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Laboratoire Jacques-Louis Lions — UMR 7598



Mis en page avec la classe thloria.



Remerciements
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solutions, ce fut le plus souvent grâce à leur curiosité et à leur motivation. Au LBNL, Alex Friedman,
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Introduction

What I cannot create, I do not understand. (Richard Feynman)

For the applied mathematician, plasma physics represents a vast field of exciting problems. As
ionized gases have only been isolated at the end of the nineteenth century (the word “plasma” being
suggested by Irving Langmuir in 1928) it is a rather young field but has become an important one dur-
ing the twentieth century, most notably for its applications in nuclear fusion and astrophysics. Indeed,
visible matter in our universe essentially exists in a plasma state. Since the fifties, these progresses
have been fueled by the rapid expansion of scientific computing. Many numerical schemes have been
designed for the simulation of real plasmas, and they have played an important role both as scientific
tools in the study of matter, and as a research topic for themselves.

For the Vlasov-Maxwell system, which can be regarded as an accurate model for magnetic confine-
ment fusion plasmas, a variety of numerical methods have been developped since the sixties, and their
properties have been validated by the joint works of mathematicians and physicists. Nevertheless,
because of the complex interactions between the fields and the particles one may say that the number
of computations required to simulate an actual tokamak confinement experiment with such methods
is far too large to use them on a regular basis.

Based on these observations, we have devoted most of our work to the improvement of existing
methods, with a special care for the designing process and the mathematical analysis of their properties.
For the Vlasov equation

∂tf(t, x, v) + v · ∇xf(t, x, v) + F (t, x) · ∇vf(t, x, v) = 0

which models the transport of charged particles, represented by their density f in the phase space
(x, v), under the action of electromagnetic forces F , we have developped numerical methods that aim
at improving the accuracy of existing codes, at a moderate cost. In the framework of semi-lagrangian
methods, which combine a lagrangian transport step and a projection step of the transported densities
on given discretization grids, we have studied new algorithms to predict adaptive grids in such a way
that the accuracy of the approximated densities is guaranteed in the scheme. We have next considered
particle (i.e., lagrangian) methods, due to their high popularity in the plasma physics community. A
weakness of these methods is the presence of a numerical “noise” in the transported densities that is
characterized by strong oscillations of probabilistic or deterministic nature. To address this issue we
have proposed several techniques to reconstruct accurate approximations of the density, based on the
position of the particles as computed by an existing solver.
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Introduction

Our interest for the Maxwell equations

{
∂tB + curlE = 0

∂tE − curlB = −J

which model the evolution of an electromagnetic field E,B in the presence of a current density J , was
first motivated by the compatible coupling between finite element solvers and particle discretizations
for the current sources. In the framework of finite difference schemes developped for the Maxwell
equations since the sixties, several techniques were known indeed to approximate the current carried
by the numerical particles in such a way that the divergence constraints expressed by the Gauss laws

{
divB = 0

divE = ρ

would be well preserved over long simulation times, without having to solve additional equations as
in the case of divergence cleaning methods. In a collaboration with Eric Sonnendrücker and his team,
we have then extended these charge-conserving current deposition techniques to finite element solvers
on general meshes. Our works to further extend these methods to the framework of discontinuous
Galerkin schemes, which involve fully discontinuous functions to improve the locality of the computa-
tions and the handling of nonconforming meshes, led us next to clarify two important points. First,
that long-time stability properties can be guaranteed for solvers which reproduce at the discrete level
some well-known structure relations satisfied by the exact differential operators and their associated
function spaces, and that this discrete structure provides a natural criterion for the compatible approx-
imation of the current sources. Second, that it is easy to design numerical schemes of discontinuous
Galerkin type which preserve this fundamental structure, by using the important works already done
by the mathematical community on structure-preserving conforming methods. These studies let us to
propose a new class of nonconforming discretizations (called “Conga” for Conforming/Nonconforming
Galerkin), which seem to extend in a natural way most of the stability and accuracy properties es-
tablished for conforming finite element methods (including the spectral correctness) to the setting of
fully discontinuous function spaces, without having to introduce penalization terms as it is usually
done for existing nonconforming methods. Their implementation in actual codes allowed us to verify
that these theoretical properties would translate into good numerical qualities, and it also highlighted
some similarities with standard discontinuous Galerkin methods.

Since a few years I have also joined the endeavor of Bruno Després in the study of several reduced
models for specific plasma problems. Together with our PhD student Mehdi Badsi, we have designed a
mathematical model for plasma sheaths, which are thin layers of charged plasma close to an absorbing
wall which potential adjusts itself to preserve the neutrality of the plasma. As their behavior had
not been described in fully satisfactory mathematical terms, we have proposed a first self-consistent
model corresponding to a simple one-dimensional configuration, which we have shown to be well-posed
under certain conditions that include some of the classical criteria used by physicists to describe key
features of plasma sheaths. In the “cold plasma” reduced model we have also studied several problems
of electromagnetic wave propagation in the presence of a strong magnetic field imposed by external de-
vices, as in the case of a tokamak. After solving some discretization issues that would cause numerical
instabilities in standard codes used by plasma physicists, we have proposed a new formulation of the

2



cold plasma system in the presence of hybrid resonances, which correspond to an energy transfer from
the wave to the background ion bath, in the limit of a vanishing ion-electron collisionality. The limit
equations being ill-posed (lack of unicity), we have proposed a new formulation to recover a well-posed
problem by adding integral constraints involving manufactured solutions that contain singularities of
the same nature than the exact solutions.

This memoir provides a summary of these works and is organized in three chapters. The first one
describes the semi-lagrangian and lagrangian methods developped for the approximation of transport
problems to which the above Vlasov equation is a particular case. The main ingredients of their analysis
are presented, as well as some a priori error estimates. The approximation of the Maxwell equations by
compatible methods is presented in the second chapter. After a reminder on conforming mixed finite
element discretizations and their structure, we introduce the nonconforming Conga discretization and
describe its main properties, in particular for the compatible approximation of the source terms. These
results are then applied to the case of particle approximations for the current, and a connection is
drawn with some discontinuous Galerkin methods. The third chapter finally presents the works done
in the study of electrostatic plasma sheaths and in the modeling of electromagnetic wave propagation
in magnetized plasmas.
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Chapter 1

Lagrangian and semi-lagrangian
methods for transport problems

This chapter addresses the approximation of a transport equation

∂tf(t, x) + u(t, x) · ∇f(t, x) = 0, t ∈ [0, T ], x ∈ Rd (1.1)

associated with an initial data f0 : Rd → R, a final time T and a velocity field u : [0, T ] × Rd → Rd.
In most cases u is itself a function of the density f and the problem is non-linear. To simplify the
presentation we will assume here that u is given, and smooth enough so that there exist characteristic
trajectories X(t) = X(t; s, x), solutions to the ODE

X ′(t) = u(t,X(t)), X(s) = x, t ∈ [0, T ] (1.2)

with x ∈ Rd and s ∈ [0, T ]. The flow Fs,t : x 7→ X(t) is then invertible and satisfies (Fs,t)
−1 = Ft,s. In

particular, the solution to (1.1) takes the form

f(t, x) = f0((F0,t)
−1(x)) for t ∈ [0, T ], x ∈ Rd. (1.3)

We then consider the following question: if we are given a reliable numerical scheme for the charac-
teristic flow between two time steps tn = n∆t, be it the forward flow

Fn,n+1 = Ftn,tn+1 (1.4)

as in the classical approach of particle methods [99, 95], or the backward flow

Bn,n+1 = (Ftn,tn+1)−1 (1.5)

as in the backward semi-lagrangian approach [122, 127, 125], which method can we use to efficiently
– and accurately – approximate the transported density fn = f(tn) ?

Publication list

The material in this chapter is based on the following works:

[[39]] M. Campos Pinto, Adaptive semi-Lagrangian schemes for Vlasov equations, in Analytical and
Numerical Aspects of Partial Differential Equations, E. Emmrich and P. Wittbold (Eds.) de
Gruyter, Berlin, 2009
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[[40]] M. Campos Pinto, How to predict accurate wavelet grids in adaptive semi-Lagrangian schemes?
ESAIM: Proc. 29, 2009

[[55]] M. Campos Pinto, E. Sonnendrücker, A. Friedman, D.P. Grote and S.M. Lund, Noiseless Vlasov–
Poisson simulations with linearly transformed particles, Journal of Computational Physics 275,
2014

[[41]] M. Campos Pinto, Towards smooth particle methods without smoothing, Journal of Scientific
Computing 65, 2015

[[44]] M. Campos Pinto, J.A. Carrillo, F. Charles and Y.P. Choi, Convergence of a linearly transformed
particle method for aggregation equations, 〈arXiv:1507.07405〉, 2015

[[46]] M. Campos Pinto and F. Charles, Uniform Convergence of a Linearly Transformed Particle
Method for the Vlasov–Poisson System, SIAM Journal on Numerical Analysis 54, 2016

[[45]] M. Campos Pinto and F. Charles, From particle methods to hybrid semi-Lagrangian schemes,
〈hal-01385676〉, submitted, 2016

1.1 An adaptive semi-lagrangian method with interpolatory wavelets

During my PhD [[38, 50]] and together with Michel Mehrenberger we have developed an adaptive
semi-lagrangian scheme based on hierarchical P1 finite element interpolations on dynamically adapted
meshes. Pursuing in the same direction I have studied an extension of that method to interpolatory
wavelet bases.

The resulting method is inspired by a similar scheme proposed in [14] but differs in the fact that
it is mostly driven by the notion of good adaptation of a wavelet tree to a given function. This tool
allows us to design a prediction method for adaptive grids, which comes with an a priori error estimate
for the resulting transported and projected densities.

Semi-lagrangian methods [122, 121, 127, 125] compute discrete solutions fnh that approximate the
exact f(tn) on the times tn = n∆t, n = 0, 1, . . . , N = T/∆t, following two principles:

• the approximate solutions fnh are determined by its point values on a grid Γh;

• the point values of fn+1
h are computed from those of fnh by using the method of characteristics,

with a formula of the form

fn+1
h (xi) = fnh (Bn,n+1

h (xi)), xi ∈ Γh

where Bn,n+1
h is an approximation to the backward flow (1.5) that is computed from fnh .

It is of course necessary to specify the different steps to define a numerical scheme. For instance, in
the simplest case where a regular grid Γh = hZ is used in dimension 1 for an equation with given
velocity u, we can use a Runge-Kutta scheme for the approximated backward scheme.
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1.1. An adaptive semi-lagrangian method with interpolatory wavelets

Computing the values of fn+1
h on the grid then amounts to evaluating fnh on the points Bn,n+1

h (xi),
i ∈ Z. This may be done with local interpolations of order 2R, letting

Lk,j(x) =

R∏

j′=−R+1
j′ 6=j

x− xk+j′

xk+j − xk+j′
, j = −R+ 1, . . . , R

the 2R Lagrange polynomials associated to the nodes xk−R+1, · · · , xk+R, with k ∈ Z, and then setting

fnh (x) =

R∑

l=−R+1

Lk,l(x)fnh (xk+l) where k is such that x ∈ [xk, xk+1]. (1.6)

The interpolation method thus defines how the approximated solution fnh is determined by its values
on the grid Γh.

In the articles [[39, 40]], I have developed a method where (in dimension d = 2, for simplicity) the
transported densities are approximated by means of interpolatory wavelets,

fnh (x) =
∑

λ∈Λn

dnλϕλ(x), Λn ⊂ Γ∞ := {2−`k : ` ∈ N, k ∈ Z2}.

Here Λn is a non-uniform dyadic grid, ϕλ is the interpolatory wavelet associated to the dyadic node λ,
and dnλ ∈ R is the corresponding wavelet coefficient sometimes called detail. Based on a hierarchical
representation of continuous functions, interpolatory wavelets provide both a high order interpolation
tool on non-uniform grids and a practical refinement criterion for the grid. Their construction derives
from an iterative process that we may recall. By partitioning the set of dyadic nodes in successive
levels,

Γ∞ = Γ0 ∪
(
∪`≥1 ∇`

)
with ∇` = Γ` \ Γ`−1 and Γ` = 2−`Z2,

we let |λ| denote the level of a node λ, characterized by the relation λ ∈ ∇|λ|. On the corresponding
uniform grid we then set

ϕλ(γ) = δλ,γ , γ ∈ Γ|λ| (1.7)

and the construction proceeds by increasing levels. From the values on Γ` with ` ≥ |λ|, those of level
`+ 1 are given by an interpolation formula of the form (1.6): for γ ∈ ∇`+1 this amounts to defining a
local stencil Sγ ⊂ Γ`, as

Sγ =





γ + 2−`
(
{−R+ 1, . . . , R} − 1

2 × {0}
)

if γ ∈ 2−(`+1)
(
(2Z + 1)× 2Z

)

γ + 2−`
(
{0} × {−R+ 1, . . . , R} − 1

2

)
if γ ∈ 2−(`+1)

(
2Z× (2Z + 1)

)

γ + 2−`
(
{−R+ 1, . . . , R} − 1

2

)2
otherwise, i.e. if γ ∈ 2−(`+1)(2Z + 1)2

(1.8)

as illustrated on Figure 1.1, and to setting

ϕλ(γ) =
∑

µ∈Sγ
πγ,µϕλ(µ) for γ ∈ ∇`+1, ` ≥ |λ| (1.9)

where πγ,µ is the value at γ of the Lagrange polynomial associated with a node µ in the stencil Sγ .
It is known (see, e.g. [71, 62]) that this process converges towards a basis of C0(R2), which is

hierarchical as a result of the multi-scale construction: we have

g =
∑

γ∈Γ0

g(γ)ϕγ +
∑

`≥1

∑

γ∈∇`
dγ(g)ϕγ with dγ(g) = g(γ)−

∑

µ∈Sγ
πγ,µg(µ)
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γ

µ

Sλ

Sµ

Sγ

λ

Figure 1.1: Interpolation stencils in the dyadic grid Γ` = 2−`Z2 for the 3 types of level ` + 1 nodes
listed in (1.8), with R = 2.

for an arbitrary g ∈ C0(R2), the infinite sum being convergent in L∞. Thus, the successive coefficients
of g correspond to interpolation errors which are small where g is smooth. In our method this property
is exploited by introducing (i) admissible grids of dyadic nodes Λ ⊂ Γ∞ that must satisfy

γ ∈ Λ =⇒ Sγ ⊂ Λ (1.10)

and (ii) a wavelet interpolation operator on these grids,

PΛg :=
∑

γ∈Λ∩Γ0

g(γ)ϕγ +
∑

γ∈Λ\Γ0

dγ(g)ϕγ , g ∈ C0(R2).

Using (1.10) one verifies that g and PΛg coincide on Λ, so that PΛ is indeed an interpolation. We thus
have a convenient framework for a semi-lagrangian method.

Given an approximation fnh to f(tn) on a grid Λn, the objective is then to predict a grid Λn+1 that
is well adapted to the approximation f(tn+1) to be computed. For this purpose we have designed an
algorithm of dyadic grid transport, which analysis relies on the notion of good adaptation to a given
function. To describe it and deduce a constructive criterion we introduce some notations. The children
of a node γ of level ` are the nodes of level `+ 1

C(γ) =





γ + 2−`
(
{−1

2 ,
1
2} × {0}

)
if γ ∈ 2−`

(
(2Z + 1)× 2Z

)

γ + 2−`
(
{0} × {−1

2 ,
1
2}
)

if γ ∈ 2−`
(
2Z× (2Z + 1)

)

γ + 2−`
(
{−1

2 , 0,
1
2}2 \ (0, 0)

)
otherwise, i.e. if γ ∈ 2−`(2Z + 1)2

(1.11)

as pictured in Figure 1.2. The parent P(λ) of a node λ is then characterized by the relation λ ∈ C(P(λ)).
An admissible grid (1.10) is clearly a wavelet tree in the sense where λ ∈ Λ implies P(λ) ∈ Λ.

The outer leaves of a tree are defined as the set

Lout(Λ) = {λ ∈ Γ∞ \ Λ : P(λ) ∈ Λ}

and the star-nodes of level ` are the nodes in ∇∗` = 2−`(2Z + 1)2 ⊂ ∇`, which correspond to a
refinement in both dimensions as in the third line of (1.8) or (1.11). The set of all the star-nodes is
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1.1. An adaptive semi-lagrangian method with interpolatory wavelets

Figure 1.2: Tree structure of wavelet grids. Here the black nodes are on the uniform grid Γ`−1 =
21−`Z2, the big white nodes are in ∇` = Γ` \Γ`−1 and the small white nodes are in ∇`+1. The arrows
indicate the parent → child relations.

Γ∗∞ = ∪`∈Z∇∗` , and one verifies that if Λ is an admissible grid, then the outer star-leaves allows to
form a mesh associated with Λ. Specifically, the set

M(Λ) := {Ωλ : λ ∈ Lout(Λ) ∩ Γ∗∞} (1.12)

composed of cells of the form

Ωλ := λ+ 2−|λ|]− 1, 1[2

is a partition of R2 which local resolution corresponds to the maximal level of the star-nodes of Λ.
Lastly, the neighbors of a star-node γ ∈ Γ∗∞ are the nodes which influence domain Σλ = λ+2−|λ|(2R−
1)[−1, 1]2 (corresponding to the convex hull of the stencil Sλ) intersect its cell Ωγ : their set is denoted

N (γ) = {λ ∈ Γ∞ : Σλ ∩ Ωγ 6= ∅}, γ ∈ Γ∗∞.

It is then possible to specify the notion of good adaptation to a given function. More precisely we
shall define two versions of that notion: a weak one and a strong one.

Definition 1.1 Let 0 < κ < 1 be a fixed constant. Given ε > 0 and g ∈ C0(R2), a dyadic grid Λ is
said weakly ε-adapted to g if

sup
γ∈Lout(Λ)∩Γ∗∞

sup
λ∈N (γ)\Λ

2κ(|λ|−|γ|)|dλ(g)| ≤ ε.

If the second supremum can be taken over the entire set N (γ), including the neighbors in the grid Λ,
then the latter is said strongly ε-adapted to g.

These criteria provide a practical tool to construct wavelet trees well adapted to a given function,
by refining the dyadic mesh (1.12) associated with the star-nodes in such a way that on every mesh
cell Ωγ , it holds 2κ|λ||dλ(g)| ≤ ε2κ|γ| for all the nodes λ which domain Σλ intersects Ωγ . In the weak
version we see that nodes belonging to the tree are excluded from the criterion, for the reason that
only the details outside the tree contribute to the interpolation error. Indeed we have the following
estimate.
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Chapter 1. Lagrangian and semi-lagrangian methods for transport problems

Lemma 1.2 If Λ is a grid weakly ε-adapted to g ∈ C0(R2) and graded in the sense that N (γ)∩Γ|γ|−1 ⊂
Λ holds for all γ ∈ Λ, then the associated interpolation error satisfies

‖g − PΛg‖L∞(R2) . ε

with a constant independent of g.

Thus, the weak adaptation is sufficient for the accurate approximation to a given function.
The principle of the strong adaptation (which requires to refine the tree in the vicinity of large

details, even when their nodes are already present in the grid) is that it is robust enough to be preserved
by a simple algorithm of dyadic grid transport. Such an algorithm can be obtained by refining the
nodes which image by the backward flow touches a cell of essentially higher level. The specific form
involves a fixed integer δ ≥ 1 corresponding to a number of additional refinement levels.

Algorithm 1.3 (TB(Λ): dyadic grid transport) Let δ ∈ N \ {0}. Given a backward flow B, and
starting from Λ∗0 := Γ∗0, we build

Λ∗`+1 := Λ∗` ∪
{
γ ∈ Lout(Λ

∗
` ) ∩ Γ∗∞ : min{|λ| : λ ∈ Lout(Λ) ∩ Γ∗∞, B(γ) ∈ Ωλ} > |γ| − δ

}

until Λ∗L+1 = Λ∗L, and we let TB(Λ) := Λ∗L be the resulting dyadic grid.

The following theorem states that this process indeed allows to build grids that are well adapted
to the functions transported by the flow B.

Theorem 1.1 (see [[39]], Th. 6.9) If the flow B and its inverse are Lipschitz of respective constants
L and L′, and if δ ≥ 1 + ln2

(
L(8R + 2LL′ − 3)

)
, the Algorithm 1.3 preserves the grid adaptation in

the sense where

if Λ is strongly ε-adapted to g, then TB(Λ) is weakly Cε-adapted to TBg = g ◦B

with a constant C that does not depend on B. Moreover the size of the predicted tree is stable,

#
(
TB(Λ)

)
. #(Λ). (1.13)

Our adaptive scheme is then as follows. Using an algorithm Aε that builds a grid strongly adapted
to a given function according to the above criterion, and a refinement algorithm G to build graded
trees (see [[39]], Sec. 6.1), we begin by interpolating the initial density on its associated tree,

f0
ε := PΛ0

ε
f0 with Λ0

ε := G(Aε(f0)). (1.14)

For n+ 1 ≤ N = T/∆t, we then proceed in two steps.

(i) We first transport the approximated density with a semi-lagrangian method based on the pre-
dicted tree

f̃n+1
ε := PΛ̃n+1

ε
T fnε with Λ̃n+1

ε := G
(
T
Bn,n+1
h

(Λnε )
)
. (1.15)

Here, T fnε = fnε ◦Bn,n+1
h denotes the density transported along an approximated flow computed

from fnε , as given by some reference semi-lagrangian method.

(ii) We then correct the grid in such a way that it stays strongly adapted to the approximated
density,

fn+1
ε := PΛn+1

ε
f̃nε with Λn+1

ε := G
(
Aε(f̃n+1

ε )
)
. (1.16)

10



1.2. Smooth particles with polynomial transformations

Since the approximated flow is computed from fnε , we may assume that is satisfies

∥∥Bn,n+1 −Bn,n+1
h

∥∥
L∞(Ω)

. ∆tr + ∆t‖f(tn)− fnε ‖L∞(Ω) (1.17)

for some integer r corresponding to the order of the time scheme. It is then possible to prove the
following estimate.

Theorem 1.2 We assume that the approximated flow satisfies an estimate of the form (1.17). If
the initial data f0 is Lipschitz, as well as the forward and backward flows (1.4), (1.5), then the
approximated solution computed by the scheme (1.14)-(1.16) satisfies

‖f(tn)− fnε ‖L∞(Ω) . (∆t)r−1 + ε/∆t (1.18)

for n∆t ≤ T , with a constant independent of ε and ∆t.

1.2 Smooth particles with polynomial transformations

In spite of their accuracy, semi-lagrangian methods are not the standard approach in plasma physics.
Apart from the Gysela code [86, 87] a majority of the large kinetic codes developed for plasma
problems is indeed based on purely eulerian or lagrangian approaches (see e.g., [82, Sec. 3.1] for a
review in the area of gyrokinetic fusion plasmas). Essentially, lagrangian solvers rely on a particle
representation of the densities in the phase space. Used in plasma physics as early as in the 1950s
[78, 72, 37] (and in fluid dynamics, c.f. [59, 68]), the main advantages of this approach are its
relative low cost (no phase space mesh like semi-lagrangian methods, and a natural adaptation of
the computing resources to the areas where the plasma actually is), its simplicity and its robustness
over long simulation times, mainly due to its ability to preserve several fundamental physical quantities
[99, 95].

However, particle methods also have their flaws. In particular, numerical results are often affected
by non-physical oscillations (of probabilistic or deterministic nature) which hamper their interpretation
when the number of particles is not significantly increased as the resolution of the method is improved.
Several techniques do exist to reduce these oscillations (for instance by periodically remapping the
density on new particle grids [73, 98, 113, 101], or by adequately averaging the weights of neighboring
particles [10, 66], or even by using local formulas to reconstruct the density [131, 63], to quote only a
few) however their mathematical analysis is usually not sufficient for an accurate assessment of their
performances.

Based on this observation, my objective has been to study numerical schemes that allow an accurate
representation of the densities and which implementation would be as easy as possible in the framework
of an existing particle code. By simplicity I have essentially worked in a deterministic setting (i.e.
with particles initially located on a given grid), but keeping in mind an application of my works to
the probabilistic setting of Monte Carlo methods used in many particle codes, see e.g., [28].

In its deterministic version, the standard particle method [100, 118] approximates the density f
by a collection of numerical particles of the form

fnh,ε(x) =
∑

k∈Zd
wkϕε(x− xnk). (1.19)

Here wk is the weight of the particle centered in xnk , and ϕε denotes a smoothed Dirac mass with scale
ε > 0, typically of the form ϕε(x) = ε−dϕ(ε−1x) with ϕ a smooth and compactly supported shape
function such as a B-spline or some smoothing kernel with vanishing moments, see e.g. [68, 98]. As
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Chapter 1. Lagrangian and semi-lagrangian methods for transport problems

for h it represents the average inter-particle distance. To simplify our presentation we may consider
that the particles are initially located on a cartesian grid,

x0
k = hk, k ∈ Zd, (1.20)

and we will assume that their trajectories follow the exact flow (1.4),

xn+1
k = Fn,n+1(xnk).

The weights are then usually given by an initial approximation of the local masses, e.g., wk = hdf0(x0
k).

In the classical analysis this process is seen as (i) an approximation (in a distributions sense) of f0 by
a weighted sum of Dirac measures, (ii) the exact transport of that distribution, and (iii) the smoothing
of the resulting measure approximation by the convolution kernel ϕε. Provided that the latter satisfies
a moment condition of order r ≥ 1, the standard error estimate [11, 118] takes the form

‖f(tn)− fnh,ε‖Lp ≤ C
(
εr‖f0‖W r,p + (h/ε)m‖f0‖Wm,p

)
, 1 ≤ p ≤ ∞. (1.21)

It is possible to improve this estimate by using more different initial quadratures [63], but in any case
this kind of results highlights one weakness of the reconstruction (1.19), that is the need to choose
ε� h as ε, h→ 0 to guarantee the strong convergence of the densities, which translates into a growing
particle overlapping which is has an expensive cost in actual computations. In practice most particle
codes run with a moderate particle overlapping, that is sufficient for the weak convergence of the
densities and, in the general case where the flow itself depends on the transported densities, for the
an accurate approximation of the particle trajectories.

The lack of strong convergence generally leads to oscillations in the approximated densities. To
reduce them while keeping a bounded particle overlapping (ε ∼ h), many authors have proposed
methods of forward semi-lagrangian (FSL) type, which consist of periodically remapping the density
(1.19) on the grid [73, 98, 113, 65, 69, 101]. These projections have a smoothing effect which tend to
solve the oscillations due to the distortion of the particle cloud, but they also introduce a numerical
diffusion which may spoil the accuracy over long time ranges, so that several authors have investigated
advanced remapping techniques, see [101] or [12, 13, 133] for multi-scale methods.

In order to reduce the oscillations with a limited use of remappings and a bounded particle over-
lapping, I have studied in a series of articles [[41, 55, 46]] a class of methods where the particles
are transformed so to better follow the characteristic transport flow. Again, the initial density is
approximated by a collection of weighted particles,

f0
h(x) =

∑

k∈Zd
wkϕh(x− x0

k) (1.22)

but unlike (1.19) where the particles shapes were simply translated along the trajectories, they are
now transformed using local approximations of the backward flow B0,n = (F0,tn)−1. At the first order
the method uses linear expansions of the flow around each trajectory

B0,n
(1),k : x 7→ x0

k +Dn
k (x− xnk) (1.23)

where Dn
k is a deformation matrix that corresponds to the jacobian matrix JB0,n(xnk), and it transports

the shape functions according to

ϕh(x− x0
k) 7→ ϕh(B0,n

(1),k(x)− x0
k) = ϕh(Dn

k (x− xnk)).
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1.2. Smooth particles with polynomial transformations

The linearly-transformed particle (LTP) approximation then takes the form

fnh (x) =
∑

k∈Zd
wkϕh(Dn

k (x− xnk)) (1.24)

and we have the following result (see [[41]], Th. 1).

Theorem 1.3 The LTP approximation (1.24) satisfies

‖f(tn)− fnh ‖L∞ ≤ ‖f0 − f0
h‖L∞ + Ch‖f0‖L∞ (1.25)

with a constant C that depends on the smoothness of the flow F 0,n and that of its inverse.

At the second order the local expansion of the backward flow reads

B0,n
(2),k : x 7→ x0

k +Dn
k (x− xnk) +

1

2

(
(x− xnk)t(Qnk)i(x− xnk)

)
1≤i≤d

)

with a quadratic term (Qnk)i that corresponds to the hessian matrix H(B0,n)i(x
n
k) of the flow component

i. The method is generalized to an arbitrary order r by setting

B0,n
(r),k(x) := (x− xnk) + x0

k + φ′k(0) + · · ·+ 1

r!
φ

(r)
k (0) where φk(s) = (B0,n − I)(xnk + s(x− xnk)).

However, as the mapping B0,n
(r),k is not injective in general, the support of ϕh(B0,n

(r),k(x) − x0
k) has no

reason to be contained in a neighborhood of xnk . To define the polynomial transformation of the
particle shape it is then necessary to introduce an a priori restriction of the supports. In [[41]] the
proposed method consists of transporting ( using the linearized flow F 0,n

(1),k = (B0,n
(1),k)

−1) an extension

of the initial particle support. If the latter is included in a ball Σ0
h,k = B`∞(x0

k, hρ
0), we set

Σn
h,k := F 0,n

(1),k

(
B`∞(x0

k, hρ
n
h,k)
)

with ρnh,k := ρ0 +
1

h
‖B0,n

(1),k −B
0,n‖L∞(F 0,n(Σ0

h,k)) (1.26)

and we define the polynomial transformation of the smooth particles by

ϕh(x− x0
k) 7→ 1Σnh,k

(x)ϕh
(
B0,n

(r),k(x)− x0
k

)
.

The following result (see [[41]], Th. 2) establishes the order r convergence of the resulting reconstruction.

Theorem 1.4 The approximation based on order r polynomial transformations of the particle shapes,
defined as

fnh (x) =
∑

k∈Zd
wk1Σnh,k

(x)ϕh
(
B0,n

(r),k(x)− x0
k

)
(1.27)

satisfies
‖f(tn)− fnh ‖L∞ ≤ ‖f0 − f0

h‖L∞ + Chr‖f0‖L∞ (1.28)

with a constant C that depends on the smoothness of the flow F 0,n and that of its inverse.

The explicit form of the constants C that appear in the above theorems (given in [[41]]) indicates a
rapid deterioration of the accuracy when the flow becomes less regular. For this reason it is beneficial
to occasionally remap the density, as this allows to restart the above process with a reinitialized
characteristic flow. One may observe that periodic remappings on the grid formally turn the method
into a semi-lagrangian one. The polynomial shape transformations can then be seen as a way to reduce
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Chapter 1. Lagrangian and semi-lagrangian methods for transport problems

the number of remappings needed, as our estimates show that the approximated densities converge as
h→ 0 even if no remappings are performed.

Since the matrices Dn
k and (Qnk)i involved in the linear and quadratic flows (for the first orders) ap-

proximate the jacobian and hessian matrices of the backward flow, namely JB0,n(xnk) and H(B0,n)i(x
n
k),

it is possible in practice to compute them from the position of the neighboring markers. A finite dif-
ference approximation on the initial grid of the derivatives of the forward flow F 0,n = F0,tn indeed
leads to

Jnk :=

(
(xnk+ej

− xnk−ej )i
2h

)

1≤i,j≤d
≈ JF 0,n(x0

k) (1.29)

and from the identity JF 0,n(x0
k)JB0,n(xnk) = Id, we may set

Dn
k := (Jnk )−1. (1.30)

For the quadratic terms we approximate the hessian matrices of the forward flow by

(Hn
k )i :=

(
(h)−2

1∑

α1,α2=0

(−1)α1+α2
(
xnk+α1ej1+α2ej2

)
i

)
1≤j1,j2≤d

≈ H(F 0,n)i(x
0
k). (1.31)

By differentiating twice (at x0
k) the identity I = B0,nF 0,n we obtain

0 =
(
JF̄n(x0

k)
)t
H(B0,n)i(x

n
k)JF 0,n(x0

k) +

d∑

j=1

(
JB0,n(xnk)

)
i,j
H(F 0,n)j (x

0
k),

so that we set

(Qnk)i := −(Dn
k )t
( d∑

j=1

(Dn
k )i,j(H

n
k )j

)
Dn
k . (1.32)

One can assess the accuracy of these approximations. Specifically, there exists a threshold h∗(F 0,n)
under which the matrices Jnk are invertible and we have, for all k ∈ Zd,

h ≤ h∗(F 0,n) =⇒ ‖Dn
k − JB0,n(xnk)‖ ≤ Ch2 and ‖(Qnk)i −H(B0,n)i(x

n
k)‖ ≤ Ch (1.33)

with constants C that depend on the exact flow F 0,n, see e.g. the Appendix in [[45]].
Several numerical tests have demonstrated the convergence properties of this approach. Thus

Figure 1.3 shows the error curves corresponding to the transport of a smooth density in a velocity
field u(t, x) = cos

(
πt
T

)
curlφ(x) with φ(x) := − 1

π sin2(πx1) sin2(πx2), such that the solution reverts
to its initial state at t = T after a maximal stretching reached at t = T/2. There we verify that the
traditional smooth particle approximation (1.19), represented (under the acronym TSP) for several
values of the exponent q determining the size ε = hq of the particle supports, only converges for values
q < 1 which correspond to a growing particle overlapping, moreover the subsequent convergence is
rather slow. The convergence of the FSL method (with remappings but no shape transformations) is
faster but requires to decrease the remapping period ∆tr with the inter-particle distance h, which in
practice is similar to imposing a CFL condition. The main strength of the LTP and QTP methods
(involving linear and quadratic transformations) is that the convergence holds for constant values of
the period ∆tr, and that the optimal values of this period, which correspond to the best compromise
between the remapping errors and the flow distortion, are significantly larger with the QTP method.

During my collaboration with physicists from the “Heavy Ion Fusion” group at Lawrence Berke-
ley Laboratory, I have described and numerically validated a Linearly-Transformed Particle-In-Cell
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1.3. A forward-backward semi-lagrangian method

(LTPIC) scheme for the 1d1v Vlasov-Poisson system, involving particles transformed using the LTP
method and an electric field solved by a standard finite difference scheme. The numerical results [[55]]
have then shown to be comparable to that of high order grid based solvers (e.g. semi-lagrangian ones),
renowned for their accuracy.

Together with Frédérique Charles of the LJLL we have extended the analysis to this non-linear
1d1v Vlasov-Poisson problem. In the article [[46]] we have proven the a priori convergence of the
approximated density in the L∞ norm (at order 1) and that of the particle trajectories (at order 2).
In comparison with the standard estimates of Cottet and Raviart [67] applied to the case of particle
shapes with bounded overlapping (ε ∼ h), our approach allows to gain one order of convergence at
the price of linearly transforming the shape of each particle.

With Frédérique Charles (LJLL), Young-Pil Choi and José Antonio Carrillo (Imperial College) we
have also applied the LTP method to a class of aggregation equations, for which we have shown (both
theoretically and numerically) strong convergence results for the density, that seem to be out of reach
for particle methods with fixed scale. These results have been presented in the submitted article [[44]].

1.3 A forward-backward semi-lagrangian method

Although the previous method improves the accuracy of the smooth particle reconstructions, it has
the downside that it produces particle shapes which support may extend a lot along some directions,
which makes it hard (and expensive) to localize them in the phase space. In particular, it is not easy
to rapidly determine which particles are involved in the evaluation of the densities (1.24) or (1.27) at
a given point x, moreover their distance to x may grow indefinitely between two remappings, so that
their inventory quickly becomes very costly in several space dimensions.

To avoid such a phenomenon, the simplest option is to stop representing fn as a collection of smooth
particles. However we still wish to preserve the main ingredient of the LTP and QTP methods, that
is the local approximation of the backward flow B0,n close to the markers xnk using the formulas
(1.29)-(1.32). Indeed the latter seem to provide accurate results (as seen in the numerical simulations
displayed in Figure 1.3 for instance) and only involves the exact position of the neighboring markers.

To reach this objective a natural solution consists of implementing in the framework of par-
ticle methods the improved locality principle proposed by Colombi and Alard in [64] to design
highly accurate semi-lagrangian schemes. Indeed, to the point particles (markers) transported for-
ward we can associate a representation based on the local approximation of the backward flow by
the techniques described above. Specifically, the method proposed in [[45]] approximates the density
f(tn, x) = f0(B0,n(x)) using the following steps :

(i) To every marker xnk one associates a local approximation B0,n
h,k of the backward flow, computed

just as in the LTP or QTP methods, using finite differences. We remind that at the first order
this approximated flow takes the form

B0,n
h,k(x) = x0

k +Dn
k (x− xnk) (1.34)

with a matrix Dn
k computed by the formulas (1.29)-(1.30), and at the second order it reads

B0,n
h,k(x) = x0

k +Dn
k (x− xnk) +

1

2

(
(x− xnk)t(Qnk)i(x− xnk)

)
1≤i≤d (1.35)

with matrices (Qnk)i computed with the formulas (1.31)-(1.32).
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Figure 1.3: Convergence curves (L∞ errors vs. particle numbers N ∼ h−2) for a passive transport
problem with reversible flow, approximated using several methods as described in Section 1.2: the TSP
(traditional smooth particle) method uses smooth particles with radius ε = hq without remappings,
the FSL (forward semi-lagrangian) method remaps the particules ε = h with different periods ∆tr,
like the LTP and QTP methods which in addition impose a transformation (linear or quadratic) of
the smooth particle shapes. The above figures show the exact solution at t = 0 and T on the left, and
at t = T/2 the time of maximal stretching, on the right.

(ii) In order to smoothly patch together these local approximations of the backward flow, we then
consider a partition of unity

∑

i∈Zd
S(x− i) = 1, x ∈ Rd (1.36)

that involves a compactly supported shape function S ≥ 0, such as a B-spline. Using again a
grid of step-size h, which nodes will be denoted ξi = ih to avoid a confusion with the markers,
we let Sh,i(x) = S

(
(x − ξi)/h

)
the averaging shape function associated with node ξi. A global
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1.3. A forward-backward semi-lagrangian method

approximation of the backward flow is then given by

B0,n
h (x) :=

∑

i∈Zd
B0,n
h,k∗(n,i)(x)Sh,i(x) (1.37)

where the marker of index k∗(n, i) is defined as the closest one to the node ξi at time tn, i.e.,

k∗(n, i) := argmin
k∈Zd

‖xnk − ξi‖∞.

(iii) The approximated density is then given by a standard lagrangian representation, i.e.,

fnh (x) := f0
(
B0,n
h (x)

)
(1.38)

that we may call a forward-backward lagrangian scheme, possibly specifying L-FBL or Q-FBL
depending whether the local flows are given by linear (1.34) or quadratic (1.35) expansions.

Again, it is important to reinitialize the characteristic flows when they become too irregular to be
accurately approximated by the local expansions, and as in the previous section this may be done
using remappings, i.e., particle reinitialization based on the density transported thus far.

We can verify that with the new process the evaluation of the density on a given point is more
local than with the LTP or QTP methods, where the polynomial transformation of the particle shapes
may trigger a rapid (and indefinite) extension of their support. In the numerical simulations, this
enhanced locality is evidenced by a significant gain in cpu time, already visible in d = 2 dimensions
on second-order methods illustrated in Fig. 1.4, because of the rapid growth of the particle support in
the QTP method, see (1.26). This gain will be more dramatic with higher space dimension, especially
in the case of Vlasov equations in d = 2 + 2 or d = 3 + 3 dimensions. Such configurations are currently
under implementation within the Selalib platform [124] developed in collaboration with teams at IPP
in Garching (Germany), at IRMA in Strasbourg and at IRMAR in Rennes.

We also have the following estimates, where the threshold h∗(F 0,n) corresponds to the ability to
invert the jacobian matrix approximated by finite differences, see (1.33).

Theorem 1.5 Let h ≤ h∗(F 0,n). If the exact flow F 0,n and its inverse B0,n are in W 2,∞(Rd), then
the approximation (1.38) of first order (L-FBL) satisfies

‖f(tn)− fnh ‖ ≤ Ch2

with a constant independent of h. If in addition F 0,n and B0,n are in W 3,∞(Rd), then the approxima-
tion (1.38) of second order (Q-FBL) satisfies

‖f(tn)− fnh ‖ ≤ Ch3

with a constant independent of h.

In comparison with particle methods using polynomial transformations, these estimates allow to
gain one order of convergence. The main reason for this being that, in the approximated density, the
decomposition in terms of scale h is now performed on the backward flow rather than on the density
itself, which avoids a loss of h in the Lipschitz constant of the numerical density. This convergence gain
is not only visible in the a priori estimates : it is also observed in some numerical simulations when
the transport (without remappings) is realized on long enough periods, as illustrated on Figure 1.5.
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Figure 1.4: Convergence curves (L∞ errors vs. particle numbers N ∼ h−2) for the passive transport
problem illustrated on Figure 1.3. The upper curves serve as a reminder of the convergence properties of
the methods with polynomial shape transformation (LTP and QTP), whereas the lower curves indicate
that of the forward backward lagrangian (fbl) approximations (1.38). The number in parenthesis
indicate the cpu times (in seconds) of each run.

Figure 1.5: Convergence curves (L2 relative errors vs. h) for the passive transport problem illustrated
on figure 1.3, approximated by the LTP and L-FBL methods. The gain of one order appears clearly
on these L2 curves when the remapping period is increased.
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Chapter 2. Compatible nonconforming approximation of the Maxwell equations

2.1 The time-dependent Maxwell system

For the approximation of the Maxwell equations (written here in 2D for clarity, as the presence of two
curl operators, one scalar and one vector-valued in bold font, will help us better visualize some key
features of the analysis) 




∂tB + curlE = 0

∂tE − c2 curlB = − 1

ε0
J ,

(2.1)

mixed finite elements are a reference method [85, 18]. Compared to the historical FDTD (finite
difference time domain) approach [138] they are designed to reach high order accuracy in complex
geometries, and when the discrete spaces involved can be endowed with compatibility relations re-
producing the geometric structure of the functional spaces where some fundamental properties of the
equations are naturally expressed, they have indeed important stability and approximation properties,
be it for the time-dependent system (2.1) or the eigenvalue problem

curl curlE = λE

as it has been evidenced by several authors, see e.g. [106, 27, 93, 16, 135, 17].
To describe this structure we will borrow some notations to the finite element exterior calculus,

see [25, 27, 93, 2, 3, 94]. Letting

W 0 = L2(Ω), W 1 = L2(Ω)2, W 2 = L2(Ω), W 3 = R, (2.2)

we introduce operators dl, l ∈ {0, 1, 2}, with domains V l ⊂W l and values in W l+1, as follows

V 0 = H1
0 (Ω)

d0 = −grad−−−−−−−−−−→ V 1 = H0(curl; Ω)
d1 = curl−−−−−−−−→ V 2 = L2(Ω)

d2 =
ffl

Ω−−−−−−→ V 3 = R (2.3)

where
ffl

Ω = |Ω|−1
´

Ω. Here we assume that Ω is a bounded and simply-connected Lipschitz domain,
so that the sequence is exact, in the sense that the image of each operator coincides with the kernel of
the next operator in the sequence, see e.g. [140, Rem. 3.17]. The adjoint operators (dl)∗ have domains
denoted V ∗l+1 ⊂W l+1 and values in W l, they read

V ∗3 = R
(d2)∗ = ι−−−−−−−→ V ∗2 = H(curl; Ω)

(d1)∗ = curl−−−−−−−−−−→ V ∗1 = H(div; Ω)
(d0)∗ = div−−−−−−−−−→ V ∗0 = L2(Ω)

(2.4)
where ι is the canonical injection R→ L2(Ω). This sequence is also exact [140, Cor. 3.16]. Following
[1, 57] we may use a “composite” operator to represent the combined action of the two curls,

A := c

(
0 −d1

(d1)∗ 0

)
= c

(
0 − curl

curl 0

)
. (2.5)

It is an unbounded operator from W := W 2 ×W 1 into itself, defined on V := D(A) = V ∗2 × V 1, i.e.,
V = H(curl; Ω) × H0(curl; Ω). Equipped with metallic boundary conditions E × n = 0 on ∂Ω, the
Maxwell system (2.1) then rewrites as

∂tU −AU = −F (2.6)

with U = (cB,E)T and F = (0, ε−1
0 J)T . The well-posedness of this equation follows from standard

arguments: A being skew-symmetric in the sense where A∗ = −A, it generates a contraction semi-
group of class C0 [139, section IX.8] and the Cauchy problem (2.6) is studied using classical tools

20



2.2. Conforming approximation with mixed finite elements

[117]. For instance if F ∈ C1([0, T ];W), then (2.6) equipped with an initial data U0 ∈ V has a unique
solution U ∈ C0([0, T [;V).

The full Maxwell system also involves Gauss laws, which follow by formally taking the divergence
of the Ampère and Faraday equations (2.1) and can be seen as an admissibility criterion for the general
solutions to (2.6). Thus, the electric Gauss law

divE =
1

ε0
ρ (2.7)

represents a condition to be satisfied between the E field and the charge density ρ. It actually is a
condition on the initial data, since it holds at any time t if it holds at t = 0, and if the sources satisfy
the “continuity” equation

∂tρ+ divJ = 0

which expresses the fact that the current density J is the flux of the charge density ρ. A similar
reasoning applies for the magnetic Gauss law, for which the sources are always zero in principle. In
3D the latter reads divB = 0, and in the 2D model considered here this relation degenerates intoffl

ΩB = cst, according to the restricted sequence (2.3). Again we may write these laws in a “composite”
form,

DU = R with D =

(
d2 0
0 (d0)∗

)
=

(ffl
Ω 0
0 div

)
(2.8)

and writing R = (
ffl

ΩcB
0, ε−1

0 ρ)T the generalized charge density in this 2D model.

2.2 Conforming approximation with mixed finite elements

In the standard approach one chooses a conforming discretization V l
h ⊂ V l of the primal sequence

(2.3), on which discrete operators can be defined by a simple restriction dlh = dl|V lh . Several choices

are possible with systematic constructions described in [92, 2]. A usual choice [106, 108] consists of
taking, on a (geometrically) conforming triangulation Th of Ω,

V 0
h = Lp,0(Ω, Th)

d0
h = −grad |V 0

h−−−−−−−−−−−−−→ V 1
h = Np−1,0(Ω, Th)

d1
h = curl |V 1

h−−−−−−−−−−→ V 2
h = Pp−1(Th) (2.9)

where we have denoted

Pp−1(Th) = {v ∈ L2(Ω) : v|T ∈ Pp−1(T ), T ∈ Th} (2.10)

the space of piecewise polynomials of maximal degree p− 1 on Th,

Np−1,0(Ω, Th) = Np−1(Th) ∩H0(curl; Ω) with Np−1(T ) = Pp−1(T )2 +
(−y
x

)
Pp−1(T ) (2.11)

the (first-kind) Nédélec space equipped with homogeneous boundary conditions, and

Lp,0(Ω, Th) = Pp(Th) ∩ C0(Ω) (2.12)

the space of continuous (“Lagrange”) finite elements with homogeneous Dirichlet boundary conditions.
The space (2.11) is associated with edge-based curl-conforming degrees of freedom which we shall

not remind here (for this we refer to [18] or [[52]] for instance) but are designed to enforce the continuity
of the tangential components of the discrete fields across the edges of the mesh. In two dimensions
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Chapter 2. Compatible nonconforming approximation of the Maxwell equations

these elements can be obtained by rotating the div-conforming Raviart-Thomas elements [119] by an
angle of π/2, and their 3D extension has been proposed in [114]. These elements have been extensively
studied, see e.g. [85, 18]. In particular, it is well known that the discrete sequence (2.9) is again exact,
which is easily verified by a direct argument ([[52]], Lemma 3.2) or derived from the fact that these
spaces are a particular case of the general construction described in [2]. We may note that this
framework has been extended to other conforming spaces such as spline finite elements in [36].

The mixed finite element approximation to (2.1) based on these conforming spaces then consists
of computing (Bh,Eh) ∈ C0([0, T [;V 2

h × V 1
h ), solution to





〈∂tBh, ϕ〉+ 〈curlEh, ϕ〉 = 0 ϕ ∈ V 2
h ⊂ L2(Ω)

〈∂tEh,ϕ〉 − c2〈Bh, curlϕ〉 = − 1
ε0
〈Jh,ϕ〉 ϕ ∈ V 1

h ⊂ H0(curl; Ω)
(2.13)

where 〈·, ·〉 is the usual scalar product of L2(Ω) and Jh ∈ C0([0, T ];V 1
h ) represents an approximation

of the source term J . A common choice [106, 108, 103], [[48]] is to define this term by a simple L2

projection in the discrete space V 1
h , i.e.

〈Jh,ϕ〉 = 〈J ,ϕ〉, ϕ ∈ V 1
h . (2.14)

In Section 2.4 we will show that for the elements considered here, this choice satisfies a commuting
diagram leading to a long time stability property, but this is not always the case.

By using the embedding curlV 1
h ⊂ V 2

h , we observe that the first equation holds in a strong sense,

∂tBh + curlEh = 0 (in V 2
h ). (2.15)

In particular, we see that in 3D this approach computes a Bh field which divergence remains zero as
long as it is at initial time, with no need to compute it in a subspace of H(div; Ω).

We observe that equality (2.15) implies, by formal differentiation of the second equation in (2.13),
that the approximate field satisfies

〈∂2
tEh,ϕ〉+ c2〈curlEh, curlϕ〉 = − 1

ε0
〈∂tJh,ϕ〉 (2.16)

a formulation studied in the classical article [107].
Following the same principle it is possible to design a discrete model based on the dual sequence

(2.4). This route is taken in several works [1, 106, 130] and we also have studied it in [[52]] for the
2D case and in [[54]] in the 3D setting. The boundary conditions are then discretized in a natural
way (through the equations instead of the discrete spaces), and it is the Ampère equation (with an
approximate current) that is satisfied in a strong sense by the discrete solutions.

An important quality of the mixed discretization is that, under some conditions on the involved
spaces the evolution operator defined in (2.13),

Ah := c

(
0 −d1

h

(d1
h)∗ 0

)
= c

(
0 − curl |V 1

h

(curl |V 1
h

)∗ 0

)
: (V 2

h × V 1
h ) → (V 2

h × V 1
h ), (2.17)

is spectrally correct in the sense that its eigenmodes provide a correct approximation of those of the
exact operator A in the domain Ω. This type of properties has been studied for a long time by many
authors, see for instance [26, 19, 22, 15, 110, 56], and we can remind a synthetic version presented in
[3] under the assumptions that

• (H1) the intersection V 1 ∩ V ∗1 is dense and compact in W 1,

22



2.2. Conforming approximation with mixed finite elements

• (H2) there exists a sequence of projections πlh : W l → V l
h that are uniformly bounded in W l and

in V l with respect to h, and for which the following diagram commutes

V 0 V 1 V 2 V 3

V 0
h V 1

h V 2
h V 3

h

π0
h

d0

π1
h

d1

π2
h

d2

π3
h

d0 d1 d2

(2.18)

in the sense that dlπlh = πl+1
h dl for l ∈ {0, 1, 2}. Here we obviously set V 3

h = R.

We verify that these assumptions indeed hold: (H1) corresponds to the compact inclusion ofH0(curl; Ω)∩
H(div; Ω) in L2(Ω)2 which is inferred from [109, cor. 3.49] that establishes its 3D analog. Property
(H2) can be derived from the general construction proposed in [60, cor. 6.3] for a family of discrete
exact sequences described in [2], to which (2.9) belongs. We can then specify the approximation
property by considering an operator G which represents the inverse of curl curl on the space

X1 := (ker d1)⊥ ∩ V 1 = {u ∈ H0(curl; Ω) : divu = 0} (2.19)

where the ⊥ exponent denotes the L2 orthogonal complement. Specifically, G : L2(Ω)2 → X1 is
defined by

〈curlGu, curlv〉 = 〈u,v〉, v ∈ X1. (2.20)

It is a compact and self-adjoint operator from L2(Ω)2 into itself, and as such it has a countable set of
nonnegative eigenvalues which only accumulate at 0: thus we may write

0 < λ1 ≤ λ2 ≤ · · ·

the inverse of the positive eigenvalues, writing several times multiples eigenvalues. We denote by
(ui)i≥1 an orthonormal sequence of associated eigenvectors, and we call Ei the space spanned by
ui. Following [20] we then write m(N) the dimension of the space generated by the first N distinct
eigenvalues: this space, E1 + · · · + Em(N), does not depend on the choice of the ui’s. We then show
that the nonzero eigenmodes of A, of the form −iω given its skew-symmetric nature, are in bijection
with those of G: we have

A
(
cb
e

)
= −iω

(
cb
e

)
⇐⇒





Ge =
(ω
c

)−2
e

b =
1

iω
curl e.

(2.21)

To characterize the eigenmodes of the conforming discretization (2.13), (2.17), we then approximate
X1 by the discrete space

X1
h := (ker d1

h)⊥ ∩ V 1
h = {u ∈ V 1

h : 〈u,gradϕ〉 = 0, ϕ ∈ V 0
h }, (2.22)

and we consider Gh : L2(Ω)2 → X1
h defined by

〈curlGhu, curlv〉 = 〈u,v〉, v ∈ X1
h. (2.23)

Again it is a compact and self-adjoint operator from L2(Ω)2 into itself, and we can order the inverse
of the nonzero eigenvalues as

0 < λ1,h ≤ λ2,h ≤ · · ·
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Chapter 2. Compatible nonconforming approximation of the Maxwell equations

by writing again several times the multiple eigenvalues. As above, we denote by (ui,h)i≥1 an orthonor-
mal sequence of associated eigenvectors, and we let Ei,h be the space spanned by ui,h. Again these
eigenmodes can be associated one-to-one with those of Ah, via an equivalence identical to (2.21).

The analysis developed in [3] then allows to establish the convergence

‖G−Gh‖L(L2(Ω)2,L2(Ω)2) → 0,

and the perturbation theory of linear operators guarantees that the approximate eigenmodes (λi,h,ui,h)i≥1

converge towards the exact ones (λi,ui)i≥1 in the sense of Definition 2.1 in [16]: for all ε > 0 and all
N ≥ 1, there exists h0 > 0 such that for all h ≤ h0 we have

max
1≤i≤m(N)

|λi − λi,h| ≤ ε and gap

(
m(N)∑

1=i

Ei,

m(N)∑

1=i

Ei,h

)
≤ ε, (2.24)

the gap between the two spaces being classically defined as

gap(E,F) := max

(
sup
u∈E
‖u‖≤1

inf
v∈F
‖u− v‖, sup

v∈F
‖v‖≤1

inf
u∈E
‖u− v‖

)
. (2.25)

2.3 Conga (conforming/nonconforming Galerkin) discretization

An objective that we had set for ourselves was to extend approximations of the form (2.13) to fully
discontinuous finite element spaces while preserving most of the above properties, namely:

(i) in the 3D version, the ability to compute an exactly divergence-free Bh field,

without computing it in a div-conforming discrete space,

(ii) the spectral correctness of the discrete evolution operator Ah without adding dissipative terms,

(iii) high order error estimates that are stable over long time ranges.
(2.26)

Because it may double the number of degrees of freedom on the mesh interfaces, the use of fully
discontinuous spaces increases the size of the discrete problems (and often makes the preconditioning
more difficult, see e.g. [[31, 32]]) but it also has several advantages. First, it can provide better (non-
oscillating) approximations when the exact solutions themselves are known to be discontinuous across
some given interface. Second, it improves the locality of the computations which is a need in parallel
codes to reduce the time-consuming interprocessor communications. When a time-dependent problem
such as (2.1) is solved with an explicit time scheme, the mass matrices must be inverted at each time
step. In a conforming method like (2.13), the basis functions of V 1

h are generally supported in more
than one cell and the inversion is thus a nonlocal operation, which may induce costly computations
(e.g. on 3D unstructured meshes). Several authors have investigated mass lumping techniques to
alleviate this burden, however no clear solution has been offered yet for general meshes. With fully
discontinuous spaces the mass matrices are block diagonal which makes the inversion purely local, if
not trivial.

The common approach with such spaces consists of using discontinuous Galerkin methods (see e.g.
[80, 96]) which unfortunately, do not possess the desired properties: to be spectrally correct they seem
to require dissipative terms [89, 134, 35, 29] and the long time stability of the problem with sources
requires to correct the fields using divergence cleaning techniques, which amount to solve additional
parabolic or hyperbolic equations, see for instance [112, 97, 129].
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2.3. Conga (conforming/nonconforming Galerkin) discretization

For this reason we have proposed a discretization in which the nonconforming spaces are incorpo-
rated in such a way that the geometric structure of the conforming approximation (2.13) is preserved.
The resulting method has been named Conga in [[54]], for “COnforming/Nonconforming GAlerkin”.

The basic idea is to start from a reference conforming formulation and relax the interelement
continuity constraints of the discrete spaces to use only fully discontinuous elements. Since V 2

h is
already discontinuous, we only need one new space Ṽ 1

h 6⊂ H0(curl; Ω), and it will be convenient to
assume that it satisfies

V 1
h ⊂ Ṽ 1

h 6⊂ V 1.

In the framework of (2.9), it appears in our analysis that the natural choice is to consider a broken
Nédélec space

Ṽ 1
h := Np−1(Th) = {u ∈ L2(Ω)2 : u|T ∈ Np−1(T ), T ∈ Th}. (2.27)

We note that it is also possible to use for Ṽ 1
h a space of standard piecewise polynomials such as

Pp−1(Th)2, and in this case the reference conforming sequence should involve the second-kind Nédélec
space [115] for V 1

h , see [[53]], Rem. 4.5.

The second ingredient is a bounded projection on the conforming space,

P1
h : L2(Ω)2 → V 1

h ⊂ Ṽ 1
h , (P1

h)2 = P1
h, (2.28)

which will allow a natural extension of the method to discontinuous spaces. We ask that this projection
preserves the first m ≥ 1 moments on each cell,

〈(P1
h − I)u,v〉 = 0, u ∈ L2(Ω)2, v ∈ Pm−1(Th)2,

so that the adjoint operator approximates the identity

(P1
h)∗u→ u, h→ 0, (2.29)

for all u ∈ L2(Ω)2. Since the discontinuous space Ṽ 1
h is obtained by restricting the conforming basis

functions of V 1
h on the cells of Th, it is natural to define its degrees of freedom the same way, as the

restriction of the conforming ones to the individual cells. A convenient projector is then obtained
by averaging the broken degrees of freedom coming from adjacent cells, and it will be stable in L2 if
the conforming degrees in V 1

h are designed by integration against local polynomials, inferred from the
local conforming basis by duality, as described in [77]. Applying P1

h on Ṽ 1
h is then a local procedure,

and an almost trivial one. We refer to [[53]] for a detailed presentation.

The Conga approximation associated to (2.13) then consists of computing (Bh,Eh) ∈ C0([0, T ];V 2
h×

Ṽ 1
h ) solutions to





〈∂tBh, ϕ〉+ 〈curlP1
hEh, ϕ〉 = 0 ϕ ∈ V 2

h ⊂ L2(Ω)

〈∂tEh, ϕ̃〉 − c2〈Bh, curlP1
hϕ̃〉 = − 1

ε0
〈Jh, ϕ̃〉 ϕ̃ ∈ Ṽ 1

h 6⊂ H0(curl; Ω)
(2.30)

where Jh again denotes a discrete version (now in Ṽ 1
h ) of the source term J . By contrast to the

conforming case, we will see that an L2 projection is not a proper option to define Jh here, and should
be replaced by an approximation operator involving the conforming projection P1

h.

The first objective listed in (2.26) readily follows from (2.30): using the embedding curlP1
hṼ

1
h ⊂ V 2

h ,
we indeed see that the first equation holds again in strong sense in V 2

h ,

∂tBh + curlP1
hEh = 0. (2.31)
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Chapter 2. Compatible nonconforming approximation of the Maxwell equations

In particular (and when it makes sense, e.g. in 3D), the discrete Bh field will be exactly divergence
free as long as it is initially.

And as in the conforming case, we observe that by differentiating in time the second equation in
(2.30) and using (2.31) we find

〈∂2
tEh, ϕ̃〉+ c2〈curlP1

hEh, curlP1
hϕ̃〉 = − 1

ε0
〈∂tJh, ϕ̃〉 (2.32)

a new formulation that we can compare with (2.16).

Following the same path than for the conforming discretization, it is also possible to establish the
second property listed in (2.26), namely that the Conga evolution operator

Ãh := c

(
0 −d1

hP1
h

(d1
hP1

h)∗ 0

)
= c

(
0 − curlP1

h|Ṽ 1
h

(curlP1
h|Ṽ 1

h
)∗ 0

)
: (V 2

h × Ṽ 1
h ) → (V 2

h × Ṽ 1
h ) (2.33)

is spectrally correct. As before we begin by specifying an appropriate discretization of the space X1,
(2.19), which relies on the identification of a new exact sequence involving the nonconforming space
Ṽ 1
h . By using the properties of the conforming exact sequence (2.9) and those of the conforming

projection (2.28), we easily verify the key identity

ker(d1
hP1

h|Ṽ 1
h

) = ker d1
h ⊕ ker(P1

h|Ṽ 1
h

) = d0
hV

0
h ⊕ (I − P1

h)Ṽ 1
h , (2.34)

from which we infer that the following sequence, although nonconforming, is again exact [[42]]

Ṽ 0
h := V 0

h × Ṽ 1
h

d̃0
h−−−→ Ṽ 1

h

d̃1
h = d1

hP1
h|V 1

h−−−−−−−−−−−→ V 2
h . (2.35)

Here Ṽ 0
h plays the role of a new discretization for the space V 0 (here H1

0 ), that can be said noncon-
forming in the sense that Ṽ 0

h 6⊂ V 0. We note that it involves continuous finite elements, however none
of them will appear in the resulting computations. The corresponding discretization for the operator
d0 (here the gradient), induced by (2.34), is defined as

d̃0
h : Ṽ 0

h 3 (ϕ, ṽ) 7→ d0
hϕ+ (I − P1

h)ṽ. (2.36)

i.e., d̃0
h(ϕ, ṽ) = gradϕ+ (I − P1

h)ṽ. We then approximate the space X1 = (ker d1)⊥ ∩ V 1 with

X̃1
h := (ker d1

hP1
h)⊥ ∩ Ṽ 1

h = {ũ ∈ Ṽ 1
h : 〈ũ,gradϕ〉+ 〈ũ, (I − P1

h)ṽ〉 = 0, ϕ ∈ V 0
h , ṽ ∈ Ṽ 1

h }, (2.37)

and the nonconforming discretization of the eigenvalue problem (2.20) takes the form of an operator
G̃h : L2(Ω)2 → X̃1

h, defined by

〈curlP1
hG̃hu, curlP1

hv〉 = 〈u,v〉, v ∈ X̃1
h. (2.38)

Again this is a compact and self-adjoint operator from L2(Ω)2 in itself, and we denote the inverse of
its nonzero eigenvalues by

0 < λ̃1,h ≤ λ̃2,h ≤ · · ·
with a repetition of the multiple eigenvalues. We let (ũi,h)i≥1 denote an orthonormal sequence of
associated eigenvectors, and Ẽi,h the space spanned by ũi,h. These eigenmodes can be put in bijection
with those of Ãh using a characterization similar to (2.21). By using the properties (2.28)-(2.29) of
the projection P1

h and the relations of the discrete exact sequences, we then prove the following result.
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2.4. Abstract criteria for the compatible approximation of the sources

Theorem 2.1 ([[54]]) The nonconforming (Conga) approximation G̃h of the inverse of curl curl de-
fined by (2.38) can be expressed as a function of its conforming analog (2.23), as

G̃h = PX̃1
h
GhPX̃1

h

where PX̃1
h

is the L2 projection in the discontinuous space (2.37). Moreover this operator converges

towards the exact inverse (2.20),

‖G− G̃h‖L(L2(Ω)2,L2(Ω)2) → 0, h→ 0.

In particular, the discrete eigenmodes (λ̃i,h, ũi,h)i≥1 of the Conga operators G̃h and Ãh converge to-
wards the exact modes (λi,ui)i≥1 in the sense of (2.24).

In R2, we have shown [[53]] that the Conga operator (2.33) coincides with the standard DG dis-
cretization with centered fluxes (without penalty terms), which spectral correctness has been studied
and numerically verified in [89] but not formally proven, up to our knowledge. In the 3D case the
Conga discretization differs from the DG ones, which are known to be not spectrally correct [89, 134]
unless penalty terms are introduced for the jumps (as demonstrated in [35, 34]) or interface conditions
are imposed in the solutions [29], which would forbid the use of fully discontinuous functions. In this
direction we can cite the work [91] where it is proven that such interface conditions are necessary
for the approximation of an elliptic problem (a Poisson equation) in mixed form, when the scheme
does involve ant coupling of the adjacent cells through its discrete operators. In a sense, the Conga
discretization thus allows to realize such a coupling without penalization.

We note that spectral correctness is an essential ingredient for the performances of the associated
evolution problem. This is rather clear since some spurious (resp. correct) modes could (resp. could
not) propagate with a spectrally incorrect operator, and this has been specified with a priori uniform
error estimates in [21]. The absence of penalty terms is an advantage in the treatment of evolu-
tion problems, where it amounts to an absence of numerical dissipation which in turn offers better
conservation properties.

2.4 Abstract criteria for the compatible approximation of the sources

The long time stability of the numerical methods for the Maxwell system (2.1) is connected to their
conservation properties regarding the divergence constraints. Indeed we have seen that at the con-
tinuous level, the Gauss laws were preserved by the Ampère and Faraday equations, which is easily
verified by taking the divergence of the latter. When the numerical methods do not preserve this
principle, which is often the case with DG schemes, they are likely to develop long time instabilities
by accumulation of small errors [129] even when their convergence as h → 0 is established with high
order. To avoid such instabilities, the usual approach is to introduce dissipative terms [88, 89] or to
correct the fields using approximate resolutions of the Gauss laws first introduced for finite difference
schemes [24, 105, 104] and then generalized to other methods under the form of elliptic, parabolic or
hyperbolic correction schemes [111, 96, 9, 61], see also [[51]] for a recent review on such techniques.

Here we propose to specify some compatibility relations that the numerical sources should satisfy
in order to remove these instabilities, without resorting to numerical dissipation or field correction
techniques. As we will see, these compatibility criteria are naturally verified by conforming mixed
formulations, and for nonconforming Conga discretizations they can implemented using simple and
local operations.

The principle of compatible discretizations is to preserve the relations that guarantee the exact
conservation of the Gauss laws. Here we have in mind the fundamental identity div curl = 0, but we
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Chapter 2. Compatible nonconforming approximation of the Maxwell equations

will see that the latter first needs to be properly expressed in a given discrete setting, since it only
makes sense as one ingredient in a whole system. To specify this we consider a space discretization of
the Maxwell equations (2.1), of the form





∂tBh + curlhEh = 0

∂tEh − c2 curlhBh = − 1

ε0
Jh.

(2.39)

To reproduce the identity div curl = 0 in this setting consists of identifying a discrete divergence
operator divh such that

divh curlh = 0. (2.40)

It is then clear that system (2.39) will preserve a discrete Gauss law of the form

divhEh =
1

ε0
ρh (2.41)

as long as the discrete sources satisfy the associated continuity equation

∂tρh + divh Jh = 0, (2.42)

and a similar reasoning applies to the magnetic Gauss law. It is not clear, however, whether (2.41)
is strong enough to guarantee the long time stability of the discrete solutions. For that purpose
it is necessary that (2.41) allows to characterize the “discrete irrotational” part of the electric field,
i.e., the fields in ker curlh, indeed their temporal growth is not controlled by the evolution equation
(2.39). Equation (2.42) may then be used as a practical criterion to identify the source approximation
operators that are compatible with the discretization (2.39). We then decompose the last objective in
our list (2.26) as follows.

(iii-a) in an abstract setting, identify which properties of the discrete differential operators

and of the source approximation operators guarantee a long time stability,

(iii-b) for several schemes (conforming or not), identify source approximation operators that

meet these criteria,

(iii-c) study the numerical implementation of the resulting schemes in the case where the sources

are provided by a particle solver.
(2.43)

In the particular case where the exact sources are given, it is possible to realize a simplified version of
this program which does not involve a discrete divergence. To this end, one uses the exact sequence
(2.4) and a standard property of adjoint operators, see [30, Cor. 2.18], to write that ker(d0)∗ =
(Im d0)⊥ = (d0V 0)⊥ = (ker d1)⊥, where the ⊥ exponent denotes the orthogonal complement in the
natural L2 space W l. It follows that

kerD = R⊥ × ker(d0)∗ = (ker(d1)∗)⊥ × (ker d1)⊥ = (kerA)⊥. (2.44)

Thus, in the absence of sources we see that the Gauss law (2.8) constrains the general solutions to the
evolution equation (2.6) to be orthogonal to the irrotational fields, which corresponds to the genuinely
oscillating modes of the operator A. According to its skew-symmetric nature we can indeed decompose
the full L2 space W = W 2 ×W 1 as

W = kerA ⊕ (kerA)⊥ with

{
kerA = {U ∈ S : ∂tU = 0}
(kerA)⊥ = Span({U ∈ S : ∂tU = −iωU, ω 6= 0})

(2.45)
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2.4. Abstract criteria for the compatible approximation of the sources

where S denotes the set of solutions to the homogeneous Ampère-Faraday system (2.6).

If the exact source is given we may then consider semi-discrete schemes for (2.6) of the form

∂tUh −AhUh = −ΠhF (2.46)

where Ah : Vh → Vh is a skew-symmetric operator that approximates A on a discrete space Vh ⊂ W,
which may correspond to either (2.17) or (2.33), and Πh is an approximation operator on Vh that
converges to the identity as h→ 0.

In [[54]] we have proposed a criterion to identify schemes of the form (2.46) that are compatible
with the orthogonal constraint expressed by the Gauss laws, without explicitly involving the discrete
version of those laws. In the absence of sources, this constraint reads U ∈ (kerA)⊥ and a discrete
analog is Uh ∈ (kerAh)⊥, which again can be interpreted as the absence of stationary modes relative
to Ah, following a decomposition similar to (2.45) for this skew-symmetric operator. In the presence
of sources, a natural extension of that constraint is to ask that, when the exact solution contains
no stationary modes for A, then the approximate solution contains no stationary modes for Ah. We
observe that such a requirement will be met as long as the operator Πh satisfies

Z ∈ (kerA)⊥ =⇒ ΠhZ ∈ (kerAh)⊥

or equivalently, A being skew-symmetric, closed and with dense domain, as long as Πh(ImA) ⊂ ImAh.
This property essentially amounts to a commuting diagram.

Definition 2.1 ([[54]]) The semi-discrete scheme (2.46) is called Gauss-compatible on a space V̂ ⊂
V if there exists an auxiliary approximation operator Π̂h : V̂ → Vh which converges pointwise to the
identity as h→ 0, and such that

ΠhA = AhΠ̂h on V̂, (2.47)

where A is the exact evolution operator (2.5).

Here V̂ typically represents the regularity required for the definition of the approximation operators.
Relation (2.47) indeed corresponds to a commuting diagram,

V̂ AV̂

Vh Vh

Π̂h

A

Πh

Ah

(2.48)

and it easily leads to a priori error and long time stability estimates.

Theorem 2.2 ([[54]], Th. 3.2) If the semi-discrete scheme (2.46) is Gauss-compatible on some space
V̂, then the approximate solution satisfies

‖(Uh − Π̂hU)(t)‖ ≤ ‖(Uh − Π̂hU)(0)‖+

ˆ t

0
‖(Πh − Π̂h)∂tU(s)‖ds (2.49)

for any exact solution U ∈ C0([0, T ]; V̂) of the time-dependent Maxwell equations (2.6).
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Chapter 2. Compatible nonconforming approximation of the Maxwell equations

Proof. The argument is only a few lines and can be given here. By applying Πh to the Maxwell
system (2.6) and using the commuting diagram (2.47), we obtain

∂tΠhU −AhΠ̂hU = Πh(∂tU −AU) = −ΠhF = ∂tUh −AhUh,

so that Π̂hU − Uh is the solution of an evolution equation with source term (Π̂h −Πh)∂tU ,

∂t(Π̂hU − Uh)−Ah(Π̂hU − Uh) = (Π̂h −Πh)∂tU.

The estimate (2.49) is then inferred from the contraction properties of the semi-group generated by
Ah.

The following long time stability result is a straightforward consequence of the above estimate.

Corollary 2.2 (long time stability) If Ū = Ū(0) ∈ V̂ is a steady state solution to (2.6), then
Uh := Π̂hŪ is a steady state solution to (2.46). Moreover, the estimate

‖(Uh − Π̂hŪ)(t)‖ ≤ ‖(Uh − Π̂hŪ)(0)‖, t ≥ 0

is valid for any initial data Uh(0) ∈ Vh.

In the general case where we are only given an approximate source Fh we must consider semi-
discrete schemes of the form

∂tUh −AhUh = −Fh. (2.50)

Since the previous approach no longer applies we must go back to the announced program, which
consists of identifying sufficient conditions under which a discrete Gauss law (2.41) allows to control
the temporal growth of the field Eh. For this we introduce the following definition, in which the
discrete spaces V l

h are not necessarily those from the sequence (2.9), nor even subspaces of the V ls in
(2.3).

Definition 2.3 ([[52]], Def. 2.7 and 2.9) We say that a space discretization of the Maxwell equa-
tions (2.1) of the form





∂tBh + curlhEh = 0

∂tEh − c2 curlhBh = − 1

ε0
Jh

with





curlh : V 1
h → V 2

h

curlh = (curlh)∗ : V 2
h → V 1

h

(2.51)

(and with general spaces V l
h that are not necessarily conforming) completed by discrete Gauss laws





divhEh =
1

ε0
ρh

ffl
ΩBh =

ffl
ΩB

0
h

with





divh : V 1
h → V 0

hffl
Ω : V 2

h → R
(2.52)

is structure-preserving if, letting gradh := −(divh)∗ : V 0
h → V 1

h , we have the following properties.

• Exact sequence: the sequence

V 0
h

gradh−−−−−→ V 1
h

curlh−−−−→ V 2
h

ffl
Ω−−−−→ R (2.53)

is exact in the sense that gradh V
0
h = ker curlh and curlh V

1
h = ker(

ffl
Ω|V 2

h
).
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2.4. Abstract criteria for the compatible approximation of the sources

• Stability: the operators involved in (2.53) satisfy Poincaré-Friedrichs inequalities

‖u‖ ≤ cP ‖gradh u‖, u ∈ V 0
h ∩ (ker gradh)⊥

‖u‖ ≤ cP ‖curlh u‖, u ∈ V 1
h ∩ (ker curlh)⊥

‖u‖ ≤ cP ‖
ffl

Ωu‖, u ∈ V 2
h ∩ (ker

ffl
Ω)⊥

(2.54)

with a constant cP independent of h.

Again we note that the presence of the canonical injection ι : R→ L2(Ω) and its adjoint
ffl

Ω is due
to the degenerate form of the magnetic Gauss law in this 2D model. In 3D these operators should be
replaced by a discrete gradient and a discrete divergence defined as its adjoint, differing a priori from
those already involved in the above definition.

We also observe that properties (2.53)-(2.54) are equivalently expressed on the dual sequence

R ι−−−→ V 2
h

curlh−−−−−→ V 1
h

divh−−−→ V 0
h .

As for the structure underlying Definition 2.3, it may be clearer when these properties are formulated
on the composite operators

Ah = c

(
0 − curlh

curlh 0

)
and Dh =

(ffl
Ω 0
0 divh

)
.

Then the exact sequence property (2.53) amounts to the orthogonality of the kernels, kerDh =
(kerAh)⊥, and the uniform estimates (2.54) amount to the stability of the composite operators,

‖Z‖ ≤ cP ‖DhZ‖, Z ∈ (kerDh)⊥ and ‖Z‖ ≤ cP ‖AhZ‖, Z ∈ (kerAh)⊥.

As will be verified soon (and may be clear already from the latter form) the above definition provides a
convenient framework for long-time stability estimates. The corresponding discrete continuity equation
(2.42) can then be used as a practical criterion for the approximate source. Following the usual
terminology [132], we introduce another definition.

Definition 2.4 ([[52]], Def. 2.12) We say that a space discretization of the Maxwell equations (2.1)
of the form (2.51)-(2.52) is charge-conserving if it is structure-preserving in the sense of Defini-
tion 2.3 and if the approximate source verifies the associated continuity equation,

∂tρh + divh Jh = 0. (2.55)

We are then in position to state two estimates: under the sole assumption that a scheme is charge-
conserving, which corresponds to Definition 2.4 (which includes the structure-preserving property),
we have a long time stability result, see [[52]], Th. 2.14. Under an additional commuting diagram
assumption, we also have an error estimate involving the accuracy of the approximate source.

Theorem 2.3 ([[52]], Th. 2.15) If the semi-discrete scheme (2.51)-(2.52) is charge-conserving in the
sense of Definition 2.4 and if the associated evolution operator Ah satisfies a commuting diagram
relation (2.47) for approximation operators Πh and Π̂h, then the solution Uh = (cBh,Eh)T of (2.51)
satisfies the discrete Gauss laws (2.52) and the a priori estimate

‖(Uh−ΠhU)(t)‖ ≤ cP
(
‖Ah(U0

h − Π̂hU
0)‖+ ‖F 0

h −ΠhF
0‖+ ‖(Rh−DhΠhU)(t)‖+ ‖(Fh−ΠhF )(t)‖

+ ‖
(
Ah(Πh − Π̂h)U(t)‖+

ˆ t

0
‖∂t
(
Ah(Πh − Π̂h)U + (Fh −ΠhF )

)
(s)‖ds

)

with Rh = (c
ffl

ΩB
0
h, ε
−1
0 ρh)T and Fh = (0, ε−1

0 Jh)T . Here cP is the constant from (2.54).
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Chapter 2. Compatible nonconforming approximation of the Maxwell equations

2.5 Application to the conforming and Conga discretizations

The following results show that the abstract framework developed in the previous section applies
naturally to the mixed conforming and Conga formulations presented in the sections 2.2 and 2.3, up
to a proper choice of the source approximation operator. Consistent with the above choice, we present
some results in 2D, which mostly corresponds to those of the article [[53]]. The 3D case is addressed
in the article [[54]]. We finally assume that the domain Ω has no reentrant corners, so that the exact
solutions can be assumed smooth, at least in a first stage, see e.g. [4, 5].

Theorem 2.4 The conforming discretization (2.13) associated with an orthogonal projection for the
current source Jh = PV 1

h
J , characterized by (2.14), is Gauss-compatible on the product space V̂ =

V ∗2 × (H1(Ω)2 ∩ V 1).

The complete statement of this theorem, given in [[53]], specifies the approximation operators involved
in Definition 2.1. They write

Πh =

(
PV 2

h
0

0 PV 1
h

)
and Π̂h =

(
PV 2

h
0

0 πcurl
h

)

where πcurl
h denotes the canonical interpolation for the edge elements. The approximation properties

of these operators allow us to derive an explicit form for the a priori error estimate (2.49), as

‖(B −Bh)(t)‖+ ‖(E −Eh)(t)‖ . ‖Bh(0)− PV 2
h
B(0)‖+ ‖Eh(0)− πcurl

h E(0)‖

+ hm
(
|B(0)|m +

ˆ t

0
|∂tB(s)|m ds

)
+ hm

′
(
|E(0)|m′ +

ˆ t

0
|∂tE(s)|m′ ds

)

for 0 ≤ m ≤ p, 1 ≤ m′ ≤ p, and with a constant independent of h and t.

Theorem 2.5 The Conga discretization (2.30) associated with a discontinuous approximate current
Jh ∈ Ṽ 1

h defined by the relations

〈Jh,ϕ〉 = 〈J ,P1
hϕ〉, ϕ ∈ Ṽ 1

h , (2.56)

i.e., Jh = (P1
h)∗J , is Gauss-compatible on the product space V̂ := V ∗2 × (H1(Ω)2 ∩ V 1).

We observe that computing the approximate current is local with the latter formula, as is the projection
P1
h and the inversion of the mass matrix in the space Ṽ 1

h . Again the complete statement of this theorem,
given in [[53]], specifies the approximation operators involved in Definition 2.1. They write

Πh =

(
PV 2

h
0

0 (P1
h)∗

)
and Π̂h =

(
PV 2

h
0

0 πcurl
h

)

where πcurl
h denotes again the canonical interpolation of the edge elements. Again the approximation

properties of these operators allow us to derive an explicit form for the a priori error estimate (2.49),
as

‖(B −Bh)(t)‖+ ‖(E −Eh)(t)‖ . ‖Bh(0)− PV 2
h
B(0)‖+ ‖Eh(0)− πcurl

h E(0)‖

+ hm
(
|B(0)|m +

ˆ t

0
|∂tB(s)|m ds

)
+ hm

′
(
|E(0)|m′ +

ˆ t

0
(|∂tE(s)|m′) ds

)
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2.6. Application to the coupling with a particle method

for 0 ≤ m ≤ p, 1 ≤ m′ ≤ p− 1, and with a constant independent of h and t.
Our unified analysis allows us to recover known convergence orders for the conforming finite element

schemes (see, e.g. [107]) and nonconforming as well ([80]). As for the long time stability results, they
seem to be new for unpenalized nonconforming methods.

Lemma 2.5 The conforming discretization (2.13) associated to the discrete Gauss laws (2.52) defined
by

(divh)∗ := −grad : V 0
h → V 1

h (2.57)

see (2.9), is structure-preserving in the sense of Definition 2.3.

Lemma 2.6 The Conga discretization (2.30) associated to the discrete Gauss laws (2.52) defined by




gradh : (V 0
h × Ṽ 1

h ) 3 (φ, ũ) 7→ gradφ+ (I − P1
h)ũ ∈ Ṽ 1

h

divh := −(gradh)∗ : Ṽ 1
h → (V 0

h × Ṽ 1
h )

(2.58)

see (2.9), is structure-preserving in the sense of Definition 2.3.

We observe that with the operator (2.57) involved in the conforming case, the proper discrete
Gauss law (2.52) takes a standard weak form in finite elements,

−〈Eh(t),gradφ〉 =
1

ε0
〈ρh(t), φ〉, φ ∈ V 0

h . (2.59)

It is less standard in the case of the Conga discretization: with (2.58), it takes the form

−〈Eh(t),gradφ+ (I − P1
h)ũ〉 =

1

ε0
〈ρh(t), φ〉 (φ, ũ) ∈ V 0

h × Ṽ 1
h . (2.60)

2.6 Application to the coupling with a particle method

We now consider the case where the sources are given by a particle method under the form of N
(macro) particles with positions xκ(t) and velocities vκ(t) = x′κ(t), κ = 1, . . . N , pushed forward along
some characteristic trajectories. By associating to each particle a charge qκ and a shape function ζε
of scale ε ≥ 0 (either the Dirac measure if ε = 0, or a smoothed version if ε > 0, see e.g. [96]), we
define the corresponding charge and current densities as

ρN (t,x) :=

N∑

κ=1

qκζε(x− xκ(t)) and JN (t,x) :=

N∑

κ=1

qκvκ(t)ζε(x− xκ(t)). (2.61)

Since vκ(t) = x′κ(t), we verify that these sources satisfy an exact continuity equation ∂tρN+divJN = 0,
valid in a measure’s sense in the case of point particles.

Theorem 2.6 Let ε > 0. The conforming (2.13) and Conga (2.30) discretizations associated with the
discrete Gauss laws (2.52) defined by the respective operators (2.57) and (2.58) are charge-conserving
in the sense of Definition 2.4 when the discrete sources are defined from (2.61) by

ρh(t) := PV 0
h
ρN (t) ∈ V 0

h and Jh(t) := PV 1
h
JN (t) ∈ V 1

h (2.62)

for the conforming discretization of (2.13), and

ρh(t) := PV 0
h
ρN (t) ∈ V 0

h and Jh(t) := (P1
h)∗JN (t) ∈ Ṽ 1

h (2.63)

for the Conga (discontinuous) discretization (2.30).
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Chapter 2. Compatible nonconforming approximation of the Maxwell equations

Here PV 0
h

and PV 1
h

are the L2 projections over the H1 and H(curl)-conforming spaces, hence their

application requires to solve a global system. By contrast, applying the approximation by (P1
h)∗ is

local to each cell, just like it has been verified on (2.56).

In the article [[49]] we have proposed a high order implementation of similar operators applied to
smooth particles, for discretizations of the dual sequence (2.4), and we have verified their numerical
stability properties.

To extend these results to the case of point particles, it is convenient to consider a time discretiza-
tion of the Maxwell solvers. Using an explicit leap-frog scheme for instance, the conforming method

(2.13) computes fields (B
n+1/2
h ,En

h ) ∈ V 2
h × V 1

h according to





B
n+ 1

2
h −Bn− 1

2
h + ∆t curlEn

h = 0 (in V 2
h )

〈En+1
h −En

h ,ϕ〉 − c2∆t〈Bn+ 1
2

h , curlϕ〉 = −∆t
ε0
〈Jn+ 1

2
h ,ϕ〉 ϕ ∈ V 1

h

(2.64)

and the Conga method (2.30) computes (B
n+1/2
h ,En

h ) ∈ V 2
h × Ṽ 1

h according to





B
n+ 1

2
h −Bn− 1

2
h + ∆t curlP1

hE
n
h = 0 (in V 2

h )

〈En+1
h −En

h , ϕ̃〉 − c2∆t〈Bn+ 1
2

h , curlP1
hϕ̃〉 = −∆t

ε0
〈Jn+ 1

2
h , ϕ̃〉 ϕ̃ ∈ Ṽ 1

h .

(2.65)

In [[48]] we have shown that a current J
n+1/2
h obtained by an orthogonal projection in the conforming

space V 1
h of the time average of the particle current,

〈Jn+ 1
2

h ,ϕ〉 =

〈ˆ tn+1

tn
JN (τ)

dτ

∆t
,ϕ

〉
=

N∑

κ=1

qκ

ˆ tn+1

tn
vκ(τ) ·ϕ(xκ(τ))

dτ

∆t
, ϕ ∈ V 1

h , (2.66)

is well defined, and that it verifies the associated discrete continuity equation,

〈Jn+ 1
2

h ,gradφ〉 =
1

ε0
〈 1

∆t
(ρn+1
h − ρnh), φ〉, φ ∈ V 0

h

where 〈ρnh, φ〉 = 〈ρN (tn), φ〉. Similarly, a discontinuous current J
n+1/2
h obtained by the approximation

(P1
h)∗,

〈Jn+ 1
2

h , ϕ̃〉 =

〈ˆ tn+1

tn
JN (τ)

dτ

∆t
,P1

hϕ̃

〉
=

N∑

κ=1

qκ

ˆ tn+1

tn
vκ(τ) · (P1

hϕ̃)(xκ(τ))
dτ

∆t
, ϕ̃ ∈ Ṽ 1

h (2.67)

allows to verify the discrete continuity equation (2.55) corresponding to the Conga formulation, i.e.,

〈Jn+ 1
2

h ,gradφ+ (I − P1
h)ũ〉 =

1

ε0
〈 1

∆t
(ρn+1
h − ρnh), φ〉, (φ, ũ) ∈ V 0

h × Ṽ 1
h .

We may specify that the reason why the products (2.66) and (2.67) are well defined (and stable
with respect to the particle trajectories) is that the test functions H(curl) have continuous tangential
components across the mesh edges. Finally, when the trajectories are piecewise polynomials, it is
possible to directly estimate these products by using a few Gauss points in each cell with a current
contribution, which is also fully detailed in [[48]].
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2.7 Link with a standard DG discretization

We can show that in 2D the Conga discretization described in Section 2.3 coincides with the DG
formulation with centered fluxes (not dissipative) studied e.g., in [80]. The argument is simple enough
to be reproduced here. We use classical notations ([35]) for the tangential jumps and averages across
the interelement edges, i.e.

[[u]]e := (n−e ×u|T− +n+
e ×u|T+)|e and {{u}}e :=

1

2
(u|T− +u|T+))|e for e ∈ Eh \ EBh (2.68)

whether e is an interior edge (shared by two cells T± = T±(e) with outgoing normal vectors n±e ), or

[[u]]e := (n−e × u|T−)|e and {{u}}e := (u|T−)|e for e ∈ EBh . (2.69)

whether e is a boundary edge (carried by a single cell T− = T−(e), of outgoing normal n−e ). For
a scalar field u the definitions are rigorously the same, with the convention that in 2D the product
n × u often denotes the vector (nyu,−nxu)t. The curl operators involved in the flux centered DG
discretization write then





〈curlDG
h u, v〉 =

∑

T∈Th
〈u, curl v〉T −

∑

e∈Eh\EBh

〈{{u}}, [[v]]〉e

〈curlDG
h v,u〉 =

∑

T∈Th
〈v, curlu〉T −

∑

e∈Eh
〈{{v}}, [[u]]〉e

for u ∈ Ṽ 1
h , v ∈ V 2

h . (2.70)

Using the fact that the conforming projection P1
h performs a local averaging of the edge degrees of

freedom in the Nédélec space, (2.11), we compute

〈curlP1
hu, v〉 =

∑

T∈Th

(
〈P1

hu, curl v〉T + 〈n× P1
hu, v〉∂T

)

=
∑

T∈Th

(
〈u, curl v〉T + 〈n× {{u}}, v〉∂T\∂Ω

)

=
∑

T∈Th
〈u, curl v〉T −

∑

e∈Eh\EBh

〈{{u}}, [[v]]〉e

= 〈curlDG
h u, v〉

and then infer the announced equivalence, i.e., curlDG
h = curlP1

h on Ṽ 1
h . Given that the duality

curlDG
h = (curlDG

h )∗ is verified with elementary computations based on Green formulas, our analysis
thus establishes the spectrally correct nature of the DG discretization with centered fluxes in 2D (2.70),
a property numerically observed [89] but not proven yet, at least to our knowledge.

On the other hand, it is possible to see the compatible current approximation (2.63), Jh = (P1
h)∗JN ,

as a local correction of the standard projection

Jnc
h = PṼ 1

h
JN

that is usually implemented in discontinuous schemes. Here the exponent “nc” stands for “non-
compatible” since this approximation does not verify the Gauss-compatibility criteria, nor the discrete
continuity equation established for the nonconforming case.
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Indeed, by letting ϕT,λ, λ ∈ Λ1(T ) denote a basis for the polynomials of Ṽ 1
h on each cell T , and by

observing that the conforming space V 1
h is a subspace of Ṽ 1

h by construction, we see that it is possible
to represent the conforming projection P1

h by a matrix P satisfying

P1
hϕT,λ =

∑

T ′∈Th,γ∈Λ1(T ′)

P(T,λ),(T ′,γ)ϕT ′,γ .

The “compatible” moments mT,λ(JN ) := 〈JN ,P1
hϕT,γ〉 (that determine the current (2.63)) are then

easy to compute from the standard (non-compatible) moments mnc
T,λ(JN ) := 〈JN ,ϕT,γ〉, via the local

formulas
mT,λ(JN ) =

∑

T ′,γ

P(T,λ),(T ′,γ)m
nc
T ′,γ(JN ). (2.71)

In particular, the vectors J and Jnc containing the coefficients of the discontinuous currents Jh and
Jnc
h satisfy the relation

J = M−1PMJnc

where M represents the mass matrix (block-diagonal) associated to this basis of Ṽ 1
h . These corrections

are then local, moreover their computation is elementary: if the local bases ϕT,λ are defined by a
restriction of the bases dual to the edge degrees of freedom, the nonzero coefficients of matrix P are
just 1

2 for the edge degrees of freedom, and 1 for the interior degrees of freedom [[52]].
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Chapter 3

Theoretical and numerical study of
some reduced models
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The material in this chapter is based on the following works:

[[8]] M. Badsi, M. Campos Pinto and B. Després, A minimization formulation of a bi-kinetic sheath,
Kinetic and related models 9, 2016

[[70]] F. Da Silva, M. Campos Pinto, B. Després and S. Heuraux, Stable explicit coupling of the Yee
scheme with a linear current model in fluctuating magnetized plasmas, Journal of Computational
Physics 295, 2015

[[90]] S. Heuraux, F. da Silva, T. Ribeiro, B. Després, M. Campos Pinto, J. Jacquot, E. Faudot,
S. Wengerowsky, L. Colas and L. Lu, Simulation as a tool to improve wave heating in fusion
plasmas, Journal of Plasma Physics 81, 2015

[[47]] M. Campos Pinto and B. Després, Constructive formulations of resonant Maxwell’s equations,
〈hal-01278860〉, under revision for SIAM Journal on Mathematical Analysis, 2016

3.1 Kinetic sheaths in an electrostatic plasma

Plasma sheaths are self-regulation phenomena during which the electric potential of an absorbing wall
varies in order to balance the fluxes of electrons and ions coming from the plasma. In general this
variation is negative and the neutral flux is achieved by accelerating the (positive) ions and slowing
down the electrons. Indeed, in a globally neutral plasma at thermal equilibrium, in which the phase
space densities are classically assumed maxwellian,

fs(x, v) =

(
ms

2πkBT

)d/2
exp

(
−msv

2

2kBT

)
, s = i or e,

due to their relative low mass the electrons have a characteristic speed v∗e = (kBTme )1/2 much higher
to that of the ions, as illustrated in Fig. 3.1. Since the flux of negative charges leaving the plasma
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cannot exceed that of the positive charges for a long time, there must be a self-consistent mechanism
which equilibrate these fluxes. In practice this mechanism takes the form of a potential drop on the
wall associated with an electric field directed towards it. Inside this boundary layer which thickness
is about a few Debye lengths (the characteristic distance for screening phenomena in an electrostatic
plasma), a positive charge then builds up, as one may expect from the Gauss law.
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equation(4.47).Thenumericalapproximationofsolutionsto(NLP-MMAG)isnaturallyintwo
independentstep.Namelygiven↵2[0,1),!i >0,µ>0andf ini 2I adin (↵,!i ,µ):

1.weneedtoapproximatethewallpotential�w solutionto(4.47)andconstructanapprox-
imationofn0 .

2.given">0,weapproximate�" minimizingthefunctionalJ" onVad (↵,!i ,µ).

4.6.1
Descriptionofthenumericalmethods

Numericalquadratureforvelocityintegrals

Bothstepofthenumericalapproximationrequiretocomputevelocityintegrals.Wepresentthe
wayweproceednumericallytocomputethem.Foratargetfunctiong:[0,+1)⇥(�1,�

!i2 ]⇥
R!R +thatisL 1andsmoothwedefine:

I(g):= ZR Z�
!i2

�1 Z
+10

g(vx ,vy ,vz )dvx dvz dvy = ZR Z
0�1 Z

+10

g(vx ,vy ,ṽz �
!i2 )dvx dṽz dvy .(4.70)

Toavoidanunnecessarynumericaltruncationoftheintegrationdomainwedecidetousespherical
coordinates:

8>>>><>>>>: vx =vr cos(u)cos(✓)

vy =vr cos(u)sin(✓)

ṽz =vr sin(u)

vr = qv 2x +v 2y +ṽz 2,

where(u,✓)2[�
⇡2 ,0]⇥[�

⇡2 , ⇡2 ].Onehastherefore

I(g)= Z
+10

Z
⇡2

�
⇡2 Z

⇡2

0

g(vr cos(u)cos(✓),vr cos(u)sin(✓),vr sin(u)�
!i2 )v 2r cos(u)dud✓dvr .

Wesplittheintegralas

I(g)= Z
v cut

r

0

Z
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�
⇡2 Z
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0

g(vr cos(u)cos(✓),vr cos(u)sin(✓),vr sin(u)�
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g(vr cos(u)cos(✓),vr cos(u)sin(✓),vr sin(u)�
!i2 )v 2r cos(u)dud✓dvr

wherev cut
r

>
0ischosensuchthatgissmallerthan10 �6onthecomplementarysetofthe

semi-ball

B�
!i2 (v cut

r
)={(vx ,vy ,vz )2[0,+1)⇥(�1,� !i2 ]⇥Rsuchthat rv 2x +v 2y +(vz +

!i2 ) 26v cut
r }.

Workinprogressasof6 thJuly,2016

?x
v

paroi 
absorbante

4
.
6
.

N
u
m

e
r
i
c
a
l
a
p
p
r
o
x
i
m

a
t
i
o
n

o
f
(
N

L
P

-
M

M
A

G
)

1
1
7

e
q
u
a
t
i
o
n

(
4
.
4
7
)
.

T
h
e

n
u
m

e
r
i
c
a
l
a
p
p
r
o
x
i
m

a
t
i
o
n

o
f
s
o
l
u
t
i
o
n
s

t
o

(
N

L
P

-
M

M
A

G
)

i
s

n
a
t
u
r
a
l
l
y

i
n

t
w

o
i
n
d
e
p
e
n
d
e
n
t

s
t
e
p
.

N
a
m

e
l
y

g
i
v
e
n
↵
2

[
0
,
1
)
,
!

i
>

0
,
µ

>
0
a
n
d

f
i
n

i
2

I
a
d

i
n

(
↵
,
!

i
,
µ
)
:

1
.

w
e

n
e
e
d

t
o

a
p
p
r
o
x
i
m

a
t
e

t
h
e

w
a
l
l
p
o
t
e
n
t
i
a
l
�

w
s
o
l
u
t
i
o
n

t
o

(
4
.
4
7
)

a
n
d

c
o
n
s
t
r
u
c
t

a
n

a
p
p
r
o
x
-

i
m

a
t
i
o
n

o
f
n

0
.

2
.

g
i
v
e
n
"

>
0
,
w

e
a
p
p
r
o
x
i
m

a
t
e
�
"

m
i
n
i
m

i
z
i
n
g

t
h
e

f
u
n
c
t
i
o
n
a
l
J
"

o
n

V
a
d
(
↵
,
!

i
,
µ
)
.

4
.
6
.
1

D
e
s
c
r
i
p
t
i
o
n

o
f
t
h
e

n
u
m

e
r
i
c
a
l
m

e
t
h
o
d
s

N
u
m

e
r
i
c
a
l
q
u
a
d
r
a
t
u
r
e

f
o
r

v
e
l
o
c
i
t
y

i
n
t
e
g
r
a
l
s

B
o
t
h

s
t
e
p

o
f
t
h
e

n
u
m

e
r
i
c
a
l
a
p
p
r
o
x
i
m

a
t
i
o
n

r
e
q
u
i
r
e

t
o

c
o
m

p
u
t
e

v
e
l
o
c
i
t
y

i
n
t
e
g
r
a
l
s
.

W
e

p
r
e
s
e
n
t

t
h
e

w
a
y

w
e

p
r
o
c
e
e
d

n
u
m

e
r
i
c
a
l
l
y

t
o

c
o
m

p
u
t
e

t
h
e
m

.
F
o
r

a
t
a
r
g
e
t

f
u
n
c
t
i
o
n

g
:
[
0
,
+
1

)
⇥

(
�
1

,
�
!

i

2
]
⇥

R
!

R
+

t
h
a
t

i
s

L
1

a
n
d

s
m

o
o
t
h

w
e

d
e
fi
n
e
:

I
(
g
)

:
=

Z

R

Z
�

!
i
2

�
1

Z
+
1

0

g
(
v

x
,
v

y
,
v

z
)
d
v

x
d
v

z
d
v

y
=

Z

R

Z
0

�
1

Z
+
1

0

g
(
v

x
,
v

y
,
ṽ
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equation(4.47).Thenumericalapproximationofsolutionsto(NLP-MMAG)isnaturallyintwo
independentstep.Namelygiven↵2[0,1),!i >0,µ>0andf ini 2I adin (↵,!i ,µ):

1.weneedtoapproximatethewallpotential�w solutionto(4.47)andconstructanapprox-
imationofn0 .

2.given">0,weapproximate�" minimizingthefunctionalJ" onVad (↵,!i ,µ).

4.6.1
Descriptionofthenumericalmethods

Numericalquadratureforvelocityintegrals

Bothstepofthenumericalapproximationrequiretocomputevelocityintegrals.Wepresentthe
wayweproceednumericallytocomputethem.Foratargetfunctiong:[0,+1)⇥(�1,�

!i2 ]⇥
R!R +thatisL 1andsmoothwedefine:

I(g):= ZR Z�
!i2

�1 Z
+10

g(vx ,vy ,vz )dvx dvz dvy = ZR Z
0�1 Z

+10

g(vx ,vy ,ṽz �
!i2 )dvx dṽz dvy .(4.70)

Toavoidanunnecessarynumericaltruncationoftheintegrationdomainwedecidetousespherical
coordinates:

8>>>><>>>>: vx =vr cos(u)cos(✓)

vy =vr cos(u)sin(✓)

ṽz =vr sin(u)

vr = qv 2x +v 2y +ṽz 2,
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ṽ

z
d
v

y
.

(
4
.
7
0
)

T
o

a
v
o
i
d

a
n

u
n
n
e
c
e
s
s
a
r
y

n
u
m

e
r
i
c
a
l
t
r
u
n
c
a
t
i
o
n

o
f
t
h
e

i
n
t
e
g
r
a
t
i
o
n

d
o
m

a
i
n

w
e

d
e
c
i
d
e

t
o

u
s
e

s
p
h
e
r
i
c
a
l

c
o
o
r
d
i
n
a
t
e
s
:

8>>>><>>>>:

v
x

=
v

r
c
o
s
(
u
)
c
o
s
(
✓
)

v
y

=
v

r
c
o
s
(
u
)
s
i
n
(
✓
)

ṽ
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Figure 3.1: Sketch of maxwellian phase space (x, v) densities in a globally neutral plasma at thermal
equilibrium, using the same (arbitrary) scale in velocity for both electron and ion densities. In the
electron density represented on the left the characteristic speed is higher than that of the ions on the
right, due to their lower mass. If such a plasma is in contact with an absorbing wall one sees that the
electrons will leave the plasma at a higher rate than the ions. In the absence of self-regulation this
would result in a growing positive charge buildup in the plasma, which cannot be stable. The sheath
is the thin layer close to the wall in which the plasma is no longer neutral in order to balance the
fluxes of outgoing particles.

A property that plays a key role in the classical analysis states that, in a simplified mono-kinetic
model, ions must enter the sheath with a speed ui greater or equal than their characteristic speed

ui ≥ v∗i =

(
kBT

mi

) 1
2

(3.1)

consistent with the self-regulation principle described above. This property is known as the Bohm
criterion[58], and there exists a kinetic version of it [120, 126], according to which the velocity distri-
bution of the incoming ions must satisfy the inequality

´∞
0 v−2fi(v) dv´∞

0 fi(v) dv
≤ 1

(v∗i )
2
. (3.2)

In the scope of Mehdi Badsi’s PhD [7], advised by Bruno Després and myself, we have proposed [[8]]
a kinetic one-dimensional model that describes most of the key features of this physical phenomenon.
Our purpose was to

• specify the role (within this model) of the fluid (3.1) and kinetic (3.2) Bohm criteria,

• determine a simple characterization of the “floating” potential at the wall.

Indeed we believed that these questions had not received fully satisfactory answers yet, despite several
works in the mathematical literature [102, 79] and the recent works [83, 84] on a fluid plasma model
close to the wall.

In our model, the ion and electron densities are steady state solutions to Vlasov equations in a
dimensionless domain [0, 1] × R, with boundaries x = 0 and x = 1 representing a point inside the
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3.1. Kinetic sheaths in an electrostatic plasma

plasma and the absorbing wall, respectively. Denoting µ = me/mi < 1 the relative electron mass,
these equations take the form 




v∂xfi − φ′(x)∂vfi = 0

v∂xfe +
1

µ
φ′(x)∂vfe = 0

(3.3)

and they are coupled with a Poisson equation that determines the electrostatic potential φ,

−ε2φ′′(x) =

ˆ
(fi + fe) dv. (3.4)

Here ε < 1 represents the Debye length relative to this dimensionless domain, and should characterize
the thickness of the boundary layer at the wall position x = 1. To model the self-regulation principle
we next add to these equations a neutral flux (sometimes called ambipolarity) constraint

ˆ
v(fi + fe) dv = 0 (3.5)

which may be seen as a direct consequence of the Ampère equation in a steady state regime, and a
neutrality condition at x = 0, expressing the fact that this point is not in the sheath,

ˆ
(fi + fe)(x = 0) dv = 0. (3.6)

This system is then completed by boundary conditions: for the potential we use Dirichlet boundary
conditions

φ(0) = 0, φ(1) = φw (3.7)

where the value at 0 is arbitrary and φw denotes the potential at the wall. In the physics community
it is often referred to as the floating potential: as it should result from the self-regulation mechanism,
it is an unknown of the problem. Finally we denote the incoming ion and electron distributions by





fi(0, v) = f in
i (v), v > 0

fi(1, v) = 0, v < 0

fe(0, v) = f in
e (v) := n0

√
µ exp

(
− µv2

2

)
, v > 0

fe(1, v) = αfe(1,−v), v < 0.

(3.8)

Here 0 ≤ α < 1 is a re-emission parameter for the electrons at the wall (which can be set to 0 in
a first analysis), and n0 is a reference density connected to the total number of electrons entering
the sheath. The chosen form of the incoming distribution f in

e corresponds to the classical hypothesis
of a maxwellian electron distribution in the plasma core, far from the wall. For the moment we do
not specify the velocity distribution f in

i of the incoming ions, and instead ask ourselves the following
questions:

• can we characterize the wall potential φw so that it can be computed from the physical parameters
µ, ε and α ?

• can we identify conditions on the incoming distribution f in
i such that there exists a non trivial

solution (φ 6≡ 0) to the above problem (3.3)-(3.8)?
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Chapter 3. Theoretical and numerical study of some reduced models

To answer these questions we began by considering a given decreasing potential φ, so that the values
of the densities fi and fe could be expressed using the method of characteristics. This method consists
of writing fi(x, v) = f in

i (v̂i(x, v)) and fe(x, v) = f in
e (v̂e(x, v)), where v̂i(x, v) ≥ 0 and v̂e(x, v) ≥ 0 are

the incoming velocities connected to (x, v) by characteristic trajectories solutions to

{
v′i(t) = −φ′(xi(t))
x′i(t) = vi(t)

and




v′e(t) =

1

µ
φ′(xe(t))

x′e(t) = ve(t).

Using the fact that these trajectories have the respective invariants 1
2v

2
e − 1

µφ(xe) and 1
2v

2
i + φ(xi), we

find

fi(x, v) =

{
f in
i (
√
v2 + 2φ(x)) if v ≥

√
−2φ(x)

0 otherwise

and

fe(x, v) =




f in
e (
√
v2 − 2

µφ(x)) if v ≥ −
√

2
µ(φ(x)− φw)

αf in
e (
√
v2 − 2

µφ(x)) otherwise.

From these expressions we infer an explicit form for the macroscopic densities ns(x) =
´
R fs(x, v) dv,

and fluxes γs(x) =
´
R vfs(x, v) dv = γs(0). The constraints (3.5) and (3.6) expressing the neutrality

of the fluxes and charges at x = 0 then lead to two scalar relations involving f in
i , n0 and φw, but not

the potential φ itself:





ˆ ∞
0

vf in
i (v) dv = n0

1− α√
µ
eφw

ˆ ∞
0

f in
i (v) dv = n0

(√
2π − (1− α)

ˆ ∞
√−2φw

e−
v2

2 dv
)
.

(3.9)

We then have the following result.

Theorem 3.1 Under the necessary and sufficient condition
´∞

0 vf in
i (v) dv´∞

0 f in
i (v) dv

<

√
2

πµ

1− α
1 + α

, (3.10)

System (3.9) has a unique solution (n0, φw) ∈ R∗+ × R∗−.

Thus, the wall potential is well defined by an implicit relation of the form a(φw) = b with a
increasing, and it can be computed from the physical parameters α and µ, and the incoming ion
distribution f in

i (through the average incoming velocity).
Now that the wall potential is determined, System (3.3)-(3.8) can be expressed as a non-linear

Poisson equation
−ε2φ′′(x) = −U ′(φ(x))

with U(ψ) :=
´∞

0 v
√
v2 − 2ψ f in

i (v) dv + n0

(√
2πeψ − (1 − α)

´∞√−2φw
v
√
v2 + 2ψ e−

v2

2 dv
)

and the
boundary conditions (3.7). This equation can be studied using a variational approach which consists
of looking for minimizers of the functional

Jε(φ) :=

ˆ 1

0
ε2 |φ′(x)|2

2
+ U(φ(x)) dx. (3.11)

We then prove the following result.
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3.1. Kinetic sheaths in an electrostatic plasma

Figure 3.2: Numerical results obtained by Mehdi Badsi: electronic and ionic distributions close to
a perfectly absorbing (α = 0) wall located at x = 1, for a (dimensionless) Debye length ε = 0.1.
The difference in the velocity ranges expresses the high relative mobility of the electrons, and in the
boundary layer we observe that, as expected, the electrons are repelled and the ions are accelerated.

Figure 3.3: Numerical results obtained by Mehdi Badsi: on the left, the macroscopic ion and electron
densities correspond to the same parameters than in Figure 3.2. On the right, the different electrostatic
potentials correspond to different values of the dimensionless Debye length ε, as indicated.

Theorem 3.2 If the incoming ion distribution f in
i satisfies the conditions (3.10) and

´∞
0 v−2f in

i (v) dv´∞
0 f in

i (v) dv
<

(√
2π + (1− α)

´∞√−2φw
v−2e−

v2

2 dv
)

(√
2π − (1− α)

´∞√−2φw
e−

v2

2 dv
) , (3.12)

then System (3.3)-(3.8) has a unique solution fi, fe, φ.

As the right hand side from (3.12) is larger than 1, we observe that this condition is weaker than the
classical kinetic inequality (3.2), indeed in this dimensionless setting the characteristic speed reads
v∗i = 1. This solution has the distinctive features of a boundary layer at x = 1, and it reproduces the
main physical properties of an electrostatic sheath, as described above. The numerical simulations
obtained by Mehdi Badsi [7], using a projected gradient method derived from the minimization of the
functional (3.11), validate these findings on a quantitative level. Some of these results are shown in
Figure 3.2 and 3.3.
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Chapter 3. Theoretical and numerical study of some reduced models

3.2 FDTD wave propagation in a magnetized plasma

Reflectometry is a technique where a high frequency (∼ 35 GHz) electromagnetic wave is sent in a
plasma and the scattered wave is measured in order to derive a density map of the probed plasma (see
Figure 3.4).

Figure 3.4: Electromagnetic wave emitted by an antenna and reflected by an electronic plasma which
macroscopic density is indicated by its isovalues (blue lines). On the left figure the plasma density is
a smooth increasing function of x, on the right one it is affected by strong oscillations typical of the
turbulences observed in tokamak plasmas.

To perform numerical simulations of such waves in the presence of an intense magnetic field, plasma
physicists use a simplified model in which they assume that are given:

• the bulk part B0 of the magnetic field, stationary and often constant in space,

• the macroscopic electron density Ne(x), considered here to be stationary over the simulation
time.

The unknowns being the varying electromagnetic field (E,H) and the electron current density J
induced by the displacement of charges within the plasma, we then consider the linearized problem





ε0∂tE = ∇∧H − J
µ0∂tH = −∇ ∧ E
∂tJ = ε0ω

2
pE + ωcb ∧ J

(3.13)

where ωp(x) :=
√

q2eNe(x)
mε0

, ωc(x) := qe|B0(x)|
me

and b(x) := − B0(x)
|B0(x)| respectively denote the plasma

pulsation, the cyclotron pulsation and the unit vector directed along the background magnetic field.

The standard approach [137] to discretize these equations consists of extending the classical FDTD
(Finite Differences Time Domain) scheme designed by Yee [138] for the Maxwell equations in vacuum
(J = 0). The computational domain being subdivided in regular cubes of diameter h, the x, y and z
components of the fields E and H are discretized on staggered grids as represented on Figure 3.5, so
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3.2. FDTD wave propagation in a magnetized plasma

that the different derivatives involved in the curl can be approximated by centered divided differences.
The original Yee scheme then writes





ε0
∆t(E

n+1 − En) = RHn+ 1
2

µ0
∆t(H

n+ 1
2 −Hn− 1

2 ) = −RtEn
(3.14)

where R is the matrix representing the curl approximation by finite differences centered on the faces,
and Rt the transposed matrix corresponding to finite differences centered on the edges. Here we note

Figure 3.5: The nodes used to discretize the different components of the fields E and H in the staggered
grid Yee scheme are pictured on the left and center plots. The right plot shows the nodes used to
discretize the current density J in the reflectometry simulations.

that the time discretization is also staggered, in order to approximate the time derivatives by centered
finite differences. As is well known this choice allows to preserve exactly a pseudo-energy, namely the
quantity Ẽn := En−∆t〈En, RHn−1/2〉h where En := ε0‖En‖2h+µ0‖Hn−1/2‖2h is the quadratic energy of
the discrete solution. By observing that |〈En, RHn−1/2〉| ≤ c

2‖R‖hEn leads to En(1− c∆t
2 ‖R‖h) ≤ Ẽn,

we infer from this exact conservation that the scheme is stable as long as

c∆t < 2/‖R‖h = h/
√

3, (3.15)

regardless of the treatment of the boundary conditions.
To extend this scheme to the case of a nonzero current density appearing on the right hand side

of the first (Ampère) equation in (3.14), a natural option is to discretize the components of J on the
same nodes as those of E, and at half integer time steps. This choice leads to discretizing in time
the third equation from (3.13) by a finite difference formula centered on the integer time steps, which
gives the following scheme





ε0
∆t(E

n+1 − En) = RHn+ 1
2 − Jn+ 1

2

µ0
∆t(H

n+ 1
2 −Hn− 1

2 ) = −RtEn
1

∆t(J
n+ 1

2 − Jn− 1
2 ) = ε0ω

2
pE

n + ωcb ∧ 1
2(Jn+ 1

2 + Jn−
1
2 ).

(3.16)

Here the third equation is implicit in Jn+ 1
2 , but it can be made explicit as follows. Using that b is a

unit vector one has
(b∧)3 = −(b∧), (3.17)

which allows to write (I − θb∧)−1 = I + θ
1+θ2

(b∧) + θ2

1+θ2
(b∧)2, with θ a scalar-valued function.

The implicit equation on J , put under the form Jn+ 1
2 = Wn + θb ∧ Jn+ 1

2 , can then be recast as
Jn+ 1

2 =
(
I + θ

1+θ2
(b∧) + θ2

1+θ2
(b∧)2

)
Wn.
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Chapter 3. Theoretical and numerical study of some reduced models

It is possible to extend the stability analysis sketched above for the Yee scheme to System (3.16), by
observing that here the pseudo-energy Ẽn := En−∆t〈En, (RHn−1/2− Jn−1/2)〉h is exactly preserved,

with En := ε0‖En‖2h + µ0‖Hn−1/2‖2h + 1
ε0
‖Jn−1/2

ωp
‖2h the quadratic energy of the discrete solution. An

algebraic argument based on the bound |〈En, Jn−1/2〉| ≤ ‖ωp‖L∞‖En‖h‖Jn−1/2‖h then shows that the
scheme (3.16) is stable under the condition

∆t

2
(
12c2

h2
+ ‖ωp‖2L∞)

1
2 < 1.

It is actually possible to improve this condition: by discretizing the current at the integer time steps,
we recover the stability condition of the Yee scheme (3.15), which has the advantage that it does not
depend on the maximal values of the electronic density.

If this approach may seem satisfactory, it nevertheless suffers from a weakness that eventually ap-
pears when the electronic density Ne has strong gradients (as it typically occurs in turbulent plasmas)
and when the simulations are very long (of a few thousands, or tens of thousands iterations), under
the form of an exponential growth of the numerical solutions. The origin of such an instability is the
fact that the formal resolution of the implicit equation on J is only valid if the cross product effectively
used in the scheme (3.16) satisfies the relation (3.17).

Indeed, the use of staggered grids in the discretization of the components of the current J forbids
using the exact (pointwise) cross product in the third equation of (3.16). The common choice consists
of using a centered formula to approximate the exact curl, which may be written

(b∧hJ)x|i+ 1
2
,j,k := by{Jz}i+ 1

2
,j,k − bz{Jy}|i+ 1

2
,j,k

(b∧hJ)y|i,j+ 1
2
,k := bz{Jx}i,j+ 1

2
,k − bx{Jz}i,j+ 1

2
,k

(b∧hJ)z|i,j,k+ 1
2

:= bx{Jy}i,j,k+ 1
2
− by{Jx}i,j,k+ 1

2

(3.18)

where the curly brackets denote averages on the four neighboring nodes (see the left plot on Figure 3.6),
as in {Jz}i+1/2,j,k = 1

4

(
Jz|i,j,k−1/2 + Jz|i,j,k+1/2 + Jz|i+1,j,k−1/2 + Jz|i+1,j,k+1/2

)
. It is then this discrete

cross product that is used in the explicit version of the scheme (3.16). The problem resides in the
fact that the product (3.18) cannot satisfy the key relation (3.17), indeed its stencil increases with
every iteration. In other terms, the explicit (and implemented) version of the scheme (3.16) is not
equivalent to its implicit version addressed in the stability analysis. We then understand that numerical
instabilities can appear in this scheme, and the more turbulent the density Ne, the sooner these
instabilities are likely to be triggered.

To resolve this issue, with Bruno Després we have proposed a new numerical scheme in which the
averaged cross product (3.18) is replaced by a clustered cross product. Given a pattern (α, β, γ) ∈
{±1}3, the latter is defined by the relations

(b∧hJ)x|i+α
2
,j,k := byJz|i,j,k+ γ

2
− bzJy|i,j+β

2
,k

(b∧hJ)y|i,j+β
2
,k

:= bzJx|i+α
2
,j,k − bxJz|i,j,k+ γ

2

(b∧hJ)z|i,j,k+ γ
2

:= bxJy|i,j+β
2
,k
− byJx|i+α

2
,j,k

(3.19)

(see the right plot on Figure 3.6). This product is indeed local in the sense that the matrix of the
operator J → b ∧h J is block diagonal, and it satisfies the key relation (3.17). In particular, the
corresponding explicit scheme is equivalent to its implicit version (3.16), so that the stability analysis
now applies on the scheme effectively implemented. The actual stability of this new scheme has been
observed in a series of numerical simulations implemented by Filipe Da Silva (IST, Lisbonne) and
Stéphane Heuraux (IJL, Nancy) [[70, 90]], using very turbulent density profiles and simulations of
about a million time steps, see Figure 3.7.
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3.3. Hybrid resonances in magnetized plasmas

Figure 3.6: Stencils (nodes of J) used for the x component of the cross product b∧h J when computed
with the averaged formula (3.18) (on the left) or with the clustered formula (3.19) (on the right),
here with a pattern (α, β, γ) = (−1, 1, 1). For the clustered cross product the same stencil is used to
compute the three components, so that the matrix of the operator J → b ∧h J is block-diagonal.
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Figure 3.7: Amplitude of the numerical H field computed by the standard scheme (on the left) and
by the new scheme (on the right). The colors of the curves correspond to different turbulence levels
on the electronic density, as indicated. We note that on the left figure the amplitudes are plotted
using a logarithmic scale, and that the higher the turbulence level, the sooner and the stronger the
instabilities. On the right figure the long time stability is evidenced by the linear scale and the fact
that the simulations run over a period about ten times longer.

3.3 Hybrid resonances in magnetized plasmas

In addition to the probing function described in the previous section, electromagnetic waves play an
important role in the heating of fusion plasmas. Resonance phenomena, in particular, are used to
transfer energy from the fields to the particles. Starting from the linearized system (3.13) one may
write a simplified model to describe such resonances, which correspond to the interaction of the wave
with an electronic plasma (again the ions are assumed frozen at first order) in the presence of a strong
magnetic field B0. Assuming that the time varying field oscillates with a pulsation ω imposed by an
antenna (X(t,x) = e−iωtX(x)), and using the second equation to eliminate the H field, the system
becomes 




1

iωµ0
∇∧∇ ∧ E + iωε0E = J

− iωJ − ωcb ∧ J = ε0ω
2
pE

(3.20)
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where we remind that the plasma pulsation ωp = ωp(x) and the cyclotron pulsation ωc = ωc(x)
characterize the electron density and the bulk background magnetic field, respectively. As above, it is
possible to invert the operator (iωI + ωcb∧) and to express J as a function of E. Using the classical
simplification where the background field has a constant orientation, b = ez, we arrive at

∇∧∇ ∧ E −
(ω
c

)2
εω E = 0,

where εω = εω(x) denotes the dielectric tensor of the cold plasma [136, 81],

εω(x) =




1− ω2
p

ω2−ω2
c

i
ωcω2

p

ω(ω2−ω2
c )

0

−i ωcω2
p

ω(ω2−ω2
c )

1− ω2
p

ω2−ω2
c

0

0 0 1− ω2
p

ω2


 . (3.21)

If one assumes in addition that the different parameters only depend on x, the propagation direction
of the wave, we may look for solutions depending only on this variable. We then obtain two decoupled
problems on the interval Ω =]−1, 1[. First, one scalar equation for the the field component Ez parallel
to B0, often referred to as the ordinary wave (O mode) in the physics community,

(∂x)2Ez +
ω2 − ω2

p

c2
Ez = 0. (3.22)

For this component, the plasma is a propagative medium in the regions where ω2
p(x) = q2e

meε0
Ne(x) < ω2.

The curve ω2
p(x) = ω2 is called cut-off [128, 76] and the Airy equation u′′ − xu = 0 can be used as a

prototype for a fine study of the transition between the propagative region and the evanescent one.
Second, a system involving the orthogonal components Ex, Ey referred to as the extraordinary wave

(X mode), corresponding to the upper left block of the dielectric tensor (3.21),

(
0

−(∂x)2Ey

)
−
(
α(x) iδ(x)
−iδ(x) α(x)

)(
Ex
Ey

)
= 0 with




α =

(
ω
c

)2 (
1− ω2

p

ω2−ω2
c

)

δ =
(
ω
c

)2 ( ωcω2
p

ω(ω2−ω2
c )

)
.

(3.23)

By a formal elimination of the first component this system leads to the Budden equation [33, 136]

−(∂x)2Ey +

(
δ2

α
− α

)
Ey = 0 (3.24)

that is associated with two kinds of resonances. The cyclotron resonance ω = ωc(x) corresponding to
the poles of the coefficients α and δ, and the hybrid resonance ω2 = ω2

c (x) + ω2
p(x) corresponding to

the zeros of the coefficient α. In the configuration considered here (and in others, see [74]) the poles
ω = ωc do not pose any problem. A simple computation gives indeed

δ2

α
− α =

ω2ω2
c − (ω2 − ω2

p)
2

c2(ω2 − ω2
c − ω2

p)

so that cyclotron resonances do not represent true singularities. In contrast, the presence of hybrid
resonances raises a few issues. By using as a prototype the Whittaker equation u′′ +

(
1
x − 1

4

)
u = 0 for

which we have explicit exact solutions, one can indeed show [75] that in the neighborhood of a zero of α
the equation (3.24), endowed with standard boundary conditions of the form E′y(±1)∓iλEy(±1) = f±,
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3.3. Hybrid resonances in magnetized plasmas

has at least two distinct solutions. Moreover, as these solutions do not necessarily vanish at this point
we see that Ex = −i δαEy contains a nonintegrable, 1

x singularity.
One way to better understand the nature of the hybrid resonances is to take into account the small

friction between the electrons and the ions (that have been assumed frozen up to now), by adding a
dissipative term in the system (3.13) where the third equation becomes

∂tJ = ε0ω
2
pE + ωcb ∧ J − νJ.

Here the small parameter ν describes the collisionality between the electrons and the background ion
bath. For physical reasons ν must be positive, but negative values can also be considered in the
mathematical analysis. Inserting this term in the computations one obtains a modified version of
System (3.23) in which the plasma coefficients read

αν =
(ω
c

)2
(

1−
ω̃ω2

p

ω(ω̃2 − ω2
c )

)
and δν =

(ω
c

)2
(

ωcω
2
p

ω(ω̃2 − ω2
c )

)
, ω̃ = ω + iν.

In particular, αν does not vanish anymore for real values of ω and the equation (3.24) becomes well-
posed [6]. Consistent with the limit absorption principle [123] the resonant problem can then be seen
as a singular limit ν → 0+ of the dissipative case, which is conveniently recast as a first order problem
by reintroducing the magnetic field,





iωBz − ∂xEy = 0

−ανEx − iδνEy = 0

−iω∂xBz + iδνEx − ανEy = 0.

(3.25)

This approach is followed in [75], where the authors have considered simplified coefficients

αν = α+ iν and δν = δ (3.26)

and the generic case where the function α had an isolated zero at x = 0 ∈ Ω. They have then justified
the limit absorption principle and finely quantified the singularity of the solutions E+ := limν→0+ E

ν 6∈
L1

loc and B+ := limν→0+ B
ν . Moreover they have shown that the energy transferred to the ions by a

resonant wave was positive,

Q(E+) = lim
ν→0+

ν

ˆ
Ω
|Eν |2 = lim

ν→0+
ν

ˆ
Ω
|Eνx |2 > 0.

In the article [[47]] we have studied several characterizations of the resonant solutions of (3.24)
which seem well suited for the derivation of numerical methods. In particular, our formulations allow
us to complement (3.24) into well-posed problems, which all contain the information of the one-sided
limit ν → 0+ without involving the dissipative solutions themselves.

The basic idea of this work is due to Bruno Després who drew his inspiration from a comparison
principle used in the theory of hyperbolic equations to establish entropy conditions on discontinuous
solutions. In the framework of the cold plasma system (3.25), this principle led him to look for
pseudo-solutions built in a similar way than the manufactured solutions used in the validation of some
numerical methods. Here, they are explicit solutions F νx , F

ν
y , C

ν
z of the modified system





iωCνz − ∂xF νy = qν

−ανF νx − iδνF νy = 0

−iω∂xCνz + iδνF νx − ανF νy = gν
(3.27)
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involving the simplified coefficients (3.26) and right hand sides chosen in such a way that the limits
F νy → F+

y and Cνz → C+
z , as well as qν → q+ and gν → g+, for ν → 0+, hold in L2 and are

straightforward to compute. In dimension 1, we essentially found two kinds of such solutions, which
main features reproduce those of the solutions to (3.24):

• smooth manufactured solutions, for which the Cz field is continuous and does not vanish at 0,

• singular manufactured solutions, for which the Fy field does not vanish at 0,

From (3.27) we see that solutions of the first kind have a component Fx that is a priori integrable.
This will not be the case for the solutions of the second kind, for which the Cz component will be a
priori discontinuous at 0. Thus, we can consider as a typical singular manufactured solution a function
of the form

F νy :=
i

δ
= F+

y , (3.28)

which leads to

F νx := − 1

α+ iν
→ F+

x = − 1

α
, (3.29)

the convergence holding in an (almost everywhere) pointwise sense in Ω. To verify the third equation
in (3.27) with a function gν satisfying a L2 bound uniformly in ν, we have then set

Cνz :=
δ(0)

ωr

(
1

2
log
(
r2x2 + ν2

)
− i arctan

(rx
ν

))
→ C+

z =
δ(0)

ωr

(
log (|rx|)− iπ

2
sign(rx)

)
(3.30)

with r := α′(0) 6= 0. The convergence now holds in L2(Ω), and we observe that the sign of the imagi-
nary part of C+

z keeps track of the one-sided limit ν → 0+. The comparison principle mentioned above
leads then to evaluate the energy dissipated by the difference between the exact and manufactured
solutions, via the Poynting vector Πν := <

(
(Eν − F ν) ∧ (Bν − Cν)

)
which divergence satisfies

∇ ·Πν −<
(
qν(Bν − Cν)z − (Eν − F ν)y

(gν
iω

))
= − ν

ω
|Eν − F ν |2 ≤ 0. (3.31)

By using the fact that smooth solutions Eνy and Bν
z possess L2-convergent subsequences we infer that

the inequality pass to the limit, which leads a dissipative relation of the form

J :=

ˆ
Ω
<
(
(E+

y − kF+
y )(B+

z − kC+
z )
)
ϕ′ +

ˆ
Ω
<
(
kq+(B+ − kC+)z − (E+ − kF+)y

(kg+

iω

))
ϕ ≥ 0

where k ∈ C is a complex degree of freedom and ϕ ≥ 0 a nonnegative test function. It is then natural to
write the Euler-Lagrange equations for the functional J = J (E+, B+, k) associated with constraints
corresponding to the equation (3.24). In [[47]] we have shown that these relations fully characterize
the resonant (one-sided limit) solution, under the form of a linear system of 5 equations, one of which
is scalar. The unique solution of this system contains, through the value of k, the intensity of the
resonant heating Q(E+).

Interestingly, it is possible to derive a second formulation by using an alternate characterization
of the limit solutions. This formulation is simpler as it only involves 3 equations (one of which being
scalar). Again the basic idea is to compare the dissipative and manufactured solutions, but instead of
(3.31) we now compute

∇ · (Eν ∧ Cν − F ν ∧Bν) = (EνxC
ν
z − F νy Bν

z )′ =
(
qνBν

z −
gν

iω
Eνy

)
.
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Although the physical meaning of this term is not obvious, the convergence properties of the different
solution components allow us to pass to the limit in an integral formulation

ˆ
Ω

(E+
y C

+
z − F+

y B
+
z )ϕ′ dx =

ˆ
Ω

(
q+B+

z −
g+

iω
E+
y

)
ϕdx (3.32)

where ϕ is an arbitrary smooth function. We infer the following problem, where we again assume that
α has an isolated zero at x = 0, inside the interval Ω =]− 1, 1[ (if α′(0) = 0 then the singularity is an
even stronger one and the problem is still open).

Problem 3.1 Find (Ey, Bz) ∈ L2(Ω)× L2(Ω) satisfying:

i) the limit problem (3.24) in a weak sense,





ˆ
Ω

(iωBzϕ1 + Eyϕ
′
1)dx = 0, ∀ϕ1 ∈ H1

0 (Ω),

ˆ
Ω

(
iωBzϕ

′
2 +

(
δ2

α
− α

)
Eyϕ2

)
dx = 0, ∀ϕ2 ∈ H1

0 (Ω), ϕ2(0) = 0,

ii) boundary conditions corresponding to an antenna

iωBz(−1) + iλEy(−1) = f− and iωBz(1)− iλEy(1) = f+,

in a distribution sense,

iii) an integral relation (3.32) associated with a smooth manufactured solution such as (3.28)-(3.30),
and a test function ϕ ∈ H1

0 (Ω) such that ϕ(0) 6= 0.

Here the restriction of the second variational equation to the test functions vanishing at x = 0 is
necessary for the product 1

αEyϕ2 to be integrable, and thanks to Hardy’s inequality it is also sufficient.
We then observe that if Ey and ϕ2 are approximated by P1 finite elements, the absence of the test
function associated with the node x = 0 will a priori prevent the discrete system to be square, a defect
that clearly reminds the lack of uniqueness for the equation (3.24). In this context, the role of the
integral relation (3.32) is obvious, and it is natural to think that its introduction allows to recover the
missing uniqueness. And indeed the following result holds.

Theorem 3.3 ([[47]]) For any (f−, f+) ∈ C2, there exists a unique solution (Ey, Bz) to Problem 3.1,
and it coincides with the limit (E+

y , B
+
z ) = limν→0+(Eνy , B

ν
z ) of the dissipative solutions to (3.25).

In dimension 2 we have extended this study by constructing manufactured solutions which form
seems to be compatible with (i) the singularities known in the 1D case, and (ii) singular solutions
observed in meta-materials [23]. Under natural assumptions on the singularity of the exact solutions
these functions allow us to write new formulations for the limit problem, which well-posedness remains
an open problem.

These works have been pursued during the master thesis of Anouk Nicolopoulos [116], who proved
that Problem 3.1, reformulated using a decomposition of the solution in a smooth part (to be de-
termined) and a singular part (proportional to the singular manufactured solution), would involve a
Fredholm operator of index 0. Anouk Nicolopoulos also implemented two numerical schemes. One
directly based on the formulation proposed in Problem 3.1, and another one involving the decomposi-
tion into a smooth part and a singular part. In both cases, the quality of her results has demonstrated
the validity of this approach (see Figure 3.8), as well as its relevance for numerical applications.
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un certain maillage et pour di↵érentes valeurs de ✏, on remarque que les paramètres N et ✏

semblent être liés.

Figure 2.6 – Solutions pour 1200 mailles et ✏ = 10�20, 10�6, 10�3 et 1 (de gauche à droite et
de haut en bas)

Pour la seconde méthode, c’est à dire la discrétisation de (FV3) et l’approximation par des

éléments finis P1/P0, on obtient des résultats similaires à ceux de la première méthode.
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éléments finis P1/P0, on obtient des résultats similaires à ceux de la première méthode.
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Figure 3.8: Numerical approximation of the Budden equation (3.24) in 1D performed by Anouk
Nicolopoulos, for the coefficients α(x) = −x and δ(x) =

√
1− x/4 + x2 (corresponding to Whittaker’s

equation) for which an exact solution is known (black line) with a singularity at x = 0. On the left,
the approximation involves a naive technique to locally smooth out the singularity so that the scheme
does not crash (using a small parameter which value does not seem to be appropriate here), and on
the right the numerical scheme discretizes the new formulation of Problem 3.1, which is well-posed.
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Some prospects

As my research is at the interface between mathematics and plasma physics, the natural developments
to the work presented here may be divided into three groups: a first one consisting of objectives not
fully realized yet, a second one where some of the tools developped here would be extended to related
problems, and a third one fed by new physics problems where the viewpoint of numerical analysis is
likely to bring an illuminating perspective.

Improving the accuracy of particle codes falls into the first group. As we have seen, methods such
as PIC (Particle-In-Cell) are among the most popular in plasma physics, notably because of their
efficiency in high dimensions compared to that of grid-based methods (eulerian or semi-lagrangian).
However they suffer from an important level of “numerical noise” that is characterized by strong os-
cillations on the transported densities. Within this framework, the methods presented in this memoir
such as LTPIC (Linearly-Transformed PIC) and FBL (Forward-Backward Lagrangian) seem to pro-
vide a convenient setting to improve the quality of these densities via a local exploitation of the data
computed by the particle solver. Now that the accuracy of these approximation methods has been
validated on simple problems, the natural sequel is to study their efficiency in the denoising of larger
particle simulations. These works have started already, within a EuroFusion project carried out on
the software platform Selalib to which I regularly contribute. Developped jointly by CEA, INRIA, the
IPP (Institute for Plasma Physics) in Garching (Germany), the IRMA in Strasbourg, the IRMAR in
Rennes and the LJLL in Paris, this platform is a convenient framework where mathematicians, physi-
cists and computer scientists can implement and share numerical methods relevant in the lagrangian
and semi-lagrangian simulation of plasmas, as well as test cases and diagnostic tools.

In parallel, it seems to me that compatible nonconforming discretization methods should be ex-
tended to new problems. Now that my results have allowed to identify new schemes of discontinuous
Galerkin type that preserve the structure of Maxwell’s equations, thus coming with good stability
and conservation properties, I want to extend their application to other problems such as fluid ones
and MHD. Further studies of the numerical properties of these schemes are also planned, and with
physicists from the Max Planck-IPP in Garching we would like to use these compatible discontinuous
discretization methods to the numerical modeling of plasma reflectometers, aimed at probing the den-
sity of tokamak plasmas.

Finally, I intend to pursue my works on the modeling of electromagnetic waves started with Bruno
Després within the framework of the ANR Chrome project, with the purpose to improve the simulation
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of resonant heating in tokamak plasmas. This project will naturally involve further collaborations with
plasma physicists, and there is no doubt that new problems will appear during these exchanges, raising
new interesting questions. It also fits into the PhD of Anouk Nicolopoulos which is now starting on
new constructive models for resonant waves in magnetized plasmas.

52



Bibliography

[1] J.-C. Adam, A. Gourdin Serveniere, J.-C. Nédélec, and P.-A. Raviart. Study of an implicit
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[5] F. Assous, P. Ciarlet, Jr, and E. Sonnendrücker. Resolution of the Maxwell equations in a domain
with reentrant corners. M2AN. Mathematical Modelling and Numerical Analysis, 32(3):359–389,
1998.

[6] A. Back, T. Hattori, S. Labrunie, J.R. Roche, and P. Bertrand. Electromagnetic wave propaga-
tion and absorption in magnetised plasmas: variational formulations and domain decomposition.
M2AN. Mathematical Modelling and Numerical Analysis, 49(5):1239–1260, 2015.
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