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Abstract

Static program analysis aims at automatically determining whether a program satisfies some
particular properties. For this purpose, abstract interpretation is a framework that enables the
computation of invariants, i.e. properties on the variables that always hold for any program
execution. The precision of these invariants depends on many parameters, in particular the
abstract domain, and the iteration strategy for computing these invariants. In this thesis,
we propose several improvements on the abstract interpretation framework that enhance the
overall precision of the analysis.

Usually, abstract interpretation consists in computing an ascending sequence with widening,
which converges towards a fixpoint which is a program invariant; then computing a descending
sequence of correct solutions without widening. We describe and experiment with a method
to improve a fixpoint after its computation, by starting again a new ascending/descending
sequence with a smarter starting value. Abstract interpretation can also be made more pre-
cise by distinguishing paths inside loops, at the expense of possibly exponential complexity.
Satisfiability modulo theories (SMT), whose efficiency has been considerably improved in the
last decade, allows sparse representations of paths and sets of paths. We propose to combine
this SMT representation of paths with various state-of-the-art iteration strategies to further
improve the overall precision of the analysis.

We propose a second coupling between abstract interpretation and SMT in a program veri-
fication framework called Modular Path Focusing, that computes function and loop summaries

by abstract interpretation in a modular fashion, guided by error paths obtained with SMT.
Our framework can be used for various purposes: it can prove the unreachability of certain
error program states, but can also synthesize function/loop preconditions for which these error
states are unreachable.

We then describe an application of static analysis and SMT to the estimation of program
worst-case execution time (WCET). We first present how to express WCET as an optimization

modulo theory problem, and show that natural encodings into SMT yield formulas intractable
for all current production-grade solvers. We propose an efficient way to considerably reduce
the computation time of the SMT-solvers by conjoining to the formulas well chosen summaries
of program portions obtained by static analysis.

We finally describe the design and the implementation of Pagai, a new static analyzer
working over the LLVM compiler infrastructure, which computes numerical inductive invariants
using the various techniques described in this thesis. Because of the non-monotonicity of the
results of abstract interpretation with widening operators, it is difficult to conclude that some
abstraction is more precise than another based on theoretical local precision results. We thus
conducted extensive comparisons between our new techniques and previous ones, on a variety
of open-source packages and benchmarks used in the community.
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Résumé

L’analyse statique de programme a pour but de prouver automatiquement qu’un programme
vérifie certaines propriétés. L’interprétation abstraite est un cadre théorique permettant de
calculer des invariants de programme. Ces invariants sont des propriétés sur les variables du
programme vraies pour toute exécution. La précision des invariants calculés dépend de nom-
breux paramètres, en particulier du domaine abstrait et de l’ordre d’itération utilisés pendant
le calcul d’invariants. Dans cette thèse, nous proposons plusieurs extensions de cette méthode
qui améliorent la précision de l’analyse.

Habituellement, l’interprétation abstraite consiste en un calcul de point fixe d’un opérateur
obtenu après convergence d’une séquence ascendante, utilisant un opérateur appelé élargisse-

ment. Le point fixe obtenu est alors un invariant. Il est ensuite possible d’améliorer cet
invariant via une séquence descendante sans élargissement. Nous proposons une méthode pour
améliorer un point fixe après la séquence descendante, en recommençant une nouvelle séquence
depuis une valeur initiale choisie judiscieusement. L’interprétation abstraite peut également
être rendue plus précise en distinguant tous les chemins d’exécution du programme, au prix
d’une explosion exponentielle de la complexité. Le problème de satisfiabilité modulo théorie
(SMT), dont les techniques de résolution ont été grandement améliorée cette décennie, perme-
ttent de représenter ces ensembles de chemins implicitement. Nous proposons d’utiliser cette
représentation implicite à base de SMT et de les appliquer à des ordres d’itération de l’état de
l’art pour obtenir des analyses plus précises.

Nous proposons ensuite de coupler SMT et interprétation abstraite au sein de nouveaux
algorithmes appelés Modular Path Focusing et Property-Guided Path Focusing, qui calculent
des résumés de boucles et de fonctions de façon modulaire, guidés par des traces d’erreur. Notre
technique a différents usages: elle permet de montrer qu’un état d’erreur est inatteignable, mais
également d’inférer des préconditions aux boucles et aux fonctions.

Nous appliquons nos méthodes d’analyse statique à l’estimation du temps d’exécution pire
cas (WCET). Dans un premier temps, nous présentons la façon d’exprimer ce problème via
optimisation modulo théorie, et pourquoi un encodage naturel du problème en SMT génère des
formules trop difficiles pour l’ensemble des solveurs actuels. Nous proposons un moyen simple
et efficace de réduire considérablement le temps de calcul des solveurs SMT en ajoutant aux
formules certaines propriétés impliquées obtenues par analyse statique.

Enfin, nous présentons l’implémentation de Pagai, un nouvel analyseur statique pour
LLVM, qui calcule des invariants numériques grâce aux différentes méthodes décrites dans
cette thèse. Nous avons comparé les différentes techniques implémentées sur des programmes
open-source et des benchmarks utilisés par la communauté.
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Chapter 1

Introduction

1.1 Context

The last decades have seen the emergence and the impressive expansion of embedded computing
systems. They range from small portable devices such as smartphones, digital watches, MP3
players, etc., to very large and complex systems, like in avionics, automotive or medical devices.
These systems all share the property that failures can not be tolerated: for a smartphone
produced in millions of units, it may be dramatically expensive to fix; on avionics or medical
devices, it may threaten human lives; on nuclear power plants it involves high environmental
risks. In addition, the specifications for these systems are highly constrained, in terms of energy
consumption, maximal execution time, etc., which makes the validation even more challenging.

Nowadays, around six billion processor chips are produced every year, and 98% of them
end-up in embedded systems [JPC14]. At the same time, these systems become even more
complex: the size of the embedded software may contain several millions of lines of code, which
increases the risk of encountering bugs. History already gave examples of bugs with dramatic
impacts: one can classically cite the Ariane 5 crash in 1996 due to an integer overflow [Ari96],
or the death of 8 people in the National Cancer Institute of Panama in 2000 due to a bug in
the graphical user interface of the radiation therapy machine.

This motivates the need of a very reliable validation process for these safety-critical systems,
that provides trustworthy guarantees that the software fulfills its specification. In some cases,
this process is imposed by certification authorities, e.g. the DO-178C standard for airborne
systems. The approaches for validating softwares can be divided in two categories:

• Testing, or dynamic Analysis, which consists in observing the behavior of the software
given some well-chosen sample inputs. This approach can detect bugs but is not exhaus-
tive, since all inputs cannot be tested in general. It thus does not prove the system has
no bugs.

• Static Analysis is the class of validation techniques which in contrast are performed on
a static representation of the program. Some of these techniques mathematically prove
that the code does not have bugs without executing it, while others are able to detect
bugs. This thesis fits into the significant research effort for constructing efficient and
precise static analysis algorithms and techniques.

1.2 Static Analysis

Static program analysis aims at automatically determining whether a program satisfies some
particular properties. This is an important research topic, since it tackles a problem which is

13



Chapter 1 Introduction

known to be undecidable (Rice’s theorem): in other words, it is impossible to design a static
analysis that proves any non-trivial property on any program both exactly and automatically.

An important property of software validation tools is soundness: they have to take into
account every possible behavior of the software. In the case the tool is sound, it allows to
mathematically prove the absence of bug in the analyzed program. In this thesis, we do not
talk about unsound analysis techniques, even though they are also useful and used in practice
for finding bugs. Bug finders include the industrial tools Coverity1 and Polyspace Bug Finder2.

Sound and automatic software verification tools mostly rely on the following approaches:

• Model Checking [CES86]: it consists in exploring the possible states of the program
during its execution. Since the number of states can be infinite or extremely large,
symbolic model checking considers large numbers of states at the same time and represents
them compactly. Bounded model checking only considers the execution traces up to a
certain length, in order to keep the state space tractable. The analysis is then unsound
since some traces are ignored. State-of-the-art model checking techniques abstract the
program behavior into a simpler model, and iteratively refine this abstraction until the
given property is proved correct in this model. SPIN [Hol97], BLAST [BHJM07], CBMC
[CKL04] or Java PathFinder3 are examples of model checkers.

• Abstract Interpretation [CC77, CC92] computes an over-approximation of the set of reach-
able program states. It aims at discovering invariants of a particular well-chosen shape –
referred to as abstract domain – that allow to prove the properties of interest. Industrial
tools like Astrée [BCC+03] or Polyspace [Pol] can prove the absence of runtime errors
on large embedded softwares written in C. Nowadays, Abstract interpretation is used be-
yond the scope of embedded softwares: Microsoft Visual Studio IDE incorporates a static
analyzer [Log11] for automatically checking correctness specifications for .NET bytecode.

• Symbolic Execution [Kin76] consists in executing the program while keeping input vari-
ables symbolic rather than assigning them a value. In this way, one can derive path
invariants, i.e. properties on the variables that are always true for a given path. This
method would not scale if applied naively because of an exponential blowup in the num-
bers of paths, and requires more evolved techniques for merging [KKBC12] or heuristically
ignoring certain paths.

These approaches are tightly related: some model-checking based tools make use of abstract
interpretation. Symbolic execution can be seen as an instance of abstract interpretation. In
this thesis, we propose new abstract interpretation based techniques that integrate some kind
of bounded model checking for increasing the precision of the results.

1.3 Contributions

The major drawback of abstract interpretation is over-approximation: since the real set of
reachable program states cannot be computed exactly, one computes a bigger set that contains
the real one. This approximate set is commonly called abstract value. However, this approxima-
tion is frequently too rough and not sufficient to prove the desired properties, mostly because
of two reasons:

1https://scan.coverity.com/
2http://www.mathworks.fr/products/polyspace-bug-finder/
3http://babelfish.arc.nasa.gov/trac/jpf
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Section 1.3 Contributions

(1) the abstract value is restricted to a particular pattern, called abstract domain, and preci-
sion is lost throughout the analysis because of the limited expressiveness of this domain.

(2) the set is obtained in finite time thanks to an extrapolation of the behavior of the pro-
gram (called widening). This widening induces non-recoverable and unpredictable loss of
precision throughout the analysis.

As a result, for a given program and a given property, an abstract interpretation based static
analyzer can only answer “correct” – if the computed set is precise enough to prove it – or “I

don’t know”: maybe there is a bug in the real program, or maybe the approximation is simply
not precise enough to prove it. The latter case is usually called false alarm, or false positive.
An analysis with too many false positives is not tolerable: human attention is needed for every
alarm to check whether it is real or a false positive.

In this thesis, we tackle both problems (1) and (2), and propose new solutions for limiting
these losses of precision. We also provide a large practical contribution with the implementation
of a new abstract interpretation based static analyzer called Pagai.

We propose contributions in four different areas of static analysis:

Recovering precision after computation with widening The approximate set is com-
puted iteratively by an ascending sequence that performs widenings. Once an invariant is found,
it can usually be made more precise by a descending sequence. In this thesis, we describe and
experiment with a new way of performing this descending sequence, and thus improve the
precision lost due to point (2).

Our experiments show that this approach improves the results of abstract interpretation in
practice, and have been published in [HH12]. This contribution is detailed in section 4.1.

Combination with bounded model checking Abstract Interpretation computes an in-
variant of a particular shape, called abstract domain, at each program location. Point (1)

can be addressed by applying abstractions using this abstract domain only at a subset of the
program locations. This can be achieved by using bounded model checking on some portions
of the analyzed program, so that precision is not lost on these portions. Bounded model check-
ing then provides the abstract interpretation engine with an iteration strategy for computing
a more precise invariant. We propose to apply this idea to several state-of-the-art abstract
interpretation techniques to increase precision. Our work has been published in [HMM12b],
and is detailed in section 4.2.

Secondly, in chapter 5, we extend this work to a modular and inter-procedural analysis that
takes advantage of both bounded model checking and abstract interpretation to automatically
derive useful function preconditions, while lazily analyzing each program fragment to improve
scalability.

Pagai static analyzer We propose a new static analyzer called Pagai, published in [HMM12a],
based on the LLVM compiler infrastructure, written in C++ with around 20.000 lines of code.
It implements the various techniques presented throughout this thesis, and allows running ex-
periments on real softwares written in C, C++, or Objective-C and compare both the precision
and the cost of the various methods. It is able to derive precise numerical program invariants
and prove the absence of integer overflows as well as array out of bounds accesses. It also
checks for the validity of assert statements. It has already been used by other research teams
for experimenting with their own techniques [AS13].
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Chapter 1 Introduction

Application to Worst-Case Execution Time (WCET) We propose a way of applying
bounded model checking for deriving precise and semantic-sensitive Worst Case Execution
Time bounds for loop-free programs, taking benefits of the great research advances in the field
of Satisfiability Modulo Theories (SMT). We show both theoretically and experimentally that a
simple encoding of the WCET problem into SMT formula is too hard to solve for state-of-the-
art solvers. We then propose a method that transforms this formula into an equisatisfiable one,
which is solved in a reasonable amount of time. The work has been published in [HAMM14]
and is detailed in chapter 6.

1.4 Outline

This thesis is organized into three parts:
Part I gives an introduction to static analysis techniques based on abstract interpretation.

It first recalls the standard framework of abstract interpretation, as well as several other ap-
proaches for program verification relevant for this thesis, in particular bounded model checking.
Then, it mentions the main state-of-the-art improvements over the initial abstract interpreta-
tion algorithm, used for improving its precision.

Part II is dedicated to our theoretical contributions: we start with a new method for im-
proving the precision after an invariant has been found. We propose a new algorithm called
Guided Path Analysis, that takes the best of two state-of-the-art iteration strategies for improv-
ing the overall precision of the analysis with the help of decision procedures. We propose an
extension of this last technique for the computation of disjunctive invariants. Then, we propose
a framework for a modular static analysis based on the combination of SMT and abstract in-
terpretation. The framework generates function and loop summaries, and infers preconditions
for the function so that an error state is not reachable.

Part III contains our practical contributions as well as an application of static analysis to
the estimation of Worst-Case Execution Time (WCET) of programs. We start with a new
approach for computing WCET based on bounded model checking by SMT-solving. The last
part is dedicated to the presentation of our new static analyzer, Pagai, as well as experimental
results.
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Chapter 2

Program Invariants Computation by

Static Analysis

2.1 Basics of Abstract Interpretation

Abstract interpretation [CC77, CC92] is a general framework for computing sound approxima-
tions of program semantics. It has already been widely used for the design of static analyzers,
such as Astrée [BCC+03] or Polyspace [Pol], whose objective is to prove that the program
under analysis satisfies some important properties such as “The program never dereferences
a null pointer”, “The program never divides by zero”, or more generally “These classes of
runtime errors cannot happen” and “the user-specified assertions are never violated”. Most
of these properties are undecidable in general because of the too high complexity of formal
semantics of programming languages. However, one can work with a sound and decidable ab-
straction of this semantics, that can be used for computing an over-approximation of the set of
reachable program states. Abstract interpretation gives a theoretical framework for designing
sound-by-construction approximate semantics.

Figure 2.1 illustrates the main principle of the approach: the set R is the non-computable
set of reachable states. Abstract interpretation aims at over-approximating this set by a simpler
set A that contains R. This set A should be sufficiently precise to prove the absence of bugs:
here, the intersection of A with a set of error states E2 is empty, meaning that every state
in E2 is proved unreachable. Conversely, A intersects with the set E1 while R does not: the
over-approximation A is too rough to prove the unreachability of the errors in E1.

E1

E2
R

A

Figure 2.1: Abstract Interpretation computes over-approximations. The errors in E2 are proved
unreachable, while the non-empty intersection of A with E1 raises a false alarm.
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Chapter 2 Program Invariants Computation by Static Analysis

In this section, we describe abstract interpretation as proposed in [CC77, CC92]. First, we
start with usual required definitions.

2.1.1 Definitions

First, we need to introduce standard definitions needed for describing abstract interpretation.

Definition 1 (Partially ordered set). A Partially ordered set (P,⊑) is a set P together with
a partial order ⊑, i.e. a binary relation verifying the properties:

• ∀x ∈ P, x ⊑ x (reflexivity)
• ∀(x, y) ∈ P2, x ⊑ y ∧ y ⊑ x ⇒ x = y (antisymmetry)
• ∀(x, y, z) ∈ P3, x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z (transitivity)

Definition 2 (Upper and Lower Bounds). Let (P,⊑) be a partially ordered set, and S ⊆ P.
An element u ∈ P is an upper bound of S if ∀s ∈ S, s ⊑ u. The element u is the least upper

bound of S (denoted by ⊔S) if u ⊑ u′ for each upper bound u′ of S. Similarly, the element
l ∈ P is a lower bound of S if ∀s ∈ S, u ⊑ s. The element l is the greatest lower bound of S

(denoted by ⊓S) if l′ ⊑ l for each lower bound l′ of S.

Definition 3 (Lattice). A lattice (L,⊑,⊔,⊓) is a partially ordered set (L,⊑) where each pair
(x, y) ∈ L2 has a least upper bound, denoted by x⊔ y, and a greatest lower bound, denoted by
x ⊓ y. ⊔ : L × L −→ L and ⊓ : L × L −→ L are respectively called join and meet operators.

A complete lattice is a lattice for which every subset, possibly infinite, has a least upper
bound and an greatest lower bound. In this case, we note ⊥ def= ⊓L (called bottom) and ⊤ def= ⊔L

(called top). In particular, if P(X) is the set of all subsets of a set X, also called powerset,
then (P(X),⊆,∪,∩) is a complete lattice.

Definition 4 (Ascending Chain Condition). A partially ordered set (P,⊑) is said to satisfy
the ascending chain condition if for any increasing sequence (xi)i∈N of elements of P, there
exist k ∈ N such that (xi)i>k is stationary, i.e. ∀i > k, xi = xk.

Definition 5 (Properties of Maps). Let F be a map P1 −→ P2 between two partially ordered
sets (P1,⊑1) and (P2,⊑2). F is said to be monotonic if ∀(x, x′) ∈ P2

1 , x ⊑1 x′ ⇒ F (x) ⊑2

F (x′). We call operator a map F : P −→ P, i.e. a map from a partially ordered set to
itself. In this case, we note F i(x) the i-th iterate of F on x, such that F 1(x) = F (x) and
∀i > 1, F i(x) = F (F i−1(x)).

Definition 6 (Fixpoint). Let (L,⊑,⊔,⊓) be a lattice and F : L → L. An element x ∈ L

is called a fixpoint of F if F (x) = x. Similarly, it is called a pre-fixpoint if x ⊑ F (x), and a
post-fixpoint if F (x) ⊑ x. If they exist, the least fixpoint of F is denoted by lfp(F ), and the
greatest fixpoint is denoted by gfp(F ).

Program Model

The behavior of a program can be formally described by a Transition System, that defines a set
S of program states, a set I ⊆ S of possible initial states, and a transition relation R ⊆ S × S.
If (p, q) ∈ R, we usually note p → q to represent the fact that there is a transition from p to q.
With this formalism, the control structure of the program is encoded in the transition relation.

In this thesis, we often represent programs in the form of Control Flow Graphs, which has
the benefit of explicitly encoding the control structure of the program:
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Section 2.1 Basics of Abstract Interpretation

Definition 7 (Control-flow Graph). A control-flow graph is a directed graph G = (N, I, T, Σ),
where:

• N is a set of program locations, also called program points. The elements of N are the
nodes of the graph.

• I ⊆ N is the set of initial program locations,
• Σ is a set, (usually, the set of program states, or later an abstraction thereof),
• T is a set of transitions (i, τi,j , j) between two locations i and j ∈ N , denoted by i

τi,j
−→ j.

τi,j is an operator Σ → Σ that we call forward transformer.

The transition relations are typically defined from the semantics of the program instructions.

2.1.2 Reachable Program States as a Fixpoint

Let States be the set of all possible states of a program. Informally, the state of a program is
the current value for each registers — including data registers, but also program counter, etc.
— and related memory, i.e. stack and heap. The powerset P(States) is the set of all subsets
of States. In particular, the set of reachable states is in P(States), but is not computable in
general. The semantics of a program can be defined by a transition relation τ that maps a
set of states to the next reachable states after one atomic step of execution. Starting from an
initial state x0 ∈ States, we can reach the states {xi ∈ States / xi ∈ τ i({x0})}. It follows that
if S is a set of states, the set of states reachable after k atomic execution steps is τk(S). If
I ⊆ States is the set of possible initial states of the program, then the set of reachable states is
defined by:

τ∗(I) def=
⋃

i∈N

τ i(I)

Let Φ : P(States) −→ P(States) defined by:

S �−→ I ∪ τ(S)

It is immediate to see that Φ(τ∗(I)) = I ∪ τ(τ∗(I)) = I ∪
⋃

i≥1 τ i(I) = τ∗(I). Indeed, a
reachable state is either an initial state, or a state reachable in one step from a reachable state.
The set of reachable state is thus a fixpoint of Φ.

Φ is monotonic because τ is monotonic, and I is a pre-fixpoint of Φ, so we can use Kleene’s
theorem to say that the least fixpoint of Φ, denoted by lfp(Φ), is equal to limk→+∞ Φ

k(⊥). It
is easy to see that this limit is actually equal to τ∗(I), so we deduce the important result that
τ∗(I) = lfp(Φ).

Example 1. Suppose we have the very simple program depicted in Figure 2.2.

unsigned x = 0 ;

while ( x < 100) {

x +=2;

}

p0

p1

p2

p3

x ≥ 100

x < 100 x ← incr(x)

Figure 2.2: Very simple C program, and its corresponding control-flow graph.
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In the control-flow graph, incr is the function defined as:

incr : N −→ N

x �−→ x + 2

For simplicity, we suppose here that x is a mathematical natural number instead of being
bounded by UMAX, the greatest unsigned value in C. We can consider here that a program
state is actually an element of States = {p0, p1, p2, p3} × N. The transition relation τ can be
easily derived from the graph:

τ({(p0, x)}) = {(p1, x)}

τ({(p1, x)}) =

{

{(p2, x)} if x < 100
{(p3, x)} if x ≥ 100

τ({(p2, x)}) = {(p1, x + 2)}

The set of initial states is I = {(p0, 0)}. The set of reachable states is the least fixpoint of Φ

as previously defined. In this case,

Φ(⊥) = I = {(p0, 0)}
Φ

2(⊥) = {(p0, 0), (p1, 0)}
Φ

3(⊥) = {(p0, 0), (p1, 0)} ∪ {(p2, 0)}
Φ

4(⊥) = {(p0, 0), (p1, 0), (p2, 0), (p1, 2)}
. . .

After some steps, (Φk) becomes stationary (which is not the case in general) and is equal to:

Φ
∞(⊥) = {(p0, 0)} ∪

{(p1, x), 0 ≤ x ≤ 100 ∧ x ≡ 0(2)} ∪
{(p2, x), 0 ≤ x ≤ 99 ∧ x ≡ 0(2)} ∪
{(p3, 100)}

= lfp(Φ) = τ∗(I)

From this result, we can deduce program invariants, i.e. properties on the reached program
states that are true for every possible execution. Here, an interesting invariant is: “After the
loop, variable x is equal to 100.”

2.1.3 Concrete and Abstract Domains

For a given transition relation τ , the most precise property of interest would be “the set of
reachable states is τ∗(I)”. However, Rice’s theorem implies that this set is not computable in
general. The fundamental reasons are:

• The elements of P(States), and in particular τ∗(I), may not be machine-representable,
• The transition relation τ and the Φ operator may not be computable,
• The least fixpoint of Φ may not be reached after a finite number of Kleene iterations.

However, since the discovered invariant is typically used for proving some property P about
the program: ∀x ∈ τ∗(I), P (x), it is sufficient for proving this property to find a computable
set R that includes τ∗(I) and for which ∀x ∈ R, P (x). From this set, the obtained invariant
will be “the set of reachable states is included in R” and will be precise enough to prove the
property of interest. This set R should be a machine-representable element of a simpler domain

22



Section 2.1 Basics of Abstract Interpretation

called abstract domain and denoted by X♯. The invariant that will be discovered is weaker
than τ∗(I): it may be the case that the computed set R does not verify the property P while
τ∗(I) does. Indeed, R over-approximates the real set of reachable states, and there may exist
an element x ∈ R\τ∗(I) for which P (x) does not hold. In this case, P is not proved correct
and x is called false positive. The objective is then to minimize the number of false positives

in the analysis by computing sufficiently precise program invariants.

Definition 8 (Abstract Domain). Let X be the set of elements to be abstracted. X is called
concrete domain. We assume that (X,⊑,⊔,⊓) is a lattice, where ⊑ is the partial order, and
⊔ and ⊓ are respectively the join and meet operators. An abstract domain over the concrete
domain X is a pair (X♯, γ), where γ is a function from X♯ to X called concretization function,
and (X♯,⊑♯,⊔♯,⊓♯) is a lattice satisfying the following properties:

• ⊑♯ is a sound approximation of ⊑:

∀x♯, y♯ ∈ X♯, x♯ ⊑♯ y♯ ⇒ γ(x♯) ⊑ γ(y♯)

In other words, we can also say that the concretization function γ is monotonic.

• The abstract join operator ⊔♯ : X♯×X♯ −→ X♯ is a sound abstraction of ⊔ : X×X −→ X:

∀x♯, y♯ ∈ X♯, γ(x♯) ⊔ γ(y♯) ⊑ γ(x♯ ⊔♯ y♯)

• Similarly, the abstract meet operator ⊓♯ : X♯ × X♯ −→ X♯ abstracts ⊓ : X × X −→ X

so that:

∀x♯, y♯ ∈ X♯, γ(x♯) ⊓ γ(y♯) ⊑ γ(x♯ ⊓♯ y♯)

An element x♯ ∈ X♯ represents an element γ(x♯) ∈ X, and is a sound abstraction of any x

such that x ⊑ γ(x♯). Intuitively, we can say that x♯ is more precise than y♯ if x♯ ⊑♯ y♯, since it
represents a set which is smaller.

Example. In the previous example, we had States = {p0, p1, p2, p3} × N. The set X is then
P(States). A possible abstract domain would be X♯ = I, where (I,⊑,⊔,⊓) is the complete
lattice of the intervals of N:

• ∀x, y, x′, y′ ∈ N, [x, y] ⊑ [x′, y′] ⇔ x ≥ x′ and y ≤ y′,
• ∀x, y, x′, y′ ∈ N, [x, y] ⊔ [x′, y′] = [min(x, x′), max(y, y′)],
• ∀x, y, x′, y′ ∈ N, [x, y] ⊓ [x′, y′] = [max(x, x′), min(y, y′)].

where [x, y] = ∅ when x > y. The concretization function γ can be defined as:

γ : I −→ P(States)
[x, y] �−→ {(pi, xi) ∈ States, xi ∈ [x, y]}

The best (control-flow insensitive) abstraction of the reachable program states in this ab-
stract domain is x♯ = [0, 100], and the concretization of this element is γ(x♯) = {(pi, xi) ∈
States, xi ∈ [0, 100]} that includes τ∗(I). Since, for instance, (p3, 0) is included in γ(x♯) the
property “After the loop, variable x is equal to 100” is no longer true, because of the too coarse
abstraction.
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2.1.4 Fixpoint Computation

We have seen that the set of reachable states of a program can be expressed as the least
fixpoint of an operator Φ over the concrete domain. The idea is then to compute a fixpoint of
an operator Φ

♯ over the abstract domain that is a sound approximation of Φ, i.e.:

∀x♯ ∈ X♯, Φ ◦ γ(x♯) ⊑ γ ◦ Φ
♯(x♯)

Φ
♯ can be derived from a forward abstract transformer τ ♯ : X♯ → X♯ that satisfies the property:

∀x♯ ∈ X♯,∀x, y ∈ X, x ⊑ γ(x♯) ∧ τ(x) = y ⇒ y ⊑ γ ◦ τ ♯(x♯)

The fixed point transfer theorem [CC77] states that the least fixpoint of Φ
♯ is a sound abstrac-

tion of the least fixpoint of Φ:
γ(lfp(Φ♯)) ⊒ lfp(Φ)

It follows that any fixpoint of Φ
♯ is a safe abstraction of the least fixpoint of Φ. Thus, one

can just focus on computing a fixpoint of Φ
♯, which can be done by computing the limit of the

Kleene’s sequence defined inductively by:

{

x♯
0 = ⊥

x♯
i = Φ

♯(x♯
i−1),∀i > 0

At each step, x♯
i is a sound abstraction of xi = Φ

i(⊥). When X♯ satisfies the ascending

chain condition, the sequence eventually stabilizes to some limit x̃♯ = lfp(Φ♯), which is a sound
abstraction of the set of reachable states. Generally, x♯

0 is defined to be equal to ⊥ since ⊥ is
always a prefixpoint of Φ

♯, but x♯
0 could be actually set to any prefixpoint of Φ

♯.
However, most of the interesting abstract domains do not satisfy the ascending chain con-

dition, and thus the Kleene’s iteration may never converge to a fixpoint. In order to ensure
the termination of the computation, one must define and use a widening operator:

Definition 9 (Widening Operator). An operator ∇ : X♯ × X♯ −→ X♯ is said to be a widening

operator if it satisfies the following properties:

• ∀x♯, y♯ ∈ X♯, x♯ ⊑♯ x♯ ∇ y♯

• ∀x♯, y♯ ∈ X♯, y♯ ⊑♯ x♯ ∇ y♯

• For every chain (x♯
i)i∈N, the increasing chain (y♯

i )i∈N defined by :
{

y♯
0 = x♯

0

y♯
i = y♯

i−1 ∇x♯
i,∀i > 0

is stable after a finite time, i.e. ∃k ∈ N, y♯
k+1 = y♯

k

If we want to compute the limit of a sequence (x♯
i)i∈N that does not stabilize after a finite

number of steps, we can use a widening operator to compute the limit of another sequence
(y♯

i )i∈N that converges in finite time towards an overapproximation of the limit of (x♯
i)i∈N.

If the abstract domain does not satisfy the ascending chain condition, we thus can compute
a fixpoint of Φ

♯ in finite time using widening:

{

y♯
0 = ⊥

y♯
i = y♯

i−1 ∇Φ
♯(y♯

i−1),∀i > 0
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We then obtain after some iterations a post-fixpoint of Φ
♯. Indeed, if we note ỹ♯ the limit

of the sequence, we have ỹ♯ = ỹ♯ ∇Φ
♯(ỹ♯), and the properties on the widening operator imply

that Φ
♯(ỹ♯) ⊑♯ ỹ♯. The widening operator is needed to ensure termination, at the expense of

precision: for instance, one could define the widening operator to be ∀x♯, y♯ ∈ X♯, x♯ ∇ y♯ = ⊤,
which is correct but extremely imprecise. In the case where the abstract domain satisfies the
ascending chain condition, a widening can still be used to trade precision for efficiency, since a
widening can lead to a postfixpoint in a few steps while classical Kleene iterations may converge
after a long time.

However, once we have a postfixpoint of Φ
♯, assuming Φ

♯ is monotonic, it is possible to
continue applying the Φ

♯ operator on it and still obtain a (post)fixpoint which is either equal
or smaller than the previous one:

{

z♯
0 = ỹ♯

z♯
i = Φ

♯(z♯
i−1),∀i > 0

The sequence (z♯
i )i∈N is decreasing, and each element z♯

i is a post-fixpoint of Φ
♯. Similarly

to the ascending sequence, the decreasing sequence may not stabilize to a fixpoint of Φ
♯. In

practice, this decreasing sequence, also called narrowing sequence, reaches a fixpoint in a very
few number of iterations, otherwise the sequence is stopped after a given number of steps.

Finally, the limit z̃♯ of (z♯
i )i∈N is a sound approximation of the set of reachable states:

lfp(Φ) ⊑ γ(ỹ♯). Figure 2.3 illustrates the sequences (x♯
i)i, (y♯

i )i and (z♯
i )i previously defined.

2.1.5 Kleene Iteration Strategies

In practice, instead of considering the set of reachable states for the entire program, it is
possible to decompose it as the union of the reachable states at each program location (also
called program point). Typically, there is a program location before and after each atomic
instruction of the program. If the program is seen as a control-flow graph, the set of program
locations is the set of nodes in the graph. The set of reachable states at a given program
point depends on the reachable states of its predecessors. The operators Φ and Φ

♯ can be
respectively decomposed into Φ1, Φ2, . . . , Φn and Φ

♯
1, Φ

♯
2, . . . , Φ

♯
n, where n is the number of

program locations, with each Φ
♯
i being a sound abstraction of Φi. In this case, lfp(Φ♯) is the

least solution of this system of equations:







x♯
1 = Φ

♯
1(x♯

1, . . . , x♯
n)

x♯
2 = Φ

♯
2(x♯

1, . . . , x♯
n)

...
x♯

n = Φ
♯
n(x♯

1, . . . , x♯
n)

(2.1)

Similarly to subsection 2.1.4, Kleene iterations over this system of equations are not guar-
anteed to terminate, and a widening operator has to be used during the ascending sequence:







x♯
1,i+1 = x♯

1,i ∇Φ
♯
1(x♯

1,i, . . . , x♯
n,i)

x♯
2,i+1 = x♯

2,i ∇Φ
♯
2(x♯

1,i, . . . , x♯
n,i)

...
x♯

n,i+1 = x♯
n,i ∇Φ

♯
n(x♯

1,i, . . . , x♯
n,i)

In our notations, the components Φ
♯
i have n parameters, but in practice their values only

depend on a small subset of them. Using a control-flow graph representation of the abstract
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lfp(Φ♯)

gfp(Φ♯)

⊥

⊤

ỹ♯

z̃♯

PostFix(Φ♯)

PreFix(Φ♯)

Fix(Φ♯)

(x♯
i)i

(y♯
i )i

(z♯
i )i

Figure 2.3: Illustration of the ascending and descending sequences in the abstract lattice.
Fix(Φ♯),PreFix(Φ♯) and PostFix(Φ♯) are respectively the sets of fixpoints, prefixpoints and
postfixpoints of the operator Φ

♯. (x♯
i)i is the ascending sequence without widening, which is

often infinite. (y♯
i )i is the ascending sequence with widening. (z♯

i )i is the descending sequence.
Note that in practice, the decreasing sequence generally converges to an element z̃♯ ∈ Fix(Φ♯).
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semantics of the program, the value x♯
k,i+1 related to the node k only depends on the values

of the x♯
k′,i+1, for which there exist a transition (k′, k) in the graph. Applying a widening

operator at each program location may degrade the precision of the analysis dramatically.
[CC92] suggests applying widenings only at a subset PW of these control points, and just use
the least upper bound operator for the control points that are not in PW . Breaking all cycles
in the graph is sufficient for the analysis to terminate:

Theorem 1. Let G = (N, I, T, X♯) be the control-flow graph representing the abstract se-
mantics of the program. Let PW be a subset of N , such that the new graph G′ obtained after
removing from G the nodes in PW has no cycle.

Then, the sequence of vectors (x♯
1,i, . . . , x♯

n,i)i∈N, converges in finite time to an overapprox-

imation of the least solution of the equation system 2.1, where the x♯
k,i are defined by:

x♯
k,i+1 =

{

x♯
k,i ∇Φ

♯
k(x♯

1,i, . . . , x♯
n,i) if k ∈ PW

Φ
♯
k(x♯

1,i, . . . , x♯
n,i) otherwise

Example. In our example of Figure 2.2, we attach to each program state pi, i ∈ {0, 1, 2, 3}

an abstract value x♯
i ∈ I. This will allow to compute for each program point an interval that

contains all possible values for the variable x. We will use the abstract transformer Φ
♯ : I4 → I4

defined as follows:

Φ
♯









x♯
0

x♯
1

x♯
2

x♯
3









def=









Φ
♯
0()

Φ
♯
1(x♯

0, x♯
2)

Φ
♯
2(x♯

1)
Φ

♯
3(x♯

1)









def=









[0, 0]
x♯

0 ⊔ incr♯(x♯
2)

x♯
1 ⊓ (−∞, 99]

x♯
1 ⊓ [100, +∞)









with incr♯:I → I being a sound abstraction of incr:

[x, y] �→ [x + 2, y + 2]

Since the abstract domain of intervals I does not satisfy the ascending chain condition – for
instance, the sequence ([0, i])i>0 is strictly increasing – we have to define a widening operator

for I: ∀[x, y], [x′, y′] ∈ I, [x⊔, y⊔] def= [x, y] ⊔ [x′, y′],

[x, y]∇[x′, y′] def=







[x, y] if x = x⊔ ∧ y = y⊔

[x, +∞) if x = x⊔ ∧ y < y⊔

(−∞, y] if x < x⊔ ∧ y = y⊔

(−∞, +∞) if x < x⊔ ∧ y < y⊔

In the control-flow graph of the program, the control points p1 and p2 are forming a cycle
(in other words, x♯

1 and x♯
2 are mutually dependent in the iteration process). We can define

PW = {p1} to be the set of widening points, which disconnects all cycles in the graph.
We compute iteratively the ascending sequence defined as follows:







y♯
0,0 = ⊥

y♯
1,0 = ⊥

y♯
2,0 = ⊥

y♯
3,0 = ⊥

and ∀i ∈ N,







y♯
0,i+1 = y♯

0,i ⊔ [0, 0]
y♯

1,i+1 = y♯
1,i ∇(y♯

0,i ⊔ incr♯(x♯
2,i))

y♯
2,i+1 = y♯

2,i ⊔ (y♯
1,i ⊓ (−∞, 99])

y♯
3,i+1 = y♯

3,i ⊔ (y♯
1,i ⊓ [100, +∞))

⊥

⊥

⊥

⊥

→

[0, 0]
⊥

⊥

⊥

→

[0, 0]
[0, 0]
⊥

⊥

→

[0, 0]
[0, 0]
[0, 0]
⊥

→

[0, 0]
[0, +∞)
[0, 0]
⊥

→

[0, 0]
[0, +∞)
[0, 99]
[100, +∞)
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Once the sequence has stabilized, one can compute a decreasing sequence:







z♯
0,0 = [0, 0]

z♯
1,0 = [0, +∞)

z♯
2,0 = [0, 99]

z♯
3,0 = [100, +∞)

and ∀i ∈ N,







z♯
0,i+1 = [0, 0]

z♯
1,i+1 = z♯

0,i ⊔ incr♯(z♯
2,i))

z♯
2,i+1 = z♯

1,i ⊓ (−∞, 99])
z♯

3,i+1 = z♯
1,i ⊓ [100, +∞))

[0, 0]
[0, +∞)
[0, 99]
[100, +∞)

→

[0, 0]
[0, 101]
[0, 99]
[100, +∞)

→

[0, 0]
[0, 101]
[0, 99]
[100, 101]

We have reached a fixpoint of Φ
♯ which is a overapproximation of the set of reachable states:

at p0, x = 0, at p1, x ∈ [0, 101], at p2, x ∈ [0, 99] and at p3, x ∈ [100, 101]. Note that using
the abstract domain I, a better invariant at p1 would have been x ∈ [0, 100]. Even though
the decreasing sequence improves the precision of the result a lot, it does not reach the least
fixpoint of Φ

♯.

Chaotic Iterations

For a given i, the (x♯
k,i)k do not depend on each other, but only on the values obtained at the

(i − 1)-th iteration. However, for a faster convergence and better precision, one could reuse
the value of an already computed x♯

k,i at the place of x♯
k,i−1 each time it occurs, since the Φ

♯
k

operators are monotonic and x♯
k,i ⊒

♯ x♯
k,i−1. In other words, one could start with a vector

(x♯
1, . . . , x♯

n) def= (x♯
1,0, . . . , x♯

n,0), define an operator Update: X♯ −→ X♯ as follows:

Update(x♯
k) def=

{

x♯
k ∇Φ

♯
k(x♯

1, . . . , x♯
n) if k ∈ PW

x♯
k ⊔

♯
Φ

♯
k(x♯

1, . . . , x♯
n) otherwise

and successively apply Update on the x♯
k’s, assuming every k is chosen infinitely often.

Algorithm 1 describes a classical algorithm for computing the chaotic iterations until a
postfixpoint has been reached. Each abstract values x♯

p, p ∈ N is initialized to ⊥ and updated
iteratively. A set Active of active nodes is initialized to the initial states. It is used for storing a
working list of states p for which x♯

p has to be updated. When an abstract value x♯
p is updated,

then every x♯
q such that q is a successor of p in the control-flow graph, i.e. (p, q) ∈ T , has to

be recomputed.
In this algorithm, line 6 chooses a node among the active nodes. One can choose any node

(with some fairness condition that guarantees each node to be selected regularly) and obtain
a correct result at the end, but experience shows that the precision of the resulting abstract
values as well as the number of iterations before stabilization highly depends on this choice.
The problem of choosing the node, also called iteration strategy, has been extensively studied in
the literature, for instance in [Bou92]. Most of these strategies are based on the decomposition
of the control-flow graph into its strongly connected components (also denoted by SCC ), for
instance:

• First stabilize the first SCC before proceeding to the next, or
• First stabilize innermost loops.
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Algorithm 1 Standard Abstract Interpretation with chaotic iterations

1: function ChaoticIterations( Control-flow graph G = (N, I, T ))
2: Active ← I ⊲ Set of active nodes
3: Choose a set PW ⊆ N of widening nodes
4: x♯

p ← ⊥ for each p ∈ N

5: while Active �= ∅ do

6: Choose p ∈ Active
7: Active ← Active \ {p}

8: x♯
old ← x♯

p

9: if p ∈ PW then

10: x♯
p ← x♯

p ∇Φ
♯
k(x♯

1, . . . , x♯
n)

11: else

12: x♯
p ← x♯

p ⊔
♯

Φ
♯
k(x♯

1, . . . , x♯
n)

13: end if

14: if x♯
old �

♯ x♯
p then

15: Active ← Active ∪ Successors(p)
16: end if

17: end while

18: end function

2.1.6 Galois Connection based Abstract Interpretation

In this chapter, we described the concretization-based abstract interpretation framework, where
the concrete and the abstract domains are connected by a concretization function γ. However,
abstract interpretation can also be introduced with other formalisms, for instance based on
Galois connections [CC77]. In this formalism, the concrete domain (X,⊑) and the abstract
domain (X♯,⊑♯) are connected by two function α and γ, such that:

• α : X → X♯ is monotonic,
• γ : X♯ → X is monotonic,
• ∀x ∈ X,∀x♯ ∈ X♯, α(x) ⊑♯ x♯ ⇔ x ⊑ γ(x♯)

Function α is called the abstraction function, and γ is the concretization function. A
concrete value x ∈ X can be abstracted by α(x)(which is the best abstraction for x), whose
concretization includes x: γ ◦ α(x) ⊒ x. Alternatively, an abstract value x♯ may represent a
concrete value γ(x♯), whose abstraction is included in x♯: α ◦ γ(x♯) ⊑♯ x♯.

If Φ : X → X is an operator over the concrete domain, it can be abstracted by the operator
Φ

♯ : X♯ → X♯ such that ∀x♯ ∈ X♯, Φ
♯(x♯) def= α◦Φ◦γ(x♯). Defining an abstract operator is then

very simple using this formalism. However, in practice, there exist some abstract domains for
which we cannot define an abstraction function α: on these domains, some elements x ∈ X do
not have a best abstraction. The classical example is the abstract domain of convex polyhedra,
for which there does not exist a best abstraction of a circle.

2.1.7 Usual Numerical Abstract Domains

In this thesis, we make use of numerical abstract domains. In other words, we are interested
in properties involving only the numerical variables of the program. The literature is full of
useful abstract domains for such numerical properties, and we only mention here those we used
in our implementation and experiments.
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• Convex Polyhedra [CH78, Hal79] discover invariants as conjunctions of linear constraints
of the form

∑

i cixi ≤ C, where the xi are the numerical variables of the program, and C

and the ci are constants.

• Template Polyhedra are convex polyhedra for which the user restricts the directions of
the faces, i.e. the ci’s constants are fixed during the analysis.

• Octagons [Min04] are template polyhedra where the linear constraints are of the form
±xi ± xj ≤ C.

• Intervals, or boxes, is the class of template polyhedra with constraints of the form ±xi ≤

C.

Intervals Octagons Convex Polyhedra

Figure 2.4: Usual numerical abstract domains. The set of points in black is abstracted by an
overapproximating abstract value (shaded).

2.2 Some Relevant Model Checking Approaches

2.2.1 Bounded Model Checking

Basics of Satisfiability Solving Modulo Theories

The Boolean satisfiability decision problem (usually called SAT) is the canonical NP-complete
problem: given a propositional formula (e.g. (a ∨ ¬b) ∧ (¬a ∨ b ∨ ¬c)), decide whether it is
satisfiable. If so, output a satisfying assignment, i.e. a valuation for each variables such that the
formula is true. Despite an exponential worst-case complexity, very efficient algorithms have
been developed and current Boolean satisfiability solvers solve many useful SAT problems of
industrial size. The majority of the state-of-the-art solvers are based on the DPLL architecture.
[KS08, BHvMW09] give a detailed description of this architecture.

SAT was extended to support atoms from a theory T in addition to propositional literals.
The resulting decision problem is called satisfiability modulo theory (SMT). For instance, the
theories of linear integer arithmetic (LIA) and linear rational arithmetic (LRA) have atoms
of the form a1x1 + · · · + anxn ⊲⊳ C where a1, . . . , an, C are integer constants, x1, . . . , xn are
variables (interpreted over Z for LIA and R or Q for LRA), and ⊲⊳ is a comparison operator
=, �=, <,≤, >,≥. LIA and LRA is highly used in the field of software verification, as well as
other theories like bitvectors, arrays or uninterpreted functions.

Satisfiability modulo theories like LIA or LRA is also NP-complete. However, tools based
on the DPLL(T ) architecture [KS08, NOT05, GHN+04] solve many useful SMT problems in
practice. All these tools provide a satisfying assignment if the problem is satisfiable. Here,
we briefly explain the main principle of the DPLL(T ) algorithm, which is required for under-
standing chapter 6, and how it can be useful for software verification.
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DPLL We briefly summarize the principle of the DPLL algorithm for deciding the SAT
problem. The procedure consists in the alternation two phases:

• Decision, that picks one Boolean variable heuristically, and decides its value to be either
true or false.

• Boolean Constraint Propagation, that propagates the consequences of the previous deci-
sion on the other variables. It happens regularly that a conflict is encountered because of
a wrong choice in the decision phase. In that case, the algorithm computes the reason of
this conflict (bad choice in some decision phase) and backtracks, i.e. unsets the variables
that have been assigned between the bad decision and the current assignment, and restart
with another decision.

The algorithm terminates in the case there is no more decision step to apply (i.e. the set of
variables is fully assigned) and there is no conflict – the answer is SAT –, or when the conflict
is not just due to a bad decision – the answer is UNSAT –. Again, we refer the reader to
[KS08, BHvMW09] for more details.

State of the art solvers implement an improvement over the DPLL algorithm, called CDCL,
which provides more efficient and non-chronological backtracking features.

DPLL(T ) Suppose we have an SMT formula that contains atoms of a given theory T . T

should be a first-order quantifier-free theory, that admits a decision procedure for conjunctions
of atoms in T , noted T -solver. For instance, the general simplex method is a T -solver for LRA,
as well as Branch-and-Bound for LIA [KS08]: they can decide whether a conjunction of linear
inequalities is satisfiable or not, and if so, can give a possible assignment for the integer/real
variables. The main principle of DPLL(T ) is to combine a SAT solver with a T -solver for the
chosen theory. In this short explanation of DPLL(T ), we restrict ourselves to a single theory,
but it is possible to combine theories using the Nelson-Oppen method.

General DPLL(T ) Framework

SAT

solver
T -solver

Theory atoms

unsat clause

SATUNSAT

Figure 2.5: DPLL(T ) framework

The DPLL SAT solver and T -solver interact with each other by exchanging information
(see Figure 2.5): the SAT solver abstracts the SMT formula into a SAT formula with the
same Boolean structure, and provides to the T -solver satisfying assignments for the Boolean
abstraction. The T -solver checks whether this assignment is satisfiable in the theory. Similarly
to Boolean Constraint Propagation, Theory Propagation propagates the effects of a decision

that are due to the theory in use. If the formula is not satisfiable in the theory, it computes an
unsat clause, i.e. a subset of the assignment that is unsatisfiable, to prune the search space of
the SAT solver. The unsat clause is a key feature of the algorithm, since it is returned to the
SAT solver as a conjunction of Boolean assignments that are together unsatisfiable, and thus
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provides a second reason for backtracking (recall that the first reason is the conflicts obtained
by Boolean Constraint Propagation and Theory Propagation). For this reason, it is essential
that “good” (or “short”) unsat clauses can be obtained for the backtracking to be efficient.

Theory propagation does not need the SAT solver to provide a full assignment for all the
atoms, and is practically applied at the same time and in conjunction with Boolean Constraint
Propagation in order to detect conflicts and backtrack as soon as possible.

Note that state of the art solvers are based on CDCL instead of DPLL. The combination
of a CDCL SAT solver with the theory solver is however similar.

Principle of Bounded Model Checking

SMT solving has several applications to the field of software verification, in particular in
Bounded Model Checking: it is possible to encode the semantics of the traces of bounded
length, or at least an overapproximation thereof, into a logical formula that can be checked for
satisfiability by an SMT solver. It can be used for finding program traces of a given length
that violate some property. Given a set of initial states I(x0), a transition relation τ(xi, xi+1),
where the xi correspond to the different values of the program variables at the various program
locations, and a property P (x), this formula has the following form:

I(x0) ∧
∧

0≤i≤k−1

τ(xi, xi+1) ∧
∨

0≤i≤k

¬P (xi)

Example 2. Suppose we have the simple C program from Figure 2.6 (left), for which we want
to find an error trace that violates the assertion. undet() is a function that returns a Boolean
value nondeterministically.

unsigned x = 0 ;

while ( undet ( ) ) {

i f ( undet ( ) ) x +=2;

}

a s s e r t ( x < 50) ;

xI = 0
∧((x1 = xI + 2) ∨ (x1 = xI))
∧((x2 = x1 + 2) ∨ (x2 = x1))
∧ · · ·

∧((xk = xk−1 + 2) ∨ (xk = xk−1))
∧(xF = xk) ∧ (xF ≥ 50)

Figure 2.6: Bounded model checking of a simple program

Program traces of length k (i.e. with exactly k iterations of the loop) that violate the final
assertion are the models of the SMT formula from Figure 2.6 (right): xI is the initial value for
x, xF is its final value, and xi is its value after i loop iterations. If the formula is satisfiable,
it means the error state is reachable in a program trace of length k, and the successive values
for x during the program can be precisely extracted from the model returned by the SMT
solver. Similarly, it is possible to encode into SMT the program traces of length at most k.
In this simple example, the smallest k for which the formula is satisfiable is for k = 25, with
xI = 0, x1 = 2, x2 = 4, · · · , x25 = xF = 50, which corresponds to the traces that always enters
the then branch of the if statement.

Bounded Model Checking is good for finding bugs and returning error traces. However, since
some programs may have traces of unbounded length (or of exponential size), this approach
alone can not prove properties to be invariant for all traces, as abstract interpretation does.
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In this thesis, we make use of bounded model checking in the context of loop free program
portions in section 4.2. The way of encoding the program traces into SMT is fully described
later in subsection 4.2.1.

2.2.2 Predicate Abstraction & CEGAR

Predicate Abstraction [BMMR01, CKSY04] is a popular method for abstracting a program
into a finite state system with respect to a finite set of predicates, that safely overapproximates
the set of traces in the original program. It has already been successfully applied in industry
with tools like the SLAM model checker [BMMR01]. The idea is to remove data variables
from the model and only track well chosen predicates on these variables (for instance, only
track the predicates x < 0, x > 0 and x = 0 for a variable x). The construction of the finite
state system can be seen as an abstract interpretation of the program, since a lattice can be
built from the set of predicates. The resulting system is then small enough to be analyzed by
a model checker that checks whether the property holds. If not, it may be for two reasons:
either there is indeed a bug, or the counterexample is spurious. In the latter case, the Counter

Example Guided Abstraction Refinement [CGJ+00] (CEGAR) loop refines the abstraction by
introducing new predicates, in order to eliminate the spurious trace, and restarts the analysis
on the refined abstraction. The newly introduced predicate can be for instance derived from
Craig Interpolants [McM03, McM05, McM06]:

Definition 10 (Craig Interpolant). A Craig Interpolant for an unsatisfiable conjunction F1∧F2

is a formula I such that:

• F1 ⇒ I

• I ∧ F2 is unsatisfiable
• V ars(I) ⊆ V ars(F1)∩ V ars(F2), where V ars(F ) denotes the free variables in a formula

F

Intuitively, the interpolant obtained from a spurious trace is a “small” reason why the trace
is unfeasible. The effectiveness of this approach strongly relies on the quality of the interpolants
used for producing new predicates. These predicates indeed should be sufficiently general to
prune many spurious counterexamples at once. For this reason, computing good interpolants
is an active research topic [AM13].

2.2.3 k-Induction

Properties on programs can also be proved using k-induction [SSS00]: one attempts to prove
the property holds in a given state, supposing it holds for the k previous states. The induction
proof requires two steps:

• the base case: prove that the property holds for the k first states. This is done by bounded
model checking:

I(x0) ∧
∧

0≤i≤k−1

τ(xi, xi+1) ∧
∨

0≤i≤k

¬P (xi)

• the induction phase: given the property holds for k successive states, proves it holds for
the next state:

∧

0≤i≤k

[P (xi) ∧ τ(xi, xi+1)] ∧ ¬P (xk+1)
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The algorithm consists in initializing k to 0, and iteratively incrementing it when the
induction phase fails. If the base case fails, it means that the property does not hold and
a counterexample of length k is returned. The Kind model checker [HT08]1 has shown this
approach to be powerful in practice.

This approach can be strengthened by using external invariants: instead of proving that
the property is inductive – which is not always the case –, one can prove it is inductive relative

to another property I which is known to be invariant. The induction phase becomes:

∧

0≤i≤k

[I(xi) ∧ P (xi) ∧ τ(xi, xi+1)] ∧ ¬P (xk+1)

In this thesis, we discover program invariants using advanced abstract interpretation based
techniques. These invariants can then be fed to a k-induction based algorithm and thus provide
an efficient combination of the two approaches.

2.2.4 IC3

IC3 [Bra11, Bra12] – or PDR, for Property Directed Reachability [EMB11, HB12]) – is a state of
the art procedure for proving properties on finite state systems, that has recently been extended
to infinite state systems through the use of SMT [CGMT14]. We briefly mention it here since
it demonstrated to be very efficient in practice.

Error state

Figure 2.7

This procedure tries to compute a sufficiently precise inductive invariant F to prove a
property P . It computes a sequence of sets F0 = I, F1, . . . , Fk, where each Fi (called frame) is
an overapproximation of the set of states reachable in at most i steps. The goal is to find some
Fk that is inductive and proves the property:

I(x0) ⇒ Fk(x0) (2.2)

Fk(xi) ∧ τ(xi, xi+1) ⇒ Fk(xi+1) (2.3)

Fk(xi) ⇒ P (xi) (2.4)

For a given working frame Fk, the procedure tries to find whether there exists an error
state, i.e. in ¬P , reachable in one step from a state in Fk. If so, Fk, Fk−1, . . . , F1 are refined by
removing from them a set of states, called lemmas, that can lead to that particular error state
(see Figure 2.7). In the case of infinite state systems, the frames are SMT formulas and one
removes infinite sets at once through interpolation [CGMT14]. This phase continues until Fk

1http://clc.cs.uiowa.edu/Kind/
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cannot reach ¬P in one step. Once it is the case, a new frame Fk+1 is created and initialized to
P , and directly refined with the already discovered lemmas that are inductive. The program
terminates if it turns out that Fk and Fk+1 are equal, otherwise k has to be increased. If the
property P does not hold, a counterexample of length k + 1 can be returned.
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Chapter 3

When Abstract Interpretation lacks

Precision

As mentioned in section 2.1, abstract interpretation computes an over-approximation of the
set of the reachable program states. A correct over-approximation would be “Every state is
reachable”. However, such approximation has no interest since it does not allow to prove the
desired properties. Then, precision is important in order to prevent having false-alarms. In
this chapter, we provide details on the various sources of imprecision in abstract interpretation,
as well as state-of-the-art techniques for obtaining precise invariants.

3.1 Sources of Imprecision

In general, abstract interpretation based on Kleene iterations with widening suffers from various
kind of loss of precision during the fixpoint computation.

1. The choice of the abstract domain is crucial and is guided by the properties the user
wants to prove. Typically, for a given property P (x) (where x ∈ States) on the set
of reachable states, there should exist an abstract transformer Φ

♯ whose least fixpoint
lfp(Φ♯) is a precise-enough approximation of lfp(Φ), such that ∀x ∈ γ(lfp(Φ♯)), P (x).

2. Even if the abstract domain is theoretically sufficiently expressive to prove a given prop-
erty P (x), i.e ∀x ∈ γ(lfp(Φ♯)), P (x), the ascending and descending sequences may not
converge to a sufficiently precise overapproximation of lfp(Φ♯). This is due to the use of
the widening operator, that trades precision for efficiency and termination. In addi-
tion, most of the widening operators of standard abstract domains do not have the good
property of being monotonic: applying a widening on a more precise abstract value does
not necessarily gives a smaller result; for instance, using the intervals abstract domain,
[0, 10]∇[0, 12] = [0, +∞), and [1, 10]∇[0, 12] = (−∞, +∞), while [1, 10] � [0, 10]. This
leads sometimes to surprising and disappointing results, where a supposedly more precise
iteration strategy eventually gives worse results.

The design of good widening operators for usual abstract domains has been studied in the
literature, for instance for the domain of convex polyhedra [CH78, Hal79, BHRZ05]. In
some cases, it is also possible to replace widening by abstract acceleration [GH06]. Recent
work also propose alternative ways of computing the fixpoint over infinite height lattices
without the need for a widening operator. These methods are called policy iteration.
Section 3.2 gives an overview of several propositions for limiting the effects of widening
in terms of loss of precision, that are relevant for the rest of this thesis.
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Chapter 3 When Abstract Interpretation lacks Precision

3. The classical way of constructing the Φ
♯ abstract transformer, as explained in subsec-

tion 2.1.5, is to define an operator Φ
♯
k for each control point pk of the control-flow graph.

For each control point that has several incoming transitions — which is in practice very
often the case —, this operator is defined as the least upper bound of the abstract values
coming from each transition. It results that least upper bound operations are applied
very often during the analysis, and thus degrades precision. In section 3.3, we explain
how it is possible to change the way of applying least upper bound operations to improve
the precision of the final result.

3.2 Fighting Bad Effects of Widening

3.2.1 Improved Widening Operator

Intuitively, the principle of widening is to extrapolate the behavior of the first loop iteration to
deduce an overapproximation of the reachable states after any number of iterations, supposing
that each of them has a similar behavior. This is a very strong hypothesis, which is wrong
in many cases, thus leading to a loss of precision. In the following, we briefly explain usual
improvements of the widening operator: it is indeed possible to design better extrapolations,
that are not just based on the effect of the first loop iteration.

Delayed widening

During the computation of the ascending sequence, each abstract values x♯
k is updated using

the Update function described in 2.1.5. This function uses the widening operator when the
control point pk is in the set PW of widening points. However, for ensuring termination, the
widening operator does not necessarily has to be applied at each iteration; it must only be
used continuously after a finite number of iterations. For instance, we can use least upper
bounds for the n− 1 first updates of x♯

k, and use a widening for the n-th update, where n is a
user-defined parameter. In this case, one can attach to each control point pk ∈ PW an integer
variable ik ∈ N, and update the couple (xk, ik) with (xk, ik)∇n

Φ
♯
k(x♯

1, . . . , x♯
n). ∇n is called

delayed widening.

Definition 11 (Delayed Widening). Let X♯ be the abstract domain and ∇ a widening operator
over X♯. Let N ∈ N be the number of iterations after which we apply widening continuously
for ensuring termination. Then, the operator ∇n : (X♯ × N) × X♯ → (X♯ × N) is defined by:

∀x♯
k, y♯

k ∈ X♯,∀ik ∈ N, (x♯
k, ik)∇n y♯

k
def=







(x♯
k ∇ y♯

k, ik + 1) if ik + 1 > N

(x♯
k ∇ y♯

k, ik + 1) if ik + 1 ≡ 0 (mod n)
(x♯

k ⊔
♯ y♯

k, ik + 1) otherwise

Figure 3.1 illustrates the use of the delayed widening with two-dimensional convex poly-
hedra. Intuitively, using the delayed widening ∇n allows to extrapolate the behavior of the n

previous iterations instead of only the previous one. It improves the precision of the analysis
in practice, but the ascending sequence will require more iterations – the number of iterations
for stabilizing a loop will be potentially multiplied by n. A related idea would be to unroll
the loop n times. The delayed widening approach avoids increasing the size of the graph while
keeping some of the benefits of unrolling. Example 3 shows a simple example where unrolling
gives better results.
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Section 3.2 Fighting Bad Effects of Widening

Example 3 (Delayed Widening). We consider the program int x = 10; while(x!=0) {x = −x;} .
Then, with unrolling and the abstract domain of intervals, we can prove that the program
never terminates, since the loop header will be split into two nodes whose abstract values will
be x ∈ [−10,−10] and x ∈ [10, 10]. Without unrolling, we only obtain x ∈ [−10, 10] at the loop
header.

∇n=0 ∇n=1

∇n=2 Legend:

standard widening

delayed widening, n = 1

delayed widening, n = 2

Figure 3.1: Delayed widening on convex polyhedra, with n = 0 (standard widening), 1 and 2.
The abstract value x♯ after k updates without widening is the union of the areas a0 to ak−1.
The plain area is the abstract value after a delayed widening with n = 2. It is smaller than the
hatched area, which is the abstract value obtained when n = 1. Widening without delay is the
less precise.

Parma Widening

[BHRZ03, BHRZ05] proposed a general framework for the design of new widening operators
from an existing one, that applies to numerical abstract domains. As for delayed widening
3.2.1, the idea is to use least upper bound operations instead of widenings in some cases, while
keeping the guarantee of termination. In this approach, the choice of applying a widening or
not is guided by some property on the two operands, called limited growth.

Definition 12 (Limited Growth). Let x♯
1, x♯

2 ∈ X♯, where X♯ is the abstract domain of convex
polyhedra. Each x♯

i can be defined by a set of linear constraints Ci in a canonical form, or
by a canonicalized system of generators (Vi, Li, Ri). Vi, Li and Ri are respectively the sets of
vertices, lines and rays representing the polyhedron. The relation �, defined for x♯

1 ⊑
♯ x♯

2, is
a partial order defined by:

x♯
1 � x♯

2
def
⇐⇒







dim(x♯
2) > dim(x♯

1), or
codim(x♯

2) > codim(x♯
1), or

|C1| > |C2| , or
|C1| = |C2| and |V1| > |V2| , or
|C1| = |C2| and |V1| = |V2| and κ(R1) ≫ κ(R2)

where |X| is the cardinal of a set X, and κ(Ri) is the multiset of non null coordinates of the
rays in Ri. ≫ is the classical order on multisets (if #(k, X) is the number of occurrence of k

in X, X1 ≫ X2
def= ∃j ∈ N, #(j, X1) > #(j, X2) ∧ ∀k > j, #(k, X1) = #(k, X2)).

Using this definition, it can be shown that there is no infinite sequence (x♯
i)i∈N for which

∀i ∈ N, x♯
i � x♯

i+1. One reason is that the abstract domain X♯ is finite-dimensional (typically,
the number of dimension is bounded by the number of numerical variables in the program).
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Chapter 3 When Abstract Interpretation lacks Precision

Definition 13 (Parma Widening). If ∇ is a widening operator for the abstract domain X♯,
and ⊔♯ is the least upper bound, the operator ∇′ defined by:

∀x♯
1, x♯

2 ∈ X♯, x♯
1 ∇

′ x♯
2

def=

{

x♯
1 ⊔

♯ x♯
2 if x♯

1 � x♯
2

x♯
1 ∇x♯

2 otherwise

is a widening operator. Note that [BHRZ05] gives a slightly more complicated definition for
∇′.

In other words, the Parma widening uses the least upper bound instead of the classical
widening operator whenever there is a geometric reason for the ascending sequence to be of
finite length. In this way, we have ∀x♯

1, x♯
2 ∈ X♯, x♯

1 ∇
′ x♯

2 ⊑♯ x♯
1 ∇

′ x♯
2. However, because of

the non-monotonicity of the widening operator, the final result at the end of the ascending
sequence is not necessarily more precise.

In this thesis, we provide some experimental results that illustrate the effectiveness of this
new widening operator compared to the classical one (see subsection 7.3.2).

Widening with Threshold

Another usual improvement of the widening operator is the widening “up to” [Hal93, HPR97],
also called widening with thresholds [BCC+03]. It consists in pre-computing a set T of con-
straints (T ⊂ X♯) that are likely to be invariants in a widening location (for instance, the
negation of the exit condition of a loop). The widening “up to” is actually the application of
the standard widening, whose result in intersected with every thresholds that are satisfied by
both operands of the widening:

∀x♯
1, x♯

2 ∈ X♯, x♯
1 ∇T x♯

2
def= (x♯

1 ∇x♯
2) ⊓♯

♯

⊔{t ∈ T , t ⊒♯ x♯
1 ∧ t ⊒♯ x♯

2}

The precision of this widening highly depends on the way the set of thresholds is defined.
In practice, a good heuristic is to propagate the constraints that are syntactically written as
guards inside the loop and take the obtained constraints at the widening point as thresholds.
In this way, the set of thresholds is different for each widening point. A generalized way of
statically determining the threshold is described in [LCJG11]. Some other work dynamically
construct the set T of thresholds using a counterexample guided refinement algorithm based
on a forward and backward analysis [WYGI07].

Example 4 (Widening with thresholds). We take the program from example 2.2 and use the
intervals abstract domain. The propagation of the guard x < 100 to the head of the loop gives

p0

p1

p2

p3

x ← 0

x ≥ 100

x < 100 x ← x + 2

x < 102. We thus define the set of thresholds T = {x < 102}. The abstract value at point
p1 starts at [0, 0]. After one loop iteration, it is updated to [0, 0]∇T [0, 2] = [0, 101] instead
of [0, +∞] with the standard widening. The next iteration shows that [0, 101] is an invariant,
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Section 3.2 Fighting Bad Effects of Widening

and the analysis terminates. In this case, the threshold helped discovering a precise invariant
without the need of the descending sequence.

In many cases, the syntactically obtained thresholds and the descending sequence allow
to recover almost the same precision, because the descending sequence has also the effect of
propagating the guards to the widening point. They are however not equivalent, especially
when a widening operation degrades the precision of the rest of the ascending sequence that
can not be recovered by narrowings.

Abstract Acceleration

Abstract acceleration [GH06, FG10] is an alternative that computes the abstract transitive
closure of certain classes of loops. Given a initial state x for the loop and a transition relation
τ , the transitive closure of the loop is defined as τ∗(x) =

⋃

k≥0 τk(x). Abstract acceleration
computes an optimal approximation of τ∗ in the abstract domain, in general convex polyhedra,
without applying the classical Kleene iterations with widening. It is then locally more precise
since it does not apply any extrapolation of the invariant candidates.

Example 5. The example code x = x0; y = y0; while (x <= 100) {x+=1; y+=2;} is a loop
performing a translation of the vector of variables. The set of reachable program states can be
succinctly characterized by the Presburger formula:

∃k ≥ 0, x = x0 + k ∧ y = y0 + 2k ∧ ∀k′, (0 ≤ k′ ≤ k) ⇒ x0 + k′ ≤ 100

Abstract acceleration was first restricted to loops performing translations and resets of
variables. It has then be extended to other more general classes of linear loops [SJ11, JSS14].

3.2.2 Policy Iteration

Policy (or strategy) iteration [CGG+05, GGTZ07, GS07a, GS07b, GS11] is an alternative ap-
proach to solve the fixpoint equation that does not require any extrapolation operator like in
Kleene iterations. The idea is to iteratively compute the least fixpoint of a sequence of simpler
semantic equations x = Φ

♯(i)(x), such that the least fixpoint of the function Φ
♯ is computed

after a finite number of iterations. The sequence of operators (Φ♯(i))i is called strategy, and
the operator Φ

♯(i) is chosen according to the computed fixpoint of Φ
♯(i−1). The fixpoint can be

either approached from above or from below (max- or min-strategy iteration).
Policy iteration is currently restricted to Template abstract domains, i.e. a restriction of

convex polyhedra for which the direction of the faces are given. This is the main drawback of
the approach, since it is hard to know which directions are of interest for a particular program.

Example 6. We illustrate the method of max-strategy iteration with the example control-flow
graph in Figure 3.2 and the intervals abstract domain. At each control point pi, it is possible to
characterize the interval [−li, ui] containing the possible values for x as a maximum involving
the different incoming transitions. Then, one can chose for each max one of its operand and
solve the resulting system using linear programming (LP).

We start with the initial strategy l0 = u0 = ∞ and ∀i �= 0, li = ui = −∞ and check if it is an
invariant by replacing the values in the equation system. We get l1 = u1 = max{−∞, 0} = 0 �=
−∞. The idea is then to change the strategy by choosing l1 = sup{−x′/− l0 ≤ x ≤ u0∧x′ = 0}

and u1 = sup{x′/− l0 ≤ x ≤ u0 ∧ x′ = 0} — i.e. the operands of the max that give the correct
result —, then solve the new system by LP. We keep updating the strategy until the resulting
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fixpoint is a fixpoint of the equation system. In the worst case, the sequence of strategies
before convergence will enumerate the exponential number of possible assignments for the li’s
and ui’s.

p0 [−l0, u0]

p1

[−l1, u1]

p2

[−l2, u2]

p3

[−l3, u3] x ← 0

x ≥ 100

x < 100 x ← x + 2

l0 = u0 = ∞

l1 = max







−∞,

sup{−x′/ − l0 ≤ x ≤ u0 ∧ x′ = 0},

sup{−x′/ − l2 ≤ x ≤ u2 ∧ x′ = x + 2}

u1 = max







−∞,

sup{x′/ − l0 ≤ x ≤ u0 ∧ x′ = 0},

sup{x′/ − l2 ≤ x ≤ u2 ∧ x′ = x + 2}

l2 = max

{
−∞,

sup{−x/ − l1 ≤ x ≤ u1 ∧ ∧x < 100}

u2 = max

{
−∞,

sup{x/ − l1 ≤ x ≤ u1 ∧ ∧x < 100}

Figure 3.2: Simple loop and its associate equation system

3.2.3 Guided Static Analysis

[GR07, GR06] proposed Guided Static Analysis, which provides an efficient framework for
computing precise invariants for programs having several distinct phases with very different
behaviors. The method is the following: during the ascending sequence, remember which
transitions are feasible before any application of a widening operator. After applying a widen-
ing, the ascending sequence is restrained to the transitions that have been previously tagged
as feasible (the formerly unfeasible transitions are ignored even if they became feasible after
widening). The ascending sequence stabilizes on a invariant for the considered subprogram,
and a descending sequence is computed to improve precision. Then, we restart an ascending
sequence, taking into account feasible transitions that were previously ignored. Example 7 il-
lustrates the technique on a classic example where a loop has two distinct phases. The intuition
behind this technique is to avoid that the precision lost by a widening propagates until the end
of the analysis. Applying a descending sequence quickly after each loop phase indeed limits
this propagation.

Example 7. In this example, we consider the program depicted in Figure 3.3. A standard
strategy would apply a widening that gives for n1 the abstract value x = y ∧ 0 ≤ x after one
loop iteration. The transition between n1 and n3 is then feasible and taken into account in
the analysis, leading to a huge loss of precision at the join point n4. The resulting invariant
is depicted in hatched pattern. Guided static analysis first computes a precise invariant for
the graph where the dashed transitions are ignored: x = y ∧ 0 ≤ x ≤ 51 (with the help of
a descending sequence). It then computes an invariant for the full program. The obtained
invariant is in dark gray and is strictly smaller than the previous one.

3.3 Fighting bad Effects of Least Upper Bounds

As it is claimed in 3.1, it is possible to get a more precise result by delaying the least upper
bound operations between two control points p and q, which is equivalent to distinguish every
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n0

n1

n2 n3

n4

n5

n6n7

x, y ← 0

x ≤ 50 x ≥ 51

y ← y + 1 y ← y − 1

y ≥ 0
y ≤ −1

x ← x + 1

x = 0 ;

y = 0 ;

while ( t rue ) {

i f ( x <= 50)

y++;

e ls e

y−−;

i f ( y < 0) break ;

x ++;

}

51

51 102
x

y

Figure 3.3: Loop with two distinct phases.

paths between p and q and apply a “big” least upper bound only at q.
Consider we have the portion of the control flow graph in Figure 3.4, where the G♯

i,k

are the guards and τ
♯
i,k the abstract transition relation. If p1, · · · , pn are the predecessors

p1 pi pn

pk

G♯
1,k/τ

♯
1,k

G♯
i,k/

τ
♯
i,k

G♯
n,k/τ

♯
n,k

Figure 3.4

of pk in the graph, the common definition of the abstract transformer is Φ
♯
k(x♯

1, . . . , x♯
n) def=

⊔♯
i∈[1,n]

[

τ
♯
i,k(x♯

i ⊓
♯ G♯

i,k)
]

. This definition of Φ
♯
k implies that for each control point having sev-

eral incoming transitions, precision will be lost due to the least upper bound operator ⊔♯.
Intuitively, the least upper bound merges the behaviors of the program traces, that may be
very different depending on which predecessor the trace went through.

It is possible to delay the least upper bound operations and get a more precise result.
Delaying the least upper bounds, assuming monotonicity, always gives an abstract value which
is smaller than (or equal to) the one we would get without delaying. More formally, if k′ is a
successor of k in the graph, we have:

♯
⊔

i∈[1,n]

τ
♯
k,k′

(

τ
♯
i,k(x♯

i ⊓
♯ G♯

i,k) ⊓♯ G♯
k,k′

)

⊑♯ τ
♯
k,k′





♯
⊔

i∈[1,n]

[

τ
♯
i,k(x♯

i ⊓
♯ G♯

i,k)
]

⊓♯ G♯
k,k′





Proof. We note y♯
i,k

def= τ
♯
i,k(x♯

i ⊓
♯ G♯

i,k).

♯
⊔

i∈[1,n]

(

y♯
i,k ⊓

♯ G♯
i,k

)

⊑♯





♯
⊔

i∈[1,n]

y♯
i,k



 ⊓♯ G♯
i,k
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Then, because τ
♯
k,k′ is monotonic:

τ
♯
k,k′





♯
⊔

i∈[1,n]

(

y♯
i,k ⊓

♯ G♯
i,k

)



 ⊑♯ τ
♯
k,k′









♯
⊔

i∈[1,n]

y♯
i,k



 ⊓♯ G♯
i,k



 (3.1)

and

∀i ∈ [1, n], τ
♯
k,k′

(

y♯
i,k ⊓

♯ G♯
i,k

)

⊑♯ τ
♯
k,k′





♯
⊔

i∈[1,n]

(

y♯
i,k ⊓

♯ G♯
i,k

)





Finally,

♯
⊔

i∈[1,n]

τ
♯
k,k′

(

y♯
i,k ⊓

♯ G♯
i,k

)

⊑♯ τ
♯
k,k′





♯
⊔

i∈[1,n]

(

y♯
i,k ⊓

♯ G♯
i,k

)



 (3.2)

since both operands are upper bounds of
{

τ
♯
k,k′(y

♯
i,k ⊓

♯ G♯
i,k), i ∈ [1, n]

}

and the left operand is
the least of them. Equations 3.1 and 3.2 give the result.

p3

p1 p2

p4

/ x ← −10 / x ← 10

x = 0? /

Figure 3.5

Example 8. We take a portion of a control-flow graph described in Figure 3.5. We want to
compute the set of possible values for the variable x at control point p4, using the intervals
abstract domain. Suppose we have x♯

1 = x♯
2 = ⊤. Then, if we directly compute x♯

4 without
least upper bound at x♯

3:

♯
⊔

i∈{1,2}

τ
♯
3,4

(

τ
♯
i,3(x♯

i ⊓
♯ G♯

i,3) ⊓♯ G♯
3,4

)

=
(

[−10,−10] ⊓♯ [0, 0]
)

⊔♯
(

[10, 10] ⊓♯ [0, 0]
)

= ⊥

If we first compute x♯
3 as the least upper bound of the two incoming abstract values, and then

compute x♯
4:

τ
♯
3,4





♯
⊔

i∈{1,2}

[

τ
♯
i,3(x♯

i ⊓
♯ G♯

i,3)
]

⊓♯ G♯
3,4



 =
(

[−10,−10] ⊓♯ [10, 10]
)

⊓♯ [0, 0] = [0, 0]

We deduce that in many cases, it is more precise to delay the application of least upper
bounds, which boils down to modify the transitions or the states in the control flow graph
so that there is one single control point with several incoming transitions at the end. This
is always possible for a graph without cycles, at the expense of an exponential blowup in the
number of states or transitions.

The two following approaches propose solutions to do this path distinction in a efficient
way.
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Section 3.3 Fighting bad Effects of Least Upper Bounds

3.3.1 Trace Partitioning

A simple way of distinguishing paths is to remember which transitions have been taken at
the conditional branches. Rival and Mauborgne [MR05, RM07] developed Trace Partitioning,
which is an abstract domain that abstracts sets of program traces. The intuition is to duplicate
program states and attach to them a set of transitions the trace went through. Then, the main
challenge is to choose which transitions we keep in this set to get a precise result and which
ones we forget to keep the size of the graph tractable (then, we merge states and compute least
upper bounds). Indeed, each transition we keep typically multiplies the size of the new graph
by 2. [MR05, RM07] give efficient heuristics for dynamically choosing the partition.

Example 9. Figure 3.6 shows a trace partitioning to prove that a program does not divide by
zero. Any convex numerical abstract domain will fail on the graph 3.6a since the least upper
bound at point n4 will contain 0. Figure 3.6b fully distinguish the possible paths, and proves
the property. Figure 3.6c merges the paths at point n5 and can still prove the property.

n1

n2 n3

n4

n5

x < 0 x ≥ 0

sgn ← −1 sgn ← 1

x ← x/sgn

(a) Program CFG

n1, ∅

n2, ∅ n3, ∅

n4,

{n1 → n2}

n4,

{n1 → n3}

n5,

{n1 → n2}

n5,

{n1 → n3}

x < 0 x ≥ 0

sgn ← −1 sgn ← 1

x ← x/sgn x ← x/sgn

(b) Remember which transition was

taken until n5

n1, ∅

n2, ∅ n3, ∅

n4,

{n1 → n2}

n4,

{n1 → n3}

n5, ∅

x < 0 x ≥ 0

sgn ← −1 sgn ← 1

x ← x/sgn x ← x/sgn

(c) Remember which transition was

taken until n4, and merge at n5

Figure 3.6: Example of trace partitioning, which proves that a division by zero (between control
points n4 and n5) does not occur.

3.3.2 Path Focusing

The main drawback when distinguishing paths, if applied without restriction, is the exponential
blowup in the number of transitions in the control-flow graph. For instance, a succession of n

if-then-else statements has a number of transitions linear in n in the classical control-flow graph,
but will give 2n transitions once every paths have been distinguished. In Trace Partitioning
3.3.1, one has to use heuristics to merge paths at some points to keep the graph tractable.
[MG11] proposed a different method for distinguishing every paths while keeping the memory
and time consumption reasonable in most cases. The semantics of any loop-free portion of
a control-flow graph, or at least an overapproximation thereof, can be encoded into an SMT
formula. This formula is satisfiable if there exists a semantically feasible path from the initial
state to final state of this portion. A model of this formula is then one feasible path. The
construction of this formula is detailed in section 4.2. It is then possible to apply abstract
interpretation over the control-flow graph where all paths between loop headers have been
expanded, while keeping the representation of this graph succinct using an SMT formula. If
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this formula is appropriately conjoined with the invariant candidates for the initial and final
states of the portion, the model (if satisfiable) exhibits a path that violates the invariant
candidate, which is chosen to be the next focus path in the Kleene’s ascending sequence. In
the contrary, if the formula is unsatisfiable, it means there exist no path between the two control
points that violates the invariant candidates. The idea behind this technique is to benefit from
the efficiency of modern SMT solvers to avoid an exhaustive exploration of every syntactically
feasible paths (in practice, SMT solvers will prune a large states space when encountering
inconsistent predicates). It is often the case that a lot of program paths are unfeasible, or do
not make the invariant computation progress (typically, a path whose abstract semantics is
subsumed by another paths already considered). In section 4.2, we detail our extensions of this
Path Focusing technique.
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Chapter 4

How to get Precise Invariants by

Abstract Interpretation

This chapter presents our different contributions to abstract interpretation that improve the
overall precision of the analysis. Our work can be decomposed into three parts: in section 4.1,
we present a novel method for improving a fixpoint after the classical descending sequence; in
section 4.2, we propose efficient iteration strategies powered by satisfiability modulo theories
that improve the fixpoint obtained after the ascending sequence; section 4.3 finally presents
some results when using more expressive abstract domains.

4.1 Improving the Descending Sequence

The abstract interpretation framework is aimed at computing an over-approximation of the
least fixpoint of an operator in a chosen abstract lattice. As detailed in subsection 2.1.4, this
fixpoint (or post-fixpoint) computation relies on the ascending sequence, where the conver-
gence to a post-fixpoint is guaranteed by a widening operator ∇. Finally, a descending, or
narrowing sequence is typically computed to recover precision. With the same notations as in
subsection 2.1.4, where ỹ♯ is a post-fixpoint of Φ

♯, the descending sequence with a narrowing
operator, that we note ∆N — with some chosen N > 0 — consists in computing the limit of
the sequence (z♯

i )i≥0, that converges in finite time:







z♯
0 = ỹ♯

∀i > 0 z♯
i = z♯

i−1∆N Φ
♯(z♯

i−1) def=

{

Φ
♯(z♯

i−1) if i < N

z♯
i−1 otherwise

This descending sequence may in some cases recover the precision lost by the ascending
sequence, intuitively because it gathers information about the end of the execution with the
guards that the widening ignored, but also fails on very simple examples. We first illustrate
this problem with a simple example.

4.1.1 Motivating Example

We propose in Figure 4.1 a very simple example for which the standard descending sequence
fails. We use the abstract domain of intervals for the variable i. Let us first remove line 4 in
this C code: in that case, we obtain the simplest possible loop: i starts in [0, 0] in p2, one loop
iteration gives i ∈ [1, 1] before entering p2, and widening yields i ∈ [0, +∞) at p2, which is
a post-fixpoint. By iterating one step further without widening, we get i ∈ [0, 0] ⊔ [1, 100] =
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1 i n t i = 0 ;

2 while ( i <= 100) {

3 i ++;

4 while ( undet ( ) ) { }

5 }

p1

p2

p3

p5

p4

i ← 0

i ≤ 100

i > 100

i ← i + 1

¬undet()

undet()

Figure 4.1: Simple example for which the decreasing sequence fails to recover precision

[0, 100]. Now, in the presence of the inner loop at line 4, the Φ
♯ operator is the following:

Φ
♯











x♯
1

x♯
2

x♯
3

x♯
4

x♯
5











=











Φ
♯
1()

Φ
♯
2(x♯

1, x♯
4)

Φ
♯
3(x♯

2)
Φ

♯
4(x♯

3, x♯
4)

Φ
♯
5(x♯

2)











=











(−∞, +∞)
[0, 0] ⊔ x♯

4

x♯
2 ⊓ (−∞, 100]

incr♯(x♯
3) ⊔ x♯

4

x♯
2 ⊓ [101, +∞)











When applying this operator on the post-fixpoint ỹ♯ reached after the ascending sequence, we
get the same post-fixpoint, which is consequently a fixpoint:

Φ
♯(ỹ♯) = Φ

♯











(−∞, +∞)
[0, +∞)
[0, 100]
[1, +∞)
[101, +∞)











=











(−∞, +∞)
[0, 0] ⊔ [1, +∞)
[0, +∞) ⊓ (−∞, 100]
[1, 101] ⊔ [1, +∞)
[0, +∞) ⊓ [101, +∞)











= ỹ♯

The problem comes from Φ
♯
4, which prevents the value x♯

4 from decreasing because of the
least upper bound with x♯

4 itself. Intuitively, narrowing gives a precise invariant for p3, but the
propagation of the guard i ≤ 100 stops at p4 since the self loop prevents the invariant at p4 from
being intersected with i ≤ 101. Such self loop without any effect on the program may occur
often in practice, for instance when the CFG is obtained from the product of two threads.
Several techniques in the literature solve this problem, for instance by slicing the program
according to variable i [MG12], or using smart widening as described in subsection 3.2.1. In
this section, we propose a different approach that works with the usual widening operator and
does not modify the CFG, but modifies the decreasing sequence. It can be usefully combined
with these other approaches.

4.1.2 Improving a Post-Fixpoint

Principle

Classically, abstract interpretation computes a post-fixpoint using Kleene iterations, by starting
from an initial abstract value. In practice, one always chooses ⊥ as the initial abstract value.
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In this section, we claim that starting from ⊥ is not always the best choice and picking another
initial abstract value could in some cases lead to a more precise post-fixpoint.

More formally described, the ascending iterations compute the limit of the following se-
quence:

{

y♯
0 = ⊥

y♯
i = y♯

i−1 ∇Φ
♯(y♯

i−1),∀i > 0

that converges to a post-fixpoint ỹ♯ that we will note in this section Φ
♯ ∇(⊥) to emphasize the

fact that the chosen initial value is ⊥. However, for any chosen initial value i♯, the ascending
sequence will eventually reach a post-fixpoint of Φ

♯. It is then possible to generalize this
ascending sequence by defining the operator over the abstract domain X♯ noted Φ

♯ ∇, so that
∀i♯ ∈ X♯, Φ

♯ ∇(i♯) is the limit of the sequence

{

y♯
0 = i♯

y♯
i = y♯

i−1 ∇Φ
♯(y♯

i−1),∀i > 0

Similarly, we define Φ
♯ ∇∆(i♯) as the limit of the descending sequence initialized with Φ

♯ ∇(i♯).
Starting from a different initial value has an interest since Φ

♯ ∇ and Φ
♯ ∇∆ are not increasing

in general: with some well chosen initial value, one may reach after the ascending sequence
a smaller (or incomparable) post-fixpoint than the one we get when starting from ⊥. As a
consequence, the result of the descending sequence which is performed from this post-fixpoint
may also be smaller (or incomparable).

Figure 4.2 illustrates the way of improving a fixpoint using two different ascending/descend-
ing sequences: one first computes a fixpoint z̃♯ as usual by starting from ⊥, with an ascending
sequence (y♯

i )i and a decreasing sequence (z♯
i )i. A second fixpoint ṽ♯ is computed by starting

from an element i♯ �= ⊥. Then, the greatest lower bound m̃♯ = Φ
♯ ∇∆(⊥)⊓Φ

♯ ∇∆(i♯) of the two
obtained fixpoints is a safe overapproximation of the least fixpoint lfp(Φ♯).

In this section, we describe a way of smartly choosing this initial value i♯ based on a known
(post-)fixpoint, so that a new ascending/descending sequence may reach a more precise fixpoint.

Resetting an Ascending Sequence

Intuition In the previous example from subsection 4.1.1, narrowing fails for p4. p4 has two
incoming edges τ

♯
3→4 and τ

♯
4→4. However, it is easy to see that τ

♯
3→4([0, 100]) = [1, 101] is an

invariant for p4, and is strictly smaller than the one previously obtained. The fact it is strictly
smaller gives the intuition that one could use it for trying to improve the invariant at p4.
Consider now a new ascending sequence, starting with x♯

3 = [0, 100] instead of ⊥, and ⊥ for
the other control points:

p1 :
p2 :
p3 :
p4 :
p5 :

⊥

⊥

[0, 100]
⊥

⊥

→

(−∞, +∞)
⊥

[0, 100]
[1, 101]
⊥

→

(−∞, +∞)
[0, 101]
[0, 100]
[1, 101]
⊥

→

(−∞, +∞)
[0, 101]
[0, 100]
[1, 101]
[101, 101]

The analysis yields the most precise invariant in the intervals domain. What we learn from
this example is that starting a new ascending sequence with some well chosen initial abstract
value can lead to a better invariant in the end. We shall now see how to choose this initial
abstract value.
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lfp(Φ♯)

⊥

⊤

Φ
♯ ∇(⊥)

Φ
♯ ∇∆(⊥)

i♯

Φ
♯ ∇(i♯)

Φ
♯ ∇∆(i♯)

m̃♯

PostFix(Φ♯)

PreFix(Φ♯)

Fix(Φ♯)

(y♯
i )i

(z♯
i )i

(u♯
i)i

(v♯
i )i

Figure 4.2: Illustration of the ascending and descending sequences over the abstract lattice

Projection of a fixpoint according to a set of seeds For the new ascending sequence to
be more precise, one should judiciously choose a subset S ⊆ P of the control points called seeds.
For any abstract value x♯ = (x♯

1, . . . , x♯
n) ∈ X♯, we define the operator ⇓: X♯ × P(P ) → X♯:

x♯ ⇓ S
def= (s♯

1, . . . , s♯
n), where ∀i, s♯

i
def=

{

x♯
i if pi ∈ S

⊥ otherwise

The usual ascending/descending sequence reaches the (post-)fixpoint Φ
♯ ∇∆(⊥). We then

define a set S⊥ from this fixpoint and compute Φ
♯ ∇∆(Φ♯ ∇∆(⊥) ⇓ S⊥). Our improved solution

is the greatest lower bound of the two computed fixpoints. The choice of S⊥ is crucial for
improving the final result: the final result will be a safe approximation for any choice of S⊥,
but only a smart choice of S⊥ may lead to a precise result. For instance, if we choose s⊥ = ∅, it
means we restart the ascending sequence from ⊥ and will get exactly the same result as before.
If we choose S⊥ = P , we will start from abstract values that are already invariants and we also
get the same final result. The choice of seed points is described in details in subsection 4.1.3.

4.1.3 Choice of Seed Points

We suppose first that the control-flow graph has one single widening point pi. This assumption
will be relaxed later. The abstract value at pi depends on those at the predecessors of pi.
If we recursively decompose the CFG into its Strongly Connected Components (SCC), each

predecessor is either in the same SCC, either in a previous SCC. We note z̃♯ def= Φ
♯ ∇∆(⊥). When

applying standard chaotic iteration strategies (see subsection 2.1.5), the first non-⊥ abstract
value at pi comes from the control points in the previous SCCs, and we call it z♯0

i .

52



Section 4.1 Improving the Descending Sequence

pi

pjl
pj1

pjk

z♯0

i

τ
♯
j1→i(z̃

♯
j1

) . . . τ
♯
jk→i(z̃

♯
jk

)
SCC

previous SCC

Figure 4.3

Let pj1
, . . . , pjk

be the predecessors of pi that are in the same SCC, as it is illustrated by
Figure 4.3. Then, pjl

is a good candidate for being a seed point if the image of z̃♯
jl

by τ
♯
jl→i is

strictly smaller than z̃♯
i . It may happen for two reasons:

• either some “initial states” in z♯0
i have been lost on the paths from pi to pjl

. This case is
not interesting since the states in z♯0

i won’t be shown to be unreachable. For example, a
transition that performs a translation like x = x+1; over an abstract value 0 ≤ x, will give
1 ≤ x, which is smaller. However, if the value 0 comes from the previous SCC (i.e. is in
z♯0

i ), it will be reintegrated anyway in the first step of the new ascending iteration.
• or, τ

♯
jl→i(z̃

♯
jl

) collected some properties that are later lost by a least upper bound before
reaching pi. This is a good choice for a seed point.

More generally, one could choose a seed point pj which is not a direct predecessor of the
widening point. In that case, τ

♯
j→i is not a simple transition relation, but actually computes

the image of an abstract value by the set of paths between pj and pi.

Definition 14 (Seed Control Points, case of one single widening point). With the previous
notations, we define the set of Seed Control Points S⊥ ⊆ P , so that pj ∈ S⊥ if and only if the
following conditions hold:

• z♯0
i ⊔ τ

♯
j→i(z̃

♯
j) � z̃♯

i (C1)

• τ
♯
j→i(z̃

♯
j) �⊑ z♯0

i (C2)
• At least one successor of pj has several predecessors (C3)

(C1) says that the image from pj gives a strictly smaller invariant, not only because it
removed initial states. (C2) expresses the fact it is useless to propagate again any subset of z♯0

i ,
since the ascending iteration will start with an initial state bigger than z♯0

i anyway. (C3) finally
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avoids adding too many seed points, and chooses only points that precede merging points (with
several incoming transitions) since they are the only ones loosing information.

Remark: Depending on the iteration strategy, the first non-⊥ value z♯0
i — the one coming from

the analysis of the previous SCC — may not always be the same. Our method for choosing
the set of seed points may thus give a different set S⊥. With the strategy of first stabilizing
previous SCCs, we somehow get the “greatest” possible z♯0

i , which prevents from choosing too
many seed points.

The case of a strongly connected components with several widening points only requires
generalizing the previous definition:

Definition 15 (Seed Control Points). For a given fixpoint z̃♯, the control point pj is in the set
of Seed Control Points S⊥ if and only if the following conditions hold:

• There exists a widening point pi such that:

– z♯0
i ⊔ τ

♯
j→i(z̃

♯
j) � z̃♯

i

– τ
♯
j→i(z̃

♯
j) �⊑ z♯0

i

– every paths between pj and pi do not go through a widening point.

• At least one successor of pj has several predecessors.

Back to the Example

We illustrate the choice of seed points on our motivating example from subsection 4.1.1. When
starting from ⊥, the analysis reaches the fixpoint

Φ
♯ ∇∆(⊥) = Φ

♯











(−∞, +∞)
[0, +∞)
[0, 100]
[1, +∞)
[101, +∞)











p1

p2

p3

p5

p4

i ← 0

i ≤ 100

i > 100

i ← i + 1

¬undet()

undet()

Figure 4.4
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p4 is a widening point, and has two incoming transitions from the same SCC. During the
first ascending iteration, the first non-empty abstract value attached to p4 is z♯0

4 = [0, 0]. p3

and p4 are the candidates for being a seed point since they are predecessors of p4. p3 is attached
the value [0, 100], and p4 the value [0, +∞). Then,

• for p4: (C1) says: z♯0
4 ⊔τ

♯
4→4([0, +∞)) = [0, +∞) �� [0, +∞): the condition is not verified,

so p4 is not chosen.

• for p3: (C1) holds: z♯0
4 ⊔τ

♯
3→4([0, 100]) = [0, 100] � [0, +∞). (C2) also holds: τ

♯
3→4([0, 100]) =

[1, 101] �⊑ [0, 0]. Then, p3 is a good candidate and is chosen as a seed point.

Finally, one seed point has been chosen, and a new ascending iteration is computed with the
initial value (⊥,⊥, [0, 100],⊥,⊥).

The new ascending sequence reaches the expected precise fixpoint.

Improvements of the Technique

We briefly suggest some improvements of the method:

First Improvement: Intersect with the computed invariant During the second ascend-
ing sequence, one should intersect at each step the current abstract value with the previously
computed fixpoint Φ

♯ ∇∆(⊥). The invariant obtained after the ascending sequence may then be
smaller and could save the analysis the computation of a descending sequence. This improve-
ment has been implemented and our experiments in subsection 4.1.5 have been run with these
settings.

Second Improvement: Do not recompute the entire program locations Our ap-
proach consists in recomputing a new ascending/descending sequence with the knowledge of
a previously computed fixpoint. However, depending on which seed points have been chosen,
one can only recompute this ascending/descending sequence on the subgraph that is likely to
be improved. More precisely:

• one should not recompute a SCC if these two conditions hold:

– it does not contain any seed point;

– the abstract value at the entry point is not improved by the new analysis of the
previous SCC.

• for a given SCC that contains seed points, one should only recompute the control points
that may improve the invariant at a widening point. Intuitively the seed points will not
be improved since they are used as starting point. It follows that any control point from
which any path to a widening point also goes through a seed point will not have any
effect on the overall precision. Finally, one should only consider those program points for
which there exists a path to a widening point that does not cross a seed point.

4.1.4 A More Illustrative Example

Our motivating example is well handled by our approach, but would also be with other tech-
niques, such as widenings with thresholds [Hal93, HPR97, LCJG11, WYGI07] or program
slicing [MG12]. Here, we propose another example for which other state-of-the-art techniques
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do not get a precise invariant, while our approach does. The example in C and its represen-
tation as a CFG are depicted in Figure 4.5. The figure also illustrates the reachable concrete
states for (i, j) at control point p4.

i = 0 ;

while ( i < 4 ) {

j = 0 ;

while ( j < 4 ) {

i ++;

j ++;

}

i = i− j +1 ;

}

p1

p2

p3

p7

p4

p5 p6

i ← 0

i < 4

i ≥ 4

j ← 0

j < 4

j ≥ 4
i ← i + 1

j ← j + 1

i ← i − j + 1

i

j

Figure 4.5: Example

We detail the execution of the analysis with the domain of convex polyhedra (see Figure 4.6):

• after the first ascending sequence, we get 0 ≤ j ≤ i for p4;
• the descending sequence only recovers the upper bound for j, for the same reason as our

motivating example. The reached fixpoint is thus 0 ≤ j ≤ i ∧ j ≤ 4;
• we search for candidate seed points: p5 and p3 are the predecessors of p4. The abstract

value coming from p3 is 0 ≤ i ≤ 3 ∧ j = 0 and satisfies all the criteria. The one coming
from p5 is 1 ≤ j ≤ i ∧ j ≤ 4 and does not satisfy criterion (C1). The set of seed point is
then {p3};

• we restart an ascending sequence with the abstract value at p4 initialized at 0 ≤ i ≤

3 ∧ j = 0. We reach the post-fixpoint 0 ≤ j ≤ i ≤ j + 3;
• the final descending sequence leads to the fixpoint 0 ≤ j ≤ i ≤ j + 3, which is strictly

smaller than the previous one. Note that if we apply the first improvement described
previously, this fixpoint is reached without the need of the last descending sequence.

Finally, our approach catches the additional property i ≤ j + 3, which is not obtained with
the classical approach. This constraint is not syntactically present in the program, and thus
cannot be discovered with other techniques such like widening with thresholds.

4.1.5 Experiments

Our improved descending sequence has been implemented in our tool Pagai, which is precisely
described in chapter 7.

The major limitation of the implementation is that the choice of seed points is limited to
direct predecessors of the loop headers. Then, our experimental results should be seen as initial
results that could probably be greatly improved with the fully general choice of seed points.
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i

j

first ascending sequence
0 ≤ j ≤ i

i

j

first descending sequence
0 ≤ j ≤ i, j ≤ 4

i

j

restart with 0 ≤ i ≤ 3, j = 0

i

j

second ascending sequence
0 ≤ j ≤ i ≤ j + 3

i

j

second descending sequence
0 ≤ j ≤ i ≤ j + 3, j ≤ 4

Figure 4.6: Analysis results at point p4, for the example in Figure 4.5

Our results on a panel of GNU programs are depicted in Table 4.1. We compare the precision
of the abstract values obtained at the loop headers of the various benchmarks, both with our
improved descending iteration (noted N) and with a classical abstract interpretation (noted
S). We also compare the time needed for computing the final invariant. In the “Comparison”
column, we detail the number of control points where the improved descending sequence leads to
a strictly smaller abstract value (�), or does not improve the final result (=). The “Functions”
column gives information on the analyzed source code: #total is the number of functions,
#seeds is the number of functions where seed points have been identified, and � gives the
number of functions where the invariant is improved. The last column “Time eq” gives the
timing consumption for analyzing the functions that are not improved.

Benchmark
Comparison Time (seconds) Functions Time eq (seconds)

� = N S #total #seeds � = N S
libgsl 127 2724 1074.3 424.9 3888 624 81 3807 1038.2 406.8
grep 19 273 9.7 5.6 372 29 7 365 3.8 2.6
libsuperlu_4.3 9 674 16.1 8.9 187 68 6 181 11.7 6.5
tar 12 536 9.5 6.6 1038 27 9 1029 4.6 3.8
libglpk 98 2406 60.5 35.2 1495 323 53 1442 31.6 18.7
libgmp 23 199 11.6 7.9 299 47 17 282 9.2 6.5
gnugo 366 1302 87.2 56.2 2962 257 150 2812 25.0 19.4
libjpeg 38 396 6.4 3.9 335 80 20 315 4.9 3.2
sed 3 82 4.1 2.2 196 3 2 194 0.8 0.7
gzip 21 209 10.2 5.6 212 15 9 203 4.8 3.0
wget 26 431 16.5 9.4 707 38 15 692 6.7 4.8
libpng16 32 358 7.7 5.5 498 32 15 483 4.9 3.5
libsuperlu 9 674 13.7 7.9 187 68 6 181 9.9 5.8

Table 4.1: Experimental results, and comparison with standard abstract interpretation.
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4.2 Improving the Ascending Sequence

In this section, we explain how it is possible to get precise results by combining abstract inter-
pretation with bounded model checking by SMT solving (already introduced in section 2.2.1).

4.2.1 Program Encoding into SMT Formula

In this section, we detail a sound way of encoding the semantics of a program into an SMT
formula, whose models are feasible program traces. In this chapter, we suppose that the
program is described by a control-flow graph in Static Single Assignment (SSA) form:

Definition 16 (Static Single Assignment Form). A program is said to be in Static Single

Assignment Form if and only if any variable is only assigned in one program location.

Note that this is not a restriction, since any non-SSA program can be translated into SSA
form. This can be achieved by renaming the variables assigned several times, and introducing
special instructions called Φ-instructions. These Φ-instructions are attached to the nodes of
the CFG, and allow to declare an SSA-variable whose value depends on the incoming control
point. For instance, in Figure 4.7, variable x.2 is assigned to x.0 if the program execution goes
through the then branch of the if-then-else, and is assigned to x.1 if it goes through the else

branch. Efficient algorithms for SSA translations and analysis are known[Boi10].

i f ( c ) x = 0 ;

e ls e x = 1 ;

y = x +1;

=⇒

i f ( c . 0 ) x . 0 = 0 ;

e ls e x . 1 = 0 ;

x . 2 = Phi ( x . 0 , x . 1 ) ;

y . 0 = x . 2 + 1 ;

Figure 4.7: SSA transformation for a simple program fragment

In practice, SSA transformations need to introduce Φ-instructions at the control flow
merges, that may typically come from loops or if-then-else statements. Figure 4.8 illustrates
SSA transformation for a simple program containing a loop: the Φ-instruction x.1 = Φ(x.0, x.1),
that we will note x.1 = Φ([x.0, p0], [x.1, p6]) for clarity, assigns to x.1 the value of x.0 if the
execution trace comes from p0, and x.1 if it comes from p6.

Each instruction present in the control-flow graph has a semantics that can be safely over-
approximated by a logical formula in the chosen theory. Note that certain theories have been
specially invented so that it is possible to encode in SMT the exact semantics of some instruc-
tions: one can mention for instance the theory of bitvectors [KS08, BCF+07] or floating point
numbers[RW10]. The SSA instructions may have side effects in the memory, and can only
define the value of one single SSA scalar variable. In this thesis, side effects are not tracked in
the SMT encoding. It follows that instructions loading from the memory (load) are strongly
overapproximated by nondeterministic choices, and instructions that store into the memory
(store) are approximated to nop operations (do nothing). However, a simple pointer analysis
over the SSA program enables in practice to remove most of the load and store instructions
through the use of scalar registers.
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p0

p1

p2 p3

p4

p5

p6p7

x = 0

y = 0

x ≤ 50 x ≥ 51

y = y + 1 y = y − 1

y ≥ 0
y ≤ −1

x ← x + 1

(a) Non SSA control flow graph.
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x.1 ≤ 50 x.1 ≥ 51

y.2 = y.1 + 1 y.3 = y.1 − 1

y.4 ≥ 0y.4 ≤ −1

x.2 ← x.1 + 1

(b) SSA translated control flow graph.

Figure 4.8: SSA transformation of a simple control flow graph

Loop-free Program

In the simple case where the program has no cycles, a trace between the initial state and the
final state goes through each control point and each transition at most once. The control
structure can then be easily encoded using Boolean variables corresponding to the transitions
and the control points. We detail here how to construct an SMT formula whose models are
feasible program traces.

Definition 17. Let P = {p1, p2, . . . , pm} be the set of control points of the program, and τ

the set of transitions. We define for each pi ∈ P a Boolean variable bi, and for each transition
(pi, pj , Ci,j) ∈ τ a Boolean variable ti,j . The condition Ci,j is a Boolean SSA-variable defined
either by an instruction, a function parameter, etc. or by a nondeterministic choice.

Then, it is possible to construct a formula whose models are program traces, by setting
these Boolean variables in the following way:

• For each pi in P , if pi is the initial state, bi = true. Otherwise, bi =
∨

j/(pi,pj ,Ci,j)∈τ

ti,j

• For each (pi, pj , Ci,j) ∈ τ , ti,j = bi ∧ Ci,j .

Note that it would be simple to eliminate the bi’s in order to reduce the number of Boolean
variables in the formula. For convenience, we keep both in this thesis to simplify the encoding
of some instructions.

Here, a program state is identified by a tuple of values for the SSA scalar variables
{x1, x2, . . . , xn}. For the particular SSA scalar variable xk assigned by an instruction Ik, such
that Ik(x1, . . . , xk−1) is the set of possible values for xk, we can say that the SMT formula
I♯

k(x1, . . . , xk−1, xk) is a safe overapproximation of the instruction semantics if

∀x1, . . . , xk, xk ∈ Ik(x1, . . . , xk−1) ⇒ I♯
k(x1, . . . , xk−1, xk) is true

Since the program variable is assigned only once, the possible assignments for the corresponding
SMT variable in the formula will overapproximate the possible values for that variable in any
program execution.
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Example 10.

1. A Φ-instruction of the form x.2 = Φ([b.0, x.0], [b.1, x.1]) can be precisely encoded by
(b.0 ⇒ x.2 = x.0) ∧ (b.1 ⇒ x.2 = x.1).

2. A floating point operation x = y + z may be encoded by y + z − ε ≤ x ≤ y + z + ε

with some ε such that |ε| ≤ εr|y + z|, according to the semantics of floating points, if the
theory is Linear Rational Arithmetic (LRA).

Finally, the resulting formula is:

ρP =

[
∧

i∈1..m

bi = . . .

]

∧




∧

(pi,pj ,Ci,j)∈τ

ti,j = . . .





∧ I♯
1(x1) ∧ I♯

2(x1, x2) ∧ · · · ∧ I♯
n(x1, . . . , xn)

Handling Overflow

A sound way of encoding arithmetic operations over integer types for some usual programming
languages (e.g. C) would be to use the theory of bitvectors to represent elements of integer
types. However, efficiently manipulating bitvectors is hard since the integers will be considered
as arrays of Booleans, and the semantics of the usual operations over the integers will have
a complicated definition. Here, we suggest a different approach, using the theory of Linear
Integer Arithmetic (LIA): we introduce a Boolean variable ofl whose valuation will be true if
the operation overflows. Then, the SMT encoding of the C unsigned instruction x = y + z will
be:

(ofl = (y + z ≥ UMAX)) ∧ (¬ ofl ⇒ x = y + z) ∧ (ofl ⇒ x = y + z − UMAX− 1)

where UMAX is the greatest element of the corresponding type. In the case the overflow is
undefined behavior in the source language (e.g. C signed integers), one can create an error

control point and branch to it whenever the ofl Boolean variable is true.

Program with Loops

The previous encoding provides a formula whose models are program traces between the initial
and the final control point (or possibly an error control point) in the case where the control-
flow graph (CFG) has no cycle. However, it is not possible to construct such formula if the
program contains loops, since the control points inside the loop could be reached several times.
In this case, a standard approach is Bounded Model Checking, that consists in removing the
loop using unrolling up to a given depth D. After unrolling, the CFG is loop-free and the
previous encoding applies. However, models for the obtained formula will only be traces that
iterate over the loop at most D times, forgetting about longer feasible traces.

Here, our approach is not using loop unrolling: we slightly change our previous encoding
so that the models are feasible loop-free subtraces between two control points. The motivation
of doing so is described in the following sections. The starting and ending points of these
subtraces are chosen in a set of cutting points defined as follows:

Definition 18 (Cutting points). Let G = (P, τ) be the control-flow graph representing a
program, and PW ⊆ P be the set of widening points. A set PR ⊆ P is a correct set of Cutting

points if and only if PW ⊆ PR and PR contains the initial and final control points.
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A minimal set of cutting points can be computed in linear time [Sha79] for reducible graphs.
Then, the SMT formula that we will construct will express program traces between two cutting
points. We will use a similar encoding as in the loop-free case for a modified graph that has
no cycle. Figure 4.9 depicts an example of SSA control flow graph with a loop, as well as the
modified graph where the cutting points have been split.

p0

p1

x.1 = Φ(x.0, x.2)

y.1 = Φ(y.0, y.4)

p2 p3

p4

y.4 = Φ(y.2, y.3)

p5

p6p7

x.0 = 0

y.0 = 0

x.1 ≤ 50 x.1 ≥ 51

y.2 = y.1 + 1 y.3 = y.1 − 1

y.4 ≥ 0y.4 ≤ −1

x.2 ← x.1 + 1

(a) CFG in SSA form. PR = {p0, p1, p7}

=⇒

ps
0 ps

1 ps
7

p2 p3

p4

y.4 = Φ(y.2, y.3)

p5

p6
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1

x.1′ = Φ(x.0, x.2)

y.1′ = Φ(y.0, y.4)

pd
7pd

0

x.0 = 0

y.0 = 0

x.1 ≤ 50 x.1 ≥ 51

y.2 = y.1 + 1 y.3 = y.1 − 1

y.4 ≥ 0

y.4 ≤ −1

x.2 ← x.1 + 1

(b) control flow graph (a), such as it is rep-
resented by the SMT formula ρ. Points in
PR have been split into a “source” point and
a “destination” point, and Φ-variables associ-
ated to points in PR have been primed.

Figure 4.9: Program CFG, and loop free transformed graph being encoded by our SMT formula

We recast the encoding of the control structure with Boolean variables:

Definition 19. Let P = {p1, p2, . . . , pm} be the set of control points of the program, and τ

the set of transitions. Let PR ⊆ P be a set of Cutting points. We define for each pi ∈ P\PR a
Boolean variable bi, and for each transition (pi, pj , Ci,j) ∈ τ a Boolean variable ti,j . For each
pi ∈ PR, we define two Boolean variables bs

i and bd
i . Informally, bs

i will be evaluated to true if
the trace starts at pi, while bd

i is evaluated to true if the traces ends at pi. The control structure
of the program is encoded in SMT in the following way:

• For each (pi, pj , Ci,j) ∈ τ , ti,j =

{

bs
i ∧ Ci,j if pi ∈ PR

bi ∧ Ci,j otherwise

• For each pi in P\PR, bi =
∨

j/(pi,pj ,Ci,j)∈τ

ti,j

• For each pi in PR, bd
i =

∨

j/(pi,pj ,Ci,j)∈τ

ti,j

• There is exactly one Boolean variable among the set {bs
i }pi∈PR

which evaluates to true.
This property can be expressed by the subformula

[
∨

i

bs
i

]

∧
∧

pk∈PR



bs
k ⇒

∧

i�=k

¬bs
i




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Chapter 4 How to get Precise Invariants by Abstract Interpretation

When the program has cycles, it may be possible to get a loop-free trace for which the
starting and the ending control point are the same. In that case, one should distinguish the
values for the Φ-instructions defined in control points in PR before and after the effect of the
loop. The value before, e.g. xk, is part of the precondition that will be later conjoined to
the formula – and thus is not assigned in the formula –, and the value after, noted x′

k, is
defined by the Φ-instruction using the formula I♯

k(x1, . . . , xk−1, x′
k) (recall that I♯

k is the safe
overapproximation of the effects of the instruction). In other words, each use of the SSA
variable xk is encoded with the xk variable in the formula, while the definition of the SSA
Φ-instruction xk actually defines the primed variable x′

k. To conclude, the SMT encoding of
the instruction defining xk is:

J ♯
k(x1, . . . , xk−1) =

{

I♯
k(x1, . . . , x′

k) if xk is a Φ-instruction defined in a point in PR

I♯
k(x1, . . . , xk) otherwise

Finally, the SMT formula we get for the program P is the following:

ρP =

[
∧

i

bi = . . .

]

∧

[
∧

i

bd
i = . . .

]

∧




∧

(pi,pj ,Ci,j)∈τ

ti,j = . . .





∧

[
∨

i

bs
i

]

∧
∧

pk∈PR



bs
k ⇒

∧

i�=k

¬bs
i





∧ J ♯
1() ∧ J ♯

2(x1) ∧ · · · ∧ J ♯
n(x1, . . . , xn−1)

4.2.2 Path Focusing Algorithm

For the sake of completeness of this thesis, we detail the Path Focusing algorithm in 2, which
has been used as a basis for our contributions.

4.2.3 Guided Path Analysis

In this section, we adopt the notations and the SMT formula defined in subsection 4.2.1.
Guided static analysis [GR07], as described in subsection 3.2.3, applies to the transition

graph of the program, and is a way of limiting the loss of precision due to widenings. We
now present a new technique applying this analysis on the expanded graph from [MG11] (see
subsection 3.3.2), where all the paths between loop headers are expanded, thus avoiding control
flow merges in many control points.

The combination of these two techniques aims at first discovering a precise inductive invari-
ant for a subset of traces between two cutting points, by the mean of ascending and descending
Kleene sequences. When an inductive invariant has been found, we add new feasible paths to
the subset and compute an inductive invariant for this new subset, starting with the results
from the previous analysis. In other words, our technique considers an ascending sequence
of subsets of the paths between two points in PR. We iterate the operations until the whole
program (i.e all the feasible paths) has been considered. The result will then be an inductive
invariant of the entire program.

Formally, if τ ♯ is the abstract transition relation of the expanded control flow graph, we
will work with a finite sequence of transition relations (τ ♯

i )i≤n such that ∀x♯ ∈ X♯, τ
♯
0(x♯) = ⊥,

τ ♯
n = τ ♯, and ∀x♯ ∈ X♯,∀i < n, τ

♯
i (x♯) ⊑ τ

♯
i+1(x♯). The sequence of operators (Φ♯

i)i≤n is defined
by:

∀x♯ ∈ X♯, Φ
♯
i(x

♯) = I♯ ⊔ τ
♯
i (x♯)
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Algorithm 2 Path Focusing

1: procedure pathfocusing(PR)
2: for all p ∈ PR do

3: Compute Succ(p), the set of the successors of p in the multigraph
4: end for

5: ρ ← computeRho()
6: A ← ∅

7: for all p ∈ PR/Ip �= ∅ do

8: A ← A ∪ p

9: end for

10: while A �= ∅ do

11: Select pi ∈ A

12: A ← A \ {pi}

13: while true do

14: res ← SmtSolve








ρ ∧ bs
i ∧

∧

j �=i
j∈PR

(¬bs
j) ∧ xi ∈ Xpi ∧

∨

j
pj∈Succ(pi)

(

bd
j ∧ ¬(x′

j ∈ Xpj )
)








15: if res = unsat then

16: break

17: end if

18: Compute the focus path e from pi to pj

19: Y ← τ#
e (Xpi)

20: if pj ∈ PW then

21: Xpj ← Xpj ∇(Xpj ⊔ Y )
22: else

23: Xpj ← Xpj ⊔ Y

24: end if

25: A ← A ∪ {pj}

26: end while

27: end while

28: Possibly perform some narrowing steps
29: Compute {Xpi , i /∈ PR}

30: return {Xpi , i ∈ P}

31: end procedure
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We then iteratively compute a fixpoint x̃♯
i of the Φ

♯
i starting from the computed fixpoint

x̃♯
i−1 of Φ

♯
i−1. τ

♯
i is defined according to x̃♯

i−1, so that τ
♯
i (x̃♯

i−1) = τ ♯(x̃♯
i−1).

Algorithm

2 + 3 2 + 3

0 1 1 1

Figure 4.10: Ascending sequence of subsets of paths between two Cutting points.

Our new technique performs guided static analysis on the expanded CFG that distinguishes
every paths between the Cutting points. The initial step 0 (see Figure 4.10) consists in
succinctly representing the expanded CFG by the SMT formula ρP previously defined.

We initialize the current working subset of paths, noted P, to the empty set. In practice,
this set P can be stored in memory using a compact representation, such as binary decision
diagrams. We also maintain two sets of control points:

• A′ contains the points in PR that may be the starting points of new feasible paths.
Typically, each time the abstract value attached to a control point is updated, there may
exist a new feasible path starting from it.

• A is the work list that contains the active points in PR on which we apply the ascending
iterations. Each time the abstract value of a control point p is updated, p is inserted in
both A and A′.

Our algorithm is fully described in Algorithm 3. We distinguish three phases in the main
loop of the analysis, illustrated by Figure 4.10. When entering 1 , our technique has already
computed a precise inductive invariant for the program restricted to the paths in P. Since P

is initially empty, an inductive invariant Xs
i for each control point pi is its set of initial states

Ipi .

1 Add new paths: we start finding a new relevant subset P ∪ P ′ of the graph. P is the
previous subset, and P ′ is the set of newly feasible paths. consists in choosing this set
P ′. Either the previous iteration or the initialization lead us to a state where there are
no more paths in the previous subset P that make the abstract values of the successors
grow. Narrowing iterations preserve this property. However, there may exist such paths
in the entire graph, that are not in P. This phase computes these paths and adds them
to P ′. This phase is described in more details later and corresponds to lines 9 to 13 in
Algorithm 3.

2 Ascending iterations: given a new subset P, we search for paths in the set P, i.e
included in the working subgraph, that lead to a state outside of the current candidate
invariants.. Each time we find such a path, we update the abstract value of the destination

64



Section 4.2 Improving the Ascending Sequence

point of the path. This is the phase explained in the next paragraph, and corresponds to
lines 16 to 20 in Algorithm 3.

3 Descending iterations: we perform narrowing iterations the usual way (line 21 in
algorithm 3) and reiterate from step 1 unless there are no more points to explore, i.e.
A′ = ∅.

Algorithm 3 Guided static analysis on implicit multigraph

1: A′ ← {p|PR/Ip �= ∅}

2: A ← ∅

3: P ← ∅ ⊲ Paths in the current subset
4: for all pi ∈ PR do

5: Xs
i ← Ipi

6: end for

7: while A′ �= ∅ do

8: P ′ ← ∅ ⊲ Set of new paths
9: while A′ �= ∅ do

10: Select pi ∈ A′

11: A′ ← A′ \ {pi}

12: ComputeNewPaths(pi) ⊲ Updates A, P ′ and possibly A′

13: end while

14: P ← P ∪ P ′

15: ⊲ ascending iterations on P

16: while A �= ∅ do

17: Select pi ∈ A

18: A ← A \ {pi}

19: PathFocusing(pi) ⊲ Updates A and A′

20: end while

21: Narrow
22: end while

23: return {Xs
i , i ∈ PR}

Step 2 corresponds to the application of path-focusing [MG11] to the elements of A until
A is empty. When A becomes empty, it means that an invariant for the current subgraph
has been reached. As proposed by [GR07], we can do some narrowing iterations. These
narrowing iterations allow to recover precision lost by widening, before computing and taking
into account new feasible paths. Thus, our technique combines both the advantages of Guided

Static Analysis and Path-Focusing.
The order of steps is important: narrowing has to be performed before adding new paths,

or some spurious new paths would be added to P. Also, starting with the addition of new
paths avoids wasting time doing the ascending iterations on an empty graph.

Ascending Iterations by Path-Focusing

For computing an inductive invariant over a subgraph (step 2 ), we use the Path-focusing
algorithm from [MG11] with special treatment for self loops (line 19 in algorithm 3).

In order to find which path to focus on, we construct an SMT formula f(pi), whose model
when satisfiable is a path that starts in pi ∈ PR, goes to a successor pj ∈ PR of pi, such that
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the image of the current abstract value Xs
i attached to pi by the path abstract transformer is

not included in the current Xs
j . Intuitively, such a path makes the abstract value Xs

j grow,
and thus is an interesting path to focus on for reaching the fixpoint. We loop until the formula
becomes unsatisfiable, meaning that the analysis of pi is finished.

If we note Succ(i) the set of indices j such that pj ∈ PR is a successor of pi in the expanded
multigraph, and Xs

i the abstract value associated to pi :

f(pi) = ρP
︸︷︷︸

program encoding

∧

path starts from bs
i in Xs

i
︷ ︸︸ ︷

bs
i ∧

∧

j∈PR
j �=i

¬bs
j ∧Xs

i ∧
∨

j∈Succ(i)

path ends in bd
j outside Xs

j
︷ ︸︸ ︷

(bd
j ∧ ¬ primed(Xs

j )) ∧ P
︸︷︷︸

path is in P

where primed(Xs
j ) is the encoding of the Xs

j abstract value into an SMT formula where the
Φ-variables defined in pj are renamed into their primed counterparts. For the sake of simplicity,
we use the same notation Xs

i for both the abstract value and its encoding into an SMT formula.
This implies that any element of the abstract domain can be exactly expressed within the chosen
theory in SMT. In other words, the theory used in the formula should be at least as expressive as
the abstract domain. In the case of usual numerical abstract domains (e.g. intervals, octagons,
polyhedra), the corresponding formula is simply the conjunction of the constraints defining the
abstract value.

The difference with [MG11] is that we do not work on the entire transition graph but on
a subset of it. Therefore we conjoin the formula with the current set of working paths P,
expressed as a Boolean formula, where the Boolean variables are the reachability predicates of
the control points. We can easily construct this formula from the binary decision diagram using
dynamic programming, and avoid an exponentially sized formula. In other words, we force the
SMT solver to give us a path included in the set P. Note that it would also be possible to
encode a new ρ formula for each working subset of paths, instead of using the encoding of the
entire program conjoined with P; it is unclear whether it makes any difference in practice. On
the one hand, a larger formula may compromise the performance of the SMT solver. On the
other hand, always using the same formula may take more benefits from incremental solving
capabilities of state-of-the-art solvers.

If the formula is satisfiable, the SMT-solver returns a model that provides a program trace
between bs

i and one of the bd
j . The trace pi1

→ · · · → pik
– where k is the length of the trace,

i1 = i and ik = j – is directly given by the Boolean variables assigned to true in the model. We
then update the candidate invariant Xs

j with Xs
j ⊔ τ

♯
ik−1→ik

◦ · · · ◦ τ
♯
i1→i2

(Xs
i ) (with potentially

a widening if pj ∈ PW ).
It is possible that the trace is actually a self-loop, i.e. pi = pj . In that particular case, it is

possible to apply abstract acceleration [GH06, Gon07] or a local widening/narrowing phase.
We successively update the invariant candidates until the SMT formula becomes unsatisfi-

able. In that case, the Xs
j are correct invariants modulo the precondition Xs

i .

Adding new Paths

Our technique computes the fixpoint iterations on an ascending sequence of subgraphs, until
the complete graph is reached. When the analysis of a subgraph is finished, meaning that the
abstract values for each control point has converged to an inductive invariant for this subgraph,
the next subgraph to work on has to be computed (step 1 ).

This new subgraph is the union of the paths of the previous one with a set P ′ of new
paths that become feasible with respect to the current abstract values. The paths in P ′ are
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computed one after another, until no more path can make the invariant grow. This is line 12
in Algorithm 3. We also use SMT solving to discover these new paths, by subtly recasting
the SMT formula given to the SMT solver: we now simply check for the satisfiability of f ′(pi)
where f ′(pi) is f(pi) where the conjunct P is removed. Since we already know that f(pi) ∧ P

is unsatisfiable, none of the paths given by the SMT solver will be in P.
Also, to prevent the algorithm from adding too many paths at a time, and in particular

to prevent the algorithm from trying to re-add the same path infinitely many times, we use
another abstract value associated to the control point pj , noted Xd

j , which is distinct from Xs
j ,

and initialized to Xs
j right before computing new paths. In the SMT formula, we associate

to pj the abstract value Xs
j when pj is the starting point of the path, and Xd

j when it is its
destination point. We thus check the satisfiability of the formula f ′(pi), where:

f ′(pi) =

same as in f(pi)
︷ ︸︸ ︷

ρP ∧ bs
i ∧

∧

j∈PR
j �=i

¬bs
j ∧Xs

i ∧
∨

j∈Succ(i)

same as in f(pi) but Xd
j instead of Xs

j )
︷ ︸︸ ︷

(bd
j ∧ ¬ primed(Xd

j )

This SMT query actually means “Does there exist a path in the entire program that starts
in bs

i , with the starting variables having a value in Xs
i , that goes to a successor bd

j of bs
i , with

the new values for the variables being outside the current candidate invariant Xs
j ?”

Xd
j is updated when the point pj is the target of a new path. This way, further SMT queries

do not compute other paths with the same source and destination if it is not needed (because
these new paths would not make Xd

j grow, hence would not be returned by the SMT solver).
The algorithm is described in Algorithm 4.

Algorithm 4 Construction of the new subgraph

1: procedure ComputeNewPaths(pi)
2: for each pj successor of pi do Xd

j ← Xs
j

3: end for

4: while true do

5: res ← SmtSolve [f ′(pi)]
6: if res = unsat then

7: break

8: end if

9: Extract the path π from pi to pj from the model
10: Xd

j ← Xd
j ⊔ π(Xs

i )
11: P ′ ← P ′ ∪ {π}

12: A ← A ∪ {pi}

13: end while

14: end procedure

Variant Algorithm 4 for adding new paths can be slightly modified in order to reduce the
number of subgraphs in the sequence. Indeed, if p1 → p2 becomes feasible, and p2 → p3

become feasible as well because π2→3 ◦ π1→2(Xs
1) �= ⊥, then one could insert the path π2→3

instantaneously instead of waiting for the next iteration. In some cases, it may degrade the
precision of the analysis, but it will be faster in general because it reduces the number of
subgraphs P to process. The new algorithm is the same as Algorithm 4, by replacing line 10 by
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Xs
j ← Xs

j ⊔ π(Xs
i ), removing line 2 and inserting A′ ← A′ ∪ {pi} after line 12. In the example

page 68, we illustrate our approach using this variant.

Termination

The termination of the analysis is subject to a property between the abstraction used in the
abstract interpretation, i.e. the abstract domain and the chosen forward abstract transformer
τ ♯, and the overapproximations done in the SMT encoding. Intuitively, for a path pi1

→

pi2
→ pik

returned by the SMT solver that gives a point M outside the invariant candidate
Xs

ik
(i.e. M �⊑ Xs

ik
), the image of Xs

i1
by the corresponding abstract transformer τ

♯
i1→ik

=

τ
♯
ik−1→ik

◦ · · ·◦τ
♯
i1→i2

has to contain the point M , otherwise the SMT solver may keep returning
the same path infinitely many times. In other words, the SMT formula representing the program
should be at least as precise as the abstract transformer in the abstract interpretation. An
alternative is to incrementally insert blocking clauses into the SMT formula whenever a trace
is proved impossible in the abstract interpretation, as it is done by [HSIG10].

Termination of this algorithm is then guaranteed, because:

• The subset of paths P strictly increases at each loop iteration, and is bounded by the
finite number of paths in the entire graph. The set P ′ always verifies P ∩ P ′ = ∅ by
construction, which guarantees that P ′ will eventually be empty after a finite number of
loop iterations. When P ′ is empty after computing the new paths, it follows that A and
A′ are empty as well and the main loop terminates.

• The ascending sequence by Path-Focusing terminates because of the properties of widen-
ing, which is applied infinitely often.

Example

We illustrate our approach with the program described in 4.11. This program implements a
construct commonly found in control programs (in automotive or avionics for instance): a rate
or slope limiter. In the real program its input is the result of previous computation steps, but
here we consider that the input is nondeterministic within [−10000, +10000].

Suppose first that the nested loop at line 8 is commented. In this case, Path-focusing works
well because all the paths starting at the loop header are actually self loops. In such a case, the
technique performs a widening/narrowing sequence or accelerates the loop, thus yields a precise
invariant. However, in many cases, there also exist paths that are not self loops, in which case
Path-focusing applies only widening and loses precision. Alternatively, Guided Static analysis

behaves badly because of a least upper bound computed in the end of the first if statement at
line 5.

We choose PR as the set of loop headers of the function, plus the initial state. In this case,
we have three elements in PR.

The main loop in the expanded multigraph has then 4 distinct paths going to the header of
the nested loop. The initial control point is noted p1, the one corresponding to line 3 is noted
p3, and the inner loop header is noted p8.

Guided static analysis yields, at line 3, x_old ∈ (−∞, +∞). Path-focusing also finds x_old
∈ (−∞, +∞). Now, let us see how our technique performs on this example.

Figure 4.12 shows the sequence of subset of paths during the analysis. The points in PR

are noted pi, where i is the corresponding line in the code: for instance, p3 corresponds to the
header of the main loop.
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1 void r a t e _ l i m i t e r ( ) {

2 i n t x_old = 0 ;

3 while ( 1 ) {

4 i n t x = input (−100000 , 100000) ;

5 i f ( x > x_old +10) x = x_old +10;

6 i f ( x < x_old−10) x = x_old −10;

7 x_old = x ;

8 while ( condi t ion ( ) ) { wait ( ) ; }

9 }

Figure 4.11: Rate Limiter Example

1. The starting subgraph is depicted in Figure 4.12 Step 1. In the beginning, this graph has
no transitions: P = ∅.

2. We compute the new feasible paths that have to be added into the subgraph. We first
find the path from p1 to p3 and obtain at p3 x_old = 0. The image of x_old = 0 by the
path that goes from p3 to p8, and that goes through the else branch of each if-then-else,
is −10 ≤ x_old ≤ 10. This path is then added to our subgraph. Moreover, there is
no other path starting at p3 whose image is not in −10 ≤x_old≤ 10. Finally, since the
abstract value associated to p8 is −10 ≤x_old≤ 10, the path from p8 to p3 is feasible and
is added into P . The final subgraph is depicted in Figure 4.12 Step 2.

3. We then compute the ascending iterations by path-focusing. At the end of these itera-
tions, we obtain −∞ ≤x_old≤ +∞ for both p3 and p8.

4. We now can apply narrowing iterations, and recover the precision lost by widening: we
obtain −10000 ≤x_old≤ 10000 at points p3 and p8.

5. Finally, we compute the next subgraph. The SMT-solver does not find any new path
that makes the abstract values grow, and the algorithm terminates.

Our technique gives us the expected invariant x_old∈ [−10000, 10000]. Here, only 3 paths
out of the 6 have been considered during the analysis. In particular, the self loop at line 8 is
never chosen and thus the narrowing behaves better. In practice, depending on the order the
SMT-solver returns the paths, other feasible paths could have been added during the analysis.

p1

p3

p8

Step 1 p1

p3

p8

Step 2

x_old ← 0

−10000 ≤x ≤ 10000

x_old−10 ≤ x

x ≤ x_old+10 /

x_old ← x

Figure 4.12: Ascending sequence of subgraphs

In this example, we see that our technique actually combines best of Guided Static Analysis

and Path Focusing, and is more precise than the intersection of the invariants computed by the
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two techniques separately.

Improvements

Here, we described reasonable improvements of our approach, that have been studied but not
implemented nor experimented in this thesis.

Dynamic Choice of the Cutting Points The more elements in the set of Cutting points

PR, the more least upper bound operations will be computed. An improvement of our method
consists in the use of a different set of Cutting points for each working subgraph. The set PR

is still used for computing the new paths, but once a subgraph P has been chosen, one can
define a correct set of Cutting points P P

R for this particular subgraph. In general, this set P P
R

may be included in PR, thus avoiding least upper bounds at some control points in PR/P P
R .

Having a different set of Cutting points implies that a new ρP formula has to be computed
each time, and thus may degrade the performance of the analysis in terms of computation time.
Indeed, keeping the same ρP formula in the whole analysis takes high benefits of incremental
SMT solvers, that remember learned clauses between two “only slightly different” SMT checks.
This benefit is lost when modifying the ρP formula, since the structure of the formula differs.
This improvement has not been implemented in this thesis and its behavior compared to the
unimproved approach is not known.

Focusing on a very different Path In the Path-Focusing algorithm from [MG11], the
SMT queries are used for focusing on one path in the expanded graph for which there is a
reachable state outside the current invariant candidate. There may exist a very large number
of such paths, and the number of iterations before convergence highly depends on the order
in which the paths are returned by the SMT solver, used as black-box. Suppose for instance
we apply Path-Focusing on the graph depicted in Figure 4.13, where there are N paths, noted
π1, . . . , πN , with N very big, and for each i ≤ N , πi increments a variable x by i. x is initialized
to 0 and the abstract domain is intervals. In the final control point, the invariant should be
x ∈ [1, N ]. This invariant may be reached in 2 iterations by focusing to π1 and πN only.
However, the SMT solver may also return successively π1, π2, etc. until πN , thus leading to N

iterations. This is a problem since N can be very big – e.g. a program with a succession of 10
if-then-else leads to 210 distinct paths in the expanded graph. We show later in chapter 6 that
this problem occurs in real-life and useful applications, such as the estimation of Worst-Case
Execution Time (WCET) or energy consumption. Here, the use of a widening is not a solution,
since the narrowing phase would lead to the same problem.

It is possible to work around this problem by using a variant of Optimization Modulo Theory

[ST12, LAK+14]: informally, instead of searching for a path that just enlarges the abstract
value, one can search for a path that gives a point far from the current abstract value.

We give here a heuristic for usual numerical abstract domains (e.g. intervals, octagons,
polyhedra), illustrated by Figure 4.14 with a convex polyhedron. In these domains, abstract
values can be represented by a finite number of linear inequalities. When the abstract value
is not an invariant, it means there is at least one these inequalities which is not invariant. In
Path-Focusing, the assignment of the numerical variables in the model, noted M1, given by the
SMT solver directly gives the set of falsified constraints. One can pick one of these constraints
(C0) : a1x1 + a2x2 + · · · + akxk ≤ C, and compute the distance d1 between (C0) and the model
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x ← x + 1

x ← x + 1

x ← x + 1

n times

x ← x + 1 · · · x ← x + N

Figure 4.13: On the left side, a program with 2n distinct paths. The forward transformers of
these paths are of the form x ← x + i, i ∈ [0, n]. On the right side, a simpler control flow graph
with N paths, where the i-th path is labelled with x ← x + i.

M1, that assigns the xi’s to M1(xi), using the usual formula:

d1 =
|a1.M1(x1) + · · · + ak.M1(xk)− C|

√

a2
1 + · · · + a2

k

Then, one can transform (C0) into (C1) : a1x1 + a2x2 + · · · + akxk ≤ C + d1, and use SMT
solving to find a new model that does not satisfy (C1) by checking the satisfiability of the
following formula:

ρP ∧ bs
i ∧

∧

j∈PR
j �=i

¬bs
j ∧Xs

i ∧ bd
j ∧ ¬primed(C1) ∧ P

If the formula is sat, we get a new model M2 whose distance from C0 is at least twice
bigger than M1, and we can iterate by constructing a constraint C2 and restart.

If the formula is unsat, we focus on the path given by the satisfiable assignment of the
previous formula.

It is unclear whether this optimization makes sense in practice: future work includes ex-
perimenting with this approach to see if it improves the overall analysis in time.

4.3 Using a More Expressive Abstract Domain

While many useful program invariants on numerical variables can be expressed as conjunc-
tions of inequalities and congruences, it is sometimes necessary to introduce disjunctions: the
invariant is then not only a single abstract value but a union thereof, which increases the
expressiveness. For instance, the loop for (int i=0; i<n; i++) {...} verifies 0 ≤ i ≤ n ∨ (i =
0 ∧ n < 0) at the loop header. For this very simple example, a simple syntactic trans-
formation of the control structure (into int i=0; if ( i<n) do {...} while (i<n)) is sufficient to
obtain a precise invariant, but in more complex cases, more advanced analyses are required
[BSIG09, Jea03, SDDA11, MB11]; in intuitive terms, they discover phases or modes in loops.

[GZ10] proposed a technique for computing disjunctive invariants, by distinguishing all the
paths inside a loop. In this section, we propose to improve this technique by using SMT queries
to find interesting paths, the objective being to avoid an explicit exhaustive enumeration of an
exponential number of paths.
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x

y

(C0) (C1)

(C2)

d1

d1

d2

d2

M1

M2

Xj

Figure 4.14: Search for a model far from the face (C0) of Xj .

For each control point pi, we compute a disjunctive invariant
∨

1≤j≤mi
Xi,j . We denote by

ni the number of distinct paths starting at pi. To perform the analysis, one chooses an integer
δi ∈ [1, mi], and a mapping function σi : [1, mi] × [1, ni] �→ [1, mi]. The mapping function
determines which disjunct of the abstract value to join with, depending on the disjunct we
started from as well as the path being taken. The k-th path starting from pi is denoted τi,k.
The image of the j-th disjunct Xi,j by the path τi,k is then joined with Xi,σ(j,k). Initially, the
δi-th abstract value contains the initial states of pi, and all other abstract values contain ∅.

For each control point pi ∈ PR, mi, δi and σi can be defined heuristically. For instance, one
could define σi so that σi(j, k) only depends on the last transition of the path, or else construct
it dynamically during the analysis.

Our method improves this technique in two ways :

• Instead of enumerating the whole set of paths, we keep them implicit and compute them
only when needed.

• At each loop iteration of the original algorithm [GZ10], one has to compute for each
disjunct of the invariant candidate and for each path an image by the corresponding
abstract forward transformer. Yet, many of these images may be redundant: for instance,
there is no point in enumerating disjuncts and paths that yield abstract values already
included in the current candidate invariant. In our approach, we compute such an image
only if it makes the resulting abstract value grow.

Our improvement consists in a modification of the SMT formula we solve in 4.2.3. We
introduce in this formula Boolean variables {dj , 1 ≤ j ≤ m}, so that we can easily find in the
model which abstract value of the disjunction of the source point has to be picked to make the
invariant candidate of the destination grow. The resulting formula that is given to the SMT
solver is defined by g(pi):
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g(pi) =

same as in f(pi)
︷ ︸︸ ︷

ρP ∧ bs
i ∧

∧

j∈PR
j �=i

¬bs
j ∧

starting value is in the k-th disjunct
︷ ︸︸ ︷
∨

1≤k≤mi

(dk ∧Xi,k ∧
∧

l �=k

¬dl)

∧
∨

j∈Succ(i)

(bd
j ∧

∧

1≤k≤mi

(¬primed(Xj,k)))

︸ ︷︷ ︸

there is a bd
j for which

the final values are not in any disjunct

When the formula is satisfiable, we know that the index j of the starting disjunct that has
to be chosen is the one for which the associated Boolean value dj is true in the model. Then,
we can easily compute the value of σi(j, k), thus know the index of the disjunct to join with.

In our algorithm, the initialization of the abstract values slightly differs from algorithm 3
line 5, since we now have to initialize each disjunct. Instead of Line 5, we initialize Xi,k with
⊥ for all k ∈ {1, .., mi} \ {δi}, and Xi,δi

with ← Ipi .
Furthermore, the Path-Focusing algorithm (line 19 from algorithm 3) is enhanced to deal

with disjunctive invariants, and is detailed in algorithm 5.
The Update function can classically assign Xi,σi(j,k) ∇(Xi,σi(j,k) ⊔ τi,k(Xi,j)) to Xi,σi(j,k), or

can integrate the special treatment for self loops proposed by [MG11], with widening/narrowing
sequence or acceleration.

Algorithm 5 Disjunctive invariant computation with implicit paths

1: while true do

2: res ← SmtSolve [g(pi)]
3: if res = unsat then

4: break

5: end if

6: Compute the path τi,k from res

7: Take j ∈ {l|dl = true}

8: Update(Xi,σi(j,k))
9: end while

We experimented with a heuristic of dynamic construction of the σi functions, adapted
from [GZ10]. For each control point pi ∈ PR, we start with one single disjunct (mi = 1) and
define δi = 1. M denotes an upper bound on the number of disjuncts per control point.

The σi functions take as parameters the index of the starting abstract value, and the path
we focus on. Since we dynamically construct these functions during the analysis, we store their
already computed image into a compact representation, such as Algebraic Decision Diagrams
(ADD) [BFG+97]. These ADD’s extend Binary Decision Diagrams by attaching to the terminal
nodes not only a Boolean value, but an element of an arbitrary domain. In our case, this element
is an integer value expressing the index of the disjunct to join with, depending on the focused
path and the starting disjunct.

σi(j, k) is then constructed on the fly only when needed, and computed only once. When
the value of σi(j, k) is required but undefined, we first compute the image of the abstract value
Xi,j by the path indexed by k, and try to find an existing disjunct of index j ′ so that the least
upper bound of the two abstract values is exactly their union (using SMT-solving). If such an
index exists, then we set σi(j, k) = j′. Otherwise:
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• if mi < M , we increase mi by 1 and define σi(j, k) = mi,
• if mi = M , the simplest heuristic is to set σi(j, k) to M , even though this choice is

clearly not optimal. Our current implementation is using this setting for simplicity, and
we already improve results on many examples. We can suggest probably better heuristics
that we would like to try and experiment with, for instance:

– join with the abstract value that has the most constraints in common.
– join with a disjunct that does not increase the dimension of the abstract value.

The main difference with the original algorithm [GZ10] is that we construct σi(j, k) using SMT
queries instead of enumerating a possibly exponential number of paths to find a solution.

4.4 Conclusion

In this chapter, we proposed several methods for improving the precision of state-of-the-art
abstract interpretation-based algorithms. We first showed that it is possible to improve an
already discovered fixpoint by restarting a new ascending/descending sequence with a smart
choice of the initial abstract value. This new approach gives interesting results on real code,
in particular in the presence of nested loops. To our knowledge, this was the first attempt in
the literature for improving the result after the fixpoint has been reached: existing approaches
were only focusing on precision during fixpoint computation. This work motivated other works
in the same line [AS13].

We also presented an original SMT-based method, called Guided Path Analysis, aimed
at avoiding least upper bound operations at many program points, combined with a smart
iteration strategy that limits the bad effects of widenings. Given an abstract domain, this
algorithm yields in general much better results than standard abstract interpretation with the
same abstract domain. In this thesis, we only used SMT solving to represent precisely loop-free
program paths. We should note that the SMT encoding we are using could also be used for
automating the construction of abstract forward transformers. For instance, [TR12b] uses a
very similar algorithm to ours for deriving invariants without the need to define the abstract
transformers. Experimental results that show the efficiency of this contribution will be detailed
further in chapter 7.

All these analyses are intra-procedural. This is an important limitation in the sense that
rough approximations are applied at function call sites, and lead to many false alarms. In
addition, SMT based approaches may suffer from scalability problems in case the analyzed
function has a huge size (e.g. after inlining). We propose in the next chapter to deal with these
two issues.
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Modular Static Analysis

In the previous chapter, we proposed an intraprocedural static analysis by abstract interpre-
tation, that uses bounded model checking for limiting the loss of precision due to least upper
bound operations. The intraprocedural issue can be partially addressed by function inlining,
at the expense of a blowup in the size of the code. When such inlining is applied, experiments
show that the resulting SMT formulas have a large size and are hard to solve even by the
state-of-the-art solvers.

A classical way of doing interprocedural analysis is to compute summaries for functions,
that provide relations between their input and output variables [SP81, GT07, Cla77]. These
summaries are then used whenever the function is called.

In this chapter, we propose a framework for a modular and interprocedural summary-based
analysis of a program, given some properties to check. The main idea is to compute rough
overapproximations of the different parts of the program, and improve these overapproximations
incrementally until we find sufficiently precise invariants to prove the given properties.

We first decompose the program into blocks, defined in section 5.1, which abstract parts
of the program, such as loops or function calls. We obtain a loop-free program on which we
can use model checking by SMT-solving to discover traces that violate the properties of inter-
est. Once such a violating trace is discovered, we try to prune it by recursively refining the
abstractions of the blocks the trace goes through. We can use state-of-the-art abstract interpre-
tation techniques for computing the summaries of abstracted blocks, also called input/output

relations.
The organization of the chapter is summarized in Figure 5.1: First, in section 5.1, we detail

our decomposition of programs into abstraction blocks to be analyzed separately. This section
gives the preliminaries for the next sections. In section 5.2, we illustrate on an example the
principle of the algorithms described in the chapter, in particular our Property Guided Path
Focusing from section 5.5. In section 5.3, we describe our simpler extension of the path focusing
algorithm for computing summaries. This section is written as a preliminary of section 5.4,
where we improve the algorithm so that the computed summaries are reusable in other calling
contexts. These algorithms are intended to compute precise summaries for every program parts
with any particular objective. Then, we propose in section 5.5 an algorithm for verifying a given
user-defined property, using successive refinements of the summaries which are guided by error
traces. This last algorithm is theoretically described in this thesis and its implementation is
part of future work. Finally, section 5.6 explains how to infer preconditions to functions (or
loops) based on this last algorithm.

This chapter therefore presents three contributions:

• an algorithm, called Modular Path Focusing, for computing both precise and general
summaries in section 5.4,
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• in section 5.5, an extension of this algorithm, called Property-Guided Path Focusing, that
aims at proving user-given properties by lazily computing summaries,

• a procedure for generating function/loop preconditions, based on Property-Guided Path

Focusing.

5.1 Preliminaries 5.3

Modular
Path Focusing
(first attempt)

5.4
Modular
Path Focusing

5.5
Property-Guided
Path Focusing

5.6
Precondition
Inference

5.2 Example

Figure 5.1: Organization of the chapter, and dependencies between sections

The implementation and experimentations of the techniques described here are current
work: at present, only section 5.3 has been implemented in our tool Pagai, which is not
sufficient to conduct interesting experiments.

5.1 Block Decomposition

We suppose that the program is defined by a set of functions/procedures, each of them described
by their control flow graph.

Instead of doing the analysis over these graphs, we summarize some parts (subgraphs) in
order to analyze them modularly. We thus obtain new graphs, where the nodes are called
blocks, with some of these blocks being the abstraction of a subgraph of the original one. The
decomposition is recursive: e.g. a function with nested loops will be composed of abstraction
blocks that themselves contain abstraction blocks.
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Figure 5.2: Abstracting a program part into a Block, with same inputs and outputs

76



Section 5.1 Block Decomposition

In practice, a block may abstract:

• a basic block.
• a loop or a function. In this case, the block actually abstracts a graph of blocks (as in

Figure 5.2).
• a function call.
• an abstraction of a complex program instruction, such as non-linear and/or floating point

operation.
• an abstraction of several paths. Such abstraction is not mandatory, but improves scala-

bility since the complex behavior of every paths will be summarized by a simple formula.

The nodes of the control flow graph are basic blocks. These basic blocks are lists of in-
structions. The semantics of each instruction has to be overapproximated by a logical formula
for its SMT encoding (as we already explained in subsection 4.2.1), and an abstract forward
transformer used in the abstract interpretation. Given an abstract domain, some instructions
are simply assigned a “good” abstract transformer: for instance, with convex polyhedra, one
can reasonably define an abstract transformer for an addition instruction over integers. We
call them simple instructions. Conversely, other instructions could be assigned different ab-
stract transformers: for instance, the transformer for a function call can be defined in multiple
ways, depending on which technique we use to compute the summary of the function. Another
example could be the multiplication instruction, for which the abstract transformer could be
defined from different linearization techniques [Min04, STDG12].

For these non-simple instructions, there are several reasonable abstract transformers that
may not be comparable in terms of precision. For that reason, a static analysis could start
with an initial abstract transformer for the instruction, and compute a more precise transformer
during the analysis if needed. In our implementation, we consider that the only non-simple in-
struction is the function call. The other instructions are assigned a chosen abstract transformer
that never changes during the analysis.

We suppose that these non-simple instructions are isolated in dedicated basic blocks, for
which the instruction is the only single one. This is not a restriction, since any CFG can be
simply transformed to fit this property by just splitting the basic blocks appropriately.

We define our notion of blocks:

Definition 20 (Block). Given a control-flow graph of basic blocks, a block is either:

• a basic block that only contains simple instructions. In this case, the block is called
concrete.

• an abstraction block, that can be:

– a basic block containing only a non-simple instruction (e.g a function call, followed
by an unconditional branch.

– a strongly connected component of the graph, that contains more than one basic
block. In practice, this block abstracts the effect of a loop in the program.

– a subgraph that contains every basic block between a chosen block and one of its
dominators. Recall that a basic block d is a dominator of b if every path going
through b also goes through d.

Notations We define here the notations used throughout this chapter. Each abstraction
block B has a set of input variables, noted Xi

B, as well as a set of output variables, noted
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Xo
B. We will note X

i/o
B the set Xi

B ∪ Xo
B. We always suppose that Xi

B ∩ Xo
B = ∅. This is

not a restriction, since we can use an “SSA-like” transformation that provides this guarantee.
For instance, if B abstracts a function, the set X i

B typically contains the global variables and
function arguments. Xo

B contains the returned value, the global variables and one variable
per argument passed by reference. The global variables should be considered both as input
and output, since they may be modified inside the function. Note that a pre-analysis could
eliminate some of these global variables if the function is shown to only read/store certain
fragments of the memory.

In this chapter, we define and use logical formulas and abstract values with different di-
mensions: some abstract values have as dimensions only input variables, some others have
both input and output variables, etc. For clarity, we note in parenthesis the dimensions of the
abstract values (or free variables in SMT formulas): for instance, A(X i

B) is an abstract value
with Xi

B as dimensions, i.e. the input variables of block B. In some cases where there is no
ambiguity in the dimensions, they may not be explicitly written.

Once the notion of block is defined, as well as the input and output variables for a block,
we can define the notion of input/output relation:

Definition 21 (Input/Output Relation (I/O)). Let B be a block. An input/output relation

(also called summary) is a formula RB(Xi/o
B ) involving the variables in X

i/o
B , that safely ab-

stracts the behavior of the program when going through B. This I/O relation can either be a
correct over-approximation for any input, or for a particular Context noted CB(Xi

B). In the
last case, the formula CB(Xi

B) ⇒ RB(Xi/o
B ) holds.

Example 11 (absolute value). Suppose we have a function that takes as input a variable x

and returns its absolute value r = |x|. Examples of input/output relations for the function are:

x ≥ 0 ⇒r = x

x < 0 ⇒r = −x

true ⇒r ≥ x ∧ r ≥ −x

5.1.1 Graph of Blocks

In this chapter, our algorithms operate on control flow graphs of blocks instead of basic blocks.
We shall thus describe our procedure for building the graph of blocks from the usual CFG of
the program.

Let G be a control flow graph, where the nodes are basic blocks. We build the associate
control flow graph of blocks in the following way:

• Compute the strongly connected components (we call them SCCs) of the graph (using
Tarjan’s algorithm for instance).

• for each SCC,

– if it contains one single block, this basic block is a block according to definition 20.
– if it contains several basic blocks, recursively construct a block from this component

of the graph. The block is then the abstraction of the graph of nested blocks derived
from this SCC.

• We build the graph of blocks from the control flow graph, where each SCC is replaced
with its corresponding block. There is a transition between two blocks if there is a basic
block in the first SCC that has a transition to a block in the second SCC.

Figure 5.3 illustrates the decomposition into blocks for a simple control flow graph.
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Figure 5.3: Correct decomposition of a control flow graph into Blocks. The main block abstracts
the function. Two blocks are abstracting loops. The smallest block abstracts a basic block that
contains a non-simple instruction.

Abstraction of Several Paths

A code without loops but many paths (typically, a large number of successive or nested if-then-
else) may lead in the further SMT encoding to formulas that make the solver blow up. This
issue is explained in detail in chapter 6. In this case, we can create blocks that abstract a set of
paths, in order to compute input/output relations that safely overapproximate the behavior of
any path. These relations will possibly prevent the SMT solver from enumerating many paths
that are all unfeasible for a similar reason.

Definition 22 (Immediate Dominator). A dominator D of a block B is a block such that any
path reaching B must go through D. The immediate dominator dom(B) of a block B is the
unique I �= B dominator of B such that I does not dominate any other dominator D �= B of
B. For instance, the immediate dominator of the end of a cascade of if-then-else statements is
the beginning of the cascade.

We can construct new abstraction blocks in the following way:

• We choose a block B in the graph that has several incoming transitions
• We compute the immediate dominator dom(B) of this block.
• We create the block that contains block B, its dominator, and every block B′ for which

there is a path from dom(B) to B that goes through B′.

Relation with Horn Clause Encoding Our decomposition of a program into blocks is
closely related to the idea of encoding a program into Horn clauses [GLPR12]. Each non-
interpreted function would correspond to a block, and choosing the set of blocks is related to
the choice of the uninterpreted functions in the Horn clauses. Our approach can then be seen as
a technique operating on Horn clauses (which may either prove the desired property or say “I
don’t know”), and could probably be combined with existing approaches [HBdM11, BMR13].

5.2 Introductory Example

We take as an example the C program in Figure 5.4, that we decompose into blocks as explained
in the previous section. We are interested in proving the assert statement y ≥ 0 of the function
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f. This example illustrates the algorithm described later in section 5.5.

1 i n t input ( i n t min , i n t max) {

2 i n t x ;

3 assume ( x >= min && x <= max) ;

4 return x ;

5 }

6
7 i n t f ( i n t N) {

8 assume (0 <= N && N <= 10) ;

9 i n t x ;

10 i n t y = input ( 0 , 1 0 0 ) ;

11
12 while ( t rue ) {

13 a s s e r t ( y >= 0) ;

14 x = input (10−N,10+N) ;

15 i f ( x > y )

16 y++;

17 i f ( x < y )

18 y−−;

19 }

20 }

Xi

B2
: N2 y1 Xo

B2
: y2

Xi

B1
: N1

Xo

B1
: N2 y1

Xi

B4
: N3 y2

Xo

B4
: N4 y3 x

B0:

B1:
y1 =input(0, 100)

B3:
N3 = Φ([N2], [N4])
y2 = Φ([y1], [y7])
y2 ≥ 0 ?

B4:
x =input(10−N3, 10 + N3)

B5:
x > y3 ?

B6:
y4 = y3 + 1

B7:
y5 = Φ([y4], [y3])
x < y5 ?

B8:
y6 = y5 − 1

B9:
y7 = Φ([y6], [y5])

Error:

B2:

T

F

T
F

T

F

Figure 5.4: An example C program, with its decomposition into blocks. Each block is labeled,
from B0 to B9, and Error.

The abstraction blocks are here B1, B2 and B4 (see Figure 5.4). Their input/output
variables are Xi

B1 = {N1}, Xo
B1 = {N2, y1}, Xi

B2 = {N2, y1}, Xo
B2 = {y2}, Xi

B4 = {N3, y2},
Xo

B4 = {N4, y3, x}.
Initially, each abstraction block is assigned a rough input/output relation. Basically, the

initial relations are only expressing the equalities between the input and output variants of
the same variables if not modified inside the block. The input function is initially supposed to
return a nondeterministic integer, since it has not been analyzed yet. The initial relations are
then:

RB1(N1, N2, y1) def= (N1 = N2)

RB2(N2, y1, y2) def= true

RB4(N3, y2, N4, y3, x) def= (N3 = N4 ∧ y2 = y3)

Note that some of the variables have been duplicated to verify the required property, that
for each block B, Bi ∩ Bo = ∅: for instance, variable N (resp. y2) corresponds to N3 at the
entry point of block B4, and to N4 (resp. y3) at its exit point.
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Section 5.3 Modular Path Focusing

We construct the SMT formula associated to function f and check with an SMT solver
whether the Error state is reachable, in a similar way as it is done in bounded model checking
and section 4.2. We find the error trace:

B0 N1=10
−→ B1

y1=42,N2=10
−→ B2

y2=−1
−→ Error (5.1)

The error trace would possibly be unfeasible with more precise relations for the nested
blocks. Thus, one can try to refine the input/output relation of block B1. A simple analysis
of the input function gives the relation min ≤ ret ≤ max, where ret is the returned value.
Applied to our case in block B1, we get 0 ≤ y1 ≤ 100. The relation RB1 can then be refined:
RB1(N1, N2, y1) def= (N1 = N2 ∧ 0 ≤ y1 ≤ 100). However, this new relation does not cut the
trace since it includes the model assignment y1 = 42. Since the error trace also goes through
B2, we can refine the relation for B2 as well in order to obtain one that does not intersect with
y1 = 42 ∧N2 = 10 ∧ y2 = −1. We recursively call our procedure and try to cut the “subtrace”
inside B2, taking into account the context where it is run: N2 = 10 ∧ y1 = 42.

Since B2 has a nested abstraction block, we can reuse the relation for the input function
for obtaining a precise relation for block B4:

RB4(N3, y2, N4, y3, x) def= (N3 = N4 ∧ y2 = y3 ∧ 10−N3 ≤ x ≤ 10 + N3)

We compute a new relation for B2 by Path Focusing or Guided Path Analysis [MG11,
HMM12b] with convex polyhedra, and find at the loop header 10 − N2 ≤ y2 ≤ y1, which is
a correct invariant in the case where (y1 ≥ 10 + N2) ∧ (N2 ≤ 10), which is a superset of our
context. This generalization of context is explained in section 5.4.

We then deduce a new input/output relation for block B2, which cuts the error trace (5.1):

[(y1 ≥ 10 + N2) ∧ (N2 ≤ 10)] ⇒ [10−N2 ≤ y2 ≤ y1]

and go back to the analysis of the whole function. We update the formula by asserting this
new relation and get a new error trace:

B0 N1=10
−→ B1

y1=5,N2=10
−→ B2

y2=−1
−→ Error

In this trace, the assignments y1 = 5 and N2 = 10 do not fit in the left-hand side of our
previously computed relation for B2. We then analyze B2 again, in the new context. It gives
the input/output relation:

[0 ≤ y1 ≤ 10 + N2] ⇒ [(0 ≤ y1 ≤ 10 + N2) ∧ (0 ≤ y2 ≤ 10 + N2)]

After going back to the analysis of the whole function, we get an unsat formula and there
is no more error trace.

Suppose now that line 8 is only assume(0 <= N). In this case, we would get a new sat formula
that we could not cut in the case N > 10. However, we can still prove the property under the
assumption N ≤ 10. The method for generating correct preconditions is detailed in section
5.6.

5.3 Modular Path Focusing

In this section, we present a new algorithm for computing procedure or loop summaries, based
on abstract interpretation and SMT. The algorithm is in essence an extension of Path Focusing
or Guided Path Analysis, to interprocedural settings with summaries.
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Chapter 5 Modular Static Analysis

5.3.1 Algorithm

We start with a program P (with input variables X i
P and output variables Xo

P), for which we
want to compute a precise input/output relation between X i

P and Xo
P . This program can be

seen as a block that itself contains nested blocks. We can assume some additional properties
about the input variables (called Context).

To each block B representing an abstraction of a subgraph, we associate a partial mapping
function InvB : A(Xi

B) −→ A(Xi/o
B ), where A is the abstract domain in use, and Xi

B, X
i/o
B

the dimensions of the abstract values. InvB maps properties about the input variables of the
block, e.g. a context C(X i

B), to an overapproximated input/output relation R(X i/o
B ) between

input and output variables, safe if C(X i
B) holds. This is a partial function which is dynamically

constructed during the analysis. When a block is encoded into an SMT formula, its nested
abstraction blocks are replaced with the input/output relations defined by their corresponding
InvB functions.

Here, we extend Path Focusing techniques to be modular and interprocedural: we compute
an invariant at the block header and at each terminating control point (control points that
have outgoing transitions outside the block). To draw a parallel with the previous chapter,
the set PR of points where we compute an invariant is now only the block header and the
terminating control points: in the particular case where the block abstracts a loop, the block
header is actually the loop header, thus the property of being acyclic when disconnecting the
points in PR still holds by construction. The input/output relations of the block are the
invariants discovered at these terminating control points. We first encode the block as an
SMT formula; its nested blocks are replaced with the input/output relations defined by their
corresponding Inv functions. We use an SMT solver to find a path between the block header
and a terminating control point (or the block header itself if the block abstracts a loop), for
which the current abstract value associated with one successor is not an invariant. Once we
found such a trace, we get the set of abstraction blocks the trace goes through, and their
corresponding calling context, which is given by the model returned by the SMT solver. If one
of the already computed input/output relations can be used in this context, we use it directly,
otherwise we have to compute a relation by calling our analysis recursively on the nested block.
The algorithm (precisely described in Algorithm 6) operates as follows:

1 Initialize the abstract values: the initial state gets the calling context As = C and the
termination states get ⊥.

2 Using an SMT query, find a path from the entry point to a termination point succ for
which the current associated abstract value is not invariant. This path is noted τ , the
variable assignments in the model are given by a function M. From the path τ , we
can deduce a list of abstraction blocks the focusing trace goes through. We note them
B1, . . . , Bn.

3 The computation of τ(As) requires input/output relations for the nested blocks B1, . . . , Bn,
that are given by their Inv partial function. The algorithm for computing such τ(As)
is detailed just after in subsection 5.3.2. Here, one needs for each block Bk a relation
Rk(Xi/o

Bk
) which is correct in the context τk(As), where τk denotes the path in τ that

starts from the entry point but stops at the entry of Bk (see Figure 5.5). This relation
should either be computed if there is no appropriate relation in InvBk

, or reused if there
is already in Dom(InvBk

) a context greater than τk(As).
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Section 5.3 Modular Path Focusing

4 Finally, one can compute the image τk(As) using the appropriate relations for the nested
abstracted blocks, and update Asucc accordingly. In the particular case of a loop, i.e.
succ = s, abstract acceleration or a local widening/narrowing sequence can be applied,
as it is done in [MG11] and subsection 4.2.3.

B1

B2

As(Xi
B)

Asucc(X
i/o
B )

R1(X
i/o
B1

)

R2(X
i/o
B2

)

τ1(As)

τ2(As)

τ(As)

Figure 5.5: A path returned by the SMT solver, that goes through two abstraction blocks B1

and B2.

A prototype implementation of algorithm 6 is available in the Pagai tool, which is described
in chapter 7. The main drawback of this procedure is that new relations have to be recomputed
each time the calling context changes. In section 5.4, we propose a way of computing precise
input/output relations for contexts that are more general (i.e. larger) than the initial one
C(X i

B).

Remark: An important source of imprecision in Path Focusing from [MG11] is the case of
nested loops, that prevents us from applying direct narrowing or abstract acceleration on self-
loops (one considers paths between two different loop headers) and thus loose precision due to
widenings. Here, our approach generally improves precision since inner loops are abstracted
within a block, so that all loops are actually self-loops.
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Algorithm 6 Modular Path Focusing, illustrated by Figure 5.5

1: procedure ModularPathFocusing(Block B, Context C(Xi
B))

2: As(Xi
B) ← C(Xi

B) ⊲ starting abstract value
3: For all succ, Asucc(X

i/o
B ) ← ⊥ ⊲ final abstract values

4: ρB ← EncodeToSMT(B) ⊲ SMT encoding of block B

5: while

Is there a path in B from bi to some bsucc going outside the current Asucc?
︷ ︸︸ ︷

SMTsolve

[

bs ∧As(Xi
B) ∧ ρB ∧

∨

succ

(bsucc ∧ ¬Asucc(X
i/o
B ))

]

do

6: Path τ , model M ← getModel()
7: (B1, . . . , Bn) ← AbstractedBlocks(τ)
8: for all Bi ∈ (B1, . . . , Bn) do

9: if Dom(InvBi) does not contain τi(As) then

10: ModularPathFocusing(Bi, τi(As))
11: end if

12: end for

13: Atmp(Xi/o
B ) ← τ(As(Xi

B))
14: if succ = s then ⊲ self-loop
15: Update Atmp with widening/narrowing
16: end if

17: Asucc ← Asucc ⊔Atmp

18: end while

19: Add InvB : C(Xi
B) �→ (Asucc) ⊲ the new relation is inserted into InvB

3

4

2

20: end procedure

5.3.2 Computing τ(As)

In line 13 of Algorithm 6, one has to compute the abstract value resulting from the transforma-
tion of the initial abstract value through the path. When the path crosses nested abstraction
blocks, one needs to use their corresponding available input/output relations. During the com-
putation, there is a map InvBk

for each nested block Bk, that contains the list of available
relations for this block. The abstract value τ(As(Xi

B)) can then be derived from every relation
whose context is satisfied. It results that it is possible to combine several input/output rela-
tions for the same nested block. We found it clearer to detail in this thesis the algorithm for
computing the abstract value after traversing an abstraction block (Algorithm 7): it takes as
input the block to traverse and the abstract value just before, and returns the abstract value
just after. In Figure 5.5, this function would be called for instance with input I = τ1(As),
block B1, and would return the abstract value just after traversing B1.

5.4 Generalizing Correct Contexts for Input/Output Relations

A key point in a modular and interprocedural static analysis is to compute input/output
relations that are reusable in different calling contexts [Moy08]. In the extreme settings, re-
computing a relation at each call sites would be expensive and similar to function inlining,
while computing one single relation correct in any context would not be precise enough. In
this section, we propose a way of computing relations in sufficiently general contexts while not
sacrificing precision.
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Algorithm 7 Compute the abstract value after crossing an abstraction block. This algorithm
is used by any algorithm that computes τ(As).

1: function ComputeTransform(Input I(X i
B), Block B)

2: Temp(Xi/o
B ) ← I(Xi

B) ⊲ change dimensions
3: for all C(Xi

B) ∈ Dom(InvB) s.t I(Xi
B) ⊑ C(Xi

B) do

4: Temp(Xi/o
B ) = Temp(X i/o

B ) ⊓ InvB(C(X i
B))

5: end for

6: I ′(Xo
B) ← PXo

B
(Temp(Xi/o

B )) ⊲ Project into output variables only
7: return I ′(Xo

B)
8: end function

intersect with
any correct

relation

Example 12 (Simple Example). Suppose we have the following program fragment, and this
fragment is chosen to be an abstraction block:

i f ( x > 0)

x ++;

e ls e

x−−;

If we note xi (resp. xo) the variable x before (resp. after) the block, correct input/output
relations would be for instance:

true ⇒ xi − 1 ≤ xo ≤ xi + 1 (5.2)

xi > 0 ⇒ xo = xi + 1 (5.3)

xi ≤ 0 ⇒ xo = xi − 1 (5.4)

Equation 5.3 and Equation 5.4 clearly show that analyzing a block with a smaller context
yields in the end a more precise invariant compared to the one we would obtain without
any precondition (Equation 5.2). The reason is that some paths are unfeasible under certain
preconditions. Suppose now that the analysis of this block is triggered by our modular path
focusing algorithm with the input context xi > 10. The analysis of the block would find the
relation xi > 10 ⇒ xo = xi + 1. This result is not more precise than Equation 5.3, however its
context is less general. In this section of the thesis, we explain how to infer 5.3 instead of the
less general relation, while not sacrificing the precision, e.g. we do not want to infer only 5.2.

Our approach is the following: even though we compute a relation in a calling context C(X i)
for the input variables, we start the computation of the new input/output relation of a block
with As(Xi) = ⊤, where As(Xi) is the abstract value attached to the block header, as if we were
computing a relation correct for any context. Intuitively, the idea is to compute an input/output
relation “as precise as” the one we would obtain when starting with As(Xi) = C(X i), but
in a sense more general, i.e. true for a larger set of input variables, noted GC(X i) (then,
C(X i) ⊑ GC(Xi)).

During the fixpoint computation, we collect the properties implied by C(X i) that we use to
improve the precision of our invariant, incrementally building an SMT formula over the vari-
ables in X i, that we will note precond(Xi). precond(Xi) is initialized to true and tightened
during the analysis with new constraints over the input variables that are required to be pre-
cise. Once the input/output relation has been computed, precond(X i) is an arbitrary formula,
and the computed relation is correct under this precondition. One can then derive a simpler
precondition GC(X i) ⊒ C(Xi) in our abstract domain, which is included in precond(X i).
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Figure 5.6: GC(X i), C(Xi) abstract values, and the precond(X i) formula

Intuition, with Simple Transition

For getting the intuition behind our approach, suppose we have a program location, and its
attached abstract value A, and two transitions guarded by some constraints G and ¬G:

A

G ¬G

The abstract value A is a relation between variables in X i, i.e. inputs, and local temporary
variables X l (typically, live variables). For clarity, we note it A(X i/l).

If A(Xi/l)⊓ G(X l) = ⊥ or A(X i/l)⊓¬G(X l) = ⊥, it means that one of the two transitions
is unfeasible, without the need of extra information or assumption. Otherwise, some properties
implied by C(X i) could make one of the transitions become unfeasible, and thus prevent from
loosing precision due to a later least upper bound operation. This happens if:

1. (A(Xi/l) ⊓ C(X i)) ⊑ ¬G(X l), or equivalently A(X i/l) ⊓ C(X i) ⊓ G(X l) = ⊥:

This is the case where the transition guarded by G is actually not feasible if we suppose the
context. In this case, the projection over Xi of ¬G(X i/l)⊓A(Xi/l) (denoted PXi(¬G⊓A)
in Figure 5.7) gives a formula over the input variables, for which the transition guarded
by G(X i/l) would not be feasible.
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precond

PXi(¬G ⊓A)

new precond

Figure 5.7: The set representing precond (dotted area) is intersected with PXi(¬G ⊓ A) to
contain only those points for which the transition is unfeasible.

We could then continue our analysis, assuming that this formula is part of the precondi-
tion we have for the input variables, and that the transition cannot be taken. Formally,
we assign precond(Xi) ← precond(Xi) ∧ PXi(¬G(X l) ⊓A(X i/l)).

2. or, (A(Xi/l) ⊓ C(X i)) ⊑ G(X l):

This is the symmetrical case, where the transition guarded by ¬G is not feasible in
the context. Similarly, we restrict the precondition to a smaller one: precond(X i) ←
precond(Xi) ∧ PXi(G(X l) ⊓A(X i/l)).

In this way, one can prune unfeasible transitions by using the calling context, and construct
in parallel the formula precond(X i) for which the obtained input/output relation is correct.
However, precond(Xi) is not necessarily an element of the abstract domain. Once the fixpoint
is reached, the precond formula represents a set of abstract states greater than the initial
context. Finally, one could search for an element GC(X i) in the abstract domain, included in
our discovered precondition, and that itself includes C(X i). This last step is described later in
page 88.

Updating the Context when Discovering Unfeasible Paths

In general, in the settings of path focusing, we are not only interested in showing that a
particular transition is unfeasible, but an entire path. Here, we explain how the previous idea
for simple transitions extends to paths.

Suppose we have a path τ that is feasible with the current precond(X i), but is not in the
input context : τ(A(X i/l)⊓C(Xi)) = ⊥. τ is given by the model returned by the SMT solver,
when checking the satisfiability of the formula:

same as in Algorithm 6: is there a path. . . ?
︷ ︸︸ ︷
[

bs ∧A(Xi/l) ∧ ρ ∧
∨

succ

(bsucc ∧ ¬Asucc(Xi/o))

]

∧precond(X i)
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Let G1(X l), G2(X l), . . . , Gn(X l) be the guards the path τ goes through. We apply quantifier
elimination over the formula

∃ x1, x2, . . . , xk, A(Xi/l) ∧
∧

1≤i≤n

Gi(X l)

where {x1, x2, . . . , xk}
def= X l.

This formula represents the set of input states for which the path is feasible. If we consider
the case where A(Xi/l) is a convex polyhedron and the (Gi)1≤i<n are linear inequalities, this
formula is actually a conjunction of linear inequalities. In this case, we can use already existing
algorithms for projection, like Fourier-Motzkin elimination in LRA, or Omega test and Cooper’s
method in LIA ([KS08] give details on these algorithms).

The quantifier elimination gives us an equisatisfiable formula F (X i) that we negate and
add to precond(X i):

precond(Xi) ← precond(Xi) ∧ ¬F (Xi)

The analysis continues with the new precond(Xi), for which the path τ has become unfea-
sible. Finally, for each path we were able to remove, an associate formula has been added to
precond(Xi). In practice, this added formula is likely to prune several paths at the same time.

Algorithm 8 Modular Path Focusing with Context Generalization. 2 , 3 and 4 is the
corresponding code from Algorithm 6.

1: procedure ModularPathFocusing(Block B, Context C(Xi))
2: As(Xi

B) ← ⊤ ⊲ starting abstract value
3: For all succ, Asucc(X

i/o
B ) ← ⊥ ⊲ final abstract values

4: GC(Xi) ← ⊤ ⊲ generalized context
5: ρB ← EncodeToSMT(B) ⊲ SMT encoding of block B

6: while

Is there a path in B from bi to some bsucc going outside the current Asucc?
︷ ︸︸ ︷

SMTsolve

[

bs ∧As(Xi
B) ∧ ρB ∧

∨

succ

(bsucc ∧ ¬Asucc(X
i/o
B ))

]

do

7: 2

8: 3

9: Atmp(Xi/o
B ) ← τ(As(Xi

B))
10: if Atmp �= ⊥ ∧ τ(As(Xi

B) ⊓ C(X i
B)) = ⊥ then

11: Update precond(Xi
B)

12: Continue
13: end if

14: 4

15: end while

16: GC(Xi
B) ← GeneralizeContext(C(Xi

B), GC(Xi
B))

17: Add InvB : GC(Xi
B) �→ Asucc(X

i/o
B )

τ is not
feasible in the

context C

18: end procedure

From the Obtained Precondition Formula to GC(Xi)

In the end, precond(X i) is a conjunction of added formulas but may not be a convex polyhedron,
we thus can search for a convex polyhedron implied by C(X i) and that implies precond(X i),
using SMT-solving. From the model returned by the SMT-solver, which is a single point, we
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can deduce a convex polyhedron that also satisfies the formula using the method described by
[Mon10]. In a few words, from a satisfying assignment of the formula, one can derive the set
of atoms in the formula evaluated to true. In LIA or LRA, it gives a set of linear inequalities.
One can then try to iteratively remove some of these inequalities and see whether the new
polyhedron still implies the formula. Note that, since we try to find a polyhedron that contains
the context C, we first remove the atoms that are not implied by C.

Algorithm 9

1: function GeneralizeContext(Context C(Xi), Formula precond(X i))
2: while true do

3: m(Xi) ← SMT-query [precond(X i)]
4: Generalize m(Xi) into a convex polyhedron M(X i) ⊲ see [Mon10] for details
5: if C(Xi) ∧ ¬M(X i) is unsat then

6: return M(Xi)
7: else

8: precond(Xi) ← precond(Xi) ∧ ¬M(X i)
9: end if

10: end while

11: return C(X i)
12: end function

Our algorithm is detailed in Algorithm 9, and is called once for each call to procedure
ModularPathFocusing, once an inductive invariant has been found.

Example 13 (Context Generalization). Suppose we have Xi = {x0, y0}, X l = {x, y}, C(X i) =
(x0 > 20), A(Xi/l) = x ≥ x0 + 2 ∧ y ≥ y0, and a path with guards G(X l) = (y ≤ 0 ∧ x ≤ 10).

C(x0, y0) = (x0 > 20)

A(x0, y0, x, y) =

x ≥ x0 + 2

y ≥ y0

x ≤ 10 ∧ y ≤ 0

x0

y0

precond

x0 > 8

y0 > 0

Figure 5.8: In the left, the control flow graph that illustrates the infeasible path. In the right,
a graphical representation of precond and the input context C.

The context C(Xi) verifies C(Xi)∧A(X i/l)∧cond(X l) ≡ ⊥. We apply quantifier elimination
over the formula (polyhedral projection):

∃ x y, (y ≤ 0) ∧ (x ≤ 10) ∧ (x ≥ x0 + 2) ∧ (y ≥ y0)

We obtain:
(x0 ≤ 8) ∧ (y0 ≤ 0)
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We then add the negation of this formula to our current precond(X i):

precond(Xi) ← precond(Xi) ∧ ((x0 > 8) ∨ (y0 > 0))

If, in the end, precond(X i) ≡ ((x0 > 8) ∨ (y0 > 0)), we can search for a convex polyhedron
implied by C(X i) and that implies precond(X i):

• SMT-query of assert(precond(X i)) gives the model (x0, y0) = (10, 0).

• We generalize the model and obtain x0 > 8.

• SMT-query C(X i) ∧ ¬(x0 > 8) is unsat. We thus can choose GC(Xi) = (x0 > 8) as a
correct generalized context.

Note that the first SMT query could have returned another model whose generalization is
y0 > 0, which is not implied by C(X i). In this case, several SMT-queries are required.

5.5 Property-guided Modular Analysis

In this section, we start with a program P (with input variables X i
P and output variables Xo

P ),
for which we want to prove a property P (X i/o

P ).
Our algorithm abstracts the program P as a block, and tries to prove (as lazily as possible)

that there is no trace in the block that negates P (Xi/o). For doing this, it tries first to prove
P with rough abstractions of the nested abstraction blocks, and refines these abstractions
modularly and incrementally until they are sufficiently precise to prove the property.

Conceptually, the idea is the same as in subsection 5.3.1, but here we try to avoid comput-
ing costly relations for program parts that are not relevant for proving a particular property.
As in subsection 5.3.1, we dynamically construct a partial function InvB : A(Xi

B) −→ A(Xi/o
B )

that maps a calling context C(X i
B) to an overapproximated input/output relation R(X i/o

B ) for
the block, correct if C(X i

B) holds. When an error trace is discovered using bounded model
checking by SMT-solving, the algorithm computes a new input/output relation for some sub-
components and update the Inv partial function of the current block, until the error trace is
proved unfeasible. Our algorithm is illustrated by Figure 5.9. In the following subsections, we
detail the different steps of this algorithm.

IORelation

Find error

trace

Refine:

Refine nested

blocks

Update:

Update current

block

(true) (unknown)
τ : error trace

refined

τ still

feasible
τ unfeasible

Figure 5.9: Principle of the algorithm
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Algorithm 10 Modular Static Analysis using SMT

1: function IORelation(Block B, Property P (Xi/o
B ), Context C(X i

B))
2: while true do

3: ρB ← EncodeToSMT(B) ⊲ SMT encoding of block B

4: res ←

Does there exist an error trace that violates P ?
︷ ︸︸ ︷

SMTsolve(C(X i) ∧ ρB ∧ ¬P (Xi/o))
5: if res is unsat then

6: return (true) ⊲ No error trace, P holds
7: end if

8: Path τ , model M ← getModel()
9: (B1, . . . , Bn) ← AbstractedBlocks(τ)

10: Refine(B1, . . . , Bn, M) ⊲ see 5.5.2
11: Update(B, C(X i

B)) ⊲ see 5.5.3
12: if Update has not improved InvB then

13: return (unknown)
14: end if

15: end while

16: end function

5.5.1 IORelation

The main procedure of our algorithm consists in solving the following problem:

“Given a block B, with inputs X i
B and outputs Xo

B, an initial context C(X i
B) and its InvB

function, does there exist a path for which the property P (X i/o
B ) does not hold ?”

This problem is encoded into SMT and checked using an SMT solver. If ρB is the encoding
of the program semantics into formula, the problem consists in checking the satisfiability of
the formula C(X i

B) ∧ ρB ∧ ¬P (Xi/o
B ). If such a path does not exists, the algorithm terminates

and returns true, meaning that the property is proved. Otherwise, one tries to refine the
input/output relation of the block, by first refining the abstraction blocks the error trace goes
through: this is the purpose of the Refine and Update functions, that are described later.

Using our notations, the trace τ goes through nested abstraction blocks B1, . . . , Bn, and
the assignments of all SSA variables are given by a map M. We note M(X) the formula
expressing the assignments of the variables in X in this model. The way of showing that the
trace is unfeasible is to find a new relation RB(Xi/o

B ) such that M(X i
B) ⇒ RB(Xi/o

B ) and

RB(Xi/o
B ) ⇒ ¬M(Xo

B). To help find this relation, one tries to find for some nested block

Bk a relation RBk
with the similar property, i.e. M(X i

Bk
) ⇒ RBk

(Xi/o
Bk

) and RBk
(Xi/o

Bk
) ⇒

¬M(Xo
Bk

). In other words, if we find a nested block for which the trace is locally unfeasible,
then the trace is unfeasible.

Procedure Refine takes the list of nested abstraction in the trace and refines these ab-
stractions until the trace becomes unfeasible. Procedure Update aims at updating the partial
function InvB of the current block, that maps contexts (abstract values over X i

B) to input/out-
put relation (abstract values over X

i/o
B ).

Function IORelation queries the SMT solver repeatedly to find paths inside the block
that negate the property P (X i/o

B ). Each time we discover an error trace, we try to show
it unfeasible by refining one (or more) of the traversed abstraction blocks. We can therefore
update the formula ρB, since the partial functions Inv of some abstraction blocks have changed.
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We also recompute a new input/output relation for this block, that may be more precise since
the subcomponents have been refined. If the new relation is precise enough to cut the error
trace, one can iterate and search for another error trace.

At some point, it may be the case that we can not refine abstraction blocks anymore, while
the error trace is still feasible. In this case, the algorithm answers “unknown”, in the sense
that the property P is not proved correct.

In this approach, we can strengthen the invariant incrementally when the previous one is
not sufficient, and avoid being unnecessarily precise on the part of the code that is not relevant.

5.5.2 Refine

1: function Refine(Blocks B1, . . . , Bn, Model M)
2: iscut ← false ⊲ becomes true if the trace given by the model is cut
3: for all Bk ∈ {B1, . . . , Bn} do

4: (iscut) ← IORelation(Bk, ¬M(Xo
Bk

)
︸ ︷︷ ︸

Property: cannot reach the

model of the outputs

,

Context: model of the inputs
︷ ︸︸ ︷

M(Xi
Bk

) )

5: if iscut then

6: return ⊲ trace is unfeasible, no need to refine further
7: end if

8: end for

9: end function

Once the SMT-solver has found an error trace, we get a model M that maps each variable
to value, as well as the list of abstraction blocks the trace goes through. We note M(X)
the conjunction of the assignments in the model M for the variables in a set X. Refine

recomputes the input/output relations for some of these blocks in order to “cut” the trace (so
that the trace becomes unfeasible). For computing these input/output relations, we create a
calling context M(X i

Bk
) for each block Bk, and the objective property, M(Xo

Bk
), being the

error state we want to prove unreachable. Here, both the input context and the error state are
single points given by the model of the error trace.

The Inv functions of the nested blocks are then successively strengthened with a recursive
call to our IORelation algorithm. We can avoid refining every block as far as we proved
the output of one nested blocks to be unfeasible. Since a trace often goes through several
abstraction blocks, the order we choose for refining them may influence the effectiveness of the
method. We discuss later some heuristics for choosing the refinement order.

5.5.3 Update

1: function Update(Block B, Context C(Xi))
2: GC(Xi

B), RB(Xi/o
B ) ← compute the relation and its generalized context

3: ⊲ uses for instance ModularPathFocusing (Algorithm 8)
4: Insert into InvB : GC(Xi

B) �→ RB(Xi/o
B )

5: end function
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Update(B, C(X i
B)) computes an input/output relation for block B that is correct at least

in the context C(Xi
B), as well as a correct context for this relation. This is exactly the purpose

of our modular path focusing algorithm, that we described in section 5.3. However, in these
new settings, there is no need for the modular path focusing algorithm to recursively call itself
for nested abstraction blocks, since it is here handled by the Refine function. The algorithm
we use is then kept unchanged, but we remove step 3 from algorithm 8 (page 88), that was
corresponding to the recursive call to the analysis procedure.

Now, recall that the objective is to prove a given property. Modular path focusing is a quite
expensive technique that makes use of possibly many SMT queries before reaching a fixpoint.
In our framework, it is possible to compute the fixpoints using cheaper techniques, such as those
explained in chapter 2 and chapter 3, and only apply modular path focusing if the previous
technique lacks precision. For instance, one can use standard abstract interpretation from
[CC77, CH78] for computing the relations, considering as dimensions of the abstract values
both the input and the output variables. In this case, the context generalization is done in the
same way it is described in section 5.4 for simple transitions.

Our framework can then mix several abstract interpretation based techniques. A heuristic
would be to run first the cheapest technique, see if the invariant it provides is sufficient for
cutting the error trace, and if not run a more precise technique.

5.5.4 Some Heuristics for Refinement

When an error trace is found, our framework tries to prove it unfeasible by refining some
program portions crossed by the trace. There are multiple ways of improving the input/output
relations: either recursively refine one of the nested abstraction block, or run a more powerful
analysis technique for the block itself, with the same abstractions of the nested blocks. In
addition, when the error trace traverses several abstraction blocks, it is unclear which one has
to be refined in priority for cutting the trace.

We propose here a reasonable heuristic for choosing the order of refinement, that should be
experimentally compared with others. Such experiments are part of future work.

Suppose the implementation provides several analysis techniques, ordered by “practical

complexity”, from the cheapest technique, noted T1, to the more expensive one, noted Tk. We
label each computed relation with the technique that was used for getting it. When an error
trace is discovered, the Refine procedure has the list of nested abstraction blocks B1, . . . , Bn.
One can deduce for each block what is the greatest technique that has already been run and
can be used (we call it level of the block).

• If every block has the same level, we successively analyze every block with the next level,
• Otherwise, let T be the level of the greatest block. The blocks are then pushed in a

priority queue, that takes first the block with the smallest technique (with respect to
complexity). We successively refine every block until every block reaches the level T .

In both cases, we stop any analysis as soon as the trace is cut. Finally, the Update function
runs the same technique as the cheapest nested block.

5.5.5 SMT Encoding of Blocks

In all this chapter, we rely on an SMT encoding of the semantics of abstraction blocks. In
subsection 4.2.1, we detailed a similar encoding for control-flow graphs. The difference here
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is that we encode a graph of blocks instead of basic blocks, where some of the blocks are
abstractions defined by input/output relations.

Non-abstracted blocks (i.e. blocks that are actually basic blocks) are encoded as before,
while the encoding of abstraction blocks B uses of the InvB function:

∧

C(Xi
B)∈Dom(InvB)

(C(X i
B) ⇒ InvB(C(X i

B)))

For blocks that abstract several paths without loops, we use their Inv partial function to
plug a summary of these paths, as well as their classical encoding. This last encoding is needed
to be fully precise, and the summary will serve the SMT-solver to perform faster by acting
in some cases as a smart Craig interpolant [McM05]. Intuitively, the summary will help the
SMT solver to prune many unfeasible paths at once, instead of doing a possible exhaustive
enumeration of every paths. This phenomenon is precisely explained later in section 6.4.

If the block is an abstraction of a loop, the block header is a loop header by construction.
In the exact same way as in subsection 4.2.1, we split this block header into two distinct blocks,
the first one with only incoming transitions coming from that block, and the second one with
only the outgoing transitions. In this way, the resulting control flow graph has no cycle and
the SMT encoding is possible.

Models of this encoded formula are the feasible paths between the entry point of the blocks
and an exit point. In case of a loop, the paths correspond to one single iteration of the loop.

From a practical point of view, this encoding has to be carefully implemented, since it is
not sufficient to rely on an standard SSA control flow graph of basic blocks. Indeed, recall
that the graph of block has to satisfy the following condition: input and output variables of
each abstraction block have an empty intersection. For instance, in our introductory example
of section 5.2 (see Figure 5.4), the block B1 has the variable N both as input and output, and
thus one should duplicate this variable into N1 for the input, and N2 for the output. Another
example is given by the variable y in block B4. As a conclusion, a classical SSA transformation
of the control flow graph is not sufficient to guarantee the property, and a new “SSA-like” pass
has to be done on the graph of blocks.

5.6 Generation of Preconditions

Using our algorithms, we can generate “interesting” preconditions at the header of blocks
(representing loops, functions, etc.). Indeed, suppose we want to find a sufficient precondition
for a block B such that the property P (X i/o

B ) is true, and that implies C(X i
B). If the algorithm

IOrelation proves P (Xi/o
B ) in the context C(X i

B), we can use the resulting GC(Xi
B) (or the

precond formula) as a sufficient precondition.
However, this technique requires the knowledge of an initial context where P is correct. If

we do not know such context, we can:

1. Use SMT-solving to find a path in B verifying the property.
2. Use the model M(Xi

B) as the initial context for running the algorithm IOrelation

3. The algorithm may return true and give a precondition GC(X i
B) that implies M(Xi

B).

We can apply the three last points iteratively to discover classes of inputs for which we have
P . To do so, we just have to add in the SMT query the negation of the already-discovered
preconditions to prevent the solver to give a model that is in the same class as a previous one.
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1: function GeneratePrecondition(Block B, Property P (Xi/o))
2: ρB ← EncodeToSMT(B)
3: InvB ← {}

4: while SMTsolve(ρB ∧ P (Xi/o
B ) ∧

∧

C(Xi
B)∈Dom(InvB)

¬C(X i
B)) do

5: M ← getModel()
6: IORelation(B, ¬P (Xi/o

B ), M(Xi
B)) ⊲ updates InvB

7: Recompute ρB

8: end while

9: end function

The size of the control flow graph is finite, so is the number of classes, and the iterations
are guaranteed to terminate. However, we can stop the iterations at any moment and get a
correct precondition. In these settings, the correct precondition is expressed as a disjunction
of convex polyhedra.

5.7 Conclusion

In this chapter, we proposed a new analysis framework called Modular Path Focusing. This
new algorithm improves the techniques described in section 4.2 in several ways: it improves
scalability when analyzing large-sized functions by abstracting program fragments with sum-

maries. It also improves precision in the sense that the analysis it provides is interprocedural.
We claim that our procedure efficiently computes summaries that are are correct in a wide
context through our context generalization method, which is to our knowledge an original idea.
It enables both a faster analysis — since it avoids several useless analyses of the same program
portion — and a procedure for inferring interesting preconditions.

As described in this chapter, our procedure for generalizing the input contexts makes use of
quantifier elimination, which is known to be expensive in practice. We think that it would be
possible in future work to replace this quantifier elimination with interpolation for scalability
reason, or use some kind of approximate quantifier elimination [KGC14].

As usual with static analysis techniques, one should conduct experiments on real code and
benchmarks in order to see how efficient the algorithm is in practice; the implementation of all
the algorithms presented in this chapter are currently under development in our tool Pagai,
but are not yet ready and thus we do not have experimental results so far. We hope to have
first results soon.

This chapter motivates interesting future work: early experiments conducted with some
students showed that it is possible to greatly improve the efficiency of the SMT queries with the
help of summaries: in the case where the SMT formula encodes a portion with a huge number of
paths, one can avoid exploring many paths by conjoining with the formula the summary of well
chosen program fragments. These summaries can be computed by the algorithms described in
this chapter. We think that this idea could be an efficient way of using abstract interpretation
to improve SMT. In the next chapter, we apply this idea to the particular case of Worst-Case
Execution Time (WCET) estimation, for which the encoding into an SMT problem gives very
challenging formulas that current solvers are not able to deal with.
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Chapter 6

Worst-Case Execution Time Estimation

6.1 Motivation

In embedded systems, it is often necessary to ascertain that the worst-case execution time of a
program (WCET) is less than a certain threshold. This is in particular the case for synchronous
reactive control loops (infinite loops that acquire sensor values, compute appropriate actions
and update, write them to actuators, and wait for the next clock tick) [CRT08]: the WCET of
the loop body (“step”) must be less than the period of the clock.

Computing a safe upper bound for the WCET of a program on a modern architecture
requires a combination of low-level, micro-architectural reasoning (regarding pipeline and cache
states, buses, cycle-accurate timing) and higher-level reasoning (program control flow, loop
counts, variable pointers). A common approach is to apply a form of abstract interpretation to
the micro-architecture, deduce worst-case timings for elementary blocks, and reassemble these
into the global WCET according to the control flow and maximal iteration counts using integer
linear programming (ILP) [TFW00, W+08].

One pitfall of this approach is that the reassembly may take into account paths that can-
not actually occur in the real program, possibly overestimating the WCET. This is because
this reassembly is mostly driven by the control-flow structure of the program, and (in most
approaches) ignores semantic conditions. For instance, a control program may (clock-)enable
certain parts of the program according to modular arithmetic with respect to time (Figure 6.1);
these arithmetic constraints entail that certain combinations of program fragments cannot be
active simultaneously. If such constraints are not taken into account (as in most approaches),
the WCET will be grossly over-estimated.

In this chapter, we propose a solution to take such semantic constraints into account,
in a fully automated and very precise fashion. Specifically, we consider the case where the
program for which WCET is to be determined contains only loops for which small static bounds
can be determined (note that our approach can also be applied to general programs through
summarization as we do in chapter 5, see section 6.9). This is very commonly the case for
synchronous control programs, such as those found in aircraft fly-by-wire controls [SWDD09].
Programs of this form are typically compiled into C from high-level data-flow synchronous
programming languages such as Simulink, Lustre or Scade. (Simulink™ is a block diagram

i f ( c lock % 4==0) { / * A * / }

/ * u n r e l a t e d c o d e * /

i f ( c lock % 12==1) { / * B * / }

Figure 6.1: A program with clock-enabled, mutually incompatible sections A and B.
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environment for multidomain simulation and model-based design from The Mathworks, and
Scade™ is a model-based development environment dedicated to critical embedded software,
from Esterel Technologies, derived from the academic language Lustre[CRT08]).

We compute the WCET of such programs by expressing it as the solution of an optimization

modulo theory problem. Optimization modulo theory is an extension of satisfiability modulo
theory where the returned solution is not just an arbitrary solution, but one maximizing some
objective; in our case, solutions define execution traces of the program, and the objective is
their execution time.

Expressing execution traces of programs as solutions to an SMT problem has already been
described in 4.2.1. In the case of optimization, we select a particular integer variable in the
formula and search for its maximal (or minimal) possible value for which there exists a satis-
fiable assignment. The SMT solver has to disprove the existence of solutions greater than the
maximum to be returned — in our case, to disprove the existence of traces of execution time
greater than the WCET. Unfortunately, all current SMT solvers take unacceptably long time
to conclude on naive encodings of WCET problems. This is because all these solvers imple-
ment variants of the DPLL(T ) approach [NOT05, GHN+04, KS08] (see section 2.2.1), which
has exponential behavior on so-called “diamond formulas”, which appear in naive encodings of
WCET on sequences of if-then-elses.

Computing or proving the WCET by direct, naive encoding into SMT therefore leads to
intractable problems, which is probably the reason why, to our best knowledge, it has not been
proposed in the literature. However, we show how an alternate encoding, including “cuts”,
makes such computations tractable.

In this chapter, we propose the following contributions:

1. The computation of worst-case execution time (WCET), or an over-approximation thereof,
by optimization modulo theory. The same idea may also be applicable to other similar
problems (e.g. number of calls to a memory allocator). Our approach exhibits a worst-
case path, which may be useful for targeting optimizations so as to lower WCET [ZKW+06].

2. The introduction of “cuts” into the encoding so as to make SMT-solving tractable. The
same idea may extend to other problems with an additive or modular structure, and is a
special case of summaries described in chapter 5.

6.2 Traditional Approach for Estimating Worst-Case Execu-

tion Time

Let us first summarize the classical approach to static timing analysis. For more details, the
reader may read for instance [TFW00, W+08]. Figure 6.2 shows the general timing analysis
workflow used in a large part of WCET tools including industrial ones such as AiT1 or academic
ones such as Otawa2 [BCRS10] or Chronos3 [LLMR07]. For the sake of simplicity, we shall
restrict ourselves to single-processor platforms with no bus-master devices except for the CPU.

The analysis considers the object code. The control flow graph is first reconstructed from the
binary. Then, a value analysis (e.g. abstract interpretation with domain of intervals) extracts
memory addresses, loop bounds and simple infeasible paths [GESL06]. Such an analysis may be

1http://www.absint.com/ait/
2http://www.otawa.fr
3http://www.comp.nus.edu.sg/~rpembed/chronos/
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Figure 6.2: WCET analysis workflow

performed on the binary or the source files. In the latter case, it is necessary to trace object code
and low-level variables to the source code, possibly using the debugging information provided by
the compiler. This semantic and addressing information help the micro-architectural analysis,
which bounds the execution time of basic blocks taking into account the whole architecture of
the platform (pipeline, caches, buses,...)[EJ02, Rei09]. The most popular method to derive this
architecture analysis is abstract interpretation with specific abstract domains. For instance, a
pipeline abstraction represents sets of detailed pipeline states, including values for registers or
buffers [EJ02]; while a cache abstraction typically tracks which value may or must be in each
cache line [Rei09].

The last step of the analysis uses the basic block execution timings and the semantic infor-
mation to derive the global WCET of the entire program, usually, in the “implicit path enumer-
ation technique” (IPET) approach, as the solution of an integer linear program (ILP) [LM97].
The ILP variables represent the execution counts, along a given trace, of each basic block in
the program. The ILP constraints describe the structure of the control flow graph (e.g. the
number of times a given block is entered equals the number of times it is exited), as well as
maximal iteration counts for loops, obtained by value analysis or provided by the user. Finally,
the execution time to be maximized is the sum of the basic blocks weighted by their local
worst-case execution time computed by the micro-architectural analysis.

The obtained worst-case path may however be infeasible semantically, for instance, if a
condition tests x < 10 and later the unmodified value of x is again tested in a condition
x > 20 along that path. This is because the ILP represents mostly syntactic information from
the control-flow graph. This weakness has long been recognized within the WCET commu-
nity, which has devised schemes for eliminating infeasible worst-case paths, for instance, by
modifying the control-flow graph before the architecture analysis [NRM04], or by adding ILP
constraints [HW02, GESL06, RMPVC13]. Infeasible paths are found via pattern matching of
conditions [HW02] or applying abstract execution [GESL06]; these methods focus on paths
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made infeasible by numeric constraints. These approaches are limited by the expressiveness of
ILP constraints as used in IPET: they consider only “conflict conditions” (exclusive conditional
statements: “if condition a is true then condition b must be false”).

On a loop-free program, the ILP approach is equivalent to finding the longest path in the
control-flow graph, weighted according to the local WCET of the basic blocks. Yet, again,
this syntactic longest path may be infeasible. Instead of piecemeal elimination of infeasible
paths, we propose encoding the set of feasible paths into an SMT formula, as done in bounded
model-checking; the success of SMT-solving is based on the ability of SMT solvers to exclude
whole groups of spurious solutions by learning lemmas.

Loop-free programs without recursion may seem a very restricted class, but in safety-critical
control systems, it is common that the program consists in one big infinite control loop whose
body must verify a WCET constraint, and this body itself does not contain loops, or only
loops with small static bounds (say, for retrieving a value from an interpolation table of known
static size), which can be unrolled in the analysis (note that the final executable does not
require inlining). Such programs typically eschew more complicated algorithms, if only because
arguing for their termination or functional correctness would be onerous with respect to the
stringent requirements imposed by the authorities. Complicated or dynamic data structures
are usually avoided [LM97, ch. II]. This is the class of programs targeted by e.g. the Astrée
static analyzer [CCF+05].

Our approach replaces the path analysis by ILP (and possibly refinement for infeasible
paths) by optimization modulo theory. The control-flow extraction and micro-architectural
analysis are left unchanged, and one may thus use existing WCET tools.

6.3 Using Bounded Model Checking to Measure Worst-Case

Execution Time

Bounded model checking, as described in section 2.2.1, is an approach for finding software bugs,
where traces of length at most n are exhaustively explored. In most current approaches, the
set of feasible traces of length n is defined using a first-order logic formula, where, roughly
speaking, arithmetic constraints correspond to tests and assignments, control flow is encoded
using Booleans, and disjunctions correspond to multiple control edges. This encoding is de-
scribed in subsection 4.2.1, in the case where the program is expressed as a control-flow graph.
If constructs occur in the source program that cannot be translated exactly into the target
logic (e.g. the program has nonlinear arithmetic but the logic does not), they may be safely
over-approximated by nondeterministic choice.

Let us now see how to encode a WCET problem into SMT. The first step is to unroll all
loops up to statically determined bounds. In a simple model (which can be made more complex
and realistic, see section 6.9), each program block i has a fixed execution time ci ∈ N given
by the micro-architectural analysis. The total execution time T (τ) of a program trace τ is the
sum of the execution times of the blocks encountered in the trace. This execution time can
be incorporated into a “conventional” encoding for program traces in two ways, that we call
counter encoding and sum encoding.

Definition 23 (Sum Encoding). If Booleans bi ∈ {0, 1} record which blocks i were reached by
the execution trace τ (recall that we can use only Boolean variables since we consider loop-free
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control-flow graphs only), then the Sum Encoding if defined as:

T (τ) =




∑

i|bi=true

ci



 =

(
∑

i

bici

)

(6.1)

Alternatively, the micro-architectural analysis may attach a cost to transitions instead of pro-
gram blocks. The sum encoding is then done similarly, with Booleans ti,j ∈ {0, 1} recording
which of the transitions have been taken by an execution trace τ .

T (τ) =




∑

(i,j)|ti,j=true

ci,j



 =




∑

(i,j)

ti,jci,j



 (6.2)

Definition 24 (Counter Encoding). The program can be modified by adding a time counter
as an ordinary variable, which is incremented in each block by the timing value of the block.
Then, the final value of the counter at the end of the program is the execution time. In the
case the costs are attached to transitions, the following encoding is possible: the cost variable
in encoded as a Φ-instruction in each basic block with several incoming edges.

The choice to attach costs either to blocks or transitions is discussed later in subsection 6.6.2.
The problem is now how to determine the WCET β = max T (τ). An obvious approach is

binary search [ST12], maintaining an interval [l, h] containing β. l and h may be respectively
initialized to zero and a safe upper bound on worst-case execution time, for instance one
obtained by a simple “longest path in the acyclic graph” algorithm, or simply taking the sum
of all the ci’s. Algorithm 11 describes the algorithm for optimizing an integer variable cost

representing the execution time.

Algorithm 11

1: function OptimizeCost(ρ, variable cost) ⊲ cost is assigned to T (τ) in ρ

2: l ← 0, h ←
∑

i ci

3: while l �= h do

4: m ← ⌈ l+h
2 ⌉

5: res ← SmtSolve [ρ ∧ cost ≥ m]
6: if res = unsat then

7: h ← m− 1
8: else

9: M ← getModel(), l ← M(cost)
10: end if

11: end while

12: return h

13: end function

6.4 Intractability: Diamond Formulas

When experiencing with the encoding described in section 6.3, it turns out that solving the
resulting formula takes far too much time for all state-of-the-art SMT-solvers, and most of the
time does not terminate within hours or even days when analysing medium-size programs. In
this section, we demonstrate both theoretically and experimentally why this encoding is not
suitable for modern SMT-solvers based on the DPLL(T ) framework.
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Consider a program consisting in a sequence of n fragments where the i-th fragment has
the form depicted in Figure 6.3.

i f ( bi ) { / * b l o c k o f c o s t xi * /

THEN1 / * t ime c o s t 2 , no t chang ing bi * /

} e ls e {

ELSE1 / * t ime c o s t 3 , no t chang ing bi * /

}

i f ( bi ) { / * b l o c k o f c o s t yi * /

THEN2 / * t ime c o s t 3 * /

} e ls e {

ELSE2 / * t ime c o s t 2 * /

}

Figure 6.3: Program fragment with maximal cost equal to 5.

The (bi)1≤i≤n are Booleans. A human observer easily concludes that the worst-case execu-
tion time is 5n, by analyzing each fragment separately, since it is easy to see that the constraint
xi + yi ≤ 5 holds.

This examples motivates the use of SMT instead of the traditional IPET approach using
ILP: here, IPET would not be able to bound the WCET to 5n and would actually only bound
it to 6n, unless the user manually encodes into the ILP problem all the constraints of the
form THEN1 + ELSE2 ≤ 1 and THEN2 + ELSE1 ≤ 1. For instance, the first constraint
means that the branch THEN1 and ELSE2 are mutually exclusive. We explain here that the
SMT approach yields the expected result 5n, but suffers from scalability issues due to the huge
number of paths in the program.

Using the “sum encoding” for creating the SMT problem, the timing analysis is expressed
as

T = max
{ n∑

i=1

xi + yi

∣
∣
∣
∣

n∧

i=1

(xi = ite(bi, 2, 3)) ∧ (yi = ite(bi, 3, 2))
}

(6.3)

Given a bound m, an SMT-solver will have to solve for the unknowns (bi), (xi), (yi)1≤i≤n

the following constraint:

(
(b1 ∧ x1 = 2 ∧ y1 = 3) ∨ (¬b1 ∧ x1 = 3 ∧ y1 = 2)

)
∧ . . .

(
(bn ∧ xn = 2 ∧ yn = 3) ∨ (¬bn ∧ xn = 3 ∧ yn = 2)

)
∧

x1 + y1 + · · · + xn + yn ≥ m (6.4)

In the DPLL(T ) and CDCL frameworks (see section 2.2.1) SMT is implemented as a com-
bination of a SAT solver, which searches within a Boolean state space (here, amounting to
b1, . . . , bn ∈ {0, 1}n, but in general arithmetic or other theory predicates are also taken into
account) and a decision procedure for conjunctions of atomic formulas from a theory T . In this
context, the combination of propositional and theory reasoning proceeds by sending clauses
constructed from the predicates syntactically present in the original formula to the proposi-
tional solver. Once b1, . . . , bn have been picked, Equation 6.4 simplifies to a conjunction

x1 = α1 ∧ y1 = β1 ∧ . . . ∧ xn = αn ∧ yn = βn ∧ x1 + y1 + · · · + xn + yn ≥ m (6.5)

where the αi, βi are constants in {2, 3} such that for each i, αi + βi = 5. Such a formula is
satisfiable if and only if m ≤ 5n.
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Assume now m > 5n. All combinations of b1, . . . , bn lead to unsatisfiable constraints, thus
Equation 6.4 is unsatisfiable. If we exhaustively explore all these combinations, it is equivalent
to exploring 2n paths in the control flow graph, computing the execution time for each and
comparing it to the bound. Let us now see how an SMT-solver will behave in practice with
this formula. The SMT-solver, when exploring the Boolean state space, may detect that the
current Boolean choices (say, b3∧¬b5∧b7) lead to an arithmetic contradiction, without picking
a value for all the Booleans. The SMT-solver extracts a (possibly smaller) contradiction, also
called unsatisfiable core, for instance b3 ∧¬b5. It adds the negation of this contradiction to the
Boolean constraints as a theory clause, and restarts Boolean solving. The hope is that there
exist short contradictions that enable the SMT-solver to prune the Boolean search space. Yet,
in our case, there are no such short contradictions: if one leaves out any of the conjuncts in
conjunction 6.5, the conjunction becomes satisfiable. Note the asymmetry between proving
satisfiability and unsatisfiability: for satisfiability, one can always hope that clever heuristics
will lead to one solution, while for unsatisfiability, the prover has to close all branches in the
search.

The difficulty of Equation 6.4 or similar “diamond formulas” is well-known in SMT circles.
It boils down to the SMT-solver working exclusively with the predicates found in the original
formulas, without deriving new useful ones such as xi + yi ≤ 5. All state-of-the-art solvers
that we have tried have exponential running time in n when solving Equation 6.4 for m = 5n

(Figure 6.5).

The problem here does not come from the optimization modulo theory built on top of the
SMT framework, but from the resolution techniques for solving SMT themselves: the special
version of MathSAT 5, called Opti-MathSAT, which was kindly made available to us by the
authors [ST12], implements the binary search approach internally. It suffers from the same
exponential behavior as noted in the figure: in its last step, it has to prove that the maximum
obtained truly is maximum.

The difficulty increases exponentially as the upper bound on the WCET to be proved
becomes closer to the actual WCET. This phenomenon is clearly illustrated in Figure 6.6.
Suppose we want to prove there exists no trace longer than m = 5n + k, for some k > 0. In
that case, it is possible to derive a simpler unsatisfiable core rather than keeping the whole set
of clauses.

As illustrated in Figure 6.4, it is sufficient for the first k portions to keep only the two
clauses xk ≤ 3 and yk ≤ 3, and still get an unsatisfiable set of clauses. Thus, the problem is
simpler since the blocking clause prunes 2k traces at the same time instead of a single one.

There have been proposals of alternative approaches to DPLL(T ), where one would di-
rectly solve for the numeric values instead of solving for Booleans then turning theory lemmas
into Boolean constraints [Cot09, Cot10, MKS09, BDdM08, dMJ13]; but no production solver
implements them.4

In the following, we incorporate so-called “cuts” in the encoding of the formula, in order to
compute the WCET orders of magnitude faster than with the already described encoding.

4Dejan Jovanovic was kind enough to experiment with some of our formulas in his experimental solver

[dMJ13], but the execution time was unacceptably high. We stress that this field of workable alternatives to

DPLL(T ) is still new and it is too early to draw conclusions.
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x1 ≤ 2
x1 ≤ 3
¬(y1 ≤ 2)
y1 ≤ 3
...
xk ≤ 2
xk ≤ 3
¬(yk ≤ 2)
yk ≤ 3
...
xn ≤ 2
xn ≤ 3
¬(yn ≤ 2)
yn ≤ 3
x1 + y1 + · · · + xn + yn ≥ 5n + k

−→

x1 ≤ 3
y1 ≤ 3
...
xk ≤ 3
yk ≤ 3
xk+1 ≤ 2
yk+1 ≤ 3
...
xn ≤ 2
yn ≤ 3
x1 + y1 + · · · + xn + yn ≥ 5n + k

Boolean satisfying assignment

Blocking clause

Figure 6.4: From a Boolean satisfying assignment to a blocking clause

6.5 Adding Cuts

Experiments with both sum encoding and counter encoding applied to the “conventional”
encoding of programs into SMT from section 6.3 were disappointing: the SMT solver was
taking far too much time. Indeed, these encodings lead to formulas with diamonds, that are
intrinsically hard to solve by current solvers for the reasons explained before in section 6.4. The
solver then explores a very large number of combinations of branches (exponential with respect
to the number of tests), thus a very large number of partial traces τ1, . . . , τn, even though the
execution time of these partial traces is insufficient to change the overall WCET.

Consider the control-flow graph in Figure 6.7; let t1, . . . , t7 be the WCET of blocks 1 . . . 7
established by micro-architectural analysis (for the sake of simplicity, we neglect the time taken
for decisions). Assume we have already found a path from start to end going through block 6,
taking β time units; also assume that t1 + t2 + max(t3, t4) + t5 + t7 ≤ β. Then it is useless
for the SMT-solver to search for paths going through decision 2, because none of them can
have execution time longer than β; yet that is what happens if using a naive encoding with
all current production SMT-solvers (see section 6.4). If instead of 1 decision we have 42, then
the solver may explore 242 paths even though there is a simple reason why none of them will
increase the WCET.

Our proposal is simple: to the original SMT formula (from “counter encoding” or “sum
encoding”), conjoin constraints expressing that the total execution time of some portions of
the program is less than some upper bound (depending on the portion). This upper bound
acts as an “abstraction” or “summary” of the portion (e.g. here we say that the time taken
in P2 is at most t2 + max(t3, t4) + t5), and the hope is that this summary is sufficient for the
SMT-solver in many cases. Two problems remain: how to select such portions, and how to
compute this upper bound.

Note that these extra constraints are implied by the original formula, and thus that conjoin-
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Figure 6.5: Intractability of diamond formulas obtained from timing analysis of a family of
programs with very simple functional semantics. Execution times of various state-of-the-art
SMT-solvers on Equation 6.4, for m = 5n (the hardest), showing exponential behavior in the
formula size n. The CPU is a 2 GHz Intel Core 2 Q8400.
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Figure 6.6: The complexity of proving the absence of traces longer than m decreases exponen-
tially as m increases above the length of the longest trace, here, n = 18, and the real WCET
is 5n = 90.
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block 1
(start)

block 2

block 3 block 4

block 5

block 6

block 7
(end)

P2

P1

Figure 6.7: Two portions P1 and P2 of a program obtained as the range between a node with
several incoming edges and its immediate dominator

ing them to it does not change the solution set or the WCET obtained, but only the execution
time of the analysis. Such constraints are often called “cuts” in operation research, thus our
terminology.

If we consider the program from Figure 6.3, for which we could not find an unsatisfiable core
sufficiently general to prune sets of traces at the same time. Suppose that for each program
fragment, we conjoin to the initial SMT formula the linear constraints xk +yk ≤ 5 for all k ≤ n.
These constraints do not change the models of the initial formula. However, it turns out that
there exists now unsatisfiable cores much more general than previously:

x1 ≤ 2
x1 ≤ 3
¬(y1 ≤ 2)
y1 ≤ 3
x1 + y1 ≤ 5
...
xn ≤ 2
xn ≤ 3
¬(yn ≤ 2)
yn ≤ 3
xn + yn ≤ 5
x1 + y1 + · · · + xn + yn > 5n

−→

x1 + y1 ≤ 5
...
xn + yn ≤ 5
x1 + y1 + · · · + xn + yn > 5n

Boolean satisfying assignment

Blocking clause

In this ideal case, every traces in the program are pruned in one single step. The solving
time with any production-grade solver drops from “non-terminating after one night” to “a few
seconds” for large values of n. In the following, we propose ways of choosing these portions for
deriving interesting cuts that may prune large sets of traces at once.

6.5.1 Selecting Portions

We propose different criteria for selecting the portions and deriving appropriate cuts.
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Control-Structure Criterion

The choice of a portion of code to summarize follows source-level criteria: for instance, a
procedure, a block, a macro expansion. If operating on a control-flow graph, a candidate
portion can be between a node with several incoming edges and its immediate dominator

(defined page 79), if there is non trivial control flow between the two (Fig. 6.7). the notion of
immediate dominator is defined as follows:

Definition 25 (Immediate Post Dominator). A block P is said to post dominate a block
B if all paths to the final block that goes through B also goes through P . Similarly, the
immediate post dominator of a block B is the postdominator of B that does not postdominate
any postdominator of B (intuitively, it is the “closest” post dominator of B).

On structured languages, this means that we add one constraint for the total timing of
every “if-then-else” or “switch” statement (recall that loops are unrolled, if needed into a
cascade of “if-then-else”). This is the approach that we followed in our experimental evaluation
(section 6.6).

Semantic Criterion

Let us however remark that these portions of code need not be contiguous: with the sum
encoding, it is straightforward to encode the fact that the total time of a number of instruction
blocks is less than a bound, even though these instructions blocks are distributed throughout
the code. This is also possible, but less easy, with the counter encoding (one has to encode an
upper bound on the sum of differences between starting and ending times over all contiguous
subsets of the portion). This means that it is possible to consider portions that are semantically,
but not syntactically related. For instance, one can consider for each Boolean, or other variable
used in a test, a kind of “slice” of the program that is directly affected by this variable (e.g.
all contents of if-then-elses testing on this variable) and compute an upper bound for the total
execution time of this slice. In Figure 6.1, we consider the variable clock and compute an
upper bound on the total time of A and B, since their execution is affected by this variable. In
Figure 6.3, we consider the set of variables (bi)0≤i≤n, and slice the program according to each
of these Booleans. The resulting sliced graphs give us the appropriate portions.

We describe in Algorithm 12 the procedure that computes the set of semantic portions. We
use the notion of Dependency Graph of a variable.

Definition 26 (Dependency Graph). Let G denote a control-Flow Graph in SSA form. The
Dependency Graph of G is a graph where the nodes are the program variables. There is a
directed edge from v to v′ if and only if the definition of v depend on the value of v′. This can
happen for two reasons:

• v is the result of an instruction that takes v′ as operand,
• or, v is a Φ-instruction in a basic block b, and the branch condition in the immediate

dominator of b has v′ as operand.

In case G has no cycles, the dependency graph of has no cycle.
We call Dependency Graph of a variable v the same graph where we only keep the edges

and nodes reachable from the node v.

Since the dependency graph of a program variable may be too large, we can limit its depth
up to a given length k.
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Algorithm 12

1: function Portion(CFG G, BasicBlock t)
2: succ ← ImmediatePostDominator(t)
3: return {b ∈ G / ∃ a path from t to succ going through b}

4: end function

5: function SemanticPortions(CFG G, Depth k)
6: P ← ∅ ⊲ Set of semantic portions
7: V ← set of variables involved in tests.
8: for all variable v ∈ V do

9: S ← Dependency graph of v up to depth k

10: T ← {b ∈ G / b has a conditional branch involving a variable in S}

11: for all T ′ ⊆ T s.t. there exists a path in G traversing all blocks in T ′ do

12: P ← P ∪ {
⋃

t∈T ′ Portion(t)}
13: end for

14: end for

15: return P

16: end function

6.5.2 Obtaining Upper Bounds on the WCET of Portions

Let us now consider the problem of computing, given a portion, an upper bound on its WCET.
There are several ways of deriving this upper bound, either by a simple syntactic analysis or
by a more refined semantic analysis.

Syntactic Upper Bound

In the case of a contiguous portion, an upper bound may be obtained by a simple syntactic
analysis: the longest syntactic path is used as a bound (even though it might be unfeasible).
This approach may be extended to non-contiguous portions. Let us denote by P the portion.
For each block b, let tb be the upper bound on the time spent in block b (obtained from micro-
architectural analysis), and let wb be an unknown denoting the worst time spent inside P in
paths from the start of the program to the beginning of b. If b1, . . . , bk are the predecessors of
b, then wb = max(wb1

+tb1
.χP (b1), . . . , wbk

+tbk
.χP (bk)) where χP (x) is 1 if x ∈ P , 0 otherwise.

If the costs are attached to transitions instead of blocks, the computation of wb can be done
similarly. This system of equations can be easily solved in (quasi) linear time by considering
the wb in a topological order of the blocks (recall that we consider loop-free programs).

This syntactic approach gave excellent results in most benchmarks, and thus is the one we
use in our experiments detailed in section 6.6.

Semantic Upper Bound

It may be the case that the cuts derived by the syntactic approach are not sufficiently precise
to prune many traces. Having more precise upper bounds indeed improves our chance to cut
traces as soon as possible. Another more precise approach is then to compute a semantic-
sensitive upper bound for each portions. We propose two ways of deriving such upper bound
by recursively calling the WCET procedure:

1. Once the portion is isolated, encode the semantics of this portion as an SMT formula,
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and compute the WCET of the portion using the same algorithm used for the entire
program.

2. The second approach operates on the SMT formula of the entire program, and does not
build a different formula per portion. Instead of directly optimizing the total cost variable
of the program, we successively optimize the integer variables expressing the cuts, in order
of portion size. Typically, the size of the portion is its number of contained basic blocks
or transitions. These smaller problems are much easier to solve than the initial one,
since only the SMT variables relative to the small portion will be relevant. This allows
to strengthen the cuts with smaller upper bounds, and helps the analysis of the bigger
portions. This approach can be seen as a “divide and conquer” algorithm. Note that this
approach is not similar to the first one, since it takes into account possible inputs and
outputs of the portion in the context of the entire program. Thus, the resulting upper
bound may be smaller.

6.5.3 Example

Let us now see a short, but complete example, extracted from a control program composed of
an initialization phase followed by an infinite loop clocked at a precise frequency. The goal of
the analysis is to show that the WCET of the loop body never exceeds the clocking period.
For the sake of brevity, we consider the “rate limiter” program that we already used in 4.2.3.
The code run at every clock tick is depicted in Figure 6.8.

/ / r e t u r n s a v a l u e be tween min and max

extern i n t input ( i n t min , i n t max) ;

void r a t e _ l i m i t e r _ s t e p ( ) {

i n t x_old = input (−10000 ,10000) ;

i n t x = input (−10000 ,10000) ;

i f ( x > x_old +10)

x = x_old +10;

i f ( x < x_old−10)

x = x_old −10;

x_old = x ;

}

Figure 6.8: Rate Limiter Example

This program is compiled to LLVM bitcode [LA04]. Then bitcode-level optimizations are
applied, resulting in an LLVM loop-free control-flow graph. From this graph we generate a
first-order formula including cuts (Figure 6.9, above). Its models describe execution traces
along with the corresponding execution time cost given by the “sum encoding”. Here, costs are
attached to the transitions between each pairs of blocks. These costs are supposed to be given.
subsection 6.6.2 will describe in full details how we use the Otawa tool to derive such precise
costs for each transitions.

The SMT encoding of the program semantics (Figure 6.9, below) is done as described in
subsection 4.2.1. In our encoding, each transition t_i_j have a cost c_i_j given by Otawa.
For instance, the block entry is given the Boolean b_0, the block if.then is given the Boolean
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b_1, and the transition from entry to if.then is given the Boolean t_0_1 and has a cost
of 15 clock cycles. The cuts are derived as follows: if.end has several incoming transitions
and its immediate dominator is entry. The longest syntactic path between these two blocks
is equal to 21. The cut will then be c_0_1 + c_1_2 + c_0_2 ≤ 21. There is a similar cut for
the portion between if.end and if.end6. Finally, we can also add the constraint cost ≤ 43
since it is the cost of the longest syntactic path. While this longest syntactic path has cost
43 (it goes both through if.then and if.then4), our SMT-based approach shows there is no
semantically feasible path longer than 36 clock cycles.

6.5.4 Relationship with Craig Interpolants

A Craig interpolant for an unsatisfiable conjunction F1 ∧ F2 is a formula I such that F1 ⇒ I

and I ∧ F2 is unsatisfiable, whose free variables are included in the intersection of those of F1

and F2.
In the case of a program A; B consisting of two portions A and B executed in sequence,

the usual way of encoding the program yields φA ∧ φB where φA and φB are, respectively, the
encodings of A and B. The free variables of this formula are the inputs i1, . . . , im and outputs
o1, . . . , on of the program, as well as all temporaries and local variables. Let l1, . . . , lp be the
variables live at the edge from A to B; then the input-output relationship of the program, with
free variables i1, . . . , im, o1, . . . , on is F :

∃l1, . . . , lp(∃ . . . φA) ∧ (∃ . . . φB)

When using the counter encoding, one of the input variables i1, . . . , im actually refers to
the initial time cost (hence equals 0), and one of the output variables o1, . . . , on is the final
cost of the trace, which is the value we try to optimize. Similarly, one of the variables l1, . . . , lp
corresponds to the execution time of the trace before entering block B. Let us now assume
without loss of generality that o1 is the final time and l1 is the time when control flow from A

to B in the counter encoding. The SMT formulas used in our optimization process are of the
form F ∧ o1 ≥ β. The cut for portion A is of the form l1 ≤ βA, that for portion B of the form
o1−l1 ≤ βB. Then, if the cut for portion A is used to prove that F∧o1 ≥ β is unsatisfiable, then
this cut is a Craig interpolant for the unsatisfiable formula (φA)∧(φB∧o1 ≥ β) (similarly, if the
cut for portion B is used, then it is an interpolant for φB ∧ (φA ∧ o1 ≥ β). Our approach may
thus be understood as preventively computing possible Craig interpolants so as to speed up
solving. The same intuition applies to the sum encoding (up to the creation of supplementary
variables). Computing “interesting” Craig interpolants that prune large sets of traces is an
active research topic. Here, we claim that the interpolants we preemptively produce will help
the SMT solver in many cases. This claim is stressed by experimental results on real programs.

6.6 Experimental Results

We experimented our approach for computing the worst-case execution time on benchmarks
from several sources, referenced in Table 6.1. nsichneu and statemate belong to the Mälardalen
WCET benchmarks set [GBEL10]5, being the largest of the set (w.r.t. code size). cruise-control

and digital-stopwatch are generated from Scade™ designs. autopilot and fly-by-wire

come from the Papabench benchmark [NCS+06] derived from the Paparazzi free software suite

5http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
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entry : ; b_0

%c a l l = c a l l i 3 2 @input ( . . . )

%c a l l 1 = c a l l i 3 2 @input ( . . . )

%add = add nsw i 3 2 %c a l l , 10

%cmp = icmp sgt i 3 2 %c a l l 1 , %add

br i 1 %cmp, l a b e l %i f . then , l a b e l %i f . end

i f . then : ; b_1

%add2 = add nsw i 3 2 %c a l l , 10

br l a b e l %i f . end

i f . end : ; b_2

%x . 0 = phi i 3 2 [%add2,% i f . then ] , [% c a l l 1 ,% entry ]

%sub = sub nsw i 3 2 %c a l l , 10

%cmp3 = icmp s l t i 3 2 %x . 0 , %sub

br i 1 %cmp3 , l a b e l %i f . then4 , l a b e l %i f . end6

i f . then4 : ; b_3

%sub5 = sub nsw i 3 2 %c a l l , 10

br l a b e l %i f . end6

i f . end6 : ; b_4

%x . 1 = phi i 3 2 [%sub5 ,% i f . then4 ] , [%x .0 ,% i f . end ]

r e t void

t_0_1, cost = 15

t_0_2, cost = 14

t_1_2, cost = 6

t_2_3, cost = 12

t_2_4, cost = 11

t_3_4, cost = 6

−10000 ≤ call ≤ 10000
∧ −10000 ≤ call1 ≤ 10000
∧ add = (call + 10)
∧ t_0_1 = (b_0 ∧ (call1 > add))
∧ t_0_2 = (b_0 ∧ ¬(call1 > add))
∧ b_1 = t_0_1
∧ add2 = (call + 10)
∧ t_1_2 = b_1
∧ b_2 = (t_0_2 ∨ t_1_2)
∧ b_2 ⇒ (x.0 = ite(t_1_2, add2, call1))
∧ sub = (call − 10)
∧ t_2_3 = (b_2 ∧ (x.0 < sub))
∧ t_2_4 = (b_2 ∧ ¬(x.0 < sub))
∧ b_3 = t_2_3
∧ sub5 = (call − 10)
∧ t_3_4 = b_3
∧ b_4 = (t_2_4 ∨ t_3_4)
∧ b_4 ⇒ (x.1 = ite(t_3_4, sub5, x.0))

; seach for a trace from entry to if.end6
∧ b_0 = b_4 = true

ti
m

in
g







; t_0_1 has cost 15 if taken, else 0
∧ c_0_1 = ite(t_0_1, 15, 0)
∧ c_0_2 = ite(t_0_2, 14, 0)
∧ c_1_2 = ite(t_1_2, 6, 0)
∧ c_2_3 = ite(t_2_3, 12, 0)
∧ c_2_4 = ite(t_2_4, 11, 0)
∧ c_3_4 = ite(t_3_4, 6, 0)
∧ cost = (c_0_1 + c_0_2 + c_1_2 + c_2_3

+c_2_4 + c_3_4)

cu
ts







; between entry and if.end
∧ (c_0_1 + c_1_2 + c_0_2) ≤ 21

; between if.end and if.end6
∧ (c_3_4 + c_2_4 + c_2_3) ≤ 22
∧ cost ≤ 43

Figure 6.9: LLVM control-flow graph of the rate_limiter_step function, and its encoding as
an SMT formula with cuts.
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Benchmark name LLVM #lines LLVM #BB
statemate 2885 632
nsichneu 12453 1374
cruise-control 234 43
digital-stopwatch 1085 188
autopilot 8805 1191
fly-by-wire 5498 609
miniflight 5860 745
tdf 2689 533

Table 6.1: Table referencing the various benchmarks. LLVM #lines is the number of lines in
the LLVM bitcode, and LLVM #BB is its number of Basic Blocks.

for piloting UAVs (http://paparazzi.enac.fr/). tdf and miniflight are industrial avionic
case-studies.

We use the infrastructure of the Pagai static analyzer to produce an SMT formula corre-
sponding to the semantics of a program expressed in LLVM bitcode. This part is fully detailed
later in chapter 7. Once the SMT formula is constructed, we enrich it with an upper timing
bound for each basic block.

Finally, we conjoin to our formula the cuts for the “sum encoding”, i.e., constraints of the
form

∑

i∈S ci ≤ B, where the ci’s are the cost variables attached to the basic blocks. There
is one such “cut” for every basic block with several incoming edges, according to the control-
structure criterion described in section 6.5.1. The bound B is the weight of the maximal path
through the range, be it feasible or infeasible, and is computed as described in section 6.5.2
(we do not apply the semantic criterion for computing precise upper bounds).

Our current implementation keeps inside the program the resulting formulas statements
and variables that have no effect on control flow and thus on WCET. Better performance could
probably be obtained by slicing away such irrelevant statements. Furthermore, some paths
are infeasible because of a global invariant of the control loop (e.g. some Booleans a and b

activate mutually exclusive modes of operations, and ¬a∨¬b is an invariant); we have not yet
integrated such invariants, which could be obtained either by static analysis of the program,
either by analysis of the high-level specification from which the program is extracted [AMR13].

We use Z3 [dMB08] as an SMT solver and a binary search strategy to maximize the cost

variable modulo SMT.

6.6.1 Results with Bitcode-Based Timing

The problem addressed in this thesis is not architectural modeling and low-level timing analysis:
we assume that worst-case timings for basic blocks are given by an external analysis. Here we
report on results with a simple timing basis: the time taken by an LLVM bitcode block is
its number of instructions; our goal here is to check whether improvements to WCET can be
obtained by our analysis with reasonable computation costs, independently of the architecture.

As expected, the naive approach (without adding cuts to the formula) does not scale at
all, and the computation has reached our timeout in all of our largest benchmarks. Once
the cuts are conjoined to the formula, the WCET is computed considerably faster, with some
benchmarks needing less than a minute while they timed out with the naive approach.

Our results (Table 6.2, first part) show that the use of bounded model checking by SMT
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WCET bounds Analysis time (in seconds)
Benchmark name syntactic/Otawa max-SMT diff with cuts without cuts #cuts

Bitcode-based timings (in number of LLVM instructions)
statemate 997 951 4.6% 118.3 +∞ 143
nsichneu 9693 5998 38.1% 131.4 +∞ 252
cruise-control 123 121 1.6% 0.1 0.1 13
digital-stopwatch 332 302 9.0% 1.0 35.5 53
autopilot 4198 1271 69.7% 782.0 +∞ 498
fly-by-wire 2932 2792 4.7% 7.6 +∞ 163
miniflight 4015 3428 14.6% 35.8 +∞ 251
tdf 1583 1569 0.8% 5.4 343.8 254

Realistic timings (in cycles) for an ARMv7 architecture
statemate 3297 3211 2.6% 943.5 +∞ 143
nsichneu* (1 iteration) 17242 <13332** 22.7% 3600** +∞ 378
cruise-control 881 873 0.9% 0.1 0.2 13
digital-stopwatch 1012 954 5.7% 0.6 2104.2 53
autopilot 12663 5734 54.7% 1808.8 +∞ 498
fly-by-wire 6361 5848 8.0% 10.8 +∞ 163
miniflight 17980 14752 18.0% 40.9 +∞ 251
tdf 5789 5727 1.0% 13.0 +∞ 254

Table 6.2: max-SMT is the upper bound on WCET reported by our analysis based on optimization modulo theory, while syntactic/Otawa is the
execution time of longest syntactic path (provided by Otawa when using realistic timings). diff is the improvement brought by our method. The
analysis time for max-SMT is reported with and without added cuts; +∞ indicates timeout (1 hour). #cuts is the number of added cuts.
*) nsichneu has been simplified to one main-loop iteration (instead of 2), and has been computed with cuts refinement as described in subsection 6.6.2.
**) Computation takes longer that 1 hour. A safe bound of 13332 is already known after this time.

1
1
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entry : ; b_0

i f . then : ; b_1

i f . end : ; b_2

i f . then4 : ; b_3

i f . end6 : ; b_4

BB1, c=14

BB2, c=1

BB4, c=6

BB3, c=11

BB5, c=1

BB7, c=6

BB6, c=4

c = 15

c = 14

c = 6

c = 12

c = 11

c = 6

Figure 6.10: ARM control-flow graph (with 7 blocks) + traceability to LLVM IR control-flow
graph for the example from subsection 6.5.3 and Figure 6.9

solving improves the precision of the computed upper bound on the worst-case execution time,
since the longest syntactic path is in most cases not feasible due to the semantics of the
instructions. As usual with WCET analyzes, it is difficult to estimate the absolute quality of
the resulting bound, because the exact WCET is unknown (perhaps what we obtain is actually
the WCET, perhaps it overestimates it somewhat).

On the autopilot software, our analysis reduces the WCET bound by 69.7%. This soft-
ware has multiple clock domains, statically scheduled by the periodic_task() function using
switches and arithmetic constraints. Approaches that do not take functional semantics into
account therefore consider activation patterns that cannot occur in the real system, leading to
a huge overestimation compared to our semantic-sensitive approach.

6.6.2 Results with Realistic Timing

The timing model used in the preceding subsection is not meant to be realistic. We therefore
experimented with realistic timings for the basic blocks, obtained by the Otawa tool [BCRS10]
for an ARMv7 architecture.

The difficulty here is that Otawa considers the basic blocks occurring in binary code, while
our analysis considers the basic blocks in the LLVM bitcode. Since we apply the analysis to
the bitcode obtained after all machine-independent optimization passes (including all passes
that perform reorganizations such as loop unrolling), the blocks in LLVM bitcode are close to
those in the binary code. However, they are not exactly those in the binary code, because code
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LLVM IR CFG ARM CFG

Otawa

costs (ARM)

Traceability:
match blocks

costs (LLVM-IR)

Encode into SMT
and maximise

Final WCET

llvm compiler

Legend:

Figure 6.11: General workflow for deriving timings using Otawa.

generation in the LLVM backend may slightly change the block structure (for instance, out-
of-SSA may add move instructions over control edges, which may translate into supplemental
control blocks). The matching of binary code to LLVM bitcode is thus imperfect in some cases
and we had to resort to one that safely overestimates the execution time. Figure 6.11 gives
an overview of the general workflow for deriving the appropriate costs of LLVM basic blocks.
When the matching is perfect, the worst-case execution time obtained by the whole program
analysis of Otawa is equal to the “syntactic worst case” approach that we improve upon using
SMT-solving; when it is imperfect our “syntactic worst case” may be worse than the one given
by Otawa. Because of this matching, we assign costs to transitions instead of basic blocks
as usual, since it reduces the overapproximation in the WCET of each LLVM basic block.
Figure 6.10 shows the superposition of the ARMv7 and LLVM control flow graphs, as well as
the cost for each ARM block BBi given by Otawa. In this special case, the matching does
not need overapproximation.

In order to solve these issues, the solution would be to generate the SMT formulas not from
LLVM bitcode, but directly from the binary code; unfortunately a reliable implementation
needs to address a lot of problems — including control-flow graph reconstruction, precise
treatment of complicated instruction semantics, etc. — and as such, it falls into our future
plans.

The results are given in Table 6.2 (second half). The improvement is comparable to our
results with Bitcode-based timings. However, the resulting SMT formulas are harder to deal
with by the SMT solver. While the nsichneu benchmark is fully handled by our approach
when using bitcode-based timing, it is much harder when using the realistic metric. We had
to improve our implementation in two ways:

1. We extract cuts for larger portions of the program: we take the portions from our previous
cuts (between merge points and their immediate dominators) and derive new cuts by
recursively grouping these portions by two. We then have cuts for one half, one quarter,
etc. of the program.

2. Instead of directly optimizing the total cost variable of the program, we successively
optimize the variables expressing the “cuts” (in order of portion size). This allows to
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strengthen the cuts with smaller upper bounds, and helps the analysis of the bigger
portions.

In this benchmark, all the biggest paths are unfeasible because of inconsistent semantic con-
straints over the variables involved in the tests. Better cuts could be derived if we were not
restricted to contiguous portions in the implementation. The computation time is around 6.5
hours to get the exact WCET (13298 cycles), but we could have stopped after one hour and
get a correct upper bound of 13332 cycles, which is already very close to the final result.

6.7 Related Work

The work closest to ours is from [CJ11]. They perform symbolic execution on the program,
thereby unrolling an exponentially-sized execution tree (each if-then-else construct doubles the
number of branches). This would be intolerably expensive if not for the very astute subsumption
criterion used to fold some of the branches into others already computed. More specifically,
their symbolic execution generalizes each explored state S to a first-order formula defining
states from which the feasible paths are included in those starting from S; these formula are
obtained from Craig interpolants extracted from the proofs of infeasibility.

In our approach, we also learn formula that block infeasible paths or paths that cannot lead
to paths longer than the WCET obtained, in two ways: the SMT-solver learns blocking clauses
by itself, and we feed “cuts” to it. Let us now attempt to give a high-level view of the difference
between our approach and theirs. Symbolic execution [CS13] (in depth-first fashion) can be
simulated by SMT-solving by having the SMT-solver select decision literals [KS08] in the order
of execution of the program encoded into the formula; in contrast, general bounded model
checking by SMT-solving will assert predicates in an arbitrary order, which may be preferrable
in some cases (e.g. if x ≤ 0 is asserted early in the program and x + y ≥ 0 very late, after
multiple if-then-elses, it is useful to be able to derive y ≥ 0 immediately without having to wait
until the end of each path). Yet, an SMT-solver based on DPLL(T) does not learn lemmas
constructed from new predicates, while the approach in [CJ11] learns new predicates on-the-
fly from Craig interpolants. In our approach, we help the SMT-solver by preventively feeding
“candidate lemmas”, which, if used in a proof that there is no path longer than a certain bound,
act as Craig interpolants, as explained in subsection 6.5.4. Our approach therefore leverages
both out-of-order predicate selection and interpolation, and, as a consequence, it seems to scale
better. For example, the specialized nsichneu benchmark, designed “to test the scalability of
an analyzer”, is fully handled only by our approach when using a source-based timing metric.

Two recent works — [BKKZ13] and its follow-up [KKZ13] — integrate the WCET path
analysis into a counterexample guided abstraction refinement loop. As such, the IPET approach
using ILP is refined by extracting a witness path for the maximal time, and testing its feasibility
by SMT-solving; if the path is infeasible, an additional ILP constraint is generated, to exclude
the spurious path. Because this ILP constraint relates all the conditionals corresponding to the
spurious witness path, excluding infeasible paths in this way exhibits an exponential behavior
we strove to avoid. Moreover, our approach is more flexible with respect to (1) the class of
properties which can be expressed, as it is not limited by the ILP semantics and (2) the ability
to incorporate non-functional semantics (which is unclear whether [BKKZ13] or [KKZ13] can).

[Met04] proposed an approach where the program control flow is encoded into a model along
with either the concrete semantics of a simple model of instruction cache, or an abstraction
thereof. The WCET bound is obtained by binary search, with each test performed using the
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VIS model-checker6. [HS09] proposed a similar approach with the model-checker UPPAAL.7 In
both cases, the functional semantics are however not encoded, save for loop bounds: branches
are chosen nondeterministically, and thus the analysis may consider infeasible paths. [DOT+10]
encode into UPPAAL precise models of a pipeline, instruction cache and data cache, but again
the program is modeled as “data insensitive”, meaning that infeasible paths are not discarded
except when exceeding a loop bound.

[Hol08] considers a loop (though the same approach can also be applied to loop-free code):
the loop is sliced, keeping only instructions and variables that affect control flow, and a global
“timing” counter T is added; the input-output relation of the loop body is obtained as a
formula in linear integer arithmetic (Presburger arithmetic); some form of acceleration is used
to establish a relation between T , some induction variables and some inputs to the program.
Applied to loop-free programs, this method should give exactly the same result as our approach.
Its main weakness is that representations of Presburger sets are notoriously expensive, whereas
SMT scales up (the examples given in the cited article seem very small, taking only a few lines
and at most 1500 clock cycles for the entire loop execution); also, the restriction to Presburger
arithmetic may exclude many programs, though one can model constructs outside of Presburger
arithmetic by nondeterministic choices. Its strong point is the ability to precisely deal with
loops, including those where the iteration count affects which program fragments are active.

A recent approach to program verification is to express the semantics of programs into Horn
clauses over unknown predicates, which represent the inductive invariants sought [BMR13].
These clauses naturally express groupings of program instructions. Algorithms for solving such
Horn clauses are typically based on Craig interpolation, which generates new predicates; we saw
in section 6.4 that the absence of generation of new predicates in DPLL(T ) SMT-solvers is the
reason why diamond formulas cause exponential cost. We experimented with the “unstable”
version of the Z3 SMT-solver, which can solve Horn clauses, on encodings of the diamond
WCET problems from section 6.4:

• a “flat” encoding, which directly translates the sequence of 2n if-then-else statements
• a “grouped” encoding, which first groups into a single predicate the blocks “A” and “B”

associated with bi, for all i.

The “flat” encoding, again, yields solving times in ∼ 2n. The “grouped” encoding yields
instantaneous answers. This confirms our intuition that groups of associated statements should
be abstracted as a unit, be it using interpolants as in Z3 or using precomputed bounds as in our
approach. Unfortunately we have not had the time to attempt encoding large programs into
Horn clauses so as to check whether the good performance on toy diamond examples translates
to good performance on larger programs. We however do not see how the possibility that we
have of keeping bounds of non-contiguous portions of code would easily translate into Horn
clauses.

6.8 From our Modular Static Analysis to WCET Computation

Our approach for computing WCET using SMT has a tight relation with our modular static
analysis described in chapter 5. In this section, we explain the relation between the input/out-
put relations derived by our modular static analysis and the cuts derived in the particular case
of WCET computation.

6http://vlsi.colorado.edu/~vis/
7http://www.uppaal.org/
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The computation of cuts mainly depends on the choice of portions of the control flow
graph. We detailed two criteria for choosing the portions, one of them coming from the control
structure. The cuts derived from these portions are actually input/output relations involving
the variable expressing the cost with the counter encoding. Since the control flow graph has
no cycle, the input/output relation can be simply and precisely computed with our modular
path focusing detailed in section 5.3, only considering the cost variable as input and output
variable for the block.

Then, our WCET approach using SMT can be seen as an instance of our modular static
analysis with particular choices of program blocks and input/output variables. This tight
relation brings several insights, that we would like to investigate in future work:

Deriving Stronger Cuts

In our approach, with the counter encoding, the cuts only involve the variable expressing the
cost. This restriction may sometimes be a problem and better cuts may be derived from
input/output relations involving all the live variables at the entry/exit points of the portions.
Such relations can be computed by our modular static analysis framework from chapter 5: one
should instrument the analyzed program with a variable cost which is incremented in each
block by a given cost, as in the counter encoding. In the case of loop-free program portions,
widenings are not required, and an upper bound for the cost variable can always be found.
While our current cuts only bound the portion cost with a constant value, the one obtained by
this new approach would depend in general on the input and output variables of the program.
In other words, instead of deriving cuts of the form costo− costi < C, where costi (resp. costo)
refers to the cost variable in the entry (resp. exit) point of the portion, we will get cuts of the
form C(costi, Xi) ⇒ R(costi, costo, Xi/o), where Xi are the other input variables and X i/o are
both the input and output variables.

These more precise cuts would perform much better in the case where the cost of the portion
highly depends on some other program variables, e.g. if the local WCET of the portion is 5 if
x > 0, and 50 otherwise.

However, if we use the modular path focusing with the settings of section 5.3, we loose
the dichotomy strategy for optimizing the cost variable, which is important for preventing the
enumeration of an exponential number of path. This issue can be solved by searching path far

from the current candidate invariant as we explained in page 70.

Programs with Loops

It is possible to compute a precise upper bound of the WCET in the case of program with
loops using the counter encoding. It is also possible with the sum encoding, by replacing
the Boolean variables, used in the loop-free case for tracking which block was traversed, into
integer variables, that track how many time each block is traversed. Then, one can again use
our modular static analysis over the resulting program and obtain in the end a relation involving
the cost variable. The loop can then be abstracted by the obtained relation and one finally
obtains a loop-free control-flow graph. However, it is not guaranteed that an upper bound for
the cost variable will be found, because of the overapproximation during the analysis, especially
widenings. Future work include implementation and experiments with this approach.
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6.9 Extensions and Future Work

The “counter encoding” is best suited for code portions that have a single entry and exit point
(in which case they express the timing difference between entry and exit). In contrast, the
“sum encoding” may be applied to arbitrary subsets of the code, which do not in fact need
to be connected in the control-flow graph. One may thus use other heuristic criteria, such as
usage of related variables.

A model based on worst-case execution times for every block, to be reassembled into a
global worst-case execution time, may be too simplistic: indeed, the execution time of a block
may depend on which blocks were executed beforehand, or, for finer modeling, on the value of
pointer variables (for determining cache status).

A very general and tempting idea, as suggested earlier in MDD-based model-checking
[Met04], in symbolic execution and bounded model checking by [CR13, CJ11], in combined
abstract interpretation and SAT-solving [BCR13] is to integrate in the same analysis both the
non-functional semantics (e.g. caches) and the functional semantics; in our case, we would
replace both the micro-architectural analysis (or part of it) and the path analysis by a sin-
gle pass of optimization modulo SMT. Because merely encoding the functional semantics and
a simplistic timing model already led to intractable formulas, we decided to postpone such
micro-architectural modeling until we had solved scalability issues. We intend to integrate
such non-functional aspects into the SMT problem in future work.

Detailed modeling of the cache, pipeline, etc. may be too expensive to compute beforehand
and encode into SMT. One alternative is to iteratively refine the model with respect to the
current “worst-case trace”: to each basic block one attaches an upper bound on the worst-case
execution time, and once a worst-case trace is obtained, a trace analysis is run over it to derive
stronger constraints.

We have discussed obtaining a tight upper bound on the worst-case operation time of the
program from upper bounds on the execution times of the basic blocks. If using lower bounds
on the worst-case execution times of the basic blocks, one may obtain a lower bound on the
worst-case execution time of the program. Lower bounds on the worst-case execution time can
be obtained by executing a program trace in a processor simulator. Having both is useful to
gauge the amount of over-approximation incurred. Also, by applying minimization instead of
maximization, one gets bounds on best-case execution time, which is useful for some scheduling
applications [Wil06].

On a more practical angle, our analysis is to be connected to analyses both on the high
level specification (e.g. providing invariants) and on the object code (micro-architectural timing
analysis); this poses engineering difficulties, because typical compilation framework may not
support sufficient tracing information.

Our requirement that the program should be loop-free, or at least contain loops with small
constant bounds, can be relaxed through an approach similar to that of [CJ11]: the body of a
loop can be summarized by its WCET and possibly some summary for the scalar variables of
the program, then this entire loop can be considered as a single block in an analysis of a larger
program.
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6.10 A Different and Mixed Approach for Estimating WCET

We mention here some work that is currently in progress as part of the ANR W-SEPT8 project.
Recall that in the standard approach, given worst-case timings for every basic blocks, one

computes the WCET for the entire program by maximizing a cost function in integer linear
programming (ILP), where the control flow of the program is encoded into constraints, together
with maximal iteration counts for the loops. One then obtains as a result an upper bound
on the WCET. This upper bound is semantics-insensitive, since it considers infeasible paths
when solving the ILP problem. The usual workaround is to identify some infeasible paths
either manually of with simple pre-analysis, and deduce some ILP constraints that prevent
considering these paths when optimizing the cost function.

While we proposed solutions for replacing this ILP problem by Satisfiability Modulo Theory
since the beginning of this chapter, we suggest here a way of improving the ILP approach by
code instrumentation. The principle is the following:

1. Instrument the control flow graph with one integer counter per basic block, initialize
them to zero, and increment them by one in their corresponding block.

2. Run a path-focusing based static analysis for deriving precise invariants involving the
counters.

3. The invariant obtained in the last basic block gives relations between the various coun-
ters, e.g. linear constraints when using convex polyhedra. One can easily derive ILP
constraints from these linear (in)equalities. These new constraints may express path
infeasibility and thus improve the precision of the final WCET estimation fully automat-
ically.

Example 14 (Mixed ILP + Path Focusing approach). Figure 6.12 illustrates this idea on a
motivating example, where an expensive program portion inside a loop is only visited once. This
example is a simplified version of a program given in [Par93, page 39]. If the ILP problem does
not encode the constraint counter2 ≤ 1, the obtained WCET would be highly overestimated.
This approach allows to derive good ILP constraints, in a fully automatic manner, and still use
the efficiency of SMT through path-focusing based analysis techniques.

6.11 Conclusion

We have shown that optimization using satisfiability modulo theory (SMT) is a workable
approach for bounding the worst-case execution time of loop-free programs (or programs where
loops can be unrolled). To our knowledge, this is the first time that such an approach was
successfully applied.

Our approach computes an upper bound on the WCET, which may or may not be the
actual WCET. The sources of discrepancy are

1. the micro-architectural analysis (e.g. the cache analysis does not know whether an access
is a hit or a miss),

8http://wsept.inria.fr/
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i = 0 ;

while ( i < 100) {

i f ( i == 10) {

/ / e x p e n s i v e c o m p u t a t i o n

}

i ++;

}

/ / in s t rum ent ed−v e r s i o n

i = 0 ;

while ( i < 100) {

counter1 ++;

i f ( i == 10) {

counter2 ++;

/ / e x p e n s i v e c o m p u t a t i o n

}

i ++;

}

/ / i n v a r i a n t : i = counter1 = 100 ∧ 0 ≤ counter2 ≤ 1

Figure 6.12: A simple example, and its instrumented version with two counters counter1 and
counter2. The invariant in comments is the one obtained with our tool Pagai with guided
path analysis from subsection 4.2.3.

2. the composition of WCET for basic blocks into WCET for the program, which may lose
dependencies on execution history9,

3. the encoding of the program into SMT, which may be imprecise (e.g. unsupported
constructs replaced by nondeterministic choices).

We showed that straightforward encodings of WCET problems into SMT yield problems
intractable by all current production-grade SMT-solvers (“diamond formulas”), and how to
work around this issue using a clever encoding. We believe this approach can be generalized to
other properties, and lead to fruitful interaction between modular abstraction and SMT-solving.

While our redundant encoding brings staggering improvements in analysis time, allowing
formerly intractable problems to be solved under one minute, the improvements in the WCET
upper bound brought by the elimination of infeasible paths depend on the structure of the
program being analyzed. The improvement on the WCET bound of some industrial examples
(23%, 55%. . . ) is impressive, in a field where improvements are often of a few percents. This
means that, at least for certain classes of programs, it is necessary to take the issue of infeasible
paths into account. At present, certain industries avoid using formal verification for WCET
because it has a reputation for giving overly pessimistic over-estimates; it seems likely that
some of this over-estimation arises from infeasible paths.

Our approach to improving bounds on WCET blends well with other WCET analyses.
It can be coupled with an existing micro-architectural analysis, or part of that analysis may
be integrated into our approach. It can be combined with precise, yet less scalable analyzes
[KKZ13, Hol08] to summarize inner loops; but may itself be used as a way to summarize the
WCET of portion of a larger program.

9This does not apply to some simple micro-controller architectures, without cache or pipeline states, e.g.

Atmel AVR™ and Freescale™ HCS12.
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Chapter 7

The PAGAI Static Analyser

Many of the static analysis techniques developed throughout this thesis have been implemented
in a new prototype of static analyser called Pagai [HMM12a]. This tool aims at comparing
various state-of-the-art techniques based on abstract interpretation in terms of precision and
scalability. Indeed, many methods in static analysis have an exponential cost in the worst-case,
but behave better in practice on most benchmarks. In addition, since the widening operator is
non monotonic, a “smart” technique which is supposed to give precise results may finally give
a less-precise invariant due to some widenings. For these two reasons, experimenting with the
various techniques with a robust implementation is required.

However, it is difficult to compare the precision of two different tools, since their input
language may be different, as well as the hypothesis and the overapproximations of diverse kinds
they perform. Pagai provides implementation of several techniques sharing the maximum of
code, so that the comparisons between the different approaches are fully relevant. It can take
as input large industrial source code and has already been used by other research teams for
experimenting with new techniques [AS13]. Front-ends for many analysis tools put restrictions
(e.g. no backward goto instructions, no pointer arithmetic...), often satisfied by safety-critical
embedded programs, but not by generic programs; our tool suffers no such restrictions, though
it may in some cases apply coarse abstractions which may possibly yield weak invariants.

The tool is implemented using the C++ language and has a tight integration within the
LLVM compiler framework [LA04]. It is able to analyse program expressed as LLVM In-
termediate Representation language1, that can be obtained from C, C++, Objective-C and
Objective-C++ code using the frontend clang2, as well as other languages supported by the
GCC compiler frontends through the DragonEgg3 GCC plugin, for instance Ada or Fortran.

At present, Pagai checks user-specified safety properties provided through assertions us-
ing the standard C/C++ assert(condition) macro, as well as various undefined behaviors
(overflows in arithmetic operations and array out-of-bound accesses). The tool will attempt
proving that the assertion failure or an undefined behavior is unreachable and, if unsuccessful,
provides a warning message. Pagai does not at present include bounded model checking or
path exploration techniques for reconstructing an actual failure trace, thus such a warning mes-
sage should be interpreted as a possible assertion failure. Executing traces falsifying assertions
are considered to terminate when executing the macro; thus, user-specified assertions may be
used to guide the analyzer by providing invariants that it was not able to synthesize by itself.

It also allows user-specified assumptions, through the assume(condition) macro.
Pagai allows independent selection of the abstract domain (using the APRON library

[JM09]) and the iteration strategy. For the strategies that require checking the satisfiability

1http://llvm.org/docs/LangRef.html
2http://clang.llvm.org
3http://dragonegg.llvm.org
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of SMT formulas, Pagai can interact with Microsoft Z34 [dMB08] and Yices5 [DdM06] using
their standard C/C++ API, as well as any interactive SMT solver understanding the SMTlib-2
standard [BST10a, BST10b], such as MathSat6 [CGSS13], CVC37 [BT07] or CVC48 [BCD+11],
through a pipe interface.

7.1 Examples of Usage

We briefly illustrate Pagai on a very simple example:

i n t main ( ) {

i n t x =1; i n t y =1;

while ( input ( ) ) {

i n t t 1 = x ;

i n t t 2 = y ;

x = t1 + t2 ;

y = t1 + t2 ;

}

a s s e r t ( y >= 1) ;

return 0 ;

}

7.1.1 Command-Line Output

Pagai takes as input a C file or LLVM IR (.bc) and outputs an annotated version of the initial
C file. These annotations provide to the user the inferred invariants (in purple), as well as
alarms (in red) and proved properties (in green). Note that alarms are either true of false
positives.

In Figure 7.1, the addition in x = t1 + t2 may give an integer overflow. Indeed, in the
case the input() never returns 0, x and y will be incremented by a strictly positive integer at
each loop iteration. After a certain number of iterations, t1 + t2 will be strictly greater than
the maximal element of type int in the C language, in general 231 − 1. Pagai then raises an
alarm, and continues the analysis, considering it does not overflow. The second assignment
y = t1 + t2 is thus safe under the assumption that the previous addition did not overflow.

7.1.2 LLVM IR Instrumentation

Pagai invariants are inserted into the LLVM bitcode so that they can be used by external
tools. The simplest way of adding information into an LLVM bitcode file is to use metadata.
Metadata can be understood as a tree, where the leaf nodes contain information (a string, an
integer, etc.). In the textual format of the bitcode, each subtree is labeled with an exclamation
point followed by an identifier, e.g. !24, !dbg, etc. This subtree is defined in the end of the
bitcode by its list of childrens, e.g. !23 = metadata !{metadata !24, metadata !25} is metadata that
combines the subtree !24 and !25.

Pagai uses this infrastructure to add the invariants in the LLVM IR. An example of Pagai

LLVM output is given in Figure 7.2. Typically, loop headers basic blocks are assigned metadata

4http://z3.codeplex.com
5http://yices.csl.sri.com
6http://mathsat.fbk.eu
7http://www.cs.nyu.edu/acsys/cvc3
8http://cvc4.cs.nyu.edu
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Figure 7.1: Screenshot of the Pagai command-line output.

!pagai.invariant (see metadata !23), composed of a tuple of dimensions — here, !24, i.e. (“x”,“y”)
—, followed by the list of constraints. For instance, !26 is an equality constraint, and says that
0 +−1 ∗ x + 1 ∗ y = 0. !28 is the inequality constraint 2147483647 +−1 ∗ x + 0 ∗ y ≥ 0.

LLVM does not allow instructions variables in metadata, one thus need to use string meta-
data (for instance !20 for variable y), and link them to its corresponding LLVM instruction
through the !pagai.var metadata attached to its definition.

7.2 Infrastructure and Implementation

In this section, we detail some important implementation and design choices of Pagai. Fig-
ure 7.3 gives an overview of the architecture and the external dependencies.

Static Analysis Techniques as LLVM Passes

The APRON library provides an implementation for several numerical abstract domains: in-
tervals, octagons, convex polyhedra, etc. All of these abstract domains can be used through
the AbstractClassic class (see Figure 7.4). Now, some of the analysis techniques require more
evolved abstract domains, in particular the analysis with disjunctive invariants and the Looka-
head Widening from [GR06]. Then, the AbstractDisj class manipulates lists of Abstract, and
AbstractGopan class manipulates pairs of AbstractClassic.

The various analysis techniques are implemented as LLVM passes. These passes share
the maximum amount of code inside an abstract class AIPass (see Figure 7.4). We briefly
enumerate the implemented analysis:

• AISimple implements standard abstract interpretation, i.e. the usual chaotic itera-
tion strategy detailed in subsection 2.1.5. This implementation can be used either with
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. . .

while . cond :

%y . 0 = phi i 3 2 [ 1 , %entry ] , [ %4, %cont2 ] , ! pagai . var ! 2 0

%x . 0 = phi i 3 2 [ 1 , %entry ] , [ %0, %cont2 ] , ! pagai . var ! 2 1

%c a l l = c a l l . . . @input . . . , ! dbg ! 2 2 , ! pagai . i n v a r i a n t ! 2 3

%tobool = icmp ne i 3 2 %c a l l , 0 , ! dbg ! 2 2

br i 1 %tobool , l a b e l %while . body , l a b e l %while . end , ! dbg ! 2 2

. . .

! 2 0 = metadata ! { metadata ! " y " }

! 2 1 = metadata ! { metadata ! " x " }

. . .

! 2 3 = metadata ! { metadata ! 2 4 , metadata ! 2 5 }

! 2 4 = metadata ! { metadata ! 2 1 , metadata ! 2 0 }

! 2 5 = metadata ! { metadata ! 2 6 , metadata ! 2 8 , metadata ! 3 0 }

! 2 6 = metadata ! { metadata ! 2 7 , metadata ! "==" , metadata ! " 0 " }

! 2 7 = metadata ! { metadata ! " 0 " , metadata ! "−1" , metadata ! " 1 " }

! 2 8 = metadata ! { metadata ! 2 9 , metadata ! ">=" , metadata ! " 0 " }

! 2 9 = metadata ! { metadata ! " 2147483647 " , metadata ! "−1" , metadata ! " 0 " }

! 3 0 = metadata ! { metadata ! 3 1 , metadata ! ">=" , metadata ! " 0 " }

! 3 1 = metadata ! { metadata ! "−1" , metadata ! " 1 " , metadata ! " 0 " }

. . .

Figure 7.2: Example of Pagai invariant inserted in LLVM IR as metadata.

Fixpoint solver

Program IR

Abstract DomainSMTZ3

Yices

SMTlib2 solver

APRON libraryCUDD library

LLVM API

Pagai

Figure 7.3: Infrastructure

standard abstract domains (AIClassic) or in the Lookahead Widening [GR06] settings
(AIGopan).

• AIguided implements the Guided Static Analysis iteration strategy [GR07].
• AIopt implements our Guided Path Analysis technique from subsection 4.2.3.
• AIpf implements Path Focusing from subsection 3.3.2.
• AIdis implements our extension to Path Focusing techique with disjunctive invariants,

described in section 4.3.
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• AIopt_incr (resp. AIpf_incr) executes first AIClassic. Then it runs AIopt (resp.
AIpf) by intersecting each abstract value with the invariant discovered by the first tech-
nique. It also encodes these invariants in the SMT formula (In some cases, it helps the
SMT solver to decide satisfiability faster).

1

*

Abstract

AbstractDisj

AbstractClassic

AbstractGopan

AIPass

AISimple

AIguided

AIopt

AIpf

AIdis

AIopt_incr

AIpf_incr

Figure 7.4: Class hierarchy of the Analysis Passes and the Abstract values

7.2.1 Static Analysis on SSA Form

LLVM bitcode is in static single assignment (SSA) form: a given scalar variable is given a value
at a single syntactic point in the program. In concrete terms, an assignment x=2∗x+1; gets
translated into a definition x2 = 2x1 + 1, with distinct variables x1 and x2 corresponding to
the same original variable x at different points in the program. One may see conversion to SSA
form as a static pre-computation of some of the symbolic propagations proposed by [Min06] to
enhance the precision of analyses.

A static analysis on an SSA form control flow graph has to gracefully handle a larger number
of different variables compared to a non-SSA form. A simple implementation of abstract
interpretation would track every variables at each program point, and thus every abstract
values share exactly the same dimensions. In this section, we detail how Pagai considers only
some subsets of the variables during the analysis, while still being able to derive fully precise
invariants involving every SSA variable.

SSA introduces φ-functions at the header of a basic block to define variables whose value
depends on which incoming edge was last taken to reach this block. For instance, for
if (...) { x = 2∗x+1; } else { x= 0; }, then x2 is defined as φ(2x1 + 1, 0).

In this framework, each arithmetic operation (+, −, ×, /) defines a variable; its operands
themselves may not be representable as arithmetic functions, either because they are defined
using φ-functions, loads from memory, return values from function calls, or other numerical
operations (e.g. bitwise operators) that are not representable with our class of basic arithmetic
operations. We may vary the class of arithmetic operations, for instance, by restricting ourselves
to linear ones.
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Dimensions of the Abstract Values

The SSA form motivates a key implementation decision of our tool: only those variables
v1, . . . , vn that are not defined by arithmetic operations are retained as coordinates in the
abstract domain (e.g. as dimensions in polyhedra), assuming they are live at the associated
control point.

For instance, assume that x, y, z are numerical variables of a program, x is defined as
x = y + z, and x, y, z are live at point p. Instead of having x as a dimension for the abstract
value at point p, we only have y and z. All the properties for x can be directly extracted from
the abstract value attached to p and the relation x = y +z. This is an optimization in the sense
that there is redundant information in the abstract value if both x, y and z are dimensions of
the abstract value. Now, suppose that x = y + z but only x and z are live at p. Then, we
have to keep track of y and z in the abstract value, so that we can still derive a fully precise
invariant for x.

The classical definition of liveness can be adapted to our case:

Definition 27 (Liveness by linearity). A variable v is live by linearity at a control point p if
and only if one of these conditions holds:

• v is live in p.

• There is a variable v′, defined as a linear combination of other variables v1, v2, . . . , vn, so
that ∃i ∈ {1, . . . , n}, v = vi, and v′ is live by linearity in p.

Finally, a variable is a dimension in the abstract domain if and only if it is live by linearity
and it is not defined as a linear combination of program variables. In other words, any live
variable is either directly a dimension of the abstract value, or is defined as a linear combination
of variables in dimension. In addition, this linear combination can be syntactically derived from
the instructions definition, and thus can be recovered immediately after the fixpoint has been
reached. If one uses the abstract domain of polyhedra or linear equalities, these definitions
are already elements of the abstract domain and can simply be intersected with the obtained
invariant.

Having few variables as dimensions of an abstract value has two benefits:

• Abstract domain libraries often perform worse with higher dimensions for some abstract
domains like polyhedra; The extra dimensions we avoid express linear equalities between
variables, which should therefore cost little assuming some sparse representation of the
constraints. However, several libraries, including APRON, compute with dense vectors
and matrices, which means that any increase in dimensions slows computations.

• In practice, certain widening operators have worse precision when the number of dimen-
sions is large[MG12]:

Example 15. We illustrate this last point with the small example from Figure 7.5 and
the abstract domain of convex polyhedra, for which an analysis gives worse precision on
the two variables x and y in the presence of a third variable c: If we run the analysis
while ignoring the variable c (or if we comment line 8), Pagai yields at the loop header
the invariant y ≤ x + 1 ∧ x ≥ 0 ∧ x ≤ y. Now, if c is also considered as dimension of the
abstract value at the loop header, and finally project the obtained invariant onto x and
y, the obtained invariant is y ≤ x + 1 ∧ x ≤ y. Taking into account the c variable then
degraded the precision of the invariant because of the widening.
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1 void f ( ) {

2 i n t x = 0 ;

3 i n t y = 0 ;

4 i n t c = 0 ;

5 while ( x <= y ) {

6 i f ( x < y ) {

7 x +=2;

8 c+=x ;

9 }

10 y++;

11 }

12 }

Figure 7.5

Abstract Values & Abstract Forward Transformers

Pagai computes abstract values for the control-flow graph of the LLVM IR, i.e. a graph of basic
blocks. Each basic block is a sequence of LLVM instructions. This sequence of instructions
starts with Φ-instructions (possibly none), followed by only non-Φ instructions (see Figure 7.6).
The fixpoint iterations in abstract interpretation basically compute images of the abstract
values by the abstract forward transformers associated to the graph transitions (or paths in
the case of path-focusing techniques). In our case, there is no need to assign a different abstract
value after each instruction; it is sufficient to use one single abstract value per basic block. For
the SMT-based techniques that are described in the previous chapters of the thesis, we assign
an abstract value only at a subset of the basic blocks (e.g. loop headers).

Parallel assignments We choose to assign to each basic block one single abstract value
which is an invariant just after the Φ-instructions assignments (see Figure 7.6). This choice
is somehow intuitive, since the Φ instructions are not real instructions but only assign the
appropriate value depending on the incoming block — thus, it can be seen as a store operation
in the end of the incoming block —. It follows that we define abstract forward transformers
that approximate the semantics of the sequence of non-Φ instructions at once.

A basic block therefore amounts to a parallel assignment operation between live-by-linearity
variables (v1, . . . , vn) �→ (f1(v1, . . . , vn), . . . , fk(v1, . . . , vn)); such operations are directly sup-
ported by the APRON library. As suggested by [Min06], this approach is more precise than
running abstract operations for each program line separately: for instance, for y=x; z=x−y;
with precondition x ∈ [0, 1], a line-by-line interval analysis obtains y ∈ [0, 1] and z ∈ [−1, 1]
while our “en bloc” analysis symbolically simplifies z = x− x = 0 and thus z ∈ [0, 0].

Abstract Transformer Due to the SSA form, the dimensions of the abstract values between
two basic blocks are (very) different. Then, computing the image of an abstract value over the
variables in X should result in a new abstract value over different variables, that we note X ′.
Moreover, some intermediate instructions may use temporary variables that are not dimensions
in the starting block nor in the successor block. We note this set of variables T .

In the case of a basic block which is a loop header, its Φ-variables will be both in X and
X ′ — this is the case for the induction variables. One should distinguish between the values
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bb :

%x = phi i 3 2 [%x0 ,%pred0 ] , [%x1 ,%pred1 ] , [%x2 ,%pred2 ]

%y = phi i 3 2 [%y0,%pred0 ] , [%y1,%pred1 ] , [%y2,%pred2 ]

< i n s t r u c t i o n s b b >

. . .

pred1 :

< i n s t r u c t i o n s 1 >

br l a b e l %bb

pred0 :

< i n s t r u c t i o n s 0 >

br l a b e l %bb

pred2 :

< i n s t r u c t i o n s 2 >

br l a b e l %bb

abstract value

(a) A basic block containing two Φ-instructions

bb

pred1pred0 pred2

<instructions0>
%x = %x0
%y = %y0

<instructions1>
%x = %x1
%y = %y1 <instructions2>

%x = %x2
%y = %y2

<instructionsbb>
abstract value

(b) Equivalent CFG fragment, where instructions are moved to edges. Φ-instructions are
replaced by simple assignments in the incoming edges.

Figure 7.6: Semantics of Φ-instructions in LLVM, that motivates our choice for positionning
abstract values.

of these Φ-variables in the previous and the next loop iteration. Since these Φ-assignments are
the last instructions executed in the transition (or path), every other instructions will refer to
their old values.

Finally, the resulting abstract image is computed from the starting abstract value A in
several steps:

1. Change the dimensions of A(X) to A(X ∪ T ∪ X ′). The variables in T ∪ X ′ are then
unconstrained.

2. Assign variables in T ∪ X ′ according to the instructions in the path. The Φ-variables of
the destination basic block of the path (or transition) are temporarily not assigned their
new value, since one still has to intersect with the guards.

3. Intersect with the set of guards the path goes through. These guards are constraints over
the variables in X ∪ T ∪X ′.

4. Assign the new values to the Φ-variables of the successor block.
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5. Project the resulting abstract value (over X ∪ T ∪X ′) onto X ′ only.

For the techniques that make use of SMT to succinctly represent sets of paths, the parallel
assignments are much larger — we assign every variables defined by instructions in the path
at once — and thus are even more precise and efficient, as well as the intersection with the
guards, which only requires one single call to the meet operation in the abstract domain.

7.2.2 Analysis and Transform Passes

Pagai uses (and sometimes implements) several analysis and transform passes required by the
invariant computation passes. Here, we simply mention a few of them.

Mem2Reg Our analysis currently only operates over the scalar variables of the LLVM IR
and thus cannot directly cope with arrays or memory accessed through pointers. We therefore
run it after the “memory to registers” (-mem2reg) optimization pass, provided by LLVM,
which lifts most memory accesses to scalar variables. The remaining memory reads (i.e. load

instructions) are treated as nondeterministic choices, and writes (i.e. store instructions) are
ignored. This is a sound abstraction if memory safety is assumed; in other words, the program
under analysis should respect the C99[ISO99] standard for type aliasing: two elements of
different type may never alias. The mem2reg optimization pass also assumes memory safety,
as well as, possibly, the absence of other undefined behaviors as defined by the C standard.
This is the price of using the front-end from a generic compiler: C compilers have the right
to assume that undefined behaviors do not occur, including in preprocessing and optimization
phases.

Moreover, the mem2reg optimization often fails to lift load and store of global variables.
For this reason, we implemented an LLVM optimization pass that is run before mem2reg,
called -globaltolocal: it transforms global variables into local variables through the LLVM
alloca instruction, in case these global variables are marked as internal. This transformation
is correct only if the LLVM IR contains one single function definition, which is the function to
analyze. Consequently, this transformation is applied only if the last assumption holds.

Liveness by linearity Before the invariant computation passes, one needs to compute the
dimensions of the abstract values at each basic block. We implemented a pass that computes
this set of live-by-linearity variables as a fixpoint, in a similar way it is standardly done for
computing live variables.

Overflow intrinsics LLVM includes intrinsic functions — i.e. a special function whose name
is detected by the code generator for a special treatment — for checking whether an arithmetic
operation overflows. These functions allows to return both the result of the arithmetic opera-
tion, together with a Boolean that indicates if the overflow happens. This is useful for generat-
ing code that cleanly aborts when an overflow occurs during execution. These intrinsic functions
are enabled when compiling with Clang and argument -ftrapv or -fsanitize=undefined.
We implemented an optimization pass that replaces these instrinsic functions with a standard
arithmetic operation, followed by tests for checking whether the resulting value has overflown.
Basically, if the result is a N -bit integer, we check whether it is greater than 2N−1 − 1 or less
than −2N−1. These tests would always evaluate to false when executing the code, but not in
the analysis, where the integer variables are considered as integers in Z.
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Example 16. This example illustrates our program transformation in the case of a
@llvm.sadd.with.overflow.i32 intrinsic function. The initial basic block that contains the intrin-
sics is the following:

%c a l l = c a l l i 3 2 b i t c a s t ( i 3 2 ( . . . ) * @input to i 3 2 ( ) * ) ( )

%0 = c a l l { i32 , i 1 } @llvm . sadd . with . overflow . i 3 2 ( i 3 2 %c a l l , i 3 2 42)

%1 = e x t r a c t v a l u e { i32 , i 1 } %0, 0

%2 = e x t r a c t v a l u e { i32 , i 1 } %0, 1

%3 = xor i 1 %2, t rue

br i 1 %3, l a b e l %cont , l a b e l %handler . add_overflow

The intrinsics return both the result of the operation in register %1, as well as a Boolean
flag in %2 which evaluates to true if it overflowed. In the later case, we branch to a special
trap handler basic block. Our LLVM pass transforms this basic block into:

%c a l l = c a l l i 3 2 b i t c a s t ( i 3 2 ( . . . ) * @input to i 3 2 ( ) * ) ( )

%0 = add i 3 2 %c a l l , 42

%1 = icmp sgt i 3 2 %0, 2147483647

%2 = icmp s l t i 3 2 %0, −2147483648

%3 = or i 1 %1, %2

br i 1 %3, l a b e l %handler . add_overflow , l a b e l %cont

Expansion of (dis)equality tests It is well known in abstract interpretation based tech-
niques that guards of the form (x != y) induce imprecision since they represent non-convex
sets, while usual abstract domains such as intervals or polyhedra can only represent convex sets.
For this reason, standard abstract interpretation with widening fails to find a precise invariant
for simple programs like function F in Figure 7.7. Even though this particular example can
be managed by existing workarounds, e.g. widening with threshold, some other are not: for
instance, function G in Figure 7.7 is not handled precisely by existing approaches, and requires
a path-sensitive analysis catching the 3 cases (x = 0), (x > 0 ∧ x < 1000), and (x = 1000). In
particular, for the path-sensitive analysis to be precise, the path where the second case hold
should be different from the path where x < 0 ∨ x > 1000, which is not the case in the given
program.

void F ( ) {

i n t i = 0 ;

while ( i != N) {

i ++;

}

}

void G( ) {

i n t x = 0 ;

i n t d = 1 ;

while ( 1 ) {

i f ( x == 0) d=1;

i f ( x == 1000) d=−1;

x +=d ;

}

}

Figure 7.7: Examples of code with = and �= guards.

In Pagai, we implemented a new LLVM optimization pass, -expandequalities (see Fig-
ure 7.8), which is run previous to our analysis. It inserts new control flow so that the paths
for the three cases x < y, x = y and x > y are different. These three cases have convex
guards, thus are precisely managed by our abstract domains. Even though this transform pass
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complicates the LLVM IR, it only introduces a couple of Booleans in our SMT encoding, and
therefore does not compromise the efficiency of the static analysis. Note that we could have
done another more natural transformation, by removing the (dis)equality test and replacing
it with a cascade of if-then-else with < and > guards; however, this transformation would
duplicate the �= branch and would not give better results.

i f ( x ⊲⊳ y ) {

/ / THEN branch

} e ls e {

/ / ELSE branch

}

−→

i f ( x < y ) { }

i f ( x > y ) { }

i f ( x ⊲⊳ y ) {

/ / THEN branch

} e ls e {

/ / ELSE branch

}

Figure 7.8: Our code transformation, illustrated at the C level, where ⊲⊳∈ {==, !=}

7.2.3 LLVM for Static Analysis

LLVM provides many facilities for writing a static analyzer. However, the LLVM internal
representation sometimes lacks information useful for static analysis, since its principal target
is code generation. We mention here some issues due to the use of LLVM, that compromise
the soundness or precision of Pagai.

Types

In LLVM, some type information for the variables is lost. A signed int and an unsigned variable
at the C level would have the same type i32 in the LLVM IR. Signedness is a property of
operators, rather than types, which means that one would have to look at the instructions
that are using a particular variable as operand to guess its “signedness”. For instance, the
presence of an instruction <result> = add nuw <ty> <op1>, <op2>, which contains the nuw
flag (meaning no unsigned wrap), somehow give an indication that <op1> and <op2> are
used as unsigned values. Pagai does not use this information since its reliability is limited.
Consequently, Pagai does not know by default that an unsigned variable is always positive,
and thus leads to imprecision.

An alternative would be to use debugging information, which contains the C types for the
C variables, and use it in the analysis. This technique is however not satisfactory since the
analyzed code does not always contain such debug information.

Undefined Behaviors

The C99 standard[ISO99] defines undefined behavior as follows:

“Possible undefined behavior ranges from ignoring the situation completely with unpredictable

results, to behaving during translation or program execution in a documented manner [...]”

In particular, the use of uninitialized variables in C has undefined behavior, and LLVM has
a specific class for uninitialized variables called UndefValue. Pagai considers these undefined
values as nondeterministic choices, which is not fully correct: an instruction undef + 1 would
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not necessarily return the value incremented by one, but may also “crash or generate incorrect

results” as described by the standard.
The second related problem is that the Clang front-end, used prior to our analysis passes,

may provide an internal representation free of undefined behaviors, even though the initial
C code had some, provided the front-end has performed its own choices to deal with them.
Compiling into LLVM IR with an option like -Wall would help to detect these undefined
behaviors.

From LLVM Invariants to C Invariants

Pagai computes invariants at the LLVM IR level. Consequently, these invariants involve LLVM
values, which have no direct mapping to actual variables at the C level. It is not straightforward
to map Pagai invariants from the LLVM level to the C level. We found it interesting to explain
in this thesis the procedure to do it in a correct way.

When compiling a C program into LLVM with debugging informations enabled, the ob-
tained IR contains:

• metadata that contain the names for the C variables, their type, etc.
• intrinsic instructions, called llvm.dbg.value, whose semantics is “From now on, the C

variable x has the value of the LLVM variable v”.

While these informations are convenient for moving information from C to LLVM and later
to assembly code (usually in DWARF format, used by debuggers like gdb for e.g. printing the
current value of the C variable ’x’), it requires more work for moving information in the other
direction, from LLVM to C.

An example of LLVM IR with debug information is given in Figure 7.9: the figure only
displays the instructions used for tracking the C variable ’x’. For instance, the instruction
llvm.dbg.value (’%3’,...,’ x’) in B0 says that ’x’ is actually equal to the LLVM value %3 at
this control point.

Suppose Pagai has computed an invariant at control point B7. This invariant is likely to
have the LLVM variable x.0 in its dimensions. For translating this invariant into in the C-level,
one should know the current value of the C variable ’x’ at control point B7. To do so, we build
the data structure depicted in Figure 7.10:

• We use a depth first search algorithm that explores the control flow graph backwards
from B7, and backtracks until an llvm.dbg.value that relates the variable ’x’ to an LLVM
value is encountered.

• If we reach a control point that has already been visited, the data structure is updated
by adding a new predecessor to the visited block (in our example from Figure 7.9, it
happens for B3 and B5). After having traversed the entire graph, the data structure is
the one depicted in Figure 7.10 Step 1.

• Then, the datastructure is simplified using two rules:

1. Φ-merging: if a block has several successors in the data structure (the successors
in the data structure are actually predecessors in the CFG), each of them with
a different assignment, and the block contains a Φ-instructions whose definition
perfectly matches the different cases, replace the successors by a direct assignment
to the Φ-instruction. Figure 7.10 Step 2 illustrates this simplification for block B3.
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2. simplify: If a block B1 dominates another block B2 in the data structure, and every
path from B1 goes to B2, replace everything in between by a direct link. Figure 7.10
Step 3 and Figure 7.10 Step 4 apply this simplification twice.

These rules are applied successively until the data structure has one single element, and
its corresponding assignment. The assignment is the correct LLVM value that equals the
C variable at this position. Such computation should be done for any C variable the user
wants to track.

Note that Pagai computes invariants that only involve live-by-linearity variables. Then,
it may happen that at a particular point where an invariant has been computed, the LLVM
value that actually equals some C variable is not a dimension of the abstract value — e.g. if
B5 contains llvm.dbg.value(’%v ’,...,’ x’) where %v = x.0 + 1, the abstract value in B7 will
contain x.0 but not %v —. This is not a problem since it is sufficient to intersect the abstract
value with the constraint %v = x.0 + 1, and project the variable x.0, for having an invariant
for the C variable ’x’.

In the current implementation, this “back-to-source” transformation does not use the algo-
rithm we detailed here, and is based on the syntactic name of the LLVM Φ-values and their
possible assignments compared to the llvm.dbg.value. Consequently, it sometimes happen that
the C output of Pagai gives incorrect results, even though the LLVM output is correct.

B0 :

. . .

llvm . dbg . value ( ’ % 3 ’ , . . . , ’ x ’ )

. . .

B1 :

. . .

llvm . dbg . value ( ’ 0 ’ , . . . , ’ x ’ )

. . .

B2 :

. . .

B3 :

x . 0 = phi [ B1 , 0 ] [ B0 ,%3]

. . .

B4 :

. . .

B5 :

. . .

B6 :

. . .

B7 :

−> display i n v a r i a n t here

. . .

Figure 7.9
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Step 1: initial B7 B6 B5 B4 B3

B2

B1 B0 [’x’ = %3]

[’x’ = 0]

Step 2: Φ-merging
B7 B6 B5 B4 B3 [’x’ = x.0]

Step 3: simplify
B7 B6 B5 [’x’ = x.0]

Step 4 : simplify B7 [’x’ = x.0]

Figure 7.10

7.2.4 From LLVM Bitcode to SMT Formula

We briefly detail our encoding of LLVM instructions into SMT formulas in QF_LIRA. Integer
values (e.g. i32, i64) or characters (i8) are considered to be mathematical integers in Z and
floating points (e.g. double, float ) are encoded using real numbers. As a consequence, our
encoding is not sound. Future work includes using the theory of bitvectors for encoding integers.
However, since many arithmetic operations over integers are followed by overflow checks, as
explained in subsection 7.2.2, Pagai can still detect possible overflows, and the checks restrict
the result of the operation to the correct machine bounds. We provide in Table 7.1 our encoding
of the main LLVM instructions.

7.3 Experiments

7.3.1 Comparison of the Different Techniques

In this section, we provide an experimental evaluation of the various techniques implemented
in Pagai. We compare them in terms of precision and cost, with two sets of benchmarks:

1. benchmarks from the Malärdalen research group on WCET, available at http://www.

mrtc.mdh.se/projects/wcet/benchmarks.html. These benchmarks provide an inter-
esting panel of challenging programs, such as matrix operations, sorts, nested loops pro-
grams, programs with many paths, etc.

2. a panel of GNU programs: grep, libsuperlu, tar, libgmp, libjpeg, sed, gzip, wget and
libpng16. The purpose of these benchmarks is to give a idea of the benefits of the various
techniques on real-life programs.

We experimented with the following techniques:

• S: standard abstract interpretation from [CC77, CH78].
• C: the combination of Path Focusing and Guided Static Analysis, also called Guided

Path Analysis, and described in subsection 4.2.3.
• PF: Path Focusing
• IN: Incremental Path Focusing: first run S, followed by PF, intersecting each result from

S during PF.
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LLVM Instruction SMT encoding in LIRA

br i1 <cond>, label <iftrue>, label < iffalse >
(t_<bb>_<iftrue> = (var(<cond>) ∧ b_<bb>))

∧ (t_<bb>_< iffalse > = (¬var(<cond>) ∧ b_<bb>))
br label <dest> t_<bb>_<dest> = b_<bb>

<result> = invoke ... to label <label> unwind label <exception label>
(t_<bb>_<label> = (undet ∧ b_<bb>))

∧ (t_<bb>_<exception label> = (¬undet ∧ b_<bb>))
switch <intty> <value>, label <defaultdest> [ ... ] removed by -lowerswitch optimization pass
<result> = select i1 <cond>, <ty> <val1>, <ty> <val2> (if-then-else var(<cond>)var(<val1>)var(<val2>)

indirectbr <somety>* <address>, [ label <dest1>, ..., label <destN>]

1 ≤ index ≤ N

∧ t_<bb>_<dest1> = (index = 1)
∧ ...

∧ t_<bb>_<destN> = (index = N)
<result> = ( f )add <ty> <op1>, <op2> var(<result>) = var(<op1>) + var(<op2>)
<result> = ( f )sub <ty> <op1>, <op2> var(<result>) = var(<op1>)− var(<op2>)
<result> = ( f )mul <ty> <op1>, <op2> var(<result>) = var(<op1>) ∗ var(<op2>)
<result> = udiv <ty> <op1>, <op2> var(<result>) = var(<op1>)/var(<op2>)
<result> = sdiv <ty> <op1>, <op2> var(<result>) = var(<op1>)/var(<op2>)
<result> = fdiv <ty> <op1>, <op2> var(<result>) = var(<op1>)/var(<op2>)
<result> = shl <ty> <op1>, <op2> var(<result>) = var(<op1>) ∗ 2var(<op2>)

<result> = and i1 <op1>, <op2> var(<result>) = var(<op1>) ∧ var(<op2>)
<result> = or i1 <op1>, <op2> var(<result>) = var(<op1>) ∨ var(<op2>)
<result> = xor i1 <op1>, <op2> var(<result>) = var(<op1>) xor var(<op2>)
<result> = zext <ty> <value> to <ty2> var(<result>) = var(<value>)

<result> = icmp <cond> <ty> <op1>, <op2>
var(<result>) = var(<op1>)<ty>var(<op2>)
where <ty> ∈ {<,≤, >,≥, =}

all other instructions true (i.e. large overapproximation)
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Chapter 7 The PAGAI Static Analyser

• LW: Lookahead Widening
• G: Guided Static Analysis

Figure 7.11 and Figure 7.13 give the results for the two benchmarks sets when comparing
by pair the different techniques, instantiated with the abstract domain of convex polyhedra.

The bar charts should be understood as follows: for a pair

[

T1
T2

]

of techniques, �, in dashed

blue (resp. �, in dashed red) gives the percentage of control points where T1 gives a strictly
better (resp. worse) result than T2, in terms of inclusion. The uncomparable bar shows the
control points for which neither abstract values is included in the other.
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Figure 7.11: Comparison of the various analysis techniques over the Malärdalen benchmarks

Intuitively, the bar in blue should be high, while the bar in red should be low, since we
compare pairs T 1 and T2 with the expectation that T1 is better than T2. Experiments show
that improved techniques give much better invariants: for instance, C improves the results
over S on the Malärdalen benchmarks in 43% of the control points.

Our Guided Path Analysis algorithm (C) takes the best of Path Focusing (PF) and Guided
Static Analysis (G): it improves G in 46% and PF in 23% of the abstract values (for the
Malärdalen benchmarks).

The second set of benchmarks, made of GNU programs, also illustrates the precision of
Guided Path Analysis: while we cannot say which one of PF and G is better (they both are
better than the other in around 6% of the control points), C improves over them by more
than 10% of the cases. Notice that it very rarely provides a less precise invariant than other
techniques.

Most probably because of the non-monotonicity of the widening operator, it happens reg-
ularly that a supposedly more precise technique gives worse result in the end. For instance, G

often gives disappointing results compared to a classical abstract interpretation.

One should notice a surprising result: IN should theoretically never be less precise than
S, since the abstract values are always intersected with the fixpoint of S during the second
ascending sequence. However, the bar charts show that it is sometimes worse: it seems that
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the descending sequence of the PF technique sometimes leads to a greater invariant, which is
unexpected and possibly a bug, being investigated.

Figure 7.12 gives the execution time of the different techniques. For the techniques involving
an SMT solver (Z3), we detail the time spent only for solving the SMT problems. Experiments
show that Guided Path Analysis takes twice as long as Path Focusing, which is an important
overhead. An interesting result is that on the GNU programs, IN is faster than PF: we
can deduce that the initial cheap analysis by standard interpretation helps the Path Focusing
algorithm to converge faster. The intersections with the first obtained invariants help to reach
a fixpoint faster (in particular, less narrowing iterations are required).
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Figure 7.12: Execution time of the analysis (in seconds)
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Figure 7.13: Comparison of the various analysis techniques on GNU programs
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Benchmark #Func
C/S C/PF C/G PF/G

� � = 
= � � = 
= � � = 
= � � = 
=

grep 372 24 6 272 3 16 2 286 1 21 4 277 3 13 10 275 7

libsuperlu 187 74 0 607 0 87 0 594 0 79 0 602 0 15 39 616 11

tar 1038 43 0 513 1 26 1 530 0 28 0 528 1 19 13 521 4

libgmp 299 40 10 162 4 40 2 174 0 34 11 168 3 13 32 169 2

libjpeg 335 57 1 369 7 51 3 377 3 52 1 374 7 24 23 385 2

sed 196 2 0 75 1 1 0 77 0 1 0 76 1 0 0 77 1

gzip 212 60 2 160 1 49 0 174 0 58 0 165 0 24 18 167 14

wget 707 56 1 436 0 31 0 462 0 45 1 447 0 30 12 448 3

libpng16 498 62 2 315 3 52 1 328 1 86 2 292 2 47 21 303 11

Table 7.2: Analysis results for the GNU programs benchmarks. #Func gives the number of
analyzed functions.

7.3.2 Comparison between usual Numerical Abstract Domains

An evident way of improving precision of abstract interpretation is the use of a more expressive
abstract domain. For computing numerical invariants, it is intuitively more precise to use for
instance octagons rather than intervals for inferring invariants. However, because of the non
monotonicity of the widening operator, it may happen that a supposedly more precise abstract
domain gives worse results than a simpler one. For this reason, one should experiment with the
various abstract domains on real code and see how they behave in practice in terms of precision
and timing consumption. We propose in this section some experimental results obtained with
various usual numerical abstract domains, with our analyzer Pagai (full details on the tool are
in chapter 7).

We compared by inclusion the results of standard abstract interpretation with the domains
of intervals (BOX), octagons (OCT), convex polyhedra (PK and PPL), the reduced product
of convex polyhedra and linear congruences (PKGRID), and finally convex polyhedra with
Parma widening (PPL_B). Recall that Parma widening is explained page 39. All these
abstract domains are provided by the APRON library [JM09]. Note that PK and PPL[BHZ]
are two different implementations of convex polyhedra. Parma widening is only available with
the second implementation, hence only the comparison between PPL and PPL_B makes
sense.

Our experiments were conducted on a panel of well known GNU projects with the original
abstract interpretation algorithm [CC77, CH78]. Some of the projects contain many arithmetic
computations, in particular scientific libraries like libgsl, libglpk or libsuperlu. We compared
the precision of abstract domains by pair and give the results in Table 7.3. In a given column
“D1 // D2”, where D1, D2 ∈ { BOX, OCT, PK, PKGRID, PPL, PPL_B}:

• � gives the number of loop headers where the invariant obtained with D1 is strictly more
precise than the one obtained with D2,

• � counts the number of loops headers where D2 is strictly more precise than D1,

• = counts the number of loops headers where D1 and D2 have the same result,

• �= counts the number of loops headers where D1 and D2 have incomparable result, mean-
ing that none invariant includes the other.

In the table, D1 is always more expressive (thus supposedly equally or more precise) than
D2: the � should then intuitively contain numbers much greater than in column � and �=.
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Benchmark
PK // OCT PK // BOX OCT // BOX PKGRID // PK PPL_B // PPL

� � = �= � � = �= � � = �= � � = �= � � = �=
libgsl 421 81 2327 17 1276 36 1486 48 1149 1 1681 20 106 0 2744 1 - - - -
grep 11 5 276 0 43 8 236 5 46 5 238 3 4 0 288 0 26 1 265 0
libsuperlu 84 10 587 2 301 2 377 3 306 0 377 0 7 0 676 0 158 2 523 0
tar 21 3 524 0 54 6 487 1 47 4 497 0 15 1 532 0 28 1 519 0
libglpk 168 62 2235 39 666 42 1718 78 690 22 1783 9 60 3 2441 0 221 19 2245 19
libgmp 44 14 158 6 82 9 119 12 71 0 149 2 23 0 197 2 26 3 193 0
gnugo 86 110 1451 21 419 65 1120 64 459 6 1196 7 - - - - 330 21 1292 25
libjpeg 48 3 382 1 134 2 298 0 130 0 304 0 13 0 421 0 61 0 373 0
sed 5 0 80 0 10 1 74 0 10 1 74 0 1 0 84 0 3 0 82 0
gzip 26 9 189 6 54 2 164 10 45 2 177 6 5 0 225 0 31 8 182 9
wget 28 15 411 3 59 14 380 4 58 1 398 0 13 0 442 2 55 2 400 0
libpng16 29 5 350 6 107 2 277 4 100 0 289 1 52 0 337 1 56 1 332 1
TOTAL 971 317 8970 101 3205 189 6736 229 3111 42 7163 48 299 4 8387 6 995 58 6406 54

Benchmark
PK // OCT PK // BOX OCT // BOX PKGRID // PK PPL_B // PPL

� � = �= � � = �= � � = �= � � = �= � � = �=
libgsl 15% 3% 82% 1% 45% 1% 52% 2% 40% 0% 59% 1% 4% 0% 96% 0% - - - -
grep 4% 2% 95% 0% 15% 3% 81% 2% 16% 2% 82% 1% 1% 0% 99% 0% 9% 0% 91% 0%
libsuperlu 12% 1% 86% 0% 44% 0% 55% 0% 45% 0% 55% 0% 1% 0% 99% 0% 23% 0% 77% 0%
tar 4% 1% 96% 0% 10% 1% 89% 0% 9% 1% 91% 0% 3% 0% 97% 0% 5% 0% 95% 0%
libglpk 7% 2% 89% 2% 27% 2% 69% 3% 28% 1% 71% 0% 2% 0% 97% 0% 9% 1% 90% 1%
libgmp 20% 6% 71% 3% 37% 4% 54% 5% 32% 0% 67% 1% 10% 0% 89% 1% 12% 1% 87% 0%
gnugo 5% 7% 87% 1% 25% 4% 67% 4% 28% 0% 72% 0% - - - - 20% 1% 77% 1%
libjpeg 11% 1% 88% 0% 31% 0% 69% 0% 30% 0% 70% 0% 3% 0% 97% 0% 14% 0% 86% 0%
sed 6% 0% 94% 0% 12% 1% 87% 0% 12% 1% 87% 0% 1% 0% 99% 0% 4% 0% 96% 0%
gzip 11% 4% 82% 3% 23% 1% 71% 4% 20% 1% 77% 3% 2% 0% 98% 0% 13% 3% 79% 4%
wget 6% 3% 90% 1% 13% 3% 83% 1% 13% 0% 87% 0% 3% 0% 97% 0% 12% 0% 88% 0%
libpng16 7% 1% 90% 2% 27% 1% 71% 1% 26% 0% 74% 0% 13% 0% 86% 0% 14% 0% 85% 0%
TOTAL 9% 3% 87% 1% 31% 2% 65% 2% 30% 0% 69% 0% 3% 0% 96% 0% 13% 1% 85% 1%
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Benchmark BOX PKEQ PPL PPL_B PKGRID PK OCT
libgsl 7.5 36.9 - - 219.5 179.7 19.0
grep 1.8 5.3 9.5 19.9 28.8 5.5 2.3
libsuperlu 1.9 6.4 13.5 28.1 75.6 9.3 3.9
tar 2.4 7.7 10.2 12.7 32.8 6.3 1.8
libglpk 11.6 41.4 56.7 89.3 223.4 38.7 15.1
libgmp 2.2 3.8 21.1 21.0 59.4 8.3 3.7
gnugo 9.6 45.9 86.9 183.2 - 73.9 16.6
libjpeg 1.3 4.8 6.1 9.9 34.2 6.6 2.5
sed 0.6 1.4 5.8 8.7 13.8 3.5 0.8
gzip 0.9 5.2 12.5 20.6 37.6 5.8 1.6
wget 2.0 6.6 15.5 26.7 68.5 10.2 4.3
libpng16 1.4 5.9 10.6 20.0 43.6 9.5 2.6
TOTAL 43.2 171.3 >248.4 >440.1 >837.2 357.3 74.2

Table 7.4: Timing comparison between numerical abstract domains. Results are shown in
seconds. Cells with ’-’ indicate timeout or missing data.

Let us briefly comment the results: on these benchmarks, many loop headers are actually
simple and a static analysis with intervals is sufficient. This explains the high number of cases
where BOX equals more complex domains like OCT or PK. For more complicated loops,
both octagons and polyhedra are powerful. However, one should note that convex polyhedra
quite regularly yields worse results than intervals (up to 4% of the cases) or octagons (up to
7%).

Another noticeable result is the very good results of the Parma widening (see the column
PPL_B // PPL), that improves on the standard polyhedra widening in up to 23% of the
cases, while behaving worse very rarely. More generally, one can see that standard polyhedra
widening regularly yields less precise result than simpler domains (OCT, BOX): on gnugo,
OCT is even more precise in overall. This is a somehow disappointing result that motivates
the use of smarter widening operators or better iteration strategies when using this domain.

Table 7.4 gives the timing consumption of the analysis with the different domains. As
expected, the more expressive the domain, the more costly it is in practice. We should note
that OCT has reasonable overhead compared to BOX (around ×2). Polyhedra cost around
5× more than octagons, and 9× more than intervals. Finally, we should also notice that
even though Parma widening is good in terms of precision, it induces an significant overhead
compared to classical widening (around ×2).

To conclude, it is interesting to see how well the various abstract domains behave on real
examples, since their theoretical complexity and their actual performance in practice may
be substantially different. It is also important to compare their precision on real examples,
since their widening operators are non-monotonic. These experiments have been conducted on
several GNU projects: we guess that the results may significantly vary depending on the input
programs. In particular, we did not compare the abstract domains on safety critical software
(e.g. avionics code), because of a lack of this kind of benchmarks. Other interesting experiments
could include the comparison of the abstract domains with other analysis techniques, e.g.
guided path analysis instead of standard abstract interpretation.
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7.3.3 Software-Verification Competition (SV-COMP)

Pagai has recently been extended for being able to analyze benchmarks from the Software Veri-
fication Competition (SV-COMP) [SVC]. SV-COMP consists in a set of benchmarks grouped in
different categories. The objective is to prove the unreachability of a certain label ERROR (the
analyzer then returns TRUE), or provide an error trace leading to this error (return FALSE).
The main advantage of these benchmarks is the possibility of comparing Pagai with other
state-of-the-art program verification tools. We experimented with Pagai on the categories
ProductLines, DeviceDrivers64 and ControlFlowInteger, using the Path Focusing technique,
the Z3 SMT solver, and the abstract domains of intervals and convex polyhedra. While the
Path Focusing (PF) technique, based on SMT, is intuitively more expensive than simple ab-
stract interpretation (S) from [CC77, CH78], our experiments show that it performs much
better on the SV-COMP benchmarks. Most of the benchmarks consist in one big loop: PF

computes an abstract value at one single program location (the loop header), while S computes
abstraction at each program point, leading to many costly operations in the abstract domain
(convex hulls, least upper bounds, etc.). This is a noticeable result that argues in favor of
SMT-based techniques.

Since Pagai is a static analyzer and thus only computes invariants, it is not able to provide
error traces and thus can not deal with the benchmarks that should return FALSE. In our
experiments, we restrict ourselves to the benchmarks that are TRUE, and try to prove the
unreachability of the error state. Experimental results including the FALSE benchmarks are
given in section A.2.

For ranking the different tools in the competition, every correctly analyzed benchmarks
gives 2 points to the total score of the tool. We add a penalty of -8 for each benchmark
for which an analyzer incorrectly returns TRUE, while is should return FALSE (i.e. false
negatives). As in the competition, we also add a penalty of -4 for FALSE results in case the
benchmark is TRUE (erroneous error path). We provide the plots for the three categories we
experimented on in the next pages. These plots can be understood as follows: the curves give
the score of the tool in the x-axis, when we fix a time limit for analyzing each benchmark.
This timeout is represented in the y-axis in seconds. If the analyzer returned false-negatives,
its corresponding curve will start with negative points.

• At a given position in the y-axis, the best tool is the one with the rightmost curve, since
it got the maximal score within the given timeout bound.

• At a given position in the x-axis, the best tool is the one with the smaller timeout limit,
since it was the fastest to reach this score.

The results for the other tools are taken from the SV-COMP 2014, available at http:

//sv-comp.sosy-lab.org/2014/results/index.php. The comparison between Pagai and
the others should be taken with caution: the experiments with the various tools have been
conducted on machines with Intel Core i7-2600 CPU @ 3.4GHz, while Pagai has been run on
a Intel Xeon CPU E5-2650 @ 2.00GHz. We assume that this difference does not advantage
Pagai.

ProductLines Pagai scores 618 while the maximum is 664 (there are 332 TRUE bench-
marks, see Figure 7.14), so it is competitive with the other participating tools. One should
note that Pagai returns no false negatives. Among the 23 benchmarks that are not solved:
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• Pagai timeouts for 16 of them while using the abstract domain of polyhedra, and intervals
are not sufficient.

• The unsolved benchmarks actually encode automaton, for which one has to prove that
the error state is unreachable. The reachability of this error state depends on some
Boolean variables, that Pagai does not precisely handle: it considers them as integers
in the abstract values, which is not satisfactory here. This motivates in a future work
a better handling of Boolean: we are confident that the use of logico-numerical abstract
domains [Jea] would behave nicely on these examples, but are unfortunately unavailable
in the Apron library used in our implementation.
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Figure 7.14: Category ProductLines, TRUE benchmarks

DeviceDrivers64 Pagai gives interesting results in the DeviceDrivers64 category (Fig-
ure 7.15): it proves 1193 out of the 1336 TRUE benchmarks with a timeout of 500 second.

It has also 3 false negatives (thus, a penalty of -24): at that time, it is hard to understand
the reason why; note that Pagai has some known sources of unsoundness, e.g. in the presence
of overflows. One should however notice that every other competing tools also have important
penalties due to incorrect results (ranged between -20 for CPAChecker and -88 for CBMC).

While winning tools obtain up to 2600 points, Pagai only scores 2362 with a maximum of
2672. Benchmarks that are not proved by Pagai can range into 2 categories:

• The LLVM IR after inlining every functions exceeds the memory limit (7Gb).

• The invariants are not strong enough. In particular, in the same way as the ProductLines
category, certain benchmarks use variables from enum types (or more generally integers
that can take a very limited number of values), for which one should apply a special
treatment instead of considering them as “normal” integers. Again, logico-numerical
abstract domains would probably behave efficiently on these benchmarks.
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Figure 7.15: Category DeviceDrivers64, TRUE benchmarks

ControlFlowInteger The last category we tried was ControlFlowInteger (Figure 7.16).

Pagai is still competitive compared to the other tools, but shows some limits of scalability:
the timing grows exponentially in the number of points obtained. The main reasons of this
blowup are:

• the size of the SMT formula turns out to be very big for some benchmarks.
• the benchmarks make intensive use of complicated arithmetic operations, e.g. multiplica-

tions and modulos. These operations are encoded as is in our SMT encoding, but should
probably be handled with better abstractions.

• the fixpoint computation over the abstract domain of polyhedra takes long to converge,
either because of an important number of dimensions in the abstract values, or an im-
portant number of constraints with possibly huge coefficients.

Loops We finally experimented with the Loops category and get 40 points while the maximal
score is 68 (Figure 7.17). The score seems low, but this category actually includes many
benchmarks that requires precise analysis of arrays; Pagai is not yet able to derive array
properties. On every benchmark that does not require an array analysis, Pagai performs
well and is faster than the other tools. One should notice though that all the benchmarks in
this category are very small (less than 50 lines), and extremely simple to analyze by abstract
interpretation.

Prospects Future work for being able to really enter the competition include the implemen-
tation of an LLVM IR slicing algorithm for removing every program instructions that does not
affect the reachability of the error state, in order to improve scalability. We would also like
to combine Pagai with other existing tools for being able to handle FALSE benchmarks and
return error traces. Combinations with UFO[ALGC12] are investigated.
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Figure 7.16: Category ControlFlowInteger, TRUE benchmarks

7.4 Conclusion

In this chapter, we presented Pagai, a static analyzer initiated and entirely developed during
this thesis. It implements many abstract interpretation-based and SMT-based techniques for
computing invariants for LLVM bitcode. These invariants can be used to show the absence of
arithmetic overflows, or to prove user-provided program assertions. We claim that Pagai is a
robust implementation, given that it is able to run experiments on real code as well as standard
benchmarks in the software verification community. Pagai could of course be improved and
extended in many ways, in order to be able to compete with other production-grade program
verifiers.

Pagai has already been used for various reasons by external people. We mention here some
known users:

• the Embedded Systems Research Group, IIT Kharagpur9, India, for computing invariants
on embedded control software;

• people from the ANR W-SEPT project10, who derive ILP constraints from Pagai invari-
ants obtained after analyzing code instrumented with counters;

• people from the CAPP group11, LIG, Grenoble, work on Satisfiability Modulo Theories
an use Pagai for producing “real-life” SMT benchmarks;

• people at Verimag and ENS Lyon, are using Pagai invariants for proving program ter-
mination;

• Raphael Ernani Rodrigues, from ENS Lyon, implemented backwards analysis in Pagai;
• Gianluca Amato and Francesca Scozzari implemented their “Localizing Widening and

Narrowing”[AS13] technique in Pagai and experimented with it.

9http://iitkgp.ac.in/
10http://wsept.inria.fr/
11http://capp.imag.fr
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Figure 7.17: Category Loops, TRUE benchmarks. Pagai’s score is low since most of the
benchmarks requires invariants involving array properties.

A number of improvements, orthogonal to the approaches developped in this thesis, could
be implemented in the future:

• Implement better abstractions of certain LLVM instructions: one could for instance men-
tion load and store instructions that are currently brutally abstracted, while a minimal-
istic memory model would already avoid many imprecisions.

• Further improve the scalability of the analysis. For instance, instead of computing ab-
stract values with sometimes unreasonably many dimensions, one should trade precision
for efficiency by “packing” the variables into different sets, chosen heuristically, as it is
done by e.g. the Astrée analyzer [BCC+03]. Then, the analysis would compute relational
invariants over variables that are in the same packet only, and could even use different ab-
stract domains for each packet. This idea would certainly combine well with our modular
property-guided static analysis.
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Chapter 8

Conclusion

In this thesis, we proposed several new analysis techniques that improve upon state-of-the-
art in abstract interpretation, by using decision procedures, that benefit from major advances
in the field of Satisfiability Modulo Theories in the last decade. These methods have proved
themselves efficient when instanciated with usual numerical abstract domains such as intervals,
octagons, or convex polyhedra. Besides these theoretical contributions, we also propose a strong
practical contribution with the implementation of a new static analyzer. This thesis could be
considered as part of the ERC STATOR1 project, which focuses on developing new methods
for static analysis of softwares. In this conclusion, we first recall our main contribution. Then,
we present some possibilities of future work and interesting research directions. We conclude
with general remarks.

Main Contributions

In a first part, we presented a theoretical contribution with the design of Guided Path Analysis,
that reuses the concepts of Path Focusing and apply them to smarter iteration strategies for
the fixpoint computation. The final algorithm behaves experimentally better with respect to
the precision usually lost by widenings and least upper bounds operators, and thus yields
more precise results than existing techniques. We presented several possibilities of extensions;
for instance, for enabling the possibility of computing disjunctive invariants, or for avoiding a
possible exponential enumeration of focused paths. In collaboration with Nicolas Halbwachs, we
also presented an original method for improving the precision of a fixpoint in the case a classical
descending sequence fails. By restarting a new fixpoint computation with the knowledge of an
already discovered but imprecise fixpoint, we were able to converge to a strictly smaller fixpoint
in many benchmarks. This idea applies for any abstract domain and iteration strategy, which
makes it always applicable. Since the two methods we described are orthogonal, a natural
extension would be to combine them together to see whether we can further improve precision.

In a second part, we presented another theoretical contribution: the design of modular
analysis algorithms called Modular Path Focusing, and its “property-guided” derivative. These
algorithms improve the scalability of the previously described techniques by abstracting pro-
gram portions into summaries, i.e. relations between their input and output variables, that are
correct under some assumptions over the input variables called context. We presented original
ideas for generalizing the input context in which a summary holds while not sacrificing pre-
cision. We showed how this technique can be used for inferring useful preconditions, e.g. for
functions, and prove user-given properties at the same time. We think that this generation of
precondition is very useful in practice, e.g. when embedded in an integrated development en-
vironment (IDE). From the perspective of scalability, we described a framework for iteratively

1http://stator.imag.fr
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refining precision of the summaries using abstract interpretation, in contrast with other existing
techniques based on interpolation, in order to prove the unreachability of a given error state.
In this work, decision procedures are used both for finding which summaries are required, and
also for computing precise invariants as in our Guided Path Analysis. This works blends with
en vogue techniques based on Horn Clause encoding of programs [GLPR12, HBdM11, BMR13],
while proposing a different approach for computing summaries.

A working implementation and experimental evaluation will be part of our work in the
near future. We expect the experiments to show that plugging in summaries for complicated
program portions into the SMT encoding will improve performance of the SMT solvers.

In a third part, we proposed a novel method for estimating Worst-Case Execution Time

(WCET): while current approaches compute semantic-insensitive WCET approximations by
encoding only the program control-flow into an ILP problem, we showed how to encode both
the control-flow and the instruction semantics into a problem of Optimization Modulo Theory.
SMT-based approaches for estimating WCET has never been proposed, for the reason that it
does not scale to the size of standard benchmarks. We detailed the theoretical reason why
WCET problems are hard to solve by production-grade SMT solvers based on DPLL(T ), and
how the results of a high level static analysis dramatically improves solving time. We claim
that our results is a first attempt to show that SMT is a workable and more precise alternative
to classical approaches for estimating WCET.

A large amount of time during this thesis has been dedicated to the development of a new
analyzer called Pagai, that currently implements 6 different static analysis techniques. The
tool is open source, and has already been used by other researchers for conducting experiments,
e.g. [SNA14], or implementing new techniques [AS13]. It is a major contribution to the abstract
interpretation community from both the technical and theoretical point of view: there exist
very few static analyzers capable of analyzing large programs written in a usual language like
C; we claim that our implementation is robust and extensible, and provides usable results,
e.g. annotated C code and/or instrumented LLVM IR. We presented in this report the most
interesting design and implementation aspects of Pagai, together with experimental results
on real-life code bases and benchmarks. We showed that this tool is competitive against other
academic program verifiers, and that it can be used for computing precise numerical invariants
for real C programs thanks to the use of the industrial-strength LLVM compiler infrastructure.
Pagai’s invariants can already be fed as input into other LLVM-based analysis tools, and are
already used by various projects at Verimag and other research teams.

Future Work & Research Directions

Our principal theoretical contributions are the design of several original static analysis algo-
rithms. In this thesis, we focused only on numerical abstract domains. We would be interested
in future work to see how well these techniques behave when instantiated with other abstract
domains and theories, in particular those dealing with the memory, arrays, etc. We should note
that all of these new analysis techniques described here are not inherently restricted to numer-
ical abstract domains, and only require appropriate decision procedures for the corresponding
theories. Since current SMT solvers work with theories like arrays or uninterpreted functions,
this research direction seems quite accessible in the near future.

The algorithms described in this thesis all share the property of producing invariants.
Currently, we prove user-given properties by checking whether the intersection of their nega-
tion with the invariants is empty. The drawbacks of this approach are that it will produce
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false alarms, but also cannot extract error traces from the invariants. Consequently, mod-
ern academic program verifiers (e.g. CPAChecker [BHT07] or UFO [ALGC12]) mix different
techniques together: we can cite among others bounded model checking, predicate abstraction
with CEGAR[CGJ+00] and interpolation-based refinement [McM03, McM06]. It is well-known
that invariants given by external tools can help certain verification techniques. We would like
to experiment with these verification algorithms that can be speed up by externally provided
invariants, such as k-induction [GKT13], in order to see to which extent the precision of the
invariant is important.

Our work on WCET estimation with SMT also opens many interesting future research
topics, in particular, how to improve SMT solvers with techniques derived from the static
analysis community, such as abstract interpretation. While it was quite intuitive to see which
static analysis results are useful in the particular case of WCET problems, it is much more
challenging to try to apply similar ideas to any SMT formula and improve the overall efficiency
of DPLL(T )-based solvers. The topic of inferring good summaries is “hot”: a tightly related
work has been conducted by McMillan in parallel with us and has been published very recently
in [McM14]. We would like to extend our idea of “cuts” to arbitrary formulas in future work,
and also enhance the way of deriving cuts in the case of WCET to further improve scalability.
Another research direction in the field of WCET estimation is the usage of our invariant
generation algorithms as is on programs instrumented with counters, as explained in section 6.8.
This last research area is currently tackled by the French ANR W-SEPT project, and powered
by our tool Pagai.

From a implementation point of view, Pagai can be extended in many directions: current
work consists in the implementation of our modular static analysis framework. There is also
a big room for improvement in some parts of the implementation, for instance in the abstract
domain side; an example would be to pack the variables into different sets and use products
of different abstract domains to improve configurability and scalability. We would also like
to enable the use of logico-numerical abstract domains [Jea], which would perfectly combine
with our techniques. Another improvement for long term is to implement a memory model.
We would also be interested in combining Pagai with other program verifiers to compete in
the SV-Competition, for instance bounded model checkers for providing error traces. Another
interesting future development would be to integrate it into the official clang static analyzer2.

Concluding Remarks

This thesis bridges the gap between at least three different active research communities: ab-
stract interpretation, SMT, and WCET. As a consequence, it is a starting point for many
improvements and future work in these three areas: The algorithms described in this thesis,
mixing abstract interpretation with decision procedures, demonstrate that the use of satisfiabil-
ity modulo theories is a good research direction for improving static analysis based on abstract
interpretation. Conversely, our work on WCET estimation showed that decision procedures
can be improved with the help of ideas from the static analysis community, in particular ab-
stract interpretation. This last point, which has also been pointed out by several other recent
works [DHK14, DHK13, TR12a], opens many interesting research problems for the near future
in order to further improve SMT solvers. Finally, this thesis shows that SMT is a workable
approach to precise WCET estimation and motivates new research in this direction.

To conclude, this thesis offers a good balance between strong practical contributions with

2http://clang-analyzer.llvm.org/
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the implementation of a new and competitive static analyzer, and theoretical contributions
with the design of new abstract interpretation and SMT-based static analysis algorithms, with
already real-life applications to WCET estimation.
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Chapter A

Experimental Results

A.1 Extra experiments for section 4.1

We provide other experiments with our new decreasing sequence, on the benchmarks from
the Mälardalen WCET benchmarks set [GBEL10] available at http://www.mrtc.mdh.se/

projects/wcet/benchmarks.html. The results are depicted in Table A.1. The table shows
that in the case the new ascending sequence does not improve the first fixpoint, there is almost
no overhead when using our method (because intuitively, the new ascending sequence converges
extremely fast). The column “Functions” shows that in case we find candidates for being seeds

in a function, we indeed manage to improve the precision of the invariants in this function for
most of them, which validates our heuristic for choosing the seeds.

A.2 SV-Comp Experiments

In this section, we plot the results of the SV-Comp in the exact same way as in subsection 7.3.3,
but we also give points for correct FALSE results (1 point), while they were ignored in the plots
of subsection 7.3.3. Pagai always returns TRUE or UNKNOWN, so it gets the exact same
number of points with this new rule. With this metric, tools able to derive counter examples
for FALSE benchmarks, such as bounded model checkers, are favored. However, note that
most of these tools provide less guarantees in the case of TRUE benchmarks, since they are
not proving safety in general but only for the program traces of a bounded length.

167



Chapter A Experimental Results

Benchmark
Comparison Time Functions Time eq
� = N S #total #seeds � = N S

bs_annotated 0 1 0.88 0.76 1 0 0 1 0.88 0.76
insertsort 2 0 0.97 0.37 1 1 1 0 0.00 0.00
adpcm 6 21 0.54 0.39 1 1 1 0 0.00 0.00
lcdnum 1 0 0.39 0.29 1 1 1 0 0.00 0.00
fdct 0 2 0.12 0.96 1 0 0 1 0.12 0.96
select 3 1 0.16 0.11 1 1 1 0 0.00 0.00
fir 2 0 0.69 0.46 1 1 1 0 0.00 0.00
cnt 4 0 0.60 0.27 1 1 1 0 0.00 0.00
duff 0 2 0.30 0.27 1 0 0 1 0.30 0.27
prog9000 1 38 5.59 2.40 1 1 1 0 0.00 0.00
recursion 0 0 0.51 0.43 3 0 0 3 0.51 0.43
jfdctint 0 3 0.20 0.16 1 0 0 1 0.20 0.16
fft1 8 21 1.79 1.20 1 1 1 0 0.00 0.00
sqrt 0 1 0.73 0.70 1 0 0 1 0.73 0.70
matmult 6 1 0.39 0.17 1 1 1 0 0.00 0.00
qurt 3 0 0.52 0.36 1 1 1 0 0.00 0.00
statemate 1 0 0.56 0.21 1 1 1 0 0.00 0.00
minver 7 10 0.34 0.25 1 1 1 0 0.00 0.00
bsort100 1 2 0.92 0.66 1 1 1 0 0.00 0.00
ns 2 2 0.37 0.19 1 1 1 0 0.00 0.00
qsort-exam 0 6 0.15 0.11 1 1 0 1 0.15 0.11
nsichneu 0 1 2.29 2.77 1 0 0 1 2.29 2.77
lms 6 6 0.66 0.47 1 1 1 0 0.00 0.00
edn 5 7 0.11 0.58 1 1 1 0 0.00 0.00
ludcmp 9 2 0.11 0.56 1 1 1 0 0.00 0.00
compress 1 9 0.32 0.25 1 1 1 0 0.00 0.00
expint 0 2 0.25 0.13 1 1 0 1 0.25 0.13
bs 0 1 0.83 0.70 1 0 0 1 0.83 0.70
fac 0 1 0.35 0.29 2 0 0 2 0.35 0.29
prime 0 2 0.30 0.26 1 0 0 1 0.30 0.26
janne_complex 0 2 0.42 0.36 1 1 0 1 0.42 0.36
cover 0 3 35.71 36.11 1 0 0 1 35.71 36.11
st 0 7 0.36 0.30 1 0 0 1 0.36 0.30
crc 1 5 0.52 0.28 1 1 1 0 0.00 0.00
ud 9 2 0.93 0.50 1 1 1 0 0.00 0.00
ndes 5 7 0.49 0.33 1 1 1 0 0.00 0.00
fibcall 0 1 0.97 0.94 1 0 0 1 0.97 0.94
loop 0 1 0.38 0.41 1 0 0 1 0.38 0.41

Table A.1: Experiments with the new decreasing sequence, on the Mälardalen WCET bench-
marks set.
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Figure A.1: Category ProductLines, TRUE and FALSE benchmarks
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Figure A.2: Category DeviceDrivers64, TRUE and FALSE benchmarks
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Figure A.3: Category ControlFlowInteger, TRUE and FALSE benchmarks
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Figure A.4: Category Loops, TRUE and FALSE benchmarks.
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