2012), Anagnostopoulos and Koulinas (2010)

are examples of SA selective hyperheuristic.

Ant Colony Based Hyperheuristic

Ant colony optimization (ACO) is among the well-known population-based me-

taheuristics that has been extensively proposed to solve difficult optimization

problems. In the natural world, ants move randomly, and then they lay down

pheromone trails by the way of finding food and returning to their colony. Other

ants stop wandering randomly upon discovering such a path by following the trail.

With time, evaporation of pheromone trail will take place and its attractive strength

will be minimized. The pheromone evaporates more as the time taken by the ants

to stroll the path back and forth increases. For clarification, the pheromone density

152 Selection Methods

becomes higher on shorter paths, which is the more frequent marched path, than

longer ones. Pheromone evaporation is the key process of searching for optimal

solution. However, if evaporation process does not exist, all ants will follow the

first path chosen by first ants. Therefore, the exploration of the solution space

would be constrained. In such cases, when one ant finds the shortest path from

colony to a food source, all ants are aiming to follow this single path with their

positive leading feedback. The goal of the ant colony algorithm is to avoid such a

behaviour with a kind of ’simulated ants’ walking around the graph representing

the problem to solve. Successful applications of ACO has been reported in hub

location routing problem (Randall (2008), Ting and Chen (2013)), vehicle routing

problem (Chávez et al. (2016), Gajpal and Abad (2009)), timetable problem (Dow-

sland and Thompson (2005), Ayob and Jaradat (2009)) etc.

This technique has been used as a heuristic selection method in hyperheuristic

approaches. The ant based hyperheuristic, proposed by Kiraz et al. (2013), is

proven to be better than the choice function hyperheuristic on some problem do-

mains. Another ant-based hyperheuristic proposed by Ferreira et al. (2015). A

hybrid flow shop scheduling problem is solved by an ant colony optimization-based

hyperheuristic combined with a genetic algorithm, which forms a hyperheuristic

that generate and select heuristics.

Our proposed method is the following:

1. An arc is formed between every two heuristic, which allows the transition

between any heuristic to another.

4.2 The Proposed Selection Methods 153

2. A pheromone τij and a visibility function ηij were defined for each vertex

<i,j>, and they are updated after each heuristic application using (4.10) and

(4.9). The visibility function in our proposition is inspired from the choice

function hyperheuristic.

ηij = β
I(hi, hj)

T (hi, hj
(4.9)

τij =


ρ× ηij + Cbest

Ck if ant k chooses heuristic j after heuristic i

ρ× ηij Otherwise
(4.10)

It should be to note that, the ρ coefficient indicates the evaporation rate.

3. Since the hyperheuristic starts with no knowledge about the existing low-

level-heuristics, it must be initially unbiased and impartial while continuously

adaptive.

4. The probability of selecting a heuristic j after a applying heuristic i is defined

in (4.11).

Pij =
ηij × τij∑

i

∑
j ηij × τij

(4.11)

Variable Neighborhood Search based Hyperheuristic

Variable neighborhood search (VNS), proposed by Mladenović and Hansen (1997b),

is another kind of metaheuristics for COPs. It explores neighborhoods, which ap-

154 Selection Methods

plied on solution space, and moves from there randomly or intelligently. VNS

includes two main phases: I) shaking phase and II) local search phase. The first one

aims to diversify the search space in order to escape from local optima, while the

objective of the second phase is to intensify the search around the current solution

in order to improve it. Figure 4.2 shows how each combination of these two phases

contributes in avoiding a local optimum and tries to explore and exploit the search

space in order to achieve a near optimal solution. Each phase contains more than

one heuristic, which necessitates a definition of the heuristic selection method.

VNS appears an affective tool when it is combined with hyperheuristic methods.

Hsiao et al. (2012) propose a VSN based hyperheuristic method for solving more

than one problem such as job shop scheduling, bin packing, and etc Hansen and

Mladenović (2014). Remde et al. (2007) proposed a VNS hyperheuristic in order

to solve workforce scheduling problem. In this work, hyperheuristic appears a

powerful tools compared with the solution quality resulted by a genetic algorithm.

The proposed VNS hyperheuristic, shown in Figure 4.3, aims to constructs a feas-

ible solution at the beginning, then construct the shaking and finally the local

search phases. In the shaking phase, the tabu search method, which is proposed in

chapter 2, selects a low level heuristic from the set of perturbation heuristic. In the

second phase, a random cycle of the existing predefined improvement heuristics is

formed. It applies improvement heuristic while it is still improving the solution and

switches to the next one in the cycle in case it stops improving the solution. It keeps

on repeating this process until reaching n consecutive non-improving solution.

4.2 The Proposed Selection Methods 155

Figure 4.2: A general schema of the VNS algorithm.

Figure 4.3: The process of the proposed VNS Hyperheuristic.

156 Selection Methods

4.3 Numerical Results

In order to examine performance of different selection methods, every method is

in turn examined on the same problem in chapter 3, CSApHLRP-1, and the same

testbed.

Results of HH within different heuristic selection methods are reported in this

section (including Tabu Search method proposed in chapter 2, Association Rules

and Q-learning proposed in chapter 3) in 4.4 (and further elaborated in Figure 4.5,

Figure 4.6 and Figure 4.7) while the acceptance criteria employe here is SA and

all methods have the same input. Low gaps between the different methods, even

the pure random selection method, prove the effectiveness of the hyperheuristic.

Overall, pure random and greedy selection methods were the worst one, while

the Association Rules selection method was the better. Note that, for small in-

stances, the solution quality differences between most selection methods is minimal.

Random Descent and Random Permutation Descent are better than pure random

method. Peckish based on Bayes theorem was proven to be exceptionally effective

compared with the most other methods. Reinforcement learning and metaheuristic

method have a good solutions compared with the other, specially Association Rules,

Q-learning and Tabu Search.

In general, SA acceptance criteria with the different selection methods is the better,

while minimal differences exists when using the other acceptance criteria. It should

be note that:

1. Association Rules with SA is indeed better than with Great Deluge by an

4.4 Conclusion 157

Figure 4.4: HH results within different heuristic selection methods

average of 0.7%.

2. In all selection methods, almost any other acceptance criteria is better than

random acceptance in 0.62% except the choice function in 0.38%.

3. Choice function with SA is better than OI in 0.84%.

4. Choice function with SA is better than IE in 0.24%.

5. Q-learning with Great Deluge is better than with SA in 0.102%.

Furthermore, if we expand the execution time no additional gain was observed.

4.4 Conclusion

In this chapter, we presented and proposed different heuristic selection methods

in order to integrate them in HH framework. We propose different learning and

158 Selection Methods

Figure 4.5: HH results within different peckish selection methods

0.00

100000.00

200000.00

300000.00

400000.00

500000.00

600000.00

700000.00

800000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

TS SA Association

Rule

Q-Learning Bayes VNS

Figure 4.6: HH results within different RL selection methods

4.4 Conclusion 159

Figure 4.7: HH results within simple random, random descent, random per-
mutation descent, greedy and choice function selection methods

metaheuristic methods as heuristic selection methods and we compared their

performances when applyed on HLRP proposed in chapter 3. Here, SA acceptance

criteria appears in average the best acceptance method among others such as all

moves method, naive method, great deluge, etc. The performance of the overall

performance of methods; even the random and greedy selection which is the last

effective one; appears very promising, which proves the effectiveness of the other

strategies of HH as well as robustness of LLHs. AR methods, which is well

stablished in business data mining application, has proven to be the most effective

learning method to select subsequent heuristics during the process of HH.

160 Selection Methods

Chapter 5

General Conclusion

In this thesis, we have studies the Hyperheuristic (Burke et al., 2008b, 2013),

which is a search method or learning mechanism to select or generate heuristic in

order to solve a specific combinatorial problem. Hyperheuristic is considered as a

high-level approach that, given a problem and a number of low-level heuristics, can

select/generate and apply a suitable low-level heuristic at each iteration. Topcuoglu

et al. (2014) defines it as methods for automation of the process of selecting and

generating multiple low-level heuristics. Clearly, the difference between metaheur-

istics and hyperheuristics lies in the fact that metaheuristics search directly on

the solution space while hype-heuristics work on the heuristic space. This work

proposes a selective hyperheuristic framework, which is comprised of a set of

low-level heuristics and a heuristic selection mechanisms.

In our study, we are dealing with problems in logistics. For general business

concept, logistics is the administration of the flow of any matters between the point

162 General Conclusion

of origin and that of consumption orderly to convene the customers or corporations

needs. The managed resources in logistics may involve some physical matters

like food, materials, animals, equipments and liquids, and some abstract matters

like time and information. The logistics of physical matters can include the gath-

ering of information flow, material handling, production, packaging, inventing,

transportation, warehousing, and mainly security. Logistics management, which

represented as an important part of supply chain management, focuses on planing,

implementing, and controlling the efficient, effective forward, and reverse flow

and storage of goods, services, and related information between the origin point to

reach the destination.

In the first thesis phase, we are invited to be a member with Brazilian collaboration

group, that is interested in a real logistic problem: Workover Rig Problem. The

Workover Rig Routing Problem (WRRP) arises on onshore oil fields that can have

a large number of wells spread over a wide region and relatively few number of the

mobiles maintenance machines called workover rigs. To serve wells that demand

every type of maintenance, WRRP aims to determine over the next finite horizon of

time H, a feasible routes of workover rigs that minimize the sum of oil production

lossRibeiro et al. (2013). WRRP states on finding the best routes of rigs in order

to serve all wells, in an accepted time and the oil production loss is minimized

Ribeiro et al. (2012c). For this problem, we propose a mathematical formulation

model, several valid inequalities, and finally a hyperheuristic method based on a

proposed tabu search metaheuristic method as a learning method. Our proposed

learning has been proven its effectiveness when compared with an exact method

163

(Monemi et al., 2015), as long as the optimal solution (or the optimal interval) is

known, the solutions reported by the hyper-heuristic produce very near optimal

solutions. Our learning method outperforms a generic intelligent hyper-heuristic

(GIHH) proposed earlier in the literature both in terms of time and quality. In

addition, the proposed hyper-heuristic output has served as the initial columns for

the proposed branch-and-price in Monemi et al. (2015).

On the other hand, another logistic problem has been studied in this thesis: Hub

Location Routing Problem. Hub Location Routing Problem dealing with select-

ing from several nodes (e.g. ports), which will be considered as hub and which

will not be (spoke), then design the full network according a given rules. Many

transportation operators and logistics service providers operate on hub-and-spoke

structures. In this way, the long haul (in national or international scale) transport of

their cargo is done by using larger transporters (with higher volume concentration)

circulating between major hubs. In a short-distance level, transportation service is

realized by means of smaller transporters. In this thesis, we was interested on pHub

location routing problem, which fix the number of hubs as p. A hyperheuristic

approach has been proposed as an effective solution for a recently introduced two

variant of Hub Location Routing Problems proposed by Gelareh et al. (2015) and

Rodríguez-Martín et al. (2014), with two different learning methods: Association

Rules and Q-learning. Furthermore, two solution acceptance criteria, for the two

problems, was in the HH high level strategies: Simulated Annealing and Great

Deluge. Five Lagrangian Relaxation have been proposed for the first problem, and

we use the results of the best one in the process of HH. HH with Lagrangian Relax-

164 General Conclusion

ation results has been proven in the numerical results as better than HH without

LR results, even in the initial fitness. A part of HH results has been injected to the

solver, in order to find an optimal solution for some given allocation information,

as a Matheuristic method. As well as the HH has been proven its effectiveness by

the too minimal gap with the proposed Matheuristic.

Finally, in order to examine how different heuristic selection mechanism can impact

the performance of a hyperheuristic framework and quality of solution for a given

problem, several exiting methods were studied and some new ones are proposed.

Through an extensive computational experiment, we could identify some of the

methods that outperform the others for the problem at hand.

Özcan et al. (2010) categorizes such methods as the following: i) Purely Random

selection, ii) Random Descent selection, iii) Random Permutation Descent selec-

tion, iv) Greedy selection, v) Peckish selection, vi) Metaheuristic-based and vii)

Reinforcement Learning. Here, all these categories were implemented. Hence,

we propose different reinforcement learning and metaheuristic methods such as

Naive Bayes, ACO, SA, VNS, etc. that guide in selection of heuristics. these

methods was examined with several solution acceptance criteria such as SA, Great

Deluge, IO, etc. Association Rules method, an intelligent tools used in business

data mining application, was the most effective method in selection of heuristics

during HH process when combined with SA solution acceptance criteria.

Our future directions consider solving these two problems with taking into consid-

eration more real-world aspects such as task time window, constraints related to

the environment such that related to green logistics, etc. In addition, we are very

165

interested to faced problems of Emergency Logistics (or Humanitarian Logistics),

which deals with denote specific time-critical modes of transport used to move

service or goods or objects rapidly in the event of an emergency. This motivation

has been introduced in a our contribution Danach et al. (2015a). Furthermore, we

will be more interested to develop more intelligent methods, that are proposed in

artificial intelligence science such as Neural Network (NN), Decision Tree (DT),

etc. in order to perform heuristic selection phase in the HH framework. Finally,

developing a hybrid method that combine metaheuristic and hyperheuristic, in

order to relate the heuristic to be applied to the solution state in addition to its

performance, can be intervenes in our future work.

166 General Conclusion

Bibliography

Inmaculada Rodríguez-Martín, Juan-José Salazar-González, and Hande Yaman. A

branch-and-cut algorithm for the hub location and routing problem. Computers

& Operations Research, 50:161–174, 2014.

Edmund K Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan,

and John R Woodward. A classification of hyperheuristic approaches. In

Handbook of metaheuristics, pages 449–468. Springer, 2010.

John R. Rice. The algorithm selection problem. Advances in Computers, 15:

65–118, 1976.

Alexander Schrijver. Combinatorial optimization: Polyhedra and efficiency. Dis-

crete Applied Mathematics, 146:120–122, 2005.

Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer

implementations. John Wiley & Sons, Inc., 1990.

David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The

168 BIBLIOGRAPHY

traveling salesman problem: a computational study. Princeton university press,

2011.

Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications,

volume 18. Siam, 2014.

Zvi Drezner and Horst W Hamacher. Facility location: applications and theory.

Springer Science & Business Media, 2001.

Scott Kirkpatrick. Optimization by simulated annealing: Quantitative studies.

Journal of statistical physics, 34(5-6):975–986, 1984.

Ibrahim H Osman and Gilbert Laporte. Metaheuristics: A bibliography. Annals of

Operations research, 63(5):511–623, 1996.

El-Ghazali Talbi. Metaheuristics: from design to implementation, volume 74. John

Wiley & Sons, 2009.

Emile Aarts and Jan Korst. Simulated annealing and boltzmann machines. 1988.

Fred Glover. Tabu search-part i. ORSA Journal on computing, 1(3):190–206, 1989.

Lawrence Davis. Handbook of genetic algorithms. 1991.

KG Dyall, IP Grant, CT Johnson, FA Parpia, and EP Plummer. Grasp: A general-

purpose relativistic atomic structure program. computer physics communications,

55(3):425–456, 1989.

BIBLIOGRAPHY 169

Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers

& Operations Research, 24(11):1097–1100, 1997a.

Ravindra K Ahuja, James B Orlin, and Dushyant Sharma. Very large-scale neigh-

borhood search. International Transactions in Operational Research, 7(4-5):

301–317, 2000.

Fred Glover. A template for scatter search and path relinking. Lecture notes in

computer science, 1363:13–54, 1998.

Russ C Eberhart, James Kennedy, et al. A new optimizer using particle swarm

theory. In Proceedings of the sixth international symposium on micro machine

and human science, volume 1, pages 39–43. New York, NY, 1995.

Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. Ant algorithms and stigmergy.

Future Generation Computer Systems, 16(8):851–871, 2000.

Enrico Bartolini and Aristide Mingozzi. Algorithms for the non-bifurcated network

design problem. Journal of Heuristics, 15(3):259–281, 2009.

Jörg Denzinger, Marc Fuchs, and Matthias Fuchs. High performance ATP systems

by combining several AI methods. Citeseer, 1996.

Peter Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic approach to

scheduling a sales summit. In Practice and Theory of Automated Timetabling

III, pages 176–190. Springer, 2001.

170 BIBLIOGRAPHY

Wallace B Crowston, Fred Glover, Jack D Trawick, et al. Probabilistic and paramet-

ric learning combinations of local job shop scheduling rules. Technical report,

DTIC Document, 1963.

Hsiao-Lan Fang, Peter Ross, and David Corne. A promising genetic algorithm

approach to job-shop scheduling, rescheduling, and open-shop scheduling prob-

lems. University of Edinburgh, Department of Artificial Intelligence, 1993.

E. Özcan, M. Misir, G. Ochoa, and E. K. Burke. A reinforcement learning-great-

deluge hyper-heuristic for examination timetabling. International Journal of

Applied Metaheuristic Computing (IJAMC), 1(1):39–59, 2010.

Haluk Rahmi Topcuoglu, Abdulvahid Ucar, and Lokman Altin. A hyper-heuristic

based framework for dynamic optimization problems. Applied Soft Computing,

19:236–251, 2014.

Gabriela Ochoa, Rong Qu, and Edmund K Burke. Analyzing the landscape of a

graph based hyper-heuristic for timetabling problems. In Proceedings of the 11th

Annual conference on Genetic and evolutionary computation, pages 341–348.

ACM, 2009.

Peter Ross. Search Methodolgies, chapter Hyper-heuristics, pages 529–556. 2005.

Edmund K Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan,

and Rong Qu. A survey of hyper-heuristics. Computer Science Technical

Report No. NOTTCS-TR-SUB-0906241418-2747, School of Computer Science

and Information Technology, University of Nottingham, 2009a.

BIBLIOGRAPHY 171

Mohamed Bader-El-Den and Riccardo Poli. Generating sat local-search heuristics

using a gp hyper-heuristic framework. In Artificial evolution, pages 37–49.

Springer, 2008.

Eric Soubeiga. Development and application of hyperheuristics to personnel

scheduling. PhD thesis, University of Nottingham, 2003.

Konstantin Chakhlevitch and Peter Cowling. Hyperheuristics: recent developments.

In Adaptive and multilevel metaheuristics, pages 3–29. Springer, 2008a.

Peter Cowling, Graham Kendall, and Eric Soubeiga. Hyperheuristics: A tool for

rapid prototyping in scheduling and optimisation. In Applications of Evolution-

ary Computing, pages 1–10. Springer, 2002a.

Alexander Nareyek. Choosing search heuristics by non-stationary reinforce-

ment learning. In Metaheuristics: Computer decision-making, pages 523–544.

Springer, 2004.

Masri Ayob and Graham Kendall. A monte carlo hyper-heuristic to optimise com-

ponent placement sequencing for multi head placement machine. In Proceedings

of the international conference on intelligent technologies, InTech, volume 3,

pages 132–141. Citeseer, 2003a.

Ruibin Bai and Graham Kendall. An investigation of automated planograms using

a simulated annealing based hyper-heuristic. In Metaheuristics: Progress as

Real Problem Solvers, pages 87–108. Springer, 2005.

172 BIBLIOGRAPHY

Gunter Dueck. New optimization heuristics: the great deluge algorithm and the

record-to-record travel. Journal of Computational physics, 104(1):86–92, 1993.

Edmund K Burke and Yuri Bykov. A late acceptance strategy in hill-climbing for

exam timetabling problems. In PATAT 2008 Conference, Montreal, Canada,

2008.

Masri Ayob and Graham Kendall. A monte carlo hyper-heuristic to optimise com-

ponent placement sequencing for multi head placement machine. In Proceedings

of the international conference on intelligent technologies, InTech, volume 3,

pages 132–141, 2003b.

Aris Anagnostopoulos, Laurent Michel, Pascal Van Hentenryck, and Yannis Ver-

gados. A simulated annealing approach to the traveling tournament problem.

Journal of Scheduling, 9(2):177–193, 2006.

Ruibin Bai, Jacek Blazewicz, Edmund K Burke, Graham Kendall, and Barry

McCollum. A simulated annealing hyper-heuristic methodology for flexible

decision support. School of CSiT, University of Nottingham, UK, Tech. Rep,

2007.

Burak Bilgin, Ender Özcan, and Emin Erkan Korkmaz. An experimental study on

hyper-heuristics and exam timetabling. In Practice and Theory of Automated

Timetabling VI, pages 394–412. Springer, 2007.

Graham Kendall and Mazlan Mohamad. Channel assignment in cellular commu-

nication using a great deluge hyperheuristic. In Networks, 2004.(ICON 2004).

BIBLIOGRAPHY 173

Proceedings. 12th IEEE International Conference on, volume 2, pages 769–773.

IEEE, 2004.

Paul Mcmullan. An extended implementation of the great deluge algorithm for

course timetabling. In Computational Science–ICCS 2007, pages 538–545.

Springer, 2007.

Ei Shwe Sin and Nang Saing Moon Kham. Hyper heuristic based on great deluge

and its variants for exam timetabling problem. arXiv preprint arXiv:1202.1891,

2012.

Ender Özcan, Yuri Bykov, Murat Birben, and Edmund K Burke. Examination

timetabling using late acceptance hyper-heuristics. In Evolutionary Computation,

2009. CEC’09. IEEE Congress on, pages 997–1004. IEEE, 2009.

Edmund K Burke, Graham Kendall, Mustafa Mısır, and Ender Özcan. A study

of simulated annealing hyper-heuristics. In Proceedings of the international

conference on the practice and theory of automated timetabling (PATAT 2008),

2008a.

R Raghavjee and N Pillay. A genetic algorithm selection perturbative hyper-

heuristic for solving the school timetabling problem. ORiON, 31(1):39–60,

2015.

Alena Shmygelska and Holger H Hoos. An ant colony optimisation algorithm for

the 2d and 3d hydrophobic polar protein folding problem. BMC bioinformatics,

6(1):1, 2005.

174 BIBLIOGRAPHY

SM GiriRajkumar, K Ramkumar, and Sanjay Sarma O V. Real time application of

ants colony optimization. International Journal of Computer Applications, 3(8),

2010.

Leena N Ahmed, Ender Özcan, and Ahmed Kheiri. Solving high school time-

tabling problems worldwide using selection hyperheuristics. Expert Systems

with Applications, 42(13):5463–5471, 2015.

Yu-Jun Zheng, Min-Xia Zhang, Hai-Feng Ling, and Sheng-Yong Chen. Emergency

railway transportation planning using a hyperheuristic approach. Intelligent

Transportation Systems, IEEE Transactions on, 16(1):321–329, 2015.

Rajni Aron, Inderveer Chana, and Ajith Abraham. A hyperheuristic approach for

resource provisioning-based scheduling in grid environment. The Journal of

Supercomputing, 71(4):1427–1450, 2015.

Kassem Danach, Jomana Al-Haj Hassan, Wissam Khalil, and Shahin Gelareh.

Routing heterogeneous mobile hospital with different patients priorities: Hy-

perheuristic approach. In Digital Information and Communication Technology

and its Applications (DICTAP), 2015 Fifth International Conference on, pages

155–158. IEEE, 2015a.

Kassem Danach, Wissam Khalil, and Shahin Gelareh. Multiple strings planing

problem in maritime service network: Hyperheuristic approach. In Technological

Advances in Electrical, Electronics and Computer Engineering (TAEECE), 2015

Third International Conference on, pages 85–88. IEEE, 2015b.

BIBLIOGRAPHY 175

Rahimeh Neamatian Monemi, Kassem Danach, Wissam Khalil, Shahin Gelareh,

Francisco C Lima, and Dario José Aloise. Solution methods for scheduling of

heterogeneous parallel machines applied to the workover rig problem. Expert

Systems with Applications, 42(9):4493–4505, 2015.

Richard J Marshall, Mark Johnston, and Mengjie Zhang. Developing a hyperheur-

istic using grammatical evolution and the capacitated vehicle routing problem.

In Simulated Evolution and Learning, pages 668–679. Springer, 2014.

Pablo Garrido and María Cristina Riff. Dvrp: a hard dynamic combinatorial

optimisation problem tackled by an evolutionary hyperheuristic. Journal of

Heuristics, 16(6):795–834, 2010.

Pablo Garrido and Carlos Castro. A flexible and adaptive hyperheuristic approach

for (dynamic) capacitated vehicle routing problems. Fundamenta Informaticae,

119(1):29–60, 2012.

Kevin Sim, Emma Hart, and Ben Paechter. A lifelong learning hyperheuristic

method for bin packing. Evolutionary computation, 23(1):37–67, 2015.

Muhammed Beyaz, Tansel Dokeroglu, and Ahmet Cosar. Robust hyperheuristic al-

gorithms for the offline oriented/non-oriented 2d bin packing problems. Applied

Soft Computing, 36:236–245, 2015.

Peter Ross, Sonia Schulenburg, Javier G Marín-Blázquez, and Emma Hart. Hyper-

heuristics: learning to combine simple heuristics in bin-packing problems. In

GECCO, pages 942–948, 2002.

176 BIBLIOGRAPHY

Ali Keles, Yayimli, et al. Ant based hyper heuristic for physical impairment aware

routing and wavelength assignment. In Sarnoff Symposium, 2010 IEEE, pages

1–5. IEEE, 2010.

Carlos Segura, Gara Miranda, and Coromoto León. Parallel hyperheuristics for the

frequency assignment problem. Memetic Computing, 3(1):33–49, 2011.

Hugo Terashima-Marín, José Carlos Ortiz-Bayliss, Peter Ross, and Manuel

Valenzuela-Rendón. Hyper-heuristics for the dynamic variable ordering in

constraint satisfaction problems. In Proceedings of the 10th annual conference

on Genetic and evolutionary computation, pages 571–578. ACM, 2008.

José Carlos Ortiz-Bayliss, Ender Özcan, Andrew J Parkes, and Hugo Terashima-

Marín. Mapping the performance of heuristics for constraint satisfaction. In

Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 1–8. IEEE,

2010.

Konstantin Chakhlevitch and Peter Cowling. Hyperheuristics: recent developments.

In Adaptive and multilevel metaheuristics, pages 3–29. Springer, 2008b.

Graham Kendall, Peter Cowling, and Eric Soubeiga. Choice function and ran-

dom hyperheuristics. In Proceedings of the fourth Asia-Pacific conference on

simulated evolution and learning, SEAL, pages 667–671, 2002a.

Edmund K Burke, Graham Kendall, and Eric Soubeiga. A tabu-search hyper-

heuristic for timetabling and rostering. Journal of Heuristics, 9(6):451–470,

2003.

BIBLIOGRAPHY 177

Edmund K Burke, Bart L MacCarthy, Sanja Petrovic, and Rong Qu. Knowledge

discovery in a hyper-heuristic for course timetabling using case-based reasoning.

In Practice and Theory of Automated Timetabling IV, pages 276–287. Springer,

2002.

Edmund K Burke, Sanja Petrovic, and Rong Qu. Case-based heuristic selection

for timetabling problems. Journal of Scheduling, 9(2):115–132, 2006.

Sanja Petrovic and Rong Qu. Case-based reasoning as a heuristic selector in a

hyper-heuristic for course timetabling problems. 2002.

Hugo Terashima-Marín, EJ Flores-Alvarez, and Peter Ross. Hyper-heuristics and

classifier systems for solving 2d-regular cutting stock problems. In Proceedings

of the 7th annual conference on Genetic and evolutionary computation, pages

637–643. ACM, 2005a.

Hugo Terashima-Marín, Armando Morán-Saavedra, and Peter Ross. Forming

hyper-heuristics with gas when solving 2d-regular cutting stock problems. In

Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 2, pages

1104–1110. IEEE, 2005b.

Stewart W Wilson, SW Wilson, Generalization Xcs, et al. Generalization in the

xcs classifier system. 1998.

Sonia Schulenburg, Peter Ross, Javier G Marín-Blázquez, and Emma Hart. A hyper-

heuristic approach to single and multiple step environments in bin-packing prob-

178 BIBLIOGRAPHY

lems. In 5th International Workshop on Learning Classifier Systems (IWLCS),

pages 7–8, 2002.

Peter Cowling, Graham Kendall, and Eric Soubeiga. Hyperheuristics: A robust

optimisation method applied to nurse scheduling. In Parallel Problem Solving

from Nature-PPSN VII, pages 851–860. Springer, 2002b.

Peter Cowling, Graham Kendall, and Limin Han. An investigation of a hyperheur-

istic genetic algorithm applied to a trainer scheduling problem. In Evolutionary

Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, volume 2,

pages 1185–1190. IEEE, 2002c.

EK Burke and JP Newall. A new adaptive heuristic framework for examination

timetabling problems. University of Nottingham, Working Group on Automated

Timetabling, TR-2002-1 http://www. cs. nott. ac. uk/TR-cgi/TR. cgi, pages 2002–

1, 2002.

Jerry Swan, John Drake, Ender Özcan, James Goulding, and John Woodward.

A comparison of acceptance criteria for the daily car-pooling problem. In

Computer and Information Sciences III, pages 477–483. Springer, 2013.

Patricia Ryser-Welch and Julian F Miller. A review of hyper-heuristic frameworks.

In Proceedings of the 50th anniversary convention of the AISB, 1–4 April 2014,

London, 2014.

Eugene Nudelman, Kevin Leyton-Brown, Alex Devkar, Yoav Shoham, and Hol-

BIBLIOGRAPHY 179

ger Hoos. Satzilla: An algorithm portfolio for sat. Solver description, SAT

competition, 2004, 2004.

Horst Samulowitz, Chandra Reddy, Ashish Sabharwal, and Meinolf Sellmann.

Snappy: A simple algorithm portfolio. In Theory and Applications of Satisfiabil-

ity Testing–SAT 2013, pages 422–428. Springer, 2013.

Edmund K Burke, Tim Curtois, Matthew Hyde, Graham Kendall, Gabriela Ochoa,

Sanja Petrovic, and José Antonio Vázquez-Rodríguez. Hyflex: A flexible

framework for the design and analysis of hyper-heuristics. In Multidisciplinary

International Scheduling Conference (MISTA 2009), Dublin, Ireland, pages

790–797, 2009b.

Willem Van Onsem and Bart Demoen. Parhyflex: A framework for parallel hyper-

heuristics. In BNAIC 2013: Proceedings of the 25th Benelux Conference on

Artificial Intelligence, Delft, The Netherlands, November 7-8, 2013. Delft Univer-

sity of Technology (TU Delft); under the auspices of the Benelux Association for

Artificial Intelligence (BNVKI) and the Dutch Research School for Information

and Knowledge Systems (SIKS), 2013.

Mustafa Misir. Intelligent hyper-heuristics: a tool for solving generic optimisation

problems. status: published, 2012.

Thompson G.L. Muth J.F. Industrial scheduling. Prentice Hall, pages 225–251,

1963.

180 BIBLIOGRAPHY

Jacques Carlier and Eric Pinson. An algorithm for solving the job-shop problem.

Management science, 35(2):164–176, 1989.

Wayne E Smith. Various optimizers for single-stage production. Naval Research

Logistics Quarterly, 3(1-2):59–66, 1956.

J. W. Barnes, J. J. Brennan, and R. M. Knap. Scheduling a backlog of oil well

workovers. Journal of Petroleum Technology, 29(12):1651âĂŞ1653, 1977.

TF Noronha, FCJ Lima, and DJ Aloise. Um algoritmo heurístico guloso aplicado ao

problema do gerenciamento das intervenções em poços petrolíferos por sondas

de produção terrestre. In Proceedings of the XXXIII Brazilian Symposium on

Operations Research, Campos do Jordão, page 135, 2001.

Dario J. Aloise, Daniel Aloise, Caroline T.M. Rocha, Celso C. Ribeiro, JosÃl’

C. Ribeiro Filho, and Luiz S.S. Moura. Scheduling workover rigs for onshore

oil production. Discrete Applied Mathematics, 154(5):695 – 702, 2006.

Glaydston Mattos Ribeiro, Geraldo Regis Mauri, and Luiz Antonio

Nogueira Lorena. A simple and robust simulated annealing algorithm for schedul-

ing workover rigs on onshore oil fields. Computers & Industrial Engineering,

60(4):519–526, 2011.

Christophe Duhamel, Andréa Cynthia Santos, and Lucas Moreira Guedes. Models

and hybrid methods for the onshore wells maintenance problem. Computers &

Operations Research, 39(12):2944–2953, 2012.

BIBLIOGRAPHY 181

Glaydston Mattos Ribeiro, Gilbert Laporte, and Geraldo Regis Mauri. A compar-

ison of three metaheuristics for the workover rig routing problem. European

Journal of Operational Research, 220(1):28–36, 2012a.

Glaydston Mattos Ribeiro, Guy Desaulniers, and Jacques Desrosiers. A branch-

price-and-cut algorithm for the workover rig routing problem. Computers &

Operations Research, 39(12):3305–3315, 2012.

Glaydston Mattos Ribeiro, Guy Desaulniers, and Jacques Desrosiers. A branch-

price-and-cut algorithm for the workover rig routing problem. Computers &

Operations Research, 39(12):3305 – 3315, 2012b. ISSN 0305-0548. doi:

http://dx.doi.org/10.1016/j.cor.2012.04.010.

Glaydston Mattos Ribeiro, Guy Desaulniers, Jacques Desrosiers, Thibaut Vidal,

and Bruno Salezze Vieira. Efficient heuristics for the workover rig routing

problem with a heterogeneous fleet and a finite horizon. Journal of Heuristics,

20(6):677–708, dec 2014. doi: 10.1007/s10732-014-9262-1.

Artur Pessoa, Eduardo Uchoa, Marcus Poggi de Aragão, and Rosiane Rodrigues.

Exact algorithm over an arc-time-indexed formulation for parallel machine

scheduling problems. Mathematical Programming Computation, 2(3-4):259–

290, 2010.

Edmund K Burke, Mustafa Misir, Gabriela Ochoa, and Ender Ozcan. Learning

heuristic selection in hyper-heuristics for examination timetabling. In Pro-

182 BIBLIOGRAPHY

ceedings of 7th International Conference of Practice and Theory of Automated

Timetabling (PATAT08), Montreal, Canada, 2008b.

Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela

Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of

the art. Journal of the Operational Research Society, 64(12):1695–1724, 2013.

Sibel Alumur and Bahar Y. Kara. Network hub location problems: The state of the

art. European Journal of Operational Research, 190(1):1–21, 2008.

Shahin Gelareh, Rahimeh Neamatian Monemic, and Frédéric Semet. Capacit-

ated bounded cardinality hub routing problem: Model and solution algorithm.

Technical report, 2015.

J. Ebery, M. Krishnamoorthy, A. Ernst, and N. Boland. The capacitated multiple al-

location hub location problem: Formulations and algorithms. European Journal

of Operational Research, 120:614–631, 2000.

Isabel Correia, Stefan Nickel, and Francisco Saldanha-da Gama. Single-allocation

hub location problems with capacity choices. Fraunhofer-Institut für Techno-und

Wirtschaftsmathematik, Fraunhofer (ITWM), 2009.

A. Campbell, T. Lowe, and L. Zhang. The p-hub center allocation problem.

European Journal of Operational Research, 176 (2):819–835, 2007.

Juanjo Peiró, Ángel Corberán, and Rafael Martí. Grasp for the uncapacitated

r-allocation p-hub median problem. Computers & Operations Research, 43:

50–60, 2014.

BIBLIOGRAPHY 183

Dongdong Ge, Yinyu Ye, and Jiawei Zhang. The fixed-hub single allocation

problem: a geometric rounding approach. Preprint available at http://www.

stanford. edu/˜ yyye/revisedHub. pdf, 2007.

Shahin Gelareh, Nelson Maculan, Philippe Mahey, and Rahimeh Neamatian

Monemi. Hub-and-spoke network design and fleet deployment for string plan-

ning of liner shipping. Applied Mathematical Modelling, 37(5):3307–3321,

2013a.

Jozef Kratica, Zorica Stanimirović, Dušan Tošić, and Vladimir Filipović. Genetic

algorithm for solving uncapacitated multiple allocation hub location problem.

Computing and Informatics, 24(4):415–426, 2012.

Masoud Rabbani and S Kazemi. Solving uncapacitated multiple allocation p-hub

center problem by dijkstraŠs algorithm-based genetic algorithm and simulated

annealing. International Journal of Industrial Engineering Computations, 6(3):

405–418, 2015.

Zorica Stanimirovic. An efficient genetic algorithm for the uncapacitated multiple

allocation p-hub median problem. Control and Cybernetics, 37:669–692, 2008.

Marcus Randall. Solution approaches for the capacitated single allocation hub

location problem using ant colony optimisation. Computational Optimization

and Applications, 39(2):239–261, 2008.

Ching-Jung Ting and Chia-Ho Chen. A multiple ant colony optimization algorithm

184 BIBLIOGRAPHY

for the capacitated location routing problem. International Journal of Production

Economics, 141(1):34–44, 2013.

J.G. Klincewicz. Avoiding local optima in the p-hub location problem using tabu

search and grasp. Annals of Operations Research, 40:283–302, 1992.

Erik Rolland, David A Schilling, and John R Current. An efficient tabu search

procedure for the p-median problem. European Journal of Operational Research,

96(2):329–342, 1997.

S. Abdinnour-Helm. A hybrid heuristic for the uncapacitated hub location problem.

European Journal of Operational Research, 106(23):489–499, 1998.

Dilek Tuzun and Laura I Burke. A two-phase tabu search approach to the location

routing problem. European Journal of Operational Research, 116(1):87–99,

1999.

MH Fazel Zarandi, S Davari, and SA Haddad Sisakht. An empirical comparison

of simulated annealing and iterated local search for the hierarchical single alloc-

ation hub median location problem. Scientia Iranica. Transaction E, Industrial

Engineering, 22(3):1203, 2015.

F Yu Vincent, Shih-Wei Lin, Wenyih Lee, and Ching-Jung Ting. A simulated

annealing heuristic for the capacitated location routing problem. Computers &

Industrial Engineering, 58(2):288–299, 2010.

Aleksandar Ilić, Dragan Urošević, Jack Brimberg, and Nenad Mladenović. A gen-

eral variable neighborhood search for solving the uncapacitated single allocation

BIBLIOGRAPHY 185

p-hub median problem. European Journal of Operational Research, 206(2):

289–300, 2010.

Bassem Jarboui, Houda Derbel, Saïd Hanafi, and Nenad Mladenović. Variable

neighborhood search for location routing. Computers & Operations Research,

40(1):47–57, 2013.

Gábor Nagy and Said Salhi. The many-to-many location-routing problem. Top, 6

(2):261–275, 1998.

S. Cetiner, C. Sepil, and H. Sural. Hubbing and routing in postal delivery systems.

Technical report, Industrial Engineering Department, Middle East Technical

University, 06532 Ankara, Turkey., 2006.

Ricardo Saraiva de Camargo, Gilberto de Miranda, and Arne Løkketangen. A new

formulation and an exact approach for the many-to-many hub location-routing

problem. Applied Mathematical Modelling, 37(12):7465–7480, 2013.

Michael Wasner and Günther Zäpfel. An integrated multi-depot hub-location

vehicle routing model for network planning of parcel service. International

Journal of Production Economics, 90(3):403–419, 2004.

Shahin Gelareh, Nelson Maculan, Philippe Mahey, and Rahimeh Neamatian

Monemi. Hub-and-spoke network design and fleet deployment for string plan-

ning of liner shipping. Applied Mathematical Modelling, 37(5):3307–3321,

2013b.

186 BIBLIOGRAPHY

A. M. Geoffrion. Lagrangian relaxation and its uses in integer programming. Math.

Programming Stud, 2:82–114, 1974.

A Geoffrion and R Me Bride. Lagrangean relaxation applied to capacitated facility

location problems. AIIE transactions, 10(1):40–47, 1978.

Marshall L. Fisher. The lagrangian relaxation method for solving integer program-

ming problems. Management Science, 27(1):1–18, 1981. ISSN 00251909.

Marshall L Fisher. The lagrangian relaxation method for solving integer pro-

gramming problems. Management science, 50(12_supplement):1861–1871,

2004.

M. Guignard. Lagrangian relaxation. TOP, 11(2):151–228, 2003.

M. Held and R.M. Karp. The traveling-salesman problem and minimum spanning

trees: Part II. Mathematical Programming, 1(1):6–25, 1971. ISSN 0025-5610.

C. Lemarechal. An extension of Davidon methods to non differentiable problems.

Nondifferentiable Optimization, pages 95–109, 1975.

F. Barahona and R. Anbil. The volume algorithm: producing primal solutions with

a subgradient method. Mathematical Programming, 87(3):385–399, 2000. ISSN

0025-5610.

Laura Bahiense, Nelson Maculan, and Claudia A. Sagastizábal. The volume

algorithm revisited: relation with bundle methods. Math. Program., 94(1):

41–69, 2002.

BIBLIOGRAPHY 187

Antonio Frangioni. Solving semidefinite quadratic problems within nonsmooth

optimization algorithms. Technical report, 1995.

Herman Aguinis, Lura E Forcum, and Harry Joo. Using market basket analysis in

management research. Journal of Management, page 0149206312466147, 2012.

Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules

between sets of items in large databases. In ACM SIGMOD Record, volume 22,

pages 207–216. ACM, 1993.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD

thesis, University of Cambridge England, 1989.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):

279–292, 1992.

Diamantino Falcao, Ana Madureira, and Ivo Pereira. Q-learning based hyper-

heuristic for scheduling system self-parameterization. In Information Systems

and Technologies (CISTI), 2015 10th Iberian Conference on, pages 1–7. IEEE,

2015.

Yuanyuan Xi, Liuchen Chang, Meiqin Mao, Peng Jin, Nikos Hatziargyriou, and

Haibo Xu. Q-learning algorithm based multi-agent coordinated control method

for microgrids. In Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2015

9th International Conference on, pages 1497–1504. IEEE, 2015.

Justin A Boyan and Michael L Littman. Packet routing in dynamically changing

188 BIBLIOGRAPHY

networks: A reinforcement learning approach. Advances in neural information

processing systems, pages 671–671, 1994.

Meijuan Gao, Jin Xu, and Jingwen Tian. Mobile robot global path planning

based on improved augment ant colony algorithm. In Genetic and Evolutionary

Computing, 2008. WGEC’08. Second International Conference on, pages 273–

276. IEEE, 2008.

Marco Dorigo and LM Gambardella. Ant-q: A reinforcement learning approach to

the traveling salesman problem. In Proceedings of ML-95, Twelfth Intern. Conf.

on Machine Learning, pages 252–260, 2014.

Junius Ho, Daniel W Engels, and Sanjay E Sarma. Hiq: a hierarchical q-learning

algorithm to solve the reader collision problem. In Applications and the Internet

Workshops, 2006. SAINT Workshops 2006. International Symposium on, pages

4–pp. IEEE, 2006.

S Choi and Dit-Yan Yeung. Predictive q-routing: A memory-based reinforcement

learning approach to adaptive tra c control. Advances in Neural Information

Processing Systems, 8:945–951, 1996.

Chris Gaskett, David Wettergreen, and Alexander Zelinsky. Q-learning in con-

tinuous state and action spaces. In Australian Joint Conference on Artificial

Intelligence, pages 417–428. Springer, 1999.

A.T. Ernst and M. Krishnamoorthy. Solution algorithms for the capacitated single

BIBLIOGRAPHY 189

allocation hub location problem. Annals of Operations Research, 86:141–159,

1999.

Morton E O’kelly. A quadratic integer program for the location of interacting hub

facilities. European Journal of Operational Research, 32(3):393–404, 1987.

Kate A Smith-Miles. Cross-disciplinary perspectives on meta-learning for al-

gorithm selection. ACM Computing Surveys (CSUR), 41(1):6, 2008.

Melanie Hilario, Alexandros Kalousis, Phong Nguyen, and Adam Woznica. A data

mining ontology for algorithm selection and meta-mining. In Proceedings of the

ECML/PKDD09 Workshop on 3rd generation Data Mining (SoKD-09), pages

76–87, 2009.

Ender Özcan and Ahmed Kheiri. A hyperheuristic based on random gradient,

greedy and dominance. In Computer and Information Sciences II, pages 557–

563. Springer, 2012.

John H Drake, Ender Ozcan, and Edmund K Burke. A modified choice function

hyperheuristic controlling unary and binary operators. In Proceedings of the

IEEE Congress on Evolutionary Computation (CEC 2015), 2015.

E Burke and E Soubeiga. Scheduling nurses using a tabu-search hyperheuristic. In

Proceedings of the 1st Multidisciplinary International Conference on Scheduling:

Theory and Applications (MISTA 2003), Nottingham, UK, pages 180–197, 2003.

Peter Cowling and Konstantin Chakhlevitch. Hyperheuristics for managing a

large collection of low level heuristics to schedule personnel. In Evolutionary

190 BIBLIOGRAPHY

Computation, 2003. CEC’03. The 2003 Congress on, volume 2, pages 1214–

1221. IEEE, 2003.

Peter I Cowling and Konstantin Chakhlevitch. Using a large set of low level

heuristics in a hyperheuristic approach to personnel scheduling. In Evolutionary

Scheduling, pages 543–576. Springer, 2007.

Edmund K Burke and Graham Kendall. Search methodologies. Springer, 2005.

Ender Özcan, Mustafa Mısır, Gabriela Ochoa, and Edmund K Burke. A reinforce-

ment learning: Great-deluge hyperheuristic. Modeling, Analysis, and Applica-

tions in Metaheuristic Computing: Advancements and Trends: Advancements

and Trends, page 34, 2012.

Graham Kendall, Peter Cowling, and Eric Soubeiga. Choice function and random

hyperheuristics. In Proceedings of the 4th Asia-Pacific Conference on Simulated

Evolution and Learning, pages 667–671. Citeseer, 2002b.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.

MIT Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

Edwin T Jaynes. Bayesian methods: General background. 1986.

Bruno De Finetti. Theory of Probability: A critical introductory treatment. Vol. 2.

Wiley, 1974.

David Heckerman. Bayesian networks for data mining. Data mining and knowledge

discovery, 1(1):79–119, 1997.

BIBLIOGRAPHY 191

Efstathios Kirkos, Charalambos Spathis, and Yannis Manolopoulos. Data mining

techniques for the detection of fraudulent financial statements. Expert Systems

with Applications, 32(4):995–1003, 2007.

Murat Kantarcıoglu, Jaideep Vaidya, and C Clifton. Privacy preserving naive bayes

classifier for horizontally partitioned data. In IEEE ICDM workshop on privacy

preserving data mining, pages 3–9, 2003.

Iñaki Inza, Pedro Larrañaga, Ramón Etxeberria, and Basilio Sierra. Feature subset

selection by bayesian network-based optimization. Artificial intelligence, 123

(1):157–184, 2000.

Jonas Mockus. Bayesian approach to global optimization: theory and applications,

volume 37. Springer Science & Business Media, 2012.

Martin Pelikan. Bayesian optimization algorithm. In Hierarchical Bayesian

optimization algorithm, pages 31–48. Springer, 2005.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H

Teller, and Edward Teller. Equation of state calculations by fast computing

machines. The journal of chemical physics, 21(6):1087–1092, 1953.

Shu-Mei Ma, Yun Sun, and Ai-Ping Li. A simulated annealing algorithm for multi-

objective hybrid flow shop scheduling work partially supported by national major

science and technology of high-grade cnc machine tools and basic manufacturing

equipment special project of china under grant no. 2013zx04012-071. 2016.

192 BIBLIOGRAPHY

KLEIN Bouleimen and HOUSNI Lecocq. A new efficient simulated annealing al-

gorithm for the resource-constrained project scheduling problem and its multiple

mode version. European Journal of Operational Research, 149(2):268–281,

2003.

EB Schlünz and JH Van Vuuren. An investigation into the effectiveness of simulated

annealing as a solution approach for the generator maintenance scheduling

problem. International Journal of Electrical Power & Energy Systems, 53:

166–174, 2013.

Samaneh Sedehzadeh, Reza Tavakkoli-Moghaddam, Mehrdad Mohammadi, and

Fariborz Jolai. Solving a new priority m/m/c queue model for a multi-mode

hub covering location problem by multi-objective parallel simulated annealing.

Economic Computation and Economic Cybernetics studies and Research, 48(4):

299–318, 2014.

F Parvaresh, SA Hashemi Golpayegany, SM Moattar Husseini, and B Karimi.

Solving the p-hub median problem under intentional disruptions using simulated

annealing. Networks and Spatial Economics, 13(4):445–470, 2013.

EH Grosse, CH Glock, and R Ballester-Ripoll. A simulated annealing approach

for the joint order batching and order picker routing problem with weight re-

strictions. Technical report, Darmstadt Technical University, Department of

Business Administration, Economics and Law, Institute for Business Studies

(BWL), 2014.

BIBLIOGRAPHY 193

RaúL BañOs, Julio Ortega, Consolación Gil, Antonio FernáNdez, and Francisco

De Toro. A simulated annealing-based parallel multi-objective approach to

vehicle routing problems with time windows. Expert Systems with Applications,

40(5):1696–1707, 2013.

F Yu Vincent and Shih-Wei Lin. Multi-start simulated annealing heuristic for the

location routing problem with simultaneous pickup and delivery. Applied Soft

Computing, 24:284–290, 2014.

Glaydston Mattos Ribeiro, Geraldo Regis Mauri, and Luiz Antonio Nogueira

Lorena. A simple and robust simulated annealing algorithm for scheduling

workover rigs on onshore oil fields. Computers & Industrial Engineering, 60(4):

519–526, 2011.

RO Paiva et al. Optimizing the itinerary of workover rigs. In 16th World petroleum

congress. World Petroleum Congress, 2000.

Kathryn A Dowsland, Eric Soubeiga, and Edmund Burke. A simulated annealing

based hyperheuristic for determining shipper sizes for storage and transportation.

European Journal of Operational Research, 179(3):759–774, 2007.

Ruibin Bai, Jacek Blazewicz, Edmund K Burke, Graham Kendall, and Barry

McCollum. A simulated annealing hyper-heuristic methodology for flexible

decision support. 4OR, 10(1):43–66, 2012.

Konstantinos P Anagnostopoulos and Georgios K Koulinas. A simulated annealing

194 BIBLIOGRAPHY

hyperheuristic for construction resource levelling. Construction Management

and Economics, 28(2):163–175, 2010.

J Chávez, J Escobar, and M Echeverri. A multi-objective pareto ant colony

algorithm for the multi-depot vehicle routing problem with backhauls. Interna-

tional Journal of Industrial Engineering Computations, 7(1):35–48, 2016.

Yuvraj Gajpal and Prakash Abad. An ant colony system (acs) for vehicle routing

problem with simultaneous delivery and pickup. Computers & Operations

Research, 36(12):3215–3223, 2009.

KA Dowsland and JM Thompson. Ant colony optimization for the examination

scheduling problem. Journal of the Operational Research Society, 56(4):426–

438, 2005.

Masri Ayob and Ghaith Jaradat. Hybrid ant colony systems for course timetabling

problems. In Data Mining and Optimization, 2009. DMO’09. 2nd Conference

on, pages 120–126. IEEE, 2009.

Berna Kiraz, A Şima Etaner-Uyar, and Ender Özcan. An ant-based selection

hyper-heuristic for dynamic environments. Springer, 2013.

Alexandre Silvestre Ferreira, POZO Aurora, and Richard Aderbal Gonçalves. An

ant colony based hyper-heuristic approach for the set covering problem. ADCAIJ:

Advances in Distributed Computing and Artificial Intelligence Journal, 4(1):

1–21, 2015.

BIBLIOGRAPHY 195

Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers

& Operations Research, 24(11):1097–1100, 1997b.

Ping-Che Hsiao, Tsung-Che Chiang, and Li-Chen Fu. A vns-based hyper-heuristic

with adaptive computational budget of local search. In Evolutionary Computation

(CEC), 2012 IEEE Congress on, pages 1–8. IEEE, 2012.

Pierre Hansen and Nenad Mladenović. Variable neighborhood search. Springer,

2014.

Stephen Remde, Peter Cowling, Keshav Dahal, and Nic Colledge. Exact/heuristic

hybrids using rvns and hyperheuristics for workforce scheduling. In Evolutionary

Computation in Combinatorial Optimization, pages 188–197. Springer, 2007.

GM Ribeiro, G Desaulniers, J Desrosiers, T Vidal, and BS Vieira. Efficient

heuristics for the workover rig routing problem with a heterogeneous fleet and a

finite horizon. 2013.

Glaydston Mattos Ribeiro, Gilbert Laporte, and Geraldo Regis Mauri. A compar-

ison of three metaheuristics for the workover rig routing problem. European

Journal of Operational Research, 220(1):28–36, 2012c.

196

Hyperheuristics in Logistics

Success in using exact methods for large scale combinatorial optimization is still limited
to certain problems or to specific classes of instances of problems. The alternative way is
either using metaheuristics or matheuristics.In the context of combinatorial optimization,
we are interested in heuristics to choose heuristics invoked to solve the addressed problem.
In this thesis, we focus on hyperheuristic optimization in logistic problems. We focus on
proposing a hyperheuristic framework that carries out a search in the space of heuristic
algorithms and learns how to change the incumbent heuristic in a systematic way along
the process.We propose HHs for two optimization problems in logistics: the workover
rig scheduling problem and the hub location routing problem. Then, we compare the
performances of several HHs described in the literature for the latter problem, which
embed different heuristic selection methods such as a random selection, a choice function,
a Q-Learning approach, and an ant colony based algorithm. The computational results
prove the efficiency of HHs for the two problems in hand, and the relevance of including
Lagrangian relaxation information for the second problem.
Keywords: Metaheuristic, Heuristic, Hyperheuristic, Matheuristic, Reinforcement learning,
Hub location problem, Workover rig scheduling problem, Association rules.

Hyperheuristiques pour des problèmes d’optimisation en logistique

Le succeès dans l’utilisation de méthodes exactes d’optimisation combinatoire pour des
problèmes de grande taille est encore limité à certains problèmes ou à des classes spé-
cifiques d’instances de problèmes. Une approche alternative consiste soit à utiliser des
métaheuristiques ou des matheuristiques.Dans le contexte de l’optimisation combinatoire,
nous nous intéressons des heuristiques permettant de choisir les heuristiques appliquées
au problème traité. Dans cette thèse, nous nous concentrons sur l’optimisation à l’aide
d’hyperheuristiques pour des problèmes logistiques. Nous proposons un cadre hyperheur-
istique qui effectue une recherche dans l’espace des algorithmes heuristiques et apprend
comment changer l’heuristique courante de manière systématique tout au long du processus.
Nous étudions plus particulièrement deux problèmes d’optimisation en logistique pour
lesquels nous proposons des HHs: un problème de planification d’interventions sur des
puits de forage et un problème conjoint de localisation de hubs et de routage. Ensuite,
nous comparons les performances de plusieurs HH décrites dans la littérature pour le
second problème abordé reposant sur différentes méthodes de sélection heuristique. Les
résultats numériques prouvent l’efficacité de HHs pour les deux problèmes traités, et
la pertinence d’inclure l’information venant d’une relaxation de Lagrangienne pour le
deuxième problème.
Mots-clefs: Metaheuristique, Heuristique, Hyperheuristique, Matheuristique, Apprentis-
sage par renforcement, Problème de localisation des concentrateurs, Problème d’ordonnance-
ment de workover, Règles d’association.

	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	Hyperheuristic: A General Overview
	Introduction
	Heuristics, Metaheuristics and Matheuristics
	Hyperheuristics
	Hyperheuristic Classification
	Move Acceptance Criteria
	Termination Criteria

	State of the art
	Existing and the Proposed Framework
	Contributions and Overview

	Workover Rig Problem
	Introduction
	Literature review
	Objective and contribution

	Problem Description
	Mathematical Model
	Workover Rig Scheduling (WRS) Problem
	Valid inequalities
	Preprocessing
	Illustrative example

	Hyperheuristic for WRS Problem
	Reinforcement learning

	Numerical experiments
	Summary, conclusion and outlook to future work

	Capacitated Single Allocation p-Hub Location Routing Problem
	Introduction
	Mathematical Formulation
	(CSApHLRP-1-F1)
	(CSApHLRP-1-F2)
	(CSApHLRP-2)

	Solution algorithm
	Lagrangian relaxation
	Hyperheuristic for CSApHLRP-1 and CSApHLRP-2

	Computational experiments
	CSApHLRP-1 Computational experiments
	CSApHLRP-2 Computational experiments

	Conclusion and future work

	Selection Methods
	Introduction
	The Proposed Selection Methods
	Random Selection Based Hyperheuristic
	Greedy Based Hyperheuristic
	Peckish Based Hyperheuristic
	Choice Function Based Hyperheuristic
	Reinforcement Learning
	Metaheuristics Based Hyperheuristic

	Numerical Results
	Conclusion

	General Conclusion
	Bibliography
	Abstract

