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Introduction en Français

Dans cette thèse, nous étudions le problème du recalage d’images. Deux images ou plus
sont dites recalées lorsqu’un système de coordonnées unique peut être utilisé pour traiter
le même contenu pour chaque image. Cela équivaut à désigner d’abord une image de
référence ou un système de coordonnées, puis aligner toutes les images de la même scène
par rapport à celle-ci en appliquant des transformations géométriques. En particulier,
nous étudions d’abord le problème lorsque les transformations sont des décalages 2D,
en nous concentrant sur la vitesse et la précision. Finalement, nous étendons à d’autres
types de transformations plus complexes.

Cette thèse commence par une étude approfondie des méthodes d’estimation de dé-
calage sous-pixeliques rapides et précises. Nous nous intéressons à deux types distincts:
les méthodes basées sur le gradient travaillant dans le domaine spatial et les méthodes de
corrélation de phase fonctionnant dans le domaine fréquentiel. Une comparaison com-
plète est effectuée prenant en compte les problèmes d’estimation de décalage existant
dans des applications réelles, à savoir, avec différentes conditions de SNR, différentes
grandeurs de déplacement, la non-préservation de la contrainte de luminosité constante,
l’aliasing et, surtout, la limitation des ressources de calcul. Le résultat le plus important
du chapitre 2 est une revue approfondie des méthodes d’estimation de décalage, ainsi
qu’une recette pratique indiquant quelles méthodes utiliser dans quelles circonstances.

Sur la base de cette étude, en collaboration avec le CNES (l’agence spatiale française),
deux problèmes qui sont cruciaux pour l’optique numérique des satellites d’observation
de la terre sont analysés dans les chapitres 3 et 4, et des solutions expérimentales ont été
proposées pour chacun d’eux. Les deux nécessitent un traitement en temps réel à l’aide
de peu de ressources informatiques. C’est pourquoi des solutions numériques optimales
doivent être trouvées pour les deux problèmes. En effet, les deux sont essentiels pour
atteindre des PSNR élevés dans l’imagerie terrestre et éviter des aberrations optiques
causées par la grande taille d’un télescope léger.

Nous étudions d’abord dans le chapitre 3 le problème de correction de front d’onde
dans le contexte de l’optique active. Nous proposons un algorithme rapide et précis pour
mesurer les aberrations de front d’onde sur un senseur de type Shack-Hartmann (SHWFS
en anglais) en observant la terre. Ce capteur est généralement utilisé pour l’observation
des étoiles et pour corriger les fronts d’onde aberrés causés par les rayons traversant
l’atmosphère terrestre. Nous proposons ici une revue de l’état de l’art des méthodes pour
le SHWFS utilisé sur des scènes étendues (comme la terre) et concevons une nouvelle
méthode pour améliorer l’estimation de front d’onde, en utilisant une approche basée
sur l’équation du flot optique soigneusement raffiné. Cette méthode profite des petits
décalages observés dans un système de correction de front d’onde en boucle fermée, ce
qui améliore la précision tout en minimisant les ressources de calcul. Pour effectuer une
comparaison approfondie de l’approche proposée avec les méthodes les plus récentes,
un simulateur a été créé à la suite de la spécification fournie par le CNES.

Lorsqu’il s’agit de scènes étendues, il est d’une importance vitale de détecter si le
paysage actuel observé est approprié pour une détection numérique du front d’onde
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précise. Nous proposons deux méthodes de validation afin d’assurer une estimation
correcte du front d’onde sur les scènes étendues. Tandis que la première est basée sur
une adaptation numérique des bornes inférieures (théoriques) pour le recalage d’images,
la seconde méthode classifie rapidement les paysages en se basant sur la distribution des
gradients.

Le résultat principal obtenu dans de ce chapitre est une nouvelle méthode, avec une
procédure de prévalidation, qui améliore en précision et temps de calcul les méthodes
actuelles de pointe utilisées pour le SHWFS basé sur des scènes étendues.

La deuxième application aux satellites abordée dans le chapitre 4 est la conception
numérique d’une nouvelle génération de senseur du type Time Delay Integration (TDI).
Dans ce nouveau concept, la stabilisation active en temps réel du TDI est réalisée pour
étendre considérablement le temps d’intégration, et donc augmenter le RSB des images.
Les lignes du TDI ne peuvent pas être fusionnées directement par addition parce que
leur position est modifiée par des microvibrations. Celles-ci doivent être compensées en
temps réel en utilisant des ressources de calcul limitées sur le satellite, avec une précision
sous-pixellique. Nous étudions les limites fondamentales théoriques de ce problème et
proposons une solution en temps réel qui s’en approche. Nous présentons un système
utilisant la convolution temporelle conjointement à une estimation en ligne du bruit de
capteur, à une estimation de décalage basée sur les gradients et à une méthode multiim-
age non conventionnelle pour mesurer les déplacements globaux. Les résultats obtenus
sont concluants sur les fronts de la précision et de la complexité et ont fortement influ-
encé les décisions finales sur les futures configurations des satellites d’observation de la
Terre au CNES.

Enfin, au cours de cette thèse, l’auteur a également travaillé sur la fusion d’images à
plusieurs échelles des tableaux prises par des caméras commerciales. En tant que sous-
produit de ce projet, une nouvelle méthode effectuant l’estimation précise et robuste des
modèles de mise en correspondance des points d’intérêt entre images est proposée dans
le chapitre 5. La difficulté provenant de la présence de fausses correspondances et de
mesures bruitées conduit à un échec des méthodes de régression traditionnelles. En
vision par ordinateur, RANSAC est certainement la méthode la plus utilisée pour sur-
monter ces difficultés. RANSAC est capable de discriminer les fausses correspondances
en générant de façon alétaoire des échantillons d’hypothèses minimalistes et en véri-
fiant leur consensus sur les données d’entrée. Cependant, sa réponse est basée sur la
seule itération qui a obtenu le consensus le plus large, et elle ignore toutes les autres hy-
pothèses. Nous montrons ici que la précision obtenue peut être améliorée en agrégeant
toutes les hypothèses envisagées. Nous proposons également une stratégie simple qui
permet de moyenner rapidement des transformations 2D, ce qui réduit le coût supplé-
mentaire de calcul à quantité négligeable. Nous donnons des applications réelles pour es-
timer les transformations projectives et les transformations homographie + distorsion. En
incluant une adaptation simple de LO-RANSAC dans notre cadre, l’approche proposée
bat toutes les méthodes de l’état de l’art. Une analyse complète de l’approche proposée
est réalisée, et elle démontre un net progrès en précision, stabilité et polyvalence.

Dans cette introduction, nous donnons un aperçu de chacun des chapitres de cette
thèse, avec leurs résultats principaux.

Chapitre 2: Revue de méthodes d’estimation globale de décalage
sous-pixeliques

Le problème de l’estimation globale du décalage sous-pixelique apparaît dans plusieurs
applications liées au traitement d’image. Lorsqu’une précision élevée n’est pas requise, la
plupart des auteurs ont tendance à utiliser la méthode de corrélation croisée bien connue
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qui répond habituellement aux exigences de performance pour de telles tâches. Cepen-
dant, dans des contraintes de précision plus exigeantes, les approches de corrélation
croisée ne sont pas suffisamment précises ou leurs coûts de calcul sont prohibitifs. De
plus, des problèmes tels que des contraintes de temps, des conditions d’éclairage vari-
ables, du bruit, de l’aliasing, entre autres, compliquent la tâche d’estimation de décalage.
Ce qui est pire, on ne sait pas décider quelles méthodes vont s’adapter a chaque problé-
matique.

Ce chapitre propose une analyse détaillée des méthodes d’estimation de décalage
rapides et précises. Comme des méthodes à faible complexité sont typiquement de-
mandées, nous nous concentrons uniquement sur les méthodes différentielles et les ap-
proches de corrélation de phase, offrant une étude complète sur les deux méthodologies.
Ici, nous abordons le cas où les deux images ont la même taille et sont contaminées par
bruit blanc Gaussien avec le même écart type. Nous nous concentrons sur le cas où le
déplacement 2D est inférieur à un pixel dans les deux dimensions et où la contrainte
de luminosité constante est respectée. Nous effectuons néanmoins des tests validant la
performance de chacun des cas lorsque ces conditions ne sont pas maintenues. Notre
objectif est donc de donner une recette pratique montrant quelles sont les méthodes les
plus adaptées en fonction des conditions de la tâche. En quantifiant les différentes varia-
tions des conditions, nous évaluons sur chacune d’elles plus d’un millier de variantes de
méthodes d’estimation de décalage et résumons ici les résultats.

Les méthodes différentielles, également connues sous le nom de Gradient-Based Shift
Estimation (GBSE), relient la différence entre deux images successives au gradient de la
première image. Cette relation est obtenue par approximation de l’image décalée par son
approximation de Taylor de premier ordre. Le changement peut alors être facilement es-
timé en utilisant le méthode des moindres carrés, telle que proposée à l’origine par Lucas
et Kanade [97]. Cependant, des méthodes plus élaborées peuvent être appliquées pour
obtenir une plus grande précision. La minimisation par moindres carrés totaux [80, 181]
améliore légèrement les résultats, bien qu’elle nécessite l’estimation de la décomposition
en valeur singulière. En fait, la méthode GBSE est biaisée [119, 139]. Une façon indirecte
de réduire ce biais est à travers des procédures itératives [12, 119] ou des adaptations
multi-echelle [131, 167], qui utilisaient ensemble, donnent d’excellents résultats en util-
isant peu de ressources informatiques. D’autres approches qui réduisent l’influence du
biais sont la méthode d’estimation de gradient corrigée [81] et l’approche de correction de
biais bidirectionnelle [122]. Nous avons également analysé l’influence de l’estimation du
gradient et la méthode d’interpolation utilisée dans les approches GBSE. Nous avons ob-
servé que le choix de la méthode correcte pourrait produire des améliorations jusqu’à
un ordre de grandeur et sont critiques pour améliorer la performance de la estimation.

Les méthodes de corrélation de phase sont basées sur le fait que la plupart des infor-
mations sur les déplacements relatifs d’objets entre deux images sont contenues dans la
phase de leur densité spectrale de puissance croisée ou cross-power spectrum en anglais.
Plusieurs méthodes exploitent ce fait pour estimer le déplacement soit dans le domaine
de Fourier soit dans le domaine spatial. Ces méthodes ont besoin du calcul de la trans-
formée de Fourier discrète (DFT en anglais), qui pourrait être prohibitive dans certains
contextes. Néanmoins, elles sont capables d’obtenir des résultats très précis sans effort
de calcul supplémentaire, et peuvent être utilisées lorsque les images sont sérieusement
déformées, que ce soit en géométrie ou en intensité. La plupart des méthodes estiment
le changement en ajustant une fonction à la matrice de corrélation de phase, obtenue
en appliquant la transformée de Fourier inverse de la densité spectrale de puissance
croisée [1,8,57,69,132,134,162]. D’autres méthodes calculent le changement directement
dans le domaine de Fourier [13, 85, 151, 159].

Comme désavantage, les approches de corrélation de phase supposent des déplace-
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ments circulaires entre les images. Puisque, en général, le décalage entre les deux images
est un déplacement linéaire plutôt qu’un décalage circulaire, des fonctions de fenêtrage
sont utilisées pour atténuer les problèmes liés aux bords d’image. Pour les images qui ont
des objets répétitifs, la corrélation de phase peut également produire des résultats ambi-
gus avec plusieurs pics de corrélation, et son utilisation sur ces cas n’est pas conseillée.

Les méthodes de corrélation de phase sous-spatiales recherchent des représentations
unidimensionnelles des images pour ensuite estimer les deux décalages indépendam-
ment. Une de ces représentations est obtenue en prenant la projection d’image dans
chaque dimension [5, 138]. Le changement est alors estimé soit en utilisant des versions
1D de l’approche de corrélation de phase, soit en corrélant leur gradient [135]. Une
autre méthode, basée sur le fait que la matrice de corrélation de phase obtenue à par-
tir d’images sans bruit est de rang un, calcule le décalage a partir de ses deux vecteurs
singuliers gauche et droit [75].

D’autres approches étudiées sont basées sur la corrélation des gradients. D’abord
introduit par Argyriou et al. [7], plusieurs travaux ont suivi [135, 178, 179]. Dans nos ex-
périences, les approches de corrélation de gradient ont donné des résultats plus précis et
plus cohérents que les méthodes de corrélation de phase, et se sont avérées plus robustes
contre le bruit et l’aliasing. Néanmoins, elles n’ont pas obtenu des résultats aussi précis
que les approches de type GBSE, en particulier avec des décalages faibles. En effet, nous
avons observé que les approches de type GBSE semblent être plus précises et tolérantes
au bruit que les méthodes de corrélation de phase. Elles sont également moins chères en
calcul et plus stables. Cependant, lorsque les déplacements estimés sont importants, elles
doivent être utilisées dans des approches pyramidales à plusieurs niveaux qui tendent à
réduire leur stabilité. De plus, lorsque les deux images à recaler diffèrent, les approches
GBSE se sont révélées moins tolérantes que les méthodes de corrélation de phase. Nous
renvoyons le lecteur directement aux conclusions des sections 2.4.2, 2.4.3, 2.4.4, 2.4.5 et
2.4.6 pour un bref résumé de ce chapitre. Cependant, dans la figure 1, nous comparons la
performance générale (en faisant la moyenne entre toutes les grandeurs de décalage dis-
crétisées évaluées et tous les niveaux de bruit) des méthodes les plus représentatives. Les
méthodes commençant par LS, TLS, ULS, CLS et MS se rapportent toutes à des approches
de type GBSE, GC désigne la corrélation de gradient et PC la corrélation de phase.

L’analyse présentée dans ce chapitre est d’une importance capitale pour le reste de
cette thèse, en particulier pour les chapitres 3 et 4, où deux applications de télédétection
provenant des satellites d’observation de la Terre sont analysées.

Chapitre 3: Amélioration de la mesure du front d’onde avec un
appareil Shack-Hartmann

Afin d’atteindre des résolutions plus élevées, les satellites d’observation de la terre actuels
utilisent des miroirs primaires légers qui peuvent se déformer au fil du temps, ce qui im-
pacte la qualité de l’image [21, 52]. Nous avons évalué la possibilité de compenser ces
déformations directement dans le satellite en combinant un miroir déformable avec un
capteur de front d’onde Shack-Hartmann (SHWFS en anglais) tout en observant la terre.
Le SHWFS utilise une matrice de microlentilles pour mesurer la déformation du front
d’onde entrant. Le décalage sur le plan focal de chaque microlentille est proportionnel
à la pente moyenne du front d’onde locale qui se corresponde a cette microlentille. Elle
donne donc une approximation locale discrète de la pente du front d’onde, comme ob-
servé sur la figure 2, qui est ensuite utilisée pour estimer le front d’onde réelle.

Les capteurs de front d’onde Shack-Hartmann sont fréquemment utilisés en astronomie
pour mesurer les aberrations du front d’onde produites par la turbulence atmosphérique.
Ils travaillent en se concentrant sur une source ponctuelle telle qu’une étoile et estiment
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Figure 1 – Temps d’exécution moyen (échelle logarithmique) vs précision pour certaines méth-
odes représentatives moyennées sur les trois premières grandeurs de déplacement et tous les
niveaux de bruit. La signification des préfixes principaux est: LS = moindres carrés, TLS = moin-
dres carrés totaux, MS = multi-échelle, CLS = moindres carrés corrigés, ULS = Pham et al. [122],
GC = corrélation de gradients, PC = corrélation de phase.

le déplacement relatif entre une image de référence et toutes les autres sous-images. Leur
performance est directement liée à la précision de l’algorithme d’estimation de décalage,
qui doit avoir un faible coût de calcul pour être exécuté à bord.

En observant la terre depuis l’espace, cette tâche devient plus difficile. En particulier,
la tâche d’estimation de décalage doit être effectuée en utilisant des scènes étendues. Le
problème de l’estimation des déplacements à l’aide de SHWFS sur des sources étendues a
déjà été abordé, datant des travaux de Michau et al. en 1993. Ces approches peuvent être
divisées en: méthodes de corrélation soit dans l’espace [95,108,109] ou domaine fréquen-
tiel [85, 95, 124, 151, 153], les méthodes de corrélation de phase [85, 159] et les méthodes
itérées [68, 151, 153], qui améliorent progressivement l’estimation.

Sur la base de l’étude réalisée au chapitre 2, nous proposons une nouvelle méthode
d’estimation de décalage basée sur l’approche GBSE. Cette méthode exploite le fait que
la correction du front d’onde se fait en boucle fermée de sorte que les aberrations sur le
miroir se traduiraient par de petits déplacements sur les sous-pupilles du senseur SH. En
effet, en supposant des déplacements inférieurs à la moitié d’un pixel, selon les ressources
informatiques disponibles, nous proposons d’utiliser la méthode basée sur le gradients
de Lucas et Kanade [97], en estimant les dérivées des images en utilisant l’approche de
Simoncelli [154]. Si plus de ressources sont disponibles, nous proposons d’itérer la méth-
ode en rééchantillonnant les images dans le domaine de Fourier [20].

Puisque la détection du front d’onde est effectuée à bord en observant la terre, il
est important de vérifier si le paysage actuel observé par le satellite est approprié pour
effectuer une mesure précise du front d’onde. À cette fin, nous proposons deux méth-
odes. La première est une adaptation numérique des bournes inférieures (théoriques)
de l’enregistrement d’images obtenues par le borne de Cramér-Rao (Cramer-Rao Lower
Bound ou CRLB en anglais), et la seconde est un test rapide basé sur la distribution de
gradient, déduit des valeurs propres du tenseur d’structure, qui, s’il est utilisé conjoin-
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Figure 2 – Un capteur de front d’onde Shack-Hartmann mesure le front d’onde en calculant les
déplacements locaux entre les taches détectées (en vert) et les croix de référence (en noir), ce
qui se produirait si aucune déformation n’était présente.

tement avec la méthode GBSE, n’implique pas de coûts de calcul supplémentaires. Les
deux tests proposés ont pu éliminer correctement les cas potentiellement ambigus.

Dans nos expériences, les méthodes d’estimation de décalage proposées se sont révélées
plus précises et stables, ainsi que moins sensibles au bruit que toutes les approches
actuels, ce qui permet d’obtenir une estimation de front d’onde plus précise. Cela peut
être observé à partir de Fig. 3, où les méthodes de l’état de l’art sont comparées aux deux
variantes proposées en utilisant deux images de test différentes extraites d’une image
satellite á haute résolution de la ville de Cannes.
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Figure 3 – Performance pour les méthodes non itératives et itératives. En haut: Première image
de test. En bas: Deuxième image de test. Gauche: Méthodes non itératives. Droite: Méthodes
itératives.

Des aberrations de front d’onde plus importantes se traduisent par des déplacements
plus importants à estimer dans le dispositif SH. Dans ce cas, une approche multi-échelle
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a été adoptée pour la méthode GBSE. De nouveau, les résultats de la Fig. 4 montrent que
notre approche améliore les méthodes de l’état de l’art.
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Figure 4 – Erreur moyenne et écart-type des méthodes sélectionnées et deux variantes de
l’approche GBSE lors de la simulation d’aberrations de front d’onde donnant des déplacements
allant jusqu’à 4 pixels. Gauche: Première image de test. Droite: Deuxième image de test.

Notre contribution dans ce chapitre est donc triple. Nous commençons par une revue
de l’état de l’art sur la correction de front d’onde en utilisant des senseurs de type SHWFS
sur des scènes étendues. Deuxièmement, pour estimer les déplacements, nous proposons
l’utilisation d’une méthode de type GBSE globale itérative qui présente plusieurs avan-
tages par rapport aux méthodes classiques de corrélation. Enfin, nous proposons une
méthode rapide et efficace pour la prévalidation de scènes qui n’ajoute pratiquement
aucun coût de calcul.

Chapitre 4: Stab-Active: stabilisation à bord en temp réel pour
l’accumulation d’images

Les capteurs de type push broom placés sur des satellites sont utilisés pour effectuer
l’observation de la Terre à haute résolution [19, 59]. Parce qu’ils sont proches de la Terre
(≈ 800 km), ils se déplacent rapidement et le temps d’acquisition de l’image est très court.
La solution pour éviter le flou de mouvement consiste à utiliser des capteurs TDI (Time
delay an integration en anglais) qui, en synchronisant les pixels avec le mouvement de la
caméra ou de l’objet, est capable d’augmenter le temps d’exposition effectif.

Ce capteur travaille en décalant les mesures partielles de ses lignes vers leurs lignes
adjacentes de manière synchrone avec le mouvement de l’image. Cette accumulation syn-
chrone permet d’obtenir un RSB impossible à obtenir à l’aide de matrices CCD classiques
ou de dispositifs à balayage unique. Cependant, il impose des contraintes de stabilité
au dispositif d’imagerie. Pour alléger ces contraintes limitant le temps d’accumulation,
nous avons évalué si le recalage et l’accumulation à bord étaient possibles.

Prévoyant l’utilisation d’un TDI de type CMOS permet de corriger la procédure d’
accumulation par le rééchantillonnage du signal entrant. Ceci permet d’éviter le flou de
mouvement tout en accumulant beaucoup plus de signal obtenant ainsi des RSB beau-
coup plus élevés. Pourtant, cette nouvelle méthode d’imagerie soulève de nouveaux
problèmes techniques. Une condition préalable est que les perturbations de la ligne de
vue doivent être estimées très précisément. Pour ce faire, des petits capteurs CMOS à
faible résolution placés sur cette ligne de visée pourraient détecter le même paysage sous
la ligne de détection du TDI, éventuellement avec de légères perturbations et avec un
faible RSB [107]. Le problème est alors d’effectuer le recalage d’image sous-pixelique,
jusqu’à la limite de bruit, d’un ensemble d’images consécutives de faible RSB du même
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paysage, appelé “TDI ROW” ou simplement “ligne”. Cela devient une tâche non triviale
en raison de différentes conditions externes telles que les erreurs de pointage et les vibra-
tions des satellites. Heureusement aux échelles de temps étudiées (> 500 Hz), les effets
des micro-vibrations sur le satellite peuvent être considérées comme un décalage linéaire
sur la séquence d’images, alors nécessitant seulement de calculer une estimation de dé-
calage global pour toute la ligne (voir figures 4.1 et 4.2). Enfin, en raison de ressources
informatiques limitées, l’algorithme souhaité doit être de faible complexité et doit utiliser
peu de mémoire.

Les limites optimales pour effectuer l’estimation de décalage entre deux images ont
aussi une longue histoire remontant au moins à 1983 [46]. Nous utiliserons leurs derniers
développements [139], [119], [146], [3] qui sera étendu ici à une décalage uniforme multi-
image. Il se trouve que les limites de recalage optimales pour une séquence d’images
sont beaucoup plus précises qu’avec seulement deux images, et le défi est d’atteindre ces
limites.

En résumé, le problème Stab Active se réduit à la réalisation d’une estimation précise
du décalage sous-pixelique multi-image entre N images, où le décalage entre des images
consécutives peut être considéré comme constant. De plus, ce décalage constant est in-
férieur à un dixième de pixel et, en raison de temps d’exposition extrêmement faible, les
images présentent de faibles rapports signal/bruit. L’exigence de faire cela en temps réel
à bord rend cette tâche extrêmement difficile où la plupart des méthodes sont écartées.
Cette étude a été faite sur un ensemble de données simulé fourni par le CNES contenant
des milliers de séquences d’images (ou lignes) qui ont été générées en utilisant quatre
perturbations possibles de la séquence.

En se basant sur la revue des méthodes d’estimation des déplacements présentées
dans ce manuscrit, et en raison des contraintes de temps limitées, seuls deux types de
méthodes ont été envisagés: les méthodes différentielles (ou GBSE) et les méthodes de
corrélation de phase. A priori, la méthode de type GBSE semble l’approche la mieux
adaptée en raison de son faible coût de calcul et de ses résultats sous-pixeliques précis.
En effet, les méthodes de corrélation de phase pourraient obtenir des meilleurs résul-
tats par rapport à des méthodes de type GBSE quand elles sont utilisées sur des images
qui sont fortement déformées, en géométrie ou en intensité [168], mais ce n’est pas le
cas actuel. Il y avait aussi d’autres raisons qui entravaient l’utilisation des approches
de corrélation de phase. A savoir, la nécessité d’utiliser une fenêtrage d’image qui est
prohibitive quand leurs tailles sont petites; le fait que les images pourraient potentielle-
ment avoir des motifs périodiques qui donnent plusieurs pics de corrélation et enfin que
les économies de temps de calcul en utilisant la FFT sont négligeables quand on traite
des petites images. Néanmoins, nous comparons nos résultats à ceux d’une méthode de
corrélation de phase [69] pour confirmer nos affirmations.

Les principaux résultats de ce chapitre sont les suivants:

• L’introduction d’une convolution temporelle qui s’avère obligatoire pour augmenter
les RSB des images d’entrée aidant ainsi les méthodes d’estimation de décalage à
obtenir des résultats plus précis.
• Une validation de la séquence d’image d’entrée en utilisant les bornes inférieures

de Cramer-Rao, que nous obtenons ici pour le cas de un décalage uniforme dans
un scénario multi-image.
• En mettant l’accent sur la méthode GBSE, nous effectuons une étude sur ses biais

et discutons comment réduire son influence.
• Un variante itérative de la méthode de Lucas-Kanade pour l’estimation de dé-

calage, où nous suggérons d’utiliser une méthode d’estimation par gradient par-
ticulièrement adaptée à cette tâche, qui nécessite également moins de ressources de
calcul que les méthodes traditionnelles.
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• Un schéma multi-image glouton pour effectuer l’estimation de décalage qui est
particulièrement destiné à améliorer l’estimation de décalage global en utilisant
la méthode GBSE proposée. En effet, cette approche s’est avérée améliorer la pré-
cision jusqu’à deux ordres de grandeur, tout en réduisant le coût de calcul global.
Cela peut être observé à partir de la table 1.
• À la suite de cette étude, quatre algorithmes candidats ont été proposés au CNES.

Celles-ci ont été conçues sur la base des résultats étudiés et des commentaires du
CNES afin d’être mis en œuvre avec succès dans le satellite. Nous avons décrit
et mis en œuvre deux méthodes à faible coût, une troisième donnant la meilleure
relation coût/performance et une dernière axée sur la précision.
• Plus important encore, une solution basée sur les algorithmes proposés est actuelle-

ment utilisée par le CNES dans un démonstrateur pour recaler des images TDI
en temps réel et est envisagée pour être mise en œuvre dans les futurs satellites
d’observation de la terre.

# Pert. CRLB Alg. 6 Alg. 7 Alg. 8 [159] [69] [7]
1 P0 0.0004 0.0199 0.0029 0.0024 0.0058 0.0024 0.0052
2 P1 0.0004 0.0128 0.0028 0.0155 0.1724 0.2336 0.0319
3 P2 0.0004 0.0494 0.0033 0.0064 0.3420 0.1633 0.0434

4(N) P3 0.0006 0.3099 0.0031 0.0234 3.1045 0.0324 0.0504
5(N) P3 0.0015 2.8468 0.0153 0.0400 1.4983 0.9852 0.0909

6 P0 0.0001 0.0022 0.0011 0.0009 0.0014 0.0011 0.0015
7 P1 0.0003 0.0203 0.0068 0.0365 0.2074 0.1686 0.0137
8 P2 0.0002 0.0085 0.0017 0.0205 1.3908 0.0044 0.0339
9 P3 0.0002 0.0146 0.0010 0.0106 3.7202 0.1477 0.0343

10(ON) P1 0.0019 - - - - - -
11(ON) P1 0.0021 - - - - - -
12(PF) P2 0.0003 0.1244 0.0036 0.0506 3.0708 5.2640 0.4162
13(PF) P2 0.0003 0.1543 0.0019 0.0505 2.9960 2.4721 0.2273
Avg. - 0.0007 0.3239 0.0040 0.0234 1.5009 0.8613 0.0862

Table 1 – RMSE de chaque méthode pour certaines séquences d’images significatives. “Pert”
désigne la perturbation simulée dans la séquence d’images. CRLB indique les bornes inférieures
calculées. Alg. 6 donne la moyenne de tous les décalages estimés à partir d’images consécutives.
L’algorithme glouton proposé (Alg. 7) estime le décalage unique global en calculant toujours le
décalage par rapport à la première image, ce qui réduit indirectement le biais existant dans la
méthode GBSE utilisée. L’algorithme 8 estime le décalage entre la première et la dernière image,
en ignorant les images intermédiaires. Le reste des approches comparées sont des méthodes
d’estimation de décalage basées sur la corrélation de phase.

Chapitre 5: RANSAAC: RANdom SAmpled Aggregated Consen-
sus

Dans les autres chapitres de cette thèse, nous avons étudié le problème des méthodes de
recalages rapides et précises lorsque la transformation sous-jacente était un décalage et
nous avons développé deux applications embarquées pour des satellites d’observation
de la Terre. Dans ce chapitre, nous étudions le problème de recalage d’images avec des
modèles plus complexes. En particulier, nous nous concentrons sur les approches de type
feature-based utilisant des correspondances de points.

Plusieurs applications en vision par ordinateur telles que l’alignement d’images, mosaïques
panoramiques, reconstruction 3D, motion tracking, reconnaissance d’objets, entre autres,
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sont réalisées par des approches de type feature-based. Premièrement, des caractéris-
tiques sont détectées sur les images d’entrée. Ils peuvent être des points avec certaines
caractéristiques spéciales ou des régions d’image distinguées. Sans aucun doute, les
points SIFT de Lowe [96] et les MSER de Matas et al. [105, 106] sont les détecteurs de car-
actéristiques les plus reconnus de chaque catégorie respectivement. La deuxième étape
consiste à attribuer à chaque caractéristique une description unique. Dans le cas des
points, cela se fait en décrivant son environnement [16, 96, 110]. Pour les régions, leurs
silhouettes et les informations de texture contenues sont utilisées [18, 58]. Enfin, les de-
scripteurs des deux images sont appariés pour calculer les correspondances putatives
entre elles. Idéalement, ces correspondances correspondent à des échantillons du mod-
èle sous-jacent à estimer. Malheureusement, tous les correspondances détectées ne sont
pas fidèles au modèle global, donnant de fausses “pistes” à la méthode d’estimation de
la transformation.

Comme expliqué ci-dessus, lors de l’estimation d’une seule transformation globale
basée sur des correspondances de points entre des images, les méthodes existantes doivent
traiter le problème des outliers, c’est-à-dire des correspondances détectées de manière
incorrecte qui ne sont pas représentées par la transformation. Robuste aux outliers,
RANSAC (Random Sample Consensus) est une méthode itérative introduite par Fischler
et Bolles, qui est largement utilisée en vision par ordinateur pour résoudre simultané-
ment le problème de la correspondance tout en estimant la transformation globale im-
plicite. En générant de façon aléatoire des hypothèses sur la transformée correspondant
aux points, il tente de maximiser le consensus dans les données d’entrée afin de déduire
les correspondances cohérentes avec la transformation, appelés “inliers”. RANSAC con-
sidère qu’une correspondance est inlier si la distance entre le point source projeté et son
point d’appariement est inférieure à un paramètre de distance (généralement difficile à
définir) δd. Une fois que les inliers sont discriminés, les paramètres de la transformation
sous-jacente sont estimés en utilisant une technique de régression sur les inliers.

Pour éviter les outliers, au lieu d’utiliser tous les échantillons de l’ensemble de don-
nées pour effectuer l’estimation comme dans les techniques de régression traditionnelles,
RANSAC teste à son tour de nombreux ensembles aléatoires de paires d’échantillons.
RANSAC prend la quantité minimale d’échantillons pour déterminer une transformée
candidate unique, augmentant ainsi ses chances de trouver un échantillon “tous-inliers”,
c’est-à-dire un échantillon non contaminé, exclusivement composé des inliers. Cette
transformée reçoit un score basé sur le cardinal de son ensemble de consensus. Enfin,
l’hypothèse qui a donné le score le plus élevé est sauvegardée.

RANSAC présente plusieurs inconvénients. Tout d’abord, la probabilité que RANSAC
obtienne un résultat raisonnable augmente avec le nombre d’itérations, mais il n’y a pas
la certitude qu’elle arrive à la solution optimale. De plus, les résultats de RANSAC ont un
haut degré de variabilité pour les mêmes données d’entrée, et cette variabilité augmente
avec le nombre de points d’entrée et leur bruit de mesure. Deuxièmement, bien que ro-
buste pour les valeurs aberrantes, RANSAC n’est pas particulièrement immunisé contre
le bruit de mesure sur les données d’entrée, comme illustré sur la Fig. 5.1. Troisième-
ment, le paramètre de distance maximale tolérable δd devrait être suffisamment serré
pour obtenir une transformation précise, mais il doit aussi être libre de trouver suffisam-
ment d’échantillons d’entrée [33]. En raison de ces considérations, la définition de ce
paramètre est une tâche difficile, même en cas de faible bruit de mesure. Enfin et surtout,
la précision de RANSAC est basée sur l’échantillon unique qui a donné le consensus
maximal. Bien que ce choix puisse être précis dans certains cas, il néglige néanmoins
d’autres bons modèles “all-inlier” qui peuvent avoir été générés tout au long des itéra-
tions.

Pour remédier à cela, nous présentons Random Sample Aggregated Consensus (ou
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RANSAAC), une méthode simple mais puissante combinant le schéma de consensus
aléatoire avec une approche statistique. En agrégant les hypothèses aléatoires pondérées
à l’aide de leurs cardinaux d’ensembles d’inliers, l’approche proposée améliore systéma-
tiquement sur RANSAC. Nous donnons des implémentations pratiques de cette idée sur
les modèles de transformation paramétrique 2D, en proposant une stratégie simple pour
accélérer drastiquement les calculs. Cette stratégie est basée sur la pré-définition d’un
ensemble de points d’echantillonnage situés sur les extensions de l’image source, puis
en les projetant pour chaque hypothèse générée sur la deuxième image et enfin en agré-
gant indépendamment les projections pour chaque point en utilisant les scores RANSAC
obtenus pour obtenir un ensemble de correspondances de taille minimal final qui peut
être utilisé pour générer la transformation globale. Cette procédure est illustrée dans la
figure 5, montrant les résultats de plusieurs méthodes d’agrégation.

Ses principaux avantages par rapport au RANSAC traditionnel sont:

• Les résultats sont à la fois plus précis et avec moins de variabilité (en termes d’écart-
type de l’erreur). L’amélioration par rapport à l’approche traditionnelle RANSAC
est en moyenne de deux à trois, et est encore plus importante avec un niveau de
bruit plus élevé, plus d’inliers disponibles et des rapports des outliers plus élevés.
De plus, il améliore systématiquement toutes les autres extensions RANSAC exis-
tantes.
• L’amélioration de la précision persiste après l’inclusion de l’étape de régression

finale dans RANSAC et ses variantes, même sans la faire dans RANSAAC.
• Comme pour la méthode RANSAC d’origine, la précision est considérablement

améliorée par l’ajout d’une étape d’optimisation locale qui semble en fait adaptée à
notre approche car elle évite de jeter les modèles intermédiaires générés.
• De plus, en incluant cette étape, le critère d’arrêt adaptif théorique devient plus

réaliste et peut être utilisé pour arrêter efficacement les itérations sans affecter la
précision finale.
• En utilisant la méthode de moyennage des transformations 2D proposée, le coût de

calcul supplémentaire est presque négligeable.
• La robustesse contre le bruit de mesure est considérablement améliorée dans le cas

des distributions de bruit avec densités de probabilités symétriques.

Dans la Fig. 6, on observe la performance en faisant varier les conditions de bruit de
l’approche proposée par rapport aux méthodes de l’état de l’art dans des différentes rap-
ports inlier/outlier. Toutes les méthodes comparées incluent la minimisation des moin-
dres carrés comme dernière étape. Notez que la méthode USAC n’est pas en mesure de
retourner des résultats pour le cas de 75% des outliers.

En effet, l’une des propriétés les plus remarquables de RANSAAC est sa robustesse
face à des rapports des outliers très élevés. Les résultats qui le prouvent sont indiqués
dans le Tableau 2 où nous avons testé les meilleures méthodes sous 90% des outliers.
On peut observer que l’adaptation directe de la méthode d’optimisation locale dans le
cadre RANSAAC obtient des résultats proches de ce qui aurait été obtenu si un oracle
discriminant les inliers avait été utilisé, dans un scénario où la méthode USAC, consid-
érée aujourd’hui comme la méthode a battre dans l’état de l’art, n’a pas été capable de
retourner un résultat.
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Figure 5 – Distributions de points résultants redimensionnées en fonction de leur poids et zoom
sur chacun des quatre coins en faisant 1000 itérations. À des fins de visualisation, les points à
faible poids n’ont pas été inclus. Notation: wmean et wgmed sont respectivement la moyenne
pondérée et la médiane géométrique pondérée. gmed et 2dmed représentent les résultats
agrégés en utilisant la médiane géométrique (non pondérée) et la médiane 1D sur les deux di-
mensions respectivement. Il est conseillé au lecteur de zoomer pour mieux voir les positions des
estimations.
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Figure 6 – Erreurs moyennes Ē et leurs écarts types σE en faisant varier le bruit pour plusieurs
variantes RANSAC et RANSAAC. Conditions: 1000 inliers, différentes quantités d’outliers et en
faisant 1000/10000 itérations. Première file: 50% outliers. Dernière file: 75% outliers et 10k
itérations.

σ LO+ wmean LO+ wgmed RANSAC+LS LO-RANSAC USAC LS (or-
acle)

10k 20k 10k 20k 10k 20k 10k 20k 10k 20k -
2 0.53 0.46 0.36 0.31 49.15 19.90 16.68 1.76 − − 0.28
5 1.35 1.38 0.94 1.15 23.94 27.69 4.35 6.30 − − 0.74

Table 2 – Test avec rapport des outliers élevé: Erreurs moyennes des deux méthodes d’agrégation
pour RANSAAC et LO-RANSAAC+, comparé au RANSAC avec la minimisation des moindres car-
rés (DLT), LO-RANSAC, USAC et en calculant les moindres carrés (DLT) sur les inliers sélection-
nées avec un oracle. Pour les bruits σ= 2 et 5, chaque méthode a été évaluée avec 1000 inliers
utilisant 10000 et 20000 itérations et 90% outliers. Les moyennes sont faites sur 50 réalisations.
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Résumé des contributions

• Une étude approfondie des méthodes d’estimation rapide et précise des déplace-
ments, ainsi qu’une recette pratique indiquant quand et comment utiliser chaque
approche.

• Une nouvelle méthode pour l’estimation des décalages dans le contexte des cap-
teurs de front d’onde Shack-Hartmann utilisés sur des scènes étendues. Utilisant
peu de ressources, cette méthode est appropriée pour être utilisée à bord des futurs
satellites d’observation de la Terre.

• Une méthode précise d’estimation de décalage multi-image utilisée pour la stabil-
isation d’image des capteurs CMOS TDI pour augmenter le RSB des images satel-
litaires de la Terre. La méthode proposée a déjà été testée par la CNES dans un
démonstrateur pour recaler les images TDI et est candidat à être implémenté dans
la prochaine génération de satellites d’observation de la Terre.

• Une modification simple mais efficace de l’algorithme RANSAC qui améliore les
méthodes de l’état de l’art en combinant l’idée de maximiser le consensus en éval-
uant des échantillons aléatoires de cardinalité minimale avec une approche statis-
tique réalisant une agrégation d’estimations.

• Au cours de cette thèse, l’auteur a collaboré avec Nicola Pierazzo sur le débruitage
des images. Cela a eu comme résultats:

– une méthode qui, par factorisation de l’espace de patch, a permis d’accélérer la
méthode de Levin et Nadler [93] qui recherche les limites absolues de débruitage
des images par patch, par un facteur de 1000 tout en maintenant la prétention
théorique d’optimalité.

– l’algorithme NLDD, qui est une amélioration par rapport à la nouvelle méth-
ode DDID [84] en l’utilisant comme approche de débruitage post-traitement,
et en la combinant avec NL-Bayes ou BM3D, deux méthodes de débruitage de
l’état de l’art.

– la méthode DA3D, qui fonctionne aussi comme un débruitage de dernière
étape en prenant comme entrée les résultats d’autres algorithmes de débruitage,
et de les améliorer, tant en termes de PSNR qu’en ce qui concerne la qualité vi-
suelle.

• L’auteur a également collaboré avec l’Université de Buenos Aires dans le cadre du
programme de coopération scientifique Stic-AmSud. Le résultat de cette coopéra-
tion a été un travail sur le traitement audio qui a évalué plusieurs caractérisiques
extraites de l’audio afin de être capable de reconnaître entre de la musique, la voix
ou autres sons provenant de l’environnement.
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Chapter 1

Introduction

In this thesis, we study the problem of image registration. Two or more images are said to
be registered when a unique coordinate system can be used to address the same content
for every image. This is equivalent to first designating a reference image or coordinate
system, and then align all images of the same scene with respect to it by applying geomet-
ric transformations. In particular, we first study the problem when the transformations
are 2D translations, by focusing on speed and accuracy. Finally, we expand to other more
complex transformation types.

This thesis starts with an in-depth study of fast and accurate sub-pixel shift estimation
methods. We focus on two distinct types: gradient-based methods working in the spatial
domain and phase correlation methods working in the frequency domain. A full compar-
ison is performed based on the common shift estimation problems occurring in real-life
applications, namely, varying SNR conditions, different displacement magnitudes, non-
preservation of the brightness constancy constraint, aliasing, and most importantly, lim-
ited computational resources. The most important result from Chapter 2 is an in depth
review of the most important shift estimation method, together with a practical recipe
indicating which methods to use in which circumstances.

Based on this study, in collaboration with CNES (the French space agency), two prob-
lems that are crucial for the digital optics of earth-observation satellites were analyzed
in chapters 3 and 4, and tentative solutions were proposed for each of them. The major
constraint faced in both cases was the need for on-board real-time processes, using few
computational resources. Yet optimal numerical solutions must be found for both prob-
lems. Indeed both were termed essential to be able to reach high PSNRs in Earth imaging
and to avoid the optical aberrations caused by the large size of a light telescope.

We first study in Chapter 3 the wavefront correction problem based on a fast wave-
front sensing and on-board correction. We propose a fast and accurate algorithm to mea-
sure the wavefront aberrations on a Shack-Hartmann Wavefront Sensor (SHWFS) device
observing the earth. This sensor is generally used on the observation of stars to cor-
rect aberrated wavefronts caused by rays passing through the earth’s atmosphere. We
propose in this chapter a review of state-of-the-art methods for SHWFS used instead
on extended scenes (such as the earth). We devise a new method for improving wave-
front estimation when observing the earth, based on a carefully refined gradient-based
approach. This method takes advantage of the small shifts observed in a closed-loop
wavefront correction system, yielding an improved accuracy with fewer computational
resources. To perform an extensive comparison of the proposed approach with state-of-
the-art methods, a simulator was created following the provided CNES specification.

When dealing with extended scenes, it is of vital importance to detect whether the
current observed landscape is suitable for accurate numerical wavefront sensing. To this
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16 INTRODUCTION

end, two methods are proposed. The first one is based on a numerical adaptation of the
(theoretical) lower bounds of image registration obtained by Cramer-Rao Lower Bound
(CRLB). The second method is a fast test that discards landscapes based on the gradient
distribution, inferred from the eigenvalues of the tensor matrix.

The main result obtained from this chapter is a new method, together with a prevali-
dation procedure, that improves on the existing state-of-the-art methods used for scene-
based SHWFS on both accuracy and processing time.

The second satellite-based application addressed in Chapter 4 is the numerical design
of a new generation of smart Time Delay Integration (TDI) images. In this new concept,
active real-time stabilization of the TDI is performed to extend considerably the integra-
tion time, and therefore to boost the SNR of captured images. The stripes of the TDI
cannot be fused directly by addition because their position is altered by microvibrations
and other geometric perturbations. These must be compensated using limited onboard
computational resources with high subpixel accuracy and in real time. We study the
fundamental performance limits for this problem and propose a real-time solution that
nonetheless gets close to the theoretical limits. We introduce a scheme using temporal
convolution together with online noise estimation, gradient-based shift estimation and a
non-conventional multiframe method for measuring global displacements. We compare
our results with the theoretical bounds and other state-of-the-art methods. The results
are conclusive on the fronts of accuracy and complexity and have strongly influenced the
final decisions on the future configurations of Earth observation satellites at CNES.

Finally, during this thesis, the author also worked on multi-scale image fusion of
paintings taken by low-cost commercially available cameras. As a spin-off of this project,
a new method performing accurate robust model estimation through point matches be-
tween images is proposed in Chapter 5. The difficulty coming from the presence of out-
liers and noisy measurements causes the failure of traditional regression methods. In
computer vision, RANSAC is definitely the most used method, able to deal with out-
liers while performing model estimation. Its success is mainly due to its straightfor-
ward implementation, highly accurate results and fast processing times. It is able to
discriminate outliers by randomly generating minimalist sampled hypotheses and veri-
fying their consensus over the input data. However, its response is based on the single
random sample that achieved the largest inlier support, while discarding all other po-
tentially useful generated hypotheses. In this thesis we show that the resulting accuracy
can be improved by aggregating all hypotheses generated in the course of the RANSAC
search. This yields RANSAAC, a framework that improves systematically over RANSAC
by statistically aggregating hypotheses. We also proposed a simple strategy that allows
to rapidly average 2D transformations, leading to an almost negligible extra computa-
tional cost. We give practical applications to estimate projective transforms and homog-
raphy+distortion transforms. By including a straightforward adaptation of the Locally
Optimized RANSAC in our framework, the proposed approach improves over every
other available state-of-the-art method. A complete analysis of the proposed approach
and an extensive comparison with most state-of-the-art algorithms have been performed,
demonstrating improved accuracy, stability and versatility.

In this introduction, we give an overview of each of the chapters of this thesis, to-
gether with their main results.

1.1 Chapter 2: Review of Global Subpixel Shift Estimation Meth-
ods

The problem of global subpixel shift estimation appears in several applications related to
image processing. When high accuracy is not required, most authors tend to use the well-
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known cross-correlation method which usually meets the performance requirements for
such tasks. However, under more demanding accuracy constraints, cross-correlation ap-
proaches are either not accurate enough or their computational costs are prohibitive.
Moreover, problems such as time constraints, varying illumination conditions, aliasing,
among several others, complicate the shift estimation task. What is worse, there is little
know how about the choice of the adapted shift estimation method.

This chapter offers a detailed analysis on fast and accurate shift estimation methods.
Since low computationally intensive methods are required, we focus only on differential
methods and phase correlation approaches, offering a complete study on both method-
ologies. Here, we tackle the case where both images have the same size and are con-
taminated by white Gaussian noise with the same standard deviation. We focus on the
case where the 2D displacement is smaller than one pixel in both dimensions and that
the brightness constancy constraint holds, nevertheless we perform tests validating the
performance of each when these conditions do not hold. Our objective is therefore to give
a practical recipe showing which methods are more suited depending on the conditions
of the task. By quantizing the various variations of the conditions, we evaluate on each
of them more than a thousand variants of shift estimation methods, and summarize the
results here.

Differential methods, also known as Gradient-Based Shift Estimation (GBSE), relate
the difference between two successive frames to the spatial intensity gradient of the first
image. This relationship is obtained by approximating the shifted image by its first order
Taylor approximation. The shift can then be easily estimated using linear least squares
minimization, as originally proposed by Lucas and Kanade [97]. However, more elabo-
rate methods can be applied to achieve higher precision. Total least squares minimiza-
tion [80, 181] slightly improves the results, although it requires the estimation of the sin-
gular value decomposition. In fact, the GBSE method is biased [119, 139]. An indirect
way to reduce this bias is through iterative procedures [12, 119] or multiscale adapta-
tions [131, 167], which used together, yield excellent results using few computational re-
sources. Other approaches that reduce the influence of the bias are the corrected gradient
estimation method [81] and the bidirectional bias correction approach [122]. We also an-
alyzed the influence of gradient estimation and the interpolation method used within
GBSE approaches. We observed that choosing the correct method could yield improve-
ments up to an order of magnitude and are critical for improving the performance of
the method.

Phase correlation methods are based on the fact that most of the information about the
relative displacements of objects between two images is contained in the phase of their
cross-power spectrum. Several methods exploit this to estimate the displacement both
in the Fourier and the spatial domain. These methods require the computation of the
discrete Fourier transform (DFT), which could be prohibitive in certain scenarios. Nev-
ertheless, they are able to achieve very accurate results without further computational
effort, and they can be used when images are seriously distorted, in either geometry
or intensity. Most methods estimate the shift by fitting a function to the phase correla-
tion matrix, obtained by applying the inverse Fourier transform of the cross-power spec-
trum [1, 8, 57, 69, 132, 134, 162]. Other methods compute the shift directly in the Fourier
domain [13, 85, 151, 159].

As a drawback, phase correlation approaches assume circular shifts between images.
Since in general, the shift between both images is a simple linear shift rather than a cir-
cular shift, windowing functions are employed to mitigate problems related to image
edges, by performing an apodization of the input images. For images that have repeat-
ing objects, phase correlation may also yield ambiguous results with several correlation
peaks, and its use on those cases is not advisable.

17



18 INTRODUCTION

Subspace phase correlation methods search for one dimensional representations of
the images to then estimate both shifts independently. One of such representations is
obtained by taking the image projection in each dimension [5, 138]. Then the shift is es-
timated either using 1D versions of the phase correlation approach, either by correlating
their gradient [135]. Another method, based on the fact that the phase correlation ma-
trix obtained from noiseless images is of rank-1, computes the shift from both its left and
right singular vectors [75].

Other studied approaches are based on correlating gradient information. First intro-
duced by Argyriou et al. [7], several works followed [135, 178, 179]. In our experiments,
gradient correlation approaches yielded more accurate and consistent results than phase
correlation methods, and proved to be more robust against noise and aliasing. Neverthe-
less, they did not achieve as accurate results as GBSE approaches, particularly with small
shift magnitudes. Indeed, we observed that GBSE approaches seems to be more accu-
rate and tolerant to noise than phase-correlation methods. They are also computationally
cheaper and more stable. However, when the estimated shifts are large, they must be
used within pyramidal multiscale approaches which tend to reduce their stability. What
is more, when both images to register differ, GBSE approaches proved to be less tolerant
than phase correlation methods. We refer the reader directly to the conclusions of sec-
tions 2.4.2, 2.4.3, 2.4.4, 2.4.5 and 2.4.6 for a brief summary of this chapter. Nevertheless,
in Fig. 1.1 we compare the general performance (by averaging among all discretized shift
magnitudes evaluated and all noise levels) of the most representative methods. Methods
beginning with LS, TLS, ULS, CLS and MS all refer to GBSE approaches, GC denotes
gradient correlation and PC phase correlation.
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Figure 1.1 – Average execution time (log scale) vs accuracy for some representative methods
averaged over the first three shift magnitudes and all noise levels. The meaning of the principal
prefixes are: LS = least squares, TLS = total least squares, MS = multiscale, CLS = corrected
least squares, ULS = bidirectional bias corrected least squares, GC = gradient correlation, PC =
phase correlation.

The analysis made in this chapter is of key importance for the rest of this thesis, par-
ticularly for chapters 3 and 4, where two remote sensing applications arising from earth-
observation satellites are analyzed.
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1.2 Chapter 3: Improving wavefront sensing with a Shack Hart-
mann device

In order to achieve higher resolutions, current earth-observation satellites use larger light-
weight primary mirrors that can deform over time, impacting on image quality [21, 52].
We evaluated the possibility of compensating these deformations directly in the satellite
by combining a deformable mirror with a Shack-Hartman wavefront sensor (SHWFS)
while observing the earth. The SHWFS uses an array of lenslets to measure the deforma-
tion of the incoming wavefront. The shift of each lenslet focal plane image is proportional
to the mean slope of the wavefront in the subaperture onto this lenslet. It therefore yields
a discrete local approximation of the slope of the wavefront, as observed from Fig. 1.2,
which is later used to approximate the actual wavefront.

Figure 1.2 – A Shack-Hartmann Wavefront Sensor measures the wavefront by computing the
local shifts between the detected spots (in green) and the reference crosses (in black), which
would occur if no deformation were present.

Shack-Hartmann wavefront sensors are frequently employed in astronomy to mea-
sure the wavefront aberrations produced by the atmospheric turbulence. They work by
imaging a point source such as a star, and estimate the relative displacement between
a reference image and all other subimages. Their performance is directly linked to the
accuracy of the shift estimation algorithm, which must be computationally cheap to be
executed on-board.

When observing the earth from space this task becomes more challenging. In particu-
lar, the shift estimation task has to be performed using extended scenes. The problem of
shift estimation using SHWFS on extended sources has been addressed before, dating as
far back as the work of Michau et al. in 1993. These approaches can be divided in: corre-
lation methods either in the space [95,108,109] or frequency domain [85,95,124,151,153],
phase correlation methods [85, 159], and iterated methods [68, 151, 153], which progres-
sively improve the estimation.

Based on the study performed in Chapter 2, we propose a new shift estimation method
that is based on the GBSE approach. This method exploits the fact that the wavefront
correction is done in a closed loop so that aberrations on the mirror would translate into
small displacements on the SHWFS subapertures. In fact, assuming displacements below
half of a pixel, depending on the available computational resources, we propose to use
the Lucas and Kanade [97] gradient-based method estimating the image derivatives us-
ing the Simoncelli [154] approach. If more resources are available, we propose to iterate
the method by resampling the images in the Fourier domain [20].
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Since the wavefront sensing is performed on board by observing the earth, it is impor-
tant to verify if the current landscape observed by the satellite is suitable for performing
an accurate measurement of the wavefront. To this end, we propose two methods. The
first one is a numerical adaptation of the (theoretical) lower bounds of image registration
obtained by Cramer-Rao Lower Bound (CRLB), and the second one is a fast test based
on the gradient distribution, inferred from the eigenvalues of the tensor matrix, which if
used in conjunction with the GBSE method, does not imply further computational costs.
Both proposed tests were able to correctly discard potentially ambiguous cases.

In our experiments, the proposed shift estimation methods proved to be more accu-
rate and stable, as well as less sensitive to noise than all the state-of-the-art approaches,
permitting a more precise on-board wavefront estimation. This can be observed from
Fig. 1.3, where state-of-the-art methods are compared to both proposed variants using
two different test images extracted from a high resolution satellite image of the city of
Cannes.
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Figure 1.3 – Performance for non-iterative and iterative methods. Top: First test image. Bottom:
Second test image. Left: Non-iterative methods. Right: Iterative methods.

More important wavefront aberrations translates to larger displacements to estimate
in the SHWFS device. In this case, a multiscale approach was adopted for the GBSE
method. Again, results in Fig. 1.4 show that our approach improves over the state-of-the-
art methods.

Our contribution in this chapter is therefore threefold. We begin with a review of the
state-of-the-art on wavefront correction using SHWFS on extended scenes. Second, to es-
timate the displacements, we propose the use of an iterative global GBSE method which
presents several advantages over the conventional correlation methods. Finally, we pro-
pose a fast and effective method for scene preselection that adds almost no computational
cost.
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Figure 1.4 – Average error and standard deviations of selected methods and two variants of the
GBSE approach when simulating wavefront aberrations yielding displacements of up to 4 pixels.
Left: First test image. Right: Second test image.

1.3 Chapter 4: Stab-Active: stabilizing on board image accumu-
lation

Push broom imagers placed on satellites are used to perform Earth observation at high
resolution [19,59]. Because they are close to the Earth (≈ 800 km), they move fast and the
image acquisition time is very brief. The solution to avoid motion blur is to use Time De-
lay Integration (TDI) on the satellite’s imaging sensor, which, by synchronizing moving
pixels with the motion of the camera or the object, is able to increase the effective expo-
sure time. This sensor works by shifting the partial measurements of its multiple rows to
their adjacent rows synchronously with the motion of the image across the array of ele-
ments. This synchronous accumulation yields an SNR unobtainable using conventional
CCD arrays or single-line-scan devices. However, it places stability constraints on the
imaging device. To relax these constraints limiting the accumulation time, we evaluated
if performing on board registration and accumulation was possible.

Envisaging the use of a CMOS TDI allows to correct the accumulation procedure by
resampling the incoming signal. This permits to avoid motion blur while accumulating
many more frames thus obtaining much higher SNRs. Yet this new imaging method
raises new technical issues. A prerequisite is that the perturbations of the line of sight
must be estimated very accurately. To this aim, little low resolution CMOS sensors set
along this line of sight could sense the same landscape underneath the TDI’s detection
line, possibly under slight perturbations and with a low SNR [107]. The problem is then
to perform subpixel image registration, up to the noise limit, of a set of consecutive low
SNR images of the same landscape, known as a “TDI ROW” or simply “line”. This
becomes a non-trivial task due to different external conditions such as pointing errors
and satellite vibration. Luckily at the studied time scales (> 500Hz), the satellite micro-
vibrations can be considered a linear shift over the image sequence, requiring only to
compute a global translation estimate for the whole line (see figures 4.1 and 4.2). Finally,
due to limited hardware resources, the desired algorithm must be low demanding in both
memory and processing speed.

The optimal bounds for performing shift estimation between two images also have
a long history going back at least to 1983 [46]. We shall use their latest developments
[139], [119], [146], [3] which will be extended here to a multi-image uniform translation.
It so happens that the optimal registration bounds for an image sequence are much more
accurate than with only two images, and the challenge is to reach these bounds.

In summary, the Stab Active problem reduces to performing accurate multi-image
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subpixel shift estimation between N images, where the shift between consecutive im-
ages could be assumed constant. What is more, this constant shift is lower than a tenth
of a pixel and, due to extremely low exposure times, images have low signal to noise
ratios. The requirement of doing this in real-time on-board using low-power satellite-
grade hardware makes this an extremely challenging task where most methods had to be
discarded beforehand. This study was tested on a simulated dataset provided by CNES
containing thousands of image sequences (or lines) which were generated using four
possible perturbations to the sequence.

Based on the review of shift estimation methods presented in the first chapter of
this manuscript, and due to the limited time constraints, only two types of methods
were considered, namely, differential (i.e. gradient-based) and phase-correlation meth-
ods. A priori, GBSE method seems the best suited approach due to its low computa-
tional cost and its accurate subpixel results. Indeed, phase correlation methods could
improve over GBSE when used on images that are severely distorted, in either geome-
try or intensity [168], however this is not the current case. There were also other rea-
sons that hindered the use of phase correlation approaches. Namely, the necessity to use
image apodization which is prohibitive on small images; the fact that images could po-
tentially have periodic patterns that yield several correlation peaks and finally, that the
computational time savings by using the FFT are negligible due to the small image sizes
dealt here. Nevertheless, we compare our results with those of a phase-correlation-based
method [69] to prove our claims.

The key results from this chapter are:

• The introduction of a temporal convolution which proves mandatory to increase the
SNR of input images thus helping GBSE methods to achieve more accurate results.
• A validation of the input image sequence by involving the Cramer-Rao Lower

Bounds, which we derive here for the case of uniform translation in a multi-image
scenario.
• By focusing on the GBSE method, we perform a study on its bias and discuss how

to reduce its influence.
• An iterative variant of the Lucas-Kanade GBSE method for shift estimation, where

we suggest to use a gradient-estimation method particularly suited for this task,
which also requires fewer computational resources than traditional methods.
• A greedy multi-frame scheme to perform shift estimation that is particularly aimed

at improving the global shift estimation using the proposed GBSE method. Indeed,
this approach proved to improve the precision by up to two orders of magnitude,
while reducing the overall computational cost. This could be observed from Table
1.1.
• As a result, four possible algorithms were proposed to CNES. These were designed

based on the studied results and CNES’ comments in order to be successfully im-
plemented in the satellite. We described and implemented two low cost methods, a
third one giving the best cost/performance relationship and a last one focusing on
accuracy.
• Most importantly, a solution based on the proposed algorithms is currently being

used by CNES in a on-ground demonstrator to register TDI images in real-time and
is envisaged to be implemented in the next earth-observation satellites.

1.4 Chapter 5: RANSAAC: RANdom SAmpled Aggregated Con-
sensus

In the other chapters of this thesis, we studied the problem of fast and accurate regis-
tration methods when the underlying transformation was a shift, and developed two on
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# Pert. CRLB Alg. 6 Alg. 7 Alg. 8 [159] [69] [7]
1 P0 0.0004 0.0199 0.0029 0.0024 0.0058 0.0024 0.0052
2 P1 0.0004 0.0128 0.0028 0.0155 0.1724 0.2336 0.0319
3 P2 0.0004 0.0494 0.0033 0.0064 0.3420 0.1633 0.0434

4(N) P3 0.0006 0.3099 0.0031 0.0234 3.1045 0.0324 0.0504
5(N) P3 0.0015 2.8468 0.0153 0.0400 1.4983 0.9852 0.0909

6 P0 0.0001 0.0022 0.0011 0.0009 0.0014 0.0011 0.0015
7 P1 0.0003 0.0203 0.0068 0.0365 0.2074 0.1686 0.0137
8 P2 0.0002 0.0085 0.0017 0.0205 1.3908 0.0044 0.0339
9 P3 0.0002 0.0146 0.0010 0.0106 3.7202 0.1477 0.0343

10(ON) P1 0.0019 - - - - - -
11(ON) P1 0.0021 - - - - - -
12(PF) P2 0.0003 0.1244 0.0036 0.0506 3.0708 5.2640 0.4162
13(PF) P2 0.0003 0.1543 0.0019 0.0505 2.9960 2.4721 0.2273
Avg. - 0.0007 0.3239 0.0040 0.0234 1.5009 0.8613 0.0862

Table 1.1 – RMSE of each method for some meaningful image sequences. “Pert” refers to the
perturbation simulated in the image sequence. CRLB indicates the lower bounds calculated.
Alg. 6 returns the average of all shifts estimated from consecutive images. The proposed greedy
Alg. 7 estimates the global unique shift by always computing the shift with respect to the first
image, which indirectly reduces the bias existing in the used GBSE method. Alg. 8 estimates the
shift directly between the first and the last frame, ignoring intermediate images. The rest of the
compared approaches are state-of-the-art phase-correlation-based shift estimation methods.

board applications to earth-observation satellites. The presented approaches assumed
small displacements between the input images. In this chapter we study the problem of
image registration under more complex models. In particular, we focus on feature-based
approaches using point matches.

Several applications in computer vision such as image alignment, panoramic mosaics,
3D reconstruction, motion tracking, object recognition, among others, are performed by
feature-based approaches. First, characteristic image features are detected on the input
images. They can be points with some special characteristic or distinguished image re-
gions. Undoubtedly, SIFT points from Lowe [96] and MSERs from Matas et al. [105, 106]
are the most recognized feature detectors of each category respectively. The second step
is to assign to each feature a unique description. In the case of points, this is done by
describing its surroundings [16, 96, 110]. For regions, their silhouettes and the contained
texture information are employed [18, 58]. Finally, the descriptors of both images are
matched to compute putative matches between them. Ideally, these matches correspond
to samples of the underlying model to be estimated. Unluckily, not all detected matches
are faithful to the global model, yielding false “clues” to the transformation estimation
method.

As explained above, when estimating a single global transformation based on mul-
tiple point matches between images, existing methods have to deal with the problem of
outliers, i.e., incorrectly detected matches that are not represented by the transformation.
Robust to outliers, the Random Sample Consensus (RANSAC) is an iterative method
introduced by Fischler and Bolles [55], widely used in computer vision to simultane-
ously solve the correspondence problem while estimating the implicit global transforma-
tion. By randomly generating hypotheses on the transform matching the points, it tries
to achieve a maximum consensus in the input dataset in order to deduce the matching
points coherent with the transformation, called inliers. RANSAC considers a match to be
inlier if the distance between the projected source point and its matching point is lower
than a (usually difficult to define) distance parameter δd. Once the inliers are discrimi-
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nated, the parameters of the underlying transformation are estimated using a regression
technique on the inliers.

To avoid outliers, instead of using every sample in the dataset to perform the esti-
mation as in traditional regression techniques, RANSAC tests in turn many random sets
of sample pairs. RANSAC takes the minimum sample size (MSS) to determine a unique
candidate transform, thus incrementing its chances of finding an “all-inlier” sample, i.e.,
an uncontaminated sample exclusively composed of inliers. This transform is assigned
a score based on the cardinality of its consensus set. Finally, the hypothesis that yielded
the highest score is saved.

RANSAC has several drawbacks. First, the probability that RANSAC obtains a rea-
sonable result increases with the number of iterations, however it may never reach the
optimal solution. What is more, RANSAC results have a high degree of variability for the
same input data, and this variability increases with the number of input points and their
measurement noise. Second, although robust to outliers, RANSAC is not particularly
immune to measurement noise on the input data, as illustrated on Fig. 5.1. Furthermore,
the optional final minimization step weighs uniformly the assumed inlier match, ignor-
ing wether they are real inliers or how strongly they may be affected by noise. Third, the
maximum tolerable distance parameter δd should be sufficiently tight to obtain a precise
transformation, however it must also be loose to find enough input samples [33]. Be-
cause of such considerations, setting this parameter is a difficult task, even under low
measurement noise. Finally and most importantly, the accuracy of RANSAC is based
on the single sample which gave the maximal consensus. Although this choice may
be accurate in some cases, it nevertheless discards other good all-inlier models that may
have been generated throughout the iterations.

To make up for this, we present Random Sample Aggregated Consensus (RANSAAC),
a simple yet powerful method combining the random sample consensus scheme with a
statistical approach. By aggregating the random hypotheses using their consensus set
cardinalities, the proposed approach improves systematically on RANSAC. We give prac-
tical implementations of this idea on 2D parametric transformation models, by propos-
ing a simple strategy to drastically accelerate the computations. This strategy is based on
predefining a MSS of points located on the image extents of the source image, followed
by projecting them for every generated hypothesis onto the second image, and finally
aggregating independently the projections for each point using the obtained RANSAC
scores to obtain a final MSS that can be used to generate the final transformation. This
procedure is illustrated in Fig. 1.5, showing the results of several aggregation methods.

Its main benefits over traditional RANSAC are:

• Results are both more accurate and with less variability (in terms of standard devi-
ation of the error). The improvement over the traditional RANSAC approach is on
average by a factor of two to three, and is even more important with higher noise,
more inliers available, and higher outlier ratios. Moreover, it improves systemati-
cally over other state-of-the-art RANSAC extensions.
• The accuracy improvement persists after including the final regression step in RANSAC

and its variants, even without using a last-step optimization in RANSAAC.
• As with the original RANSAC method, the accuracy is dramatically improved by

adding a local optimization step, which in fact seems suited for our approach be-
cause it avoids discarding the generated intermediate models.
• Also, by including this step, the theoretical adaptative stopping criterion becomes

more realistic and can be used to effectively stop the iterations without affecting the
final accuracy.
• By using the proposed 2D transformation averaging method, the extra computa-

tional cost is almost negligible.
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Figure 1.5 – Resulting point distributions resized according to their weights and zoom in on each
one of the four corners for 1000 iterations. For visualization purposes, points with low weights
were not included. Notation: wmean and wgmed are the weighted mean and the weighted ge-
ometric median aggregation respectively. gmed and 2dmed represent aggregated results using
(unweighted) geometric median and 1D median on both dimensions respectively. The reader is
advised to zoom in to see better the positions of the various estimates.
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• Robustness against measurement noise is drastically improved for the case of noise
distributions with symmetrical pdfs.

In Fig. 1.6 we observe the performance by varying noise conditions of the proposed
approach compared to state-of-the-art methods under different inlier/outlier conditions.
All compared methods include the last-step least squares minimization. Note that the
USAC method is not able to return any results for the case of 75% outliers.

Indeed one of the most remarkable properties of RANSAAC is its robustness against
very high outlier ratios. Results proving this are shown in Table 1.2 where we tested the
best methods under 90% outliers. One can observe that the straightforward adaptation of
the local optimization method into the RANSAAC framework gets results close to what
would have been obtained if an oracle that discriminates the inliers had been used, in a
scenario where the state-of-the-art USAC method was not able to return any result.
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Figure 1.6 – Avg. errors Ē and their standard deviations σE by varying noise for several RANSAC
and RANSAAC variants. Experiment: 1000 inliers, different amounts of outliers and doing
1000/10000 iterations. First row: 50% outliers. Bottom row: 75% outliers and 10k iterations.

σ LO+ wmean LO+ wgmed RANSAC+LS LO-RANSAC USAC LS (or-
acle)

10k 20k 10k 20k 10k 20k 10k 20k 10k 20k -
2 0.53 0.46 0.36 0.31 49.15 19.90 16.68 1.76 − − 0.28
5 1.35 1.38 0.94 1.15 23.94 27.69 4.35 6.30 − − 0.74

Table 1.2 – High outlier ratio test: average errors of both aggregation methods for RANSAAC
and LO-RANSAAC+, compared with RANSAC with last step least squares minimization (DLT),
LO-RANSAC, USAC and computing LS on the inliers with an oracle. For noises σ=2 and 5, each
method was evaluated with 1000 inliers using both 10000 and 20000 iterations and 90% outliers.
The averages are over 50 realizations.

26



1.5. Summary of contributions 27

1.5 Summary of contributions

• An in depth study of fast and accurate shift estimation methods, together with a
practical recipe indicating when and how to use each approach.

• A new method for shift estimation in the context of Shack-Hartmann Wavefront
Sensors used on extended scenes. Using few resources, this method is suitable to
be used on board of future earth-observation satellites, and competes with phase-
diversity methods for a satellite implementation.

• An accurate multi-image shift estimation method used for image stabilization of
CMOS TDI sensors to increase the SNR of Earth satellite images. The proposed
method has already been tested by CNES in an on-ground demonstrator to register
TDI images and is a strong candidate to be implemented in the next generation of
earth-observation satellites.

• A simple but effective modification to the RANSAC algorithm that improves over
the state-of-the-art methods by combining the random consensus idea of testing
samples with minimal cardinality with a statistical approach performing an aggre-
gation of estimates.

• During this thesis, the author collaborated with Nicola Pierazzo on image denois-
ing. This resulted in

– a method that by factorizing the patch space, achieved speeding up the method
of Levin and Nadler [93] that search for the absolute limits of patch-based
image denoising, by a factor of a thousand while maintaining the theoretical
claim of optimality.

– the NLDD algorithm, that improved over the recent DDID method [84] by
using it as a post-process denoising approach, combining it with NL-Bayes or
BM3D, two state-of-the-art denoising methods.

– the DA3D method, which also works as a last-step denoising by taking as
input the results from other denoising algorithm, and almost always improve
them, both in terms of PSNR and particularly with respect to visual quality.

• The author also collaborated with the University of Buenos Aires under the Stic-
AmSud program of scientific cooperation. The result of this cooperation was a
work on Audio processing that evaluated several features extracted from the audio
in order to gain recognition between music, voice or other sounds coming from the
environment.
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Chapter 2

Review of Global Subpixel Shift Estimation Methods

The problem of global subpixel shift estimation appears frequently on several applications
related to image processing. When high accuracy is not required, most authors tend to use
the well-known cross-correlation method which usually meets the performance requirements
for such tasks. However, under more demanding accuracy constraints, cross-correlation ap-
proaches are either not accurate enough or their computational costs are prohibitive. More-
over, problems such as time constraints, varying illumination conditions, aliasing, among sev-
eral others, make the shift estimation task harder. What is worse, there is little evidence about
which shift estimation method to use depending on the circumstances. Our objective in this
chapter is therefore to give an in depth study on shift estimation methods, offering a practical
recipe showing which methods are more suited depending on the conditions of the task. By
discretizing the distinct varying conditions, we evaluate on each of them more than a thou-
sand variants of shift estimation methods, and summarize the results here. We observed that
gradient-based shift estimation methods, used in a multi-scale and iterative form, achieve in
general the most accurate results, without requiring considerable computational resources.
This analysis is of key importance for the rest of this thesis, particularly for Chapters 3 and 4,
where two remote sensing applications arising from earth-observation satellites are studied.

2.1 Introduction

In this chapter we study the problem of global sub-pixel shift estimation between images.
Given two observations I1, I2 of the same image I(x, y), shifted by an unknown displace-
ment v = {vx, vy} and affected by noise, the problem of shift estimation is to find this
displacement so as to align both images. Applications for shift estimation include medi-
cal image registration [76, 91, 101], motion tracking [74], microscopic biology [83], digital
image stabilization [51], 3D reconstruction [114], video analysis [9], and are particularly
developed in the field of remote sensing [67, 90, 130, 145].

The shift estimation problem presents several challenges. The conditions for this
problem to be solved may vary depending on the sensor, the underlying noise model, the
effective image size, the magnitude of the displacement, varying illumination between
frames, occlusions, aliasing, among others, making shift estimation methods prone to
considerable errors depending on their underlying assumptions. Furthermore, the shift
estimation task is usually part of a more complex image processing application, which
usually constrains its execution time, forcing the shift estimation method to be both fast
and accurate.

In this chapter we tackle the case where both images I1 and I2 have the same N ×N
size, are both contaminated by white Gaussian noise with the same standard deviation σ.
We always assume that the 2D displacement is smaller than one pixel in both dimensions
and that the brightness constancy constrain holds, i.e.,

I2(x, y) = I1(x+ vx, y + vy). (2.1)
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30 REVIEW OF GLOBAL SUBPIXEL SHIFT ESTIMATION METHODS

Observing the behavior of each method under these ideal conditions is sufficient since
most problems mentioned above can be reduced to this setting. In particular,

• Signal dependent noise. Heteroscedastic noise can be turned homoscedastic by
prefiltering the images with a Variance Stabilization Transform (VST) [158]. For ex-
ample, the well-known Anscombe transform [6], as well as the Generalized Anscombe
transform convert Poisson or Poisson + Gaussian noise into approximately stan-
dard Gaussian noise making the standard deviation almost constant [158]. Other
well-known variance stabilization transformations include the Freeman-Tukey [61],
Barlett [15], Curtiss [40] and Eisenhart [48]. In fact, there is a whole family of VSTs
for the Poisson distribution, described by Bar-Lev and Enis [14].

• Varying illumination between frames. A histogram matching method should be
performed previous to the shift estimation. In many contexts, such as satellite
imaging, the change in illumination is multiplicative, therefore a fast multiplica-
tive mean equalization should be done. For non-linear changes in illumination,
images can be equalized by using the midway equalization method [43]. We refer
the reader to further histogram matching approaches [66, 100].

• Different image sizes. In template matching applications [26], an image patch of
size N × N has to be aligned with a template or reference image of size M ×M
with N < M . This is in general a less challenging problem due to the availability of
image borders on the reference image. In such situations, any fast method achieving
pixel precision [2, 120] could be applied in order to extract a N ×N subimage from
the reference, followed by applying a subpixel shift estimation method.

• Large shift magnitudes. As in the previous case, large shift magnitudes could be
estimated in two steps. After performing an initial pixel-wise shift estimation, any
of the methods discussed in this chapter could be used on the intersection of both
pixel-aligned images. This includes projection-based methods [2, 120], pyramidal
multi-scale approaches [131, 167] or fast periodic cross correlation methods in the
Fourier domain [124].

While several methods exist up to date, not many achieve acceptable results on every
possible condition. To our understanding, several survey papers exist summarizing these
methods [24,101,168,191]. However, none of them offer a performance comparison under
the different challenging conditions that may occur, which ends up with the eventual user
to pick the wrong method. The contribution of this chapter is therefore twofold. First,
an in-depth study of the state-of-the-art shift estimation methods is given, followed by a
practical recipe defining which methods to use depending on the particular conditioning
of the problem.

2.1.1 Subpixel shift estimation approaches

As mentioned in Tian et al. [168], there are mainly four types of shift estimation meth-
ods that achieve subpixel accuracy: correlation interpolation, intensity interpolation, dif-
ferential methods and phase correlation. Recently, feature-based image registration has
become extremely popular since the introduction of local feature detection/description
methods.

Correlation Interpolation Methods. In order to achieve subpixel accuracy using dis-
crete correlation, an interpolation surface is fitted to samples of this function, and then,
the maximum of this surface is searched. When the images are sampled at a high enough
frequency, the corresponding discrete correlation function is quite smooth and using a
second-order interpolation function can obtain accurate results. This methodology not
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only implies calculating the discrete correlation between images, which is a resource con-
suming task, but also to interpolate it.

Intensity Interpolation Methods. Another way to achieve subpixel results is to in-
terpolate selected parts of the input images in order to create a much denser grid. Then,
the task is to match these grids between images. This task requires knowing beforehand,
which part of the input images to interpolate and then match, something which is not al-
ways available. Several searches have to be made in order to find good matches, making
this approach time consuming.

Differential Methods. Also known as Gradient-Based Shift Estimation (GBSE), the
idea behind this methodology is to relate the difference between two successive frames
to the spatial intensity gradient of the first image. This relationship is obtained by ap-
proximating the shifted image by its Taylor development up to the first order. Since the
higher terms of the Taylor approximation are removed, this relation holds only when the
displacement is shorter than a pixel. By performing such an approximation, the shift can
then be easily estimated using linear least squares minimization. However, more elab-
orate methods can be applied to achieve higher precision. This type of methods have
linear complexity and are in general considerably faster than both interpolation-based
methods. Furthermore, several extensions allow it to become more robust against noise
and larger displacements.

Phase correlation Methods. This methodology is based on the fact that most of the
information about the relative displacements of objects between two images is contained
in the phase of their cross-power spectrum. Several methods exploit this to estimate
the displacement both in the Fourier and the spatial domain. These methods require
the computation of the discrete Fourier transform (DFT), which could be prohibitive
in certain scenarios. Nevertheless, they are able to achieve very accurate results with-
out further computational effort, and they can be used when images are seriously dis-
torted, in either geometry or intensity. Due to this reason, several methods based on
this idea have been recently published [7, 8, 57, 69, 132, 134, 135, 159, 162, 178, 179]. As
a drawback, phase correlation approaches assume circular shifts between images, i.e.
I1(x, y) = I2((x − vx) mod M, (y − vy) mod N) (where the images are M × N in size).
In fact, the cross-power spectrum in the frequency domain is the analog of the cross-
correlation operator between two signals. Since in general, the shift between both im-
ages is a simple linear shift rather than a circular shift, windowing functions are usually
employed to mitigate problems related to image edges, by performing apodization of
the input images. For images that have repeating objects, phase correlation may also
yield ambiguous results with several correlation peaks, and its use on those cases is not
advisable.

Feature Based Methods. This approach, as pointed out by [191], is based on the
extraction of salient structures or features, that are supposed to be stable. Then, these
features are matched between images by either comparing feature descriptors, or sim-
ilarity measures combined with spatial relationships. Once the matches are calculated,
a transformation model is estimated in order to align both images, using the computed
matches. The idea for the features is to be distinct, spread all over the image, and effi-
ciently detectable in both images. They are expected to be stable in time to stay at fixed
positions during the whole experiment. One algorithm used to describe and match fea-
tures is the famous SIFT method proposed by Lowe [96]. It gets subpixel accuracy of the
features by interpolating the response of the estimated Laplacian over the pixels.

The stability of the features decreases in the presence of noise and in consequence
poor registration results are obtained. What is more, although these methods are effi-
cient when they work on a multiscale approach, they are not aimed at achieving accurate
subpixel measurements and because of this reason, are not considered in this chapter.
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32 REVIEW OF GLOBAL SUBPIXEL SHIFT ESTIMATION METHODS

However, in the last chapter of this thesis, we explore this approach and propose a new
method that is able to obtain precise models, even with large amounts of incorrectly de-
tected point matches.

2.1.2 Chapter summary

This chapter offers a detailed analysis on fast and accurate shift estimation methods.
With few exceptions, we discard every shift estimation method that augments the images
resolutions using interpolation to reach sub-pixel accuracy. Although these methods may
in practice achieve accurate results, they are computationally expensive. For this reason,
in this chapter we focus only on differential methods and phase correlation approaches,
offering a complete study on both methodologies.

We observed that gradient-based shift estimation (GBSE) approaches seem to be more
accurate and tolerant to noise than phase-correlation methods. They are also computa-
tionally cheaper and more stable. However, when the estimated shifts are large, they
must be used within pyramidal multiscale approaches which tend to reduce their stabil-
ity. Although more computationally intensive, gradient correlation methods offer more
accurate and consistent results than phase correlation approaches. Their accuracy suffers
less under lower SNR scenarios. We refer the reader directly to the conclusions yielded
from sections 2.4.2, 2.4.4, 2.4.5 and 2.4.6 for a brief summary of this chapter.

We begin this chapter by giving an overview of the most important fast and accurate
shift estimation methods, starting with gradient-based approaches (section 2.2) followed
by phase-correlation-based methods (section 2.3). We perform a full evaluation of the an-
alyzed methods under different challenging situations in section 2.4 and give a practical
recipe by giving the best approaches to use under those. We conclude and offer some
envisaged future work in section 2.5.

2.2 Gradient-Based Shift Estimation methods

Given two images where the brightness constraint holds, namely I2(x, y) = I1(x+vx, y+
vy) where vx and vy are the unknown shift coefficients, then using the first order Taylor
approximation and assuming the displacement to be small, we have that

I2(x, y)− I1(x, y) h vx
∂I1(x, y)

∂x
+ vy

∂I1(x, y)

∂y
,

It(x, y) h ∇I1(x, y)Tv (2.2)

where It = I2 − I1 is the discrete temporal derivative, ∇I1(x, y) =
[
∂I1(x,y)
∂x , ∂I1(x,y)

∂y

]
the

image gradient and v =

[
vx
vy

]
corresponds to the unknown shift.

Note that even though in practice the brightness constraint rarely holds exactly, it
works remarkably well in real-life applications [56]. Eq. (2.2) relates the difference be-
tween the two successive frames to the spatial intensity gradient of the first image for
a single pixel. This equation is known as the optical flow equation or the gradient con-
straint equation. Since there is one equation and two unknowns, the shift cannot be
determined, therefore yielding the necessity to add additional constraints. In an opti-
cal flow application, the flow for each pixel may be different, therefore many variational
approaches based on different possible constraints exist [17, 29, 186]. However, for the
shift estimation problem between two images, since all pixels supposedly share the same
displacement, each (x, y) location becomes an equation and the problem becomes over-
determined.
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2.2. Gradient-Based Shift Estimation methods 33

2.2.1 Optical Flow equation with Least Squares minimization

The Lucas-Kanade algorithm [97] is probably the most widely known gradient-based
method used to estimate the optical flow between two images. Based on Eq. (2.2), it
assumes a constant displacement for every pixel around its neighborhood, which allows
the construction of an overdetermined system Av = b, where A is composed of spatial
intensity derivatives and b has temporal derivatives

A =


∂I1
∂x (p1) ∂I1

∂y (p1)
...

...
∂I1
∂x (pN ) ∂I1

∂y (pN )

 and b =

 It(p1)
...

It(pN )

 (2.3)

and pi with i = 1 . . . N represents the ith pixel andN the number of pixels. The solution v
to this overdetermined system is obtained by performing the linear least squares method,
using the Moore-Penrose pseudo-inverse. Then, let Ix, Iy be an abbreviation for ∂I1

∂x and
∂I1
∂y respectively, the shift is computed by

v̂ = (ATA)−1ATb, (2.4)

where

ATA =

[ ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

]
(2.5)

is the second moment matrix, and

ATb =

[ ∑
ItIx∑
ItIy

]
(2.6)

is a spatio-temporal gradient correlation term. To solve this system, the matrix ATA must
be invertible. Although this method was designed to compute the optical flow between
two images, this same idea could be directly used as a shift estimation method by simply
considering the neighborhood of each pixel as the whole image.

It is not a coincidence that the results of the method depend on the inversion of this
second moment matrix since, as it will be shown later in this thesis, the determinant of
this matrix is crucial for determining the limits on the estimation performance. A study
on this matrix before actually performing the shift estimation could potentially be used
to discard ill-posed cases, in which, for example, the gradient occurs on its majority on a
single direction and thus we are dealing with a potentially unsolvable situation, known
as the aperture problem.

Note that, since the Taylor development is centered at zero, this method performs
well only when the translation is subpixel, i.e., estimated shifts larger than 1 would not
be correctly estimated. For dealing with cases in which the shift is larger, the estima-
tion must be recursively performed on zoomed-out versions of both images, followed by
subsampling on the next scale. This method will be addressed in section 2.2.3.

2.2.2 Optical Flow Equation with Total Least Squares Minimization

To solve the optical flow equation (2.2), the least squares (LS) method can be employed
yielding accurate results by using a fast closed form solution. It allows for noise in the
independent term b, yet it does not take into account both the noise in the spatial deriva-
tive matrix A, coming from the image acquisition and sampling processes, as well as the
fact that the derivatives themselves are also approximations (i.e. estimated as differences
between neighboring pixels).
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34 REVIEW OF GLOBAL SUBPIXEL SHIFT ESTIMATION METHODS

In order to deal with noise in the spatial derivatives and to account for approximation
errors, an improved technique, named total least squares (TLS) [80,103], can be used. This
method assumes perturbations both in the temporal derivative (the independent term b)
as well as in the spatial derivatives of the first image (matrix A). To explain this in a more
intuitive way, we shall rewrite first the Least Squares (LS) problem as

{x̂LS ,∆bLS} := arg min
x,∆b
‖∆b‖2 subject to Ax = b + ∆b, (2.7)

where the idea is to allow for an error in the independent term b by minimizing over ∆b,
so that the corrected system of equations Ax = b̂, b̂ := b + ∆b has an exact solution.
Then if ATA is invertible, the unique solution xLS = (ATA)−1Atb of the optimally
corrected system of equations Ax = b̂LS , b̂LS := b + ∆bLS is by definition the least
squares approximate solution of the original incompatible system of equations.

As can be seen from the above example, b is corrected while A is not, thus ignoring
possible errors and noise in the calculation of the derivatives. To deal with them, the
total least squares method assumes uncorrelated noise in both the independent term b as
well as in the spatial derivative matrix A. Indeed, total least squares assumes the error in
each element of matrix A and the vector b to be independent and identically distributed
(i.e. the error matrix is white), while performing no assumptions on the distribution of
the noise. If however the noise turns out to be correlated, total least squares can actually
perform worse than standard least squares. However, TLS finds the true solution when
the amount of optical flow equationsN goes to infinity, and it out-performs LS estimation
as N is sufficiently large [180].

It is well-known that the least-squares approximation is statistically motivated as a
maximum likelihood estimator in a linear regression model under zero mean and a nor-
mally distributed residual with a covariance matrix that is a multiple of the identity [72].
Similarly, the total least-squares approximation is a maximum likelihood estimator in the
errors-in-variables (EIV) model, namely

Ã = A + ∆Ã, b̃ = b + ∆b̃, ∃x such that Ax = b. (2.8)

under the assumption that the augmented matrix [∆Ã|∆b̃] is a zero mean, normally
distributed random vector with a covariance matrix that is a multiple of the identity [103].

Theorem 1. The solution to the total least squares problem consisting in calculating

{x̂TLS ,∆ATLS ,∆bTLS} := argmin
x,∆A,∆b

‖[∆A ∆b]‖F

subject to (A + ∆A)x = b + ∆b (2.9)

where ‖[∆A ∆b]‖F is the Frobenius norm of the augmented matrix with matrix ∆A and the
vector ∆b side by side, is given by

x̂TLS = −(v1, v2)T

v3
(2.10)

where V = (v1, v2, v3)T is the 3 × 1 right singular vector associated with the smallest singular
value of the augmented matrix [A|b].

Proof. Minimizing Eq. (2.9) is the same as minimizing ‖[∆A ∆b]‖F subject to b + ∆b ∈
Range(A + ∆A). Once the minimum (∆̂A, ∆̂b) is found, any x satisfying

(A + ∆̂A)x = b + ∆̂b (2.11)
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is said to solve the TLS problem. To seek for a solution, we can generalize the problem
for b to be a matrix B of n× k elements. Then Eq. (2.11) can be rewritten as

[(A + ∆A) (B + ∆B)]

[
x
−Ik

]
= 0, (2.12)

where Ik is the k × k identity matrix. We shall now show that solving the problem is
equivalent to finding [∆A ∆B] that reduces the rank of [A B] by k. Define [U ][Σ][V ]∗ to
be the singular value decomposition of the augmented matrix [A B]

[A B] = [UA UB]

[
ΣA 0
0 ΣB

] [
VAA VAB
VBA VBB

]∗
, (2.13)

where V is partitioned into blocks corresponding to the shape of A and B. Using the
Eckart-Young-Mirsky theorem [47,65], the approximation minimizing the Frobenius norm
of the error in Eq. (2.9) is such that matrices U and V are unchanged, while the k-smallest
singular values are replaced with zeroes. That is

[(A+ ∆A) (B + ∆B)] = [UA UB]

[
ΣA 0
0 0k×k

] [
VAA VAB
VBA VBB

]∗
, (2.14)

so by substracting Eq. (2.13) with Eq. (2.14), we get

[∆A ∆B] = −[UA UB]

[
0n×n 0

0 ΣB

] [
VAA VAB
VBA VBB

]∗
. (2.15)

We can then remove blocks from the U and Σ matrices, simplifying to

[∆A ∆B] = −UBΣB

[
VAB
VBB

]∗
= −[A B]

[
VAB
VBB

] [
VAB
VBB

]∗
. (2.16)

This provides ∆A and ∆B so that

[(A+ ∆A) (B + ∆B)]

[
VAB
VBB

]
= 0. (2.17)

Now if VBB is nonsingular, we can then right multiply both sides by −V −1
BB to bring the

bottom block of the right matrix to the negative identity, giving

[(A+ ∆A) (B + ∆B)]

[
−VABV −1

BB

−VBBV −1
BB

]
=

= [(A+ ∆A) (B + ∆B)]

[
x
−Ik

]
= 0, (2.18)

and so the solution of the TLS problem for this case is

x̂TLS = −VABV −1
BB. (2.19)

Since in our particular problem the matrix B is the vector b of N × 1, then VBB is a scalar
and VAB is a 2× 1 vector, therefore the overall cost of this procedure is dominated by the
singular value decomposition and the solution becomes

x̂TLS = −(v1, v2)T

v3
. (2.20)
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Optical flow estimation using total least squares instead of the conventional least
squares method is not new. Already in 1995, Weber and Malik [185] used total least
squares to solve the over-determined optical flow problem. They also used as a relia-
bility measure, the consistency ratio σ3

σ2
which is the division between the two smallest

singular values of the augmented matrix.
Tsai et al. [175] applied total least squares to estimate stereo optical flow and used

σ3, the smallest singular value of the augmented matrix [A b], as a reliability measure
of the estimates. They also regularized the estimated flow field based on the confidence
provided by the value of σ3. Similarly Bab-Hadiashar and Suter [10, 11] used the Least
Median of Squares Orthogonal Distances (LMSOD) to identify the outliers and then total
least squares to solve the optical flow problem. Finally, more recently Fashandi et al. [54]
have proposed to estimate an optical flow field based on a wavelet decomposition and to
use total least squares because of approximations performed on both sides of their over
determined equation system.

2.2.3 Bias minimization through iterative and multiscale gradient-based shift
estimation

In a least squares problem configuration, the linear least squares produces robust but not
very accurate solutions since it ignores the noise in the spatial derivative matrix A. Total
least squares takes into account the noise implicitly contained in the matrix A. However,
when the noise is not independent or identically distributed or when the system is highly
inconsistent (i.e. the determinant of the second order matrix ATA is small), TLS tends
to give noisier estimates greatly affecting its robustness [116]. This is because TLS deals
with the errors in A and b symmetrically. If all the errors in A and b are identical and
independent, or their ratio can be obtained, then the TLS estimation is asymptotically un-
biased [81]. However, since A is composed of spatial gradients which are estimated using
numerical differentiation, the noise we expect on both variables A and b is correlated be-
tween neighboring pixels, which causes further problems for TLS. In fact, by ignoring the
noise, the estimator proposed in (2.4) is systematically biased, meaning that its expected
value is not equal to the true shift. Notice, there are no particular assumptions on the
noise; it only needs to be symmetric around the true value.

A second source of bias for the estimator (2.4) is the Taylor approximation. Indeed,
this method is derived from a Taylor approximation by truncating the Taylor series after
the first order derivative. This approximation is accurate only when the second and the
higher order derivatives are small. As a result, there is a systematic bias that depends on
the image content and the displacement itself. This bias will be analyzed in more detail
in section 4.3.2 of this manuscript. Nevertheless, we hereon present differential shift
estimation methods that try to reduce its influence indirectly, without explicitly dealing
with each of the mentioned reasons.

Instead of dealing with the bias explicitly, it was shown in Pham et al. [119] that both
bias sources depend linearly on the shift magnitude. This justifies the use of an iterative
method, which is able to significantly reduce the bias, provided an appropriate resam-
pling method is used. This algorithm is described in Alg. 1, where k is the maximum
amount of iterations, findshift uses (2.4) to solve for v[i] and Resample resamples an
image by interpolation. The selected interpolation algorithm could become a limiting
factor to achieve high final accuracy, therefore this decision should not be underrated.

Note that while in the original formulation of Lucas and Kanade, the resampling was
performed on the same image from where they computed the gradient (I1), in the present
formulation the gradient of image I1 is computed only once, while the resampling is al-
ways performed on the second image, thus avoiding to recalculate it for every iteration.
This method is known as the Inverse Compositional Algorithm [12]. It should also be
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Algorithm 1 Iterative GBSE method.
1: procedure ILK(I1, I2) . Receives a pair of images
2: i← 0; I2[0]← I2; w ← 0;
3: while i ≤ k do
4: v[i]← findshift(I1, I2[i]) . Eq. (2.4)
5: w ← w + v[i] . Accumulate total shift
6: I2[i+ 1]← Resample(I2,−w) . Use original I2

7: i← i+ 1
8: end while
9: return w . Return accumulated shift

10: end procedure

noted that instead of resampling using the already resampled image, it is always per-
formed taking the original I2, thus reducing the negative effects of inexact resampling
methods and accelerating the process.

It was proven in Pham et al. [119] that this iterative scheme is able to significantly
reduce the bias and to make the iterative GBSE estimator practically unbiased. Neverthe-
less, resampling of highly aliased images could end up violating the brightness constancy
constraint, making a single iteration to outperform an iterative scheme, as shown in [122].
However, when a correct resampling is possible and with enough iterations, this method
is the only one capable, to the best of our knowledge, to achieve optimal results with no
bias.

Another element to consider is when the underlying displacements are larger than
one pixel. In this case and as mentioned before, the presented GBSE method fails. How-
ever, by building a pyramid representation of the input images, Eq. (2.4) can be applied
on each scale to estimate the shift between images, and this estimated shift can in turn be
used to resample the second image on the following level of the pyramid [167]. If more
accuracy is desired, an iterative scheme (as of Algorithm 1) could be used to better esti-
mate the shift in each scale, although this comes with an increase in computational cost.
We used in our implementation a dyadic Gaussian pyramid approximation [28], how-
ever we also tried an exact dyadic Gaussian pyramid [112] filtering with σ = 1.4 before
subsampling, but we found out that the results were similar. Starting from the coarse
image at scale s > 1, the method is presented in Algorithm 2.

Algorithm 2 Multiscale GBSE method.
1: procedure MSSE(I1, I2, s) . Receives a pair of images and amount of scales
2: I1...s

1 ← BuildPyramid(I1, s) . Burt&Adelson’s Gaussian Pyramid [28]

3: I1...s
2 ← BuildPyramid(I2, s) . i.e., IMPYRAMID function from Matlab

4: i← s; w ← 0
5: while i > 0 do
6: v(i) ← findshift(Ii1, I

i
2) . Eq. (2.4)

7: or v(i) ← ILK(Ii1, I
i
2) . Alg. 1

8: w ← w ∗ 2 + v(i) ∗ 2
9: Ii−1

2 ← Resample(Ii−1
2 ,−w)

10: i ← i− 1
11: end while
12: v(i) = findshift(I1

1 , I
1
2 )

13: end procedure
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2.2.4 Minimizing the bias through corrected gradient estimation

Assuming that the noise is Gaussian white noise with variance σ2 and does not depend
on the image intensity, Ji et al. [81] proposed to use a simple and straightforward bias
correction technique. In their work, they show that the bias of the least squares estimator
amounts to

bias(x̂LS) = limn→∞E(x̂LS − x)

= −σ2

(
limn→∞

(
1

N
ATA

))−1

x, (2.21)

where A and x are obtained assuming noiseless images and N is the total amount of pix-
els in the image. To reduce the influence of the noise on the computations, they propose
the corrected least squares estimator (CLS), given by

xCLS =
(
ÃT Ã−Nσ2I

)−1 (
ÃT b̃

)
, (2.22)

where Ã and b̃ are the noisy versions of A and b respectively, and I is the 2× 2 identity
matrix. Thus, provided a correct noise estimation is possible, then by simply subtracting
an approximation of the error introduced by the noise from the biased components of
the second order matrix, it is possible to attenuate the bias. In practice, however, this is
a difficult task because noise in Ã is not always Gaussian nor is it uncorrelated with the
signal. Furthermore, the noise-corrected second-order matrix in Eq. (2.22) is not neces-
sarily a good approximation of the noiseless matrix ATA when the underlying image is
aliased or has been pre-filtered [122]. Last but not least, the noise variance is not always
known or easy to estimate.

2.2.5 Bidirectional bias correction for Gradient-Based Shift Estimation

To improve the accuracy of GBSE methods using a single iteration, an approach by Pham
and Duggan [122] tries to estimate the unbiased second moment matrix ATA from the
noisy images. Let Ĩ = I +n be the noisy image where n denotes additive white Gaussian
noise. Rewriting the least squares solution of the optical flow equation (2.4) as Ãṽ = b̃
where [ ∑

Ĩ2
x

∑
ĨxĨy∑

ĨxIy
∑
Ĩ2
y

]
︸ ︷︷ ︸

Ã

[
ṽx
ṽy

]
︸ ︷︷ ︸

ṽ

=

[ ∑
ĨtĨx∑
ĨtĨy

]
︸ ︷︷ ︸

b̃

, (2.23)

and the tilde indicates the noisy version, the authors point out that, given nx, ny the
directional derivatives of the noise n, the expected value of matrix Ã is given by

E[Ã] =

[ ∑
I2
x + var(nx)

∑
IxIy + cov(nx, ny)∑

IxIy + cov(nx, ny)
∑
I2
y + var(ny)

]
(2.24)

therefore E[Ã] 6= A making the computation of the derivative matrix A to be usually
overestimated. Since E(b̃)=b, it makes sense to assume b̃ ≈ b, so we have that

Ãṽ = b̃ ≈ b = Av (2.25)

from which we conclude that
Ãṽ=Av. (2.26)
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Given that both Ã and ṽ can be estimated using the noisy image and by solving for ṽ in
Eq. (2.23), the method then estimates A by performing three more shift estimations using
shifted versions by an integer translation of the second image. By denoting

A =

[
a b
b c

]
, (2.27)

and ṽI = findshift(Ĩ1(x, y), Ĩ2(x, y)), this yields an overdetermined system with three
unknowns and six equations. For example, by assuming ṽx < 0 and ṽy < 0, the system is
given by

ṽ00 = ṽI = findshift(Ĩ1, Ĩ2(x, y))=Mṽ (2.28)

ṽ10 = findshift(Ĩ1, I2(x+1, y))=M(ṽ+[1 0]T )

ṽ01 = findshift(Ĩ1, I2(x, y+1))=M(ṽ+[0 1]T )

ṽ11 = findshift(Ĩ1, I2(x+1, y+1))=M(ṽ+[1 1]T ), (2.29)

where M = Ã−1A. Then subtracting (2.28) and pre-multiplying both sides by Ã gives

[p1, q1] = Ã(ṽ10 − ṽ00) ≈ A[1 0]T = [a b]T (2.30)

[p2, q2] = Ã(ṽ01 − ṽ00) ≈ A[0 1]T = [b c]T (2.31)

[p3, q3] = Ã(ṽ11 − ṽ00) ≈ A[1 1]T = [a+ b b+ c]T . (2.32)

Finally, the unbiased matrix A is obtained by weighted least squares, minimizing the
following functional

ε = w1(a− p1)2 + w1(b− q1)2 + w2(b− p2)2 + w2(c− q2)2 + w3(a+ b− p3)2 + w3(b+ c− q3)2

(2.33)

where the weights are chosen so that smaller shifts are given more importance

w1 =‖|ṽ10|+|ṽ00|‖−2 , w2 =‖|ṽ01|+|ṽ00|‖−2 and w3 =‖|ṽ11|+|ṽ00|‖−2 (2.34)

The justification for the weights is that GBSE center their Taylor development in zero,
and therefore the smaller the shift, the more accurate it will be estimated. Finally, the
weighted least squares system becomes the solution of w1 + w3 w3 0

w3 w1 + w2 + 2w3 w3

0 w3 w2 + w3

 a
b
c

 =

 w1p1 + w3p3

w1q1 + w2p2 + w3(p3 + q3)
w2q2 + w3q3

 ,
(2.35)

were a, b and cwere the values of the unbiased matrix A. As can be seen, functional (2.33)
as well as the weights definitions came from the assumption that ṽI < 0. Therefore,
the method begins by estimating ṽI , the shift between both original images Ĩ1 and Ĩ2.
Based on this result, four cases arise depending on the sign of both values of ṽI , each one
yielding different equations which in turn define distinct weighted least squares systems
to minimize as well as weight definitions (in the given example, ṽI = ṽ00).

By assuring the subpixel condition of the underlying GBSE method, the other three
cases, depending on the initial shift estimation ṽI = [ṽx, ṽy]

T , are

• If ṽx > 0 and ṽy > 0, then

ṽ00 =findshift(Ĩ1, Ĩ2(x−1, y−1))=M(ṽ−[1 1]T ),

ṽ10 =findshift(Ĩ1, Ĩ2(x−1, y))=M(ṽ+[−1 0]T ),

ṽ01 =findshift(Ĩ1, Ĩ2(x, y−1))=M(ṽ+[0 −1]T ),

ṽ11 = ṽI =findshift(Ĩ1, Ĩ2(x, y)) = Mṽ. (2.36)
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40 REVIEW OF GLOBAL SUBPIXEL SHIFT ESTIMATION METHODS

• If ṽx > 0 and ṽy < 0, then

ṽ00 =findshift(Ĩ1, Ĩ2(x− 1, y))=M(ṽ + [−1 0]T ),

ṽ10 = ṽI =findshift(Ĩ1, Ĩ2(x, y))=Mṽ,

ṽ01 =findshift(Ĩ1, Ĩ2(x−1, y+1))=M(ṽ+[−1 1]T ),

ṽ11 =findshift(Ĩ1, Ĩ2(x, y + 1))=M(ṽ + [0 1]T ). (2.37)

• If ṽx < 0 and ṽy > 0, then

ṽ00 =findshift(Ĩ1, Ĩ2(x, y−1))=M(ṽ + [0 − 1]T ),

ṽ10 =findshift(Ĩ1, Ĩ2(x+1, y−1))=M(ṽ+[1 −1]T ),

ṽ01 = ṽI =findshift(Ĩ1, Ĩ2(x, y))=Mṽ,

ṽ11 =findshift(Ĩ1, Ĩ2(x+1, y))=M(ṽ + [1 0]T ). (2.38)

Once we have the four shift estimates, given by either one of (2.29), (2.36), (2.37) or (2.38),
a weighted least squares minimization scheme is used to compute a, b and c, the values
of the unbiased matrix A.

Following the same reasoning, the systems to solve for these three cases become

• If ṽI = ṽ11 then

w1 = ‖|ṽ00|+|ṽ11|‖−2 , w2 = ‖|ṽ01|+|ṽ11|‖−2 , w3 = ‖|ṽ10|+|ṽ11|‖−2 (2.39)

[p1, q1] = Ã(ṽ00 − ṽ11), [p2, q3] = Ã(ṽ01 − ṽ11), [p3, q3] = Ã(ṽ10 − ṽ11) (2.40)

and the system to solve for a, b and c is −w1−w2 −w1 0
−w1 −2w1−w2−w3 −w1

0 −w1 −w1−w3

 a
b
c

=

 w1 ∗ p1 + w2 ∗ p2

w1 ∗ (p1 + q1) + w2 ∗ q2 + w3 ∗ p3

w1 ∗ q1 + w3 ∗ q3

 .
(2.41)

• If ṽI = ṽ01 then

w1 = ‖|ṽ00|+|ṽ01|‖−2 , w2 = ‖|ṽ10|+|ṽ01|‖−2 , w3 = ‖|ṽ11|+|ṽ01|‖−2 (2.42)

[p1, q1] = Ã(ṽ00 − ṽ01), [p2, q2] = Ã(ṽ10 − ṽ01), [p3, q3] = Ã(ṽ11 − ṽ01) (2.43)

and the system to solve for a, b and c is w2+w3 −w2 0
−w2 w1+ 2w2+w3 −w2

0 w2 −w1−w2

 a
b
c

=

 w2 ∗ p2 + w3 ∗ p3

−w1 ∗ p1 + w2 ∗ (q2 − p2) + w3 ∗ q3

w1 ∗ q1 + w2 ∗ q2

 .
(2.44)

• If ṽI = ṽ10 then

w1 = ‖|ṽ00|+|ṽ10|‖−2 , w2 = ‖|ṽ01|+|ṽ10|‖−2 , w3 = ‖|ṽ11|+|ṽ10|‖−2 (2.45)

[p1, q1] = Ã(ṽ00 − ṽ10), [p2, q2] = Ã(ṽ01 − ṽ10), [p3, q3] = Ã(ṽ11 − ṽ10) (2.46)

and the system to solve for a, b and c is −w1−w2 w2 0
−w2 w1+2w2+w3 −w2

0 −w2 w2+w3

 a
b
c

=

 w1 ∗ p1 + w2 ∗ p2

−w1 ∗ q1 + w2 ∗ (p2 − q2) + w3 ∗ p3

w2 ∗ q2 + w3 ∗ q3

 .
(2.47)
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Therefore, depending on the initial shift estimation result ṽI , one of the four possible
cases is used to calculate the values of the unbiased derivative matrix A. At last, the real
unbiased shift is calculated as

v = A−1b̃. (2.48)

2.2.6 Gradient computation and image prefiltering

By focusing on the design of the filters used to estimate the image gradient under noise,
studied in conjunction with prefiltering the input images, Simoncelli [154] was able to
reduce the bias by using a gradient filter that approximates the derivatives of the prefilter.
The proposed pre-smoothing filters are forced to be symmetric, to guarantee they are
linear phase filters, while the gradient filters are selected to be anti-symmetric in order to
preserve the property of being a differentiator. Farid and Simoncelli [53] also proposed a
set of both prefilters and differentiators obtained by minimizing the errors in the gradient
direction, for a fixed size kernel.

This approach was later followed by Elad et al. [50] where they specifically studied
the problem for GBSE. In their work, they noted that by designing a set of pre-smoothing
filters and gradients filters minimizing the modelling error for each particular image,
the estimator performance could be further improved. In fact, each filter is designed
based on the spectral form of the first image and the a priori knowledge of a maximal
motion. Their objective is then to find filter parameters for a set of filters by minimizing
a cost function in order to reduce the error of the shift estimates. Although this solution
achieves improved accuracy over previous approaches, it does in fact decrease the bias
caused by the noise in an indirect way, completely ignoring the statistical performance
of the GBSE. Furthermore, the minimization must be done for every image pair, thus
radically augmenting the computational burden.

Followed by a precise study on the bias in [139], Robinson and Milanfar proposed
designing a gradient filter based on the selection of pre-filters, on the prior knowledge of
the image spectrum and some constraint about the shift [140]. Surprisingly, this work
proposed to minimize the estimator bias by attacking the approximation error in the
data model due to the linear signal approximation performed by the Taylor develop-
ment, while completely ignoring the noise. In fact, low SNR conditions are discarded
even though the bias due to the noise dominates the overall estimator bias [119]. For
this reason, they achieve poor results on images with SNR lower than 20dB. Further-
more, none of these previous approaches work under aliased situations or badly sam-
pled images, which is possible (yet undesired) on computer vision problems. To this end,
Christmas [35] proposed a differentiator kernel that optimises the fit of the estimator with
respect to the ideal differentiator D(f) = i2πf at low frequencies, giving less importance
to higher frequencies usually more affected by aliasing. This approach is suitable on cases
where the image contents appear on the lower frequencies.

Note also that using a large kernel for image derivatives computation imply not only
excessive blurring of the image, but also discarding more boundary pixels, thus leav-
ing fewer equations to estimate the shift on (2.4), constraining the gradient kernel to be
compact, precise and robust to the presence of noise. In fact, the impact on the accuracy
and the robustness to noise of the gradient computation is a key factor to the final per-
formance of the GBSE method. What is more, this computation must be fast in order to
accelerate the algorithm.

Emulating the work of Simoncelli [154], in order to increase the accuracy of the method
by minimizing noise or aliasing influence, we look for two kernel functions: an asym-
metric kernel d to estimate the image gradients and a symmetric kernel k to prefilter the
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42 REVIEW OF GLOBAL SUBPIXEL SHIFT ESTIMATION METHODS

Figure 2.1 – Used pixels (gray background) for fast gradient estimation methods and their exact
localizations (red spots). Left: Centered differences. Center: 1D backward difference for both ∂x
and ∂y. Right: 2D backward difference.

images. Using both kernels, matrix A and vector b from Eq. (2.4) become

A =

 (dx ∗ I1)(p1) (dy ∗ I1)(p1)
...

...
(dx ∗ I1)(pn) (dy ∗ I1)(pn)

 and b = −

 (k ∗ (I1 − I2))(p1)
...

(k ∗ (I1 − I2))(pn)

 , (2.49)

where ∗ denotes convolution.
Because the method should be computationally fast, a straightforward candidate for

gradient estimation is the well-known centered differences method using a [1, 0,−1] ker-
nel, however since the central pixel is ignored in the computation, its performance is
usually poor under high precision constraints. For this reason, a backward difference
method using a [1,−1] kernel would seem more appropriate, however, this derivative
corresponds to the center between both pixels and not in the pixels itself, as seen from
the middle image of Fig. 2.1.

A more exact gradient estimation method is shown on the right of Fig. 2.1. Using the
original image I1, the derivatives are calculated by convolving it with dx and dy given
by

dx =

[
1/2 −1/2
1/2 −1/2

]
, dy =

[
1/2 1/2
−1/2 −1/2

]
(2.50)

and resampled versions of both images I1 and I2 are used to calculate vector b of (2.3),
shifting them by half a pixel to the bottom right using bilinear interpolation, finally taking

k =

[
1/4 1/4
1/4 1/4

]
. (2.51)

This gradient estimation trick, which we shall call the hypomode, despite being simplistic
usually improves the accuracy obtained by GBSE methods using finite difference gradi-
ent estimation. This is because it slightly blurs the input images, which alleviates both
aliasing and noise, and because of its accurate gradient localization.

Another considered smoothing kernel is the 2D Gaussian kernel given by sampling
from

k = g(x, y, σg) =
1

2πσ2
g

exp

(
−x

2 + y2

2σ2
g

)
(2.52)

and its derivatives

dx =
∂g(x, y, σg)

∂x
= − x

2πσ4
g

exp

(
−x

2 + y2

2σ2
g

)
, (2.53)

dy =
∂g(x, y, σg)

∂y
= − y

2πσ4
g

exp

(
−x

2 + y2

2σ2
g

)
. (2.54)

The kernel support is determined by the σg value, which defines the amount of blur
applied to each image before performing the computations, therefore higher noise values
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imply a higher σg. While a too low value would be less tolerant to noise, a too high value
would imply losing potentially valuable textures which usually aid the shift estimation
method. In our experiments, we evaluated using σg = {0.3, 0.6, 1} leading to supports
3, 5 and 7 respectively.

Other evaluated image gradient estimation methods in the context of GBSE were the
3×3 and the 5×5 kernels from Simoncelli [154], and the 3×3, 5×5 and 7×7 from Farid [53].
As mentioned above, these approaches are the result of finding a smoothing prefilter,
which is assumed to be a separable product of identical symmetric 1D functions, together
with a derivative antisymmetric filter. Simoncelli minimizes the following energy

E(P,D) =

∫
dωW 2(ω)[jωP (ω)−D(ω)]2 (2.55)

where P (ω) and D(ω) are the Fourier transform of a prefilter and a derivative filter re-
spectively. The weights W are taken to mimic the expected spectral content of natural
images

W (ω) =
1√
|ω|

. (2.56)

Therefore, the method fixes a kernel size and minimizes Eq. (2.55) by defining some con-
straints on both kernels. On the other side, Farid minimizes

E(P,D) =

∫
ω|jωP (ω)−D(ω)|2∫

ω P
2(ω)

(2.57)

in its discrete form

E(p,d) =
|jωFsp− Fad|2

|Fsp|2
, (2.58)

where p is the prefilter vector of length (L+1)/2, d the derivative filter vector of size (L−
1)/2, Fs and Fa are matrices whose columns contain the real and imaginary components
of the discrete Fourier basis of size K >> L such that Fsp gives the DFT of the prefilter
and Fad gives the DFT of the antisymmetric derivative filter.

The gradient estimators from Christmas [35] were also included in the evaluation.
As mentioned before, they are obtained by fitting the kernel with the ideal differentiator
D(f) = i2πf at low frequencies, avoiding high frequency information. Specifically, for
an nth order estimator, they equate the first n derivatives of the estimator frequency
response to those of the ideal differentiator. Note that Christmas’ approach does not
require prefiltering the images, yielding faster processing times, although usually coming
with a decrease in accuracy.

All evaluated gradient estimators kernels are shown in table 2.1. Given image I , the
gradient along the horizontal direction is estimated by convolving each column of I with
the prefilter vector k and then convolving each row of the result with the differentiator
vector d. The vertical gradient is obtained by swapping d and k yielding

Ix = d ∗ kT ∗ I, (2.59)

Iy = k ∗ dT ∗ I. (2.60)

2.2.7 Interpolation methods for image resampling

In order to iterate the algorithm, resampling must be done to shift the image, as indi-
cated in the step 6 of Algorithm 1. To this end, five different interpolation methods were
evaluated, namely bilinear, bicubic [82] and cubic spline interpolation [42], together with
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Kernel Sample Number
-3 -2 -1 0 1 2 3

Hypomode k 0.5 0.5
2× 2 d 1 -1

Gaussian k 0.003865 0.999990 0.003865
σ = 0.3 d 0.707110 0.000000 -0.707110

Gaussian k 0.003645 0.235160 0.943070 0.235160 0.003645
σ = 0.6 d 0.021915 0.706770 0.000000 -0.706770 -0.021915

Gaussian k 0.008343 0.101650 0.455560 0.751090 0.455560 0.101650 0.008343
σ = 1 d 0.035436 0.287800 0.644920 0.000000 -0.644920 -0.287800 -0.035436

Simoncelli k 0.224209 0.551580 0.224209
3× 3 d 0.455271 0.000000 -0.455271

Simoncelli k 0.035697 0.248874 0.430855 0.248874 0.035697
5× 5 d 0.107662 0.282671 0.000000 -0.282671 -0.107662
Farid k 0.229879 0.540242 0.229879
3× 3 d 0.425287 0.000000 -0.425287
Farid k 0.037659 0.249153 0.426375 0.249153 0.037659
5× 5 d 0.109604 0.276691 0.000000 -0.276691 -0.109604
Farid k 0.004711 0.069321 0.245410 0.361117 0.245410 0.069321 0.004711
7× 7 d 0.018708 0.125376 0.193091 0.000000 -0.193091 -0.125376 -0.018708

Christmas k 1
3× 3 d 1 0 -1

Christmas k 1
5× 5 d -1/12 2/3 0 -2/3 1/12

Christmas k 1
7× 7 d 1/60 -3/20 3/4 0 -3/4 3/20 -1/60

Table 2.1 – Gradient estimation kernels evaluated for GBSE methods.

resampling using the Fourier shift theorem [20], which is evaluated with and without im-
age periodization. Image periodization avoids the generation of ringing artifacts due to
the discontinuities on the image borders by generating an augmented version mirroring
the image. This resulting image has no discontinuities when periodization is assumed,
as depicted in Fig. 2.2.

(a) Original image (b) DFT resampling (c) Symmetrized image (d) Symmetrized DFT

Figure 2.2 – Example of FFT resampling with and without image symmetrization. Direct resam-
pling with DFT produces ringing due to the discontinuities at the periodized boundaries. No visible
ringing is observed after resampling with symmetrization.

The impact on the results by selecting a correct interpolation method could be im-
portant, as it will be shown in the results. The more precise the interpolation, the more
accurate the results, however it comes with an increase in the processing cost. A report
of interpolation methods for fast image resampling due to a global displacement will be
presented in Appendix 1.
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2.2.8 Shift estimation by centroid of interpolating kernel

In a recent work by Gilman and Leist [64], the authors propose an illumination-invariant
method for fast image registration, for the case of additive contrast changes. Their ap-
proach tries to overcome the negative aspects of iterative gradient-based methods by
proposing a fast non-iterative solution that does not require performing gradient estima-
tion. Conventionally, iterative GBSE methods perform the following minimization

argmin
vx,vy

∑
x,y

(I2(x, y)− I1(x+ vx, y + vy))
2 (2.61)

by approximating I1(x+vx, y+vy) by its first order Taylor development. This is followed
by an iterative scheme in which the second image is resampled using the result from the
shift estimation. By doing this, an interpolation method such as Eq. (2.62) is required.
The interpolation kernel h is based on some interpolation basis function with rectangular
support between (M−, N−) and (M+, N+) and its coefficients are samples of the basis
function offset by the estimated shift (vx, vy). The interpolation is given by the following
expression

I1(x+ vx, y + vy) =

M+∑
m=M−

N+∑
n=N−

I1(x+m, y + n)hv̂x,v̂y(m,n). (2.62)

By combining (2.61) with (2.62), the authors propose to perform the minimization with
respect to the interpolating kernel

argmin
h

∑
x,y

I2(x, y)−
M+∑

m=M−

N+∑
n=N−

I1(x+m, y+n)h(m,n)

2

(2.63)

yielding a linear system Av = b where, provided the interpolation kernel is of size Wk ×
Hk, its main computational cost involves inverting aW 2

k ×H2
k matrix. Its implementation

is accelerated by simply pre-computing the shifted versions of I1 and then performing the
Hadamard product.

Finally the shift estimates can be obtained by computing

ûx =
∑
m

∑
n

mh(m,n), ûy =
∑
m

∑
n

nh(m,n). (2.64)

However, the method could easily be made robust against illumination changes. Let
A and S be the gain and the offset of a global illumination change given by I2(x, y) =
AI1(x, y) + S, then by normalizing its computation

ûx =

∑
m

∑
nmh(m,n)∑

m

∑
n h(m,n)

, ûy =

∑
m

∑
n nh(m,n)∑

m

∑
n h(m,n)

, (2.65)

the method becomes robust against gain A and therefore contrast invariant. The authors
also suggest adding the offset variable S into the optimization in Eq. (2.63) to add illumi-
nation invariance as well.

2.3 Phase-correlation methods

Introduced in 1975 by Kuglin and Hines [86], the phase correlation method aligns images
based on their normalized cross-power spectrum, which is equivalent to computing the
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normalized circular cross-correlation in the spatial domain. Let I1 and I2 be M × N
images such that

I2(x, y) = I1((x− vx) mod M, (y − vy) mod N) + n(x, y), (2.66)

where mod is the modulo operator implying a circular shift and n(x, y) denotes the effect
of interference terms such as noise, non-overlapping regions, etc. Let F1 and F2 be the
discrete 2D Fourier transforms of I1 and I2 respectively, then by ignoring this last term
the Fourier Shift Theorem indicates that

F2(ωx, ωy) = F1(ωx, ωy) exp

(
− i2π

(ωxvx
M

+
ωyvy
N

))
(2.67)

and by the cross-correlation theorem we have that

C = I1 ? I2 = I∗1 (−t)⊗ I2(t) = F−1{F ∗1F2}, (2.68)

where ? and ⊗ denote the cross-correlation and the convolution operator respectively, ∗
denotes the complex conjugate andF−1 stands for the discrete inverse Fourier transform.
Then by normalizing in Fourier the cross-correlation and based on the Fourier Shift The-
orem, the phase correlation matrix, defined by the normalized cross-power spectrum C,
is given by

C(ωx, ωy) =
F2(ωx, ωy)F

∗
1 (ωx, ωy)

F1(ωx, ωy)F ∗1 (ωx, ωy)
(2.69)

= exp

(
− i2π

(ωxvx
M

+
ωyvy
N

))
.

If both F1 and F2 were continuous, then by applying the inverse Fourier transform, we
obtain the phase-only correlation (POC) [162] or phase correlation surface (PCS) [135]
given by

c(x, y) = F−1

{
C(ωx, ωy)

}
(x, y) = δ(x− vx, y − vy), (2.70)

where δ(x − vx, y − vy) is a Dirac function centered at (vx, vy). Note that by performing
normalization, this method becomes robust to affine intensity changes, i.e.

I1(x− vx, y − vy) = a · I2(x, y) + b, a, b ∈ R. (2.71)

Also note that this method is based on the Fourier shift theorem, which holds when the
shift between both images is circular, that is, the part of the image that disappears on
one side, appears on its opposite side. Finally, the peak of c is searched to obtain the
translation between both images:

(v̂x, v̂y) = arg max
(x,y)

c(x, y). (2.72)

Unless the shift can be exactly described as in Eq. (2.66), due to reasons such as sub-pixel
displacements, aliasing, image noise or non-overlapped regions, c(x, y) is not an exact
Dirac function, although the location of the peak still permits to accurately compute the
displacement. Indeed, the peak value is often lower than one pixel and the surface is
frequently noisy, as seen from figures 2.3 and 2.4. Sub-pixel shifts, for example, imply
that the energy is distributed between the peak and its adjacent neighbors. Commonly,
function fitting methods are used to estimate the peak location to non-integer values.
Some other methods try to estimate the shift directly in the Fourier domain, eliminating
the need to compute another FFT and thus, decreasing the complexity of the algorithm.

While in this thesis we will describe only the most relevant approaches, complemen-
tary information could be found on review articles [4, 133]. Extensions of this technique
to estimate scale and rotation transformations also exist [132], although they will not be
covered in this review.

46



2.3. Phase-correlation methods 47

(a) σ = 0 (b) σ = 75 (c) σ = 150 (d) σ = 300

Figure 2.3 – Cross-power spectrum C(ωx, ωy) and phase correlation surfaces c(x, y) of two identi-
cal images under different random WGN. Top: Cross power spectrum. Bottom: phase correlation
surfaces. Dynamic ranges extended for visualization purposes.

2.3.1 Local function fitting in the spatial domain

Fitting well-known functions in the vicinity of the integer maximum peak of the phase
correlation surface can be used to obtain accurate subpixel precision while being compu-
tationally efficient.

Quadratic fitting. Abdou [1], working on registration of video frames, proposed to fit a
1D quadratic (parabolic) function on each separate coordinate on the vicinity of the main
peak. Let (xm, ym) be the integer position of the peak (the integer solution of Eq. (2.72)),
then the values used for the fitting on the horizontal and vertical directions are

Horizontal: {c(xm − 1, ym), c(xm, ym), c(xm + 1, ym)}, (2.73)

Vertical: {c(xm, ym − 1), c(xm, ym), c(xm, ym + 1)}. (2.74)

Then fitting a parabolic function yields a closed-form solution

v̂x =
c(xm + 1, ym)− c(xm − 1, ym)

2 ∗ c(xm, ym)− c(xm + 1, ym)− c(xm − 1, ym)
. (2.75)

Gaussian fitting. In [1] the author also proposed fitting a Gaussian function to the same
data, thus yielding the closed form formula

v̂x =
log
∣∣∣ c(xm+1,ym)
c(xm−1,ym)

∣∣∣
log
∣∣∣ c(xm,ym)2

c(xm+1,ym)·c(xm−1,ym)

∣∣∣ . (2.76)

The vertical shifts are obtained by using the samples from (2.74) instead of (2.73).
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(a) σ = 0 (b) σ = 75 (c) σ = 150 (d) σ = 300

Figure 2.4 – Example of different surfaces used to estimate the displacement of two images
shifted by (−3.5, 0.75) pixels under different random WGN (σ = 0, 75, 150 and 300) assuming 12-
bit images. First row: First image. Second row: Real component of cross-power spectrum
C(ωx, ωy). Third row: Phase correlation surfaces c(x, y). Fourth row: real component rank-
1 approximation of the CPS [75]. Last row: Phase difference matrix [159]. Dynamic ranges
extended for visualization purposes.
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Sinc fitting. Foroosh et al. [57,149] propose to understand the subpixel shift of the input
images as if it has been obtained by an integer shift on a higher resolution grid followed
by subsampling. Based on this assumption, they analytically determine that the shape of
the phase correlation surface corresponds to a Dirichlet kernel. Indeed, the cross-power
spectrum of the downsampled frames by factors of M and N along both horizontal and
vertical axes is given by

C(u, v) =
M−1∑
m=0

N−1∑
n=0

F (u+2πm
M , v+2πn

N )∑M−1
m′=0

∑N−1
n′=0 F (u+2πm′

M , v+2πn′

N )
exp

(
−i
(
u+ 2πm

M
vx,

v + 2πn

N
vy

))
(2.77)

and its inverse DFT is

F−1

{
C(u, v)

}
= c(x, y) =

1

WH

sin(π(Mx− vx))

sin(π(Mx− vx)/W )

sin(π(Ny − vy))
sin(π(Ny − vy)/H)

, (2.78)

where W and H are the width and height respectively before downsampling. Based on
this study, the authors propose to approximate this Dirichlet kernel by a sinc function

sinc(x) =
sinπx

πx
(2.79)

yielding

c(x, y) ≈ sin(π(Mx− vx))

π(Mx− vx)

sin(π(Ny − vy))
π(Ny − vy)

+ n(x, y), (2.80)

where n(x, y) refers to interference terms such as noise, aliasing, non-overlapped regions,
possible compression artifacts, etc.

Therefore, to rapidly recover the shift, based on the fact that for subpixel displace-
ments the signal power in the phase correlation is usually concentrated in a main peak
(xm, ym) and two side-peaks at (xm, ym ± 1) and (xm ± 1, ym), the authors calculate the
shift by linearly weighting the main peak together with one of the side-peaks using only
two values to estimate the shift on each dimension. For example, by assuming the side-
peaks to be (xm + 1, ym) and (xm, ym + 1) and neglecting the interference component
n(x, y), this yields

v̂x =
c(xm + 1, ym)

c(xm + 1, ym)± c(xm, ym)
, v̂y =

c(xm, ym + 1)

c(xm + 1, ym)± c(xm, ym)
, (2.81)

where both v̂x and v̂y are chosen so that they both lie between [xm − 1, xm + 1] and
[ym− 1, ym + 1] respectively. Another possibility is to do least squares minimization to fit
the 3× 3 grid centered on c(xm, ym) on each dimension with a 1D sinc function:

v̂x = argmin
∑

xi={xm−1,xm,xm+1}

[c(xi, ym)− sinc(xi − C)]2 . (2.82)

However, due to the non-linearity of the sinc, a non-linear least squares minimization
method has to be used. Since this minimization requires only to fit a function over just
three values, it does not require much computational time. However, this solution ig-
nores the interference term, thus yielding poor results under low SNR scenarios. Indeed,
computing v̂x of Eq. (2.81) by considering n(x, y) in Eq. (2.80) and taking the limit when
vx→0 we obtain

lim
vx→0

v̂x =
n(1, 0)

(πvy)−1 sin(πvy) + n(1, 0) + n(0, 0)
6= 0, (2.83)

which proves that the estimator is biased under low SNR situations.
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eSinc fitting. More recently, Argyriou and Vlachos [8] proposed a modification of the
Sinc function by applying exponential weighting, defined as follows

esinc(x) = exp(−x2)
sinπx

πx
. (2.84)

They claim this modified sinc function is able to better approximate phase correlation
surfaces obtained from video data. The esinc is later parametrized to adapt to different
magnitudes, scales and shifts changes, searching the parameters of A esinc(B(x − C)),
which leads to the following minimization problem

(A,B,C) = argmin
∑

xi={xm−1,xm,xm+1}

[c(xi, ym)−A esinc(B(xi − C))]2 , (2.85)

that is again solved using a non-linear optimization method. In this case, C stands for
the horizontal shift estimation v̂x; v̂y is obtained in a similar way, by sampling over the
vertical axis. Note that this minimization scheme could also be applied to the sinc fitting
case, so therefore will be included in the evaluation.

Using the difference of both side-peaks. Ren et al. [134] claimed that using the dif-
ference between both side-peaks of c(xm, ym) instead of a single side-peak as in [57]
reduces the bias caused by ignoring the interference term as shown in Eq. (2.83). Let
Dx = c(xm + 1, ym)− c(xm− 1, ym) and Dy = c(xm, ym + 1)− c(xm, ym− 1), their method
then reduces to calculating

v̂x=
Dx

c(xm, ym)+|Dx|
=

sign(Dx)

1+c(xm, ym)/|Dx|
, v̂y=

Dy

c(xm, ym)+|Dy|
=

sign(Dy)

1+c(xm, ym)/|Dy|
.

(2.86)

Least squares fitting of modified cross-power spectrum Takita et al. [162] drastically
improved the accuracy by proposing three important modifications to the method. First,
they suggest using least squares fitting involving the frequencies of the neighbourhood
around the peak (xm, ym) up to 9 × 9 pixels. Second, a 2D Hanning window should be
applied to the images before computing their cross-power spectrum to avoid false edge
effects. Finally, the authors propose to filter the cross-power spectrum using low-pass-
type filters in order to reduce the influence of corrupted high frequency components.
Since this implies modifying the peak shape, they propose a specific fitting model for
each low-pass filter. The four filters are

H1(ωx, ωy) =

{
1 |ωx|≤ U1, |ωy|≤ U2,
0 otherwise,

(2.87)

H2(ωx, ωy) =
1

MN
H1(ωx, ωy)⊗H1(ωx, ωy), (2.88)

H3(ωx, ωy) =
1

M2N2
H2(ωx, ωy)⊗H1(ωx, ωy), (2.89)

H4(ωx, ωy) = exp
{

2π2σ2(ω2
x + ω2

y)
}
, (2.90)
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and the models to fit each of them are given by

r1(x, y) =
α

MN

sin (V1M π(x+vx))

sin ( πM (x+vx))

sin (V2N π(y+vy))

sin ( πN (y+vy))
, (2.91)

r2(x, y) =

{
α

MN

sin (V1M π(x+vx))

sin ( πM (x+vx))

sin (V2N π(y+vy))

sin ( πN (y+vy))

}2

, (2.92)

r3(x, y) =

{
α

MN

sin (V1M π(x+vx))

sin ( πM (x+vx))

sin (V2N π(y+vy))

sin ( πN (y+vy))

}3

, (2.93)

r4(x, y) =
1

2πσ2
exp

{
−x

2 + y2

2σ2

}
, (2.94)

where α is a cut-off frequency parameter, V1 = 2U1 + 1, V2 = 2U2 + 1 and U1, U2 and σ
controls the pass-band width.

Increasing accuracy by zero padding A simple strategy to increase phase correlation
accuracy is to upsample the cross-correlation grid by zero-padding the cross-power spec-
trum C(ωx, ωy). Obviously, this implies increasing the algorithm cost since the inverse
DFT has to be computed for a much larger image. However, once an initial estimate of
the correlation peak is found, Guizar-Sicairos [69] proposed to refine this value by only
computing the DFT values on a small neighborhood around the peak, achieving more
precision without using too many computational resources. In fact, the authors propose
the use a matrix multiplication implementation of the 2D DFT [156], which performs the
upsampling of a 1.5×1.5 pixel neighborhood around the initial estimate without the need
to zero-pad the cross-correlation.

Local center of mass on the phase correlation surface Another fast strategy to achieve
subpixel accuracy is to compute the center of mass of the phase correlation surface [4,90].
The center of mass could be computed in 1D using

v̂x =

∑xm+w
x=xm−w x · c(x, ym)∑xm+w
x=xm−w c(x, ym)

, v̂y =

∑ym+w
y=ym−w y · c(xm, y)∑ym+w
y=ym−w c(xm, y)

, (2.95)

where w ∈ [1, 2, 3] is the support size, or using a 2D approach

v̂x =

∑ym+w
y=ym−w

∑xm+w
x=xm−w x · c(x, y)∑ym+w

y=ym−w
∑xm+w

x=xm−w c(x, y)
, v̂y =

∑ym+w
y=ym−w y · c(x, y)∑ym+w

y=ym−w
∑xm+w

x=xm−w c(x, y)
. (2.96)

2.3.2 Analyzing the phase difference matrix in the frequency domain

Instead of computing the inverse Fourier transform in Eq. (2.70), several methods try
to compute the shift directly in the Fourier domain [13, 159]. These methods work by
computing the phase of the cross power spectrum

φ(ωx, ωy) = arg (C(ωx, ωy)) =
ωxvx
M

+
ωyvy
N

, (2.97)

where the shift (vx, vy) can be easily recovered by fitting a plane passing through the
origin. The matrix φ(ωx, ωy) is usually referred to as the phase difference matrix [13],
displayed in the last row of Fig. 2.4.
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Robust plane fitting Once φ is computed, several approaches recover the shift by a
linear least squares plane regression method [159], [85] and [152]. However, due to noise
and aliasing on the input images, these methods discard corrupted frequencies in the
minimization, yielding the following least squares minimization

v̂x, v̂y = argmin
vx,vy

∑
ωx,ωy

M(ωx, ωy)
[
2π
(ωxvx
M

+
ωyvy
N

)
− φ(ωx, ωy)

]2
, (2.98)

where M(ωx, ωy) is the binary mask used to exclude contaminated spectral components
from the minimization.

Knutsson et al. [85] emphasizes on speed, so its method uses only two or four frequen-
cies of the whole spectra, yielding an extremely fast method that avoids the computation
of the DFTs:

M(ωx, ωy) =

{
1 if (ωx, ωy)=(1, 0) ∨ (ωx, ωy)=(0, 1),
0 otherwise.

(2.99)

Stone et al. [159] analytically studied the influence of aliasing on the phase difference
matrix and proposed an algorithm that focuses on reducing its influence on the final ac-
curacy. To this end, their approach first applies a window in the spatial domain in order
to eliminate image-boundary effects in the frequency domain. In particular, the authors
suggest using either Blackman or Blackman-Harris windows [155]. Finally, the mini-
mization in (2.98) is performed by masking spectral components mostly contaminated
by aliasing, namely:

M(ωx, ωy) =

{
0 if

√
ω2
x + ω2

y > 0.3 ·N ∨ |F1(ωx, ωy)| < α ∨ |F2(ωx, ωy)| < α,

1 otherwise.
(2.100)

Indeed, they exclude frequencies further away than 0.3 · N from the center, where N is
the minimum of the number of samples in both dimensions, and frequencies where the
energy is below a specified threshold α in any of both images. In the original article, α
was chosen by sorting the frequencies by magnitude and retaining the K largest ones.
Furthermore, K was set by performing several shift estimations over a range of values
and keeping the one where the shift remained stable. In addition to the fact that this
procedure is computationally expensive, the range where the shift remained stable was
not always straightforward to detect in our empirical testing. A greedy technique that
improved over the original method was to discard the frequencies where the magnitudes
of both images were lower than a specified percentile. In particular, we observed that
taking the percentile 60 systematically improved over the original approach.

Sidick et al. [152] use this same approach in the adaptive cross-correlation (ACC)
method to perform shift estimation. However, they perform it in an iterative scheme
where they first estimate the shift between centered windows half the size of the images
followed by resampling the second image in the frequency domain accumulating the es-
timated shift. The same authors later proposed adaptive periodic correlation (APC) [153]
where they changed this shift estimation method for a more robust periodic correlation
approach [126]. Both methods from Sidick as well as the periodic correlation method will
be given in more detail on the next chapter of this thesis.

Sawtooth cycle count Robust plane fitting approaches estimate the slope of the plane
passing through the origin of the phase difference matrix. Not only these methods decay
considerably with the noise, but they also suffer from the phase wrapping problem [63].
For this reason, both approaches are limited to estimating displacements up to one pixel,
for which the phase will not wrap.
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Balci and Foorosh [13] made the observation that the phase difference matrix φ(ωx, ωy)
defined in Eq. (2.97) is a 2D sawtooth signal (see last row of Fig. 2.4) and that the subpixel
displacement between both images can be determined by counting the number of cycles
along each axis. Indeed, if no phase unwrapping is performed, these cycles are attributed
to the wrapping behaviour of the phase. To compute the number of cycles, they propose
to count the peaks in the Hough-transform domain [78]. Each of these peaks provides one
linear constraint on both vx and vy, yielding an over-determined system which is solved
by imposing a regularity contraint where the regularization parameter is obtained using
the Generalized Cross Validation (GCV) method.

2.3.3 Subspace phase correlation methods

Projection-based subspace methods Alliney and Morandi [5] showed that the com-
plexity of 2D phase correlation could be significantly reduced by performing two 1D
phase correlation estimations on the image projections in each dimension. Indeed, let
F (ωx, ωy) be the Fourier transform of I(x, y), then by defining

Ix(x) =
∑
y

I(x, y), Iy(y) =
∑
x

I(x, y) (2.101)

and computing the Fourier transform Fx(ωx) of Ix(x) we have that

Fx(ωx) = F
{∑

y

I(x, y)

}
=
∑
x

∑
y

I(x, y)e−i2πωxx/M , (2.102)

=
∑
x

∑
y

I(x, y)e−i2π(ωxx/M+0·y/N) = F (ωx, 0) (2.103)

and similarly for Iy(y)
Fy(ωy) = F (0, ωy). (2.104)

Based on Eq. (2.67) we know that

F2(ωx, 0) = F1(ωx, 0) exp (- i2πωxvx/M), (2.105)

which yields
F2x(ωx) = F1x(ωx) exp (- i2πωxvx/M), (2.106)

where F1x and F2x are the Fourier transforms of the x projections for both images I1 and
I2 respectively. Then the phase correlation method could be applied to each 1D projection
to estimate the displacement. In this case, the 1D cross-power spectrum Cx and the 1D
PCS cx for the x direction becomes

Cx(ωx) =
F1x(ωx)F ∗2x(ωx)

|F1x(ωx)F ∗2x(ωx)|
, cx(x) = F−1

{
Cx(ωx)

}
(x). (2.107)

Equivalently for y, given F1y and F2y the Fourier transforms of y projections for images
I1 and I2 respectively, both vectors are defined as

Cy(ωy) =
F1y(ωy)F

∗
2y(ωy)∣∣∣F1y(ωy)F ∗2y(ωy)

∣∣∣ , cy(y) = F−1

{
Cy(ωy)

}
(y). (2.108)

The authors of [5] suggest to compute both shift estimates using 1D versions of the
phase correlation methods presented so far, by windowing the input images. Neverthe-
less, they do so for integer displacements. In Fig. 2.5 one can see two images shifted
by (−3.5, 0.75) pixels, under different noise intensities. One observes that the noise does
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not affect so much the projections, however differences between the projections appear
due to objects entering and leaving the scene. This indeed affects the performance of
projection-based methods.

Robinson and Milanfar [138] generalized the notion of projection by using the Radon
transform at an angle θ defined on the continuous image f(x, y) as,

R(p, θ)[f(x, y)] =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(p− x cos(θ)− y sin(θ)) dx dy, (2.109)

where p is the perpendicular distance from a line to the origin and θ is the angle formed
by the distance vector. Then by using two perpendicular angles θi, i = 1, 2, they estimate
the 2D shift by first calculating both 1D shifts uθ1 and uθ2 to finally compute[

v̂x
v̂y

]
=

[
cos(θ1) sin(θ1)
cos(θ2) sin(θ2)

]−1 [
uθ1
uθ2

]
. (2.110)

Each 1D shift uθi is computed using a line fitting approach on the unwrapped phases
of the 1D normalized cross-power spectrums Cθ(ωx), using a masking procedure resem-
bling the approach of Stone [159], as presented in section 2.3.2. The shift in the θ direction
is therefore estimated by computing

argmin
uθ

∑
ω

Mθ(ω) [2πωuθ/M − φθ(ω)]2 , (2.111)

where φθ(ω) = arg (Cθ(ω)) and Mθ(ω) is the 1D equivalent of the binary weighting mask
used to reduce contaminated frequencies. The shift in the y directions is calculated us-
ing the same strategy. To keep the computational complexity low, they again reduce
to the setup presented above by choosing θ1 = 0 and θ2 = π/2, so both Cθ1 and Cθ2
are defined by Eqs. (2.107) and (2.108) respectively. Finally, they conclude that using a
projection-based approach achieves dramatic savings in computation with essentially no
degradation in final accuracy. In Fig. 2.6 we see the incidence of noise on the unwrapped
phases of the cross-power spectrums of two images shifted by (−3.5, 0.75). When the
noise is low, a line fitting algorithms seems suitable, however under lower SNR scenar-
ios, it seems the method accuracy will suffer.

Ren et al. [135] use the gradients of the projected components to improve even further
the accuracy and robustness of the method to the ignored interference terms in Eq. (2.66).
Indeed, let I

′
2x(x) = I2x(x+ 1)− I2x(x) then

I ′2x(x) = I2x(x+ 1)− I2x(x) (2.112)

=
∑
y

I2((x+ 1) mod M,y)−
∑
y

I2(x, y) (2.113)

=
∑
y

[I1((x+ 1− vx) mod M, (y − vy) mod N) + n((x+ 1) mod M,y)]

−
∑
y

[I1((x− vx) mod M, (y − vy) mod N) + n(x, y)] (2.114)

= I ′1x(x− vx) + n′x(x), (2.115)

where n′x(x) = nx(x + 1) − nx(x) and nx(x) =
∑

y n(x, y). When N is large enough, the
authors point out that n′x(x) = 0, thus yielding I ′2x(x) = I ′1x(x − vx). This means that
the gradients of the projections are not affected by the interference terms, therefore the
method becomes more robust to them, even under non-zero-mean noise.

Then the PCS between both gradients is computed and the subpixel shifts are es-
timated by fitting a Gaussian around the peak values. To increase robustness while
also accelerating the computations, the peak value is only searched around the interval[

7M
16 ,

9M
16

]
, using one-eight of the samples.
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2.3. Phase-correlation methods 55

(a) I1y and I2y, σ=0 (b) I1y and I2y, σ=75 (c) I1y and I2y, σ=150 (d) I1y and I2y, σ=300

(e) I1x and I2x, σ=0 (f) I1x and I2x, σ=75 (g) I1x and I2x, σ=150 (h) I1x and I2x, σ=300

Figure 2.5 – Projections of two images shifted by (−3.5, 0.75) pixels under different random WGN
(σ = 0, 75, 150 and 300) assuming 12-bit images. Top two rows: Vertical direction of both images
(shift 0.75). Last two rows: Horizontal direction of both images (shift −3.5).

(a) σ = 0 (b) σ = 75 (c) σ = 150 (d) σ = 300

Figure 2.6 – Unwrapped phases obtained from the normalized cross-power spectrum of two im-
ages shifted by (−3.5, 0.75) pixels under different random WGN (σ = 0, 75, 150 and 300) assuming
12-bit images. Both images were pre-filtered using a Blackman window. Top: Vertical direction
(shift 0.75). Bottom: Horizontal direction (shift -3.5).
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56 REVIEW OF GLOBAL SUBPIXEL SHIFT ESTIMATION METHODS

The rank-one approach A straightforward but usually overlooked aspect about the
phase correlation matrix of Eq. (2.69) is that, in a noiseless context, each element could
be written as the product of two complex exponentials,

C(ωx, ωy) = exp

(
i2πωxvx/M

)
· exp

(
i2πωyvy/N

)
= qx(ωx)qy(ωy). (2.116)

This means that matrix C(ωx, ωy) can be written as the outer product of non-zero vectors,
implying it has rank one. By making this observation, Hoge [75] proposed to compute the
singular value decomposition (SVD) of the phase correlation matrix C to obtain a rank-
1 approximation, followed by applying linear least squares on unwrapped versions of
both arg(qx) and arg(qy), the left and right dominant singular vectors. Since both are 1D
signals, the unwrapping is straightforward and the computational cost of the minimiza-
tion is significatively lower. To gain robustness against aliasing and edge effects, the un-
wrapped 1D phases are masked by only including frequencies lying on a specific range,
namely |ω| ∈ [2, 0.6(s/2)] where s is the length of the array. Fig. 2.4 puts in evidence the
effects of computing the rank-1 approximation of the matrixC(ωx, ωy). While the original
cross-power spectrum is noisy, its rank-1 approximation yields a much cleaner version.
Its effects under low SNR are however not stable, affecting the accuracy. Interestingly, the
phase difference matrix gets considerably denoised using the rank-1 approximation, as
seen in Fig. 2.7. The unwrapped versions of the 1D phase components for both left and
right singular vectors are also displayed in this figure. While on the vertical direction, the
line fitting seems straightforward in most cases, the same does not occur on the other di-
rection due to the high amount of outliers. A robust line fitting method such as RANSAC
could be used in this task. Indeed, this is the main idea behind the recent article of Tong
et al. [170].

2.3.4 Gradient correlation methods

The phase correlation (PC) methods discussed above are able to estimate image displace-
ments because the phase component of images holds structural information. Therefore
by correlating the phase components between two images, it is possible to estimate the
displacement between them. Indeed, phase information is invariant with respect to uni-
form variations of illumination, has a strong response to edges and usually yields high
peak localizaion accuracy, which makes phase-correlation approaches suitable for several
shift estimation tasks. Nevertheless, other shift estimation approaches, which resemble
PC methods, are based on correlating the image gradients [7, 178, 179].

For each input image, the gradient correlation (GC) approach [7] combines both hor-
izontal and vertical gradients into a new image using complex numbers. Then, it com-
putes the cross-correlation of these two complex images in the frequency domain to fi-
nally estimate the peak. Formally, images g1 and g2 are given by

gi(x) =
∂Ii
∂x

(x) + j
∂Ii
∂y

(x), i = 1, 2. (2.117)

If G1 = F{g1(x)} and G2 = F{g2(x)} are their respective Fourier representations, |G1|=
F{|g1(x)|} and |G2|= F{|g2(x)|} the Fourier representations of their magnitudes, then
the gradient correlation (GC) and the normalized gradient correlation NGC are as follows

GC(x) = g1(x) ? g2(x) = F−1{G∗1G2}(x) (2.118)

NGC(x) =
F−1 {G∗1G2}
F−1 {|G1|∗|G2|}

. (2.119)
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(a) σ = 0 (b) σ = 75 (c) σ = 150 (d) σ = 300

Figure 2.7 – Phase difference matrix computed directly (first row) and by using a rank-1 approx-
imation (second row) of the cross-power spectrum of two images shifted by (−3.5, 0.75) pixels
under different random WGN (σ = 0, 75, 150 and 300) assuming 12-bit images. Third and fourth
rows display the phase unwrapped left an right dominant singular vectors of the cross-power
spectrum respectively. Both images were pre-filtered using a Blackman window. Dynamic ranges
extended for visualization purposes.

57



58 REVIEW OF GLOBAL SUBPIXEL SHIFT ESTIMATION METHODS

The images are previously zero padded to avoid undesired edge effects in the correlation.
Finally, to achieve sub-pixel accuracy, the same quadratic fitting proposed in Abdou [1]
is used around the peak value. An example of a gradient correlation surface is shown on
the first row of Fig. 2.8.

In [179] the method is improved by fitting a 1D kernel, based on the mexican hat
wavelet, to the left and right singular vectors of the SVD of the (normalized) gradient
correlation grid. The fitting is performed through least squares minimization and re-
solved using the Levenberg-Marquardt [92] algorithm. For the minimization to converge
rapidly, the method is initialized with the preliminary result of applying quadratic fitting
to the rank-1 approximation of the (normalized) gradient correlation (Fig. 2.8, middle
row). Therefore, given either GC(x) or NGC(x), the method first computes its rank-1
approximation GC1 = λ1U1V

T
1 using its SVD, and uses GC1 to compute an initial shift

vx by linearly fitting Eq. (2.75) to its peak value. To refine the results, it fits the following
kernel using 2R+ 1 samples around the peak on each U and V

K1D(x) = p1

{
1− (p2(x− vx))2

} 1√
2πp3

exp

{
−(x− vx)2

2p2
3

}
(2.120)

where [vx, p1, p2, p3] are the kernel parameters being optimized. As initial values for the
optimization, they propose to use p1 = p2 = p3 = 1 and R = 10. It should be noted
that the authors evaluate two possible normalized gradient correlation rank-1 approxi-
mations. Either they compute directly the SVD of Eq. (2.119) as already explained, either
they divide the rank-1 approximations of both numerator and denominator of Eq. (2.119),
followed by taking again the rank-1 of the quotient, as in

NGC(x) = rank1
{

rank1(F−1 {G∗1G2})
rank1(F−1 {|G1|∗|G2|})

}
. (2.121)

This last approach, whose NGC grid is shown in the last row of Fig. 2.8, seems to offer
slightly better results, although the difference is not significative.
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2.3. Phase-correlation methods 59

(a) σ = 0 (b) σ = 75 (c) σ = 150 (d) σ = 300

Figure 2.8 – Gradient correlation without (top) and by using a rank-1 approximation (center)
and the normalized gradient correlation after forcing rank-1 (bottom) of two images shifted by
(−3.5, 0.75) pixels under different random WGN (σ = 0, 75, 150 and 300) assuming 12-bit images.
Both images were zero-padded up to 2N − 1 pixels [178]. Dynamic ranges extended for visual-
ization purposes.
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60 REVIEW OF GLOBAL SUBPIXEL SHIFT ESTIMATION METHODS

2.4 Method evaluation

In this section we perform a full evaluation of the presented methods, under different
parametrizations, on several shift-estimation tasks. For experimentation, and due to the
applications elaborated in this thesis and presented in the following chapters, all exper-
iments were done using a high-resolution satellite image of the city of Cannes 2.9. In a
simulated environment, I1 was generated by taking a 50 × 50 subimage from a random
location, while I2 was obtained by shifting the high-resolution image in the Fourier do-
main using Eq. (2.67) followed by taking a subimage with the same size and from the
same location. All shift estimation errors were computed as the root mean squared error
(RMSE) and are in pixels. This implies that if v and v̂ are the real shift and the estimated
shift, then the error obtained is

E(v̂) =

√
(vx − v̂x)2 + (vy − v̂y)2

2
. (2.122)

Results presented in this evaluation are, in every case, obtained by averaging 100 realiza-
tions.

Figure 2.9 – Input image used for simulation.

Apart from the most important shift-estimation methods introduced in the previous
section, five more approaches coming from the remote sensing community were also
evaluated. These five methods originate from wavefront aberration estimation using
Shack-Hartmann devices on extended scenes and will be thoroughly explained in the
next chapter. Three of these methods (SDF, ADF and ADF2 [95]) are loosely based on cor-
relating both images followed by fitting a conic section in the 2D neighbourhood around
the peak, while ACC [151] and APC [153] are two iterative methods, the former being
based on the method of Stone [159] while the latter is based on a periodic correlation
technique.

Due to the extensive amount of evaluated methods and variants, we defined a nomen-
clature to refer to each of them. In Table 2.2 we observe all evaluated methods together
with their parameters. For every method, parameter i refers to the amount of iterations
(i ∈ [1, 2, 3, 4] in our experiments), gr to a gradient estimation method presented in sec-
tion 2.2.6 (Table 2.3), int to an interpolation method presented in section 2.2.7 (Table 2.5),
sp to the support size, up to the upsampling factor, win to the apodization window used
(Table 2.4) and d to the dimensionality of the solution (d ∈ [1, 2]).
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For the multiscale GBSE method (MS), we first put the amount scales followed by
a coma. Then we specify its configuration by putting for each scale the amount of iter-
ations i followed by the interpolation method int used in each scale from the finest to
the coarsest scale. For example, MS-3,321-IdssGh represents three scales, with a single
iteration and spline interpolation on the coarsest scale, followed by two iterations and
spline interpolation in the intermediate scale, and finally doing three iterations and DFT
interpolation with symmetrization in the original scale, and where the image gradients
are always computed using the hypomode.

Code Parameters Method Reference
LS LS-i-Iint-Ggr Least Squares GBSE Alg. 1

TLS TLS-i-Iint-Ggr Total Least Squares GBSE Eq. (2.10)
CLS CLS-i-Iint-Ggr Corrected Least Squares GBSE Eq. (2.22)
ULS ULS-Ggr Bidirectional bias correction GBSE [122]
MS MS-s,i-IintGgr Multiscale GBSE Alg. 2
INT INT-sp Interpolation method Sec. 2.2.8

PC-GUIZAR PC-GUIZAR-up Zero-fitting the cross-power spectrum [69]
PCSTONE PCSTONE-Wwin Robust plane fitting on the phase difference matrix [159]

PC-QUADFIT PC-QUADFIT-Wwin Quadratic fitting on the phase correlation surface [1]
PC-GAUSSFIT PC-GAUSSFIT-Wwin Gaussian fitting on the phase correlation surface [1]

PCFOO PCFOO-Wwin Max. of sinc approx. to phase correlation surface [57]
PC-SINC PC-SINC-Wwin Sinc fitting on the phase correlation surface [8]

PC-ESINC PC-ESINC-Wwin E-Sinc fitting on the phase correlation surface [8]
PC-LCM PC-LCM-dDsp d-dimensional local center of mass of the PCS [4]

PC-REN2010 PC-REN2010-Wwin Difference between both side-peaks of the PCS [134]
SS-HOGE SS-HOGE-Wwin Subspace method by Rank-1 approximation [75]

SS-ROBINSON SS-ROBINSON-Wwin Projection-based subspace phase correlation [138]
SS-REN2014 SS-REN2014-Wwin Projection-based subspace gradient correlation [135]

GC04 GC04-Ggr Gradient Correlation [7]
GC11 GC11-Ggr Kernelized Gradient Correlation [179]

NGC04 NGC04-Ggr Normalized Gradient Correlation [7]
NGC11 NGC11-Ggr Kernelized Normalized Gradient Correlation [179]

SDF SDF-2QI Sum of squared differences [95]
ADF ADF-2QI Sum of absolute differences differences [95]

ADF2 ADF2-2QI Sum of squared absolute differences differences [95]
ACC ACC-iIt Adaptive Cross-Correlation [151]
APC APC-iIt Adaptive Periodic-Correlation [153]

Table 2.2 – Method references for this evaluation section.

Code Name
h Hypomode

g0.3 3× 3 Gaussian derivative σ = 0.3
g0.6 5× 5 Gaussian derivative σ = 0.6
g1 7× 7 Gaussian derivative σ = 1

sim3 3× 3 Simoncelli derivative
sim5 5× 5 Simoncelli derivative
sim7 7× 7 Simoncelli derivative
fa3 3× 3 Farid derivative
fa5 5× 5 Farid derivative
fa7 7× 7 Farid derivative
ch1 1st order Christmas derivative
ch2 2nd order Christmas derivative
ch3 3rd order Christmas derivative

Table 2.3 – Evaluated gradient estimation
method codes gr.

Code Name
nw No Window
ex Image zero-padding
bm Blackman
bh Blackman-Harris
bl Bartlett

bw barthann
cw Chebyshev
gw Gaussian
hw Hamming
tw Tukey
ft Flat-top

Table 2.4 – Window codes
win used for apodization.

Code Name
l Bilinear interpolation
c Bicubic interpolation
s 3rd order spline interpolation
f FFT interpolation
d FFT with symmetrization int.

Table 2.5 – Evaluated interpolation
method codes int.

As mentioned in section 2.1, when evaluating the methods in the presence of noise,
we assumed white Gaussian noise uncorrelated with the signal. Simulating Ren et al.
[134], we discretized the noise into five distinct levels (five different values for the noise
standard deviation σN ), shown in Table 2.6, and used this categorization to evaluate the
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62 REVIEW OF GLOBAL SUBPIXEL SHIFT ESTIMATION METHODS

methods.

Level 1 2 3 4 5
σN 0.000 0.005 0.015 0.025 0.055

Table 2.6 – Std. dev. of white Gaussian noise for each noise level injected to the simulated
images.

In the same manner, all evaluated displacements were grouped into four categories.
The reason behind this distinction is that some methods are more suited than others for
each designated category. The ranges for each shift magnitude level are as shown in Table
2.7. In the first category, extremely small sub-pixel shifts were considered, as they could
exist in several applications, for example the Stab-Active problem presented in Chapter
4 of this thesis. We also include as a fourth category, magnitudes larger than 1.1 pixels.
By design, all non-multiscale GBSE methods as well as the phase correlation method
from Stone [159] fail under this category. Due to this reason, although being shown for
completeness, this shift magnitude is excluded from the general averages on every table.

Level 1 2 3 4
Range ‖v‖ ≤ 0.1 0.1 < ‖v‖ ≤ 0.5 0.5 < ‖v‖ ≤ 1.1 ‖v‖ > 1.1

Table 2.7 – Shift magnitude (‖v‖) ranges for each evaluated category.

We begin our evaluation by studying the impact of gradient estimation methods on
GBSE approaches.

2.4.1 Influence of gradient estimation on GBSE methods

Since GBSE methods are gradient-based, their performance obviously depends on the
method used to estimate the image gradient. To this end, we evaluated several gradi-
ent estimation methods using the original least-squares approach as explained in section
2.2.6. Emulating Ren et al. [134], we used all possible shifts obtained by taking two values
from [−0.875,−0.75,−0.5,−0.25,−0.125,−0.07,−0.02, 0, 0.03, 0.125, 0.25, 0.5, 0.75, 0.875].
In total, this represented 196 shifts, from which for each experiment, a random sub image
was obtained and shifted in the frequency domain using the Fourier shift theorem. The
average error obtained for all 196 shifts is shown in Fig. 2.10 as the noise increases (left)
or by varying shift magnitude (right) , using the five noise levels shown in Table 2.6 and
the four shift magnitudes of Table 2.7.

Several conclusions are drawn following the preceding experiment.

• First, the most accurate gradient estimation method for GBSE proved to be the
method of Farid [53], followed by the approach of Simoncelli [154].

• Second, the kernel support size should be set larger (7 × 7) under higher noise
scenarios, and shorter (3× 3) when the SNR is high.

• Third, using σ = 0.6 for the Gaussian kernel always obtained the best results, how-
ever the performance using σ = 1 seems less affected by higher noise situations,
and should be considered in those cases. A more in-depth study on Gaussian gra-
dient estimation performance for GBSE methods is given in the following section.

• Finally, even though computationally cheap, the hypomode gradient estimation
should be avoided when shift estimation is done on all possible shift magnitudes
between the [-1,1] interval. Nevertheless, under low shift magnitudes and high
noise, the hypomode becomes the most accurate method, as seen in Table 2.8, where
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the top 10 gradient estimation methods are shown depending on both the shift
magnitude and the noise.
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Figure 2.10 – Comparison of accuracy obtained by using different gradient estimation methods
on the GBSE algorithm. Left: By noise level. Right: By shift magnitude category.

A study on Gaussian derivatives

An experiment was performed in order to study the influence of prefiltering using a
Gaussian blur and computing the Gaussian derivatives to estimate the gradient. The ob-
jective was to search for the standard deviation σ̂ of the Gaussian kernel h that minimized
the registration error

σ̂ = argmin
σ

∥∥(ATA)−1AT b− v
∥∥ , (2.123)

where

A =

 (hxσ ∗ I1)(p1) (hyσ ∗ I1)(p1)
...

(hxσ ∗ I1)(pn) (hyσ ∗ I1)(pn)

 , v =

(
vx
vy

)
, b = −

 (hσ ∗ It)(p1)
...

(hσ ∗ It)(pn)

 .

(2.124)
In the previous expression, ∗ stands for convolution and hxσ, h

y
σ are the derivatives of the

Gaussian kernel on both dimensions, that depend on the σ parameter. By performing
simulation, two images shifted by v were generated and WGN was added. The standard
GBSE algorithm was used by computing the Gaussian derivative from the original I1

image, and by blurring It with a Gaussian with the same standard deviation, as explained
in section 2.2.6. The minimization was performed using the Levenberg-Marquardt non-
linear least squares optimization method. In Fig. 2.11, the evolution of σ̂ is shown for each
shift, as the noise of the input image increases. While for extremely small displacements
(or no displacement), the σ̂ varied in a random manner, for displacements already as
small as (0.0743, 0) and larger, the obtained values tended to be along 0.6 up to 0.7 as the
noise increased.

To better understand the importance of choosing the correct σ̂, in Fig. 2.12, we per-
formed two other experiments. In Fig. 2.12(a) the average standard deviation of the top
10 best RMSEs obtained by varying the σ parameter is displayed, for each displacement.
This implies to test each one of the values for the σ parameter between 0 and 1 with step
size of 0.05, and obtain for each the resulting RMSE to finally compute the standard de-
viation of the lowest 10. For consistency, this experiment was averaged several times. As
seen from the figure, the gain gets higher with the displacement magnitude. However,
when the shift magnitude is under 0.1 pixels, this gain is negligible, suggesting in this
case, a more relaxed selection of the σ value.
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‖v‖ ≤ 0.1 0.1 < ‖v‖ ≤ 0.5 0.5 < ‖v‖ ≤ 1.1 ‖v‖ > 1.1 Avg.

σ
0.000

0.0000 LS-1-IlGfa7
0.0001 LS-1-IlGsim5
0.0001 LS-1-IlGfa5
0.0007 LS-1-IlGg0.6
0.0015 LS-1-IlGsim3
0.0020 LS-1-IlGch3
0.0033 LS-1-IlGch2
0.0037 LS-1-IlGfa3
0.0045 LS-1-IlGg0.3
0.0048 LS-1-IlGh

0.0010 LS-1-IlGfa5
0.0010 LS-1-IlGfa7
0.0012 LS-1-IlGsim5
0.0046 LS-1-IlGg0.6
0.0052 LS-1-IlGsim3
0.0067 LS-1-IlGch3
0.0128 LS-1-IlGch2
0.0150 LS-1-IlGfa3
0.0216 LS-1-IlGg0.3
0.0231 LS-1-IlGh

0.0245 LS-1-IlGfa3
0.0290 LS-1-IlGfa7
0.0333 LS-1-IlGsim3
0.0347 LS-1-IlGfa5
0.0362 LS-1-IlGsim5
0.0420 LS-1-IlGch2
0.0583 LS-1-IlGch3
0.0641 LS-1-IlGg0.6
0.1305 LS-1-IlGg0.3
0.1315 LS-1-IlGh

0.0733 LS-1-IlGfa3
0.0843 LS-1-IlGfa7
0.1025 LS-1-IlGfa5
0.1054 LS-1-IlGsim5
0.1163 LS-1-IlGsim3
0.1717 LS-1-IlGg0.6
0.1785 LS-1-IlGch2
0.2094 LS-1-IlGch3
0.2725 LS-1-IlGh
0.2952 LS-1-IlGg0.3

0.0286 LS-1-IlGfa7
0.0291 LS-1-IlGfa3
0.0346 LS-1-IlGfa5
0.0357 LS-1-IlGsim5
0.0391 LS-1-IlGsim3
0.0592 LS-1-IlGch2
0.0603 LS-1-IlGg0.6
0.0691 LS-1-IlGch3
0.1079 LS-1-IlGh
0.1130 LS-1-IlGg0.3

σ
0.005

0.0039 LS-1-IlGg0.6
0.0041 LS-1-IlGsim3
0.0043 LS-1-IlGch3
0.0045 LS-1-IlGsim5
0.0045 LS-1-IlGfa5
0.0049 LS-1-IlGch2
0.0054 LS-1-IlGfa7
0.0055 LS-1-IlGfa3
0.0059 LS-1-IlGg0.3
0.0063 LS-1-IlGh

0.0049 LS-1-IlGfa5
0.0050 LS-1-IlGsim5
0.0057 LS-1-IlGfa7
0.0061 LS-1-IlGsim3
0.0068 LS-1-IlGch3
0.0072 LS-1-IlGg0.6
0.0111 LS-1-IlGch2
0.0145 LS-1-IlGfa3
0.0238 LS-1-IlGg0.3
0.0264 LS-1-IlGh

0.0260 LS-1-IlGfa3
0.0314 LS-1-IlGfa7
0.0374 LS-1-IlGfa5
0.0376 LS-1-IlGsim3
0.0390 LS-1-IlGsim5
0.0508 LS-1-IlGch2
0.0691 LS-1-IlGg0.6
0.0716 LS-1-IlGch3
0.1372 LS-1-IlGg0.3
0.1415 LS-1-IlGh

0.0783 LS-1-IlGfa3
0.0867 LS-1-IlGfa7
0.1051 LS-1-IlGfa5
0.1080 LS-1-IlGsim5
0.1216 LS-1-IlGsim3
0.1774 LS-1-IlGg0.6
0.1923 LS-1-IlGch2
0.2267 LS-1-IlGch3
0.2863 LS-1-IlGh
0.3025 LS-1-IlGg0.3

0.0311 LS-1-IlGfa3
0.0323 LS-1-IlGfa7
0.0380 LS-1-IlGfa5
0.0391 LS-1-IlGsim5
0.0423 LS-1-IlGsim3
0.0644 LS-1-IlGg0.6
0.0648 LS-1-IlGch2
0.0774 LS-1-IlGch3
0.1151 LS-1-IlGh
0.1173 LS-1-IlGg0.3

σ
0.015

0.0105 LS-1-IlGch2
0.0108 LS-1-IlGch3
0.0109 LS-1-IlGg0.6
0.0110 LS-1-IlGsim3
0.0110 LS-1-IlGg0.3
0.0118 LS-1-IlGh
0.0119 LS-1-IlGfa3
0.0132 LS-1-IlGsim5
0.0134 LS-1-IlGfa5
0.0154 LS-1-IlGg1

0.0131 LS-1-IlGsim3
0.0142 LS-1-IlGfa5
0.0143 LS-1-IlGsim5
0.0156 LS-1-IlGfa3
0.0161 LS-1-IlGfa7
0.0176 LS-1-IlGg0.6
0.0178 LS-1-IlGch2
0.0232 LS-1-IlGch3
0.0362 LS-1-IlGg0.3
0.0432 LS-1-IlGh

0.0400 LS-1-IlGfa3
0.0428 LS-1-IlGfa7
0.0510 LS-1-IlGfa5
0.0527 LS-1-IlGsim5
0.0622 LS-1-IlGsim3
0.0960 LS-1-IlGg0.6
0.1080 LS-1-IlGch2
0.1382 LS-1-IlGch3
0.1741 LS-1-IlGg0.3
0.1905 LS-1-IlGg1

0.0993 LS-1-IlGfa7
0.1134 LS-1-IlGfa3
0.1224 LS-1-IlGfa5
0.1256 LS-1-IlGsim5
0.1563 LS-1-IlGsim3
0.2137 LS-1-IlGg0.6
0.2705 LS-1-IlGch2
0.3113 LS-1-IlGch3
0.3223 LS-1-IlGg1
0.3524 LS-1-IlGg0.3

0.0435 LS-1-IlGfa7
0.0452 LS-1-IlGfa3
0.0502 LS-1-IlGfa5
0.0515 LS-1-IlGsim5
0.0606 LS-1-IlGsim3
0.0845 LS-1-IlGg0.6
0.1017 LS-1-IlGch2
0.1209 LS-1-IlGch3
0.1434 LS-1-IlGg0.3
0.1445 LS-1-IlGg1

σ
0.025

0.0161 LS-1-IlGch2
0.0162 LS-1-IlGg0.3
0.0165 LS-1-IlGg0.6
0.0166 LS-1-IlGsim3
0.0168 LS-1-IlGch3
0.0170 LS-1-IlGh
0.0175 LS-1-IlGfa3
0.0201 LS-1-IlGch1
0.0205 LS-1-IlGg1
0.0205 LS-1-IlGsim5

0.0226 LS-1-IlGfa3
0.0241 LS-1-IlGfa5
0.0242 LS-1-IlGsim5
0.0246 LS-1-IlGsim3
0.0267 LS-1-IlGfa7
0.0313 LS-1-IlGg0.6
0.0398 LS-1-IlGch2
0.0488 LS-1-IlGch3
0.0533 LS-1-IlGg0.3
0.0552 LS-1-IlGg1

0.0592 LS-1-IlGfa7
0.0718 LS-1-IlGfa5
0.0738 LS-1-IlGsim5
0.0744 LS-1-IlGfa3
0.1001 LS-1-IlGsim3
0.1351 LS-1-IlGg0.6
0.1816 LS-1-IlGch2
0.2032 LS-1-IlGg1
0.2146 LS-1-IlGch3
0.2242 LS-1-IlGg0.3

0.1250 LS-1-IlGfa7
0.1552 LS-1-IlGfa5
0.1589 LS-1-IlGsim5
0.1735 LS-1-IlGfa3
0.2139 LS-1-IlGsim3
0.2720 LS-1-IlGg0.6
0.3436 LS-1-IlGg1
0.3689 LS-1-IlGch2
0.4136 LS-1-IlGch3
0.4194 LS-1-IlGg0.3

0.0589 LS-1-IlGfa7
0.0679 LS-1-IlGfa5
0.0694 LS-1-IlGsim5
0.0720 LS-1-IlGfa3
0.0888 LS-1-IlGsim3
0.1137 LS-1-IlGg0.6
0.1516 LS-1-IlGch2
0.1556 LS-1-IlGg1
0.1735 LS-1-IlGch3
0.1783 LS-1-IlGg0.3

σ
0.055

0.0261 LS-1-IlGh
0.0265 LS-1-IlGg0.3
0.0274 LS-1-IlGch2
0.0274 LS-1-IlGch1
0.0276 LS-1-IlGg0.6
0.0281 LS-1-IlGsim3
0.0281 LS-1-IlGch3
0.0292 LS-1-IlGfa3
0.0329 LS-1-IlGg1
0.0369 LS-1-IlGsim5

0.0512 LS-1-IlGfa5
0.0515 LS-1-IlGsim5
0.0535 LS-1-IlGfa7
0.0569 LS-1-IlGfa3
0.0616 LS-1-IlGsim3
0.0696 LS-1-IlGg0.6
0.0735 LS-1-IlGg1
0.0927 LS-1-IlGch2
0.0951 LS-1-IlGg0.3
0.1008 LS-1-IlGch3

0.1235 LS-1-IlGfa7
0.1530 LS-1-IlGfa5
0.1560 LS-1-IlGsim5
0.2051 LS-1-IlGfa3
0.2262 LS-1-IlGsim3
0.2548 LS-1-IlGg1
0.2582 LS-1-IlGg0.6
0.3468 LS-1-IlGch2
0.3530 LS-1-IlGg0.3
0.3733 LS-1-IlGch3

0.2137 LS-1-IlGfa7
0.2693 LS-1-IlGfa5
0.2742 LS-1-IlGsim5
0.3593 LS-1-IlGfa3
0.3900 LS-1-IlGsim3
0.4156 LS-1-IlGg1
0.4400 LS-1-IlGg0.6
0.5801 LS-1-IlGch2
0.5861 LS-1-IlGg0.3
0.6156 LS-1-IlGch3

0.1092 LS-1-IlGfa7
0.1277 LS-1-IlGfa5
0.1296 LS-1-IlGsim5
0.1626 LS-1-IlGfa3
0.1765 LS-1-IlGsim3
0.1942 LS-1-IlGg1
0.1989 LS-1-IlGg0.6
0.2618 LS-1-IlGch2
0.2652 LS-1-IlGg0.3
0.2794 LS-1-IlGch3

Avg.

0.0119 LS-1-IlGg0.6
0.0122 LS-1-IlGsim3
0.0124 LS-1-IlGch3
0.0125 LS-1-IlGch2
0.0128 LS-1-IlGg0.3
0.0132 LS-1-IlGh
0.0135 LS-1-IlGfa3
0.0150 LS-1-IlGsim5
0.0152 LS-1-IlGfa5
0.0180 LS-1-IlGg1

0.0191 LS-1-IlGfa5
0.0192 LS-1-IlGsim5
0.0206 LS-1-IlGfa7
0.0221 LS-1-IlGsim3
0.0249 LS-1-IlGfa3
0.0261 LS-1-IlGg0.6
0.0348 LS-1-IlGch2
0.0373 LS-1-IlGch3
0.0460 LS-1-IlGg0.3
0.0530 LS-1-IlGh

0.0572 LS-1-IlGfa7
0.0696 LS-1-IlGfa5
0.0715 LS-1-IlGsim5
0.0740 LS-1-IlGfa3
0.0919 LS-1-IlGsim3
0.1245 LS-1-IlGg0.6
0.1459 LS-1-IlGch2
0.1712 LS-1-IlGch3
0.2022 LS-1-IlGg1
0.2038 LS-1-IlGg0.3

0.1218 LS-1-IlGfa7
0.1509 LS-1-IlGfa5
0.1544 LS-1-IlGsim5
0.1596 LS-1-IlGfa3
0.1996 LS-1-IlGsim3
0.2549 LS-1-IlGg0.6
0.3181 LS-1-IlGch2
0.3405 LS-1-IlGg1
0.3553 LS-1-IlGch3
0.3911 LS-1-IlGg0.3

0.0545 LS-1-IlGfa7
0.0637 LS-1-IlGfa5
0.0651 LS-1-IlGsim5
0.0680 LS-1-IlGfa3
0.0815 LS-1-IlGsim3
0.1044 LS-1-IlGg0.6
0.1278 LS-1-IlGch2
0.1441 LS-1-IlGch3
0.1537 LS-1-IlGg1
0.1634 LS-1-IlGg0.3

Table 2.8 – Average error per shift and magnitude of top 10 evaluated Least Squares GBSE
methods using all gradient estimation approaches. Rows: five noise levels. Columns: four shift
magnitudes. Note that the last column displays the top ten methods of the average for each noise
level excluding the last shift magnitude level.
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(a) σ̂ per noise (b) RMSE obtained using σ̂

Figure 2.11 – σ̂ values obtained based on noise and shift. Standard deviation of noise is consid-
ering 12-bit images.

Finally, since σ = 0.6 usually achieved good results, a comparison between the best
σ̂ and σ = 0.6 was made in Fig. 2.12(b). Interestingly, by fixing σ = 0.6, higher accuracy
gains could be obtained when the displacements are of small magnitude (lower than
0.1 pixels). However, when the displacement is high enough (in our case half a pixel
in magnitude), under low SNR values (noise std. dev. bigger than 150), the accuracy
gain by selecting the correct σ̂ could be as high as 0.016 pixels. This implies that for
low displacement magnitudes, lower σ values should be used (around σ = 0.45); for
medium shift magnitudes (between 0.1 and 0.3); σ = 0.6 should be used, and for high
displacements, the decision to increase the σ relies on the noise level.

(a) Average standard deviation of ten
best RMSEs per shift

(b) Difference between RMSE obtained us-
ing σ̂ and using the σ = 0.6

Figure 2.12 – Influence of using the correct σ for the Gaussian kernel on the results

Another experiment was performed to confirm the σ̂ values obtained under different
image conditions. Three image types were selected, namely a textured image, a low SNR
image, and an image having the well-known aperture problem (the gradient direction is
mostly uniform across the image). Also, larger shifts up to ‖v‖ = 1 were included for
this test. Results averaging all evaluated shifts are displayed in Fig. 2.13. It seems that
for well-textured images, values of σ between 0.6 and 0.8 achieved the best performance,
however for more complicated images, higher values achieved better results. This makes
sense, since in a case where high precision is not possible, considerably blurring the im-
age decreases the maximum shift returned and therefore the maximum error. This can
be seen in Fig. 2.13(b) where the average errors reach almost half the magnitude and the
largest evaluated shift. It has to be noted that for each noise amount, each problematic
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(a) σ̂ per noise (b) RMSE of methods using σ̂

Figure 2.13 – σ̂ values obtained based on problematic case and noise.

case and each simulated shift, a total of 1000 experiments were performed. The σ̂ dis-
played on the figures is the median while the RMSE shown is the average RMSE of these
experiments.

Finally, to give more insight about the progression of the error based on the blurring
kernel standard deviation used and on the noise, Fig. 2.14 shows the RMSE, in pixels,
depending on the underlying shift to be estimated. As it can be seen from the graphs, as
the noise increases, also does the error, as expected, and the σ̂ that minimizes this error
seems to be around 0.6, growing as high as 0.7 when the noise becomes high. Another
interesting result is that as the displacement grows, the fact that values of σ̂ around 0.6 are
the best becomes more apparent. However, when the shift is small enough (lower than
0.1 pixel), other σ̂ values should be used, as remarked in the previous test. Furthermore,
for the case of high shift magnitude and high noise, the estimation error becomes higher,
so accurately setting σ in these cases could be justified by the accuracy gain.
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(a) Shift (0,0) (b) Shift (0.02, 0.03)

(c) Shift (0, 0.074) (d) Shift (0.1, 0.1)

(e) Shift (-0.25, 0.25) (f) Shift (0.5, -0.5)

Figure 2.14 – Evolution of RMSEs obtained based on σ̂ values (from 0 to 3) and noise (from 0 to
300] for each shift. The red rectangle shows, as a reference, σ = 0.6.

67



68 REVIEW OF GLOBAL SUBPIXEL SHIFT ESTIMATION METHODS

2.4.2 Robustness to noise

One of the most important difficulties in shift estimation is related to the presence of noise
on the input images. In this section, we evaluate the effects of noise on each method in
a simulated environment. For each error value shown, an average of 100 experiments
was performed, each time generating a new noise realization and using a different ran-
dom subimage. Due to the randomness of the experiment, potential content-less images
or aperture problem cases could exist. However, by using both validation methods pre-
sented in the next chapter, namely the Cramer-Rao lower bound and the Eigenratio score,
these cases were excluded from the results, and the computed averages were based on
valid cases only. Note also that by selecting random subimages, two experiments with
injected noise sharing the same standard deviation could still have different SNRs. This
was on purpose, to evaluate the versatility of each method under potentially plausible
situations.

As proved by both Robinson [139] and Pham [119], the negative effect of noise is
stressed as the displacement to estimate gets larger. For this reason, we evaluated the
performance of every approach by varying noise and displacement magnitude condi-
tions, based on the noise levels shown in Table 2.6. Figure 2.15 shows an example of two
landscapes, the first with high photon count and the second with average photon count,
under each simulated noise level. While in the first landscape, the effects of the noise
start to be noted from the third noise level, for the second case it is already noticeable on
the second level.

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4 (e) Level 5

Figure 2.15 – Sample images for the five analyzed noise levels. Top: high constrasted image
(high SNR). Bottom: intermediate contrasted image (average SNR). Dynamic ranges extended
for visualization purposes.

To summarize results, we display in Table 2.9 the top 10 methods together with their
average errors for each evaluated shift magnitude category and every noise level ana-
lyzed. Also, the averages by noise level and by shift magnitude were included in the
results. Since in general each top 10 is dominated by the different variants from a single
method, this table does not seem too informative. However, some interesting conclusions
could be inferred. First, the best methods are always gradient-based, and the amount of
iterations and/or scales depends on the shift magnitude. For the lowest shift magnitude
studied, using a single or two iterations of the original LS or the TLS method are opti-
mal. For the second analyzed magnitude category, the best results were obtained without
requiring a multiscale approach, however several iterations should be performed (three
or four). Finally, for the remaining shift magnitudes, a multiscale approach is manda-
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tory and the configuration that seems to achieve the best results is to start with a single
iteration on the broadest scale and increasing the amount of iterations by one for each
subsequent scale progressively. Also, for the finest scale, the best interpolation scheme
should be used (FFT with or without symmetrization or spline). Finally, for short shift-
magnitudes, the gradients with the smallest supports are recommended. In particular,
the hypomode stands out from the rest. As the shift magnitude increases, both 3 × 3
Farid or Simoncelli gradient estimation methods attain better scores under lower SNR
scenarios. As a special case, under infinite SNR situations, larger gradient estimation
kernels seem to achieve the best accuracies.

To give a better comparison between the studied methods, we took the best perform-
ing variant for each of them and compared them in the same manner. Therefore, the top
10 for the best variant of each method for each shift magnitude/noise case is displayed
in Table 2.10. From this table several conclusions arise. First and most importantly, GBSE
methods systematically improve over other approaches, and the difference in perfor-
mance could be up to factor of five, and is more remarked on lower SNR scenarios. Sec-
ondly, for shifts magnitudes between 0.1 and 1.1, the bidirectional bias corrected method
of Pham et al. makes the top 10 by using a single iteration and no resampling, yielding
itself as the best candidate under limited computational time constraints. For shifts lower
than 0.1, the total least squares method with one iteration is recommended for fast proces-
sing times. Third, gradient correlation approaches improve over phase-correlation-based
methods, particularly under lower SNR where in general phase-correlation methods tend
to fail. Finally, under low noise, apodization methods improved phase correlation ap-
proaches systematically and Hamming, Blackman or Tukey windows achieved the best
results. However, as the noise gets higher, some methods achieved higher accuracies
without apodization. This is because noise affects more the final accuracy than the fake
edges generated by the false periodicity assumption. Therefore, having more pixels from
which to estimate the shift, due to avoiding windowing the images in the spatial domain,
helps reduce the noise influence, yielding improved results.

Predefined set of methods

While for practical reasons, it is interesting to know the top 10 methods for each case, we
get no knowledge of the performance for each method for all situations. To this end, we
preselected 13 methods, and evaluated their performance for every noise/shift magni-
tude case. Three fast single iteration methods were selected, namely the traditional least
squares approach and the total least squares both using one iteration and the hypomode
gradient estimation, together with the bidirectional bias correction method of Pham [122]
using the 3 × 3 Farid gradient estimation. Also, both the least squares and the total
least squares methods using four iterations with the same gradient estimation method
were included in the comparison. As for GBSE multiscale approaches we included two
methods. One using two scales, one iteration on the coarse scale and three on the origi-
nal scale (3,1 iteration pattern), using spline interpolation on the last scale, and another
method using three scales and a (3,2,1) iteration pattern for which the employed inter-
polation method in the final scale was FFT with symmetrization. Both methods used the
3× 3 Farid gradient estimation, which proved before to be the most robust against noise.
For phase-correlation methods, we included in the evaluation the approach proposed by
Guizar-Sicairos [69] using an upsampling value of 2000, the method of Stone [159] and the
Sinc fitting approach, both by applying a hamming window for apodization purposes,
and the method of Hoge [75] with a Tukey window. Finally, two gradient correlation
approaches were included, both using Gaussian derivatives with σ = 0.6. They are the
original method [7] and the more recent approach by Tzimiropoulos [179].

In Table 2.11 we show the results for each predefined method on each condition
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‖v‖ ≤ 0.1 0.1 < ‖v‖ ≤ 0.5 0.5 < ‖v‖ ≤ 1.1 ‖v‖ > 1.1 Avg.

σ
0.000

0.0000 MS-3,321-IdssGfa7
0.0000 MS-2,21-IdcGfa7
0.0000 MS-2,31-IdcGfa7
0.0000 CLS-3-IdGfa7
0.0000 LS-3-IdGfa7
0.0000 TLS-3-IdGfa7
0.0000 CLS-4-IdGfa7
0.0000 LS-4-IdGfa7
0.0000 TLS-4-IdGfa7
0.0000 LS-2-IdGfa7

0.0000 MS-2,31-IdcGfa7
0.0000 MS-2,21-IdcGfa7
0.0000 MS-3,321-IdssGfa7
0.0000 LS-3-IdGfa7
0.0000 TLS-3-IdGfa7
0.0000 TLS-4-IdGfa7
0.0000 LS-4-IdGfa7
0.0000 MS-2,31-IdcGsim5
0.0000 MS-2,21-IdcGsim5
0.0000 MS-2,21-IdcGfa5

0.0000 MS-3,321-IdssGfa7
0.0000 MS-2,31-IdcGfa7
0.0000 MS-2,21-IdcGfa7
0.0000 LS-4-IdGfa7
0.0000 TLS-4-IdGfa7
0.0000 LS-3-IdGfa7
0.0000 TLS-3-IdGfa7
0.0000 MS-2,31-IfcGfa7
0.0000 MS-2,21-IfcGfa7
0.0000 MS-3,321-IdssGsim5

0.0000 MS-3,321-IdssGfa7
0.0000 MS-3,321-IfssGfa7
0.0000 MS-3,321-IdssGfa5
0.0000 MS-3,321-IdssGsim5
0.0000 MS-3,321-IfssGfa5
0.0000 MS-3,321-IfssGsim5
0.0001 MS-3,321-IdssGg0.6
0.0005 MS-3,321-IsssGfa7
0.0006 MS-3,321-IdssGch3
0.0007 MS-3,321-IfssGg0.6

0.0000 MS-3,321-IdssGfa7
0.0000 MS-2,31-IdcGfa7
0.0000 MS-2,21-IdcGfa7
0.0000 LS-4-IdGfa7
0.0000 TLS-4-IdGfa7
0.0000 LS-3-IdGfa7
0.0000 TLS-3-IdGfa7
0.0000 MS-2,31-IfcGfa7
0.0000 MS-2,21-IfcGfa7
0.0000 MS-2,31-IdcGsim5

σ
0.005

0.0031 LS-2-IsGh
0.0032 TLS-2-IsGh
0.0032 LS-2-IfGh
0.0032 CLS-2-IsGh
0.0032 LS-2-IdGh
0.0032 TLS-2-IfGh
0.0032 CLS-2-IfGh
0.0032 CLS-2-IdGh
0.0032 TLS-2-IdGh
0.0032 LS-3-IdGh

0.0035 CLS-4-IdGh
0.0035 TLS-4-IdGh
0.0035 LS-4-IdGh
0.0036 MS-3,321-IdssGh
0.0036 CLS-3-IdGh
0.0037 MS-2,31-IdcGh
0.0037 LS-3-IdGch2
0.0037 CLS-3-IdGch2
0.0037 LS-4-IdGch2
0.0037 CLS-4-IdGch2

0.0035 MS-3,321-IdssGh
0.0035 MS-3,321-IdssGch2
0.0035 TLS-4-IdGh
0.0035 MS-2,31-IdcGch2
0.0035 MS-2,31-IdcGg0.3
0.0035 MS-2,21-IdcGch2
0.0035 MS-3,321-IdssGg0.3
0.0035 MS-2,31-IdcGh
0.0035 LS-4-IdGch2
0.0036 LS-4-IdGg0.3

0.0044 MS-3,321-IfssGfa3
0.0045 MS-3,321-IdssGfa3
0.0045 MS-3,321-IfssGsim3
0.0045 MS-3,321-IdssGsim3
0.0046 MS-3,321-IdssGg0.3
0.0046 MS-3,321-IsssGfa3
0.0046 MS-3,321-IdssGg0.6
0.0047 MS-3,321-IsssGsim3
0.0048 MS-3,321-IfssGg0.6
0.0050 MS-3,321-IsssGg0.6

0.0034 TLS-4-IdGh
0.0034 MS-3,321-IdssGh
0.0035 MS-2,31-IdcGh
0.0035 MS-3,321-IdssGch2
0.0035 MS-2,31-IdcGch2
0.0035 MS-2,21-IdcGch2
0.0036 LS-4-IdGch2
0.0036 LS-4-IdGh
0.0036 LS-4-IdGg0.3
0.0036 MS-3,321-IdssGg0.3

σ
0.015

0.0092 LS-2-IsGh
0.0092 LS-2-IdGh
0.0093 LS-2-IfGh
0.0095 TLS-2-IdGh
0.0095 TLS-2-IfGh
0.0095 TLS-2-IsGh
0.0095 LS-2-IcGch1
0.0095 LS-3-IdGh
0.0096 LS-2-IlGch1
0.0096 CLS-2-IcGch1

0.0105 TLS-4-IdGh
0.0105 CLS-4-IdGh
0.0106 TLS-4-IfGh
0.0107 CLS-3-IdGh
0.0107 CLS-4-IfGh
0.0107 TLS-3-IsGh
0.0107 CLS-4-IdGg0.3
0.0107 TLS-3-IdGh
0.0107 MS-3,321-IdssGg0.3
0.0107 LS-4-IfGch2

0.0118 MS-3,321-IdssGh
0.0118 MS-3,321-IfssGh
0.0121 MS-3,321-IsssGh
0.0123 MS-3,321-IdssGch2
0.0125 MS-3,321-IdssGg0.3
0.0126 MS-3,321-IfssGch2
0.0127 MS-3,321-IdssGch1
0.0127 MS-3,321-IsssGch2
0.0127 MS-3,321-IfssGg0.3
0.0128 LS-4-IfGfa3

0.0220 MS-3,321-IfssGfa3
0.0221 MS-3,321-IdssGfa3
0.0221 MS-3,321-IfssGsim3
0.0221 MS-3,321-IdssGsim3
0.0222 MS-3,321-IsssGfa3
0.0222 MS-3,321-IsssGsim3
0.0246 MS-3,321-IdssGg0.3
0.0247 MS-3,321-IfssGg0.3
0.0250 MS-3,321-IsssGg0.3
0.0269 MS-3,321-IdssGch2

0.0113 TLS-4-IdGh
0.0113 MS-3,321-IdssGh
0.0114 TLS-4-IfGh
0.0114 MS-3,321-IfssGh
0.0116 MS-3,321-IdssGg0.3
0.0117 MS-3,321-IdssGch1
0.0117 MS-2,31-IdcGh
0.0117 MS-3,321-IsssGh
0.0117 MS-2,31-IdcGg0.3
0.0117 MS-2,31-IdcGch2

σ
0.025

0.0145 TLS-1-IlGh
0.0147 LS-2-IdGh
0.0148 LS-2-IfGh
0.0148 LS-2-IsGh
0.0149 LS-1-IlGg0.3
0.0150 LS-2-IsGch1
0.0150 LS-2-IfGch1
0.0150 LS-2-IdGch1
0.0150 LS-2-IcGch1
0.0150 LS-2-IlGch1

0.0179 MS-3,321-IfssGh
0.0180 MS-3,321-IdssGh
0.0183 MS-3,321-IsssGh
0.0188 MS-2,31-IscGh
0.0189 MS-2,31-IdcGh
0.0190 MS-2,31-IfcGh
0.0190 TLS-4-IsGh
0.0191 MS-3,321-IdssGch1
0.0192 TLS-4-IdGh
0.0193 MS-3,321-IfssGch1

0.0208 MS-3,321-IfssGh
0.0209 MS-3,321-IdssGh
0.0211 MS-3,321-IsssGh
0.0220 MS-2,31-IdcGsim3
0.0220 MS-2,31-IfcGsim3
0.0220 MS-2,31-IfcGfa3
0.0220 MS-2,31-IdcGfa3
0.0220 MS-2,31-IscGsim3
0.0220 MS-3,321-IdssGch1
0.0221 MS-2,31-IscGfa3

0.0254 MS-3,321-IsssGsim3
0.0256 MS-3,321-IfssGsim3
0.0256 MS-3,321-IdssGsim3
0.0258 MS-3,321-IsssGfa3
0.0261 MS-3,321-IfssGfa3
0.0261 MS-3,321-IdssGfa3
0.0278 MS-3,321-IsssGg0.3
0.0283 MS-3,321-IdssGg0.3
0.0284 MS-3,321-IfssGg0.3
0.0330 MS-3,321-IdssGch2

0.0200 MS-3,321-IfssGh
0.0200 MS-3,321-IdssGh
0.0203 MS-3,321-IsssGh
0.0209 MS-3,321-IdssGch1
0.0209 MS-3,321-IfssGch1
0.0211 MS-2,31-IfcGsim3
0.0211 MS-2,31-IdcGsim3
0.0212 MS-2,31-IfcGfa3
0.0212 MS-2,31-IdcGfa3
0.0212 MS-2,31-IscGsim3

σ
0.055

0.0219 LS-1-IlGh
0.0225 TLS-1-IlGh
0.0230 LS-1-IlGch1
0.0232 LS-2-IfGh
0.0232 LS-2-IdGh
0.0232 LS-2-IsGh
0.0233 LS-2-IlGh
0.0234 LS-2-IcGh
0.0236 LS-1-IlGg0.3
0.0241 CLS-1-IlGch1

0.0476 LS-4-IsGfa3
0.0476 LS-4-IfGfa3
0.0476 LS-4-IdGfa3
0.0477 LS-4-IlGsim3
0.0477 LS-4-IsGsim3
0.0478 LS-4-IlGfa3
0.0478 LS-4-IfGsim3
0.0478 LS-4-IdGsim3
0.0479 LS-4-IcGsim3
0.0480 TLS-4-IlGsim3

0.0461 MS-2,31-IscGfa3
0.0462 MS-2,31-IfcGfa3
0.0462 MS-2,31-IdcGfa3
0.0463 MS-2,31-IscGsim3
0.0464 MS-2,31-IfcGsim3
0.0464 MS-2,31-IdcGsim3
0.0470 MS-3,321-IsssGfa3
0.0471 MS-3,321-IsssGsim3
0.0472 MS-3,321-IfssGfa3
0.0472 MS-3,321-IdssGfa3

0.0687 MS-3,321-IfssGfa3
0.0688 MS-3,321-IdssGfa3
0.0689 MS-3,321-IsssGfa3
0.0706 MS-3,321-IfssGsim3
0.0707 MS-3,321-IsssGsim3
0.0707 MS-3,321-IdssGsim3
0.0889 MS-3,321-IsssGfa5
0.0891 MS-3,321-IfssGfa5
0.0891 MS-3,321-IdssGfa5
0.0892 MS-3,321-IsssGsim5

0.0475 LS-4-IfGfa3
0.0475 LS-4-IdGfa3
0.0476 MS-2,31-IfcGsim3
0.0476 MS-2,31-IdcGsim3
0.0476 MS-2,31-IscGsim3
0.0477 LS-4-IsGfa3
0.0478 MS-2,31-IfcGfa3
0.0478 MS-2,31-IdcGfa3
0.0478 MS-2,31-IscGfa3
0.0483 LS-4-IfGsim3

Avg.

0.0101 LS-2-IsGh
0.0102 LS-2-IdGh
0.0102 LS-2-IfGh
0.0110 LS-3-IdGh
0.0110 LS-3-IfGh
0.0110 LS-2-IlGh
0.0111 LS-2-IcGh
0.0111 TLS-1-IlGh
0.0111 LS-2-IcGch1
0.0112 LS-3-IsGh

0.0167 LS-4-IdGfa3
0.0168 LS-4-IdGsim3
0.0168 LS-4-IfGfa3
0.0168 LS-4-IfGsim3
0.0171 LS-3-IdGfa3
0.0171 MS-2,31-IfcGsim3
0.0171 MS-2,31-IdcGsim3
0.0172 MS-2,31-IdcGh
0.0172 LS-3-IfGfa3
0.0172 MS-2,31-IdcGg0.3

0.0170 MS-2,31-IdcGfa3
0.0170 MS-2,31-IdcGsim3
0.0170 MS-2,31-IfcGfa3
0.0170 MS-2,31-IfcGsim3
0.0172 MS-3,321-IdssGh
0.0173 MS-2,31-IscGsim3
0.0174 MS-3,321-IdssGsim3
0.0174 MS-3,321-IdssGfa3
0.0174 MS-2,31-IscGfa3
0.0174 MS-3,321-IfssGsim3

0.0282 MS-3,321-IfssGfa3
0.0282 MS-3,321-IdssGfa3
0.0284 MS-3,321-IfssGsim3
0.0284 MS-3,321-IdssGsim3
0.0286 MS-3,321-IsssGfa3
0.0289 MS-3,321-IsssGsim3
0.0331 MS-3,321-IsssGsim5
0.0331 MS-3,321-IdssGsim5
0.0332 MS-3,321-IfssGsim5
0.0332 MS-3,321-IsssGfa5

0.0170 LS-4-IdGfa3
0.0170 MS-2,31-IdcGsim3
0.0170 MS-2,31-IfcGsim3
0.0170 LS-4-IfGfa3
0.0171 MS-2,31-IdcGfa3
0.0171 MS-2,31-IfcGfa3
0.0171 LS-4-IdGsim3
0.0172 LS-4-IfGsim3
0.0172 MS-2,21-IdcGsim3
0.0173 MS-2,21-IfcGsim3

Table 2.9 – Average error per shift and magnitude of top 10 evaluated methods using all variants.
Rows: five noise levels. Columns: four shift magnitudes. Note that the last column displays the
top ten methods of the average for each noise level excluding the last shift magnitude level.
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‖v‖ ≤ 0.1 0.1 < ‖v‖ ≤ 0.5 0.5 < ‖v‖ ≤ 1.1 ‖v‖ > 1.1 Avg.

σ
0.000

0.0000 MS-3,321-IdssGfa7
0.0000 CLS-3-IdGfa7
0.0000 LS-3-IdGfa7
0.0000 TLS-3-IdGfa7
0.0009 GC11-Gch3
0.0012 PCSTONE-Whw
0.0012 SS-ROBINSON-Wnw
0.0014 PC-SINC-Wtw
0.0016 NGC11-G5
0.0038 INT-3

0.0000 MS-2,31-IdcGfa7
0.0000 LS-3-IdGfa7
0.0000 TLS-3-IdGfa7
0.0000 CLS-4-IdGfa5
0.0040 SS-HOGE-Wbw
0.0047 PC-SINC-Wbw
0.0119 GC11-Gch3
0.0126 PCSTONE-Whw
0.0318 ULS-Gfa7
0.0399 INT-3

0.0000 MS-3,321-IdssGfa7
0.0000 LS-4-IdGfa7
0.0000 TLS-4-IdGfa7
0.0011 CLS-4-IdGg0.6
0.0068 SS-HOGE-Wbw
0.0083 PC-SINC-Wbw
0.0276 GC11-Gch3
0.0311 PCSTONE-Whw
0.0476 GC04-G6
0.0576 ULS-Gg0.3

0.0000 MS-3,321-IdssGfa7
0.0196 PC-SINC-Whw
0.0231 SS-HOGE-Wbl
0.0835 GC04-Gch3
0.1340 GC11-Gch3
0.4176 SDF-2QI
0.4607 ADF-2QI
0.5105 ADF2-2QI
0.5868 CLS-4-IdGfa7
0.5933 PCFOO

0.0000 MS-3,321-IdssGfa7
0.0000 LS-4-IdGfa7
0.0000 TLS-4-IdGfa7
0.0004 CLS-4-IdGg0.6
0.0044 SS-HOGE-Wbw
0.0049 PC-SINC-Wbw
0.0135 GC11-Gch3
0.0150 PCSTONE-Whw
0.0324 ULS-Gfa7
0.0333 GC04-Gg1

σ
0.005

0.0031 LS-2-IsGh
0.0031 MS-2-LS2-IsGh
0.0032 TLS-2-IsGh
0.0032 CLS-2-IsGh
0.0063 PC-GUIZAR-100
0.0063 GC11-Gch2
0.0063 INT-3
0.0074 GC04-Gg1
0.0082 NGC04-Gg1
0.0082 PCSTONE-Wnw

0.0035 CLS-4-IdGh
0.0035 TLS-4-IdGh
0.0035 LS-4-IdGh
0.0035 MS-2-LS4-IdGh
0.0159 GC11-Gch3
0.0189 PCSTONE-Whw
0.0199 SS-HOGE-Wtw
0.0301 ULS-Gfa7
0.0304 PC-SINC-Wtw
0.0372 INT-3

0.0035 MS-3,321-IdssGh
0.0035 TLS-4-IdGh
0.0035 LS-4-IdGch2
0.0060 CLS-4-IdGg0.6
0.0225 SS-HOGE-Wtw
0.0277 PC-SINC-Wtw
0.0355 GC11-Gch3
0.0367 PCSTONE-Whw
0.0558 GC04-G6
0.0564 ULS-Gg0.3

0.0044 MS-3,321-IfssGfa3
0.0458 SS-HOGE-Whw
0.0477 PC-SINC-Whw
0.0895 GC04-Gch3
0.1545 GC11-Gch3
0.6072 CLS-4-IdGfa7
0.6188 PCFOO
1.3427 APC-2It
1.8574 ACC-3It
1.9387 INT-5

0.0034 TLS-4-IdGh
0.0034 MS-3,321-IdssGh
0.0036 LS-4-IdGch2
0.0047 CLS-4-IdGg0.6
0.0192 GC11-Gch3
0.0210 SS-HOGE-Wtw
0.0227 PCSTONE-Whw
0.0249 PC-SINC-Wtw
0.0327 ULS-Gsim5
0.0376 GC04-Gg1

σ
0.015

0.0092 LS-2-IsGh
0.0092 MS-2-LS2-IsGh
0.0095 TLS-2-IdGh
0.0096 CLS-2-IcGch1
0.0113 PC-GUIZAR-2000
0.0136 GC04-G6
0.0160 PCSTONE-Wex
0.0171 ULS-Gfa3
0.0172 INT-3
0.0191 GC11-Gg0.3

0.0105 TLS-4-IdGh
0.0105 CLS-4-IdGh
0.0107 MS-3,321-IdssGg0.3
0.0107 LS-4-IfGch2
0.0266 GC11-Gg0.3
0.0400 PC-REN2010-Wex
0.0419 PCSTONE-Wtw
0.0419 ULS-Gfa5
0.0432 INT-3
0.0490 SS-HOGE-Wnw

0.0118 MS-3,321-IdssGh
0.0128 LS-4-IfGfa3
0.0135 TLS-4-IfGh
0.0198 CLS-4-IfGg0.6
0.0546 GC11-Gg0.6
0.0593 ULS-Gch1
0.0599 PCSTONE-Whw
0.0634 GC04-Gg0.6
0.0792 SS-HOGE-Wtw
0.0911 PC-ESINC-Wtw

0.0220 MS-3,321-IfssGfa3
0.0886 GC04-Gch2
0.1002 PC-ESINC-Wtw
0.1300 SS-HOGE-Wtw
0.1893 GC11-Gch3
0.5603 PCFOO
0.6411 CLS-4-IdGfa7
1.8438 ACC-3It
2.0047 INT-5
2.1902 PCSTONE-Wbw

0.0113 TLS-4-IdGh
0.0113 MS-3,321-IdssGh
0.0121 LS-4-IdGfa3
0.0146 CLS-4-IdGg0.6
0.0337 GC11-Gg0.6
0.0406 ULS-Gfa3
0.0430 GC04-Gg0.6
0.0479 PCSTONE-Whw
0.0624 SS-HOGE-Wnw
0.0662 INT-3

σ
0.025

0.0145 TLS-1-IlGh
0.0147 LS-2-IdGh
0.0147 MS-2-LS2-IdGh
0.0153 CLS-2-IfGch1
0.0196 PC-GUIZAR-2000
0.0225 PCSTONE-Wex
0.0268 GC04-Gg1
0.0268 ULS-Gfa3
0.0311 INT-3
0.0316 SS-HOGE-Wex

0.0179 MS-3,321-IfssGh
0.0190 TLS-4-IsGh
0.0196 CLS-4-IdGg0.3
0.0201 LS-4-IfGsim3
0.0437 ULS-Gfa5
0.0509 PC-REN2010-Wex
0.0559 GC11-Gg0.6
0.0562 PCSTONE-Wtw
0.0598 INT-3
0.0670 GC04-Gg0.6

0.0208 MS-3,321-IfssGh
0.0237 LS-4-IdGfa3
0.0273 TLS-4-IfGh
0.0334 CLS-4-IfGg1
0.0715 ULS-Gsim3
0.0793 GC11-G6
0.0806 GC04-Gg1
0.0915 PCSTONE-Wtw
0.1292 PC-ESINC-Wtw
0.1303 SS-HOGE-Wnw

0.0254 MS-3,321-IsssGsim3
0.1044 GC04-Gch3
0.1051 PC-ESINC-Wnw
0.1694 GC11-Gch2
0.2217 SS-HOGE-Wtw
0.6126 PCFOO
0.6499 CLS-4-IdGfa7
2.0982 ACC-3It
2.1405 INT-5
2.3039 PCSTONE-Wnw

0.0200 MS-3,321-IfssGh
0.0214 LS-4-IdGfa3
0.0215 TLS-4-IdGh
0.0262 CLS-4-IdGg0.6
0.0475 ULS-Gfa3
0.0606 GC04-Gg0.6
0.0649 PCSTONE-Wtw
0.0678 GC11-Gg0.6
0.0794 PC-GUIZAR-2000
0.0856 SS-HOGE-Wex

σ
0.055

0.0219 LS-1-IlGh
0.0219 MS-2-LS1-IlGh
0.0225 TLS-1-IlGh
0.0241 CLS-1-IlGch1
0.0329 PCSTONE-Wex
0.0483 INT-3
0.0523 PC-SINC-Wex
0.0556 GC04-Gg1
0.0560 ULS-Gfa3
0.0740 SS-HOGE-Wex

0.0476 LS-4-IsGfa3
0.0476 MS-2-LS4-IsGfa3
0.0480 TLS-4-IlGsim3
0.0574 CLS-4-IcGfa5
0.0621 ULS-Gsim3
0.0996 PC-GUIZAR-100
0.1011 PCSTONE-Wnw
0.1110 GC04-Gg1
0.1157 GC11-Gg1
0.1238 INT-3

0.0461 MS-2,31-IscGfa3
0.0519 LS-4-IfGsim5
0.0562 CLS-4-IfGfa5
0.0791 ULS-Gh
0.0835 GC04-Gg1
0.0954 TLS-4-IfGh
0.0955 GC11-Gg1
0.1341 PCSTONE-Wtw
0.1495 PC-GUIZAR-1000
0.2533 SS-HOGE-Wex

0.0687 MS-3,321-IfssGfa3
0.2764 GC04-Gg0.6
0.3321 PC-GUIZAR-1000
0.3879 GC11-Gg1
0.6946 SS-HOGE-Wnw
0.9116 PCFOO
1.0141 CLS-4-IdGfa7
2.2279 ACC-3It
2.2333 LS-1-IlGfa7
2.4070 PCSTONE-Whw

0.0475 LS-4-IfGfa3
0.0475 MS-2-LS4-IfGfa3
0.0546 CLS-4-IdGfa5
0.0622 TLS-4-IfGh
0.0662 ULS-Gsim3
0.0834 GC04-Gg1
0.0984 GC11-Gg1
0.1016 PC-GUIZAR-1000
0.1044 PCSTONE-Wnw
0.1510 SS-HOGE-Wex

Avg.

0.0101 LS-2-IsGh
0.0101 MS-2-LS2-IsGh
0.0111 TLS-1-IlGh
0.0117 CLS-2-IcGch1
0.0181 PCSTONE-Wex
0.0198 PC-GUIZAR-100
0.0214 INT-3
0.0218 GC04-Gg1
0.0232 ULS-Gfa3
0.0283 SS-HOGE-Wex

0.0167 LS-4-IdGfa3
0.0167 MS-2-LS4-IdGfa3
0.0180 TLS-4-IdGh
0.0190 CLS-4-IdGg0.3
0.0434 ULS-Gfa5
0.0524 PCSTONE-Wtw
0.0544 GC11-Gg1
0.0550 PC-REN2010-Wex
0.0608 INT-3
0.0676 SS-HOGE-Wex

0.0170 MS-2,31-IdcGfa3
0.0186 LS-4-IdGfa3
0.0265 CLS-4-IdGg1
0.0281 TLS-4-IdGh
0.0632 GC11-Gg0.6
0.0658 ULS-Gsim3
0.0685 GC04-Gg1
0.0773 PCSTONE-Whw
0.1095 PC-SINC-Wtw
0.1280 SS-HOGE-Wnw

0.0282 MS-3,321-IfssGfa3
0.1467 GC04-Gg0.3
0.1614 PC-SINC-Wtw
0.2319 SS-HOGE-Wtw
0.2373 GC11-Gch1
0.6593 PCFOO
0.6998 CLS-4-IdGfa7
1.9667 ACC-3It
2.0953 INT-5
2.2549 PCSTONE-Whw

0.0170 LS-4-IdGfa3
0.0170 MS-2-LS4-IdGfa3
0.0198 TLS-4-IdGh
0.0214 CLS-4-IdGg0.6
0.0444 ULS-Gfa3
0.0520 GC11-Gg1
0.0538 GC04-Gg1
0.0581 PCSTONE-Wtw
0.0795 PC-GUIZAR-2000
0.0802 SS-HOGE-Wex

Table 2.10 – Average error per shift and magnitude of top 10 evaluated methods using the best
variants for each approach. Rows: five noise levels. Columns: four shift magnitudes. Note that
the last column displays the top ten methods of the average for each noise level excluding the last
shift magnitude level.
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sorted by accuracy. From this, we can observe the versatileness of multiscale gradient-
based approaches. Also, the bidirectional bias correction method (ULS) proved to work
well in most cases, and it usually improves over other more expensive methods as the
noise increases. Another thing to point out is the instability of the iterative total least
squares method, particularly under low SNR conditions. Although this method usually
achieves more accurate results than the original least squares approach, its usage must
be verified [175, 185] under uncontrolled scenarios. Also, the poor tolerance to noise of
phase-correlation-based methods was made evident from these results. Nevertheless, the
Guizar-Sicairos approach seems to be less affected by upsampling the phase-correlation
surface around its peak. Finally, as expected, every non-multiscale GBSE method failed
when shift magnitudes are larger than 1.1.

To get a better understanding of the robustness of the methods against noise or shift
magnitude, Fig. 2.16 shows how the error evolves by varying both noise or shift mag-
nitude categories. To be fair, shifts with magnitude larger than 1.1 were excluded from
both figures. Once again, the improved accuracy of the multiscale GBSE approach is evi-
denced in both tests, and improves over using a non-multiscale approach when the shifts
get larger [131]. Also, the least squares approach with one iteration is an excellent can-
didate when the shift magnitude is short or the SNR is high. When this is not the case
and a fast method is required, the bidirectional bias correction approach proved to be the
best candidate. Once again, gradient correlation methods were more accurate than phase
correlation-based approaches, particularly as the noise increases.
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Figure 2.16 – Average error for some variants of preselected methods. Left: varying noise aver-
aging over all shift magnitudes. Right: varying shift magnitude averaging over all noise levels.

A short study on multiscale gradient-based shift estimation

We studied whether it is more convenient to iterate the standard GBSE approach in a
direct fashion, i.e. using only one scale, or in a multiscale approach. To this end, both
methodologies described in section 2.2.3 were evaluated under different noise conditions,
shifts and gradient estimators. To show the most representative results, four SNR condi-
tions were considered: noiseless, low noise (σ = 75), medium noise (σ = 150) and high
noise (σ = 300). Noise values are according to 12 bit images. Each table is organized
in groups of four lines corresponding to each of these four noise configurations. Also,
the four most significative shifts in terms of results are shown: a big shift (0.5,−0.9), a
medium shift (0.2,−0.2), a small shift (0.024, 0.052) and no shift.

The performance of each algorithm under each condition was evaluated by simula-
tion using the same setup employed throughout this section. The results shown were
later validated using the Cramer-Rao bound (see chapter 4), verifying that both var(v̂x)
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‖v‖ ≤ 0.1 0.1 < ‖v‖ ≤ 0.5 0.5 < ‖v‖ ≤ 1.1 ‖v‖ > 1.1

σ
0.000

0.0000 MS-3,321-IdssGfa3
0.0003 MS-2,31-IscGfa3
0.0011 GC11-Gg0.6
0.0012 PCSTONE-Whw
0.0018 PC-SINC-Whw
0.0020 SS-HOGE-Wtw
0.0035 LS-4-IlGfa3
0.0035 TLS-4-IlGfa3
0.0036 TLS-1-IlGh
0.0036 LS-1-IlGh
0.0059 GC04-Gg0.6
0.0061 PC-GUIZAR-2000
0.0073 ULS-Gfa3

0.0000 MS-3,321-IdssGfa3
0.0017 MS-2,31-IscGfa3
0.0044 SS-HOGE-Wtw
0.0087 PC-SINC-Whw
0.0126 PCSTONE-Whw
0.0140 GC11-Gg0.6
0.0143 TLS-4-IlGfa3
0.0143 LS-4-IlGfa3
0.0363 ULS-Gfa3
0.0388 TLS-1-IlGh
0.0403 LS-1-IlGh
0.0490 GC04-Gg0.6
0.0627 PC-GUIZAR-2000

0.0001 MS-3,321-IdssGfa3
0.0016 MS-2,31-IscGfa3
0.0085 SS-HOGE-Wtw
0.0097 TLS-4-IlGfa3
0.0097 LS-4-IlGfa3
0.0145 PC-SINC-Whw
0.0311 PCSTONE-Whw
0.0364 GC11-Gg0.6
0.0482 GC04-Gg0.6
0.0578 ULS-Gfa3
0.1174 TLS-1-IlGh
0.1364 PC-GUIZAR-2000
0.1708 LS-1-IlGh

0.0196 PC-SINC-Whw
0.0197 MS-3,321-IdssGfa3
0.0317 SS-HOGE-Wtw
0.0911 GC04-Gg0.6
0.1756 GC11-Gg0.6
0.2735 PC-GUIZAR-2000
0.7801 MS-2,31-IscGfa3
2.1838 PCSTONE-Whw
15.7022 ULS-Gfa3
Inf LS-1-IlGh
Inf TLS-1-IlGh
Inf LS-4-IlGfa3
Inf TLS-4-IlGfa3

σ
0.005

0.0037 MS-3,321-IdssGfa3
0.0038 MS-2,31-IscGfa3
0.0050 TLS-1-IlGh
0.0052 LS-1-IlGh
0.0062 TLS-4-IlGfa3
0.0062 LS-4-IlGfa3
0.0065 GC11-Gg0.6
0.0068 PC-GUIZAR-2000
0.0077 GC04-Gg0.6
0.0090 ULS-Gfa3
0.0124 PCSTONE-Whw
0.0197 PC-SINC-Whw
0.0207 SS-HOGE-Wtw

0.0040 MS-3,321-IdssGfa3
0.0042 MS-2,31-IscGfa3
0.0144 TLS-4-IlGfa3
0.0144 LS-4-IlGfa3
0.0180 GC11-Gg0.6
0.0189 PCSTONE-Whw
0.0199 SS-HOGE-Wtw
0.0345 PC-SINC-Whw
0.0350 ULS-Gfa3
0.0411 TLS-1-IlGh
0.0449 LS-1-IlGh
0.0495 GC04-Gg0.6
0.0671 PC-GUIZAR-2000

0.0039 MS-3,321-IdssGfa3
0.0042 MS-2,31-IscGfa3
0.0102 LS-4-IlGfa3
0.0104 TLS-4-IlGfa3
0.0225 SS-HOGE-Wtw
0.0367 PCSTONE-Whw
0.0432 PC-SINC-Whw
0.0434 GC11-Gg0.6
0.0564 GC04-Gg0.6
0.0575 ULS-Gfa3
0.1203 TLS-1-IlGh
0.1439 PC-GUIZAR-2000
0.1799 LS-1-IlGh

0.0045 MS-3,321-IdssGfa3
0.0477 PC-SINC-Whw
0.0552 SS-HOGE-Wtw
0.0981 GC04-Gg0.6
0.1881 GC11-Gg0.6
0.2415 PC-GUIZAR-2000
2.1241 PCSTONE-Whw
2.6144 LS-1-IlGh
13.5597 ULS-Gfa3
Inf TLS-1-IlGh
Inf LS-4-IlGfa3
Inf TLS-4-IlGfa3
Inf MS-2,31-IscGfa3

σ
0.015

0.0099 TLS-1-IlGh
0.0104 LS-1-IlGh
0.0113 PC-GUIZAR-2000
0.0121 MS-2,31-IscGfa3
0.0121 MS-3,321-IdssGfa3
0.0136 TLS-4-IlGfa3
0.0136 LS-4-IlGfa3
0.0137 GC04-Gg0.6
0.0171 ULS-Gfa3
0.0194 GC11-Gg0.6
0.0405 PCSTONE-Whw
0.0645 SS-HOGE-Wtw
0.0742 PC-SINC-Whw

0.0121 MS-3,321-IdssGfa3
0.0123 MS-2,31-IscGfa3
0.0185 LS-4-IlGfa3
0.0185 TLS-4-IlGfa3
0.0272 GC11-Gg0.6
0.0431 ULS-Gfa3
0.0432 PCSTONE-Whw
0.0519 GC04-Gg0.6
0.0534 TLS-1-IlGh
0.0627 PC-GUIZAR-2000
0.0689 LS-1-IlGh
0.0700 PC-SINC-Whw
0.0718 SS-HOGE-Wtw

0.0130 MS-2,31-IscGfa3
0.0131 MS-3,321-IdssGfa3
0.0167 LS-4-IlGfa3
0.0215 TLS-4-IlGfa3
0.0546 GC11-Gg0.6
0.0599 PCSTONE-Whw
0.0616 ULS-Gfa3
0.0634 GC04-Gg0.6
0.0792 SS-HOGE-Wtw
0.1115 PC-SINC-Whw
0.1527 PC-GUIZAR-2000
0.1541 TLS-1-IlGh
0.2446 LS-1-IlGh

0.0221 MS-3,321-IdssGfa3
0.1171 GC04-Gg0.6
0.1300 SS-HOGE-Wtw
0.1764 PC-SINC-Whw
0.2345 GC11-Gg0.6
0.2796 PC-GUIZAR-2000
0.6751 MS-2,31-IscGfa3
2.2229 PCSTONE-Whw
2.6654 LS-1-IlGh
17.7786 ULS-Gfa3
Inf TLS-1-IlGh
Inf LS-4-IlGfa3
Inf TLS-4-IlGfa3

σ
0.025

0.0145 TLS-1-IlGh
0.0150 LS-1-IlGh
0.0196 PC-GUIZAR-2000
0.0218 MS-2,31-IscGfa3
0.0227 MS-3,321-IdssGfa3
0.0234 LS-4-IlGfa3
0.0268 ULS-Gfa3
0.0304 GC04-Gg0.6
0.0623 GC11-Gg0.6
0.0674 PCSTONE-Whw
0.1206 SS-HOGE-Wtw
0.1666 PC-SINC-Whw
Inf TLS-4-IlGfa3

0.0199 MS-2,31-IscGfa3
0.0203 MS-3,321-IdssGfa3
0.0246 LS-4-IlGfa3
0.0267 TLS-4-IlGfa3
0.0442 ULS-Gfa3
0.0559 GC11-Gg0.6
0.0627 PCSTONE-Whw
0.0670 GC04-Gg0.6
0.0694 PC-GUIZAR-2000
0.0773 TLS-1-IlGh
0.1037 LS-1-IlGh
0.1043 SS-HOGE-Wtw
0.1683 PC-SINC-Whw

0.0221 MS-2,31-IscGfa3
0.0229 MS-3,321-IdssGfa3
0.0274 LS-4-IlGfa3
0.0716 ULS-Gfa3
0.0845 GC04-Gg0.6
0.0851 GC11-Gg0.6
0.0924 PCSTONE-Whw
0.1439 SS-HOGE-Wtw
0.1492 PC-GUIZAR-2000
0.2029 TLS-1-IlGh
0.2205 PC-SINC-Whw
0.3185 LS-1-IlGh
Inf TLS-4-IlGfa3

0.0261 MS-3,321-IdssGfa3
0.2217 SS-HOGE-Wtw
0.2261 PC-SINC-Whw
0.2354 GC11-Gg0.6
0.2685 PC-GUIZAR-2000
0.6882 MS-2,31-IscGfa3
2.3369 PCSTONE-Whw
2.7269 LS-1-IlGh
42.2713 ULS-Gfa3
Inf TLS-1-IlGh
Inf LS-4-IlGfa3
Inf TLS-4-IlGfa3
Inf GC04-Gg0.6

σ
0.055

0.0219 LS-1-IlGh
0.0225 TLS-1-IlGh
0.0463 LS-4-IlGfa3
0.0475 MS-2,31-IscGfa3
0.0512 MS-3,321-IdssGfa3
0.0555 PC-GUIZAR-2000
0.0560 ULS-Gfa3
0.1191 GC04-Gg0.6
0.1468 PCSTONE-Whw
0.4459 SS-HOGE-Wtw
0.5200 PC-SINC-Whw
Inf TLS-4-IlGfa3
Inf GC11-Gg0.6

0.0478 LS-4-IlGfa3
0.0498 MS-2,31-IscGfa3
0.0534 MS-3,321-IdssGfa3
0.0621 ULS-Gfa3
0.0998 PC-GUIZAR-2000
0.1451 TLS-1-IlGh
0.1617 GC04-Gg0.6
0.1631 PCSTONE-Whw
0.1669 GC11-Gg0.6
0.1783 LS-1-IlGh
0.4742 SS-HOGE-Wtw
0.5693 PC-SINC-Whw
Inf TLS-4-IlGfa3

0.0461 MS-2,31-IscGfa3
0.0472 MS-3,321-IdssGfa3
0.0589 LS-4-IlGfa3
0.0804 ULS-Gfa3
0.0964 GC11-Gg0.6
0.1039 GC04-Gg0.6
0.1495 PC-GUIZAR-2000
0.1662 PCSTONE-Whw
0.3531 TLS-1-IlGh
0.3983 SS-HOGE-Wtw
0.4705 LS-1-IlGh
0.5198 PC-SINC-Whw
Inf TLS-4-IlGfa3

0.0688 MS-3,321-IdssGfa3
0.2764 GC04-Gg0.6
0.3321 PC-GUIZAR-2000
0.4214 GC11-Gg0.6
0.7207 SS-HOGE-Wtw
0.7655 PC-SINC-Whw
0.7991 MS-2,31-IscGfa3
2.4070 PCSTONE-Whw
2.8674 LS-1-IlGh
8.1707 ULS-Gfa3
Inf TLS-1-IlGh
Inf LS-4-IlGfa3
Inf TLS-4-IlGfa3

Table 2.11 – Average error of preselected methods per shift and magnitude. Rows: five noise
levels. Columns: four shift magnitudes.
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and var(v̂y) are lower than 0.01, so that the averaged values contain only valid shift esti-
mations.

Shift (px) Noise IT2Gh IT2Gg1 IT2Gg0.3 MS2Gh MS2Gg1 MS2Gg0.3

(0.5000,-0.9000)

σ = 0 0.0514 0.0818 0.0472 0.0387 0.1600 0.0316
σ = 75 0.1375 0.1053 0.1103 0.0744 0.1808 0.0582
σ = 150 0.2875 0.1414 0.2305 0.1267 0.2130 0.1009
σ = 300 0.4927 0.2327 0.4292 0.2319 0.2872 0.1909

(0.0000,0.0000)

σ = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ = 75 0.0114 0.0188 0.0132 0.0164 0.0188 0.0175
σ = 150 0.0168 0.0330 0.0219 0.0300 0.0326 0.0313
σ = 300 0.0191 0.0539 0.0307 0.0527 0.0549 0.0573

(0.2000,-0.2000)

σ = 0 0.0115 0.0117 0.0154 0.0115 0.0360 0.0159
σ = 75 0.0249 0.0267 0.0223 0.0192 0.0470 0.0225
σ = 150 0.0652 0.0424 0.0487 0.0360 0.0591 0.0358
σ = 300 0.1295 0.0765 0.1103 0.0738 0.0899 0.0694

(0.0240,0.0520)

σ = 0 0.0040 0.0019 0.0052 0.0039 0.0073 0.0054
σ = 75 0.0122 0.0181 0.0138 0.0156 0.0189 0.0166
σ = 150 0.0198 0.0326 0.0231 0.0296 0.0326 0.0311
σ = 300 0.0300 0.0543 0.0354 0.0547 0.0564 0.0581

Avg.

σ = 0 0.0167 0.0238 0.0170 0.0135 0.0508 0.0132
σ = 75 0.0465 0.0422 0.0399 0.0314 0.0664 0.0287
σ = 150 0.0973 0.0624 0.0811 0.0556 0.0843 0.0498
σ = 300 0.1678 0.1043 0.1514 0.1033 0.1221 0.0939

Table 2.12 – Estimation error (in pixels) per shift of every method using two iterations and bicubic
interpolation from valid estimations. For each shift and estimation method, four SNR conditions
were tested. The first three columns are for the iterative method (IT) while the last three are for the
multiscale approach (MS) with a single iteration per scale. In each case, three gradient estimation
methods were used: backward difference and Gaussian derivative with σ = 1 and with σ = 0.3
respectively.

In tables 2.12 and 2.13 results are shown for two iterations and bicubic interpolation,
and for three iterations with spline interpolation respectively. From these results several
conclusions can be drawn.

• First, as expected, the multiscale method is much more robust when the shift mag-
nitude is high. In fact, even at a shift as low as (0.2,-0.2) it is recommendable to use
the multiscale method instead of the standard iterative version.

• Second, when no shift or a small shift is present, the single-scale methods achieve
much better accuracies. Apparently, the multiscale algorithms are not suited for
such small shifts since their poor performance on lower scales results in less accu-
rate results. This result contradicts several state-of-the-art methods and is worth
remarking.

• Third, regarding the amount of iterations/scales to use, in presence of high noise,
performing more iterations in the original scale or using more scales in the multi-
scale approach gives worse results in terms of accuracy. When dealing with a noisy
situation, the resampling operation proved to be negative for the shift estimation
algorithm. This result is more accentuated for the multiscale approach.

• Finally, the multiscale algorithm proved to be a better contender when dealing with
noise in general, although this factor is greatly influenced by the shift magnitude.
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Shift (px) Noise IT3Gh IT3Gg1 IT3Gg0.3 MS3Gh MS3Gg1 MS3Gg0.3

(0.5000,-0.9000)

σ = 0 0.0156 0.0238 0.0065 0.0114 0.1007 0.0086
σ = 75 0.0646 0.0437 0.0437 0.0293 0.1194 0.0251
σ = 150 0.1869 0.0727 0.1326 0.0533 0.1488 0.0497
σ = 300 0.4092 0.1480 0.3337 0.1093 0.2143 0.1001

(0.0000,0.0000)

σ = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ = 75 0.0116 0.0199 0.0133 0.0261 0.0330 0.0260
σ = 150 0.0194 0.0357 0.0246 0.0468 0.0547 0.0467
σ = 300 0.0250 0.0621 0.0391 0.0980 0.1065 0.1001

(0.2000,-0.2000)

σ = 0 0.0027 0.0045 0.0043 0.0206 0.0205 0.0235
σ = 75 0.0201 0.0229 0.0182 0.0304 0.0430 0.0334
σ = 150 0.0475 0.0395 0.0373 0.0483 0.0593 0.0489
σ = 300 0.1096 0.0718 0.0913 0.0982 0.1195 0.0977

(0.0240,0.0520)

σ = 0 0.0007 0.0009 0.0013 0.0068 0.0041 0.0080
σ = 75 0.0120 0.0188 0.0132 0.0219 0.0283 0.0225
σ = 150 0.0207 0.0348 0.0248 0.0471 0.0548 0.0464
σ = 300 0.0313 0.0622 0.0412 0.1011 0.1056 0.1001

Avg.

σ = 0 0.0047 0.0073 0.0030 0.0097 0.0313 0.0100
σ = 75 0.0271 0.0263 0.0221 0.0269 0.0559 0.0268
σ = 150 0.0686 0.0457 0.0548 0.0489 0.0794 0.0479
σ = 300 0.1438 0.0860 0.1263 0.1017 0.1365 0.0995

Table 2.13 – Estimation error (in pixels) per shift of every method using three iterations and
spline interpolation from valid estimations. Table configuration is the same as in Table 2.12.

However, except when the shift magnitude is lower than a fifth of a pixel, its use is
recommended. Moreover, its computational cost is lower than the iterative coun-
terpart since the resampling is performed on lower resolution images.

Conclusions

To summarize, the conclusions for this section are:

• The best overall method proved to be the multiscale GBSE approach using three
scales. The best iteration/resampling configuration on the scales was to do a single
iteration on the coarsest scale, followed by performing two iterations in the middle
scale using spline interpolation, and applying three iterations on the finest (origi-
nal) scale using FFT with symmetrization as the interpolation method.
• The best method type in general is gradient-based, and the amount of iterations

and/or scales depends on the shift magnitude to estimate.
• The derivative for GBSE methods that proved to be the most robust to noise was

the one proposed by Farid [53] using a 3× 3 support, although the 3× 3 variant
of the Simoncelli derivative [154] achieved similar results.
• For low shift magnitudes (category 1 in Table 2.7) the best methods are again

gradient-based and the recommended gradient estimation method to use was the
hypomode.
• For shift magnitudes larger than 0.5, a multiscale approach is mandatory.
• Phase correlation methods suffer from low SNR scenarios.
• In general, gradient correlation-based methods improve over phase correla-

tion methods, and this difference becomes more important as the noise increases.
• For phase-correlation-based methods, the best windows used for apodization proved

to be the Hamming window, the Blackman window and the Tukey window.
Also, in several cases, avoiding apodization yielded the best results.
• The TLS GBSE method proved in general to be more accurate than both the stan-

dard LS and the CLS variant. For the TLS approach, a singular value decompo-
sition is required, which may be expensive in some cases. In contrast, the CLS
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method requires the knowledge of the noise standard deviation, which may not be
available in some situations. If the TLS method is used, validating using exist-
ing approaches [175, 185] must be done since it proved to be unstable on many
situations, particularly under lower SNRs.
• On shifts with magnitudes between 0.1 and 1.1, the bidirectional bias cor-

rected method of Pham et al. [122] achieves good results without requiring interpo-
lation nor an iterative procedure, thus singling it out as the best overall low-cost
method. As an exception, if the shift magnitude is a-priori known to be lower than
0.1, a single iteration of the total least squares method gets the best results among
the fast methods.
• For large shift magnitudes (last category in Table 2.7), the multiscale GBSE

method always achieved the best results. However, it should be noted that the
amount of scales used depends on the maximum possible shift magnitude to es-
timate. Since in the evaluated setup, the maximum displacement was known a-
priori, the amount of scales was set according to it. If however this information is
not known, phase/gradient correlation-based methods should be used. In partic-
ular, for high SNR scenarios, either fitting a sinc on the PCS [57] or using Hoge’s
subspace method [75] yielded the best results. Under lower SNR, gradient cor-
relation approaches should be employed.

2.4.3 Robustness to violation of the brightness constancy constraint

While GBSE methods rely on the brightness constancy constraint, the main strength of
phase-correlation methods is their higher tolerance against image changes. Therefore,
we performed an experiment, using the same setup described in this section, where a
square of size K × K was removed (i.e., set to white) from the center of the first image
before estimating the shift. We tested withK = [3, 5, 7, 9, 11], which, given that the shift is
estimated using 50× 50 images, this implies removing up to 5% of the image. The results
of this are displayed in Fig. 2.17 for the five values of K. All methods were evaluated
using two noise levels: low noise (σ = 0.005) or high noise (σ = 0.055).

(a) K = 3 (b) K = 5 (c) K = 7 (d) K = 9 (e) K = 11

Figure 2.17 – Example evaluated subimages for the five different values of K.

In Table 2.14 we observe the top 5 methods averaged over shift magnitudes one to
three. Although a decrease in performance is observed for GBSE methods, they still
improve over phase correlation methods under shift magnitudes lower than one pixel.
However, when evaluating shift magnitudes higher than one pixel (category four from
Table 2.7), the situation is different, as seen from Table 2.15. In fact, GBSE methods still
achieve the best accuracies when the size of the removed square is K = 3 or, in case of
high noise, when K ≤ 7. On every other case, GBSE methods are not recommended. For
example, with K = 11, the best results were obtained using phase correlation methods
as expected, and most importantly, under high SNR scenarios, the difference between
them and the best performing GBSE variant was up to four times better in terms of the
measured error in pixels. What is worse, since the deleted square was removed from the
center of each subimage, then the windowing procedure applied before computing the
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phase correlation removes almost all the image information (this explains why the best
performing PC methods did not perform apodization). Since the difference between both
images does not necessarily have to be in the center, this implies phase correlation-based
methods should obtain even better results accentuating the improvement with respect to
GBSE methods.

K = 3 K = 5 K = 7 K = 9 K = 11

σ
0.005

0.0231 MS-3,321-IfssGh
0.0234 LS-4-IdGch2
0.0241 TLS-4-IdGg0.3
0.0279 CLS-4-IfGg0.6
0.0565 ADF2-2QI

0.0376 LS-4-IfGch2
0.0376 MS-2-LS4-IfGch2
0.0428 TLS-4-IdGch1
0.0505 CLS-4-IfGg0.6
0.0730 ULS-Gch1

0.0632 LS-4-IfGch2
0.0632 MS-2-LS4-IfGch2
0.0739 CLS-4-IdGch1
0.0766 TLS-4-IdGch1
0.0991 PC-SINC-Wnw

0.0762 LS-4-IfGch2
0.0762 MS-2-LS4-IfGch2
0.0883 CLS-4-IdGch1
0.0967 PC-SINC-Wnw
0.1196 ULS-Gh

0.0940 PC-SINC-Wnw
0.0944 LS-4-IfGch2
0.0944 MS-2-LS4-IfGch2
0.1474 CLS-4-IfGfa3
0.1506 PCSTONE-Wnw

σ
0.055

0.0645 MS-2,31-IscGfa3
0.0664 CLS-4-IfGg0.6
0.0665 LS-4-IdGfa3
0.0796 TLS-4-IfGh
0.0933 ULS-Gh

0.0815 CLS-4-IdGg0.6
0.0831 LS-4-IdGfa3
0.0831 MS-2-LS4-IdGfa3
0.1117 TLS-4-IdGh
0.1207 ULS-Gch2

0.1016 LS-4-IfGfa3
0.1016 MS-2-LS4-IfGfa3
0.1030 CLS-4-IfGg0.6
0.1221 ULS-Gh
0.1460 TLS-4-IdGh

0.1221 LS-4-IfGfa3
0.1221 MS-2-LS4-IfGfa3
0.1380 CLS-4-IfGfa3
0.1559 PCSTONE-Wnw
0.1622 ULS-Gg0.3

0.1486 LS-4-IfGch2
0.1486 MS-2-LS4-IfGch2
0.1546 CLS-4-IdGch1
0.1651 PCSTONE-Wnw
0.1814 TLS-4-IcGch1

Table 2.14 – Average error of top 5 evaluated methods per noise and K value for shift magnitudes
one to three. Rows: two noise levels. Columns: five K values. Only the best variant per method
is displayed.

K = 3 K = 5 K = 7 K = 9 K = 11

σ
0.005

0.0324 MS-4,4321-IfssssGh
0.0484 ADF2-2QI
0.0874 ADF-2QI
0.1286 GC04-Gch3
0.1935 GC11-Gg0.3
0.2012 PCSINC-Wnw
0.2098 PCESINC-Wnw

0.0525 ADF2-2QI
0.0781 MS-5,54321-IfssssGch1
0.0868 ADF-2QI
0.1274 PCSINC-Wnw
0.1359 PCESINC-Wnw
0.1461 PCREN2010-Wnw
0.3391 SS-HOGE-Wnw

0.1121 PCSINC-Wnw
0.1190 PCESINC-Wnw
0.1284 PCREN2010-Wnw
0.2022 MS-4,4321-IfssssGh
0.3194 PCQUADFIT
0.4191 SS-HOGE-Wnw
0.4525 PCGAUSSFIT

0.1511 PCSINC-Wnw
0.1593 PCESINC-Wnw
0.1669 PCREN2010-Wnw
0.3735 PCQUADFIT
0.4677 MS-3,321-IsssGfa3
0.5036 PCGAUSSFIT
0.5449 SS-HOGE-Wnw

0.1888 PCSINC-Wnw
0.1935 PCESINC-Wnw
0.2018 PCREN2010-Wnw
0.5107 PCQUADFIT
0.6405 PCGAUSSFIT
0.7407 SS-HOGE-Wnw
0.7662 MS-3,321-IsssGfa3

σ
0.055

0.1434 MS-4,4321-IsssssGh
0.4550 PCREN2010-Wnw
0.4589 PCESINC-Wnw
0.4649 PCSINC-Wnw
0.6876 GC04-Gch3
0.7474 PCQUADFIT
0.8013 PCGAUSSFIT

0.1512 MS-5,54321-IsssssGch1
0.4168 PCESINC-Wnw
0.4176 PCREN2010-Wnw
0.4228 PCSINC-Wnw
0.6585 PCQUADFIT
0.6693 GC04-G5
0.7211 PCGAUSSFIT

0.4121 MS-3,321-IsssGfa3
0.5034 PCREN2010-Wnw
0.5051 PCESINC-Wnw
0.5117 PCSINC-Wnw
0.7304 PCQUADFIT
0.7952 PCGAUSSFIT
0.9658 PCFOO

0.6444 PCESINC-Wnw
0.6476 PCREN2010-Wnw
0.6496 PCSINC-Wnw
0.6640 MS-3,321-IsssGfa3
0.8098 PCQUADFIT
0.8154 GC11-Gch2
0.8858 PCGAUSSFIT

0.6636 PCESINC-Wex
0.6654 PCREN2010-Wex
0.6717 PCSINC-Wex
0.7000 PCQUADFIT
0.7557 PCGAUSSFIT
0.7859 MS-3,321-IsssGfa3
0.9326 PCFOO

Table 2.15 – Average error of top 7 evaluated methods per noise and K value for the fourth shift
magnitude. Rows: two noise levels. Columns: five K values. Only the best variant per method
is displayed.

Conclusions from these experiments

In this section, we studied the behaviour of shift estimation methods when both images
differ. This difference could be caused for example, by occlusions, different information
appearing on each spectra on multi-spectral images or because both images were taken
at different moments in time. In these cases, when the underlying displacement is lower
than one pixel (categories one to three from Table 2.7), GBSE methods yield the best
results. However, with larger displacement magnitudes, phase correlation approaches
should be considered. In particular, with high SNR, phase correlation methods that use
local function fitting in the spatial domain, described in section 2.3.1, yield the best re-
sults and dramatically improve over GBSE methods. Under lower SNR scenarios, the
improvement of PC over GBSE methods becomes less significative, and both approaches
should be considered.

2.4.4 Robustness to aliased sample processes

We evaluated the robustness of each approach to aliasing. To simulate aliasing, we first
applied a Gaussian low-pass filter of parameter σA to a high-resolution image, yielding
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Ī = gσa ∗ I where g denotes the Gaussian kernel and ∗ the convolution operator. Then we
took both images

Ĩ1 = subsample(Ī) Ĩ2 = subsample(shift(Ī , d)) (2.125)

where shift is an integer resampling method (only moves the pixels), d is 16 times the
desired subpixel displacement and subsample subsamples the image by regularly sam-
pling 1 out of 16 pixels. We evaluated d = [−7,−4, 0, 8] × [−7,−4, 0, 8], where in this
case × corresponds to the cartesian product. In total, this implied estimating 16 subpixel
shifts where for each dimension the shifts were [−0.4375,−0.25, 0, 0.5]. To test different
levels of aliasing, we used five values for σA displayed in Table 2.16.

Level 1 2 3 4 5
σA 8 6.4 4 2.8 0.8

Table 2.16 – Values of the standard deviation of the Gaussian used to prefilter the image before
subsampling to generate different aliasing levels

All experiments were performed using the same two subimages extracted from the
same location of both Ĩ1 and Ĩ2 respectively, by adding a mild noise of σN = 75 which is
equivalent to noise level 3. Both images are displayed in Fig. 2.18 for the five simulated
levels of aliasing for the shift (−0.25, 0.5) which proved to be troublesome for several
methods. The difference between compensated images Ĩ1(x, y) − Ĩ2(x + 0.25, y − 0.5),
shown on the bottom row of the figure, illustrates the effects of aliasing on the shift esti-
mation problem. As the aliasing level increases, more differences appear on the edges of
the objects, and these differences gets larger in value. These differences may also disori-
ent shift estimation methods generating non-existing secondary motions which alter the
final results.

Nevertheless, results in Fig. 2.19 prove that gradient-based methods are still able to
deal with aliasing even though they break the brightness constancy constraint on which
they are based. To generate this figure, one candidate variant from each evaluated shift
estimation algorithm was selected, particularly the variant obtaining the highest aver-
age error among all aliasing levels and evaluated shifts. The figure then displays the
top ten of these variants. As seen, GBSE approaches using spline interpolation and
Gaussian derivatives with σ = 0.6 gave the best results on average using few compu-
tational resources. Among the phase correlation methods, the improved gradient cor-
relation approach of [179] seems the least affected by aliasing, particularly when using
short supported filters for gradient calculation (either Gausian with σ = 0.3 or the first
order Christmas kernel). The Stone method [159] also achieved accurate results without
performing apodization of the input images, and should be considered, thanks to its fast
implementation (in our computer, among these methods, it turned out to be the fastest).
Finally, the Pham bidirectional approach [122] offers a good balance between speed and
robustness against aliasing.

Since aliasing is in general unpredictable and may impact more or less the accuracy
depending on the sampling, averaging over all shifts may hide interesting cases. Indeed,
for most evaluated displacements, the average accuracy of the top 10 approaches never
exceed 0.04 pixels of error, however, we observed two situations for which the error was
considerably higher. Results for two diferent shifts (−0.437, 0.5) and (−0.25, 0.5) dis-
played in Fig. 2.20 show a radical change on the methods obtaining the best results. Par-
ticularly in those cases, the variants presented by Tzimiropoulos et al. [179] based on gra-
dient correlation obtained the best results, which allows us to conclude that their method
is the most robust against aliasing. As for differential methods, the ULS approach again
turned out to outperform its class. From these figures two important conclusions should
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(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4 (e) Level 5

Figure 2.18 – Input images shifted by (−0.25, 0.5) used for testing aliasing influence for each
aliasing level. Top: Ĩ1. Center: Ĩ2. Bottom: Difference between compensated images (aliasing +
noise effects). Dynamic ranges extended.

be made. First, that indeed the claims of aliasing robustness of the Christmas deriva-
tives (of first and second order) are true and should be considered when high aliasing
exists. And secondly, as expected, that iterative approaches should avoid resampling in
the frequency domain, due to a potential increase of artifacts appearing from working
with images sampled below the Nyquist rate.

On the other side, an example of the top 10 methods usually resulting for every tested
displacement is shown in Fig. 2.21. GBSE approaches in general proved to be quite robust
against low to moderate aliasing scenarios, while also achieving the most accurate results
using the fewest computational resources.

Conclusions from these experiments

Three conclusions were drawn from these experiments when dealing with aliasing. First,
that GBSE methods (in particular CLS or ULS) offer the best results in terms of accu-
racy over time consumed. Second, that gradient estimation should be performed using
either the kernels proposed by Christmas [35] or Gaussian derivatives with σ = 0.3 or
σ = 0.6. Finally, under extreme aliasing scenarios, the slightly more expensive gradient
correlation method proved to offer the best results.

2.4.5 Computational cost comparison

To provide an idea of the computational resources required for each method, we av-
eraged execution times for 1000 executions using several shift magnitudes and noises.
The processing time of each method was measured using non-optimized Matlab imple-
mentations on an Intel Xeon E5-2650 CPU. Results, shown in Fig. 2.22, are orientative
and should not be taken as a definitive measurement. Indeed, some displayed times
are evidently not representative. As an example, the subspace method of Robinson (SS-
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Figure 2.19 – Average error by aliasing level of top ten overall methods
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Figure 2.20 – Average error by aliasing level of top 10 for two particular shifts
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Figure 2.21 – Average error by aliasing level of top 10 methods for a typical shift
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ROBINSON-Wtw) should reflect lower processing time given its low complexity. Both
Sinc fitting (PC-SINC-Wtw) together with gradient correlation methods based on non-
linear kernel fitting (GC11) employ considerable time due to the optimization performed.
The optimization is done by means of the lsqcurvefit function in Matlab which besides
the optimization procedure, also does an important amount of overhead work used to
initialize internal components that would not exist if a more direct implementation were
available.
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Figure 2.22 – Average execution time for some representative methods

To contrast processing time with precision, we averaged the errors for each method
over all noise levels and over the first three categories of shift magnitudes. We also made
this comparison for each shift magnitude individually. Results displayed in Fig. 2.23 and
Fig. 2.24 represent a general summary of this review.

Based on the provided figures, we conclude that gradient-based methods not only
achieve more accurate results but also require fewer computational resources. When the
shift estimation must cope with severe computational constraints, single iterated GBSE
approaches are recommended, and the best option, as seen before, depends on the shift
size. If the underlying shift magnitudes are small, LS or TLS methods using short gra-
dient estimation kernels support should be selected. If shifts are uniformly distributed
along the [-1,1] interval, the bidirectional bias corrected (ULS) approach proves to be the
best choice. For larger displacements, the recommended approach is multiscale GBSE,
the method of Hoge [75] or the approach of Stone [159]. Under less demanding time
constraints, gradient-correlation-based methods should be considered.

2.4.6 Evaluation on real MRI images

We evaluated every method against a set of real MRI images of a grapefruit. This set,
provided by Hoge [75] together with its ground truth, is used in several articles of the
state-of-the-art to contrast existing approaches. It consists of five different images shifted.
To offer a more complete evaluation, we tested all shift estimation methods under five
different noise levels injected to the images. Again, we assumed additive white Gaussian
noise and the standard deviation for each noise level is shown in Table 2.6. In Fig. 2.25
we show the original image along with two other versions generated by manually adding
white Gaussian noise.

For this experiment and due to the length of the underlying shifts to estimate, we
included two multiscale GBSE methods using four and five scales, with increasing it-
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Figure 2.23 – Average execution time (log scale) vs accuracy for some representative methods
averaged over the first three shift magnitudes and all noise levels
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Figure 2.24 – Average execution time (log scale) vs accuracy for some representative methods
for each shift magnitude category averaged over all noise levels
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Figure 2.25 – First image of the MRI set provided by Hoge [75] under different noise levels. Left:
Original image (level 1). Middle: σ = 0.015 (level 3). Right: σ = 0.055 (level 5)

erations across scales, spline interpolation and hypomode gradient, denoted MS-4 and
MS-5 respectively. Results in Table 2.17 show that errors were considerably higher than
what was obtained in the previous simulated experiments. To explain this, we used
the ground truth to resample each image with respect to the other. In Fig. 2.26 we ob-
serve the absolute difference between an image and another aligned with it using the
ground truth. As can be noted, for both left and middle images, the difference is con-
siderably high on the image edges, which proves the images are not correctly registered,
even though the ground truth was used. For the third case, the images are better regis-
tered and what is observed is mainly (signal dependent) noise and some minor aliasing.
Therefore, this explains the significative errors achieved by most methods. This fact is
indeed of major importance, since several articles compared their methods using this
dataset [75, 134, 135, 179]. Based on this result, the analysis of performance for every
method for the whole dataset is not feasible, thus ommited. However, as an example,
we evaluated every method by estimating the shift between the fourth and the fifth im-
ages of the dataset, for which the provided ground truth appeared to be faithful (by
observing the difference between both aligned images). Results appearing in Table 2.18
again prove that the multiscale GBSE approach is the best overall option, however, by a
shorter margin in this case. The next best competitor is again gradient-correlation-based
methods [7, 179]. The iterative periodic correlation method [153] also gathered accept-
able results, however the obtained error was too high for the lowest evaluated SNR. As
for phase-correlation approaches, the esinc [8] almost always appear as the best option
for this images. The top 10 methods computed by taking the averages over all noise lev-
els for these two images is shown in Table 2.19. We observe that only six method types
achieved acceptable results for all noise levels.

σ = 0.000 σ = 0.005 σ = 0.015 σ = 0.025 σ = 0.055
0.1753 SS-HOGE-Wbh
0.1815 PC-LCM-1D2
0.1850 APC-0.0001
0.1894 NGC04-Gg0.6
0.1942 NGC11-G5
0.1942 GC11-G5
0.1962 MS-4,4321-IsssssGch3
0.2025 GC04-G6
0.2043 SDF-2QI
0.2045 CFI-2QI

0.1742 PC-LCM-2D2
0.1856 SS-HOGE-Wbh
0.1908 APC-0.0001
0.1935 NGC11-G6
0.1938 GC11-G6
0.1948 MS-4
0.2005 GC04-Gg1
0.2046 CFI-2QI
0.2046 SDF-2QI
0.2115 ADF2-2QI

0.1913 NGC11-Gch3
0.1927 PC-LCM-2D1
0.1941 APC-0.0001
0.1953 GC11-Gch3
0.1985 GC04-G6
0.2039 GBSE-MS-5
0.2065 SDF-2QI
0.2068 CFI-2QI
0.2155 ADF2-2QI
0.2160 ADF-2QI

0.2021 GBSE-MS-4
0.2075 APC-0.0001
0.2119 NGC11-G6
0.2121 GC11-G6
0.2142 GC04-Gg1
0.2161 PC-ESINC-Wbh
0.2270 SDF-2QI
0.2279 CFI-2QI
0.2304 ADF2-2QI
0.2307 ADF-2QI

0.2132 GBSE-MS-5
0.2137 NGC11-Gg0.6
0.2210 GC11-Gg0.6
0.2241 GC04-Gg1
0.2403 ADF-2QI
0.2403 ADF2-2QI
0.2461 CFI-2QI
0.2472 SDF-2QI
0.2493 PC-GUIZAR-10
0.2549 APC-0.0001

Table 2.17 – Error values for top 10 best variants of each method averaged over all measurements
for the grapefruit MRI dataset by injecting different amounts of additive white Gaussian noise. Note
that these results cannot be relied upon, as the ground truth provided for this dataset appears to
be incorrect.
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Figure 2.26 – Absolute value of the difference between aligned images based on the ground truth
information provided by Hoge [75] using the original images. Left: Between the first and the third
image. Middle: Between the first and the fifth image. Right: Between the third and the fifth
image. Dynamic ranges extended for improved visual perception.

σ = 0.000 σ = 0.005 σ = 0.015 σ = 0.025 σ = 0.055
0.0024 MS-3,321-IfssGg1
0.0056 PC-ESINC-Wex
0.0062 NGC04-Gg1
0.0095 SS-HOGE-Wtw
0.0115 NGC11-Gg1
0.0118 APC-0.0001
0.0127 GC11-Gch3
0.0243 GC04-Gg1
0.0842 ACC-0.0001
0.1370 PCFOO

0.0136 MS-3,321-IsssGsim3
0.0162 GC11-Gch1
0.0167 PC-GUIZAR-10
0.0175 NGC11-Gch2
0.0199 APC-3It
0.0245 GC04-Gg1
0.0269 SS-HOGE-Wtw
0.2594 PCFOO
0.3413 ACC-3It
3.5684 CLS-4-IdGfa7

0.0229 MS-3,321-IsssGsim5
0.0264 GC11-Gg0.3
0.0275 NGC11-Gch1
0.0307 GC04-Gg1
0.0394 APC-2It
0.0423 PC-ESINC-Wtw
0.1838 SS-HOGE-Whw
0.2930 PCFOO
0.4506 ACC-3It
4.2313 CLS-4-IfGfa7

0.0296 MS-3,321-IsssGfa3
0.0357 GC11-Gg0.6
0.0377 NGC11-Gg0.6
0.0420 GC04-Gg1
0.0625 APC-0.01
0.0690 PC-ESINC-Wtw
0.3425 PCFOO
0.3645 SS-REN2014-Wtw
0.7081 ACC-2It
4.2080 LS-4-IdGfa7

0.0587 MS-3,321-IdssGfa5
0.0597 GC11-Gg1
0.0634 NGC11-Gg1
0.0672 GC04-Gg1
0.1260 PC-ESINC-Wtw
0.1458 APC-2It
0.4030 PCFOO
0.9873 ACC-2It
1.5331 SS-REN2014-Whw
4.7611 LS-4-IsGfa7

Table 2.18 – Average error values for top 10 best variants of each method by estimating the shift
between the fourth and the fifth images of the grapefruit MRI dataset (ground truth shift: (7.68, 0))
by injecting different amounts of additive white Gaussian noise.

Avg
0.0282 MS-4,4321-IsssssGsim3
0.0317 GC11-Gg0.6
0.0332 NGC11-Gg0.6
0.0377 GC04-Gg1
0.0558 PC-ESINC-Wtw
0.0563 APC-3It
0.2870 PCFOO
0.5266 ACC-3It
0.5683 SS-REN2014-Whw
4.0268 CLS-4-IdGfa7

Table 2.19 – Average error values for all levels of noise for top 10 best variants of each method by
estimating the shift between the fourth and the fifth images of the grapefruit MRI dataset (ground
truth shift: (7.68, 0)).

2.5 Concluding Remarks

In this chapter we performed an in-depth review of fast and accurate shift estimation
methods. Although most recent work on shift estimation is based on phase-correlation
methods, GBSE approaches proved to be more accurate, stable and run faster than phase
correlation approaches, although they are limited to subpixel estimation or required to
be used in a pyramidal multiscale approach in order to estimate larger shifts. On the
other side, gradient-correlation-based methods showed an improvement over phase cor-
relation methods, particularly under higher noise or highly aliased scenarios, although
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they usually require more computational resources. Throughout this chapter, we found
out that if a-priori knowledge is available regarding the maximum shift magnitude to
estimate, then better estimation accuracies can be achieved by selecting a more suitable
variant for each method. We provided the reader with such fine-tuning tips. Another
interesting discovery is that one of the most used ground truth data used for comparison
among state-of-the-art methods is not precise and should be avoided. Finally and most
importantly, based on this study and on the characteristics of the underlying shift estima-
tion problem, a practical recipe is offered to the community in order to achieve fast and
accurate shift estimation.

Despite the extensive length of this review, we plan to include other useful informa-
tion. First, some interesting methods were excluded from the final comparison due to the
complexity of their implementations or high computational times. These were the meth-
ods of Takita [162], Balci [13], Leprince [90] and the recent method of Tong et al. [170]. We
plan to add them in the future. Another considered task, is to test the robustness of each
method under varying illumination conditions between the images. We believe that in
these cases, if no histogram equalization is possible, GBSE methods should be avoided
and phase or gradient correlation approaches would become first options. Also, we plan
on combining different presented approaches to obtain a more general method yield-
ing good results on every situation. Finally, we plan to provide publicly a ground truth
dataset to be used for comparison of shift estimation methods, considering all difficulties
usually faced on such task.
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Chapter 3

Improving wavefront sensing with a Shack-Hartmann device

In order to achieve higher resolutions, current earth-observation satellites use larger light-
weight primary mirrors that can deform over time, impacting on image quality. We evaluated
the possibility of compensating these deformations directly in the satellite by combining a de-
formable mirror with a Shack-Hartman wavefront sensor (SHWFS). The performance of the
SHWFS depends entirely on the accuracy of the shift estimation algorithm employed, which
should be computationally cheap to be executed on-board. We analyzed the problem of fast
accurate shift estimation in this context and propose a new algorithm, based on a global optical
flow method that estimates the shifts in linear time. In our experiments, our method proved
to be more accurate and stable, as well as less sensitive to noise than all current state-of-the-art
methods, permitting a more precise on-board wavefront estimation.

3.1 Introduction

Adaptive optics (AO) is a well-known technology to sense and correct wavefront distor-
tions. This technology is used in astronomy to produce sharper images from heavily aber-
rated wavefronts originated by atmospheric turbulence. This correction is usually per-
formed through a deformable mirror which adapts to the measured wavefront correcting
the distortion [189]. Since AO also allows to improve the performance of aberrated op-
tical systems, it is widely used in several other contexts such as ophthalmology [188],
microscopy [22] and free-space laser communication systems [177] among others [176].

A key component of an adaptive optics system is the wavefront sensing mechanism,
i.e., the device used to precisely measure the distortion. A Shack-Hartmann wavefront
sensor (SHWFS) is one such device. It uses an array of lenslets to measure the deforma-
tion of the incoming wavefront. The shift of each lenslet focal plane image is proportional
to the mean slope of the wavefront in the subaperture onto this lenslet. It yields a discrete
local approximation of the slope of the wavefront (Fig. 3.1). This deformation is usually
measured by imaging a point source such as a star, and estimating the relative displace-
ment between a reference image and all other subimages to compute the local gradient of
the wavefront. The measured slopes are then used to approximate the actual wavefront.

Recently, the community evaluated the possibility of correcting wavefront deforma-
tions on earth-observation satellites [21,52,124] caused by the deformation of the primary
mirror. In this setting, the problem of atmospheric turbulence is negligible. Indeed, in
astronomical observations from the earth, the angle of view is extremely narrow. As a re-
sult, the light wavefront crosses a narrow solid angle of atmosphere and its perturbations
due to turbulence have a great impact on image quality. In earth observation from a satel-
lite, however, the angle of view is much larger, so the perturbations due to turbulence are
relatively much smaller.

However, the correction of optical aberration is becoming more and more important
for high resolution earth-observation satellites. Indeed, in order to increase the spatial
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Figure 3.1 – A Shack-Hartmann Wavefront Sensor measures the wavefront by computing the
local shifts between the detected spots (in green) and the reference crosses (in black), which
would occur if no deformation was present.

resolution of satellite images, i.e., its ground sample distance, a larger primary mirror
is required to gain a higher angular resolution. Large mirrors must be thicker to avoid
deformations which increase dramatically their weight and render launching costs pro-
hibitive. For this reason large yet lighter mirrors have to be considered. Their drawback
is that time-varying deformations due to thermal effects and vibration severely deteri-
orate the image quality [30]. To correct these deformations, a SHWFS device could be
used to measure them by observing the earth, together with a deformable mirror to com-
pensate for these deformations. As opposed to adaptive optics where the distortion has
to be compensated in real-time due to the fast changes in the atmosphere, in our case
the compensation for the mirror deformation is less frequent, roughly on timescales of
seconds.

Coming from control theory, two schemes exist for performing wavefront correction.
While in an open loop adaptive optics system the wavefront error is measured before it
has been corrected by the wavefront corrector, in a closed loop system the measured wave-
front deformation is the residual error after the correction of the previous estimation has
been performed. The difference between both operational modes is important because
in a closed loop system, the wavefront aberrations measured will be small, permitting to
assume a maximum shift between images up to a few pixels. In this chapter we assume
a closed loop system.

Another important factor that affects the accuracy of wavefront sensing is the phe-
nomenon of scintillation and phase anisoplanatism, which result in more complex pat-
terns than simple global shifts between the subapertures. The influence of this phe-
nomenon was widely studied in the context of adaptive optics [126, 137, 182]. However,
in remote sensing, because the phase aberration is produced at the telescope pupil, all
parts of the image are affected by it in the same way, neglecting its incidence [126].

Finally, once the shift estimation is performed and all wavefront slopes have been
estimated, several methods can be used to reconstruct the wavefront from its local gra-
dient estimations, namely the iterative zonal method by Southwell [157], the vector-
matrix-multiply (VMM) method [73] and the Fourier Transform Reconstruction (FTR)
method [125]. The latter is recommended when the number of actuators is high, however,
the VMM method obtains more accurate results under a SHWFS configuration using less
than 12× 12 subapertures [141].
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(a) Occlusion schema in a 12× 12 SHWFS. (b) Images obtained when observing an ex-
tended landscape.

Figure 3.2 – Example of a SHWFS occlusion scheme under a Korsch telescope. Both the sec-
ondary mirror and the arms used to hold it are clearly visible. For each lenslet, the decrease of
the incoming signal is proportional to its occlusion.

3.1.1 Wavefront sensing from earth-observation satellites

As mentioned before, wavefront sensing in astronomy is usually performed using the
stars. When observing the earth from space this task becomes more challenging. In-
deed, there are some key differences between performing wavefront sensing for earth-
observation satellites and for astronomical observation, namely,

Extended scene vs point source observation. For an earth observation satellite, the
SHWFS is used on extended scenes instead of point sources such as stars. This
setup is called scene-based wave-front sensing (SBWFS), or extended-scene wave-
front sensing (ESWFS). Because the scene is extended, a field stop has to be installed
in front of the SHWFS, as seen in Fig. 3.1, so that the images given by the lenslet
array do not overlap in the lenslet focal plane [108]. This yields a grid of images,
each one corresponding to one sub-aperture, which are shifted versions of the same
scene. Accurately measuring these shifts permits to estimate the gradient of the
wavefront. As a drawback, since we are dealing with landscapes larger than the
captured image, achieving high accuracy on the shift estimation task gets challeng-
ing. Worse still, in most wavefront sensors, the extent of the source object normally
reduces the contrast of the signal, thwarting accurate shift measurements [144].

Difference in subimage SNRs due to pupil occlusions. For long focal length telescopes
commonly used on earth-observation satellites, the Korsch concept is the most com-
mon. The pupil of a Korsch telescope is generally occluded in the center by a sec-
ondary mirror. The arms used to hold this mirror also occlude the pupil. In these
regions, the lenslets suffer a loss in the incoming signal, proportional to their per-
centage of occlusion. This configuration is depicted in Fig. 3.2(a). An example of a
SHWFS output in the CRT sensor is shown in Fig. 3.2(b). From this figure, it can be
seen how the SNR on the partially occluded lenslets is significantly lower.

Limited on-board computational capacity. An important distinction when performing
wavefront sensing from earth-observation satellites is its limited computational ca-
pacity. Due to this constraint several shift estimation methods proposed for SHWFS
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are not suitable to be implemented on-board due to their high complexity.

Unusable observations. Another difference when observing extended scenes, as op-
posed to the use of SHWFS with point sources, is the need to predict if the cur-
rent scene permits to accurately estimate the wavefront aberration. Scenes such as
clouds, sea or any textureless landscape can thwart all shift measurement methods,
leading to poor wavefront estimation.

Based on these differences, we present in this chapter a new shift estimation method
in the context of SHWFS used on extended scenes. Our contribution is threefold. We
shall start with a review of the state-of-the-art on wavefront correction using SHWFS on
extended scenes. Second, we propose the use of an iterative global optical flow method
for shift estimation which presents several advantages over the conventional correlation
methods. Third, we propose a fast and effective method for scene preselection that adds
almost no further computational cost to the overall estimation using the proposed algo-
rithm.

This chapter is organized as follows. In Section 3.2 we review the state-of-the-art
on shift estimation applied for SHWFS on extended scenes. In Section 3.3 we present
our optical flow method and its usage for wavefront correction from earth-observation
satellites. In Section 3.4 we focus on scene pre-selection methods. In Section 3.5 we study
the influence of the parameters on the proposed method, and thoroughly compare its
performance with the state-of-the-art. We involve ground truth simulations provided by
CNES and our own simulator. We conclude and present some future work in Section 3.6.

3.2 State-of-the-art review

Since the Shack-Hartmann wavefront sensor was introduced in the late 1960s [123], sev-
eral algorithms were proposed to estimate the shifts using point sources such as stars.
However, only few authors have studied the problem of an extended source, occuring
when observing the earth from space. Broadly, they can be categorized in correlation
methods working in the spatial [95, 108, 109] or in the frequency domain [85, 95, 124,
151, 153], phase correlation methods that estimate the shift directly in the frequency do-
main [85, 159], iterative methods [151, 153] that improve on previous approaches by pro-
gressively estimating the shift and maximum likelihood (ML) approaches [68] that incor-
porate a specific noise model to the problem and compute ML estimate as the solution of
an optimization problem.

3.2.1 Correlation-based Methods

These methods compute a correlation score on a grid C(i, j) and interpolate it to de-
termine the subpixel location of the peak. The methods mainly differ in the choices of
correlation score and interpolation strategy.

Spatial domain correlation-based methods. Michau et al. [109] were among the first
to propose an experimental implementation for using a SHWFS on extended sources
larger than the wavefront sensor field of view. Their method computes the discrete cross-
correlation between the images and a reference subimage chosen from the central region
of the wavefront sensor image pattern. To estimate the subpixel shifts, the correlation
peak location is computed as the centroid of the pixels with a correlation higher than
half the maximal observed correlation. However, for asymmetric peaks in the correlation
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function, the peak position obtained by this method differs from the true maximum, lead-
ing to considerable errors. In particular, this often occurs in low SNR scenarios, frequent
for earth-observation satellites.

In another publication, Michau et al. [108] compared several methods of shift estima-
tion for extended sources. Assuming Gaussian noise and scenes where the extent of the
source is smaller than the field stop, the maximum likelihood estimator (MLE) is com-
puted by maximizing a correlation-type function between both images. However, the
authors show that using the cross-correlation method for shift estimation is biased for
extended scenes. They also stress that for Poisson noise, the MLE maximizes the correla-
tion between the first image and the logarithm of the reference image, yet this estimator
is also biased when working with extended scenes.

Löfdahl [95] tested several shift estimation algorithms for Shack-Hartmann wavefront
sensors observing the sun. By testing with several possible sources of errors such as noise,
blur and bias mismatch, he evaluated five different correlation-based methods to obtain
the correlation score C(i, j). Among the evaluated correlation algorithms, the best all-
around performer proved to be the classical least squares approach or squared difference
function (SDF), given by

SDF : C(i, j) =
∑
m,n

[I1(m,n)− Iref (m+ i, n+ j)]2 . (3.1)

Another correlation score can be calculated as the Covariance Function in the Image do-
main

CFI : C(i, j) = −
∑
m,n

Ǐ1(m,n) · Ǐref (m+ i, n+ j), (3.2)

where Ǐ is the trend-corrected version of I where a fitted plane has been subtracted.
Indeed, Smithson & Tarbell [163] showed that a linear trend in intensity shifts the covari-
ance peak from the correct position, so before computing the method, a fitted plane has
to be subtracted from both images. In practice for the SHWFS case, the authors simply
subtracted the mean value for each image yielding

Ǐ(x, y) = I(x, y)− 1

N

∑
x,y

I(x, y). (3.3)

They also tested other two methods based on the absolute difference between both im-
ages (ADF), and its square (ADF2) in order to better locate the minimum at the sub-pixel
level,

ADF = C(i, j) =
∑
m,n

|I1(m,n)− Iref (m+ i, n+ j)|, (3.4)

ADF 2 = C(i, j) =

(∑
m,n

|I1(m,n)− Iref (m+ i, n+ j)|

)2

. (3.5)

To achieve subpixel precision, they evaluated four interpolation strategies to look
for the minimum value on the correlation grid C(imin, jmin). The four algorithms they
evaluated can be described as fitting a conic section,

f(x, y) = a1 + a2x+ a3x
2 + a4y + a5y

2 + a6xy (3.6)

to the 3× 3-element submatrix s centered in the sample minimum C(imin, jmin).

si,j = C(i+ imin, j + jmin); i, j = −1, 0, 1. (3.7)
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The evaluated algorithms differ on the number of pixels used and on whether the fitting
is done in 2D or in each dimension separately. The 1D quadratic interpolation is given by
setting

a1 =s0,0, a2 =(s1,0−s−1,0)/2, a3 =(s1,0−2s0,0+s−1,0)/2,

a4 = (s0,1−s0,−1)/2 and a5 = (s0,1−2s0,0+s0,−1)/2. (3.8)

The 2D version of this algorithm is obtained by fitting the 2D conic of (3.6) into the 3× 3
values, yielding the same parameters as before, in addition to

a6 = (s1,1 − s−1,1 − s1,−1 + s−1,−1)/4, (3.9)

which logically implies using the values of the corners.
They also evaluated a 1D Least Square (1LS) method, separately for both dimensions,

which is performed by averaging the 3 values on one dimension and then performing
the least squares on the other. The parameters a1 to a5 are then the same, however, in a2

and a3, instead of taking s1,0, s0,0 and s−1,0, they use 〈s1,j〉j , 〈s0,j〉j and 〈s−1,j〉j , and in a4

and a5, instead of s0,1, s0,0 and s0,−1, they use 〈si,1〉i, 〈si,0〉i and 〈si,−1〉j . In this setting,
〈·〉i denotes averaging over index i ∈ {−1, 0, 1}. For the 2D version, 2LS has the same
parameters as 1LS and the parameter a6 is identical to (3.9).

Finally, the 1D minimum is given by

v̂x = imin −
a2

2a3
, v̂y = jmin −

a4

2a5
(3.10)

and the 2D minimum is

v̂x = imin +
2a2a5 − a4a6

a2
6 − 4a3a5

, v̂y = jmin +
2a3a4 − a2a6

a2
6 − 4a3a5

. (3.11)

Frequency domain correlation-based methods. Poyneer [124] studied the wavefront
estimation problem using a SHWFS by observing the Earth from space using lightweight
optics. By assuming periodicity on the input images, the author points out that mini-
mizing the MSE between both images becomes equivalent to maximizing their periodic
convolution, which is efficiently computed in the frequency domain using the cross-
correlation theorem

C(i, j) = F−1{Î∗ref Î1}(i, j), (3.12)

where F−1 stands for the inverse Fourier transform, Î1 and Îref are the Fourier repre-
sentations of images I1 and the reference image Iref respectively, and Î∗ref denotes the
complex conjugate of Îref . To get subpixel precision a parabola is fitted and its maximum
is computed as

v̂x = imax +
1
2 (C(imax − 1, jmax)− C(imax + 1, jmax))

C(imax − 1, jmax) + C(imax + 1, jmax)− 2C(imax, jmax)
,

where C(imax, jmax) is the maximum value in integer coordinates of the correlation grid.
The estimate for ŷ0 is obtained in an analog way. This algorithm suffers from errors due
to the wraparound of pixels and the inherent non-periodicity of the input images.

The computational complexity of the entire method is O(SN2 logN) where S is the
amount of subapertures and N the image size. The author compared this method with
the O(N4) MSE computation for all possible overlaps, and showed that for high-quality
images, the difference is negligible. This is no more true when images are small and with
poor SNR conditions, in which case the method achieves less accurate results.
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Löfdahl [95] also evaluated a frequency-domain method which, similarly to the method
of Poyneer, computes the covariance in the Fourier domain (CFF). However, both images
are previously normalized to zero mean and windowed with a 2D Hamming window or
a flat-top window to avoid ringing caused by the periodization, by calculating

CFF : C(i, j) = −F−1
{
F{w(m,n)Ǐ(m,n)}F∗{w(m,n)Ǐref (m,n)}

}
. (3.13)

Again, the subpixel maximum is obtained by fitting a parabola to the grid.

3.2.2 Phase Correlation

We give here a quick recall about the phase-correlation method, which was explained
in detail in Chapter 2 of this manuscript. As already mentioned, the phase-correlation
method was widely studied in the image processing domain [57, 159, 162]. Let I(i, j) be
an M ×N image, due to the Fourier shift theorem we know that

F{I(i−∆x, j−∆y)}= Î(ωx, ωy)exp

(
−j2π

(ωxvx
M

+
ωyvy
N

))
(3.14)

then by computing the cross-power spectrum between both images

Ĉ(u, v)=
Îref (ωx, ωy)Î

∗
1 (ωx, ωy)

|Îref (ωx, ωy)Î∗1 (ωx, ωy)|
=exp

(
j2π

(ωxvx
M

+
ωyvy
N

))
(3.15)

and extracting the phase for each frequency of this function, the matrix φ, called the phase
difference matrix, is given by

arg (Ĉ)(ωx, ωy) = φ(ωx, ωy) = 2π (ωxvx/M + ωyvy/N) . (3.16)

Classic phase correlation estimates the shift in the spatial domain as the peak of the in-
verse Fourier transform of Ĉ(ωx, ωy). However, the shifts can be computed directly in
the frequency domain by fitting a plane passing through the origin of the phase differ-
ence matrix φ(ωx, ωy). By assuming square images (M = N ), the shift is estimated by
calculating

v̂x =
M

2π

bpaqq − bqapq
appaqq − a2

pq

, v̂y =
M

2π

bqapp − bpapq
appaqq − a2

pq

, (3.17)

where

app = M

M
2
−1∑

ωx=−M
2

ω2
x, aqq = M

M
2
−1∑

ωy=−M
2

ω2
y , apq =

M
2
−1∑

ωx=−M
2

M
2
−1∑

ωy=−M
2

ωxωy,

bp =

M
2
−1∑

ωx=−M
2

M
2
−1∑

ωy=−M
2

φ(ωx, ωy)ωx and bq =

M
2
−1∑

ωx=−M
2

M
2
−1∑

ωy=−M
2

φ(ωx, ωy)ωy. (3.18)

Due to aliasing, some of these frequencies may be heavily corrupted, considerably wors-
ening the shift estimation. Therefore, Knutsson et al. [85] discard most corrupted frequen-
cies from Eqs. (3.17) and (3.18), yielding an extremely fast algorithm that uses only two
frequency values:

v̂x =
M

2π
φ(u1, 0), v̂y =

M

2π
φ(0, v1). (3.19)

In particular, from [159], the estimate based on u1 = v1 = 1 has the advantage of being
the least sensitive to aliasing and therefore, the most reliable. By using only these two
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frequencies and assuming the shift between both images is less than half the field of view,
then no phase unwrapping is required [63]. Moreover, there is no need to compute the
whole FFT since just two frequencies are required. However, using two frequencies may
not be enough for accurate shift estimation, therefore the authors of [85] proposed to use
four frequency components (φ(1,−1), φ(1, 0), φ(1, 1) and φ(0, 1)), for which they showed
an improvement on irregular images. Even under these circumstances, as pointed out by
Poyneer [124], the accuracy suffers considerably under low SNR situations.

3.2.3 Iterated Estimation

Since correlation-based shift estimation has a bias proportional to the shift magnitude
[119], then compensating the shift by resampling one of the images and iterating should
progressively reduce this bias (see section 3).

Sidick et al. [151] proposed Adaptive Cross-Correlation (ACC) that estimates the shift
using a similar approach to the one in Knutsson [85] and uses this estimation to resample
the second image in the frequency domain to iterate the procedure. Due to potential
ringing artifacts on the image boundaries after the resampling procedure, the shift is
estimated using the central part of both images with size N/2, involving a fourth of the
image pixels in the computation. To make the shift estimation more accurate, they use
eight frequency components φ(ωx, ωy) with 0 ≤ ωx, ωy ≤ 2 to perform the least-squares
fitting, excluding the center. Therefore, given a SHWFS configuration of N × N sub-
images where N is taken preferably to be a power of 2, the algorithm that estimates the
shift between Ik and Iref does the following:

1. Take the central N ′ ×N ′ pixel part of Iref (i, j), where N ′ < N (usually N ′ = N/2)
and compute its FFT Î ′ref (ωx, ωy). Do the same with Ik(i, j) obtaining Î ′k(ωx, ωy).

2. Compute the cross-correlation in the Fourier domain: Ck(ωx, ωy) = [Î ′ref (ωx, ωy)]
∗Î ′k(ωx, ωy)

where ∗ denotes the complex-conjugate. Then obtain the complex phase φk(ωx, ωy)
of Ck(ωx, ωy).

3. Estimate the shift (v̂x, v̂y) performing least squares fitting by using Eq. (3.17). In the
minimization, use the eight frequency components given by taking 0 ≤ ωx, ωy ≤ 2
and excluding the φ(0, 0) frequency. Based on [85], these frequencies have the ad-
vantage of being less sensitive to aliasing, leaving the low-spatial-frequency, high-
contrast components in the image but rejecting high-spatial-frequency low SNR
completely from the shift estimate. This approach is similar to the one used by
Stone et al. [159].

4. Resample Ik(ωx, ωy) in the frequency domain by computing the FFT Îk(ωx, ωy) of
the whole N ×N image, followed by its multiplication by the estimated ωx and ωy
slopes and taking the inverse FFT of this product:

Ik(i+ ∆x, j + ∆y) = F−1
{
Îk(i, j) exp (− j2π(v̂xωx + v̂yωy))

}
. (3.20)

This procedure is made iterative by accumulating both v̂x and v̂y shift estimates, until a
predefined number of iterations is reached or until ∆ = [v̂x

2 + v̂y
2]1/2, the increase of both

shift estimates, is lower than a predefined tolerance value. This technique is then applied
for every sub-aperture Ik(i, j).

This method greatly resembles to the one proposed in [159]. Its lack of robustness
is compensated by making the algorithm iterative. However, since Fourier resampling
is done, the underlying images must validate the Nyquist criterion, otherwise ringing
artifacts may appear that could lead to a poor shift estimation.
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This algorithm was evaluated on simulated scenes by varying the shift between them
[151] and by using a real SHWFS configuration testbed [152] produced in the Jet Propul-
sion Laboratory at NASA [113]. By relaxing the tolerance parameter of their iterative
scheme, it achieves errors of the order of 0.05 pixels by using between 3 and 6 iterations.

The method presents two problems. Since it discards half of each image to perform
the shift estimation, it usually fails when image contents appear away from the center.
Also, as in [85], the shift estimation step of the method suffers severely in low SNR sce-
narios. Due to this reason, the authors updated the method in [153] by replacing this step
with the periodic-correlation technique of Poyneer [124]. The resulting method, named
Adaptive Periodic Correlation (APC), proved to be more tolerant to noise than ACC.

3.2.4 Maximum Likelihood Estimator

Gratadour et al. [68] performed an in depth study of the performance of the MLE within
an adaptive optics context. Assuming that the two images I0 and I1 are unknown and
contaminated with Gaussian noise their method reduces to minimizing the following
energy with respect to the shift x1

− ln(L(x1)) =
∑

k
1

4σ2(k)
|I1(k)− [I0(x− x1)]III(k)|2, (3.21)

where σ2(k) is the noise variance at pixel k and []III a sampling operator. In practice, to
sample from the shifted image [I0(x − vx)]III(k), they perform the shift using (3.14) by
first applying a low-pass filter to reduce the effect of noise and high frequencies approx-
imation as

[I0(x− vx)]III(k) = F−1
[
Ĩ0 ×Πuc(ω)× e−2iπωvx

]
, (3.22)

where Ĩ0 denotes the Fourier transform of image I0 and Πuc(u) is a low-pass mask in
the Fourier domain. The cut-off is chosen to be the diffraction cut-off frequency of the
telescope. Finally, this minimization is performed numerically using a conjugate gradient
method. Although this algorithm improves over the typical cross-correlation, it has high
computational cost prohibiting its implementation on satellites [108, 124].

As a second contribution, the authors of [68] propose a joint maximum likelihood ap-
proach in which they estimate simultaneously a non-noisy reference image and the shift
parameters for all the subapertures of the SHWFS. Interestingly, the reference image that
maximizes this joint likelihood is found to be the mean of all shifted images. Despite its
high computational cost, this joint estimation is shown to improve over pairwise estima-
tion, in particular under lower SNR conditions.

3.3 Accurate shift estimation using optical flow in the context of
a SHWFS

In order to estimate the shift between two sub-apertures and based on the results of Chap-
ter 2 of this thesis, we propose to use a gradient-based shift estimator (GBSE) based on
the optical flow equation. For the sake of completeness, we recall this method in this
chapter which includes some repetitions from the former explanation, however we refer
the reader to section 2.2 for a full description of the method. We include in this section
some new experiments which are tested particularly on SHWFS configurations.

The idea behind GBSE, as proposed originally by Lucas and Kanade [97], is to relate
the difference between two successive frames to the spatial intensity gradient of the first
image. Given the two images I2(x, y) = I1(x−vx, y−vy) where vx and vy are the unknown
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shift coefficients, the first order Taylor approximation yields

I1(x, y)− I2(x, y) h vx
∂I1(x, y)

∂x
+ vy

∂I1(x, y)

∂y
. (3.23)

To estimate the global optical flow between I1 and I2, the Lucas-Kanade algorithm as-
sumes a constant flow for every pixel, which allows the construction of an overdeter-
mined system of constraint equations Av = b, where A is composed of spatial intensity
derivatives and b has temporal derivatives. Emulating Simoncelli [154], in order to in-
crease the accuracy of the method by minimizing noise or aliasing influence, we looked
for two kernel functions: an anti-symmetric kernel d to estimate the image gradients and
a symmetric kernel k to prefilter the images. Using both kernels, matrix A and vector b
become

A=

 (dx∗I1)(p1) (dy∗I1)(p1)
...

...
(dx∗I1)(pn) (dy∗I1)(pn)

 ,b=

 (k∗(I1−I2))(p1)
...

(k∗(I1−I2))(pn)

 (3.24)

where pi with i = 1 . . . n represents the ith pixel and n the image size. The shift is obtained
by Moore-Penrose pseudo-inversion[

vx
vy

]
=

[ ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

]
︸ ︷︷ ︸

ATA

−1 [ ∑
ItIx∑
ItIy

]
︸ ︷︷ ︸

ATb

(3.25)

where Ix, Iy stands for dx∗I1 and dy∗I1 respectively, and It = k∗(I1−I2) is the derivative
over time.

It is no coincidence that the results of the method depend on the inversion of this sec-
ond moment matrix. As will be shown later, the determinant of this matrix is crucial for
determining the limits on the estimation performance. This matrix will be used to discard
ill-posed cases before actually performing the shift estimation. The classic rejection case
is when the gradient is mostly oriented in a single direction. This unsolvable situation is
known as the aperture problem. Its detection by using the Cramer-Rao lower bounds is
detailed in Section 3.4.

It is important to remark that by centering the Taylor development at zero and taking
up to the first order term, the method gets systematically biased and the method becomes
less precise as the shift gets higher, i.e., estimated shifts larger than one pixel would not
be correctly estimated. Furthermore, the noise in the input images is completely ignored
by the algorithm, which also impacts on its performance. Both these bias sources are
studied in detail in [119, 139] and will be addressed next.

3.3.1 Iterative gradient-based shift estimator

Instead of dealing with the bias explicitly, it was shown in Pham et al. [119] that both
bias sources depend linearly on the shift magnitude. This justifies the use of an iterative
method, which is able to significantly reduce the bias, provided an appropriate resam-
pling method is used. Algorithm 3 performs k iterations, computing the shift v[i] by solv-
ing (3.25) (findshift), and iterates by reinterpolating the original image I2 (Resample)
using the total accumulated shift w. It is a variant of the Lucas-Kanade algorithm [97]
known as Inverse Compositional Algorithm [12], in which the gradients of the reference
image are static throughout the iterations, so (ATA)−1 is only computed once.
In the next sections we will see that the gradient discretization used by findshift and
the choice of interpolation method for image resampling are crucial to the precision of
the GBSE method.

96



3.3. Accurate shift estimation using optical flow in the context of a SHWFS 97

Algorithm 3 Iterative GBSE method.

1: procedure ILK(I1, I2) . Receives a pair of images
2: i← 0; I2[0]← I2; w ← 0;
3: while i ≤ k do
4: v[i]← findshift(I1, I2[i]) . (3.25)
5: w ← w + v[i] . Accumulate total shift
6: I2[i+ 1]← Resample(I2,−w) . Use the original I2

7: i← i+ 1
8: end while
9: return w . Return accumulated shift

10: end procedure

Figure 3.3 – Used pixels (gray background) for fast gradient estimation methods and their exact
localization (red dots). Left: Centered differences. Center: 1D backward difference for both ∂x
and ∂y. Right: 2D backward difference.

3.3.2 Gradient computation and image prefiltering

Gradient computation for optical flow methods has been thoroughly studied [50, 140,
154]. Since our shift estimation is focused on accuracy and the image size on SHWFS is
typically small (usually smaller than 50 × 50 pixels), using a large kernel for computing
image derivatives implies losing valuable boundary values. This constrains the kernel to
be compact yet precise and robust to noise. In fact, the impact on the accuracy and the
robustness to noise of the gradient computation is a key factor to the final performance
of the GBSE method.

Because the method should be computationally fast, only simple schemes could be
afforded. A straightforward candidate is the centered differences kernel [1, 0,−1], how-
ever since the central pixel is ignored in the computation, its precision could be improved
by taking contiguous pixels. For this reason, a backward difference kernel [1,−1] would
seem more appropriate. However, the corresponding center of this derivative differs for
each component as seen from the middle image of Fig. 3.3.

A more precise gradient estimation method, illustrated on the right of Fig. 3.3, com-
putes the derivatives by performing convolution with dx and dy given by

dx =

[
1/2 −1/2
1/2 −1/2

]
, dy =

[
1/2 1/2
−1/2 −1/2

]
, (3.26)

and computes the vector b in (3.24) by prefiltering both I1 and I2 using the half pixel
bilinear shift kernel

k =

[
1/4 1/4
1/4 1/4

]
. (3.27)

This gradient estimation procedure called hypomode [142], despite being simplistic usu-
ally improves the accuracy obtained by GBSE methods using finite difference gradient
estimation. This is because it slightly blurs the input images, which alleviates both alias-
ing and noise.
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98 IMPROVING WAVEFRONT SENSING WITH A SHACK-HARTMANN DEVICE

We also considered the normalized 2D Gaussian smoothing kernel k = g(x, y, σg)
with standard deviation σg, and its derivatives dx = − x

σ2
g
g(x, y, σg) and dy = − y

σ2
g
g(x, y, σg).

The parameter σg controls the amount of blur, thus using a small value would be less tol-
erant to noise, while a high value could remove textures useful for the shift estimation.
In our experiments, we evaluated using σg = {0.3, 0.6, 1}with supports of 3, 5 and 7 pix-
els respectively. Finally, we included gradient estimation kernels from Simoncelli [154]
with taps 3 and 5, Farid [53] with taps 3, 5 and 7 and the Christmas kernels [35] with taps
3, 5 and 7. We refer the reader to Section 2.2.6 for a more complete description of these
approaches.

In Fig. 3.4 we show the best performing variant for each approach on each case. As
seen from both Fig. 3.4(a) and Fig. 3.4(b), the most accurate gradient estimator for small
shifts (≈ 0.1) proved to be the hypomode. Therefore it should be considered when the un-
derlying deformations are small enough (which could happen on a closed loop system
with frequent mirror corrections). However, as the maximum shift caused by the wave-
front aberration gets larger, the hypomode resulted the worst approach while computing
the 3× 3 Simoncelli derivatives offered the best balance between accuracy and tolerance
against noise, as seen from figures 3.4(c), 3.4(d). Finally, the larger 5× 5 Simoncelli gradi-
ent estimation method achieved the best accuracies under shifts larger than half a pixel.
It should be noted that displayed times do not include the computation of the derivative,
reflecting only the processing time of the GBSE method.

3.3.3 Interpolation methods for image resampling

In order to iterate the method, the second image needs to be shifted, as indicated in step 6
of Algorithm 3. To this end, five different interpolation methods were evaluated, namely
bilinear, bicubic [82] and cubic spline [42], together with resampling using the Fourier
shift theorem [20], which is evaluated with and without image periodization. Image
periodization prevents the generation of ringing artifacts due to the discontinuities at the
image boundaries. It amounts to resampling with DFT a mirrored version of the image
which has no discontinuities when periodization is assumed (see Fig.3.5).

The choice of interpolation method is critical for the overall method accuracy. How-
ever precision comes at a higher processing cost. We evaluated the different interpo-
lations by simulating a landscape with noise of σn = 80, displacements between sub-
apertures of up to 2 pixels, and computing gradients by using Gaussian derivatives with
σg = 0.6. For each method we computed the average error and standard deviation over
200 independent random realizations, using the GBSE method with 2 and 3 iterations.
Results in Fig. 3.6 show a non-negligible performance difference between the methods.
In terms of average error, both DFT-based methods achieve the best results, however no
significant improvement is obtained by performing periodization, although a minimal
reduction in the standard deviation is observed. The splines interpolation yields slightly
less accurate results, however it should be considered if fast DFT hardware cannot be
installed on board. Finally, both bicubic and bilinear interpolation perform significantly
worse than the rest, although bicubic interpolation results had less variability with re-
spect to other approaches. Lastly using three iterations does not improve considerably
over using two, not justifying the increase in computational cost. However, although
not shown in this experiment, this difference gets higher as the noise increases, which
justifies its use.

3.3.4 Image intensities equalization

One requirement of the GBSE algorithm is to work on images with similar intensities.
Since occluded sub-apertures receive less light, their intensities differ from the reference
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(a) Max. shift: 0.1 pixels.
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(b) Max. shift: 0.1 pixels.
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(c) Max. shift: 0.5 pixels.
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(d) Max. shift: 0.5 pixels.
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(e) Max. shift: 2 pixels.
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(f) Max. shift: 2 pixels.

Figure 3.4 – Gradient estimation methods comparison for three different maximum shifts (0.1, 0.5
and 2 pixels) in a SHWFS context. Left: Highly contrasted image (simple case). Right: Gradients
mainly distributed on a single direction (challenging case). Noise standard deviation according to
12-bit images.

(a) Original image (b) DFT resampling (c) Symmetrized image (d) Symmetrized DFT

Figure 3.5 – Example of FFT resampling with and without image symmetrization. Resampling with
DFT produces ringing due to the discontinuities at the periodized boundaries. No visible ringing
is observed after resampling with symmetrization.
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Interpolation methods evaluation. 2(top) and 3(bottom) iterations.
DFT w/sym
DFT
splines
bicubic
bilinear

0 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175 0.02 0.0225 0.025 0.0275 0.03 0.0325 0.035

Avg. error in pixels

Figure 3.6 – Comparison of evaluated interpolation methods using 2 and 3 iterations and Gaus-
sian derivatives with σg = 0.6. Image noise was fixed to σn = 80 and the maximum displacement
was set to 2 pixels.

image. To this end, all subimages are equalized by normalizing their mean with the
highest mean among all subapertures, computing

Ik(x, y) = Ik(x, y)
maxMean

meank
, (3.28)

where meank is the average value of image k and maxMean = maxk(meank).
Another strategy when estimating the shift between any sub-aperture and the refer-

ence image, as suggested in [21], is to first convolve each of them with the point spread
function (PSF) of the other. This procedure is useful when the PSF of each sub-aperture
is known beforehand, which may not be the case. However, as the authors point out,
each PSF could be estimated using a star once the satellite is in orbit. Nevertheless, the
convolution cost is not negligible since it has to be done for every shift estimation. Here,
we chose to perform the equalization by the simple procedure explained above since it is
computationally cheaper, manages to obtain excellent results and our focus is on the shift
estimation method. However this other normalization procedure should be considered
to improve the results even further.

3.3.5 Multiscale implementation

The GBSE algorithm can be easily adapted to work in an open loop environment where
aberrations are potentially larger, leading to larger shifts between subapertures. As men-
tioned before, if the shift is larger than one pixel, the GBSE method fails. However, by
building a pyramid representation of the input images, (3.25) can be applied on each
scale to estimate the shift between images, and this estimated shift can in turn be used
to resample the second image on the following level of the pyramid. If more accuracy is
desired, then Algorithm 3 can be used to better estimate the shift at each scale. We com-
pute the pyramid using an approximate dyadic Gaussian pyramid [28]. Starting from the
coarse image at scale n > 1, the method is summarized in Algorithm 4.

3.4 Scene preselection and robustness estimation

Before evaluating the deformation of the incoming wavefront, it is crucial to determine
if the current landscape, i.e., what the satellite is observing at the moment, is suitable for
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Algorithm 4 Multiscale GBSE method.

1: procedure MSSE(I1, I2) . Receives a pair of images
2: I1...n

1 ← BuildPyramid(I1, n) . Burt&Adelson’s Gaussian Pyramid [28]

3: I1...n
2 ← BuildPyramid(I2, n) . i.e., IMPYRAMID function from Matlab

4: i← n; w ← 0 . n: number of scales, w: accumulated shift
5: while i > 1 do
6: v(i) ← ILK(Ii1, I

i
2) or findshift(Ii1, I

i
2) .Alg. 3 or (3.25)

7: w ← 2w + 2v(i)
8: Ii−1

2 ← Resample(Ii−1
2 ,−w)

9: i ← i− 1
10: end while
11: v(1) = findshift(I1

1 , I
1
2 )

12: return w + v(1) . Return accumulated shift
13: end procedure

performing wavefront sensing. This problem has been studied by Sidick et al. [152] and
by Poyneer [124] who proposed several fail-safe criteria to determine if a SH image is
acceptable.

In this context, we propose to perform two distinct validations to ensure an accu-
rate wavefront correction. The best achievable accuracy, given the current landscape
and the underlying noise, can be estimated by the Cramer-Rao lower bound. In the last
decade, three main works have addressed the calculation of the error on the estimated
shift caused by the noise. Robinson and Milanfar [139] used the Cramer-Rao lower bound
(CRLB) to derive a performance limit for image registration. The CRLB imposes a lower
limit on the mean squared error for any estimate of a deterministic parameter. Pham
et al. [119] continued on the same idea to derive a theoretical limit for image registra-
tion, followed by a study of the bias for the gradient based 2D shift estimation. Recently,
Aguerrebere et al. [3] performed an in depth study of performance limits within a multi-
image alignment context and derived several Cramer-Rao lower bounds depending on
the conditioning of the problem.

By assuming that the noise is independent, homoscedastic, Gaussian and with the
same variance σ2

n on both images, and denoting by S the set of all pixels in the image, the
Cramer-Rao bound for any unbiased 2D shift estimator is

var(vx) ≥
σ2
n

∑
S I

2
y

Det
, var(vy) ≥

σ2
n

∑
S I

2
x

Det
, (3.29)

where Det =
∑

S I
2
x

∑
S I

2
y − (

∑
S IxIy)

2. We can therefore define a parameter ∆CRLB ,
the maximum allowed error in pixels, that determines whether the current landscape is
accepted for performing wavefront estimation, by verifying

(var(vx) + var(vy))
1/2 ≤ ∆CRLB. (3.30)

Yet, Ix, Iy represent the gradient obtained from the unknown noiseless image I . Thus
this bound is only useful for a theoretical study. In practice, however, the required values
can be approximated using the method of [122], detailed in Section 2.2.5, where they
estimate the second moment matrix of image I1 from noisy versions Ĩ1 and Ĩ2. Another
possibility would be to approximate these sums by computing the expected value using
the derivative definition and a noise variance estimation. For example set Ix(i, j) = I(i+
1, j) − I(i, j) and let Ĩ = I + n be the observed noisy image where n has distribution
N (0, σ2

n). Since all n(i, j) are independent, by the law of large numbers we have∑
S

Ĩ2
x =

∑
S

(Ix + nx)2 =
∑
S

I2
x +

∑
S

Ixnx +
∑
S

n2
x '

∑
S

I2
x + 2|S|σ2

n.
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It follows that we can estimate
∑

S I
2
x from the noisy image Ĩ by∑

S

I2
x '

∑
S

Ĩ2
x − 2|S|σ2

n. (3.31)

The other terms of Eq. (3.29) can be computed using similar calculations.
The CRLB defined in (3.29) expresses a direct relationship between the accuracy of

the estimation and the SNR ratio, measured as a ratio of the noise to the square of the
gradient. Furthermore, it follows from the form of the denominator of these expressions
that if there is a strong correlation between Ix and Iy, the vertical and horizontal partial
derivatives, then Det will be zero or very close to zero. The formulas show that this
entails a high variance for the estimation of the translation. This is the so called Aperture
Problem [150]. In that case the true motion is irrecoverable.

Another interesting interpretation could be done regarding this bound. As can be
noted, the Fisher information matrix for the particular problem of shift estimation is in
fact the structure tensor with weights equal to one. Then, since the determinant of the
structure tensor is the product of its corresponding eigenvalues, an analysis of this bound
could be made through their magnitudes. If both eigenvalues of the structure tensor are
small, it means the image gradients have very small magnitudes possibly suggesting the
image is flat. Achieving good shift estimation accuracy is made more difficult in this case,
in particular under a low SNR situation. Also, if one eigenvalue is high but the other is
particularly small, it means the gradients on the image are distributed in one direction
only, implying the shift estimation in the other direction will not be possible. Both of
these situations are reflected by the Cramer-Rao bound as the variance of the estimators
will be high. This information will be considered by the Eigenratio test detailed next.

It must be noted that the Cramer-Rao bounds are derived for an unbiased 2D shift
estimation. For the case of biased estimators, the bound is even higher. Also, the hy-
pothesis made about the noise being white Gaussian and homoscedastic does not hold in
a SHWFS context used from earth-observation satellites. However, the noise model for
the sensor is usually known beforehand, therefore allowing its variance to be stabilized
by applying a variance stabilization transform (VST) such as the well-known Anscombe
transform [6].

Finally, for the case of SHWFS, since shifts between images are independent, the limit
on the registration accuracy is imposed by estimating the shift between two frames, given
by Eq. (3.29). The CRLB for a certain landscape could be defined either by the maximum
or the average CRLB of all subapertures. Once determined, the test in Eq. (3.30) must be
verified for the landscape to be processed.

Eigenratio test: measuring distribution of the gradient through the ratio of the eigen-
values of the structure tensor As noted by [3], the CRLB is less precise where it is most
needed, namely when the signal is dominated by noise. Indeed, in that case the numer-
ator and denominator of (3.29) cannot be estimated reliably, being both the difference of
equivalent terms. This is why we will be forced to recur to more robust safety computa-
tions.

We propose to rapidly discard a landscape for a shift estimation by involving the
Eigenratio score of the second moment matrix τ = ATA of (3.25), which as previously
noted, is also the structure tensor with unit weights associated to the image I1, and is
given by

τ =

[ ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

]
, (3.32)

where Ix and Iy are the image gradients in both horizontal and vertical directions. The
eigenvalues λ1, λ2 of τ and their corresponding eigenvectors e1, e2 summarize the distri-
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bution of the image gradient ∇I = (Ix, Iy). Namely, if λ1 > λ2, then e1 (or −e1) is the
direction that is maximally aligned with the gradient within the image. More generally,
the value of λk , for k ∈ {1, 2}, is the average of the square of the directional derivative
of I along ek. The relative discrepancy between the two eigenvalues is an indicator of
the degree of anisotropy of the gradient in the image, i.e. how strongly is it biased to-
wards a particular direction (and its opposite). Then by calculating the ratio λ2/λ1, we
obtain a number between 0 and 1, characterizing the dominance of a particular direction
for the gradients of the image. Empirically it was verified that a ratio λ2/λ1 < 0.2 effec-
tively degrades the shift estimation task, and this metric could be used to discard badly
conditioned situations.

To compute this ratio, since τ = ATA is positive definite and symmetric, then both
of its eigenvalues λ1 and λ2 are real and non-negative and its computation is straightfor-
ward. Based on the fact that the trace t of matrix τ is the sum of their eigenvalues and
that its determinant Det is their product, we define

λ1 =
t

2
+

√
t2

4
−Det, λ2 =

t

2
−
√
t2

4
−Det. (3.33)

where t =
∑
I2
x +

∑
I2
y and Det = (

∑
I2
x)(
∑
I2
y )− (

∑
IxIy)

2.

3.5 Results

3.5.1 Scene pre-selection evaluation

Figures 3.7(a) and 3.7(b) display two examples of SH landscapes that do not validate
the EigenRatio test. In these images there is a strong dominant gradient direction that
complicates the shift estimation. The aperture problem is visually obvious in both cases.
Figures 3.7(c) and 3.7(d) present a high CRLB. The first one corresponds to a project where
the images are composed by only noise, while the second example has a higher SNR,
however the noise is still considerable. Finally, two examples of valid landscapes are
shown in figures 3.7(e) and 3.7(f) which were validated by both proposed tests.

(a) 0.021, 0.041 (b) 0.057, 0.042 (c) 0.115, 0.343 (d) 0.063, 0.491 (e) 0.004, 0.437 (f) 0.002, 0.616

Figure 3.7 – CRLB and eigenratios respectively for six examples of landscapes. Green represents
valid and red implies failure.

3.5.2 Comparison with state-of-the-art methods

The CNES simulated database

CNES (French space agency) provided realistic simulations of several SHWFS landscapes
obtained from earth-observing satellites with their corresponding ground truth. The pro-
vided images were 37 × 37 pixels from a 12 × 12 grid following the occlusion schema of
Fig. 3.2(a). The simulated wavefront aberrations translated into displacements no larger
than half a pixel. For each provided landscape, 3 different SNR settings were available.
Fig. 3.8 displays some example landscapes.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Figure 3.8 – Examples of landscapes from the CNES database.

Every state-of-the-art algorithm and our proposed method using different interpo-
lation/gradient estimation approaches was tested against the whole dataset. In Table
3.1 the errors are displayed for the best performing methods of each computational cost
range.

The errors obtained for figures 3.8.1 and 3.8.2 are close to the theoretical limits pre-
dicted by their CRLB. On the other side, the error obtained with Fig. 3.8.3 and its CRLB
implies that a strong improvement is possible. Line 4, corresponding to Fig. 3.8.4, is an ex-
ample where every method fails to achieve accurate results, possibly due to the noise and
the lack of texture, which is revealed by a lower bound considerably higher than for most
other cases. Fig. 3.8.5 shows an example of a landscape where the Poyneer method [124]
as well as APC [153] are clearly improved by the proposed approach. Fig. 3.8.6 proves
that the aperture problem hinders most shift estimation methods, as evidenced by their
resulting errors. The APC algorithm particularly failed under the landscape present in
Fig. 3.8.7 although the reason is not evident. Finally, line 9 (Fig. 3.8.9) shows a case where
the SDF-2QI method was outperformed by all variants of the proposed approach. It
should be remarked that the non-iterative variant of the GBSE method using the 3 × 3
Simoncelli kernel achieved almost similar results than more expensive iterative variants
(requiring up to 10 times less time to compute), which makes it the most suitable choice
for this dataset.

Table 3.1 – CRLB, EigenRatio (ER) and errors for selected landscapes of the CNES database. a

CRLB ER SDF2QI MICHAU POYNEER APC LS-1-IlGh LS-1-IlGsim3 LS-2-IcGh LS-3-IsGh
[95] [109] [124] [153]

(1) 0.014 0.66 0.019 0.121 0.026 0.054 0.030 0.018 0.017 0.016
(2) 0.006 0.44 0.044 0.106 0.038 0.158 0.014 0.009 0.008 0.008
(3) 0.006 0.19 0.043 0.096 0.105 0.092 0.035 0.036 0.036 0.036
(4) 0.041 0.59 0.124 0.113 0.090 0.794 0.070 0.070 0.064 0.069
(5) 0.011 0.77 0.054 0.113 0.069 0.070 0.026 0.016 0.016 0.016
(6) 0.030 0.01 0.072 0.099 0.083 0.081 0.053 0.043 0.043 0.040
(7) 0.019 0.69 0.025 0.111 0.048 0.134 0.034 0.022 0.021 0.021
(8) 0.026 0.63 0.052 0.114 0.039 0.083 0.048 0.033 0.031 0.031
(9) 0.010 0.34 0.026 0.113 0.029 0.042 0.028 0.016 0.015 0.014
(10) 0.027 0.61 0.085 0.112 0.051 0.645 0.046 0.040 0.038 0.043

Avg. Err. 0.0289 132 0.231 0.111 0.491 0.478 0.047 0.041 0.039 0.039
Valid avg. 0.0106 64 0.029 0.110 0.048 0.057 0.027 0.019 0.017 0.017

Avg. Time (s) 0.309 0.015 0.055 0.139 0.029 0.022 0.107 0.186

aRows in green represent landscapes considered valid (CRLB < 0.02 and ER > 0.2), while invalid land-
scapes are shown in red. Bold indicates lowest error. Averages correspond to the whole dataset, and its
ER column displays the amount of landscapes processed. The Valid row represents the averages over all
valid landscapes. The first column links each row with the landscapes shown in Fig. 3.8. LS-1-IlGh, LS-2-
IcGh and LS-3-IsGh represent Alg. 3 using the hypomode derivative with 1 , 2 (bicubic interpolation) and 3
(spline interpolation) iterations respectively. The column LS-1-IlGsim3 stands for 1 iteration and the 3× 3
Simoncelli kernel for gradient estimation [154].

Simulated experiments

Experimental Setup. We used a simulator to evaluate the performance of the proposed
method. Given a 12-bit input image, a set of images was generated matching a SHWFS
configuration provided by CNES. A 12× 12 lenslet grid occluded as shown in Fig. 3.2(a)
was assumed. For each lenslet a ground truth shift was randomly generated. Since we
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were simulating in a closed loop environment, the maximum displacement was kept to
half a pixel. Each sub-aperture image was then obtained by DFT resampling the input
image, extracting a 37 × 37 pixels subimage, multiplying by the occlusion factor, and
lastly adding noise.

Figure 3.9 – Top: Input image used for the simulations. Bottom: For each level of noise σn =
{1, 100, 200} (vertically separated), two different sub-apertures are shown: no occlusion and 57%
occluded (horizontally separated). The dynamic ranges were stretched for viewing purposes.

The error for each method was computed as the mean error for all valid sub-apertures.
A sub-aperture was considered invalid and therefore discarded if it was occluded on
more than 60% of its surface. The error for each sub-aperture was the Euclidean distance
between the measured and the ground truth shift. To evaluate the robustness to image
content, we used three subimages: a highly contrasted one that should not present any
difficulty for shift estimation, a slightly more challenging one with its gradient mainly
distributed on a single direction, and one from the sea with almost no signal (there are just
a few pixels of land on the bottom). Different amounts of additive white Gaussian noise
were simulated (with standard deviation σn ∈ [1, ..., 200]), and all methods were evalu-
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Figure 3.10 – Performance for non-iterative and iterative methods. Top: First test image. Bottom:
Second test image. Left: Non-iterative methods. Right: Iterative methods.

ated on 100 noise realizations. Fig. 3.9 shows the subimages affected by three noise levels.
Signal dependent noise was handled by application of a variance stabilization transform.
Finally, the processing time of each method was measured using a non-optimized Matlab
implementation on an Intel Xeon E5-2650 CPU.

We tested several variants of the proposed GBSE method. Five interpolation methods
for resampling (see Section 3.3.3), all gradient estimation methods mentioned in Section
3.3.2, and using up to three iterations per shift estimation. Also, variants using the mul-
tiscale approach were evaluated (Section 3.3.5) up to 3 scales, where for each scale, an
iterative GBSE algorithm was used with up to 3 iterations. From these methods we re-
tained the best performing non-iterative method (k = 1 and no resampling) which uses
the 3×3 kernel from the Simoncelli gradient computation method [154], and the best with
3 iterations which uses Fourier resampling and the hypomode gradient estimation. We
compared them with the best state-of-the-art algorithms, namely, ACC [151], APC [153],
the Poyneer method [124] and Löfdahl’s SDF-2QI algorithm [95]. All other presented
methods were also evaluated but excluded due to lower accuracies.
Results in a closed loop system. We compared iterative and non-iterative algorithms
separately. In each case, the most accurate variant of the proposed solution is compared
against the two most accurate methods of the state-of-the-art. The average errors and
the standard deviations for non-iterating methods on the first image type are shown in
Fig. 3.10 (top left), together with the processing time. The non-iterative GBSE version
using the 3 × 3 Simoncelli derivatives outperforms both Poyneer and SDF-2QI (which
perform similarly in this image). GBSE is also more stable (less variability) and faster (it
took half the time of the Poyneer method). In Fig. 3.10 (top right) both iterative methods
ACC and APC were compared with GBSE using 3 iterations, Fourier resampling and the
hypomode derivative. Again the proposed method proved to be the most accurate and
stable. Even more, this method was the best also compared to non-iterated approaches.
Notice the high impact of noise on the ACC method. It is more precise than both non-
iterating methods for low noise values (σ ≤ 20). However, it diverges for stronger noise.
This problem is well-known for phase-correlation methods [64, 124].
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The results for the second image type (bottom of Fig. 3.10) are similar to the first
one, although the average errors are higher. While the SDF-2QI performs slightly worse,
the Poyneer method is considerably worse. This is due to discrepancies at the image
boundaries resulting from the periodicity assumption of the periodic convolution used
by Poyneer. It also explains why both ACC and APC methods behave so poorly on this
image. This also implies that computing the shift in the spatial domain is usually more
stable than doing so in the frequency domain, unless some windowing is performed,
which is prohibitive on such small images where the objects are sometimes close to the
image boundaries. Yet again, the proposed methods are more precise, stable and with
less variability than the state-of-the-art. The third image type did not pass the verification
step and all the methods failed, so its results are omitted.

Remark about the interpolation of the correlation function. It is worth noting in
Fig. 3.10 that the precision of both correlation based methods, SDF-2QI and Poyneer,
flat-out for small levels of noise. A possible explanation for this behavior is that these
methods don’t account for the alias introduced during the computation of the correla-
tion. Szeliski and Scharstein [161] and Sabater et al. [146] have shown that in order to
properly compute and interpolate the correlation cost between two images (or equiva-
lently the SDF), the images and the cost function must be oversampled by at least a factor
two. In a nutshell, this is because the squared difference of two band-limited images has
twice the bandwidth of the input images. In that case, perfect band-limited interpola-
tion (sinc filter) could be used to interpolate the cost function from the samples taken at
half-pixel disparity steps, allowing to accurately compute the disparity with arbitrarily
subpixel precision. Not accounting for this aliasing phenomenon affects the precision of
the interpolated maximum of correlation, which could in part explain the poor perfor-
mance of the SDF-2QI and Poyneer methods under low noise levels.
Results under larger displacements. The same experiment was performed by simulat-
ing wavefront aberrations having displacements of up to 4 pixels, to evaluate robustness
against high frequency aberrations. In Fig. 3.11 the average error together with the stan-
dard deviations are shown for the most representative methods. Due to the larger under-
lying displacements, multiscale approaches achieve better results as the noise increases,
reproducing the results of [131]. In fact, a multiscale approach becomes mandatory if
fewer than two iterations are performed, and the best performing method found used 3
scales (where a single iteration was used in the coarsest scale, two iterations with spline
interpolation in the second scale and 3 iterations with DFT interpolation in the final finer
scale) and the hypomode gradient estimation. Although this method proved to be the most
accurate in our tests, it also requires more computational resources as evidenced by its
running time. However, using the iterative single-scale approach with 3 iterations, DFT
interpolation and the 3 × 3 gradient estimation kernel proposed by Farid [53] showed
comparable results while requiring less processing time. Nevertheless, the method pro-
posed by Poyneer should be considered when lower processing times are required. In-
deed, as expected, non-iterated versions of the GBSE algorithm failed when estimating
the shift with large underlying displacements. Let us add the caveat that when measur-
ing the aberration using the second slightly challenging landscape, the Poyneer method
obtained inaccurate results even under high SNR conditions.

3.6 Concluding Remarks

A new method for accurate sub-pixel shift-estimation, based on an iterative global op-
tical flow algorithm, was proposed in the context of a SHWFS on extended scenes for
aberration correction on-board earth-observation satellites. Using a telescope simulator
developed by CNES, we showed that the proposed algorithm is more accurate, stable,
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Figure 3.11 – Average error and standard deviations of selected methods and two variants of the
GBSE approach when simulating wavefront aberrations yielding displacements of up to 4 pixels.
Left: First test image. Right: Second test image.

robust to noise, and with lower variability than the current state-of-the-art, permitting
a more precise wavefront estimation. This opens the way to cheaper high resolution
Earth observation satellites, by permitting on-board real time active optics on large but
far lighter mirrors.
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Chapter 4

Stab-Active: stabilizing on board image accumulation

Image registration can play a key role to increase the SNR of Earth satellite images by fusing
many successive noisy thin image stripes in real time, before transmitting to the ground the
final fused image. Yet these stripes cannot be fused directly by addition because their position
is altered by microvibrations and other geometric perturbations. These must be compensated
using limited onboard computational resources with high subpixel accuracy and in real time.
In this chapter we study the fundamental performance limits for this problem and propose a
real time solution that nonetheless gets close to the theoretical limits. We introduce a scheme
using temporal convolution together with online noise estimation, gradient-based shift estima-
tion and a non-conventional multiframe method for measuring global displacement. Finally,
we compare our results with the theoretical bounds and other state-of-the-art methods. The
results are conclusive on the fronts of accuracy and complexity.

4.1 Introduction

Push broom imagers placed on satellites are used to perform Earth observation at high
resolution [19, 59]. Because they are close to the Earth (≈ 800 km), they move fast and
the image acquisition time is very brief. The solution to avoid motion blur is to use Time
Delay Integration (TDI) on the satellite’s imaging sensor, which, by synchronizing the
pixels with the motion of the camera or the object, is able to increase the effective expo-
sure time. This sensor works by shifting the partial measurements of its multiple rows to
their adjacent rows synchronously with the motion of the image across the array of ele-
ments. This synchronous accumulation yields an SNR unobtainable using conventional
CCD arrays or single-line-scan devices. However, it places stability constraints on the
imaging device. To relax these constraints limiting the accumulation time, we evaluated
if performing on board registration and accumulation was possible.

Envisaging the use of a CMOS TDI allows to correct the accumulation procedure by
resampling the incoming signal. This permits to avoid motion blur while accumulating
many more frames thus obtaining much higher SNRs. Yet this raises new technical issues.
A prerequisite is that the perturbations of the line of sight must be estimated very accu-
rately. To this aim, little low resolution CMOS sensors set along this line of sight could
sense the same landscape underneath of the TDI’s detection line, possibly under slight
perturbations and with a low signal to noise ratio (SNR) [107]. The problem is then to per-
form subpixel image registration, up to the noise limit, of a set of consecutive low SNR
images of the same landscape, known as a “TDI ROW” or simply “line”. This becomes a
non-trivial task due to different external conditions such as pointing errors and satellite
vibration. Luckily at the studied time scales (> 500Hz), the satellite micro-vibrations can
be considered a linear shift over the image sequence, requiring only to compute a global
translation estimate for the whole line (see figures 4.1 and 4.2). Finally, due to limited
hardware resources, the desired algorithm must be low demanding in both memory and

109



110 STAB-ACTIVE: STABILIZING ON BOARD IMAGE ACCUMULATION

processing speed.

Figure 4.1 – In the studied time scales, the satellite micro-vibrations are locally linear.

Figure 4.2 – Accumulated displacements estimated using algorithm 23 for a random TDI row in
the provided dataset. It can be clearly seen that accumulated displacements follow a linear law.

Based on this task, several interesting questions arise. Is it possible to predict the
theoretical optimal performance of the registration method to fix a theoretical bound?
Since this will imply an accurate noise estimate, can the noise be estimated at low cost on
board? Can the smoothness of the trajectory be used to make an accurate and very low
complexity registration? How can the results be validated? All these questions will be
addressed in this study.

This chapter is then organized as follows. We begin in Section 4.2 by briefly discussing
which shift estimation approaches were more suitable for our particular problem. We
continue by giving the optimal lower bounds for the current multi-image registration
problem in Section 4.3, together with a study on the bias of the GBSE method. Section 4.4
describes in detail the proposed algorithms. Finally, the methods are evaluated in Section
4.5 and conclusions are given afterwards.

4.2 Method analysis

In summary, the Stab Active problem reduces to performing accurate multi-image sub-
pixel shift estimation between N images, where the shift between consecutive images
could be assumed constant. What is more, this constant shift is lower than a tenth of
a pixel and, due to extremely low exposure times, images have low signal to noise ra-
tios. The requirement of doing this in real-time on-board using low-power satellite-grade
hardware makes this an extremely challenging task where most methods have to be dis-
carded beforehand.

Subpixel shift estimation between two images is an old subject for which several very
good reviews exist over the years [168], [191], and particularly, in Chapter 2 of this ma-
nuscript. An iterative method to achieve subpixel accuracy was already proposed in
1981 [97]. A classic alternative involves FFT-based phase correlation [132], which has
been improved to get subpixel accuracy in [57], [162] and [69]. The optimal bounds for
performing registration between two images also have a long history going back at least
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to 1983 [46]. We shall use their latest developments [139], [119], [146] which will be ex-
tended here to a multi-image uniform translation. It so happens that the optimal registra-
tion bounds for an image sequence are much more accurate than with only two images,
and the challenge is to reach these bounds.

Based on the review of shift estimation methods presented in Chapter 2 of this manu-
script, and due to the limited time constraints, only two types of methods were consid-
ered, namely, differential (i.e. gradient-based) and phase-correlation methods. A priori,
GBSE method seems the best suited approach due to its low computational cost and its
accurate subpixel results. Indeed, phase correlation methods could improve over GBSE
when used on images that are severely distorted, in either geometry or intensity [168],
however this is not the current case. Other reasons that allowed to discard phase corre-
lation approaches were:

• The shift between images is a simple linear shift, rather than a circular shift, which
implies performing image apodization thus discarding potentially useful textures.
This is prohibitive on small image sizes.

• The phase-correlation method does not perform well in presence of an aperture
problem, as will be shown in our experimental section.

• For periodic images (that have repeating objects, a potential situation that could
happen in our current problem), phase correlation may also yield ambiguous re-
sults with several correlation peaks in the resulting output.

• Last but not least, the computational time saved using the DFT is more significant if
the images to be registered are large, which is not the case of our particular problem.

Nevertheless, we compare our results with those of a phase-correlation-based method
[69] in our experiments thus proving our claims.

4.3 Influence of Noise on the Registration

4.3.1 Noise estimation

Since the translation between consecutive frames is assumed to be small with respect
to the pixel size (less than a tenth of a pixel), by subtracting both frames we can easily
estimate the noise. Setting I∗t = I∗2 − I∗1 where I∗2 and I∗1 are contaminated by additive
white Gaussian noise with standard deviation σ, implies that

1

|S|
∑
x,y

(I∗t (x, y))2 ≈ 2σ2, (4.1)

where |S| is the image size. Thus, in order to make the estimation more precise, this
calculation can be done for each pair of consecutive frames in the line and its average
will be a better estimation for the variance σ2. This toy example can become reality by
applying a variance stabilizing transform (VST), like for example the Anscombe trans-
form [6], which transforms a Poisson noise into an approximately white Gaussian noise.
A possible implementation of the VST is discussed in Appendix B. We verified that when
running the algorithms with no Anscombe VST, there is a small decrease in performance.
Also, applying the VST to the images has the merit of aligning the numerical calculations
with the theoretical calculations, which are usually made for white noise. Nevertheless,
the noise in the dataset is not white Gaussian. It is the classic sum of a Poisson noise
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and of a thermal approximately white Gaussian noise. Nevertheless, the noise remains
independent at each pixel. Thus, we estimate the noise σ̂ by

σ̂2 :=
1

N − 1

N−1∑
i=1

[
1

2|S|
∑
x,y

(I∗i+1(x, y)− I∗i (x, y))2

]
(4.2)

whereN is the number of images to register, |S| is the number of pixels of each image and
I∗i represents each noisy VST transformed image from Ii. We shall see that this estimate is
crucial in the whole study of the influence of noise on the accuracy of motion estimation.

4.3.2 Predicting the error on the estimated shift caused by the noise

In the last decade, four main works have handled the calculation of the error on the es-
timated shift caused by the noise. Robinson and Milanfar [139] used the Cramer-Rao
bound (CRB) to derive a performance limit for image registration. The CRB bound im-
poses a lower limit on the mean squared error for any estimate of a deterministic param-
eter. Then, Pham et al. [119] continued on the same idea to derive a theoretical limit for
image registration, followed by a study of the bias for the 2D GBSE method of Lucas and
Kanade [97]. Sabater et al. [146] have studied how accurate the disparity computed from
a rectified stereo pair of images with small baseline can be, and a formula for the vari-
ance of the disparity error caused by the noise was proven. Contrarily to CRB bounds,
the error formula of this last paper is not a bound but a real evaluation of the variance.
It can be applied to our case if the direction of the velocity is approximately known. Re-
cently, Aguerrebere et al. [3] performed an in depth study of performance limits within a
multi-image alignment context and derived several Cramer-Rao lower bounds depend-
ing on the conditioning of the problem. Interestingly enough, assuming for example that
the block matching is given in the direction of x, the obtained formal error estimate for
the variance is just the double of the Cramer Rao lower bound given in (4.3). Thus, the
Cramer Rao lower bounds below are tight in the sense that they give the correct order
of magnitude for the error caused by the noise. Furthermore, if the motion direction is
approximately known (as it actually is), then (4.3) gives the correct estimate of the error
caused by the noise.

In this section we assume that after the VST, the noise is additive, white and Gaussian.
Two dimensional shift estimation searches for a translational vector v = [vx, vy]

T between
two images. Then, given σ2 the variance of the noise, and denoting by S the set of all
pixels in the image, the Cramer-Rao bound [119] for any unbiased 2D shift estimator is

var(vx) ≥ F−1
11 =

σ2
∑

S I
2
y

Det(F)
, (4.3)

var(vy) ≥ F−1
22 =

σ2
∑

S I
2
x

Det(F)
, (4.4)

where Ix = ∂I
∂x , Iy = ∂I

∂y , F is called the Fisher information matrix (FIM):

F(v) =
1

σ2

[ ∑
S I

2
x

∑
S IxIy∑

S IxIy
∑

S I
2
y

]
(4.5)

and Det(F) =
∑

S I
2
x

∑
S I

2
y − (

∑
S IxIy)

2.
These formulas express a direct relationship between the accuracy of the estimation

and the SNR ratio, measured as a ratio of the noise to the square of the gradient. Further-
more, it follows from the form of the denominator of these expressions that if there is a
strong correlation between Ix and Iy, the vertical and horizontal partial derivatives, then
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Det(F) will be zero or very close to zero. The formulas show that this entails a high vari-
ance for the estimation of the translation. This is the so called Aperture Problem [150].
In that case the true motion is irrecoverable. The Cramer Rao lower bounds are therefore
critical to the detection of the aperture problem.

Based on this, we propose two complementary tests for performing robust shift es-
timation. The first one, to be executed on-board thanks to its low computational cost,
checks that the SNR is sufficient. The second one, more computationally expensive, is ob-
viously given by the Cramer-Rao bounds (4.3) and (4.4). It has to be noted that this bound
cannot be directly computed since it uses information from noiseless images, which we
do not have. To estimate this bound we follow the methodology mentioned in section 3.4
of this manuscript.

Note that the Cramer-Rao bounds are derived for an unbiased 2D shift estimation,
however the gradient-based method presented in section 2.2 is indeed biased. An analy-
sis of this bias is given next, which resembles the study performed by Pham et al [119].

Analysis of bias for the GBSE method

Following Eq. (2.2), the GBSE method minimizes the Minimum Squared Error (MSE) to
obtain both translations vx, vy resulting in[ ∑

S I
2
x

∑
S IxIy∑

S IxIy
∑

S I
2
y

]
.

[
vx
vy

]
=

[ ∑
S IxIt∑
S IyIt

]
, (4.6)

which gives the solution

vx =
1

Det

(∑
S

IxIt
∑
S

I2
y −

∑
S

IyIt
∑
S

IxIy

)
, (4.7)

vy =
1

Det

(∑
S

IyIt
∑
S

I2
x −

∑
S

IxIt
∑
S

IxIy

)
, (4.8)

where Det =
∑

S I
2
x

∑
S I

2
y − (

∑
S IxIy)

2. This method, as shown in (3.23), is derived
from a Taylor approximation by truncating the Taylor series after the first order deriva-
tive. This approximation is accurate when the second and the higher order derivatives
are small or when the displacement is much smaller than 1 pixel. Also, equation (3.23)
completely ignores the noise in the input images. As a result, there is a systematic bias
that depends on the image content and the displacement itself. In fact, the bias is a com-
bined effect of multiple modeling errors such as truncation of Taylor series and noise
intensity. The bias due to the Taylor series truncation can be easily derived by putting the
correct formula It = vxIx + vyIy + ε in the equations above. It is enough to replace It by
It − ε in them. Then the additional corrective term due to higher orders of derivatives of
I1 is

biasTx =
1

Det

(∑
S

εIx
∑
S

I2
y −

∑
S

εIy
∑
S

IxIy

)
, (4.9)

biasTy =
1

Det

(∑
S

εIy
∑
S

I2
x −

∑
S

εIx
∑
S

IxIy

)
. (4.10)

Developments made in [119] prove that the even-order terms in the expression of
∑

S εIx
and

∑
S εIy vanish due to Parseval’s theorem:∑

S

εIx =
1

6
v3
x

∑
S

IxxxIx+
1

2
v2
xvy

∑
S

IxxyIx+
1

2
vxv

2
y

∑
S

IxyyIx+
1

6
v3
y

∑
S

IyyyIx+. . . (4.11)

113



114 STAB-ACTIVE: STABILIZING ON BOARD IMAGE ACCUMULATION

This bias is cubic on the displacement function. Since we are dealing with a sub-pixel
displacement between frames, of the order for example of 1

10 of a pixel, this bias would
be of the order of 1

1000 . This justifies the truncation of the Taylor series, since these va-
lues are negligible in comparison with the bias caused by noise, as will be confirmed
experimentally.

A direct calculation omitted here but easy to reproduce, proves that the bias due to
noise in the horizontal direction (the vertical direction is similar and thus omitted), for
the GBSE method, is the following:

biasNx = v∗x − vx (4.12)

=

∑
S IxIt

(∑
S I

2
y +

∑
S n

2
y

)
−
∑

S IyIt
∑

S IxIy

(
∑

S I
2
x +

∑
S n

2
x)
(∑

S I
2
y +

∑
S n

2
y

)
− (
∑

S IxIy)
2 (4.13)

=

∑
S IxIt

∑
S n

2
y

Det+N
+ vx

N

Det+N
, (4.14)

where v∗x is the estimated shift computed from (4.7) using derivatives of the noisy image
I∗1 = I1 + n1, nx and ny are derivatives of the noise n1 in horizontal and vertical dimen-
sions respectively, and N is the over-estimation of the Hessian matrix’s determinant if
the gradient information of the noisy image is used:

N =
∑
S

n2
x

∑
S

I2
y +

∑
S

n2
yI

2
x +

∑
S

n2
x

∑
S

n2
y. (4.15)

4.3.3 Cramer-Rao lower bounds for image registration of several images with
uniform translation

In equations (4.3) and (4.4), the given Cramer-Rao bounds are based on performing reg-
istration using a pair of images. However, in our particular problem, we deal with a
set of N = 64 images, so the bounds should be modified by taking this into account.
For this reason more precise Cramer-Rao lower bounds had to be derived. Due to the
proper nature of the problem, the assumption of a global uniform translation (vx, vy) per
line was considered. This assumption was backed up by the empirical results obtained
in Fig. 4.2 where the accumulated translation, calculated for each line in the provided
dataset, showed an almost perfect linear shape.

Then, assuming that I0, . . . , IN−1 are uniformly translated sample images of a noise-
less image I , each being corrupted by additive white Gaussian noise n0, . . . , nN−1 with
variance σ2, then

I0(x, y) = I(x, y) + n0(x, y),

I1(x, y) = I(x− vx, y − vy) + n1(x, y),

I2(x, y) = I(x− 2vx, y − 2vy) + n2(x, y),

...
IN−1(x, y) = I(x− (N − 1)vx, y − (N − 1)vy) + nN−1(x, y).

Let v̂ = (v̂x, v̂y) be an estimator for the global shift (vx, vy), then the probability of the
unknown scene I given v̂ is:

Pr(I|v̂) =

N−1∏
i=0

∏
S

1

σ
√

2π
exp

(
−(Ii(x, y)− I(x− ivx, y − ivy))2

2σ2

)
. (4.16)
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Then, logPr(I|v̂) becomes

logPr(I|v̂) = − 1

2σ2

N−1∑
i=0

∑
S

(Ii(x, y)− I(x− ivx, y − ivy))2 + const. (4.17)

Then, taking the partial derivatives with respect to vx and vy, we get

∂

∂vx
logPr(I, v̂) =

1

σ2

N−1∑
i=0

∑
S

[Ii(x, y)− I(x− ivx, y − ivy)]
∂

∂vx
I(x− ivx, y − ivy),

(4.18)

∂

∂vy
logPr(I, v̂) =

1

σ2

N−1∑
i=0

∑
S

[Ii(x, y)− I(x− ivx, y − ivy)]
∂

∂vy
I(x− ivx, y − ivy),

(4.19)

Finally, taking the second derivatives, we get

∂2

∂v2
x

logPr(I, v̂) =
1

σ2

∑
S

N−1∑
i=0

[
ni(x, y)

∂2

∂v2
x

I(x− ivx, y − ivy)−
(

∂

∂vx
I(x− ivx, y − ivy)

)2
]
,

(4.20)

∂2

∂v2
y

logPr(I, v̂) =
1

σ2

∑
S

N−1∑
i=0

[
ni(x, y)

∂2

∂v2
y

I(x− ivx, y − ivy)−
(

∂

∂vy
I(x− ivx, y − ivy)

)2
]
,

(4.21)

∂2

∂vxvy
logPr(I, v̂) =

1

σ2
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∂
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. (4.22)

At last, the 2× 2 Fisher Information Matrix (FIM) F given by −E
[
∂2

∂v̂ logPr(I|v̂)
]

for our
problem becomes

−E
[
∂2

∂v2
x

logPr(I|v̂)

]
=

1
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∑
S

N−1∑
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(
∂

∂vx
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)2

, (4.23)
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∑
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N−1∑
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(
∂

∂vy
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, (4.24)

−E
[

∂2

∂vxvy
logPr(I|v̂)

]
=

1

σ2

∑
S

N−1∑
i=0

∂

∂vx
I(x− ivx, y − ivy)

∂

∂vy
I(x− ivx, y − ivy).

(4.25)

Using the chain rule, we know that

∂I(x− ivx, y − ivy)
∂vx

=
∂I

∂x

∂(x− ivx)

∂vx
+
∂I

∂y

∂(y − ivy)
∂vx

= −∂I
∂x
i (4.26)

and similarly,
∂I(x− ivx, y − ivy)

∂vy
= −∂I

∂y
i. (4.27)
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Then, the Fisher Information Matrix for our particular problem becomes

F(v) =
1

σ2

(
N−1∑
i=1

i2

)[ ∑
S I

2
x

∑
S IxIy∑

S IxIy
∑

S I
2
y

]
, (4.28)

or, what is the same,

F(v) =
1

σ2

(
N(N − 1)(2N − 1)

6

)[ ∑
S I

2
x

∑
S IxIy∑

S IxIy
∑

S I
2
y

]
, (4.29)

so that the Cramer-Rao bounds for performing registration on a set ofN = 64 consecutive
images is

var(vx) ≥ F−1
11 =

σ2
∑

S I
2
y

Det(F)

(
N−1∑
i=1

i2

)−1

, (4.30)

var(vy) ≥ F−1
22 =

σ2
∑

S I
2
x

Det(F)

(
N−1∑
i=1

i2

)−1

. (4.31)

where Det(F) =
∑

S I
2
x

∑
S I

2
y − (

∑
S IxIy)

2. This result is remarkable and sligthly puz-
zling. Assuming that the Cramer-Rao estimates are tight, they mean that with N image
samples we can divide the variance by an order of magnitude of N3 and not N as would
be expected for a simple average of N independent noisy estimates.

If we imagine now that a more reliable algorithm could match each image to each,
and that the number of “independent” shift estimate would therefore be N(N + 1)/2,
still, the variance of an average of all estimates obtained in that way would be, under the
(inexact) independence assumption of all of these estimates, of the order of 1/N2 times
the variance of a single estimate. But here the Cramer Rao factor is still more favorable,
of the order of 1/N3.

4.3.4 Conditions based on the SNR of the images

In order for the algorithm to correctly register a line, its images must have a good SNR.
There must be significantly more information than noise. If this does not hold, it implies
there are actually no objects to register, or that they are dominated by the noise. In order
to measure efficiently the SNR and to ensure reliable estimates for the GBSE method and
for the bias, it appears that getting a reliable value of the energies of the image

∑
x I

2
x

and
∑

x I
2
y is crucial. The evaluation of these quantities becomes reliable if and only the

following ratios are high enough:

θx =

∑
x,y Ĩx(x, y)2

2|S|σ̂2
, (4.32)

θy =

∑
x,y Ĩy(x, y)2

2|S|σ̂2
, (4.33)

where |S| is the total amount of pixels of the computed gradient and σ̂2 is the average
variance of the estimated noise, given by Eq. (4.2). Notice that θx, θy ≥ 1 and that a value
strictly larger that 1 entails the presence of signal while a value close to 1 entails that
there is only noise in the observed image. We fix later a lower safety threshold for these
values at 10, but we shall see that any value between 5 and 50 seems to work as well to
discriminate the reliable lines from those which are not (it is probably more important to
have a very sure threshold to discard problematic lines than to have it tight).
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4.4 Implementation

This section describes all proposed algorithms. The main algorithm works by first val-
idating the line, followed by computing the temporal convolution and performing the
multi-image shift estimation. We propose two different variants for the multi-image shift
estimation, a naive implementation and a variant that computes the global shift using a
smart method that indirectly reduces the inherent bias of the shift estimation method. We
also include a third variant which focuses on speed. While we describe the main algo-
rithms together with their underlying ideas here, we include for the sake of completion
the rest of the algorithms used in Appendix C. We refer the reader to them for a more
complete understanding of the proposed methods.

4.4.1 Gradient-based shift estimation algorithm for noisy images

We begin this section with the presentation of Algorithm 5. This algorithm describes the
general proposed stab-active method showing how each line is processed. We propose
to first estimate the noise variance, which is later used for validation purposes. The
validation algorithm, taking into account the measured noise, proposes a value indicating
a suitable number of images to perform temporal accumulation. Once this is done, the
global shift is estimated using the temporally convolved set.

Algorithm 5 Optical Flow for noisy images

Input: I(t), 1 ≤ t ≤ 64 images, p ∈ N, itQty amount of iterations, interpMethod
interpolation method used.
Output: offset ∈ R2 global estimated frame to frame displacement.

σ2 ← EstimateNoise(I) . Algorithm 20
[validLine, p]← V erifySNR(I, σ2, th = 10,maxP = 4) . Algorithm 9
if validLine then

ITC ← TemporalConvolution(I, p) . Algorithm 22
offset← ComputeOffset(ITC , itQty, interpMethod) . Algorithm 6

else
IR ← ∅

end if

Algorithm 20, available in Appendix C, estimates the noise mean variance σ̂ by av-
eraging over all noise estimations between consecutive frames. Algorithm 22 describes
the (obvious) temporal convolution which reduces the noise before flow estimation. Fi-
nally, Algorithm 23 computes the optical flow between two consecutive frames by using
the gradient-based shift estimation approach. The gradient estimation method used is
explained in Algorithm 21.

This shift estimation algorithm was made iterative so that, after computing a first esti-
mation of the shift between both frames, it interpolates the second frame and recalculates
the shift again, in order to improve performance. In fact, this iterative motion corrects
the algorithm’s bias without needing to estimate it (see Section 2.4.2). Also, since it only
uses the derivative of the first image, the iterative process does not recalculate it, thus
permitting a faster implementation. However, obviously, the iterative process implies
performing interpolation on the images, which, depending on the interpolation method,
may imply heavy computation costs. Three interpolation methods were considered: bi-
linear, bicubic and cubic spline interpolation. Fast implementations for these methods
along with other alternative approaches are analyzed in Appendix A of this thesis. While
bilinear interpolation is the fastest method, its results are not acceptable, so it will not be
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considered in this study. Interpolation methods working in the frequency domain were
also discarded due to the impossibility of installing dedicated FFT hardware based on
the constraints posed by CNES.

Two methods were proposed to perform the multi-image shift estimation. Algorithm
6 describes the calculation of the offset of each pair of consecutive frames. Then the
average is computed on the set of calculated offsets to obtain the final shift estimate for
the whole line. A diagram depicting its behaviour is shown in Fig. 4.3.

Figure 4.3 – Behaviour of the naive multi-image shift estimation method of Algorithm 6 with four
images. All shifts are estimated between consecutive frames and averaged.

Algorithm 6 ComputeOffset (First Version)

Input: I(t), 1 ≤ t ≤ 64 − 2p temporal convolved images, itQty amount of iterations,
interpMethod interpolation method used.
Output: offset global estimated frame to frame transition.

for i = 1 to 64− 2p do
[Ix, Iy]← ComputeGradient(I(i)) . Algorithm 21
offsets(i)← EstimateShift(I(i), I(i+ 1), Ix, Iy, itQty, interpMethod) . Algorithm

23
end for
offset←Mean(offsets)

Note that Algorithm 6 estimates the offsets between frames independently, followed
by taking the mean of these estimates. Then if the shift estimation method is biased (as
we have observed in Section 4.3.2), then this bias will be accumulated along all estimates
yielding less accurate results. Indeed, the gradient-based shift estimation method under-
estimates the shift under high noise or large displacement magnitudes. Then Algorithm
6 will also underestimate the global shift.

To avoid this, we propose Algorithm 7, an alternative that estimates the shift by com-
pensating the bias. In this new method, the shift is estimated between the first image and
every other in sequential order. However, as we get further away from the first image, the
shift to be estimated becomes larger, jeopardizing the GBSE method when the distance
surpasses one pixel. To amend this, the previous estimated shift could be used so that
as soon as it exceeds half a pixel, the following image is resampled back, thus shifting it
towards the first image. Even more, this procedure could be done pixel-wise requiring
no further computational cost, while still keeping both images closer than one pixel. The
behaviour of this method is shown in Fig. 4.4.

This second algorithm therefore calculates the offsets for the whole line with respect
to the first frame. Thus, it avoids accumulating the calculated offsets in order when
calculating the final average. Furthermore, the gradient is only calculated for the first
image, thus considerably accelerating the implementation.

Finally, a third variant is proposed. Its idea is to directly estimate the global transla-
tion using only the first and the last frames and averaging over the amount of images.
The problem with this approach is that the GBSE, as explained before, does not perform
well under displacements larger than one pixel, so a multiscale strategy must be adopted
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Figure 4.4 – Behaviour of the proposed multi-image shift estimation method of Algorithm 7 with
four images. First, the shift estimated between the first two images is used to resample image
3, obtaining image 3’. The shift assigned to the third image is then the sum of the accumulated
previous shift plus the shift estimated between image 1 and 3’. This assigned shift is used to
resample the fourth image, yielding image 4’, and the process repeats. At the end, the returned
shift is given by the average of all deaccumulated shifts. Note that the resampling is at the pixel
level therefore no interpolation is required.

Algorithm 7 ComputeOffset (Version 2)

Input: ITC(k), 1 ≤ k ≤ 64 − 2p, p ∈ N, itQty amount of iterations, interpMethod
interpolation method used.
Output: offset global estimated transition.

Ix, Iy ← ComputeGradient(ITC(1)) . Algorithm 21
previous← [0, 0]
for i = 1 to 64− 2 ∗ p− 1 do

[vx, vy]← round(previous)
ITC(i+1)←PixelwiseResampling(ITC(i+1),−vx,−vy) . Shift the image pixelwise

[−vx,−vy] pixels
acum(i)← [vx, vy]+EstimateShift(ITC(1), ITC(i+1), Ix, Iy, itQty, interpMethod) .

Alg. 23
previous← acum(i)

end for
offsets← DeacumulateOffsets(acum) . subtract each element with its previous from
the last until the first
offset←Mean(offsets)
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so that for a particular scale, the displacement gets lower than this value. In our case,
we chose to zoom out both images three times, thus reducing the size of the image, for
each zoom out, to half its original size. To follows that the maximum allowed displace-
ment would be of 8 pixels, which suits the requirements of our problem. In fact, for the
provided CNES dataset, the maximum displacement per line is of 4.5 pixels. In order
to perform the zoom out, a Gaussian filter is applied before subsampling the image, in
order to avoid undesired aliasing effects. Finally, once the Gaussian pyramid is built, the
displacement is calculated at each scale and used to resample the next scale. Again, to
speed up the method, integer resampling is performed to avoid the heavy costs induced
by interpolating the image. This algorithm is described in Alg. 8.

Algorithm 8 CalculateExtendedTransition

Input: I1, I2 input images, Ix, Iy gradient of the first image, itQty amount of iterations.
Output: offset estimated transition.

[I1
1 , I

2
1 , I

3
1 , I

4
1 ]← BuildGaussianPyramid(I1, 4) . Burt&Adelson’s Gaussian Pyramid [28]

[I1
2 , I

2
2 , I

3
2 , I

4
2 ]← BuildGaussianPyramid(I2, 4) . Burt&Adelson’s Gaussian Pyramid [28]

acumShift← [0, 0]
for i = 4 to 2 do

Iix, I
i
y ← ComputeGradient(Ii1) . Algorithm 21

shift← EstimateShift(Ii1, I
i
2, I

i
x, I

i
y, itQty, bicubic) . Force bicubic interpolation for

speed
acum← acum ∗ 2 + shift ∗ 2 . Resample image in the next scale
[Ii−1

2 , x, y]←PixelwiseResampling(Ii−1
2 ,−acum) . Shift the image pixel-wise [−vx,−vy]

pixels
if i == 2 then

acum← [x, y] . For the last scale, keep the shift used for resampling.
end if

end for
offset← acum+ EstimateShift(I1

1 , I
1
2 , Ix, Iy, itQty, bicubic) . Using algorithm 23

offset← offset/64− 2 ∗ p− 1

4.4.2 Automatic calculation of p for each line

A question that arises from this study is the choice of the right value for the parameter
p, which counts the number of accumulated frames in the temporal convolution. This
issue is related to the SNR verification for every line, which in Alg. 5, is performed using
the V erifySNR method. There are several external constraints that make this election
non-trivial, namely the amount of noise in the input images, the total translation of the
line, and the desired algorithm’s precision and computation cost. As an example, under
low noise conditions, it is immediate that accumulating more images would not improve
results. Also, if the total displacement is large enough and objects are moving too fast
within the sequence, setting a high value for p would possibly imply accumulating the
same object in two different positions, thus implying a lower final precision. On the other
side, if the line has plenty of noise, more accumulation is needed otherwise the GBSE
method would probably fail. Last but not least, the SNR verification could be performed
by averaging every frame of the line, or on specific frames, depending on the desired
speed of the algorithm. For example, in Algorithm 8, where only two frames are used to
compute the global offset, it is better to verify just these two frames.

A simple idea that combines all these constraints is implemented in Alg. 9, where
p = 2 is first evaluated, and is incremented exponentially until proper SNR values are
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found or until a maximum threshold for p is achieved, implying the line does not have
enough information to be processed (i.e. the signal is dominated by noise). Note that
this verification, for speed reasons, is performed on the first and the last frame of the
line only. However, another more accurate variant of this algorithm was implemented
that performs the verification on every frame, however this algorithm was omitted since
it adds no further information. Note that Algorithm 9 calculates the gradient for the
first time-convolved image and this is the only place where it is actually being computed
throughout the whole process if the second version ofComputeOffset algorithm is used.

Algorithm 9 VerifySNR

Input: I input images, σ2 estimated noise for the line, th = 10 desired threshold for
θ SNR value (algorithm parameter), MAXP = 4 indicates the maximum value for p
(p ≤ 2MAXP = 16)
Output: verification verifies if line has enough SNR to be processed, p final value for
the parameter, IF , IL first and last temporal convoluted images, Ix, Iy gradient of IF .
p← 1
j ← 1
verification← false
while j ≤MAXP and ¬(verification) do

p← p ∗ 2
IF ←

∑2∗p+1
i=1 I(i)

IL ←
∑64

i=64−2p I(i)
// Update the noise variance after temporal convolution
finalσ2 ← σ2 ∗ (2 ∗ p)
[Ix, Iy]← ComputeGradient(IF ) // Using algorithm 21
[θ1, θ2]← CalculateSNR(Ix, Iy, finalσ

2) // Using equations (4.32) and (4.33)
[IxLast, IyLast]← ComputeGradient(IL) // Using algorithm 21
[θ3, θ4] ← CalculateSNR(IxLast, IyLast, finalσ

2); // Using equations (4.32) and
(4.33)

verification← (θ1 > th and θ2 > th and θ3 > th and θ4 > th)
j = j + 1

end while

4.4.3 Complexity of the analyzed algorithms

Due to the demanding computational constraints, a full analysis on the cost of the de-
scribed algorithms will be given next. Interpolation intended for visualization purposes
will be skipped. For every algorithm, the complexity is linear in the number of pixels.

First, Algorithm 5 will be analyzed. There are three operations per pixel to compute
σ̂ in Algorithm 20. For the SNR validation, the algorithm takes at most one operation
to calculate IF and another for IL. Since the gradient is calculated on just these two
images and not the whole set, its cost is negligible. The same happens when calculating
the θ values, and since the algorithm iterates at most maxP = 4 times, this yields a
cost between 2 and 8 operations per pixel. The complexity of Algorithm 22 is 2p + 1
operations per pixel, implying that in lines with low noise conditions, 5 (p = 2) operations
are performed, however under heavy noisy situation, 33 (p = 16) operations could be
used.

For the ComputeOffset (Version 1) algorithm, the gradient for every image is com-
puted as in Algorithm 21, taking 6 operations per pixel. This is followed by the esti-
mation of the translation using the optical flow (Algorithm 23). In this algorithm, four
operations are needed when averaging every four neighboring pixels, and two more for
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determining each sI2
x , sI2

y and sIxIy. That makes 14 operations before the loop. Then
inside the loop, another four neighboring pixels average is performed taking again 4 op-
erations, one more to compute It and 4 more to compute both sIxIt and sIyIt, yielding 9
operations per pixel. The cost of performing interpolation should be added if necessary.
We shall call InterpCost this cost. Then Algorithm 23 takes 14 + 9 ∗ itQty + (itQty− 1) ∗
InterpCost operations. If only one iteration is used, then no interpolation is done and the
method would take 23 operations per pixel. Finally, the total number of operations using
Algorithm 5 with Algorithm 6 is between 26 + 9 ∗ itQty + (itQty − 1) ∗ InterpCost
and 60 + 9 ∗ itQty + (itQty − 1) ∗ InterpCost. Again, if just one iteration is used, this
would be between 35 and 69 operations per pixel depending on the SNR of the line. The
real amount of operations per pixel is in fact lower . Indeed, when a high value for p is
used, less offsets are calculated. However the given amount of operations per pixel is a
rough approximation and should be taken as a reference and not as an exact value.

When the second version of ComputeOffset is used, described in Algorithm 7, the
number of operations is reduced by five, since the gradient for each image does not have
to be computed for every frame (just for the first frame). However an operation is needed
to perform the integer shift.

Finally, for the CalculateExtendedTransition algorithm 8, the number of operations
per pixel is indeed less than 2, since only the first and the last convolved images are
used, ignoring the rest. The value 2 is because to create both images, at most it requires
one operation per pixel for each. However, it has to be noted that due to interpolation,
subsampling and other operations performed in this algorithm, its computational cost,
as it will be seen in the results, is not considerably lower than the cost of Algorithm 5.

122



4.5. Results 123

4.5 Results

To evaluate the performance of the proposed method, a simulated test set together with
its ground truth was provided by CNES (French space agency). It simulated arrays of
noisy images (with Poisson noise) obtained from a noiseless aerial raw image, which was
finely resampled by high order splines to simulate subpixel motion. In it, there were
approximately 3000 lines, each containing 64 frames, where each frame is a 50×50 image
having either 20cm per pixel of 40cm per pixel resolution. Noise varied between lines,
while the total shift for the N images on the horizontal plane (δx) could range between
0 and 4.5 pixels. On the vertical plane, the provided simulated images did not contain
any shift (i.e. δy = 0). To measure how the algorithms performed, the Euclidean distance

with respect to the true global shift
(

δx
N−1 ,

δy
N−1

)
was used.

In order to compare several alignment methods, a significant subset of lines were cho-
sen so as to represent each type of problem and/or perturbation found in the provided
dataset. In total, 13 different lines were chosen: one for each perturbation for both pro-
vided resolutions (20cm and 40cm), two lines corresponding to very noisy situations, two
lines corresponding to situations where no objects could be recognized (only noise was
visible), and two lines where phase-correlation-based methods fail, due to their implicit
assumption of periodicity.

4.5.1 Impact of temporal convolution on image noise

To obtain a good estimation of the shifts between images, the noise is attenuated by ap-
plying a temporal convolution over the frames in the line. In Fig. 4.5 two consecutive
frames are shown along with the absolute value of their difference. This experiment
illustrates the dominance of noise over signal, or rather the elimination of signal by mak-
ing the difference. It also shows that without previous denoising a correct estimation of
displacement is unlikely.

(a) Frame k (b) Frame k+1 (c) |k + 1− k|

Figure 4.5 – Difference between consecutive frames. This difference should be in principle used
to compute It, the time derivative. Noise dominates so much in it that it can be used for estimating
the noise. However, for the GBSE method, this experiment shows that a temporal smoothing will
be necessary.

For our noise estimation method, it has to be noted how in some specific cases it is not
precise. This happens with high SNRs when the shift between frames is large. For these
cases, as can be seen in Fig. 4.6, when calculating the difference between frames, parts
of the moving objects can be perceived, which is later mistaken with noise by our noise
estimation method. However, also in these cases, it is certain that It, the time derivative,
is able to better describe the movement of the scene, which implies that the GBSE method
is better conditioned, suggesting that different values for parameter p of the temporal
convolution should be used.
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(a) Frame k (b) Frame k+1 (c) |k + 1− k|

Figure 4.6 – Difference between consecutive frames for line ’SIMU40\P3\L0100’. One can per-
ceive parts of the ships in the difference, which for this specific case, leads to overestimating the
noise.

The results of applying a temporal convolution to both lines is shown in figures 4.7
and 4.8. In the first case, using p = 8, almost all noise was successfully removed. In the
second case, a comparison using several values of p for temporal convolution is given.
It can be seen that using p = 2 considerable noise can still be perceived, implying that
a higher value for p is needed. On the contrary, when using p = 16, practically all the
noise was removed, however a significant translation of more than one pixel can be seen
in the difference between consecutive temporally convolved frames, decreasing the final
precision of the gradient estimation method.

(a) Frame k (b) Frame k+1 (c) |k + 1− k|

Figure 4.7 – Difference between consecutive frames after applying temporal convolution.

(a) p = 2 (b) p = 4 (c) p = 8 (d) p = 16

Figure 4.8 – Difference between consecutive frames after applying temporal convolution using
different values for parameter p.

Finally, figures 4.9 and 4.10 shown the impact of a temporal convolution on the image
gradient. From these results, it seems straightforward that the temporal convolution is
necessary for achieving more accurate results.
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(a) ∂I1
∂x

(b) ∂I1
∂y

Figure 4.9 – Image of the two gradient components before temporal convolution.

(a) ∂I1
∂x

(b) ∂I1
∂y

Figure 4.10 – Image of the two gradient components after temporal convolution.

4.5.2 Numerical Results

Noise estimation and thresholds

Table 4.1 displays the standard deviation for the estimated noise, the Cramer-Rao bounds
of equations (4.30) and (4.31), and both θ values. Note that the θ values are calculated after
performing temporal convolution to know if a line can or cannot be properly aligned by
our algorithm, or if it should be discarded. Both displayed lower bounds are calculated
with respect to the global shift (vx, vy) of a line as given in equations (4.30) and (4.31). The
prefixes have a meaning: “N” stands for Noisy (images with low SNR), “ON” for Only
Noise (images without any visible object) and “PF” for Periodic Failure, meaning that if
images are assumed periodic, as in Fourier based methods, results, as it will be shown,
drastically fail.

It seems advisable to put a conservative lower threshold on θx and θy of the order
of 10 to avoid these obvious cases where noise dominates signal. This will be further
studied in Section 4.5.4. However, it is worth noting that images that have an SNR value
below 1.5 have no content at all and should be definitely discarded.

Shift estimation results

To evaluate the performance of the shift estimation between two frames, we used the
provided ground truth. For each type of perturbation, the total displacement, uniformly
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# σ θx θy
√
var(vx)

√
var(vy)

1 4.0043 56.15 45.57 2.8308e-4 2.4028e-4
2 4.1989 45.62 57.77 3.1852e-4 2.6549e-4
3 4.2083 42.54 62.28 3.0110e-4 2.4548e-4

4(N) 5.2102 24.14 8.69 4.0049e-4 4.7340e-4
5(N) 7.9257 2.39 5.80 1.1255e-3 1.0494e-3

6 1.2208 611.88 509.79 8.2380e-5 7.9108e-5
7 1.2925 250.57 110.53 1.6302e-4 2.1596e-4
8 1.2584 253.74 101.26 1.5327e-4 1.5164e-4
9 1.3269 230.06 150.20 1.1277e-4 1.2312e-4

10(ON) 16.9681 1.06 1.05 1.3341e-3 1.3563e-3
11(ON) 17.6862 1.22 1.25 1.5227e-3 1.3984e-3
12(PF) 1.3062 183.17 63.49 1.7067e-4 2.2495e-4
13(PF) 1.2918 114.36 37.52 1.5451e-4 2.0374e-4

Table 4.1 – Estimated standard deviation of the noise σ, θ SNR values, and Cramer-Rao bounds
for the selected lines. The low values of θ permit a reliable detection of lines (lines 5, 10, 11) that
indeed will prove to be problematic.

distributed between a line, is shown in Table 4.2.

Perturbation ∆x ∆y
∆x
64

∆y

64

P0 0 0 0 0
P1 -1.5 0 -0.0234375 0
P2 -3 0 -0.046875 0
P3 -4.5 0 -0.0703125 0

Table 4.2 – Provided ground truth for the database. It shows the displacement, in pixels, for each
perturbation type for a whole line.

As a way of measuring how the algorithms performed, the root mean squared error
has been used. Then, being v̂ the algorithm’s estimation of the global shift for a particular
line, and ∆ the total shift for that line, as given by Table 4.2, then the measured error is

RMSE(v̂,∆) =
√

(v̂x ∗ 63−∆x)2 + (v̂y ∗ 63−∆y)2. (4.34)

It has to be taken into account that this measurement will in fact calculate the overall
error performed by aligning the 64 frames, instead of the error performed by calculating
the single global shift (v̂x, v̂y).

Six algorithms were compared, namely Algorithm 5 on its two variants, Algorithm
8, all of them based on the GBSE method, the fast phase-correlation method of Stone
[159], the slower but more more accurate method of Guizar-Sicairos et al. [69] and the
gradient-correlation approach of Argyriou et al. [7] using the second order Christmas
gradient estimation. To address the multi-image shift estimation problem, we tested each
method under different schemes, namely by estimating the shift between the first and
the last frames, and by accumulating the shifts for all consecutive images, and kept the
scheme that gave the best results. We also included the global Cramer-Rao bounds given
by Eqs. (4.30) and (4.31) by computing CRLB =

√
var(vx)2 + var(vy)2. It should be

noted that all methods were evaluated after the temporal convolution step, so that the
conditions were the same for every case.

Using p = 4 for the temporal convolution, itQty = 2 and spline interpolation, Table
4.3 show the performance for each method.

126



4.5. Results 127

# Pert. CRLB Alg. 6 Alg. 7 Alg. 8 [159] [69] [7]
1 P0 0.0004 0.0199 0.0029 0.0024 0.0058 0.0024 0.0052
2 P1 0.0004 0.0128 0.0028 0.0155 0.1724 0.2336 0.0319
3 P2 0.0004 0.0494 0.0033 0.0064 0.3420 0.1633 0.0434

4(N) P3 0.0006 0.3099 0.0031 0.0234 3.1045 0.0324 0.0504
5(N) P3 0.0015 2.8468 0.0153 0.0400 1.4983 0.9852 0.0909

6 P0 0.0001 0.0022 0.0011 0.0009 0.0014 0.0011 0.0015
7 P1 0.0003 0.0203 0.0068 0.0365 0.2074 0.1686 0.0137
8 P2 0.0002 0.0085 0.0017 0.0205 1.3908 0.0044 0.0339
9 P3 0.0002 0.0146 0.0010 0.0106 3.7202 0.1477 0.0343

10(ON) P1 0.0019 - - - - - -
11(ON) P1 0.0021 - - - - - -
12(PF) P2 0.0003 0.1244 0.0036 0.0506 3.0708 5.2640 0.4162
13(PF) P2 0.0003 0.1543 0.0019 0.0505 2.9960 2.4721 0.2273
Avg. - 0.0007 0.3239 0.0040 0.0234 1.5009 0.8613 0.0862

Table 4.3 – RMSE of each method for the selected lines.

As can be seen, the second variant (Algorithm 7) gives the best results in almost every
case and clearly improves over the naive approach given by Alg. 6. When there is no dis-
placement along the whole line, Alg. 8 achieved the best results, although the difference
with Alg. 7 is negligible. Other conclusions drawn from this experiment are the poor
tolerance to noise of the Stone method, as we have already foreseen in Chapter 2 of this
manuscript, the higher tolerance to noise of gradient-correlation methods, and the poor
performance of all correlation-based methods with images having periodic patterns that
yield several peaks in their correlation grid. Indeed, an important advantage of gradient-
based methods is that they are local in nature, therefore they are less affected by periodic
patterns or even the aperture problem. Finally, it should be mentioned that even by using
only two iterations, Algorithm 7 gets close to the global Cramer-Rao bounds, being only
an order of magnitude below on every evaluated case.

Analysis of the proposed multi-image scheme for gradient-based shift estimation

Table 4.3 shows an evident improvement between the naive sequential shift estimation
approach described in Alg. 6 and the proposed multi-image scheme of Alg. 7 which com-
putes the shifts always with respect to the first image. This improvement is not coinci-
dental, indeed the proposed scheme indirectly reduces the bias from the gradient-based
shift estimation method proposed. The reason behind this is not apparent since in fact,
estimating the shift between images that are farther away using the GBSE approach adds
more bias in the results [119].

We will explain this with a practical example. In every case, a non-iterated GBSE
method is used to measure the displacements and the displacements shown are always
from the horizontal axis (the displacement on the vertical axis was always zero in the
provided dataset therefore its analysis is discarded). For visual purposes, we just show
the shift estimates obtained from the first 30 frames to prove our claims. First, in Fig. 4.11
we observe the shifts estimated using the naive method from Alg. 6. The shifts between
consecutive frames were always underestimated. This is because of the bias in the GBSE
method used, analyzed in depth in Section 4.3.2, influenced mainly by the noise on the
frames.

The proposed multi-image shift estimation results between each frame with respect
to the first are displayed in Fig. 4.12. While the blue bars indicate the estimated shift,
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Figure 4.11 – Shifts estimated using the naive multi-image approach of Alg. 6. Each bar repre-
sents the estimated shift between both consecutive frames. The underestimation of the shift due
to the bias is evident. The red line denotes the ground truth while the blue line represents the
resulting average from all estimations.

the yellow bars denote the correct shift that should have been obtained. As mentioned
previously, as the processed frame gets farther away from the first one, the ground truth
displacement gets larger and so does the bias. This justifies the bigger errors obtained.
However, an interesting event occurs when the last estimated shift goes larger than half
a pixel. Indeed, the algorithm resamples the next image one pixel in the opposite direc-
tion. Then the next shift, which again is underestimated because of the bias, is done so
in the opposite direction. Then, when accumulating this underestimated shift, the bias
produced in all the previous estimations is compensated. This becomes more evident by
observing the accumulated shift from Fig. 4.13. In this example, until the 10th frame, the
shift was always underestimated and the error got larger in every frame. Then when the
image is resampled one pixel to the left, the next estimated shift will be −1 plus the next
(underestimated) shift. This yields a result which is an overestimation that compensates
the previous accumulated errors, and that again, because of the bias, will eventually be-
come an underestimation again. In the 25th frame, this procedure is repeated and the
accumulated error is compensated.

It should be noted that this procedure succeeds in better estimating the shifts in this
particular case, when all shifts between consecutive frames are supposed to be the same
and in the same direction. If this would not be the case, then this method would make no
sense and should not be considered.

Evaluating the performance on the whole database

In order to evaluate the influence on the results of the parameters, an evaluation of
our three gradient-based proposed algorithms was performed on the whole provided
database. First, the incidence of the Anscombe VST on the results is shown in tables 4.4,
4.5 and 4.6. From this study it can be concluded that using Anscombe VST is indeed rec-
ommended since it leads to significantly improve the precision of the method, specially
for the second and the third proposed algorithms. It has to be noted, as can be seen in
Table 4.6, that by using the VST computation proposed in Appendix B, it is possible to
achieve similar results without applying the square root operation.

This was followed by studying the influence of the parameter itQty. Taking as ref-
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Figure 4.12 – Shifts estimated using the proposed multi-image scheme of Alg. 7. Each bar repre-
sents the estimated shift with respect to the first frame. The ground truth bars in yellow represent
the correct shift to be estimated based on the displacement between both frames. The red line
denotes the ground truth while the blue line represents the resulting average from all estimations.
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Figure 4.13 – Shifts estimated using the proposed multi-image scheme of Alg. 7. Each bar rep-
resents the accumulated estimated shifts with respect to the first frame. The ground truth bars
in yellow represent the correct shift to be estimated based on the displacement between both
frames.
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Res. Pert. Alg. 6 Alg. 7 Alg. 8
20 P0 0.0061 0.0057 0.0122
20 P1 0.3053 0.0502 0.0379
20 P2 0.6661 0.0179 0.1338
20 P3 1.0055 0.0497 0.4511
40 P0 0.0012 0.0013 0.0031
40 P1 0.3492 0.0786 0.0349
40 P2 0.6781 0.0790 0.0834
40 P3 0.9367 0.0964 0.3860

Avg 0.4935 0.0474 0.1428

Table 4.4 – Average RMSE for the provided dataset without applying the Anscombe VST. Param-
eters: p = 4, itQty = 1.

Res. Pert. Alg. 6 Alg. 7 Alg. 8
20 P0 0.0058 0.0050 0.0098
20 P1 0.2965 0.0504 0.0265
20 P2 0.6287 0.0155 0.0560
20 P3 0.9451 0.0217 0.1656
40 P0 0.0015 0.0015 0.0031
40 P1 0.3145 0.0590 0.0282
40 P2 0.6123 0.0267 0.0633
40 P3 0.8729 0.0447 0.2146

Avg 0.4596 0.0280 0.0709

Table 4.5 – Average RMSE for the provided dataset by applying the Anscombe VST. Parameters:
p = 4, itQty = 1. Results in bold indicate better performance than in Table 4.4.

Res. Pert. Alg. 6 Alg. 7 Alg. 8
20 P0 0.0058 0.0049 0.0097
20 P1 0.2961 0.0503 0.0264
20 P2 0.6276 0.0156 0.0561
20 P3 0.9453 0.0217 0.1660
40 P0 0.0015 0.0014 0.0031
40 P1 0.3146 0.0590 0.0282
40 P2 0.6125 0.0268 0.0633
40 P3 0.8731 0.0448 0.2104

Avg 0.4596 0.0281 0.0704

Table 4.6 – Average RMSE for the provided dataset by applying the Anscombe VST using al-
gorithm described in Appendix B. Parameters: p = 4, itQty = 1. Results in bold indicate better
performance than in Table 4.4.
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erence the single-iteration algorithm whose results are shown in Table 4.6, one can see
in tables 4.7 and 4.8 the results of the proposed algorithms by varying the number of
iterations. It can be seen from the results how by increasing the number of iterations,
the algorithm’s bias is corrected leading to better results. It is worth remarking that the
best overall improvement can be appreciated in the first proposed algorithm since, as
explained in Section 4.4.1, this method accumulates the frame-by-frame estimation error,
therefore the lower each individual error, the lower the global error. However, Algorithm
7 tries to compensate this bias in a frame to frame basis, so to process the next frame, it
does not rely solely on the previous error.

Res. Pert. Alg. 6 Alg. 7 Alg. 8
20 P0 0.0070 0.0061 0.0087
20 P1 0.0873 0.0138 0.0165
20 P2 0.1936 0.0099 0.0644
20 P3 0.3098 0.0100 0.1543
40 P0 0.0018 0.0018 0.0027
40 P1 0.0846 0.0136 0.0125
40 P2 0.1683 0.0062 0.0704
40 P3 0.2372 0.0062 0.1842

Avg 0.1362 0.0084 0.0642

Table 4.7 – Average RMSE for the provided dataset. Parameters: p = 4, itQty = 2 using spline
interpolation. Results in bold indicate better performance than reference Table 4.6.

Res. Pert. Alg. 6 Alg. 7 Alg. 8
20 P0 0.0074 0.0065 0.0084
20 P1 0.0336 0.0074 0.0139
20 P2 0.0790 0.0082 0.0667
20 P3 0.1402 0.0087 0.1462
40 P0 0.0019 0.0019 0.0027
40 P1 0.0252 0.0052 0.0092
40 P2 0.0541 0.0039 0.0722
40 P3 0.0862 0.0052 0.1714

Avg 0.0534 0.0059 0.0613

Table 4.8 – Average RMSE for the provided dataset. Parameters: p = 4, itQty = 3 using spline
interpolation. Results in bold indicate better performance than using itQty = 2 (Table 4.7).

Another interesting comparison performed was the influence on the results of pa-
rameter p, which indicates how many frames should be accumulated in the temporal
convolution. Results are shown in tables 4.9, 4.10 and 4.11, including as well Table 4.6
with p = 4. For Algorithm 6, the bigger the parameter p, the better the performance,
however, this does not occur with the other methods. Quite the contrary, for Algorithm
7, the lower the p, the better the results. However, this does not hold on every case. When
the input line has considerable noise, increasing the number of accumulated frames usu-
ally improves the results, implying a direct relationship between the average noise of the
line and the best possible p value. Also, a too high value for p in situations where it is not
needed, namely, with high SNR values, decreases the precision. This study justifies the
idea of the proposed Algorithm 9.

At last, the influence of the interpolation method was evaluated when the algorithms
were made iterative, i.e. when the number of iterations was larger than one. Using the
same parameters as in Table 4.7, we evaluated the iterative algorithms this time using
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Res. Pert. Alg. 6 Alg. 7 Alg. 8
20 P0 0.0073 0.0044 0.0105
20 P1 0.3486 0.0292 0.0303
20 P2 0.7483 0.0393 0.0583
20 P3 1.1295 0.0298 0.1738
40 P0 0.0014 0.0013 0.0039
40 P1 0.3213 0.0386 0.0309
40 P2 0.6330 0.0475 0.0676
40 P3 0.9243 0.0588 0.2455

Avg 0.5142 0.0311 0.0776

Table 4.9 – Average RMSE for the provided dataset. Parameters: p = 2, itQty = 1.

Res. Pert. Alg. 6 Alg. 7 Alg. 8
20 P0 0.0059 0.0057 0.0079
20 P1 0.2576 0.0851 0.0288
20 P2 0.5301 0.0408 0.0479
20 P3 0.7677 0.0270 0.1101
40 P0 0.0017 0.0017 0.0028
40 P1 0.3062 0.0913 0.0333
40 P2 0.5697 0.0438 0.0485
40 P3 0.7604 0.0277 0.1457

Avg 0.3999 0.0404 0.0531

Table 4.10 – Average RMSE for the provided dataset. Parameters: p = 8, itQty = 1.

Res. Pert. Alg. 6 Alg. 7 Alg. 8
20 P0 0.0057 0.0057 0.0072
20 P1 0.2258 0.0643 0.0642
20 P2 0.4200 0.0105 0.0988
20 P3 0.5496 0.0503 0.1277
40 P0 0.0016 0.0016 0.0026
40 P1 0.2867 0.1787 0.0709
40 P2 0.4603 0.0118 0.1043
40 P3 0.5462 0.0466 0.1311

Avg 0.3120 0.0462 0.0759

Table 4.11 – Average RMSE for the provided dataset. Parameters: p = 16, itQty = 1.
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bicubic interpolation instead of spline interpolation. Results shown in Table 4.12 show a
slight decrease in performance compared to spline interpolation, however the difference
in execution time, which for spline interpolation usually involves almost three times the
computational cost, seems to justify this precision loss.

Res. Pert. Alg. 6 Alg. 7 Alg. 8
20 P0 0.0079 0.0066 0.0087
20 P1 0.0978 0.0132 0.0165
20 P2 0.1896 0.0095 0.0644
20 P3 0.3107 0.0097 0.1543
40 P0 0.0023 0.0020 0.0027
40 P1 0.1083 0.0121 0.0125
40 P2 0.2314 0.0059 0.0704
40 P3 0.2945 0.0078 0.1842

Avg 0.1553 0.0083 0.0642

Table 4.12 – Average RMSE for the provided dataset. Parameters: p = 4, itQty = 2. Interpola-
tion: bicubic.

4.5.3 Visual Results

In order to analyze the results visually, the registration process was divided in 4 distinct
steps defined by the following four acronyms:

• BP: Before Processing, the original images of the line which are the raw input to the
algorithm.

• TC: after Temporal Convolution (in order to get rid of noise and possible perturba-
tions).

• AL: after ALigning the frames.

• FI: FInal result after performing a temporal convolution on the aligned frames.

For obvious space constraints, three images will be shown for each step: the first frame
(out of the 64), the last frame, and the absolute value of their difference. Since the values
for the differences are so small that they may not be recognizable by the human eye, a
multiplicative factor has been applied.

Figures 4.14 and 4.15 show the results for lines SIMU40/P2/L0804 and SIMU40/P2/L0900.
It can be seen that the methods drastically align the frames, reducing considerably the
difference. In figures 4.16 and 4.17, two noisy lines are evaluated. One can observe how
registration results for these lines are not as good, due to the high noise. In these cases,
using more frames for the temporal convolution improves the results. However, this im-
plies estimating the shifts using less frames, which, if there is a lot of movement going
on, usually leads to poor results. Despite these caveats, the results are still acceptable
using our registration method, since most of the perceivable differences in the final result
are attributable to noise.

The fact that the methods still work under these conditions is mainly due to the per-
formed temporal convolution, which gets rid of noise in order to perform a better esti-
mation. However, the number of frames used to do this convolution is crucial, since a
too low value will lead to poor results, as shown in Figure 4.18. In this case, a total of
8 frames were accumulated, which leads to a wrong registration, while using 16 frames
yielded an acceptable performance.
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(a) BP - First (b) BP - Last (c) BP - Dif

(d) TC - First (e) TC - Last (f) TC - Dif

(g) AL - First (h) AL - Last (i) AL - Dif

(j) FI - First (k) FI - Last (l) FI - Dif

Figure 4.14 – Results for line SIMU40/P2/L0804. BP, before processing, TC, after temporal con-
volution, AL, after alignment, FI, temporal convolution applied after alignment.
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(a) BP - First (b) BP - Last (c) BP - Dif

(d) TC - First (e) TC - Last (f) TC - Dif

(g) AL - First (h) AL - Last (i) AL - Dif

(j) FI - First (k) FI - Last (l) FI - Dif

Figure 4.15 – Results for line SIMU40/P2/L0884. BP, before processing, TC, after temporal con-
volution, AL, after alignment, FI, temporal convolution applied after alignment.
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(a) BP - First (b) BP - Last (c) BP - Dif

(d) TC - First (e) TC - Last (f) TC - Dif

(g) AL - First (h) AL - Last (i) AL - Dif

(j) FI - First (k) FI - Last (l) FI - Dif

Figure 4.16 – Results for line SIMU20/P3/L0228. BP, before processing, TC, after temporal con-
volution, AL, after alignment, FI, temporal convolution applied after alignment.
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(a) BP - First (b) BP - Last (c) BP - Dif

(d) TC - First (e) TC - Last (f) TC - Dif

(g) AL - First (h) AL - Last (i) AL - Dif

(j) FI - First (k) FI - Last (l) FI - Dif

Figure 4.17 – Results for line SIMU20/P3/L0648. BP, before processing, TC, after temporal con-
volution, AL, after alignment, FI, temporal convolution applied after alignment.
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(a) TC - First (b) TC - Last (c) TC - Dif

(d) AL - First (e) AL - Last (f) AL - Dif

(g) FI - First (h) FI - Last (i) FI - Dif

Figure 4.18 – Results for line SIMU20/P3/L0648 using p = 4 for temporal convolution. The reg-
istration failed because of its low SNR, as predicted by the SNR measurements for this line in
Table 4.1. BP, before processing, TC, after temporal convolution, AL, after alignment, FI, temporal
convolution applied after alignment.
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4.5.4 Proposed Algorithms

In order to simplify the task, four possible algorithms are proposed based on the above
results. Two fast methods, based on both algorithms 8 and 5, which aim at obtain-
ing acceptable results while focusing on having a low computational cost, one medium
method, which gives the best trade-off between precision and execution time, and a high
precision algorithm, which is intended to achieve the best results. All algorithms system-
atically apply the Anscombe VST using the method described in Appendix B.

The first evaluated fast method, denoted Fast, is based on Algorithm 8, and uses the
SNR verification described in Algorithm 9, just validating good SNR values in the first
and the last frames of each line. The interpolation used is bicubic, which gives a good
trade-off between precision and speed, and the itQty parameter is set to 2.

The second fast algorithm presented, denoted Fast2, is based on Algorithm 5 using
the second version of the ComputeOffset method, described in Algorithm 7. The SNR
validation is again performed using Algorithm 9. The interpolation method chosen is
bicubic, however it is only used to generate the resulting video, since the number of
iterations (itQty) is set to 1, implying no need to perform interpolation to calculate the
global translation.

The third algorithm, denoted Medium, is based again on Algorithm 5 using Algo-
rithm 7 to compute the global offset and verifying the SNR using Algorithm 9. The only
difference between this algorithm and the previous one is that it does bias correction
using itQty = 2 implying the necessity to interpolate intermediate results. To do this,
bicubic interpolation is used. We found that this algorithm gives considerably better re-
sults while taking few computational resources.

Finally the fourth method named HighPrec, which is as well based on Algorithm 7 to
compute the global offset, is the most expensive method presented. The SNR verification
is performed on every frame of the line, and if any frame does not have enough SNR
using a high enough value for parameter p, then the whole line is discarded. The number
of iterations in this case is three, and cubic splines are used as the interpolation method,
which was proven to give the best results.

The four proposed methods were analyzed and compared in order to obtain a clear
idea of their performance. Their execution times using a non-optimized Matlab imple-
mentation on an Intel Core i7 computer are given in Table 4.13, in which we can appreci-
ate the strong difference in cost between the fourth method and the rest.

Method 1 (Fast) Method 2 (Fast2) Method 3 (Medium) Method 4 (HighPrec)
0.143s 0.152s 0.216s 0.530s

Table 4.13 – Average execution time, in seconds, for every proposed algorithm on every line.

After evaluating each method with every line in the dataset, Table 4.14 was obtained.
The SNR threshold used for the first method was 20, while for the rest, a threshold of 10
had to be verified. A higher threshold was set for the first method because of its lower
tolerance to noise which made the method to fail. Results show that the first method,
indeed, has a good precision when there is enough information in the first and last frames
of the line. However, in most situations, both medium and high precision methods not
only are able to correctly estimate the displacement on more lines, but also obtain much
better results.

An interesting measure is how each method performs under lines with varying SNR

values. We combined both θ values into one using its Euclidean norm, that is
√
θ2
x + θ2

y .
Then, depending on this value, the precision of each method was studied. Since both
provided resolutions have distinct SNR conditions, the comparison was made for each
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Res. Pert. Method 1 Method 2 Method 3 Method 4
(Fast) (Fast2) (Medium) (HighPrec)

20 P0 0.00293 0.00356 0.00469 0.00459
20 P1 0.00846 0.04702 0.01472 0.00688
20 P2 0.00829 0.01384 0.00725 0.00571
20 P3 0.00531 0.02193 0.00875 0.00786
40 P0 0.00253 0.00133 0.00180 0.00172
40 P1 0.02814 0.03759 0.00424 0.00296
40 P2 0.02918 0.04809 0.00824 0.00354
40 P3 0.05914 0.03560 0.00682 0.00483

Avg 0.01800 0.02612 0.00706 0.00476

Table 4.14 – Average error, in pixels, for the provided dataset for every proposed algorithm.

perturbation and for each resolution. Then, for each method, we set the minimum SNR
threshold to be 2 (since a lower threshold simply makes no sense because there is no
possible alignment in just random noise), and we evaluated the whole dataset.

The obtained precision results are displayed in Table 4.15. In this table it can be seen
how the Fast method in fact does not perform well in low SNR conditions, while both
medium and high precision methods seem to keep obtaining good results. Interestingly,
this experiment proves the importance of iterating the algorithm, since as can be inferred
from the tables, under lower SNR scenarios, the gain obtained by performing more iter-
ations becomes evident.

Res. Pert. Method 1 Method 2 Method 3 Method 4
(Fast) (Fast2) (Medium) (HighPrec)

20 P0 0.01434 0.00667 0.00961 0.00612
20 P1 0.11981 0.09840 0.02485 0.00807
20 P2 0.28216 0.15589 0.02091 0.00839
20 P3 0.36107 0.17349 0.01945 0.00903
40 P0 0.00336 0.00136 0.00183 0.00172
40 P1 0.07907 0.04270 0.00859 0.00305
40 P2 0.10854 0.05106 0.01062 0.00359
40 P3 0.26639 0.07973 0.00816 0.00498

Avg 0.15434 0.07616 0.01300 0.00562

Table 4.15 – Average error, in pixels, for the provided dataset for every proposed algorithm using
low SNR thresholds.

For resolution 20, the error of each algorithm is contrasted in Fig. 4.19, while the same
is done for resolution 40 in Fig. 4.20. In every case, when dealing with low SNR values,
the methods fluctuate more, however both fast methods presented cases in which they
drastically fail to perform the registration or where a high error was obtained. When
dealing with higher SNR values, the error for every method gets stable and the four al-
gorithms usually converge. It can also be seen how the high precision method presented
performs better than the rest on most cases. In fact, when there is no displacement be-
tween frames, as the case of perturbation zero (P0) in the dataset, every method performs
well, and this is the only perturbation in which there is not a method that performs clearly
better than the rest.

In order to better understand how each algorithm performs under varying SNRs, the
accumulated error produced by each method for both resolutions is also presented in
Fig. 4.21. From this figure, we can better see how each method performs in terms of
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precision, being the high precision algorithm the obvious winner of the lot, while the fast
algorithms accumulating a high amount of error for low SNR values and then stabilizing
to perform better. Again, as mentioned before, it has to be noted that when there is no
displacement (P0), the best algorithm is not the fourth one, however the accumulated
error for the whole dataset is considerably low, even taking into account low SNR lines.
Finally, it has to be remarked that the difference in precision between both high precision
algorithms is not justifiable, taking into account their difference in computational costs.

(a) Res20P0 (b) Res20P1

(c) Res20P2 (d) Res20P3

Figure 4.19 – Estimation error produced by each method on the provided Res 20 dataset, de-
pending on the SNR of the line. Better visualization is achieved by zooming in on the digital
document.

After observing these results, since there is a considerable difference in precision be-
tween fast methods and high precision ones, we compared them separately. However,
this time, we decided to combine results of every perturbation type, for each resolution.
Figure 4.22 shows the error and the accumulated error for both fast algorithms on both
resolutions in the first two rows followed by both Medium and High Precision algorithms
in the last two rows. In them, we can now appreciate how the precision of both fast and
high precision algorithms are compared to each other, allowing us to select a good value
for the SNR threshold. In the case of fast algorithms, the accumulated error, specially ob-
tained when low SNR lines found, gets unacceptably high, suggesting that if any of these
algorithms is used, the correct value for the threshold should be set to 20 for resolution
20 and around 250 for resolution 40. However, if the Fast2 algorithm is used, for resolu-
tion 40 a value of 70 for the threshold should be enough. In the case of High Precision
algorithms, for both resolutions, a value of 20 for third algorithm and a value of 10 for
the fourth one seems to be good.

141



142 STAB-ACTIVE: STABILIZING ON BOARD IMAGE ACCUMULATION

(a) Res40P0 (b) Res40P1

(c) Res40P2 (d) Res40P3

Figure 4.20 – Estimation error produced by each method on the provided Res 40 dataset, de-
pending on the SNR of the line. Better visualization is achieved by zooming in on the digital
document.
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(a) Acum Res20P0 (b) Acum Res20P1

(c) Acum Res20P2 (d) Acum Res20P3

(e) Acum Res40P0 (f) Acum Res40P1

(g) Acum Res40P2 (h) Acum Res40P3
Figure 4.21 – Accumulated estimation error produced by each method on both provided datasets,
depending on the SNR of the line.
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(a) Res20 (b) Res40

(c) Acum Res40 (d) Acum Res40

(e) Res20 (f) Res40

(g) Acum Res40 (h) Acum Res40
Figure 4.22 – Comparison of performance of both fast and high precision methods for each res-
olution, combining all perturbations. Top two rows: Fast methods. Bottom two rows: High
precision methods.
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4.6 Concluding Remarks

In this chapter we studied the problem of performing multi-image shift estimation based
on a problematic posed by CNES (French space agency) which envisages to perform on
board stabilization to reduce the influence of micro-vibrations on the satellite limiting the
amount of accumulated frames in the TDI sensor. If fast and accurate shift estimation is
proved feasible, then the amount of accumulated frames on the CMOS TDI device could
be increased thus ameliorating the resulting SNR of the final image.

We began this study without any assumption on the displacements between the frames
and with only the simulated dataset provided by CNES. By analyzing the obtained re-
sults, the first conclusion was the observation that the motion can be assumed to be linear
on such a small time span. This fact, that has anyways obvious physical reasons, was not
considered at the beginning of this study, and was later validated by CNES.

Our conclusions are:
• The best method in terms of velocity and accuracy proved to be the iterative gradient-

based shift estimation method. It is the only adapted method for such small images
and small motions, while instead Fourier-based methods (phase correlation, corre-
lation peak detection, gradient correlation) fail, or are not implementable on board
due to their higher computational costs.
• Performing temporal convolution before computing the shift estimation proved to

be important, particularly under low SNR scenarios. Indeed, under linear motion,
this temporal convolution does not affect the motion estimation, increases the SNR
of the image sequence and decreases the influence of the other potential pertur-
bations, like for example aliasing. All of these assumptions were confirmed by
experiments.
• An automatic way to compute the number of frames needed for temporal convolu-

tion is proposed, based on obtained results. This algorithm depends on the SNR of
the input line and on the desired thresholds.
• We proposed an alternative multi-image scheme particularly suited for the current

problem, that improves over the naive sequential frame to frame shift estimation
by reducing the influence of the bias of GBSE methods. The improvement obtained
by using this approach was up to two orders of magnitude.
• We observed that some of the lines may contain only noise, and must therefore be

automatically discarded. A fast way to discard them is proposed by computing a
SNR through the image derivatives, which proved to be accurate enough for this
objective.
• We have studied the lower achievable bounds on image registration for a pair of

frames and expanded this concept for our particular case, when several images
needs to be registered using a global displacement.
• The number of operations per pixel of the proposed algorithms are, depending on

the parameters, between

26+9∗itQty+(itQty−1)∗InterpCost and 60+9∗itQty+(itQty−1)∗InterpCost

operations/pixel for the estimation of the global shift for a line, where itQty is
the amount of iterations used to estimate the shift between a pair of frames and
InterpCost is the cost of performing interpolation, if needed. If just a single iter-
ation is used, then in total, between 35 and 69 operations/pixel are required, de-
pending on the SNR of the line. If more iterations are performed, the interpolation
cost is not negligible and should be taken into account. For example, for bicubic
interpolation the approximate cost is 16 operations per pixel, nevertheless, adding
a second iteration was able to reduce the bias significantly in some cases.
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• It is crucial to decide if a line is reliable or not, and to estimate the error. We have
fixed reasonable SNR thresholds that guarantee that the method works. Neverthe-
less, these thresholds give no guarantee in presence of an aperture problem, namely
the presence of a very dominant gradient direction in the image. We found no such
example in the provided dataset, but this may nevertheless happen and must be
accounted for.

• We found reasonable (but perhaps not necessary) to apply to the images the Anscombe
transform to make the noise nearly uniform before estimating the shifts. We ob-
served that precision is decreased if no Anscombe transform is applied. We also
studied how to apply the Anscombe transform using a computational trick that ap-
proximates the square root of a number without needing to calculate it. We found
out that using this trick we are able to achieve similar results than with the normal
square root.

• The precision of the method is increased if more than one iteration is applied in the
calculation of the shift between two frames, however it implies performing inter-
polation for every iteration step. We observed, however, that the gains of applying
an iterative version of the algorithm are much higher compared to the computa-
tional cost needed, if a simple interpolation is used, such as bicubic interpolation.
Using a more complex interpolation method, such as spline interpolation, achieves
improved results, however its increased execution time does not justify its use.

• The literature on the subject was thoroughly explored and we can reasonably sus-
tain that the best method has been found and that the best way to estimate the error
knowing the noise is also at hand.

• Four possible algorithms were proposed to the CNES as a result. These were de-
signed based on the studied results and the CNES comments in order to be success-
fully implemented in the satellite. We described and implemented two low cost
methods, a third one giving the best cost/performance relationship and a last one
focusing on accuracy. A brief summary of them is shown in Table 4.16. The last two
algorithms can successfully deal with more lines, without requiring to increase the
SNR threshold parameters, thus being more tolerant to noise.

• Most importantly, the proposed algorithm is currently being used by the CNES in
a on-ground demonstrator to register TDI images in real-time and is envisaged to
be implemented in the next earth-observation satellite OTOS.
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Method Ops/Pixel Avg. Error Th. Comments
Fast1 < (2 + 2 ∗GP )* 0.052 20/250 Uses just first and last frames.

(from 1824 out Uses two iterations for shift estimation.
of 2976 lines) Applies Anscombe transform.

(th=20) Validates SNR threshold on first two frames.
Does bicubic interpolation for multi-scale.

Fast2 35–69 0.02 20/70 Computes shift with respect to first frame.
(from 1824 out Uses one iteration for shift estimation.
of 2976 lines) Applies Anscombe transform.

(th=20) Validates SNR threshold on first two frames.
No interpolation needed.

Medium BI+(44–78) 0.007 10/20 Computes shift with respect to first frame.
(from 2149 out Uses two iterations for shift estimation.
of 2976 lines) Applies Anscombe transform.

(th=10) Validates SNR threshold on first two frames.
Bicubic interpolation used.

HighPrec SI+(53–87) 0.005 5/5 Computes shift with respect to first frame.
(from 2365 out Uses three iterations for shift estimation.
of 2976 lines) Applies Anscombe transform.

(th=5) Validates SNR threshold on every frame.
Spline interpolation used.

Table 4.16 – Summary of the proposed algorithms. The second column shows the range of
required operations per pixel of the method, the third displays the average error measured on
the provided dataset, the fourth column suggests convenient thresholds for the SNR on each
resolution (20/40), and the fifth column displays key information about each algorithm. BI stands
for Bicubic Interpolation cost, SI for Spline Interpolation cost and GP represents the cost of
building the Gaussian Pyramid.
* The number of operations per pixel is smaller than two plus the cost of building the Gaussian
pyramid for two images up to 4 resolutions. This implies performing interpolation and subsampling
operations which makes the total execution time to be not considerably than the one from the
Fast2 algorithm.
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Chapter 5

RANSAAC: RANdom SAmple Aggregated Consensus

In the previous chapters, we studied the problem of fast and accurate subpixel shift estima-
tion, focusing on two applications to be used on earth-observation satellites. Another frequent
image registration problem is to find a model relating two images based on point matches be-
tween them. Indeed, accurate 2D transformation estimation through point matches between
images is a well-known problem in computer vision. The difficulty coming from the pres-
ence of outliers and noisy measurements makes traditional regression methods usually fail.
RANSAC discriminates outliers by randomly generating minimalistic sampled hypotheses
and verifying their consensus over the input data. While discarding all other trials, it bases
its response on a single iteration having the largest inlier support. In this chapter we show
that the resulting accuracy can be improved by using all generated hypotheses. This yields
RANSAAC, a framework that improves systematically over RANSAC and its state-of-the-art
variants by statistically aggregating hypotheses. To this end, we also propose a simple strat-
egy that allows to rapidly average 2D transformations, leading to an almost negligible extra
computational cost. We give practical applications on both projective transforms as well as
homography+distortion models and show the improvement in both cases.

5.1 Introduction

In the previous chapters of this thesis, we studied the problem of fast and accurate regis-
tration methods when the underlying transformation was a shift, and gave two example
applications to be implemented on-board of earth-observation satellites. The presented
approaches assumed small displacements between the input images. In this chapter we
study the problem of image registration under more complex models. In particular, we
focus on feature-based approaches using point matches, as mentioned in Chapter 2 of
this thesis.

Several applications in computer vision such as image alignment, panoramic mosaics,
3D reconstruction, motion tracking, object recognition, among others, are performed by
feature-based approaches. First, characteristic image features are detected on the input
images. These features should meet some repeatability criteria to ensure they can be de-
tected on images, regardless of their location, pose, illumination conditions, scale, etc.
They could be points with some special characteristic or distinguished image regions.
Undoubtedly, SIFT points [96] and MSERs [105, 106] are the most recognized feature de-
tectors of each category respectively. The second step is to assign to each feature a unique
description. In the case of points, this is done by describing its surroundings [16,96,110].
For regions, their silhouettes and the contained texture information are employed [18,58].
Finally, the descriptors of both images are matched to compute putative matches between
them. Ideally, these matches correspond to samples of the underlying model to be esti-
mated. Unluckily, not all detected matches are faithful to the global model, yielding false
“clues” to the transformation estimation method.

149



150 RANSAAC: RANDOM SAMPLE AGGREGATED CONSENSUS

As explained above, when estimating a single global transformation based on mul-
tiple point matches between images, existing methods have to deal with the problem of
outliers, i.e., incorrectly detected matches that are not represented by the transformation.
Robust to outliers, the Random Sample Consensus (RANSAC) is an iterative method
introduced by Fischler and Bolles [55], widely used in computer vision to simultane-
ously solve the correspondence problem while estimating the implicit global transforma-
tion. By randomly generating hypotheses on the transform matching the points, it tries
to achieve a maximum consensus in the input dataset in order to deduce the matching
points belonging to the transformation, usually called inliers. Once the inliers are dis-
criminated, the parameters of the underlying transformation are usually estimated using
a regression technique on the inliers. RANSAC achieves good accuracy when observa-
tions are noiseless, even with a significant number of outliers in the input data.

Instead of using every sample in the dataset to perform the estimation as in tradi-
tional regression techniques, RANSAC tests in turn many random sets of sample pairs.
Since the probability of picking an outlier increases exponentially with the size of the
sample, RANSAC takes the minimum sample size (MSS) m to determine a unique can-
didate transform, thus incrementing its chances of finding an “all-inlier” sample, i.e., an
uncontaminated sample exclusively composed of inliers. This transform is assigned a
score based on the cardinality of its consensus set. Finally the method could return the
hypothesis that achieved the highest consensus. However, as suggested by the authors,
a last-step minimization is performed taking its inliers to compute the parameters of the
transformation.

More formally, given a transformation φ with parameters θ and a dataset of pairs
Xi, Yi consisting of i = 1, . . . , N samples, RANSAC computes

θ̂ = argmax
θ

N∑
i=1

ρ
(
dist(φθ(Xi), Yi)

)
, (5.1)

where dist is usually the squared L2 distance given by dist(x,y) = ‖x− y‖22 and the cost
function ρ is defined as

ρ(e) =

{
1 if e ≤ δd
0 otherwise.

(5.2)

The parameter δd is a critical parameter of the algorithm. It is set proportional to the
assumed measurement noise of the input matches with different factors depending on
the type of estimation problem [70]. Finally, the optional last-step minimization refines
the previous result by computing

θ̂ = argmin
θ

N∑
i=1

∥∥∥φθ(X̃i)− Ỹi
∥∥∥2

(5.3)

where the inlier matches (X̃i, Ỹi) are defined by

{(X̃i, Ỹi) | X̃i ∈ X, Ỹi ∈ Y, ρ(dist(φθ̂(X̃i), Ỹi)) = 1}. (5.4)

5.1.1 RANSAC iterations and model error

It was shown in [55] that by drawing k samples, with

k ≥ log(1− η0)

log(1− εm)
, (5.5)

where m is the MSS, one can ensure with confidence η0 that at least one outlier-free sam-
ple is obtained from a dataset having inlier rate ε. Therefore, the total number of iterations
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could be set according to Eq. (5.5). However, since the inlier rate ε is in general not known
beforehand, the number of iterations cannot be defined a priori. Nevertheless, this value
could be updated every time a better hypothesis is found, by using Eq. (5.5) and taking ε
as the current inlier ratio, given by the ratio between the amount of inliers and the total
amount of matches.

However, as noted by Chum et al. [39], the number of iterations of Eq. (5.5) is overly
optimistic, so that an outlier-free sample does not guarantee an accurate estimation either.
This is due not only to the noise on the position of the input points (measurement noise),
but also to the underlying “noise” on the model hypotheses themselves [127, 171]. This
other “noise” is caused by several factors such as limited numerical precision, poor con-
ditioning of the model estimation method, or by other sometimes non-avoidable reasons
such as the rounding of pixel intensities or point coordinates. In practice, the number of
samples required in RANSAC should be set typically to two or three times the theoretical
number [129].

5.1.2 Distance parameter

The parameter δd depends on the measurement noise of the m input samples. Assume
that these are 2D points with Gaussian noise of zero mean and standard deviation σ. Then
their error, computed as d(x′i, Hxi)

2, i.e. the distance between the projected point on the
first image onto the second image and its match, is the sum of squared Gaussian variables
which thus follows a χ2

m distribution withm degrees of freedom. The probability that this
error is lower than a given value k can be computed from the cumulative χ2

m distribution
Fm. Capturing a fraction α of the inliers is ensured by setting δd = F−1

m (α)σ2, which
means that a true inlier will be incorrectly rejected 1 − α percent of the time. Then if the
error of the estimated transformationH for a particular set of matches (x,x′) is measured
as the direct transfer error, given by

Err(H,x,x′) :=
∑
i

d(x′i, Hxi)
2, (5.6)

this implies setting δd = 5.99σ2 for α = 0.95 [70]. However, if the error is given by the
symmetric transfer error, namely

Err(H,x,x′) :=
∑
i

d(x′i, Hxi)
2 + d(xi, H

−1x′i)
2 (5.7)

then the χ2
m distribution has 4 degrees of freedom (i.e. m = 4). Therefore, one must

set δd = 9.4877σ2 for α = 0.95 or δd = 13.2767σ2 for α = 0.99. However, since in
practice, the standard deviation of the noise is not available, this parameter is usually set
by experimentation. Throughout this chapter, unless otherwise specified, this parameter
was always set using α = 0.99 and assuming the error measured as in Eq. (5.7).

5.1.3 Final refinement step

As already mentioned, RANSAC reduces the effect of measurement noise by re-estimating
the transform using a last-step minimization on the resulting inliers. Depending on the
underlying model, both linear and non-linear minimization methods exist [23, 70], with
the latter one usually achieving better results with a higher computational cost. Although
this final stage does in general improve RANSAC results, it gives equal importance to
each match for the minimization. Then if RANSAC is not able to completely discriminate
the outliers within the input data, this introduces a bias in the computation commonly
resulting in a drop in performance.
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Throughout this chapter, we will refer to RANSAC as the method described by Eq. (5.1)
without performing the last refinement step, and RANSAC+M or more directly RANSAC
with last-step minimization to the full approach following Eq. (5.3).

5.1.4 RANSAC weaknesses

RANSAC has several drawbacks. First, the probability of RANSAC obtaining a reason-
able result increases with the number of iterations, however it may never reach the op-
timal solution. What is more, RANSAC results have a high degree of variability for the
same input data, and this variability increases with the amount of input points and their
measurement noise. Second, although robust to outliers, RANSAC is not particularly
immune to measurement noise on the input data, as illustrated on Fig. 5.1. Furthermore,
the optional final minimization step weighs uniformly the assumed inlier match, ignor-
ing wether they are real inliers or how strongly they may be affected by noise. Third, the
maximum tolerable distance parameter δd should usually be sufficiently tight to obtain a
precise transformation, however it must also be loose to find enough input samples [33].
Because of such considerations, setting this parameter is a difficult task, even under low
measurement noise. Finally and most importantly, the accuracy of RANSAC is based
on the single iteration where the best model was found. Although this may be accurate
in some cases, it nevertheless discards other good all-inlier models that may have been
generated throughout the iterations.

Figure 5.1 – Toy example where RANSAC is not able to detect the correct model due to measure-
ment noise. If the distance parameter is set too small, RANSAC will adjust its model to the noisy
estimates, therefore fitting the line on the upper five points (in red), whereas the ground truth line
passed through the middle (in blue).

To make up for this, we present Random Sample Aggregated Consensus (RANSAAC),
a simple yet powerful method combining the random sample consensus scheme with a
statistical approach. By aggregating the random hypotheses using their consensus set
cardinalities, the proposed approach improves systematically on RANSAC. We give prac-
tical implementations of this idea on 2D parametric transformation models, by proposing
a simple strategy to drastically accelerate the computations. This allows to rapidly ag-
gregate 2D parametric transformations using negligible computational resources.

Its main benefits over traditional RANSAC are:

• Results are both more accurate and with less variability (in terms of standard devi-
ation of the error). The improvement over the traditional RANSAC approach is on
average by a factor of two to three, and is even more important with higher noise,
more inliers available, and higher outlier ratios. Moreover, it improves systemati-
cally over other state-of-the-art RANSAC extensions.

• The accuracy improvement persists after including the final regression step in RANSAC
and its variants, even without using a last-step optimization in RANSAAC.
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• As with the original RANSAC method, the accuracy is dramatically improved by
adding a local optimization step, which in fact seems suited for our approach be-
cause it could avoid discarding the generated intermediate models.

• Also, by including this step, the theoretical adaptative stopping criterion signaled
by Eq. (5.5) becomes more realistic and could be used to effectively stop the itera-
tions without affecting the final accuracy.

• By using the proposed 2D transformation averaging method, the extra computa-
tional cost is almost negligible.

• Robustness against measurement noise is drastically improved for the case of noise
distributions with symmetrical pdfs.

The rest of this chapter is organized as follows. We begin by giving a review on
RANSAC variants in section 5.2. In section 5.3 we detail the proposed algorithm. We
thoroughly evaluate it in section 5.4 to finally conclude and give some remarks regarding
the future work in section 5.5.

5.2 RANSAC Alternatives or Improvements

One of the aims of robust statistics is to reduce the impact of outliers. In the field of
computer vision, a robust estimator must be able to correctly distinguish the true in-
formation in the case where the outliers and the noise occupy a high percentage of the
data. In the context of regression analysis, the Least-Median-of-Squares (LMedS) and the
Least Trimmed Squares (LTS) are well-known classical methods and still widely used.
Both approaches resemble RANSAC by generating hypotheses from minimalistic sam-
ples. However, after computing the residuals for each data point, instead of discarding
the outliers, both methods sort the input points based on their residual error. The LMedS
then returns the hypothesis for which the residual of the median point on this ordering
is the lowest. The LTS method returns instead the model for which the sum of a fixed
percentage of best ranked input data is minimized [143]. Although the LMeds method
does not require to specify the δd parameter of RANSAC, it implicitly assumes at least
50% of inliers in the dataset. This method was successfully used to estimate the epipolar
geometry between two images [190].

Since its introduction and due to the massive proliferation of panorama generation
[25], 3D estimation [70] and invariant feature points [96, 136], several modifications of
RANSAC were proposed [34, 127, 128], mainly addressing three major aspects: compu-
tational cost, accuracy and robustness against degenerate cases, i.e., cases where it is not
possible to recognize an incorrect hypothesis by simply scoring the drawn minimal sam-
ple. Interestingly, these techniques can also be grouped based on the strategy they adopt.

One of such strategies is to modify the random sampling process of RANSAC to
generate better hypotheses, improving both speed and accuracy. In this group, NAP-
SAC [115] segments the sample data by assuming that inliers tend to be spatially closer
to one another than outliers, thus picking points laying within a hypersphere of a specific
radius. The PROSAC algorithm [36] exploits the ordering structure of the set of tentative
correspondences and bases its sampling on the similarity computed on local descriptors.
GroupSAC [117] combines both strategies by segmenting the input data based on feature
characteristics.

Another strategy is to perform a simple test by partially evaluating the dataset to dis-
card hypotheses before computing the score, thus reducing the overall computational
cost. The Td,d test [104] checks whether d randomly drawn points are inliers to the
hypothesis, discarding it otherwise. In [37], the authors propose to use a sequential
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probability ratio test (SPRT) to discard “bad” hypotheses, based on Wald’s theory of se-
quential testing [183]. Finally, instead of evaluating one model at a time, Preemptive
RANSAC [118] filters hypotheses by scoring several of them in parallel over the same
subset of samples, permitting real-time applications.

To improve on accuracy, instead of computing the cardinality of the set of sample
points having smaller residuals than a specified threshold, several methods modify how
samples are scored by weighting inliers based on their residual error. The MSAC method
[172], a simple redescending M-estimator [79], takes the maximum between the error
and the threshold to score each datum to finally minimize over their sum. Conversely,
MLESAC [173] maximizes the log likelihood of the given data by assuming the inlier
error has Gaussian distribution while the outlier error follows an uniform law.

One strategy used to improve both accuracy and speed is to perform a local optimiza-
tion step after a “good” enough model has been found. The locally optimized RANSAC
(LO-RANSAC) [39], as well as its variants [88,129], performs a fixed amount of RANSAC
iterations by taking non-minimal samples of the inliers of each newly found best hy-
pothesis (approx. 12/14 matches for an homography), in a so-called inner-RANSAC pro-
cedure. For each model generated by taking a non-minimal sample, a larger distance
threshold is used to compute its inliers and an iterative procedure is performed to refine
this model by progressively shrinking the threshold. The recently published Optimal
RANSAC method by Hast et al. [71] also exploits this technique, however they add small
modifications such as dataset pruning to remove outliers among iterations along with
adaptive termination of the method when the same inlier set is found again after the
inner-RANSAC procedure.

To increase the robustness of RANSAC against degenerate data in an epipolar geome-
try estimation context, DEGENSAC [38] performs a test aimed at identifying hypotheses
where five or more correspondences in the minimal sample are related by a homogra-
phy, to avoid bad solutions on images containing a dominant plane in the scene. In cases
where most of the data samples are degenerate and do not provide a unique solution,
QDEGSAC [60] performs several RANSAC executions, iteratively, by adding constraints
to the inliers of the previous results.

Based on these approaches, Raguram et al. [127] studied several RANSAC exten-
sions and proposed an algorithm that intelligently combined them into a single modular
method called Universal RANSAC (USAC). This method obtains state-of-the-art results
using few computational resources. It does so by combining ideas from LO-RANSAC,
DEGENSAC, the SPRT test and PROSAC.

More recently, the community has been focusing towards two distinct objectives. The
work of Suter and his collaborators [32,121,164] aims at improving the sampling process.
By taking random non-minimal subsets of samples, they show it considerably reduces
the bias caused by taking minimal size samples over noisy input data [121,164]. Another
approach [32], also used in [99], is to perform an initial, not so extense round of ran-
dom samples together with their hypotheses to build some prior knowledge, followed
by guiding the subsequent sampling using the residuals of these hypotheses, i.e. the
residual sorting information.

A second recent trend is to approach the robust estimation problem in an inverse
fashion [98, 99, 165, 169]. Instead of searching for model parameters that minimize a pre-
defined residual function, the idea is to use, as in the guided sampling context, the resid-
uals for each data point obtained from several random models, in order to distinguish
between inliers and outliers in a clustering procedure. To this end, these methods build
a matrix where its columns are the input points and its rows represent each sampled hy-
pothesis, and that each value is the evaluation of each data point (column) on the hypoth-
esis (row). This matrix is usually referred to as the preference matrix. Then by reordering
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both the rows and the columns in order to place correct model hypotheses together with
the data points belonging to this model, the preference matrix will have a block-diagonal
structure, where each block is composed by inliers of a specific model in the input data.

The methods found in the literature mainly differ in how to sample, define and clus-
ter this matrix. While J-Linkage [169] uses a binary method to define the relationship
between each data point and each hypothesis in the matrix, T-Linkage [98] uses a con-
tinuous thresholded value, conceptually similar to the difference between RANSAC and
MSAC scores. To perform the clustering, both methods rely on an agglomerative clus-
tering technique, proceeding in a bottom-up manner: starting from all singletons, each
iteration of the algorithm merges the two clusters with the smallest distance. J-Linkage
uses the Jaccard distance metric while T-Linkage relies on the Tanimoto distance (hence
both names J-Linkage and T-Linkage).

The approach of Tepper and Sapiro [165] performs bi-clustering on the preference ma-
trix by using non-negative matrix factorization (NMF). An interesting advantage of this
technique is that an object is allowed to belong to multiple bi-clusters, which may occur
when some data points belong to two different models, such as the intersecting points
of two planes. To accelerate the method, they add an a-contrario statistical approach to
discard “bad” hypothesis before computing the bi-clustering. A similar approach is used
in [99], where they combine Robust PCA with Symmetric NMF to cluster the preference
matrix. It should be noted that, opposite to RANSAC where a single model is estimated,
these approaches target multimodel estimation and therefore are not the focus of the
present work.

Finally, two techniques address one of the major problems of RANSAC: the selection
of the δd parameter. ORSA [111] introduces an a contrario criterion to avoid setting hard
thresholds for inlier/outlier discrimination. On the other hand, Raguram [129] estimates
the covariance of the underlying transform and propagates this error due to the noise by
modifying the regions for which each data point is considered an inlier.

5.3 Random Sample Aggregated Consensus

As explained above, the traditional RANSAC algorithm as well as its extensions dis-
card potentially useful hypotheses entirely basing its results on a randomly generated
hypothesis that better fits the data. What is more, due to the underlying measurement
noise, there may be no hypothesis that, by randomly drawing points over the input data,
would generate the correct model, therefore justifying the use of least squares regres-
sion over the (tentative) inliers [39,127]. However, hypotheses that obtained lower scores
than the best, and were therefore discarded, could potentially be useful to obtain a more
precise estimation of the underlying model. In fact, if hypotheses generated by all-inlier
noisy samples are similar enough, i.e., their variance is bounded, then it makes sense to
aggregate them to improve the accuracy of the method. The idea behind the proposed ap-
proach is to take advantage of every generated hypothesis, using its score as a confidence
measure that allows not only to discard outliers but also to give more importance to better
models. To successfully apply the proposed approach, one requirement should be met:
the possibility to perform operations directly on the models, such as averaging, comput-
ing the geometric median or being able to estimate geometrically meaningful distances
between different models. These models could be directly aggregated in their manifold,
by understanding its geodesics [94]. However, for the case of 2D transformations map-
ping points in one image to points on another, instead of aggregating on the topological
space, a simple strategy based on pre-selecting points could be used virtually adding no
cost to the overall computation.
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5.3.1 Aggregation of 2D parametric transformations

Take, for example, the task of averaging homographic transformations. First, notice that
the set of all homographies is not a vector space, so that a convenient notion of nonlinear
averaging is required. By selecting a proper parametrization, it is possible to define the
average, however the result will depend on the choice of the parametrization selected.
For example, all the following parametrizations are common to homographies:

1. A 3× 3 matrix (represents all homographies, uses 9 parameters).

2. A 3×3 matrix normalized so that a chosen entry is 1 (represents some homographies
using 8 params).

3. A 3 × 3 matrix normalized to have norm 1 (represents all homographies using 9
params).

4. The displacement vectors of 4 previously chosen points on the 4 image corners
(represents all homographies using 8 params).

Notice that parametrizations (2) and (3) are problematic. Parametrization (2) is not able
to represent all homographies, and the values of parametrization (3) are not a vector
space themselves. Between (1) and (4), we contend that it is better to use (4) because
only in (4) all parameters are measured with the same units. While the average of matrix
representations has no direct geometric interpretation, independently averaging point
locations has a direct interpretation.

In the context of RANSAC, we shall first illustrate this idea through a simple but clas-
sic example. Assume again that two images are related by a homography, each with some
detected feature points and a certain amount of matching pairs between both images. Let
us consider a single feature x0 from the first image that has its corresponding point y0 on
the second image (the match (x0,y0) does not necessarily need to be a detected match).
At each iteration RANSAC randomly picks matches, generates a hypothesized homog-
raphy Hk and computes its score using the whole dataset. This hypothesis in fact yields
a tentative match ŷ0 = Hk(x0). If the matches randomly selected were all inliers, then,
with high probability, ŷ0 will be close to the real matching point y0 on the second im-
age. Thus, after several lucky all-inlier iterations, many estimates close to y0 are actually
found.

All of these estimates are affected by two noise sources: the underlying “noise” of the
model hypothesis as explained before, and the measurement noise of the input points.
Provided both of them have zero mean and a symmetric distribution function, aggregat-
ing these estimates should yield values closer to the true point y0. However, since there
may be outliers in the input samples, it is better to assign a weight for each generated
hypothesis reflecting its reliability. Luckily, RANSAC already computes this measure,
which is its so-called score. Therefore, by weighting each of the resulting estimated points
using the RANSAC score and aggregating them by, for example, taking their weighted
mean or weighted geometrical median, the projected point will, with a high probability,
result closer to its true value y0.

When estimating a 2D transformation mapping points from one image into another,
all the information to be transformed lies within the first image, i.e., it is not important
what occurs to pixels lying outside it since they are not available. Although this may
seem obvious, it permits to pre-select points that can fully determine the extent of the
underlying transformation, minimizing the errors caused by quantification and the so-
called model “noise”. By using these points, it is possible to generate different estimates
for every hypothesis. These estimates could also be weighted by how “good” the hy-
pothesis is, i.e., the RANSAC score.
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More formally, let Xi, Yi be matching points where Xi ∈ C1, Yi ∈ C2, i ∈ 1, . . . , N ,
C1, C2 ⊂ R2 and xj ∈ C1, j ∈ 1, . . . , n with n � N predefined points on the first image.
For each iteration k with hypothesis Hk = φθk RANSAAC computes both the projected
predefined points

ŷkj = φθk(xj) for 1 ≤ k ≤ n (5.8)

and the RANSAC score

wk =
N∑
i

ρ
(
dist(φθk(Xi), Yi)

)
, (5.9)

where dist is usually the squared L2 distance dist(x,y) = ‖x− y‖22 and ρ is the cost
function. After K iterations, for each pre-selected point xj , RANSAAC aggregates the
different estimations ŷkj using the computed weightswk, resulting in trustworthy matches
(xj , ŷj)

ŷj = aggregate(ŷij , wi) (5.10)

with i ∈ {1, . . . ,K}. This procedure, in fact, could be regarded as a way to generate
“denoised” inlier matches, since xj could be any point on the first image, while ŷj will be
placed, with a high probability, close to the true matching point yj .

The RANSAAC algorithm adds a few lines to the traditional RANSAC method and an
almost negligible computational cost. In Algorithm 10, the traditional RANSAC method
is shown with yellow background. As seen within the lines with white background,
RANSAAC first verifies for each iteration if the hypothesis is acceptable, and then applies
it to the source points while storing its scores as weights. Finally, after iterating, if no
acceptable transform was found, it returns the traditional RANSAC result. However, if
several hypotheses were considered valid (i.e. had more inliers than the minV alidScore
parameter), the computed projected points are aggregated using their weights and the
algorithm returns the model that best fits these estimates.

Predefined Source Points

The source points that are a parameter for the method obviously depend on the global
transform being estimated. The cardinality of this basis should be at least equal to the
minimum number m of matches required to generate a single hypothesis, also known as
the minimum sample size (MSS). We simply pick points which can uniquely determine
the desired transform and minimize the noise inferred by model generation, as depicted
in Fig. 5.2. Any model that could be correctly estimated by sampling points on its ex-
tents is a candidate model for which this strategy could be applied. For a homography,
for example, the four points on the corners of the image should be selected. For a trans-
formation involving a homography and two radial distortion parameters that requires
either 5 or 6 matches to be computed, such as the one recently proposed by Kukelova et
al. [87], a point on the center of the top and/or on the left image border should be added.

Figure 5.2 – Suggested predefined source points (in red). Left: for homography estimation. Right:
for homography + distortion.
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Algorithm 10 Computing a 2D transformation using the RANSAAC algorithm

Require: X1, X2 ∈ N2 ×N : N matching points, minSamples ∈ N: minimum amount of
matches to compute the transform, srcP ts ∈ N2 ×K: vector with K = minSamples
input points, δd ∈ R: RANSAC distance threshold, minV alidScore ∈ N: minimum
score to consider an iteration valid, iters ∈ N: amount of iterations, p ∈ R: aggrega-
tion parameter.

1: maxScore← 0
2: for it = 1 to iters do
3: Xss1, Xss2 ← GetRandomSample(X1, X2,minSamples)
4: h← GenerateHypothesis(Xss1, Xss2)
5: inliers← EvaluateHypothesis(h,X1, X2, δd)
6: if #inliers > maxScore then
7: maxScore← #inliers
8: ransacRes← h
9: end if

10: if score > minV alidScore then
11: Add(dstP ts, Project(srcP ts, h)
12: Add(weights,#inliers)
13: end if
14: end for
15: if #dstP ts > 0 then
16: resP ts← Aggregate(dstP ts, weights, p) // See 5.3.2
17: return GenerateHypothesis(srcP ts, resP ts)
18: else
19: return ransacRes
20: end if
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Figure 5.3 – Two images related by a homography. Each of the points on the corner of the first
image are evaluated with 5 hypotheses. These destination points are aggregated to compute the
final transform.

Note that since the final aggregated points should be all inliers to the model, instead
of considering a minimal set of points for characterizing the final transform, it is possible
to sample more points. However, this strategy requires more per-iteration computational
resources therefore it is discarded.

5.3.2 Aggregation of Estimates

For the case of 2D parametric transformations, instead of simply returning the best hy-
pothesis, RANSAAC gathers, for each point of the predefined basis, a set of estimates
of its location on the second image together with a weight computed from the attained
RANSAC score of the underlying hypothesis that generated each estimate. These form
a weighted cluster, each point being associated the score of the hypothesis from which
it was derived. All of these estimates can then be aggregated to compute a more accu-
rate location for each point of the basis. This yields a minimum sample that permits to
recover the transform. In the example shown in Fig. 5.3, five possible hypotheses are
shown. Since the fifth hypothesis H5 (green arrow) obtained a lower score, it has less
influence on the resulting aggregation.

Two aggregation techniques were considered, namely the weighted mean and the
weighted geometric median [45]. To aggregate the points xi in the set C, with weights wi,
with i ∈ {1, . . . , |C|}, the weighted mean computes

wmean(C) =

 |C|∑
i=1

wpi xi

/ |C|∑
i=1

wpi

 , (5.11)

where p is a parameter of the aggregation procedure.
The weighted geometric median is defined as the point in the set achieving the mini-

mum sum of distances to the others, namely

wgmed(C) = argmin
y∈C

|C|∑
i=1

wpi ‖xi − y‖2 . (5.12)

It can be calculated using the Weiszfeld’s algorithm [187], which is a form of iteratively
re-weighted least squares [41] which iteratively computes

yi+1 =

 |C|∑
j=1

wpjxj

‖xj − yi‖

/ |C|∑
j=1

wpj
‖xj − yi‖

 , (5.13)
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where again p is a parameter of the method.
By using weighted aggregation schemes based on the RANSAC score, theminV alueScore

parameter becomes less important, and setting it as minV alueScore = minSamples
proved to be a good choice for projective transformations.

5.3.3 Local Optimization and its variants

One of the major improvements of the original RANSAC method, in terms of accuracy,
is to include an intermediate step every time a new “best” hypothesis has been found.
This step, known as the local optimization step, achieves improved results by using the
fact that models with “good enough” inlier supports are probably not distant from the
true underlying model. Therefore, by taking non-minimal samples from the inliers of this
new “best” model followed by a greedy strategy to refine the results, the LO-RANSAC
algorithm [39] and its variants [88, 127] improve systematically over RANSAC.

The local optimization step is shown in Algorithm 11. The method begins by taking
non-minimal samples of the inliers of the new best hypothesis found, and computes the
model by performing a least squares fit (GetModelLS method). Then, it computes the
inliers of this model for the whole dataset using a larger distance threshold (δd · mδd)
and uses these inliers to calculate a second model by least squares fitting. This second
model is later refined in an iterative re-weighted least squares fashion, by progressively
shrinking the distance threshold until its original value is met. The refined model with
the largest amount of inliers is then returned.

In practice, if an all-inlier sample is picked during a RANSAC iteration, this method
obtains excellent approximations to the optimal solution. However, since RANSAC only
keeps the best model defined by its inlier support, the last may not necessarily be the
optimal model, as a better model may have appeared during these inner iterations and
was subsequently discarded. This suggests that RANSAAC may significantly benefit
from this procedure, and it turns out that it does. Therefore, saving these intermediate
models is the only extra work needed to adapt this method to RANSAAC, as seen by the
lines with white background in Algorithm 11.

RANSAAC variants for Local Optimization

In its original formulation, the local optimization (Algorithm 11) was executed every
time a new best hypothesis is found during RANSAC iterations. However, what differs
between implementations is how the best values are updated. Both LO-RANSAC [39]
and its recent improved version LO+ [88] work as an “algorithm within an algorithm”,
meaning that the local optimization step does not update RANSAC’s internal best-so-far
variables (maxScore and ransacRec in Algorithm 10), but has its own variables. This
implies that the local optimization step is run every time a new best hypothesis is found,
which is in the order of the logarithm of the number of samples [88]. On the other side,
in USAC [127] the LO step updates the current best RANSAC values, which in general
yields a single execution of this procedure accelerating the overall RANSAC algorithm.

As for RANSAAC, two other possible schemes exist when performing aggregation.
One possibility is to aggregate only the models generated during the local optimization
step, which in general are closer to the optimal model. A second possibility, is to com-
bine these models with the models generated during the RANSAC iterations. This makes
sense since worse models will be given less importance based on their inlier score, there-
fore the resulting aggregation accuracy should not suffer.

Based on these two possibilities for using the LO step, and the two possible ways
to perform aggregation, four different versions of RANSAAC will be evaluated, namely
LO, LO+, FAST LO and FAST LO+, where FAST indicates the USAC approach while the

160



5.3. Random Sample Aggregated Consensus 161

Algorithm 11 Local Optimization

Require: X1, X2 ∈ N2 ×N : N matching points, Xi1, Xi2 ∈ N2 ×K: K inlier matches,
δd ∈ R: RANSAC distance threshold, sis ∈ N: size of inner sample, mδd ∈ R: thresh-
old multiplier, reps ∈ N: inner sample repetitions, lsIters ∈ N: least squares itera-
tions,

1: if K < 2sis then
2: return 0
3: end if
4: ∆δd = (mδd · δd − δd)/lsIters
5: maxScore← K
6: bestModel← []
7: models← []
8: weights← []
9: for it = 1 to reps do

10: Xss1, Xss2 ← GetRandomSample(Xi1, Xi2, sis) . Get non-minimal sample
11: hnonMSS ← GetModelLS(Xss1, Xss2) . Compute model using Least Squares
12: inliers← EvalH(hnonMSS , X1, X2, δd ·mδd)
13: Add(models, hnonMSS) . Save computed model
14: Add(weights,#inliers) . and its weight
15: Xii1, Xii2 ← GetInliers(X1, X2, inliers) . Select the inliers
16: hRLS ← GetModelLS(Xii1, Xii2) . Compute model using Least Squares
17: for j = 1 to lsIters do
18: inliers←EvalH(hRLS , X1, X2, δd ·mδd−j ·∆δd)
19: Add(models, hRLS) . Save computed model
20: Add(weights,#inliers) . and its weight
21: Xii1, Xii2 ← GetInliers(X1, X2, inliers) . Select the inliers
22: hRLS ← GetModelLS(Xii1, Xii2) . Compute model using Least Squares
23: end for
24: inliers← EvalH(hRLS , X1, X2, δd)
25: Add(models, hRLS) . Save computed model
26: Add(weights,#inliers) . and its weight
27: if #inliers > maxScore then
28: maxScore← #inliers
29: bestModel← hRLS
30: end if
31: end for
32: return maxScore, bestModel,models, weights
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+ sign indicates that only the hypotheses generated during the LO steps are aggregated.
In algorithm 12 we see the four possible variants. Each variant is understood by choosing
between yellow and green (FAST LO and LO) and between red and grey (all hypotheses
and only LO hypotheses) and keeping only lines in those colors together with the white
background lines. These variants are compared in section 5.4.2 and, as evidenced from
the results, the LO+ approach achieves the best results overall.

5.4 Experiments

We compared the proposed method and its variants with the traditional approaches both
qualitatively and quantitatively. Two applications were considered, namely the projec-
tive transform estimated using the DLT algorithm [160], and a homographic model that
allows distortions on both images. The latter was estimated using the H5 method of
Kukelova et al. [87], which, given five matches, computes one radial distortion coeffi-
cient per image (using the division model and assuming the distortion center is on the
center of the image), and a homography. Since robust homography estimation is, along
with fundamental matrix estimation, the most frequent global model estimation problem
in computer vision, we focus our evaluation on it. Nevertheless, we show results proving
that the proposed approach also works on the other transform type as well, and could
be potentially generalized to any parametric model obtained from points provided the
possibility of averaging those models is available.

This section is summarized as follows. Focusing on projective transformations, we
first show in section 5.4.1 some qualitative results comparing RANSAAC with the orig-
inal RANSAC method by registering images of paintings. Then a detailed quantitative
evaluation is performed by simulation in section 5.4.2. By fixing a ground-truth homog-
raphy and randomly adding outliers and noise, we begin this evaluation by studying
how the aggregation weight parameter p influences the results. Using the best found
values, we analyze the accuracy evolution of our approach along the iterations, com-
pared to RANSAC. This last test is interesting to gain insight about how fast the pro-
posed approach improves over the standard method. Before comparing RANSAAC to
the state-of-the-art methods, we test all its variants together with all proposed aggrega-
tion schemes to obtain the best candidate. From this experiment, the LO+ variant using
weighted geometric median (wgmed) aggregation proves to outperform the rest on al-
most every test. Since some state-of-the-art methods such as USAC [127] use adaptive
termination to save computational time, we study the influence of performing adaptive
termination on both RANSAC and RANSAAC and compare it against USAC. We then
perform a comparison between the proposed method and the state-of-the-art approaches
without and including a last-step minimization. We also evaluate the influence of per-
forming a last-step minimization on the inliers of RANSAAC, proving it is only necessary
when not enough “good” models where sampled during the iterations. We also test the
performance of RANSAAC under extreme conditions of 90% outliers and medium/high
noise and observed some striking results. We finish the evaluation by testing the versa-
tility of the method on randomly generated homographies, with and without adaptive
termination.

5.4.1 Qualitative Evaluation: Paintings Registration with Projective Transfor-
mations

We first evaluated both RANSAC and RANSAAC with weighted mean aggregation on
pictures of paintings taken in a museum under poor lighting conditions, which resulted
in considerable noise visible on the output images. The objective was then to register each
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Algorithm 12 Computing a 2D transformation using the (FAST) LO(+)-
RANSAAC algorithm. The four possible variants are represented by
only taking lines with specific background colors: FAST LO / LO and
using all hypotheses / using only LO hypotheses (+) .

Require: X1, X2 ∈ N2 ×N : N matching points, minSamples ∈ N: minimum amount of
matches to compute the transform, srcP ts ∈ N2 ×K: vector with K = minSamples
input points, δd ∈ R: RANSAC distance threshold, minV alidScore ∈ N: minimum
score to consider an iteration valid, iters ∈ N: amount of iterations, p ∈ R: aggrega-
tion parameter.

1: maxScore← 0
2: maxScoreLO ← 0
3: for it = 1 to iters do
4: Xss1, Xss2 ← GetSample(X1, X2,minSamples)
5: h← GenerateHypothesis(Xss1, Xss2)
6: inliers← EvalH(h,X1, X2, δd)
7: if #inliers > maxScore then
8: maxScore← #inliers
9: ransacRes← h

10: scoreBestLO, hBestLO, hsLO, wLO ← LO(X1, X2, inliers, δd)
11: Add(dstP tsLO, P roject(srcP ts, hsLO)) . Adds projected points for each

hypothesis
12: Add(weightsLO, wLO) . and their corresponding weights
13: if scoreBestLO > maxScore then
14: maxScore← scoreBestLO
15: ransacRes← hBestLO
16: end if
17: if scoreBestLO > maxScoreLO then
18: maxScoreLO ← scoreBestLO
19: ransacResLO ← hBestLO
20: end if
21: end if
22: if score > minV alidScore then
23: Add(dstP ts, Project(srcP ts, h)
24: Add(weights,#inliers)
25: end if
26: end for
27: if #dstP ts > 0 then
28: finalDstP ts← dstP tsLO
29: finalWeights← weightsLO
30: finalDstP ts← dstP ts ∪ dstP tsLO
31: finalWeights← weights ∪ weightsLO
32: resP ts← Aggregate(finalDstP ts, finalWeights, p) // See 5.3.2
33: return GenerateHypothesis(srcP ts, resP ts)
34: else
35: return ransacRes
36: return ransacResLO
37: end if
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photograph of a painting detail taken from a shorter range, with the whole painting [27].
By using SIFT features and matching its descriptors, we proceeded to register both im-
ages using both methods. An example can be seen in Fig. 5.4, where the camera distor-
tion was previously corrected and the images are related by a pure homography. After
registering both images, the resulting difference is mainly noise, however RANSAAC
performs better, as evidenced in the flamingo on the bottom part of the painting (middle
row of Fig. 5.4). When measurement noise is added to the input points on both images
(σ = 10), the difference in the registration performance becomes much more evident.
Edges due to misalignments appear all over the difference image in RANSAC, but are
dimmer on the RANSAAC results (bottom row of Fig. 5.4).

To get a better understanding of the behaviour of the method, Fig. 5.5 shows the
point distribution with their sizes according to their obtained weights using p = 5. As
can be seen, the RANSAC algorithm always returns the model given by the points with
the highest weight, ignoring every other estimation. By incorporating other weighted
estimations and aggregating them, a closer point to the ground truth is obtained for every
corner, therefore yielding a more precise homography.

5.4.2 Quantitative Evaluation by a Simulated Ground Truth. Application 1:
Estimating Projective Transforms.

To perform in depth experimentation we built a valid ground truth, composed of point
matches and a transform. In order to obtain a valid real-life transform, we used the tra-
ditional SIFT algorithm, followed by the application of RANSAC with 100000 iterations
between two images. To generate the matches, we randomly selected a fixed set of points
from the first image as inliers and we matched them to the points obtained by apply-
ing the ground truth transform to them. Finally, to incorporate outliers in the dataset,
we randomly picked other points from the first image and matched them with random
positions on the second image.

On this dataset, we compared several state-of-the-art methods and all variants of
RANSAAC. To measure the error, we averaged the symmetric transfer error in pixels
for every inlier. If φθ is the obtained model, Xi is an inlier point in the first image, Yi its
match and K the amount of inliers, then the error E is defined as

E =
1

K

K∑
i=1

‖φθ(Xi)− Yi‖2 +
∥∥φ−1

θ (Yi)−Xi

∥∥
2

2
. (5.14)

By varying the number of inliers, the percentage of outliers, the input noise and the
number of iterations performed, we computed for each experiment the average error Ē
and the standard deviations σE over 100 evaluations.

Note that for all presented results, the very same random samples for each iteration
were used for RANSAC, LO-RANSAC and RANSAAC, thus ensuring equal chance for
those methods. We used the implementation of USAC available from the author [127].

We evaluated the performance of the proposed approach under distinct conditions.
Since the noise level was known beforehand, the RANSAC δd parameter was set accord-
ing to section 5.1.2, and for RANSAAC this parameter was fixed to 2∗δd due to the higher
tolerance of the method with respect to this parameter. We took minV alidScore = 4 on
every situation and unless explicitly mentioned, the parameter p was set depending on
the amount of iterations performed and on the used aggregation scheme, indicated by
the results obtained in the following section.
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Figure 5.4 – RANSAC (left) and RANSAAC (right) registration results. Dynamic ranges were
stretched to highlight differences. Top: input images. Middle: registration difference using input
images. Bottom: registration difference by adding measurement noise of σ = 10 to the keypoint
positions on both images in pixels. Edges due to misalignments can be perceived in the difference
image, particularly by using the traditional RANSAC method. Painting: L’Air, ou L’Optique. Jan I
BRUEGHEL, 1621. Louvre Museum.
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Figure 5.5 – Resulting point distributions resized according to their weights and zoom in on each
one of the 4 corners for 1000 iterations. For visualization purposes, points with low weights
were not included. Notation: wmean and wgmed are the weighted mean and the weighted ge-
ometric median aggregation respectively. gmed and 2dmed represent aggregated results using
(unweighted) geometric median and 1D median on both dimensions respectively. The reader is
advised to zoom in to see better the positions of the various estimates.
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Aggregation Weights

Since there are outliers in the input data, the weighting of the hypotheses on the aggrega-
tion is mandatory. The weight parameter p defines how much a hypothesis is taken into
account in the aggregation process. As the parameter p increases, the weighting penalizes
the transforms with lower scores, while increasing the influence of higher scored ones.
Indeed, increasing the value p leads to eliminate the influence of poor hypotheses, but a
too high value will imply using too few transforms for the final aggregation. Eventually,
this leads the method to only use the best hypothesis, thus behaving like the traditional
RANSAC.

To this end, an experiment was performed to measure the impact of the parameter p
(and therefore how much poor hypotheses should be discriminated) for the cases of 20%
and 50% outliers for both the standard RANSAAC method as well as its LO-RANSAAC+
variant. For the case of the original approach, it turns out that the best value of p depends
on both the outlier percentage, but most importantly, on the number of hypotheses per-
formed. Indeed, as more hypotheses are drawn, they should be better discriminated,
suggesting higher values of p. Errors for both weighted mean and weighted geometric
median aggregations for the standard RANSAAC while varying the weight exponent p
for projective transforms are displayed in the first two rows of Fig. 5.6. For this method,
we conclude that for the weighted geometric median aggregation, the exponent p should
be set to 2 and 3 for both 1000 and 10000 iterations respectively. The best values of p for
the weighted mean range between 4 to 8. We chose to use p= 5 for 1000 iterations and
p = 7 for 10000 iterations. We observed that as soon as the value of p is high enough
so that it allows to correctly discriminate between inliers and outliers, then the resulting
accuracy does not vary significatively. This observation becomes more important for the
weighted mean aggregation, particularly because the weighted geometric median aggre-
gation is more robust against outliers.

We also performed the same test for the LO-RANSAAC+ variant of our approach
and its results are shown in the third and fourth row of Fig. 5.6. It turns out that for
the weighted geometric median aggregation, varying the p parameter does not affect the
resulting accuracy. This is due to the fact that the geometric median is more robust to out-
liers than the mean, therefore not requiring to completely avoid them in the aggregation.
For the weighted mean aggregation, although the accuracies did not vary much (note
that the error ranges are significantly lower between the first two rows and the second
two rows), the same pattern of higher values of p depending on the iteration quantity was
observed. For this method, we selected p = 11 for 1000 iterations and p = 15 for 10000,
although any p value higher than 7 offers similar performance.

Accuracy evolution along iterations

To give insight about the evolution of the error under RANSAC and under the proposed
approach, their accuracy was computed while iterating. To this end, we simulated input
points from a predefined real homography (i.e. computed from two images of a land-
scape), corrupted them with white Gaussian Noise of σ = 5 and added 50% outliers.
Using this input, we run RANSAC and our method 1000 times and calculated the er-
ror for every iteration (for RANSAAC, this implied performing aggregation) up to 20000
iterations. Finally, we computed the average error over all experiments per iteration.
In Fig. 5.7 left, we observe how RANSAC does not only converge slower in compari-
son to both aggregation schemes of RANSAAC, but also that it never reaches their ac-
curacy. However, as evidenced in the figure on the right where the first 500 iterations
are shown, RANSAC usually achieves better results at the beginning, while RANSAAC
usually requires more all-inlier samples to produce more accurate results. This is ex-
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Figure 5.6 – Comparison of the error (in pixels) and the standard deviations by varying the p ex-
ponent. Results are drawn for 100, 1000 and 10000 iterations. Model: projective transformations.
Method: LO-RANSAAC+. Inlier qty.: 1000. Noise: σ = 5. Averaged over 100 realizations. Big
dots indicate lowest errors. First and second rows are results of standard RANSAAC with 20%
and 50% outliers respectively, while third and four rows are results of using LO-RANSAAC+ under
the same outlier configuration. Left: Weighted mean aggregation. Right: Weighted geometric
median aggregation.
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pected, since RANSAAC gains from aggregating all generated samples, thus only having
a single “good” hypothesis and several “bad” ones will always benefit a method such
as RANSAC that just considers the single hypothesis with the highest obtained score.
However, as more all-inlier hypotheses are sampled, RANSAAC starts improving over
traditional RANSAC (in the figure this happens at 125 iterations).
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Figure 5.7 – Comparison of the error by iteration (in pixels) between RANSAC and the proposed
algorithm using wmean and wgmed aggregation. Model: projective transformations. Noise: σ = 5.
100 inliers and 50% outliers. Averaged over 1000 realizations. Left: Up to 20000 iterations. Right:
First 500 iterations.

Local Optimization and Aggregation Methods Evaluation

We evaluated both aggregation variants for the four proposed versions of RANSAAC
by varying the number of inliers, the percentage of outliers and the number of noise
iterations performed. Table 5.1 shows results for both the FAST LO and the FAST LO+
variants under three different noise levels (σ = 0.5, 2 or 5). For each method and noise
level, both 1000 and 10000 iterations were tested, each row corresponding to situations
presenting either 0%, 5%, 20% or 50% outliers respectively.

Several conclusions could be inferred from these results. As can be seen, by using
more inliers, every aggregated method improved, and in every case, the best performing
aggregation scheme was the weighted geometric median. Interestingly, this did not occur
when no local optimization steps were performed.

The reason behind this is evident, as both the outlier ratio and the number of inliers
increase, the probability of obtaining good models by random sampling becomes lower,
therefore averaging these not-so-close-to-the-optimal models will achieve better results
than taking their median, which will be far away from the optimal solution. However,
when better (i.e. closer to the optimal solution) hypotheses are available, then comput-
ing their median is not only more accurate but also drastically reduces the possible bias
caused by including outliers in the estimation. Indeed, performing LO steps provides ex-
cellent models, which justifies why wgmed aggregation improves over wmean. Another
remark is that as there are more inliers in the data, including the RANSAC hypotheses in
the aggregation improves over taking only the models generated on the LO steps. This
improvement however, is almost negligible when using the LO version of the method, as
observed from table 5.2. Indeed, both versions result in practically the same accuracy, im-
plying that the least computationally demanding version should be used (LO+). Again,
using the weighted geometric median aggregation improves over the weighted mean,
particularly when there are more inliers.

Finally, results for the original RANSAAC approach together with both their best lo-
cally optimized versions are shown in table 5.3. From this table we can infer that the LO+
method with weighted geometric median aggregation gives the best results in terms of
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Table 5.1 – Average errors and standard deviations for the different versions of RANSAAC using
both proposed aggregation schemes. For noises σ = 0.5, 2 and 5, each method was evaluated
with 100 and 1000 inliers using both 1000 and 10000 iterations. The four errors represent four
outlier ratios: 0%, 5%, 20% and 50%. Bold denotes the best performers.

σ FASTLO (wmean) FASTLO+ (wmean) FASTLO (wgmed) FASTLO+ (wgmed)
1k 10k 1k 10k 1k 10k 1k 10k

100 inliers

0.5

0.21±0.06 0.21±0.05 0.22±0.06 0.22±0.06 0.20±0.05 0.21±0.05 0.20±0.05 0.20±0.05
0.22±0.06 0.21±0.05 0.23±0.06 0.23±0.06 0.21±0.05 0.21±0.06 0.20±0.05 0.21±0.05
0.22±0.06 0.21±0.06 0.23±0.06 0.23±0.06 0.21±0.05 0.20±0.05 0.21±0.05 0.21±0.06
0.23±0.07 0.23±0.06 0.23±0.07 0.24±0.06 0.21±0.06 0.22±0.05 0.21±0.06 0.22±0.05

2

0.80±0.22 0.85±0.22 0.85±0.24 0.91±0.23 0.77±0.22 0.85±0.24 0.76±0.22 0.83±0.23
0.82±0.19 0.84±0.23 0.87±0.21 0.91±0.25 0.78±0.21 0.84±0.25 0.78±0.21 0.81±0.23
0.92±0.23 0.86±0.21 0.96±0.25 0.93±0.23 0.85±0.23 0.84±0.19 0.84±0.23 0.84±0.20
0.93±0.24 0.90±0.23 0.94±0.24 0.93±0.25 0.84±0.21 0.84±0.20 0.84±0.21 0.84±0.21

5

2.06±0.55 2.01±0.55 2.20±0.58 2.21±0.60 1.92±0.52 2.09±0.59 1.92±0.52 1.95±0.56
2.15±0.57 2.16±0.56 2.25±0.61 2.30±0.61 2.06±0.54 2.17±0.62 2.05±0.55 2.11±0.54
2.23±0.57 2.16±0.60 2.32±0.57 2.31±0.65 2.08±0.57 2.11±0.60 2.07±0.55 2.05±0.55
2.30±0.58 2.11±0.52 2.31±0.58 2.18±0.54 2.06±0.56 1.98±0.47 2.04±0.55 1.97±0.48

1000 inliers

0.5

0.10±0.03 0.07±0.02 0.14±0.04 0.13±0.04 0.08±0.02 0.07±0.02 0.07±0.03 0.07±0.03
0.11±0.03 0.07±0.02 0.14±0.04 0.13±0.04 0.08±0.02 0.07±0.02 0.08±0.05 0.07±0.04
0.12±0.03 0.09±0.02 0.14±0.04 0.13±0.04 0.07±0.03 0.07±0.02 0.07±0.03 0.07±0.03
0.14±0.04 0.11±0.03 0.15±0.05 0.13±0.04 0.08±0.04 0.07±0.02 0.08±0.05 0.07±0.03

2

0.39±0.10 0.30±0.08 0.53±0.18 0.53±0.13 0.27±0.08 0.28±0.08 0.28±0.15 0.30±0.11
0.45±0.12 0.30±0.08 0.56±0.15 0.53±0.16 0.29±0.09 0.28±0.07 0.30±0.11 0.30±0.12
0.48±0.12 0.33±0.08 0.55±0.16 0.50±0.13 0.29±0.12 0.27±0.07 0.30±0.14 0.28±0.09
0.57±0.17 0.46±0.12 0.60±0.25 0.53±0.16 0.35±0.22 0.29±0.10 0.36±0.25 0.30±0.15

5

1.09±0.26 0.75±0.20 1.44±0.36 1.31±0.39 0.73±0.20 0.66±0.18 0.77±0.38 0.71±0.30
1.10±0.24 0.79±0.22 1.42±0.37 1.31±0.40 0.73±0.20 0.72±0.22 0.77±0.38 0.77±0.32
1.16±0.33 0.86±0.22 1.36±0.46 1.25±0.37 0.73±0.27 0.69±0.21 0.81±0.55 0.69±0.25
1.48±0.51 1.17±0.28 1.53±0.54 1.38±0.43 0.93±0.61 0.78±0.33 0.99±0.73 0.88±0.67
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Table 5.2 – Average errors and standard deviations for the different versions of RANSAAC using
both proposed aggregation schemes. For noises σ = 0.5, 2 and 5, each method was evaluated
with 100 and 1000 inliers using both 1000 and 10000 iterations. The four errors represent four
outlier ratios: 0%, 5%, 20% and 50%. Bold denotes the best performers.

σ LO (wmean) LO+ (wmean) LO (wgmed) LO+ (wgmed)
1k 10k 1k 10k 1k 10k 1k 10k

100 inliers

0.5

0.20±0.05 0.20±0.05 0.20±0.05 0.19±0.05 0.19±0.05 0.19±0.05 0.19±0.05 0.20±0.05
0.20±0.05 0.20±0.05 0.20±0.05 0.20±0.05 0.20±0.05 0.20±0.05 0.20±0.05 0.20±0.05
0.21±0.05 0.20±0.05 0.21±0.06 0.20±0.05 0.21±0.06 0.20±0.05 0.21±0.06 0.20±0.05
0.21±0.06 0.21±0.05 0.21±0.06 0.21±0.05 0.21±0.06 0.21±0.05 0.21±0.06 0.21±0.05

2

0.75±0.19 0.81±0.22 0.75±0.20 0.81±0.22 0.75±0.20 0.81±0.23 0.75±0.21 0.81±0.22
0.76±0.19 0.81±0.22 0.76±0.19 0.81±0.21 0.76±0.20 0.81±0.23 0.76±0.20 0.81±0.22
0.83±0.22 0.83±0.20 0.83±0.22 0.83±0.20 0.83±0.22 0.83±0.20 0.83±0.22 0.82±0.20
0.84±0.19 0.82±0.21 0.84±0.19 0.82±0.21 0.82±0.19 0.81±0.21 0.82±0.19 0.81±0.21

5

1.90±0.52 1.91±0.55 1.90±0.52 1.90±0.56 1.88±0.51 1.90±0.55 1.88±0.50 1.91±0.55
2.02±0.49 2.07±0.51 2.02±0.49 2.07±0.51 2.02±0.51 2.06±0.53 2.01±0.51 2.06±0.52
2.05±0.53 2.03±0.56 2.05±0.53 2.01±0.57 2.03±0.53 2.03±0.55 2.03±0.54 2.03±0.55
2.01±0.56 1.94±0.46 2.01±0.55 1.94±0.46 1.98±0.52 1.96±0.48 1.98±0.52 1.97±0.48

1000 inliers

0.5

0.07±0.02 0.07±0.02 0.07±0.02 0.07±0.02 0.07±0.02 0.06±0.02 0.07±0.02 0.06±0.02
0.07±0.02 0.06±0.02 0.07±0.02 0.07±0.02 0.06±0.02 0.06±0.02 0.06±0.02 0.06±0.02
0.07±0.02 0.07±0.02 0.07±0.02 0.07±0.02 0.06±0.02 0.06±0.02 0.06±0.02 0.06±0.02
0.08±0.02 0.07±0.02 0.08±0.02 0.07±0.02 0.07±0.02 0.06±0.02 0.07±0.02 0.06±0.02

2

0.27±0.07 0.26±0.07 0.27±0.07 0.27±0.07 0.24±0.06 0.26±0.07 0.24±0.06 0.26±0.07
0.28±0.09 0.27±0.07 0.28±0.08 0.28±0.07 0.26±0.07 0.26±0.07 0.26±0.07 0.26±0.07
0.28±0.07 0.26±0.07 0.28±0.07 0.27±0.06 0.25±0.06 0.25±0.06 0.25±0.06 0.25±0.06
0.32±0.08 0.28±0.07 0.32±0.08 0.28±0.07 0.26±0.07 0.25±0.06 0.26±0.07 0.25±0.06

5

0.71±0.18 0.66±0.17 0.71±0.18 0.68±0.19 0.63±0.14 0.61±0.17 0.63±0.14 0.62±0.17
0.73±0.16 0.69±0.21 0.74±0.16 0.70±0.21 0.65±0.15 0.66±0.20 0.65±0.16 0.67±0.19
0.70±0.18 0.68±0.17 0.70±0.18 0.69±0.17 0.63±0.15 0.64±0.17 0.63±0.15 0.64±0.17
0.80±0.20 0.70±0.19 0.80±0.19 0.70±0.19 0.66±0.17 0.63±0.18 0.66±0.17 0.63±0.18

171



172 RANSAAC: RANDOM SAMPLE AGGREGATED CONSENSUS

Table 5.3 – Average errors and standard deviations for the different versions of RANSAAC using
both proposed aggregation schemes. For noises σ = 0.5, 2 and 5, each method was evaluated
with 100 and 1000 inliers using both 1000 and 10000 iterations. The four errors represent four
outlier ratios: 0%, 5%, 20% and 50%. Bold denotes the best performers.

σ wmean FASTLO (wmean) LO+ (wmean) wgmed FASTLO (wgmed) LO+ (wgmed)
1k 10k 1k 10k 1k 10k 1k 10k 1k 10k 1k 10k

100 inliers

0.5

0.23±0.06 0.21±0.05 0.21±0.06 0.21±0.05 0.20±0.05 0.19±0.05 0.25±0.07 0.23±0.06 0.20±0.05 0.21±0.05 0.19±0.05 0.20±0.05
0.24±0.06 0.21±0.05 0.22±0.06 0.21±0.05 0.20±0.05 0.20±0.05 0.27±0.08 0.23±0.06 0.21±0.05 0.21±0.06 0.20±0.05 0.20±0.05
0.26±0.07 0.21±0.05 0.22±0.06 0.21±0.06 0.21±0.06 0.20±0.05 0.29±0.09 0.23±0.06 0.21±0.05 0.20±0.05 0.21±0.06 0.20±0.05
0.45±0.14 0.26±0.06 0.23±0.07 0.23±0.06 0.21±0.06 0.21±0.05 0.61±0.22 0.30±0.08 0.21±0.06 0.22±0.05 0.21±0.06 0.21±0.05

2

0.89±0.23 0.87±0.23 0.80±0.22 0.85±0.22 0.75±0.20 0.81±0.22 1.02±0.27 0.92±0.27 0.77±0.22 0.85±0.24 0.75±0.21 0.81±0.22
0.91±0.23 0.86±0.23 0.82±0.19 0.84±0.23 0.76±0.19 0.81±0.21 1.01±0.28 0.91±0.27 0.78±0.21 0.84±0.25 0.76±0.20 0.81±0.22
1.03±0.27 0.89±0.20 0.92±0.23 0.86±0.21 0.83±0.22 0.83±0.20 1.21±0.34 0.97±0.24 0.85±0.23 0.84±0.19 0.83±0.22 0.82±0.20
1.76±0.48 1.03±0.23 0.93±0.24 0.90±0.23 0.84±0.19 0.82±0.21 2.39±0.74 1.23±0.36 0.84±0.21 0.84±0.20 0.82±0.19 0.81±0.21

5

2.20±0.63 2.07±0.57 2.06±0.55 2.01±0.55 1.90±0.52 1.90±0.56 2.42±0.66 2.29±0.67 1.92±0.52 2.09±0.59 1.88±0.50 1.91±0.55
2.39±0.61 2.22±0.56 2.15±0.57 2.16±0.56 2.02±0.49 2.07±0.51 2.72±0.73 2.40±0.73 2.06±0.54 2.17±0.62 2.01±0.51 2.06±0.52
2.58±0.69 2.25±0.62 2.23±0.57 2.16±0.60 2.05±0.53 2.01±0.57 2.95±0.84 2.47±0.77 2.08±0.57 2.11±0.60 2.03±0.54 2.03±0.55
4.60±1.55 2.47±0.63 2.30±0.58 2.11±0.52 2.01±0.55 1.94±0.46 6.00±1.87 2.98±0.89 2.06±0.56 1.98±0.47 1.98±0.52 1.97±0.48

1000 inliers

0.5

0.11±0.03 0.07±0.02 0.10±0.03 0.07±0.02 0.07±0.02 0.07±0.02 0.15±0.04 0.09±0.02 0.08±0.02 0.07±0.02 0.07±0.02 0.06±0.02
0.12±0.03 0.07±0.02 0.11±0.03 0.07±0.02 0.07±0.02 0.07±0.02 0.16±0.04 0.09±0.02 0.08±0.02 0.07±0.02 0.06±0.02 0.06±0.02
0.18±0.04 0.08±0.02 0.12±0.03 0.09±0.02 0.07±0.02 0.07±0.02 0.22±0.06 0.10±0.03 0.07±0.03 0.07±0.02 0.06±0.02 0.06±0.02
0.42±0.14 0.15±0.04 0.14±0.04 0.11±0.03 0.08±0.02 0.07±0.02 0.54±0.17 0.22±0.07 0.08±0.04 0.07±0.02 0.07±0.02 0.06±0.02

2

0.47±0.12 0.30±0.08 0.39±0.10 0.30±0.08 0.27±0.07 0.27±0.07 0.57±0.17 0.35±0.11 0.27±0.08 0.28±0.08 0.24±0.06 0.26±0.07
0.52±0.13 0.31±0.08 0.45±0.12 0.30±0.08 0.28±0.08 0.28±0.07 0.64±0.19 0.36±0.09 0.29±0.09 0.28±0.07 0.26±0.07 0.26±0.07
0.67±0.17 0.33±0.09 0.48±0.12 0.33±0.08 0.28±0.07 0.27±0.06 0.92±0.28 0.40±0.12 0.29±0.12 0.27±0.07 0.25±0.06 0.25±0.06
1.68±0.50 0.61±0.15 0.57±0.17 0.46±0.12 0.32±0.08 0.28±0.07 2.21±0.76 0.83±0.27 0.35±0.22 0.29±0.10 0.26±0.07 0.25±0.06

5

1.18±0.34 0.75±0.20 1.09±0.26 0.75±0.20 0.71±0.18 0.68±0.19 1.54±0.49 0.82±0.22 0.73±0.20 0.66±0.18 0.63±0.14 0.62±0.17
1.25±0.35 0.80±0.22 1.10±0.24 0.79±0.22 0.74±0.16 0.70±0.21 1.55±0.48 0.92±0.24 0.73±0.20 0.72±0.22 0.65±0.16 0.67±0.19
1.66±0.47 0.88±0.21 1.16±0.33 0.86±0.22 0.70±0.18 0.69±0.17 2.15±0.67 1.04±0.28 0.73±0.27 0.69±0.21 0.63±0.15 0.64±0.17
4.22±1.25 1.55±0.48 1.48±0.51 1.17±0.28 0.80±0.19 0.70±0.19 5.50±1.91 2.15±0.73 0.93±0.61 0.78±0.33 0.66±0.17 0.63±0.18

accuracy and stability on every analyzed case. It is remarkable how the wgmed aggre-
gation benefits from local optimization, evidenced by the increase in accuracy up to an
order of magnitude for 1000 iterations, 1000 inliers, 50% outliers and σ = 5. Finally,
performing more RANSAC iterations does not improve the results as considerably when
performing local optimization. Indeed, results could become slightly worse when per-
forming more than enough iterations since there are more possible bad hypotheses that
have to be correctly discriminated. For those cases, a higher value of the parameter p be-
comes necessary. In conclusion, adding local optimization to RANSAAC does not only
improve results but also enables the method perform fewer iterations, making it less
computationally demanding.

Similar conclusions are drawn by observing the performance as the noise increases in
Fig. 5.8 for 1000 iterations and Fig. 5.9 for 10000 iterations. From these, we observe that
non locally optimized RANSAAC aggregation methods require many more iterations to
become more accurate, and even so, they still do not improve over their locally optimized
counterparts. Also, averaging the models proved to be more dependent on the amount
of iterations than computing their geometric median, which seems more stable and with
faster convergence.

Results by using adaptive termination

We compared the LO-RANSAAC+ algorithm using both proposed aggregation schemes
together with USAC, RANSAC and RANSAC followed by performing least squares min-
imization on the results. On every case, a maximum of 1000 iterations was allowed for
all methods, although the methods that included adaptive termination varied this pa-
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Figure 5.8 – Performance comparison through noise between the different aggregation and LO
variants for RANSAAC by performing 100 experiments. Scenario: 50% outliers, 1000 inliers and
1000 iterations. Left: Average error. Right: Standard deviation of the error.
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Figure 5.9 – Performance comparison through noise between the different aggregation and LO
variants for RANSAAC by performing 100 experiments. Scenario: 50% outliers, 1000 inliers and
10000 iterations. Left: Average error. Right: Standard deviation of the error.

rameter dynamically during the execution, based on Eq. (5.5) using η0 = 0.99. Results
show average errors for 100 executions, where the noise value was fixed to σ = 5 and
the proper distance values were set for every method according to section 5.1.2. USAC
results are in fact duplicated since adaptive termination was always activated, however
it is shown in this figure for comparison purposes.

Several conclusions are drawn from results shown in Fig. 5.10. First, while the
weighted mean aggregation slightly suffers from using adaptive termination, the weighted
geometric median aggregation in fact slightly benefits from it. The reason for this is again
the same as mentioned before, and is related with the fact that making more iterations
implies also having to better discriminate between samples. Also, when fewer inliers
are available, both LO+ aggregation methods beat USAC, however with adaptive ter-
mination, the weighted mean achieves slightly worse results than USAC when adaptive
termination is used. This does not occur using wgmed aggregation.

Comparison with state-of-the-art methods.

We compared the proposed approach with several state-of-the-art methods. As repre-
sentatives of RANSAAC, we included both aggregation methods for the most accurate
LO-RANSAAC+ algorithm, and we added the faster FASTLO-RANSAAC with weighted
geometric median aggregation. They were compared to all methods implemented in
the GML RANSAC Matlab Toolbox [102], although the two best performing were kept,
namely MSAC [173] and ZHANGSAC [190]. The recent USAC algorithm [127] was also
included in the comparison, together with two minimization methods applied directly
on the inliers using an oracle: the linear least squares methods using the DLT algorithm
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Figure 5.10 – Comparison by using adaptive termination to the proposed approach. Left: 100
inliers. Right: 1000 inliers. Top: 20% outliers. Bottom: 50% outliers.

and the non-linear method which minimizes Sampson’s approximation to geometric re-
projection error [70].

With only 100 inlier matches available, the average errors together with their stan-
dard deviations are shown in Fig. 5.11 for 5%, 20% and 50% outlier ratios. In these
experiments, USAC did not show any reasonable gain with respect to the LO-RANSAC
method. On the other side, the three compared variants of RANSAAC improve consid-
erably over USAC, particularly as the noise gets higher. Furthermore, their accuracies
were close to the methods that used an oracle to discriminate between inliers and out-
liers. Between the three variants, the LO-RANSAAC+ using wgmed aggregation seems
to be slightly better, however this difference is almost negligible. Finally, any RANSAC
variant that does not include a local optimization step was not able to achieve acceptable
results.

When there are more points in the input data, the discrimination between inliers
and outliers becomes more challenging. However, provided it is possible to do so cor-
rectly, the errors achieved are lower due to the larger amount of matches, as seen in
Fig. 5.12. Again, all non locally optimized approaches fail in this context. The LO-
RANSAC approach is able to attain good results, although they are always worse than
the state-of-the-art USAC method, contrary to the previous scenario. Again, the three
RANSAAC variants improve over USAC, although by a lower margin. Nevertheless,
LO-RANSAAC+ with wgmed aggregation does still beat USAC by a wide margin and is
again close in performance to the methods that use an oracle. What is more, when there
are 75% outliers, the USAC approach failed, therefore is not shown in the figure, while
the LO-RANSAAC+ method still achieves highly accurate and stable results.

Interestingly, these RANSAC modifications, along with many others, could easily fit
into the proposed RANSAAC algorithm. For example, both the Td,d test as well as the
SPRT test could be used to early discard bad hypotheses, the MSAC scoring could be in-
corporated in the weighting of the input samples, and any improved sampling technique
such as PROSAC, NAPSAC or GroupSAC would provide better hypotheses to perform
the aggregation.
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Figure 5.11 – Avg. errors Ē and their std. dev. σE by varying noise for several RANSAC and
RANSAAC variants. Experiment: 100 inliers, 1000 iterations and different amounts of outliers.
First row: 5% outliers. Second row: 20% outliers. Third row: 50% outliers.
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Figure 5.12 – Avg. errors Ē and their standard deviations σE by varying noise for several
RANSAC and RANSAAC variants. Experiment: 1000 inliers, different amounts of outliers and
doing 1000/10000 iterations. First row: 5% outliers. Second row: 20% outliers. Third row: 50%
outliers. Last row: 75% outliers and 10k iterations.
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Comparison by adding last-step minimization.

Despite the fact that RANSAC ignores the measurement noise on the input estimates,
the authors suggest to perform an a-posteriori minimization on the calculated inliers after
finishing the iterations. To this end, we compared every considered algorithm by ap-
plying this final minimization step, together with the already mentioned variants of our
approach. For the simple sake of comparison, the minimization was always performed
using the DLT algorithm, although results computed by minimizing the Sampson ap-
proximation to the geometric reprojection error showed no considerable difference. Note
that for the USAC method the results got worse after performing the last step minimiza-
tion, therefore the original method is included in the comparison.

Results shown in both figures 5.13 and 5.14 respectively do not differ considerably
with the corresponding results when omitting the last step. This is because the most accu-
rate methods all include the local optimization step, which already performs least squares
minimization, although in a heuristic approach which improves the overall precision of
the method. Therefore, even though we can observe that all methods not including this
LO step improve considerably with respect to not applying last step minimization, they
are still not able to compete with LO approaches. On the other end, LO-RANSAC sees a
non-negligible improvement both in accuracy and stability by adding the final minimiza-
tion, even though it still does not improve over USAC.

What happens with RANSAAC if adding a last-step least squares minimization.

We studied the performance of RANSAAC by adding a last-step least squares minimiza-
tion using the inliers, computed by performing an extra evaluation of the dataset and
counting the input points in a similar way as the standard RANSAC algorithm, using the
δd parameter.

We show in Fig. 5.15 the difference between the error obtained using the original ap-
proach and the error after performing the last-step minimization. This means that when
the values go below zero, performing the last step affects negatively the accuracy of the
method. On the contrary, when values go higher than zero, it justifies the minimiza-
tion. Several RANSAAC alternatives were evaluated for different outliers and iterations
scenarios.

We deduce from the figures that when “enough” iterations are performed, the min-
imization should be avoided. Also, the number of iterations considered as “enough”
depends on the evaluated variant of RANSAAC. For the case of 100 inliers the last-step
minimization should definitely be avoided since 1000 iterations seem to be adequate
for almost every method. The exception for this is the standard non-locally optimized
RANSAAC method where for high outlier percentages, it shows a notable accuracy gain
after performing this last step.

With more inliers in the input data, the use of a last-step minimization becomes more
justified, particularly with high outlier percentages and lower amounts of iterations.
However, it should be noted that both LO+ variants, which as shown before usually
achieve the best results, seem to suffer by using this last step. This is even more evident
for the wgmed aggregation, the most accurate method. Therefore, to conclude, the effi-
ciency of the method determines the amount of iterations to be considered as “enough”,
and when this is the case, performing a last-step least squares minimization should be
avoided. In our results, the LO-RANSAAC+ method with wgmed aggregation proved to
be the most efficient with respect to the amount of iterations needed. In fact, although
not practical, if it were possible to check whether applying this step improves over not
doing it, then this would indicate if more iterations are required.
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Figure 5.13 – Avg. errors Ē and their std. dev. σE by varying noise for several RANSAC and
RANSAAC variants. Experiment: 100 inliers, 1000 iterations and different amounts of outliers.
First row: 5% outliers. Second row: 20% outliers. Third row: 50% outliers.
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Ē: 10000 its with 1000/4000 inlier ratio.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Noise std. dev.

0

0.0267

0.0533

0.08

0.1067

0.1333

0.16

0.1867

0.2133

0.24

0.2667

0.2933

0.32

0.3467

0.3733

0.4

S
td

. D
ev

. (
pi

xe
ls

)

10000 its.: Std. Dev. of errors with 75% outliers and 1000 inliers

RANSAC+R
MSAC+R
ZHANGSAC+R
USAC
LORANSAC+R
FASTLO-RANSAAC (wgmed)
LO-RANSAAC+ (wmean)
LO-RANSAAC+ (wgmed)
LS (oracle)
NL LS (oracle)

σE : 10000 its with 1000/4000 inlier ratio.

Figure 5.14 – Avg. errors Ē and their standard deviations σE by varying noise for several
RANSAC and RANSAAC variants. Experiment: 1000 inliers, different amounts of outliers and
doing 1000/10000 iterations. First row: 5% outliers. Second row: 20% outliers. Third row: 50%
outliers. Last row: 75% outliers and 10k iterations.
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Figure 5.15 – Average difference of errors between different versions and aggregations for
RANSAAC by adding a last step least squares minimization. Each row represents a different
RANSAAC version. In order of appearance, they are: RANSAAC with wmean aggregation,
FASTLO with wmean, FASTLO with wgmed, LO+ with wmean and finally LO+ with wgmed ag-
gregation. Left: 100 inliers. Right: 1000 inliers. Values lower than zero implies performance
degradation after last-step minimization.
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Performance under high outlier ratios

We tested our method under extreme situations with high outlier ratios. We evaluated the
accuracy of different algorithms with 1000 inliers and 9000 outliers, using both 10000 and
20000 iterations. In table 5.4 results are shown under two noise levels: mild/moderate
noise (σ=2) or high noise (σ=5). Even under these extreme conditions, while RANSAAC
failed, as evidenced by bothwmean andwgmed columns on the table, the LO-RANSAAC+
method was still able to achieve extremely low error values. On the contrary, the RANSAC
method failed considerably, even after applying the last step minimization, while LO-
RANSAC did not achieve errors of under a pixel in average even by using 20000 itera-
tions. Furthermore, USAC did not return any results. Interestingly, the achieved preci-
sion of the LO-RANSAAC+ is close to the accuracy obtained by using an oracle, although
there is still some room left for improvement.

σ wmean LO+ wmean wgmed LO+ wgmed RANSAC+LS LO-RANSAC USAC LS (oracle)
10k 20k 10k 20k 10k 20k 10k 20k 10k 20k 10k 20k 10k 20k -

2 621.70 87.13 0.53 0.46 303.63 26.60 0.36 0.31 49.15 19.90 16.68 1.76 − − 0.28
5 45.61 48.48 1.35 1.38 33.16 42.18 0.94 1.15 23.94 27.69 4.35 6.30 − − 0.74

Table 5.4 – High outlier ratio test: average errors of both aggregation methods for RANSAAC
and LO-RANSAAC+, compared with RANSAC with last step least squares minimization (DLT),
LO-RANSAC, USAC and computing LS on the inliers with an oracle. For noises σ=2 and 5, each
method was evaluated with 1000 inliers using both 10000 and 20000 iterations and 90% outliers.
The averages are over 50 realizations.

Performance evaluation using random homographies

We also tested the robustness of the proposed approach to different homographies. We
used the RANSAC toolbox of Zuliani available online [192] to simulate random homo-
graphies. These homographies H are calculated as

H =

 C Cγ − S Tx
S Sγ − C Ty
Px Py 1

 , (5.15)

where

C = s cos(φ), S = s sin(φ),

s = 1 + (0.5 · (rand− 0.5)),

φ = 30π(rand− 0.5),

Tx = randn, Ty = randn

γ = 0.05 · randn,
Px = 1e−7 · randn, Py = 1e−7 · randn,

rand is a random number uniformly sampled in the [0, 1] interval and randn is a ran-
dom number sampled using the standard normal distribution. Note that both rand and
randn refer to different random values and should not be interpreted as the same vari-
able/number.

Then, we evaluated both LO-RANSAAC+ aggregation methods together with USAC
[127] which proved to be the best state-of-the-art approach during our previous tests and
again, aided by an oracle, the least squares minimization of the Sampson approximation
to the geometric reprojection error. The experiment again consisted in averaging the error
over 100 trials by varying the noise and the inlier/outlier configuration. The amount
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of iterations was set to 1000. Differing from the previous experiments where both the
homography and the inliers were fixed, a new random homography and random inliers
sampled from it were generated for each trial. Then, as before, outliers were injected in
the input data by picking random positions on both images, and finally Gaussian white
noise was added to the final points.

Results confirmed the improvement of LO-RANSAAC+ over USAC as shown in Fig.
5.16, validating the versatility of the approach. It should be noted that with low inlier
counts, wmean obtains more accurate and stable results (i.e. with lower standard devia-
tion) than wgmed. This is because for smaller datasets, the RANSAC approach tends to
make less mistakes when discriminating the inliers from the outliers, and so, averaging
only good hypotheses achieves better results than using their median. Indeed, as the
amount of matches increases, the probability of including outliers in the aggregation gets
higher, therefore taking the median becomes more robust improving over the average.

As a final test, instead of fixing the amount of iterations performed, we evaluated the
same methods using adaptive termination (see sec. 5.1.1). Again the maximum number
of iterations was set to 1000, however in practice the algorithm performed around 12
and 85 iterations for 20% and 50% outliers respectively, together with a single LO step.
Impressively, even by taking such low amount of iterations, the method still managed to
improve over USAC. However, this did not occur using wmean aggregation for the case
of 1000 inliers, due to its already observed necessity to get more models in order for the
average to be closer to the optimal solution. A possible workaround for this, validated
empirically, was to double the theoretical number of iterations given by Eq. 5.5. On the
contrary, the LO-RANSAAC+ method with wgmed aggregation obtained more accurate
results than USAC on every case.

Lastly, we observed some instability for our approach when using 100/200 inlier ratio
and σ = 5. We believe this peak must have been caused by some homography which was
not correctly averaged. In fact, some degenerate cases of homographies would not be
correctly aggregated by using the approach described in section 5.3.1. By considering the
horizon of an homography as all points lying in the line where the scalar product of the
third row of the homography matrix by any of these points gives zero, then data points
close to this line will be projected extremely far away from the second image, therefore
their average will not be precise. What is worse, because of the noise on the input data,
each “good” homography, i.e. sampled from all inliers, will be noisy. Then it is possible
for one of the preselected points to lie close but on different sides of the horizon line for
two different valid homographies, so when projected, they end up on opposites sides
of the image and their average does not follow the geodesics of the space. A more in-
depth study on this subject is envisaged in the near future. Nevertheless, it should be
pointed out that for most “real life” homographies, the probability of occurrence of such
degenerate situations is very low.

5.4.3 Application 2: Estimating Homography+Distortion

The recently proposed method [87] to estimate an homography and a distortion coef-
ficient for each image was evaluated to test the robustness of the proposed approach
against different model “noises”. In this case, the available algorithm to compute such
model assumes only 5 input matches, and it is not possible to perform a least squares
like minimization based on the authors supplied code. Therefore, this is an interesting
case in which, evidently, no local optimization is possible as is, and no last step min-
imization could be applied. Therefore, we restricted ourselves to evaluating the orig-
inal RANSAAC approach using wmean aggregation, comparing it with the RANSAC
method, as used in the author’s work.

As seen in Fig. 5.18, the method outperforms RANSAC in every evaluated experi-
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Figure 5.16 – Avg. errors Ē and their standard deviations σE by varying the homography and
the input matches for each trial, using 1000 iterations. First row: 20% outliers and 100 inliers.
Second row: 50% outliers and 100 inliers. Third row: 20% outliers and 1000 inliers. Fourth
row: 50% outliers and 1000 inliers.
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Figure 5.17 – Avg. errors Ē by varying the homography and the input matches for each trial, using
adaptive termination. Top: 100 inliers. Bottom: 1000 inliers. Left: 20% outliers. Right: 50%
outliers.

ment on both accuracy and stability, and the difference in performance gets higher as the
amount of iterations increase, particularly for higher outlier percentages. This experi-
ment proves the versatility of our approach compared to other more complex models.

5.5 Concluding Remarks

In this chapter we introduced a simple, yet powerful method that clearly improves on
other RANSAC strategies in presence of measurement noise, by combining the random
consensus idea using samples with minimal cardinality with a statistical approach per-
forming an aggregation of estimates. This comes with an almost negligible extra com-
putational cost. Due to its statistical nature, it also facilitates the always difficult task
of parameter selection. What is more, most of RANSAC enhancements easily fit into
the proposed method. By adding local optimization to RANSAAC, the resulting accu-
racy and stability proved to be top-notch surpassing every state-of-the-art algorithm.
Moreover, it succeeded in accurately estimating models under 90% outliers, a situation
where most current state-of-the-art approaches fail. Nevertheless, other RANSAC exten-
sions could still be used to improve even further the results. We propose the following.
First, to modify the evaluation step by using the method proposed in [129] or to replace
the hard thresholding-based scoring with a more flexible approach such as the used in
MSAC [172]. Second, to modify the random sampling strategy by using the PROSAC ap-
proach [36] or the more recent proposed guided sampling methods such as residual sort-
ing [32] or higher than minimal subset sampling [164]. Finally, to accelerate the method
by discarding hypotheses before computing their score, by using, for example, the ran-
domized RANSAC approach [37]. This leaves space for further improvement.

As a future work, a more thorough evaluation of the proposed 2D transformation
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Figure 5.18 – Avg. errors Ē and their std. dev. σE by varying noise for RANSAC and RANSAAC
(weighted mean) with different iterations (1000 and 10000), quantity of inliers (100 and 1000) for
the H5 transformation [87]. Top: 5% outliers. Bottom: 50% outliers.
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averaging technique is required. As seen in the experiments, the approach seems to fail
for some degenerate homographies, and a workaround should be explored. Particularly,
since the problem appears to be caused by averaging models which project points far
away from the second image, or on inverted positions, it seems appropiate in this case to
avoid the aggregation on that particular data point or to treat these cases exceptionally.

Finally, we plan to extend the method to the case of epipolar geometry estimation
as well as to investigate its statistical justification. We already tested our approach for
essential matrix estimation, by averaging on the essential manifold [174], and achieved
improved results over RANSAC. Another objective would be to adapt this method to
multi-model detection, which is envisaged using local aggregation in a mean-shift [31]
fashion.
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Chapter 6

Conclusions

This thesis studied a major problem in image processing: image registration. Aligning
noisy images of the same scene with high accuracy is often required in several applica-
tions, particularly in remote sensing. Capturing high resolution images of Earth from
satellites orbiting at 700km in space under harsh conditions is a challenging task that be-
gun as early as the 1960s. Thanks to the evolution of technology, the Internet, GPS nav-
igation and commercial applications such as Google Earth, Earth-observation through
satellites has flourished in the last decade, increasing the demand for higher resolutions
and better image quality. In this thesis we proposed effective numerical solutions for
two possible applications that aim at meeting these demands using currently available
on board hardware, which enables them to be implemented on future Earth-observation
satellites. Indeed, both proposed solutions have been considered by CNES, are now im-
plemented in hardware and are being thoroughly evaluated.

From a scientific point of view, it was noted throughout this thesis that a shift es-
timation method based on image gradients, dating back to the 80s, had been unjustly
discarded or ignored by the remote sensing community. This method is proved by the
present dissertation to be extremely precise if carefully refined, improving over every
state-of-the-art method used for the studied topics. Furthermore, it is computationally
cheap, which makes it an outstanding candidate to be implemented on low processing
power satellite hardware.

This method was indeed proposed for measuring the wavefront aberrations, caused
by the deformation of the main mirror in Earth-observation satellites, through a Shack-
Hartmann wavefront sensor. It achieved results that improve over the current state-of-
the-art by profiting from the small displacements present in a closed-loop system. As
future work, it would be interesting to evaluate the presented method in an adaptive op-
tics context, in which the wavefront aberrations are caused by the light passing through
the earth’s atmosphere. In such conditions, these aberrations are typically of higher mag-
nitudes, implying larger displacements that complicate the use of gradient-based shift
estimation approaches. However, since this application is ground-based, the available
computational resources are considerably higher, which would allow to implement the
proposed solution by increasing the amount of scales and/or iterations.

The last contribution of this thesis is related to RANSAC, undoubtedly the most pop-
ular computer vision method to robustly estimate transformations under the heavy pres-
ence of outliers and measurement noise. This iterative method generates multiple ran-
dom hypotheses and returns the one which gives the maximum consensus among the
input data. Each hypothesis is generated using minimalistic samples taken randomly.
Therefore, often many hypotheses are drawn using inlier samples, thus generating mod-
els that approximate the one being sought. However, only the hypothesis with the largest
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consensus is kept, discarding all others. This observation led to RANSAAC, a framework
that by aggregating such hypotheses, systematically improves over RANSAC. Further-
more, aggregating 2D transformations present in real-life applications adds a negligible
cost to the overall computational cost of RANSAC. Therefore, by combining the ran-
dom sampled consensus idea with a statistical approach that aggregates models, a new
variant of RANSAC was proposed that improves over every state-of-the-art method. En-
visaged for the future is the application of this framework in the estimation of other
models. In particular, to improve the estimation of the essential/fundamental matrix
which relate corresponding points in stereo images. To this end, possible methods for
essential/fundamental matrix aggregation are being studied.
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Appendix A

Fast Interpolation Methods. Focus on Image Resampling for
Shift Estimation on Satellite Images.

A full study of interpolation methods was presented in this appendix. Fourier interpolation
gives the best results without a heavy computational cost, although it is still more expensive
than other methods such as nearest neighbor, bilinear and biquadratic. Among low cost meth-
ods, the one which gives the best results seems to be Schaum2. Other approaches that prefilter
the data before interpolating usually achieve improved results. Between them, oMoms3 and
BSpline2 or BSpline3 seems to be a good trade between cost and precision. If low computa-
tional cost is required, both bicubic and biquadratic methods should be considered. Bilinear
interpolation usually produced blurred results, and its use is not advised unless extreme speed
constraints. Finally, all interpolation methods presented here can be evaluated online on the
IPOL Journal [62].

A.1 Introduction

Interpolation is the process of estimating the intermediate values of a continuous function
from discrete finite samples. It is frequently used in image processing to magnify or re-
duce images and to correct spatial distortions. It is also used in problems where sub-pixel
precision is required, such as our case of study. In order to perform image registration, an
interpolation method is generally also required to resample one of the images on the grid
of another. However, as it is required that the algorithm is run on a satellite in real-time,
the complexity of the interpolation algorithm should be carefully taken into account.

In this report, we study several methods for image interpolation, and their implemen-
tations in order to achieve good interpolation results while minimizing the computational
cost. A complete panorama of interpolation methods will be given, with their respective
complexities and interpolation results.

A.1.1 Problem statement

Given an input image f with uniformly-sampled pixels fi,j , the goal of interpolation is
to find a function g(x, y) satisfying

fi,j = g(i, j) ∀i, j ∈ Z (A.1)

such that g approximates the underlying function from which v was sampled. Another
way to interpret this is that v was created by subsampling, and interpolation attempts to
invert this process.

We will first discuss linear methods for interpolation, including nearest neighbor, bi-
linear and bicubic interpolation. Then we will discuss splines and finally we will explain
sinc interpolation and its approximations. We focus on separable interpolation, so most
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FAST INTERPOLATION METHODS. FOCUS ON IMAGE RESAMPLING FOR SHIFT

ESTIMATION ON SATELLITE IMAGES.

of what is said to one-dimensional interpolation applies as well to N-dimensional sep-
arable interpolation. For example, figure A.1 shows how a 1D interpolation method is
extended in 2D, by first interpolating in the horizontal direction and then interpolating
each of these results in the vertical direction.

Figure A.1 – Interpolation of the point (x, y) in a 4× 4 neighborhood.

A.1.2 Interpolation function and interpolation kernels

For equally spaced data in 1-D, if f is a sampled function and g is the corresponding
interpolation function, then many interpolation functions can be written in the form

g(x) =
∑
k

cku

(
x− xk
h

)
(A.2)

where h represents the sampling increment, the xk’s are the interpolation nodes and u
is called the interpolation kernel. The ck’s, as will be explained later, are parameters that
depend upon the sampled data fm, and are selected so that the interpolation condition
(A.1) is satisfied. For our particular problem, we will assume h = 1 and that the xk’s are
the integers, which leads to the following interpolation function

g(x) =
∑
k∈Z

cku(x− k) (A.3)

A.1.3 Interpolation kernel characteristics

The interpolation kernel in (A.3) converts discrete data into continuous functions by a
convolution-like operation. It has a significant impact on the numerical behavior of in-
terpolation functions and due to their influence on accuracy and efficiency, they can be
effectively used to create new interpolation algorithms.

Interpolating function

Among the requirements of an interpolating function, the most important one is that it
has to be symmetric, in order to ensure invariance to mirror images. Another desirable
property is that u(0) = 1 and u(k) = 0 when k is any nonzero integer. If this is the case,
then u(x− k) is zero unless x = k, then

g(j) =
∑
k∈Z

cku(j − k) = cj

190



A.1. Introduction 191

and since the interpolation condition requires that g(j) = fj ∀j ∈ Z, then cj = fj . In other
words, the ck’s in (A.3) are replaced by the sampled data, which implies a substantial
computational improvement over interpolation schemes such as B–splines, where the
interpolation kernel is not zero for nonzero integers and thus, the ck’s must be determined
either by solving a tridiagonal matrix problem or by pre-filtering the input data as it will
be explained later in this report. If the interpolation kernel in (A.3) holds this property, it
is said to be an interpolating function, and can be written as:

g(x) =
∑
k∈Z

fku(x− k) (A.4)

If the interpolation kernel does not hold this property, then it is called approximator [89].

Kernel support

The support of the kernel refers to how many data samples it requires in order to generate
a result. The larger the support, the slower the interpolation. However, including more
samples in the calculations generates improved interpolation results, as will be shown.
So if S is the support of the kernel, then

g(x) =

∞∑
k=−∞

cku(x− k) =

|S|
2∑

k=− |S|
2

cku(x− k)

implying fewer calculations to perform.

Frequency response and ringing artifacts

As it will be seen in the results, kernels with considerable side lobes in the spatial do-
main and high support usually produce visible ringing artifacts, in particular around
high frequency edges of the image, as illustrated in figure A.2. This is caused by a brutal
frequency cutoff as the one obtained by convolution with the Sinc kernel. To avoid ring-
ing effects, the filter must decay slowly and tend to zero as the frequency increases. So
it must have a reverted bell shape like, for example, the Butterworth filter. This ringing
artifacts are simply explained by the Gibbs phenomenon [77].

(a) Image showing ringing artifacts. 3 levels
on each side of transition: overshoot, first
ring, and (faint) second ring.

(b) Original image

Figure A.2 – Ringing artifacts example
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Figure A.3 illustrates why smaller side lobes in the spatial domain are desired when
strong intensity changes occur in an non-bandlimited signal. Since there is a strong dis-
continuation in the signal, when the interpolation kernel has significant side lobes, the
influence of those side lobes increases the interpolation error, while, for example, for the
simple linear interpolation method, since no side lobes in the kernel exist (also due to
its compact support), smaller errors are introduced in the results. This example suggests
two possible solutions: either limiting the support of the interpolation kernel (which may
lead to worse interpolation results, specially if we try to interpolate high order polyno-
mials), either minimizing the side lobes of the interpolation kernel.

Figure A.3 – Side lobes impact on a non-bandlimited signal (Heaviside function) by comparing
Sinc interpolation (left) to Linear interpolation (right). Red circles represent the samples, the
dotted lines show the original signal and the green lines are the interpolation results. The strong
discontinuity in the signal implies ringing on the results using sinc interpolation.

Approximation order

An interpolation method has approximation order J if it reproduces polynomials up to
degree (J − 1).

Let g be the interpolated function and u be the interpolation kernel defined as in
the previous section. The Strang–Fix conditions [166] provide the following equivalent
conditions to determine the approximation order:

• u has approximation order J ; i.e., there exist weights pn[k] such that

xn =
∑
k∈Z

pn[k]u(x− k)

,
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• û(0) = 1, û(j)(2πk) = 0 ∀k ∈ Z∗, j = 0, . . . , J − 1

•
∑

k∈Z(x− k)ju(x− k) = µj ∀x ∈ R, j = 0, . . . , J − 1

where µj depends on j only, û(j) denotes the jth derivative of û and Z∗ := Z\{0}.

Two-Step Interpolation

Besides being a desirable property due to speed reasons, that u in (A.3) must be interpo-
lating can be an inconvenient restriction. It complicates the problem of finding a kernel
that also satisfies other design objectives. It can also be an obstacle computationally. In
some cases such as spline interpolation, u has infinite support, yet the interpolant can be
expressed as a linear combination of compact support functions (the B–splines).

Suppose again that a one-dimensional sequence of samples (fm)m is to be interpo-
lated and that the basis function ϕ(t) is the B–spline kernel. Then,

g(x) =
∑
k∈Z

ckϕ(x− k) (A.5)

where the coefficients ck are selected such that

fm =
∑
k∈Z

ckϕ(m− k) (A.6)

This means that interpolation is a two-step procedure: first, one finds the coefficients ck
satisfying (A.6) ck and second, the interpolant is constructed as

∑
ckϕ(t− k).

To solve for the coefficients, equation (A.6) is nothing but a linear system of equations
in terms of the unknown coefficients ck. Based on equation (A.6), this system seems to
have infinite unknowns (since k ∈ Z) and infinite equations (because all argumentsm are
considered). However, in practice, m is limited to the size of the image, and k is as well
limited because the interpolation kernel has finite support. Then the resulting problem
has the form of c = P−1f and involves inverting the matrix P , which is the discretization
of the interpolation kernel ϕ so that Pk = ϕ(k). In fact, in two dimensions P is block
tridiagonal and some specific methods are available for inverting this type of matrices,
which often imply an elevated computational cost. Note that there is one ck per pixel,
implying the rank of the matrix to be equal to the size of the image.

Another strategy is to notice that fm =
∑
ckϕ(m − k) is equivalent to a discrete con-

volution fm = (c ∗ p)m where pm = ϕ(m), that is, the discretization of the continuous
function ϕ. Since convolution is nothing else but filtering, discrete filtering can be an
alternative solution to matrix inversion for the determination of the coefficients ck. This
suggests solving for ck under the Z-transform as

f(z) = c(z)p(z)⇒ c(z) =
1

p(z)
f(z). (A.7)

Let (p)−1 denote the convolution inverse of p, which is the sequence such that p ∗
(p)−1 = δ where δ is the unit impulse (δ0 := 1 and δm := 0 otherwise). Using (p)−1 we
obtain ck by prefiltering as

c = (p)−1 ∗ f. (A.8)

A unique convolution inverse exists in many practical cases of interest. If it exists and ϕ is
real and symmetric, which is the case for every considered interpolation kernel analyzed
in this report, then (p)−1 can be factored into pairs of recursive (infinite impulse response)
filters, allowing for an efficient in-place calculation.

The freedom to select an interpolation kernel is much larger after the interpolation
constraint has been removed; this opens up the use of kernels that offer much better
performance (for a given computational cost) than kernels that hold the interpolation
constraint.
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Kernel Normalization

Another basic and desirable quality of an interpolation method is that it reproduces con-
stants, which is equivalent to ∑

k∈Z
u(x− k) = 1 ∀x ∈ R (A.9)

If the kernel does not reproduce constants, it can be the normalized to fix this by
setting

ũ(x) =
u(x)∑

m∈Z u(x−m)
(A.10)

provided that the denominator does not vanish. Normalization ensures that the interpo-
lation weights sum to 1. Interpolation with the normalized kernel reproduces constants:
suppose fk = c, then

g(x) =
∑
k∈Z

fkũ(x− k) =
∑
k∈Z

cũ(x− k) =

∑
k∈Z cu(x− k)∑
m∈Z u(x−m)

= c

A.2 Interpolation Methods

A.2.1 Ideal Interpolation

Following the sampling theory, the scanning of a continuous image f(x, y) yields infi-
nite repetitions of its continuous spectrum F (u, v) in the Fourier domain, which do not
overlap since the Nyquist criterion is satisfied. If this is so, and only then, the original
image f(x, y) can be reconstructed perfectly from its samples fi,j by multiplication of an
appropriate rectangular prism in the Fourier domain. The 1D ideal interpolation equals
the multiplication with a rectangle function in the Fourier domain and can be realized in
the spatial domain by a convolution with the sinc function:

uIdeal(x) =
sin(πx)

πx
= sinc(x). (A.11)

The kernel uIdeal(x), also known as the kernel of the Whittaker–Shannon interpolation
[148], has infinite support and since uIdeal(0) = 1 and uIdeal(k) = 0 when k is any nonzero
integer, it is called an interpolator kernel. The interpolation is such that g(x), the result-
ing interpolation function, is bandlimited which means its Fourier transform is zero for
frequencies outside of [−1

2 ,
1
2 ]. This interpolation is also often called “sinc interpolation”

or “Fourier zero-padding”, since to perform it in the frequency domain requires padding
the image with zeros outside its Fourier spectrum.

The powerful property of sinc interpolation is that it is exact for bandlimited func-
tions, that is, if fm,n = f(m,n) with∫ ∫

f(x, y)e−2πi(xξ+yν)dxdy = 0 ∀ |ξ| or |ν|≥ 1

2
, (A.12)

then the interpolation reproduces f .
However, although it provides an exact reconstruction of the original f(x, y), it is

spatially unlimited and cannot therefore be performed in the spatial domain unless some
periodicity is assumed on the input image. Besides, the main disadvantage of sinc in-
terpolation is that in aliased images it produces significant ripple artifacts (due to the so
called Gibbs phenomenon) in the vicinity of image edges. This is because sinc(x) decays
slowly, at a rate of 1/x, so the damage from meeting an edge is spread throughout the
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image. This is justified by the fact that bandlimitedness cannot be expected on every real-
word image. As will be explained later, several methods try to limit the ripple artifacts
by windowing the kernel.

In some ways, sinc interpolation is the ultimate interpolation. It is exact for bandlim-
ited functions, so the method is very accurate on smooth data. Additionally, Fourier
zero-padding avoids staircase artifacts, it is effective in reconstructing features at differ-
ent orientations.

A.2.2 Nearest Neighbor Interpolation

The easiest and fastest way to perform interpolation using a spatially limited kernel is by
the nearest neighbor method. The value g(x) is given by the sample that is the closest to
position x, which is f[x] where [.] denotes rounding to the nearest integer. For this reason,
nearest neighbor interpolation is sometimes called “pixel duplication”. The interpolation
kernel for nearest neighbor is

u(x) =

{
1, 0 ≤ |x|≤ 0.5
0, elsewhere.

(A.13)

This kernel requires N = 1 supporting points and does reproduce constants.

A.2.3 Bilinear Interpolation

For separated bi-linear interpolation, the values of both direct neighbors are weighted by
their distance to the opposite point of interpolation. Therefore, the linear approximation
of the sinc function follows the triangular function

u(x) =

{
1− |x|, 0 ≤ |x|< 1

0, elsewhere.
(A.14)

Within each cell [m,m + 1] × [n, n + 1], the interpolation is a convex combination
of the samples located at the cell corners vm,n, vm+1,n, vm,n+1, vm+1,n+1. Because this
combination is convex, the interpolation is bounded between min v and max v and does
not produce overshoot artifacts. Bilinear interpolation reproduces affine functions: if
vm,n = am+bn+c then g(x, y) = ax+by+c. The triangular function in (A.14) corresponds
to a modest low–pass filter in the frequency domain, which results in the attenuation of
high-frequency components. Due to its conception, this kernel is both interpolating and
reproduces constants, and it requires N = 2 supporting points in 1D and N = 4 in 2D
respectively.

Bilinear interpolation is arguably the simplest possible separable method that pro-
duces a continuous function. It is extremely efficient and on many platforms available in
hardware, making it practical for real-time applications.

A.2.4 Quadratic Interpolation

In the work of Neil Dodgson [44], a quadratic interpolator is introduced claiming that
its visual quality is close to that of cubic interpolation, however, it only requires sixty
percent of the computation time. Due to this reason, it becomes a serious candidate for
performing interpolation in the satellite. Its interpolation kernel is given by

u(x) =


−2|x|2+1, |x|≤ 1

2
|x|2−5

2 |x|+
3
2 ,

1
2 < |x|<

3
2

0, elsewhere.
(A.15)
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Note that this kernel requires N = 3 supporting points, which sum to N = 9 in 2D.
It is obtained by forcing linear phase (so it does not introduce phase distortions), C0-
continuity and that it interpolates the data points. As it can be perceived from equation
A.15, this kernel is not C1, however a C1 version of it is given in the original article
of Dogson [44], but by imposing C1-continuity, it looses the interpolation property and
thus becomes an approximator. This kernel also reproduces constants. The interpolating
quadratic produces a piecewise reconstruction where each parabolic piece is constrained
to pass through a data point and the two adjacent midpoints. Finally, a reconstructor
with linear phase obeys the rule that u(x− x′) = u(−(x− x′)) for some constant x′. That
is to say, the function is symmetric around the line x = x′. For it to have zero phase,
x′ = 0 and u(x) = u(−x), thus it is obtained by forcing u to be an even function.

A.2.5 Bicubic Interpolation

Bicubic interpolation tries to fit cubic polynomials into the sample data points, in order
to approximate the sinc function. Bicubic interpolation can be performed using distinct
support sizes: N = 2, 4, 6 and 8 support points.

Two-Point Interpolation

By forcing C0 and C1 continuity and u(0) = 1, u(k) = 0 for k 6= 0, for N = 2 we obtain
the following kernel:

u(x) =

{
2|x|3−3|x|2+1, 0 ≤ |x|≤ 1

0, elsewhere.
(A.16)

This kernel does also reproduce constants by definition and the resulting curves are sim-
ilar to those obtained by linear interpolation, but the pieces fit C1-continuosly in the
spatial domain.

Four-Point Interpolation

Again, by forcing C0 and C1 continuity and u(0) = 1, u(k) = 0 for k 6= 0, then seven of
the eight coefficients are determined leaving one extra free parameter a:

u(x) =


(a+ 2)|x|3−(a+ 3)|x|2+1, 0 ≤ |x|< 1
a|x|3−5a|x|2+8a|x|−4a, 1 ≤ |x|< 2

0, elsewhere.
(A.17)

The values −1,−0.75, and −0.5 have been proposed for a, motivated by various notions
of optimality [89]. The choice a = −0.5, proposed by Keys [82], is particularly compelling
since it is third-order accurate using a = −0.5 and only first-order accurate for any other
a. Furthermore, a = −0.5 is optimal in a sense of matching the sinc kernel and is also
optimal in terms of the interpolation error. Keys determined the constant a by forcing
the Taylor series expansion of the sampled sinc function to agree in as many terms as
possible with the original signal. In fact, when using a = −0.5, the first three terms of the
Taylor series expansion of the input signal agree with the interpolated function. Thus,
cubic interpolation with a = −0.5 can reconstruct any second-degree polynomial. This
so-called Keys interpolation kernel, also known as the Catmull–Rom cubic is:

u(x) =


(3/2)|x|3−(5/2)|x|2+1, 0 ≤ |x|< 1

−(1/2)|x|3+(5/2)|x|2−4|x|+2, 1 ≤ |x|< 2
0, elsewhere.

(A.18)
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Six-Point and Eight Point Interpolation

Using third degree polynomials but increasing the interpolation kernel support N im-
proves the quality of resampling, although the execution time is dramatically decreased.
Cubic interpolation using N = 6 support points is given by

u(x) =


(6/5)|x|3−(11/5)|x|2+1, 0 ≤ |x|< 1

−(3/5)|x|3+(16/5)|x|2−(27/5)|x|+14/5, 1 ≤ |x|< 2
(1/5)|x|3−(8/5)|x|2+(21/5)|x|−18/5, 2 ≤ |x|< 3

0, elsewhere.

(A.19)

while using N = 8 support points, the kernel becomes

u(x) =


(67/56)|x|3−(123/56)|x|2+1, 0 ≤ |x|< 1

−(33/56)|x|3+(177/56)|x|2−(75/14)|x|+39/14, 1 ≤ |x|< 2
(9/56)|x|3−(75/56)|x|2+(51/14)|x|−45/14, 2 ≤ |x|< 3
−(3/56)|x|3+(33/56)|x|2−(17/7)|x|+18/7, 3 ≤ |x|< 4

0, elsewhere.

(A.20)

A.2.6 Windowed Sinc Approximations

As explained before, the sinc interpolation produces ripple artifacts in aliased images due
to the so-called Gibbs phenomenon [77]. A solution to limiting the ripple artifacts of the
sinc kernel is to approximate it with a compactly-supported function

u(x) = w(x)sinc(x), (A.21)

where w is a window function.

Lanczos

A popular choice in image processing is the Lanczos window,

w(x) =

{
sinc(x/n) if |x| < n,

0 elsewhere.
(A.22)

where n is a positive integer usually set to 2, 3 or 4. The Lanczos kernel does not re-
produce constants exactly, but can be normalized to fix this as described in section A.1.3.
Each interpolated value is the weighted sum of 2n consecutive input samples. Thus, by
varying the 2n parameter one may trade computation speed for improved frequency re-
sponse. The parameter also allows one to choose between a smoother interpolation or a
preservation of sharp transients in the data. For image processing, the tradeoff is between
the reduction of aliasing artifacts and the preservation of sharp edges.

There are many other possibilities for the window, for example Hamming, Kaiser, and
Dolph-Chebyshev windows to name a few, each making different tradeoffs in frequency
characteristics. The parameter n indeed defines the support of the kernel. When n = 2
the kernel has support N = 4 in 1D and N = 16 for images. n = 3 implies a support
N = 6 in 1D and N = 36 in 2D, while n = 4 implies a big support N = 8 in 1D and
N = 64 in 2D, usually making the interpolation method time consuming.

A.2.7 B-Splines

Basis splines (B–splines) are on of the most commonly used family of spline functions.
They can be derived by several self-convolutions of a so called basis function. In fact,

197



198
FAST INTERPOLATION METHODS. FOCUS ON IMAGE RESAMPLING FOR SHIFT

ESTIMATION ON SATELLITE IMAGES.

taking β0 as the indicator function of
[
−1

2 ,
1
2

]
and Bk as the convolution product

βk := βk−1 ∗ β0, k = 1, 2, . . .

then Bk are called (centered) cardinal B–splines. It has compact support in
[
−k+1

2 , k+1
2

]
and is an even function. There is a whole family of basis functions made of B–splines. Its
general formula is given by

βk(x) =
k+1∑
j=0

(−1)j(k + 1)

(k + 1− j)! j!

(
n+ 1

2
+ x− k

)k
+

∀x ∈ R, ∀k ∈ N (A.23)

where (x)k+ is the one-sided power function

xn+ =


0, n = 0 ∧ x < 0
1
2 , n = 0 ∧ x = 0

1, n = 0 ∧ x > 0

x0
+x

n, n > 0.

(A.24)

The B–spline functions are optimal in the sense that, among all piecewise polynomials
with uniformly spaced knots, the B–splines have the maximal approximation order and
are maximally continuous for a given support.

The B–spline βj−1 has approximation order j. For J > 2, βj−1 is not interpolating, so
prefiltering must be applied as described in section A.1.3 where βj−1 takes the role of f .

As J → ∞, B–spline interpolation converges to Whittaker–Shannon interpolation in
a strong sense: the associated interpolation kernel u converges to the sinc both in the
spatial and Fourier domains in Lp for any 1 ≤ p < ∞. This convergence is illustrated in
figure A.4 with u(x) and its Fourier transform for degrees 1, 3, 5, and 7.

(a) u(t) (b) log10|û(ξ)|

Figure A.4 – Comparison of the B-spline interpolation kernels and the sinc function.

The most commonly used B–spline is β3, the cubic B–spline, which has supportN = 4
in 1D and N = 16 in 2D:

u(x) =


(2/3)− (1/2)|x|2(2− |x|), 0 ≤ |x|< 1

(1/6)(2− |x|)3, 1 ≤ |x|< 2

0, elsewhere.

(A.25)
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A.2.8 o-Moms

The family of functions that enjoy Maximal Order and Minimal Support is called Moms
(also called splines of minimal support). It can be shown that any of these functions
can be expressed as the weighted sum of a B–spline and its derivatives, such that the
distribution of the decomposition theorem has a vanishing support.

Momsn(x) = βn(x) +
n∑

m=1

cm
dm

dxm
βn(x). (A.26)

The B-splines are a special case within the class of Moms. The B-splines are the Moms
with maximum regularity, they are (J − 2) times continuously differentiable. Within the
Moms, the “o-Moms functions” are the Moms defined by minimizing the quantity

1

J !

√∑
k∈Z∗

|û(J)(k)|2

The o-Moms functions have the same approximation order and support as the B-splines.
So compared to the B-splines, the advantage of o-Moms is that they have lower asymp-
totic L2 interpolation error. On the other hand, o-Moms are less regular than the B-
splines.

The first few even-order o-Moms are

Order J f(t)
2 β1(t)

4 (1 + 1
42

d2

dx2
)β3(t)

6 (1 + 1
33

d2

dx2
+ 1

7920
d4

dx4
)β5(t)

8 (1 + 1
30

d2

dx2
+ 1

4680
d4

dx4
+ 1

3603600
d6

dx6
)β7(t)

10 (1 + 2
57

d2

dx2
+ 7

25840
d4

dx4
+ 1

1627920
d6

dx6
+ 1

3047466240
d8

dx8
)β9(t)

12 (1 + 5
138

d2

dx2
+ 1

3220
d4

dx4
+ 1

1101240
d6

dx6
+ 1

1078334208
d8

dx8
+ 1

4151586700800
d10

dx10
)β11(t)

(A.27)
A note on numbering: Usually, with a piecewise polynomial method, its approxi-

mation order is L but its highest degree is (L − 1). We refer to methods by degree, for
instance “o-Moms 3” and “β3” are methods that are locally cubic polynomial and have
approximation order 4.

o−Moms3(x) = βn(x) +
1

42
.
d2

dx2
β3(x) (A.28)

=


1
2 |x|

3−|x|2+ 1
14 |x|+

13
21 , 0 ≤ |x|< 1

−1
6 |x|

3+|x|2−85
42 |x|+

29
21 , 1 ≤ |x|< 2

0, elsewhere.

(A.29)

A.2.9 Schaum

The splines proposed by Schaum [147] are also within the class of Moms. Schaum splines
have the property that they are interpolating, so prefiltering is not needed. Like the o-
Moms, the pseudo-Lagrangian basis functions proposed by Schaum can also be repre-
sented as a weighted sum of B-splines and of their even-order derivatives. They have
same order and same support as B-splines and o-Moms. Their main interest is that they
are interpolating. They are discontinuous for even degrees, and are C0 for odd degrees.
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Quadratic Schaum function is given by:

sch2(x) =



1− x2, |x|< 1
2

9
16 , |x|= 1

2

1− 3
2x+ 1

2x
2, 1

2 < |x|<
3
2

− 1
16 , |x|= 3

2

0, |x|> 3
2

(A.30)

Cubic Schaum function expressed using third degree B-spline function is:

sch3(x) = β3(x)− 1

6

d2

dx2
β3(x) (A.31)

=


1
2 |x|

3−|x|2−1
2 |x|+1, 0 ≤ |x|< 1

1
6(2− |x|)3 + 1

6 |x|−
1
3 , 1 ≤ |x|< 2

0, elsewhere.

(A.32)
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A.2.10 Summary

Table A.1 summarizes the above described interpolation methods that we shall evaluate.

Name Support radius Req. Norm. (Sec. A.1.3) # pairs Scale factor
nearest 0.5 No 0 1
bilinear 1 No 0 1

quadInterp 1.5 No 0 1
bicubic 2 No 0 1

lanczos2 2 Yes 0 1
lanczos3 3 Yes 0 1
lanczos4 4 Yes 0 1
schaum2 1.5 No 0 1
schaum3 2 No 0 1
bspline2 1.5 No 1 8
bspline3 2 No 1 6
bspline5 3 No 2 120
bspline7 4 No 3 5040
bspline9 5 No 4 362880

bspline11 6 No 5 39916800
omoms3 2 No 1 21/4
omoms5 3 No 2 7920/107
omoms7 4 No 3 675675/346

Table A.1 – Summary of every considered interpolation method. The first column indicates the
method name, the second the kernel’s support radius, the third column specifies if the kernel re-
quires normalization, the fourth column indicates the number of filter pairs used for prefilting, while
the last column indicates the constant scale factor to use with prefiltering. A further explanation
about this last two values and the prefiltering process is given in section A.3.3.

A.3 Implementation

In this section, the main algorithm will be explained and further optimized. Two op-
timizations will be given, in order to improve interpolation speed. The first one relies
on the fact that separable kernels are being used, which allows to perform less compu-
tations. The second one is based on the fact that we are translating a whole image, thus
implying that every pixel will be shifted using the same δx, δy, allowing us to precompute
the kernel values for both x and y positions.

Algorithm 13 describes how to translate an image performing interpolation using a
non-separable kernel. It can be seen how the kernel is evaluated S2 times where S is
the support of the kernel. The first proposed optimization is given by using separable
kernels.

A.3.1 Separable kernel

Digital image interpolation occurs in all digital photos at some stage. It happens any
time you resize or remap your image from one pixel grid to another. The interpolation
results can vary significantly depending on the interpolation algorithm. It is only an ap-
proximation, therefore an image will always lose some quality each time interpolation is
performed (with the exception of Fourier invertible interpolation or oversampling where
the initial image can be recovered by the inverse process). The general formula for 2-D
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Algorithm 13 2D non-separable interpolation

Input: Kernel: 2D non-separable interpolation kernel, KernelWidth: Kernel support,

δx, δy: translation parameters, Src: source image, SrcHeight, SrcWidth: source image
size,
Output: Dest: resulting interpolated image

NumSamples← SrcWidth ∗ SrcHeight // Amount of samples to perform interpola-
tion
KernelRadius← KernelWidth

2 // Radius of the kernel
for k = 0 to NumSamples− 1 do

// XI , YI is the position on the image that we are interpolating for sample k
XI ← mod(k, SrcWidth) + δx
YI ← bk/SrcWidthc+ δy
// IndexX0, IndexY 0 is the top left position of where the kernel should be placed

on the image
IndexX0← dXI −KernelRadiuse;
IndexY 0← dYI −KernelRadiuse;
Sum← 0 // Initialize the sum
// Compute the interpolated value at (X[k], Y[k]) iterating over the whole kernel
// To deal with boundaries, Extension method corrects the given position if is out-

side the limits based on the assumed boundary handling
for n = 0 to KernelWidth− 1 do

IndexY ← Extension(SrcHeight, IndexY 0 + n) // Vertical position of the im-
age

SrcRowOffset← SrcWidth ∗ IndexY // Vector index of the current row
for m = 0 to KernelWidth− 1 do

IndexX ← Extension(SrcWidth, IndexX0 + m) // Horizontal position of
the image

// Multiply the value of the image by the value of the kernel and accumulate
the result

Sum← Sum+ Src[IndexX + SrcRowOffset] ∗Kernel(XI − (IndexX0 +
m), YI − (IndexY 0 + n))

end for
end for
Dest[k] ← Sum // Finally, assign the accumulated value and repeat for next sam-

ple
end for
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image interpolation is

g(x, y) =
∑
m,n∈Z

fm,nK(x−m, y − n) (A.33)

where fm,n is the image to be interpolated, and K(x, y) is the 2-D interpolating kernel.
If the kernel K is separable, it implies that K(x, y) = K(x)K(y), permitting the formula
above to be calculated as

g(x, y) =
∑
n

∑
m

fm,nK(x−m)K(y − n) (A.34)

=
∑
n

K(y − n)
∑
m

fm,nK(x−m) (A.35)

=
∑
n

K(y − n)un(x) (A.36)

where
un(x) =

∑
m

fm,nK(x−m) (A.37)

In figure A.1, a kernel of support 4 × 4 is used to perform interpolation. Actually, for
that particular example, as the kernel has support 4, then instead of evaluating it 16
times, we first need to compute un(x), that is, to evaluate the kernel horizontally 4 times
followed by interpolating the results again, adding another 4 kernel evaluations. Then
the amount of kernel evaluations is halved for this case. Actually, if S is the support size,
the difference between the required amount of evaluations for a non-separable kernel and
a separable one is S2−2∗S. Also, by using separable kernels, the performance is increased
even further since evaluating a bi-dimensional kernel usually involves more operations
than evaluating its one-dimensional version. Algorithm 14 describes this optimization
by precomputing in arrays the kernel values used to perform interpolation.

A.3.2 Image translation algorithm

In our particular case, we need to shift a whole image using the global translation param-
eters δx, δy, thus translating every pixel always using the same distance. Further advan-
tage can be taken by precomputing the kernel not in a per pixel basis, by globally, reduc-
ing dramatically the amount of calculations. Algorithm 15 describes this optimization.
The kernel is evaluated 2∗S times for the whole image, compared to 2∗S ∗NumSamples
as in the separable case or S2 ∗ NumSamples as in the original algorithm, where S ac-
counts for the kernel’s support.

Finally, as described in section A.1.3, some kernels require normalization in order to
reproduce constants. Algorithm 16 finally depicts this straightforward procedure, and
should be used only with kernels requiring normalization.

A.3.3 Image Prefiltering

In the general interpolation scheme, when the interpolation kernel is not an interpolating
function, as described in section A.1.3, the coefficients ck have to be computed in order
for the method to interpolate the samples. Both splines and o-Moms are not interpolating
kernels, and thus they require, as explained in section A.1.3, to obtain the ck coefficients
by performing prefiltering in the following way:

c = (p)−1 ∗ f. (A.38)
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Algorithm 14 2D separable interpolation

Input: Kernel: 1D separable interpolation kernel, KernelWidth: Kernel support,

δx, δy: translation parameters, Src: source image, SrcHeight, SrcWidth: source image
size,
Output: Dest: resulting interpolated image

NumSamples← SrcWidth ∗ SrcHeight // Amount of samples to perform interpola-
tion
KernelRadius← KernelWidth

2 // Radius of the kernel
for k = 0 to NumSamples− 1 do

// XI , YI is the position on the image that we are interpolating for sample k
XI ← mod(k, SrcWidth) + δx
YI ← bk/SrcWidthc+ δy
// IndexX0, IndexY 0 is the top left position of where the kernel should be placed

on the image
IndexX0← dXI −KernelRadiuse;
IndexY 0← dYI −KernelRadiuse;
Sum← 0 // Initialize the sum
// Precompute 1D kernel results by evaluating it for sample k
for m = 0 to KernelWidth− 1 do

KernelXBuf [m]← Kernel(XI − (IndexX0 +m))
KernelY Buf [m]← Kernel(YI − (IndexY 0 +m))

end for
// Compute the interpolated value at (X[k], Y[k])
for n = 0 to KernelWidth− 1 do

IndexY ← Extension(SrcHeight, IndexY 0 + n) // Vertical position of the im-
age

SrcRowOffset← SrcWidth ∗ IndexY // Vector index of the current row
for m = 0 to KernelWidth− 1 do

IndexX ← Extension(SrcWidth, IndexX0 + m) // Horizontal position of
the image

// Multiply the value of the image by the value of the 1D horizontal kernel
and by the value of the 1D vertical kernel and accumulate the result

Sum ← Sum + Src[IndexX + SrcRowOffset] ∗ KernelXBuf [m] ∗
KernelY Buf [n]

end for
end for
Dest[k] ← Sum // Finally, assign the accumulated value and repeat for next sam-

ple
end for
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Algorithm 15 Optimized Image Translation

Input: Kernel: 1D separable interpolation kernel, KernelWidth: Kernel support,

δx, δy: translation parameters, Src: source image, SrcHeight, SrcWidth: source image
size,
Output: Dest: resulting interpolated image

NumSamples← SrcWidth ∗ SrcHeight // Amount of samples to perform interpola-
tion
KernelRadius← KernelWidth

2
// Precompute the kernel values by evaluating it (for the fixed translation)
for m = 0 to KernelWidth− 1 do

KernelXBuf [m]← Kernel(δx −m− dδx −KernelRadiuse)
KernelY Buf [m]← Kernel(δy −m− dδy −KernelRadiuse)

end for
// Iterate all the image samples and perform the resampling
for k = 0 to NumSamples− 1 do

// XI , YI is the position on the image that we are interpolating for sample k
XI ← mod(k, SrcWidth) + δx
YI ← bk/SrcWidthc+ δy
// IndexX0, IndexY 0 is the top left position of where the kernel should be placed

on the image
IndexX0← dXI −KernelRadiuse;
IndexY 0← dYI −KernelRadiuse;
Sum← 0 // Initialize the interpolation sum
// Compute the interpolated value at (X[k], Y[k])
for n = 0 to KernelWidth− 1 do

IndexY ← Extension(SrcHeight, IndexY 0 + n) // Vertical position of the im-
age

SrcRowOffset← SrcWidth ∗ IndexY // Vertical index of the current row
for m = 0 to KernelWidth− 1 do

IndexX ← Extension(SrcWidth, IndexX0 + m) // Horizontal position of
the image

// Multiply the value of the image by the value of the 1D horizontal kernel
and by the value of the 1D vertical kernel and accumulate the result

Sum ← Sum + Src[IndexX + SrcRowOffset] ∗ KernelXBuf [m] ∗
KernelY Buf [n]

end for
end for
Dest[k] ← Sum // Finally, assign the accumulated value and repeat for next sam-

ple
end for
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Algorithm 16 Optimized image translation normalizing kernel

Input: Kernel: 1D separable interpolation normalization requiring kernel ,

KernelWidth: kernel support, δx, δy: translation parameters, Src: source image,
SrcHeight, SrcWidth: source image size,
Output: Dest: resulting interpolated image

NumSamples← SrcWidth ∗ SrcHeight // Amount of samples to perform interpola-
tion
KernelRadius← KernelWidth

2
// Precompute the kernel values by evaluating it (for the fixed translation)
for m = 0 to KernelWidth− 1 do

KernelXBuf [m]← Kernel(δx −m− dδx −KernelRadiuse)
KernelY Buf [m]← Kernel(δy −m− dδy −KernelRadiuse)

end for
// Iterate all the image samples and perform the resampling
for k = 0 to NumSamples− 1 do

// XI , YI is the position on the image that we are interpolating for sample k
XI ← mod(k, SrcWidth) + δx
YI ← bk/SrcWidthc+ δy
// IndexX0, IndexY 0 is the top left position of where the kernel should be placed

on the image
IndexX0← dXI −KernelRadiuse;
IndexY 0← dYI −KernelRadiuse;
Sum← 0 // Initialize the interpolation result value
Acum← 0 // Initialize the weights accumulator used for normalization
// Compute the interpolated value at (X[k], Y[k])
for n = 0 to KernelWidth− 1 do

IndexY ← Extension(SrcHeight, IndexY 0 + n) // Vertical position of the im-
age

SrcRowOffset← SrcWidth ∗ IndexY // Vertical index of the current row
for m = 0 to KernelWidth− 1 do

IndexX ← Extension(SrcWidth, IndexX0 + m) // Horizontal position of
the image

Weight ← KernelXBuf [m] ∗ KernelY Buf [n] // Calculate the kernel
weight

// Multiply the value of the image by the value of the 1D horizontal kernel
and by the value of the 1D vertical kernel and accumulate the result

Sum← Sum+ Src[IndexX + SrcRowOffset] ∗Weight
Acum← Acum+Weight // Acumulate the weights for normalization

end for
end for
Dest[k] ← Sum

Acum // Finally, assign the normalized accumulated value and repeat
for next sample
end for
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where pk = ϕ(k) depends on the interpolating kernel ϕ, that may be a B-spline or an
o-Moms function. Due to the fact that ϕ(k) is symmetric, this makes the filter symmet-
ric. Also, this filtering is recursive, that means that to calculate the output for the current
pixel, the results of previous pixels is used. This type of filters usually receive the name
of infinite impulse response (IIR) filters. Since any symmetrical recursive filter may be
decomposed into a cascade of elementary symmetrical exponential filters, which them-
selves can be separated into two complementary causal and anticausal components, the
implementation of this filter can be fast and simple. This decomposition is explained
in the following way. Let us consider the z transform of a generic symmetrical stable
recursive filter of order 2N :

H2N (z) =
c0

[zN + z−N ] +
(∑N−1

k=1 ak[zk + z−k]
)

+ a0

(A.39)

where c0 and ak, 0 ≤ k ≤ N − 1 are constant coefficients related to the choice of inter-
polating kernel. A polynomial P2N (z) can be defined by multiplying the denominator of
(A.39) by zN . Clearly, since H2N (z) = H2N (z−1), this polynomial satisfies the equation:
z−NP2N (z) = zNP2N (z−1). It follows that the zeros of P2N (z) occur in reciprocal pairs.
These roots, which are assumed to lie outside the unit circle, are denoted by (ri, r

−1
i ) with

|ri|< 1, 1 ≤ i ≤ N . Consequently, H2N (z) can be factored as

H2N (z) = c0

N∏
i=1

H(z; ri) (A.40)

where

H(z; ri) =

(
1

1− riz−1

)
︸ ︷︷ ︸

Causal

(
−ri

1− riz

)
︸ ︷︷ ︸
Anti−causal

(A.41)

allowing the prefiltering to be performed as a cascade of first-order recursive filters. This
is done using first a causal filter, and performing an anti-causal filter on the results, as
shown in equation (A.42).{

y+(k) = x(k) + riy
+(k − 1) k = 1, . . . ,K − 1

y(k) = ri(y(k + 1)− y+(k)) k = K − 2, . . . , 0
(A.42)

where x(k) is the input signal, y(k) is the output and ri are the roots of the kernel basis.
For the left endpoint, it can be computed depending on the boundary extension:

Half-sample symmetric y+(0) = x(0) + ri
∑∞

n=0 r
n
i x(n)

Whole-sample symmetric y+(0) =
∑∞

n=0 r
n
i x(n)

(A.43)

Since |ri|< 1, the terms of the sum are decaying, so in practice we only evaluate as
many terms as are needed for the desired accuracy. For the right endpoint, we have:

Half-sample symmetric y(K − 1) = ri
ri−1y

+(K − 1)

Whole-sample symmetric y(K − 1) = ri
r2i−1

{y+(K − 1) + riy
+(K − 2)} (A.44)

Finally, the constant scale factor is applied y(k) = c0y(k). The cost of prefiltering is lin-
ear in the number of pixels. Its computational load, for example, for the popular cubic
B-spline is two additions and three multiplications per produced coefficient. Prefilter-
ing can be computed in-place so that the prefiltered values overwrite the memory used
by the input. For prefiltering in two-dimensions, the image is first prefiltered along each
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n B-Spline transfer function c0 Poles (ri)
2 8

z+6+z−1 8 r1 = −3 + 2
√

2

3 6
z+4+z−1 6 r1 = −2 +

√
3

5 120
z2+26z+66+26z−1+z−2 120 r1 = −0.4300575,

r2 = −0.0430963

r1 = −0.53528,
7 5040

z3+120z2+1191z1+2416+1191z−1+120z−2+z−3 5040 r2 = −0.122555

r3 = −0.00914869

Table A.2 – Transfer functions, poles and characteristic values for several B-splines

column, then the column-prefiltered image is prefiltered along each row. It is worth men-
tioning that input images with size shorter than the support of the interpolation kernel
are not considered in this report since the type of images obtained by the satellite are
large enough. However, if this would not be the case, then another boundary extension
method should be applied, like assuming periodicity on the input images.

So finally, the only thing missing is how to calculate the roots and the value c0, usually
referred as constant scale factor or characteristic value, for each of the B-splines and o-
Moms. In order to do so, an alternative formulation for the B-splines based on iterative
equations, as given in equation (A.45), is used to determine the transfer functions in the
Z-domain. Then, the roots of these polynomials are searched so that these functions are
properly factorized obtaining both the c0 and all the ri values.

bn(k) =
1

n

[(
k +

n+ 1

2

)
cn−1(k) +

(
n+ 1

2
− k
)
cn−1(k − 1)

]
(A.45)

cn(k) =
1

n

[(
k +

n+ 2

2

)
bn−1(k + 1) +

(n
2
− k
)
bn−1(k)

]
(A.46)

(A.47)

In table A.2, the transfer functions, poles and characteristic values are given for several
B-splines.

Once the image has been prefiltered c = (p)−1 ∗ f , interpolation is computed like any
other interpolation kernel.

This prefiltering is developed in detail in algorithm 17. For the PrefilterScanmethod
of algorithm 18, it takes 4(N + 1) additions and 2(N + 1) multiplications where N is the
1D sample size. Then, to prefilter the whole image, it is required 8×NumFilterPairs×
(Width−1)×(Height−1) additions and 4×NumFilterPairs×(Width−1)×(Height−
1) +Width×Height multiplications. For example, for Cubic B-Spline interpolation, it is
required 8× (Width− 1)× (Height− 1) additions and 4× (Width− 1)× (Height− 1) +
Width×Height ≈ 5×Width×Height multiplications, which is linear on the size on the
image.

A.3.4 Fourier Interpolation

To perform non-integer interpolation without loosing information, one has just to modify
the phase of the signal in the frequency domain. This procedure is described in detail in
algorithm 19. This procedure costs O(n) where n is the size of the image, however both
the FFT and its inverse has to be computed for the input image, an operation that takes
O(n log n).
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Algorithm 17 In-place prefiltering

Input: ri: roots (poles) of the kernel (0 ≤ i ≤ NumFilterPairs− 1), NumFilterPairs:
amount of roots, c0 characteristic value of the kernel, Data: source image,
Height,Width: source image size, boundaryHandling: kind of boundary handling to
use.
Output: Data: prefiltered image

c0 ← (c0)2 // Square the ConstantFactor for two spatial dimensions
// Apply the filter for each column first
for x = 0 to Width− 1 do

for k = 1 to NumFilterPairs do
PrefilterScan(Data, x,Width,Height, rk, boundaryHandling)

end for
end for
// Now filter the rows
for y = 0 to Height− 1 do

for k = 1 to NumFilterPairs do
PrefilterScan(Data,Width ∗ y, 1,Width, rk, boundaryHandling)

end for
end for
// Apply constant scale factor
for k = 0 to Width ∗Height− 1 do

Data[k]← Data[k] ∗ c0

end for

A.4 Results

Every interpolation algorithm was evaluated both quantitatively and qualitatively. To do
this, we evaluated each method using three different images, shown in figure A.5. To
complete this report, the execution time of each algorithm is presented.
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Algorithm 18 PrefilterScan (1D in-place filtering with a first-order recursive filter pair)

Input: Data: source image, pos position to start filtering, stride: stride (distance)
between successive elements, N : number of samples, r: root (pole) of the kernel,
boundaryHandling: kind of boundary handling to use.
Output: Data: prefiltered image

Eps← e−4 // Desired precision
n0←

⌈
log(Eps)
log(|r|)

⌉
// Amount of elements to process to achieve desired precision

if n0 > N then
n0← N

end if
// First apply the causal filter
// To do so, we need to compute the first value using the desired boundaryHandling
if boundaryHandling = WHOLE − SYMMETRIC then

Sum←
∑n0

i=0Data[pos+ i ∗ stride] ∗ ri
else if boundaryHandling = HALF − SYMMETRIC then

Sum← Data[pos] + r
∑n0

i=0Data[pos+ i ∗ stride] ∗ ri
end if
Data[pos]← Sum
Last← Data[pos]
i← pos+ stride
iEnd← pos+ (N − 1) ∗ stride
while i ≤ iEnd do

Data[i]← Data[i] + r ∗ Last
Last← Data[i]
i← i+ stride

end while
// Then apply the anti-causal filter
// Again, we need to compute the last value using the desired boundaryHandling
if boundaryHandling = WHOLE − SYMMETRIC then

Data[End]← r
r2−1

∗ (Data[iEnd] + r ∗Data[iEnd− stride])
else if boundaryHandling = HALF − SYMMETRIC then

Data[iEnd]← Data[iEnd] ∗ r
r−1

end if
Last← Data[iEnd]
i← iEnd− stride
while i ≥ 0 do

Data[i]← r ∗ (Last−Data[i])
Last← Data[i]
i← i− stride

end while
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Algorithm 19 FourierShift

Input: δx, δy: translation parameters, img: input image, w, h: width and height of input
image.
Output: res: shifted image

res← 2D−DFT (img) // Calculate 2D Discrete Fourier Transform of the input image
if w mod 2 = 0 then

limHoriz ← w
2 // If the width is even, we iterate horizontally from [−w

2 ,
w
2 ]

else
limHoriz ← w−1

2 // otherwise the range is [−w−1
2 , w−1

2 ].
end if
if h mod 2 = 0 then

limV ert← h
2 // If the height is even, we iterate vertically from [−h

2 ,
h
2 ]

else
limV ert← h−1

2 // otherwise the range is [−h−1
2 , h−1

2 ].
end if
for x = −limHoriz to limHoriz do

for y = −limV ert to limV ert do
if x < 1 then

posX ← w + x // Horizontal periodicity of the image is assumed
else

posX ← x
end if
if y < 1 then

posY ← h+ y // Vertical periodicity of the image is assumed
else

posY ← y
end if
res(posY, posX)← res(posY, posX)e−2πi(xδx

w
+
yδy
h

) // Change the phase
end for

end for
res← 2D − IDFT (img) // Transform the resulting image back to the spatial domain
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(a) Image 1

(b) Image 2

(c) Image 3

Figure A.5 – Images used to measure interpolation performance.

A.4.1 Quantitative results

In this section, we evaluate the performance of each interpolation algorithm based on
measuring the difference they produce when resampling. Several metrics were used to
analyze the performance of each method, which will be introduced in section A.4.1. This
will be followed by the results of every interpolation algorithm for each of the three im-
ages shown in figure A.5.
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Performance metrics

To evaluate the performance of each method, some well-known metrics were employed.
Given the original color m× n image I defined in the RGB color space and the resulting
twice-interpolated image Î , the Mean Square Error (MSE) is defined by

MSE =
1

3

1

mn

∑
c={R,G,B}

m−1∑
i=0

n−1∑
j=0

[Ic(i, j)− Îc(i, j)]2 (A.48)

The MSE has the same units of measurement as the square of the quantity being esti-
mated. In an analogy to standard deviation, taking the square root of MSE yields the
root-mean-square error (RMSE), which has the same units as the quantity being esti-
mated.

The peak signal-to-noise ratio, usually referred to as PSNR, is given by

PSNR = 10 · log10

(
2552

MSE

)
(A.49)

= 20 · log10

(
255√
MSE

)
(A.50)

= 20 · log10 (255)− 10 · log10 (MSE ) (A.51)

and is an engineering term used for the ratio between the maximum possible power of a
signal and the power of corrupting noise that affects the fidelity of its representation. In
our case, the noise is introduced by the interpolation algorithms and possibly, some mi-
nor numerical issues. The PSNR is usually expressed in terms of the logarithmic decibel
scale.

Another interesting measure is the maximum absolute difference between the pixels
in the original image and the resulting pixels in the interpolated image, defined by

MaxAbsDiff = max
x,y,c
|Ic(x, y)− Îc(x, y)| (A.52)

Finally, the SSIM metric considers image degradation as perceived change in struc-
tural information. Structural information is the idea that the pixels have strong inter-
dependencies especially when they are spatially close. These dependencies carry impor-
tant information about the structure of the objects in the visual scene, and are completely
ignored by the MSE or PSNR metrics. The SSIM metric is calculated on various windows
of an image. The measure between two windows x and y of common size N ×N is:

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(A.53)

with µx, σ2
x the average and the variance of x, µy, σ2

y the average and the variance of y, σxy
the covariance of x and y, c1 = (k1L)2, c2 = (k2L)2 two variables to stabilize the division
with weak denominator, L the dynamic range of the pixel-values (in our case L = 1 since
floating point images are in the [0, 1] range, k1 = 0.01 and k2 = 0.03 the constant default
values suggested in the original article [184]). In this report, a rounded 11-tap Gaussian
window is used with σ = 1.5.

Then to compare both images I1 and I2, in our case the final SSIM is calculated by
averaging the SSIM of all possible Gaussian windows located in the same position on
both images on each RGB channel, as it is shown in equation A.54

SSIM(I1, I2) :=

∑w−11
x=1

∑h−11
y=1

∑3
c=1 SSIM(I1

x,y,c, I
2
x,y,c)

w ∗ h ∗ 3
(A.54)

where w and h stands for the width and the height of both images and I1
x,y,c is a circular

11-tap Gaussian window of the first image, on color channel c, with top-left corner (x, y)
and I2

x,y,c is the same window but on the second image.
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Results shifting half a pixel

To evaluate the presented interpolation methods, a simple test was performed. An input
image was shifted vx = 0.5, vy = 0.5 pixels and then shifted back the same amount, thus
allowing to compare the result with the original image. Half a pixel of shift is chosen be-
cause the contribution of each neighbor for each interpolated pixel is the same, and their
distance is the maximum possible, which apparently makes this the most ‘troublesome’
case. In tables A.3, A.4 and A.5 all interpolation algorithms of section A.2 are evaluated
using the metrics mentioned above.

For the three evaluated images, Fourier interpolation achieves no approximation er-
ror, as expected, since it is the only one among all methods that is invertible. Results
for the first image on table A.3, where steep edges are present, the SSIM index, that fo-
cuses its measurement on visual quality rather than approximation error (is intended
to measure structure similarity), b-spline2 outperforms obtains the best results. This is
explained by the resulting ripple artifacts found after interpolation by high order meth-
ods such as bsplines, or oMoms. For this particular case, best results are obtained using
bspline2, schaum2, bicubic and lanczos2 methods.

Method MaxAbsDiff PSNR SSIM MSE RMSE
fourier 0 ∞ 1 0 0
nearest 195 21.1146 0.9245 503.0599 22.4290
bilinear 85 29.6779 0.9824 70.0313 8.3685

quadInterp 85 29.6779 0.9824 70.0313 8.3685
bicubic 64 32.2473 0.9895 38.7574 6.2255

lanczos2 64 32.2473 0.9895 38.7574 6.2255
lanczos3 44 35.1170 0.9878 20.0161 4.4739
lanczos4 37 36.1669 0.9833 15.7177 3.9646
schaum2 64 32.2473 0.9895 38.7574 6.2255
schaum3 64 32.2473 0.9895 38.7574 6.2255
bspline2 53 33.5434 0.9899 28.7569 5.3625
bspline3 47 34.7281 0.9884 21.8911 4.6788
bspline5 34 36.8641 0.9809 13.3865 3.6588
bspline7 26 38.3039 0.9750 9.6092 3.0999
bspline9 21 39.1890 0.9685 7.8375 2.7996
bspline11 18 40.0858 0.9657 6.3753 2.5249
omoms3 40 35.9879 0.9854 16.3792 4.0471
omoms5 31 37.4795 0.9786 11.6181 3.4085
omoms7 24 38.7618 0.9727 8.6477 2.9407

Table A.3 – Results for the first image

For the map image, image 2 in our test set, results in table A.4 show that again Fourier
interpolation has no error. Besides this, high order oMoms and bSplines, as better approx-
imators of the Shannon-Whitaker kernel, also manage to get good results, however their
computational time, as it will be seen later, is prohibitive. As for faster methods, both
oMoms3 and Lanczos3 obtain the best results without a heavy computational cost.

Finally, for the third image, whose results can be appreciated in table A.5, again
Fourier interpolation achieves zero error. The third input image is badly sampled, noisy
and aliased, which does not favor any interpolation method. In fact, because of its noisy
conditions, every other interpolation method presents low PSNR and SSIM scores than
for the other two test images. Again as with the previous image, higher order inter-
polation methods usually get better results, and among the faster methods, third order
B-Splines seems to achieve better results.
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Method MaxAbsDiff PSNR SSIM MSE RMSE
fourier 0 ∞ 1 0 0
nearest 240 18.7423 0.5993 868.6580 29.4730
bilinear 160 25.4543 0.8673 185.2054 13.6090

quadInterp 160 25.4543 0.8673 185.2054 13.6090
bicubic 141 27.4889 0.9217 115.9279 10.7670

lanczos2 141 27.4889 0.9217 115.9278 10.7670
lanczos3 110 29.7068 0.9539 69.5657 8.3406
lanczos4 103 30.8751 0.9628 53.1580 7.2910
schaum2 141 27.4889 0.9217 115.9279 10.7670
schaum3 141 27.4889 0.9217 115.9279 10.7670
bspline2 125 28.6285 0.9405 89.1732 9.4432
bspline3 110 29.5757 0.9521 71.6993 8.4675
bspline5 104 31.4393 0.9673 46.6820 6.8324
bspline7 101 32.6689 0.9732 35.1718 5.9306
bspline9 99 33.6026 0.9763 28.3677 5.3261

bspline11 97 34.3562 0.9782 23.8486 4.8835
omoms3 106 30.5785 0.9613 56.9155 7.5442
omoms5 102 31.9686 0.9701 41.3254 6.4285
omoms7 100 33.0891 0.9748 31.9282 5.6505

Table A.4 – Results for the second image

Method MaxAbsDiff PSNR SSIM MSE RMSE
fourier 0 ∞ 1 0 0
nearest 100 18.7247 0.4300 872.1973 29.5330
bilinear 48 25.1255 0.7513 199.7704 14.1340

quadInterp 48 25.1255 0.7513 199.7704 14.1340
bicubic 51 26.8631 0.8352 133.8970 11.5714

lanczos2 51 26.8630 0.8352 133.9008 11.5716
lanczos3 51 28.7841 0.9014 86.0332 9.2754
lanczos4 42 29.8844 0.9249 66.7784 8.1718
schaum2 51 26.8631 0.8352 133.8970 11.5714
schaum3 51 26.8631 0.8352 133.8970 11.5714
bspline2 50 27.8419 0.8717 106.8795 10.3383
bspline3 46 28.6835 0.8967 88.0501 9.3835
bspline5 39 30.4155 0.9340 59.0916 7.6871
bspline7 36 31.6181 0.9517 44.7995 6.6932
bspline9 34 32.5335 0.9620 36.2856 6.0238

bspline11 32 33.2479 0.9686 30.7815 5.5481
omoms3 41 29.5965 0.9186 71.3565 8.4473
omoms5 38 30.9313 0.9422 52.4751 7.2440
omoms7 35 32.0323 0.9565 40.7235 6.3815

Table A.5 – Results for the third image

Results shifting 0.7 pixel

In the previous section, some methods present the same results. This is due to the fact
that interpolation was performed using half a pixel in both directions, and both interpo-
lation kernels coincide on those values. To further evaluate the methods, the images were
shifted vx = 0.7, vy = 0.7 pixels and then again, shifted back the same amount. Results
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Method MaxAbsDiff PSNR SSIM MSE RMSE
Fourier 0 ∞ 1 0 0
bilinear 73 31.0627 0.9871 50.9110 7.1352

quadInterp 48 34.7631 0.9945 21.7156 4.6600
bicubic 45 35.3128 0.9950 19.1339 4.3742

lanczos2 44 35.5982 0.9953 17.9167 4.2328
lanczos3 28 38.5934 0.9943 8.9896 2.9983
lanczos4 23 39.7711 0.9913 6.8545 2.6181
schaum2 23 41.1192 0.9987 5.0253 2.2417
schaum3 52 34.0538 0.9930 25.5679 5.0565
bspline2 32 37.9017 0.9963 10.5417 3.2468
bspline3 32 37.9901 0.9937 10.3294 3.2139
bspline5 22 40.5412 0.9897 5.7407 2.3960
bspline7 17 41.7125 0.9869 4.3836 2.0937
bspline9 15 42.9595 0.9838 3.2895 1.8137
bspline11 14 43.7995 0.9828 2.7110 1.6465
omoms3 23 40.3572 0.9938 5.9891 2.4473
omoms5 19 41.0794 0.9893 5.0715 2.2520
omoms7 15 42.4439 0.9864 3.7041 1.9246

Table A.6 – Results for the first image.

can be seen in tables A.6, A.7 and A.8. It can be perceived now that every method gives
different results. The nearest neighbor interpolation is ignored in this test because the
nature of the performed test implies always zero approximation error.

As expected the results of table A.6 are better than in table A.3. Again Schaum2 gets
the best SSIM due to the same reasons, however now it does also obtain excellent results
on the PSNR metric, only comparable to higher order (and more costly) methods.

In table A.7, similar to the previous case, results are better than in table A.4 implying
our assumption that shifting by half a pixel achieves the biggest approximation error
possible. Interesting about these results is that again Schaum2 obtains not only good
results in terms of MSE and SSIM, comparable to higher order methods such as bspline7
and omoms7, but also that it has the lowest MaxAbsDiff score.

Finally, results of performing this test on image 3 are found in table A.8. Again the
same pattern of Schaum2 performing as good as the higher order methods is present for
this case.

It has to be noted that the supremacy of the Fourier interpolation method over the oth-
ers should not be considered. This can be understood because when shifting the image in
one direction and then shifting it back, the Fourier method is exact. The other methods,
since they work in the spatial domain, not only they are not exact because they try to
approximate a function, but also this approximation error is performed twice, first when
shifting into the chosen direction, and second when shifting back. This implies that the
performed test is not fair for the spatial domain methods, however since no prior knowl-
edge of the problem in which interpolation should be used, and thus, no ground truth
information is available, this test seemed a good approach for estimating the accuracy of
the methods. If a way to measure intermediate results other than by visual perception
would be available, then artifacts produced by Fourier interpolation would discourage
its use, and the obtained error would be considerably higher, while the other methods
would produce similar results. Unluckily, these problems could not be captured by the
proposed test method.
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Method MaxAbsDiff PSNR SSIM MSE RMSE
Fourier 0 ∞ 1 0 0
bilinear 142 26.6153 0.8998 141.7585 11.9062

quadInterp 100 29.8499 0.9555 67.3113 8.2043
bicubic 101 30.2592 0.9601 61.2576 7.8267

lanczos2 99 30.4228 0.9618 58.9928 7.6807
lanczos3 93 32.9321 0.9788 33.1034 5.7536
lanczos4 89 34.0843 0.9829 25.3895 5.0388
schaum2 69 35.4712 0.9892 18.4487 4.2952
schaum3 116 29.1232 0.9472 79.5711 8.9203
bspline2 90 32.5147 0.9770 36.4430 6.0368
bspline3 93 32.4658 0.9763 36.8552 6.0709
bspline5 89 34.6317 0.9849 22.3827 4.7310
bspline7 87 35.9127 0.9878 16.6654 4.0823
bspline9 86 36.8491 0.9892 13.4328 3.6651

bspline11 85 37.5954 0.9901 11.3120 3.3633
omoms3 88 34.6185 0.9855 22.4508 4.7382
omoms5 88 35.2247 0.9865 19.5257 4.4188
omoms7 86 36.3364 0.9885 15.1161 3.8879

Table A.7 – Results for the second image.

Method MaxAbsDiff PSNR SSIM MSE RMSE
Fourier 0 ∞ 1 0 0
bilinear 42 26.1686 0.8077 157.1142 12.5345

quadInterp 32 29.1778 0.9100 78.5777 8.8644
bicubic 37 29.4530 0.9149 73.7535 8.5880

lanczos2 37 29.6075 0.9183 71.1752 8.4365
lanczos3 34 31.8706 0.9547 42.2690 6.5015
lanczos4 30 32.9629 0.9655 32.8695 5.7332
schaum2 22 34.5612 0.9774 22.7488 4.7696
schaum3 43 28.3708 0.8874 94.6249 9.7275
bspline2 31 31.5245 0.9499 45.7756 6.7658
bspline3 32 31.4294 0.9487 46.7882 6.8402
bspline5 28 33.4657 0.9697 29.2762 5.4107
bspline7 26 34.6997 0.9781 22.0347 4.6941
bspline9 26 35.5805 0.9827 17.9900 4.2415

bspline11 27 36.2902 0.9859 15.2778 3.9087
omoms3 27 33.4635 0.9698 29.2908 5.4121
omoms5 27 34.0415 0.9738 25.6408 5.0637
omoms7 26 35.1030 0.9804 20.0806 4.4811

Table A.8 – Results for the third image.
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A.4.2 Qualitative results

In this section, every interpolation method is evaluated first by performing half a pixel
shift in both directions, and second, by shifting them back and observing the visual re-
sults.

Intermediate Interpolation Results

To visually evaluate the algorithms, the input images were first shifted vx = 0.5, vy = 0.5
pixels. Results are shown in figures A.6, A.7 and A.8 respectively. For the first image, be-
cause it is not bandlimited, ripple artifacts can be perceived next to the steep edges. Since
high order methods better approximate Fourier interpolation, they also present some
artifacts, however less extended over the image. As for lower interpolation methods,
results seem better and no artifacts are produced, however they tend to blur the edges.

For the second image of figure A.7, except for bilinear interpolation which heav-
ily blurs the image, every other method has acceptable results. Higher order methods
present some minor artifacts that can be perceived by zooming in the image. As for the
other methods, visual difference seems not to be significant and thus, quadratic interpo-
lation, which offers the lowest computational cost, seems to be the best option.

Finally, for the third image, shown in fig. A.8, lower order interpolation methods blur
the image removing both noise and detail. As for higher order methods, their results
seem fine, however they also add some minor blur. It can be noted as well, specially on
the noisy background and on the central ship, that Fourier interpolation seems to add
fine grained noise to the results.

An important remark is that Fourier interpolation assumes periodical images and
thus, when performing the image shifting it can be seen, in particular on smaller images
like image 3, how the other edges of the image are transfered to the edges where new
values should be put. This does not occur with the other methods since mirror symmetry
is assumed.

Final Results

In this section we analyze the resulting quality, using the same images, of applying the
interpolation method to shift the images vx = 0.5, vy = 0.5 pixels into one direction and
then shifting them back vx = −0.5, vy = −0.5 pixels into its original position. Ideally, the
resulting image should be exactly the same as the original, however some interpolation
error introduced by each algorithm can be perceived. In figure A.9, edges are heavily
blurred on interpolation methods such as Bilinear and Biquadratic, while higher order
methods such as BSpline9, BSpline11 and oMoms7 introduce visible ripple artifacts close
to the edges. Fourier interpolation produces zero error due, again, to the nature of the
performed test.

On figure A.10, again lower order methods usually blur the image, while higher order
produce ripple artifacts. However, this time, since the input image is slightly better sam-
pled, these artifacts are less perceivable. Fourier interpolation, because of its invertible
nature, again obtains the same original image.

On figure A.11, the results of applying the evaluation method to a small noisy image
is shown. In this case, as in both previous examples, lower order methods blur the image.
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(a) Input Image

(b) Zoomed Region (c) Bilinear (d) Biquadratic

(e) Bicubic (f) Lanczos 2 (g) Lanczos 3 (h) Lanczos 4

(i) Schaum 2 (j) Schaum 3 (k) BSpline 2 (l) BSpline 3

(m) BSpline 5 (n) BSpline 7 (o) BSpline 9 (p) BSpline 11

(q) Moms 3 (r) Moms 5 (s) Moms 7 (t) Fourier

Figure A.6 – Image shifting results on image with steep edges. Important ripple artifacts could be
observed in several high order methods.
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(a) Input Image (b) Zoomed Region (c) Bilinear (d) Biquadratic

(e) Bicubic (f) Lanczos 2 (g) Lanczos 3 (h) Lanczos 4

(i) Schaum 2 (j) Schaum 3 (k) BSpline 2 (l) BSpline 3

(m) BSpline 5 (n) BSpline 7 (o) BSpline 9 (p) BSpline 11

(q) Moms 3 (r) Moms 5 (s) Moms 7 (t) Fourier

Figure A.7 – Image shifting results on map image. Ripple artifacts exist in methods with higher
complexity, specially under Fourier interpolation, however not easily perceivable.
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(a) Zoomed Image (b) Bilinear (c) Biquadratic (d) Bicubic

(e) Lanczos 2 (f) Lanczos 3 (g) Lanczos 4 (h) Schaum 2

(i) Schaum 3 (j) BSpline 2 (k) BSpline 3 (l) BSpline 5

(m) BSpline 7 (n) BSpline 9 (o) BSpline 11 (p) Moms 3

(q) Moms 5 (r) Moms 7 (s) Fourier

Figure A.8 – Image shifting results on noisy image. Interpolation methods tend to blur the image
removing both noise and detail. Fourier interpolation seems to add fine grained noise.
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(a) Input Image

(b) Zoomed Region (c) Bilinear (d) Biquadratic

(e) Bicubic (f) Lanczos 2 (g) Lanczos 3 (h) Lanczos 4

(i) Schaum 2 (j) Schaum 3 (k) BSpline 2 (l) BSpline 3

(m) BSpline 5 (n) BSpline 7 (o) BSpline 9 (p) BSpline 11

(q) Moms 3 (r) Moms 5 (s) Moms 7 (t) Fourier

Figure A.9 – Image shifting results on image 1. Blur can be perceived on edges on interpolation
algorithms with small support kernels.

222



A.4. Results 223

(a) Input Image (b) Zoomed Region (c) Bilinear (d) Biquadratic

(e) Bicubic (f) Lanczos 2 (g) Lanczos 3 (h) Lanczos 4

(i) Schaum 2 (j) Schaum 3 (k) BSpline 2 (l) BSpline 3

(m) BSpline 5 (n) BSpline 7 (o) BSpline 9 (p) BSpline 11

(q) Moms 3 (r) Moms 5 (s) Moms 7 (t) Fourier

Figure A.10 – Image shifting results on image 2.
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(a) Input Image (b) Bilinear (c) Biquadratic (d) Bicubic

(e) Lanczos 2 (f) Lanczos 3 (g) Lanczos 4 (h) Schaum 2

(i) Schaum 3 (j) BSpline 2 (k) BSpline 3 (l) BSpline 5

(m) BSpline 7 (n) BSpline 9 (o) BSpline 11 (p) Moms 3

(q) Moms 5 (r) Moms 7 (s) Fourier

Figure A.11 – Image shifting results on image 3.
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A.4.3 Execution Time

To evaluate the execution time, each method was used to shift the map image (image 2)
again vx = 0.5, vy = 0.5 pixels. This procedure was repeated 500 times and the average
running time for each algorithm was measured. The results are shown in table A.9. Inter-
estingly, the bilinear and the nearest neighbor interpolation took the same time, however
it has to be noted that since the nearest neighbor method has practically no computa-
tional burden, the overhead of the implementation probably dominates the execution
and thus no speedup could be perceived. On the other side, the quadratic interpolation
is, as claimed by its authors [44], considerably faster than the bicubic, and its results are
visually and numerically better than bilinear interpolation. Also, Fourier interpolation
executed 20% faster than bicubic interpolation, while its results are among the best. In
this case, the FFTW library was used, which is a highly optimized FFT library. For the
rest, it has to be noted that both Schaum methods took the same time as bicubic while
its results are generally better. Finally, high order methods such as bsplines, oMoms and
Lanczos take excesively long time and its use is discouraged. At the same time, lower or-
der bsplines and oMoms, such as bspline3 and oMom3, offer fine results without taking
much execution time.

Method Time (seconds)
Fourier 0.450
nearest 0.235
bilinear 0.235

quadInterp 0.371
bicubic 0.554

lanczos2 0.556
lanczos3 1.101
lanczos4 1.817
schaum2 0.554
schaum3 0.554
bspline2 0.498
bspline3 0.682
bspline5 1.347
bspline7 2.186
bspline9 3.229
bspline11 4.472
omoms3 0.683
omoms5 1.347
omoms7 2.187

Table A.9 – Average processing time for each method for shifting image 2.

A.4.4 Combining time and approximation error

In order to give an estimate about the best methods in terms of both speed and precision,
a performance index is introduced. If MSEmethod is the resulting MSE value for a partic-
ular method, max(MSE) represent the maximum MSE value over all evaluated methods
and Tmethod stands for the total execution time of method, then the performance index is
calculated in the following way:

Pmethod = Tmethod
MSEmethod
max(MSE)

(A.55)
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It is worth remarking that Fourier interpolation method is not included in this list since
the performed evaluation is suited for Fourier interpolation and thus, would always be
the best interpolation algorithm possible. It is also necessary to clarify that for the MSE
measurements, an average of both performed test scores was used, always for the same
image (image 2). Results are shown in figure A.12. oMoms3 shows up as the most recom-
mended method, followed by BSpline2. Then Schaum2 and BSpline3 appear to be a good
compromise between precision and processing cost, while bilinear interpolation comes
just after those, specially because of its low execution time.

Figure A.12 – Performance Index for all methods based on the MSE.

The same evaluation was performed for the RMSE score in figure A.13, and in this
case, another method that appears interesting is the quadratic interpolation. On the other
side, only if high precision is required, methods with long support such as bspline11 or
lanczos4 should be avoided.
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Figure A.13 – Performance Index for all methods based on the RMSE.
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Appendix B

Fast Anscombe VST implementation for fast on board noise
stabilization

As explained in section 4.3, we apply systematically an Anscombe transform to all im-

ages, Ĩ → 2
√

3
8 + I. If the noise is pure Poisson, this transform is known to make it into

an almost white additive Gaussian noise. By applying it to our data, we get closer to this
situation, and this tightens slightly the noise estimates.

However, since this transform involves applying a square root, its computation on the
satellite hardware may be restrictive, as indicated by the hardware development team of
CNES. Therefore, an alternative to the square root has to be analyzed. Based on the
analysis of El-Magdoub [49], the inverse square root approximation algorithm used by
Quake 3 seemed to suit our needs for both precision and speed. This algorithm takes
advantage of the 32-bit representation of floating point values, thus, allowing it only to
be run on a 32-bit architecture. Its code is the following:

#define SQRT_MAGIC_F 0x5f3759df
float sqrt(const float x)
{

const float xhalf = 0.5f*x;
union // get bits for floating value
{

float x;
int i;

} u;
u.x = x;
u.i = SQRT_MAGIC_F - (u.i >> 1); // gives initial guess y0
invsqrt = x*u.x*(1.5f - xhalf*u.x*u.x);// Newton step, repeating increases accuracy
return 1/invsqrt;

}

Experiments showed similar performance when applying this approximation, which im-
plies that it can be implemented in the satellite.
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Appendix C

Algorithms for gradient-based shift estimation used in the
Stab-Active application

For the sake of completeness, we describe here the rest of the algorithms used in the Stab-
Active project. Algorithm 20 estimates the noise for the whole line, using Eq. (4.2). The
hypomode gradient estimation method is described in algorithm 21. Finally, algorithm
23 describes the gradient-based shift estimation procedure. This algorithm indeed re-
sembles Alg. 1 from the first chapter, although it is explained in detail and optimized to
avoid unnecessary computations.

Algorithm 20 Noise estimation, two consecutive noisy frames

Input: Ii(x, y), i ∈ [1, . . . , N ] N noisy images defined on the image domain D with size
N = 50× 50 pixels

Output: average noise variance σ̂2

σ̂2 := 1
N−1

∑N−1
i=1

[
1

2|S|
∑

x,y(I
∗
i+1(x, y)− I∗i (x, y))2

]

Algorithm 21 Compute Gradient

Input: I(x, y) input image with size N = 50× 50 pixels
Output: Ix, Iy gradient of I

for x, y between (1, 1) and (49, 49) do
Ix(x, y)← I(x+1,y)−I(x,y)+I(x+1,y+1)−I(x,y+1)

2

Iy(x, y)← I(x,y+1)−I(x,y)+I(x+1,y+1)−I(x+1,y)
2

end for

Algorithm 22 Temporal convolution

Input: I(t), 1 ≤ t ≤ 64 images, p ∈ N.
Output: ID(t) denoised version of I(t) by temporal sliding average.

for i = p+ 1 to 64− p do
ID(i− p)←

∑i+p
j=i−p I(j)

end for
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Algorithm 23 EstimateShift: gradient-based shift estimation

Input: I1(x, y), I2(x, y) two images (generally obtained after temporal convolution)
defined on the image domain D with size N = 50× 50 pixels, Ix(x, y), Iy(x, y) gradient
(hypomode) for both dimensions of I1, itQty amount of iterations for the algorithm,
interpolationMethod interpolation method used,
Output: v = (vx, vy)

t motion vector.

// Since the gradient is computed using forward differences, precision is improved by using I(x+0.5, y+
0.5)
// Do I1(x, y)← I1(x+ 0.5, y + 0.5) using bilinear interpolation
for x, y between (1, 1) and (49, 49) do

I1(x, y)← I1(x,y)+I1(x,y+1)+I1(x+1,y)+I1(x+1,y+1)
4

end for
sI2x ←

∑49
x,y=1 Ix(x, y)

2, sI2y ←
∑49
x,y=1 Iy(x, y)

2

sIxIy ←
∑49
x,y=1 Ix(x, y)Iy(x, y)

Det← sI2xsI
2
y − (sIxIy)

2

IA ← I2
for i = 1 to itQty do

for x, y between (1, 1) and (49, 49) do
// Do IA(x, y)← IA(x+ 0.5, y + 0.5) using bilinear interpolation (for the same reason as before)
IA(x, y)← IA(x,y)+IA(x,y+1)+IA(x+1,y)+IA(x+1,y+1)

4

It(x, y)← IA(x, y)− I1(x, y), a column vector with 492 components
end for
sIxIt ←

∑49
x,y=1 It(x, y)Ix(x, y)

sIyIt ←
∑49
x,y=1 It(x, y)Iy(x, y)

vx ← 1
Det

(sIxIt sI
2
y − sIyIt sIxIy), vy ← 1

Det
(sIyIt sI

2
x − sIxIt sIxIy)

if i < itQty then
IA ← Interpolate (I2,−vx,−vy, interpolationMethod)

end if
end for
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Titre : Recalage rapide et précis des images. Applications pour l'imagerie satellite
Mots clés : Registration d'images, debruitage, Shack Hartmann, Flou Optique, Bruit.
Résumé :  Cette thèse commence par une étude approfondie des 
méthodes d'estimation de décalage sous-pixeliques rapides et 
précises. Une comparaison complète est effectuée prenant en compte 
problèmes d'estimation de décalage existant dans des applications 
réelles, à savoir, avec différentes conditions de SNR, différentes 
grandeurs de déplacement, la non préservation de la contrainte de 
luminosité constante, l'aliasing et, surtout, la limitation des 
ressources de calcul. Sur la base de cette étude, en collaboration avec 
le CNES (l'agence spatiale française), deux problèmes qui sont 
cruciaux pour l'optique numérique des satellites d'observation de la 
terre sont analysés.
Nous étudions d'abord le problème de correction de front d'onde 
dans le contexte de l'optique actif. Nous proposons un algorithme 
rapide et précis, basée sur l'équation du flot optique soigneusement 
raffiné, pour mesurer les aberrations de front d'onde sur un senseur 
de type Shack-Hartmann (SHWFS en anglais) en observant la terre. 
Cette méthode profite des petits décalages observés dans un système 
de correction de front d'onde en boucle fermée, ce qui améliore la 
précision tout en minimisant les ressources de calcul. Nous 
proposons également deux méthodes de validation afin d'assurer une 
estimation correcte du front d'onde sur les scènes étendues. 
La deuxième application de satellite abordée est la conception 
numérique d'une nouvelle génération de senseur du type Time Delay 
Integration (TDI). Dans ce nouveau concept, la stabilisation active 
en temps réel du TDI est réalisée pour étendre considérablement le 
temps d'intégration, et donc augmenter le RSB des images. Les 
lignes du TDI ne peuvent pas être fusionnées directement par 
addition parce que leur position est modifiée par des 
microvibrations. Celles-ci doivent être compensées en temps réel en 
utilisant des ressources de calcul limitées sur le satellite, avec une 
précision sous-pixellique. Nous étudions les limites fondamentales 
théoriques de ce problème et proposons une solution en temps 

réel qui s'en approche. Nous présentons un système utilisant la 
convolution temporelle conjointement à une estimation en ligne du  
bruit de capteur, à une estimation de décalage basée sur les 
gradients et à une méthode multiimage non conventionnelle pour 
mesurer les déplacements globaux. Les résultats obtenus sont 
concluants sur les fronts de la précision et de la complexité et ont 
fortement influencé les décisions finales sur les futures 
configurations des satellites d'observation de la Terre au CNES.
Pour des modèles de transformation plus complexes, une nouvelle 
méthode effectuant l'estimation robuste des modèles de mise en 
correspondance des points d'intérêt entre images est proposée. La 
difficulté provenant de la présence de fausses correspondances et de 
mesures bruitées conduit à un échec des méthodes de régression 
traditionnelles. RANSAC est capable de discriminer les fausses 
correspondances en générant de façon alétaoire des échantillons 
d'hypothèses minimalistes et en vérifiant leur consensus sur les 
données d'entrée. Cependant, sa réponse est basée sur la seule 
itération qui a obtenu le consensus le plus large, et elle ignore toutes 
les autres hypothèses. Nous montrons ici que la précision obtenue 
peut être améliorée en agrégeant toutes les hypothèses envisagées. 
Nous proposons également une stratégie qui permet de moyenner 
rapidement des transformations 2D, ce qui réduit le coût 
supplémentaire de calcul à quantité négligeable. Nous donnons des 
applications réelles pour estimer les transformations projectives et 
de type homographie + distorsion. En incluant une adaptation 
simple de LO-RANSAC dans notre cadre, l'approche proposée bat 
toutes les méthodes de l'état de l'art. Une analyse complète de 
l'approche proposée est réalisée, et elle démontre un net progrès en 
précision, stabilité et polyvalence.

Title : Fast and accurate image registration. Applications to on-board satellite imaging.
Keywords : Image registration, denoising, Shack-Hartmann, optical flow, noise.
Summary : This thesis starts with an in-depth study of fast and 
accurate sub-pixel shift estimation methods. A full comparison is 
performed based on the common shift estimation problems occurring 
in real-life applications, namely, varying SNR conditions, different 
displacement magnitudes, non-preservation of the brightness 
constancy constraint, aliasing, and most importantly, limited 
computational resources. Based on this study, in collaboration with 
CNES (the French space agency), two problems that are crucial for 
the digital optics of earth-observation satellites are analyzed. 
Numerical wavefront estimation. We first study the wavefront 
correction problem in an active optics context. We propose a fast and 
accurate algorithm, based on a carefully refined approach based on 
the optical flow equation, to measure the wavefront aberrations on a 
Shack-Hartmann Wavefront Sensor (SHWFS) device observing the 
earth. This method takes advantage of the small shifts observed in a 
closed-loop wavefront correction system, yielding improved accuracy 
using fewer computational resources. We also propose two validation 
methods to ensure a correct wavefront estimation on extended scenes. 
Registration-based time delay integration. The second application 
that we address is the numerical design of a new generation of Time 
Delay Integration (TDI) sensor. In this new concept, active real-time 
stabilization of the TDI is performed to extend considerably the 
integration time, and therefore to boost the images SNR. The stripes 
of the TDI cannot be fused directly by addition because their position 
is altered by microvibrations. These must be compensated in real 
time using limited onboard computational resources with high 
subpixel accuracy. We study the fundamental performance limits for 
this problem and propose a real-time solution that nonetheless

gets close to the theoretical limits. We introduce a scheme using 
temporal convolution together with online noise estimation, 
gradient-based shift estimation and a non-conventional multiframe 
method for measuring global displacements. The obtained results 
are conclusive on the fronts of accuracy and complexity and have 
strongly influenced the final decisions on the future configurations 
of Earth observation satellites at CNES. 
Improving image registration by a new RANSAC method. For more 
complex transformation models, a new image registration method 
performing robust model estimation through point matches between 
images is proposed here. The difficulty coming from the presence of 
outliers causes the failure of traditional regression methods. The 
RANSAC approach discriminates outliers by randomly generating 
minimalist sampled hypotheses and verifying their consensus over 
the input data. However, its response is based on the single iteration 
that achieved the largest inlier support, while discarding all other 
generated hypotheses. We show here that the resulting accuracy can 
be improved by aggregating all hypotheses. We also propose a 
simple strategy that allows to rapidly average 2D transformations, 
leading to an almost negligible extra computational cost. We give 
practical applications to the estimation of projective and 
homography+distortion transformations. By including a 
straightforward adaptation of the locally optimized RANSAC in our 
framework, the proposed approach improves over every other 
available state-of-the-art method. A complete analysis of the 
proposed method is performed, demonstrating its improved 
accuracy, stability and versatility.
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