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“There is nothing simpler than carrying out the

impossible. You just have to imagine what you must do,

and turn your mind off completely. When you come to

your senses, everything is already behind you...”

- Max Frei, “The Stranger”

“Нет ничего проще, чем совершить невозможное.

Стоит только представить себе, чем сейчас

придётся заниматься, и сознание тут же

отключается. А когда приходишь в себя — всё уже

позади...”

- Макс Фрай, “Чужак”
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Résumé

Les principes d’ingénierie et de l’architecture actuelle de l’Internet ont été créés au cours
des années 1960-1970. Ceux-ci cherchaient surtout à offrir un partage des ressources
efficace permettant l’utilisation d’equipement rare et coûteux à distance. Ils reposent sur
la mise en relation de deux machines : celle qui cherche à utiliser des ressources et celle
qui les possède.

Depuis, l’equipement est devenu beaucoup moins coûteux et ce besoin a perdu de
son importance : les utilisateurs s’intéressent désormais davantage au contenu en lui-
même qu’à sa localisation. Afin de mieux répondre à ce nouveau besoin, il est nécessaire
de concevoir de nouvelles architectures de réseaux adaptés aux services proposés aux
utilisateurs (vidéo à la demande, web, . . . ). Celles-ci doivent répondre à la question
“quoi” et non plus “où”. La thématique des réseaux orientés contenu est devenue centrale
dans les domaines actuels de recherche. La communauté de recherche s’intéresse tout
particulièrement à l’architecture de CCN (Content-Centric Networking) proposée par Van
Jacobson et al. dans "Networking Named Content" en 2009.

Or en général, les ressources d’un réseau informatique sont partagées par un très grand
nombre d’utilisateurs, le réseau peut devenir congestionné voire saturé. C’est pourquoi le
contrôle de congestion est un élément critique pour garantir son bon fonctionnement. En-
core récemment, les problématiques d’ingénierie de trafic et de qualité de service n’étaient
pas explorées dans le cadre des réseaux CCN.

L’objectif de cette thèse consiste d’abord à évaluer l’impact de la congestion dans ce
type de réseaux, puis à concevoir un mécanisme de contrôle de congestion et à en évaluer
l’efficacité.

Au cours de nos travaux, nous avons créé une solution efficace de contôle de congestion
dans les réseaux CCN. Le problème de contrôle de congestion a une grande importance
et n’était pas abordé jusqu’à présent. Nous avons commencé par concevoir le mécanisme
HoBHIS (hop-by-hop Interest shaping) qui s’appuie sur la notion d’équilibrage de flot
définie dans CCN. Ce mécanisme est déployé dans chaque routeur CCN. Il consiste à
surveiller les conversations actives partageant le même tampon de transmission afin de
contrôler dynamiquement le taux d’envoi de demands de contenu correspondants. Ce
contrôle cherche à garantir qu’au niveau du goulot d’étranglement, la taille de la file
d’attente des paquets de contenu correspondants tende vers un seuil préconfiguré. Nous
avons ensuite étendu le design de HoBHIS afin de répondre à d’autres problématiques
spécifiques à CCN, notamment un mécanisme permettant de contrôler le débit d’envoi
d’un client afin d’éviter une congestion des files d’attente des noeuds CCN impliqués dans
la communication.

Nous avons aussi prouvé mathématiquement l’efficacité de nos propositions, puis évalué
les performances de ces mécanismes à l’aide du simulateur ns3-based Named-Data Net-
working (ndnSIM). Notre implémentation est open source et disponible publiquement sur
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Internet.
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renommées. Par ailleurs, nous avons collaboré avec Cisco Systems (Boston, USA) qui
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Abstract

The current Internet architecture was designed over 40-50 years ago and its primary goal
was to share expensive and scarce physical resources. People cared mostly about where

the resources are and, thus, the final communication model allowed to solve the problem
of resource sharing grew to a conversation between two machines: one wishing to use the
resource and one providing access to it.

The computers and devices have become cheap and ubiquitous commodities since.
Thus, the primary need of resource sharing has lost its importance. Now, people care
about what content network contains and not where it is located. In order to address
this new need, it is important to design a new network architecture moving away from
packets and getting closer to the service delivered to the user. The novel communication
model should answer the question what and no longer where. Thus, Information-Centric
Networking (ICN) is becoming an important stream of research. In particular, the ar-
chitecture of Content-Centric Networking (CCN) proposed by Van Jacobson and al. in
[34] appears as the most popular one. It aims at developing a new architecture better
suited to distribute content at scale. It is based on a content routing paradigm and uses
extensive caching capabilities.

It is well known that the network resources are shared between a large number of users.
It may potentially create a risk for buffer overflow and performance degradation. That
is why, congestion control is an important component to guarantee network performance.
Congestion control schemes have been widely studied in the past but only recently in the
context of CCN.

The objective of the research work presented in this dissertation is to explore the con-
gestion control risk of such an architecture as CCN, identify the bottlenecks and propose
strategies to circumvent them. We are interested in developing an effective mechanism
for congestion control in order to guarantee good network performance.

We have developed a first comprehensive solution for congestion control in CCN net-
works. This problem is of utmost importance and has not been globally addressed in
the past. We have designed our original hop-by-hop Interest shaping mechanism (HoB-
HIS) that nicely exploits the flow balance enforced in CCN between Interest and Chunk
packets introduced in CCN. It mostly consists in monitoring active conversations sharing
the transmission buffer of a CCN node face in order to dynamically adjust their Interest
sending rate and enforce the Chunk queue length to converge to a defined objective. This
mechanism is implemented in each CCN node. Then, we extended the design of HoBHIS
in order to address several important concerns that might occur in CCN. We proposed a
Tolerance mechanism designed to control the Clients sending rate as well as prevent the
loss of Interest packets. A thorough evaluation was conducted using different simulation
scenarios. We observed that the results fully satisfy the design objectives and we can con-
clude that HoBHIS is an efficient and operational solution to the problem of congestion
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control in CCN. The performance evaluation of our solution is done using the imple-
mentation of our mechanisms in ns3-based Named-Data Networking Simulator (ndnSIM)
that implements Named Data Networking communication model. Our implementation is
publicly available and can easily be found on the internet.

Our progress and results have been published in international conferences. The work
has generated interest from the networking community. Particularly, "Cisco Systems"
invited us to join their project on developing Named-Data Networking (NDN) traffic
control mechanism. As one of the important results of this collaboration is a research
article that got a SIGCOMM ICN workshop’13 “Best paper award”. This paper is also
presented as a part of the dissertation.
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Chapter 1

Introduction

The increasing importance of content has triggered a tremendous interest from the net-
working research community, moving away from packets and getting closer to the ser-
vice delivered to the user. In particular, the architecture of Content-Centric Networking
(CCN) proposed by Van Jacobson and al. in [34] appears as the most popular one. At this
stage, CCN defines design principles and has developed a CCNx Open Source Platform.
However, many functionalities are still at an early stage, or have been considered in very
simple contexts.

CCN decouples the sender from the receiver in a mode that is similar to the Publish and
Subscribe service model. Content names are used instead of network addresses to convey
the information to the interested parties. The content might be located anywhere in the
network thanks to extensive caching capabilities. Therefore, the data is not necessarily
associated with the content publisher as the content can be delivered by any cache in
the network. In CCN, the request from the content consumer is called Interest and the
part of the associated content is called a Chunk or Data. We will name a stream of
Interest/Chunk pairs a Conversation.

Traffic engineering has been lightly addressed in CCN. Congestion might arise in such
networks as chunks can saturate the transmission buffer of a network face. It is thus
necessary to regulate the stream of chunks, and therefore, the associated stream of interest
in order to avoid congestion and performance degradation. This problem has not yet been
formalized and studied in CCN.

1.1 Work description

In this research work, we propose a congestion control mechanism for CCN, based on hop-
by-hop Interest shaping. It relies on the assumption that any CCN router can control
the future rate of data-chunks it will receive by shaping the rate of the Interest it is
currently sending towards content providers, as one Interest retrieves at most one Data
packet. We monitor the level of Chunks stored in the router transmission buffer in order
to dynamically adjust the associated Interests rate that have generated the Chunks in
that buffer. We first introduced in [52], a hop-by-hop Interest shaping mechanism based
and exploiting the ”one Interest - one Chunk” rule enforced in CCN. In this scheme, each
CCN router controls the future rate of data-chunks by shaping the rate of corresponding
Interests it is pushing upstream. CCN routers dynamically adjust their Interest sending
rate by monitoring the level of Chunks stored in their transmission buffer. The rate
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resulting from this operation is called the shaping rate. An important design function
is the control one used to derive an optimum shaping rate maintaining the queue length
around a target value named an objective. Various important parameters are calibrated in
order to efficiently operate the algorithm as a function of the network characteristics. We
demonstrate the convergence properties of this Hop-by-hop Interest Shaping mechanism
(HoBHIS) and provide a performance analysis based on various scenarios.

As a consequence of the CCN design principles, we have to regulate the stream of
chunks as well as the stream of interests in order to avoid congestion and to improve
network performance. We then complete in [53] the analysis and design of HoBHIS by
extending its operation when facing more complex situations. We study its behavior in
a multicast scenario and test its effectiveness when Interest aggregation is used. We also
demonstrate the fair resource sharing among competing conversations. Another important
concern is related to the ability offered by CCN to a user to send interests without any
limiting rate factor, creating a risk for buffer overflow and performance degradation. We
introduce a new rate-based mechanism aiming to control the interest sending rate of a
content receiver (a client or source of interest). The scheme introduces an exchange of
control information between the CCN nodes and the client. The CCN nodes periodically
send control packets with an explicit rate specifying the maximum sending rate for each
Client on the path used by this conversation. In order to derive an optimum explicit rate,
CCN routers use a control function based on the shaping rate computed by HoBHIS.

1.2 Dissertation Roadmap

This dissertation presents a step-by-step design of a congestion control mechanism for
Content-Centric Networking. The remainder of the dissertation is organized as follows:

Chapter 2 provides a brief description of the most prominent Information-Centric
Networking (ICN) architectures in the litterature. We survey different ICN architectures
proposed by researchers all around the world.

We then provide a short introduction to CCN underlining the most meaningful prop-
erties for this work. We then present an original model of a CCN node and propose some
design modifications.

Further in this chapter we present work related to congestion control in CCN. We
discuss the different work from the past that has been useful for our contribution. We also
analyse different types of congestion control and provide an analysis of various solutions
proposed for congestion control in CCN.

Chapter 3 discusses congestion in CCN, introduces traffic control issues and describes
the hop-by-hop Interest shaping mechanism (HoBHIS). We then provide a performance
evaluation of our hop-by-hop shaping mechanism using various scenarios and our ns3-
based ndnSIM simulation environment.

Chapter 4 extends the analysis and design of HoBHIS and proposes a new Tolerance
mechanism to control the interest rate of a client. The performance evaluation of a
complete solution concludes this chapter.

Chapter 5 challenges our schemes in more complex scenarios and proposes improve-
ments in order to develop a unified control that will take into account all possible situa-
tions.

Chapter 6 describes our joint work with “Cisco Systems” and presents a proactive
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NDN congestion control scheme for two-way traffic.

Finaly, Chapter 7 concludes the dissertation and discusses future work.

Some Appendixes are also available at the end of the dissertation: Appendix A presents

implementations of our solutions in ndnSIM and provides some overview of the source code

and its structure. Appendix B describes my activity during the years of my PhD work.



Chapter 2

Information-Centric Networking

2.1 ICN

The current Internet achitecture was developped in 1960s and designed in host-centric
fashion due to needs of sharing physical resources. This design makes all communications
to be based on point-to-point conversation between named hosts. Today, people are more
interested in content itself and no more in its location. But to get a desired content it
should be mapped to the machine hosting it. Now if any user wants to get a content,
it has to visit a specific server. In reality, multiple users that want to obtain the same
content may create a huge load on that server. Moreover, the end-to-end connections are
created for each content demand and introduce a lot of redundant traffic in the network.

The Information-Centric Networking tries to solve the problems due to host-centric
architecture and makes the content on the first plane. To make it possible, the content
has to have globally unique and location-independent names. Now, when the clients want
to obtain any content they should specify its name and network will retrieves the content
for them from anywhere. This approach completely change the today’s Internet.

The increasing importance of content has triggered a tremendous interest from the
networking research community. Over the last years, many different information-centric
networking (ICN) architectures have been introduced to cope with the evolution of the
internet usage towards massive content distribution.

The information-centric approach to the future network architecture are actually being
explored by a number of research projects in Europe and in the US.

In this section, we provide a brief description of some of such ICN architectures. More
information and detailed surveys of ICN may be found in [10] and [23]. Also, more
general and broad survey on future internet architectures is provided in [47].

2.1.1 TRIAD

The TRIAD project [29] was the first to explore in 2001 the benefits of diverging from
the classic Internet architecture. It proposes a new Internet architecture identifying the
contents by names rather than addresses. TRIAD tries to name content with user-friendly
and location-independent names. The name-to-address resolution is performed by the
content routers instead of DNS servers. To do so, it uses URLs as the names mapping
the DNS portion of the content URL to the nearby replica of the content. Each content
router maintains a set of name-to-next-hop mappings. The content router forwards the
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requests to the next content router until a copy of the data is found. Its location then
returned to the client. Routing in TRIAD is still done at the granularity of server names
rather than full URL of individual content.

2.1.2 DONA

The Data-Oriented Network architecture presented in [35] proposes replacing DNS names
with flat, self-certifying names, and replacing DNS name resolution with a name-based
anycast primitive above the IP layer. This architecture is built on name-based routing as
is advocated in TRIAD and extends the ICN idea to content granularity instead of server
names.

Name resolution in DONA is done by resolution handlers (RH) instead of DNS servers.
Each domain or administrative entity has one logical RH. The RHs have a hierarchical
structure according to the provider/customer/peer relationships between the domains or
entities.

Content in DONA must first be published, or registered, to enable its retrieval. To
do so, the content providers should send the REGISTER messages to its local RH. This
messages set up the registration table on each RH that provides next-hop information and
the distance to the copy. Once a given content is registered, requests, or FIND messages,
can be effectively routed to it. Once the content is located, packets are exchanged with
the requester using standard IP routing.

2.1.3 PSIRP/PURSUIT

Publish-Subscribe Internet Routing Paradigm (PSIRP) is an EU FP7 funded project [4]
later succeeded by the Publish-Subscribe Internet Technology (PURSUIT) that explores
and expands PSIRP’s vision.

It proposes a new architecture for the future Internet, based on the publish-subscribe
primitives. PSIRP uses a rendezvous system to match publications and subscriptions.

Each peace of data is uniquely identified by a pair of identifiers: a rendezvous identifier
(RId) and a scope identifier (SId). The RId is an information item has to be unique within
a scope, whereas the SId denotes the scope in which an information item belongs. The
content should first be published to enable access to it. In order to publish the content,
the publisher has to know the SId as well as to create a RId for the publication that is
then forwarded to the rendezvous node of the SId rendezvous network.

A consumer learns the RId and the SId of a desired piece of information and issues
a subscription message towards the appropriate rendezvous point. Once this message is
received by the rendezvous point, a forwarding path is created between the publisher and
the subscriber. Each active publication has a forwarding identifier (FId) that denotes the
forwarding path to follow.

2.1.4 4WARD NetInf

Network of Information (NetInf [9]) is an FP7 4WARD project [6] that has later evolved
further under FP7 SAIL project [5]. It focuses on higher level issues of information and
represents the content in the form of so-called Information Objects (IOs). An IO may
refer to a certain content (e.g. a song) without specifying the concrete representation (e.g.
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the encoding). It enables users to find content independently of certain characteristics.
In NetInf IOs are registered into the network with a Name Resolution Service. NetInf
adopts a hybrid approach that supports both name resolution and name-based routing.

2.1.5 Content-based Networking

Content-based Networking [21] introduces a unique naming scheme where each content
is identified by a set of attribute/value pairs instead of hierarchical names or flat labels.
A user request is a selection predicate that is a logical disjunction of conjunctions of ele-
mentary constraints over the values of individual attributes. The matching of publication
and subscription is a search process to find contents that match the selection predicates
declared by the consumers. As CBN differentiates itself from all above-mentioned ICN
architectures by its different semantics, routing and forwarding require totally different
approaches.

2.1.6 The Network is a database

The network paradigm presented in [27] aims at offering a language inspired from database
background over the network. Such a language would allow users and services to charac-
terize accurately their interests and retrieve the corresponding data. The data is described
using multiple attributes and modeled as a table (e.g. a movie could be characterized by
a title, a year, etc. leading to the "movie" table). The proposed architecture extends
Publish/Subscribe service model. It acts as a mediator between data providers (which
both offer the data to the network and describe the corresponding "tables") and the data
consumers which express their interest by issuing SQL-like queries over this collection
of tables. The proposal is still in its early stage and in the same way as CBN, this
architecture requires totally different approaches.

2.1.7 CCN/NDN

Content-Centric Networking (CCN) proposed by Van Jacobson and al. in [34] appears as
the most popular one. This proposal became later one of the Future Internet Architecture
(FIA) projects under the new name of Named Data Networking (NDN [66]).

This architecture differs from the traditional host-based communication principle in
many ways. One important change is that network addresses are replaced by content
names to distribute information in CCN networks. Moreover, extensive in-network caching
capabilities are introduced to benefit from the observation of the traffic flowing in the
network. As a consequence, data packets can be delivered by any CCN router in addition
to the source, according to various caching algorithms. That differs CCN from other ICN
architectures where content must first be published to enable retrieval and, thus, data
cannot be generated dynamically in response to queries.

We will discuss this architecture in details later in this dissertation because our con-
gestion control work is based on the architectural features of this ICN approach. In this
dissertation, we use CCN and NDN as the synonyms.
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2.1.8 Why CCN?

As we have seen above, the addressing in current internet architecture does not allow to
meet the demands of today’s applications and mobile environments. The different solu-
tions have been proposed. Some of them implement the functionality above the existing
Internet architecture, others propose a completely different way by replacing the whole
network architecture by a new one. All of these proposals are trying to move from host-
centric to content-oriented networking. But their main challenges mostly consist in the
efficient routing of the unstructured "flat" names and mapping the names to the opaque
labels. We compare now the different architectures presented earlier in this Chapter with
CCN in order to explain why we have finally chosen this proposal.

DONA is implemented above the IP level. As we have seen, unlike CCN, content in
DONA can not be generated dynamically in response to requests because it must first
be published, or registered. Once the content is located, packets are exchanged using
standard IP routing. If the content is moving, new registration should be propagated
through the network to enable its retrieval. In CCN content may be located everywhere
in the network thanks to the extensive caching capabilities and the nodes forward the
requests to the different possible content locations.

Another proposal, PSIRP, suffers from its use of unstructured indentifiers. In CCN,
in contrast, the names have an hierarchical structure that facilitates locating and sharing
data.

4WARD NetInf focuses on higher-level issues of information and represents the content
in the form of Information Objects. The goal of this architecture is similar to CCN and
consists in creating a new "network of information" paradigm where the information
objects have their own identity. Unlike CCN, content retrieval in NetInf consists in two-
step approach where the first step is to resolve content name to its location and then
route to this location. CCN routes packets directly according the content name.

CCN has generated a great interest in the research community and numerous research
projects has been funded all over the world. The first project that has introduced CCN
was CCNx ( [1]). Later, NDNx ( [2]) has been forked from CCNx and continued to
make research in this direction. In Europe, we have been a part of the ANR CONNECT
project started in 2010 and focused on CCN architecture, routing, caching and traffic
control. It gathered the following partners: Alcatel Lucent Bell Labs, INRIA, Institut
Telecom PARISTECH, France Telecom Orange, Université Pierre et Marie Curie (UPMC)
LIP6. Also, the big corporations like "Cisco Systems", "Alcatel Lucent", "Huawei" have
started research on CCN/NDN and are very motivated to continue in this direction.

In addition to different proposed architectures, CCN has many evaluation tools. The
first implementation [1], has been developed by CCNx project. Later, the NDN project
has created a fork NDNx, [2], of the (L)GPL’d CCNx codebase to add new features, fixes
etc. that may differ from CCNx timeline.

Later, a ccnSim, [51], has been developed to evaluate the caching performance of
CCN. Hovewer, some features are implemented in the simplest way that does not allow
the evaluation of different forwarding strategies, traffic control schemes, etc.

Another Content-Centric Networking Packet-Level Simulator (CCNPLsim), [43], has
been developed by OrangeLabs. The drawback of this solution is that it uses a custom
discrete-event simulator that is unfamiliar to most researchers.

A different solution is proposed in [8] and presents the Direct Code Execution (DCE)
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for CCNx implementation inside the NS-3 simulator. The main advantage of this pro-
posal is that it is directly based on unmodified CCNx code that provides more realism.
Hovewer, the implementation is complex and difficult to modify to explore different design
approaches.

Another simulator that implements Named Data Networking (NDN) communication
model is ndnSIM, [3] that represents an ns3 module. This simulator is optimized for
simulation purposes and easy to use, modify and extend. Even if this implementation
is relatively recent, it becomes very popular in the research community. We use this
simulator for implementing our congestion control schemes presented in this dissertation.

2.2 Content-Centric Networking

The existing ICN architectures that we briefly discussed in section 2.1 have different ideas
but, hovewer, most of them share some common features such as name-based routing,
content caching, content-based security. In this chapter we provide a short introduction
to CCN in order to highlight the most important architectural features useful in the
context of our contribution. We discuss then the common features of ICN architectures
based on the example of CCN.

2.2.1 CCN architecture

Any content requested by a Client (or a source of Interests) can be divided into a number
of data packets. In order to request a given piece of content, a Client will have to send
an interest packet. This interest packet will be forwarded to a location where the content
is stored. It could be the server or a CCN router where the content has been cached. As
a consequence, in order to fetch a given content, the Client will have to submit as many
Interest packets as the number of chunks that exist for that particular content. We observe
that an Interest triggers the reception of a single chunk transmitted on the reverse path
used by the one followed by the associated Interest from the Client to the location where
the chunk is retrieved. The “One Interest - One Chunk” rule is an interesting property
that enforces a flow balance in a CCN network.

Each CCN router supports three different types of storage. The Interests are forwarded
to the data source thanks to the Forwarding Information Base (FIB). In addition, the
Pending Interest Table (PIT) keeps track of the forwarded Interests so that the chunks
can be returned to their requestor. Finally, a huge cache is used to store the chunk
packets using any caching strategy in order to reduce the network response time for
frequently asked content. As the content can be delivered by any cache in the network,
the time elapsed from sending an Interest to retrieving the corresponding chunk is defined
as a random variable A(t). We will call this delay the Response delay. In the CCN
node model we have proposed in [52] and also considered in this study, we introduced a
transmission buffer associated with each face, that differs from the cache.

An important optimization in CCN is the ability to aggregate Interest packets looking
for the same content when flowing through a given node. As a consequence, a single
Interest copy will be sent to the network and will be used to retrieve the corresponding
chunk. In this situation, the router updates an existing PIT entry adding the interfaces
that have requested the same chunk and where the corresponding Interest was aggregated
(namely dropped). Once a corresponding chunk is received, the node copies it to all



CHAPTER 2. INFORMATION-CENTRIC NETWORKING 24

Figure 2.1: The CCN node model

interfaces from this entry. We will call this operation Multicast.

2.2.2 CCN node model

The general CCN node model was introduced in [34]. A simple router model is illustrated
in Figure 2.1. In this figure, we omit the forwarding information base (FIB) and the
pending interest table (PIT). The former is used to forward Interests toward the data
source while the later keeps track of the forwarded Interests so that the returned Chunks
can be sent to its requestor. We first introduce our model of a CCN router in order to
illustrate where congestion can appear.

In [34] the authors advocate that “CCN does not have FIFO queues between links
but rather an LRU memory (the cache)”. However, in a CCN router, it is important to
differentiate the memory allocated for transmiting packets from the one used for caching.
If a single Content-Store was used to store both packets waiting for transmission and
cached Data chunks, the whole cache will become congested by Data chunks waiting
for transmission through the congested interface. The transmission queue is subject to
congestion if the Interest aggregate rate arriving in a router single output interface exceeds
the link capacity. Finally, it is crucial that at any given time, each output interface
schedules which packet is the next one to be transmitted on the physical channel. This
can be achieved with the use of per-interface queue rather than a single shared cache.

2.2.3 Discussion

In this section, we explore the particularities of design and the questions that should be
answered in future research proposals. Our research is mostly based on traffic control
area that is of course depending on others components and architectural features of CCN.
So, we are trying to look more into different central features of ICN and, in particular, in
CCN such as routing, caching, security and transport layer.

As we mentionned in Chapter 2, in ICN the clients should specify the name of content
only and network will fetch it for them from anywhere. Thus, in ICN, routers should
forward requests based on the name of the requested content. But that is not easy
to provide an effective routing mechanism because, as we mentionned before, the names
should be location-independent and the number of content is much larger than the number
of hosts. Moreover, due to caching capabilities the content moves in the network much
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faster than the hosts in host-centric approach. All of this introduces a scalability problem.

As stated in [63], the unique feature of CCN is the ability of each CCN router to
handle network failures locally without relying on global routing convergence. The authors
explore the following question does CCN really need any routing algorithm. The work
shows that the routing protocols still remain very beneficial for CCN. Hovewer, the routing
in ICN and, in particular, in CCN is still an open question and effectiveness of the solutions
should mostly answer the question: “Can it scale?” discussed in [44]. As stated in [48],
even if many papers declare that routing in ICN should be completely different from
routing in IP Internet, all existing proposals for routing in ICN use the same old routing
algorithms for single-instance destinations. We will briefly describe some routing proposals
in Section 2.3.

Earlier in this chapter we have seen that each content in ICN should have a globally
unique and persistent name. In CCN, names are human-readable and composed of ex-
plicitly identified sequence of components such as: globally-routable name, organizational
name and conventional/automatic component for versioning and segmentation. Thanks
to hierarchical names the prefix match is equivalent to saying that the Data packet is in
the name subtree specified by the Interest packet. Thus, CCN names and signs every
Chunk so that the content may be located anywhere and retrieved by anyone. Moreover,
the CCN names are location-independent and so the clients could get the content from
everywhere and verify its integrity via the digital signature. The caching capabilities are
supported by the nature of ICN. In CCN, it is supposed that the caches could be deployed
on every CCN router. This idea could potentially reduce the load on the servers, decrease
the amount of redundant traffic and decrease the latency. Moreover, almost all proposals
about CCN caching are using this idea as the basic one. But there is no answer on the
question: is it really necessary to deploy the cache on every router to have an effective
caching mechanism? Another point that should be taken into account when designing
a caching scheme is how big should be size of the router’s cache to maximize the cache
performance and keep the reasonable lookup delays. We will briefly explore the work
related to CCN caching in Section 2.3.

Another important area for ICN is traffic control that is also a key component of ICN
and may depend on concrete ICN architectures. It allows to ensure the efficient and fair
network resource utilization. In CCN, the symmetric paths for Interests and Chunks are
enforced by the architecture and potentially open a lot of new possibilities for design
of traffic control schemes. The receiver driven as well as network assisted approaches
are both possible to consider in CCN. We will adress this later in this thesis and we will
explore existing solutions in Chapter 2.3. Hovewer, it is important to note that the original
proposal of CCN is almost ignoring traffic control and do not specify it. Without this
important piece of design, CCN is incomplete. Hence, the congestion control mechanism
for CCN is the core addition targeted in this dissertation.

Finally, such key component of ICN as security should also be content-based and
so rather different from the one in IP Internet. As mentioned above, in CCN, every
client could verify the integrity of the content via its digital signature. It may also be
done by every network entity. Moreover, the flow balance between Interest and Chunk
together with Interest aggregation scheme prevent from any sort of Data flooding and
make the Denial of Service (DoS) attacks more difficult than they are in TCP/IP. A
detailed exploration of the CCN security issues is out-of-scope of this dissertation.
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2.3 Related work

The CCN framework was first introduced by Van Jacobson and the PARC research group
in [34, 24]. Various issues arising in CCN have been considered such as content router
issues [11], data transfer modelling [19] or chunk-level caching [20].

In this section we explore the work related to different key components of CCN dis-
cussed in Chapter 2.2. We will first briefly describe the existing works on routing and
caching, and provide a detailed state of the art on congestion control that is the target
key point in this dissertation.

2.3.1 CCN routing

The current proposals for CCN routing are mostly based on extending existing link state
routing protocols such as Open Shortest Path First (OSPF) [42] and Intermediate system
to intermediate system (IS-IS) [45]. For example, [60] extends OSPF to distribute name
prefixes and calculate routes to name prefixes and proposes the OSPF for Named-data
(OSPFN). Even if OSPFN is able to compute the shortest path to content, the routers
should keep track of a large number of content names. Others disadvantages of OSPFN
is that it still uses IP addresses as router IDs, relies on Generic Routing Encapsulation
(GRE) tunnels to cross legacy networks, and computes only a single best next-hop for
each name prefix. Trying to resolve the problems of OSPFN, the authors propose a
Named-Data Link State Protocol (NLSR) [31] which runs on top of NDN. It is still a
link-state protocol as OSPF. Link state advertisements are propagated throughout the
entire network, each node knows the complete topology and the location of each instance.
Even if NLSR has several advantages over OSPFN, it still suffers from scalability problems.

In [57] the authors experiment with blind routing algorithms such as flooding, expand-
ing ring, and random walk implemented over CCN. The authors try to find out optimum
fall back scheme for CCN if no match is found in FIB. But the applicability of this mecha-
nisms needs to be verified. Recent work [28] proposes a routing algorithm based solely on
distances to named data objects or name prefixes. Authors claims that this scheme does
not require any routing information about the physical topology or information about all
the replicas of the same content. But this work is still on its initial stage and requires
detailed performance analysis.

2.3.2 CCN caching

Standalone and cooperative Web caching have been widely studied in the past( [49, 59,
38, 26]). Appearance of ICN has offered new opportunities for caching and it becomes a
hot topic in the research community. Different works on in-network caching have been
proposed in the litterature. In this section we briefly describe some of them.

In [50] the authors have presented the modelling and evaluation of caching policies
based on Markov chains. [56] investigates the potential of caching data at the router-level
in CCN. Another work [51] evaluate the cache performance in CCN considering impact
of various elements such as network topology, multi-path routing, content popularity,
caching decisions and replacement policies.

There are many proposals about content replacement policies. For example, [39] fo-
cuses on the mechanisms that spread popular contents to the network edge. In this
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proposal, each replica of content has an age. The scheme is based on the following rules:
the closer a replica is to the network edge the longer age it has; the more popular a replica
is, the longer age it has. A replica is replaced if age is expired or if the cache memory
of the node is full. [22] proposes a scheme where the number of chunks to be cached is
adjusted based on the popularity of the content (access count). When the access count
increases, algorithm exponentially increases the number of chunks to be cached.

Another work [61] try to estimate the benefit from in-network caching for ICN. The
authors first formulate the in-network caching problem into Mixed-Integer Linear Pro-
gramming problem. They then also propose a novel LB (Least Benefit) cache policy and
a new forwarding scheme with shallow flooding (FSF for short). They finally show that
with in-networking caching, the average hops of the ICN network can be reduced signifi-
cantly. A lot of other works on caching have been proposed, such as ( [37, 55]), but the
comparison of the performance of caching algorithms is out-of-scope of this dissertation.

2.3.3 Congestion control in CCN

The work related to traffic engineering in CCN has developed recently. Congestion can
appear in CCN and therefore, we promote the utilization of an algorithm to control the
level of congestion of CCN routers filled by Data packets. We follow similar principles
as in [41], where the authors present ERAQLES, a rate control mechanism for Available
Bit Rate (ABR) ATM communications, and define an analytical method to compute the
advertised explicit rate to which the sources have to adapt. A similar work is presented in
[25]. In [40], the authors describe a rate-based hop-by-hop congestion control mechanism
in which a desired service rate is computed at each switch as a function of the target
queue occupancy. Feedback information is then exchanged between neighbor switches so
that they can dynamically adjust the service rate for each connection.

Hop-by-hop congestion control schemes have been widely studied in the past but only
recently in the context of CCN. Traffic control suited to CCN has been considered lately,
mostly to study congestion and packet loss in CCN routers. The existing schemes can be
classified into two categories: receiver-based and hop-by-hop mechanisms.

2.3.3.1 Receiver-driven congestion control

Some preliminary work on a transport protocol for CCN is presented by S. Arianfar and
al. in [12]. This protocol is based on the TCP congestion window principles but uses
Data packets as acknowledgments to enforce decisions to increase or decrease the conges-
tion window. The scheme introduced in [16] is one of the first window-based algorithms
designed to control the Interest sending rate of a receiver in TCP-like environments. The
proposed mechanism uses Chunks packets and associated timers as relevant signals to
regulate the number of Interests sent by the receiver. One serious issue of this approach
is to properly set the timeout value. The solution used in [16] sets the timer to the mean
value of RTT, that, unfortunately, does not take into account the variability of content
sources. The mechanism was later improved in [18] by adding route labels to the Chunks
so that the client can identify multiple paths. CCTCP introduced in [54] also represents
a receiver-driven control solution. The authors propose to list in each interest packet the
subsequent Chunks the client intends to request. The network nodes indicate whether
they have cached this Chunk. Thus, the receiver maintains separate congestion states
for different content locations where future interest will be satisfied. A similar predictive
approach has been proposed in [15] where the authors have proposed some improvements
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to reduce the complexity of the protocol. Another recent work adressed to resource man-
agement in ICN, [13], proposes a deadline-based approach where data packets are assigned
with a lifetime. Lifetimes are then used for scheduling and resource management in the
network and retransmission logic in the end hosts. Hovewer, this work is still in its initial
stage and does not propose a comprehensive solution yet.

As shown in the past, the receiver-driven schemes face a fairness problem in networks
with heterogeneous RTTs. Some analysis and improvements can be found in [58, 30].
As caching is a key feature of CCN, the RTT related to the content sources appears as
a crucial parameter for receiver-driven mechanisms. A recent work, [14], compares the
performance of these schemes and concludes that the receiver-driven solutions based on
timeouts are not suitable for CCN because of the unpredictability of the content locations.

2.3.3.2 Hop-by-hop congestion control

A second category of congestion control mechanism uses hop-by-hop interest shaping
rather than letting the receiver infer network congestion using timeouts. HoBHIS [52]
was the first interest-based shaping mechanism developped for CCN. In [46] the authors
present a fair sharing mechanism where Interests exceeding a Data fair rate are discarded.
ICP introduced in [16] was then extended in [17] where the authors describe a joint
hop-by-hop congestion control mechanism that is found similar to HoBHIS. The basic
idea developped in this general approach is to shape the Interest of every conversation
flowing through a CCN node to control congestion of Chunks packets and improve network
performance. Other proposals based on interest shaping have been presented in [65, 64].
The proposed scheme shapes the interests so that the associated data rate is equal to
some predefined ratio of the reverse link capacity. The authors introduces a NACK
scheme where an NDN node sends a NACK to the downstream node in case if it can not
neither satisfy or forward any given Interest. They also propose a simple coloring scheme
for marking the working status of each interface with regard to data retrieval.

Recently, a different solution was proposed in [62]. The mechanism identifies the
interdependence between the interests and its associated chunks and analyzes the fair
resource allocation in presence of bidirectional traffic. The paper presents the results of our
collaboration with “Cisco Systems” and will be presented in details in this dissertation.



Chapter 3

Hop-by-hop Interest shaping

3.1 Controlling the Data rate

Content-Centric Networking (CCN) proposed by Van Jacobson et al. in [34] has been
introduced to cope with the evolution of the internet usage towards massive content
distribution. This architecture differs from the traditional host-based communication
principle in many ways. One important change is that network addresses are replaced
by content names to distribute information in CCN networks. Moreover, extensive in-
network caching capabilities are introduced to benefit from the observation of the traffic
flowing in the network. As a consequence, data packets can be delivered by any CCN
router in addition to the source, according to various caching algorithms. In CCN, a
request issued by a user is called Interest and the part of the associated content is called
Chunk. For convenience, we will name a stream of Interest/Chunk pairs a Conversation.

The key property of CCN is that one Interest retrieves at most one Data packet. It
enforces a flow balance in the CCN network that enables multiple Interests to be issued
at once. Interest aggregation is an optimization that provides the ability to reduce the
network load when multiple interests from different sources request the same content.
This is achieved by aggregating them in the CCN router, forwarding a single interest
upstream and carrying downstream a single copy of the associated content.

As a consequence of the CCN design principles, we have to regulate the stream of
chunks as well as the stream of interests in order to avoid congestion and to improve
network performance. We believe that, because of the specific design of CCN, hop-by-
hop congestion control provides a suitable solution to this problem. Congestion in a
CCN router is defined as the overflow of the buffer associated to an output interface and
manifests itself by the loss of data chunks.

The remainder of the Chapter is organized as follows: Our congestion control algorithm
is presented in Section 3.1.1. A simple mathematical model is derived in Section 3.1.2 and
3.1.3 in order to highlight the convergence properties of our algorithm. The performance
of our solution is evaluated by ns2 simulation and discussed in section 3.1.5. Section 3.1.6
concludes the chapter.

3.1.1 Hop-by-hop Interest Shaping mechanism (HoBHIS)

In this section, we present the hop-by-hop Interest Shaping mechanism (HoBHIS). Every
CCN router will control the rate of individual Data chunks conversations by appropriately

29
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shaping the rate of the associated sending Interests.

The congestion control scheme based on hop-by-hop interest shaping was preferred
to an end-to-end mechanism such as TCP (Transmission Control Protocol, [32]). Our
mechanism is proactive and the share of the network capacity allocated to different con-
versations is controlled by the algorithm implemented in each CCN node. Interest shaping
allows us to anticipate the drop of data packets due to buffer overflow. This is another
advantage over TCP congestion control scheme that starts to react only after the drop
of one segment, unless a mechanism such as RED is used. In addition, using a hop-by-
hop control provides a feedback information more quickly thanks to the smaller distances
between hops.

The system under study consists of a set of CCN routers forwarding Interest packets
issued by a consumer. As a response, Data chunks are forwarded back to the consumer
(namely, the source of the Interests). One Interest corresponds to one chunk of data.
Once an Interest has been issued by a given CCN router, the corresponding Data chunk
will be piggybacked to that router after a variable delay A(t) named "Response Delay",
assuming no loss. This parameter differs from the usual RTT from TCP as the Data
might be stored in any cache on the path or at the publisher site (the source of the Data).
We infer that A(t) should not change drastically on short time scales as it is likely that
when the data is stored in a given cache, it should stay there for some time, at least until
the network and demand conditions have largely evolved. The objective of HoBHIS is to
avoid congestion in CCN Transmission queues by enforcing the queue size to converge to
a given objective r, defined as a percentage of the capacity of that buffer. We achieve this
objective by shaping the Interest rate.

Upon arrival of a Data chunk in the transmission queue, the router computes the Inter-
est rate based on the queue occupancy and the available resources for each conversation.
It adjusts the Interest rate according to this information. If the actual number of queued
packets is less than some threshold value r, then the router can temporarily increase the
shaping rate. On the other hand, if the number of queued packets is higher than r, then
the router will decrease its shaping rate.

Figure 3.1: Representation of the sys-

tem

Figure 3.2: Communication process

when shaping is enforced

The system under study is presented in figure 3.1. The Shaping time component
is responsible for the computation of the shaping delay that the Interests packets will
have to satisfy. Every Interest packet will be shaped according to the occupancy of the
transmission queue, as well as the parameter A(t).

Figure 3.2 provides an illustration of the communication process when shaping is
enforced. As can be seen, when an Interest is received, it will be delayed in the CCN
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Figure 3.3: Representation of the model

Table 3.1: Notations
C(t) available bandwidth to send the chunks at time t
Cint(t) available bandwidth to send the Interests at time t
γ(t) shaping rate at time t
A(t) delay from Interest to the related content
e(t) number of queued packets at time t
B buffer size
r queue threshold

router if proved necessary in order to avoid congestion of the transmission buffer of that
same node.

3.1.2 Single router model

For the purpose of the analysis, we consider the simplified model presented in figure 3.3.
It is characterized by a single conversation. In addition, all packets have the same size.
The control is applied to each chunk entering the transmission queue. We do not consider
any caching policy or routing mechanism. The parameters and notations are given in
Table 3.1.

3.1.2.1 Computation of the shaping rate

Let e(t) define the occupancy of a CCN router transmission queue expressed in number
of chunks.

We consider the following function that represents the maximum shaping rate at time
t, while still being able to control the transmission queue under a feedback delay equal to
A(t):

γ(t) = C(t) +
B − e(t)

A(t)
, or (3.1)

γ(t) = C(t) + h
r − e(t)

A(t)
, (3.2)

where h is a design parameter that aims to control the dynamicity of our scheme
towards the objective r. In the general case when there are F conversations flowing
through a CCN node, we need to divide the available buffer capacity between all active
conversations at time t.
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It is possible from equation (3.2) that the shaping rate becomes negative. In this
situation, the Interests are blocked until either the transmission queue size e(t) becomes
less or equal to r, or a Chunk arrives at the queue and the Interest shaping rate is re-
evaluated. We use an exponential weighted moving average mechanism to estimate the
value of A(t).

3.1.2.2 Resource sharing

In this section we provide a solution for an efficient buffer sharing of the network resources,
for the case when multiple conversations are active. Let suppose that there are F active
conversations going through the router. In the simplest case the buffer capacity can be
shared between the conversations as r

F
. However, this solution does not take into account

the situation where one or more conversations do not consume their share. In this case,
the queue length will converge to

r′ =
F∑

i=1

[ri] ≤ r, i = 1..F (3.3)

Each conversation converges to its own threshold ri. Therefore, as can be seen from
Formula 3.3, the total available capacity may not be completely used. In order to improve
its utilization, the rest of the resources should be shared between the active conversations.
Our solution to solve this issue is described below. The arrival rate for a given conversation
can be estimated by the number of chunks in the queue belonging to this conversation.
Thus, the rate of a conversation can be expressed as follows:

ρi(t) =
ei(t)∑F

j=1
[ej(t)]

(3.4)

Where ei(t) is the number of chunks of conversation i at time t and
∑F

j=1
[ej(t)] is the total

queue length. ρi(t) represents the ratio of the total queue length occupied by conversation
i at time t. Taking into account equation 3.4, we modify the shaping rate formula in the
case of multiple conversations as follows:

γi(t) = C(t) + h.
r.ρi(t)− ei(t)

A∗

i (t)
(3.5)

Monitoring all conversations is far too expensive but we are concentrating on the active
conversations only, those for which packets are queued in the buffer, to reduce the number
of states stored in the router. It has been shown in the past (cf. [36]) that such per flow
control is scalable because of the relatively small number of active flows. A conversation
is considered to be active if a transmission queue of the router owns at least one packet of
this conversation. Note also that for the sake of simplicity, we consider Chunk packets of
constant size. If it was not the case, the length of a chunk packet will be used to adjust
the above equation.

3.1.2.3 Queue convergence

In this section we demonstrate that the transmission queue length converges to the ob-
jective r. We assume a single conversation that can use the entire link capacity to send
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its Data. We define the Response Delay for packet number j as A∗

j and for packet j + 1
is A∗

j+1. The queue evolution for a single stream is written as follows:

e(t+ 1) = e(t) + γ(t).A∗

j+1 − C.A∗

j+1 (3.6)

and

γ(t) = C + h
r − e(t− 1)

A∗

j

, (3.7)

Based on above we can write :

e(t+ 1) = e(t)− h.
A∗

j+1

A∗

j

.e(t− 1) + [h.r.
A∗

j+1

A∗

j

] (3.8)

This formula can be simplified as

ei+1 = ei + α.ei−1 + β (3.9)

with

α = −h.
A∗

j+1

A∗

j

, β = h.r.
A∗

j+1

A∗

j

and ei−1 = e(t− 1) (3.10)

We write ei+1 as

ei+1 = fi+1 −

β

α
(3.11)

Then we obtain

fi+1 = fi + α.fi−1, (3.12)

which is the series of Fibonacci.

So, due to [7] we have

fi+1 = P.zi+1 (3.13)

where z is the root of equation

z = z0 + α = 1 + α (3.14)

Thus, we need that

|z| < 1 (3.15)
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Figure 3.4: Representation of the model

Table 3.2: Notations
λc
i arrival Chunks rate to node i

λI
x arrival Interests rate

µi service rate of node i

γi shaping rate of node i

Ai delay from Interest to the related content for node i

ei(t) number of queued packets at time t of node i

B buffer size

r queue threshold

and if i tends to infinity then fi+1 converges to 0. But the condition |z| < 1 will be
true only if :

0 < h < 2.
A∗

j

A∗

j+1

(3.16)

And finally,

lim
i→∞

ei = lim
i→∞

[−
β

α
] = r (3.17)

We found that the transmission queue is converging to r as expected. We will observe
that we can face a burst of Data Chunks during the initialization period. This is because
our algorithm starts only after the reception of the first data packet. Until then, the
system sends the packets with the maximum available rate. This problem is solved by
limiting the initial sending rate according to the shaping rate formula.

We now consider F conversations. Our shaping rate formula is defined by:

γi(t) = C(t) + h.
r.ρi(t)− ei(t)

A∗

i (t)
(3.18)

It appears that the queue size for each flow converges to ρi(t). So, the total queue size
will converge to r as expected.

3.1.3 Network of nodes

We now extend our simple initial scenario to the case of a network of nodes. This model,
described in Figure 3.4, consists of N nodes using HoBHIS. We have now a hop by hop
congestion control mechanisms using the shaping rate computed at each router. The
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notations are presented in Table 3.2. We start with a single conversation flowing through
the system. The Response Delay is defined by parameter A. The Chunks arrive into the
nodes with the rate λc chunks/second.

3.1.3.1 Dependency of delay from Interest to Chunk

The Response Delay A of one node depends on downstream nodes up to the router caching
the Data or the source itself. Let’s define Ai and Ai−1 the Response Delays for nodes i

and i− 1 respectively. Ai can be expressed as follows:

Ai = Ai−1 +
X∑

j=1

1

γ
j
i−1

+
ei−1

µi−1

(3.19)

The Response Delay for a given packet p in node i depends on the number of packets
X queued for transmission ahead of p towards the downstream node and also depends
on the number of packets ei−1 queued before the response will be sent-back to node i.
The quantity

∑X

j=1

1

γ
j
i−1

means that we recompute the shaping rate γi−1 for each Chunk

entering the queue and hence the Interests could be sent with differents rates.

3.1.3.2 Convergence property

We have demonstrated for a single router model that, if the minimal rate among all nodes
is γi, associated to node i, then the queue of node i converges to r. In addition, we know
that

lim
t→∞

e
γi

i (t+ 1) = r and lim
t→∞

e
γk

i (t+ 1) = r′ (3.20)

So, according to the limit inequality theorem we have: r′ ≤ r for all other routers sharing
the same conversation’s paths as router i.

3.1.4 Dynamic adjustment of the design parameter h

In this section we analyse in details the behaviour of HoBHIS and study the dynamic
adjustment of the design parameter h. This parameter is very important because it has
a significant effect on the dynamic convergence properties. Let us study it with a simple
analytical model.

In this model, we consider a single-conversation going through the CCN node and
constant response delay A(t) = A. HoBHIS starts to react only after the reception of a
data chunk. During an initialisation period, the Interest sending rate of any CCN node
equals its maximum possible rate to send the Interests, namely:

γmax,t0 =
C

SI

(3.21)

where SI is the size of an Interest. The oscillations in the data queue might be large
during the initialisation period due to a high Interest sending rate. Two situations are
possible: case 1) an incoming Interest rate, γin, is higher or equal to γmax,t0 , and case 2)
γin is less than γmax,t0 .

In the first situation, the router will send a huge number of Interests into the network
that may lead to large oscillations in the data queue. Oscillations due to the initialisation
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period can not be avoided but the parameter h will be controled in order to stabilize the
system as fast as possible.

For the first case where γin ≥ γmax,t0 , the solution is to quickly serve the Chunks in
excess. Let’s call e0(t) the number of Interests sent during the initialisation period. We
know that for the case where e0(t) > r:

h
r − e0(t)

A
< 0 (3.22)

Thus, to have γ > 0, we should maintain:

|h
r − e0(t)

A
| < C (3.23)

Thus, we have:

|h| < |
CA

r − e0(t)
| (3.24)

When a first Chunk arrives to the node, we can easily compute h using Formula 3.24.
That allows us to make the queue converge to its objective faster and without future
oscillations. The only problem we can face here is the shaping rate that immediately
jumps from a large value to a small one. In order to reduce this jump of the shaping rate,
we can try to maintain it between γstable ± δ, where δ is defined from:

|γ(t)− γstable| ≤ δ (3.25)

Where δ = ǫ ∗ stable_value, ǫ ∈ (0; 1) that corresponds to δ = ǫγstable = ǫC in our case.
Thus, to maintain γ in these bounds we can use h = ǫhopt. Frequently, for control systems
ǫ = 0.05.

Let us study the second case where γin < γmax,t0 . We know that:

h
r − e(t)

A
> 0 (3.26)

It means that in practice the Interest sending rate γ(t) = min{γmax,t0 , γin} = γin. When
the first Chunk arrives, the shaping rate γ(t) will be computed and expressed in number
of Chunks per second and then should be applied to the Interests. Hovewer, the queue
size is still less than the objective value r. Therefore, the design parameter should adjust
the shaping rate γ(t) to γin until the queue converges. We should also take into account
the number of Interests that have been sent during the initialisation period and will be
quickly returned as Chunks, NI . Therefore,

γin = C + h
r −NI

A
(3.27)

Thus, the value for h can be derived from this equation and will be:

h =
(γin − C)A

r −NI

(3.28)
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3.1.5 Performance evaluation

The aim of this section is to analyze, through simulations, the performance of HoBHIS. We
have started our simulations by developing the CCN module in Network Simulator 2 (ns2).
According to our knowledge, there was no version of CCN in ns2 at the time of writing.

Later, we ported our implementation to ns3-based Named Data Networking Simu-
lator (ndnSIM) [3] that implements Named Data Networking (NDN) communication
model. The source code is publicly available on github.com and can be easily found on:
https://github.com/Be1thaz0r/HoBHIS.git .

In this section, we evaluate the performance of the CCN Interest shaping mechanism
using our implementation of the mechanism in ns2 and we then use our implementation
in ndnSIM to evaluate the behavior of HoBHIS with dynamic adjustment of the design
parameter h.

3.1.5.1 Simulation scenario for HoBHIS

We start with the single router model. We consider both the single conversation and the
multi-conversation scenarios presented in Figure 3.5(a) and 3.5(c) respectively.

As depicted in figure 3.5(a) and 3.5(c), our network consists of the client, router and
server components. The client sends the Interests to the router that takes the next decision
according to the shaping mechanism. The server role is very simple, as for each received
Interest it responds with the corresponding Chunk and sends it back to the router. The
shaping rate is computed according to the algorithm presented in previous sections. The
buffer parameters are B=500 Chunks, r = 100 Chunks, h = 0.1, 0.4 and 0.7. The clients
generate Interests with rate 833.3 Chunks/s. The links rates are given in figure 3.5(a)
and 3.5(c). The bottleneck is the 1Mb link between the client and the router. Parameter
A(t) is a random value uniformly distributed in [0,1] and it is generated in the server for
every packet to take into account the variability of the path between the router and the
server.

The Network topology used for the evaluation is presented in figure 3.6(a). We consider
two conversations from clients 1 and 2 respectively. Data for conversation 1 is in the cache
of node 3. As Chunks coming from cache of node 3 can be sent directly and very fast
(Interests are not shaped and Response delay ≃ 0), we add some small fixed delay to
each Chunk coming from cache in order to avoid a possible overflow of the Chunk output
queue. We provide a detailed explanation in Chapter 5. Conversation 2 flows from Client
2 to the Server. The interest rate is 2500 Chunks/s for each client. The parameters for the
buffers are B=500 Chunks, r=250 Chunks and h=0.7. The capacity of each link is 2500
Chunks. The conversation 2 starts before conversation 1 and after some time it stops.
We are interested in the buffer state for node 3, as well as the rate for each conversation
over time.

3.1.5.2 Simulation results for HoBHIS

The simulation results for the single conversation scenario are presented in Figure 3.5(b).
We have tested our algorithm for different values of h. In Figure 3.5(b) we can see that the
queue converges to the objective r as expected (cf. in Section 3.1.3). The bursts in these
curves are due to the initialization period when the algorithm is not yet in operation. The
different values of h illustrates its influence for the control mode and convergence rate.
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Figure 3.5: Queue convergence for mono and multi conversation scenarios
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Figure 3.6: Simulation results for network scenario
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The higher h the slower the convergence rate towards the objective and the harder the
control. The situation repeats for the multi conversation scenario in Figure 3.5(d). The
average queue size converges to r as expected (cf. Section 3.1.3).

Figures 3.6(b) and 3.6(c) illustrate the network scenario. As we use the same capacities
for each link, the queue of every node is empty until conversation 1 starts. Then, the
queue for node 3 starts to fill up and converges to the objective. Figure 3.6(c) illustrates
the Chunks arrival rates for each conversation in Chunks/s. At time 20, conversation 1
becomes active. At time 60, conversation 2 becomes inactive. Between time 20 and 60,
when the two conversations are active, each of them receives a faire share of the router
resources. The Chunks arrival rate, shared between the two conversations are controlled
by the minimal shaping rate. In figures 3.6(b) and 3.6(c) we see that our congestion
control mechanism is able to adapt the rate and to maintain the queue length at the
expected level as it was designed.

3.1.5.3 Resource sharing

We consider now the multi-conversation scenario and observe the share of buffer capacity
allocated to a given conversation. The network topology for this scenario is presented
in Figure 3.7(a) and consists of three Clients asking for different contents with different
rates. We are interested in observing the buffer state of node 2 containing the Chunks
of all active conversations. As the Tolerance mechanism is not used in this scenario, the
assymetric link is configured between two nodes in order to have only one bottleneck for
Data packets and avoid congestion due to possible Interest buffer overflow. The Interest
and Chunk packet’s sizes are set to 40 and 1500 bytes respectively. The buffer parameters
are as follows: total buffer size =500 Chunks, r=300 Chunks, h=0.7. The Clients 1, 2 and
3 are continuously sending Interests with 100Mb/s, 50Mb/s and 20Mb/s respectively.

We compare two possibilities for buffer sharing. In the first one we share the buffer
capacity according to r

F
, while the second one allows each conversation to share a part

calculated thanks to formula (3.4). In the first case, it can be seen from Figure 3.7(b), that
the total queue length is less than the expected threshold r. It means that the available
resources are not completely used.

The second possibility of buffer sharing is demonstrated in Figure 3.7(c). Unlike in
the previous case, we observe that the buffering resources are fully utilized. The buffer
capacity left by any conversation is shared among other ones and the total queue length
converges to r as expected by HoBHIS.

3.1.5.4 Dynamic adjustment of h

In this section we analyze the convergence rate of our mechanism. We use a simple
mono-conversation scenario and one-node topology presented in Figure 3.8. The A(t) is
considered to be constant for these experiments. We are interested in the convergence
rate of the data queue of the bottleneck link and the shaping rate towards their objectives
that are r = 60 and γ = C, under different values of h. We study two cases presented
earlier in Section 3.1.4, where the first one causes the big oscillations in the data queue
after an initialization period while in the second case the data queue is not sufficiently
filled. To generate the oscillations in the data queue during the initialisation period we
will use the Client Interest sending rate = 5.000 Interests/s that is higher than γmax in
order to use the maximum possible Interest sending rate of a CCN node. For the second
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Figure 3.7: Resource sharing
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case we reduce the Client sending rate to 1.000 Interests/s in order to have γin < γmax.

The curves 3.9(a) and 3.9(c) show the results for the case where the data queue is
overloaded due to an excess number of Interests sent during the initialization period.
Tuning the value of h we observe the different behavior of the Chunk queue. It is easy to
see that the optimum value of h dynamically adjusted thanks to the algorithm presented
in Section 3.1.4 provides the best convergence rate to the objective value without oscilla-
tions whilst other values of the design parameter do not provide a suitable control. For
simplicity, we provide a theoretical shaping rate that may become negative.

The results for the second case are presented in Figures 3.9(b) and 3.9(d). Again, hopt

provide a suitable convergence speed towards the objective. The small and large h values
cause slow convergence and oscillations respectively.

3.1.5.5 Influence of the Response Delay variations

This section provides an analysis of the influence of the Response delay in the performance
of HoBHIS. Indeed, the Response delay is an important parameter as it defines the control
loop and has a strong influence on the dynamic of the system. In addition, as the content
can be cached anywhere along the path followed by the conversation, this value can change
over time. However, we believe that once a content is cached, the likelihood that it will be
moved with short time scale is scarce and that the control loop will be mostly influenced
by the variation of the delays experienced on that path. The simulation topology is
provided in Figure 3.10(a). The buffer objective r for this scenario is fixed to 300 Chunks,
the maximum buffer size B = 50000 Chunks. We consider that A(t) is a random value
uniformly distributed in [0,1] seconds unless otherwise stated. We consider two possible
scenarios.

3.1.5.5.a Erratic behavior of the Response Delay

This scenario represents the analysis of the behavior of HoBHIS in the case of an erratic
behavior of the Response Delay. If it happens that A(t) suddenly becomes very large
with respect to its current estimate (the content has been moved far away), it will take
time for our mechanism to adjust the shaping rate to the new value of the control loop.
During the time of the new Response delay (equal to 3 seconds in our simulation), the
Chunk queue will decrease but the shaping rate is not yet re-evaluated. After 3 seconds a
burst of Chunks will arrive because the shaping rate was over-estimated leading to a sharp
increase of the transmission buffer. After a little while, the queue will converge again to
its objective thanks to the accurate estimate for A(t), demonstrating the efficiency of our
solution.

Figure 3.10(b) illustrates the simulation results for this scenario. We can observe that
the queue oscillates around r because of the random character of the Response delay. The
two bursts on this curve are due to the sudden growth of A(t) as described above.

3.1.5.5.b Large variations of the Response Delay between consecutive packets

In this scenario we consider a different situation where A(t) presents large variations
between consecutive packets. A(t) is set to 0.001 seconds for odd packets and 3 seconds
otherwise. A prediction mechanism based on the historic of the last 20 values of A(t) is
used.



CHAPTER 3. HOP-BY-HOP INTEREST SHAPING 43

Figure 3.10(c) shows the simulation results for this case. At the origin of the curve, we
observe oscillations of the transmission buffer because of the insufficient historic of A(t)
to stabilize the queue. Then, A(t) is smoothed and the queue size converge as expected
by HoBHIS.

3.1.5.5.c Distributions of the Response Delay

We evaluate now he influence of different distributions of the Response Delay on the be-
havior of HoBHIS. The topology for this experiment is presented in Figure 3.11(a). In
this Figure, the Server node delays the Chunks according to different random distibu-
tions. We compare three distributions: uniform, exponential and pareto. The delays are
randomly distributed from 0 to 0.1s. We observe the Chunk queue evolution in the CCN
node. The buffer sizes are set to 100 packets for Interest and Chunk queues, the queue
objective is set to 60 Chunks. HoBHIS and Tolerance mechanism are in operation in the
CCN node. Figures 3.11(b), 3.11(c), 3.11(d) presents the results for uniform, exponential
and pareto distributions respectively. We observe almost the same behavior in the queue
of the bottleneck node for every distribution. The oscillations in the Chunk queue are
due to the random delays generated by Server for each Chunk. The oscillations in the
Interest queue are due to the Chunk queue and feedback delay between the Client and
the CCN node.

3.1.6 Conclusion

We presented (HoBHIS), the first hop-by-hop Interest shaping congestion control mech-
anism designed to avoid the congestion that can occur in the output interface of a CCN
node. HoBHIS monitors the transmission buffers of a CCN router to compute the Interests
rate that have produced the associated Chunks filling these interfaces.

We demonstrated analytically the convergence property of our algorithm. We per-
formed various experiments with different settings and progressive complexity. We ana-
lyzed the single and multiple conversation scenarios in a single router model. Finally, a
network case was studied to demonstrate the behaviour of our algorithm in more complex
conditions. We have seen that the shaping mechanism performs as designed.
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Figure 3.9: Chunk queue length and Interest shaping rate convergence speed as a function of h
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Figure 3.10: Influence of the Response Delay variations
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(c) Queue size as the function of time with exponential distribu-
tion of RTT from 0 to 0.1s
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Figure 3.11: Influence of the Response Delay variations



Chapter 4

Tolerance rate mechanism

4.1 Controlling the Interest rate

The shaping rate formula allows us to control the congestion of the transmission queue by
carefully monitoring the rate of the Interest packets in the CCN nodes. However, there is
no mean to prevent a Client from sending Interest at high or excessive rates in order to be
privileged and retrieve his content faster. Therefore, it is important to define a tolerance
mechanism that, in addition, can control the Clients as well as prevent the loss of Interest
packets.

There exist two basic methods to throttle the rate of a client: rate-based and window-
based. Each of them has their own merit and both approaches are feasible in CCN. In the
case of window-based, the client’s behavior is strictly defined by the presence or absence
of Data packets. If no feedback arrives, it will be interpreted as congestion in the network
and the client will automatically stop sending. However, window-based control schemes
can lead to traffic bursts. Moreover, if the window is too small, the network resources are
not effectively used. An adaptation of this method is investigated in [16] and represents a
variant of Additive Increase Multiplicative Decrease (AIMD) for CCN. As the authors use
Data Chunks to increase/decrease the congestion window, the estimation of the response
time is crucial for this type of control. In [46], the authors also choose to use AIMD in
order to adjust the Interest sending rate used by clients.

Ideally, Clients should fully saturate the link, send packets and keep the Chunks ar-
riving continuously. To achieve this, the window-based control has to estimate an ideal
window size that can be computed based on the bottleneck capacity and the Response
Delay. The rate-based control has to know the bottleneck capacity or should receive an
explicit rate value from the network in order to adapt its sending rate. One advantage of
the rate-based control is that it does not stop sending in absence of feedback, but at the
same time the client has to be aware of a specific sending rate. This rate might be known
thanks to the introduction of a network feedback mechanism or by using an instantaneous
measured value of the input Data rate.

For a CCN client it is important to choose an initial value for the sending rate. It may
be a small fixed window for window-based approach or any specific rate for rate-based
schemes.

47



CHAPTER 4. TOLERANCE RATE MECHANISM 48

!"#$%& !"#

!!"#$%&'

! !$%

!!"#$%&'
!!"#$%&'!"#$%

!"#$%&'&(#)*!#$%+&!
"
#,& !"#& '&(#)*!#+&!

"
#-.,& !"#-. '&(#)*!#-.+!

"
/,& !"!"

!#$% !
#& !#-.

Figure 4.1: Network model

4.1.1 Tolerance rate

In this section we present the Explicit Interest Rate control mechanism that defines a
tolerance with respect to the interest rate that a Client can generate. A rate-based scheme
was preferred to a window-based mechanism such as AIMD because it is independent of
the end user’s strategy. In addition, it allows a more accurate control and better network
resource utilization.

We define the tolerance rate as the maximum rate that the clients are not allowed
to exceed. The principle of our solution is to adjust the tolerance rate to the rate of
the bottleneck node. Every CCN router will control the rate of incoming Interests by
periodically sending control packets with an explicit rate field advertised back to the
Clients. This explicit rate field aggregates the bottleneck rate on that path up to this
router and is advertised upstream towards the source.

In our model, two complementary rates are computed for each individual conversation:
the shaping rate and the tolerance rate. Thanks to HoBHIS, every CCN router controls
the rate of a conversation by shaping the rate of its associated Interests. In addition,
control packets will be exchanged and updated by the routers along the path followed by
a conversation, to convey the tolerance rate for every single Client. For sake of simplicity
and without loss of generality, we will consider a network topology illustrated in figure 4.1.
Each A(t) seconds, CCN nodes transmit control packets with an explicit rate information
back to the client. Each router calculates the maximum allowed rate for the Client and
updates this field if it is found smaller than the actual value. As a consequence, the control
packets carry the most conservative value for the rate, namely, the maximum allowed rate
of the path. It is obviously not necessary to update the explicit rate faster than the delay
of the control loop A(t).

4.1.2 Computation of the Tolerance rate

Let Formula 4.1 represent the maximum shaping rate for conversation i at time t. The
Interest queue contains Interests packets from many different conversations. The control
function used to compute the shaping rate of a given conversation enforces the total
Chunks queue length to converge to the objective r defined as a percentage of the buffer
capacity.

γi(t) = min[max[C(t) + h
rρi(t)− e(t)

A∗

i
(t)

, 0], Cint(t)], (4.1)

As we do not know a delay between the bottleneck router and the client, we can not
directly use the shaping rate formula to compute the tolerance rate because it may lead
to large Interest queue oscillations. Moreover, the shaping rate formula does not depend
on the Interest queue length at time t and so the level of Interests in the queue is not
controlled. As a result, it would be possible to have an Interest queue always congested.
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Thus, the tolerance rate formula should: 1) depend on γ(t); 2) use the filling level of
Interest queue at time t.

Respecting the conditions listed above, we propose the following computation formula
for the tolerance rate:

γ
T (t) = γ(t).(1−

e
I(t)

BI
) (4.2)

The factor (1 −

eI(t)
BI

) should decrease the oscillations due to feedback delay and the
variations of the shaping rate. Using formula 4.2 to calculate the explicit rate value,
allows us to maintain the total arrival Interest rate aligned with the shaping rate.

4.1.3 Dealing with packet loss

We have seen earlier that we can face the losses of both Data and Interest packets. As
one Interest corresponds exactly to one Chunk, the loss of one Interest reflects the loss
of one data Chunk. Therefore, it is important to react as soon as possible to a loss, and
therefore, a loss detection mechanism and the actions to be performed by a Client or CCN
routers should be defined.

Each CCN router has a Pending Interest Table (PIT) containing information about
the Interests that are waiting for the reception of the corresponding Chunks. Because of
Interest aggregation it becomes useless for a source to retransmit. In order to avoid this
situation, the current CCNx implementation considers the PIT timers to delete an entry
waiting for a long time.

A few papers have addressed this problem. In [16] and [17] the timers are used by the
Clients to allow the retransmission of Interests. At the same time, CCN routers use the
PIT timers defined by the CCNx implementation. However, for the algorithm described in
[16], the retransmission timer must be larger than the PIT timers of CCN routers, other-
wise, all retransmissions become useless. Another contribution, [46], presents a mechanism
of packet loss detection where a congested router sends a header of data packet to the
content consumer. This approach reduces the delay of loss detection. Nevertheless, an
implicit feedback is also used by default via a timeout that is interpreted as congestion.

In our solution, we recommend to use the features provided by the current CCNx
implementation ([1]) because the PIT timers guarantee that the Interests that have been
waiting for a long time will be deleted from the PIT after a timer expiration. It allows
the Clients to detect a congestion via a timeout and react by the retransmission of the
corresponding packet. However, the computation of the timer values remains to be solved.

4.2 Performance evaluation

The aim of this section is to analyze, through simulations, the performance of HoBHIS and
Tolerance rate mechanism. We use our implementation of these mechanisms in ns3-based
Named Data Networking Simulator (ndnSIM) that implements Named Data Networking
(NDN) communication model.
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Figure 4.2: Network topology to study the Tolerance rate mechanism
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Figure 4.3: Hop-by-Hop Interest shaping and Tolerance mechanism in operation

4.2.1 Tolerance mechanism

In this section we analyze the performance of our feedback mechanism that is used to
enforce the tolerance rate. The simulation topology is presented in Figure 4.2. In this
scenario, Clients 1, 2 and 3 are asking for the content from Server 1, 2 and 3 respectively.
The shaping mechanism is implemented in each CCN node. Every CCN node has a timer
set to a Response Delay value and send the control packets according to the algorithm
defined in Section 4.1. The servers represent the rest of CCN network and generate the
random delay from 0 to 0.1 s for every Chunk packet. All of the clients are not greedy and
have the maximum sending rate for 100 Interests/s for Clients 1 and 2 and 25 Interests/s
for Client 3 they can not exceed. When the explicit rate value is retrieved by the Clients,
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they adjust their sending rate to this value. Their rates are updated every A(t) seconds
with the values obtained from the control packets. We are interested in observing the
Interest and Chunk buffer states in bottleneck node R2. The buffer parameters are:
buffer size = 100 Chunks, r = 60 Chunks. The control packet’s size is equal to the
Interest packet size that is around 30 Bytes, the Chunk payload size is set to 1000 Bytes.

The results are shown in Figures 4.3(a) and 4.3(b). As it can be seen from the Figures,
the total average Chunks queue length converges to the threshold r = 60 Chunks as
expected by HoBHIS. We can see that the conversations fairly share the buffer capacity.
The Clients 1 and 2 have the same percentage of buffer capacity attributed to them
because they are emitting with the same rates. As the sending rate of Client 3 is slower
than the rates of other two Clients, it does not need the same amount of buffer capacity
that Clients 1 and 2. Thus, we see that the part of router ressources that is not used by
Client 3 is attributed to Clients 1 and 2. We observe the same behavior of the Interest
queue where the resources are fairly shared between the conversations. Figure 4.3(c)
presents the client rates and the shaping rate of the bottleneck node. The rate of Client 3
achieves its maximum value at 25 Interests/s. As the Clients 1 and 2 are able to emit
faster than Client 3, their tolerance rate is higher. The sum of Client rates is equal
to the bottleneck node’s shaping rate. Finally, as a result, we observe optimal resource
utilization and no packet loss.

4.3 Conclusion

We presented a first comprehensive solution for congestion control in CCN networks. This
problem is of utmost importance and has not been globally addressed in the past. Our
framework is grounded on our original HoBHIS mechanism that was the first introduced
to provide a hop-by-hop shaping mechanism. It nicely exploits the flow balance enforced
in CCN between Interest and Chunk packets. It mostly consists in monitoring active
conversations sharing the transmission buffer of a CCN node face in order to dynamically
adjust their Interest sending rate and enforce the Chunk queue length to converge to a
defined objective. This mechanism is implemented in each CCN node. We extended the
design of HoBHIS in order to address the important concerns that might occur in CCN.
We first demonstrated the fairness of resource sharing among competing conversations.
Second, we introduced an explicit Interest rate feedback mechanism designed to control
the Client behavior and prevent a potential risk of network congestion. Each node will
compute a Client tolerance rate that is returned upstream towards the source in order to
collect the bottleneck rate of the path. A thorough evaluation was conducted using differ-
ent simulation scenarios. We observed that the results fully satisfy the design objectives
and we can conclude that HoBHIS is an efficient and operational solution to the problem
of congestion control in CCN.



Chapter 5

Managing complex scenarios

In chapter 3 we have seen that HoBHIS allows us to control the congestion of the trans-
mission queue by carefully monitoring the rate of the Interest packets in the CCN nodes.
However, there is no mean to prevent a Client from sending Interest at high or excessive
rates in order to be privileged and retrieve his content faster. Therefore, it is important
to define a tolerance mechanism that, in addition, can control the Clients as well as pre-
vent the loss of Interest packets. In chapter 4 we introduced the Explicit Interest Rate
control mechanism that defines a tolerance with respect to the interest rate that a Client
can generate. A rate-based scheme was preferred to a window-based mechanism such as
AIMD because it allows a more accurate control and better network resource utilization.

The structure of this dissertation is a step-by-step design and evaluation of the con-
gestion control scheme. The aim of this chapter is to study in details the behavior of
our mechanisms in different possible advanced scenarios that may happen in CCN. We
study such situations as multicast, traffic-split, cross-traffic and influence of caching. It is
important to analyse the reaction of our solutions and to propose the strategies to manage
all of the cases. The objective is to improve our solutions in order to develop a unified
control that will take into account all possible situations.

5.1 Multicast

This section is dedicated to the study of the behavior of HoBHIS in the situation of
multicast conversations. This scenario is important as it often happened that the same
content is retrieved by multiple Clients and optimizations are required in such situations.

Two or more Interests asking for the same content must be aggregated by a CCN
router. These Interests might come from heterogeneous Clients and environments, for
instance having different link capacity. However, only a single copy of such request will
be kept in the buffer and processed by HoBHIS. An important issue being to define which
parameters should be used in formula (3.5) to compute the shaping rate for an aggregated
set of requests.

According to the state of the art, we have to adjust to the most conservative environ-
ment, namely, we shall use the smallest bandwidth and the largest output queue length
from the heterogeneous conversations. The shaping rate will be calculated as follows:

γ(t) = min{C1, ..., CN(t)}+ h.
r −max{e1, ..., eN(t)}

A∗(t)
(5.1)

52



CHAPTER 5. MANAGING COMPLEX SCENARIOS 53

!
!
!

!
!
!

!"#$%&'()*+ ,$%#$%&'()*+

-"'.

-"'/

-"'0

-"'1

2$%'.

2$%'/

2$%'0

2$%'3

!"#

"$%&'&(%(

))*+,-.%&'

!"#!$

!"

!$

/"0 )1.$2(3+)4

)1.$2(3+)5

!"

!
$

!
"#!

$

!%&'()

*!"#!$

!"

!$

Figure 5.1: Representation ot the traffic split in CCN network
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Figure 5.2: Representation ot the traffic split in CCN network

Where N represents the number of Clients asking for the same Chunk.

If all links have the same capacity, then all buffers will be controlled similarly and the

queue lengths will converge to the objective r as expected by HoBHIS. We provided a

detailed performance evaluation in Section 3.1.5.

5.2 Traffic split

In this section we discuss traffic split and its influence on our scheme. Traffic split is

a situation where the incoming Interest traffic is splitted between different output faces

such that it is shown in Figure 5.1. In this figure, the Interests are arriving to the input

face inF1 and asking for different content C1 and C2. After a FIB lookup for the output

faces, the traffic is splitted between outF1 and outF3. Later, the returning Chunks will

be forwarded and mixed on inF1. This situation is important because the shaping rate is

based on the common Chunk queue length of inF1 but applied to the independent output

faces outF1 and outF3. In the worst case, this may cause the overflow of the output Chunk

buffer because the expected threshold r won’t be respected.

5.2.1 Problem description

In this section we provide a simple example in order to better explain the importance

and consequences of traffic split. The Figure 5.2 depicts such a scenario. Two Clients,

Client 1 and Client 2, are asking for the contents C1 and C2 located in Servers 1 and 2

correspondingly. The Interests of two conversations are mixed on the same output face

of router R1 and share the link capacity between R1 −R2. The mixed traffic arrives then

to R2 where it is splitted in order to reach the Server 1 for C1 and the Server 2 for C2.
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Table 5.1: Notations

C(t) available bandwidth to send the chunks at time t

Cint(t) available bandwidth to send the Interests at time t

γ(t) shaping rate at time t

γ
T (t) tolerance rate at time t

A(t) delay from Interest to the related content

A∗(t) predicted delay from Interest to the related content

e(t) number of queued Chunks at time t

eI(t) number of queued Interests at time t

eI
i
(t) number of queued Interests of conversation i at time t

B buffer size

BI Interest buffer size

r queue threshold

F number of active conversations

h design parameter

HoBHIS is implemented in every router of the path. The output link R2 → R1 is the
bottleneck to send the returning Chunks. We describe the chunk queue behavior of the
router R2. The notations are given in Table 5.1.

In order to maintain the chunk queue length around the objective value r, HoBHIS
computes the Interest shaping rate and supposes that the returning Chunk rate will be
around this value. In our example depicted in Figure 5.2, the returning Chunk rate should
ideally be as follows:

γin(t) = γ1(t) + γ2(t) = C + h
r − e(t)

A∗(t)
= γ(t) (5.2)

Where γin(t) is the total incoming Chunk rate to the router R2, and γ(t) is the Interest
shaping rate.

Let us check if the Condition 5.2 is satisfied; for our example. According to HoBHIS,
the shaping rate on the independent output faces for C1 and C2 will be computed as
follows:

γ1 = C + h

e1(t)
e(t)

r − e1(t)

A∗

1(t)

γ2 = C + h

e2(t)
e(t)

r − e2(t)

A∗

2(t)

(5.3)

Suppose that A∗

1(t) = A∗

2(t) = A.

γ1 + γ2 = 2C + h
r − e(t)

A
#= γ (5.4)
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Figure 5.3: Solution to manage traffic split

Thus, in general case with M conversations whose Interests are splitted between dif-
ferent faces :

γin = MC + h
r − e(t)

A
"= γ (5.5)

As we can see, the Condition 5.2 is not respected. The returning Chunk rate is higher
than an expected value. It is easy to demonstrate that the Chunk queue is converging to
r′ > r.

5.2.2 A solution to manage traffic split

As we have seen above, the traffic split has an influence on the behavior of HoBHIS. It
happens because the output faces are managed independently. Thus, we need to share the
output Data link capacity according to the number of output interfaces to send Interests
in order to satisfy Condition 5.2. Moreover, the solution should be directly included in
the shaping rate formula and should not consider any traffic split maintaining mechanism.
We also want our solution to be conversation-independent and should not keep the huge
history about sent Interests.

To do so, the shaping rate formula should contain the following parameter:

γi(t) = κiC + h
ρir − e(t)

A
(5.6)

Where κi is computed as follows:

κi =
NOutFacej

e(t)
, (5.7)

NoutFacej is the number of Chunks arrived from an OutFacej and actually being located
in the output data queue.

In this solution we do not need to observe the traffic split and maintain different modes
of our scheme to manage special situations. Instead, we always suppose that there is a
traffic split and maintain per-interface queue length. The only information we need is to
know from which interface we just received a Chunk.
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Figure 5.3 illustrates the unified solution taking into account the traffic split. The
Chunks of three conversations : red, green and yellow, are mixed in the same data output
buffer. The different Chunks of red and green conversations are coming from the inter-
faces A and C. The yellow conversation arrives from the interface B. As it is depicted
in the figure, every interface of the CCN router should maintain a structure like a table
Face/QLen illustrated in the picture in order to know how many Chunks we get from
each interface and what part of the buffer capacity they are occupying. The maximum
number of lines in this table equal to the total number of interfaces in the router minus
1. The number of such tables is equal to the number of router interfaces. When a Chunk
arrives into the Data queue from any given interface, the counter QLen for this interface
is increased by 1 and decreased when the packet is dequeued. At the same time, we should
maintain the markers or labels that show us the interface from which this packet has been
received. It can be implemented as a simple queue structure and have the same size and
behavior as the Output Data queue. This structure will keep the markers of the input
interfaces for every Chunk in the Data output buffer. A marker is added when a Chunk
is enqueued and deleted when the packet is dequeued. The order of markers repeats the
order of Chunks in the queue.

The presented solution also takes into account the situation where any given conver-
sation is splitted between different faces. In this case, the packets will have the different
interface markers and HoBHIS won’t be confused computing the shaping rate. Thus, the
final shaping rate formula becomes as follows:

γi(t) = min[max[κiC(t) + h
ρir − e(t)

A∗

i (t)
, 0], Cint(t)], (5.8)

with ki

κi =
NOutFacej

e(t)
, (5.9)

Nfaces∑

j=1

κj = 1 (5.10)

where i is the conversation and j is the output interface where a given Interest is
located at the moment of the computation of its shaping delay.

5.3 Cross-traffic

Previously we have discussed the problem of traffic split that happens when the Interests
arrive to the same input face and then splitted between different output faces. In this
section, we discuss the dual case where the Interests arrive to different input faces and
then mixed into the same output face of a CCN router.

Figure 5.4 illustrates this situation. In this figure, the Interests asking for the content
C1 and C2 are arriving to the input faces inF1 and inF2 correspondingly. They are then
forwarded to the output interface outF2 where they are mixed in the transmission buffer
of this interface. The returning Chunks will so be splitted between the inF1 and inF2. It
is easy to see that the output Chunk queues are independent from each other. Thus, we
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should compute the shaping rate independently. But this is not a case when the Interests
are mixed in the same queue. One of the conversations saturating its output Chunk queue
will penalize other conversations.

Suppose that the Chunk queue of inF1 is congested. According to HoBHIS, the shaping
rate for the conversation C1 will tend to 0. At the same time, even if the Chunk queue
of inF2 is behaving correctly, the Interests of the conversation C2 will be blocked by C1.
That is not suitable behavior and we should carefully manage this situation.

5.3.1 Managing cross-traffic

In this section we propose a possible solution to manage cross-traffic. It consists in
maintaining on each output interface one virtual queue per input interface. Thus, the
total maximum number of virtual queues will be equal to the total number of possible
input interfaces. We can manage them independently according to the shaping rate values.
Thus, if C1 is blocked, we can still forward the Interests of C2 according to its shaping
rate value.

5.3.2 Problem description and solution

In this section we try to clearly demonstrate why it is important to manage the cross
traffic. We compare the behavior of HoBHIS by default, i.e. in case where the cross
traffic is not managed, and using our solution proposed in section 5.3.1.

We consider two traffics i and j going through a CCN router like it is depicted in
Figure 5.4. In the first case we mix interests of both conversations in the same output
buffer so that one conversation depends on another. The second case consists in using
the virtual queues and managing the conversations independently.

Suppose now that we always have Interests in the buffer, i.e. every time we have
something to send. To keep it simple, we consider the Interests of same size and constant
Response delay A(t) = A. Figure 5.5 illustrates an output Interest queue containing two
conversations i and j that will be delayed by the shaper prior to be sent. As the Interests
are arriving from different input interfaces, the shaping rate for theses conversations will
be computed as follows:

γi(t) = Ci + h
r − ei(t)

A
(5.11)

γj(t) = Cj + h
r − ej(t)

A
(5.12)

Let us illustrate this in figure 5.5. We observe Ni packets of conversation i before j.
The shaping delay for each of them is:

τi(t) =
1

γi(t)
(5.13)

Ideally, τj should also be computed with a similar formula:

τj(t) =
1

γj(t)
(5.14)
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Figure 5.4: Representation of cross-traffic in CCN network

But in reality, packet j is waiting Ni ∗ τi before being delayed on τj by the shaper. To
keep it readable, we will omit the dependence of time. Taking the traffic i into account
we have a real delay for packet j:

τ
′

j =
1

γj

+
Ni

γi

> τj (5.15)

It is easy to see that the real shaping delay for j is much higher than the expected
one.

We now introduce the virtual queues and manage the traffic like it is depicted in Fig-
ure 5.6. Let us study the real and expected shaping delay for packets of the conversation
j (the conversation i will have the same behavior).

τ
′

j =

{

1

γj
, if τj ≤ τi

1

γj
+ (Niτi − τj) if τj > τi

Merging this two cases we obtain:

τ
′

j =
1

γj

+max{0, (Niτi − τj)}, (5.16)

where τj is computed thanks to the formula 5.14. Ni is the number of Interests of
conversation i that we can send over τj.

Generalising this formula to the case where the shaping delay of conversation i is
changing during τj, we obtain:

τ
′

j =
1

γj

+max{0, (

Ni
∑

k=0

τi,k − τj)}, (5.17)

It is easy to see that the result from formula 5.16 is smaller than the one of formula 5.15.
It means that virtual queues provide a more efficient use of router resources.
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Figure 5.6: Virtual Interest queues

5.4 Influence of caching

In previous chapters we discussed a congestion caused by high returned data rate. How-
ever, we did not take into account the content returned from cache. Caching in CCN
may also cause congestion in routers because the output data rate from the cache is up-
perbounded by the delay of cache lookup only and mostly equal to the arrival Interest
rate. Thus, if the arrival Interest rate is high, the output Chunks queue will quickly be
overloaded by the content going from cache. Thus, even if all Chunks of any given con-
versation are located in the cache, we can not send them all immediately due to possible
buffer overflow. This situation is especially dangerous for bottleneck nodes but has never
been carefully explored in the existing works.

As we have seen earlier, our hop-by-hop Interest shaping mechanism is applied to the
output Interest queues and, thus, can not correctly manage the Chunks returned from
cache. Therefore, in this section we extend our mechanism to solve this problem. We
propose a scheme to protect the output Chunk queue from congestion caused by the
cache.

We propose to maintain the output cache queues per interface and shape Chunks
instead of Interests. We also consider that the cached content is the popular one and
should be privileged. However, we must take into account others conversations and buffer
sizes. Thus, we add a condition to check the presence of the asked content in the Content
Store. The proposed solution is depicted in Figure 5.7. For every Interest arrived from face
i (A, B or C in the Figure), we check if we can lookup the corresponding content in the
cache. The condition is the filling level of the cache queue corresponding to the input face.
If the corresponding cache queue is full, the Interest is forwarded normally. Otherwise,
we check the Content Store for asked Chunk. To improve memory utilization, the cache
queues may contain only the pointers to the given Chunks instead of the complete packets.
This saves the memory, however, if any given packet has been replaced in the cache before
to be sent, it may lead to packet loss.

5.4.1 Computation of the shaping rate

In this section we explain the shaping rate computation process. The situation discussed
in this section may be presented as a particular case of traffic split and will have the
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Figure 5.7: Representation of shaping scheme for Chunks coming from the Content Store

similar control as the Formula 5.6 in Section 5.2:

γi(t) = κiC + h
ρir − e(t)

A∗

min

, (5.18)

where A∗

min
is the parameter that theoretically tends to 0 because the content is getting

from cache. It means that the sending rate from the cache should tend to ∞ that is not
possible in practice. Moreover, such a large output rate will quickly saturate the output
Chunk buffer and lead to congestion. If this parameter is very small, it means that the
cache is not optimally used. We propose to select a value that is less than the minimum
A(t). Choice of this parameter should depend on how much we want to privilege the
cached content.

5.5 Performance evaluation

In this section we evaluate the performance of the proposed solutions using our implemen-
tation in ndnSIM . We analyse our solution to Multicast and evaluate the effectiveness
of the schemes proposed in this chapter.

5.5.1 Multicast

The aim of this part is to study the behavior of HoBHIS when Interest aggregation is
in operation. The network topology for this experiment is depicted in Figure 5.8(a). In
this scenario three Clients ask for the same content continuously sending Interests with
the same rate equal to 60Mb/s. Key parameters are set as: maximum buffer size is 500
Chunks, r=150 Chunks and h=0.7. All other parameters are unchanged. We study three
possible scenarios:

1. The Clients have the same rates (60 Mb/s) and the same link capacities (10Mb/s).

2. The Clients have different link capacities C1 < C2 < C3 (10Mb < 20Mb < 30Mb)
but the same rates (60Mb/s)
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3. The Clients have differents rates R3 < R2 < R1 (30Mb/s < 50Mb/s < 100Mb/s)
and the same link capacities (10Mb/s)

We are interested in the queue length of each active conversation at time t. We
observe the transmission buffers associated to the output faces of a CCN node. We do
not consider any caching policy nor routing mechanism. The random value of the response
delay parameter A(t) is uniformly distributed between 0 and 1 s.

5.5.1.1 Scenario 1: The Clients have the same rates and the same link capacities

In this scenario, the clients ask for the same content with their Interest sending rates
set to 60Mb/s. The output link capacity of the CCN node is also equal to 10Mb/s for
every output interface. We are interested in the queue length of each conversation on the
corresponding faces. The results are illustrated in Figure 5.8(b). Thanks to the Interest
aggregation, every queue converges to r (r = 150 Chunks). So we have exactly the same
queue’s behavior for every conversation.

5.5.1.2 Scenario 2: The Clients have different link capacities but the same rates

In this scenario, to compute the shaping rate we use the smallest bandwidth between
all the links and the biggest queue length as defined in Section 5.1 (cf. Formula 5.1).
We are interested in the queue length of each conversation. Figure 5.8(c) represents the
results of this experiment. We observe that the queue of conversation 1 with the minimum
bandwidth converges to r while the queues of conversations 2 and 3 remains empty. No
losses are generated and the bandwidth of the smallest link is effectively used.

5.5.1.3 Scenario 3: The Clients have differents rates but the same link capacities

The last scenario is similar to Scenario 1 but with different client sending rates. Fig-
ure 5.8(d) represents the queue size for each output interface of a CCN node. We observe
that all queues converge to r thanks to the Interest aggregation and the shaping performed
in CCN nodes.

5.5.2 Traffic split

In this part, we analyse the performance of HoBHIS in traffic split condition. We compare
the behavior of HoBHIS with and without the solution proposed in Section 5.2. The
simulation scenario is depicted in Figure 5.9(a). In this scenario, Clients 1 and 2 are
asking for the content from Server 1 and 2 respectively. HoBHIS is implemented in every
router of the path. The client rates are set to 1000 Interests/s, Data buffer size is set to
100 Chunks and Data queue threshold r = 60 Chunks. We suppose a constant Response
delay A(t) = A. As the Tolerance mechanism is not used for this scenario, Interest buffer
size is set to large value in order to avoid the losses of Interest packets caused by buffer
overflow. We are interested in the Chunk queue length of the bottleneck router R2.

Figures 5.9(b) and 5.9(c) represent the simulation results. Figure 5.9(b) illustrates
the behavior of HoBHIS without traffic split solution while Figure 5.9(c) use the scheme
presented in Section 5.2. We can observe that without correctly managing the traffic split,
the Data queue is converging to a different threshold r′ > r. In Figure 5.9(c) the shaping
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rate is computed thanks to the formula 5.8. This control takes into account traffic split
and makes the Data queue converge to the objective r. At the same time the fairness
between the conversations is also achieved.

Let us now change the rate of one of the clients. Suppose now that the Client 2 is
transmitting Interests two times slowly than Client 1. The results of such a scenario
are shown in Figure 5.9(d). We still observe the expected optimal and fair behavior of
HoBHIS.

5.5.3 Cross-traffic

We now analyse the performance of HoBHIS in presence of cross-traffic. The network
topology is presented in figure 5.10(a). Two Clients 1 and 2 are asking for the content
from Server 1 and 2 respectively. We see that the Interests will be mixed in router R2 and
share the same output link capacity while the returning Chunks will be splitted between
different interfaces. HoBHIS is implemented in each router. In order to keep it simple,
we do not use the Tolerance rate mechanism for this simulation scenario. The rates of the
clients are set to 150 Interests/s each. The HoBHIS parameters are as follows: Chunks
buffer size = 100 Chunks, Interest queue length = 100000000 Interests (i.e. big enough
to enqueue everything during the simulation), r = 60 Chunks, h = 0.7. We suppose a
constant Response delay. We are interested in observing the chunk queue lengths of the
bottleneck links R2->R1 and R2->R4.

Figures 5.10(b) and 5.10(c) represent the results for this simulation scenario without
and with virtual queues respectively. In Figure 5.10(b) we observe that the chunk queue
does not converge to its objective. That is due to large real shaping delay that differs
from the one computed by HoBHIS (rf. Section 5.3.2). Figure 5.10(c) shows the chunks
queue lengths over time using the virtual queues. We observe that they are converging
to the objective as expected by HoBHIS. At the same time, the fair ressource sharing is
respected. We can conclude that the virtual queues is an efficient solution to manage the
behavior of our shaping mechanism in presence of cross traffic.

5.5.4 Influence of caching

In this section, we study the influence of caching on the behavior of our mechanisms. The
simulation scenario is presented in Figure 5.11(a). Four Clients are asking for different
content at different time. The Client 1 is active from 0 to 50s, the Client 3 starts at 0
and stops at 70s that is a little bit later than Client 1. The Client 2 becomes active at
55s and asks for the same content that the Client 1. It stops then at 200s while Client 4
is still active from 55s to 300s. During the period when Client 1 is active, the CCN node
R2 caches the Chunks of this conversation that passes through the router. Thus, the
Client 2 mostly retrieves the corresponding Chunks from the cache. The Response time
for content delivered from Servers is uniformly distibuted between 0s and 0.1s. We are
interested in observing the queue behaviors in the bottleneck router R2. HoBHIS and the
Tolerance rate mechanisms are used in every router of the path. The buffer parameters
are: B = 100 Chunks, h = 0.1, r = 60 Chunks. We use the same buffer parameters for
cache buffer and Amin is fixed to 0.0001s. The Clients initial rates are set to 500 Interest/s
and controlled by Tolerance rate mechanism.

The results for this scenario for time period [0; 55s] and [55; 300s] are presented in
Figures 5.11(b) and 5.11(c) respectively. We observe in figure 5.11(b) that the Clients 1
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and 3 are fairly sharing the router resources as expected by HobHIS. The objective of the
time period [0;55s] is to cumulate some packets in the Content Store of router R2. The
Figure 5.11(c) shows the results for the time period [55; 300s] where the Clients 2, 3 and 4
are active. We observe that the data queue of Client 3 is oscillating around the Data queue
objective. This is because the Client 3 is not sharing the same face with Clients 2 and 4.
The content of Client 2 is retrieved from both cache and server. As the content from
cache is served faster, it uses the part of router resources that is higher than one for the
Client 4. When there is no more Chunks to retrieve from Content Store, both of Clients
are sharing the same amount of resources and are converging to the same threshold. When
Client 2 becomes inactive, Client 4 occupies the rest of the resources and its queue length
is converging to the Data queue threshold as expected by HoBHIS. Note that during the
entire simulation, the total queue length is maintained around the objective.
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5.6 Conclusion

In this Chapter we studied some complex scenarios for HoBHIS and proposed efficient
solutions to manage them. We first analysed three important cases that can occur in
CCN: traffic-split, cross-traffic and influence of caching on the performance of congestion
control mechanisms.

The traffic split is a situation where the Interests arriving to the same input face inF

are splitted between different output faces. The problem with this case is that the Chunks
returning from different paths will be accumulated on the same output face (that is the
incoming face for Interests, inF ). The cross-traffic is a dual situation to traffic-split. In
this case the Interests arriving to different faces are then mixed into the same output face
of a CCN router. Finally, the expensive caching capabilities of CCN may influence the
congestion control mechanisms because the rate of Chunks taken from cache of a CCN
router is not limited and may quickly saturate the output buffer of this router.

We then analyzed the multicast scenario where the same content is retrieved by mul-
tiple clients and studied different scenarios evolving from this case. A solution to manage
this situation has been proposed and is based on using the minimum of the link capacities
and the maximum queue length at time t.

Finally, we have proposed a unified solution that allows to use the shaping rate for-
mula that adopts dynamically to all complex situations. The performance evaluation
of the proposed solutions has been evaluated through various simulation scenarios using
our implementation in ndnSIM. The results obtained show that the shaping mechanism
performs as designed and is able to dynamically manage complex cases.



Chapter 6

Proactive ICN Congestion Control

The communication paradigm of NDN [66] has two prominent features: 1) all traffic is
receiver-driven; 2) content retrieved in response to an interest traverses exactly the same
links in reverse order. These two unique characteristics make hop-by-hop interest shaping
a better option for NDN congestion control than traditional TCP-like mechanisms. TCP
congestion control reacts to congestion after data packets are lost. By contrast, interest
shaping proactively prevents data packet loss by regulating the interest rate in the first
place. Dropping interest packets early wastes fewer resources than dropping data packets
late. More significantly, end-to-end congestion control is severely handicapped in NDN.
Extensive content multihoming and caching make it very difficult to identify interests
belonging to a single “flow”and sharing the same congestion path. Performing interest
shaping in a hop-by-hop manner can significantly alleviate this problem, especially if
the shaping scheme does not rely on flow identification. It also enables sophisticated
forwarding strategies such as congestion-aware rerouting to higher-cost (but uncongested)
paths. Hence, incorporating hop-by-hop interest shaping with a backpressure mechanism
appears to be a more viable option for NDN congestion control.

A number of schemes have been proposed along this path (e.g., [52, 46, 17]) but all these
interest shapers consider single or multiple unidirectional flows. As Figure 6.1(a) shows,
if we assume that interests are sent in just one direction or the bandwidth consumption of
the interests in the reverse direction is negligible, then the design of the interest shaping
algorithm is quite straightforward: we simply pace the interests so that the contents they
bring back will saturate the reverse link but not overload it. However, in practice, a link
will see interests and contents flowing in both directions simultaneously. This is especially
true for NDN since extensive in-network caching obscures the difference between clients
and servers. Also content names in interests can be long since it includes transactional
information in many applications (e.g., [33]). As each interest packet fetches exactly
one data packet, interests may consume a non-negligible fraction of the link bandwidth.
In light of these factors, the interest shaping algorithm in one direction can no longer
assume that the entire reverse link bandwidth is available for returning contents. It needs
to shape the interests properly so that enough room is left on the reverse link for interests
in the reverse direction. The same logic applies to the interest shaper on the other side
of a link and they have a recursive interdependence as shown in Figure 6.1(b). Since it
is non-trivial to determine how much room should be left by the shaper, an imprudent
algorithm may cause starvation or link under-utilization.

In this chapter, we present our joint work with Cisco Systems and North Carolina State
University (NCSU). We examine the interdependence between interests and contents in
bidirectional flows, and study its impact on the design of hop-by-hop interest shapers in
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(b) Practical scenario

Figure 6.1: Interdependence between interests and contents in reverse directions and its impact

on hop-by-hop interest shaping

NDN. Section 6.1 formulates this issue as an optimization problem and obtains optimal
solutions under various scenarios. Section 6.2 presents a practical shaping algorithm based
on these solutions, to be executed at the output interface of NDN routers. Section 6.3
evaluates the performance of our algorithm in conjunction with simple AIMD clients via
simulation. Finally, Section 6.4 concludes the paper.

6.1 Problem Formulation

As depicted in Figure 6.2, let i1 and i2 denote the interest arrival rate in each direction.
They are shaped down to s1 and s2 respectively by the interest shapers at the routers. Let
r1 and r2 denote the average size ratio between contents and interests in each direction
and let c1 and c2 denote the link capacity in each direction. Note that both r1 and r2

must be greater than 1. We can then formulate the interest shaping problem under steady
state as follows:

Objective:
max u(s1) + u(s2) (6.1)

Subject to:
0 ≤ s1 ≤ i1 (6.2)

0 ≤ s2 ≤ i2 (6.3)

s1 + r2s2 ≤ c1 (6.4)

r1s1 + s2 ≤ c2 (6.5)

where u(·) is the utility function discussed later. The objective of this optimization is to
maximize network utility (Eq. 6.1) subject to demand (Eq. 6.2 and 6.3) and bandwidth
(Eq. 6.4 and 6.5) constraints. As Figure 6.3 shows, the feasible region of this optimization
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Figure 6.3: The feasible region of the optimization problem is convex.

problem is convex. Hence, if the utility function constitutes a concave objective function,
the formulation is a convex optimization problem which is mathematically tractable.

Note that the utility function we pick has profound impacts on the solution we would
obtain. The utility function must maximize data throughput while maintaining certain
degree of fairness between the traffic in both directions. As mentioned above, reverse
interests compete with forward data packets for bandwidth and the shaper needs to ap-
propriately divide resources between them. It has been shown in [?] that logarithmic
utility functions can achieve proportional fairness between competing flows. Hence, we
present below a closed-form solution to the described optimization problem under loga-
rithmic utility functions (equivalent to maximizing the product of s1 and s2).

First, if we temporarily assume infinite loads in both directions, we can lift the con-
straints in Eq. 6.2 and 6.3. Second, from Figure 6.3 the optimal solution of the problem
lies on the boundary of the feasible region, so we can convert the inequality constraints
in Eq. 6.4 and 6.5 into equality constraints. Now let us begin by solving the optimization
problem under each equality constraint independently. Solving for Eq. 6.4:
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maximize s1s2

subject to s1 + r2s2 = c1

The optimal solution for this problem can be determined using Lagrange multipliers:

{

s1 =
c1

2

s2 =
c1

2r2

(6.6)

This optimal point has been labeled by an “x”in Figure 6.3. Similarly, solving for
Eq. 6.5:

maximize s1s2

subject to r1s1 + s2 = c2

The solution (also labeled by an “x” in Figure 6.3) is:

{

s1 =
c2

2r1

s2 =
c2

2

(6.7)

Now we consider the solution to the original problem under infinite demand (i.e., the
optimization problem consisting Eq. 6.1, 6.4 and 6.5). From Figure 6.3 we can see that
the optimal solution primarily depends on how the two bandwidth constraint lines cross
each other. If one of the optimal points is within the feasible region, then the optimal
solution is just that point (Eq. 6.6 or 6.7). If neither optimal point lies within the feasible
region (the case shown in Figure 6.3), the optimal solution is given by the intersection of
the two lines (labeled by a circle):

{

s1 =
r2c2−c1

r1r2−1

s2 =
r1c1−c2

r1r2−1

(6.8)

It is trivial to show that the only case where both optimal points lie within the feasible
region occurs for the degenerate case of r1 = r2 = 1, in which case both points coincide
and represent the optimal solution.

Now we reintroduce the condition of finite load (Eq. 6.2 and 6.3). In practice, it is
possible that the traffic load in one direction is inherently low (e.g., the first hop link from
a client may have lots of outgoing interests but few incoming interests). Under such cases,
the reduced load in one direction should result in increased shaping rate in the opposite
direction. The limiting case is unidirectional demand in which case:

i2 = 0 (6.9)

s1 =
c2

r1

(6.10)

Hence, the instantaneous shaping rate should be variable. We seek proportional fairness
between the two-way traffic only if both directions have excessive demand and are com-
peting for the link capacity in both directions. If the load in one direction is inherently
low, our scheme is work-conserving and will let the traffic in the other direction grab as
much bandwidth as it can. An adaptive algorithm that adjusts the shaping rate between
Table 6.1 and Eq. 6.10 based on the fluctuating demand will be presented in the next
section.
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case s1 s2

c1

c2
<

2r2
r1r2+1

c1

2

c1

2r2
2r2

r1r2+1
≤

c1

c2
≤

r1r2+1

2r1

r2c2−c1

r1r2−1

r1c1−c2

r1r2−1
c1

c2
>

r1r2+1

2r1

c2

2r1

c2

2

Table 6.1: Optimal solution under infinite loads in both directions

6.2 Practical Algorithm

As we have shown, obtaining the optimal interest shaping rate is mathematically tractable
if the shaper has knowledge of the content/interest size ratio (r1 and r2), link capacity
(c1 and c2) and demand (i1 and i2) in both directions. Due to the symmetric routing
of interests and contents in NDN, the shapers can independently measure r1 and r2 by
observing the interests and contents arriving at and leaving the interface. If we assume
that link bandwidths c1 and c2 are static parameters, they can also be made known to the
shapers easily. However, the offered demand (i1 and i2) is constantly varying and cannot
be accurately measured. Further, the shaper at one end of a link cannot know the interest
load on the other side without additional message exchange. Hence, we have designed an
adaptive algorithm that does not require accurate knowledge of the offered demand on
both sides, which we present below.

From Eq. 6.10, we can compute the maximum interest shaping rate max_s1 (which
occurs when i2 = 0). We can also determine the minimum interest shaping rate (min_s1)
from Table 6.1. To determine the actual shaping rate, we measure the incoming interest
rate and use it as an estimation of the load on the other side. Assuming a similar
shaper is running on the other side of the link, if there is sufficient demand in the reverse
direction, then the observed incoming interest rate (obs_s2) should be no less than the
rate given by the s2 column in Table 6.1 (we call it the expected minimum incoming
interest expmin_s2). Hence, if obs_s2 ≥ expmin_s2, the shaping rate is set to min_s1.
Otherwise, the shaping rate is calculated as follows:

min_s1 + (max_s1 −min_s1)(1−
obs_s2

expmin_s2
)2 (6.11)

This equation adjusts the outgoing interest shaping rate between min_s1 and max_s1.
If obs_s2 = 0, the shaping rate become max_s1. As we measure higher incoming interest
rate, we reduce the shaped outgoing interest rate until it hits min_s1. We observe that
the quadratic control used here is more conservative and robust than a linear control.

Figure 6.4 shows how the proposed interest shaper is implemented on each interface
of an NDN router. The outgoing packets are first classified into interests and contents.
Content packets are passed directly to the link output queue without shaping. Interest
packets join a separate shaper queue, the output of which is fed into the link output
queue. The shaping rate of this queue is dynamically computed as per Eq. 6.11.

It is important to note that hop-by-hop interest shaping alone is inadequate to solve
the entire congestion control problem. If a client issues more interests than the network
can handle, the excessive interests are discarded by the shaper. This interest loss must be
signaled back to the client so that it can slow down its request rate. In this paper, we use
the simplest drop-tail policy for the interest queue in the shaper and reject interests with
negative acknowledgments (NACK). A similar NACK mechanism has been proposed in
[64]. Compared with explicit congestion notification in the current Internet, we believe
that using NACK to signal congestion in NDN networks with hop-by-hop interest shaping
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Figure 6.5: Baseline topology

has some unique advantages. When a neighboring router forwards an interest across a
link, enough bandwidth has been accounted for in the reverse direction of this link to
accommodate the expected returning content. If this interest is then rejected with a
NACK towards the client, this NACK takes the place of the accounted-for content. As
long as NACKs are smaller on average than contents, there should be enough bandwidth
in all the downstream links for NACKs and they should never get lost due to congestion.
Hence, using our shaping scheme, NACKs are a much more reliable and timely method
of congestion notification than existing proposals (e.g., the timeout mechanism in [16]).

Clients should react to congestion-triggered NACKs and throttle their outstanding
interest rate. Intermediate routers can also react to this congestion signal and implement
some sophisticated forwarding strategies such as dynamic rerouting to alternative paths, or
mid-stream throttling of flows. In this paper, we demonstrate our shaping algorithm with
a simple window-based control on clients only. We defer the design of more sophisticated
router reaction to our future work.

6.3 Performance Evaluation

We have implemented our proposal in ndnSIM and evaluated its performance across a
number of different scenarios. In our current implementation, each shaper estimates r1

and r2 by monitoring the sizes of the interests and contents passing in both directions.
The average size of interests (or contents) is calculated by smoothing out the observed
samples similar to TCP round-trip time (RTT) estimation. The use of an exponentially
weighted moving average (EWMA) allows errors in size measurement to correct them-
selves. Further, the algorithm only relies on a reasonable estimate of the average interest
and content sizes, so individual flows can have wildly different ratios without impacting
our algorithm. We also allow for 2% headroom in the shaping to accommodate traffic
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Figure 6.6: Dumbbell topology

burstiness caused by heterogeneous packet size or RTT. The sizes of the shaper queues
as well as the Layer 2 queues are all set to 60 packets. In-network caching is not enabled
at this point. All simulations last for 70s and the session start times are randomly picked
between 0s and 5s. Metric measurement ignores the first 10s to eliminate any transient
effect during the warm-up phase. All test cases have been repeated 12 times and 95%
confidence intervals are calculated.

In the baseline scenario shown in Figure 6.5, clients at the two ends of the network issue
interests for the contents served at the other end. Content payload size is fixed at 1000B
and the interest size is 24B (which slowly increases to 28B due to the increasing number
of digits in the content name: /prefix/1, /prefix/2, ...). Table 6.2 shows the simulation
results under this scenario as well as a few other scenario that will be discussed later. As
can be seen from the table, the hop-by-hop interest shaper effectively controls congestion
so that the packet loss rate at the bottleneck link (due to queue overflow) is zero. About
0.015% of interests issued by the clients are rejected by the shapers with NACK and they
serve as congestion signals propagating back to the clients. The throughputs achieved
by the clients on both sides of the bottleneck are close to 9.56Mbps. This illustrates the
bandwidth consumed by interests and the motivation for our optimization: to achieve
9.56Mbps of data throughput in each direction, we need an additional 9.56× 26÷ 1000 ≈

0.24856Mbps of interest rate in each direction. Therefore, the total throughput of interest
and content traffic is 9.80856Mbps. Taking into account the 2% headroom reserved by
the shaper, our shaping algorithm achieves the optimal possible throughput.

Let us now investigate a few variations of the baseline scenario. First, we evaluate
the shaper under randomized packet size. Recall that the shaper estimates r1 and r2
by smoothing packet size samples. When the sizes vary over time, the shaper may have
inaccurate estimation of r1 and r2, leading to sub-optimal shaping behavior. However, as
shown in Table 6.2, when the interest packet size is uniformly distributed between 27B
and 62B, and the content payload size between 600B and 1400B, the shaper still achieves
zero packet loss and we only experience minor throughput loss. Second, we evaluate the
scenario where the content/interest size ratios in two directions are asymmetric (i.e., r1 #=
r2). In this scenario, the content payload size on Client/Server2 is set to 500B while the
other side still has 1000B payloads. Due to the reduced payload size, Client/Server1 needs
to send interests at twice the original rate to achieve the same data throughput. Hence,
we experience lower data throughput at Client/Server2 because more link bandwidth is
allocated to the interests from Client/Server1. Finally, we simulate the asymmetric link
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Figure 6.7: Client window size evolution under homogeneous RTT

bandwidth scenario (i.e., c1 != c2), as is commonly found in today’s residential access
networks. Here the bottleneck link bandwidth from Router1 to Router2 is reduced to
1Mbps while the reverse link remains at 10Mbps. As simulation results show, our hop-
by-hop interest shaper still manages to control congestion under this highly asymmetric
scenario. Client/Server2 achieves approximately 0.72Mbps data throughput out of the
1Mbps link, leaving the rest to the interests from Client/Server1 that bring back 9.77Mbps
of contents. This also outlines the importance of the logarithmic utility function which
avoids starvation of either side.

Next, we evaluate our scheme under the dumbbell topology shown in Figure 6.6. Three
different scenarios have been simulated. First, we launch two clients on the left side of the
bottleneck link. They retrieve contents from the two servers on the right side respectively.
Here the two flows have homogeneous RTTs of 60ms and their performance is shown in
Table 6.3 along with other scenarios under the same topology. As Figure 6.7 shows, the
two flows roughly converge to fair bandwidth sharing despite the randomized session start
time. Note that, in this scenario, there are no interests coming from the right side of the
bottleneck link, and therefore all this bandwidth can be used for the returning contents.
Our shaping algorithm has correctly adapted to this situation, as evidenced by the sum
of the throughputs of these two flows being around 9.8Mbps.

We reran this test but set the link latency between Router2 and Client/Server4 to
20ms so that the two flows now have heterogeneous RTTs. The results are also shown
in Table 6.3. Figure 6.8 compares the evolution of the bottleneck queue length over
time between the homogeneous RTT case and the heterogeneous RTT case. As the
figures show, we have minimum queues (oscillating between zero and one packet) under
homogeneous RTTs since the interests going out from Router1 to Router2 are perfectly
paced by the shaper. With heterogeneous RTTs, we see more fluctuations in the queue
length due to the burstiness of the traffic incurred by RTT heterogeneity. However, even
in this case the queue is well controlled (maximum of 17 packets). Note that our shaper
is an open-loop controller that aims at long-term fairness and stability of the system.
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Figure 6.8: Comparison of bottleneck queues

It accounts for the steady-state average rates and leaves their variance to be handled
by the headroom parameter and the Layer 2 queue buffers. We believe that with proper
parameter tuning, our open-loop controller is able to absorb the traffic burstiness and make
the system converge to the optimal steady state, as demonstrated by our simulations.
An alternative is a closed-loop controller that adjusts the shaping rate based on the
instantaneous queue length. However, such a solution may be much more complicated
and costly since the queue states must be communicated between the two shapers of each
link via some messaging or piggybacking technique.

Finally, we simulate the following heterogeneous RTT scenario: one client resides
on Client/Server1 and retrieves contents from Client/Server3. Another client resides on
Client/Server4 and retrieves contents from Client/Server2. Since the link latency between
Router2 and Client/Server4 is 20ms, these two flows sharing the bottleneck link in reverse
directions have different RTTs. The results in Table 6.3 show that our hop-by-hop interest
shaper works perfectly in this scenario, too.

In summary, our proposed shaping algorithm has effectively controlled data congestion,
kept data queue sizes low, and achieved near-optimal data throughput with zero packet
loss across all the test cases we have simulated.

6.4 Conclusion

In conclusion, we have presented a hop-by-hop interest shaping algorithm for NDN to
avoid network congestion and achieve optimal network resource utilization. Our proposed
solution accounts for the interdependence between interests and contents in opposite direc-
tions and is capable of optimally sharing link bandwidth without extra message exchange.
We evaluated the performance of our mechanism when combined with simple AIMD clients
using ndnSIM, and studied its behavior under varying conditions of bandwidth, load, and
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packet size ratios. Our future work includes a more comprehensive evaluation of our

interest shaper, the design of more sophisticated backpressure mechanisms as well as

congestion-aware multipath routing.



C
H

A
P

T
E

R
6
.

P
R

O
A

C
T

IV
E

IC
N

C
O

N
G

E
S
T

IO
N

C
O

N
T

R
O

L
79

Scenario Data Throughput (Mbps) Packet Loss Rate (%) Interest Rejection Rate (%)

Client/Server1 Client/Server2 Router1 Router2 Client/Server1 Client/Server2

Baseline 9.558421± 0.001261 9.559624± 0.001550 0 0 0.0150± 0.0006 0.0153± 0.0011

Randomized Packet Size 9.432117± 0.005931 9.434337± 0.007859 0 0 0.0180± 0.0014 0.0167± 0.0015

Asymmetric Size Ratio 9.373692± 0.014214 9.326215± 0.000921 0 0 0.0074± 0.0006 0.0155± 0.0006

Asymmetric Link Bandwidth 9.774441± 0.001723 0.719525± 0.000139 0 0 0.0119± 0.0005 0.0576± 0.0000

Table 6.2: Simulation results over baseline topology

Scenario Data Throughput (Mbps) Packet Loss Rate (%) Interest Rejection Rate (%)

Client/Server1 Client/Server2 Router1 Router2 Client/Server1 Client/Server2

Homogeneous RTT 5.142089± 0.505369 4.692407± 0.505271 0 0 0.0515± 0.0112 0.0620± 0.0129

Heterogeneous RTT 5.209043± 0.384781 4.624094± 0.380328 0 0 0.0513± 0.0092 0.0428± 0.0067

Client/Server1 Client/Server4 Router1 Router2 Client/Server1 Client/Server4

Heterogeneous RTT 9.565575± 0.000762 9.419777± 0.007525 0 0 0.0148± 0.0004 0.0116± 0.0005

Table 6.3: Simulation results over dumbbell topology



Chapter 7

Conclusion and Future work

The evolution of the Internet has triggered a significant activity exploring new archi-
tectures among which the concept of Information-Centric-Networks (ICN) has emerged.
Considering the various ICN solutions, Content-Centric Networking (CCN) is the one
that received most attention. The design of CCN is progressing albeit many important
issues still deserve a careful analysis and design.

This architecture differs from the traditional host-based communication principle in
many ways. One important change is that network addresses are replaced by content
names to distribute information in CCN networks. Moreover, extensive in-network caching
capabilities are introduced to benefit from the observation of the traffic flowing in the
network. As a consequence, data packets can be delivered by any CCN router in addition
to the source, according to various caching algorithms.

All these architectural features demand congestion control that would be completely
different from that in TCP/IP. We proposed a first comprehensive solution for conges-
tion control in CCN networks. This problem is of utmost importance and has not been
addressed in this context.

7.1 Contribution 1: Hop-by-hop Interest shaping mechanism

In Chapter 3 we presented HoBHIS, the first hop-by-hop Interest shaping congestion
control mechanism designed to avoid the congestion that can occur in the output interface
of a CCN node. It nicely exploits the flow balance enforced in CCN between Interest and
Chunk packets. This mechanism is implemented in each CCN node and mostly consists
in monitoring active conversations sharing the transmission buffer of a CCN node face
in order to dynamically adjust their Interest sending rate and enforce the Chunk queue
length to converge to a defined objective.

7.2 Contribution 2: Tolerance mechanism

As a consequence of the CCN design principles, we have to regulate the stream of chunks
as well as the stream of interests in order to avoid congestion and to improve network
performance. The important concern in CCN is related to the ability offered to a user
to send interests without any limiting rate factor, creating a risk for buffer overflow and
performance degradation. In Chapter 4 we introduced a new rate-based mechanism aiming
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at controlling the interest sending rate of a content receiver (a client or source of interest).
The scheme introduces an exchange of control information between CCN nodes and the
client. CCN nodes periodically send control packets with an explicit rate specifying the
maximum sending rate for each Client on the path used by this conversation. In order to
derive an optimum explicit rate, CCN routers use a control function based on the shaping
rate computed by HoBHIS.

7.3 Contribution 3: Important extensions to HoBHIS

In Chapter 5 we first studied more complex scenarios and proposed efficient solutions
to manage three important cases that can appear in CCN: traffic-split, cross-traffic and
influence of caching on the performance of congestion control mechanisms.

The traffic split is a situation where the Interests arriving to the same input face inF

are splitted between different output faces. The problem with this case is that the Chunks
returning from different paths will be accumulated on the same output face (that is the
incoming face for Interests, inF ). This is not trivial to estimate the shaping rate for this
case. The cross-traffic is a dual situation to traffic-split. In this case the Interests arriving
to different faces are then mixed into the same output face of a CCN router. Finally, the
expensive caching capabilities of CCN may influence the congestion control mechanisms
because the rate of Chunks taken from the cache of a CCN router is not limited and may
quickly saturate the output buffer of this router.

We then analyzed the multicast scenario where the same content is retrieved by mul-
tiple clients and studied different scenarios evolving from this case. A possible solution to
manage this situation has been proposed and is based on using the minimum of the link
capacities and the maximum queue length at time t.

Finally, we proposed a unified solution that allows to use our shaping rate formula
that adapts dynamically to all complex situations.

7.4 Performance analysis

In this dissertation we first demonstrated analytically the convergence property of our al-
gorithms. We then performed various experiments with different settings and progressive
complexity using our implementation of the mechanisms in different network simulators.
According to our knowledge, at the beginning of this work there was no version of CCN
in ns2. We started the implementation of our solutions to ns2. Thus, the first perfor-
mance evaluation of the mechanisms has been done by using this simulation environment.
Later, we ported our implementation to ns3-based Named Data Networking Simulator
(ndnSIM) that implements Named Data Networking (NDN) communication model. Next
simulation experiments has been performed with this environment. The source code of
our implementations is publicly available at www.github.com.

We analyzed the single and multiple conversation scenarios in a single router model as
well as for a more complex network case. Therefore, we have demonstrated the behaviour
of our algorithm in more complex conditions. We have seen that the shaping mechanism
performs as designed.

We observed that the results fully satisfy the design objectives and we can conclude
that HoBHIS is an efficient and operational solution to the problem of congestion control
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in CCN.

7.5 Future work

Our work can be extended in various directions. In this dissertation, we have demonstrated
the promising results and effectiveness of our solutions. Hovewer, it would certainly be
interesting to consider different types of traffic and services and analyze if differentiating
between them will provide additional value.

Also, an effective admission control would be desired to limit misbehaving clients
keeping the network utilization below the saturation point, while still optimally utilizing
the network resources.

Another interesting point may concern the multipath extension for the proposed
schemes. Instead of limiting the Client sending rate, the Interest packets might be redi-
rected to other faces of the CCN router in order to achieve better utilization of network
resources. One proposal of such an adaptive forwarding has been presented in [65, 64].
Hovewer, the need and effectiveness of an Interest reforwarding should be verified in case
of our congestion control solutions.

Study of bidirectional traffic and sharing of the resources between Interests and Chunks
in the same direction may also be an interesting point to follow this work.

Finally, it would be interesting to study the specific application case of our mechanisms,
for example in mobile, vehicular etc. networks.



Appendix A

HoBHIS implementation in ns3-based

ndnSIM

In this section we briefly describe the implementation of our solutions to ndnSIM.

A.1 What is ndnSIM?

ndnSIM, [3], is a simulator that implements Named Data Networking (NDN) communi-
cation model and represents an ns3 module. This simulator is optimized for simulation
purposes and easy to use, modify and extend. Even if this implementation is relatively
recent, it becomes very popular in the research community. We use this simulator for
implementing our congestion control schemes presented in this dissertation.

A.2 Design goals

The implementation of our contributions has the goal to be an open source package
enabling the researchers to run the experiments in order to verifiy the results presented
in our papers, compare their proposals with ours, propose and add some new features.

A.3 Design overview

In this section we briefly present the design of our implementations. We explain what
abstractions of ndnSIM and ns3 have been used as a base. Finally, we present added
objects and features.

A.3.1 HoBHIS

We started by implementing our first solution: Hop-by-Hop Interest Shaping mecha-
nism (HoBHIS). We first have to add Interest shaping functionnality to the ndn::Face
abstraction that defines basic functionality of Ndn face. We have implemented the Hob-
hisNetDeviceFace derived from ndn::NetDeviceFace which is permanently associated with
one ns3 NetDevice object and this object can not be changed for the lifetime of the face.
HobhisNetDeviceFace adds shaping fonctionnalities, computes the shaping rate, schedules
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the Interests according to HoBHIS algorithm and provide some per-flow statistics about
shaped Interests.

At the time of writing the congestion control functionnalities was not extended in
ndnSIM and it was not possible to esily obtain the NDN statistics or modify the func-
tionnalities of the transmission queues. That is why we have also added an NDNDrop-
TailQueue class derived from ns3::Queue. This queue is mostly for keeping Chunks be-
cause the Interests are managed by the shaping algorithm in HobhisNetDeviceFace. ND-
NDropTailQueue provides a simple DropTailQueue but keeps the interesting statictics
such as number of flows, queue size per flow, total queue size. In our implementation
we do not only need this class for statistics but also because this information is used by
HoBHIS for computation of the shaping rate.

In order to test our mechanism with different traffic distributions we have added a func-
tionnality of generating the traffic following different distribution laws to ndn::Producer.
We used such random number generators provided by ns3 as Uniform, Exponential,
Pareto, Sequential etc.

A.3.2 Tolerance Rate

The second part of our implementation consists in realisation of Tolerance Rate mech-
anism. For that we are using the ndn::ForwardingStrategy abstraction and core imple-
mentation for Interest and Data forwarding. We have derived an IRControl class from
ndn::ForwardingStrategy. This class enables sending the control packets with correspond-
ing tolerance rate back to the clients each A(t) seconds according to the algorithm. The
tolerance rate is computed by HobhisNetDeviceFace and used in IRControl. On receiving
the control packet with tolerance rate, the clients should adjust their Interest sending rate
to this value. We added this functionnality and created a new type of Consumer.

A.4 Complex scenarios

To test the complex scenarios presented in Chapter 5 we have implemented the corre-
sponding functionnalities to HobhisNetDeviceFace and ForwardingStrategy to test the
influence of caching.

A.5 How to use

The usage of the implemented solutions is pretty easy. As the code is publicly avail-
able, the installation procedure is specified on the correspondig page of www.github.com.
The user can find some example scripts of HoBHIS in files: hobhis-chain.cc and hobhis-
fairness.cc and run them with different parameters. To see the possible configurations
he/she can ask the script for help using –PrintHelp option.

One can install the implemented objects on the nodes directy in the ns3 topology
configuration script.



APPENDIX A. HOBHIS IMPLEMENTATION IN NS3-BASED NDNSIM 85

A.5.1 Example of using Hobhis and Tolerance Rate mechanism in a CCN

router

In this section we show how to easily activate Tolerance Rate mechanism and HoBHIS in
ns3 configuration script. The Tolerance Rate mechanism could easily be enabled during
the configuration of the NDN nodes:

//Creation of the ndnHelper

ndn::StackHelper ndnHelper;

//Installing the ForwardingStrategy

ndnHelper.SetForwardingStrategy ("ns3::ndn::fw::IRControl");

The next step is to enable our shaper. We implemented the special function Enable-
Hobhis in order to simplify the installation of the shaper. The following parameters need
to be specified :

1. Enable shaper (true/false, default = false)

2. Client/server (whether the node is client or server? This parameter should be en-
abled on router nodes only).

3. Interest buffer size (the size of shaper queue).

4. Target (the objectif r to which we want our queue to be converged).

5. Convergence speed (design parameter h).

6. Dynamic adjustment of design parameter.

Example:

ndnHelper.EnableHobhis (true, false, 100, 60, 0.1, false);

Once all necessary configurations are finished user can run his simulation script.

A.6 Summary

We presented a brief description of the implementation of our solutions to ndnSIM. Cur-
rently, the source code for HoBHIS (Chapter 3) is publicly available on:
https://github.com/Be1thaz0r/HoBHIS. The source code used for Chapters 4 and 5 is
currently in final preparation for uploading and will be published soon. Based on num-
ber of emails that we have got from people working on CCN/NDN from everywhere, we
can conclude that our implementation is known and used by the researchers to better
undertand the functionnality of our solutions.
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Activity

Published and submitted papers

• Natalya Rozhnova, Serge Fdida, An effective Hop-by-Hop Interest shaping mecha-

nism for CCN communications, IEEE INFOCOM NOMEN workshop, 2012, Or-
lando, Florida

• Y. Wang, N. Rozhnova, A. Narayanan, D. Oran, and I. Rhee, An Improved Hop-by-

hop Interest Shaper for Congestion Control in Named Data Networking, Best paper
award, In Proceedings of the 3rd ACM SIGCOMM workshop on Information-centric
networking (ICN ’13).

• Natalya Rozhnova and Serge Fdida, A Hop-by-Hop Interest shaping mechanism for

Content-Centric Networking, poster session, LINCS workshop, 2014, Paris, France.

• Natalya Rozhnova, Serge Fdida, An extended Hop-by-hop Interest shaping mecha-

nism for Content-Centric Networking, GLOBECOM 2014, Austin, Texas.

Talks and presentations

• Congestion Control in CCN, talk for master students in Networking, UPMC, 2012,
Paris, France

• An effective Hop-by-Hop Interest shaping mechanism for CCN communications,
LINCS, 2012, Paris, France

• Congestion Control issues for CCN, North-Eastern University, 2013, Boston, USA

• Presentation of a poster, Y. Wang, A. Narayanan, D. Oran, and I. Rhee "Hop-by-
hop Interest Shaping under Two-way Traffic", IEEE INFOCOM NOMEN workshop
2013, Turin, Italy

• Managing the Information-Centric Networking reading group, LINCS, Paris, France

Collaboration and internship

• ANR CONNECT project, France
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• Laboratory of Information, Networking and Communication Sciences (LINCS), Paris,
France

• Congestion control for Named-Data Networking, internship, Cisco Systems, Nov.
2012 - May 2013, Boxborough, MA, USA. Supervisor: Dave Oran

• Collaboration with Dr. Edmund Yeh, North-Eastern University, Boston, MA, USA

Teaching

• Simulation, Emulation and Virtualization, Université Pierre et Marie Curie
(UPMC), Paris, France.
Master students.Total responsibility : development of the subjects of TPs, imple-
menting of necessary tools and programs, teaching, correction of the student reports
(the score for the TP represents 40% of students’ final grade). Practical Classes
(TP).

• Routing in Networks, Université Pierre et Marie Curie (UPMC), Paris, France.
Master students. Tutorial classes (TD) on Addressing, Forwarding, Ethernet, RIP,
OSPF, BGP, Multicast, Peer-to-peer networks.

• Project on Networking, Université Pierre et Marie Curie (UPMC), Paris, France.
Master students. Proposing the subjects and plans of projects, and supervising of
two groups of students working on different projects (3-4 students per group).

• Networking, Université Pierre et Marie Curie (UPMC), Paris, France.
3 year Licence students. Signal processing: Signal digitization, Modulation, Coding,
Error control
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