
HAL Id: tel-01485328
https://theses.hal.science/tel-01485328

Submitted on 8 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Metric properties of large graphs
Guillaume Ducoffe

To cite this version:
Guillaume Ducoffe. Metric properties of large graphs. Other [cs.OH]. COMUE Université Côte d’Azur
(2015 - 2019), 2016. English. �NNT : 2016AZUR4134�. �tel-01485328�

https://theses.hal.science/tel-01485328
https://hal.archives-ouvertes.fr

UNIVERSITÉ CÔTE D’AZUR

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

T H È S E
pour obtenir le titre de

Docteur en Sciences

de l’Université Côte d’Azur
Mention : Informatique

Présentée et soutenue par

Guillaume Ducoffe

Propriétés métriques des grands
graphes

Thèse dirigée par David Coudert

préparée à l’Inria Sophia Antipolis, Projet COATI
soutenue le 9 décembre 2016

Jury :

Rapporteurs : Victor Chepoi - Aix-Marseille Université
Laurent Viennot - Inria (GANG)

Directeur : David Coudert - Université Côte d’Azur, Inria, CNRS, I3S, France
Examinateurs : Michele Flammini - Università degli Studi dell’Aquila

Cyril Gavoille - LaBRI
Nicolas Nisse - Université Côte d’Azur, Inria, CNRS, I3S, France
Robert Tarjan - Princeton University and Intertrust Technologies

Invité : Igor Litovsky - Université Côte d’Azur, CNRS, I3S, France

Acknowledgements

Je remercie d’abord les membres de mon jury de thèse. Merci en particulier à Victor
Chepoi et Laurent Viennot pour avoir eu la gentillesse de rapporter ma thèse.
J’attends avec impatience la version roumaine de son rapport, promise par Victor.
Je remercie également Robert Tarjan pour m’avoir fait l’honneur d’accepter d’être
membre de mon jury de thèse et d’avoir fait un long déplacement depuis les États-
Unis à cette occasion. Enfin, merci à Igor Litovsky, dont je n’oublie pas qu’il a
été le premier à me pousser vers la recherche, et que je remercie chaleureusement
ainsi que Paul Franchi, Ioan Bond et Christophe Papazian.

Mes remerciements vont de même à Jean-Claude Bermond, pour m’avoir en-
cadré lors de mon tout premier stage de recherche, et depuis pour m’avoir guidé
et sagement conseillé dans mes choix de carrière. . . et battu systématiquement au
trash ping-pong! Un très grand merci du fond du coeur à mon encadrant, David
Coudert, tant pour sa (très) grande patience que sa disponibilité, ses conseils sci-
entifiques et humains précieux, et les efforts de qualité qu’il a mis afin que cette
thèse se déroule dans les meilleures conditions possibles. Je tiens bien sûr à re-
mercier tous les autres membres du projet Mascotte/Coati et apparentés: de
Patricia, l’âme de cette équipe, à mon co-bureau Nicolas – alias Jésus – en passant
par Nicolas (le grand), Christelle l’excellente (non, elle ne m’a pas mis le couteau
sous la gorge. . .), Minus le bon, Majus la brute et Michel le truand, l’énigmatique
Stéphane, Julien, Joanna, Steven, William “Hochet”, et les anciens (et revenus) dont
Fatima, Julio, Dorian et Magali, Nadège, Aurélien, Nathann, Alvinice et Khoa. Ces
remerciements s’étendent, outre-Atlantique, à Augustin, Roxana, Mathias, Juba,
Chris, Avner, Arthi et Max.

Des remerciements très spéciaux à mes deux soeurs, Anaïs et Mélanie, qui me
soutiennent depuis toujours dans mes choix de vie et de carrière. J’ai une pensée
particulière pour Mélanie qui, malheureusement, n’a pas pu se libérer pour la sou-
tenance. À vous deux, j’espère vous rendre ne serait-ce que le dixième de ce que
vous m’avez donné. Merci, bien sûr, à mes deux parents, à qui ira toujours toute
mon affection. J’ai une petite pensée pour Lolita, trop tôt disparue, et pour Pelote,
Mistoufle et Catarina. Enfin, je fais un merci général à ma grand-mère ainsi qu’à
tout le reste de ma nombreuse petite famille!

J’offre mon dernier remerciement, du fond de mon coeur et de mon âme, à ma
chérie Adriana. Il y a eu un avant et un après t’avoir rencontré. Je te dois ma bonne
humeur, mon inspiration, et l’éternité ne me suffira pas à te rembourser ma dette
(même si je compte bien m’y employer). Eu te iubesc la nebunie, jumatatea mea!

Abstract

Large scale communication networks are everywhere, ranging from data centers with
millions of servers to social networks with billions of users. This thesis is devoted to
the fine-grained complexity analysis of combinatorial problems on these networks.

In the first part, we focus on the embeddability of communication networks to
tree topologies. This property has been shown to be crucial in the understanding
of some aspects of network traffic (such as congestion). More precisely, we study
the computational complexity of Gromov hyperbolicity and of tree decomposition
parameters in graphs – including treelength and treebreadth. On the way, we give
new bounds on these parameters in several graph classes of interest, some of them
being used in the design of data center interconnection networks. The main result
in this part is a relationship between treelength and treewidth: another well-studied
graph parameter, that gives a unifying view of treelikeness in graphs and has algo-
rithmic applications. This part borrows from graph theory and recent techniques in
complexity theory.

The second part of the thesis is on the modeling of two privacy concerns with
social networking services. We aim at analysing information flows in these networks,
represented as dynamical processes on graphs. First, a coloring game on graphs is
studied as a solution concept for the dynamic of online communities. We give a
fine-grained complexity analysis for computing Nash and strong Nash equilibria in
this game, thereby answering open questions from the literature. On the way, we
propose new directions in algorithmic game theory and parallel complexity, using
coloring games as a case example. Finally, we introduce a new learning problem
that is motivated by the need for users to uncover any misuse of their personal data
online. We give positive and negative results on the tractability of this problem.

Keywords: Graph; Algorithms; Complexity in P; Gromov Hyperbolicity;
Treelength; Treebreadth; Treewidth; Coloring games; Nash equilibrium;
Boolean function learning.

Résumé

Les grands réseaux de communication sont partout, des centres de données avec des
millions de serveurs jusqu’aux réseaux sociaux avec plusieurs milliards d’utilisateurs.
Cette thèse est dédiée à l’étude fine de la complexité de différents problèmes com-
binatoires sur ces réseaux.

Dans la première partie, nous nous intéressons aux propriétés des plongements
des réseaux de communication dans les arbres. Ces propriétés aident à mieux com-
prendre divers aspects du trafic dans les réseaux (tels que la congestion). Plus
précisément, nous étudions la complexité du calcul de l’hyperbolicité au sens de
Gromov et de paramètres des décompositions arborescentes dans les graphes. Ces
paramètres incluent la longueur arborescente (treelength) et l’épaisseur arborescente
(treebreadth). Au passage, nous démontrons de nouvelles bornes sur ces paramètres
dans de nombreuses classes de graphes, certaines d’entre elles ayant été utilisées
dans la conception de réseaux d’interconnexion des centres de données. Le résultat
principal dans cette partie est une relation entre longueur et largeur arborescentes
(treewidth), qui est un autre paramètre très étudié des graphes. De ce résultat, nous
obtenons une vision unifiée de la ressemblance des graphes avec un arbre, ainsi que
différentes applications algorithmiques. Nous utilisons dans cette partie divers outils
de la théorie des graphes et des techniques récentes de la théorie de la complexité.

La seconde partie de cette thèse est consacrée à la modélisation de deux prob-
lèmes motivés par le respect de la vie privée sur les réseaux sociaux. Notre objectif
est d’analyser les flux d’information dans ces réseaux, représentés par des processus
dynamiques sur des graphes. Tout d’abord, nous étudions un jeu de coloration sur
les graphes, en tant que concept de solution pour la dynamique des communautés en
ligne. Nous donnons une analyse fine de la complexité du calcul d’équilibres de Nash
dans ce jeu, ce qui nous permet de répondre à des questions ouvertes de la littéra-
ture. De plus, nous proposons de nouvelles directions en théorie algorithmique des
jeux et en théorie de la complexité parallèle, que nous illustrons à l’aide des jeux de
coloration. Finalement, nous proposons un tout nouveau problème d’apprentissage,
motivé par le besoin des utilisateurs en ligne d’identifier les mauvais usages de leurs
données personnelles. Nous donnons des résultats, positifs comme négatifs, sur la
faisabilité de ce problème.

Mots clés: Graphe; Algorithmes; Complexité dans P; Hyperbolicité; Tree-
length; Treebreadth; Treewidth; Jeux de coloration; Équilibre de Nash; Ap-
prentissage de fonction Booléenne.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Contributions . 2

1.2.1 Part I: Metric tree-likeness in graphs 3
1.2.2 Part II: Privacy at large scale in social graphs 4

1.3 Preliminaries and notations . 5
1.4 List of publications . 6

I Metric tree-likeness in graphs 9

2 A survey on graph hyperbolicity 13
2.1 Introduction . 14

2.1.1 First objective: characterizing “hyperbolic” and “non hyper-
bolic” graph classes . 16

2.1.2 Second objective: computing the hyperbolicity of large graphs 17
2.1.3 Outline of the chapter . 18

2.2 Motivation . 19
2.2.1 Implications/applications of hyperbolicity 22

2.3 Definitions of hyperbolicity . 24
2.3.1 δ-hyperbolic graphs . 25
2.3.2 Reformulation of hyperbolicity 29
2.3.3 What is a “hyperbolic” graph ? 35

2.4 Hyperbolic graph classes . 36
2.4.1 Tree-likeness in graphs and hyperbolicity 36
2.4.2 Classical upper-bounds on hyperbolicity 40
2.4.3 Contribution: Graph operations and hyperbolicity 42
2.4.4 Conclusion and open perspectives 44

2.5 Obstructions to hyperbolicity . 44
2.5.1 Related work: random graphs are non hyperbolic 45
2.5.2 Lower-bounds on the hyperbolicity 46
2.5.3 Open problems . 53

2.6 On computing the hyperbolicity of graphs 55
2.6.1 Related work . 55
2.6.2 Contribution of this thesis: Preprocessing 57
2.6.3 Hardness results . 64

2.7 Algorithmic applications . 67
2.7.1 Distance approximations . 68
2.7.2 p-centers . 70
2.7.3 Traveling Salesman Problem 71

iv Contents

2.7.4 Cut problems . 72
2.8 Conclusion . 73

3 Tree decompositions with metric constraints on the bags 75
3.1 Introduction . 76

3.1.1 Context . 76
3.1.2 General objective: efficient computation of tree decompositions 77

3.2 Some basics on tree decompositions 79
3.2.1 Tree-likeness parameters . 80
3.2.2 Relationship with triangulations 83
3.2.3 Tree decompositions with constrained adhesion sets 84

3.3 Computational aspects of clique-decomposition 86
3.3.1 State of the art . 86
3.3.2 Contributions . 87
3.3.3 Summarizing the proofs . 88

3.4 On the complexity of computing treebreadth and its relatives 91
3.4.1 Summarize of our contributions 92
3.4.2 Approach and the techniques used in the proofs 93
3.4.3 Open problems and future work 102

3.5 Treewidth versus treelength! . 103
3.5.1 State of the art . 103
3.5.2 Contributions: upper and lower bounds for treewidth by using

treelength . 104
3.5.3 Proving the bounds . 105

3.6 Conclusion . 111

II Privacy at large scale in social graphs 113

4 The computation of equilibria in coloring games 117
4.1 Introduction . 118

4.1.1 Presentation of coloring games 119
4.1.2 Contributions . 121

4.2 Definitions . 123
4.2.1 Stable partitions and better-response dynamics 124
4.2.2 Friendship and conflict graphs 125

4.3 Unweighted games: the time of convergence for better-response dy-
namics . 125
4.3.1 A finer-grained complexity for the problem of computing k-

stable partitions . 126
4.3.2 Closed formula for the worst-case time of convergence of

better-response dynamics (k ≤ 2) 127
4.3.3 Lower-bounds for the worst-case time of convergence of better-

response dynamics (k ≥ 4) . 131

Contents v

4.4 The parallel complexity of coloring games 137
4.4.1 Overall approach and main result 137
4.4.2 The reduction . 138
4.4.3 Proof of the main result . 142

4.5 Weighted games: existence of equilibria 146
4.5.1 Positive results . 147
4.5.2 The hardness of recognizing games with k-stable partitions . 148

4.6 Extensions of coloring games . 153
4.6.1 Gossiping . 153
4.6.2 Asymmetry . 154
4.6.3 List coloring games . 155
4.6.4 Coloring games on hypergraphs 156

4.7 Concluding remarks . 156

5 Learning formulas in a noisy model 159
5.1 Introduction . 160

5.1.1 Our results . 161
5.1.2 Outline of the chapter . 162

5.2 Learning model . 162
5.2.1 PAC learning . 163
5.2.2 Juntas . 164
5.2.3 The oracle . 165
5.2.4 Distribution for the sampler 168

5.3 Single-input targeting . 169
5.3.1 Our results . 169
5.3.2 Reduction to Set Cover . 170
5.3.3 Concentration inequalities . 171
5.3.4 Proof overview . 173

5.4 Complex targeting: the case of monotonic functions 175
5.4.1 Beyond single-input: the influence of the targeting lift 177
5.4.2 Faster algorithms and tradeoffs 180
5.4.3 Conclusion and open perspectives 183

5.5 General case . 184
5.5.1 Identification of the relevant inputs 184
5.5.2 Filtering technique . 186
5.5.3 Impossibility results . 187

5.6 Conclusion . 188

6 Conclusion 191
6.1 Open perspectives . 191

Bibliography 193

vi Contents

A Résumé de la thèse 219
A.1 Contexte . 219
A.2 Contributions . 220

A.2.1 Partie I: Sur les graphes dont la métrique est proche de celle
d’un arbre . 220

A.2.2 Partie II: Le respect de la vie privée à grande échelle dans les
réseaux sociaux . 222

Chapter 1

Introduction

Contents
1.1 Context . 1
1.2 Contributions . 2

1.2.1 Part I: Metric tree-likeness in graphs 3
1.2.2 Part II: Privacy at large scale in social graphs 4

1.3 Preliminaries and notations 5
1.4 List of publications . 6

1.1 Context

Information sharing online has been gaining momentum over the last decades. As
examples, as of 2015 there have been 205 billion emails sent on a daily basis [Ema];
Twitter reports on 500 million messages exchanged a day on its social platform [Twi];
more generally, the global Internet traffic has been observed to grow from 100 GB per
day in 1992 to 20,235 GBps in 2015 [Cisa]. Accordingly, the volume of data stored
also has increased, and it is now expected to exceed 40 zettabytes by 2020 [IDC].

As we now enter into this “zettabyte era” [Cisb], information technologists are
confronted to several issues that are regularly covered by the media. Two of them
are addressed in this thesis.

• Scalability – is defined in [Ten16] as the requirement for the algorithms to run
in quasi-linear time in the size of the network. Put in less restrictive terms, there
is a need for efficient algorithms in order to process the communication networks.
Higher demands for such algorithms emerge from numerous domains, includ-
ing telecommunications, social networks, bio informatics, computer vision, and
economics. However, the rapid expansion of information sharing and data col-
lection has lead these networks to scale up, with now millions of servers in some
data centers [DCM], billions of users in social networks [FBN], etc. Textbook
methods do not scale well with networks of these sizes, thereby increasing the
gap between what we aim at computing and what can be achieved in practice.
Hence, there is a need for revisiting what efficient/scalable computation means
in this context.

We will propose advances in this direction based on tools from (algorithmic)
graph theory and complexity theory.

2 Chapter 1. Introduction

• Privacy – is defined in [EDP] as “a right which prevents public authorities [or
any other organization or individual] from measures which are [invasive for the
respect of private life], unless certain conditions have been met.” In particular,
the agressive collection of data by online companies has started raising alarms
as now reports on potential abuses are surfacing on a regular basis [Gou14,
Mat12, VDSVS12, The14]. Therefore, there is a need for predictive models in
order to detect, on an individual level, when these violations occur, or even
better to identify them.

Our main tools in this task will be computational learning theory and algorith-
mic game theory.
Before summarizing our contributions in Section 1.2, let us sketch our approach

for the thesis. Roughly, this work concentrates on a collection of combinatorial prob-
lems on graphs, whose study is motivated by these above two issues in information
technology. Since the proposed solutions are aimed at scaling up with large net-
works, we are particularly interested in obtaining a fine-grained complexity analysis
for these problems.

In particular, our study in Part I puts the focus on some graph invariants which
have been shown in previous works [NS11] to be related with these above two is-
sues in information technology. Studying properties of the “complex networks” and
their applications is not new, and this area has been proved successful in finding
relevant parameters and properties to study, such as: clustering [LLDM09], power-
law degree distribution [BAJ00], navigability [BKC09], (ultra) small world phe-
nomenon [WS98], structural decomposition into a core and peripheries [DGM06],
etc. In this work, we emphasize on the metric tree-likeness in graphs: a topic that
has been receiving growing attention over the last decades and that summarizes at
measuring how close the distance distribution of a graph is to a tree metric [Gro87].

We argue that studying the properties of the distance distribution is a natural
choice when considering information propagation in the graph. Furthermore, we
will detail more in Part I how the advantages and disadvantages of trees (with nice
algorithmic applications on the one hand, but vulnerabilities on the other hand) can
be translated to the graphs that are (metrically) “tree-like”.

This main line of study will be completed with the complexity analysis of two
dynamical processes on graphs in Part II, that both cover some aspects of privacy
in communication networks. Simply put, the aim of this side line of the thesis is to
design scalable tools in order to enforce privacy in these networks.

1.2 Contributions

Our work is presented in two separate parts which can be read independently. We
present their content in Sections 1.2.1 and 1.2.2, respectively.

Full papers can be found in the appendix. Indeed, we made the choice not to
include all proofs in the body of the chapters, partly for ease of readability as some
of them are very long (dozens of pages). We will only give the proofs that, in our

1.2. Contributions 3

opinion, are the best illustrations of our techniques. Sketches of the longest proofs
will be also provided.

1.2.1 Part I: Metric tree-likeness in graphs

A main objective of Part I is to obtain a finer-grained analysis for the complexity
of computing (metric) tree-likeness parameters and decompositions of graphs. Es-
pecially, can these properties be computed on large-scale graphs, with sometimes
millions of nodes and billions of edges ? On the way, our analysis will conduce
to study the relationships between metric tree-likeness in graphs and other graph
properties (structural, topological, algebraic, etc.).

1.2.1.1 Chapter 2: A survey on graph hyperbolicity

This chapter introduces the notion of graph hyperbolicity, that gives lower and
upper bounds on the best possible distortion of the distances in a graph when it is
embedded into a tree.

First, we show positive and negative results on the complexity of computing
this parameter. In particular, on the positive side we propose a preprocessing
method for decreasing the size of the input graph by using the well-known clique-
decomposition [BPS10], of which we give a fine-grained analysis. However, on a
more negative side, we prove that the recognition of graphs with small hyperbolicity
(at most 1/2) is computationally equivalent to the detection of induced squares in a
graph. The latter result implies a conditional cubic lower-bound on the complexity
of computing graph hyperbolicity. This is joint work with Nathann Cohen, David
Coudert and Aurélien Lancin [CD14, CCDL17].

Then, we establish new bounds on this parameter in some graph classes that
are used in the design of data center interconnection networks. In practice, these
bounds can be used in order to sharply estimate the hyperbolicity in these classes of
graphs. We complement these results with a fine-grained analysis of the variations
of hyperbolicity that may be caused by various graph operations such as line graph,
clique graph, etc. This analysis is particularly interesting in some cases where the
operation can be efficiently reversed (e.g., the root of a line graph can be computed
in linear time [Whi92]), as then it leads to new preprocessing methods for the
computation of graph hyperbolicity. This is joint work with David Coudert [CD16a,
CD16b].

1.2.1.2 Chapter 3: Tree decompositions with metric constraints on the
bags

New results are presented on the complexity of computing tree decompositions (de-
compositions of a graph in a tree-like manner) with metric constraints on their bags
(a.k.a., subgraphs resulting from the decomposition).

A finer-grained analysis of the complexity of computing the clique-decomposition
is first presented. This problem is proved to be computationally equivalent, under

4 Chapter 1. Introduction

standard complexity assumptions, to the detection of triangles in graphs and the
multiplication of two square matrices. On a more positive side, we show that it can
be solved in quasi-linear time on some classes of graph where the maximum size of
a clique is bounded. This is joint work with David Coudert [DC17].

Second, we answer open questions in the literature on the complexity of com-
puting treebreadth, pathbreadth and pathlength: that are tree-likeness parameters
all related to the notion of graph hyperbolicity. Namely, computing any of these
parameters is an NP-hard problem. In particular, recognizing the graphs with tree-
breadth at most one is NP-complete. However, we prove that the latter problem
can be solved in polynomial-time for bipartite graphs and planar graphs. This is
joint work with Sylvain Legay and Nicolas Nisse [DLN16a].

Finally, we investigate the relationships between another metric tree-likeness
parameter, called treelength, and a well-known structural tree-likeness parameter
that is called treewidth. Roughly, we establish upper and lower bounds on the
treewidth with linear dependency on the treelength in the classes of graph with
bounded-length isometric cycle (i.e., with no shortcut) and bounded genus (i.e.,
that can be drawn with no edge-crossing in a surface of bounded Euler genus). On
the scalability point of view, algorithmic applications of these results will be further
discussed. This is joint work with David Coudert and Nicolas Nisse [CDN16].

1.2.2 Part II: Privacy at large scale in social graphs

Two problems on privacy are discussed and studied in this part. Our objective is to
obtain a finer-grained analysis for the complexity of these two problems.

1.2.2.1 Chapter 4: The computation of equilibria in coloring games

We consider a coloring game played on a graph. This game has been proposed
in [KL13] as a solution concept for the dynamics of communities’ formation in social
networks. Earlier applications of the game have been suggested in [CKPS10] for
securing group communications.

We present some new results on the complexity for computing equilibria in this
game. More precisely, better-response dynamics can be used in order to compute a
stronger notion of Nash equilibrium: that is robust to every coalition of agents of
size at most a fixed k. On the positive side, we establish the exact convergence time
of the dynamic for coalitions of size at most two. However, on the negative side,
we prove that this convergence time is superpolynomial for coalitions of size at least
four, thereby answering negatively to open questions from [EGM12, KL13]. This is
joint work with Dorian Mazauric and Augustin Chaintreau [DMC13a, DMC17].

The latter results are complemented with a refined analysis for the complexity
of computing a Nash equilibrium in this game (robust to coalitions of size one).
This problem will be shown to be PTIME-hard under parallel reductions (and in
particular, to logspace reductions), which is strong evidence that it is inherently
sequential [Duc16].

1.3. Preliminaries and notations 5

Then, the remaining of the chapter is devoted to a natural generalization of
coloring games on edge-weighted graphs. We give sufficient conditions for the ex-
istence of equilibria in these games depending on the structure of the underlying
graph. We also propose surprising constructions of games that do not admit such
equilibria. Last, we prove that the recognition of generalized coloring games that
admit such equilibria is NP-complete. Extensions of all these results to broader
classes of games will be discussed. This is joint work with Dorian Mazauric and
Augustin Chaintreau [DMC12, DMC13a, DMC17].

1.2.2.2 Chapter 5: Learning formulas in a noisy model

We next focus on a learning problem whose context can be roughly described as
follows. Suppose we are given a fixed ground-set D (representing keywords) and a
graph where each node is labeled with a subset of D (i.e., a collection of keywords).
The nodes are assigned a Boolean under some (black-box) random process, that is
correlated with an unknown Boolean function over the labels. Then, the objective
is to learn this function. We aim at modeling with this problem the detection of
any (mis)use of individual data by online advertisers.

First, we propose an algorithm for learning the function in the simpler case
where it depends on at most one input. The latter algorithm will be the cornerstone
of more sophisticated methods in order to learn any function – but under more
restrictive hypotheses. Additional constraints are proved to be necessary in the
general case, as otherwise the function cannot be learnt already if it depends on
two inputs. This is joint work with Mathias Lécuyer, Francis Lan, Max Tucker,
Riley Sphan, Andrei Papancea, Theofilos Petsios, Augustin Chaintreau and Roxana
Geambasu [LDL+14, DLCG15, DTC17, CD17].

1.3 Preliminaries and notations

We borrow from the graph terminology of [BM08, Die10]. All graphs considered
will be finite, undirected, unweighted, simple (hence, with neither loops nor multiple
edges) and connected. In this situation, for every graph G = (V,E) we can define
the distance between every two vertices u, v ∈ V as the minimum number of edges
onto a uv-path of G. This distance is denoted by dG(u, v) in what follows, or simply
d(u, v) when there is no ambiguity on the graph G. Our proofs will make use of
the notions of subgraphs, induced subgraphs and isometric subgraphs, the latter
denoting a subgraph H of a graph G such that the distance between every two
vertices in H is the same in H as in G.

Let us introduce additional distance notations. The eccentricity of a vertex
v ∈ V , denoted by ecc(v) = maxu∈V dG(u, v) is the maximum distance in G between
v and another vertex. The diameter of G, denoted by diam(G) = maxv∈V ecc(v), is
the maximum eccentricity of a vertex of G. Furthermore, let BG(v, r) = {u ∈ V |
d(u, v) ≤ r} be the ball of radius r centered on vertex v. The radius of G, denoted
by rad(G) = minv∈V ecc(v), is the least r such that BG(v, r) = V for some vertex

6 International conference papers

v. Finally, let NG[v] = BG(v, 1) be the closed neighbourhood of a vertex. The open
neighbourhood of v is defined as NG(v) = NG[v] \ v. By extension, let us define
for every subset S ⊆ V its open neighbourhood NG(S) =

(⋃
v∈S NG(v)

)
\ S and its

closed neighbourhood NG[S] = NG(S) ∪ S. We will remove the subscript when no
ambiguity occurs.

1.4 List of publications

Journal papers

[ABD14] J. Araujo, J-C. Bermond, and G. Ducoffe. Eulerian and hamiltonian di-
cyles in directed hypergraphs. Discrete Mathematics, Algorithms and Ap-
plications, 6(1):1450012–1–1450012–29, 2014. (Uncited.)

[CD14] D. Coudert and G. Ducoffe. Recognition of c4-free and 1/2-hyperbolic
graphs. SIAM Journal of Discrete Mathematics, 28(3):1601–1617, 2014.
(Cited in pages 3, 13, 18, 57, 65 and 221.)

[CD16a] D. Coudert and G. Ducoffe. Data center interconnection networks are not
hyperbolic. Journal of Theoretical Computer Science, 639(1):72–90, 2016.
(Cited in pages 3, 13, 17, 48, 50, 51, 53, 54, 60 and 221.)

[CD16b] D. Coudert and G. Ducoffe. On the hyperbolicity of bipartite graphs and
intersection graphs. Discrete Applied Mathematics, 214:187–195, 2016.
(Cited in pages 3, 13, 17, 42, 43 and 221.)

[CDN16] D. Coudert, G. Ducoffe, and N. Nisse. To approximate treewidth, use
treelength! SIAM Journal of Discrete Mathematics, 30(3):1424–1436,
2016. (Cited in pages 4, 40, 75, 79, 104, 105, 107, 108, 109 and 222.)

[Duc13] G. Ducoffe. Hamiltonicity of large generalized de bruijn cycles. Discrete
Applied Mathematics, 161:2200–2204, 2013. (Uncited.)

International conference papers

[DLCG15] G. Ducoffe, M. Lécuyer, A. Chaintreau, and R. Geambasu. Web’s trans-
parency for complex targeting: Algorithms, limits and tradeoffs. In SIG-
METRICS’15 Proceedings of the 2015 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, pages
465–466, 2015. (Cited in pages 5, 159, 165, 168, 177 and 223.)

[DLN16] G. Ducoffe, N. Legay, and N. Nisse. On the complexity of computing
treebreadth. In IWOCA 2016 – 27th International Workshop on Combi-
natorial Algorithms, pages 3–15, 2016. (Cited in pages 4, 75, 78, 91, 92,
93, 94, 98, 111 and 222.)

[DMC13] G. Ducoffe, D. Mazauric, and A. Chaintreau. Can selfish groups be
self-enforcing? In Workshop on Social Computing and User Generated

National conference papers 7

Content at EC’13, pages 1–47, 2013. (Cited in pages 4, 5, 117, 123, 222
and 223.)

[Duc16] G. Ducoffe. The parallel complexity of coloring games. In SAGT 2016 –
9th International Symposium on Algorithmic Game Theory, pages 27–39,
2016. (Cited in pages 4, 117, 123, 143 and 223.)

[LDL+14] M. Lécuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios, R. Spahn,
A. Chaintreau, and R. Geambasu. Xray: Enhancing the web’s trans-
parency with differential correlation. In USENIX Security Symposium,
pages 49–64, 2014. (Cited in pages 5, 159, 160, 161, 162, 163, 165, 166,
168, 169, 170, 176, 188, 189 and 223.)

National conference papers

[CD16] D. Coudert and G. Ducoffe. Liens entre symétries et étirements de
routages dans les réseaux d’interconnexion de centres de données. In
ALGOTEL 2016 – 18èmes Rencontres Francophones sur les Aspects Al-
gorithmiques des Télécommunications, pages 1–4, 2016. (Uncited.)

[CDGL15] A. Chaintreau, G. Ducoffe, R. Geambasu, and M. Lécuyer. Vers une plus
grande transparence du web. In ALGOTEL 2015 – 17èmes Rencontres
Francophones sur les Aspects Algorithmiques des Télécommunications,
pages 1–4, 2015. (Uncited.)

[CDN15] D. Coudert, G. Ducoffe, and N. Nisse. Structure vs. métrique dans les
graphes. In ALGOTEL 2015 – 17èmes Rencontres Francophones sur
les Aspects Algorithmiques des Télécommunications, pages 1–4, 2015.
(Uncited.)

[DMC13] G. Ducoffe, D. Mazauric, and A. Chaintreau. De la difficulté de garder ses
amis (quand on a des ennemis)! In ALGOTEL 2013 – 15èmes Rencontres
Francophones sur les Aspects Algorithmiques des Télécommunications,
pages 1–4, 2013. (Cited in page 123.)

Unpublished papers

[CCDL17] N. Cohen, D. Coudert, G. Ducoffe, and A. Lancin. Applying clique-
decomposition for computing gromov hyperbolicity. Submitted (Research
Report on HAL, hal-00989024), 2017. (Cited in pages 3, 13, 18, 61, 62,
63 and 221.)

[CD17] A. Chaintreau and G. Ducoffe. A theory for ad targeting identification.
In preparation, 2017. (Cited in pages 5, 159, 163, 169, 184 and 223.)

[DC17] G. Ducoffe and D. Coudert. Clique-decomposition revisited. In revision
(Research Report on HAL, hal-01266147), 2017. (Cited in pages 4, 75,
78, 86, 87, 88, 90, 111 and 222.)

8 Theses

[DMC17] G. Ducoffe, D. Mazauric, and A. Chaintreau. The complexity of hedonic
coalitions under bounded cooperation. Submitted (Research Report on
ArXiv, arXiv:1212.3782), 2017. (Cited in pages 4, 5, 117, 123, 131, 132,
133, 135, 137, 150, 222 and 223.)

[DTC17] G. Ducoffe, M. Tucker, and A. Chaintreau. Can web’s transparency tools
cope with complex targeting? In preparation, 2017. (Cited in pages 5,
159, 165, 168, 171, 175 and 223.)

Theses

[Duc13] G. Ducoffe. Outils théoriques pour le calcul pratique de l’hyperbolicité dans
les grands graphes. Master’s thesis, MPRI – ENS Cachan, 2013. (Uncited.)

Part I

Metric tree-likeness in graphs

11

The purpose of the next two chapters is to study geometric and topological prop-
erties of graphs. They have been shown to be directly related to some important
aspects of communications in large-scale data networks, such as e.g., their perfor-
mances, reliability and security [NS11]. Hence the need for better understanding
and computing these graph properties, in order to better analyse and improve upon
these aspects of network communications.

• Chapter 2 is a survey on graph hyperbolicity: a parameter that somewhat
represents the “curvature” of the network. We are particularly interested in
characterizing the graph classes where this parameter is either bounded or un-
bounded (respectively called hyperbolic and non hyperbolic graph classes), and
to improve upon its computation in large-scale graphs.
• Chapter 3 presents new results on tree decompositions in graphs. Namely,

positive and negative results are obtained on the complexity for computing tree
decompositions that are defined via metric constraints on their bags. On the
way, a finer-grained study of the relationships between structural and metric
graph properties is proposed, that culminates with new relationships between
the two graph parameters called treewidth and treelength.

Chapter 2

A survey on graph hyperbolicity

Summary

This chapter summarizes my work on graph hyperbolicity. It will be presented as a
survey. The initial motivation for this work was to improve the practical computa-
tion of hyperbolicity on large graphs. In particular, I focused on the following general
question: among the graph transformations that can be efficiently computed, which
ones do not affect the value of hyperbolicity by more than a moderate term (multi-
plicative or, preferably, additive) ? I proved it was the case for clique-decomposition
(Section 2.6.2.2) and the line graph operation (Section 2.4.3). Furthermore, my work
on clique-decomposition has been successfully applied on large co-authorship graphs
in order to compute their hyperbolicity [CCDL17].

I also proved new lower-bounds on graph hyperbolicity (using graph endomor-
phisms) that may further help reducing the complexity for computing the hyper-
bolicity in some graph classes (Section 2.5.2.4). By doing so, I answered an open
question from researchers at the University of Girona (private communication) who
aimed at sharply estimating the hyperbolicity of very large underlying topologies
that are used for data center interconnection networks. Indeed, these graphs have
more than one million nodes each, that overrule the current limitations of the exist-
ing algorithms for computing this parameter. By using my lower-bound techniques, I
was able to give the exact value of the hyperbolicity for most topologies, and to prove
close lower and upper bounds for the hyperbolicity of many other ones [CD16a].

I complemented these results with a conditional lower-bound on the complexity
of recognizing graphs with hyperbolicity at most 1/2 (Section 2.6.3). It suggests
that there does not exist any truly subcubic combinatorial algorithm for computing
hyperbolicity on general graphs.

All my papers on graph hyperbolicity [CCDL17, CD16a, CD16b, CD14] are
collected in the appendix.

14 Chapter 2. A survey on graph hyperbolicity

Contents
2.1 Introduction . 14

2.1.1 First objective: characterizing “hyperbolic” and “non hyper-
bolic” graph classes . 16

2.1.2 Second objective: computing the hyperbolicity of large graphs 17
2.1.3 Outline of the chapter . 18

2.2 Motivation . 19
2.2.1 Implications/applications of hyperbolicity 22

2.3 Definitions of hyperbolicity 24
2.3.1 δ-hyperbolic graphs . 25
2.3.2 Reformulation of hyperbolicity 29
2.3.3 What is a “hyperbolic” graph ? 35

2.4 Hyperbolic graph classes . 36
2.4.1 Tree-likeness in graphs and hyperbolicity 36
2.4.2 Classical upper-bounds on hyperbolicity 40
2.4.3 Contribution: Graph operations and hyperbolicity 42
2.4.4 Conclusion and open perspectives 44

2.5 Obstructions to hyperbolicity 44
2.5.1 Related work: random graphs are non hyperbolic 45
2.5.2 Lower-bounds on the hyperbolicity 46
2.5.3 Open problems . 53

2.6 On computing the hyperbolicity of graphs 55
2.6.1 Related work . 55
2.6.2 Contribution of this thesis: Preprocessing 57
2.6.3 Hardness results . 64

2.7 Algorithmic applications . 67
2.7.1 Distance approximations . 68
2.7.2 p-centers . 70
2.7.3 Traveling Salesman Problem 71
2.7.4 Cut problems . 72

2.8 Conclusion . 73

2.1 Introduction

In this chapter we survey the study on Gromov hyperbolicity in graphs [Gro87,
Ben13]. Roughly, it is a parameter which measures how close a given metric space is
to a metric tree [Ban90, Bun74] (formal definitions are postponed to Section 2.3). In
particular, it gives sharp bounds on the least distortion of the distances in a (finite)
metric space when its elements are mapped to the nodes of an edge-weighted tree.
Trees and bounded diameter graphs (embeddable into any shortest-path tree with
constant distortion of their distances) will be shown to be trivially hyperbolic.

Gromov hyperbolicity is a broad concept that can be defined for any metric
space. In fact, it has been first investigated for word metric spaces on groups [Gro87].
This notion of hyperbolicity in groups is now regarded as a powerful tool that can be

2.1. Introduction 15

used in order to capture broad classes of groups with precise and important struc-
tural properties [GdLH90]. In particular, it has applications in the study of auto-
matic groups [Gro87, EPC+92], where informally speaking, elements of the groups
are the vertices of some (Cayley) graph and it can be checked with finite-state au-
tomata whether two words represent either a same vertex or two adjacent vertices.
Automatic groups have nice algorithmic applications. For instance the word prob-
lem can be solved in quadratic time for these groups [EPC+92]. These applications
transpose to groups with finite hyperbolicity, that are a particular case of automatic
groups.

There is now a rich literature on the hyperbolicity of groups as metric
spaces [ABC+91, BH11, GdLH90]. In this chapter, built as a survey, we emphasize
on some results that are more specific, and relevant, to graph theory.

I will present my contributions on this topic in this chapter. They will be
highlighted at various places in what follows. I hope that the organization of this
chapter will help the reader to have a good overview of the positioning of my work
in the growing literature on graph hyperbolicity.

Foreword

Let us start motivating the study of graph hyperbolicity in computer science. These
aspects will be further developed in Sections 2.2 and 2.7.

In what follows, hyperbolicity should be understood as a graph parameter which
gives bounds on the least distortion of the distances in a graph when its vertices
are mapped to points in some “tree-like” metric space. Namely, such spaces com-
prise (weighted) trees, Hyperbolic spaces, and more generally speaking spaces with
negative curvature. In general, embedding a graph into one of those spaces with
minimum distortion is NP-hard [ABF+98]. As we shall see in this chapter, one inter-
est of hyperbolicity is that it provides sharp bounds on this distortion in polynomial
time (we will come back to this aspect in Section 2.7.1).

A rough description of hyperbolicity in graphs can be found at the beginning
of Section 2.2. It should be noted, however, that there exists a bewildering zoo of
“equivalent” definitions for this concept, whose formal presentation is postponed to
Section 2.3.

Why studying hyperbolicity ? Depending on its order of magnitude, the value
of hyperbolicity has some implications on network properties which, to my mind, mo-
tivate the study of this parameter in graphs. Indeed, studies on it have found appli-
cations in the analysis of congestion [CDV16], routing schemes [AGCFV, CDE+12,
GL05], network security [JL04], bioinformatics [DMT96, MS99] and even in adver-
tising allocation in social networks [MGHB15] — to name a few. I shall detail more
about the above in Section 2.2. Most of these applications follow from, and can
be better explained by, the close relationship between hyperbolicity and the best
possible stretch (or distortion) of the distances in a graph when it is embedded into
a Hyperbolic space (see [BS11, VS14]).

16 Chapter 2. A survey on graph hyperbolicity

Hyperbolicity in graphs has strong geometric interpretations. It allows to ex-
tend the mathematical concept of curvature to discrete combinatorial structures
such as graphs. Further, it can be used to characterize the so-called “underlying
hidden geometry” of complex networks [KPK+10]. In this aspect, graph hyperbol-
icity adds up to other classification critera for networks such as (ultra) small world
phenomenon [WS98], power law degree distribution [BAJ00], navigability [BKC09],
high clustering coefficients [LLDM09], existence of a core [DGM06], etc. Relation-
ships between hyperbolicity and these more classical features have been investigated,
e.g., in [CFHM13, JLB08, DX09, ASM13].

On the algorithmic side, another interest of hyperbolicity is that it helps analyz-
ing, and designing, some graph heuristics on large-scale networks. For instance, the
2-sweep heuristic for computing the diameter is well-known to provide very good
results in practice [MLH08], and such good results can be explained assuming a
bounded hyperbolicity [CDE+08]. I shall come back to the algorithmic applications
of hyperbolicity in Section 2.7.

We next introduce two general objectives in the study of graph hyperbolicity,
that will be the backbone of the main technical sections of this chapter. On the
way, the personal contributions in this chapter are summarized and classified with
respect to these two general objectives.

Namely, what we aim at obtaining through this study on hyperbolicity is: a bet-
ter characterization of hyperbolic and non hyperbolic graph classes (Section 2.1.1),
and a finer-grained analysis of the complexity of computing this parameter (Sec-
tion 2.1.2). The outline of the chapter will be detailed in Section 2.1.3.

2.1.1 First objective: characterizing “hyperbolic” and “non hyper-
bolic” graph classes

The first objective is to derive lower and upper bound techniques for graph hyper-
bolicity. Indeed, it has become a growing line of research to characterize the classes
of “hyperbolic” graphs, a.k.a. graphs with “small” hyperbolicity. – We shall make
more precise what a hyperbolic graph is in Section 2.3.3 –. Partial results on that
topic have been obtained in [BRSV13, HPR14] and the papers cited therein. They
often derive from upper and lower bounds on the hyperbolicity of a given graph
w.r.t. some other graph parameters and properties.

In Sections 2.4 and 2.5, I shall revisit the known bounds on the hyperbolicity of
a given graph. Equipped with these bounds, I shall detail their application to some
graph classes.

My main contributions in this area, found in collaboration with David Coudert,
are twofold.

2.1.1.1 New lower bounds on the hyperbolicity of graphs

First, based on a game-theoretic definition of hyperbolicity, we provide some new
lower-bound techniques on the hyperbolicity of graphs. Altogether combined with

2.1. Introduction 17

the existence of certain type of symmetries (graph endomorphisms), these techniques
are used in order to estimate the correct order of magnitude for the hyperbolicity
in various graph classes. In particular, it follows directly from this work that many
classical topologies that are used for the design of the data center interconnection
networks [AK89] have their hyperbolicity that is proportional to their diameter.

This part of the contributions has been published in [CD16a]. I will describe
these lower-bound techniques in Section 2.5.2, with some new results that are yet
to be published.

2.1.1.2 A framework to bound the variations of hyperbolicity

Second, I present a simple framework in order to lower and upper bound the vari-
ations of hyperbolicity that may be caused by various graph operations. This
framework applies to the line graph [Whi92], clique graph [Ham68] and biclique
graph [GS10] operations, among some others, and the bounds so obtained are either
new or improving upon the existing ones. Furthermore, the framework is mainly
based on a new property of the hyperbolicity of bipartite graphs, that is of indepen-
dent interest.

This part of the results has been published in [CD16b]. I will expand on it in
Section 2.4.

2.1.2 Second objective: computing the hyperbolicity of large
graphs

Then, as the second main technical part of this chapter, we will consider the com-
plexity of computing the hyperbolicity of a given graph. That is, we will review
the best-known algorithms for computing this parameter (exact and approximate),
heuristics, and conditional lower-bounds on the best possible complexity for doing
so. We note that an efficient computation of hyperbolicity can help characteriz-
ing which graph classes are hyperbolic. Furthermore, computing the hyperbolicity
is a prerequesite for some of the above-mentioned applications to network prob-
lems [KL06, VS14] (see also Section 2.7).

There is a trivial algorithm to compute the hyperbolicity of a given n-vertex
graph in O(n4)-time and O(n2)-space. Therefore, the problem is polynomial-
time solvable (complexity class P). The latter is often regarded as a synonym for
“tractable” [Reu16]. However, with the growing size of real-life networks, ranging
from thousands to millions of nodes and billions of edges, we need to revisit the
time and space complexity of polynomial problems. This finer-grained complexity
of polynomial problems has become a boiling topic of research [Wil16]. In this as-
pect, we note that it is also of independent interest to study on the complexity of
computing the hyperbolicity so as to obtain a better understanding of the hardness
in P.

I will present in Section 2.6 the state-of-the-art algorithms for computing the
hyperbolicity. I will also present some conditional lower-bounds on the time com-

18 Chapter 2. A survey on graph hyperbolicity

plexity for this problem.

My main contributions in the area can be summarized as follows:

2.1.2.1 A preprocessing method for the computation of hyperbolicity

On the positive side, relationships between hyperbolicity and clique-minimal decom-
position [BPS10] are proved and exploited for algorithmic purposes. This is joint
work with Nathann Cohen, David Coudert and Aurélien Lancin. See also the PHD
thesis of Aurélien Lancin [Lan14] for complementary information on this work.

Precisely, we prove that the hyperbolicity of a graph is at most one unit off from
the maximum hyperbolicity from its atoms – a.k.a. the subgraphs resulting from
its decomposition by clique minimal separators. Then, we base on this result in
order to design a preprocessing algorithm for the computation of hyperbolicity. It
substitutes to a given graph a collection of supergraphs of its atoms.

As a byproduct, we obtain a linear-time algorithm for computing the hyperbol-
icity of a given outerplanar graph.

These results [CCDL17] are to be submitted for publication in a journal. They
will be detailed in Section 2.6.2.

2.1.2.2 Conditional lower-bound on the recognition of graphs with small
hyperbolicity

Finally, a computational equivalence is proven between the recognition of graphs
with hyperbolicity at most 1/2 and the detection of induced cycles of length at most
four in graphs. It can be derived from this result a conditional lower-bound on the
complexity of computing hyperbolicity, as well as a theoretically better algorithm
for the recognition of 1/2-hyperbolic graphs.

These results, found in collaboration with David Coudert, have been published
in [CD14]. I shall come back to them in Section 2.6.3.

2.1.3 Outline of the chapter

We start providing concrete applications of hyperbolicity in different fields of com-
puter science (Section 2.2). In our opinion, these applications should better motivate
the study of this parameter in graphs, and especially in network analysis. A rough
definition of hyperbolicity is also given in Section 2.2, whose only role is to make
the applications of this parameter more intuitive.

Then, formal definitions and preliminary results will be given in Section 2.3
(restating properly the informal definition of Section 2.2 with details). This section
is the most technical one of the chapter, as it goes deeper in the relationships between
hyperbolicity and many other “equivalent” graph properties.

Sections 2.4 and 2.5 are devoted to our first main objective: to find upper and
lower bounds on graph hyperbolicity, with the two sections being devoted respec-
tively to upper and lower bound techniques.

2.2. Motivation 19

u v

w

Puv

Puw Pvw

δ

Figure 2.1: a geodesic triangle ∆(u, v, w).

Finally, the two last technical Sections 2.6 and 2.7 cover the algorithmic aspects
of this parameter. In particular, the computational aspects of hyperbolicity are
covered in Section 2.6, that is the second main objective in our study.

In Section 2.7 we detail algorithmic applications of hyperbolicity to various graph
problems, that can be seen as a technical prolongation of Section 2.2. This section
is placed on purpose after all the other sections, so as to give the reader a better
overview of the (“hyperbolic”) graph classes to which these algorithmic results can
be applied. On the way, we mention several interesting open problems that are left
for future work.

We finally conclude the chapter in Section 2.8.

2.2 Motivation

In this section, we will outline fields in computer science where the study of graph
hyperbolicity plays a role. Our goal in doing so is to motivate the study of this
parameter for computer scientists. Before introducing these applications of hyper-
bolicity, though, we will need to sketch a few graph properties that are related to
this notion. They will be used in what follows in order to better intuit the role
played by graph hyperbolicity in some applications.

Let us start giving an intuitive definition of hyperbolicity, that is sometimes
named Rips condition in the literature [Gro87].

Consider any three vertices u, v, w in a given connected graphG = (V,E). By the
triangular inequality, we have dG(u, v) ≤ dG(u,w) + dG(w, v), with dG(u, v) being
the distance (minimum number of edges onto a uv-path) between u and v in G. We
can represent this situation with a geodesic triangle ∆(u, v, w) = Puv ∪ Puw ∪ Pvw
with its three respective sides being a fixed shortest uv-path Puv, a fixed shortest
uw-path Puw and a fixed shortest vw-path Pvw (cf. Figure 2.1).

Then, one may wonder how far a detour by vertex w can make us go from the

20 Chapter 2. A survey on graph hyperbolicity

shortest uv-path. The graph G is said to have δ-slim triangles if for every geodesic
triangle ∆(u, v, w), any vertex onto the shortest uv-path Puv is at distance at most
δ from Puw∪Pvw. The hyperbolicity of G is – up to a constant-factor – the smallest
δ such that it has δ-slim triangles.

As an example, if G is a tree then since there exists a unique uv-path, any vertex
of ∆(u, v, w) must lie on two sides of the triangle, and so, the triangles in G are
0-slim. We shall come back to formal definitions of hyperbolicity in Section 2.3. For
now, let us describe informally a few properties of graphs with δ-slim triangles.

Property 1: Almost shortest-paths stay close from each other. We first
sketch a relationship between the value of hyperbolicity and the distance between
(almost) shortest-paths in a graph. Let λ ≥ 1 and ε ∈ R be fixed constants. An
(λ, ε)-almost shortest-path between u and v is any uv-path with length at most
λ · dG(u, v) + ε. The length of this path thus differs by at most a fixed constant
(multiplicatively or additively) from the length of a shortest uv-path. In particular,
a shortest-path is an (1, 0)-almost shortest-path. In Figure 2.2, the path drawn with
thicker edges is an (2, 1)-almost shortest-path.

u v

Figure 2.2: a (2, 1)-almost shortest uv-path.

Graph hyperbolicity measures the closeness of almost shortest-paths, in the fol-
lowing sense. Two paths P,Q are at Haussdorf distance [RW09] at most d if every
x ∈ P is at distance dG(x,Q) ≤ d from the pathQ, and in the same way every vertex
y ∈ Q is at distance dG(y,P) ≤ d from the path P. A key property of graphs with
bounded hyperbolicity is that any two almost shortest-paths with same endpoints
stay close from each other. That is, their Haussdorf distance is upper-bounded by
a linear function of the hyperbolicity of G [Shc13a]

As an instructive example, consider the particular case of two shortest uv-paths.
They can be seen as a “flat triangle” ∆(u, v, u). In particular, in a graph with δ-
slim triangles, any two vertices on these shortest-paths that are at same distance
from u (or equivalently, to v) in the graph are at distance at most 2δ (e.g., see
Figure 2.3). This property is sometimes called the k-fellow traveler property (here,
for k = 2δ) [NS95]. The more general Property 1 that almost shortest-paths stay
close to each other is sometimes called geodesic stability [Fin15].

Property 2: Existence of a core. The second property that I want to point out
can be summarized as a property of concentration for the almost shortest-paths in
a graph. Let us fix two arbitrary constants λ and ε. We call a subset S of vertices
an α-core if for some fraction α of all possible pairs of vertices in the graph, every

2.2. Motivation 21

u v≤ 2δ

Figure 2.3: Shortest paths stay close in a δ-hyperbolic graph.

(λ, ε)-almost shortest-path with its two ends among these pairs is intersected by S.
As an example, the whole vertex-set is trivially a 1-core, and the neighbourhood
of a single vertex is an n−1

(n2)
= 2/n-core (it intersects all paths between this vertex

and the other n − 1 vertices). As shown with Figure 2.4, the root of a complete
binary rooted tree is an 1/2-core. More generally, every tree has a vertex being an
1/2-core, that is sometimes called a centroid [Gol71].

Recall that the hyperbolicity measures the closeness of a graph from a metric
tree. The second key property of graphs with bounded hyperbolicity that we focus
on in this section is that there exists a ball of small radius that is an 1

2 -core. Precisely,
the radius of the ball is upper-bounded by a linear function of the hyperbolicity of
the graph G [CDV16].

r

Figure 2.4: all shortest-paths between a vertex in the left subtree and a vertex in
the right subtree go through the root.

Altogether, in any graph with bounded hyperbolicity, almost shortest-paths be-
tween any pair of vertices stay close to each other and there exists a ball with small
radius intersecting almost all of these paths.

Equipped with these two intuitive properties, we will motivate the study of graph
hyperbolicity next.

22 Chapter 2. A survey on graph hyperbolicity

2.2.1 Implications/applications of hyperbolicity

We now list applications and implications of graph hyperbolicity in different fields of
computer science. They encompass most of the work on the hyperbolicity in real-life
graphs over the last decades. In what follows, these applications are more or less
presented from the earliest ones to the newest ones.

Biology

One of the earliest applications of graph hyperbolicity that we are aware of is in
biology, where there is a need to obtain some trees reflecting the similarity between
a collection of species, a.k.a. phylogenetic trees [DMT96, MS99]. Known similarities
between the species can be encoded as a graph, whose vertices are the species and
whose edge-set corresponds to the pairs of species that are closely similar. Then,
the problem summarizes as embedding the species into the leaves of some rooted
tree so that the distance between any two species in the tree corresponds to their
similarity. However, the available data is biased, and so, such a tree may not always
exist. Since, hyperbolicity is a measure of the closeness of a graph to a metric tree,
it has been proposed as a natural estimate for the bias of the data. Thus, standard
results on graphs with small hyperbolicity (summarized in the later sections) can be
applied on the data in order to find an approximate distance-preserving phylogenetic
tree [DHH+05].

Geometric routings

Hyperbolicity comes into play in the study of certain geometric routing schemes.
More precisely, we recall that the hyperbolicity is a measure of the closeness of a
graph to a tree. As we shall explain, graph hyperbolicity was shown to provide
(lower and upper) bounds on the stretch of the paths obtained with geometric
routing schemes in some “tree-like” spaces [AGCFV, VS14].

Roughly, a routing scheme is a mapping of each pair of vertices u, v to a uv-path,
that is to be followed in order to transit a message between u and v. Usually, we
evaluate the quality of a routing scheme on the amount of information that needs
to be stored locally at each node in order to retrieve the paths, and on the length
of the paths that are used for the transit. That is, on the distributed computing
point of view, the aim of compact routing schemes is to achieve a good compromise
between minimizing the local information to be stored and keeping close to optimal
the length of the paths that are used for the mapping.

A geometric routing scheme is one that embeds a given graph into a “simpler”
metric space. Then, the paths of the routings are constructed greedily, starting
from the source, with each vertex choosing as its successor on the path any of its
neighbours that is strictly closer – w.r.t. their coordinates in the metric space – to
the destination. In general, routing this way may not allow to reach all possible
destinations. For instance, it may lead to infinite loops, and so, additional features
are required in order to prevent loss of packet [PR05].

2.2. Motivation 23

However, in his seminal paper [Kle07], Kleinberg has proved that for every graph,
there exist embeddings into the Hyperbolic space (i.e., canonical space with nega-
tive curvature, where the classical Euclidean geometry is replaced by hyperbolic
geometry) such that greedy routing is always successful ! This paves the way to
an in-depth study of greedy routings in the Hyperbolic space [BPK10, ST08], as
well as in other “tree-like” metric spaces such as the word metric space of the free
group [CPFV14]. In particular, in some classes of graphs with bounded hyper-
bolicity, we obtain compact routings with this greedy approach. We also refer
to [DDGY07, GL05, KLNS15] for more examples of compact routing schemes in
some classes of graphs with bounded hyperbolicity.

Furthermore, it is worth pointing out that embeddings with coordinates of poly-
logarithmic size in the number of vertices can be computed for those above spaces.
In contrast to this positive result, there are graphs for which greedy routing is al-
ways successful in a given space but that cannot be embedded into the space with
coordinates of sublinear size [BL05].

Network congestion

Of importance is also the implications of hyperbolicity on congestion in networks
for all-to-all communications. Precisely, consider a unit traffic between each pair of
vertices in a network, with the unit flow between any two vertices u, v being equally
split among the shortest uv-paths. The load of a given vertex is the amount of
flow which transits by this vertex. In more graph-theoretic terms, it corresponds
to the betweenness centrality of the vertex [Bra01]. It is well-known and easy to
observe that in trees, there is a a vertex with quadratic load Θ(n2). What has been
observed experimentally in [NS11] is that, more generally, for every graph with small
hyperbolicity there is a ball of small radius such that the sum of the loads of the
vertices in the ball is also quadratic.

Basing on the above observations, the authors in [JLBB11] have conjectured the
existence in hyperbolic graphs of a ball of small radius through which it transits a
constant proportion of traffic paths. The existence of a 1/2-core with small radius
in graphs with bounded hyperbolicity (i.e., Property 2) was shown in order to prove
the above conjecture [CDV16]. See also [BT12, LT15, Yan15] for more implications
of hyperbolicity on network congestion that take into account different traffic rates
on the communications.

Network security

In their survey [JL04] and the papers cited therein, Jonckheere and Lohsoonthorn
also have demonstrated the implication of “geometric” graph properties on some
aspects of network security. On the way, they classified these geometric properties
according to three levels of granularity (small, medium and large scale). At large
scale, when considering graphs with a growing diameter, going to infinity (topologies
in expansion such as the Internet Service Provider graph), the authors claim the

24 Chapter 2. A survey on graph hyperbolicity

hyperbolicity to be the relevant parameter to study for a better understanding of
the geometric aspects of network security.

They support their claim through a case-study of various security attacks. For
instance, consider an attempt of “eavesdropping” or “packet sniffing” on the network
— unauthorized packet interception along a given link. Due to the limited abilities
to reorder the packets with TCP, they are often sent along near-optimal routes, i.e.,
almost shortest-paths. Hence, since almost shortest-paths stay close to each other
in hyperbolic graphs (Property 1), a small hyperbolicity might be detrimental in
Information Warfare, causing the routes of the packets to be too close by security
standards.

Other attacks and defense strategies where the value of hyperbolicity plays a
role are Distributed Denial of Service (DDoS) attacks, and Worm Propagation, to
name a few [JL04].

Democracy in complex networks

More recently, a new implication of hyperbolicity was suggested in [BCC15], as
a measure of democracy in complex networks, on which we now emphasize. The
latter is usually measured through assortativity, i.e., the likeliness of vertices that
are “similar” in some ways to be adjacent [New02] (see also [ALPT16, Lot15] for
other recent approaches). In contrast with this more classical approach, the authors
in [BCC15] (see also [ADM14]) consider a set of vertices to be “influencial” if it
intersects the (almost shortest) paths between a large number of vertices. With
respect to their interpretation, the graph is all the more democratic that it has no
influential set of small size.

From this classification, it follows that graphs with small hyperbolicity are “aris-
tocratic” (non democratic). Indeed, we recall that a small hyperbolicity implies the
existence of a core with small radius (Property 2), which combined with some prop-
erties of real-life graphs (sparse, power-law, etc.) can be shown to be an influential
set of small size. Let us point out that it has been experimentally shown that social
networks have small hyperbolicity [AAD16]. Therefore, I think that this new notion
of “influential set” and its relationships with hyperbolicity could and should be used
in the study of elites in these networks — i.e., relatively small subsets of vertices that
are well-connected and highly connected to the other vertices [ALNP15, ALP11].

The above listing, which of course may be not exhaustive, shows the implica-
tions and applications of graph hyperbolicity in various areas. We expect more
applications of hyperbolicity to be found.

2.3 Definitions of hyperbolicity

The purpose of this section is to present the formal definitions of graph hyperbolicity
and related concepts. The standard definitions for this parameter will be introduced
in Section 2.3.1. Then, the focus of Section 2.3.2 will be on “reformulations” of

2.3. Definitions of hyperbolicity 25

hyperbolicity , i.e., other geometric graph parameters than can be lower and upper
bounded by functions of the hyperbolicity. We will end discussing on what should be
understood as a “hyperbolic” graph in the remaining of this chapter (Section 2.3.3).

2.3.1 δ-hyperbolic graphs

Let us start introducing the standard definition for graph hyperbolicity. It can be
written in two equivalent ways, that will be presented and explained next.

2.3.1.1 Four-point Condition

In what follows, the classical definition of hyperbolicity and its interpretation in
relation to tree embeddings are given. In the line of many papers [BKM01, BC03,
KM02], we define hyperbolicity via the following, rather abstract, four-point condi-
tion.

Definition 1 (4-points Condition, [AJ13, Gro87]). Let G = (V,E) be a con-
nected graph.

For every 4-tuple u, v, x, y of V , let δ(u, v, x, y) be defined as half of the difference
between the two largest sums amongst:

S1 = dG(u, v) + dG(x, y), S2 = dG(u, x) + dG(v, y), and S3 = dG(u, y) + dG(v, x).

The graph hyperbolicity, denoted by δ(G), is equal to maxu,v,x,y∈V δ(u, v, x, y).
Moreover, we say that G is δ-hyperbolic for every δ ≥ δ(G).

u

x

y

v

(a) Every vertex on the central path is a
centroid of the 4-tuple.

u

x

y

v

(b) The central vertex is the unique centroid
of the 4-tuple.

Figure 2.5: Possible 4-tuples in a tree. Each edge represents a path in the tree.

Definition 1 generalizes a well-known four-point characterization of metric trees.
Indeed, a discrete metric space (and in particular, a graph), can be isometri-
cally embedded into the nodes of an edge-weighted tree if and only if it is 0-
hyperbolic [Bun74]. We show one part of this equivalence with Figure 2.5. Indeed,
for every 4-tuple u, v, x, y in a tree, it can always be found a centroid such that there
is no more than two nodes among u, v, x, y in each branch. Then, it can be checked
by the calculation that any such 4-tuple has null hyperbolicity.

Furthermore, for general graphs G (not necessarily metric trees), hyperbolicity
can also be interpreted in terms of tree embedding. In order to show that, let us fix

26 Chapter 2. A survey on graph hyperbolicity

any four vertices u, v, x, y of G. Suppose we aim at embedding u, v, x, y in a tree T
such that dG(s, t) ≤ dT (s, t) for every s, t ∈ {u, v, x, y} (non contractive embedding)
and the additive distortion α(u, v, x, y) = minT maxs,t∈{u,v,x,y} dT (s, t) − dG(s, t)

is minimized. We claim that α(u, v, x, y) = δ(u, v, x, y), i.e., the least possible
distortion is given by the hyperbolicity of the 4-tuple.

On the one direction, let us fix T minimizing the distortion, and let us write:

S′1 = dT (u, v) + dT (x, y), S′2 = dT (u, x) + dT (v, y), and S′3 = dT (u, y) + dT (v, x).

In this situation, for every i we have Si ≤ S′i ≤ Si + 2α(u, v, x, y), since by the
hypothesis dG(s, t) ≤ dT (s, t) ≤ dG(s, t) + α(u, v, x, y) for every s, t ∈ {u, v, x, y}.
Two cases need to be distinguished. If S′1 < max{S′2, S′3} then we have S1 ≤ S′1 <
max{S′2, S′3} ≤ S2 +2α(u, v, x, y). In this situation, since S1 = S2 +2δ(u, v, x, y), we
get δ(u, v, x, y) < α(u, v, x, y). Otherwise, S′1 ≥ max{S′2, S′3}. In particular, the two
largest sums amongst S′1, S′2, S′3 must differ by at least 2(δ(u, v, x, y)−α(u, v, x, y)).
Since T is a tree, and so, it is 0-hyperbolic, it follows that α(u, v, x, y) ≥ δ(u, v, x, y)

also in this case.

u

x

y

v

γ

γ

δ δ

(a) Canonical realization of the 4-tuple. Dis-
tances in the realization are exactly the dis-
tances in the graph.

u

x

y

v

γ
δ δ

(b) Non contractive tree embedding with
distortion δ that is obtained from the re-
alization.

Figure 2.6: A 4-tuple so that S1 = d(u, v) + d(x, y) ≥ S2 = d(u, y) + d(v, x) ≥ S3 =

d(u, x) + d(v, y). We denote by δ = (S1 − S2)/2 and γ = (S1 − S3)/2.

On the other direction, consider in Figure 2.6a the so-called “canonical realiza-
tion” of the metric space ({u, v, x, y}, dG) with four elements. Using this represen-
tation, it is not difficult to see that u, v, x, y can be mapped to the four leaves of an
edge-weighted tree with 6 nodes so that the embedding is non contractive and with
distortion δ(u, v, x, y). Altogether combined, α(u, v, x, y) = δ(u, v, x, y), and so, the
hyperbolicity δ(G) is the least value δ such that for every 4-tuple of G, there exists
a non contractive embedding into a tree with distortion at most δ.

In particular, we point out that since distances in an unweighted graph are
integer-valued, the hyperbolicity is always a half-integer. This observation is some-
times useful in order to refine the bounds on the hyperbolicity, and in order to
simplify some arguments in the proofs.

2.3.1.2 Toy examples

In order to give a better intuition of what this parameter represents, let us give the
hyperbolicity of a few simple graphs.

2.3. Definitions of hyperbolicity 27

Trees. In a tree, it is trivial that every 4-tuple can be embedded into a tree with
null distortion. Therefore, every tree is 0-hyperbolic.

Intuitively, similar arguments should apply to the graphs that are “metrically”
tree-like, i.e., embeddable into a tree with constant distortion of their distances. This
will be further discussed in Section 2.4.1 (upper-bounds on graph hyperbolicity).

Complete graphs. Perhaps more surprisingly, complete graphs are another ex-
ample of 0-hyperbolic graphs. Indeed, as shown with Figure 2.7, a complete graph
Kn with n vertices can be isometrically embedded into a star with n+ 1 nodes and
all its edges weighted 1/2.

(a) A complete graph K5 with five vertices.

1/2

1/2
1/2

1/2

1/2

(b) An isometric embedding of K5 to the
leaves of an edge-weighted star.

Figure 2.7: Complete graphs are 0-hyperbolic.

Cycles. In spite of their simple structure, the cycles are the classical examples
of graphs with large hyperbolicity. For instance, let C4n = (v0, v1, . . . , v4n−1, v0)

be a cycle with 4n vertices. Then, it follows from the four-point condition that
δ(v0, vn, v2n, v3n) = n (see also Figure 2.8). Therefore, the hyperbolicity of a cycle
grows linearly with its length. More generally, for every n ≥ 1 and ε ∈ {0, 1, 2, 3},
we have δ(C4n+ε) = n− 1/2 if ε = 1 and δ(C4n+ε) = n otherwise [WZ11].

Grids. Last, consider a rectangular grid with n columns and m rows. By taking
the four corners of the grid, it comes from the 4-point Condition that the hyperbolic-
ity of the grid is at least min{n,m}−1, that turns out to be its exact value [WZ11].
We refer to Figure 2.9 for an illustration.

It might help to observe that for grids and cycles, the shortest paths between the
two vertices of any diametral pair do not stay close from each other. In contrast, we
mentioned in previous Section 2.2 that in every graph with constant hyperbolicity,
almost shortest paths stay close from each other (Property 2).

Furthermore, let us call a subgraph H of a graph G isometric if for every two
vertices in H, their distance in this subgraph is exactly their distance in G. Since
cycles and grids have unbounded hyperbolicity, any graph that contains a large cycle
or a large grid as an isometric subgraph also has a large hyperbolicity, that directly
follows from Definition 1. This point will be further discussed in Section 2.5.2.1
(lower-bounds on graph hyperbolicity).

28 Chapter 2. A survey on graph hyperbolicity

v0

v2 v6

v4

Figure 2.8: A cycle with eight vertices.

Figure 2.9: A square grid with side length four.

2.3.1.3 Gromov product, Farris transform and ultrametrics

In his seminal paper [Gro87], Gromov defines hyperbolicity via a different (but
equivalent) formulation than Definition 1. In what follows, this formulation and its
interpretation in terms of ultrametric embedding are stated. Before this, we need
to introduce additional notions and terminology that are of independent interest.

Definition 2. Let G = (V,E) be a graph. For every u, v, w ∈ V the Gromov
product of u and v with base vertex w is defined as 〈u, v〉w = (dG(u,w) +dG(w, v)−
dG(u, v))/2.

This notion of Gromov product naturally arises in the above canonical realization
of 4-tuples (Figure 2.6a). Indeed, by the calculation we have that the length of the
edge between vertex u and the central rectangle in the realization is exactly 〈x, y〉u.

Note that 〈u, v〉w ≥ 0 by the triangular inequality. In particular, 〈u, v〉w = 0 if
and only if w lies onto a shortest uv-path. Thus, the Gromov product 〈u, v〉w can
be seen as a measure of how close w is from a shortest uv-path.

In order to have a better insight of what this product represents, let us consider
the particular case where G is a tree rooted at w. Let r be the lowest common

2.3. Definitions of hyperbolicity 29

ancestor of u and v. In this situation, 〈u, v〉w = (d(u,w) + d(v, w) − d(u, v))/2 =

((d(u, r) + d(r, w)) + (d(v, r) + d(r, w))− (d(u, r) + d(r, v)))/2 = d(r, w). Therefore,
in a tree rooted at w, the Gromov product 〈u, v〉w is equal to the depth of the lowest
common ancestor of u and v.

Let us also point out that 〈u,w〉v + 〈w, v〉u = dG(u, v). In order to exemplify
this equality, let us again consider the particular case where G is a tree. Then,
〈u,w〉v = d(r, v) and 〈v, w〉u = d(r, u), with r being the lowest common ancestor of u
and v when the tree is rooted at w. As a result, 〈u,w〉v+〈w, v〉u = d(r, v)+d(r, u) =

d(u, v), as desired.

Finally, let D ≥ diam(G) be any upper-bound on the distances in G. We fix
any base vertex x and define:

d(x)(u, v) =

{
2D − 〈u, v〉x if u 6= v

0 otherwise.

Then, it can be checked that d(x) is a distance function, that is sometimes called a
Farris transform [Far72]. Furthermore, an interesting property of the Farris trans-
form is that for a 0-hyperbolic G, the distance function d(x) is an ultrametric. That
is, d(x)(u, v) ≤ max{d(x)(u, y), d(x)(y, v)} for every three vertices u, v, y [Ban90].
Put in simpler terms, the above property just says that in a tree rooted at x, if we
denote by rs,t the lowest common ancestor between s and t, then for every u, v, y
we have that d(x, ruv) ≥ min{d(x, ruy), d(x, rvy)}.

Hyperbolicity of a graph can be seen as a measure of the closeness of its Farris
transform to an ultrametric. We can formalize it as follows.

Definition 3 ([Gro87]). A connected graph G = (V,E) is δ-hyperbolic if and only
if for every 4-tuple u, v, x, y ∈ V , we have 〈u, v〉x ≥ min{〈u, y〉x, 〈v, y〉x} − δ.

A proof of the equivalence between Definitions 1 and 3 can be found, e.g.,
in [AJ13]. The two of them use a characterization of metric trees, and they de-
fine δ-hyperbolic graphs by relaxing these characterizations. The same can be done
with other characterizations of metric trees, but then the corresponding values so
obtained may not equal the hyperbolicity of the graph. Nonetheless, as seen in the
following Section 2.3.2, they can only differ from the hyperbolicity by a constant-
factor.

2.3.2 Reformulation of hyperbolicity

In what follows, we will complete the picture by presenting some of the alternative
definitions for graph hyperbolicity. They are useful in order to prove some properties
of δ-hyperbolic graphs. On the way, we will report on known relationships between
these definitions (Table 2.1). We deem it as an important task. Indeed, the use of
multiple definitions quickly lead to large constant-factors in the proofs, with negative
consequences on the analysis of some graph algorithms [CCPP14].

30 Chapter 2. A survey on graph hyperbolicity

Note that except for Section 2.3.2.2, we will not use these alternative definitions
in what follows. Therefore, this part can be read independently from the remaining
of the chapter. In what follows, some of the reformulations of hyperbolicity will be
grouped together when they can be defined in a similar fashion.

2.3.2.1 Definitions with triangles

Let us start from the definition given in previous Section 2.2. First, we recall that a
geodesic triangle ∆(u, v, w) is the union of three shortest-paths Puv,Pvw,Pwu with
respective ends u and v, v and w, w and u. The above shortest-paths are called the
sides of the triangle.

Definition 4 (Rips condition, [Gro87, BH11]). A connected graph G = (V,E) has
δ0-slim triangles if and only if for every geodesic triangle ∆(u, v, w), for every vertex
x ∈ Puv, we have that dG(x,Pvw ∪ Pwu) ≤ δ0.

In order to see the relationship between Definitions 1 and 4, the following con-
struction was proposed in [SG11].

u

y

x

v

w

Figure 2.10: Split of a 4-tuple in two triangles. The vertex w is chosen so that
d(x,w) = d(v, x)− b〈x, y〉vc, and so, d(y, w) = d(v, y)− d〈x, y〉ve.

Let u, v, x, y be any 4-tuple satisfying d(u, v) + d(x, y) ≥ d(u, x) + d(v, y) ≥
d(u, y) + d(v, x). We fix a shortest path between every two pairs of vertices in
the 4-tuple, and then we use these paths in order to construct the two geodesic
triangles ∆(u, x, y) and ∆(v, x, y). The gist of the construction is to show that the
hyperbolicity of the 4-tuple depends linearly on the slimness of these two triangles.
To show that, we choose a vertex w ∈ Pxy such that δ(u, v, x, y) ≤ δ(u,w, x, y) +

δ(w, v, x, y) + 1/2 (see Figure 2.10 for an illustration). Finally, a clever analysis
from [SG11] shows that when the triangles ∆(u, x, y) and ∆(v, x, y) are δ-slim, it
implies δ(u,w, x, y) ≤ δ, and in the same way δ(w, v, x, y) ≤ δ. Therefore, if G has
δ-slim triangles then it is (2δ + 1/2)-hyperbolic and the bound is sharp, as shown
in [SG11].

We refer to [BH11] for a proof that conversely, every δ-hyperbolic graph has
3δ-slim triangles.

Other definitions of hyperbolicity than Definition 4 can be stated in terms of
geodesic triangles. We summarize some of them below.

In order to get a better intuition of the following definitions, we recall that
hyperbolicity measures the closeness of a graph to a metric tree. Let us fix any

2.3. Definitions of hyperbolicity 31

geodesic triangle ∆(u, v, w). The three vertices u, v, w can be isometrically embed-
ded into a tree as follows. We map them to the three leaves u′, v′, w′ of a star with
center node s /∈ V so that the edges {s, u′}, {s, v′}, {s, w′} have respective length
〈v, w〉u, 〈u,w〉v, 〈u, v〉w. We refer to Figure 2.11 for an illustration.

u′

v′ w′

s

〈v, w〉u

〈u, v〉w
〈u,w〉v

Figure 2.11: Isometric embedding of a 3-tuple to the leaves of a star (a.k.a., tripod).
We recall that 〈v, w〉u + 〈u,w〉v = d(u, v).

Then, by an appropriate subdivision of the three edges of the star, it can be
obtained a tree T so that the shortest path Puv (resp., Pvw, resp., Pwu) can be
isometrically embedded to the unique u′v′-path in T (resp., v′w′-path, resp., w′u′-
path). However, by doing so, some vertices in different sides of the triangle are
mapped to the same node of T , and so, we aim at keeping small the distance in G
between any two such vertices.

Definition 5 ([ABC+91, BH11, Gro87, GdLH90]). For every graph G = (V,E)

(with hyperbolicity δ(G)), the following properties hold true:

• There exists δ1(G) = Θ(δ(G)) such that G has δ1(G)-thin triangles: for every
triangle ∆(u, v, w) and for every x ∈ Puv, y ∈ Puw such that d(u, x) = d(u, y) ≤
〈v, w〉u, we have that d(x, y) ≤ δ1(G).
• There exists δ2(G) = Θ(δ(G)) such that G has triangles with insize at most
δ2(G): for every triangle ∆(u, v, w) and for every x ∈ Puv, y ∈ Puw such that
d(u, x) = d(u, y) = b〈v, w〉uc1, we have that d(x, y) ≤ δ2(G).
• There exists δ3(G) = Θ(δ(G)) such that G has triangles with girth at most
δ3(G): for every triangle ∆(u, v, w), there exist x ∈ Puv, y ∈ Puw, z ∈ Pvw such
that max{d(x, y), d(x, z), d(y, z)} ≤ δ3(G).
• There exists δ4(G) = Θ(δ(G)) such that: for every triangle ∆(u, v, w), there is

some vertex m ∈ V such that max{d(m,Puv), d(m,Puw), d(m,Pvw)} ≤ δ4(G).

Further geometric interpretation of the above definitions of hyperbolicity can be
found, e.g., in [BH11]. Interestingly, not all geodesic triangles need to be considered.
In fact, we can constrain ourselves to “flat” triangles, a.k.a. bigons, and define
hyperbolicity as follows:

1The ceiling ensures the distances to be integer values.

32 Chapter 2. A survey on graph hyperbolicity

Definition 6. A graph G = (V,E) has ε-thin bigons if for every u, v, x, y ∈ V such
that all of the following hold:

d(u, v) = d(u, x) + d(x, v) = d(u, y) + d(y, v) and d(u, x) = d(u, y)

we have d(x, y) ≤ ε.

u v

x

y

≤ ε

Figure 2.12: An ε-thin bigon.

We refer to Figure 2.12 for an illustration. Notice that when we take u, v, x, y as
in the above Definition 6 then we obtain by the calculation δ(u, v, x, y) = d(x, y)/2 ≤
ε/2. Therefore, a δ-hyperbolic graph has 2δ-thin bigons (see also Figure 2.3 and
Property 1 in Section 2.2). Surprisingly, a converse relationship holds: if we subdi-
vide once every edge in a graph G and the subdivided graph has ε-thin bigons, then
G is f(ε)-hyperbolic for some (doubly exponential) function f [Pap95]. It is open
whether f can be chosen as a linear function.

2.3.2.2 Cop and Robber games with different speeds

More recently, a game-theoretic characterization of hyperbolicity was proved.
A Cop and Robber game is a well-known two-player game that is played on a

graph G = (V,E). Classically, the two players are named the Cop and the Robber.
At first, the Cop chooses any vertex v0 ∈ V as her position in the graph, then
the Robber also chooses her initial position u0 ∈ V . Then, the two players move
sequentially, with the Cop playing first. At each turn t ≥ 1, a player can either stay
on her current position or move on an adjacent vertex.

The graph G is called Cop-win if whatever the Robber does, the Cop can end up
on the same position as the Robber within a finite number of moves. Cop-win graphs
have been characterized early in [NW83, Qui83]. Since then, several extensions of
Cop and Robber games have been studied [Nis14]. One of them has a relationship
with hyperbolicity.

Precisely, in this variant the Cop and the Robber move at different speeds s′

(for the Cop) and s (for the Robber), with s′ ≤ s, where the speed of a player
denotes the maximum distance in the graph between any two of its consecutive
positions [CCNV11]. The graph G is called (s, s′)-Cop-win if it is Cop-win in this
variant. In particular, Cop-win graphs in the classical Cop and Robber game are
exactly the (1, 1)-Cop-win graphs. Perhaps surprisingly, the values of s and s′ for
which a given graph G is (s, s′)-Cop-win are related with its hyperbolicity. We first
need to introduce the following dismantling orderings. We recall that throughout

2.3. Definitions of hyperbolicity 33

this thesis, we will denote by BG(v, r) the ball of radius r centered on the vertex v
in a given graph G.

Definition 7. An (s, s′)∗-dismantling ordering of G = (V,E) is a total ordering
(v1, v2, . . . , vn) of V such that for every i < n, we have BG(vi, s)∩{vi, vi+1, . . . , vn} ⊆
BG(vj , s

′) for some j > i.

It can be shown that every graph with an (s, s′)∗-dismantling ordering is (s, s′)-
Cop-win. Conversely, if a graph is (s, s′)-Cop-win, for some s′ < s, then it has an
(s, s− 1)∗-dismantling ordering [CCPP14].

Lemma 8 ([CCPP14]). Let G = (V,E) be a graph.
If G is δ-hyperbolic then it has a (2r, r + 2δ)∗-dismantling ordering for every

positive integer r ≥ 2δ.
Conversely, if G has a (s, s′)∗-dismantling ordering, for some s′ < s, then it has

hyperbolicity at most 16(s+ s′)
⌈
s+s′
s−s′

⌉
+ 1/2.

One important byproduct of Lemma 8 is that every δ-hyperbolic graph G admits
a (4δ, 4δ)∗-dismantling ordering, that is a classical dismantling ordering for its graph
power G4δ — obtained from G by adding an edge between every two distinct vertices
that are at distance no more than 4δ in G. Simply put, if G is δ-hyperbolic then
G4δ is Cop-win. As we will show in Section 2.5.2, this original characterization of
hyperbolicity is helpful in order to obtain new lower-bounds on this parameter.

2.3.2.3 Other definitions

In an attempt to make this part as exhaustive as possible, some other reformulations
for graph hyperbolicity are now mentioned. These alternative definitions are not
detailed, as it would require to introduce new technical notions that I feel to be
unnecessary for the understanding of what follows. Below, the interested reader will
be referred to some papers that are related with these alternative definitions.

Definition 9. The hyperbolicity of a graph G can be defined via the smallest
parameters defining:

• its asymptotic upper curvature, denoted by κ (curvature) and c (an adjustment
variable) [BF06];
• or a divergence function on its shortest-paths that is superlinear, denoted by
e(0) (initial value) and α (rate of divergence) [BH11] ;
• or a linear isoperimetric inequality, denoted by N (filling) and K [CCPP14].

Reformulations of hyperbolicity and their relationships with the standard defi-
nition are summarized in Table 2.1. In what follows, we name δ the hyperbolicity
of the graph (w.r.t. Definition 1). The symbols that are used for each reformulation
correspond to the ones that are given in the above definitions.

34 Chapter 2. A survey on graph hyperbolicity

δ 0
-s
lim

tr
ia
ng

le
s

δ 0
≤

3δ
[A

J1
3]

δ
≤

2
δ 0

+
1
/2

[S
G
11

]

δ 1
-t
hi
n
tr
ia
ng

le
s

δ 1
≤

4δ
[A

B
C

+
91

]
δ
≤
δ 1

[B
H
11

]

in
si
ze
δ 2

δ 2
≤

12
δ

[B
H
11

]
δ
≤
δ 2

[B
H
11

]

δ 3
δ 3
≤

12
δ

[B
H
11

]
δ
≤

3
δ 3

[B
H
11

]

δ 4
δ 4
≤

12
δ

+
1

[B
H
11

]
δ
≤

6
δ 4

[B
H
11

]

ε-
th
in

bi
go

ns
ε
≤

2δ
[G

ro
87

]
δ

=
22
O

(ε
)

[C
N
04

]

(s
,s
′)
∗ -
di
sm

an
tl
ab

le
s
≤

2s
′ −

4
δ

[C
C
N
V
11

]
δ
≤

16
(s

+
s′

)
⌈ s

+
s′

s−
s′

⌉ +
1
/
2

[C
C
P
P
14

]

as
ym

pt
ot
ic

up
pe

r
cu
rv
at
ur
e
“κ
,c
”

κ
≤
−

1
/(

4δ
2
)

[B
F
06

]
δ
≤

lo
g

2/
√
−
κ

+
c

[B
F
06

]

di
ve
rg
en
ce

fu
nc
ti
on

e
e(

0
)
≤

4
δ,
e(
r)
≥

2
r
−
4
δ
−
1

1
2
δ

[B
H
11

]
δ
≤

6
e(

0)
+

9
α

[B
H
11

]

(N
,K

)-
fil
lin

g
N
≤

16
δ

[A
B
C

+
91

]
δ
≤

32
K
N

2
+

1
/2

[C
C
P
P
14

]

Table 2.1: Comparison between the definitions of hyperbolicity. The first column is
for the upper-bounds that are implied by δ for each reformulation. Conversely, the
second column is for the upper-bounds on δ that are implied by each reformulation.

2.3. Definitions of hyperbolicity 35

2.3.3 What is a “hyperbolic” graph ?

In the seminal work of Gromov [Gro87], hyperbolic graphs simply refer to the graphs
with finite hyperbolicity. This definition makes sense since he studies on the hyper-
bolicity of Cayley graphs of finitely generated groups, that may and will be infinite.
However according to the above definition, finite graphs are trivially hyperbolic in
the sense that for every graph G, there exists a finite δ such that G is δ-hyperbolic.
Thus, we shoud call the cycle Cn “hyperbolic” whereas it has hyperbolicity Ω(n) !

In order to override this limitation, we can transpose the notion of hyperbolicity
to graph classes. As a first attempt, let us define the hyperbolicity of a given graph
class G as δ(G) = supG∈G δ(G). Then, we call G hyperbolic if δ(G) < +∞. As
expected, we have that the class of trees is hyperbolic, but the class of cycles is non
hyperbolic. By abuse of notation, we refer by “hyperbolic graphs” for the graphs in
a hyperbolic graph class.

In the literature [Ben98], a broader concept of hyperbolic graph class is pre-
ferred. It is based on the property that the hyperbolicity of a given graph is
upper-bounded by its diameter (we shall come back to this relationship later on
in Section 2.4) [WZ11]. The latter means that any graph G with diameter DG

is trivially DG-hyperbolic, that does not really look satisfying. Indeed, we would
prefer to call it hyperbolic only if δ(G)� DG.

Formally, let G be any class of graphs and let Gn = {Gn ∈ G | diam(Gn) = n}.
Since graphs in Gn are trivially n-hyperbolic, the hyperbolicity δ(Gn) is finite (by
convention, δ(∅) = 0). Then, the graph class G is called hyperbolic if and only if

lim
n→+∞

δ(Gn)
n = 0.

Further refinements of the concept have been suggested, e.g., in [CFHM13].
They are listed in what follows.

Definition 10 ([CFHM13]). A given graph class G is called:
• constantly hyperbolic if δ(Gn) = O(1) (that corresponds to the case where δ(G)

is finite);
• (poly)logarithmically hyperbolic if δ(Gn) = O(log n) or δ(Gn) = logO(1) n;
• weakly hyperbolic if δ(Gn) = o(n);
• and non hyperbolic otherwise.

A shorter classification is adopted in [AD15]. Namely, a graph class is called hy-
perbolic in [AD15] only if it is logarithmically hyperbolic (w.r.t. Definition 10), and
non hyperbolic otherwise. Furthermore, a graph class is called strongly hyperbolic
in [AD15] if δ(Gn) = O(log log n).

Finally, we note that in [DKMY15], the authors consider a graph class to be
hyperbolic only if it has the additional requirement that the graphs in the class
have their maximum degree ∆ that is constantly upper-bounded. By doing so, since
the diameter of an n-vertex graph must be Ω(log n/ log ∆), there can be no constant
upper-bound on the diameter in an infinite graph class, and so, we can dismiss all

36 Chapter 2. A survey on graph hyperbolicity

the classes of bounded diameter graphs (that are trivially hyperbolic). As we will
discuss next in Section 2.7, this choice presents algorithmic advantages.

2.4 Hyperbolic graph classes

The next two sections are devoted to the first objective in this study of hyperbol-
icity, i.e., the characterization of hyperbolic and non hyperbolic graph classes. In
particular, this section covers known upper-bound techniques on graph hyperbol-
icity. We list sufficient conditions for a graph class to be constantly hyperbolic.
Examples of (hyperbolic) graph classes for which these conditions hold are given.
We also provide examples of hyperbolic graphs that do not satisfy these conditions.
The latter will show the limitations of these upper-bound techniques.

Outline of the section. In Section 2.4.1, we present upper-bounds depending on
the best distortion of the distances in a graph when it is embedded in a tree. We also
discuss about relationships between hyperbolicity and tree decompositions. Then in
Section 2.4.2, we present two more upper-bounds on the hyperbolicity depending on
the diameter and the chordality properties of the graph. We end up in Section 2.4.3
on personal contributions, showing upper and lower bounds on the variations of
hyperbolicity that may be caused by various graph operations. The latter result is
joint work with David Coudert.

2.4.1 Tree-likeness in graphs and hyperbolicity

We start presenting upper-bounds on the hyperbolicity that depend on the best
possible distortion of the distances in a graph when it is embedded into a tree.

Indeed, we recall that hyperbolicity measures how close a given graph is to a met-
ric tree. Unsurprisingly, there exists a strong relationship between this parameter
and the (NP-hard) problem of embedding a given graph into a tree with minimum
distortion (additive or multiplicative). In particular, as we showed in Section 2.3
the hyperbolicity δ(G) of a given graph G is the minimum possible δ such that
every 4-tuple of vertices in G can be (non contractively) embedded into a tree with
additive distortion at most δ. Therefore, δ(G) is a lower bound on the parameters:

• tree-distortion (minimum multiplicative distortion in a tree embedding);

• and tree-stretch (minimum t such thatG admits a tree t-spanner, i.e., a spanning
tree with multiplicative distortion at most t).

These above relationships are described in the survey [AAD16] and the papers cited
therein. Summarizing, we get the following upper-bounds on hyperbolicity:

Theorem 11 ([AAD16]). Every graph with tree-distortion at most d is d-hyperbolic.
Similarly, for every t ≥ 1, every graph with a tree t-spanner is t-hyperbolic.

2.4. Hyperbolic graph classes 37

2.4.1.1 Application: hyperbolic graph classes

Below, we give examples of graph classes that are (metrically) “tree-like”, and so,
hyperbolic.

Graphs with a tree t-spanner. By Theorem 11, for any fixed t ≥ 1, the class of
graphs with a tree t-spanner is constantly hyperbolic. The latter includes well-known
classes such as: trees (trivially), interval graphs [LB62], split graphs [FH76], convex
bipartite graphs [Glo67] and chordal bipartite graphs (a.k.a., bipartite graphs with
no induced cycle of length at least six) [GG78], etc.

Graphs with bounded tree distortion. Similarly, by Theorem 11 any class
of graphs with bounded tree distortion is constantly hyperbolic. In particular, the
classes of chordal graphs (graphs with no induced cycles of length at least four)
and dually chordal graphs (a.k.a., (2, 1)-Cop win graphs, see Section 2.3.2.2) are
constantly hyperbolic [Dir61, BDCV98]. It can be intuited (and, with slightly more
work, formally proved) from the existence of their respective tree-representations,
sometimes called the clique-tree (for chordal graphs) [Gav74] and the compatible
tree (for dually chordal graphs) [DCG14].

2.4.1.2 Examples of hyperbolic graphs that are not “tree-like”

However, a converse of Theorem 11 does not hold : not all hyperbolic graphs have a
constant tree-distortion or tree-stretch. In fact, these two parameters can differ from
δ(G) by at most a logarithmic or polylogarithmic factor [AAD16], and this is sharp.
We illustrate this fact with the following construction in Figure 2.13, sometimes
called a ringed tree [CFHM13].

The ringed tree RT (k) is obtained from a rooted complete binary tree with k

levels by connecting the vertices at the same level with a circle, that is constructed
under rules that we now detail. Formally, we start from a complete binary tree,
then we label the vertices as follows. The root is labeled 0, and the two children of
a vertex labeled i are labeled 2i + 1 and 2i + 2. Finally, at each level l ≥ 0, nodes
are labeled from 2l − 1 to 2l+1 − 2, and we add edges in order to obtain the cycle
(2l − 1, 2l + 1, . . . , 2l + i, . . . , 2l+1 − 2).

As a side contribution of this thesis (not published elsewhere), we improve upon
the best-known upper-bound on the hyperbolicity of ringed trees:

Lemma 12. δ(RT (k)) ≤ 3.

Proof. For every vertex v, let `(v) be its level in the underlying rooted tree (its
distance to the root). Suppose for the sake of contradiction that δ(RT (k)) > 3. Let
u, v, x, y be such that δ(u, v, x, y) > 3 and `(u) + `(v) + `(x) + `(y) is minimized.
W.l.o.g., vertex u is on the lowest level, i.e., `(u) ≥ max{`(v), `(x), `(y)}. As proved
in [CFHM13], it implies that for every vertex w in a upper level `(w) ≤ `(u), there
exists a shortest uw-path which first goes up for some time, then stays on the same

38 Chapter 2. A survey on graph hyperbolicity

0

1 2

3 4 65

7 8 9 10 14131211

Figure 2.13: a ringed tree RT (3).

level for at most three hops, and finally goes down. Indeed, this construction can
be intuited by noticing that the two ends s and t of a “horizontal” st-path of length
p ≥ 4, staying on the same level `(s) = `(t), can be connected via a path of length
≤ 2+dp/2e ≤ p which first goes up for one hop, then stays at the same level `(s)−1

and finally goes down for one hop. We call it a canonical shortest path.
Let us use the above property in order to prove the existence of some vertex of

v, x, y that is at distance at most three from u. Indeed, let u′ be the parent node of
u in the underlying rooted tree. Since `(u′) = `(u)− 1, we have by the minimality
of `(u) + `(v) + `(x) + `(y) that δ(u′, v, x, y) ≤ 3. In this situation, we note that if it
were the case that for any of v, x, y, there is a shortest path between this vertex and
u passing by u′, then it would follow from the 4-point Condition (Definition 1) that
δ(u, v, x, y) = δ(u′, v, x, y) ≤ 3, that is a contradiction. So, let us assume w.l.o.g.
that u′ does not lie on any shortest uv-path. In particular, the canonical shortest
uv-path does not go up, and so, `(v) = `(u). Furthermore, since this path stays at
most three hops on the same level, we get d(u, v) ≤ 3.

However, in this situation δ(u, v, x, y) ≤ d(u, v) ≤ 3 [SG11], that is a contra-
diction. Indeed, the upper-bound δ(u, v, x, y) ≤ d(u, v) can be seen as follows. As
we observed earlier (Figure 2.11), the three vertices u, x, y can be embedded to the
three leaves u′, x′, y′ of an edge-weighted star S with null distortion. If we add a
new leaf node v′ that we make adjacent to u′ in S, then by weighting d(u, v) the
edge {u′, v′}, one obtains a tree embedding of the 4-tuple with distortion at most
d(u, v), and so, δ(u, v, x, y) ≤ d(u, v).

Altogether, δ(RT (k)) ≤ 3.

Lemma 12 improves on [CFHM13], where they proved that δ(RT (k)) ≤ 40. It
proves that we have a constant upper-bound on the hyperbolicity of any ringed tree.

2.4. Hyperbolic graph classes 39

In contrast, the following lemma shows that the tree distortion of a ringed tree can
be arbitrarily large.

Lemma 13 ([Yan15]). Any tree embedding of RT (k) has distortion Ω(k).

To have a better intuition of Lemma 13, we first observe that the underlying
rooted tree of RT (k) is a shortest-path tree. In a rooted tree T , the path between
two vertices at same distance from the root r must pass by their lowest common
ancestor, that is strictly closer from r. In contrast, all vertices at the same layer ` in
RT (k) can be connected via a circle, with only vertices at same distance ` from the
root. Intuitively, it implies that in a (non expansive) tree embedding of RT (k), the
circles in each layer should be contracted to a single node 2. Hence, the distortion
of any tree embedding of RT (k) should be at least the maximum distance between
any two vertices at the same level, that is Ω(k) for the lowest level.

2.4.1.3 Relationship with tree decompositions

We complement Section 2.4.1 with relationships between hyperbolicity and tree
decompositions [RS86], that are a more common way to measure tree-likeness in
graphs. Formally, a tree decomposition (T,X) of G is a pair consisting of a tree
T and of a family X = (Xt)t∈V (T) of subsets of V indexed by the nodes of T and
satisfying:
• ⋃t∈V (T)Xt = V ;
• for any edge e = {u, v} ∈ E, there exists t ∈ V (T) such that u, v ∈ Xt;
• for any v ∈ V , {t ∈ V (T) | v ∈ Xt} induces a subtree, denoted by Tv, of T .

The sets Xt are called the bags of the decomposition. As an example, we give a tree
decomposition of a cycle in Figure 2.14b.

A graph has treewidth at most k if it has a tree decompositions with bags of size
at most k + 1. As an example, trees are exactly the graphs with treewidth 1.

Treewidth is a well-studied parameter [Bod06], and is generally accepted as a
good measure of the structural tree-likeness in graph. In contrast, hyperbolicity is
a measure of the metric tree-likeness in graphs, and as such it is uncomparable with
treewidth. Indeed, as shown with Figure 2.14b, cycles have treewidth at most 2,
whereas we proved in Section 2.3.1.2 that the hyperbolicity of cycles grows linearly
with their size. Conversely, it is well-known that the complete graph Kn with n

vertices has treewidth n − 1, whereas we proved in Section 2.3.1.2 that it has null
hyperbolicity.

On the other hand, we can compare graph hyperbolicity with treelength [DG07]
and treebreadth [DK14], that can also be defined in terms of tree decompositions. A
graph has treelength at most l if it has a tree decomposition where the distance in
the graph between any two vertices in a same bag is at most l. It has treebreadth

2This intuition can be formalized through the notion of layering tree [CD00], that will be further
discussed in the next Section 2.7.

40 Chapter 2. A survey on graph hyperbolicity

v0

v1 v11

v2 v10

v3 v9

v4 v8

v5 v7

v6

(a) Cycle C12 with twelve vertices.

v0

v4 v8

v0

v4 v1

v3

v4 v1

v3

v2 v1

v5

v4 v8

v5

v7 v8

v5

v7 v8

v0

v9 v8

v0

v9 v11

v5

v9 v11

(b) Tree-decomposition of C12 of width two and
length four.

Figure 2.14: Cycles have treewidth two and treelength dn/3e.

at most r if it has a tree decomposition whose every bag is contained in a ball of
radius at most r (the center of the ball may not be in the bag). Treelength and
treebreadth differ from tree distortion by at most a constant-factor, and so, they
can be compared with hyperbolicity the same way [AAD16].

I will expand more on treelength and treebreadth in the next chapter on tree
decompositions. In particular, I will show that in some cases where there is no large
clique-minor and no long isometric cycle in the graph, treewidth can be compared
with treelength (and so, with hyperbolicity) [CDN16].

2.4.2 Classical upper-bounds on hyperbolicity

In this subsection, we now survey two classical techniques in order to upper-bound
graph hyperbolicity. Section 2.4.2.1 is devoted to the relationship between diam-
eter and hyperbolicity. In Section 2.4.2.2, relationships between hyperbolicity and
chordality properties of the graph are presented.

2.4.2.1 Diameter

As stated earlier, there is a standard upper-bound of graph hyperbolicity using the
diameter of the graph.

Lemma 14 ([KM02, MP14, WZ11]). For every graph G = (V,E), we have δ(G) ≤
bdiam(G)/2c.

A simple proof of Lemma 14 can be easily derived from the 4-point condition
(Definition 1). Furthermore, we point out that since any graph G can be embedded

2.4. Hyperbolic graph classes 41

in a shortest-path tree with distortionO(diam(G)), Lemma 14 is not that surprising.
Of course, the converse of the lemma holds false, as easily seen with any path.

It follows that any class of graphs with constant upper-bound on the diame-
ter is (trivially) constantly hyperbolic. Since the domination number and other
domination-like parameters are themselves upper-bounds on the diameter, the au-
thors in [HPR14] notice that the class of graphs with bounded domination number
is also constantly hyperbolic.

We note that in [BCCM15, CCL15], it can be found variations of Lemma 14
(some of them using the eccentricity of the vertices, i.e., the maximum distance in
the graph between a given vertex and any other vertex).

2.4.2.2 Chordality

Much stronger upper-bounds on the hyperbolicity can be derived from the chordality
of the graph. Namely, a k-chordal graph is a graph with no induced cycle of length
at least k+ 1 [Ueh99]. In particular, 3-chordal graphs are exactly the usual chordal
graphs. We recall that the class of chordal graphs is constantly hyperbolic [BKM01].
The result extends to the class of k-chordal graphs:

Theorem 15 ([CD00, WZ11]). For every k ≥ 4, every k-chordal graph G is
bk/2c /2-hyperbolic, and the bound is sharp.

The converse of Theorem 15 holds false. As an example, consider a wheel Wn

(obtained from the cycle Cn with n vertices by adding a universal vertex). On the
one hand, it has diameter at most two and so, it has hyperbolicity at most 1 by
Lemma 14. On the other hand, it is n-chordal.

Application: even more hyperbolic graph classes. By Theorem 15, the class
of k-chordal graphs is constantly hyperbolic for every fixed k ≥ 4. The latter encom-
pass well-studied graph classes such as: chordal graphs (trivially), with well-known
subclasses such as strongly chordal graphs [Far83]; weakly chordal graphs [Hay85];
AT-free graphs [COS97], and so, cocomparability graphs [GMT84] and permutation
graphs [EPL72]; distance-hereditary graphs [BM86] and cographs [Sei74].

More recently, a result of the same flavour as Theorem 15 was proved in [MP15]
with a different (and more technical) notion of chordality. Given G = (V,E) and
a cycle C in G, a bridge (or shortcut) of C is any shortest uv-path between two
vertices u, v ∈ C such that dC(u, v) > dG(u, v). The bridge is called strict when it
intersects the cycle C only in its two endvertices. Let Dm(C) ⊆ V (C) contain the
ends of all strict bridges of C of length at most m.

Then, a graph G is called ε-densely (k,m)-path chordal if for every cycle C with
length at least k, every vertex in C is at distance at most ε from a vertex in Dm(C)

(see Figure 2.15 for an example). In particular, k-chordal graphs are bk/2c-densely
(k, bk/2c)-path chordal [MP15].

Theorem 16 ([MP15]). Every ε-densely (k,m)-path chordal graph has
(max{k/4, ε+m})-slim triangles.

42 Chapter 2. A survey on graph hyperbolicity

Figure 2.15: The uniform subdivision of the wheel is 3-densely (9, 3)-path chordal.

I confess that the impact of this result, compared to Theorem 15, is unclear to
me.

2.4.3 Contribution: Graph operations and hyperbolicity

Finally, a generic framework is presented in order to prove that some graph oper-
ations preserve the hyperbolicity up to an additive term. In particular, this can
be used in order to construct new hyperbolic graph classes from existing ones. Al-
though we concentrate more on how to use this framework in order to prove that
some graph classes are hyperbolic, it gives precise information on the variations of
hyperbolicity that can be useful in a broader context (e.g., in preprocessing and
approximation algorithms for computing this parameter).

More precisely, new classes of hyperbolic graphs can be obtained from classes
already known to be hyperbolic, by applying some graph operations such as line
graphs [Whi92], clique graphs [Ham68], etc. In [CD16b], we designed a unifying
framework in order to prove that these graph operations preserve hyperbolicity up
to an additive term. The purpose of this work was to make simpler the computation
of the sharp distortion of the hyperbolicity constant under these operations. It is
based on two ingredients. The first is that the hyperbolicity of a given bipartite
graph can be closely approximated (up to an additive term) by considering only one
side of its bipartition.

Lemma 17. Let B = (V0 ∪ V1, E) be a bipartite graph. For every i ∈ {0, 1}, let
Gi = (Vi, {{u, v} | dB(u, v) = 2}).

Then, 2δ(Gi) ≤ δ(B) ≤ 2δ(Gi) + 2 and the bounds are sharp.

It can be observed that since Vi is a dominating set of the bipartite graph G,
we can relate every 4-tuple in G with a 4-tuple in Gi by substituting every vertex
in V1−i of the 4-tuple with any one of its neighbours. By doing so, we can use

2.4. Hyperbolic graph classes 43

the 4-point Condition directly (Definition 1) in order to prove a weaker version of
Lemma 17. This weaker relationship between dominating set and hyperbolicity was
already known and used in some algorithms for computing this parameter [CCL15].
In the case of bipartite graphs, the main technical difficulty was to obtain the sharp
upper-bound on the distortion of hyperbolicity, which has required us a finer-grained
analysis of the 4-tuples with maximum hyperbolicity in G.

The second property used in the framework is that for every G = (V,E), since
the distances in its jth graph power are roughly divided by j, the hyperbolicity of
this power is roughly δ(G)/j.

Lemma 18. For every graph G = (V,E) and j ≥ 1, we have δ(G)+1
j − 1 ≤ δ(Gj) ≤

δ(G)−1
j + 1 and the bounds are sharp.

Finally, we recall that an intersection graph over a ground-set S has for vertices a
family of subsets in S together with an edge between every two intersecting subsets.
It can be naturally represented as a bipartite graph, with vertices of the graph on
one side and the elements of S on the other side. Combining the two above lemmas,
we obtain our main result in [CD16b]:

Theorem 19. For every graph G = (V,E) and j ≥ 1, let S = {S1, S2, . . . , Sk} be
a clique edge cover of Gj (a collection of cliques of Gj covering all its edges). Then
the intersection graph IS , constructed from the subsets in S satisfies:

δ(G) + 1

j
− 2 ≤ δ(IS) ≤ δ(G)− 1

j
+ 2.

Proof. We recall that every Si ∈ S is a subset of V . Let BS be the bipartite graph
with sides V and S, and with edge-set {{v, Si} | v ∈ Si}. By construction, two
subsets Si, Sj ∈ S are at distance two in BS if and only if they intersect, that is if
and only if {Si, Sj} is an edge of IS . Furthermore, since by the hypothesis S is a
clique edge cover of Gj , two vertices u, v ∈ V are at distance two in BS if and only
if {u, v} is an edge of Gj . It follows by applying twice Lemma 17:

2δ(IS) ≤ δ(BS) ≤ 2δ(IS) + 2,

2δ(Gj) ≤ δ(BS) ≤ 2δ(Gj) + 2.

By mixing up the two chains of inequalities, one obtains δ(Gj) − 1 ≤ δ(IS) ≤
δ(Gj) + 1. Then, by Lemma 18, it implies δ(G)+1

j − 2 ≤ δ(IS) ≤ δ(G)−1
j + 2, as

desired.

The line graph and the clique graph of G = (V,E), respectively denoted by L(G)

and K(G), are respectively the intersection graph of its edges and of its maximal
cliques. Therefore, Theorem 19 applies to these two typical graph operations by
taking j = 1, which gives δ(G)−1 ≤ δ(L(G)) ≤ δ(G)+1 and δ(G)−1 ≤ δ(K(G)) ≤
δ(G) + 1 for every graph G. These bounds are proved to be sharp in [CD16b]. In
fact, we show in [CD16b] that for every possible i ∈ {−1,−1/2, 0, 1/2, 1}, there are
graphsGi andHi such that δ(L(Gi))−δ(Gi) = i and similarly, δ(K(Hi))−δ(Hi) = i.

44 Chapter 2. A survey on graph hyperbolicity

Other graph operations to which the theorem applies are: the k-edge graph
(intersection graph of the cliques of size k and the maximal cliques of size at most
k−1 [Pri94]) with j = 1, the middle graph (intersection graph of the cliques of size at
most two [Pri95]) with j = 1, the biclique graph (intersection graph of the maximal
induced complete bipartite subgraphs [GS10]) with j = 2, etc. Furthermore, for all
these above operations (except for line graph) these are the first bounds proved on
the variations for hyperbolicity.

2.4.3.1 New classes of hyperbolic graphs

Finally, some new graph classes are proved to be constantly hyperbolic by using The-
orem 19. A clique-chordal graph is a graph whose clique graph is chordal [BDCV98].
Since chordal graphs are 1-hyperbolic [BKM01], by Theorem 19 clique-chordal
graphs are 2-hyperbolic.

Another example is the class of n-convergent graphs: G = (V,E) is n-convergent
if its nth iterated clique-graph is a complete graph [LdMS98]. By iterating Theo-
rem 19, we obtain that if G is n-convergent then δ(G) ≤ δ(K|V |)+n = n. Therefore,
every n-convergent graph is n-hyperbolic.

2.4.4 Conclusion and open perspectives

Some classical graph parameters are shown to give upper-bounds on hyperbolicity
in Sections 2.4.1 and 2.4.2. It would be very interesting to enrich this list. Similarly,
it is now a growing topic to provide bounds on the variations for hyperbolicity that
may be caused by various graph operations [MRSV10, CRS15]. In this aspect, it
would be interesting to prove some new results in the spirit of Theorem 19.

2.5 Obstructions to hyperbolicity

In the continuity of Section 2.4, we now cover some known lower-bound techniques
on graph hyperbolicity. The latter results will complete our first objective in the
study of this parameter by giving characterizations for non hyperbolic graph classes,
or equivalently necessary conditions for a graph to be hyperbolic. Like we did in
Section 2.4, we will also provide examples of non hyperbolic graph classes that do not
satisfy these characterizations, thereby showing the limitations of the lower-bound
techniques.

Outline of the section. The rest of the section is divided as follows. First, I sur-
vey some results on the hyperbolicity of random graphs in Section 2.5.1. They show
that, in some sense, most graphs are non hyperbolic. Then I present in Section 2.5.2
the typical obstructions that are used to show that a given graph class is non hy-
perbolic. These tools comprise: forbidden isometric subgraphs (Section 2.5.2.1),
quasi-cycles (Section 2.5.2.2) and graph powers with some given properties (Sec-
tion 2.5.2.4). Finally, some open problems are mentioned in Section 2.5.3.

2.5. Obstructions to hyperbolicity 45

My personal contributions: two new techniques using graph powers in order to
lower-bound hyperbolicity, are presented in Section 2.5.2.4. This is joint work with
David Coudert. Furthermore, as a side contribution of this thesis, I answer an open
question from [VS14] on the relationship between hyperbolicity and quasi-cycles
(Section 2.5.2.2).

2.5.1 Related work: random graphs are non hyperbolic

It is natural to ask for hyperbolicity, as for any graph parameter, what its typical
value is on graphs. Put in other terms, the question is whether classes of random
graphs are hyperbolic. The tendency is that, for a large spectrum of random graph
models [CFHM13, NST15, Sha11, Sha12, Sha13, FGL+15, Tuc13, MP14, BHO+11],
the graphs so obtained are non hyperbolic. The following results could be used in
probabilistic methods in order to give lower-bounds on graph hyperbolicity.

In Sections 2.5.1.1 and 2.5.1.2, we emphasize on the results obtained on the
hyperbolicity of the (classical) Erdös-Rény random graphs and the random regular
graphs. We briefly mention the techniques used in the proofs of these results, that
will be further detailed in Section 2.5.2. Then, Section 2.5.1.3 covers the known
results on the hyperbolicity for other types of random graphs, and some open ques-
tions.

2.5.1.1 Erdös-Rényi random graphs

In particular, the most common model of random graphs is the Erdös-Rényi model
Gn,p, sometimes called the binomial random graph model. In a binomial random
graph Gn ∈ Gn,p, each possible edge exists with probability p. Note that p may, and
usually does, depend on the number n of vertices in the graph.

It turns out that, for most regimes of p, the binomial random graphs are non
hyperbolic with high probability. Precisely, the authors in [NST15] proved that in
the sparse case p = O(1/n), binomial random graphs are non constantly hyperbolic.
The latter result follows from the existence of arbitrarily long isometric cycles with
positive probability (see Section 2.5.2.1). In a denser case where p = 1 − ω(1/n2),
Mitsche and Hell proved in [MP14] that binomial random graphs are non hyperbolic
in the strong sense, i.e., diameter-hyperbolic.

2.5.1.2 Random d-regular graphs

Similar results are obtained in [BHO+11, Tuc13] for the class Gn,d of random d-
regular graphs with the uniform probability distribution, that are proved to be non
hyperbolic in the strong sense (diameter-hyperbolic). In order to prove that these
random graphs are non hyperbolic, the authors in [BHO+11] show the existence
with high probability of large quasi-cycles. I shall come back in details on the notion
of quasi-cycles when I present the known lower-bounds on graph hyperbolicity in
Section 2.5.2.2.

46 Chapter 2. A survey on graph hyperbolicity

2.5.1.3 Other random models of complex networks

Finally, since the above-mentioned models do not reflect well the structure of real-life
graphs [BAJ00], it is interesting to ask whether random models of complex networks
exhibit the same behaviour. Unfortunately, that seems to be the case.

In particular, it is proved in [CFHM13] that in most regimes, the random graphs
that are obtained with the small-world model of Kleinberg are either non hyper-
bolic or non polylogarithmically hyperbolic. Some range of random graphs that
are obtained with the Chung-Lu model are proved to be non constantly hyperbolic
in [Sha13].

Perspectives. Surprisingly, we are not aware of any lower-bound on the hyperbol-
icity of Barabási-Albert random graphs (this problem has been studied only through
experimentations [JLB08]). Furthermore, to find a pertinent class of random graphs
that is hyperbolic – reflecting the properties of real-life networks such as the graph of
the Autonomous of the Internet, that has a small hyperbolicity [CCL15, dMSV11] –
is to my mind an important open question. In particular, the HOT model [FKP02]
may be worth studying since it has been first defined to generate random trees.

2.5.2 Lower-bounds on the hyperbolicity

The remaining of the section will be devoted to a detailed presentation of the known
lower-bound techniques on graph hyperbolicity, some of them have been briefly
mentioned in our survey on the hyperbolicity of random graphs in Section 2.5.1. In
Section 2.5.2.1, we present a basic technique in order to lower-bound hyperbolicity
using isometric subgraphs. Next, we introduce quasi-cyclicity in Section 2.5.2.2, and
as a side contribution of this thesis, we answer an open question from [VS14] on its
relationship with graph hyperbolicity. Other personal lower-bound techniques, that
are based on a game-theoretic characterization of hyperbolicity in [CCNV11], are
finally presented in Section 2.5.2.4. The results in this last section are joint work
with David Coudert.

2.5.2.1 Forbidden isometric subgraphs

We say that a graph parameter Π is closed under taking subgraphs if for every graph
G and for every subgraph H of G, Π(H) ≤ Π(G). We now discuss on the stability
of hyperbolicity under taking subgraphs.

Unlike many graph properties, hyperbolicity is not closed under taking sub-
graphs. That can be easily seen with the complete graph Kn, that is 0-hyperbolic
and contains all possible n-vertex graphs as a subgraph. It is not closed under tak-
ing induced subgraphs either. Indeed, every graph G is the induced subgraph of a
1-hyperbolic graph G′ with diameter two, obtained from G by adding a universal
vertex u (the shortest-path tree of G′ rooted at u is a star with additive distor-
tion of the distances in G′ at most one). However, we recall that a subgraph H

2.5. Obstructions to hyperbolicity 47

of G = (V,E) is called isometric if it is distance-preserving, i.e., the distance be-
tween every two vertices in H is the same in H as in G. By the 4-point Condition
(Definition 1), it implies that δ(H) ≤ δ(G) for any isometric subgraph H of G.
Hence, a classical technique in order to lower-bound the hyperbolicity is to exhibit
an isometric subgraph from a well-known non hyperbolic graph class, such as e.g.,
cycles and grids.

As an example, recall that the girth of a given graph G, denoted by g(G) in
what follows, is a well-known parameter that is the minimum length of a cycle in
G. By minimality of its length, any cycle with length g(G) is isometric, and so, the
hyperbolicity can be lower-bounded using the girth:

Lemma 20 ([WZ11]). For every G = (V,E), we have δ(G) ≥ bg(G)/4c − 1/2 if
g(G) ≡ 1 mod 4, and δ(G) ≥ bg(G)/4c otherwise.

It follows that in order for a graph class to be constantly hyperbolic, the graphs
must have a girth that is constantly upper-bounded. Actually, the length of any
isometric cycle in the graphs must be constantly upper-bounded. This is a strictly
stronger condition since there are graphs with bounded girth and arbitrarily large
isometric cycles. I illustrate this fact with the construction of Figure 2.16, that is a
side contribution of this thesis. Namely, the construction shows examples of planar
graphs G` that are (1, 1)-dismantlable (see Section 2.3.2.2), and so, with girth tree,
but with an isometric cycle of length `.

(a) G3. (b) G4. (c) G5.

(d) G6. (e) G7.

Figure 2.16: Examples of plane cop-win graphs G` such that their outerface is an
isometric cycle of length `. The graph G` is obtained from two copies of G2b`/2c−1 by
identifying a path on their respective outerface (drawn in thick blue), then adding a
new dominated vertex on its outerface and additional edges (drawn in dashed red).

The graph G` of the construction satisfies a stronger property, that is, it admits

48 Chapter 2. A survey on graph hyperbolicity

a planar embedding where the outerface is an isometric cycle of length `. For every
i ≥ 2, G2i and G2i+1 are obtained from two copies of G2i−1 as follows. We start
identifying a path Pi on their outerface with length i− 1 (for the even case ` = 2i)
or i − 2 (for the odd case ` = 2i + 1). Then, let us fix one end vi of Pi. In each
of the two copies of G2i−1, vi has one neighbour on the outerface that is not part
of Pi. We add a new vertex of degree three that is made adjacent to vi and to
its two neighbours ui, u′i /∈ Pi on the outerface in each copy. Note that the closed
neighbourhood of this new vertex is dominated by vi by construction. Furthermore,
in doing so, we obtain in the even case ` = 2i an outerface which is an isometric
cycle of length 2(2i − 1) − 2|Pi| + 1 = 2i = `. Finally, in order to complete the
construction in the odd case ` = 2i + 1, we consider the second end of Pi and we
make adjacent its two neighbours xi, x′i /∈ Pi on the outerface in each copy.

Note that on the other hand, not every graph with bounded-length isometric
cycle has small hyperbolicity. For instance, the hexagonal grid with n columns and
m rows (cf. Figure 2.17) is a bridged graph – i.e., with no isometric cycle of length
at least four – yet it is (min{n,m} − 1)/2-hyperbolic [CD16a].

Figure 2.17: Hexagonal grid.

2.5.2.2 Quasi-cycles

We now describe quasi-cyclicity and its relationship with hyperbolicity. A lower
bound technique is derived from the relationship, that is successful in some cases
where we fail exhibiting an isometric cycle (e.g., grid-like graphs). Namely, in [VS14],
Verbeek and Suri relax the notion of isometric cycles to the one of (weak) quasi-
cycles. Given G = (V,E), a cycle C of length n is an (α, β)-quasi-cycle if for every
u, v ∈ C such that dC(u, v) ≥ βn we have that dG(u, v) ≥ α dC(u, v). Verbeek and
Suri have proved in [VS14] that every graph G has an (α, 1/3)-quasi-cycle of length
Ω(δ(G)), for some constant α independent from δ(G). Therefore, the existence of
large quasi-cycles is a necessary condition for a graph to have a large hyperbolicity.

They proved the condition to be sufficient when α > 1/2. Indeed, an easy
application of the 4-point Condition (Definition 1) shows that in this situation, the
graph has hyperbolicity at least Ω((α− 1/2)n) [VS14].

2.5. Obstructions to hyperbolicity 49

Answering an open question from [VS14], we now prove more cases where the
existence of large quasi-cycles implies a large hyperbolicity. The latter result is a
side contribution of this thesis that has not been published elsewhere.

Lemma 21. For every α ≤ 1, β ≤ 1/3, if G = (V,E) has an (α, β)-quasi-cycle of
length n then δ(G) = Ω

(
α2n

)
.

Proof. We give an illustration of the proof with Figure 2.18. For simplicity, we will
ignore the ceilings in the proof.

u

v P

Q m

Figure 2.18: Proof of Lemma 21.

Let C be an (α, β)-quasi-cycle of length n, which exists by the hypothesis. Let
us pick u, v ∈ C such that dC(u, v) = n/3. We can partition the cycle C into two uv-
paths P,Q of respective length n/3 and 2n/3. In this situation, since C is assumed to
be an (α, β)-quasi-cycle and β ≤ 1/3, we have dG(u, v) ≥ αn/3, and so, P and Q are
(2
α , 0)-almost shortest uv-paths. Then, let m ∈ Q be a middle-vertex, i.e., chosen

such that dC(m,u) = |Q|/2. By the choice of m, dC(m,P) = dC(m,u) = n/3.
Furthermore, since β ≤ 1/3, it implies dG(m,P) ≥ αn/3. However, recall that
in a hyperbolic graph, almost shortest-paths stay close to each other. Precisely,
the Hausdorff distance between P and Q is an O (δ(G)/α) [Shc13b, GdLH90]. In
particular, we have αn/3 ≤ dC(m,P) = O (δ(G)/α). Altogether, δ(G) = Ω

(
α2n

)
.

2.5.2.3 Graph expansion

Other lower-bounds can be deduced from the existence of a core in graphs with small
hyperbolicity3. Namely, we now present lower-bound techniques for hyperbolicity
that are based on graph expansion (defined below). Lower-bounds are more complex
to derive with this technique than with isometric subgraphs and quasi-cycles.

3The following result can also be intuited with another property of hyperbolic graphs, that is
called the exponential divergence of shortest-paths [BH11].

50 Chapter 2. A survey on graph hyperbolicity

The expansion of G = (V,E), sometimes called the Cheeger constant, is the
largest h such that for every subset S with at most |V |/2 vertices, there are at least
h|S| edges of G with one end in S and the other end in V \S. The graphs in a class
G are expander if there exist constants h,∆ such that every G ∈ G has maximum
degree at most ∆ and expansion at least h [HLW06]. The authors in [Ben98, Mal15]
proved that expander graphs are non hyperbolic.

Theorem 22 ([Mal15]). For every h,∆, there exists a constant C∆,h such that
every G = (V,E) with maximum degree at most ∆ and expansion at least h has
hyperbolicity at least C∆,h · log(|V |).

Intuitively, Theorem 22 can be explained as follows. In an expander graph with
diameter D, since the number of vertices is exponential in D, removing a ball of
radius Θ(D) will only remove a sublinear number of vertices, that does not affect
too much the expansion. In particular, the order of magnitude of the diameter stays
Θ(D), and so, the removal of the ball can only increase the distances by at most a
constant-factor. In contrast, in a δ-hyperbolic graph there must be a core, i.e., a
ball of radius O(δ) intersecting the (almost) shortest-paths between half of the pairs
of vertices [CDV16]. By removing a core, one could increase the distances by more
than any fixed constant-factor. This forces the core to have radius Ω(D), and so,
the hyperbolicity of a given expander graph must scale with its diameter.

2.5.2.4 Contribution: Using dismantlable graph powers

Finally, we show how to use the game-theoretic characterization for hyperbolicity
that has been proved in [CCPP14] in order to obtain new non-trivial lower-bounds on
this parameter. New examples of non hyperbolic graph classes will be derived from
these techniques. The results in what follows are joint work with David Coudert.

We refer to Section 2.3.2.2 for the game-theoretic characterization of hyperbol-
icity. Recall that for every j ≥ 1, the jth power of G = (V,E) is the graph Gj that
is obtained from G by adding an edge between every two distinct vertices u, v such
that dG(u, v) ≤ j. If G is δ-hyperbolic for some δ > 0, then by Lemma 8 G has a
(4δ, 4δ)-dismantlable ordering [CCNV11]. The latter is a (classical) dismantling or-
dering for its power G4δ, hence G4δ is a Cop-win graph. Conversely, disproving that
Gj is Cop-win, for some range of j, will give lower-bounds on δ(G). This approach
is used in [CD16a] in order to prove that most underlying graphs of the data center
interconnection networks are non hyperbolic.

We start this section with additional properties of Cop-win graphs. They will
be used in what follows.

Required background. Let us recall that an endomorphism of G = (V,E) is an
edge-preserving mapping σ : V → V .

Lemma 23 ([AF84]). If G = (V,E) is a connected dismantlable graph that is
regular then G is a complete graph.

2.5. Obstructions to hyperbolicity 51

Lemma 24 ([BCF94]). If G = (V,E) is a connected dismantlable graph then it has
the clique invariant property: for every endomorphism σ of G, there is a nonempty
clique C of G such that σ(C) = C.

Next, we present our lower-bound techniques.

New lower-bound techniques. Our contributions are summarized in Proposi-
tions 26 and 25. Given an endomorphism σ of G = (V,E), let the mobility of σ
be defined as minv dG(v, σ(v)). Then, generalizing the terminology of [DRB99], the
weak mobility of G is the largest l such that G has an endomorphism with mobility
l. Note that by Lemma 24, any tree (and more generally, any Cop-win graph) sat-
isfies the clique-invariant property. Since a clique has diameter one, it follows that
any tree (and more generally, any Cop-win graph) has weak mobility at most one.
Based on this observation, we prove in [CD16a] that a large weak mobility implies
a large hyperbolicity. Indeed, a weak mobility at least l can be shown to imply that
no graph power Gl′ , for l′ = O(l), can satisfy the clique-invariant property. As a
result, no such power can be a Cop-win graph by Lemma 24, and so, since G4δ(G)

must be Cop-win by Lemma 8, the latter implies that G must have hyperbolicity
δ(G) = Ω(l). Below, we formalize this intuition.

Proposition 25. If G = (V,E) has weak mobility l ≥ 2 then δ(G) ≥ dl/2e /2.
Proof. We prove that Gl′ is not dismantlable for every 1 ≤ l′ ≤ l − 1. It implies
by Lemma 8 that G is not δ-hyperbolic for any δ < l/4, and so, since δ(G) is
a half-integer, δ(G) ≥ dl/2e /2. Indeed, since G has weak mobility l and every
endomorphism of G is also an endomorphism of Gl′ , the graph power Gl′ has weak
mobility at least dl/l′e ≥ 2. Therefore, Gl′ falsifies the clique invariant property,
hence it is not dismantlable by Lemma 24.

Then, we recall that in a tree, there exists a leaf `, i.e., a vertex of degree one. In
this situation, let p be its unique neighbour. Clearly, every node at distance d > 1

from ` is at distance d − 1 from p. The latter means that for every tree T with
diameter D > 1, its powers T j are not regular for every j < D (because for any ` on
a diametral path, its parent p has at least one more neighbour than `). Following
this intuition, if a given graph G with diameter D has small hyperbolicity δ then
there should exist a small constant j0 = O(δ) such that: for every j0 ≤ j ≤ D−1, its
graph power Gj is not regular. We formalize this intuition below, using Lemma 23.

Proposition 26. Let G = (V,E) and 2 ≤ r ≤ diam(G) be such that Gr−1 is a
regular graph. Then, δ(G) ≥ dr/2e /2.
Proof. Suppose for the sake of contradiction that 4δ(G) < r. In particular, G
is b(r − 1)/2c /2-hyperbolic, and so, by Lemma 8, it has a (2 d(r − 1)/2e , r − 1)∗-
dismantling ordering. The latter ordering is also a (r−1, r−1)∗-dismantling ordering,
hence Gr−1 is Cop-win. However, since Gr−1 is assumed to be regular, it must be a
complete graph by Lemma 23. The latter contradicts that r − 1 < diam(G). As a
result, 4δ(G) ≥ r, as desired.

52 Chapter 2. A survey on graph hyperbolicity

strongly regular

Moore

distance-regulardistance-transitive

symmetric /
arc-transitive

t-transitive

vertex-transitive edge-transitive bitransitive

regular biregular

Cayley zero-symmetric

(if not vertex-transitive)

Figure 2.19: Relationships of inclusion between some graph classes. The rectangles
for non hyperbolic graph classes (in red) are drawn thicker.

Application: non hyperbolic graph classes. We finally present some graph
classes that can be proved to be non hyperbolic by using Propositions 26 and 25.
To the best of our knowledge, these results are new, except for vertex-transitive
graphs (defined below), of which we give a simpler proof they are non hyperbolic
than in [BS12]. Furthermore, relationships of inclusion between the following graph
classes are presented in Figure 2.19.

• We recall that an automorphism is a one-to-one endomorphism, and G = (V,E)

is vertex-transitive if for every u, v ∈ V , there is an automorphism mapping u
to v.

Note that most underlying graphs of data center interconnection networks that
are proposed in the literature are vertex-transitive [AK89].
• A graph G is said to be distance-regular if it is a regular graph such that for

every i, j, k ≥ 0, there is some constant ci,j,k with the property that for every
two vertices u and v at distance i in G, the number of vertices that are simulta-
neously at distance j from u and distance k from v in G is exactly ci,j,k [BH12].
• Moore graphs [Dam73] are a particular case of distance-regular graphs: namely,

2.5. Obstructions to hyperbolicity 53

an n-vertex d-regular graph is a Moore graph if n = 1 + d ·∑D−1
k=0 (d− 1)k, with

D being the diameter of the graph.

Theorem 27. If a graph is vertex-transitive, distance-regular or Moore then it is
non hyperbolic.

Proof. Let G be a vertex-transitive graph. Since an endomorphism of G is also an
endomorphism for every of its powers, it implies that if G is vertex-transitive then
so are all its powers. Hence all the powers of G are regular graphs. Altogether, by
Proposition 26 the hyperbolicity of G is constantly proportional to its diameter.

Similar arguments apply to distance-regular graphs and Moore graphs. Indeed,
if a graph belongs to these classes then all its powers are regular [BH12]. Therefore,
its hyperbolicity is constantly proportional to its diameter.

A bitransitive graph is a bipartite graph such that for every two vertices u, v that
are in the same side of the bipartition, there exists an automorphism mapping u to v.
In the spirit of what is done for the framework presented in Section 2.4.3 (Lemma 17),
let us pick one side of the bipartition and add an edge between every two vertices in
this side that are at distance two. Then, the graph so obtained is vertex-transitive.
This observation allows to prove that the class of bitransitive graphs, and so, the
related classes of edge-transitive and nonedge-transitive graphs [GR13] are also non
hyperbolic.

Refinements of Proposition 26 can lead to sharper lower-bounds on the hyper-
bolicity (but under stronger assomptions). In Table 2.2, we report on some results
obtained with our lower-bound techniques (detailed in [CD16a]). For every graph
in the table, the values of the diameter and the hyperbolicity are compared, with
the two values only differing by at most a constant-factor in most cases. All these
results are mainly obtained with Propositions 25 and 26, or some of their variations
that are proved in [CD16a]. However, we also report on the hyperbolicity of grid-like
graphs, on which these lower-bound techniques do not apply. We managed to obtain
the exact value for the hyperbolicity of these graphs through a deeper analysis of
their shortest-path distribution.

2.5.3 Open problems

So far, there are few reported lower-bounds on graph hyperbolicity. Finding new
lower-bounds is an important open problem, that would improve our understanding
of this parameter and could also help improving its computation. A related open
problem is to prove some new lower-bounds on the hyperbolicity of random graph
classes, such as Barabási-Albert random graphs and random geometric graphs in
the Hyperbolic plane [KPK+10]4.

4Note that there exist duality results between these two random models [FCM14].

54 Chapter 2. A survey on graph hyperbolicity

N
am

e
D
eg
re
e
m
ax

.
D
ia
m
et
er

O
rd
er

δ

de
B
ru
ijn

gr
ap

h,
U
B

(d
,D

)
2
d

D
d
D

1 2

⌊ D 2

⌋ ≤
δ
≤
⌊ D 2

⌋

K
au

tz
gr
ap

h,
U
K

(d
,D

)
2
d

D
d
D

(d
+

1
)

⌊ D 4

⌋ +
ε
≤
δ
≤
⌊ D 2

⌋ ,
ε
∈
{0
,1
}

Sh
uffl

e
ex
ch
an

ge
,S
E

(n
)

3
2n
−

1
2
n

1 2

⌊ n 2

⌋ ≤
δ
≤
n
−

1

(n
,m

)-
gr
id

4
n

+
m
−

2
n
m

m
in
{n
,m
}−

1

d
-d
im

en
si
on

al
gr
id

of
si
ze
s

2
d

d
(s
−

1)
sd

(s
−

1)
⌊ d 2

⌋

T
ri
an

gu
la
r

(n
,m

)-
gr
id

6
n

+
m
−

2
n
m

m
in
{n
,m
}−

1
2

H
ex
ag

on
al

(n
,m

)-
gr
id

6

{
n
−

1
+
⌈ m
−

1
2

⌉
w
he

n
m
≤

2n
−

1

m
−

1
ot
he

rw
is
e

n
m

m
in
{n
,m
}−

1
2

T
or
us

(n
,m

)-
gr
id

4
⌊ n 2

⌋ +
⌊ m 2

⌋
n
m

⌊ 1 2

(⌊
n 2

⌋ +
⌊ m 2

⌋)
⌋ −

1
≤
δ
≤
⌊ 1 2

(⌊
n 2

⌋ +
⌊ m 2

⌋)
⌋

G
en

.
hy

pe
rc
ub

e,
G

(m
1
,.
..
,m

r
)

∑
r i=

1
m
i
−
r

r
∏
r i=

1
m
i

⌊ r 2

⌋

C
ub

e
C
on

ne
ct
ed

C
yc
le
,C

C
C

(n
)

3
2
n
−

2
+

m
ax
{ 2,
⌊ n 2

⌋}
n

2
n

n
≤
δ
≤
n
−

1
+

⌊ m
a
x
{2
, bn

2
c}

2

⌋

B
C

u
b

e k
(n

)
m

ax
{n
,k

+
1
}

2(
k

+
1)

n
k
(n

+
k

+
1)

k
+

1

F
at

-T
re

e k
k

6
k
2 4
(k

+
5)

2

B
ut
te
rfl
y
gr
ap

h,
B
F

(n
)

4
2n

2n
(n

+
1)

n

k
-a
ry
n
-fl
y

2
k

2n
k
n
(n

+
1
)

n

k
-a
ry
n
-t
re
e

3
k

2n
k
n
−

1
(n

+
k
)

n
−

1

B
ub

bl
e-
so
rt

gr
ap

h,
B
S

(n
)

n
−

1
(n 2

)
n

!
⌊ n

(n
−

1
)

4

⌋

T
ra
ns
po

si
ti
on

gr
ap

h,
T

(n
)

(n 2

)
n
−

1
n

!
1 2

⌊ n
−

1
2

⌋ ≤
δ
≤
⌊ n
−

1
2

⌋

St
ar

gr
ap

h,
S

(n
)

n
−

1
⌊ 3

(n
−

1
)

2

⌋
n

!
⌊ 1 2

⌊ 3
(n
−

1
)

2

⌋ −
1 2

⌋
≤
δ
≤
⌊ 1 2

⌊ 3
(n
−

1
)

2

⌋⌋

Table 2.2: Bounds and exact value of the hyperbolicity of some graph
classes [CD16a].

2.6. On computing the hyperbolicity of graphs 55

2.6 On computing the hyperbolicity of graphs

The remaining of this chapter is devoted to algorithmic and complexity problems.
In particular, computational aspects of hyperbolicity will be covered in this section,
thereby fulfilling our second main objective in the study of this parameter.

Motivations for an efficient computation of hyperbolicity are: to help charac-
terizing the hyperbolic graph classes, or to measure the quality of approximations
obtained with some graph heuristics (the latter will be further dicussed in Sec-
tion 2.7) [VS14, CDE+08, CE07, EKS16, KL06, DKMY15].

By using the 4-point Condition (Definition 1), it is easy to see that the hyper-
bolicity of a given n-vertex graph can be computed in Θ(n4)-time. However, this
too simple approach is prohibitive on large graphs, even when we use massively
parallelization [ASHM13]. In what follows, improved algorithms for computing or
approximating graph hyperbolicity will be sketched, with an emphasis on my per-
sonal contribution in this topic.

Note that we will only consider finite graphs in this section. Computing the
hyperbolicity of infinite graphs is highly nontrivial. However, surprisingly, there
exists a simple (approximation) partial algorithm for computing the hyperbolicity
of the graph representations of finitely generated groups [Pap96].

Outline of the section. The best known algorithms for computing graph hyper-
bolicity are collected in Section 2.6.1. We sketch their basic principles and their
limitations. Then, the next two Sections 2.6.2 and 2.6.3 are mostly centered on the
contributions of this thesis.

In particular, the design and the analysis of some preprocessing methods for the
computation of hyperbolicity are presented in Section 2.6.2. This part is largely
devoted to personal contributions on the study of the relationships between the
hyperbolicity of a graph and the maximum hyperbolicity from its atoms— a.k.a., the
subgraphs resulting from its decomposition by clique-minimal separators [BPS10]
(Section 2.6.2.2). As a side contribution, I will also present a short analysis of
the heuristic from [KNS13] (Section 2.6.2.1). Finally, conditional lower-bounds on
the time complexity for computing graph hyperbolicity will be also mentioned in
Section 2.6.3, including one of my own invention.

This is joint work with Nathann Cohen, David Coudert and Aurélien Lancin.

2.6.1 Related work

In this subsection, a state of the art on exact and approximate algorithms for com-
puting the hyperbolicity of a graph is presented. We also comment on the limitations
of these algorithms. In what follows, exact algorithms will be presented first (Sec-
tion 2.6.1.1), then the approximation algorithms will be introduced by increasing
approximation factor (Section 2.6.1.2).

56 Chapter 2. A survey on graph hyperbolicity

2.6.1.1 Exact algorithms

Best known algorithm. The best known algorithm for computing the hyperbol-
icity runs inO(n3.69)-time [FIV15]. It relates the computation of graph hyperbolicity
with a variation of matrix multiplication.

Indeed, recall (Definition 3) that G = (V,E) is δ-hyperbolic if and only if we
have for every u, v, x, y that 〈u, v〉x ≥ min{〈u, y〉x, 〈y, v〉x}− δ, where 〈·, ·〉x denotes
the Gromov product with base vertex x. In particular, let Mx be the n× n matrix
such thatMx[u, v] = 〈u, v〉x for every u, v ∈ V . The (max,min)-product ofMx with
itself is an n× n matrix denoted by Mx ⊗Mx such that for every u, v ∈ V ,

(Mx ⊗Mx)[u, v] = max
y∈V

min{Mx[u, y],Mx[y, v]} = max
y∈V

min{〈u, y〉x, 〈y, v〉x}.

By Definition 3, G is δ-hyperbolic if and only if for every x ∈ V , all entries in
Mx⊗Mx−Mx are lower than or equal to δ. Therefore, δ(G) can be computed with
n computations of (max,min)-products.

Combinatorial algorithms. One drawback of the above algorithm is that it uses
as a subroutine the best known algorithm for computing the (classical) matrix mul-
tiplication [DP09]. This algorithm requires quadratic-space and its time complexity
O(n2.3729) hides a large constant-factor [LG14]. So, in order to compute hyperbol-
icity in practice on real-life graphs, combinatorial algorithms should be preferred.

In [CCL15], Cohen et al. base on the following simple, but elegant observation.

Lemma 28 ([CCL15]). Let G = (V,E) and u, v, x, y ∈ V be such that
d(u, v) + d(x, y) ≥ max{d(u, x) + d(v, y), d(u, y) + d(v, x)}. Then, δ(u, v, x, y) ≤
min{d(u, v), d(x, y)}/2.

The latter lemma gives a simple “cut-rule” in order to avoid considering all
possible 4-tuples. Indeed, let us consider the 4-tuples u, v, x, y of G = (V,E) by non
increasing value of d(u, v) + d(x, y). A lower-bound δ∗ on the hyperbolicity δ(G) is
maintained. By Lemma 28, every time the lower-bound improves, all 4-tuples such
that min{d(u, v), d(x, y)} ≤ 2δ∗ can be discarded. While this algorithm still runs in
O(n4)-time, experiments have shown that it is much faster in practice.

Since then, additional cut-rules have been introduced in [BCCM15], which fur-
ther speed-up the practical computation of hyperbolicity. So far, the hyperbolicity
of graphs with tens of thousands of nodes can be computed within a reasonable
amount of time. The true limitation of the algorithm comes from the storage in
quadratic space of the distance matrix.

2.6.1.2 Approximation algorithms

Then, we report on the few existing approximation algorithms for computing hyper-
bolicity. The main message here is that these algorithms either have a large approx-
imation factor (sometimes non constant) or they require the challenging best-known
algorithm for computing matrix multiplication as a subroutine.

2.6. On computing the hyperbolicity of graphs 57

Using (max,min)-product. The simplest of these approximation algorithms re-
duces to the problem Hyperbolicity with fixed Base vertex: given G =

(V,E) and x ∈ V , compute δx(G) = maxu,v,y∈V (min{〈u, y〉x, 〈y, v〉x} − 〈u, v〉x).
Note that δ(G) = maxx∈V δx(G). Furthermore, it can be proved using the trian-
gular inequality that for every fixed x ∈ V , we have δx(G) ≥ δ(G)/2 [Gro87]. As
a result, solving the problem Hyperbolicity with fixed Base vertex gives a
2-approximation for computing hyperbolicity, and it can be done in O(n2.69)-time
by using the above-mentioned relationship with (max,min)-product [FIV15].

More recently, Duan has proved that the (max,min)-product can be computed
faster when all entries in the matrices are bounded. Based on this result, he has
described (1 + ε)-approximation algorithms for computing graph hyperbolicity, for
every ε ≥ 0 [Dua14].

Using Cop and Robber games. Another constant-factor approximation algo-
rithm for computing this parameter was proposed in [CCPP14]. Roughly, given the
distance-matrix of the graph (it can be precomputed in O(min{nm, n2.3729})-time)
this algorithm computes in O(n2)-time the smallest r such that the input graph
has a (4r, 3r)∗-dismantling ordering. Altogether combined with the game-theoretic
definition of hyperbolicity (Definition 7), the value gotten for r differs from the
hyperbolicity by at most an (unfortunately large) constant-factor.

Using Tree embeddings. Finally, another approach for approximating the hy-
perbolicity is based on the relationships between this parameter and tree embed-
dings. Precisely, every δ-hyperbolic graph can be embedded into a tree with additive
distortion of the distances at most 2δ log n [Gro87] (that will be further discussed
in Section 2.7). In [FIV15], Fournier et al. notice that computing this tree embed-
ding does not require the knowledge of the hyperbolicity. Therefore, an O(log n)-
approximation algorithm for computing the hyperbolicity of a graph can be obtained
in Õ(n2)-time by computing this tree embedding, and then the resulting distortion
of the distances in the tree5.

2.6.2 Contribution of this thesis: Preprocessing

In order to overcome the current limitations for computing graph hyperbolicity
(sketched above), it looks natural to seek for preprocessing methods, that aim at
decreasing the size of the input and, possibly, at simplifying its structure. My main
contribution in the field is the design and the analysis of some of these methods. I
will first sketch a short analysis of the heuristic from [KNS13], before presenting my
work on graph decompositions.

5The time complexity of this algorithm was proved in [FIV15]. However, the authors in [FIV15]
assume that the distance matrix is given as input. We explain in [CD14] how to obtain the same
time complexity for graphs encoded as adjacency lists.

58 Chapter 2. A survey on graph hyperbolicity

2.6.2.1 Reducing the size of the graph by contracting matchings

In order to make tractable the approximate computation of hyperbolicity on large
graphs, the authors in [KNS13] present a simple renormalization process. Put in
more graph-theoretic terms, their process pick a maximal matching of the graph
and then contract its edges. By doing so, the number of vertices is decreased by
half. They repeat the process until the size of the graph is judged small enough in
order to compute its hyperbolicity.

In what follows, we analyze the quality of this above heuristic for computing
hyperbolicity. In order to do so, the hyperbolicity of a given graph G is compared
with the hyperbolicity of its contraction minors (graphs obtained by contracting
some edges of G), that is a study of independent interest.

Contraction minors and hyperbolicity. Although the distances in a graph
cannot increase when we contract an edge, it turns out that, surprisingly, the hy-
perbolicity can do so. For instance, a cycle C5 of length five is 1/2-hyperbolic,
but contracting any one of its edges results in a cycle C4 of length four, that is an
1-hyperbolic graph.

More generally, the following result is a side contribution of this thesis.

Lemma 29. For every δ-hyperbolic n-vertex graph G, every contraction minor of
G is O(δ log n)-hyperbolic and this upper-bound is sharp.

Proof. The upper-bound can be established by using the relationships between hy-
perbolicity and another tree-likeness parameter called treelength (see Section 2.4.1).
Indeed, if G is a δ-hyperbolic n-vertex graph then it has treelength at least δ and
at most 2δ log n + 1 [AAD16]. The treelength is a contraction closed parameter.
Therefore, every contraction minor of G must have hyperbolicity O(δ log n). The
main difficulty is to prove the sharpness of the upper-bound.

In Figure 2.20, we illustrate this worst-case scenario with a ringed tree RT (k)

(previously introduced in Section 2.4.1). Note that this graph has n = 2O(k) vertices,
and in addition we have δ(RT (k)) ≤ 3 by Lemma 126. So, every contraction minor of
this ringed tree is O(k)-hyperbolic. We aim at proving the existence of a contraction
minor of RT (k) with hyperbolicity Ω(k). the gist of the construction is to show
that RT (k) has a contraction minor H with a large induced (cylindrical) grid of
dimensions Ω(k) × Ω(k). It can be constructed by fixing some level ` = Θ(k) and
then contracting on the cycles in each lower level the consecutive nodes with a
common ancestor at level ` (i.e., see Figure 2.20). Furthermore, since the graph
is planar, it can be obtained an isometric (square) grid of comparable dimensions
Ω(k) × Ω(k) by removing one third of the rows and one third of the columns on
the borders. We recall that a grid of dimensions Ω(k) × Ω(k) has hyperbolicity
Ω(k) [WZ11]. Altogether combined, this contraction minor H has hyperbolicity
Ω(k), as desired.

6This value of the hyperbolicity can be increased to some constant Θ(δ) for every δ > 0 by
taking a uniform subdivision of RT (k).

2.6. On computing the hyperbolicity of graphs 59

Figure 2.20: Construction of a cylindrical grid in RT (k). We fix some level ` = Θ(k)

and then we contract on each lower level the nodes with a common ancestor at level
`. Paths contracted to a single node are delimited with thicker nodes.

Variations of hyperbolicity under one renormalization. The edge contrac-
tions in the renormalization process of [KNS13] are more controlled. Indeed, they
must induce a matching. In this situation, let ϕ : V (G)→ V (Ĝ) map every vertex
of G to the corresponding vertex to which it has been contracted in the renor-
malized graph Ĝ. We have that bdG(u, v)/2c ≤ dĜ(ϕ(u), ϕ(v)) ≤ dG(u, v) for
every u, v ∈ V (G). So, it follows from the preservation of hyperbolicity under
quasi-isometry [Shc13b, GdLH90] that δ(Ĝ) = Θ(δ(G)). The above Θ notation
hides a large constant-factor that may be improved with a more in-depth analysis.
Nonetheless, what can be shown is that there exist infinitely many graphs G such
that δ(G) ≥ 4δ(Ĝ). We illustrate this fact with Figure 2.21.

To summarize, it is my opinion that the confidence interval that is provided by
the renormalization process is too large to give good estimates of graph hyperbolicity.

2.6.2.2 Relationship between clique-decomposition and hyperbolicity

Contrary to Section 2.6.2.1, the approach in this part rather consists in bounding
the hyperbolicity of a given graph from the computation of the hyperbolicity of
some of its subgraphs. Equivalently, given a decomposition of G = (V,E) into some
of its subgraphs, it is studied whether we can upper and lower bound δ(G) by using

60 Chapter 2. A survey on graph hyperbolicity

(a) The square grid with side length n is
(n− 1)-hyperbolic.

(b) The renormalized square grid is (n −
1)/4-hyperbolic.

Figure 2.21: Renormalization process on a Square grid. The edges contracted are
drawn in thick red. Roughly, it gives a Hexagonal grid with twice less columns. Since
the hyperbolicity of a Rectangular grid is twice larger than the hyperbolicity of a
Hexagonal grid with same dimensions [CD16a], it shows that the renormalization
process divides the hyperbolicity of a square grid by four.

the maximum hyperbolicity from the subgraphs. Let us motivate this approach and
present existing results.

On the one hand, when G is “prime” (undecomposable w.r.t. the decomposition
process), the input cannot be split, and so, we don’t decrease the size of the input
either. On the other hand, it happens that many interesting classes of real-life graphs
are not prime. Furthermore, in all cases we gain more insights on the structure of
the input.

Let us outline interesting byproducts of this decomposition approach:
• when every graph in a given class can be decomposed in “trivial” subgraphs, the

class is proved to be constantly hyperbolic;
• for some other graph classes, the decomposition is a first step toward an efficient

computation of the hyperbolicity in this class of graphs.

Related work. Of course, we need some structure on the graph decomposition
in order to be able to prove something. Soto [SG11] has proved that two well-
known graph decompositions can be used as a preprocessing step for computing
graph hyperbolicity. Namely, these are the modular decomposition [Gal67] and its
generalization the split-decomposition [Cun82] where informally, the graph is dis-
connected by using some edge-cutsets inducing a complete bipartite subgraph. More
precisely, the hyperbolicity of a given graph is equal to the maximum hyperbolicity
taken from the subgraphs output by these decompositions.

2.6. On computing the hyperbolicity of graphs 61

Figure 2.22: Clique-decomposition of a graph in five atoms. A 4-tuple with hyper-
bolicity 1 is drawn in bold.

Our main result. In a joint work with Nathann Cohen, David Coudert
and Aurélien Lancin [CCDL17], we have proved similar results for the clique-
decomposition [BPS10]. Given G = (V,E), an atom of G is any subset A ⊆ V

such that there is no clique-separator in G[A] and A is inclusion wise maximal w.r.t.
this property. The clique-decomposition of G is the collection of its atoms. See
Figure 2.22 for an example. It can be computed in O(|V ||E|)-time.

Theorem 30. Given G = (V,E), let A1, . . . , Ak be its atoms. Then,
maxi δ(G[Ai]) ≤ δ(G) ≤ maxi δ(G[Ai]) + 1 and the bounds are sharp.

Below, we detail further the proof of Theorem 30. It is based on two ingredients.
The first is that disconnecting the graph with a separator of small diameter D can
change the value of the hyperbolicity by at most an additive term D/2. This part
requires a tedious analysis of the different types of 4-tuples in the graph in order to
be proved.

Lemma 31 ([SG11]). Given G = (V,E), let X ⊆ V be such that G[X] is isometric
and has diameter at most D. Then, let C1, . . . , Ck be the connected components of
G \X, we have:

max
1≤i≤k

δ(G[Ci ∪X]) ≤ δ(G) ≤ max{D/2, max
1≤i≤k

δ(G[Ci ∪X])}+D/2.

In [CCDL17], we give a proof of this result in the case of clique-separator (D ≤ 1).
Note that G[X] must be isometric in order to ensure that the resulting subgraphs
G[Ci ∪X] are also isometric. Indeed, we recall that the hyperbolicity is not stable
under taking induced subgraphs. However, we observe that when X is a clique-
separator, the requirement for G[X] to be isometric is always satisfied.

By Lemma 31, if we disconnect the graph with a small diameter separator then
we can approximate the hyperbolicity up to an additive term. Unfortunately, these
additive errors can add up when we further decompose the graph. We prove it is the
case even for separators of diameter at most two [CCDL17]. However, in the special
case of clique-separators, we can bound the final additive error with the following
lemma.

62 Chapter 2. A survey on graph hyperbolicity

Lemma 32. Given G = (V,E), let u, v, x, y ∈ V satisfy δ(u, v, x, y) ≥ 3/2. There
exists an atom A0 intersecting all the paths between any two vertices of the 4-tuple.

Proof. Let (T,X) be a tree decomposition of G whose bags are the atoms of G.
Such a tree decomposition was proved to exist in [BPS14]. In order to prove the
lemma, it suffices to find an atom A0 such that there is no more than one vertex of
the 4-tuple u, v, x, y in each component of G \ A0. We shall find an atom A0 with
the weaker property that no more than two vertices among {u, v, x, y} \ A0 are in
the same connected component of G \ A0. Then, we will prove that in fact, there
is no more than one vertex of the 4-tuple in each component, by elaborating on the
property that δ(u, v, x, y) ≥ 3/2. First, in order to find the desired atom, we will
weight the bags of X (we will then choose the atom A0 in the weighted centroid of
T).

Precisely, for every of u, v, x, y we pick an atom which contains it and we define
the weight of an atom as the number of times it has been picked. In particular, an
atom has weight between 0 and 4, and the sum of weight of the atoms is equal to
W = 4. It is well-known that for any node-weighted tree with sum of weights W,
there is a node whose removal splits the tree into connected components where the
sum of weight of the nodes is at most W/2 [Gol71]. So, let A0 be an atom of G
such that no component of T \ {A0} has the sum of weight of its bags greater than
2. We claim that ∀s ∈ {u, v, x, y}\A0, there is a clique-separator Xs ⊆ A0 which
separates s from {u, v, x, y} \ {s}, that will prove the lemma.

Indeed, let s ∈ {u, v, x, y}\A0 be arbitrary. By the properties of a tree decom-
position, Ts (induced by the atoms containing s) is the subtree of a component Cs
of T \ {A0}. Let Vs ⊆ V be the subset of vertices that are contained in an atom
in Cs, and let As ∈ Cs be the atom that is adjacent to A0 in T . Since As and A0

are atoms of G, their intersection, denoted by Xs = As ∩ A0, is a clique [BPS10].
Furthermore, by the properties of a tree decomposition, Xs is a is a separator of
G that disconnects Vs from V \ Vs. Therefore, we are left to prove that no vertex
of {u, v, x, y} \ {s} is in Vs, for the latter will prove that Xs is a clique-separator
which separates s from {u, v, x, y} \ {s}. Assume for the sake of contradiction the
existence of a vertex t ∈ {u, v, x, y} \ {s} that is contained in Vs. We distinguish
between two cases.
• Suppose that t /∈ Xs. In this situation, Ts, Tt are subtrees of Cs. It implies that

the sum of weight of the atoms in Cs is at least 2, and so, by the choice of atom
A0, it is equal to 2. In particular, s and t are the only two vertices of the 4-tuple
that are in Vs \Xs (else, the sum of weight of the atoms in Cs should be at least
3). However, we prove in [CCDL17] that in this situation, δ(u, v, x, y) ≤ 1, that
contradicts the hypothesis that δ(u, v, x, y) ≥ 3/2. This part of the analysis
makes use of our proof of Lemma 31 for the case of clique-separators.
• Else, t ∈ Xs and we can assume w.l.o.g. that no vertex of {u, v, x, y} \ {s} is in
Vs \Xs (else, we go back to the previous case). However, we prove in [CCDL17],
as before, that in this situation, δ(u, v, x, y) ≤ 1, that again contradicts the
hypothesis that δ(u, v, x, y) ≥ 3/2.

2.6. On computing the hyperbolicity of graphs 63

As a result, no vertex of {u, v, x, y} \ {s} is in Vs, and so, Xs is a clique-separator
which separates s from {u, v, x, y} \ {s}. Since Xs ⊆ A0, the latter proves the claim
on A0, hence the lemma.

The gist of Lemma 32 is that the atoms of G = (V,E) are the bags of a tree
decomposition of G (this will be further discussed in the next chapter on tree de-
compositions). We use it in [CCDL17] in order to prove that the hyperbolicity of
any 4-tuple with large hyperbolicity is at most one unit off from the hyperbolicity
of a given atom, and so, Theorem 30 holds.

Further applications of clique-decompositions. On the way to prove Theo-
rem 30, we were able to (partly) characterize the cases where the hyperbolicity of a
graph cannot be deduced from its clique-decomposition directly. We leverage from
this characterization the following result:

Theorem 33. Given G = (V,E), let A1, A2, . . . Ak be its atoms. In O(|V ||E|)-time,
we can compute G∗1, . . . , G

∗
k such that:

• each G∗i is obtained from G[Ai] by adding simplicial vertices;

• and if δ(G) ≥ 1 then δ(G) = max{1} ∪ {δ(G∗i) | 1 ≤ i ≤ k}.

The above preprocessing method has been successfully applied on large co-
authorship graph in order to compute their hyperbolicity. On a more theoretical
side, we have used it in order to improve the computation of hyperbolicity for out-
erplanar graphs, a.k.a. the graphs whose atoms are cycles [Sys79]:

Theorem 34. If G = (V,E) is outerplanar then δ(G) can be computed in O(|V |)-
time.

In order to prove Theorem 34, we have established a simple characterization of
outerplanar graphs with hyperbolicity strictly less than one. More precisely, this
characterization is based on the property that every induced cycle in an outerplanar
graph is isometric [Sys79]. In particular, since every cycle of length at least six
has hyperbolicity at least one [WZ11], every outerplanar 1/2-hyperbolic graph is
5-chordal. So, we obtain our characterization of outerplanar 1/2-hyperbolic graphs
as a particular case of the characterization in [WZ11] of 1/2-hyperbolic 5-chordal
graphs.

Then, for outerplanar graphs with hyperbolicity at least one, we have refined
the results of Theorem 33. In particular, since the atoms of outerplanar graphs
are cycles, the graphs G∗1, . . . , G∗k output by the preprocessing method have a very
simple structure (they are obtained from a cycle by adding, for every edge e in the
cycle, at most one simplicial vertex that is adjacent to the two ends of e). So, their
hyperbolicity can be derived from the hyperbolicity of cycles and additional parity
conditions. Details can be found in our report [CCDL17].

64 Chapter 2. A survey on graph hyperbolicity

Final remark: combining many decompositions. It may be the case that
the atoms can be further split or reduced, using another graph decomposition. For
instance, a graph is EPT if it is the edge intersection graph of paths in a tree [GJ85].
The atoms of an EPT graph are line graphs [Tar85]. So, we can replace each atom
with its root (the graph of which it is the line graph), and we have by Theorem 19
that it does not affect their hyperbolicity by more than an additive term. Further-
more, computing the root of each atom can be done in linear time [Leh74].

Then, the roots of the atoms may be further decomposable using modular, split
or clique decomposition, etc. If the root is prime under all these decompositions
but it is a bipartite graph, we may still decrease its size by half as follows. We take
the smaller side of its bipartition and we add an edge between every two vertices
at distance two in the root. By Lemma 17, the hyperbolicity of the gotten graph is
roughly half of the hyperbolicity of the root.

2.6.3 Hardness results

In the previous Section 2.6.2, we show that the computation of hyperbolicity (exact
or approximate) can be sped up on certain graph classes by using graph decompo-
sitions. This approach does not extend to general graphs. So, a complementary
approach is to prove, or show strong evidence of, lower-bounds on the complex-
ity of computing this parameter. In this section, conditional lower-bounds on this
complexity are presented, with an emphasis on a reduction from the Quadrangle
Detection problem, that is part of my contributions.

2.6.3.1 Related work

As a warm-up, we recall that the problem Hyperbolicity with fixed Base ver-
tex can be reduced in quadratic-time to the computation of a (max,min)-product
between two matrices. In [FIV15], the authors prove that a converse reduction
also holds true: if Hyperbolicity with fixed Base vertex can be solved in
O(nυ)-time on n-vertex graphs then the (max,min)-product of two n × n matri-
ces can be computed in O(n2+υ/3 log n)-time. In particular, any O(n2.05)-time
algorithm for solving Hyperbolicity with fixed Base vertex would imme-
diately improve the best-known algorithms for (max,min)-product. These relation-
ships suggest a strong equivalence between the computation of hyperbolicity and
the (max,min)-product, that resembles the existing ones between all-pairs-shortest-
paths and (min,+)-product [FM71].

SETH-hardness. More recently, several authors have proved conditional lower-
bounds on the complexity of polynomial-time problems on graphs under the Strong
Exponential Time Hypothesis (SETH) [Wil16]. Roughly, the hypothesis says that
SAT cannot be solved in 2(1−ε)n-time for any ε > 0 [IPZ98]. Under SETH it has been
proved that computing the diameter of a graph cannot be done in truly subquadratic-
time, even on sparse graphs; that is, it cannot be computed in O(n2−ε)-time for any

2.6. On computing the hyperbolicity of graphs 65

ε > 0 [BCH16]. The authors in [BCH16] have used this result in order to prove
conditional lower-bounds on the complexity of computing the hyperbolicity of a
graph:

Theorem 35 ([BCH16]). Under SETH, none of the following problems can be
solved in truly subquadratic time, even on sparse graphs:
• computing the hyperbolicity of a given graph;
• deciding whether a given graph has hyperbolicity at most one.

A similar but weaker result was proved by Fang in [Fan11].

2.6.3.2 Contribution of this thesis: Truly subcubic reduction to Quad-
rangle Detection

The concept of q-reduction was introduced by Williams and Vassilevska Williams
in [VWW10]. Informally, if there is a q-reduction from a problem A to a problem
B, and B can be solved in Õ(nq−η)-time7 for some η > 0, then problem A can be
solved in Õ(nq−ε)-time for some other ε > 0. More formally, a Turing reduction
from a problem A to a problem B is an algorithm to solve A using an oracle to solve
B as a soubroutine. It is called a q-reduction if for every η > 0 there exists ε such
that the following holds for every input of size n:
• the reduction runs in Õ(nq−ε)-time;
• and if the oracle to solve problem B is called on instances with respective sizes
n1, n2, . . . , nk then

∑k
i=1 Õ(nq−ηi) = Õ(nq−ε).

This concept formalizes prior work from, e.g., [GO95, KS06a].
Two problems are called subcubic equivalent if every of the two problems can

be 3-reduced to the other. In this situation, either both problems are solvable in
truly subcubic time, or none of them is. My main contribution in [CD14], found
with David Coudert, can be stated as follows.

Theorem 36. The two following problems are subcubic equivalent:
• deciding whether a graph has hyperbolicity equal to 1/2;
• deciding whether a graph contains an induced cycle of length four.

Furthermore, both problems can be solved in deterministic O(n3.26)-time and in ran-
domized Õ(n2.3729)-time.

Theorem 36 shows a surprising gap in the complexity of recognizing graphs with
small hyperbolicity. Indeed, it has been proved in [How79] that the 0-hyperbolic
graphs can be recognized in linear time. In contrast, recognizing 1/2-hyperbolic
graphs in (deterministic) truly subcubic time seems to be a much harder task.

A reduction from Quadrangle detection to the recognition of 1/2-hyperbolic
graphs has been sketched in earlier papers [KM02, WZ11]. So, the main diffi-
culty was to show the converse reduction. Our proof for Theorem 36 makes use

7The Õ notation suppresses the polylog factors.

66 Chapter 2. A survey on graph hyperbolicity

of a (non algorithmic) characterization of 1/2-hyperbolic graphs from Bandelt and
Chepoi [BC03]. On the way to prove our result, we have established the following
simpler characterization for these graphs. We recall that for every G = (V,E) and
j ≥ 1, the graph power Gj is obtained from G by adding an edge between every two
distinct vertices that are at distance at most j in G.

Definition 37. For every G = (V,E), the graph G[2] = (V [2], E[2]) is defined as
follows:

• V [2] ' V × {0, 1};
• G[V × {0}] ' G;

• G[V × {1}] ' G3;

• and for every u, v ∈ V , the vertices (u, 0) and (v, 1) are adjacent in G[2] if and
only if dG(u, v) ≤ 2. In particular, for every u ∈ V , there is an edge between
(u, 0) and (u, 1) in G[2].

G G3

Edges of G2 + pseudo-
loops {(u, 0), (u, 1)}

Figure 2.23: The graph G[2].

We refer to Figure 2.23 for an illustration. Intuitively, the graph G[2] can be
seen as an intermediate power between the square and the cube of G. Our charac-
terization of 1/2-hyperbolic graphs can now be stated as follows.

Theorem 38. G = (V,E) is 1/2-hyperbolic if and only if none of the graphs Gj , j ≥
1 and G[2] contain an induced cycle of length four.

By Theorem 38, it can be decided whether G = (V,E) is 1/2-hyperbolic with
diam(G) calls to an oracle solving Quadrangle detection – given as inputs
G[2] and G,G2, G3, . . . , Gdiam(G)−1. If we precompute, in truly subcubic time, a
polylogarithmic-factor approximation for hyperbolicity then this number of calls
can be reduced to logO(1)(|V |+ |E|) (because some powers of G can be discarded),
and we so obtain a subcubic reduction from the recognition of 1/2-hyperbolic graphs
to Quadrangle detection.

2.7. Algorithmic applications 67

Discussion. As said earlier in this subsection, the authors in [BCH16] show that
under SETH, graph hyperbolicity cannot be computed in truly subquadratic time.
In contrast, it is proved with Theorem 36 that the weaker task of recognizing 1/2-
hyperbolic graphs is equivalent to the Quadrangle Detection problem. The
latter problem can be solved in O(m2)-time on m-edge graphs, and so, in quadratic
time on sparse graphs. However, no truly subquadratic deterministic algorithm is
known to exist, even for sparse graphs. In [VWWWY15], Vassilevska Williams et
al. describe an O(m1.41)-time randomized algorithm for Quadrangle Detection,
but it is not combinatorial (i.e., it calls matrix multiplication as a subroutine). In
order to reinforce this view, we note that there is a linear time reduction from
Triangle Detection to Quadrangle Detection [FKLL15], and so, to the
problem of computing graph hyperbolicity. It is conjectured that there does not
exist any truly subcubic combinatorial algorithm for Triangle Detection on
general graphs [Wil16].

2.7 Algorithmic applications

Finally, this section covers more technical applications of hyperbolicity, in the field of
graph algorithms. The previous sections can help the reader to have better insights
on the (hyperbolic) graph classes on which these algorithmic results apply, and the
(non hyperbolic) graph classes on which they do not apply. Note that this section
is not part of the contributions of this thesis. However, I will highlight on the way
some open questions on which I am interested to work.

The hyperbolicity has been used recently for the analysis of graph algorithms.
Indeed, it is the idea that when the hyperbolicity is small, there are some hard prob-
lems on graphs that can be efficiently approximated. In what follows, we outline
some interesting algorithmic properties that are enjoyed by constantly hyperbolic
graphs. Note that in some cases, the algorithms that are presented in this section
keep some interest even for more general hyperbolic graph classes (say, polyloga-
rithmically hyperbolic).

Outline of the section. The first parts of this section (Sections 2.7.1 and 2.7.2)
cover distance-related problems in graphs. In Section 2.7.1, we survey applications
of hyperbolicity in the analysis of approximate distance oracles. These results are
mainly based on the relationships between hyperbolicity and the best possible distor-
tion of the distances in a graph when it is embedded into a “tree-like” metric space.
Perspectives for improving upon these relationships, and for refining the proposed
constructions, will be discussed. Then, in the continuity of Section 2.7.1, we will
cover in Section 2.7.2 some applications of hyperbolicity to graph clustering prob-
lems. The techniques presented leave space for promising extensions to a broader
family of graph problems, that will be further examined. Finally, we will end the
section with algorithmic applications of hyperbolicity to some problems in structural
graph theory (Sections 2.7.3 and 2.7.4). Section 2.7.3 is devoted to a PTAS for the

68 Chapter 2. A survey on graph hyperbolicity

Traveling Salesman Problem in hyperbolic graphs with bounded degree. This
algorithm is based on new separability results in hyperbolic graphs, that I think
could be useful in other graph problems. Last, constructive relationships between
hyperbolicity and vertex expansion are presented in Section 2.7.4. I think that these
relationships can be helpful in the design of approximation algorithms for computing
the treewidth in hyperbolic graphs with bounded degree.

2.7.1 Distance approximations

This section surveys the known results on the relationship between hyperbolicity
and the best-possible stretch for the distances in a graph when it is embedded in
a “tree-like" space. Indeed, the basic use of hyperbolicity is for the analysis of
approximate distance oracles. Computing the all-pairs-shortest-paths in a graph
can be done in polynomial time and space, but in practice this is often too costly
on large graphs and there is a need for subquadratic approximations. Some of
them consist in embedding the graph into a “simpler” combinatorial or geometrical
structure. When the structure is a “tree-like” metric space, the hyperbolicity of the
graph comes into play in the distortion.

Note that these results have useful applications in compact routing [GL05].

2.7.1.1 Hyperbolic embedding

As an example, Verbeek and Suri proved in [VS14] that for any embedding of
G = (V,E) into a hyperbolic space the multiplicative distortion of the distances
is Ω(δ(G)/ log δ(G)), and if G has bounded degree then there exists a linear-time
computable embedding of G in a Hyperbolic space with additive distortion O(δ(G)).

As noted in [ACHK16], every G = (V,E) with maximum degree ∆ can be
embedded into a graph G′ with maximum degree three, up to a multiplicative dis-
tortion of the distances O(log ∆). In this situation, δ(G′) = O(δ(G) log ∆) (we refer
to [Shc13b, GdLH90] for a proof of the preservation of hyperbolicity under quasi-
isometry). Therefore, every G = (V,E) can be embedded into a Hyperbolic space
in linear-time with multiplicative distortion O(δ(G) log ∆).

2.7.1.2 Tree embedding

In what follows, we survey the relationships between hyperbolicity and the distor-
tions of the distances in a graph that are obtained with different algorithms for
embedding a graph into a tree. Some interesting open questions will be also men-
tioned. Most notably, Gromov has proved the following result on tree embeddings:

Theorem 39 ([Gro87]). Every G = (V,E) can be embedded into a tree in quadratic-
time, up to an additive distortion of the distances at most 2δ(G) log |V |.

In order to prove Theorem 39, the main contribution of Gromov was to exhibit
a pseudo-distance on graphs, and then to upper-bound the additive distortion re-
sulting from the pseudo-distance by 2δ(G) log(|V |). By construction, every graph

2.7. Algorithmic applications 69

equipped with the Gromov pseudo-distance is 0-hyperbolic, and there exist efficient
constructions in order to embed 0-hyperbolic spaces into a tree with null distortion.
One of them is due to Buneman, and it can be implemented to run in quadratic-
time [Bun74, Gro87].

u

(a) Graph G (b) Layering tree LC(u).

Figure 2.24: Example of a layering tree.

Relationship with other constructions. Recently, Yancey [Yan15] has proved
a close relationship between the construction of Gromov and the so-called layering
trees [CD00]. Given G = (V,E) and u ∈ V , the layering tree LCG(u) is obtained
from the shortest-path tree rooted at u as follows: we merge into one node all
vertices v, w such that d(u, v) = d(u,w) and there exists a vw-path P such that
d(u, x) ≥ d(u, v) for every x ∈ P (see Figure 2.24 for an illustration).

It was already proved that embedding G into one of its layering trees causes
a distortion of the distances O(δ(G) log(|V |)) [CDE+08]. However, what Yancey
proves is that the Gromov distance approximating tree is essentially a layering tree
with Steiner points (additional nodes in the tree such that all the edges incident to
that node have weight zero). On the algorithmic side, since a layering tree can be
computed in linear time [CD00], it gives a simpler and more efficient construction
for Theorem 39.

The Gromov distance approximating tree is also equivalent to another construc-
tion in the litterature, that is called an Anchored Buneman tree [BFÖ+03].

Perspectives. There exists a “refined Buneman tree” [BFÖ+03], that has been
observed to give a lower distortion of the distances in a graph than an Anchored
Buneman tree. It can be computed in cubic time. I think that it would be interesting
to analyse the distortion caused by an embedding into this tree (w.r.t. graph hy-
perbolicity), and to improve on its computation (possibly, by using the relationship
between Anchored Buneman trees and layering trees).

Another interesting question on tree embeddings was asked by the authors
in [ASM16]. Indeed, they notice that for real-life graphs with diameter O(log(|V |)),
a shortest-path tree is enough in order to approximate the distances up to an ad-
ditive term O(log(|V |)). Therefore, the tree embedding of Theorem 39 does not
look that appealing in that case. Under which conditions can a δ-hyperbolic graph

70 Chapter 2. A survey on graph hyperbolicity

with diameter D be embedded into a tree with distortion O(δ logD) ? Let us point
out that by Lemma 13 the ringed tree RT (k) (defined in Section 2.4.1) has diam-
eter Θ(k) and hyperbolicity 3 but cannot be embedded into a tree width additive
distortion o(k).

2.7.1.3 Approximate extremal distances.

Finally, before concluding this subsection, we point out that if we relax our goal
and we only want to approximate the extremal distances in G = (V,E) (i.e., the
eccentricities, where the eccentricity of a vertex is defined as its largest distance to
another vertex in G), then it can be done up to a better additive term O(δ(G)). In
particular, there is a simple algorithm in order to approximate the diameter, that is
named Two-Sweep in the literature [MLH08]. Suppose that we compute a breadth-
first search from any vertex of the graph G = (V,E), and that it ends on some vertex
v. Then, we compute a second breadth-first search from v, and it can be proved
that v has eccentricity at least diam(G)−2δ. The latter generalizes an algorithm of
Jordan in order to compute the diameter of trees in linear time [Jor69]. The radius
of the graph can be approximated in a similar fashion. We refer to [CDE+08] for
details.

2.7.2 p-centers

Next, we present a more refined algorithmic application of hyperbolic graphs to
graph clustering problems, that was proposed in [CE07]. This application requires
prior results on the relationships between hyperbolicity and tree embeddings (The-
orem 39). Precisely, the p-radius of G = (V,E) is the smallest radius rp(G) such
that V =

⋃
v∈S BG(v, rp(G)) for some subset S ⊆ V with |S| ≤ p vertices. In par-

ticular, the 1-radius of G is simply its radius, a.k.a., the minimum eccentricity of a
vertex in G. A dual invariant is the p-diameter of G = (V,E), that is the largest
dp(G) so that there are at least p vertices of G that are pairwise at distance at least
dp(G). In particular, the 2-diameter of G is simply its diameter, a.k.a., the largest
distance between two vertices in G. Furthermore, any subset minimizing rp(G),
resp. maximizing dp(G), is called a p-center, resp. a p-packing.

Shier has proved that for any tree T , we have dp+1(T)/2 ≤ rp(T) ≤ dp+1(T)/2+

1 [Shi77]. In [CE07], Chepoi and Estellon propose the following generalization to
δ-hyperbolic graphs:

Lemma 40 ([CE07]). For every G = (V,E), it holds dp+1(G)/2 ≤ rp(G) ≤
dp+1(G)/2 + 4δ(G) + 1.

From Lemma 40, they obtain an O(n3)-algorithm for computing an approximate
p-center of graphs [CE07]. It gives an approximation algorithm for computing the p-
radius of a given δ-hyperbolic graph up to an additive term O(δ). This was recently
improved in [EKS16], where Edwards et al. detail an algorithm with the same
performances as above, running in O(pδ(n+m) log n)-time on δ-hyperbolic graphs.

2.7. Algorithmic applications 71

The gist of these algorithms is to compute an approximate (p+ 1)-packing and then
to elaborate on it. It can be done by embedding the graph into a tree with additive
distortion of the distances O(δ log n), then to compute an optimal packing for this
tree.

Perspectives. Proper generalizations of Lemma 40 to the transversal and the
packing numbers of given set families in δ-hyperbolic graphs can be found
in [CDV16]. These results are obtained from a primal-dual approach using a lin-
ear programming formulation of these parameters. Can it be derived from the
relationships in [CDV16] efficient (quasi-linear time) approximation algorithms for
computing transversals of these set families ? In particular, can the techniques
applied in [EKS16] be useful in the design of such algorithms ?

2.7.3 Traveling Salesman Problem

So far, the problems mentioned in Sections 2.7.1 and 2.7.2 were purely metric.
The two last applications (Sections 2.7.3 and 2.7.4) combine some metric aspects
of graphs (distances) with structural properties. In particular, we present in this
part results on “balanced” separators in hyperbolic graphs, with applications to the
Traveling Salesman Problem.

In [KL06], Krauthgamer and Lee initiated a more general study of approximate
algorithms on negatively curved spaces. Their algorithms apply to constantly hy-
perbolic graphs with bounded maximum degree. Their main technical tools are
separability properties of hyperbolic graphs, that extend those of trees. As an ex-
ample, in a rooted tree T with maximum degree ∆, there exists a node z whose
subtree comprises between |T |/(2∆) − 1 and |T |/2 nodes. It can be extended to
hyperbolic graphs as follows:

Lemma 41 ([KL06]). Let G = (V,E) be a δ-hyperbolic graph with maximum degree
∆ and let w ∈ V . For every v ∈ V and t ≥ 0, let us define Xt

v = {u ∈ V | 〈u, v〉w ≥
dG(u,w) − t}. Then, for every S ⊆ V such that the vertices in S are pairwise at
distance at least 20δ, there exists c ∈ V such that:

|S|/∆O(δ2) ≤ |S ∩Xδ
c | ≤ |S ∩X3δ

c | ≤ |S|/2.
Using Lemma 41, Krauthgamer and Lee are able to design a hierarchical data

structure for approximate nearest neighbour search [KL06] [KL06].

Their second contribution is a randomized polynomial-time approximation
scheme (PTAS) for the well-known Traveling Salesman Problem (TSP). It
is based on the existence, for bounded degree hyperbolic graphs, of some padded
probabilistic decompositions. Roughly, the graph can be decomposed into small di-
ameter subsets in a way that every ball with small radius is contained in one of the
subsets with high probability. Assuming the graph has bounded maximum degree,
it is the idea that hard problems such as TSP can be solved by brute-force on the
subsets (or at least sharply approximated). Then, a global solution for the graph
can be computed from the partial solutions by using dynamic programming.

72 Chapter 2. A survey on graph hyperbolicity

Open questions. Lemma 41 extends a separability property of trees to hyperbolic
graphs. What other separability properties of trees can be generalized to hyperbolic
graphs in a similar fashion ? Can we use such properties in order to design ap-
proximation algorithms on hyperbolic graphs with bounded maximum degree, using
dynamic programming, for other problems such as Maximum Clique or Maximum
Independent Set ?

2.7.4 Cut problems

We end the section with some algorithmic consequences on the relationships between
hyperbolicity and graph expansion (Section 2.5.2.3). Unlike the other problems
mentioned in the section, the following algorithms also apply to non constantly
hyperbolic graph classes. More precisely, although the above algorithmic work on
hyperbolicity can sometimes apply to non constantly hyperbolic graph, the authors
in [DKMY15] have been the first, to the best of my knowledge, to design algorithms
for more general hyperbolic graphs (with non constant hyperbolicity).

We recall the results in [Ben98, Mal15] where they prove that expander graphs
are non hyperbolic. In [DKMY15], the authors give constructive proofs on the re-
lationship between graph expansion, maximum degree and hyperbolicity. Precisely,
they obtain improved algorithms for the following graph problems. Given an n-
vertex graph with maximum degree ∆ and hyperbolicity at most δ, the following
can be computed in polynomial-time:
• Upper-bounds on the vertex-expansion depending on δ and ∆. The algorithm

also outputs a large family of subsets satisfying these bounds, with limited
overlap;
• Large st-cuts with ∆O(δ) edges.
The authors also propose an improved algorithm for minimizing the number of

bottleneck edges that arises in network design applications. It works in the case
where δ = o(log n/ log ∆);

Finally, the authors in [DKMY15] have considered the small-set expansion
problem on hyperbolic graphs, that is a promise problem defined as follows: given
a graph G = (V,E) and two constants c and η, distinguish whether (i) there
exists a subset of V with size c · |V | and vertex-expansion at most η, or (ii) every
such a subset has vertex-expansion at least 1 − η [RS10]. It is conjectured that
for every fixed η, there exists some constant c such that the corresponding small-
set expansion problem is NP-complete for general graphs [RS10]. In contrast,
the authors in [DKMY15] proved that for every constants η and c the small-set
expansion problem can be solved in polynomial time for n-vertex graphs with
bounded maximum degree and hyperbolicity δ = o(log n).

Conclusion and open perspectives. The small-set expansion problem im-
plies the Unique Game conjecture, that is related to the complexity of a label
assignment problem on graphs and that has been shown to imply tight inapproxima-
bility results for many classic graph problems [Kho02]. Furthermore, the small-set

2.8. Conclusion 73

expansion problem also implies the nonexistence of constant-factor approximations
for treewidth [APW12].

Therefore, the result of [DKMY15] raises the following open problem: can the
treewidth of hyperbolic graphs with bounded degree be approximated up to a
constant-factor ? Note that computing the treewidth is NP-hard on bounded-degree
graphs and on hyperbolic graphs [BT97].

2.8 Conclusion

In Sections 2.4 and 2.5, we presented bounds on graph hyperbolicity. Enriching
these results with new lower and upper bound techniques is an important open
problem, with potential implications for a faster computation of this parameter in
practice. In particular, I believe that new results in the spirit of Section 2.4.3:
on the preservation of hyperbolicity under some graph operations, would give a
better insight on the structure of hyperbolic graphs. Similarly, new lower-bounds
could help the computer scientists in better distinguishing complex networks that
are hyperbolic or strongly hyperbolic (e.g., biological and social networks) from
those that are non hyperbolic (such as road networks). We refer to [AAD16, AD15,
BCCM15, CCL15, ASM13, KNS13] for experiments on the hyperbolicity in complex
networks.

On the complexity point of view, it is proved in Section 2.6.3 that the recognition
of 1/2-hyperbolic graphs is subcubic equivalent to the detection of induced cycles
of length four in graphs, and so, that no truly subcubic combinatorial algorithm
for computing the hyperbolicity is likely to exist. It is worth pointing out that in
practice, hard instances for the above problem are indeed graphs with small hyper-
bolicity. I thus conjecture that graphs with large hyperbolicity (say, proportional
to their size) can be recognized more efficiently. Results of this fashion have been
proved recently for the related problem of computing graph diameter [Dam16].

Open perspectives

As pointed out in Section 2.2, it can be inferred interesting network properties when
the graph is δ-hyperbolic. Before we finish this chapter, it is worth mentioning that
some other geometric graph parameters have been explored with the same goal in
mind as above. Most of them are close in spirit from hyperbolicity, and they can
often be defined via a suitable variation of the 4-point Condition (Definition 1)
or another reformulation of hyperbolicity. We refer, e.g., to [ABK+07, ADM14,
JLB08, LT15, Yan15] for partial relationship between these properties and graph
hyperbolicity.

Let us put a focus on two of these competitors to graph hyperbolicity. The first
one is the average hyperbolicity, defined as 1

(n4)

∑
u,v,x,y∈V δ(u, v, x, y) [ADM14]. The

second one is the notion of (p, δ)-hyperbolic graphs, that are graphs with at least
a fraction p of their geodesic triangles that are δ-slim [LT15]. I think that both
concepts should deserve more attention in the future, given that the maximum

74 Chapter 2. A survey on graph hyperbolicity

value for the hyperbolicity is reached by an extremely small fraction of 4-tuples in
real-life graphs (e.g., less than 3% in social graphs [AAD16]).

Finally, let us point out that in some cases, complex networks have a meaningful
orientation on the edges, i.e., they are directed graph. So far, graph hyperbol-
icity has been defined and studied only in the undirected case. Thus, it would
be very interesting to extend the notion of hyperbolicity (and of Gromov prod-
uct, see Definition 2) to digraphs. Partial attempts in this direction can be found
in [GK14, PRST13]. I let this topic as a future work.

Chapter 3

Tree decompositions with metric
constraints on the bags

Summary

We make a complexity study for computing tree decompositions in graphs. The
tree decompositions considered are defined via metric constraints on their bags. We
aim at obtaining a finer-grained complexity for computing these decompositions in
general graphs and in some graph classes with structural properties. To do so, we
will prove conditional lower-bounds through reductions.

In Section 3.3, we prove that Triangle Detection reduces in quadratic time
to the computation of clique-decomposition. This is a hint that there does not exist
any truly subcubic combinatorial algorithm for this problem. Furthermore, we prove
that computing the clique-decomposition can be reduced to Matrix Multiplica-
tion, which combined with the relationships between Matrix Multiplication
and Triangle Detection, suggests a computational equivalence between these
two problems and computing the clique-decomposition. On the parameterized point
of view, we conjecture that clique-decomposition can be computed in quasi-linear
time on graphs with bounded clique-number, that is formally proved for triangle-free
graphs and other special graph classes.

Then, in Section 3.4 we answer open questions of Dragan et al. on the complexity
of computing treebreadth, pathlength and pathbreadth in graphs. Namely, we prove
that all these problems are NP-hard. More precisely, we prove that the recognition
of graphs with treebreadth one is already NP-complete, and the same holds true for
the recognition of graphs with pathbreadth one and the recognition of graphs with
pathlength at most two. On a more positive side, we prove that deciding whether
a bipartite or planar graph has treebreadth one is polynomial-time solvable. The
algorithm for planar graphs and its analysis are surprisingly intricate.

Finally, we prove in Section 3.5 new relationships between treelength and
treewidth. Precisely, we prove a nontrivial upper-bound on the diameter of minimal
separators in a graph by using an algebraic tool called the cycle basis. We deduce
from this result that the treelength is linearly upper-bounded by the treewidth in
the class of graphs with bounded-length isometric cycles. Conversely, we prove
that the treewidth is linearly upper-bounded by the treelength in the class of apex-
minor free graphs, thereby generalizing a result from Dieng and Gavoille on planar
graphs [DG09].

All my papers on tree decompositions [CDN16, DLN16a, DC17] are collected in
the appendix.

76 Chapter 3. Tree decompositions with metric constraints on the bags

Contents
3.1 Introduction . 76

3.1.1 Context . 76
3.1.2 General objective: efficient computation of tree decompositions 77

3.2 Some basics on tree decompositions 79
3.2.1 Tree-likeness parameters . 80
3.2.2 Relationship with triangulations 83
3.2.3 Tree decompositions with constrained adhesion sets 84

3.3 Computational aspects of clique-decomposition 86
3.3.1 State of the art . 86
3.3.2 Contributions . 87
3.3.3 Summarizing the proofs . 88

3.4 On the complexity of computing treebreadth and its relatives 91
3.4.1 Summarize of our contributions 92
3.4.2 Approach and the techniques used in the proofs 93
3.4.3 Open problems and future work 102

3.5 Treewidth versus treelength! 103
3.5.1 State of the art . 103
3.5.2 Contributions: upper and lower bounds for treewidth by using

treelength . 104
3.5.3 Proving the bounds . 105

3.6 Conclusion . 111

3.1 Introduction

In the previous chapter, we studied on graph hyperbolicity and its algorithmic ap-
plications. Hyperbolicity is a measure of the closeness of a graph metric to a tree
metric. Yet, it is not related to a structural decomposition of a graph directly1.
On the algorithmic point of view, graph decompositions can be useful in order to
design divide-and-conquer algorithms on large graphs. In particular, tree decom-
positions [RS86] aim at decomposing graphs into pieces, called bags, organized in a
tree-like manner (formal definitions are postponed to Section 3.2). They have been
proved to be useful in order to extend some efficient algorithms on trees to larger
classes of graphs.

The purpose of this chapter is to describe my work on these decompositions.

3.1.1 Context

The general idea is that when the bags have a “simple enough” structure, there
are hard problems on general graphs which can be solved efficiently by using dy-
namic programming on the tree decomposition. There is now a rich literature on

1There does exist a relationship between graph hyperbolicity and some decompositions of graphs
with dismantling orderings (Definition 7).

3.1. Introduction 77

tree decompositions with algorithmic applications, such as e.g., algorithmic meta-
theorems (for solving hard problems on graphs with a specified tree decomposi-
tion) [Cou90, DH08, FG01], and the well-known biconnected decomposition [Tar72],
triconnected decomposition [HT73], clique-decomposition [BPS10], etc.

Furthermore, with the growing size of real-life graphs, tree decompositions have
been found useful in order to identify the key aspects of the structure of complex
networks, such as e.g., core and periphery [ASM16].

Treewidth is a classical measure for studying tree decompositions. Roughly, the
width of a tree-decomposition is the maximum size of its bags. The treewidth of
a graph is the minimum width among all its tree-decompositions. A lot of work
has been dedicated to compute tree-decompositions with small width since such
decompositions can be efficiently exploited for algorithmic purposes [Bod06]. How-
ever, computing the treewidth of a graph is NP-hard [ACP87] and no constant-
approximation algorithm is likely to exist [WAPL14]. Furthermore, real-life net-
works generally have a large treewidth [dMSV11]. These drawbacks motivated the
study of other optimization criteria for tree-decompositions [DG07, KLNS15, Sey16].

Metric tree-likeness in graphs. In this chapter, we mainly focus on optimizing
the metric properties of the bags. One first example is an atom tree [BPS10], where
the bags are maximal subgraphs with no clique-separators. The bags in an atom tree
are isometric subgraphs. An atom tree has already nice algorithmic applications,
however it may be sometimes more interesting to further decompose the graph.
Roughly, the length and the breadth of a tree-decomposition are the maximum di-
ameter and radius of its bags respectively. The corresponding graph parameters are
the treelength [DG07] and the treebreadth [DK14] respectively. As I mentioned it in
Section 2.4.1 (p. 36), these two parameters are closely related to hyperbolicity, and
to the best possible distortion of the distances in a graph when it is embedded into a
tree. Algorithmic applications of hyperbolic graphs (Section 2.7, p. 67) thus trans-
pose to bounded treelength graphs. See also [DDGY07] for some other applications
of treelength in graph algorithms. We point out that recent studies suggest that
some classes of real-life networks – including biological networks and social networks
– have bounded treelength and treebreadth [AAD16].

3.1.2 General objective: efficient computation of tree decomposi-
tions

In the continuity of my work on computing graph hyperbolicity (Section 2.6), I
have been interested in computing efficiently tree decompositions with bags of small
diameter or radius. To a lesser extent, my results also apply to the computation of
other tree-likeness parameters such as, e.g., treewidth.

In what follows, I shall introduce my main contributions to the field.

78 Chapter 3. Tree decompositions with metric constraints on the bags

3.1.2.1 Finer-grained complexity of clique-decomposition

The decomposition of a graph by its clique-separators is sometimes called “clique-
decomposition” in the litterature [BPS10]. Its output is an atom tree (mentioned
above), that is a tree decomposition whose bags induce subgraphs with no clique-
separators, a.k.a. atoms. One interest of clique-decomposition is that it can be used
for preprocessing the graph in the computation of many other parameters (exact or
approximate). In particular, the treewidth of a graph is the maximum treewidth of
its atoms, and the same holds true for treelength and treebreadth. In Section 2.6.2,
I also detailed a novel application of clique-decomposition for computing the hyper-
bolicity of large graphs.

My purpose in Section 3.3 is to improve our understanding of the complex-
ity of computing this decomposition. Clique-decomposition can be computed in
polynomial-time [Tar85]. However, the best-known algorithms for the problem run
in O(nm)-time on n-vertex m-edge graphs, that is prohibitive for large graphs.

In [DC17], we show how to reduce the triangle detection problem to clique-
decomposition, that is strong evidence that the state-of-the-art algorithm for clique-
decomposition is essentially optimal. Furthermore, we describe an improved algo-
rithm for computing the clique-separators of a graph, that suggests an interesting
relationship between the complexity of computing clique-decomposition and the
clique-number of a graph (size of a maximum clique).

These results are in revision for SIAM Journal of Discrete Mathematics. They
are joint work with my supervisor David Coudert. I will detail them in Section 3.3.

3.1.2.2 The (NP-)hardness of computing treebreadth

The remaining of this chapter (Sections 3.4 and 3.5) is devoted to the length and
the breadth of tree decompositions. On the complexity point of view, it has been
proved by Lokshtanov in [Lok10] that deciding whether a graph has treelength at
most k is NP-complete for every fixed k ≥ 2. However, this was left open for
treebreadth [DK14].

We answer to this open problem in [DLN16a]. Precisely, it is proved in the paper
that deciding whether a graph has treebreadth at most k is NP-complete for every
fixed k ≥ 1. Similar results are obtained for the “path counterparts” of treelength
and treebreadth, that are named pathlength and pathbreadth [DKL14].

On a more positive side, we initiate the study of the complexity of computing
treebreadth on certain graph classes. This approach has been well explored for
treewidth [BKK95, KK95, Klo96, BKKM98, BM93]. However it has been so far
underexplored for treelength and treebreadth. Precisely, it is proved in [DLN16a]
that bipartite graphs and planar graphs of treebreadth one can be recognized in
polynomial time.

I will expand on this joint work with Nicolas Nisse and Sylvain Legay in Sec-
tion 3.4.

3.2. Some basics on tree decompositions 79

3.1.2.3 Relationships between treewidth and treelength

Finally, the last Section 3.5 is devoted to new relationships between treelength and
treewidth. We obtain this way a unifying view of tree-likeness in graphs. Further
motivations to find such relationships are to derive improved algorithms for solving
hard problems on certain classes of bounded-treelength graphs, improved approxi-
mation algorithms for computing the treewidth on certain graph classes, etc.

In order to better depict the results in this section, found in collaboration with
David Coudert and Nicolas Nisse, let it be said that complete graphs are the classical
example of graphs with large treewidth but bounded treelength, whereas on the other
hand the cycles have bounded treewidth but unbounded treelength [DG07]. These
two graph families thus can be used in order to show that treewidth and treelength
cannot be compared on general graphs. We prove in [CDN16] that removing these
obstructions allows one to upper and lower bound treewidth with functions of the
treelength. More formally, what we prove in [CDN16] is that on apex-minor free
graphs with bounded-length isometric cycles, treelength and treewidth can only
differ by at most a constant-factor (full definition for this class of graphs is postponed
to Section 3.5).

Definitions and preliminary results are presented in Section 3.2. The technical
sections are structured as follows. We start with a short summary of the topic, then,
we list our main contributions and we discuss about their implications. We end the
sections with sketch proofs of the main results.

3.2 Some basics on tree decompositions

The notion of tree decomposition was briefly introduced in the previous chapter
(Section 2.4.1). We restate the definition here for convenience of the reader. A tree
decomposition (T,X) of G = (V,E) is a pair consisting of a tree T and of a family
X = (Xt)t∈V (T) of subsets of V indexed by the nodes of T and satisfying:

• ⋃t∈V (T)Xt = V ;

• for any edge e = {u, v} ∈ E, there exists t ∈ V (T) such that u, v ∈ Xt;

• for any v ∈ V , the set of nodes {t ∈ V (T) | v ∈ Xt} induces a subtree, denoted
by Tv, of T .

The sets Xt are called the bags of the decomposition. Its adhesion sets are the
intersections Xt ∩Xt′ for every edge {t, t′} ∈ E(T). As an example, we show a tree
decomposition of the wheel in Figure 3.1. In this case, the tree T is a path, so, we
call it a path decomposition.

We point out that any graph admits a tree decomposition, resp. a path de-
composition. Indeed, the single node tree with bag V satisfies the three above
conditions. However, this trivial tree decomposition is not that interesting, so, we
aim at imposing additional constraints on the bags or on the adhesion sets.

80 Chapter 3. Tree decompositions with metric constraints on the bags

0

1

2

3

4

5

6

0

1

2 6

0
2

3

6

0

3

5

6

0
3 5

4

Figure 3.1: A path decomposition of the wheel W6.

3.2.1 Tree-likeness parameters

Treewidth

The width of a tree decomposition is the size of a largest bag minus one. The
treewidth, resp. the pathwidth of a graph G is the least possible width over its tree
decompositions, resp. over its path decompositions. In what follows, we denote
these two parameters by tw(G) and pw(G), respectively.

Example: graphs with small treewidth. Graphs with treewidth one are ex-
actly the trees (hence, the minus one in the definition).

Furthermore, cycles have treewidth two. It can be shown as follows. When we
remove any vertex from a cycle, that will leave a path. This path is a tree, so, it
has a tree decomposition of unit width. Then, by adding in every bag the removed
vertex, we obtain a tree decomposition of the cycle of width two.

Examples of graphs with large treewidth are the complete graphs and the
grids.

Precisely, a complete graph Kn with n vertices has treewidth n− 1. This well-
known result derives from the Helly property: every collection of pairwise intersect-
ing subtrees in a tree have a nonempty intersection. We detail this a bit more below
as it is a useful technique in the study of tree decompositions.

Let us fix (T,X) a tree decomposition of Kn. We have for every u, v ∈ V (Kn)

3.2. Some basics on tree decompositions 81

that since u and v are adjacent they must be contained in a common bag. As a
result, the subtrees Tv, v ∈ V (Kn) are pairwise intersecting. By the Helly property,
it implies that there must be a bag of (T,X) with all the n vertices in Kn, hence
tw(Kn) ≥ n − 1. The bound is reached by the trivial tree decomposition with one
node.

Observe that more generally, we have with the same proof as above that for
every G, and every tree decomposition (T,X) of G, every clique of G must be fully
contained in one bag of (T,X) [Bod06]. Therefore, the treewidth is lower-bounded
by the clique-number (size of a largest clique).

. . .

Figure 3.2: Bags in a path decomposition of the grid with side length four (partial
view).

Last, given a grid with dimensions m and n, with n ≤ m, it is not difficult to
construct a tree decomposition of width n (see Figure 3.2). This construction is
optimal [Die10] but it is technically challenging to prove it.

I will study treewidth in Section 3.5.

3.2.1.1 Treelength and treebreadth

The length of a tree decomposition is the maximum distance in the graph between
every two vertices in a same bag. The treelength, resp. the pathlength of a graph
G is the least possible length over its tree decompositions, resp. over its path
decompositions. In what follows, we denote these two parameters by tl(G) and
pl(G), respectively. Note that they are trivially upper-bounded by the diameter
diam(G) (that is the length of the trivial tree decomposition with one node).

Close to its length, the breadth of a tree decomposition is the minimum r such
that every bag is contained in a ball of radius r in the graph (the center of the
ball may not be in the bag). The treebreadth, resp. the pathbreadth of a graph
G is the least possible breadth over its tree decompositions, resp. over its path
decompositions. In what follows, we denote these two parameters by tb(G) and
pb(G), respectively. As an example, the wheel in Figure 3.1 has treebreadth one
and treelength two.

Treelength and treebreadth can be seen as a particular case of acyclic (R,D)-
clustering, a.k.a. tree decompositions with breadth at most R and length at most
D [DL07]. The two parameters are closely related. Precisely, tb(G) ≤ tl(G) ≤

82 Chapter 3. Tree decompositions with metric constraints on the bags

2·tb(G) and the bounds are sharp [DK14]. The same relationship holds true between
pathlength and pathbreadth.

Examples of graphs with small treelength. It turns out that many interesting
graph classes with unbounded treewidth have small treelength. As an example,
the chordal graphs are a strict generalization of complete graphs. They can be
characterized as those graphs admitting a clique-tree, that is a tree decompositions
whose bags are cliques [Gav74]. Thus, chordal graphs are exactly the graphs with
unit treelength. More generally, every k-chordal graph (graph with no induced cycle
of length at least k + 1) has treelength at most bk/2c [DG07].

Related to chordal graphs, the dually chordal graphs are the clique-graphs (i.e.,
intersection graphs of the maximal cliques) of chordal graphs [BDCV98]. We claim
that dually chordal graphs have treebreadth one, and so, treelength at most two.
Indeed, for every dually chordal graph G, there exists a one-to-one mapping ϕ from
the maximal cliques of some chordal graph H to the vertices of G. Let (T,X) be a
clique-tree of H. Since bags of this tree decomposition are maximal cliques of H, we
can define, for every node t ∈ V (T), Yt = NG[ϕ(Xt)]. Then, it can be checked that
(T ′,Y) = (T, (Yt)t∈V (T)) is a tree decomposition of G of breadth one. In particular,
for every vertex v ∈ V (G) we have that T ′v =

⋃
u∈ϕ−1(v)

Tu. It follows, as claimed,

that dually chordal graphs have treebreadth one, but this inclusion is proper. To see
that, it suffices to notice that every chordal graph also has treebreadth one, while
not all chordal graphs are dually chordal [BDCV98].

Another interesting fact is that every graph with diameter at most D also has
treelength at most D (trivially). In particular, adding a universal vertex to any
graph G with treewidth k will result in a graph G′ with tw(G′) = k+1 and tl(G′) ≤
diam(G′) ≤ 2. This simple observation will be useful in order to better intuit our
results in Section 3.5.

On the other way around, examples of graphs with large treelength include
cycles and grids [DG07]. Intuitively, this can be explained by the Balanced separa-
tion property in tree decompositions: in any tree decomposition (T,X) of G, there
must exist a bag B ∈ X so that every component of G \ B contains no more than
|V |/2 vertices (it generalizes the existence of a centroid in a tree [Gol71]). It is not
hard to see that on a cycle Cn with n vertices, any balanced separator has diameter
Ω(n) (see also Fig. 2.14b). Similar arguments apply to the case of grids.

Finally, it should be noticed that complete graphs have unbounded treewidth
and unit treelength, whereas n-vertex cycles have treewidth two and unbounded
treelength dn/3e [DG07]. Altogether combined, it shows that treewidth and tree-
length are uncomparable on general graphs. We shall discuss when they can be
compared in Section 3.5.

3.2. Some basics on tree decompositions 83

3.2.2 Relationship with triangulations

Tree decompositions can be defined equivalently in terms of graph triangulations.
As we will show throughout this chapter, this reformulation is very convenient to
use in the proofs.

A triangulation of G = (V,E), sometimes called a fill-in of G, is any chordal
supergraphH = (V,E∪F) of G. Recall that chordal graphs are exactly those graphs
with a clique tree, a.k.a. tree decomposition whose bags are cliques [Gav74]. If H is
a triangulation of G, then any of its clique tree is clearly a tree decomposition for G.
Conversely, given a tree decomposition (T,X) of G, we can define a triangulation
of G by adding an edge between every two vertices that are in a same bag of the
decomposition (e.g., see Figure 3.3 for an illustration).

0

1

2 6

0
2

3

6

0

3

5

6

0
3 5

4

(a) A tree decomposition of W6

0

1

2

3

4

5

6

(b) The corresponding triangulation.

Figure 3.3: Triangulation of the wheel W6.

Altogether combined, the tree decompositions of G can be defined as the clique
trees of its triangulations H. In particular:
• tw(G) ≤ k if and only if there exists a triangulation H of G with no clique of

size greater than k + 1 (sometimes called a k-tree) [Bod06];
• tl(G) ≤ l if and only if there exists a triangulation H of G so that E(H) ⊆
E(Gl), where Gl = (V, {{u, v} | 0 < dG(u, v) ≤ l}) is the lth power of
G [Lok10]2.

2I am not aware of any “natural” reformulation of treebreadth in terms of triangulation. It is
my opinion that the hypergraph terminology from [BDCV98] would be best suited to reach the

84 Chapter 3. Tree decompositions with metric constraints on the bags

Minimal triangulation and minimal separators. Let G = (V,E) be a graph.
A triangulation H = (V,E∪F) of G is minimal if for every strict subset F ′ ⊂ F , we
have that H ′ = (V,E ∪ F ′) is not chordal. Similarly, a minimal tree decomposition
of G is a clique tree of some minimal triangulation of G.

Every triangulation H = (V,E ∪ F) of G can be transformed into a minimal
one by removing a subset of edges F ′ ⊆ F . Note that it does not make increase
the width, length and breadth of the corresponding tree decompositions of G. As
a result, it can always be found a minimal tree decomposition of minimum width,
resp. of minimum length or of minimum breadth. This observation has motivated
an in-depth study of minimal triangulations and their characterizations [Heg06].

In particular, the following characterization is due to Parra and Scheffler [PS97].
Before we can state it properly, we need to introduce standard notions on graph
separators.

A separator of G = (V,E) is any subset S ⊆ V satisfying that G \ S is discon-
nected. If a, b are two vertices in different components of G \ S then we call S an
ab-separator. A minimal separator is an inclusion wise minimal ab-separator S for
some pair of vertices a, b ∈ V \ S. Equivalently, a separator S is called minimal if
there exist two components A,B of G \ S such that N(A) = N(B) = S. We note
that inclusion wise minimal separators are also minimal separators, but the converse
holds false.

Two minimal separators S1, S2 of G cross if S1 intersects two connected compo-
nents of G \ S2 (this is an equivalence relation on minimal separators [PS97]). If
S1, S2 do not cross then they are called parallel.

Theorem 42 ([PS97]). H is a minimal triangulation of a graph G if and only if
it is obtained by transforming into cliques all sets in a maximal family of pairwise
parallel minimal separators of G.

3.2.3 Tree decompositions with constrained adhesion sets

The dominant approach in the study of tree decompositions is to try to optimize
some properties on the bags. This is the approach presented in Section 3.2.1. An-
other approach is to impose more structures on the adhesion sets (intersections of
adjacent bags). Many graph decompositions can be defined this way. We present
some of them below, with an emphasis on clique-decomposition.

First examples. The biconnected decomposition of G = (V,E) is the collection
of its maximal sets of vertices with no separator of size one (also called cut-vertex).
These sets are called biconnected components. It is well-known that the biconnected
components are the bags of a tree decomposition of G, sometimes called a block-cut

goal. Namely, define for every graph G the hypergraphs C(G) and N (G) whose hyperedges are,
respectively, the maximal cliques and the closed neighbourhoods in G. Furthermore, given two
hypergraphs H1 and H2 with same vertex-set, let us write H1 ⊆ H2 if every hyperedge of H1 is a
subhyperedge of H2. Then, tb(G) ≤ j if and only if there exists a chordal supergraph H of G such
that C(G) ⊆ C(H) ⊆ N (Gj)

3.2. Some basics on tree decompositions 85

tree [Tar72]. In particular, we observe that the adhesion sets of a block-cut-tree are
exactly the cut-vertices of G.

Similarly, the so-called triconnected components [HT73] are the bags of a tree
decomposition of G, sometimes called a SPQR-tree [GM00]. The adhesion sets of a
SPQR-tree are pairwise parallel minimal separators of size two. Generalizations to
tree decompositions with adhesion sets of size at most k are discussed in [CDHH16,
Gro16].

3.2.3.1 Clique-decomposition

Instead of bounding the size of the adhesion sets, we can bound their diameter. A
clique-minimal separator of G = (V,E) is a minimal separator inducing a clique
of G. The atoms of G are the maximal sets of vertices with no clique separator.
Finally, the clique-decomposition of G is the collection of its atoms (see Figure 3.4
for an illustration).

87
1 4

2

6

3

5

(a) A graph G.

1

2

6

2

6

7 8

2

6

3

5

8
4

(b) The clique-decomposition of G.

Figure 3.4: Example of clique-decomposition.

In the same way as above, the atoms of G are the bags of a tree decomposition,
sometimes called an atom tree [BPS14]. The atom trees of G are exactly the clique-
trees of some triangulation H+ of G [BPS10]. In general, H+ is not a minimal
triangulation of G. However, we have that H+ is a supergraph of any minimal
triangulation of G. More precisely:

Proposition 43 ([BPS10]). For every minimal triangulation H of G = (V,E), the
clique-minimal separators of G are exactly the minimal separators of H that induce
a clique of G.

What Proposition 43 implies is that in order to compute a minimal triangulation
of G, it suffices to do so for each atom separately [Tar85]. In particular, it follows
that treewidth, treelength and treebreadth can be computed on each atom sepa-
rately (we obtain their value for G by taking the maximum value over the atoms).
This motivates us to study the complexity of computing clique-decomposition in
Section 3.3.

86 Chapter 3. Tree decompositions with metric constraints on the bags

3.3 Computational aspects of clique-decomposition

This section is devoted to my work on the time complexity for computing clique-
decomposition. We refer the reader to [DC17] for the full version.

3.3.1 State of the art

The clique-decomposition is well-known to be computable in polynomial O(nm)-
time on n-vertex m-edge graphs [Lei93, Tar85]. For dense graphs, it can be im-
proved to O(n2.69) [KS06b], but the algorithm is non combinatorial (i.e., it uses
matrix multiplication as a routine). Faster combinatorial algorithms have been
proposed on certain graph classes such as subclasses of hole-free graphs and claw-
free graphs [BBGM15, BW12]. Still, the best-known combinatorial algorithms have
O(nm)-time complexity, that is cubic for dense graphs and quadratic for sparse
graphs.

As shown with Proposition 43, clique-decomposition is strongly related with min-
imal triangulations. However, Kratsch and Spinrad proved in [KS06a] that finding
a clique-separator is at least as hard as finding a simplicial vertex, even if a minimal
triangulation is given as part of the input. The latter result implies that computing a
minimal triangulation is not the only complexity bottleneck of clique-decomposition
algorithms.

Kω−1

v1

v2

v3

. . .

vn−ω

vn−ω+1

Figure 3.5: An n-vertex split graph with clique-number ω. The vertices are biparti-
tioned in a clique Kω−1 with ω − 1 vertices and an independent set with n− ω + 1

vertices. Furthermore, each vertex in the independent set is adjacent to all ver-
tices in the clique. The atoms of the graph are exactly the closed neighbourhoods
N [vi], 1 ≤ i ≤ n− ω+ 1. Therefore, there are ω(ω− 1)(n− ω+ 1)/2 edges in total
in the subgraphs induced by the atoms.

Overview. Our results – presented below – suggest that another difficulty comes
from the clique-number of the graph (size of a largest clique). In order to support
our claim, we illustrate with Figure 3.5 that there are n-vertex graphs with clique-
number ω such that the total number of edges cumulated on the subgraphs that
are induced by their atoms is Ω(ω2n). It implies that when a clique-decomposition
algorithm not only computes the atoms, but also the subgraphs that are induced by
them, its time complexity must be Ω(ω2n).

3.3. Computational aspects of clique-decomposition 87

3.3.2 Contributions

The following is joint work with my supervisor David Coudert.

3.3.2.1 Time complexity lower bound

In the spirit of what has been presented for graph hyperbolicity (Section 2.6.3,
p. 64), it is proved in this section a conditional lower-bound on the time complexity
for computing clique-decomposition. Precisely, computing the clique-decomposition
is at least as hard as detecting a triangle in a graph.

We prove the following result in our paper [DC17].

Theorem 44. The problem of detecting a triangle in an n-vertex graph reduces in
quadratic time to the problem of computing the clique-decomposition of a graph with
3n+ 2 vertices.

It is conjectured that no combinatorial truly subcubic algorithm for triangle
detection exists [Wil16]. So, altogether combined, this is hint that the O(nm)-
time state-of-the-art algorithm for computing clique-decomposition is essentially
optimal.

3.3.2.2 Matching upper bound

In order to better understand the hardness of computing clique-decomposition, we
next turn our attention on the non combinatorial algorithms. On a more theoretical
side, it is proved in our paper [DC17] that clique-decomposition can be computed
in O(nα log n) = O(n2.3729 log n)-time by using fast matrix multiplication.

Theorem 45. For every n-vertex graph G = (V,E), its clique-decomposition can
be computed in O(n2.3729 log n)-time.

Under well-established complexity hypotheses, the latter result matches the
lower-bound obtained with triangle detection for the non combinatorial al-
gorithms. Indeed, we refer to [VWW10] for computational equivalences between
triangle detection and matrix multiplication3. Hence, these results are
hint that (up to logarithmic factors), the time complexity for computing clique
decomposition is in Õ(n2.3729).

3.3.2.3 The role of clique-number

Finally, we consider the seemingly simpler problem of computing the clique-
decomposition when a minimal triangulation is given as part of the input. Let
us call it the clique-decomposition with minimal triangulation problem.

3More explicitly, if Matrix Multiplication can be solved in O(M(n))-time then Triangle
Detection can be solved in O(M(n))-time, and conversely if Triangle Detection can be solved
in O(T (n))-time then Matrix Multiplication can be solved in Õ(n2 · T (n1/3))-time.

88 Chapter 3. Tree decompositions with metric constraints on the bags

We shall seek for efficient parameterized algorithms for the problem, where the pa-
rameter is the clique-number of the graph.

A new paradigm has emerged in Fixed-Parameter Tractability, sometimes called
P-FPT (polynomial FPT), where the dependency in the fixed parameter k is re-
quired to be polynomial. There have been recent revisitings of polynomial-time
graph problems in this polynomial parameterized setting [AVWW16, FLP+15,
GMN15]. Our result, that can be found in our paper [DC17], is that clique-
decomposition with minimal triangulation can be solved in linear time when
the clique-number of the graph is assumed to be a constant.

Theorem 46. For every G = (V,E) with clique-number ω, and H = (V,E ∪ F)

any minimal triangulation of G with f = |F | fill edges, the clique-decomposition
with minimal triangulation problem can be solved in time O(m+ f + ω2n).

It is open whether more generally, the clique-decomposition can be computed
in quasi-linear time on graphs with bounded clique-number. I conjecture that it is
the case and this is left as an interesting open question. Furthermore, in order to
support my conjecture, I will prove at the end of this section that it holds true for
triangle-free graphs (ω = 2).

3.3.3 Summarizing the proofs

3.3.3.1 Reduction from a counting problem

The proof for the lower bound is based on the following result on counting the
number of simplicial vertices in a graph.

Lemma 47 ([KS06a]). Counting the number of simplicial vertices in a graph with
3n+ 2 vertices is at least as hard as detecting a triangle in an n-vertex graph.

I prove that a vertex is simplicial if and only if it is contained in a unique atom
and this atom is a clique [DC17]. Based on this characterization, it can be shown
that counting the number of simplicial vertices can be done in linear time if the
clique-decomposition is given. Theorem 44 follows from this result directly.

Proof of Theorem 44. Let G = (V,E) be any graph with 3n+2 vertices. In order to
prove the theorem, by Lemma 47 it is sufficient to prove that counting the number
of simplicial vertices in G can be done in O(n+m)-time if the clique-decomposition
of G is given.

We claim that for every simplicial vertex v ∈ V , its closed neighbourhood N [v]

is an atom, and in particular it is the unique atom containing v. Indeed, suppose for
the sake of contradiction that there exists u /∈ N [v] such that u and v lie on a same
atom A. Then, N(v)∩A is an uv-separator in the subgraph G[A]. Since N(v)∩A is
a clique, the latter contradicts that G[A] has no clique-separator. Therefore, every
atom containing v is a subset of N [v]. Finally, since G[N [v]] is complete, we have
that G[N [v]] has no clique-separator, and so, by inclusion wise maximality of the
atoms, N [v] is the unique atom containing v, that proves the claim.

3.3. Computational aspects of clique-decomposition 89

In particular, it follows from this above claim that a vertex is simplicial if and
only if it is contained in a unique atom and this atom is a clique. Indeed, if a vertex
is simplicial then by the above claim it satisfies the desired property. Conversely, if
a vertex v is uniquely contained in an atom A and A is a clique then v is trivially
simplicial with its neighbourhood being equal to N [v] = A.

Let us take advantage of this above characterization of simplicial vertices in
order to count them in G. Let A1, A2, . . . , Ak be the atoms of G. We will use in the
following analysis that

∑k
i=1 |Ai| = O(n+m) [BPS10].

We first compute an atom tree of G. In order to do so, we recall that a dual
hypertree is a hypergraph whose hyperegdes are the maximal cliques of some chordal
graph (obtained by adding an edge between every two vertices that are contained
in a same hyperedge). Tarjan et al. prove in [TY84] that dual hypertrees can
be recognized in linear-time, and that for every dual hypertree, a clique-tree of
its underlying chordal graph can be computed within the same amount of time.
Therefore, we can use this algorithm from [TY84] in order to compute an atom tree
in O(

∑k
i=1 |Ai|) = O(n+m)-time.

Then, let Ai be any leaf-bag in the atom tree (a bag whose corresponding
node in the tree has degree at most one). Since the intersection of two atoms is
a clique [BPS10], we have that Ai is a clique if and only if every vertex that is
uniquely contained in Ai has degree |Ai| − 1. Furthermore, by removing the set
Ci of vertices that are uniquely contained in Ai then discarding Ai from the atom
tree, one obtains an atom tree of G \ Ci. Therefore, we can repeat the above pro-
cess in order to list all the atoms of G that are cliques. Overall, it takes time
O(
∑

v∈V |N(v)|+∑k
i=1 |Ai|) = O(n+m).

Finally, let Ai1 , . . . , Ail be the atoms of G that are cliques. We can count all the
vertices that are only contained in Aij , for some 1 ≤ j ≤ l, simply by scanning all
the atoms in O(

∑k
i=1 |Ai|) = O(n+m)-time. Since we proved that these are exactly

the simplicial vertices of G, the latter achieves proving that counting the number of
simplicial vertices can be done in O(n+m)-time if the atoms are given.

3.3.3.2 Computing the clique-minimal separators

Berry et al. have proved the following result in [BPS14]. Given an n-vertex m-edge
graph G = (V,E), suppose we are given H = (V,E ∪ F) a minimal triangulation of
G with f = |F | fill edges, and the collection of the clique-minimal separators of G.
Then, the clique-decomposition of G can be computed in time O(m + f). So, we
focused on the problem of computing the clique-minimal separators, given G and H
as inputs.

Outline of the method. The gist of the approach for doing so is to use Propo-
sition 43. Indeed, since H is chordal, its minimal separators can be computed in
linear O(m + f)-time [Gav72]. In order to extract from these the clique-minimal
separators of G, by Proposition 43 it suffices to decide which are cliques of G.

90 Chapter 3. Tree decompositions with metric constraints on the bags

• We prove in [DC17] that it can be done by using the incidence matrix of G
and fast matrix multiplication. More precisely, we compute the clique-matrix
of the triangulation H, where the minimal separators of H are listed, and then
we multiply this matrix with the incidence matrix of G in order to determine
which of those are cliques of G. Since in addition, a minimal triangulation H
of G can be computed in O(nα log n)-time [HTV05], Theorem 45 follows.
• In order to do the same in a combinatorial way, we propose the following algo-

rithm. Let us consider the vertices in G sequentially. At each step i, and for
every minimal separator S of H which contains the current vertex vi, we check
whether vi is adjacent to all the previous vertices vj ∈ S with j < i. When that
is not the case, S cannot be a clique of G and so, we can discard it from the
collection of (potential) clique-minimal separators of G. The central idea of the
analysis is that since G has clique-number ω, we shall detect whether a minimal
separator S of H is not a clique of G by considering no more than ω+1 vertices
in S. — Note that we needn’t compute ω for the algorithm. — Theorem 46
now follows.

Discussion. The reason why we don’t have an algorithm in time ωO(1)(n + m)

for computing the clique-decomposition is that we don’t know how to compute a
minimal triangulation within these time bounds. However, there exist quasi-linear
time algorithms for computing a minimal triangulation in some classes such as,
e.g., planar graphs [Dah98], bounded degree graphs [Dah02] and bounded-treewidth
graphs [FLP+15]. Furthermore, we prove that in the special case of triangle-free
graphs (ω = 2), a minimal triangulation is not needed in order to compute the
clique-decomposition. The latter result generalizes a remark from [BPS11], where
Berry et al. notice without giving too much details that computing the clique-
decomposition of a given bipartite graph can be done in linear time.

Lemma 48. If G = (V,E) is triangle-free then an atom tree of G can be computed
in O(|V |+ |E|)-time.

Proof. First, we compute a block-cut-tree of G (a.k.a. a tree decomposition whose
bags are exactly the biconnected components of G, see Section 3.2). It can be done
in linear time [Tar72]. We observe that since a cut-vertex is a clique-separator, the
atoms of G are exactly the atoms of its biconnected components. In particular, an
atom tree of G can be obtained by substituting each biconnected component Gi,
in the block-cut-tree, by an atom tree of Gi. So, we can process the biconnected
components separately and we now assume that G is biconnected for the remaining
of the proof.

Then, we compute the SPQR-tree of G, that can also be done in linear
time [GM00]. In [GM00] Gutwenger and Mutzel prove the following result using
a different terminology than Parra and Scheffler. We have that up to further split-
ting the cycles among the triconnected components (using nonedge separators), the
collection F2 of the adhesion sets in the SPQR-tree is a maximal family of pairwise

3.4. On the complexity of computing treebreadth and its relatives 91

parallel minimal 2-separators of G. In this situation, we observe that since the two
ends of an edge cannot be disconnected by any separator of G, an edge-separator
is trivially parallel with any other minimal 2-separator of G, and so, it must be
contained in F2. In particular, we can compute all the edge-separators of G by
computing F2 ∩ E, that can be done in O(|E|+ |F2|) = O(|V |+ |E|)-time.

Finally, since G is assumed to be biconnected and triangle-free, its edge-
separators are exactly its clique-minimal separators. Therefore, we can compute
the atoms of G as follows. We compute the maximal subtrees Ti of T so that for
every {t, t′} ∈ E(Ti), the minimal 2-separator Xt ∩ Xt′ is not an edge. It can be
done in O(

∑
t∈V (T) |Xt|) = O(|V | + |E|)-time. Then, the atoms of G are exactly

the unions of bags in the subtrees, i.e.,
⋃
t∈V (Ti)

Xt for every i.

Finally, it would be interesting to determine whether more generally, a graph can
be decomposed by its clique-minimal separators of size at most k in kO(1)(n+m)-
time. By Lemma 48, it is the case if k ≤ 2. Furthermore, a positive answer for
every k would directly imply that computing the clique-decomposition can be done
in ωO(1)(n+m)-time — given the clique-number ω as part of the input.

3.4 On the complexity of computing treebreadth and its
relatives

Computing an atom tree is a first step toward computing more interesting tree
decompositions, e.g. with optimal width, length or breadth. In this section, we now
answer open questions from [DK14] and [DKL14] on the complexity of computing
treebreadth, pathlength and pathbreadth. Full results are presented in [DLN16a,
DLN16b].

3.4.0.3 Motivations and related work

Treelength and treebreadth. The complexity of computing treelength on gen-
eral graphs is now well understood. Graphs with unit treelength are exactly the
chordal graphs [DG07], and they can be recognized in linear time. In contrast, recog-
nizing graphs with treelength at most k is NP-complete for every fixed k ≥ 2 [Lok10].
However on a more positive side, there exist 3-approximation algorithms for com-
puting this parameter [DG07].

In [Lok10], the reduction used for treelength goes through edge-weighted graphs,
and then goes back to unweighted graphs using rather elegant gadgets. It is not clear
how to adapt this proof for treebreadth. Since the value for this parameter is a 2-
approximation for treelength [DK14], any polynomial-time algorithm for computing
treebreadth, or even an α-approximation algorithm for some α < 3/2, would improve
the best-known approximation algorithms for treelength. Our results (presented
below) suggest that no such algorithm is likely to exist.

92 Chapter 3. Tree decompositions with metric constraints on the bags

Pathlength and pathbreadth. As for pathlength (resp., pathbreadth), a 2-
approximation (resp., a 3-approximation) algorithm is given for computing this pa-
rameter but the computational complexity of both problems is left open in [DKL14].
In the same paper, pathlength and pathbreadth have been shown to be useful in the
design of approximation algorithms for bandwidth and line-distortion.

We note that recently, the minimum eccentricity shortest-path problem
has been proved NP-hard [DL15]. The latter is a minimization problem where given
a graph G = (V,E), it is aimed at computing a shortest-path P with minimum
eccentricity maxv∈V dG(v,P). Furthermore, it has been proved in [DKL14] that
the minimum eccentricity of a shortest-path in G is an Θ(pl(G)) with pl(G) being
the pathlength of G. Let us point out that for every fixed k, it can be decided
in polynomial time whether a graph admits a shortest-path with eccentricity at
most k [DL15]. The following results will show that the situation is different for
pathlength and pathbreadth.

3.4.1 Summarize of our contributions

The main contributions in this section are to answer the open questions from [DK14,
DKL14] on the complexity of computing treebreadth, pathlength and pathbreadth.
Namely, the main results in our paper [DLN16a] can be stated as follows.

Theorem 49. Recognizing the graphs with pathbreadth at most one is NP-complete.

Theorem 50. Recognizing the graphs with pathlength at most two is NP-complete.

Theorem 51. Recognizing the graphs with treebreadth at most k is NP-complete for
every fixed k ≥ 1.

It is likely that recognizing graphs with pathbreadth at most k, resp. pathlength
at most k + 1, is NP-complete for every fixed k ≥ 1. This is left open in [DLN16a].

3.4.1.1 Graphs with treebreadth one

We now concentrate on the recognition of graphs with treebreadth at most one.
This class of graphs already encompasses well-studied subclasses such as chordal
graphs and dually chordal graphs. As it is stated in Theorem 51, recognizing graphs
with treebreadth one is NP-complete. However, we prove in [DLN16a] that it can
be done in polynomial time for bipartite graphs and planar graphs.

Case of bipartite graphs. Precisely, we obtain in our paper [DLN16a] a simple
characterization of bipartite graphs with treebreadth one. Let us call a bipartite
graph tree-convex if it admits a tree decomposition whose bags are exactly the closed
neighbourhoods of the vertices in one side of its bipartition [WLJX12]. We refer to
Figure 3.6 for an illustration.

Theorem 52. A bipartite graph has treebreadth at most one if and only if every of
its atoms is tree-convex. It can be verified in linear time.

3.4. On the complexity of computing treebreadth and its relatives 93

a

b

c

d

e

f

g

h

i

0

1

2

3

(a) A tree-convex graph G.

a

0 1

b

0
1

2

c

0 3

d

0 1

e

1

f

1 2 g

0 3

h

3
i

2

(b) A star-decomposition of G.

Figure 3.6: Tree-convex graphs have treebreadth one.

In contrast, recognizing bipartite graphs with treebreadth at most two is NP-
complete. We observe that bipartite graphs with treebreadth one already encom-
pass well-known graph classes such as convex bipartite graphs and chordal bipartite
graphs (a.k.a., bipartite graphs with no induced cycle of length at least six).

Case of planar graphs. We don’t have a full characterization of planar graphs
with treebreadth one. As proved in [DLN16a], a planar graph has treebreadth one
only if it has treewidth at most four (more general relationships between treebreadth
and treewidth will be discussed in the next Section 3.5). However, this condition
is not sufficient, since any cycle of length at most five has treewidth two but tree-
breadth greater than one. Nonetheless, we have designed an algorithm in order to
recognize planar graphs with treebreadth one in polynomial time.

Theorem 53. Recognizing planar graphs with treebreadth one can be done in
quadratic time. Furthermore, given a planar graph with treebreadth one, a tree de-
composition with breadth one can be computed in cubic time.

The algorithm for planar graphs is rather involved and it will be only sketched
in what follows. We refer to our research report [DLN16b] for full details.

This part of my contributions is joint work with Nicolas Nisse and Sylvain Legay.

3.4.2 Approach and the techniques used in the proofs

3.4.2.1 A central lemma for graphs of treebreadth one

We start with a structural lemma that is used throughout all the proofs. We name
star-decomposition a tree decomposition such that for every node t ∈ V (T), there

94 Chapter 3. Tree decompositions with metric constraints on the bags

exists a vertex u ∈ Xt such that Xt ⊆ N [u]. That is, star-decompositions are similar
to decompositions of breadth one, but the dominator of each bag has to belong to
the bag itself. We prove with the following Lemma 54 that a graph has treebreadth
one if and only if it has a star-decomposition.

In what follows, a tree decomposition is called reduced if no bag is included in
another one. Starting from any tree decomposition, a reduced tree decomposition
can be obtained in polynomial time by contracting any two adjacent bags with
one contained in the other until it is no more possible to do that. Note that such a
process does not modify the width, the length nor the breadth of the decomposition.

Lemma 54. For any graph G with tb(G) ≤ 1, every reduced tree decomposition of
G of breadth one is a star-decomposition.

The proof of Lemma 54 is an application of the Helly property: if B is a bag of
a tree decomposition (T,X) of G and there exists a vertex u dominating this bag,
then by the properties of a tree decomposition, the subtrees Tu and Tv, v ∈ B,
are pairwise intersecting, and so, by the Helly property there must be a bag with
B ∪ {u}. If the tree decomposition is reduced then it implies that u ∈ B.

3.4.2.2 Hardness of treebreadth, pathlength and pathbreadth

On the complexity point of view, the main result in [DLN16a] is the NP-completeness
of deciding whether tb(G) ≤ k, for every fixed k ≥ 1. We first prove that the problem
is NP-complete for k = 1, that will be our focus in this section. Then, we show that
the problem of computing the treebreadth of a graph is polynomially equivalent to
the problem of recognizing graphs with treebreadth one. Using similar techniques,
we can prove that computing pathlength, resp., pathbreadth, is NP-hard [DLN16b].

Theorem 51 is proved by reducing a variation of the Chordal Sandwich prob-
lem to the recognition of graphs with treebreadth one. The Chordal Sandwich
problem takes as input two graphs G1 = (V,E1), G2 = (V,E2) with E1 ⊆ E2, and it
asks whether there exists a chordal graph H = (V,E) such that E1 ⊆ E ⊆ E2. This
problem is NP-complete [GKS95]. In [Lok10], the author also proposed a reduction
from Chordal Sandwich in order to prove that computing treelength is NP-hard.
However, we need different gadgets than in [Lok10], and the arguments to prove
correctness of the reduction are completely different.

Let us give a flavour of our reduction with Figure 3.7. Suppose we are given
an instance 〈G1, G2〉 of Chordal Sandwich. We aim at computing a supergraph
G of G1 such that in any tree decomposition of G of breadth one, there can be
no two nonadjacent vertices in G2 that are in the same bag. This way, any tree
decomposition of G of breadth one can be transformed into a clique-tree for a chordal
sandwich between G1 and G2. In order to reach this goal, for every nonedge {u, v} /∈
E(G2) we add a copy of the gadget in Figure 3.7 and we make both u and v adjacent
to both suv, tuv. By construction, the four vertices (u, suv, v, tuv) induce a cycle of
length four. If we were studying treelength, then this would not give us that much
information; indeed, in a tree decomposition of length at least two, all four vertices

3.4. On the complexity of computing treebreadth and its relatives 95

cuv
suv tuv

wuv

xuv

yuv zuv

Figure 3.7: Gadget graph Fuv. The two vertices xuv, wuv are on disjoint suvtuv-
paths. Since they have no common neighbour, it ensures that suv, tuv must be
contained in a same bag in any star-decomposition of Fuv.

could be placed in a same bag without violating any constraint. However, this
is no more the case for a tree decomposition with unit breadth. Indeed, since no
vertex dominates the four vertices of the cycle, they cannot be part of a common
bag. Hence, the gist of the construction is to ensure that suv, tuv must be in a
common bag in any tree decomposition of G of breadth one. Then, one can prove
by elaborating on the Helly property that it implies that u and v cannot be in a
same bag in any tree decomposition of G of breadth one.

On the technical point of view, the most difficult part of the reduction is to
ensure that conversely, if 〈G1, G2〉 is a yes-instance of Chordal Sandwich then
the resulting graph G has treebreadth one. Ideally, we would like to transform
some tree decomposition of G1, with all vertices in a same bag being adjacent in
G2, to a star-decomposition of G. We tried to do so by adapting a technique
from Lokshtanov [Lok10] that consists in adding a dominating clique in the graph.
However, vertices from the gadgets in Figure 3.7 need to be inserted in the bags as
well, thereby complicating the picture. In order to overcome the difficulties that are
posed by these gadgets, we aim at better controlling in which bags their vertices
need to be inserted, but then we need to impose additional constraints on the tree
decomposition of G1. In general, we are not able to prove that a tree decomposition
with the desired constraints always exists. That is why we need to consider a
variation of Chordal Sandwich where we impose more structure on the input.

Theorem 55. The problem of deciding whether a graph has treebreadth one is NP-
complete.

Proof. The problem is in NP. To prove the NP-hardness, we will reduce from a vari-
ation of Chordal Sandwich that we name Chordal Sandwich with nK2. In
this variation, we constrain ourselves to the instances 〈G1, G2〉 so that the comple-
mentary Ḡ2 of G2 induces a perfect matching. The problem Chordal Sandwich
with nK2 is NP-complete [BFW92, GKS95]. Furthermore, perhaps surprisingly,
the restriction on the structure of Ḡ2 will be shown to be a key element in our
reduction.

Let 〈G1, G2〉 be any instance of Chordal Sandwich with nK2. Let G′ be
the graph constructed from G1 as follows. First, a clique V ′ of 2n = |V | vertices is
added to G1. Vertices v ∈ V are in one-to-one correspondance with vertices v′ ∈ V ′.

96 Chapter 3. Tree decompositions with metric constraints on the bags

Then, for every {u, v} /∈ E2, u and v are respectively made adjacent to all vertices in
V ′ \v′ and V ′ \u′. Finally, we add a copy of the gadget Fuv, depicted in Figure 3.8a,
and the vertices suv and tuv are made adjacent to the four vertices u, v, u′, v′.

We will prove that tb(G′) = 1 if and only if 〈G1, G2〉 is a yes-instance of
Chordal Sandwich with nK2.

In one direction, assume tb(G′) = 1, let (T,X) be a star-decomposition of G′

(which exists by Lemma 54). We prove that the triangulation of G1 obtained from
this star-decomposition is the desired chordal sandwich. Let H = (V, {{u, v} | Tu ∩
Tv 6= ∅}). H is a chordal graph such that E1 ⊆ E(H). To prove that 〈G1, G2〉 is a
yes-instance of Chordal Sandwich with nK2, it suffices to prove that Tu∩Tv = ∅
for every {u, v} /∈ E2. We claim that it is implied by Tsuv ∩Ttuv 6= ∅. Indeed, assume
Tsuv ∩ Ttuv 6= ∅ and Tu ∩ Tv 6= ∅. Since suv, tuv ∈ N(u) ∩ N(v), Tu, Tv, Tsuv , Ttuv
pairwise intersect, there is a bag with u, v, suv, tuv by the Helly property. The latter
contradicts that (T,X) is a star-decomposition because no vertex dominates the
four vertices. Hence the claim is proved. So, let us prove that Tsuv ∩ Ttuv 6= ∅. By
contradiction, if Tsuv ∩ Ttuv = ∅ then every bag B onto the path between Tsuv and
Ttuv must contain cuv, xuv. Since N [cuv] ∩N [xuv] = {suv, tuv} and (T,X) is a star-
decomposition, it implies either suv ∈ B and B ⊆ N [suv] or tuv ∈ B and B ⊆ N [tuv].
So, there are two adjacent bags Bs ∈ Tsuv , Bt ∈ Ttuv such that Bs ⊆ N [suv] and
Bt ⊆ N [tuv]. In particular, Bs ∩ Bt must intersect the path (yuv, wuv, zuv) because
yuv ∈ N(suv) and zuv ∈ N(tuv). However, N [suv] ∩ N [tuv] ∩ {yuv, wuv, zuv} = ∅,
that is a contradiction. As a result, Tsuv ∩ Ttuv 6= ∅ and so, Tu ∩ Tv = ∅ for any
{u, v} /∈ E2.

Conversely, assume that 〈G1, G2〉 is a yes-instance of Chordal Sandwich
with nK2. Let H be any chordal supergraph of G1 such that E(H) ⊆ E(G2)

and H is edge-maximal w.r.t. this property. We prove in [DLN16b] that every
clique-tree of H is a tree decomposition (T,X) of G1 with |X | = |V |/2+1 bags such
that for every {u, v} /∈ E2, Tu ∩ Tv = ∅ and there are two adjacent bags Bu ∈ Tu
and Bv ∈ Tv such that Bu \ u = Bv \ v. The latter is proved by elaborating on the
hypothesis that Ḡ2 is a perfect matching.

In what follows, we will modify (T,X) in order to obtain a star-decomposition
of G′. To do so, we will use the fact that there are |V |/2 = n edges in E(T) and
that for every {u, v} /∈ E2, there are two adjacent bags Bu ∈ Tu and Bv ∈ Tv
such that Bu \ u = Bv \ v. Indeed, this implies that there is a one-to-one mapping
α : E(T) → E(Ḡ2) between the edges of T and the non-edges of G2. Precisely, for
any edge e = {t, s} ∈ E(T), let α(e) = {u, v} ∈ E(Ḡ2) be the non-edge of G2 such
that u ∈ Xt, v ∈ Xs and Xt \ u = Xs \ v.

Intuitively, the star-decomposition (T ′,X ′) of G′ is obtained as follows. For any
t ∈ V (T) with incident edges e1, · · · , ed, we first replace Xt by a path decomposition
(Yt,e1 , · · · , Yt,ed). Then, for any edge e = {t, s} ∈ E(T), an edge is added between
Yt,e and Ys,e. Finally, the center-bag of some star-decomposition of the gadget Fα(e)

is made adjacent to Yt,e (see Figure 3.8b for an illustration).
More formally, let t ∈ V (T) and e ∈ E(T) incident to t, and let {u, v} = α(e).

3.4. On the complexity of computing treebreadth and its relatives 97

s t

x

y zw

c
uv uv

uv

uv uvuv

uv

cuv

suv wuv
tuv

zuvyuvxuv

suv tuv suv wuv wuvtuv

(a) Gadget Fuv (top) with a star-
decomposition of Fuv (bottom).

1
2

3
4

tu1 u
u u

2

3 4

v1 u
u u

2

3 4

u1 v
u u

2

3 4

u1 u
u v

2

3 4

u1 u
v u

2

3 4

u1 u2 u3
u4

V'

s1 t1

Yt, e1
u1 u2 u3

u4
V'

s2 t2

Yt, e2
u1 u2 u3

u4
V'

s3 t3

Yt, e3
u1 u2 u3

u4
V'

s4 t4

Yt, e4

t t

tt

1 2

34

Yt , e11
Yt , e22

Yt , e33
Yt , e44

T

C

1

1

T

C

2

2

T

C

3

3

T

C

4

4

(b) A subtree of the star-decomposition of G′

(bottom) obtained from an internal bag with
degree four of (T,X) (top). Subtrees Ti are
star-decompositions of the gadgets Fuivi .

Figure 3.8

Let Yt,e = V ′∪Xt∪{suv, tuv} (note that Yt,e is dominated by u′ ∈ V ′). Let e1, · · · , ed
be the edges incident to t in T , in any order. For 1 ≤ i < d, add an edge between
Yt,ei and Yt,ei+1 . For any edge e = {t, s} ∈ E(T), add an edge between Yt,e and
Ys,e. Finally, add the star-decomposition (T e,X e) for the gadget Fα(e) as depicted
in Figure 3.8a and add an edge between its center and Yt,e.

The resulting (T ′,X ′) is a star-decomposition of G′, so, tb(G′) = 1.

3.4.2.3 Polynomial cases

Our polynomial-time algorithms are based on a divide and conquer approach. We
recall that a separator S of G is minimal if there exist two connected components
A,B of G \ S such that N(A) = N(B) = S. Furthermore, A and B are called full
components for S, and a block is the union of a minimal separator with one of its full
components. A remarkable property of graphs with treebreadth one, whose proof
is deferred to our research report [DLN16b], is that they are stable under taking
blocks.

Lemma 56. Let G = (V,E), S be a separator andW be the union of some connected
components of G \ S. If tb(G) = 1 and W contains a full component for S, then
tb(G[W ∪ S]) = 1.

Proof. Let (T,X) be a star-decomposition of G. We remove vertices in V \ (W ∪S)

from bags in X , that yields a tree decomposition (T,X ′) of G[W ∪S]. We will prove

98 Chapter 3. Tree decompositions with metric constraints on the bags

u v

u v

u v

Figure 3.9: The 2-separator {u, v} disconnects the graph G (left) in two blocks with
treebreadth one (right). However, tb(G) = 2.

that (T,X ′) has breadth one (but is not necessarily a star-decomposition). Indeed,
letX ′t ∈ X ′. By construction, X ′t ⊆ Xt withXt ∈ X . Let v ∈ Xt satisfyXt ⊆ NG[v].
If v ∈ X ′t, then we are done. Else, since for all x /∈ S ∪W,N(x) ∩ (S ∪W) ⊆ S

(because S is a separator by the hypothesis), we must have that Xt ⊆ S. Let A ⊆W
be a full component for S, that exists by the hypothesis, let TA be induced by the
bags intersecting A. Since TA and the subtrees Tx, x ∈ Xt pairwise intersect —
because for all x ∈ Xt, x ∈ S and so, x has a neighbour in A —, then by the Helly
property there is a bag in X containing Xt and intersecting A. Furthermore, any
u ∈ V dominating this bag must be either in S or in A, so, in particular there is
u ∈ A ∪ S such that Xt ⊆ N [u].

The converse of Lemma 56 does not hold in general (see Fig. 3.9), yet there
are interesting cases where it does. In fact, all our algorithms in what follows are
based on particular cases where the converse of Lemma 56 also holds true. One of
them is the case where S is a clique-minimal separator. In particular, a graph has
treebreadth one if and only if every of its atoms have treebreadth one [DLN16a],
and so, we may further constrain our studies to graphs without a clique-separator,
a.k.a. prime graphs.

Case of bipartite graphs. For prime bipartite graphs, it is almost immediate
that in any star-decomposition (tree decomposition with a dominator in each bag,
see Sec. 3.4.2.1), every two adjacent bags must be dominated by vertices that are on
the same side of the bipartition. Indeed, otherwise the adhesion set between these
two bags would be either a cut-vertex or an edge-separator. The latter implies that
a prime bipartite graph must be tree-convex and so, Theorem 52 follows.

Now, given a bipartite graph G, we can check whether it has treebreadth one
as follows. We compute its atoms, that can be done in linear time by Lemma 48.
Then, we check whether each of its atoms is tree-convex, that can also be done in
linear time4 [WLJX12]. Finally, by Theorem 52 we output tb(G) = 1 if and only if

4This problem can be reduced to dual hypertree recognition. See the proof of Theorem 44 for
similar techniques.

3.4. On the complexity of computing treebreadth and its relatives 99

all its atoms are tree-convex.

Case of planar graphs. Much more work was needed for the recognition of planar
graphs with treebreadth one. Perhaps surprisingly, this part was arguably the most
difficult one in our work on treebreadth.

The algorithm for planar graphs is recursive. Given G = (V,E), we search for
a specific vertex, called a leaf-vertex, whose closed neighborhood must be a leaf-bag
of a star-decomposition if tb(G) = 1 (bag whose corresponding node in the tree has
degree at most one). Basing on Lemma 56 and a delicate case-by-case analysis of
the structure of star-decompositions, we define three types of leaf-vertices (e.g., see
Figure 3.10). A vertex v is a leaf-vertex if one of the following conditions hold.
Type 1. N(v) induces an avbv-path for some av, bv ∈ V \ {v}, denoted by Πv, of

length at least 3 and there is dv ∈ V \ {v} such that N(v) ⊆ N(dv).
Type 2. N(v) induces a path, denoted by Πv = (av, bv, cv), of length 2.
Type 3. N(v) consists of two non adjacent vertices av and cv, and there is bv ∈

(N(av) ∩N(cv)) \ {v}.

avav bvbv
dvdv

vv

avav cvcv
bvbv

vv

avav cvcv
bvbv

vv

Type1Type1 Type2Type2 Type3Type3

Figure 3.10: The three types of leaf vertices.

Ideally, we would like to remove v from G and apply recursively our algorithm
on G \ v. However, in some case tb(G \ v) = 1 while tb(G) > 1 (see Fig. 3.9).
So, we must also add edges between vertices that must be in a common bag of a
star-decomposition of G if tb(G) = 15. The choice of the edges to add is made more
difficult by the need for the resulting graph G′ to stay prime and planar in order to
apply our algorithm recursively on G′. To show that tb(G) = 1 if and only if the
resulting graph has treebreadth one also requires tedious lemmas.

Sketch Proof of Theorem 53. Let G = (V,E) be a prime planar graph. We can
assume |V | ≥ 8 and G has no star-decomposition with two bags (both cases are
treated separately by exhaustive search). In such case, tb(G) = 1 implies there
exists a leaf-vertex v, that can be found in linear time.

We first consider the case where G \ v is prime. In this situation, we aim at
removing v and applying the algorithm recursively on G \ v (e.g., see Figures 3.11a

5We aim at turning the separator N(v) into a clique. However, we cannot do that directly since
it would break the distances in G, and the graph needs to stay planar.

100Chapter 3. Tree decompositions with metric constraints on the bags

av bv

dv

v

(a) v is of Type 1

av cv

dv

(b) G′

av cv

bv

v

(c) |(N(av) ∩N(cv)) \ v| ≥ 3

av cv

bv

(d) G \ v

av cv

bv

v

uv

(e) (N(av) ∩N(cv)) \ v = {uv, bv}

av cv

bv

v

uv

(f) G′

Figure 3.11: Cases where G \ v is prime. In every subcase, we apply the algorithm
recursively on the graph to the right, that is either smaller or denser than G.

and 3.11b). However, we can do that only if it can be ensured that when tb(G\v) = 1,
there is a star-decomposition of the subgraph that can be transformed into a star-
decomposition of G. Precisely, if v is of Type 1 then we seek for a star-decomposition
(T ′,X ′) of G \ v such that all the vertices in N(v) are contained into a bag. If v
is of Type 2 or 3 then we seek for a star-decomposition (T ′,X ′) of G \ v such that
either T ′av ∩ T ′cv 6= ∅, or there are two adjacent bags B′av ∈ Tav , B′cv ∈ T ′cv that are
respectively dominated by av and cv. What we prove is that if tb(G \ v) = 1 and
G \ v is prime, then a star-decomposition as above always exists, unless we fall in
the special case where v is of Type 2 or 3 and |(N(av) ∩N(cv)) \ v| ≤ 2. We do so
by proving that it were not the case, there would exist a K5-minor or a K3,3-minor
of G. By Kuratowski theorem, it would contradict our assumption that G is planar.

Furthermore, we prove for the latter subcase that av, cv must have two common
neighbours uv, bv in G\v (else, tb(G) > 1). In this situation, the graph G′, obtained
from G by adding the edges {v, uv}, {v, bv}, is planar and prime, and it satisfies
tb(G) = 1 if and only if tb(G′) = 1. See Figures 3.11e and 3.11f for an illustration.

3.4. On the complexity of computing treebreadth and its relatives 101

So, we call the algorithm either on G′ or on G \ v6. We refer to Figure 3.11 for an
illustration.

We note that it is conceivable this first part of the analysis could apply to larger
classes of H-minor free graphs. This is less clear for what follows.

Indeed, the most difficult situation is when G \ v contains a clique-separator.
Roughly, in this case we need to test the leaf-vertex v for certain properties. If it
satisfies some of them then we can either remove vertices or add new edges in the
graph and we call the algorithm recursively on the resulting graph G′. However, in
some situations the leaf-vertex v does not satisfy any of the desired properties, and
then we need to find a better leaf-vertex in its neighbourhood.

First, based on a fine-grained analysis of clique-separators in the subgraph G\v,
this case is reduced to the one where:
• v is of Type 2;
• there is an edge-separator (bv, uv) of G \ v;
• and {av, uv} /∈ E.

In this situation, our first idea was to add an edge between av and cv in order to
force these two vertices to be contained in a common bag in any star-decomposition
of G′, obtained from G \ v by adding the edge {av, cv}. Then, we aim at applying
the algorithm recursively on G′. However, tb(G′) = 1 does not imply tb(G) = 1 in
general. We prove it is the case if uv, cv are nonadjacent or N(uv)∩N(av) does not
disconnect av from uv in G \ (cv, v).

Else, we compute a plane embedding of G, and a vertex x ∈ N(av) ∩ N(uv)

such that: v, cv and all other common neighbours of av, uv are in a same region
R, bounded by (av, x, uv, bv). As illustrated with Figure 3.12, we wish to create an
avuv-path in V \R by adding edges in N(bv)∩N(x). In doing so, we go back to the
previous subcase as now N(av) ∩N(uv) is no more a avuv-separator of G \ (cv, v).
However, we have to ensure that it is possible to add such a path in V \R, and that
its addition does not affect the value of treebreadth for the graph. We prove it is the
case unless V ⊆ R (in which case we apply the algorithm recursively on G′, obtained
from G by identifying bv with x), or if there is a leaf-vertex ` ∈ N(bv) ∩ N(x).
Furthermore, in the latter case we replace v with ` in the above analysis, i.e., `
becomes the actual leaf-vertex to be considered. It can be shown that G\` is prime,
so, we can prove that the algorithm always terminates.

Finally, we observe that in the above algorithm, we delete a vertex or add an
edge before each recursive call. Moreover, the number of edges removed at each
step can be linearly upper-bounded by the number of deleted vertices. Since planar
graphs are sparse, we can elaborate on this property in order to upper-bound the
number of recursive calls on n-vertex m-edge planar graphs by a linear function
Θ(n) − m = Θ(n). Each step of the algorithm can be done in linear time, so,
altogether combined, it shows that the algorithm runs in quadratic time.

6When v is of Type 1 we call the algorithm on G′, obtained from G \ v by contracting the
internal nodes of Πv to an edge, in order to obtain a quadratic complexity. We refer to Figures 3.11c
and 3.11f for an illustration of that case.

102Chapter 3. Tree decompositions with metric constraints on the bags

av uv

bv

x

v cv

Figure 3.12: Addition of an avuv-path in V \R. Each ball is a connected component
of G[V \ R]. The edges that are added in order to obtain the avuv-path are drawn
in dashed red.

3.4.3 Open problems and future work

We conclude this complexity study by some questions that remain open. First, it
would be interesting to know the complexity of computing the treebreadth and the
treelength of planar graphs. We did a first step in this direction with Theorem 53.
Note that the complexity of computing the treewidth of planar graphs is still open.
Second, all the reductions presented in this paper rely on constructions contain-
ing large clique or clique-minor. We left open the problem of recognizing graphs
with treebreadth one in the class of graphs with bounded treewidth or bounded
clique-number. More generally, is the problem of computing the treebreadth Fixed-
Parameter Tractable when it is parameterized by the treewidth or by the size of a
largest clique-minor? It is part of my ongoing work to answer these questions.

Last, I point out that in this work on star-decompositions, one important tool
has been “breadth-maximal” triangulations. Precisely, for any G with tb(G) = 1, we
call a triangulation H of G breadth-maximal if it has a clique-tree that is a star-
decomposition of G and H is edge-maximal w.r.t. this property. Breadth-maximal
triangulations have many nice properties which greatly simplify the analysis for the
hardness reduction and the polynomial-time algorithms. So, I think this notion of
“maximal” triangulation is worth being more investigated in the future, as well as
for treebreadth as for treelength, treewidth, etc. The reader may refer to [BK06,
BHV06] for related work, where they give sufficient conditions for edges to be always
present in a triangulation of minimum width.

3.5. Treewidth versus treelength! 103

3.5 Treewidth versus treelength!

Finally, I present in this section new relationships between treewidth and treelength,
that were obtained in collaboration with David Coudert and Nicolas Nisse. On the
algorithmic side, we aim at finding such relationships in order to combine the best
of both worlds (structural and metric tree-likeness in graphs).

That is, on the one hand treelength and treewidth are both NP-hard to com-
pute [ACP87, Lok10], however treelength is much easier to approximate than
treewidth. In particular, there exists a 3-approximation algorithm for computing
treelength that only relies on a few breadth-first search [DG07]. In contrast, under
the Small Set Expansion Hypothesis (that implies the Unique Games Con-
jecture) there does not exist a constant-factor polynomial-time approximation
algorithm for treewidth [APW12]. On the other hand, there are more algorithmic
applications for treewidth than for treelength [Cou90], which comes from the fact
that several hard problems on graphs remain so even on bounded diameter graphs,
thereby preventing the design of dynamic programming algorithms on tree decompo-
sitions with bounded length. Thus, by using relationships between treelength and
treewidth, we wish to extend the algorithmic applications for bounded treewidth
graphs to a large class of bounded treelength graphs. Furthermore, we also wish
to compute efficiently (and practically) tree decompositions with bounded width on
certain graph classes.

3.5.1 State of the art

As said earlier (e.g., Sec. 3.2.1) the two parameters treewidth and treelength are un-
comparable on general graphs. This fact prevents us from expecting simple relations
between them.

On the one direction, the cycles have bounded treewidth but unbounded tree-
length. This suggests that having a large treelength relies on the existence of long
cycles in the graph. The authors in [DG07] supported this intuition, proving that
the treelength of a graph G is upper-bounded by half of the maximum length of a
chordless cycle in G (the latter generalizes a similar Theorem 15 on the relationship
between chordality and hyperbolicity). However, not all bounded treelength graphs
have bounded chordality, as seen with the case of the wheel Wn which contains an
induced Cn while it has treelength ≤ 2. Therefore, it is natural to constrain our-
selves to the subcase of isometric cycles in graphs. We remind that a subgraph H
of G is isometric if for any two vertices of H, the distance between them is the same
in H as in G. Unfortunately, there are graphs such as grids with bounded-length
isometric cycles and arbitrarily large treelength. As shown below, our results imply
that in such a case, we always have that tl(G) =O(tw(G)).

On the other direction, the complete graphs have unbounded treewidth but
bounded treelength. Another interesting example is the graphH obtained by adding
a universal vertex to a square-grid with n2 vertices, for which it holds tw(H) = n+1

and tl(H) = 2. We observed in Section 3.2.1 that more generally, adding a universal

104Chapter 3. Tree decompositions with metric constraints on the bags

vertex to a graph G with arbitrarily large treewidth k will result in a graph G′ with
large treewidth k+1 and treelength at most two. One common trait of these graphs
is that they have a large genus (they cannot be drawn with no edge-crossings onto a
surface with small oriented Euler genus). That is, they are in a sense arbitrarily far
from planar graphs. In contrast, it has been proved in [DG09] that tw(G) < 12·tl(G)

for planar graphs. Consequently, it is quite natural to ask whether a treewidth
arbitrarily larger than treelength requires a large genus. In what follows, we will
prove it is the case, i.e., tw(G) =O(tl(G)) for bounded-genus graphs.

Finally, and independently from this work, Belmonte et al. [BFGR15] proved that
tw(G) = O(∆tl(G)) for any graph G with maximum degree ∆. On the algorithmic
point of view, the authors in [BFGR15] built upon their relation in order to design
a fixed-parameter-tractable algorithm to compute the metric dimension on bounded
treelength graphs.

This upper-bound shows that in a way, our pathological construction which
adds a universal vertex in the graph is the only one that prevents from compar-
ing treewidth with treelength. However, it has to be noted that on the converse
direction, treelength cannot be upper-bounded by any function f(tw(G),∆) of the
treewidth and the maximum degree, as it can be observed with cycles.

In this section, I will use different techniques in order to upper-bound the
treewidth with linear dependency on the treelength.

3.5.2 Contributions: upper and lower bounds for treewidth by us-
ing treelength

3.5.2.1 Lower bound

The first result in this section is that treewidth can be lower-bounded by treelength
on certain graph classes.

In what follows, a distance-preserving elimination ordering of G = (V,E) is a
total ordering of its vertex-set V such that every suffix induces an isometric subgraph
of G. In particular, it is a dismantlable ordering if for every suffix, the closed
neighbourhood of the starting vertex is dominated in the subgraph that is induced
by this suffix. The latter type of ordering has been introduced in the previous
chapter (Definition 7, p. 33). We also refer to the previous chapter for a definition
of hyperbolicity, and especially Definition 1 (p. 25).

Theorem 57 ([CDN16]). For every G = (V,E) we have tl(G) ≤ c · tw(G) where:
• c ≤ b`(G)/2c if G has no isometric cycle of length greater than `(G);
• c ≤ 2δ(G) + 1 with δ(G) being the hyperbolicity of G;
• c ≤ 2 if G admits a distance-preserving elimination ordering.
• c ≤ 1 if G admits a dismantlable ordering.

Sharper estimates of the constant c will be discussed in what follows. One
interesting consequence of this result is that every bounded-treewidth graph G can
be embedded into a tree with additive distortion Θ(δ(G)). Furthermore, it tells

3.5. Treewidth versus treelength! 105

us that the hyperbolicity is upper-bounded by the treewidth on graph classes with
a dismantlable ordering. These remarks complement Section 2.4.1 in the previous
chapter on graph hyperbolicity.

3.5.2.2 Upper bound

On the other hand, treewidth can be upper-bounded by treelength on certain topo-
logical graph classes.

Let us introduce the terminology for those classes. We refer to [MT01] for details.
We recall that a planar graph is a graph that can be drawn in the Euclidean plane
so that edges may only intersect at their endpoints. More generally, a graph has
genus at most g if it can be drawn in an oriented surface with Euler genus g so
that edges may only intersect at their endpoints. Planar graphs are exactly the
null-genus graphs. An apex graph is obtained from a planar graph by adding a new
vertex with arbitrary neighbourhood. Finally, a class of graphs is apex-minor free if
there is no graph in the class with a H-minor for some fixed apex graph H. Planar
graphs and bounded-genus graphs are apex-minor free.

Theorem 58 ([CDN16]). Let H be an apex graph. There exists a constant cH
that only depends on H and such that for every H-minor free graph G, we have
tw(G) ≤ cH · tl(G).

In particular if G has genus at most g then tw(G) ≤ 72
√

2(g+1)3/2·tl(G)+O(g2).

One unexpected consequence of this above result is that on some cases where
the treewidth can be efficiently approximated, nontrivial bounds on the genus of the
graph can be computed. The exact and approximate computation of graph genus
are notoriously hard problems [Tho89, CKK97, KS15].

Our study paves the way to a better understanding on the relationship between
structural and metric tree-likeness in graphs, and on its algorithmic consequences.
Unfortunately, similar relationships for path-likeness in graphs look more challenging
to obtain, even for trees. In particular, there are n-node trees with pathlength
Ω(n) [DG07] whereas the pathwidth of an n-node tree is O(log n) [Sch92].

So far, the main drawback of Theorem 58 is that it is non constructive. That
is, when we compute a tree decomposition with bounded length O(tl(G)), we ob-
tain a bound on the treewidth tw(G) = O(tl(G)), but we do not obtain a tree
decomposition with bounded width O(tl(G)). It is part of my ongoing work to make
Theorem 58 constructive, possibly by using the graph minor decomposition from
Robertson and Seymour [GKR13, DH04].

3.5.3 Proving the bounds

3.5.3.1 A detour through the diameter of minimal separators in graphs

We recall that there always exists a minimal tree decomposition (clique-tree of some
minimal triangulation) with optimal width. See Section 3.2.2. Our results in what

106Chapter 3. Tree decompositions with metric constraints on the bags

follows provide a relationship between the width and the length in any minimal tree
decomposition.

More precisely, by Theorem 42, a corresponding minimal triangulation results
from the completion of all sets in a maximal family of pairwise parallel minimal
separators of the graph G. In this situation, we observe that for every edge in the
triangulation, either it is an edge of G or its two ends are in a same separator in
the family. Note that in the latter case, the distance in G between the two ends
is at most the maximum diameter in the graph over the separators in the family.
Therefore, we observe that the length of the tree decomposition (≥ tl(G)) is exactly
the maximum diameter in the graph over the separators in the family. Furthermore,
since each minimal separator of the family induces a clique in the triangulation, it
has size upper-bounded by the width of the tree decomposition — that is tw(G) for
a minimal tree decomposition with optimal width.

As a result, we are left to upper-bound the diameter of minimal separators in
graphs as a function of their size.

Connectivity properties of the minimal separators. Before going into the
details of the proof, let us describe the main intuition behind it and the difficulties
we had to face on. Let us consider a minimal separator S for G. If it is connected,
then it has diameter O(|S|), and so, we are done. Hence, we may assume that S
consists of several connected components. The idea is to find a set of isometric
cycles, each of length at most `(G) (by definition of `(G)), such that any of these
cycles intersects two components and the subgraph induced by S and these cycles
is connected.

For this purpose, let us consider a minimum-length cycle crossing two compo-
nents of S (such a cycle surely exists because there are at least two full components
in G \ S). If this cycle is isometric, then we are done. Otherwise, it means that
there is a shortcut between two nodes of the cycle. However, this shortcut could
intersect S more than once which does not help our purpose.

The key point is that, using the shortcut, the initial cycle can be viewed as the
sum (symmetric difference) of two smaller cycles. This kind of local view can be
generalized to a global one using our main tool, namely the cycle basis (defined
below). Indeed, the initial cycle is actually the symmetric difference of a set of
isometric cycles [Hor87]. Using this set, we can then prove our upper bound on the
diameter of minimal separators in graphs.

The set C(G) of Eulerian subgraphs of G is called the cycle space of G. It is well-
known that every Eulerian subgraph can be obtained from the symmetric difference
(on the edges) of cycles in G. In fact, the set C(G) with the symmetric difference
is a vector space of dimension m− n+ 1 if G is connected [Die10, Theorem 1.9.6].
We will call the symmetric difference of two subgraphs H1, H2, denoted H1 ⊕ H2,
the sum of H1 with H2. A cycle basis is an inclusion wise minimal set of cycles
generating the whole cycle space

3.5. Treewidth versus treelength! 107

. . .s1 s2 s3 s4 sk−3 sk−2 sk−1 sk

Figure 3.13: A minimal k-separator S for G ∈ G` with diameter b`/2c · (k − 1).
Vertices in S are ordered so that any two consecutive vertices si and si+1 are dia-
metrically opposed in an isometric cycle of length `. Furthermore, the removal of S
disconnects G in two parts, respectively containing the upper and lower sections of
these cycles.

The use of the cycle space. For every ` ≥ 3, a graph G belongs to the class G`
if any of its cycles can be obtained from the symmetric difference on the edges of
cycles of length at most `. More formally, its cycle space admits a cycle basis with
only cycles of length at most `. As an example, by Mac Lane’s Theorem the inner
faces of a plane graph generate its cycle space, and so, a planar graph with inner
faces of length at most ` is in G`. Furthermore, trees are a trivial example of graphs
in G3 (they have no cycle). Chordal graphs are also in G3. More generally, every
`-chordal graph is in the class G`. Indeed, every chord in a cycle C can be used in
order to write C as the sum of two smaller cycles, thereby proving that the induced
cycles in a graph can generate its cycle space.

In [CDN16], we prove that G` is stable under edge-contraction and addition of
an edge between two vertices that are at distance at most b`/2c. The dimension of
the cycle space plays an important role in these proofs, as it often provides elegant
shortenings of our technical reasonings. In order to illustrate the techniques we
used, we prove below the stability of G` under edge-contractions.

Lemma 59. Let ` ≥ 3, the class G` is stable under edge-contraction.

Proof. Let G ∈ G` with n vertices and m edges. W.l.o.g., G is connected. The
dimension dim(C(G)) of the cycle space C(G) is s = m−n+1 [Die10, Theorem 1.9.6].
Let e ∈ E(G) such that e lies on k ≥ 0 triangles in G. By contracting e, we loose
one vertex and k+1 edges, the edge e and for each triangle which contains e we have
to remove one of the resulting multi-edges. Hence, dim(C(G/e)) = dim(C(G))− k.
Let {C1 · · · , Cs} be a basis of C(G) such that each Ci has length at most `. Let
{C ′1, · · · , C ′t} be the set of cycles in G/e which are obtained by contracting e on each
Ci and by removing triangles that contain e from the list. Then, t ≥ dim(C(G/e)) =

s− k (since at most k triangles have been removed) and each C ′i has length at most
`. We show that C ′1, · · · , C ′t are linearly independent in C(G/e), which proves that
they form a basis of C(G/e). For purpose of contradiction, let us assume that
C ′i1 ⊕ · · · ⊕ C ′ir = 0G/e for 1 ≤ i1 < · · · < ir ≤ s and r > 0, with 0G/e being the
trivial Eulerian subgraph of G/e with no edges (a.k.a., the neutral element of the
cycle space). Then Ci1⊕· · ·⊕Cir is either 0G or e, with 0G being the trivial Eulerian
subgraph of G with no edges. Therefore, the sum equals e since the Cij ’s are linearly
independent in C(G). This is a contradiction as (V (G), {e}) is not Eulerian. Hence,

108Chapter 3. Tree decompositions with metric constraints on the bags

since all cycles in the basis {C ′1, · · · , C ′t} have length at most `, it implies that
G/e ∈ G`.

Furthermore, by combining these two above properties (stability under contrac-
tion or addition of some edges), we obtain in our paper [CDN16] the following
lemma:

Lemma 60. For every G ∈ G`, any minimal separator S for G induces a connected
subset in its power Gb`/2c. In particular, the diameter of S in G is at most b`/2c ·
(|S| − 1).

Proof. By contradiction, let G ∈ G`, and let S be a minimal separator in G that
does not satisfy the property. We first make adjacent every two vertices in S that
are at distance at most b`/2c in G. We claim that the resulting graph still belongs
to G`. Indeed, we proved in [CDN16] that G` is stable under addition of an edge
between two vertices that are at distance at most b`/2c. Furthermore, adding an
edge cannot make the distances increase in the graph, so, we can use this stability
result for every edge added by the construction. Consequently, the resulting graph is
still in G`. Finally, we contract each connected component of the subgraph induced
by S in a single node, thus contracting S to obtain a stable set S′, and since G` is
proved to be stable under edge-contractions in Lemma 59, the resulting graph G′

still belongs to the class. Furthermore, the stable set S′ is a minimal separator in
G′ by construction. Since S does not satisfy the property of the theorem, we have
that all nodes in S′ are pairwise at distance at least bl/2c + 1 in G′. However, we
proved in [CDN16, Lemma 3.3] that for every graph in G`, minimal separators are
either cut-vertices or they contain two distinct vertices at distance at most b`/2c.
In particular, since the vertices in S′ are pairwise at distance at least bl/2c + 1 in
G′ by construction, it contradicts that G′ ∈ G`.

The above result improves upon [ASM16] and [DM15]. It is sharp, in the sense
that for every size k and for every ` ≥ 3, there exists a graph G ∈ G` with a minimal
separator of size k and diameter b`/2c · (k − 1) (e.g., see Figure 3.13).

Finally, Theorem 57 follows from our additional proofs in [CDN16] that all
graphs with isometric cycles of length at most ` belong to the class G`, and in
the same way all δ-hyperbolic graphs belong to G4δ+3, all graphs with a distance-
preserving ordering (resp., with a dismantling ordering) belong to G4 (resp., to G3).

Discussion. The main idea in this section is that for every G, tl(G) ≤ j · tw(G),
with j being the minimum index such that all minimal separators for G induce
connected subsets in its power Gj . This index satisfies j ≤ b`/2c for the graphs
in G`. In particular, the minimal separators for a graph G ∈ G3 induce connected
subsets of G, but not all graphs with this property belong to G3 [DLVM86]. The
latter result raises the following open question: does there exist a universal constant
` such that the class G` contains all graphs with connected minimal separators ?

3.5. Treewidth versus treelength! 109

3.5.3.2 Using the bidimensionality theory

For the upper bound, we sketch our approach and its limitations. First we observe
that treelength and treewidth are stable under edge-contractions. The bidimension-
ality theory [DH08] offers meta-theorems which, for maximization problems whose
solutions cannot increase under edge-contractions7, are the cornerstone of FPT algo-
rithms with subexponential dependency on the treewidth. On the theoretical point
of view, these meta-theorems are based on the property that a graph with large
treewidth can be edge-contracted to either a large complete graph or a large grid-
like minor. The latter result is a refinement of the well-known Excluded Grid Minor
Theorem from Robertson and Seymour [RST94].

We will use the same tools for proving our result on the relationship between
treelength and treewidth on bounded genus graphs. Precisely, we seek for a subclass
of graphs where this large obstruction to treewidth can also be shown to have a large
treelength, that will imply the desired upper-bound.

Discarding complete graphs. Complete graphs are the classical examples of
graphs with unbounded treewidth but bounded treelength. So, in order to get rid
of this first obstruction, it is natural to constrain ourselves to H-minor free graphs,
for some fixed graph H. Unfortunately, this is still not enough. Indeed, Fomin et
al. proved in [FGT11] that for every fixed H, an H-minor free graph with large
treewidth can be contracted either to some canonical partial triangulation of a large
square grid8, or to the same graph augmented with a universal vertex. We illustrate
these two cases with Figure 3.14. In the latter case, the obstruction has unbounded
treewidth and bounded treelength, which does not help our purposes.

Discarding grid-like obstructions with a universal vertex. The key observa-
tion is that this augmented partial triangulation of the grid (Figure 3.14b) is an apex
graph. We recall that every planar graph is the minor of a grid with large enough
dimensions [RS84]. Therefore, in the special case where H is a fixed apex-graph,
Fomin et al. were able to refine their results. Precisely, they proved in [FGT11] that
every apex-minor free graph with large treewidth can be contracted to the partial
planar triangulation of a large grid, that is depicted in Figure 3.14a.

Our contributions in [CDN16] is to prove that any such a partial triangulation
must have a large treelength. We do so by adapting some of the lower-bound
techniques for the treelength of grids in [DG07].

Lemma 61 ([CDN16]). Let G be a partially triangulated (r× r)-grid, then tl(G) ≥
br/3c − 1.

Proof. The result holds if r ≤ 3 because in such a case tl(G) ≥ 1 ≥ br/3c − 1.
Else, let G′ be the (r × r)-grid from which G is obtained by planar triangulation.

7Some results also have been obtained under different stability assumptions.
8A triangulation of a planar graph is a planar supergraph where all the faces are triangles.

Despite they share the same terminology, planar triangulations should not be confused with the
triangulations from Section 3.2.2 (chordal supergraphs).

110Chapter 3. Tree decompositions with metric constraints on the bags

(a) Canonical partial triangulation of a grid.
(b) Triangulation augmented with one uni-
versal vertex.

Figure 3.14: Contraction obstructions to bounded treewidth.

Let V ′ be the set of vertices that are at distance at least
⌊
r−1

3

⌋
from the external

face of G′. The vertices of V ′ induce a partially triangulated (r′ × r′)-grid F in G,
r = 2

⌊
r−1

3

⌋
+ r′, such that the external face has not been triangulated. Moreover,

F is isometric in G. Hence, tl(G) ≥ tl(F). We show that tl(F) ≥ br/3c − 1.
Our proof adapts from the lower-bound techniques in [DG07, Sec. 2.3]. Let

(T,X) be any tree-decomposition of F . Consider the two subsets of vertices A,B
that contain the first and the last row of F respectively. Since A induces a connected
subgraph of F , by the properties of tree decompositions the bags in X that intersect
A form a subtree TA of T . Similarly, the bags in X that intersect B form a subtree TB
of T . Furthermore, either TA ∩ TB 6= ∅ (in which case, the diameter of every bag in
TA∩TB is at least r′−1), or by [DG07, Lemma 5] there exists a bag which intersects
all paths between A and B in F . In the latter case, such bag must intersect the first
and last column of F , and so, it has diameter at least r′ − 1. Therefore, (T,X) has
length at least r′− 1 in both cases, that proves that tl(F) ≥ r′− 1 ≥ br/3c− 1.

Theorem 58 now follows.

We note that in [Epp00], Eppstein has proved that the apex-minor free graphs
are exactly the minor-closed families of graphs with treewidth upper-bounded by a
function of their diameter. Since treelength is upper-bounded by the diameter, our
result can be seen as a strict generalization of his.

3.6. Conclusion 111

3.6 Conclusion

I have been mainly interested in characterizing the complexity of computing tree
decompositions with metric constraints on their bags. On the parameterized point
of view, my results suggest that the hard instances for this family of problems are
graphs with a large clique-number or a large Hadwiger number (size of a largest
clique-minor). I insisted on this aspect when I discussed on the complexity of com-
puting the clique-decomposition in Section 3.3. Other examples from metric graph
properties studied in the literature support this observation. As an example, under
the Strong Exponential Time Hypothesis the diameter of a graph cannot be
computed in truly subquadratic time (see also Section 2.6.3). Hard instances for the
diameter computation problem are split graphs, a.k.a. graphs who vertex-set can be
bipartitioned into a clique and an independent set [BCH16].

Intuitively, the existence of a large clique makes the diameter lower in the graph,
with a shortest-path between most pairs of vertices passing by the clique. In a way,
it thus forces the distance distribution in the graph to be very simple. But at the
same time, it gives a larger degree of freedom on the adjacency relations for the
vertices out of the clique, in the sense that the edges incident to these vertices
shall not affect too much the distances in the graph. Since tree decompositions
must span the edge-set of the graph, it may be the case that complicated adjacency
relationships for the peripheral vertices render their computation intractable.

This above intuition has guided the hardness reductions in [DLN16a, DC17].
Hence, all the graphs resulting from the hardness reductions for treebreadth, path-
length and pathbreadth have a large clique-number or Hadwiger number. The
graphs resulting from the hardness reduction for treelength also satisfy this prop-
erty [Lok10]. What remains to explore in more details is whether large cliques and
clique-minors represent the only obstructions for an efficient computation of these
above parameters. Throughout my work, partial results have been obtained in this
direction. In particular, planar graphs and bipartite graphs with treebreadth one
can be recognized in polynomial time. I conjecture that more generally, graphs of
treebreadth one with bounded clique-number can be recognized in polynomial time.

However, the above example of bipartite graphs shows that a similar conjecture
does not hold true for the more general problem of computing the treebreadth.
Indeed, we prove in [DLN16a] that the NP-complete problem of recognizing general
graphs with treebreadth one can be reduced to the problem of recognizing bipartite
graphs with treebreadth at most two. The latter result suggests that the existence
of a large clique-minor suffices to render the problem intractable.

Planar graphs are K5-minor free, and we are currently exploring whether com-
puting the treelength is fixed-parameter-tractable on this class of graphs. Precisely,
we are investigating whether we can adapt the algorithm from Bodlaender and
Kloks [BK96] to our needs. This work has been started recently during the intern-
ship of Simon Nivelle with Nicolas Nisse. I conjecture that computing the treelength
of a graph G is FPT when it is parameterized by tl(G) + tw(G). Moreover, it is
my opinion that we may be helped in proving this with the relationships between

112Chapter 3. Tree decompositions with metric constraints on the bags

treelength and treewidth in Section 3.5. Similar ideas can be found in [DFG11].
However, I conjecture that the problem of computing the treelength remains NP-
complete on planar graphs. This conjecture is motivated by a hardness result on
the problem of deciding on the existence of tree t-spanners in these graphs [FK01].
Proving or disproving this conjecture would make advance our understanding on the
structure of bounded treelength graphs.

Part II

Privacy at large scale in social
graphs

115

Unlike the previous part, the focus in the next two chapters is on dynamic
processes on networks. The rules of these dynamics cause certain paths between the
vertices to appear or to disappear, hence they impact on the information propagation
in the graph. Our general purpose is to predict the outcome of these dynamics.

• Chapter 4 presents new results on the computation of equilibria for a large
family of graphical games, that are exemplified by coloring games. Note that
equilibria for these games have been proposed in [KL13] as a solution concept
for the dynamics of communities in social graphs.
• Chapter 5 introduces a new model in order to detect the targeting of (poten-

tially sensitive) data by an online advertiser, and to learn which data causes
the reception of a given ad. Targeting can be regarded as a dynamic process
on an “adgraph” [AMM10]: built from the data inputs and the ad allocation
protocols.

Chapter 4

The computation of equilibria in
coloring games

Summary

We establish new complexity results for computing k-strong Nash equilibria in col-
oring games. These results are partly generalized to some other graphical games.

In Section 4.3, we prove that for every fixed k ≥ 1, it can be computed a k-
strong Nash equilibrium for every coloring game with a better-response dynamic.
We give the exact worst-case (polynomial) time of convergence for k ≤ 2, that we
prove through an original connection between the executions of the better-response
dynamics and the chains (directed paths) in a DAG called the Dominance lattice.
However, for every k ≥ 4, we prove that the better-response dynamic converges
in superpolynomial time in the worst-case. The latter result disproves a conjecture
from [KL13, EGM12] that for every k ≥ 1, this dynamic converges in polynomial
time.

Then, in Section 4.4, we establish new results on the parallel and space complex-
ity of computing a Nash equilibrium in coloring games. Precisely, we prove that this
problem (that is polynomial-time solvable) is PTIME-hard under NC-reductions.
This is hint that computing a Nash equilibrium in these games is a problem in-
herently sequential, that cannot be solved within limited (logarithmic) workspace,
neither with an “efficient” distributed algorithm: with low local computational time
and communication complexity.

In Section 4.5, we put the focus on a generalization of coloring games to edge-
weighted graphs, sometimes called the additively separable symmetric Hedonic
games. We give sufficient conditions for these games to admit a k-strong Nash
equilibrium. Then, we prove that for every k ≥ 2, and for every fixed set of edge-
weights W, the following dichotomy results holds true: either all the games played
on a graph with edge-weights in W admit a k-strong Nash equilibrium, or the cor-
responding decision problem is NP-complete.

Finally, a broader set of graphical games, generalizing coloring games in their
own way, is introduced in Section 4.6. For each of those, we discuss on the extent
to which our results for coloring games still apply.

My papers on coloring games and their generalizations [DMC12, DMC13a,
DMC17, Duc16] are collected in the appendix.

118 Chapter 4. The computation of equilibria in coloring games

Contents
4.1 Introduction . 118

4.1.1 Presentation of coloring games 119
4.1.2 Contributions . 121

4.2 Definitions . 123
4.2.1 Stable partitions and better-response dynamics 124
4.2.2 Friendship and conflict graphs 125

4.3 Unweighted games: the time of convergence for better-
response dynamics . 125

4.3.1 A finer-grained complexity for the problem of computing k-
stable partitions . 126

4.3.2 Closed formula for the worst-case time of convergence of
better-response dynamics (k ≤ 2) 127

4.3.3 Lower-bounds for the worst-case time of convergence of better-
response dynamics (k ≥ 4) . 131

4.4 The parallel complexity of coloring games 137
4.4.1 Overall approach and main result 137
4.4.2 The reduction . 138
4.4.3 Proof of the main result . 142

4.5 Weighted games: existence of equilibria 146
4.5.1 Positive results . 147
4.5.2 The hardness of recognizing games with k-stable partitions . 148

4.6 Extensions of coloring games 153
4.6.1 Gossiping . 153
4.6.2 Asymmetry . 154
4.6.3 List coloring games . 155
4.6.4 Coloring games on hypergraphs 156

4.7 Concluding remarks . 156

4.1 Introduction

In this chapter, we aim at better understanding how the rules of the dynamics affect
the privacy of the users’information in social graphs, that is defined in [EDP] as “a
right which prevents public authorities from measures which are [invasive for the
respect of private life], unless certain conditions have been met.” Formal definitions
of this notion of privacy, in game-theoretic terms, can be found, e.g., in [Dwo08].
Note that if we consider a communication network such as a social graph, private
information flows through the edges of the graphs. Hence, one important aspect in
the study of privacy in these networks can be informally summarized at detecting
where the information can be accessed to in the graph over time. As a partial answer
to this question, we will study coloring games on graphs in this chapter.

Precisely, our aim is to compute equilibria for those games, that have been pro-
posed in [KL13] as a solution concept for the outcome of the communities formation

4.1. Introduction 119

process in social networks. Coloring games and some basic definitions for this chap-
ter will be presented in Section 4.1.1. Then, the content of this chapter will be
described in Section 4.1.2. In particular, in what follows, full definitions are given
in Section 4.2, while the technical sections range from Sections 4.3 to 4.6.

4.1.1 Presentation of coloring games

A coloring game is played on an undirected graph with each vertex being an agent
(formal definitions will be restated with details in Section 4.2). Agents must choose
a color in order to construct a proper coloring of the graph, and the individual
goal of each agent is to maximize the number of agents with the same color as
hers. On a more theoretical side, coloring games have been introduced in [PS08] as
a game-theoretic setting for studying the chromatic number in graphs. Precisely,
the authors in [PS08] have shown that for every coloring game, there exists a Nash
equilibrium where the number of colors is exactly the chromatic number of the graph.
Since then, these games have been rediscovered many times, attracting attention on
the way in the study of information sharing and propagation in graphs [CKPS10,
EGM12, KL13].

4.1.1.1 Some applications of coloring games

Distributed coloring in graphs. In particular, the authors in [CKPS10] base on
coloring games in order to design distributed algorithms for coloring a graph, with
applications to the frequency assignment problem and the design of sleep/awake
protocols in Wireless Sensor Networks. The latter protocols are the cornerstone
of energy saving methods in these networks, and they also serve as a routine for
securing group communications.

Later on, in part motivated by the above applications, the authors in [MW13]
presented a unifying framework for the so-called “distributed” welfare games. The
goal with these games is to encode the solutions of a distributed resource allocation
problem as the Nash equilibria of a given graph game. They are specified by as-
signing each agent an admissible utility function to optimize. Coloring games have
been shown to fit in this generic framework.

Modeling of community formation in social networks. More recently, col-
oring games have been proposed in order to model community formation in social
networks [KL13]. Indeed, let us assume that each community results from a group
of users sharing about some information topic. Let us also assume for simplicity
that each user shares about a given topic in only one community1. Therefore, given
a fixed topic, communities partition the users. The dynamics of these communities
is modeled with a coloring game, that is played on a “conflict graph” where each
edge represents a conflicting opinion between two users.

1Note that by doing so, existing correlations between communities that are related to different
topics are neglected [KBSP16].

120 Chapter 4. The computation of equilibria in coloring games

This representation may be confusing because the communities are densely con-
nected subsets in the social graph, whereas here in the coloring game they correspond
to color classes, and so, to independent sets of the conflict graph. In this context,
it may be more natural to define the game on the complement of the conflict graph:
agents must construct a clique partition of this graph, and the individual goal of
each agent is to maximize the size of her clique (see Figure 4.1 for an illustration).

0

1 2

2 1

(a) A coloring game played on a graph
G. Agent are labeled with their colour.

0

1 2

2 1

(b) The corresponding clique partition
in the complement of G.

Figure 4.1: Dual representations for coloring games.

Generalizations of coloring games have been proposed in the literature [ABK+16,
BZ03, MW13]. In this chapter, we are particularly interested in a subclass of He-
donic games [Bal04], sometimes called the additively separable symmetric Hedonic
games [BZ03]. We will call them generalized coloring games because, as shown
below, they are a proper extension of the classical coloring games. A generalized
coloring game is played on an edge-weighted graph, with each vertex being an agent.
As before agents must choose a color, and the individual goal of each agent is now
to maximize the sum of the weights of the edges that are incident to herself and to
another agent with the same color as her.

Formally, let G = (V,E,w) be an edge-weighted graph with w : E → Q∪{−∞}
be its weight function. A coloring c : V → N of G is a partition of its vertex-set with
each class (or group) being assigned a distinct integer, and for every vertex v ∈ V
we denote by c(v) the integer corresponding to her group, also known as her color.
Then, in the generalized coloring game that is played on G, the vertices of G are
the agents of the game, and the strategy of an agent is her color. Every agent v ∈ V
aims at maximizing her utility function

∑
u∈NG(v)|c(u)=c(v)

wuv. We refer to Figure 4.2

for an illustration.
Note that every coloring game that is played on an unweighted graph G− can be

transformed into a generalized coloring game, by creating an edge-weighted complete
graph with vertex-set V (G−) where the edges of G− have weight −∞ and the
nonedges of G− have unit weight.

=⇒ From now on, we will assume the classical coloring games to be defined this

4.1. Introduction 121

way, and all the definitions will be directly given for generalized coloring games.

4.1.2 Contributions

Our main purpose is to characterize the complexity of computing stable partitions
for generalized coloring games. Those are configurations where no small subset of
agents have an incentive to change their current strategy for the same new color.
On a social network point of view, stable partitions ensure that no small coalition
of users have an incentive to leave their current community for another one, thus
preventing information leakage from a community to another.

More precisely, we carefully control the maximum size k of such a subset, and
we aim at computing k-stable partitions, a.k.a. configurations of the game where no
k-subset of agents have an incentive to deviate from their current strategy (e.g., see
Figure 4.3 for an illustration). Note that 1-stable partitions are exactly the Nash
equilibria of the game.

Formally, for any G = (V,E,w) and c : V → N, a k-deviation w.r.t. c is any
subset S ⊆ V with |S| ≤ k that satisfies the following property: there exists some
color i ∈ N so that, for every v ∈ S, we have c(v) 6= i and:

∑

u∈NG(v)|c(u)=c(v)

wuv <
∑

u∈NG(v)|u∈S
wuv +

∑

u∈NG(v)|c(u)=i

wuv.

The coloring c represents a k-stable partition if there is no k-deviation w.r.t. c2.

We now describe our contributions in more details. Positive and negative results
are obtained on the complexity of computing k-stable partitions for the classical (non
generalized) coloring games with better-response dynamics (Section 4.1.2.1) and
parallel or space efficient algorithms (Section 4.1.2.2). Our results on the existence of
k-stable partitions in generalized coloring games are summarized in Section 4.1.2.3.
Extensions of all these results to broader classes of games are finally announced in
Section 4.1.2.4.

4.1.2.1 Convergence of better-response dynamics for coloring games

The first two technical sections (Sections 4.3 and 4.4) are devoted to (non gener-
alized) coloring games. In particular, Section 4.3 is devoted to the computation of
k-stable partitions for these games.

In [KL13], Kleinberg and Ligett prove that every coloring game with n agents
admits a partition that is k-stable for every k ≤ n, but that it is NP-hard to compute
one (this result was also proved independently by Escoffier et al. [EGM12]). Indeed,
a largest group in such a partition must be a maximum independent set of the
underlying graph. In contrast, it can be computed a k-stable partition in polynomial

2There is a more general notion of k-deviations where the agents deviating from their current
strategies are not imposed to choose the same color i. However, as shown in [EGM12] for any (non
generalized) coloring game, there exists such a k-deviation if and only there is one where the at
most k agents deviating choose the same color i.

122 Chapter 4. The computation of equilibria in coloring games

time for every fixed k ≤ 3, by using simple better-response dynamics [PS08, EGM12,
KL13] that we will describe next. The latter results question the role of the value
of k in the complexity of computing stable partitions.

Formally, a better-response dynamic proceeds as follows. We start from a trivial
coloring of the graph where all the vertices have a different color and then, as long
as there exists a k-deviation w.r.t. the current coloring, we pick any one of these
k-deviations S and we assign a same new color i to all the vertices in S so that they
strictly increase their respective utility function.

We prove in Section 4.3 that better-response dynamics can be used for comput-
ing a k-stable partition for every fixed k ≥ 1 (but not necessarily in polynomial
time). It shows already that for every fixed k ≥ 1, the problem of computing a
k-stable partition is in the complexity class PLS (Polynomial Local Search), that is
conjectured to lie strictly between P and NP [JPY88].

Then, we relate the time of convergence of better-response dynamics with a
combinatorial object that is called the Dominance lattice [Bry73], thereby obtain-
ing a closed formula for the worst-case time of convergence of the better-response
dynamics for k ≤ 2. Finally, we will show how lower-bounds on the time of conver-
gence for the better-response dynamics can be obtained for larger values of k. These
bounds are obtained with a new representation of the Dominance lattice, that I will
briefly sketch. In particular, the main result in this section is that for every fixed
k ≥ 4, better-response dynamics converge in superpolynomial time Ω(nΘ(logn)) in the
worst-case. The latter result disproves conjectures of Kleinberg and Ligett [KL13]
and Escoffier et al. [EGM12] that better-response dynamics always converge in poly-
nomial time for every fixed k.

This is joint work with Dorian Mazauric and Augustin Chaintreau.

4.1.2.2 The parallel complexity of coloring games

The negative results of Section 4.3 do not preclude the possibility that a k-stable
partition can be computed in polynomial time for every fixed k ≥ 4. For instance,
this could be achieved by using a different dynamic. In order to better understand
the complexity of this problem, I gave a closer look at the simpler (polynomial-time
solvable) problem of computing a Nash equilibrium in coloring games.

More precisely, I investigate in Section 4.4 on the parallel and space complexity
of computing a Nash equilibrium in these games. This aspect is also important
when considering the applications of coloring games: to serve as a basis for dis-
tributed algorithms or to model the social behaviour of users with limited memory
and computing power.

I prove in Section 4.4 that the problem of computing a Nash equilibrium in
coloring games is PTIME-hard under logspace reductions. The latter result sug-
gests that this problem is inherently sequential, and that it cannot be solved within
limited (logarithmic) workspace under the well-established complexity assumption
PTIME 6= LOGSPACE.

4.2. Definitions 123

4.1.2.3 Existence of stable partitions for generalized coloring games

We also study in Section 4.5 the existence of k-stable partitions in generalized color-
ing games, and on the complexity of the related decision problem. So far, it has been
proved in [BZ03] that every generalized coloring game admits a Nash equilibrium.
However, computing one is a PLS-complete problem. This complexity comes from
the fact that edge-weights may be arbitrary. In Section 4.5, we fix in advance a set
of admissible edge-weights W. We investigate on how the choice of W impacts on
the existence of stable partitions.

The main result in this section, found in collaboration with Dorian Mazauric
and Augustin Chaintreau, is that for every fixed W, there exists a sharp threshold
k(W) (possibly, k(W) = +∞) such that the following dichotomy result holds true:
• every coloring game that is played on a graph with edge-weights in W admits

a k-stable partition for every fixed k ≤ k(W);
• however, for every fixed k > k(W), deciding on the existence of a k-stable

partition for these games is an NP-complete problem.
This sharp threshold is explicitly given for most setsW. We complement this result
with preliminary relationships between the existence of stable partitions and the
structure of the underlying graph on which the game is played.

4.1.2.4 Generalization to other games

Finally, in Section 4.6 we discuss on more general games that also extend the coloring
games, some of them have been already defined and studied in the literature with
a slightly different terminology [KL13, DP94, BZ03]. We show that most of our
results from the two previous Sections 4.3 and 4.5 can be extended to those games.

The results that are presented in Sections 4.3, 4.5 and 4.6 are grouped in a
paper [DMC17] that has been submitted to SIAM Journal of Discrete Mathemat-
ics (see also [DMC13a, DMC13b]). Results summarized in Section 4.4 have been
published independently in [Duc16].

4.2 Definitions

We refer to [OR94, Mye13] for the basics of game theory. In what follows, we restate
the formal notions given in the introduction with more details.

Let G = (V,E,w) be an edge-weighted graph, with w : E → Q ∪ {−∞} be its
weight function. We may assume that G is a clique by replacing the nonedges with
null-weight edges, and so, we will write G = (V,w) in what follows. An arbitrary
partition of the vertices in G is named a coloring. Each group of the partition defines
a color.

Every graph G defines a generalized coloring game whose agents are its vertices.
Configurations of this game are the colorings of G. In particular, the strategy of
an agent is her color. Furthermore, given a configuration of the game, every agent

124 Chapter 4. The computation of equilibria in coloring games

3

2

1

5

7

2

5

3

4

12

9

7

Figure 4.2: A bicoloring of a graph G = (V,w). Agents that are represented by
a circle (resp., by a square) have the same color. Red dashed edges have negative
weight −∞, while green continuous edges are labeled with their (positive) weight.
Furthermore, each agent is labeled with her payoff.

v ∈ V (G) receives payoff
∑

u∈V \v|c(u)=c(v)

wuv, with c(u) being the color of u. We refer

to Figure 4.2 for an illustration.

Let us point out that classically, the non generalized coloring games are defined
on an unweighted graph that is obtained from G by removing all edges with positive
weight. We shall come back to this point later on in the section.

4.2.1 Stable partitions and better-response dynamics

Let us fix a configuration of the (generalized) coloring game that is played on G. A
subset S ⊆ V (G) with |S| ≤ k is a k-deviation if it can be assigned a same color
to all the agents in S (different from their current color) so that their respective
payoff is increased. Examples of 2-deviations are provided with Figure 4.3. When
no k-deviation exists, we call the configuration a k-stable partition. The k-stable
partitions correspond to the notion of k-strong Nash equilibria. In particular, 1-
stable partitions correspond to the classical notion of Nash equilibria. Note that a
k-stable partition might fail to exist, as shown with Figure 4.3.

The following better response dynamics are a classical approach in order to com-
pute stable partitions. They are used in [KL13] in order to model the social choices
of users in the community formation process.

Let k ≥ 1 be fixed. We start from a trivial configuration where each agent has a
different color. Then, as long as there exists a k-deviation, we pick any existing k-
deviation S and we assign a same color c to all the agents in S so that they increase
their respective payoff. Let us point out that c can be either a new colour (we make
of S a new color class) or a color already assigned to some other agents not in S

(we make the agents in S part of an existing color class). Furthermore, if this above
dynamic converges then it stops on a k-stable partition.

4.3. Unweighted games: the time of convergence for better-response
dynamics 125

> 0

Edges Weights
- ∞

u1

u2 u3

v3 v2

v1

2

2 2

3

4

4

3

3

4

u1

u2 u3

v3 v2

v1

2

2 2

3

4

4

3

3

4

u1

u2 u3

v3 v2

v1

2

2 2

3

4

4

3

3

4

(a) (b)

(c)

Figure 4.3: A graph G = (V,w) with set of edge-weights W = {−∞, 2, 3, 4}. The
coloring game played on G does not admit any 2-stable partition. Indeed, we here
represent its 1-stable partitions, none of which is a 2-stable partition.

4.2.2 Friendship and conflict graphs

Finally, given an edge-weighted graph G, we define two unweighted graphs whose
properties will be shown to be related to the properties of the generalized coloring
game that is played on G.
• The friendship graph G+ has for vertex-set V (G) and for edge-set the edges of
G with positive weight;
• Similarly, the conflict graph G− has for vertex-set V (G) and for edge-set the

edges of G with negative weight.
As an example, given G = (V,w) in Figure 4.2, the friendship graph G+ is a

disjoint union of two triangles, and the conflict graph G− is a complete bipartite
graph K3,3.

Let us consider the particular case where the edges of G have weight either 1 or
−∞. In this situation, stable partitions for the coloring game that is played on G
are proper colorings of the conflict graph G−, a.k.a. colorings where no two adjacent
vertices are assigned the same color. This justifies the terminology of coloring games.

4.3 Unweighted games: the time of convergence for
better-response dynamics

The next two sections are devoted to the particular case of (non generalized) coloring
games, i.e., when the edge-weights of the underlying graph belong to {−∞, 1}.

126 Chapter 4. The computation of equilibria in coloring games

Classically [PS08, CKPS10, KL13, EGM12], these games are assumed to be played
on the conflict graph G− that is induced by the edges weighted −∞. In particular,
the goal of each agent is to construct a proper coloring of G− while maximizing
the number of agents with the same color as herself. Since the conflict graph is
unweighted, we will sometimes call these games the unweighted coloring games in
what follows.

Our purpose in this section is to (partly) characterize the complexity of comput-
ing a k-stable partition for these games, for every fixed k. Indeed, Kleinberg and
Ligett [KL13] proved that for every k, every unweighted game admits a k-stable
partition. However, finding a coloring that is a k-stable partition for every k is an
NP-hard problem. In what follows, we will subdivide our contributions in three
parts. Each part is devoted to the proofs of upper and lower bounds on the time of
convergence for better-response dynamics.
• We first prove in Section 4.3.1 that for every fixed k ≥ 1, better-response dy-

namics always converge to a k-stable partition. We discuss on the consequences
of this result on the complexity of computing k-stable partitions.
• Then, we obtain in Section 4.3.2 the exact worst-case time of convergence for
k ≤ 2.
• Finally, we prove in Section 4.3.3 that better-response dynamics converge in
superpolynomial time as soon as k ≥ 4. The latter result answers negatively to
an open question from [KL13, EGM12].

4.3.1 A finer-grained complexity for the problem of computing k-
stable partitions

First, we prove that when applied to unweighted games, better-response dynamics
always converge. Then, we discuss about the implications of this result on the
complexity of computing a k-stable partition.

The following proof makes use of a partition vector, first introduced in [CKPS10].

Definition 62. Given a proper coloring of G−, let λi be the number of colors ci so
that exactly i agents are colored by ci. We denote by

−→
Λ = (λn, . . . , λ1) the partition

vector of the coloring.

As an example, suppose that G− is a complete bipartite graph with two sides
of respective size n1 and n2, and we color all vertices on a same side with the
same color. If n1 = n2 then λn1 = 2 and for every i 6= n1, λi = 0. Otherwise,
λn1 = λn2 = 1, and for every i /∈ {n1, n2}, λi = 0.

Lemma 63. For any (conflict) graph G−, let us consider the unweighted game that
is played on G−. Then, for every k ≥ 1, the better-response dynamic applied to this
game converges to a k-stable partition.

Proof. At each time we modify the current coloring of G−, we also modify the
corresponding partition vector

−→
Λ . So, in order to prove that the better-response

4.3. Unweighted games: the time of convergence for better-response
dynamics 127

dynamic converges, it suffices to prove that
−→
Λ′, obtained after the coloring has

changed, is lexicographically greater than
−→
Λ . Let us prove this by fixing a k-

deviation S (w.r.t. the current coloring). After the coloring has been changed
– with respect to S –, all vertices in S have strictly increased their payoff. For
unweighted games, this is equivalent to have all vertices in S increase the number of
agents with the same color as theirs. In particular, let c be the color assigned to all
the agents in S, and let j be the number of agents colored c before the coloring has
been changed. By the hypothesis, the change of coloring results in j + |S| vertices
colored c. So, we get

−→
Λ′−−→Λ = (0, . . . , 0, λ′j+|S|−λj+|S| = 1, . . .), and so,

−→
Λ <Lex

−→
Λ′.

Finally, as the number of possible vectors is finite, we obtain the convergence of the
better-response dynamic.

Next, we discuss on the consequences of Lemma 63 on the complexity of comput-
ing k-stable partitions for unweighted games. Informally, an optimization problem
is in PLS (Polynomial Local Search) if an optimal solution can be computed with
a local-search algorithm, i.e., an algorithm converging to an optimal solution by
repeatedly improving a current solution with a slight pertubation of it3. Lemma 63
proves that for every fixed k, the problem of computing a k-stable partition for
unweighted games is in PLS. This complexity class is strictly included in NP unless
NP=coNP [JPY88].

Hence, to summarize this subsection, we have improved the best-known results
on the complexity of computing a k-stable for unweighted games, for every fixed k.

4.3.2 Closed formula for the worst-case time of convergence of
better-response dynamics (k ≤ 2)

Polynomial-time solvable problems are conjectured to be strictly contained in
PLS [JPY88]. In this section, we are interested in characterizing for which val-
ues of k the problem of computing a k-stable partition is in P. As a partial answer
to this question, we aim at characterizing for which values of k the corresponding
better-response dynamic converges within a polynomial number of steps.

It was proved in various papers [PS08, KL13, EGM12] that better-response dy-
namics converge in polynomial-time for every fixed k ≤ 3. The proofs in these
papers rely on a potential function argument. We now give an alternative proof of
this result for the case k ≤ 2. It is based on a more combinatorial argument and it
allows us to obtain the exact worst-case time of convergence.

Theorem 64. Let G− be an n-vertex conflict graph. We consider the unweighted
game that is played on G−. Let m and r be the unique non negative integers such
that n = m(m+1)

2 + r, and 0 ≤ r ≤ m.
Then, for every k ≤ 2, the better-response dynamic applied to this above game

converges to a k-stable partition within no more than 2
(
m+1

3

)
+mr ∼ 2

√
2

3 n
√
n steps.

3Each step of the algorithm takes polynomial time, but the number of steps may be superpoly-
nomial.

128 Chapter 4. The computation of equilibria in coloring games

Moreover this worst-case upper-bound is reached if the conflict graph G− has no
edges.

The remaining of this subsection is devoted to the proof of Theorem 64.

At first glance, it might look counter intuitive that the worst-case convergence
time of the dynamic is reached for the edgeless conflict graph. Indeed, when the
conflict graph has no edges there is a unique stable partition, with all agents having
the same color. However, this can be better understood by noticing that every
proper coloring of a conflict graph G− is also a proper coloring of the edgeless
conflict graph G∅ with same vertices. In particular, if we color accordingly G− and
G∅ then a k-deviation for G− is also a k-deviation for G∅. It directly follows from
this observation that the worst-case convergence time for better-response dynamics
is always reached with G∅.

The proof of Theorem 64 also makes use of partition vectors. As for Lemma 63,
we show that every time the coloring is changed by using a 1-deviation (resp.,
a 2-deviation), the corresponding partition vector increases with respect to some
ordering. However, in order to prove a polynomial upper-bound for the time of
convergence, we cannot use anymore the lexicographical ordering, since it is a total
ordering and the number of partition vectors is superpolynomial [HW79]. Instead,
we will use a partial ordering that was introduced by Brylawski in [Bry73], in a
somewhat different context.

Integer partitions. We first observe that when the game is played on an n-vertex
conflict graph, each partition vector of its colorings defines a unique way to write n
as a sum of positive integers. The latter means that partition vectors are in bijective
correspondance with the nonincreasing sequences of n nonnegative integers whose
terms sum up to n. More precisely, every vector

−→
Λ is related to the nonincreasing

sequence Q(
−→
Λ), with its n −∑n

i=1 λi lowest terms equal to zero, and exactly λi
terms equal to i for every 1 ≤ i ≤ n. These sequences are called integer partitions
in the literature [Bry73, HW79].

Dominance ordering. Brylawski has defined an ordering over the integer parti-
tions, sometimes called the dominance ordering [Bry73]. Namely, given two parti-
tions, one is greater than the other if and only if for every 1 ≤ i ≤ n, the sum of
its i largest terms is greater than or equal to the sum of the i largest terms of the
other. The latter ordering is a direct application of the theory of majorization to
integer partitions [OM16].

For instance, let us consider two trivial colorings of G∅: one with every agent
having a different color, and another with every agent having the same color. In
the first case, the partition vector is

−→
Λ = (0, . . . , 0, n) so that λ1 = n and λi = 0

for every i > 1; in the second case, the partition vector is
−→
Λ′ = (1, 0, . . . , 0) so

that λ′n = 1 and λ′i = 0 for every i < n. The corresponding integer partitions
are Q(

−→
Λ) = (1, 1, 1, . . . , 1) and Q(

−→
Λ′) = (n, 0, 0, . . . , 0). In particular, the i largest

4.3. Unweighted games: the time of convergence for better-response
dynamics 129

terms of Q(
−→
Λ′) always equal n, whereas the i largest terms of Q(

−→
Λ) equal i ≤ n.

Hence,
−→
Λ′ is greater than

−→
Λ w.r.t. the dominance ordering.

Relationship with 2-deviations. The dominance ordering gives rise to a lattice
on the integer partitions. Furthermore, it has been proved in [GK86] that a longest
chain in this lattice has length 2

(
m+1

3

)
+ mr, with m and r being the unique non

negative integers such that n = m(m+1)
2 + r, and 0 ≤ r ≤ m. Therefore, in order to

prove Theorem 64 we have been left to prove a correspondance between the valid
sequences of 2-deviations in G∅ and the chains of integer partitions in the Dominance
lattice. Note that this correspondance holds true only for the edgeless conflict graph
G∅. Below, we first prove this correspondance in the case of 1-deviations.

Lemma 65. Assuming G− = G∅ is edgeless, let Q,Q′ be two integer partitions of
n = |V |.

Then, Q′ dominates Q if and only if there exist two colorings c, c′ of G− with
respective partition vectors

−→
Λ and

−→
Λ′ such that: Q(

−→
Λ) = Q, Q(

−→
Λ′) = Q′, and there

is a valid sequence of 1-deviations from c to c′.

Proof. (⇒) Suppose that Q′ dominates Q. We may assume w.l.o.g. that there is no
intermediate integer partition Q′′ such that Q′ dominates Q′′ and Q′′ dominates Q.
Indeed, then we can prove the result in general by induction on the length of a longest
chain from Q to Q′. In this situation, we say that Q′ covers Q. Brylawski [Bry73]
has proposed a combinatorial characterization of the covering relation. Precisely, Q′

covers Q if and only if there exist indices j, k satisfying:
• k = j + 1 or qj = qk;
• q′j = qj + 1, q′k = qk − 1, and for all i such that i /∈ {j, k}, q′i = qi.

In particular, since k = j + 1 or qj = qk, we get qj ≥ qk.
Let c be any coloring with partition vector

−→
Λ , so that Q(

−→
Λ) = Q. We order

the color classes by nonincreasing size, naming Li the ith largest class, in a way so
that |Li| = qi. Then, we pick any v ∈ Lk, that exists since |Lk| = qk > 0. Since
by construction there are |Lj | = qj ≥ qk agents with color j, and there is no edge
incident to v and to another agent with color j by the hypothesis, therefore, we can
increase the payoff of v by changing her color for j. By doing so, we obtain a new
coloring c′ with partition vector

−→
Λ′ such that Q(

−→
Λ′) = Q′.

Conversely, (⇐) let c and c′ be two colorings with respective partition vectors
−→
Λ and

−→
Λ′ such that Q(

−→
Λ) = Q and Q(

−→
Λ′) = Q′. Assume that c′ can be obtained

from c after a 1-deviation. In particular, let v change her color. We can order the
color classes by nonincreasing size, naming Li the ith largest class, in a way so that:
• v changes her color c(v) = k for c′(v) = j, with j ≤ k;
• every color class Li, i < j, has size |Li| > |Lj |;
• every color class Li, i > k, has size |Li| < |Lk|.

Note that Q = (|L1|, |L2|, . . . , |Lj |, . . . , |Lk|, . . . , |Ln|) by construction. In particular,
Q′ is such that q′i = qi = |Li| if i /∈ {j, k}, and q′j = |Lj | + 1, q′k = |Lk| − 1. As a

130 Chapter 4. The computation of equilibria in coloring games

consequence, we have that Q′ dominates Q by the hypothesis. Note that this second
part of the proof holds for any conflict graph G−.

To complete the proof of Theorem 64, we need to show that 2-deviations cannot
make the time of convergence of the dynamic increase. We prove this below with a
finer-grained analysis of the partition vectors that are obtained after 2-deviations.

Lemma 66. Assuming G− = G∅ is edgeless, let Q,Q′ be two integer partitions of
n = |V |. Suppose that there exist two colorings c, c′ of G− with respective partition
vectors

−→
Λ and

−→
Λ′ such that: Q(

−→
Λ) = Q, Q(

−→
Λ′) = Q′, and c′ is obtained from c

after a 2-deviation. Then, Q′ dominates Q.

Proof. Let S = {u, v} be a 2-deviation w.r.t. c so that c′ is obtained from c by
assigning a same color j to u and v. Furthermore, let i = c(u) and let i′ = c(v).
In what follows, we denote by Li, Li′ , Lj the color classes of c that correspond,
respectively, to the colors i, i′ and j.

We note that if |Lj | ≥ |Li| then u can increase her payoff by changing her current
color i for j. In this situation, c′ can be obtained from c after a sequence of two
1-deviations, with u followed by v changing their respective colors for j sequentially.
Therefore, Q′ dominates Q by Lemma 65. Similarly, if |Lj | ≥ |Li′ | then c′ can be
obtained from c by changing the respective colors of v then u for color j sequentially.
Therefore, we also have in this case that Q′ dominates Q by Lemma 65. From now
on, let us assume that |Lj | = |Li| − 1 = |Li′ | − 1. There are two cases to be
considered:
• Suppose that i = i′. Then the numbers of agents colored by i and j in c′ are

respectively |Li \ {u, v}| = |Li| − 2 and |Lj ∪ {u, v}| = |Lj | + 2 = |Li| + 1.
In particular, another coloring c′′ can be obtained from c with a 1-deviation
as follows. We pick any agent uj ∈ Lj and we make her payoff increase from
|Lj | − 1 = |Li| − 2 to |Li| = |Lj | + 1 by changing her current color j for i.
By doing so, the coloring c′′ so obtained has the same partition vector as c′.
Therefore, since c′′ is obtained from c after a 1-deviation, Q′ dominates Q by
Lemma 65.
• Otherwise, i 6= i′. Then the numbers of agents colored by i, i′ and j in c′

are respectively |Li \ {u}| = |Li| − 1, |Li′ \ {v}| = |Li′ | − 1 = |Li| − 1 and
|Lj ∪ {u, v}| = |Lj | + 2 = |Li| + 1. Again, another coloring c′′ with the same
partition vector as c′ can be obtained from c after a 1-deviation, this time
by modifying the color of v from i′ to i. Since c′′ is obtained from c after a
1-deviation, Q′ dominates Q by Lemma 65.

By Lemma 66, the maximum number of consecutive 2-deviations in better-
response dynamics is upper-bounded by the length of a longest chain in the Dom-
inance lattice. Since Lemma 65 proves that it can be obtained a sequence of 1-
deviations with exactly this length, Theorem 64 follows.

4.3. Unweighted games: the time of convergence for better-response
dynamics 131

Perspectives. In [PS08], Panagopoulou and Spirakis proved that for every conflict
graph G− with independent number α(G−), the better-response dynamic converges
to a Nash equilibrium within O(n · α(G−)) steps. This improves upon the upper-
bound of Theorem 64 for the graphs with independent set α(G−) = o(

√
n). I con-

jecture that the worst-case time of convergence of the dynamic is an O(n ·
√
α(G−)),

that would be the best possible.

4.3.3 Lower-bounds for the worst-case time of convergence of
better-response dynamics (k ≥ 4)

Finally, on the negative side we lower-bound the worst-case running-time of better-
response dynamics for k = 4. It has been conjectured in [EGM12] that in the case
of unweighted games, better-response dynamics always converge in polynomial time
for every fixed k. Our results for k = 4 disprove this conjecture.

Theorem 67. Let G∅ be an edgeless conflict graph with n vertices. We consider the
unweighted game played on G∅.

Then, for every k ≥ 4, better-response dynamics applied to this above game
converge in Ω(nΘ(logn)) steps in the worst-case.

Due to its high level of technicality, the proof of Theorem 67 will be only sketched
in what follows. The full proof can be found in [DMC17].

4.3.3.1 Cascade sequences: overview

In order to give a flavor of the method, let us consider some coloring of G∅, with
partition vector

−→
Λ so that λp ≥ 4 and λp−3 ≥ 1 for some p. We take a subset S

of four agents, each with a distinct color and receiving payoff p− 1. Such a subset
surely exists since λp ≥ 4. Then, since λp−3 ≥ 1, there exists some color c that is
assigned to exactly p − 3 agents. Assigning color c to the four agents in S would
increase their respective payoff from p − 1 to p, so, S is a 4-deviation. This case
is interesting because after the 4-deviation, the length of a longest chain, in the
Dominance lattice, from the current coloring to the unique stable partition of G∅

(where all the agents have the same color) has been increased. Hence, we aim at
using this type of 4-deviations in order to maximize the number of steps for the
better-response dynamic.

With that goal in mind, we now define cascade sequences. Indeed, suppose now
that for some p, we have as before λp ≥ 4 and λp−3 ≥ 1, but also λi ≥ 1 for
every i ≤ p − 4. As it is described above, we modify the current coloring with a
4-deviation, thereby obtaining as the new partition vector

−→
Λ′ so that:





λ′p+1 = λp+1 + 1

λ′p = λp − 4

λ′p−1 = λp−1 + 4

λ′p−3 = λp−3 − 1

λ′i = λi otherwise.

132 Chapter 4. The computation of equilibria in coloring games

Then, since λ′p−1 ≥ 4 and λ′p−4 = λp−4 ≥ 1, we can modify the new coloring with
another 4-deviation, and so on. As an example, the following is a cascade sequence
of size four. Each configuration is represented with an integer partition:

Q0 = (7, 7, 7, 7, 4, 3, 2, 1),

Q1 = (8, 6, 6, 6, 6, 3, 2, 1),

Q2 = (8, 7, 5, 5, 5, 5, 2, 1),

Q3 = (8, 7, 6, 4, 4, 4, 4, 1),

Q4 = (8, 7, 6, 5, 3, 3, 3, 3).

In order to lower-bound the time of convergence in the worst-case, we aim at
maximizing the size and the number of cascade sequences during the steps of the dy-
namic. The latter is achieved through a complex recursive procedure, where we de-
fine larger and larger cascades (but in fewer and fewer number) by inserting complex
sequences of “adaptive” 1-deviations in-between. In the following Section 4.3.3.2, we
will introduce new technical notions that we use in [DMC17] in order to formally
define this procedure.

...

⇣1 ⇣3 ⇣4⇣2

⇣1
⇣3

⇣1

⇣2

⇣1

⇣1

⇣1

⇣1

⇣1

⇣1

⇣2

⇣2

⇣2

⇣3

Figure 4.4: A recursive procedure in order to increase the size of cascade sequences
(sketch).

4.3.3.2 Representing long sequences of 4-deviations with vectors

Our construction can be best defined by using a vectorial representation of 4-
deviations. More precisely, when we change a coloring with partition vector

−→
Λ

for another coloring with partition vector
−→
Λ′, the deviation corresponding to that

change can be represented with the difference vector
−→
Λ′−−→Λ . As an example, if after

a 1-deviation some agent increases her payoff from p− 1 to p+ 1 then she leaves a
group of size p for some other group of size p + 1. In particular, her former color
class has size p− 1 after her departure, and her new color class has size p+ 2 after

4.3. Unweighted games: the time of convergence for better-response
dynamics 133

her arrival. Therefore, the corresponding difference vector
−→
∆ =

−→
Λ′ −−→Λ satisfies:





δp+2 = 1

δp+1 = −1

δp = −1

δp−1 = 1

δi = 0 otherwise.

Symmetric property. Our recursive cascades are easier to represent this way,
i.e., as a vectorial sequence satisfying some “symmetric properties”, that we define
next.

Definition 68. The minimum-size sub-vector that contains all non-zero entries
of a vector is called the support of the vector. We say a vector has the symmetric
property if, and only if, the coordinates of its support are invariant under the reverse
permutation (in which case, it is said “symmetric”).

On the one hand, we show in [DMC17] that except for a few pathological cases,
every 1-deviation yields an elementary vector that has the symmetric property. But
the property does not hold in general for k-deviations whenever k ≥ 3. This might
give a hint of what changes in the nature of the problem when larger deviations are
allowed.

On the other hand, the use of this above vectorial representation might lead
to define vectorial sequences that do not truly represent sequences of 4-deviations.
Thus, we need to define additional constraints in order to prevent that case from
happening, which unfortunately level up the technicality of the proof. We give a
flavour of it by introducing the notion of balanced sequences.

Definition 69. Given any integer h > 0, let −→ϕ 1,−→ϕ 2, . . . ,−→ϕ t be vectors. We call
this sequence h-balanced if, for any 1 ≤ i ≤ t, the sum of the i first vectors, namely∑i

j=1
−→ϕ j , has all its entries greater than or equal to −h.

As an example, since agents in a k-deviation can be in no more than k distinct
color classes, the vector gotten after any k-deviation is always k-balanced.

Given a h-balanced sequence (−→ϕ 1,−→ϕ 2, . . . ,−→ϕ t) of k-deviations, let
−→
Φ =∑t

i=1
−→ϕ i be the sum of all deviations. In what follows, we will say that

−→
Φ represents

the sequence. Let pmax be the largest index j that satisfies
−→
Φ j 6= 0. Equivalently,

pmax is the largest size of a group modified (hence created) after some deviation in
the sequence happens (i.e., ∀l,∀p > pmax, ϕ

l
p = 0). Then, one can observe that a

sufficient condition so that the sequence is valid is that it starts from a coloring with
at least h color classes of each size j, for 1 ≤ j ≤ pmax.

The following claim will be used in our sketch proof for Theorem 67.

134 Chapter 4. The computation of equilibria in coloring games

Claim 70. Suppose that
−→
Φ1 and

−→
Φ2 respectively represent a h1-balanced sequence and

a h2-balanced sequence. Then,
−→
Φ =

−→
Φ1 +

−→
Φ2 represents a

(
max{h1, h2 −mini Φ1

i }
)
-

balanced sequence, that is the concatenation of the two sequences represented by
−→
Φ1

and
−→
Φ2.

Proof. Clearly,
−→
Φ represents the sequence obtained by the concatenation of the

two sequences that are respectively represented by
−→
Φ1 and

−→
Φ2. In particular, the

subsequence represented by
−→
Φ1 is h1-balanced by the hypothesis. The remaining

subsequence is represented by
−→
Φ2, that is h2-balanced by the hypothesis. Since it

follows the first subsequence, and all the entries of
−→
Φ1 are greater than or equal to

mini Φ1
i , therefore, this second subsequence is (h2 −mini Φ1

i)-balanced. �

Sketch of the construction. Our proof for Theorem 67 relies on a “shift” oper-
ator: given a vector −→ϕ whose support ranges between indices pmin, pmax, the vector
tr(i)−→ϕ , i < pmin, is a vector of the same size and the same support as −→ϕ , but
whose support ranges between indices pmax − i, pmin − i. For instance, we have
tr(1)(0, 1,−2, 1, 0, 0, 0) = (0, 0, 1,−2, 1, 0, 0). In particular, if −→ϕ represents a k-
deviation, then tr(i)−→ϕ represents the same k-deviation, up to a decrease by i of the
size of all color classes involved.

One can extend the operator and its meaning to sequences of k-deviations as
well. Formally, let −→ϕ 1, . . . ,−→ϕ t be a sequence of k-deviations, and let

−→
Φ =

∑t
l=1
−→ϕ l

represent this sequence. Then, if no group of size less than i + 1 is modified nor
created by the sequence (i.e., ∀l,∀p ≤ i, ϕlp = 0), we obtain by linearity of the
operator that tr(i)−→Φ =

∑t
l=1

tr(i)−→ϕ l.
Let us prove two important properties of the so-called “shift operator”:

Claim 71. Let
−→
φ be any vector that has a support of size s = pmax− pmin + 1, and

with the symmetric property. For any positive integers r and d such that 1+(r−1)d ≤
pmin, the vector

−→
φ ′ =

∑r−1
h=0

tr(hd)−→φ also has the symmetric property.

Proof. The support of vector
−→
φ ′ has size s′ = (r− 1)d+ s. In the following, we will

assume up to padding the vector
−→
φ with additional null entries that it is unbounded

i.e., it is indexed by Z. By the hypothesis the vector
−→
φ has the symmetric property

and so, ∀1 ≤ j ≤ pmax + pmin− 1, φj = φpmin+pmax−j . Let 0 ≤ j ≤ s′/2− 1. We have
that:

φ′pmax−j =

r−1∑

h=0

φpmax−j+hd =

r−1∑

h=0

φpmax+pmin−(pmax−j+hd)

=

r−1∑

h=0

φpmin+j−(r−1−h)d =

r−1∑

h=0

φpmin−(r−1)d+j+hd = φ′pmin−(r−1)d+j .

Thus,
−→
φ ′ also has the symmetric property. �

4.3. Unweighted games: the time of convergence for better-response
dynamics 135

Claim 72. For any positive integers r and d, if
−→
Φ represents a h-balanced se-

quence then
−→
Φ ′ =

∑r−1
j=0

tr(jd)−→Φ represents a (h + eΦ)-balanced sequence, with
eΦ = −mini1≤i2

∑i2
j=i1

Φj.

Proof. We prove the claim by induction on r. If r = 0 then
−→
Φ′ =

−→
Φ and

so the claim holds vacuously in this base case. Otherwise, let us write
−→
Φ′ =(∑r−2

j=0
tr(jd)−→Φ

)
+ tr((r−1)d)−→Φ =

−→
Φ′′+ tr((r−1)d)−→Φ . Note that tr((r−1)d)−→Φ represents

a h-balanced sequence, and by the induction hypothesis
−→
Φ′′ represents a (h + eΦ)-

balanced sequence. Since all entries of
−→
Φ′′ are greater than or equal to−eΦ, therefore,−→

Φ represents a (h+ eΦ)-balanced sequence by Claim 70. �

Finally, in order to prove Theorem 67, we construct vectors
−→
ζ i that represent

sequences of deviations. The construction is recursive. To construct the vector−→
ζ i+1 from

−→
ζ i, we follow a particular construction that we will show valid and

that is illustrated in Figure 4.4. The construction is composed of a repetition of
the sequence defined by

−→
ζ i a certain number of times (linear in some parameter

t = Θ(log n)) shifting the "starting point" of each sequence by the same value. The
construction then adds 1-deviations in order to get a technical generalization of the
symmetric property, called Good property (see [DMC17]).

Claim 73. There exists a sequence of vectors
−→
ζ i such that the following hold true

for every i:
• There exist two positive integers denoted by ai, ti1, and there exists a sequence
of 1-deviations represented by

−→
ξ i+1 so that:

−→
ζ i+1 =

ai∑

j=0

tr(jti1)−→ζ i +
−→
ξ i+1.

• If
−→
ζ i represents a hi-balanced sequence then

−→
ζ i+1 represents a (hi+1)-balanced

sequence.
• Furthermore, si ≤ si+1 < 3

2si where si and si+1 denote the respective sizes
of the support of

−→
ζ i and

−→
ζ i+1, and

−→
ζ i+1 represents a sequence of at least

(si
2i+2 − 5)-times more deviations than in the sequence represented by

−→
ζ i.

Sketch Proof of Claim 73. Our constructions will ensure that every
−→
ζ i satisfies a

so-called Good Property, namely:
• −→ζ i has the symmetric property, with its nonzero entries being equal to

1,−1,−1, 1 and (by symmetry) 1,−1,−1, 1;

• it has a support
−−−−−→
supp(ζi) of even size si with its two middle entries being equal

to 1;

• last, the two least entries of
−−−−−→
supp(ζi) that are valued −1 are indexed by ti1, ti2

with 1 < ti1 < ti2 < 2ti1, and ti2 ≤ 2i+1.

136 Chapter 4. The computation of equilibria in coloring games

Before entering in the details of the construction, let us sketch how we use this
Good property in what follows. Let hi be the least integer such that the vector

−→
ζ i

represents a hi-balanced sequence. Our main objective is to maximize the size of
this sequence while minimizing hi.

- In particular, if
−→
ζ i satisfies the Good property then its nonzero entries are

constrained to 1,−1,−1, 1, 1,−1,−1, 1, and so,
−→
ζ i is hi-balanced implies that∑ai

j=0
tr(jti1)−→ζ i is (hi + 2)-balanced by Claim 72. We will ensure in addition that

−→
ξ i+1 represents a 1-balanced sequence of 1-deviations, so, altogether combined this
will show that

−→
ζ i+1 =

∑ai
j=0

tr(jti1)−→ζ i +
−→
ξ i+1 is (hi + 2)-balanced by Claim 70 (a

little more work is needed in order to prove that
−→
ζ i+1 is (hi + 1)-balanced).

- Moreover, we note that since
−→
ζ i+1 =

∑ai
j=0

tr(jti1)−→ζ i +
−→
ξ i+1, it represents a

sequence of at least ai-times more deviations than
−→
ζ i. We will choose ai (used for

the shiftings) to be the largest even integer j such that jti1+ti2 < si/2+1. The latter
choice implies that ai ≤ si−4−2ti2

2ti1
. Then, since 1 < ti1 < ti2 < 2ti1, and ti2 ≤ 2i+1, we

obtain that si−4−2ti2
2ti1

> si
2i+2 − 1

2i
− 1, and so, ai ≥

⌊
si

2i+2 − 1
2i
− 1
⌋
− 2 ≥ si

2i+2 − 5, as
desired.

As a result, the Good property is a sufficient condition for the two requirements
of the claim. Let us now sketch the construction of the vectors

−→
ζ i.

Base case. Let L = Θ(
√
n) and t = Θ(log n). We initiate the sequence with

a cascade of 4-deviations. This cascade has size t2 and it starts with four agents
in different color classes of size L − 1 leaving for a new color class of size L − 4

(until four agents in different classes of size L− t2 leave for a new color class of size
L− 3− t2). Then, in order to satisfy some technical requirements we complete the
cascade with a small sequence of 1-deviations. Let

−→
Φ 1 represent this subsequence.

By the calculation, all its entries are equal to zero except for: Φ1
L = Φ1

L−5 =

Φ1
L−t2−1 = Φ1

L−t2−6 = 1, and Φ1
L−1 = Φ1

L−2 = Φ1
L−t2−4 = Φ1

L−t2−5 = −1. Note that
this intermediate sequence does not satisfy the Good property.

We finally construct
−→
ζ 1 by repeating

−→
Φ 1 many times, namely from∑t2−5

i=0
tr(i)−→Φ 1, and then ending with “adjusting” sequences of 1-deviations.

To better understand the role played by the latter sequences, let p, q, h be three
nonnegative integers such that p > q + 2h. Let us consider the sequence where an
agent leaves a group of size q+ 1 for a group of size p− 1, then another agent leaves
a group of size q + 2 for a group of size p − 2, and so on util a final agent leaves a
group of size q+h for a group of size p−h. This sequence is represented by a vector−→
φ such that: φp = φq = 1, and φp−h = φq+h = −1. We use this type of sequence
so as to position the nonzero entries of

−→
ζ 1 as desired in order to satisfy the Good

property.

Inductive step. It turns out that all the main ideas for the construction are
already present in the base case. Indeed, suppose the vector

−→
ζ i to be constructed

in order to satisfy the Good property. As already stated, we choose ai to be the

4.4. The parallel complexity of coloring games 137

largest even integer j such that jti1+ti2 < si/2+1. Then, let
−→
Φ i+1 =

∑ai
j=0

tr(jti1)−→ζ i,
that is a vector with the symmetric property by Claim 71. By construction, this
vector has a support of size si+1 = si + ait

1
i <

3
2si, that is even because si and ai

are even, and that will also be the size of the support of
−→
ζ i+1.

In fact,
−→
Φ i+1 “almost” satisfies the Good property, but is has more nonzero

entries than what is required. So, we set to zero this surplus of nonzero entries
using four sequences of 1-deviations, thereby obtaining

−→
ζ i+1.

It can be proved by induction on i that the above-defined sequence
−→
ζ i is O(i)-

balanced and with support of size o
((

3
2

)i). In particular, this sequence is valid if

we start from a coloring with O(i) color classes of size s for every 1 ≤ s ≤ o
((

3
2

)i)

— in which case, we must ensure n ≥ O
(
i ·
(

3
2

)i). Hence, we can construct the

sequence
−→
ζ i for some polynomial i = Ω(n1/6/ log n). Altogether combined with

the lower-bound on the size of the sequence that is represented by
−→
ζ i, the latter

achieves proving Theorem 67. We refer to [DMC17] for the full calculation.

Discussion and open questions. To sum up this section, we have by Theorem 64
that better-response dynamics cannot be used in order to compute 4-stable parti-
tions in polynomial time. As a byproduct of our vectorial approach, we also get an
Ω(n2) lower-bound on the convergence time of the dynamic for k = 3 (see [DMC17]).
We conjecture that the worst-case convergence time of the dynamic in this case is
indeed O(n2), that would improve upon the known O(n3) upper-bound.

Finally, it is open whether the problem of computing a 4-stable partition can be
solved in polynomial time. In particular, is this problem complete for the complexity
class PLS ?

4.4 The parallel complexity of coloring games

In the line of prior Section 4.3, we keep studying the complexity of computing
stable partitions for unweighted games. However, the present section is focused on
the complexity of computing Nash equilibria (1-stable partitions).

By Theorem 64, for every unweighted game, the better-response dynamic con-
verges to a Nash equilibrium in polynomial time. However, we know by Theorem 67
that the same does not hold for k-stable partitions, with k ≥ 4. Therefore, it might
be desirable to have a better understanding of the complexity of computing Nash
equilibria for these games.

4.4.1 Overall approach and main result

I shall investigate on the belonging of the problem – the computation of a Nash
equilibrium in coloring games – to some complexity classes that are related to par-
allel and space complexity. The goal in doing so is to bring more insights on the
complexity of the problem.

138 Chapter 4. The computation of equilibria in coloring games

Complexity classes. In what follows, computations are performed on a parallel
random-access machine (PRAM, see [GHR95]) with an unlimited amount of (num-
bered) processors. We will handle with read/write conflicts between processors with
the strategy CREW-PRAM (concurrent read, exclusive write).

Let PTIME contain the decision problems that can be solved in sequential
polynomial-time, that is with a single processor. Problem A reduces to problem
B if given an oracle to solve B, then A can be solved in polylogarithmic-time with
a polynomial number of processors. In particular, a problem B is PTIME-hard if
every problem in PTIME reduces to B (this is formally defined as quasi-PTIME-
hardness in [GHR95]). Such reductions are finer-grained than the more standard
logspace reductions.

On the applicative point of view, we recall that coloring games have been pro-
posed in order to design distributed algorithms on graphs, and to model the be-
haviour of social network users with limited memory and computing power. We
note that any distributed algorithm on graphs can be simulated on a parallel ma-
chine with one processor per edge and per vertex. Furthermore, there are strong and
well-known relationships between space and parallel complexity [Pap03]. Hence, the
following result also brings more insights on the feasability of the proposed applica-
tions for coloring games in the literature.

The main result in this section can be stated as follows.

Theorem 74. Computing a Nash equilibrium for coloring games is PTIME-hard.

This theorem paves the way to a deepening of the complexity of computing Nash
equilibria in graph games. I think that similar investigations should be pursued for
other games where it can be computed a Nash equilibrium in polynomial time.

The reduction for proving Theorem 74 is from the standard Monotone Cir-
cuit Value problem. However, the gadgets needed are technically challenging, and
we will need to leverage nontrivial properties of coloring games in order to prove its
correctness. I detail this reduction in what follows.

4.4.2 The reduction

4.4.2.1 The Monotone Circuit Value problem

In order to prove Theorem 74, we will reduce from a variation of the well-known
Monotone Circuit Value problem, defined as follows.

4.4. The parallel complexity of coloring games 139

Problem 1 (Monotone Circuit Value).

Input: A boolean circuit C with m gates and n entries, a word w ∈ {0, 1}n such
that:

• the gates are either AND-gates or OR-gates;

• every gate has exactly two entries (in-degree two);

• a topological ordering of the gates is given, with the mth gate being
the output gate.

Question: Does C output 1 when it takes w as input ?

This variation of Monotone Circuit Value is proved to be PTIME-complete
in [GHR95]. On the technical point of view, it requires a topological ordering of
the gates as part of the input. This non standard add up will be shown to be a key
element in the reduction to coloring games.

In what follows, let 〈C, w〉 be any instance of Monotone Circuit Value. We
will reduce it to a coloring game as follows. Let G := (g1, g2, . . . , gm) be the gates
of the circuit, that are topologically ordered.

4.4.2.2 Construction of the gate-gadgets

For every 1 ≤ j ≤ m, the jth gate will be simulated by a subgraph Gj = (Vj , Ej)

with 12(n+ j)− 9 vertices. We refer to Figure 4.5 for an illustration.
Let us give some intuition for the following construction of Gj . We aim at

simulating the computation of the (binary) output of all the gates in C when it
takes w as input. To do that, we will construct a supergraph G− of Gj (to be
defined later), then we will consider the unweighted game that is played on G−.
The goal of the construction will be to ensure that given a fixed Nash equilibrium
for this game, we can guess the output of the jth gate from the subcoloring of Gj .
More precisely, the subcoloring will encode a “local certificate” that indicates which
values on the two entries of gj cause the output.

Observe that to certify that an OR-gate outputs 1, it suffices to show that it
receives 1 on any of its two entries, whereas for an AND-gate it requires to show
that it receives 1 on its two entries. Since by de Morgan’s laws [DM47], the negation
of an AND-gate can be transformed into an OR-gate and vice-versa, therefore, we
need to distinguish between three cases in order to certify the output of the gate.
So, the vertices in Vj are partitioned in three subsets of equal size 4(n + j) − 3,
denoted by V 1

j , V
2
j , V

3
j . Furthermore, for every 1 ≤ t ≤ 3, every vertex in V t

j is
adjacent to every vertex in Vj \ V t

j .
Let us now describe the structure of the three (isomorphic) subgraphs Gj [V t

j] =

(V t
j , E

t
j) with 1 ≤ t ≤ 3. Informally, we will need this internal structure in order

to ensure that every of the three subsets V t
j will behave as a “truthful” certificate

to decide on the output of the gate; i.e., only a few vertices of Vj will be used to

140 Chapter 4. The computation of equilibria in coloring games

Figure 4.5: Gadget subgraph Gj representing the jth gate. An edge between two
subsets of vertices (delimited by an ellipse) denotes the existence of a complete
bipartite subgraph.

certify the output of the jth gate, while all others will be divided into artificial
aggregates that we name “private groups” whose role is to ensure “truthfulness” of
the certificate (this will be made clearer in the following). There are two nonadjacent
vertices atj , b

t
j ∈ V t

j playing a special role. The other vertices in V t
j \ {atj , btj} are

partitioned in two subsets Atj , B
t
j of respective size 2(n + j) − 3 and 2(n + j) − 2.

The sets Atj , B
t
j are called the private groups of atj , b

t
j . Furthermore, every vertex in

Atj is adjacent to every vertex in V t
j \ (Atj ∪ {atj}), similarly every vertex in Bt

j is
adjacent to every vertex in V t

j \ (Bt
j ∪ {btj}).

Computation. Since all edges are defined above independently the one from the
other, the graph Gj [V

1
j] = (V 1

j , E
1
j) (encoded by its adjacency lists) can be con-

structed with |V 1
j |+ |E1

j | = 4(n+ j)2 − 2(n+ j)− 2 processors simply by assigning
the construction of each vertex and each edge to a different processor. Note that
each processor can decide on the vertex, resp. the edge, it needs to compute from its
number. Overall, it takes O(log(n+j))-time in order to construct Gj [V 1

j] in parallel.
The latter can be easily generalized in order to construct Gj in O(log(n+ j))-time
with |Vj |+|Ej | processors. Therefore, the graphs G1, G2, . . . , Gm can be constructed
in parallel in O(log(n+m))-time with

∑m
j=1(|Vj |+ |Ej |) processors, that is (huge!)

polynomial in n+m.

4.4.2.3 Construction of the graph

Let X = {x1, x
′
1, . . . , xi, x

′
i, . . . , xn, x

′
n} contain 2n nonadjacent vertices, that are

two vertices per letter in the binary word w. The (conflict) graph G− = (V,E)

for the reduction has vertex-set V = X ∪
(⋃m

j=1 Vj

)
. In particular, it has 2n −

9m+ 6m(m+ 2n+ 1) vertices. Furthermore, G−[Vj] is isomorphic to Gj for every

4.4. The parallel complexity of coloring games 141

1 ≤ j ≤ m. In order to complete our reduction, let us now describe how our gadgets
are connected the one with the other.

For technical reasons, we will need to make adjacent every vertex in the private
group Atj (resp. Bt

j), with 1 ≤ j ≤ m and 1 ≤ t ≤ 3, to every vertex in V \ Vj .
By doing so, note that every vertex in V \ (Atj ∪ {atj}) is adjacent to every vertex
in Atj (resp., every vertex in V \ (Bt

j ∪ {btj}) is adjacent to every vertex in Bt
j).

Furthermore, each edge is defined independently the one from the other. Hence,
similarly as above,

∑m
j=1

∑3
t=1(|Atj |+ |Bt

j |)|V \ Vj | processors are sufficient in order
to construct these edges in O(log(n+m))-time, that is polynomial in n+m.

Finally, we recall that for every j, there are three cases to distinguish in order
to decide on the output of the jth gate, with each case being represented with some
subset V t

j . The union of subsets representing a positive certificate (output 1) is
named Yj , while the union of those representing a negative certificate (output 0)
is named Nj . In particular, if the jth gate is an OR-gate, let Yj := {a1

j , b
1
j , a

2
j , b

2
j}

and Nj := {a3
j , b

3
j} (it suffices to receive 1 on one input). Else, the jth gate is an

AND-gate, so, let Yj := {a1
j , b

1
j} and Nj := {a2

j , b
2
j , a

3
j , b

3
j}.

Figure 4.6: Edges in G− to simulate the two connections of an AND-gate in the
circuit.

Suppose the jth gate is an OR-gate (the case where it is an AND-gate follows
by symmetry, up to interverting Yj with Nj , see also Figure 4.6). Let us consider
the first entry of the gate. There are two cases.
• Suppose that it is the ith entry of the circuit, for some 1 ≤ i ≤ n.

If wi = 0 then we make both xi, x′i adjacent to both a1
j , b

1
j .

Else, wi = 1, we make both xi, x′i adjacent to both a3
j , b

3
j .

• Otherwise, the entry is some other gate of the circuit, and so, since gates are
topologically ordered, it is the kth gate for some k < j. We make every vertex
in Nk adjacent to both a1

j , b
1
j , and we make every vertex in Yk adjacent to both

a3
j , b

3
j .

The second entry of the gate is similarly considered, up to replacing above the two
vertices a1

j , b
1
j with a2

j , b
2
j . We refer to Figure 4.6 for an illustration.

142 Chapter 4. The computation of equilibria in coloring games

Let us point out that the graph G−, obtained with our reduction, is undirected,
whereas the original circuit C is a DAG (directed acyclic graph). However, since the
sizes of private groups are proportional to the positions of the gates in the topological
ordering of the circuit, this orientation of the edges can be easily retrieved, from the
certificates with smaller privates groups to those with larger ones. Therefore, we do
not lose any information.

Computation. Observe that there is only a constant number of edges that are
added at this step for each gate. Furthermore, the construction of these new edges
only requires to read the two in-neighbours of the gate in the circuit C. As a result,
the last step can be done in parallel in O(log(n+m))-time with m processors.

4.4.3 Proof of the main result

4.4.3.1 Structure of a Nash equilibrium

The (conflict) graph G− = (V,E) of the reduction defines an unweighted coloring
game. Let us fix any Nash equilibrium for this game (that exists by Theorem 64).
We will show that it is sufficient to know the color of every vertex in Ym ∪ Nm in
order to decide on the output of the circuit C (recall that the mth gate is the output
gate). To prove it, we will need the following technical claims in order to gain more
insights on the structure of the equilibrium.

More precisely, we will prove that there are exactly 6m+1 color classes, that are
one color class per private group Atj or B

t
j and one additional color for the vertices

in X. The intuition is that there are 2(n + m) vertices in one special color class
(including X) that simulates the computation of the output of C, whereas all other
vertices are “trapped” with the vertices in their respective private group. We refer
to Figure 4.7 for an illustration.

Figure 4.7: A boolean circuit (left) with a Nash equilibrium of the coloring game
from our reduction (right). For ease of reading, edges of the graph are not depicted.
Each color class is represented with an ellipse. Intuitively, vertices in the central
color class simulate the computation of the output. Other color classes contain a
private group and they are “inactive”.

4.4. The parallel complexity of coloring games 143

Full proofs of the claims are delayed to my publication [Duc16]. In what follows,
we will denote by Lc ⊆ V the subset of agents colored by c.

Claim 1. For every j, any color class does not contain more than two vertices in
every Yj ∪Nj. Furthermore, if it contains exactly two vertices in Yj ∪Nj then these
are atj , b

t
j for some 1 ≤ t ≤ 3.

Proof. A Nash equilibrium is a proper coloring of G−. Therefore, since any two
vertices in different subsets among V 1

j , V
2
j , V

3
j are adjacent by construction, they

cannot have the same color. Since Yj ∪ Nj = {a1
j , b

1
j , a

2
j , b

2
j , a

3
j , b

3
j} and atj , b

t
j ∈ V t

j

for every 1 ≤ t ≤ 3, the claim follows directly. �

Claim 2. Any two vertices that are in a same private group have the same color.
Similarly, xi and x′i have the same color for every 1 ≤ i ≤ n.

Proof. Let S be either a private group (S = Atj or S = Bt
j for some 1 ≤ j ≤ m

and 1 ≤ t ≤ 3), or a pair representing the same letter of word w (i.e., S = {xi, x′i}
for some 1 ≤ i ≤ n). Let v ∈ S maximize her payoff and let c be her color. Note
that v receives payoff |Lc| − 1 with Lc being the color class composed of all the
vertices with color c. Furthermore, every u ∈ S receives payoff lower than or equal
to |Lc| − 1 by the choice of v. In such case, every u ∈ S must be colored c, or else,
since the adjacency and the nonadjacency relations are the same for u and v (they
are twins), furthermore u, v are nonadjacent, the agent u would increase her payoff
to |Lc| by choosing c as her new color, thus contradicting the hypothesis that we
are in a Nash equilibrium. �

The argument we use in Claim 2 is that twin vertices, i.e., nonadjacent agents
with the same neighbourhood, must have the same color. In order to prove the
following Claim 3, we had to use the same argument under different disguises.

More precisely, consider a union U ⊆ V of color classes. Then, G− \ U defines
a coloring subgame, and the constriction of the coloring to the subgraph must be
a Nash equilibrium for this subgame. it follows that twin vertices in G− \ U must
have the same color, that was the key observation for proving Claim 3.

Claim 3. Let 1 ≤ j ≤ m and 1 ≤ t ≤ 3. Either Atj or Atj ∪ {atj} is a color class,
and in the same way either Bt

j or Bt
j ∪ {btj} is a color class. Furthermore, either

Bt
j ∪ {btj} is a color class, or atj and b

t
j have the same color.

We recall that we aim at simulating the computation of the output of all the
gates in C. To do that, we will prove the existence of a special color class containing
X and some pair of vertices in Yj ∪ Nj for every j (Claim 5). Intuitively, the two
vertices of Yj ∪ Nj are used to certify the output of the jth gate. However, this
certificate is “local” in the sense that it assumes the output of the j−1 smaller gates
to be already certified. Therefore, we need to prove that there can be no “missing
gate”, i.e., every gate is represented in the special color class. This is where the
topological ordering over the gates comes into play. In what follows, we recall that
Lc denotes the subset of agents colored by c.

144 Chapter 4. The computation of equilibria in coloring games

Claim 4. Let c be a color such that Lc 6⊆ X and Lc does not intersect any private
group (Atj or B

t
j for any 1 ≤ j ≤ m and 1 ≤ t ≤ 3).

Then, X ⊆ Lc and there exists an index j0 such that the following holds true:
|Lc ∩ (Yj ∪ Nj)| = 2 for every 1 ≤ j ≤ j0, and Lc ∩ (Yj ∪ Nj) = ∅ for every
j0 + 1 ≤ j ≤ m.

Proof. By the hypothesis Lc 6⊆ X and Lc does not intersect any private group, so,
there is at least one vertex of

⋃m
j=1(Yj ∪Nj) with color c. Let j0 be the largest index

j such that there is a vertex in Yj ∪ Nj with color c. Since by Claim 1, there can
be no more than two vertices of Yj ∪ Nj that are in Lc for every j, therefore, by
maximality of j0 we get |Lc| ≤ |X|+ 2j0 = 2(n+ j0). In particular, observe that if
|Lc| = 2(n+ j0) then X ⊆ Lc and for every 1 ≤ j ≤ j0 there are exactly two vertices
in Yj ∪ Nj with color c. So, let us prove that |Lc| = 2(n + j0), that will prove the
claim.

By the choice of j0, there is some 1 ≤ t ≤ 3 such that atj0 ∈ Lc or btj0 ∈ Lc.
In particular, |Lc| ≥ min{|Atj0 |, |Bt

j0
|} + 1 = 2(n + j0) − 2 or else, every vertex

vtj0 ∈ Lc∩{atj0 , btj0} would increase her payoff by choosing the color of the vertices in
her private group (that is a color class by Claim 3), thus contradicting the hypothesis
that we are in a Nash equilibrium.

We prove as an intermediate subclaim that for any 1 ≤ j ≤ j0 − 1 such that
Lc ∩ (Yj ∪Nj) 6= ∅, there is some 1 ≤ t′ ≤ 3 such that at′j , b

t′
j ∈ Lc. Indeed, in this

situation, there is some t′ such that at′j ∈ Lc or bt
′
j ∈ Lc. If bt

′
j ∈ Lc then we are done

as by Claim 3, at′j ∈ Lc. Otherwise, bt′j /∈ Lc and we prove this case cannot happen.
First observe that at′j ∈ Lc in this case. Furthermore, since at′j and bt′j do not have
the same color we have by Claim 3 that Bt′

j ∪{bt
′
j } is a color class. In this situation,

bt
′
j receives payoff 2(n+ j)− 2 ≤ 2(n+ j0 − 1)− 2 < |Lc|. Since in addition at′j and
bt
′
j are twins in G \ (At

′
j ∪Bt′

j), vertex bt′j could increase her payoff by choosing color
c, thus contradicting that we are in a Nash equilibrium. This proves at′j , b

t′
j ∈ Lc,

and so, the subclaim.
By the subclaim, there is an even number 2k of vertices in

⋃j0−1
j=1 (Yj ∪Nj) with

color c, for some k ≤ j0 − 1. Similarly, since by Claim 2 the vertices xi, x′i have the
same color for every 1 ≤ i ≤ n, |X ∩ Lc| = 2n′ for some n′ ≤ n. Now there are two
cases to be considered.
• Suppose that btj0 ∈ Lc. Then, by Claim 3 atj0 ∈ Lc. Furthermore |Lc| ≥

2(n+ j0)− 1 or else, vertex btj0 would increase her payoff by choosing the color
of the vertices in Bt

j0
(that is a color class by Claim 3), thus contradicting the

hypothesis that we are in a Nash equilibrium. As a result, |Lc| = 2(n′+k+1) ≥
2(n + j0) − 1, that implies n′ + k ≥ n + j0 − 1, and so, |Lc| ≥ 2(n + j0), as
desired.
• Else, btj0 /∈ Lc and we prove this case cannot happen. First observe that atj0 ∈ Lc.

Furthermore, |Lc| = 2(n′+k)+1 ≥ 2(n+j0)−2, that implies n′+k ≥ n+j0−1,
and so, |Lc| ≥ 2(n + j0) − 1. However, since atj0 and btj0 do not have the same
color, Bt

j0
∪ {btj0} is a color class by Claim 3. In particular, btj0 receives payoff

4.4. The parallel complexity of coloring games 145

2(n+ j0)− 2 < |Lc|. Since atj0 , btj0 are twins in G \ (Atj0 ∪Bt
j0

), vertex btj0 could
increase her payoff by choosing color c, thus contradicting that we are in a Nash
equilibrium.

Altogether, |Lc| ≥ 2(n+ j0), that proves the claim. �
We point out that by combining Claim 1 with Claim 4, one obtains that for

every 1 ≤ j ≤ m, there are either zero or two vertices in Yj ∪ Nj in each color
class not containing a private group, and in case there are two vertices then these
are atj , b

t
j for some 1 ≤ t ≤ 3. We elaborate on this property in order to prove the

following Claim 5.

Claim 5. Any two vertices in X have the same color. Furthermore, for every
1 ≤ j ≤ m, every vertex in Yj ∪Nj either has the same color as vertices in X or as
vertices in her private group.

Finally, we will need a “truthfulness” property to prove correctness of our reduc-
tion. Namely, the value of the output of any gate in the circuit must be correctly
guessed from the agents with the same color as vertices in X. We prove this, as for
Claim 1, by elaborating on the property that every Nash equilibrium is a proper
coloring of G−. In this situation, the edges added at the last step of the reduction
ensure that the agents of two “uncompatible certificates” cannot be assigned the
same color.

Claim 6. Let 1 ≤ j0 ≤ m such that for every 1 ≤ j ≤ j0, there is at least one vertex
in Yj ∪Nj with the same color c0 as all vertices in X. Then for every 1 ≤ j ≤ j0,
Lc0 ∩ Yj 6= ∅ if and only if the output of the jth gate is 1.

4.4.3.2 Proof of Theorem 74

Proof of Theorem 74. Let 〈C, w〉 be any instance of Monotone Circuit Value.
Let G− = (V,E) be the conflict graph obtained with our reduction. It can be
constructed in polylogarithmic-time with a polynomial number of processors. The
graph G− defines an unweighted coloring game. We fix any Nash equilibrium for
this game, that exists by Theorem 64. By Claim 5, any two vertices in X have the
same color c0. We will prove that there is at least one vertex in Ym with color c0

if and only if the circuit C outputs 1 when it takes w as input. Since Monotone
Circuit Value is PTIME-complete [GHR95], the latter will prove that computing
a Nash equilibrium for coloring games is PTIME-hard.

By Claim 6, we only need to prove that for every 1 ≤ j ≤ m, there is at least
one vertex in Yj ∪ Nj with color c0. To prove it by contradiction, let j0 be the
smallest index j such that no vertex in Yj ∪ Nj has color c0. By Claim 5, every
vertex in Yj0 ∪Nj0 has the same color as her private group. In particular, the three
of a1

j0
, a2
j0
, a3
j0

receive payoff 2(n + j0) − 3. We will prove that one of these three
agents could increase her payoff by choosing c0 as her new color, thus contradicting
that we are in a Nash equilibrium.

146 Chapter 4. The computation of equilibria in coloring games

Indeed, by the minimality of j0, it follows by Claim 4 that for any 1 ≤ j ≤ j0−1,
there are exactly two vertices of Yj ∪Nj with color c0, while for every j0 ≤ j ≤ m

there is no vertex in Yj ∪ Nj with color c0. As a result, |Lc0 | = 2(n + j0) − 2. In
particular, any agent among a1

j0
, a2
j0
, a3
j0

could increase her payoff by choosing c0 as
her new color — provided she is nonadjacent to every vertex in Lc0 . We will show
it is the case for at least one of the three vertices, that will conclude the proof of
the theorem. Assume w.l.o.g. that the jth0 gate is an OR-gate (indeed, since by de
Morgan’s laws, the negation of an AND-gate can be transformed into an OR-gate
and vice-versa, both cases are symmetrical). There are two cases.
• Suppose that the output of the jth0 gate is 1. In such case, there must be an

entry of the gate such that: it is the ith entry of the circuit, for some 1 ≤ i ≤ n,
and wi = 1; or it is the kth gate of the circuit for some k < j0 and the output
of that gate is 1. In the latter case, we have by Claim 6 that the two vertices
of Yk ∪Nk with color c0 are in the set Yk.
Assume w.l.o.g. that the above-mentioned entry is the first entry of the gate.
By construction, the two vertices a1

j0
, b1j0 are nonadjacent to every vertex in Lc0 .

• Else, the output of the jth0 gate is 0. Therefore, for every entry of the gate:
either it is the ith entry of the circuit, for some 1 ≤ i ≤ n, and wi = 0; or it is
the kth gate of the circuit for some k < j0 and the output of that gate is 0. In
the latter case, we have by Claim 6 that the two vertices of Yk ∪Nk with color
c0 are in the set Nk. By construction, the two vertices a3

j0
, b3j0 are nonadjacent

to every vertex in Lc0 .
In both cases, it contradicts our assumption that we are in a Nash equilibrium.

Conclusion. Theorem 74 proves that computing a Nash equilibrium for coloring
games is PTIME-hard. This may be hint that these games are a too powerful
computational mechanism design for “lightweight” distributed applications. In this
respect, an interesting open problem would be to determine the classes of conflict
graphs for which this hardness result holds.

Furthermore, we recall that computing a Nash equilibrium for generalized col-
oring games is PLS-complete [BZ03]. Hence, this result reinforces the view that for
many PLS-hard “weighted” games, the corresponding “unweighted” game is PTIME-
hard [Sch91].

4.5 Weighted games: existence of equilibria

Next, we go back to generalized (weighted) coloring games in this section. Every
generalized coloring game admits a Nash equilibrium [BZ03]. So, we are more
interested in the existence of k-stable partition, for k ≥ 2. However, as shown
with Figure 4.3, not all generalized coloring games admit a 2-stable partition. Since
in contrast, unweighted games admit a k-stable partition for every fixed k, it looks

4.5. Weighted games: existence of equilibria 147

natural to investigate on the impact of a fixed set of edge-weightsW on the existence
of stable partitions.

We are particularly interested in the special case where all edge-weights of the
underlying graph G are comprised in W = {−∞, 0, 1}. Roughly, in this modest
extension of the unweighted games, we now allow indifference relationships between
some agents. More formally, the goal of the agents is now to construct a proper
coloring of the conflict graph G− while maximizing their number of neighbours in
the friendship graph G+ with the same color as theirs. Perhaps surprisingly, we
shall prove that even in this slight extension, the existence of stable partitions is
much more constrained than it is for the unweighted games.

This is joint work with Dorian Mazauric and Augustin Chaintreau.

4.5.1 Positive results

On the one hand, we relate some structural properties of the underlying graph G

with the existence of stable partitions. In particular, we relate the existence of stable
partitions with the girth (size of a smallest cycle) in the friendship graph:

Theorem 75. Let G = (V,w) have all its edge-weights in {−∞, 0, 1} ∪ −N. If the
friendship graph G+ has girth at least k + 1 then the generalized coloring game that
is played on G admits a k-stable partition.

Furthermore, the better-response dynamic applied to this above game converges
to a k-stable partition within a quadratic number of steps.

Theorem 75 follows from a potential function argument. More precisely, let us
define the global utility of a given coloring as the sum of the individual payoff of
every agent. See Figure 4.8 for an example. We prove that it is a potential function
which increases after any k-deviation.

In order to see the difficulty, we emphasize that even for unweighted games, this
above potential function might decrease after a k-deviation (e.g., see the example of
4-deviation that is given in Section 4.3.3 and the related illustration of Figure 4.8).
In fact, if j denotes the color assigned to all the agents in the k-deviation then
the global utility increases only if all the agents deviating increase their respective
payoff in large part due to the agents already colored j. This may not be the case
if there are many agents of this k-subset that are pairwise connected by an edge
with positive weight. However, if we now assume that the friendship graph G+ has
a large girth then we can upper-bound the number of edges with positive weights
among any small subset of agents (because such small subsets must induce a forest
in G+), thereby preventing that case from happening.

In particular, since any friendship graph has girth at least three, we obtain the
following corollary:

Corollary 76. Let G = (V,w) have all its edge-weights in {−∞, 0, 1} ∪−N. Then,
the generalized coloring game that is played on G admits a 2-stable partition.

Furthermore, the better-response dynamic applied to this above game converges
to a 2-stable partition within a quadratic number of steps.

148 Chapter 4. The computation of equilibria in coloring games

4-deviation

Total Utility = 24 (socially optimal)
stable under 1,2, and 3-deviations

Total Utility = 20 (soc. sub-optimal)
stable under all deviations

2
2

2 2

2
2

2

2

2

2 3 3

1
11

1

1
11

1

33

2
2

(a) (b)

Figure 4.8: Change of configuration for an unweighted game after a 4-deviation. For
ease of readability, only the edges of the friendship graph are represented. Agents
are labeled with their payoff.

Perspectives. It is open whether similar results can be obtained for a larger family
of sets W. In particular, can it be obtained similar results for some W with two
distinct positive weights ?

4.5.2 The hardness of recognizing games with k-stable partitions

We finally present a more complex construction of weighted games with no k-stable
partition for some small value of k. Furthermore, we will explain how the mere
existence of a single counter example impacts on the complexity of the recognition
of games with k-stable partitions.

On the one hand, as shown with Figure 4.3, there are generalized coloring games
that do not admit a 2-stable partition. On the other hand, we proved with Corol-
lary 76 that by constraining the set W of admissible edge-weights, one obtains a
large class of weighted games that admit a 2-stable partition. Surprisingly, this
latter result cannot be improved already for W = {−∞, 0, 1}. Precisely, we give in
Figure 4.9 an example of a graph G with weights in W = {−∞, 0, 1} so that the
coloring game that is played on G does not admit a 3-stable partition!

The construction in Figure 4.9 borrows from the one of Figure 4.3 (i.e., the
nonexistence of 2-stable partitions in generalized coloring games). Roughly, we
impose the friendship graph and the conflict graph to be highly symmetric, that
ensures that 2-stable partitions for the game are isomorphic. Then, we show that
the isomorphism between two distinct 2-stable partitions translates to a 3-deviation
from one to the other.

4.5. Weighted games: existence of equilibria 149

Proposition 77. There is a graph G = (V,w) whose edge-weights are constrained
to W = {−∞, 0, 1} and such that there does not exist a 3-stable partition for the
coloring game defined on G.

A1

A2

A3

A0 a0

a1

a2

a3

b0

b1

b2

b3

c0c1

Figure 4.9: A graph G = (V,w) with edge-weights inW = {−∞, 0, 1}. The coloring
game played on G does not admit a 3-stable partition. To keep the graph readable,
we use conventions. (1) Some sets of nodes are grouped within a circle; an edge
from another node to that circle denotes an edge to all elements of this set. (2)
Edges of the conflict graph are not represented. In particular, all nodes that are not
connected by an edge on the figure are connected by an edge with negative weight
−∞. (3) Green solid edges represent edges with weight 1, whereas blue dashed edges
represent edges with weight 0.

Proof. The set of vertices consists of four sets Ai, 0 ≤ i ≤ 3, each of equal size
h ≥ 2 and with a special vertex ai, plus four vertices bi, 0 ≤ i ≤ 3, and two vertices
c0 and c1. In what follows, indices are taken modulo 2 for cj , j ∈ {0, 1}, and they
are taken modulo 4 everywhere else. Figure 4.9 represents the example with h = 3.
The friendship graph G+ here consists of all the edges with weight 1; it contains:
1. all the edges between nodes in Ai (0 ≤ i ≤ 3);
2. edges between bi and Ai (0 ≤ i ≤ 3);
3. edges between bi and Ai+1 \ {ai+1} (0 ≤ i ≤ 3);
4. edges between bi and bi−1 and bi+1 (0 ≤ i ≤ 3);
5. edges between c0 and all the bi, and edges between c1 and all the bi;
6. edges between c0 and A0 ∪A2, and edges between c1 and A1 ∪A3.

150 Chapter 4. The computation of equilibria in coloring games

Moreover, there are four edges with weight 0, namely the edges {bi, ai+1}. All the
other pairs of agents represent “enemies” (they are pairwise connected by an edge
with negative weight −∞). That is two nodes in different Ai, Ai′ are enemies; a user
bi is enemy of bi+2 and of the nodes in Ai+2 and Ai+3; c0 and c1 are enemies; c0 is
enemy of the nodes in A1 and A3, and c1 is enemy of the nodes in A0 and A2. We
now assume by contradiction there exists a 3-stable partition for the coloring game
defined on G = (V,w).

Full proofs for the following claims are postponed to our paper [DMC17].

Claim 78. Every agent in Ai picks the same color.

Our key instrument for proving this claim is a generalization of false twins to
weighted graphs. We recall that given an unweighted game that is played on the
conflict graph G−, for any Nash equilibrium for this game, false twins in G− must
have the same color (see Claim 2).

Now, given an edge-weighted graph G = (V,w), we say that u and u′ are quasi-
twins if wuu′ > 0 and for all nodes v ∈ V \ {u, u′}, wuv = wu′v except maybe for
one v0 for which |wuv0 − wu′v0 | = 1. We can observe that for unweighted games,
quasi-twins are exactly the false twins in the conflict graph. In [DMC17], we prove
that for any Nash equilibrium of the coloring game that is played on G, quasi-twins
must have the same color. Since in the above construction for Proposition 77, the
agents in Ai are pairwise quasi-twins, Claim 78 follows from this result directly.

Claim 79. bi picks the same color as the agents in Ai or the agents in Ai+1.

Claim 80. There is an i such that agents in Ai, bi and bi−1 pick the same color.

It follows by Claim 80 that there is an i such that the agents in Ai, bi, bi−1, ci all
pick the same color. Moreover, such a color class is unique in the 3-stable partition
due to the conflict graph in G (induced by the conflict edges). In what follows, let
Li0 be the color class of a0 in the 3-stable partition. By symmetry, we will assume
Li0 = {b0, b3, c0} ∪A0.

Case 1: the agents a2, b1, b2 all have the same color. In particular, by Claims 78
and 79 their color class is A2 ∪ {b1, b2}.

Then, there are two subcases. Suppose that a1 and c1 have the same color,
in which case their color class is A1 ∪ {c1}. In this situation, the agent b1 would
increase her payoff from 1 + (|A2| − 1) = |A2| = h to 1 + |A1| = h+ 1 by choosing
the same color as a1 and c1. So, there is a 1-deviation. Otherwise, a1 and c1 do
not have the same color, so, their respective color classes are A1 and either {c1} or
A3 ∪ {c1}. Then, the agents b1 and c1 would increase their respective payoff from
1 + (|A2| − 1) = |A2| = h and ≤ |A3| = h to 1 + |A1| = h+ 1 by choosing the same
color as a1. So, there is a 2-deviation.

Case 2: both agents a2 and b2 have the same color, but b1 has a different color.
In particular, by Claims 78 and 79 their respective color classes are A2 ∪ {b2} and
either A1 ∪ {b1} or A1 ∪ {b1, c1}.

4.5. Weighted games: existence of equilibria 151

Then, there are two subcases. Suppose that the agents a3 and c1 have the same
color, in which case their color class is A3 ∪ {c1}. Then, both b2 and b3 would
increase their respective payoff from |A2| = h and 2 + (|A0| − 1) = 1 + |A0| = h+ 1

to 2 + (|A3|− 1) = |A3|+ 1 = h+ 1 and 2 + |A3| = h+ 2 by choosing the color of a3.
Otherwise, a3 and c1 do not have the same color, in which case the color class of c1

is either {c1} or A1 ∪ {b1, c1}. But then the three of b2, b3, c1 would increase their
respective payoff from |A2| = h, 2+(|A0|−1) = 1+ |A0| = h+1, and ≤ 1+ |A1| =
h+ 1 to 2 + (|A3| − 1) = 1 + |A3| = h+ 1, 2 + |A3| = h+ 2, and 2 + |A3| = h+ 2

by choosing the same color as a3.
Case 3: both agents a2 and b1 have the same color, but b2 has a different

color, in which case their respective color classes are A2 ∪ {b1} and either A3 ∪ {b2}
or A3 ∪ {b2, c1} by Claim 79. In that case, b1 would increase her payoff from
|A2| − 1 = h− 1 to |A1| = h by choosing the color of a1, so, there is a 1-deviation.

Case 4: the agent a2 has a different color than b1 and b2. In this case, their
respective color classes are: A2, either A1 ∪ {b1} or A1 ∪ {b1, c1}, either A3 ∪ {b2}
or A3 ∪ {b2, c1}. In particular, b2 and a3 have the same color.

Then, there are two subcases. Suppose that c1 and a3 have the same color. In
this situation, their color class is A3 ∪ {b2, c1}. So, the agent b3 would increase her
payoff from 2+(|A0|−1) = h+1 to 2+ |A3| = h+2 by choosing this color, so, there
is a 1-deviation. Otherwise, c1 and a3 do not have the same color, in which situation
their respective color classes are: either {c1} or A1 ∪ {b1, c1}, and A3 ∪ {b2}. But
then both b3 and c1 would increase their respective payoff from ≤ h+ 1 to h+ 2 by
choosing the color of a3.

Finally, since in all cases there is a 3-deviation, there does not exist a 3-stable
partition for the coloring game defined on G.

Let us define, for every fixed set W, k(W) to be the largest k such that every
coloring game which is played on a graph with edge-weights in W admits a k-
stable partition. As an example, for the special case of unweighted games, we have
by [KL13] that k({−∞, 1}) = +∞. In contrast, we have by the combination of
Corollary 76 and Proposition 77 that k({−∞, 0, 1}) = 2. In Table 4.1, we report on
the value of k(W) for most sets W.

W k(W)

{−∞, a}, a > 0 ∞
{−∞, 0, a}, a > 0 2

{−∞, a, b}, b > a > 0 1

{−a, b}, a > 0, b > 0 ≤ 2 · da+1
b e+ 1

Table 4.1: Values of k(W) for different W.

Surprisingly, this above threshold k(W) fully characterizes the complexity of rec-
ognizing coloring games with a k-stable partition. More precisely, we have obtained
the following dichotomy result for generalized coloring games:

152 Chapter 4. The computation of equilibria in coloring games

Theorem 81. LetW contain −∞ and k ≥ 1 be fixed. Then, the problem of deciding
whether a given coloring game, played on a graph with edge-weights in W, admits a
k-stable partition is either:

• trivial if k ≤ k(W);
• or NP-complete if k > k(W).

In order to get a better intuition for the above Theorem 81, let us consider a
minimum-size counter-example G0 = (V0, w0) such that the coloring game played
on G0 does not admit a k-stable partition. Our reduction constructs, from any
unweighted graphG = (V,E), an edge-weighted supergraph ofG0 (that is illustrated
with Figure 4.10).

K3 K3

K3 K3

K3

G1

x0

G0
G0\x0

G2

Figure 4.10: Reduction from Maximum independent set. The graph G0 repre-
sents a minimum-size counter-example. Conflict edges with negative weight −∞ are
drawn in dashed red whereas all edges drawn in bold green have the same positive
weight.

For this graph to have a k-stable partition, one needs a way to force some special
agent x0 ∈ V0 to pick a different color than the other agents in V0 \ x0. Then, by
minimality of the counter-example, the coloring subgame that is played on G0 \ x0

admits a k-stable partition and we are able to extend this subcoloring to a k-stable
partition for the game played on the supergraph. Altogether combined, this game
played on the supergraph admits a k-stable partition if and only if some agent x0

4.6. Extensions of coloring games 153

can be forced to take a different colour than all other agents in V0 \ x0. Finally, we
prove that x0 indeed takes a different color than the agents of V0 \x0 if and only if it
is part of a large clique in the friendship graph. The latter is shown to correspond to
a large independent set in the unweighted graph G that we use for the reduction. As
a result, since the Maximum independent set problem is NP-complete [Dai80],
this achieves proving that the problem of recognizing coloring games with a k-stable
partition is NP-hard.

4.6 Extensions of coloring games

This section finally covers other games that encompass more aspects of coalition and
group formation. We discuss on the extent to which our results for coloring games
can be applied to this broader setting. In particular, we intend the following to be
a high level description, and so, we made the choice to postpone the proofs of all
the results to the research report [DMC12]. These results have not been published
elsewhere.

4.6.1 Gossiping

Coloring games with gossip have been introduced by Kleinberg and Ligett in [KL13]
for their study of community formation. Such game is still played on an edge-
weighted graph G = (V,E,w), with the vertices of G being the agents of the game.
However, two agents with distinct colors may now “gossip”, in which case both color
classes they are part of are merged. Obviously, and as before, this deviation will
only take place if it makes increase the utility of the two agents.

Formally, given G = (V,E,w) and c : V → N, a gossip-deviation w.r.t. c is a
2-subset {u, v} such that c(u) 6= c(v) and:

∑

x|c(x)=c(u)

wvx > 0,
∑

y|c(y)=c(v)

wuy > 0.

The color c represents a k-stable partition for the coloring game with gossip if it is
a k-stable partition for the generalized coloring game played on G (without gossip)
and in addition there is no gossip deviation.

It actually turns out that unweighted coloring games with gossip are equivalent
to the classical unweighted coloring games. Indeed, consider an unweighted game
played on the conflict graph G−, c a proper coloring of G−, and suppose that there
are two agents u and v gossiping. In particular, u and v cannot be adjacent in G−

to any agent colored by c(v) or c(u) (or else, they would not benefit from merging
the two color classes Lc(u) and Lc(v)). Let us assume w.l.o.g. that |Lc(u)| ≥ |Lc(v)|.
Then, the agent v would also strictly increase her payoff by changing her current
color c(v) for c(u). As a result, if there exists a gossip deviation then there is a
1-deviation.

154 Chapter 4. The computation of equilibria in coloring games

However, in the more general case of weighted games, we prove that there may
not exist a 2-stable partition already when there is a unique and fixed positive weight
in W. This is in sharp contrast with Corollary 76.

4.6.2 Asymmetry

Another natural variation of coloring games is to make them play on a directed
graph. In this situation, colorings of the game and strategies and utility functions
of the agents can be defined similarly as before. However, it may now be the case
that wuv 6= wvu for some pairs u, v. These games are sometimes called additively
separable (asymmetric) Hedonic games [BZ03]. We refer to Figure 4.11 for an illus-
tration.

2

1

2

2

2

2

1

1 1

1

Figure 4.11: A coloring game played on a directed graph. Bidirectional arcs with
negative weight −∞ are drawn in dashed red. This game can be shown not to admit
a Nash equilibrium.

Even if modest generalization of coloring games, the addition of asymmetrical
weights leads to much stronger form of intractability. This can be seen with a simple
digraph D = ({u, v}, w) such that wuv > 0 whereas wvu < 0. Clearly, there does
not exist any Nash equilibrium for the game played on D.

On the complexity point of view, the problem of deciding whether an asymmetric
game admits a Nash equilibrium is NP-hard [SD10]. We prove that this result
holds already when there can be no more than two color classes at equilibrium (we
prove this by reducing from the well-known Partition problem). We recall that
in contrast, every generalized coloring games admits a Nash equilibrium, and that
such an equilibrium can be computed in quasi-polynomial time with better-response
dynamics.

4.6. Extensions of coloring games 155

4.6.3 List coloring games

In [DMC12], we introduced a third variation of coloring games, where the strategy
of an agent is no more her color, but rather a list of q colors with q ≥ 1 being a fixed
constant. On the social network analysis point of view, our aim in doing so was to
allow every user to be part of different communities in order to better represent the
community formation process.

In particular, given G = (V,E,w), a configuration of the q-list coloring game
played on this graph is a list coloring of G with each vertex having a list of at most
q colors, and we name by `(v) the list of any agent v ∈ V . Given a fixed q-list
coloring of G, the utility function of v now depends on the number of colors that v
shares with each peer, that can be written as:

∑

u∈V
h (|`(u) ∩ `(v)| , wuv) (4.1)

where h(g, w) is a function measuring the utility of sharing g colors with an agent
when it is connected to v by an edge with weight w. Note that we assume, without
loss of generality, that:

h(0, .) = 0, h(., 0) = 0 and ∀w ∈ Q, h(1, w) = w

∀g ∈ N, w 7→ h(g, w) is a non-decreasing function,

∀w ∈ Q, g 7→ w · h(g, w) is a non-decreasing function.

The last property simply ensures that h(g, w) increases with g when w is positive,
and decreases with g when w is negative. In practice, most of our results are proved
in the simpler case where h : (g, w) 7→ (1 + εg)w, where ε is a small constant.

On the positive side, every q-list coloring game admits a Nash equilibrium. This
can be shown by noticing that a q-list coloring game is a potential game, with
its potential function being the global utility (sum of the utility functions of every
agent). However, for every q > 1, we prove that there exist unweighted q-list coloring
games that do not admit a 3-strong Nash equilibrium (robust to any coalition of
at most three agents). The latter result is in sharp contrast with [KL13, EGM12],
where the authors prove that every unweighted coloring game admits a k-stable
partition for every fixed k ≥ 1.

Last, we want to emphasize, perhaps counter-intuitively, that a decrease of the
parameter q does not preserve the existence of k-strong equilibria. Namely, for every
q, there exists Gq = (V,E,w) such that:

• the q-list coloring game played on Gq does not admit any 2-strong Nash equi-
librium;
• whereas for any other q′ 6= q, the q′-list coloring game that is played on this

same graph Gq does admit a 2-strong Nash equilibrium.

156 Chapter 4. The computation of equilibria in coloring games

4.6.4 Coloring games on hypergraphs

Finally, we briefly consider the case where we replace the underlying graph G =

(V,E,w) by a hypergraph H = (V,E,w), with w : E 7→ Q ∪ {−∞} being a weight
function on the hyperedges. On the social network point of view, hyperedges allow
one to account for more complex types of relationships between the users.

Formally, given H = (V,E,w) and c : V → N a coloring of H, the utility
function of any agent v ∈ V can now be written as the sum of the weights we, for
all hyperedge e to which v is incident and such that every vertex u ∈ e satisfies
c(u) = c(v). In short, it is: ∑

e∈E|{v}⊆e⊆Lc(v)

we,

with Lc(v) = {u ∈ V | c(u) = c(v)}. This game was studied by Deng and Papadim-
itriou in [DP94], but with transferable utilities4.

On the positive side, every coloring game played on a hypergraph is a potential
game, with its potential function being the sum of the weights we for all monocolored
hyperedges e (i.e., every two vertices in e must be assigned the same color). If the
coloring game is played on a graph then the latter function is equal to half of the
global utility. However, this is not true anymore for coloring games on hypergraphs,
because hyperedges may now be of arbitrary size.

In particular, we get that every coloring game played on a hypergraph admits
a Nash equilibrium, and that one such equilibrium can be computed in quasi-
polynomial time with better-response dynamics. We can also extend the positive
result of Theorem 75 by taking for cycles the notion of Berge cyclicity (cycles in
the incidence graph). Unfortunately, there exist hypergraphs with girth two (w.r.t.
Berge cyclicity), so, this extended Theorem 75 has weaker consequences for hyper-
graphs than it has for graphs. As an example, Corollary 76 does not hold for coloring
games on hypergraphs.

4.7 Concluding remarks

Our results in this section shed new lights on the complexity of coloring games. In
particular, our results for generalized coloring games in Section 4.5 reinforce the
relationship between these games and the maximum independent set problem in
graphs.

Furthermore, we presented in Section 4.3 an interesting relationship between
unweighted games (non generalized coloring games) and the lattice of integer par-
titions. I believe that an in-depth study of this relationship will help to better
understand the structure of stable partitions for unweighted games, and the com-

4Informally, there are transferable utilities if arbitrary subsets of agents can share their re-
spective utility functions together, whose total sum is then reparted to these agents w.r.t. some
rules.

4.7. Concluding remarks 157

plexity for computing their equilibria. In particular, the main open question in this
field is whether the problem of computing 4-stable partitions is PLS-complete.

My investigations on the parallel and space complexity for computing Nash
equilibria, in Section 4.4, have been firstly motivated by this above question. Indeed,
I hope that the reduction from the Monotone Circuit Value problem to the
computation of Nash equilibria can be transformed into a reduction from FLIP – a
circuit computation problem that is the standard PLS-complete problem [JPY88] –
to the computation of 4-stable partitions.

On a more general side, an interesting question would be to determine
whether conversely, PLS-completeness for a “weighted” game implies PTIME-
completeness for some corresponding ’unweighted” game ? Relationships between
PLS-completeness and PTIME-completeness have been investigated since the origi-
nal paper [JPY88] (introducing the complexity class PLS). It was conjectured that
PLS-completeness for a search problem implies that checking for the local opti-
mality of a solution is PTIME-complete. However, this conjecture was disproved
in [Kre89]. Since for many PLS-complete problems, there exists a local-search algo-
rithm that runs in quasi polynomial time (polynomial in the size, but exponential
in the weights), any variation of these games where the weights are bounded is triv-
ially in PTIME. Thus, proving or disproving that these variations are PTIME-hard
would make advance our understanding of what makes a search problem PLS-hard.

Chapter 5

Learning formulas in a noisy
model

Summary

We introduce a new learning model in Section 5.2. This model is motivated by
some applications in Web’s transparency, that is a nascent field where there is a
need for uncovering data misuse online. Our objective is to learn an unknown
Boolean function that represents the (potentially sensitive) data targeted by a given
advertiser.

In Section 5.3, we describe an algorithm for learning the function in the particular
case where it depends on a single data input. The cornerstone of this algorithm is
a reduction to a Set Cover problem, that is also at the basis of our work in the
subsequent sections.

In Section 5.4, we present sufficient conditions – w.r.t. the classification noise in
our model – in order to generalize this algorithm for learning every monotonic func-
tion that only depends on a fixed number of inputs. We also propose an improved
algorithm that runs in quasi-linear time, but that can only be applied assuming
more restrictive hypotheses on the noise.

Finally, we question in Section 5.5 what can be learnt within our model. On the
positive side, we prove that if the function only depends on a fixed number of inputs,
positively or negatively, then all these inputs can be computed in quasi-polynomial
time with high probability. Under one additional assumption on the classification
noise, this algorithm can be extended for learning the function. However, we prove
that in general, not all functions can be learnt within our model. Actually, it is
impossible to distinguish a conjunction from a disjunction, even if they only depend
on two inputs.

My papers on this learning problem [LDL+14, DLCG15, DTC17, CD17] are
collected in the appendix.

160 Chapter 5. Learning formulas in a noisy model

Contents
5.1 Introduction . 160

5.1.1 Our results . 161
5.1.2 Outline of the chapter . 162

5.2 Learning model . 162
5.2.1 PAC learning . 163
5.2.2 Juntas . 164
5.2.3 The oracle . 165
5.2.4 Distribution for the sampler 168

5.3 Single-input targeting . 169
5.3.1 Our results . 169
5.3.2 Reduction to Set Cover . 170
5.3.3 Concentration inequalities . 171
5.3.4 Proof overview . 173

5.4 Complex targeting: the case of monotonic functions 175
5.4.1 Beyond single-input: the influence of the targeting lift 177
5.4.2 Faster algorithms and tradeoffs 180
5.4.3 Conclusion and open perspectives 183

5.5 General case . 184
5.5.1 Identification of the relevant inputs 184
5.5.2 Filtering technique . 186
5.5.3 Impossibility results . 187

5.6 Conclusion . 188

5.1 Introduction

This chapter is now devoted to a learning problem on Boolean functions, that we
motivate next. Roughly, we aim at making possible for every user online to uncover
any misuse of her data. Although Big Data promises important societal progress,
it exacerbates at the same time the need for algorithmic accountability as more
and more decisions affecting millions of users are being automated using personal
and private information. Examples of such practices have begun to surface. In
a recent incident, Google was found to have used institutional emails from ad-
free Google Apps for Education to target ads in users’ personal accounts [Gou14,
Saf13]. MySpace was found to have violated its privacy policy by leaking personally
identifiable information to advertisers [KW10]. Several consumer sites, such as
Orbitz and Staples, were found to have adjusted their product pricing based on user
location [Mat12, VDSVS12]. And Facebook’s 2010 ad targeting was shown to be
vulnerable to micro-targeted ads specially crafted to reveal a user’s private profile
data [Kor11].

The recent area of Web’s transparency has developed generic methods to reveal
which information item or input generates personalization and differentiated treat-
ments [DTD15, LDL+14, LSS+15]. Their output should not be regarded as absolute

5.1. Introduction 161

truth, but rather as evidence for further investigation. In this work, we aim at giving
a theoretical framework in order to analyse these methods. We also describe new
core algorithms for these methods that are formally analysed in our setting.

Our contributions in this chapter are summarized in Section 5.1.1. Then, an
outline of the chapter is provided in Section 5.1.2.

5.1.1 Our results

Simply put, we aim at describing the core algorithms for Web’s transparency tools,
and to provide the theoretical framework in order to analyse these algorithms. We
detail this a bit more below.

5.1.1.1 A theory for ad targeting identification

Let Ad Targeting Detection be defined as the problem of deciding whether
some specific input is targeted by a given ad. Similarly, let Ad Targeting Iden-
tification be defined as the problem of deciding which inputs are targeted by this
ad. First, based on recent experiments [DTD15, LDL+14], we model the problems
of Ad Targeting Detection and Ad Targeting Identification as a learning
problem, where the hypothesis is a Boolean function that represents the (potentially
sensitive) data inputs targeted by a given advertiser1.

We report on this model and on its motivations in Section 5.2. This is joint work
with Augustin Chaintreau.

Furthermore, all the other results that are presented in this chapter are proved
in the learning model of Section 5.2.

5.1.1.2 A general approach reducing to Set Cover

In the following two Sections 5.3 and 5.4, we present algorithms for learning a
function that only depends on a constant number of inputs and that is monotonic
(increasing the number of data inputs cannot make decrease the likelihood to receive
an ad). These algorithms are based on a reduction to a natural variation of Set
Cover, where we seek for a minimum-size family of subsets (each representing an
input that is targeted) covering a large fraction of a given universal set (representing
all the accounts that receive a given ad).

This general approach is presented in Section 5.3, along with an algorithm for
learning a function when it depends on a single input. Then, this algorithm is
generalized in Section 5.4 for learning a monotonic function under the hypothesis
that it depends on at most k inputs, for some fixed k. However, this generalized
algorithm is proved to be correct only under a technical assumption, namely, if the
classification noise of the oracle is bounded. The latter assumption implies that it

1Note that Ad Targeting Detection can be reduced to a particular case of Ad Targeting
Identification where it is asked whether the targeting can be represented by the null-function.

162 Chapter 5. Learning formulas in a noisy model

is much likelier for an account within scope to receive an ad than for an account out
of scope.

This is joint work with Mathias Lécuyer, Francis Lan, Andrei Papancea, Theofi-
los Petsios, Riley Spahn, Max Tucker, Augustin Chaintreau and Roxana Geambasu.

5.1.1.3 Necessary and sufficient conditions for learnability

Finally, we give in Section 5.5 a more general algorithmic proof that any function
depending on a fixed number of inputs can be learnt — if we make additional
assumptions on the oracle. More precisely, we prove that all the relevant inputs on
which the function depends can be learnt if an upper-bound on their number is fixed
in advance. The latter can be extended to an algorithm for learning any function,
but that is proved to be correct only under an additional technical assumption (we
call it “strong positive variance” of the oracle). Roughly, we suppose that there can
be no population of accounts within scope that are significantly likelier to receive a
given ad than all other accounts within scope.

Last, we prove that in general, if no additional assumption is given then only
the functions depending on a single input can be learnt in our model.

5.1.2 Outline of the chapter

We first introduce a new learning model for Boolean functions in Section 5.2. In
Section 5.3, we introduce a generic method in order to design learning algorithms
in this model, and to formally analyse these algorithms. We apply this method
to the particular case where the function to be learnt only depends on a single
input. Then, in Section 5.4 we extend this approach to more general (monotonic)
functions, that requires a more in-depth analysis of our probabilistic tools. Finally,
in Section 5.5, we delineate the minimal hypotheses to incoporate in the model in
order to make any function learnable. Note that these hypotheses are not part of
the core assumptions for our learning model because they have not been confirmed
experimentally. We then conclude this chapter in Section 5.6.

5.2 Learning model

The following presentation of our learning model is kept generic on purpose in order
to apply to a broad set of scenarii of online targeting. Let D = {D1, D2, . . . , DN}
be a set of N inputs representing individual information from a given user (typi-
cally, keywords extracted from emails in an account, see also [LDL+14]). Our main
objective is to identify how these inputs affect a given output of interest (say, an
ad or a recommendation). In order to achieve the goal, we here assume that each
output is affected through an unknown targeting function foutput, that we simply
denote by f in the following. The targeting function f is a mapping from the fam-
ily of all combinations (subsets of D) to the Boolean set {0; 1}. By convention,
f(C) = 1 indicates that an account exactly containing the inputs in C is targeted,

5.2. Learning model 163

and we denote f(.) = 0 if the ad is untargeted. We aim at learning f subject to
diverse requirements, each representing one aspect of our experiments for doing so
in practice.

A generic framework from learning theory is first presented in Section 5.2.1.
Then, we detail how we adapt this framework to our needs in the subsequent Sec-
tions 5.2.2, 5.2.3 and 5.2.4. This model is part of our paper [CD17], that is joint
work with Augustin Chaintreau.

5.2.1 PAC learning

We refer to [Ang88] for basics of computational learning theory and query complex-
ity. A hypothesis H is a class of Boolean functions. Let f : {0, 1}N 7→ {0, 1} be an
(unknown) function, possibly not in H. In what follows, we are given:
• a function Of : {0, 1}N 7→ {0, 1} (possibly randomized), that is called an oracle

and whose outputs are assumed to depend on the outputs of f .
Example: a call to the oracle can represent an observation whether a given ac-
count has received the ad;
• a random generator of pairs 〈x,Of (x)〉, that is called a sampler and for which

every x ∈ {0, 1}N is picked at random w.r.t. some fixed probability distribution
Π (denoted by x ∼ Π).
Example: The sampler can represent our experimental setting. In order to learn
the targeting function, we are bound to rely on experiments — to see how it
reacts to various inputs. For instance, in [LDL+14] these experiments consist
in collecting the ads from Gmail accounts with different subsets of emails.

Let ε, δ be nonnegative2. A PAC-learning algorithm for f under H hypothesis
(a.k.a., probably approximately correct learning algorithm) is given constant-time
access to the sampler, and it must compute, in time polynomial in N and 1/δ,
the representation of a function h ∈ H such that Pr[h(x) 6= f(x) | x ∼ Π] ≤ ε.
The query complexity of the algorithm is its number of calls to the sampler. It is
preferrable to keep this complexity small, say, polylogarithmic in N .

In what follows, we will always assume that ε = 0, i.e., we aim at learning f
exactly.

There is a vast literature on this problem [Ang88, AR07, FGKP09, MOS04,
Val12], with different choices made for: the dependencies between the oracle and
the function to be learnt, the distribution for the sampler, the representation of a
function, the hypothesis, etc. The main novelty in this work is the set of assumptions
on the oracle, and to some extent the choice for the representation of the functions.
All the choices made for this work will be presented and discussed in this section.

Outline. In Section 5.2.2, we introduce basic terminology for a specific class of
functions called juntas, that will be our hypothesis. Our choice for the representation
of a function is also discussed in this section. Then, we formally describe our set of

2Note that here, δ is no longer related to graph hyperbolicity (defined in Chapter 2).

164 Chapter 5. Learning formulas in a noisy model

assumptions on the oracle in Section 5.2.3. In particular, we briefly report on some
experiments in Section 5.2.3.1 that have supported the choices made in this work.
The axioms on the oracle are given in Section 5.2.3.2. We end this section with our
choices made for the sampler in Section 5.2.4.

5.2.2 Juntas

Our choices for the hypothesis H and the representation of a function are presented
in this subsection. Complementary information for the case of monotonic functions
is given in Section 5.2.2.1.

The following presentation differs from the standard terminology in the literature
of Boolean function learning, but it is shown to be equivalent to it. This change of
terminology is motivated by our interpretation of a Boolean word w ∈ {0, 1}N as
denoting the content of an online account.

Let D = {D1, D2, . . . , DN} be a fixed ground set. There is a natural one-to-one
mapping between {0, 1}N and 2D (power-set of D), defined as φ : w ∈ {0, 1}N 7→
{Di ∈ D | wi = 1}. For simplicity, we will identify f with f ◦ φ−1 in what follows.
Furthermore, we will call a subset of D a combination. The function f is said to
depend on Di if there exists a combination C ⊆ D\Di such that f(C) 6= f(C∪{Di}).

Definition 82 ([BL97]). For every k ≥ 1, f is a k-junta if it depends on at most
k inputs Di ∈ D.

In what follows, we will select the class of k-juntas, for some constant k, as our
hypothesis. Note that in practice, it is recommended to advertisers to select k in
some range between 5 and 20 [Goo].

Representation of a junta. An implicant of f is a pair 〈Cin, Cout〉 of two disjoint
combinations of D with the property that f(C) = 1 for every combination C such
that Cin ⊆ C and C ∩ Cout 6= ∅. It is a prime implicant of f if for every strict subsets
C′in (Cin and C′out (Cout, the pair 〈C′in, C′out〉 is not an implicant of f . Every k-junta
has O(3k/

√
k) prime implicants [CM78].

In what follows, we choose as a representation for any function f the set S(core)

of its prime implicants. Note that we have, for any f :

f(C) = max
〈Cin,Cout〉∈S(core)


 ∏

Di∈Cin
I{Di∈C}


 ·


 ∏

Di∈Cout
(1− I{Di∈C})


 ,

with I{Di∈C} being an indicator function that takes value 1 only if Di ∈ C (otherwise
it is equal to 0). The latter is sometimes called the Blake canonical form of f [Bla38].

5.2.2.1 Case of monotonic functions

A function f is called monotonic if for every combination C ⊆ D such that f(C) = 1,
we have that f(C′) = 1 for every superset C′ ⊇ C. Monotonic functions naturally

5.2. Learning model 165

arise in some settings where negative keywords are unavailable, such as (until re-
cently) Facebook [FBE].

In this situation, we simplify the representation of f as follows. A family S of
size l is any collection of l distinct combinations. The order of the family is defined
as the largest order of a combination it contains. Interestingly, there is a duality
between families and monotonic functions. Indeed on the one hand, one can define
for any family S a function f : C → maxCj∈S I{Cj⊆C} that takes value f(C) = 1

whenever the subset C contains at least one combination in S. In such case we say
that S explains the function. On the other hand, we now show that the converse
also holds: given a monotonic function f , there is a unique family explaining f that
is both of minimum order and minimum size:

Lemma 83. For each monotonic function f there exists a unique family S(core)

satisfying:
(i) S(core) has size l and order r and it explains f .
(ii) No family of size l′ < l explains f .
(iii) No family of order r′ < r explains f .

Proof. We define S(in) = {C ⊆ D | f(C) = 1} the set of all combinations for
which f takes value 1. Let

−→
Df be the digraph with vertex-set S(in) and with arc-set

{(C, C′) | C (C′}. We have that
−→
Df is a DAG (Directed Acyclic Graph) because the

subset-containment relation defines a partial order. So, let S(core) be the non-empty
set of combinations with null in-degree in

−→
Df . By construction, each combination in

S(in) contains some combination of S(core) and S(core) ⊆ S(in), hence S(core) explains
f . Furthermore, we claim that S(core) is contained in any family S ′ explaining f :
indeed, since S ′ is required to contain a subset of any combination C ∈ S(core), and
no combination of S(in) is strictly contained in C, then it must contain C. This
shows that S(core) satisfies all conditions of Lemma 83. Finally, since another family
explaining f needs to include S(core), then it will necessarily have a higher size l,
hence S(core) is the unique with both minimum size and order.

For every monotonic function f , the family whose existence is proved in
Lemma 83 is called its core family and we choose this family as the representa-
tion of f .

5.2.3 The oracle

We now introduce specific assumptions on the oracle Of . We recall that the latter
formalizes the observations gathered from different online accounts, i.e., the collec-
tion of advertisements received w.r.t. the data inputs contained in the accounts. So,
we first report on some experiments in Section 5.2.3.1 in order to motivate our choices
for the oracle, presented in Section 5.2.3.2. Finally, an idealized oracle (formerly used
in our papers [LDL+14, DLCG15, DTC17]) is discussed in Section 5.2.3.3.

166 Chapter 5. Learning formulas in a noisy model

5.2.3.1 Supporting experiments

We briefly report on some experiments whose results and interpretations have mo-
tivated our choices for the oracle.

Experiment 1: Correlation of the outcomes with the function to be learnt.
In [LDL+14], we posted four Google AdWords campaigns targeted on very specific
keywords (Chaldean Poetry, Steampunk, Cosplay, and Falconry). Then, we placed
in more than 800 Gmail accounts some emails including these keywords. Overall,
the corresponding ads were received by more than 97% of the accounts. The latter
shows, as expected, a positive correlation between the outcomes of the experiments
and the scope of the campaign.

Experiment 2: Limited coverage. The coverage is defined as the true positive
rate (i.e., the average probability for an account within the scope of some adver-
tisement campaign to receive this ad). By varying the number N of inputs in our
experiments, we have observed that the coverage is a decreasing function in the
number of data inputs contained in the accounts. This might come from a larger
pool of advertising campaigns for which the accounts are within scope, that makes
obtaining an ad slot more competitive. In particular, the probability of receiving an
ad cannot be assumed to be a constant that is independent from N .

Experiment 3: Cross-unit effects. The authors in [TDDW15] showed that
multiple browser instances running in parallel affect one another. They did so by
comparing the diversity of the ads received by browsers running in isolation w.r.t.
browsers running in parallel (see [TDDW15] for details). This result suggests that
the outcomes of different observations are correlated.

5.2.3.2 Axiomatisation

Let us now introduce our assumptions on the oracle. Formally, Of is a member-
ship oracle with (asymmetric) classification noise. That is, it outputs the Boolean
f(C) for any combination C with some probability to flip the result. Unlike prior
work [Ang88], we do not assume the classification noise to be symmetric, i.e., the
oracle may flip the result with some propability depending on the combination.
Nonetheless, we will assume a few properties for the noise distribution. To our
best knowledge, the following assumptions that are made on this probability have
not been studied before in the literature.

Histories. Experiment 3 in Section 5.2.3.1 have evidenced that the noise distri-
bution is subject to cross-unit effects. So, in order to handle with these correlations,
we find it more suitable to generalize our oracle Of so that it can take families of
combinations as inputs. More precisely, let a family be any vector of combinations,
denoted by F = 〈A1, A2, . . . , At〉. The outcome Of (F) is simply defined as the

5.2. Learning model 167

binary vector Of (F) = 〈Of (A1),Of (A2), . . . ,Of (At)〉. Furthermore, let the pair
HF = (F ; Of (F)) be the history of F .

Let F−i = 〈A1, . . . , Ai−1, Ai+1, . . . , At〉. We will assume that each individual
outcome Of (Ai) is correlated to the partial history HF−i . However, it may and
must be the case that some natural properties hold independently from any history,
that we now detail as follows. Let us point out that S(in) stands for the set of all
combinations C such that f(C) = 1.

Assumption 1 (targeting lift). There exists a universal constant ϕ ∈]0; 1[, called
the targeting lift and such that for any C0, C1 with f(C0) = 0, f(C1) = 1:

Pr[Of (Ai) = 1 | Ai = C0,HF−i] < ϕ · Pr[Of (Ai) = 1 | Ai = C1,HF−i].

This Assumption 1 is local and it simply ensures that it is more likely to receive
an ad for an account within scope than out of scope (conditioned on any fixed
history HF−i). In particular, it implies that the targeting function f is related to
the outcome we study.

As we will show in Section 5.4, our most efficient algorithms are proved to be
valid only if the targeting lift is bounded.

Assumption 2 (polynomial-growth). There exist positive universal constant α, β, γ
with α ≤ 1 and such that:

P

[
t∑

i=1

Of (Ai) <
(
β · |F ∩ S(in)|α

)]
≤ e−γ·t

In accordance with Experiment 1 in Section 5.2.3.1, we properly state with
Assumption 2 that the amount of accounts receiving an ad must be at least a
significant fraction of the account population within scope , except on some small
event with low probability like, for instance, when the targeting campaign runs out
of budget.

Let us point out that if we were assuming that there is some minimum constant
probability pin for an account within scope to be targeted, Assumption 2 could
be shown to be satisfied for α = 1 by using standard concentration inequalities.
By considering the case α ≤ 1, we may consider the case where this minimum
probability slowly tends to zero when N grows, say, pin ∼ po/ logO(1)(N) where p0

is a constant. The latter case seems to be what happens in practice, as supported
by Experiment 2 in Section 5.2.3.1.

Assumption 3 (noninterference). Let the function f only depend on inputs in
V ⊆ D. Furthermore, let A′i = Ai ∩ V and let F ′ = 〈A′1, . . . , A′t〉.

Pr[Of (F)] = Pr[Of (F ′)].

Finally, we formalize with Assumption 3 that none of the input that does not
affect the function f can impact on the outcome.

168 Chapter 5. Learning formulas in a noisy model

5.2.3.3 Discussion: idealized model with independence

For simplicity, we were assuming in [LDL+14] an idealized learning model where
the outputs of the oracle were independent random variables and there were two
constant pin, pout such that:

Pr[Of (C)=1 | f(C)=1]=pin > pout=Pr[Of (C′)=1 | f(C′)=0].

Limitations. Independence in the model contradicts Experiment 3 in Sec-
tion 5.2.3.1. Similarly, a constant probability pin to be targeted contradicts Ex-
periment 2 in Section 5.2.3.1. These are the reasons why we are now considering
the more general assumptions in Section 5.2.3.2 for the oracle.

Nonetheless, we will see in what follows that our former analysis in the idealized
model still holds under more general assumptions. Precisely, the approach presented
in this chapter leaves us to analyse a random counting process whose outcome can
be lower and upper-bounded by estimating the sum of independent random variables
(see Lemma 86). In particular, by choosing pin, pout so that:




pin = (1 +O(1)) · β

log1/α−1(N)

pout < ϕ · pin

all the results obtained with the simpler model in [LDL+14, DLCG15, DTC17]
can be generalized to the more general model that is presented in this Section 5.2.

5.2.4 Distribution for the sampler

Last, we present our choices for the distribution and the sampler. The latter for-
malizes our experimental process, that consists in creating fake Gmail accounts and
filling in them with random data.

Exchangeability is defined in [GR86] as the probability that if two accounts were
exchanging their data inputs, the probability distribution of the outcome would not
be impacted. So, in order to get exchangeability, we take a Bernouilli distribution
Π = B(p,N), i.e., for every random combination that is sampled, each input Di ∈ D
must be present independently at random with probability p.

Interestingly, our process is related with the so-called random intersection
model [KSSC99], that can be defined as follows. Let N,M and h be positive inte-
gers, and let p be some probability. In order to create a random intersection graph,
we first create a bipartite graph B randomly with two sides of respective size N and
M , and with each edge being present independently at random with probability p.
Then, a new graph is created from B by taking as vertex-set the side of size M and
adding an edge between every two vertices that share at least h common neighbours
in B, for some constant h. Random intersection graphs have been proposed as a
model for complex networks [GL06]. So, it makes sense to mimic this process in
order to create random Gmail accounts.

5.3. Single-input targeting 169

5.3 Single-input targeting

This section addresses the detection and identification of single-input targeting, that
is when the reception of the output is caused by the presence (or the absence) of a
single input. More formally, we propose a PAC-learning algorithm with 1-juntas as
hypothesis.

This is joint work with Mathias Lécuyer, Francis Lan, Andrei Papancea, The-
ofilos Petsios, Riley Spahn, Augustin Chaintreau and Roxana Geambasu.

Outline. Our main result is stated in Section 5.3.1, where we also discuss on its
positioning in the nascent field of Web’s transparency. Then, the following Sec-
tions 5.3.2 and 5.3.3 cover the main tools used in our study. The first tool is
algorithmic: we present in Section 5.3.2 a classical technique for learning Boolean
functions, of which we use a natural variation as the main brick basis of our algo-
rithm (presented in Section 5.3.2.1). Second, we adapt in Section 5.3.3 standard
concentration inequalities to our learning model. The latter will be our main tool in
the analysis of the algorithm. Finally, we sketch this algorithm for learning 1-juntas
in Section 5.3.4.

Full proofs can be found in our paper [LDL+14]. The version presented in this
section also borrows from our paper [CD17] (in preparation).

associations
(email→ad,

viewed→recommend)

one or more
Web services

data inputs
(emails, searches,
viewed products)

targeted outputs
(ads, recommended
products and videos)

x
R

ay

(m
o

ni
to

r,
 c

o
rr

e
la

te
)

Figure 5.1: Xray suggests plausible associations between the emails of a user and
the ads she receives, using the core algorithm presented in this section.

5.3.1 Our results

Below, we state our main result in this section.

Theorem 84. Let α ≤ 1 be the polynomial-growth (Assumption 2). There is a
PAC-learning algorithm such that, for every ε > 0, the targeting function can be
learnt with probability 1 − ε under 1-juntas hypothesis, in O(N · log1/α(N/ε))-time
and O(log1/α(N/ε))) queries.

170 Chapter 5. Learning formulas in a noisy model

Theorem 84 is the core algorithm of a prototype called Xray, that we introduced
in [LDL+14] and on which we now give more emphasis. Roughly, Xray predicts
through the help of its core algorithm which data in an arbitrary Web account
(such as emails, searches, or viewed products) is being used to target which out-
puts (such as ads, recommended products, or prices). We refer to Figure 5.1 for an
illustration of its functioning. This problem has received some attention in the lit-
erature [DTD15, HSMK+13, HSL+14, LDL+14, MGEL12]. However, concurrently
with [DTD15], our work on Xray has been the first, to the best of our knowledge, to
provide theoretical guarantees on the predictions made under plausible assumptions.
Furthermore, our core algorithm has (poly)logarithmic query complexity, whereas
the authors in [DTD15] (using a different model than in Section 5.2) have proposed
an algorithm with linear query complexity.

5.3.2 Reduction to Set Cover

The following reduction has been proposed in [AMK03] in order to infer Boolean
functions from positive and negative examples. We detail how we can adapt this
work to our setting in Section 5.3.2.1

First, suppose that Of = f (i.e., there is no classification noise). In this situa-
tion, the following lemma holds:

Lemma 85 ([MOS04]). Let f be a nonconstant k-junta. Suppose that with con-
fidence 1 − ε, it can be computed an input Di on which the function f depends in
time nc · poly(2k, 1/ε). Then there is an algorithm for exactly learning f which runs
in time nc · poly(2k, 1/ε).

By Lemma 85, if there is no classification noise then learning f can be re-
duced to compute the inputs on which this function depends. In order to do so,
let 〈C1, f(C1)〉, 〈C2, f(C2)〉, . . . , 〈Cm, f(Cm)〉 be drawn from the sampler. Let us take
as our universal set U = {(j1, j2) | j1 < j2 and f(Cj1) 6= f(Cj2)}. For every pair
(j1, j2) ∈ U , since f(Cj1) 6= f(Cj2) the two combinations Cj1 , Cj2 must differ in at
least one input on which the function f depends. In particular, let us define, for
every input Di ∈ D, the set Si = {(j1, j2) | j1 < j2 and Di ∈ Cj1∆Cj2}, where ∆

denotes the symmetric difference between two combinations. Then, it can be proved
under some assumptions on the distribution Π of the sampler and the Boolean func-
tion f that a minimum set cover for U with the Si’s is in one-to-one correspondance
with the inputs Di’s on which this function f depends [AMK03].

The obvious drawback of this approach is that computing a minimum set cover
is NP-hard [Kar72]. Therefore, greedy heuristics should be used, and the analysis
of their output is more delicate [FA05]. However, if the number of relevant variables
is assumed to be a constant (that is the case for 1-juntas and more generally, for
k-juntas with fixed k), there is no need to rely on such approximations.

5.3. Single-input targeting 171

5.3.2.1 Set Intersection algorithm

This above machinery cannot be applied to our setting directly because it is strongly
dependent on the assumption Of = f . Indeed, without this assumption, the cor-
respondance between the relevant variables and minimum set covers does not hold.
However, based on Assumption 1 (i.e., accounts within scope are much likelier to be
targeted than accounts out of scope), it looks intuitive that the relevant variables
should still correspond to a set cover for a large fraction of the universal set. Hence,
in our setting, we propose an alternative reduction to a Set Cover problem with
threshold, where we now seek for x_intersecting subsets of small size (defined as
the subsets intersecting a fraction x of the universal set), for some parameter x < 1.
The latter problem is formally described with Algorithm 1.

Input: a family F ; a threshold parameter x < 1; a size parameter s.
Output: the family Sx of x_intersecting combinations of size at most s.

Sx ← {} ;
foreach C ⊆ D s.t. |C| ≤ s do

if C intersects ≥ x · |F| accounts in F then
Sx ← Sx ∪ {C} ;

end
end

Algorithm 1: Set-intersection algorithm.

Discussion: parameter tuning. The reader may observe that Algorithm 1 re-
quires a threshold parameter x as input. For simplicity, we will assume that a good
estimate on the targeting lift (Assumption 1) is given, and we will show in the fol-
lowing that this information is enough in order to tune x. Nonetheless, we point
out that finding this parameter in practice might be cumbersome.

Two methods have been proposed for doing so in [DTC17]. If we are given a
ground-truth, i.e., a set of functions f with their representation, then we can use it
in order to tune the parameter x by reverse-engineering. However, a ground-truth
is not always available. In this situation, we are limited to pick uniformally at
random different values for x in a given interval, then to make our algorithms run
in parallel. This interval can be chosen so that there can be no false negative (i.e.,
all the relevant inputs are detected). Then, a final filtering process is used to elect
the run whose output has to be taken into account.

5.3.3 Concentration inequalities

We complete Section 5.3.2 by introducing the main tool that will be used to analyse
our subsequent algorithms (Lemma 86). Roughly, when using Algorithm 1 as a rou-
tine, we aim at approximating some random counting process in order to determine
the existence or nonexistence of x_intersecting subsets. Classically, concentration

172 Chapter 5. Learning formulas in a noisy model

inequalities such as Chernoff bounds [Hoe63] are used in the analysis. However,
standard concentration inequalities apply to the sum of independent variables, so,
they cannot be used in our setting directly. The following is a tedious (but classical)
analysis where we show how to adapt Chernoff bounds to our needs.

Lemma 86. Let X1, . . . , Xm be random Boolean variables satisfying:

pmin ≤ Pr[Xi = 1 | X1, . . . , Xi−1] ≤ pmax

for some constant pmin, pmax. Then the following hold for any 0 < δ < 1:

Pr[
m∑

i=1

Xi ≥ (1 + δ) · pmax ·m] ≤ e−δ2mpmax/3

Pr[
m∑

i=1

Xi ≤ (1− δ) · pmin ·m] ≤ e−δ2mpmin/2

Proof. By symmetry, we will only consider the first inequality. Let t > 0. Let us
show that:

E[Πm
i=1e

t·Xi] ≤
(
pmax(et − 1) + 1

)m
.

The proof is by induction. By the hypothesis,

E[et·Xm | X1, . . . , Xm−1]

= et · Pr[Xm = 1 | X1, . . . , Xm−1] + 1 · Pr[Xm = 0 | X1, . . . , Xm−1]

≤ pmax(et − 1) + 1,

that is the base case. Suppose for the induction hypothesis that:

E[Πm
j=i+1e

t·Xj | X1, . . . , Xi] ≤
(
pmax(et − 1) + 1

)m−i
.

Then by the law of total probability:

E[Πm
j=ie

t·Xj | X1, . . . , Xi−1]

= et · Pr[Xi = 1 | X1, . . . , Xi−1] · E[Πm
j=i+1e

t·Xj | X1, . . . , Xi−1, Xi = 1]

+ 1 · Pr[Xi = 0 | X1, . . . , Xi−1] · E[Πm
j=i+1e

t·Xj | X1, . . . , Xi−1, Xi = 0]

≤
(
Pr[Xi = 1 | X1, . . . , Xi−1] · (et − 1) + 1

)
·
(
pmax(et − 1) + 1

)m−i

≤
(
pmax(et − 1) + 1

)m−i+1
,

which proves the induction hypothesis. The remaining of the proof is now classical

5.3. Single-input targeting 173

computation of Chernoff Bound. By Markoff inequality:

Pr[
m∑

i=1

Xi ≥ (1 + δ) · pmax ·m] = Pr[et·
∑m
i=1Xi ≥ et·(1+δ)·pmax·m]

≤ E[et·
∑m
i=1Xi]/et·(1+δ)·pmax·m

= e−t·(1+δ)·pmax·m · E[Πm
i=1e

t·Xi]

≤ e−t·(1+δ)·pmax·m ·
(
pmax(et − 1) + 1

)m

≤ e−t·(1+δ)·pmax·m · epmax(et−1)·m

= epmax·m·(et−1−t·(1+δ))

Finally, set t = ln(1 + δ). One obtains:

Pr[
m∑

i=1

Xi ≥ (1 + δ) · pmax ·m] ≤
(

eδ

(1 + δ)1+δ

)mpmax

≤ e−δ2mpmax/3.

To summarize Sections 5.3.2 and 5.3.3, we aim at learning the targeting function
f by reducing to a natural variation of Set Cover (Section 5.3.2), of which we will
analyse the outcome by using concentration inequalities (Section 5.3.3).

5.3.4 Proof overview

Finally, let us sketch the proof of Theorem 84. It is based on the correctness proof
of the following Algorithm 2. Note that the ground-set D and its size N , the
targeting lift ϕ (Assumption 1) and the constants α, β, γ (Assumption 2) are known
parameters, so, we don’t include them in the input of the algorithms.

Roughly, we use the Set-intersection algorithm (Algorithm 1) in order to detect
an input that is significantly present (or missing) among the positive examples (i.e.,
combinations Ci such that Of (Ci) = 1). On the one hand, since irrelevant inputs (on
which the targeting function does not depend) cannot affect the outcome, they are
present or missing among the positive examples by mere chance. In particular, these
inputs can be neither significantly present nor absent among these examples. On
the other hand, since it is likelier for the oracle to output 1 for a combination within
scope (in S(in)) than for a combination out of scope, there should be slightly more
positive examples that are correctly classified than misclassified. Since any input
on which f depends positively (resp., negatively) must be present (resp., missing)
in all the positive examples that have been correctly classified, this relevant input
will be detected by the Set-intersection algorithm with high probability.

Sketch Proof of Theorem 84. Let us set the distribution Π of the sampler to the uni-
form distribution B(1/2, N). We first make Θ(log1/α(N/ε)) queries to the sampler.
Note that since f is assumed to depend on only one variable, we have in expec-
tation that f(Ci) = 1 for half of the combinations Ci queried. Hence, by Chernoff

174 Chapter 5. Learning formulas in a noisy model

Input: accuracy ε.
Output: the representation S(core) of f under 1-juntas hypothesis.

/* Parameters tuning */;
Let x ∈]1

2 ; 1
1+ϕ [;

Let m ∈ Ω
(

log1/α(N/ε)
)
/*m depends on x*/;

/* Uniform sampling */;
Draw 〈C1,Of (C1)〉, 〈C2,Of (C2)〉, . . . , 〈Cm,Of (Cm)〉 with Π = B(1/2, N) ;

F ← {Ci | 1 ≤ i ≤ m and Of (Ci) = 1} ;
/* Reduction to Set Cover */ ;
Sx ← Set-intersection(F , x, 1) ;
if ∃i,Sx = {{Di}} then

//positive targeting;
S(core) ← {〈{Di}, ∅〉} ;

end
else
F ← {D \ Ci | 1 ≤ i ≤ m and Of (Ci) = 1} ;
Sx ← Set-intersection(F , x, 1) ;
if ∃i,Sx = {{Di}} then

//negative targeting;
S(core) ← {〈∅, {Di}〉} ;

end
else

//null function;
S(core) ← {〈∅, ∅〉} ;

end
end

Algorithm 2: PAC-learning under 1-juntas hypothesis.

5.4. Complex targeting: the case of monotonic functions 175

Bound, the number of combinations queried that are in S(in) (within scope) is also
an Θ(log1/α(N/ε)). By Assumption 2, this is the correct order of magnitude in
order to ensure that, with probability 1 − Θ(ε), the oracle Of will output 1 for at
least Θ(log(N/ε)) queries.

In particular, let F be the set of all random combinations Ci such that Of (Ci) =

1. By Assumption 3, the inputs on which the function f does not depend can-
not affect the outcome, so, they are contained in half of the combinations of F
in expectation. Furthermore, since these inputs are independently distributed and
|F| = Ω(log(N/ε)) is sufficiently large, we can prove by Chernoff bounds that these
irrelevant inputs can be neither contained (nor absent) in a large fraction x > 1/2

of the combinations in F , with high probability 1−Θ(ε).
Conversely, it remains to prove that we can detect and identify the unique input

on which the function f depends. We claim that for every Ai ∈ F , Pr[f(Ai) =

1 | Of (Ai) = 1,HF−i] > 1/(1 + ϕ), with ϕ being the targeting lift. Indeed, since
f is assumed to be a 1-junta, it is equally likely for a random combination to be
in S(in) than to be out of S(in). By Assumption 1, combinations out of S(in) have
ϕ less chances to be in F than those in S(in), and so, the claim follows. Then, by
using the concentration inequalities of Lemma 86, we obtain that |F ∩S(in)| ≥ x|F|
with high probability 1 − Θ(ε), provided x is chosen such that x < 1/(1 + ϕ). In
particular, if f only depends on some input Dj ∈ D then there is a large fraction x
of the combinations in F such that either Dj is present (if f depends on the input
positively) or absent (if f depends on the input negatively) in these combinations.

Perspectives. Our work shows that single-input targeting can be always detected
and identified, under some plausible assumptions. As I mentioned earlier, similar
results have been proved under different assumptions, but up to the price of an
exponentially larger query complexity [DTD15]. To derive a unifying model where
similar results can be proved is, to my mind, an important issue.

5.4 Complex targeting: the case of monotonic functions

This section now addresses complex targeting, i.e., when the targeting function
depends on at least two inputs. This is joint work with Mathias Lécuyer, Max
Tucker, Augustin Chaintreau and Roxana Geambasu.

It has been argued in [DTD15] that this more challenging case could be re-
duced to the simpler case of single-input targeting (Section 5.3). In particular,
assuming that f strongly depends on some input, this relevant input may still be
identified with the algorithms crafted for single-input targeting. However, there is
no reason a priori why the targeting function should depend more on some input
than on the others. In [DTC17], we describe an experiment where we show that
in some cases where two inputs are simultaneously targeted (e.g., “programming

176 Chapter 5. Learning formulas in a noisy model

interview” with “new job”), the corresponding output is misclassified by our proto-
type Xray [LDL+14] as being untargeted. We detail this a bit more in Figure 5.2.
This result has motivated the study of PAC-learning algorithms with k-juntas as
hypothesis, for k > 1.

email Subject

ads received:

Title, url & text

!"#$"%%&$"#'()*+,-&.*$/.

0/1223334$"5%&5%64)+72.)+,-&.*$/.2
Apply for a Scholarship up to $10k from
Intertek for 2014!

8*%'9,:7-5%';-$,.'<+=

/$>+5-,,-=.4)+72)-&%%&.2
Pivotal Labs is hiring! Positions in SF,
NYC & Boulder

College
scholarship

College
applications

16

0

2830#accounts
including an
email, both,
or none

26

2

2125

Programming
interview

new
job

Figure 5.2: A correlation study between random placements of inputs (bottom) and
outputs received (top).

More precisely, in this section we only consider monotonic k-juntas, that are the
functions f such that C ⊆ C′ implies f(C) ≤ f(C′) (see Section 5.2.2.1). By doing so,
we do not pretend to cover all the cases of complex targetings that happen in real-
life. Our purpose is to generalize our positive results on single-input detection to a
broader set of targeting functions, and to investigate on the theoretical limitations
of our set cover approach in Section 5.3. Furthermore, we note that in settings
such as Facebook (until recently) [FBE], negative keywords are unavailable to the
advertisers, and so, every targeting function should be monotonic.

In what follows, our results will be proved under one additional assumption on
the oracle. Namely:

Assumption 4 (Nondiscrimination). Let F be any family. For any C1, C′1 with
f(C1) = f(C′1) = 1:

Pr[Of (Ai) = 1 | Ai = C1,HF−i] = Pr[Of (Ai) = 1 | Ai = C′1,HF−i].

Outline. In Section 5.4.1, we present a PAC-learning algorithm with monotonic
k-juntas as hypothesis that generalizes our work on single-input targeting. This
algorithm is proved to be correct only if some upper-bound on the targeting lift
is assumed. Then, we describe more efficient algorithms in Section 5.4.2, but that
are proved to be correct under stronger assumptions on the targeting lift. Further
discussions on this work are given in the conclusion (Section 5.4.3).

5.4. Complex targeting: the case of monotonic functions 177

5.4.1 Beyond single-input: the influence of the targeting lift

We first present an extended version of Theorem 84 that can be applied to monotonic
k-juntas with additional assumptions. This result has been published in [DLCG15],
and it is a joint work with Mathias Lécuyer, Augustin Chaintreau and Roxana
Geambasu.

Theorem 87. Let ϕ be the targeting lift (Assumption 1) and let α ≤ 1 be the
polynomial-growth (Assumption 2). For every fixed positive integers s and w, there
exists a constant Ms,w such that the following holds if ϕ < Ms,w:

There exists a PAC-learning algorithm such that, for every ε > 0, the targeting
function can be learnt with probability 1 − ε under the hypothesis that it has a core
with size at most s and order at most w. Furthermore, this algorithm runs in
O(N s+w · log1/α(N/ε))-time and it has 2O(s+w) · log1/α(N/ε) query complexity.

Theorem 87 can be restated under monotonic k-juntas hypothesis by setting
s = w = k. The main steps of its proof are now sketched. We describe a PAC-
learning algorithm under monotonic juntas hypothesis and we prove its correctness.

Sketch of the algorithm. As for Theorem 84, we set the distribution of the
sampler to be a binomial distribution B(p,N), and then we make a polylogarithmic
number of queries. However, note that here, the probability p will depend on the
values for s and w.

The algorithm iterates on all the O(Nw) subsets C of size at most w, and it
aims at deciding whether f(C) = 1. In order to do so, the following key question is
answered: what can be said among the supersets of C for which the oracle outputs
1 ? By definition, all of those subsets contain all inputs in C so we are interested in
understanding how other inputs affect them. This is where exactly two cases emerge:
Firstly, if we assume that C does contain a combination of the core, it automatically
implies that independently of any other inputs, they all receive the ad with the same
probability (by Assumption 4 on nondiscrimination). Secondly, if we assume on the
other hand the opposite, then among all accounts including C, there will be specific
sets of inputs that may complete a combination from the core family and hence
be targeted more heavily than others. This latter case resembles the situation of
single-input targeting. The former case resembles a situation where f is untargeted
(ads appear randomly). We can therefore design a new test as follows, that is sound
and complete to determine in which case we are.

Roughly, the algorithms considers all the queried combinations Ci such that
C ⊆ Ci and Of (Ci) = 1. Then, for all these combinations Ci, the subset Ci \ C is
placed in some family ∆(ad)(C). The test concludes that f(C) = 1 if and only if
∆(ad)(C) has no x_intersecting subset of size at most s, for some predefined choice
of x. It can be verified in O(N s · log1/α(N/ε))-time by calling upon Algorithm 1.
Furthermore, if a combination C passes the test and it is inclusion wise minimal
w.r.t. this property then it is part of the core family of f with high probability.

178 Chapter 5. Learning formulas in a noisy model

In what follows (sections 5.4.1.1 and 5.4.1.2), we introduce the two propositions
that are the cornerstone of our analysis for this above algorithm. We also explain in
Section 5.4.1.3 why there is a need for assuming an upper-bound on the targeting
lift in order to prove the correctness of this algorithm.

5.4.1.1 Soundness of the algorithm

First, we need to show that in any family of random subsets, almost asymptotically
surely (a.a.s.) there can be no x_intersecting subset of small size (Lemma 88). The
following technique is similar to the one used in [NRS04] in order to prove that a.a.s.
the minimum size of a dominating set in any n-vertex random graph is Θ(log n).

Lemma 88. Let 1 > x > 0, s ∈ N, p < 1−(1−x)
1
s , and B a family of combinations

that are drawn randomly from a binomial distribution B(p,N). There exists C > 0

such that for any ε > 0 and polynomial P , if m ≥ C · (s ln(n) + lnP (n) + ln(1/ε))

then with probability (1− ε/P (n)) no x_intersecting subset of size s exists for this
family.

Proof. Let us consider an arbitrary combination C ⊆ D of size s. We introduce Y the
variable counting how many random subsets in B this combination C intersects, and
we note that C is an x_intersecting subset exactly if Y ≥ xm. We also observe that
Y is a sum of binary independent variables and so, since the probability that C inter-
sects an arbitrary subset in B is 1−(1−p)s, it has expectation µ = (1− (1− p)s)m.
Assuming p < 1− (1− x)

1
s as we do, µ is multiplicatively smaller than xm. Hence

we can apply Chernoff Bound to conclude that Pr[Y ≥ xm] ≤ ε
P (N)Ns when

m ≥ C · ln (N sP (N)/ε)with C =
3 (1− (1− p)s)

(x− (1− (1− p)s))2 .

Furthermore, since there are
(
N
l

)
≤ N s choices of C, by the union bound the prob-

ability that at least one of them is an x_intersecting subset is at most ε
P (N) .

By Lemma 88, the test routine of the algorithm will detect all the combinations
C such that f(C) = 1 with high probability. However, the latter result requires
a predetermined lower-bound on the threshold parameter x (that depends on the
probability p). In particular, the larger the size s of the core family of f , the larger
the lower-bound on x.

5.4.1.2 Completeness of the algorithm

Second, we aim at proving that the test routine of the algorithm will reject all
the combinations C such that f(C) = 0 with high probability. This case is quite
similar to single-input targeting, as it suffices to show that w.h.p., positive examples
in ∆(ad)(C) (defined above for the test) are likelier to be correctly classified than
misclassified. Indeed, if this holds then taking one input in each combination of
the core will leave an 1_intersecting subset of size at most s for the subfamily

5.4. Complex targeting: the case of monotonic functions 179

∆(ad)(C) ∩ S(in) (correctly classified), that will be an x_intersecting subset for the
whole family ∆(ad)(C), for some well-chosen x.

The main difficulty is that it is not equally likely for a random combination to
be within scope than out of scope. In particular, the larger the order w (size of a
largest combination in the core), the lesser the probability for a random combination
to be in S(in). So, we need to tune the probability p (used for the distribution Π of
the sampler) in order to increase in turn the probability for a random account to be
within scope. Formally, let us introduce the following function on this probability:

ϕ̂(k)
s,w(p) =

1− s
k (1− (1− p)s)

s
k (1− (1− p)s)

(1− (1− p)s/k)w
1− (1− (1− p)s/k)w (5.1)

Proposition 89. Suppose that f has a core family of size at most s and order
at most w, and that ϕ ≤ ϕ̂

(k)
s,w(p) for some k ≤ s. Then, there exist two positive

constants x and C (independent of f) such that the following holds for any choice
of ε > 0, polynomial P and combination C:

Let B be a family of m combinations that are drawn randomly from a binomial
distribution B(p,N). If m ≥ p−|C| · C · (ln(N) + lnP (N) + ln(1/ε)), then with
probability (1− ε/P (N)) exactly one of the following claims holds:

(i) C contains a core combination, i.e. it is in S(in).
(ii) an x_intersecting subset of size k exists for

∆(C) = {S ∩ C | S ∈ B,Of (S) = 1, C ⊆ S}

5.4.1.3 Upper-bounds on the targeting lift

Altogether combined, Lemma 88 and Proposition 89 can be proved to be simul-
taneously correct only if x is chosen in some fixed interval, whose length depends
on: the size s of the core, its order w, the targeting lift ϕ (Assumption 1) and
the probability p that is used for the distribution Π of the sampler. Note that the
probability p can be tuned in order to maximize the length of this interval, but even
then, there will be an upper-limit (depending on ϕ, s, w) beyond which this interval
will be empty. Let us express this limit as an upper-bound Ms,w on the targeting
lift (only depending on s and w).

Lemma 90. Let Ms,w = supp∈]0;1[ϕ̂
(s)
s,w(p), we have:





if s = 1, M1,w = 1/w,

if w = 1, Ms,1 = 1/s,

for all s, w, 1
(2max(s,w)−1)2

≤Ms,w ≤ 1
(2min(s,w)−1)2

,

for all w, s, Ms,w = Mw,s,

if s = w = n, Mn,n = 1/(2n − 1)2.

Moreover, if w > 1 and s > 1 then we have Ms,w = (p∗)w

1−(p∗)w
(1−p∗)s

1−(1−p∗)s where p∗ is
the only solution in]0; 1[of:

wpw+1 − s(1− p)s+1 − (w + s)p+ w = 0.

180 Chapter 5. Learning formulas in a noisy model

0.0001

0.001

0.01

0.1

0 0.2 0.4 0.6 0.8 1

s = 2

s = 5

s = 10

s = 100

0 0.2 0.4 0.6 0.8 1

s = 2

s = 5

s = 10

s = 50

0 0.2 0.4 0.6 0.8 1

s = w = 2

s = w = 3

s = w = 4

s = w = 5

s = w = 6

Figure 5.3: Value of ϕ̂(s)
s,w as a function of 1− p for w = 1 (left), w = 2 (middle) and

w = s (right).

Discussion and perspectives. It is particularly informative to see how this un-
detected targeting lift (upper-bound on the targeting lift) grows with the complexity
of the formula used. Figure 5.3 presents the value of the function ϕ̂(s)

s,w that defines
it (it is drawn up to a change of variable to make it easier to read). As proved in
Lemma 90 and shown in the figure, if the targeting solely uses disjunction (resp.
conjunction) of inputs, i.e., w = 1 (resp., s = 1) as shown in Figure 5.3 (left), the
undetected targeting lift behaves as 1/s and hence it is polynomial. This polynomial
expansion remains if s grows while w remains small. Figure 5.3 (middle) presents
an example. In contrast, when s and w grow simultaneously, e.g., if they are equal
as shown in Figure 5.3 (right) one can show that undetected targeting lift can be
decreasing exponential fast. While this demonstrates the hardness of Web’s trans-
parency, we note that such forms of complex targeting combining so many inputs
to decide may be relatively rare in practice.

5.4.2 Faster algorithms and tradeoffs

Theorem 87 proves that the set cover approach of Section 5.3 can be generalized for
learning the monotonic k-juntas — but under some assumptions on the targeting
lift. In this subsection, we present algorithms for this task that achieve a better
running-time, but under stronger assumptions on the lift. This is joint work with
Max Tucker and Augustin Chaintreau.

Namely, in Section 5.4.2.1 we replace the exact test of Algorithm 1 with
a greedy approximation algorithm, thereby decreasing the running time from
O(N s · log1/α(N/ε)) to O(sN · log1/α(N/ε)). In Section 5.5.1, we introduce a new
PAC-learning algorithm that is more intricate than the one presented for Theorem 87
but runs in Õ((sw)! ·N)-time.

5.4.2.1 Faster detection algorithm

Our purpose is to describe a faster test of recognition for the combinations C such
that f(C) = 1.

5.4. Complex targeting: the case of monotonic functions 181

Theorem 91. Let ϕ be the targeting lift (Assumption 1) and let α ≤ 1 be the
polynomial-growth (Assumption 2). For every fixed positive integers s and w, there
exists a constant M̂s,w such that the following holds if ϕ < M̂s,w:

Suppose that f has a core family of size at most s and order at most w. Then,
for every combination C and for every ε > 0, it can be decided in 2O(|C|+s+w) · N ·
log1/α(N/ε)-time and with probability 1− ε whether f(C) = 1.

Let us sketch the proof of Theorem 91. We recall that in order to decide whether
f(C) = 1 with high probability, it suffices to verify whether some family ∆(C) has
an x_intersecting subset of size at most s, where x is a well-chosen parameter
depending on s and w. It can be done in Õ(N s)-time by using Algorithm 1. The
gist of Theorem 91 is to make this step faster by replacing the (exact) Set-intersection
algorithm with a greedy approximation algorithm that we describe next.

Formally, let us set S = ∆(C), C′ = ∅. While S 6= ∅ and |C′| < s, we pick
any input Dj that maximizes the number of intersected subsets in S. This input
Dj is added in C′, then every combination containing Dj is removed from S. This
process has already received some attention in the literature of Boolean function
learning [FA05], but under a different learning model.

On the one hand, if the resulting combination C′ is an x_intersecting subset then
we can conclude, as before for Theorem 87, that f(C) = 0 with high probability.
On the other hand, if ∆(C) does admit an x_intersecting subset of this size then
we can prove by using standard arguments on submodular functions that C′ must
be an (1 − (1 − 1

s)1/s)x_intersecting subset. It can be proved by Lemma 88 that
no such a subset can exist if f(C) = 1 and x is large enough. So overall, we are
left to test whether the resulting combination C′ is an x′_intersecting subset with
x′ = (1− (1− 1

s)1/s)x.

As a direct consequence of Theorem 91, we obtain a faster algorithm than the
one presented for Theorem 87:

Corollary 92. Let ϕ be the targeting lift (Assumption 1) and let α ≤ 1 be the
polynomial-growth (Assumption 2). For every fixed positive integers s and w, there
exists a constant M̂s,w such that the following holds if ϕ < M̂s,w:

There exists a PAC-learning algorithm such that, for every ε > 0, the targeting
function can be learnt with probability 1 − ε under the hypothesis that it has a core
with size at most s and order at most w. Furthermore, this algorithm runs in
O(2s ·Nw · log1/α(N/ε))-time and it has 2O(s+w) · log1/α(N/ε) query complexity.

Let us point out that this new algorithm is Fixed-Parameter Tractable in the
size s of the core family, but it still depends on its order w exponentially.

5.4.2.2 Faster identification algorithm

We have shown in Section 5.4.2.1 how to improve the detection test in order to
recognize the combinations of S(in). Getting rid of the exhaustive search of all
possible subsets of small size (at most the order w of the core) is much more difficult.

182 Chapter 5. Learning formulas in a noisy model

We show how to do so by using more properties of the intersecting subsets and a
significantly more elaborate algorithm, that has similarities with the one described
in [Ang88, Sec. 3.1, Theorem 1].

Theorem 93. Let ϕ be the targeting lift (Assumption 1) and let α ≤ 1 be the
polynomial-growth (Assumption 2). For every fixed positive integers s and w, there
exists a constant M s,w such that the following holds if ϕ < M s,w:

There exists a PAC-learning algorithm such that, for every ε > 0, the targeting
function can be learnt with probability 1−ε under the hypothesis that it has a core with
size at most s and order at most w. Furthermore, this algorithm has 2O(sw·log(sw)) ·
log1/α(N/ε) query complexity, and with probability 1−ε it runs in 2O(sw·log(sw)) ·N ·
log1/α(N/ε)-time.

Input: a family F ; and a threshold parameter x.
Output: the representation S(core) of f .

S(core) ← {} ;
Sx ← Set-intersection(F , x, 1); S ← ⋃

{Di}∈Sx
{Di};

if S 6= ∅ then
/* Removal of inputs until obtaining a core combination */;
foreach Di ∈ S do
Ŝ = S \Di;
F̂ = {Aj \ Ŝ | Aj ∈ F , Ŝ ⊆ Aj};
Ŝx ← Set-intersection(F̂ , x, 1);
if Ŝx = ∅ then

/* the subset Ŝ is still in S(in) */;
S ← Ŝ;

end
end
S(core) ← S(core) ∪ {S};
foreach Di ∈ S do

/* Recursive call to the algorithm */;
Si ← GSI(F \ {Aj ∈ F | Di ∈ Aj}, x);
S(core) ← S(core) ∪ Si;

end
end

Algorithm 3: Generalized set-intersection algorithm (GSI).

The proof of Theorem 93 is based on Algorithm 3, that is an intricate variation
of the Set-intersection algorithm. Let us first give a better analysis of the detection
test that is used in order to recognize the combinations of S(in) (presented earlier
in Section 5.4.1). Given a combination C, this test either asserts that f(C) = 1 or it
outputs an x_intersecting subset of size at most s for some family of subsets ∆(C).

5.4. Complex targeting: the case of monotonic functions 183

The latter subset can be regarded as a “negative certificate” on which we can extract
more information as follows:

Lemma 94. Suppose that f has a core family of size at most s and order at most w,
and let k ≤ s. Then, provided ϕ < Ms,w

(k) for some constant Ms,w
(k) (only depend-

ing on s, k and w), there exist positive constants x (threshold), p (probability for the
sampler) and C such that the following holds for any choice of ε > 0, polynomial P
and combination C:

Let B be a family of m combinations that are drawn randomly from a binomial
distribution B(p,N), with m ≥ α−|C| · C · (ln(N) + lnP (N) + ln(1/ε)). The two
following claims hold for Sx,k = {S | S x_intersecting for ∆(C), |S| ≤ k} with
probability (1− ε/P (N)):

(i) All combinations in Sx,k intersect
⋃
S∈S(core) S.

(ii) C ∪⋃S∈Sx,k S is empty or contains a core combination.

From now on, this lemma will be used with k = 1.
Let us sketch the main principles behind the algorithm. As before, we set the

distribution Π for the sampler to be a binomial distribution B(p,N), for some
predetermined value of p. Then, we make a polylogarithmic number of queries to
the sampler, and we let F to be the set of all the combinations Ci queried such that
Of (Ci) = 1. If f is not the null-function then under the conditions of Theorem 93,
this family F has x_intersecting subsets of size 1. Furthermore, by calling upon
Algorithm 1 (with s = 1), all such intersecting subsets of unit size can be computed,
in quasi-linear time.

At this step, Lemma 94 comes into play. Indeed, let S be the union of all
x_intersecting subsets of F of unit size. By Lemma 94(i), every input in S is
in a core combination, hence |S| ≤ sw. In addition, we have by Lemma 94(ii)

that S contains a core combination with high probability. The main idea behind
Theorem 93 is to extract a core combination C from S, then to call Algorithm 3
recursively on a constant number of subsets of F in order to obtain the remaining
of the core family. More precisely, there is one recursive call for every input Di ∈ C,
before which we remove from F all the combinations that contain Di in order to
obtain different core combinations than C. The main difficulty is to bound the
depth of the recursion. This is where we use once more Lemma 94. Indeed, since
at each call to Algorithm 3, the superset S has all its inputs contained in a core
combination, and we virtually remove one of them before each recursive call, the
depth of the recursion is bounded w.h.p. by

∑
C∈S(core) |C| ≤ sw.

5.4.3 Conclusion and open perspectives

We have generalized the results obtained for single-input targeting to a larger class
of targeting functions. A main drawback of this set cover approach, when applied to
complex targeting, is that it can be proved to be correct only if the targeting lift is
close to zero (the larger the size and the order of the core, the closer the lift to zero).
So far, our learning model does not make any assumption on what a “realistic” value

184 Chapter 5. Learning formulas in a noisy model

for the lift should be. We aim at closing this gap in a near future by using some
advertising models in the literature [GEC+13] in order to better evaluate the order
of magnitude for this value.

On a more positive side, our approach can be modified in order to give efficient
algorithms with quasi-linear time. This is a neat advantage for Web transparency
tools such as Xray that, for now, do not cope with complex targeting. To the best
of our knowledge, the only prototype which goes beyond the case of single-input
targeting is Sunlight [LSS+15], where a different subclass of targeting functions is
adressed. Roughly, the core algorithm of this tool is able to detect and to identify
a class of “threshold functions” f , where each input is assigned a weight and f

outputs 1 only if the sum of the weights of the inputs in presence is greater than
some predetermined threshold.

Finally, let us point out that generalizing our approach in this section to non-
monotonic functions is challenging, at best. Indeed, we recall that our detection test
concludes that a combination C is in S(in) if and only if there is no x_intersecting
subset of small size in a given family ∆(C). This test fails if the targeting function is
non-monotonic. As an example, consider a combination C such that for every prime
implicant 〈Cin, Cout〉 of f , we have C ∩ Cout 6= ∅. By construction, there can be no
superset of C that is in S(in). Hence, it may be the case that all these supersets are
equally likely to be targeted by mistake, with all the inputs not in C being present by
mere chance. The latter would imply that the family ∆(C) that is used for the test
would not have any x_intersecting subset of small size, and so, that C is mistakenly
identified as part of S(in).

5.5 General case

Finally, this section is about the theoretical limitations of the learning model of
Section 5.2. That is, we aim at characterizing what can be learnt in our model. Full
proofs can be found in [CD17], which is joint work with Augustin Chaintreau.

Outline. On the positive side, we prove in Section 5.5.1 that all the relevant inputs
(on which the targeting depends) can be computed. Furthermore, under one addi-
tional assumption on the oracle (generalizing Assumption 4 on nondiscrimination),
any targeting function can be learnt. However in general (without an additional
assumption), it is proved in Section 5.5.3 that monotonic 2-juntas cannot be learnt
in our setting. In fact, it is already impossible to distinguish between a conjunction
or a disjunction!

Although the proofs in Sections 5.5.1 and 5.5.2 are algorithmic, they do not lead
to efficient PAC-learning algorithms.

5.5.1 Identification of the relevant inputs

This subsection presents an algorithm for computing the at most k inputs on which
a k-junta depends. Roughly, the relevant inputs will be inferred by virtually “fixing”

5.5. General case 185

k−1 inputs from the ground-set D. Such removal will reduce the problem to single-
input targeting, and so, the set cover approach of Section 5.3 can be used. This is
formalized with the following Algorithm 4.

Input: accuracy parameter ε; upper-bound k on the number of relevant
inputs.

Output: the set of relevant inputs V .

V ← {} ;
/* Parameters tuning */;
Let x ∈]1

2 ; 1
1+ϕ [;

Let m ∈ Ω
(

2k · log1/α(N/ε)
)
/*m depends on x*/;

/* Uniform sampling */;
Draw 〈C1,Of (C1)〉, 〈C2,Of (C2)〉, . . . , 〈Cm,Of (Cm)〉 with Π = B(1/2, N) ;

F ← {Ci | 1 ≤ i ≤ m and Of (Ci) = 1} ;
/* Exhaustive search for prime implicants */;
foreach 〈Cin, Cout〉 with |Cin|+ |Cout| ≤ k − 1 do

F̂ ← {Ap ∈ F | Cin ⊆ Ap and Ap ∩ Cout = ∅};
F̂ ← {D \Ap | Ap ∈ F̂} ;
if |F̂ | ≥ Ω (k · log(N/ε)) then
Sx ← Set-intersection(F̂ , 1, x) // positive dependency;

Sx ← Set-intersection(F̂ , 1, x) // negative dependency;

Ŝ ←
(

⋃
{Di}∈Sx∪Sx

{Di}
)
\ Cin ;

V ← V ∪ Ŝ ;
end

end

Algorithm 4: Inference algorithm for the relevant inputs.

Theorem 95. Let α ≤ 1 be the polynomial-growth (Assumption 2). There is an
algorithm such that, for every ε > 0, the set of relevant variables V = {Di ∈ D |
f depends on Di} can be learnt with probability 1 − ε under k-juntas hypothesis.
This algorithm runs in O(Nk · log1/α(N/ε))-time and it has O(2k · log1/α(N/ε)))

complexity query.

Sketch Proof of Theorem 95. We give a correctness proof of Algorithm 4. Let
〈Cin, Cout〉 be fixed, with |Cin| + |Cout| ≤ k − 1. Let us define B̂ as the family of all
the combinations that have been queried with the sampler, that contain Cin and that
do not intersect Cout. Furthermore, let D̂ = D\(Cin ∪ Cout), let f̂(Ĉ) = f(Ĉ∪Cin) and
Ôf (Ĉ) = Of (Ĉ∪Cin) for every combination Ĉ ⊆ D̂. In order to reuse the results from

186 Chapter 5. Learning formulas in a noisy model

Section 5.3, we will base on the property that Ôf “almost” behaves like an oracle
for the targeting function f̂ . That is, it satisfies Assumptions 1 and 2 (trivially),
but it only satisfies Assumption 3 partially. More precisely, if f (but not necessarily
f̂) only depends on some inputs in V̂ ∪ Cin ∪ Cout, then Assumption 3 applies for
V̂ . By Lemma 88 (nonexistence of x_intersecting subsets of small size in random
families), this weaker version of Assumption 3 implies that the targeting function f
depends on every input that is computed by Algorithm 4 with high probability.

In order to complete the proof of the theorem, let Dj be any input on which f
depends. Since Dj is relevant, there is a bipartition 〈Cin, Cout〉 of the relevant inputs
from D \ Dj so that f(Cin ∪ {Dj}) 6= f(Cin). So, let us fix any such bipartition
〈Cin, Cout〉. In such case, f̂ is a 1-junta that only depends on Dj , furthermore Ôf

satisfies Assumption 3 for f̂ . The average size of B̂ ism/2k−1, wherem is the number
of queries. This case is thus reduced to single-input targeting (Theorem 84). Finally,
by taking a union bound over the relevant inputs, every input on which f depends
is in V (computed by Algorithm 4) with high probability.

5.5.2 Filtering technique

In this subsection we now present an algorithm for learning the targeting function
f exactly. Suppose that we are given the relevant inputs for the targeting function
f . In order to learn S(in), it suffices to learn all the subsets C on these (at most k)
inputs so that f(C) = 1. Intuitively, this can be achieved by comparing any two
combinations C0, C1 and testing whether containing one of these two subsets, say,
C1, increases the chance to be targeted (compared to C0). On may expect that the
latter certifies f(C1) = 1 and f(C0) = 0. Algorithm 5 (introduced next) builds upon
this intuition.

Input: a set of inputs V ; a family F ; a threshold parameter t.
Output: the class Tk of all bipartitions 〈Cin, Cout〉 of V s.t. 〈Cin, Cout〉 ∈ S(in).

k ← |V | ;
/* Partition of the family w.r.t. the relevant inputs */;
Partition F into F1,F2, . . . ,F2k s.t.:
• ∀1 ≤ i < 2k, |Fi| ≥ |Fi+1| ;
• ∀Ap, Aq ∈ F , Ap ∩ V = Aq ∩ V ⇐⇒ Ap, Aq ∈ Fi for some i;

/* Ordering of the bipartitions of V by decreasing presence in the family */;
for i ∈ {1, . . . , 2k} do

Vi ← Ap ∩ V with Ap ∈ Fi ;
end

/* Identification of the targeting lift */;
ilim ← min{1 ≤ i ≤ 2k | |Fi| ≥ t · |Fi+1|};
Tk ← {〈Vi, V \ Vi〉 | 1 ≤ i ≤ ilim} ;

Algorithm 5: Recognition algorithm for the targeting function.

5.5. General case 187

However, it turns out that subtle complications occur which may lead our ap-
proch in this section to failure. The reason is that we obtain an ordering over all
the bipartitions of the relevant inputs, that somewhat represents the combinations
of these inputs by nonincreasing importance, but we have no clue on where the
non-targeted combinations should start in this ordering. So, intuitively, the target-
ing function f can be learnt only if the targeting lift can be detected, for the latter
delineates the border between combinations within scope and those out of scope.

We next introduce a new parameter on the oracle that will be used in order to
prove correctness of our approach under some additional assumptions.

Definition 96. The oracle has positive variance ψ if for any family F = 〈A1, . . . , At〉
the following holds for any C1, C′1 ∈ S(in):

Pr[Of (Ai) = 1 | Ai = C1,HF−i] ≥ ψ · Pr[Of (Ai) = 1 | Ai = C′1,HF−i)].

Assumption 4 (introduced in Section 5.4 corresponds to the extremal case where
the oracle has positive variance ψ = 1. Roughly, a large positive variance implies
that there cannot exist a combination within scope that is significantly more targeted
than the other combinations of S(in). If so then the targeting lift can be detected
using a simple leftmost approach (see Algorithm 5).

Theorem 97. Let ϕ be the targeting lift (Assumption 1) and let α ≤ 1 be the
polynomial-growth (Assumption 2). The following holds if the oracle has positive
variance ψ > ϕ:

There exists a PAC-learning algorithm such that, for every k ≥ 1 and for every
ε > 0, the targeting function can be learnt with probability 1− ε under the k-juntas
hypothesis. Furthermore, this algorithm runs in O(Nk · log1/α(N/ε))-time and it
has O(2k · log1/α(N/ε)) query complexity.

Let us point out that even when there is no classification noise (Of = f), the best
known PAC-learning algorithm under the k-juntas hypothesis has time complexity
NO(k) [MOS04]. Therefore, improving upon this time complexity will probably
require additional assumptions.

5.5.3 Impossibility results

We end up this section with a proof that not all targeting functions can be learnt
with respect to our learning model.

Proposition 98. It is impossible to learn the targeting function f in general. In
particular, there is a given monotone 2-junta that cannot be learnt even if the tar-
geting lift is arbitrarily small.

Proof. In order to prove the result, we will construct an oracle Of that satisfies
Assumptions 1, 2 and 3 for two distinct targeting functions. The latter is enough
to prove the proposition since in such case, Of could be used in our model for any

188 Chapter 5. Learning formulas in a noisy model

of the two functions, and so, these cannot be distinguished with high probability.
More precisely, fix 0 < p0 < 1/5. Let us define Of such that for any combination C:

Pr[Of (C) = 1] = p0 · (1 + 2 · I{D1∈C} + 2 · I{D2∈C}).

Note that for any combination C, we have Pr[Of (C) = 1] ≤ 5p0 < 1.
Since every combination has positive probability to be targeted and the above

oracle considers the combinations independently, by Chernoff bound, Of satisfies
Assumption 2 with α = 1 for any targeting function3. Furthermore, Of satis-
fies Assumption 3 for any targeting function that only depends on the two in-
puts D1, D2. In particular, let f1(C) = max{I{D1∈C}, I{D2∈C}} (disjunction) and
let f2(C) = I{D1∈C} · I{D2∈C} (conjunction). These two functions are monotone. In
fact, they are linear combinations since f1(C) = 1 ⇐⇒ I{D1∈C} + I{D2∈C} ≥ 1, and
similarly f1(C) = 1 ⇐⇒ I{D1∈C} + I{D2∈C} ≥ 2. For both functions, the oracle Of

satisfies Assumption 1 with any targeting lift ϕ > 1/2.
Finally, note that in order to extend this negative result to lifts arbitrarily smaller

than 1/2, one may just consider a slightly more complex oracle for the above two
functions f1, f2, namely:

Pr[Of (C) = 1] = q
3−I{D1∈C}−I{D2∈C}
0 ,

for some nonzero probability q0 that can be taken arbitrarily small.

Let us emphasize that the negative result of Proposition 98 already holds for
monotonic and threshold functions (see Section 5.4.3). In particular, it applies to the
theory behind the Web’s transparency tools XRay [LDL+14] and Sunlight [LSS+15].

5.6 Conclusion

We have proved in this chapter that the theory behind two recent Web’s trans-
parency tools – namely, Xray [LDL+14] and Sunlight [LSS+15] – can be applied to
cope with complex targeting, but that it requires stronger assumptions on the ora-
cle. When these assumptions do not hold, we show that not all targeting functions
can be learnt.

It is equally likely that not all (learnable) functions can be learnt efficiently.
Indeed, even in a simpler learning model where there is no classification noise,
learning k-juntas takes NO(k)-time [MOS04, Val12]. Furthermore, given a set of
positive and negative examples, learning a function that is compatible with these
examples under k-juntas hypothesis isW [2]-hard [AKL07]. The same negative result
holds under monotonic k-juntas hypothesis [AKL07], which makes the existence
of No(k)-time PAC-learning algorithms unlikely. I believe that the existence or

3Note that we must also choose the same constants β and γ. Here, the two functions considered
are such that the scope of one is contained into the scope of the other. So, we can choose β, γ
w.r.t. the function with smallest scope.

5.6. Conclusion 189

nonexistence of quasi-linear time algorithms in our setting is strongly related to the
value of the targeting lift — as supported by the results of Section 5.4.

For this reason, I would find it interesting to mix up our learning model with
some advertising models of the literature (e.g., [GEC+13]) in order to fix some
“plausible” estimate for the lift. This project is part of my on-going work.

Another interesting problem would be to enhance our learning model by in-
cluding a natural graph structure between the accounts. Namely, as we stated in
Section 5.2.4, the online accounts of users can be seen as the vertices of a random in-
tersection graph [KSSC99], where an edge represents two accounts sharing a certain
number of inputs. The influence of these edges on the outcome is largely ignored by
our model, but it has received some attention in [LMT17]. Combining our model
with the approach proposed in [LMT17] is thus an important issue.

Finally, on the practical point of view, one hidden drawback of the algorithms
that are proposed in this chapter is that each query to the sampler represents, in
real-life, a fake account which needs to be created and maintained [LDL+14]. This
task is hard to automate, because online accounts have to respect a policy and
they can be quickly closed if they don’t. Ideally, we would like to find a different
implementation of our algorithms that would require fewer account creations. For
instance, could we avoid creating fake accounts by making some existing accounts
collaborate (with each of them representing one query to the sampler) ? This simple
idea would raise privacy concerns, that would require a computational mechanism
design in order to handle with the communications between two accounts.

Overall, new guidelines than our “Set Cover approach” should be investigated,
such as for instance the use of different oracles (that would represent accounts on
different online platforms) [AM10]. Our work may also benefit from a bio inspired
algorithm named Ant-miner [HLC07, PLF02] whose objective is to uncover classifi-
cation rules from a dataset.

Chapter 6

Conclusion

Contents
6.1 Open perspectives . 191

As networks more and more impact our lives, the world is turned to be ruled by
algorithms. This situation has motivated the need for more efficiency in algorithmic
and more transparency in the use of algorithms. In this thesis, we have adressed
these two issues by studying metric tree-likeness in graphs – related to the way
the information flows in complex networks – and a collection of privacy oriented
problems. We provide a finer-grained analysis for the complexity of all the problems
studied, so as to question their scalability.

The contributions of my thesis are summarized in Section 6.1, with an emphasis
on future work.

6.1 Open perspectives

We summarize our results in Chapters 2–5 and raise interesting questions for future
work. In what follows, we borrow from the concluding sections of these different
chapters.

First, we have given a survey on graph hyperbolicity in Chapter 2 where known
lower and upper bounds are collected and the best known results on the complexity
for computing this parameter are covered. In particular, we have introduced a
general framework in order to sharply estimate the distortion of hyperbolicity that
may be caused by various graph operations and so, conversely, by various graph
decompositions. We also have proved new sufficient conditions in order to lower or
upper-bound the hyperbolicity in some graph classes that are used for the design of
data center interconnection networks. We expect our techniques to apply to even
more graph classes, that is left as an interesting open question.

Furthermore, on the complexity point of view, we have proposed a preprocessing
method that is based on clique-decomposition. Interestingly, the core arguments
that are used for our analysis of the preprocessing can be applied to any other “tree-
like” decomposition: where the subgraphs are the bags of a tree decomposition with
bounded-diameter adhesion sets. Now, the question is whether they can be applied
to more general decompositions, say where the subgraphs are the sets of some family
with a “tree-representation” [BXHR12]? If so, then the latter result would subsume

192 Chapter 6. Conclusion

all known results on the preservation of hyperbolicity under modular, split and clique
decomposition. Another interesting open question is whether the recognition of
graphs with “large” hyperbolicity can be done faster than computing this parameter
for general graphs. Indeed, we recall that all the hardness results proved for this
parameter have been obtained for graphs with small hyperbolicity (bounded by
a constant). This is further supported by the experiments presented in [CCL15,
BCC15]: where the practical running-time is dominated by the computation of the
all-pairs shortest-paths except for some hard instances that have been observed to
have a small hyperbolicity.

Chapter 3 is devoted to an in-depth (complexity) study of some tree decompositions
in graphs where the bags must satisfy metric constraints. More precisely, we have
proved that computing the clique-decomposition is computationally equivalent to
Triangle Detection under the standard assumption that the latter problem is
equivalent to Matrix Multiplication. We have also proved that computing the
parameters treebreadth, pathbreadth and pathlength (recently introduced in [DK14,
DKL14]) is NP-hard and not FPT. However, on a more positive side, the clique-
decomposition of planar graphs and bipartite graphs can be computed in linear time,
and in the same way it can be decided in polynomial time whether a given bipartite
graph or planar graph has treebreadth one.

In particular, let us point out that all our hardness results have been obtained for
classes of graphs with a large clique or clique-minor, whereas all our positive results
have been proved for classes of graphs with bounded clique-number or clique-minor.
Therefore, it would be interesting to find new results (positive or negative) that
could better clarify the role of the clique-number and the Hadwiger number (size of
a largest clique-minor) in the parameterized complexity of the tree decomposition
problems studied in this chapter. In this respect, we might be helped by a central
result in Chapter 3: stating that treewidth and treelength can only differ by at most
a constant-factor in the classes of graphs with bounded-length isometric cycles and
bounded genus.

Furthermore, whereas our tools in Part I have been mainly graph-theoretical, we
have used a more diverse toolkit in Part II based on combinatorics, game theory
and learning theory. This diversification of our techniques has conduced to open
questions of a different nature, that we will expose next.

In particular, we have studied coloring games in Chapter 4, exhibiting new results
on the complexity of computing strong Nash equilibria in these games and in some
of their variations. More precisely, we have proved that a k-strong Nash equilibrium
can be computed with better-response dynamics for every fixed k ≥ 1, however the
dynamics do not converge in polynomial time as soon as k ≥ 4. So, it may be the
case that computing a k-strong Nash equilibrium in coloring games is PLS-complete
for some fixed k ≥ 4. Such a result would be interesting because coloring games
are played on an unweighted graph whereas the classical PLS-complete problems are
“weighted”, i.e., they can be solved in quasi-polynomial time with respect to some
set of input weights.

Bibliography 193

Note that as a way to deepen our understanding of coloring games, we have
proved that computing a Nash equilibrium in these games is PTIME-hard. It
has been proved that computing a Nash equilibrium in generalized coloring games
(played on an edge-weighted graph) is PLS-complete. Can we prove that conversely,
if a “weighted” game is PLS-hard then any corresponding “unweighted” game (where
all the input weights are bounded) is PTIME-hard ? Such a result would make ad-
vance our understanding of the complexity of search problems.

Finally, we have studied in Chapter 5 the problem of learning a Boolean function
that only depends on a fixed number of variables, under new hypotheses on the
classification noise. Our problem is motivated by online advertising in the Internet
(we aim at unveiling data misuse), and so, it has a natural graph structure. However,
this structure has not been exploited in our algorithms. Hence, an important issue
would be to better account for this underlying graph.

As an example, is this graph hyperbolic ? If it were the case, could we take
advantage of this fact in order to obtain efficient approximation algorithms for Set
Cover, that could be used in our approach for learning the function ?

Bibliography

[AAD16] M. Abu-Ata and F. F. Dragan. Metric tree-like structures in real-
world networks: an empirical study. Networks, 67(1):49–68, 2016.
(Cited in pages 24, 36, 37, 40, 58, 73, 74, 77, 22, 34, 35, 38, 56, 71,
72 and 75.)

[ABC+91] J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Miha-
lik, M. Shapiro, and H. Short. Notes on word hyperbolic groups. In
Group theory from a geometrical viewpoint. Singapore: World Scien-
tific, 1991. (Cited in pages 15, 31, 34, 13, 29 and 32.)

[ABF+98] R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup.
On the approximability of numerical taxonomy (fitting distances by
tree metrics). SIAM Journal on Computing, 28(3):1073–1085, 1998.
(Cited in pages 15 and 13.)

[ABK+07] I. Abraham, M. Balakrishnan, F. Kuhn, D. Malkhi, V. Ramasubra-
manian, and K. Talwar. Reconstructing approximate tree metrics.
In Proceedings of the twenty-sixth annual ACM symposium on Prin-
ciples of distributed computing, pages 43–52. ACM, 2007. (Cited in
pages 73 and 71.)

[ABK+16] E. Angel, E. Bampis, A. Kononov, D. Paparas, E. Pountourakis,
and V. Zissimopoulos. Clustering on k-edge-colored graphs. Discrete
Applied Mathematics, 2016. (Cited in pages 120 and 118.)

[ACHK16] A. Abboud, K. Censor-Hillel, and S. Khoury. Near-linear lower
bounds for distributed distance computations, even in sparse net-
works. Technical report, ArXiv, 2016. (Cited in pages 68 and 66.)

194 Bibliography

[ACP87] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of find-
ing embeddings in a k-tree. SIAM Journal on Algebraic Discrete
Methods, 8(2):277–284, 1987. (Cited in pages 77, 103, 75 and 101.)

[AD15] H. Alrasheed and F. F. Dragan. Core-periphery models for graphs
based on their δ-hyperbolicity: An example using biological net-
works. In Complex Networks VI, pages 65–77. Springer, 2015. (Cited
in pages 35, 73, 33 and 71.)

[ADM14] R. Albert, B. DasGupta, and N. Mobasheri. Topological implications
of negative curvature for biological and social networks. Physical
Review E, 89(3):032811, 2014. (Cited in pages 24, 73, 22 and 71.)

[AF84] M. Aigner and M. Fromme. A game of cops and robbers. Discrete
Applied Mathematics, 8(1):1–12, 1984. (Cited in pages 50 and 48.)

[AGCFV] D. Aguirre-Guerrero, M. Camelo, L. Fabrega, and P. Vila. Word-
metric-based greedy routing scheme for data center networks. Sub-
mitted. (Cited in pages 15, 22, 14 and 20.)

[AJ13] A. G Aksoy and S. Jin. The apple doesn’t fall far from the (metric)
tree: The equivalence of definitions. Technical report, ArXiv, 2013.
(Cited in pages 25, 29, 34, 23, 27 and 32.)

[AK89] S. B. Akers and B. Krishnamurthy. A group-theoretic model for sym-
metric interconnection networks. IEEE transactions on Computers,
38(4):555–566, 1989. (Cited in pages 17, 52, 15 and 50.)

[AKL07] V. Arvind, J. Köbler, and W. Lindner. Parameterized learnability
of k-juntas and related problems. In International Conference on
Algorithmic Learning Theory, pages 120–134. Springer, 2007. (Cited
in pages 188, 186 and 187.)

[ALNP15] C. Avin, Z. Lotker, Y. Nahum, and D. Peleg. Core size and den-
sification in preferential attachment networks. In M. M. Halldórs-
son, K. Iwama, N. Kobayashi, and B. Speckmann, editors, ICALP
2015, Kyoto, Japan, pages 492–503. Springer Berlin Heidelberg,
2015. (Cited in page 24.)

[ALP11] C. Avin, Z. Lotker, and Y. A. Pignolet. On the elite of social net-
works. Technical report, ArXiv, 2011. (Cited in pages 24 and 22.)

[ALPT16] C. Avin, Z. Lotker, D. Peleg, and I. Turkel. On social networks of
program committees. Social Network Analysis and Mining, 6(1):18,
2016. (Cited in page 24.)

[AM10] J. Arpe and E. Mossel. Application of a generalization of russo’s for-
mula to learning from multiple random oracles. Combinatorics, Prob-
ability and Computing, 19(02):183–199, 2010. (Cited in pages 189
and 187.)

[AMK03] T. Akutsu, S. Miyano, and S. Kuhara. A simple greedy algorithm
for finding functional relations: efficient implementation and average
case analysis. Theoretical Computer Science, 292(2):481–495, 2003.
(Cited in pages 170 and 168.)

Bibliography 195

[AMM10] N. Archak, V. S. Mirrokni, and S. Muthukrishnan. Mining advertiser-
specific user behavior using adfactors. In Proceedings of the 19th in-
ternational conference on World wide web, pages 31–40. ACM, 2010.
(Cited in pages 115 and 113.)

[Ang88] D. Angluin. Queries and concept learning. Machine Learning,
2(4):319–342, 1988. (Cited in pages 163, 166, 182, 161, 164 and 180.)

[APW12] P. Austrin, T. Pitassi, and Y. Wu. Inapproximability of treewidth,
one-shot pebbling, and related layout problems. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 13–24. Springer, 2012. (Cited in pages 73, 103,
71 and 101.)

[AR07] J. Arpe and R. Reischuk. Learning juntas in the presence of noise.
Theoretical Computer Science, 384(1):2–21, 2007. (Cited in pages 163
and 161.)

[ASHM13] A. B. Adcock, B. D. Sullivan, O. R. Hernandez, and M. W. Mahoney.
Evaluating openmp tasking at scale for the computation of graph
hyperbolicity. In International Workshop on OpenMP, pages 71–83.
Springer, 2013. (Cited in pages 55 and 53.)

[ASM13] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney. Tree-like struc-
ture in large social and information networks. In 2013 IEEE 13th
International Conference on Data Mining, pages 1–10. IEEE, 2013.
(Cited in pages 16, 73, 14 and 71.)

[ASM16] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney. Tree decompo-
sitions and social graphs. Internet Mathematics, 12(5), 2016. (Cited
in pages 69, 77, 108, 67, 75 and 106.)

[AVWW16] A. Abboud, V. Vassilevska Williams, and J. Wang. Approximation
and fixed parameter subquadratic algorithms for radius and diameter
in sparse graphs. In Proceedings of the twenty-seventh annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 377–391.
SIAM, 2016. (Cited in pages 88 and 86.)

[BAJ00] A. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of
random networks: the topology of the world-wide web. Physica
A: Statistical Mechanics and its Applications, 281(1):69–77, 2000.
(Cited in pages 2, 16, 46, 220, 14 and 44.)

[Bal04] C. Ballester. NP-completeness in hedonic games. Games and Eco-
nomic Behavior, 49(1):1–30, 2004. (Cited in pages 120 and 118.)

[Ban90] H.-J. Bandelt. Recognition of tree metrics. SIAM Journal on Dis-
crete Mathematics, 3(1):1–6, 1990. (Cited in pages 14, 29, 12 and 27.)

[BBGM15] A. Berry, A. Brandstädt, V. Giakoumakis, and F. Maffray. Efficiently
decomposing, recognizing and triangulating hole-free graphs without
diamonds. Discrete Applied Mathematics, 184:50–61, 2015. (Cited
in pages 86 and 84.)

196 Bibliography

[BC03] H.-J. Bandelt and V. Chepoi. 1-hyperbolic graphs. SIAM Journal
on Discrete Mathematics, 16(2):323–334, 2003. (Cited in pages 25,
66, 23 and 64.)

[BCC15] M. Borassi, A. Chessa, and G. Caldarelli. Hyperbolicity measures
democracy in real-world networks. Physical Review E, 92(3):032812,
2015. (Cited in pages 24, 192, 22 and 190.)

[BCCM15] M. Borassi, D. Coudert, P. Crescenzi, and A. Marino. On computing
the hyperbolicity of real-world graphs. In Algorithms-ESA 2015,
pages 215–226. Springer, 2015. (Cited in pages 41, 56, 73, 39, 54
and 71.)

[BCF94] M.-F. Bélanger, J. Constantin, and G. Fournier. Graphes et ordon-
nés démontables, propriété de la clique fixe. Discrete Mathematics,
130(1):9–17, 1994. (Cited in pages 51 and 49.)

[BCH16] M. Borassi, P. Crescenzi, and M. Habib. Into the square: On the com-
plexity of some quadratic-time solvable problems. Electronic Notes in
Theoretical Computer Science, 322:51–67, 2016. (Cited in pages 65,
67, 111, 63 and 109.)

[BDCV98] A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin. Dually
chordal graphs. SIAM Journal on Discrete Mathematics, 11(3):437–
455, 1998. (Cited in pages 37, 44, 82, 83, 35, 42 and 80.)

[Ben98] I. Benjamini. Expanders are not hyperbolic. Israel Journal of Mathe-
matics, 108(1):33–36, 1998. (Cited in pages 35, 50, 72, 33, 48 and 70.)

[Ben13] I. Benjamini. The hyperbolic plane and hyperbolic graphs. In Coarse
Geometry and Randomness, pages 23–31. Springer, 2013. (Cited in
pages 14 and 12.)

[BF06] M. Bonk and T. Foertsch. Asymptotic upper curvature bounds in
coarse geometry. Mathematische Zeitschrift, 253(4):753–785, 2006.
(Cited in pages 33, 34, 31 and 32.)

[BFGR15] R. Belmonte, F. V. Fomin, P. A. Golovach, and M. S. Ramanujan.
Metric dimension of bounded width graphs. In International Sym-
posium on Mathematical Foundations of Computer Science, pages
115–126. Springer, 2015. (Cited in pages 104 and 102.)

[BFÖ+03] G. S. Brodal, R. Fagerberg, A. Östlin, C. N. S. Pedersen, and S. S.
Rao. Computing refined buneman trees in cubic time. In Interna-
tional Workshop on Algorithms in Bioinformatics, pages 259–270.
Springer, 2003. (Cited in pages 69 and 67.)

[BFW92] H.L. Bodlaender, M.R. Fellows, and T. Warnow. Two strikes against
perfect phylogeny. In ICALP’92, Vienna, Austria, pages 273–283,
1992. (Cited in pages 95 and 93.)

[BH11] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curva-
ture, volume 319. Springer Science & Business Media, 2011. (Cited
in pages 15, 30, 31, 33, 34, 49, 13, 28, 29, 32 and 47.)

Bibliography 197

[BH12] A. E. Brouwer and W. H. Haemers. Distance-regular graphs. In
Spectra of Graphs, pages 177–185. Springer, 2012. (Cited in pages 52,
53 and 51.)

[BHO+11] I. Benjamini, C. Hoppen, E. Ofek, P. Prałat, and N. Wormald.
Geodesics and almost geodesic cycles in random regular graphs.
Journal of Graph Theory, 66(2):115–136, 2011. (Cited in pages 45
and 43.)

[BHV06] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremen-
tal approach for maintaining chordality. Discrete Mathematics,
306(3):318–336, 2006. (Cited in pages 102 and 101.)

[BK96] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms
for the pathwidth and treewidth of graphs. Journal of Algorithms,
21(2):358–402, 1996. (Cited in pages 111 and 110.)

[BK06] H. L. Bodlaender and A. Koster. Safe separators for treewidth.
Discrete Mathematics, 306(3):337–350, 2006. (Cited in pages 102
and 101.)

[BKC09] M. Boguná, D. Krioukov, and K. C. Claffy. Navigability of complex
networks. Nature Physics, 5(1):74–80, 2009. (Cited in pages 2, 16,
220 and 14.)

[BKK95] H. L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and path-
width of permutation graphs. SIAM Journal on Discrete Mathemat-
ics, 8(4):606–616, 1995. (Cited in pages 78 and 76.)

[BKKM98] H. L. Bodlaender, T. Kloks, D. Kratsch, and H. Müller. Treewidth
and minimum fill-in on d-trapezoid graphs. J. Graph Algorithms
Appl, 2(5):1–28, 1998. (Cited in pages 78 and 76.)

[BKM01] G. Brinkmann, J. H. Koolen, and V. Moulton. On the hyperbolicity
of chordal graphs. Annals of Combinatorics, 5(1):61–69, 2001. (Cited
in pages 25, 41, 44, 23, 39 and 42.)

[BL97] A. L. Blum and P. Langley. Selection of relevant features and exam-
ples in machine learning. Artificial intelligence, 97(1):245–271, 1997.
(Cited in pages 164 and 162.)

[BL05] Y. Bilu and N. Linial. Monotone maps, sphericity and bounded
second eigenvalue. Journal of Combinatorial Theory, Series B,
95(2):283–299, 2005. (Cited in pages 23 and 21.)

[Bla38] A. Blake. Canonical Expressions in Boolean Algebra. [Chicago], 1938.
(Cited in pages 164 and 162.)

[BM86] H.-J. Bandelt and H. M. Mulder. Distance-hereditary graphs. Jour-
nal of Combinatorial Theory, Series B, 41(2):182–208, 1986. (Cited
in pages 41 and 39.)

[BM93] H. L. Bodlaender and R. H. Möhring. The pathwidth and treewidth
of cographs. SIAM Journal on Discrete Mathematics, 6(2):181–188,
1993. (Cited in pages 78 and 76.)

198 Bibliography

[BM08] J. A. Bondy and U. S. R. Murty. Graph theory. Grad. Texts in
Math., 2008. (Cited in page 5.)

[Bod06] H.L. Bodlaender. Treewidth: Characterizations, applications, and
computations. In WG 2006, Bergen, Norway, pages 1–14, 2006.
(Cited in pages 39, 77, 81, 83, 38, 75, 79 and 82.)

[BPK10] M. Boguná, F. Papadopoulos, and D. Krioukov. Sustaining the in-
ternet with hyperbolic mapping. Nature communications, 1:62, 2010.
(Cited in pages 23 and 21.)

[BPS10] A. Berry, R. Pogorelcnik, and G. Simonet. An introduction to clique
minimal separator decomposition. Algorithms, 3(2):197–215, 2010.
(Cited in pages 3, 18, 55, 61, 62, 77, 78, 85, 89, 221, 16, 53, 58, 60,
75, 76, 83 and 87.)

[BPS11] A. Berry, R. Pogorelcnik, and A. Sigayret. Vertical decomposition
of a lattice using clique separators. In Proceedings of The Eighth In-
ternational Conference on Concept Lattices and Their Applications,
Nancy, France, October 17-20, 2011, pages 15–29, 2011. (Cited in
pages 90 and 88.)

[BPS14] A. Berry, R. Pogorelcnik, and G. Simonet. Organizing the atoms
of the clique separator decomposition into an atom tree. Discrete
Applied Mathematics, 177:1–13, 2014. (Cited in pages 62, 85, 89, 59,
83 and 87.)

[Bra01] U. Brandes. A faster algorithm for betweenness centrality. Journal
of mathematical sociology, 25(2):163–177, 2001. (Cited in pages 23
and 21.)

[BRSV13] S. Bermudo, J. M. Rodríguez, J. M. Sigarreta, and J.-M. Vilaire.
Gromov hyperbolic graphs. Discrete Mathematics, 313(15):1575–
1585, 2013. (Cited in pages 16 and 14.)

[Bry73] T. Brylawski. The lattice of integer partitions. Discrete Mathematics,
6(3):201 – 219, 1973. (Cited in pages 122, 128, 129, 120, 126 and 127.)

[BS11] M. Bonk and O. Schramm. Embeddings of gromov hyperbolic spaces.
In Selected Works of Oded Schramm, pages 243–284. Springer, 2011.
(Cited in pages 15 and 14.)

[BS12] I. Benjamini and O. Schramm. Finite transitive graph embeddings
into a hyperbolic metric space must stretch or squeeze. In Geometric
aspects of functional analysis, pages 123–126. Springer, 2012. (Cited
in pages 52 and 50.)

[BT97] H. L. Bodlaender and D. M. Thilikos. Treewidth for graphs with
small chordality. Discrete Applied Mathematics, 79(1):45–61, 1997.
(Cited in pages 73 and 71.)

[BT12] Y. Baryshnikov and G. H. Tucci. Asymptotic traffic flow in a hy-
perbolic network. In Communications Control and Signal Processing
(ISCCSP), 2012 5th International Symposium on, pages 1–4. IEEE,
2012. (Cited in pages 23 and 21.)

Bibliography 199

[Bun74] P. Buneman. A note on the metric properties of trees. Journal
of Combinatorial Theory, Series B, 17(1):48–50, 1974. (Cited in
pages 14, 25, 69, 12, 23 and 67.)

[BW12] A. Berry and A. Wagler. Triangulation and clique separator decom-
position of claw-free graphs. In International Workshop on Graph-
Theoretic Concepts in Computer Science, pages 7–21. Springer, 2012.
(Cited in pages 86 and 84.)

[BXHR12] B.-M. Bui-Xuan, M. Habib, and M. Rao. Tree-representation of set
families and applications to combinatorial decompositions. European
Journal of Combinatorics, 33(5):688–711, 2012. (Cited in pages 191
and 189.)

[BZ03] N. Burani and W. S. Zwicker. Coalition formation games with sep-
arable preferences. Mathematical Social Sciences, 45(1):27–52, 2003.
(Cited in pages 120, 123, 146, 154, 118, 121, 145 and 152.)

[CCDL17] N. Cohen, D. Coudert, G. Ducoffe, and A. Lancin. Applying clique-
decomposition for computing gromov hyperbolicity. Submitted (Re-
search Report on HAL, hal-00989024), 2017. (Cited in pages 3, 13,
18, 61, 62, 63, 221, 11, 16, 58, 59 and 60.)

[CCL15] N. Cohen, D. Coudert, and A. Lancin. On computing the gromov
hyperbolicity. Journal of Experimental Algorithmics (JEA), 20:1–6,
2015. (Cited in pages 41, 43, 46, 56, 73, 192, 39, 40, 44, 54, 71
and 190.)

[CCNV11] J. Chalopin, V. Chepoi, N. Nisse, and Y. Vaxès. Cop and robber
games when the robber can hide and ride. SIAM Journal on Discrete
Mathematics, 25(1):333–359, 2011. (Cited in pages 32, 34, 46, 50,
30, 44 and 48.)

[CCPP14] J. Chalopin, V. Chepoi, P. Papasoglu, and T. Pecatte. Cop and
robber game and hyperbolicity. SIAM Journal on Discrete Mathe-
matics, 28(4):1987–2007, 2014. (Cited in pages 29, 33, 34, 50, 57, 27,
30, 31, 32, 48 and 55.)

[CD00] V. Chepoi and F. Dragan. A note on distance approximating trees
in graphs. European Journal of Combinatorics, 21(6):761–766, 2000.
(Cited in pages 39, 41, 69, 37 and 67.)

[CD14] D. Coudert and G. Ducoffe. Recognition of c4-free and 1/2-
hyperbolic graphs. SIAM Journal of Discrete Mathematics,
28(3):1601–1617, 2014. (Cited in pages 3, 13, 18, 57, 65, 221, 11,
16 and 63.)

[CD16a] D. Coudert and G. Ducoffe. Data center interconnection networks are
not hyperbolic. Journal of Theoretical Computer Science, 639(1):72–
90, 2016. (Cited in pages 3, 13, 17, 48, 50, 51, 53, 54, 60, 221, 11,
15, 46, 49, 52 and 58.)

200 Bibliography

[CD16b] D. Coudert and G. Ducoffe. On the hyperbolicity of bipartite graphs
and intersection graphs. Discrete Applied Mathematics, 214:187–195,
2016. (Cited in pages 3, 13, 17, 42, 43, 221, 11, 15, 40 and 41.)

[CD17] A. Chaintreau and G. Ducoffe. A theory for ad targeting identifi-
cation. In preparation, 2017. (Cited in pages 5, 159, 163, 169, 184,
223, 157, 161, 167 and 182.)

[CDE+08] V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, and Y. Vaxès.
Notes on diameters, centers, and approximating trees of δ-hyperbolic
geodesic spaces and graphs. Electronic Notes in Discrete Mathemat-
ics, 31:231–234, 2008. (Cited in pages 16, 55, 69, 70, 14, 53, 67
and 68.)

[CDE+12] V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, Y. Vaxès, and Y. Xi-
ang. Additive spanners and distance and routing labeling schemes
for hyperbolic graphs. Algorithmica, 62(3-4):713–732, 2012. (Cited
in pages 15 and 14.)

[CDHH16] J. Carmesin, R. Diestel, M. Hamann, and F. Hundertmark. Canoni-
cal tree-decompositions of finite graphs I. existence and algorithms.
Journal of Combinatorial Theory, Series B, 116:1–24, 2016. (Cited
in pages 85 and 83.)

[CDN16] D. Coudert, G. Ducoffe, and N. Nisse. To approximate treewidth,
use treelength! SIAM Journal of Discrete Mathematics, 30(3):1424–
1436, 2016. (Cited in pages 4, 40, 75, 79, 104, 105, 107, 108, 109,
222, 38, 73, 77, 102, 103 and 106.)

[CDV16] V. Chepoi, F. Dragan, and Y. Vaxès. Core congestion is inherent
in hyperbolic networks. Technical Report arXiv:1605.03059, ArXiv,
2016. (Cited in pages 15, 21, 23, 50, 71, 13, 19, 48 and 69.)

[CE07] V. Chepoi and B. Estellon. Packing and covering δ-hyperbolic spaces
by balls. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, pages 59–73. Springer, 2007.
(Cited in pages 55, 70, 53 and 68.)

[CFHM13] W. Chen, W. Fang, G. Hu, and M. W. Mahoney. On the hyperbolic-
ity of small-world and treelike random graphs. Internet Mathematics,
9(4):434–491, 2013. (Cited in pages 16, 35, 37, 38, 45, 46, 14, 33, 36,
43 and 44.)

[Cisa] The Zettabyte Era – Trends and Analysis. http://www.
cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/vni-hyperconnectivity-wp.
html. (Cited in pages 1 and 219.)

[Cisb] The Zettabyte Era Officially Begins (How
Much is That?). http://blogs.cisco.com/sp/
the-zettabyte-era-officially-begins-how-much-is-that.
(Cited in page 1.)

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://blogs.cisco.com/sp/the-zettabyte-era-officially-begins-how-much-is-that
http://blogs.cisco.com/sp/the-zettabyte-era-officially-begins-how-much-is-that

Bibliography 201

[CKK97] J. Chen, S. P. Kanchi, and A. Kanevsky. A note on approximating
graph genus. Information processing letters, 61(6):317–322, 1997.
(Cited in pages 105 and 103.)

[CKPS10] I. Chatzigiannakis, C. Koninis, P. N. Panagopoulou, and P. G. Spi-
rakis. Distributed game-theoretic vertex coloring. In OPODIS’10,
pages 103–118, 2010. (Cited in pages 4, 119, 126, 222, 117 and 124.)

[CM78] A. K. Chandra and G. Markowsky. On the number of prime impli-
cants. Discrete Mathematics, 24(1):7–11, 1978. (Cited in pages 164
and 162.)

[CN04] I. Chatterji and G. A. Niblo. A characterization of hyperbolic spaces.
Technical report, ArXiv, 2004. (Cited in pages 34 and 32.)

[COS97] D. G. Corneil, S. Olariu, and L. Stewart. Asteroidal triple-free
graphs. SIAM Journal on Discrete Mathematics, 10(3):399–430,
1997. (Cited in pages 41 and 39.)

[Cou90] B. Courcelle. The monadic second-order logic of graphs. I. recogniz-
able sets of finite graphs. Information and computation, 85(1):12–75,
1990. (Cited in pages 77, 103, 75 and 101.)

[CPFV14] M. Camelo, D. Papadimitriou, L. Fàbrega, and P. Vilà. Geometric
routing with word-metric spaces. IEEE Communications Letters,
18(12):2125–2128, 2014. (Cited in pages 23 and 21.)

[CRS15] W. Carballosa, J. M. Rodríguez, and J. M. Sigarreta. Hyperbol-
icity in the corona and join of graphs. Aequationes mathematicae,
89(5):1311–1327, 2015. (Cited in pages 44 and 42.)

[Cun82] William H. Cunningham. Decomposition of directed graphs. SIAM
Journal on Algebraic Discrete Methods, 3(2):214–228, 1982. (Cited
in pages 60 and 58.)

[Dah98] E. Dahlhaus. Minimal elimination of planar graphs. In Scandina-
vian Workshop on Algorithm Theory, pages 210–221. Springer, 1998.
(Cited in pages 90 and 88.)

[Dah02] E. Dahlhaus. Minimal elimination ordering for graphs of bounded
degree. Discrete applied mathematics, 116(1):127–143, 2002. (Cited
in pages 90 and 88.)

[Dai80] D. P. Dailey. Uniqueness of colorability and colorability of planar
4-regular graphs are NP-complete. Discrete Mathematics, 30(3):289
– 293, 1980. (Cited in pages 153 and 150.)

[Dam73] R. M. Damerell. on moore graphs. In Mathematical Proceedings
of the Cambridge Philosophical Society, volume 74, pages 227–236.
Cambridge Univ Press, 1973. (Cited in pages 52 and 51.)

[Dam16] P. Damaschke. Computing giant graph diameters. In International
Workshop on Combinatorial Algorithms, pages 373–384. Springer,
2016. (Cited in pages 73 and 71.)

202 Bibliography

[DC17] G. Ducoffe and D. Coudert. Clique-decomposition revisited. In re-
vision (Research Report on HAL, hal-01266147), 2017. (Cited in
pages 4, 75, 78, 86, 87, 88, 90, 111, 222, 73, 76, 84, 85 and 109.)

[DCG14] P. De Caria and M. Gutierrez. On the correspondence between tree
representations of chordal and dually chordal graphs. Discrete Ap-
plied Mathematics, 164:500–511, 2014. (Cited in pages 37 and 35.)

[DCM] Datacenters internationaux | Microsoft. http://www.microsoft.
com/fr-fr/server-cloud/cloud-os/global-datacenters.aspx.
(Cited in pages 1 and 219.)

[DDGY07] Y. Dourisboure, F. F. Dragan, C. Gavoille, and C. Yan. Span-
ners for bounded tree-length graphs. Theoretical Computer Science,
383(1):34–44, 2007. (Cited in pages 23, 77, 21 and 75.)

[DFG11] F. F. Dragan, F. V. Fomin, and P. A. Golovach. Spanners in sparse
graphs. Journal of Computer and System Sciences, 77(6):1108–1119,
2011. (Cited in pages 112 and 110.)

[DG07] Y. Dourisboure and C. Gavoille. Tree-decompositions with bags
of small diameter. Discrete Mathematics, 307(16):2008–2029, 2007.
(Cited in pages 39, 77, 79, 82, 91, 103, 105, 109, 110, 38, 75, 80, 81,
89, 101 and 108.)

[DG09] Y. Dieng and C. Gavoille. On the tree-width of planar graphs. Elec-
tronic Notes in Discrete Mathematics, 34:593–596, 2009. (Cited in
pages 75, 104, 73 and 102.)

[DGM06] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. K-core orga-
nization of complex networks. Physical review letters, 96(4):040601,
2006. (Cited in pages 2, 16, 220 and 14.)

[DH04] E. D. Demaine and M. Hajiaghayi. Equivalence of local treewidth
and linear local treewidth and its algorithmic applications. In Pro-
ceedings of the fifteenth annual ACM-SIAM Symposium on Discrete
algorithms (SODA), pages 840–849. Society for Industrial and Ap-
plied Mathematics, 2004. (Cited in pages 105 and 104.)

[DH08] E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and
its algorithmic applications. The Computer Journal, 51(3):292–302,
2008. (Cited in pages 77, 109, 75 and 107.)

[DHH+05] A. Dress, B. Holland, K. T. Huber, J. H. Koolen, V. Moulton,
and J. Weyer-Menkhoff. δ additive and δ ultra-additive maps, gro-
mov’s trees, and the farris transform. Discrete Applied Mathematics,
146(1):51–73, 2005. (Cited in pages 22 and 20.)

[Die10] Reinhard Diestel. Graph theory. Heidelberg, Graduate Texts in Math-
ematics, 173:451 pp., 2010. 4th edition. (Cited in pages 5, 81, 106,
107, 79 and 105.)

[Dir61] G. A. Dirac. On rigid circuit graphs. In Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, volume 25, pages
71–76. Springer, 1961. (Cited in pages 37 and 35.)

http://www.microsoft.com/fr-fr/server-cloud/cloud-os/global-datacenters.aspx
http://www.microsoft.com/fr-fr/server-cloud/cloud-os/global-datacenters.aspx

Bibliography 203

[DK14] F.F. Dragan and E. Köhler. An approximation algorithm for the
tree t-spanner problem on unweighted graphs via generalized chordal
graphs. Algorithmica, 69(4):884–905, 2014. (Cited in pages 39, 77,
78, 82, 91, 92, 192, 38, 75, 76, 80, 89, 90 and 190.)

[DKL14] F.F. Dragan, E. Köhler, and A. Leitert. Line-distortion, bandwidth
and path-length of a graph. In Algorithm Theory–SWAT 2014, pages
158–169. Springer, 2014. (Cited in pages 78, 91, 92, 192, 76, 89, 90
and 190.)

[DKMY15] B. DasGupta, M. Karpinski, N. Mobasheri, and F. Yahyanejad. Node
expansions and cuts in gromov-hyperbolic graphs. Technical report,
ArXiv, 2015. (Cited in pages 35, 55, 72, 73, 33, 53, 70 and 71.)

[DL07] F. F. Dragan and I. Lomonosov. On compact and efficient routing in
certain graph classes. Discrete applied mathematics, 155(11):1458–
1470, 2007. (Cited in pages 81 and 80.)

[DL15] F.F. Dragan and A. Leitert. On the minimum eccentricity shortest
path problem. In Algorithms and Data Structures – WADS, pages
276–288. Springer, 2015. (Cited in pages 92 and 90.)

[DLCG15] G. Ducoffe, M. Lécuyer, A. Chaintreau, and R. Geambasu. Web’s
transparency for complex targeting: Algorithms, limits and tradeoffs.
In SIGMETRICS’15 Proceedings of the 2015 ACM SIGMETRICS
International Conference on Measurement and Modeling of Com-
puter Systems, pages 465–466, 2015. (Cited in pages 5, 159, 165,
168, 177, 223, 157, 164, 166 and 175.)

[DLN16a] G. Ducoffe, N. Legay, and N. Nisse. On the complexity of computing
treebreadth. In IWOCA 2016 – 27th International Workshop on
Combinatorial Algorithms, pages 3–15, 2016. (Cited in pages 4, 75,
78, 91, 92, 93, 94, 98, 111, 222, 73, 76, 89, 90, 96, 109 and 110.)

[DLN16b] G. Ducoffe, S. Legay, and N. Nisse. On computing tree and path de-
compositions with metric constraints on the bags. Technical Report
arXiv:1601.01958, arXiv, 2016. (Cited in pages 91, 93, 94, 96, 97,
89, 92 and 95.)

[DLVM86] P. Duchet, M. Las Vergnas, and H. Meyniel. Connected cutsets of a
graph and triangle bases of the cycle space. Discrete Mathematics,
62(2):145–154, 1986. (Cited in pages 108 and 107.)

[DM47] A. De Morgan. Formal logic: or, the calculus of inference, necessary
and probable. Taylor and Walton, 1847. (Cited in pages 139 and 137.)

[DM15] Reinhard Diestel and Malte Müller. Connected tree-width. Technical
Report arXiv preprint arXiv:1211.7353, ArXiv, oct 2015. (Cited in
pages 108 and 106.)

[DMC12] G. Ducoffe, D. Mazauric, and A. Chaintreau. Can Selfish Groups
be Self-Enforcing? Technical Report arXiv:1212.3782, ArXiv, 2012.
(Cited in pages 5, 117, 153, 155, 223, 115, 151 and 152.)

204 Bibliography

[DMC13a] G. Ducoffe, D. Mazauric, and A. Chaintreau. Can selfish groups be
self-enforcing? In Workshop on Social Computing and User Gener-
ated Content at EC’13, pages 1–47, 2013. (Cited in pages 4, 5, 117,
123, 222, 223, 115 and 121.)

[DMC13b] G. Ducoffe, D. Mazauric, and A. Chaintreau. De la difficulté de
garder ses amis (quand on a des ennemis)! In ALGOTEL 2013 –
15èmes Rencontres Francophones sur les Aspects Algorithmiques des
Télécommunications, pages 1–4, 2013. (Cited in pages 123 and 121.)

[DMC17] G. Ducoffe, D. Mazauric, and A. Chaintreau. The complexity of
hedonic coalitions under bounded cooperation. Submitted (Research
Report on ArXiv, arXiv:1212.3782), 2017. (Cited in pages 4, 5, 117,
123, 131, 132, 133, 135, 137, 150, 222, 223, 115, 121, 129, 130, 147
and 148.)

[dMSV11] F. de Montgolfier, M. Soto, and L. Viennot. Treewidth and hyper-
bolicity of the internet. In Network Computing and Applications
(NCA), 2011 10th IEEE International Symposium on, pages 25–32,
Aug 2011. (Cited in pages 46, 77, 44 and 75.)

[DMT96] A. Dress, V. Moulton, and W. Terhalle. T-theory: An overview.
European Journal of Combinatorics, 17(2):161–175, 1996. (Cited in
pages 15, 22, 14 and 20.)

[DP94] X. Deng and C. Papadimitriou. On the Complexity of Cooperative
Solution Concepts. Mathematics of Operations Research, 19(2):257–
266, 1994. (Cited in pages 123, 156, 121 and 154.)

[DP09] R. Duan and S. Pettie. Fast algorithms for (max, min)-matrix multi-
plication and bottleneck shortest paths. In Proceedings of the twen-
tieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
384–391. Society for Industrial and Applied Mathematics, 2009.
(Cited in pages 56 and 54.)

[DRB99] H.N. De Ridder and H.L. Bodlaender. Graph automorphisms with
maximal projection distances. In Fundamentals of Computation The-
ory, pages 204–214. Springer, 1999. (Cited in pages 51 and 49.)

[DTC17] G. Ducoffe, M. Tucker, and A. Chaintreau. Can web’s transparency
tools cope with complex targeting? In preparation, 2017. (Cited in
pages 5, 159, 165, 168, 171, 175, 223, 157, 164, 166, 169 and 173.)

[DTD15] A. Datta, M.C. Tschantz, and A. Datta. Automated experiments on
ad privacy settings. Proceedings on Privacy Enhancing Technologies,
2015(1):92–112, 2015. (Cited in pages 160, 161, 170, 175, 159, 168
and 173.)

[Dua14] R. Duan. Approximation algorithms for the gromov hyperbolicity of
discrete metric spaces. In Latin American Symposium on Theoreti-
cal Informatics, pages 285–293. Springer, 2014. (Cited in pages 57
and 55.)

Bibliography 205

[Duc16] G. Ducoffe. The parallel complexity of coloring games. In SAGT
2016 – 9th International Symposium on Algorithmic Game Theory,
pages 27–39, 2016. (Cited in pages 4, 117, 123, 143, 223, 5, 115, 121
and 140.)

[Dwo08] C. Dwork. Differential privacy: A survey of results. In International
Conference on Theory and Applications of Models of Computation,
pages 1–19. Springer, 2008. (Cited in pages 118 and 116.)

[DX09] F. F. Dragan and Y. Xiang. How to use spanning trees to navigate in
graphs. In International Symposium on Mathematical Foundations of
Computer Science, pages 282–294. Springer, 2009. (Cited in pages 16
and 14.)

[EDP] European Data Protection Supervisor. https://secure.edps.
europa.eu/EDPSWEB/edps/EDPS/Dataprotection/Legislation.
(Cited in pages 2, 118, 219 and 116.)

[EGM12] B. Escoffier, L. Gourvès, and J. Monnot. Strategic coloring of a
graph. Internet Mathematics, 8(4):424–455, 2012. (Cited in pages 4,
117, 119, 121, 122, 126, 127, 131, 155, 222, 115, 120, 124, 125, 129
and 154.)

[EKS16] K. Edwards, W. S. Kennedy, and I. Saniee. Fast approximation
algorithms for p-centres in large delta-hyperbolic graphs. Technical
report, ArXiv, 2016. (Cited in pages 55, 70, 71, 53, 68 and 69.)

[Ema] Email Statistics Report, 2015-2019. http://www.
radicati.com/wp/wp-content/uploads/2015/02/
Email-Statistics-Report-2015-2019-Executive-Summary.pdf.
(Cited in pages 1 and 219.)

[EPC+92] D. Epstein, M. S. Paterson, J. W. Cannon, D. F. Holt, S. V. Levy,
and W. P. Thurston. Word processing in groups. AK Peters, Ltd.,
1992. (Cited in pages 15 and 13.)

[EPL72] S. Even, A. Pnueli, and A. Lempel. Permutation graphs and tran-
sitive graphs. Journal of the ACM (JACM), 19(3):400–410, 1972.
(Cited in pages 41 and 39.)

[Epp00] D. Eppstein. Diameter and treewidth in minor-closed graph families.
Algorithmica, 27(3-4):275–291, 2000. (Cited in pages 110 and 109.)

[FA05] D. Fukagawa and T. Akutsu. Performance analysis of a greedy algo-
rithm for inferring boolean functions. Information Processing Letters,
93(1):7–12, 2005. (Cited in pages 170, 181, 168 and 179.)

[Fan11] W. Fang. On hyperbolic geometry structure of complex networks.
Technical report, IRIF – Institut de Recherche en Informatique Fon-
damentale, 2011. Report of M1 internship in Microsoft Research
Asia. (Cited in pages 65 and 63.)

[Far72] J. S. Farris. Estimating phylogenetic trees from distance matri-
ces. American Naturalist, pages 645–668, 1972. (Cited in pages 29
and 27.)

https://secure.edps.europa.eu/EDPSWEB/edps/EDPS/Dataprotection/Legislation
https://secure.edps.europa.eu/EDPSWEB/edps/EDPS/Dataprotection/Legislation
http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf

206 Bibliography

[Far83] M. Farber. Characterizations of strongly chordal graphs. Discrete
Mathematics, 43(2):173–189, 1983. (Cited in pages 41 and 39.)

[FBE] facebook business – What are Custom Audiences from your website?
https://www.facebook.com/business/help/610516375684216.
(Cited in pages 165, 176, 163 and 174.)

[FBN] Facebook newsroom – Company info. http://newsroom.fb.com/
company-info/. (Cited in pages 1 and 219.)

[FCM14] L. Ferretti, M. Cortelezzi, and M. Mamino. Duality between prefer-
ential attachment and static networks on hyperbolic spaces. EPL
(Europhysics Letters), 105(3):38001, 2014. (Cited in pages 53
and 51.)

[FG01] J. Flum and M. Grohe. Fixed-parameter tractability, definability,
and model-checking. SIAM Journal on Computing, 31(1):113–145,
2001. (Cited in pages 77 and 75.)

[FGKP09] V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswami. On ag-
nostic learning of parities, monomials, and halfspaces. SIAM Journal
on Computing, 39(2):606–645, 2009. (Cited in pages 163 and 161.)

[FGL+15] M. Farrell, T. D. Goodrich, N. Lemons, F. Reidl, F. S. Villaamil, and
B. D. Sullivan. Hyperbolicity, degeneracy, and expansion of random
intersection graphs. In International Workshop on Algorithms and
Models for the Web-Graph, pages 29–41. Springer, 2015. (Cited in
pages 45 and 43.)

[FGT11] F. V. Fomin, P. Golovach, and D. M. Thilikos. Contraction ob-
structions for treewidth. Journal of Combinatorial Theory, Series
B, 101(5):302–314, 2011. (Cited in pages 109 and 107.)

[FH76] S. Foldes and P. L. Hammer. Split graphs. Universität Bonn. Institut
für Ökonometrie und Operations Research, 1976. (Cited in pages 37
and 34.)

[Fin15] E. Fink. Hyperbolicity via geodesic stability. Technical report,
ArXiv, 2015. (Cited in pages 20 and 18.)

[FIV15] H. Fournier, A. Ismail, and A. Vigneron. Computing the gromov
hyperbolicity of a discrete metric space. Information Processing Let-
ters, 115(6):576–579, 2015. (Cited in pages 56, 57, 64, 53, 55 and 62.)

[FK01] S. P. Fekete and J. Kremer. Tree spanners in planar graphs. Dis-
crete Applied Mathematics, 108(1):85–103, 2001. (Cited in pages 112
and 110.)

[FKLL15] P. Floderus, M. Kowaluk, A. Lingas, and E.-M. Lundell. Detect-
ing and counting small pattern graphs. SIAM Journal on Discrete
Mathematics, 29(3):1322–1339, 2015. (Cited in pages 67 and 65.)

[FKP02] A. Fabrikant, E. Koutsoupias, and C. H. Papadimitriou. Heuristi-
cally optimized trade-offs: A new paradigm for power laws in the
internet. In P. Widmayer, S. Eidenbenz, F. Triguero, R. Morales,

https://www.facebook.com/business/help/610516375684216
http://newsroom.fb.com/company-info/
http://newsroom.fb.com/company-info/

Bibliography 207

R. Conejo, and M. Hennessy, editors, ICALP Proceedings, pages 110–
122. Springer Berlin Heidelberg, 2002. (Cited in page 46.)

[FLP+15] F. V. Fomin, D. Lokshtanov, M. Pilipczuk, S. Saurabh, and
M. Wrochna. Fully polynomial-time parameterized computations
for graphs and matrices of low treewidth. Technical Report
arXiv:1511.01379, arXiv, 2015. (Cited in pages 88, 90 and 86.)

[FM71] M. J. Fischer and A. R. Meyer. Boolean matrix multiplication and
transitive closure. In Switching and Automata Theory, 1971., 12th
Annual Symposium on, pages 129–131, Oct 1971. (Cited in pages 64
and 62.)

[Gal67] Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica
Hungarica, 18(1):25–66, 1967. (Cited in pages 60 and 58.)

[Gav72] F. Gavril. Algorithms for minimum coloring, maximum clique, mini-
mum covering by cliques, and maximum independent set of a chordal
graph. SIAM Journal on Computing, 1(2):180–187, 1972. (Cited in
pages 89 and 88.)

[Gav74] F. Gavril. The intersection graphs of subtrees in trees are exactly
the chordal graphs. Journal of Combinatorial Theory, Series B,
16(1):47–56, 1974. (Cited in pages 37, 82, 83, 35, 80 and 81.)

[GdLH90] E. Ghys and P. de La Harpe. Sur les groupes hyperboliques d’apres
Mikhael Gromov. Birkhauser Boston, Inc., Science Press, 1990.
(Cited in pages 15, 31, 49, 59, 68, 13, 29, 47, 57 and 66.)

[GEC+13] P. Gill, V. Erramilli, A. Chaintreau, B. Krishnamurthy, K. Papagian-
naki, and P. Rodriguez. Follow the money: understanding economics
of online aggregation and advertising. In Proceedings of the Internet
measurement conference (IMC), pages 141–148. ACM, 2013. (Cited
in pages 184, 189, 182 and 187.)

[GG78] M. C. Golumbic and C. F. Goss. Perfect elimination and chordal bi-
partite graphs. Journal of Graph Theory, 2(2):155–163, 1978. (Cited
in pages 37 and 35.)

[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to parallel
computation: P-completeness theory. Oxford University Press, 1995.
(Cited in pages 138, 139, 145, 136, 137 and 144.)

[GJ85] M. C. Golumbic and R. .E Jamison. The edge intersection graphs of
paths in a tree. Journal of Combinatorial Theory, Series B, 38(1):8–
22, 1985. (Cited in pages 64 and 62.)

[GK86] C. Greene and D. J. Kleitman. Longest chains in the lattice of integer
partitions ordered by majorization. European Journal of Combina-
torics, 7(1):1–10, jan 1986. (Cited in pages 129 and 127.)

[GK14] R. D. Gray and M. Kambites. A strong geometric hyperbolicity prop-
erty for directed graphs and monoids. Journal of Algebra, 420:373–
401, 2014. (Cited in pages 74 and 72.)

208 Bibliography

[GKR13] M. Grohe, K. Kawarabayashi, and B. Reed. A simple algorithm
for the graph minor decomposition: logic meets structural graph
theory. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 414–431. Society
for Industrial and Applied Mathematics, 2013. (Cited in pages 105
and 104.)

[GKS95] M.C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich prob-
lems. Journal of Algorithms, 19(3):449–473, 1995. (Cited in pages 94,
95, 92 and 93.)

[GL05] C. Gavoille and O. Ly. Distance labeling in hyperbolic graphs. In In-
ternational Symposium on Algorithms and Computation, pages 1071–
1079. Springer, 2005. (Cited in pages 15, 23, 68, 14, 21 and 66.)

[GL06] J.-L. Guillaume and M. Latapy. Bipartite graphs as models of com-
plex networks. Physica A: Statistical Mechanics and its Applications,
371(2):795–813, 2006. (Cited in pages 168 and 166.)

[Glo67] F. Glover. Maximum matching in a convex bipartite graph. Naval
Research Logistics Quarterly, 14(3):313–316, 1967. (Cited in pages 37
and 35.)

[GM00] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-
trees. In International Symposium on Graph Drawing, pages 77–90.
Springer, 2000. (Cited in pages 85, 90, 83 and 89.)

[GMN15] A. C. Giannopoulou, G. B. Mertzios, and R. Niedermeier. Polyno-
mial fixed-parameter algorithms: A case study for longest path on
interval graphs. Technical Report arXiv:1506.01652, arXiv, 2015.
(Cited in pages 88 and 86.)

[GMT84] M. C. Golumbic, C. L. Monma, and W. T. Trotter. Tolerance graphs.
Discrete Applied Mathematics, 9(2):157–170, 1984. (Cited in pages 41
and 39.)

[GO95] A. Gajentaan and M. H. Overmars. On a class of o(n2) problems
in computational geometry. Computational geometry, 5(3):165–185,
1995. (Cited in pages 65 and 63.)

[Gol71] A.J. Goldman. Optimal center location in simple networks. Trans-
portation science, 5(2):212–221, 1971. (Cited in pages 21, 62, 82, 19,
60 and 80.)

[Goo] AdWords Help: About Keyword Planner. https://support.
google.com/adwords/answer/2999770. (Cited in pages 164
and 162.)

[Gou14] J. Gould. SafeGov.org - Google admits data mining student emails
in its free education apps, 2014. (Cited in pages 2, 160, 219 and 158.)

[GR86] S. Greenland and J. M. Robins. Identifiability, exchangeability, and
epidemiological confounding. International journal of epidemiology,
15(3):413–419, 1986. (Cited in pages 168 and 166.)

https://support.google.com/adwords/answer/2999770
https://support.google.com/adwords/answer/2999770

Bibliography 209

[GR13] C. Godsil and G. F. Royle. Algebraic graph theory, volume 207.
Springer Science & Business Media, 2013. (Cited in pages 53 and 51.)

[Gro87] M. Gromov. Hyperbolic groups. In Essays in group theory, pages
75–263. Springer, 1987. (Cited in pages 2, 14, 15, 19, 25, 28, 29, 30,
31, 34, 35, 57, 68, 69, 220, 12, 13, 17, 23, 26, 27, 32, 55, 66 and 67.)

[Gro16] M. Grohe. Tangles and Connectivity in Graphs, pages 24–41.
Springer International Publishing, 2016. (Cited in pages 85 and 83.)

[GS10] M. Groshaus and J.L. Szwarcfiter. Biclique graphs and biclique ma-
trices. Journal of Graph Theory, 63(1):1–16, 2010. (Cited in pages 17,
44, 15 and 42.)

[Ham68] R.C. Hamelink. A partial characterization of clique graphs. Journal
of Combinatorial Theory, 5(2):192–197, 1968. (Cited in pages 17, 42,
15 and 40.)

[Hay85] R. B. Hayward. Weakly triangulated graphs. Journal of Combi-
natorial Theory, Series B, 39(3):200–208, 1985. (Cited in pages 41
and 39.)

[Heg06] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete
Mathematics, 306(3):297–317, 2006. (Cited in pages 84 and 82.)

[HLC07] J. He, D. Long, and C. Chen. An improved ant-based classifier for
intrusion detection. In Third International Conference on Natural
Computation (ICNC 2007), volume 4, pages 819–823. IEEE, 2007.
(Cited in pages 189 and 187.)

[HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and
their applications. Bulletin of the American Mathematical Society,
43(4):439–561, 2006. (Cited in pages 50 and 48.)

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded ran-
dom variables. Journal of the American statistical association,
58(301):13–30, 1963. (Cited in pages 172 and 170.)

[Hor87] J. D. Horton. A polynomial-time algorithm to find the shortest cycle
basis of a graph. SIAM Journal on Computing, 16(2):358–366, 1987.
(Cited in pages 106 and 104.)

[How79] E. Howorka. On metric properties of certain clique graphs. Journal
of Combinatorial Theory, Series B, 27(1):67–74, 1979. (Cited in
pages 65 and 63.)

[HPR14] V. Hernández, D. Pestana, and J. M. Rodríguez. Bounds on the
hyperbolicity constant. Electronic Notes in Discrete Mathematics,
46:137–144, 2014. (Cited in pages 16, 41, 14 and 38.)

[HSL+14] A. Hannak, G. Soeller, D. Lazer, A. Mislove, and C. Wilson. Mea-
suring price discrimination and steering on e-commerce web sites. In
Proceedings of the 2014 conference on internet measurement confer-
ence, pages 305–318. ACM, 2014. (Cited in pages 170 and 168.)

[HSMK+13] A. Hannak, P. Sapiezynski, A. Molavi Kakhki, B. Krishnamurthy,
D. Lazer, A. Mislove, and C. Wilson. Measuring personalization of

210 Bibliography

web search. In Proceedings of the 22nd international conference on
World Wide Web, pages 527–538. ACM, 2013. (Cited in pages 170
and 168.)

[HT73] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into tricon-
nected components. SIAM Journal on Computing, 2(3):135–158,
1973. (Cited in pages 77, 85, 75 and 83.)

[HTV05] P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal
triangulations in time o(nα log n) = o(n2.376). In Proceedings of
the sixteenth annual ACM-SIAM Symposium on Discrete algorithms
(SODA), pages 907–916. Society for Industrial and Applied Mathe-
matics, 2005. (Cited in pages 90 and 88.)

[HW79] G. H. Hardy and E. M. Wright. An introduction to the theory of num-
bers. Oxford University Press, 1979. (Cited in pages 128 and 126.)

[IDC] IDC – Extracting Value from Chaos. http:
//www.emc.com/collateral/analyst-reports/
idc-extracting-value-from-chaos-ar.pdf. (Cited in pages 1
and 219.)

[IPZ98] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have
strongly exponential complexity? In Foundations of Computer Sci-
ence, 1998. Proceedings. 39th Annual Symposium on, pages 653–662.
IEEE, 1998. (Cited in pages 64 and 62.)

[JL04] E. Jonckheere and P. Lohsoonthorn. Geometry of network security.
In American Control Conference, 2004. Proceedings of the 2004, vol-
ume 2, pages 976–981. IEEE, 2004. (Cited in pages 15, 23, 24, 14,
21 and 22.)

[JLB08] E. Jonckheere, P. Lohsoonthorn, and F. Bonahon. Scaled gromov
hyperbolic graphs. Journal of Graph Theory, 57(2):157–180, 2008.
(Cited in pages 16, 46, 73, 14, 44 and 71.)

[JLBB11] E. Jonckheere, M. Lou, F. Bonahon, and Y. Baryshnikov. Euclidean
versus hyperbolic congestion in idealized versus experimental net-
works. Internet Mathematics, 7(1):1–27, 2011. (Cited in pages 23
and 21.)

[Jor69] C. Jordan. Sur les assemblages de lignes. J. Reine Angew. Math,
70(185):81, 1869. (Cited in pages 70 and 68.)

[JPY88] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy
is local search? Journal of computer and system sciences, 37(1):79–
100, 1988. (Cited in pages 122, 127, 157, 120, 125 and 155.)

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Com-
plexity of computer computations, pages 85–103. Springer, 1972.
(Cited in pages 170 and 168.)

[KBSP16] K.-K. Kleineberg, M. Boguñá, M. Serrano, and F. Papadopoulos.
Hidden geometric correlations in real multiplex networks. Nature
Physics, 2016. (Cited in pages 119 and 118.)

http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf

Bibliography 211

[Kho02] S. Khot. On the power of unique 2-prover 1-round games. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of
computing (STOC), pages 767–775. ACM, 2002. (Cited in pages 72
and 71.)

[KK95] T. Kloks and D. Kratsch. Treewidth of chordal bipartite graphs.
Journal of Algorithms, 19(2):266–281, 1995. (Cited in pages 78
and 76.)

[KL06] R. Krauthgamer and J.R. Lee. Algorithms on negatively curved
spaces. In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 119–132. IEEE, 2006. (Cited in pages 17, 55, 71, 15,
53 and 69.)

[KL13] J. Kleinberg and K. Ligett. Information-sharing in social networks.
Games and Economic Behavior, 82:702–716, 2013. (Cited in pages 4,
115, 117, 118, 119, 121, 122, 123, 124, 126, 127, 151, 153, 155, 222,
113, 120, 125, 150 and 154.)

[Kle07] R. Kleinberg. Geographic routing using hyperbolic space. In IEEE
INFOCOM 2007-26th IEEE International Conference on Computer
Communications, pages 1902–1909. IEEE, 2007. (Cited in pages 23
and 21.)

[KLNS15] A. Kosowski, B. Li, N. Nisse, and K. Suchan. k-Chordal Graphs:
from Cops and Robber to Compact Routing via Treewidth. Algo-
rithmica, 72(3):758–777, 2015. (Cited in pages 23, 77, 21 and 75.)

[Klo96] T. Kloks. Treewidth of circle graphs. International Journal of Foun-
dations of Computer Science, 7(2):111–120, 1996. (Cited in pages 78
and 76.)

[KM02] J. H. Koolen and V. Moulton. Hyperbolic bridged graphs. European
Journal of Combinatorics, 23(6):683–699, 2002. (Cited in pages 25,
40, 65, 23, 38 and 64.)

[KNS13] W. Sean Kennedy, Onuttom Narayan, and Iraj Saniee. On the hyper-
bolicity of large-scale networks. Technical Report arXiv:1307.0031,
ArXiv, 2013. (Cited in pages 55, 57, 58, 59, 73, 53, 56 and 71.)

[Kor11] A. Korolova. Privacy Violations Using Microtargeted Ads: A Case
Study. Journal of Privacy and Confidentiality, 3(1):27–49, 2011.
(Cited in pages 160 and 159.)

[KPK+10] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Bo-
guná. Hyperbolic geometry of complex networks. Physical Review
E, 82(3):036106, 2010. (Cited in pages 16, 53, 14 and 51.)

[Kre89] M. W. Krentel. Structure in locally optimal solutions. In Foundations
of Computer Science, 1989., 30th Annual Symposium on, pages 216–
221. IEEE, 1989. (Cited in pages 157 and 155.)

[KS06a] D. Kratsch and J. Spinrad. Between o(nm) and o(nα). SIAM Journal
on Computing, 36(2):310–325, 2006. (Cited in pages 65, 86, 88, 63
and 84.)

212 Bibliography

[KS06b] D. Kratsch and J. Spinrad. Minimal fill in o(n2.69) time. Discrete
mathematics, 306(3):366–371, 2006. (Cited in pages 86 and 84.)

[KS15] K. Kawarabayashi and A. Sidiropoulos. Beyond the euler character-
istic: approximating the genus of general graphs. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting (STOC), pages 675–682. ACM, 2015. (Cited in pages 105
and 103.)

[KSSC99] M. Karonski, E. R. Scheinerman, and K. B. Singer-Cohen. On
random intersection graphs: The subgraph problem. Combina-
torics, Probability and Computing, 8(1&2):131–159, 1999. (Cited
in pages 168, 189, 166 and 187.)

[KW10] B. Krishnamurthy and C. E. Wills. On the leakage of personally
identifiable information via online social networks. SIGCOMM Com-
puter Communication Review, 40(1), jan 2010. (Cited in pages 160
and 158.)

[Lan14] A. Lancin. Study of complex networks properties for the optimiza-
tion of routing models. Theses, Université Nice Sophia Antipolis,
December 2014. (Cited in pages 18 and 16.)

[LB62] C Lekkeikerker and J Boland. Representation of a finite graph by a
set of intervals on the real line. Fundamenta Mathematicae, 51(1):45–
64, 1962. (Cited in pages 37 and 34.)

[LDL+14] M. Lécuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios, R. Spahn,
A. Chaintreau, and R. Geambasu. Xray: Enhancing the web’s trans-
parency with differential correlation. In USENIX Security Sympo-
sium, pages 49–64, 2014. (Cited in pages 5, 159, 160, 161, 162, 163,
165, 166, 168, 169, 170, 176, 188, 189, 223, 157, 164, 167, 174, 186
and 187.)

[LdMS98] C. L. Lucchesi, C. P. de Mello, and J. L. Szwarcfiter. On clique-
complete graphs. Discrete Mathematics, 183(1):247–254, 1998.
(Cited in pages 44 and 42.)

[Leh74] P. Lehot. An optimal algorithm to detect a line graph and output
its root graph. Journal of the ACM (JACM), 21(4):569–575, 1974.
(Cited in pages 64 and 62.)

[Lei93] H.-G. Leimer. Optimal decomposition by clique separators. Discrete
mathematics, 113(1-3):99–123, 1993. (Cited in pages 86 and 84.)

[LG14] F. Le Gall. Powers of tensors and fast matrix multiplication. In
Proceedings of the 39th international symposium on symbolic and
algebraic computation, pages 296–303. ACM, 2014. (Cited in pages 56
and 54.)

[LLDM09] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Com-
munity structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters. Internet Mathematics, 6(1):29–
123, 2009. (Cited in pages 2, 16, 220 and 14.)

Bibliography 213

[LMT17] E. Le Merrer and G. Trédan. Uncovering influence cookbooks : Re-
verse engineering the topological impact in peer ranking services.
In The 20th ACM Conference on Computer-Supported Cooperative
Work and Social Computing. ACM, 2017. (Cited in pages 189
and 187.)

[Lok10] D. Lokshtanov. On the complexity of computing treelength. Discrete
Applied Mathematics, 158(7):820–827, 2010. (Cited in pages 78, 83,
91, 94, 95, 103, 111, 76, 82, 89, 92, 93, 101 and 109.)

[Lot15] Z. Lotker. Voting algorithm in the play julius caesar. In ASONAM
’15, pages 848–855. ACM, 2015. (Cited in page 24.)

[LSS+15] M. Lecuyer, R. Spahn, Y. Spiliopolous, A. Chaintreau, R. Geam-
basu, and D. Hsu. Sunlight: Fine-grained targeting detection at
scale with statistical confidence. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’15, pages 554–566, New York, NY, USA, 2015. ACM. (Cited
in pages 160, 184, 188, 159, 182 and 186.)

[LT15] S. Li and G. H. Tucci. Traffic congestion in expanders and (p,
δ)–hyperbolic spaces. Internet Mathematics, 11(2):134–142, 2015.
(Cited in pages 23, 73, 21, 71 and 72.)

[Mal15] A. Malyshev. Expanders are order diameter non-hyperbolic. Tech-
nical report, ArXiv, 2015. (Cited in pages 50, 72, 48 and 70.)

[Mat12] D. Mattioli. WSJ.com - On Orbitz, Mac Users Steered to Pricier
Hotels, 2012. (Cited in pages 2, 160, 219 and 158.)

[MGEL12] J. Mikians, L. Gyarmati, V. Erramilli, and N. Laoutaris. Detecting
price and search discrimination on the internet. In Proceedings of
the 11th ACM Workshop on Hot Topics in Networks, pages 79–84.
ACM, 2012. (Cited in pages 170 and 168.)

[MGHB15] H. Miao, P. Gao, M. Hajiaghayi, and J. Baras. Hypercubemap:
Optimal social network ad allocation using hyperbolic embedding.
In Proceedings of the 2015 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining 2015, pages 357–
362. ACM, 2015. (Cited in pages 15 and 14.)

[MLH08] Clémence Magnien, Matthieu Latapy, and Michel Habib. Fast com-
putation of empirically tight bounds for the diameter of massive
graphs. ACM Journal of Experimental Algorithmics, 13, 2008. (Cited
in pages 16, 70, 14 and 68.)

[MOS04] E. Mossel, R. O’Donnell, and R. A. Servedio. Learning functions
of k relevant variables. Journal of Computer and System Sciences,
69(3):421–434, 2004. (Cited in pages 163, 170, 187, 188, 161, 168,
185 and 186.)

[MP14] D. Mitsche and P. Prałat. On the hyperbolicity of random graphs.
The Electronic Journal of Combinatorics, 21(2):2–39, 2014. (Cited
in pages 40, 45, 38 and 43.)

214 Bibliography

[MP15] A. Martínez-Pérez. Chordality properties and hyperbolicity on
graphs. Technical report, ArXiv, 2015. (Cited in pages 41 and 39.)

[MRSV10] J. Michel, J. M. Rodríguez, J. M. Sigarreta, and M. Villeta. Gromov
hyperbolicity in cartesian product graphs. Proceedings-Mathematical
Sciences, 120(5):593–609, 2010. (Cited in pages 44 and 42.)

[MS99] V. Moulton and M. Steel. Retractions of finite distance functions
onto tree metrics. Discrete Applied Mathematics, 91(1):215–233,
1999. (Cited in pages 15, 22, 14 and 20.)

[MT01] B. Mohar and C. Thomassen. Graphs on surfaces, volume 10. JHU
Press, 2001. (Cited in pages 105 and 103.)

[MW13] J. R. Marden and A. Wierman. Distributed welfare games. Opera-
tions Research, 61(1):155–168, 2013. (Cited in pages 119, 120, 117
and 118.)

[Mye13] R. B. Myerson. Game theory. Harvard university press, 2013. (Cited
in pages 123 and 121.)

[New02] M. E. J. Newman. Assortative mixing in networks. Physical review
letters, 89(20):208701, 2002. (Cited in pages 24 and 22.)

[Nis14] N. Nisse. Algorithmic complexity: Between Structure and Knowl-
edge How Pursuit-evasion Games help. Accreditation to supervise
research, Université Nice Sophia Antipolis, May 2014. (Cited in
pages 32 and 30.)

[NRS04] S. Nikoletseas, C. Raptopoulos, and P. Spirakis. The existence and
efficient construction of large independent sets in general random
intersection graphs. In International Colloquium on Automata, Lan-
guages, and Programming, pages 1029–1040. Springer, 2004. (Cited
in pages 178 and 176.)

[NS95] W. D. Neumann and M. Shapiro. Automatic structures, rational
growth, and geometrically finite hyperbolic groups. Inventiones
mathematicae, 120(1):259–287, 1995. (Cited in pages 20 and 18.)

[NS11] O. Narayan and I. Saniee. Large-scale curvature of networks. Physical
Review E, 84(6):066108, 2011. (Cited in pages 2, 11, 23, 220, 9
and 21.)

[NST15] O. Narayan, I. Saniee, and G. H. Tucci. Lack of hyperbolicity in
asymptotic erdös–renyi sparse random graphs. Internet Mathemat-
ics, 11(3):277–288, 2015. (Cited in pages 45 and 43.)

[NW83] R. Nowakowski and P. Winkler. Vertex-to-vertex pursuit in a graph.
Discrete Mathematics, 43(2):235–239, 1983. (Cited in pages 32
and 30.)

[OM16] I. Olkin and A. W. Marshall. Inequalities: theory of majorization
and its applications, volume 143. Academic press, 2016. (Cited in
page 128.)

[OR94] M. J. Osborne and A. Rubinstein. A course in game theory. MIT
press, 1994. (Cited in pages 123 and 121.)

Bibliography 215

[Pap95] P. Papasoglu. Strongly geodesically automatic groups are hyperbolic.
Inventiones mathematicae, 121(1):323–334, 1995. (Cited in pages 32
and 30.)

[Pap96] P. Papasoglu. An algorithm detecting hyperbolicity. Geometric
and computational perspectives on infinite groups, 25:193–200, 1996.
(Cited in page 55.)

[Pap03] C. H. Papadimitriou. Computational complexity. John Wiley and
Sons Ltd., 2003. (Cited in pages 138 and 136.)

[PLF02] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas. Data mining with an
ant colony optimization algorithm. IEEE transactions on evolution-
ary computation, 6(4):321–332, 2002. (Cited in pages 189 and 187.)

[PR05] C. H. Papadimitriou and D. Ratajczak. On a conjecture related to
geometric routing. Theoretical Computer Science, 344(1):3–14, 2005.
(Cited in pages 22 and 21.)

[Pri94] E. Prisner. A common generalization of line graphs and clique
graphs. Journal of Graph Theory, 18(3):301–313, 1994. (Cited in
pages 44 and 42.)

[Pri95] E. Prisner. Graph dynamics, volume 338. CRC Press, 1995. (Cited
in pages 44 and 42.)

[PRST13] A. Portilla, J. M. Rodrıguez, J. M. Sigarreta, and E. Tourıs. Gromov
hyperbolic directed graphs. Appl. Sinica, 2013. (Cited in pages 74
and 72.)

[PS97] A. Parra and P. Scheffler. Characterizations and algorithmic appli-
cations of chordal graph embeddings. Discrete Applied Mathematics,
79:171–188, 1997. (Cited in pages 84 and 82.)

[PS08] P. N. Panagopoulou and P. G. Spirakis. A game theoretic approach
for efficient graph coloring. In ISAAC’08, pages 183–195, 2008.
(Cited in pages 119, 122, 126, 127, 131, 117, 120, 124, 125 and 129.)

[Qui83] A. Quilliot. Problèmes de jeux, de point fixe, de connectivité et de
représentation sur des graphes, des ensembles ordonnés et des hyper-
graphes. PhD thesis, Thèse de doctorat d’état, Université de Paris
VI, France, 1983. (Cited in pages 32 and 30.)

[Reu16] Bernhard Reus. Robustness of p. In Limits of Computation, pages
173–181. Springer, 2016. (Cited in pages 17 and 15.)

[RS84] N. Robertson and P. D. Seymour. Graph minors. III. planar tree-
width. Journal of Combinatorial Theory, Series B, 36(1):49–64,
1984. (Cited in pages 109 and 107.)

[RS86] N. Robertson and P.D. Seymour. Graph minors. II. algorithmic as-
pects of tree-width. Journal of algorithms, 7(3):309–322, 1986. (Cited
in pages 39, 76, 37 and 74.)

[RS10] P. Raghavendra and D. Steurer. Graph expansion and the unique
games conjecture. In ACM STOC, pages 755–764. ACM, 2010.
(Cited in pages 72 and 70.)

216 Bibliography

[RST94] N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a
planar graph. Journal of Combinatorial Theory, Series B, 62(2):323–
348, 1994. (Cited in pages 109 and 107.)

[RW09] R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume
317. Springer Science & Business Media, 2009. (Cited in pages 20
and 18.)

[Saf13] SafeGov.org. Declaration of Kyle C. Wong in Support of Google
Inc.’s Opposition to Plaintiffs’ Motion for Class Certification, 2013.
(Cited in pages 160 and 158.)

[Sch91] A. A. Schäffer. Simple local search problems that are hard to solve.
SIAM journal on Computing, 20(1):56–87, 1991. (Cited in pages 146
and 145.)

[Sch92] P. Scheffler. Optimal embedding of a tree into an interval graph
in linear time. Annals of Discrete Mathematics, 51:287–291, 1992.
(Cited in pages 105 and 103.)

[SD10] S.-C. Sung and D. Dimitrov. Computational complexity in ad-
ditive hedonic games. European Journal of Operational Research,
203(3):635–639, 2010. (Cited in pages 154 and 152.)

[Sei74] D. Seinsche. On a property of the class of n-colorable graphs. Journal
of Combinatorial Theory, Series B, 16(2):191–193, 1974. (Cited in
pages 41 and 39.)

[Sey16] P. Seymour. Tree-chromatic number. Journal of Combinatorial The-
ory, Series B, 116:229–237, 2016. (Cited in pages 77 and 75.)

[SG11] Mauricio A. Soto Gómez. Quelques propriétés topologiques des
graphes et applications à internet et aux réseaux. PhD thesis, Univ.
Paris Diderot (Paris 7), 2011. (Cited in pages 30, 34, 38, 60, 61, 28,
32, 36, 58 and 59.)

[Sha11] Y. Shang. Lack of gromov-hyperbolicity in colored random networks.
PanAmerican Mathematical Journal, 21(1):27–36, 2011. (Cited in
pages 45 and 43.)

[Sha12] Y. Shang. Lack of gromov-hyperbolicity in small-world networks.
Open Mathematics, 10(3):1152–1158, 2012. (Cited in pages 45
and 43.)

[Sha13] Y. Shang. Non-hyperbolicity of random graphs with given expected
degrees. Stochastic Models, 29(4):451–462, 2013. (Cited in pages 45,
46, 43 and 44.)

[Shc13a] V. Shchur. A quantitative version of the morse lemma and quasi-
isometries fixing the ideal boundary. Journal of Functional Analysis,
264(3):815–836, 2013. (Cited in pages 20 and 18.)

[Shc13b] V. Shchur. Quasi-isometries between hyperbolic metric spaces, quan-
titative aspects. PhD thesis, Université Paris-Sud, 2013. (Cited in
pages 49, 59, 68, 47, 57 and 66.)

Bibliography 217

[Shi77] D. R. Shier. A min-max theorem for p-center problems on a tree.
Transportation Science, 11(3):243–252, 1977. (Cited in pages 70
and 68.)

[ST08] Y. Shavitt and T. Tankel. Hyperbolic embedding of internet graph
for distance estimation and overlay construction. IEEE/ACM Trans-
actions on Networking (TON), 16(1):25–36, 2008. (Cited in pages 23
and 21.)

[Sys79] M.M. Sysło. Characterizations of outerplanar graphs. Discrete Math-
ematics, 26(1):47–53, 1979. (Cited in pages 63 and 61.)

[Tar72] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146–160, 1972. (Cited in pages 77, 85,
90, 75, 83 and 88.)

[Tar85] R. E. Tarjan. Decomposition by clique separators. Discrete Mathe-
matics, 55(2):221 – 232, 1985. (Cited in pages 64, 78, 85, 86, 62, 76,
83 and 84.)

[TDDW15] M.C. Tschantz, A. Datta, A. Datta, and J.M. Wing. A methodology
for information flow experiments. In Computer Security Founda-
tions Symposium (CSF), 2015 IEEE 28th, pages 554–568, July 2015.
(Cited in pages 166 and 164.)

[Ten16] S.-H. Teng. Scalable algorithms for data and network analysis. Foun-
dations and Trends in Theoretical Computer Science, 12(1–2):1–274,
2016. (Cited in pages 1 and 219.)

[The14] The Guardian. Snapchat’s expired snaps are not deleted, just hidden,
2014. (Cited in pages 2 and 219.)

[Tho89] C. Thomassen. The graph genus problem is NP-complete. Journal
of Algorithms, 10(4):568–576, 1989. (Cited in pages 105 and 103.)

[Tuc13] G. H. Tucci. Non-hyperbolicity in random regular graphs and their
traffic characteristics. Central European Journal of Mathematics,
11(9):1593–1597, 2013. (Cited in pages 45 and 43.)

[Twi] Twitter Usage Statistics. http://www.internetlivestats.com/
twitter-statistics/. (Cited in pages 1 and 219.)

[TY84] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selec-
tively reduce acyclic hypergraphs. SIAM Journal on Computing,
13(3):566–579, 1984. (Cited in pages 89 and 87.)

[Ueh99] R. Uehara. Tractable and intractable problems on generalized
chordal graphs. Models of Computation and Algorithms, 1093:27–
32, 1999. (Cited in pages 41 and 39.)

[Val12] G. Valiant. Finding correlations in subquadratic time, with applica-
tions to learning parities and juntas. In Foundations of Computer
Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 11–
20. IEEE, 2012. (Cited in pages 163, 188, 161 and 186.)

http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/

218 Bibliography

[VDSVS12] J. Valentino-Devries, J. Singer-Vine, and A. Soltani. WSJ.com -
Websites Vary Prices, Deals Based on Users’ Information, 2012.
(Cited in pages 2, 160, 219 and 158.)

[VS14] K. Verbeek and S. Suri. Metric embedding, hyperbolic space, and
social networks. In Proceedings of the thirtieth annual symposium on
Computational geometry, page 501. ACM, 2014. (Cited in pages 15,
17, 22, 45, 46, 48, 49, 55, 68, 14, 20, 43, 44, 53 and 66.)

[VWW10] V. Vassilevska Williams and R. Williams. Subcubic equivalences be-
tween path, matrix and triangle problems. In 51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages
645–654. IEEE, 2010. (Cited in pages 65, 87, 63 and 85.)

[VWWWY15] V. Vassilevska Williams, J. R. Wang, R. Williams, and H. Yu.
Finding four-node subgraphs in triangle time. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 1671–1680. SIAM, 2015. (Cited in pages 67 and 65.)

[WAPL14] Y. Wu, P. Austrin, T. Pitassi, and D. Liu. Inapproximability of
treewidth and related problems. J. Artif. Intell. Res. (JAIR), 49:569–
600, 2014. (Cited in pages 77 and 75.)

[Whi92] H. Whitney. Congruent graphs and the connectivity of graphs.
In Hassler Whitney Collected Papers, pages 61–79. Springer, 1992.
(Cited in pages 3, 17, 42, 221, 15 and 40.)

[Wil16] Vassilevska Williams. Fine-grained algorithms and complexity (in-
vited talk). In 33rd Symposium on Theoretical Aspects of Computer
Science (STACS 2016), volume 47, page 3. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016. (Cited in pages 17, 64, 67, 87, 16,
62, 65 and 85.)

[WLJX12] C. Wang, T. Liu, W. Jiang, and K. Xu. Feedback vertex sets on
tree convex bipartite graphs. In COCOA 2012, Banff, AB, Canada,
pages 95–102, 2012. (Cited in pages 92, 98, 90 and 96.)

[WS98] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’
networks. nature, 393(6684):440–442, 1998. (Cited in pages 2, 16,
220 and 14.)

[WZ11] Y. Wu and C. Zhang. Hyperbolicity and chordality of a graph.
the Electronic Journal of Combinatorics, 18(1):P43, 2011. (Cited
in pages 27, 35, 40, 41, 47, 58, 63, 65, 25, 33, 38, 39, 45, 56, 61
and 64.)

[Yan15] M. Yancey. An investigation into graph curvature’s ability to mea-
sure congestion in network flow. Technical Report arXiv:1512.01281,
ArXiv, 2015. (Cited in pages 23, 39, 69, 73, 21, 36, 67 and 71.)

Appendix A

Résumé de la thèse

A.1 Contexte

Le partage d’information en ligne a gagné en importance au cours de ces dernières
décennies. Les chiffres parlent d’eux mêmes: en 2015 il y a eu 205 milliards de
courriels échangés quotidiennement [Ema]; sur la même période, près de 500 millions
de tweets par jour ont été envoyés [Twi]; on observe plus généralement une hausse
du trafic Internet, qui est passé de 100 GB par jour en 1992 à 20 235 GBps en
2015 [Cisa]. De même le volume des données stockées a explosé, avec des prévisions
de l’ordre de 40 zettaoctets pour 2020 [IDC].

Alors que nous entrons de plain-pied dans cette “ère du zettaoctet”, les techni-
ciens de l’information se retrouvent confrontés à diverses problématiques qui sont
régulièrement relayées par les médias. Dans cette thèse, nous nous intéressons à
deux de ces problématiques:
• Le Passage à l’échelle – défini dans [Ten16] comme l’impératif d’obtenir des

algorithmes en temps quasi-linéaire en la taille des réseaux. Dans une perspec-
tive plus large, il y a une demande croissante d’algorithmes efficaces pour gérer
les réseaux de communication. Ces demandes émanent de nombreux domaines
scientifiques tels que ceux des télécommunications, de la bio-informatique, de la
vision artificielle et de l’économie. La difficulté principale est qu’avec l’essor des
échanges d’information et des collectes de données en ligne la taille des réseaux
a augmenté, avec à présent des millions de serveurs dans certains centres de
données [DCM], des milliards d’utilisateurs sur les réseaux sociaux [FBN], etc.
Devant pareilles tailles mêmes les algorithmes cas d’école ne passent pas tous
à l’échelle, ce qui accroît le fossé entre ce qui est calculable et ce qu’on veut
calculer. Il y a donc lieu de redéfinir ce que signifie un calcul efficace, ou qui
passe à l’échelle, dans ce contexte.

Nous proposons des avancées dans cette direction en nous basant sur des outils
de la théorie des graphes et de la complexité.
• Le respect de la vie privée – est défini dans [EDP] comme “un droit qui inter-
dit aux autorités publiques [et à toute autre organisation ou individu] d’exercer
des mesures [de nature à rendre publique la vie privée des gens] à moins que cer-
taines conditions soient vérifiées.” Plus précisément, des inquiétudes naissent
de la collecte effrénée de données par les entreprises en ligne, dont les dérives
se font jour fréquemment [Gou14, Mat12, VDSVS12, The14]. De là le besoin

220 Appendix A. Résumé de la thèse

de modèles prédictifs afin que chaque individu puisse détecter ces dérives, voire
même les identifier.

Nos principaux outils pour cette tâche sont ceux de la théorie de l’apprentissage
et la théorie algorithmique des jeux.
Avant d’annoncer nos résultats dans la Section A.2, nous commençons par es-

quisser notre approche pour cette thèse. Le travail présenté est la somme de plusieurs
problèmes combinatoires sur les graphes, dont l’étude est motivée par les deux prob-
lématique exposées ci-dessus. Puisque les solutions proposées pour ces problèmes
doivent passer à l’échelle sur les grands réseaux, on s’intéresse tout particulièrement
à l’étude fine de leur complexité.

En particulier, la Partie I est dédiée à l’étude de paramètres dans les graphes
dont les relations avec les problématiques ci-dessus ont été montrées dans d’autres
travaux [NS11]. L’étude des propriétés des “réseaux complexes”, ainsi que de leurs
applications, est un sujet bien établi [LLDM09, BAJ00, BKC09, WS98, DGM06].
Dans notre cas, l’accent est mis sur la proximité des métriques de graphes avec les
métriques d’arbres [Gro87]. Ce sujet a reçu une attention croissante au cours des
dernières décennies. Nous détaillons dans la Partie I comment les avantages et les
inconvénients des arbres (avec d’un côté d’importantes applications algorithmiques
mais de l’autre côté des vulnérabilités bien connues) peuvent s’étendre aux graphes
qui sont (métriquement) proches des arbres.

Cette ligne principale de la thèse sera complétée dans la Partie II par l’analyse de
deux processus dynamiques sur les graphes. Ces deux processus modélisent des as-
pects fondamentaux de la problématique du respect de la vie privée dans les réseaux
de communications. En d’autres termes, l’objectif dans cette ligne secondaire de la
thèse est de concevoir des outils (qui passent à l’échelle) afin de renforcer le respect
de la vie privée dans ces réseaux.

A.2 Contributions

Notre travail est exposé dans deux parties disjointes et indépendantes l’une de
l’autre. Leur contenu est présenté dans les Sections A.2.1 et A.2.2 ci-dessous.

Par ailleurs, l’annexe regroupe l’ensemble des articles par lesquels les résultats de
cette thèse ont été publiés. En effet, nous avons fait le choix de ne pas inclure toutes
les preuves dans le corps des chapitres, en partie pour des raisons de lisibilité car
certaines d’entre elles dépassent allègrement la douzaine de pages. Seront seulement
données les preuves qui, de notre point de vue, illustrent le mieux les techniques
utilisées. Le tout accompagné d’esquisses des preuves les plus longues.

A.2.1 Partie I: Sur les graphes dont la métrique est proche de celle
d’un arbre

Nous étudions dans la Partie I des propriétés métriques des graphes et des décompo-
sitions de graphes. L’objectif majeur de cette partie est l’étude fine de la complexité

A.2. Contributions 221

de leur calcul. En particulier, ces propriétés peuvent-elles être calculées sur de très
grands graphes, avec parfois des millions de noeuds et des milliards d’arêtes ? Nos
pistes pour répondre à ces questions nous ont amené à étudier les relations entre
les propriétés métriques d’un graphe et ses propriétés structurelles, topologiques,
algébriques, etc.

A.2.1.1 Chapitre 2: Une vue d’ensemble sur l’hyperbolicité dans les
graphes

Ce chapitre introduit la notion d’hyperbolicité dans les graphes. Ce paramètre
donne des bornes sur la meilleure distorsion possible des distances dans un graphe
quand il est plongé dans un arbre.

Tout d’abord nous démontrons plusieurs résultats, positifs comme négatifs, sur
la complexité du calcul de ce paramètre. Plus précisément, sur le plan positif nous
proposons une méthode de pré calcul afin de réduire la taille des graphes en entrée de
nos algorithmes. Cette méthode utilise une décomposition des graphes bien connue,
selon les cliques-séparatrices [BPS10]. Nous en faisons une analyse poussée. Sur un
plan plus négatif, nous prouvons que reconnaître les graphes de petite hyperbolicité
(au plus 1/2) est un problème de complexité équivalente à la détection de carrés
induits dans un graphe. Ce résultat implique, sous certaines hypothèse de complexité
standard, que calculer l’hyperbolicité d’un graphe est impossible en temps sous-
cubique. Ces travaux ont été réalisés en collaboration avec Nathann Cohen, David
Coudert et Aurélien Lancin [CD14, CCDL17].

Ensuite, nous établissons de nouvelles bornes sur ce paramètre dans des classes
de graphes utilisées dans la conception des réseaux d’interconnexion de centre de
données. Dans la pratique, nous avons utilisé ce résultat pour estimer fidèlement
l’hyperbolicité de graphes de très grande taille sans le moindre calcul. Nous complé-
tons ce résultat par une analyse fine des variations de l’hyperbolicité sous certaines
opération bien connues sur les graphes telles que le graphe adjoint, le graphe des
cliques, etc. Cette analyse prend une tout autre saveur dans les cas où l’opération
peut facilement s’inverser (par exemple, la racine d’un graphe adjoint se calcule en
temps linéaire [Whi92]), car elle donne alors de nouvelles méthodes de pré calcul
pour le calcul de l’hyperbolicité d’un graphe. Ce travail a été réalisé en commun
avec David Coudert [CD16a, CD16b].

A.2.1.2 Chapitre 3: Décompositions arborescentes avec des contraintes
sur les distances dans les sacs

De nouveaux résultats sont présentés sur la complexité du calcul de décompositions
arborescentes avec des contraintes sur les distances dans les sacs (ç.a.d. les sous-
graphes résultant de la décomposition).

D’abord, on présente une analyse fine de la complexité du calcul de la décompo-
sition d’un graphe selon ses cliques-séparatrices. La complexité de ce problème est
prouvée équivalente, sous des hypothèses de complexité standard, à la détection de

222 Appendix A. Résumé de la thèse

triangles dans un graphe et au produit de deux matrices carrées. Sur un plan plus
positif nous montrons que cette décomposition est calculable en temps quasi-linéaire
pour des classes de graphes où la taille d’une plus grande clique est bornée par une
constante. Ce travail a été réalisé en commun avec David Coudert [DC17].

Dans un deuxième temps, nous répondons à des questions ouvertes de la lit-
térature sur la complexité du calcul de différents paramètres métriques des graphes,
tous reliés à l’hyperbolicité (treebreadth, pathbreadth et pathlength). Nous prou-
vons que pour tous ces paramètres, leur calcul est un problème NP-difficile. En
particulier, nous montrons que reconnaître les graphes de treebreadth au plus une
est NP-complet. Cependant, nous prouvons que ce dernier problème devient poly-
nomial si l’on se restreint aux graphes bipartis et aux graphes planaires. Ce travail
a été réalisé en collaboration avec Sylvain Legay et Nicolas Nisse [DLN16a].

Enfin, nous étudions les relations entre une autre propriété métrique des graphes:
la treelength, et une propriété structurelle bien connue: la treewidth des graphes.
Nous bornons la treewidth par deux fonctions affines de la treelength dans les classes
de graphes sans long cycle isométrique et de genre borné. Sur le plan algorithmique,
on mentionne plusieurs applications de ce résultat. C’est un travail effectué en
commun avec David Coudert et Nicolas Nisse [CDN16].

A.2.2 Partie II: Le respect de la vie privée à grande échelle dans
les réseaux sociaux

Deux problèmes autour du respect de la vie privée sont introduits et étudiés dans
cette partie. Notre objectif est d’obtenir une analyse fine de leur complexité.

A.2.2.1 Chapitre 4: le calcul d’équilibres dans les jeux de coloration

Nous considérons un jeu de coloration sur les graphes. Ce jeu a été proposé
dans [KL13] pour modéliser la dynamique des communautés dans les réseaux so-
ciaux. D’autres applications avaient été précédemment suggérées pour ce jeu, dont
la sécurisation de groupes de communication [CKPS10].

Nous présentons de nouveaux résultats sur la complexité du calcul d’équilibres
dans ce jeu. Pour être plus précis, nous nous concentrons tout d’abord sur le calcul
d’équilibres par meilleure réponse. Cette méthode de recherche locale permet de
calculer, pour tout entier k, un équilibre de Nash robuste contre toutes les coalitions
d’agents possibles de taille au plus k. Sur le plan positif, nous établissons le temps
de convergence exact de cette méthode dans le pire cas, pour k ≤ 2. Toutefois, sur le
plan négatif, nous prouvons que ce temps de convergence n’est pas polynomialement
borné dès que k ≥ 4. Ce résultat négatif répond aux questions ouvertes de [EGM12,
KL13]. Ce travail a été effectué en commun avec Dorian Mazauric et Augustin
Chaintreau [DMC13a, DMC17].

Nous complétons ce dernier résultat par une analyse plus fine de la complexité du
calcul d’un équilibre de Nash dans le jeu de coloration (robuste contre les déviations
de n’importe quel agent). On montre que ce problème est P-difficile, ce qui suggère

A.2. Contributions 223

qu’il est intrinsèquement séquentiel [Duc16].
Enfin, le reste du chapitre est dédié à une généralisation naturelle du jeu de

coloration sur les graphes arêtes-pondérés. Nous donnons des conditions suffisantes
pour l’existence d’équilibres dans ces jeux qui dépendent de la structure du graphe
sous-jacent (notamment, de sa maille). Nous proposons également des constructions
surprenantes de jeux pour lesquels de tels équilibres n’existent pas. Pour finir, il
est prouvé que reconnaître les jeux de coloration généralisés qui admettent de tels
équilibres est un problème NP-complet. Des extensions de tous ces résultats à des
classes de jeux plus générales sont aussi discutées. C’est un travail commun avec
Dorian Mazauric et Augustin Chaintreau [DMC12, DMC13a, DMC17].

A.2.2.2 Chapitre 5: Apprentissage de formules logiques dans un modèle
bruité

Nous consacrons le dernier chapitre à un problème d’apprentissage dont le contexte
peut s’énoncer comme suit. Soient un ensemble D (qui représente des mots-clefs)
et un graphe où chaque sommet est étiqueté par un sous-ensemble de D (ç.a.d.
une collection de mots-clefs présents dans les courriels d’un utilisateur). On assigne
un Booléen à chaque sommet selon un processus (boîte noire) aléatoire, qui lui-
même est corrélé à une certaine fonction Booléenne (inconnue) sur les étiquettes. Le
problème posé est l’apprentissage de cette fonction. Nous entendons ainsi modéliser
le problème de la détection de l’utilisation des données utilisateur dans les campagnes
publicitaires en ligne.

D’abord nous proposons un algorithme pour apprendre la fonction dans un
cas simple où elle dépend d’au plus une variable. Cet algorithme est à la base
de méthodes d’apprentissage plus sophistiquées pour d’autres classes de fonc-
tions — mais sous des hypothèses plus contraignantes. Par ailleurs il est mon-
tré que sans ces hypothèses supplémentaires, il est impossible d’apprendre la
fonction dès qu’elle dépend d’au moins deux variables. Ce travail a été ef-
fectué en collaboration avec Mathias Lécuyer, Francis Lan, Max Tucker, Riley
Sphan, Andrei Papancea, Theofilos Petsios, Augustin Chaintreau et Roxana Geam-
basu [LDL+14, DLCG15, DTC17, CD17].

Papers on graph hyperbolicity

Appendix B

Applying clique-decomposition for
computing graph hyperbolicity

Applying clique-decomposition for computing Gromov hyperbolicity

Nathann Cohen1, David Coudert2, Guillaume Ducoffe2, and Aurélien Lancin3

1LRI, Univ Paris Sud, Université Paris-Saclay, 91405 Orsay, France
2Université Côte d’Azur, Inria, CNRS, I3S, France

3LAMIA Laboratory, University of the French West Indies and Guiana, France

Abstract

Given a graph, its hyperbolicity is a measure of how close its distance distribution is to
the one of a tree. This parameter has gained recent attention in the analysis of some graph
algorithms and the classication of complex networks. We study on practical improvements for
the computation of hyperbolicity in large graphs. Precisely, we investigate on relations between
the hyperbolicity of a graph G and the hyperbolicity of its atoms, that are the subgraphs
output by the clique-decomposition invented by Tarjan [44, 56]. We prove that the maximum
hyperbolicity taken over the atoms is at most one unit off from the hyperbolicity of G and the
bound is sharp. We also give an algorithm to slightly modify the atoms, which is at no extra
cost than computing the clique-decomposition, and so that the maximum hyperbolicity taken
over the resulting graphs is exactly the hyperbolicity of G. An experimental evaluation of our
method for computing the hyperbolicity of a given graph from its atoms is provided for large
collaboration networks. Finally, on a more theoretical side we deduce from our results the first
linear-time algorithm for computing the hyperbolicity of an outerplanar graph.

Keywords: Gromov hyperbolicity; graph algorithms; clique-decomposition; outerplanar graphs.

1 Introduction

In this paper we aim at improving the computation of hyperbolicity in large graphs, whose size
ranges from thousands to tens of thousands of nodes. To this end, we will establish new relations
between hyperbolicity and some graph decomposition. Roughly, the hyperbolicity of a metric space
is an estimate of how close it is to a metric tree (formal definitions are postponed to the technical
sections of this paper). This parameter was first introduced by Gromov in the context of automatic
groups [35]. Later on, it was extended to more general metric spaces including graphs equipped
with their shortest-path metric. Graph hyperbolicity is now part of the parameters in use to
classify complex networks [1, 2, 40]. Furthermore, the study of graphs with bounded hyperbolicity
has found applications in the design and the analysis of approximation algorithms [19, 24] and
geometric routing schemes [11], as well as in network security [38] and bioinformatics [18, 30],
to name a few. As a result, hyperbolicity and its relations to other metric graph parameters has
received growing attention over the last decades. The reader may refer to [1, 29] for a recent survey.

Computing the hyperbolicity is useful in some of the above applications. For instance, it allows
to compute an embedding of the graph into the Hyperbolic plane with quasi-optimal distortion

1

of the distances in linear-time [58]. The latter is a prerequisite to many algorithms on negatively
curved spaces [42]. However, the computational cost of hyperbolicity has only recently received a
bit more attention. So far, the best-known algorithm to compute the hyperbolicity [31], though it
runs in polynomial-time, is impractical for large-scale graphs such as the graph of the Autonomous
Systems of the Internet, road maps, etc. This comes from its challenging implementation, relying
on fast square matrix multiplications, and its time complexity which is supercubic. On a more
positive side, there have been recent attempts that are much more efficient than the state-of-the-art
algorithm in practice, with running time dominated by the computation of the all-pairs-shortest-
paths [13, 21]. But on the negative side, it is unlikely that graph hyperbolicity can be computed in
subquadratic-time, even for sparse graphs [14, 22, 31]. This motivates us to study which structural
properties can help to speed-up the computation of hyperbolicity in large graphs.

Our approach. We build on graphs decompositions in order to gain more insights on the internal
structure of graphs with bounded hyperbolicity. More precisely, we are given a decomposition of a
graph in some of its subgraphs and we aim at computing its hyperbolicity from the hyperbolicity
of the subgraphs. This way, for computing the hyperbolicity of a graph, we can preprocess it
and replace it with the subgraphs of the decomposition, thereby decreasing the size of the inputs.
Although such techniques are unlikely to improve the calculation of hyperbolicity in general (for
they may be graphs that are “prime” w.r.t. the decomposition), they are expected to work well on
some graph classes of interest, including some classes of real-life graphs. A first step toward this
direction was made by Soto in his PHD thesis [51]. He proved that the hyperbolicity of a graph is
the maximum hyperbolicity taken over the subgraphs from the modular decomposition [33] or the
split-decomposition [23]. Examples of complex networks whose underlying graph has a nontrivial
modular decomposition are the protein-protein interaction networks [32].

We here address a similar question for the subgraphs from the clique-decomposition, also known
as atoms. The clique-decomposition was introduced by Tarjan in [56] then made unique by Leimer
in [44]. Roughly, it consists in disconnecting the graph using clique-separators, and it is easy to
implement. Note that there are studies supporting the existence of clique-separators in real-life
graphs, such as the underlying graphs of social and biological networks [1, 7, 26, 39], that makes
our approach practical for large graphs. Furthermore, clique-decomposition has been proved useful
to preprocess the graphs in the computation of many optimization problems [56] – including the
computation of treelength [28], related to hyperbolicity. Therefore, at first glance, it should not
come as a surprise if clique-decomposition can be applied to preprocess the graphs in the compu-
tation of hyperbolicity. This being said, hyperbolicity is less robust than other metric invariants
to graph modifications (for instance, it may increase after an edge-contraction [17]), so, a careful
analysis is needed to prove whether it is the case.

Main contributions. In fact, our first result is that, somewhat counter-intuitively, the hyperbol-
icity δ(G) of a graph G cannot be deduced directly from the hyperbolicity of its atoms (Section 3).
We will prove nonetheless that it can be approximated with additive constant 1 by taking the
maximum hyperbolicity δ∗(G) over the atoms (Section 4). This result requires an in-depth analysis
of clique-decomposition in order to be proved. Additionally, we characterize when it is the case
that δ(G) > δ∗(G).

Based on this characterization, we will show in Section 5 how each atom can be “modified”
(augmented with few simplicial vertices) in order to compute exactly the hyperbolicity, and provide

2

a complexity analysis of the procedure. Experiments in Section 7 show the benefit of our method
in terms of size of the graph, when applied to some real collaboration networks.

Finally, we will apply clique-decomposition for improving the best-known complexity to compute
hyperbolicity in the class of outerplanar graphs. We will detail in Section 6 the first linear-time
algorithm for computing the hyperbolicity of these graphs. We find the latter result all the more
interesting that under classical complexity assumptions, the hyperbolicity of sparse graphs cannot
be computed in subquadratic-time [14].

Definitions and notations used in this paper will be introduced in Section 2.

2 Definitions and notations

We use the graph terminology of [12, 27]. All graphs considered in this paper are finite, unweighted
and simple. Given G = (V,E), let n = |V |, m = |E|. For every subset of vertices S ⊆ V , the open
neighborhood of S is the set of all vertices in V \ S with at least one neighbor in S. We denote it
by NG(S), or by N(S) when G is clear from the context. The close neighborhood of S is the set
S ∪N(S), denoted by N [S].

Given two vertices u and v, a uv-path of length l ≥ 0 is a sequence of vertices (u = v0v1 . . . vl =
v), such that {vi, vi+1} is an edge for every i. In particular, a graph G is connected if there exists
a uv-path for all pair u, v ∈ V , and in such a case the distance dG(u, v) is defined as the minimum
length of a uv-path in G. Note that it yields a discrete metric space (V,dG), also known as the
shortest-path metric space of G. We will write d instead of dG whenever G is clear from the context,
and we denote by d(u,X) = minx∈X d(u, x) the distance between a vertex u and a set X of vertices.

Our proofs use the notions of subgraphs, induced subgraphs, as well as isometric subgraphs,
the latter denoting a subgraph H of a graph G such that dH(u, v) = dG(u, v) for any two vertices
u, v ∈ H.

2.1 Gromov hyperbolicity

The space (V,dG) is a tree metric if there exists a distance-preserving mapping from V to the nodes
of an edge-weighted tree. In this case, the graph G is called 0-hyperbolic. Several characterizations
exist for 0-hyperbolic graphs. Informally, a graph is called δ-hyperbolic if it satisfies one of these
characterizations up to a defect at most δ. Different characterizations will lead to different values
for δ, but they may differ only by a small constant-factor [6, 25, 35]. We here consider the following
4-point definition for hyperbolicity.

Definition 1 (4-points Condition, [35]). Let G be a connected graph. For every 4-tuple u, x, v, y
of vertices of G, we define δ(u, v, x, y) as half of the difference between the two largest sums among

S1 = d(u, v) + d(x, y), S2 = d(u, x) + d(v, y) and S3 = d(u, y) + d(v, x).

The hyperbolicity of G, denoted by δ(G), is equal to maxu,x,v,y∈V (G) δ(u, v, x, y). Moreover, we
say that G is δ-hyperbolic, for every δ ≥ δ(G).

It is straightforward, by the above definition, to compute graph hyperbolicity in θ(n4)-time. In
theory, it can be decreased to O(n3.69) by using clever (max,min) matrix product [31]. But in prac-
tice, the best-known algorithms still run in O(n4)-time [13, 21]. Graphs with small hyperbolicity

3

can be recognized faster. In fact, 0-hyperbolic graphs coincide with block graphs, that are graphs
whose all biconnected components are complete subgraphs [5, 37]. Hence it can be decided in
linear O(n+m)-time whether a graph is 0-hyperbolic. The latter characterization of 0-hyperbolic
graphs follows from a more general result saying that the hyperbolicity of a graph is the maximum
hyperbolicity from its biconnected components (our work will give a new proof of this well-known
result). More recently, it was proved that the recognition of 1

2 -hyperbolic graphs is computation-
ally equivalent to decide whether there is a chordless cycle of length 4 in a graph [22]. The latter
problem can be solved in deterministic O(n3.26)-time [43] and in randomized O(n2.373)-time [57] by
using fast matrix multiplication.

2.2 Clique-decomposition

Given G = (V,E), we name separator a subset of vertices X ⊂ V such that the removal of X
disconnects the graph. We call X a clique-separator when the induced subgraph G[X] is a complete
graph. A graph is prime if it does not contain a clique-separator. Examples of prime graphs are
complete graphs and cycles. Finally, the clique-decomposition of G is the collection of its maximal
sets of vertices that induce prime subgraphs of G (we will call them atoms). See Figure 1 for an
illustration. The decomposition is unique and it can be computed in O(nm)-time [44, 56]. We refer
to [8] for a survey on clique-decomposition.

Figure 1: Clique-decomposition of a graph in five atoms. A 4-tuple with hyperbolicity 1 is drawn
in bold.

Notations. Let us fix some notations for the proofs. Given G = (V,E), let X be a separator of
G. Let A,B denote two sets of vertices such that A∩B ⊆ X and A \X, resp., B \X, is nonempty.
We will call X a (A|B)-separator. Let us denote by (a|b1, b2, b3) a 4-tuple such that a ∈ A and
b1, b2, b3 ∈ B. In the same way, let us denote by (a1, a2|b1, b2) a 4-tuple such that a1, a2 ∈ A and
b1, b2 ∈ B. Note that we allow some vertices of the 4-tuple to be in X with this notation.

3 Hyperbolicity and clique-separators

It happens that every atom of the graph is δ-hyperbolic whereas it has hyperbolicity strictly greater
than δ. As example, consider the chordal graph of Figure 1. It is 1-hyperbolic, with a 4-tuple of
maximum hyperbolicity being drawn in black. However, its five atoms are complete graphs, hence
they are 0-hyperbolic.

The purpose of the next two sections is to upper-bound the gap between δ(G) and δ∗(G) for
every graph G, where δ∗(G) denotes the maximum hyperbolicity from the atoms of G. To this
end, we analyze in this section the relationship between the hyperbolicity of a graph and a given

4

clique-separator, leading to the approximation with additive constant of Theorem 12. It begins
with an observation about (a1, a2|b1, b2) 4-tuples and the diameter diam(X) = maxu,v∈X dG(u, v)
of a (A|B)-separator X.

3.1 Hyperbolicity of (a1, a2|b1, b2) 4-tuples

XA B
a1
a2

b1
b2

Figure 2: Illustration of a (A|B)-separator.

Lemma 2. Let X be a (A|B)-separator of a connected graph G. For every (a1, a2|b1, b2) 4-tuple,
we have δ(a1, a2, b1, b2) ≤ diam(X).

Proof. By Definition 1, we have δ(a1, a2, b1, b2) = (L −M)/2 where L and M are the two biggest
sums among the following:

S1 = d(a1, a2) + d(b1, b2), S2 = d(a1, b1) + d(a2, b2), S3 = d(a1, b2) + d(a2, b1).

Let us upper-bound L. By the triangular inequality we have that for every u, v ∈ {a1, a2, b1, b2}, d(u, v) ≤
d(u,X) + d(v,X) + diam(X). Thus, for every i ∈ {1, 2, 3} we have (by applying twice the trian-
gular inequality) that Si ≤ d(a1, X) + d(a2, X) + d(b1, X) + d(b2, X) + 2 · diam(X). In particular,
L ≤ d(a1, X) + d(a2, X) + d(b1, X) + d(b2, X) + 2 · diam(X).

Furthermore, since X is assumed to be a (A|B)-separator, we have that for every i, j ∈ {1, 2},
all aibj-paths in G must intersect X, and so, d(ai, bj) ≥ d(ai, X) + d(bj , X). Hence, d(a1, X) +
d(a2, X)+d(b1, X)+d(b2, X) ≤ d(a1, b1)+d(a2, b2) = S2, and in the same way d(a1, X)+d(a2, X)+
d(b1, X)+d(b2, X) ≤ S3. Altogether it implies that L ≤ min{S2, S3}+2·diam(X). By noticing that
min{S2, S3} ≤M , one finally obtains that L ≤M+2·diam(X), and so, δ(a1, a2, b1, b2) ≤ diam(X),
as desired.

a2

a1 b1

b2

X

Figure 3: An (a1, a2|b1, b2) 4-tuple with hyperbolicity 1.

Corollary 3. Let X be a (A|B)-clique-separator of a connected graph G. For every (a1, a2|b1, b2)
4-tuple, we have δ(a1, a2, b1, b2) ≤ 1.

The upper-bound of Corollary 3 is sharp, as shown with the grid of Figure 3. By taking larger
grids, it can also be shown that the upper-bound of Lemma 2 is sharp.

5

3.2 Hyperbolicity of (a|b1, b2, b3) 4-tuples

In contrast to (a1, a2|b1, b2) 4-tuples, the hyperbolicity of a (a|b1, b2, b3) 4-tuple can be arbitrarily
large. We will relate (a|b1, b2, b3) 4-tuples with some 4-tuples of B ∪ X in order to upper-bound
their hyperbolicity. Precisely, note that X being a clique, each vertex a ∈ A is at distance at least
d(a,X) and at most d(a,X) + 1 from any vertex of X. We now show how this can be used with
respect to the hyperbolicity.

XA Ba
b1
b2

b3

Figure 4: Illustration of a (a|b1, b2, b3)-separator.

Lemma 4. Let X be a (A|B)-clique-separator of a connected graph G, and let a ∈ A. We consider
the graph G′ obtained from G by adding a vertex a∗ adjacent to {x ∈ X : dG(a, x) = dG(a,X)}.
Then for every b1, b2, b3 ∈ B we have δ(a, b1, b2, b3) = δ(a∗, b1, b2, b3).

Proof. By construction G is an isometric subgraph of G′ and so, ∀u, v ∈ V (G), dG′(u, v) =
dG(u, v) = d(u, v). In particular, the value δ(a, b1, b2, b3) is not modified by the construction.

Let us relate d(a∗, b) with d(a, b) for every b ∈ B. Precisely, let us prove that d(a, b)− d(a∗, b)
is a constant (i.e., not depending on b), that will prove by Definition 1 that δ(a, b1, b2, b3) =
δ(a∗, b1, b2, b3) for every b1, b2, b3 ∈ B. In order to prove it, first observe that ∀x ∈ X, d(a, x) ∈
{d(a,X), d(a,X) + 1} holds as X is a clique. Since a∗ is adjacent to {x ∈ X : d(a, x) = d(a,X)},
this implies that ∀x ∈ X, d(a, x) = d(a∗, x) + (d(a,X) − 1). Furthermore, X is a (A ∪ {a∗}|B)-
separator of G′. Hence ∀ b ∈ B, all a∗b-paths of G′, resp. all ab-paths of G′, intersect X. As a
result, we have that for every b ∈ B, d(a, b) = d(a∗, b) + d(a,X)− 1 and replacing a with a∗ does
not change the hyperbolicity of the 4-tuple a, b1, b2, b3.

Note that it may be the case that δ(G′) > δ(G), where G′ is the graph defined in Lemma 4.
However this is no big deal at this step of the proof, for we are only interested in upper-bounding
δ(a, b1, b2, b3). We will come back to the difference between δ(G) and δ(G′) later on, in Section 5.

Lemma 5. Let X be a (A|B)-clique-separator of a connected graph G. Given a (a|b1, b2, b3) 4-tuple,
let x ∈ X be such that d(a, x) = d(a,X). We have δ(a, b1, b2, b3) ≤ δ(x, b1, b2, b3) + 1/2.

Proof. Let G′ be obtained from G by adding a vertex a∗ adjacent to {x ∈ X : d(a, x) = d(a,X)}.
By construction, G is an isometric subgraph of G′, and so, the respective values of δ(a, b1, b2, b3) and
δ(x, b1, b2, b3) are not modified by the addition of a∗. However, δ(G′) ≥ δ(G) with the inequality
possibly being strict, but we don’t use δ(G′) in the proof.

By Lemma 4 we have δ(a∗, b1, b2, b3) = δ(a, b1, b2, b3). Furthermore, we claim that ∀b ∈
B, d(b, x) ≤ d(b, a∗) ≤ d(b, x) + 1. Indeed, since a∗ and x are adjacent in G′, by the triangu-
lar inequality d(b, a∗) ≤ d(b, x) + 1. Since in addition X is a (A ∪ {a∗}|B)-separator of G′, all
a∗b-paths of G′ must intersect X. As a result, and since x ∈ X and X is a clique, d(b, x) ≤ d(b, a∗),
that proves the claim.

Let us assume w.l.o.g. that S1 ≥ S2 ≥ S3, where S1 = d(a∗, b1) + d(b2, b3), S2 = d(a∗, b2) +
d(b1, b3) and S3 = d(a∗, b3)+d(b1, b2). Since ∀i ∈ {1, 2, 3}, by the above claim d(bi, x) ≤ d(bi, a

∗) ≤

6

d(bi, x)+1, any sum S′i = d(x, bi)+d(bj , bk), where {j, k} = {1, 2, 3}\{i}, satisfies S′i ≤ Si ≤ S′i+1.
Therefore, we have that for every i ∈ {2, 3} :

δ(a∗, b1, b2, b3) ≤(S1 − Si)/2
≤(S′1 + 1− S′i)/2
≤(S′1 − S′i)/2 + 1/2.

In particular, if S′1 6= max{S′1, S′2, S′3}, then we have δ(a∗, b1, b2, b3) ≤ 1
2 by the choice of S′i =

max{S′1, S′2, S′3}. Otherwise, we have δ(a∗, b1, b2, b3) ≤ δ(x, b1, b2, b3) + 1
2 by the choice of S′i =

max{S′2, S′3}.

3.3 Disconnection by a clique-separator

Summing up the two previous Sections 3.1 and 3.2, we can upper-bound the difference between the
respective hyperbolicity of a graph and of its atoms in the particular case when there is a unique
clique-separator. The following Theorem 6 was proved independently in [51, 60] for separators of
any diameter. We prove it here for self-containment of the paper. Lemmas 2 and 5 will be reused
in the following sections.

G1

G2G3

G4

G5 G6

X

Figure 5: Illustration of a clique-separator X with the connected components of G \X.

Theorem 6. Let X be a clique-separator of a connected graph G, and let C1, . . . , Cl be the con-
nected components of G\X. We define Gi = G[Ci ∪X]. We have :

max{δ(G1), . . . δ(Gl)} ≤ δ(G) ≤ max{1/2, δ(G1), . . . δ(Gl)}+ 1/2.

Proof. Since X is a clique, and so, G[X] is an isometric subgraph, every subgraph Gi is isometric
as well. Hence, the lower-bound follows from the 4-point definition (Definition 1).

Let us now prove that δ(a, b, c, d) ≤ max{1/2, δ(G1), . . . δ(Gl)}+1/2 holds for any a, b, c, d ∈ V .
We consider a connected component Ci minimizing the number of vertices in the 4-tuple a, b, c, d
that are not in the block Ci ∪X. There are three cases to be considered.

• If a, b, c, d ∈ Ci ∪X we are done as δ(a, b, c, d) ≤ δ(Gi).

• If all of a, b, c, d but one vertex are in Ci ∪X let us assume w.l.o.g. that a /∈ Ci ∪X. Then
a, b, c, d is a (a|b1, b2, b3) 4-tuple, for the choices of B = Ci ∪X and A = V \Ci. By Lemma 5
it follows that δ(a, b, c, d) ≤ δ(Gi) + 1/2.

7

• Else, there are no more than two vertices among a, b, c, d that are in Ci ∪X. Suppose w.l.o.g.
a, c /∈ Ci∪X. Let j, k satisfy a ∈ Cj and c ∈ Ck. By minimality of |{a, b, c, d}\(Ci∪X)| we have
b, d /∈ Cj∪Ck. Therefore, a, b, c, d is a (a1, a2|b1, b2) 4-tuple, for the choices of A = Cj∪Ck∪X
and B = V \ (Cj ∪Ck), and we conclude by Corollary 3 that δ(a1, a2, b1, b2) ≤ 1 in this case.

The upper-bound of Theorem 6 is sharp. It can be shown using the graph in Figure 6, con-
structed from a cycle C7 of length 7 to which we add a triangle.

X

B

A

Figure 6: X is a (A|B)-clique-separator: we have δ(G) = 3/2, while δ(G[B]) = 1, and δ(G[A]) = 0.

4 Hyperbolicity and clique-decomposition

In Section 3, we gave a sharp upper-bound on the distortion of hyperbolicity when the graph is
disconnected by a single clique-separator. The atoms of the graph result from its disconnection by
some clique-separators [44]. However, Theorem 6 does not apply to a whole clique-decomposition
as the successive approximations would add up. We thus need to find additional properties to
approximate the hyperbolicity of a graph from computations on its atoms in order to prove Theo-
rem 12.

Our proofs in this section is based on the property that the atoms of a graph can be organized
into a tree (sometimes called an atom tree [9] or a maximal prime subgraph junction tree [48]).
Using this tree, any 4-tuple with large hyperbolicity can be related to an atom that is most “central”
to it (this will be made more precise in the following). We can then upper-bound the difference
between the hyperbolicity of the 4-tuple and the hyperbolicity of this atom. For the latter, a delicate
technical argument will be needed in order to obtain the sharp upper-bound on the difference.

4.1 Relating atoms and 4-tuples with large hyperbolicity

We aim at relating every 4-tuple a, b, c, d with a sufficiently large hyperbolicity to some atom
by which all the paths between a, b, c, d go through. The difference between δ(a, b, c, d) and the
hyperbolicity of this atom will be studied next. Our result in this section involves basic knowledge
about tree-decomposition (see [10]). A tree-decomposition (T,X) of a graph G = (V,E) is a pair
consisting of a tree T and of a family X = (Xt)t∈V (T) of subsets of V indexed by the nodes of T
and satisfying:

• ⋃t∈V (T)Xt = V ;

• for any edge e = {u, v} ∈ E, there exists t ∈ V (T) such that u, v ∈ Xt;

• for any v ∈ V , {t ∈ V (T) | v ∈ Xt} induces a subtree of T , denoted by Tv.

8

The sets Xt are called the bags of the decomposition. In the following, we will use the property
that there exists a tree-decomposition where the bags are exactly the atoms [9, 48].

Lemma 7. Let a, b, c, d ∈ V be a 4-tuple satisfying δ(a, b, c, d) ≥ 3
2 in a connected graph G = (V,E).

There exists an atom A0 such that ∀u ∈ {a, b, c, d}\A0, there is a clique-separator Xu ⊆ A0 which
separates u from {a, b, c, d} \ {u}.
Proof. Let (T,X) be a tree-decomposition of G where the bags are the atoms of G. Such a tree-
decomposition was proved to exist in [9, 48]. In order to prove the lemma, we shall seek for an
atom A0 with the property that no more than two vertices among {a, b, c, d} \ A0 are in the same
connected component of G \A0. To find this atom, we will weight the bags of X and then we will
choose the atom A0 in the weighted centroid of T .

Precisely, for every of a, b, c, d pick an atom containing the vertex. The weight of an atom is the
number of times it has been picked. In particular, an atom has weight between 0 and 4, and the sum
of weight of the atoms is equal toW = 4. It is well-known that for any node-weighted tree with sum
of weights W, there is a node whose removal splits the tree into connected components where the
sum of weight of the nodes is at mostW/2 [34]. So, let A0 be an atom of G such that no component
of T \ {A0} has sum of weight of its bags greater than 2. We claim that ∀u ∈ {a, b, c, d}\A0, there
is a clique-separator Xu ⊆ A0 which separates u from {a, b, c, d} \ {u}, that will prove the lemma.

Indeed, let u ∈ {a, b, c, d}\A0 be arbitrary. By the properties of a tree-decomposition, Tu
(induced by the atoms containing u) is the subtree of a component Cu of T \ {A0}. Let Vu ⊆ V be
the subset of vertices that are contained in an atom in Cu, and let Au ∈ Cu be the atom that is
adjacent to A0 in T . Since Au and A0 are atoms of G, their intersection, denoted by Xu = Au∩A0,
is a clique [8]. Furthermore, by the properties of a tree-decomposition, Xu is a (Vu|V \Vu)-separator
of G. Therefore, we are left to prove that no vertex of {a, b, c, d} \ {u} is in Vu, for the latter will
prove that Xu is a clique-separator which separates u from {a, b, c, d} \ {u}. Assume for the sake of
contradiction the existence of a vertex v ∈ {a, b, c, d} \ {u} that is contained in Vu. We distinguish
between two cases.

• Suppose that v /∈ Xu. In this situation, Tu, Tv are subtrees of Cu. It implies that the sum of
weight of the atoms in Cu is at least 2, and so, by the choice of atom A0, it is equal to 2. In
particular, u, v are the only two vertices of the 4-tuple that are in Vu \Xu (else, the sum of
weights of the atoms in Cu should be at least 3). Let X = Xu, A = Vu, B = (V \ Vu) ∪Xu.
The 4-tuple a, b, c, d is a (a1, a2|b1, b2) 4-tuple with a1 = u, a2 = v. Therefore, δ(a, b, c, d) ≤ 1
by Corollary 3, that contradicts the hypothesis that δ(a, b, c, d) ≥ 3

2 .

• Else, v ∈ Xu and we can assume w.l.o.g. that no vertex of {a, b, c, d} \ {u} is in Vu \Xu (else,
we go back to the previous case). In this situation, let X = Xu, A = Vu, B = (V \Vu)∪Xu as
before, the 4-tuple a, b, c, d is a (a1, a2|b1, b2) 4-tuple with a1 = u, a2 = v. Therefore, similarly
as for the previous case, we have that δ(a, b, c, d) ≤ 1 by Corollary 3, that contradicts the
hypothesis that δ(a, b, c, d) ≥ 3

2 .

As a result, no vertex of {a, b, c, d} \ {u} is in Vu, and so, Xu is a clique-separator which separates
u from {a, b, c, d} \ {u}. Since Xu ⊆ A0, the latter proves the claim on A0, hence the lemma.

As an illustration, one may notice that the central atom in Figure 7 satisfies the property of
Lemma 7 with respect to the 4-tuple v0, v1, v2, v3. Indeed, none of the four vertices is contained
in this atom, but each of them is simplicial and can be separated from the three others by its two
neighbors.

9

v0 v1

v2 v3

v4 v5

v6
v7 v8

v9

v10
v11 v12

v13

v14 v15

Figure 7: A 2-hyperbolic graph with five atoms: four are 0-hyperbolic, one is 1-hyperbolic. The
4-tuple v0, v1, v2, v3 has maximum hyperbolicity 2.

Discussion. It is tempting to attempt a generalization of Lemma 7 to some other graph de-
compositions. In particular, we may wish to consider a decomposition of the graph by separators
of diameter at most k, where k is a small constant (the case k = 1 corresponds to the clique-
decomposition). If we assume in addition that the subgraphs are organized into a tree (i.e., they
are the bags of a tree-decomposition), the generalization of Lemma 7 to that case is easy. However,
in general there is no such a tree-decomposition, which kills all the arguments in our proof.

We can go one step further and prove the following claim.

Proposition 8. For every G = (V,E), let G1, G2, . . . , Gl denote the isometric subgraphs of G that
do not contain any isometric separator of diameter at most two1. The difference between δ(G) and
maxi δ(Gi) can be arbitrarily large.

Proof. We shall prove that the result follows from some properties of bridged graphs. Indeed, we
recall that a vertex is dominated if its close neighborhood is included in the close neighborhood
of another vertex, and a graph is bridged if every of its isometric subgraphs contains a dominated
vertex [3]. We claim that for every bridged graph G, all the subgraphs Gi have hyperbolicity at
most one. Since the hyperbolicity of bridged graphs can be arbitrarily large [41], the result follows.

In order to prove the claim, let G be a bridged graph and let Gi be an isometric subgraph of
G where there is no isometric separator of diameter at most two. If Gi has order at most 1, then
we are done as δ(Gi) = 0 in this case. So, let us assume Gi contains at least two vertices. Since
G is bridged, Gi contains a dominated vertex vi. Let ui ∈ V (Gi) be a vertex dominating vi. In
this situation, ui is universal in Gi, or else NG[ui] \ vi would be an isometric separator of Gi of
diameter at most two. Therefore, Gi has diameter at most two, and so, δ(Gi) ≤ 1 [21], that proves
the claim, hence the result.

4.2 Substitution method

From Lemma 7 we can associate a specific atom to a 4-tuple of large hyperbolicity. Four applications
of Lemma 5 are then sufficient to prove that the hyperbolicity of this 4-tuple and the hyperbolicity

1We name a separator isometric when it induces an isometric subgraph.

10

of the atom differ by at most 2. The purpose of this section is to prove that this difference is in
fact at most 1. To do this, we refine the results of Section 3.2.

We recall that our substitution method in Section 3.2 consists in relating a (a|b1, b2, b3) 4-tuple
to a 4-tuple x, b1, b2, b3, with x ∈ X, such that δ(a, b1, b2, b3)− δ(x, b1, b2, b3) ≤ 1/2. The difference
between the hyperbolicity of the 4-tuples depends on the choice of x and on some properties of the
(a|b1, b2, b3) 4-tuple. So, we will first deepen our analysis of the worst-case when it is equal to 1/2.
We will finally prove that when we apply twice the substitution method to a 4-tuple with a large
hyperbolicity, this maximum difference of 1/2 can occur at most once.

We will need the following lemma, that is a technical generalization of Lemma 5.

Lemma 9. Let X be a (A|B)-clique-separator of a connected graph G. Given a (a|b1, b2, b3) 4-tuple,
write:

S1 = d(a, b1) + d(b2, b3), S2 = d(a, b2) + d(b1, b3), S3 = d(a, b3) + d(b1, b2).

Assume w.l.o.g. that S1 ≥ S2 ≥ S3, and let x2 ∈ X be such that d(a, b2) = d(a, x2) + d(x2, b2) =
d(a,X) + d(x2, b2). If δ(a, b1, b2, b3) > δ(x2, b1, b2, b3), then we have:

• S1 > S2 = S3.

• d(a, b1) = d(a, x2) + d(x2, b1).

Proof. For ease of calculation, we first reduce to the case when d(a,X) = 1. Let G′ be obtained
from G by adding a vertex a∗ with neighbors {x ∈ X | d(a, x) = d(a,X)}. By construction, G is
an isometric subgraph of G′, and so, the hyperbolicity of 4-tuples of V (G) is not modified by the
construction. Furthermore, by Lemma 4 we have δ(a∗, b1, b2, b3) = δ(a, b1, b2, b3). In this situation,
we can safely replace a with a∗ in the 4-tuple, hence we may assume w.l.o.g. that d(a,X) = 1 for
the remaining of the proof.

For every i, let xi ∈ X denote a vertex on a shortest abi-path such that d(a, xi) = d(a,X) = 1.
In this situation, d(a, bi) = d(bi, xi) + 1. Let us introduce the indicator εi = d(x2, bi) − d(xi, bi).
We claim that εi ∈ {0, 1}, and εi = 0 if and only if x2 is on a shortest abi-path. Indeed, since
by the triangular inequality, 1 + d(xi, bi) = d(a, bi) ≤ d(a, x2) + d(x2, bi) = 1 + d(x2, bi), we have
that εi ≥ 0. Furthermore, since x2, xi ∈ X and X is a clique, we also have by the triangular
inequality that εi ≤ d(x2, xi) ≤ 1. Altogether, εi ∈ {0, 1}, and we have εi = 0 if and only if
d(a, bi) = d(bi, x2) + d(a, x2), that proves the claim. In particular ε2 = 0.

Let us denote by S′i the sum d(x2, bi)+d(bj , bk), where {j, k} = {1, 2, 3}\{i}. We aim to exhibit
a relation between Si and S′i, that would yield in turn a relation between the values δ(a, b1, b2, b3)
and δ(x2, b1, b2, b3). At first we notice that d(a, bi) = d(xi, bi) + 1 = d(x2, bi) + 1− εi. So, we have:

Si = d(a, bi) + d(bj , bk)

= d(x2, bi) + d(bj , bk) + 1− εi
=S′i + 1− εi.

Furthermore, by the hypothesis S1 ≥ S2 ≥ S3 and δ(a, b1, b2, b3) > 0. Thus, by Definition 1
we have S1 = S2 + 2δ(a, b1, b2, b3), and so, it holds that S1 > max{S2, S3}. The latter implies
S′1 ≥ S1 − 1 ≥ max{S2, S3} ≥ max{S′2, S′3}. More precisely:

11

• Suppose S′2 ≥ S′3. In this situation, δ(a, b1, b2, b3) = S1−S2
2 =

(S′
1+1−ε1)−(S′

2+1−ε2)
2 . Since

ε2 = 0, we have δ(a, b1, b2, b3) = (S′1−S′2)/2− ε1/2 = δ(x2, b1, b2, b3)− ε1/2 ≤ δ(x2, b1, b2, b3).
However, this case contradicts the hypothesis that δ(a, b1, b2, b3) > δ(x2, b1, b2, b3).

• Else, S′3 > S′2. Since S2 ≥ S3, we have ε3 = 1, which implies S2 = S3. This, in turn, implies
that δ(x2, b1, b2, b3) = (S′1 − S′3)/2 = (S1 − 1 + ε1 − S3)/2 = (S1 − S2)/2 − (1 − ε1)/2 =
δ(a, b1, b2, b3)− (1− ε1)/2 ≤ δ(a, b1, b2, b3).
In such a case, δ(x2, b1, b2, b3) < δ(a, b1, b2, b3) if and only if we have ε1 = 0, i.e., x2 is on a
shortest ab1-path.

X

A B
a

x2

x3

b1

b2

b3

Figure 8: An illustration of the metric property of Lemma 9. The dashed lines represent shortest
paths.

The metric property of Lemma 9 is illustrated with Figure 8. We use it to strengthen our results
in Section 3.2 as follows.

Lemma 10. Let a, b, c, d be a 4-tuple of a connected graph G, and Xa, Xd be two cliques of G
satisfying:

• Xa is a (a|b, c, d)-separator;

• Xd is a (d|a, b, c)-separator;

• all vertices of Xa\Xd and a, b, c are in the same connected component of G \Xd.

Then there exist xa ∈ Xa and xd ∈ Xd such that

δ(a, b, c, d) ≤ δ(xa, b, c, xd) + 1/2.

Proof. Consider the three sums S1, S2, S3 from Definition 1. For ease of reasoning, let us order
the sums by decreasing value, i.e., let T1, T2, T3 be such that {T1, T2, T3} = {S1, S2, S3} and
T1 ≥ T2 ≥ T3. Accordingly, let u1, u2, u3 be such that {u1, u2, u3} = {b, c, d} and for every
i ∈ {1, 2, 3}, Ti = d(a, ui) + d(uj , uk) where {j, k} = {1, 2, 3} \ {i}. We distinguish between two
cases:

• Suppose there is xa ∈ Xa satisfying δ(a, b, c, d) ≤ δ(xa, b, c, d). By the hypothesis, the clique
Xd is a (d|xa, b, c)-separator. Hence by Lemma 5 there exists xd ∈ Xd such that δ(xa, b, c, d) ≤
δ(xa, b, c, xd) + 1

2 . Altogether, δ(a, b, c, d) ≤ δ(xa, b, c, d) ≤ δ(xa, b, c, xd) + 1
2 , so, the lemma

holds true in this case.

• Else, no vertex of Xa satisfies the above property. In particular, let xa ∈ Xa be such that
d(a, xa) = d(a,Xa), and xa is on a shortest au2-path. By the hypothesis, the clique Xa is a
(a|b, c, d)-separator. Hence, we can deduce the following information on the 4-tuple:

12

– by Lemma 5 δ(a, b, c, d) ≤ δ(xa, b, c, d) + 1
2 , and so, δ(a, b, c, d) = δ(xa, b, c, d) + 1

2 ;

– moreover, by Lemma 9 we have that T1 > T2 = T3 and xa is also on a shortest au1-path.

We shall prove that there exists xd ∈ Xd such that δ(xa, b, c, d) ≤ δ(xa, b, c, xd), that will
prove the lemma in this case.

For every i, let T ′i = d(xa, ui) + d(uj , uk) where {j, k} = {1, 2, 3} \ {i}. Observe that when xa
is on a shortest aui-path, we have that T ′i = Ti − d(a, xa) = Ti − d(a,Xa). As a result,

T ′1 = T1 − d(a,Xa), T
′
2 = T2 − d(a,Xa) and T ′3 = T3 − d(a,Xa) + 1.

Indeed, the two first equalities follow from the fact that xa is on a shortest au1-path, resp.
on a shortest au2-path. The third equality follows from the fact that δ(xa, b, c, d) = (T ′1 −
max{T ′2, T ′3})/2 = δ(a, b, c, d)− 1/2. In particular, we have T ′1 ≥ T ′3 > T ′2.

Furthermore, by the hypothesis Xd is a (d|xa, b, c)-separator. Let v1, v2, v3 be such that
{v1, v2, v3} = {xa, b, c} and for every i, T ′i = d(vi, d) + d(vj , vk) where {j, k} = {1, 2, 3} \ {i}.
Finally, let xd ∈ Xd be a vertex satisfying d(d, xd) = d(d,Xd) and xd is on a shortest v3d-
path. We claim that δ(xa, b, c, d) ≤ δ(xa, b, c, xd), that will prove the lemma in this case.
Indeed, suppose for the sake of contradiction that δ(xa, b, c, xd) < δ(xa, b, c, d). By Lemma 9,
it implies that T ′1 > T ′3 = T ′2, which contradicts the fact that T ′3 > T ′2.

As a result, in both cases there exist xa ∈ Xa and xd ∈ Xd such that δ(a, b, c, d) ≤ δ(xa, b, c, xd) +
1/2.

Corollary 11. Let a, b, c, d be a 4-tuple of a connected graph G satisfying δ(a, b, c, d) ≥ 3/2. There
exists an atom A of G such that δ(a, b, c, d) ≤ δ(G[A]) + 1.

Proof. The atom A is obtained by applying Lemma 7. For every vertex u ∈ {a, b, c, d} \ A, let
Xu ⊆ A be a clique-separator disconnecting u from {a, b, c, d} \ {u}.

We claim that all vertices of A \Xu and {a, b, c, d} \ {u} are in the same connected component
of G \Xu. Indeed, since A is an atom, all vertices of A \Xu are in the same connected component
C of G \Xu. Suppose for the sake of contradiction that there exists v ∈ {a, b, c, d} \ {u} such that
v /∈ C. Since v /∈ A, there exists a clique Xv ⊆ A which separates v from {a, b, c, d} \ {v}, and
so, no vertex of {a, b, c, d} \ {v} is in the same connected component of G \Xu as v. However, in
this situation let Cu, Cv be the respective components of u and v in G \Xu and let X = Xu, A =
Cu∪Cv∪X, B = V \(Cu∪Cv). The 4-tuple a, b, c, d is a (a1, a2|b1, b2) 4-tuple with a1 = u, a2 = v,
and so, it implies by Corollary 3 that δ(a, b, c, d) ≤ 1, a contradiction. As a result, all vertices of
{a, b, c, d} \ {u} are in C, that proves the claim.

In order to prove the corollary, we can then apply our substitution method (at most four times).
Precisely, consider the two vertices a, b of the 4-tuple.

• If a, b ∈ A then we set a′ = a, b′ = b. In this situation δ(a, b, c, d) ≤ δ(a′, b′, c, d).

• Else, if a ∈ A and b /∈ A then let xb ∈ Xb be a vertex satisfying d(b, xb) = d(b,Xb). Let
a′ = a, b′ = xb. By Lemma 5, we have δ(a, b, c, d) ≤ δ(a′, b′, c, d) + 1/2. In the same
way, if a /∈ A, b ∈ A then we set a′ = xa, b

′ = b where xa ∈ Xa is a vertex satisfying
d(a, xa) = d(a,Xa).

13

• Else, a, b /∈ A. By the claim above, all vertices of Xa \Xb ⊆ A \Xb and a, c, d are in the same
connected component of G \Xb. Hence, by Lemma 10 there exist xa ∈ Xa and xb ∈ Xb such
that δ(a, b, c, d) ≤ δ(xa, xb, c, d) + 1/2. We set a′ = xa, b

′ = xb in this case.

Overall, in all cases there exist a′, b′ ∈ A such that δ(a, b, c, d) ≤ δ(a′, b′, c, d)+1/2. We then proceed
similarly with c, d in order to find two vertices c′, d′ ∈ A such that δ(a′, b′, c, d) ≤ δ(a′, b′, c′, d′)+1/2.
Altogether, δ(a, b, c, d) ≤ δ(a′, b′, c′, d′) + 1 ≤ δ(G[A]) + 1.

4.3 Additive approximation for hyperbolicity

Theorem 12. Let A1, . . . , Al be the atoms of a connected graph G. Then:

max
i
δ(G[Ai]) ≤ δ(G) ≤ max

i
δ(G[Ai]) + 1.

Proof. As for Theorem 6, the lower-bound of Theorem 12 follows from the fact that the subgraphs
Gi = G[Ai] are isometric subgraphs of G. The upper-bound trivially holds when δ(G) ≤ 1.
We can thus suppose that δ(G) ≥ 3/2 and so, that there exist four vertices a, b, c, d such that
δ(a, b, c, d) = δ(G) ≥ 3/2. Corollary 11 then yields an atom A such that δ(G) ≤ δ(G[A]) + 1, which
proves the second part of our claim.

Note that the upper-bound is reached by the graph of Figure 7, and by the 1-hyperbolic chordal
graph from Figure 1 whose atoms have hyperbolicity 0.

5 Substitution method for an exact computation

As shown with Theorem 12, the hyperbolicity of a graph cannot be deduced from the computation
of its clique-decomposition directly. We next introduce a new graph decomposition in order to
compute the hyperbolicity of a graph exactly. It bases on clique-decomposition, and it outputs
supergraphs of the atoms (we call them substitute graphs).

For the remaining of the section, we will consider graphs with hyperbolicity at least 1 (the case
of 1/2-hyperbolic graphs will be discussed in the following sections). We will show that under this
assumption on the hyperbolicity of the initial graph, it can be computed from the hyperbolicity of
the atoms’ substitutes.

Outline of the method. We build upon Lemma 4 and other results from the two previous
sections. We recall that a simplicial vertex is a vertex whose neighborhood induces a complete
subgraph. Given a (A|B)-clique separator, we add simplicial vertices to the induced subgraphs
G[A] and G[B] in order to mimic the maximum (a|b1, b2, b3) 4-tuples that may result from the
disconnection (Section 5.1.1). Since the atoms result from the disconnection of the graph by some
of its clique-separators, we can repeatedly apply this method and so obtain the atom’s substitutes.
We finally focus on technical details and additional data structures related to the implementation.

5.1 Substitute graphs

5.1.1 Basic step: single disconnection

Following [8] the clique-decomposition of G = (V,E) can be computed by repeatedly applying the
following decomposition step, until none of the subgraphs considered contains a clique-separator.

14

At first, G is the only subgraph. We find a clique-separator X with some properties2 in one of
the subgraphs G′. The vertex-set of G′ is partitioned into two sets A,B so that A ∩ B = X and
X is a (A|B)-separator of G′. Then the subgraph G′ is replaced with the two subgraphs G′[A]
and G′[B]. So, let us first consider the case of a single disconnection, of a given graph G′ with a
(A|B)-clique-separator X.

• Let GA = G′[A]. For every b ∈ B \ X, we consider the set of vertices Xb ⊆ X which are
at distance dG′(b,X) from b. For every Xb, we add in GA a (simplicial) vertex sXb

whose
neighborhood is Xb. The resulting graph is named G∗A.

• Let GB = G′[B]. For every a ∈ A \ X, we consider the set of vertices Xa ⊆ X which are
at distance dG′(a,X) from a. For every Xa, we add in GB a (simplicial) vertex sXa whose
neighborhood is Xa. The resulting graph is named G∗B.

More formally, the substitute graphs (or substitutes for short) G∗A and G∗B of the graphs GA and
GB with respect to the (A|B)-separator X are defined as follows:

Definition 13. Let X be a (A|B)-clique-separator of a connected graph G′, where A∩B = X and
A ∪B = V (G′). The substitute graphs G∗A, G

∗
B are defined as:

V (G∗A) = A ∪ {sXb
: ∃b ∈ B s.t. Xb = arg min

x∈X
d(b, x)} and E(G∗A) = E(A) ∪ {{sXb

, x} : x ∈ Xb};

V (G∗B) = B ∪ {sXa : ∃a ∈ A s.t. Xa = arg min
x∈X

d(a, x)} and E(G∗B) = E(B) ∪ {{sXa , x} : x ∈ Xa}.

Lemma 14. Let X be a (A|B)-clique-separator of a connected graph G′, where A ∩ B = X and
A ∪B = V (G′). Suppose δ(G′) ≥ 1. We have:

δ(G′) = max{1, δ(G∗A), δ(G∗B)}.

Proof. Let GA = G′[A], GB = G′[B]. By construction (Definition 13), GA is an isometric subgraph
of G∗A, resp. GB is an isometric subgraph of G∗B.

We claim δ(G′) ≤ max{1, δ(G∗A), δ(G∗B)}. In order to prove the claim, let a, b, c, d be a 4-tuple
of vertices of G′ such that δ(a, b, c, d) = δ(G′). We distinguish between three cases.

1. Case a, b, c, d ∈ A. In this situation, δ(G′) ≤ δ(GA) ≤ δ(G∗A).

Similarly, when a, b, c, d ∈ B we have δ(G′) ≤ δ(GB) ≤ δ(G∗B).

2. Case a ∈ A, b, c, d ∈ B. The 4-tuple is a (a|b1, b2, b3) 4-tuple. In such case, there exists
by construction a simplicial vertex a∗ of V (G∗B) \ B that is adjacent to {x ∈ X : d(a, x) =
d(a,X)}. Therefore, by Lemma 4 δ(G′) ≤ δ(a∗, b1, b2, b3) ≤ δ(G∗B).

In the same way, if b ∈ B and a, c, d ∈ A then δ(G′) ≤ δ(G∗A).

3. Else, it can be assumed w.l.o.g. that the 4-tuple is a (a1, a2|b1, b2) 4-tuple. By Corollary 3,
δ(G′) ≤ 1 in this case.

2The additional properties on the clique-separator ensure the unicity of the decomposition.

15

Altogether, δ(G′) ≤ max{1, δ(G∗A), δ(G∗B)}, as desired.
Conversely, we claim δ(G′) ≥ max{1, δ(G∗A), δ(G∗B)}. By the hypothesis, δ(G′) ≥ 1. Further-

more, let a, b, c, d be a 4-tuple of G∗B such that δ(a, b, c, d) = δ(G∗B) (the proof for G∗A is symmetrical
to this one). We distinguish between three cases.

1. Case a, b, c, d ∈ B. In this situation, δ(G∗B) ≤ δ(GB) ≤ δ(G′).

2. Case a = a∗ /∈ B and b, c, d ∈ B. By construction, a∗ substitutes to some vertex of A,
i.e., there exists a′ ∈ A such that N(a∗) = {x ∈ X : d(a′, x) = d(a′, X)}. Furthermore, by
Lemma 4 δ(a∗, b, c, d) = δ(a′, b, c, d). Hence, δ(G∗B) ≤ δ(a′, b, c, d) ≤ δ(G′).

3. Else, there are at least two vertices of the 4-tuple that are not in B. Say w.l.o.g. a, b /∈ B
and let A∗ = X ∪{a, b}, B∗ = V (G∗B) \ {a, b}. In this situation, the 4-tuple is a (a1, a2|b1, b2)
4-tuple with a1 = a, a2 = b. As a result, by Corollary 3 δ(G∗B) ≤ 1 ≤ δ(G′) in this case.

Altogether, δ(G∗B) ≤ δ(G′).

We emphasize that some simple rules can be applied to reduce the size of the substitute graphs.
In particular, we can remove the pendant vertices which may be added in the construction (we
postpone a short analysis of the size of substitutes to Section 5.2.2).

5.1.2 Extension to the atoms

The substitution operation can be naturally extended to the whole clique-decomposition, by mim-
icking each step of it and applying the basic substitution operation that we describe above at each
of these steps. We formalize it by first introducing the following definition of an atom tree.

Definition 15 ([7, 8, 44]). Let G be a connected graph. An atom tree of G is a labeled binary
rooted tree T , satisfying the following recursive definition:

• if G is prime w.r.t. clique-decomposition, then T is reduced to a node labeled with V ;

• otherwise, the root of T is labeled with a clique-separator X, and there exists two connected
components C1, C2 of G \X satisfying:

– NG(C1) = NG(C2) = X;

– the left child of the root is labeled with A1 = C1 ∪X, which does not contain any clique-
separator;

– and the right child of the root is an atom tree of G \ C1.

In order to prevent any confusion, the reader has to notice that an atom tree is not a tree-
decomposition (as defined in Section 4.1). In fact, an atom tree can be seen as the trace of some
execution of the algorithm of [44, 56] for computing the clique-decomposition. Indeed, it is proved
in [44] that in an atom tree, the leaves are in bijective correspondance with the atoms of the graph.
Given a fixed atom tree, this yields a natural total ordering of the atoms by increasing depth. We
now follow this ordering to construct the substitutes of the atoms from the atom tree. There are
as many steps for our substitution method as there are atoms in the graph.

16

• Starting from H1 = G, we disconnect the first atom A1 by using the clique-separator X1

from the atom tree. Applying the substitution operation of Definition 13 to A = A1 and
B = V (G) \ (A1 \ X1), we obtain two substitute graphs: G∗A1

which substitutes A1, and
another one denoted by H2 = G∗B.

• After i−1 steps, i ∈ {2, . . . , l−1}, we constructed the substitute graphs of atoms A1, . . . , Ai−1,
plus an additional graph Hi. The graph Hi contains G[

⋃
j≥iAj], to which were added simpli-

cial vertices during the previous steps. By using the clique-separator Xi from the atom tree
we disconnect the graph Hi and we apply the substitution operation of Definition 13, this
time to the set A equal to CA ∪Xi where CA is the connected component of Hi \Xi which
intersects Ai, and to B = V (Hi) \ (A \Xi). We replace Hi with the two substitute graphs,
one containing the atom Ai and being its substitute, the other being denoted by Hi+1 = G∗B.

• We finally stop at the lth step, and we set Hl as the substitute graph of the last atom Al.

Figure 9 illustrates this process. The numbers reported in Tab. 9i illustrate the interest of our
pre-processing method for the computation of the hyperbolicity. Indeed, the graph G of Figure 9a
has 28 nodes and so, 20 475 4-tuples, while the sum of the numbers of 4-tuples in the graphs G∗i
(Figs. 9c–9h) is 1 800. We thus significantly reduce the size of the search space. Moreover, a simple
cutting rule allows us to reduce the number of 4-tuples to consider to 1 575. To do so, we first
order the graphs G∗i by decreasing diameters, then we iteratively compute the hyperbolicity of
these graphs in this order, and we stop exploration as soon as the diameter of a graph G∗j is smaller
than twice the largest value of δ computed so far.

5.2 Implementation and complexity analysis

In order to stay competitive with clique-decomposition, the complexity of computing the substitutes
needs to be of the same order of magnitude as the one of computing the atoms. A straightforward
calculation would require the computation of distances in the graphs H1, H2, . . . ,Hl (defined in
the previous Section 5.1.2), hence the computation of O(n) all-pairs shortest-paths. Furthermore,
the addition of simplicial vertices at each step causes an increase of the size of the graphs, which
further complicates the complexity analysis.

The purpose of this section is to show how to compute the atom’s substitutes in O(nm)-time
(Corollary 20) We achieve the goal by using standard partition refinement techniques and additional
properties of clique-decomposition. On the way, we introduce a few rules in order to reduce the
size of the substitutes.

5.2.1 Precomputation step and updates

We first focus on some computational tasks that have to be repeatedly executed at each step of our
substitution method. In this section, we provide a high-level description for their implementation.

Computation of the distances. Given a (A|B)-separator X, we need to compute all distances
d(v, x), v ∈ V \X,x ∈ X, in order to compute the substitutes. If the distance matrix of the graph
is precomputed then each distance can be accessed to in constant-time, hence an O(n|X|)-time
complexity. However, new vertices are added by our construction. We wish to avoid recomputing

17

0

1 2 3 4 5 6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

2324252627

(a) G

X1 = {4, 24}

A1 = {0, 1, 2, 3, 4,
24, 25, 26, 27}X2 = {11, 18, 22}

A2 = {11, 12, · · · , 22}X3 = {10, 23}

A3 = {10, 11, 18,
22, 23} X4 = {5, 10, 23}

A4 = {4, 5, 10, 23, 24}X5 = {6, 10, 23}

A5 = {5, 6, 10, 23}A6 = {6, 7, 8, 9,
10, 23}

(b) Atom tree of G

0

1 2 3

s1

25 24

4

2627

(c) G∗
1 built from A1

s12

11

12

13

14
15

16

17

18

19

20

21

22

s32s22

(d) G∗
2 built from A2

10

11

18

22

23

s3

(e) G∗
3 built from A3

s34
4 5

1024 23

s14

s24

(f) G∗
4 built from A4

s45

5 6

10

s15

s35

s25

23

(g) G∗
5 built from A5

6

7

8

9

10

s26

s16

23

(h) G∗
6 built from A6

n m D δ 4-tuples

G 28 50 9 2 20 475
G∗1 10 11 5 2 210
G∗2 15 25 5 2 1 365
G∗3 6 10 2 1 15
G∗4 8 16 3 1/2 70
G∗5 8 16 2 1/2 70
G∗6 8 16 3 1 70

(i) Main characteristics

Figure 9: A connected graph G (Figure 9a), an atom tree of the graph (Figure 9b), the substitute
of the atoms of G (Figs. 9c–9h), and the characteristics of these graphs (Tab. 9i).

the distances from scratch at each step of the substitution method (that would result in an O(n2m)-
time complexity). In what follows, we base on Lemma 4 (substitution of a vertex a by a simplicial
vertex a∗) in order to reach the goal.

Lemma 16. Let G be a connected graph. We can embed in quadratic time the distance matrix of
G into a data structure, supporting:

• O(1) access to the distance between a non-simplicial vertex and any other;

• O(|A|) updates when G is replaced with the substitute G∗B (w.r.t. a (A|B)-clique-separator
X).

Proof. The gist of such a structure is Lemma 4. Let X be a (A|B)-clique separator of G, and s be
a simplicial vertex added in the substitute graph of G[B]. Let a ∈ A \X satisfy N(s) = {x ∈ X :

18

dG(a, x) = dG(a,X)}. Then we have for every b ∈ B, d(b, s) = dG(a, b)− dG(a,X) + 1.
It thus follows that once the substitution of a with s has been completed, we only need to

remember the association of s with a and an offset, so that we can compute the distances in the
substitute graphs. The offset can be computed in constant time by picking a neighbor of the
simplicial vertex s, as it is the distance d(a,X) between this neighbor and the vertex a which s
substitutes. Finally, since there are l = O(n) steps for our substitution method, and that no more
than O(n) new simplicial vertices are added at each step, a quadratic-size array is sufficient to store
all the pairs (a,d(a,Xa)).

Note that the data structure of Lemma 16 does not support the computation of distances
between two vertices added by our construction. We can safely ignore this drawback, as we do not
need to compute such distances in our method.

Computation of connected components. Other complexity bottlenecks arise from the com-
putation of connected components in graphs with a superlinear number of edges (up to Ω(nm)
edges). Indeed, at each step i, 1 ≤ i < l, we need to compute the connected component CA
containing the next atom Ai to deal with. Determining the connected components of a graph is
linear-time computable. However, as we detailed in Section 5.1.2, here we have to extract the
component from a graph Hi 6= G, possibly containing more edges than G due to the addition of
simplicial vertices at previous steps. Thus it may result in an Ω(m)-time complexity by using the
classical algorithm for this problem. Instead, we propose a method to construct the component
incrementally, starting from Ai and adding simplicial vertices at every step 1 ≤ j ≤ i− 1.

Lemma 17. Let G be a connected graph, T be an atom tree of G, and A1, . . . , Al be its atoms
ordered according to their depth in T . We denote by H1 = G,H2, . . . ,Hl the sequence of l graphs
that are computed by our process, each Hi being decomposed into Hi+1 and the substitute graph of
the ith atom by applying the substitution method of Definition 13. For every (simplicial) vertex
si ∈ Hi+1 \Hi, we can compute the index j such that si belongs to the substitute graph of the jth

atom, in total O(n|Xi|)-time.

Proof. Let si ∈ Hi+1 \Hi be a simplicial vertex. By construction (Section 5.1.2), we have N(si) ⊆
Xi ⊆ V (G). Therefore, if si belongs to the substitute graph of the jth atom, j > i, then it holds
that N(si) intersects the connected component containing Aj \ Xj —in the graph Hj \ Xj—. In
such case since every vertex in the component either belongs to the atom or is simplicial and
not in V (G), then it follows that si has a neighbor in Aj \ Xj . Conversely, if si ∈ V (Hj) and
N(si)∩ (Aj \Xj) 6= ∅, then si is in the same connected component as Aj \Xj in the graph Hj \Xj ,
hence si belongs to the substitute graph of the jth atom. So, at every step of our substitution
method, if a simplicial vertex is added by our construction, we consider the minimum index j such
that Aj \Xj contains a neighbor of the vertex, and we update the vertex set of the substitute graph
of the jth atom by adding this new vertex into it. Since only O(n) vertices are added at step i, and
that their neighborhood is contained into Xi, the O(n|Xi|)-time complexity follows.

The two above routines (Lemmas 16 and 17) will be combined in what follows in order to obtain
the desired O(nm)-time complexity for our substitution method. Before this, we will show how to
reduce the number of simplicial vertices to be added at each step (Section 5.1.1).

19

5.2.2 Applying simplification rules

The purpose of this section is to reduce the size of the substitutes. Precisely, given G = (V,E)
and X a (A|B)-clique-separator, we wish to construct a substitute G∗B from G[B] by adding as
few simplicial vertices as possible. A naive implementation would consist in computing the subsets
Xa = {x ∈ X : dG(a, x) = dG(a,X)}, for every a ∈ A \X, then adding a simplicial vertex adjacent
to Xa. However, by doing so we would add |A\X| new vertices in the substitute, and so, we would
lose all the benefit of the separation in terms of size of the graphs. We now define rules in order
to avoid this worst-case in some situations. The goal of this section is to give hints on an efficient
way to implement these rules.

Partition refinement techniques. We remove pendant and twin vertices. Indeed, it may hap-
pen that Xa = {xa} for some a ∈ A, and in such a case we needn’t add a simplicial vertex for a
since the removal of a pendant vertex does not affect the value of hyperbolicity. Furthermore, it
may also happen that Xa = Xa′ for some pair a, a′ ∈ A, and in such a case we wish to add only
one simplicial vertex in G∗B.

To do that efficiently, we will use the well-known partition refinement techniques (see e.g. [36,
49]). Given a partition P of a set V , and a subset S ⊆ V called the pivot, the partition refinement
of P w.r.t. S consists in replacing every group Vi of P by the non-empty groups among Vi ∩ S
and Vi ∩ S̄. This can be achieved in O(|S|)-time, up to the precomputation of an appropriate data
structure in linear O(|V |)-time.

We deduce from this standard technique the following result:

Lemma 18. Let G be a connected graph given by its distance matrix, and X ⊆ V (G). We define
the relation ≡X over the set V (G) \X as

u ≡X v ⇐⇒def {x ∈ X : dG(u, x) = dG(u,X)} = {x ∈ X : dG(v, x) = dG(v,X)}.

The equivalence classes of ≡X can be computed in O(n|X|)-time.

Proof. Since the distance matrix is given, we can compute Xu = {x ∈ X | dG(u, x) = dG(u,X)}
for every vertex u, that takes O(n|X|)-time. Then, we start from the partition P = {V \X} which
we refine successively for every x ∈ X with the set {u : u ∈ V \X s.t. dG(u, x) = dG(u,X)}. The
total cost is O(

∑
x∈X |NGX

(x)|) = O(n|X|).

There are at most 2|X| equivalence classes of ≡X , and we can remove the |X| + 1 classes
corresponding to the subsets of X of size at most one. Altogether, the substitute G∗B has at most
|B| + min{|A \X|, 2|X| − |X| − 1} vertices when we apply our simplification rules. This bound is
sharp, as shown with Figure 10.

Overall, the substitution method will add at most
∑l−1

i=1 min{n, 2|Xi| − |Xi| − 1} new vertices
to the vertex-set of the atoms. In particular, consider the special case when all but at most c
clique-separators Xi have size at most k, for some universal constants c and k. In this situation,
there are at most (c+ 2k − k − 1) · n new vertices added to the atoms. Hence, the total number of
vertices is only increased by a constant-factor. This property will hold for the outerplanar graphs
and some real-life graphs that we will study in the next two sections.

20

x1 x2 x3 x4

x1,x2 x1,x3 x1,x4 x2,x3 x2,x4 x3,x4

x1,x2 ,x3 x1,x2 ,x4 x1,x3 ,x4 x2,x3 ,x4

x1,x2 ,x3,x4

B

Figure 10: A case when |A \X| = 2|X|− |X| − 1 vertices need to be added in G∗B. The graph G[A]
is obtained from the subset lattice of the set X = {x1, x2, x3, x4}. Every vertex a ∈ A is labeled
with {x ∈ X | d(a, x) = d(a,X)}.

5.2.3 Complexity analysis

Finally, to determine the time complexity of our substitution method, we will use the following
result:

Lemma 19 ([7]). Let G be a connected graph, and A1, . . . , Al be its atoms. Then
∑

i |Ai| ≤ n+m.

Corollary 20. The substitute of the atoms of a connected graph G can be computed in O(nm)-time.

Proof. The notations are the same as for Section 5.1.2. That is, fix any atom tree T of G and let
A1, . . . , Al be the atoms ordered by increasing depth. For every i < l, let Xi be the clique-separator
of G labeling the father node of leaf Ai in T . By Definition 15, Xi ⊆ Ai.

We first precompute the distance matrix of G in O(nm)-time, then we embed it in quadratic-
time into the data structure of Lemma 16. Also, for every i, we initialize the vertex set of the ith

substitute graph with the atom Ai. We then apply each step of our substitution method sequentially.

Precisely, at each step i we are given the vertex set Vi of the graph Hi to be considered. Initially,
V1 = V (G).

• Let us partition the vertices in A and B, where A is the set of all vertices in Vi that are in
the ith substitute graph. Since A is known (initialized with Ai then updated at each previous
step), it can be done in O(|Vi|)-time.

• Then, we compute the simplicial vertices that result from the substitution operation, and we
add them in A and B, respectively. Since we have constant-time access to the distances, we
have by Lemma 18 that it can be done in O(|Vi||Xi|)-time.

• For every vertex newly added at this step, we next compute the index of the atom’s substitute
to which it belongs to. By Lemma 17, it can also be done in O(|Vi||Xi|)-time.

21

• We set Vi+1 = B and then we update the distances accordingly. By Lemma 17, it can be
done in O(|A|)-time, that is O(|Vi|).

We can easily show by induction that |Vi| = O(n). Hence, the ith step can be executed in O(n|Xi|)-
time. Overall, our modified clique-decomposition can be computed in O(n

∑
i |Xi|)-time, that is in

O(n
∑

i |Ai|) = O(nm)-time by Lemma 19.

6 Hyperbolicity of outerplanar graphs

Equipped with the substitution method of Section 5 and our in-depth analysis of clique-decomposition
(Sections 3 and 4), we aim at applying these results in order to speed-up the computation of hy-
perbolicity in some graph classes. In the final two sections, we will review theoretical and practical
cases when it is possible to do so. We start with a linear-time algorithm for computing the hyper-
bolicity of a given outerplanar graph (Theorem 28).

The outerplanar graphs can be characterized in several ways (see [53]). We will use the following
ones.

A planar graph is a graph drawable in the Euclidean plane so that edges may only intersect
at their endpoints. It is outerplanar if it stays planar whenever one adds a universal vertex to
it. Equivalently, a graph is outerplanar if it is drawable in the Euclidean plane so that edges
may only intersect at their endpoints, and all the vertices lie on a common face which is called the
outerface. Such a drawing is furthermore called an outerplanar embedding, and it can be computed
in linear-time [54]. Note that it easily follows from this definition that all cycles are outerplanar
graphs.

The class of outerplanar graphs is minor-closed, and a graph is outerplanar if and only if it is
K4-minor-free and K2,3-minor-free [53].

We will exploit nontrivial properties of the clique-decomposition of outerplanar graphs to prove
Theorem 28. In particular, clique-separators of an outerplanar graph have size at most two, i.e.,
they are either cut-vertices or edge-separators. More precisely, the atoms of an outerplanar graph
are cycles. We will base on the property that the hyperbolicity of a given cycle can be computed
in linear time, by using the following formula:

Lemma 21 ([59, 20]). Cycles of order 4p + ε ≥ 3, with p ≥ 0 and ε ∈ {0, 1, 2, 3}, are (p − 1/2)-
hyperbolic when ε = 1, and p-hyperbolic otherwise.

The main purpose of this section is to obtain a similar characterization for the substitute of
cycles (Lemma 26). So, we will analyze the properties of this class of graphs in Section 6.2. We
will also need to compute the substitutes of atoms of a given outerplanar graph in linear time. For
this purpose, we will rely on the notion of weak dual [4].

Definition 22. Let G be a biconnected outerplanar graph. The weak dual of G is a tree TG equal
to the intersection graph of the atoms of G. Two adjacent nodes of TG correspond to atoms which
share a single edge.

Note that a weak dual is nothing else than a tree-decomposition whose bags are the atoms of
an outerplanar graph. If G is biconnected, then starting from an outerplanar embedding of the
graph, we construct it by removing from the dual of the graph the universal vertex corresponding
to the outerface (see Figure 13 for an example).

22

(a) C4 (b) H1 (c) H2 (d) H3 (e) H4

Figure 11: Characterization of 5-chordal 1
2 -hyperbolic graphs, in terms of forbidden isometric

subgraphs.

We will show that the atoms’ substitutes can be computed by dynamic programming on the
weak dual (Lemma 27). This combined with Lemma 26 and a characterization of 1/2-hyperbolic
outerplanar graphs (Proposition 23) will achieve proving Theorem 28.

6.1 Outerplanar graphs with small hyperbolicity

As observed in Section 5, our substitution method for an exact computation of hyperbolicity requires
the hyperbolicity of the graph to be at least 1. To overcome this drawback, we first characterize
in this section outerplanar graphs that are 1

2 -hyperbolic. Note that we only consider biconnected
graphs, as the hyperbolicity of a graph is the maximum hyperbolicity taken over all its biconnected
components, and the biconnected components of a graph are computable in linear-time [55].

Proposition 23. A biconnected outerplanar graph is 1
2 -hyperbolic if, and only if, either it is iso-

morphic to C5, or it is chordal and it does not contain the graph of Figure 11b as a subgraph.
Furthermore, these conditions can be checked in linear-time.

Proof. Let G be a 1
2 -hyperbolic outerplanar biconnected graph. By Lemma 21, the graph C5 is

1
2 -hyperbolic, and we now assume that G is not isomorphic to C5. The induced cycles of G are
exactly its atoms. As a result, we have by Lemma 21 that G only has induced cycles of length 3 or
5 (else, δ(G) ≥ 1). Moreover, Wu and Zhang prove in [59] that a 5-chordal graph is 1

2 -hyperbolic
if, and only if, it does not contain any graph of Figure 11 as an isometric subgraph3.

Since we consider graphs with induced cycles of length 3 or 5, G is C4-free and so, it does not
contain the graph of Figure 11a as an isometric subgraph. Moreover, we claim that G is C5-free,
as otherwise it would contain the graph of Figure 11d, or the graph of Figure 11e, as an isometric
subgraph. Thus G has to be chordal. In addition, we claim that G cannot contain the graph of
Figure 11c, since it is not outerplanar and being outerplanar is a hereditary property. Consequently,
G is 1

2 -hyperbolic if, and only if, it is chordal and it does not contain the graph of Figure 11b as
an isometric subgraph.

Let H1 be the graph of Figure 11b. To complete the proof of the proposition, we are left to
prove that every subgraph of G that is isomorphic to H1 is isometric. Indeed, the latter will prove
that G is 1

2 -hyperbolic if, and only if, it is chordal and it does not contain H1 as a subgraph.
We observe that H1 is an edge-maximal outerplanar graph, hence every subgraph isomorphic

to H1 must be induced. Suppose for the sake of contradiction that there is an induced subgraph
of G that is isomorphic to H1 but not isometric. In this situation, there is a vertex x ∈ V (G \H1)
connecting two vertices at distance 3 in H1. As shown in Figure 12, it implies the existence of a

3The characterization of [59] is composed of six forbidden isometric subgraphs, but the sixth one is actually
6-chordal.

23

K2,3-minor in G, thereby contradicting that it is outerplanar. Therefore, the claim is proved, and
so, G is 1

2 -hyperbolic if, and only if, it is chordal and it does not contain H1 as a subgraph.
Being chordal can be checked in linear-time [50]. Furthermore, when G is chordal, all its induced

cycles have length three, hence it contains H1 as a subgraph if and only if there are two adjacent
vertices of degree 3 in its weak dual (see Figure 13 for an illustration). Overall, since the weak dual
can be computed in linear time, deciding whether a chordal outerplanar graph G is 1/2-hyperbolic
can be done in linear time.

x

Figure 12: Existence of a K2,3-minor in G.

Figure 13: The forbidden subgraph of Figure 11b, and its characterization in the weak dual.

6.2 Substitute graphs of cycles

As we constrain ourselves to outerplanar graphs, recall that the atoms are exactly the induced
cycles of the graph. Clearly, a clique-separator contained in a cycle is either a cut-vertex or an edge-
separator. Since we never add pendant vertices with our substitution method (cf. Section 5.2.2),
we never add a simplicial vertex in the first case, and in the second case we might only add a single
vertex which has to be adjacent to both ends of the edge-separator. Substitute graphs of cycles
thus fall into the following subclass of outerplanar graphs:

Definition 24. A biconnected outerplanar graph is called a sunshine graph if it can be obtained
from a cycle C by adding, for every edge of C, at most one simplicial vertex that is adjacent to that
edge.

Trivially, all cycles are sunshine graphs. Two other examples of sunshine graphs are given in
Figure 14.

We can derive some useful properties of sunshine graphs from their definition. First is that
vertices in the cycle C form a dominating set of the graph. Furthermore, the choice of C is unique,
except for the particular case of the diamond graph (obtained from two triangles sharing an edge).

Finally, since every sunshine graph G is obtained by adding simplicial vertices to a cycle, it has
at most one induced cycle of length at least four, and if it exists this cycle must be C. Thus, we
have by Theorem 12 that δ(C) ≤ δ(G) ≤ δ(C)+1. This difference can be decreased by 1

2 as follows.

24

Lemma 25. Let G be a sunshine graph, and C be a dominating cycle of G. Then we have:

δ(C) ≤ δ(G) ≤ δ(C) +
1

2
.

Proof. By Theorem 12, we have δ(C) ≤ δ(G) ≤ δ(C) + 1. So, our aim is to prove that no 4-
tuple of G has a hyperbolicity greater than δ(C) + 1

2 . By contradiction, let a, b, c, d be such that
δ(a, b, c, d) = δ(C) + 1.

We arbitrarily orient the cycle C. For every u ∈ {a, b, c, d} \ C, we denote by eu = {hu, tu} the
edge of C induced by its neighbors, where hu denotes the head of the edge w.r.t. the orientation.
Observe that for every u, v ∈ {a, b, c, d} \ C, we have d(u, v) = 2 + min{d(hu, tv),d(hv, tu)} =
1 + d(hu, hv) = 1 + d(tu, tv).

We then claim that there is exactly one vertex among a, b, c, d which belongs to the cycle C.
We prove the claim with a case-by-case analysis.

• Since we assume δ(a, b, c, d) > δ(C), not all of a, b, c, d belong to the cycle;

• Furthermore, suppose for the sake of contradiction that a /∈ C but b, c, d ∈ C. Let X = N(a),
A = N [a], and B = V (G)\a. The 4-tuple is a (a|b1, b2, b3) 4-tuple, and so, by Lemma 5, there
exists x ∈ N(a) such that δ(a, b, c, d) ≤ δ(x, b, c, d)+1/2. In this situation, x, b, c, d ∈ C, hence
δ(a, b, c, d) ≤ δ(C) + 1/2, thereby contradicting our assumption that δ(a, b, c, d) = δ(C) + 1.

• In the same way, suppose for the sake of contradiction that a, d /∈ C but b, c ∈ C. Let
Xa = N(a) and Xd = N(d). These two clique-separators satisfy the conditions of Lemma 10,
so, there exist xa ∈ Xa, xd ∈ Xd such that δ(a, b, c, d) ≤ δ(xa, b, c, xd)+1/2. In this situation,
xa, b, c, xd ∈ C, hence δ(a, b, c, d) ≤ δ(C) + 1/2, thereby contradicting our assumption that
δ(a, b, c, d) = δ(C) + 1.

• So, there are at least three vertices of a, b, c, d that are not in C. Finally, suppose for the
sake of contradiction that a, b, c, d /∈ C. In this situation, for every u, v ∈ {a, b, c, d}, we
have d(u, v) = 1 + d(hu, hv). Therefore by the 4-point condition we have δ(a, b, c, d) =
δ(ha, hb, hc, hd) ≤ δ(C). The latter contradicts our assumption that δ(a, b, c, d) = δ(C) + 1.

As a result, there is exactly one vertex of the 4-tuple that is in C, which proves the claim. Assume
w.l.o.g. that a ∈ C. In such a case, for every u ∈ {b, c, d} we have d(a, hu) ≤ d(a, u) ≤ d(a, hu) + 1.

Let S1, S2, S3 satisfy {S1, S2, S3} = {d(a, b) + d(c, d),d(a, c) + d(b, d),d(a, d) + d(b, c)} and
S1 ≥ S2 ≥ S3. Accordingly, let u1, u2, u3 satisfy {u1, u2, u3} = {b, c, d} and for every i, Si =
d(a, ui) + d(uj , uk) where {j, k} = {1, 2, 3} \ i. Finally, let S′i = d(a, hui) + d(huj , huk).

We have d(a, hui) ≤ d(a, ui) ≤ d(a, hui) + 1 and d(uj , uk) = d(huj , huk) + 1. Consequently,
we have S′i + 1 ≤ Si ≤ S′i + 2 for every i. By the 4-point condition, it implies δ(a, hb, hc, hd) ≤
δ(a, b, c, d) + 1/2. Since in addition a, hb, hc, hd ∈ C, we have δ(a, b, c, d) ≤ δ(C) + 1/2, thereby
contradicting our assumption that δ(a, b, c, d) = δ(C) + 1. Altogether, this proves δ(G) ≤ δ(C) +
1/2.

We now present a characterization for the hyperbolicity of sunshine graphs, from which it can
be easily derived a linear-time algorithm in order to compute it.

Lemma 26. Let G be a sunshine graph, and C be a dominating cycle for G of length 4p+ ε ≥ 3,
with p ≥ 0 and ε ∈ {0, 1, 2, 3}. Assuming G \ C is nonempty we have:

25

u v

x

y

a

b

p+ ε−1
2p

1

p
p+ ε−1

2

1

1

(a) n odd

u v

x

y

a

b

c

d

pp

1

p p

1

1

1

1

1

(b) n = 4p+ 2

Figure 14: Substitute graphs of the atoms of an outerplanar graph.

• if ε is odd, then δ(G) = δ(C) + 1
2 ;

• if ε = 2, then δ(G) = δ(C)+ 1
2 if, and only if, there is a diametral pair made of two simplicial

vertices not in C (otherwise, δ(G) = δ(C));

• finally, if ε = 0, then δ(G) = δ(C).

Proof. Recall that by the previous Lemma 26, we have δ(G) ≤ δ(C) + 1
2 . Thus we only focus on

finding 4-tuples u, v, x, y of hyperbolicity (at least) this value, and we choose one, if any, maximizing
|C ∩ {u, x, v, y}|. In what follows, write S1 = d(u, v) + d(x, y), S2 = d(u, x) + d(v, y) and S3 =
d(u, y) + d(v, x). We will assume in addition that S1 ≥ S2 ≥ S3.

Case ε odd Equivalently, we have ε ∈ {1, 3}. In such a case, we have δ(C) = p + min{0,ε−2}
2 by

Lemma 21. Figure 14a exhibits a 4-tuple u, v, x, y satisfying:

S1 = (2p+
ε+ 1

2
) + (2p+ min{1, ε− 1}) = 4p+

ε+ 1

2
+ min{1, ε− 1};

S2 = (p+ 1) + (p+
ε− 1

2
) = 2p+

ε+ 1

2
;

S3 = S2.

Hence, this 4-tuple has hyperbolicity p+ min{1,ε−1}
2 = δ(C) + 1

2 .

Case ε = 2 In such a case, we have δ(C) = p by Lemma 21. We assume w.l.o.g. that u /∈ C,
and we claim that it implies v /∈ C. Indeed, by the metric property of Lemma 9, and noticing that
S1 ≥ S2 ≥ S3, the vertex v has to be at equal distance l of both neighbors of u, as otherwise u
could be replaced with one of its two neighbors, contradicting the maximality of |C ∩ {u, x, v, y}|.
Hence v ∈ C is impossible, as it would yield the length of C is 2l+ 1 = 4p+ 2. It thus follows that
v /∈ C, and the length of C is in fact 2(l − 1) + 2 = 2l, yielding l = 2p+ 1.

Conversely, assume that there exist two simplicial vertices u, v that are diametrically opposed
in G. We choose the 4-tuple u, x, v, y as in Figure 14b, and it satisfies:

S1 = (2p+ 2) + (2p+ 1) = 4p+ 3;

S2 = 2(p+ 1) = 2p+ 2;

S3 = S2.

So, we have δ(u, v, x, y) = p+ 1
2 = δ(C) + 1

2 .

26

Case ε = 0 Another application of Lemma 21 yields δ(C) = p. Assuming u /∈ C, we deduce
as for the previous case that v /∈ C, and v is at equal distance l = 2p from both neighbors of u.
Thus, C is partitioned by the neighborhoods of u and v in two paths of length l− 1 = 2p− 1, that
is in the same way as in Figure 14b. Furthermore, since the diameter of C is 2p, those paths are
geodesics of the cycle.

We recall that on the way to prove Lemma 25, we showed that u, v, x, y /∈ C implies δ(u, v, x, y) ≤
δ(C). Since we assume δ(u, v, x, y) > δ(C), it implies the existence of one vertex z ∈ {x, y}
among the 4-tuple that must be in C. Furthermore, in this situation we obtain by considering
the geodesic containing z that d(u, z) + d(v, z) = 2 + (l − 1) = 2p + 1. In particular, we have
min{d(u, z), d(v, z)} ≤ p. The latter contradicts the assumption that δ(u, v, x, y) > δ(C), since we
have by [51] that δ(u, v, x, y) ≤ min{d(u, z),d(v, z)}. Altogether, we always have δ(G) = δ(C) if
ε = 0.

6.3 Applying the substitution method in linear-time

Given an outerplanar graph G, we recall that we aim at computing δ(G) from the substitute of its
atoms. From Lemma 26, the hyperbolicity of the substitutes can be computed in linear time. So,
we are left to prove that the atom’s substitutes can also be computed in linear time.

Lemma 27. Let G be an outerplanar biconnected graph. The substitute graphs of the atoms of G
can be computed in linear-time.

Proof. We construct the weak dual TG of G from an outerplanar embedding, that is linear-time
computable. Let C1, . . . , Cl be the atoms of G. We root TG on an atom C1, which is an induced
cycle. Then, we claim that the following algorithm for computing the atom’s substitutes is correct.

• For every i, we initialize C∗i with Ci.

• We start a depth-first search from the root, and so obtain a postordering of the nodes of TG.
Then, we visit the atoms following this ordering, and we proceed as follows. For every Ci, we
name eij = Ci ∩ Cj an edge shared with a child in the rooted tree. If there is a vertex of C∗j
that is at equal distance to both ends of eij then we add in C∗i a new simplicial vertex that
is adjacent to eij . That is, we add such new vertex if either Cj is odd, or there is a simplicial
vertex of C∗j \ Cj that is adjacent to the edge opposed to eij .

• Finally, we start a breadth-first search from the root and for every visited atom Ci 6= C1, we
consider its parent atom, denoted by Ck, naming ei,k the edge-separator that it shares with
it. As before, we add in C∗i a simplicial vertex whose neighborhood is ei,k if, and only if,
either the length of Ck is odd, or there is a simplicial vertex in C∗k \ Ck whose neighborhood
is the edge diametrically opposed to ei,k in the atom Ck.

This algorithm runs in linear time. Furthermore, we note that an atom tree can be obtained
from (TG;C1) (as defined in Definition 15) by disconnecting at every step an atom that is a leaf
of TG until the clique-decomposition is obtained. Following this atom tree, the atom’s substitutes
so obtained are isomorphic to the output C∗1 , C

∗
2 , . . . , C

∗
l of the above algorithm. In particular,

for every atom, we use the depth-first search to compute the simplicial vertices resulting from the
disconnection of its sons, whereas the breadth-first search is used to compute the single vertex
resulting from its own disconnection, if any. Hence, the above algorithm for computing the atom’s

27

substitutes is correct, and so, the resulting C∗1 , . . . , C
∗
l are the substitute graphs of the atoms

of G.

Figure 15 shows the substitute graphs resulting from the application of the substitution method
to a biconnected outerplanar graph.

Figure 15: An application of the substitution method to an outerplanar graph.

We finally conclude with the following theorem.

Theorem 28. The hyperbolicity of a given connected outerplanar graph G is computable in linear
time.

Proof. We can safely assume G to be biconnected by [55]. By [5, 37], G is 0-hyperbolic if, and only
if, G is a clique. If it is not, then by Proposition 23, we can check whether it is 1

2 -hyperbolic in
linear time.

From now on, assume δ(G) ≥ 1. By Lemma 27, we can compute the substitute graphs of
the atoms of G in linear time. We can thus conclude by Lemma 14 (i.e. the correctness of our
substitution method), as these substitute graphs are sunshine graphs and their hyperbolicity is
linear-time computable by Lemma 26.

7 Experimental evaluation

Before concluding the paper, we shall apply the substitution method of Section 5 to some real-
life graphs with a large number of vertices. We report in this section on experiments performed
with our substitution methodology on the graphs of five collaboration networks. This way, we
aim to evaluate the computation time of the substitutes on some empirical graphs, and to better
understand the factors impacting their size (compared with the upper-bound of Section 5.2.2).

The section is subdivided as follows. In Section 7.1, we present the graphs from the dataset
and we motivate our choice to test the method on these graphs. We report on the reduction on the
size of the subgraphs (biconnected components, atoms and substitutes) in Section 7.2. In spite of
strong similarities between the graphs from the dataset, the results obtained vary from one graph to
the other. So, we conduct a deeper analysis of their clique-decomposition in Section 7.3, reporting
on the structure of their atom tree and on the size of the clique-separators, in order to justify the
variations in the results. We complete our experiments with a numerical analysis of the time needed

28

for computing the hyperbolicity of these graphs, with and without the clique-decomposition and
the substitute decomposition of Section 5. On the way, we report on the hyperbolicity of all graphs
in the dataset (Section 7.4).

7.1 Datasets

We apply the algorithm presented in Section 5 to the collaboration networks of five different scien-
tific communities [45], namely:

• ca-AstroPh, for the astrophysics community;

• ca-CondMat, for the condensed matter physics community;

• ca-GrQc, for the general relativity and quantum cosmology community;

• ca-HepPh, for the high energy physics-phenomenology community;

• and ca-HepTh, for the high energy physics-theory community.

In the ca-* graphs, nodes represent scientists and edges represent collaborations (i.e., co-
authoring a paper). These graphs are interesting to analyze the behavior of our algorithm, and the
size of their substitute graphs, because they have many cliques of various sizes. Indeed, a paper
co-authored by k scientists induces a clique of size k in the graph. Furthermore, the number of
co-authors per papers varies from one community to another. As noted in Section 5.2.2, there are
O(2k) vertices newly added in the substitutes for any clique-separator of size k. Therefore, we
expect to observe different results in terms of the size of the substitutes, despite the graphs from
the dataset share many properties (see [45]).

7.2 Empirical results

We modified the clique-decomposition algorithm of [8] to implement the substitution method that
we presented in Section 5. We used it here to compute, for every graph, the substitute of each
atom of the decomposition.

Below, we report on the size of the substitutes. We compare it with the size of the atoms and
the biconnected components (see Figure 16 and Table 1). This preliminary analysis also explains
why we can ignore almost all substitutes in the computation of hyperbolicity (precisely, all but one
substitute), that will further reduce the time of computation.

Decomposition into biconnected components We observed that all of the five graphs are
composed of one largest biconnected component, that we call LBC, that includes from 50% to
84.85% of all the vertices. This can be observed from the cumulative distribution of the size of
the biconnected components in Figure 16a. The cumulative number of components is given as
a percentage of the total number of biconnected components, and the size of the components as
a percentage of the total number of vertices in the graph. We noticed that all the biconnected
components but the LBC are small: only covering at most 1% of the vertices.

Clearly, the smallest biconnected components can be safely ignored for the computation of
hyperbolicity, provided that their diameter is smaller than two times the hyperbolicity of the LBC,
which is always the case for these graphs (see [20]). Thus, we now focus on the clique-decomposition
of the LBC, and on its resulting substitute graphs.

29

(a) Biconnected components (b) Atoms in the LBC

Figure 16: Cumulative distributions of the size of the biconnected components (Figure 16a) and of
the atoms in the LBC of each graph (Figure 16b).

Clique-decomposition We plotted in Figure 16b the cumulative distribution of the size of the
atoms of the LBC. The cumulative number of atoms is given as a percentage of the total number
of atoms and the size of the atoms as a percentage of the total number of vertices in the LBC.
Again, for all of the graphs, we observed one largest atom, that we call the LA, that includes from
50% to 60% of all the vertices, and all the other atoms only represent a small fraction of the overall
vertices. In the worst case (ca-HepPh), all the atoms but the LA solely cover 2.65% of the vertices
of the graph.

Moreover, like for the smallest biconnected components and as reported in [20], the substitute
graphs of the smallest atoms can be safely ignored for the computation of hyperbolicity. As a result,
the only component of the graphs to deal with for computing their hyperbolicity is the substitute
graph of the LA. We will denote it by LS in what follows.

Size of the substitute graphs As explained in Section 5, the size of the LS depends on both
the initial size of the LA and the number of added simplicial vertices. We have reported in Table 1
the original size n of each graph, the size nB of its LBC, the size nLA of the LA, and the size
nLS of the largest substitute. We have then computed the percentage RLA of vertices that have
been removed from the LBC to obtain the LA, that is RLA = nB−nA

nB
. We observe a significant

reduction rate RLA, varying from 37.40% to 49.22%. We have also computed the reduction rate
RLS of the LS with respect to the LBC, that is RLS = nB−nLS

nB
. We observe that this reduction rate

falls between 11.22% and 20.84%. It indicates that in spite of the simplification rules presented in
Section 5.2.2, the substitution method adds many simplicial vertices to the LA when constructing
the LS.

We reported in Table 1 as Cost the percentage of vertices in the LBC representing the addition
of new simplicial vertices.

We first analyze the ca-CondMat graph. This graph has the largest reduction rates RLS and

30

Instance name n nB nLA nLS RLA RLS Cost Time (in sec.)

ca-CondMat 23 133 17 234 8 751 13 643 49.22% 20.84% 28.39% 672

ca-GrQc 5 242 2 651 1 386 2 107 47.72% 20.52% 27.20% 5

ca-HepPh 12 008 9 025 4 925 7 170 45.43% 20.55% 24.88% 167

ca-AstroPh 18 772 15 929 9 561 13 407 39.98% 15.83% 24.14% 679

ca-HepTh 9 877 5 898 3 692 5 236 37.40% 11.22% 26.18% 53

Table 1: Characteristics of the collaboration networks. The size of the graph is given as n, the size
of the LBC as nb, the size of the LA as nLA and the size of the LS as nLS . The percentage of vertices
removed from the LBC to obtain the LA is given as RLA, the reduction rate is RLS = nB−nLS

nB
,

and the percentage of vertices in the LBC, representing the addition of simplicial vertices, is given
as Cost. Finally, the computation time of the substitution method, denoted by Time, is given in
seconds.

RLA from the dataset. However, despite a RLA of 49.22%, it has almost the same reduction rate
RLS as ca-HepPh and ca-GrQc — ranging from 20.55% to 20.84%. This is the consequence of more
simplicial vertices added with our substitution methodology. The new simplicial vertices represent
28.39% of the size of its LBC, whereas for the ca-HepPh graph it goes up to only 24.88%.

A similar behavior is observed between ca-AstoPh and ca-CondMat: even though their RLA
differ on 9.25%, the difference of their reduction rate RLS finally falls to 5%. This results from the
addition of 4.24% less simplicial vertices in ca-AstoPh than in ca-CondMat. As an extremal case,
the RLA and RLS of the ca-HepPh graph are respectively bigger and smaller than the RLA and
RLS of ca-GrQc.

We thus conclude that the impact of nLA and of the number of new simplicial vertices on the
final size nLS differs greatly depending on the graph.

7.3 Decomposition analysis

Having noticed the heterogeneous results of our empirical section, we are now analyzing in more
details the properties causing the asymmetry between the various ca-* graphs. To do so, we report
on the structure of the intersection graph of the atoms (sometimes call the atom graph) and on the
size of the clique-separators.

We support through our experiments that most clique-separators are small (with no more than
two or three nodes), and they are responsible for the largest part of new simplicial vertices. One
plausible explanation for small-size separators are the student interns, publishing one paper with
their supervisors before changing their lab or leaving the community.

Clique-decomposition We first analyzed the neighborhood of the LA in the atom graph, as it
is defined in [7]. That is, we consider the set of atoms ALA = {A1, . . . , Al} that intersect the LA,
naming XLA = {X1 = A1 ∩ LA, . . . ,Xl = Al ∩ LA} the clique-separators at their intersection. We
emphasize that there might be other atoms in the graph than the LA and those in ALA. But such
atoms, if any, do not overlap the LA.

We plotted in Figure 17a the cumulative distribution of the size of the clique-separators in the

31

(a) Clique-separators in the LA (b) Separated vertices from the LA

Figure 17: Cumulative distribution of the size of the clique-separators in the LA (Figure 17a)
and percentage of separated vertices as a function of the size of the clique-separators in the LA
(Figure 17b).

LA as a percentage of the total number of clique-separators. By doing so, we observed smaller
clique-separators for the ca-HepTh and ca-CondMat graphs, with a maximum size of 8 and 21,
respectively, than for the three other graphs ca-GrQc, ca-AstroPh and ca-HepPh, having clique-
separators of maximum size 42, 53 and 192, respectively. Also, we reported in Table 2 that the ratio
R|XLA| = |XLA|/nLA varies from 0.39 for ca-AstroPh to 0.54 for ca-CondMat. To sum up, there are
more clique-separators in ca-CondMat than in ca-AstropPh, but there are larger clique-separators
in ca-AstropPh than in ca-CondMat.

Recall that our substitution methodology never adds more simplicial vertices than the number
of nodes disconnected by the clique-separator. So, to complete our measurements, we related the
size of clique-separators with the proportion of vertices that are disconnected by them from the
LA. We reported in Table 2 as α1 = nB − nLA the total number of vertices separated from the LA
in the LBC, and as α2 = |⋃l

i=1Ai \Xi| the number of vertices of LBC \LA present in an atom of
ALA. Finally, we computed the fraction ∆1 = α1−α2

nB
, quantifying the percentage of vertices that

are neither contained into the LA, nor in any of the atoms in ALA. We reported as ∆2 = RLA−∆1

the fraction of vertices in some atom of ALA, hence those that are directly separated from the LA.
Our results put in evidence that most of the vertices are either contained in the LA, or in some

other atom intersecting the LA. Other vertices comprise around 2.88% and 7.03% of the overall
vertices. Moreover, as shown with Figure 17b, where we plotted the percentage of separated vertices
as a function of the size of clique-separators, smaller clique-separators of size ≤ 5 are responsible
for a significant part (w.r.t. ∆2) of the vertices disconnected from the LA in ca-CondMat (37.34%
of vertices over 49.22%), whereas in ca-AstroPh they solely disconnect 23.67% over 39.98% of
vertices. This difference is not balanced with clique-separators of larger size, even though these
ones disconnect 13.43% of vertices in ca-AstroPh, while only 5.67% in ca-CondMat. Comparing
ca-CondMat with ca-HepPh does not change the picture. In contrast, for the graphs ca-GrQc

32

and ca-HepTh, we notice that 6.71% and 4.91% more vertices, respectively, than in CondMat, are
disconnected by edge-separators. But the rest of the clique-separators only disconnect 16.67% and
11.70% of the vertices from the LA, respectively, whereas 26.70% of them are separated from the
LA in ca-CondMat. Therefore, most of the difference for the final size of the substitute graph LS
comes from the number of vertices that are disconnected by clique-separators of small size.

Instance name α1 α2 |XLA| RXLA
∆1% ∆2%

ca-CondMat 8 483 7 413 4 702 0.54 6.21% 43.01%
ca-GrQc 1 265 1 079 698 0.5 7.03% 40.69%
ca-HepPh 4 100 3 727 2 166 0.44 4.13% 41.3%
ca-AstroPh 6 368 5 910 3 715 0.39 2.88% 37.1%
ca-HepTh 2 206 1 942 1 506 0.41 4.47% 32.93%

Table 2: Distribution of clique-minimal separators, and of the vertices disconnected from the LA.
The total number of vertices separated from the LA in the LBC is given as α1 = nB − nLA,
and the number of disconnected vertices being present in the subset of neighboring atoms ALA as
α2 = |V (ALA \ XLA)|.
Also, the number of clique-minimal separators in the LA is given as |XLA|.
We quantify the percentage of vertices that are neither contained into the LA nor in any of the
atoms in ALA as ∆1 = α1−α2

nB
; the fraction of vertices in some atom of ALA that are directly

separated from the LA is equal to ∆2 = RLA −∆1.

Substitute construction Recall that we assume that the largest number of simplicial vertices
are connected to the smallest clique-separators. In order to validate the assumption, we plotted in
Figure 18a the cumulative number of simplicial vertices connected to the LA, normalized by the
size of the LBC, as a function of the size of the clique-separators. In particular, note that for each
graph, such a summation is equal to the value given as Cost in Table 1. By looking only at clique-
separators of size two and three, the proportions of simplicial vertices for the graphs ca-CondMat,
ca-GrQc, ca-HepPh, ca-AstroPh and ca-HepTh respectively, represent 65.49%, 88.63%, 76.26%,
50.16% and 88.02% respectively, of the total number of simplicial vertices connected to the LA.
Thus it highlights the importance of clique-separators of small size, to which a large proportion of
simplicial vertices are connected to.

Let us also remark by comparing Figure 18a to Figure 18b that almost all simplicial vertices
have same degree. In the worst case (ca-GrQc), there are no more than 0.75% of the simplicial
vertices whose degree differs from the others. Most of these simplicial vertices have degree two.
Hence, the final proportion of simplicial vertices, given in Table 1 as Cost, mostly depends on the
size distribution of the clique-separators in the graphs. Also, since there is a worst-case variation of
only 4.25% in the proportion of simplicial vertices in our graphs – that is reached with ca-CondMat

and ca-AstroPh –, that allows us to make relative comparisons between the graphs from the dataset.
Especially we are interested in comparing the proportion of simplicial vertices of small degree (less
than four). Such a proportion represents, for ca-CondMat, ca-GrQc, ca-HepPh, ca-AstroPh and
ca-HepTh respectively, a percentage of 18.59%, 24.1%, 18.97%, 12.11% and 23.04% respectively, of
the simplicial vertices in total. To sum up:

• when comparing ca-AstroPh to ca-CondMat: even if the former has 2.23% more simplicial
vertices with degree at least three, this is compensated by its 6.48% less simplicial vertices of

33

(a) Simplicial vertices connected to the LA as a func-
tion of the size of the clique-separators

(b) Degree distribution of the simplicial vertices con-
nected to the LA

Figure 18: Cumulative number of simplicial vertices connected to the LA normalized by the size of
the LBC as a function of the size of the clique-separators to which they are connected (Figure 18a),
cumulative degree distribution of the simplicial vertices connected to the LA normalized by the size
of the LBC (Figure 18b)

degree at most four, which results in overall to 4.25% less simplicial vertices in ca-AstroPh

than in ca-CondMat. The same happens when comparing ca-AstroPh to the remaining
graphs. Indeed, the lower number of simplicial vertices with degree at most four always
compensates its larger number of simplicial vertices of higher degree.

• when comparing ca-CondMat to ca-GrQc and ca-HepTh: the two latter graphs respectively
have 5.51% and 4.45% more simplicial vertices with degree at most four. However, they
respectively have 6.7% and 6.66% less simplicial vertices with degree at least three. As a
result, there are 1.19% less simplicial vertices in ca-GrQc, and 2.21% less simplicial vertices
in ca-HepTh, respectively, than in ca-CondMat.

• finally, when comparing ca-CondMat to ca-HepPh: we observe quite similar numbers of sim-
plicial vertices of degree smaller than four. They respectively represent 18.59% and 18.97%
of the simplicial vertices in total. Again, the main difference comes from the proportion
of simplicial vertices with degree higher than three, with 5.91% more simplicial vertices in
ca-CondMat than in ca-HepPh, resulting in 3.51% less vertices in ca-HepPh.

7.4 Computation times

In order to complete the empirical section, we present in Table 3 the computation times of the
hyperbolicity on the LS and on the LBC of the ca-* graphs. Of course, we expect the computation
time to decrease proportionally to the size of the graphs. However, we use the algorithm that we
proposed in [21] for computing the hyperbolicity, and so, the computation time may be impacted
by other factors.

34

On the way, we also give in Table 3 the values of the hyperbolicity we obtained and the com-
putation time of the LS using the algorithm given in Section 5. Interestingly, for all graphs from
the dataset, the hyperbolicity of the graph always equals the hyperbolicity of its largest atom.

Instance name n nB nLA nLS δ TLS TδLS
TδLBC

R1 R2

ca-GrQc 5 242 2 651 1 386 2 107 3.5 6s. 1s. 8.8s. 8.8 1.26
ca-HepTh 9 877 5 898 3 692 5 236 4 52s. 0.3s. 2.4s. 8 0.046
ca-HepPh 12 008 9 025 4 925 7 170 3 162s. 50s. 677s. 13.5 3.19
ca-AstroPh 18 772 15 929 9 561 13 407 3 762s. 22s. 202s. 9.2 0.26
ca-CondMat 23 133 17 234 8 751 13 643 3.5 1180s. 101s. 2498s. 24.7 1.95

Table 3: Hyperbolicity and computation times on the ca-* graphs. The size of the graph is given
as n, the size of the LBC as nb, the size of the LA as nLA and the size of the LS as nLS . The value
of the hyperbolicity computed on the LS is given as δ. The computation time in second of the
largest substitute is given as TLS . The computation times in second of the hyperbolicity, on the LS
and on the LBC respectively, is given as TδLS

and TδLBC
respectively. Finally, the ratio TδLS

/TδLBC

is given as R1 and (TLS + TδLS
)/TδLBC

is given as R2.

We observe that the hyperbolicity can be computed from 8 to 24 times faster on the LS than
on the LBC. However, computing the hyperbolicity on the LS also comes at the cost of the time to
construct this graph. By combining the two, one improves the time of computation by a smaller
factor between 1.26 and 3.19 (for the graphs ca-GrQC, ca-HepPh and ca-CondMat). In some cases
(ca-AstroPh and ca-HepTh), our method even increases the time of computation. However, these
cases happen only for small graphs where the hyperbolicity can be computed in a few seconds. For
larger graphs, up to 50 000 nodes, we have been able to reduce the times by two, saving from hours
to days of computation.

8 Conclusion

We proved a tight relationship between the hyperbolicity of a given graph and the maximum
hyperbolicity from its atoms. This gives a new proof that chordal graphs (and other related graph
classes such as 2-chordal graphs [46, 47], nearly chordal graphs [15] or quasi-triangulated graph [52])
have a bounded hyperbolicity [16]. Our results also cover some class with unbounded hyperbolicity,
namely the outerplanar graphs, for which we give a complete characterization of their hyperbolicity.
This extends to a linear-time algorithm for computing the hyperbolicity of these graphs. To the
best of our knowledge, this is the first linear-time algorithm for computing the hyperbolicity in
these graphs. We let open whether the same can be done for other classes of graphs. Especially,
can it be taken advantage of the linear-time algorithm for outerplanar graphs in order to compute
the hyperbolicity of planar graphs more efficiently ?

Furthermore, we deduced from our proofs a general substitution method, allowing us to modify
the atoms at no extra-cost than the clique-decomposition. For graphs with hyperbolicity at least
one, the maximum hyperbolicity from the resulting graphs is exactly the hyperbolicity of the graphs.
However, the graphs to be considered may have a larger size than the atoms. Experiments suggest
that the final size of the substitute graphs is mostly related with the number of clique-separators
of small size, and the disconnections resulting from them. Part of our future work will consist in
finding other graph decompositions which are applicable to the computation of the hyperbolicity.

35

References

[1] M. Abu-Ata and F. F. Dragan. Metric tree-like structures in real-life networks: an empirical
study. Networks, 67(1):49–69, 2016.

[2] H. Alrasheed and F. F. Dragan. Core-periphery models for graphs based on their δ-
hyperbolicity: An example using biological networks. In CompleNet VI, pages 65–77. 2015.

[3] R. Anstee and M. Farber. On bridged graphs and cop-win graphs. Journal of Combinatorial
Theory, Series B, 44(1):22–28, 1988.

[4] B. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal of
the ACM (JACM), 41(1):153–180, 1994.

[5] H.-J. Bandelt and H. Mulder. Distance-hereditary graphs. Journal of Combinatorial Theory,
Series B, 41(2):182–208, 1986.

[6] S. Bermudo, J. Rodŕıguez, J. Sigarreta, and J.-M. Vilaire. Gromov hyperbolic graphs. Discrete
Mathematics, 313(15):1575–1585, 2013.

[7] A. Berry, R. Pogorelcnik, and G. Simonet. Efficient clique decomposition of a graph into its
atom graph. Technical Report RR-10-07, LIMOS, Aubière, France, Mar. 2010.

[8] A. Berry, R. Pogorelcnik, and G. Simonet. An introduction to clique minimal separator de-
composition. Algorithms, 3(2):197–215, 2010.

[9] A. Berry, R. Pogorelcnik, and G. Simonet. Organizing the atoms of the clique separator
decomposition into an atom tree. Discrete Applied Mathematics, 177:1 – 13, 2014.

[10] H. L. Bodlaender. Discovering treewidth. In 31st Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM), volume 3381 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2005.

[11] M. Boguñá, F. Papadopoulos, and D. V. Krioukov. Sustaining the Internet with hyperbolic
mapping. Nature Communications, 1(62):1–18, Oct. 2010.

[12] J. A. Bondy and U. Murty. Graph theory with applications, volume 290. Macmillan London,
1976.

[13] M. Borassi, D. Coudert, P. Crescenzi, and A. Marino. On computing the hyperbolicity of
real-world graphs. In 23rd Annual European Symposium on Algorithms (ESA), volume 9294
of Lecture Notes in Computer Science, pages 215–226, Patras, Greece, Sept. 2015. Springer.

[14] M. Borassi, P. Crescenzi, and M. Habib. Into the square: On the complexity of some quadratic-
time solvable problems. Electronic Notes in Theoretical Computer Science, 322:51–67, 2016.

[15] A. Brandstädt and C. T. Hoàng. On clique separators, nearly chordal graphs, and the maxi-
mum weight stable set problem. Theoretical Computer Science, 389(1):295–306, 2007.

[16] G. Brinkmann, J. H. Koolen, and V. Moulton. On the hyperbolicity of chordal graphs. Annals
of Combinatorics, 5(1):61–69, 2001.

36

[17] W. Carballosa, D. Pestana, J. Rodŕıguez, and J. Sigarreta. Distortion of the hyperbolicity
constant of a graph. the Electronic Journal of Combinatorics, 19(1):P67, 2012.

[18] J. Chakerian and S. Holmes. Computational tools for evaluating phylogenetic and hierarchical
clustering trees. Journal of Computational and Graphical Statistics, 21(3):581–599, 2012.

[19] V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, and Y. Vaxès. Diameters, centers, and
approximating trees of delta-hyperbolic geodesic spaces and graphs. In 24th Symposium on
Computational Geometry (SCG), pages 59–68. ACM, 2008.

[20] N. Cohen, D. Coudert, and A. Lancin. Exact and approximate algorithms for computing the
hyperbolicity of large-scale graphs. Rapport de recherche RR-8074, Inria, Sept. 2012.

[21] N. Cohen, D. Coudert, and A. Lancin. On computing the gromov hyperbolicity. Journal of
Experimental Algorithmics (JEA), 20(1):1–6, 2015.

[22] D. Coudert and G. Ducoffe. Recognition of C4-free and 1/2-hyperbolic graphs. SIAM Journal
on Discrete Mathematics, 28(3):1601–1617, Sept. 2014.

[23] W. H. Cunningham. Decomposition of directed graphs. SIAM Journal on Algebraic Discrete
Methods, 3(2):214–228, 1982.

[24] B. DasGupta, M. Karpinski, N. Mobasheri, and F. Yahyanejad. Effect of gromov-hyperbolicity
parameter on cuts and expansions in graphs and some algorithmic implications. Technical
Report arXiv:1510.08779, ArXiv, 2015.

[25] P. de La Harpe and E. Ghys. Sur les groupes hyperboliques d’après Mikhael Gromov, volume 83.
Progress in Mathematics, 1990.

[26] M. Didi Biha, B. Kaba, M.-J. Meurs, and E. SanJuan. Graph decomposition approaches
for terminology graphs. In MICAI 2007: Advances in Artificial Intelligence, volume 4827 of
Lecture Notes in Computer Science, pages 883–893. Springer, 2007.

[27] R. Diestel. Graph theory, graduate texts in mathematics, vol. 173. Springer, Heidelberg, 1997.

[28] Y. Dourisboure and C. Gavoille. Tree-decompositions with bags of small diameter. Discrete
Mathematics, 307(16):2008–2029, 2007.

[29] F. Dragan. Tree-like structures in graphs: A metric point of view. In 39th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG), volume 8165 of Lecture
Notes in Computer Science, pages 1–4. Springer, 2013.

[30] A. Dress, K. Huber, J. Koolen, V. Moulton, and A. Spillner. Basic Phylogenetic Combinatorics.
Cambridge University Press, Cambridge, UK, Dec. 2011.

[31] H. Fournier, A. Ismail, and A. Vigneron. Computing the gromov hyperbolicity of a discrete
metric space. Information Processing Letters, 115(6):576–579, 2015.

[32] J. Gagneur, R. Krause, T. Bouwmeester, and G. Casari. Modular decomposition of protein-
protein interaction networks. Genome Biology, 5(8):R57, 2004.

37

[33] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18(1):25–66, 1967.

[34] A. Goldman. Optimal center location in simple networks. Transportation science, 5(2):212–
221, 1971.

[35] M. Gromov. Hyperbolic groups. In S. Gersten, editor, Essays in Group Theory, volume 8
of Mathematical Sciences Research Institute Publications, pages 75–263. Springer, New York,
1987.

[36] M. Habib, C. Paul, and L. Viennot. Partition refinement techniques: An interesting algorithmic
tool kit. International Journal of Foundations of Computer Science, 10(02):147–170, 1999.

[37] E. Howorka. On metric properties of certain clique graphs. Journal of Combinatorial Theory,
Series B, 27(1):67–74, 1979.

[38] E. A. Jonckheere and P. Lohsoonthorn. Geometry of network security. In American Control
Conference, volume 2, pages 976–981, Boston, MA, USA, 2004. IEEE.

[39] B. Kaba, N. Pinet, G. Lelandais, A. Sigayret, and A. Berry. Clustering gene expression data
using graph separators. In Silico Biology, 7(4):433–452, 2007.

[40] W. S. Kennedy, O. Narayan, and I. Saniee. On the hyperbolicity of large-scale networks.
Technical Report arXiv:1307.0031, ArXiv, 2013.

[41] J. H. Koolen and V. Moulton. Hyperbolic bridged graphs. European Journal of Combinatorics,
23(6):683–699, 2002.

[42] R. Krauthgamer and J. Lee. Algorithms on negatively curved spaces. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 119–132. IEEE, 2006.

[43] F. Le Gall. Faster algorithms for rectangular matrix multiplication. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 514–523, New Brunswick, NJ, USA, 2012.
IEEE.

[44] H.-G. Leimer. Optimal decomposition by clique separators. Discrete Mathematics, 113(1):99–
123, 1993.

[45] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Transactions on Knowledge Discovery from Data, 1(1):1–41, Mar. 2007.

[46] S. McCullough. 2-chordal graphs. In Contributions to Operator Theory and its Applications,
pages 143–192. Springer, 1988.

[47] S. McCullough. Minimal separators of 2-chordal graphs. Linear algebra and its applications,
184:187–199, 1993.

[48] K. Olesen and A. Madsen. Maximal prime subgraph decomposition of bayesian networks. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 32(1):21–31, 2002.

[49] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing,
16(6):973–989, 1987.

38

[50] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on
graphs. SIAM Journal on computing, 5(2):266–283, 1976.

[51] M. A. Soto Gómez. Quelques propriétés topologiques des graphes et applications à internet et
aux réseaux. PhD thesis, Univ. Paris Diderot (Paris 7), 2011.

[52] J. P. Spinrad. Recognizing quasi-triangulated graphs. Discrete applied mathematics,
138(1):203–213, 2004.

[53] M. Sys lo. Characterizations of outerplanar graphs. Discrete Mathematics, 26(1):47–53, 1979.

[54] R. Tamassia and I. Tollis. Planar grid embedding in linear time. IEEE Transactions on
Circuits and Systems, 36(9):1230–1234, 1989.

[55] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[56] R. E. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55(2):221–232, 1985.

[57] V. Vassilevska Williams, J. Wang, R. Williams, and H. Yu. Finding four-node subgraphs in
triangle time. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’15, pages 1671–1680. SIAM, 2015.

[58] K. Verbeek and S. Suri. Metric embedding, hyperbolic space, and social networks. In Annual
Symposium on Computational Geometry (SCG), pages 501–510, New York, NY, USA, 2014.
ACM.

[59] Y. Wu and C. Zhang. Hyperbolicity and chordality of a graph. The Electronic Journal of
Combinatorics, 18(1):P43, 2011.

[60] M. Yancey. An investigation into graph curvature’s ability to measure congestion in network
flow. Technical Report arXiv:1512.01281, ArXiv, 2015.

39

Appendix C

On the recognition of C4-free and
1/2-hyperbolic graphs

RECOGNITION OF C4-FREE AND 1/2-HYPERBOLIC GRAPHS∗

DAVID COUDERT†‡ AND GUILLAUME DUCOFFE†‡§

Abstract. The shortest-path metric d of a connected graph G is 1/2-hyperbolic if, and only if,
it satisfies d(u, v)+d(x, y) ≤ max{d(u, x)+d(v, y), d(u, y)+d(v, x)}+1, for every 4-tuple u, x, v, y of
G. We show that the problem of deciding whether an unweighted graph is 1/2-hyperbolic is subcubic
equivalent to the problem of determining whether there is a chordless cycle of length 4 in a graph.
An improved algorithm is also given for both problems, taking advantage of fast rectangular matrix
multiplication. In the worst case it runs in O(n3.26)-time.

Key words. Hyperbolicity, discrete metric space, graph algorithms, C4-free graphs, rectangular
matrix multiplication

AMS subject classifications. 05C85, 65F30, 68Q17, 68Q25, 68R10

1. Introduction. The primary aim of our work is to study hyperbolicity of
simple unweighted graphs. This is a metric parameter, that was first introduced by
Gromov in the context of automatic groups (see [23]), then extended to more general
metric spaces [5]. Roughly, the hyperbolicity of a connected graph is a measure of how
far is the shortest-path metric of the graph from a tree metric. One can deduce from
this parameter tight bounds for the (worst) additive distortion of the distances in the
graph when its vertices are embedded into a weighted tree [10]. Practical applications
of hyperbolicity were proposed in the domains of routing [6], network security [27],
bioinformatics [18], and in the spread of information in social networks [4].

So far, the best known algorithm for determining the hyperbolicity of a graph has
an O(n3.69)-time complexity [21]. This is however prohibitive for graphs with tens
of thousands of nodes such as the graph of the Autonomous Systems of the Internet,
road maps, etc. An algorithm with good practical performances has been proposed
in [11]. It improves the worst-case running time on certain graph classes, but it cannot
be used on graphs with hyperbolicity less than one.

Related work. Our work focuses on a decision version of the problem, namely
the recognition of graphs with hyperbolicity (at most) 1/2. Graphs with small hy-
perbolicity value have already received some attention, as a first characterization of
1/2-hyperbolic graphs was proposed in [1]. However, to the best of our knowledge,
there was no known algorithmic application to it prior to this work. We are more
interested in a reduction such as the recent one in [21], where the authors proved
an equivalence between the problems of finding a 2-approximation for the hyperbol-
icity and the (max, min)-matrix multiplication. A recent work [19] further exploits
the relation between both problems, yielding constant-factor approximations for the
hyperbolicity in subcubic-time. We point out that a similar line of research was fol-
lowed in [34, 39], where they determined the subcubic equivalence between various
combinatorial problems.

Our contribution. We relate the recognition of graphs with hyperbolicity (at
most) 1/2 to the search of (induced) cycles of length 4, e.g. C4, in a graph. It

∗This work has been partially supported by ANR project Stint under reference ANR-13-BS02-
0007, ANR program “Investments for the Future” under reference ANR-11-LABX-0031-01, and by
European project FP7 EULER (Grant No.258307).

†Inria, France
‡Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France.
§ENS Cachan, 61 Avenue du Président Wilson, 94230 Cachan, France.

1

2 D. COUDERT AND G. DUCOFFE

actually follows from our work that either both problems are solvable in subcubic-
time, or none of them is. We first present a linear-time reduction from the C4-free
graph recognition problem to the recognition of 1/2-hyperbolic graphs (§3.1). Then
we prove a new characterization of 1/2-hyperbolic graphs, which is based on graph
powers [30], and from which it follows that, conversely, deciding whether a graph
is 1/2-hyperbolic can be reduced in subcubic-time to the C4-free graph recognition
problem (§3.2). In §4, we finally reduce both problems to the problem of the rectan-
gular matrix product that was defined in [31]. This allows us to solve both of them
in O(n3.26)-time, which beats the previous records established in [21, 37].

We give the notations used in this paper in §2, along with definitions for graph
hyperbolicity and C4-free graphs.

2. Definitions and Notations. A graph G is a pair (V, E), whose n vertices
are the elements of the set V , and whose m edges are the elements of E; every edge
is a set of two distinct vertices of G. The neighborhood N(u) of a vertex u ∈ V , is the
(possibly empty) set of vertices v ∈ V such that {u, v} is an edge. Alternatively, we
say that the elements of N(u) are adjacent to u. A clique is a set of pairwise adjacent
vertices. Note that the adjacency relation is clearly symmetric; we also define the
(symmetric) adjacency matrix A = (I{u∈N(v)})u,v∈V , where I denotes the Kronecker
delta1.

Finally, an induced subgraph of G is a graph G[X] = (X, F) such that X ⊆ V
and F = {{u, v} ∈ E : u, v ∈ X}. In particular if X is a clique, then it is called a
complete subgraph. The induced subgraph is a path of length l ≥ 0 if |X| = l + 1
and the vertices of X can be linearly ordered into a sequence (v0, v1, . . . , vl) such that
for every 0 ≤ i, j ≤ l, the vertex vi is adjacent to vj if, and only if, |j − i| = 1. In
such a case, the vertices v0 and vl are called the endpoints of the path, and the path
is a v0vl-path. The graph G is connected if, for every pair u, v ∈ V , there exists a
uv-path. Also, a cycle is a graph such that the deletion of any edge {v0, vl} ∈ F yields
a v0vl-path, and a tree is a connected graph which does not contain any cycle as a
subgraph.

Further standard graph terminology can be found in [7, 14].

2.1. 1/2-hyperbolic graphs. Given a connected graph G = (V, E), we define
the distance dG(u, v) between two vertices u, v ∈ V as the minimum length of a uv-
path in the graph. This yields a (discrete) metric space (V, dG). For a survey of
metric graph theory, the reader may refer to [2]. We define in the space (V, dG) an
interval [u, v] between any two vertices u, v ∈ V , as the set of vertices “in between” u
and v, e.g. [u, v] = {x ∈ V : dG(u, v) = dG(u, x) + dG(x, v)}.

In the sequel, we will call a uv-path of minimum length a uv-shortest path, and
we will denote the distance function by d instead of dG whenever G is clear from the
context. The graph hyperbolicity of G can now be defined as follows:

Definition 2.1 (4-points Condition, [23]). Let G be a connected graph. For
every 4-tuple u, x, v, y of G, we define δ(u, v, x, y) as half of the difference between the
two largest sums amongst

S1 = d(u, v) + d(x, y),
S2 = d(u, x) + d(v, y), and
S3 = d(u, y) + d(v, x).
The graph hyperbolicity, denoted by δ(G), is equal to maxu,x,v,y δ(u, v, x, y).

1We use the symbol I instead of the classical symbol δ for the Kronecker delta in order to prevent
confusion with hyperbolicity.

RECOGNITION OF C4-FREE and 1/2-HYPERBOLIC GRAPHS 3

Moreover, we say that G is δ-hyperbolic, for every δ ≥ δ(G).

Unlike many well-known graph properties, it is very important to note that the
hyperbolicity of an induced subgraph of G does not yield any information in general
about the hyperbolicity of G. For example, the wheel Wn is 1-hyperbolic, whereas
it contains as an induced subgraph the cycle Cn whose hyperbolicity grows linearly
with n [11]. A way to deal with this difficulty is to constrain ourselves to distance-
preserving, or isometric subgraphs. Formally, an induced subgraph H of G is isometric
if, and only if, it is connected and for every pair of vertices u, v ∈ H, we have that
dH(u, v) = dG(u, v). We also say that a subgraph which is not isometric is a bridged
subgraph.

Lower and upper bounds on the hyperbolicity can be deduced from classical pa-
rameters such as the girth [33], the circumference [8], the domination number [35],
and the chordality [29, 40]. In particular, we have that δ(G) ≤ ⌊diam(G)/2⌋, where
diam(G) = maxu,v∈V dG(u, v) is the diameter of the graph [11, 40].

We inform the reader that Definition 2.1 is not a universal definition for the
hyperbolicity of a graph. Some authors actually proposed and studied other definitions
(see, for instance [13, 23]). Though the value of δ(G) may vary depending on the choice
of the definition, any δ-hyperbolic graph with respect to (w.r.t.) any of the definitions
is f(δ)-hyperbolic w.r.t. any other definition of the hyperbolicity. The function f is
linear in δ in most cases. Moreover, the class of trees is always contained into the class
of 0-hyperbolic graphs, which makes the graph hyperbolicity a tree-likeness parameter.

We here restrict our study to Definition 2.1, as it has algorithmic applications. In-
deed, it is straightforward by using Definition 2.1 to compute the graph hyperbolicity
δ(G) in Θ(n4)-time (see [11] and [21] for practical and theoretical improvements of the
complexity). Also, note that δ(G) is always a half-integer (w.r.t. Definition 2.1). Our
work focuses on graphs with small hyperbolicity, that is hyperbolicity at most 1/2.
Those graphs thus satisfy either δ(G) = 0 or δ(G) = 1/2. We address the problem of
recognizing those graphs, that we formulate as follows.

Problem 2.2. Given a connected graph G, is G a 1/2-hyperbolic graph ?

In [1], Bandelt and Chepoi characterized the 1/2-hyperbolic graphs as the con-
nected graphs that simultaneously satisfy the three following conditions:

Condition 2.3. Every cycle of length at least 6 in G is bridged.

Condition 2.4. For every pair u, v ∈ G, N(u) ∩ [u, v] is a clique.

Condition 2.5. No graph in Figure 1 is an isometric subgraph of G.

A simpler characterization was previously given for 0-hyperbolic graphs [3, 24]. In
fact, 0-hyperbolic graphs are block-graphs, that are graphs in which every biconnected
component (block) is a clique (possibly reduced to a single vertex). This class includes
cliques and trees, and a block-graph can be recognized in O(n + m)-time.

2.2. C4-free graphs. The C4-free graph recognition problem asks whether a
given graph G contains an induced cycle of length 4. In the sequel, such a cycle, if
any, is called a C4, or a quadrangle. A graph G which does not contain any C4 as
an induced subgraph is a C4-free graph. Let us define our decision problem in the
following way.

Problem 2.6. Given a graph G, does G contain a C4 as an induced subgraph ?

We now remind a well-known, local characterization of those graphs:

Fact 2.7. A graph G = (V, E) is C4-free if, and only if, for every pair of non-
adjacent vertices u, v, the set N(u) ∩ N(v) is a (possibly empty) clique.

4 D. COUDERT AND G. DUCOFFE

u x

y v

(a)

u x

y v

(b)

u x

y v

(c)

u

xy

v

(d)

u

xy

v

(e)

u

xy

v

(f)

Figure 1: The six forbidden isometric subgraphs.

To see the relation between Problem 2.6 and Problem 2.2, one can observe that
the condition of Fact 2.7 is equivalent to Condition 2.4 when considering vertices
u, v at distance 2. As a consequence, every 1/2-hyperbolic graph is also C4-free. In
fact, a more direct way to see this is to note that every induced subgraph which is a
quadrangle is isometric (this comes from the fact that a C4 is connected and it has
diameter 2). Since one can easily check that δ(C4) = 1, then it indeed follows that a
1/2-hyperbolic graph cannot contain a quadrangle as an induced subgraph.

So far, the best-known algorithm we are aware of to detect an induced C4 in
a graph has O(nω(1)+1) = O(n3.3727)-time complexity [37], with O(nω(1)) being the
complexity of multiplying two n × n matrices (see §4.1 for details). We will improve
this result in §4.

3. The subcubic equivalence. It is straightforward by the definitions that
both the 1/2-hyperbolic graph recognition problem (Problem 2.2), and the C4-free
graph recognition problem (Problem 2.6), are polynomial-time solvable [21, 37]. On
the other hand, the best-known upper-bound on their time complexity is strictly
more than cubic. Thus it motivates the search for subcubic reductions between these
problems, as they are defined in [39]. Formally, a subcubic reduction from a problem
A to a problem B is a subcubic-time Turing reduction, which verifies the following
additional properties on the oracle access to problem B. For every positive real µ,
there has to exist a positive real ε such that:

(i) the reduction runs in Õ(n3−ε)-time2, where n denotes the size of the input;
(ii) and given an instance of size n of problem A,

∑
i Õ(n3−µ

i) = Õ(n3−ε), where
ni denotes the size of the ith oracle call to problem B in the reduction.

In particular, a linear-time reduction is a subcubic reduction. More generally, any
subcubic-time reduction which satisfies

∑
i ni = Õ(n) is also a subcubic reduction.

We will only consider subcubic reductions of this kind in the sequel.

2The notation Õ(f(n)) is for a complexity f(n) · logO(1) n.

RECOGNITION OF C4-FREE and 1/2-HYPERBOLIC GRAPHS 5

u

Figure 2: An illustration of the linear-time reduction of Proposition 3.1.

Subcubic reductions are of specific interest in the study of subcubic-time algo-
rithms, because if there exists a subcubic reduction from problem A to problem B,
and there is a subcubic-time algorithm which solves problem B, then there also exists
a subcubic-time algorithm which solves problem A. In particular, if problems A and
B are subcubic equivalent, then either both of them are solvable in subcubic-time, or
none of them is. In this section, we will show that Problem 2.2 and Problem 2.6 are
subcubic equivalent. We first present a linear-time reduction from Problem 2.6 to
Problem 2.2 in §3.1 (Proposition 3.1). Then we present a subcubic reduction from
Problem 2.2 to Problem 2.6 in §3.2 (Theorem 3.13).

3.1. Reducing the detection of a C4 to the recognition of a 1/2-hyper-
bolic graph. Proposition 3.1. There is a linear-time reduction from the C4-
free graph recognition problem to the problem of deciding whether a graph is 1/2-
hyperbolic.

Proof. Let G = (V, E) be an instance of the C4-free graph recognition problem.
Let u /∈ V , and let G′ = (V ∪ {u}, E ∪ {{u, v} : v ∈ V }). By construction, G′

is connected, and it has diameter at most 2. Thus, we have that δ(G′) ≤ 1 (e.g.
see [11]), and all of its isometric subgraphs also have diameter at most 2. Moreover
we remind that a cycle of length l has diameter ⌊l/2⌋. In particular, every cycle of
length at least 6 is a graph of diameter at least 3 and as such, it cannot be an isometric
cycle of G′. Consequently, G′ always satisfies Condition 2.3. We can prove that it
always satisfies Condition 2.5 in the same way. Finally, since Condition 2.4 is satisfied
for every pair u, v ∈ V of adjacent vertices, then G′ satisfies Condition 2.4 if, and
only if, for every pair u, v ∈ V of non-adjacent vertices, we have that NG′(u) ∩ [u, v]
is a clique; since dG′(u, v) = 2 in such a case, then it is equivalent to have that
NG′(u)∩NG′(v) is a clique, e.g. the graph G′ is C4-free by Fact 2.7. Furthermore, we
have by construction that any induced C4 in G′ is an induced quadrangle in G, and
vice-versa. Consequently, G is C4-free if, and only if, the graph G′ is 1/2-hyperbolic.

We want to highlight that our reduction from Problem 2.6 to Problem 2.2 here
is linear-time, whereas the converse reduction from Problem 2.2 to Problem 2.6, pre-
sented in §3.2, is super-linear. It might be of interest to determine whether a linear-
time reduction from Problem 2.2 to Problem 2.6 exists.

3.2. Finding quadrangles to recognize non-1/2-hyperbolic graphs. Our
aim is now to prove that there exists a subcubic reduction from Problem 2.2 to
Problem 2.6 (Theorem 3.13). Ideally, we would ask for a subcubic-time routine for
checking whether Conditions 2.3, 2.4 and 2.5 are satisfied. Our reduction is however
more complex, as we actually introduce and verify different conditions in subsequent

6 D. COUDERT AND G. DUCOFFE

sections. Thus we have to prove that these conditions imply Conditions 2.3, 2.4
and 2.5, and also that they are satisfied by 1/2-hyperbolic graphs.

3.2.1. Quickly excluding long isometric cycles. Let us first deal for our
reduction with a tool that we will use later to verify whether Condition 2.3 is satisfied.
We recall that Condition 2.3 requires that every cycle of length at least 6 in G is a
bridged subgraph. A first naive approach to deal with this condition is to compute
the length of a longest isometric cycle of G. This can be done in polynomial-time,
but the best-known algorithm runs in O(n2ω(1) log n) = O(n4.752 log n)-time, which is
super-cubic [32]. Instead, we propose in this section a way to weaken Condition 2.3,
by only having to consider isometric cycles of polylogarithmically-bounded length.

Given a connected graph G, we recall that a c-factor approximation of the hyper-
bolicity of G is a half-integer δc(G) such that δ(G) ≤ δc(G) ≤ c.δ(G). In this section,
we will assume we have a subcubic-time algorithm computing a c-factor approxima-
tion of the hyperbolicity, for some fixed choice of c = logO(1) n. Below, we remind
possible ways to achieve such a result:

Lemma 3.2 ([9, 19, 21]). Let G = (V, E) be a connected graph.
(i) There exists an algorithm computing a 2-factor approximation of the hyper-

bolicity in O(n3−ω(1)/2) = O(n2.69)-time [21].
(ii) For every ε > 0, there exists an algorithm computing a (2 + ε)-factor ap-

proximation of the hyperbolicity in Õ(ε−1nω(1)) = Õ(ε−1n2.3727)-time [19].
(iii) There exists an algorithm computing a 1569-factor approximation of the

hyperbolicity in O(min{nm, nω(1) log n} + n2) = Õ(n2.3727)-time3 [9].
Combining results from [10, 15, 21], there also exists a θ(log n)-factor approxi-

mation algorithm of the hyperbolicity in Õ(n2)-time4. In addition, one can deduce
from the results from [16, 17, 22] an algorithm which computes a θ(log2 n)-factor
approximation of the hyperbolicity in O(m log n)-time.

It is well-known that the hyperbolicity of the cycle Cn grows linearly with n.
Formally:

Lemma 3.3 ([11, 40]). Cycles of order 4p+ ε ≥ 3, with p ≥ 0 and ε ∈ {0, 1, 2, 3},
are (p − 1/2)-hyperbolic when ε = 1, and p-hyperbolic otherwise.

As a result, it follows from Lemma 3.3 that a (polylogarithmic) upper-bound
on the hyperbolicity of G yields a (polylogarithmic) upper-bound on the length of a
longest isometric cycle of G; more accurately:

Corollary 3.4. Let G = (V, E) be a connected graph. Then all the isometric
cycles of G have length upper-bounded by 4δ(G) + 3.

Proof. First assume δ(G) is an integer. By Lemma 3.3, the longest δ(G)-
hyperbolic cycle has length at most 4δ(G) + 3. Otherwise, δ(G) is a half-integer
by Definition 2.1 and so, again by Lemma 3.3, the longest δ(G)-hyperbolic cycle has
length at most 4(δ(G) + 1/2) + 1 = 4δ(G) + 3.

Since we are interested in 1/2-hyperbolic graphs, then Corollary 3.4 implies that
every isometric cycle must have length upper-bounded by 5 i.e., Condition 2.3. We
introduce in the next section a second tool so that we can detect isometric cycles of
polylogarithmically-bounded length.

3The term min{nm, nω(1) log n} in the complexity comes from the computation of the all-pairs
shortest-paths in the graph (see [36] for an algorithm in Õ(nω(1))-time for the problem).

4The authors in [21] actually claim a O(n2)-time complexity for their algorithm, but it takes as
inputs discrete metric spaces and so, it does not apply to graphs directly. To apply their results on
graphs, we can use a θ(logn)-additive approximation of the all-pairs shortest-paths, which can be
computed in Õ(n2)-time (see [15]).

RECOGNITION OF C4-FREE and 1/2-HYPERBOLIC GRAPHS 7

u x

y v

p

p

p

p

(a) l = 4p

u x

y v

p

p

p + 1

p

(b) l = 4p+ 1

u x

y v

p

p + 1

p

p + 1

(c) l = 4p+ 2

u x

y v

p

p + 1

p + 1

p + 1

(d) l = 4p+ 3

Figure 3: Shrinking long isometric cycles into quadrangles.

3.2.2. Using graph powers. Let us now present the main tool for our reduc-
tion, namely graph powers.

Definition 3.5. Given a connected graph G = (V, E), let i be a positive integer.
The ith-power of G, denoted by Gi = (V, Ei), is a graph whose set of vertices is the
same as for G; two vertices u, v ∈ V are adjacent in Gi if, and only if, there exists a
uv-path of length at most i in G. Formally, Ei = {{u, v} : 0 < dG(u, v) ≤ i}.

In particular, the graph power G1 is G, and the graph power Gdiam(G) is the
complete graph Kn, where diam(G) = maxu,v∈V d(u, v) is the diameter of G. It is
folklore that the graph power Gi can be computed in O(nω(1) log i)-time, using fast
square matrix multiplication [36].

Recall that we said in §2.2 that every 1/2-hyperbolic graph G is C4-free. Roughly,
most of our reduction will consist in checking whether a polylogarithmic number of
graph powers of G are C4-free as well. This is a necessary condition so that G is
1/2-hyperbolic, as stated below.

Lemma 3.6. If G is a 1/2-hyperbolic graph, then for every positive integer i, the
graph Gi is C4-free.

Proof. By contradiction, let u, v, x, y be the vertices of an induced quadrangle in
Gi, for some positive integer i ≥ 1. Without loss of generality, assume that x, y ∈
NGi(u) ∩ NGi(v). It follows by Definition 3.5 that:

max{dG(u, x), dG(u, y), dG(v, x), dG(v, y)} ≤ i;

and min{dG(u, v), dG(x, y)} ≥ i + 1.

As a consequence, we have by Definition 2.1 that:

δ(u, v, x, y) =
1

2
[(dG(u, v) + dG(x, y))

− max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)}]

≥ 1

2
[2(i + 1) − 2i]

≥ 1

which contradicts the fact that G is 1/2-hyperbolic.
Intuitively, the existence of isometric cycles of length l in G yields the existence

of induced quadrangles in some graph power Gθ(l); this shrinking effect is illustrated
with Figure 3. As a result, it may be more efficient to search for induced cycles of
length 4 in the graph powers rather than computing the length of a longest isometric
cycle of G directly.

8 D. COUDERT AND G. DUCOFFE

We emphasize that the converse does not hold: not all the induced quadrangles
in Gi yield an isometric cycle in the original graph G. For instance, the square graph
H2

1 of the graph H1 in Figure 1a contains a quadrangle as an induced subgraph (the
vertices of which are u, x, v, y), yet H1 does not contain an isometric cycle of length
more than 3. However, we remind that every graph power has to be C4-free by
Lemma 3.6 and so, any induced quadrangle that we detect in some graph power is a
certificate to prove that the graph is not 1/2-hyperbolic.

We formalize it as follows.
Lemma 3.7. Let G = (V, E) be a connected graph, and let Cl be an isometric

cycle of length l = 4p + ε, p ≥ 1, ε ∈ {0, 1, 2, 3} and l 6= 5. There is an integer
i ∈ [p, 2p] such that the graph power Gi contains a C4 as an induced subgraph.

Proof. Let us fix an arbitrary orientation for Cl, and choose a 4-tuple u, x, v, y
(in clockwise order) such that:

(i) if ε = 0: dG(u, x) = dG(u, y) = dG(v, x) = dG(u, y) = p;
(ii) if ε = 1: dG(u, x) = dG(u, y) = dG(v, x) = p, and dG(v, y) = p + 1;
(iii) if ε = 2: dG(u, x) = dG(v, y) = p, and dG(u, y) = dG(v, x) = p + 1;
(iv) if ε = 3: dG(u, x) = dG(u, y) = dG(v, x) = p + 1, and dG(v, y) = p.

An example of such a choice is given in Figure 3. Note that all the above distances
are upper-bounded by p + ⌈ε/4⌉. Furthermore, recall that Cl is an isometric cycle by
the hypothesis. So, we have:

dG(u, v) = dG(x, y) =

{
2p when ε ∈ {0, 1}
2p + 1 when ε ∈ {2, 3}

Equivalently, we have dG(u, v) = dG(x, y) = 2p + ⌊ε/2⌋. As a consequence, by
Definition 3.5, we have that Gi[{u, x, v, y}] is an induced C4, for every p + ⌈ε/4⌉ ≤
i ≤ 2p + ⌊ε/2⌋ − 1. To prove that such a value of i always exists, it now remains to
prove that:

p +
⌈ε

4

⌉
≤ 2p +

⌊ε

2

⌋
− 1,

that is:
(
2p +

⌊ε

2

⌋
− 1

)
−

(
p +

⌈ε

4

⌉)
= p +

(⌊ε

2

⌋
−

⌈ε

4

⌉)
− 1 ≥ 0.

A straightforward calculation shows that:

⌊ε

2

⌋
−
⌈ε

4

⌉
=

{
−1 if ε = 1

0 otherwise

As a consequence, if ε 6= 1 then we are done. Otherwise, since l = 4p + 1 > 5 by the
hypothesis, then p ≥ 2 and so:

p +
(⌊ε

2

⌋
−

⌈ε

4

⌉)
− 1 ≥ 2 − 1 − 1 ≥ 0.

Note that the only two possible lengths for an isometric cycle of the graph that
Lemma 3.7 does not take into account are 3 and 5. This is not a coincidence, as C3

and C5 are the only cycles that are 1/2-hyperbolic by Lemma 3.3.

RECOGNITION OF C4-FREE and 1/2-HYPERBOLIC GRAPHS 9

G G3

Edges of G2 + pseudo-
loops {(u, 0), (u, 1)}

Figure 4: The construction of the graph G[2].

3.2.3. Transforming some obstructions into quadrangles. One of the most
fundamental step for our reduction was to prove with Lemma 3.6 that every graph
power Gi, i ≥ 1, has to be C4-free so that a connected graph G is 1/2-hyperbolic. An
interesting question on its own is whether it is also a sufficient condition.

We give a negative answer to this conjecture, using the graph H in Figure 5. The
graph H is the union of a C5 and a C3 that both share a single edge; using the 4-tuple
in bold in Figure 5, one can verify that δ(H) ≥ 1. Clearly, H does not contain a
quadrangle as an induced subgraph. Moreover, diam(H) = 3 and so, for every i ≥ 3,
the graph power Hi is a complete graph. Finally, as there is only one couple x, y of H
such that dH(x, y) = 3, it follows that the square graph H2 of H only lacks a single
edge to be complete; as a result, H2 is C4-free as well.

The primary aim of this section is now to show that in order to complete our
reduction, we solely need to decide whether only one additional graph is C4-free:

Definition 3.8. Let G = (V, E) be a connected graph. The graph G[2] =
(V [2], E[2]) is defined as follows:

(i) V [2] ≃ V × {0, 1};
(ii) G[2][V × {0}] ≃ G;
(iii) G[2][V × {1}] ≃ G3;
(iv) ∀u, v ∈ V , the vertices (u, 0) and (v, 1) are adjacent in G[2] if, and only if,

dG(u, v) ≤ 2.
In particular, ∀u ∈ V , there is an edge {(u, 0), (u, 1)} ∈ E[2].

An illustration of the construction of G[2] is presented in Figure 4. It might help
to observe that for every edge of G2 i.e., for every two distinct vertices u, v such
that dG(u, v) ≤ 2, there are exactly two corresponding edges in G[2], denoted by
{(u, 0), (v, 1)} and {(u, 1), (v, 0)}, that connect the sets V × {0} and V × {1}. Every
other connecting edge of G[2] is a pseudo-loop {(u, 0), (u, 1)}, for some vertex u ∈ V .

We interpret the role of G[2] as the role of an ”intermediate power” between the
square graph G2 and the cube graph G3. First, let us prove that it is necessary for
G[2] to be C4-free so that G is 1/2-hyperbolic.

Lemma 3.9. If G is a 1/2-hyperbolic graph, then the graph G[2] is C4-free.
Proof. By contradiction, let a, b, c, d be the vertices of an induced quadrangle in

G[2]. Without loss of generality, we assume that dG[2](a, b) = dG[2](c, d) = 2. Several
cases have to be considered, that we illustrate with Figure 6.

If a, b, c, d ∈ V ×{0}, then there is an induced C4 in G by Definition 3.8. Similarly,

10 D. COUDERT AND G. DUCOFFE

H H2 H3 H [2]

Figure 5: A 1-hyperbolic graph whose powers are C4-free. A quadrangle in H [2] is
drawn in bold.

if a, b, c, d ∈ V × {1}, then there is an induced C4 in G3 by Definition 3.8. In both
cases, this implies that G is not 1/2-hyperbolic, by Lemma 3.6.

For all the remaining cases, we claim that there is no vertex u ∈ V such that
{(u, 0), (u, 1)} ⊆ {a, b, c, d}. It easily follows from the fact that NG[2]((u, 0))∪{(u, 0)}
⊆ NG[2]((u, 1))∪{(u, 1)}. Thus we can write (a, b, c, d) = ((u, k), (v, k′), (x, j), (y, j′)),
with {k, k′, j, j′} = {0, 1} and vertices u, v, x, y are pairwise distinct.
Case 1: k = 0, k′ = j = j′ = 1. Here it comes that:

max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)} ≤ 2 + 3 = 5,

whereas dG(u, v) + dG(x, y) ≥ 3 + 4 = 7.

In other words, δ(G) ≥ δ(u, v, x, y) ≥ 1.
Case 2: k = 1, k′ = j = j′ = 0. In such a case:

max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)} ≤ 2 + 1 = 3,

whereas dG(u, v) + dG(x, y) ≥ 3 + 2 = 5.

So, δ(G) ≥ δ(u, v, x, y) ≥ 1.
Case 3: k = k′ = 0, j = j′ = 1. It follows that:

max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)} ≤ 2 + 2 = 4,

whereas dG(u, v) + dG(x, y) ≥ 2 + 4 = 6.

In other words, δ(G) ≥ δ(u, v, x, y) ≥ 1.
Case 4: k = j = 0, k′ = j′ = 1. Then we have:

max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)} ≤ max{1 + 3, 2 + 2} = 4,

whereas dG(u, v) + dG(x, y) ≥ 3 + 3 = 6.

So, we again conclude that δ(G) ≥ δ(u, v, x, y) ≥ 1.
Recall that in order to decide whether a graph is 1/2-hyperbolic, our aim is to

check whether all of the three Conditions 2.3, 2.4 and 2.5 of [1] are satisfied, using
stronger necessary conditions. So far, we only dealt with Condition 2.3, developing
tools in §3.2.1 and 3.2.2 in order to determine if every cycle of length at least 6 in the
graph is bridged. The following two lemmas will show a way to combine the graph
G[2] of Definition 3.8 with the graph powers of Definition 3.5, in order to ensure that
both Conditions 2.4 and 2.5 are satisfied as well.

RECOGNITION OF C4-FREE and 1/2-HYPERBOLIC GRAPHS 11

1 1

11

(a)

2 1

32

(b)

2

2

2

2

(c)

3 3

33

(d)

21

1 2

(e)

2

3

2

1

(f)

Figure 6: Possible quadrangles in G[2]. Edge weights represent distances in G.

Let us start with Condition 2.4:
Lemma 3.10. Let G = (V, E) be a δ-hyperbolic graph, for some δ ≥ 1/2. Suppose

G does not satisfy Condition 2.4. Then G[2] is not C4-free, or there exists some
positive integer i ≤ 2δ such that Gi is not C4-free.

Proof. Let u, v ∈ V be such that N(u) ∩ [u, v] is not a clique, and d(u, v) is
minimum w.r.t. this property. Let x1, y1 ∈ N(u) ∩ [u, v] such that x1 and y1 are not
adjacent in G.

• Note that if d(u, v) = 2, then we are done as u, v, x1, y1 are the vertices of an
induced C4 in G.

• Similarly, if d(u, v) = 3, then we have:
(i) d(u, x1) = d(u, y1) = 1;
(ii) d(x1, y1) = d(v, x1) = d(v, y1) = 2;

as a consequence, (u, 0), (x1, 0), (y1, 0), (v, 1) are the vertices of an induced
quadrangle in the graph G[2].

In the sequel, we will assume d(u, v) ≥ 4. Let us define the two uv-shortest paths:

P1 = u, x1, x2, x3, . . . , xd(u,v)−1, v

and P2 = u, y1, y2, y3, . . . , yd(u,v)−1, v

Note that for every i ≤ j we have d(xi, yj) ≥ d(yi, yj) = j − i, and in the same way
d(xj , yi) ≥ d(xj , xi) = j− i. We now claim that for every i ≤ j, the inequalities above
are strict, or equivalently d(xi, yj) > j − i and d(xj , yi) > j − i. By contradiction,
suppose that there is some i ≤ j satisfying d(xi, yj) = j − i. Then in such a case we
have x1, y1 ∈ N(u) ∩ [u, yj], contradicting the minimality of d(u, v). The case when
d(xj , yi) = j − i is dealt with similarly. To sum up, by the minimality of d(u, v) we
have that for any i ≤ j:

d(xi, yj) > d(yi, yj) = j − i and d(xj , yi) > d(xj , xi) = j − i.

In particular, for all i, j this yields that xi and yj are pairwise distinct.

12 D. COUDERT AND G. DUCOFFE

Also, note that for all i, δ(u, v, xi, yi) = d(xi, yi)/2 and so, we have that for
every i:

d(xi, yi) ≤ 2δ.

Let l ≥ 3 be the least index greater than 2 such that d(xl, yl) ≤ l− 1. One has to
observe that since for all i, d(xi, yi) ≤ 2δ, it holds that l ≤ min{2δ + 1, d(u, v) − 1}.
In such a case:

(i) d(x1, xl) = d(y1, yl) = l − 1;
(ii) d(x1, y1), d(xl, yl) ≤ l − 1;
(iii) d(x1, yl), d(xl, y1) > l − 1.

Consequently, x1, y1, xl, yl are the vertices of an induced quadrangle in Gl−1.
Let us finally prove with Lemma 3.11 that we can verify whether Condition 2.5

is satisfied in the same way as we verified Condition 2.4 in Lemma 3.10.
Lemma 3.11. Let G = (V, E) be a connected graph that does not satisfy Condi-

tion 2.5. Then there is an induced C4 in the graph G[2], or there is an induced C4 in
the square graph G2.

Proof. We proceed by contradiction. Let us assume that one of the graphs
of Figure 1 is an isometric subgraph of G. For each of the forbidden graphs of
Condition 2.5, we will only consider the 4-tuple of vertices that are drawn in bold in
Figure 1, denoted by u, y, v, x.
Cases 1a and 1b One can easily check that in both cases, the four vertices in bold

are the vertices of an induced quadrangle in the square graph G2.
Case 1c Observe that d(u, x) = 1, d(u, y) = d(v, x) = 2, d(u, v) = d(x, y) =

d(v, y) = 3. So, (u, 0), (y, 1), (v, 1), (x, 0) are the vertices of an induced quad-
rangle in G[2]. A contradiction.

Case 1d We have that all distances but d(u, v) equal 2, and that d(u, v) = 4. There-
fore, (u, 1), (y, 0), (v, 1), (x, 0) are the vertices of an induced C4 in G[2]. Again,
this is not possible.

Case 1e Observe that d(u, x) = d(u, y) = 2, d(x, y) = 4, and all the remaining
distances are equal to 3. As a consequence, (u, 0), (y, 1), (v, 1), (x, 1) are the
vertices of an induced quadrangle in G[2], which contradicts the fact that G[2]

is C4-free.
Case 1f The vertices (u, 1), (y, 1), (v, 1), (x, 1) induce a C4 in G3, hence in G[2], that

is once more a contradiction.
To sum up, we obtain as a byproduct of our reduction, and especially of Lem-

mas 3.6, 3.7, 3.9, 3.10 and 3.11, the following new characterization of 1/2-hyperbolic
graphs:

Characterization 3.12. A connected graph G is 1/2-hyperbolic if, and only if,
every graph power Gi, i ≥ 1, is C4-free, and the graph G[2] is C4-free.

The condition is necessary by Lemmas 3.6 and 3.9, and it is sufficient by Lem-
mas 3.7, 3.10 and 3.11.

3.2.4. The reduction. Theorem 3.13. There is a subcubic reduction from
the 1/2-hyperbolic graph recognition problem to the problem of detecting an induced
quadrangle in a graph.

Proof. Let G = (V, E) be a connected graph. Since there exists a linear-time
algorithm to recognize 0-hyperbolic graphs5, we will assume for the proof δ(G) >

5Recall that a graph is 0-hyperbolic if, and only if, it is a block-graph i.e., a graph whose
biconnected components are complete subgraphs [3, 24].

RECOGNITION OF C4-FREE and 1/2-HYPERBOLIC GRAPHS 13

0, or equivalently δ(G) ≥ 1/2. Let us fix any c = logO(1) n, c ≥ 1, such that we
can compute a c-factor approximation of the hyperbolicity in subcubic-time. Three
possible choices for c are given in Lemma 3.2, and two others ones are discussed in
§3.2.1.6. In the sequel, let δc(G) be a c-factor approximation of the hyperbolicity.
Recall that we have δ(G) ≤ δc(G) ≤ c.δ(G) by the hypothesis. So, if δc(G) > c/2,
then we are done as the graph G is not 1/2-hyperbolic. Let us now assume that
δ(G) ≤ δc(G) ≤ c/2. By Corollary 3.4, every isometric cycle of G has length upper-
bounded by 4δc(G) + 3 ≤ 2c + 3, which is polylogarithmically upper-bounded.

We then compute all the graph powers Gi, for 1 ≤ i ≤ 2δc(G) + 1. This can be
done in subcubic-time, by first computing the distance-matrix of G in O(nω(1) log n)-
time (see [36]). Moreover every Gi has to be C4-free by Lemma 3.6. If so, then by
Lemma 3.7, there is no isometric cycle Cl of length 6 ≤ l ≤ 4δc(G)+3. Consequently,
the graph G satisfies Condition 2.3. Finally, let us build G[2], which can also be done
in subcubic-time using the distance-matrix of G. By Lemma 3.9, the graph G[2] has
to be C4-free so that G is 1/2-hyperbolic. If it is indeed the case, then we have:

(i) G[2] and all of Gi, 1 ≤ i ≤ 2δc(G) are C4-free, hence G satisfies Condition 2.4
by Lemma 3.10;

(ii) G[2] and the square graph G2 are both C4-free and so, G satisfies Condi-
tion 2.5 by Lemma 3.11.
Thus we can conclude by [1] that G is a 1/2-hyperbolic graph.

Corollary 3.14. There is a subcubic equivalence between the 1/2-hyperbolic
graph recognition problem and the C4-free graph recognition problem.

4. Finding a quadrangle. We will conclude this paper with an improved algo-
rithm for the C4-free graph recognition problem, that hence improves the best-known
upper-bound on the time complexity of both Problem 2.2 and Problem 2.6 by the
subcubic equivalence of Corollary 3.14. While the algorithm proposed in [37] relies
on transitive orientation, our algorithm merely reduces the whole Problem 2.6 to a
fast rectangular matrix multiplication.

A quick reminding of the problem of matrix multiplication is given in §4.1, before
we present our algorithm to detect an induced quadrangle in §4.2.

4.1. Fast rectangular matrix multiplication. The study of fast matrix mul-
tiplication mainly focuses on the O(nω(1)) time complexity of multiplying two n ×
n matrices, also known as the square matrix product. Currently, ω(1) is known
to be less than 2.3727 [38]. The rectangular matrix multiplication problem has
received less attention, maybe because the product of an n × m matrix with an
m × p matrix is known to be reducible to square matrix multiplications, yielding an
O(qω(1)−2. max{mn, mp, np})-time complexity, for q = min{m, n, p} [25].

On the other hand, there is evidence that faster methods for the rectangular
matrix multiplication which do not rely on the square matrix product may exist.
This is known to be the case even for truly practical improvements of the matrix
multiplication such as the Strassen algorithm and its variations [26, 28]. As stated
below, the conjecture is (numerically) true w.r.t. the best known algorithms for square
and rectangular matrix multiplications.

Lemma 4.1 ([12, 25, 31, 38]). Let r ≥ 1 be a rational number. There exists a
non-decreasing function ω : [1; +∞[→ [2.3727; +∞[such that multiplying an n × nr

6A careful reader will remark that the choice of c determines the maximum number of calls in
the reduction to the algorithm for detecting an induced quadrangle. There is a trade-off between
this number and the running-time of the c-factor approximation algorithm.

14 D. COUDERT AND G. DUCOFFE

matrix with an nr × n matrix can be done in O(nω(r))-time.
Furthermore, ω(2) ≤ 3.26, and for every r ≥ 1 we have ω(r) ≤ r + ω(1) − 1.
Note that reducing the rectangular matrix product to square matrix multiplica-

tions would have only yielded ω(2) ≤ 3.3727.
A more efficient method is known for sparse matrices (e.g. see [41]).

4.2. An algorithm to count quadrangles in a graph. In this section, we
essentially apply the local characterization of Fact 2.7. There are two main steps of
computation in our algorithm, that are described below.

Fact 4.2 ([36]). Given a graph G = (V, E), let A = (Au,v)u,v∈V be the adjacency
matrix of G.

For every pair u, v ∈ V , we have A2
u,v = |N(u) ∩ N(v)|.

Hence, d(u, v) = 2 if, and only if, u 6= v, Au,v = 0 and A2
u,v 6= 0.

Proof. By the definition of matrix multiplication, we have for every pair u, v ∈ V
that:

A2
u,v =

∑

x∈V

Au,xAx,v =
∑

x∈V

I{{x,u}∈E}I{{x,v}∈E}

=
∑

x∈V

I{x∈N(u)}I{x∈N(v)} =
∑

x∈V

I{x∈N(u)∩N(v)}

= |N(u) ∩ N(v)|.
Moreover, d(u, v) = 2 if, and only if, u 6= v, u and v are not adjacent in G (e.g.

Au,v = 0), and N(u) ∩N(v) 6= ∅. Clearly, we have that N(u) ∩N(v) 6= ∅ if, and only
if, A2

u,v 6= 0.
Lemma 4.3. Given a graph G = (V, E), let T = (Tu,e)u∈V,e∈E be such that

Tu,e = I{e⊆N(u)} for every u ∈ V, e ∈ E.

For every pair u, v ∈ V , we have TT⊤
u,v = |{e ∈ E : e ⊆ N(u) ∩ N(v)}|.

Proof. Similarly to the proof of Fact 4.2, we have by the definition of matrix
multiplication that for every pair u, v ∈ V :

TT⊤
u,v =

∑

e∈E

Tu,eT
⊤
e,v =

∑

e∈E

Tu,eTv,e =
∑

e∈E

I{e⊆N(u)}I{e⊆N(v)}

=
∑

e∈E

I{e⊆N(u)∩N(v)} = |{e ∈ E : e ⊆ N(u) ∩ N(v)}|.

Combining Fact 4.2 and Lemma 4.3, we can now rely on Fact 2.7 in order to
detect, to count and to output induced quadrangles in the graph as follows.

Proposition 4.4. Counting the number of induced quadrangles in a a graph G,
and returning an induced C4 of G if any, can be done in O(nω(logn m)) = O(n3.26)-
time.

Proof. First, it is straightforward that we can compute the adjacency matrix A of
G in quadratic-time. Using A, we can compute the matrix T = (I{e⊆N(u)})u∈V,e∈E ,

hence the transpose matrix T⊤ as well, as they are defined in Lemma 4.3, in O(nm)-
time.

Let us now compute A2 and TT⊤. This can be done, respectively, in O(nω(1)) =
O(n2.3727)-time and in O(nω(logn m)) = O(nω(2)) = O(n3.26)-time by Lemma 4.1.

By Fact 2.7, G is C4-free if, and only if, for every pair u, v ∈ V of non-adjacent
vertices, we have that N(u) ∩ N(v) is a clique, e.g. that:

|{e ∈ E : e ⊆ N(u) ∩ N(v)}| =
|N(u) ∩ N(v)|(|N(u) ∩ N(v)| − 1)

2
.

RECOGNITION OF C4-FREE and 1/2-HYPERBOLIC GRAPHS 15

This is equivalent to have that TT⊤
u,v = A2

u,v(A2
u,v − 1)/2 by Fact 4.2 and Lemma 4.3.

Hence, it can be checked with an enumeration of all the possible pairs u, v ∈ V , in
quadratic-time.

We actually note that if there is some pair u, v ∈ V of non-adjacent vertices
such that TT⊤

u,v < A2
u,v(A2

u,v − 1)/2, then there are exactly A2
u,v(A2

u,v − 1)/2− TT⊤
u,v

induced quadrangles of G which contain this pair of vertices (that is one quadrangle
for each of the missing edges in G[N(u) ∩ N(v)]). Consequently, there are exactly
1/4

∑
u,v∈V (1 − Au,v)(A2

u,v(A2
u,v − 1)/2 − TT⊤

u,v) induced quadrangles in the graph,
which can also be computed in quadratic-time, by an enumeration of all the possible
pairs u, v ∈ V .

To conclude, observe that if TT⊤
u,v 6= A2

u,v(A2
u,v − 1)/2 for some pair u, v ∈ V of

non-adjacent vertices, then it is straightforward to compute an induced quadrangle of
G containing u, v in quadratic-time.

We remind the reader that there is only evidence that a fast rectangular matrix
product can be computed faster than up to the reduction to fast square matrix mul-
tiplications. However, we want to highlight that, from a theoretical point of view,
our algorithm for detecting an induced quadrangle is never slower than the algorithm
of [37]. The dominant term for the complexity of our algorithm is indeed the fast
rectangular matrix multiplication TT⊤ (e.g. Lemma 4.3), which can be computed
in O(mnω(1)−1)- time in the worst-case, using the reduction to fast square matrix
products that we described earlier in §4.1. In comparison, the time complexity of the
algorithm of [37] is O(nω(1)+1).

Also, we emphasize that for graphs with few C3’s, a speed-up for the computation
of TT⊤ can be achieved using the results from [41] for sparse matrix multiplication.
Indeed, the number of non-zero elements in the matrix T is exactly 3.t(G), where
t(G) denotes the number of C3 in the graph.

5. Conclusion. In this work, we proved an interesting equivalence between the
complexity of the purely metric problem of recognizing 1/2-hyperbolic graphs, and the
purely structural problem of detecting an induced quadrangle in a graph. This shows a
surprising gap in the complexity for recognizing graphs with small hyperbolicity, as in
comparison there is a linear-time algorithm to decide whether a graph is 0-hyperbolic.

Our reduction being subcubic, it remains open whether 1/2-hyperbolic graphs
can be recognized in linear-time, for some classes of graphs for which detecting an
induced quadrangle is easy, like for instance planar graphs [20]. Also, it would be
nice to extend our results to find a better upper-bound on the complexity of the
problem of deciding if a graph is 1-hyperbolic. Note that this latter problem might be
easier than the recognition of 1/2-hyperbolic graphs, as the true difficulty may only
lie in the distinction between graphs with hyperbolicity exactly 1 and exactly 1/2.
Any recognition algorithm in O(f(n))-time for 1-hyperbolic graphs would furthermore
yield a 4-factor approximation algorithm for the hyperbolicity that runs in Õ(f(n) +
nω(1))-time.

Acknowledgments. We wish to thank the referees for their reading of the first
version of this manuscript, and their useful comments. We would also like to thank
Frédéric Havet and Fatima Zahra Moataz for helpful comments on this work.

REFERENCES

[1] Hans-Jürgen Bandelt and Victor Chepoi, 1-hyperbolic graphs, SIAM Journal on Discrete
Mathematics, 16 (2003), pp. 323–334.

16 D. COUDERT AND G. DUCOFFE

[2] , Metric graph theory and geometry: a survey, Contemporary Mathematics, 453 (2008),
pp. 49–86.

[3] H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs, Journal of Combinatorial The-
ory, Series B, 41 (1986), pp. 182–208.

[4] J. Baras, Hyperbolic embedding to the rescue in communication and social networks, in Bell
Labs-NIST Workshop on Large-Scale Networks, 2013.

[5] S. Bermudo, J.M. Rodŕıguez, J.M. Sigarreta, and J.-M. Vilaire, Gromov hyperbolic
graphs, Discrete Mathematics, 313 (2013), pp. 1575–1585.

[6] Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri V. Krioukov, Sustaining the
Internet with hyperbolic mapping, Nature Communications, 1 (2010), pp. 1–18.

[7] J. A. Bondy and U. Murty, Graph theory with applications, vol. 290, Macmillan London,
1976.

[8] W. Carballosa, J.M. Rodŕıguez, J.M. Sigarreta, and M. Villeta, Gromov hyperbolicity
of line graphs, The Electronic Journal of Combinatorics, 18 (2011), pp. 1–18.

[9] J. Chalopin, V. Chepoi, P. Papasoglu, and T. Pecatte, Cop and robber game and hyper-
bolicity, Tech. Report arXiv:1308.3987, ArXiv, 2013.

[10] V. Chepoi and F. Dragan, A note on distance approximating trees in graphs, European
Journal of Combinatorics, 21 (2000), pp. 761–766.

[11] Nathann Cohen, David Coudert, and Aurélien Lancin, Exact and approximate algorithms
for computing the hyperbolicity of large-scale graphs, Rapport de recherche RR-8074, Inria,
Sept. 2012.

[12] D. Coppersmith, Rectangular matrix multiplication revisited, Journal of Complexity, 13 (1997),
pp. 42–49.

[13] P. de La Harpe and E. Ghys, Sur les groupes hyperboliques d’après Mikhael Gromov, vol. 83,
Progress in Mathematics, 1990.

[14] R. Diestel, Graph theory, graduate texts in mathematics, vol. 173, Springer, Heidelberg, 1997.
[15] D. Dor, S. Halperin, and U. Zwick, All-pairs almost shortest paths, SIAM Journal on Com-

puting, 29 (2000), pp. 1740–1759.
[16] F.F. Dragan, Tree-like structures in graphs: A metric point of view, in 39th International

Workshop on Graph-Theoretic Concepts in Computer Science (WG), vol. 8165 of Lecture
Notes in Computer Science, Springer, 2013, pp. 1–4.

[17] F.F. Dragan and E. Köhler, An approximation algorithm for the tree t-spanner problem on
unweighted graphs via generalized chordal graphs, in Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, vol. 6845 of Lecture Notes in
Computer Science, Springer, 2011, pp. 171–183.

[18] Andreas Dress, Katharina Huber, Jacobus Koolen, Vincent Moulton, and Andreas
Spillner, Basic Phylogenetic Combinatorics, Cambridge University Press, Cambridge,
UK, Dec. 2011.

[19] Ran Duan, Approximation algorithms for the gromov hyperbolicity of discrete metric spaces,
in 11th Latin American Theoretical Informatics Symposium (LATIN), vol. 8392 of Lecture
Notes in Computer Science, Montevideo, Uruguay, 2014, Springer, pp. 285–293.

[20] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, in 6th annual ACM-
SIAM symposium on Discrete Algorithms (SODA), Society for Industrial and Applied
Mathematics, 1995, pp. 632–640.

[21] Hervé Fournier, Anas Ismail, and Antoine Vigneron, Computing the gromov hyperbolicity
of a discrete metric space, Tech. Report arXiv:1210.3323, ArXiv, Oct. 2012.

[22] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz, Distance labeling in graphs, in 12th
annual ACM-SIAM symposium on Discrete algorithms (SODA), Society for Industrial and
Applied Mathematics, 2001, pp. 210–219.

[23] Micha Gromov, Hyperbolic groups, in Essays in Group Theory, S.M. Gersten, ed., vol. 8 of
Mathematical Sciences Research Institute Publications, Springer, New York, 1987, pp. 75–
263.

[24] E. Howorka, On metric properties of certain clique graphs, Journal of Combinatorial Theory,
Series B, 27 (1979), pp. 67–74.

[25] X. Huang and V.Y. Pan, Fast rectangular matrix multiplication and applications, Journal of
complexity, 14 (1998), pp. 257–299.

[26] S. Huss-Lederman, E.M. Jacobson, J.R. Johnson, A. Tsao, and T. Turnbull, Imple-
mentation of strassen’s algorithm for matrix multiplication, in ACM/IEEE Conference on
Supercomputing, IEEE, 1996, pp. 32–32.

[27] Edmond A. Jonckheere and Poonsuk Lohsoonthorn, A hyperbolic geometric approach to
multipath routing, in In Proc. 10th Mediterranean Conference on Control and Automation
(MED 2002), Lisbon, Portugal, 2002.

RECOGNITION OF C4-FREE and 1/2-HYPERBOLIC GRAPHS 17

[28] P.A. Knight, Fast rectangular matrix multiplication and QR decomposition, Linear algebra
and its applications, 221 (1995), pp. 69–81.

[29] A. Kosowski, B. Li, N. Nisse, and K. Suchan, k-chordal graphs: From cops and robber to
compact routing via treewidth, in International Conference on Automata, Languages, and
Programming (ICALP), vol. 7392 of Lecture Notes in Computer Science, Springer, 2012,
pp. 610–622.

[30] R. Laskar and D. Shier, On powers and centers of chordal graphs, Discrete Applied Mathe-
matics, 6 (1983), pp. 139–147.

[31] François Le Gall, Faster algorithms for rectangular matrix multiplication, in IEEE 53rd
Annual Symposium on Foundations of Computer Science, New Brunswick, NJ, USA, 2012,
IEEE, pp. 514–523.

[32] Daniel Lokshtanov, Finding the longest isometric cycle in a graph, Discrete Applied Math-
ematics, 157 (2009), pp. 2670–2674.

[33] J. Michel, J.M. Rodŕıguez, J.M. Sigarreta, and M. Villeta, Hyperbolicity and parameters
of graphs, Ars Combinatoria, 100 (2011), pp. 43–63.

[34] L. Roditty and V. Vassilevska Williams, Minimum weight cycles and triangles: Equiv-
alences and algorithms, in 52nd IEEE Annual Symposium on Foundations of Computer
Science (FOCS), IEEE, 2011, pp. 180–189.

[35] J.M. Rodŕıguez and J.M. Sigarreta, Bounds on Gromov hyperbolicity constant in graphs,
in Proceedings Indian Acad. Sci. (Mathematical Sciences), vol. 122, 2012, pp. 53–65.

[36] R. Seidel, On the all-pairs-shortest-path problem in unweighted undirected graphs, Journal of
Computer and System Sciences, 51 (1995), pp. 400–403.

[37] J.P. Spinrad, Finding large holes, Information Processing Letters, 39 (1991), pp. 227–229.
[38] V. Vassilevska Williams, Multiplying matrices faster than coppersmith-Winograd, in 44th

symposium on Theory of Computing (STOC), ACM, 2012, pp. 887–898.
[39] V. Vassilevska Williams and R. Williams, Subcubic equivalences between path, matrix and

triangle problems, in 51st Annual IEEE Symposium on Foundations of Computer Science
(FOCS), IEEE, 2010, pp. 645–654.

[40] Yaokun Wu and Chengpeng Zhang, Hyperbolicity and chordality of a graph, The Electronic
Journal of Combinatorics, 18 (2011), p. P43.

[41] R. Yuster and U. Zwick, Fast sparse matrix multiplication, ACM Transactions on Algorithms
(TALG), 1 (2005), pp. 2–13.

Appendix D

On the hyperbolicity of bipartite
and intersection graphs

On the hyperbolicity of bipartite graphs and intersection
graphs

David Couderta,b, Guillaume Ducoffeb,a

aInria, France
bUniv. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis,

France

Abstract

Hyperbolicity is a measure of the tree-likeness of a graph from a metric per-
spective. Recently, it has been used to classify complex networks depending
on their underlying geometry. Motivated by a better understanding of the
structure of graphs with bounded hyperbolicity, we here investigate on the
hyperbolicity of bipartite graphs. More precisely, given a bipartite graph
B = (V0 ∪ V1, E) we prove it is enough to consider any one side Vi of the
bipartition of B to obtain a close approximate of its hyperbolicity δ(B) —
up to an additive constant 2. We obtain from this result the sharp bounds
δ(G) − 1 ≤ δ(L(G)) ≤ δ(G) + 1 and δ(G) − 1 ≤ δ(K(G)) ≤ δ(G) + 1
for every graph G, with L(G) and K(G) being respectively the line graph
and the clique graph of G. Finally, promising extensions of our tech-
niques to a broader class of intersection graphs are discussed and illus-
trated with the case of the biclique graph BK(G), for which we prove
(δ(G)− 3)/2 ≤ δ(BK(G)) ≤ (δ(G) + 3)/2.

Keywords: Gromov hyperbolicity; bipartite graph; intersection graph;
graph power; line graph; clique graph; biclique graph.

1. Introduction

The purpose of this paper is to bound the hyperbolicity of some classes
of graphs that are defined in terms of graph operators. Roughly, hyperbol-
icity is a tree-likeness parameter that measures how close the shortest-path

IThis work is partially supported by ANR project Stint under reference ANR-13-BS02-
0007 and ANR program “Investments for the Future” under reference ANR-11-LABX-
0031-01.

Preprint submitted to Elsevier June 18, 2016

metric of a graph is to a tree metric (the smaller the hyperbolicity the closer
the graph is to a metric tree). It has thus been proposed to take hyper-
bolicity into account to better classify complex networks [22]. For instance,
it has been experimentally shown in [22] that social networks and protein
interaction networks have bounded hyperbolicity while it is not the case
for road networks. Another interest for hyperbolicity is that it helps ana-
lyzing some graph heuristics on large-scale networks. A good example to
this is the 2-sweep heuristic for computing the diameter, that provides very
good results in practice [23]; such good results can be explained assuming a
bounded hyperbolicity [11].

Relating the structural properties of graphs with hyperbolicity can be
useful in this context, and it has become a growing line of research (e.g.,
see [12, 15, 24, 31]). Indeed, we argue that one can obtain from such relations
a comprehensive overview of the reasons why some complex networks are
hyperbolic and some others are not. Following this line, we proved in [15]
that most data center interconnection networks are not hyperbolic because
they are symmetric graphs. As an attempt to go further in this direction,
we here investigate on the hyperbolicity of bipartite graphs. In fact, we
were motivated at first to bound the hyperbolicity of line graphs [30], that
are intersection graphs of edges in a graph and have already received some
attention in the literature of graph hyperbolicity [8, 9]. In this paper, we
fully characterize what can be the defect between the hyperbolicity of a given
graph and the hyperbolicity of its line graph, using an original connection
with bipartite graphs. To better depict our novel approach, let us first recall
that intersection graphs over a ground set S have for vertices a family of
subsets of S with an edge between every two intersecting subsets. Therefore,
they can be naturally represented as a bipartite graph — with vertices of the
graph on one side, the ground set S on the other side, and an edge between
every element of S and the subsets that contain it. Our main contribution is
to show how we can use this representation so as to bound the hyperbolicity
of intersection graphs—. This simple framework does not only apply to line
graphs. We can use it to bound the hyperbolicity of clique graphs [20] and
(with slightly more work) biclique graphs [19]. Overall, our main results can
be expressed as follows.

• Given a bipartite graph B = (V0 ∪ V1, E), for every i ∈ {0, 1} let Gi

be the graph with vertex-set the side Vi and with an edge between
every two vertices that share a common neighbor in B. We prove that
2δ(Gi) ≤ δ(B) ≤ 2δ(Gi) + 2 and the bounds are sharp (Theorem 4).

• We deduce from the above inequalities that δ(G) − 1 ≤ δ(L(G)) ≤

2

δ(G) + 1 for every graph G, with L(G) being the line graph of G
(Theorem 6). Furthermore we show that all possible cases (between
δ(G) − 1 and δ(G) + 1) can happen. This complements the bounds
in [8, 9] that are proved to be sharp only for cycles (but with an
alternative definition of hyperbolicity).

• By applying the same technique as for line graphs, we are the first
to bound the hyperbolicity of clique graphs, a.k.a., the intersection
graphs of maximal cliques. More precisely, we prove that δ(G) − 1 ≤
δ(K(G)) ≤ δ(G) + 1 for every graph G, with K(G) being the clique
graph of G, and all possible cases between δ(G)− 1 and δ(G) + 1 can
happen (Theorem 8).

• We introduce graph powers [3] in our framework to obtain bounds on
the hyperbolicity of other graphs. As example we prove that (δ(G)−
3)/2 ≤ δ(BK(G)) ≤ (δ(G) + 3)/2 for every graph G, with BK(G)
being the biclique graph of G (Theorem 13). Bicliques are maximal
induced complete bipartite subgraphs and they have gained recent
attention in graph theory and graph algorithms. We refer to [19] and
the papers cited therein for details.

• Finally, we bound the hyperbolicity of some other extensions of line
graphs using our framework (Section 4.4), namely the incidence graph,
the total graph [5], the middle graph [27], and the k-edge graph [26]
of G.

Definitions and useful notations are given in Section 2.

2. Definitions and notations

We will follow the graph terminology in [6, 17]. Graphs in this study
are connected, unweighted and finite (although part of the results extend to
infinite weighted graphs). Given a graph G = (V,E), the distance between
every two vertices u, v in V equals the minimum number of edges on an uv-
path. We will denote the distance between u and v by dG(u, v), or simply
d(u, v) when G is clear from the context. Informally, we are interested in this
paper in embedding the vertices of G into a tree T (possibly, edge-weighted)
while minimizing the additive distortion of the distances in G. Hyperbolicity
is both a lower-bound and an O(log |V |)-approximation for the minimum
possible distortion [18]. Finer-grained relations between hyperbolicity and
the minimum possible distortion for graphs are discussed in [16].

3

Definition 1 (4-points Condition, [18]). Let G = (V,E) be a connected
graph.

For every 4-tuple u, v, x, y of V , we define δ(u, v, x, y) as half of the
difference between the two largest sums amongst:

S1 = d(u, v) + d(x, y), S2 = d(u, x) + d(v, y), and S3 = d(u, y) + d(v, x).

The graph hyperbolicity, denoted by δ(G), is equal to max
u,v,x,y∈V

δ(u, v, x, y).

Moreover, we say that G is δ-hyperbolic for every δ ≥ δ(G).

It is well-known that 0-hyperbolic graphs are exactly those that can be
embedded into a tree without any distortion, including trees and complete
graphs. In fact, 0-hyperbolic graphs coincide with the block graphs, that
are graphs whose all biconnected components are cliques (see Figure 1 for
an illustration) [4, 21]. The class of 1/2-hyperbolic graphs has also been
characterized in [2, 14].

0 1

2

3

4 5

6

7

8 9

10

11

12

13 14

15

16

17

18 19

20

21 22

23

(a) A block graph G.

0 1

2

3

4 5

6

7

8 9

10

11

12

13 14

15

16

17

18 19

20

21 22

23

25

26

27

28

32
35

1/2 1/2

1
/
2

1
/
2

1/2

1/
2

1/
2 1/2

1/2

1/2

1/2

1/
2 1/2

1
/
2

1

1

1

1/2

1
/
2

1/2
1/2

1

1

1/2

1/
2 1/2

1/
2

1

1

(b) An embedding of G into an edge-weighted tree
with null distortion.

Figure 1: Block graphs are exactly the 0-hyperbolic graphs.

Furthermore, it turns out that not all 4-tuples in the graph need to be

4

considered for the computation of hyperbolicity. This crucial point is the
cornerstone of the most efficient algorithms so far to compute this parame-
ter [7, 13]. Here we will use this observation to gain more insights on 4-tuples
with maximum hyperbolicity in our proofs. This will require us to introduce
the central notion of far-apart pairs.

Definition 2 (Far-apart pair [25, 28]). Given G = (V,E), the pair (u, v)
is far-apart if for every w ∈ V \ {u, v}, we have d(w, u) + d(u, v) > d(w, v)
and d(w, v) + d(u, v) > d(w, u).

Said differently, far-apart pairs are the ends of maximal shortest-paths
in the graph. Their key property is that there always exists a 4-tuple with
maximum hyperbolicity which contains two far-apart pairs.

Lemma 3 ([25, 28]). Given G = (V,E), there exist two far-apart pairs (u, v)
and (x, y) satisfying:

i) dG(u, v) + dG(x, y) ≥ max{dG(u, x) + dG(v, y),dG(u, y) + dG(v, x)};
ii) δ(u, v, x, y) = δ(G).

3. New bounds on the hyperbolicity of bipartite graphs

Let us start proving our main tool for the remaining of the paper, that is
Theorem 4. Informally, we will consider a bipartite graph B = (V0 ∪ V1, E)
as obtained from two smaller intersection graphs G0 and G1, each having one
side of the bipartition as its vertex-set. Our goal is to bound δ(B) depending
on δ(Gi), for any i ∈ {0, 1}. In fact, since any side Vi is a dominating set
of B, then it is not hard to prove that δ(B) ≤ 2δ(Gi) + 4 (using the the
4-point Condition of Definition 1). The main difficulty is to obtain the sharp
upper-bound δ(B) ≤ 2δ(Gi) + 2, for which we will need far-apart pairs.

Theorem 4. Let B = (V0 ∪ V1, E) be a bipartite graph. We have δB(Vi) ≤
δ(B) ≤ δB(Vi)+2, where δB(Vi) = max

u,v,x,y∈Vi

δB(u, v, x, y) for every i ∈ {0, 1},
and these bounds are sharp.

Proof. We will only need to consider the upper-bound δ(B) ≤ δB(Vi) + 2,
for the lower-bound δB(Vi) ≤ δ(B) trivially follows from the 4-points Con-
dition of Definition 1. To prove the upper-bound, let (u, v) and (x, y) be
two far-apart pairs of B such that S1 = d(u, v) + d(x, y) ≥ max{d(u, x) +
d(v, y), d(u, y)+d(v, x)} = S2 and δ(u, v, x, y) = δ(B), that exist by Lemma 3.
Note that δ(B) = (S1 − S2)/2.

5

0 1 2

3 4 5

6 7 8

Figure 2: The bipartite graph G3,3 with each side of the bipartition colored
differently.

We claim that there are u′, v′ ∈ Vi such that δ(u, v, x, y) ≤ δ(u′, v′, x, y)+
1. To prove the claim assume δ(u, v, x, y) > 0 (or else, it is trivial). The
latter implies (by Definition 1) that u, v, x, y are pairwise different. There
are three cases to be considered.

• If u, v ∈ Vi, then we are done by setting u′ = u and v′ = v.

• If u ∈ Vi and v /∈ Vi (resp., u /∈ Vi and v ∈ Vi), let us set u′ =
u and v′ ∈ N(v) (resp., u′ ∈ N(u) and v′ = v). In such case let
S′1 = d(u′, v′) + d(x, y) and let S′2 = max{d(u′, x) + d(v′, y), d(u′, y) +
d(v′, x)}. By the triangular inequality |S1 − S′1| ≤ 1 and similarly
|S2 − S′2| ≤ 1. Therefore, either S′1 < S′2 and so, δ(u, v, x, y) = (S1 −
S2)/2 ≤ (S′1 − S′2 + 2)/2 < 1 ≤ δ(u′, v′, x, y) + 1, or S′1 ≥ S′2 and so,
δ(u′, v′, x, y) = (S′1 − S′2)/2 ≥ (S1 − S2 − 2)/2 = δ(u, v, x, y)− 1.

• Else, u, v /∈ Vi. In particular, N(u) ⊆ Vi and N(v) ⊆ Vi because
B is bipartite by the hypothesis. We will prove as an intermediate
subclaim that for every pair (u′, v′) with u′ ∈ N(u) and v′ ∈ N(v),
we have either d(u′, v′) = d(u, v) or d(u′, v′) = d(u, v) − 2. Indeed,
d(u, v)−2 ≤ d(u′, v′) ≤ d(u, v)+2 by the triangular inequality, and so,
since the pairs (u, v) and (u′, v′) are in distinct sides of the bipartition
of B, either d(u′, v′) = d(u, v) − 2 or d(u′, v′) = d(u, v) or d(u′, v′) =
d(u, v) + 2. The latter case, d(u′, v′) = d(u, v) + 2, would contradict
the fact that (u, v) is far-apart. Hence either d(u′, v′) = d(u, v) or
d(u′, v′) = d(u, v)− 2, which proves the subclaim. Now there are two
subcases to be considered.

– Suppose there are u′ ∈ N(u) and v′ ∈ N(v) such that d(u′, v′) =
d(u, v). Let S′1 = d(u′, v′) + d(x, y) and let S′2 = max{d(u′, x) +
d(v′, y),d(u′, y) + d(v′, x)}. By the choice of u′ and v′, we have
S′1 = S1 while |S2 − S′2| ≤ 2 by the triangular inequality. As

6

a result, either S′1 < S′2 and so, δ(u, v, x, y) = (S1 − S2)/2 ≤
(S′1 − S′2 + 2)/2 < 1 ≤ δ(u′, v′, x, y) + 1, or S′1 ≥ S′2 and so,
δ(u′, v′, x, y) = (S′1 − S′2)/2 ≥ (S1 − S2 − 2)/2 = δ(u, v, x, y)− 1.

– Else, for every u′ ∈ N(u) and v′ ∈ N(v), we have d(u′, v′) =
d(u, v) − 2. Let u′ ∈ N(u) and v′ ∈ N(v) satisfy d(u, x) = 1 +
d(u′, x) and d(v, x) = 1+d(v′, x). We set as before S′1 = d(u′, v′)+
d(x, y) and S′2 = max{d(u′, x) + d(v′, y), d(u′, y) + d(v′, x)}. By
the choice of u′ and v′, we have S′1 = S1 − 2. Furthermore,
S2 − 2 ≤ S′2 ≤ S2 because d(u′, x) = d(u, x) − 1, d(v′, x) =
d(v, x)−1, and |d(u′, y)−d(u, y)| ≤ 1 and | d(v′, y)−d(v, y)| ≤ 1
by the triangular inequality. It follows that either S′1 < S′2 and so,
δ(u, v, x, y) = (S1−S2)/2 ≤ (S′1−S′2+2)/2 < 1 ≤ δ(u′, v′, x, y)+1,
or S′1 ≥ S′2, and so δ(u′, v′, x, y) = (S′1−S′2)/2 ≥ (S1−S2−2)/2 ≥
δ(u, v, x, y)− 1, that achieves proving the claim.

Finally, since the pair (x, y) is also far-apart, there exist x′, y′ ∈ Vi such
that δ(u′, v′, x, y) ≤ δ(u′, v′, x′, y′) + 1. As a result, δ(B) = δ(u, v, x, y) ≤
δ(u′, v′, x, y) + 1 ≤ δ(u′, v′, x′, y′) + 2 ≤ δB(Vi) + 2.

To show that the bounds are sharp, let us consider the square grid G3,3

of side length two as drawn in Figure 2. This bipartite graph has vertex-set
V = V0∪V1, with V0 = {0, 2, 4, 6, 8} and V1 = {1, 3, 5, 7}. We have δ(G3,3) =
2, that is reached with the four corners 0, 2, 6 and 8 (i.e., δ(0, 2, 6, 8) = 2).
On the one hand, side V0 contains the four corners and so δG3,3(V0) =
δ(G3,3) = 2. On the other hand, vertices on the other side V1 are exactly
the four neighbors of vertex 4, and so δG3,3(V1) = 0 = δ(G3,3)− 2.

4. Applications to intersection graphs

Our main results in this section are (sharp) lower and upper-bounds on
the hyperbolicity of intersection graphs that have been considered in the
literature. These comprise the two well-known families of line graphs and
clique graphs (we refer to [1, 29] for surveys), along with biclique graphs
that have been introduced more recently as extensions of line graphs.

4.1. Line graph

Definition 5. Given G = (V,E), the line-graph of G, denoted by L(G),
is the intersection graph of E. That is, it has vertex-set E and for every
e, e′ ∈ E there is an edge {e, e′} in L(G) if and only if e and e′ share an end
in G.

7

Theorem 6. For every graph G, δ(G)− 1 ≤ δ(L(G)) ≤ δ(G) + 1, and these
bounds are sharp.

(a) δ(G−1) = 2 (b) δ(L(G−1)) = 1
(c) δ(G− 1

2
) =

3

2 (d) δ(L(G− 1
2
)) = 1

(e) δ(G0) = 1 (f) δ(L(G0)) = 1 (g) δ(G 1
2
) =

1

2 (h) δ(L(G 1
2
)) = 1

(i) δ(G1) = 0 (j) δ(L(G1)) = 1

Figure 3: Examples of graphs Gi with δ(L(Gi)) = δ(Gi) + i for every i ∈
{−1,−1/2, 0,+1/2,+1}. A 4-tuple with maximum hyperbolicity is drawn
in bold on each graph.

Proof. Let B be the incidence graph of G, that is, it has vertex-set V ∪ E
and there is an edge in B between u ∈ V and e ∈ E if and only if u is an end
of e in G. By Theorem 4, δB(V) ≤ δ(B) ≤ δB(V)+2 and similarly δB(E) ≤
δ(B) ≤ δB(E) + 2. Furthermore by construction dB(u, v) = 2 dG(u, v) for
every u, v ∈ V and in the same way dB(e, e′) = 2 dL(G)(e, e

′) for every
e, e′ ∈ E. As a result, δB(V) = 2δ(G), similarly δB(E) = 2δ(L(G)), and so,

2δ(G) ≤ δ(B) ≤ 2δ(G) + 2,

2δ(L(G)) ≤ δ(B) ≤ 2δ(L(G)) + 2.

8

By mixing up the two chains of inequality one obtains 2δ(G) ≤ 2δ(L(G))+2
and 2δ(L(G)) ≤ 2δ(G) + 2, whence δ(G) ≤ δ(L(G)) + 1 and δ(L(G)) ≤
δ(G) + 1, as desired.

To show that the bounds are sharp, consider the graphs G−1 and G1 as
drawn respectively in Figures 3a and 3i. We have δ(L(G−1)) = δ(G−1)− 1
and δ(L(G1)) = δ(G1) + 1.

In Figure 3 we show that all possible cases of Theorem 6 (with defect
between −1 and +1) are realized by some graphs. By taking the incidence
graphs ofG−1 andG1, one obtains a new proof that the bounds of Theorem 4
are sharp.

4.2. Clique graph

Definition 7. Given G = (V,E), let Ω be the set of all maximal cliques of
G. The clique-graph of G, denoted by K(G), is the intersection graph of Ω.
That is, it has vertex-set Ω and for every S, S′ ∈ Ω there is an edge {S, S′}
in K(G) if and only if the two cliques S and S′ intersect.

Theorem 8. For every graph G, δ(G)−1 ≤ δ(K(G)) ≤ δ(G)+1, and these
bounds are sharp.

Proof. Let B be the bipartite graph defined as follows. It has vertex-set
V ∪ Ω and there is an edge between u ∈ V and S ∈ Ω if and only if u ∈ S.
By Theorem 4, δB(V) ≤ δ(B) ≤ δB(V) + 2 and similarly δB(Ω) ≤ δ(B) ≤
δB(Ω) + 2. Furthermore, dB(S, S′) = 2 dK(G)(S, S

′) for every S, S′ ∈ Ω by
construction, so, δB(Ω) = 2δ(K(G)). We claim in addition that dB(u, v) =
2 dG(u, v) for every u, v ∈ V . To prove the claim it is enough to prove
dB(u, v) = 2 if and only if u and v are adjacent in G. By construction,
dB(u, v) = 2 if and only if there is S ∈ Ω such that u, v ∈ S. If u, v ∈ S
for some S ∈ Ω then u and v are adjacent in G because S is a clique of
G, conversely if u and v are adjacent in G then u, v ∈ S with S being any
maximal clique containing the edge {u, v}. Therefore, the claim is proved,
and so, since dB(u, v) = 2 dG(u, v) for every u, v ∈ V , δB(V) = 2δ(G). As a
result:

2δ(G) ≤ δ(B) ≤ 2δ(G) + 2,

2δ(K(G)) ≤ δ(B) ≤ 2δ(K(G)) + 2.

By mixing up the two chains of inequality one obtains 2δ(G) ≤ 2δ(K(G))+2
and 2δ(K(G)) ≤ 2δ(G) + 2, whence δ(G) ≤ δ(K(G)) + 1 and δ(K(G)) ≤
δ(G) + 1, as desired.

9

(a) δ(H−1) = 1 (b) δ(K(H−1)) = 0 (c) δ(H− 1
2
) =

1

2 (d) δ(K(H− 1
2
)) = 0

(e) δ(H0) = 1 (f) δ(K(H0)) = 1 (g) δ(H 1
2
) =

1

2 (h) δ(K(H 1
2
)) = 1

(i) δ(H1) = 1 (j) δ(K(H1)) = 2

Figure 4: Examples of graphs Hi with δ(K(Hi)) = δ(Hi) + i for every i ∈
{−1,−1/2, 0,+1/2,+1}. A 4-tuple with maximum hyperbolicity is drawn
in bold on each graph.

10

To show that the bounds are sharp, consider the graphs H−1 and H1 as
drawn respectively in Figures 4a and 4i. We have δ(K(H−1)) = δ(H−1)− 1
and δ(K(H1)) = δ(H1) + 1.

In Figure 4 we show that all possible cases of Theorem 8 (with defect
between −1 and +1) are realized by some graphs. Note that H−1 = L(G 1

2
),

H− 1
2

= G 1
2
, H0 = G0 and H1 = L(G−1).

4.3. Biclique graph

The above two examples of line graphs and clique graphs are intersection
graphs of cliques. However, there are interesting graph families that are
defined as the intersection graphs of some subgraphs of diameter larger than
one. As a general method to overcome this difficulty, we now introduce graph
powers in our framework.

Definition 9. Given G = (V,E) and k ≥ 1, the kth-power of G, denoted by
Gk, is defined as follows. It has vertex-set V and for every u, v ∈ V there
is an edge {u, v} in Gk if and only if dG(u, v) ≤ k.

Pushing further a previous result from [14], let us bound the hyperbol-
icity of graph powers (Proposition 11). We will need the following interme-
diate lemma.

Lemma 10 ([3]). Given G = (V,E) and k ≥ 1, dGk(u, v) =

⌈
dG(u, v)

k

⌉
for

every u, v ∈ V .

Proposition 11. For every graph G and k ≥ 2,
δ(G) + 1

k
− 1 ≤ δ(Gk) ≤

δ(G)− 1

k
+ 1, and these bounds are sharp.

Proof. Let u, v, x, y ∈ V be arbitrary. Assume w.l.o.g. S1 = dG(u, v) +
dG(x, y) ≥ S2 = dG(u, x) + dG(v, y) ≥ S3 = dG(u, y) + dG(v, x). In
order to prove Proposition 11, we will need to prove some relations be-
tween the hyperbolicity δG(u, v, x, y) of the 4-tuple in G and the hyperbol-
icity δGk(u, v, x, y) of the 4-tuple in Gk. Let S′1 = dGk(u, v) + dGk(x, y),
S′2 = dGk(u, x) + dGk(v, y) and S′3 = dGk(u, y) + dGk(v, x). By Lemma 10,
we have:

S′1 =

⌈
dG(u, v)

k

⌉
+

⌈
dG(x, y)

k

⌉
, S′2 =

⌈
dG(u, x)

k

⌉
+

⌈
dG(v, y)

k

⌉
and

S′3 =

⌈
dG(u, y)

k

⌉
+

⌈
dG(v, x)

k

⌉
.

11

In particular Si/k ≤ S′i ≤ Si/k + 2(1 − 1/k) for every 1 ≤ i ≤ 3. Since
2(1 − 1/k) < 2, there can be no more than two integers between Si/k and
Si/k + 2(1− 1/k), that implies either S′i = dSi/ke or S′i = dSi/ke+ 1. Now
there are two cases to be considered.

• Suppose S′1 < S′j with S′j = max{S′2, S′3}. Then it must be the case
that S′1 = dS1/ke and S′j = dSj/ke+ 1 because dS1/ke ≥ dSj/ke. The
latter implies

δGk(u, v, x, y) ≤
S′j − S′1

2
≤

⌈
Sj

k

⌉
+ 1−

⌈
S1
k

⌉

2

≤ 1

2
≤ 1− 1

k
≤ δG(u, v, x, y)− 1

k
+ 1

(1)

δG(u, v, x, y) ≤ S1 − Sj
2

≤ k
S1
k −

Sj

k

2
≤ k

[
S′1 − S′j

2
+ 1− 1

k

]

≤ −k
2

+ k − 1 ≤ k

2
− 1

(2)

Furthermore if δG(u, v, x, y) ≤ k/2−1 then (δG(u, v, x, y)+1)/k−1 <
0 ≤ δGk(u, v, x, y).

• Else, S′1 ≥ max{S′2, S′3}. In such case δGk(u, v, x, y) = (S′1−max{S′2, S′3})/2.
Moreover, S2/k ≤ max{S′2, S′3} ≤ S2/k + 2(1− 1/k) because S2 ≥ S3.
Therefore,

δGk(u, v, x, y) ≥
S1
k − S2

k − 2
(
1− 1

k

)

2
≥ δG(u, v, x, y)

k
− 1 +

1

k
(3)

δGk(u, v, x, y) ≤
S1
k + 2

(
1− 1

k

)
− S2

k

2
≤ δG(u, v, x, y)

k
+ 1− 1

k
(4)

It follows that (δG(u, v, x, y) + 1)/k − 1 ≤ δGk(u, v, x, y) ≤ (δG(u, v, x, y) −
1)/k + 1 in both cases.

• When u, v, x, y maximizes δG the first inequality leads to
(δ(G) + 1)/k − 1 ≤ δGk(u, v, x, y) ≤ δ(Gk).

• When it maximizes δGk the second inequality leads to
δ(Gk) ≤ (δG(u, v, x, y)− 1)/k + 1 ≤ (δ(G)− 1)/k + 1.

Let us finally show that the bounds of Proposition 11 are sharp. Indeed,
on the one hand the cycle C4 with four vertices satisfies δ(C4) = 1 and C2

4 =

12

K4, the clique with four vertices. Therefore, δ(C2
4) = 0 = (δ(C4) + 1)/2− 1.

On the other hand the rectangular grid G2,3 (obtained from two C4’s sharing
exactly one edge) satisfies δ(G2,3) = 1, and its four borders induce a C4 in
G2

2,3. Consequently, δ(G2
2,3) ≥ 1 ≥ (δ(G2,3)− 1)/2 + 1.

We will illustrate the benefit of using graph powers within our framework
through the case of biclique graphs, that are defined as follows.

Definition 12. Given G = (V,E), the set S ⊆ V is a biclique of G if it
induces a complete bipartite subgraph of G. Let Σ be all maximal bicliques
of G. The biclique graph of G, denoted by BK(G), is the intersection graph
of Σ. That is, it has vertex-set Σ and for every S, S′ ∈ Σ there is an edge
{S, S′} in BK(G) if and only if the two bicliques S and S′ intersect.

(a) δ(G3,3) = 2 (b) δ(BK(G3,3)) = 0

Figure 5: The grid graph G3,3 along with its biclique graph, that is the com-
plete graph K9 with nine vertices. A 4-tuple with maximum hyperbolicity
is drawn in bold on each graph.

For instance, the biclique graph of a complete graph is exactly its line
graph. In Figure 5 we consider the biclique graph of the grid G3,3. The
maximal bicliques of this grid comprise four cycles of length four, four stars
with three branches each and one star with four branches. All of these
pairwise intersect at the central vertex of the grid, therefore, BK(G3,3) =
K9, the complete graph with nine vertices.

Theorem 13. For every graph G, (δ(G)−3)/2 ≤ δ(BK(G)) ≤ (δ(G)+3)/2.

Proof. Let B be the bipartite graph defined as follows. It has vertex-set
V ∪ Σ and there is an edge between u ∈ V and S ∈ Σ if and only if
u ∈ S. By Theorem 4, δB(V) ≤ δ(B) ≤ δB(V) + 2 and similarly δB(Σ) ≤
δ(B) ≤ δB(Σ) + 2. Furthermore, dB(S, S′) = 2 dBK(G)(S, S

′) for every
S, S′ ∈ Σ by construction, so, δB(Σ) = 2δ(BK(G)). We claim in addition
that dB(u, v) = 2 dG2(u, v) for every u, v ∈ V , with G2 be defined as in

13

Definition 9. To prove the claim it is enough to prove dB(u, v) = 2 if and only
if dG(u, v) ≤ 2. By construction, dB(u, v) = 2 if and only if there is S ∈ Σ
such that u, v ∈ S. If u, v ∈ S for some S ∈ Σ then dG(u, v) ≤ 2 because S
induces a complete bipartite subgraph of G, conversely if dG(u, v) ≤ 2 then
every uv-shortest-path P in G induces a complete bipartite subgraph of G
(with one side containing one vertex and the other side containing one or
two vertices) and so, u, v ∈ S with S being any maximal biclique containing
P . Therefore, the claim is proved, and since dB(u, v) = 2 dG2(u, v) for every
u, v ∈ V , we obtain δB(V) = 2δ(G2). As a result:

2δ(G2) ≤ δ(B) ≤ 2δ(G2) + 2,

2δ(BK(G)) ≤ δ(B) ≤ 2δ(BK(G)) + 2.

By mixing up the two chains of inequality one obtains 2δ(G2) ≤ 2δ(BK(G))+
2 and 2δ(BK(G)) ≤ 2δ(G2) + 2, whence δ(G2) ≤ δ(BK(G)) + 1 and
δ(BK(G)) ≤ δ(G2) + 1. Since by Proposition 11 (δ(G) − 1)/2 ≤ δ(G2) ≤
(δ(G) + 1)/2, one obtains δ(BK(G)) ≥ δ(G2) − 1 ≥ (δ(G) − 3)/2 and
δ(BK(G)) ≤ (δ(G) + 1)/2 + 1 ≤ (δ(G) + 3)/2, as desired.

In fact, we prove the more precise inequalities δ(G2)− 1 ≤ δ(BK(G)) ≤
δ(G2) + 1 for every graph G, and we claim these bounds are sharp.

Corollary 14. For every graph G, δ(G2)−1 ≤ δ(BK(G)) ≤ δ(G2)+1, and
these bounds are sharp.

Proof. The bounds are given by Theorem 13. Also, let us now show that
they are sharp.

Consider first the grid graph G3,3. We have δ(BK(G3,3)) = δ(K9) = 0,
while δ(G2

3,3) ≥ 1 because the four corners of the grid induce a cycle of length

four in the square graph G2
3,3. As a result, δ(BK(G3,3)) = δ(G2

3,3)− 1, and
so the lower-bound is reached.

Now, recall that the biclique graph of a complete graph Kn is exactly
the line graph L(Kn). Therefore, consider the graph K4 and its line graph
(G1 and L(G1) in Figures 3i and 3j). Since K2

4 = K4 then it is indeed the
case that δ(BK(K4)) = δ(L(K4)) = δ(K4) + 1 = δ(K2

4) + 1, and so the
upper-bound is also reached.

4.4. Additional bounds

Before we conclude this paper, let us present a few other results that are
obtained within our framework. More precisely, given a graph G = (V,E)

14

(a) G (b) Inc(G) (c) T (G) (d) mid(G) (e) ∆3(G)

Figure 6: Some intersection graphs obtained from a triangular grid graph
G. We have δ(G) = 1/2, δ(Inc(G)) = 2, δ(T (G)) = 1, δ(mid(G)) = 1, and
δ(∆3(G)) = 1/2.

we consider the following extensions of line graphs (illustrations for each
case are given in Figure 6).

The incidence graph of G, denoted by Inc(G), has vertex set V ∪E with
an edge between every u ∈ V and every e ∈ E such that u is an end of e in
G (see Figure 6b). It follows from the proof of Theorem 6 (for line graphs)
that 2δ(G) ≤ δ(Inc(G)) ≤ 2δ(G) + 2 and the bounds are sharp.

The total graph of G [5], denoted by T (G), is constructed from G and
L(G) by adding an edge between every u ∈ V and every e ∈ E such
that u is an end of e in G (see Figure 6c). In fact, this implies T (G) =
(Inc(G))2, hence by Proposition 11 we have (δ(Inc(G))−1)/2 ≤ δ(T (G)) ≤
(δ(Inc(G)) + 1)/2, and so, δ(G) − 1/2 ≤ δ(T (G)) ≤ δ(G) + 3/2. One can
sharpen the lower-bound and write δ(G) ≤ δ(T (G)) ≤ δ(G)+3/2 after notic-
ing that G is an isometric subgraph (i.e., a distance-preserving subgraph)
of T (G).

The middle graph of G [27], denoted by mid(G), is constructed from
Inc(G) by adding an edge between every two “edge-vertices” e, e′ ∈ E shar-
ing an end in G (see Figure 6d). Said differently, it is the intersection graph
of all cliques of size two or less in G. Using a bipartite representation that
is similar in spirit with those for line graphs (Theorem 6) and clique graphs
(Theorem 8), one obtains δ(G)− 1 ≤ δ(mid(G)) ≤ δ(G) + 1.

Last, the k-edge graph of G [26], denoted by ∆k(G), is the intersection
graph of all cliques of size k and maximal cliques of size at most k − 1 in
G (see Figure 6e). Note that if k = 2 then it is exactly the line graph,
and if k = n then it is exactly the clique graph. Again using a bipartite
representation with similar properties as those for line graphs and clique
graphs, one obtains δ(G)− 1 ≤ δ(∆k(G)) ≤ δ(G) + 1.

15

5. Conclusion

We have proved that the hyperbolicity of any bipartite graph can be ap-
proximated up to a small additive constant by only considering the smallest
side of its bipartition. This means a decrease by half of the number of ver-
tices to be considered, hence a speed-up in the computation of hyperbolicity.
On a more theoretical side, we detailed a simple framework so as to bound
the hyperbolicity of line graphs and several other intersection graphs. We
let open the question whether our techniques could also be applied to more
“exotic” generalizations of line graphs – say, edge clique graphs [10].

References

[1] Bagga, J., 2004. Old and new generalizations of line graphs. Interna-
tional Journal of Mathematics and Mathematical Sciences 2004 (29),
1509–1521.

[2] Bandelt, H.-J., Chepoi, V., 2003. 1-hyperbolic graphs. SIAM Journal
on Discrete Mathematics 16 (2), 323–334.

[3] Bandelt, H.-J., Henkmann, A., Nicolai, F., 1995. Powers of distance-
hereditary graphs. Discrete Mathematics 145 (1), 37–60.

[4] Bandelt, H.-J., Mulder, H., 1986. Distance-hereditary graphs. Journal
of Combinatorial Theory, Series B 41 (2), 182–208.
URL http://dx.doi.org/10.1016/0095-8956(86)90043-2

[5] Behzad, M., Chartrand, G., 1966. Total graphs and traversability. Pro-
ceedings of the Edinburgh Mathematical Society (Series 2) 15 (02),
117–120.

[6] Bondy, J., Murty, U., 1976. Graph theory with applications. Vol. 290.
Macmillan London.

[7] Borassi, M., Coudert, D., Crescenzi, P., Marino, A., Sep. 2015. On
computing the hyperbolicity of real-world graphs. In: 23rd Annual Eu-
ropean Symposium on Algorithms (ESA). Vol. 9294 of Lecture Notes
in Computer Science. Springer, Patras, Greece, pp. 215–226.

[8] Carballosa, W., Rodŕıguez, J., Sigarreta, J., 2014. New inequal-
ities on the hyperbolicity constant of line graphs. arXiv preprint
arXiv:1410.2941.

16

[9] Carballosa, W., Rodŕıguez, J., Sigarreta, J., Villeta, M., 2011. On the
hyperbolicity constant of line graphs. Electronic journal of combina-
torics 18 (1), P210.

[10] Chartrand, G., Kapoor, S., McKee, T., Saba, F., 1991. Edge-clique
graphs. Graphs and Combinatorics 7 (3), 253–264.

[11] Chepoi, V., Dragan, F., Estellon, B., Habib, M., Vaxès, Y., 2008. Di-
ameters, centers, and approximating trees of delta-hyperbolic geodesic
spaces and graphs. In: 24th Symposium on Computational Geometry
(SCG). ACM, pp. 59–68.
URL http://dx.doi.org/10.1145/1377676.1377687

[12] Cohen, N., Coudert, D., Ducoffe, G., Lancin, A., Jun. 2014. Ap-
plying clique-decomposition for computing Gromov hyperbolicity. Re-
search Report hal-00989024, Inria Sophia Antipolis; I3S; Université
Nice Sophia Antipolis; CNRS.
URL http://hal.inria.fr/hal-00989024

[13] Cohen, N., Coudert, D., Lancin, A., 2015. On computing the gromov
hyperbolicity. ACM Journal of Experimental Algorithmics 20 (1), 18.

[14] Coudert, D., Ducoffe, G., Sep. 2014. Recognition of C4-free and 1/2-
hyperbolic graphs. SIAM Journal on Discrete Mathematics 28 (3),
1601–1617.
URL https://hal.inria.fr/hal-01070768

[15] Coudert, D., Ducoffe, G., 2016. Data center interconnection networks
are not hyperbolic. Theoretical Computer Science.
URL https://hal.inria.fr/hal-01323301

[16] Coudert, D., Ducoffe, G., Nisse, N., 2016, to appear. To approximate
treewidth, use treelength! SIAM Journal on Discrete Mathematics.

[17] Diestel, R., 1997. Graph theory. Vol. 173 of Graduate texts in mathe-
matics. Springer, Heidelberg.

[18] Gromov, M., 1987. Hyperbolic groups. Essays in Group Theory 8, 75–
263.

[19] Groshaus, M., Szwarcfiter, J., 2010. Biclique graphs and biclique ma-
trices. Journal of Graph Theory 63 (1), 1–16.

17

[20] Hamelink, R., 1968. A partial characterization of clique graphs. Journal
of Combinatorial Theory 5 (2), 192–197.

[21] Howorka, E., 1979. On metric properties of certain clique graphs. Jour-
nal of Combinatorial Theory, Series B 27 (1), 67–74.
URL http://dx.doi.org/10.1016/0095-8956(79)90069-8

[22] Kennedy, W., Narayan, O., Saniee, I., 2013. On the hyperbolicity of
large-scale networks. Tech. Rep. arXiv:1307.0031, ArXiv.
URL http://arxiv.org/abs/1307.0031

[23] Magnien, C., Latapy, M., Habib, M., 2008. Fast computation of empir-
ically tight bounds for the diameter of massive graphs. ACM Journal
of Experimental Algorithmics 13.
URL http://doi.acm.org/10.1145/1412228.1455266

[24] Mart́ınez-Pérez, A., 2015. Chordality properties and hyperbolicity on
graphs. arXiv preprint arXiv:1505.05675.

[25] Noguès, D., 2009. δ-hyperbolicité et graphes. Master’s thesis, MPRI,
Université Paris 7.

[26] Prisner, E., 1994. A common generalization of line graphs and clique
graphs. Journal of Graph Theory 18 (3), 301–313.

[27] Prisner, E., 1995. Graph dynamics. Vol. 338. CRC Press.

[28] Soto Gómez, M. A., 2011. Quelques propriétés topologiques des graphes
et applications à internet et aux réseaux. Ph.D. thesis, Univ. Paris
Diderot (Paris 7).
URL http://www.dim.uchile.cl/~mausoto/memoires/these.pdf

[29] Szwarcfiter, J., 2003. A survey on clique graphs. In: Recent advances
in algorithms and combinatorics. Springer, pp. 109–136.

[30] Whitney, H., 1992. Congruent graphs and the connectivity of graphs.
In: Hassler Whitney Collected Papers. Springer, pp. 61–79.

[31] Wu, Y., Zhang, C., 2011. Hyperbolicity and chordality of a graph. The
Electronic Journal of Combinatorics 18 (1), P43.
URL http://www.combinatorics.org/ojs/index.php/eljc/

article/view/v18i1p43

18

Appendix E

Data center interconnection
networks are not hyperbolic

Data center interconnection networks are not hyperbolic∗

David Coudert1,2 and Guillaume Ducoffe2,1

1Inria, France
2Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

May 30, 2016

Abstract

Topologies for data center interconnection networks have been proposed in the literature
through various graph classes and operations. A common trait to most existing designs is that
they enhance the symmetric properties of the underlying graphs. Indeed, symmetry is a de-
sirable property for interconnection networks because it minimizes congestion problems and it
allows each entity to run the same routing protocol. However, despite sharing similarities these
topologies all come with their own routing protocol. Recently, generic routing schemes have
been introduced which can be implemented for any interconnection network. The performances
of such universal routing schemes are intimately related to the hyperbolicity of the topology.
Roughly, graph hyperbolicity is a metric parameter which measures how close is the shortest-
path metric of a graph from a tree metric (the smaller the gap the better). Motivated by the
good performances in practice of these new routing schemes, we propose the first general study
of the hyperbolicity of data center interconnection networks. Our findings are disappointingly
negative: we prove that the hyperbolicity of most data center interconnection topologies scales
linearly with their diameter, that it the worst-case possible for hyperbolicity. To obtain these
results, we introduce original connection between hyperbolicity and the properties of the endo-
morphism monoid of a graph. In particular, our results extend to all vertex and edge-transitive
graphs. Additional results are obtained for de Bruijn and Kautz graphs, grid-like graphs and
networks from the so-called Cayley model.

Keywords. greedy routing scheme; metric embedding; graph endomorphism; Gromov hy-
perbolicity; Cayley graph; data center; interconnection network

1 Introduction

The network topologies that are used to interconnect the computing units of large-scale facilities
(e.g., super computers, data centers hosting cloud applications, etc.) are designed to optimize
various constraints such as equipment cost, deployment time, capacity and bandwidth, routing
functionalities, reliability to equipment failures, power consumption, etc. This large variety of
(conflicting) criteria has yielded numerous proposals of interconnection networks. See for in-
stance [11, 12, 20, 47, 81] and [36, 38–40, 59] for the most recent ones. A common feature of the

∗This work is partially supported by ANR project Stint under reference ANR-13-BS02-0007 and ANR program
“Investments for the Future” under reference ANR-11-LABX-0031-01.

1

proposed constructions is to design network topologies offering a high-level of symmetries. Indeed,
it is easier to balance the traffic load, and hence to minimize the congestion, on network topolo-
gies with a high-level of symmetry. Furthermore, it simplifies the initial wiring of the physical
infrastructure and it ensures that each router node can run the protocol.

However, despite sharing properties, interconnection networks rely on specific routing algorithms
that are optimized for each topology. As a novel step toward efficient and topology agnostic routing
schemes, the authors in [64–66] proposed to use greedy routing schemes based on an embedding of
the topology into certain metric space such as the hyperbolic metric space, and more recently the
word metric space. This approach has been shown particularly efficient for Internet-like graphs [33,
42] where routes with low stretch are obtained. One explanation of this good behavior is that
Internet-like graphs have low hyperbolicity [10, 74], a graph parameter providing sharp bounds on
the stretch (or distortion) of the distances in a graph when it is embedded into an edge-weighted
tree.

In this paper, we characterize or give upper and lower-bounds on the hyperbolicity of a broad
range of interconnection network topologies. These bounds can be used to analyze the worst-case
behavior of greedy routing schemes in these topologies. Before we present our results, let us further
put in context the role they play in routing and in other distance-related problems.

Related work. Greedy routing schemes based on an embedding into the hyperbolic space have
been introduced by Kleinberg in [33]. Since then, various authors explored further this approach [42,
45, 48]). In particular, they showed that the graphs of the Autonomous Systems of the Internet
embed better into a hyperbolic space than into an Euclidean space1. It was only recently in [70] that
a formal relationship between the performances of hyperbolic embeddings and the hyperbolicity was
proved. Namely, the authors proved that the over-delay for such routing schemes, or equivalently
the stretch of the routing, depends on the hyperbolicity. In [73], the authors proved that similar
results hold for greedy routing schemes based on an embedding of the topology into some word
metric space (e.g., see [26] for more information). More precisely, they use hyperbolicity to upper-
bound the complexity of their routings, as well as to bound the size of the automata that are
involved in their routing schemes.

Their results add up to prior worst-case analysis of graph heuristics that already pointed out the
important role played by the hyperbolicity. For instance, there are approximation algorithms for
problems related to distances in graphs —like diameter and radius computation [37], and minimum
ball covering [32]— whose approximation constant depends on the hyperbolicity. Sometimes the
approximation factor is a universal constant but the algorithm relies on a data-structure whose
size is proportional to the hyperbolicity of the network topology [31]. Geometric routing schemes
in [42,45,48] do not make exception and so have a stretch lower-bounded by the hyperbolicity (the
bound is reached by some of them).

There have been measurements to confirm that complex networks such as the graphs of the
Autonomous Systems of the Internet, social networks and phylogenetic networks all have a low
hyperbolicity. We refer to [60,62,63,71,74,77] for the most important studies in this area. Additional
related work in [50,57] shows that the low hyperbolicity of complex networks may be a consequence

1In fact, it follows from [23] that for any n-vertex graph G there is an embedding ϕ of G into the Euclidean space
(with unbounded dimension) such that for every u, v ∈ V (G) we have d(ϕ(u), ϕ(v)) ≤ O(

√
log log n) · dG(u, v) +

Ô(δ(G) · logn), with δ(G) being the hyperbolicity (the Ô-notation suppresses the polyloglog factors). However, it
does not seem that hyperbolicity is the most relevant parameter in the study of Euclidean embeddings.

2

of some preferential attachment mechanisms. However, we are not informed of any study on the
hyperbolicity of data center interconnection networks. In this paper, we aim to fill in this gap
through a theoretical study of their underlying graphs.

Our contributions. In an attempt to confront with the diversity of interconnection network
topologies proposed in the literature, we relate hyperbolicity with a few graph properties that are
frequently encountered in these topologies. Indeed, we do not aim to provide a —long and non-
exhaustive— listing of unrelated results for each network, but rather to exhibit a small number of
their characteristics that are strongly related with their metric invariants. In particular, we relate
hyperbolicity with the symmetries of a graph.

• We prove in Section 3 that for graphs whose center is a k-distance dominating set for some
small value of k, the hyperbolicity scales linearly with the diameter. This class of graphs
strictly contains graphs whose diameter equals the radius, a.k.a. the self-centered graphs [9,
14]. In particular, it comprises all vertex-transitive graphs (a strict subclass of self-centered
graphs), as well as edge-transitive graphs. A main consequence of our result is that every
interconnection network whose topology is based on a Cayley graph has large hyperbolicity2.

• In addition, we prove that similar results hold for graphs admitting an endomorphism such
that the distance between any vertex and its symmetric image is large. On the way to prove
these results, we define a new graph invariant which is called weak mobility, that generalizes
the so-called graph mobility (e.g., see [22, 34]). We use these new results to improve our
lower-bounds on the hyperbolicity of several interconnection networks.

• For completeness, we also characterize the hyperbolicity of other “symmetric” networks such
as de Bruijn, Kautz and grid-like graphs. More precisely, we apply different techniques that
are based on their shortest-paths distribution so that we can prove in Section 4 that they
also have a large hyperbolicity. The techniques that are involved in the proofs have been
introduced in previous papers [16,41], but to the best of our knowledge the way we use them
in this work is new.

All of the above results are summarized in Table 1.

• Last, we extend our results in Section 5 to heterogenous data center interconnection networks.
That is, we relate hyperbolicity with several graph operations, most of them being introduced
in the Cayley model of [59] in order to enhance some desirable properties of data center
interconnection networks.

Our main message is that existing designs in the literature yield graphs with the highest possible
value for the hyperbolicity —w.r.t. their diameter. On the negative side, it means that any greedy
routing scheme whose stretch depends on the hyperbolicity is not scalable enough to cope with
large data centers. But on a more positive side, it also implies that any routing scheme relying on

2 Independently from this work, the authors in [54] proved that for any vertex-transitive graph, the hyperbolicity
scales linearly with the diameter. However, their proof relies on another definition of hyperbolicity, and it is unclear
whether the proof can be extended to other graph classes. By contrast, our proof yields a tighter lower-bound for
hyperbolicity, and it relies on a much simpler and more general argument (i.e., see Theorem 4). Especially, it also
applies to edge-transitive graphs.

3

a data-structure with size proportional to the hyperbolicity solely requires sublogarithmic space in
the number of servers. Indeed, it is well-known that the data center interconnection networks often
have a diameter that is logarithmic or sublogarithmic in their size.

We start this paper providing useful notations and definitions in Section 2, and we conclude it
in Section 6 with open questions. Especially, can we infer a formal relationship between network
congestion and graph hyperbolicity ?

2 Preliminaries

A data center is a facility that is used to house resources such as computer systems, servers,
etc. Data center resources are interconnected using communication networks, that are called data
center interconnection networks. They are modeled as a graph where the vertices are the data
center resources (e.g., computing units) and there is an edge between two resources if they are
directly connected in the network. Different graph classes have been proposed in order to design
data center interconnection networks [11, 12, 20, 36, 38–40, 47, 59, 81]. In what follows, our results
apply to general graphs, but they are aimed at providing good lower-bounds on the hyperbolicity
for these specific topologies.

We refer to [80, 82] for the usual graph terminology. Graphs in this study are finite, simple
(hence, without loop nor multiple edges), connected and unweighted.

2.1 Metric graph theory

Given a connected graph G = (V,E), the distance between any two vertices u, v ∈ V is defined as
the minimum number of edges on a uv-path. We will denote it by dG(u, v), or by d(u, v) whenever
G is clear from the context. For any subset S ⊆ V , the eccentricity of vertex v ∈ S, denoted
eccG(v, S), is defined as the maximum distance in G between v and any other vertex in S. The
radius of S is defined as the least eccentricity of vertices in S and is denoted by radG(S), while the
diameter of S is defined as the largest eccentricity of vertices in S and is denoted by diamG(S).
Observe that it always holds radG(S) ≤ diamG(S) ≤ 2 · radG(S). In particular, for any vertex
v ∈ V , we denote by ecc(v) = eccG(v, V), rad(G) = radG(V) and diam(G) = diamG(V). The
center C(G) of the graph is the subset of all vertices with minimum eccentricity rad(G). We call
the graph G self-centered if it holds diam(G) = rad(G) i.e., every vertex of G is in the center.

Last, we define graph hyperbolicity as follows.

Definition 1 (4-points Condition, [10]). Let G be a connected graph.
For every 4-tuple u, v, x, y of G, we define δ(u, v, x, y) as half of the difference between the two

largest sums amongst:

S1 = d(u, v) + d(x, y), S2 = d(u, x) + d(v, y), and S3 = d(u, y) + d(v, x).

The graph hyperbolicity, denoted by δ(G), is equal to maxu,v,x,y δ(u, v, x, y).
Moreover, we say that G is δ-hyperbolic, for every δ ≥ δ(G).

Other definitions exist for the hyperbolicity, but they are pairwise equivalent up to a constant-
factor (e.g., see [10] for details). So far, the hyperbolicity of a few graph classes has been charac-
terized such as: random graphs [56, 61, 69], chordal graphs [25], k-chordal graphs [53], outerplanar

4

N
am

e
D

eg
re

e
m

ax
.

D
ia

m
et

er
O

rd
er

δ
P

ro
o
f

d
e

B
ru

ij
n

gr
ap

h
,
U
B

(d
,D

)
2d

D
d
D

1 2

⌊ D 2

⌋ ≤
δ
≤
⌊ D 2

⌋
P

ro
p
.

3
7

K
au

tz
gr

ap
h
,
U
K

(d
,D

)
2d

D
d
D

(d
+

1)
⌊ D 4

⌋ +
ε
≤
δ
≤
⌊ D 2

⌋ ,
ε
∈
{0
,1
}

P
ro

p
.

4
0

S
h
u
ffl

e
ex

ch
an

ge
,
S
E

(n
)

3
2n
−

1
2
n

1 2

⌊ n 2

⌋ ≤
δ
≤
n
−

1
P

ro
p
.

4
2

(n
,m

)-
gr

id
4

n
+
m
−

2
n
m

m
in
{n
,m
}−

1
C

o
r.

4
8

d
-d

im
en

si
on

al
gr

id
of

si
ze
s

2d
d
(s
−

1)
sd

(s
−

1)
⌊ d 2

⌋
C

o
r.

4
9

T
ri

a
n
gu

la
r

(n
,m

)-
g
ri

d
6

n
+
m
−

2
n
m

m
in
{n

,m
}−

1
2

L
em

.
5
1

H
ex

ag
on

al
(n
,m

)-
gr

id
6

{
n
−

1
+
⌈ m
−

1
2

⌉
w

h
en

m
≤

2n
−

1

m
−

1
ot

h
er

w
is

e
n
m

m
in
{n

,m
}−

1
2

L
em

.
5
3

C
y
li
n
d
er

(n
,m

)-
gr

id
4

⌊ n 2

⌋ +
m
−

1
n
m

m
in
{⌊

n 2

⌋ ,
1 2

(⌊
n 2

⌋ +
m
) −

ε}
,
ε
∈
{ 1 2
,1
}

L
em

.
5
5

T
o
ru

s
(n
,m

)-
g
ri

d
4

⌊ n 2

⌋ +
⌊ m 2

⌋
n
m

⌊ 1 2

(⌊
n 2

⌋ +
⌊ m 2

⌋)
⌋ −

1
≤
δ
≤
⌊ 1 2

(⌊
n 2

⌋ +
⌊ m 2

⌋)
⌋

L
em

.
1
1

G
en

.
h
y
p

er
cu

b
e,
G

(m
1
,.
..
,m

r
)

∑
r i=

1
m

i
−
r

r
∏

r i=
1
m

i

⌊ r 2

⌋
L

em
.

1
3

C
u
b

e
C

on
n
ec

te
d

C
y
cl

e,
C
C
C

(n
)

3
2
n
−

2
+

m
ax
{ 2,
⌊ n 2

⌋}
n

2
n

n
≤
δ
≤
n
−

1
+

⌊ m
a
x
{2

, bn
2
c}

2

⌋
L

em
.

1
5

B
C

u
b

e k
(n

)
m

ax
{n
,k

+
1
}

2(
k

+
1)

2
k
(n

+
k

+
1)

k
+

1
L

em
.

1
7

F
at

-T
re

e k
k

6
k
2 4
(k

+
5)

2
L

em
.

1
9

B
u
tt

er
fl
y

g
ra

p
h
,
B
F

(n
)

4
2
n

2n
(n

+
1)

n
L

em
.

2
1

W
ra

p
p

ed
B

u
tt

er
fl
y

g
ra

p
h
,
W
B
F

(n
)

4
n

+
⌊ n 2

⌋
2n

(n
+

1)
⌊ n 2

⌋ ≤
δ
≤
⌊ 1 2

(n
+
⌊ n 2

⌋)
⌋

L
em

.
2
1

k
-a

ry
n

-fl
y

2
k

2
n

k
n
(n

+
1)

n
L

em
.

2
3

k
-a

ry
n

-t
re

e
3
k

2
n

k
n
−

1
(n

+
k
)

n
−

1
L

em
.

2
5

d
-a

ry
tr

ee
g
ri

d
,
M
T

(d
,h

)
d

+
1

4h
d
h
(d

h
+

2
d
h
−

1
d
−

1

)
2
h

L
em

.
2
7

B
u
b
b
le

-s
o
rt

gr
ap

h
,
B
S

(n
)

n
−

1
(n 2

)
n

!
⌊ n

(n
−

1
)

4

⌋
L

em
.

3
0

T
ra

n
sp

os
it

io
n

gr
ap

h
,
T

(n
)

(n 2

)
n
−

1
n

!
1 2

⌊ n
−

1
2

⌋ ≤
δ
≤
⌊ n
−

1
2

⌋
L

em
.

3
2

S
ta

r
gr

ap
h
,
S

(n
)

n
−

1
⌊ 3

(n
−

1
)

2

⌋
n

!
⌊ 1 2

⌊ 3
(n
−

1
)

2

⌋ −
1 2

⌋
≤
δ
≤
⌊ 1 2

⌊ 3
(n
−

1
)

2

⌋⌋
L

em
.

3
4

C
ay

le
y

g
ra

p
h
,
G

(Γ
,S

)
2
|S
|

d
ia

m
(G

(Γ
,S

))
|Γ
|

1 2

⌊ d
ia

m
(G

(Γ
,S

))
2

⌋
≤
δ
≤
⌊ d

ia
m

(G
(Γ

,S
))

2

⌋
C

o
r.

5

Table 1: Summary of results
5

graphs [67] and other geometrical graph classes [37]. Lower and upper-bounds for the hyperbolicity
are obtained in [58] using graph invariants, and also in [52, 67] using graph decompositions. We
refer to [44] for a compelling of many well-known facts about hyperbolicity. In particular, we will
make use of the following upper-bound for hyperbolicity:

Lemma 2 ([10,44,74]). For every connected graph G, it holds that δ(G) ≤
⌊

diam(G)
2

⌋
.

Based on Lemma 2, the authors in [71] have proposed the following classification of finite
graphs. A graph G is strongly hyperbolic if δ(G) = O(log(log(diam(G)))), hyperbolic if δ(G) =
O(log(diam(G))), and non hyperbolic otherwise. We follow their terminology and we aim at prov-
ing that some graph classes are non hyperbolic. This is in contrast with many graph classes in the
literature that have a constant upper-bound on their hyperbolicity, and so, that are strongly hyper-
bolic [53]. By Lemma 2, in order to prove that a graph is non hyperbolic, and more precisely that
its hyperbolicity scales linearly with its diameter, it suffices to prove that one can lower-bound the
hyperbolicity with the diameter —up to a constant-factor. This line of work was followed in [21,76]
to prove that expander graphs are non hyperbolic. Our proofs will make use of the notion of iso-
metric subgraphs, the latter denoting a subgraph H of a graph G such that dH(u, v) = dG(u, v) for
any two vertices u, v ∈ H.

2.2 Algebraic graph theory

A graph endomorphism is a mapping σ from the vertex-set of a graph G to itself which preserves
the adjacency relations, i.e., for every {u, v} ∈ E(G) we have that {σ(u), σ(v)} ∈ E(G).

Definition 3. Let G = (V,E) be a graph. Given an endomorphism σ of G, the mobility of σ is
equal to minv∈V d(v, σ(v)). The weak mobility of G is the largest integer l such that it admits an
endomorphism with mobility l.

We note that a graph endomorphism might fail to preserve the non-adjacency relations, but
it does so if it is a graph automorphism, i.e., a one-to-one endomorphism. In particular a graph
endomorphism σ is called idempotent if for every v ∈ V (G) it holds that σ2(v) = v, and in such a
case it is an automorphism.

A graph is called vertex-transitive if for every u, v ∈ V (G), there is an automorphism σ such
that σ(u) = v. Similarly, we call a graph edge-transitive if for every e = {u, v}, e′ = {u′, v′} ∈ E(G),
there is an automorphism σ such that {σ(u), σ(v)} = {u′, v′}. We emphasize that every vertex-
transitive graph is self-centered. We will use this property in the following sections. Finally, let
(Γ, ·) be a group and let S be a generating set of Γ that is symmetric and that does not contain the
neutral element of group Γ, i.e., S = S−1 and S ∩ S−1 = ∅. The Cayley graph G (Γ, S) of group Γ
w.r.t. S has vertex-set Γ and edge-set {{g, g · s} | g ∈ Γ, s ∈ S}. It is well-known that every Cayley
graph is vertex-transitive [12].

3 The metric properties of the endomorphism monoid of a graph

Our belief is that any method to lower-bound the value of hyperbolicity needs to rely as few as
possible on the shortest-path distribution of the graphs so as to be of practical use. Indeed, in
most cases there is no good characterization of this distribution. There even exist interconnection

6

networks topologies the diameter of which is still unknown [3,46]. In a need of more robust methods,
we introduce new lower-bounds on the hyperbolicity that are based on non-trivial symmetries of the
graphs. For clarity, our results are presented separately from their applications to interconnection
networks topologies.

3.1 Main results

We first introduce a very generic argument to obtain lower-bounds on the hyperbolicity. In partic-
ular, we will show that it applies to highly symmetric graphs such as transitive graphs.

Figure 1: A self-centered graph G with diam(G) = rad(G) = 2, while δ(G) = 1/2 = diam(G)/4.

Theorem 4. Let G be a connected graph, and let k ≥ 0 be such that all vertices are at distance at

most k from the center of G. Then, δ(G) ≥ 1
2 ·
⌊

diam(G)
2

⌋
− k

2 and this bound is sharp.

Proof. Let C(G) be the center of G. By the hypothesis every node in G is at distance at most k from
C(G), therefore diamG(C(G)) ≥ diam(G) − 2k. Moreover, by [37, Proposition 5] diamG(C(G)) ≤
4δ(G) + 1. Consequently, it holds δ(G) ≥ bdiamG (C(G)) /2c /2 ≥ bdiam(G)/2c /2− k/2.

The lower-bound is sharp, as shown with the example of Figure 1 where diam(G) = rad(G) = 2
while δ(G) = 1/2 = diam(G)/4.

Unlike all other techniques that we will discuss next, we can use the lower-bound of Theorem 4
to prove that all graphs studied in this work are non hyperbolic. However, the bounds obtained
with this first method are usually loose, and they never outmatch the bounds obtained with the
other techniques — when they apply. We will illustrate this point in what follows.

It is straightforward that Theorem 4 applies to self-centered graphs (with k = 0). Especially, it
applies to vertex-transitive graphs.

Corollary 5. Let G be a connected vertex-transitive graph. Then, δ(G) ≥ 1
2 ·
⌊

diam(G)
2

⌋
and this

bound is sharp.

The lower-bound of Corollary 5 is sharp, as shown by any clique (that has diameter one and
null hyperbolicity).

On the practical side, most of the interconnection networks topologies are based on vertex-
transitive graphs. This comprises hypercube-based networks [8], generalized Petersen graphs [1,18],
generalized Heawood graphs [30, 68] and Cayley graphs [12]. For some of these topologies such as
the Pancake graph [3], a well-known Cayley graph, Corollary 5 is the best lower-bound on the
hyperbolicity we know so far.

Corollary 6. Let G be a connected edge-transitive graph. Then, δ(G) ≥ 1
2 ·
⌊

diam(G)
2

⌋
− 1

2 and this

bound is sharp.

7

Proof. We first claim that the center C(G) is a dominating set of G. Indeed, let u ∈ V (G) and
v ∈ C(G), and let x ∈ NG(u) and y ∈ NG(v). Since G is edge-symmetric by the hypothesis, there
exists an automorphism σ such that {σ(v), σ(y)} = {u, x}. Furthermore σ(v) ∈ C(G) because σ is
an automorphism and so, dG(u, C(G)) ≤ dG(u, σ(v)) ≤ 1 which proves the claim. As a result, we
can apply Theorem 4 by setting k = 1.

The lower-bound is sharp, as shown by any star (that has diameter two and null hyperbolicity).

3.1.1 Improved lower-bounds using graph endomorphisms

However, despite its wide applicability to interconnection networks, the above Corollaries 5 and 6
require graphs to have an automorphism group with constrained properties. A natural question is
whether we can weaken the requirements by considering endomorphisms instead of automorphisms.
To answer this question, we use weakly vertex-transitive graphs that have been defined in [29] in a
similar fashion to vertex-transitive graphs. Namely, a graph G is weakly vertex-transitive if, for any
two vertices u, v ∈ V (G) there exists a graph endomorphism σ satisfying σ(u) = v. Unlike vertex-
transitive graphs, the gap between hyperbolicity and diameter may be arbitrarily large for weakly
vertex-transitive graphs. Indeed, on the one hand it was proved in [29] that bipartite graphs are
weakly vertex-transitive. On the other hand, trees are bipartite 0-hyperbolic graphs, whereas they
may have a diameter that is arbitrarily large. We now show that surprisingly, some lower-bounds
on the hyperbolicity can still be deduced from graph endomorphisms.

Theorem 7. Let G be a connected graph of weak mobility l ≥ 2. Then it holds δ(G) ≥ 1
2 ·
⌈
l
2

⌉
.

Proof. We will consider a graph game which is a slight variation of the well-known ’Cop and
Robber’ game (e.g. see [5–7]). There are two players in this game that are playing alternatively
on a (connected) graph, by moving along a path of length at most s, for some positive integer s.
The first player to position herself on the graph is the Cop, and the second player is called the
Robber. Last a graph is said Cop-win for this game if the Cop always has a winning-strategy i.e.,
she can always reach the position of the Robber in a finite number of moves, and hence eventually
catch the Robber. In [49] the authors proved that every connected graph G is Cop-win whenever
s ≥ 4δ(G). So, to prove the theorem we claim that it suffices to show that G is not Cop-win if
s ≤ l − 1. Indeed, in such a case it holds 4δ(G) ≥ l, hence 2δ(G) ≥ l/2 that implies 2δ(G) ≥ dl/2e
and so, δ(G) ≥ dl/2e /2. Equivalently, we will exhibit a winning-strategy for the Robber in such a
case.

Let σ be an endomorphism of G with mobility l, that exists by the hypothesis. One can observe
that if at each turn of the Cop the Robber is onto the image by σ of her current position, then it is a
winning strategy for the Robber because by the hypothesis, both vertices are at distance at least l,
and the maximum speed of the Cop is l−1. To achieve the result, let us proceed as follows. First if
the Cop picks vertex u as her initial position then the Robber starts the game at vertex σ(u). Then,
if the Cop moves along a path (u = x0, x1, . . . , xi, . . . , xk = v), k ≤ l − 1, then the Robber moves
along the path (σ(u), σ(x1), . . . , σ(xi), . . . , σ(v)) which exists because σ is a graph endomorphism.
Such a move for the Robber is valid as long as v /∈ {σ(u), σ(x1), . . . , σ(xi), . . . , σ(v)}, and that is
always the case since σ(xi) = v would imply d(xi, σ(xi)) ≤ l − 1.

We are particularly interested in the special case of the graphs G with weak mobility equal
to their diameter diam(G). These graphs are self-centered, and so, their hyperbolicity is at least

8

bdiam(G)/2c/2 by Theorem 4. The lower-bound is slightly improved by Theorem 7 in this situation.
However, not all self-centered graphs have their weak mobility equal to the diameter [34].

In what follows, we will mostly rely upon the below refinement of Theorem 7 in our proofs. This
way, we will obtain almost tight bounds on the hyperbolicity of data center interconnection net-
works. However, note that the following results require stronger constrictions on the endomorphism
monoid than Theorem 7.

Theorem 8. Let G be a connected graph, and l, l′ be two non-negative integers. Suppose there
exists an endomorphism σ of G with mobility l and such that for every v ∈ V (G), d(v, σ2(v)) ≤ l′.
Then, it holds δ(G) ≥

⌊
l
2

⌋
− l′

2 .

Proof. Clearly, if l ≤ l′ then δ(G) ≥ 0 ≥ bl/2c − l′/2. Therefore, we will assume w.l.o.g. that
l ≥ l′ + 1. Let u ∈ V (G) minimizing dG(u, σ(u)) and let v be on a uσ(u)-shortest-path such that
dG(u, v) = bdG(u, σ(u))/2c. Then, we deduce from the endomorphism σ the following inequalities:

S1 = d(u, σ(u)) + d(v, σ(v)) ≥ 2 · d(u, σ(u)) ≥ 2l;

S2 = d(u, v) + d(σ(u), σ(v)) ≤ 2 · d(u, v) ≤ 2 bd(u, σ(u))/2c ;

S3 = d(u, σ(v)) + d(v, σ(u)) ≤ d(u, σ2(u)) + d(σ2(u), σ(v)) + d(v, σ(u)) ≤ l′ + 2 · d(v, σ(u))

≤ 2 dd(u, σ(u))/2e+ l′ ≤ d(u, σ(u)) + 1 + l′.

In such a case, S1 ≥ max{S2, S3} and as a result:

δ(G) ≥ δ(u, v, σ(u), σ(v)) ≥ min

(⌈
d(u, σ(u))

2

⌉
,

⌊
d(u, σ(u))

2

⌋
− l′

2

)
≥
⌊
l

2

⌋
− l′

2
.

The lower-bound of Theorem 8 outmatches the one of Theorem 7 when l′ ≤ bl/2c − 1. Fur-
thermore, in practice, we will use Theorem 8 with l = diam(G) and l′ ∈ {0, 1}. This way, we will
improve by a factor two all previous lower-bounds.

It can be noticed that the lower-bound of Theorem 8 is sharp for almost every cycle. Indeed,
let Zn be the vertex set of the n-cycle Cn, and let σ be the automorphism mapping any vertex i to
the vertex i + bn/2c (mod n). Applying Theorem 8 to σ, we obtain a lower-bound bn/4c for the
hyperbolicity of even-length cycles, which is exact, and a lower-bound bn/4c − 1/2 for odd-length
cycles, which is exact when n ≡ 1 (mod 4) and below 1/2 of the true hyperbolicity when n ≡ 3
(mod 4) [28,53].

We emphasize on the following consequence of Theorem 8.

Corollary 9. Let G be a connected graph and σ be an idempotent endomorphism with mobility l.
Then, it holds δ(G) ≥

⌊
l
2

⌋
.

Proof. By the hypothesis, the endomorphism σ is idempotent and so, we can apply Theorem 8 by
setting l′ = 0.

In the special case when l = diam(G), the lower-bound of Corollary 9 is best possible. Indeed,
it coincides with the upper-bound of Lemma 2, thereby giving the exact value for hyperbolicity.

It is natural to ask whether Theorems 7 and 8 can be further improved by using bounds on the
distances d(v, σ3(v)),d(v, σ4(v)) and so on. However, answering this question is nontrivial since
the techniques used for Theorems 7 and 8 are already quite different. We leave it as an interesting
open question.

9

3.2 Applications

Equipped with Theorems 7, 8 and Corollary 9, we subsequently apply them on a broad range of
topologies studied in the literature. We will combine the lower-bounds that we obtain with a slight
variation of the well-known upper-bound of Lemma 2. Indeed it is folklore that the hyperbolicity
of a graph is the maximum hyperbolicity taken over all of its biconnected components. So, δ(G) ≤
beffdiam(G)/2c, where the so-called efficient diameter effdiam(G) denotes the largest diameter
amongst the biconnected components of the graph. This way, we will show that for most graphs
found in the literature, their hyperbolicity scales linearly with the efficient diameter —that is the
worst-case possible for hyperbolicity.

3.2.1 Torus

Let us first consider the torus, a well-known grid-like graph which is highly symmetrical. Other
grid-like graphs will be considered in Section 4.2 using a different approach.

Definition 10. The torus (n,m)-grid has vertex-set Zn × Zm; any two vertices (i, j), (i′, j′) are
adjacent if either i′ = i, j′ ≡ j + 1 (mod m), or i′ ≡ i+ 1 (mod n), j′ = j.

Lemma 11. Let n = 2p + r, m = 2q + s, with r, s ∈ {0, 1}. Then, the hyperbolicity δn,m of the
torus (n,m)-grid satisfies:

⌊
1

2
·
(⌊n

2

⌋
+
⌊m

2

⌋)⌋
− r + s

2
≤ δn,m ≤

⌊
1

2
·
(⌊n

2

⌋
+
⌊m

2

⌋)⌋
.

Proof. For any two vertices u = (iu, ju), v = (iv, jv):

d(u, v) = min{|iu − iv|, n− |iu − iv|}+ min{|ju − jv|,m− |ju − jv|}.

It implies that the diameter of the torus grid is bn/2c+bm/2c and so, δn,m ≤ b(bn/2c+ bm/2c) /2c
by Lemma 2. Finally, let σ be the automorphism of the torus grid which maps any vertex (i, j) to
the vertex (i+ bn/2c (mod n), j + bm/2c (mod m)). Since for any vertex v, d(v, σ(v)) = bn/2c+
bm/2c and d(v, σ2(v)) = r+ s, then it follows from Theorem 8 that δn,m ≥ b(bn/2c+ bm/2c) /2c−
r+s

2 ≥ b(bn/2c+ bm/2c) /2c − 1.

3.2.2 Hybercube-like networks

Definition 12 ([8, 11]). Let m1,m2, . . . ,mr be positive integers with for every i, mi ≥ 2 and
r ≥ 1. The generalized hypercube G(m1,m2, . . . ,mr) has vertex-set {(x1, x2, . . . , xr) | ∀i, 0 ≤ xi ≤
mi − 1}, and two vertices (x1, x2, . . . , xr), (y1, y2, . . . , yr) are adjacent in the graph if and only if
their Hamming distance

∑
i I{xi 6=yi} is equal to 1.

In particular, the k-ary hypercube Hk(n) is the generalized hypercube G(m1,m2, . . . ,mn) with
for every i, mi = k.

Lemma 13. δ (G(m1,m2, . . . ,mr)) =
⌊
r
2

⌋
.

Proof. The diameter of G(m1,m2, . . . ,mr) is r and so, δ (G(m1,m2, . . . ,mr)) ≤ br/2c by Lemma 2.
To prove the lower-bound, we first make the observation that the binary hypercube H2(r) is
an isometric subgraph of G(m1,m2, . . . ,mr). Let σ be the automorphism mapping any vertex

10

(x1, x2, . . . , xr) ∈ V (H2(r)) to its complementary vertex (1−x1, 1−x2, . . . , 1−xr). Note that σ has
mobility r and it is idempotent. As a result, we conclude by Corollary 9 that δ (G(m1,m2, . . . ,mr)) ≥
δ (H2(r)) ≥ br/2c.

As we will show later, Lemma 13 also follows from Corollary 49 and the fact that the n-
dimensional grid of size 2 is exactly the hypercube H2(n).

Definition 14 ([4]). The cube-connected-cycle CCC(n) has vertex-set the pairs 〈i, w〉, for 0 ≤
i ≤ n − 1 and for w any binary word of length n; two vertices 〈i, x1x2 . . . xn〉 and 〈j, y1y2 . . . yn〉
are adjacent in the graph if and only if either i = j, xi = 1 − yi and for every k 6= i, xk = yk; or
i ≡ j + 1 (mod n) and for every k, xk = yk.

Lemma 15. n ≤ δ (CCC(n)) ≤ n− 1 +
⌊
max

{
1, 1

2 ·
⌊
n
2

⌋}⌋
.

Proof. By [19], diam (CCC(n)) = 2n−2+max {2, bn/2c} and so, δ (CCC(n)) ≤ n−1+b(max {2, bn/2c}) /2c
by Lemma 2. Furthermore, the mapping σ : 〈i, w〉 → 〈i, w̄〉 is an idempotent endomorphism and it
has mobility 2n by [19]. We conclude by Corollary 9 that δ (CCC(n)) ≥ n.

Definition 16 ([39]). Let Zl
n be the set of words of length l over the alphabet {0, 1, . . . , n−1}. The

graph BCubek(n) has vertex-set Zk+1
n ∪

(
{0, 1, . . . , k} × Zk

n

)
and edge-set

{{〈l, sksk−1 . . . sl+1sl−1 . . . s0〉 , sksk−1 . . . sl+1slsl−1 . . . s0} | 0 ≤ l ≤ k and for every i, 0 ≤ si ≤ n− 1}.

Lemma 17. δ (BCubek(n)) = k + 1.

Proof. By [43] diam (BCubek(n)) = 2(k + 1) and so, δ (BCubek(n)) ≤ k + 1 by Lemma 2. Then,
let us assume that n = 2 because we have by [43] that BCubek(2) is an isometric subgraph of
BCubek(n). We define the automorphism σ satisfying that for all binary word w ∈ Zk+1

2 , σ(w) =
w̄, and for every pair < l,w >∈ {0, 1, . . . , k} × Zk

2, σ (< l,w >) =< l, w̄ >. By [39, 43] σ has
mobility 2(k + 1) and so, by noticing that σ is idempotent we can conclude by Corollary 9 that
δ (BCubek(n)) ≥ δ (BCubek(2)) ≥ k + 1.

3.2.3 Tree-like networks

Definition 18 ([36]). Let k ≥ 4 be even. The Fat-Treek is a graph with vertex-set that is
partitioned into four layers:

1. a core layer, labeled with {0} × Z(k/2)2 ;

2. an aggregation layer, labeled with {1} × Zk × Zk/2. For every 0 ≤ i ≤ (k/2)2 − 1 the vertex
labeled 〈0, i〉 in the core layer is adjacent to all the vertices labeled 〈1, j, i (mod k)/2〉 in the
aggregation layer, with 0 ≤ j ≤ k − 1;

3. an edge layer, labeled with {2} × Zk × Zk/2. For every 0 ≤ i ≤ k − 1 there is a complete join
between the subsets of vertices {〈1, i, j〉 | 0 ≤ j ≤ k/2− 1} and {〈2, i, j〉 | 0 ≤ j ≤ k/2− 1};

4. finally, a server layer labeled with {3} × Zk × Z(k/2)2 . For any 0 ≤ q, r < k/2 the vertex

labeled 〈3, k, (k/2)q + r〉 in the server layer is adjacent to the vertex labeled 〈2, k, q〉 in the
edge layer.

An example of a Fat-Tree4 is given in Figure 2.

11

Core layer

Pod

Server layer

Edge layer

Aggregation layer

Figure 2: The graph Fat-Tree4.

Lemma 19. δ (Fat-Treek) = 2.

Proof. By construction, every vertex in the server layer is a pending vertex, that is a vertex of degree
one. As a result, it can be ignored for the computation of hyperbolicity because the hyperbolicity
of a graph is equal to the maximum hyperbolicity taken over all its biconnected components. It
follows that the efficient diameter of Fat-Treek is 4, hence δ (Fat-Treek) ≤ 2.

Furthermore, by construction Fat-Tree4 is an isometric subgraph of Fat-Treek. So, let σ be the
idempotent endomorphism of Fat-Tree4 mapping: any vertex 〈0, i〉 to the vertex 〈0, 3− i〉 in the
core layer; any vertex 〈1, i, j〉 to the vertex 〈1, 3− i, 1− j〉 in the aggregation layer, and in the same
way any vertex 〈2, i, j〉 to the vertex 〈2, 3− i, 1− j〉 in the edge layer; last, any vertex 〈3, i, j〉 to
the vertex 〈3, 3− i, 3− j〉 in the server layer. It can be hand-checked that σ has mobility 4 and so,
by Corollary 9 δ (Fat-Treek) ≥ δ (Fat-Tree4) ≥ 2.

Definition 20 ([47]). The Butterfly graph BF (n) has vertex-set {0, 1, . . . , n} × Zn
2 ; two vertices

〈i, w〉 , 〈i′, w′〉 are adjacent if i′ = i+ 1 and for every j 6= i, wj = w′j .

Lemma 21. δ (BF (n)) = n.

Proof. Let w and w′ be two binary words of length n and let i1 and il be respectively the least
and the largest index in which they differ. Then, it can be checked that for every integer i,
dBF (n)(〈i, w〉 , 〈i, w′〉) = 2(il − i1). As a result, the endomorphism σ mapping any vertex 〈i, w〉
to the vertex 〈i, w̄〉 has mobility 2n. Since σ is idempotent then it follows from Corollary 9 that
δ (BF (n)) ≥ n. Last, we also have that diam (BF (n)) = 2n, hence δ (BF (n)) ≤ n by Lemma 2.

In the literature, the edge-set of the Butterfly network is sometimes defined as {{〈i, w〉 ,
〈i+ 1 (mod n), w′〉} | 0 ≤ i ≤ n and for every j 6= i, wj = w′j} [81], and this definition is also
known as the wrapped Butterfly network. It modifies the diameter of the topology from 2n to
n+ bn/2c, and the distance between any two vertices 〈i, w〉 , 〈i, w̄〉 from 2n to n. As a result, using
the same arguments as for Lemma 21 one obtains that the hyperbolicity of the wrapped Butterfly
graph is comprised between bn/2c and b(n+ bn/2c) /2c.

Definition 22 ([20]). The k-ary n-fly has vertex-set {0, 1, . . . , n}×Zn
k ; two vertices 〈i, w〉 , 〈i′, w′〉

are adjacent if i′ = i+ 1 and for every j 6= i, wj = w′j .

Observe that the Butterfly graph BF (n) is isomorphic to the 2-ary n-fly.

Lemma 23. The k-ary n-fly is n-hyperbolic.

12

Proof. By [20], the diameter of the k-ary n-fly is 2n and so, it has hyperbolicity bounded from
above by n by Lemma 2. Moreover, by construction it contains the Butterfly graph BF (n) as an
isometric subgraph and so, it has hyperbolicity at least n by Lemma 21.

Definition 24 ([20]). The k-ary n-tree is the graph with vertex-set Zn
k∪
(
{0, 1, . . . , n− 1} × Zn−1

k

)

such that any two vertices 〈i, w〉 , 〈i′, w′〉 are adjacent if i′ = i + 1 and for every j 6= i, wj = w′j ;
any two vertices 〈i, w〉 , w′ are adjacent if i = n− 1 and w′ = w · b for some b ∈ Zk.

Lemma 25. The k-ary n-tree is (n− 1)-hyperbolic.

Proof. By construction, the biconnected components of the k-ary n-tree are composed of one single-
vertex graph for each vertex w ∈ Zn

k , and of the k-ary (n − 1)-fly. Since the hyperbolicity of the
graph is equal to the maximum hyperbolicity taken over its biconnected components, then it follows
from Lemma 23 that the k-ary n-tree is (n− 1)-hyperbolic.

Definition 26 ([81]). The d-ary tree grid MT (d, h) is a graph whose vertices are labeled with
the pairs of words < u, v > over an alphabet of size d and such that max{|u|, |v|} = h. Any two
vertices 〈u, v〉 and 〈u′, v′〉 are adjacent in MT (d, h) if and only if there is some letter λ such that:
either |u| = h, u = u′ and v = v′ · λ; or |v| = h, v = v′ and u′ = u · λ.

Lemma 27. δ (MT (d, h)) = 2h.

Proof. By [81] diam (MT (d, h)) = 4h and so, δ (MT (d, h)) ≤ 2h. Furthermore, MT (2, h) is an iso-
metric subgraph of MT (d, h) by construction. Let σ be the idempotent endomorphism of MT (2, h)
mapping any vertex 〈u, v〉 to the vertex 〈ū, v̄〉. By construction σ has mobility 4h and so, we con-
clude by Corollary 9 that δ (MT (d, h)) ≥ δ (MT (2, h)) ≥ 2h.

3.2.4 Symmetric networks and Cayley graphs

Let (Γ, ·) be a group and let S be a generating set of Γ that is symmetric and that does not contain
the neutral element of Γ. We remind that the Cayley graph G (Γ, S) —of group Γ w.r.t. S— has
vertex-set Γ and edge-set {{g, g · s} | g ∈ Γ, s ∈ S}. It is well-known that every Cayley graph is
vertex-transitive [12]. Furthermore, it has been shown (see for instance Exercise 2.4.14 in [81]) that
the cube connected cycle CCC(n) and the Butterfly graph BF (n) are Cayley graphs.

Lemma 28. Let (Γ, ·) be a commutative group and S be a symmetric generating set that does not

contain the neutral element of Γ. If G (Γ, S) is not a clique, then δ (G (Γ, S)) ≥ 1
2

⌈
diam(G(Γ,S))

2

⌉
.

Proof. Let idΓ, g ∈ Γ be such that idΓ is the neutral element of group Γ and d(idΓ, g) = diam (G (Γ, S)) =
D > 1. The mapping σ : v → g · v is an automorphism satisfying that for every v ∈ Γ, d(v, σ(v)) =
d(idΓ, v

−1 · g · v) = d(idΓ, g) = D. Therefore, we can conclude by Theorem 7 that δ (G (Γ, S)) ≥
dD/2e /2.

Definition 29 ([12]). The Bubble-sort graph BS(n) has vertex-set the n-element permutations,
that is {φ1φ2 . . . φi . . . φn | {φ1, . . . , φn} = {1, . . . , n}}. Any two vertices φ, ψ are adjacent if and
only if there is some index i < n such that φi = ψi+1, φi+1 = ψi and for every j /∈ {i, i+1}, φj = ψj .

Lemma 30. δ(BS(n)) =
⌊
n(n−1)

4

⌋
.

13

Proof. By [12] diam(BS(n)) =
(
n
2

)
, hence δ(BS(n)) ≤ bdiam(BS(n))/2c by Lemma 2. Now, let σ

be the idempotent endomorphism mapping any vertex φ1φ2 . . . φi . . . φn to
φn . . . φn−i+1 . . . φ2φ1. By [12] all pairs (u, σ(u)) are diametral pairs and so, we can conclude by
Corollary 9 that δ(BS(n)) ≥ bdiam(BS(n))/2c.

Definition 31 ([17]). The Transposition graph T (n) has vertex-set the n-element permutations.
Any two vertices φ, ψ are adjacent if and only if there are i, j, i 6= j such that φi = ψj , φj = ψi and
for every k /∈ {i, j}, φk = ψk.

Lemma 32. 1
2

⌈
n−1

2

⌉
≤ δ (T (n)) ≤

⌊
n−1

2

⌋
.

Proof. By [17] the diameter of T (n) is n−1 and so, by Lemma 2 δ (T (n)) ≤ b(n− 1) /2c. Moreover,
let σ be the endomorphism mapping any vertex φ1φ2 . . . φi . . . φn−1φn to φ2φ3 . . . φi+1 . . . φnφ1.
Again by [17] all pairs (u, σ(u)) are diametral pairs and so, we can conclude by Theorem 7 that
δ (S(n)) ≥ dn− 1/2e /2.

Definition 33 ([12]). The star graph S(n) has vertex-set the n-element permutations and edge-set
{{φ1 . . . φi−1φiφi+1 . . . φn, φi . . . φi−1φ1φi+1 . . . φn} | 2 ≤ i ≤ n}.

Lemma 34.
⌊

1
2

⌊
3(n−1)

2

⌋
− 1

2

⌋
≤ δ (S(n)) ≤

⌊
1
2

⌊
3(n−1)

2

⌋⌋
.

Proof. By [12] the diameter of S(n) is b3(n− 1)/2c and so, δ (S(n)) ≤ bb3(n− 1)/2c /2c by
Lemma 2. Then, given φ = φ1φ2 . . . φi . . . φn−1φn, let ψ be the unique n-element permutation
satisfying that ψn−2j = φn−2j−1, ψn−2j−1 = φn−2j , for every 0 ≤ j ≤ b(n− 1) /2c − 1. Again
by [12], d(ψ, φ) ≥ b3(n− 1)/2c − ε ≥ b3(n− 1)/2c − 1, with ε = n + 1 (mod 2). Moreover it can
be checked that the mapping σ : ψ → φ is an idempotent endomorphism of S(n). Therefore, by
Corollary 9 δ (S(n)) ≥ bb3(n− 1)/2c /2− 1/2c.

4 Using the shortest-path distribution

It turns out that for “simple” topologies that are commonly found in the literature, desirable
symmetries such as those in use in Section 3 might fail to exist. For instance, the infinite rectangular
grid is vertex-symmetric, but finite rectangular grids are not. As we will show next, the more generic
Theorem 4 could still be applied in order to obtain loose lower-bounds in these situations. However,
since the shortest-path distributions of the “simplest” topologies are well-known and characterized,
that allows us to lower-bound their hyperbolicity using more involved techniques. In particular,
our proofs for grid-like graphs introduce a novel way to make use of the maximal shortest-paths in
the study of graph hyperbolicity.

4.1 The fellow traveler property for graphs defined on an alphabet

As a warm up, we will lower-bound the hyperbolicity of some graph classes defined on alphabets,
starting with the undirected de Bruijn graph.

Definition 35 ([13]). The undirected de Bruijn graph UB(d,D) has vertex-set the words of
length D taken over an alphabet Σ of size d. The 2-set {u, v} is an edge of UB(d,D) if and only if
u = ud−1ud−2 . . . u1u0 and v = ud−2 . . . u1u0v0 for some letters ud−1, ud−2, . . . , u1, u0, v0 ∈ Σ.

14

De Bruijn graphs have been extensively studied in the literature [15, 24, 27, 81]. In particu-
lar, UB(d,D) has diameter D, maximum degree 2d, and dD vertices. Shortest-path routing and
shortest-path distances in UB(d,D) are characterized as follows.

Lemma 36 ([24]). Let u, v be two words of length D taken over some alphabet Σ of size d, and
write u = uL ·x ·uR and v = vL ·x · vR so that D−|x|+ min {|uL|+ |vR|, |vL|+ |uR|} is minimized.
Then it holds dUB(d,D)(u, v) = D − |x|+ min {|uL|+ |vR|, |vL|+ |uR|}.

We say that a graph G falsifies the k-fellow traveler property if there are two shortest-paths
P1,P2 with same endpoints u, v ∈ V (G), and there are two vertices x ∈ P1, y ∈ P2 such that
dG(u, x) = dG(u, y) and dG(x, y) > k. By a straightforward calculation we obtain that in such a
case δ(u, v, x, y) = dG(x, y)/2 > k/2. So, we can lower-bound the hyperbolicity of G with the least
k such that it satisfies the 2k-fellow traveler property. This standard argument will be the one in
use throughout the remaining of Section 4.1.

Proposition 37. For any positive integers d and D, δ (UB(d,D)) ≥ 1
2 ·
⌊
D
2

⌋
.

Proof. We prove that UB(d,D) cannot satisfy the k-fellow traveler property for some range of k.
W.l.o.g. the vertices of UB(d,D) are labeled with the words of length D taken over the alphabet
Σ = {0, 1, . . . , d− 1}. Let u = 0D, v = 1D, x = 0bD/2c · 1dD/2e, and y = 1dD/2e · 0bD/2c. By
Lemma 36 it comes that d(u, v) = D = dD/2e+ bD/2c = d(u, x) + d(x, v) = d(u, y) + d(y, v). As
a result, the graph UB(d,D) cannot satisfy the k-fellow traveler property for k < d(x, y) = bD/2c
and so, δ (UB(d,D)) ≥ bD/2c /2.

To compare the bounds of Theorem 4 and Proposition 37, we note that it has been proved
in [79] that de Bruijn graphs with maximum degree d ≥ 3 are self-centered. Therefore, if d ≥ 3 then
Proposition 37 follows from Theorem 4 (with k = 0), but it is not the case if d = 2. Furthermore,
the lower-bound of Proposition 37 is reached for d = D = 2, a.k.a. the diamond graph. It can
be computer-checked that is also holds for d = 2, D = 4. However, δ (UB(2, D)) =

⌊
D
2

⌋
for every

odd D ≤ 11. Based on computer experiments (for d = 2, D ≤ 12), we made the following stronger
conjecture:

Conjecture 38. For every D ≥ 7, δ (UB(d,D)) =
⌊
D
2

⌋
.

A closely related graph class that has been extensively studied in the literature is the class of
undirected Kautz graphs UK(d,D) [2,13]. The graph UK(d,D) has diameter D, maximum degree
2d, and dD(d + 1) vertices. Furthermore, it can be checked that the Kautz graph UK(d,D) is an
induced subgraph of the de Bruijn graph UB(d+ 1, D).

Definition 39 ([2,13]). The undirected Kautz graph UK(d,D) has vertex-set the words of length
D taken over an alphabet Σ of size d+ 1 and satisfying that no two adjacent letters are equal. The
2-set {u, v} is an edge of UK(d,D) if and only if u = ud−1ud−2 . . . u1u0 and v = ud−2 . . . u1u0v0 for
some letters ud−1, ud−2, . . . , u1, u0, v0 ∈ Σ.

Proposition 40. For any positive integers d and D, δ (UK(d,D)) ≥
⌊
D
4

⌋
+
⌊
D (mod 4)

3

⌋
.

Proof. As for the proof of Proposition 37, we prove that UK(d,D) cannot satisfy the k-fellow
traveler property for some range of k. W.l.o.g. the vertices of UK(d,D) are labeled with the
words of length D taken over the alphabet {0, 1, 2, . . . , d}. Let D = 2D′ + r, r ∈ {0, 1}, let

15

u = (01)D
′ · 0r, v = (21)D

′ · 2r. Note that 0r (resp. 2r) is either the empty word or it is equal to
0 (resp. to 2). By Lemma 36 dUK(d,D)(u, v) ≥ dUB(d+1,D)(u, v) = D and so, dUK(d,D)(u, v) = D
because diam (UK(d,D)) = D. In particular, let P1 be the uv-shortest-path in UK(d,D) that one
obtains by applying “right shiftings“ on u until one obtains vertex v i.e.,

P1 =(01)D
′ · 0r → 1 · (01)D

′−1 · 0r · 2→ (01)D
′−1 · 0r · 21→ · · · → (21)D

′ · 2r

Similarly, let P2 be the vu-shortest-path in UK(d,D) that one obtains by applying “right shiftings”
on v until one obtains vertex u. That is,

P2 =(21)D
′ · 2r → 1 · (21)D

′−1 · 2r · 0→ (21)D
′−1 · 2r · 01→ . . .→ (01)D

′ · 0r

Let now

x =(01)bD
′/2c · 0r · (21)dD

′/2e ∈ P1

and y =1r · (21)dD
′/2e−r · 2r · (01)bD

′/2c · 0r ∈ P2

be such that d(u, x) = d(u, y).
The graph UK(d,D) falsifies the k-fellow traveler property for all k < dUK(d,D)(x, y), and we

have by Lemma 36 that dUK(d,D)(x, y) ≥ dUB(d+1,D)(x, y) ≥ 2 (bD/4c+ b(D (mod 4)) /3c).
As a result, it holds δ (UK(d,D)) ≥ bD/4c+ b(D (mod 4)) /3c.

The lower-bound of Proposition 40 is reached for d = 2, D = 3. Again to compare with
Theorem 4, we note that it was also proved in [79] that Kautz graphs are self-centered, for every
d ≥ 2. Therefore, applying Theorem 4 (with k = 0) gives us a lower-bound bD/2c/2 for the
hyperbolicity of UK(d,D), that is of the same order of magnitude as the one of Proposition 40
(Proposition 40 is slightly better if D ≡ 3 (mod 4), and slightly worse if D ≡ 2 (mod 4)). We last
define another topology that is related to the de Bruijn graph:

Definition 41 ([81]). The shuffle-exchange graph SE(n) has vertex-set the binary words of
length n. The 2-set {u, v} is an edge of SE(n) if and only if u = un−1un−2 . . . u1u0 and: ei-
ther v = u0un−1un−2 . . . u1, or v = un−2 . . . u1u0un−1, or v = un−1un−2 . . . u1ū0, for some booleans
un−1, un−2, . . . , u1, u0.

It was proved in [81] that the diameter of SE(n) is 2n−1, and that the pair of vertices (0n, 1n) is a
diametral pair. Furthermore, it can be checked that one can obtain the de Bruijn graph UB(2, n−1)
from SE(n) as follows: for each edge {un−1un−2 . . . u1u0, un−1un−2 . . . u1ū0}, we contract the edge
and we label un−1un−2 . . . u1 the resulting vertex. This defines a contraction mapping σ, mapping
any vertex un−1un−2 . . . u1u0 of SE(n) to the vertex un−1un−2 . . . u1 of UB(2, n − 1). In the
following, it will be useful to observe that by construction, for every two vertices u, v of SE(n) it
holds dSE(n)(u, v) ≥ dUB(2,n−1)(σ(u), σ(v)).

Proposition 42. For any positive integer n, δ (SE(n)) ≥ 1
2 ·
⌊
n
2

⌋
.

Proof. As for the proof of Proposition 37, we prove that SE(n) cannot satisfy the k-fellow traveler
property for some range of k. Let u = 0n, v = 1n be a diametral pair of SE(n), with d(u, v) = 2n−1.
Let P1 be the uv-shortest-path:

0n → 0n−1 · 1→ 1 · 0n−1 → 1 · 0n−2 · 1→ 11 · 0n−2 → . . .→ 1n−1 · 0→ 1n

16

Similarly, let P2 be the vu-shortest-path:

1n → 1n−1 · 0→ 0 · 1n−1 → 0 · 1n−2 · 0→ 00 · 1n−2 → . . .→ 0n−1 · 1→ 0n.

Finally, let x = 1bn/2c · 0dn/2e ∈ P1, y = 0dn/2e−1 · 1bn/2c · 0 ∈ P2 be such that d(u, x) = d(u, y). By
using the above contraction mapping from SE(n) to UB(2, n− 1) one obtains dUB(2,n−1)(x

′, y′) ≤
dSE(n)(x, y) with x′ = 1bn/2c ·0dn/2e−1, y′ = 0dn/2e−1 ·1bn/2c. As a result, we have by Lemma 36 that
the shuffle-exchange graph falsifies the k-fellow traveler property for every k < dUB(2,n−1)(x

′, y′) =⌊
n
2

⌋
and so, it holds δ (SE(n)) ≥ 1

2 ·
⌊
n
2

⌋
.

4.2 The maximal shortest-paths in grid-like topologies

In this section, we name grid-like graphs some slight variations of the 2-dimensional grid. As a
reminder, an (n,m)-grid is the Cartesian product of the path Pn, with n vertices, with the path
Pm, with m vertices. That is, the vertex-set is {0, . . . , n− 1} × {0, . . . ,m− 1}, and the edge-set is
{{(i, j), (i′, j′)} | |i − i′| + |j − j′| = 1}. Grid-like networks are used for modeling interconnection
networks and other computational applications. We now propose to compute their hyperbolicity.
Our main tool in this section is the notion of far-apart pairs, first introduced in [41,52]:

Definition 43 (Far-apart pair [41, 52]). Given G = (V,E), the pair (u, v) is far-apart if for every
w ∈ V \ {u, v}, d(w, u) + d(u, v) > d(w, v) and d(w, v) + d(u, v) > d(w, u).

Said differently, far-apart pairs are the endpoints of maximal shortest-paths in the graph. The
main motivation for introducing far-apart pairs was to speed-up the computation of hyperbolicity,
via the following pre-processing method.

Lemma 44 ([41,52]). Let G be a connected graph. There exist two far-apart pairs (u, v) and (x, y)
satisfying:

• dG(u, v) + dG(x, y) ≥ max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)};

• δ(u, v, x, y) = δ(G).

We here propose a novel application of this result in order to simplify proofs for the hyperbolicity
of grid-like topologies.

Definition 45. The (s1, s2, . . . , sd)-grid is a graph with vertex set Πd
i=1{0, . . . , si − 1} such that

any two vertices 〈u1, u2, . . . , ud〉 , 〈v1, v2, . . . , vd〉 are adjacent only if
∑d

i=1 |ui − vi| = 1.

Definition 46. The d-dimensional grid of size s is the (s1, s2, . . . , sd)-grid with for every i, si = s.

Let us determine the hyperbolicity of the above graphs. By doing so, we answer an open
question of the literature [44, Remark 7].

Proposition 47. The (s1, s2, . . . , sd)-grid has hyperbolicity:

hd(s1, s2, . . . , sd) = max
E⊆{1,...,d}

min

{∑

i∈E
si − 1,

∑

i/∈E
si − 1

}
.

17

Proof. The 2d−1 far-apart pairs of the grid are the diametral pairs {(〈u1, . . . , ud〉 , 〈v1, . . . , vd〉) |
∀i, {ui, vi} = {0, si − 1}}. Let (〈u1, . . . , ud〉 , 〈v1, . . . , vd〉) and (〈x1, . . . , xd〉 , 〈y1, . . . , yd〉) be two
such pairs, denoted with (−→u ,−→v) and (−→x ,−→y) for short. Finally, let D =

∑
i si − 1 be the diameter

of the grid and let l =
∑

i|ui 6=xi
si − 1. Then it comes:

S1 = d(−→u ,−→v) + d(−→x ,−→y) = 2D

S2 = d(−→u ,−→x) + d(−→v ,−→y) = 2l

S3 = d(−→u ,−→y) + d(−→v ,−→x) = 2(D − l).

As a result, δ(−→x ,−→y ,−→u ,−→v) = min {l,D − l} which is maximum for l = hd(s1, s2, . . . , sd). We
conclude that hd(s1, s2, . . . , sd) is the hyperbolicity by Lemma 44.

We highlight two particular cases of Proposition 47 that were already known in the literature.

Corollary 48 ([44,55]). The (n,m)-grid is (min{n,m} − 1)-hyperbolic.

Corollary 49 ([55]). The d-dimensional grid of size s is (s− 1) ·
⌊
d
2

⌋
-hyperbolic.

Similar results can be obtained for other grid-like graphs which can be found in the literature.
We prove some of these results before concluding this section.

Definition 50. The triangular (n,m)-grid is a supergraph of the (n,m)-grid with same vertex-set
and with additional edges {(i, j), (i+ 1, j + 1)} for every 0 ≤ i ≤ n− 2 and 0 ≤ j ≤ m− 2.

An example of a triangular (6, 7)-grid is given in Figure 3a.

Lemma 51. The triangular (n,m)-grid is min{n,m}−1
2 -hyperbolic.

Proof. Let u = (iu, ju) and v = (iv, jv) be two vertices of the grid. We can assume w.l.o.g. that
iu ≥ iv. In such a case, either ju ≥ jv and so, d(u, v) = max{iu − iv, ju − jv}; or ju < jv and
so, d(u, v) = (iu − iv) + (jv − ju). We deduce from the above characterization that there is only
one far-apart pair (u, v) such that d(u, v) 6= max{|iu − iv|, |ju − jv|} namely, u = (n − 1, 0) and
v = (0,m−1) for which d(u, v) = n+m−2. Furthermore, for any other far-apart pair (x, y) either
d(x, y) = n− 1 or d(x, y) = m− 1.

Let (u, v) and (x, y) be two far-apart pairs satisfying the conditions of the above Lemma 44.
We assume w.l.o.g. that d(u, v) ≥ d(x, y), and we claim that 2δ(u, v, x, y) ≤ min {n,m} − 1. First,
by [74] 2δ(u, v, x, y) ≤ min {d(u, v),d(x, y)} ≤ d(x, y). Note that d(x, y) = k ∈ {n − 1,m − 1} by
the above characterization of the far-apart pairs in the grid. As a result, if n = m then we are done
because d(x, y) = min{n,m} − 1.

For the remaining of the proof, we will suppose that n 6= m and d(x, y) = max{n,m} − 1 = k
(else we are done because d(x, y) = min{n,m}−1). If k = n−1, it implies that d(u, v) ≥ |iu− iv| =
|ix−iy| = d(x, y) = n−1; else, it implies d(u, v) ≥ |ju−jv| = |jx−jy| = d(x, y) = m−1. Therefore,
we always have that max{d(u, x) + d(v, y),d(u, y) + d(v, x)} ≥ 2k. It follows by Lemma 44 that
the hyperbolicity of the triangular grid is:

2δ(u, v, x, y) = d(u, v) + d(x, y)−max{d(u, x) + d(v, y),d(u, y) + d(v, x)}
≤ n+m− 2 + k − 2k = n+m− 2−max{n− 1,m− 1} = min{n,m} − 1

The bound is reached by setting u = (n− 1, 0), v = (0,m− 1), x = (0, 0), y = (n− 1,m− 1).

18

(6,5)

(6,0)(0,0)

(0,5)

(a) The triangular (7, 6)-grid has hyperbolicity
δ = 5

2 = δ(u, v, x, y) with u = (6, 0), v = (0, 5),
x = (0, 0), y = (6, 5).

(5,5)(0,5)

(5,0)(0,0)

(b) The hexagonal (7, 6)-grid has hyperbolicity
δ = 5

2 = δ(u, v, x, y) with u = (0, 5), v = (5, 0),
x = (0, 0), y = (5, 5).

Figure 3: Examples of grid-like graphs.

In the example of Figure 3a, the hyperbolicity of the graph is given by the 4-tuple u = (6, 0),
v = (0, 5), x = (0, 0), y = (6, 5).

Definition 52. The hexagonal (n,m)-grid is a supergraph of the (n,m)-grid with same vertex-set
and with additional edges {{(i,m − 2j − 1), (i + 1,m − 2j − 2)} | 0 ≤ i ≤ n − 2 and 0 ≤ j ≤⌊
m
2

⌋
− 1} ∪ {{(i,m− 2j − 3), (i+ 1,m− 2j − 2)} | 0 ≤ i ≤ n− 2 and 0 ≤ j ≤

⌊
m−1

2

⌋
− 1}.

The additional edges are called diagonal edges.

Informally, the difference between the triangular grid and the hexagonal grid is that in the
hexagonal grid, the direction of diagonal edges alternate at each row. We refer to Figure 3b for
an illustration. The hyperbolicity of hexagonal grids has already received some attention in [28].
In fact, they showed using the hexagonal grid that the gap between hyperbolicity of a graph and
the length of its longest isometric cycle can be arbitrarily large (see also [78] for more explana-
tions). However, to the best of our knowledge there was no formal bound so far established for the
hyperbolicity of hexagonal grids.

Lemma 53. The hexagonal (n,m)-grid is min{n,m}−1
2 -hyperbolic.

Proof. We will first characterize the distances in the grid. Let u = (iu, ju), v = (iv, jv) be two
vertices of the hexagonal grid. W.l.o.g., iu ≥ iv. Let us observe that in order to obtain an
uv-shortest-path, it suffices to maximize the number of diagonal edges used in the path, that is
min{k, |iu − iv|} with:

• k = b|ju − jv|/2c if both ju − jv and 2 [m− jv (mod 2)]− 1 have the same sign;

• k = d|ju − jv|/2e otherwise.

As a result d(u, v) = |iu − iv| + |ju − jv| − min{k, |iu − iv|} for some k depending on ju and jv,
k ∈ {b|ju − jv|/2c , d|ju − jv|/2e}.

Suppose in addition that (u, v) is a far-apart pair. There are two cases. If d(u, v) = |ju − jv|
then it is monotonically increasing with |ju − jv| and so, |ju − jv| = m − 1. Else, d(u, v) =

19

|iu − iv| + |ju − jv| − k for some k only depending on ju and jv, that is monotonically increasing
with |iu − iv| and so, |iu − iv| = n− 1.

Finally, let (u, v), (x, y) be two far-apart pairs satisfying the conditions of the above Lemma 44.
We will prove that 2δ(u, v, x, y) ≤ min{n,m} − 1.

Case m ≤ n. If min {d(u, v),d(x, y)} ≤ m − 1 then we are done because by [74] we have that
δ(u, v, x, y) ≤ min{d(u, v), d(x, y)}/2 ≤ (m− 1) /2. Else, we must have that |iu − iv| = |ix −
iy| = n − 1 and so, max {d(u, x) + d(v, y), d(u, y) + d(v, x)} ≥ 2(n − 1). Since in such a case
d(u, v) + d(x, y) ≤ (n− 1 + d(m− 1) /2e) + (n− 1 + b(m− 1) /2c) = 2(n − 1) + m − 1 then it
follows once again that δ(u, v, x, y) ≤ (m− 1) /2.

Case m > n. There are three subcases to be considered.

• Suppose d(u, v) = |ju − jv| = m − 1, d(x, y) = |jx − jy| = m − 1. Then it comes that
max{d(u, x) + d(v, y),d(u, y) + d(v, x)} ≥ 2(m− 1) and so, δ(u, v, x, y) = 0.

• Suppose d(u, v) = ju−jv = m−1 and n−1+b(jx − jy) /2c ≤ d(x, y) ≤ n−1+d(jx − jy) /2e.
Then it holds that d(u, y) + d(v, x) ≥ (ju− jy) + (jx− jv) = (ju− jx) + (jx− jy) + (jx− jv) =
m− 1 + (jx − jy). As a result,

2δ(u, v, x, y) ≤ (n− 1 + d(jx − jy) /2e+m− 1)− (m− 1 + jx − jy) = n− 1− b(jx − jy) /2c ≤ n− 1.

• Else, we consider the smallest hexagonal grid of dimensions (n′,m′) for which there exists two
far-apart pairs (u′, v′) and (x′, y′) that satisfy the conditions of the above Lemma 44 and such
that δ(u′, v′, x′, y′) ≥ δ(u, v, x, y). We assume w.l.o.g. that n′ < m′ and d(u′, v′) 6= |ju′ − jv′ |,
d(x′, y′) 6= |jx′ − jy′ | (otherwise we fall in one of the above cases). Note that it implies that
|iu′ − iv′ | = |ix′ − iy′ | = n′ − 1 by our above characterization of the far-apart pairs.

If the two far-apart pairs are ((0, 0), (n′ − 1,m′ − 1)) and ((0,m′ − 1), (n′ − 1, 0)), then we
obtain by the computation that 2δ(u′, v′, x′, y′) = n′ − 1 + (n′ −m′) < n′ − 1 ≤ n− 1.

Else, by minimality of the subgrid there is some vertex in the 4-tuple, say u′, which is
contained amongst {(0, 0), (n′ − 1,m′ − 1), (n′ − 1, 0), (0,m′ − 1)} and such that no other
vertex z ∈ {v′, x′, y′} satisfies that ju′ = jz. By symmetry, we will assume that u′ ∈
{(0,m′ − 1), (n′ − 1,m′ − 1)}. Then, using the above characterization of the distances in
the hexagonal grid, it can be checked that for any 0 ≤ i ≤ n′ − 1 and for any 0 ≤ j ≤ m′ − 2:

d
(
(n′ − 1,m′ − 2), (i, j)

)
= d

(
(n′ − 1,m′ − 1), (i, j)

)
− 1

and d
(
(1,m′ − 2), (i, j)

)
= d

(
(0,m′ − 1), (i, j)

)
− 1 unless (i, j) = (0,m′ − 2)

Therefore, by the 4-point condition δ(u′, v′, x′, y′) = δ ((n′ − 1,m′ − 2), v′, x′, y′) when u′ =
(n′−1,m′−1); δ(u′, v′, x′, y′) ≤ max {d ((0,m′ − 1), (0,m′ − 2)) , δ ((n′ − 1,m′ − 2), v′, x′, y′)} ≤
max {1, δ ((n′ − 1,m′ − 2), v′, x′, y′)} when u′ = (0,m′ − 1). In both cases, it contradicts the
minimality of (n′,m′).

To conclude, let l = min{n,m}−1. The upper-bound l/2 for the hyperbolicity is reached by setting
u = (0,m− 1), v = (l,m− 1− l), x = (0,m− 1− l), y = (l,m− 1).

20

In the example of Figure 3b for an illustration, the hyperbolicity of the graph is given by the
4-tuple u = (0, 5), v = (5, 0), x = (0, 0), y = (5, 5).

Definition 54. The cylinder (n,m)-grid is the supergraph of the (n,m)-grid with the same vertex-
set and with additional edge-set {{(0, j), (n− 1, j)} | 0 ≤ j ≤ m− 1}.

In particular, when m = 1, then the cylinder (n,m)-grid is the n-cycle Cn. More generally, each
row induces a cycle instead of inducing a path.

Lemma 55. The cylinder (n,m)-grid is





⌊
n
2

⌋
-hyperbolic when m >

⌊
n
2

⌋
(
bn2 c+m

2 − 1

)
-hyperbolic when m ≤

⌊
n
2

⌋
and (n is odd or

⌈
n
2

⌉
−m+ 1 is odd)

(
bn2 c+m

2 − 1
2

)
-hyperbolic otherwise.

Proof. Let u = (iu, ju), v = (iv, jv) be two vertices of the grid. We have:

d(u, v) = min{|iu − iv|, n− |iu − iv|}+ |ju − jv|.

As a result, the far-apart pairs of the cylinder (n,m)-grid are exactly the pairs
{(i, 0), (i+ bn/2c (mod n),m− 1)}, and the pairs {(i, 0), (i+ dn/2e (mod n),m− 1)}, with 0 ≤
i ≤ n− 1. Equivalently, these are the pairs {(u′, 0), (v′,m− 1)} with (u′, v′) an arbitrary far-apart
pair of the n-cycle Cn.

Let (u, v) and (x, y) be two far-apart pairs of the cylinder (n,m)-grid satisfying the conditions of
the above Lemma 44. Write u = (u′, 0), v = (v′,m− 1), x = (x′, 0), y = (y′,m− 1). Furthermore,
let S1 = d(u, v) + d(x, y), S2 = d(u, x) + d(v, y), and S3 = d(u, y) + d(v, x). Similarly, let S′1 =
dCn(u′, v′) + dCn(x′, y′), S′2 = dCn(u′, x′) + dCn(v′, y′), and S′3 = dCn(u′, y′) + dCn(v′, x′). Note that
it holds: S′1 = 2 bn/2c = max {S′1, S′2, S′3}; S1 = S′1 + 2(m − 1) = 2(bn/2c + m − 1), S′2 = S2, and
S3 = S′3 + 2(m− 1).

There are two cases to be considered.

• Suppose that m > bn/2c. We have that δ(u, v, x, y) ≤ (S1 − S3) /2 ≤ (S′1 − S′3) /2 ≤ S′1/2 ≤
bn/2c. The bound is reached by setting u′ = y′ and v′ = x′.

• Suppose that m ≤ bn/2c. If (u′, v′) = (y′, x′) then we obtain by the calculation that
δ(u, v, x, y) = (m− 1) /2. Otherwise, S′2 + S′3 = n and hence

2δ(u, v, x, y) = S′1 −max{S′3, S′2 − 2(m− 1)} = S′1 −max{S′3, (n− 2(m− 1))− S′3},

this is maximum when bn/2c − (m − 1) ≤ S′3 ≤ dn/2e − (m − 1). In the following, let
dn/2e − (m− 1) = 2q + r with 0 ≤ r ≤ 1. There are two subcases to be considered.

(i) Assume that n is odd and let us set u′ = 0, v′ = bn/2c, x′ = bn/2c−q, and y′ = n−q−r.
In such a case, S′3 = (q + r) + q = 2q + r. As a result, δ(u, v, x, y) = (bn/2c+m) /2− 1
and so, the above upper-bound is always reached when n is odd.

21

(ii) Assume that n is even. Then, S′3 = 2 d(u′, y′) cannot be odd. It implies that the
hyperbolicity is bounded from above by n/4 + (m− 1− r) /2. We set u′ = 0, v′ = n/2,
x′ = n/2 − q, and y′ = n − q. In such a case, S′3 = 2q, hence (n − 2(m − 1)) − S′3 =
4q + 2r − 2q = 2q + 2r and so, δ(u, v, x, y) = n/4 + (m− 1− r) /2 that is maximum.

Before concluding this section, let us compare the techniques employed for grids with Theorem 4.
It is easy to see that for all grid-like graphs considered (cf. Definitions 10, 50, 52 and 54), there is
either a row or a column contained in the center. Therefore, the diameter of the center is at least
min{n,m} − 1, and so, by [37, Proposition 5] one obtains the lower-bound b(min{n,m} − 1)/2c/2
on the hyperbolicity for all these graphs. In this section, we have conducted an in-depth analysis
of their shortest-path distribution in order to establish the exact hyperbolicity of these grid-like
graphs.

5 Relations between hyperbolicity and some graph operations

Our results so far are heavily focused on the so-called homogeneous data center interconnection net-
works. By contrast, heterogeneous data centers are based on the composition of homogeneous data
center interconnection topologies through graph operations. We survey a few of these operations
so that we can study the impact that they may have on the hyperbolicity of the network.

5.1 Biswap operation and biswapped networks

Definition 56 ([35]). Let G be a graph. The biswapped graph Bsw(G) has vertex set {0, 1} ×
V (G)× V (G). Two vertices (b, u, v) and (b′, u′, v′) are adjacent if, and only if either b = b′, u = u′

and {v, v′} ∈ E(G), or b = b̄′ = 1− b′, u = v′, and u′ = v.

Lemma 57. For any connected graph G, δ(Bsw(G)) = diam(G) + 1.

Proof. By [35] diam(Bsw(G)) = 2 ·diam(G)+2 and so, by Lemma 2 δ(Bsw(G)) ≤ diam(G)+1. To
prove the lower-bound, let u, v ∈ V (G) be such that diam(G) = dG(u, v). We define −→x1 = (0, u, v),
−→x2 = (0, v, u), −→x3 = (1, u, u) and −→x4 = (1, v, v). We deduce from [35] that:

S1 = d(−→x1,
−→x2) + d(−→x3,

−→x4) = 2(2 dG(u, v) + 2)

S2 = d(−→x1,
−→x3) + d(−→x2,

−→x4) = 2(dG(u, v) + 1)

S3 = d(−→x1,
−→x4) + d(−→x2,

−→x3) = 2(dG(u, v) + 1)

As a result, δ(Bsw(G)) ≥ δ(−→x1,
−→x2,
−→x3,
−→x4) = dG(u, v) + 1 = diam(G) + 1.

It follows from Lemma 57 that the hyperbolicity of a biswap network always scales with its
diameter, regardless of the topology that is used for the operation.

5.2 Generic Cayley construction

Let us finally consider the following transformation of a Hamiltonian graph, and the consequences
of it on the hyperbolicity.

22

Lemma 58. Let G be a Hamiltonian graph and c be a positive integer. We construct a graph G′

from G by replacing every edge in some Hamilton cycle of G with a path of length c. Then, it holds
δ(G′) ≥ 1

2

⌈
c−1

2

⌉
.

Proof. Let P be a path of length c added by the construction, let x and y be the endpoints of P ,
and let P ′ be a xy-shortest-path in G′ \ (P \ {x, y}). The union of P with P ′ is an isometric cycle
and so, it has length upper-bounded by 4 · δ(G′) + 3 by [78]. Moreover, the length of P ′ is at least
2 because {x, y} is an edge of G by the hypothesis. Thus it comes that the length of the cycle is at
least c+ 2 and so, c ≤ 4 · δ(G′) + 1.

The Cayley model in [59] aims to apply the construction defined in Lemma 58 to some Hamil-
tonian graph G of order N , with c = Ω(logN) and so that the diameter of the resulting graph G′

is O(logN). Summarizing, we get.

Theorem 59. Graphs in the Cayley model have hyperbolicity Θ(logN), which scales linearly with
their diameter.

6 Conclusion

We proved in this work that the topologies of various interconnection networks have their hyper-
bolicity that scales linearly with their diameter. This property is inherent to any graph having
desired properties for data centers such as a high-level of symmetry. Interestingly, symmetries are
a common way to minimize network congestion whereas it was shown in [51], using a simplified
model, that a bounded hyperbolicity might explain the congestion phenomenon observed in some
real-life networks. This was formally proved in [75] for shortest-path routing, but to the best of our
knowledge no relation is known between hyperbolicity and congestion in general. Therefore, we let
open whether a more general relationship between congestion and hyperbolicity can be determined.

Finally, our results imply that in any greedy routing scheme based on an embedding into the
hyperbolic space —and in some cases, on an embedding into some word metric space— there is
a linear number of routing paths for which the stretch is arbitrarily bad. However, this does
not preclude the possibility that for most other routing paths, the stretch is bounded by a small
constant. We thus believe that it might be of interest to compute the average hyperbolicity [63,72]
of the data center interconnection topologies so as to verify whether it is the case.

Acknowledgments

We wish to thank Miguel Camelo, Lluis Fabrega and Pere Vilà Talleda for having suggested to
us this work on the hyperbolicity of data center interconnection networks. We would also like to
thank the anonymous reviewers for their valuable feedbacks.

References

[1] H. S. M. Coxeter. Self-dual configurations and regular graphs. Bulletin of the American
Mathematical Society, 56:413–455, 1950.

23

[2] W.H. Kautz. Bounds on directed (d, k) graphs. Theory of cellular logic networks and machines.
AFCRL-68-0668, SRI Project 7258, Final report, pages 20–28, 1968.

[3] W. H. Gates and C. H. Papadimitriou. Bounds for sorting by prefix reversal. Discrete Math-
ematics, 27(1):47–57, 1979.

[4] F. P. Preparata and J. Vuillemin. The cube-connected cycles: a versatile network for parallel
computation. Communications of the ACM, 24(5):300–309, 1981.

[5] R. Nowakowski and P. Winkler. Vertex-to-vertex pursuit in a graph. Discrete Mathematics,
43(2):235–239, 1983.

[6] A. Quilliot. Problèmes de jeux, de point fixe, de connectivité et de représentation sur des
graphes, des ensembles ordonnés et des hypergraphes. PhD thesis, Université de Paris VI,
France, 1983.

[7] M. Aigner and M. Fromme. A game of cops and robbers. Discrete Applied Mathematics,
8(1):1–12, 1984.

[8] L.N. Bhuyan and D.P. Agrawal. Generalized hypercube and hyperbus structures for a computer
network. IEEE Transactions on Computers, 100(4):323–333, 1984.

[9] Jin Akiyama, Kiyoshi Ando, and David Avis. Eccentric graphs. Discrete Mathematics, 56(1):1–
6, 1985.

[10] M. Gromov. Hyperbolic groups. Essays in Group Theory, 8:75–263, 1987.

[11] F. Harary, J. P. Hayes, and H.-J. Wu. A survey of the theory of hypercube graphs. Computers
& Mathematics with Applications, 15(4):277–289, 1988.

[12] S.B. Akers and B. Krishnamurthy. A group-theoretic model for symmetric interconnection
networks. IEEE Transactions on Computers, 38(4):555–566, 1989.

[13] J.-C. Bermond and C. Peyrat. De Bruijn and Kautz networks: a competitor for the hy-
percube? In European Workshop on Hypercubes and Distributed Computers, pages 279–293.
North Holland, 1989.

[14] F. Buckley. Self-centered graphs. Annals of the New York Academy of Sciences, 576(1):71–78,
1989.

[15] J.-C. Bermond and P. Fraigniaud. Broadcasting and gossiping in de Bruijn networks. SIAM
Journal on Computing, 23(1):212–225, 1994.

[16] W. D. Neumann and M. Shapiro. Automatic structures, rational growth, and geometrically
finite hyperbolic groups. Inventiones mathematicae, 120(1):259–287, 1995.

[17] S. Latifi and P.K. Srimani. Transposition networks as a class of fault-tolerant robust networks.
IEEE Transactions on Computers, 45(2):230–238, 1996.

[18] S. Ohring and S. K. Das. Folded Petersen cube networks: New competitors for the hypercubes.
IEEE Transactions on Parallel and Distributed Systems, 7(2):151–168, 1996.

24

[19] I. Frǐs, I. Havel, and P. Liebl. The diameter of the cube-connected cycles. Information pro-
cessing letters, 61(3):157–160, 1997.

[20] F. Petrini and M. Vanneschi. k-ary n-trees: High performance networks for massively parallel
architectures. In International Parallel Processing Symposium (IPPS), pages 87–93. IEEE,
1997.

[21] I. Benjamini. Expanders are not hyperbolic. Israel Journal of Mathematics, 108(1):33–36,
1998.

[22] H. N. De Ridder and H. L. Bodlaender. Graph automorphisms with maximal projection
distances. In Fundamentals of Computation Theory, pages 204–214. Springer, 1999.

[23] J. Matoušek. On embedding trees into uniformly convex Banach spaces. Israel Journal of
Mathematics, 114(1):221–237, 1999.

[24] Jyh-Wen Mao and Chang-Biau Yang. Shortest path routing and fault-tolerant routing on de
Bruijn networks. Networks, 35(3):207–215, 2000.

[25] G. Brinkmann, J. H. Koolen, and V. Moulton. On the hyperbolicity of chordal graphs. Annals
of Combinatorics, 5(1):61–69, 2001.

[26] J. W. Cannon. Geometric group theory. Handbook of geometric topology, pages 261–305, 2002.

[27] D. Coudert, A. Ferreira, and S. Pérennes. Isomorphisms of the De Bruijn digraph and free-
space optical networks. Networks, 40(3):155 – 164, 2002.

[28] J. H. Koolen and V. Moulton. Hyperbolic bridged graphs. European Journal of Combinatorics,
23(6):683–699, 2002.

[29] Suohai Fan. Weakly symmetric graphs and their endomorphism monoids. Southeast Asian
Bulletin of Mathematics, 27(3), 2003.

[30] G. E. Jan, Y.-S. Hwang, M.-B. Lin, and D. Liang. Novel hierarchical interconnection networks
for high-performance multicomputer systems. Journal of information science and engineering,
20:1213–1229, 2004.

[31] R. Krauthgamer and J. R. Lee. Algorithms on negatively curved spaces. In Symposium on
Foundations of Computer Science (FOCS), pages 119–132. IEEE, 2006.

[32] V. Chepoi and B. Estellon. Packing and covering δ-hyperbolic spaces by balls. In Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, volume
4627 of Lecture Notes in Computer Science, pages 59–73. Springer, 2007.

[33] R. Kleinberg. Geographic routing using hyperbolic space. In International Conference on
Computer Communications (INFOCOM), pages 1902–1909. IEEE, 2007.

[34] P. Potocnik, M. Sajna, and G. Verret. Mobility of vertex-transitive graphs. Discrete Mathe-
matics, 307(3—5):579 – 591, 2007.

25

[35] W. Xiao, W. Chen, M. He, W. Wei, and B. Parhami. Biswapped networks and their topological
properties. In ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing (SNPD), volume 2, pages 193–198. IEEE,
2007.

[36] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network archi-
tecture. ACM SIGCOMM Computer Communication Review, 38(4):63–74, 2008.

[37] V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, and Y. Vaxès. Diameters, centers, and
approximating trees of delta-hyperbolic geodesic spaces and graphs. In 24th Symposium on
Computational Geometry (SCG), pages 59–68. ACM, 2008.

[38] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: a scalable and fault-tolerant net-
work structure for data centers. ACM SIGCOMM Computer Communication Review, 38(4):75–
86, 2008.

[39] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. BCube: a high
performance, server-centric network architecture for modular data centers. ACM SIGCOMM
Computer Communication Review, 39(4):63–74, 2009.

[40] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu. Ficonn: Using backup port for server
interconnection in data centers. In International Conference on Computer Communications
(INFOCOM), pages 2276–2285. IEEE, 2009.

[41] Damien Noguès. δ-hyperbolicité et graphes. Master’s thesis, MPRI, Université Paris 7, 2009.

[42] F. Papadopoulos, D. Krioukov, M. Boguna, and A. Vahdat. Greedy forwarding in scale-free
networks embedded in hyperbolic metric spaces. ACM SIGMETRICS Performance Evaluation
Review, 37(2):15–17, 2009.

[43] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. MDCube: a high performance network structure
for modular data center interconnection. In International conference on Emerging networking
experiments and technologies, pages 25–36. ACM, 2009.

[44] Y. Wu and C. Zhang. Chordality and hyperbolicity of a graph. Technical Report
arXiv:0910.3544, ArXiv, 2009.

[45] M. Boguna, F. Papadopoulos, and D. Krioukov. Sustaining the Internet with Hyperbolic
Mapping. Nature Communications, 1(62), 2010.

[46] M. Kliegl, J. Lee, J. Li, X. Zhang, C. Guo, and D. Rincon. Generalized DCell structure for load-
balanced data center networks. In INFOCOM IEEE Conference on Computer Communications
Workshops, pages 1–5. IEEE, 2010.

[47] M.H. Mahafzah. Fault-tolerant routing in butterfly networks. Journal of Applied Sciences,
10(11):903–908, 2010.

[48] C. Cassagnes, T. Tiendrebeogo, D. Bromberg, and D. Magoni. Overlay addressing and routing
system based on hyperbolic geometry. In IEEE Symposium on Computers and Communica-
tions (ISCC), pages 294–301. IEEE, 2011.

26

[49] J. Chalopin, V. Chepoi, N. Nisse, and Y. Vaxès. Cop and robber games when the robber can
hide and ride. SIAM Journal on Discrete Mathematics, 25(1):333–359, 2011.

[50] L. Ferretti and M. Cortelezzi. Preferential attachment in growing spatial networks. Physical
Review E, 84(1), 2011.

[51] E. Jonckheere, M. Lou, F. Bonahon, and Y. Baryshnikov. Euclidean versus hyperbolic con-
gestion in idealized versus experimental networks. Internet Mathematics, 7(1):1–27, 2011.

[52] M. A. Soto Gómez. Quelques propriétés topologiques des graphes et applications à internet et
aux réseaux. PhD thesis, Univ. Paris Diderot (Paris 7), 2011.

[53] Y. Wu and C. Zhang. Hyperbolicity and chordality of a graph. The Electronic Journal of
Combinatorics, 18(1), 2011.

[54] I. Benjamini and O. Schramm. Finite transitive graph embeddings into a hyperbolic metric
space must stretch or squeeze. In Geometric aspects of functional analysis, volume 2050 of
Lecture Notes in Mathematics, pages 123–126. Springer, 2012.

[55] N. Cohen, D. Coudert, and A. Lancin. Exact and approximate algorithms for computing the
hyperbolicity of large-scale graphs. Research Report RR-8074, Inria, September 2012.

[56] O. Narayan, I. Saniee, and G. H Tucci. Lack of spectral gap and hyperbolicity in asymptotic
erdös-renyi sparse random graphs. In International Symposium on Communications Control
and Signal Processing (ISCCSP), pages 1–4. IEEE, 2012.

[57] F. Papadopoulos, M. Kitsak, M. Serrano, M. Boguná, and D. Krioukov. Popularity versus
similarity in growing networks. Nature, 489(7417):537–540, 2012.

[58] J. M. Rodŕıguez and J. M. Sigarreta. Bounds on Gromov hyperbolicity constant in graphs.
In Proceedings Indian Acad. Sci. (Mathematical Sciences), volume 122, pages 53–65. Springer,
2012.

[59] W. Xiao, H. Liang, and B. Parhami. A class of data-center network models offering symmetry,
scalability, and reliability. Parallel Processing Letters, 22(04), 2012.

[60] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney. Tree-like structure in large social and
information networks. In 13th International Conference on Data Mining, pages 1–10. IEEE,
2013.

[61] Wei Chen, Wenjie Fang, Guangda Hu, and Michael W. Mahoney. On the hyperbolicity of
small-world and treelike random graphs. Internet Mathematics, 9(4):434–491, 2013.

[62] W.S. Kennedy, O. Narayan, and I. Saniee. On the hyperbolicity of large-scale networks.
Technical Report arXiv:1307.0031, ArXiv, 2013.

[63] R. Albert, B. DasGupta, and N. Mobasheri. Topological implications of negative curvature
for biological and social networks. Physical Review E, 89(3):032811, 2014.

[64] M. Camelo, D. Papadimitriou, L. Fabrega, and P. Vila. Geometric routing with word-metric
spaces. Communications Letters, IEEE, 18(12):2125–2128, 2014.

27

[65] M. Camelo, D. Papadimitriou, L. Fàbrega, and P. Vilà. Efficient routing in Data Center with
underlying Cayley graph. In Complex Networks V, volume 549 of Studies in Computational
Intelligence, pages 189–197. Springer, 2014.

[66] M. Camelo, P. Vilà, L. Fàbrega, and D. Papadimitriou. Cayley-graph-based data centers
and space requirements of a routing scheme using automata. In International Conference on
Distributed Computing Systems Workshops (ICDCS), pages 63–69. IEEE, 2014.

[67] Nathann Cohen, David Coudert, Guillaume Ducoffe, and Aurélien Lancin. Applying clique-
decomposition for computing Gromov hyperbolicity. Research Report RR-8535, Inria, June
2014.

[68] X. Huang and Y. Peng. DCen: A dual-ports and cost-effective network architecture for modular
datacenters. Journal of Computational Information Systems, 10(13):5697–5704, 2014.

[69] D. Mitsche and P. Pra lat. On the hyperbolicity of random graphs. The Electronic Journal of
Combinatorics, 21(2):2–39, 2014.

[70] K. Verbeek and S. Suri. Metric embedding, hyperbolic space, and social networks. In Annual
Symposium on Computational Geometry (SCG), pages 501–510. ACM, 2014.

[71] H. Alrasheed and F. F. Dragan. Core-periphery models for graphs based on their δ-
hyperbolicity: An example using biological networks. In Complex Networks VI, pages 65–77.
Springer, 2015.

[72] M. Borassi, A. Chessa, and G. Caldarelli. Hyperbolicity measures democracy in real-world
networks. Physical Review E, 92, 2015.

[73] M. Camelo, L. Fabrega, and P. Vilà. As yet untitled paper. in preparation, 2015.

[74] N. Cohen, D. Coudert, and A. Lancin. On computing the Gromov hyperbolicity. ACM Journal
on Experimental Algorithmics, 20(1):1–6, 2015.

[75] S. Li and G. H. Tucci. Traffic congestion in expanders and (p,δ)–hyperbolic spaces. Internet
Mathematics, 11(2):134–142, 2015.

[76] A. Malyshev. Expanders are order diameter non-hyperbolic. Technical Report
arXiv:1501.07904, ArXiv, 2015.

[77] Muad Abu-Ata and F. F. Dragan. Metric tree-like structures in real-life networks: an empirical
study. Networks, 67(1):49–69, 2016.

[78] D. Coudert, G. Ducoffe, and N. Nisse. To approximate treewidth, use treelength! SIAM
Journal of Discrete Mathematics, 2016. to appear.

[79] N. Lichiardopol. Quasi-centers and radius related to some iterated line digraphs, proofs of
several conjectures on de Bruijn and Kautz graphs. Discrete Applied Mathematics, 202:106 –
110, 2016.

[80] J. A. Bondy and U. S. Murty. Graph theory. Berlin: Springer, 2008.

28

[81] Jean De Rumeur. Communications dans les réseaux de processeurs. Masson, 1994.

[82] R. Diestel. Graph theory, volume 173 of Graduate texts in mathematics. Springer, 1997.

29

Papers on tree decompositions

Appendix F

Clique-decomposition revisited

Clique-decomposition revisited∗

David Coudert1,2 and Guillaume Ducoffe2,1

1Inria, France
2Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

Abstract

The decomposition of graphs by clique-minimal separators is a common algorithmic tool, first in-
troduced by Tarjan. Since it allows to cut a graph into smaller pieces, it can be applied to pre-
process the graphs in the computation of many optimization problems. However, the best known
clique-decomposition algorithms have respective O(nm)-time and O(n2.69)-time complexity, that is pro-
hibitive for large graphs. Here we prove that for every graph G, the decomposition can be computed in
O

(
T (G) + min{n2.3729, ω2n}

)
-time with T (G) and ω being respectively the time needed to compute a

minimal triangulation of G and the clique-number of G. In particular, it implies that every graph can
be clique-decomposed in Õ(n2.3729)-time. Based on prior work from Kratsch et al., we prove in addition
that computing the clique-decomposition is at least as hard as triangle detection. Therefore, the exis-
tence of any o(n2.3729)-time clique-decomposition algorithm would be a significant breakthrough in the
field of algorithmic. Finally, our main result implies that planar graphs, bounded-treewidth graphs and
bounded-degree graphs can be clique-decomposed in linear or quasi-linear time.

Keywords: clique-decomposition; minimal triangulation; clique-number; treewidth; planar graphs;
bounded-degree graphs.

1 Introduction

Our purpose in this work is to study the complexity of separating a graph with all its minimal separators
that are cliques. In the literature, such minimal separators are called clique-minimal separators, and the
decomposition process is called clique-decomposition. We refer to [6] for a survey. The clique-decomposition
has been introduced by Tarjan in [32], where it is studied for its algorithmic applications. Indeed, it is often
the case that hard problems on graphs (theoretically or in practice) can be solved on each subgraph of the
clique-decomposition separately. See for instance [4, 9, 14, 15, 18, 19, 26, 34]. In particular, there are NP-
hard problems that can be solved on graphs when the subgraphs obtained with the clique-decomposition are
“simple enough” w.r.t. the problem. This was first noted by Gavril in [22] for the so-called clique-separable
graphs. Other classes of graphs with a “simple” clique-decomposition comprise the chordal graphs (that
can be clique-decomposed into complete subgraphs), the EPT graphs [23] and the P6-free graphs [12, 13].
Note that general graphs may fail to contain a clique-minimal separator (we will call them prime graphs
in the following), however in practice the biological networks, the graph of the autonomous systems of the
Internet and some other complex networks do contain clique-minimal separators — as supported by some
experimentations [1, 15].

With the exception of an O(n2.69)-time algorithm in [28], all the best known algorithms for computing
clique-decomposition have an O(nm)-time complexity [2, 30, 32], that is cubic for dense graphs. Therefore,

∗This work is partially supported by ANR project Stint under reference ANR-13-BS02-0007 and ANR program “Investments
for the Future” under reference ANR-11-LABX-0031-01.

1

it becomes too prohibitive to run them on large graphs with thousands of vertices and sometimes billions of
edges. Following a recent trend in algorithmic [11], we here investigate on the optimal time for computing
the clique-decomposition.

Related work. To the best of our knowledge, the time complexity of clique-decomposition has received
little attention in the literature. We are only aware of a recent article [7] introducing a generic framework
to compute the clique-decomposition of graphs. This framework applies to all the best-known algorithms to
compute the clique-decomposition. Indeed, all these algorithms follow the same three steps:

1. Compute a minimal triangulation of the graph;

2. Find the clique-minimal separators of the graphs (using the minimal triangulation);

3. Finally, recursively disconnect the graph with its clique-minimal separators.

We emphasize that the first step: computing a minimal triangulation, has been extensively studied (see [24]
for a survey). So far, the best-known algorithm to compute a minimal triangulation of a graph has an
Õ(n2.3729)-time complexity. Note that it is less than O(n2.69), that has been the best-known complexity for
computing the clique-decomposition of a graph — until this note.

Furthermore, new clique-decomposition algorithms are proposed in [7] that are provably faster than the
classical approach in some cases, that is, they run in O(nm0)-time for some m0 < m. In order to compare
these algorithms with our work, let us note that the authors in [7] claim that bounded-treewidth graphs
can be clique-decomposed in quadratic-time, whereas we will show that it can be done in quasi linear-time.
Fast (quadratic-time) algorithms to compute the clique-decomposition can also be found in [3, 8] for some
specific graph classes, but the latter algorithms deeply rely upon the structural properties of these graphs.

Closest to our work are two papers from Kratsch and Spinrad [27, 28]. In [28], they describe what has been,
until this note, the best-known algorithm to compute the clique-decomposition. The latter algorithm has
running timeO(n2.69), that follows from an algorithm to compute a minimal triangulation of the graph within
the same time bounds. We will generalize their result in our work, proving that the clique-decomposition
can be computed in O(n2.3729)-time if any minimal triangulation of the graph is given1. Furthermore, lower-
bounds on the complexity of computing the clique-decomposition can be deduced from some results in [27].
In particular, they show that finding a clique-minimal separator in a graph is at least as hard as finding a
simplicial vertex, even if a minimal elimination ordering is given as part of the input. The latter implies that
computing a minimal triangulation is not the only complexity bottleneck of clique-decomposition algorithms.

Our contributions. On the negative side, we first prove a lower-bound on the complexity of computing
the clique-decomposition. More precisely, we will build upon a result in [27] in order to prove that clique-
decomposition is at least as hard as triangle detection (Theorem 4).

We next focus on the two last steps of clique-decomposition algorithms, that is, we ignore the first step of
computing a minimal triangulation. Our main result is that the clique-minimal separators of a graph G can
be computed in O(T (G) + min{n2.3729, ω2n})-time, with T (G) and ω being respectively the time needed to
compute a minimal triangulation of G and the clique-number of G (let us remind that the clique-number of
G is the size of a largest clique in G). The latter result follows from two simple algorithms that respectively
run in O(T (G) + n2.3729)-time (Proposition 5) and in O(T (G) + ω2n)-time (Proposition 6). Furthermore,
whereas the first algorithm (in O(T (G) + n2.3729)-time) relies upon fast matrix multiplication, the second
one is purely combinatorial and can be easily implemented.

We finally notice that any graph G can be clique-decomposed within the same time bound O(T (G) +
min{n2.3729, ω2n}) (Theorem 7). Since a minimal triangulation can be computed in T (G) = Õ(n2.3729)-
time for any graph G, our main result implies that any graph can be clique-decomposed in Õ(n2.3729)-time.
Furthermore, faster and practical algorithms can be obtained in some cases — whenever the graphs have
bounded clique-number and a minimal triangulation can be computed efficiently. We will show it is the case

1It seems to us that the techniques in [28] could also be applied to any minimal triangulation. Nonetheless, we will propose
a method that is, to our opinion, slightly simpler than theirs.

2

1

2 3

4

6 5

7
8

(a) G

S1 = {2, 6}

A1 = {1, 2, 6} S2 = {2, 6, 8}

A2 = {2, 6, 7, 8} A3 = {2, 3, 4, 5, 6, 8}

(b) Atom tree of G

Figure 1: A connected graph G (Figure 1a), an atom tree of the graph (Figure 1b).

for interesting graph classes such as planar graphs, bounded-treewidth graphs and bounded-degree graphs
(see Section 5.1 for details).

Altogether, this is hint that our Õ(n2.3729)-time clique-decomposition algorithm is optimal up to polyloga-
rithmic factors — due to the well-know equivalence between triangle detection and matrix multiplication [33].

Definitions and useful notations are given in Section 2. Last, we will conclude this paper with an open
conjecture in Section 6.

2 Definitions and preliminaries

We will use standard graph terminology from [10]. Graphs in this study are finite, simple (hence without
loops nor multiple edges) connected and unweighted, unless stated otherwise. Given a graph G = (V,E) and
a set S ⊆ V , we will denote by G[S] the subgraph of G that is induced by S. The open neighbourhood of
S, denoted by N(S), is the set of all vertices in G[V \ S] that are adjacent to at least one vertex in S. The
closed neighbourhood of S is denoted by N [S] = N(S) ∪ S.

Clique-minimal separators. A set S ⊆ V is a separator in G if there are at least two connected com-
ponents in G[V \ S]. In particular, a full component in G[V \ S] is any connected component C in G[V \ S]
satisfying that N(C) = S (note that a full component might fail to exist). The set S is called a minimal
separator in G if it is a separator and there are at least two full components in G[V \ S]. In particular, S is
a clique-minimal separator if it is a minimal separator and G[S] is a complete subgraph.

Clique-decomposition and atom tree. A graph is prime if it does not contain any clique-minimal
separator. Examples of prime graphs are the complete graph Kn and the cycle graph Cn. The clique-
decomposition of a graph G is the family of all inclusionwise maximal subsets Ai such that G[Ai] is prime,
and it is unique [30]. The subsets Ai are called the atoms of G.

Usually, we represent the clique-decomposition with a binary rooted tree, that is called an atom tree and
is recursively defined as follows (see Figure 1 for an illustration).

• If G is a prime graph then it has a unique atom tree, that is a single node labeled with V .

• Else, an atom tree of G is any binary rooted tree such that: its root is labeled with a clique-minimal
separator S in G, the left child of the root is a leaf-node that is labelled with A = S ∪ C where C is a
full component of G[V \ S] and G[A] is prime, furthermore the subtree that is rooted at the right child
of the root is an atom tree of G[V \ C].

Informally, an atom tree can be seen as the trace of some execution of a clique-decomposition algorithm
(e.g., a decomposition ordering). Note that the atom tree of a graph may not be unique. Furthermore, any
atom tree has linear-size (defined as the sum of the label cardinalities) O(n+m) [5].

Lemma 1 ([30]). Let G = (V,E) and T be an atom tree of G. Each leaf-node of T is labeled with an atom
of G, and each atom of G appears exactly once as a leaf-node label in T .

3

Since any atom tree has linear-size, we have by Lemma 1 that
∑
i |Ai| = O(n + m), where the sets Ai

denote the atoms of G. In contrast with the above result, we observe that there may be Ω(ω2n) edges in
the subgraphs that are induced by the atoms of G, with ω being the clique-number of G, that is, the size of
a largest complete subgraph in G (e.g., see Figure 2).

...

Kω - 1

n - ω + 1

v1

v2

v3

v4

n - ω
v

v

Figure 2: A split graph G with clique-number ω. The atoms of G are the sets N [vi] for 1 ≤ i ≤ n− ω + 1.
Hence, there are ω(ω− 1)(n−ω+ 1)/2 edges in the subgraphs G[N [vi]] that are induced by the atoms of G.

Minimal triangulation. A triangulation of G = (V,E) is any supergraph H = (V,E ∪ F) such that H
does not contain any induced cycle of length at least four. In particular, H is a minimal triangulation of G
if for any strict subset F ′ ⊂ F , the supergraph H ′ = (V,E ∪ F ′) is not a triangulation of G.

There exist strong relationships between minimal triangulations and clique-minimal separators. Namely,
we will use the following lemma.

Lemma 2 ([6]). For any minimal triangulation H of a graph G, the clique-minimal separators in G are
exactly the minimal separators in H that induce complete subgraphs of G.

3 Time complexity lower-bound

Let us start proving the hardness of clique-decomposition by reducing this problem from triangle detection. In
the following, recall that a simplicial vertex is one whose closed neighbourhood induces a complete subgraph.
We will need the following lemma.

Lemma 3 ([27]). The problem of counting the number of simplicial vertices in a graph with 3n+ 2 vertices
is at least as hard as determining whether a graph on n vertices has a triangle.

Theorem 4. The problem of computing the clique-decomposition of a graph with 3n+ 2 vertices is at least
as hard as determining whether a graph on n vertices has a triangle.

Proof. Let G = (V,E) be any graph with 3n+ 2 vertices. In order to prove the theorem, by Lemma 3 it is
sufficient to prove that counting the number of simplicial vertices in G can be done in O(n+m)-time if the
clique-decomposition of G is given (encoded as an atom tree).

We claim that for every simplicial vertex v ∈ V , its closed neighbourhood N [v] is an atom, and in
particular it is the unique atom containing v. Indeed, since G[N [v]] is complete, we have that G[N [v]] is
prime, and so, the subset N [v] must be contained in any atom A containing v. Furthermore, if it were the
case that there exists u ∈ A \N [v] then the clique N(v) would be a uv-separator, thus contradicting the fact
that G[A] is prime. As a result, we have that A = N [v], that proves the claim.

Recall that using an atom tree of G, every atom Ai of G can be written Ai = Ci ∪ Si with Si being a
clique-minimal separator and Si ⊆ N(Ci). In particular, let Mi ⊆ Ci contain every vertex in the atom that
is not contained in any other atom Aj , with j 6= i. Note that all the subsets Mi can be computed by visiting
the atoms sequentially, which takes O(

∑
i |Ai|) = O(n+m)-time. Furthermore, we have by the above claim

that in order to count the number of simplicial vertices in G, it is sufficient to sum together the cardinalities

4

|Mi| of the subsets Mi such that the atom Ai is a clique. Here is a way to achieve the goal in linear-time.
Since the subsets Ci are pairwise disjoint, let us reorder the vertices in G so that in any adjacency list, it
first appears the neighbours in C1, then those in C2, and so on. In such case, the atom Ai is a clique if and
only if each vertex in Ci has |Ai| − 1 neighbours in Ai, that is, |Ai| − 1 neighbours that are not contained
in any Cj , with j < i. The latter can be verified by visiting the subsets Ci sequentially, while removing the
vertices in Ci from all adjacency lists at the ith step. Since the adjacency lists have been reordered, it can
be done in O(m+

∑
i |Ci|) = O(n+m)-time. So, overall, finding the atoms Ai that are cliques can be done

in O(n + m)-time, which implies that counting the number of simplicial vertices in G can be done within
the same time complexity.

4 Computing the clique-minimal separators

This section is devoted to fast computation of the clique-minimal separators in a graph. We will introduce
two methods which both make use of Lemma 2.

Proposition 5. Let G = (V,E). Suppose that a minimal triangulation of G can be computed in time T (G).
Then, the clique-minimal separators of G can be computed in O(T (G) + n2.3729)-time.

Proof. Let H = (V,E∪F) be a minimal triangulation of G, with f = |F | fill edges. By the hypothesis it can
be computed in time T (G). Let Ξ = (S1, S2, . . . , Sl) be the minimal separators of H, with l ≤ n. By [21],
the family Ξ can be computed in O(n + m + f) = O(n2)-time. Furthermore, recall that by Lemma 2 the
clique-minimal separators of G are exactly the separators in Ξ that are cliques of G. In order to compute
them, let V = (v1, v2, . . . , vn) be totally ordered. Let AG be the adjacency matrix of G, and let BH be the
clique matrix of H (of dimensions n × l) defined as follows. For every 1 ≤ i ≤ n and for every 1 ≤ j ≤ n,
we have bij = 1 if vi ∈ Sj and bij = 0 otherwise. Then, C = AGBH is a matrix of dimensions n × l. It can
be computed in O(n2.3729)-time by using fast matrix multiplication since l ≤ n [29]. Furthermore, for every
1 ≤ i ≤ n and for every 1 ≤ j ≤ n, we have cij = |NG(vi) ∩ Sj |. Therefore, Sj ∈ Ξ is a clique-minimal
separator of G if and only if we have cij = |Sj | − 1 for every vi ∈ Sj . As a result, the clique-minimal

separators of G are obtained from the matrix C in time O(
∑l
j=1 |Sj |), that is O(n+m+ f) = O(n2).

Proposition 6. Let G = (V,E). Suppose that a minimal triangulation of G can be computed in time T (G).
Then, the clique-minimal separators of G can be computed in O(T (G) + ω2n)-time.

Proof. Let H = (V,E∪F) be a minimal triangulation of G, with f = |F | fill edges. By the hypothesis it can
be computed in time T (G). Let us compute the set Ξ of all minimal separators of H. By [21], the family Ξ
can be computed in O(n+m+ f) = O(T (G))-time.

Let S = Ξ. Our aim is to remove separators of H from S until it only contains the clique-minimal
separators of G. In order to achieve the result, let V = (v1, v2, . . . , vn) be totally ordered. We consider the
vertices sequentially. For every 1 ≤ i ≤ n, let Si ⊆ S contain every S ∈ S such that vi ∈ S. Furthermore,
let S<i := S ∩ {v1, . . . , vi−1} for every S ∈ Si. If S<i 6⊆ NG(vi) then S is not a clique and it is discarded
from S. Therefore, once the algorithm has terminated, subsets in S are exactly the minimal separators of H
that are cliques of G. By Lemma 2, these are exactly the clique-minimal separators of G. Hence the above
algorithm is correct.

Let us focus on the time complexity. Assume for ease of computation that we maintain an “incidence
graph” IS : with vertex set V ∪S and an edge between every vertex vi ∈ V and every separator S ∈ Si. Note
that IS can be constructed at the initialization step (when Ξ = S) in O(|V |+∑S∈Ξ |S|) = O(n+m+f)-time,
that is O(T (G)). Furthermore, for every 1 ≤ i ≤ n the separators in Si are exactly the neighbours of vertex
vi in IS , hence it takes O(|Si|)-time to access to each of the separators in Si. Discarding a separator S ∈ Si
from S is equivalent to deleting the vertex corresponding to S in IS , which can be done in O(|S|)-time.
Overall, these two types of operations (accessing and discarding) take O(

∑n
i=1 |Si| +

∑
S∈Ξ |S|)-time, that

is O(
∑
S∈Ξ |S|) = O(T (G))-time.

5

Finally, deciding whether S<i 6⊆ NG(vi) for every S ∈ Si takes time O(|NG(vi)| +
∑
S∈Si |S<i|). Fur-

thermore, since the vertices are considered sequentially, we have that S<i is a clique for every S ∈ Si
(or else, S would have been discarded from S at some step j < i of the algorithm). This implies that∑
i|S∈Si |S<i| ≤

∑ω
j=1 j = ω(ω + 1)/2 = O(ω2) for every S ∈ Ξ. Hence, since H is triangulated, and so,

|Ξ| ≤ n, we have:
n∑

i=1

∑

S∈Si
|S<i| =

∑

S∈Ξ

∑

i|S∈Si
|S<i| = O(ω2n).

5 Faster computation of clique-decomposition

In Section 4, we proved that if a minimal triangulation of a graph G can be computed in time T (G), then
the clique-minimal separators of G can be computed in O(T (G) + min{n2.3729, ω2n})-time. We now prove
that an atom tree of G can be computed within the same time bounds.

Theorem 7. Let G = (V,E). Suppose that a minimal triangulation of G can be computed in time T (G).
Then, the clique-decomposition of G can be computed in O(T (G) + min{n2.3729, ω2n})-time.

Proof. Let H = (V,E∪F) be a minimal triangulation of G, with f = |F | fill edges. By the hypothesis it can
be computed in time T (G). Furthermore, the clique-decomposition of G can be computed in O(n+m+f) =
O(T (G))-time if H and the clique-minimal separators of G are given [7]. By Propositions 5 and 6, the
clique-minimal separators of G can be computed in O(T (G) + min{n2.3729, ω2n})-time. So, overall it takes
O(T (G) + min{n2.3729, ω2n})-time to compute the clique-decomposition of G.

On the combinatorial side, our approach for computing the clique-decomposition (Theorem 7) is at least
as good as the state-of-the-art O(nm)-time algorithm. Indeed, for any graph G, a minimal triangulation of
G can be computed in time T (G) = O(nm) [31]. Furthermore if G has clique-number ω then it has number
of edges m ≥ ω(ω − 1)/2 = Ω(ω2).

Corollary 8. The clique-decomposition of a graph G can be computed in Õ(n2.3729)-time.

Proof. Since a minimal triangulation of a graph G can be computed in Õ(n2.3729)-time [25], the result follows
from Theorem 7 by replacing T (G) with Õ(n2.3729).

5.1 Applications

By Theorem 7, the clique-decomposition of a graph G can be computed in quasi linear-time if i) G has
bounded clique-number and ii) a minimal triangulation of G can be computed efficiently. Below, we list a
few graph classes for which it is the case.

• A graph G has tree-width at most k if there exists a triangulation of G with clique-number at most k.
Note that the clique-number ω of G is a lower-bound on its tree-width. Furthermore, if G has tree-
width k then a minimal triangulation of G can be computed in O(k7 · n log n)-time [20]. Therefore, by
Theorem 7 the clique-decomposition of bounded tree-width graphs can be computed in O(n log n)-time.

• A graph G is planar if it can be drawn in the Euclidean plane so that edges may only intersect at their
endpoints. By Kuratowski Theorem, G is planar if and only if G is {K3,3,K5}-minor-free. So, a planar
graph G has bounded clique-number ω ≤ 4. Furthermore, if G is planar then a minimal triangulation
of G can be computed in O(n)-time [16]. As a result, by Theorem 7 the clique-decomposition of planar
graphs can be computed in linear-time.

6

• Finally, let us consider bounded-degree graphs. Indeed, for every graph G, ω ≤ ∆ + 1 with ω and ∆
being respectively the clique-number and the maximum degree of G. Therefore, bounded-degree graphs
have bounded clique-number. Furthermore, if G has maximum degree ∆ then a minimal triangulation
of G can be computed in O(n · (∆3 + α(n)))-time where α(n) here denotes the inverse of Ackerman’s
function [17]. Hence by Theorem 7 the clique-decomposition of bounded-degree graphs can be computed
in O(n · α(n))-time.

6 Conclusion

By Corollary 8, the time complexity of computing the clique-decomposition of an n-vertex graph G is
Õ(n2.3759). It is unlikely that the problem can be solved in o(n2.3759)-time by Theorem 4 (recall that the
two problems of triangle detection and matrix multiplication are equivalent [33]).

Finally, we proved in Theorem 7 that for every graph G with bounded clique-number ω, the clique-
decomposition of G can be computed in O(T (G) + ω2n)-time where T (G) here denotes the time needed to
compute a minimal triangulation of G. We conjecture that in fact, it can be computed in O(ω2n)-time.

References

[1] M. Abu-Ata and F. Dragan. Metric tree-like structures in real-world networks: an empirical study.
Networks, 67(1):49–68, 2016.

[2] A. Berry and J.-P. Bordat. Decomposition by clique minimal separators. Technical Report 97213, 1999.

[3] A. Berry, A. Brandstädt, V. Giakoumakis, and M. F. Efficiently decomposing, recognizing and trian-
gulating hole-free graphs without diamonds. Discrete Applied Mathematics, 184:50 – 61, 2015.

[4] A. Berry, R. Pogorelcnik, and A. Sigayret. Vertical decomposition of a lattice using clique separators.
In Proceedings of The Eighth International Conference on Concept Lattices and Their Applications,
Nancy, France, October 17-20, 2011, pages 15–29, 2011.

[5] A. Berry, R. Pogorelcnik, and G. Simonet. Efficient clique decomposition of a graph into its atom graph.
Technical Report RR-10-07, Mar. 2010.

[6] A. Berry, R. Pogorelcnik, and G. Simonet. An introduction to clique minimal separator decomposition.
Algorithms, 3(2):197, 2010.

[7] A. Berry, R. Pogorelcnik, and G. Simonet. Organizing the atoms of the clique separator decomposition
into an atom tree. Discrete Applied Mathematics, 177:1 – 13, 2014.

[8] A. Berry and A. Wagler. Triangulation and clique separator decomposition of claw-free graphs. In M. C.
Golumbic, M. Stern, A. Levy, and G. Morgenstern, editors, Graph-Theoretic Concepts in Computer
Science: 38th International Workshop, WG 2012, Jerusalem, Israel, June 26-28, 2012, Revised Selcted
Papers, pages 7–21. Springer Berlin Heidelberg, 2012.

[9] H. Bodlaender and A. Koster. Safe separators for treewidth. Discrete Mathematics, 306(3):337 – 350,
2006.

[10] J. Bondy and U. Murty. Graph theory. Berlin: Springer, 2008.

[11] M. Borassi, P. Crescenzi, and M. Habib. Into the square - on the complexity of quadratic-time solvable
problems. arXiv preprint arXiv:1407.4972, 2014.

[12] A. Brandstädt and C. Hoàng. On clique separators, nearly chordal graphs, and the maximum weight
stable set problem. In Integer Programming and Combinatorial Optimization, pages 265–275. Springer,
2005.

[13] A. Brandstädt and R. Mosca. Weighted efficient domination for P6-free graphs in polynomial time.
arXiv preprint arXiv:1508.07733, 2015.

7

[14] M. Changat and J. Mathew. On triangle path convexity in graphs. Discrete Mathematics, 206(1):91–95,
1999.

[15] N. Cohen, D. Coudert, G. Ducoffe, and A. Lancin. Applying clique-decomposition for computing Gromov
hyperbolicity. Research Report RR-8535, Inria, June 2014.

[16] E. Dahlhaus. Minimal elimination of planar graphs. In Algorithm Theory - SWAT ’98, 6th Scandinavian
Workshop on Algorithm Theory, Stockholm, Sweden, July, 8-10, 1998, Proceedings, pages 210–221, 1998.

[17] E. Dahlhaus. Minimal elimination ordering for graphs of bounded degree. Discrete Applied Mathematics,
116(1-2):127–143, 2002.

[18] M. Didi Biha, B. Kaba, M.-J. Meurs, and E. SanJuan. Graph decomposition approaches for terminology
graphs. In MICAI 2007: Advances in Artificial Intelligence, volume 4827 of Lecture Notes in Computer
Science, pages 883–893. Springer, 2007.

[19] Y. Dourisboure and C. Gavoille. Tree-decompositions with bags of small diameter. Discrete Mathemat-
ics, 307(16):2008–2029, 2007.

[20] F. Fomin, D. Lokshtanov, M. Pilipczuk, S. Saurabh, and W. Wrochna. Fully polynomial-time param-
eterized computations for graphs and matrices of low treewidth. Technical Report abs/1511.01379,
arXiv, 2015.

[21] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and
maximum independent set of a chordal graph. SIAM Journal on Computing, 1(2):180–187, 1972.

[22] F. Gavril. Algorithms on clique separable graphs. Discrete Mathematics, 19(2):159–165, 1977.

[23] M. Golumbic and R. Jamison. The edge intersection graphs of paths in a tree. Journal of Combinatorial
Theory, Series B, 38(1):8–22, 1985.

[24] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics, 306(3):297–317, 2006.

[25] P. Heggernes, J. Telle, and Y. Villanger. Computing minimal triangulations in time O(nα log n) =
o(n2.376). In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages
907–916. Society for Industrial and Applied Mathematics, 2005.

[26] B. Kaba, N. Pinet, G. Lelandais, A. Sigayret, and A. Berry. Clustering gene expression data using
graph separators. In silico biology, 7(4-5):433–452, 2007.

[27] D. Kratsch and J. Spinrad. Between O(nm) and O(nα). SIAM Journal on Computing, 36(2):310–325,
2006.

[28] D. Kratsch and J. Spinrad. Minimal fill in O(n2.69) time. Discrete mathematics, 306(3):366–371, 2006.

[29] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th International
Symposium on Symbolic and Algebraic Computation, ISSAC ’14, pages 296–303, New York, NY, USA,
2014. ACM.

[30] H.-G. Leimer. Optimal decomposition by clique separators. Discrete Mathematics, 113(1):99–123, 1993.

[31] D. Rose, R. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM Journal
on computing, 5(2):266–283, 1976.

[32] R. E. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55(2):221 – 232, 1985.

[33] V. Vassilevska Williams and R. Williams. Subcubic equivalences between path, matrix and triangle
problems. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages
645–654. IEEE, 2010.

[34] H. Yaghi and H. Krim. Probabilistic graph matching by canonical decomposition. In Image Processing,
2008. ICIP 2008. 15th IEEE International Conference on, pages 2368–2371. IEEE, 2008.

8

Appendix G

On the complexity of computing
tree decompositions with metric

constraints on the bags

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

On computing tree and path decompositions
with metric constraints on the bags∗

Guillaume Ducoffe† ‡, Sylvain Legay§, Nicolas Nisse‡ †

Project-Teams COATI

Research Report n° 8842 — January 2016 — 63 pages

Abstract: We here investigate on the complexity of computing the tree-length and the tree-
breadth of any graph G, that are respectively the best possible upper-bounds on the diameter and
the radius of the bags in a tree decomposition of G. Path-length and path-breadth are similarly
defined and studied for path decompositions. So far, it was already known that tree-length is NP-
hard to compute. We here prove it is also the case for tree-breadth, path-length and path-breadth.
Furthermore, we provide a more detailed analysis on the complexity of computing the tree-breadth.
In particular, we show that graphs with tree-breadth one are in some sense the hardest instances
for the problem of computing the tree-breadth. We give new properties of graphs with tree-breadth
one. Then we use these properties in order to recognize in polynomial-time all graphs with tree-
breadth one that are planar or bipartite graphs. On the way, we relate tree-breadth with the notion
of k-good tree decompositions (for k = 1), that have been introduced in former work for routing.
As a byproduct of the above relation, we prove that deciding on the existence of a k-good tree
decomposition is NP-complete (even if k = 1). All this answers open questions from the literature.

Key-words: Tree-length; Tree-breadth; Path-length; Path-breadth; k-good tree decomposi-
tions;

∗ This work has been partially supported by ANR project Stint under reference ANR-13-BS02-0007, ANR
program “Investments for the Future” under reference ANR-11-LABX-0031-01.

† Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France
‡ Inria, France
§ LRI, Univ Paris Sud, Université Paris-Saclay, 91405 Orsay, France

Sur la complexité du calcul de décompositions
arborescentes ou linéaires avec des contraintes sur les

distances dans les sacs

Résumé : Nous étudions la complexité du calcul de la tree-length et de la tree-breadth pour
tout graphe G, qui sont respectivement les meilleures bornes supérieures possibles sur le diamètre
et le rayon des sacs dans une décomposition arborescente de G. La path-length et la path-breadth
sont définies (et étudiées) de manière identique pour les décompositions linéaires. Il était connu
jusqu’‘à présent que le calcul de la tree-length est NP-difficile. Nous prouvons dans ce rapport
qu’il en va de même pour les paramètres tree-breadth, path-length et path-breadth. Par ailleurs,
nous analysons plus en détails la complexité du calcul de la tree-breadth. En particulier, nous
montrons que les graphes de tree-breadth 1 sont, en un sens que nous préciserons par la suite,
les instances les plus difficiles pour le problème du calcul de la tree-breadth. Nous démontrons
de nouvelles propriétés des graphes de tree-breadth 1. Puis nous utilisons ces propriétés afin de
reconnâıtre en temps polynomial si un graphe planaire ou biparti a sa tree-breadth égale à 1. En
chemin dans la preuve des résultats ci-dessus, nous établissons une relation entre la tree-breadth
d’un graphe et l’existence d’une décomposition arborescente “k-good” (avec k = 1), un problème
qui avait été introduit dans la littérature sur le routage compact. Comme conséquence directe
de cette relation, nous prouvons que décider de l’existence d’une décomposition arborescente
“k-good” est un problème NP-complet (même si k = 1). Nous répondons ainsi à des questions
ouvertes de la littérature.

Mots-clés : Tree-length; Tree-breadth; Path-length; Path-breadth; Décomposition k-good;

On computing tree and path decompositions with metric constraints on the bags 3

1 Introduction

Context. It is a fundamental problem in metric graph theory [5] to embed a graph into a
simpler metric space while minimizing the (multiplicative) distortion of the distances in the
graph. In particular, minimum distortion embeddings of a graph into a tree or a path have
practical applications in computer vision [45], computational chemistry and biology [35] as well
as in network design and distributed protocols [33]. The two problems to embed a graph into
a tree or a path with minimum distortion are NP-hard [2, 6, 40]. However, there exists a nice
setting in order to approximate these two problems. More precisely, a series of graph parameters
has been introduced in recent work in order to measure how much the distance distribution of a
graph is close to a tree metric or a path metric [24, 26, 27]. We refer to [25, 27] for details about
the relationships between these parameters and the two above-mentioned embedding problems.
Here we study the complexity of computing these parameters, thereby solving open problems in
the literature.

The parameters that are considered in this note can be defined using the terminology of
Robertson and Seymour tree decompositions [43]. Informally, a tree decomposition is a dividing
of a graph G into “bags”: that are overlapping subgraphs that can be pieced together in a
tree-like manner (formal definitions will be given in the technical sections of the paper). The
shortest-path metric of G is “tree-like” when each bag of the tree decomposition has bounded
diameter and bounded radius, where the distance taken between two vertices in a same bag is
their distance in G. The tree-length [24] and the tree-breadth [26] of G are respectively the best
possible upper-bounds on the diameter and the radius of the bags in a tree decomposition of
G. Path-length [46] and path-breadth [27] are defined in the same fashion as tree-length and
tree-breadth for path decompositions. In this paper, we focus on the complexity of computing
the four parameters tree-length, tree-breadth, path-length and path-breadth.

Recent studies suggest that some classes of real-life networks – including biological networks
and social networks – have bounded tree-length and tree-breadth [1]. This metric tree-likeness can
be exploited in algorithms. For instance, bounded tree-length graphs admit compact distance
labeling scheme [23] as well as a PTAS for the well-known Traveling Salesman problem [38].
Furthermore, the diameter and the radius of bounded tree-length graphs can be approximated
up to an additive constant in linear-time [17]. In contrast to the above result, we emphasize that
under classical complexity assumptions the diameter of general graphs cannot be approximated
up to an additive constant in subquadratic-time, that is prohibitive for very large graphs [15].

Note that a large amount of the literature about tree decompositions rather seeks to minimize
the size of the bags than their diameter. The tree-width [43] of a graph G is the best possible
upper-bound on the size of the bags in a tree decomposition of G. However, tree-length and the
other parameters that are considered in this paper can differ arbitrarily from tree-width; we refer
to [20] for a global picture on the relations between tree-length and tree-width. Furthermore,
one aim of this paper is to complete the comparison between tree-width and path-width on one
side, and tree-length, tree-breadth, path-length and path-breadth on the other side, from the
complexity point of view. Let us remind that computing the tree-width (resp. the path-width) is
NP-hard [3, 36], however for every fixed k ≥ 1 there is a linear-time algorithm to decide whether
a graph has tree-width at most k (resp., path-width at most k) [8, 12].

Related work. The complexity of computing tree-length, tree-breadth, path-length and path-
breadth has been left open in several works [24, 26, 27]. So far, it has been solved only for
tree-length, that is NP-hard to compute.

Tree-length and tree-breadth. It is NP-complete to decide whether a graph has tree-length at
most k for every constant k ≥ 2 [39]. However, the reduction used for tree-length goes through

RR n° 8842

4 Ducoffe,Legay,Nisse

weighted graphs and then goes back to unweighted graphs using rather elegant gadgets. It does
not seem to us these gadgets can be easily generalized in order to apply to the other parameters
that are considered in this note. On a more positive side, there exists a 3-approximation algorithm
for tree-length [24]. In this aspect, it looks natural to investigate on the complexity of computing
the tree-breadth, since any polynomial-time algorithm would imply an improved 2-approximation
algorithm for tree-length.

Path-length and path-breadth. There exist constant-factor approximation algorithms for path-
length and path-breadth [27]. Recently, the minimum eccentricity shortest-path problem – that
is close to the computation of path-length and path-breadth – has been proved NP-hard [28].
Let us point out that for every fixed k, it can be decided in polynomial-time whether a graph
admits a shortest-path with eccentricity at most k [28]. Our results will show the situation is
different for path-length and path-breadth than for the minimum eccentricity shortest-path.

Our contributions. On the negative side, we prove that tree-breadth, path-length and path-
breadth are NP-hard to compute. More precisely:

• recognizing graphs with tree-breadth one is NP-complete;

• recognizing graphs with path-length two is NP-complete;

• recognizing graphs with path-breadth one is NP-complete.

It is remarkable the last two results (for path-length and path-breadth) are obtained using the
same reduction. Our reductions have distant similarities with the reduction that was used for
tree-length. However, they do not need any detour through weighted graphs.

We next focus our work on tree-breadth (although part of the results may extend to the
three other parameters that are considered in this note). We give a more in-depth analysis
on the complexity of computing this parameter. In particular, we prove it is equally hard to
compute tree-breadth as to recognize graphs with tree-breadth one. Therefore, graphs with
tree-breadth one are in some sense the hardest instances for the problem of computing the
tree-breadth. The latter partly answers an open question from [26], where it was asked for a
characterization of graphs with tree-breadth one. We also prove a few properties of graphs with
tree-breadth one. In particular, graphs with tree-breadth one are exactly those graphs admitting
a 1-good tree decomposition, that is a tree decomposition whose each bag has a spanning star.
The more general notion of k-good tree decompositions was introduced in [37] to obtain new
compact routing schemes. Note that as a byproduct of the above relation between 1-good tree
decompositions and graphs with tree-breadth one, we obtain that deciding on the existence of a
k-good tree decomposition is an NP-complete problem even when k = 1.

Finally, on the algorithmic side, we show how to recognize in polynomial time all graphs of
tree-breadth one that are planar or bipartite. In particular, our recognition algorithm for planar
graphs of tree-breadth one relies upon deep structural properties of these graphs.

Definitions and useful notations are given in Section 2. All our results of NP-completeness
are listed and proved in Section 3. Sections 4 and 5 are devoted to the computation of tree-
breadth. In particular, in Section 5 we present and we prove correctness of an algorithm to
recognize planar graphs with tree-breadth one. Finally, we discuss about some open questions
in the conclusion (Section 6).

Inria

On computing tree and path decompositions with metric constraints on the bags 5

2 Definitions and preliminary results

We refer to [22] for a survey on graph theory. Graphs in this study are finite, simple, connected
and unweighted. Let G = (V,E) be a graph. For any X ⊆ V , let G[X] denote the subgraph of
G induced by X. For any subgraph H of G, let NH(v) denote the set of neighbors of v ∈ V in
H, and let NH [v] = NH(v) ∪ {v}. The distance distH(u, v) between two vertices u, v ∈ V in H
is the minimum length (number of edges) of a path between u and v in a subgraph H of G. In
what follows, we will omit the subscript when no ambiguity occurs. A set S ⊆ V is a dominating
set of G if any vertex of V \ S has a neighbor in S. The dominating number γ(G) of a graph G
is the minimum size of a dominating set of G.

Tree decompositions and path decompositions of a graph. A tree decomposition (T,X)
of G is a pair consisting of a tree T and of a family X = (Xt)t∈V (T) of subsets of V indexed by
the nodes of T and satisfying:

•
⋃
t∈V (T)Xt = V ;

• for any edge e = {u, v} ∈ E, there exists t ∈ V (T) such that u, v ∈ Xt;

• for any v ∈ V , the set of nodes t ∈ V (T) such that v ∈ Xt induces a subtree, denoted by
Tv, of T .

The sets Xt are called the bags of the decomposition. If no bag is contained into another one,
then the tree decomposition is called reduced. Starting from any tree decomposition, a reduced
tree decomposition can be obtained in polynomial-time by contracting any two adjacent bags
with one contained into the other until it is no more possible to do that.

In the following we will make use of the Helly property in our proofs:

Lemma 1 [4, Helly property] Let T be a tree and let T1, T2, . . . , Tk be a finite family of pairwise

intersecting subtrees. Then,
⋂k
i=1 Ti 6= ∅, or equivalently there is a node contained in all the k

subtrees.

Finally, let (T,X) be a tree decomposition, it is called a path decomposition if T induces a
path.

Metric tree-likeness and path-likeness. All graph invariants that we consider in the paper
can be defined in terms of tree decompositions and path decompositions. Let (T,X) be any tree
decomposition of a graph G. For any t ∈ V (T),

• the diameter of bag Xt equals maxv,w∈Xt distG(v, w);

• the radius ρ(t) of a bag Xt equals minv∈V maxw∈Xt distG(v, w).

The length of (T,X) is the maximum diameter of its bags, while the breadth of (T,X) is the
maximum radius of its bags. The tree-length and the tree-breadth of G, respectively denoted by
tl(G) and tb(G), are the minimum length and breadth of its tree decomposition, respectively.

Let k be a positive integer, the tree decomposition (T,X) is called k-good when each bag
contains a dominating induced path of length at most k − 1. It is proved in [37] every graph G
has a k-good tree decomposition for k = ch(G) − 1, with ch(G) denoting the size of a longest
induced cycle of G. Finally, path-length, path-breadth and k-good path decompositions are

RR n° 8842

6 Ducoffe,Legay,Nisse

similarly defined and studied for the path decompositions as tree-length, tree-breadth and k-
good tree decompositions are defined and studied for the tree decompositions. The path-length
and path-breadth of G are respectively denoted by pl(G) and pb(G).

It has been observed in [26, 27] that the four parameters tree-length, tree-breadth and path-
length, path-breadth are contraction-closed invariants. We will use the latter property in our
proofs.

Lemma 2 ([26, 27]) For every G = (V,E) and for any edge e ∈ E:

tl(G/e) ≤ tl(G), tb(G/e) ≤ tb(G) and pl(G/e) ≤ pl(G), pb(G/e) ≤ pb(G).

Furthermore, it can be observed that for any graph G, tb(G) ≤ tl(G) ≤ 2 · tb(G) and similarly
pb(G) ≤ pl(G) ≤ 2 · pb(G). Moreover, if a graph G admits a k-good tree decomposition, then
tb(G) ≤ bk/2c + 1 and tl(G) ≤ k + 1. Before we end this section, let us prove the stronger
equivalence, tb(G) = 1 if and only if G admits a 1-good tree decomposition. This result will
be of importance in the following. Since a tree decomposition is 1-good if and only if each bag
contains a spanning star, we will name the 1-good tree decompositions star-decompositions in
the following.

Definition 1 Let G = (V,E) be a connected graph, a star-decomposition is a tree decomposition
(T,X) of G whose each bag induces a subgraph of dominating number one, i.e., for any t ∈ V (T),
γ(G[Xt]) = 1.

Clearly, if a graph admits a star-decomposition, then it has tree-breadth at most one. Let us
prove that the converse also holds.

Lemma 3 For any graph G with tb(G) ≤ 1, every reduced tree decomposition of G of breadth
one is a star-decomposition. In particular:

• any tree decomposition of G of breadth one can be transformed into a star-decomposition
in polynomial-time;

• similarly, any path decomposition of G of breadth one can be transformed into a 1-good
path decomposition in polynomial-time.

Proof. Let (T,X) be any reduced tree decomposition of G of breadth one. We will prove it
is a star-decomposition. To prove it, let Xt ∈ X be arbitrary and let v ∈ V be such that
maxw∈Xt

distG(v, w) = 1, which exists because Xt has radius one. We now show that v ∈ Xt.
Indeed, since the subtree Tv and the subtrees Tw, w ∈ Xt, pairwise intersect, then it comes by
the Helly Property (Lemma 1) that Tv ∩

(⋂
w∈Xt

Tw
)
6= ∅ i.e., there is some bag containing

{v}∪Xt. As a result, we have that v ∈ Xt because (T,X) is a reduced tree decomposition, hence
γ(G[Xt]) = 1. The latter implies that (T,X) is a star-decomposition because Xt is arbitrary.

Now let (T,X) be any tree decomposition of G of breadth one. It can be transformed
in polynomial-time into a reduced tree decomposition (T ′,X ′) so that X ′ ⊆ X . Further-
more, (T ′,X ′) has breadth one because it is the case for (T,X), therefore (T ′,X ′) is a star-
decomposition. In particular, if (T,X) is a path decomposition then so is (T ′,X ′).

Corollary 1 For any graph G, tb(G) ≤ 1 if and only if G admits a star-decomposition.

Inria

On computing tree and path decompositions with metric constraints on the bags 7

3 Intractability results

3.1 Path-length and path-breadth

This section is devoted to the complexity of all path-like invariants that we consider in this paper.

Theorem 1 Deciding whether a graph has path-length at most k is NP-complete even if k = 2.

In contrast to Theorem 1, graphs with path-length one are exactly the interval graphs [27],
i.e., they can be recognized in linear-time.

Theorem 2 Deciding whether a graph has path-breadth at most k is NP-complete even if k = 1.

From the complexity result of Theorem 2, we will also prove the hardness of deciding on the
existence of k-good path decompositions.

Theorem 3 Deciding whether a graph admits a k-good path decomposition is NP-complete even
if k = 1.

Proof. The problem is in NP. By Lemma 3, a graph G admits a 1-good path decomposition if
and only if pb(G) ≤ 1, therefore it is NP-hard to decide whether a graph admits a 1-good path
decomposition by Theorem 2.

All of the NP-hardness proofs in this section will rely upon the same reduction from the
Betweenness problem, defined below. The Betweenness problem, sometimes called the Total
Ordering problem, is NP-complete [41]. In [31], it was used to show that the Interval Sandwich
problem is NP-complete. What we here prove is that the Interval Sandwich problem remains
NP-complete even if the second graph is a power of the first one, where the kth power Gk of any
graph G is obtained from G by adding an edge between every two distinct vertices that are at
distance at most k in G for every integer k ≥ 1. Indeed, a graph G has path-length at most k if
and only if there is an Interval Sandwich between G and Gk (we refer to [39] for the proof of a
similar equivalence between tree-length and the Chordal Sandwich problem).

Problem 1 (Betweenness)

Input: a set S of n elements, a set T of m ordered triples of elements in S.

Question: Is there a total ordering of S such that for every triple t = (si, sj , sk) ∈ T ,
either si < sj < sk or sk < sj < si ?

Now, given an instance (S, T) of the Betweenness problem, we will construct from S and T
a graph GS,T as defined below. We will then prove that pl(GS,T) ≤ 2 (resp. pb(GS,T) ≤ 1) if
and only if (S, T) is a yes-instance of the Betweenness problem.

Definition 2 Let S be a set of n elements, let T be a set of m ordered triples of elements in S.
The graph GS,T is constructed as follows:

• For every element si ∈ S, 1 ≤ i ≤ n, there are two adjacent vertices ui, vi in GS,T . The
vertices ui are pairwise adjacent i.e., the set U = {ui | 1 ≤ i ≤ n} is a clique.

• For every triple t = (si, sj , sk) ∈ T , let us add in GS,T the vivj-path (vi, at, bt, vj) of length
3, and the vjvk-path (vj , ct, dt, vk) of length 3.

RR n° 8842

8 Ducoffe,Legay,Nisse

• Finally, for every triple t = (si, sj , sk) ∈ T let us make adjacent at, bt with every ul such
that l 6= k, similarly let us make adjacent ct, bt with every ul such that l 6= i.

It can be noticed from Definition 2 that for any 1 ≤ i ≤ n, the vertex ui is adjacent to any
vertex but those vj such that j 6= i, those at, bt such that si is the last element of triple t and those
ct, bt such that si is the first element of triple t. We refer to Figure 1 for an illustration (see also
Figure 2). Observe that GS,T has diameter 3 because the clique U dominates GS,T , therefore
pl(GS,T) ≤ 3 and we will show that it is hard to distinguish graphs with path-length two from
graphs with path-length three. Similarly, the clique U dominates GS,T hence pb(GS,T) ≤ 2,
thus we will show that it is hard to distinguish graphs with path-breadth one from graphs with
path-breadth two.

u

v

u

u

u u

v

v

v

v

1

2

3 4

5

5

4

3

1

2

a
b

c da

a

ab

b

b

c

c

cd

d

d
1

1

1
1

2
2

2
2

3
3

3

3

4

4

44

Figure 1: The graph GS,T for S = [|1, 5|]
and T = {(i, i+ 1, i+ 2) | 1 ≤ i ≤ 4}. Each
colour corresponds to a given triple of T . For
ease of reading, the adjacency relations be-
tween the vertices ui and the colored vertices
at, bt, ct, dt are not drawn.

t = (s , s , s), i < j < k
i j k

u
u
u

u

u

u
u

u

u

u

u
u

u

1

2

3

i-1

i

i+1

i+2

k-1

k

k+1

k+2

n

j

...
...

...
...

v

v

v

i

j

k

a

b

c

d

U

t

t

t

t

Figure 2: Adjacency relations in GS,T for
one given triple t = (si, sj , sk).

Lemma 4 Let S be a set of n elements, let T be a set of m ordered triples of elements in S. If
(S, T) is a yes-instance of the Betweenness problem then pb(GS,T) ≤ 1 and pl(GS,T) ≤ 2, where
GS,T is the graph that is defined in Definition 2.

Proof. Since pl(GS,T) ≤ 2 · pb(GS,T) then we only need to prove that pb(GS,T) ≤ 1. For
convenience, let us reorder the elements of S so that for every triple (si, sj , sk) ∈ T either
i < j < k or k < j < i. It is possible to do that because by the hypothesis (S, T) is a yes-
instance of the Betweenness problem. If furthermore k < j < i, let us also replace (si, sj , sk)
with the inverse triple (sk, sj , si). This way, we have a total ordering of S such that si < sj < sk
for every triple (si, sj , sk) ∈ T . Then, let us construct a path decomposition (P,X) with n bags,
denoted X1, X2, . . . , Xn, as follows. For every 1 ≤ i ≤ n, U ⊆ Xi and vi ∈ Xi. For every
t = (si, sj , sk) ∈ T , we add both at, bt into the bags Xl with i ≤ l ≤ j, similarly we add both
ct, dt into the bags Xl with j ≤ l ≤ k. By construction, the clique U is contained in any bag of
P and for every triple t = (si, sj , sk) ∈ T we have at, bt, vi ∈ Xi and at, bt, ct, dt, vj ∈ Xj and
ct, dt, vk ∈ Xk, therefore (P,X) is indeed a path decomposition of GS,T .

We claim that for every i, Xi ⊆ N [ui], that will prove the lemma. Indeed if it were not the case
for some i then by Definition 2 there should exist t ∈ T , j, k such that: either t = (si, sj , sk) ∈ T
and ct, dt ∈ Xi; or t = (sk, sj , si) ∈ T and at, bt ∈ Xi. But then by construction either at, bt

Inria

On computing tree and path decompositions with metric constraints on the bags 9

are only contained in the bags Xl for k ≤ l ≤ j, or ct, dt are only contained in the bags Xl for
j ≤ l ≤ k, thus contradicting the fact that either at, bt ∈ Xi or ct, dt ∈ Xi.

Lemma 5 Let S be a set of n elements, let T be a set of m ordered triples of elements in S. If
pb(GS,T) ≤ 1 or pl(GS,T) ≤ 2 then (S, T) is a yes-instance of the Betweenness problem, where
GS,T is the graph that is defined in Definition 2.

Proof. Since pl(GS,T) ≤ 2 · pb(GS,T) then we only need to consider the case when pl(GS,T) ≤ 2.
Let (P,X) be a path decomposition of length two, that exists by the hypothesis. Since the vertices
vi are pairwise at distance 3 then the subpaths Pvi that are induced by the bags containing vertex
vi are pairwise disjoint. Therefore, starting from an arbitrary endpoint of P and considering each
vertex vi in the order that it appears in the path decomposition, this defines a total ordering over
S. Let us reorder the set S so that vertex vi is the ith vertex to appear in the path-decomposition.
We claim that for every triple t = (si, sj , sk) ∈ T , either i < j < k or k < j < i, that will prove
the lemma.

By way of contradiction, let t = (si, sj , sk) ∈ T such that either j < min{i, k} or j >
max{i, k}. By symmetry, we only need to consider the case when j < i < k. In such case by
construction the path between Pvj and Pvk in P contains Pvi . Let B ∈ Pvi , by the properties of a
tree decomposition it is a vjvk-separator, so it must contain one of ct, dt. However, vertex vi ∈ B
is at distance 3 from both vertices ct, dt, thus contradicting the fact that (P,X) has length 2.

We are now able to prove Theorems 1 and 2.

Proof of Theorem 1. To prove that a graph G satisfies pl(G) ≤ k, it suffices to give as a certificate
a tree decomposition of G with length at most k. Indeed, the all-pairs-shortest-paths in G can
be computed in polynomial-time. Therefore, the problem of deciding whether a graph has path-
length at most k is in NP. Given an instance (S, T) of the Betweenness problem, let GS,T be
as defined in Definition 2. We claim that pl(GS,T) ≤ 2 if and only if the pair (S, T) is a yes-
instance of the Betweenness problem. This will prove the NP-hardness because our reduction is
polynomial and the Betweenness problem is NP-complete. To prove the claim in one direction, if
(S, T) is a yes-instance then by Lemma 4 pl(GS,T) ≤ 2. Conversely, if pl(GS,T) ≤ 2 then (S, T)
is a yes-instance by Lemma 5, that proves the claim in the other direction.

Proof of Theorem 2. To prove that a graph G satisfies pb(G) ≤ k, it suffices to give as a certificate
a tree decomposition of G with breadth at most k. Indeed, the all-pairs-shortest-paths in G can
be computed in polynomial-time. Therefore, the problem of deciding whether a graph has path-
breadth at most k is in NP. Given an instance (S, T) of the Betweenness problem, let GS,T
be as defined in Definition 2. We claim that pb(GS,T) ≤ 1 if and only if the pair (S, T) is a
yes-instance of the Betweenness problem. This will prove the NP-hardness because our reduction
is polynomial and the Betweenness problem is NP-complete. To prove the claim in one direction,
if (S, T) is a yes-instance then by Lemma 4 pb(GS,T) ≤ 1. Conversely, if pb(GS,T) ≤ 1 then
(S, T) is a yes-instance by Lemma 5, that proves the claim in the other direction.

To conclude this section, we strenghten the above hardness results with two inapproximability
results. Indeed, it has to be noticed that for any graph parameter param, an α-approximation
algorithm for param with α < 1+ 1

k is enough to separate the graphs G such that param(G) ≤ k
from those such that param(G) ≥ k+ 1. Therefore, the two following corollaries follow from our
polynomial-time reduction.

Corollary 2 For every ε > 0, the path-length of a graph cannot be approximated within a factor
3
2 − ε unless P=NP.

RR n° 8842

10 Ducoffe,Legay,Nisse

Proof. Let GS,T be the graph of the reduction in Theorem 1. By Definition 2, it has diameter
at most 3 and so pl(GS,T) ≤ 3. Since it is NP-hard to decide whether pl(GS,T) ≤ 2, therefore it
does not exist a

(
3
2 − ε

)
-approximation algorithm for path-length unless P=NP.

Corollary 3 For every ε > 0, the path-breadth of a graph cannot be approximated within a factor
2− ε unless P=NP.

Proof. Let GS,T be the graph of the reduction in Theorem 2. By Definition 2, the set U is a
dominating clique and so pb(GS,T) ≤ 2. Since it is NP-hard to decide whether pb(GS,T) ≤ 1,
therefore it does not exist a (2− ε)-approximation algorithm for path-breadth unless P=NP.

So far, there exists a 2-approximation algorithm for path-length and a 3-approximation al-
gorithm for path-breadth [27]. Therefore, we let open whether there exist 3

2 -approximation
algorithms for path-length and 2-approximation algorithms for path-breadth.

3.2 Tree-breadth

We prove next that computing the tree-breadth is NP-hard.

Theorem 4 Deciding whether a graph has tree-breadth at most k is NP-complete even if k = 1.

Theorem 5 Deciding whether a graph admits a k-good tree decomposition is NP-complete even
if k = 1.

Proof. The problem is in NP. By Corollary 1, a graph G admits a star-decomposition if and
only if tb(G) ≤ 1, therefore it is NP-hard to decide whether a graph admits a 1-good path
decomposition by Theorem 4.

In order to prove Theorem 4, we will reduce from the Chordal Sandwich problem (defined
below). In [39], the author also proposed a reduction from the Chordal Sandwich problem in
order to prove that computing tree-length is NP-hard. However, we will need different gadgets
than in [39], and we will need different arguments to prove correctness of the reduction.

Problem 2 (Chordal Sandwich)

Input: graphs G1 = (V,E1) and G2 = (V,E2) such that E1 ⊆ E2.

Question: Is there a chordal graph H = (V,E) such that E1 ⊆ E ⊆ E2 ?

The Chordal Sandwich problem is NP-complete even when the 2n = |V | vertices induce
a perfect matching in Ḡ2 (the complementary of G2) [11, 32]. Perhaps surprisingly, the later
constriction on the structure of Ḡ2 is a key element in our reduction. Indeed, we will need the
following technical lemma.

Lemma 6 Let G1 = (V,E1), G2 = (V,E2) such that E1 ⊆ E2 and Ḡ2 (the complementary
of G2) is a perfect matching. Suppose that 〈G1, G2〉 is a yes-instance of the Chordal Sandwich
problem.

Then, there exists a reduced tree decomposition (T,X) of G1 such that for every forbidden
edge {u, v} /∈ E2: Tu ∩ Tv = ∅, Tu ∪ Tv = T , furthermore there are two adjacent bags Bu ∈ Tu
and Bv ∈ Tv such that Bu \ u = Bv \ v.

Inria

On computing tree and path decompositions with metric constraints on the bags 11

Proof. Let H = (V,E) be any chordal graph such that E1 ⊆ E ⊆ E2 (that exists because
〈G1, G2〉 is a yes-instance of the Chordal Sandwich problem by the hypothesis) and the number
|E| of edges is maximized. We will prove that any clique-tree (T,X) of H satisfies the above
properties (given in the statement of the lemma). To prove it, let {u, v} /∈ E2 be arbitrary.
Observe that Tu ∩ Tv = ∅ (else, {u, v} ∈ E, that would contradict that E ⊆ E2).

Furthermore, let Bu ∈ Tu minimize the distance in T to the subtree Tv, let B be the unique
bag that is adjacent to Bu on a shortest-path between Bu and Tv in T . Note that B /∈ Tu by
the minimality of distT (Bu, Tv), however B may belong to Tv. Removing the edge {Bu, B} in
T yields two subtrees T1, T2 with Tu ⊆ T1 and Tv ⊆ T2. In addition, we have that for every
x ∈ V \ u such that Tx ∩ T1 6= ∅, {u, x} ∈ E2 since x 6= v and Ḡ2 is a perfect matching by the
hypothesis. Similarly, we have that for every y ∈ V \ v such that Ty ∩ T2 6= ∅, {v, y} ∈ E2.
Therefore, by maximality of the number |E| of edges, it follows that T1 = Tu and T2 = Tv, and
so, Tu ∪ Tv = T . In particular, B = Bv ∈ Tv.

Finally, let us prove that Bu \ u = Bv \ v. Indeed, assume for the sake of contradiction that
Bu \ u 6= Bv \ v. In particular, (Bu \ Bv) \ u 6= ∅ or (Bv \ Bu) \ v 6= ∅. Suppose w.l.o.g. that
(Bu \ Bv) \ u 6= ∅. Let H ′ = (V,E′) be obtained from H by adding an edge between vertex v
and every vertex of (Bu \Bv) \ u. By construction |E′| > |E|. Furthermore, H ′ is chordal since
a clique-tree of H ′ can be obtained from (T,X) by adding a new bag (Bu \ u) ∪ {v} in-between
Bu and Bv. However, for every x ∈ (Bu \Bv) \u we have that {x, v} ∈ E2 since x 6= u and Ḡ2 is
a perfect matching by the hypothesis. As a result, E′ ⊆ E2, thus contradicting the maximality
of the number |E| of edges in H.

Proof of Theorem 4. The problem is in NP. To prove the NP-hardness,let 〈G1, G2〉 be any input of
the Chordal Sandwich problem such that Ḡ2 is a perfect matching. The graph G′ is constructed
from G1 as follows. First we add a clique V ′ of 2n = |V | vertices in G′. Vertices v ∈ V are in
one-to-one correspondance with vertices v′ ∈ V ′. Then, for every forbidden edge {u, v} /∈ E2,
vertices u, v are respectively made adjacent to all vertices in V ′ \ v′ and V ′ \ u′. Finally, we
add a distinct copy of the gadget Fuv in Figure 3, and we make adjacent suv and tuv to the
two vertices u′, v′ (see also Figure 4 for an illustration). We will prove tb(G′) = 1 if and only if
〈G1, G2〉 is a yes-instance of the Chordal Sandwich problem. This will prove the NP-hardness
because our reduction is polynomial and the Chordal Sandwich problem is NP-complete even
when the 2n = |V | vertices induce a perfect matching in Ḡ2 (the complementary of G2) [11, 32].

s t

x

y zw

c
uv uv

uv

uv uvuv

uv

u

v

Figure 3: The gadget Fuv.

In one direction, assume tb(G′) = 1, let (T,X) be a star-decomposition of G′. Let H =
(V, {{u, v} | Tu∩Tv 6= ∅}), that is a chordal graph such that E1 ⊆ E(H). To prove that 〈G1, G2〉
is a yes-instance of the Chordal Sandwich problem, it suffices to prove that Tu∩Tv = ∅ for every
forbidden edge {u, v} /∈ E2. More precisely, we will prove that Tsuv

∩Ttuv
6= ∅, for we claim that

RR n° 8842

12 Ducoffe,Legay,Nisse

the latter implies Tu∩Tv = ∅. Indeed, assume Tsuv ∩Ttuv 6= ∅ and Tu∩Tv 6= ∅. Since suv and tuv
are both adjacent to u and v, therefore the four subtrees Tu, Tv, Tsuv

, Ttuv
pairwise intersect. By

the Helly property (Lemma 1) Tu∩Tv∩Tsuv
∩Ttuv

6= ∅, hence there is a bag containing u, v, suv, tuv
but then it contradicts the fact that (T,X) is a star-decomposition because no vertex dominates
the four vertices. Therefore, Tsuv∩Ttuv 6= ∅ implies Tu∩Tv = ∅. Let us prove that Tsuv∩Ttuv 6= ∅.
By contradiction, assume Tsuv∩Ttuv = ∅. Every bag B onto the path between Tsuv and Ttuv must
contain cuv, xuv, furthermore N [cuv]∩N [xuv] = {suv, tuv}. Since, (T,X) is a star-decomposition,
the latter implies either suv ∈ B and B ⊆ N [suv] or tuv ∈ B and B ⊆ N [tuv]. Consequently,
there exist two adjacent bags Bs ∈ Tsuv

, Bt ∈ Ttuv
such that Bs ⊆ N [suv] and Bt ⊆ N [tuv].

Furthermore, Bs ∩ Bt is an suvtuv-separator by the properties of a tree decomposition. In
particular, Bs ∩ Bt must intersect the path (yuv, wuv, zuv) because yuv ∈ N(suv) and zuv ∈
N(tuv). However, Bs ⊆ N [suv], Bt ⊆ N [tuv] but N [suv] ∩ N [tuv] ∩ {yuv, wuv, zuv} = ∅, hence
Bs ∩ Bt ∩ {yuv, wuv, zuv} = ∅, that is a contradiction. As a result, Tsuv

∩ Ttuv
6= ∅ and so,

Tu ∩ Tv = ∅.

suv

tuv

cuvwuv

zuv

yuv

xuv

u v

u' v'

x

x'
V'

G1

Figure 4: The graph G′ (simplified view).

Conversely, assume that 〈G1, G2〉 is a yes-instance of the Chordal Sandwich problem. Since
Ḡ2 is a perfect matching by the hypothesis, by Lemma 6 there exists a reduced tree decomposition
(T,X) of G1 such that for every forbidden edge {u, v} /∈ E2: Tu ∩ Tv = ∅, Tu ∪ Tv = T and there
are two adjacent bags Bu ∈ Tu, Bv ∈ Tv so that Bu \ u = Bv \ v. Let us modify (T,X) in order
to obtain a star-decomposition of G′.

In order to achieve the result, we first claim that for every edge {t, t′} ∈ E(T), the bags
Xt, Xt′ differ in exactly one vertex, that is, |Xt \Xt′ | = 1 and similarly |Xt′ \Xt| = 1. Indeed,
Xt \ Xt′ 6= ∅ because (T,X) is reduced, so, let utt′ ∈ Xt \ Xt′ . Let vtt′ ∈ V be the unique
vertex satisfying {utt′ , vtt′} /∈ E2, that is well-defined because Ḡ2 is a perfect matching by the
hypothesis. Note that vtt′ ∈ Xt′ because utt′ /∈ Xt′ and Tutt′ ∪Tvtt′ = T . Furthermore, vtt′ /∈ Xt

because utt′ ∈ Xt and Tutt′ ∩ Tvtt′ = ∅. By construction of (T,X), there are two adjacent
bags Butt′ ∈ Tutt′ , Bvtt′ ∈ Tvtt′ such that Butt′ \ utt′ = Bvtt′ \ vtt′ . Since utt′ ∈ Xt \ Xt′

and vtt′ ∈ Xt′ \ Xt, therefore, Xt = Butt′ and Xt′ = Bvtt′ , and so, Xt \ Xt′ = {utt′} and
Xt′ \ Xt = {vtt′}. In the following, we will keep the above notations utt′ , vtt′ for every edge
{t, t′} ∈ E(T) (in particular, utt′ = vt′t and vtt′ = ut′t).

Let us construct the star-decomposition (T ′,X ′) of G′ as follows.

• For every node t ∈ V (T), let St = Xt ∪ V ′ ∪ (
⋃
t′∈NT (t){sutt′vtt′ , tutt′vtt′}) (in particular,

|St| = 2n+ |Xt|+ 2 ·degT (t)). We will first construct a path decomposition of G′[St] whose
bags are the sets Ytt′ = Xt∪V ′∪{sutt′vtt′ , tutt′vtt′} for every edge {t, t′} ∈ E(T) (note that
the bags can be linearly ordered in an arbitrary way in the path decomposition). Further-
more, for every edge {t, t′} ∈ E(T), Ytt′ ⊆ N [u′tt′], where u′tt′ ∈ V ′ is the corresponding
vertex to utt′ ∈ V in the clique V ′ (see Figure 5 for an illustration). Therefore, the above
constructed path decomposition is a 1-good path decomposition.

Inria

On computing tree and path decompositions with metric constraints on the bags 13

u u u u

C
1

2 3
4

v u u u

C
1

2 3
4 u v u u

C
1

2 3
4

u u u v

C
1

2 3
4 u u v u

C
1

2 3
4

V' V' V' V'

u u u u

C
1

2 3
4 u u u u

C
1

2 3
4 u u u u

C
1

2 3
4 u u u u

C
1

2 3
4

s

t
s

t

s

t

s

tu3

u1v1

u1v1

u2v2

u2v2

u4v4

u4v4

u3v3

v3

Figure 5: The 1-good path decomposition (right) obtained from the central bag with degree four
(left).

• Then, we will connect the 1-good path decompositions together. More precisely, let us add
an edge between the two bags Ytt′ and Yt′t for every edge {t, t′} ∈ E(T) (see Figure 6 for
an illustration).

In so doing, we claim that one obtains a star-decomposition of G′[
⋃
t∈V (T) St]. Indeed, it

is a tree decomposition since:

– the clique V ′ is contained in all bags;

– for every {t, t′} ∈ E(T) the two vertices sutt′vtt′ , tutt′vtt′ are only contained in the two
adjacent bags Ytt′ and Yt′t, furthermore utt′ , u

′
tt′ , v

′
tt′ ∈ Ytt′ and vtt′ , u

′
tt′ , v

′
tt′ ∈ Yt′t;

– last, each vertex v ∈ V is contained in {Ytt′ | v ∈ Xt and t′ ∈ NT (t)} which induces a
subtree since (T,X) is a tree decomposition of G1.

Since in addition every bag Ytt′ , with {t, t′} ∈ E(T), is dominated by u′tt′ ∈ V ′, this proves
the claim that one obtains a star-decomposition.

V' V' V' V'

u u u u

C
1

2 3
4 u u u u

C
1

2 3
4 u u u u

C
1

2 3
4 u u u u

C
1

2 3
4

s

t
s

t

s

t

s

tu3

u1v1

u1v1

u2v2

u2v2

u4v4

u4v4

u3v3

v3

V'

v u u u

C
1

2 3
4

s

t

u1v1

u1v1

V'

u v u u

C
1

2 3
4

s

t

u2v2

u2v2

V'

u u v u

C
1

2 3
4

s

tu3

u3v3

v3

V'

u u u v

C
1

2 3
4

s

t

u4v4

u4v4

...

...

Figure 6: Connection of the 1-good path decomposition in Figure 5 to the neighbouring 1-good
path decompositions.

• In order to complete the construction, let us observe that for every forbidden edge {u, v} /∈
E2, there is a star-decomposition of Fuv\{u, v} with three leaf-bags {xuv, suv, tuv}, {yuv, suv, wuv}
and {zuv, suv, wuv} and one internal bag of degree three Buv = {cuv, suv, tuv, wuv}. For ev-
ery {t, t′} ∈ E(T), we simply connect the above star-decomposition of Futt′vtt′ \ {utt′ , vtt′}
by making the internal bag Butt′vtt′ adjacent to one of Ytt′ or Yt′t (see Figure 7 for an
illustration).

By construction, the resulting tree decomposition (T ′,X ′) of G′ is a star-decomposition, hence
tb(G′) = 1.

Recall that we can use our reduction from Definition 2 in order to prove that computing
path-length and path-breadth is NP-hard. By contrast, our reduction from Theorem 4 cannot

RR n° 8842

14 Ducoffe,Legay,Nisse

V' V' V' V'

u u u u

C
1

2 3
4 u u u u

C
1

2 3
4 u u u u

C
1

2 3
4 u u u u

C
1

2 3
4

s

t
s

t

s

t

s

tu3

u1v1

u1v1

u2v2

u2v2

u4v4

u4v4

u3v3

v3

V'

v u u u

C
1

2 3
4

s

t

u1v1

u1v1

V'

u v u u

C
1

2 3
4

s

t

u2v2

u2v2

V'

u u v u

C
1

2 3
4

s

tu3

u3v3

v3

V'

u u u v

C
1

2 3
4

s

t

u4v4

u4v4

...

...

su1v1 tu1v1

cu1v1

wu1v1

su1v1

wu1v1

yu1v1

su1v1 tu1v1

xu1v1 tu1v1

wu1v1
zu1v1

su3v3 tu3v3

cu3v3

wu2v2

su3v3

wu3v3

yu3v3

su3v3 tu3v3

xu3v3 tu3v3

wu3v3
zu3v3

su2v2 tu2v2

cu2v2

wu2v2

su2v2

wu2v2

yu2v2

su2v2 tu2v2

xu2v2

tu2v2

wu2v2
zu2v2

su4v4

tu4v4
cu4v4

wu4v4

su4v4

wu4v4

yu4v4

su4v4

tu4v4xu4v4

tu4v4

wu4v4

zu4v4

Figure 7: The respective star-decompositions of the gadgets Fuivi are connected to the other
bags.

be used to prove that tree-length is NP-hard to compute (in fact, the graph G′ resulting from
the reduction has tree-length two).

Finally, as in the previous Section 3.1, let us strenghten Theorem 4 with an inapproximability
result.

Corollary 4 For every ε > 0, the tree-breadth of a graph cannot be approximated within a factor
2− ε unless P=NP.

4 General properties of graphs with tree-breadth one

In Section 3.2, we prove that computing the tree-breadth is NP-hard. In particular, the recogni-
tion of graphs with tree-breadth one is NP-complete. In light of this result, we focus on graphs
with tree-breadth one (in order to obtain a better understanding of what makes the problem
difficult)

Problem 3 (1-tree-breadth)

Input: a connected graph G = (V,E)

Question: tb(G) ≤ 1 ?

In Lemma 7, we show that the problem of recognizing graphs with tree-breadth at most one
is equivalent to the problem of computing tree-breadth. This further motivates our study of
these graphs. Then, we will prove necessary conditions for a graph to be of tree-breadth one.

• One is that all graphs with a star-decomposition have a domination elimination ordering
(see Section 4.1). We will outline a few implications of this property.

• Second, we will prove in Lemma 9 that if a graph G admits a star-decomposition then so
do all the blocks of G, where the blocks here denote a particular case of induced subgraphs
of G (e.g., see Definition 4).

Inria

On computing tree and path decompositions with metric constraints on the bags 15

Finally, we will obtain from the latter result a polynomial-time algorithm to decide whether a
bipartite graph has tree-breadth at most one (e.g., see Section 4.3).

Definition 3 Let G be a graph with n vertices, denoted by v1, v2, . . . , vn, and let r be a positive
integer. The graph G′r is obtained from G by adding a clique with n vertices, denoted by U =
{u1, u2, . . . , un}, so that for every 1 ≤ i ≤ n, vertex ui is adjacent to BG(vi, r) = {x ∈ V (G) |
distG(vi, x) ≤ r}.

Lemma 7 For every graph G, for every positive integer r, let G′r be as defined in Definition 3,
tb(G) ≤ r if and only if tb(G′r) ≤ 1.

Proof. If tb(G) ≤ r then we claim that starting from any tree decomposition (T,X) of G with
breadth at most r, one obtains a star-decomposition of G′r by adding the clique U in every
bag Xt, t ∈ V (T). Indeed, in such case for every bag Xt, t ∈ V (T), by the hypothesis there
is vi ∈ V (G) such that maxx∈Xt

distG(vi, x) ≤ r, whence Xt ∪ U ⊆ NG′
r
[ui]. Conversely, if

tb(G′r) ≤ 1 then we claim that starting from any tree decomposition (T ′,X ′) of G′r with breadth
at most one, one obtains a tree decomposition of G with breadth at most r by removing every
vertex of the clique U from every bag X ′t, t ∈ V (T ′). Indeed, in such case for every bag
X ′t, t ∈ V (T ′), by the hypothesis there is y ∈ V (G′r) such that X ′t ⊆ NG′

r
[y]. Furthermore,

y ∈ {ui, vi} for some 1 ≤ i ≤ n, and so, since NG′
r
[vi] ⊆ NG′

r
[ui] by construction, therefore

X ′t \ U ⊆ NG′
r
(ui) \ U = {x ∈ V (G) | distG(vi, x) ≤ r}.

4.1 Existence of specific elimination orderings

Independently from the remaining of the section, let us prove some interesting properties of
graphs with tree-breadth one in terms of elimination orderings. More precisely, a domina-
tion elimination ordering [21] of a graph G is a total ordering of its vertex-set, denoted by
v1, v2, . . . , vn, so that for every 1 ≤ i < n, there is j > i satisfying thatNG(vi)∩{vi+1, vi+2, . . . , vn} ⊆
NG[vj]. The existence of domination elimination orderings in some graph classes and their al-
gorithmic applications has been studied in [16]. Let us prove that graphs with tree-breadth one
all admit a domination elimination ordering.

Lemma 8 Let G be such that tb(G) ≤ 1, G admits a domination elimination ordering.

Proof. Assume G has at least two vertices (or else, the lemma is trivial). To prove the lemma, it
suffices to prove the existence of u, v ∈ V (G) distinct such that N(v) ⊆ N [u] and tb(G \ v) ≤ 1
(then, the lemma follows by induction on the order of the graph).

If G admits a universal vertex u, then one can pick v ∈ V (G) \ u arbitrary, N(v) ⊆ N [u]
because u is universal in G, furthermore tb(G \ v) ≤ 1 because G \ v admits a universal vertex u.

Else, G does not admit any universal vertex, let (T,X) be a reduced tree decomposition of
G of breadth one, that is a star-decomposition by Lemma 3. Let Xt, t ∈ V (T) be a leaf. Since
the tree decomposition is reduced, there must be v ∈ Xt satisfying Tv = {Xt}. Now there are
two cases.

• Suppose there is u ∈ Xt \ v such that Xt ⊆ N [u]. Then, N(v) ⊆ Xt ⊆ N [u], and
tb(G \ v) ≤ 1 because G \ v can be obtained from G by contracting the edge {u, v} and
tree-breadth is contraction-closed by Lemma 2.

• Else, Xt ⊆ N [v], and for every x ∈ Xt \ v, Xt 6⊆ N [x]. Let t′ ∈ V (T) be the unique
node adjacent to node t in T , that exists because G does not admit any universal vertex

RR n° 8842

16 Ducoffe,Legay,Nisse

and so, T has at least two bags. Let us assume that for every x ∈ Xt \ v, x ∈ Xt ∩ Xt′

(for otherwise, N(x) ⊆ N [v] and tb(G \ x) ≤ 1 because G \ x can be obtained from G by
contracting the edge {v, x} to v and tree-breadth is contraction-closed by Lemma 2). In
particular, let u ∈ Xt′ satisfy Xt′ ⊆ N [u]. Then, N(v) = Xt ∩ Xt′ ⊆ N [u], furthermore
tb(G \ v) ≤ 1 because (T \ t,X \Xt) is a star-decomposition of G \ v.

Note that for a graph to have tree-breadth one, it must satisfy the necessary condition of
Lemma 8 and this can be checked in polynomial-time. However, the existence of some domination
elimination ordering is not a sufficient condition for the graph to have tree-breadth one. Indeed,
every grid has a domination elimination ordering but the tree-length of the n×m grid is at least
min{n,m} − 1 [24] (recall that tl(G) ≤ 2tb(G) for any graph G).

The existence of a domination elimination ordering has some interesting consequences about
the graph structure. Let us recall one such a consequence about the cop-number of the graph.

Corollary 5 For any graph G with tb(G) ≤ 1, G has cop-number ≤ 2 and the upper-bound is
sharp.

Proof. By Lemma 8, G admits a domination elimination ordering. Therefore, by [19, Theorem
4] G has cop-number ≤ 2. One can prove the sharpness of the upper-bound by setting G := C4,
the cycle with four vertices.

4.2 Properties of particular decompositions

In the following, it will be useful not only to constrain the properties of the star-decomposition
whose existence we are interested in, but also to further constrain the properties of the graph G
that we take as input. Let us first remind basic terminology about graph separators.

Definition 4 Let G = (V,E) be connected, a separator of G is any subset S ⊆ V such that
G \ S has at least two connected components.

In particular, a full component for S is any connected component C of G \ S satisfying
N(C) = S. A block is any induced subgraph G[C ∪ S] with S being a separator and C being a
full component for S.

Finally, a minimal separator is a separator with at least two full components.

Our objective is to prove that if a graph G has tree-breadth one then so do all its blocks. In
fact, we will prove a slightly more general result:

Lemma 9 Let G = (V,E) be a graph, S ⊆ V be a separator, and W ⊆ V \ S be the union of
some connected components of G \S. If tb(G) = 1 and W contains a full component for S, then
tb(G[W ∪ S]) = 1. More precisely if (T,X) is a tree decomposition of G of breadth one, then
(T, {Xt ∩ (W ∪ S) | Xt ∈ X}) is a tree decomposition of G[W ∪ S] of breadth one.

Proof. Let (T,X) be a tree decomposition of breadth one of G. Let us remove all vertices in
V \ (W ∪ S) from bags in (T,X), which yields a tree decomposition (T ′,X ′) of the induced
subgraph G[W ∪S]. To prove the lemma, we are left to prove that (T ′,X ′) has breadth one. Let
Xt be a bag of (T ′,X ′). By construction, Xt is fully contained into some bag of (T,X), so it has
radius one in G. Let v ∈ V be such that Xt ⊆ NG[v]. If v ∈W ∪S, then we are done. Else, since
for all x /∈ S∪W,N(x)∩(S∪W) ⊆ S (because S is a separator by the hypothesis), we must have
that Xt ⊆ S. Let A ⊆ W be a full component for S, that exists by the hypothesis, and let TA
be the subtree that is induced by the bags intersecting the component. Since we have that the

Inria

On computing tree and path decompositions with metric constraints on the bags 17

subtree TA and the subtrees Tx, x ∈ Xt pairwise intersect — because for all x ∈ Xt, x ∈ S and
so, x has a neighbour in A —, then by the Helly property (Lemma 1) TA ∩

(⋂
x∈Xt

Tx
)
6= ∅ i.e.,

there exists a bag in (T,X) containing Xt and intersecting A. Moreover, any vertex dominating
this bag must be either in S or in A, so in particular there exists u ∈ A ∪ S dominating Xt,
which proves the lemma.

Lemma 9 implies that, under simple assumptions, a graph of tree-breadth one can be dis-
connected using any (minimal) separator, and the components must still induce subgraphs with
tree-breadth one. The converse does not hold in general, yet there are interesting cases when it
does.

Lemma 10 Let G = (V,E) be a graph, S ⊆ V be a clique-minimal-separator and A be a full
component for S. Then, tb(G) = 1 if and only if both tb(G[A ∪ S]) = 1 and tb(G[V \A]) = 1.

Proof. By the hypothesis V \(A∪S) contains a full component because S is a minimal separator.
Therefore, if G has tree-breadth one, then so do G[A∪S] and G[V \A] by Lemma 9. Conversely,
suppose that we have both tb(G[A ∪ S]) = 1 and tb(G[V \ A]) = 1. Let (T 1,X 1) be a tree
decomposition of G[A ∪ S] with breadth one, let (T 2,X 2) be a tree decomposition of G[V \ A]
with breadth one. Then for every i ∈ {1, 2} we have that since S is a clique the subtrees
T is , s ∈ S, pairwise intersect, so by the Helly Property (Lemma 1)

⋂
s∈S T

i
s 6= ∅ i.e., S is fully

contained into some bag of (T 1,X 1) and it is fully contained into some bag of (T 2,X 2). Moreover,
(A∪S)∩ (V \A) = S, therefore a tree decomposition of G with breadth one can be obtained by
adding an edge between some bag of (T 1,X 1) containing S and some bag of (T 2,X 2) containing
S.

Recall that computing the clique-minimal-decomposition of a graph G can be done in O(nm)-
time, where m denotes the number of edges [7]. By doing so, one replaces a graph G with the
maximal subgraphs of G that have no clique-separator, a.k.a. atoms. Therefore, we will assume
in the remaining of the proofs that there is no clique-separator in the graphs that we will study,
we will call them prime graphs.

4.3 Application to bipartite graphs

In this section, we describe an O(nm)-time algorithm so as to decide whether a prime bipartite
graph has tree-breadth one. This combined with Lemma 10 proves that it can be decided in
polynomial-time whether a bipartite graph has tree-breadth one.

We will first describe a more general problem and how to solve it in polynomial-time.

Tree decompositions with constrained set of bags. Our algorithm for bipartite graphs
makes use of the correspondance between tree decompositions and triangulations of a graph.
Indeed, recall that any reduced tree decomposition (T,X) of a graph G is a clique-tree for some
chordal supergraph H of G whose maximal cliques are the bags of X . Conversely, for any
chordal supergraph H of G, every clique-tree of H is a tree decomposition of G whose bags are
the maximal cliques of H [30]. Therefore as shown below, the following subproblem can be solved
in polynomial-time:

Problem 4

Input: a graph G, a family X of subsets of V (G).

Question: Does there exist a tree T such that (T,X) is a tree decomposition of G ?
RR n° 8842

18 Ducoffe,Legay,Nisse

Let us assume w.l.o.g. that no subset of X is properly contained into another one. To solve
Problem 4.3, it suffices to make every subset X ∈ X a clique in G, then to verify whether the
resulting supergraph H of G is a chordal graph whose maximal cliques are exactly the sets in X .
Since chordal graphs can be recognized in linear-time, and so can be enumerated their maximal
cliques [29], therefore Problem 4.3 can be solved in polynomial-time.

The algorithm for bipartite graphs. Now, given a bipartite graph G, we aim to exhibit a
family X so that tb(G) = 1 if and only if there is a star-decomposition of G whose bags are X .
By doing so, we will reduce the recognition of bipartite graph with tree-breadth at most one to
the more general Problem 4.3.

Lemma 11 Let G = (V0∪V1, E) be a prime bipartite graph with tree-breadth one. There is (T,X)
a star-decomposition of G such that either X = {N [v0] | v0 ∈ V0}, or X = {N [v1] | v1 ∈ V1}.

Proof. Let (T,X) be a star-decomposition of G, that exists by Lemma 3, minimizing the number
|X | of bags. Suppose there is some v0 ∈ V0, there is t ∈ V (T) such that Xt ⊆ NG[v0] (the case
when there is some v1 ∈ V1, there is t ∈ V (T) such that Xt ⊆ NG[v1] is symmetrical to this one).
We claim that for every t′ ∈ V (T), there exists v′0 ∈ V0 satisfying Xt′ ⊆ NG[v′0]. By contradiction,
let v0 ∈ V0, v1 ∈ V1, let t, t′ ∈ V (T) be such that Xt ⊆ NG[v0], Xt′ ⊆ NG[v1]. By connectivity of
the tree T we may assume w.l.o.g. that {t, t′} ∈ E(T). Moreover, NG(v0)∩NG(v1) = ∅ because
G is bipartite. Therefore, Xt ∩Xt′ ⊆ {v0, v1}, and in particular if Xt ∩Xt′ = {v0, v1} then v0, v1
are adjacent in G. However, by the properties of a tree decomposition this implies that Xt ∩Xt′

is a clique-separator (either an edge or a single vertex), thus contradicting the fact that G is
prime.

Now, let v0 ∈ V0 be arbitrary. We claim that there is a unique bag Xt, t ∈ V (T), containing
v0. Indeed, any such bag Xt must satisfy Xt ⊆ NG[v0], whence the subtree Tv0 can be contracted
into a single bag

⋃
t∈Tv0

Xt without violating the property for the tree decomposition to be a star-

decomposition. As a result, the unicity of the bag Xt follows from the minimality of |X |. Finally,
since Xt is unique and Xt ⊆ NG[v0], therefore Xt = NG[v0] and so, X = {N [v0] | v0 ∈ V0}.

We can easily deduce from Lemma 11 the following algorithm for deciding whether a prime
bipartite graph G has tree-breadth one. Let (V0, V1) be the (unique) bipartition of the vertex-set
of G into two stable sets. Let X0 = {N [v0] | v0 ∈ V0}, let X1 = {N [v1] | v1 ∈ V1}. By Lemma 11,
tb(G) = 1 if and only if one of (G,X0), (G,X1) is a yes-instance of Problem 4.3.

5 Algorithm for planar graphs

We are now ready to present our main result. In this section, we describe a quadratic-time
algorithm for deciding whether a prime planar graph has tree-breadth one. Overall, we claim
that it gives us a quadratic-time algorithm for deciding whether a general planar graph has
tree-breadth one. Indeed, the clique-decomposition of a planar graph takes O(n2)-time to be
computed, furthermore the disjoint union of the atoms has O(n + m) vertices [7], that is O(n)
for planar graphs.

Roughly, we will construct a star-decomposition of the graph by increments. The main prin-
ciple of the recursive algorithm is to find a particular vertex, called leaf-vertex. Informally, it
extracts a new bag of the star-decomposition from some ball around the leaf-vertex. Then, de-
pending on the case, either the leaf-vertex vertex is removed or some edge is added or contracted.
In both cases, the resulting graph remains prime and planar and has tree-breadth one if and only
if the initial one has tree-breadth one.

Inria

On computing tree and path decompositions with metric constraints on the bags 19

We prove that each inductive step takes a linear time. Moreover, we prove that there are at
most a linear number of recursive iterations (Lemma 27).

There are three kinds of leaf-vertices (e.g., see Figure 8).

Definition 5 Let G = (V,E) be a graph. A vertex v is a leaf-vertex if one of the following
conditions hold.

Type 1. N(v) induces an avbv-path for some av, bv ∈ V \ {v}, denoted by Πv, of length at least
3 and there exists dv ∈ V \ {v} such that N(v) ⊆ N(dv), i.e., dv dominates Πv.

Type 2. N(v) induces a path, denoted by Πv = (av, bv, cv), of length 2.

Type 3. N(v) consists of two non adjacent vertices av and cv, and there exists bv ∈ (N(av) ∩
N(cv)) \ {v}.

av cv
dv

v

av cv
bv

v

av cv
bv

v

Type 1 Type 2 Type 3

Figure 8: The three kinds of leaf-vertices.

We are now ready to describe the algorithm.

5.1 Algorithm Leaf-BottomUp

Let G = (V,E) be prime planar graph. Assume G has at least 7 vertices (else, it is easy to
conclude).

Step 1 The first step is to find a leaf-vertex in G. In Section 5.4.1, we describe how to decide
whether G has a leaf-vertex in linear-time.

• if G has no leaf-vertex, then, by Theorem 7, no minimal separator of G induces a path
of length 2. Therefore, by Lemma 20, tb(G) = 1 only if G has a star-decomposition
with at most 2 bags. In that case, Algorithm Leaf-BottomUp checks whether it exists
a star-decomposition with at most 2 bags, which can be done in quadratic time (see
Lemma 26). If it exists, then tb(G) = 1. Otherwise, tb(G) > 1.

• otherwise, let v be a leaf-vertex of G and go to Step 2 if v is of Type 1 and go to Step
3 otherwise.

Step 2 Case v is of Type 1. Let Πv and dv be defined as in Definition 5. If V = N [v] ∪ {dv}
then trivially tb(G) = 1. Else by Theorem 8, G′ is prime and planar, where G′ is the graph
obtained from G\v by contracting the internal nodes of Πv to a single edge, and tb(G) = 1

RR n° 8842

20 Ducoffe,Legay,Nisse

if and only if tb(G′) = 1. In that case, Algorithm Leaf-BottomUp is recursively applied on
G′.

Step 3 Case v is of Type 2 or 3. Let av, bv, cv be defined as in Definition 5.

In that case, Algorithm Leaf-BottomUp checks whether G \ v is prime. By Theorem 6,
for any clique minimal separator S of G \ v (if any), there exists uv ∈ V \ {av, bv, cv, v}
such that S = {bv, uv}. Therefore, this can be checked in linear time (by checking with a
Depth-First-Search whether there is a cut-vertex of G \ {av, bv, cv, v} in the neighbors of
bv). If G \ v is prime then go to Step 3.1, else go to Step 3.2.

Step 3.1 Case v is of Type 2 or 3 and G \ v is prime. There are 4 cases that can be
determined in linear-time.

(a) Case |N(av) ∩ N(cv)| ≥ 3 in G \ v, or there exists a minimal separator
S ⊆ (N(av) ∩N(cv)) ∪ {av, cv} in G \ v and {av, cv} ⊆ S.
By Theorem 9, tb(G) = 1 if and only if tb(G \ v) = 1. Since, moreover, G \ v is
planar and prime, then Algorithm Leaf-BottomUp is recursively applied on G\v.

(b) Case: |N(av) ∩ N(cv)| < 3 in G \ v and there is no minimal separator
S ⊆ (N(av) ∩N(cv)) ∪ {av, cv} in G \ v such that {av, cv} ⊆ S.

i Subcase: |N(av) ∩N(cv)| = 1 in G \ v. In that subcase, N(av) ∩N(cv) =
{v, bv} and, by Theorem 10, tb(G) = 1 if and only if G = C4, a cycle with
four vertices. Note that here it implies that tb(G) > 1 because G has at least
7 vertices.

ii Subcase: |N(av)∩N(cv)| = 2 in G\v. In that subcase, let N(av)∩N(cv) =
{v, bv, uv}. By Theorem 11, since G has more than 5 vertices, the graph G′

obtained from G by adding edges {v, uv} and {bv, v} is planar and prime,
and moreover tb(G) = 1 if and only if tb(G′) = 1. In that case, Algorithm
Leaf-BottomUp is recursively applied on G′.

Step 3.2 Case v is of Type 2 or 3 and G\v has a clique separator. As mentioned in Step
3, in that case, there exists uv ∈ V \{av, bv, cv, v} such that S = {bv, uv} is a minimal
clique separator of G \ v. Moreover, by Theorem 6, G \ {av, bv, cv, v} is connected.

By Theorem 12, tb(G) = 1 if and only if tb(G′) = 1 where G′ is obtained from G
by adding the edge {v, bv} (if it were not already there). Moreover, G′ is prime and
planar. Hence, we may assume that {v, bv} ∈ E (if not Algorithm Leaf-BottomUp

adds it).

Furthermore by Theorem 6, since G has more than 5 vertices, uv /∈ N(av) ∩ N(cv).
In the latter case, let us assume w.l.o.g. that uv /∈ N(av), that is either uv /∈ N(av)∪
N(cv) or uv ∈ N(cv) \N(av). There are several cases to be considered.

(a) Case uv /∈ N(av) ∪N(cv),
or (N(uv) ∩N(av)) ∪ {v, cv} does not separate uv and av in G.

By Theorem 13, G/vav is prime and planar, and tb(G) = 1 if and only if
tb(G/vav) = 1. In that case, Algorithm Leaf-BottomUp is recursively applied
on G/vav, the graph obtained from G by contracting the edge {v, av}.

(b) Case uv ∈ N(cv) \N(av),
and (N(uv) ∩N(av)) ∪ {v, cv} separates uv and av in G.

Inria

On computing tree and path decompositions with metric constraints on the bags 21

In that case, recall thatG has at least 7 vertices. Again, Algorithm Leaf-BottomUp

distinguishes several subcases.

i Subcase N(bv) = {v, av, cv, uv}. In that subcase, by Theorem 14, we can find
in linear-time a vertex x ∈ (N(av)∩N(uv))\{bv} such that G′ is planar, where
G′ is obtained from G by adding the edge {bv, x}. Moreover, by Theorem 15,
G′/bvx (obtained by contracting {bv, x}) is prime and tb(G) = 1 if and only if
tb(G′/bvx) = 1. In that case, Algorithm Leaf-BottomUp is recursively applied
on G′/bvx.

ii Subcase {v, av, cv, uv} ⊂ N(bv) and N(bv) ∩ N(av) ∩ N(uv) 6= ∅. In that
subcase, |N(bv) ∩ N(av) ∩ N(uv)| = 1 by Lemma 23 and let x be this com-
mon neighbor. By Theorem 15, G/bvx (obtained by contracting {bv, x}) is
prime and tb(G) = 1 if and only if tb(G/bvx) = 1. In that case, Algorithm
Leaf-BottomUp is recursively applied on G/bvx.

iii Subcase {v, av, cv, uv} ⊂ N(b) and N(bv) ∩ N(av) ∩ N(uv) = ∅. In that
subcase, by Theorem 16, there must be a unique x ∈ (N(av) ∩N(uv)) \ {bv}
such that N(bv) ∩ N(x) is a bvx-separator of G and |N(bv) ∩ N(x)| ≥ 3 (or
else, tb(G) > 1).

• Suppose there is a leaf-vertex ` ∈ N(bv) ∩ N(x). By Lemma 24, ` is
of Type 1 or G \ ` is prime. In that case, go to Step 2 if ` is of Type 1,
and go to Step 3.1 if ` has Type 2 or 3 (in both cases, ` takes the role of
v). Note that we never go back to Step 3.2 in such case, so the algorithm
cannot loop.

• Otherwise, by Theorem 17, there exist y, z ∈ N(bv)∩N(x) two non-adjacent
vertices, such that G′ is prime and planar, and tb(G) = 1 if and only if
tb(G′) = 1, where G′ is obtained from G by adding the edge {x, y}. In that
case, Algorithm Leaf-BottomUp is recursively applied on G′.

5.2 Properties of prime planar graphs with tree-breadth one

5.2.1 General lemmas

We will first investigate on general properties of prime planar graphs. In particular, the following
properties do not depend on the existence of a star-decomposition, therefore we do not use tree
decompositions in our proofs. However, note that we refer to Definition 5 in Theorem 6. For
clarity, we will separate the properties that hold for every biconnected planar graph from those
that only hold for prime planar graphs.

Properties of biconnected planar graphs. In order to obtain these properties, we will
mostly rely on the notion of intermediate graphs, defined below.

Definition 6 [13, Definition 6] Let G = (V,E) be a planar graph. We fix a plane embedding
of G. Let F be the set of faces of this embedding. The intermediate graph GI = (V ∪ F,EI)
has vertex-set V ∪ F , furthermore E ⊆ EI and we add an edge in GI between an original vertex
v ∈ V and a face-vertex f ∈ F whenever the corresponding vertex and face are incident in G
(see Figure 9).

Note that an intermediate graph is planar. Furthermore, since a plane embedding can be
constructed in linear-time [34], therefore so can be an intermediate graph. This is important for

RR n° 8842

22 Ducoffe,Legay,Nisse

Figure 9: A plane embedding of some planar graph (left) and the corresponding intermediate
graph (right). Face-vertices are coloured in red.

the quadratic-time complexity of Algorithm Leaf-BottomUp. To prove the correctness of Algo-
rithm Leaf-BottomUp in the following, we will rely upon the following property of intermediate
graphs.

Lemma 12 [13, Proposition 9] Let S be a minimal separator of some biconnected planar graph
G = (V,E) and let C be a full component of G \ S. We fix a plane embedding of G. Then
S corresponds to a cycle vS(C) of GI , of length 2|S| and with V ∩ vS(C) = S, and such that
GI \vS(C) has at least two connected components. Moreover, the original vertices of one of these
components are exactly the vertices of C.

In the following, we will rely upon two properties which both follow from Lemma 12. The
first one is the following structural property of minimal separators of planar graphs.

Corollary 6 Let S be a minimal separator of a biconnected planar graph G = (V,E). Then, S
either induces a cycle or a forest of paths.

Proof. Let us fix a plane embedding of G, let GI be the corresponding intermediate graph. Then,
let CS be a smallest cycle of GI such that V ∩ CS = S, that exists by Lemma 12. To prove
the corollary, it suffices to prove that CS is an induced cycle of GI . By contradiction, assume
the existence of a chord xy of CS . Note that x ∈ S or y ∈ S because face-vertices are pairwise
non-adjacent in GI . Therefore assume w.l.o.g. that x ∈ S. Let us divide CS in two cycles C1, C2

such that C1 ∩ C2 = {x, y}. By the minimality of CS , S intersects both C1 \ C2 and C2 \ C1.
Therefore, let z1, z2 ∈ S such that z1 ∈ C1 \ C2 and z2 ∈ C2 \ C1. Finally, let A,B be two
full components of G \ S. Observe that (A ∪ B) ∩ (C1 ∪ C2) = ∅ because V ∩ CS = S. Let us
contract C1, C2 in order to obtain the two triangles (z1, x, y) and (z2, x, y). In such case, there
is a K3,3-minor of GI with {A,B, y} and {x, z1, z2} being the respective sides of the bipartition,
thus contradicting the fact that GI is planar. Therefore, CS is an induced cycle of GI and so, S
induces a subgraph of a cycle in G, that is either a cycle or a forest of path.

On the algorithmic side, one can also deduce from Lemma 12 the following corollary.

Corollary 7 Let G be a biconnected planar graph, let S be a minimal separator of G. There is
a planar supergraph GS of G with same vertex-set so that S either induces an edge (if |S| = 2)
or a cycle of GS, and it can be constructed in linear-time.

Proof. Let us fix a plane embedding of G, let GI be the corresponding intermediate graph. For
every face-vertex f of GI , let us consider Sf = S∩NGI

(f). We first claim that |Sf | ≤ 2. Indeed,
let A,B be two full components of G \ S, let us contract them to any two vertices a ∈ A, b ∈ B.
Then, there is a K3,|Sf |-minor of GI with {a, b, f} and Sf being the respective parts of the
bipartition. Since GI is planar by construction, therefore, |Sf | ≤ 2.

Now, the graph GS is constructed from G as follows (we refer to Figure 10 for an illustration
of the proof). For every face-vertex f of GI , if Sf = (x, y) then we add the edge {x, y} in GS .

Inria

On computing tree and path decompositions with metric constraints on the bags 23

Figure 10: Addition of edges in a planar graph G so as to make a minimal separator of G induce
a cycle.

Note that GS is a minor of GI and so, it is a planar graph. Moreover, by Lemma 12 there is
a cycle of GI whose original vertices are exactly S and so, S induces a connected subgraph of
GS . In particular if |S| = 2, then it must be an edge. Else, |S| > 2 and the connected subgraph
GS [S] contains a cycle by construction. Since S is a minimal separator of GS by construction
and GS [S] is not acyclic, it follows from Corollary 6 that S induces a cycle of GS .

We will often make use of the routine of Corollary 7 in order to prove the quadratic-time
complexity of Algorithm Leaf-BottomUp.

Properties of prime planar graphs. Unlike the above Corollaries 6 and 7 (which hold for
every biconnected planar graph), the following results only hold for prime planar graphs. We
will make use of the following structural properties of prime planar graphs in order to prove the
correctness of Algorithm Leaf-BottomUp.

Lemma 13 Let G = (V,E) be a prime graph that is K3,3-minor-free. Let v ∈ V , for every
minimal separator S ⊆ NG(v) of the subgraph G \ v, S consists of two non-adjacent vertices.

Proof. Let S ⊆ NG(v) be a minimal separator of G \ v. There must exist two full components A
and B of S in G \ (S ∪ {v}). Let us remove all nodes of the components of G \ (S ∪ {v}) but the
ones in A or B. Then, let us contract A (resp., B) in a single vertex a (resp., b). We get a K3,|S|
as a minor of G where {a, b, v} is one part of the bipartition, and so |S| ≤ 2. Finally, since S∪{v}
is also a separator of G, then |S| ≥ 2 because otherwise S ∪ {v} would be an edge-separator.
Therefore, |S| = 2 and it is a stable set because otherwise there would be a clique-separator of
size 3 in G.

Lemma 14 Let G be a prime planar graph, let the path Π = (a, b, c) be a separator of G, and
let C be a component of G \Π. Then, there is at most one common neighbour of a, b in C.

Proof. First note that Π is induced or else it would be a clique-separator of G. Furthermore,
a, c ∈ N(C ′) for every component C ′ of G \ (Π∪C) or else N(C ′) would be a clique-separator of
G (either a vertex-separator or an edge-separator). In particular, it is always possible to make
vertices a, c adjacent by contracting an arbitrary component of G \ (Π ∪ C).

By contradiction, let u, u′ ∈ N(a)∩N(b)∩C be distinct. We claim that there exists a uc-path
Q in C ∪ {c} that does not contain u′, because else the triangle a, b, u′ would separate u from
Π, that contradicts the fact that G is prime. By symmetry, there also exists a u′c-path Q′ in
C ∪ {c} that does not contain u. There are two cases.

• Q and Q′ are internally vertex-disjoint paths (see Figure 11 for an illustration). Let us
contract Q\c,Q′\c to the vertices u, u′, let us contract an arbitrary component of G\(Π∪C)
in order to make vertices a, c adjacent, then let us contract a path from Q to Q′ in C (that
exists, because C is connected by the hypothesis) in order to make vertices u, u′ adjacent.
Then one obtains from a, b, c, u, u′ a K5-minor, which contradicts the fact that G is planar.

RR n° 8842

24 Ducoffe,Legay,Nisse

Q
Q'

G\C
a

b
c

u

u'

Figure 11: Case where the paths Q and Q′ are internally vertex-disjoint paths.

Q

Q'

G\C
a

b
c

u

u'

y

R

Figure 12: Case where the paths Q and Q′ intersect.

• Q and Q′ intersect (see Figure 12 for an illustration). Let y ∈ (Q∩Q′) \ c be such that the
uy-subpath of Q does not intersect Q′. Let R be the yc-subpath of Q′. We may assume
w.l.o.g. that R ⊆ Q ∩ Q′ for the remaining of the proof, whence Q ∩ Q′ = R. Let us
contract Q \R,Q′ \R,R \ c in order to make vertices u, u′, c adjacent to vertex y, then let
us contract an arbitrary component of G \ (P ∪C) in order to make vertices a, c adjacent.
One obtains from a, b, c, u, u′, y a K3,3-minor with {a, b, y} being one side of the bipartition,
that contradicts the fact that G is planar.

Lemma 15 Let G be a prime planar graph, let the path Π = (a, b, c) be a separator of G, and
let C be a component of G \Π. Suppose there is some vertex v ∈ C that is a common neighbour
of a, b, c. Then, either C is reduced to v, or (a, v, c) is a separator of G. Furthermore, in the
latter case, the path (a, v, c) separates vertex b from C \ v.

Proof. Let us assume that C \ v 6= ∅. Let D be a connected component of G[C \ v]. Note that
v ∈ N(D) because C is a connected component of G\Π by the hypothesis. To prove the lemma,
it suffices to prove that b /∈ N(D). By contradiction, suppose that b ∈ N(D) (see Figure 13 for
an illustration). Since v, b, a and v, b, c are pairwise adjacent and G has no clique-separator by
the hypothesis, then necessarily N(D) = {a, b, c, v}.

Let us contract the component D to a single vertex x. Then, let C ′ be any component of
G \ (Π ∪ C). We have that a, c ∈ N(C ′) or else N(C ′) would be a clique-separator of G (either
a vertex-separator or an edge-separator). So, let us contract the component C ′ onto vertex a in
order to make a and c adjacent. One obtains from a, b, c, v, x a K5-minor, which contradicts the
fact that G is planar.

We recall that the gist of Algorithm Leaf-BottomUp is (informally) to try to remove a leaf-
vertex v from G then to apply recursively the algorithm on G \ v. Because the algorithm is
strongly dependent on the fact that G is prime, it is important to characterize the cases when

Inria

On computing tree and path decompositions with metric constraints on the bags 25

G\C
a

b
c

vD

Figure 13: Existence of a component D ⊆ C \ v that is adjacent to b.

G\v is also prime. Indeed, new clique-decompositions are needed when G\v is not prime, which
may provoke a combinatorial explosion of the number of subgraphs to be considered. Therefore,
before we conclude this section, let us characterize whenever there may be clique-separators in
G \ v with v being a leaf-vertex. This will first require the following lemma.

Lemma 16 Let G = (V,E) be a graph and let the path Π = (a, b, c) be a separator of G. Let C
be the union of some components of G \ Π and let S be a separator of G[C ∪ Π]. Then, S is a
separator in G or S separates a and c in G[C ∪Π].

Moreover, in the latter case, G[C ∪Π] \ S has exactly two components Ca and Cc containing
a and c respectively.

Proof. There are two cases.

• Suppose there exists a component D of G[C ∪ Π] \ S such that NG(D) ⊆ C ∪ Π. Since
D ∩ S = ∅, S 6= V \ D and NG(D) ⊆ S therefore S is a separator of G with D being a
component of G \ S.

• Else, every component D of G[C ∪ Π] \ S has a neighbour in V \ (C ∪ Π). The latter
implies that D ∩ Π 6= ∅ for every component D of G[C ∪ Π] \ S because C is a union
of components of G \ Π by the hypothesis. In particular, since there exist at least two
components of G[C ∪Π] \ S then there must be one containing an endpoint of Π. W.l.o.g.
assume there is a component Ca of G[C∪Π]\S such that a ∈ Ca. Let Cc be any component
of G[C ∪ Π] \ (S ∪ Ca). We have that Cc ∩ N [Ca] = ∅ because S separates Ca and Cc in
G[C ∪Π]. Therefore, a, b /∈ Cc and so, c ∈ Cc because Cc ∩Π 6= ∅. This finally proves that
G[C ∪Π] \ S has exactly two components Ca and Cc containing a and c respectively.

Theorem 6 Let G = (V,E) be a prime planar graph, let v be a leaf-vertex of Type either 2 or
3 and let Πv = (av, bv, cv) be as defined in Definition 5. Suppose that there exists a minimal
separator S in G \ v that is a clique. Then, S = {uv, bv}, uv /∈ Πv and the following hold:

• V \ (Πv ∪ {v}) is a full component of G \Πv.

• If uv ∈ N(av) (resp. uv ∈ N(cv)), then av (resp. cv) is simplicial in G \ v with neighbours
{uv, bv};

• Furthermore uv /∈ N(av) ∩N(cv) unless V = Πv ∪ {uv, v};

Proof. Note that the subgraph G \ v is planar and S is a minimal separator of G \ v by the
hypothesis, therefore by Corollary 6 either S induces a cycle or a forest of path. Since in
addition S is a clique by the hypothesis, it follows that S either induces a singleton, an edge

RR n° 8842

26 Ducoffe,Legay,Nisse

av cv

v

av cv

v

av cv

v

uv

bv

uvuv

bvbv

Figure 14: Existence of a clique-separator in G \ v.

or a triangle. Since S is a clique and G is prime, S is not a separator of G, so by Lemma 16
with C = V \ (Πv ∪ {v}), S is an avcv-separator of G \ v. This both implies that bv ∈ S and
S′ := S ∪ {v} is a minimal avcv-separator of G. In particular, S being a strict subset of some
minimal separator of G it cannot induce a cycle (by Corollary 6), hence it must induce either
a singleton or an edge. Furthermore, still by Lemma 16 with C = V \ (Πv ∪ {v}) there exist
exactly two components Ca, Cc of G \ (S ∪ {v}), with av ∈ Ca, cv ∈ Cc. As a result, S \ bv 6= ∅,
or else {av, bv}, {bv, cv} would be edge-separators of G, thus contradicting the hypothesis. Let
S = {uv, bv}, uv /∈ Πv∪{v}. If uv ∈ N(av), then Ca \av = ∅ (and so, av is simplicial in G\v), for
otherwise (av, uv, bv) would be a clique-separator of G. Similarly, if uv ∈ N(cv) then Cc \ cv = ∅
(and so, cv is simplicial in G \ v). In particular if uv ∈ N(av) ∩ N(cv) then Πv ∪ {uv, v} = V .
Last, as there exists an avcv-path in every component C ′ of G \ (Πv ∪ {v}) because G has no
clique-separator by the hypothesis, therefore uv ∈ C ′. This implies that V \ (Πv ∪ {v}) is a full
component of G \Πv.

5.2.2 Constrained star-decompositions

In the following, it will be useful to impose additional structure on the star-decompositions. In
order to do that, we will prove properties on some pairs of vertices in the graph. Namely, we will
prove that when x, y ∈ V satisfy a few technical conditions, then it can be assumed that Tx ∪Ty
is a subtree of the star-decomposition (T,X).

Lemma 17 Let G be a connected graph with tb(G) = 1, let x, y ∈ V (G) be non-adjacent (and
x 6= y).

Suppose the pair (x, y) satisfies that for every xy-separator S of G, if there is z /∈ {x, y} that
dominates S then z ∈ NG(x) ∩NG(y).

Then, there is a star-decomposition (T,X) of G with Bx, By ∈ X , x ∈ Bx, y ∈ By and either
Bx = By or Bx, By are adjacent in T . Moreover, in the latter case, Bx ⊆ N [x], By ⊆ N [y].

Proof. Consider a star-decomposition (T,X) of G, that exists by Lemma 3. If x and y are not in
a same bag, let Bx and By be the bags containing respectively x and y and as close as possible
in T . By the properties of a tree decomposition, N(x)∩N(y) ⊆ Bx ∩By. Hence, for any bag B
between Bx and By in T , N(x) ∩N(y) ⊆ B.

• Case 1: If Bx and By are not adjacent in T , let B be any bag in the path between Bx
and By in T . By the properties of a tree decomposition, B is an xy-separator. Moreover,
let z ∈ B dominate the bag, by the hypothesis z ∈ N(x) ∩ N(y) because x, y /∈ B. As a
result, adding x and y in each bag B between Bx and By achieves a star-decomposition of
G that has a bag containing both x, y.

• Case 2: Now, let us assume that Bx and By are adjacent in T . Note that, if Bx ⊆ N [z]
for some z ∈ N(x)∩N(y) (resp., if By ⊆ N [z] for some z ∈ N(x)∩N(y)) the result holds.

Inria

On computing tree and path decompositions with metric constraints on the bags 27

Indeed, adding y in Bx (resp., x in By) achieves a star-decomposition of G that has a bag
containing both x, y.

So, let us consider the case when none of the two bags Bx, By is dominated by a vertex
of N(x) ∩ N(y). Then, Bx \ x and By \ y are xy-separators by the properties of a tree
decomposition. Let zx ∈ Bx, zy ∈ By satisfy Bx ⊆ N [zx] and By ⊆ N [zy]. By the
hypothesis, zx ∈ {x} ∪ (N(x) ∩N(y)) and zy ∈ {y} ∪ (N(x) ∩N(y)). Thus it follows that
zx = x and zy = y (or else, we are back to Case 1). Note that Bx ∩ By = N(x) ∩N(y) in
such a case.

We will mostly use the following two weaker versions of Lemma 17 in our proofs.

Corollary 8 Let G be a connected graph with tb(G) = 1, let x, y ∈ V (G) be non-adjacent (and
x 6= y).

Suppose there exists a minimal separator S ⊆ (N(x) ∩N(y)) ∪ {x, y} in G and {x, y} ⊆ S.
Then, there is a star-decomposition (T,X) of G with Bx, By ∈ X , x ∈ Bx, y ∈ By and either

Bx = By or Bx, By are adjacent in T . Moreover, in the latter case, Bx ⊆ N [x], By ⊆ N [y].

Proof. We claim that for every xy-separator S′ of G, if there is z /∈ {x, y} such that S′ ⊆ N [z]
then z ∈ N(x)∩N(y). Observe that if the claim holds, then the corollary follows from Lemma 17.
To prove the claim, let S ⊆ (N(x) ∩ N(y)) ∪ {x, y} be a separator of G and {x, y} ⊆ S, that
exists by the hypothesis. Note that for any full component C of G \ S, the xy-separator S′

must contain some vertex in C. Since there are at least two full components of G \ S, then
z ∈ S \ (x, y) ⊆ N(x) ∩N(y), that finally proves the claim.

So far, the two above results in this section (Lemma 17 and Corollary 8) apply to general
graphs with tree-breadth one. However, we will need the fact that the graph is planar for the
following corollary.

Corollary 9 Let G be a connected graph with tb(G) = 1, let x, y ∈ V (G) be non-adjacent (and
x 6= y).

Suppose G is K3,3-minor-free and |NG(x) ∩NG(y)| ≥ 3.
Then, there is a star-decomposition (T,X) of G with Bx, By ∈ X , x ∈ Bx, y ∈ By and either

Bx = By or Bx, By are adjacent in T . Moreover, in the latter case, Bx ⊆ N [x], By ⊆ N [y].

Proof. We claim that for every xy-separator S of G, if there is z /∈ {x, y} such that S ⊆ N [z] then
z ∈ N(x) ∩ N(y). Observe that if the claim holds, then the corollary follows from Lemma 17.
To prove the claim, first recall that |N(x) ∩ N(y)| ≥ 3. Since vertex z dominates S and S is
an xy-separator, therefore, z dominates N(x) ∩ N(y) because N(x) ∩ N(y) ⊆ S. In such case,
z ∈ N(x)∩N(y), or else, G admits a K3,|N(x)∩N(y)|-minor with {x, y, z} and N(x)∩N(y) being
the respective of the bipartition, which contradicts the hypothesis.

Before we conclude this section, let us emphasize a useful consequence of Corollary 8 regarding
minimal 2-separators.

Lemma 18 Let G = (V,E) with tb(G) = 1, let x, y ∈ V be non-adjacent such that S = {x, y}
is a minimal separator of G (x 6= y). For every full component C of G \ S, we have that
N(x) ∩N(y) ∩ C 6= ∅.
Proof. Let (T,X) be a star-decomposition of G, that exists by Lemma 3, minimizing the distance
in T between the subtrees Tx and Ty (respectively induced by the bags containing x and y). There
are two cases.

RR n° 8842

28 Ducoffe,Legay,Nisse

• First, suppose that Tx ∩ Ty 6= ∅. For any full component C of G \ S, let TC be the subtree
that is induced by all bags intersecting C. Because C is a full component, there must be an
edge between x and a vertex of C, and this edge is in a bag of Tx∩TC . Similarly, there must
be an edge between y and a vertex of C, and this edge is in a bag of Ty ∩ TC . As a result,
the subtrees Tx, Ty, TC are pairwise intersecting, and so by the Helly property (Lemma 1)
Tx ∩ Ty ∩ TC 6= ∅ i.e., there exists a bag Xt which contains S and it intersects C. Let
z ∈ Xt dominate the bag. Note that z ∈ C ∪S because it has to dominate some vertices in
C and so, it cannot be in V \ (C∪S). Furthermore, recall that x, y are non-adjacent by the
hypothesis. Therefore, z ∈ C ∩N(x) ∩N(y), and the result holds for any full component
C of G \ S.

• Else, since S = {x, y} is a minimal separator and we assume (T,X) to minimize the
distance in T between Tx and Ty, by Corollary 8 there are two adjacent bags Bx, By such
that x ∈ Bx\By dominates Bx, y ∈ By\Bx dominates By. Since Bx∩By is an xy-separator
by the properties of a tree-decomposition, then Bx ∩By ∩ C 6= ∅ for every full component
C of G \ S, that is N(x) ∩N(y) ∩ C 6= ∅.

5.2.3 Bounded Treewidth

Independently from Algorithm Leaf-BottomUp, let us introduce in this section another property
of (not necessarily prime) planar graphs with tree-breadth one. More precisely, we prove these
graphs have bounded treewidth. To prove this property, we will use the same terminology as for
the previous subsections.

Lemma 19 Let G be planar with tb(G) ≤ 1. Then, tw(G) ≤ 4 and the upper-bound is sharp.

v

b

ax y

u

Figure 15: A planar graph G with tb(G) = 1 and tw(G) = 4.

Proof. The treewidth of G is the maximum treewidth of its atoms [10], so, let us assume G to be
a prime planar graph. Let (T,X) be any star-decomposition of G, the graph H = (V, {{u, v} |
Tu ∩ Tv 6= ∅}) is chordal. Furthermore, if H ′ is a chordal graph with same vertex-set V and
such that E(G) ⊆ E(H ′) ⊆ E(H) then any clique-tree of H ′ is still a star-decomposition of G.
Therefore, we will assume w.l.o.g. that H is a minimal triangulation of G and (T,X) is a clique-
tree of H (in particular, (T,X) is reduced). Additional properties of (T,X) will be deduced from
the latter assumption about H by using the results from [14]. Let us now prove the lemma by
induction on |V (G)| (the base-case of the graph with a single vertex is trivial).

• If |X | = 1, then G has some universal vertex u. Furthermore, since G is planar therefore,
G \ u is outerplanar [44]. Consequently, tw(G \ u) ≤ 2 [9], so, tw(G) ≤ 3.

Inria

On computing tree and path decompositions with metric constraints on the bags 29

• Suppose |X | = 2. Let X = {B,B′}. Since (T,X) is assumed to be a clique-tree of some
minimal triangulation H of G, therefore, B∩B′ is a minimal separator [14]. Let us remind
that by Corollary 7 there is a planar supergraph G′ of G with same vertex-set so that B∩B′
induces either an edge or a cycle of G′. Furthermore (T,X) is also a star-decomposition
of G′, so, tb(G′) ≤ 1. In addition, tw(G) ≤ tw(G′). Recall that we can further assume G′

to be prime (or else, we apply the induction hypothesis on the atoms of G′), hence B ∩B′
induces a cycle of G′ of length at least four. Let B∆B′ = (B \ B′) ∪ (B′ \ B). Since H is
assumed to be a minimal triangulation and B,B′ are leaves of a clique-tree of H, therefore,
B \B′ is a (nonempty) dominating clique of the subgraph G[B], and similarly B′ \B is a
(nonempty) dominating clique of the subgraph G[B′] [14]. Thus, every vertex u ∈ B∆B′

satisfies B ∩B′ ∈ N(u). Since |B ∩B′| ≥ 4 because B ∩B′ induces a cycle of G′ of length
at least four, therefore, |B∆B′| ≤ 2 or else there would be a K3,3-minor of G′ with any
three vertices of B ∩B′ being one part of the bipartition. As a result, since B ∩B′ induces
a cycle, tw(G) ≤ tw(G′) ≤ 2 + |B∆B′| = 4.

• Finally, suppose |X | ≥ 3. Let t ∈ V (T) be an internal node, by the properties of a tree
decomposition the bag Xt is a separator of G. Let b ∈ Xt satisfy Xt ⊆ NG[b]. Since G
is prime and so, biconnected, therefore Xt \ b is a separator of G \ b. In such case, let
us remind by Lemma 13 that there exist a, c ∈ Xt \ b non-adjacent such that {a, c} is a
minimal separator of G \ b. In particular, the path Π = (a, b, c) is a separator of G. Let
C1, C2, . . . , Cl be the components of G \ Π. For every 1 ≤ i ≤ l, let Gi be obtained from
G[Ci ∪ Π] by making the two endpoints a, c of Π adjacent. Note that Gi can be obtained
from G by edge-contractions (because G is prime and so, a, c ∈ N(Cj) for every 1 ≤ j ≤ l),
therefore, tb(Gi) ≤ 1 because tree-breadth is stable under edge-contractions (Lemma 2).
In addition, tw(G) ≤ maxi tw(Gi) because Π induces a triangle in every graph Gi by
construction. As a result, for every 1 ≤ i ≤ l, since |V (Gi)| < |V (G)| by construction,
therefore tw(Gi) ≤ 4 by the induction hypothesis, whence tw(G) ≤ 4.

Let G be constructed from the cycle (u, v, x, y) of length four by adding two vertices a, b such
that NG(a) = NG(b) = {u, x, v, y} (see Figure 15 for an illustration). Since there exists a star-
decomposition of G with two bags (respectively dominated by a, b), tb(G) ≤ 1. Moreover, G is
4-regular by construction, therefore tw(G) ≥ 4 [10]. This proves the sharpness of the upper-
bound.

Note that since it is well-known that many difficult problems can be solved on bounded-
treewidth graphs in linear-time, therefore, it may be the case that the recognition of planar
graphs with tree-breadth at most one can be simplified by using Lemma 19. However, we were
unable to find a way to use it in our proofs (actually, the star-decomposition that can be computed
using our algorithm may have unbounded width — because of leaf-vertices of Type 1).

5.3 Correctness of Algorithm Leaf-BottomUp

5.3.1 Existence of a P3-separator

As a first step to prove correctness of Algorithm Leaf-BottomUp, let us prove correctness of Step
1. That is, we will prove that for every planar graph G with tb(G) = 1, G contains a leaf-vertex
or G admits a star-decomposition with at most two bags.

To prove this step, we will prove additional properties of the minimal separators of prime
planar graphs with tree-breadth one. In the following, let P3(G) be the set of (not necessarily
minimal) separators of G that induce paths of length 2 (we will call them P3-separators since

RR n° 8842

30 Ducoffe,Legay,Nisse

they have three vertices). We will distinguish the case when P3(G) 6= ∅ from the case when
P3(G) = ∅.

Theorem 7 Let G be a prime planar graph with tb(G) = 1. If P3(G) 6= ∅, then G has a
leaf-vertex.

Proof. Let Π = (a, b, c) ∈ P3(G) minimize the size of a smallest component of G \ Π. We recall
that {a, c} /∈ E(G) because G is assumed to be prime by the hypothesis (the latter fact will be
used in the following). Let C be any component of G \Π of minimum size. Our aim is to prove
the existence of some leaf-vertex v ∈ C (the latter dominating the component C), that will prove
Theorem 7.

Claim 1 There do not exist Π′ ⊆ Π ∪ C, C ′ ⊂ C such that Π′ ∈ P3(G) and C ′ is a component
of G \Π′.

Proof. The claim follows from the minimality of C. �
We will often use Claim 1 in the remaining of the proof.
Let (T,X) be a star-decomposition of G, that exists by Lemma 3. In particular, let Ta, Tc be

the subtrees that are respectively induced by the bags containing a or c. Assume w.l.o.g. that
(T,X) minimizes the distance in T between the subtrees Ta and Tc. We will distinguish the case
Ta ∩ Tc 6= ∅ from the case Ta ∩ Tc = ∅.

Case Ta ∩ Tc 6= ∅. In such case, the subtrees Ta, Tb, Tc are pairwise intersecting and so, by the
Helly property (Lemma 1) Ta ∩ Tb ∩ Tc 6= ∅. Let us remove all vertices in V \ (Π∪C) from bags
in (T,X). Let us call (T,XC) the resulting tree decomposition of G[Π ∪ C].

Claim 2 (T,XC) has breadth one.

Proof. There are two cases to be considered.

• If b has some neighbour in C, then C must be a full component of G \ Π, or else one of
{a, b}, {b, c} should be a clique-separator thus contradicting the fact that G is prime by the
hypothesis. In such case, the claim follows from Lemma 9.

• Else, b has no neighbour in C, and let D be the connected component of b in G \ (a, c).
Let H be obtained from G by contracting D to b. By Lemma 2, tb(H) = 1. Let (T,XH)
be the tree decomposition of breadth one of H where for every t ∈ V (T), XH

t = Xt

if Xt ∩ D = ∅, XH
t = (Xt \ D) ∪ {b} else. Moreover, since b has no neighbour in C,

D ∩ NG[C] = ∅ and so, H[C ∪ Π] = G[C ∪ Π] by construction. Finally, since {b} is a
full component of H \ (a, c), therefore, by Lemma 9 applied to H, the tree decomposition
(T,XC) is indeed a tree decomposition of breadth one of G[C ∪Π].

�
Let (T ′,X ′) be any reduced tree decomposition obtained from (T,XC). We point out that

T ′a ∩ T ′b ∩ T ′c 6= ∅ by construction (because Ta ∩ Tb ∩ Tc 6= ∅). Furthermore, since by Claim 2
(T,XC) has breadth one, therefore (T ′,X ′) is a star-decomposition of G[C ∪Π] by Lemma 3.

We will prove that C contains a leaf-vertex by contradiction. Informally, we will show, using
the properties of the star-decomposition (T ′,X ′), that if it is not the case that C contains a
leaf-vertex, then P3(G[C ∪Π]) ∩ P3(G) 6= ∅ and the latter contradicts Claim 1.

Inria

On computing tree and path decompositions with metric constraints on the bags 31

In order to prove this, first note that a has at least one neighbour in C because G is prime by
the hypothesis (indeed, (b, c) cannot be an edge-separator of G). We now distinguish between
several subcases.

• Case 1. There is u ∈ C such that u ∈ N(a) ∩ N(b) ∩ N(c) (e.g., see Figure 16). By
Lemma 15, either C is reduced to u or there exist Π′ = (a, u, c) ∈ P3(G), C ′ ⊆ C \ u and
C ′ is a component of G \ Π′. The latter case contradicts Claim 1, therefore, C is reduced
to u and so u is a leaf-vertex of Type 2.

a c

u

b

G C\

C

Figure 16: Case 1

Thus, from now on let us assume that no such vertex u exists.

• Case 2. By contradiction, assume N(a)∩C ⊆ N(b)∩C. By Lemma 14, |N(a)∩N(b)∩C| ≤
1, so, |N(a) ∩ C| = 1. Let u ∈ N(a) ∩ N(b) ∩ C be the unique neighbour of vertex a in
C (see Figure 17). Since in such case we can assume that u /∈ N(c) (for otherwise, we
are back to Case 1), and vertex c has some neighbour in C because G is prime (and so,
(a, b) cannot be an edge-separator of G), therefore, C is not reduced to vertex u. Then,
Π′ = (u, b, c) ∈ P3(G) because it separates a from C \ u, and so there is at least one
component of G \ Π′ that is strictly contained into C by construction. This contradicts
Claim 1, so, Case 2 cannot occur.

a c

u

b

G \C

C

Figure 17: Case 2

• Case 3. There is u ∈ C satisfying u ∈ N(a) \N(b). By the properties of a tree decompo-
sition, there is some bag B′ ∈ T ′a ∩ T ′u. Let v ∈ B′ dominate the bag B′. By construction,
v 6= b because u ∈ B′ \ N(b), similarly v 6= c because a ∈ B′ \ N(c). We will also prove
later that v 6= a. Moreover, Π\N [v] 6= ∅ (or else, we are back to Case 1), hence Π\B′ 6= ∅.
So let B be the bag adjacent to B′ onto the unique path in T ′ from B′ to T ′a ∩ T ′b ∩ T ′c (we
remind that the latter subtree is nonempty by construction). By the properties of the tree
decomposition (T ′,X ′), B ∩B′ is a separator of G[C ∪Π]. Furthermore, a ∈ B ∩B′. More
generally Π ∩ B′ ⊆ B ∩ B′ by construction, therefore B ∩ B′ is also a separator of G by
Lemma 16. Let w ∈ B dominate this bag. Observe that w 6= c because a ∈ B ∩B′.
We will prove that v ∈ C and v is a leaf-vertex. In order to prove these two results, we will
need to prove that C ∪ Π is fully contained into the two adjacent bags B,B′ (Claim 7).
The latter will require intermediate claims.

Claim 3 c ∈ B ∩B′.

RR n° 8842

32 Ducoffe,Legay,Nisse

Proof. Assume for the sake of contradiction that c /∈ B ∩B′ (see Figure 18). Then, c /∈ B′
because Π∩B′ ⊆ B∩B′ by construction. We will prove that the latter contradicts Claim 1.

Indeed, first observe that G \ w is connected because G is prime and so, biconnected, by
the hypothesis. In addition (B ∩B′) \ w is a (not necessarily minimal) separator of G \ w
because it separates B′ \B from c. Let S ⊆ (B ∩B′) \w be a minimal separator of G \w.
By Lemma 13, there exist x, y ∈ (B ∩ B′) \ w non-adjacent such that S = {x, y}, and so,
Π′ = (x,w, y) ∈ P3(G). Note that Π′ 6= Π, because we assume that c /∈ B ∩ B′ and so
c /∈ {x, y}. Moreover, since (T ′,X ′) is a star-decomposition of G[C ∪Π] by construction we
have that Π′ ⊆ Π ∪ C, therefore x ∈ C or y ∈ C, because c /∈ {x, y} and a, b are adjacent
whereas x, y are non-adjacent. W.l.o.g. let x ∈ C.

B' B

v w

x
u

a

y

...

cb

Figure 18: Case c /∈ B ∩B′

Subclaim 3.1 Π′ is not an ac-separator.

Proof. We refer to Figure 19 for an illustration of the proof. Let C ′ be any component of
G \ (Π∪C). Observe that C ′ is fully contained into some component D of G \Π′, because
Π′ ⊆ Π ∪ C. In addition, a, c ∈ N(C ′) because G is prime by the hypothesis (and so,
neither a nor b nor c nor (a, b) nor (b, c) can be a separator of G). In particular, since we
assume c /∈ B ∩B′ and so, c /∈ Π′, therefore, c ∈ D. As a result, either a ∈ Π′ or a, c ∈ D,
that finally proves the subclaim. ◦

B'

C'
D

a

b c

w

y
u

v

Π
Π'

Figure 19: Π′ is not an ac-separator.

Let D be the component of G\Π′ such that c ∈ D, that exists because we assume c /∈ B∩B′
and so, c /∈ Π′. Since b, c are adjacent and Π′ is not an ac-separator by Claim 3.1, therefore,
Π ⊆ Π′ ∪D.

Moreover, let us show that Claim 3.1 implies the existence of some D′ ⊂ C being a
component of G \ Π′, thus contradicting Claim 1. Indeed, let D′ be any component of
G \ (Π′ ∪ D). Since G is prime by the hypothesis, x has some neighbour in D′ and so,
D′ ∩ C 6= ∅ because x ∈ C and Π ∩D′ = ∅ by construction. But then, D′ ⊆ C \ x, for the
existence of some z ∈ D′ \ C would imply that D′ ∩Π 6= ∅.
To sum up, we conclude that it must be the case that c ∈ B ∩B′. �

We will use Claim 3 to prove that v ∈ C, as follows:

Inria

On computing tree and path decompositions with metric constraints on the bags 33

Claim 4 v ∈ C. Furthermore, the two vertices b, v are non-adjacent.

Proof. Recall that v ∈ C ∪ Π because (T ′,X ′) is a star-decomposition of G[C ∪ Π] by
construction. So we will only need to prove that v /∈ Π. First, since a ∈ B ∩ B′ by
construction and c ∈ B ∩ B′ by Claim 3, therefore, a, c ∈ B′ ⊆ N [v]. The latter implies
that v /∈ {a, c} because a, c ∈ N [v] whereas a, c are non-adjacent. Furthermore, this implies
b /∈ N [v] because we assume that Π 6⊆ N [v] (for otherwise, we are back to Case 1). As a
result, v /∈ Π, whence v ∈ C. �

Then, we will need the following technical claim in order to prove that w = b (Claim 6).

Claim 5 G[C ∪Π] is prime.

Proof. Suppose by contradiction there exists a clique-separator S ofG[C∪Π]. Then, S could
not be a separator of G because G is prime by the hypothesis. By Lemma 16, the latter
implies that S is an ac-separator of G[C∪Π]. Therefore, the two vertices b, v ∈ N(a)∩N(c)
must be in S, and so, since b, v are non-adjacent by Claim 4, the latter contradicts the fact
that S is a clique. �

Claim 6 w = b.

Proof. Assume for the sake of contradiction w 6= b (see Figure 20). We will prove that it
contradicts Claim 1.

Indeed, the graph G[C ∪Π] \w is connected because G[C ∪Π] is prime by Claim 5 and so,
biconnected. In addition, (B∩B′)\w is a (not necessarily minimal) separator of G[C∪Π]\w
because it separates b from B′ \ B (recall that b, v are non-adjacent by Claim 3, and so,
b /∈ B′ ⊆ N [v]). Let S ⊆ (B ∩ B′) \ w be a minimal separator of G[C ∪ Π] \ w. By
Lemma 13, there exist x, y ∈ (B ∩ B′) \ w non-adjacent such that S = {x, y}, and so,
Π′ = (x,w, y) ∈ P3(G[C ∪ Π]). Furthermore, b /∈ Π′ ⊆ (B ∩ B′) ∪ {w} ⊆ N [v] ∪ {w} and
so, Π′ cannot be an ac-separator of G[C ∪Π], whence by Lemma 16 Π′ is a separator of G,
and so, Π′ ∈ P3(G).

B' B

bv w

a=x

u

c=y

...

Figure 20: Case c ∈ B ∩B′ and w 6= b.

Let D ⊆ C∪Π be the component of G[C∪Π]\Π′ containing vertex b. Note that Π ⊆ D∪Π′

because Π′ is not an ac-separator ofG[C∪Π]. LetD′ be any component ofG[C∪Π]\(Π′∪D),
that exists because Π′ ∈ P3(G[C ∪Π]). Since N(D′) ⊆ C ∪Π by construction, D′ ∩Π = ∅
by construction and D′ is a component of G[C ∪Π] \Π′, therefore, D′ is also a component
of G \Π′. The latter contradicts Claim 1 because D′ ⊂ C. �

Let S = {v, b} ∪ (B ∩ B′). We are now able to prove that S = C ∪ Π (Claim 7). That is,
C ∪Π is fully contained in the two adjacent bags B,B′ (respectively dominated by b, v).

Claim 7 S = C ∪Π.

RR n° 8842

34 Ducoffe,Legay,Nisse

Proof. Assume by contradiction S 6= C ∪ Π, let D be a component of G[C ∪ Π] \ S (see
Figure 21). Note that D ⊂ C because Π ⊂ S by construction. Furthermore, v, b /∈ B ∩B′
because w = b by Claim 6 and b /∈ N(v) by Claim 3, so, B ∩B′ is a (minimal) vb-separator
of G[C ∪ Π]. The latter implies v /∈ N(D) or b /∈ N(D) because D induces a connected
subgraph, D ∩B ∩B′ = ∅ by construction, and B ∩B′ is a bv-separator of G[C ∪Π]. As a
result, there exists z ∈ {v, b} such that N(D) \ z ⊆ B ∩B′.

B' B

v b

x

a

...

D

c

y

Figure 21: Case z = v.

Moreover let {z, z′} = {v, b}. G[C ∪ Π] \ z is connected because G|C ∪ Π] is prime by
Claim 5, and so, biconnected. In addition, N(D) \ z is a minimal separator of G[C ∪Π] \ z
because it separates D from z′ and N(D) \ z ⊆ B ∩ B′ ⊆ N(z′) by construction. By
Lemma 13, one obtains the existence of two non-adjacent vertices x, y ∈ B ∩B′ such that
N(D)\ z = {x, y}, whence N(D) ⊆ {x, y, z}. Then, by construction Π′ = (x, z, y) ∈ P3(G)
with D ⊂ C being a component of G \Π′, that contradicts Claim 1. �

By Claim 7, C ∪ Π = S (see Figure 22). Note that it implies that C ⊆ N [v] because
C \ v = (B ∩B′) \ (a, c). In order to conclude that v is a leaf-vertex, we will finally prove
in Claim 8 that either B ∩B′ = {a, c} or B ∩B′ induces a path.

v b

a

c

G C\

Figure 22: Case c ∈ B ∩B′, w = b and C ∪Π = {v, b} ∪ (B ∩B′).

Claim 8 If B ∩B′ 6= {a, c}, then G[B ∩B′] is a path.

Proof. Recall that b, v /∈ B ∩ B′ because w = b by Claim 6 and b /∈ N(v) by Claim 3.
Hence by the properties of a tree decomposition, B ∩ B′ is a bv-separator of G[C ∪ Π].
Since v ∈ C by Claim 4, a ∈ B ∩B′ by construction and c ∈ B ∩B′ by Claim 3, therefore
B ∩ B′ is also a vb-separator of G. In particular, B ∩ B′ is a minimal bv-separator of G
because B ∩B′ ⊆ N(v)∩N(w) = N(v)∩N(b) (indeed, recall that w = b by Claim 6). By
Corollary 6, B ∩B′ either induces a cycle or it induces a forest of paths.

Subclaim 8.1 B ∩B′ does not induce a cycle.

Proof. By contradiction, let B ∩B′ induce a cycle. Recall that B ∩B′ contains the pair of
non-adjacent vertices a, c (because a ∈ B∩B′ by construction and c ∈ B∩B′ by Claim 3).
Therefore, one can contract B∩B′ until one obtains an induced quadrangle (a, x, c, y). Let
us contract an arbitrary component of G \ (Π ∪ C) so as to obtain a vertex z. Note that
a, c ∈ N(z) because G is prime by the hypothesis (indeed, neither a nor b nor c nor (a, b)

Inria

On computing tree and path decompositions with metric constraints on the bags 35

nor (a, c) can be a separator of G). Then, let us contract the edge {a, z} to a. By doing
so, one obtains a K3,3-minor with {a, b, v} being one part of the bipartition and {x, y, c}
being the other part. This contradicts the fact that G is planar by the hypothesis, therefore
B ∩B′ does not induce a cycle. ◦

It follows from Claim 8.1 that B ∩ B′ induces a forest of paths. Suppose for the sake
of contradiction that B ∩ B′ induces a forest of at least two paths. Let x /∈ {a, c} be
the endpoint of some path in the forest, that exists because we assume that B 6= {a, c}.
Observe that |N(x)| ≥ 2 because b, v ∈ N(x), and |N(x)| = |N(x) ∩ (C ∪ Π)| ≤ 3 because
x is the endpoint of some path of B∩B′ and x ∈ C. Furthermore, N(x)\ (b, v) ⊆ B∩B′ ⊆
N(b)∩N(v), and so, if |N(x)| = 3 then N(x) induces a path. Let Π′ = N(x) if |N(x)| = 3,
else Π′ = (b, a, v). By construction, Π′ ⊆ Π ∪ C is a separator of G with {x} ⊂ C being a
component of G \Π′, thus contradicting Claim 1. Consequently, B ∩B′ induces a path. �

By Claim 8, either B ∩B′ = {a, c} or B ∩B′ induces a path. Furthermore, B ∩B′ = N(v)
because v ∈ C (Claim 4) and C ∪ Π = {v, b} ∪ (B ∩ B′) (Claim 7). In particular, if
B ∩ B′ = {a, c} then v is a leaf-vertex of Type 3. Else, B ∩ B′ induces a path and the
latter implies that |B ∩B′| ≥ 4 or else the path B ∩B′ would be a separator of G with {v}
being a component of G \ (B ∩B′), thus contradicting Claim 1. As a result, since we also
have that B ∩B′ ⊆ N(b) and b, v are non-adjacent by Claim 4, therefore, v is a leaf-vertex
of Type 1.

Case Ta ∩ Tc = ∅. Since Π is a separator of G and G is prime by the hypothesis, one of Π
or Π \ b must be a minimal separator of G. Therefore, since (T,X) is assumed to minimize the
distance in T between Ta and Tc, by Corollary 8 there exist two bags Ba, Bc that are adjacent in
T and such that a ∈ Ba \Bc and c ∈ Bc \Ba. Furthermore, a dominates Ba while c dominates
Bc. Note that Ba ∩Bc = N(a)∩N(c), so, b ∈ Ba ∩Bc. In particular, by the properties of a tree
decomposition this implies that S = N(a) ∩N(c) is a minimal ac-separator of G.

We will prove that C is reduced to a vertex (Claim 10), the latter being a leaf-vertex.

Claim 9 C ⊆ S.

Proof. Assume for the sake of contradiction that C 6⊆ B ∩ B′. By the properties of a tree
decomposition it comes that some vertex y ∈ C is separated from a or c by the set S = B∩B′ =
N(a) ∩ N(c). Say w.l.o.g. that S is an yc-separator. Let C ′ ⊂ C be the connected component
containing y in G \ (S ∪ {a}). Since we have that G \ a is connected because G is prime by the
hypothesis (and so, biconnected), that c /∈ C ′ and N(C ′) \ a ⊆ S ∩ (C ∪ Π) ⊆ N(c) ∩ (C ∪ Π),
then it comes that N(C ′) \ a is a minimal yc-separator of G \ a. So, by Lemma 13 there exist
x′, y′ ∈ S such that N(C ′) \ a = {x′, y′}. Therefore, Π′ = (x′, a, y′) ∈ P3(G) and C ′ ⊂ C is a
component of G \Π′, that contradicts Claim 1. �

By Claim 9, C ⊆ S (see Figure 23 for an illustration). Since S is an ac-separator and for any
component C ′ of G \ (Π ∪ C), a, c ∈ N(C ′) because G is prime, therefore S ∩ C ′ 6= ∅. One thus
obtains the following chain of strict subset containment relations C ⊂ C∪{b} ⊂ S. Furthermore,
by Corollary 6, S either induces a cycle or a forest of paths, so, C being a strict connected subset
of S, it must induce a path. In particular, C∪{b} also being a strict subset of S, either it induces
a path or it is the union of the path induced by C with the isolated vertex b.

Claim 10 |C| = 1.

RR n° 8842

36 Ducoffe,Legay,Nisse

...

a
b

c

C

B Ba c

Figure 23: Case Ta ∩ Tc = ∅.

Proof. Assume for the sake of contradiction that |C| ≥ 2. Since C induces a path, let us pick an
endpoint v ∈ C that is not adjacent to vertex b (recall that C ∪ {b} being a strict subset of S,
it does not induce a cycle). In such a case, N(v) induces a path Π′ ∈ P3(G), with a, c ∈ Π′ and
{v} ⊂ C is a component of G \Π′, thus contradicting Claim 1. �

By Claim 10, C is reduced to a vertex v, that is either a leaf-vertex of Type 2 (if v ∈ N(b))
or of Type 3 (if v /∈ N(b)).

Note that in some cases, there may only exist leaf-vertices of only one Type (i.e., see respec-
tively Figure 24, 25 and 26 for Types 1,2 and 3). Therefore, there is none of the three Types of
leaf-vertices that can be avoided in our algorithm.

d

v

v

v

v

1

2

3

4

Figure 24: A planar graph G
with tb(G) = 1 and all of its
four leaf-vertices v1, v2, v3, v4
of Type 1.

d

v

v

v

v

1

2

3

4

Figure 25: A planar graph G
with tb(G) = 1 and all of its
four leaf-vertices v1, v2, v3, v4
of Type 2.

d

v

v

v

v

1

2

3

4

Figure 26: A planar graph G
with tb(G) = 1 and all of its
four leaf-vertices v1, v2, v3, v4
of Type 3.

Examples of planar graphs G with tb(G) = 1 and P3(G) = ∅ include C4, the cycle with four
vertices. To prove correctness of Step 1, it now suffices to prove that all these graphs (with
P3(G) = ∅) admit a star-decomposition with at most two bags.

Lemma 20 For any prime planar graph G, if tb(G) = 1 and P3(G) = ∅, then G admits a
star-decomposition with at most 2 bags.

Proof. By contradiction, let (T,X) be a star-decomposition of G with at least three bags. Let
t ∈ V (T) be an internal node, by the properties of a tree decomposition the bag Xt is a separator
of G. Let u ∈ Xt satisfy Xt ⊆ NG[u]. Since G is biconnected, therefore Xt \ u is a separator
of G \ u. By Lemma 13, there exist x, y ∈ Xt \ u non-adjacent such that {x, y} is a minimal
separator of G \u. In such case, (x, u, y) ∈ P3(G), which contradicts the fact that P3(G) = ∅.

5.3.2 Case of leaf-vertex v of Type 1

Lemma 21 Let G be a prime planar graph and v be a leaf-vertex of Type 1. Let Πv be the path
induced by N(v) and let av, cv be the ends of Πv. Suppose V (G) 6= N [v] ∪ {dv}.

Then Π′ = (av, dv, cv) ∈ P3(G) and N [v] \ {av, cv} is a component of G \Π′.

Inria

On computing tree and path decompositions with metric constraints on the bags 37

Proof. Let C be a component of G\(N [v]∪{dv}), that exists by the hypothesis. By construction,
v /∈ N [C], so, N(C) ⊆ N(v) ∪ {dv} separates v from C. Furthermore, since G is prime by the
hypothesis, there exist x, y ∈ N(C) non-adjacent. Note that dv /∈ {x, y} because N(v) ⊆ N(dv)
by the hypothesis, hence x, y ∈ N(v).

We claim that {x, y} = {av, cv}. By contradiction, suppose x /∈ {av, cv}. Let us write
Πv = (P, x,Q, y,R) with P,Q non-empty subpaths of Πv and R a (possibly empty) subpath of
Πv. In such a case, the connected subsets S1 := {v} ∪ P, S2 := {dv}, S3 := {x}, S4 := Q
and S5 := {y} ∪ C induce a K5-minor of G, that contradicts the hypothesis that G is planar.
Therefore, the claim is proved, that is, {x, y} = {av, cv}.

To prove the lemma, it now suffices to prove that N(C) ∩ N(v) = {av, cv} for in such a
case the result will hold for any component C ′ of G \ (N [v] ∪ {dv}). By contradiction, let
x′ ∈ (N(C) ∩ N(v)) \ (av, cv). Since |N(v)| ≥ 4 because v is a leaf-vertex of Type 1 by the
hypothesis, therefore, x′ and av are non-adjacent or x′ and cv are non-adjacent. Let y′ ∈ {av, cv}
be non-adjacent to x′. Since x′, y′ ∈ N(C) ∩ N(v) are non-adjacent, therefore, by the same
proof as for the above claim {x′, y′} = {av, cv}, that would contradict the assumption that
x′ /∈ {av, cv}. As a result, N(C) ⊆ (av, dv, cv) and so, since the result holds for any component
C ′ of G \ (N [v] ∪ {dv}), Π′ = (av, dv, cv) ∈ P3(G) with N [v] \ {av, cv} being a full component of
G \Π′.

Theorem 8 Let G be a prime planar graph and v be a leaf-vertex of Type 1. Let Πv be the path
induced by N(v) and let av, cv be the ends of Πv. Suppose V (G) 6= N [v] ∪ {dv}.

Then, the graph G′, obtained from G \ v by contracting the internal vertices of Πv to a single
edge, is prime and planar, and tb(G) = 1 if and only if tb(G′) = 1.

v

vd
av cv

vd
av cv

x y

Figure 27: Contraction of the internal vertices of Πv to a single edge and removal of v.

Proof. For the remaining of the proof, let Π′v = (av, x, y, cv) be the path resulting from the
contraction of the internal vertices of Πv to the edge {x, y} in G′. By Lemma 21 (av, dv, cv) ∈
P3(G) with (N [v] \ (av, cv)) being a full component of G \ (av, dv, cv). Consequently, NG′(x) =
{av, dv, y} and NG′(y) = {cv, dv, x}.

The graph G′ is a minor of G, that is a planar graph by the hypothesis, so, G′ is also planar.
In order to prove that G′ is prime, by contradiction, let S be a minimal clique-separator of G′.
There are two cases to be considered.

• Suppose x ∈ S or y ∈ S. In such case, S ⊆ (av, x, dv), or S ⊆ (x, dv, y), or S ⊆ (y, dv, cv).
By Lemma 21 (av, dv, cv) ∈ P3(G) with(N [v] \ (av, cv)) being a full component of G \
(av, dv, cv), and so, for every component C of G′ \ (Π′v ∪ {dv}) = G \ (N [v]∪ {dv}) av, cv ∈
N(C) because G is prime by the hypothesis. In such case, since av /∈ S or cv /∈ S, therefore,
G′ \ S is connected, that contradicts the assumption that S is a clique-separator of G′.

• Else, x, y /∈ S. Since av /∈ S or cv /∈ S because av and cv are non-adjacent in G′, therefore,
S must be a separator of G′ \ (x, y) or else G′ \ S would be connected because Π′v induces
a path of G′ (thus contradicting the assumption that S is a separator of G′). In such a

RR n° 8842

38 Ducoffe,Legay,Nisse

case, since by Lemma 21 (av, dv, cv) ∈ P3(G) with(N [v] \ (av, cv)) being a full component
of G \ (av, dv, cv), since S is a separator of G′ \ (x, y) = G \ (N [v] \ (av, cv)) and since S is
not a separator of G because G is prime by the hypothesis, therefore, by Lemma 16 there
are exactly two components Ca, Cc in G′ \ (S∪{x, y}) with av ∈ Ca and cv ∈ Cc. However,
Π′v is an avcv-path of G′ \S, thus contradicting the assumption that S is a separator of G′.

As a result, G′ is a prime planar graph.

Finally, let us prove tb(G) = 1 if and only if tb(G′) = 1.

• If tb(G) = 1 then tb(G\v) = 1 because N(v) ⊆ N(dv) by the hypothesis, and so, tb(G′) = 1
because G′ is obtained from G \ v by edge-contractions and tree-breadth is contraction-
closed (Lemma 2).

• Conversely, let us prove that tb(G) = 1 if tb(G′) = 1. To prove this, let (T ′,X ′) be a
reduced star-decomposition of G′, that exists by Lemma 3, minimizing the distance in T ′

between the two subtrees T ′av and T ′cv . In order to prove tb(G) = 1, it suffices to show how
to construct a star-decomposition of G from (T ′,X ′).
We will prove as an intermediate claim that T ′av ∩ T ′cv 6= ∅. By contradiction, suppose
T ′av ∩ T ′cv = ∅. Since by Lemma 21 (av, dv, cv) ∈ P3(G) with (N [v] \ (av, cv)) being a
full component of G \ (av, dv, cv), therefore, (av, dv, cv) ∈ P3(G′) with {x, y} being a full
component of G′\(av, dv, cv). Since we proved that G′ is prime, it follows that one of (av, cv)
or (av, dv, cv) is a minimal separator of G′. In such a situation, since (T ′,X ′) is assumed to
minimize the distance in T ′ between T ′av and T ′cv , therefore, by Corollary 8 there are two
adjacent bags B′av , B

′
cv such that av ∈ B′av \B′cv and cv ∈ B′cv \B′av respectively dominate

B′av and B′cv in G′. However by the properties of a tree decomposition this implies that
B′av ∩B′cv = N(av) ∩N(cv) is an avcv-separator of G′, thus contradicting the existence of
the avcv-path Π′v. Therefore, the claim is proved and T ′av ∩ T ′cv 6= ∅.
Recall that T ′av ∩ T ′dv 6= ∅ and similarly T ′cv ∩ T ′dv 6= ∅ by the properties of a tree decom-
position. Hence, the subtrees T ′av , T

′
cv , T

′
dv

are pairwise intersecting, and so, by the Helly
property (Lemma 1), T ′av ∩ T ′dv ∩ T ′cv 6= ∅. Let us now proceed as follows so as to obtain a
star-decomposition of G. Let us remove x, y from all bags in X ′, that keeps the property for
(T ′,X ′) to be a star-decomposition because x and y are dominated by dv in G′. Then, let
us add two new bags B1 = N [v], B2 = N(v)∪{dv}, and finally let us make B1, B2 pairwise
adjacent and let us make B2 adjacent to some bag of T ′av ∩T ′dv ∩T ′cv . By construction, the
resulting tree decomposition is indeed a star-decomposition of G, whence tb(G) = 1.

5.3.3 Proof of Step 3.1 (a)

In the following three subsections (5.3.3, 5.3.4 and 5.3.5) we will prove correctness of the algo-
rithm for the case of a leaf-vertex v of Type 2 or 3 and G \ v is prime (Step 3.1). Our proofs in
these subsections will mostly rely on Lemma 17.

Let us first show how we can use Lemma 17 in order to prove correctness of Step 3.1 (a).
Note that since we are in the case when G \ v is prime, we needn’t prove it in the following
Theorem 9.

Theorem 9 Let G = (V,E) be a prime planar graph, let v be a leaf-vertex of Type 2 or 3, and
let Πv = (av, bv, cv) be as in Definition 5.

Inria

On computing tree and path decompositions with metric constraints on the bags 39

Suppose that |N(av)∩N(cv)| ≥ 3 in G \ v, or there exists a minimal separator S ⊆ (N(av)∩
N(cv)) ∪ {av, cv} in G \ v and {av, cv} ⊆ S.

Then, tb(G) = 1 if and only if tb(G \ v) = 1.

Proof. First we prove that tb(G) = 1 implies that tb(G \ v) = 1, that is the easy part of the
result. Let (T,X) be a tree decomposition of G of breadth one, let (T,X ′) be such that for every
node t ∈ V (T), X ′t = Xt \ v. Observe that (T,X ′) is a tree decomposition of G \ v. Furthermore,
we claim that it has breadth one, indeed, for every t ∈ V (T) such that Xt ⊆ NG[v], X ′t ⊆ NG[bv]
because NG(v) ⊆ NG[bv]. As a result, tb(G \ v) = 1.

Conversely, we prove that tb(G \ v) = 1 implies that tb(G) = 1. Let (T ′,X ′) be a star-
decomposition of G \ v minimizing the distance in T ′ between the subtrees T ′av and T ′cv . There
are two cases. If T ′av ∩T ′cv 6= ∅, then the subtrees T ′av , T

′
bv
, T ′cv are pairwise intersecting, hence by

the Helly property (Lemma 1) T ′av ∩T ′bv ∩T ′cv 6= ∅, and so it suffices to make adjacent to any bag
of T ′av ∩ T ′bv ∩ T ′cv the new bag NG[v] ⊆ {av, bv, cv, v} so as to obtain a star-decomposition of G.
Else T ′av ∩ T ′cv = ∅ and so, by Corollary 9 if |N(av) ∩N(cv)| ≥ 3 in G \ v or by Corollary 8 else,
there are two adjacent bags B′av , B

′
cv such that av ∈ B′av \B′cv , bv ∈ B′av ∩B′cv ⊆ N(av) ∩N(cv)

and cv ∈ B′cv \ B′av . Furthermore, av dominates B′av while cv dominates B′cv . One obtains a
star-decomposition of G simply by adding vertex v into bags B′av and B′cv .

5.3.4 Proof of Step 3.1 (b) i

The proof of this step is more involved than the proof of previous Step 3.1 (a). We will need the
following intermediate lemma.

Lemma 22 Let G = (V,E) be a prime graph with tb(G) = 1, let v be a leaf-vertex of Type 2
or 3 and let Πv = (av, bv, cv) be as in Definition 5. Suppose that N(av) ∩ N(cv) = {v, bv} and
V 6= Πv ∪ {v}. Then, NG[bv] \ (av, cv, v) is an avcv-separator of G \ v.

Proof. Let (T,X) be a star-decomposition of G, that exists by Lemma 3, minimizing the distance
in T between the subtrees Tav and Tcv . We claim that Tav∩Tcv 6= ∅, i.e., av, cv are in a same bag of
the decomposition. By contradiction, let Tav ∩Tcv = ∅. Since G is prime and Πv is a separator of
G, therefore, one of Πv or Πv\bv is a minimal separator of G. Since (T,X) minimizes the distance
in T between Tav and Tcv , therefore, by Corollary 8 there exist two adjacent bags Bav , Bcv such
that av ∈ Bav \Bcv and cv ∈ Bcv \Bav . Furthermore, vertices av and cv respectively dominate
the bags Bav and Bcv . This implies Bav ∩ Bcv = NG(av) ∩NG(cv) and so, NG(av) ∩NG(cv) is
a minimal avcv-separator of G by the properties of the tree decomposition. However, let C be
any component of G \ (Πv ∪ {v}), that exists because V 6= Πv ∪ {v} by the hypothesis. Since G
is prime, therefore, av, cv ∈ N(C) (or else, one of the cliques av or bv or cv or (av, bv) or (bv, cv)
would be a clique-separator of G, thus contradicting the assumption that G is prime). Then, the
avcv-separator NG(av)∩NG(cv) must contain some vertex of C, which contradicts the fact that
NG(av) ∩NG(cv) = {v, bv} by the hypothesis. As a result, we proved that Tav ∩ Tcv 6= ∅.

Let H be the chordal supergraph of G such that (T,X) is a clique-tree of H. Equivalently,
every two vertices x, y ∈ V are adjacent in H if and only if they are in a same bag of X .
In particular, av, cv are adjacent in H. Let S := NH(av) ∩ NH(cv). We claim that S is an
avcv-separator of G. By contradiction, if it is not an avcv-separator of G, then there exists an
avcv-path Pavcv of G which does not intersect S. Furthermore, Pavcv is a path of H because H
is a supergraph of G, and it has length at least two because av, cv are non-adjacent in G. So, let
Qavcv be taken of minimum length amongst all avcv-paths of length at least two in H that do
not intersect S (the existence of such a path follows from the existence of Pavcv). Observe that

RR n° 8842

40 Ducoffe,Legay,Nisse

Qavcv may be not a path in G. By minimality of Qavcv , the vertices of Qavcv induce a cycle of H
because av, cv are adjacent in H. Therefore, the vertices of Qavcv induce a triangle because H is
chordal. However, this contradicts the fact that Qavcv does not intersect S = NH(av)∩NH(cv),
so, the claim is proved.

Finally, let us prove that S \ v ⊆ NG[bv] \ (av, cv, v), that will conclude the proof that
NG[bv]\(av, cv, v) is an avcv-separator of G\v. For every vertex x ∈ S \v, x ∈ NH(av)∩NH(cv),
therefore, Tav ∩Tx 6= ∅ and Tcv ∩Tx 6= ∅ by construction of H. Since the subtrees Tav , Tcv , Tx are
pairwise intersecting, by the Helly property (Lemma 1) Tav ∩ Tcv ∩ Tx 6= ∅, or equivalently there
is some bag B ∈ Tav ∩ Tcv ∩ Tx. Let z ∈ B dominate the bag. Clearly, x ∈ NG[z]. Furthermore,
z ∈ NG(av) ∩NG(cv) because av, cv are non-adjacent in G. As a result, either z = bv or z = v.
Since x 6= v and NG(v) ⊆ NG[bv], we have that x ∈ NG[bv] in both cases.

Theorem 10 Let G = (V,E) be a prime planar graph with tb(G) = 1, v be a leaf-vertex of Type
2 or 3, and let Πv = (av, bv, cv) be as in Definition 5. Suppose N(av) ∩ N(cv) = {bv, v}, and
G \ v is prime, and there is no minimal separator S ⊆ (N(av) ∩N(cv)) ∪ {av, cv} in G \ v such
that {av, cv} ⊆ S. Then, G = C4, a cycle with four vertices.

Proof. By contradiction, assume G 6= C4. Since G is prime by the hypothesis, G has at least
five vertices (the single other graph with four vertices and a leaf-vertex of Type 2 or 3 is the
diamond, which is not prime). Equivalently, V 6= Πv ∪ {v}. By Lemma 22, this implies that
N [bv] \ (av, cv, v) is an avcv-separator of G \ v. Since G \ v is prime by the hypothesis, and so,
biconnected, therefore, G\(bv, v) is connected, and so, N(bv)\(av, cv, v) 6= ∅ is an avcv-separator
of G \ (bv, v). In particular, av, bv, cv ∈ N(V \ (Πv ∪ {v})).

Moreover, we claim that V \ (Πv ∪ {v}) induces a connected subgraph (note that the latter
implies that V \(Πv∪{v}) is a full component of G\Πv). By contradiction, let C1, C2 be distinct
components of V \ (Πv ∪ {v}). Since G is prime, av, cv ∈ NG(C1) ∩NG(C2) (or else, one of the
cliques av or bv or cv or (av, bv) or (bv, cv) would be a clique-separator of G, thus contradicting
the assumption that G is prime). Therefore, bv ∈ NG(C1)∩NG(C2) because N [bv] \ (av, cv, v) is
an avcv-separator of G \ v. It follows that Πv is a minimal separator of G \ v, that contradicts
the hypothesis that there is no minimal separator S ⊆ (N(av) ∩N(cv)) ∪ {av, cv} in G \ v and
{av, cv} ⊆ S. Consequently, V \ (Πv ∪ {v}) induces a connected subgraph.

Let S′ ⊆ N(bv) \ (av, cv, v) be a minimal avcv-separator of G \ (bv, v). By Lemma 13, there
exist x, y ∈ N(bv) \ (av, cv, v) non-adjacent such that S′ = {x, y}. Finally, let Π′ = (x, bv, y) and
let A,C be the respective components of av, cv in G \ (Π′ ∪ {v}). Note that x, y ∈ N(A)∩N(C)
because G \ v is prime by the hypothesis (indeed, neither x nor bv nor y nor (bv, x) nor (bv, y)
can be a separator of G \ v). Let P be an xy-path of V \ (Πv ∪ {v}), that exists because
V \ (Πv ∪ {v}) is connected. Also, let A′ ⊆ A and C ′ ⊆ C be the respective components of
av, cv in G \ (P ∪ Π′ ∪ {v}). Note that the subpath P \ (x, y) lies onto a unique component of
G \ (Π′ ∪ {v}) because it does not intersect Πv ∪ {v} by construction, so, A′ = A or C ′ = C. By
symmetry, assume that C ′ = C. There are two cases to consider.

• Assume A′ = A (see Figure 28 for an illustration). Let us contract the internal vertices of P
so as to make vertices x, y adjacent. Then, let us contract the components A,C to the two
vertices av, cv, respectively. Finally, let us contract v to either av or cv. By construction,
the five vertices av, bv, cv, x, y now induce a K5, that contradicts the fact that G is planar
by the hypothesis.

• Else, A′ 6= A. Equivalently, P ⊆ A ∪ {x, y} (see Figure 29 for an illustration). Since A is
connected, N(A′)∩(P \(x, y)) 6= ∅. Let z ∈ N(A′)∩P . Let us contract the internal vertices
of P to vertex z. Then, let us contract the components A′ and C ′ = C to the two vertices

Inria

On computing tree and path decompositions with metric constraints on the bags 41

v

b

a cv v

v

x y

A C

P

b

a cv v

v

x y

P

\ (x,y)

A C

v

A C

Figure 28: Case A′ = A (left). A K5-minor is drawn (right), with edges resulting from contrac-
tions labeled in red.

av, cv, respectively. Finally let us contract v to either av or cv. By construction, there is
a K3,3-minor whose sides of the bipartition are {av, x, y} and {bv, cv, z}, respectively, that
contradicts the fact that G is planar by the hypothesis.

v

b

a cv v

v

x yA

C

\A'

A'

P

z

b

a cv v

v

x y

C

A'

P[x,z]

z

v

CP[z,y]

Figure 29: Case A′ 6= A (left). A K3,3-minor is drawn (right), with each side of the bipartition
being coloured differently. Edges resulting from contractions are labeled in red.

Since both cases contradict the hypothesis that G is planar, therefore, G = C4.

5.3.5 Proof of Step 3.1 (b) ii

Theorem 11 Let G = (V,E) be a prime planar graph, let v be a leaf-vertex of Type 2 or 3, and
let Πv = (av, bv, cv) be as in Definition 5.

Suppose that all of the following statements hold:

• N(av) ∩N(cv) = {v, bv, uv} with uv /∈ {v} ∪Πv;

• V 6= {av, bv, cv, uv, v};

• there is no minimal separator S ⊆ (N(av) ∩N(cv)) ∪ {av, cv} in G \ v and {av, cv} ⊆ S.

Let G′ be the graph obtained from G by adding edges {v, uv} and {bv, v}, then tb(G) = 1 if
and only if tb(G′) = 1. Moreover, G′ is planar and prime.

Proof. We will first prove that G \ v is prime. By contradiction, let S′ be a minimal clique-
separator of G \ v. By Theorem 6, there is wv 6= v such that S′ = {bv, wv}, and by Lemma 16,
S′ must be an avcv-separator of G \ v. Then, it follows that wv = uv ∈ N(av) ∩N(cv), whence
V = {av, bv, cv, uv, v} by Theorem 6, that contradicts the hypothesis. Therefore, G \ v is prime.

Let us prove that tb(G) = 1 implies that tb(G′) = 1. Let (T,X) be a star-decomposition of G,
which exists by Lemma 3, minimizing the distance in T between the subtrees Tav and Tcv . Since
NG(v) ⊆ NG[bv] then removing v from all bags leaves a tree decomposition of G \ v of breadth

RR n° 8842

42 Ducoffe,Legay,Nisse

v

b

a c

u

v v

v

v

Figure 30: Case of a leaf-vertex v of Type 3 with G \ v is prime and N(av)∩N(cv) = {uv, bv, v}.
Red edges are those added by Algorithm Leaf-BottomUp.

one. Up to reducing the tree decomposition, let (T ′,X ′) be any reduced tree decomposition of
G \ v that is obtained from (T,X) by first removing v from the bags. Note that (T ′,X ′) is a
star-decomposition of G \ v by Lemma 3. Now, there are two cases.

• Suppose T ′av∩T ′cv 6= ∅. We will need to prove in this case that the two subtrees T ′av∩T ′bv∩T ′cv
and T ′av ∩ T ′uv

∩ T ′cv are nonempty and disjoint.

Claim 11 bv, uv are non-adjacent in G.

Proof. By contradiction, if it were the case that bv, uv are adjacent, then by Lemma 15,
either uv is an isolated vertex of G\(Πv∪{v}) — in which case, Πv ∈ P3(G\v) because we
assume V 6= {av, bv, cv, uv, v} by the hypothesis —, or (av, uv, bv) ∈ P3(G \ v). Since G \ v
is prime, it follows that one of Πv or Πv \ bv must be a minimal separator of G\v, similarly
one of (av, uv, cv) or (av, cv) must be a minimal separator of G \ v. Therefore, both cases
contradict the hypothesis that there is no minimal separator S ⊆ (N(av)∩N(cv))∪{av, cv}
in G \ v and {av, cv} ⊆ S, which proves that bv, uv are non-adjacent. �

Recall that we are in the case when T ′av ∩ T ′cv 6= ∅. The subtrees T ′av , T
′
cv , T

′
uv

are pairwise
intersecting, similarly the subtrees T ′av , T

′
cv , T

′
bv

are pairwise intersecting. Therefore, by
the Helly property (Lemma 1) T ′av ∩ T ′bv ∩ T ′cv 6= ∅ and T ′av ∩ T ′uv

∩ T ′cv 6= ∅. Furthermore,
Tav ∩ Tbv ∩ Tcv ∩ Tuv = ∅, because since bv, uv are non-adjacent by Claim 11 no vertex
dominates all of {av, bv, cv, uv} in G, and so, T ′av ∩ T ′bv ∩ T ′cv ∩ T ′uv

= ∅.

Claim 12 The subtrees T ′av ∩ T ′bv ∩ T ′cv and T ′av ∩ T ′uv
∩ T ′cv are adjacent in T ′.

Proof. By contradiction, let B be an internal bag onto the path between both subtrees
in T ′, let z ∈ B dominate the bag. Note that av, cv ∈ B by the properties of the tree
decomposition, z /∈ {av, cv} because av, cv are non-adjacent, and so, z ∈ N(av)∩N(cv)\v =
{uv, bv}. This contradicts the fact that B /∈ T ′av∩T ′bv∩T ′cv and B /∈ T ′av∩T ′uv

∩T ′cv , therefore,
the subtrees T ′av ∩ T ′bv ∩ T ′cv and T ′av ∩ T ′uv

∩ T ′cv are adjacent in T ′. �

Finally, let B ∈ T ′av ∩ T ′bv ∩ T ′cv , B′ ∈ T ′av ∩ T ′uv
∩ T ′cv be adjacent, that exist by Claim 12.

Observe that bv dominates B, uv dominates B′. To obtain a star-decomposition of G′ from
(T ′,X ′), it now suffices to add vertex v in B and B′, whence tb(G′) = 1.

• Else, T ′av ∩ T ′cv = ∅. This implies Tav ∩ Tcv = ∅. Since the tree decomposition (T,X)
minimizes the distance in T between Tav and Tcv , G is planar and |N(av) ∩ N(cv)| ≥ 3,
therefore by Corollary 9, the subtrees Tav and Tcv are adjacent in T , whence the subtrees
T ′av , T

′
cv are also adjacent in T ′. In particular, by Corollary 9 there exist two adjacent bags

Inria

On computing tree and path decompositions with metric constraints on the bags 43

B′av , B
′
cv ∈ X ′ such that av ∈ B′av \B′cv , B′av ∩B′cv = NG(av) ∩NG(cv) \ v = {uv, bv}, cv ∈

B′cv \B′av . Furthermore, av dominates B′av while cv dominates B′cv . Therefore, in order to
obtain a star-decomposition of G′ from (T ′,X ′), it now suffices to add vertex v in B′av and
B′cv – that yields exactly (T,X) –, whence tb(G′) = 1.

Before we can prove the equivalence, i.e., tb(G) = 1 if and only if tb(G′) = 1, we need to
prove first that G′ is prime and planar.

Claim 13 G′ is prime.

Proof. Let S′ be a clique-separator of G′. Note that v ∈ S′ by construction of G′. Therefore,
S′ \ v is a clique-separator of G \ v, that contradicts the fact that G \ v is prime. Consequently,
G′ is prime. �

Claim 14 G′ is planar.

Proof. Let us fix a plane embedding ofG. By Jordan Theorem, the cycle induced by (av, bv, cv, uv)
separates the plane into two regions. Let G1, G2 be respectively the subgraphs of G that are
induced by all the vertices in each region.

b

a c

u

v v

v

v

c c
1 2

Figure 31: Proof that the graph G′ of Theorem 11 is planar.

We claim that either V \ (av, bv, cv, uv, v) ⊆ V (G1), or V \ (av, bv, cv, uv, v) ⊆ V (G2). Note
that it will prove that G′ is planar, because then drawing vertex v onto the region that does
not contain the set V \ (av, bv, cv, uv, v) yields a planar embedding of G′. By contradiction,
let C1 ⊆ V (G1), C2 ⊆ V (G2) be connected components of V \ (av, bv, cv, uv, v). Let Π′v =
(av, uv, cv). If one of Πv or Π′v belongs to P3(G \ v), then, there exists a minimal separator
S ⊆ (N(av)∩N(cv))∪{av, cv} inG\v and sinceG\v is prime, {av, cv} ⊆ S. This would contradict
the hypothesis, so, Πv,Π

′
v /∈ P3(G \ v). As a result, since (av, bv, cv, uv) = Πv ∪Π′v separates C1

from C2, therefore, uv, bv ∈ N(C1) ∩N(C2) (or else, Πv ∈ P3(G \ v) or Π′v ∈ P3(G \ v)). Let us
remove all other components of V \ (av, bv, cv, uv, v) but C1 and C2, and let us remove all edges
between {av, cv} and C1 ∪ C2 if any (see Figure 31). Finally, let us contract C1, C2 to the two
vertices x1, x2. The cycle induced by (uv, x1, bv, x2) separates the plane into two regions with
av, cv being into different regions by construction. Vertex v must belong to one of the regions,
but then it is a contradiction because v ∈ N(av) ∩N(cv) by the hypothesis. �

To conclude the proof, let us prove that conversely, tb(G′) = 1 implies that tb(G) = 1. Let
(T ′,X ′) be a star-decomposition of G′ minimizing the distance in T ′ between the subtrees T ′av
and T ′cv . As an intermediate step, we claim that if removing vertex v from all bags of X ′ leaves
a tree decomposition of G \ v of breadth one, then it implies that tb(G) = 1. To prove the claim,
there are two cases to be considered.

RR n° 8842

44 Ducoffe,Legay,Nisse

• If T ′av ∩T ′cv 6= ∅, then the subtrees T ′av , T
′
bv
, T ′cv are pairwise intersecting, hence by the Helly

property (Lemma 1) T ′av ∩ T ′bv ∩ T ′cv 6= ∅. Equivalently there is bag containing Πv, and so
it suffices to remove v from all bags and then to make any bag containing Πv adjacent to
the new bag NG[v] in order to obtain a tree decomposition of G of breadth one.

• Else, T ′av ∩ T ′cv = ∅. Since (T ′,X ′) minimizes the distance in T ′ between the subtrees
T ′av and T ′cv , G′ is planar by Claim 14 and av, cv have three common neighbours in G′,
therefore, by Corollary 9 there must exist two adjacents bags B′av , B

′
cv such that av ∈

B′av \ B′cv , B′av ∩ B′cv = N(av) ∩ N(cv) and cv ∈ B′cv \ B′av . Furthermore, vertex av
dominates the bag B′av , while vertex cv dominates the bag B′cv . As a result, removing
vertex v from all bags but B′av , B

′
cv leads to a tree decomposition of G of breadth one.

Consequently, we are left to modify the tree decomposition (T ′,X ′) so as to ensure that none
of the bags is only dominated by vertex v in G′, for if it is the case then removing v from all
bags does leave a tree decomposition of G \ v of breadth one. We will call the latter property
the removal property. Observe that if it is the case that (T ′,X ′) does not satisfy the removal
property, then there must be a bag B fully containing NG′(v) because any strict subset of NG′(v)
is dominated by some vertex of G\v. In particular, B = NG′ [v] because only vertex v dominates
NG′(v) in G′, and so we can further assume that T ′v = {B} without violating the property for
(T ′,X ′) to be a tree decomposition of G′ of breadth one. Therefore in the following, assume that
(T ′,X ′) is a reduced star-decomposition of G′ and T ′v = {B}, that is always possible to achieve
by Lemma 3 and above remarks.

Since V 6= {av, bv, cv, uv, v} = NG′ [v] by the hypothesis, therefore, X ′ \ B 6= ∅. Let B′ be
adjacent to B in T ′. Note that B∩B′ 6= {av, bv, cv, uv} because no other vertex than v dominates
the subset {av, bv, cv, uv} in G′. By the properties of a tree decomposition, B ∩B′ is a separator
of G′. Consequently, B ∩ B′ is not a clique because G′ is prime by Claim 13. Furthermore,
since B ∩ B′ 6= {av, bv, cv, uv} it holds that B \ (B′ ∪ {v}) 6= ∅, consequently B ∩ B′ is also a
separator of G \ v. Since G \ v is prime, B ∩ B′ cannot be any of (av, cv), Πv or Π′v because
by the hypothesis there is no minimal separator S ⊆ (N(av) ∩ N(cv)) ∪ {av, cv} in G \ v and
{av, cv} ⊆ S. It follows that B ∩ B′ ⊆ {av, bv, uv} or B ∩ B′ ⊆ {bv, cv, uv}. Let us substitute
the bag B with the two adjacent bags B1 = {av, uv, bv, v}, B2 = {bv, cv, uv, v}, then we make
adjacent all bags B′′ that were formerly adjacent to B to some bag amongst B1, B2 containing
B∩B′′. Note that B1 ⊆ N [av] and that B2 ⊆ N [cv]. Therefore, the resulting tree decomposition
is a tree decomposition of G of breadth one such that v dominates no bag.

5.3.6 Case of leaf-vertex v of Type 2 or 3 and G \ v not prime

The remaining subsections will be devoted to the proof of correctness of Step 3.2. In particular,
this subsection is devoted to the proof that when G \ v is not prime one can only consider the
case when the leaf-vertex v is of Type 2, i.e., v and bv are adjacent in G. Note that when v is of
Type 3, then in general one cannot add an edge between v and bv without violating the property
for the graph G to be planar, as shown in Figure 32. We will now prove that whenever we are
in the conditions of Step 3.2, it is always possible to do so while preserving the planarity of the
graph G and the property to be of tree-breadth one.

Theorem 12 Let G be a prime planar graph. Let v be a leaf-vertex of Type 3 such that G \ v
is not prime. Finally, let Πv = (av, bv, cv) be as in Definition 5. Let G′ be obtained from G by
adding the edge {v, bv}.

Then, G′ is prime and planar, and tb(G) = 1 if and only if tb(G′) = 1.

Inria

On computing tree and path decompositions with metric constraints on the bags 45

v

b

a cv v

v

v

b

a cv v

v

Figure 32: A planar graph G with tb(G) = 1 (left), and a leaf-vertex v of Type 3 so that adding
an edge between v and bv violates the property for the graph to be planar (right). In the latter
case, one side of the bipartition of the K3,3-minor is coloured red.

Proof. First, we prove that G′ is prime and planar.

• In order to prove that G′ is prime, by contradiction let S be a clique-separator of G′. Since
G′ is a supergraph of G, therefore S is a separator of G but it does not induce a clique
in G. Hence, S contains the edge {v, bv}, and so either S ⊆ {av, bv, v} or S ⊆ {bv, cv, v}.
Let C = V \ (Πv ∪ {v}), by Theorem 6, C is a full component of G \ Πv because G \ v is
not prime. In particular, C is connected and av, cv ∈ N(C), that contradicts the fact that
G′ \ S is unconnected.

• Then in order to prove that G′ is planar, let us fix a plane embedding of G. The cycle
induced by (av, bv, cv, v) separates the plane into two regions. To prove that G′ is planar,
we claim that it suffices to prove that all vertices in C = V \ (Πv ∪ {v}) are in the same
region, for then drawing the edge {bv, v} in the other region leads to a plane embedding of
G′. By contradiction, let x, y ∈ C be in different regions. By [13, Proposition 8], the cycle
(av, bv, cv, v) is an xy-separator of G, that contradicts the fact that C is connected.

Let us now prove that tb(G) = 1 implies that tb(G′) = 1. Let (T,X) be a star-decomposition
of G, that exists by Lemma 3, minimizing the distance in T between the subtrees Tav and Tcv .
Let us remove vertex v from all bags, that leads to a tree decomposition (T,X−v) of G \ v of
breadth one because NG(v) ⊆ NG(bv). Then, let (T ′,X ′) be any reduced tree decomposition
that is obtained from (T,X−v), that is a star-decomposition of G \ v by Lemma 3. Now, there
are two cases. If T ′av ∩ T ′cv 6= ∅, then the subtrees T ′av , T

′
bv
, T ′cv are pairwise intersecting and so,

by the Helly property (Lemma 1) T ′av ∩T ′bv ∩T ′cv 6= ∅. Hence one obtains a star-decomposition of
G′ simply by making some bag of T ′av ∩T ′bv ∩T ′cv adjacent to the new bag NG′ [v] = {av, bv, cv, v}.
Else, T ′av ∩ T ′cv = ∅, so, Tav ∩ Tcv = ∅. Since Πv ∈ P3(G) and G is prime by the hypothesis,
therefore, one of Πv or Πv \ bv must be a minimal separator of G. As a result, since (T,X) is
assumed to minimize the distance in T between the subtrees Tav and Tcv , by Corollary 8 there
exist two adjacent bags Bav , Bcv ∈ X so that av ∈ Bav \ Bcv and cv ∈ Bcv \ Bav respectively
dominate the bags Bav and Bcv . In such case, Bav ∩ Bcv = NG(av) ∩ NG(cv) and so, since
bv, v ∈ Bav ∩Bcv , (T,X) is also a star-decomposition of G′. So, in conclusion, tb(G′) = 1 in both
cases.

Conversely, let us prove that tb(G′) = 1 implies that tb(G) = 1. Let (T ′,X ′) be a star-
decomposition of G′, that exists by Lemma 3, minimizing the distance in T ′ between the subtrees
T ′av and T ′cv . Let us remove vertex v from all bags, that leads to a tree decomposition (T ′,X ′−v)
of G′ \ v = G \ v of breadth one because NG′ [v] ⊆ NG′ [bv]. Then, let (T,X) be any reduced tree
decomposition that is obtained from (T ′,X ′−v), that is a star-decomposition of G\v by Lemma 3.
There are two cases. If Tav ∩ Tcv 6= ∅, then one obtains a star-decomposition of G simply by
making some bag of Tav ∩ Tcv adjacent to the new bag NG[v] = {av, cv, v}. Else, Tav ∩ Tcv = ∅,

RR n° 8842

46 Ducoffe,Legay,Nisse

so, T ′av ∩ T ′cv = ∅. Since Πv ∈ P3(G′) and G′ is also prime, therefore, one of Πv or Πv \ bv must
be a minimal separator of G′. As a result, since (T ′,X ′) is assumed to minimize the distance in
T ′ between the subtrees T ′av and T ′cv , by Corollary 8 there exist two adjacent bags B′av , B

′
cv ∈ X ′

so that av ∈ B′av \ B′cv and cv ∈ B′cv \ B′av respectively dominate the bags B′av and B′cv . In
such case, one obtains a star-decomposition of G by adding v in the two bags B′av , B

′
cv . So, in

conclusion, tb(G) = 1 in both cases.

5.3.7 Proof of Step 3.2 (a)

Theorem 13 Let G be a prime planar graph, let v be a leaf-vertex of Type 2, Πv = (av, bv, cv)
be as in Definition 5, and let uv /∈ Πv ∪ {v} be such that (bv, uv) is an edge-separator of G \ v.

Suppose av and uv are non-adjacent, and either cv and uv are non-adjacent or the subset
NG(av) ∩NG(uv) is not an avuv-separator in the subgraph G \ (cv, v).

Then, G/vav (obtained by contracting {v, av}) is planar and prime and tb(G) = 1 if and only
if tb(G/vav) = 1.

av cv

v

uv

av cv

v

uv

bv

bv cv

uv

bv
avv

cv

uv

bv
avv

Figure 33: Cases when Theorem 13 applies and the edge {v, av} can be contracted to av.

Proof. The graph G/vav is a contraction of the planar graph G, therefore it is planar. Let us
prove that G/vav is prime. By contradiction, let S be a minimal clique-separator of G/vav.
Since G/vav is a supergraph of G \ v, S is also a separator of G \ v. Furthermore, it is not an
avcv-separator because av, cv are adjacent in G/vav, therefore, by Lemma 16 S is a separator
of G. Since G is prime by the hypothesis, S does not induce a clique of G, whence av, cv ∈ S.
However, since (bv, uv) is not a separator of G because G is prime by the hypothesis, therefore by
Lemma 16 (uv, bv) is an avcv-separator of G \ v. So, NG(av)∩NG(cv) ⊆ {v, bv, uv}, that implies
NG(av) ∩ NG(cv) = {v, bv} because av and uv are non-adjacent by the hypothesis. In such a
case S ⊆ Πv, but then V \ (Πv ∪ {v}) cannot be a full component of G \Πv, thus contradicting
Theorem 6. As a result, the graph G/vav is planar and prime.

If tb(G) = 1 then tb(G/vav) = 1 because tree-breadth is contraction-closed by Lemma 2. Con-
versely, let us prove that tb(G/vav) = 1 implies tb(G) = 1. To show this, let (T,X) be a
star-decomposition of G/vav, that exists by Lemma 3, minimizing the number of bags |X | (in
particular, (T,X) is a reduced tree decomposition). Assume moreover (T,X) to minimize the
number of bags that are not contained into the closed neighbourhood of some vertex in G
w.r.t. this property. Note that there is a bag of (T,X) containing Πv, because since it is a
clique of G/vav the subtrees Tav , Tbv , Tcv are pairwise intersecting and so, by the Helly property
(Lemma 1), Tav ∩ Tbv ∩ Tcv 6= ∅. So, we can add in (T,X) a new bag NG[v], and by making

Inria

On computing tree and path decompositions with metric constraints on the bags 47

this bag adjacent to any bag of Tav ∩ Tbv ∩ Tcv one obtains a tree decomposition of G (not nec-
essarily a star-decomposition). Consequently, we claim that to prove that tb(G) = 1, it suffices
to prove that (T,X) is a star-decomposition of G \ v, for then the above construction leads to a
star-decomposition of G.

By contradiction, suppose it is not the case that (T,X) is a star-decomposition of G\v. Since
G/vav and G \ v only differ in the edge {av, cv}, there must be a bag B of Tav ∩ Tcv that is only
dominated by some of av, cv. We make the stronger claim that the bag B has a unique dominator,
that is either av or cv. Since B is only dominated by some of av, cv, then in order to prove the
claim by contradiction we only need to consider the case when B ⊆ NG/vav [av] ∩ NG/vav [cv].
Recall that NG/vav [av] ∩NG/vav [cv] = {av, bv, cv} by the above remarks (because (uv, bv) is an
avcv-separator of G \ v), therefore either B = {av, bv, cv} or B = {av, cv}. In the first case
(B = {av, bv, cv}) we have that B ⊆ N [bv], thus contradicting the fact that B is only dominated
by some of av, cv. However in the second case (B = {av, cv}) the bag B is strictly contained in any
bag of the nonempty subtree Tav ∩Tbv ∩Tcv , thus contradicting the fact that (T,X) is a reduced
tree decomposition by minimality of |X |. Therefore, the claim is proved and so, the bag B has
a unique dominator, that is either av or cv. Note that if B ⊆ NG/vav [cv] then we may further
assume that cv, uv are nonadjacent, or else by Theorem 6 NG/vav [cv] = {av, bv, cv, uv} ⊆ N [bv]
and so, B ⊆ N [bv], that would contradict the claim that B is only dominated by some of av, cv.
In addition, since av and cv play symmetrical roles in the case when uv, cv are nonadjacent, let
us assume w.l.o.g. that vertex av is the sole dominator of the bag B.

In such a case, NG/vav (av)∩NG/vav (cv) = {bv} because (uv, bv) is an avcv-separator of G\v,
so, since N(cv) \ (Πv ∪ {v}) 6= ∅ because G is prime by the hypothesis, the existence of a bag B′

containing vertex cv and adjacent to B follows. By the properties of a tree decomposition, B∩B′
is a separator of G/vav Now, let Ca be the component of vertex av in G \ (bv, uv, v). Observe
that cv /∈ Ca because (uv, bv) is an avcv-separator of G\v. Since B∩B′ ⊆ NG/vav [av] ⊆ Ca∪Πv,
therefore, B ∩B′ ∩Ca 6= ∅ or else B ∩B′ would be a clique-separator in G/vav (impossible since
it is a prime graph). There are several cases to be considered depending on the dominators of
bag B′.

• If av dominates B′ then B,B′ can be merged into one, thus contradicting the minimality
of |X |;

• Else, B′ must be dominated by one of bv or uv because B∩B′∩Ca 6= ∅, cv ∈ (B∩B′)\Ca and
(bv, uv) separates cv from Ca. In fact, we claim that it cannot be dominated by vertex uv.
By contradiction, suppose that it is the case. Since av and uv are non-adjacent, therefore,
av ∈ B \B′ and uv ∈ B′ \B. So, it follows by the properties of a tree decomposition that
B ∩B′ is an avuv-separator of G/vav. However, B ∩B′ ⊆ N(av)∩N(uv), that contradicts
the hypothesis that NG(av)∩NG(uv) is not an avuv-separator in the subgraph G \ (cv, v).

Therefore, bv ∈ B′ dominate the bag. Observe that if it were the case that there are at least
two bags that are both adjacent to B and dominated by bv, then they could all be merged
into one without violating the property for (T,X) to be a star-decomposition. As a result,
by minimality of |X |, B′ is the unique bag that is both adjacent to B and dominated by
bv, whence it is also the unique bag adjacent to B containing vertex cv. Let us substitute
the two bags B,B′ with B \ cv, B′ ∪ {av}. Since NG/vav (av) ∩ NG/vav (cv) = {bv}, it is
still a star-decomposition of G/vav with equal number of bags |X |. Furthermore, there is
one less bag that is not contained in the closed neighbourhood of some vertex in G, thus
contradicting the minimality of (T,X).

RR n° 8842

48 Ducoffe,Legay,Nisse

5.3.8 Proof of Step 3.2 (b) i and Step 3.2 (b) ii

In order to deal with all remaining cases, it will require us to further study the neighbourhood
of vertex bv in the graph. Observe that in the following Theorem 14 we needn’t prove that the
resulting graph G′ is prime because it will be proved in Theorem 15.

Theorem 14 Let G be a prime planar graph, let v be a leaf-vertex of Type 2, Πv = (av, bv, cv)
be as in Definition 5, and let uv /∈ Πv ∪ {v} be such that (bv, uv) is an edge-separator of G \ v.

Suppose uv ∈ N(cv) \N(av), N(av)∩N(uv) is an avuv-separator of G \ (cv, v), and N(bv) =
{av, cv, uv, v}.

Then, there exists x ∈ (N(av)∩N(uv))\bv such that the graph G′, obtained from G by adding
the edge {bv, x}, is planar and satisfies tb(G′) = 1 if tb(G) = 1. Moreover, the vertex x can be
found in linear-time.

av cv

v

uv

bv

x

av cv

v

uv

bv

x

av cv

v

uv

bvx

Figure 34: Cases when one of Theorem 14 or Theorem 15 applies and vertex bv can be eventually
contracted to another vertex.

Proof. First, we claim that (av, uv) is a minimal 2-separator of G. Indeed, by the hypothesis
cv and uv are adjacent, therefore, by Theorem 6 NG(cv) = {bv, uv, v}. In addition, N(bv) =
{av, cv, uv, v} by the hypothesis. Last, since G is prime by the hypothesis, therefore, N(av)\(Πv∪
{v}) 6= ∅, and so, since av and uv are non-adjacent by the hypothesis, V (G)\(av, bv, cv, uv, v) 6= ∅.
As a result, (av, uv) is a minimal 2-separator of G with {bv, cv, v} being a full component of
G \ (av, uv).

Since N(av)∩N(uv) is an avuv-separator of G \ (cv, v) by the hypothesis, therefore, N(av)∩
N(uv) \ bv 6= ∅, for it has to contain a vertex from every component of G \ (av, bv, cv, uv, v).
For now, let x ∈ N(av) ∩ N(uv) \ bv be arbitrary. Let us prove that tb(G) = 1 implies that
tb(G′) = 1 where G′ is obtained by adding an edge between bv and x (for now, G′ may not
be planar, depending on the choice for x). To prove this, let (T,X) be a star-decomposition of
G, that exists by Lemma 3, minimizing the distance in T between the subtrees Tav and Tuv .
We claim that Tav ∩ Tuv

6= ∅. By contradiction, if Tav ∩ Tuv
= ∅, then by Corollary 8, there

are two bags Bav , Buv
that are adjacent in T and such that av ∈ Bav \ Buv

, uv ∈ Buv
\ Bav

respectively dominate Bav , Buv
. However, this implies by the properties of a tree decomposition

that Bav ∩ Buv
⊆ N(av) ∩N(uv) is an avuv-separator of G. Since the avuv-path (av, v, cv, uv)

does not intersect N(av) ∩N(uv), that is clearly a contradiction, and so, Tav ∩ Tuv 6= ∅.
Furthermore, since there is a full component of G \ (av, uv) in the subgraph G \ (bv, cv, v),

therefore, by Lemma 9 the removal of vertices bv, cv, v from all bags in X leads to a tree decom-
position (T,X−) of breadth one of G \ (bv, cv, v). Let (T ′,X ′) be a reduced star-decomposition
obtained from (T,X−), thar exists by Lemma 3. Since the subtrees T ′av , T

′
x, T

′
uv

are pairwise
intersecting (because x ∈ N(av) ∩ N(uv) and Tav ∩ Tuv

6= ∅), therefore by the Helly property
(Lemma 1) T ′av ∩ T ′x ∩ T ′uv

6= ∅. Let B ∈ T ′av ∩ T ′x ∩ T ′uv
. To obtain a star-decomposition of G′,

it now suffices to make the bag B adjacent to the new bag NG′ [bv] = {av, bv, cv, uv, v, x}.
The above result holds for any choice of vertex x ∈ (NG(av) ∩ NG(uv)) \ bv. Let us finally
prove that one such a vertex x exists so that G′ is planar. Indeed, since N(av) ∩ N(uv) is
an avuv-separator of G \ (cv, v) by the hypothesis, therefore, S := (N(av) ∩ N(uv)) ∪ {v} is

Inria

On computing tree and path decompositions with metric constraints on the bags 49

an avuv-separator of G, and in particular it is a minimal avuv-separator (because for every
vertex s ∈ S, there is an avuv-path that intersects S only in s). By Corollary 7, it can be
computed in linear-time a planar supergraph GS of G so that S induces a cycle of GS . Then, let
NGS

(bv) ∩ S = {x, v}, by construction the graph G′ is planar for such a choice of vertex x.

In Theorem 14, we show conditions so that vertex bv can be made adjacent to some other
vertex of NG(av) ∩ NG(uv). Lemma 23 completes the picture by proving that if it is the case
that NG(av) ∩ NG(uv) ∩ NG(bv) 6= ∅, then |NG(av) ∩ NG(uv) ∩ NG(bv)| = 1 and vertex bv has
exactly five neighbours.

Lemma 23 Let G be a prime planar graph, let v be a leaf-vertex of Type 2, Πv = (av, bv, cv) be
as in Definition 5, and let uv /∈ Πv ∪ {v} be such that (bv, uv) is an edge-separator of G \ v.

Suppose uv ∈ NG(cv) \NG(av) and there exists x ∈ NG(av) ∩NG(uv) ∩NG(bv).
Then, NG(bv) = {av, cv, uv, v, x}.

C

a

b

c

ux

v

v

v

v

v

Figure 35: Case when NG(bv) 6= {av, cv, uv, v, x}.

Proof. By contradiction, let C be a component of G\(av, bv, cv, uv, v, x) such that bv ∈ N(C) (see
Figure 35 for an illustration). By Theorem 6 NG(cv) = {bv, uv, v}, therefore, cv, v /∈ N(C). It
follows that N(C) is a separator of G. In particular, N(C) ⊆ {av, bv, uv, x}, so, av, uv ∈ N(C) or
else N(C) should be a clique-separator of the prime graph G. As a result, there is a K3,3-minor
with {av, bv, uv} and {C, x, {cv, v}} being the two sides of the bipartition. It contradicts the fact
that G is planar by the hypothesis.

Theorem 15 Let G be a prime planar graph, let v be a leaf-vertex of Type 2, Πv = (av, bv, cv)
be as in Definition 5, and let uv /∈ Πv ∪ {v} be such that (bv, uv) is an edge-separator of G \ v.

Suppose uv ∈ N(cv) \ N(av), N(av) ∩ N(uv) is an avuv-separator of G \ (cv, v), and either
N(bv) = {av, cv, uv, v} or N(bv) ∩N(av) ∩N(uv) 6= ∅.

Then, there is x ∈ N(av) ∩N(uv) such that one of the following must hold:

• V (G) = {av, bv, cv, uv, v, x}, and G admits a star-decomposition with two bags NG[bv], NG[x];

• or Π′ = (av, x, uv) ∈ P3(G), and let G′ be obtained from G by adding the edge {bv, x} (if
it is not already present) then contracting this edge. The graph G′ is planar and prime,
furthermore tb(G) = 1 if and only if tb(G′) = 1.

Moreover, vertex x can be computed in linear-time.

Proof. There are two cases. If NG(bv) = {av, cv, uv, v}, then let x be set as in the statement
of Theorem 14. Else, let x be the unique vertex of N(bv) ∩N(av) ∩N(uv), that is well-defined
by Lemma 23. Note that in both cases, vertex x can be computed in linear-time. In addition,
N(bv) ⊆ {av, cv, uv, v, x} (the latter property following from Lemma 23 when bv and x are adja-
cent, and being trivial else). Suppose for the proof that V (G) 6= {av, bv, cv, uv, v, x} (else, Theo-
rem 15 is trivial). We claim that {bv, cv, v} is a component of G\Π′. Indeed, N(bv) ⊆ Π′∪{cv, v}

RR n° 8842

50 Ducoffe,Legay,Nisse

by the hypothesis, and by Theorem 6 NG(cv) = {bv, uv, v}. Since V (G) 6= {av, bv, cv, uv, v, x},
then it indeed follows that Π′ ∈ P3(G), with {bv, cv, v} being a component of G \Π′.

Let us prove that G′ is prime and planar. By Theorem 14, adding an edge between bv and x
if it is not already present does not violate the property for the graph G to be planar. Therefore,
G′ is planar because it is obtained by an edge-contraction from some planar graph. To prove
that G′ is prime, by contradiction suppose the existence of a minimal clique-separator S′ of G′.

Let us denote by x′ the vertex resulting from the contraction of the edge {bv, x}. Let S := S′

if x′ /∈ S′, S := (S′ \ x′) ∪ {bv, x} else. By construction, S is a separator of G. In particular,
S is not a clique because G is prime by the hypothesis. Therefore, S 6= S′, whence x′ ∈ S′ or
equivalently, x, bv ∈ S. We now claim that cv ∈ S ∩ S′ or v ∈ S ∩ S′ (possibly, v, cv ∈ S ∩ S′).
There are two cases.

• Suppose that S \ bv is a separator of G. Then, S \ bv is not a clique because G is prime
by the hypothesis. Since S \ (bv, x) = S′ \ x′ is a clique, there must be some vertex of
S \ (bv, x) = S ∩ S′ that is adjacent to x′ in G′ but non-adjacent to x in G. Consequently,
v ∈ S ∩ S′ or cv ∈ S ∩ S′.

• Else, S \ bv is not a separator of G. Recall that by construction, S is a separator of G. In
particular, there must be two neighbours of bv in G that are separated by S in G. Since
NG(bv) \ x induces the path (av, v, cv, uv), it follows that S must contain an internal node
of the path, whence cv ∈ S ∩ S′ or v ∈ S ∩ S′.

However, in such case S′ must be contained in one of (av, x
′, v), (v, x′, cv) or (cv, x

′, uv), for it is
a clique of G′. In particular, let z ∈ {av, uv} \ S′. Since z has a neighbour in every component
C ′ of G \ Π′, {z} ∪ C ′ is not disconnected by S′ in G′. Furthermore, let us contract C ′ to z so
as to make av and uv adjacent, S′ intersects the resulting cycle (av, uv, cv, v) either in an edge
(different from {av, uv}) or a single vertex because it is a clique of G′, therefore, (av, uv, cv, v)\S′
is not disconnected by S′. Altogether, this contradicts the fact that S′ is a separator of G′, and
so, G′ is prime.

Finally, let us prove that tb(G′) = 1 if and only if tb(G) = 1. If tb(G) = 1, then let us assume
bv and x to be adjacent (if they are not, then Theorem 14 ensures we can add the edge without
violating the property for the graph to be of tree-breadth one). Then, tb(G′) = 1 because it is
obtained by an edge-contraction from some graph with tree-breadth one and that tree-breadth
is contraction-closed by Lemma 2.

Conversely, let us prove that tb(G′) = 1 implies that tb(G) = 1. To prove this, let (T,X) be
a star-decomposition of G′, that exists by Lemma 3, minimizing the distance in T between the
subtrees Tav and Tuv

. We claim that Tav ∩ Tuv
6= ∅. By contradiction, suppose Tav ∩ Tuv

=
∅. Recall that (av, x

′, uv) ∈ P3(G′) (because Π′ ∈ P3(G)) and G′ is prime, therefore one of
(av, x

′, uv) or (av, uv) is a minimal separator of G′. Since we assume the distance in T between
Tav and Tuv

to be minimized, by Corollary 8, there are two bags Bav , Buv
that are adjacent in T so

that av ∈ Bav\Buv
, uv ∈ Buv

\Bav respectively dominate Bav , Buv
. However, by the properties of

a tree decomposition Bav ∩Buv
⊆ N(av) ∩N(uv) is an avuv-separator of G′, that is impossible

due to the existence of the path (av, v, cv, uv) in G′ that does not intersect N(av) ∩ N(uv).
Therefore, Tav ∩ Tuv 6= ∅. Hence the subtrees Tav , Tx′ , Tuv are pairwise intersecting and so, by
the Helly Property (Lemma 1), Tav ∩ Tx′ ∩ Tuv

6= ∅. Furthermore, NG′ [cv] ∪ NG′ [v] ⊆ NG′ [x′]
by construction. So, let us construct a tree decomposition of G of breadth one as follows. First,
let us remove cv and v from all bags in X . Since NG′ [cv] ∪NG′ [v] ⊆ NG′ [x′], one obtains a tree
decomposition of G′ \ (cv, v) of breadth one. Then let us replace x′ with x in all bags. Note that
in so doing, one obtains a tree decomposition of G \ (bv, cv, v) of breadth one. Finally, let us

Inria

On computing tree and path decompositions with metric constraints on the bags 51

make adjacent the new bag NG[bv] with any bag of Tav ∩ Tx ∩ Tuv . The result is indeed a tree
decomposition of G′ because NG[bv] ⊆ {av, bv, cv, uv, v, x} and NG[cv] ∪NG[v] ⊆ NG[bv].

5.3.9 Proof of Step 3.2 (b) iii

Theorem 16 Let G be a prime planar graph, let v be a leaf-vertex of Type 2, Πv = (av, bv, cv)
be as in Definition 5, and let uv /∈ Πv ∪ {v} be such that (bv, uv) is an edge-separator of G \ v.

Suppose uv ∈ N(cv) \N(av), N(av)∩N(uv) is an avuv-separator in the subgraph G \ (cv, v),
N(bv) 6= {av, cv, uv, v} and N(av) ∩N(bv) ∩N(uv) = ∅.

Then it can be computed in linear-time (a unique) x ∈ N(av)∩N(uv) such that if tb(G) = 1,
N(bv) ∩N(x) is a bvx-separator and |N(bv) ∩N(x)| ≥ 3.

Proof. Let W = (N(av)∩N(uv))∪{av, cv, uv, v}. By the hypothesis, N(bv) 6= {av, cv, uv, v} and
N(av)∩N(bv)∩N(uv) = ∅, therefore, it exists a component C0 of G \W such that bv ∈ N(C0).
We claim that there is x ∈ N(av) ∩ N(uv) ∩ N(C0) satisfying that N(C0) ⊆ (av, bv, x) or
N(C0) ⊆ (uv, bv, x). Indeed, first observe that v, cv /∈ N(C0) because by Theorem 6 NG(cv) =
{bv, uv, v}. Furthermore, av /∈ N(C0) or uv /∈ N(C0) because N(av)∩N(uv) is an avuv-separator
of G \ (cv, v) by the hypothesis. So, let {z, z′} = {av, uv} satisfy z′ /∈ N(C0). Since G is prime
by the hypothesis, and so, biconnected, G \ z is connected. Furthermore, N(C0) \ z ⊆ N(z′)
(by the definition of W), therefore, N(C0) \ z is a minimal separator of G \ z. By Lemma 13
there exist s, t ∈ N(av) ∩ N(uv) non-adjacent such that N(C0) \ z = {s, t}. Since bv ∈ N(C0)
by construction, therefore, let us set {s, t} = {bv, x}, that finally proves the claim.

We claim in addition that x does not depend on the choice of the component C0. By
contradiction, let C,C ′ be two components of G \ W such that bv ∈ N(C) ∩ N(C ′) and let
x, x′ ∈ N(av) ∩NG(uv) be distinct and such that x ∈ N(C), x′ ∈ N(C ′). Then, there exists a
K3,3-minor with {av, bv, uv} and {{cv, v}, C ∪ {x}, C ′ ∪ {x′}} being the sides of the bipartition,
that contradicts the hypothesis that G is planar. Thus from now on, let x ∈ N(av)∩N(uv)\bv be
the unique vertex satisfying that for every component C of G \W , if bv ∈ N(C) then x ∈ N(C).

C0

a

b

c

u
x

v

v

v

v

v

Figure 36: Component C0 such that bv, x ∈ N(C0).

Recall that C0 is a fixed component of G \W such that bv, x ∈ N(C0) (see Figure 36 for an
illustration). Finally, assume for the remaining of the proof that tb(G) = 1 and let us prove that
N(bv)∩N(x) is a bvx-separator and |N(bv)∩N(x)| ≥ 3. To prove it, we will only need to prove
that N(bv) ∩N(x) is a bvx-separator of G. Indeed, in such a case N(bv) ∩N(x) ∩ C0 6= ∅, and
so, |N(bv) ∩N(x)| ≥ 3 because av, uv ∈ N(bv) ∩N(x) and av, uv /∈ C0.

Let (T,X) be star-decomposition of G, that exists by Lemma 3, minimizing the distance in
T between the subtrees Tbv and Tx. We claim that Tbv ∩ Tx = ∅. By contradiction, suppose
Tbv ∩Tx 6= ∅. Let us prove as an intermediate subclaim that Tav ∩Tuv

6= ∅. By contradiction, let
Tav∩Tuv

= ∅. By the properties of a tree decomposition, every bag B onto the path in T between
Tav and Tuv

must contain N(av) ∩N(uv) and at least one of v or cv. If cv ∈ B then B ⊆ N [uv]
since N(cv) = {bv, uv, v} and x ∈ B. Similarly if v ∈ B then B ⊆ N [av] since N(v) = {av, bv, cv}

RR n° 8842

52 Ducoffe,Legay,Nisse

and x ∈ B. Consequently, there are two adjacent bags Bav , Buv such that av ∈ Bav \ Buv

and uv ∈ Buv
\ Bav respectively dominate Bav and Buv

. However, by the properties of a tree
decomposition, Bav ∩ Buv

= N(av) ∩ N(uv) is an avuv-separator of G, thus contradicting the
existence of the path (av, v, cv, uv) in G. Therefore, it follows that Tav ∩ Tuv

6= ∅, that proves
the subclaim.

If Tav ∩ Tuv 6= ∅ and Tbv ∩ Tx 6= ∅ then the subtrees Tav , Tbv , Tuv , Tx are pairwise intersecting
and so, it implies Tav ∩ Tuv

∩ Tbv ∩ Tx 6= ∅ by the Helly property (Lemma 1). However, let
B′ ∈ Tav ∩ Tuv

∩ Tbv ∩ Tx, no vertex in G can dominate B′ because N(bv) ∩N(av) ∩N(uv) = ∅
by the hypothesis, thus contradicting the fact that (T,X) is a star-decomposition. As a result,
we proved the claim that Tbv ∩ Tx = ∅.

Finally, since there exists S ⊆ (N(bv) ∩N(x)) ∪ {bv, x} a minimal separator of G such that
bv, x ∈ S (namely, S := N(C0)), and (T,X) is assumed to minimize the distance in T between Tbv
and Tx, by Corollary 8 there exist two adjacent bags Bbv , Bx such that bv ∈ Bbv \Bx, x ∈ Bx\Bbv
respectively dominate Bbv and Bx. By the properties of a tree decomposition, Bbv ∩ Bx =
N(bv) ∩N(x) is indeed a bvx-separator of G.

Lemma 24 Let G be a prime planar graph, let v be a leaf-vertex of Type 2, Πv = (av, bv, cv) be
as in Definition 5, and let uv /∈ Πv ∪ {v} be such that (bv, uv) is an edge-separator of G \ v.

Suppose uv ∈ N(cv) \N(av), N(av)∩N(uv) is an avuv-separator in the subgraph G \ (cv, v),
N(bv) 6= {av, cv, uv, v} and N(av) ∩ N(bv) ∩ N(uv) = ∅. Assume furthermore that there is
x ∈ N(av) ∩N(uv), and there exists a leaf-vertex l ∈ N(bv) ∩N(x).

Then, l is a leaf-vertex of Type 1, or l is a leaf-vertex of Type 2 or 3 and G \ l is prime.

av cv

v

uv

bv

x

l

av cv

v

uv

bv

x

l

av cv

v

uv

bv

x

l

Figure 37: Existence of a leaf-vertex in N(bv) ∩N(x).

Proof. Suppose for the proof that l is not of Type 1 (else, Lemma 24 is trivial). Then, l is of
Type 2 or 3, let Πl be as in Definition 5. Note that l 6= av because v, bv, x ∈ N(av) do not induce
a path, similarly l 6= uv because bv, cv, x ∈ N(uv) do not induce a path. Furthermore by the
hypothesis, bv and x are the two endpoints of Πl. Suppose by way of contradiction that there is
a minimal clique-separator S of G \ l. Since G is prime by the hypothesis, by Lemma 16 S is a
bvx-separator of G \ l. However, it implies that av, uv ∈ S, that contradicts the fact that S is a
clique. As a result, G \ l is prime.

Equipped with Lemma 24, we can assume from now on that there is no leaf-vertex that is
adjacent to both vertices bv, x, or else it could be immediately processed by the algorithm.

Theorem 17 Let G be a prime planar graph, let v be a leaf-vertex of Type 2, Πv = (av, bv, cv)
be as in Definition 5, and let uv /∈ Πv ∪ {v} be such that (bv, uv) is an edge-separator of G \ v.

Suppose uv ∈ N(cv) \N(av), N(av)∩N(uv) is an avuv-separator in the subgraph G \ (cv, v),
N(bv) 6= {av, cv, uv, v} and N(av) ∩ N(bv) ∩ N(uv) = ∅. Assume furthermore that there is
x ∈ N(av) ∩N(uv) such that N(bv) ∩N(x) is a bvx-separator, |N(bv) ∩N(x)| ≥ 3, and there is
no leaf-vertex in N(bv) ∩N(x).

Inria

On computing tree and path decompositions with metric constraints on the bags 53

Then, there exist y, z ∈ N(bv) ∩N(x) non-adjacent such that the graph G′, obtained from G
by making y, z adjacent, is planar and prime, and it holds tb(G) = 1 if and only if tb(G′) = 1.
Furthermore, the pair y, z can be computed in linear-time.

av cv

v

uv

bv

x
y

z

Figure 38: Illustration of Theorem 17.

Proof. Let us first show how to find the pair y, z. Let W = {av, cv, v, uv} ∪ (N(av) ∩ N(uv)).
Choose any component C0 of G\W such that bv, x ∈ N(C0) and N(C0) ⊆ (av, bv, x) or N(C0) ⊆
(uv, bv, x) (the existence of such a component has been proved in Theorem 16). Note that
N(bv) ∩N(x) ∩ C0 6= ∅ since N(bv) ∩N(x) is a bvx-separator of G by the hypothesis. Then, let
S := N(bv) ∩N(x). By the hypothesis S is a minimal separator of G and |S| ≥ 3, therefore, by
Corollary 7 there is a planar supergraph GS of G so that S induces a cycle of GS . Furthermore,
GS can be computed in linear-time. Let P be an avuv-path of the cycle GS [S] that intersects
C0. Since by the above claim av /∈ NG(C0) or uv /∈ NG(C0), therefore, there is y ∈ C0 ∩ V (P),
there is z adjacent to vertex y in P so that either z ∈ C1 for some component C1 of G\ (W ∪C0)
or z ∈ {av, uv} \ NG(C0). In particular, z /∈ NG[C0] = C0 ∪ NG(C0). Moreover, the graph G′,
obtained from G by adding an edge between y and z, is planar by construction.

Claim 15 G′ is prime.

Proof. By contradiction, let X be a minimal clique-separator of G′. Since G′ is a supergraph of
G, X is a separator of G. As a result, y, z ∈ X because G is prime by the hypothesis. Let us
prove as an intermediate step that N(y) ∩N(z) = {bv, x}. There are two cases. If z ∈ {av, uv},
then let {z, z′} = {av, uv}. Since N(C0) ⊆ (z′, bv, x) (because z /∈ NG(C0)) and z, z′ are
non-adjacent by the hypothesis, therefore, the claim immediately follows in this case. Else,
z /∈ {av, uv}. Let C1 be the component of G\ (W ∪C0) containing z. In such case, bv, x ∈ N(C1)
because z ∈ S by construction. Therefore, N(C1) ⊆ (av, bv, x) or N(C1) ⊆ (uv, bv, x) because
the respective roles of components C0, C1 are symmetrical in this case. Suppose by way of
contradiction N(C0) = N(C1) = {s, bv, x} for some s ∈ {av, uv} and let {s, t} = {av, uv}. Then,
there is a K3,3-minor of G with {bv, x, s} and {C0, C1, {cv, v, t}} being the sides of the bipartition,
that contradicts the hypothesis that G is planar. As a result, N(C0) ∩ N(C1) = {bv, x}, that
finally proves the claim.

Since X is assumed to be a clique of G′ and y, z ∈ X, it follows X ⊆ {bv, y, z} or X ⊆
{x, y, z}. Consequently, G[W \X] is connected because av, uv /∈ X is a dominating pair of W ,
bv, x ∈ N(av) ∩ N(uv) and bv /∈ X or x /∈ X. However, since y, z ∈ X and NG(y) ⊆ W ∪ C0,
then in such case there must be a component A of G \X so that A ⊂ C0. Since z /∈ NG[C0] by
construction, NG(A) ⊆ X \ z is a clique-separator of G, thus contradicting the hypothesis that
G is prime. As a result, G′ is prime. �

Now, let us prove tb(G) = 1 if and only if tb(G′) = 1.
If tb(G) = 1, then let (T,X) be star-decomposition of G, that exists by Lemma 3, minimizing

the distance in T between Tav and Tuv
. Let us prove that (T,X) is a star-decomposition of

RR n° 8842

54 Ducoffe,Legay,Nisse

G′, whence tb(G′) = 1. To prove it, it is sufficient to prove Ty ∩ Tz 6= ∅. We will prove as an
intermediate claim that Tav ∩ Tuv

6= ∅. By contradiction, assume Tav ∩ Tuv
= ∅. Observe that

Π′ = (av, bv, uv) ∈ P3(G) with {cv, v} being a full component of G \ Π′. Therefore, since G
is prime by the hypothesis, one of Π′ or Π′ \ bv is a minimal separator of G. Since (T,X) is
assumed to minimize the distance in T between Tav and Tuv , therefore, by Corollary 8 there are
two adjacent bags Bav , Buv such that av ∈ Bav \Buv and uv ∈ Buv \Bav respectively dominate
Bav and Buv

. However, by the properties of a tree decomposition Bav∩Buv
= N(av)∩N(uv) is an

avuv-separator of G, that contradicts the existence of the path (av, v, cv, uv) in G. Consequently
the claim is proved, hence Tav ∩Tuv

6= ∅. The latter claim implies Tbv ∩Tx = ∅, for if Tbv ∩Tx 6= ∅
then the subtrees Tav , Tbv , Tuv , Tx are pairwise intersecting, hence Tav ∩Tbv ∩Tx∩Tuv 6= ∅ by the
Helly property (Lemma 1), that would contradict the fact that (T,X) is a star-decomposition
because N(av)∩N(uv)∩N(bv) = ∅ by the hypothesis. Finally, since (x, y, bv, z) induces a cycle
of G and Tbv ∩ Tx = ∅, therefore, by the properties of a tree decomposition Ty ∩ Tz 6= ∅, and so,
(T,X) is indeed a star-decomposition of G′.

Conversely, let us prove tb(G′) = 1 implies tb(G) = 1. To prove it, let (T ′,X ′) be a star-
decomposition of G′, that exists by Lemma 3, minimizing the number |X ′| of bags. Assume
furthermore (T ′,X ′) to minimize the number of bags B ∈ X ′ that are not contained into the
closed neighbourhood of some vertex in G w.r.t. the minimality of |X ′|. In order to prove
tb(G) = 1, it suffices to prove that (T ′,X ′) is a star-decomposition of G. We will start proving
intermediate claims.

Claim 16 av, uv /∈ NG(y).

Proof. By contradiction, assume the existence of z′ ∈ {av, uv} so that z′ and y are adjacent in
G. In particular, z′ 6= z (since z /∈ NG[C0]) and NG(C0) = {bv, x, z′} since either NG(C0) ⊆
{bv, x, av} or NG(C0) ⊆ {bv, x, uv}. Hence, the path (bv, z

′, x) is a separator of G. Since y ∈
NG(bv)∩NG(z′)∩NG(x), by Lemma 15 either C0 is reduced to y or (bv, y, x) ∈ P3(G) separates
z′ from C0 \ y. The case C0 \ y = ∅ implies that y is a leaf-vertex of Type 2, that contradicts
the hypothesis that there is no leaf-vertex in NG(bv) ∩NG(x). Therefore, let (bv, y, x) ∈ P3(G)
separates z′ from C0\y inG, and let C ′0 ⊆ C0\y be a component ofG\(bv, y, x) (such a component
C ′0 exists because NG(C0) = {z′, bv, x}). Since G is prime, bv, x ∈ NG(C ′0) (indeed, neither bv
nor y nor x nor (bv, y) nor (y, x) can be a separator of G). Therefore, NG(bv) ∩NG(x) ∩C ′0 6= ∅
because NG(bv) ∩ NG(x) is a bvx-separator of G by the hypothesis. Furthermore, y ∈ NG(C ′0)
because C0 is connected. However in such case, there is a K3,3-minor of G′ with {bv, x, y} and
{av, C ′0, uv} being the sides of the bipartition, that contradicts the fact that G′ is planar. �

Claim 17 There is no vertex dominating the cycle (av, bv, uv, x) in G′.

Proof. By contradiction, if it were the case that such a vertex exists, then, since NG(bv)∩NG(av)∩
NG(uv) = ∅ by the hypothesis, the dominator should be y and furthermore z ∈ {av, uv}. In
particular, y ∈ NG(bv)∩NG(x)∩NG(z′) with {z, z′} = {av, uv}, thus contradicting Claim 16. �

Claim 18 T ′av ∩ T ′uv
6= ∅.

Proof. By contradiction, let T ′av ∩T ′uv
= ∅. By the properties of a tree decomposition, every bag

B onto the path in T ′ between T ′av and T ′uv
(including the endpoints) must contain NG′(av) ∩

NG′(uv) and at least one of v or cv. Then, if cv ∈ B then B ⊆ NG′ [uv] and so, B ∈ T ′uv
, since

NG′(cv) = {bv, uv, v} and x ∈ B. Similarly if v ∈ B then B ⊆ NG′ [av] and so, B ∈ T ′av , since

Inria

On computing tree and path decompositions with metric constraints on the bags 55

NG′(v) = {av, bv, cv} and x ∈ B. Consequently, there are two adjacent bags Bav , Buv such that
av ∈ Bav \ Buv

and uv ∈ Buv
\ Bav respectively dominate Bav and Buv

in G′. However, by
the properties of a tree decomposition, Bav ∩ Buv

= NG′(av) ∩NG′(uv) is an avuv-separator of
G′, thus contradicting the existence of the path (av, v, cv, uv) in G′. Therefore, it follows that
T ′av ∩ T ′uv

6= ∅, that proves the claim. �

Claim 19 T ′bv ∩ T ′x = ∅

Proof. Suppose for the sake of contradiction that T ′bv ∩ T ′x 6= ∅. By Claim 18, T ′av ∩ T ′uv
6= ∅,

and so, the subtrees T ′av , T
′
bv
, T ′uv

, T ′x are pairwise intersecting. Hence by the Helly property
(Lemma 1), T ′av ∩T ′bv ∩T ′uv

∩T ′x 6= ∅. However in such case, since (T ′,X ′) is a star-decomposition
of G′ there must be a vertex dominating the cycle (av, bv, uv, x) in G′, thereby contradicting
Claim 17. �

As a result, T ′av ∩ T ′uv
6= ∅ by Claim 18 and T ′bv ∩ T ′x = ∅ by Claim 19.

Finally, suppose by way of contradiction (T ′,X ′) is not a star-decomposition of G. In such
case, since G and G′ only differ in the edge {y, z}, there must exist B ∈ T ′y ∩ T ′z that is uniquely
dominated by some of y, z in G′. More precisely, let us prove that only one of y, z can dominate
B. By contradiction, suppose B ⊆ NG′ [y] ∩ NG′ [z] = {bv, x, y, z} (indeed, y ∈ C0 whereas
z /∈ NG[C0]). Since T ′bv ∩T ′x = ∅ by Claim 19, B ⊆ {bv, y, z} or B ⊆ {x, y, z, }. Therefore, B is a
clique of G′. However, since B 6= V (G′), there is a bag B′ adjacent to B and by the properties
of a tree decomposition B ∩ B′ is a clique-separator of G′, thus contradicting the fact that G′

is prime by Claim 15. Consequently, either B ⊆ NG′ [y] or B ⊆ NG′ [z], and either B 6⊆ NG′ [y]
or B 6⊆ NG′ [z]. In the following, let {s, t} = {y, z} satisfy B ⊆ NG′ [s], that is well-defined. Let
B′ be any bag adjacent to B so that t ∈ B′ (such bag exists because y, z ∈ N(bv) ∩N(x), and
bv /∈ B or x /∈ B because T ′bv ∩ T ′x = ∅). There are three cases.

• Suppose no vertex of bv, x, y, z dominates B′ in G′ (see Figure 39 for an illustration). Since
bv /∈ B or x /∈ B because T ′bv ∩ T ′x = ∅, therefore, (B ∩ B′) \ (bv, x, y, z) 6= ∅, or else
by the properties of a tree decomposition that would be a clique-separator of G′, thus
contradicting the fact that G′ is prime by Claim 15. Let t′ ∈ (B ∩ B′) \ (bv, x, y, z).
Note that t′ and t are non-adjacent in G′ because t′ ∈ NG′ [s] and NG′ [y] ∩ NG′ [z] =
{bv, x, y, z}. Let s′ ∈ B′ dominate this bag. Note that s′ and s are non-adjacent in G′

because we assume s′ /∈ {bv, x, y, z}, t ∈ NG′(s′) and NG′ [y] ∩ NG′ [z] = {bv, x, y, z}. In
particular, s′ 6= t′ and (s, t′, s′, t) induces a path in G. By construction, y ∈ C0 and
z /∈ NG[C0], hence there must be some of s′, t′ in NG(C0). Since NG(C0) ⊆ {av, bv, uv, x}
and s′, t′ /∈ {bv, x, y, z}, therefore the pairs {s′, t′} and {av, uv} intersect. However, by
Claim 16 av, uv /∈ NG(y), similarly av, uv /∈ NG(z), that contradicts the existence of the
path (s, t′, s′, t) in G. Consequently, assume in the remaining cases that there is some
vertex of bv, x, y, z dominating B′ in G′.

B B'

s
s'

t

t'

Figure 39: B ⊆ NG′ [s], B′ ⊆ NG′ [s′].

• Suppose B′ is dominated by one of y, z in G′. We claim that B and B′ are dominated by
the same vertex of y, z, for if it were not the case B ∩B′ ⊆ NG′ [y] ∩NG′ [z] = {bv, x, y, z},

RR n° 8842

56 Ducoffe,Legay,Nisse

and so, since by the properties of a tree decomposition B ∩ B′ is a separator of G′, and
bv /∈ B or x /∈ B because T ′bv ∩ T ′x = ∅, B ∩ B′ should be a clique-separator of G′, thus
contradicting the fact that G′ is prime by Claim 15. However, in such a case bags B,B′

could be merged into one while preserving the property for the tree decomposition to be a
star-decomposition of G′, that would contradict the minimality of |X ′|.

• Therefore, B′ is dominated by some of bv, x. We claim that there is a unique such bag
B′ that is adjacent to B. By contradiction, let B′′ 6= B′ be adjacent to B and such that
B′′ is also dominated by some of bv, x. In particular, if B′′ ∪ B′ ⊆ N [bv] or B′′ ∪ B′ ⊆
N [x] then both bags B′, B′′ could be merged into one without violating the property
for the tree decomposition to be a star-decomposition of G′, that would contradict the
minimality of |X ′|. Else, w.l.o.g. B′ ⊆ N [bv] and B′′ ⊆ N [x]. Since T ′bv ∩ T ′x = ∅,
av, uv ∈ N(bv) ∩ N(x) and B′, B′′ are adjacent to B, therefore, by the properties of the
tree decomposition av, uv ∈ B. However, av, uv /∈ NG[y] by Claim 16, av and uv are non-
adjacent, and either z ∈ {av, uv} or av, uv /∈ NG[z] (by the same proof as for Claim 16),
thus contradicting the fact that either B ⊆ NG′ [y] or B ⊆ NG′ [z]. Hence, the claim is
proved and B′ is assumed to be the unique bag adjacent to B such that B ⊆ N [bv] or
B ⊆ N [x]. In particular, B′ is the unique bag adjacent to B containing vertex t (recall
that {s, t} = {y, z} and B ⊆ NG′ [s], B 6⊆ NG′ [t]).

Let us substitute the bags B,B′ with B\t, B′∪{s}. We claim that this operation keeps the
property for (T ′,X ′) to be a star-decomposition of G′. To prove the claim, first note that
the operation only modifies bags B and B′, furthermore B\t ⊆ N [s] and B′∪{s} ⊆ N [bv] or
B′ ∪ {s} ⊆ N [x]. Consequently, to prove the claim, it suffices to prove that the operation
keeps the property for (T ′,X ′) to be a tree decomposition of G′ (for in such a case, it
is always a star-decomposition). Since T ′t \ B is connected because B′ is the only bag
containing vertex t that is adjacent to the bag B, therefore, we are left to prove that there
is no w ∈ NG′(t) \ s such that T ′w ∩ T ′t = {B}. By contradiction, let w ∈ NG′(t) \ s satisfy
T ′w ∩ T ′t = {B}. Since w ∈ B ⊆ NG′ [s], therefore w ∈ NG′(s)∩NG′(t) = NG(y)∩NG(z) =
{bv, x}. Moreover, w /∈ B′ because t ∈ B′ and we assume that T ′w ∩ T ′t = {B}. In such a
case, since it is assumed that B′ ⊆ N [bv] or B′ ⊆ N [x], and in addition T ′x ∩ T ′bv = ∅, let
us write {w,w′} = {bv, x} such that w ∈ B \ B′, w′ ∈ B′ \ B and B′ ⊆ NG′ [w′]. By the
properties of a tree decomposition, B ∩ B′ is a bvx-separator of G′, so, av, uv ∈ B ∩ B′.
However, av, uv /∈ NG(y) by Claim 16 and similarly av, uv /∈ NG(z), that contradicts the
fact that B ⊆ NG′ [s] for some s ∈ {y, z}. This finally proves the claim that substituting the
bags B,B′ with B \ t, B′ ∪ {s} keeps the property for (T ′,X ′) to be a star-decomposition
of G′.

However, the above operation does not increase the number of bags |X ′|, furthermore there
is one less bag that is not contained in the closed neighbourhood of some vertex in G. This
contradicts the minimality of (T ′,X ′) w.r.t. these two properties.

As a result, we proved by contradiction that (T ′,X ′) is a star-decomposition of G, hence tb(G) =
1.

5.4 Complexity of Algorithm Leaf-BottomUp

To complete this section, let us emphasize on some computational aspects of Algorithm Leaf-BottomUp,
that will ensure the quadratic-time complexity of the algorithm. We here assume that the pla-
nar graph G is encoded with adjacency lists. Note that the adjacency lists can be updated in
linear-time before each recursive call to the algorithm.

Inria

On computing tree and path decompositions with metric constraints on the bags 57

We will need as a routine to test whether two vertices are adjacent in constant-time. In order
to achieve the goal, the following result (relying upon the bounded degeneracy of planar graphs)
will be used:

Lemma 25 ([18]) There exists a data structure such that each entry in the adjacency matrix
of a planar graph can be looked up in constant time. The data structure uses linear storage, and
can be constructed in linear time.

5.4.1 Finding a leaf-vertex

At each call to the algorithm, it is first required to decide whether a leaf-vertex exists. If that
is the case, then one such a vertex must be computed. Here is a way to achieve the goal in
linear-time. Let us start computing the degree sequence of G, then let us order the vertices of
the graph G by increasing degree.

Finding a leaf-vertex of Type 1. Let v be any vertex of degree at least four. We claim that
a necessary condition for v to be a leaf-vertex of Type 1 is that all but at most two neighbours
of v have degree four. Indeed, if v is a leaf-vertex of Type 1, then let Πv, dv be defined as
in Definition 5. By Lemma 21, either V (G) = N [v] ∪ {dv} or Π′ = (av, dv, cv) ∈ P3(G) and
N [v] \ (av, cv) is a full component of G \Π′. In both cases, all neighbours in N(v) \ (av, cv) have
degree four.

• Therefore, let us count the number of neighbours of degree four in N(v), that can be done
in O(deg(v))-time simply by traversing the adjacency list of vertex v (recall that the degree
sequence of G has been computed).

• If there are all but at most two neighbours in N(v) that have degree four, then we claim
that one can construct the induced subgraph G[N(v)] in O(deg(v))-time. Indeed, for every
neighbour u ∈ N(v) that has degree four, let us test in constant-time for each of its four
neighbours whether they are adjacent to vertex v — we only keep those for which it is the
case in the adjacency list of u in G[N(v)]. Then, for every u ∈ N(v) that does not have
degree four (there are at most two such vertices), let us construct the adjacency list of u
in G[N(v)] simply by testing to which vertices in N(v) \u it is adjacent — the latter takes
constant-time by neighbour.

• Once G[N(v)] has been computed, it is easy to check whether it is a path in O(|N(v)|) =
O(deg(v))-time.

• Finally, let u ∈ N(v) have degree four. Let us pick in constant-time any neighbour dv ∈
N(u) \ N(v) (note that such a vertex is unique if G[N(v)] induces a path). In order to
decide whether v is a leaf-vertex of Type 1, it is now sufficient to test whether vertex dv is
adjacent to every vertex in N(v) — that takes constant-time by neighbour.

Finding a leaf-vertex of Type 2. Recall that a vertex is a leaf-vertex of Type 2 if and only
if it has degree three and its three neighbours induce a path. Given any vertex of degree three,
three adjacency tests are enough in order to determine whether its three neighbours induce a path
— and each adjacency tests takes constant-time. Therefore, it can be checked in constant-time
whether a vertex is a leaf-vertex of Type 2.

RR n° 8842

58 Ducoffe,Legay,Nisse

Finding a leaf-vertex of Type 3. By Definition 5, a vertex v is a leaf-vertex of Type 3 if
and only if it has degree two and its two neighbours are non-adjacent and they have at least
two common neighbours (including v). Note that given a degree-two vertex, it can be checked
whether its two neighbours are non-adjacent in constant-time. We now distinguish three cases.

1. First, suppose there is a vertex v such that N(v) = {x, y} and neighbour x is a degree-two
vertex. In such case, let N(x) = {v, z}, in order to decide whether v is a leaf-vertex of
Type 3, it is sufficient to test in constant-time whether y, z are adjacent.

2. Second, suppose there are two degree-two vertices v, v′ that share the same two non-
adjacent neighbours (i.e., N(v) = N(v′) = {x, y} and x, y are non-adjacent). In such
case, both vertices v, v′ are leaf-vertices of Type 3 (this case may happen if for instance,
G = K2,q with q ≥ 2). In order to check whether this case happens, it is sufficient to
sort the pairs N(v) with v being a degree-two vertex in linear-time (for instance, using a
bucket-sort).

3. Else, let V ′ contain every degree-two vertex v with two non-adjacent neighbours of degree
at least three (if one of the two neighbours of v has degree two, we fall in the first case)
W.l.o.g., every vertex v ∈ V ′ is uniquely determined by the pair N(v) composed of its two
neighbours (or else, we fall in the second case). In such case, let us contract every v ∈ V ′ to
one of its two neighbours. By doing so, we remove v and we make the two vertices in N(v)
adjacent. Note that all these edge-contractions are pairwise independent. Let us call G′

the graph resulting from all edge-contractions, and let us call “virtual edges” any new edge
resulting from an edge-contraction. Then, let us list all triangles in the resulting graph G′,
it can be done in linear-time [42]. By construction, v ∈ V ′ is a leaf-vertex of Type 3 if and
only if the virtual edge resulting from its contraction belongs to a triangle in which it is
the unique virtual edge.

Overall, finding a leaf-vertex in G takes O(
∑
v∈V deg(v))-time, that is O(n)-time because G

is planar.

5.4.2 Existence of a star-decomposition with two bags

Lemma 26 Let G be a planar graph, it can be decided in quadratic-time whether G admits a
star-decomposition with one or two bags.

Proof. G admits a star-decomposition with one bag if and only if there is a universal vertex in
G, hence it can be decided in linear-time. Assume for the remaining of the proof that G does not
admit a star-decomposition with less than two bags. We will consider two necessary conditions
for some fixed pair x, y to be the dominators of the only two bags in some star-decomposition
of G. For each of the two conditions, we will prove that all pairs satisfying the condition can
be computed in quadratic-time. Then, we will conclude the proof by showing that the two
conditions are sufficient to ensure the existence of a star-decomposition of G with two bags.

1. Recall that if it exists a star-decomposition of G with two bags, then by the properties of
a tree decomposition every vertex of G must be contained in at least one bag. Therefore,
if x, y are the only two dominators of the bags in some star-decomposition of G, they must
be a dominating pair of G. It can be decided in O(deg(x) + deg(y))-time whether a fixed
pair x, y is a dominating pair. So, overall, it takes O(n2)-time to compute all dominating
pairs of G with n being the order of the graph, for the graph is planar and so, it is a sparse
graph.

Inria

On computing tree and path decompositions with metric constraints on the bags 59

2. Furthermore, recall that if it exists a star-decomposition of G with two bags, then by
the properties of a tree decomposition every edge of G must be contained in at least one
bag. Therefore, if there is a star-decomposition of G with two bags that are respectively
dominated by x and y, then it must be the case that there does not exist any edge e = {u, v}
so that u ∈ N [x]\N [y] and v ∈ N [y]\N [x] (else, such an edge could not be contained in any
of the two bags). In order to decide whether the latter condition holds for some fixed pair
x, y, it suffices to test whether every vertex of N [x] \N [y] is non-adjacent to all vertices in
N [y]\N [x] — it takes constant-time per test and so, O(deg(x) ·deg(y))-time in total. As a
result, computing all pairs x, y satisfying the condition requires O(

∑
x,y deg(x) · deg(y)) =

O([
∑
x deg(x)][

∑
y deg(y)]) = O(n2)-time because the graph G is planar and so, it is a

sparse graph.

Finally, let x, y satisfy the two above necessary conditions. We claim that (T,X) with T being
an edge and X = {N [x], N [y]} is a star-decomposition of G. Indeed, every vertex is contained
into a bag because the pair x, y satisfies the first necessary condition. Furthermore, every edge
has its both ends contained into a common bag because the pair x, y satisfies the second necessary
condition. Last, all the bags containing a common vertex induce a subtree because there are only
two bags. As a result, (T,X) is a tree decomposition of G. Since each bag of X is respectively
dominated by x or y, therefore (T,X) is indeed a star-decomposition of G, that proves the claim,
hence the lemma.

Note that in any execution of Algorithm Leaf-BottomUp, it is verified at most once whether
some planar graph admits a star-decomposition with one or two bags.

5.4.3 Upper-bound on the number of steps in the algorithm

Lemma 27 Let G be a prime planar graph with n vertices and m edges. Then, there are at
most 5n−m recursive calls to the Algorithm Leaf-BottomUp, that is O(n).

Proof. First note that since G is planar by the hypothesis, 5n−m ≥ 0 and 5n−m = O(n). Let
G′ with n′ vertices and m′ edges so that Algorithm Leaf-BottomUp is recursively applied on G′

when G is the input. Since there is at most one such a graph G′ (i.e., there is no more than one
recursive call at each call of the algorithm), furthermore G′ is prime and planar, therefore, in
order to prove the lemma it suffices to prove that 5n′−m′ < 5n−m. To prove it, let us consider
at which step of the algorithm the recursive call occurs.

• If it is at Step 2, then G′ is obtained by removing a leaf-vertex of Type 1, denoted by
v, and then contracting all the internal vertices in the path Πv (induced by N(v)) to a
single edge. Therefore, n′ = n − deg(v) + 3, m′ = m − 3deg(v) + 8 and so, 5n′ − m′ =
5n−m− (2deg(v)− 7) < 5n−m because deg(v) ≥ 4.

Thus, from now on let us assume we fall in Step 3, i.e., a leaf-vertex of Type 2 or 3 is
considered, denoted by v.

• If the recursion happens at Step 3.1 (a), then G′ is obtained by removing v. Therefore,
n′ = n − 1 and either m′ = m − 3 (if v is of Type 2) or m′ = m − 2 (if v is of Type 3),
hence m′ ≥ m− 3 and so, 5n′ −m′ ≤ 5n−m− 2 < 5n−m.

• If it is at Step 3.1 (b), then we fall in Step 3.1 (b) ii (no recursion occurs in Step 3.1 (b) i),
thus G′ is obtained by making v adjacent to the two vertices in (N(av)∩N(cv))\v (including
bv in the case when v is of Type 3). Therefore, n′ = n and either m′ = m+1 (if v is of Type
2) or m′ = m+2 (if v is of Type 3), hence m′ ≥ m+1 and so, 5n′−m′ ≤ 5n−m−1 < 5n−m.

RR n° 8842

60 Ducoffe,Legay,Nisse

• Else, the recursion happens at Step 3.2. Recall that in such case, there exists a vertex uv
such that (bv, uv) is a clique-separator of G\ v. Adding an edge between v and bv if it does
not exist, decreases 5n−m by 1, therefore from now on let us assume that v is a leaf-vertex
of Type 2.

– if it is at Step 3.2 (a), then G′ is obtained by contracting the edge {v, av}. Therefore,
n′ = n− 1, m′ = m− 2, hence 5n′ −m′ = 5n−m− 3 < 5n−m.

– If it is at Step 3.2 (b) i, then G′ is obtained by adding an edge between bv and
some vertex x ∈ (N(av) ∩ N(uv)) \ bv then contracting this edge. Furthermore,
N(bv) = {av, cv, uv, v} in such case and cv, v /∈ N(x). Therefore, n′ = n−1, m′ = m−2
and so, 5n′ −m′ = 5n−m− 3 < 5n−m.

– If it is at Step 3.2 (b) ii, then G′ is obtained by contracting the edge {bv, x} where
x ∈ N(av) ∩N(uv) ∩N(bv). Furthermore, N(bv) = {av, cv, uv, v, x} in such case and
cv, v /∈ N(x). Therefore, n′ = n−1, m′ = m−3 and so, 5n′−m′ = 5n−m−2 < 5n−m.

– Finally, in all other cases the recursive call happens at Step 3.2 (b) iii. Then, G′

is obtained by adding an edge between two vertices y, z ∈ N(bv) ∩ N(x) for some
x ∈ (N(av) ∩ N(uv)) \ bv. Therefore, n′ = n, m′ = m + 1 and so, 5n′ − m′ =
5n−m− 1 < 5n−m.

6 Conclusion and Open questions

On the negative side, we proved the NP-hardness of computing five metric graph invariants
(namely, tree-breadth, path-length, path-breadth, k-good tree and path decompositions) whose
complexity has been left open in several works [24, 26, 27]. These results add up to the proof
in [39] that it is NP-hard to compute the tree-length.

We leave as a future work further study on the border between tractable and intractable
instances for the problem of computing the above metric graph invariants. Especially, what
are the graph classes for which it can be decided in polynomial-time whether a graph admits a
star-decomposition ? In this paper, we partially answer to this question by proving that it is the
case for bipartite graphs and planar graphs. Based on these two positive results, we conjecture
that the problem is Fixed-Parameter Tractable when it is parameterized by the clique-number
of the graph (note that there is a large clique in all the graphs obtained from our polynomial-
time reductions). Intermediate challenges could be to determine whether the problem is Fixed-
Parameter Tractable when it is parameterized by the genus, the tree-width or the Hardwiger
number.

Finally, we notice that all our NP-hardness results imply that the above metric graph in-
variants cannot be approximated below some constant-factor. There remains a gap between
our inapproximability results and the constant-ratio of the approximation algorithms in [24, 27].
Therefore, we leave as an interesting open question whether we can fill in this gap.

References

[1] M. Abu-Ata and F. Dragan. Metric tree-like structures in real-world networks: an empirical
study. Networks, pages n/a–n/a, 2015.

Inria

On computing tree and path decompositions with metric constraints on the bags 61

[2] R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup. On the approximability
of numerical taxonomy (fitting distances by tree metrics). SIAM Journal on Computing,
28(3):1073–1085, 1998.

[3] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in ak-tree.
SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

[4] R. Balakrishnan and K. Ranganathan. A textbook of graph theory. Springer Science &
Business Media, 2012.

[5] H.-J. Bandelt and V. Chepoi. Metric graph theory and geometry: a survey. Contemporary
Mathematics, 453:49–86, 2008.

[6] M. Bdoiu, K. Dhamdhere, A. Gupta, Y. Rabinovich, H. Räcke, R. Ravi, and A. Sidiropoulos.
Approximation algorithms for low-distortion embeddings into low-dimensional spaces. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages
119–128. Society for Industrial and Applied Mathematics, 2005.

[7] A. Berry, R. Pogorelcnik, and G. Simonet. An introduction to clique minimal separator
decomposition. Algorithms, 3(2):197–215, 2010.

[8] H. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

[9] H. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
computer science, 209(1):1–45, 1998.

[10] H. Bodlaender. Discovering treewidth. In SOFSEM 2005: Theory and Practice of Computer
Science, 31st Conference on Current Trends in Theory and Practice of Computer Science,
Liptovský Ján, Slovakia, January 22-28, 2005, Proceedings, pages 1–16, 2005.

[11] H. Bodlaender, M. Fellows, and T. Warnow. Two strikes against perfect phylogeny. In
Automata, Languages and Programming, 19th International Colloquium, ICALP92, Vienna,
Austria, July 13-17, 1992, Proceedings, pages 273–283, 1992.

[12] H. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth and
treewidth of graphs. Journal of Algorithms, 21(2):358–402, 1996.

[13] V. Bouchitté, F. Mazoit, and I. Todinca. Chordal embeddings of planar graphs. Discrete
Mathematics, 273(1):85–102, 2003.

[14] V. Bouchitté and I. Todinca. Listing all potential maximal cliques of a graph. Theoretical
Computer Science, 276(1):17–32, 2002.

[15] S. Chechik, D. Larkin, L. Roditty, G. Schoenebeck, R. Tarjan, and V. Vassilevska Williams.
Better approximation algorithms for the graph diameter. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1041–1052. SIAM, 2014.

[16] V. Chepoi. On distance-preserving and domination elimination orderings. SIAM Journal
on Discrete Mathematics, 11(3):414–436, 1998.

[17] V. Chepoi, F. Dragan, B. Estellon, M. Habib, and Y. Vaxès. Diameters, centers, and
approximating trees of delta-hyperbolicgeodesic spaces and graphs. In Proceedings of the
Twenty-fourth Annual Symposium on Computational Geometry, SCG ’08, pages 59–68, New
York, NY, USA, 2008. ACM.

RR n° 8842

62 Ducoffe,Legay,Nisse

[18] M. Chrobak and D. Eppstein. Planar orientations with low out-degree and compaction of
adjacency matrices. Theor. Comput. Sci., 86(2):243–266, 1991.

[19] N. Clarke and R. Nowakowski. Tandem-win graphs. Discrete Mathematics, 299(1):56–64,
2005.

[20] D. Coudert, G. Ducoffe, and N. Nisse. Diameter of Minimal Separators in Graphs. Research
Report RR-8639, Inria Sophia Antipolis ; I3S ; INRIA, Nov. 2014.

[21] E. Dahlhaus, P. Hammer, F. Maffray, and S. Olariu. On domination elimination orderings
and domination graphs. In Graph-Theoretic Concepts in Computer Science, 20th Inter-
national Workshop, WG ’94, Herrsching, Germany, June 16-18, 1994, Proceedings, pages
81–92, 1994.

[22] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

[23] Y. Dourisboure, F. Dragan, C. Gavoille, and Y. Chenyu. Spanners for bounded tree-length
graphs. Theor. Comput. Sci., 383(1):34–44, 2007.

[24] Y. Dourisboure and C. Gavoille. Tree-decompositions with bags of small diameter. Discrete
Mathematics, 307(16):2008–2029, 2007.

[25] F. Dragan. Tree-like structures in graphs: A metric point of view. In Graph-Theoretic
Concepts in Computer Science - 39th International Workshop, WG 2013, Lübeck, Germany,
June 19-21, 2013, Revised Papers, pages 1–4, 2013.

[26] F. Dragan and E. Köhler. An approximation algorithm for the tree t-spanner problem on
unweighted graphs via generalized chordal graphs. Algorithmica, 69(4):884–905, 2014.

[27] F. Dragan, E. Köhler, and A. Leitert. Line-distortion, bandwidth and path-length of a
graph. In Algorithm Theory–SWAT 2014, pages 158–169. Springer, 2014.

[28] F. Dragan and A. Leitert. On the minimum eccentricity shortest path problem. In Algo-
rithms and Data Structures, pages 276–288. Springer, 2015.

[29] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques,
and maximum independent set of a chordal graph. SIAM Journal on Computing, 1(2):180–
187, 1972.

[30] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal
of Combinatorial Theory, Series B, 16(1):47–56, 1974.

[31] M. Golumbic, H. Kaplan, and R. Shamir. On the complexity of dna physical mapping.
Advances in Applied Mathematics, 15(3):251–261, 1994.

[32] M. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. Journal of Algorithms,
19(3):449–473, 1995.

[33] M. Herlihy, F. Kuhn, S. Tirthapura, and R. Wattenhofer. Dynamic analysis of the arrow
distributed protocol. Theory of Computing Systems, 39(6):875–901, 2006.

[34] J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the ACM (JACM),
21(4):549–568, 1974.

Inria

On computing tree and path decompositions with metric constraints on the bags 63

[35] P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In Proceedings
of the 42Nd IEEE Symposium on Foundations of Computer Science, FOCS ’01, pages 10–,
Washington, DC, USA, 2001. IEEE Computer Society.

[36] T. Kashiwabara and T. Fujisawa. Np-completeness of the problem of finding a minimum-
clique-number interval graph containing a given graph as a subgraph. In Proc. Symposium
of Circuits and Systems, 1979.

[37] A. Kosowski, B. Li, N. Nisse, and K. Suchan. k-Chordal Graphs: from Cops and Robber to
Compact Routing via Treewidth. Algorithmica, 72(3):758–777, 2015.

[38] R. Krauthgamer and J. Lee. Algorithms on negatively curved spaces. In Foundations
of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 119–132.
IEEE, 2006.

[39] D. Lokshtanov. On the complexity of computing treelength. Discrete Applied Mathematics,
158(7):820–827, 2010.

[40] B. Monien. The bandwidth minimization problem for caterpillars with hair length 3 is
np-complete. SIAM Journal on Algebraic Discrete Methods, 7(4):505–512, 1986.

[41] J. Opatrny. Total ordering problem. SIAM Journal on Computing, 8(1):111–114, 1979.

[42] C. Papadimitriou and M. Yannakakis. The clique problem for planar graphs. Inf. Process.
Lett., 13(4/5):131–133, 1981.

[43] N. Robertson and P. Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal
of algorithms, 7(3):309–322, 1986.

[44] M. Sys lo. Characterizations of outerplanar graphs. Discrete Mathematics, 26(1):47–53, 1979.

[45] J. Tenenbaum, V. De Silva, and J. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[46] K. Umezawa and K. Yamazaki. Tree-length equals branch-length. Discrete Mathematics,
309(13):4656–4660, 2009.

RR n° 8842

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

Appendix H

To approximate treewidth, use
treelength!

TO APPROXIMATE TREEWIDTH, USE TREELENGTH!∗

DAVID COUDERT†‡ AND GUILLAUME DUCOFFE‡†AND NICOLAS NISSE†‡

Abstract. Tree-likeness parameters have proven their utility in the design of efficient algorithms
on graphs. In this paper, we relate the structural tree-likeness of graphs with their metric tree-
likeness. To this end, we establish new upper-bounds on the diameter of minimal separators in
graphs. We prove that in any graph G, the diameter of any minimal separator S in G is at most
b`(G)/2c · (|S| − 1), with `(G) the length of a longest isometric cycle in G. Our result relies on
algebraic methods and on the cycle basis of graphs. We improve our bound for the graphs admitting
a distance preserving elimination ordering, for which we prove that any minimal separator S has
diameter at most 2 · (|S| − 1).

We use our results to prove that the treelength tl(G) of any graph G is at most b`(G)/2c times
its treewidth tw(G). In addition, we prove that, for any graph G that excludes an apex graph H as
a minor, tw(G) ≤ cH · tl(G) for some constant cH only depending on H. We refine this constant
when G has bounded genus. Altogether, we obtain a simple O(`(G))-approximation algorithm for
computing the treewidth of n-node apex-minor-free graphs in O(n2)-time.

Key words. Graph; Treewidth; Treelength; Cycle basis; Genus.

AMS subject classifications. 05C85, 68Q17, 68Q25, 68R10

1. Introduction. It turns out that for a vast range of graph problems, the
boundary between tractable and intractable cases depends on the tree-like properties
of the graphs. This motivates us to study two tree-likeness invariants, that are called
the treewidth [31] and the treelength [20]. Informally, the width of a tree-decomposition
is the maximum size of its bags and its length is the maximum “diameter” of its bags.
The treewidth and treelength of a graph are respectively the minimum width and
length of its tree-decompositions (formal definitions can be found in Section 2). Note
that bounded treelength graphs generalize the chordal graphs, split graphs, etc. which
are well studied graph classes that have unbounded tree-width.

The treewidth aims to measure how close is the structure of a graph from the
structure of a tree, whereas the treelength aims to measure the minimum distortion
of the distances in a graph when it is embedded into a tree [1]. Since both invariants
provide distinct, yet complementary, pieces of information on the closeness of a graph
to a tree, we wish to relate treewidth and treelength through other graph properties
so as to obtain a unifying view of tree-likeness in graphs.

Let us further motivate the need to compare treewidth with treelength, before
presenting our main results.

One of the motivations is that we want to take the algorithmic advantages from
both sides. Indeed, on the one hand there are many NP-hard problems that can
be solved in polynomial-time on bounded-treewidth graphs [13]; on the other hand
there exist compact routing schemes [7], approximation algorithms for packing, cov-
ering, and augmentation problems [10] up to an additive constant, as well as a PTAS
for the well-known Traveling Salesman Problem on bounded-treelength graphs [26].
Therefore, finding relations between both invariants might lead to extend the use of
some of the above-mentioned algorithms to a larger class of graphs. In particular,

∗This work has been partially supported by ANR project Stint under reference ANR-13-BS02-
0007, ANR program “Investments for the Future” under reference ANR-11-LABX-0031-01, and the
Inria associated team AlDyNet.
†Inria, France
‡Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France.

1

2 D. COUDERT, G. DUCOFFE AND N. NISSE

this might be beneficial to bounded-treelength graphs that are more common than
bounded-treewidth graphs amongst the complex networks, but for which there seem
to be less algorithmic applications. For instance, the graph of Autonomous Systems
has large treewidth, while it is hyperbolic [1, 14], and so, it has bounded treelength [9].

Another advantage of relating treewidth and treelength is that such relations can
improve the best-known complexities for their computation on certain graph classes.
Indeed, despite the fact that treewidth and treelength are both NP-hard to compute [3,
28], treelength seems much easier to approximate than treewidth. Namely, there are 3-
approximation algorithms for treelength that rely on a few breadth-first-searches [20],
while the best known approximation algorithms for treewidth only achieve a ratio
O(
√

log tw(G)) for general graphs —and a constant-ratio for minor-free graphs—
through the use of semi-definite programming [22]. We thus highlight that by relating
treelength with treewidth, one can obtain practical algorithms for approximating the
treewidth on certain graph classes.

1.1. State of the art. To put our contributions in context, let it be said that
treewidth and treelength are uncomparable in general. This fact prevents from ex-
pecting simple relations between both invariants.

On the one hand, it comes from the fact that the cycle Cn, with n ≥ 4 vertices,
satisfies that tw(Cn) = 2 while tl(Cn) = dn/3c. This suggests that having a large
treelength relies on the existence of long cycles in the graph. The authors in [20]
supported this intuition, proving that the treelength of a graph G is bounded from
above by half of the maximum length of a chordless cycle in G. Yet it is a strong
constraint, as seen with the case of the wheel Wn which contains an induced Cn while
it has treelength ≤ 2. Therefore, it is natural to constrain ourselves to the subcase of
isometric cycles in graphs. We remind that a subgraph H of G is isometric if for any
two vertices of H, the distance between them is the same in H as in G. Note that it is
known how to compute a longest isometric cycle in a graph in polynomial-time [27].
Unfortunately, there are graphs such as grids with bounded-length isometric cycles
and arbitrarily large treelength. As we will show below, our results imply that in such
a case, we always have that tl(G) =O(tw(G)).

On the other hand, the complete graph with n vertices has treewidth n − 1 and
treelength 1. Another interesting example is the graph H obtained by adding a
universal vertex to a square-grid with n2 vertices, for which it holds tw(H) = n + 1
and tl(H) = 2. Note that such graphs have a large genus, i.e., they are in a sense
arbitrarily far from planar graphs. In contrast, it holds that tw(G) < 12 · tl(G)
for planar graphs [17]. Consequently, it is quite natural to ask whether a treewidth
arbitrarily larger than the treelength requires a large genus. We will prove it is the
case, i.e., tw(G) =O(tl(G)) for bounded-genus graphs.

Finally, and independently from this work, Belmonte et al. [5] proved that tw(G) =
O(∆tl(G)) for any graph G with maximum degree ∆. They built upon this relation
in order to design a fixed-parameter-tractable algorithm to compute the metric di-
mension on bounded treelength graphs. We will use different techniques in order to
upper-bound the treewidth with linear dependency on the treelength.

1.2. Our contributions. We introduce a very generic method to upper-bound
the diameter1 of minimal separators in graphs, the latter denoting inclusion wise min-
imal subsets whose removal disconnects some fixed pair of vertices. Let us emphasize

1The diameter of a set S of vertices of a graph G is the maximum distance in G between two
vertices in S.

TO APPROXIMATE TREEWIDTH, USE TREELENGTH! 3

that the minimal separators are at the cornerstone of various graph decompositions,
such as the so-called k-connected decompositions [24]. Therefore, our method may
find applications beyond the scope of tree-decompositions.

In a few more details, we prove that minimal separators in a graph G induce
connected subsets in some of its powers Gj , where j only depends on the length of
cycles in some arbitrary cycle basis of G (see Section 2 for a formal definition). We
deduce from our method that, for any graphG with longest isometric cycle of size `(G),
and for any minimal separator S in G, the diameter of S is at most b`(G)/2c ·(|S|−1)
and the upper-bound is sharp as shown by any cycle.

Then, we prove that for any graph G which is not a tree, tl(G) ≤ b`(G)/2c·(tw(G)−1).
This upper-bound on treelength follows from our upper-bound on the diameter of
minimal separators, and it is tight up to a small constant-factor 2. We refine our
bound in several particular graph classes (the formal definition of these classes are
postponed to the technical sections of the paper).

• For any graph G in the class of null-homotopic graphs (including the class of
dismantlable graphs), we prove that tl(G) ≤ tw(G). This is tight, as one can
easily see on trees.

• In the class of graphs G that admit a distance preserving elimination ordering,
we prove that tl(G) < 2 · tw(G).

We emphasize that the latter class contains the cobipartite graphs. Though the
treelength of cobipartite graphs is trivially bounded by 3, computing their treewidth is
an NP-hard problem. As a consequence, the treewidth of graphs that admit a distance
preserving elimination ordering is also NP-hard to compute. Our results combined
with the 3-approximation algorithm for treelength [20] provide a polynomial-time
algorithm for computing a new non-trivial lower-bound for treewidth.

Finally, we consider lower-bounds for treelength. We prove that, for any graph exclud-
ing an apex graph H as a minor, there is a constant cH such that tw(G) ≤ cH · tl(G).
The constant cH only depends on H. Our proofs in this part make use of the
bidimensionality theory [15]. In the particular case of graphs with bounded genus
g > 0, we use results from this theory so as to prove the more precise relation
tw(G) ≤ 72

√
2(g + 1)

3
2 · tl(G) +O(g2).

So, to sum up, we obtain that any approximation algorithm for treelength can be
turned into an approximation algorithm for treewidth up to multiplying by anO(`(G)·
(g + 1)

3
2) the approximation ratio.

2. Preliminaries. In this section, we recall some useful definitions and known
results that will be used in the sequel. All graphs considered in this paper are simple
(i.e., without loops or multiple edges), connected and finite. Given a graph G =
(V,E), the number |V | of vertices will be denoted by n and the number of edges |E|
by m. For any vertex v ∈ V , let NG(v) = {u ∈ V | {u, v} ∈ E} be the set of neighbors
of v in G. Let NG[v] denote NG(v) ∪ {v}.

Minimal separators. A set S ⊆ V is a minimal separator if there exist a, b ∈ V \S
such that any path from a to b intersects S and, for any proper subset S′ ⊂ S, there
is a path from a to b which does not intersect S′. We name any such a set S an a-b

2Recently and independently of this work (see research report in [12]), Diestel and Muller [19]
proved that tl(G) ≤ `(G) · (tw(G) − 1) (see also [2] for a slightly looser bound). Note that our
upper-bound for treelength is sharper than theirs. Furthermore, unlike our results which apply to
any minimal separator in a graph, theirs rely on minimal separators in a specific tree-decomposition
called an atomic tree-decomposition.

4 D. COUDERT, G. DUCOFFE AND N. NISSE

minimal separator. A connected component C ⊆ V \S of G[V \S] is full with respect
to S if every node in S has a neighbour in C. Any a-b minimal separator has at least
two full components: the one containing a and the one containing b. Conversely, any
separator having at least two full components is a minimal separator. A graph is said
well-connected if each of its minimal separators induces a connected subgraph [21].

Cycle space. The set C(G) of Eulerian subgraphs of G is called the cycle space of
G. It is well-known that every Eulerian subgraph can be obtained from the symmetric
difference (on the edges) of cycles in G. In fact, the set C(G) with the symmetric
difference is a vector space of dimension m−n+1 if G is connected[18, Theorem 1.9.6].
We will call the symmetric difference of two subgraphs H1, H2, denoted H1⊕H2, the
sum of H1 with H2. A cycle basis is an inclusion wise minimal set of cycles generating
the whole cycle space In particular, a graph is said null-homotopic if it has a cycle
basis with only triangles.

Theorem 2.1. [21] Any connected null-homotopic graph is well-connected.
In this paper, we will extend the class of null-homotopic graphs as follows.
Definition 2.2. Let l ≥ 3. We define Gl as the class of graphs whose cycle space

can be generated by cycles of length at most l.
Note that G3 is exactly the class of null-homotopic graphs. Moreover, the isomet-

ric cycles in a graph can generate its cycle space [25] (see also Exercice 1.32 of the
textbook [18]), so the class Gl contains all graphs with no isometric cycle longer than
l. Therefore by varying the parameter l, classes Gl include all graphs and they form
an inclusion wise increasing hierarchy. By [11], the smallest integer l ≥ 3 such that a
graph belongs to Gl can be computed in polynomial-time.

Diameter and Graph powers.. For any X ⊆ V , let diamG(X) denote the maxi-
mum distance in G between any pair of vertices in X, a.k.a. the diameter of X. Last,
for any j ≥ 1, the graph Gj is obtained from G by adding an edge between any two
distinct nodes that are at distance at most j in G.

2.1. Tree-decompositions.
Minimal fill-in. A graph is chordal if all its induced cycles have length at most

3. For any graph G = (V,E), we define a fill-in of G as any chordal supergraph
H = (V,E ∪ F) of G 3. A fill-in H = (V,E ∪ F) is minimal if, for any f ∈ F , the
graph H ′ = (V,E ∪ F \ {f}) is not chordal.
Let H be a fill-in of a graph G, and let VC be the set of maximal cliques of H. A clique-
tree of H is a tree TC = (VC , F) such that for each vertex x ∈ V , the set of maximal
cliques containing x induces a subtree of TC . We define a (reduced) tree-decomposition
of G as any clique-tree of an arbitrary fill-in of G. Equivalently, a tree-decomposition
of G consists of a pair (T,X) where T is a tree and X = (Xt)t∈V (T) is a family of
subsets of V , called bags, indexed by the nodes of T and that satisfies the following
three properties.

1.
⋃
t∈V (T)Xt = V ;

2. for any {u, v} ∈ E, there is t ∈ V (T) with u, v ∈ Xt;
3. for any u ∈ V , the set of bags containing u induces a subtree of T .

Tree-likeness invariants. Given a graph G, the length of a tree-decomposition
(T,X) equals the maximum diameter in G of its bags. The treelength of G, denoted
by tl(G), is the minimum length over all tree-decompositions of G. Equivalently, the
treelength of G is the smallest integer j such that Gj contains a fill-in of G [28].
The width of (T,X) equals the maximum size of its bags minus one. The treewidth

3Here we use the term fill-in to avoid confusion with planar triangulations.

TO APPROXIMATE TREEWIDTH, USE TREELENGTH! 5

of G, denoted by tw(G), is the minimum width over all tree-decompositions of G.
Equivalently, the treewidth of G is the minimum over all minimal fill-ins H of G of
ω(H) − 1, where ω(H) is the clique-number of H [6]. It can be checked that both
invariants are contraction-closed i.e., the contraction of an edge in the graph cannot
increase its treewidth nor its treelength. We will often use the fact that treewidth
and treelength are contraction-closed invariants in the following.

Parallel minimal separators. Finally, let S1, S2 be two minimal separators in a
graph G. The separator S1 crosses S2 if there are two components of G \ S2 that S1

intersects. If S1 does not cross S2, then S1 is said to be parallel to S2.
Theorem 2.3. [30] H is a minimal fill-in of the graph G if and only if H is ob-

tained by completing4 all sets of a maximal set of pairwise parallel minimal separators
in G.

3. Diameter of Minimal Separators in Graphs. In this section, we show
the diameter of any minimal separator S in a graph G is O(`(G) · |S|), where `(G) is
the length of a longest isometric cycle in G (Theorem 3.4). We then strengthen our
results in particular graph classes that are defined by the existence of some elimination
ordering of their vertices.

Before going into the details of the proof, let us describe the main intuition behind
it and the difficulties we had to face on. Let us consider a minimal separator S. If it is
connected, then the result easily follows. Hence, we may assume S consists of several
connected components. The idea is to find a set of paths, each of length at most
b`(G)/2c, such that any of these paths connects two components and the subgraph
induced by S and these paths is connected. If we do so, the result easily follows.
Hence, the main difficulty is to find such paths. For this purpose, let us consider
a minimum-length cycle crossing two components of S (such a cycle surely exists
because there are at least two full components in G \ S). If this cycle is isometric,
then the distance between the two components cannot exceed b`(G)/2c. Otherwise, it
means that there is a shortcut between two nodes of the cycle. However, this shortcut
could intersect S more than once which does not help our purpose. The key point is
that, using the shortcut, the initial cycle can be viewed as the combination (symmetric
difference) of two cycles. This kind of local view can be generalized to a global one
using our main tool, namely the cycle basis. Indeed, the initial cycle is actually the
symmetric difference of a set of isometric cycles [25, 18]. Using this set, we can then
prove our theorem.

3.1. Case of general graphs. We start proving some properties of graphs in
the class Gl. This will lead us to the main result in this section (Theorem 3.4).

Let us first prove that the class Gl is stable under the following two operations.
Lemma 3.1. Let l ≥ 3, the class Gl is stable under edge-contraction.
Proof. Let G ∈ Gl with n vertices and m edges. W.l.o.g., G is connected. The

dimension dim(C(G)) of the cycle space C(G) is s = m− n+ 1 ([18, Theorem 1.9.6]).
Let e ∈ E(G) such that e lies on k ≥ 0 triangles in G. By contracting e, we loose
one vertex and k+ 1 edges, the edge e and for each triangle which contains e we have
to remove one of the resulting multi-edges. Hence, dim(C(G/e)) = dim(C(G)) − k.
Let {C1 · · · , Cs} be a basis of C(G) such that each Ci has length at most `. Let
{C ′1, · · · , C ′t} be the set of cycles in G/e which are obtained by contracting e on each Ci
and by removing triangles that contain e from the list. Then t ≥ dim(C(G/e)) = s−k
(since at most k triangles have been removed) and each C ′i has length at most `. We

4Completing a set of vertices is to make the set a clique.

6 D. COUDERT, G. DUCOFFE AND N. NISSE

show that C ′1, · · · , C ′t are linearly independent in C(G/e), which proves that they form
a basis of C(G/e). For purpose of contradiction, let us assume that C ′i1⊕· · ·⊕C ′ir = 0
for 1 ≤ i1 < · · · < ir ≤ s, r > 0. Then Ci1 ⊕ · · · ⊕ Cir is either 0 or e. Therefore, the
sum equals e since the Cij ’s are linearly independent in C(G). This is a contradiction
as (V (G), {e}) is not Eulerian.

Hence, since all cycles in the basis {C ′1, · · · , C ′t} have length at most `, it implies
that G/e ∈ Gl.

Lemma 3.2. Let G1 and G2 be two graphs such that V (G1) ∩ V (G2) = {x, y}
and E(G1) ∩ E(G2) = ∅, and let G = G1 ∪ G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)).
If G1, G2 ∈ Gl and dG1(x, y) + dG2(x, y) ≤ l, then G ∈ Gl.

Proof. Let C be a cycle in G. We will prove that it is a sum of cycles of length at
most l in G. If it is a cycle in G1 (resp. in G2), then we are done as it is the sum of
cycles of length at most l by Definition 2.2. Else, it must contain the pair x, y and it
can be decomposed into: a xy-path in G1, and a xy-path in G2. Let Cl be obtained
from the union of a shortest xy-path in G1 with a shortest xy-path in G2. Note that
Cl has length dG1

(x, y) + dG2
(x, y) ≤ l by the hypothesis. Furthermore, H = C ⊕ Cl

is an Eulerian subgraph of G. Let H1, H2 be the respective subgraphs of H that are
induced by the edges in G1, G2 (possibly empty). Note that E(H1) ∩ E(H2) = ∅ by
construction. We claim that both graphs H1, H2 are Eulerian subgraphs. Indeed, on
the one hand the subsets V (H1) \ {x, y}, V (H2) \ {x, y} are disjoint by the hypothesis
and so, any vertex 6= x, y in one of these graphs, say in H1, has the same (even)
degree in H1 as in H. On the other hand, by construction each node amongst x, y is
incident exactly to one edge in E(C) ∩ E(G1) (resp. in E(C) ∩ E(G2)) and to one
edge in E(Cl) ∩E(G1) (resp. in E(Cl) ∩E(G2)). As a result, nodes x, y have degree
either null or equal to 2 in H1, and similarly they have degree either null or equal to
2 in H2, which is even in both cases. Consequently, both H1, H2 are sums of cycles
of length at most l by the hypothesis because they are respective Eulerian subgraphs
of G1, G2 ∈ Gl. Hence H = H1 ⊕H2 is also a sum of cycles of length at most l in G.
This concludes the proof because C = H ⊕ Cl.

Then, we prove that for any graph G ∈ Gl, every minimal separator in G must
contain a pair of vertices that are at small distance to each other.

Lemma 3.3. Let l ≥ 3, let G ∈ Gl and let S be a minimal separator in G. Either
S is a cut-vertex, or there are two distinct nodes x, y ∈ S such that dG(x, y) ≤ bl/2c.

Proof. Suppose that S does not consist of a single cut-vertex. If the subgraph
induced by S contains at least one edge {x, y}, then we are done as in such case
dG(x, y) = 1 ≤ b`/2c. So, we assume that S is a stable set. Let A,B be two distinct
full components of G \ S and let s, t ∈ S be two distinct vertices. By connectivity,
there is an st-path P whose internal vertices are contained in A, and in the same way
there is a st-path Q whose internal vertices are contained in B. Let C be a cycle
composed of P and Q. Because G ∈ Gl, there is some set C of cycles of length at most
` whose sum equals C. We claim that there is a cycle C ′ ∈ C which intersects both A
and another component of G \ S. Otherwise, because S is a stable set, the sum of all
cycles that intersect A must generate P . This is not possible, since it is not Eulerian.
As S separates the components, there are x, y ∈ S ∩ V (C ′) and so, since the length
of C ′ is at most `, we deduce that dG(x, y) ≤ b`/2c.

Finally, we can prove Theorem 3.4 and Corollary 3.5 below. Intuitively, we con-
sider a pair of nodes x, y ∈ S, where S is a minimal separator in some graph G ∈ Gl.
If x, y are connected in the induced subgraph G[S], then it is clear that their dis-
tance in G is at most |S| − 1. Else, we prove that there is a xy-path that intersects

TO APPROXIMATE TREEWIDTH, USE TREELENGTH! 7

the connected components C1, C2, . . . , Ck of G[S] consecutively, and that satisfies:
x ∈ C1, y ∈ Ck, and ∀1 ≤ i < k, there exists a cycle of length at most l which
intersects both Ci and Ci+1. Every two consecutive components Ci, Ci+1 of G[S] are
thus at distance at most bl/2c in G, hence their union Ci ∪Ci+1 induces a connected
subgraph of the power Gbl/2c.

Theorem 3.4. Let l ≥ 3. For any graph G ∈ Gl, every minimal separator in G
induces a connected subgraph in the power Gbl/2c.

Proof. By contradiction, let G ∈ Gl, and let S be a minimal separator in G that
does not satisfy the property. We first make adjacent every two vertices in S that
are at distance at most bl/2c in G. We claim that the resulting graph is still in Gl.
Indeed, let x, y ∈ S be non-adjacent and at distance at most bl/2c in G, let G1 = G
and let G2 be the complete graph on the two vertices x, y (i.e., G2 is isomorphic
to K2). Since we have that G1 ∈ Gl by the hypothesis, that G2 ∈ G3 ⊆ Gl and
that dG1

(x, y) + dG2
(x, y) ≤ bl/2c + 1 ≤ l, then we deduce from Lemma 3.2 that

G1 ∪ G2 ∈ Gl. The same argument can be applied iteratively because adding an
edge in G cannot increase the distances between nodes in S. So, the claim is proved.
Finally, we contract each connected component of the subgraph induced by S in a
single node, thus contracting S to obtain a stable set S′, and the resulting graph
G′ still belongs to Gl by Lemma 3.1. Furthermore, the stable set S′ is a minimal
separator in G′ by construction. Since S does not satisfy the property of the theorem,
we have that all nodes in S′ are pairwise at distance at least bl/2c + 1, but then it
contradicts Lemma 3.3.

Theorem 3.4 is tight, as it can be shown with any cycle Cl.
Corollary 3.5. Let G be a graph that is not a tree. Any minimal separator S

in G has diameter at most b`(G)/2c · (|S| − 1), where `(G) denotes the length of a
longest isometric cycle in G.

Proof. It follows from Theorem 3.4 combined with the fact that isometric cycles
generate the cycle space [25, 18].

3.2. Graphs with distance-preserving elimination ordering. We strengthen
the result of Corollary 3.5 in the case of graphs with a distance-preserving elimination
ordering. Formally, we say that G admits a distance-preserving elimination ordering if
there exists a total order of V , denoted by v1, v2, . . . , vn, such that, for any 1 ≤ i ≤ n,
the subgraph Gi = G \ {v1, . . . , vi} is isometric. Graphs with a distance-preserving
elimination ordering arise from applications in graph searching (e.g., dismantlable
graphs [29]) and geometry [8]. Note that they contain the class of cobipartite graphs,
for which computing the treewidth is NP-hard. Our main result in this section is
that for every graph G with a distance-preserving elimination ordering, it holds that
G ∈ G4.

Proposition 3.6. A graph G that admits a distance-preserving elimination or-
dering has its cycle space generated by all its triangles and quadrangles.

Proof. We claim that it is enough to prove that the induced cycles of G can
be generated by all its triangles and quadrangles. Indeed, the induced cycles of G
generate its cycle space [18]. Let v1, v2, . . . , vn be a distance-preserving elimination
ordering of G. By contradiction, amongst all induced cycles that do not satisfy the
property let C maximize the smallest index j such that vj ∈ C. Note that C is a
cycle of Gj−1 = G[{vj , · · · , vn}] by the hypothesis. Moreover, all cycles contained in
Gj are the sum of triangles and quadrangles of G because of the maximality of index
j. Let x, y ∈ V (C) be the two neighbours of vj in cycle C. By the hypothesis, x, y are
not adjacent because C is induced. So, because x, y, vj ∈ Gj−1 which has a distance-

8 D. COUDERT, G. DUCOFFE AND N. NISSE

preserving elimination ordering, there is vi, i > j such that x, y are adjacent to vi.
Moreover, vi /∈ C because otherwise C would be the quadrangle (vj , x, vi, y, vj), thus
contradicting the fact that it does not satisfy the property. As a result, C = Q⊕ C ′,
with Q the quadrangle (vj , x, vi, y, vj) and C ′ is the cycle of Gj obtained from C by
replacing the path x, vj , y with x, vi, y. Furthermore, cycle C ′ is a sum of induced
cycles of Gj that are themselves a sum of triangles and quadrangles by maximality
of j. Hence so is cycle C, which contradicts the fact that it does not satisfy the
property.

Corollary 3.7. Let G be a graph that admits a distance-preserving elimination
ordering. Every minimal separator S in G has diameter at most 2 · (|S| − 1).

Given that the cycle of length four C4 admits a distance-preserving elimination
ordering, one can see that Corollary 3.7 is sharp.

Dismantlable graphs are an interesting subclass of graphs with a distance-preserving
elimination ordering. Formally, a graph G is dismantlable if, for any 1 ≤ i < n, there
exists j > i, such that NG[ui] \ {u1, · · · , ui−1} ⊆ NG[uj]. It is immediate that if a
graph is dismantlable, then it admits a distance-preserving elimination ordering. We
obtain the following improvement over Proposition 3.6 for the subclass of dismantlable
graphs.

Lemma 3.8. A dismantlable graph is null-homotopic and so, well-connected.

Proof. Let G be a dismantlable graph. We prove that cycles of G can be generated
by its triangles, which proves that G is null-homotopic. The fact that G is well-
connected follows from the fact that dismantlable graphs are connected and from
Theorem 2.1.

It is enough to prove that all induced cycles can be generated by triangles. Let
(u1, u2, . . . , un) be a dismantling ordering of G. By contradiction, amongst all induced
cycles that do not satisfy the property, let C maximize the smallest index j such that
uj ∈ C. Let x, y ∈ V (C) be the two neighbours of uj in cycle C, and let ui, with
i > j, be a dominator of uj in Gj−1. We have that ui /∈ C because C is induced and
it has length at least 4 by the hypothesis. As a result, C = T1 ⊕ T2 ⊕C ′, with T1 the
triangle induced by nodes ui, x, uj ; with T2 the triangle induced by nodes ui, y, uj ;
and with C ′ a cycle of Gj obtained from C by replacing the path x, uj , y with x, ui, y.
Furthermore, cycle C ′ is a sum of induced cycles of Gj that are themselves a sum of
triangles of G by maximality of j. Hence, so is cycle C, which contradicts the fact
that it does not satisfy the property.

We note that it was already noticed in [21] that dismantlable graphs are null-
homotopic. However the proof was left to the reader. We give it in the paper for
self-containment.

Corollary 3.9. Let G be a dismantlable graph. Every minimal separator S in
G has diameter at most |S| − 1.

Last, we point out that by a result from [4], every graph is an isometric subgraph of
some dismantlable graph. Therefore, there are graphs with arbitrarily long isometric
cycles that admit a distance-preserving elimination ordering.

4. Relating treewidth with treelength.

4.1. Upper-bounds for treelength. Using the results recalled in Section 2.1,
we are now able to upper-bound the treelength of a graph by a linear function de-
pending on the size of its minimal separators. We then show that the treelength of a

TO APPROXIMATE TREEWIDTH, USE TREELENGTH! 9

graph is upper-bounded by a function that is linear in its treewidth.

Lemma 4.1. Let G be a graph and S be a maximal set of pairwise parallel minimal
separators in G. If there is a constant cS such that diamG(S) ≤ cS(|S| − 1) for all
S ∈ S, then tl(G) ≤ max {1} ∪ {cS · (|S| − 1) | S ∈ S}.

Proof. Let H be the supergraph of G obtained by completing all sets of S.
By Theorem 2.3, H is a minimal fill-in of G. Moreover, any clique-tree TC of H
corresponds to a reduced tree-decomposition of G where each clique of H induces a
bag. Let Ω be any maximal clique in H, i.e., Ω is any bag of the tree-decomposition
TC . Let x, y ∈ Ω. By definition of H, either {x, y} ∈ E(G) or there is a minimal
separator S ∈ S that contains both x and y. In the latter case, d(x, y) ≤ diamG(S) ≤
cS · (|S| − 1).

Theorem 4.2. If every minimal separator in a graph G induces a connected
subgraph in its power Gj, then tl(G) ≤ max {1, j · (tw(G)− 1)}.

Proof. Let H be a minimal fill-in of G with maximum clique-size tw(G) + 1.
By Theorem 2.3, there is a maximal set S of pairwise parallel minimal separators
of G such that H results from the completion of all elements in S. Note that any
S ∈ S induces a minimal separator in H that is a clique —a.k.a. a clique-minimal
separator in H— and therefore S is strictly contained in a maximal clique in H.
Hence, maxS∈S |S| ≤ tw(G). By Lemma 4.1, tl(G) ≤ max {1} ∪ {j · (|S| − 1) | S ∈
S} ≤ max {1, j · (tw(G)− 1)}.

Corollary 4.3. Let G be a connected graph which is not a tree, then tl(G) ≤
cG · (tw(G)− 1), where:

• cG = 2 if G admits a distance-preserving elimination ordering;
• cG = b`(G)/2c, with `(G) the length of a longest isometric cycle in G.

Proof. First item follows from Proposition 3.6 combined with Theorem 3.4 and
Theorem 4.2. Second item follows from Theorem 3.4 combined with Theorem 4.2.

We emphasize that it is NP-hard to compute the treelength of a graph [28],
but there exist 3-approximation algorithms to compute it in polynomial-time [20].
Moreover, a longest isometric cycle in a graph can also be computed in polynomial-
time [27]. Hence, the previous result gives a new way to compute lower-bounds for
treewidth.

4.2. Lower-bound in case of bounded-genus graphs. In this section, we
prove that the treewidth of a graph is upper-bounded by a function of its treelength
and of its genus. Our result is mainly based on the result from [16] stating that
any graph with large treewidth and genus contains a large “grid-like” graph as a
contraction. We use their terminology.

Let us remind that a planar triangulation of a planar graph G is a planar supergraph
of G whose faces are bounded by triangles. A partially triangulated (r× r)-grid is any
graph that contains an (r × r)-grid as a subgraph and is a subgraph of some planar
triangulation of the same (r × r)-grid. A (r, k)-gridoid G is a partially triangulated
(r × r)-grid in which k extra edges have been added5.

Theorem 4.4. [16] Let G be a graph with genus g and tw(G) > 4k(g + 1) with
k ≥ 12g, then G contains a (k − 12g, g)-gridoid as a contraction.

We prove that such a gridoid has large treelength and so, since the treelength is
contraction-closed, such a graph has large treelength too.

Lemma 4.5. Let G be a partially triangulated (r×r)-grid, then tl(G) ≥ br/3c−1.

5Note that the notion of (r, k)-gridoid is more general in [16].

10 D. COUDERT, G. DUCOFFE AND N. NISSE

Proof. The result holds if r ≤ 3 because in such a case tl(G) ≥ 1 ≥ br/3c − 1.
Else, let G′ be the (r × r)-grid from which G is obtained by planar triangulation.
Let V ′ be the set of vertices that are at distance at least

⌊
r−1
3

⌋
from the external

face of G′. The vertices of V ′ induce a partially triangulated (r′ × r′)-grid F in G,
r = 2

⌊
r−1
3

⌋
+ r′, such that the external face has not been triangulated. Moreover, F

is isometric in G. Hence, tl(G) ≥ tl(F). We show that tl(F) ≥ br/3c − 1.

Our proof adapts from the lower-bound techniques in [20, Sec. 2.3]. Let (T,X) be
any tree-decomposition of F . Consider the two subsets of vertices A,B that contain
the first and the last row of F respectively. Since A induces a connected subgraph
of F , by the properties of tree-decompositions the bags in X that intersect A form a
subtree TA of T . Similarly, the bags in X that intersect B form a subtree TB of T .
Furthermore, either TA∩TB 6= ∅ (in which case, the diameter of every bag in TA∩TB
is at least r′ − 1), or by [20, Lemma 5] there exists a bag which intersects all paths
between A and B in F . In the latter case, such bag must intersect the first and last
column of F , and so, it has diameter at least r′ − 1. Therefore, (T,X) has length at
least r′ − 1 in both cases, that proves that tl(F) ≥ r′ − 1 ≥ br/3c − 1.

Lemma 4.6. Let G be a (r, k)-gridoid, then tl(G) > r/(18
√

2k + 1)− 2.

Proof. The result holds if r ≤ 36
√

2k + 1 because in such case tl(G) ≥ 1 >
r/(18

√
2k + 1)− 2. Hence, let us assume that r > 36

√
2k + 1.

Let M be a set of at most k edges whose removal in G yields a partially trian-
gulated (r × r)-grid. Let S = V (M) be the set of end-vertices of the edges of M .
Note that |S| ≤ 2k. Also, let G′ be the (r × r)-grid whose G \M is a partial planar
triangulation. Let finally 4 ≤ x ≤ r be an integer. There are (r − x + 1)2 distinct
(x× x)-grids as subgraphs in G′, that give us as many distinct partially triangulated
(x× x)-grids as subgraphs in G. Furthermore, each node in S belongs to at most x2

such subgraphs. Therefore assuming (r − x + 1)2 − 2k · x2 ≥ 1, there is one of these
partially triangulated (x × x)-grids, say H, that does not contain any node incident
to one of the k extra edges. Consider the partially triangulated (x′×x′)-grid R which
is in the center of H, with x = 2 ·

⌊
x−1
3

⌋
+ x′. That is, R is a subgraph of H and any

node of R is at distance at least
⌊
x−1
3

⌋
from a node of G \H (it is possible because H

does not contain an extremity of an extra edge). Therefore, R is isometric in G and
tl(R) ≤ tl(G). By Lemma 4.5,

tl(R) ≥ bx′/3c − 1 ≥ x/9− 1.

It remains to maximize x satisfying the inequality (r − x + 1)2 − 2k · x2 ≥ 1 so
that we maximize the above lower-bound for tl(R). The polynomial

(r −X + 1)2 − 2k ·X2 − 1 = r2 +X2 + 1− 2r ·X + 2r − 2X − 2k ·X2 − 1

= −
[
(2k − 1) ·X2 + 2(r + 1) ·X − r(r + 2)

]

has for reduced discriminant (r + 1)2 + r(r + 2)(2k − 1) = 2k · r(r + 2) + 1, hence its
roots are equal to

{
−
√

2k · r(r + 2) + 1 + r + 1

2k − 1
,

√
2k · r(r + 2) + 1− r − 1

2k − 1

}
.

Since this polynomial is nonnegative only between its roots, the value maximizing x

TO APPROXIMATE TREEWIDTH, USE TREELENGTH! 11

is:

x0 =

⌊√
2k · r(r + 2) + 1− r − 1

2k − 1

⌋
≥
√

2k · r(r + 2) + 1− r − 1

2k − 1
− 1 +

1

2k − 1

=
r(r + 2)√

2k · r(r + 2) + 1 + r + 1
− 1 +

1

2k − 1
>

r(r + 2)

2
√

2k · r(r + 2) + 1
− 1

>
1

2

√
r(r + 2)

2k + 1
− 1 >

r

2
√

2k + 1
− 1.

Hence, tl(G) ≥ tl(R) ≥ x0/9− 1 ≥ r/(18
√

2k + 1)− 2.
Theorem 4.7. Let G be a graph with genus g and tw(G) > 4k(g + 1) with

k ≥ 12g. Then

tw(G) ≤ 72
√

2(g + 1)
3
2 · tl(G) +O(g2).

Proof. By Theorem 4.4, G contains a (k− 12g, g)-gridoid R as a contraction. By
Lemma 4.6,

tl(R) >
k − 12g

18
√

2g + 1
− 2.

Thus, by setting k = (tw(G)− 1)/(4(g + 1)), we obtain that:

tl(R) >
tw(G)− 48g(g + 1)− 1

72(g + 1)
√

2g + 1
− 2 >

tw(G)

72
√

2(g + 1)
3
2

−
√

2

3
·
√
g + 1− 3.

The result then follows from the fact that treelength is contraction-closed.
Extensions.. Theorem 4.7 can be extended to the broader class of apex-minor-

free graphs. An apex graph is a graph such that the removal of one vertex creates a
planar graph. Similar techniques from the bidimensionality theory allow us to deal
with graphs that exclude a fixed apex graph as a minor. Namely, we will make use
of the graph Γk as it is defined in [23]. The graph Γk is obtained from a (k × k)-grid
by triangulating its internal faces such that all internal vertices become of degree 6,
all non-corner external vertices are of degree 4, and then one corner of degree two is
joined by edges with all vertices of the external face.

Theorem 4.8. [23] For every apex graph H, there is a constant cH > 0 such
that every connected H-minor-free graph of treewidth at least cH · k contains Γk as a
contraction.

Theorem 4.9. Let H be any apex graph and G be a connected H-minor-free
graph of treewidth at least cH · k, where cH is the constant of Theorem 4.8. Then
tl(G) ≥ tw(G)/(3 · cH)− 1.

Proof. By Theorem 4.8, G contains Γk as a contraction. Moreover, Γk is a
partially triangulated grid. The result follows from Lemma 4.5 and the fact that
treelength is contraction-closed.

5. Conclusion. We can deduce from Corollary 3.5 and Theorem 4.7 that for
every n-node graph of genus g, the 3-approximation algorithms for treelength in [20]
compute in O(g · n2)-time an integer t∗ satisfying:

tw(G)

72
√

2(g + 1)
3
2

−
√

2

3
·
√
g + 1− 3 ≤ t∗ ≤ 3 b`(G)/2c · tw(G).

12 D. COUDERT, G. DUCOFFE AND N. NISSE

Observe that in case an upper-bound on the treewidth is given, we can also deduce
from our relations a lower-bound on the graph genus.

The main drawback with our above approximation algorithm for treewidth is that it
may output a tree-decomposition with unbounded width (the length is upper-bounded
by t∗). We let open whether our method can be modified so that it outputs a tree-
decomposition of width O(`(G) · (g + 1)3/2 · t∗).

Acknowledgments. We wish to thank the referees for their careful reading of
the first version of this manuscript, and their useful comments. Their remarks and
suggestions have improved the presentation of this paper significantly.

REFERENCES

[1] Muad Abu-Ata and Feodor F. Dragan, Metric tree-like structures in real-world networks:
an empirical study, Networks, 67 (2016), pp. 49–68.

[2] Aaron B. Adcock, Blair D. Sullivan, and Michael W. Mahoney, Tree decompositions
and social graphs, arXiv preprint arXiv:1411.1546, (2014).

[3] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski, Complexity of finding
embeddings in a k-tree, SIAM J. Algebraic Discrete Methods, 8 (1987), pp. 277–284.

[4] Hans-Jürgen Bandelt and Victor Chepoi, Metric graph theory and geometry: a survey,
Contemporary Mathematics, 453 (2008), pp. 49–86.

[5] Rémy Belmonte, Fedor V. Fomin, Petr A. Golovach, and M. S. Ramanujan, Metric di-
mension of bounded width graphs, in Mathematical Foundations of Computer Science 2015:
40th International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings,
Part II, 2015, pp. 115–126.

[6] Hans L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theor. Com-
put. Sci., 209 (1998), pp. 1–45.

[7] Marián Boguna, Fragkiskos Papadopoulos, and Dmitri Krioukov, Sustaining the Inter-
net with hyperbolic mapping, Nature Communications, 1 (2010), pp. 1–18.

[8] Jérémie Chalopin, Victor Chepoi, Hiroshi Hirai, and Damian Osajda, Weakly modular
graphs and nonpositive curvature, arXiv preprint arXiv:1409.3892, (2014).

[9] Victor Chepoi, Feodor Dragan, Bertrand Estellon, Michel Habib, and Yann Vaxès,
Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs, in
Proceedings of the twenty-fourth annual symposium on Computational geometry, ACM,
2008, pp. 59–68.

[10] Victor Chepoi and Bertrand Estellon, Packing and covering δ-hyperbolic spaces by balls,
in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, vol. 4627 of Lecture Notes in Computer Science, Springer, 2007, pp. 59–73.

[11] David M Chickering, Dan Geiger, and David Heckerman, On finding a cycle basis with a
shortest maximal cycle, Information Processing Letters, 54 (1995), pp. 55–58.

[12] David Coudert, Guillaume Ducoffe, and Nicolas Nisse, Diameter of Minimal Sepa-
rators in Graphs, Research Report RR-8639, Inria Sophia Antipolis ; I3S, nov 2014.
https://hal.inria.fr/hal-01088423.

[13] Bruno Courcelle, The monadic second-order logic of graphs. I. recognizable sets of finite
graphs, Information and Computation, 85 (1990), pp. 12 – 75.

[14] Fabien de Montgolfier, Mauricio Soto, and Laurent Viennot, Treewidth and hyperbol-
icity of the internet, in 10th IEEE International Symposium on Network Computing and
Applications (NCA), Boston, 2011, IEEE, pp. 25–32.

[15] Erik D. Demaine and Mohammad Taghi Hajiaghayi, The bidimensionality theory and its
algorithmic applications, Comput. J., 51 (2008), pp. 292–302.

[16] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos, The bidimen-
sional theory of bounded-genus graphs, SIAM J. Discrete Math., 20 (2006), pp. 357–371.

[17] Youssou Dieng and Cyril Gavoille, On the tree-width of planar graphs, Electronic Notes in
Discrete Mathematics, 34 (2009), pp. 593–596.

[18] Reinhard Diestel, Graph theory, Heidelberg, Graduate Texts in Mathematics, 173 (2010),
p. 451 pp. 4th edition.

[19] Reinhard Diestel and Malte Müller, Connected tree-width, nov 2014.
http://arxiv.org/abs/1211.7353.

TO APPROXIMATE TREEWIDTH, USE TREELENGTH! 13

[20] Yon Dourisboure and Cyril Gavoille, Tree-decompositions with bags of small diameter,
Discrete Mathematics, 307 (2007), pp. 2008–2029.

[21] Pierre Duchet, Michel Las Vergnas, and Henry Meyniel, Connected cutsets of a graph
and triangle bases of the cycle space, Discrete Mathematics, 62 (1986), pp. 145–154.

[22] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee, Improved approximation
algorithms for minimum weight vertex separators, SIAM J. Comput., 38 (2008), pp. 629–
657.

[23] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos, Contraction obstructions
for treewidth, J. Comb. Theory, Ser. B, 101 (2011), pp. 302–314.

[24] Walter Hohberg, The decomposition of graphs into k-connected components, Discrete math-
ematics, 109 (1992), pp. 133–145.

[25] John D. Horton, A polynomial-time algorithm to find the shortest cycle basis of a graph,
SIAM Journal on Computing, 16 (1987), pp. 358–366.

[26] Robert Krauthgamer and James R. Lee, Algorithms on negatively curved spaces, in Foun-
dations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, IEEE,
2006, pp. 119–132.

[27] Daniel Lokshtanov, Finding the longest isometric cycle in a graph, Discrete Applied Math-
ematics, 157 (2009), pp. 2670–2674.

[28] , On the complexity of computing treelength, Discrete Applied Mathematics, 158 (2010),
pp. 820–827.

[29] Richard Nowakowski and Peter Winkler, Vertex-to-vertex pursuit in a graph, Discrete
Mathematics, 43 (1983), pp. 235–239.

[30] Andrea Parra and P. Scheffler, Characterizations and algorithmic applications of chordal
graph embeddings, Discrete Applied Mathematics, 79 (1997), pp. 171–188.

[31] Neil Robertson and Paul D. Seymour, Graph minors. II. algorithmic aspects of tree-width,
Journal of Algorithms, 7 (1986), pp. 309–322.

Papers on coloring games

Appendix I

The Complexity of Hedonic
coalitions under bounded

cooperation

The Complexity of Hedonic Coalitions under Bounded Cooperation ∗

G. Ducoffe1,3, D. Mazauric2,3, and A. Chaintreau3

1Université Côte d’Azur, Inria, CNRS, I3S, France
2Inria Sophia Antipolis - Méditerranée, F-06902 Sophia Antipolis, France

3Columbia University in the City of New York, U.S.A.

Abstract

We consider additively separable symmetric hedonic games, that are a specific type of hedo-
nic coalition formation in which players value joining a given group solely based on its members.
In graph-theoretic terms, the game is defined by an edge-weighted complete graph, and a con-
figuration of the game is a vertex-partition of this graph. The utility of a given vertex v w.r.t.
the configuration is the sum of the weights of the edges that are incident to v and another
vertex in the same group as v. Then, given an integer k ≥ 1, a better-response dynamics for the
hedonic game previously mentioned consists in iterating the following operation, until it is no
more possible to do so. We move at most k vertices to a same group of the partition, provided
they all increase their utility in the process.

We study the complexity of deciding whether a given such game admits an equilibrium that
is robust to coalition of at most k players, where k is a fixed constant. In some cases where an
equilibrium is known to exist, referred to as colouring games in the literature, we also study the
time of convergence of the better-response dynamics toward an equilibrium.

Our main result proves how even a minimal amount of cooperation between players makes
finding the final outcome of such games prohibitively difficult. This applies even in the simpler
case of colouring games, for which it was previously conjectured that the better-response dynam-
ics always converge in polynomial time, while our tight analysis proves the opposite. Precisely,
our main result is that, already for k = 4, the better-response dynamics for colouring games
converges in Ω(nΘ(ln(n))) steps. Furthermore, we show that minimum addition to the simplest
game reinforces this view, making the mere existence of a stable outcome prohibitively hard to
decide. That is, when all edge weights are in a fixed subset W, either an equilibrium always
exists or it is NP-complete to decide on its existence.

While our results may be interpreted as a criticism of solution concepts involving bounded
cooperation in general, we also present conditions (based on the edge weights) under which the
complexity of this form of cooperation remains tractable.

Coloring games; Hedonic Games; Equilibrium computation; Better-response dynamics; Graph
theory; NP-hardness; Social networks.

1 Introduction

We consider process by which players of a game choose to belong to a group solely based on
the members that it contains, as a way to model multiple situations pertaining to creation of

∗This work has been partially supported by ANR program “Investments for the Future” under reference ANR-
11-LABX-0031-01.

1

coalitions. Below we introduce a model that generalizes previous games and dynamics related to
information sharing [22], graph colouring [11, 26], creation of clubs and societies [4, 8] referred to
as Hedonic [13]. Roughly in Hedonic Games, the following natural assumption is made: a player’s
appreciation of a coalition structure only depends on the members of the coalition she belongs
to, and not on how players in other coalitions are arranged [13]. Our goal, like multiple works
before [3, 4, 8, 16, 24, 25, 31], is to determine the merit of a solution concept for revealing stable
and meaningful structures as final outcome of this game. However, unlike previous studies, we
carefully control the level of cooperation among players to see how it impacts the complexity of
computing an equilibrium and the convergence of multiple better response dynamics.

We consider the effect of two important features, only found in [22]: Incompatibility between
some pairs of players, in the form of arbitrarily high penalty, is here to ensure that the dynamics
of the game always avoid cases where any such two players set are in the same coalition. Bounded
cooperation of size k stipulates that a new set of coalitions can be formed whenever a subset
containing at most k players can move simultaneously so that each player in the subset benefits
from this move. Computing stable outcomes of this game for any value of k allows one to gradually
compare configurations that are individually stable (k = 1) — and hence attainable as Nash
Equilibrium of a non-cooperative dynamics — with those that satisfy a stronger notion of stability
(k > 1). This eventually culminates (when k is equal to the number of players) in finding exactly
the configurations that remain stable even against any coalition of players. Such configurations
are sometimes referred to as strong Nash Equilibrium, coalition proof equilibrium, or core stable
coalition, as they relate to those in the core of an associated cooperative game.

On the one hand, it seems intuitive that, when it comes to understand the formation of clubs
or groups, a purely individually rational solution concept (corresponding to k = 1) is rather lim-
iting. On the other hand, allowing cooperation between players is expected to increase dynamics’
complexity. Prohibitive complexity does not only come as computational cost for prediction, it also
casts a doubt that the solution concept represents well the outcome of a process of decisions made
by players. We hence aim at determining the conditions under which this complexity remains
tractable (i.e., a final outcome is reached by the dynamics in a number of steps that grows no
more than a polynomial function of the number of players, where ideally this polynomial function
grows not too large). It appears that a limited form of cooperation (i.e., k < ∞) helps to reduce
complexity as long as k is chosen small enough. As an example, the authors in [22] show that
for the simplest version of the game above (that we call uniform), simple dynamics converge in
polynomial time when k = 1, 2 and 3. They also conjecture that a similar property extends when
k > 3. In this article, we disprove the above conjecture and shows that k = 3 is the maximum level
of cooperation ensuring polynomial convergence for simple dynamics. Furthermore if k ≤ 2 our
novel analysis does not only provide the first non-trivial lower bounds but it determines the exact
worst case convergence time in a closed form.

1.1 Related work

The role of coalitions – and under which conditions on player’s incentive those can be sustained
– has been a premier theme of Game Theory since its beginning. Ever since, it has played a key
role in determining the theoretical and practical merits of solution concepts [1, 6, 7, 23, 28]. Most
of the earliest works center on situations in which utility can be transferred among players. That
leads to the possibility of bargaining and hence reach specific equilibria (Nash, Core, Strong Nash)
depending on the axioms applying to players’ expected behavior in similar situations. With a
slight simplification, one can summarize the role of cooperation among players in this context as
a major factor increasing complexity: indeed, determining that a Nash equilibrium exists is often

2

trivial, while being assured that an equilibrium exists that is stable under cooperation (i.e., the
core is non-empty) remains prohibitively difficult. In other words, expecting solution concepts with
cooperations to be normative implies that players or analyst in general have access to infinite or
at least very large computational powers to behave accordingly. The only general case with utility
transfers where cooperation does not contradict stability and leads to predictable outcome is when
the game is convex and the only stable coalition is one that contains all players.

Here, we wish to determine the impact of cooperation among players in a different context
where utility cannot be transferred between players. The systematic study of those games has been
more recent, motivated primarily by the need to determine how individual choices governed by
constraints set on player’s interaction lead to the formation of different types of cartels, alliances,
clubs, interest groups. The studies of such groups and how users are connected through them in
a network paved the way to a novel economic analysis where a player’s position in a structure
governs its expected behaviors and eventual gains. Most of the work concentrates on studying the
outcomes of so called Hedonic Games. In the general case, a stable outcome may not exist, even
for a weak definition of stability that only allows certain individual strategies [8]. This holds even
when preferences among coalitions are anonymous (i.e., the utility of a player only depends on
the size of her group). This also holds if the preferences are additively separable (i.e., they derive
from a simple utility function that sums up the effects of pairwise interaction between a player and
members of her coalition), as long as they are not required to be symmetric. Perhaps unsurprisingly,
for stronger stability notion when cooperation among players – and hence possibly more deviations
from a given status quo – are allowed to take place, those negative results are only reinforced. Only
when additional properties constraining preferences are assumed (see e.g., [5, 10, 20]) can it be
shown that such solutions (core stable or strong Nash equilibrium) exist, and/or are unique [27].

The results we mention above judge the merit of solution concepts merely by existence, and
occasionally by unicity of a stable outcome. More recently, merit of solution concepts were discussed
using an algorithmic approach [12], by analyzing how the cost of deciding on the existence of a stable
outcome, or computing one when it exists, grows with the number of players n. Indeed, all the
negative results aforementioned were strenghtened in recent works: for hedonic games in general,
even anonymous ones, deciding if a coalition system that satisfies a stability condition exists is
NP-hard [4]. Those results were shown to hold when preferences are additively separable (in the
assymmetric case) [24]; and more recently even when the parameters definining the preferences
among coalitions are bounded by a polynomial function of n [30]. It is noteworthy that those
negative results are each different, but one can be found for any stability condition, whether or not
cooperation between players is allowed1. Similar NP-hardness results apply in general to solution
concepts defined by efficiency instead of stability such as maximizing sum of utility, or satisfying
Pareto optimality under weak conditions (as shown in [2]).

For hedonic games, the effect of players’ cooperation is chiefly of interest in the case where
preferences are additively separable and symmetric. The interesting situation is when players’
preferences among coalitions are defined using parameters which are constant or bounded by a
polynomial function of the number of players 2. Under those natural conditions, depending on
which cooperation is assumed the properties of solution concepts are entirely at odds. First, if
one assumes that only individual deviation is allowed, outcomes are Nash or individually stable
equilibrium of this game (see definition below). Those always exist and they can be always attained

1Note that here and in the rest of the paper we ignore the case where in order to move a player is required to
get approval from members of his current coalition [29]. This leads, in the separable case and many others, to have
almost all coalition structures being stable, and hence provide little insight into the game.

2Otherwise, it is already known that finding stable outcome is hard even without cooperation, as computing Nash
or Individually stable equilibria requires solving a PLS complete problem [16]

3

using some better response dynamics of the game within a pseudopolynomial number of steps [8]
— following a potential function argument. In contrast, when unrestricted cooperation is allowed
between players, sustainable outcomes are only those that are so called core stable; such an outcome
may not exist in general. In fact, deciding if one exists in general is NP-hard, as previously shown
independently in [3] for a specific set of weights, a result that we prove in this article in a more
general case. This chasm motivates us to answer more precisely which forms of cooperation renders
stability so much complex. Are pairwise cooperation involving two players, or triadic cooperation
involving three, sufficient to cause a sudden increase in complexity? We gradually increase the size
of possible subsets of players acting in concert to create a new deviation, from a subset of size 1
denoting absence of coordination to size n denoting unrestricted cooperation.

The above question was recently formulated in [22] when preferences are additively separable,
symmetric, and formulated to either denote a complete incompatibility between two players, or a
benefit to share the same coalition that is uniform among compatible players. In this case, solution
concepts involving simultaneous cooperation of at most 2 or 3 players are shown to be tractable for
those particular hedonic games. This result is remarkable: it offers the first example of a solution
concept involving some cooperation and that has not been shown to be computationally prohibitive.
Unfortunately, this paper brings no more light to extend any such results to other hedonic games.
Indeed the tractability of any form of cooperation involving more than 3 players is left open. Here
we explain and show why this is the case. Furthermore, although it has been proposed a partial
analysis beyond the case k = 3, where it is proved that the outcome can be NP-Hard to find in
general, this negative result relies on a unique form of deviations (called gossip) introduced by the
authors and that has no equivalent in the theory of hedonic games.

1.2 Contribution of this paper

The main contribution of this paper is to completely solve the complexity analysis of hedonic
games for any level of cooperation, in the general case where preferences are additively separable
and symmetric. This includes in particular a specific study of the effect of cooperation when the
values taken by weights defining players’ preferences are fixed in advance.

• We first consider the binary incompatible/compatible case (uniform), where all compatible
players benefit from each other uniformly as introduced in [22] (the latter corresponds to the
above-mentioned uniform case). We prove that in such case better response dynamics always
converge to an equilibrium, for any possible level of cooperation. Hence we focus on the
time of convergence for the dynamics. We report on our results in Table 1. Previous work
focuses on upper-bounds on the number of steps. We provide not only the first non-trivial
lower-bound but even derive the exact worst case of convergence time when only individual
and pairwise deviations are allowed. This requires an entire new analysis of this problem
connecting its dynamic to sand piles, which is of independent interest.

• By leveraging more properties of our novel analysis, we are able to prove that the complexity
suddenly increases when groups of more than 3 players are allowed to coordinate to act
simultaneously. This result solves an open conjecture from [22]. It is also remarkable as
it proves that cooperation affects computational complexity in multiple stages as more and
more players are allowed to coordinate. To the best of our knowledge, no such progressive
phase transitions were ever identified.

All our results on the uniform case are listed in Table 1.

4

• We then consider general hedonic games, and for the first time analyze them when cooper-
ation among players is gradually increased. We start with a case where preferences follow
incompatible/indifferent/compatible interactions among players. We first show that solution
concepts for pairwise cooperation in this case can be computed efficiently. On the other hand,
this result is tight in multiple ways: any amount of further cooperation or slightly more com-
plex preferences is sufficient to impose a prohibitive cost to decide if a stable outcome exists in
the general case. We present new sufficient conditions on preferences under which an outcome
is found in polynomial time, but those remain stringent.

Those results present a new level of details to assess solution concepts for hedonic games. Under
different assumptions on cooperation, it allows one to see which coalition systems are likely to form
among players or, on the contrary, are unlikely to exist or be found using reasonable time and
resources.

2 Hedonic Games and Stability

Let us first define colouring games in a formal way.

Network We model the network with an edge-weighted graph G = (V,E,w), where V denotes
the set of players. There are n = |V | players in the network. Moreover, it is supposed to be a
simple graph, hence there is no loop and no multiple edges. The weight wuv is defined for every
edge uv ∈ E as the utility both u and v receive if they interact. Note that wuv = wvu by symmetry.
In the general case, wuv ∈ Z ∪ {−∞}. In other words, for any two vertices u, v ∈ V , if wuv = −∞
then the players are enemies and they never interact. Given the natural dominance of weight −∞
over all the other ones, we also say that {uv} is a conflict edge when wuv = −∞.

Sometimes, the set of possible weights may be constrained, and we will denote it W. Also,
missing edges in the graph can be added with weight 0; so, without loss of generality, we assume
that G is a complete graph, and we will simply write G = (V,w) in the sequel. As an example,
Figure 1(a) depicts a network with W = {−∞, 2, 3, 4}. Conflict edges are represented with dashed
red lines, while edges with positive weight are represented with solid green lines.

Groups and Utilities We suppose in our model that the players are partitioned into n ordered
sharing groups, some of them may be empty. Such a partition of the nodes is denoted P =
(X1, X2, . . . , Xn). For every node u ∈ V , we denote by cu(P) ∈ J1, nK the index of the group
containing u. In other words, u ∈ Xc, where c = cu(P). The integer c is the colour of u in P .

Figure 1 presents three different partitions of the nodes for a graph with W = {−∞, 2, 3, 4}.
Each of them has three non-empty groups (and so three empty groups).

For a given P , the utility for the player u ∈ V is defined as fu(P) =
∑

v∈Xc\{u}wuv, where
c = cu(P) denotes the sharing group in P which u belongs to. The global utility, or social welfare, is
f(P) =

∑
u∈V fu(P). For the partition of Figure 1(a), the respective utilities of u1, u2, u3, v1, v2, v3

are 7, 4, 0, 4, 5, 6 and the global utility is equal to 26.

Deviations Let P be any partition of the nodes. Given a coalition S with at most k players, we
say that S is a k-deviation, or k-set, when all the players in S have an incentive to join the same
(possibly empty) group in P , so that they all increase their individual utility in the process. This
way, we aim at modeling situations where players can join a given group without any approval of
its current members, e.g., , public communities in social networks, etc. The following definition
formalizes the notion of k-deviation.

5

> 0

Edges Weights
- ∞

u1

u2 u3

v3 v2

v1

2

2 2

3

4

4

3

3

4

u1

u2 u3

v3 v2

v1

2

2 2

3

4

4

3

3

4

u1

u2 u3

v3 v2

v1

2

2 2

3

4

4

3

3

4

(a) (b)

(c)

Figure 1: A network with set of weightsW = {−∞, 2, 3, 4} that does not admit a 2-stable partition.
(a) 1-stable partition that is not 2-stable and that can be obtained after a 2-deviation in partition
depicted in (c). (b) 1-stable partition that is not 2-stable and that can be obtained after a 2-
deviation in partition depicted in (a). (c) 1-stable partition that is not 2-stable and that can be
obtained after a 2-deviation in partition depicted in (b).

Definition 1 (k-deviation). Let k ≥ 1 be any integer and let P = (X1, . . . , Xn) be any partition
of V . A k-deviation is defined as a pair (S, j), where S ⊆ V , |S| ≤ k, j ∈ J1, nK, such that the
partition P ′ = (X ′1, . . . , X

′
n), with X ′i = Xi \S if i 6= j and X ′j = Xj ∪S is such that fv(P

′) > fv(P)
for every v ∈ S.

As an illustration, consider the partition P = ({v3, u1, v2}, {u3}, {u2, v1}, {}, {}, {}) of Fig-
ure 1(a). There exists a 2-deviation ({v2, v1}, 2) because v2 and v1 have an incentive to join the sin-
gleton group {u3}. We indicate it by dashed arrows. Let P ′ = ({v3, u1}, {v2, u3, v1}, {u2}, {}, {}, {})
be the partition obtained after the 2-deviation ({v2, v1}, 2) happens (Figure 1(b)). Observe that
fv1(P ′) > fv1(P) and fv2(P ′) > fv2(P). Note that there is no 1-deviation for the partition of
Figure 1(a).

Stability Let k ≥ 1 be any integer and let P be any partition of the nodes. We say that P is a
k-stable partition if and only if there is no k-deviation.

As an illustration, the three different partitions depicted in Figure 1 are 1-stable. However, none
of them is 2-stable. Indeed, there is 2-deviation for the partition of Figure 1(a) that permits to
obtain the partition of Figure 1(b); there is 2-deviation for the partition of Figure 1(b) that permits
to obtain the partition of Figure 1(c), and there is 2-deviation for the partition of Figure 1(c) that
permits to obtain the partition of Figure 1(a). The arrows in Figure 1 describes this ”cycle” of
partitions. It is possible to show for this graph, there is no 2-stable partition.

Dynamic of the game Players in the networks want to maximize their individual utility. Ini-
tially, none of them interact, and so, we only have singleton groups, that is |Xj | = 1 for every
j ∈ J1, nK. Then we fix a constant parameter k ≥ 1, and the colouring game starts. At each round
i, we consider the current partition Pi of the nodes. In particular, there are only singleton groups
in P0. When a k-deviation exists, we may allow any one of them to happen and, in so doing, we

6

Dynamic of the system (Algorithm 1)

Input: a positive integer k ≥ 1, a set of weights W, and a graph G = (V,w).

Output: a partition k-stable for G.

1: Let P0 be the partition composed of n singletons groups.
2: Set i = 0.
3: while there exists a k-deviation for Pi do
4: Set i = i+ 1.
5: Compute the partition Pi after any k-deviation.
6: return Partition Pi.

4-déviation

Total Utility = 24 (socially optimal)
stable under 1,2, and 3-deviations

Total Utility = 20 (soc. sub-optimal)
stable under all deviations

2
2

2 2

2
2

2

2

2

2 3 3

1
11

1

1
11

1

33

2
2

(a) (b)

Figure 2: A network with set of weights W = {−∞, 1}. (a) 3-stable partition that is not 4-stable
but it is optimal in terms of total utility. (b) k-stable partition for any k ≥ 1 that is not optimal
in terms of total utility.

break Pi, and we get a new partition Pi+1. If there is no k-deviation, the partition Pi is k-stable.
An algorithmic presentation of the game is given in Algorithm 1.

For the graph of Figure 1, Algorithm 1 returns a k-stable partition if and only if k = 1 (otherwise
the algorithm never ends because there is always a 2-deviation for this graph).

Example Consider the graph depicted in Figure 2 with W = {−∞, 1}. Figure 2(a) depicts a
partition composed of 4 non-empty groups. The integers on the nodes represent their utilities.
Observe that this partition is k-stable when k ∈ {1, 2, 3}. However, this partition is not 4-stable
because there is a 4-deviation: the four central nodes can join an empty group (that corresponds
to create a new group) and increase their utilities. The partition obtained after such a 4-deviation
is depicted in Figure 2(b). This partition is k-stable for any k ≥ 1. The utility of the four nodes
that have joined the empty group is now 3 (instead of 2). However, the utility of the other nodes
is now 1 (instead of 2). Thus, we deduce that this partition is not optimal in terms of total utility
(the total utility has decreased from 24 to 20); but it is now stable under all deviations.

We will discuss in Section 5 several extensions of the model. We will show that most of our
results still hold for these more general games.

7

3 The uniform case: are longest deviation sequences polynomial?

A colouring game is said uniform if, except for conflict edges, all edges have the same unit weight
i.e., W = {−∞, 1}. This game is entirely characterized by an unweighted and undirected conflict
graph G− = (V,E) that contains all the conflict edges3. The complementary graph of G− represents
all the pairs of friends (with unit weight). Note also that given a partition P , for any player u, the
individual utility fu(P) equals |Xc| − 1 with c = cu(P), which is how many players have the same
colour as u. Recall that we only consider partition such that any two enemies do not belong to a
same group. As shown in [15, 22] k-stable partitions always exist for any value of k. Their proof is
algorithmic, but it does not compute a k-stable partition in polynomial-time even if k is fixed. As
a first step toward a polynomial-time computation, we now prove that the better-response dynamic
always terminates. Hence, the problem of computing a k-stable partition —in the uniform case—
is in the complexity class PLS, for any fixed k (e.g., see [19]).

In the following, given a partition P we define λi(P) to be the number of groups of size i, and we

denote by
−→
Λ (P) = (λn(P), . . . , λ1(P)) the partition vector.

Lemma 2. For any k ≥ 1, for any conflict graph G−, Algorithm 1 converges to a k-stable partition.

Proof. Let Pi, Pi+1 be two partitions for G− such that Pi+1 is obtained from Pi after a k-deviation.

We prove that
−→
Λ (Pi) <L

−→
Λ (Pi+1) where <L is the lexicographical ordering. To do so, let (S, j)

be the k-deviation which breaks Pi. By definition, for any u ∈ S, we have fu(Pi) < fu(Pi+1).
Furthermore the size of the group Xj has increased by |S|. Therefore, no vertex of S was in a group

of size at least |Xj |+ |S| in Pi. Thus, we get
−→
∆ =

−→
Λ (Pi+1)−−→Λ (Pi) = (0, . . . , 0,∆|Xj |+|S| = 1, . . .),

and so
−→
Λ (Pi) <L

−→
Λ (Pi+1). Finally, as the number of possible vectors is finite, we obtain the

convergence of Algorithm 1.

We can then define L(k, n) as the size of a longest sequence of k-deviations among all the
colouring games defined on a conflict graph with (at most) n nodes.

Let G∅ be the empty conflict graph. An instrumental observation for our next proofs is that:

Observation 1. L(k, n) is always attained in the colouring game defined on the empty conflict
graph G∅ of order n, containing no conflict edges.

Prior to this work, no lower bound on L(k, n) was known, and the analysis was limited to
potential function that only applies when k = 1, 2, and 3 [15, 22]. The analysis of the game becomes
much more difficult as soon as 4-deviations are allowed. Table 1 summarizes our contributions:

Table 1: Previous Bounds and results we obtained on L(k, n).
k Prior to our work Our results

1 O(n2) [22] exact analysis, which implies L(k, n) ∼ (2n)3/2

3 Theorem 8

2 O(n2) [22] exact analysis, which implies L(k, n) ∼ (2n)3/2

3 Theorem 9

3 O(n3) [15, 22] Ω(n2) Theorem 12

≥ 4 O(2n) [22] Ω(nΘ(ln(n))), O(exp(π
√

2n/3)/n) Theorem 13

3The reader may wonder why we consider the conflict graph rather than the friendship graph: which is induced
by the edges with unit weight. Our choice is motivated by the usual terminology for colouring games [22, 26], and
because the conflict graph is the best suited to show the link between equilibria and vertex colouring.

8

3.1 Exact analysis for k ≤ 2

In [22], the authors proved that the global utility increases for each k-deviation when k ≤ 2. As that
potential function is also upper bounded by O(n2), Algorithm 1 converges to a 2-stable partition
in at most a quadratic time. We improve this result as we completely solve this case and give
the exact (non-asymptotic) value of L(k, n) when k ≤ 2. The gist of the proof is to re-interpret
sequences of deviations in the Dominance Lattice. This object has been widely used in theoretical
physics and combinatorics to study systems in which the addition of one element (e.g., a grain of
sand) creates consequences in cascade (e.g., the reconfiguration of a sand pile) [17]. Let us define
an integer partition:

Definition 3 ([9]). An integer partition of n ≥ 1, is a non-increasing sequence of integers Q =
q1 ≥ q2 ≥ . . . ≥ qn ≥ 0 such that

∑n
i=1 qi = n.

Given any game with n players, there are as many partition vectors as there are integer partitions
of n. Thus in the following, we will make no difference between a partition vector and the integer
partition it represents. If we denote the number of integer partitions by pn, then we know that

Algorithm 1 reaches a stable partition in at most pn = Θ((e
π
√

2n
3)/n) steps (the upper-bound

directly follows from Lemma 2 i.e., , the lexicographical ordering argument). This is already far
less than 2n, which was shown to be the best upper bound that one can obtain for k ≥ 4 when
using an additive potential function [22].

For n ≥ 6 it can be seen that some partitions P of the players may never be in the same sequence of
1-deviations. It is hence important to deal with a partial ordering instead of a total one. Brylawski
proved in [9] that dominance ordering creates a lattice on integer partitions, where successors and
predecessors can be defined using a covering relation:

Definition 4. (dominance ordering) Given two integer partitions of n ≥ 1, denoted by Q = q1 ≥
. . . ≥ qn and Q′ = q′1 ≥ . . . ≥ q′n, we say that Q′ dominates Q if

∑i
j=1 q

′
j ≥

∑i
j=1 qj, for all

1 ≤ i ≤ n.

Definition 5. (covering) Given two integer partitions Q,Q′ of n ≥ 1, Q′ covers Q if and only if Q′

dominates Q and no other integer partition Q′′ satisfies that Q′ dominates Q′′ and Q′′ dominates
Q.

The following lemma characterizes when an integer partition covers another one.

Lemma 6 ([9]). Given Q,Q′, Q′ covers Q if and only if there are j, k such that: (i) q′j = qj + 1;
(ii) q′k = qk − 1; (iii) for all i /∈ {j, k}, we have q′i = qi; (iv) either k = j + 1 or qj = qk.

The main ingredient of our analysis is to exploit a strong relationship between covering and 1-
deviations in a game, that holds as long as no conflict edges exist.

Lemma 7. Assuming no conflict edges exist i.e., G− = G∅, let Q,Q′ be two integer partitions of
n = |V |. Then, Q′ dominates Q if and only if there exist two partitions P, P ′ of the players such

that:
−→
Λ (P ′) = Q′,

−→
Λ (P) = Q, and there is a valid sequence of 1-deviations from P to P ′.

Proof. (⇒) To prove the first direction (a.k.a., the ‘only if part’), it suffices to prove the result
whenever Q′ covers Q. In such case, we have by Lemma 6 that there exist j, k satisfying: q′j = qj+1,
q′k = qk − 1, and for all i such that i /∈ {j, k}, q′i = qi. Moreover, since k = j + 1 or qj = qk, we get
qj ≥ qk.

9

Xj Xk Xj Xk Xj Xk Xj Xk Xj Xk
(a) P = P0 (e) P4 = P'(b) P1 (c) P2 (d) P3

Figure 3: An example of decomposition for a 1-deviation from group Xk to group Xj .

Let P be any partition of the players such that
−→
Λ (P) = Q. We can write w.l.o.g. P = (X1, . . . , Xn)

with |Xi| = qi for all 1 ≤ i ≤ n. We take a vertex v ∈ Xk, which exists because |Xk| = qk > 0,
and we claim that ({v}, j) is a 1-deviation that breaks P . Indeed, we have that |Xj | = qj ≥ qk,
and no conflict edges exist by the hypothesis. So, we can break P by making ({v}, j) happen and
in so doing, we get a new partition P ′ = (X ′1, . . . , X

′
n) for the players such that: |X ′j | = |Xj | + 1,

|X ′k| = |Xk| − 1, and for all i such that i /∈ {j, k}, |X ′i| = |Xi|. In other words,
−→
Λ (P ′) = Q′.

(⇐) To prove the converse direction, assume the existence of two partitions P, P ′ such that
−−−→
Λ(P) =

Q,
−−−→
Λ(P ′) = Q′ and P ′ can be obtained from P after the 1-deviation ({v}, j) happens. Then, v

picks j as her new colour instead of her former colour k, with |Xj | ≥ |Xk| by the hypothesis.
Furthermore, we can suppose w.l.o.g. that the n groups in P are ordered by decreasing size, up to
a recolouring. So, we get either |Xj | = |Xk|, or |Xj | > |Xk|, hence j ≤ k − 1. By a reordering of
groups with equal size, we can also assume that Xj is the first group with size |Xj |, whereas Xk is
the last group with size |Xk| in P . Then:

• if i ∈ {1, . . . , j − 1}, then
∑i

l=1 |X ′l | =
∑i

l=1 |Xl|;

• if i ∈ {j, . . . , k − 1}, then
∑i

l=1 |X ′l | = [
∑i

l=1 |Xl|] + 1;

• if i ∈ {k, . . . , n}, then
∑i

l=1 |X ′l | =
∑i

l=1 |Xl|.

As a consequence, we have that Q′ dominates Q by the hypothesis.

In other words, any sequence of 1-deviations, from a partition P to another partition P ′, can be
decomposed into more elementary 1-deviations, with the property that if there is such an elementary

deviation from the partition Pi to the partition Pi+1, then the integer partition
−→
Λ (Pi+1) covers−→

Λ (Pi). Note that, by doing so, we may get another final partition P ′′ 6= P ′ but it will have the
same partition vector, as seen on an example in Figure 3. Since it has been proven in [18] that for

n = m(m+1)
2 + r, the longest chain in the Dominance Lattice has length 2

(
m+1

3

)
+ mr, we finally

obtain the exact value for L(1, n).

Theorem 8. Let m and r be the unique non negative integers such that n = m(m+1)
2 + r, and

0 ≤ r ≤ m. We have L(1, n) = 2
(
m+1

3

)
+mr. This implies that L(1, n) ∼ 2

√
2

3 n
√
n as n gets large.

Interestingly, we prove that 2-deviations have a similar action on partition vectors, which im-
plies:

Theorem 9. L(2, n) = L(1, n) = Θ(n
√
n).

10

Proof. Clearly, L(2, n) ≥ L(1, n).
For the other direction, let G∅ = (V,E) be the conflict graph such that |V | = n and |E| = 0. Let
P be any partition of the players for G∅ such that there exists some 2-deviation ({u, v}, j) that
breaks P . In the following, let c = cu(P) and let c′ = cv(P). If |Xj | ≥ |Xc| or |Xj | ≥ |Xc′ |, then the
2-deviation can be decomposed into 1-deviations. So, we suppose that |Xj | = |Xc| − 1 = |Xc′ | − 1.
There are two cases:

• Suppose c = c′. Then after the 2-deviation happens, the groups Xc, Xj are replaced with
Xc \{u, v}, Xj ∪{u, v}; equivalently, we obtain two groups of respective size |Xc|−2, |Xc|+ 1
instead of two groups of respective size |Xc| − 1, |Xc|. It thus follows that for any vertex
uj ∈ Xj , one can obtain the same partition vector by making the 1-deviation ({uj}, c) happen.

• Else, after the 2-deviation happens the groups Xc, Xc′ , Xj of respective size |Xc|, |Xc|, |Xc|−1
are replaced with the groups Xc \ {u}, Xc′ \ {v}, Xj ∪ {u, v} of respective size |Xc| − 1, |Xc| −
1, |Xc| + 1. Again, one can obtain the same partition vector, this time by making the 1-
deviation ({v}, c) happen.

Finally, any partition vector that is obtained from a 2-deviation may also be obtained from a
sequence of 1-deviations. Thus, L(2, n) ≤ L(1, n).

Consequently, L(2, n) = L(1, n) = Θ(n
√
n).

3.2 Lower bounds for k > 2

On the one hand, the classical dominance ordering does not suffice to describe all k-deviations as
soon as k ≥ 3. It can be seen with the two following integer partitions of 10: Q = (3, 3, 3, 1) and
Q′ = (4, 2, 2, 2), that are uncomparable, yet one can break Q to obtain Q′ using a 3-deviation. On
the other hand, we can reuse some techniques inspired from [18] so that we can obtain lower-bounds
on L(k, n). The method heavily relies on specific sequences of deviations that we will call cascades.

Overview To give a flavor of the method, we first observe there is only one k-stable partition
in the empty conflict graph G∅ namely, the one with partition vector (n) composed of only one
summand. Then given two partitions P, P ′ of the players, we notice that if P ′ is obtained from P
using a k-deviation, then we may have that h(P ′) ≥ h(P) as soon as k ≥ 3, with h(P) the length

of a longest sequence in the Dominance Lattice from the integer partition
−→
Λ (P) to the integer

partition (n). Moreover, we also noticed that the larger k the larger h(P ′)− h(P) may be. Thus it
motivates the following strategy to lower-bound L(k, n): at each step of Algorithm 1, one should
break the current partition using a set S of maximum size4.
To ensure that many k-deviations can happen consecutively, we will seek for partitions containing
a group of each size: from one to some value p. For instance, consider a partition with three groups
of size p, and one group of size i for 1 ≤ i ≤ p− 2. A first 3-deviation can happen so that a vertex
in each of the three groups of size p changes her colour to join the group of size p− 2. In such case,
we are left with a partition containing: one group of size p+ 1, three groups of size p− 1, and one
group of size i, for 0 ≤ i ≤ p− 3. Hence, another 3-deviation can happen, so that a vertex in each
of the three groups of size p− 1 changes her colour to join the group of size p− 3, and so on.

4We only consider elementary k-deviations e.g., deviations such that the partition vector one obtains after they
happen cannot be gotten using a sequence of smaller deviations.

11

Vectorial notations In order to define our cascades, we will rely on a vectorial representation
of partitions and deviations. This novel representation allows us to describe, in simpler terms, the
“patterns” that are applied recursively until we obtain a long sequence of k-deviations. Formally,
given two partitions P, P ′ of the players, if P ′ is obtained from P using a k-deviation, then we

represent the deviation by the vector
−→
Λ (P ′)−−→Λ (P).

• In case of a 1-deviation, there are four possibilities. If some player leaves a group of size q+ 1
for a group of size p−1, hence p ≥ q+2, then the deviation is represented by a vector −→α [p, q]5

whose entries all equal zero, except:

– if p = 2, q = 0 then α1 = −2, α2 = 1;

– if p > 2, q = 0 then α1 = αp−1 = −1, αp = 1;

– if p = q + 2, q > 0 then αp = αq = 1, and αp−1 = −2;

– if p > q + 2, q > 0 then αp−1 = αq+1 = −1, and αp = αq = 1.

• The case of 2-deviations can be ignored by Theorem 9.

• In case of a 3-deviation, we consider there are three groups of size p − 1 and a player leaves
each group to join some group of (possibly null) size p − 3. Hence it is represented by a
vector −→γ [p]5 whose entries all equal zero except: γp = 1, γp−1 = −3, γp−2 = 3, and if p 6= 3
γp−3 = −1.

• Finally, in case of a 4-deviation, we consider there are four groups of size p− 1, one group of
size p − 4, and a player in each group of size p − 1 changes her colour so that she joins the

group of size p− 4. Therefore it is represented by a vector
−→
δ [p]5 whose entries all equal zero,

except: δp = 1, δp−1 = −4, δp−2 = 4, and if p 6= 4 δp−4 = −1.

Throughout the remaining of the section, we will ignore all other k-deviations.

Properties To go further with our vectorial approach, one needs to check whether a given devi-

ation −→ϕ =
−→
Λ (P ′)−−→Λ (P) is valid i.e., the vector

−→
Λ (P) +−→ϕ has no negative entries. Let us now

introduce the notion of balanced sequence.

Definition 10. Given any integer h > 0, let −→ϕ 1,−→ϕ 2, . . . ,−→ϕ t be vectors. We call this sequence
h-balanced if, for any 1 ≤ i ≤ t, the sum of the i first vectors, namely

∑i
j=1
−→ϕ j, has all its entries

greater than or equal to −h.

Given a h-balanced sequence (−→ϕ 1,−→ϕ 2, . . . ,−→ϕ t) of k-deviations, let
−→
Φ =

∑t
i=1
−→ϕ i be the sum

of all deviations, and let pmax be the largest index j that satisfies
−→
Φ j 6= 0. Equivalently, pmax is

the largest size of a group modified (hence created) after some deviation in the sequence happens
(i.e., ∀l,∀p > pmax, ϕ

l
p = 0). One can observe that a sufficient condition so that the sequence is

valid is that it starts from a partition with at least h groups of each size j, for 1 ≤ j ≤ pmax.
In the following, we will often make use of a symmetric property to find a balanced sequence:

Definition 11. The minimum-size sub-vector that contains all non-zero entries of a vector is called
the support of the vector. We say a vector has the symmetric property if, and only if, the support
of the vector is symmetric. Equivalently, a vector has the symmetric property if, and only if, the
coordinates of its support are invariant under the reverse permutation.

5The index p represents the largest group created after the k-deviation happens.

12

...

⇣1 ⇣3 ⇣4⇣2

⇣1
⇣3

⇣1

⇣2

⇣1

⇣1

⇣1

⇣1

⇣1

⇣1

⇣2

⇣2

⇣2

⇣3

Figure 4: Long sequence using recursive cascades.

Given a vector, it might be useful in the following to notice that the size of the support is
exactly pmax − pmin + 1, where pmax, pmin denote the largest non-zero index and the least non-zero
index.
One can also notice every 1-deviation yields an elementary vector of the form −→α [p, q] that has the
symmetric property provided p ≥ q ≥ 1. But the property does not hold in general for k-deviations
whenever k ≥ 3.

Results Prior to our work, it was known L(3, n) = O(n3), which follows from another application
of the potential function method [22]. But nothing proved that L(3, n) > L(2, n), and in fact it was
conjectured in [15] that both values are equal. Theorem 12 proves for the first time that deviations
of multiple players can delay convergence and that the gap between k = 2 and k = 3 obtained from
potential function is indeed justified. Using a considerable refinement of the cascade technique, we
are able to prove in Theorem 13 a much more significant result: that 4-deviations are responsible
for a sudden complexity increase, as we now prove that no polynomial bounds exist for L(4, n).

Theorem 12. L(3, n) = Ω(n2).

Theorem 13. L(4, n) = Ω(nΘ(ln(n))).

The rest of this section is mainly devoted to prove Theorem 13. At the end of this section, we
also give a proof of Theorem 12 using the same techniques.

Theorem 13. As before, we assume no conflict edge exists. W.l.o.g. we also assume that the number
of players is n = cL(L+ 1)/2. The values c and L will be defined later, and we only assume for the
moment that c is sufficiently large.

Starting from the partition with n singleton groups, let P 0 be such that
−→
Λ (P 0) = (0, . . . , 0, λL =

c, . . . , λ1 = c). Using our notations, one can obtain a group of size j with the sequence of 1-
deviations defined by

∑j
i=2
−→α [i, 0] and so, one can obtain P 0 using the sequence of 1-deviations

defined by c ·
(∑L

j=2

∑j
i=2
−→α [i, 0]

)
.

Our proof relies on a “shift” operator: given a vector −→ϕ whose support ranges between in-
dices pmin, pmax, the vector tr(i)−→ϕ , i < pmin, is a vector of the same size and the same sup-
port as −→ϕ , but whose support ranges between indices pmax − i, pmin − i. For instance, we have
tr(1)(0, 1,−2, 1, 0, 0, 0) = (0, 0, 1,−2, 1, 0, 0). In particular, if −→ϕ represents a k-deviation, then
tr(i)−→ϕ represents the same k-deviation, up to a decrease by i of all groups involved; that is, we

have tr(i)−→α [p, q] = −→α [p− i, q − i], tr(i)−→γ [p] = −→γ [p− i], tr(i)−→δ [p] =
−→
δ [p− i].

13

One can extend the operator and its meaning to sequences of k-deviations as well. Formally, let
−→ϕ 1, . . . ,−→ϕ t be a sequence of k-deviations, and let

−→
Φ =

∑t
l=1
−→ϕ l. Then, if no group of size less

than i+ 1 is modified nor created by the sequence (i.e., ∀l,∀p ≤ i, ϕlp = 0), we obtain by linearity

of the operator that tr(i)−→Φ =
∑t

l=1
tr(i)−→ϕ l.

Interestingly, the so-called “shift” operator keeps the symmetric properties of a vector:

Claim 14. Let
−→
φ be any vector that has a support of size s = pmax − pmin + 1, and with the

symmetric property. For any positive integers r and d such that 1 + (r − 1)d ≤ pmin, the vector−→
φ ′ =

∑r−1
h=0

tr(hd)−→φ also has the symmetric property.

Proof. The support of vector
−→
φ ′ has size s′ = (r − 1)d+ s. In the following, we will assume up to

padding the vector
−→
φ with additional null entries that it is unbounded i.e., it is indexed by Z. By

the hypothesis the vector
−→
φ has the symmetric property and so, ∀1 ≤ j ≤ pmax + pmin − 1, φj =

φpmin+pmax−j . Let 0 ≤ j ≤ s′/2− 1. We have that:

φ′pmax−j =
r−1∑

h=0

φpmax−j+hd =
r−1∑

h=0

φpmax+pmin−(pmax−j+hd)

=
r−1∑

h=0

φpmin+j−(r−1−h)d =
r−1∑

h=0

φpmin−(r−1)d+j+hd = φ′pmin−(r−1)d+j .

Thus,
−→
φ ′ also has the symmetric property. �

Let t > 0 and T > 0 be such that 2T−1(2t2 + 2) ≤ L. In order to prove Theorem 13, we construct

sequences of deviations that we denote by
−→
ζ i for all i = 1, . . . T . The construction is recursive.

To construct the vector
−→
ζ i+1 from

−→
ζ i, we follow a particular construction that we will show valid

and that is illustrated in Figure 4. The construction is composed of a repetition of the sequence

defined by
−→
ζ i a certain number of times (linear in t) shifting the ”starting point” of each sequence

by the same value. The construction then adds 1-deviations in order to get a technical property,
called Good property (e.g., see Definition 15 below).

Definition 15. Let i be a positive integer. We will say the sequence
−→
ζ i has the Good Property if

it has the symmetric property, its support has even size si, and there exist ti1, ti2 satisfying:

• 1 < ti1 < ti2 < 2ti1; ti2 ≤ 2i+1;

• and all entries of
−→
ζ i are null except for: ζiL = ζiL+1−si/2 = 1, ζi

L−ti1
= ζi

L−ti2
= −1, and

symmetrically: ζiL−si+1 = ζiL−si/2 = 1, ζi
L−si+ti1+1

= ζi
L−si+ti2+1

= −1.

Note that in terms of k-deviations, Definition 15 implies that L is the largest size of a group

created after the sequence
−→
ζ i happens.

Let us construct the base-case
−→
ζ 1. It starts with a cascade of t2 consecutive 4-deviations, namely∑t2−1

i=0

−→
δ [L − i]. Then, a player in some group of size L − 2 picks a new colour so that she joins

another group of size L− 2; another player leaves her group of size L− t2 − 1 to join another one
of the same size; a third player in a group of size L− t2 − 5 picks a new colour so that she joins a
group of size L− t2− 4; last, a fourth player leaves her group of size L− 4 for a group of size L− 2,

14

followed by a player leaving her group of size L − 3 for another one of the same size. Altogether,
we obtain the sequence

−→
Φ 1 =

t2−1∑

i=0

−→
δ [L−i]+−→α [L−1, L−3]+−→α [L−t2, L−t2−2]+−→α [L−t2−3, L−t2−6]+−→α [L−1, L−5]+−→α [L−2, L−4].

The sum-vector
−→
Φ 1 has all its entries equal to zero, except for: Φ1

L = Φ1
L−5 = Φ1

L−t2−1 = Φ1
L−t2−6 =

1, and Φ1
L−1 = Φ1

L−2 = Φ1
L−t2−4 = Φ1

L−t2−5 = −1.

We finally construct
−→
ζ 1 by repeating the sequence6 −→Φ 1 many times, up to various shiftings, followed

by a sequence of 1-deviations that yields:

−→
ζ1 =

t2−5∑

i=0

tr(i)−→Φ 1 +
t2−4∑

i=0

−→α [L−4−i, L−2t2 +3+i]+−→α [L−t2 +4, L−t2−5]+−→α [L−t2 +3, L−t2−4].

Claim 16. There is a constant h1 such that the sequence defined by
−→
ζ1 is h1-balanced.

Proof. First, note that any k-deviation modifies a constant number of groups in the partition (at

most k + 1). Thus, for any i, 0 ≤ i ≤ t2 − 5, the sequence defined by tr(i)−→Φ 1 is balanced for
some constant because, for any j, 1 ≤ j ≤ n, the number of deviations that modifies some group

of size j is constant as well. In addition, the vector tr(i)−→Φ 1 contains a constant number of non-

zero values and so, for any j, 1 ≤ j ≤ n, the sequence defined by
∑t2−5

i=0
tr(i)−→Φ 1 also modifies a

constant number of groups of size j. Since this sequence
∑t2−5

i=0
tr(i)−→Φ 1 is only completed with a

subsequence of 1-deviations so that we obtain
−→
ζ 1, and that ∀j there is also a constant number of

such 1-deviations that modify or create some group of size j, we can safely conclude there exists a

constant h1 such that the sequence induced by
−→
ζ 1 is h1-balanced. �

By the calculation, we obtain that all values in
−→
ζ1 equal to zero, except for: ζ1

L = ζ1
L−t2 =

ζ1
L−t2−1 = ζ1

L−2t2−1 = 1, and ζ1
L−2 = ζ1

L−3 = ζ1
L−2t2+2 = ζ1

L−2t2+1 = −1. This proves that
−→
ζ 1

satisfies the so-called Good Property of Definition 15 (with t11 = 2, t12 = 3, s1 = 2(t2 + 1)). Then,
one can apply the following inductive step.

Claim 17. Suppose that
−→
ζ i is defined, it has a support of size si and it has the Good Property.

Then there exist two positive integers denoted by ai, t
i
1, and there exists a sequence of 1-deviations

denoted by
−→
ξ i+1 so that:

−→
ζ i+1 =

ai∑

j=0

tr(jti1)−→ζ i +
−→
ξ i+1

also has the Good Property.

In addition we have that if
−→
ζ i is hi-balanced then

−→
ζ i+1 is (hi + 1)-balanced, and it holds that

si ≤ si+1 <
3
2si where si+1 denotes the size of the support of

−→
ζ i+1.

Proof. We first note that si is even by Definition 15. Let ti1, t
i
2 be as defined in Definition 15. Also,

let ai be the largest even integer j such that L− jti1 − ti2 > L− si/2 + 1.

We set
−→
Φ i+1 =

∑ai
j=0

tr(jti1)−→ζ i, that has the symmetric property by Claim 14.

6Note that we will often abuse of our “vector-sum” notation
−→
Φ =

∑t
i=1
−→ϕ i to represent the whole sequence

−→ϕ 1, . . . ,−→ϕ t.

15

In addition, let ti+1
1 = ti2 and ti+1

2 = ti1 + ti2
7. Since we have 1 < ti1 < ti2 < 2ti1, ti2 ≤ 2i+1 by the

hypothesis, one obtains 1 < ti+1
1 < ti+1

2 < 2ti+1
1 , ti+1

2 < 2ti2 ≤ 2 · 2i+1 = 2i+2.

We finally introduce si+1 = si + ait
i
1 <

3
2si the size of the support of

−→
Φ i+1, and we observe that it

is an even number because ai, si are both even.

We aim to construct from
−→
Φ i+1 a sequence

−→
ζ i+1 that satisfies the Good Property w.r.t. ti+1

1 , ti+1
2 , si+1.

To do so, we first introduce for any 0 ≤ l ≤ ai the truncated sum-vector
−→
Ψ l =

∑l
j=0

tr(jti1)−→ζ i. In

particular, we have
−→
Ψ0 =

−→
ζ i while

−→
Ψai =

−→
Φ i+1. Note that each

−→
Ψ l has the symmetric property

by Claim 14. Furthermore we have that all entries of
−→
Ψ l are equal to zero, except for:

• Ψl
L = Ψl

L−si−lti1+1
= 1; ∀0 ≤ j ≤ l,Ψl

L−si/2−jti1+1
= Ψl

L−si/2−(l−j)ti1
= 1;

• Ψl
L−lti1

= Ψl
L−si+1 = −1; ∀0 ≤ j ≤ l,Ψl

L−jti1−ti2
= Ψl

L−si−(l−j)ti1+ti2
= −1.

In particular, we have that: Φi+1
L = Ψai

L = 1; Φi+1
L−si+1/2+1 = Ψai

L−si/2−ai
2
ti1+1

= 1; Φi+1

L−ti+1
1

=

Ψai
L−ti2

= −1, and Φi+1

L−ti+1
2

= Ψai
L−ti1−ti2

= −1. So, in order to obtain the so-called Good property

of Definition 15, we are left to set to zero all other entries of the -sum-vector
−→
Φ i+1, using 1-

deviations. To achieve the result, let us partition the 4ai indices we want to set to zero in 4-
tuples (L − j1, L − j2, L − si+1 + 1 + j2, L − si+1 + 1 + j1) such that: j1 < j2, and Φi+1

L−j1 =

−1,Φi+1
L−j2 = 1. For each such 4-tuple, we add to the vector-sum

−→
Φ i+1 the sequence of 1-deviations∑j2−j1−1

j=0
−→α [L − j1 − j, L − si+1 + 1 + j1 + j] whose all entries are equal to zero, except for those

indexed by the 4-tuple that are respectively equal to 1,−1,−1, 1.

Finally, let us assume
−→
ζ i is hi-balanced. It remains to prove that

−→
ζ i+1 is (hi + 1)-balanced. By

the hypothesis, we have that ∀j, tr(j)−→ζ i is hi-balanced, and ∀l, p,Ψl
p ≥ −1, hence

−→
Φ i+1 is (hi + 1)-

balanced. Furthermore, we have by construction each subsequence of 1-deviations in the sequence−→
ξ i+1 is 1-balanced. As a result,

−→
Φ i+1 is (hi + 1)-balanced implies that

−→
ζ i+1 is (hi + 1)-balanced.

�
Recall that t, T > 0 are such that 2T−1(2t2 +2) ≤ L, and n = cL(L+1)/2. Set T = dlog2(t)+1e

and, without loss of generality, assume 2(t3 + t) = L. By the proof of Claim 17, one obtains a
maximum shift of:

T−1∑

i=1

ai · ti1 <
T−1∑

i=1

si
2
<

T−1∑

i=1

(
3

2

)i−1 s1

2
=

2s1

3

((
3

2

)T−1

− 1

)
= O(tlog2(3)+1) = o(t3)

for the range of the support of vector
−→
ζ T w.r.t. the range of the support of

−→
ζ 1. By comparison, we

remind that the sequence
−→
ζ 1 solely modifies groups of size Ω(L) = Ω(t3). As a result, the vector−→

ζ L indeed represents a sequence of k-deviations, and by Claim 17 it is (h1 + T − 1)-balanced. So,
n = (h1 + T − 1)(2t3 + 2t)(2t3 + 2t+ 1)/2 = (h1 + dlog2(t)e)(2t3 + 2t)(2t3 + 2t+ 1)/2 is sufficient
to make this sequence valid. One can note that since h1 is a universal constant, n = O(t6 log2(t)).

Claim 18. The sum-vector
−→
ζ i+1, as it is defined in Claim 17, represents a sequence of at least

(si
2i+2 − 5)-times more deviations than in the sequence

−→
ζ i, where si denotes the size of the support

of
−→
ζ i.

7By induction, we get ti1 = Fi+3 and t2i = Fi+4, where Fi = 1√
5

((
1+
√

5
2

)i
−
(

1−
√

5
2

)i)
is the ith Fibonacci

number.

16

Proof. The sequence
−→
ζ i is repeated ai times using the “shift” operator, with ai the largest even

integer j such that L − jti1 − ti2 > L − si/2 + 1. Furthermore if L − jti1 − ti2 > L − si/2 + 1 then

j ≤ si−4−2ti2
2ti1

. Since we have by Definition 15 that ti1 < ti2 ≤ 2i+1, then
si−4−2ti2

2ti1
> si

2i+2 − 1
2i
− 1 and

so, ai ≥ b si
2i+2 − 1

2i
− 1c − 2 ≥ si

2i+2 − 5. �

Since the support of
−→
ζ 1 has size 2t2 + 2 by construction, it follows that

−→
ζ T represents a

sequence of at least
∏T−1
i=1 (2t2+2

2i+2 − 5) ≥ (2t2+2
2T+1 − 5)T−1 ≥ (2t2+2

4t − 5)log2(t) = Ω(tlog2(t)) deviations.
As n = O(t6 log2(t)), it proves Theorem 13.

We finally prove that L(3, n) = Ω(n2).

Proof. [Theorem 12] As usual let G∅ = (V,E) be the empty conflict graph with |V | = n and
|E| = 0. The number of players is here assumed to be n = O(cL2), where c denotes a large constant

integer. We start our sequence from any partition P 0 which satisfies
−→
Λ (P 0) = (0, . . . , 0, λL =

c, . . . , λ1 = c). Note that one can reach such a partition using a sequence of 1-deviations, namely

c ·
(∑L

j=2

∑j
i=2
−→α [i, 0]

)
.

Let then t = L−1
4 . We construct a sequence

−→
ζ 1 =

∑t
i=0
−→γ [L− i] of t+ 1 consecutive 3-deviations

a.k.a., a cascade. The sum-vector
−→
ζ 1 has all its entries equal to zero, except for: ζ1

L = ζ1
L−2 = 1,

ζ1
L−t−1 = ζ1

L−t−3 = −1, ζ1
L−1 = −2 and ζ1

L−t−2 = 2.
Using the so-called “shift” operator of Section 3.2, one can repeat the above sequence that yields−→
ζ 2 =

∑t−2
i=0

tr(i)−→ζ 1. The sum-vector
−→
ζ 2 has all its entries equal to zero, except for: ζ2

L = ζ2
L−t =

ζ2
L−t−2 = ζ2

L−2t = 1, and ζ2
L−1 = ζ2

L−t+1 = ζ2
L−t−1 = ζ2

L−2t−1 = −1.

Again, we repeat the sequence
−→
ζ 2 using the so-called “shift” operator, and one obtains

−→
ζ 3 =∑t−4

i=0
tr(i)−→ζ 2. The sum-vector

−→
ζ 3 has all its entries equal to zero, except for: ζ3

L = ζ3
L−3t+3 =

ζ3
L−3t+1 = 1, and ζ3

L−t+3 = ζ3
L−t+2 = ζ3

L−t = ζ3
L−4t = −1.

We finally repeat the sequence
−→
ζ 3 until we obtain

−→
ζ 4 =

∑t−1
i=0

tr(i)−→ζ 3. Note that since the sequence−→
ζ 1 is a cascade, then it is h1-balanced for some constant h1 (e.g., see the proof of Claim 16) and

so, since in addition each sequence
−→
ζ i has a constant number of non-zero entries, then it follows

that the whole sequence
−→
ζ 4 is also h-balanced, for some larger constant h ≥ h1. Hence, it is a

valid sequence whenever we start from P 0 and the constant c is large enough, and it represents a
sequence of θ(t4) = θ(L2) = θ(n2) deviations. As a result, we have L(3, n) = Ω(n2).

4 The general case: Are games stable under deviations?

More generally, a colouring game may be defined with weights taking values in a larger set W.
Players then choose to interact with each others according to more complex preferences and the
individual utility is not always related to the size of the sharing group. For the remaining of the
section, let wp be the largest positive weight in a graph, if any, and 0 otherwise.

Nash equilibria On the positive side, we first show the following result.

Theorem 19. For any weighted graph, Algorithm 1 converges in O(wpn
2) steps to a 1-stable

partition.

The proof follows from a more general potential-function technique:

17

Lemma 20. Given a graph G = (V,w), let P, P ′ be partitions of the nodes. Let (S, j) be a
k-deviation which breaks P , S = {u1, u2, . . . , uk}. If one can obtain P ′ from P after this deviation

happens then we have: f(P ′)− f(P) ≥ 2[k −∑1≤i,l≤k wuiul +
∑
{ui,ul|cui (P)=cul (P)}wuiul].

The proof of the lemma is deferred to the appendix. Theorem 19 follows from an application
of Lemma 20 to the case of a 1-deviation.

Proof. [Theorem 19] Let Pi, Pi+1 be two consecutive partitions of the players in Algorithm 1, and
let ({u1}, j) be the 1-deviation that breaks Pi. By Lemma 20, we get that f(Pi+1) − f(Pi) ≥
2[1 − 0 + 0] = 2. Hence the global utility increases at each step of the dynamic, and it is upper
bounded by an O(wpn

2).

Theorem 19 proves that all colouring games admit a 1-stable partition, or equivalently a Nash-
equilibrium, and that one can be reached in pseudo-polynomial time. Note on the other hand that
our dependency on the weights can be exponential. It is unlikely one can improve this analysis, as
the problem of computing a 1-stable partition is PLS-complete8.

We now fix a set of weights W for the analysis, and we look at the greatest value of k for which
a k-stable partition always exists. In the following, we will denote this maximum value by k(W),
and we will establish it for various sets of weights. Finally, we will strengthen the aforementioned
results by proving that deciding if a graph with weights in W admits a k-stable partition is either
trivial (i.e., it is true for all such graphs) or NP-complete.

4.1 Games with a unique positive weight

We first focus on the subsets of {−∞, 0, 1} ∪ −N. A good representative amongst these is the
subset {−∞, 0, 1}, which is the simplest set of weights extending the uniform case (W = {−∞, 1})
to accommodate indifferent edges. Surprisingly, we will show that introducing the null weight
radically alters the stability properties of colouring games. Indeed, whereas k({−∞, 1}) = ∞, we
will prove k({−∞, 0, 1}) = 2 after exhibiting a surprising counterexample for k = 3.

Let us first show that k(W) ≥ 2. In fact, Theorem 21 is a global stability result, which is more
precise and uses structural properties of the graphs. Given a graph G = (V,w), let us define the
”friendship graph” G+ = (V,E+) of G, where E+ = {uv ∈ E : wuv > 0}. We remind that the girth
of a graph is the length of its shortest cycle. By definition, an acyclic graph has infinite girth.

Theorem 21. Let k be a positive integer, and G = (V,w) be constrained to W ⊆ {−∞, 0, 1}∪−N.
If the girth of the friendship graph G+ is at least k+ 1, then Algorithm 1 always reaches a k-stable
partition in O(n2) steps in that case.

Proof. As in the case k = 1, let Pi, Pi+1 be two consecutive partitions of the players in Algorithm 1,
and let (S = {u1, u2, . . . , ul}, j) be the l-deviation that breaks Pi, with l ≤ k. By Lemma 20, we
get that f(Pi+1)− f(Pi) ≥ 2[l−∑{ut,us|cut (Pi) 6=cus (Pi)}wutus] ≥ 2[l− |E+ ∩ S × S|] because by the
hypothesis the largest positive weight is 1. Furthermore, since the girth is at least k + 1 by the
hypothesis, S induces a forest in G+, and so, |E+ ∩ S × S| ≤ l − 1. Hence, f(Pi+1) − f(Pi) ≥ 2,
and as the result the global utility increases at each step of the dynamic. The latter concludes the
proof as the global utility is upper bounded by an O(n2).

Particularly, if G+ is cycle-free, then we get there is a k-stable partition for G, for any k ≥ 1;
if G+ is triangle-free, then there always exists a 3-stable partition for G. Furthermore, as the girth
of any graph is at least 3, then there always exists a 2-stable partition.

8A simple reduction from cut games can be found e.g., see [19].

18

Unlike the uniform case, one can show the quadratic bound on the number of steps is indeed
tight. To show it, assume the set V can be partitioned in three distinct subsets V1, V2, V3. We assume
the induced (friendship) subgraph G+[V3] is the clique Kp+1, the induced subgraph G+[V1 ∪ V2] is
the complete bipartite graph Kp,p, and each node in V2 is adjacent in G+ to every node in V3. Note
that n = 3p + 1. We obtain the graph G = (V,w) by completing G+ with all missing edges and
setting their weight to zero. Here is a sequence one can obtain for the colouring game defined on
G: in p consecutive 1-deviations, all nodes in V3 pick the same colour, say 1; then, in p consecutive
1-deviations all nodes in V1 pick the same colour as some node in V2, say 2, before the unique node
in V2 of colour 2 picks colour 1. By repeating the same process with all other p − 1 nodes in V2,
one finally obtains a sequence of (p+ 1)2 = θ(n2) 1-deviations.

Proposition 22. There is a graph G = (V,w) constrained to W = {−∞, 0, 1} such that there does
not exist a 3-stable partition for the colouring game defined on G.

Figure 5 presents a graph with 18 vertices that does not admit any stable partition for k = 3.
Note in particular the presence of 4 indifferent edges shown in dashed lines: without these edges a
k-stable partition would exist for all values of k. The proof illustrates the complexity of sequences
of 3-deviations, which are able to create infinite sequences of deviations at constant global utility!
To keep the graph readable, we use conventions. (1) Some sets of nodes are grouped within a circle;
an edge from another node to that circle denotes an edge to all elements of this set. (2) All nodes
that are not connected by an edge on the Figure are enemies with weights −∞. (3) Green solid
edges represent edges with weight 1, whereas blue dashed edges represent edges with weight 0.

The proof of Proposition 22 relies on another structural result which we state as follows.

Definition 23. Let G = (V,w), and let u, u′ ∈ V . We say that u and u′ are quasi-twins if wuu′ > 0
and for all nodes v ∈ V \ {u, u′} wuv = wu′v except maybe for one v0 for which |wuv0 − wu′v0 | = 1.

Lemma 24. Given a graph G = (V,w), let P be a 1-stable partition for the colouring game defined
on it. Then, cu(P) = cu′(P) for all quasi-twin vertices u, u′.

Proof. Without loss of generality we have that for all vertices v ∈ V \ {u, u′}, wuv ≥ wu′v. Equiva-
lently, either wuv = wu′v for all v ∈ V \ {u, u′}, or there is a unique v0 such that wuv0 = wu′v0 + 1
and wuv = wu′v for all v ∈ V \ {u, u′, v0}. Suppose by contradiction cu(P) 6= cu′(P). There are two
cases to be considered.

• Case fu(P) > fu′(P). Then (u′, cu(P)) breaks the partition because, after it happens we get
a new partition P ′ so that fu′(P

′) ≥ (fu(P)− 1) + wuu′ ≥ fu(P) > fu′(P).

• Case fu(P) ≤ fu′(P). Then (u, cu′(P)) breaks the partition because, after it happens we get
a new partition P ′ so that fu(P ′) ≥ fu′(P) + wuu′ > fu′(P) ≥ fu(P).

There is a contradiction in both cases, hence cu(P) = cu′(P).

Proof. [Proposition 22] The set of vertices consists of four sets Ai, 0 ≤ i ≤ 3, each of equal size
h ≥ 2 and with a special vertex ai, plus four vertices bi, 0 ≤ i ≤ 3, and two vertices c0 and c1. In
what follows, indices are taken modulo 2 for cj , j ∈ {0, 1}, and they are taken modulo 4 everywhere
else. Figure 5 represents the example with h = 3. The friendship graph G+ here consists of all the
edges with weight 1; it contains:

1. all the edges between nodes in Ai (0 ≤ i ≤ 3);

2. edges between bi and Ai (0 ≤ i ≤ 3);

19

A1

A2

A3

A0 a0

a1

a2

a3

b0

b1

b2

b3

c0c1

Figure 5: Graph that does not admit
a 3-stable partition.

3. edges between bi and Ai+1 \ {ai+1} (0 ≤ i ≤ 3);

4. edges between bi and bi−1 and bi+1 (0 ≤ i ≤ 3);

5. edges between c0 and all the bi, and edges between c1 and all the bi;

6. edges between c0 and A0 ∪A2, and edges between c1 and A1 ∪A3.

Moreover, there are four edges with weight 0, namely the edges biai+1. All the remaining edges
have weight −∞. That is two nodes in different Ai, Ai′ are enemies; a user bi is enemy of bi+2 and
of the nodes in Ai+2 and Ai+3; c0 and c1 are enemies; c0 is enemy of the nodes in A1 and A3, and
c1 is enemy of the nodes in A0 and A2. We now assume there exists a 3-stable partition P for the
colouring game defined on G = (V,w).

Claim 25. Every node in Ai picks the same colour.

Proof. It directly follows from Lemma 24 because all vertices in Ai are pairwise quasi-twins. �

Claim 26. bi picks the same colour as nodes in Ai or nodes in Ai+1.

Proof. Suppose it is not the case. Then Xcbi (P) contains at most two other nodes: one of bi−1 and

bi+1 (together enemies), and one of c0 and c1 (enemies). If |Xcbi (P)| ≤ 2 or the group Xj containing

Ai has size at least 3, then ({bi}, j) is a 1-deviation. So, we assume |Xcbi (P)| = 3, h = 2 and Ai = Xj .

There are two cases. If cbi(P) = cci(P) then ({bi, ci}, j) is a 2-deviation. Else, cci−1(P) = cbi(P),
and Xcbi (P) ∩ {bi−1, bi+1} 6= ∅; hence we can break P using (Xcbi (P) ∩ {ci−1, bi−1, bi+1}, j′), with
Ai−1 ⊆ Xj′ or Ai+1 ⊆ Xj′ . �

Claim 27. There is an i such that nodes Ai, bi and bi−1 pick the same colour.

Proof. Again, we show the claim by contradiction. We distinguish two cases:
Case 1: bi−1 is with Ai, but not bi. So, as the claim is supposed to be false, bi is with Ai+1,

bi+1 is with Ai+2, and bi+2 is with Ai+3. Either cbi−1
(P) = cci(P), hence ({bi}, cbi−1

(P)) breaks P ,
or cbi−1

(P) 6= cci(P), hence ({bi, ci}, cbi−1
(P)) breaks the partition.

Case 2: bi is with Ai, but not bi−1. So, as the claim is supposed to be false, bi−1 is with
Ai−1, bi+1 is with Ai+1, and bi+2 is with Ai+2. Note either cci(P) = cbi(P) or cci(P) = cbi+2

(P).

20

W.l.o.g., suppose cci(P) = cbi+2
(P). Either cbi−1

(P) = cci−1(P), hence ({bi}, cbi−1
(P)) breaks P , or

cbi−1
(P) 6= cci−1(P), hence it is ({bi, ci−1}, cbi−1

(P)). �
By Claim 27, it follows there is an i such that nodes in Ai, bi, bi−1, ci all pick the same colour.

Moreover, such a group is unique in P due to the conflict graph in (G,w) (induced by the conflict
edges). By symmetry, we will assume Xca0 (P) = {b0, b3, c0} ∪A0.

Case 1: ca2(P) = cb1(P) = cb2(P).
Either cc1(P) = ca1(P) and ({b1}, ca1(P)) breaks P , or cc1(P) 6= ca1(P) and it is ({b1, c1}, ca1(P)).

Case 2: ca2(P) = cb2(P) 6= cb1(P).
Either cc1(P) = ca3(P) and ({b2, b3}, ca3(P)) breaks P , or cc1(P) 6= ca3(P) and it is ({b2, b3, c1}, ca3(P)).

Case 3: ca2(P) = cb1(P) 6= cb2(P).
In that case, ({b1}, c(a1)) breaks P .

Case 4: ca2(P) 6= cb1(P), ca2(P) 6= cb2(P), that implies cb2(P) = ca3(P).
Either cc1(P) = ca3(P) and ({b3}, ca3(P)) breaks P , or cc1(P) 6= ca3(P) and it is ({b3, c1}, ca3(P)).

Finally, there does not exist a 3-stable partition P for the colouring game defined on (G,w).

We emphasize the following consequence of Proposition 22.

Observation 2. For k > 1, Algorithm 1 may not terminate even if a k-stable partition exists.

Proof. Let G = (V,w) be the counter-example of Proposition 22 that does not admit a 3-stable
partition. We construct the instance G′ = (V,w′) from G by replacing every conflict edge by an
edge with weight zero. On the one hand there exists a 3-stable partition for the colouring game
defined on G′. On the other hand, one can construct an infinite sequence of steps by taking G as
input for Algorithm 1, and it is a valid sequence of 3-deviations for G′ as well.

4.2 Game with general weights

While the two results we obtained (k(W) ≥ 1 in general, k(W) = 2 when W contains a single
positive weight) seem constrained, we now prove that these are the best results that one can hope
for. Furthermore, we also want to consider in this section the case of “best friends” i.e., two friends
who want to interact unless there is an enemy of one of them to interfere. For this purpose, we
put wuv = N where N denotes an arbitrarily large positive weight that is at least n times greater
than any other (finite) weight in absolute value. Table 2 summarizes the most important values
for k(W), and it refers to the lemmas and proposition in the appendix where they are proved.

W k(W)

{−∞, a}, a > 0 ∞ [22]
{−∞, 0, a}, a > 0 2 Theorem 21, Proposition 22
{−∞, a, b}, b > a > 0 1 Lemma 32
{−a, b}, a > 0, b > 0 ≤ 2 · da+1

b e+ 1 Lemma 35
{−∞, N,−a}, a > 0 ≤ 2 Corollary 34

N ∪ {N} or −N ∪ {−∞} ∞ (trivial)
−N ∪ {N} ∞ Proposition 36

Table 2: Values of k(W) for different W.

Finally we completely characterize the sets of weights W which satisfy k(W) =∞.

Theorem 28. k(W) =∞ if, and only if: W ⊆ N∪{N}; orW ⊆ −N∪{−∞}; orW = {−∞, a}, a >
0 (possibly a = N); or W ⊆ −N ∪ {N} (and so, −∞ /∈ W).

21

4.3 Intractability with conflict graphs

Under general weights, we have proved that not all games in general have a k-stable partition, even
for relatively simple sets of weights and small values of k. On the other hand, one could argue that
these results come from pathological cases which could be ruled out after checking a property of
the graph. We prove it is unlikely to be the case: not only is the stability not guaranteed for a
given game when k > k(W), but it is computationally prohibitive to decide it. We first define:

Definition 29 (k-Stable decision problem). Let k ≥ 1 and let W be a (fixed) set of weights.
Given a graph G = (V,w) constrained to these weights, does there exist a k-stable partition for the
colouring game defined on it ?

Theorem 30. For k ≥ 1 and W containing −∞, either a k-stable partition always exists (i.e., k ≤
k(W)); or the k-Stable decision problem is NP-complete.

The previous result of NP-hardness in [22] requires another kind of deviations in addition to the
classical k-deviations we consider in our paper (see gossip deviations in Section 5). Moreover, the
large positive weight N is essential in their proof, whereas ours overrules these strong constraints.

The rest of the section is devoted to prove Theorem 30. The k-Stable decision problem is
clearly in NP because one can decide whether a k-deviation exists in polynomial-time nO(k), for any
fixed k. Informally, to prove the NP-hardness we will assume a counter-example to the k-Stable
decision problem exists, and we will build a supergraph of it that is arbitrarily large. We will
characterize k-stable partitions for the colouring game defined on the supergraph. In particular,
we will prove a necessary and sufficient condition so that a partition is k-stable is that one player
from the counter-example picks the same colour as a large independent set from the supergraph.
By doing so, we will be able to reduce the well-known Maximum Independent Set problem to
the k-Stable decision problem. The latter NP-complete problems seems to well encapsulate
the difficulty of colouring games, as already observed in the uniform case [22].

For technical reasons, we will require one can lower-bound the utility of a player, in any 1-stable
partition, by some positive constant. Intuitively, we make use of this lower-bound to ensure that
in case a k-stable partition exists for the colouring game, then it means that some player from the
counter-example picks the same colour as an independent set from the supergraph which is even
larger. We now introduce two reductions so that one can obtain the lower-bound.

Reduction 1. Let t be a positive integer, let W be finite and such that W ∩ (N ∪ {N}) 6= ∅. We
set wp = maxW, which is positive and may equal N .

Given G = (V,w) constrained to W, and n′ ≥ n = |V |, we construct ˜Gt,n′ as follows. We add
to the graph n′ distinct copies of the complete graph Kt whose edges are all weighted wp. Then we
add a conflict edge between any two nodes in two distinct copies of Kt, and an edge weighted wp
between any node in V and any node belonging to some copy of Kt.

Intuitively, Reduction 1 increases the minimum utility of the nodes to wpt.

Reduction 2. Let α be a positive integer, let W be finite and such that W ∩ (N ∪ {N}) 6= ∅. We
set wp = maxW, which is positive and may equal N .

Given G = (V,w) constrained to W, we construct KGα as follows. We replace every node
u ∈ V with a clique of α nodes Kα(u) ⊆ V (KGα). For all u, v ∈ V , every two nodes in Kα(u) are
linked by an edge weighted wp, and all nodes in Kα(u) are linked to all nodes in Kα(v) by edges
weighted wuv.

22

Said differently, we substitute every node in the graph by a clique.
Our reduction will make use of the following lemma that we will prove in the appendix.

Lemma 31. Let W be finite and such that W ∩ (N ∪ {N}) 6= ∅. Given G = (V,w), n′ ≥ n = |V |
and t > n, there exists a k-stable partition for the colouring game defined on G if, and only if, there
exists a k-stable partition for the colouring game defined on ˜Gt,n′.

We are now able to prove Theorem 30:

Proof. [Theorem 30] Suppose there is G0 = (V0, w
0) constrained to W and such that it does not

admit a k-stable partition. W.l.o.g. we constrainW to the set of weights on the edges of G0 so that
it is finite. We notice that W ∩ (N ∪N) 6= ∅ because otherwise, the partition with only singleton
groups is k-stable for G0. One can also assume there exists some x0 ∈ V0 whose removal makes
the existence of a k-stable partition for the gotten subgraph. Indeed, otherwise, we remove nodes
sequentially until obtaining this property.
Let P 0 be a k-stable partition for the colouring game defined on G0 \ x0. The partition P 0 ∪ {x0}
is not k-stable by the hypothesis and so, let fP

0

0 be the maximum utility node x0 can obtain after
any k-deviation happens which breaks P 0 ∪ {x0}. We define f0 as the maximum value fP

0

0 , taken
amongst all such k-stable partitions; if f0 ≤ 0, then we replace G0 with G̃0t′,n′0

for t′, n′0 large
enough (in such case, all above properties of the counter-example still hold by Lemma 31). By
setting wp = maxW, one can define two other constants, namely α = d f0wp

e and c0 = 2n0 + 1, with

n0 = |V0|.
We can now prove the NP-hardness by using a polynomial reduction for the Maximum Inde-
pendent Set problem. Let G = (V,E) be a graph, and let c ≥ c0 be an integer. We define
DG = (V,wG) such that ∀uv ∈ E,wuv = −∞ and ∀uv /∈ E,wuv = wp. Let t = bαc− f0

wp
c, and let

G1 = G̃0t,n0
, let G2 = KDGα. Observe that t > αc − f0

wp
− 1 ≥ αc − n0 − 1 ≥ c − n0 − 1 ≥ n0,

because f0 ≤ n0wp.
We finally build the graph HG from G1 and G2 as follows. We add a conflict edge between any
node of G1 \ x0 and any node of G2. All nodes of G2 are linked to x0 with an edge weighted wp.

K3 K3

K3 K3

K3

G1

x0

G0
G0\x0

G2

Figure 6: The transformation of an input.

23

The transformation above is illustrated in Figure 6. First assume that every independent set
of G has a size lower than c. By contradiction, suppose there exists a k-stable partition for the
colouring game defined on HG. In such case, there can be no group with more than α(c − 1)
vertices of V (G2). Furthermore, nodes coloured as x0 are either all in V (G1) or all in V (G2). Since
α(c− 1) = αc− d f0wp

e ≤ αc− f0
wp
− 1 < t, it follows all such nodes belong to V (G1). Consequently,

any k-stable partition for the colouring game defined on HG, can be decomposed as follows: a
k-stable partition for the colouring game defined on G1, and a k-stable partition for the colouring
game defined on G2. Since G0 does not admit a k-stable partition, hence G1 does not admit one
either by Lemma 31, it follows that HG does not admit a k-stable partition.

Conversely, assume that there exists an independent set of G with size at least c. By [22], there
exists a k-stable partition Pα for G2 ∪{x0} which contains as a group Xj a maximum independent
set of G ∪ {x0}. Moreover, x0 ∈ Xj because x0 is an isolated vertex in the graph G ∪ {x0}.
We also have that there exists a k-stable partition P 0 for G0 \ x0 and so, there exists a k-stable
partition P 1 for G1 \ x0 = ˜(G0 \ x0)t,n0

by Lemma 31. Last, we claim that PH = Pα ∪ P 1 is a
k-stable partition for HG. Indeed, on the one hand we have that the utility of x0 in Pα is at least
wpαc. On the other hand, the maximum utility x0 can get after a k-deviation that breaks P 1 is

fP
0

0 +wpt ≤ f0+wpt = wp(t+
f0
wp

) ≤ wpαc. We can conclude the NP-hardness, as our transformation

is polynomial, and the Maximum Independent Set problem is NP-complete [21].

5 Extensions of colouring games

All theoretical models of social dynamics should consider whether the overall behavior of the model
is not too limited by some simplifying assumptions. We now discuss the way our results extend
to account for various situations in the formation of social groups, including variants previously
discussed and new ones. Full proofs of our results are provided in our technical report [14].

5.1 Gossiping

In this model, all k-deviations as previously defined are allowed. In addition two players in two
distinct groups may “gossip” i.e., both groups they are part of are merged. Obviously, and as
before, this deviation will only take place if the two players benefit from the merge, but what is
unique here is that the deviation does not require that other players in these groups benefit from
the merge. They may even see a decrease in utility, but they are not given a choice to block the
deviation — although they are in some sense seeing a modification of their group. This actually
turns out to be equivalent to our model in the uniform case: one can check that there is a 1-
deviation whenever there exists a gossip-deviation. Consequently all our results apply in that case,
closing previously open problem with this model. In the general case, we prove that gossip creates
instability even when a unique and fixed positive weight exists. We remind that without gossip, in
such case a 2-stable partition always exists (see Theorem 21).

5.2 Asymmetry

Studying directed graphs rather than undirected graphs is a natural generalization. In this case,
we may not have that wuv = wvu for all players u, v. However, even if modest generalization of
the model, asymmetrical weights lead to intractability. This can be seen with a simple digraph
D = ({u, v}, w) such that wuv > 0 whereas wvu < 0. Furthermore, the problem of deciding whether
there exists a 1-stable partition is NP-hard. This result holds even when there can be no more than
two groups in the partition.

24

5.3 Multichannel model and overlapping groups

One assumption of our model is that players form a partition, hence they are limited to a single
channel to interact with their peers. In reality participants in social networks may engage in
multiple groups. This motivates us to extend partitions into multisets, that we call ’configurations’.
A configuration C is said to use q channels if each player participates (at most) to q groups. The
utility of u depends on the number of groups that u shares with each peer:

fu(C) =
∑

v∈V
h (|X(u) ∩X(v)| , wuv) , (1)

where X(u) denotes the list of colours of u, and h(g, w) is a function measuring the utility of sharing
g groups with a player with weight w. Note that we assume, without loss of generality, that

h(0, .) = 0 , h(., 0) = 0 and ∀w ∈ Z , h(1, w) = w ,
∀g ∈ N , w 7→ h(g, w) is a non-decreasing function,
∀w ∈ Z , g 7→ w · h(g, w) is a non-decreasing function.

The last property simply ensures that h(g, w) increases with g when w is positive, and decreases
with g when w is negative. Using the same potential function as before e.g., global utility, it follows
that there always exists a 1-stable configuration with q channels. It is now natural to wonder what
is the behavior of kq(W) when the number of channels q is higher than 1. While it may have none
or positive effects, we show that it is not always the case. Indeed, even for uniform games, we prove
k2({−∞, 1}) ≤ 2 with 2 channels, while k1({−∞, 1}) = k({−∞, 1}) =∞.

5.4 Multi-modal relationship

Our model so far is heavily biased towards pairwise relationships, as the utility of a player depends
on the sum of her interactions with all other members of the groups. In reality, more subtle
interactions occur: one may be interested to interact with either friend u or v, but would not like
to join a group where both of them are present. Our analysis also generalizes to this case. We use a
hypergraph based model and we prove that, for instance, there always exists a 1-stable partition.

Acknowledgments

The authors would like to thank Jean-Claude Bermond and Julio Araujo for their useful comments,
and Katrina Ligett for her valuable feedback.

References

[1] R. Aumann. Acceptable Points in General Cooperative n-Person Games. In R. D. Luce and
A. W. Tucker, editors, Contributions to the Theory of Games IV, Annals of Mathematics
Studies 40, pages 287–324. Princeton University Press, Mar. 2005.

[2] H. Aziz, F. Brandt, and P. Harrenstein. Pareto optimality in coalition formation. In SAGT’11:
Proceedings of the 4th international conference on Algorithmic game theory. Springer-Verlag,
Oct. 2011.

[3] H. Aziz, F. Brandt, and H. G. Seedig. Computing desirable partitions in additively separable
hedonic games. Artificial Intelligence, 195, Feb. 2013.

25

[4] C. Ballester. NP-completeness in hedonic games. Games and Economic Behavior, 49(1):1–30,
Oct. 2004.

[5] S. Banerjee, H. Konishi, and T. Sönmez. Core in a simple coalition formation game. Social
Choice and Welfare, 18(1):135–153, Jan. 2001.

[6] B. D. Bernheim, B. Peleg, and M. D. Whinston. Coalition-proof nash equilibria i. concepts.
Journal of Economic Theory, 42(1):1–12, 1987.

[7] B. D. Bernheim and M. D. Whinston. Coalition-proof nash equilibria ii. applications. Journal
of Economic Theory, 42(1):13–29, 1987.

[8] A. Bogomolnaia and M. O. Jackson. The Stability of Hedonic Coalition Structures. Games
and Economic Behavior, 38(2):201–230, Feb. 2002.

[9] T. Brylawski. The lattice of integer partitions. Discrete Mathematics, 6(3):201 – 219, 1973.

[10] N. Burani and W. S. Zwicker. Coalition formation games with separable preferences. Mathe-
matical Social Sciences, 45(1):27–52, Feb. 2003.

[11] I. Chatzigiannakis, C. Koninis, P. N. Panagopoulou, and P. G. Spirakis. Distributed game-
theoretic vertex coloring. In OPODIS’10: Proceedings of the 14th international conference on
Principles of distributed systems. Springer-Verlag, Dec. 2010.

[12] X. Deng and C. Papadimitriou. On the Complexity of Cooperative Solution Concepts. Math-
ematics of Operations Research, 19(2):257–266, May 1994.

[13] J. H. Drèze and J. Greenberg. Hedonic Coalitions: Optimality and Stability. Econometrica,
48(4):987–1003, May 1980.

[14] G. Ducoffe, D. Mazauric, and A. Chaintreau. Convergence of Coloring Games with Collusions.
Technical Report (available through arXiv), pages 1–10, Dec. 2012.

[15] B. Escoffier, L. Gourvès, and J. Monnot. Strategic coloring of a graph. Internet Mathematics,
8(4):424–455, 2012.

[16] M. Gairing and R. Savani. Computing Stable Outcomes in Hedonic Games. In Algorithmic
Game Theory, pages 174–185. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[17] E. Goles and M. A. Kiwi. Games on line graphs and sand piles. Theoretical Computer Science,
115(2):321 – 349, 1993.

[18] C. Greene and D. J. Kleitman. Longest chains in the lattice of integer partitions ordered by
majorization. Eur. J. Comb., 7(1):1–10, Jan. 1986.

[19] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search? Journal
of computer and system sciences, 37(1):79–100, 1988.

[20] M. Karakaya. Hedonic coalition formation games: A new stability notion. Mathematical Social
Sciences, 61(3):157–165, May 2011.

[21] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,
Complexity of Computer Computations, pages 85–103. 1972.

26

[22] J. M. Kleinberg and K. Ligett. Information Sharing in Social Networks. Games and Economic
Behavior, 82(C):702–716, Nov. 2013.

[23] D. Moreno and J. Wooders. Coalition-proof equilibrium. Games and Economic Behavior,
17(1):80–112, 1996.

[24] M. Olsen. Nash Stability in Additively Separable Hedonic Games and Community Structures.
Theory of Computing Systems, 45(4):917–925, Jan. 2009.

[25] M. Olsen, L. Bækgaard, and T. Tambo. On non-trivial Nash stable partitions in additive
hedonic games with symmetric 0/1-utilities. Information Processing Letters, 112(23), Dec.
2012.

[26] P. N. Panagopoulou and P. G. Spirakis. A game theoretic approach for efficient graph coloring.
The 19th International Symposium on Algorithms and Computation (ISAAC 2008), pages 183–
195, 2008.

[27] S. Pápai. Unique stability in simple coalition formation games. Games and Economic Behavior,
48(2):337–354, Aug. 2004.

[28] I. Ray. Coalition-proof correlated equilibrium: A definition. Games and Economic Behavior,
17(1):56–79, 1996.

[29] S.-C. Sung and D. Dimitrov. On Myopic Stability Concepts for Hedonic Games. Theory and
Decision, 62(1):31–45, Dec. 2006.

[30] S.-C. Sung and D. Dimitrov. Computational complexity in additive hedonic games. European
Journal of Operational Research, 203(3):635–639, June 2010.

[31] Y. Zick, E. Markakis, and E. Elkind. Arbitration and stability in cooperative games with
overlapping coalitions. Journal of Artificial Intelligence Research, 50(1), May 2014.

27

.1 Proofs of Section 4

Proof. [Lemma 20] By the hypothesis, the utility of each vertex in S increases by at least 1. So,
we get as the variation of the utility for the whole k-set:

∑k
i=1[fui(P

′)− fui(P)] ≥ k.

For every 1 ≤ i ≤ k, we then define δi =
∑

v∈Xcui (P)\S wuiv and σi =
∑

ul∈Xcui (P)
wului .

We define δ′i =
∑

v∈Xj
wuiv and σ′i =

∑k
l=1wuiul in a similar way.

Then, fui(P) = δi + σi and fui(P
′) = δ′i + σ′i. So, we get by summation that:∑k

i=1 fui(P) =
∑k

i=1 δi + 2
∑
{ui,ul|cui (P)=cul (P)}wuiul ,

while
∑k

i=1 fui(P
′) =

∑k
i=1 δ

′
i + 2

∑
1≤i,l≤k wuiul . Note that we have a factor 2 for any occurence of

wuiul , as it is counted once for ui and once for ul.

Furthermore, the variation of the global utility includes that of the nodes in S, that of the nodes in
Xj , plus that of the nodes in Xcui (P) \ S for every 1 ≤ i ≤ k. In other words, we get by symmetry
that:
f(P ′)− f(P) =

∑k
i=1[fui(P

′)− fui(P)] +
∑k

i=1[δ′i − δi]
= 2

∑k
i=1[fui(P

′)− fui(P)]− 2
∑

1≤i,l≤k wuiul + 2
∑
{ui,ul|cui (P)=cul (P)}wuiul

≥ 2k − 2
∑

1≤i,l≤k wuiul + 2
∑
{ui,ul|cui (P)=cul (P)}wuiul .

Proof. [Lemma 31] We first remind that one obtains ˜Gt,n′ from G using n′ distinct copies of the
complete graph Kt, that we will denote by K1

t , . . . ,K
n′
t in the following.

First, let P = (X1, X2, . . . , Xn) be a k-stable partition for the colouring game defined on G. We
claim P ′ = (X1∪V (K1

t), X2∪V (K2
t), . . . , Xn∪V (Kn

t), V (Kn+1
t), . . . , V (Kn′

t)) is a k-stable partition
for ˜Gt,n′ . By contradiction, let (S, j) be a k-deviation that breaks P ′, with 1 ≤ j ≤ n + tn′. Note
that w.l.o.g., one can assume no node in S is coloured j in P , as (S \Xj , j) is still a k-deviation
that breaks P ′. In addition, we must have S′ = S ∩ V (G) 6= ∅. Let 1 ≤ j′ ≤ n be such that
Xj′ ∩ (V (G) \ S′) = ∅. Either nodes in S pick a colour j no node in V (G) \ S′ was using and so,
(S′, j′) is a k-deviation that breaks P ; or S = S′, and (S, j) also breaks P . A contradiction in both
cases, because P is assumed to be k-stable.

Conversely, assume by contradiction that there is no k-stable partition for G, whereas there exists
a k-stable partition P ′ = (X ′1, . . . , X

′
n+tn′) for ˜Gt,n′ . By Lemma 24, for any i all nodes in Ki

t

are coloured accordingly. Furthermore, we note by construction of ˜Gt,n′ that for all nodes u ∈
V (G), she has to be pick the same colour as some clique Ki

t (else, the partition P ′ would not
even be 1-stable). Let P be the partition of V (G) whose non-empty groups are those amongst
X ′1 ∩ V (G), X ′2 ∩ V (G), . . . , X ′n+tn′ ∩ V (G). By construction, P is not k-stable but then, every
k-deviation (S, j) that breaks P also breaks P ′. Consequently, there does not exist any k-stable
partition for ˜Gt,n′ .

Counter-examples for stability Counter-examples with different sets of weights are presented
in the following. We first make an observation which is the starting point of most of our counter-
examples for stability: namely, the weights 2, 3, 4 in the counter-example of Figure 1 can be replaced
by any weights w1, w2, w3 such that w1 < w2 < w3, and w1 + w2 > w3. Especially, they can be
replaced by b, b + 1, b + 2, for any b ≥ 2. We now show through a counter-example no 2-stable
partition exists in general whenW contains two positive elements, even when the zero is not present.

Lemma 32. Let a, b be two positive integers such that a < b. There is a graph G = (V,w)
constrained to W = {−∞, a, b} that does not admit a 2-stable partition.

28

Proof. Users are partitioned into four sets U1 = {x1, x2, x3}, U2 = {y1, y2, y3}, U3 = {z1, z2, z3} and
{v1, v2, v3}. Each of these sets is a clique with edges weighted b. In addition, each edge between a
node in Ui and another node in Ui′ , i 6= i′ is a conflict edge. Node v1 is linked to nodes in U2 with
edges weighted b, to nodes in U1 with conflict edges. In the same way, node v2 is linked to nodes in
U3 with edges weighted b, to nodes in U2 with conflict edges; node v3 is linked to nodes in U1 with
edges weighted b, to nodes in U3 with conflict edges. We finally set: wv1z1 = wv1z2 = b, wv1z3 = a;
wv2x1 = wv2x2 = b, wv2x3 = a; wv3y1 = wv3y2 = b, wv3y3 = a.

Let us assume by contradiction there exists a 2-stable partition P .

Claim 33. For any 1 ≤ i ≤ 3, nodes in Ui are coloured accordingly.

Proof. By symmetry, it suffices to show the claim for U1. First, nodes x1, x2 pick the same colour
by Lemma 24. Furthermore, by construction there can be no node coloured cx1(P) that is an enemy
of x3. Since

∑
s∈V \V1 max{0, wx3s} = b + a < 2b, it follows cx3(P) = cx1(P) = cx2(P) (otherwise,

the partition would not even be 1-stable). �
We can then substitute subsets Ui with nodes ui through contractions, and by doing so, one

obtains the variation of Figure 1 with weights w1 = b, w2 = 2b+a, w3 = 3b. Let P ′ be the partition
of the nodes one obtains from P in this new graph. Since one can always find a 2-deviation using
nodes v1, v2, v3 that breaks P ′, one can deduce from such deviation a 2-deviation in G that breaks
P .

Corollary 34. If {−∞, N} is a strict subset of W, then k(W) ≤ 2.

Proof. First assume there exists a positive weight a ∈ W \ {N}. Then we can apply Lemma 32
to the subset {−∞, a,N}, and then one obtains k(W) = 1. Else, let G0 be the counter-example
from Proposition 22, constrained to {−∞, 0, 1} and that does not admit a 3-stable partition. Let a
non-negative be such that −a ∈ W \ {N}. We construct G1 from G0 by replacing edges weighted
1 with edges weighted N , and null-weight edges with edges weighted −a. As there does not exist
any 3-stable partition for G0, there does not exist any 3-stable partition for G1 either. Thus,
k(W) ≤ 1.

Lemma 35. Let a, b be positive integers (not necessarily distinct). There is G = (V,w) constrained
to W = {−a, b} that does not admit a 2 ·

(
1 + da+1

b e
)
-stable partition.

Proof. Let x, y non-negative be such that bx− ay = gcd{a, b} = d. The vertex-set is partitioned in
V1, V2, V3, U

+
1 , U

+
2 , U

+
3 , U

−
1 , U

−
2 , U

−
3 plus three vertices u=

1 , u
=
2 , u

=
3 .

Any subset Vi has size 1+da+1
b e, and there are constants k1, k2, k3 that we assume sufficiently large

so that subsets U+
i , U

−
i have respective size

⌈
1+b(1+da+1

b
e)

d

⌉
·x+ ki · a,

⌈
1+b(1+da+1

b
e)

d

⌉
· y+ ki · b− 1.

As for the weights, subsets V1 ∪ V2 ∪ V3 and Ui = U+
i ∪ U−i ∪ {u=

i } all induce complete subgraphs
of the friendship graph G+ (here induced by edges weighted b). Any node of U+

i is also linked to
all nodes in (V1 ∪ V2 ∪ V3) \ Vi with edges weighted positively. Last, node u1 is adjacent in G+ to
all nodes in V3, and similarly node u2 is adjacent in G+ to all nodes in V1, node u3 is adjacent in
G+ to all nodes in V2. Every remaining edge has weight −a.

Suppose by contradiction there is a 2
(
1 + da+1

b e
)
-stable partition P for the colouring game de-

fined on G. By Lemma 24, all nodes in subsets V1, V2, V3, U
+
1 , U

+
2 , U

+
3 , U

−
1 , U

−
2 , U

−
3 are coloured

accordingly. Furthermore for any i > j, assuming ki >> kj >> 1 + da+1
b e we have that no node

of Uj ∪ Vi picks the same colour as nodes in U+
i , nor the same colour as nodes in U−i (else, the

partition would not even be 1-stable). Under similar assumptions, one obtains that all nodes in Ui
are coloured accordingly. By contracting subsets Vi and Ui in the obvious way, one thus obtains

29

the variation of Figure 1 with weights w1 =
(
1 + da+1

b e
)
· b ≥ b+ a+ 1;w2 =

⌈
1+b(1+da+1

b
e)

d

⌉
· d >

w1;w3 = b+ a+ w2 < w1 + w2.
Let P ′ be the partition of the nodes one obtains from P in this new graph. Since one can always
find a 2-deviation using nodes v1, v2, v3 that breaks P ′, one can deduce from such deviation a
2 ·
(
1 + da+1

b e
)
-deviation in G that breaks P .

Positive result

Proposition 36. If W ⊆ −N ∪ {N}, then k(W) =∞.

Proof. Let G = (V,w) constrained toW, and let G+ be the friendship graph that is here induced by
edges weighted N . We define P as the partition of the nodes whose non-empty groups are exactly
the connected components of G+. Suppose (S, j) is a deviation that breaks P . On the one hand,
no node has an incentive to decrease the number of best friends in her group, which means S is a
collection of groups in P whose all vertices change their colour. On the other hand we have by the
definition of P that no node in S can increase her number of best-friends by changing her colour.
As a result, no such deviation can exist and so, P is a k-stable partition for any k ≥ 1.

30

Appendix J

The parallel complexity of
coloring games

The parallel complexity of coloring games ?

Guillaume Ducoffe1

Université Côte d’Azur, Inria, CNRS, I3S, France

Abstract. We wish to motivate the problem of finding decentralized
lower-bounds on the complexity of computing a Nash equilibrium in
graph games. While the centralized computation of an equilibrium in
polynomial time is generally perceived as a positive result, this does not
reflect well the reality of some applications where the game serves to im-
plement distributed resource allocation algorithms, or to model the social
choices of users with limited memory and computing power. As a case
study, we investigate on the parallel complexity of a game-theoretic varia-
tion of graph coloring. These “coloring games” were shown to capture key
properties of the more general welfare games and Hedonic games. On the
positive side, it can be computed a Nash equilibrium in polynomial-time
for any such game with a local search algorithm. However, the algorithm
is time-consuming and it requires polynomial space. The latter questions
the use of coloring games in the modeling of information-propagation in
social networks. We prove that the problem of computing a Nash equi-
librium in a given coloring game is PTIME-hard, and so, it is unlikely
that one can be computed with an efficient distributed algorithm. The
latter brings more insights on the complexity of these games.

1 Introduction

In algorithmic game theory, it is often the case that a problem is considered
“tractable” when it can be solved in polynomial time, and “difficult” only when
it is NP-hard or it is PLS-hard to find a solution. On the other hand, with
the growing size of real networks, it has become a boiling topic in (non game-
theoretic) algorithmic to study on the finer-grained complexity of polynomial
problems [16]. In our opinion, the same should apply to graph games when they
serve as a basis for new distributed algorithms. We propose to do so in some
cases when it can be easily computed a Nash equilibrium in polynomial time.
The following case study will make use of well-established parallel and space
complexity classes to better understand the hardness of a given graph game.

Precisely, we investigate on a “coloring game”, first introduced in [14] in order
to unify classical upper-bounds on the chromatic number. Since then it has been
rediscovered many times, attracting attention on the way in the study of infor-
mation propagation in wireless sensor networks [4] and in social networks [12].
We choose to consider this game since it is a good representative of the separa-
ble welfare games – proposed in [13] as a game-theoretic toolkit for distributed

?
This work is partially supported by ANR project Stint under reference ANR-13-BS02-0007 and
ANR program “Investments for the Future” under reference ANR-11-LABX-0031-01.

resource allocation algorithms – and the additively separable symmetric Hedonic
games [3]. A coloring game is played on an undirected graph with each vertex
being an agent (formal definitions will be given in the technical sections of the
paper). Agents must choose a colour in order to construct a proper coloring of
the graph. The individual goal of each agent is to maximize the number of agents
with the same colour as hers. Furthermore, it can always be computed a Nash
equilibrium in polynomial time with a simple local-search algorithm [6, 12, 14].

However, for n-vertex m-edge graphs, the above-mentioned algorithm has
O(m+n

√
n)-time complexity and O(n+m)-space complexity. Therefore, when

the graph gets larger, potential applications of coloring games as a computational
mechanism design (e.g., in order to assign frequencies in sensor networks in
a distributed fashion, or to model the behaviour of social network users with
limited power and storage) can be questioned. In particular, the authors in [11]
report on the limited abilities of human subject networks to solve a coloring
problem. In this note, we will investigate on the belonging of our problem –
the computation of a Nash equilibrium in coloring games – to some complexity
classes that are related to parallel and space complexity. Our goal in doing so is
to bring more insights on the complexity of the problem.

Related work. Apart from lower-bounds in communication complexity [7], we are
not aware of any analysis of decentralized complexity in game theory. Closest to
our work are the studies on the sequential complexity of Hedonic games. Deciding
whether a given Hedonic game admits a Nash equilibrium is NP-complete [1].
Every additively separable symmetric Hedonic games has a Nash equilibrium
but it is PLS-complete to compute one [8]. Coloring games are a strict subclass
where the local-search algorithm terminates on a Nash equilibrium within a
polynomial number of steps. We will go one step further by considering their
parallel complexity, something we think we are the first to study.

In [4], they introduced a distributed algorithm in order to compute the Nash
equilibrium of a given coloring game. Their algorithm is a natural variation of the
classical local-search algorithm for the problem, however, it does not speed up the
computation of equilibria (at least theoretically). In addition, each agent needs to
store locally the colouring of the graph at any given step, that implies quadratic
space and communication complexity. Additional related work is [6, 12], where
it is studied the number of steps of more elaborate local-search algorithms when
up to k players are allowed to collude at each step. Informally, collusion means
that the players can simultaneously change their colours for the same new colour
provided they all benefit from the process (note that the classical local-search
algorithm corresponds to the case k = 1).

Contributions. We prove that the problem of computing a Nash equilibrium in a
given coloring game is PTIME-hard (Theorem 2). This is hint that the problem is
inherently sequential, i.e., it is unlikely the computation of an equilibrium can be
sped up significantly on a parallel machine with polynomially many processors.
In particular, our negative result applies to the distributed setting since any
distributed algorithm on graphs can be simulated on a parallel machine with

one processor per edge and per vertex. By a well-known relationship between
space and parallel complexity [15], Theorem 2 also extends to show that no
space efficient algorithm for the problem (say, within logarithmic workspace)
can exist. Altogether, this may be hint that coloring games are a too powerful
computational mechanism design for “lightweight” distributed applications.

Our reduction is from the standard Monotone Circuit Value problem.
However, the gadgets needed are technically challenging, and we will need to
leverage nontrivial properties of coloring games in order to prove its correctness.
Definitions and useful background will be given in Section 2. We will detail our
reduction in Section 3 before concluding this paper in Section 4.

2 Definitions and notations

We use the graph terminology from [2]. Graphs in this study are finite, simple,
and unweighted.

Coloring games. Let G = (V,E) be a graph. A coloring of G assigns a positive
integer, taken in the range {1, . . . , n}, to each of the n vertices in V . For every
i, let Li be the subset of vertices coloured i. We name Li a colour class in what
follows. Nonempty colour classes partition the vertex set V . The partition is a
proper coloring when no two adjacent vertices are assigned the same colour, i.e.,
for every 1 ≤ i ≤ n and for every u, v ∈ Li, {u, v} /∈ E.

Fig. 1. Proper coloring of a graph G. Each colour class is represented by an ellipse.
Every agent receives unit payoff.

Every graph G defines a coloring game whose n agents are the vertices in
V . The strategy of an agent is her colour. Furthermore, every v ∈ Li receives
payoff: −1 if there is u ∈ Li s.t. {u, v} ∈ E (in which case, the coloring is not
proper), and |Li| − 1 otherwise. We refer to Figure 1 for an illustration. Finally,
a Nash equilibrium of the coloring game is any coloring of G where no agent can
increase her payoff by changing her strategy. In particular, the proper coloring in
Figure 1 is a Nash equilibrium. More generally, observe that a Nash equilibrium
in this game is always a proper coloring of G. In what follows, we will focus on
the computation of Nash equilibria in coloring games.

Theorem 1 ([6, 12]). For any coloring game that is specified by an n-vertex
m-edge graph G = (V,E), a Nash equilibrium can be computed in O(m+ n

√
n)-

time and O(n+m)-space.

Parallel complexity. Computations are performed on a parallel random-access
machine (PRAM, see [9]) with an unlimited amount of processors. However, as

stated in the conclusion, our results also apply to more realistic parallel complex-
ity classes. In what follows, we will use the fact that processors are numbered.
We will handle with read/write conflicts between processors with the strategy
CREW-PRAM (concurrent read, exclusive write). Let PTIME contain the deci-
sion problems that can be solved in sequential polynomial-time (that is, with a
single processor). Problem A reduces to problem B if given an oracle to solve B,
A can be solved in polylogarithmic-time with a polynomial number of processors.
In particular, a problem B is PTIME-hard if every problem in PTIME reduces
to B (this is formally defined as quasi-PTIME-hardness in [9]). Such reductions
are finer-grained than the more standard logspace reductions.

3 Main Result

Theorem 2. Computing a Nash equilibrium for coloring games is PTIME-hard.

In order to prove Theorem 2, we will reduce from a variation of the well-
known Monotone Circuit Value problem, defined as follows.

Problem 1 (Monotone Circuit Value).

Input: A boolean circuit C with m gates and n entries, a word w ∈ {0, 1}n
such that:
– the gates are either AND-gates or OR-gates;
– every gate has exactly two entries (in-degree two);

– a topological ordering of the gates is given, with the mth gate being
the output gate.

Question: Does C output 1 when it takes w as input ?

Monotone Circuit Value is proved to be PTIME-complete in [9].

3.1 The reduction

Let 〈C, w〉 be any instance of Monotone Circuit Value. We will reduce it to
a coloring game as follows. Let G := (g1, g2, . . . , gm) be the gates of the circuit,
that are topologically ordered.

Construction of the gate-gadgets. For every 1 ≤ j ≤ m, the jth gate will be
simulated by a subgraph Gj = (Vj , Ej) with 12(n+ j)− 9 vertices. We refer to
Figure 2 for an illustration. Let us give some intuition for the following construc-
tion of Gj . We aim at simulating the computation of the (binary) output of all
the gates in C when it takes w as input. To do that, given a supergraph G of Gj
(to be defined later), and a fixed Nash equilibrium for the coloring game that is

defined on G, we aim at guessing the output of the jth gate from the subcolor-
ing of Gj . More precisely, the subcoloring will encode a “local certificate” that
indicates which values on the two entries of gj cause the output.

Observe that to certify that an OR-gate outputs 1, it suffices to show that it
receives 1 on any one of its two entries, whereas for an AND-gate it requires to

show that it outputs 1 on its two entries. Since by de Morgan’s laws, the negation
of an AND-gate can be transformed into an OR-gate and vice-versa, therefore,
we need to distinguish between three cases in order to certify the output of
the gate. So, the vertices in Vj are partitioned in three subsets of equal size
4(n + j) − 3, denoted by V 1

j , V
2
j , V

3
j . Furthermore, for every 1 ≤ t ≤ 3, every

vertex in V tj is adjacent to every vertex in Vj \ V tj .

Fig. 2. Gadget subgraph Gj representing the jth gate. An edge between two subsets of
vertices (delimited by an ellipse) denotes the existence of a complete bipartite subgraph.

Let us now describe the structure of the three (isomorphic) subgraphsGj [V
t
j] =

(V tj , E
t
j) with 1 ≤ t ≤ 3. Informally, we will need this internal structure in order

to ensure that every of the three subsets V tj will behave as a “truthful” certificate
to decide on the output of the gate; i.e., only a few vertices of Vj will be used to

certify the output of the jth gate, while all others will be divided into artificial
aggregates that we name “private groups” whose role is to ensure “truthful-
ness” of the certificate (this will be made clearer in the following). There are
two nonadjacent vertices atj , b

t
j ∈ V tj playing a special role. The other vertices in

V tj \ {atj , btj} are partitioned in two subsets Atj , B
t
j of respective size 2(n+ j)− 3

and 2(n+ j)− 2. The sets Atj , B
t
j are called the private groups of atj , b

t
j . Further-

more, every vertex in Atj is adjacent to every vertex in V tj \ (Atj ∪{atj}), similarly
every vertex in Btj is adjacent to every vertex in V tj \ (Btj ∪ {btj}).

Since all edges are defined above independently the one from the other, the
graph Gj [V

1
j] = (V 1

j , E
1
j) (encoded by its adjacency lists) can be constructed

with |V 1
j | + |E1

j | = 4(n + j)2 − 2(n + j) − 2 processors simply by assigning
the construction of each vertex and each edge to a different processor. Note that
each processor can decide on the vertex, resp. the edge, it needs to compute from
its number. Overall, it takes O(log(n+ j))-time in order to construct Gj [V

1
j] in

parallel. The latter can be easily generalized in order to constructGj inO(log(n+
j))-time with |Vj |+|Ej | processors. Therefore, the graphs G1, G2, . . . , Gm can be
constructed in parallel in O(log(n+m))-time with

∑m
j=1(|Vj |+ |Ej |) processors,

that is polynomial in n+m.

Construction of the graph. Let X = {x1, x
′
1, . . . , xi, x

′
i, . . . , xn, x

′
n} contain 2n

nonadjacent vertices, that are two vertices per letter in the binary word w. The

graph G = (V,E) for the reduction has vertex-set V = X ∪
(⋃m

j=1 Vj

)
. In

particular, it has 2n − 9m + 6m(m + 2n + 1) vertices. Furthermore, G[Vj] is

isomorphic to Gj for every 1 ≤ j ≤ m. In order to complete our reduction, let
us now describe how our gadgets are connected the one with the other.

For technical reasons, we will need to make adjacent every vertex in the
private group Atj (resp. Btj), with 1 ≤ j ≤ m and 1 ≤ t ≤ 3, to every vertex
in V \ Vj . By doing so, note that every vertex in V \ (Atj ∪ {atj}) is adjacent to
every vertex in Atj (resp., every vertex in V \ (Btj ∪ {btj}) is adjacent to every
vertex in Btj). Furthermore, each edge is defined independently the one from

the other. Hence, similarly as above,
∑m
j=1

∑3
t=1(|Atj |+ |Btj |)|V \ Vj | processors

are sufficient in order to construct these edges in O(log(n + m))-time, that is
polynomial in n+m.

Fig. 3. Edges in G to simulate the two connections of an AND-gate in the circuit.

Finally, we recall that for every j, there are three cases to distinguish in or-
der to decide on the output of the jth gate, with each case being represented
with some subset V tj . The union of subsets representing a positive certificate
(output 1) is named Yj , while the union of those representing a negative certifi-

cate (output 0) is named Nj . In particular, if the jth gate is an OR-gate, let
Yj := {a1

j , b
1
j , a

2
j , b

2
j} and Nj := {a3

j , b
3
j} (it suffices to receive 1 on one input).

Else, the jth gate is an AND-gate, so, let Yj := {a1
j , b

1
j} and Nj := {a2

j , b
2
j , a

3
j , b

3
j}.

Suppose the jth gate is an OR-gate (the case when it is an AND-gate follows
by symmetry, up to interverting Yj with Nj , see also Figure 3). Let us consider

the first entry of the gate. There are two cases. Suppose that it is the ith entry
of the circuit, for some 1 ≤ i ≤ n. If wi = 0 then we make both xi, x

′
i adjacent

to both a1
j , b

1
j ; else, wi = 1, we make both xi, x

′
i adjacent to both a3

j , b
3
j . Else,

the entry is some other gate of the circuit, and so, since gates are topologically
ordered, it is the kth gate for some k < j. We make every vertex in Nk adjacent
to both a1

j , b
1
j , and we make every vertex in Yk adjacent to both a3

j , b
3
j .

The second entry of the gate is similarly considered, up to replacing above
the two vertices a1

j , b
1
j with a2

j , b
2
j . We refer to Figure 3 for an illustration. In

particular, observe that there is only a constant number of edges that are added
at this step for each gate. Furthermore, the construction of these new edges only
requires to read the two in-neighbours of the gate in the circuit C. As a result,
the last step can be done in parallel in O(log(n+m))-time with m processors.

3.2 Structure of a Nash equilibrium

The graph G = (V,E) of our reduction (constructed in Section 3.1) defines a
coloring game. Let us fix any Nash equilibrium for this game (that exists by

Theorem 1). We will show that it is sufficient to know the colour of every vertex

in Ym∪Nm in order to decide on the output of the circuit C (recall that the mth

gate is the output gate). To prove it, we will need the following technical claims
in order to gain more insights on the structure of the equilibrium.

Fig. 4. A boolean circuit (left) with a Nash equilibrium of the coloring game from our
reduction (right). Each colour class is represented with an ellipse. Intuitively, vertices
in the central colour class simulate the computation of the output. Other colour classes
contain a private group and they are “inactive”.

More precisely, we will prove that there are exactly 6m + 1 colour classes,
that are one colour class per private group Atj or Btj and an additional colour
for the vertices in X. The intuition is that there are 2(n + m) vertices in one
special colour class (including X) that simulates the computation of the output
of C, whereas all other vertices are “trapped” with the vertices in their respective
private group. We refer to Figure 4 for an illustration.

Claim 1. For every j, any colour class does not contain more than two vertices
in every Yj ∪Nj. Furthermore, if it contains exactly two vertices in Yj ∪Nj then
these are atj , b

t
j for some 1 ≤ t ≤ 3.

Proof. A Nash equilibrium is a proper coloring of G. Therefore, since any two
vertices in different subsets among V 1

j , V
2
j , V

3
j are adjacent by construction,

they cannot have the same colour. Since Yj ∪ Nj = {a1
j , b

1
j , a

2
j , b

2
j , a

3
j , b

3
j} and

atj , b
t
j ∈ V tj for every 1 ≤ t ≤ 3, the claim follows directly. �

Claim 2. Any two vertices that are in a same private group have the same
colour. Similarly, xi and x′i have the same colour for every 1 ≤ i ≤ n.

Proof. Let S be either a private group (S = Atj or S = Btj for some 1 ≤ j ≤ m
and 1 ≤ t ≤ 3), or a pair representing the same letter of word w (i.e., S = {xi, x′i}
for some 1 ≤ i ≤ n). Let v ∈ S maximize her payoff and let c be her colour. Note
that v receives payoff |Lc|− 1 with Lc being the colour class composed of all the
vertices with colour c. Furthermore, every u ∈ S receives payoff lower than or
equal to |Lc| − 1 by the choice of v. In such case, every u ∈ S must be coloured
c, or else, since the adjacency and the nonadjacency relations are the same for
u and v (they are twins), furthermore u, v are nonadjacent, the agent u would
increase her payoff to |Lc| by choosing c as her new colour, thus contradicting
the hypothesis that we are in a Nash equilibrium. �

The argument we use in Claim 2 is that twin vertices must have the same
colour. In what follows, we will use the same argument under different disguises.

Claim 3. Let 1 ≤ j ≤ m and 1 ≤ t ≤ 3. Either Atj or Atj ∪ {atj} is a colour
class, and in the same way either Btj or Btj∪{btj} is a colour class. Furthermore,
either Btj ∪ {btj} is a colour class, or atj and btj have the same colour.

Proof. Recall that a Nash equilibrium is a proper coloring of G. Since atj is the
only vertex in V \Atj that is nonadjacent to Atj , furthermore every two vertices in
Atj have the same colour by Claim 2, therefore, either Atj or Atj ∪{atj} is a colour
class. Similarly, either Btj or Btj ∪ {btj} is a colour class. In particular, suppose
that btj does not have the same colour as her private group. Then, she must
receive payoff at least |Btj | = 2(n+ j)− 2 (else, she would increase her payoff by
choosing the same colour as her private group, thus contradicting the hypothesis
that we are in a Nash equilibrium). Furthermore, there can be only vertices in
V \ (Atj ∪Btj) with the same colour c as btj . Suppose for the sake of contradiction
that atj does not have colour c. There are two cases to be considered.

Suppose that Atj ∪ {atj} is a colour class. Then, atj receives payoff |Atj | =
2(n + j) − 3. In such case, since atj and btj are twin vertices in G \ (Atj ∪ Btj),
vertex atj could increase her payoff to at least 2(n+ j)− 1 by choosing c as her
new colour, thus contradicting the hypothesis that we are in a Nash equilibrium.

Else, atj and btj do not have the same colours as their respective private
groups. In such case, Atj and Btj are colour classes, hence we can constrain
ourselves to the subgraph G \ (Atj ∪ Btj). In particular, the constriction of the
Nash equilibrium to the subgraph must be a Nash equilibrium of the coloring
game defined on G\ (Atj ∪Btj). Since atj and btj are twin vertices in G\ (Atj ∪Btj),
they must have the same colour by a similar argument as for Claim 2.

As a result, atj must have colour c in both cases, that proves the claim. �
We recall that we aim at simulating the computation of the output of all

the gates in C. To do that, we will prove the existence of a special colour class
containing X and some pair in Yj ∪Nj for every j. Intuitively, the two vertices

of Yj ∪Nj are used to certify the output of the jth gate. However, this certificate
is “local” in the sense that it assumes the output of the j − 1 smaller gates to
be already certified. Therefore, we need to prove that there can be no “missing
gate”, i.e., every gate is represented in the special colour class.

Claim 4. Let c be a colour such that Lc 6⊆ X and Lc does not intersect any
private group (Atj or Btj for any 1 ≤ j ≤ m and 1 ≤ t ≤ 3).

Then, X ⊆ Lc and there exists an index j0 such that the following holds true:
|Lc ∩ (Yj ∪ Nj)| = 2 for every 1 ≤ j ≤ j0, and Lc ∩ (Yj ∪ Nj) = ∅ for every
j0 + 1 ≤ j ≤ m.

Proof. By the hypothesis Lc 6⊆ X and Lc does not intersect any private group, so,
there is at least one vertex of

⋃m
j=1(Yj ∪Nj) with colour c. Let j0 be the largest

index j such that there is a vertex in Yj ∪Nj with colour c. Since by Claim 1,
there can be no more than two vertices of Yj ∪ Nj that are in Lc for every j,
therefore, by maximality of j0 we get |Lc| ≤ |X|+ 2j0 = 2(n+ j0). In particular,
observe that if |Lc| = 2(n+ j0) then X ⊆ Lc and for every 1 ≤ j ≤ j0 there are
exactly two vertices in Yj∪Nj with colour c. So, let us prove that |Lc| = 2(n+j0),

that will prove the claim. By the choice of j0, there is some 1 ≤ t ≤ 3 such that
atj0 ∈ Lc or btj0 ∈ Lc. In particular, |Lc| ≥ min{|Atj0 |, |Btj0 |}+ 1 = 2(n+ j0)− 2
or else, every vertex vtj0 ∈ Lc ∩ {atj0 , btj0} would increase her payoff by choosing
the colour of the vertices in her private group (that is a colour class by Claim 3),
thus contradicting the hypothesis that we are in a Nash equilibrium.

We prove as an intermediate subclaim that for any 1 ≤ j ≤ j0 − 1 such that
Lc∩(Yj∪Nj) 6= ∅, there is some 1 ≤ t′ ≤ 3 such that at

′
j , b

t′
j ∈ Lc. Indeed, in this

situation, there is some t′ such that at
′
j ∈ Lc or bt

′
j ∈ Lc. If bt

′
j ∈ Lc then we are

done as by Claim 3, at
′
j ∈ Lc. Otherwise, bt

′
j /∈ Lc and we prove this case cannot

happen. First observe that at
′
j ∈ Lc in this case. Furthermore, since at

′
j and bt

′
j

do not have the same colour we have by Claim 3 that Bt
′
j ∪{bt

′
j } is a colour class.

In this situation, bt
′
j receives payoff 2(n+ j)− 2 ≤ 2(n+ j0− 1)− 2 < |Lc|. Since

in addition at
′
j and bt

′
j are twins in G \ (At

′
j ∪Bt

′
j), vertex bt

′
j could increase her

payoff by choosing colour c, thus contradicting that we are in a Nash equilibrium.
This proves at

′
j , b

t′
j ∈ Lc, and so, the subclaim.

By the subclaim, there is an even number 2k of vertices in
⋃j0−1
j=1 (Yj ∪ Nj)

with colour c, for some k ≤ j0− 1. Similarly, since by Claim 2 the vertices xi, x
′
i

have the same colour for every 1 ≤ i ≤ n, |X ∩ Lc| = 2n′ for some n′ ≤ n. Now
there are two cases to be considered.

Suppose that btj0 ∈ Lc. Then, by Claim 3 atj0 ∈ Lc. Furthermore |Lc| ≥
2(n+ j0)− 1 or else, vertex btj0 would increase her payoff by choosing the colour
of the vertices in Btj0 (that is a colour class by Claim 3), thus contradicting the
hypothesis that we are in a Nash equilibrium. As a result, |Lc| = 2(n′+k+ 1) ≥
2(n+j0)−1, that implies n′+k ≥ n+j0−1, and so, |Lc| ≥ 2(n+j0), as desired.

Else, btj0 /∈ Lc and we prove this case cannot happen. First observe that
atj0 ∈ Lc. Furthermore, |Lc| = 2(n′ + k) + 1 ≥ 2(n + j0) − 2, that implies
n′ + k ≥ n+ j0 − 1, and so, |Lc| ≥ 2(n+ j0)− 1. However, since atj0 and btj0 do
not have the same colour, Btj0 ∪{btj0} is a colour class by Claim 3. In particular,
btj0 receives payoff 2(n+ j0)−2 < |Lc|. Since atj0 , b

t
j0

are twins in G\ (Atj0 ∪Btj0),
vertex btj0 could increase her payoff by choosing colour c, thus contradicting that
we are in a Nash equilibrium.

Altogether, |Lc| ≥ 2(n+ j0), that proves the claim. �
We point out that by combining Claim 1 with Claim 4, one obtains that for

every 1 ≤ j ≤ m, there are either zero or two vertices in Yj ∪Nj in each colour
class not containing a private group, and in case there are two vertices then these
are atj , b

t
j for some 1 ≤ t ≤ 3.

Claim 5. Any two vertices in X have the same colour. Furthermore, for every
1 ≤ j ≤ m, every vertex in Yj ∪Nj either has the same colour as vertices in X
or as vertices in her private group.

Proof. Let Lc be any colour class with at least one vertex in
⋃m
j=1(Yj ∪Nj). Let

j0 be the largest index j such that there is a vertex in Yj ∪ Nj with colour c.
In order to prove the claim, there are two cases to be considered. Suppose that

Lc 6= Atj0 ∪ {atj0} and Lc 6= Btj0 ∪ {btj0} for any 1 ≤ t ≤ 3. We will prove that
X ⊆ Lc, that will imply that Lc is unique in such a case, and so, will prove the
claim. By the choice of colour c, Lc 6⊆ X. Further, observe that there can be no
private group with a vertex in Lc. As a result, this case follows directly from
Claim 4.

Else, either Lc = Atj0 ∪ {atj0} or Lc = Btj0 ∪ {btj0} for some 1 ≤ t ≤ 3, and we
may assume that it is the case for any colour class Lc that contains at least one
vertex in

⋃m
j=1(Yj ∪ Nj) (or else, we are back to the previous case). So, let us

constrain ourselves to the subgraph G[X]. In particular, the constriction of the
Nash equilibrium to the subgraph must be a Nash equilibrium of the coloring
game defined on G[X]. Since the vertices in X are pairwise nonadjacent, they
must form a unique colour class in such case, that proves the claim. �

We will need a “truthfulness” property to prove correctness of our reduction.
Namely, the value of the output of any gate in the circuit must be correctly
guessed from the agents with the same colour as vertices in X.

Claim 6. Let 1 ≤ j0 ≤ m such that for every 1 ≤ j ≤ j0, there is at least one
vertex in Yj ∪ Nj with the same colour c0 as all vertices in X. Then for every

1 ≤ j ≤ j0, Lc0 ∩ Yj 6= ∅ if and only if the output of the jth gate is 1.

Proof. In order to prove the claim by contradiction, let 1 ≤ j1 ≤ j0 be the
smallest index j such that either Yj ∩ Lc0 = ∅ and the output of the jth gate

is 1 (false negative) or Yj ∩ Lc0 6= ∅ and the output of the jth gate is 0 (false
positive). We will show that in such case, there is an edge with two endpoints
of colour c0, hence the coloring is not proper, thus contradicting the hypothesis
that we are in a Nash equilibrium. Note that since by de Morgan’s laws, the
negation of an AND-gate can be transformed into an OR-gate and vice-versa,
both cases are symmetrical, and so, we can assume w.l.o.g. that the jth1 gate is
an OR-gate. There are two subcases to be considered.

Suppose that the output of the jth1 gate is 0 (false positive). In such case,

Yj1 ∩ Lc0 6= ∅. Let us consider the first entry of the gate. If it is the ith entry of

the circuit for some 1 ≤ i ≤ n then wi = 0 (because the output of the jth1 gate is

0) and so, by construction, xi, x
′
i ∈ Lc0 are adjacent to a1

j1
, b1j1 . Else, it is the kth

gate of the circuit for some k < j1. By minimality of j1, since the output of the
kth gate must be 0 (because the output of the jth1 gate is 0), Yk ∩ Lc0 = ∅, and
so, Nk ∩ Lc0 6= ∅. By construction, every vertex in Nk is adjacent to a1

j1
, b1j1 . As

a result, a1
j1
, b1j1 have a neighbour in Lc0 in this subcase. We can prove similarly

(by considering the second entry of the gate) that a2
j1
, b2j1 have a neighbour in Lc0

in this subcase. The latter implies the existence of an edge with both endpoints
in Lc0 since Yj1 = {a1

j1
, b1j1 , a

2
j1
, b2j1}.

Else, the output of the jth1 gate is 1 (false negative). In such case, Yj1∩Lc0 = ∅,
hence Nj1 ∩ Lc0 6= ∅. Since the output of the gate is 1, there must be an entry

of the gate such that: either it is the ith entry of the circuit for some 1 ≤ i ≤ n,
and wi = 1 (in which case, the two vertices xi, x

′
i ∈ Lc0 are adjacent to both

a3
j1
, b3j1 by construction); or it is the kth gate of the circuit for some k < j1 and

this gate outputs 1. In the latter case, by minimality of j1, Yk ∩ Lc0 6= ∅. By
construction, every vertex in Yk is adjacent to a3

j1
, b3j1 . As a result, a3

j1
, b3j1 have

a neighbour in Lc0 in this subcase. The latter implies the existence of an edge
with both endpoints in Lc0 since Nj1 = {a3

j1
, b3j1}. �

3.3 Proof of Theorem 2

Proof of Theorem 2. Let 〈C, w〉 be any instance of Monotone Circuit Value.
Let G = (V,E) be the graph obtained with our reduction from Section 3.1,
which can be constructed in polylogarithmic-time with a polynomial number of
processors. The graph G defines a coloring game. We fix any Nash equilibrium
for this game, that exists by Theorem 1. By Claim 5, any two vertices in X have
the same colour c0. We will prove that there is at least one vertex in Ym with
colour c0 if and only if the circuit C outputs 1 when it takes w as input. Since
Monotone Circuit Value is PTIME-complete [9], the latter will prove that
computing a Nash equilibrium for coloring games is PTIME-hard.

By Claim 6, we only need to prove that for every 1 ≤ j ≤ m, there is at
least one vertex in Yj ∪Nj with colour c0. To prove it by contradiction, let j0 be
the smallest index j such that no vertex in Yj ∪Nj has colour c0. By Claim 5,
every vertex in Yj0 ∪Nj0 has the same colour as her private group. In particular,
the three of a1

j0
, a2
j0
, a3
j0

receive payoff 2(n + j0) − 3. We will prove that one of
these three agents could increase her payoff by choosing c0 as her new colour,
thus contradicting that we are in a Nash equilibrium. Indeed, by the minimality
of j0, it follows by Claim 4 that for any 1 ≤ j ≤ j0 − 1, there are exactly two
vertices of Yj ∪Nj with colour c0, while for every j0 ≤ j ≤ m there is no vertex
in Yj ∪Nj with colour c0. As a result, |Lc0 | = 2(n + j0) − 2. In particular, any
agent among a1

j0
, a2
j0
, a3
j0

could increase her payoff by choosing c0 as her new
colour — provided she is nonadjacent to every vertex in Lc0 . We will show it
is the case for at least one of the three vertices, that will conclude the proof
of the theorem. Assume w.l.o.g. that the jth0 gate is an OR-gate (indeed, since
by de Morgan’s laws, the negation of an AND-gate can be transformed into an
OR-gate and vice-versa, both cases are symmetrical). There are two cases.

Suppose that the output of the jth0 gate is 1. In such case, there must be an

entry of the gate such that: it is the ith entry of the circuit, for some 1 ≤ i ≤ n,
and wi = 1; or it is the kth gate of the circuit for some k < j0 and the output
of that gate is 1. In the latter case, we have by Claim 6 that the two vertices
of Yk ∪ Nk with colour c0 are in the set Yk. Assume w.l.o.g. that the above-
mentioned entry is the first entry of the gate. By construction, the two vertices
a1
j0
, b1j0 are nonadjacent to every vertex in Lc0 . Else, the output of the jth0 gate is

0. Therefore, for every entry of the gate: either it is the ith entry of the circuit,
for some 1 ≤ i ≤ n, and wi = 0; or it is the kth gate of the circuit for some k < j0
and the output of that gate is 0. In the latter case, we have by Claim 6 that
the two vertices of Yk ∪ Nk with colour c0 are in the set Nk. By construction,
the two vertices a3

j0
, b3j0 are nonadjacent to every vertex in Lc0 . In both cases, it

contradicts that we are in a Nash equilibrium. ut

4 Conclusion and open perspectives

We suggest through this case study a more in-depth analysis of the complexity
of computational mechanism designs. We would find it interesting to pursue
similar investigations for other games. Experiments in the spirit of [11] could be
helpful for our purposes. Further, we note that PRAM is seen by some as a too
unrealistic model for parallel computation. Thus, one may argue that proving
our reduction in this model casts a doubt on its reach. However, we can leverage
on the stronger statement that Monotone Circuit Value is strictly PTIME-
hard [5]. It implies roughly that the sequential time and the parallel time to solve
this problem cannot differ by more than a moderate polynomial-factor (unless
the solving of all problems in PTIME can be sped up on a parallel machine
by at least a polynomial-factor). Our reduction directly shows the same holds
true for the problem of computing a Nash equilibrium in a given coloring game,
that generalizes our hardness result to more recent parallel complexity classes
(e.g., [10]).

References

1. C. Ballester. NP-completeness in hedonic games. Games and Economic Behavior,
49(1):1–30, 2004.

2. J. A. Bondy and U. S. R. Murty. Graph theory. Grad. Texts in Math., 2008.
3. N. Burani and W. S. Zwicker. Coalition formation games with separable prefer-

ences. Mathematical Social Sciences, 45(1):27–52, 2003.
4. I. Chatzigiannakis, C. Koninis, P. N. Panagopoulou, and P. G. Spirakis. Distributed

game-theoretic vertex coloring. In OPODIS’10, pages 103–118.
5. A. Condon. A theory of strict P-completeness. Computational Complexity,

4(3):220–241, 1994.
6. G. Ducoffe, D. Mazauric, and A. Chaintreau. The complexity of hedonic coalitions

under bounded cooperation. Submitted.
7. J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing the cost of multicast

transmissions. J. Comput. Syst. Sci., 63(1):21–41, 2001.
8. M. Gairing and R. Savani. Computing stable outcomes in hedonic games. In

SAGT’10, pages 174–185.
9. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to parallel computation:

P-completeness theory. Oxford University Press, 1995.
10. H. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for MapReduce.

In SODA’10, pages 938–948.
11. M. Kearns, S. Suri, and N. Montfort. An experimental study of the coloring

problem on human subject networks. Science, 313(5788):824–827, 2006.
12. J. Kleinberg and K. Ligett. Information-sharing in social networks. Games and

Economic Behavior, 82:702–716, 2013.
13. J. R. Marden and A. Wierman. Distributed welfare games. Operations Research,

61(1):155–168, 2013.
14. P. N. Panagopoulou and P. G. Spirakis. A game theoretic approach for efficient

graph coloring. In ISAAC’08, pages 183–195.
15. C. H. Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.
16. V. Vassilevska Williams. Fine-Grained Algorithms and Complexity (Invited Talk).

In STACS’16.

Papers on Web’s transparency

Appendix K

Xray: enhancing the Web’s
transparency with differential

correlation

XRay: Enhancing the Web’s Transparency with Differential Correlation

Mathias Lécuyer, Guillaume Ducoffe, Francis Lan, Andrei Papancea, Theofilos Petsios,
Riley Spahn, Augustin Chaintreau, and Roxana Geambasu

Columbia University

Abstract
Today’s Web services – such as Google, Amazon, and
Facebook – leverage user data for varied purposes,
including personalizing recommendations, targeting
advertisements, and adjusting prices. At present, users
have little insight into how their data is being used.
Hence, they cannot make informed choices about the
services they choose.

To increase transparency, we developed XRay, the
first fine-grained, robust, and scalable personal data
tracking system for the Web. XRay predicts which
data in an arbitrary Web account (such as emails,
searches, or viewed products) is being used to target
which outputs (such as ads, recommended products, or
prices). XRay’s core functions are service agnostic and
easy to instantiate for new services, and they can track
data within and across services. To make predictions
independent of the audited service, XRay relies on the
following insight: by comparing outputs from different
accounts with similar, but not identical, subsets of data,
one can pinpoint targeting through correlation. We
show both theoretically, and through experiments on
Gmail, Amazon, and YouTube, that XRay achieves
high precision and recall by correlating data from a
surprisingly small number of extra accounts.

1 Introduction
We live in a “big data” world. Staggering amounts
of personal data – our as locations, search histories,
emails, posts, and photos – are constantly collected and
analyzed by Google, Amazon, Facebook, and a myriad
of other Web services. This presents rich opportunities
for marshaling big data to improve daily life and social
well-being. For example, personal data improves the
usability of applications by letting them predict and
seamlessly adapt to future user needs and preferences.
It improves business revenues by enabling effective
product placement and targeted advertisements. Twitter
data has been successfully applied to public health
problems [36], crime prevention [44], and emergency
response [22]. These beneficial uses have generated a
big data frenzy, with Web services aggressively pursuing
new ways to acquire and commercialize it.

Despite its innovative potential, the personal data
frenzy has transformed the Web into an opaque and
privacy-insensitive environment. Web services accumu-
late data, exploit it for varied and undisclosed purposes,
retain it for extended periods of time, and possibly share
it with others – all without the data owner’s knowledge
or consent. Who has what data, and for what purposes is
it used? Are the uses in the data owners’ best interests?
Does the service adhere to its own privacy policy? How
long is data used after its owner deletes it? Who shares
data with whom?

At present, users lack answers to these questions,
and investigators (such as FTC agents, journalists, or
researchers) lack robust tools to track data in the ever-
changing Web to provide the answers. Left unchecked,
the exciting potential of big data threatens to become a
breeding ground for data abuses, privacy vulnerabilities,
and unfair or deceptive business practices. Examples of
such practices have begun to surface. In a recent inci-
dent, Google was found to have used institutional emails
from ad-free Google Apps for Education to target ads in
users’ personal accounts [18, 37]. MySpace was found
to have violated its privacy policy by leaking personally
identifiable information to advertisers [25]. Several
consumer sites, such as Orbitz and Staples, were found
to have adjusted their product pricing based on user
location [29, 43]. And Facebook’s 2010 ad targeting was
shown to be vulnerable to micro-targeted ads specially
crafted to reveal a user’s private profile data [23].

To increase transparency and provide checks and
balances on data abuse, we argue that new, robust, and
versatile tools are needed to effectively track the use of
personal data on the Web. Tracking data in a controlled
environment, such as a modified operating system, lan-
guage, or runtime, is an old problem with a well-known
solution: taint tracking systems [12, 16, 7, 48]. However,
is it possible to track data in an uncontrolled environ-
ment, such as the Web? Can robust, generic mechanisms
assist in doing so? What kinds of data uses are trackable
and what are not? How would the mechanisms scale
with the amount of data being tracked?

As a first step toward answering these questions, we
built XRay, a personal data tracking system for the Web.

1

XRay correlates designated data inputs (be they emails,
searches, or visited products) with data outputs results
(such as ads, recommended products, or prices). Its
correlation mechanism is service agnostic and easy to
instantiate, and it can track data use within and across
services. For example, it lets a data owners track how
their emails, Google+, and YouTube activities are used
to target ads in Gmail.

At its core, XRay relies on a differential correlation
mechanism that pinpoints targeting by comparing out-
puts in different accounts with similar, but not identical,
subsets of data inputs. To do so, it associates with every
personal account a number of shadow accounts, each of
which contains different data subsets. The correlation
mechanism uses a simple Bayesian model to compute
and rank scores for every data input that may have
triggered a specific output. Intuitively, if an ad were
seen in many accounts that share a certain email, and
never in accounts that lack that email, then the email is
likely to be responsible for a characteristic that triggers
the ad. The email’s score for that ad would therefore be
high. Conversely, if the ad were seen rarely in accounts
with or lacking that email, that email’s score for this ad
would be low.

Constructing a practical auditing system around dif-
ferential correlation raises significant challenges. Chief
among them is scalability with the number of data items.
Theoretically, XRay requires a shadow account for
each combination of data inputs to accurately pinpoint
correlation. That would suggest an exponential number
of accounts! Upon closer examination, however, we find
that a few realistic assumptions and novel mechanisms
let XRay reach high precision and recall with only
a logarithmic number of accounts in number of data
inputs. We deem this a major new result for the science
of tracking data-targeting on the Web.

We built an XRay prototype and used it to correlate
Gmail ads, Amazon product recommendations, and
YouTube video suggestions to user emails, wish lists,
and previously watched videos, respectively. While
Amazon and YouTube provide detailed explanations of
their targeting, Gmail does not, so we manually vali-
dated associations. For all cases, XRay achieved 80-90%
precision and recall. Moreover, we integrated our Gmail
and YouTube prototypes so we could track cross-service
ad targeting. Although several prior measurement
studies [10, 47, 21, 20, 31] used methodologies akin
to differential correlation, we believe we are the first to
build a generic, service agnostic, and scalable tool based
on it. Overall, we make the following contributions:
1. The first general, versatile, and open system to track

arbitrary personal Web data use by uncontrolled
services. The code is available from our Web page
https://xray.cs.columbia.edu/.

2. The first in-depth exploration into the scalability
challenges of tracking personal data on the Web.

3. The design and implementation of robust mechanisms
to address scaling, including data matching.

4. System instantiation to track data on three services
(Gmail, Amazon, YouTube) and across services
(YouTube to Gmail).

5. An evaluation of our system’s precision and recall on
Gmail, Amazon, and YouTube. We show that XRay
is accurate and scalable. Further, it reveals intriguing
practices now in use by Web services and advertisers.

2 Motivation
This paper lays the algorithmic foundations for a new
generation of scalable, robust, and versatile tools to
lift the curtain on how personal data is being targeted.
We underscore the need for such tools by describing
potential usage scenarios inspired by real-life examples
(§2.1). We do this not to point fingers at specific service
providers; rather, we aim to show the many situations
where transparency tools would be valuable for end-
users and auditors alike. We conclude this section by
briefly analyzing how current approaches fail to address
these usage scenarios (§2.2).

2.1 Usage Scenarios
Scenario 1: Why This Ad? Ann often uses her Gmail
ads to discover new retail offerings. Recently, she
discussed her ad-clicking practices with her friend Tom,
a computer security expert. Tom warned her about
potential privacy implications of clicking on ads without
knowing what data they target. For example, if she
clicks on an ad targeting the keyword “gay” and then
authenticates to purchase something from that vendor,
she is unwittingly volunteering potentially sensitive
information to the vendor. Tom tells Ann about two
options to protect her privacy. She can either disable
the ads altogether (using a system like AdBlock [1]),
or install the XRay Gmail plugin to uncover targeting
against her data. Unwilling to give up the convenience
of ads, Ann chooses the latter. XRay clearly annotates
the ads in the Gmail UI with their target email or
combination, if any. Ann now inspects this targeting
before clicking on an ad and avoids clicking if highly
sensitive emails are being targeted.
Scenario 2: They’re Targeting What? Bob, an FTC
investigator, uses the XRay Gmail plugin for a differ-
ent purpose: to study sensitive-data targeting practices
by advertisers. He suspects a potentially unfair practice
whereby companies use Google’s ad network to collect
sensitive information about their customers. Therefore,
Bob creates a number of emails containing keywords
such as “cancer,” “AIDS,” “bankruptcy,” and “unemploy-
ment.” He refreshes the Gmail page many times, each
time recording the targeted ads and XRay’s explanations

2

for them. The experiment reveals an interesting result:
an online insurance company, TrustInUs.com, has tar-
geted multiple ads against his illness-related emails. Bob
hypothesizes that the company might use the data to set
higher premiums for users reaching their site through a
disease-targeted ad. He uses XRay results as initial evi-
dence to open an investigation of TrustInUs.com.
Scenario 3: What’s With The New Policy?1 Carla, an
investigative journalist, has set up a watcher on privacy
policies for major Web services. When a change occurs,
the watcher notifies her of the difference. Recently, an
important sentence in Google’s privacy policy has been
scrapped:

If you are using Google Apps (free edition),
email is scanned so we can display concep-
tually relevant advertising in some circum-
stances. Note that there is no ad-related
scanning or processing in Google Apps for
Education or Business with ads disabled.

To investigate scientifically whether this omission repre-
sents a shift in implemented policy, she obtains institu-
tional accounts, connects them to personal accounts, and
uses XRay to detect the correlation between emails in
institutional accounts and ads in corresponding personal
accounts. Finding a strong correlation, Carla writes an
article to expose the policy change and its implications.
Scenario 4: Does Delete Mean Delete? Dan, a
CS researcher, has seen the latest news that Snapchat,
an ephemeral-image sharing Website, does not destroy
users’ images after the requested timeout but instead just
unlinks them [41]. He wonders whether the reasons for
this are purely technical as the company has declared
(e.g., flash wearing levels, undelete support, spam filter-
ing) [39, 38] or whether these photos, or metadata drawn
from them, are mined to target ads or other products
on the Website. The answer will influence his decision
about whether to continue using the service. Dan instan-
tiates XRay to track the correlation between his expired
Snapchat photos and ads.

2.2 Alternative Approaches
The preceding scenarios illustrate the importance of
transparency in protecting privacy across a range of
use cases. We need robust, generic auditing tools to
track the use of personal data at fine granularity (e.g.,
individual emails, photos) within and across arbitrary
Web services. At present, no such tools exist, and the
science of tracking the use of personal Web data at a fine
grain is largely non-existent.

1In Feb. 2014, it was revealed based on court documents that
Google could have used institutional emails to target ads in personal
accounts [18]. In May 2014, Google committed to disable that fea-
ture [30]. Scenario 3 presents an XRay-based approach to investigate
the original allegation.

Existing approaches can be broadly classified in
two categories: protection tools, which prevent Web
services’ acquisition or use of personal data, and (2)
auditing tools, which uncover Web services’ acquisition
or use of personal data. We discuss these approaches
next; further related work is in §9.
Protection Tools. A variety of protection tools ex-
ist [11, 35, 1, 49]. For example, Ann could disable ads
using an ad blocker [1]. Alternatively, she could en-
crypt her emails, particularly the sensitive ones, to pre-
vent Google from using them to target ads. Dan could
use a self-destructing data system, such as Vanish [14],
to ensure the ephemerality of his Snapchat photos.

While we encourage the use of protection tools, they
impose difficult tradeoffs that make them inapplicable in
many cases. If Ann blocks all her ads, she cannot benefit
from those she might find useful; if she encrypts all of her
emails, she cannot search them; if she encrypts only her
sensitive emails, she cannot protect any sensitive emails
she neglected to encrypt in advance. Similarly, if Dan
encrypts his Snapchat photos, sharing them becomes
more difficult. While more sophisticated protection
systems address certain limitations (e.g., searchable [5],
homomorphic [15, 33], and attribute-based encryp-
tion [19], or privacy-preserving advertising [42, 13]),
they are generally heavyweight [15], difficult to use [45],
or require major service-side changes [15, 42, 13].
Auditing Tools. Given the limitations of protection
tools, transparency is gaining increased attention [47, 12,
21]. If protecting data proves too cumbersome, limiting,
or unsupportive of business needs, then users should at
least be able to know: (1) who is handling their data?,
and (2) what is it being used for?

Several tools developed in recent years partially ad-
dress the first question by revealing where personal data
flows from a local device [34, 12, 8]. TaintDroid [12]
uses taint tracking to detect leakage of personal data
from a mobile application to a service or third-party
backend. ShareMeNot [34] and Mozilla’s Lightbeam
Firefox add-on [27] identify third parties that are ob-
serving user activities across the Web. These systems
track personal data – such as location, sensor data, Web
searches, or visited sites – until it leaves the user’s
device. Once the data is uploaded to Web services, it
can be used or sold without a trace. In contrast, XRay’s
tracking just begins: we aim to tell users how services
use their data once they have it.

Several new tools and personalization measurement
studies partially address the second question: what
data is being used for [10, 47, 21, 20, 31]. In general,
all existing tools are highly specialized, focusing on
specific input types, outputs, or services. No general,
principled foundation for data use auditing exists, that
can be applied effectively to many services, a primary

3

motivation for this our work. For example, Bobble [47]
reveals search result personalization based on user
location (e.g., IP) and search history. Moreover, existing
tools aim to discover only whether certain types of user
inputs – such as search history, browsing history, IP,
etc. – influence the output. None pinpoints at fine grain
which specific input – which search query, which visited
site, or which viewed product – or combination of inputs
explain which output. XRay, whose goals we describe
next, aims to do just that.

3 Goals and Models
Our overarching goal is to develop the core abstractions
and mechanisms for tracking data within and across
arbitrary Web sites. After describing specific goals
(§3.1), we narrow our scope with a set of simplifying as-
sumptions regarding the data uses that XRay is designed
to audit (§3.2) and the threats it addresses (§3.3).

3.1 Goals
Three specific goals have guided XRay’s design:

Goal 1: Fine-Grained and Accurate Data Tracking.
Detect which specific data inputs (e.g., emails) have
likely triggered a particular output (e.g., an ad). While
coarse-grained data use information (such as Gmail’s
typical statement, “This ad is based on emails from your
mailbox.”) may suffice at times, knowing the specifics
can be revelatory, particularly when the input is highly
sensitive and aggressively targeted.

Goal 2: Scalability. Make it practical to track signif-
icant amounts of data (e.g., past month’s emails). We
aim to support the tracking of hundreds of inputs with
reasonable costs in terms of shadow accounts. These ac-
counts are generally scarce resource since their creation
is being constrained by Web services. While we assume
that users and auditors can obtain some accounts on the
Web services they audit (e.g., a couple dozen), we strive
to minimize the number required for accurate and fine-
grained data tracking.

Goal 3: Extensibility, Generality, and Self-Tuning.
Make XRay generic and easy to instantiate for many ser-
vices and input/output types. Instantiating XRay to track
data on new sites should be simple, although it may re-
quire some service-specific implementation of input/out-
put monitoring. However, XRay’s correlation machinery
– the conceptually challenging part of a scalable auditing
tool – should be turn key and require no manual tuning.

3.2 Web Service Model
These goals may appear unsurmountable. An extremely
heterogeneous environment, the Web has perhaps as
many data uses as services. Moreover, data mining
algorithms can be complex and proprietary. How can
we abstract away this diversity and complexity to design
robust and generic building blocks for scalable data

associations
(email→ad,

viewed→recommend)

one or more
Web services

data inputs
(emails, searches,
viewed products)

targeted outputs
(ads, recommended
products and videos)

x
R

ay

(m
o

ni
to

r,
 c

o
rr

e
la

te
)

Figure 1: XRay Conceptual View. XRay views Web services
as black boxes, monitors user inputs and outputs to/from them,
and detects data use through correlation. It returns to the user
or auditor associations of specific inputs and outputs.

tracking? Fortunately, we find that certain popular
classes of Web data uses lend themselves to principled
abstractions that facilitate scalable tracking.

Figure 1 shows XRay’s simplified view of Web ser-
vices. Services, and networks of services that exchange
user data, are black boxes that receive personal data
inputs from users – such as emails, pictures, search
queries, locations, or purchases – and use them for varied
purposes. Some uses materialize into outputs visible to
users, such as ads, product or video recommendations,
or prices. Others invisible to the users. XRay correlates
some visible data inputs with some visible outputs by
monitoring them, correlating them, and reporting strong
associations to users. An example association is which
email(s) contributed to the selection of a particular ad.

XRay relates only strongly correlated inputs with
outputs. If an output is strongly correlated to an input
(i.e., the input’s presence or absence changes the output),
then XRay will likely be able to detect its use. If not (i.e.,
the monitored input plays but a small role in the output),
then it may go undetected. XRay also relates small
combinations of inputs with strongly correlated outputs.

Although simple, this model efficiently addresses
several types of personal data functions, including
product recommendations, price discriminations, and
various personalization functions (e.g., search, news).
We refer to such functions generically as targeting
functions and focus XRay’s design on them.

Three popular forms of targeting are:
1. Profile Targeting, which leverages static or slowly

evolving explicit information – such as age, gender,
race, or location – that the user often supplies by fill-
ing a form. This type of targeting has been studied
profusely [10, 47, 21, 20, 31]; we thus ignore it here.

2. Contextual Targeting, which leverages the content
currently being displayed. In Gmail, this is the cur-
rently open email next to which the ad is shown. In
Amazon or Youtube, the target is the product or video
next to which the recommendation is shown.

3. Behavioral Targeting, which leverages a user’s past
actions. An email sent or received today can trig-
ger an ad tomorrow; a video watched now can trig-

4

ger a recommendation later. Use of histories makes it
harder for users to track which data is being used, a
key motivation for our development of XRay.

Theoretically, our differential correlation algorithms
could be applied to all three forms of targeting. From
a systems perspective, XRay’s design is geared towards
contextual targeting and a specific form of behavioral
targeting. The latter requires further attention. We
observe that this broad targeting class subsumes multiple
types of targeting that operate at different granularities.
For example, a service could use as inputs a user’s
most recent few emails to decide targeting. This would
be similar to an extended context. Alternatively, a
service could use historical input to learn a user’s coarse
interests or characteristics and base its targeting on that.

XRay currently aims to disclose any targeting applied
at the level of individual user data, or small combinations
thereof. Our differential correlation algorithms could
be applied to detect targeting that operates on a coarser
granularity. However, the XRay system itself would
require significant changes. Unless otherwise noted, we
use behavioral targeting to denote the restricted form of
behavioral targeting that XRay is designed to address.
We formalize these restrictions in §4.2.

3.3 Threat Model
To further narrow our problem’s scope, we introduce
threat assumptions. We assume that data owners (users
and auditors) are trusted and do not attempt to leverage
XRay to harm Web services or the Web ecosystem.
While they trust Web services with their data, they wish
to better understand how that data is being used. Data
owners are thus assumed to upload the data in clear text
to the Web services.

The threat models relevant for Web services depend
on the use case. For example, Scenarios 1 and 2 in
§2.1 assume Google is trusted, but its users wish to
understand more about how advertisers target them
through its ad platform. In contrast, in Scenarios 3 and
4, investigators may have reason to believe that Web
services might intentionally frustrate auditing.

This paper assumes an honest-but-curious model for
Web services: they try to use private data for financial
or functional gains, but they do not try to frustrate our
auditing mechanism, e.g., by identifying and disabling
shadow accounts. The service might attempt to defend
itself against more general types of attacks, such as
spammers or DDoS attacks. For example, many Web
services constrain the creation of accounts so as to limit
spamming and false clicks. Similarly, Web services may
rate limit or block the IPs of aggressive data collectors.
XRay must be robust to such inherent defenses. We
discuss challenges and potential approaches for stronger
adversarial models in §7.

4 The XRay Architecture
XRay’s design addresses the preceding goals and
assumptions. For concreteness, we draw examples
from our three XRay instantiations: tracking email-
to-ad targeting association within Gmail, attributing
recommended videos to those already seen on YouTube,
and identifying products in a wish list that generate a
recommendation on Amazon.

4.1 Architectural Overview
XRay’s high-level architecture (Figure 2) consists
of three components: (1) a Browser Plugin, which
intercepts tracked inputs and outputs to/from an audited
Web service and gives users visual feedback about
any input/output associations, (2) a Shadow Account
Manager, which populates shadow accounts with inputs
from the plugin and collects outputs (e.g., ads) for each
shadow account, and (3) the Correlation Engine, XRay’s
core, which infers associations and provides them to
the plugin for visualization. While the Browser Plugin
and Shadow Account Manager are service specific, the
Correlation Engine, which encapsulates the science
of Web-data tracking, is service agnostic. After we
describe each component, we focus on the design of the
Correlation Engine.
Browser Plugin. The Browser Plugin intercepts desig-
nated inputs and outputs (i.e., tracked inputs/outputs) by
recognizing specific DOM elements in an audited ser-
vice’s Web pages. Other inputs and outputs may not be
tracked by XRay (i.e., untracked inputs/outputs). The
decision of what to track belongs to an investigator or
developer who instantiates XRay to work on a specific
service. For example, we configure the XRay Gmail Plu-
gin to monitor a user’s emails as inputs and ads as out-
puts. When the Plugin gets a new tracked input (e.g., a
new email), it forwards it both to the service and to the
Shadow Account Manager. When the Plugin gets a new
tracked output (e.g., an ad), it queries the Correlation En-
gine for associations with the user’s tracked inputs (mes-
sage get assoc).
Shadow Account Manager. This component: (1) pop-
ulates the shadow accounts with subsets of a user ac-
count’s tracked inputs (denoted Di), and (2) periodically
retrieves outputs (denoted Ok) from the audited service
for each shadow account. Both functions are service spe-
cific. For Gmail, they send emails with SMTP and call
the ad API. For YouTube, they stream a video and scrape
recommendations, and for Amazon, they place products
in wish lists and scrape recommendations. The complex-
ity of these tasks depends on the availability of APIs or
the stability of a service’s page formats. Outputs col-
lected from the Web service are placed into a Correlation
Database (DB), which maps shadow accounts to their in-
put sets and output observations. Figure 2 shows a par-

5

Browser
(User Acct.)

D1

D2

D3

O1

O2

all inputs

all outputs

Shadow Account Manager
(service-specific)

associations
(D2→O1)

Differential
Correlation

Engine
(service-agnostic)

 Correlation
Algorithm

Input
Placement

Input
Matching

tra
ck

ed in
puts

outputs

tracked inputs

User Acct.

D1 D2 D3

Shadow Acct. 1

D1 D2

Shadow Acct. 2

D2 D3

Shadow Acct. 3

D1 D3Correlation DB

get_assoc
(D2)

X
R

ay
 p

lu
g

in
(s

e
rv

ic
e

-s
pe

ci
fic

)

XRay

Audited Web
Service

Shadow
Account

Tracked
Inputs

Tracked
Outputs

Shadow 1

Shadow 2

Shadow 3

D1 D2

D2 D3

D1 D3

O1

O2

O1

Figure 2: The XRay Architecture.

ticular assignment of tracked inputs across three shadow
accounts. For example, Shadow 1 has inputs D1 and
D2. The figure also shows the outputs collected for each
shadow account. Output O1 appears in Shadows 1 and 2
but not in 3; output O2 appears in Shadow 3 only.

Differential Correlation Engine. This engine, XRay’s
service-agnostic “brain,” leverages the data collected in
the Correlation DB to infer input/output associations.
When new outputs from shadow accounts are added into
the Correlation DB, the engine attempts to diagnose them
using a Correlation Algorithm. We developed several
such algorithms and describe them in §4.3. This process,
potentially time-consuming process, is done as a back-
ground job, asynchronously from any user request. In
Figure 2, differential correlation might conclude that D2
triggers O1 because O1 appears consistently in accounts
with that D2. It might also conclude that O2 is untargeted
given inconsistent observations. The engine saves these
associations in the Correlation DB.

When the plugin makes a get assoc request, the
Correlation Engine looks up the specified output in its
DB and returns any pre-computed association. If no out-
put is found, then the engine replies unknown (e.g., if an
ad never appeared in any shadow account or there is in-
sufficient information). Periodic data collection, coupled
with an online update of correlation model parameters,
minimizes the number of unknown associations. Our
experience shows that collecting shadow account outputs
in Gmail every ten hours or so yielded few unknown ads.

While the preceding example is simple, XRay can
handle complex challenges occurring in practice. First,
outputs are never consistently seen across all shadow
accounts containing the input they target. We call
this the limited-coverage problem; XRay handles it
by placing each data input in more shadow accounts.
Second, an output may have been triggered by one of
several targeted inputs (e.g., multiple emails on the same
topic may cause related ads to appear), a problem we

refer to as overlapping-inputs. This exacerbates the
number of accounts needed, since it diminishes the
differential signal we receive from them. XRay uses
robust, service-agnostic mechanisms and algorithms
to match overlapping inputs, place them in the same
accounts, and detects their use as a group.

Organization. The remainder of this section describes
the Differential Correlation Engine. After constructing it
for Gmail, we applied it as-is for Amazon and YouTube,
where it achieved equally high accuracy and scalability
despite observable differences in how targeting works on
these three services. After establishing notations and for-
malizing our assumptions (§4.2), we describe multiple
correlation algorithms, which build up to our self-tuning
correlation algorithm that made this adaptation conve-
nient (§4.3). §4.4 describes our input matching.

4.2 Notation and Assumptions
We use f to denote the black-box function that repre-
sents the service (e.g., Gmail) associating inputs Dis
(e.g., the emails received and sent) to targeted outputs
Oks (e.g., ads). Other inputs are either ignored by XRay,
known only to the targeting system, or under no known
control. We assume they are independent or fixed,
captured in the randomness of f .

We assume that f decides targeting using: (1) a
single input (e.g., show Ok if D4 is in the account),
(2) a conjunctive combination of inputs (e.g., show Ok
if D5 and D8 are in the account), or (3) a disjunctive
combination of the previous (e.g., show Ok if (D5 and
D8) are in the account or if D4 is in the account). We
refer to conjunctive and disjunctive combinations as
AND and OR combinations, respectively, and assume
that their is bounded by a maximum input size, r. This
corresponds to the preceding definition of behavioral
targeting from §3.2. Contextual targeting will always be
a single-input (size-one) combination.

Our goal is to decide whether f produced each output
Ok as a reaction to a bounded-size combination of the
Dis. We define as untargeted any ad that is not targeted
against any combination of Dis, though in reality the ad
could be targeted against untracked inputs. We denote
untargeting as D /0, meaning that the ad is targeted against
the “void” email. Our algorithms compute the most
likely combination from the N inputs that explains a
particular set of observations,~x, obtained by XRay.

We define three probabilities upon which our algo-
rithms and analyses depend. First, the coverage, pin, is
the probability that an account j containing the input Di
targeted by a particular ad, will see that ad at least once.
Second, an account j′ lacking input Di will see the ad
with a smaller probability, pout. Third, if the ad is not
behaviorally targeted, it will appear in each account with
the same probability, p /0. We assume that pin, p /0, pout are

6

constant across all emails, ads, and time, and that pout is
strictly smaller than pin (bounded noise hypothesis).

Finally, we consider all outputs to be independent of
each other across time. §8 discusses the implications.

4.3 Correlation Algorithms
A core contribution of this paper is our service-agnostic,
self-tuning differential correlation algorithm, which
requires only a logarithmic number of shadow accounts
to achieve high accuracy. We wished not only to validate
this result experimentally, but also to prove it theoreti-
cally in the context of our assumptions. This section con-
structs the algorithm in steps, starting with a naı̈ve poly-
nomial algorithm that illustrates the scaling challenges.
We then define a base algorithm using set intersections
and prove that it has the desired logarithmic scaling prop-
erties; it has parameters which, if not carefully chosen,
can lead to poor results. We therefore extend this base
algorithm into a self-tuning Bayesian model that auto-
matically adjusts its parameters to maximize correctness.

4.3.1 Naı̈ve Non-Logarithmic Algorithm
An intuitive approach to differential correlation is to
create accounts for every combination of inputs, gather-
ing maximum information about their behaviors. With
a sufficient number of observations, one could expect
to detect which accounts, and hence which subsets of
inputs, target a particular ad. Unfortunately, this method
requires a number of accounts that grows exponentially
as the number of items N to track grows. When restrict-
ing the size of combinations to r, as we do in XRay, the
number of accounts needed is polynomial (in O(Nr)),
or linear if we study unique inputs only. Even a linear
number of accounts in the number N of inputs remains
impractical to scale to large input sizes (e.g., a mailbox).

4.3.2 Threshold Set Intersection
We now show that it is possible to infer behavioral
targeting using no more than a logarithmic number
of accounts as a function of the number of inputs.
Specifically, we prove the following theorem:

Theorem 1 Under §4.2 assumptions, for any ε > 0 there
exists an algorithm that requires C × ln(N) accounts
to correctly identify the inputs of a targeted ad with
probability (1− ε). The constant C depends on ε and
the maximum size of combinations r (O(r2r log(1

ε))).

To demonstrate the theorem, we define the Set Inter-
section Algorithm and prove that it has the correctness
and scaling properties specified in the theorem. Given
that outputs will appear more often in accounts con-
taining the targeting inputs, the core of the algorithm is
to determine the set of inputs appearing in the highest
number of accounts that also see a given ad. This paper
describes a basic version of the algorithm that makes

� �
// Set Intersection Algo:
// Runs with each collected ad.
In: Output Ok (e.g. an ad).
Params: MIN ACTIVE ACCTS, THRESHOLD.
Out: Targeted input combination.
// Step 1: Compute active accounts.
Ak = the accounts that see ad Ok.
if |Ak| < MIN ACTIVE ACCTS

return /0
end
// Step 2: Create input combination hypothesis.
targeted set = /0
foreach input Di do

if number o f Ak containing Di
|Ak | >THRESHOLD

targeted set += Di
end

end
// Step 3: Verify it is a real combination.
if number o f Ak containing entire targeted set

|Ak | <THRESHOLD
return /0

end
// targeted set triggered the output.
return targeted set� �

Figure 3: The Set Intersection Algorithm. Can be proven
to predict targeting correctly under certain assumptions with a
logarithmic number of accounts.

some simplifying assumptions and provides a brief proof
sketch. The detailed proof and complete algorithm are
described in our technical report [26].

Algorithm. The algorithm relies on a randomized place-
ment of inputs into shadow accounts, with some redun-
dancy to cope with imperfect coverage. We thus pick a
probability, 0 < α < 1, create C ln(N) shadow accounts,
and place each input Di randomly into each account with
probability α . Figure 3 shows the Set Intersection algo-
rithm for a set of observations, ~x. Given an output Ok
collected from the user account, we compute the set of
active accounts, Ak, as those shadow accounts that have
seen the output (Step 1). We then compute the set of in-
puts that appear in at least a threshold fraction of active
accounts; this set is our candidate for the combination
being targeted by the ad (Step 2). Finally, we check that
the entire combination is in a threshold fraction of the ac-
tive accounts (Step 3). Theoretically, we prove that there
exists a threshold for which the algorithm is arbitrarily
correct with the available C ln(N) accounts. Practically,
this threshold must be tuned experimentally to achieve
good accuracy on every service – a key reason for our
Bayesian enhancement in §4.3.3.

Correctness Proof Sketch. The proof shows that if there
were targeting, every non-targeting input would have a
vanishingly small probability to be in a significant frac-
tion of the active accounts. Let us call S the set of inputs

7

� �
// Bayesian Prediction Alg:
// Runs with each collected ad.
In: Output Ok (e.g. an ad).
Out: Targeted input.
// Compute probabilities.
foreach input Di do
P [Di|~x] = bayes(P [~x| Di])

end
// Compute untargeted prob.
P [D /0|~x] = bayes(P [~x| D /0])
// Return event with max prob.
return Di with max P [Di|~x]� �

� �
// Parameter Learning Alg:
// Runs periodically.
// Initialize params (arbitrary).
pin = .7,pout = .01,p /0 = .1
do

foreach output Ok do
Run Bayesian Prediction.

end
Update pin, pout , p /0

from predictions.
until pin, pout , p /0 converge
end� �

Figure 4: Bayesian Correlation. Left: Bayesian prediction
algorithm for behavioral targeting. Right: typical iterative
inference process to learn parameters.

contained in a significant fraction of the active accounts.
Without targeting, these inputs would be present in the
accounts by mere chance. Since inputs are independently
distributed into the accounts, we show that the probabil-
ity of S not being empty decreases exponentially with the
number of active accounts (through Chernoff bounds).
With targeting, we show that with high probability no
other input than the explaining combination is in S, be-
cause of the bounded noise hypothesis. Appendix A.2
provides further proof details.

The proofs and algorithm included in this paper work
only for conjunctive combinations (e.g., D1 and D2,
see §4.2). The theory, however, can be extended to
disjunctive combinations (e.g., (D1 and D2) or D5), but
the algorithm for detecting such combinations is more
complex and relies on a recursive argument: if we find
one combination from the disjunction, then the active
accounts that include this combination define a context
where the combination appears non-targeting because it
is everywhere. If we recursively apply our algorithm in
this context, we can detect the second combination in the
disjunction, then the third, etc (see technical report [26]).

4.3.3 Self-Tuning Bayesian Algorithm
The Set Intersection algorithm provides a good the-
oretical foundation; however, it requires parameters
be tuned and applies only to behavioral targeting, not
contextual targeting. Thus, we include in XRay a more
robust, self-tuning version that leverages a Bayesian
algorithm to adjust parameters automatically through
iterated inference. Our algorithm relies on three models:
one that predicts behavioral targeting, one that predicts
contextual targeting, and one that combines the two.
Behavioral Targeting. The Bayesian behavioral tar-
geting model uses the same random assignment as the
Set Intersection algorithm, and it leverages the same in-
formation from the shadow account observations, ~x. It
counts the observations x j of ad Ok in an account j as
a binary signal: if the ad has appeared at least once in

account j, we count it once; otherwise we do not count
it. Briefly, the Bayesian model is a simple generative
model that simulates the audited service given some tar-
geting associations (e.g., Di triggers Ok). It computes the
probability for this model to generate the outputs we do
observe for every targeting association. The most likely
association will be the one XRay returns.

In more detail if the ad were targeted towards Di, then
an account j containing Di would see this ad at least
once with a coverage probability pin; otherwise, it would
miss it with probability (1− pin). An account j′ without
input Di would see the ad with a smaller probability,
pout, missing it with probability (1− pout). If the ad
were not behaviorally targeted, it would appear in each
account with the same probability, p /0. If we define Ak as
the set of active accounts that have seen the ad, and Ai as
the set of accounts that contain email Di, then we have
the following definitions for the probabilities:

P [~x| Di] = (pin)|Ai∩Ak| (1− pin)|Ai∩Āk|

×(pout)
|Āi∩Ak| (1− pout)

|Āi∩Āk| ,
P [~x| D /0] = (p /0)|Ak| (1− p /0)|Āk| ,

where D /0 designates the untargeted prediction.
The preceding formula has an interesting interpreta-

tion that is visible if placed in the equivalent form:

P [~x| Di] = (pin)|Ak| (1− pout)
|Āk|

×
(

1− pin

1− pout

)|Ai∩Āk|(pout

pin

)|Āi∩Ak|

From the point of view of the event Di, an account found
in Ai∩ Āk is a false positive (an ad was expected but was
not shown). This should lower the probability, especially
when the coverage pin is close to 1. Inversely, an account
found in Āi∩Ak acts as a false negative (we observed an
ad where we did not expect it), which should decrease
the probability, especially when pout is close to 0.

These formulas let us infer the likelihood of event
Di according to Bayes’ rule: P [A| B] = P [B|A]×P [A]

P [B] .
Figure 4 shows two algorithms. First, the prediction al-
gorithm (left) predicts the targeting of Ok by computing
the probabilities defined above, applying Bayes’ rule,
and returning the input with the maximum probability.
Second, the parameter learning algorithm (right) com-
putes the variables that those probabilities depend upon
(pin, pout, and p /0) using an iterative process. It repeat-
edly runs the prediction algorithm for all outputs and
re-computes pin, pout, and p /0 based on the predictions.
It stops when the variables converge (i.e., their variation
from one iteration to another is small).
Contextual Targeting. Contextual targeting is more
straightforward since it uses content shown next to the
ad. XRay also uses Bayesian inference and defines the
observations as how many times ad Ok is seen next to

8

email Di. Our causal model assumes imperfect coverage:
if this ad were contextually targeted towards Di, it would
occur next to that email with probability pin < 1 and next
to any other email with probability pout. Alternatively,
if the ad were untargeted, our model predicts it would
be shown next to any email with probability p /0. Hence,
P [~x|Di] = (pin)xi (pout)

∑i′ 6=i x′i ,P [~x|D /0] = (p /0)∑i xi . For
this model, parameters are also automatically computed
by iterated inference.
Composite Model (XRay). The contextual and behav-
ioral mechanisms were designed to detect different types
of targeting. To detect both types, XRay must combine
the two scores. We experimented with multiple combi-
nation functions, including a decision tree and the arith-
metic average, and concluded that the arithmetic aver-
age yields sufficiently good results. XRay thus defines
the composite model that averages scores from individ-
ual models, and we demonstrate in §6.3 that doing so
yields higher recall for no loss in precision.

4.4 Input Matching and Placement
Our design of differential correlation, along with our
logarithmic results for random input placement, relies
on the fundamental assumption that the probability of
getting an ad O1 targeted at an input D1 in a shadow ac-
count that lacks D1 is vanishingly small. However, when
inputs attract the same ads (a.k.a., overlapping inputs),
a naive input placement can contradict this assumption.
Imagine a Gmail account with multiple emails related
to a Caribbean trip. If placement includes Caribbean
emails in every available shadow account, related ads
will appear in groups of accounts with no email object
in common. XRay will thus classify them as untargeted.
Our Amazon experiments showed XRay’s recall drop-
ping from 97% to 30% with overlapping inputs (§6.5).

To address this problem, XRay’s Input Matching
module identifies similar inputs and directs the Place-
ment Module to co-locate them in the same shadow
accounts. The key challenge is to identify similar inputs.
One method is to use content analysis (e.g., keywords
matching), but this has limitations. First, it is not service
agnostic; one needs to reverse engineer complex and
ever-changing matching schemes. Second, it is hard to
apply to non-textual media, such as YouTube videos.

In XRay, we opt for a more robust, systems technique
rooted in the key insight that we can deduce similar
inputs from contextual targeting. Intuitively, inputs
that trigger similar targeting from the Web service
should attract similar outputs in their context. The
Input Matching module builds and compare inputs’
contextual signatures. Contextual signature similarity is
the distance between inputs (e.g., email) in a Euclidean
space, where each output (e.g., ad) is a dimension. The
coordinate of an email in this dimension is the number of

times the ad was seen in the context of the email. XRay
then forwards close inputs to the same shadow accounts.
Once the placement is done, behavioral targeting against
that email’s group can be inferred effectively.

This input matching mechanism differs fundamentally
from any content analysis technique, such as keyword
matching, because it groups inputs the same way the
Web service does.2 It is robust and very general: we
used it on both Gmail and Amazon without changing a
single line of code to change.

5 XRay-based Tools
To evaluate XRay’s extensibility, we instantiated it on
Gmail, YouTube, and Amazon. The engine, about 3,000
lines of Ruby, was first developed for Gmail. We then ex-
tended it to YouTube and Amazon, without any changes
to its correlation algorithms. We did need to do minor
code re-structuring, but the experience felt turn key when
integrating a new service into the correlation machinery.

Building the full toolset required non-trivial coding
effort, however. Instantiating XRay for a specific Web
service is a three-step process. First, the developer
instantiates appropriate data models (less than 20 code
lines for our prototypes). Second, she implements a
service-specific shadow account manager and plugin;
care must be taken not be too aggressive to avoid ad-
versarial service reactions. While these implementations
are conceptually simple, they require some coding; our
Amazon and YouTube account managers were built
by two graduate students new to the project, and have
around 500 lines of code. Third, the developer creates
a few shadow accounts for the audited service and
runs a small exploratory experiment to determine the
service’s coverage. XRay uses the coverage to estimate
the number of shadow accounts needed for a given input
size. All other parameters are self-tuned at runtime.

6 Evaluation
We evaluated XRay with experiments on Gmail, Ama-
zon, and YouTube. While Amazon and YouTube provide
ground truth for their targeting, Gmail does not. We
therefore manually labeled ads on Gmail and measured
XRay’s accuracy, as described in §6.1 and validated in
§6.2. We sought answers to four questions:

Q1 How accurate are XRay’s inference models? (§6.3)
Q2 How does XRay scale with input size? (§6.4)
Q3 Can input matching manage overlap? (§6.5)
Q4 How useful is XRay in practice? (§6.6)

2We call this method “monkey see, monkey do” because we watch
how the service groups inputs and group them similarly.

9

Ad Targeted Detected XRay # Accounts
Keyword Email by XRay? Scores & Displays
Chaldean Like Chaldean Yes 0.99, 13/13,
Poetry Poetry? 1.0 1588/1622
Steampunk Fan of Steampunk? Yes 0.99, 13/13,

1.0 888/912
Cosplay Discover Cosplay. Yes 0.99, 13/13,

1.0 440/442
Falconry Learn about Falconry. Yes 0.99, 13/13,

1.0 1569/1608

Figure 5: Self-Targeted Ads. Fourth column shows XRay’s
correlation scores X, Y, (Bayesian) Behavioral and Contextual
scores, respectively. Fifth column shows raw behavioral and
contextual data for interpretation: X/Y, Z/T means that the ad
was seen in X active accounts that contain the targeted email
out of a total of Y active accounts; the ad was shown Z times
in the context of the targeted email out of a total of T times.

6.1 Methodology
We evaluated XRay with experiments on Gmail, Ama-
zon, and YouTube. For inputs, we created a workload for
each service by selecting topics from well-defined cate-
gories relevant for that service. For Gmail and YouTube,
we crafted emails and selected videos based on AdSense
categories [17]; for Amazon, we selected products from
its own product categories [2]. We used these categories
for most of our experiments (§6.3–§6.5). We used these
categories to create two types of workloads: (1) a non-
overlapping workload, in which each data item belonged
to a distinct category, and (2) an overlapping workload,
with multiple data items per category (described in §6.5).

To assess XRay’s accuracy, we needed the ground
truth for associations. Amazon and YouTube provide
it for their recommendations. For instance, Amazon
provides a link “Why recommended?” which explicitly
explains the recommendation. For Gmail, we manually
labeled ads based on our personal assessment. The
ads for different experiments were labeled by different
people, generally project members. A non-computer
scientist labeled the largest experiment (51 emails).

We evaluate two metrics: (1) recall, the fraction of
positive associations labeled as such, and (2) precision,
the fraction of correct associations. We define high
accuracy as having both high recall and high precision.

6.2 Sanity-Check Experiment
To build intuition into XRay’s functioning, we ran
a simple sanity-check experiment on Gmail. Recall
that, unlike Amazon and YouTube, Gmail does not
provide any ground truth, requiring us to manually label
associations, a process that can be itself faulty. Before
measuring XRay’s accuracy against labeled associations,
we checked that XRay can detect associations for our
own ads, whose targeting we control. For this, we
strayed away from the aforementioned methodology to
create a highly controlled experiment. We posted four
Google AdWords campaigns targeted on very specific
keywords (Chaldean Poetry, Steampunk, Cosplay, and

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

R
ec

al
l

Number of Accounts

Contextual
Behavioral

Composite (XRay)

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
re

ci
si

on

Number of Accounts

Contextual
Behavioral

Composite (XRay)

(b) Precision

Figure 6: Bayesian Model Accuracy. Recall and precision
for each of the three Bayesian models vs. shadow account
number, using the Bayesian algorithm. XRay needed 16
accounts to reach the “knee” with high recall and precision.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

R
ec

al
l

Number of Accounts

Bayesian (Behavioral)
Set Intersection

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
re

ci
si

on

Number of Accounts

Bayesian (Behavioral)
Set Intersection

(b) Precision

Figure 7: Bayesian vs. Set Intersection Comparison. Recall
and precision for detecting behavioral targeting with each algo.

Falconry), crafted an inbox that included one email per
keyword, and used XRay to recover the associations
between our ads and those emails. In total, we saw our
ads 1622, 912, 442, and 1608 times, respectively, across
all accounts (shadows and master). Figure 5 shows our
results. After one round of ad collection (which involved
50 refreshes per email), XRay correctly associated all
four ads with the targeted email. It did so with very
high confidence: composite model scores were 0.99
in all cases, with very high scores for both contextual
and behavioral models. The figure also shows some
of the raw contextual/behavioral data, which provides
intuition into XRay’s perfect precision and recall in this
controlled experiment. We next turn to evaluating XRay
in less controlled environments, for which we use the
workloads and labeling methodology described in §6.1.

6.3 Accuracy of XRay’s Inference Models (Q1)
To assess the accuracy of XRay’s key correlation
mechanisms (Bayesian behavioral, contextual, and
composite), we measured their recall and precision
under non-overlapping workloads. Figures 6(a) and
6(b) show how these two metrics varied with the number
of shadow accounts for a 20-email experiment on Gmail.
The results indicate two effects. First, both contextual
and behavioral models were required for high recall.
Of the 193 distinct ads seen in the user account, 121
(62%) were targeted, and XRay found 109 (90%) of
them, a recall we deem high. Of the associations XRay
found, 37% were found by only one of the models: 15

10

 5

 10

 15

 20

 25

 2 4 8 16 32 64

N
um

be
r

of
 A

cc
ou

nt
s

Number of Inputs (log)

Gmail
Amazon
Youtube

(a) Scalability with Input Size

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 8 16 32 64

R
ec

al
l

Number of Inputs (log)

Gmail
Amazon
Youtube

(b) Recall with Input Size

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 8 16 32 64

P
re

ci
si

on

Number of Inputs (log)

Gmail
Amazon
Youtube

(c) Precision with Input Size

Figure 8: Scalability. (a) Number of accounts required to achieve the knee accuracy for varied numbers of inputs. (b), (c)
Recall/precision achievable with the number of accounts in (a). Behavioral uses the Bayesian algorithm.

by the contextual model only, and 24 by the behavioral
model only. Thus, both models were necessary, and
composing them yielded high recall. Our Amazon and
YouTube experiments (which provide ground truth)
yielded very similar results: on a 20-input experiment,
we reached over 90% recall and precision with only 8
and 12 accounts, respectively.

Second, the composite model’s recall exhibited
a knee-shaped curve for increasing shadow account
numbers, with a rapid improvement at the beginning
and slow growth thereafter. With 16 accounts, XRay
exceeded 85% recall; increasing the number of accounts
to 100 yielded a 1.9% improvement. Precision also
remained high (over 84%) past 16 accounts. We define
the knee as the minimum number of accounts needed to
reap most of the achievable recall and precision.

We also wished to compare the accuracy of the
Bayesian algorithm, which conveniently self-tunes
its parameters, to the parameterized Set Intersection
algorithm. We manually tuned the latter as best as
we could. Figures 7(a) and 7(b) show the recall and
precision for detecting behavioral targeting with the
two methods for a non-overlapping workload. The
two algorithms performed similarly, with the Bayesian
staying within 5% of the manually tuned algorithm.
We also tested the algorithms on an Amazon dataset,
and using a version of the Set Intersection algorithm
with empirical optimizations. The conclusion holds:
the Bayesian algorithm, with self-tuned parameters,
performs as well as the Set Intersection technique with
manually tuned parameters. We focus the remainder of
this evaluation on the Bayesian algorithm.

6.4 Scalability of XRay with Input Size (Q2)
A main contribution of this paper is the realization
that, under certain assumptions, the number of accounts
needed to achieve high accuracy for XRay scales
logarithmically with the number of tracked inputs.
We have proven that under certain assumptions, the
Set Intersection algorithm scales logarithmically. This

theoretical result is hard to extend to the Bayesian
algorithm, so we evaluated it experimentally by studying
three metrics with growing input size: the number of ac-
counts required to reach the recall knee and the value of
recall/precision at this knee. Figures 8(a), 8(b) and 8(c)
show the corresponding results for Gmail, YouTube and
Amazon. For Gmail, the number of accounts necessary
to reach the knee increased less than 3-fold (from 8
to 21) as input size increased more than 25-fold (from
2 to 51). For Amazon and YouTube, the increases in
accounts were 6- and 8-fold respectively, for a 32-fold
increase in input size. In general, the roughly linear
shapes of the log-x-scale graphs in Figure 8(a) confirm
the logarithmic increase in the number of accounts
required to handle different inputs. Figure 8(b) and 8(c)
confirm that the “knee number” of accounts achieved
high recall and precision (over 80%).

What accounts for the large gap between the number
of accounts needed for high accuracy in Gmail versus
Amazon? For example, tracking a mere two emails in
Gmail required 8 accounts, while tracking two viewed
products in Amazon needed 2 accounts. The distinction
corresponds to the difference in coverage exhibited by
the two services. In Gmail, a targeted ad was typically
seen in a smaller fraction of the relevant accounts
compared to a recommended product in Amazon. XRay
adapted its parameters to lower coverage automatically,
but it needed more accounts to do so.

Overall, these results confirm that our theoretical
scalability results hold for real-world systems given
carefully crafted, non-overlapping input workloads. We
next investigate how more realistic overlapping input
workloads challenge the accuracy of our theoretical
models and how input matching – a purely systems
technique – helps address this challenge.

6.5 Input Matching Effectiveness (Q3)
To evaluate XRay’s accuracy with overlapping inputs,
we infused our workloads with multiple items from
the same category. (e.g., multiple emails targeting the

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

R
ec

al
l

Number of Accounts

With Matching
Without Matching

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

P
re

ci
si

on
Number of Accounts

With Matching
Without Matching

(b) Precision

Figure 9: Input Matching effectiveness. Behavioral
(Bayesian) recall and precision in Gmail with overlapping
inputs, with and without Matching.

same topic on Gmail and multiple products in the same
category in Amazon). For the Gmail experiments, we (as
users) could not tell when Gmail targeted a specific email
from a group of similar emails. We therefore ran two
different types of experiments. First, a controlled, albeit
unrealistic, one for Gmail. We replicated various emails
identically in a user’s inbox: 1 email was replicated 4
times, 2 emails 3 times, 4 emails 2 times, and 12 were
single, for a total of 30 emails. This end-of-a-spectrum
workload demonstrates how matching works ideally.
XRay matched all redundant emails correctly. More
importantly, Figures 9(a) and 9(b) show XRay’s preci-
sion/recall with and without matching-aware placement
for XRay’s behavioral model, the only model improved
by matching. Without input matching, XRay struggled
to find differential signals: even with 35 shadow ac-
counts for a 30-email experiment, recall was only 48%.
With input matching, XRay’s correlation model drew a
stronger signal from each account and attained close to
70% recall for 16 accounts.

Second, for Amazon, we created a more realistic over-
lapping workload by selecting three distinct products in
each of six product categories (e.g., from the Outdoor
& Cycling category, we selected a helmet, pedals, and
shoes). With a total workload of 18 products, XRay’s
input matching matched all but one item (shoes) into its
correct group. With the new grouping, XRay’s recall im-
proved by a factor of 3 (from 30% to 93%) compared to
the no-matching case for 18 products with 10 accounts;
precision was 2.6 times higher (from 34% to 88%).

These results demonstrate that XRay’s matching
scheme is both portable across Web services and
essential for high accuracy with overlapping workloads.

6.6 Anecdotal Use Experience (Q4)
To gain intuition into XRay’s practical value, we ran a
small-scale, anecdotal experiment that fished for Gmail
ads targeted against a few specific topics. We created
emails focused on topics such as cancer, Alzheimer, de-
pression, HIV, race, homosexuality, pregnancy, divorce,
and debt. Each email consisted of keywords closely
related to one topic (e.g., the depression-related email

Topic Targeted XRay # Accounts
Ads Scores & Displays
Black Mold Allergy Symptoms? 0.99, 9/9,

Alzheimer Expert to remove Black Mold. 0.05 61/198
Adult Assisted Living. 0.99, 8/8,
Affordable Assisted Living. 0.99 12/14
Ford Warriors in Pink. 0.96, 9/9,

Cancer Join The Fight. 0.98 1022/1106
Rosen Method Bodywork for 0.98, 7/7,
physical or emotional pain. 0.05 24/598
Shamanic healing over 0.99, 16/16,

Depression the phone. 0.99 117/117
Text Coach - Get the girl 0.93, 7/7,
you want and Desire. 0.04 31/276
Racial Harassment? 0.99, 10/10,

African Learn your rights now. 0.2 851/5808
American Racial Harassment, 0.99, 10/10,

Hearing racial slurs? 0.2 627/7172
SF Gay Pride Hotel. 0.99, 9/9,

Homosexuality Luxury Waterfront. 0.1 50/99
Cedars Hotel Loughborough, 0.96, 8/8,
36 Bedrooms, Restaurant, Bar. 1.0 36/43
Find Baby Shower Invitations. 0.99, 9/9,
Get Up To (60% Off) Here! 1.0 22/22
Ralph Lauren Apparel. 0.99, 10/10,

Pregnancy Official Online Store. 0.6 85/181
Clothing Label-USA. 0.99, 9/9,
Best Custom Woven Labels. 1.0 14/14
Bonobos Official Site, 0.99 9/9
Your Closet Will Thank You. 0.99 64/71
Law Attorneys specializing 0.99, 9/9,

Divorce in special needs kids education. 0.99 635/666
Cerbone Law Firm, Helping 0.99, 10/10,
Good People Thru Bad Times 1.0 94/94
Take a New Toyota Test Drive, 0.99, 7/7,
Get a $50 Gift Card On The Spot. 0.9 58/65

Debt Great Credit Cards Search. 0.99, 9/9,
Apply for VISA, MasterCard... 0.0 151/2358
Stop Creditor Harassment, 0.99, 8/8,
End the Harassing Calls. 0.96 256/373

Figure 10: Example of Targeted Ads. Columns three and
four show the same data as columns four and five in Figure 5.

included depression, depressed, and sad; the homosex-
uality email included gay, homosexual, and lesbian).
We then launched XRay’s Gmail ad collection and
examined the targeting associations. We acknowledge
that a much larger-scale experiment is needed to reach
statistically-meaningful conclusions. Hence, we relate
our experience by example.

Figure 10 shows ads that XRay associated with each
topic, with its confidence scores. Conservatively, we
only consider ads with high scores. We make two
observations. First, our small-scale experiment confirms
that it is possible to target sensitive topics in users’
inboxes. All disease-related emails, except for the HIV
one, are strongly correlated with a number of ads. A
“Shamanic healing” ad appears exclusively in accounts
containing the depression-related email, and many times
in its context; ads for assisted living services target the
Alzheimer email; and a Ford campaign to fight breast
cancer targets the cancer email. Race, homosexuality,
pregnancy, divorce, and debt also attract plenty of ads.
For example, the pregnancy email is strongly targeted by
an ad for baby-shower invitations (shown in the figure),
maternity- and lactation-related ads (not shown), and, in-
terestingly, a number of ads for general-purpose clothing

12

(shown). As another example, the debt email is strongly
targeted by a car dealership ad that entices the targeted
users to take a Toyota test drive using a $50 gift offering.
Discussing the morality of targeting such sensitive topics
is beyond our statute, however we believe that the lack
of transparency, coupled with sensitive-topic targeting,
opens users to subtle dangers, a topic we discuss next.

Second, for many ads, the association with the
targeted email is not obvious at all. Nothing in the
“Shamanic healing” ad suggests targeting against de-
pression; nothing in the general-purpose clothing ads
suggest targeting against pregnancy; and nothing in the
“Cedars hotel” ad suggests an orientation toward the
homosexuality email. If no keyword in the ad suggests
relation with sensitive topics, a user clicking on the ad
may not realize that they could be disclosing private in-
formation to advertisers. Imagine an insurance company
wanted to gain insight into pre-existing conditions of its
customers before signing them up. It could create two ad
campaigns – one that targets cancer and another youth
– and assign different URLs to each campaign. It could
then offer higher premium quotes to visitors who come
through the cancer-related ads to discourage them from
signing up while offering lower premium quotes to those
who come through youth-related ads. We believe that
the potential for this attack illustrates the urgent need for
increased transparency in ad targeting.

6.7 Summary
Our evaluation results show that XRay supports fine-
grained, accurate data tracking in popular Web services,
scales well with the size of data being tracked, is general
and flexible enough to work efficiently for three Web ser-
vices, and robustly uses systems techniques to discover
associations when ad contents provide no indication of
them. We next discuss how XRay meets its last goal:
robustness against honest-but-curious attackers.

7 Security Analysis
As stated in §3.3, two threat models are relevant for
XRay and applicable to different use cases. First, an
honest-but-curious Web service does not attempt to
frustrate XRay, but it could incorporate defenses against
typical Web attacks, such as DDoS or spam, that might
interfere with XRay’s functioning. Second, a malicious
service takes an adversarial stand toward XRay, seeking
to prevent or otherwise disrupt its correlations. Our
current XRay prototype is robust against the former
threat and can be extended to be so against the latter.
In either case, third-party advertisers can attempt to
frustrate XRay’s auditing. We discuss each threat in turn.
Non-Malicious Web Services. Many services incor-
porate protections against specific automated behaviors.
For example, Google makes it hard to create new ac-

counts, although doing so remains within reach. More-
over, many services actively try to identify spammers and
click fraud. Gmail includes sophisticated spam filtering
mechanisms, while YouTube rate limits video viewing to
prevent spam video promotion. Finally, many services
rate limit access from the same IP address.

XRay-based tools must be aware of these mechanisms
and scale back their activities to avoid raising red flags.
For example, our prototype for Gmail, YouTube, and
Amazon rate limit their output collection in the shadow
accounts. Moreover, XRay’s very design is sensitive to
these challenges: by requiring as few accounts as possi-
ble, we minimize: (1) the load on the service imposed by
auditing, and (2) the amount of input replication across
shadow accounts. Moreover, XRay’s workloads are of-
ten atypical of spam workloads. Our XRay Gmail plugin
sends emails from one to a few other accounts, while
spam is sent from one account to many other accounts.
Malicious Third-Party Advertisers. Third-party adver-
tisers have many ways to obfuscate their targeting from
XRay, particularly if it may arouse a public outcry. First,
an advertiser could purposefully weaken its targeting by,
for example, targeting the same ad 50% on one topic and
50% on another topic. This weakens input/output corre-
lation and may cause XRay to infer untargeting. How-
ever, it also makes the advertisers’ targeting less effec-
tive and potentially more ambiguous if their goal is to
learn specific sensitive information about users. Second,
an advertiser might target complex combinations of in-
puts that XRay’s basic design cannot discover. Our ac-
companying technical report shows an example of how
advertisers might achieve this [26]. It also extends our
theoretical models so they can detect targeting on linear
combinations with only a constant factor increase in the
number of accounts. We plan to incorporate and evaluate
these extensions in a future prototype.
Malicious Web Services. A malicious service could
identify and disable shadow accounts. Identification
could be based on abnormal traffic (successive reloads
of email pages), data distribution within accounts (sev-
eral accounts with subsets of one account), and perhaps
more. XRay could be extended to add randomness and
deception (e.g., fake emails, varying copies). More im-
portantly, a collaborative approach to auditing, in which
users contribute their ads and input topics in an privacy-
preserving way is a promising direction for strengthening
robustness against attacks. Web services cannot, after all,
disable legitimate user accounts to frustrate auditing. We
plan to pursue this direction in future work.

8 Discussion
XRay takes a significant step toward providing data
management transparency in Web services. As an initial
effort, it has a number of limitations. First, both the Set

13

Intersection and Bayesian algorithms assume indepen-
dent targeting across accounts and over time. In reality,
ad targeting is not always independent across either. For
example, advertisers set daily ad budgets. When the bud-
get runs out, an ad can stop appearing in accounts mid-
experiment even though it has the targeted attributes. The
system might incorrectly assume that no targeting is tak-
ing place, when it could resume the next day. XRay takes
reduced coverage into account, but differences between
ads can let some targeting pass unnoticed. XRay does not
currently account for these dependencies, but estimating
their impact is an important goal for future work.

Second, we assume that targeting noise is bounded
and smaller than the targeting signal. While this con-
dition seems to hold on the evaluated services, other
services making more local decisions may be harder to
audit. For example, Facebook might target ads based on
friends’ information, potentially creating noise that is
as high as the targeting signal. A future solution might
imitate the social network in shadow accounts.

Third, XRay uses Web services atypically. To the best
of our knowledge, it does not violate any terms of ser-
vice. It does, however, collect ads paid for by advertisers
to detect correlation. Ad payment is per impression and
pay per click. The former is vastly less expensive than
the latter [32]. XRay creates false impressions only but
never clicks on ads. A back-of-the-envelope calculation
using impression pricing from [32] of $0.6/thousand
impressions reveals that XRay’s cost should be minimal:
at most 50 cents per ad for our largest experiments.

Despite these limitations, XRay has proven itself use-
ful for many needs, particularly in an auditing context.
An auditor can craft inputs that avoid many of these
limitations. For example, emails can be written to avoid
as much overlap as possible and keep the size of inputs
used for targeting within reasonable bounds. We hope
that XRay’s solid correlation components will streamline
much-needed investigations – by researchers, journalists,
or the FTC – into how personal data is being used.

9 Related Work
While §2.2 covered Web data protection and auditing
related works, we next cover other related topics. Our
work relates to recent efforts to measure various forms
of personalization, such as search [21, 47], pricing [31],
and ad discrimination [40]. They generally employ a
methodology similar in spirit to differential correlation,
but their goals differ from ours. They aim to quantify
how much output is personalized and what type of
information is used overall. In contrast, XRay seeks
to provide fine-grained diagnosis of which input data
generates which personalized results. Through its
scaling mechanisms – unique in the personalization and

data tracking literature – XRay scales well even when
the relevant inputs are many and unknown in advance.

Our work also relates to a growing body of research
measuring advertising networks. These networks,
notably complex and difficult to crawl [3], are rendered
opaque by the need to combat click fraud [9], and have
been shown to be susceptible to leakage [24] and profile
reconstruction attacks [6]. As for other personalization,
prior studies focused mostly on macroscopic trends
(e.g., What fraction of ads are targeted?) [3] or quali-
tative trends (e.g., Which ads are targeted toward gay
males?) [20]. Various studies showed traces – but not a
prevalence – of potential abuse through concealed target-
ing [20] and data exchange between services [46]. These
works primarily focus on display advertising, and each
distinguishes contextual advertising using a specific clas-
sifier with semantic categories obtained from Google’s
Ad Preferences Managers or another public API [28].

XRay departs significantly from these works. First,
since it entirely ignores the content and even the domain
of targeting, it is readily applied as-is to ads in Gmail,
product recommendations, and videos. Second, while
previous methods label ads as “behavioral” in bulk once
other explanations fail [28], XRay remains grounded
on positive evidence, and determines to which inputs an
output should be attributed. Third, XRay’s mechanisms
to avoid exponential input placement and deal with
overlapping inputs are unprecedented in the Web-
data-tracking context. While they resemble black box
software testing [4], the specific targeting assumption
we leverage have, to our knowledge, no prior equivalent.

10 Conclusions
The tracking of personal data usage poses unique
challenges. XRay shows for the first time that accurate,
fine-grained tracking need not compromise portability
and scalability. For users who care about which piece
of their data has been targeted, it offers a unique level
of precision and protection. Our work calls for and pro-
motes the best practice of voluntary transparency, while
at the same time empowering investigators and watch-
dogs with a significant new tool for increased vigilance.

11 Acknowledgements
We thank our shepherd, Dan Boneh, the anonymous
reviewers, and numerous colleagues (Jonathan Bell, San-
dra Kaplan, Michael Keller, Yoshi Kohno, Hank Levy,
Yang Tang, Nicolas Viennot, and Junfeng Yang) for their
valuable feedback. This work was supported by DARPA
Contract FA8650-11-C-7190, NSF CNS-1351089 and
CNS-1254035, Google, and Microsoft.

References
[1] Adblock plus. https://adblockplus.org.

14

[2] Amazon. Product categories. http://services.amazo
n.com/services/soa-approval-category.htm.

[3] P. Barford, I. Canadi, D. Krushevskaja, Q. Ma, and S. Muthukr-
ishnan. Adscape: Harvesting and Analyzing Online Display Ads.
In Proc. of the 23nd International Conference on WWW, 2014.

[4] B. Beizer. Black-Box Testing. Techniques for Functional Testing
of Software and Systems. John Wiley & Sons, May 1995.

[5] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano. Public
Key Encryption with Keyword Search. In Proc. of the ACM
European Conference on Computer Systems (EuroSys), pages
506–522. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[6] C. Castelluccia, M. A. Kaafar, and M. Tran. Betrayed by your
ads! PETS’12: Proceedings of the 12th International Conference
on Privacy Enhancing Technologies, 2012.

[7] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. Tainttrace: Efficient
flow tracing with dynamic binary rewriting. In Proc. of the 11th
IEEE Symposium on Computers and Communications, 2006.

[8] Chrome web store - collusion for chrome. https://chro
me.google.com/webstore/detail/collusion-for-
chrome/ganlifbpkcplnldliibcbegplfmcfigp.

[9] V. Dave, S. Guha, and Y. Zhang. Measuring and fingerprinting
click-spam in ad networks. In SIGCOMM ’12: Proceedings
of the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Crchitectures, and Protocols for Computer
Communication. ACM Request Permissions, Aug. 2012.

[10] N. Diakopoulos. Algorithmic accountability reporting: On the
investigation of black boxes. Tow Center for Digital Journalism,
Columbia University. February, 2014.

[11] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. Technical Report, 2004.

[12] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. TaintDroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. In Proc.
of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2010.

[13] M. Fredrikson and B. Livshits. RePriv: Re-imagining Content
Personalization and In-browser Privacy. 2011 IEEE Symposium
on Security and Privacy, pages 131–146, 2011.

[14] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. Vanish:
Increasing data privacy with self-destructing data. In Proc. of
USENIX Security, 2009.

[15] C. Gentry. Fhe using ideal lattices. In Proc. of the ACM
Symposium on Theory of Computing (STOC), 2009.

[16] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. C.
Mitchell, and A. Russo. Hails: Protecting data privacy in
untrusted web applications. In In Proc. of the 10th USENIX Con-
ference on Operating Systems Design and Implementation, 2012.

[17] Google. Adsense categories. https://support.googl
e.com/adsense/answer/3016459.

[18] J. Gould. SafeGov.org - Google admits data mining student
emails in its free education apps, 2014.

[19] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In
Proc. of the ACM Conference on Computer and Communications
Security (CCS), 2006.

[20] S. Guha, B. Cheng, and P. Francis. Challenges in measuring
online advertising systems. In IMC ’10: Proceedings of the 10th
Annual Conference on Internet Measurement, 2010.

[21] A. Hannak, P. Sapiezynski, A. M. Kakhki, B. Krishnamurthy,
D. Lazer, A. Mislove, and C. Wilson. Measuring personaliza-
tion of web search. In WWW ’13: Proceedings of the 22nd
International Conference on World Wide Web, 2013.

[22] A. L. Hughes and L. Palen. Twitter adoption and use in mass
convergence and emergency events. International Journal of
Emergency Management, 2009.

[23] A. Korolova. Privacy Violations Using Microtargeted Ads: A
Case Study. In ICDM Workshops, 2010.

[24] A. Korolova. Privacy violations using microtargeted ads: A
case study. Data Mining Workshops (ICDMW), 2010 IEEE
International Conference on, pages 474–482, 2010.

[25] B. Krishnamurthy and C. E. Wills. On the leakage of personally
identifiable information via online social networks. In Proc. of
the 2nd ACM Workshop on Online Social Networks, 2009.

[26] M. Lecuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios,
R. Spahn, A. Chaintreau, and R. Geambasu. XRay: Enhancing
the Web’s Transparency with Differential Correlation. Technical
report, CS Department, Columbia University, 2014.

[27] Lightbeam. http://www.mozilla.org/lightbeam/.
[28] B. Liu, A. Sheth, U. Weinsberg, J. Chandrashekar, and R. Govin-

dan. AdReveal: improving transparency into online targeted
advertising. In Proc. of the Twelfth ACM Workshop on Hot
Topics in Networks, 2013.

[29] D. Mattioli. WSJ.com - On Orbitz, Mac Users Steered to Pricier
Hotels, 2012.

[30] V. McKalin. Techtimes.com - google: We promise not to spy on
student email accounts to deliver ads, 2014.

[31] J. Mikians, L. Gyarmati, V. Erramilli, and N. Laoutaris. De-
tecting price and search discrimination on the internet. In
Proceedings of the 11th ACM Workshop on Hot Topics in
Networks, pages 79–84, 2012.

[32] L. Olejnik, T. Minh-Dung, C. Castelluccia, et al. Selling off
privacy at auction. In In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2013.

[33] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrish-
nan. Cryptdb: Protecting confidentiality with encrypted query
processing. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages 85–100, 2011.

[34] F. Roesner. sharemenot.cs.washington.edu.
[35] F. Roesner, T. Kohno, and D. Wetherall. Detecting and defending

against third-party tracking on the web. In NSDI’12: Pro-
ceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation. USENIX Association, Apr. 2012.

[36] A. Sadilek and H. Kautz. Modeling the impact of lifestyle on
health at scale. In Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining, 2013.

[37] SafeGov.org. Declaration of Kyle C. Wong in Support of Google
Inc.’s Opposition to Plaintiffs’ Motion for Class Certification,
2013.

[38] Snapchat. http://blog.snapchat.com/.
[39] Snapchat blog - how snaps are stored and deleted.
[40] L. Sweeney. Discrimination in online ad delivery. Communica-

tions of the ACM, 56(5), May 2013.
[41] The Guardian. Snapchat’s expired snaps are not deleted, just

hidden, 2014.
[42] V. Toubiana, A. Narayanan, and D. Boneh. Adnostic: Privacy

preserving targeted advertising. Proc. NDSS, 2010.
[43] J. Valentino-Devries, J. Singer-Vine, and A. Soltani. WSJ.com -

Websites Vary Prices, Deals Based on Users’ Information, 2012.
[44] X. Wang, M. Gerber, and D. Brown. Automatic crime prediction

using events extracted from twitter posts. In S. Yang, A. Green-
berg, and M. Endsley, editors, Social Computing, Behavioral
- Cultural Modeling and Prediction, volume 7227 of Lecture
Notes in Computer Science, pages 231–238. 2012.

[45] A. Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usabil-
ity evaluation of PGP 5.0. In Proc. of USENIX Security, 1999.

[46] C. E. Wills and C. Tatar. Understanding What They Do with
What They Know. WPES ’12: Proceedings of the 12th Annual
ACM Workshop on Privacy in the Electronic Society, 2012.

[47] X. Xing, W. Meng, D. Doozan, N. Feamster, W. Lee, and
A. C. Snoeren. Exposing Inconsistent Web Search Results with
Bobble. Passive and Active Measurements Conference, 2014.

[48] Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. Privacy
scope: A precise information flow tracking system for finding
application leaks. Technical Report UCB/EECS-2009-145, 2009.

[49] P. R. Zimmermann. The official PGP user’s guide. 1995.

15

A Proof of Theorem 1
A.1 Targeting functions, Axioms and Core Family
A combination C of order r, also called r combination,
is a subset of r elements among the N inputs.

Each given ad is associated with a targeting function
defined as a mapping f from any subset C of the N in-
puts into {0,1}, where f (C) = 1 denotes that an account
containing C as inputs should be targeted. By conven-
tion, untargeted ads are associated with the null function
f (.) = 0. Any targeting function f satisfies two axioms:
• monotonicity: C ⊆ C ′ =⇒ f (C)≤ f (C ′).
• input-sensitivity: ∃C ,C ′ s.t. f (C) = 0, f (C ′) = 1.
Monotonicity simply reflects that an account with strictly
more interest or hobbies should in theory be relevant to
more ads, and never to less. Input sensitivity prevents the
degenerate case where a targeting function is constant.

A family S of size l is any collection of l distinct
combination. The order of this family is defined as the
largest order of a combination it contains. For any family
S, one can define a targeting function that takes value 1
whenever the subset contains at least one combination
in S. Indeed, as shown in [26], the converse is true:

Lemma 1 For each monotone, input-sensitive targeting
function there exists a unique family S satisfying:

(i) S has size l and order r and it explains f , which
means f (C) = 1 holds if and only if ∃C ′ ∈ S,C ′ ⊆ C .

(ii) No family of size l′ < l explains f .
(iii) No family of order r′ < r explains f .

Hence, associated with each ad and therefore each tar-
geting function is a unique family of input combination
that are targeted, called the ad’s core family, and we now
sketch why it is correctly identified by our algorithm.

A.2 Algorithm and Correctness
For any family of subsets S and fraction 0 ≤ x ≤ 1, we
say a subset of inputs C is an x intersecting subset of
S if x subsets in S have at least one input in C . Our
proof exploits an original connection between small
intersecting subsets (that can be found efficiently) to
show how they can reveal a core family. One way to
understand why is the following: say, for instance, that
the targeting function f takes value 1 exactly when one
of the inputs within C is found in the account. Then C
is exactly the union of inputs found in the core family
and intersects all accounts within scope, i.e., forms a
large fraction of those receiving the ad.

The key property to explain our algorithm is ran-
dom subsets. We can show under the conditions of the
theorem that there exists 0< x< 1 that satisfies two prop-
erties related to the inputs of accounts receiving the ads:
(1) if targeting does not occur, then with a large probabil-
ity we cannot find a subset of l inputs that meets at least a
fraction x of the accounts seeing the ad, and (2) if target-
ing does occur, we have accounts receiving the ads for

various reasons, within and outside the targeting scope.
But we can show with high probability that at least a frac-
tion x of them are within scope and hence must include
one combination in the core family. Since with each core
family of size l one can associate an intersecting subset
that contains at most l elements, checking the existence
of such a subset reveals the presence of targeting.

This explains why an algorithm can qualitatively
conclude whether targeting occurs or not, but it does not
explain how the core family can be computed. However,
leveraging stronger results of random subsets allows
to apply the same rule recursively, offering multiple
ways to determine exactly the core family even with a
polynomial number of operations.

More formally, we define: A random Bernoulli
subset, denoted by B(n, p), is a subset such that any of n
elements is contained with probability p independently
of all others. A random Bernoulli family of size m is a
collection of m independent Bernouilli subsets. We first
show property (1) above more formally:

Lemma 2 Let x > 0, s ∈ N, p < 1− (1− x)
1
s , and

a Bernouilli family B1(n, p),B2(n, p), . . . ,Bm(n, p).
For any ε > 0 and polynomial P of degree ≤ r, there
exists A > 0 such that with probability

(
1− ε

P(n)

)
no

x intersection subset exists of size s whenever we have:
m≥ A · ((s + r) ln(n)+ ln(1/ε)) .

To prove property (2), we need to bound, among
accounts receiving an ad, the fraction that is outside
the scope of targeting but still receives the ads because
pout > 0. Formally, we have:

Lemma 3 Let x > 0, α > 0, and a core family of size l
and order r pin, pout where we have pout/pin <

1−x
x

αr

1−αr .
Let C be a combination of order r.

For any ε > 0 and polynomial P of degree ≤ r, there
exists A > 0 such that with probability (1− ε/P(n)) the
following holds: Among accounts containing C and
receiving the ad, at least x fraction of them is within the
targeting scope whenever we have:

m≥ A · (r ln(n)+ ln(1/ε)) .

The two lemmas above (proved in [26]) can be
combined whenever α satisfies the inequality for
p in the first lemma, which shows that an algo-
rithm can detect the presence of targeting whenever

pout/pin <
1−x

x
(1−(1−x)

1
l)r

1−(1−(1−x)
1
l)r

.

A naive exponential algorithm could be used to
exhaustively search for a core family using this brick.
We also show that a polynomial algorithm can refine this
analysis to compute the core family at the expense of a
more complex recursion in [26].

16

Appendix L

Web Transparency for Complex
Targeting: Algorithms, Limits and

Tradeoffs

Web Transparency for Complex Targeting:
Algorithms, Limits, and Tradeoffs

Guillaume Ducoffe, Mathias Lécuyer, Augustin Chaintreau, Roxana Geambasu
Inria & U. Nice Sophia Antipolis, Columbia U.

guillaume.ducoffe@inria.fr, {mathias,augustin,roxana}@cs.columbia.edu

Big Data promises important societal progress but exac-
erbates the need for due process and accountability. Com-
panies and institutions can now discriminate between users
at an individual level using collected data or past behav-
ior. Worse, today they can do so in near perfect opacity.
The nascent field of web transparency aims to develop the
tools and methods necessary to reveal how information is
used, however today it lacks robust tools that let users and
investigators identify targeting using multiple inputs.

Here, we formalize for the first time the problem of detect-
ing and identifying targeting on combinations of inputs and
provide the first algorithm that is asymptotically exact. This
algorithm is designed to serve as a theoretical foundational
block to build future scalable and robust web transparency
tools. It offers three key properties. First, our algorithm is
service agnostic and applies to a variety of settings under
a broad set of assumptions. Second, our algorithm’s analy-
sis delineates a theoretical detection limit that characterizes
which forms of targeting can be distinguished from noise
and which cannot. Third, our algorithm establishes fun-
damental tradeoffs that lead the way to new metrics for the
science of web transparency. Understanding the tradeoff be-
tween effective targeting and targeting concealment lets us
determine under which conditions predatory targeting can
be made unprofitable by transparency tools.

1. QUICK OVERVIEW

A primer on web transparency tools.
To address the big-data web’s untenable opacity, a new

set of transparency tools have been proposed recently [7, 4,
5, 6, 3, 9]. Generally speaking, they assume no insider infor-
mation about how the data-driven web service operates and
instead rely on a specific form of black box testing [2] to de-
tect data use. Briefly, a transparency tool works as follows.
First, it collects the results of a series of tests in which inputs
vary, e.g., browsing history [7], search history [4], emails [6],
locations [9], or explicit profile information [3]. Second, by

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMETRICS’15, June 15–19, 2015, Portland, OR, USA.
ACM 978-1-4503-3486-0/15/06.
http://dx.doi.org/10.1145/2745844.2745896.

examining the observed outputs – e.g., search results [4, 9],
ads seen [3, 6], recommendations [6, 5], or prices [7, 5] – the
tool deduces how the system personalizes its behavior based
on this input. Finally, the tool’s deductions are used as hy-
potheses that are further analyzed for implications by the
tool’s users, such as end users, journalists, privacy watch-
dogs, or federal investigators.

To be valuable to their users, transparency tools strive to
meet three requirements:

1. Scalability: Each test may involve multiple prelimi-
nary steps to open a new web account and populating
its inputs. These steps cannot always be automated
and may be expensive (e.g., creating a Google account
requires buying a new phone number). It is also im-
portant to keep resources to a minimum as the size of
outputs/inputs grows.

2. Accuracy: The deduction that the tool provides should
be sound, which means that it can be trusted not to
originate from noise or other limitations of the exper-
iments. The tool should also be complete which spec-
ifies that it rarely misses an important deduction.

3. Broad Applicability: Ideally, the same tool should
apply not only to many different services but also var-
ious forms of data usage within those services, with
only minor and intellectually simple changes.

Perhaps unsurprisingly, the first two requirements are of-
ten in conflict. The third makes the problem extremely chal-
lenging, and has barely been considered to date. With few
exceptions [6, 3], previous transparency tools were designed
for a specific service or usage in order to detect a particularly
sensitive topic: price discrimination [7], search results per-
sonalization [4], censorship [9]. Only recently has develop-
ment of widely-applicable, generic tools begun to be consid-
ered to allow generic data collections [5] and service-agnostic
detection methods [6, 3]. Despite appearences, however, we
find that even the latest transparency tools are limited in the
kind of data uses they can support accurately and scalably.
We believe that the biggest roadblock is the lack of sup-
port for detecting complex, multi-input targeting, which we
find mandatory for building scalable, accurate, and broadly
applicable tools.

Our new findings.
We prove that targeting that uses one or several com-

binations of N inputs can be detected and identified with
asymptotically perfect accuracy, and that this only requires

a logarithmic order O(ln(N)) of experimental observations.
To place our contribution in respect to prior work, this shows
that a web transparency tool can remain scalable and accu-
rate, without being strictly restricted to single input target-
ing. However, and this is where our contribution contrasts
the most with previous results, it comes at a cost: the in-
tensity of targeting (defined below) needs to be sufficiently
large. In other words, web transparency need not always be
blind to combined targeting, however as the inherent com-
plexity of targeting increases, targeting becomes easier to
conceal. Our results open a new chapter in the understand-
ing of Big Data: to determine sufficient and necessary con-
ditions under which one can prevent its opacity.

2. PROBLEM FORMULATION & RESULTS
We formalize the following intuitive problem: given a set

of N inputs representing possible information items present
in a user’s account (such as emails or searches), we wish to
determine how they affect occurence of one particular output
of interest (such as an ad or a recommendation).

Our main assumption is that the output is affected through
an unknown targeting function f of the inputs, to be deter-
mined. The function f is defined separately for each output.
The targeting function f is a mapping from the set of all
combinations to {0; 1}. By convention, f(C) = 1 indicates
that an account containing C is targeted, and we denote
f(.) = 0 if the ad is untargeted.

Experiments and outcome properties.
Because in practice we have no access to the targeting

function, we rely on experiments to observe its reaction to
various inputs. Intuitively, these experiments collect out-
puts from a set of accounts that contain subsets of the inputs
and produce a set of observations of f . For example, experi-
ments could collect ads for accounts with different subsets of
emails. More formally, the experimental infrastructure we
assume is similar to an oracle from function learning the-
ory [8, 1]. We assume that our experimental oracle satisfies
the following axiom. There exist two probabilities pin, pout
such that:

P [O(Ci)=1|f(Ci)=1]≥pin > pout≥P [O(Cj)=1|f(Cj)=0] .

where pin is a minimal bound on the probability that an
account receives an output that is relevant for it and pout is
a maximal bound on the probability that an account receives
an output that is not relevant for it. This axiom properly
states that f is related to the outcome we study. It allows
the variables to also depend on other factors: hidden inputs
that are not in the set of N we study, external sources of
randomness such as availability of ad-slot, competition. One
experimental design used in practice [6, 3] and that fits this
axiom is to populate each account randomly so that an input
independently appears with probability α.

Under the assumptions above, we say that an algorithm
using m observations solves the targeting detection problem
if it can correctly decide whether f(.) 6= 0 and hence that
the output is targeted using at most m queries to O. Go-
ing further, an algorithm solves the targeting identification
problem if it correctly returns the function f . Naturally,
both problems rely on random observations and hence our
goal is to design algorithms whose detection/identification
error is arbitrarily small for large N .

Since one should distinguish (at least) between N inputs,
it seems that a minimum of Ω(ln(N)) binary observations
are absolutely necessary at least for the identification. This
is hence what we assume and we aim at keeping it at this
absolute minimum.

Theorem 1. Assuming that f is a monotone DNF with
size at most s and width at most w, and that ratio pout/pin
is below a predetermined bound, we provide a targeting de-
tection algorithm that for any ε > 0 requires O(ln(N/ε))
observations, O(Ns ln(N/ε)) operations and is correct with
probability (1− ε/N).

Theorem 2. Under the same assumption, we provide a
targeting identification algorithm that for any ε > 0 requires
O(ln(N/ε)) observations, O(Ns+w ln(N/ε)) operations and
is correct with probability (1− ε/N).

3. ACKNOWLEDGEMENTS
This work was supported by DARPA Contract FA8650-

11-C-7190, NSF CNS-1351089 and CNS-1254035, Google,
and Microsoft.

4. REFERENCES
[1] D. Angluin. Queries and concept learning. Machine

Learning, 2(4):319–342, Apr. 1988.

[2] B. Beizer. Black-Box Testing. Techniques for Functional
Testing of Software and Systems. John Wiley & Sons,
May 1995.

[3] A. Datta, M. C. Tschantz, and A. Datta. Automated
Experiments on Ad Privacy Settings: A Tale of
Opacity, Choice, and Discrimination. arXiv.org, Aug.
2014.

[4] A. Hannak, P. Sapiezynski, A. M. Kakhki,
B. Krishnamurthy, D. Lazer, A. Mislove, and
C. Wilson. Measuring personalization of web search. In
WWW ’13: Proceedings of the 22nd international
conference on World Wide Web. International World
Wide Web Conferences Steering Committee, May 2013.

[5] A. Hannak, G. Soeller, D. Lazer, A. Mislove, and
C. Wilson. Measuring Price Discrimination and
Steering on E-commerce Web Sites. In IMC ’14:
Proceedings of the 2014 Conference on Internet
Measurement Conference. ACM Request Permissions,
Nov. 2014.

[6] M. Lecuyer, G. Ducoffe, F. Lan, A. Papancea,
T. Petsios, R. Spahn, A. Chaintreau, and
R. Geambasu. XRay: Enhancing the Web’s
Transparency with Differential Correlation . In 23rd
USENIX Security Symposium (USENIX Security 14),
San Diego, CA, 2014. USENIX Association.

[7] J. Mikians, L. Gyarmati, V. Erramilli, and
N. Laoutaris. Detecting price and search discrimination
on the internet. In HotNets-XI: Proceedings of the 11th
ACM Workshop on Hot Topics in Networks. ACM
Request Permissions, Oct. 2012.

[8] R. A. Servedio. On learning monotone DNF under
product distributions. Information and Computation,
193(1):57–74, Aug. 2004.

[9] X. Xing, W. Meng, D. Doozan, N. Feamster, W. Lee,
and A. C. Snoeren. Exposing Inconsistent Web Search
Results with Bobble. Passive and Active Measurements
Conference, 2014.

Appendix M

Can Web Transparency Tools
Cope with Complex Targeting?

Proceedings on Privacy Enhancing Technologies 2016; 2016 (4):1–19

Corresponding Author*, Second Author, Third Author, and Fourth Author

Can Web Transparency Tools Cope with
Complex Targeting?
Abstract: Big Data promises important societal
progress but exacerbates the need for algorithmic ac-
countability as more and more decisions affecting mil-
lions of users are being automated using personal and
private information. The recent area of web transparency
has developed generic methods to reveal which informa-
tion item or input generates personalization and differ-
entiated treatments. We surveyed 13 transparency tools
and found that they all make stringent assumptions on
personalization; unless an algorithm exploits a single in-
put, it can be undetected – or to be more precise, ensur-
ing its detection incurs a prohibitive exhaustive search.
The ever increasing set of relevant inputs to monitor ex-
acerbates the difficulty of this task. As personalization
becomes ever more complex, we see the familiar condi-
tions of an arms race, where transparency and evasion
techniques grow more sophisticated. Until now, we un-
derstand little of it, let alone how to best address it to
make the web more transparent.
In this paper, we present the first algorithms for trans-
parency enhancing tools that are efficient and correct
even with general complex targeting. To take a simple
example, ad-targeting can usually depend on multiple
inputs in a way that may not satisfy previous proper-
ties like linearity. Here we formalize it for the first time,
and show how to combine simple heuristics into trans-
parency algorithms that are provably correct while keep-
ing the cost of queries and computations minimum (ac-
tually matching computational lower bounds). We intro-
duce a key metric, the targeting lift, and show it dictates
the conditions for algorithms with different computation
cost to succeed. Small scale experiments with 20 or 50
inputs, and large scale simulations with up to 100,000
inputs complement our theoretical analysis: they prove
that our algorithms expand the scope of targeting found
beyond the state of the art, that they exhibit excellent
scaling properties as the set of inputs grows, and that
they resist even challenging targeting lift values.

Keywords: transparency enhancing tools, behavioural
targeting, blackbox analysis, computational learning,
analysis of random algorithms

1 Introduction
“Just as neighborhoods can serve as a proxy for racial or
ethnic identity, there are new worries that big data tech-
nologies could be used to digitally redline unwanted groups,
either as customers, employees, tenants, or recipients of
credit.”
– Executive Office of the President, Big Data: Seizing Op-
portunities, Preserving Values, [16].

Big Data – a set of measurement and decision tools
leveraging large sets of records such as emails, web vis-
its, voice calls, credit card transactions, tweets, and geo-
tagged content – is becoming central to any business
today. Tomorrow it promises to unlock opportunities
in myriad public services, promoting healthy behav-
iors [18], environmental sustainability [17], preventing
crime [21], mitigating congestion and pollution in trans-
portation [14], improving disaster recovery [13], and eco-
nomic development [9]. However, the availability and
use of this information can also challenge our society’s
values, as illustrated by recent cases of online discrimi-
nation found in advertising [20], pricing [8, 15], and hir-
ing [1]. Our society must be able to celebrate Big Data’s
potential for progress and perpetuate our commitment
to equal opportunities for all: We should be ready to
guard all from the intended or unintended consequences
that differentiation enables.

Today, most systems handling personal data, such
as web services and mobile applications, behave as black-
boxes, which no one outside the service provider – nei-
ther the end-users nor privacy watchdogs or federal in-
vestigators like the Federal Trade Commission – can
understand and monitor. Web transparency is a nascent
area that takes an engineering approach to promote bet-
ter accountability. Its goal is to enable everyone to an-
swer critical questions about how personal data is being
used. However, this is a complex question to answer and

*Corresponding Author: Corresponding Author: Affil,
E-mail: email@email.edu
Second Author: Affil, E-mail: email@email.edu
Third Author: Affil, E-mail: email@email.edu
Fourth Author: Affil, E-mail: email@email.edu

Can Web Transparency Tools Cope with Complex Targeting? 2

current tools quickly show their limits. For example, we
found that state of the art tools [6, 11] have been de-
signed and evaluated primarily to detect when a single
input is responsible for an action. But personal data
is growing in size and complexity. For example, as we
present later in three potential scenarios of data use, it
could be a combination of inputs (i.e., multiple inputs
together) that explain personalized outputs. One may
then ask “Can transparency enhancing tools extend be-
yond single-input personalization? or would they meet a
computational barrier or restriction which impedes their
practicality? If the success of these tools depends on the
environment, which metrics matter?”

This paper answers the aforementioned questions
as it provides a formal definition of the detection and
the identification problem posed by web transparency
under complex targeting. We introduce multiple new
algorithms, and a new metric that is shown through
rigourous proof and experimental/simulated evidence to
control the accuracy (or lack thereof) for those tools.
Most importantly we show that web transparency con-
tinues to scale even with complex targeting, but that it
poses new combinatorial challenges and computational
tradeoffs. Several of our results suggest future research
avenues to design future robust transparency enhancing
tools.

We now present the following contributions.
– After reviewing 13 transparency tools, we identify

multi-input targeting as a key missing feature, mo-
tivated by multiple scenarios in which it may be
relevant. We introduce a formal model of online tar-
geting that allows us to pose detection and identi-
fication in rigorous terms. This model encompasses
arbitrarily more complex targeting and introduces
a key metric: the targeting lift. (§2)

– We then introduce an heuristic algorithm which
leverages intuitive facts about random subsets to
detect when multi-input targeting is taking place.
In a small experiment comparing this heuristic to
the state of the art, we find that it significantly
increases the coverage of transparency tools. This
observation even holds when an approximation is
used in lieu of the exact suggested heuristic and it
motivates a more thorough analysis to prove it rig-
orously. (§3)

– By a mathematical analysis of properties of random
subsets, we show that those detection algorithms
(exact and approximate) are provably correct un-
der a specific condition that relates to the targeting
lift we introduced above. Moreover, we prove these
algorithms can be used iteratively or recursively not

only to detect but to exactly identify the function
that is being applied to the inputs. All the algo-
rithms we present scale remarkably well as the num-
ber of inputs grows, i.e., they require only O(lnN)
observations. While the first algorithm we introduce
is polynomial in computation cost, we prove a (much
more involved) approximation exists that correctly
identifies the function with linear computation cost,
matching a trivial lower bound. (§4)

– Finally, we come back to analyze more thoroughly
the impact of the targeting lift, they key metric en-
abling web transparency. First, our analysis shows
that transparency enhancing tools exhibit a tradeoff
where lighter forms of targeting can - at least in the-
ory - only be found by more expensive algorithms.
Second, we run large numerical simulations proving
that even moderate numbers of accounts (around
300) allow us to decipher complex multi-input tar-
geting among 100,000 of inputs, while remaining
robust to noise in the targeting lift. These reports
demonstrate the possibility of running transparency
with 1000 times more inputs than any experiment
to date. We show that the greedy heuristic we intro-
duced is robust and efficient, and typically succeeds
for much higher levels of noise than what our theo-
retical bounds would suggest. Finally, we discuss the
practical consequences of our results: we define the
price of opacity which measures the added cost in-
curred by an advertiser that aims at running illegal
targeting under the radar of current transparency-
enhancing tools. (§5)

Our results greatly enhance the complexity that can be
handled by transparency tools, and also delineate where
they may fail. This is the first formal definition of al-
gorithms that can provably exactly identify targeting
in the general case we present here. Before this anal-
ysis, the only previous mention of input combination
appears as an unvalidated extensions in the XRay pa-
per [11], which centers on a different Bayesian algorithm
restricted to single input targeting (used for comparison
in our small experiment). The authors present no formal
proof beyond some initial steps (resembling (Lemma 1,
2 and 3 here) reproduced her to keep this paper self-
contained. All other results, proofs and algorithms in-
volved are new, and only partly appeared as part of an
unpublished appendix in a technical report [REMOVED
FOR ANONYMITY].

Can Web Transparency Tools Cope with Complex Targeting? 3

2 Problem formulation

2.1 Requirements of transparency tools

To address the big-data web’s untenable opacity, a
new set of transparency tools have been proposed re-
cently [6–8, 11, 15, 22]. Generally speaking, they assume
no insider information about how the data-driven web
service operates and instead rely on a specific form of
black box testing [4] to detect data use. Briefly, a trans-
parency tool works as follows. First, it collects the re-
sults of a series of tests in which inputs vary, e.g., brows-
ing history [15], search history [7], emails [11], loca-
tions [22], or explicit profile information [6]. Second,
by examining the observed outputs – e.g., search re-
sults [7, 22], ads seen [6, 11], recommendations [8, 11],
or prices [8, 15] – the tool deduces how the system per-
sonalizes its behavior based on this input. Finally, the
tool’s deductions are used as hypotheses that are further
analyzed for implications by the tool’s users, such as end
users, journalists, privacy watchdogs, or federal investi-
gators. The deductions are generally not considered as
definite proof, but as quantified hypotheses that require
further investigation and reasoning. For example, an
FTC investigator might use a transparency tool’s deduc-
tions to glean at potential predatory targeting against
some vulnerable population, but will open his/her own
detailed investigation to validate whether the targeting
was intentional or automatic, which of many potential
parties applied this targeting, etc.

To be valuable to their users, transparency tools
strive to meet three requirements:
1. Scalability: Each test may involve multiple prelim-

inary steps to open a new web account and populate
its inputs. These steps cannot always be automated
and may be expensive (e.g., creating a Google ac-
count requires buying a new phone number). It is
also important to keep resources to a minimum as
the size of outputs/inputs grows.

2. Accuracy: The deduction that the tool provides
should be sound, which means that it can be trusted
not to originate from noise or other limitations of
the experiments. The tool should also be complete
which specifies that it rarely misses an important
deduction.

3. Broad Applicability: Ideally, the same tool
should apply not only to many different services
but also various forms of data usage within those
services, with only minor and intellectually simple
changes.

Perhaps unsurprisingly, the first two requirements are
often in conflict. The third makes the problem extremely
challenging, and has barely been considered to date.
With few exceptions [6, 11, 12], previous transparency
tools were designed for a specific service or usage in or-
der to detect a particularly sensitive topic, such as price
discrimination [15], search personalization [7] or cen-
sorship [22]. Only recently has development of widely-
applicable, generic tools begun to be considered to allow
generic data collections [8] and service-agnostic detec-
tion methods [6, 11, 12]. However, we find that even the
latest transparency tools are limited in the kind of data
usage they can detect or identify in large scale exam-
ples. We believe that the biggest roadblock is the lack
of support for detecting complex, multi-input targeting,
which we argue must be addressed for building scalable,
accurate, and broadly applicable tools. We motivate this
need next.

2.2 Why does multi-input targeting
matter?

Without exception, all existing transparency tools are
designed to detect situations in which a single input
is responsible for an algorithmic decision. AdFisher [6]
builds for a given individual input (i.e., gender, or race)
a classifier that retroactively predicts the presence of an
input based on the outputs observed for this account.
This allows sound predictions of whether individual in-
puts are treated differently by the audited system. The
XRay tool [11] relies on a Bayesian inference procedure
that determines the likelihood that a given input ex-
plains the distribution of ads seen across accounts. Sun-
light [12] introduces a machine learning technique that
approximates targeting functions in a linear model, with
no proven guarantee, especially when input combina-
tions are found to affect the targeting function (see be-
low).

We first argue that targeting function that depends
on multiple inputs are far from unusual. We provide
three scenarios where those can be found:
– For years, search engines have combined previ-

ous and current queries for input disambiguation
(e.g., deciding whether a user querying the word
“apple” is looking for fruits or electronics). Simi-
larly, advertisers today can define their targets by
combining multiple keywords together, and even
jointly with given demographics or location [10].

– Even if the target is specified by a unique term or
topic, it is common for inputs to overlap (e.g., two

Can Web Transparency Tools Cope with Complex Targeting? 4

emails may trigger the same output because they
both contain the same important keyword). In fact,
ad-targeting platforms like adwords often leverage
relation between inputs, such as different keywords,
as suggestions for how to expand the target of
a given campaign. Some overlap is common even
among a small number of inputs, as evidence of our
experiments prove.

– Third, using multiple terms could be a way to con-
ceal targeting. There are situations in which sensi-
tive information such as race, gender or sexual ori-
entation are forbidden to be used explicitly for tar-
geting. But the nature of big data makes it possible
to exploit other inputs that correlate with the in-
tended target to obtain a similar effect. A collection
of first names, for instance, was shown to be used
as a proxy for race [20].

We now would like to highlight how those scenarios il-
lustrate the limitations of current transparency tools.
For example, if multiple inputs overlap and they all
cause a personalized ads, XRay’s tests [11] conclude
that no targeting takes place since all hypotheses as-
sociated with a single input yield poor likelihood. Ad-
Fisher [6] is more robust as it can detect that an input
plays a partial role and causes increased likelihood of
an ad. But that knowledge applies only if the experi-
menter knows a priori which input to test and conduct
an experiment about. For instance, in the concealed tar-
geting case, monitoring the use of N inputs as potential
proxy requires an exhaustive search with queries grow-
ing linearly with N . Sunlight [12] approximates target-
ing functions through linear combinations of inputs. In
the disambiguation case, when different subsets of in-
puts cause targeting only when they are found together,
Sunlight can only return a linear approximation of the
targeting function. While extensions may be considered
with an exhaustive list of subsets as new dimensions of
an input space, this appears costly and has not been
considered or validated.

In contrast to the above, our approach presents
transparency algorithms directly designed for the com-
plex case where the targeting function depends on mul-
tiple inputs. We would like, also in contrast to the above,
for our algorithm to provide a formal theoretical guar-
antee under a small set of conditions. To do so, we first
need to formally define the problem.

2.3 A formal model of complex targeting

We formalize the following intuitive problem: given a
set of N inputs representing possible information items
present in a user’s account (such as emails, searches, or
other examples above), we wish to determine how they
affect a web service’s choice of one particular output of
interest (such as an ad or a recommendation).

Our main assumption is that the output is affected
through an unknown targeting function f of the inputs,
to be determined. The function f is defined separately
for each output (i.e., it should be called foutput but we
elide the subscript for simplicity). Formally, we define
a combination C of width r as a subset of r elements
chosen among the N inputs. The targeting function f is
a mapping from the set of all combinations to {0; 1}. We
distinguish between two types of functions. Those that
are untargeted will randomly assign their output with
a probability that is independent of the tracked inputs.
Those that are targeted will assign their output based
on the presence of certain inputs in the account. For
these targeted functions, we say an account C is inside
the target if f(C) = 1, and outside the target otherwise.

Any targeting function f 6= 0 should satisfy two
assumptions (a.k.a., axioms):
A1 monotonicity: C ⊆ C′ =⇒ f(C) ≤ f(C′).
A2 input-sensitivity: ∃ C, C′ s.t. f(C) 6= f(C′).

Monotonicity simply reflects that an account with
strictly more inputs that may indicate interest or hob-
bies should in theory be relevant to more ads, and never
to less. Input sensitivity prevents the degenerate case
where a targeting function is constant.

In practice we have no access to the targeting func-
tion directly. Instead we rely on experiments to observe
how various inputs are treated. Intuitively, these ex-
periments collect outputs from a set of accounts that
contain subsets of the inputs and produce a set of
noisy observations of f . For example, experiments could
collect ads for accounts with different subsets of emails.
More formally, the experimental infrastructure we as-
sume is similar to a noisy oracle O as defined in compu-
tational learning theory [2, 3, 19]. It can be interpreted
as a collection of random variables O(C) associated with
each combination of input C.

We assume that this oracle O (i.e., the family of
random variables it defines) satisfies the following third
axiom:
A3 targeting lift: There exist pin, pout such that

P [O(C)=1|f(C)=1]=pin > pout =P
[
O(C′)=1

∣∣f(C′)=0
]
.

Can Web Transparency Tools Cope with Complex Targeting? 5

The targeting lift axiom properly states that f is related
to the outcome we observe. It allows the variables to also
depend on other factors: hidden inputs that are not in
the set of N we study, external sources of randomness
such as availability of ad-slot, competition. This axiom
is also here to avoid the degenerate case where the values
taken by O(C) for each C are simply not affected by
f(C). We note that pin/pout > 1 and we call this ratio
the targeting lift which denotes how much more likely
are the ads to be shown for an account in-target. A
function is more likely to be easy to detect or identify
when the targeting lift is high, while for moderate or
small targeting lift, the presence of ads in many accounts
outside the target makes this more difficult.

2.3.1 Core family

A family S of size l is any collection of l distinct com-
binations. The width of the family is defined as the
largest width of a combination it contains. Interestingly,
there is a duality between families and targeting func-
tions. On the one hand, one can define for any family
S a targeting function f : C → maxS∈S I{S⊆C} that
takes value f(C) = 1 whenever the subset C contains at
least one combination in S. On the other hand, we show
(proof omitted due to space constraints) that the con-
verse holds: for a targeting function f , there is a unique
family with the property that it is of both minimum
width and minimum size:

Lemma 1. For each monotone, input-sensitive target-
ing function, f , there exists a unique family S satisfying:

(i) S has size l and width r and it explains f , i.e.,

f(C) = 1 holds if and only if ∃ C′ ∈ S, C′ ⊆ C .

(ii) No family of size l′ < l explains f .
(iii) No family of width r′ < r explains f .

For each targeting function, this family is the
core family. Similarly, the size and the width of f is de-
fined by its core family. Lemma 1 follows from the mono-
tonicity axiom and does not hold for non-monotonic
functions.

For example, with N = 4, let S = {{1, 3} , {4}},
and S′ = { {1, 2, 3} , {4} , {2, 4} , {1, 3} } and consider
the function f : C 7→ maxS∈S′ I{S⊆C}. We see that S′

explains f by definition, and S also explains f . Intu-
itively, if S explains f , then if we were to observe that
all combinations in S′ receive an ad, this could in theory
be explained by the hypothesis that the ad is targeted

at accounts which contain any of the combinations of in-
puts in S. Alternatively, if S does not explain S′, then
it shows that S is not sufficient on its own to interpret
this observation.

2.3.2 Targeting Detection, Targeting Identification

Under the assumptions above, an algorithm using m

observations solves the targeting detection problem if it
can correctly decide whether the output is the product
of a targeted or untargeted function. Going further, an
algorithm solves the targeting identification problem if
it correctly returns the core family defining f . Naturally,
both problems rely on random observations and hence
our goal is to design algorithms whose detection/iden-
tification error is arbitrarily small for large N .

Let us quickly discuss the computational cost that
we can hope to achieve. Since one should distinguish
(at least) between N inputs, it seems that a minimum
of Ω(ln(N)) binary observations are absolutely neces-
sary at least for the identification. Similarly each input
needs to be considered so a minimum of Ω(N) elemen-
tary computations are to be performed. This is hence
what we assume and we aim at keeping it at this abso-
lute minimum. Note that those condition imply that we
cannot detect function of any arbitrary size and width
(e.g., the function f : C 7→ I{|C|≥N/2} has a core family
with a size growing exponentially in N). So our goal is
to solve detection/identification given bounded size and
width, a priori known1, while carefully analyzing how
those bounds affect the complexity and correctness of
the algorithm. In fact, at the end of the next section
we show that an algorithm solving identification exists
that matches the computational lower bounds above,
provided that the targeting lift is sufficiently strong.

3 Transparency Algorithms
In this section, we present our new transparency algo-
rithm that we justify informally through an intuitive
heuristic argument. We then present immediate empir-
ical evidence, from a small scale experiment, that al-
gorithms based on this heuristic are promising to ex-

1 If the bounds are unknown, one could run algorithms with
increasing values of maximum size and width and stop when
targeting is correctly detected and/or identified.

Can Web Transparency Tools Cope with Complex Targeting? 6

pand the scope of transparency enhancing tools. All the
claims we made here are formally proved in the next
section, but can be found here without superfluous tech-
nicalities.

3.1 Heuristic for targeting detection

We assume that a collection of m accounts are cre-
ated. For each of those accounts, every one of the N
inputs we study is independently and randomly included
with probability α. For a given advertisment we wish to
study, we observe multiple accounts that receive it in our
experiment, which we generally call the active accounts.

Let us first discuss how one could design a test to
distinguish untargeted ads from ads with infinite target-
ing lift (pin > 0 and pout = 0). The essential argument
follows from a simple yet powerful intuition: First, if on
the one hand the ad is targeted with an infinite target-
ing lift, then any combinations of inputs C for an active
account must verify f(C) = 1 and hence it must contain
one combination from the core-family of f . In the later
case, let us denote by l the size of the core family of f .
Then there exists a subset C′ of l inputs among N such
that each active account contains at least one element
of C′. Basically C′ is a small subset that intersects all set
of inputs found in all active account. On the other hand,
if we assume that none of the inputs that we included
play any role in the appearance of this particular ad -
i.e., if the ad is not targeted - then the inputs of the ac-
tive accounts are the sole results of our random choices.
In that case, having a small subset that intersects all of
those random choices is a very unlikely event.

This informally suggests that looking for a small
subset intersecting the inputs of all (or most) active ac-
counts in which the ads appear may potentially serve as
a good test that the ad is targeted. Note that when it
is the case, the inputs found in this small intersecting
subset are primary candidates to be the ones defining
the target. With this in mind, we introduce a simple
heuristic algorithm for detection:

Note that, while this simple heuristic appears natu-
ral, it requires in the worst case to test all subsets of size
up to l to find one intersecting a large number of the
active accounts. This can be overly expensive, so one
may decide to simplify this procedure by simply testing
the subset returned by a simple greedy dynamic, which
may often be a good approximation.

Finally, one may decide to build a simple identifi-
cation algorithm which, instead of returning a simple
binary value, actually returns the set C′ that was found

Heuristic Detection-x Algorithm
Known parameters: m, maximum size l, probability α.
Entries: a threshold parameter x > α.
Result: 1 if the ad is targeted, 0 otherwise.
1: Create m accounts, include each input independently with

probability α.
2: Construct the family S(ad) containing all combinations of

inputs in accounts seeing the ad.
3: for C′ of l inputs do
4: if |{C ∈ S(ad)|C ∩ C′ 6= ∅|} > x · |S(ad)| then
5: return 1.
6: end if
7: end for
8: return 0.

Heuristic Greedy Detection-x Algorithm
Known parameters: m, maximum size l, probability α.
Entries: a threshold parameter x > α.
Result: 1 if the ad is targeted, 0 otherwise.
1: Create m accounts, include each input independently with

probability α.
2: Construct the family S(ad) containing all combinations of

inputs in accounts seeing the ad.
3: C′ = ∅,
4: while |C′| < l do
5: C′ ← C′ ∪ argmaxi

∣∣{C ∈ S(ad)|C ∩ (C′ ∪ {i})}
∣∣

6: if |{C ∈ S(ad)|C ∩ C′ 6= ∅|} > x · |S(ad)| then
7: return 1.
8: end if
9: end while
10: return 0.

in this procedure. One can hope under some conditions
(for instance, if the width of the targeting is known to
be 1) that this procedure returns the correct core family
of f .

However naive these procedures may seem, we prove
later that under some conditions they are essentially
correct. Moreover they can be used effectively as build-
ing blocks for exact identification in the general case.
But before proving that formally, we first test them in
a practical setting.

3.2 Report from a small scale experiment

We run two small scale experiments to gain experi-
ence and inform our model of online advertising and
the presence of ad targeting leveraging multiple inputs.
The full content of those preliminary experiments will
be made available. For each experiment, we first man-
ually created one master Gmail account a well as 100
other shadow Gmail accounts. Inputs in these experi-

Can Web Transparency Tools Cope with Complex Targeting? 7

ments are emails, which are all included in the master
account, and independently assigned to each shadow ac-
count with probability 1/2. In the first experiment, we
used 20 emails on unrelated topics (e.g., the purchase
of a new car, TV, college applications). In the second
experiment, after creating different accounts we used 50
emails, including 15 groups with 2,3 or 4 emails on the
same topic (e.g., two emails that are distinct but both
relate to biking), and 12 separate unrelated emails. The
outputs are ads shown to each account, collected by
opening and refreshing multiple times each email.

To study targeting, we reproduced the state of the
art Bayesian algorithm from [11] as well as a simple
greedy algorithm. The former was previously designed
and evaluated to accurately identify single input tar-
geting. The latter is new and picks sequentially, among
emails included in accounts seeing the ads, the email
that is found in the most remaining number of accounts
(this design is defined formally and analyzed later, see
Section 4). In the latter, we conclude that targeting
takes place when the fraction of accounts containing one
email in the subset is sufficiently large. For simplicity we
used here fixed thresholds: an ad is classified as targeted
if either an email is found in at least 70% of the accounts
with ads, or two emails are found so that either of them
is included in at least 90% of those accounts. This last
case in particular indicates that subset of two inputs are
simultaneously targeted.

Our first experiment was a simple sanity check. Us-
ing the same ground truth as in [11], we consider 108
ads seen in at least 30 accounts including the mas-
ter account, and found that for single input targeting,
Bayesian has 95% precision and 86% recall, whereas the
greedy algorithm finds 95% precision and 88% recall. As
expected, emails are on unrelated topics, so considering
subset of size 2 yields no specific improvement. In the
second experiment, with more inputs and some over-
lap, results are quite different: Among 230 ads seen in
at least 30 accounts including the master, we find that
81 (35%) are classified as targeted on a single input by
Bayes, and are all found by the Greedy algorithm (by
manually checking the content of the ads, as in previ-
ous ground truth, we found the vast majority of those,
85%, are correct classified). More interestingly, 79 ad
(34%) are found in addition by the Greedy algorithm:
another manual check based on the ad content proved
that this classification is correct 70% of the time. We
present some representative examples in Figure 1. Note
that some multi-input targeting are direct consequences
of the experiment design (e.g., the left example with
two emails with almost identical topic). This proves

email Subject

ads received:

Title, url & text

!"#$"%%&$"#'()*+,-&.*$/.

0/1223334$"5%&5%64)+72.)+,-&.*$/.2
Apply for a Scholarship up to $10k from
Intertek for 2014!

8*%'9,:7-5%';-$,.'<+=

/$>+5-,,-=.4)+72)-&%%&.2
Pivotal Labs is hiring! Positions in SF,
NYC & Boulder

College
scholarship

College
applications

16

0

2830#accounts
including an
email, both,
or none

26

2

2125

Programming
interview

new
job

Fig. 1. Multi-input targeting in Exper. 2.

the limit of previous methods, since each email alone
appears insufficient to explain targeting. Interestingly,
some examples are less obvious (e.g., the right example
with subject “programming interview” and “new job”
were not initially considered to be on the same topic,
but happened to target similar ads). We believe this
situation would be common in experiments with many
emails. Note finally that, although we found quite a lot
of multi-input targeting (at least 25% of the ads we ana-
lyzed), we cannot a priori conclude that this occurs with
such frequency as it typically depends on many factors
including the input sets. At best we can expect that it
is not infrequent, and that our experience of exploiting
simple heuristics can be made more systematic.

In this paper, motivated by this preliminary evi-
dence, we wish to study the problem of multi-input tar-
geting more formally. In particular, are heuristics like
those we used above sound and complete to find this
form of targeting when it takes place? Since multi-input
targeting raises a combinatorial difficulty, how likely
are the properties that make simple detection easy or
hard? To answer those questions, we turn to a system-
atic mathematical analysis of a model reproducing the
essential ingredients that we observed.

4 Proof of Correctness
Now that we found algorithms based on intersecting
subsets to be intuitively justified, at least for detection,
and practically useful, it remains to determine under
which conditions those are rigourously correct. More-
over, beyond mere detection it remains to be shown that
those test could be effectively used for exact identifica-
tion. In this section, we do not only prove that, but also
that this can be done while matching the computational
lower bound of a linear number of operation.

Can Web Transparency Tools Cope with Complex Targeting? 8

4.1 Polynomial Targeting Detection

The first detection test we introduced runs naively us-
ing a polynomial number of operations to test for small
subsets intersecting many active accounts. We first de-
termine conditions under which it is provably correct.

Theorem 1. Assuming S(core) has size at most l and
width at most r, and pout

pin
< ϕl,r(α) = αr

1−αr
(1−α)l

1−(1−α)l ,

then there exists x > α and C > 0 satisfying:
For any ε > 0, if m ≥ C ·(ln(N) + ln(1/ε)), Heuris-

tic detection-x is correct with probability (1− ε
N).

Proof. A subset of inputs C is an x_intersecting subset
of a family S (for 0 ≤ x ≤ 1) if at least a fraction x of
the subsets in S intersect C (i.e., each contains an input
chosen in C):

| { S ∈ S | ∃ Di ∈ C, Di ∈ S } | ≥ x · |S| .

Similarly, we say that S′ is an x_intersecting family of a
family S if at least a fraction x of the subsets contained
in S contain a combination chosen in S′:

|
{
S ∈ S

∣∣ ∃ C ∈ S′, C ⊆ S
}
| ≥ x · |S| .

If S′ satisfies this property, one can chose for each combi-
nation of S′ one given input in this combination. Those
inputs together form an x_intersecting subset, proving:

Fact 1. Let S′ be an x_intersecting family of S, there
exists C an x_intersecting subset of S with |C| ≤ |S′|.

Given a particular advertisement an account is said
active if it has received the advertisement during the
experiment. We denote by S(ad) the active family that
is built after considering all active accounts and adding
for each of them the combination of its inputs to S(ad).
Finally, as seen in the previous section, if an advertise-
ment is targeted it admits a unique core family. We then
denote it by S(core) and observe that it is never empty.
By convention the case where the advertisement is non-
targeted is denoted by S(core) = ∅.

Our first preliminary result a property of random
subsets and ensures that our test is sound, i.e., it almost
never returns targeting when it’s not the case.
– A random Bernoulli subset, denoted by B(N,α), is

a subset such that any of N elements is contained
with probability α independently of all others.

– A random Bernoulli family of size m is a collection
of m independent Bernouilli subsets.

Since Bernouilli subsets and families derive from many
independent decisions to include or not a single element,

we can use concentration inequalities on the distribution
of sum of binary variables. Indeed such variable remains
close to its expectation (i.e., up to a constant multiplica-
tive factor) except on an event of polynomially small
probability. This holds as soon as its expectation is at
least logarithmic and it implies:

Lemma 2. Let 1 > x > 0, l ∈ N, α < 1−(1−x) 1
l , and

a Bernouilli family B1(N,α), B2(N,α), . . . , Bm(N,α).
There exists C > 0 such that for any ε > 0 and polyno-
mial P , if m ≥ C · (l ln(N) + lnP (N) + ln(1/ε)) , then
with probability (1− ε/P (N)) no x_intersecting subset
exists of size l for this Bernouilli family.

Lemma 3. Assume x, α > 0, and pout
pin

< 1−x
x

αr

1−αr ,

where no combination in the core family has width larger
than r.

There exists C > 0 such that for any ε > 0 and
polynomial P , for any combination C, whenever we have

m ≥ α−|C| · C · (lnP (N) + ln(1/ε)) .

then with probability (1− ε/P (N)) the following holds:
among accounts containing C and seeing the ad, at least
a fraction x of them is within the targeting scope S(in),

i.e.,

∣∣∣
{
S ∈ S(ad,in) | C ⊆ S

}∣∣∣
∣∣{ S ∈ S(ad) | C ⊆ S

}∣∣ ≥ x ,

where S(in) denotes the family of combinations C such
that f(C) = 1 and S(ad,in) = S(ad) ∩ S(in).

As a consequence, we see that the targeting lift does
affect the inputs found in S(ad) as it is responsible
for a fraction of them. Under the condition of this
lemma, since we saw that a 1_intersecting set exists for
S(ad,in) = S(ad) ∩ S(in) that is constructed using S(core),
it is also an x_intersecting subset of S(ad).

Based on the above results, we can expect that with
high probability two claims hold when m has order
O(ln(N)):
– Soundness: If targeting does not occur, i.e., if we

have S(core) = ∅, then S(ad) has no x_intersecting
subset of size l.

– Completeness: If targeting occurs, i.e., if we have
S(core) 6= ∅, an x_intersecting subset for S(ad) of
size |S(core)| exists.

However, it is important that we prove that the same
value of x is used simultaneously for both claims, which
is why a careful analysis is required.

In order to apply both claims for the same x, we
need that α < 1 − (1 − x)1/l and pout/pin < 1−x

x
αr

1−αr

Can Web Transparency Tools Cope with Complex Targeting? 9

are verified. Fortunately it is easy to show that such x
exists as soon as pout

pin
< ϕl,r(α) = αr

1−αr
(1−α)l

1−(1−α)l which
completes the proof.

4.2 Detection with Linear Cost

In this section, we prove that, under stricter condition
on the ratio pout/pin, it is possible to prove the cor-
rectness of the approximate detection test that uses a
greedy heuristic. This shows that targeting detection is
feasible in linear cost. We first introduce

ϕ̂
(gr)
l,r (α) =

(1− α)l −
(
1− 1

l

)l

1− (1− α)l
αr

1− αr . (1)

Theorem 2. Assuming S(core) has size at most l and
width at most r, and pout

pin
< ϕ̂

(gr)
l,r (α) , then there exists

x > α and C > 0 satisfying:
For any ε > 0, if m ≥ C ·(ln(N) + ln(1/ε)), Heuris-

tic Greedy detection-x is correct with probability (1− ε
N).

Proof. Let us first formalize our greedy building block.
For any family S, we introduce the function that counts
for any combination S how many elements of S it inter-
sects: gS : S 7→

∣∣{ S ′ ∈ S
∣∣ S ∩ S ′ 6= ∅

}∣∣ . Note that S
is an x_intersecting subset if and only if gS(S) ≥ x · |S|.
Our tests relate to maxima of gS under constraints.

This function is submodular, non-decreasing, non-
negative. Hence one way to find S maximizing its value
is to follow an iterative greedy algorithm, starting with
S0 = ∅ that constructs S1, . . . ,Sl as follows:

Si+1 := argmax
{
gS(S ′)

∣∣ Si ⊆ S ′, |S ′| = |Si|+ 1
}
.

Using standard argument on maximum of such submod-
ular functions, one can show that for any subset S of
size l, we have gS(Sl) ≥ (1− (1− 1

l)
1/l)gS(S). This im-

mediately implies that if an x_intersecting subset is to
exist (which we can show when targeting occurs with
high probability), then the greedy heuristic necessarily
returns an (1− (1− 1

l)
1/l) · x intersecting subset.

Following the same argument as the proof of the de-
tection test in the previous section, this implies that the
greedy algorithm offers a detection test that asymptot-
ically correct under a more restricted conditions on the
value of pout/pin.

Note that the condition in the theorem is stronger than
pout/pin < ϕl,r(α) as we have for all l > 1:

∀α > 0 ,
(1− α)l − 1

e

(1− α)l · ϕl,r(α) < ϕ̂
(gr)
l,r (α) < ϕl,r(α) .

(2)

This implies (see §5) that some targeting found by the
exact exhaustive algorithm is missed by the greedy ver-
sion.

4.3 From Detection to Identification

Here we show rigorously that the previous heuristic of
intersecting subsets can be leveraged to provide exact
identification of the targeting function.

Theorem 3. Assuming S(core) has size at most l and
width at most r, and pout

pin
< ϕl,r(α) , then there exists

x > α and C > 0 satisfying:
For any ε > 0, if m ≥ C ·(ln(N) + ln(1/ε)), an iden-

tification algorithm using no more than O(N l+r ln(N))
operations is correct with probability (1− ε

N).

We prove this result in the rest of this section. Relat-
ing back to the requirements formulated for web trans-
parency tools in, our results show that targeting on
bounded-size combinations can be detected and iden-
tified accurately with very few resources (scalably). Our
entire formalism is kept on purpose generic and its treat-
ment of noisy combined targeting makes it more broadly
applicable than prior systems.

Previously in this section, we designed a provably
approximately correct targeting detection test that pro-
duces a provable certificate: an x_intersecting subset
obtained under specific conditions. To go beyond mere
detection, one would like to identify exactly which in-
puts are being targeted, a much more difficult task.
Those are a priori related to inputs found in the in-
tersecting subset. However, this intersecting subset is
not unique, it may contain only a subset on relevant
inputs of the core family.

Key observation: How targeting behaves “be-
yond” some combination We first answer to the fol-
lowing key question: For a combination C, what can be
said about the set of accounts that contain it and those
among them that are active, {S ∈ S(ad) | C ⊆ S}? By
definition, all of those subsets contain all inputs in C
so we are interested in understanding how other inputs
affect them. This is where exactly two cases emerge:
Firstly, if we assume that C does contain a combination
of the core, it automatically implies that independently
of any other inputs, they all receive the ad with the
same probability. Secondly, if we assume on the other
hand the opposite, then among all accounts including
C, there will be specific sets of inputs that may com-
plete a combination from the core family and hence be

Can Web Transparency Tools Cope with Complex Targeting? 10

targeted more heavily than others. This latter case re-
sembles the situation of a targeting lift which can be
detected. The former case resembles a situation where
ads appear randomly. We can therefore design a new
test as follows, that is sound and complete to determine
in which case we are.

Definitions and main building block We re-
mind that we denote S(in) the set of combinations C that
satisfy f(C) = 1. One can observe these are all super-
sets of combinations in the core family S(core). Our test
will determine whether a given combination C belongs
to this family. Indeed, we now show how to leverage
the above observations to determine whether C ∈ S(in)

using intersecting subsets. As it will be useful later to
generalize this test to apply to intersecting subsets of
smaller size k ≤ l, we directly write the most general
case. Note that this requires a new condition:

ϕ̂
(k)
l,r (α) =

1− l
k (1− (1− α)l)

l
k (1− (1− α)l)

(1− (1− α)l/k)r

1− (1− (1− α)l/k)r
.

(3)
When k is chosen equal to l, this condition is equivalent
to previous one as the one above. The case where k < l,
also proved here, will be of importance to design a linear
identification algorithms in the next section.

We introduce the following key proposition

Proposition 1. Assuming S(core) has size at most l and
width at most r, pout

pin
< ϕ̂

(k)
l,r (α) , for k ≤ l, then there

are x,C > 0 satisfying:
For any ε > 0, polynomial P , and combination C,

when m ≥ α−|C| · C · (ln(N) + lnP (N) + ln(1/ε)), then
with probability (1−ε/P (N)) exactly one of the following
claims holds:

(i) C contains a core combination, i.e., it is in S(in).
(ii) an x_intersecting subset of size k exists for

∆(ad) (C) =
{
S ∩ C

∣∣∣ S ∈ S(ad) , C ⊆ S
}
.

Identification using exhaustive local search As-
sume we are equipped with the test of Prop 1 and that
the targeting function to detect has width at most r.
A first (costly) algorithm to compute the core family
searchs for the results of all tests and in the worst case
it examines all the O(Nr) possible combinations.

This algorithm maintains a current core S(core) that
is initially empty. At each step i ≥ 1 it considers all
combinations of size i that are not strict supersets of a
combination already found in S(core). In particular, note
that it considers all the possible N singletons for i = 1.
For each combination C considered at step i (i.e., |C| =
i), we apply to C the recognition test from Prop 1 (using

k = l). If C ∈ S(in), then C is indeed in the core of the
function by inclusion wise minimality and so, we put
the combination in S(core). Otherwise we drop it. When
the algorithm stops after r steps, all core combinations
have been necessarily identified.

Some final remarks are required to prove the cor-
rectness of the above algorithm: First, to perform the
recognition test of Prop 1 (using k = l), we need a bound
on the size of S(core) and that the bound on the target-
ing lift is satisfied. We also need to observe that, since
all tested combinations have width at most r, the value
of α−|C| that appears in the bound for m indeed re-
mains bounded. Finally, since we conduct O(Nr) tests,
we need to ensure that none of them fail. Using the
fact that by choosing C large enough, Prop 1 holds for
any polynomial P , we can choose P (N) = Nr and ap-
plies the union bound to all tests. As a final remark,
since each test boils down to identifying an intersect-
ing subset of size l among m accounts, it uses at most
O(N lm) = O(N l ln(N)) operations so, the total number
of operations in the algorithm is O(N l+r ln(N)).

4.4 Identification with linear cost

Getting rid of the exhaustive local search step in the
identification of the targeting function is much more
difficult. This requires each test to be computation-
ally cheaper and more importantly to conduct a much
smaller number of them. However, surprisingly, it can
be done using more properties of intersecting subsets
and a significantly more elaborate algorithm.

The gist: getting more from each test Given C,
§3 presents a test to determine if it belongs to the target
S(in), but more importantly if this answer is negative it
produces a certificate which is an x_intersecting subset,
or even the family of all such subsets. We first extract
more information from this output.

Lemma 4. Assuming S(core) has size at most l

and width at most r, that k ≤ l and pout
pin

<

supα∈]0; k
l [ϕ̂

(k)
l,r (α) , then there are x, α,C > 0 satisfy-

ing:
For any ε > 0, polynomial P , and combination C,

when m ≥ α−|C| · C · (ln(N) + lnP (N) + ln(1/ε)), then
with probability (1 − ε/P (N)) the following two claims
hold:

(i) All combinations in Sx,k intersect
⋃
S∈S(core) S.

(ii) C ∪
⋃

S∈Sx,k

S is empty or contains a core comb.

Can Web Transparency Tools Cope with Complex Targeting? 11

Sx,k =
{
S
∣∣∣ S x_intersecting for ∆(ad) (C) , |S| ≤ k

}
.

For the rest of this section, we will apply this lemma
with k = 1; it then has a quasi-linear cost. Under
this condition there is targeting if, and only if, there
is an x_intersecting subset of size 1. Fact (i) above im-
plies that all such x_intersecting subsets are included
in
⋃
S∈S(core) S, hence we have at most lr of them.
A recursive identification test using elimina-

tions. It seems a priori promising to operate by elim-
ination for the following reason: assuming C contains a
core combination, we can remove elements from C one
by one and only keep those whose removal changes the
outcome of the test from Prop. 1. By inclusion wise min-
imality, the resulting combination belongs to the core
family. Applying Lemma 4 to the empty combination
provides a first detection test of targeting (i.e., if this
one fails, the algorithm returns S(core) = ∅) and a super-
set of a core combination (Line 1). By the elimination
process aforementioned, we obtain a core combination
(Line 3-7). We then recursively apply the same algo-
rithm to multiple scenarios where we carefully remove
exactly one input from the first combination (Line 9-
12). This ensures that future combinations obtained by
the same methods are different.

Generalized-Set-Intersection(GSI) Algorithm
Entries: a family S(ad); and a threshold parameter x.
Result: The core-explaining family S(core).

1: S(core) ← {}; S ← {Di | |{Aj∈S(ad)|Di∈Aj}|
|S(ad)| ≥ x};

2: if S 6= ∅ then
3: for all Di ∈ S, Ŝ = S \Di do
4: if {D′i /∈ Ŝ |

|{Aj∈S(ad)|Ŝ∪{D′i}⊆Aj}|
|{Aj∈S(ad)|Ŝ⊆Aj}|

≥ x} = ∅ then
5: S ← S \Di.
6: end if
7: end for
8: S(core) ← S(core) ∪ {S}.
9: for all Di ∈ S do
10: Si ← GSI(S(ad) \ {Aj | Di ∈ Aj}, x).
11: S(core) ← S(core) ∪ Si.
12: end for
13: end if

Proposition 2. Assume S(core) has size at most l and
width at most r, and pout

pin
< 1−lx

l
xr−1

1−xr , for some 0 <

x < 1/l.
There exist α,C satisfying ∀ε > 0, for all poly-

nomial P , whenever m ≥ C · (lnP (N) + ln 1
ε), the

GSI algorithm identifies the core family with probabil-
ity 1− ε/P (N)

Analysis of complexity It is straightforward to prove
that GSI terminates, because the number of data in-
puts decreases at each recursive call to the algorithm.
To upper-bound its time complexity in the worst-case,
we introduce the so-called “relevant set” I. Its defini-
tion is inductive, following the trace of some execu-
tion of the algorithm. Namely, let S be the union of
all x_intersecting subsets of size 1. If S = ∅, then we
set I = ∅. Else, for each recursive call GSI(A \ {Aj |
Di ∈ Aj}, x) of the algorithm, we name Ii its relevant
set and we set I = C ∪

(⋃
i Ii
)
. Note that we have by

construction ∀i, |Ii| ≤ |I| − 1.
We state below (proof omitted) that GSI is Fixed-

Parameter Tractable (FPT) when the size |I| of the
relevant set is fixed.

Lemma 5. GSI can be implemented to run in a time
bounded by O

(
|I|! ·N · |S(ad)|

)
.

Proposition 3. Under the assumptions of Prop. 2 GSI
terminates in O((lr)! · Nm)-time with probability 1 −
ε/P (N).

5 Impact of Targeting Lift

5.1 Targeting lift defines in theory a limit
to web transparency

As seen above, the tests we design can dramatically ex-
pand the scope of web transparency tools. We proved
that observations from inputs and outputs can reveal
how a targeting function affects what is shown to a pop-
ulation based on combination of multiple inputs. Since
the ability to discriminate using such functions is funda-
mental to Big Data, and since our tests made minimal
assumptions, our results can be readily used in many
more applications to come beyond ad-targeting, our pri-
mary motivation.

This poses an important question: Is there a fun-
damental limit to web transparency? That would be a
situation in which all tests so far fail no matter how
parameters such as x, α and C are chosen. We show it
is the case, and we compute the exact conditions under
which all known tests fail. We also measure the detec-
tion power of other simpler tests to understand how they
affect those limitations.

Can Web Transparency Tools Cope with Complex Targeting? 12

We showed tests always exists to successfully detect
and identify a targeting of size l and order r such that

pout
pin
≤ sup

α∈]0;1[
ϕl,r(α) = sup

α∈]0;1[

αr

1− αr
(1− α)l

1− (1− α)l .

This condition leads to a closed form.

Lemma 6. Let Ml,r = supα∈]0;1[ϕl,r(α), we have




if l = 1, M1,r = 1/r ,
if r = 1, Ml,1 = 1/l ,
for all r, l, 1

(2max(l,r)−1)2 ≤Ml,r ≤ 1
(2min(l,r)−1)2 ,

for all r, l, Ml,r = Mr,l ,

if r = l = n, Mn,n = 1/(2n − 1)2 .

If r > 1, l > 1, Ml,r = (α∗)r
1− (α∗)r

(1− α∗)l
1− (1− α∗)l where α

∗

is the only solution in]0; 1[of

rαr+1 − l(1− α)l+1 − (r + l)α+ r = 0 .

Consequence on the concealment of targeting
From our analysis important observations arise: First,
when a single input is used for targeting i.e., l = 1, r =
1, we have Ml,r = 1 and the condition above is always
verified except for the trivial case where pout = pin, im-
possible by definition. This confirms that single input
targeting never can stay hidden from all transparency
tests. However, all other forms of targeting that lever-
age multiple inputs stand sharply in contrast. Indeed
any function whose core family is not a single input ex-
hibits a non-trivial undetected targeting lift: it can in
practice discriminate users to some extent without be-
ing detected by any of the tests known. Note that, in
practice, a web transparency tool can restrict itself to
test a few assumptions on carefully selected inputs, and
it may in some cases detect their use, but it becomes
a very different task as no method is shown to work in
general.

It is particularly informative to see how this un-
detected targeting lift grows with the complexity of the
formula used. Figure 2 presents the value of the function
ϕl,r that defines it (it is drawn up to a change of vari-
able to make it easier to read). As proved in the lemma
and shown in the Figure, if the targeting solely uses dis-
junction (resp. conjunction) of inputs, i.e., r = 1 (resp.
l = 1) as shown in Figure 2 (left), the targeting lift be-
haves as 1/l and hence it is polynomial. This polynomial
expansion remains if l grows while r remains small. The
proof is omitted but Figure 2 (middle) presents an ex-
ample. In contrast, when l and r grow simultaneously,
e.g., if they are equal as shown in Figure 2 (right) one

can show that targeting lift can be exponential and un-
detected. While this demonstrate the hardness of web-
transparency, we note that such forms of complex tar-
geting combining so many inputs to decide may be rel-
atively rare in practice.

Limits of web transparency for simpler tests
We present in Figure 3 along with other conditions
the condition that allows our linear identification algo-
rithm to be correct, i.e., ϕ̂(k)

l,r with k = 1,for the case
l = r = 2. It illustrates some important observations:
First, the conditions to apply the linear identification
algorithm are more restricted (In this case, the target-
ing lift must be approximately 10 times larger). This
points to another qualitative interesting insight: There
exist instances of targeting for which a linear algorithm
may be able to detect them without necessarily being
able to completely identify them.

5.2 Simulations Targeting lift in large
scale systems

Synthetic Experiments Both the Bayesian algorithm
from [11] and the greedy algorithms here have several
parameters upon which the accuracy of their predictions
depends. While the XRay paper presents sufficient con-
ditions for the success of the bayesian algorithm, the
performance of the algorithm outside these conditions
is not well understood. For the greedy algorithm, no
such conditions are known. While there are known op-
timization methods for computing the ideal parameters
for these algorithms, these methods rely critically on the
availability of ground-truth data. For many important
systems, this data is unlikely to ever be made available
to anybody outside the proprietor. Thus, in the inter-
est of measuring the boundaries and limiting conditions
for these algorithms, as well as determining their effi-
cacy beyond the theoretical guarantees provided in their
definitions, we have measured their accuracy through a
series of experiments that simulate our model of on-
line interactions. These findings are intended to provide
guidelines for what can and cannot be done, and to in-
form on the cost associated to particular endeavors.

Experimental Setup We will analyze four algo-
rithms. The Exhaustive Detection Algorithm, the Ex-
haustive Identification Algorithm, and a pair of Greedy
Detection/Identifcation Algorithms. The core compo-
nents of the exhaustive algorithms are Proposition 1
and Proposition 2 from [11] respectively. All of these al-
gorithms can roughly be divided into a collection phase
and a computation phase.

Can Web Transparency Tools Cope with Complex Targeting? 13

0.0001

0.001

0.01

0.1

0 0.2 0.4 0.6 0.8 1

l = 2

l = 5
l = 10

l = 100

0 0.2 0.4 0.6 0.8 1

l = 2

l = 5

l = 10
l = 50

0 0.2 0.4 0.6 0.8 1

l = r = 2

l = r = 3

l = r = 4
l = r = 5

l = r = 6

Fig. 2. Value of ϕl,r as a function of 1− α for r = 1 (left), r = 2 (middle) and r = l (right).

0.001

0.01

0.1

0 0.2 0.4 0.6 0.8 1

Det,Id: N/A

Det: O(N l)
Id: O(N l+r)

Det: O(N)
Id: O(N l+r)

Det,Id: O(N)

ϕ2,2(z)
ϕ̂

(gr)
2,2 (z)
Eq.(2)
ϕ̂1

2,2(z)

Fig. 3. Comparing the detection/identification region of various
algorithms for l = r = 2.

During the collection phase, we take a pool of N
emails and create m accounts. Each account contains
each email with independent probability α. These ac-
counts are then exposed to the targeting system and
allowed to collect ads. In lieu of an actual target-
ing system, our synthetic experiments simulate the ad-
targeting algorithm with a boolean stochastic targeting
function TC . This function has an underlying core fam-
ily C. In the noiseless case, TC(A) is true if and only
if A matches C. In order to simulate untargeted ads,
we have a special function T∅ which randomly targets
an account with fixed probability β. For our synthetic
experiments, we have used β = 0.5.

During the computation phase, our algorithm no
longer has access to TC , and only sees body of ads which
have been targeted by TC . This mirrors the state of
available information that is available to the researcher
when attempting to test the targeting properties of a
particular system. In this phase, an identification al-
gorithm is required to produce a core family C ′ that
matches C with high probability. For detection, we are
merely required to produce a bit which matches, with
high probability, the truth value of “C 6= ∅”.

Our model admits two noise rates, each affecting the
negative and positive instances of TC , respectively. If A
matches C, then TC(A) will be positive with probability
pin, otherwise, TC(A) will be positive with probability
pout. We will generally be interested in symmetric noise,
where there is a certain noise value η, such that pout = η

and pin = 1− η. For this type of noise, the targeting lift
τ is given by τ = pout/pin = η/(1− η).

To measure the success of an algorithm, we indepen-
dently evaluate its performance in both targeted and
untargeted scenarios, producing measures for targeted
accuracy at and untargeted accuracy au. In any applica-
tion, the actual accuracy of the algorithm will be given
by areal = pat + (1 − p)au, where p is the prevalence
of targeted ads. However, since this parameter p is un-
known to us a priori, and indeed may differ for each ad,
we will assume it is chosen by an adversary who wishes
to minimize our total accuracy. This provides us with
a unified accuracy measure which we call min-accuracy
am, which provides a lower bound for areal and is equiv-
alent to am = min{at, au}.

For each algorithm under consideration, our pri-
mary interest is to find the maximum value of τ that
can be tolerated, such that with a proper setting of the
other parameters, we can still achieve a min-accuracy of
99%. We know that the optimal value for α is the one
that guarantees P [TC(A)] = 0.5 over a random choice of
A. With sufficient information about the targeting func-
tion, this value can be determined algebraically. The
proper value for x can then be found through a sim-
ple optimization procedure. First note that for all al-
gorithms under consideration, at is monotonically de-
creasing in x, while au is monotonically increasing with
x. Further note that au is totally independent of τ , while
at is monotonically decreasing in τ Thus, it suffices to
find the smallest value of x such that au > 99% when
τ = 0, which can be achieved via binary search. We may

Can Web Transparency Tools Cope with Complex Targeting? 14

then use this value of x and find the maximum value of
τ that will still guarantee at > 99%, also via binary
search. Per our prior observations, we know that this
combination of α, x and τ will achieve am > 99%.

Experimental Results
In Fig. 4(left) we may observe that the greedy al-

gorithm is noise-tolerant, even for relatively high levels
of τ . Noise-tolerance decays almost linearly, even as N
increases exponentially, indicating a logarithmic depen-
dence on N . Furthermore, we may note that while for
L = 1 the difficulty of identification and detection are
comparable, as L increases the cost of precise identifi-
cation of the targeting function becomes steeper, and
the decrease in noise-tolerance for increasing values of
N is more pronounced. This suggests for very complex
targeting, only detection is possible when noise levels
are expected to be high and accounts are limited or the
inputs under consideration are abundant.

Given the high cost associated with obtaining new
accounts, and the deliberate barriers placed by con-
tent providers on automation of this task, the num-
ber of available accounts is often the limiting reagent
in targeting inversion problems. Observing Fig. 4(mid-
dle), we note that accuracy can be boosted significantly
by allowing ourselves access to a greater number of ac-
counts. This allows the greedy algorithm to attain a
noise-tolerance level much greater than the theoretical
bound. Moreover, as we can see in Fig. 4(right), the
greedy algorithm can very nearly approximate the noise
tolerance of the optimal exhaustive search procedure.

These results highlight the importance of the greedy
algorithm, which can be seen as applying the well-known
greedy heuristic to solve a version of the optimal set
cover problem. In particular, the algorithm achieves
high noise-tolerance, approximates the exhaustive algo-
rithm when l and r are small, and reduces the computa-
tions from an polynomial function using l and r to a lin-
ear one. For extremely large values of N , such as those
often encountered in practice, the greedy algorithm is
the only computationally tractable option.

5.3 An application: The price of opacity

We specified the theoretical limits to targeting detec-
tion. However, to complete the picture one must won-
der whether it is economically feasible for an advertiser
to conceal her targeting. To answer this question, we
introduce a simplistic ad purchase model, in which the
advertiser has to pay a fixed cost C > 0 for every ac-
count receiving the ad and she gains on average a fixed

positive revenue R > C for each active account within
her scope which encompasses a fraction q of the users.
We assume that through various bids, this advertiser
controls the values of pin, pout that users experience.

In case the advertiser is fully transparent, she can
minimize the cost of her targeting campaign simply
by setting pout to 0. She would then potentially earn
pinq(R − C) during that campaign. However, if she
wishes to keep her advertising method concealed from
transparency tools, she needs to increase pout at least
to pin ·Ml,r. We immediately deduce that her cost in-
creases by pout(1− q)C = pin ·Ml,r(1− q)C. It is hence
multiplied by a factor (1 +Ml,r

1−q
q), which denotes the

Price of Opacity. As an example, for l = 2, r = 2 and
q = 0.05, an advertiser already spent three times more
on advertising just to avoid detection, and this price is
particularly damaging when the target is small. To re-
main opaque she loses at least a fraction 1−q

q
C

R−C ·Ml,r

of her revenue. A necessary condition for the advertiser
to remain profitable is that 1−q

q
C

R−C ·Ml,r < 1. Note
that, with the exception of l and r, these parameters
are not set by the advertisers.

In face of the above result, an advertiser might be
tempted to decrease her targeting scope artifically so
that a small value of pout is enough to avoid detection.
Formally, such an attack consists in replacing the core
family of her targeting function by another one with
larger dimensions l′ > l, r′ > r. Our preliminary anal-
ysis (omitted due to lack of space) shows that the de-
crease in pout is offset by the opportunity loss of be-
ing too restricted in the definition of the target. It can
quickly become economically unviable, especially when
fixed costs are present. The analysis of this attack and
how to best cope with it remains beyond the scope of
our work.

6 Related Work
Our formulation resembles identification of monotone
DNF formulae from an oracle (e.g., see [2, 3, 19]) and
more generally the theory of formal learning. How-
ever, it is quite distinct for three main reasons: First,
and most importantly, we only care about proper exact
learning, by which an algorithm is required not to pro-
duce an function closely approximating the monotone
formula (as in [5, 19]), but to compute an exact repre-
sentation of the formula itself. Second, previous proper
exact learning techniques make adaptive queries [2, 3],
which is impractical as typically web transparency in-

Can Web Transparency Tools Cope with Complex Targeting? 15

Fig. 4. Greedy Algorithms: Identification vs. Detection (left) using increasing accounts (middle) compares with exhaustive (right).

volves a large data collection that take significant time.
Our algorithm in contrast makes non-adaptive queries:
the set of combination to test is fixed and data are col-
lected prior to any steps of the algorithm. Finally, since
each query is resource intensive, we require the number
of queries to grows as a logarithm of the number of vari-
ables. We are not aware of any previous algorithm – or
extension of previously known techniques – that can fit
all of these stringent conditions.

Another parameter of learning model often intro-
duced is the VC dimension. However, in the case we
study, it grows linearly2 with N . This makes such algo-
rithms impractical in this case.

Our work relates to recent efforts to measure var-
ious forms of personalization [7, 15, 20, 22]. They aim
to quantify how much output is personalized and what
type of information is used overall. In contrast, we seek
to analyze fine-grained diagnosis of which combinations
of data inputs generate which personalized results. Our
analyses of scaling properties and tradeoffs are unique
in the personalization literature.

Closest to our work are XRay [11] and AdFisher [6]
– to our knowledge the very first two systems that fit
in the emerging vision of data use transparency (de-
scribed in Section 2). XRay aims to meet all the scala-
bility, accuracy, and broad applicability requirements of
web transparency, however the tool it currently provides
lacks support for combinations – uniquely addressed in
this paper through three new algorithms. We hope this
can remove a critical roadblock to achieving any or all
of these properties in practice. AdFisher aims to meet
the accuracy and in some respect the broad applicabil-
ity requirements, but does not consider scaling as a core
requirement. This paper uniquely considers the theoret-

2 Indeed, if the targeting only depends on at most k inputs, then
it is easy to prove that the N − k inputs of which the function f
does not depend on form a set that is shattered by the function.
Hence the VC dimension of f is at least N − k in such case

ical underpinnings of tools that aim to support all three
requirements at once. We believe that support for linear
combinations of inputs is a crucial step toward achieving
those requirements.

7 Conclusion
Web transparency – a nascent and critical field to de-
ploy big data while protecting us against its abuse –
poses brand new challenge to the analysis of person-
alization algorithms. By providing the first theoretical
analysis of web transparency for general targeting func-
tions, and the promise of simple random algorithms, we
show that web transparency can indeed be successful
at scale. However, our research clearly indicates that
transparency will also be governed by theoretical limits
of detection and inherent tradeoffs.

We believe that our results create many opportu-
nities for further research at the frontier of stochastic
models, distributed systems, and algorithms handling
personal data. Beyond understanding how to design ef-
ficient personalization algorithms, one hopes in addition
to decipher their operations from the outside using the
minimum number of information and operations avail-
able. Our works suggest many open problems that this
field will grow to encompass, such as new methods to
improve detection when other conditions are satisfied
by the targeting functions, a careful analysis of compu-
tational lower-bounds that could leverage information
theory, or new algorithms achieving better tradeoffs.

References
[1] A. Acquisti and C. M. Fong. An Experiment in Hiring Dis-

crimination. Available at SSRN 2031979, Apr. 2012.
[2] D. Angluin. Queries and concept learning. Machine Learn-

ing, 2(4):319–342, Apr. 1988.

Can Web Transparency Tools Cope with Complex Targeting? 16

[3] D. Angluin and D. K. Slonim. Randomly fallible teachers:
Learning monotone DNF with an incomplete membership
oracle. Machine Learning, 14(1):7–26, Jan. 1994.

[4] B. Beizer. Black-Box Testing. Techniques for Functional
Testing of Software and Systems. John Wiley & Sons, May
1995.

[5] N. H. Bshouty and C. Tamon. On the Fourier spectrum of
monotone functions. Journal of the ACM, 43(4):747–770,
July 1996.

[6] A. Datta, M. C. Tschantz, and A. Datta. Automated exper-
iments on Ad privacy settings. In Proceedings on Privacy
Enhancing Technologies, 2015.

[7] A. Hannak, P. Sapiezynski, A. M. Kakhki, B. Krishna-
murthy, D. Lazer, A. Mislove, and C. Wilson. Measuring
personalization of web search. In WWW ’13: Proceedings
of the 22nd international conference on World Wide Web.
International World Wide Web Conferences Steering Com-
mittee, May 2013.

[8] A. Hannak, G. Soeller, D. Lazer, A. Mislove, and C. Wilson.
Measuring Price Discrimination and Steering on E-commerce
Web Sites. In IMC ’15: Proceedings of the 2015 Confer-
ence on Internet Measurement Conference. ACM Request
Permissions, Nov. 2014.

[9] R. Heeks. Development 2.0: the IT-enabled transformation
of international development. Communications of the ACM,
53(4):22–24, 2010.

[10] A. Korolova. Privacy violations using microtargeted ads: A
case study. Data Mining Workshops (ICDMW), 2010 IEEE
International Conference on, pages 474–482, 2010.

[11] M. Lécuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios,
R. Spahn, A. Chaintreau, and R. Geambasu. XRay: Enhanc-
ing the Web’s Transparency with Differential Correlation.
23rd USENIX Security Symposium (USENIX Security 14),
2014.

[12] M. Lecuyer, R. Spahn, and Y. Spiliopolous. Sunlight: Fine-
grained Targeting Detection at Scale with Statistical Confi-
dence. In CCS ’15 Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications, pages 554–
566, New York, New York, USA, 2015. ACM Press.

[13] A. Majchrzak and P. H. B. More. Emergency! Web 2.0 to
the rescue! Communications of the ACM, 54(4):125, Apr.
2011.

[14] D. Merugu, B. S. Prabhakar, and N. S. Rama. An incentive
mechanism for decongesting the roads: A pilot program in
Bangalore. In Proceedings of the 2009 Workshop on Eco-
nomics of Networks, Systems, and Computation (NetEcon
’09), 2009.

[15] J. Mikians, L. Gyarmati, V. Erramilli, and N. Laoutaris. De-
tecting price and search discrimination on the internet. In
HotNets-XI: Proceedings of the 11th ACM Workshop on
Hot Topics in Networks, pages 79–84, New York, New York,
USA, Oct. 2012. ACM Request Permissions.

[16] J. Podesta, P. Pritzker, E. J. Moniz, J. Holdren, and
J. Zients. Big Data: Seizing Opportunities, Preserving Val-
ues. Executive Office of the President, pages 1–85, May
2014.

[17] A. Rial and G. Danezis. Privacy-preserving smart metering.
In WPES ’11: Proceedings of the 10th annual ACM work-
shop on Privacy in the electronic society. ACM Request
Permissions, Oct. 2011.

[18] A. Sadilek and H. Kautz. Modeling the impact of lifestyle
on health at scale. In WSDM ’13: Proceedings of the sixth
ACM international conference on Web search and data min-
ing. ACM Request Permissions, Feb. 2013.

[19] R. A. Servedio. On learning monotone DNF under product
distributions. Information and Computation, 193(1):57–74,
Aug. 2004.

[20] L. Sweeney. Discrimination in online ad delivery. Communi-
cations of the ACM, 56(5):44–54, May 2013.

[21] X. Wang, M. S. Gerber, and D. E. Brown. Automatic crime
prediction using events extracted from twitter posts. In
SBP’12: Proceedings of the 5th international conference
on Social Computing, Behavioral-Cultural Modeling and
Prediction. Springer-Verlag, Apr. 2012.

[22] X. Xing, W. Meng, D. Doozan, N. Feamster, W. Lee, and
A. C. Snoeren. Exposing Inconsistent Web Search Results
with Bobble. In PAM ’14: Proceedings of the Passive and
Active Measurements Conference, 2014.

8 Proofs

8.1 Proof of Lemma 1

Lemma 1. We define S(in) the set of all combinations
for which f takes value 1. Let −→Df be the digraph with
vertex-set S(in) and with arc-set

{
(C, C′)

∣∣ C (C′
}
.

We have that −→Df is a DAG because the subset-
containment relation defines a partial order. So, let S be
the non-empty set of combinations with null in-degree
in −→Df . By construction, each combination in S(in) con-
tains some combination of S and S ⊆ S(in), hence S
explains f . Furthermore, we claim that S is contained
in any family S′ explaining f : indeed, since S′ is re-
quired to contain a subset of any combination C ∈ S,
and no combination of S(in) is strictly contained in C,
then it must contain C. This shows that S satisfies all
conditions of Lemma 1. Finally, since another family
explaining f needs to include S, then it will necessarily
have a higher size l, hence S is the unique with both
minimum size and order.

8.2 Chernoff bound

Lemma 7. If Y is a sum of independent binary vari-
ables, let µ = E [Y], we have for any 0 < δ ≤ 1:

P [Y ≥ (1 + δ)µ] ≤ exp
(
− δ2µ

3

)
, and

P [Y ≤ (1− δ)µ] ≤ exp
(
− δ2µ

2

)

Can Web Transparency Tools Cope with Complex Targeting? 17

Thus, for any polynomial P , integer N and value ε > 0,

µ ≥ 3
δ2 ln

(
2P (N)
ε

)
=⇒ P [|Y − µ| ≤ δµ] ≥ 1− ε

P (N) .

8.3 Proof of Lemma 2

Lemma 2. Let us consider an arbitrary combination C
of size l. We introduce Y the variable counting how
many Bernouilli subsets C intersects, and we note that C
is an x_intersecting subset exactly if Y ≥ xm. We also
observe that Y is a sum of binary independent variables
and so, since the probability that C intersects an arbi-
trary Bernouilli subset is 1− (1−α)l, it has expectation
µ =

(
1− (1− α)l

)
m. Assuming α < 1− (1− x) 1

l as we
do, µ is multiplicatively smaller than xm. Hence we can
apply Chernoff Bound to conclude that P [Y ≥ xm] ≤

ε
P (N)N l when

m ≥ C·ln
(
N lP (N)/ε

)
with C =

3
(
1− (1− α)l

)
(
x−

(
1− (1− α)l

))2 .

Since there are
(
N
l

)
≤ N l choices of C, by the union

bound the probability that at least one of them is an
x_intersecting subset is at most ε

P (N) .

8.4 Proof of Lemma 3

Lemma 3. We introduce the set of inputs associated
with each account S1 = B1(N,α), . . . ,Sm = Bm(N,α),
and for each of them we define Yj a variable with the
following value:




1 if Sj is in target, sees the ad, and C ⊆ Sj ,
− x

1−x if Sj not in target, sees the ad, and C ⊆ Sj ,
0 otherwise

We introduce Y =
∑m

j=1 Yj , it is a sum of binary in-
dependent variables. We also note that the property of
the theorem holds exactly if Y ≥ 0. It is then sufficient
to prove that this occurs with high probability.

First by the linearity of expectation we have that:

E[Y] =
m∑

j=1

(
α|C|qCpin −

x

1− xα
|C| (1− qC) pout

)

=
(
qCpin −

x

1− x (1− qC) pout
)
α|C|m,

where qC denotes the probability for an account to be
within scope knowing that it contains C. This expec-
tation is positive as long as it holds that pout/pin <

1−x
x

qC
1−qC . Moreover, the above upper-bound is mono-

tonically increasing with qC , which is at least αr be-
cause it suffices to complete C with any combination of
the core to be within scope. As a result, it always holds
that E [Y] > 0 (with respect to our assumption about
the ratio pout/pin for the lemma).

Hence P [Y ≥ 0] ≥ 1− ε
P (N) wheneverm ≥ α−|C|·C·

ln (P (N)/ε) with C ≤ 2
αrpin

(
1− x

1− x
1− αr
αr

pout
pin

)−1

.

8.5 Proof of Proposition 1

Proposition 1. Pick α so that pout
pin

< ϕ̂
(k)
l,r (α), x arbi-

trarily close to 1 − (1 − α)k. First we prove (i) implies
(ii) cannot hold which is the easy part of the result.
Indeed, if a combination of the core is contained in C,
then any account that contains C as part of its input is
in the target S(in), hence it sees the ad with probability
pin, and this holds irrespective of all other inputs. One
deduces that ∆(ad) (C) in that case is a Bernouilli family
of expected size α|C|pinm, thus we can apply Lemma 2
if α < 1 − (1 − x)1/k, and conclude that (ii) may only
occur with small probability ε/P (N).

To show that if (i) does not hold, then (ii) does, we
define the two following subsets.

Let ∆(ad,in) (C) =
{
S ∩ C

∣∣∣ S ∈ S(ad,in) , C ⊆ S
}
,

and ∆(core) (C) =
{
S ∩ C

∣∣∣ S ∈ S(core)
}
.

Note that since no combination of the core family is
included in C, no element of ∆(core) (C) is empty. Fur-
thermore, observe that by definition a combination in
S(ad,in) = S(ad) ∩ S(in) should contain a combination
of the core. This directly implies that a combination
in ∆(ad,in) (C) necessarily contains a combination from
∆(core) (C), which is by consequence a 1_intersecting
family of ∆(ad,in) (C).

We can apply Lemma 3 not using x but (l/k) · x,
as Eq.(3) ensures the condition of the lemma is satisfied
for this value and α. This shows that with probability at
least (1− ε/P (N)), |∆(ad,in) (C) |/|∆(ad) (C) | ≥ (l/k) ·x.

The family ∆(core) (C) contains at most l elements,
and it intersects all combinations in ∆(ad,in) (C). More-
over:

∀(Xi)Ii=1 , max
i1,...,ia

|Xi1 ∪ . . . ∪Xia | ≥
a

I

∣∣∣∣∣
I⋃

i=1
Xi

∣∣∣∣∣ .

Hence there exists a subset of k ≤ l combinations chosen
in ∆(core) (C) that collectively intersect at least (k/l) ·

Can Web Transparency Tools Cope with Complex Targeting? 18

|∆(ad,in) (C) | elements. It is hence an x_intersecting
family of ∆(ad) (C) with probability (1−ε/P (N)), prov-
ing (ii).

8.6 Proof of Lemma 4

Lemma 4. The expected size of ∆(ad) (C) is α|C|qCm
with

qC = P
[
Bj(N,α) ∈ S(in)

∣∣∣ C ∈ Bj(N,α)
]
≥ αr .

Hence by Chernoff bound there exists C0 such that
whenever m ≥ α−|C| · C0 · log P (N)

ε , with high proba-
bility we have |∆(ad) (C) | ≥ α|C|qCm/2. If we constrain
all combinations of ∆(ad) (C) to the N ′ < N data in-
puts that are not part of

⋃
S∈S(core) S, we thus obtain

a random Bernouilli family of large size ≥ α|C|qCm/2
with parameters N ′, α. Assuming α < 1 − (1 − x)1/k,
this family does not admit an x_intersecting subset of
size ≤ k w.h.p. by Lemma 2, hence no combination in
Sx,k can be fully contained into it.

Moreover if it holds that pout
pin

< supα ϕ̂
(k)
l,r (α), then

by the proof of Proposition 1 there is an x_intersecting
family composed of ≤ k combinations from ∆(core) (C),
hence w.h.p. there are ≤ k combinations from S(core)

fully contained in C ∪ (
⋃
S∈Sx,k

S).

8.7 Proof of Proposition 2

Proposition 2. We will prove the proposition by induc-
tion on the size s ≤ l of the core family. If s = 0, then we
are done as by Proposition 1 we have w.h.p. that {Di |
|{Aj∈S(ad)|Di∈Aj}|

|S(ad)| ≥ x} = ∅ whenever m ≥ C0 · log P (N)
ε ,

for some constant C0.

Suppose by the induction hypothesis that for all 0 ≤
s′ ≤ s − 1, there exists a constant Cs′ such that GSI
is correct w.h.p. whenever m ≥ Cs′ · log P (N)

ε and the
core family has size s′. Let S(core) be of size s. By the di-
chotomy result from Proposition 1, there is C ′ such that
S = {Di | |{Aj∈S(ad)|Di∈Aj}|

|S(ad)| ≥ x} 6= ∅ w.h.p. whenever
m ≥ C ′ · log P (N)

ε . Furthermore by Lemma 4, this set
contains a combination from the core family. GSI iter-
ates over the data inputs Di ∈ S, it removes each tem-
porarily and it applies the recognition test from Prop.1
to decide whether S \ Di is within target. If so, then
it still contains a combination of the core family and
we can delete Di from S permanently. Else, the data
input Di is critical i.e., , it intersects all combinations
of S(core) contained into S, and we put is back in S. As

a result, the remaining data inputs in S at the end of
the iteration are a combination from S(core) that we will
denote by C in the following.

Let Di ∈ C be fixed, and let Ai be the active ac-
counts amongst those in the random Bernouilli sub-
family Bi, defined as all the Bj(N,α) not containing
this data input. Note that Bi has size (1 − α)m on ex-
pectation, and that f constrained to Bi is equivalent
to the targeting function fi whose core family is Si =
S(core)\{S | Di ∈ S}. Thus by the induction hypothesis,
there is Csi , with si = |Si|, such that w.h.p. the output
of the recursive call GSI(S(ad) \ {Aj | Di ∈ Aj}, x) is
exactly the core subfamily Si if |Bi| ≥ Csi · log P (N)

ε .
Furthermore, there is Ci such that |Bi| ≥ (1 − α)m/2
w.h.p. if m ≥ Ci · log P (N)

ε .
Consequently, the output of the algorithm is with

high probability {C} ∪ (
⋃
Di∈C Si) if m ≥ Cs · log P (N)

ε ,
with

Cs ≥ max{C ′}∪{Ci | Di ∈ C}∪{2Csi(1−α)−1 | Di ∈ C}.

This concludes the proof because S(core) = {C} ∪
(
⋃
Di∈C Si) by the monotonicity assumption.

8.8 Proof of Lemma 5

Lemma 5. Given any fixed subset D of data inputs, we
can compute in O(|S(ad)|+∑k

j=1 |Aj |) = O(N · |S(ad)|)-
time the set of accounts {Aj ∈ A | D ⊆ Aj} and
so, {D′i /∈ D | |{Aj∈A|D∪{D′i}⊆Aj}|

|{Aj∈A|D⊆Aj}| ≥ x}. As a result,
Lines 1-7 (til the first for-loop) can be executed in
O(|C| · N · |S(ad)|) = O(|I| · N |S(ad)|)-time. Moreover,
at each step of the second for-loop it holds that S, Si
are subsets of P(I) and so, the merge S∪Si can be exe-
cuted in O(|I|2|I|)-time. Let us finally denote by TI an
upper-bound on the computational cost of any recursive
call to the algorithm.

We have that GSI can be executed in O(|I| ·
(N · |S(ad)| + |I|2|I| + TI))-time. By induc-
tion, the time-complexity is O(|I|! · N · |S(ad)| +
|I|−1∑

j=1

|I|!
(|I| − j)! (|I| − j + 1)2|I|−j+1

︸ ︷︷ ︸
Γ(|I|)

).

This concludes the proof as we have:

Γ(|I|) =
|I|−1∑

j=1

|I|!
j! (j + 1)2j+1 ≤ 2 ·

|I|!
[∞∑

j=0
(j + 1)2j

j!

]
≤ 6e2 · |I|!

Can Web Transparency Tools Cope with Complex Targeting? 19

8.9 Proof of Proposition 3

Proposition 3. Let S(core) = {Di | ∃C ∈
S(core) s.t. Di ∈ C}, and let S = {Di |
|{Aj∈S(ad)|Di∈Aj}|

|S(ad)| ≥ x}. By Lemma 4, there is C ′ such
that ∀ε > 0, for all polynomial P , we have S ⊆ S(core)

with probability 1 − ε
P (N) whenever m ≥ C ′ · log P (N)

ε .
Applying this argument recursively, we obtain that the
depth of the recursive calls is upper-bounded by lr

and so, that we also have I ⊆ S(core) with probability
1− ε

P (N) whenever m ≥ C ′(1−α)−lr · log P (N)
ε . In such

case, our set-intersection algorithm can be implemented
to run in O(|I|! · N · |S(ad)|) = O ((lr)! ·Nm)-time by
Lemma 5.

The expected running-time is therefore upper-
bounded by an O

([(
1− ε

P (N)

)
(lr)! + ε

P (N)N !
]
Nm

)
.

By setting ε
P (N) = 1

N ! , we conclude that it is
O ((lr)! ·Nm) whenever m = Ω (N logN).

8.10 Proof of Lemma 6

Lemma 6. When l = 1 one can easily see that ϕ1,r is
strictly increasing on this interval and computes its limit
as x approaches 1. A similar argument holds for r = 1.

Whenever r > 1 and l > 1, introducing the new
variable z = (1− x)1/l we first observe:

ϕl,r(z) = fl(z) · fr(1− z) , where fn(z) = zn

1− zn .

This symmetry immediately implies that Ml,r = Mr,l.
Note that the form of the function also directly yields
that

Mmax(l,r),max(l,r) ≤Ml,r ≤Mmin(l,r),min(l,r) .

We have ϕ′l,r(z) = f ′l (z) ·fr(1− z)−fl(z) ·f ′r(1− z),
and observe that this derivative becomes null whenever
we have f ′l (z)/fl(z) = f ′r(1− z)/fr(1− z). Moreover, it
holds that

f ′n(z) = − lzn−1

(1− zn)2 hence f ′n(z)/fn(z) = n

z(1− zn)

so that the condition is l
z(1−zl) = r

(1−z)(1−(1−z)r) which
yields the value of z reaching the maximum.

To conclude, we just need to observe that there is
a unique solution in]0; 1[. We can immediately observe,
when r > 1 and l > 1 that the product fl(z) · fr(1− z)
has null limits on both sides, and a derivative that is
positive near 0+ and 1−. Since its third derivative is
strictly positive, its second derivative increases and can

only be null once. We deduce that the derivative cannot
cancel twice between 0 and 1 since it would create two
inflection points.

Finally, when r = l = n, since the product is sym-
metric in z and it has a unique maximum on]0; 1[it has
to be in z = 1

2 which yields the result.

Appendix N

A theory for ad targeting
identification

A theory for ad targeting identification

Abstract

The problem of learning juntas has been studied under different notions of learning. We here study
a new model, where the goal is “exact” learning (with high probability) of a given Boolean function
with membership queries. The main novelty in the model is that queries are subject to asymmetric
classification noise and limited cross-unit effects. Furthermore, it extends (and is inspired by) the theory
behind two already well established web transparency tools. Such tools aim to put emphasis on any form
of misuse of our personal data by the institutions and companies on-line. However, they have so far
accounted only for targeting on a monotone function, with the constrictive assumption that users are
targeted independently the one from the other. In contrast with prior work, we prove that any function
can be learnt in this extended model — conditioned on one assumption about the noise, that will be
proved to be necessary. More precisely, we show that for any k, the function can be learnt in NO(k)-time
and polylog(N) queries with k-juntas as hypotheses. Our algorithms build upon some variation of a
known greedy heuristic which reduces to Set Cover in order to infer the relevant variables. Finally, we
show that there is a given (monotone) 2-junta which cannot be learnt within our model when it is made
no assumption about the noise.

Keywords: web transparency; negative targeting; cross-unit effect; exact learning; juntas.

1 The model

1.1 Targeting functions

Our problem formulation extends the one in [7]. So, in particular, it differs from (but can be easily shown to be
equivalent to) standard terminology in the literature of Boolean function learning. LetD = {D1, D2, . . . , DN}
be a set of N inputs representing individual information from a given user (typically, emails in an account,
see also [4]). Our main objective is to identify how these inputs affect a given output of interest (say, an ad
or a recommendation).

In order to achieve the goal, we here assume that each output is affected through an unknown targeting function
foutput, that we simply denote by f in the following. More precisely, let any C ⊆ D be called a combination.
The targeting function f is a mapping from the family of all combinations to the Boolean set {0; 1}. By
convention, f(C) = 1 indicates that an account exactly containing the inputs in C is targeted, and we denote
f(.) = 0 if the ad is untargeted. In particular unlike [5], we do not assume here that f is monotone (i.e.,
f(C) = 1 and C ⊆ C′ 6=⇒ f(C′) = 1). Hence, the targeting function f can be any Boolean formula with a
subset of D as its variables. However in practice, we assume that f only depends on a small number k of
inputs, with k being a universal constant. Such targeting functions are called k-juntas in the literature [3].
We are particularly interested in how the value of k affects the complexity of the targeting detection and
identification problems, i.e., what is their parameterized complexity ?

In this note, we adopt the classical approach in order to learn the targeting function f , that is, we seek
to learn the class S(in) of all combinations C such that f(C) = 1.

1

1.2 Outcome properties

In order to learn the targeting function, we are bound to rely on experiments — to see how it reacts to
various inputs. For instance, in [7] these experiments consist in collecting the ads for Gmail accounts with
different subsets of emails. We model this as an oracle from function learning theory [1], denoted by Of .
Formally, Of is a membership oracle with (asymmetric) classification noise. That is, it outputs the Boolean
f(C) for any combination C with some probability to flip the result. Unlike prior work [2], we do not assume
the classification noise to be symmetric, i.e., the oracle may flip the result with some propability depending
on the combination. Nonetheless, we will assume a few properties for the noise distribution. To our best
knowledge, the following assumptions that are made on this probability have not been studied before in the
literature.

Histories. Experiments in [9] have evidenced that the noise distribution is subject to cross-unit effects.
So, in order to handle with these correlations, we find it more suitable to generalize our oracle Of so that
it can take families of combinations as inputs. More precisely, let a family be any vector of combinations,
denoted by F = 〈A1, A2, . . . , At〉. The outcome Of (F) is simply defined as the binary vector Of (F) =
〈Of (A1),Of (A2), . . . ,Of (At)〉. Furthermore, let the pair HF = (F ;Of (F)) be the history of f .

As usual, let F−i = 〈A1, . . . , Ai−1, Ai+1, . . . , At〉. We will assume that each individual outcome Of (Ai)
may be correlated to the partial history HF−i

. However, it may and must be the case that some natural
properties hold independently from any history, that we now detail as follows:

Assumption 1 (targeting lift). There exists a universal constant ϕ ∈]0; 1[, called the targeting lift and such
that for any C0, C1 with f(C0) = 0, f(C1) = 1:

Pr[Of (Ai) = 1 | Ai = C0,HF−i] < ϕ · Pr[Of (Ai) | Ai = C1,HF−i].

Assumption 1 is local and it simply ensures that it is more likely for Of to output 1 on accounts Ai
within scope, that is, for which f(Ai) = 1. In particular, it implies that the targeting function f is related
to the outcome we study. Note that a similar assumption was made in [5, 7], but in the less realistic case
when no cross-unit effect occurs, and so, each account is targeted independently. However, the following
two global assumptions are new (if there is no cross-unit effect then they can be proven to be true by using
standard concentration inequalities and independence, see [7]).

Assumption 2 (polynomial-growth). There exist positive universal constant α, β, γ with α ≤ 1 and such
that:

Pr[
t∑

i=1

Of (Ai) <
(
β · |F ∩ S(in)|α

)
] ≤ e−γ·t

We properly state with Assumption 2 that there must be a significant fraction of the account population
within scope being targeted, except on some small event with low probability like, for instance, when the
targeting campaign runs out of budget. Note that in [5], it was assumed that there is some minimum constant
probability pin for an account within scope to be targeted, so, Assumption 2 was satisfied for α = 1. By
considering the case α ≤ 1, we may consider the case when this minimum probability slowly tends to zero,
say, pin ∼ po/ logO(1)(N) where p0 is a constant. This case was observed to happen in practice [7].

Assumption 3 (noninterference). Let the targeting function f only depend on inputs in V ⊆ D. Further-
more, let A′i = Ai ∩ V and let F ′ = 〈A′1, . . . , A′t〉.

Pr[Of (F)] = Pr[Of (F ′)].

Finally, we formalize with Assumption 3 that none of the input that does not affect the targeting can
impact on the outcome.

2

1.3 Experiments and random families

The model in Section 1.2 supports adaptive queries. However in practice, the methodologies for web trans-
parency [9] recommend to use so-called “exchangeable” accounts in the experiments. In particular, one
experimental design used in practice [4, 7] is to populate each account randomly so that an input indepen-
dently appears with same probability — that will be taken equal to 1/2 in the remaining of the paper. So,
we will constrain our queries on pairwise independent random accounts in the following. We will name a
random Bernouilli family any family of such random accounts.

2 Preliminaries

Prior work [5, 7] has made extensive use of concentration inequalities in the analysis of the algorithms, i.e.,
Chernoff bounds. Standard bounds apply to the sum of independent variables, so, they cannot be used in
our setting directly. The following is a tedious (but classical) analysis where we show how to adapt Chernoff
bounds to our needs.

Lemma 1. Let X1, . . . , Xm be random Boolean variables satisfying:

pmin ≤ Pr[Xi = 1 | X1, . . . , Xi−1] ≤ pmax

for some constant pmin, pmax. Then the following hold for any 0 < δ < 1:

Pr[
m∑

i=1

Xi ≥ (1 + δ) · pmax ·m] ≤ e−δ2mpmax/3

Pr[
m∑

i=1

Xi ≤ (1− δ) · pmin ·m] ≤ e−δ2mpmin/2

Proof. By symmetry, we will only consider the first inequality. Let t > 0. Let us show that:

E[Πm
i=1e

t·Xi] ≤
(
pmax(et − 1) + 1

)m
.

The proof is by induction. By the hypothesis,

E[et·Xm | X1, . . . , Xm−1] = et ·Pr[Xm = 1 | X1, . . . , Xm−1]+1·Pr[Xm = 0 | X1, . . . , Xm−1] ≤ pmax(et−1)+1,

that is the base case. Suppose for the induction hypothesis that:

E[Πm
j=i+1e

t·Xj | X1, . . . , Xi] ≤
(
pmax(et − 1) + 1

)m−i
.

Then by the law of total probability:

E[Πm
j=ie

t·Xj | X1, . . . , Xi−1] = et · Pr[Xi = 1 | X1, . . . , Xi−1] · E[Πm
j=i+1e

t·Xj | X1, . . . , Xi−1, Xi = 1]

+ 1 · Pr[Xi = 0 | X1, . . . , Xi−1] · E[Πm
j=i+1e

t·Xj | X1, . . . , Xi−1, Xi = 0]

≤
(
Pr[Xi = 1 | X1, . . . , Xi−1] · (et − 1) + 1

)
·
(
pmax(et − 1) + 1

)m−i ≤
(
pmax(et − 1) + 1

)m−i+1
,

which proves the induction hypothesis. The remaining of the proof is now classical computation of Chernoff
Bound. By Markoff inequality:

Pr[
m∑

i=1

Xi ≥ (1 + δ) · pmax ·m] = Pr[et·
∑m

i=1Xi ≥ et·(1+δ)·pmax·m] ≤ E[et·
∑m

i=1Xi]/et·(1+δ)·pmax·m

= e−t·(1+δ)·pmax·m · E[Πm
i=1e

t·Xi] ≤ e−t·(1+δ)·pmax·m ·
(
pmax(et − 1) + 1

)m

≤ e−t·(1+δ)·pmax·m · epmax(e
t−1)·m = epmax·m·(et−1−t·(1+δ))

3

Finally, set t = ln(1 + δ). One obtains:

Pr[
m∑

i=1

Xi ≥ (1 + δ) · pmax ·m] ≤
(

eδ

(1 + δ)1+δ

)mpmax

≤ e−δ2mpmax/3.

3 Building block algorithm: the case k=1

We first describe a simple algorithm with 1-juntas as hypotheses. A simpler variation of the following
Algorithm 1 is the core algorithm of the Xray prototype [7]. Here, we extend the algorithm to the case of
negative targeting, and we prove its correctness under our more general assumptions.

Input: a family F ; threshold parameters x, y.
Output: intersecting families Sx, Sy.

Sx ← {Dj ∈ D | Dj appears in ≥ x · |F| accounts in F} ;
Sy ← {Dj ∈ D | Dj appears in ≤ y · |F| accounts in F} ;

Algorithm 1: Set-intersection algorithm.

The reader may observe that Algorithm 1 requires two parameters x, y as inputs. For simplicity, we will
assume that a good estimate on the targeting lift (Assumption 1) is given, and we will show in the following
that the latter information is enough in order to tune x, y. Nonetheless, we point out that finding these two
parameters in practice may be cumbersome. We refer the reader to [6, 7] for experimental and theoretical
methods in order to tune x, y.

Lemma 2. Fix any polynomial P . Let B be a random Bernouilli family. There is a constant ax,y such that
if y < 1/2 < x, F contains the targeted accounts in B and has size |F| ≥ ax,y · log (2 · P (N) ·N/ε), then the
following holds with probability ≥ 1− ε/P (N): the targeting function f depends on any input in Sx or Sy.

Proof. Set ax,y = 6
(min{1−2y,2x−1})2 . We will identify ≤ N events so that, if it is the case that f does not

depend on some input in Sx ∪ Sy, then one of these events must fail. So, in order to prove the lemma, we
will prove that each event fails with probability ≤ ε/(P (N) ·N) — in which case, it is easy to conclude by
taking a union bound.

Before this, we claim that every input Dj of which the targeting function f does not depend on appears
in the combinations of F independently and with probability 1/2. Our proof is combinatorial. Let I ⊆
{1, . . . , |B|} be fixed. The set I will denote the indices of combinations Ai ∈ B that are targeted, i.e.,
Of (Ai) = 1 if and only if i ∈ I. For any i ∈ I, let Xi be the random Boolean variable denoting whether
Dj ∈ Ai. In order to prove the claim, we must prove that variables Xi are mutually independent. So, let
J ⊂ I and i ∈ I \ J . Let us fix Xq for every q ∈ J . Finally, consider the set ΩJ of all histories (B,OI)
satisfying: OI is the binary vector with its nonzero entries indexed by I, and for every q ∈ J , Dj ∈ Aq if
and only if Xq = 1. Since hi : 〈A1, . . . , Ai−1, Ai, Ai+1, . . . , A|B|〉 → 〈A1, . . . , Ai−1, Ai∆{Dj}, Ai+1, . . . , A|B|〉
is one-to-one, there is half of the histories in ΩJ that satisfy Xi. Furthermore, since f does not depend
on Dj , for any (B,OI) ∈ ΩJ , Pr[Of (B) = OI] = Pr[Of (hi(B)) = OI] by Assumption 3. As a result,
Pr[Xi | Xq1 , . . . , Xq|J|] = 1/2, with J = {q1, . . . , q|J|}, that proves the claim.

Finally, for every irrelevant input Dj (there are ≤ N such inputs), since |F| is large enough we have by
Chernoff bound (applying Lemma 1 with pmin = pmax = 1/2) that with probability ≥ 1− ε/(P (N) ·N) the
irrelevant input Dj appears in a fraction y < . < x of the accounts in F .

By Lemma 2, every input detected by the Set-intersection algorithm is relevant. However, the main
drawback with the above Algorithm 1 is that it may fail in identifying all the relevant inputs for the
targeting. We now prove that Algorithm 1 can be used in order to learn the targeting function f , in the
special case when it depends on a unique input (either positively, or negatively).

4

Theorem 1. Set ϕ/(1 + ϕ) < y < 1/2 < x < 1/(1 + ϕ). Furthermore, fix any polynomial Q. Let B be a
random Bernouilli family of size |B| = m.

There is a constant bx,y such that if m ≥ bx,y ·log1/α (8 ·Q(N) ·N/ε) and F contains the targeted accounts
in B, then the following holds with probability ≥ 1− ε/Q(N):

• Sx = {Dj}, Sy = {} if f : C → I{Dj∈C};

• Sx = {}, Sy = {Dj} if f : C → I{Dj /∈C}.

Proof. Let ax,y be the constant defined in Lemma 2. Set b1 = 12, b2 = 1/γ, b3 = 4
(
ax,y

β

)1/α
, b4 =

4
(

3
β·(1−x(1+ϕ))2

)1/α
and b5 = 4

(
3ϕ2

β·(y−ϕ(1−y))2
)1/α

. Finally, set bx,y = max1≤i≤5 bi.

By symmetry we only need to consider the case when f : C → I{Dj∈C} for some fixed j. In this case, since B
is a random Bernouilli family, E[|B∩S(in)|] = |B|/2. Thus, by Chernoff bound, since m ≥ b1 · log (8 ·Q(N)/ε)
we have that |B ∩ S(in)| ≥ |B|/4 with probability ≥ 1− ε/(4 ·Q(N)). Furthermore, by Assumption 2, since
m ≥ b2 · log (8 ·Q(N)/ε) we have that |F| ≥ β · (|B ∩ S(in)|)α with probability ≥ 1− ε/(4 ·Q(N)).

First, let us show that irrelevant inputs can be ignored. Since we can assume that |F| ≥ β · (b3/4)α ·
log (8 ·Q(N) ·N/ε), it follows that |F| ≥ ax,y · log (8 ·Q(N) ·N/ε) with probability ≥ 1 − ε/(2 · Q(N)).
Furthermore, setting P (N) = 4 ·Q(N), one obtains by Lemma 2 that with probability ≥ 1− ε/(4 ·Q(N)),
either Dj ∈ Sx or Sx = ∅, similarly either Dj ∈ Sy or Sy = ∅.

Second, let F = 〈Ai1 , . . . , Ait〉. Define Xl to be the random Boolean variable denoting whether Dj ∈
Ail . We will prove that Pr[Xl = 1 | X1, . . . , Xl−1] ≥ 1/(1 + ϕ). To prove it, fix I ⊆ {1, . . . , |B|}, with
|I| = t, that will represent the indices of the combinations Ail ∈ B that are within F . Let il ∈ I and
let X1, . . . , Xl−1 be fixed. Consider the set Ω of all histories (B,OI) where OI denotes the binary vector
with its nonzero entries being indexed by I and for any p < l, Dj ∈ Aip if and only if Xp = 1. Since
hl : 〈A1, . . . , Ail−1, Ail , Ail+1, . . . , Am〉 → 〈A1, . . . , Ail−1, Ail∆{Dj}, Ail+1, . . . , Am〉 is one-to-one, there is
half of the histories in Ω satisfying Xl. Furthermore, for any (B,OI) satisfying Xl, by Assumption 1:

Pr[Of (B) = OI]
Pr[Of (hl(B)) = OI]

=
Pr[Of (Ail) = 1 | Dj ∈ Ail ,HB−il

= OI−il]
Pr[Of (Ail) = 1 | Dj /∈ Ail ,HB−il

= OI−il]
> 1/ϕ.

As a result, Pr[Xl = 1 | X1, . . . , Xl−1] ≥ 1/(1 + ϕ), that proves the claim. By Lemma 1 (with pmin =
1/(1 + ϕ)), since we can assume that |F| ≥ β · (b4/4)α · log (8 ·Q(N)/ε) one obtains that Dj ∈ Sx with
probability ≥ 1− ε/(4 ·Q(N)). Therefore, we can prove Theorem 1 simply by taking a union bound.

4 Application: targeting identification

Equipped with Algorithm 1, we will show how it can be used as a routine in order to learn any targeting
function f with k-juntas as hypotheses. Our algorithm proceeds in two main steps. It first computes the
(at most k) relevant inputs of which f depends on, that is the dominant part of the complexity of our
algorithm (Section 4.1). Then, it guesses from these inputs the truth table of f (Section 4.2). Furthermore,
we will show that the second step requires an additional hypothesis about the noise, that will be proved to
be necessary in Section 5.

4.1 Finding the relevant inputs

The relevant inputs will be inferred by virtually “fixing” k−1 inputs from the set D. Such removal will reduce
the problem to the identification of a given 1-junta, and so, Algorithm 1 can be used. This is formalized
with Algorithm 2.

5

Input: a family F ; a lower-bound lb; threshold parameters x, y.
Output: the set of relevant inputs V .
V ← {} ;
foreach 〈Cin, Cout〉 with |Cin|+ |Cout| ≤ k − 1 do

F̂ ← {Ap ∈ F | Cin ⊆ Ap and Ap ∩ Cout = ∅} ;

if |F̂ | ≥ lb then

(Sx, Sy)← Set-intersection(F̂ ;x, y) ;

Ŝ ← (Sx ∪ Sy) \ Cin ;

V ← V ∪ Ŝ ;

end

end
Algorithm 2: Inference algorithm for the relevant inputs.

Theorem 2. Set ϕ/(1 + ϕ) < y < 1/2 < x < 1/(1 + ϕ). Furthermore, fix any polynomial R. Let B be a
random Bernouilli family of size |B| = m.

There are constant ax,y, cx,y such that if:

• f is a k-junta;

• lb = ax,y · log
(
3 · 2k ·R(N) ·Nk/ε

)
;

• m ≥ cx,y · log1/α
(
3 · k · 2k+2 ·R(N) ·Nk/ε

)
, and F contains the targeted accounts in B;

then Algorithm 2 is correct with probability ≥ 1− ε/R(N).

Proof. Let ax,y, bx,y as defined in Lemma 2 and Theorem 1. Set cx,y = 3 · 2k+2 · bx,y. Finally, let 〈Cin, Cout〉
be fixed, with |Cin|+ |Cout| ≤ k − 1.

Define B̂ ⊆ B as the family of all combinations that both contain Cin and do not intersect Cout. Let
D̂ = D \ (Cin ∪ Cout). Furthermore, let f̂(Ĉ) = f(Ĉ ∪ Cin) and Ôf (Ĉ) = Of (Ĉ ∪ Cin) for every combination

Ĉ ⊆ D̂. In order to reuse the results from Section 3, we will base on the property that Ôf “almost” behaves

like an oracle for the targeting function f̂ . That is, it satisfies Assumptions 1 and 2 (trivially), but it only

satisfies Assumption 3 partially. More precisely, if f (and not f̂) only depends on some inputs in V̂ ∪Cin∪Cout,
then Assumption 3 applies for V̂ . So, applying Lemma 2 to B̂, since lb is large enough and Ôf satisfies the

above above weaker version of Assumption 3, one obtains that f depends on any input in Ŝ with probability
≥ 1− ε/(3 · 2k−1 ·R(N) ·Nk−1). By taking a union bound over all possible pairs 〈Cin, Cout〉, it follows that
f depends on any input in V with probability ≥ 1− ε/(3 ·R(N)).

In order to complete the proof of the theorem, let Dj be any input on which f depends on. Since Dj is
relevant, there is a bipartition 〈Cin, Cout〉 of the relevant inputs from D\Dj so that f(Cin∪{Dj}) 6= f(Cin). So,

let us fix any such bipartition 〈Cin, Cout〉. In such case, f̂ is a 1-junta that only depends on Dj , furthermore

Ôf satisfies Assumption 3 for f̂ . The average size of B̂ is |B|/2k−1. So, by Chernoff bound (with δ = 1/2),

B̂ has size ≥ bx,y · log1/α
(
3 · k · 2k+2 ·R(N) ·Nk/ε

)
with probability ≥ 1− ε/(3 · k ·R(N)). In such case, by

Theorem 1, Dj is placed in Ŝ with probability ≥ 1− ε/(3 ·R(N) · k). So, by taking a union bound over the
relevant inputs, every input on which f depends on is in V with probability ≥ 1− 2ε/(3 ·R(N)).

4.2 Filtering routine

Suppose that we are given the relevant inputs for the targeting function f . In order to learn S(in), it suffices
to learn all the subsets C on these (at most k) inputs so that f(C) = 1. Intuitively, this can be achieved
by comparing any two combinations C0, C1 and testing whether containing one of these two subsets, say, C1,
increases the chance to be targeted (compared to C0). On may expect that the latter certifies f(C1) = 1 and
f(C0) = 0. Algorithm 3 (introduced next) builds upon this intuition.

6

Input: a set of inputs V ; a family F ; a threshold parameter t.
Output: the class Tk of all bipartitions 〈Cin, Cout〉 of V s.t. 〈Cin, Cout〉 ∈ S(in).
k ← |V | ;

Partition F into F1,F2, . . . ,F2k s.t.:

• ∀1 ≤ i < 2k, |Fi| ≥ |Fi+1| ;

• ∀Ap, Aq ∈ F , Ap ∩ V = Aq ∩ V ⇐⇒ Ap, Aq ∈ Fi for some i;

for i ∈ {1, . . . , 2k} do
Vi ← Ap ∩ V with Ap ∈ Fi ;

end

ilim ← min{1 ≤ i ≤ 2k | |Fi| ≥ t · |Fi+1|};
Tk ← {〈Vi, V \ Vi〉 | 1 ≤ i ≤ ilim} ;

Algorithm 3: Recognition algorithm for the targeting function.

It turns out that subtle complications occur which may prevent Algorithm 3 to be correct with high
probability. These can be best defined by introducing a new parameter, that we define next.

Definition 1. The oracle has positive variance ψ if for any family F = 〈A1, . . . , At〉 the following holds for
any C1, C′1 ∈ S(in):

Pr[Of (Ai) = 1 | Ai = C1,HF−i
] ≥ ψ · Pr[Of (Ai) = 1 | Ai = C′1,HF−i

)].

We will show in Section 5 that it is, roughly, the comparison between the positive variance and the
targeting lift (cf. Assumption 1) that determines what can be learnt within our model.

Theorem 3. Suppose that the oracle has positive variance 1 ≥ ψ > ϕ, where ϕ denotes the targeting lift.
Set 1/ψ < t < 1/ϕ, and let B be a random Bernouilli family of size m.

There is a constant dt such that if f is a k-junta that exactly depends on the k inputs in V , m ≥
dt ·log1/α

(
3 · 22k+1/ε

)
, and F contains the targeted accounts in B, then Algorithm 3 outputs f with probability

≥ 1− ε.

Proof. Set d1 = 12, d2 = 1
γ and d3 = 2k+1 ·

(
3·(1+t)2

β·(1+ϕ)·(1−tϕ)2
)1/α

, d4 = 2k+1 ·
(

3·(1+t)2
β·(1+ψ)·(tψ−1)2

)1/α
. Finally,

set dt = max1≤i≤4 di.

Fix any pair Vi, Vj ⊆ V so that f(Vi) = 1 (there are ≤ 4k such pairs). Define Bi, resp. Bj , as the
subfamily of all accounts Ap ∈ B so that Ap∩V = Vi, resp. Ap∩V = Vj . Since E[|Bi|] = |B|/2k and m = |B|
is large enough, by Chernoff bound (Lemma 1 with δ = 1/2), we have that |Bi| ≥ |B|/2k+1 with probability
1 − ε/(3 · 4k). The latter implies by Assumption 2, |Fi| ≥ β(max{d3, d4}/2k+1)α · log

(
3 · 22k+1/ε

)
with

probability ≥ 1− ε/(3 · 4k). We will show that, with high probability, |Fi| ≥ t · |Fj | if and only if f(Vj) = 0,
that will prove the theorem.

Denote by 〈Ap1 , Ap2 , . . . , Aps〉 the subfamily of all accounts in Fi ∪ Fj . Let Xl be the random Boolean
variable denoting whether Apl ∈ Fi. Fix the set of indices I of all accounts within Bi ∪Bj . Similarly, fix the
subset J ⊆ I of the s accounts within Fi ∪Fj , and fix the variables X1, X2, . . . , Xl−1. Consider the set Ω of
the histories (B,O) satisfying:

• all the entries of O that are indexed by J are nonzero (there may be other nonzero entries);

• all the entries of O that are indexed by I \ J are equal to zero;

• for every Ap ∈ B, we have that Ap ∈ Fi ∪ Fj if and only if p ∈ I;

7

• for every 1 ≤ q ≤ l − 1, Apq ∈ Fi if and only if Xq = 1.

Let hl : 〈A1, . . . , Apl−1, Apl , Apl+1, . . . , Am〉 → 〈A1, . . . , Apl−1, A
′
pl
, Apl+1, . . . , Am〉 where Apl \ V = A′pl \ V

and {Apl ∩ V,A′pl ∩ V } = {Vi, Vj}. Since (B,O) → (hl(B),O) is one-to-one, there is half of the histories in
Ω which satisfy Xl.

On the one direction, assume f(Vj) = 0. For every (B,O) ∈ Ω such that Xl is satisfied, by Assumption 1:

Pr[Of (B) = O]

Pr[Of (hl(B)) = O]
=

Pr[Of (Apl) = 1 | Apl ∩ V = Vi,HB−pl = O−pl]
Pr[Of (Apl) = 1 | Apl ∩ V = Vj ,HB−pl = O−pl]

> 1/ϕ.

As a result, Pr[Xl = 1 | X1, . . . , Xl−1] ≥ 1/(1 + ϕ) > t/(1 + t). By Lemma 1 (with pmin = 1/(1 + ϕ)), since
|Fi| ≤ |Fi|+ |Fj | is large enough, we have that that |Fi| ≥ t

1+t · (|Fi|+ |Fj |) with probability ≥ 1−ε/(3 ·4k),
and so, |Fi| ≥ t · |Fj | with high probability.

On the other direction, assume f(Vj) = 1. For every (B,O) ∈ Ω such that Xl is satisfied, by Definition 1:

Pr[Of (B) = O]

Pr[Of (hl(B)) = O]
=

Pr[Of (Apl) = 1 | Apl ∩ V = Vi,HB−pl = O−pl]
Pr[Of (Apl) = 1 | Apl ∩ V = Vj ,HB−pl = O−pl]

≤ 1/ψ.

As a result, Pr[Xl = 1 | X1, . . . , Xl−1] ≤ 1/(1 + ψ) < t/(1 + t). By Lemma 1 (with pmax = 1/(1 + ψ)), since
|Fi| ≤ |Fi|+ |Fj | is large enough, we have that that |Fi| < t

1+t · (|Fi|+ |Fj |) with probability ≥ 1−ε/(3 ·4k),
and so, |Fi| < t · |Fj | with high probability.

Note that in [7], the oracle has positive variance 1. Therefore, it follows from Theorem 3 that any
targeting function is learnable in this simpler model.

Furthermore, we notice that Algorithm 3 (or slight variations of it) can be proved correct under other
assumptions that are similar in spirit as Definition 1. For instance, the oracle has negative variance ψ′ if for
any for any family F = 〈A1, . . . , At〉 the following holds for any C0, C′0 /∈ S(in):

Pr[Of (Ai) = 1 | Ai = C0,HF−i] ≥ ψ′ · Pr[Of (Ai) = 1 | Ai = C′0,HF−i
)].

When the oracle has negative variance ψ′ > ϕ the targeting function can be learnt by replacing line 3 in
Algorithm 3 with ilim ← max{1 ≤ i ≤ 2k | |Fi| ≥ t · |Fi+1|}. Nonetheless, it remains elusive to learn the
targeting function without any additional information. We will explain in the subsequent section why no
such algorithm exists.

5 Impossibility results

Intuitively, the targeting function f can be learnt only if the targeting lift can be detected (cf. Assumption 1).
Our additional assumptions on the positive, resp. negative, variance in Section 4.2 are ways to detect the
lift using a simple leftmost, resp. rightmost, approach. In the general case when no such assumption holds,
ambiguity may occur that prevents from detecting f with high certainty.

Proposition 1. It is impossible to learn the targeting function f in general. In particular, there is a given
monotone 2-junta that cannot be learnt even if the targeting lift is arbitrarily small.

Proof. In order to prove the result, we will construct an oracle Of that satisfies Assumptions 1, 2 and 3
for two distinct targeting functions. The latter is enough to prove the proposition since in such case, Of
could be used in our model for any of the two functions, and so, these cannot be distinguished with high
probability. More precisely, fix 0 < p0 < 1/5. Let us define Of such that for any combination C:

Pr[Of (C) = 1] = p0 · (1 + 2 · I{D1∈C} + 2 · I{D2∈C}).

Since every combination has positive probability to be targeted and the above oracle considers the
combinations independently, by Chernoff bound, Of satisfies Assumption 2 with α = 1 for any targeting

8

function. Furthermore, Of satisfies Assumption 3 for any targeting function that only depends on the two
inputs D1, D2. In particular, let f1(C) = max{I{D1∈C}, I{D2∈C}} and let f2(C) = I{D1∈C} ·I{D2∈C}. These two
functions are monotone. In fact, they are linear combinations since f1(C) = 1 ⇐⇒ I{D1∈C} + I{D2∈C} ≥ 1,
and similarly f1(C) = 1⇐⇒ I{D1∈C}+ I{D2∈C} ≥ 2. For both functions, the oracle Of satisfies Assumption 1
with any targeting lift ϕ > 1/2.

Finally, note that in order to extend this negative result to lifts arbitrarily smaller than 1/2, one may
just consider a slightly more complex oracle for the above two functions f1, f2, namely:

Pr[Of (C) = 1] = q
3−I{D1∈C}−I{D2∈C}
0 ,

for some nonzero probability q0 that can be taken arbitrarily small.

We point out that the negative result of Proposition 1 applies to the particular case when the targeting
function is a linear combination of inputs. Hence, it applies to the theory behind the tools XRay [7] and
Sunlight [8], that assume the targeting function is monotone or a linear combination of inputs respectively.

References

[1] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342.

[2] J. Arpe and R. Reischuk. Learning juntas in the presence of noise. Theoretical Computer Science, 384(1):2
– 21, 2007.

[3] A. Blum. Relevant examples and relevant features: Thoughts from computational learning theory. In
AAAI Fall Symposium on Relevance, volume 5, 1994.

[4] A. Datta, M. Tschantz, and A. Datta. Automated experiments on ad privacy settings. Proceedings on
Privacy Enhancing Technologies, 2015(1):92–112, 2015.

[5] G. Ducoffe, M. Lécuyer, A. Chaintreau, and R. Geambasu. Web transparency for complex targeting:
Algorithms, limits, and tradeoffs. In Proceedings of the 2015 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems, SIGMETRICS ’15, pages 465–466, New York,
NY, USA, 2015. ACM.

[6] G. Ducoffe, M. Tucker, and A. Chaintreau. Can web transparency cope with complex targeting? Sub-
mitted., 2016.

[7] M. Lécuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios, R. Spahn, A. Chaintreau, and R. Geam-
basu. Xray: Enhancing the web’s transparency with differential correlation. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 49–64, San Diego, CA, Aug. 2014. USENIX Association.

[8] M. Lecuyer, R. Spahn, Y. Spiliopolous, A. Chaintreau, R. Geambasu, and D. Hsu. Sunlight: Fine-
grained targeting detection at scale with statistical confidence. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, pages 554–566, New York, NY, USA,
2015. ACM.

[9] M. Tschantz, A. Datta, A. Datta, and J. Wing. A methodology for information flow experiments. In
Computer Security Foundations Symposium (CSF), 2015 IEEE 28th, pages 554–568, July 2015.

9

	Introduction
	Context
	Contributions
	Part I: Metric tree-likeness in graphs
	Part II: Privacy at large scale in social graphs

	Preliminaries and notations
	List of publications

	I Metric tree-likeness in graphs
	A survey on graph hyperbolicity
	Introduction
	First objective: characterizing ``hyperbolic'' and ``non hyperbolic'' graph classes
	Second objective: computing the hyperbolicity of large graphs
	Outline of the chapter

	Motivation
	Implications/applications of hyperbolicity

	Definitions of hyperbolicity
	-hyperbolic graphs
	Reformulation of hyperbolicity
	What is a ``hyperbolic'' graph ?

	Hyperbolic graph classes
	Tree-likeness in graphs and hyperbolicity
	Classical upper-bounds on hyperbolicity
	Contribution: Graph operations and hyperbolicity
	Conclusion and open perspectives

	Obstructions to hyperbolicity
	Related work: random graphs are non hyperbolic
	Lower-bounds on the hyperbolicity
	Open problems

	On computing the hyperbolicity of graphs
	Related work
	Contribution of this thesis: Preprocessing
	Hardness results

	Algorithmic applications
	Distance approximations
	p-centers
	Traveling Salesman Problem
	Cut problems

	Conclusion

	Tree decompositions with metric constraints on the bags
	Introduction
	Context
	General objective: efficient computation of tree decompositions

	Some basics on tree decompositions
	Tree-likeness parameters
	Relationship with triangulations
	Tree decompositions with constrained adhesion sets

	Computational aspects of clique-decomposition
	State of the art
	Contributions
	Summarizing the proofs

	On the complexity of computing treebreadth and its relatives
	Summarize of our contributions
	Approach and the techniques used in the proofs
	Open problems and future work

	Treewidth versus treelength!
	State of the art
	Contributions: upper and lower bounds for treewidth by using treelength
	Proving the bounds

	Conclusion

	II Privacy at large scale in social graphs
	The computation of equilibria in coloring games
	Introduction
	Presentation of coloring games
	Contributions

	Definitions
	Stable partitions and better-response dynamics
	Friendship and conflict graphs

	Unweighted games: the time of convergence for better-response dynamics
	A finer-grained complexity for the problem of computing k-stable partitions
	Closed formula for the worst-case time of convergence of better-response dynamics (k 2)
	Lower-bounds for the worst-case time of convergence of better-response dynamics (k 4)

	The parallel complexity of coloring games
	Overall approach and main result
	The reduction
	Proof of the main result

	Weighted games: existence of equilibria
	Positive results
	The hardness of recognizing games with k-stable partitions

	Extensions of coloring games
	Gossiping
	Asymmetry
	List coloring games
	Coloring games on hypergraphs

	Concluding remarks

	Learning formulas in a noisy model
	Introduction
	Our results
	Outline of the chapter

	Learning model
	PAC learning
	Juntas
	The oracle
	Distribution for the sampler

	Single-input targeting
	Our results
	Reduction to Set Cover
	Concentration inequalities
	Proof overview

	Complex targeting: the case of monotonic functions
	Beyond single-input: the influence of the targeting lift
	Faster algorithms and tradeoffs
	Conclusion and open perspectives

	General case
	Identification of the relevant inputs
	Filtering technique
	Impossibility results

	Conclusion

	Conclusion
	Open perspectives

	Bibliography
	Résumé de la thèse
	Contexte
	Contributions
	Partie I: Sur les graphes dont la métrique est proche de celle d'un arbre
	Partie II: Le respect de la vie privée à grande échelle dans les réseaux sociaux

	Applying clique-decomposition for computing graph hyperbolicity
	On the recognition of C4-free and 1/2-hyperbolic graphs
	On the hyperbolicity of bipartite and intersection graphs
	Data center interconnection networks are not hyperbolic
	Clique-decomposition revisited
	On the complexity of computing tree decompositions with metric constraints on the bags
	To approximate treewidth, use treelength!
	The Complexity of Hedonic coalitions under bounded cooperation
	The parallel complexity of coloring games
	Xray: enhancing the Web's transparency with differential correlation
	Web Transparency for Complex Targeting: Algorithms, Limits and Tradeoffs
	Can Web Transparency Tools Cope with Complex Targeting?
	A theory for ad targeting identification

