
HAL Id: tel-01485852
https://theses.hal.science/tel-01485852

Submitted on 9 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sampling and inference in complex networks
Jithin Kazhuthuveettil Sreedharan

To cite this version:
Jithin Kazhuthuveettil Sreedharan. Sampling and inference in complex networks. Other [cs.OH].
COMUE Université Côte d’Azur (2015 - 2019), 2016. English. �NNT : 2016AZUR4121�. �tel-01485852�

https://theses.hal.science/tel-01485852
https://hal.archives-ouvertes.fr


École doctorale STIC
Sciences et Technologies de l’Information et de la Communication

Unité de recherche: INRIA (équipe Maestro)

Thèse de doctorat
Présentée en vue de l’obtention du

grade de Docteur en Sciences
de

l’UNIVERSITE COTE D’AZUR
Mention : Informatique

par

Jithin Kazhuthuveettil Sreedharan

Sampling and Inference in
Complex Networks

(Échantillonnage et Inférence dans Réseaux Complexes)

Dirigé par Konstantin Avrachenkov

Soutenue le 2 décembre 2016
Devant le jury composé de:

Konstantin Avrachenkov - Inria, France Directeur

Nelly Litvak - University of Twente, The Netherlands Rapporteur

Don Towsley - University of Massachusetts, USA Rapporteur

Philippe Jacquet - Nokia Bell Labs, France Examinateur

Alain Jean-Marie - Inria, France Président





Abstract
The recent emergence of large evolving networks, mainly due to the rise of Online

Social Networks (OSNs), brought out the difficulty to gather a complete picture of
a network and it opened up the development of new distributed techniques. Due to
the constraints imposed by large networks, it is realistic to assume that only local
information is available at each node: the list of neighboring nodes that the node
connects to. Random walk based and diffusion techniques are notably suitable in
this frame work. However, despite many recent studies, several open issues remain
to be addressed for such algorithms. This thesis proposes some novel distributed
algorithms for sampling, estimation and inference of network functions, and for
approximating the spectrum of graph matrices.

The thesis begins by tackling the problem of sampling in spectral domain: the
classical problem of finding the dominant eigenvalues and their corresponding eigen-
vectors of symmetric graph matrices such as adjacency or Laplacian of undirected
graphs. By relating the spectrum to a Schrödinger-type differential equation, we
develop a scalable technique called “complex power iterations”, a variant of power
iterations, which gives a simple interpretation of spectrum in terms of peaks at the
eigenvalue points. Distributed implementation is then formed with diffusion over
the graph and with gossiping algorithms. The relation of quantum random walks
with our formulation leads us to a simple algorithm based on quantum comput-
ing. Higher order approximations and symplectic numerical integrators are also
proposed to solve the underlying differential equation.

Next, we consider sampling and estimation of network functions (aggregate and
average) using random walks on graph. In order to avoid the burn-in time of Markov
chain sampling, we use the idea of regeneration at the renewal epochs when the
random walk revisits a fixed node. This help us to develop an estimator for the
aggregate function, which is non-asymptotically unbiased and can be implemented
in a massively distributed way. We introduce the idea of a “super-node” as the
anchoring node for the renewals, to tackle disconnected or “weakly-knit” graphs.
We derive an approximation to the Bayesian posterior of the estimate and it provides
a real-time assessment of estimation accuracy. As a cross between the deterministic
iteration and Markov sampling, an estimator based on reinforcement learning is
also developed making use of the idea of regeneration.

The final part of the thesis deals with the use of extreme value theory to make
inference from the stationary samples of the random walks. Extremal events like
the first hitting time of a large degree node, order statistics and mean cluster size
are well captured in the parameter “extremal index” from extreme value theory.
We theoretically study and estimate the extremal indices of different random walk
sampling techniques.

The techniques and tools developed in this thesis are tested on real-world net-
works and show promising results.
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Résumé
L’émergence récente de grands réseaux, surtout les réseaux sociaux en ligne, a

révélé la difficulté de crawler le réseau complet et a déclenché le développement de
nouvelles techniques distribuées. Dans cette thèse, nous concevons et analysons des
algorithmes basés sur les marches aléatoires et la diffusion pour l’échantillonnage,
l’estimation et l’inférence des fonctions des réseaux.

La thèse commence par le problème classique de trouver les valeurs propres
dominantes et leurs vecteurs propres de matrices de graphe symétriques, comme la
matrice Laplacienne de graphes non orientés. En utilisant le fait que le spectre est
associé à une équation différentiel de type Schrödinger, nous développons des tech-
niques évolutives à l’aide de la diffusion sur le graphe. Ensuite, nous considérons
l’échantillonnage des fonctions de réseau (comme somme et moyenne) en utilisant
les marches aléatoires sur le graphe. Afin d’éviter le temps « burn-in » de marche
aléatoire, avec l’idée de régénération à un nœud fixe, nous développons un estima-
teur de la fonction de somme qui est asymptotiquement non-biaisé et dérivons une
approximation à la postérieure Bayésienne. La dernière partie de la thèse étudie
l’application de la théorie des valeurs extrêmes pour faire une inférence sur les
événements extrêmes à partir des échantillons stationnaires des différentes marches
aléatoires pour l’échantillonnage de réseau.
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Frequently used Notation

Symbol Description

G Graph

pV,Eq Node set and edge set

|V |, |E| Number of nodes, Number of edges

dj Degree of node j without including self loop

∆ maxtd1, . . . , dnu
A Adjacency matrix raijs
D Diagonal matrix formed from d1, . . . , dn

L Laplacian matrix, D ´A
P Transition probability matrix of random walk

λM
1 , . . . , λ

M

|V | Real eigenvalues of symmetric matrix M in descending order. piq

uM
1
, . . . ,uM

|V | Eigenvectors corresponding to λM
1 , . . . , λ

M
n . piq

1 Column vector of ones. Dimension implied from the context.

I Identity matrix. Dimension implied from the context.

Nj Neighbor list of node j without including self loop

apkq kth component of a column vector a

}a} Euclidean norm of vector a

xℓ Approximation of exppiεℓAq multiplied by b0
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µpGq
ÿ

pu,vqPE

gpu, vq

νpGq
ÿ

uPV

gpuq

i.i.d. Independent and identically distributed

ItAu Indicator function: 1 if the event A is true, 0 otherwise.

piq The dependency on M will de dropped if it is clear from the context.
piiq Functions fpxq and gpxq are defined on some set S and a is a limit point of S.
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Chapter 1

Introduction

The last few years have witnessed a boom in the science of massive data process-
ing. Large datasets, often dubbed Big data in the industry, have triggered the
development of many software and mathematical tools. This also helped a closely
related inter-disciplinary field called “network science”, which studies networks in
general and includes technological networks (Internet, phone networks, etc.), social
networks (collaboration networks, Online Social Networks, etc.), information net-
works (World Wide Web, citation networks, etc.), and biological networks (protein
interaction networks, metabolic and neural networks, etc.). In particular, a specific
class called “complex networks” is popular in network science these days. It is used
to describe, informally, networks with the following characteristics:

• Large size

• Sparse topology

• Small average distance (also called small-world phenomenon)

• Many triangles

• Heavy tail degree distribution (also called scale-free phenomenon)

Many of the above listed properties can be observed in real-world networks: six
degrees of separation with Milgram’s small world experiments surprised the world
with how connected we are and shows evidence for the small-world phenomenon
[Travers & Milgram 1969]. Such close connectivities are observed in the Internet
(Autonomous Systems) as well.

The study of large networks faces many issues: collecting data from the un-
derlying networks takes time and huge resources; for instance, data collection in
real-world networks is severely limited by the restrictions on the Application Pro-
gramming Interface (API) queries imposed by the provider. Even if the whole graph
is collected, centralized processing with many matrix algorithms has large memory
requirements and incurs long delays to observe any fruitful output. Therefore,
researchers resort to distributed and decentralized algorithms. Since many net-
work algorithms require exponential time to finish, randomized and approximation
algorithms combined with distributed implementation look promising in network
science.

This thesis deals with efficient ways to collect representative samples from a large
network using probabilistic techniques and makes statistical inference about the
network properties with these samples. The emphasis is on distributed strategies.

1



2 Chapter 1. Introduction

The following sections provide a short introduction to the problems addressed
in this thesis.

1.1 Preliminary Definitions

Let G “ pV,Eq be an undirected labeled network, where V is the set of vertices and
E Ď V ˆ V is the set of edges. Unlike the usual definition of E where each edge is
an unordered pair and only present once, to simplify our notation we consider that
if pu, vq P E then pv, uq P E.1 With a slight abuse of notation, the total number of
edges |E| is redefined as |E|{2. Both edges and nodes can have labels.

We define two typical matrices which appear frequently in network analysis.
First one is the adjacency matrix A P R

|V |ˆ|V | in which the individual entries are
given by

auv “
"

1, if u is a neighbour of v,

0, otherwise.

The focus here is on undirected graphs and hence A⊺ “ A. The matrix A is also
called the unweighted adjacency matrix and one can also define a weighted version
in which the weight 1 for an edge is replaced by any nonnegative weight such that
auv “ avu.

Another matrix which is found very common in many graph theoretic problems
is the Laplacian matrix L (also known as combinatorial Laplacian or unnormalized
Laplacian in literature) defined as L “ rℓi,js :“ D ´ A. Here the matrix D is
diagonal with elements equal to degrees of the nodes tdvu, v P V .

For any general symmetric graph matrix M , due to symmetry the eigenvalues
are real and can be ranked in decreasing order as λM

1 ě λM

2 ě . . . ě λM

|V |. Let
uM

1 ,u
M

2 , . . . ,u
M

|V | denote the eigenvectors corresponding to λM

1 , . . . , λ
M

|V |.
2

1.2 Sampling and Estimation in Networks

Consider a large network that is impossible to observe completely, i.e., the net-
work is assumed unknown in the sense that the graph matrices like adjacency or
Laplacian are not completely known beforehand. How does one answer, at least
approximately, questions about global properties of the networks? Examples in-
clude: what proportion among the population in a city supports a given political
party? What is the average age of users in online social networks like Friendster,
Myspace or Facebook? What is the fraction of male-female connections against
that of female-female connections in a given Online Social Network (OSN)? Is the
OSN assortative or disassortative?

1For convenience, some of the later chapters will redefine the graph notation.
2We will drop the dependence on the matrix in the eigenvalues and eigenvector notation when-

ever it is evident from the context.



1.2. Sampling and Estimation in Networks 3

One can provide approximate solutions to the above problems via sampling.
There are several ways to collect representative samples in a network. One straight-
forward way is to collect independent samples via uniform node or edge sampling.
However, uniform sampling is not efficient because the user ID space of the network
under consideration need not contain consecutive numbers and in most cases it is
sparsely allocated. Hence the sampler wastes many samples issuing invalid IDs re-
sulting in an inefficient and costly data collection method. Moreover, almost all the
OSNs impose rate limitations on the API queries, for e.g., Twitter with 313 million
active users enforces 15 requests per 15 minutes time window for most of the APIs.3

Taking into account these limitations, we resort to other feasible techniques.

1.2.1 Local information constraints

To collect information from an OSN, the sampler issues an API query for a particular
user which returns its hop neighborhood and the contents published by the user.
Though some third parties can obtain the complete database of OSNs (for instance
Twitter) with additional expense, we focus here on the typical case where the third
party can get information only about the neighbors of a particular user through
API queries to it.

The problem of interest to us can be formulated as follows:

Problem Formulation for Network Sampling

• Estimate
νpGq “

ÿ

uPV

gpuq, sνpGq “ 1
|V |

ÿ

uPV

gpuq, (1.1)

where gpuq is a bounded function of node u. Sometimes we also focus
on the associated estimation problem on edges, with gpu, vq denoting a
function over the edge pu, vq:

µpGq “
ÿ

pu,vqPE

gpu, vq, sµpGq “ 1
|E|

ÿ

pu,vqPE

gpu, vq. (1.2)

• Graph G is unknown.

• Only local information is known: we have information only about the
seed nodes and their neighbor IDs, we can only query or visit a neighbor
of a node; then, we also have information about the visited nodes and
their neighbors.
We will slightly relax this criterion later in Section 2.5 allowing a small
number of uniformly sampled queries.

3https://dev.twitter.com/rest/public/rate-limits

https://dev.twitter.com/rest/public/rate-limits


4 Chapter 1. Introduction

Note that functions of the form (A.2) are general enough to compute node
statistics

νpGq “
ÿ

pu,vqPE

gpuq
du

, (1.3)

where du is the degree of node u P V , gpuq is any function of the node u, and
statistics of triangles such as the local clustering coefficient of G

µ△pGq “ 1
|V |

ÿ

pu,vqPE

"
Itdv ą 2u

dv

1`
dv

2

˘
ÿ

aPN pvq

ÿ

bPN pvq
b‰a

I

!
pv, aq P Eu X tpv, bq P Eu X tpa, bq P Eu

)*
, (1.4)

where the expression inside the sum is zero when dv ă 2 and N pvq are the neighbors
of v P V in G.

Let pνpnq
X pGq denote the estimator for νpGq from n samples using the technique

X and psνpnq
X pGq for sνpGq. Similar notation holds for µpGq and sµpGq.

A possible solution, under the constraint that only local information is available
at each node is snowball sampling: here after picking an initial node, the sampler
probes all its neighbors, and then for each of the neighbor, the process of probing all
of its neighbors is repeated. The process continues in this way. One main drawback
of this procedure is that the sampled node size increases exponentially and will soon
cover the entire network. Another issue is that in case of a very large network, this
sampling is asymptotically biased towards the principal eigenvector of the adjacency
matrix (called eigenvector centrality) [Newman 2010]: let xt be a column vector over
nodes denoting the number of times each node has been sampled till a time instant
t. Then for the initial vector x0 with starting node i, x0piq “ 1 and x0pkq “ 0, for
all k ‰ i. The snowball sampling gives the following iteration: xt “ Axt´1, which

essentially is the power iteration. By representing x0 as
ř|V |

i“1 ciu
A

i for appropriate
ci’s, we now have for large t,

xt « c1pλA

1 qt
uA

1 .

Such a bias is difficult to compensate for since knowledge of the eigenvector central-
ity requires the entire network or special tools as discussed later in Chapter 3 which
will further delay the whole process. In short, this procedure might be more suit-
able for sampling from a hidden population in the network, which has a relatively
small size compared to the actual network size. Popular algorithms like breadth-
first search and depth-first search from graph theory can also fit under snow-ball
sampling and face similar issues.

A simple random walk on a graph under the same local constraint provides a
viable solution. In a simple random walk, after picking an initial node randomly or
deterministically, the random walk chooses one of the neighbors of the present node
uniformly at random and moves to the selected node, and this process continues.
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Asymptotically, the choice of the random walk sampler is biased towards large de-
grees and since such a bias includes only local information, it can be easily reversed.
In general, a random walk need not sample the neighbors uniformly and can take
any transition probability compliant to the underlying graph. We will discuss more
about random walk sampling in Chapter 2.

The burn-in period (or mixing time) of the random walks is the time period
after which the random walk will be approximately independent of the initial dis-
tribution and produces almost stationary samples. In most of the random walk
based estimation procedures, the samples until the burn-in period are discarded in
order to provide theoretical guarantees. This poses serious limitations, especially
with stringent constraints on the number of samples imposed by API query rates.
Furthermore, if we limit the allowed number of samples, it is clearly not known
how accurate the estimated value is. A real time assessment of the estimator with
Bayesian posterior distribution will be useful in such a situation. We address these
problems in sampling in this thesis.

1.3 Spectral Decomposition: Sampling in “Spectral
Domain”

Spectral properties of a graph or a network are of interest to diverse fields due
to their strong influence in many practical algorithms. As explained later in this
section, many properties of networks are concisely abstracted in a few dominant
eigenvalues of the matrices associated with networks. However the computational
complexity associated with the estimation of eigenvalue spectrum and eigenvectors
has been a demanding problem for a long time. Thus, in the context of network
science the design of distributed spectral decomposition methods is particularly
important.

Problem

We study efficient algorithms for spectral decomposition in order to find k dominant
eigenvalues (it can be smallest or largest k) and its eigenvectors with high resolution.
The algorithms must allow a distributed implementation in the sense that each node
does the processing on its own with the data from its one hop neighborhood (see
Section 1.2.1). In particular, we restrict our attention to matrices which are graph
compliant, i.e., matrix entry at pi, jq is 0 when there is no corresponding edge pi, jq
in the graph. This makes development of distributed techniques easier.

To motivate the computation of eigen-spectrum of graph matrices, we now pro-
vide a few of its applications.4

4Eigen-spectrum and spectrum meant the eigenvalues of the graph matrix in the context.
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1.3.1 Relevance of spectral decomposition

The existing literature explores many applications of the spectrum of graph ma-
trices. Here we give a limited list of uses of the spectrum of the adjacency and
Laplacian matrices. In particular, the eigenvalues and eigenvectors can be used
globally or locally. Global applications require a central unit to collect eigenvalues
and eigenvector components from all the nodes and then pass this global informa-
tion to the algorithms behind the application. But in case of local applications, the
underlying algorithms run separately at each node by making use of the respective
component in the dominant eigenvectors, along with the knowledge of eigenvalues.

The eigen-spectrum of the adjacency matrix is connected with many useful
quantities, for instance:

• |E| “ 1{2
ř|V |

i“1pλA

i q2. This follows from the observation that pλA

i q2 is an
eigenvalue of A2 and the sum over them is the trace of A2. Each of the
diagonal elements of A2 is actually the number of walks of length two and
the sum of them is twice the number of edges.

• The total number of triangles in G is given by

T “ 1
6

|V |ÿ

i“1

pλA

i q3. (1.5)

The sum on the right-hand side is the trace of A3 and the diagonal entries
of A3 corresponds to cycles of length three. Each cycle is counted six times;
thrice due to each of the vertex in the cycle and twice from each vertex due
to the two different directions it has.

• Let 1 “ ř|V |
i“1 aiu

A

i
for some ai’s. Then the total number of walks of length k

is

1⊺Ak1 “
˜

|V |ÿ

i“1

aipuA

i q⊺
¸
Ak

˜
|V |ÿ

i“1

aiu
A

i

¸

“
˜

|V |ÿ

i“1

aipuA

i q⊺
¸˜

|V |ÿ

i“1

aipλA

i qkuA

i

¸

“
|V |ÿ

i“1

a2
i pλA

i qk.

This can be approximated by a2
1pλA

1 qk, when G is connected and non-bipartite
(to make λA

i ă λA

1 for all i ‰ 1 according to Perron-Frobenius theorem [Horn
& Johnson 2012, Section 8.5]).

Following are some more applications of the adjacency and Laplacian matrices
related to graphs and networks.
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Number of local triangles

The spectral information of the adjacency matrix can be used to obtain information
about the global as well as local knowledge of the number of triangles (in other
words, about global and local clustering). The total number of triangles in a graph
is given in (A.3). Now the number of triangles that a node m participated in is
1{2

ř|V |
i“1 λ

3
i pAq puA

i
pmqq2. This is because, using the spectral theorem, the number

of triangles the node m is involved in is given by

1
2
A3pmmq “ 1

2

|V |ÿ

i“1

pλA

i q3uA

i puA

i q⊺pmmq

“ 1
2

|V |ÿ

i“1

pλA

i q3puA

i pmqq2.

Hence if we calculate top-k eigenvalues and eigenvector components locally at node
m, we can approximate with good accuracy how much connected its neighbors are.

Dimensionality reduction, link prediction and Weak and strong ties

After the computation of top-k eigenvectors, each node is mapped to a point in
R

k space with the eigenvector components and closeness in the new space implies
affinity in terms of the position in the network. Therefore new links can be suggested
among unconnected nodes when the distance between them in R

k space is small
[Kempe & McSherry 2008].

Weak ties occur when the endpoints of an edge are part of well connected nodes,
but with very few common friends between the endpoints, while strong ties happen
in the opposite sense [Easley & Kleinberg 2010, Chapter 3]. The k-dimensional
vector associated with the endpoints can be used to find out weak or strong ties.

Finding near-cliques

Typical graph clustering works on the whole graph and will often assign isolated
nodes to some clusters, and subsequently would fail to detect communities with
good internal coherence. Therefore it is practically relevant to find communities
which are like cliques and extract it from the main graph. The work in [Prakash
et al. 2010] shows that the spectrum of adjacency matrix is useful for this. They
propose the idea of EigenSpokes which is a phenomenon whereby straight lines are
observed in the eigenvector-eigenvector scatter plots of the adjacency matrix. It is
then shown that nodes that are placed close to one another on the EigenSpokes have
the same set of neighbors and hence can be used to detect clique-like structures.

Spectral clustering

The problem of finding clusters in a network (especially in social networks) is an
old one with many developments in recent years. Among the studied techniques,
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spectral clustering is a prominent solution [Von Luxburg 2007]. In its basic state-
ment, the spectral clustering algorithm takes the first k normalized eigenvectors
u1, . . . ,uk of the adjacency or the Laplacian matrix. Let φφφphq be a vector made
of components of node h in u1, . . . ,uk. The k-means clustering algorithm is then
applied to different φφφphq’s, and this partitions the nodes in the network. In fact, the
matrix to be considered is dependent on the objective function to optimize (average

association in case of adjacency matrix instead of normalized cut in Laplacian) [Shi
& Malik 2000]. The main bottleneck in spectral clustering is the computation of
dominant eigenvectors, which we try to accomplish here with much less complexity.

Number of spanning trees

A subgraph of G, also a tree, which is incident on all the vertices is called a spanning
tree. The number of spanning trees of G is given by a well known expression
containing the eigenvalues of Laplacian matrix,

λL

1λ
L

2 . . . λ
L

|V |´1

|V |
.

More details about the ways to compute eigenvalues and eigenvectors are ex-
plained in Chapter 3.

1.4 Extreme Value Theory and its Applications

After collecting random samples from the network, a question arises on how to
make more inferences with them (other than estimation). To that end, note that
many social network entities are correlated. For instance, if we take a co-authorship
network where the nodes are the authors and a link is established when two authors
write a research paper together, the highly cited or high profile researchers tend
to make connections more to each other. How can we extract any information
about the correlation structure in the network with a few random samples? In
such scenarios, mathematical tools from different fields like extreme value theory
(EVT) appear to be very helpful. In this thesis, we also investigate the relationship
between extreme value theory and network sampling. Assuming that a stationary
sequence of random samples from a network is available, we study about extremal
properties like the first time to hit a large degree node, the clusters explored during
the sampling process, etc.

Extreme value theory, in general, is the study of rare events. In particular,
it deals with the convergence of Mn :“ maxtX1, . . . , Xnu of the random samples
tXiuiďn. In the following subsection, we give a very short introduction to EVT.

Independent and identically distributed samples

In case of i.i.d. samples with FXpxq as the cumulative distribution function, it is
clear that Mn Ñ xF a.s., where xF :“ suptx P R : FXpxq ă 1u. The EVT studies
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the order of magnitude of maximum Mn. The following theorem lays the foundation
of the EVT of i.i.d. samples.

Theorem 1.1 ([Embrechts et al. 2011, Fisher-Tippet theorem]). Let tXnuně1 be

a sequence of i.i.d. random variables. If there exist normalizing constants cn ą 0,

and dn P R and some non-degenerate random variable Y such that

Mn ´ dn

cn
Ñ Y,

then Y has a Fréchet, Weibull or Gumbel distribution:

Fréchet :
"

0, x ď 0

expt´x´αu, x ą 0
α ą 0.

Weibull :
"

expt´p´xqαu, x ď 0

1, x ą 0
α ą 0.

Gumbel : expt´e´xu, x P R.

The condition 1 ´ FXpxq “ LXpxqx´α with the function LXpxq slowly varying
is called regularly varying with exponent ´α. Here a function Lpxq is called slowly
varying if for every c ą 0,

lim
xÑ8

Lpcxq
Lpxq “ 1.

Note that the concept of regularly varying function is weaker than the typical power-
law definition 1 ´ FXpxq9x´α or PpX “ kq9 k´α´1.

Interestingly, when the distribution of the random variables tXnu is regularly
varying, only one of the extremal distributions, Fréchet, is the possible distribution:

Theorem 1.2 ([Embrechts et al. 2011, Theorem 3.3.7]). Let tXnuně1 be a sequence

of i.i.d. unbounded random variables having regularly varying distribution with ex-

ponent 1 ´ τ , τ ą 1, then
Mn

un
Ñ Y,

where Y has a Fréchet distribution with parameter α “ τ ´ 1 and

un :“ sup
!
x : 1 ´ FXpxq ě 1

n

)
.

Stationary samples

Since we are interested in random walks in this thesis, the focus is on extreme value
theory for stationary sequences tXiuiďn. Here the classical techniques study the
maximum Mn of tXiuiďn using the maximum ĄMn of the associated i.i.d. samples
tĂXiuiďn. In particular, under proper mixing conditions, c´1

n pĄMn ´ dnq Ñ H and
c´1

n pMn ´dnq Ñ G are related as G “ Hθ, where θ is called extremal index. It turns
out that extremal index is related to several interesting extremal events in sampling.
We will explore extremal index and its applications in detail in Chapter 6.
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1.5 Contribution of the Thesis

We make the following contributions on random walk based network estimation and
on distributed spectral decomposition.

1.5.1 Distributed ways to sample in spectral domain

In this work, we address the problem of finding top-k dominant eigenvalues (smallest
or largest) and corresponding eigenvectors of symmetric graph matrices in networks
in a distributed way. We propose a novel idea called complex power iterations
to decompose the eigenvalues and eigenvectors at node level, analogous to time-
frequency analysis in signal processing. At each node, eigenvalues will correspond
to the frequencies of spectral peaks and respective eigenvector components are the
amplitudes at those points. Based on complex power iterations and motivated
from fluid diffusion processes in networks, we devise distributed algorithms with
different orders of approximation. We also introduce a Monte Carlo technique with
gossiping which substantially reduces the computational overhead. An equivalent
parallel random walk algorithm is also presented. We validate the algorithms with
simulations on real-world networks. Our formulation of the spectral decomposition
can be easily adapted to a simple algorithm based on quantum random walks.
With the advent of quantum computing, the proposed quantum algorithm will be
extremely useful.

We then extend the aforementioned distributed techniques to detect, with higher
resolution, closely situated eigenvalues and corresponding eigenvectors of symmetric
graph matrices. We model the system of graph spectral computation as physical
systems with Lagrangian and Hamiltonian dynamics. The spectrum of Laplacian
matrix, in particular, is framed as a classical spring-mass system with Lagrangian
dynamics. The spectrum of any general symmetric graph matrix turns out to
have a simple connection with quantum systems and it can be thus formulated
as a solution to a Schrödinger-type differential equation. Taking into account the
higher resolution requirement in the spectrum computation and the related stability
issues in the numerical solution of the underlying differential equation, we propose
the application of symplectic integrators to the computation of eigenspectrum. The
effectiveness of the proposed techniques is demonstrated with numerical simulations
on real-world networks of different sizes and complexities.

1.5.2 Network sampling with random walk techniques

Non-asymptotically unbiased sampling and Bayesian inference

Are OSN-A users more likely to form friendships with those with similar attributes?
Do users in OSN-B score a content X more favorably than another content Y ? Such
questions frequently arise in the context of Social Network Analysis (SNA) but often
crawling an OSN network via its API is the only way to gather data for a third party.
To date, the majority of public datasets are formed from partial API crawls and thus
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they lack statistical guarantees, severely limiting SNA research progress. Using re-
generative properties of the random walks, we propose estimation techniques based
on short crawls that have proven statistical guarantees: non-asymptotic unbiased-
ness and evasion of burn-in time. Moreover, our short crawls can be implemented in
massively distributed algorithms. We also provide an adaptive crawler that makes
our method parameter-free, significantly improving our statistical guarantees. We
then derive an approximation to the Bayesian posterior of the estimates. In addi-
tion, we obtain an estimator for the expected value of node and edge statistics in
an equivalent configuration model or Chung-Lu random graph model of the given
network (where nodes are connected randomly) and use it as a basis for testing null
hypotheses. The theoretical results are supported with simulations on a variety of
real-world networks.

Reinforcement learning based sampling

Reinforcement learning (RL) provides a way to approach the estimation of average
of network functions. The RL based approach used in this thesis is also based on
the regenerative properties of the random walks and hence avoids the burn-in time
barrier. The RL-technique is essentially a stochastic approximation formed from
the Poisson equation of an associated semi-Markov process. The performance of
this technique depends on the stepsizes associated with the learning algorithm. This
technique can be placed as an intermediate technique between pure Markov chain
Monte Carlo (MCMC) iteration (stochastic) and relative value iteration (determin-
istic). The stepsizes control the stability of the RL-technique and its trajectories
are much more stable than that of the standard random walk based estimation pro-
cedures. Its performance is also comparable to respondent driven sampling which
has small asymptotic variance than many other estimators.

1.5.3 Extreme value theory and network sampling processes

This work explores the dependence structure in the sampled sequence of an unknown
network. We consider randomized algorithms to sample the nodes and study ex-
tremal properties in any associated stationary sequence of characteristics of interest
like node degrees, number of followers or income of the nodes in Online Social Net-
works, etc., which satisfy two mixing conditions. Several useful extremes of the
sampled sequence like kth largest value, clusters of exceedances over a threshold,
first hitting time of a large value, etc., are investigated. We abstract the dependence
and the statistics of extremes into a single parameter that appears in extreme value
theory, called extremal index (EI). In this work, we derive this parameter analyti-
cally and also estimate it empirically. We propose the use of EI as a parameter to
compare different sampling procedures. As a specific example, degree correlations
between neighboring nodes are studied in detail with three prominent random walks
as sampling techniques.
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1.6 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we review some background in
random walks on graphs and present classical results.

In Chapter 3 we present diffusion based algorithms for eigen-spectrum compu-
tation of symmetric graph matrices. Next, an analysis of the complexity and rate of
convergence is provided. After explaining the choice of parameters and connection
with quantum computing, algorithms which decompose the eigenvalues with higher
resolution, are explained.

Chapter 4 focuses on the estimation of sum function µpGq of edges. The idea of
“super-node” is first developed and it provides a way to tackle disconnected graphs.
We then derive a non-asymptotically unbiased estimator. Some of the extensions
provided in this chapter are the posterior distribution of the estimator and testing
with a null hypothesis that the function values are generated from a random graph
model.

Chapter 5 deals with an estimator for average function sνpGq of nodes and is
loosely based on the idea of regeneration of Markov chains. Algorithms based on
stochastic approximation and reinforcement learning are proposed and compared
with classical random walk estimators using simulations on real-world networks.

In Chapter 6, we explain the use of the parameter extremal index from EVT to
find many extremal properties of the network sampling process. Theoretical study
of the parameter is first introduced and it is followed by simulations on real data.

Finally Chapter A.3 concludes the thesis and presents future directions to ex-
plore.

1.7 Publications based on the Thesis

• [Avrachenkov et al. 2016c] Konstantin Avrachenkov, Bruno Ribeiro and Jithin
K. Sreedharan. Inference in OSNs via Lightweight Partial Crawls. ACM
SIGMETRICS Performance Evaluation Review, vol. 44, no. 1, pages 165 -
177, June 2016.

• [Avrachenkov et al. 2016b] Konstantin Avrachenkov, Philippe Jacquet and
Jithin K. Sreedharan. Distributed Spectral Decomposition in Networks by

Complex Diffusion and Quantum Random Walk. In Proc. IEEE International
Conference on Computer Communications (INFOCOM), April 2016.

• [Avrachenkov et al. 2016a] Konstantin Avrachenkov, Vivek S. Borkar, Arun
Kadavankandy and and Jithin K. Sreedharan. Comparison of Random Walk

based Techniques for Estimating Network Averages.” International Conference
on Computational Social Networks (CSoNet), August 2016.

• Konstantin Avrachenkov, Natalia M. Markovich and Jithin K. Sreedharan.
Distribution and Dependence of Extremes in Network Sampling Processes
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Chapter 2

Review of Random Walk
Sampling in Networks

From the problem formulation given in Section 1.2 and the explanations there,
the random walk (RW) appears as a viable solution for sampling and estimating
network functions.

A random walk on a graph is essentially a Markov chain with state space V
and transition probability matrix P . Before stating some facts about random walk
on graphs, we now make the simple observation that an ergodic random walk on
the state space of node set V with transition probability matrix P “ rpijs and
stationary probability distribution π to estimate node functions of the form νpGq
or sνpGq (see (A.1)) can be extended to estimate the edge functions µpGq and sµpGq
(see (A.2)) as follows: If tXnuně1 is the random walk, then tXn, Xn`1uně1 is also a
Markov chain. Since tXnu is ergodic, tXn, Xn`1u is also ergodic and the stationary
distribution of the chain tXn, Xn`1u is π1pi, jq “ πpiqpij for an edge pi, jq. This two
dimensional chain with the ergodic theorem (Theorem 2.1 below) gives estimates
for the edge functions µpGq and sµpGq. Thus for simplicity, we concentrate below
on the random walk over V and all the theory can be extended to two dimensional
random walk over edges.

Organization

Section 2.1 introduces the idea of mixing times and many classical results. Sec-
tion 2.2 describes some examples of the random walks on graphs. In Section 2.3,
we list some techniques to compare different random walks on graph. Section 2.4
explains the ways to achieve non-asymptotic unbiasedness with random walk esti-
mators. Section 2.5 deals with the case when uniform node sampling is allowed in
addition to random walk samples. Section 2.6 concludes the chapter.

2.1 Some Results on Convergence and Mixing Times
in Markov Chains

Many results in Markov chains do not necessarily need the conditions such as ape-
riodicity and reversibility. We will state it in the context. We also limit our studies
to finite graphs. The notation Eξ or Pξ indicates expectation or probability with

15
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respect to the initial distribution ξ.1

The main result we use throughout this thesis is the ergodic theorem (a.k.a.,
strong law of large numbers for the Markov chain):

Theorem 2.1. Let f be a real-valued function f : V ÞÑ R. If tXnu is an irreducible

finite Markov chain with stationary distribution π, then for any starting distribution

ξ,

Pξ

"
lim

nÑ8
1
n

n´1ÿ

k“0

fpXkq “ EπrfpX0qs
*

“ 1.

Later Theorem 2.5 provides a concentration bound in the context of ergodic theo-
rem. Now the central limit theorem for Markov chains is given below. Let Yn

dÝÑ Y

denote convergence in distribution of random variables Yn to Y .

Theorem 2.2 ([Roberts & Rosenthal 2004]). Let f be a real-valued function f :
V ÞÑ R with Eπrf2pX0qs ă 8. For a finite irreducible Markov chain tXnu with

stationary distribution π,

?
n

ˆ
1
n

n´1ÿ

k“0

fpXkq ´ EπrfpX0qs
˙

dÝÑ Normalp0, σ2
f q,

irrespective of the initial distribution.2 It then follows that

σ2
f “ lim

nÑ8nˆ E

«"
1
n

n´1ÿ

k“0

fpXkq ´ EπrfpX0qs
*2ff

:“ lim
nÑ8

1
n

Var
„n´1ÿ

k“0

fpXkq

. (2.1)

Note that both the above theorems hold for finite irreducible periodic chains also
(with a unique solution to π⊺P “ π⊺).

Let us define the fundamental matrix of a Markov chain asZ :“ pI´P`1π⊺q´1.

For two functions f, g : V Ñ R, we define σ2
ff :“ 2xf ,Zfyπ ´ xf, fyπ ´ xf,1π⊺fyπ,

and σ2
fg :“ xf ,Zgyπ ` xg,Zfyπ ´ xf, gyπ ´ xf,1π⊺gyπ, where xx,yyπ :“ ř

i xiyiπi,

for any two vectors x,y P R
|V |ˆ1, π being the stationary distribution of the Markov

chain. Now [Brémaud 1999, Theorem 6.5] states that σ2
f in Theorem 2.2 is same as

σ2
ff defined above.

We will also need the following theorem from [Nummelin 2002].

Theorem 2.3. If f, g are two functions defined on the states of a random walk,

define the vector sequence Zk “
„
fpXkq
gpXkq


the following central limit theorem holds

?
n

ˆ
1
n

nÿ

k“1

Zk ´ EπpZkq
˙

dÝÑ Normalp0,Σq,

1The probability distribution ξ on a finite alphabet is also denoted by a vector bold notation

ξ. We drop the subscript in E and P if it is implied from the context.
2Normalpa, bq is Gaussian random variable with mean a and variance b.



2.1. Some Results on Convergence and Mixing Times 17

where Σ is 2 ˆ 2 matrix such that Σ11 “ σ2
ff ,Σ22 “ σ2

gg and Σ12 “ Σ21 “ σ2
fg.

The time required by a random walk or Markov chain to reach stationarity is
measured by a parameter called mixing time defined as

tmixpεq :“ mintt : max
uPV

}P tpx, ¨q ´ π}TV ď εu,

where }ξ1 ´ ξ2}TV :“ maxAĂV |ξ1pAq ´ ξ2pAq| is the total variational distance be-
tween the probability distributions ξ1 and ξ2.

Spectral gap and bounds of mixing time

Mixing time is difficult to accurately calculate or estimate, and there are many ways
to find lower and upper bounds of mixing time. The eigenvalues of the transition
probability matrix provide an useful tool.

Let ´1 ď λP|V | ď . . . λP2 ă λP1 “ 1 be the eigenvalues of a reversible ergodic

Markov chain. Let us define the spectral gap as δ :“ 1 ´ λP2 , the absolute spectral

gap as δ˚ :“ 1 ´ max
 
|λP2 |, . . . , |λP|V ||

(
, and the relaxation time as trel :“ 1{δ˚.3

Theorem 2.4 ([Aldous & Fill 2002, Chapter 3]). Fix 0 ă ε ă 1 arbitrary. Assume

P irreducibile, aperiodic and reversible with stationary distribution π. Then

ptrel ´ 1q log
´ 1

2ε

¯
ď tmixpεq ď log

´ 1
εmini πpiq

¯
trel.

Effect of bottlenecks of the graph in mixing time

The effect of graph topology on mixing time is usually illustrated by a dumbbell
graph: two cliques joined by a line graph. Heuristically one can see that in this
case the random walk will take much longer time to mix. This is rigorously stated
by the notion of bottleneck ratio.

Let
Qpx, yq “ πpxqP px, yq, QpC,Dq “

ÿ

xPC,yPD

Qpx, yq,

for x, y P V . Now the bottleneck ratio or conductance or Cheeger constant of the
set A Ă V and that for the entire chain are defined as,

ΦpAq “ QpA,Acq
πpAq , Φ˚ “ min

A:πpAqď1{2
ΦpAq.

The normalization is introduced here to give weightage to relevant sets. It is related
to mixing time as ([Levin et al. 2008, Theorem 7.3])

tmixp1{4q ě 1
4Φ˚

,

3For a lazy Markov chain with t.p.m. as I`P

2
, δ˚ “ δ.



18 Chapter 2. Review of Random Walk Sampling in Networks

or via Cheeger inequality ([Jerrum & Sinclair 1989])

Φ2
˚{2 ď δ ď 2Φ˚, (2.2)

if the Markov chain is reversible.
In order to show how the bottleneck captures the graph structure, consider a

simple random walk on d-regular graph. Then ΦpAq “ d´1 |EpA,Acq|{|A| with
|EpA,Acq| indicating the number of edges going outside the set A. Suppose the
graph contains a large component with very few edges going outside the component,
then ΦpAq will be very low for the component and this makes the mixing time large.

Concentration bound for ergodic theorem

The following theorem gives more informative results about the ergodic theorem
and clearly illustrates the use of mixing time and the spectral gap of P in providing
confidence interval for the ergodic estimate.

Theorem 2.5 ([Levin et al. 2008, Theorem 12.19]). Let tXnu be a reversible Markov

chain. If r ě tmixpε{2q and n ě r4 Varπrf s{pη2εqs trel, then for any starting point

u P V ,

Pu

"ˇ̌
ˇ̌ 1
n

n´1ÿ

k“0

fpXr`kq ´ EπrfpX0qs
ˇ̌
ˇ̌ ě η

*
ď ε.

How the random walks are useful in complex networks?

First, an expander graph G is defined as follows: let P be the transition probability
matrix of simple random walk. Then for the simple random walk on the expander,
there exists an α ą 0 such that the Cheeger constant of the chain Φ˚ ě α. This
implies with the Cheeger inequality (2.2) and Theorem 2.4 that the mixing time
is Oplognq. In [Mihail et al. 2003], it is shown that the preferential attachment
random graph is an expander. Note that Internet and several small world networks
are modeled using preferential attachment.

2.2 Description of the Techniques

In light of the ergodic theorem and the concentration result Theorem 2.5, a Markov
chain on the state space V can be used to estimate various graph functions. Such
Markov chains are generally called random walks on graph (RW) and this section
reviews some of the popular random walk based sampling techniques.

We do not consider many of the variations of random walks such as multidimen-
sional, non-backtracking, etc., in this thesis and thus in this review, since our focus
is mainly on providing general techniques such as non-asymptotic unbiasedness and
real-time computation of the posterior distribution.
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2.2.1 Simple random walk (SRW)

A simple random walk (SRW) is a time-homogeneous first-order Markov chain
whose state space is V and the transition probabilities are given as

pij “ P pXt`1 “ j|Xt “ iq “ 1
di
,

if there is a link between i and j, i.e., pi, jq P E, di being the degree of node i.
One can think of the simple random walker as a process that traverses the links of
the graph in a purely random fashion. We can define P the transition probability
matrix (t.p.m) of the Random walk as an |V | ˆ |V | matrix, such that Pij “ pij .

Since we consider undirected networks, our random walk is time reversible. When
the graph is connected the transition probability matrix P is irreducible and by
the Perron-Frobenius theorem there always exists a unique stationary probability
vector π P R

|V |ˆ1 which solves π⊺P “ π⊺, which is in fact πpiq “ di

2|E| . As the
state space is finite, the Markov chain is also positive recurrent and the quantities
such as hitting times, and cover times are finite and well-defined. In short, in graph
theoretic terminology for an undirected graph, irreducibility means connectedness
and aperiodicity implies that the graph is non-bipartite. Note that with the local
information constraints (see Section 1.2.1) the random walk based techniques can
be easily implemented via APIs of OSNs and can also be made distributed.

Stationary average with uniform distribution

The SRW is biased towards higher degree nodes and from the ergodic theorem the
sample averages converge to the stationary average. Hence if the aim is to estimate
an average function like

sνpGq “ 1
|V |

ÿ

uPV

gpuq,

the RW needs to have uniform stationary distribution. Alternatively the RW should
be able to unbias it locally. In the case of SRW by modifying the function g to
g1puq “ gpuq{πpuq this can be accomplished. But since πpuq contains |E| and the
knowledge of |E| is not available to us initially, it also needs to be estimated. To
overcome this problem, we consider the following variations of SRW.

2.2.2 Metropolis-Hastings random walk

We present here the Metropolis Hastings MCMC (MH-MCMC) algorithm. When
the chain is in state i, it chooses the next state j according to transition probability
pij . It then jumps to this state with probability qij or remains in the current state
i with probability 1 ´ qij , where qij is given as below

qij “
#

min
´

pji

pij
, 1
¯

if pij ą 0,

1 if pij “ 0.
(2.3)
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Therefore the effective jump probability from state i to state j is qijpij , when
i ‰ j. It follows then that such a process represents a Markov chain with the
following transition matrix PMH

PMH
ij “

$
’&
’%

1
maxpdi,djq if pi, jq P E
1 ´ ř

k‰i
1

maxpdi,dkq if i “ j

0 if pi, jq R E, i ‰ j.

This chain is reversible with stationary the distribution πpiq “ 1{|V | @i P V . There-
fore the following estimate for sνpGq using MH-MCMC, tXnu being MH-MCMC
samples, is asymptotically consistent.

psνpnq
MHpGq “ 1

n

nÿ

k“1

gpXkq.

By using the CLT for Markov chains Theorem 2.2, we can show the following central
limit theorem for MH-MCMC.

Proposition 2.6 (Central Limit Theorem for MH-MCMC). For MH-MCMC with

uniform target stationary distribution it holds that

?
n
´
psνpnq

MHpGq ´ sνpGq
¯

dÝÑ Normalp0, σ2
MHq,

as n Ñ 8, where σ2
MH “ σ2

gg “ 2
|V |g

⊺Zg ´ 1
|V |g

⊺g ´
`

1
|V |g

⊺1
˘2

.

2.2.3 Respondent driven sampling technique (RDS-technique)

The estimator with respondent driven sampling uses the SRW on graphs but ap-
plies a correction to the estimator to compensate for the non-uniform stationary
distribution.

psνpnq
RDSpGq “

řn
k“1 gpXkq{dXkřn

k“1 1{dXk

(2.4)

We define h
1pXkq :“ gpXkq{dXk

, hpXkq :“ 1{dXk
.

The asymptotic unbiasedness derives from the following result on the ratio form
of the law of large numbers for Markov chain samples [Meyn & Tweedie 2012,
Theorem 17.2.1]:

Theorem 2.7. Let f and g be real-valued functions on V . If tXnu is an irreducible

finite Markov chain with stationary distribution π, then for any starting distribution

ξ,

Pξ

"
lim

nÑ8

řn´1
k“0 fpXkqřn´1
k“0 gpXkq

“ EπrfpX0qs
EπrgpX0qs

*
“ 1

Now for the central limit theorem, we have:
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Proposition 2.8 (Asymptotic Distribution of RDS Estimate). The RDS estimate

psνpnq
RDSpGq satisfies a central limit theorem given below

?
n
´
psνpnq

RDSpGq ´ sνpGq
¯

dÝÑ Normalp0, σ2
RDSq,

where σ2
RDS is given by

σ2
RDS “ d2

av pσ2
1 ` σ2

2µ
2pGq ´ 2µpGqσ2

12q ,

where σ2
1 “ 1

|E|g
⊺Zh

1 ´ 1
2|E|

ř
x

gpxq2

dx
´
`

1
2|E|g

⊺1
˘2

, σ2
2 “ σ2

hh “ 1
|E|1

⊺Zh´ 1
2|E|h

⊺1´
p 1

dav
q2 and σ2

12 “ 1
2|E|g

⊺Zh ` 1
2|E|1

⊺Zh
1 ´ 1

2|E|g
⊺h ´ 1

dav

1
2|E|1

⊺g.

Proof. Let h
1pxq :“ gpxq

dx
and hpxq :“ 1

dx
. Define the vector Yk “

„
h

1pXkq
hpXkq


, and

let Zn “ ?
n p 1

n

řn
k“1 Yk ´ EπpY1qq. Then by Theorem 2.3, Zn

DÝÑ Normalp0,Σq,
where Σ is defined as in the theorem. On the other hand, by Skorohod’s representa-
tion theorem [Billingsley 2008] in a space pΩ,F ,Pq ,Ω Ă R

2, there is an embedding
of Zn such that Wn Ñ W a.s. such that Wn

D“ Zn and W „ Normalp0,Σq. Let

Zn :“
„
Z1

n

Z2
n


,Wn :“

„
W 1

n

W 2
n


,W :“

„
W 1

W 2


, µh1 :“

ÿ

uPV

h1puq, and µh :“
ÿ

uPV

hpuq.

Now

řn
t“1 h

1pXtqřn
t“1 hpXtq

D“
1?
n
W 1

n ` µh
1

1?
n
W 2

n ` µh

“ W 1
n ` ?

nµh
1

W 2
n ` ?

nµh

“ W 1
n ` ?

nµh
1

?
nµhp1 ` W 2

n?
nµh

q

“ 1?
nµh

ˆ
W 1

n ´ W 1
nW

2
n?

nµh

`
?
nµh

1 ´ W 2
nµh1

µh

` Op 1?
n

q
˙
.

This gives

?
n

ˆřn
t“1 h

1pXtqřn
t“1 hpXtq

´ µh1

µh

˙
DÝÑ 1

µh

´
z1 ´ z2

µh1

µh

¯
,

since the term Op 1?
n

q tends to zero in probability, and using Slutsky’s lemma
[Billingsley 2008]. The result then follows from the fact that z „ Normalp0,Σq.

2.3 Comparing Random Walk Techniques

Random walks can be compared in many ways. Two prominent techniques are in
terms of the mixing time tmix and the asymptotic variance σ2

f (2.1). Mixing time
is relevant in the situations where the speed at which the RW approach the sta-
tionary distribution matter. However, many MCMC algorithms leave some initial
samples to get rid of the independence on the initial distribution (called burn-in
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period) and this accounts for mixing time. After the burn-in period, the number of
samples needed for achieving a certain estimation accuracy can be determined from
the Gaussian approximation given by the central limit theorem (see Theorem 2.2).
Hence another measure for comparison of the random walks is the asymptotic vari-
ance in the Gaussian approximation. The lower the asymptotic variance, the lesser
number of samples needed for a certain estimation accuracy. Many authors con-
sider asymptotic variance as the prime parameter to compare RWs. For instance,
the authors in [Lee et al. 2012] proved the better performance of non-back tracking
random walks compared to the SRW and MH-MCMC with the asymptotic variance.
The asymptotic variance is related to the eigenvalues of P as follows,

σ2
f “

|V |ÿ

i“2

1 ` λPi
1 ´ λPi

|xf,uP

i yπ|2,

where xx,yyπ “ ř
iPV xpiqypiqπpiq [Brémaud 1999, Chapter 6]. When the interest

is in the speed of convergence to equilibrium, then only the second-largest eigenvalue
modulus matters. However, if the aim is to compute EπrfpX0qs as the ergodic
mean limnÑ8 1

n

řn
k“1 fpXkq, then all the eigenvalues become significant and this is

captured when the quality of the ergodic estimator is measured by the asymptotic
variance.

We have briefly mentioned a parameter called extremal index (EI) from extreme
value theory at the end of Section A.1.3. EIs of different RWs are studied in detail
in Chapter 6 and will be useful for determining some extremal events like the first
time to hit a largest degree node. If the purpose of the RWs is to estimate such
extremal events, then EI is also a good candidate for comparing RWs.

2.4 Non-asymptotic Unbiasedness of Random Walk Es-
timators

The ergodic theorem for RWs on connected graphs explains the asymptotic unbi-
asedness of the estimators. This is definitely useful since it is simple to implement
and easy to analyze also. Still, there is a scope for improvement. This follows from
the observation that revisits of the RW to the same node act as renewal epochs
and the underlying Markov chains regenerates at such instants. The random walk
samples between visits to a fixed node are independent conditioned on the returning
time instants. This helps us to form a simple estimator as follows. Let

ξ1 :“ mintn ě 1 : Xn “ iu.
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Now using renewal reward theorem, we have

Ei

„ ξ1ÿ

n“1

gpXnq


“ Erξ1sEπrgs

paq“ 1
πpiq

ÿ

uPV

πpuqgpuq

“ 1
di

ÿ

uPV

g1puq, (2.5)

where the function g1puq :“ gpuq{du and in paq we have used the result that for a
finite state ergodic Markov chain Erξ1s “ 1{πpiq. The left-hand side of the above
expression can be calculated as the empirical mean from independent runs of revisits
to the same node i. This empirical mean multiplied by degree of the anchoring node
forms an estimator for νpGq “ ř

uPV gpuq and is non-asymptotically unbiased.

Overcoming the burn-in time barrier

It is clear from the previous sections that the burn-in period (or mixing time)
of random walks discards many initial samples, yet it is necessary for accurate
estimation with performance guarantees. The technique mentioned in the previous
section with estimator from random walk runs between the renewal epochs does
not need to wait until the burn-in period, since one does not need to make the
RW independent of the initial distribution unlike in SRW. In fact starting from a
fixed node i, the samples are collected and this stops at the time RW returns to
the same node i. This technique does not seem to be readily extending to average
functions like sν “ |V |´1 ř

uPV gpuq. Another technique based on reinforcement
learning proposed in Chapter 5 addresses this problem, and also evades the burn-in
time barrier.

2.5 Mixture of Random Walk and Uniform Node Sam-
pling

The simple random walk has the advantage that it traverses only through the edges
of the graph. But many times the designer will have the liberty to collect a few
uniform samples from the network. Heuristically, in cases like dumbbell graph
random jumps at certain instants improves the mixing time. There exists such
variations of the RWs in the literature where the transitions are not restricted to
the neighbors of a node. One example is the PageRank algorithm in which the
transition probability matrix is modified as, for a constant 0 ă c ă 1

rP “ cP ` p1 ´ cq 1
n

11⊺.



24 Chapter 2. Review of Random Walk Sampling in Networks

Here the spectral gap is δ “ 1 ´ c. A modification of the PageRank is rather than
fixing c make it depends on the present node degree as,

c “ dXn

dXn ` α
,

with a parameter α ě 0 [Avrachenkov et al. 2010]. This makes the random walk
reversible (unlike PageRank) and it is proven that for a regular graph such a change
improves the mixing time.

2.6 Conclusions

This chapter first reviewed some terminology like mixing time, spectral gap, relax-
ation time, etc., and key theorems associated with random walks on graph. We
found how mixing and relaxation times are associated with the ergodic theorem,
which is the main idea behind the development and analysis of the estimators of
graph functions. The relation of mixing time to the graph structure and the eigen-
values of the transition probability matrix is also detailed later. Some fundamental
random walks are explained and a few measures for comparing the random walks
are listed. Non-asymptotically unbiased random walk estimator and random walks
with a mix of uniform node sampling are explained later.



Chapter 3

Distributed Spectral
Decomposition in Networks

This chapter considers the problem of spectral decomposition in networks. We focus
on finding the eigenvalues and eigenvectors of symmetric graph matrices. The main
interest here is on the distributed implementation and the algorithms are developed
based on the assumption that the graph is not completely known. Each node in
the network will know only its neighbors and can communicate with only them.
In particular, for the distributed implementation we focus on symmetric graph
matrices following G (i.e., having 0 at position pi, jq if pi, jq R E).

For instance, the matrix can be the adjacency matrix A “ raijs, 1 ď i, j ď
|V | in which aij denotes the weight of the edge between the nodes i and j. Due
to symmetry the eigenvalues are real and can be ranked in decreasing order as
λA

1 ě λA

2 ě . . . ě λA

|V |. We study the largest k eigenvalues λA

1 , . . . , λ
A

k and the
corresponding eigenvectors uA

1 , . . . ,u
A

k .1 As defined in Chapter 1, we also focus on
another well known graph matrix called Laplacian matrix L which is defined as
D´A. We will use the adjacency matrix to illustrate the ideas in the first part of
the chapter and Laplacian for the second part of the chapter.

Organization

In Section 3.2 we review some classical challenges in computing the spectrum of
graphs. Section 3.3 presents the central idea of the chapter, complex power iter-
ations, and explains various orders of approximations. In Section 3.4 we present
in detail two distributed approaches for network spectral decomposition: complex
diffusion when each node can communicate with all its neighbors; complex gos-
siping when each node receives data from only one neighbor. We also derive the
complexity of complex diffusion in the same section. Then, in Section 3.5 we ex-
plain that our approach can be efficiently realized using a quantum rank walk based
algorithm. In Section 3.6 we analyse the error terms and rate of convergence, and
provide recommendations for the choice of parameters. Numerical results presented
in Section 3.7 demonstrate the scalability of the approach.

Sections 3.9-3.13 extends the developed algorithms for higher resolution. First
in Section 3.9 we detail some of the issues in computation. Section 3.10 explains a
mass-spring analogy specific to Laplacian matrix and derive a method to identify

1In order to simplify the notation, we drop dependence on the matrix whenever it is evident

from the context.

25
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the spectrum. Section 3.11 develops techniques for spectral decomposition based on
solving the Schrödinger-type equation efficiently. Section 3.12 details a distributed
implementation of these modified algorithms. Section 3.13 contains numerical sim-
ulations on networks of different sizes. Section 3.14 concludes the chapter.

3.1 Related Work

We provide a straightforward interpretation of eigenvalue spectrum and eigenvec-
tors in terms of peaks in the frequency domain of complex exponential of A and
exploit it for developing distributed algorithms. To the best of our knowledge, the
first distributed network spectral decomposition algorithm was proposed in [Kempe
& McSherry 2008]. The most challenging part of the algorithm in [Kempe & Mc-
Sherry 2008] is the distributed orthonormalization at each step of the algorithm.
This a difficult operation, which the authors solve by communicating information
via random walks. Clearly if the graph has a small conductance (a typical case for
many large graphs), this operation will take extremely long time at each step of the
algorithm. Our first distributed algorithm based on the diffusion of complex fluid
across the network, an implementation of complex power iterations, do not require
orthonormalization. In [Sahai et al. 2012, Franceschelli et al. 2013] the authors use
techniques from signal processing which are in the same spirit of our approach. How-
ever their approach needs either to use two time steps or two hop-neighbourhoods
for each iteration, while our algorithms work with one time step and one-hop neigh-
bourhood. The approach of [Sahai et al. 2012, Franceschelli et al. 2013] deforms
the values of eigenvectors and eigenvalues and the correction needed is not evident.
Moreover, since the methods in [Sahai et al. 2012, Franceschelli et al. 2013] are based
on classical Fourier transforms, the eigenvalues might not get detected because of
spurious peaks in the spectrum. Our approach overcomes this problem by using
Gaussian smoothing. Our algorithms can also be immediately implemented via
light weight gossiping and random walks with complex rewards. A gossip algorithm
based on reinforcement learning was recently introduced in [Borkar et al. 2014], but
it computes only the principal eigenvector. From the analysis of our diffusion tech-
nique, we observe that our algorithms are scalable in the order of maximum degree.
Finally our method has a very interesting relation to the quantum random walks,
which with the advancement of quantum computing can make our approaches very
efficient.

3.2 Challenges in Classical Techniques

Here we illustrate two problems (among many) faced by existing techniques with
the help of two classical algorithms.

The first one, power iteration, consists of computing the iterative power bℓ “
Aℓb0 for the increasing integer ℓ with b0 as an initial vector. Using the spectral
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decomposition of A, we have

Aℓ “
ÿ

j

λℓ
jujuj

⊺ .

We adopt the convention }uj} “ 1. Depending of λ1 being greater or smaller
than one, the iteration bℓ “ Aℓb0 for ℓ ě 1 will exponentially decrease or increase
without proper step normalization. The normalization introduced is

bℓ`1 “ 1
}bℓ}

Abℓ . (3.1)

Notice that bℓ converges to λ1u1 when ℓ Ñ 8. The problem is that this method
cannot be readily applied to the search of the other eigenvalues because the first
eigenvalue screens the exponentially decreasing secondary eigenvalues: bℓ “ λ1u1 `
O
`
pλ2

λ1
qℓ
˘
.

In order to compute the other eigenvalues one can use the inverse iteration
methods based on the formula

bℓ`1 “ 1
}bℓ}

pA´ µIq´1bℓ, (3.2)

for an arbitrary real number µ ă λ1. The iteration will converge to 1
λj´µ

uj where
j is the index of the eigenvalue closest to µ. The search consists of approaching the
eigenvalue by tuning the parameter µ. The difficulty of the method is in computing
the inverse matrix (or solution of the linear system) for each selected values µ which
is computationally costly. Furthermore, the use of normalization at each iterative
step, in (3.1) as well as in (3.2), will make it difficult an adaptation to the distributed
context, i.e., the normalization requires frequent pausing of the iteration in order
to compute and disseminate the normalization factor.

In the next section we propose a new method called complex power iterations.
From an initial vector b0 and given integer k, the method will return the k first
eigenvalues λ1, . . . , λk and the vectors pb⊺0ujquj for j “ 1, . . . , k. Notice that the
uj ’s can be retrieved via normalization, but it will turn out that this is an unnec-
essary step.

3.3 Complex Power Iterations

Now we introduce the main idea in the chapter, the complex power iterations, which
we use to compute the spectrum of the matrix of a network in an efficient way. We
consider an undirected graph. The important notation used in this chapter are
listed in Frequently used Notation (p. ix).

We derive a technique that is analogous to the frequency spectrum in the time-
frequency analysis and apply it to graph spectrum analysis. In this perspective, the
domain of eigenvalues corresponds to the frequency domain.

From the eigendecomposition of the symmetric matrix A, A “ ř
j λjuju

⊺

j , we
have eiAt “ ř

j e
itλjuju

⊺

j . Notice that the function eiAt is pseudo periodic and
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Figure 3.1: Spectral plot at node m.

its harmonics correspond exactly to the spectrum of the matrix. The advantage of
complex exponential is that the whole spectrum can be recovered via the classical
Fourier transform, contrary to the expression eAt (dropping the imaginary unit i)
where the effect of the other eigenvalues λj for j ą 1 decays exponentially when
t Ñ 8. Indeed, we formally have

1
2π

ż `8

´8
eiAte´itθdt “

|V |ÿ

j“1

δλj
pθquju

⊺

j , (3.3)

with δλj
being the Dirac function translated of the quantity λj . However this

expression is not easy to handle numerically because any truncated or discretization
version of the integral will generate too large fake harmonic oscillations that will
hide the Dirac peaks (we show an example of this in Section 3.7). To overcome this
problem we use the spectral smoothing via convolution with a Gaussian function of
variance v ą 0 :

1
2π

ż `8

´8
eiAte´t2v{2e´itθdt “

|V |ÿ

j“1

1?
2πv

expp´pλj ´ θq2

2v
quju

⊺

j , (3.4)

Notice that the above expression converges to (3.3) when v Ñ 0. In order to ease
visualization, a scalar product is taken with an initial vector b0. Figure 3.1 shows a
sample plot produced from (3.4) at some node m, by varying θ. The detection of the

eigenvalues corresponds to locating the peaks and the quantities
b

2π
v

pb⊺0ujqujpmq
corresponds to the values at these peaks as we will see later.

The key for the computation of (3.4) is the determination of the factor eiAt

which does not come naturally from the expression of matrix A. We fix a number
ε ą 0 and we use the discretization eiAℓε “ pI ` iεAqℓp1 ` Opε2ℓqq, where I is the
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identity matrix, for the calculation of left-hand side in (3.4),
ż `8

´8
eiAte´t2v{2e´itθdt

“ εℜ

ˆ
I ` 2

ℓmaxÿ

ℓ“1

pI ` iεAqℓe´iℓεθe´ℓ2ε2v{2

˙
` Opε2ℓmaxq (3.5)

Here ℜpxq denote real part of complex number x and ℓmax is the maximum number
of steps used to approximate the left-hand side. The quantity ℓε in the sum plays
the role of variable t in the integral. Applying the expression to an initial vector
b0, we define,

fθ “ εℜ
´
b0 ` 2

ℓmaxÿ

ℓ“1

e´iℓεθe´ℓ2ε2v{2xℓ

¯
, (3.6)

where xℓ is used to approximate eiεℓAb0. For instance, in (3.5), pI ` iεAqℓ is taken
as an estimate of eiεℓA.

We notice that the expression of fθ does not use any discretisation over the
θ variable or on the v variable and turns out to be analytical functions of these
variables. Therefore the search of peaks corresponding to the eigenvalues turns out
to be finding the zeroes of the derivative of fθ under the condition that fθ is above
a certain threshold.

This process and the way to tune the best values of ε, v and ℓmax will be discussed
in Section 3.6.3. In the next section we refine some higher order approximation of
eiεℓA which can be used to obtain more accurate expressions.

3.3.1 Higher order approximations

The approximation xℓ of eiℓεAb0 in (3.6) can be made more accurate by using
Runge-Kutta (RK) methods. Indeed, we have xℓ`1 “ pI ` iεAqxℓ. We also notice
that eiAtb0 is the solution of the differential equation 9x “ piAqx with initial condi-
tion xp0q “ b0. We use Runge-Kutta (RK) methods [Tenenbaum & Pollard 1985]
to solve this differential equation numerically. With xpℓεq approximated by xℓ, the
iteration in such a method can be defined as follows,

xℓ`1 “ xℓ ` 1
6
k1 ` 1

3
k2 ` 1

3
k3 ` 1

6
k4, (3.7)

where x0 “ b0, k1 “ εpiAxℓq, k2 “ εiApxℓ ` 1{2 k1q, k3 “ εiApxℓ ` 1{2 k2q and

k4 “ εiApxℓ ` k3q. It is observed that (3.7) is equivalent to xℓ “
´

I ` piεAq `

. . .` piεAq4

4!

¯ℓ

b0. This is the RK method of order-4. This equivalence can be easily
generalized to any order r RK methods as,

xℓ “
˜

rÿ

j“0

piεAqj

j!

¸ℓ

b0. (3.8)

In this work, we use order r “ 1, 2 and 4.
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3.4 Complex Diffusion

The previous analysis is based on a centralised approach where we can manage to
make matrix multiplications. The real challenge in the networking context is to
make the computations distributed. Thus, in order to compute (3.6), we propose
and compare the following three techniques:

(i) Centralized approach: Here we assume that the adjacency matrix A is
completely known to a centralized unit. We use order-1 (3.5), order-2 or
order-4 (3.7) technique to compute the approximation.

(ii) Complex diffusion: It is a distributed and asynchronous approach in which
only local information is available at each node, which is the list of its neigh-
bors. Here, each node communicates with all its neighbors at each time epoch.

(iii) Monte Carlo techniques: This is also a distributed technique with only
local information, but with much reduced complexity than Complex diffusion
as each node communicates with only one neighbor. Monte Carlo techniques
can be implemented either using Monte Carlo Gossiping or using parallel
random walks.

The matrix X (size |V | ˆ pℓmax ` 1q) approximates eiℓεAb0 for 0 ď ℓ ď ℓmax, in
the following sense.

X “
”
x0 x1 . . . xℓmax

ı

«
”
b0 eiεAb0 . . . eiℓmaxεAb0

ı
.

The above three methods employ different techniques to compute X. At any node
m, once the corresponding row in X is computed, then fθpmq (cf. (3.6)) can be
calculated independent of other nodes, and thus spectral plot and the dominant
eigenvalues and eigenvectors are obtained.

3.4.1 Complex diffusion

The key of the computation in (3.6) is the calculation of the sequence xℓ or the
associated generating polynomial xpzq “ řℓmax

ℓ“0 zℓxℓ. Complex Diffusion uses the
idea of fluid diffusion in networks to compute the coefficients of this polynomial in
z. The algorithms proposed in this section are distributed in the sense that each
node needs only to know and to communicate with its neighbors. They can be made
asynchronous as well since there is no central clock to control the fusion-diffusion
process.

We first consider the complex diffusion based on the order-1 approximation, i.e.,
xℓ “ pI ` iεAqℓb0. For order-1 calculations, the node m will start with an initial
fluid b0pmq and a copy of this fluid is diffused to all of its neighbors with weight
iεam,h, h P N pmq. A copy is also diffused to itself with weight 1 ` iεamm. The
technique is detailed in Algorithm 3.4.1. At each node, we compute the polynomial
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xpzq which corresponds to the equivalent row in X. Then vector xpzq is made of
the polynomials xpzq computed on each node m. In the algorithm, the procedure
Sendph, fq transmits fluid f to node h and Receivephq collects fluid from h.

Algorithm 3.4.1: ComplexDiffusion(m, b0)

Cpzq Ð b0pmq
ℓ Ð 0

while pℓ ď ℓmaxq

do

$
’’’’’’’’’’’&
’’’’’’’’’’’%

xpzq Ð xpzq ` Cpzq
for each h P N pjq

do
 
Sendph, am,hεiCq

Cpzq Ð p1 ` iεaj,jqCpzqz
for each h P N pjq

do
 
Cpzq Ð Cpzq ` zReceivephq

ℓ Ð ℓ` 1

return pxpzqq

The total number of fluid diffusion-fusion cycles at each node should be ℓmax in
case the diffusions are synchronised. For asynchronous diffusions the diffusion will
stop when all quantities C have only monomials of degree larger than ℓmax, thus
equal to zero after truncation. This will occur when all paths of length ℓmax have
been processed in sequence. This can be easily detected if we assume a maximum
time tmax for a diffusion-fusion cycle on each node, the process should stop after
any laps of duration tmaxℓmax with no diffusion-fusion.

At first sight, the quantities xpzq’s would need to be collected only at the end
of the parallel computations. In fact, even this is not needed since the computation
of fθpmq and the peak detection can be made locally as long as the initial vector
b0 is not orthogonal to the uj , and the quantity pb⊺0ujqujpmq be returned.

The polynomial technique explained in Algorithm 3.4.1 can also be implemented
in vector form. We can extend the technique to higher order approximations. The
pseudo-code in Algorithm 3.4.2 implements the order-2 complex diffusion. The use
of parameter C2pzq is the artefact for the diffusion of matrix piεAq2. Indeed, the
fluid must be retransmitted towards a relay before being added to xpzq. This is the
reason why the number of iterations must be raised to 2ℓmax. The generalisation to
a diffusion of order-r, is straightforward since it consists of the diffusion of matrix
piεAqr. To this end we add additional parameters C2pzq by a vector Crpzq with r´1
components C2

r , . . . C
r
r and the procedure Send transmits iεam,hpCpzq`Cr

r pzqq and
Send-r consists of transmitting the vector rCpzq, C2

r pzq, . . . , Cr´1
r pzqs.

In parallel each node can compute their function f pθq (cf. (3.6)) and detect the
peaks. When a node has detected the values λℓ for those peaks, with ℓ “ 1, . . . , k
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Algorithm 3.4.2: DiffusionOrder2(m, b0)

Cpzq Ð b0pmq
C2pzq Ð 0

ℓ Ð 0

while pℓ ď 2ℓmaxq

do

$
’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’%

xpzq Ð xpzq ` Cpzq
for each h P N pmq

do
"

Sendph, am,hεipCpzq ` 1
2C2pzqqq

Send-2ph, am,hεiCpzqq
C2pzq Ð iεam,mCpzq
Cpzq Ð p1 ` iεam,mqzCpzq
for each h P N pmq

do
"
Cpzq Ð Cpzq ` zReceivephq
C2pzq Ð C2pzq ` Receive-2phq

ℓ Ð ℓ` 1

return pxpzqq

and the corresponding values f pλℓq are broad-casted in a packet with a specific
sequence number. The packet will be repeated all along the network. At the end
of the process, all the nodes in the network can reconstitute the vectors f pλℓq and
perform any algorithm based on eigenvectors. It is very possible that the values of
the λℓ will not perfectly match from one node to another, but this is not crucial
since, in most cases, the structure of the vectors f pλℓq can accept some inaccuracy.

3.4.2 Complexity of the algorithm

In the following, we provide complexity calculations for the inverse iterations (see
Section 3.2) and for the complex diffusion of order-1. The power iterations are not
considered here as it allows only the computation of the principal eigenvalue and
its eigenvector.

The inverse iterations

This scheme is difficult to operate in a distributed manner, since the matrix pA ´
µIq´1 is not supported by the graph itself (it will have coefficients over non existing
edges). The cost of inverting the matrix is |V |3, times the number of different µ’s
needed, and the computation is done at a central node. Then the coefficients of
the inverse matrix must be spread over the whole network which will lead to |E|

repetitions of the same packets if done by pure diffusion, or |V | repetitions if a
spanning tree is used (but this requires some knowledge of the topology).



3.4. Complex Diffusion 33

Each iteration proceeds in two steps: (1) every node diffuses the coefficients
of bk`1 “ pA ´ µIq´1bk to all the other nodes, thus requires |V ||E| packets by
pure diffusion or |V |2 packets via a spanning tree. (2) a central node collects and
computes }bk`1}, and forwards the results to all the other nodes. Such an operation
costs |E| packets (or |V | via spanning tree). This marks a synchronization point
which will trigger the next iteration.

Assuming ℓmax iterations, we obtain the net computational cost as |E||V |2 `
p|V ||E| ` |E|qℓmax (in terms of packet exchanged). If we consider the delay, many
packets may fly in parallel, and a diffusion will have a delay proportional to diampGq,
the diameter of the graph. Therefore the net delay will be of the order of diampGq`
2 diampGqℓmax.

The complex diffusion of order-1

The iterations in order-1 complex diffusion do not need any synchronization. An
iteration consists of a packet on each edge, and thus a total of |E| packets sent in
parallel. This leads to the delay proportional to unit time instant, since transmission
only happens to one hop neighborhood.

After ℓmax iterations, the results are sent to a central collector node, and it
requires |V ||E| packets via pure diffusion or |V |2 via a spanning tree. If all packets
fly in parallel, then the delay will be diampGq.

Thus the total number of packets exchanged is |E|ℓmax ` |V ||E| and the total
delay is ℓmax `diampGq. The gains in the complex diffusion compared to the inverse
iterations is at least, per iteration, |V | in the net computational cost and diampGq in
the net delay. Note that the net cost and delay expressions in the complex iterations
are derived for only one µ, and at least |V | µ’s might be required to distinguish
between different eigenvalues. This is not taken into account in the calculation and
will further worsen the performance of the inverse iterations.

3.4.3 Complex gossiping

In the order-1 computation (3.5), the terms pI ` iεAqℓb0 for 0 ď ℓ ď ℓmax can also
be estimated by the following Monte Carlo approach. We have

xk`1 “ pI ` iεAqxk, x0 “ b0.

Then
xk`1 “ xk ` iεDPxk,

where D is the diagonal matrix with entries as the degrees of the nodes pd1, . . . , dnq,
and P “ D´1A is the transition probability matrix of a random walk on graph
defined by matrixA. For m and h nodes in the graph, we denote pmh the probability
transition from m to h, namely equal to am,h

dm
. We have the identity on the mth

component of xk`1,

xk`1pmq “ xkpmq ` iεdmErxkpξmqs, (3.9)
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with ξm as a randomly picked neighbour of node-m. Similar local updating rule
applies for other nodes as well. The expectation in (3.9) can be calculated using
Monte Carlo approach. Interestingly we observe in simulation results that a small
number of iterations provides a good accuracy for the Monte Carlo simulation.
The algorithm is iterated several times and then averaged in order to smooth the
variations due to the random selection of neighbors. The algorithm is as follows:

Algorithm 3.4.3: ComplexGossiping(m, b0)

ℓ Ð 1

xpzq Ð b0pmq
while pℓ ď ℓmaxq

do

$
’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’%

for each j P N pmq

do

$
’’’&
’’’%

if RequestWaitingFrompjq

then

$
’&
’%

ℓ1 Ð RequestLevelpjq
if pℓ1 ă ℓq then

Sendpj, iεCoeffpxpzq, zℓ1qq
ξm Ð RandomNeighborpmq
SendRequestpξm, ℓ´ 1q
xpzq Ð xpzq`

zℓ Coeffpxpzq, zℓ´1q `Dmz
ℓReceivepξmq

ℓ Ð ℓ` 1

return pxpzqq

The procedure Coeffpxpzq, zℓq returns coefficient of the term zℓ in xpzq. Re-

questwaitingfrompjq is a boolean valued procedure indicating if a request is
waiting from node j, Requestlevelpjq is the degree of the coefficient required by
node j and SendRequestpj, ℓq is the procedure which sends to node j the request
to fetch the coefficient of degree ℓ. Notice that with the procedure SendRequest,
the local process will wait until the neighbor ξm will respond. Though this will
introduce delays, it is limited to waiting time of a single neighbor to deliver. But
such a scheme will avoid the use of a synchronous clock in the system.

The gossiping algorithm introduced here is a variant of the diffusion algorithms
mentioned in the previous section, i.e., instead of taking fluid from all the neighbors,
the gossiping technique collects the fluid from only one random neighbor. The
algorithm can also be extended to order-2 and order-4.
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3.5 Quantum Random Walk Techniques

We have described in the previous section methods to solve a discretisation of
equation

B
Btbt “ iAbt.

This equation is very similar to the classical Schrödinger equation

i~
B
BtΨt “ HΨt,

where Ψt is the wave function represented by a vector of complex numbers, ~ is
the Planck constant and H is the Hamiltonian of the system (which is a Hermitian
matrix). If H is formed from graph matrices like A, we have the wave function
of a particle wandering on a network, which is called quantum random walk. In
this section we will first show that the evolution of the wave function of a quantum
random walk can be simulated via several parallel classical random walks with
complex reward and use it in order to extract the spectrum information. Then we
propose a pure quantum random walk algorithm.

3.5.1 Quantum random walk algorithm via classical random walks

This is a distributed technique in which the nodes require only local information,
but with reduced complexity compared to Complex gossiping as only one node
communicates with another neighbor node at each cycle, for each random walks.

Assume we consider order-1 approximation. At each iteration, we run the fol-
lowing algorithm:

1. Each node-m has a vector of length ℓmax ` 1 (mth row of X) with xℓpmq
representing mth entry of pI ` iεAqℓb0.

2. A set of classical random walks start from each node initially. All the random
walks associated with node-m have the initial fluid b0pmq.

3. All the random walks start moving to one of their neighbors, which is selected
uniformly at random.

4. At time step k ą 2, at each node m, only the first arrived random walk
wins and the fluid carried by this random walk (F ) will be used for updating
xkpmq. The fluid update will happen at node-m when it also receives the
fluid from its own previous level xk´1pmq. Then

xkpmq “ xk´1pmq ` iεdmF.

After the update of xkpmq, all the random walks at node-m (the one which
won and the ones which lost) will update their fluid as xkpmq. In case no
random walks arrive at a particular node at level k after a certain time, it will
take the fluid from its previous level k ´ 1 only.
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5. The random walks keep moving and all of them stop when the time step k

reaches ℓmax.

Like the gossiping technique, the above algorithm is also iterated several times to
get the desired convergence. The pseudocode of a more generalized technique is
given in Algorithm 3.5.1.

Algorithm 3.5.1: ParallelRandomWalk(m, b0)

ℓ Ð 0

xpzq Ð b0pmq
while pℓ ď ℓmaxq

do

$
’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’%

for each M P MoveWaitingpq

do

$
’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’%

ℓ1 Ð MoveLevelpMq
if pℓ1 ą ℓq then$
’’’’&
’’’’%

for ℓ2 Ð ℓ` 1 to ℓ1

do
 
xpzq Ð xpzq ` zℓ 2

xpzq
ℓ Ð ℓ1

xpzq Ð xpzq ` zℓdmMoveValuepMq
ξm Ð RandomNeighborpmq
SendMovepξm, ℓ` 1, εiCoeffpxpzq, zℓqq

return pxpzqq

The procedure MoveWaiting() is the set of the notification of random walk
moves to node m, MoveLevelpMq is the level of the move notification M , and
SendMovepj, d, cq is the process of moving random walk to the level d at node j
carrying the value c, and MoveValuepMq is the value carried the random walk
notification M .

3.5.2 Pure quantum random walk algorithm

In this section, we elaborate the connection of our technique to quantum computing.
We make use of quantum random walks (QRW) on graphs to massively distribute
our spectrum computations. Compared to the classical random walks, in which the
walker can exist in only one state at a time, a QRW moves simultaneously over all
the states by exploiting the idea of superposition in quantum mechanical systems
[Venegas-Andraca 2008]. The quantum mechanical system we assume to perform
the spectral decomposition is described as follows.

We focus on continuous time QRW on a graph in which the position of the
walker depends on the Hamiltonian H which is taken as H “ A ` ∆I where ∆
is the maximum degree. The translation by ∆ is necessary in order to make the
energy values positive and will only cost a translation of the spectrum.
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The walker is represented by a qubit made out of a chain of Γ atoms where
each of them is spin oriented, either up p1q or down p0q. Therefore the qubit has
a capacity of Γ bits and can describe all the 2Γ binary codewords of length Γ,
corresponding to integers between 0 and ℓmax ´ 1, with ℓmax “ 2Γ. For 0 ď k ď
ℓmax ´ 1, we denote |ky the state of the qubit corresponding to the integer k. At
initialization, state of the qubit is uniform on all codewords: p1{

?
ℓmaxqřℓmax´1

k“0 |ky.
We consider a splitting chain made of Γ polarized gates such that the state |ky

is delayed by kε time units. To achieve this, for 0 ď r ď Γ the rth gate let the
qubit with spin 0 pass or delay the spin 1 by 2rε via a delay line. At the end of
splitting chain, the qubit is injected in the graph on each node ℓ. The wave function
Ψ

ℓmax

t of the walker at time t, a complex valued vector on the vertices of the graph,
formed from such a process satisfies

Ψ
ℓmax

t “ 1?
ℓmax

ℓmax´1ÿ

k“0

eipt´kεqH
Ψ0|ky. (3.10)

Here Ψ0 is the wave function of the walker when it is inserted in the graph, for
instance when the walker is introduced on node ℓ: Ψ0pmq “ δℓpmq for any node m.
At time t ě εℓmax, we take the qubits on any node m, Ψℓmax

t pmq. We apply on it the
quantum Fourier transform (QFT) as described in the Shor’s algorithm [Shor 1997].
Essentially this implements a discrete Fourier transform (DFT) approximation of
the continuous Fourier transform in (3.3). The QFT outputs the DFT coefficients
tyku as

řℓmax´1
k“0 yk|ky. During measurement of the QRW, kth index is obtained

with probability |yk|2, and this will be an eigenvalue point shifted by ∆ (along with
appropriate scaling of frequencies in discrete domain to continuous domain). Thus
multiple run-measurement process of the QRW produces the different eigenvalues.
The empirical probability of λj ` ∆ can be calculated via measurements and will
be proportional to |ujpmq|2.

The splitting chain technique with injection into the original graph can be fur-
ther modified in order to introduce the Gaussian smoothing (3.4) which improves
the accuracy of the spectral decomposition, but is not described here. Moreover,
Ψ0 could be p1{

?
2qpδℓ1pmq ` δℓpmqq so that signpujpℓqujpℓ1qq can be revealed.

3.6 Parameter Analysis and Tuning

3.6.1 Rate of Convergence

There are three factors governing the convergence rate:

1. Riemann integral approximation to left-hand side of the integral (3.4):

εℜ

ˆ
I ` 2

ℓmaxÿ

ℓ“1

eiℓεAb0e
´iℓεθe´ℓ

2
ε

2
v{2

˙

“
ż `T

´T

eiAtb0e
´t

2
v{2e´itθdt` O pλ1ε

2ℓmax}b0}q , (3.11)



38 Chapter 3. Distributed Spectral Decomposition in Networks

where T “ εℓmax. The factor λ1}b0} is an upperbound of the derivative of
eitAb0. Notice that λ1 can in turn be upper bounded by ∆ the maximum
weighted degree of the graph.

2. Approximating eiℓεA by r-order Runge-Kutta method (with the equivalent
expression (3.8)), we get

εℜ

ˆ
I ` 2

ℓmaxÿ

ℓ“1

e´iℓεθe´ℓ
2
ε

2
v{2xlb0

˙

“ εℜ

ˆ
I ` 2

ℓmaxÿ

ℓ“1

eiℓεAb0e
´iℓεθe´ℓ

2
ε

2
v{2

˙
` O pλ1ε

r`2pℓmaxq2}b0}q .

3. Error in truncated integral:
ż T

´T

eiAtb0e
´t

2
v{2e´itθdt

“
ż 8

´8

eiAtb0e
´t

2
v{2e´itθdt` O

ˆc
2π
v

erf
ˆc

v

2
εℓmax

˙
}b0}

˙

where erfpxq indicates the Gaussian error function.

It can be seen that convergence rate in (3.11) dominates. In addition, we should
have εℓmax large while ε2ℓmax is small.

3.6.2 Choice of initial vector and algebraic multiplicity

In order to compute the approximation (3.6) in a distributed manner in the network
itself, each node selects its own component of the initial vector b0. The components
could be all equal to 1, b0 “ 1, but in this case it may be orthogonal to eigenvec-
tors. Indeed if the graph is regular then 1 is colinear to the main eigenvector, and
therefore orthogonal to the other eigenvectors. To circumvent this problem, each
node can randomly select a component so that the probability it results into an
orthogonal vector be negligible.

Another interesting option is to select b0 as a vector of i.i.d. Gaussian random
variables with zero mean and variance w. In this case

Erb⊺0fθs “ w

|V |ÿ

j“1

c
2π
v

expp´pλj ´ θq2

2v
q.

The left-hand side of the above expression can be calculated by Monte Carlo tech-
niques and this will give equal peaks for all the eigenvalues. Hence, the eigenvalues
and subsequently the eigenvector components can be deduced with very good accu-
racy. We call this technique trace-technique, since this method indeed is like taking
trace of the original approximation matrix, right-hand side of (3.4).

In case of algebraic multiplicity k of a particular eigenvalue λ, trace-technique

will give the peaks approximately as kw
a

2π{v and Erb0f
⊺

θ“λs will be the projection

matrix on eigenspace of λ, i.e., Erb0f
⊺

θ“λs “
b

2π
v
w
řk

ℓ“1 uℓu
⊺

ℓ .
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3.6.3 Choice of parameters

Parameter v

The selection of v is governed by the fact that we need to discern distinct eigenvalues
by locating the peaks in the spectral plot. When we need to locate top-k eigenvalues,
with 99.7% of the Gaussian areas not overlapping, 6v ă min1ďiďk´1 |λi ´ λi`1|. In
general for a large graph, a sufficiently lower value of v will be enough to distinguish
between the peaks. For larger εℓmax, variation in v will not affect the plot apart from
the resolution of the peaks, but for lower εℓmax, lower value of v creates spurious
ripples across the plot.

Parameter ε

From Fourier analysis literature, it is known that the discretization of the integral
in (3.4) with ε leads to multiple copies of the spectrum. According to the sampling
theorem, in order to avoid aliasing among them, the choice of ε is controlled by
the net bandwidth B of the spectrum as ε ă 1{p2Bq. Here B « |λ1 ´ λ|V || ` 6v,
including 99.7% of the Gaussian variations associated with λ1 and λ|V |. We have,
|λ1 ´λ|V || ă 2λ1 ă 2∆, with ∆ being the maximum degree of the graph and a proof
of the last inequality can be found in [Lovász 2007]. Hence choosing ε ă 1{p4∆`12vq
will ensure that sampling theorem is satisfied.

Parameter ℓmax

From Section 3.3.1, T should Ñ 8 and Tε Ñ 0. This implies as ℓmax Ñ 8, ε
should be chosen as 1{ℓmax ă ε ă 1{

?
ℓmax, asymptotically.

Scalability

Combining the argument behind the selection of ε and ℓmax (with ℓmax chosen
accordingly by fixing ε), we can say that ℓmax depends on the maximum degree
∆, not on the number of nodes |V |. Thus, we expect that our approach is highly
scalable.

3.7 Numerical Results

We demonstrate the algorithms described above with numerical studies on real-
world networks. First, in order to compare and show the effectiveness of the different
techniques, we consider Les Misérables network, graph of characters of the novel Les
Misérables. Later, we examine Enron email network, the email communication net-
work among Enron employees and DBLP network which is a co-authorship network
from the DBLP computer science bibilography. We have chosen these datasets so
that their sizes differ in orders of magnitude. The datasets are taken from [Leskovec
& Krevl 2014] where several parameters of the datasets can be found.
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Figure 3.2: Les Misérables graph: with and without Gaussian smoothing

In the following simulation results, in order to show the decomposition at the
node level, we consider one particular node in each of the networks examined. We
select such a node as one of the top 2% highest degree nodes in the network. In the
figures, we have also shown the actual eigenvalue points, which are cross-checked
with eigs function in Matlab and adjacency_spectrum function in the Python mod-
ule Networkx.

Les Misérables network

In Les Misérables network, nodes are the characters and edges are formed if two
characters appear in the same chapter. The number of nodes is 77 and number
of edges is 254. We look at the spectral plot in a specific node called Valjean, a
character in the associated novel.

We first show in Figure 3.2 the smoothing effect the Gaussian term brings in
the finite sum approximation (3.6). Indeed, the Gaussian smoothing technique
eliminates spurious picks.

Different centralized algorithms are shown in Figure 3.3. As shown in the figure,
the order-1 algorithm takes ten times more ℓmax than order-2 and order-4. This is
mainly because lower ε is needed for order-1 due to slower convergence and this in
turn leads to higher ℓmax. We also observe that order-4 matches nearly perfectly
with the theoretical values.

The numerical results for the Monte Carlo gossiping technique explained in
Section 3.4.3 is shown in Figure 3.4. Interestingly, even one iteration of Monte
Carlo averaging provides sufficient information about the eigenvalues and it can be
observed that smaller number of iterations are needed for practical convergence of
this algorithm.

Figure 3.5 presents the random walk implementation of the Monte Carlo gos-
siping. Here we used only one Monte Carlo averaging and four random walks are
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Figure 3.3: Les Misérables graph: Centralized algorithms

started from each node. We notice again that just with one iteration, it shows very
good performance with respect to the order-1 centralized algorithm.

Enron email network

The nodes in this network are the email ID’s of the employees in Enron and the edges
are formed when two employees communicated through email. Since the graph is
not connected, we take the largest connected component with 33, 696 nodes and
180, 811 edges. The node considered is the highest degree node in that component.

Figure 3.6 shows the complex diffusion with order-4 calculation and we find it
is exactly matching with the theory. In Figure 3.7, the gossiping approach is shown
which also performs very well.

DBLP network

We provide one more example, DBLP computer science network, which is ten times
larger than Enron email network. It is made out of co-authorship network where the
nodes are the authors and the edges between two authors are formed if they have
written at least one paper together. The number of nodes is 317, 080 and number
of edges is 1, 049, 866. We consider the node with ID 6737, which has degree in top
2% of the network.

In order to show the effectiveness of the scalability argument provided in Section
3.6.3 for higher order approximations, the diffusion algorithm with order-4 is shown
in Figure 3.8. The algorithm is matching very well with the theory. The ℓmax for
order-4 diffusion in Enron-email and DBLP networks for a good match with theory,
is around 5000. This is in tune with our finding in Section 3.6.3 that ℓmax mainly
depends on |λ1 ´ λ|V ||. In case of Enron-email |λ1 ´ λ|V || “ 159.72 and in DBLP
network |λ1 ´ λ|V || “ 132.42. They are at least in the same order.
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Figure 3.4: Les Misérables graph: Monte Carlo gossiping

5 6 7 8 9 10 11 12 13 14 15

f
θ
(V

a
lj
ea
n
)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Theory

Random Walk, iterations=1

Centralized order-1 apprxn.

Eigen values points

ǫ =0.001
ℓmax =20000
v =0.01

Figure 3.5: Les Misérables graph: random walk



3.8. Vector Description of Complex Diffusion 43

θ

50 60 70 80 90 100 110 120 130 140

f
θ
(N

o
d
e
ID

=
5
0
3
8
)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Theory

Diffusion Order-4 impn.

Eigen values points

ǫ = 0.003
ℓmax = 5000
v = 0.05

Figure 3.6: Enron email network: Diffusion order-4

θ

50 60 70 80 90 100 110 120 130

-0.5

0

0.5

1

1.5

2

Theory

Gossiping, iterations:10

Gossiping, iterations:2

Eigen values points

ǫ = 0.00015

ℓmax = 70000

v = 0.05

Figure 3.7: Enron email network: Gossiping

3.8 Vector Description of Complex Diffusion

The Algorithm 3.4.1 can be implemented in the following way. This technique
is based on asynchronous updates. Each node m maintains three storage units.
We use “level" to indicate index in the buffer, since index in the first two buffer
represents the level of the diffusion.

• Fld_Buff: It is the main buffer which stores the fluid and is of size ℓmax ` 1.
Fluid fusion and diffusion happen in this buffer. Note that while diffusing, the
buffer diffuses copies of the fluid in the buffer without disturbing the actual
fluid.

• Fld_Buff_count: It is also of size ℓmax ` 1. This buffer counts the number of
fusions happened from neighbors at each level ℓ.
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Figure 3.8: DBLP network: Diffusion order-4

• Buff_to_diff: It is a pointer to the level Fld_Buff.

Each fluid fusion request to node m from a neighbor h contains a unit of weighted
fluid and the level l to which the fluid to be fused.

1. Initial value:

Fld_Buffp0q “ b0pmq
Fld_Buff_countp0q “ dm ` 1

2. Fld_Buff_countpℓq increments by one when Fld_Buffpℓq fuses one unit of
fluid from a neighbor at level l.

3. At any point of time, if at some level l Fld_Buff_countpℓq “ dm ` 1, then it
triggers Fld_Buffpℓq to diffuse a copy of the fluid contained in it to the level
ℓ` 1 of all its neighbors and of itself.

4. Buff_to_diff contains the level in Fld_Buff where the latest diffusion hap-
pens. This protects the system from multiple diffusion from each level.

5. When the Buff_to_diff “ ℓmax ` 1, the fusion-diffusion process stops.

6. Finally Fld_Buff at node m gives the mth row of X.

3.9 Issues in the Computation with High Resolution

While doing numerical experiments, we have observed that the approaches explained
in the previous sections work well for larger eigenvalues of the adjacency matrix of
a graph but they do not perform that well when one needs to distinguish between
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the eigenvalues which are very close to each other. One of the main techniques
proposed there to solve

B
BtΨptq “ iAΨptq, (3.12)

are via rth order Runge-Kutta method and its implementation as a diffusion process
in the network. The r-th order Runge-Kutta method has the convergence rate of
Opεrq. However note that in practice we fix ε and increase the time interval of
computation T (which is s ˆ ε with s as the number of samples), and the error
can increase over time. We have observed that this is the case while checking the
trajectory of the associated differential equation solution; the solution diverges, and
it happens when a large number of iterations s is required (see Section 3.13).

A larger value for s is anticipated from our approximation in (3.6) due to the
following facts. From the theory of Fourier transform and Nyquist sampling, the
following conditions must be satisfied:

ε ď π

λ1
and s ě 2π

ελdiff
, (3.13)

where λdiff is the maximum resolution we require in the frequency (eigenvalue)
domain, which is ideally mini |λi´λi`1|. This explains that when dealing with graph
matrices with larger λn and require higher resolution, s will take higher orders. For
instance in case of the Laplacian matrix, where the maximum eigenvalue is bounded
as |V |

|V |´1∆pGq ď λ1 ď 2∆pGq, with ∆pGq as the maximum degree of the graph and
the lower eigenvalues are very close to each other, s turns out to be a large value.

In the rest of the chapter, we focus on the Laplacian matrix L. We design
algorithms based on Lagrangian as well as Hamiltonian mechanics, to compute
the smallest k eigenvalues and the respective eigenvectors of the Laplacian matrix
efficiently. For simplicity, we do not consider Gaussian smoothing (3.4) in the
following sections, but the algorithms can be readily extended.

Modifications in the algorithms

1. We observe from our previous studies that the stability in trajectory of the dif-
ferential equation solver is of significant influence in the eigenvalue-eigenvector
technique. Thus we resort to geometric integrators to ensure the stability. In
particular, by modeling as a Hamiltonian system, we use symplectic integra-
tors (SI) which protect the volume preservation of Hamiltonian dynamics,
thus preserve stability and improves accuracy.

2. We propose algorithms that are easy to design without involving many pa-
rameters with interdependence, compared to the algorithms proposed in the
previous sections.
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3.10 Mechanical Spring Analogy with Lagrangian Dy-
namics

Consider a hypothetical mechanical system representation of the graph G in which
unit masses are placed on the vertices and the edges are replaced with mechanical
springs of unit stiffness. Using either Lagrangian or Netwonian mechanics, the
dynamics of this system is described by the following system of differential equations

:xptq `Lxptq “ 0. (3.14)

The system has the Hamiltonian function as H “ 1
2 9x⊺I 9x ` 1

2x
⊺Lx.

We note that once we obtain by some identification method the frequencies ωk of
the above oscillatory system, the eigenvalues of the Laplacian L can be immediately
retrieved by the simple formula λk “ |ω2

k|. This will be made clearer later in this
section.

Starting with a random initial vector xp0q, we can simulate the motion of this
spring system. For the numerical integration, the Leapfrog or Verlet method [Ver-
let 1967] technique can be applied. The Verlet method has several remarkable
properties. It has the same computational complexity as the Euler method but it
is a second order method (Euler’s method is employed in the complex diffusion of
order-1) as the first order distributed diffusion). In addition, the Verlet method
is stable for oscillatory motion and conserves the errors in energy and computa-
tions [Leimkuhler & Reich 2004, Chapter 4]. It has the following two forms. Let
pptq :“ 9xptq and xi be the approximation of xpiεq, similarly pi for ppiεq. Here ε is
the step size for integration. First, define

p1{2 “ p0 ` ε{2p´Lx0q.

Then, perform the following iterations

xi “ xi´1 ` εpi´1{2

pi`1{2 “ pi´1{2 ` εp´Lxiq.

Equivalently, one can do the updates as

xi`1 “ xi ` εpi ` ε2{2p´Lxiq
pi`1 “ pi ` εrp´Lxiq ` p´Lxi`1qs.

We name the above algorithm as Order-2 Leapfrog.
Solution of the differential equation (3.14) subject to the boundary values xp0q “

a0 and pp0q “ b0 is

xptq “
´1

2
a0 ´ i

b0?
Λ

¯
eit

?
L `

´1
2
a0 ` i

b0?
Λ

¯
e´it

?
L,

where we assume the decomposition of L based on spectral theorem, i.e., L “
UΛU⊺ with U as the orthogonal matrix with columns as eigenvectors and Λ as the
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diagonal matrix formed from the eigenvalues. Further simplification of the above
expression along with the fact that fpLq “ UfpΛqU⊺, for any function f which
can be expressed in terms of power series, gives

xptq “ cospt
?
Lqa0 ` p

?
Lq´1 sinpt

?
Lqb0.

or kth component of xptq is

a0rks cospt
a
λkq ` b0rks?

λk

sinpt
a
λkq.

Now we have

ż `8

´8
xptqe´itθdt “

ż `8

´8

|V |ÿ

k“1

cospt
a
λkqukpu⊺

ka0qe´itθdt

`
ż `8

´8
p
?
Lq´1

|V |ÿ

k“1

sinpt
a
λkqukpu⊺

kb0qe´itθdt

“
|V |ÿ

k“1

ukpu⊺

ka0q
`
πrδpθ ´

a
λkq ` δpθ `

a
λkqs

˘

`p
?
Lq´1ukpu⊺

kb0q
`
´πirδpθ ´

a
λkq ´ δpθ `

a
λkqs

˘
.

Taking the real and positive spectrum will give π
ř|V |

k“1 ukpu⊺

ka0qδpθ ´
?
λkq. The

whole operation can be approximated by applying an s-point FFT on txi, 0 ď i ă
su, and taking real values. (To be exact, there is a phase factor to be multiplied
to the kth point in FFT approximation, and is given by p

?
2πq´1ε expp´it0kλdiffq,

where we considered the time interval rt0, t0 ` sεs).
Note that (3.14) is different from the original differential equation in Section 3.3

where it is 9xptq “ iLxptq containing complex coefficients.

3.11 Hamiltonian Dynamics and Relation with Quan-
tum Random Walk

In the previous sections we have studied the Schrödinger type equation of the
form (3.12) with ψ as the wave function. Now let us consider a similar equation
with respect to the graph Laplacian

9ψptq “ iLψptq. (3.15)

The solution of this dynamics is closely related to the evolution of continuous time
quantum random walk and algorithms are developed in Section 3.5 based on this
observation.

Now since the matrix L is real and symmetric, it is sufficient to use the real-
imaginary representation of the wave function ψptq “ xptq ` iyptq, xptq,yptq P R.
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Substituting this representation into equation (3.15) and taking real and imaginary
parts, we obtain the following system of equations

9xptq “ ´Lyptq
9yptq “ Lxptq,

or equivalently in the matrix form

d

dt

„
xptq
yptq


“
„

0 ´L
L 0

 „
xptq
yptq


. (3.16)

Such a system has the following Hamiltonian function

H “ 1
2
x⊺Lx ` 1

2
y⊺Ly. (3.17)

The next, very helpful, decomposition
„

0 ´L
L 0


“
„

0 0

L 0


`
„

0 ´L
0 0


,

together with the observation that

exp
ˆ„

0 0

L 0

˙
“
„
I 0

L I


,

leads us to another modification of the leapfrog method known as symplectic split
operator algorithm [Blanes et al. 2006]:

Initialize with
δy “ ´Lx0,

then perform the iterations

yi´1{2 “ yi´1 ´ ε

2
δy

xi “ xi´1 ´ εLyi´1{2. (3.18)

Update

δy “ ´Lxi

yi “ yi´1{2 ´ ε

2
δy. (3.19)

The above modified leapfrog method belongs to the class of symplectic integrator
(SI) methods [Blanes et al. 2008, Leimkuhler & Reich 2004, Iserles 2008]. We name
the above algorithm as order-2 SI.

The Hamiltonian approach can be implemented in two ways:

1. Form the complex vector xk ` iyk at each of the ε intervals. Then txk `
iyk, 0 ď k ă su with x0 “ a0 and y0 “ b0 approximates exppiLtqpa0 ` ib0q
at t “ 0, ε, . . . , ps ´ 1qε intervals. A direct application of s point FFT with
appropriate scaling will give the spectral decomposition as in (3.3).



3.12. Distributed Implementation 49

2. Note that the formulation in (3.16) is equivalent to the following differential
equations

:yptq `L2yptq “ 0, :xptq `L2xptq “ 0, (3.20)

which are similar to the one in (3.14) except the term L2. Now on the same
lines of analysis in the previous section, taking the real and positive spectrum
of just y component will give π

ř|V |
k“1 ukpu⊺

ka0qδpθ ´ λkq.

3.11.1 Fourth order integrator

The Hamiltonian H in (3.17) associated with the Schrödinger-type equation has a
special characteristic that it is seperable into two quadratic forms, which help to
develop higher order integrators. The r stage integrator has the following form.
Between t and t` ε intervals, we run for j “ 1, . . . , r,

yj “ yj´1 ` pjεLxj´1

xj “ xj´1 ´ qjεLyj .

In order to make qth order integrator r ď q. For our numerical studies we take the
optimized coefficients for order-4 derived in [Gray & Manolopoulos 1996]. We call
the above algorithm as order-4 SI.

3.12 Distributed Implementation

Here we explain a diffusion algorithm of the Hamiltonian system based algorithm
given in the previous section, in which each node needs to communicate only to its
neighbors.

Note that the algorithm with the updates (3.18)-(3.19) can be further simplified
as, with xp0q “ a0 and yp0q “ b0,

yi “ yi´1 ` ε

2
Lpxi´1 ` xiq

xi “
ˆ
I ´ ε2L2

2

˙
xi´1 ´ εLyi´1. (3.21)

Now xi can be updated independent to yi as

xi “ p2I ´ ε2L2qxi´1 ´ xi´2, (3.22)

with x0 “ a0 and x1 as c0 :“ pI ´ ε2L2{2qa0 ´ εLb0. From (3.20) and the
explanation given there, it is known that the solution txiu is sufficient to obtain the
eigenspectrum. Such an implementation will also avoid the four level synchronism
needed in (3.18)-(3.19). If required, one can also form txi ` iyiu with more cost
and observe the Fourier transform directly.

The diffusion technique is presented in Algorithm 3.12.1. The crux of the al-
gorithm is the computation of the associated polynomial in z, xpzq “ řs

i“0 z
ℓxi.
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At each node k we find the polynomial xpzq which corresponds to kth row in xpzq
(we drop the dependence on k in the notation for ease of use). The node k will
start with initial fluids Cpzq “ c0rksz and C2pzq “ 0. Copies of these fluids are
diffused to all of its neighbors with the complex weight iε ℓk,h for h P N pkq. The
temporary polynomial C2pzq is an artifact which implements the diffusion of the
matrix ε2L2. Indeed, the fluid must be retransmitted towards a relay before being
added to xpzq. This is the reason why the number of iterations must be raised to 2s.
The generalization to higher order integrators is straightforward since it consists of
the diffusion of matrix pεLqr.

We assume that c0, which is x1, is calculated apriori from x0 and y0. In the
algorithm the procedures Sendph, fq and Send-2ph, fq transmit fluid f to node h
and are responsible for updating the polynimials Cpzq and C2pzq at the receiver
node. Similarly Receivephq and Receive-2phq collect fluid from h for Cpzq and
C2pzq. The procedure Modpn, pq returns the remainder after dividing n by p and
Coeffpxpzq, zdq gives coefficient of the term zd in xpzq.

Algorithm 3.12.1: Diffusion-SI(k, c0,a0)

Cpzq Ð c0rksz
C2pzq Ð 0

xpzq Ð a0rks
n Ð 3

while pn ď 2sq

do

$
’’’’’’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’’’’’’%

for each h P N pkq

do
"

Sendph, ℓk,hεiC2pzqq
Send-2ph, ℓk,hεiCpzqq

C2pzq Ð ℓk,kεiCpzq
Cpzq Ð 2zCpzq
for each h P N pkq

do
"
Cpzq Ð Cpzq ` zReceivephq
C2pzq Ð C2pzq ` Receive-2phq

if Modpn, 2q “ 0

then
 
Cpzq Ð Cpzq ´ zn{2 Coeffpxpzq, zn{2´1q

xpzq Ð xpzq ` Cpzq
n Ð n` 1

return pxpzqq
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3.13 Numerical Results on Symplectic Integrators

Here we present results from simulations on real-world networks using the algo-
rithms based on Leapforg and symplectic integrators. The parameters ε and s are
chosen in the numerical studies satisfying the constraints in (3.13). We assume that
the maximum degree is known to us.

Note that if the only purpose is to detect eigenvalues, not to compute the eigen-
vectors, then instead of taking real part of the FFT in the Hamiltonian solution,
it is clearly better to compute the absolute value of the complex quantity to get
higher peaks. But in the following simulations we look for eigenvectors as well.

For the numerical studies, in order to show the effectiveness of the distributed
implementation, we focus on one particular node and plot the spectrum observed
at this node. In the plots, fθpkq indicates the approximated spectrum at frequency
θ observed on node k.

3.13.1 Les Misérables network

In Les Misérables network, the number of nodes is 77 and number of edges is 254.
We look for the spectral plot at a specific node called Valjean (with node ID 11), a
character in the associated novel.

The instability of the Euler method is clear from Figure 3.9, whereas Figure
3.10 shows the guaranteed stability of Hamiltonian SI. Figure 3.11 shows the La-
grangian Leapfrog method given in Section 3.10. It can be observed that very few
smallest eigenvalues are detected using order-2 Leapfrog compared to the SI tech-
nique (order-2) in Figure 3.12. Figure 3.13 shows order-4 SI with much less number
of iterations. The precision in order-4 plot can be significantly improved further by
increasing the number of iterations.
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Figure 3.9: Euler method trajectory
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Figure 3.10: Hamiltonian order-2 SI trajectory
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Figure 3.11: Les Misérables network: Order-2 Leapfrog

0.0 0.2 0.4 0.6 0.8 1.0

θ

−8000

−6000

−4000

−2000

0

2000

4000

f
θ
(N

o
d
eI
D

:1
1)

ε = 0.0100
s = 140000

Eigen value points

Hamiltonian Leapfrog Order-2

Figure 3.12: Les Misérables network: Order-2 SI

3.13.2 Coauthorship graph in network science

The coauthorship graph represents a collaborative network of scientists working
in network science as compiled by M. Newman [Newman 2006]. The numerical
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Figure 3.13: Les Misérables network: Order-4 SI

experiments are done on the largest connected component with |V | “ 379 and
|E| “ 914. Figure 3.14 displays the order-4 SI simulation and it can be seen that
even though the eigenvalues are very close, the algorithm is able to distinguish them
clearly.

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

θ

−2000

−1000

0

1000

2000

3000

f
θ
(N

o
d
eI
D

:3
3)

ε = 0.0700
s = 70000

Eigen value points

Hamiltonian Leapfrog Order-4

Figure 3.14: Coauthorship graph in Network Science: Order-4 SI

3.13.3 Arxiv HEP-TH graph

Arxiv HEP-TH (High Energy Physics-Theory) collaboration network [Leskovec &
Krevl 2014] is created from the arXiv and it represents scientific collaborations
between authors whose papers are submitted to High Energy Physics-Theory cate-
gory. Nodes are the authors and the connections indicate that the two authors have
written a paper together. The largest connected component is taken with number
of nodes as 8, 638 and number of edges as 24, 827. The results of order-4 SI is shown
in Figure 3.15.
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Figure 3.15: Arxiv HEP-TH graph: Order-4 SI

3.13.4 Enron email network

The nodes in this network are the email ID’s of the employees in a company called
Enron and the edges are formed when two employees communicated through email
[Leskovec & Krevl 2014]. Since the graph is not connected, we take the largest
connected component with 33, 696 nodes and 180, 811 edges. The node under focus
is the highest degree node in that component. Simulation result is shown in Figure
3.16.
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Figure 3.16: Enron graph: Order-4 SI

3.14 Conclusions

This chapter proposed some new approaches for distributed spectral decomposition
of graph matrices. The fourier analysis of complex exponential of the graph ma-
trices, with Gaussian smoothing, turns out to have a simple interpretation of the
spectrum in terms of peaks at eigenvalue points. This exposition led us to develop
two efficient distributed algorithms based on “complex power iterations”: complex
diffusion if the nodes can collect data from all the neighbors and complex gossiping
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when data is taken from only one random neighbor. Then we detailed the connec-
tion of complex exponential of graph matrices to quantum random walk techniques.
We derived the rate of convergence of algorithms and it is found that the algorithms
are scalable in proportion to the maximum degree of the graph. Numerical sim-
ulations on real-world networks of varying order of magnitude in size, showed the
effectiveness and scalability of our various algorithms. Later in the chapter, we
developed algorithms based on Hamiltonian dynamics and symplectic integrators
to mitigate the high resolution issues.





Chapter 4

Inference in OSNs via
Lightweight Partial Crawls

What is the fraction of male-female connections against that of female-female con-
nections in a given OSN? Is the OSN assortative or disassortative? Edge, triangle,
and node statistics of OSNs find applications in computational social science (see
e.g. [Ottoni et al. 2013]), epidemiology [Pastor-Satorras & Vespignani 2001], and
computer science [Benevenuto et al. 2009, Gjoka et al. 2013]. Computing these
statistics is a key capability in large-scale social network analysis and machine learn-
ing applications. But because data collection in the wild is often limited to partial
OSN crawls through API requests, observational studies of OSNs – for research pur-
poses or market analysis – depend in great part on our ability to compute network
statistics with incomplete data. Case in point, most datasets available to researchers
in widely popular public repositories are partial OSN crawls1. Unfortunately, these
incomplete datasets have unknown biases and no statistical guarantees regarding
the accuracy of their statistics. To date, the best performing methods for crawling
networks ([Avrachenkov et al. 2010, Gjoka et al. 2011, Ribeiro & Towsley 2010])
show good real-world performance but only provide statistical guarantees asymp-
totically (i.e., when the entire OSN network is collected).

This work addresses the fundamental problem of obtaining unbiased and reliable
node, edge, and triangle statistics of OSNs via partial crawling. To the best of our

knowledge our method is the first to provide a practical solution to the problem of

computing OSN statistics with strong theoretical guarantees from a partial network

crawl. More specifically, we (a) provide a provable finite-sample unbiased estimate
of network statistics (and their spectral-gap derived variance) and (b) provide the
approximate posterior of our estimates that performs remarkably well in all tested
real-world scenarios.

More precisely, let G “ pV,Eq be an undirected labeled network – not necessarily
connected – where V is the set of vertices and E Ď V ˆV is the set of edges. Unlike
the usual definition of E where each edge is only present once, to simplify our
notation we consider that if pu, vq P E then pv, uq P E. Both edges and nodes can
have labels. Network G is unknown to us except for n ą 0 arbitrary initial seed
nodes in In Ď V . Nodes in In must span all the different connected components of
G. From the seed nodes we crawl the network starting from In and obtain a set of

1Public repositories such as SNAP [Leskovec & Krevl 2014], KONECT [Kunegis 2013] and

datasets from LAW laboratory [Boldi et al. 2011] contain a majority of partial website crawls, not

complete datasets or uniform samples.
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crawled edges DmpInq, where m ą 0 is a parameter that regulates the number of
website API requests. With the crawled edges DmpInq we seek an unbiased estimate
of

µpGq “
ÿ

pu,vqPE

gpu, vq , (4.1)

for any function gpu, vq over the node pair pu, vq. Note that functions of the form
eq. (4.1) are general enough to compute node statistics and statistics of triangles
(see the formulas (1.3), (1.4)).

Organization

The remainder of the chapter is organized as follows. Sections 4.1 lists some re-
lated works. In Section 4.2 we introduce key concepts and defines the notation used
throughout this chapter. Section 4.3 presents the algorithms to build the super-
node and proves the equivalence between them. The frequentist estimators and
their properties are explained in Section 4.4. Section 4.5 contains the main result
of the posterior distribution in Bayesian framework. Section 4.6 consists of exper-
imental results over real-world networks. Section 4.7 extends the estimator to the
average function sνpGq and shows numerical results using this estimator. Finally, in
Section 4.8 we present our conclusions.

4.1 Related Work

The works of [Massoulié et al. 2006] and [Cooper et al. 2013] are the ones clos-
est to ours. The paper [Massoulié et al. 2006] estimates the size of a network
based on the return times of random walk tours. The work in [Cooper et al. 2013]
estimates number of triangles, network size, and subgraph counts from weighted
random walk tours using results of [Aldous & Fill 2002, Chapter 2 and 3]. The pre-
vious works on finite-sample inference of network statistics from incomplete network
crawls [Goel & Salganik 2009, Koskinen et al. 2010, Koskinen et al. 2013, Handcock
& Gile 2010, Heckathorn 1997, Ligo et al. 2014, Thompson 2006] need to fit the
partial observed data to a probabilistic graph model such as ERGMs (exponential
family of random graphs models). Our work advances the state-of-the-art in esti-
mating network statistics from partial crawls because: (a) we estimate statistics of
arbitrary edge functions without assumptions about the graph model or the under-
lying graph; (b) we do not need to bias the random walk with weights as in Cooper
et al.; this is particularly useful when estimating multiple statistics reusing the same
observations; (c) we derive upper and lower bounds on the variance of estimator,
which both show the connection with the spectral gap; and, finally, (d) we compute
a posterior over our estimates to give practitioners a way to access the confidence
in the estimates without relying on unobtainable quantities like the spectral gap
and without assuming a probabilistic graph model.

In our work we provide a partial crawling strategy using short dynamically ad-
justable random walk tours starting at a “virtual” super-node without invoking the
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notion of lumpability [Kemeny & Snell 1983]. A random walk tour is a random
walk sample path that starts and ends at the same node on the graph. We use
these tours to compute a frequentist unbiased estimator of µpGq (including its vari-
ance) regardless of the number of nodes, n ą 0, in the seed set and regardless of
the value of m ą 0, unlike previous asymptotically unbiased methods [Avrachenkov
et al. 2010, Gjoka et al. 2011, Lee et al. 2012, Ribeiro & Towsley 2010, Ribeiro
et al. 2012]. We also provide a Bayesian approximation of the posterior of µpGq
given the observed tours PrµpGq|DmpInqs, which is shown to be consistent. In our
experiments we note that the posterior is remarkably accurate using a variety of
networks large and small. Furthermore, when the network is formed by randomly
wiring connections while preserving degrees and attributes of the nodes in the ob-
served network, we devise an estimation technique for the expected true value with
partial knowledge of the original graph.

4.2 Super-node Rationale

In this section we present definitions and concepts used throughout the reminder
of the chapter. Then we substantiate an intuitive reasoning that our random walk
tours are shorter than the “regular random walk tours” because the “node” that
they start from is an amalgamation of a multitude of nodes in the graph.

Preliminaries

Let G “ pV,Eq be an unknown undirected graph with |V | as the number of nodes
and |E| as the number of edges (with a slight abuse of notation, counting the pairs
pu, vq P E and pv, uq P E only once). Our goal is to find an unbiased estimate
of µpGq in eq. (4.1) and its posterior by crawling a small fraction of G. We are
given a set of n ą 0 initial arbitrary nodes denoted In Ă V . If G has disconnected
components In must span all the different connected components of G.

Unless stated otherwise our network crawler is a classical random walk (RW)
over the following augmented multigraph G1 “ pV 1, E1q with |V 1| nodes and |E1|
edges. A multigraph is a graph that can have multiple edges between two nodes.
In G1pInq we aggregate all nodes of In into a single node, denoted hereafter Sn,
the super-node. Thus, V 1pInq “ tV zInu Y tSnu. The edges of G1pInq are E1pInq “
EztE X tIn ˆ V uu Y tpSn, vq : @pu, vq P E, s.t. u P In and v P V zInu, i.e., E1pInq
contains all the edges in E including the edges from the nodes in In to other nodes,
and In is merged into the super-node Sn. Note that G1pInq is necessarily connected
as In spans all the connected components of G. For compactness of notation we
sometimes refer to G1pInq as G1 when In is clear from the context. We also use Sn

and In interchangeably to denote both the super-node at G1pInq and each individual

node of In at G.

A random walk on G1pInq has transition probability from node u to an adjacent
node v, puv :“ αu,v{du, where du is the degree of u and αu,v is the number of edges
between u P V 1 and v P V 1. Let P “ tpuvu. We note that the theory presented in
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the chapter can be extended to more sophisticated random walks as well. Let tπiu
be the stationary distribution at node i in the random walk on G1pInq.

A random walk tour is defined as the sequence of nodes Xpkq
1 , . . . , X

pkq
ξk

visited
by the random walk during successive k-th and k ` 1-st visits to the super-node
Sn. Here tξkukě1 denote the inter return times associated with successive returns
to Sn. Tours have a key property: from the renewal theorem tours are independent
since the returning times act as renewal epochs. Moreover, let Y1, Y2, . . . , Yn be a
random walk on G1pInq in steady state.

Note that the random walk on G1pInq is equivalent to a random walk on G where
all the nodes in In are treated as one single node. Figure 4.1 shows an example of
the formation of G1pInq.

(a) The original graph G with
I4 “ tc, g, j, qu.

(b) The modified graph G1pInq
with super-node S4.

Figure 4.1: Graph modification with the super-node

Why a super-node

The introduction of super-node is primary motivated by the following closely-related
reasons:

• Tackling disconnected or low-conductance graphs: When the graph is not well
connected or has many connected components, forming a super-node with repre-
sentatives from each of the components make the modified graph connected and
suitable for applying random walk theory. Even when the graph is connected,
it might not be well-knit, i.e., it has low conductance. Since the conductance
is closely related to mixing time of Markov chains, such graph will prolong the
mixing of random walks. But with proper choice of super-node, we can reduce
the mixing time and, as we show, improve the estimation accuracy.

If we consider self loops from Sn to itself while forming the modified graph G1,
i.e. all the connections between In (E X tIn ˆ Inu), then G1 becomes a contracted
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graph [Chung 1996]. Then [Chung 1996, Lemma 1.15] says that if Sn is formed
from n “ 2 vertices, the spectral gaps of the two graphs δG1 and δG are related as
follows: δG1 ě δG. The spectral gap δG1 “ 1 ´ λ2, where λ2 is the second largest
eigenvalue of P , and δG can be defined accordingly on the random walk on the
original graph. The above argument with spectral gaps can be extended to n ą 2
by induction and hence δG1 ě δG follows. The improvement in the spectral gap
proves that the modified graph will become well-knit (high conductance). Note
that G1 in our case does not involve self loops around Sn, but this is for the
ease of computation as the function values over the self loops are known (from
the knowledge of In and further API queries with them), and hence allowing self
loops will only slower down the estimation of µpGq outside the super-node.

• No lumpability for random walks: The theory of lumpability [Kemeny &
Snell 1983, Section 6.3] provides ways to exactly partition a Markov chain. Un-
fortunately, lumping states in a classical random walk will not give an accurate
representation of the random walk Markov chain and, thus, we consider a super-
node Sn where all the nodes inside the super-node are merged into one node
rather than partitioning the states. The edges from Sn are the collection of all
the edges from the nodes inside the super-node which are connected to nodes
outside super-node, and Markov chain property still holds on this formation with
random walks on the new graph G1. The graph modification with Sn is illustrated
with an example in Figure 4.1.

• Faster estimate with shorter tours: The expected value of the k-th tour length
Erξks “ 1{πSn is inversely proportional to the degree of the super-node dSn .
Hence, by forming a massive-degree super-node we can significantly shorten the
average tour length. This property is of great practical importance as it reduces
the number of API queries required per tour.

4.3 Static and Dynamic Super-nodes

In what follows we describe the algorithms to build super-nodes. The static super-
node technique selects the nodes In before starting the experiment, while the dy-
namic super-node recruits the nodes on the fly.

4.3.1 Static super-node Algorithm

The static super-node is selected by n nodes from G without replacement to form In.
If the graph is disconnected, In must contain at least one node of each component of
interest. To construct In we can crawl each component of the graph G. For instance,
one can make In be the n largest degree nodes seen in a set of random walks with a
total of k ą n steps (as in Avrachenkov et al. [Avrachenkov et al. 2014b]). Because
random walks are biased towards large-degree nodes the resulting super-node Sn

tends to have large degrees.



62 Chapter 4. Inference in OSNs via Lightweight Partial Crawls

Once In is chosen we form the virtual graph G1pInq and start m random walk
tours from the virtual super-node Sn. We stop each tour when the walk comes back
to Sn. One practical issue in building In is knowing how many nodes we need to
recruit to keep the random walk tours short. To ameliorate the situation in what
follows we consider a dynamic algorithm to select the super-node.

4.3.2 Dynamic super-node Algorithm

In a dynamic super-node, nodes are added into the super-node on-demand using
a different random walk called the super-node recruiting walk. The super-node
Sj starts with j ě 1 nodes. Sj must span nodes in all graph components. The
algorithm is as follows:

1. Run a super-node recruiting walk independent of all previous tours starting
from Sn, n ě j. Once a node of interest i, or set of nodes, are reached, stop
the super-node recruiting walk.

2. Add a newly recruited node i to the super-node Sn, n ě j, Sn`1 “ Sn Y tiu.
If node i appears in any of the previous tours, break these tour into multiple
tours where i either ends or starts a new tour.

3. Generate a random number kredo from the negative binomial distribution with
number of successes as the number of previous tours (not counting the broken
tours) and probability of success dSn{dSn`1

, where dSn`1
is the degree of the

new super-node that includes i and dSn is the degree of the super-node without
i.

4. Perform kredo ´kbroken ą 0 tours, where kbroken is the number of broken tours
that start with node i and have length greater than two. These tours start
at node i in G1pSiq with a first step into nodes in N piqzSi`1, where N piq are
the neighbors of i in G1pSiq. The tour ends at either Sn or i. Note that in
G1pSi`1q these tours start at Si`1 and end at Si`1 with length greater than
two. If kredo ´kbroken ă 0 then randomly remove tours starting at i until only
kredo tours remain.

5. Redo steps 2–4 until all recruited nodes are added to the super-node.

6. We can now proceed normally with new super-node tours (or recruit more
nodes if necessary by redoing steps 1–4).

The step 4 calculates the number of tours that might have happened in the past
when the new node i was part of Sn. This retrospective event can be recreated by
sampling from a negative binomial distribution with appropriate parameters.
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4.3.3 Equivalence between dynamic and static super-node sample
paths

In what follows we show that the tours of a dynamic super-node Sdyn
n and the

tours of the same super-node as a static super-node have the same probability
distribution.

Theorem 4.1. Let D
(dyn)
m denote the set of m tours according to the super-node

dynamic algorithm over n ě 1 steps, resulting in super-node Sn and D
(st)
m denote

the set of m tours according to the static super-node algorithm using super-node

Sn. The dynamic super-node sample paths and the static super-node sample paths

are equivalent in distribution, that is, PrD(dyn)
m pSnq “ Qs “ PrD(st)

m pSnq “ Qs,
n ě 1,@Sn Ă V,@Q, where m ą 1 is the number of tours.

Proof. We prove by induction. Let σpω, S, Eq be a deterministic function that is
given an infinite random vector ω, where ωp1q, ωp2q, . . . „ Uniformp0, 1q are i.i.d.
random variables, and a vector of starting nodes S and terminal nodes E as inputs
and outputs a sample path of a random walk on the original graph G that starts
at a node u P S with probability proportional to du and ends when it reaches any
node in E .

In what follows Ii denotes a set of i nodes as well as a vector of i nodes, i ě 1.
We add an arbitrary node outside Ii, v P V zIi, into the first position Ii`1 “ pv, Iiq
and consider the deterministic sample path function:

σ(dyn)pω, Ii, vq “
"pv, σ1q , if ωp1q ď dv{volpIi`1q
σpω1, Ii, Ii`1q , otherwise,

where volpSq “ ř
tPS dt, σ1 “ σppωp2q, . . .q, tvu, Ii`1q, ω1 “ ppωp1q ´ pvq{p1 ´

pvq, ωp2q, . . .q, with pv “ dv{volpIi`1q. Note that by construction

D(st)
m pIiq “ tσpωk, Ii, Iiq : k “ 1, . . . ,m, |σpωk, Ii, Iiq| ą 2u

and if we aggregate the nodes Ii into a single super-node Si these are independent
sample paths of a random walk on the super-node graph G1pIiq starting from super-
node Si. Similarly, if the choice of nodes in Ii are independent of the random vectors
tωkum

k“1 then

D(dyn)
m pIiq “ tr : r :“ σdynpωk, Ii´1, uq, k “ 1, . . . ,m, |r| ą 2u,

where u P IizIi´1, and D
(dyn)
m pIiq are the sample paths of the random walk described

by the dynamic super-node algorithm with node addition sequence Ii.
Our proof is by induction on i. For S1 “ tvu, v P V it is clear that

σdynpω,H, vq “ σpω, I1, I1q, @ω. By induction assume that σdynpω, Ii´1, uq “
σpω, Ii, Iiq, @ω, i ě 2 and u P IizIi´1. By construction the only possible differ-
ence between the sample paths of σ and σdyn is how they select the sample paths
starting with u, the first node in the vector Ii. But by our induction assumption
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these two deterministic functions are equivalent and u is selected with probability
du{volpIiq. Thus, using the same deterministic rule σ selects v, the first element
of vector Ii`1, with probability dv{volpIi`1q making σdynpω, Ii, vq “ σpω, Ii`1, Ii`1q
and yielding

PrD(dyn)
m pInq “ Qs “ PrD(st)

m pInq “ Qs, @n, In, Q.

To finish the proof note that for v P Ii`1zIi, the the deterministic rule σ guarantees
that we are selecting tours starting from v with probability dv{volpIi`1q. This rule is
equivalent to the dynamic super-node algorithm that starts kredo tours from v once
v is added to the super-node, where kredo is a negative binomial random variable
with success probability volpIiq{volpIi`1q. The success probability in the algorithm
is dIi

{dIi`1
because by definition the algorithm, like our definition of D

(dyn)
m pIi`1q,

disregards tours of size two which only contain nodes in Ii`1.

4.4 Frequentist approach

In what follows we present our main results for the estimators.

4.4.1 Estimator of µpGq

Theorem 4.2 below proposes an unbiased estimator of µpGq in equation (4.1) via
random walk tours. Later in Section 4.5 we present the approximate posterior
distribution of this unbiased estimator.

To compute an estimate of µpGq using super-node tours we define a function f
and a set H over the modified graph G1pInq as follows.

(a) If @pu, vq P E, s.t. u P In, v P V zIn the function gpu, vq can be obtained with
little overhead (using extra API queries to find all the neighbors of u P In and
further querying them to find the function gpu, vq), then we define f as

fpu, vq “
"
gpu, vq , if u ‰ Sn, v ‰ Sn

0 , if u or v “ Sn .
(4.2)

Define H “ tpu, vq : pu, vq P E s.t. u P In or v P Inu.

(b) Otherwise we define f as

fpu, vq “
"
gpu, vq if u ‰ Sn, v ‰ Sn

1
kxS

ř
wPIn

gpu,wq if u or v “ Sn,
(4.3)

where x “ u if u ‰ Sn, x “ v if v ‰ Sn and kyS is the number of neighbors of
node y P V zIn that are in In. Define H “ tpu, vq : pu, vq P E s.t. u, v P Inu.

The notation dSn indicates the degree of super-node which is defined as

dSn “ |tpu, vq : pu, vq P E s.t. u P In, v R Inu|.
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Let µpG1q be contribution from G1 to the true value µpGq and µpG1q “ÿ

pu,vqPE1

fpu, vq.

Theorem 4.2. Let G be an unknown undirected graph where n ą 0 initial arbitrary
set of nodes is known In Ď V which span all the different connected components of

G. Consider a random walk on the augmented multigraph G1 described in Section 4.2

starting at super-node Sn. Let pXpkq
t qξk

t“1 be the k-th random walk tour until the walk

first returns to Sn and let DmpSnq denote the collection of all nodes in m ě 1 such

tours, DmpSnq “
´

pXpkq
t qξk

t“1

¯m

k“1
. Then,

µ̂pDmpSnqq “

Estimate from crawlsh nl j

dSn

2m

mÿ

k“1

ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q `

Given knowledge
from nodes in Inh nl j
ÿ

pu,vqPH

gpu, vq, (4.4)

is an unbiased estimate of µpGq, i.e., Erµ̂pDmpSnqqs “ µpGq. Moreover the estima-

tor is strongly consistent, i.e., µ̂pDmpSnqq Ñ µpGq a.s. for m Ñ 8.

Note that the notation for the estimator µ̂pDmpSnqq is different from what we
have defined in Chapter 1. This is to make distinction between the number of tours
m, size of the super-node n, and data from the tours DmpSnq.

The proof of Theorem 4.2 is provided in Section 4.9. Theorem 4.2 provides an
unbiased estimate of network statistics from random walk tours. The length of tour
k is short if it starts at a massive super-node as the expected tour length is inversely
proportional to the degree of the super-node, Erξks91{dSn . This provides a practical
way to compute unbiased estimates of node, edge, and triangle statistics using
µ̂pDmpSnqq (eq. (4.4)) while observing only a small fraction of the original graph.
Because random walk tours can have arbitrary lengths, we show in Lemma 4.4,
Section 4.4.4, that there are upper and lower bounds on the variance of µ̂pDmpSnqq.
For a bounded function f , the upper bounds are shown to be always finite.

4.4.2 Confidence interval of the estimator

In what follows we give confidence intervals for the estimator presented in Theo-
rem 4.2. Let

f̄m “ m´1
mÿ

k“1

ˆ
dSn

2

ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q

˙
,

σ̂2
m “ m´1

mÿ

k“1

ˆ
dSn

2

ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q ´ f̄m

˙2

.

If Φpxq is the CDF of the standard Gaussian distribution, then for a known constant
c ą 0 [Bentkus & Götze 1996]:

sup
x

ˇ̌
ˇ̌P
"?

m

ˆ
f̄m ´ µpG1q

σ̂m

˙
ă x

*
´ Φpxq

ˇ̌
ˇ̌ ď cβ

σ3
?
m
, (4.5)
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where

β “ E

«ˇ̌
ˇ̌dSn

2

ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q ´ µpG1q

ˇ̌
ˇ̌
3ff
,

σ2 “ Var
„ ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q


.

Moreover, σ2 ă 8 for a bounded function f as we will prove in Lemma 4.4(i) in
Section 4.4.4 and β ă 8 through the Cr inequality [Gut 2012, Chapter 3, Theorem
2.2].

Therefore, with ε ą 0 and large m (number of tours) within the confidence
interval rµ̂pDmpSnqq ´ ε, µ̂pDmpSnqq ` εs yields

P p|µpGq ´ µ̂pDmpSnqq| ď εq « 1 ´ 2Φ
ˆ
ε
?
m

σ̂m

˙
.

with the rate of convergence given by equation (4.5).

4.4.3 Estimation and hypothesis testing in random graph models

Here we study µpGq when the connections in graph G are made randomly while
keeping the node attributes and node degrees the same as in the observed graph.
Two types of random graph generation are considered here: configuration model
and Chung-Lu model. These models can be regarded as null hypotheses in graph
hypothesis testing problem. First we estimate the expected value ErµpGqs in these
random graph models. Then we seek, with how much certainty the value µpGq of
the observed graph could possibly belong to a random network with the same node
attributes and degrees as that of the observed graph, all this with partial knowledge
of the original graph.

4.4.3.1 Estimators for configuration model and Chung-Lu random
graphs

Configuration model is an important class of random graph models. For a given
degree sequence over the nodes, the configuration model creates random edge con-
nections by uniformly selecting pairs of half edges. We assume that the number of
nodes |V | and number of edges |E| are known (The estimation of |V | and |E| can
be done explicitly, for instance using the techniques in [Massoulié et al. 2006] and
[Cooper et al. 2013]). The probability that the nodes u and v are connected in the
configuration model is dudv{p2|E| ´ 1q if u ‰ v and the probability of a self-edge
from node u to itself is

`
du

2

˘
{p2|E| ´ 1q.

Another important model, Chung-Lu random graph [Chung & Lu 2003] is a gen-
eralized version of Erdős-Renyi graphs and is closely related to configuration model.
Chung-Lu model takes the positive weights w1, . . . , w|V | corresponding to nodes
1, . . . , |V | as input and generates a graph with average degrees as these weights.
The edges are created between any two vertices u and v independently of all others
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with probability wuwv{ř|V |
k“1wk, when u ‰ v, and for the self loops at node u, with

a probability
`

wu

2

˘
{řn

k“1wk.

In the case of Chung-Lu random graphs, from [Avrachenkov et al. 2015a], it is
known that the weights w1, . . . , w|V | in fact becomes the actual degrees d1, . . . , d|V |

asymptotically and the following concentration bound exists: for c ą 0,

P

ˆ
max

1ďiď|V |

ˇ̌
ˇ di

wi
´ 1

ˇ̌
ˇ ě β

˙
ď 2

|V |c{4 ´ 1
, if β ě c log |V |

wmin
“ op1q.

Thus we take the sequence twku as tdku of the observed graph. One main advantage
in using Chung-Lu model compared to configuration model is that the edges are
independent to each other.

For brevity we will use Gobs for the observed graph, Gconf for an instance of the
configuration model with the same degree sequence tdku as that of G and GC-L for
the Chung-Lu graph sample with weights as tdku. Note that µpGconfq and µpGC-Lq
are random variables. Thus we look for ErµpGconfqs and ErµpGC-Lqs, where the
expectation is with respect to the probability distribution of the configuration model
and Chung-Lu model respectively. The values of ErµpGC-Lqs and ErµpGconfqs are
nearly the same, but for higher moments the values are different since configuration
model introduces correlation between edges.

Now the expected value in the Chung-Lu model is

ErµpGC-Lqs “
ÿ

pu,vqPEYEc

u‰v

gpu, vq dudv

2|E|
`

ÿ

pu,vqPEYEc

u“v

gpu, vq
`

du

2

˘

2|E|
. (4.6)

In order to calculate ErµpGC-Lqs, we need to know the missing edge set Ec. The set
Ec is revealed once the entire graph is crawled, which is not possible in the context
of this work. The idea is to estimate ErµpGC-Lqs from the tours of a random walk.
Since the classical random walk which we have used so far, could sample only from
E, we resort to a new random walk that could make samples from Ec as well.

We use random walk with uniform restarts (RWuR) [Avrachenkov et al. 2010] in
which if the crawler is at a node i, with a probability di{pdi `αq the crawler chooses
one of the neighbors uniformly (RW strategy) and with a probability α{pdi `αq, the
crawler chooses the next node by uniformly sampling all the nodes. The parameter
α ą 0 controls the rate of uniform sampling (which has higher cost in many OSNs).

Define a new function f 1 whose value depends on the crawling strategy as follows:
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let u, v be the nodes chosen by the crawling technique (RWuR or RW) in order,

f 1pu, vq “

$
’’’’’’’’’’’’&
’’’’’’’’’’’’%

gpu, vq dudv

2|E| ´ 1
if u, v ‰ Sn

ř
wPIn

gpu,wq dudw

2|E| ´ 1
if u ‰ Sn, v “ Sn

pu, vq selected

by unif. sampling
1
kuS

ř
wPIn

gpu,wq dudw

2|E| ´ 1
if u ‰ Sn, v “ Sn

pu, vq selected by RW

(4.7)

where kuS is defined in (4.3). In the new graph G1 there will be kuS multiple edges
between u and Sn and kuS is introduced in the last term is to take into account
this. In case of classical random walk, the second case does not exist.

We denote W 1
k “ řξk

t“2 f
1pXpkq

t´1, X
pkq
t q when RWuR is employed as the random

walk technique for crawling the graph and W 2
k “ řξk

t“2 f
1pXpkq

t´1, X
pkq
t q, when the

classical random walk is used for crawling. Let

R “ 1
2

ÿ

pu,vqPInˆIn

u‰v

gpu, vq dudv

p2|E| ´ 1q ` 1
2

ÿ

pu,vqPInˆIn
u“v

gpu, vq
`

du

2

˘

p2|E| ´ 1q .

The value R can be calculated a priori from the knowledge of In. In the lemma
below we propose an estimator for ErµpGC-Lqs and proves that it is unbiased.

Lemma 4.3. The estimator

µ̂C-LpDmpSnqq “ 1
m

mÿ

k“1

” |V 1|pdSn ` αq
2α

W 1
k ´ |V 1|dSn

2α
W 2

k `R
ı
,

is an unbiased estimator of ErµpGC-Lqs of the Chung-Lu model.

Proof. See Section 4.10

4.4.3.2 A hypothesis testing problem for the Chung-Lu model

The Chung-Lu model or configuration model can be regarded as a null hypothesis
model and comparing µpGobsq to ErµpGC-Lqs or ErµpGconfqs answers many ques-
tions like whether the connections are formed based on degrees alone with no other
influence or whether the edges are formed purely at random?

Let GC-LpVC-L, EC-Lq be a sample of the Chung-Lu model with weights tdku.
Like the estimator of ErµpGC-Lqs, the estimator of VarpµpGC-Lqq, yVarC-LpDmpSnqq
can be constructed as follows: modify gpu, vqdudv

2|E|
to g2pu, vqdudv

2|E|

´
1 ´ dudv

2|E|

¯
in

the function f 1 in (4.7).
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By invoking Lindeberg central limit theorem [Gut 2012, Chapter 7, Section 2],
for independent non-identically distributed Bernoulli random variables2, we get

ÿ

pu,vqPEC-L

fpu, vq „ Normal pErµpGC-Lqs,VarpµpGC-Lqqq .

Hence a natural check is whether µpGobsq is a sample from the above distribution.
Since we have only one sample µpGobsq, a simple test is to check whether

|µ̂pDmpSnqq ´ µ̂C-LpDmpSnqq| ď a

b
yVarC-LpDmpSnqq,

holds for any a “ 1, 2, 3 and for a large value of m . This condition is satisfied
by a Gaussian sample with probabilities 0.6827, 0.9545, or 0.9973 respectively. On
the other hand, the lower a is, the more certain that the sample belongs to this
particular Gaussian distribution.

4.4.4 Impact of spectral gap on variance

In this section we derive results on higher moments of the estimator µ̂pDpSnqq.
Lemma 4.4, which follows, introduces upper and lower bounds on the variance of the
i.i.d. the tour sum

řξk
t“2 fpXpkq

t´1, X
pkq
t q, and also shows that all the moments exist.

Moreover, the results in the lemma establish a connection between the estimator
variance and the spectral gap.

Let S “ D̃1{2PD̃´1{2, where P “ tpuvu is the random walk transition proba-
bility matrix as defined in Section 4.2 and D̃ “ diagpd1, d2, . . . , d|V 1|q is a diagonal
matrix with the node degrees of G1. The eigenvalues tλiu of P and S are same and
1 “ λ1 ą λ2 ě . . . ě λ|V 1| ě ´1. Let jth eigenvector of S be pwjiq, 1 ď i ď |V |. Let
δ be the spectral gap, δ :“ 1 ´ λ2. Let the left and right eigenvectors of P be vj

and uj respectively. dtot :“ ř
vPV 1 dv. Define xr, syπ̂ “ ř

pu,vqPE1 π̂uvrpu, vqspu, vq,
with π̂uv “ πupuv, and matrix P ˚ with pj, iqth element as p˚

ji “ pjifpj, iq. Also let

f̂ be the vector with f̂pjq “ ř
iPV 1 p˚

ji.

Lemma 4.4. The following holds

(i). Assuming the function f is bounded, max
pi,jqPE1

fpi, jq ď B ă 8, B ą 0 and for

tour k ě 1,

Var
„ ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q



ď 1
d2

Sn

ˆ
2d2

totB
2
ÿ

iě2

w2
Sni

p1 ´ λiq
´ 4µ2pGSnq

˙
´ 1
dSn

B2dtot `B2

ă B2

ˆ
2d2

tot

d2
Sn
δ

` 1
˙
.

2The necessary condition to hold this central limit theorem, the Lindeberg condition is satisfied

by the sequence of independent Bernoulli random variables with different success probabilities tpku,

if 0 ă pk ă 1. This is always true in our case when we assume dk ą 0 for all k.
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Moreover,

E

«ˆ ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q

˙l ff
ă 8 @l ě 0.

(ii).

Var
„ ξkÿ

t“2

fpXpkq
t´1, X

pkq
t qq



ě 2
dtot

dSn

rÿ

i“2

λi

1 ´ λi
xf, viyπ̂ pu⊺i f̂q ` 1

dSn

ÿ

pu,vqPE1

fpu, vq2

` 1
dtotdSn

# ÿ

pu,vqPE1

fpu, vq2

+2

` 1
dtotdSn

ÿ

uPV 1

du

! ÿ

u„v

fpu, vq
)2

´ 4
d2

Sn

# ÿ

pu,vqPE1

fpu, vq
+2

´ 8
dtot

# ÿ

pu,vqPE1

fpu, vq
+2 ÿ

iě2

w2
Sni

p1 ´ λiq

´ 4
dtotdSn

# ÿ

pu,vqPE1

fpu, vq
+2

. (4.8)

Proof. See Section 4.11.

4.5 Bayesian Approach

In this section we consider Bayesian formulation of our problem and derive the
posterior of µpGq given the tours and provide a consistent maximum a posteriori
estimator (MAP).

Approximate posterior

For the same scenario of Theorem 4.2 for m ě 2 tours let

F̂h “ dSn

2t
?
mu

ht
?

muÿ

k“pph´1qt
?

mu`1q

ξhÿ

t“2

fpXpkq
t´1, X

pkq
t q `

ÿ

pu,vqPH

gpu, vq ,

which is similar to equation (4.4) but first sums a range of t
?
mu tours rather than

all m tours. Let σ2
F be the variance of F̂h. Assuming priors

µpGq|σ2
F „ Normalpµ0, σ

2
F {m0q

σ2
F „ Inverse-gammapζ0{2, ζ0σ

2
0{2q,

then for large values of m, the marginal posterior density of µpGq can be approxi-
mated by a non-standardized t -distribution

φpx|ζ, rµ, rσq “ Γ
`

ζ`1
2

˘

Γ
`

ζ
2

˘
rσ?

πζ

ˆ
1 ` px´ rµq2

rσ2ζ

˙´ ζ`1

2

, (4.9)
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with degrees of freedom parameter

ζ “ ζ0 ` t
?
mu,

location parameter

rµ “ m0µ0 ` t
?
muµ̂pDmpSnqq

m0 ` t
?
mu

,

and scale parameter

rσ2 “

ζ0σ
2
0 ` řt

?
mu

k“1 pF̂k ´ µ̂pDmpSnqqq2

` m0t
?

mupµ̂pDmpSnqq´µ0q2

m0`t
?

mu

pζ0 ` t
?
muqpm0 ` t

?
muq .

The derivation is detailed in Section 4.5.1 later.

Remark 4.5. Note that the approximation (4.9) is Bayesian and Theorem 4.2
is its frequentist counterpart. In fact, the motivation of our Bayesian approach
comes from the frequentist estimator. From the approximate posterior in (4.9), the
Bayesian MAP estimator is

µ̂MAP “ arg max
x

φpx|v, rµ, rσq “ rµ.

Thus for large values of m, the Bayesian estimator µ̂MAP is essentially the fre-
quentist estimator µ̂pDmpSnqq, which is unbiased, and hence the MAP estimator is
consistent.

The above remark shows that the approximate posterior in (4.9) provides a
way to access the confidence in the estimate µ̂pDmpSnqq. The Normal prior for
the average gives the largest variance given a given mean. The inverse-gamma
is a non-informative conjugate prior if the variance of the estimator is not too
small [Gelman 2006], which is generally the case in our application. Other choices
of prior, such as uniform, are also possible yielding different posteriors without
closed-form solutions [Gelman 2006].

Remark 4.6. Another asymptotic result in Bayesian analysis, the classical
Bernstein-von Mosses Theorem [Van der Vaart 2000, Chapter 10] is not useful
in our scenario. The Bernstein-von Mosses Theorem states that irrespective of
the prior distribution, when µ is the random parameter of likelihood, then poste-
rior distribution of

?
mpµ ´ µ̂MLE

m q converges to Normalp0, Ipµ0q´1q, where µ̂MLE
m

is the maximum likelihood estimator (MLE) and Ipµ0q is the Fisher information
at the true value µ0. But note that in cases like ours, where the distribution of
Wk “ řξk

t“2 fpXpkq
t´1, X

pkq
t q is unknown, k ě 1, the Fisher information is also un-

known. In contrast, our approximate posterior of µpGq uses only the available
information and does not need to guess the distribution of Wk.
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4.5.1 Derivation of approximate posterior

In this section we derive the approximation (4.9) of the posterior. The approxima-
tion relies first on showing that µ̂pDmpSnqq has finite second moment. By Lemma 4.4

the variance of
ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q, k ě 1, is also finite.

We are now ready to give the approximation in equation (4.9). Let m1 “ t
?
mu,

F̂h “ dSn

2m1

hm1ÿ

k“pph´1qm1`1q

ξhÿ

t“2

fpXpkq
t´1, X

pkq
t q `

ÿ

pu,vqPH

gpu, vq .

and tF̂hum1

h“1 and because the tours are i.i.d. the marginal posterior density of µ is

Prµ|tF̂hum1

h“1s “
ż 8

0
Prµ|σ2

F , tF̂hum1

h“1sPrσ2
F |tF̂hum1

h“1sdσ2
F .

For now assume that tF̂hum1

h“1 are i.i.d. normally distributed random variables, and
let

σ̂m1 “
m1ÿ

h“1

pF̂h ´ µ̂pDmpSnqqq2,

then [Jackman 2009, Proposition C.4]

µ|σ2
F , tF̂hum1

h“1 „ Normal
ˆ
m0µ0 ` řm1

h“1 F̂h

m0 `m1 ,
σ2

F

m0 `m1

˙
,

σ2
F |tF̂hum1

h“1 „ Inverse-Gamma
ˆ
ζ0 `m1

2
,
ζ0σ

2
0 ` σ̂m1 ` m0m1

m0`m1 pµ0 ´ µ̂pDmpSnqqq2

2

˙
,

are the posteriors of parameters µ and σ2
F , respectively. The non-standardized

t-distribution can be seen as a mixture of normal distributions with equal mean
and random variance inverse-gamma distributed [Jackman 2009, Proposition C.6].
Thus, if tF̂hum1

h“1 are i.i.d. normally distributed then the posterior of µpGq given
Dm1pSnq is a non-standardized t-distributed with parameters

rµ “ m0µ0 ` řm1

h“1 F̂h

m0 `m1 , rσ2 “

ζ0σ
2
0 ` řm1

k“1pF̂k ´ µ̂pDmpSnqqq2

` m0m1pµ̂pDmpSnqq´µ0q2

m0`m1

pζ0 `m1qpm0 `m1q , ζ “ ζ0 `m1

where rµ, rσ2 and ζ are location, scale and degree of freedom parameters of the
student-t distribution. Left to show is that tF̂hum1

h“1 converge in distribution to
i.i.d. normal random variables as m Ñ 8. As the spectral gap of G1pInq is greater

than zero, |λ1 ´ λ2| ą 0, Lemma 4.4 shows that for Wk “
ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q,



4.6. Experiments on Real-world Networks 73

σ2
W “ VarpWkq ă 8, @k. From the renewal theorem we know that tWkum

k“1 are
i.i.d. random variables and thus any subset of these variables is also i.i.d.. By con-
struction F̂1, . . . , F̂m1 are also i.i.d. with mean µpGq and finite variance. Applying
the Lindeberg-Lévy central limit theorem [Cramér 1946, Section 17.4] yields

?
m1pF̂h ´ µpGqq dÑ Normalp0, σ2

W q, @h .

Thus, for large values of m (recall that m1 “ t
?
mu), tF̂hum1

h“1 are approximately
i.i.d. normally distributed

F̂h „ NormalpµpGq, σ2
W {m1q , @h .

This completes the derivation of the approximation (4.9). In what follows we present
our results over real-world networks.

4.6 Experiments on Real-world Networks

In this section we demonstrate the effectiveness of the theory developed with the
experiments on real data sets of various social networks. We have chosen to work
with the datasets where the value µpGq is available. This way it is possible to check
the correctness of the results obtained via experiments. We assume the contribution
from super-node to the true value is known a priori and hence we look for µpG1q
in the experiments. In the case that the edges of the super-node are unknown, the
estimation problem is easier and can be taken care of separately.

In the figures we display the approximate posterior generated from F̂h with
only one run of the experiment and empirical posterior created from multiple runs.
For the approximate posterior, we have used the following parameters m0 “, ζ0 “
0, µ0 “ 0.1, σ0 “ 1 (see (4.9)). The green line in the plots shows the actual value
µpG1q.

We have used the dynamic super-node algorithm explained in Section 4.3.2.
From the experiments, it is observed that the static super-node and dynamic super-
node produces similar results which is in corroboration with Theorem 4.1. In the
experiments, we opt a simple strategy to decide when to run super-node recruiting
walk: run the super-node recruiting walk when the number of original tours reaches
multiples of a fixed integer and it stops when a node of degree exceeding a specific
threshold is reached.

4.6.1 Friendster

First we study a network of moderate size, a connected subgraph of Friendster
network with 64,600 nodes and with 1,246,479 edges (data publicly available at the
SNAP repository [Leskovec & Krevl 2014]). Friendster is an online social networking
website where nodes are the individuals and edges indicate friendship. We consider
two types of functions:

1. f1 “ dXt .dXt`1
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2. f2 “
"

1 if dXt ` dXt`1
ą 50

0 otherwise

These functions reflect assortative nature of the network. The final super-node
size is 10,000. Figures 4.2 and 4.3 display the results for functions f1 and f2,
respectively. A good match between the approximate and empirical posteriors can
be observed from the figures. Moreover the true value µpG1q is also fitting well with
the plots. The percentage of graph crawled is 7.43% in terms of edges and is 18.52%
in terms of nodes.

µ̂(Dm(Sn))
×10

9

2 3 4 5 6 7 8 9

×10
-10

0

1

2

3

4

5

6

7

8

True value

For function f1

Approximate posterior
Empirical posterior

No of tours: 50000

Figure 4.2: Friendster subgraph, function f1
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Figure 4.3: Friendster subgraph, function f2

4.6.2 Dogster network

The aim of this example is to check whether there is any affinity for making connec-
tions between the owners of same breed dogs [Dogster & friendships network dataset
KONECT 2015]. The network data is based on the social networking website Dog-
ster. Each user (node) indicates the dog breed; the friendships between dogs’ owners
form the edges. Number of nodes is 415,431 and number of edges is 8,265,511.

In Figure 4.4, two cases are plotted. Function f1 counts the number of con-
nections with different breed pals and function f2 counts connections between same
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breed pals. The final super-node size is 10,000. The percentage of the graph crawled
in terms of edges is 2.72% and in terms of nodes is 14.86%. While using the static
super-node technique with uniform sampling, the graph crawled is 5.02% (in terms
of edges) and 37.17% (in terms of nodes) with the same super-node size. These
values can be reduced much further if we allow a bit less precision in the match
between approximate distribution and histogram.
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Figure 4.4: Dog pals network

In order to better understand the correlation in forming edges, we now consider
the configuration model. We use the estimator µ̂CpDmpSnqq proposed in Section
4.4.3.1 (note that the estimator is same for Chung-Lu model and configuration
model). It is important to recollect that this estimator does not require the knowl-
edge of the complete network (in fact the Figures 4.5 and 4.6 are based on estimates
from RWuR crawls which covered 8.9% of the graph). This is shown in blue line in
Figure 4.5 and red line in Figure 4.6, and the true value is the net expected value
given by (4.6). Moreover we run our original estimator µ̂pDmpSnqq and calculated
the approximate posterior on one random instance of the configuration model with
same degree sequence of the original graph. Figure 4.5 compare function f2 for the
configuration model and original graph. The figure shows that in the correlated
case (original graph), the affinity to form connection between same breed owners is
around 7.5 times more than that in the uncorrelated case. Figure 4.6 shows similar
figure in case of f1.

4.6.3 ADD Health data

Though our main result in the approximation (4.9) holds when the number of tours
is large, in this section we check with a small dataset. We consider ADD network
project3, a friendship network among high school students in the US. The graph
has 1545 nodes and 4003 edges.

We take two types of functions. Figure 4.7 shows the affinity in same gender
or different gender friendships and Figure 4.8 displays the inclination towards same
race or different race in friendships. The random walk tours covered around 10% of
the graph. We find that the theory works reasonably well for this network data, for

3http://www.cpc.unc.edu/projects/addhealth

http://www.cpc.unc.edu/projects/addhealth
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Figure 4.5: Dog pals network: Comparison between configuration model and origi-
nal graph for f2, number of connection between same breeds
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Figure 4.6: Dog pals network: Comparison between configuration model and origi-
nal graph for f1, number of connection between different breeds

instance, the true values in both the cases in Figure 4.7 are nearly the same, and
this is evident from the approximate posterior calculated from only one run. We
have not added the empirical posterior in the figures since for such small sample
sizes, the empirical distribution does not lead to a meaningful histogram.
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Figure 4.7: ADD network: effect of gender in relationships
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Figure 4.8: ADD network: effect of race in friendships

4.6.4 Check for Chung-Lu random graph model in Dogester

We use the same dataset and functions as in Section 4.6.2. Consider the function
f1, which is one when the owners of different breed dogs form connection, zero
otherwise. For the Chung-Lu model, µ̂CpDmpSnqq, the estimator of ErµpGC-Lqs is
8.066 ˆ 106 and yVarCpDmpSnqq, the estimator of VarCrµpGC-Lqs is 6.3938 ˆ 1011.
For the original graph, the estimated value µpDmpSnqq “ 6.432 ˆ 106. Now

|µ̂CpDmpSnqq ´ µpDmpSnqq| ď a

b
yVarCpDmpSnqq,

is satisfied for a “ 3, but not for a “ 1, 2. This implies there is a slight probability
(0.0428) that µpGq belongs to the values from different configurations of Chung-Lu
model.

For function f2, which is one when the owners of same breed dogs form connec-
tion, zero otherwise, µ̂CpDmpSnqq “ 1.995 ˆ 105, yVarCpDmpSnqq “ 2.9919 ˆ 104 and
for the original graph µpDmpSnqq “ 1.831 ˆ 106. We find that

|µ̂CpDmpSnqq ´ µpDmpSnqq| ę a

b
yVarCpDmpSnqq for a “ 1, 2, 3.

Hence the probability that µpGq belongs to the values generated by the random
network made from Chung-Lu model is less than 0.0027, which is negligible. These
two inferences can also be observed in Figures 4.5 and 4.6.

4.7 Ratio with Tours Estimator (R-T estimator)

In this section we extend the idea of regeneration and tours introduced in this
chapter to estimate the average function

sνpGq “ 1
|V |

ÿ

uPV

gpuq.

We consider node functions for explaining the estimator and it can be easily ex-
tended to edge functions. Now since the idea of tours can only help us to create
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an unbiased estimator for νpGq, in order to find sνpGq we form another similar esti-
mator for |V | with the same samples. With a sampling budget B, the estimator is
given by

psνpDmpBqpSnqq “

mpBqř
k“1

ξk´1ř
t“1

fpXpkq
t q

d
X

pkq
t

`
ř

iPIn
gpiq

dSn

mpBqř
k“1

ξk´1ř
t“1

1
d

X
pkq
t

` n

dSn

, (4.10)

where mpBq is the number of tours until the budget B,

mpBq :“ maxtk :
kÿ

j“1

ξj ď Bu.

The function fpuq :“ gpuq if u R In, otherwise fpuq “ 0.
This estimator is very close to respondent driven sampling (RDS), explained in

Section 2.2.3, except that we miss B´řmpBq
k“1 ξk samples for the estimation purpose.

An advantage of R-T estimator is that we could leverage all the advantages of super-
node and we claim that this would highly improve the performance. We show this
via numerical simulations in the next section, and theoretical properties will be
studied in future.

4.7.1 Numerical results

The following numerical studies compare RDS and R-T estimator. The choice of
RDS for comparison is motivated by the results shown in the later Chapter 5 that
it outperforms other samplings considered in this thesis in terms of asymptotic
variance and mean squared error. For the figures given below, the x-axis represents
the budget B which is the number of allowed samples. We use the normalized root
mean squared error (NRMSE) for comparison for a given B and is defined as

NRMSE :“
?

MSE{sνpGq, where MSE “ E

”`psνpnqpGq ´ sνpGq
˘2
ı
.

The super-node is formed from uniform sampling.

Les Misérables network: |V | “ 77, |E| “ 254

Figure 4.9 presents the comparison of R-T estimator with RDS estimator. Even
small super-node size works for certain functions, as shown in Figure 4.9b for average
clustering coefficient with super-node size 15.

Friendster network: |V | “ 64, 600, |E| “ 1, 246, 479

Figure 4.10 shows the results. In comparison to Les Misérables network, one can
see that the performance is improved even for small super-node size.
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Figure 4.9: Les Misérables network: Comparison between RDS and R-T estimators
.
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Figure 4.10: Friendster network: Comparison between RDS and R-T estimators
.

4.8 Conclusions

In this work we have introduced a method that by crawling a fraction of a large
network can produce, to the best of our knowledge, the first non-asymptotic un-
biased estimates of network node and edge characteristics. Our method is based
on random walk tours and a dynamic super-node algorithm. We derive lower and
upper bounds of variance of this estimator and show its connection to the spec-
tral gap of a random walk on the graph. One of our contributions is introducing
an approximate Bayesian posterior of the network metric of interest using crawled
data (random walk tours). We also derived a technique to study how a network
looks “random” to a metric by estimating the same metric if the network was drawn
from a Chung-Lu network or a configuration model with the same node labels and
node degrees, all using random walk crawls without ever knowing the full original
network. Our simulations over real-world networks show great accuracy of our es-
timators and approximations. In particular, the simulations clearly show that the
derived posterior distribution fits very well with the data even when as few as 2.7%
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of the edges and less than 15% of the nodes in the network are observed by the
crawl. We have also found via numerical simulations that a natural extension of the
estimator for sum function to average function performs better than the respondent
driven sampling.

4.9 Proof of Theorem 4.2

First, in Lemma 4.7 we show that the estimate of µpG1q from each tour is unbiased.

Lemma 4.7. Let X
pkq
1 , . . . , X

pkq
ξk

be the nodes traversed by the k-th random walk

tour on G1, k ě 1 starting at super-node Sn. Then the following holds, @k,

E

” ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q

ı
“ 2
dSn

µpG1q. (4.11)

Proof. The random walk starts from the super-node Sn, thus

E

” ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q

ı
“
ÿ

pu,vqPE1

E

”´
No. of times Markov chain

crosses pu, vq in the tour
¯
fpu, vq

ı
. (4.12)

Consider a renewal reward process with inter-renewal time distributed as ξk, k ě 1
and reward as the number of times Markov chain crosses pu, vq. From renewal
reward theorem,

tAsymptotic frequency of transitions from u to vu

“ Erξks´1
E

”´
No. of times Markov chaincrosses pu, vq in the tour

¯
fpu, vq

ı
.

The left-hand side is essentially 2πupuv. Now (4.12) becomes

E

” ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q

ı
“

ÿ

pu,vqPE1

fpu, vq 2πu puv Erξks

“ 2
ÿ

pu,vqPE1

fpu, vq duř
j dj

1
du

ř
j dj

dSn

“ 2
dSn

ÿ

pu,vqPE1

fpu, vq,

which concludes our proof.

In what follows we prove Theorem 4.2 using Lemma 4.7.
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Proof of Theorem 4.2. By Lemma 4.7 the estimator Wk “
ξk´1ÿ

t“2

fpXpkq
t´1, X

pkq
t q is an

unbiased estimate of p2{dSnqµpG1q. By the linearity of expectation the average
estimator W̄ pmq “ m´1

řm
k“1Wk is also unbiased.

We now consider two cases depending on f is defined as (4.2) or (4.3). When
f is as in (4.2), it is trivial. For the function described in (4.3), ErWks can be
rewritten as,

2
dSn

ErWks “
ÿ

pu,vqPE1

u‰Sn,v‰Sn

gpu, vq `
ÿ

pu,vqPE1

u‰Sn,v“Sn

1
kuS

ÿ

wPIn

gpu,wq.

Note that in the graph G1 there are kuS multiple edges between u and Sn, when
u and Sn are connected, and each contributes

ř
wPIn

gpu,wq to the net expecta-
tion. Moreover the multiplicative factor of two in the left-hand side of the above
expression takes into account edges in both the directions since the random walk is
reversible and graph is undirected. Hence

2
dSn

ErWks “
ÿ

pu,vqPE
uRIn,vRIn

gpu, vq `
ÿ

pu,vqPE
uRIn,vPIn

gpu, vq.

Finally for the estimator

µ̂pDmpSnqq “ dSn

2m
W̄ pmq `

ÿ

pu,vqPE
s.t. u,vPIn

fpu, vq.

has average
Erµ̂pDmpSnqqs “

ÿ

pu,vqPE
s.t. uRIn or vRIn

gpu, vq `
ÿ

pu,vqPE
s.t. u,vPIn

gpu, vq “ µpGq.

Furthermore, by strong law of large numbers with ErWks ă 8, µ̂pDmpSnqq Ñ µpGq
a.s. as m Ñ 8. This completes our proof.

4.10 Proof of Lemma 4.3

Proof. For RWuR, stationary distribution of node u, π̂u “ du`α
2|E1|`|V 1|α and transition

probability from node u to v, p̂uv “ α{|V 1|`1
du`α

if u and v are connected, α{|V 1|
du`α

otherwise
[Avrachenkov et al. 2010].

Let f2pu, vq “ gpu, vq dudw

2|E1|´1 and f 1 as defined in (4.7). Let V 2 “ V ´ In. We
have

V ˆ V “ tV 2 Y Inu ˆ tV 2 Y Inu
“ tV 2 ˆ V 2u Y tV 2 ˆ Inu Y tIn ˆ V 2u Y tIn ˆ Inu.
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Now the value in the set tV 2 ˆ Inu can be expressed in terms of V 1 ˆ V 1 as,
ÿ

pu,vqPV 2ˆIn

f2pu, vq “
ÿ

uPV 2

ÿ

wPIn

f2pu,wq

“
ÿ

u‰Sn,v“Sn

pu,vqPV 1ˆV 1

ÿ

wPIn

f2pu,wq.

ErW 1
ks “

ÿ

pu,vqPE1

f 1pu, vq2π̂up̂uv Erξks `
ÿ

pu,vqPpE1qc

f 1pu, vq2π̂up̂uv Erξks

“ 2α{|V 1|
dSn ` α

ÿ

pu,vqPE1YpE1qc

f 1pu, vq ` 2
dSn ` α

ÿ

pu,vqPE1

f 1pu, vq

“ 2
ÿ

pu,vqPE1

u‰Sn,v‰Sn

f2pu, vqα{|V 1| ` 1
dSn ` α

` 2
ÿ

pu,vqPE1

u‰Sn,v“Sn

α{|V 1| ` kuS

dSn ` α

ÿ

wPIn

f2pu,wq

` 2
ÿ

pu,vqPpE1qc

u‰Sn,v‰Sn

α{|V 1|
dSn ` α

f2pu, vq ` 2
ÿ

pu,vqPpE1qc

u‰Sn,v“Sn

α{|V 1|
dSn ` α

ÿ

wPIn

f2pu,wq

“ α{|V 1|
dSn ` α

« ÿ

pu,vqPV 2ˆV 2

f2pu, vq `
ÿ

pu,vqPV 2ˆIn

f2pu, vq
ff

` 1
dSn ` α

»
—–

ÿ

pu,vqPE1

u‰Sn,v“Sn

kuS

ˆ
1
kuS

ÿ

wPIn

f2pu,wq
˙
fi
ffifl .

A multiplicative factor of 2 will be added to the first term in the above expres-
sion since RWuR is reversible and the graph under consideration is undirected. The
last term can be removed by using classical random walk tours tW 2

k u with appro-
priate bias. The unbiasedness of the estimator then follows from the linearity of
expectation.

4.11 Proof of Lemma 4.4

(i). The variance of the estimator at tour k ě 1 starting from node Sn is

VarSn

„ ξkÿ

t“2

fpXpkq
t´1, X

pkq
t qq


ď B2

Erpξk ´ 1q2s ´
ˆ
E

„ ξkÿ

t“2

fpXpkq
t´1, X

pkq
t qq

˙2

. (4.13)

It is known from [Aldous & Fill 2002, Chapter 2 and 3] that

Erξ2
ks “ 2

ř
iě2w

2
Snip1 ´ λiq´1 ` 1
π2

Sn

.
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Using Theorem 4.7 eq. (4.13) can be written as

Var
„ ξkÿ

t“2

fpXpkq
t´1, X

pkq
t qq



ď 1
d2

Sn

ˆ
2d2

totB
2p
ÿ

iě2

w2
Snmp1 ´ λiq´1q ´ 4µ2pG1q

˙
´ 1
dSn

B2dtot `B2.

The latter can be upper-bounded by B2p2d2
tot{pd2

i δq ` 1).
For the second part, we have

E

«ˆ ξkÿ

t“2

fpXpkq
t´1, X

pkq
t q

˙l ff
ď Bl

Erpξk ´ 1qlqs

ď CpErpξkqls ` 1q,
for a constant C ą 0 using Cr inequality [Gut 2012, Chapter 3, Theorem 2.2].
From [Meyn & Tweedie 2012], it is known that there exists an a ą 0, such that
Erexppa ξkqs ă 8, and this implies that Erpξkqls ă 8 for all l ě 0. This proves the
theorem.

(ii). We denote Eπf for EπrfpY1, Y2qs and Normalpa, bq indicates Gaussian dis-
tribution with mean a and variance b. With the trivial extension of the central
limit theorem of Markov chains [Meyn & Tweedie 2012] of node functions to edge
functions, we have for the ergodic estimator f̄n “ n´1

řn
t“2 fpYt´1, Ytq,

?
npf̄n ´ Eπfq dÝÑ Normalp0, σ2

aq, (4.14)

where

σ2
a “ VarpfpY1, Y2qq ` 2

n´1ÿ

l“2

pn´ 1q ´ l

n
CovpfpY0, Y1q, fpYl´1, Ylqq ă 8.

We derive σ2
a in Lemma 4.8. Note that σ2

a is also the asymptotic variance of the
ergodic estimator of edge functions.

Consider a renewal reward process at its k-th renewal, k ě 1, with inter-renewal
time ξk and reward as Wk “ řξk

t“2 fpXpkq
t´1, X

pkq
t q. Let W̄ pnq be the average cumu-

lative reward gained up to m-th renewal, i.e., W̄ pmq “ m´1
řm

k“1Wk. From the
central limit theorem for the renewal reward process [Tijms 2003, Theorem 2.2.5],
with ln “ argmaxk

řk
j“1 1pξj ď nq, after n total number of steps yields

?
npW̄ plnq ´ Eπfq dÝÑ Normalp0, σ2

b q, (4.15)

with σ2
b “ ζ2

Erξks and

ζ2 “ ErpWk ´ ξkEπfq2s “ Ei

„´
Wk ´ ξk

ErWks
Erξks

¯2

“ VarSnpWkq ` pErWksq2 `
´
ErWks
Erξks

¯2

Erpξkq2s

´2
ErWks
Erξks ErWkξks.
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In fact it can be shown that (see [Meyn & Tweedie 2012, Proof of Theorem 17.2.2])

|
?
npf̄n ´ Eπfq ´

?
npW̄ plnq ´ Eπfq| Ñ 0 a.s. .

Therefore σ2
a “ σ2

b . Combining this result with Lemma 4.8 shown below we get
(4.8).

Lemma 4.8.

lim
nÑ8

1
n

Varπ

ˆ nÿ

k“2

fpYk´1, Ykq
˙

“ 2
rÿ

i“2

λi

1 ´ λi
xf, viyπ̂ pu⊺i f̂q ` 1

dtot

ÿ

pi,jqPE

fpi, jq2

` 1
d2

tot

p
ÿ

pi.jqPE

fpi, jq2q2 ` 1
d2

tot

ÿ

iPV

di

´ÿ

i„j

fpi, jq
¯2

Proof. We extend the arguments in the proof of [Brémaud 1999, Theorem 6.5] to
the edge functions. When the initial distribution is π, we have

lim
nÑ8

1
n

Varπ

ˆ nÿ

k“2

fpYk´1, Ykq
˙

“ 1
n

´ nÿ

k“2

VarπpfpYk´1, Ykqq ` 2
ÿ

k,j“2
kăj

CovπpfpYk´1, Ykq, fpYj´1, Yjqq
¯

“ VarπpfpYk´1, Ykqq ` 2
n´1ÿ

l“2

pn´ 1q ´ l

n
CovπpfpY0, Y1q, fpYl´1, Ylqq.

(4.16)

Now the first term in (4.16) is

VarπpfpYk´1, Ykqq “ xf, fyπ̂ ´ xf,Πf̂yπ̂, (4.17)

where Π “ 1π⊺.
For the second term in (4.16),

CovπpfpY0, Y1q, fpYl´1, Ylqq “ EπpfpY0, Y1q, fpYl´1, Ylqq ´ pEπrfpY0, Y1qsq2.

EπpfpY0, Y1q, fpYl´1, Ylqq “
ÿ

i

ÿ

j

ÿ

k

ÿ

m

πi pij p
pl´2q
jk pkmfpi, jqfpk,mq

“
ÿ

i

ÿ

j

ÿ

k

πi pij fpi, jq ppl´2q
jk f̂pkq

“
ÿ

pi,jqPE

π̂ ij fpi, jq pP pl´2qf̂qpjq

“ xf,P pl´2qf̂yπ̂. (4.18)
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Therefore,

CovπpfpY0, Y1q, fpYl´1, Ylqq “ xf, pP pl´2q ´ Πqf̂yπ̂.

Taking limits, we get

lim
nÑ8

n´1ÿ

l“2

n´ l ´ 1
n

pP pl´2q ´ Πq

“ lim
nÑ8

n´3ÿ

k“1

n´ k ´ 3
n

pP k ´ Πq ` pI ´ Πq

paq“ lim
nÑ8

n´1ÿ

k“1

n´ k

n
pP k ´ Πq ` pI ´ Πq ´ lim

nÑ8
3
n

n´3ÿ

k“1

pP k ´ Πq

“ pZ ´ Iq ` pI ´ Πq “ Z ´ Π, (4.19)

where the first term in paq follows from the proof of [Brémaud 1999, Theorem
6.5] and since limnÑ8pP n ´ Πq “ 0, the last term is zero using Cesaro’s lemma
[Brémaud 1999, Theorem 1.5 of Appendix].

We have,

Z “ I `
rÿ

i“2

λi

1 ´ λi
viu

⊺

i ,

Thus

lim
nÑ8

1
n

Varπ

ˆ nÿ

k“2

fpYk´1, Ykq
˙

“ xf, fyπ̂ ´ xf,Πf̂yπ̂ ` 2xf,
ˆ
I `

rÿ

i“2

λi

1 ´ λi
viu

⊺

i ´ Π

˙
f̂yπ̂

“ xf, fyπ̂ ` xf,Πf̂yπ̂ ` 2xf, f̂yπ̂ ` 2
rÿ

i“2

λi

1 ´ λi
xf, viyπ̂ pu⊺i f̂q

“ 1
dtot

ÿ

pi,jqPE

fpi, jq2 ` 1
d2

tot

p
ÿ

pi.jqPE

fpi, jq2q2

` 1
d2

tot

ÿ

iPV

di

´ÿ

i„j

fpi, jq
¯2

` 2
rÿ

i“2

λi

1 ´ λi
xf, viyπ̂ pu⊺i f̂q





Chapter 5

Reinforcement Learning based
Estimation in Networks

In this chapter, we revisit the estimation of

sνpGq “ 1
|V |

ÿ

uPV

gpuq.

We will introduce a reinforcement learning approach based on stochastic approxi-
mation. The underlying idea relies on the idea of tours and regeneration introduced
in Chapter 4. We will compare the mean squared error of the new estimator with
classical estimators and see how the stability of the sample paths can be controlled.

Organization

Section 5.1 introduces the reinforcement learning based sampling and estimation.
It also details a modification for an easy implementation and compares with the
algorithm in Chapter 4. Section 5.2 contains the numerical simulations on real-
world networks and makes several observations about the new algorithms.

5.1 Network Sampling with Reinforcement Learning
(RL-technique)

Consider an undirected connected graph G with node set V and edge set E. Let
V0 Ă V with |V0| ăă |V |. Consider the simple random walk (according to the
definition in Section 2.2.1) tXnu on G with transition probabilities ppj|iq “ 1{di if
pi, jq P E and zero otherwise. Define Yn :“ Xτn for τn :“ successive times to visit
V0. Then tpYn, τnqu is a semi-Markov process on V0 [Ross 1992, Chapter 5]. In
particular, tYnu is a Markov chain on V0 with transition probability matrix (say)
rpY pj|iqs. Let ξ1 :“ mintn ą 0 : Xn P V0u similar to the definition in Chapter 4
and for a prescribed f : V ÞÑ R, define

Ti :“ Eirξs,

hpiq :“ Ei

„ ξÿ

m“1

fpXmq

, i P V0.

Then the Poisson equation for the semi-Markov process pYn, τnq is [Ross 1992, Chap-
ter 7]

Vpiq “ hpiq ´ βTi `
ÿ

jPV0

pY pj|iqVpjq, i P V0. (5.1)

87
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Here β is the stationary average of f , EπrfpX0qs, and V indicates the value function.
Let tZnu be i.i.d. uniform on V0. For each n ě 1, generate an independent copy
tXn

mu of tXmu with Xn
0 “ Zn for 0 ď m ď ξn :“ the inter return time to V0. A

learning algorithm for (5.1) along the lines of [Abounadi et al. 2001] then is, for
i P V0,

Vn`1piq “ Vnpiq ` apnqItZn “ iu ˆ
«˜

ξpnqÿ

m“1

fpXn
mq

¸
´ Vnpi0qξpnq ` VnpXn

ξn
q ´ Vnpiq

ff
, (5.2)

where apnq ą 0 are stepsizes satisfying
ř

n apnq “ 8,
ř

n apnq2 ă 8. (One good
choice is apnq “ 1{r n

N
s for N “ 50 or 100.) Here ItAu denotes indicator function for

the set A. Also, i0 is a prescribed element of V0. One can use other normalizations
in place of Vnpi0q, such as 1

|V0|
ř

j Vnpjq or mini Vnpiq, etc. Then this normalizing
term (Vnpi0q in (5.2)) converges to β as n increases to 8. With the underlying
random walk as the Metropolis-Hastings, the normalizing term forms our estimator
µ̂

pnq
RLpGq in RL based approach.

The relative value iteration algorithm to solve (5.1) is

Vn`1piq “ hpiq ´ Vnpi0qTi `
ÿ

j

pY pj|iqVnpjq,

and (5.2) is the stochastic approximation analog of it which replaces conditional
expectation w.r.t. transition probabilities with an actual sample. And then makes
an incremental correction based on it, with a slowly decreasing stepwise function
that ensures averaging. The latter is a standard aspect of stochastic approximation
theory. The smaller the stepwise the less the fluctuations but slower the speed, thus
there is a trade-off between the two.

RL methods can be thought of as a cross between a pure deterministic iteration
such as the relative value iteration above and pure MCMC, trading off variance
against per iterate computation. The gain is significant if the number of neighbors
of a node is much smaller than the number of nodes, because we are essentially
replacing averaging over the latter by averaging over neighbors. The V-dependent
terms can be thought of as control variates to reduce variance.

Mean squared error of RL-technique

For the RL-technique the following concentration bound is true [Borkar 2008]:

P

!
|µ̂pNq

RL pGq ´ sνpGq| ě ε
)

ď K expp´kε2Nq.
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Thus it follows that MSE is Op 1?
N

q because

E|µ̂pNq
RL pGq ´ sνpGq|2 “

ż 8

0
P

!
|µ̂pNq

RL pGq ´ sνpGq|2 ě ε
)
dε

“
ż 8

0
P

!
|µ̂pNq

RL pGq ´ sνpGq| ě ε1{2
)
dε

ď
ż 8

0
K expp´kεNq dε “ O

´ 1
N

¯
.

5.1.1 Extension of RL-technique to uniform stationary average
case

The stochastic approximation iteration in (5.2) converges to β, which is EπrfpX0qs.
To make it converge to sνpGq, we use the Metroplois-Hastings random walk. But
without using Metropolis-Hastings algorithm, the following modification, motivated
from importance sampling, achieves the convergence to sνpGq with a standard ran-
dom walk.

Vn`1piq “ Vnpiq ` apnqItz “ iu ˆ Γpnq
ξn

ˆ
«˜

ξpnqÿ

m“1

fpXpnq
m q

¸
´ Vnpi0qξpnq ` VnpXpnq

ξn
q ´ Vnpiq

ff
,

where

Γpnq
m “

mź

k“1

ˆ
ppXpnq

k |Xpnq
k´1q

qpXpnq
k |Xpnq

k´1q

˙
.

Here qp¨|¨q is the transition probability of the random walk with which we simulate
the algorithm and pp¨|¨q corresponds to the transition probability of the random walk
with respect to which we need the stationary average. The transition probability
p can belong to any random walk having uniform stationary distribution such that
qp¨|¨q ą 0 whenever pp¨|¨q ą 0. One example is to use p as the transition probability
of Metroplis-Hastings algorithm with target stationary distribution as uniform and
q as the transition probability of a lazy version of simple random walk, i.e., with
transition probability matrix pI ` PSRWq{2. Such a modification avoids the use
of Metropolis-Hastings dynamics which require extra API requests for probing the
degree of the neighboring node.

5.1.2 Advantages

The RL-technique extends the idea of regeneration, tours and super-node introduced
in Chapter 4 to the average function sνpGq from νpGq. Though the RL-technique
does not have the non-asymptotic property as in the algorithm in Chapter 4, it has
the following advantages:

1. It does not need to wait until burn-in time to collect samples.
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2. Note the similarity in the algorithms: the super-node in Chapter 4 is a single
node, an amalgamation of the node set V0. But such a direction assumes
that the contribution of all the edges inside the induced subgraph of V0 to
sνpGq be completely known. It could have been avoided if we could make
use of the techniques for partitioning state space of a Markov chain (called
lumpability in [Kemeny & Snell 1983]). The conditions stated in [Kemeny &
Snell 1983, Theorem 6.3.2] are not satisfied here and hence can not invoke
the such techniques. On the other hand, the RL-technique, without using
the lumpability arguments, need not know the edge functions of the subgraph
induced by V0.

3. RL-technique along with the extension in Section 5.1.1 can be extended to
the directed graph case provided the graph is strongly connected. But for
the estimator from Chapter 4, recollect that it requires knowledge of the
stationary distribution of the underlying random walk to unbias and form the
estimator, which does not have an easy expression as far as we know and this
applies to a simple random walk on directed graphs as well.

4. As explained before, the main advantage of RL-estimator is its ability to
control the stability of sample paths and its position as a cross between deter-
ministic and MCMC iteration. We will see more about this in the numerical
section.

5.2 Numerical Comparison

The algorithms RL-technique, resondent driven sampling (RDS) and Metropolis-
Hastings sampling (MH-MCMC) (see Sections 2.2.2 and 2.2.3) are compared in this
section using simulations on two real-world networks. For the figures given below,
the x-axis represents the budget B which is the number of allowed samples, and is
the same for all the techniques. We use the normalized root mean squared error
(NRMSE) for comparison for a given B and is defined as

NRMSE :“
?

MSE{sνpGq, where MSE “ E

”`psνpnqpGq ´ sνpGq
˘2
ı
.

Recall that MSE “ VarrpsνpnqpGqs `
´
ErpsνpnqpGqs ´ sνpGq

¯2
. We also study the

asymptotic variance σ2
g (see (2.1)) of the random walk based estimators including

RL-technique in terms of nˆMSE, since the bias |ErpsνpnqpGqs´sνpGq| Ñ 0 as n Ñ 8.
For the RL-technique we choose the initial or super-node V0 by uniformly sam-

pling nodes assuming the size of V0 is given a priori.

5.2.1 Les Misérables network

In Les Misérables network, nodes are the characters of the novel and edges are
formed if two characters appear in the same chapter in the novel. The number
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of nodes is 77 and number of edges is 254. We have chosen this rather small
network in order to compare all the three methods in terms of theoretical limiting
variance. Here we consider four demonstrative functions: a) gpvq “ Itdv ą 10u b)
gpvq “ Itdv ă 4u c) gpvq “ dv, where ItAu is the indicator function for set A and
d) for calculating sνpGq as the average clustering coefficient

C :“ 1
|V |

ÿ

vPV

cpvq, where cpvq “
"
tpvq{

`
dv

2

˘
if dv ě 2

0 otherwise,
(5.3)

with tpvq as the number of triangles that contain node v. Then gpvq is taken as cpvq
itself.

The average in MSE is calculated from multiple runs of the simulations. The
simulations on Les Misérables network is shown in Figure 5.1 with apnq “ 1{r n

10 s

and the super-node size as 25.
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(b) gpvq “ Itdv ă 4u
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0 2000 4000 6000 8000 10000

Budget B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
R
M
S
E

MH-MCMC

RDS

RL technique

(d) gpvq “ cpvq, cpvq defined in (5.3)

Figure 5.1: Les Misérables network: NRMSE comparisons

5.2.1.1 Study of asymptotic MSE:

In order to show the asymptotic MSE expressions derived in Propositions 2.6 and
2.8, we plot the sample MSE as MSE ˆ B in Figures 5.2a, 5.3b and 5.2c. These
figures correspond to the three different functions we have considered. It can be
seen that asymptotic MSE expressions match well with the estimated ones.
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Figure 5.2: Les Misérables network: asymptotic MSE comparisons (contd.)
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5.2.2 Friendster network

We consider a larger graph here, a connected subgraph of an online social network
called Friendster with 64,600 nodes and 1,246,479 edges. The nodes in Friendster
are individuals and edges indicate friendship. We consider the functions a). gpvq “
Itdv ą 50u and b). gpvq “ cpvq (see (5.3)) used to estimate the average clustering
coefficient. The plot in Figure 5.3a shows the results for Friendster graph with
super-node size 1000. Here the sequence apnq is taken as 1{r n

25 s.
Now we concentrate on single sample path properties of the algorithms. Hence

the numerator of NRMSE becomes absolute error. Figure 5.3c shows the effect of
increasing super-node size while fixing step size apnq and Figure 5.3d shows the
effect of changing apnq when super-node is fixed. In both the cases, the green curve
of RL-technique shows much stability compared to the other techniques.
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Figure 5.3: Friendster network: (a) & (b) NRMSE comparison
.

5.2.3 Observations

Some observations from the numerical experiments are as follows:

1. With respect to the limiting variance, RDS always outperforms the other two
methods tested. However, with a good choice of parameters the performance
of RL is not far from that of RDS.

2. In the RL-technique, we find that the normalizing term 1{|V0|řj Vnpjq con-
verges much faster than the other two options, Vtpi0q and mini Vtpiq;

3. When the size of the super-node decreases, the RL-technique requires smaller
step size apnq. For instance in case of Les Misérables network, if the super-
node size is less than 10, RL-technique does not converge with apnq “ 1{pr n

50 s`
1q and requires apnq “ 1{prn

5 sq;

4. If step size apnq decreases or the super node size increases, RL fluctuates
less but with slower convergence. In general, RL has less fluctuations than
MH-MCMC or RDS.
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with gpvq “ Itdv ą 50u

.

5.3 Conclusions

In this chapter we studied and compared the performances of a sampling technique
based on reinforcement learning for average function estimation with RDS and MH
sampling. We found that in terms of asymptotic mean squared error (MSE), the
RDS technique outperforms the other methods considered. However, RL-technique
with small step size displays a more stable sample path in terms of MSE and its
performance is comparable with respect to RDS. In the extended version of the
work we plan to test the methods on larger graphs and involve more methods for
comparison.



Chapter 6

Extremes in Sampling Processes

Data from real complex networks shows that correlations exist in various forms, for
instance the existence of social relationships and interests in social networks. Degree
correlations between neighbors, correlations in income, followers of users and num-
ber of likes of specific pages in social networks are some examples, to name a few.
These kind of correlations have several implications in network structure. For ex-
ample, degree-degree correlation manifests itself in assortativity or disassortativity
of the network [Barrat et al. 2008].

Additionally, we consider large complex networks where it is impractical to have
a complete picture a priori. Crawling or sampling techniques can be employed in
practice to explore such networks by making use of API calls or HTML scrap-
ping. We look into the stationary samples genereated by any randomized sampling
techniques.

Taking into account the correlation in the graph and the correlation introduced
by the stationary samples, this chapter is devoted to the study of distribution and
dependence of extremal events in network sampling processes.

Organization

Section 6.1 introduces the extremal index, a key parameter in extreme value theory
which we will explore in detail in this chapter. In Section 6.2, methods to derive EI
are presented. Section 6.3 considers the case of degree correlations. In Section 6.3.1
the graph model and correlated graph generation technique are presented. Sec-
tion 6.3.2 explains the different types of random walks studied and derives associ-
ated transition kernels and joint degree distributions. EI is analytically calculated
for different sampling techniques later in Section 6.3.3. In Section 6.4 we provide
several applications of EI in graph sampling techniques. In Section 6.5 we estimate
EI and perform numerical comparisons. Finally Section 6.6 concludes the chapter.

6.1 Extremal Index (EI)

We focus on the extremal properties in the correlated and stationary sequence of
characteristics of interest X1, . . . , Xn which is a function of the node sequence, the
one actually generated by sampling algorithms. The characteristics of interest, for
instance, can be node degrees, node income, number of followers of the node in
OSNs, etc. Among the properties, clusters of exceedances of such sequences over
high thresholds are studied in particular. The cluster of exceedances is roughly

95
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defined as the consecutive exceedances of tXnu over the threshold tunu between two
consecutive non-exceedances. For more rigorous definitions, see [Beirlant et al. 2006,
Ferro & Segers 2003, Markovich 2014]. It is important to investigate stochastic
nature of extremes since it allows us to collect statistics or opinions more effectively
in the clustered (network sampling) process.

The dependence structure of sampled sequence exceeding sufficiently high
thresholds is measured using a parameter called extremal index (EI), θ. It is defined
in extreme value theory as follows.

Definition 6.1. [Leadbetter et al. 1983, p. 53] The stationary sequence tXnuně1,
with F as the marginal distribution function and Mn “ maxtX1, . . . , Xnu, is said
to have the extremal index θ P r0, 1s if for each 0 ă τ ă 8 there is a sequence of
real numbers (thresholds) un “ unpτq such that

lim
nÑ8np1 ´ F punqq “ τ and (6.1)

lim
nÑ8PtMn ď unu “ e´θτ . (6.2)

The maximum Mn is related to EI more clearly as [Beirlant et al. 2006, p. 381]1

PtMn ď unu “ Fnθpunq ` op1q. (6.3)

When tXnuně1 is i.i.d. (for instance, in uniform independent node sampling),
θ “ 1 and point processes of exceedances over threshold un converges weakly to
homogeneous Poisson process with rate τ as n Ñ 8 [Beirlant et al. 2006, Chapter
5]. But when 0 ď θ ă 1, point processes of exceedances converges weakly to
compound Poisson process with rate θτ and this implies that exceedances of high
threshold values un tend to occur in clusters for dependent data [Beirlant et al. 2006,
Chapter 10].

EI has many useful interpretations and applications like

• Finding distribution of order statistics of the sampled sequence. These can
be used to find quantiles and predict the kth largest value which arise with
a certain probability. Specifically for the distribution of maximum, equation
(6.3) is available and the quantile of maximum is proportional to EI. Hence
in case of samples with lower EI, lower values of maximum can be expected.
When sampled sequence is the sequence of node degrees, these give many
useful results.

• Close relation to the distribution and expectation of the size of clusters of
exceedances (see for e.g. [Beirlant et al. 2006, Markovich 2014]).

• Characterization of the first hitting time of the sampled sequence to pun,8q.
Thus in case of applications where the aim is to detect large values of samples

1F kp.q indicates kth power of F p.q throughout the chapter except when k “ ´1 where it denotes

the inverse function.
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quickly, without actually employing sampling (which might be very costly), we
can compare different sampling procedures by EI: smaller EI leads to longer
waiting of the first hitting time.

These interpretations are explained later in the chapter. The network topology as
well as the sampling method determines the stationary distribution of the charac-
teristics of interest under a sampling technique and is reflected on the EI.

6.2 Calculation of Extremal Index

We consider networks represented by an undirected graph G “ pV,Eq with |V |

vertices and |E| edges. The edges of a graph are assumed to be unordered pairs of
nodes. Since the networks under consideration are huge, we assume it is impossible
to describe them completely, i.e., no adjacency matrix is given beforehand. Assume
any randomized sampling procedure is employed and let the sampled sequence tXiu
be any general sequence.

This section explains a way to calculate EI from the bivariate joint distribution
if the sampled sequence admits two mixing conditions.

Condition (Dpunq).
ˇ̌
ˇPpXi1

ď un, . . . , Xip ď un, Xj1
ď un, . . . , Xjq ď unq

´ PpXi1
ď un, . . . , Xip ď unqPpXj1

ď un, . . . , Xjq ď unq
ˇ̌
ˇ ď αn,ln ,

where αn,ln Ñ 0 for some sequence ln “ opnq as n Ñ 8, for any integers i1 ď . . . ă
ip ă j1 ă . . . ď jq with j1 ´ ip ą ln.

Condition (D2punq).

lim
nÑ8n

rnÿ

m“3

PpX1 ą un ě X2, Xm ą unq “ 0,

where pn{rnqαn,ln Ñ 0 and ln{rn Ñ 0 with αn,ln , ln as in Condition Dpunq and rn

as opnq.

Let Cpu, vq be a bivariate copula [Nelsen 2007] (r0, 1s2 Ñ r0, 1s) and 1 ¨∇Cpu, vq
is its directional derivative along the direction p1, 1q. Using Sklar’s theorem
[Nelsen 2007, p. 18], with F as the marginal stationary distribution function of
the sampling process, the copula is given by

Cpu, vq “ PpX1 ď F´1puq, X2 ď F´1pvqq,

where F´1 denotes the inverse function of F . This representation is unique if the
stationary distribution F pxq is continuous.
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Theorem 6.2. If the sampled sequence is stationary and satisfies conditions Dpunq
and D2punq, and the limits in (6.1) and (6.2) take place, then the extremal index is

given by

θ “ 1 ¨ ∇Cp1, 1q ´ 1, (6.4)

and 0 ď θ ď 1.

Proof. For a stationary sequence tXnu holding conditions Dpunq and D2punq, if the
limits in (6.1) and (6.2) take place, θ “ limnÑ8 PpX2 ď un|X1 ą unq [Leadbetter
& Nandagopalan 1989]. Then, we have

θ “ lim
nÑ8

PpX2 ď un, X1 ą unq
PpX1 ą unq

“ lim
nÑ8

PpX2 ď unq ´ PpX1 ď un, X2 ď unq
PpX1 ą unq

“ lim
nÑ8

PpX2 ď unq ´ CpPpX1 ď unq,PpX2 ď unqq
1 ´ PpX1 ď unq

“ lim
xÑ1

x´ Cpx, xq
1 ´ x

“ 1 ¨ ∇Cp1, 1q ´ 1,

which completes the proof.

Remark 6.3. Condition D2punq can be made weaker to Dpkqpunq presented in
[Chernick et al. 1991],

lim
nÑ8nP

´
X1 ą un ě max

2ďiďk
Xi, max

k`1ďjďrn

Xj ą un

¯
“ 0,

where rn is defined as in D2punq. For the stationary sequence Dp2qpunq is identical
to D2punq. If we assume Dpkq is satisfied for some k ě 2 along with Dpunq, then
following the proof of Theorem 6.2, EI can be derived as

θ “ 1 ¨ ∇Ckp1, . . . , 1q ´ 1 ¨ ∇Ck´1p1, . . . , 1q,

where Ckpx1, . . . , xkq represents the copula of k-dimensional vector px1, . . . , xkq,
Ck´1 is its pk ´ 1qth marginal, Ck´1pxq “ Ck´1px1, . . . , xk´1, 1q and 1 ¨
∇Ckpx1, . . . , xkq denotes the directional derivative of Ckpx1, . . . , xkq along the k-
dimensional vector p1, 1, . . . , 1q.

In some cases it is easy to work with the joint tail distribution. Survival copula
pCp¨, ¨q which corresponds to

PpX1 ą x,X2 ą xq “ pCpF pxq, F pxqq,

with F pxq “ 1 ´ F pxq, can also be used to calculate θ. It is related to copula as
pCpu, uq “ Cp1´u, 1´uq `2u´1 [Nelsen 2007, p. 32]. Hence θ “ 1 ¨∇Cp1, 1q ´1 “
1 ´ 1 ¨ ∇ pCp0, 0q.
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Lower tail dependence function of survival copula is defined as [Weng &
Zhang 2012]

λpu1, u2q “ lim
tÑ0`

pCptu1, tu2q
t

.

Hence 1 ¨ ∇ pCp0, 0q “ λp1, 1q. λ can be calculated for different copula families. In
particular, if pC is a bivariate Archimedean copula, then it can be represented as,
pCpu1, u2q “ ψpψ´1pu1q `ψ´1pu2qq, where ψ is the generator function and ψ´1 is its
inverse with ψ : r0,8s Ñ r0, 1s meeting several other conditions. If ψ is a regularly
varying distribution with index ´β, β ą 0, then λpx1, x2q “ px´β´1

1 ` x
´β´1

2 q´β

and pX1, X2q has a bivariate regularly varying distribution [Weng & Zhang 2012].
Therefore, for Archimedean copula family, EI is given by

θ “ 1 ´ 1{2β. (6.5)

As an example, bivariate Pareto distribution of the form PpX1 ą x1, X2 ą x2q “
p1 ` x1 ` x2q´γ , γ ą 0 has Archimedean copula with generator function ψpxq “
p1 ` xq´γ . This gives θ “ 1 ´ 1{2γ . Bivariate exponential distribution of the form

PpX1 ą x1, X2 ą x2q “ 1 ´ e´x1 ´ e´x2 ` e´px1`x2`ηx1x2q,

0 ď η ď 1, also admits Archimedian copula.

6.2.1 Check of conditions Dpunq and D2punq for functions of Markov
samples

If the sampling technique is assumed to be based on a Markov chain and the sam-
pled sequence is a measurable function of stationary Markov samples, then such
a sequence is stationary and [O’Brien 1987] proved that another mixing condition
AIMpunq which implies Dpunq is satisfied. Condition D2punq allows clusters with
consecutive exceedances and eliminates the possibility of clusters with upcrossing
of the threshold un (Xi ď un ă Xi`1). Hence in those cases, where it is tedious
to check the condition D2punq analytically, we can use numerical procedures to
measure ratio of number of consecutive exceedances to number of exceedances and
the ratio of number of upcrossings to number of consecutive exceedances in small
intervals. Such an example is provided in Section 6.3.3.

Remark 6.4. The EI derived in [Ferreira & Ferreira 2007] has the same expression
as in (6.4). But [Ferreira & Ferreira 2007] assumes tXnu is sampled from a first
order Markov chain. We relax the Markov property requirement to D and D2

conditions and the example below demonstrates a hidden Markov chain can satisfy
D and D2.

Let us consider a hidden Markov chain with the observations tXkukě1 and the
underlying homogeneous Markov chain as tYkukě1 in stationarity. The underlying
Markov chain has finite state space (since we are interested in sampling in finite
graphs), but the conditional distributions of the observations PpXk ď x|Yk “ yq “
Fypxq have infinite support and condition (6.1) holds for Fypxq.



100 Chapter 6. Extremes in Sampling Processes

Proposition 6.5. When condition (6.1) holds for Fypxq, the observation sequence

tXkukě1 of the hidden Markov chain satisfies Condition D2.

Proof. Let the transition probability matrix of tYkukě1 be P (with PpY2 “ j|Y1 “
iq “ Pij) and the stationary distribution be π (with PpY1 “ iq “ πi). We have,

PpX1 ą un ě X2, Xm ą unq
“

ÿ

i,j,k

PpY1 “ i, Y2 “ j, Ym “ kqPpX1 ą un ě X2, Xm ą un|Y1, Y2, Ymq

“
ÿ

i,j,k

πiPijP
pm´2q
jk PpX1 ą un|Y1 “ iqPpX2 ď un|Y2 “ jqPpXm ą un|Ym “ kq

„
ÿ

i,j,k

πiPijP
pm´2q
jk

τ

n

´
1 ´ τ

n

¯ τ
n
, n Ñ 8.

Thus

lim
nÑ8n

rnÿ

m“3

PpX1 ą un ě X2, Xm ą unq “ 0,

since rn “ opnq, which completes the proof.

Proposition 6.5 essentially tells that if the graph is explored by a Markov chain
based sampling algorithm and the samples are taken as any measurable functions of
the underlying Markov chain, satisfying condition (6.1), then Condition D2 holds.
Measurable functions, for example, can represent various attributes of the nodes
such as income or frequency of messages in social networks.

6.3 Degree Correlations

The results established in Section 6.2 for finding EI is very general, applicable to any
sampling techniques and any sequence of samples which satisfy certain conditions.
In this section we illustrate the calculation of EI for dependencies among degrees.
We revise different sampling techniques. We focus on the sampled degree sequence
and denote the sampled sequence tXiu as tDiu in this section.

6.3.1 Description of the configuration model with degree-degree
correlation

To test the proposed approaches and the derived formulas, we use a synthetically
generated Configuration type random graph with a given joint degree-degree proba-
bility distribution, which takes into account correlation in degrees between neighbor
nodes. The dependence structure in the graph is described by the joint degree-
degree probability density function fpd1, d2q with d1 and d2 indicating the degrees
of adjacent nodes or equivalently by the corresponding tail distribution function
F pd1, d2q “ PpD1 ě d1, D2 ě d2q with D1 and D2 representing the degree random
variables (see e.g., [Barrat et al. 2008, Boguna et al. 2003, Goltsev et al. 2008]).
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The probability that a randomly chosen edge has the end vertices with degrees
d1 ď d ď d1 ` ∆pd1q and d2 ď d ď d2 ` ∆pd2q is p2 ´ δd1d2

qfpd1, d2q∆pd1q∆pd2q.
Here δd1d2

“ 1 if d1 “ d2, zero otherwise. The multiplying factor 2 appears on the
above expression when d1 ‰ d2 because of the symmetry in fpd1, d2q, fpd1, d2q “
fpd2, d1q due to the undirected nature of the underlying graph, and the fact that
both fpd1, d2q and fpd2, d1q contribute to the edge probability under consideration.

The degree density fdpd1q can be related to the marginal of fpd1, d2q as follows:

fpd1q “
ż

d2

fpd1, d2qdpd2q « d1fdpd1q
ErDs , (6.6)

where ErDs denotes the mean node degree,

ErDs “
”ż ż ´fpd1, d2q

d1

¯
dpd1qdpd2q

ı´1

.

fp.q can be interpreted as the degree density of a vertex reached by following a
randomly chosen edge. The approximation for fpd1q is obtained as follows: in
the R.H.S. of (6.6), roughly, d1fdpd1q|V | is the number of half edges from nodes
with degree around d1 and ErDs|V | is the total number of half edges. For discrete
distributions, (6.6) becomes equality.

From the above description, it can be noted that the knowledge of fpd1, d2q is
sufficient to describe this random graph model and for its generation.

Most of the results in this chapter are derived assuming continuous probability
distributions for fpd1, d2q and fdpd1q because an easy and unique way to calculate
EI exists for continuous distributions in our setup (more details in Section 6.2).
Also the EI might not exist for many discrete valued distributions [Leadbetter
et al. 1983].

6.3.1.1 Random graph generation

A random graph with bivariate joint degree-degree distribution can be generated
as follows ([Newman 2002]):

1. Degree sequence is generated according to the degree distribution, fdpdq “
fpdqErDs

d

2. An uncorrelated random graph is generated with the generated degree se-
quence using configuration model ([Barrat et al. 2008, Van Der Hofstad 2016])

3. Metropolis dynamics is now applied on the generated graph: choose two edges
randomly (denoted by the vertex pairs pv1, w1q and pv2, w2q) and measure
the degrees, pj1, k1q and pj2, k2q correspond to these vertex pairs. Generate
a random number, y, according to uniform distribution in r0, 1s. If y ď
minp1, pfpj1, j2qfpk1, k2qq{pfpj1, k1qfpj2, k2qqq, then remove the selected edges
and construct news ones as pv1, v2q and pw1, w2q. Otherwise keep the selected
edges intact. This dynamics will generate an instance of the random graph
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with the required joint degree-degree distribution. Run Metropolis dynamics
long enough to mix the generating process.

As an example, we shall often use the following bivariate Pareto model for the joint
degree-degree tail function of the graph,

F̄ pd1, d2q “
´

1 ` d1 ´ µ

σ
` d2 ´ µ

σ

¯´γ

, (6.7)

where σ, µ and γ are positive values. The use of the bivariate Pareto distribution
can be justified by the statistical analysis in [Zhukovskiy et al. 2012].

6.3.2 Description of random walk based sampling processes

In this section, we explain three different one dimensional random walk based algo-
rithms for exploring the network: simple random walk, PageRank and random walk
with jumps. They have been extensively studied in previous works [Avrachenkov
et al. 2010, Brin & Page 1998, Lovász 1993] (also briefly mentioned in Chapter 2)
where they are formulated with vertex set as the state space of the underlying
Markov chain on graph. The walker in these algorithms, after reaching each node,
moves to another node randomly by following the transition kernel of the Markov
chain. However, the quantity of interest is generally a measurable function of the
Markov chain. As a case study, let us again take the degree sequence. We use fX

and PX to represent the probability density function and probability measure un-
der the algorithm X with the exception that fd represents the probability density
function of degrees.

6.3.2.1 Simple Random walk (SRW)

In a simple random walk, the next node to visit is chosen uniformly among the
neighbors of the current node. Let V1, V2, . . . be the nodes crawled by the SRW and
D1, D2, . . . be the degree sequence corresponding to the sequence V1, V2, . . ..

Theorem 6.6. The following relation holds in the stationary regime

fSRWpd1, d2q “ fpd1, d2q, (6.8)

where fpd1, d2q is the joint degree-degree distribution and fSRWpd1, d2q is the bi-

variate joint distribution of the degree sequences generated by the standard simple

random walk.

Proof. We note that the sequence tpVi, Vi`1quiě1 also forms a Markov chain. With
the assumption that the graph is connected, the ergodicity holds for any function
g, i.e.,

1
T

Tÿ

i“1

gpVi, Vi`1q Ñ EπrgpVξ, Vξ`1qs, T Ñ 8,

where Eπ is the expectation under stationary distribution π of tpVi, Vi`1qu (which is
uniform over edges) and pVξ, Vξ`1q indicates a randomly picked edge. The ergodicity
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can then be extended to functions of the degree sequence tpDi, Di`1qu corresponding
to tpVi, Vi`1qu, and in particular

1
T

Tÿ

i“1

ItDi “ d1, Di`1 “ d2u Ñ EπrItDξ “ d1, Dξ`1 “ d2us, T Ñ 8

“ 1
|E|

ÿ

pp,qqPE

ItDp “ d1, Dq “ d2u

“ fpd1, d2q, (6.9)

where ItAu denotes the indicator function for the event A. L.H.S. of (6.9) is an
estimator of fSRWpd1, d2q. This means that when the SRW is in stationary regime
ErItDi “ d1, Di`1 “ d2us “ EπrItDξ “ d1, Dξ`1 “ d2us and hence (6.8) holds.

Using (6.6) we can approximate the degree sequence by a simple random walk
on degree space with the following transition kernel:

fSRWpdt`1|dtq “ ErDsfpdt, dt`1q
dtfdpdtq

, (6.10)

where the present node has degree dt and the next node is with degree dt`1. The
above relation holds with equality for discrete degree distribution, but some care
needs to be taken if one uses continuous version for the degree distributions.

If the simple random walk on the vertex set is in the stationary regime, its
stationary distribution (probability of staying at a particular vertex i) is propor-
tional to the degree (see e.g., [Lovász 1993]) and is given by di{2|E|, |E| being the
number of edges. Then in the simple random walk on degree set, the stationary
distribution of staying at any node with degree around d1 can be approximated as
|V |fdpd1q pd1{2|E|q, with |V | as the number of nodes. Thus

fSRWpd1q “ d1

ErDsfdpd1q.

Check of the approximation

We provide comparison of simulated values and theoretical values of transition
kernel of SRW in Figure 6.1. To be specific, we use the bivariate Pareto distribution
given (6.7). In the figure, |V | is 5,000. µ “ 10, γ “ 1.2 and σ “ 15. These choices
of parameters provide ErDs “ 21.0052. At each instant Metropolis dynamics will
choose two edges and it has run 200,000 times (provides sufficient mixing). The
figure shows satisfactory fitting of the approximation.

6.3.2.2 PageRank (PR)

PageRank is a modification of the simple random walk which with a fixed probability
1 ´ c samples a random node with uniform distribution and with a probability c,
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Figure 6.1: Transition kernel comparison

it follows the simple random walk transition [Brin & Page 1998]. Its evolution on
degree state space can be described as follows:

fPRpdt`1|dtq “ c fSRWpdt`1|dtq ` p1 ´ cq 1
|V |

|V |fdpdt`1q

“ c fSRWpdt`1|dtq ` p1 ´ cqfdpdt`1q. (6.11)

Here the 1{|V | corresponds to the uniform sampling on vertex set and 1
|V | |V |fdpdt`1q

indicates the net probability of jumping to all the nodes with degree around dt`1.

Consistency with PageRank value distribution

We make a consistency check of the approximation derived for transition kernel by
studying tail behavior of degree distribution and PageRank value distribution. It
is known that under some strict conditions, for a directed graph, PageRank and
Indegree have same tail exponents [Litvak et al. 2007]. In our formulation in terms
of degrees, for uncorrelated and undirected graph, PageRank for a given degree d,
PRpdq, can be approximated from the basic definition as,

PRpdq “ fPRpdq “ c fSRWpdq ` p1 ´ cq fdpdq.

This is a deterministic quantity. We are interested in the distribution of the random
variable PRpDq, PageRank of a randomly choosen degree class D. PageRank PRpdq
is also the long term proportion or probability that PageRank process ends in a
degree class with degree d. This can be scaled suitably to provide a rank-type
information. Its tail distribution is

PpPRpDq ą xq “ P pc.fSRWpDq ` p1 ´ cq.fdpDq ą xq ,

where D „ fdp.q. The PageRank of any vertex inside the degree class d is
PRpdq{p|V |fdpdqq. The distribution of Page Rank of a randomly chosen vertex



6.3. Degree Correlations 105

i, PpPRpiq ą xq after appropriate scaling for comparison with degree distribution
is Pp|V |.PRpiq ą d̂q, where d̂ “ |V |x. Now

Pp|V |.PRpiq ą d̂q “ P

´
|V |

PRpDq
|V |fdpDq ą d̂

¯

“ P

´
D ą ErDs

c

“
d̂´ p1 ´ cq

‰¯
.

This of the form PpD ą Ad̂ ` Bq with A and B as appropriate constants and
hence will have the same exponent of degree distribution tail when the graph is
uncorrelated.

There is no convenient expression for the stationary distribution of PageRank,
to the best of our knowledge, and it is difficult to come up with an easy to handle
expression for the joint distribution. Therefore, along with other advantages, we
consider another modification of the simple random walk.

6.3.2.3 Random walk with jumps (RWJ)

SRW sampling leads to many practical issues like the possibility to get stuck in
a disconnected component, biased estimators, etc. RWJ overcomes such problems
([Avrachenkov et al. 2010]).

In this algorithm we follow simple random walk on a modified graph which is
a superposition of the original graph and complete graph on same vertex set of
the original graph with weight α{|V | on each artificially added edge, α P r0,8s
being a design parameter ([Avrachenkov et al. 2010]). The algorithm can be shown
to be equivalent to select c “ α{pdt ` αq in the PageRank algorithm, where dt is
the degree of the node at time t2. The larger the node’s degree, the less likely is
the artificial jump of the process. This modification makes the underlying Markov
chain time reversible, significantly reduces mixing time, improves estimation error
and leads to a closed form expression for stationary distribution.

Before proceeding to formulate the next theorem, we recall that the degree
distribution fdpd1q is different from the marginal of fpd1, d2q, fpd1q.

Theorem 6.7. The following relation holds in the stationary regime

fRWJpd1, d2q “ ErDs
ErDs ` α

fpd1, d2q ` α

ErDs ` α
fdpd1qfdpd2q, (6.12)

where fpd1, d2q is the joint degree-degree distribution, fdpd1q is the degree distri-

bution and fRWJpd1, d2q is the bi-variate joint distribution of the degree sequences

generated by the random walk with jumps.

2This is a slight abuse of notation. In the previous chapters we used dv to indicate degree of

node v. Here, as we are directly focusing on the degree sequence, it makes more sense to define dt

as the degree of the node sampled at time t
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Proof. In the similar lines in the analysis of SRW, fRWJpd1, d2q can be calculated
as follows. The stationary distribution, fRWJppq, for node p (on the vertex set) is
pdp `αq{p2|E|` |V |αq. The transition probability from node p to node q, fRWJpq|pq,
is pα{|V |`1q{pdp `αq when there is a link from p to q, and when there is no link, it
is pα{|V |q{pdp `αq ([Avrachenkov et al. 2010]). Then the joint distribution between
nodes is given by

fRWJpp, qq “ fRWJpq|pqfRWJppq “
# α

|V |
`1

2|E|`|V |α if p has link to q,
α

|V |

2|E|`|V |α if p does not have link to q.

Therefore

fRWJpd1, d2q
“ EπrItDξ “ d1, Dξ`1 “ d2us
paq“ 2

α
|V | ` 1

2|E| ` |V |α

ÿ

pp,qqPE

ItDp “ d1, Dq “ d2u

`2
α

|V |

2|E| ` |V |α

ÿ

pp,qqRE

ItDp “ d1, Dq “ d2u

pbq“ 2
α

|V | ` 1

2|E| ` |V |α
|E|fpd1, d2q

`2
α

|V |

2|E| ` |V |α

´1
2

ÿ

pPV

ItDp “ d1u
ÿ

qPV

ItDq “ d2u ´ |E|fpd1, d2q
¯

“ ErDs
ErDs ` α

fpd1, d2q ` α

ErDs ` α
fdpd1qfdpd2q.

Here ErDs “ 2|E|{|V |. The multiplying factor 2 is introduced in paq because of
the symmetry in the joint distribution fRWJpp, qq over the nodes, terms outside
summation in the R.H.S. The factor 1{2 in R.H.S. in pbq is to take into account the
fact that only half of the combinations of pp, qq is needed.

We also have the following. The stationary distribution on degree set by col-
lecting all the nodes with same degree is

fRWJpd1q “
´ d1 ` α

2|E| ` |V |α

¯
Nfdpd1q

“ pd1 ` αqfdpd1q
ErDs ` α

. (6.13)

Moreover the associated tail distribution has a simple form,

fRWJpDt`1 ą dt`1, Dt ą dtq “ ErDsF pdt`1, dtq ` αF dpdt`1qF dpdtq
ErDs ` α

. (6.14)

Remark 6.8. For uncorrelated networks, fSRWpd1, d2q “ fSRWpd1qfSRWpd2q,
fPRpd1, d2q “ fPRpd1qfPRpd2q and fRWJpd1, d2q “ fRWJpd1qfRWJpd2q.
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6.3.3 Extremal index for bivariate Pareto degree correlation

As explained in the Introduction section, EI is an important parameter in charac-
terizing dependence and extremal properties in a stationary sequence. We assume
that we have waited sufficiently long that the underlying Markov chain of the three
different graph sampling algorithms are in stationary regime now. Here we derive
EI of SRW and RWJ for the model with degree correlation among neighbours as
bivariate Pareto (6.7).

The two mixing conditions Dpunq and D2punq introduced in Section 6.2 are
needed for our EI analysis. Condition Dpunq is satisfied as explained in Section
6.2.1. An empirical evaluation of D2punq is provided in Section 6.5.3.1.

6.3.3.1 Extremal index for random walk sampling

We use the expression for EI given in Theorem 6.2. As fSRWpx, yq is same as fpx, yq,
we have,

pCpu, uq “ PpD1 ą F̄´1puq, D2 ą F̄´1puqq
“

`
1 ` 2pu´1{γ ´ 1q

˘´γ

1 ¨ ∇ pCpu, uq “ 2p2 ´ u1{γq´pγ`1q.

Thus θ “ 1 ´ 1 ¨ ∇ pCp0, 0q “ 1 ´ 1{2γ . For γ “ 1 we get θ “ 1{2. In this case, we
can also use expression obtained in (6.5).

6.3.3.2 Extremal index for random walk with jumps sampling

Although it is possible to derive EI as in SRW case above, we provide an alternative
way to avoid the calculation of tail distribution of degrees and inverse of RWJ
marginal (with respect to the bivariate Pareto degree correlation). We assume the
existence of EI in the following proposition.

Proposition 6.9. When the bivariate joint degree distributions of neighboring

nodes are Pareto distributed as given by (6.7), and random walk with jumps is

employed for sampling, the EI is given by

θ “ 1 ´ ErDs
ErDs ` α

2´γ , (6.15)

where ErDs is the expected degree, α is the parameter of the random walk with

jumps, and γ is the tail index of the bivariate Pareto distribution.

Proof. Under the assumption of D2,

θ “ lim
nÑ8

PpD2 ď un, D1 ą unq
PpD1 ą unq “ lim

nÑ8
PpD1 ě unq ´ PpD2 ě un, D1 ě unq

PpD1 ą unq (6.16)
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Now using the condition (6.1) on the marginal and joint tail distribution of RWJ
(6.14), we can write

PpD1 ě unq ´ PpD2 ě un, D1 ě unq
PpD1 ą unq

“
τ{n` op1{nq ´ ErDs

ErDs`α
PSRWpD2 ě un, D1 ě unq ´ α

ErDs`α
Opτ{nqOpτ{nq

τ{n` op1{nq
The asymptotics in the last term of the numerator is due to the following:

FRWJpunq “ ErDs
ErDs ` α

F punq ` α

ErDs ` α
F dpunq “ τ{n` op1{nq,

and hence F dpunq “ Opτ{nq. Therefore (6.16) becomes

θ “ 1 ´ ErDs
ErDs ` α

lim
nÑ8PSRWpD2 ě un, D1 ě unqn{τ.

Then in the case of the bivariate Pareto distribution (6.7), we obtain (6.15).

6.3.4 Lower bound of extremal index of the PageRank

We obtain the following lower bound for EI in the PageRank processes.

Proposition 6.10. For the stationary PageRank process on degree state space

(6.10) with EI θ, irrespective of the degree correlation structure in the underlying

graph, the EI is bounded by

θ ě p1 ´ cq,
where c is the damping factor in the PageRank algorithm.

Proof. From [O’Brien 1987], with another mixing condition AIMpunq which is sat-
isfied for functions of stationary Markov samples (e.g., degree samples) the following
representation of EI holds,

lim
nÑ8PtM1,pn ď un|D1 ą unu ď θ, (6.17)

where tpnu is an increasing sequence of positive integers, pn “ opnq as n Ñ 8 and
M1,pn “ maxtD2, ..., Dpnu. Let A be the event that the node corresponding to D2

is selected uniformly among all the nodes, not following random walk from the node
for D1. Then PPRpAq “ 1 ´ c. Now, with (6.11),

PPRpM1,pn ď un|D1 ą unq ě PPRpM1,pn ď un,A|D1 ą unq
“ PPRpA|D1 ą unqPPRpM1,pn ď un|A, D1 ą unq
piq“ p1 ´ cqPPRpM1,pn ď unq,
piiq“ p1 ´ cqPppn´1qθ

PR pD1 ď unq ` op1q
ě p1 ´ cqPppn´1q

PR pD1 ď unq ` op1q
piiiq„ p1 ´ cqp1 ´ τ{nqpn´1, (6.18)
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where tpnu is the same sequence as in (6.17) and piq follows mainly from the obser-
vation that conditioned on A, tM1,pn ď unu is independent of tD1 ą unu, piiq and
piiiq result from the limits in (6.3) and (6.1) respectively.

Assuming pn ´ 1 “ n1{2 and since p1 ´ τ{nqpn´1 „ e´τ{?
n Ñ 1 as n Ñ 8, from

(6.17) and (6.18),

θ ě 1 ´ c.

The PageRank transition kernel (6.11) on the degree state space does not depend
upon the random graph model in Section 6.3.1. Hence the derived lower bound of
EI is useful for any degree correlation model.

6.4 Applications of Extremal Index in Network Sam-
pling Processes

This section provides several applications of EI in inferring the sampled sequence.
This emphasizes that the analytical calculation and estimation of EI are practically
relevant.

The limit of the point process of exceedances, Nnp.q, which counts the times,
normalized by n, at which tXiun

i“1 exceeds a threshold un provides many appli-
cations of EI. A cluster is considered to be formed by the exceedances in a block
of size rn (rn “ opnq) in n with cluster size ξn “ řrn

i“1 1pXi ą unq when there is
at least one exceedance within rn. The point process Nn converges weakly to a
compound poisson process (CP ) with rate θτ and i.i.d. distribution as the limiting
distribution of cluster size, under condition (6.1) and a mixing condition, and the
points of exceedances in CP correspond to the clusters (see [Beirlant et al. 2006,
Section 10.3] for details). We also call this kind of clusters as blocks of exceedances.

The applications below require a choice of the threshold sequence tunu satisfying
(6.1). For practical purposes, if a single threshold u is demanded for the sampling
budget B, we can fix u “ maxtu1, . . . , uBu.

The applications in this section are explained with the assumption that the
sampled sequence is the sequence of node degrees. But the following techniques are
very general and can be extended to any sampled sequence satisfying conditions
Dpunq and D2punq.

6.4.1 Order statistics of the sampled degrees

The order statistics Xn´k,n, pn´ kqth maximum, is related to Nnp.q and thus to θ
by

PpXn´k,n ď unq “ PpNnpp0, 1sq ď kq,

where we apply the result of convergence of Nn to CP [Beirlant et al. 2006, Section
10.3.1].
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6.4.1.1 Distribution of maximum

The distribution of the maximum of the sampled degree sequences can be derived
as (6.3) when n Ñ 8. Hence if the EI of the underlying process is known then from
(6.3) one can approximate the p1 ´ ηqth quantile xη of the maximuml degree Mn as

PtMn ď xηu “ Fnθpxηq “ P
nθtX1 ď xηu “ 1 ´ η,

i.e.
xη « F´1

`
p1 ´ ηq1{pnθq˘ . (6.19)

In other words, quantiles can be used to find the maximum of the degree sequence
with certain probability.

If the sampling procedures have same marginal distribution, with calculation
of EI, it is possible to predict how much large values can be achieved. Lower EI
indicates lower value for xη and higher represents high xη.

For the simple random walk example in Section 6.3.3.1 for the degree correlation
model, with the use of (6.19), we get the p1 ´ ηqth quantile of the maximum Mn

xη « µ` σ
´`

1 ´ p1 ´ ηq1{pnθq˘´1{γ ´ 1
¯
.

The following example demonstrates the effect of neglecting correlations on the
prediction of the largest degree node. The largest degree, with the assumption
of Pareto distribution for the degree distribution, can be approximated as KN1{δ

with K « 1, |V | as the number of nodes and γ as the tail index of complementary
distribution function of degrees [Avrachenkov et al. 2014b]. For Twitter graph
(recorded in 2012), δ “ 1.124 for outdegree distribution and |V | “ 537, 523, 432
[Gabielkov et al. 2014]. This gives the largest degree prediction as 59, 453, 030. But
the actual largest out degree is 22, 717, 037. This difference is because the analysis
in [Avrachenkov et al. 2014b] assumes i.i.d. samples and does not take into account
the degree correlation. With the knowledge of EI, correlation can be taken into
account as in (6.3). In the following section, we derive an expression for such a
case.

6.4.1.2 Estimation of largest degree when the marginals are Pareto dis-
tributed

It is known that many social networks have the degree approximately distributed
as Pareto [Van Der Hofstad 2016]. We find that in these cases, the marginal distri-
bution of degrees of the random walk based methods also follow Pareto distribution
(though we have derived only for the model with degree correlations among neigh-
bors, see Section 6.3).

Proposition 6.11. For any stationary sequence with marginal distribution follow-

ing Pareto distribution F̄ pxq “ Cx´δ the largest value, approximated as the median

of the extreme value distribution, is given by

Mn « pnθq1{δ
´ C

log 2

¯1{δ

.
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Proof. From extreme value theory [Beirlant et al. 2006], it is known that when
tXi, i ě 1u are i.i.d.,

lim
nÑ8P

´Mn ´ bn

an
ď x

¯
“ Hγpxq, (6.20)

where Hγpxq is the extreme value distribution with index γ and tanu and tbnu
are appropriately chosen deterministic sequences. When tXi, i ě 1u are stationary
with EI θ, the limiting distribution becomes H 1

γ1pxq and it differs from Hγpxq only

through parameters. Hγpxq “ expp´tpxqq with tpxq “ p1 ` px´µ
σ

q γq´1{γ
. With

the normalizing constants (µ “ 0 and σ “ 1), H 1
γ1 has the same shape as Hγ with

parameters γ1 “ γ, σ1 “ θγ and µ1 “ pθγ ´1q{γ [Beirlant et al. 2006, Section 10.2.3].
For Pareto case, F pxq “ Cx´δ, γ “ 1{δ, an “ γCγnγ and bn “ Cγnγ . From

(6.20), for large n, Mn is stochastically equivalent to anχ` bn, where χ is a random
variable with distribution H 1

γ1 . It is observed in [Avrachenkov et al. 2014b] that
median of χ is an appropriate choice for the estimation of Mn. Median of χ “
µ1 ` σ1

´
plog 2q´γ1 ´1

γ1

¯
“ pθγplog 2q´γ ´ 1qγ´1. Hence,

Mn « an

ˆ
θγplog 2q´γ

γ
´ 1

˙
` bn

“ pnθq1{δ
´ C

log 2

¯1{δ

6.4.2 Relation to first hitting time and interpretations

Extremal index also gives information about the first time tXnu hits pun,8q. Let
Tn be this time epoch. As Nn converges to compound poisson process, it can be
observed that Tn{n is asymptotically an exponential random variable with rate θτ ,
i.e., limnÑ8 PpTn{n ą xq “ expp´θτxq. Therefore limnÑ8 EpTn{nq “ 1{pθτq. For
e.g., consider the Pareto distribution for tXiu’s, then PpXi ě unq “ u´α

n with
un “ pnq1{α for τ “ 1 (see (6.1)) and for some parameter α ą 0. Thus the
smaller EI is, the longer it will take to hit the extreme levels as compared to
independent sampling. This property is particularly useful to compare different
sampling procedures. It can also be used in quick detection of high degree nodes
[Avrachenkov et al. 2014b, Avrachenkov et al. 2014a].

6.4.3 Relation to mean cluster size

If Condition D2punq is satisfied along with Dpunq, asymptotically, a run of the
consecutive exceedances following an upcrossing is observed, i.e., tXnu crosses the
threshold un at a time epoch and stays above un for some more time before cross-
ing un downwards and stays below it for some time until next upcrossing of un

happens. This is called cluster of exceedances and is more practically relevant than
blocks of exceedances at the starting of this section and is shown in [Leadbetter &
Nandagopalan 1989] that these two definitions clusters are asymptotically equiva-
lent resulting in similar cluster size distribution. The expected value of cluster of
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exceedances converges to inverse of EI [Beirlant et al. 2006, p. 384], i.e.,

θ´1 “ lim
nÑ8

ÿ

jě1

jπnpjq,

where tπnpjq, j ě 1u is the distribution of size of cluster of exceedances with
n samples. Asymptotical cluster size distribution and its mean are derived in
[Markovich 2014].

6.5 Estimation of Extremal Index and Numerical Re-
sults

This section introduces two estimators for EI. Two types of networks are presented:
synthetic correlated graph and real networks (Enron email network and DBLP
network). For the synthetic graph, we compare the estimated EI to its theoretical
value. For the real network, we calculate EI using the two estimators.

We take tXiu as the degree sequence and use SRW, PR and RWJ as the sampling
techniques. The methods mentioned in the following are general and are not specific
to degree sequence or random walk technique.

6.5.1 Empirical copula based estimator

We have tried different estimators for EI available in literature [Beirlant et al. 2006,
Ferreira & Ferreira 2007] and found that the idea of estimating copula and then
finding value of its derivative at p1, 1q works without the need to choose and optimize
several parameters found in other estimators. We assume that tXiu satisfies Dpunq
and D2punq and we use (6.4) for calculation of EI. Copula Cpu, vq is estimated
empirically by

Cnpu, vq “ 1
n

nÿ

k“1

I

ˆ
RX

ik

n` 1
ď u,

RY
ik

n` 1
ď v

˙
,

with RX
ik

indicates rank of the element Xik
in tXik

, 1 ď k ď nu and RY
ik

is defined
respectively. The sequence tXik

u is chosen from the original sequence tXiu in such a
way that Xik

and Xik`1
are sufficiently apart to make them independent to certain

extent and Yik
“ Xik`1. The large-sample distribution of Cnpu, vq is normal and

centered at copula Cpu, vq. Now, to get θ, we use linear least squares error fitting
to find slope at p1, 1q or use cubic spline interpolation for better results.

6.5.2 Intervals estimator

This estimator does not assume any conditions on tXiu, but has the parameter u
to choose appropriately. Let |V | “ řn

i“1 1pXi ą uq be number of exceedances of
u at time epochs 1 ď S1 ă . . . ă SN ď n and let the interexceedance times are
Ti “ Si`1 ´ Si. Then intervals estimator is defined as [Beirlant et al. 2006, p. 391],

θ̂npuq “
! minp1, θ̂1

npuqq, if max Ti : 1 ď i ď |V | ´ 1 ď 2,

minp1, θ̂2
npuqq, if max Ti : 1 ď i ď |V | ´ 1 ą 2,
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where

θ̂1
npuq “ 2př|V |´1

i“1 Tiq2

p|V | ´ 1qř|V |´1
i“1 T 2

i

,

and

θ̂2
npuq “ 2př|V |´1

i“1 pTi ´ 1qq2

p|V | ´ 1qř|V |´1
i“1 pTi ´ 1qpTi ´ 2q

.

We choose u as δ percentage quantile thresholds, i.e., δ percentage of tXi, 1 ď i ď nu
falls below u,

kδ “ min
!
k :

nÿ

i“1

ItXi ď Xku
n

ě δ

100
, 1 ď k ď n

)
, u “ Xkδ

.

We plot θn vs δ for the Intervals Estimator in the following sections. The EI is
usually selected as the value corresponding to the stability interval in this plot.

6.5.3 Synthetic graph

The simulations in the section follow the bivariate Pareto model and parameters
introduced in (6.7). We use the same set of parameters as for Figure 6.1 and the
graph is generated according to the Metropolis technique in Section 6.3.1.1.

For the SRW case, Figure 6.2a shows copula estimator, and theoretical copula
based on the continuous distribution in (6.7), and is given by

Cpu, uq “
`
1 ` 2pp1 ´ uq´1{γ ´ 1q

˘´γ ` 2u´ 1.

Though we take quantized values for degree sequence, it is found that the copula
estimated matches with theoretical copula. The value of EI is then obtained after
cubic interpolation and numerical differentiation of copula estimator at point p1, 1q.
For the theoretical copula, EI is 1 ´ 1{2γ , where γ “ 1.2. Figure 6.2b displays the
comparison between the theoretical value of EI and Intervals estimate.
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Figure 6.2: SRW sampling (synthetic graph)

For the RWJ algorithm, Figure 6.3 shows the Intervals estimate and theoretical
value for different α. We used the expression (6.15) for theoretical calculation.
The small difference in theory and simulation results is due to the assumption
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Figure 6.3: RWJ sampling (synthetic graph): Intervals estimate and theoretical
value

of continuous degrees in the analysis, but the practical usage requires quantized
version. Here α “ 0 case corresponds to SRW sampling.

Figure 6.4 displays the Intervals estimate of EI with PR sampling. It can be
seen that the lower bound proposed in Proposition 6.10 gets tighter as c decreases.
When c “ 1, PR sampling becomes SRW sampling.
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Figure 6.4: PR sampling (synthetic graph): Intervals estimate

6.5.3.1 Check of condition D2

The mixing conditions Dpunq and D2punq need to be satisfied for using the theory
in Section 6.2. Though Intervals Estimator does not require them, these conditions
will provide the representation by (6.4). Condition Dpunq works in this case as
explained in previous sections and for D2punq, we do the following empirical test.
We collect samples for each of the techniques SRW, PR and RWJ with parameters
given in respective figures. Intervals are taken of duration 5, 10, 15 and 20 time
samples. The ratio of number of upcrossings to number of exceedances rup and ratio
of number consecuitve exceedances to number of exceedances rcluster are calculated
in Table 6.1. These proportions are averaged over 2000 occurrences of each of these
intervals and over all the different intervals. The statistics in the table indicates
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strong occurrence of Condition D2punq. We have also observed that the changes in
the parameters does not affect this inference.

rupp%q rclusterp%q

SRW 4 89

PR 7 91

RWJ 5 86

Table 6.1: Test of Condition D2 in the synthetic graph

6.5.4 Real network

We consider two real world networks: Enron email network and DBLP network.
The data is collected from [Leskovec & Krevl 2014]. Both the networks satisfy the
check for Condition D2punq reasonably well.

For the SRW sampling, Figure 6.5a shows the empirical copula, and it also
mentions corresponding EI. Intervals estimator is presented in Figure 6.5b. After
observing plateaux in the plots, we took EI as 0.25 and 0.2 for DBLP and Enron
email graphs, respectively.
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Figure 6.5: SRW sampling (real networks)

In case of RWJ sampling, Figures 6.6a and 6.6b present Intervals estimator for
email-Enron and DBLP graphs respectively.

6.6 Conclusions

In this work, we have associated extreme value theory of stationary sequences to
sampling of large networks. We show that for any general stationary samples (func-
tion of node samples) meeting two mixing conditions, the knowledge of bivariate
distribution or bivariate copula is sufficient to derive many of its extremal prop-
erties. The parameter extremal index (EI) encapsulates this relation. We relate
EI to many relevant extremes in networks like order statistics, first hitting time,
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Figure 6.6: RWJ sampling (real networks)

mean cluster size, etc. In particular, we model dependence in degrees of adjacent
nodes and examine random walk based degree sampling. Finally we have obtained
estimates of EI for a synthetic graph with degree correlations and find a good match
with the theory. We also calculate EI for two real-world networks.



Chapter 7

Conclusions and Future
Research

We have considered the problem of sampling in networks. This thesis is aimed at
developing distributed algorithms when the underlying graph is not known before-
hand. The majority of the thesis focused on the design and performance analysis of
sampling techniques based on random walks which turns out to be an efficient tech-
nique when only local information is available at each node (list of neighbors). We
have also developed techniques for distributed computation of the eigen-spectrum
of graph matrices.

First, we studied the distributed decomposition of the eigen-spectrum. The
algorithms we introduced in this work produce a spectral-plot at each node and
eigenvalues correspond to the frequencies of spectral peaks and respective eigen-
vector components are the amplitudes at those points. The algorithms are based
on the idea of complex power iterations, a variation of power iterations. Several
distributed approaches -diffusion algorithms, Monte Carlo techniques and random
walk- are implemented. The proposed algorithms turned out to have a connection
with quantum random walks. We have demonstrated the efficiency of the algorithms
with simulations on many real-world networks.

We, then, dealt with a generalized unbiased sampling strategy for estimating
aggregate edge functions (µpGq “ ř

pu,vqPE gpu, vq). The edge functions can be
easily extended to node and triangle functions. In this work we provided a partial
crawling strategy using short dynamically adjustable random walk tours starting
at a “virtual” super-node without invoking the notion of lumpability [Kemeny &
Snell 1983]. A random walk tour is a random walk sample path that starts and
ends at the same node on the graph. We used these tours to compute a frequentist
unbiased estimator of µpGq (including its variance) regardless of the number of
nodes, n ą 0, in the seed set (contracted into the super-node) unlike previous
asymptotically unbiased methods. We also provide a Bayesian approximation of the
posterior of µpGq given the observed tours and it stands as a real-time assessment of
estimation accuracy. In our experiments we noted that the posterior is remarkably
accurate using a variety of networks, large and small. Furthermore, when the
network is formed by randomly wiring connections while preserving degrees and
attributes of the nodes in the observed network, we devised an estimation technique
for the expected true value with partial knowledge of the original graph. It can also
be noted that the proposed algorithm does not need to overcome the burn-in time
barrier (mixing time) to start collecting samples.

117
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Later, we extended the idea of super-node and elimination of the necessity of
burn-in time barrier to average functions sνpGq “ |V |´1 ř

uPV gpuq. We have devel-
oped an estimation technique based on reinforcement learning (RL) in this setting.
We compared in a systematic manner some basic random walk based techniques
like respondent driven sampling (RDS) and Metropolis Hastings sampling (MH).
We demonstrate that with a good choice of cooling schedule, the performance of
RL is comparable to that of RDS (which outperforms MH) but the trajectories of
RL have less fluctuations than RDS.

Finally we analyzed some extremal events in the samples collected via random
walks. We associated extreme value theory of stationary sequences to sampling of
large complex networks and we studied the extremal and clustering properties of the
sampling process due to dependencies. In order to facilitate a painless future study
of correlations and clusters of samples in large networks, we proposed to abstract
the extremal properties into a single and handy parameter called the extremal
index (EI). For any general stationary samples meeting two mixing conditions, we
find that knowledge of bivariate distribution or bivariate copula is sufficient to
compute EI analytically and thereby deriving many extremal properties. Several
useful applications of EI (first hitting time, order statistics and mean cluster size) to
analyze large graphs, known only through sampled sequences, are proposed. Degree
correlations are explained in detail using a random graph model with joint degree
distribution between neighbor nodes. Three different basic random walk based
algorithms that are widely discussed in literature are then revised for degree state
space and EI is calculated when the joint degree distribution is bivariate Pareto.
We established a general lower bound for EI in PageRank processes irrespective
of the degree correlation model. Finally using two estimation techniques, EI is
numerically computed for a synthetic graph with neighbour degrees correlated and
for two real networks (Enron email network and DBLP network).

7.1 Future Research

The following problems can be further investigated.

Studies on super-node

Formation of super-node poses many questions. The best way to select a super-
node is not yet known. It is also useful to explore how the choice of super-node
affects the asymptotic variance. Another direction is to relax the global knowledge
of disconnected components for the formation of super-node. The estimation pro-
cedure in Chapter 4 tackles the disconnected component issue, but requires at least
one node to be known a priori from each of the components. How to perform this
action with minimal cost?
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Theoretical study of ratio with tours estimator

We provided several numerical comparisons in Chapter 4 for R-T estimator. The-
oretical study of the this estimator is a possible work for future. Such a study may
include finding the rate at which the difference B´řmpBq

k“1 ξk in (4.10) goes to zero.
The effect of dynamic super-node in the R-T estimator is also not explored in this
thesis.

Concentration result for the regeneration based estimator

For the regeneration or tour based estimator introduced in Chapter 4, many ex-
tensions can be considered. One possible direction is in the lines of concentration
result for ergodic theorem, Theorem 2.5. Such a result will provide the time and
memory complexities for this estimator.

More theoretical results of random walk with jumps

We have used the random walk with jumps (RWJ) introduced in [Avrachenkov
et al. 2010] in many places in this thesis. Though via simulations, it performs
better than several other random walk estimators, theoretical study has not been
done in proving its superior performance in terms of asymptotic variance and/or
mixing time for general graphs. This could be a possible direction for future study.

Relation between extremal index and global graph coefficients

Since extremal index captures the correlation structure in the graph, it is useful to
investigate its relation with the clustering coefficient, as well as with the assorta-
tivity coefficient.

Usefulness of extremal index in analyzing random walk based algorithms

In [Avrachenkov et al. 2014a], the authors analyzed an algorithm to detect high
degree entities using extreme value theory with independent sampling. In a similar
context where the random walks are used and generates stationary samples, the
tools developed with extremal index in Chapter 6 will be helpful for theoretical
studies, for instance, to analyze the algorithm in [Avrachenkov et al. 2014b].

Extension of spectral decomposition algorithms

We have proposed several algorithms for spectral decomposition in Chapter 3 for
symmetric matrices. How those algorithms can be extended to non-symmetric
matrices? Some of our observations in this direction are given below:

In the case of non-symmetric matrices, some of the eigenvalues will be complex
with the exception of the main eigenvalue which will be still real. The right and
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left eigenvectors will be different, A “ ř
j λjujv

⊺

j , and consequently,

ż 8

´8
eiAte´vt2{2´itθdt “ 2π

ÿ

j

ujv
⊺

j exp
ˆ

´pℜpλjq ´ θq2

2v

˙
ˆ exp

ˆpℑpλjq2

2v

˙

ˆ cos pℑpλjpℜpλjq ´ θqqq .

This implies that the peaks on the eigenvalues have a value exp
´

pℑpλjq2

2v

¯
, which

may be extremely large and too discrepant between eigenvalues. Nevertheless the
complex diffusion and quantum random walks could be applied if the eigenvalues
with non zero imaginary part are clearly separated from the pure real eigenvalues.
This is the case when using the non-backtracking matrix for spectral clustering
of [Bordenave et al. 2015] where it is proved to be more efficient than the classical
spectral clustering counterpart, provided the graph satisfies certain properties. The
above observations need to be verified with simulations on real data.

It will also be interesting to design an automatic procedure for the identification
of dominant eigenvalues and eigenvectors

Random walks and spectral decomposition

As we saw in Sections 3.4.3 and 3.5.1 of the algorithms for distributed spectral
decomposition, the Monte Carlo technique based on random walks surprisingly
requires very few iterations to converge. In many cases it is even one iteration.
This interesting behavior is a possible direction to explore later.

Study of asymptotic variance in random walk based sampling

There exist many works on mixing time of random walks relevant to graph sampling
like tmix “ Oplognq in preferential attachments [Mihail et al. 2003], but not many
studies published on asymptotic variance of the random walks, especially in random
graphs. We argued in Section 2.3 that asymptotic variance is a better choice of
performance comparison of random walks for estimation in graphs. This can be
included as a part the future work of this thesis.

Random walks in directed graphs

The extension of random walk theory to directed graphs requires the graph to
be strongly connected. This is a strong assumption and many practical networks
like Twitter do not satisfy this. Moreover, as far as we know, there is no easy
closed expression for the stationary distribution on directed graphs and this makes
unbiasing the random walk a difficult task. Some works consider the directed graph
as undirected and use the existing RW techniques. But this fails to estimate some
specific properties of directed graphs. PageRank, of course, avoids this problem by
introducing a random jump with certain probability at each step, but at the cost
of uniformly sampling the network.
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7.1.0.1 Comparison with state of the art spectral decomposition algo-
rithms

It would be interesting to see how the algorithms proposed in Chapter 3 perform in
comparison with many of the recent spectral decomposition algorithms, for instance
the Arnoldi methods in [Frahm & Shepelyansky 2010].





Appendix A

Présentation des Travaux de
Thèse en Francais

A.1 Introduction

Ces dernières années ont connu un essor dans la science du traitement de don-
nées massives. Les grands ensembles de données, souvent appelés Big data dans
l’industrie, ont déclenché le développement de nombreux logiciels et outils math-
ématiques. Cela a également aidé un domaine interdisciplinaire étroitement lié
appelé «la Science des Réseaux», qui étudie les réseaux en général. En particulier,
une classe spécifique appelée «Réseaux Complexes» est populaire dans la Science
des Réseaux. Cette dernière est utilisée pour décrire, de manière informelle, les
réseaux présentant les caractéristiques suivantes:

• Grande taille

• Topology creuse

• Petite distance moyenne (également appelée phénomène du petit monde)

• De nombreux triangles

• Distribution de degré à queue lourde (également appelé phénomène sans
échelle)

L’étude des grands réseaux fait face à de nombreux problèmes: la collection de
données à partir des réseaux sous-jacents prend du temps et d’énormes ressources.
Même si l’ensemble du graphe est collecté, le traitement centralisé avec de nom-
breux algorithmes de matrice a de grandes exigences de mémoire et entraîne de
longs délais pour observer des résultats utiles. Par conséquent, les chercheurs re-
courent à des algorithmes distribués. De plus, comme de nombreux algorithmes de
réseau nécessitent un temps exponentiel pour terminer, les algorithmes randomisés
et approximatif semblent prometteurs dans la science des réseaux.

Cette thèse traite des moyens efficaces pour recueillir pour échantillons représen-
tatifs d’un grand réseau en utilisant des techniques probabilistes et fait une inférence
statistique sur les propriétés du réseau avec ces échantillons. L’accent est mis sur
les stratégies distribuées.

Les sections qui suivent fournissent une courte introduction aux problèmes abor-
dés dans cette thèse.
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A.1.1 Échantillonnage et estimation dans les réseaux

Considérons un grand réseau impossible à observer complètement, c’est-à-dire que
le réseau est supposé inconnu, dans le sens que les matrices de graphe comme
adjacence ou laplacien ne sont pas complètement connues à l’avance.

Comment répondre, au moins approximativement, aux questions sur les pro-
priétés globales des réseaux? Par exemple: Quelle proportion parmi la population
dans une ville soutient un certain parti politique? Quel est l’âge moyen des util-
isateurs des réseaux sociaux en ligne comme Friendster, Myspace ou Facebook?
Quelle est la fraction des connexions homme-femme par rapport à celle des con-
nexions femme-femme dans un certain réseau social en ligne? Est-ce que l’OSN est
assortative ou disassortative?

A.1.1.1 Contraintes d’information locale

Pour collecter des informations à partir d’un OSN, l’échantillonneur émet une re-
quête Interface de programmation d’application (API) pour un utilisateur partic-
ulier qui renvoie son voisinage de saut et le contenu publié par l’utilisateur. Bien
que certains tiers puissent obtenir la base de données complète des OSN (par ex-
emple Twitter) avec des dépenses supplémentaires, nous nous concentrons ici sur le
cas typique où le tiers peut obtenir des informations seulement sur les voisins d’un
utilisateur particulier à travers des requêtes API.

Le problème qui nous intéresse peut être formulé comme suit. Soit G “ pV,Eq
un réseau non dirigé, où V est l’ensemble des sommets et E Ď V ˆV est l’ensemble
des arêtes. Contrairement à la définition habituelle de E où chaque bord est une
paire non ordonnée et ne se présente qu’une fois, pour simplifier notre notation on
considère que si pu, vq P E then pv, uq P E. Les bords et les nœuds peuvent avoir
des étiquettes. tλA

k u|V |
k“1 et tλL

k u|V |
k“1 sont les valeurs propres des matrices adjacentes

et laplaciennes et tuA

k u and tuL

k u soient leurs propres vecteurs.

Formulation du problème pour l’échantillonnage en réseau

• Estimer
νpGq “

ÿ

uPV

gpuq, sνpGq “ 1
|V |

ÿ

uPV

gpuq, (A.1)

où gpuq est une fonction bornée du noeud u. Parfois nous nous concentrons
également sur le problème d’estimation associé sur les arêtes, avec gpu, vq
désignant une fonction sur le bord pu, vq:

µpGq “
ÿ

pu,vqPE

gpu, vq, sµpGq “ 1
|E|

ÿ

pu,vqPE

gpu, vq. (A.2)

• Le graphe G est inconnu.

• Seulement les informations locales sont connues: nous avons des informations
uniquement sur les nœuds initiaux et leurs ID voisins, nous ne pouvons que
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consulter ou visiter un voisin d’un noeud; Alors, nous avons également des
informations sur les nœuds visités et leurs voisins.

Une solution possible, sous la contrainte que seulement l’information locale est
disponible à chaque nœud est échantillonnage en boule de neige: ici, après
avoir sélectionné un noeud initial, l’échantillonneur sonde tous ses voisins, puis pour
chacun des voisins, le processus de sondage se répète. Le processus se poursuit
ainsi. Un inconvénient principal de cette procédure est que la nombre de nœud
échantillonné augmente exponentiellement et couvrira bientôt tout le réseau. Un
autre problème est que dans le cas d’un très grand réseau, cet échantillonnage est
asymptotiquement biaisé vers le vecteur propre principal de la matrice d’adjacence
(appelée centralité du vecteur propre) [Newman 2010]. Un tel biais est difficile à
compenser car la connaissance de la centralité du vecteur propre nécessite l’ensemble
du réseau.

Une marche aléatoire simple sur un graphe sous la même contrainte locale
fournit une solution viable. Dans une marche aléatoire simple, après avoir choisi un
noeud initial de façon aléatoire ou déterministe, la marche aléatoire choisit un des
voisins du noeud présent uniformément au hasard et se déplace vers le noeud sélec-
tionné, et ce processus se poursuit. Asymptotiquement, le choix de l’échantillonneur
de marche aléatoire est biaisé vers de grands degrés et comme un tel biais inclut
seulement des informations locales, il peut être facilement inversé. Nous discuterons
plus à propos de l’échantillonnage aléatoire dans cette thèse

La période de combustion (ou temps de mélange) des marches aléatoires est
la période de temps après laquelle la marche aléatoire sera approximativement in-
dépendante de la distribution initiale et produira des échantillons presque station-
naires. Dans la plupart des procédures d’estimation basées sur la marche aléatoire,
les échantillons jusqu’à la période de brûlage sont jetés afin de fournir des garanties
théoriques. Ceci pose de sérieuses limitations, en particulier avec des contraintes
sévères sur le nombre d’échantillons imposés par les taux d’interrogation de l’API.
En outre, si nous limitons le nombre d’échantillons autorisés, on ne sait pas à quel
point la valeur estimée est précise. Une évaluation en temps réel de l’estimateur
avec la distribution postérieure bayésienne sera utile dans une telle situation. Nous
abordons ces problèmes dans l’échantillonnage dans cette thèse.

A.1.2 Décomposition spectrale: “échantillonnage dans le domaine
spectral"

Les propriétés spectrales d’un graphe ou d’un réseau sont intéressantes pour des
domaines divers en raison de sa forte influence dans de nombreux algorithmes pra-
tiques. Comme expliqué plus tard dans cette section, de nombreuses propriétés des
réseaux sont abstraites de manière concise dans quelques valeurs propres dominantes
des matrices associées aux réseaux. Cependant, la complexité de calcul associée à
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l’estimation du spectre des valeurs propres et des vecteurs propres a été un prob-
lème exigeant pendant une longue période. Ainsi, dans le contexte de la science
des réseaux, la conception des méthodes de décomposition spectrale distribuées est
particulièrement importante.

Problème

Nous étudions des algorithmes efficaces pour la décomposition spectrale afin de
trouver k valeurs propres dominantes (k les plus petites ou plus grandes) et ses
vecteurs propres à haute résolution. Les algorithmes doivent permettre une implé-
mentation distribuée dans le sens où chaque nœud effectue lui-même le traitement
avec les données de son voisinage de houblon. En particulier, nous limitons notre
attention aux matrices qui sont compatibles avec le graphe, c’est-à-dire que la com-
posante de la matrice à pi, jq est 0 lorsqu’il n’y a pas de bord pi, jq dans le graphe.
Cela facilite le développement des techniques distribuées.

Pour motiver le calcul du spectre propre des matrices de graphe, nous présentons
maintenant quelques-unes de ses applications.

A.1.2.1 Pertinence de la décomposition spectrale

La littérature existante explore de nombreuses applications du spectre des matrices
graphes. En particulier, les valeurs propres et les vecteurs propres peuvent être
utilisés globalement ou localement. Les applications globales nécessitent une unité
centrale pour collecter des valeurs propres et des composantes de vecteurs propres de
tous les noeuds, puis transmettre ces informations globales aux algorithmes derrière
l’application. Mais dans le cas d’applications locales, les algorithmes sous-jacents
fonctionnent séparément à chaque nœud en utilisant la composante respective dans
les vecteurs propres dominants, ainsi que la connaissance des valeurs propres.

Voici quelques applications des matrices adjacentes et laplaciennes liées aux
graphes et aux réseaux. Par exemple:

• Le nombre d’arêtes |E| “ 1{2
ř|V |

i“1pλA

i q2.

• Le nombre total de triangles en G est donné par

T “ 1
6

|V |ÿ

i“1

pλA

i q3. (A.3)

• Le nombre total de marches de longueur k peut être approché par a2
1pλA

1 qk,
lorsque G est connexe et non bipartite .

• Le nombre de triangles auxquels un nœud m a participé est
1{2

ř|V |
i“1 λ

3
i pAq puA

i
pmqq2. Par conséquent, si l’on calcule localement les

valeurs propres et les vecteurs propres top-k localement au noeud m, on peut
approximer avec une bonne exactitude combien ses voisins sont connectés.
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• Réduction dimensionnelle: Après le calcul des vecteurs propres top-k, chaque
noeud est mappé à un point dans R

k espace avec les composantes du vecteur
propre et la proximité dans le nouvel espace implique une affinité en termes
de position dans le réseau. Par conséquent, de nouveaux liens peuvent être
suggérés parmi les nœuds non connectés lorsque la distance entre eux dans
R

k espace est petite [Kempe & McSherry 2008].

• Groupement spectral: Le problème de la recherche de grappes dans un réseau
(en particulier dans les réseaux sociaux) est un problème ancien avec de nom-
breux développements ces dernières années. Parmi les techniques étudiées,
le regroupement spectral est une solution éminente [Von Luxburg 2007]. Le
principal goulet d’étranglement dans le regroupement spectral est le calcul des
vecteurs propres dominants, que nous essayons d’accomplir ici avec beaucoup
moins de complexité.

• Nombre d’arbres d’étalement: Le nombre d’arbres d’étalement de G est donné
par une expression bien connue contenant les valeurs propres de la matrice
laplacienne,

λL

1λ
L

2 . . . λ
L

|V |´1

|V |
.

Les détails sur les manières de calculer les valeurs propres et les vecteurs propres
sont expliqués dans la thèse.

A.1.3 Théorie de la valeur extrême et ses applications

Après la collection d’échantillons aléatoires du réseau, une question se pose sur
la façon de faire plus d’inférences avec eux (autres que l’estimation). À cette
fin, notez que de nombreuses entités de réseau social sont corrélées, par exem-
ple, si nous prenons un réseau de co-auteurs où les nœuds sont les auteurs et un
lien est établi lorsque deux auteurs rédigent un document de recherche ensemble,
les chercheurs ont tendance à établir des liens plus étroits entre eux. Comment
extraire des informations sur la structure de corrélation du réseau avec quelques
échantillons aléatoires? Dans de tels scénarios, les outils mathématiques de dif-
férents domaines comme la théorie des valeurs extrêmes (EVT) semblent être très
utiles. Dans cette thèse, nous étudions également la relation entre la théorie des
valeurs extrêmes et l’échantillonnage en réseau. En supposant qu’une séquence
stationnaire d’échantillons aléatoires d’un réseau est disponible, nous étudions des
propriétés extrêmes telles que la première fois pour frapper un nœud à grand degré,
les grappes explorées pendant le processus d’échantillonnage, etc.

La théorie de la valeur extrême, en général, est l’étude des événements rares.
En particulier, il traite de la convergence de Mn :“ maxtX1, . . . , Xnu des échan-
tillons aléatoires tXiuiďn. Dans la sous-section suivante, nous faisons une brève
introduction à EVT.

Puisque nous nous intéressons aux randonnées aléatoires dans cette thèse, nous
nous concentrons sur la théorie des valeurs extrêmes pour les séquences stationnaires



128 Appendix A. Présentation des Travaux de Thèse en Francais

tXiuiďn. Ici, les techniques classiques étudient le Mn maximum de tXiuiďn en
utilisant le maximum ĄMn des échantillons iid associé tĂXiuiďn. En particulier, dans
des conditions de mixage correctes, c´1

n pĄMn ´ dnq Ñ H et c´1
n pMn ´ dnq Ñ G sont

liés comme G “ Hθ, où θ est appelé indice extrême. Il s’avère que l’indice extrême
est lié à plusieurs événements extrêmes intéressants dans l’échantillonnage. Nous
allons explorer l’index extrême et ses applications en détail dans cette thèse.

A.2 Contribution de la thèse

Nous faisons les contributions suivantes sur l’estimation de réseau marche aléatoire
et sur la décomposition spectrale distribuée.

A.2.1 Méthodes distribuées d’échantillonnage dans le domaine
spectral

Dans ce travail, nous abordons le problème de trouver des valeurs propres
supérieures (k) dominantes (les plus petites ou les plus importantes) et les vecteurs
propres correspondants de matrices de graphes symétriques dans des réseaux de
manière distribué. Nous proposons une nouvelle idée appelée «complex Power it-
erations» pour décomposer les valeurs propres et les vecteurs propres au niveau du
noeud, analogues à l’analyse temps-fréquence dans le traitement du signal. A chaque
noeud, les valeurs propres correspondent aux fréquences des pics spectrales et les
composantes des vecteurs propres respectifs sont les amplitudes à ces points. Basés
sur des itérations de puissance complexes et motivés par des processus de diffusion
fluide en réseaux, nous concevons des algorithmes distribués avec différents ordres
d’approximation. Nous introduisons également une technique de Monte Carlo avec
des bavardages qui réduit considérablement la surcharge de calcul. Un algorithme
parallèle équivalent de marche aléatoire est également présenté. Nous validons les
algorithmes avec des simulations sur des réseaux réels. Notre formulation de la
décomposition spectrale peut être facilement adaptée à un algorithme simple basé
sur des randonnées quantiques aléatoires. Avec l’avènement du calcul quantique,
l’algorithme quantique proposé sera extrêmement utile.

Nous étendons ensuite les techniques distribuées susmentionnées pour détecter,
avec une résolution plus élevée, des valeurs propres étroitement situées et des
vecteurs propres correspondants de matrices de graphes symétriques. Nous mod-
élisons le système de calcul spectral de graphes sous la forme de systèmes physiques
à dynamique lagrangienne et hamiltonienne. Le spectre de la matrice laplacienne,
en particulier, est encadré comme un système de ressort-masse classique avec une
dynamique lagrangienne. Le spectre de toute matrice graphe symétrique générale
se révèle avoir une connexion simple avec des systèmes quantiques et il peut donc
être formulé comme solution à une équation différentielle de type Schrödinger. En
tenant compte de l’exigence de résolution plus élevée dans le calcul du spectre et
Les problèmes de stabilité liés à la solution numérique de l’équation différentielle
sous-jacente, nous proposons l’application d’intégrateurs symplectiques au calcul de
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l’eigenspectrum.L’efficacité des techniques proposées est démontrée par des simula-
tions numériques sur des réseaux réels de tailles et complexités différentes.

La publication relative à cette contribution est la suivante:

• [Avrachenkov et al. 2016b] Konstantin Avrachenkov, Philippe Jacquet and
Jithin K. Sreedharan. Distributed Spectral Decomposition in Networks by

Complex Diffusion and Quantum Random Walk. In Proc. IEEE International
Conference on Computer Communications (INFOCOM), April 2016.

Travaux connexes : Nous fournissons une interprétation directe du spectre
des valeurs propres et des vecteurs propres en termes de pics dans le domaine
fréquentiel de l’exponentielle complexe de A et l’exploitons pour développer des
algorithmes distribués. Au mieux de nos connaissances, le premier algorithme de
décomposition spectrale du réseau distribué a été proposé dans [Kempe & McSh-
erry 2008]. La partie la plus difficile de l’algorithme dans [Kempe & McSherry 2008]
est l’orthonormalization distribuée à chaque étape de l’algorithme. C’est une opéra-
tion difficile, que les auteurs résolvent en communiquant des informations par des
randonnées aléatoires. De toute évidence, si le graphe a une faible conductance (un
cas typique pour de nombreux grands graphes), cette opération prendra extrême-
ment longtemps à chaque étape de l’algorithme. Notre premier algorithme distribué
basé sur la diffusion de fluide complexe à travers le réseau, une implémentation de
itérations d’énergie complexes, ne nécessitent pas d’orthonormalization. Les au-
teurs utilisent des techniques de traitement du signal qui sont dans le même esprit
de notre approche. Cependant, leur approche nécessite l’utilisation du voisinage à
deux bonds ou quatre bonds pour chaque itération, alors que nos algorithmes fonc-
tionnent avec un pas de temps et un voisinage à un seul bond. L’approche de [Sahai
et al. 2012, Franceschelli et al. 2013] déforme les valeurs des vecteurs propres et des
valeurs propres et la correction nécessaire n’est pas évidente. De plus, comme les
méthodes de [Sahai et al. 2012, Franceschelli et al. 2013] sont basées sur des transfor-
mées de Fourier classiques, les valeurs propres peuvent ne pas être détectées à cause
de pics parasites dans le spectre. Notre approche permet de surmonter ce problème
en utilisant le lissage gaussien. Nos algorithmes peuvent également être mis en œu-
vre immédiatement à l’aide de légers bavardages et de randonnées aléatoires avec
des récompenses complexes. Un algorithme de bavardage basé sur l’apprentissage
par renforcement a récemment été introduit dans [Borkar et al. 2014], mais il ne
calcule que le vecteur propre principal. A partir de l’analyse de notre technique
de diffusion, nous observons que nos algorithmes sont évolutifs de l’ordre du degré
maximum. Enfin, notre méthode a une relation très intéressante avec les randonnées
quantiques aléatoires qui, avec l’avancement du calcul quantique, peuvent rendre
nos approches très efficaces.
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A.2.2 Échantillonnage en réseau avec des techniques de marche
aléatoire

Échantillonnage non asymptotiquement impartial et inférence bayési-
enne

Les utilisateurs d’OSN-A sont-ils plus susceptibles de former des amitiés avec ceux
qui ont des attributs similaires? Les utilisateurs d’OSN-B ont-ils un contenu X plus
favorable qu’un autre contenu Y ? Ces questions se posent fréquemment dans le
contexte de Social Network Analysis (SNA), mais souvent l’exploration d’un réseau
OSN via son API est le seul moyen de recueillir des données pour un tiers. À ce
jour, la majorité des ensembles de données publics sont constitués d’analyses par-
tielles de l’API et par conséquent manquent de garanties statistiques, ce qui limite
considérablement les progrès de la recherche dans le SNA. En utilisant les propriétés
régénératives des marches aléatoires, nous proposons des techniques d’estimation
basées sur des traits courts qui ont des garanties statistiques éprouvées: non-
asymptotique sans biais et évasion de «burn-in». De plus, nos tracés courts peuvent
être implémentés dans des algorithmes massivement distribués. Nous fournissons
également une chenille adaptative qui rend notre méthode sans paramètre, amélio-
rant considérablement nos garanties statistiques. Nous dérivons alors une approx-
imation de la postérieure bayésienne des estimations. De plus, nous obtenons un
estimateur de la valeur attendue des statistiques de nœuds et de contours dans un
modèle de configuration équivalent ou un modèle de graphe aléatoire de Chung-Lu
du réseau donné (où les nœuds sont connectés aléatoirement) et l’utilisent comme
base pour tester des hypothèses nulles. Les résultats théoriques sont supportés avec
des simulations sur une variété de réseaux réels.

La publication relative à cette contribution est la suivante:

• [Avrachenkov et al. 2016c] Konstantin Avrachenkov, Bruno Ribeiro and Jithin
K. Sreedharan. Inference in OSNs via Lightweight Partial Crawls. ACM
SIGMETRICS Performance Evaluation Review, vol. 44, no. 1, pages 165 -
177, June 2016.

Travaux connexes : Les ouvrages de [Massoulié et al. 2006] et [Cooper
et al. 2013] sont les plus proches de la nôtre. Les auteurs en [Massoulié et al. 2006]
estime la taille d’un réseau en fonction des temps de retour des randonnées aléa-
toires. Le papier [Cooper et al. 2013] estime le nombre de triangles, la taille du
réseau et le nombre de sous-graphes à partir de randonnées aléatoires pondérées
en utilisant les résultats de [Aldous & Fill 2002, Chapter 2 and 3]. Les travaux
antérieurs sur l’inférence par échantillons finis de statistiques de réseau à partir
d’analyses de réseau incomplètes [Goel & Salganik 2009, Koskinen et al. 2010, Kosk-
inen et al. 2013, Handcock & Gile 2010, Heckathorn 1997, Ligo et al. 2014, Thomp-
son 2006] doivent adapter les données partielles observées à un modèle de graphe
probabiliste tel que les ERGM (famille exponentielle de modèles de graphes aléa-
toires). Notre travail avance technique de pointe en estimant les statistiques de
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réseau à partir d’analyses partielles parce que: (A) nous estimons des statistiques
des sommes de fonctions arbitraires sans hypothèses sur le modèle de graphe ou le
graphe sous-jacent; (B) nous n’avons pas besoin de polariser la marche aléatoire avec
des pondération comme dans Cooper et al.; ceci est particulièrement utile lors de
l’estimation de statistiques multiples en réutilisant les mêmes observations; (C) on
déduit des limites supérieure et inférieure sur la variance de l’estimateur, qui mon-
trent toutes deux la connexion avec l’intervalle spectral; Et enfin (d) nous calculons
a posteriori sur nos estimations pour donner aux praticiens un moyen d’accéder à la
confiance dans les estimations sans s’appuyer sur des quantités inaccessibles comme
«spectral gap» et sans prendre pour hypothèse un modèle de graphe probabiliste.

Dans notre travail, nous proposons une stratégie d’exploration partielle à l’aide
de courtes randonnées aléatoires réglables de façon dynamique, à partir d’un super-
nœud «virtuel» sans invoquer la notion de «lumpability» [Kemeny & Snell 1983].
Une marche aléatoire est un moyen d’échantillonnage aléatoire qui commence et
se termine au même noeud sur le graphe. Nous utilisons ces tours pour calculer
un estimateur sans biais fréquencé de µpGq (y compris sa variance) de manière in-
dependente du nombre de nœuds, n ą 0, dans le ensemble initial et de manière
independente de la valeur de m ą 0, Contrairement aux méthodes précédentes
asymptotiquement impartiales [Avrachenkov et al. 2010, Gjoka et al. 2011, Lee
et al. 2012, Ribeiro & Towsley 2010, Ribeiro et al. 2012]. Nous fournissons égale-
ment une approximation bayésienne de la postérieure de µpGq PrµpGq|DmpInqs,
Qui se montre cohérente. Dans nos expériences nous notons que le postérieur est
remarquablement précis en utilisant une variété de réseaux grands et petits. En
outre, lorsque le réseau est formé par des connexions au câblage aléatoire tout en
préservant les degrés et les attributs des noeuds dans le réseau observé, nous con-
cevons une technique d’estimation de la valeur vraie attendue avec une connaissance
partielle du graphe original.

Apprentissage par renforcement

L’apprentissage par renforcement (RL) permet d’approcher l’estimation de la
moyenne des fonctions du réseau. Cette approche est également basée sur les pro-
priétés régénératives des marches aléatoires et évite ainsi la barrière du temps de
combustion. La technique RL est essentiellement une approximation stochastique
formée à partir de l’équation de Poisson d’un processus associé semi-markovien.
La performance de cette technique dépend des étapes associées à l’algorithme
d’apprentissage. Cette technique peut être placée comme une technique intermédi-
aire entre l’itération pure Monte Carlo (MCMC) de la chaîne de Markov (stochas-
tique) et l’itération de la valeur relative (déterministe). Les tailles de pas contrôlent
la stabilité de la technique RL et ses trajectoires sont beaucoup plus stables que
celles des procédures d’estimation basées sur la marche aléatoire standard. Ses per-
formances sont également comparables à celles de l’échantillonnage piloté par les
répondants qui a une faible variance asymptotique que bien d’autres estimateurs.

La publication relative à cette contribution est la suivante:
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• [Avrachenkov et al. 2016a] Konstantin Avrachenkov, Vivek S. Borkar, Arun
Kadavankandy and and Jithin K. Sreedharan. Comparison of Random Walk

based Techniques for Estimating Network Averages.” International Conference
on Computational Social Networks (CSoNet), August 2016.

A.2.3 Théorie des valeurs extrêmes et processus d’échantillonnage
en réseau

Ce travail explore la structure de dépendance dans la séquence échantillonnée d ’un
réseau inconnu. Nous considérons des algorithmes aléatoires pour échantillonner les
noeuds et étudier les propriétés extrêmes dans toute séquence stationnaire associée
de caractéristiques d’intérêt telles que les degrés de noeud, le nombre d’adeptes
ou le revenu des noeuds dans les réseaux sociaux en ligne, etc., qui satisfont à
deux conditions de mélange. Plusieurs extrêmes utiles de la séquence échantillon-
née comme k la plus grande valeur, des groupes de dépassements sur un seuil, un
premier temps de frappe d’une grande valeur, etc., sont étudiés. Nous résumons la
dépendance et les statistiques des extrêmes en un seul paramètre qui apparaît dans
la théorie des valeurs extrêmes, appelée indice extrême (EI). Dans ce travail, nous
dérivons ce paramètre de manière analytique et nous l’estimons empiriquement.
Nous proposons l’utilisation de l’IE comme paramètre pour comparer différentes
procédures d’échantillonnage. Comme exemple spécifique, les corrélations de de-
gré entre les noeuds voisins sont étudiées en détail avec trois randonnées aléatoires
proéminentes comme techniques d’échantillonnage.

La publication relative à cette contribution est la suivante:
Konstantin Avrachenkov, Natalia M. Markovich and Jithin K. Sreedharan. Distri-

bution and Dependence of Extremes in Network Sampling Processes

• [Avrachenkov et al. 2015b] Computational Social Networks, Springer, 2015.

• Third International IEEE Workshop on Complex Networks and their Appli-
cations, November 2014.

A.3 Conclusions

Nous avons examiné le problème de l’échantillonnage dans les réseaux. Cette thèse
vise à développer des algorithmes distribués lorsque le graphe sous-jacent n’est
pas connu auparavant. La majorité de la thèse traite la conception et l’analyse
des performances des techniques d’échantillonnage basées sur des randonnées aléa-
toires, ce qui s’avère être une technique efficace lorsque seule l’information locale est
disponible à chaque noeud (liste des voisins). Nous avons également développé des
techniques de calcul distribué pour estimer le spectre propre de matrices de graphe.

Tout d’abord, nous avons étudié la décomposition distribuée du spectre propre.
Les algorithmes que nous avons introduits dans ce travail produisent un graphique
spectrale à chaque noeud et les valeurs propres correspondent aux fréquences des
pics spectraux et les composantes des vecteurs propres sont les amplitudes à ces
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points. Plusieurs approches distribuées - algorithmes de diffusion, techniques Monte
Carlo et marche aléatoire - sont mises en œuvre. Les algorithmes proposés se sont
avérés avoir une connexion avec des randonnées quantiques aléatoires.

Nous avons donc étudié une stratégie d’échantillonnage impartiale généralisée
pour estimer la somme fonctions de noeuds (µpGq “ ř

pu,vqPE gpu, vq). Dans ce
travail, nous avons fourni une stratégie d’exploration partielle à l’aide de courtes
randonnées aléatoires réglables dynamiquement à partir d’un super-noeud «virtuel».
Nous avons utilisé ces tours pour calculer un estimateur sans biais fréquentiste de
µpGq (y compris sa variance) indépendamment du nombre de nœuds, n ą 0, dans le
ensemble initial (contracté dans le super-nœud) contrairement au précédent Asymp-
totiquement sans biais méthodes. Nous fournissons également une approximation
bayésienne de la postérieure de µpGq et il se présente comme une évaluation en
temps réel de l’exactitude de l’estimation. Dans nos expériences, nous avons noté
que le postérieur est remarquablement précis en utilisant une variété de réseaux,
petits et grands.

Ensuite, nous avons étendu l’idée de super-noeud et l’élimination de la nécessité
de la barrière du temps de brûlure à des fonctions moyennes. Nous avons développé
une technique d’estimation basée sur l’apprentissage par renforcement (RL) dans ce
contexte. Nous avons comparé de façon systématique certaines techniques basiques
de base basées sur la marche comme l’échantillonnage piloté par les répondants
(RDS) et Metropolis Hastings (MH). Nous démontrons qu’avec un bon choix de
programme de refroidissement, la performance de RL est comparable à celle de
RDS (qui surperforme MH) mais les trajectoires de RL ont moins de fluctuations
que RDS.

Enfin, nous avons analysé certains événements extrêmes dans les échantillons
recueillis par des randonnées aléatoires. Nous avons associé la théorie des valeurs
extrêmes des séquences stationnaires à l’échantillonnage de grands réseaux com-
plexes et nous avons étudié les propriétés extrêmes et de clustering du processus
d’ échantillonnage en raison des dépendances. Nous avons proposé d’abstraire les
propriétés extrêmes dans un seul paramètre pratique appelé indice extrême (EI).
Pour tout échantillon stationnaire général satisfaisant à deux conditions de mélange,
nous constatons que la connaissance de la copule bivariée est suffisante pour calculer
EI analytiquement et ainsi dériver de nombreuses propriétés extrêmes. Nous pro-
posons plusieurs applications utiles de l’IE (premier temps de frappe, statistiques
d’ordre et taille moyenne des grappes) pour l’analyse de grands graphes, connus
uniquement par séquences échantillonnées.
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