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Abstract 
 

Clouds are essential components of the Earth’s hydrological system and climate but some 

aspects of their formation are still not completely understood. In particular, although Köhler 

theory predicts that surfactants should enhance cloud droplet activation, current models 

consider this role negligible. At the time of this PhD work, a few studies had started to 

demonstrate the contrary but atmospheric evidence for the role of these compounds was still 

missing and very little was known about their atmospheric concentrations, sources, and 

mechanism of action.  

The objective of this PhD work was to investigate these aspects to improve the 

understanding of atmospheric surfactants and their role in cloud formation. Several 

milestones were achieved. First, a method was developed to quantify surfactant 

concentrations in aerosols, which was applied to samples from different regions. This method 

led to the first absolute surface tension curves for atmospheric surfactants, in PM2.5 aerosols 

from a coastal region in Sweden, and to the identification of the key parameter controlling the 

cloud-forming efficiency of aerosols, the C/CMC ratio. A second study revealed strong 

correlations between cloud occurrence and intrinsic surfactant properties in PM1 aerosols in 

a boreal region in Finland, thus demonstrating for the first time the role of surfactants in cloud 

formation from direct atmospheric observations. The results predicted Cloud Condensation 

Nuclei numbers four times larger on average than when neglecting surfactant effects, showing 

the quantitative importance of including surfactant effects in cloud predictions. The 

importance of surfactants inferred from macroscopic measurements was confirmed by 

laboratory experiments on individual micron-sized droplets showing an increase of droplet 

growth in the presence of surfactants. Finally, observations from the different field studies 

(correlations with biological markers, chemical structure …) concurred to indicate a biological 

origin for the surfactants present in atmospheric aerosols.  

This work thus accomplished some important steps in the understanding of atmospheric 

surfactants and their role in cloud formation. 

 

Key words: Surfactants – atmospheric aerosols – cloud droplet – surface tension – CMC – 

micron-sized droplet – optical trap – origin of surfactants in atmosphere  
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Résumé (en français) 
 

Les nuages sont essentiels dans le cycle de l’eau et dans le budget climatique, mais certains 

aspects de leur formation sont encore incompris. En particulier, bien que la théorie de Köhler 

prédise que les surfactants devraient favoriser l’activation des particules en goutte de nuage, 

les modèles actuels les considèrent comme négligeables. Au moment de ce travail de thèse, 

quelques études avaient commencé à démontrer le contraire mais des preuves du rôle de ces 

composés dans l’atmosphère étaient encore manquantes et peu d’études traitaient de leur 

concentration dans l’atmosphère, leur source et leur mécanisme d’action.  

L’objectif de ce travail de thèse était d’étudier ces aspects pour améliorer la 

compréhension des surfactants dans l’atmosphère et de leur rôle dans la formation des 

nuages. Plusieurs étapes ont été franchies. Premièrement, une méthode a été développée 

pour déterminer la concentration en surfactants dans les aérosols et a été appliquée à des 

échantillons de différentes régions. Cette méthode a conduit aux premières courbes de 

tension de surface pour des surfactants atmosphériques, dans des aérosols PM2.5 d’une 

région côtière en Suède, et à l’identification du paramètre clé contrôlant l’efficacité des 

aérosols à former des nuages, le ratio C/CMC. Une seconde étude a révélé des corrélations 

fortes entre la présence de nuages et les propriétés intrinsèques des surfactants dans des 

aérosols PM1 d’une région boréale en Finlande. Cela a démontré pour la première fois le rôle 

des surfactants dans la formation des gouttes de nuage à partir d’observations directes dans 

l’atmosphère. Les résultats ont prédit un nombre de noyaux de condensation quatre fois plus 

important en moyenne que lorsque les effets des surfactants étaient négligés, montrant 

l‘importance quantitative d’inclure les effets des surfactants dans la prédiction des nuages. 

L’importance des surfactants déduite des expériences à l’échelle macroscopique a été 

confirmée en laboratoire par des expériences sur des gouttes individuelles microniques, 

montrant une augmentation du grossissement des gouttes en présence de surfactants. Enfin, 

des observations à partir des différentes études (corrélations avec des marqueurs biologiques, 

étude structurale...) indiquent une origine biologique des surfactants dans les aérosols 

atmosphériques. 

Ainsi ce travail a permis de franchir d’importantes étapes dans la compréhension des 

surfactants atmosphériques et de leur rôle dans la formation des nuages.   
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1. Scientific context 
 

1.1. Atmosphere 

 

The subject of this PhD work was the investigation of the role of some chemical compounds 

in cloud formation in the Earth’s atmosphere. The atmosphere is the gas layer surrounding 

the Earth and extending from the surface out to thousands of kilometers. It is held in place by 

gravitation and becomes less dense as altitude increases. The atmosphere protects all life on 

Earth from meteors and harmful solar radiation and warms the Earth’s surface by heat 

retention (greenhouse effect). The Earth’s atmosphere is characterized by layers that are 

defined by changes in the vertical temperature profile: troposphere, stratosphere, 

mesosphere, thermosphere and exosphere (Figure 1.1). 

 

 
Figure 1.1: Layers of the Earth’s atmosphere and temperature profile along these layers (reproduced 
from [Russell, 2015] © Copyright 2015). The Exosphere, uppermost atmospheric layer and considered 
as space-like layer (starting from altitude of 500 - 1000 km and extended to about 100 000 km), is not 
represented here.  
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The atmosphere contains both gases and suspended particles. Dry air is made by volume 

of about 78 % of nitrogen (N2) and 21 % of oxygen (O2), the remaining 1 % consisting of argon, 

carbon dioxide and trace amounts of other gases. Water vapor is one of these trace gases and 

is present in concentrations varying widely with the meteorological conditions, the altitude 

and the latitude. The atmosphere interacts with other elements of the Earth’s system, such as 

the oceans, the lithosphere, the pedosphere, the biosphere and the cryosphere.  

The present study focuses on the formation of clouds, thus on the lowest layer, the 

troposphere, which extends from the Earth's surface up to 10 - 15 km altitude (the 

tropopause), depending on latitude and time of year. The troposphere is characterized by a 

decreasing temperature with altitude and a rapid vertical mixing. This is the densest part of 

the atmosphere and where emissions (anthropogenic or biogenic) have the most influence. 

 

1.2. Clouds 

 

1.2.1. General information on clouds 

 

The World Meteorological Organization [WMO, 1975] defines a cloud as “a hydrometeor 

consisting of minute particles of liquid water or ice, or of both, suspended in the free air and 

usually not touching the ground. It may also include larger particles of liquid water or ice and 

non-aqueous liquid or solid particles such as those present in fumes, smoke and dust”. Clouds 

cover roughly two thirds of the globe. They are constantly forming and evaporating and only 

10 % precipitate [Boucher, 2013]. 

Several types of clouds, of different shapes and heights, are present in the atmosphere 

(Figure 1.2). Their variability depends on their formation processes, the vertical and horizontal 

air velocity, the liquid water content of the air mass in which they are present, etc. 
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Figure 1.2: Types of clouds and heights of formation (reproduced from [Encyclopædia-Britannica, 
2016] © Copyright 2016). 

 

Clouds can also be distinguished in three main groups according to their particulate 

composition. The American Meteorology Society [AMS, 2016] distinguishes warm clouds (also 

called water clouds), ice-crystal clouds and mixed clouds. A cloud composed entirely of liquid 

water droplets is called a water cloud. Analogously, a cloud consisting entirely of ice crystals 

is called an ice-crystal cloud and a mixed-phase cloud contains both water droplets 

(supercooled at temperature below 0°C) and ice crystals.  

In liquid clouds, the size of the droplets varies with the cloud type. Figure 1.3 shows the 

typical sizes for liquid cloud droplets. Liquid droplets are formed by condensation of water 

onto a pre-existing atmospheric aerosol particle (i.e. a small solid or liquid particle in 

suspension in the atmosphere) called “Cloud Condensation Nuclei” (CCN). Fully grown cloud 

t , they can 

become raindrops. 
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Figure 1.3: Typical diameters D of liquid hydrometeors (cloud droplets and raindrop) and of a Cloud 
Condensation Nuclei (CCN) aerosol particles in atmosphere (redrawn from [Houze, 2014] © Copyright 
2014, with permission from Elsevier). 

 

The present study focuses on liquid cloud droplets only, thus will not address ice clouds. 

 

1.2.2. Importance of clouds in atmosphere 

 

Clouds cover about two thirds of the globe and are one of the most important elements of the 

atmospheric system, playing many key roles in hydrology and in the climate budget [Seinfeld, 

2006; Boucher, 2013]. Clouds are central in the hydrological cycle (Figure 1.4) as they are the 

main source of fresh water to the continents, as rain or snow. And, by warming or cooling the 

lower atmosphere, clouds are a major factor in the Earth’s radiation budget; clouds warm the 

lower atmosphere by trapping infrared radiation emitted by the Earth’s surface and cool the 

atmosphere by reflecting solar radiation back to the space. Clouds are thus the main cooling 

component of the climate budget (Figure 1.5 and Figure 1.6) [Stocker, 2013]. 

 

Borderline drop 
D ~ 200 μm 

Cloud droplet 
D ~ 20 μm 

CCN aerosol particle 
D ~ 0.2 μm 

Large cloud droplet 
D ~ 100 μm 

Raindrop:   D ~ 2 mm 
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Figure 1.4: Water cycle in the climatic system in its liquid, solid and vapor state and exchanges between 
the different reservoirs: the ocean, the atmosphere, the continental surfaces and the cryosphere 
(adapted from [Boucher, 2012] © Copyright 2012 Springer). 
 

 
Figure 1.5: Earth’s annual and global mean energy budget (reproduced from [Trenberth, 2009] 
© Copyright 2009 American Meteorological Society). 

 
Clouds also scavenge gaseous and particulate materials and return them to the surface 

(wet deposition) and provide a medium for aqueous-phase chemical reactions and production 

of secondary species. Finally, clouds affect the vertical redistribution of particles or gases in 

the atmosphere [Seinfeld, 2006].   
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Despite their central importance, predicting cloud formation is still beyond model 

capacities and is not expected to improve in the near future [Boucher, 2013]. Many of the 

challenges are due to computational limitations, and in the representation of cloud 

microphysical processes in climate models. In particular, the latest IPCC (Intergovernmental 

Panel on Climate Change) report points out the need for more investigation of the role of 

surfactants (in mixed organic/inorganic aerosols) in cloud droplet activation [Boucher, 2013]. 

Due to the low confidence in all these aspects of cloud formation processes, clouds contribute 

to the largest uncertainties in the climate radiative budget [Stocker, 2013] (Figure 1.6). 

 

 

Figure 1.6: Radiative forcing of climate change during the industrial era with associated uncertainty 
ranges (with black and green horizontal bars corresponding to IPCC 2013 report and IPCC 2007, 
respectively). The cooling contributions, such as clouds, are situated on the left (< 0 W m-2) and the 
warming contributions on the right (> 0 W m-2). (reproduced from [Stocker, 2013] © Intergovernmental 
Panel on Climate Change 2013) 
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1.3. Formation of liquid clouds 

 

Liquid clouds are formed when an air mass ascents and cools down enough so that the water 

vapor it contains ,p , reaches saturation, p , thus triggering the formation of liquid 

droplets. In the atmosphere, water vapor is often expressed in term of relative humidity RH 

defined as: 

RH = 100 %    .     (1.1) 

The ratio S =  corresponds to the saturation. The supersaturation SS is defined by           

SS =  S 1 and corresponds to the excess of water vapor over the saturation water vapor, 

i.e. when S > 1. For example a relative humidity of 101 % corresponds to a supersaturation 

of 1 %. 

 

1.3.1. Köhler equation 

 

At the microscopic scale, the processes are more complex and are described in this section. 

The phase change from water vapor to liquid water implies the formation of droplets. Thus, 

the Gibbs energy budget for this transition involves the vapor pressure difference between 

the two states, the vapor pressure around the droplets, p ,  , being higher than in the 

initial gas, p , and the formation energy of the new surface. At equilibrium, the difference 

in Gibbs energy is null, which leads to a relationship between the ratio of the vapor pressures, 

p ,  p , and the surface energy term, called Kelvin equation:  

,  

=   exp   
   Dp

    (1.2) 

where D  is the diameter of the droplet, Mw is the molecular weight of water, w is the water 

volumetric mass density, R is the gas constant, T is the temperature of the system and  is the 

surface tension between the droplet and the air surrounding the droplet. The surface tension 

It 

corresponds to an energy per unit area (J m-², usually expressed in mN m-1) and is a measure 
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of the energy needed to enlarge the surface area by 1 m². For a liquid in suspension in air, the 

system tends to minimize the interfacial free energy. At the interfacial area, the dispersed 

phase tends to form spherical droplets, because a sphere is the shape with the smallest 

surface-to-volume ratio. 

 

In Earth’s atmosphere, the supersaturation rarely exceeds 1 % [Seinfeld, 2006; Boucher, 

2012], which, according to the above equation (1.2), would require water molecular clusters 

to have a diameter of Dp > 0.2 μm to be able to grow into a cloud droplet. As this is unrealistic 

(the majority, in number, of aerosol particles having generally diameters < 0.2 μm), cloud 

formation cannot occur by homogenous nucleation of water in the Earth’s atmosphere. In the 

atmosphere, cloud droplets can only form by heterogeneous nucleation of water onto pre-

existing aerosol particles [Aitken, 1880].  

Heterogeneous nucleation on pre-existing particles makes possible cloud droplet 

formation in the atmosphere because “impurities” brought into the water by the particle 

lower the water vapor pressure above the liquid (“Raoult’s effect”) (Figure 1.8). In that case, 

the vapor pressure above the solution, p  , is given by the Raoult’s law: 

p   =  x   p ,  =  a   p ,     (1.3) 

where w is the water activity coefficient, xw is the mole fraction of water in the solution, and 

aw the “Raoult’s term” (aw = 1 for pure water and aw < 1 for soluble solutes diluted in solution). 

Replacing (1.3) in equation (1.2) gives the following equation called Köhler equation [Köhler, 

1936]:  

p ,  =  a  exp   
   

 p ,    (1.4) 

where p ,  is the vapor pressure around the droplet. 

Equation (1.4) can also be written: 

S =  a exp   
   

   .    (1.5) 

The Köhler equation, S(Dp), thus describes the evolution of forming droplets as a 

function of saturation S (or as function of supersaturation SS = S – 1). 
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Figure 1.7 shows examples of Köhler curves for droplets formed from particles made of 

(NH4)2SO4 with different initial (dry) diameters. Because of the opposition of the surface 

tension and the Kelvin effect, all Köhler curves display a maximum, corresponding to the 

critical supersaturation and critical diameter. To grow spontaneously into a cloud droplet, the 

forming droplet must pass this maximum (equivalent to an energy barrier). As it can be seen 

in the Köhler equation, cloud droplets are much easier to form when starting from large 

particles than from smaller ones, because the Kelvin effect is smaller in that case. 

 

                

 

Figure 1.7: (up) Schematic of cloud droplet activation and (bottom) Köhler curves (supersaturation SS 
as a function of droplet diameter Dp) for (NH4)2SO4 particles with dry diameters 0.05, 0.1 and 0.5 μm 
at 293 K, assuming spherical dry particles and  = water (adapted from [Andreae, 2008] © Copyright 
2008, with permission from Elsevier).  

SS < critical SS SS > critical SS  

Dry particle Wetted particle 

Cloud droplet 
(not to scale) 
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1.3.2. Role of chemistry 

 

In the above Köhler equation (1.5), chemical compounds brought by the initial particles 

can affect droplet growth on only two parameters: the Raoult’s term aw and the surface 

tension  (Figure 1.8). 

 
Figure 1.8: Schematic representation of the effect of chemicals in cloud droplet formation, with water 
molecules in blue, chemicals in red and droplet surface in dashed line. The presence of chemicals 
reduces the surface tension of the droplet (red arrow) and lowers the water vapor pressure (green 
arrow). 

 

The Raoult’s effect increases (i.e. aw decreases) with the number of dissolved molecules, 

since the molecules of water are replaced by less volatile molecules in the droplet. As 

inorganic salts dissociate entirely, while organic compounds dissolve only partly in water, 

inorganic compounds generally have a larger Raoult’s effect than organic compounds, thus 

are more efficient cloud nuclei.  

The surface tension, on the other hand, can be decreased by the presence of compounds 

called surfactants (see Section 1.6), which will favor droplet formation.  

Thus, according to the Köhler equation (1.5), the ability of an aerosol particle to activate 

into cloud droplet will depend both on its size and its chemical composition (Figure 1.9). For a 

same value of supersaturation, larger particles (> 1 μm) will nucleate easier than small ones. 

Thus, the effect of chemical composition on the cloud-forming properties of particles will be 

mostly significant on small particles. 
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Figure 1.9: Illustration of the effect on Köhler curves of (A) the dry particle diameter (for ammonium 
sulfate particles) and of (B) the chemical composition (for particles with dry diameter of 80 nm) (OA: 
organic aerosol). The gray-filled region indicates a supersaturation SS < 1.0 % and the yellow-filled 
region SS < 0.3 %, generally representative of stratocumulus and cumulus cloud systems, respectively. 
(reproduced with permission from [Farmer, 2015] © Copyright 2015 American Chemical Society) 

 

1.3.3. Atmospheric aerosol composition and implication for cloud 
formation 

 

In addition to the presence of gases, the atmosphere contains a wide range of aerosols, which 

are defined as a suspension of fine solid or liquid particles in suspension in the air. The sources 

of these aerosol particles can be natural or anthropogenic. Natural emissions include soil and 

rock debris (windborne dust), volcanic action, sea spray, biomass burning, biogenic aerosols 

(pollens, fungal spores, bacteria cells…) and reactions between natural gaseous emissions. 

Emissions of particulate matter due to the activities of humans arise from fuel combustion, 

industrial processes, non-industrial fugitive sources (roadway dust from paved and unpaved 

roads, wind erosion of cropland, construction, etc.), and transportation sources (automobiles, 

etc.) [Colbeck, 1998; Seinfeld, 2006]. The atmospheric aerosols can have different 

compositions, shapes and sizes, depending of their sources and processes of formation.  

Aerosol particle concentrations are typically in the range 102 - 106 particles cm-3 air. But 

only a very small fraction of these particles are expected to become Cloud Condensation 

Nuclei (less than 1 / 1000), and even less cloud droplets. The particles that do not participate 

in the cloud formation are referred as “interstitial” particles.   
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1.4. Measurement of cloud droplet formation and comparison 
with theory 

 

The only techniques used until now to investigate the growth of cloud droplets are so called 

“on-line” instruments, which consist in measuring the growth in particle size (Hygroscopicity 

Tandem Differential Mobility Analyzers, HTDMAs) or number (Cloud Condensation Nuclei 

Counters, CCNCs) of a known aerosol population subjected to a controlled relative humidity 

[Good, 2010a]. Thus none of these instruments measures directly the parameters needed in 

the Köhler equation (Figure 1.10). 

 HTDMA CCNC 
Aerosol inlet selected particle size total inlet 

Conditions in 
chamber 

constant relative 
humidity 
RH (< 95 %) 

specific supersaturation 
SS (%) 

Data 

hygroscopicity  
(growth factor GF = 
Ddroplet / Ddry) at a fixed 
dry particle size and RH 

number of activated 
particles (CCN) as a 
function of SS 

 

 
 

 

 

Figure 1.10: Schematic overview of on-line instruments studying the activation of particles into cloud 
droplets: HTDMA (Hygroscopic Tandem Differential Mobility Analyzer) and CCNC (Cloud Condensation 
Nuclei Counters). 

 

Comparisons between the CCN numbers predicted by Köhler theory and measured by 

CCNCs in a given region of the atmosphere (or “closure experiments”) have been the main 

criterion so far to assess the understanding of cloud formation processes in the atmospheric 

community. For this, the Growth Factor (GF) values measured by HTDMA are used to 

determine the value of aw to be used in the Köhler equation. (Figure 1.11). 
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Figure 1.11: Schematic representation of the determination of predicted and measured CCN efficiency, 
defined by the ratio CCN/CN (Cloud Condensation Nuclei / Condensation Nuclei), corresponding to the 
number of activated particles into cloud droplets over the number of initial dry particles. 

 

Note that, in the recent literature the parameter aw is expressed by the hygroscopic 

parameter , [Petters, 2007], defined by:  

= 1 +       (1.7) 

where V  is the volume of the solute (the dry particulate matter) and V  is the volume of the 

water. The volume of the whole droplet is defined by the sum of V  and V . 

The parameters aw or  represent the hygroscopicity, i.e. the ability of the particle bulk 

to absorb moisture from the air [Petters, 2007].  
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Numerous efforts have been dedicated in studies of the role of aerosol chemistry on the 

 parameter, as shown by the more than 600 articles published on this subject (Figure 1.12). 

This includes recent efforts in predicting the value of  based on the simplified aerosol 

chemical composition measured by Aerosol Mass spectrometer (AMS). 

 
Figure 1.12: Number of published items in each year relative to the  parameter introduced by [Petters, 
2007] (replotted from [Web-of-Science, 2016]). 

 

always assumed to be the one of pure water, , because the effect of surfactants on droplet 

growth could never be observed by CCNCs and HTDMAs (to a few exceptions, see next 

section). Thus, the good agreement (or “closure”) between measured and predicted CCN 

numbers reported in numerous studies is, in reality, based on one side by the lack of detection 

of surfactants by the instruments and, on the other side, by neglecting their role in the 

calculations.  

The lack of detection of surfactant effects by these classical techniques also explains why 

these compounds have hardly been studied, in spite of the predictions of Köhler theory.  
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1.5. Recent developments 

Over the last decades, several studies have started to evidence a role of surfactants in cloud 

droplet formation and to show that the classical investigation techniques, HDTMAs and 

CCNCs, might be instrumentally biased against surfactants. 

Studies suggesting instrumental limitations in the classical techniques operating include 

intercomparisons of 6 HTDMAs providing, for the same aerosol, growth factors (GF) that were 

proportional to the instrument residence time [Duplissy, 2009] (Figure 1.13).  

 
Figure 1.13: Intercomparison of HTDMAs with different residence times showing the underestimation 
of the cloud-forming efficiency (growth factor GF) of aerosols at short residence times ([Duplissy, 2009] 
© Copyright 2009). 
 

Other studies have extended the residence time of their instrument (15 s - 60 s) and 

reported twice as many CCNs as with the classical techniques, which could only be accounted 

for with a surface tension of less than 50 mN m-1 [Good, 2010b; Irwin, 2010] (e.g. Figure 1.14). 

 
Figure 1.14: Comparison between predicted and experimental data (from instruments with a residence 
time of 15 s) using a model which neglects the effect of surfactants by considering the surface tension 
as the one of water ([Good, 2010b] © Copyright 2010). A systematic underestimation of the number 
of predicted activated particles (X CCN = CCNpredicted/CCNmeasured) is observed (X CCN < 1).  
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This was explained by the long delay to equilibrium of strong surfactants, predicted to 

require more than 30 s to reach their full effect, thus not detectable by classical on-line 

instruments [Nozière, 2014]. This prediction has now been confirmed by direct measurements 

on micron-sized particles with an optical tweezer, reporting delays to equilibration for strong 

surfactants over a minute [Reid, 2017 in preparation]. 

Other studies than [Good, 2010b] and [Irwin, 2010] have also evidenced the role of 

surfactants in cloud droplet formation. And they also involved the use of non-classical 

approaches. In laboratory, CCNC measurements on biomass burning aerosols combined with 

surface tension measurements showed the importance of surface properties on CCN activity 

[Asa-Awuku, 2008; Giordano, 2013]. Variations with proportion of organics in particles 

(organics found in atmospheric aerosol particles such as -pinene 

secondary organic aerosol particles, etc.) indicated reduced surface tension in measurements 

of water uptake in gradient chamber [Ruehl, 2012; Ruehl, 2014; Ruehl, 2016] (Figure 1.15). 

 

Figure 1.15: (A) Köhler curve observations for the system “ammonium sulfate + -pinene secondary 
organic aerosol particles” (Dp,dry = 175 nm) and (B) corresponding ([Ruehl, 2016] 
© Copyright 2016). For the signification of the symbols and curves, see the corresponding article. 

 

Consequently, because some studies started to show that surfactants are more 

important as previously thought, it is essential to go further and to study them, hence this 

work.   
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1.6. Surfactants 

 

1.6.1. Definition 

 

According to the International Union of Pure and Applied Chemistry (IUPAC), a surfactant 

(contraction of surface - active agent) is “a substance which lowers the surface tension of the 

medium in which it is dissolved, and/or the interfacial tension with other phases, and, 

accordingly, is positively adsorbed at the liquid/vapour and/or at other interfaces.” 

Many surfactants are amphiphilic molecules, having a water insoluble (hydrophobic) 

part and a water soluble (hydrophilic) one. Surfactants place themselves at the interface of 

two phases (liquid/gas or two immiscible liquids). In aqueous systems, the hydrophobic group 

is generally a long-chain hydrocarbon group and the hydrophilic head is an ionic or highly polar 

group (example in Figure 1.16). 

 
Figure 1.16: Structural feature of a typical surfactant, with the example of Sodium Dodecyl Sulfate 
(SDS) adsorbed at the air/water interface. 

 

Surfactants are often distinguished by their ionic properties: anionic, cationic, non-ionic, 

or amphoteric. Anionic (respectively cationic) surfactants are surfactants that carry a negative 

(respectively positive) charge on the surface-active portion of the molecule. Amphoteric 

surfactants can be either cationic or anionic depending on the pH or other solution conditions, 

including those that are zwitterionic, possessing permanent charge of each type. The non-

ionic surfactants have no charge. Examples of surfactant structures are given in Table 1.1. 

  

Hydrophobic „tail“   Hydrophilic „head“ 

O-

O

S
O

O

+Na

HYDROPHOBIC PHASE      HYDROPHILIC PHASE  
(ex : air)        (ex : water) 
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Table 1.1: Examples of surfactants classified according to their chemical structure (adapted from 
[Myers, 2005; Tadros, 2006; Olkowska, 2011]). 

Charge of 
head group 

Type of 
charge Chemical structure 

Non ionic  

Nonylphenols C6H4(OH)C9H19 

Alkylphenolethoxylates RO(CH2CH2O)nH 
R=alkylphenol group 

Alcohol ethoxylates CnH2n+1(OCH2CH2)nOH 

Ionic 

anionic 

Soaps (carboxylates) CnH2n+1COO-X+

Linear alkylbenzene sulfonates 
Secondary alkyl sulfonates CnH2n+1SO3

-X+ 

Alkylether sulfates CnH2n+1-(OCH2CH2)n-OSO3
-X+ 

Alcoholic sulfates R-O-SO3
-X+ 

Phosphates CnH2n+1OPO(OH)O-X+ 

cationic 

Quaternary ammonium compounds R1R2R3R4N+Y- 
Esters of quaternary ammonium 
compounds RCO-O-CH2CH2-N(CH3)2

+Y- 

Derivatives of pyridine and imidazolines [NC5H5]+, R1-C=N-(CH2)2-N-R2
+Y- 

amphoteric 

Aminocarboxylic N+H2(CH2)nCOO- 

Betine derivatives N+(CH2)nCOO- 

Sulfobetaine derivatives N+(CH2)nCH2SO2
- 

 

Because of their interest in industrial processes, many surfactants have been 

synthesized (man-made). But many others are known to be produced by microorganisms 

(biosurfactants) such as bacteria (e.g. [Renard, 2016]). Basically there are six major classes of 

biosurfactants: glycolipids (rhamnolipid, trehalolipid, sophorolipids,…), lipopeptides/ 

lipoproteins (serrawettin, viscosin, surfactin, subtilisin,…), phospholipids, neutral lipids, fatty 

acids and lipopolysaccharides [Kosaric, 1993; Desai, 1997]. Some examples of synthesized and 

biological surfactants are given in Figure 1.17.  
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Figure 1.17: Examples of biological and man-made surfactants. 
 

Microorganisms extracted from cloud water and snow have been shown to be able to 

produce biosurfactants and to be metabolically active in cloud water [Ahern, 2007; Amato, 

2007b; Amato, 2007a; Delort, 2010; Vaïtilingom, 2012; Vaïtilingom, 2013]. 

 

1.6.2. Surface tension and CMC 

 

In this work, the interfacial tension of the surfactants in the aerosols, between the droplet and 

the air surrounding the droplet, was investigated. 

  

Sophorolipid (biological) 

CTAB (cetyltrimethylammonium bromide) (man-made) 
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The air-water interfaces studied in this work are characterized by surface tension curves, 

reflecting the effect of each surfactant. These curves give the surface tension of the interface 

as a function of the surfactant concentration (Figure 1.18).  

 
 

Figure 1.18: Schematic of (A) a surface tension curve showing the surface tension 
surfactant concentration Csurf,w and (B) the corresponding organization of surfactants for a system 
air/water (hydrophobic part of the surfactant in orange and hydrophilic part in blue) (redrawn from 
[Biolin-Scientific, 2016] © 2016 Biolin Scientific Holding AB). 

 

The first part of the curve (Figure 1.18 (A)) corresponds to the situation where all the 

surfactants place themselves at the air/water interface (Figure 1.18 (B)), with the hydrophilic 

part being in the water and the hydrophobic part pointing out in the air. At low surfactant 

concentrations, the surface tension has the value of pure water. The sharp transition 

corresponds to the situation where the interface starts to be saturated by surfactants, 

reducing the surface tension of the interface. Finally when the saturation is achieved, at a 

concentration called CMC (Critical Micelle Concentration), the surface tension is minimal and 

reaches a plateau. If more surfactants are added in the solution, they start forming micelles.  

The CMC is characteristic of a given surfactant molecule. Biological surfactants often 

have the lowest CMC, as low as 10-5 and 10-4 M, while synthesized surfactants have generally 

CMC in the range 10-3 - 10-2 M [Mukerjee, 1971; Desai, 1997]. A few examples of surface 

tensions and CMCs are given in Table 1.2. 

Air 
 
Surface 
 
Bulk (water) 

S
 

CMC point 

Surfactant concentration Csurf,w 

Surfactant

A 

 

 

 

 

B 
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Table 1.2: Examples of biological and synthesized surfactants with their surface tension and CMC 
values (adapted from [Christofi, 2002] © Copyright 2002 John Wiley & Sons, Inc.). 

Nature Surfactant 
Surface 
tension
(mN m-1) 

CMC 
(mg L-1)  

Biological 

Rhodococcus ruber glycolipid complex 26.8 54  

Trehalose dicorynomycolate from R. erythropolis 36.0 4.0  

Trehalose tetraester from R. erythropolis 26.0 15 (17 μM) 

Rhamnolipids from Pseudomonas aeruginosa 29.0 50-200 (80-300 μM) 

Sophorolipids from Torulopsis bombicola 33.0 82 (126 μM) 

Surfactin from Bacillus subtilis 27.0 23 (22 μM) 

Synthesized 

Sodium dodecyl sulfate 37.0 2120 (7-8 mM) 

Cetyltrimethylammonium bromide 30.0 1300 (3-4 mM) 

Tween 20 30.0 600 (0.5 mM) 

Linear alkylbenzene sulfonate 47.0 590 (1.7 mM) 
 
 

1.7. Surfactants in aerosols: State of the Science 

 

Because of the lack of interest of the atmospheric community for surfactants, very few studies 

have been dedicated to these compounds. In the 1990s, a decrease of the surface tension of 

fog waters and aerosols with increasing water soluble organic fractions evidenced the 

presence of surfactants (e.g. [Capel, 1990; Facchini, 1999; Facchini, 2000; Hitzenberger, 2002; 

Latif, 2004; Mircea, 2005]. Humic-like substances (HULIS) extracted from atmospheric 

aerosols were also reported to decrease the surface tension of water [Kiss, 2005; Salma, 2006; 

Taraniuk, 2007]. But, beside the HULIS studies, these early works were lacking an appropriate 

extraction technique, allowing to isolate and characterize specifically surfactants. Such a 

technique was finally developed in 2010 (double extraction) and was reported to extract the 

total surfactant fraction from aerosol samples (i.e. the solution left after extraction had the 

surface tension of pure water) [Ekström, 2010; Baduel, 2012]. This method showed the 

presence of surfactants in aerosols from many different regions. The surface tension 

measured were also much lower,  ~ 30 mN m-1, than reported in the early studies (                

50 mN m-1 see Figure 1.19). However these surface tension measurements were not combined 

with concentration measurements, precluding the obtaining of absolute surface tension 

curves.   
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Figure 1.19: Comparison of recent surface tension curves as a function of relative  surfactant 
concentration in aerosol particles Csurf,p (i.e. the position of the surface tension curves on the x-axis is 
estimated) for aerosol extracts obtained with a simple water extraction (red curve) and by a double 
extraction method (blue and grey curves) (adapted from [Mircea, 2005] © Copyright 2005; [Ekström, 
2010] © Copyright 2010; [Baduel, 2012] © Copyright 2012, with permission from Elsevier) 

 

Other groups focused on measuring the concentration of surfactants in atmospheric 

aerosols and confirmed their presence in aerosols from many different regions. Two types of 

techniques were used: colorimetric techniques [Latif, 2004; Roslan, 2010; Jaafar, 2014; 

Mustaffa, 2014] (Section 2.4) providing absolute concentrations and electrochemical ones 

providing relative concentrations (by comparison with Triton X100 used as reference 

surfactant) [ -Leko, 2010; Frka, 2012]. 

In addition to their role in cloud formation, very little was known on the molecular 

structure and origin of surfactants, which are also important to fully understand their 

importance in the atmosphere/biosphere system. Some studies suggested an anthropogenic 

origin, in particular combustion processes, for the surfactants found in aerosols (e.g. [Latif, 

2004; Asa-Awuku, 2008; Baduel, 2012]). But others, in particular the low surface tension 

obtained at low concentrations, suggested a biological and probably microbial origin 

(“biosurfactants”) [Ekström, 2010]. This origin thus needed to be further investigated. 
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1.8. Objectives of the study 

 

The purpose of this PhD work was to complete the knowledge on the role of surfactants in 

cloud droplet formation, their mechanism of action, and their sources. The specific objectives 

of the work were thus to 

e the role of surfactants in cloud formation and characterize their mechanism of 

action 

by characterizing the surfactant properties in aerosols (concentrations, surface 

tension, CMC, chemical structure…); 

by finding direct atmospheric evidence (correlations with cloud events); 

lucidate the surfactant origin (biogenic or not, and, if possible, specific sources). 

 

1.9. Thesis overview 

 

This work is structured as follows. 

Chapter 1 gave an overview of the scientific context underlying the necessity to study 

the role of surfactants in cloud formation. 

Chapter 2 will detail the experimental methods used for the sampling, extraction and 

analysis of surfactants from aerosols (determination of surfactant concentration by 

colorimetric methods, surface tension by pendant drop tensiometry, fluorescence 

spectroscopy, surfactant structure by LC-MS) and the study of micron-sized droplets by 

“optical trap” and Raman spectrometry. Other atmospheric and geophysical data used to 

understand the relation between the surfactants and the cloud events or the origin of 

surfactants will also be described. 

Chapters 3 to 6 will present the different studies which investigated the role and origin 

of surfactants in cloud droplet formation. Chapter 3 will show the application of the improved 

extraction and analysis methods on atmospheric aerosols from Askö, Sweden leading to the 

first absolute surface tension curves of surfactants in atmospheric aerosols. Chapter 4 will 

focus, through investigation on aerosols from Northern Finland, on the link between 
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surfactants properties and cloud events. Chapter 5 will present an alternative method to study 

the effects of surfactants on the growth of micron-sized droplets. Chapter 6 will bring some 

proofs of the potential biological origin of atmospheric surfactants.  

The conclusion and perspective of this study will be given in Chapter 7. 

A summary of this PhD work can be found in French in Chapter 9. 

Chapters 8, 10 and 11 contain the appendix, the acknowledgments and the references, 

respectively.  
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2. Experimental techniques 
 

2.1. Aerosol sampling 

 

2.1.1. Aerosol sampler 

The surfactant samples studied in this work were extracted from atmospheric aerosol 

particles. These particles were collected with an aerosol sampler on quartz filters (Figure 2.1).  

 

 
Figure 2.1: Schematic view of aerosol sampling (redrawn and adapted from [Digitel, 2014] © Copyright 
2014 DIGITEL Elektronik AG). 

 

The aerosols were pumped through the sampler head and collected on quartz filters. By 

adapting the head of the sampler (specific diameter of inlets) and the flow rate, only the 

aerosols with a diameter below a certain size were collected on the filter, the others settled 

down and were trapped in the layer of grease on the impactor inside the sampler head.  
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2.1.2. Sampling sites and experimental sampling procedure 

 

For the study, the aerosols were collected at different sampling sites depending of the 

targeted study: 

Askö station, Sweden, a marine station (Section 2.1.2.1), for the determination of 

surfactant properties and concentrations in atmospheric aerosols (Chapter 3) and also 

for their link with biological markers (Chapter 6); 

Lyon 1 Campus, Villeurbanne, France, an urban site (Section 2.1.2.2), for the 

comparison of surfactant properties with aerosols from cleaner regions (Chapter 6); 

Pallas, Finland, a boreal continental site (Section 2.1.2.3), for the link between 

surfactant properties and concentrations in aerosols and cloud events (Chapter 4), and 

for the determination of their potential sources (Chapter 6). 

 

The experimental procedures given in the following parts were published in part in 

[Gérard, 2016] and have been submitted for publication [Gérard, 2016 under review; Nozière, 

2016 under review]. 

 

2.1.2.1. Askö, Sweden: coastal station 

 

Askö laboratory belongs to the Stockholm University Baltic Sea Centre and is situated 80 km 

south of Stockholm in the archipelago of Trosa (58° 49.5’ N, 17° 39’ E) in Sweden. This island 

is considered as a coastal and marine region being surrounded by the Baltic Sea. Surfactants 

in aerosols being suspected to be biological [Ekström, 2010], this site (Figure 2.2) was chosen 

because it is mostly influenced by marine biogenic emissions that could be potentially sources 

of biological surfactants.  
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Figure 2.2: (A) Location (red oval) and (B) sampling site at the marine research station of Askö, Sweden. 

 

 

The aerosols were collected at the marine research station of Askö from July to October 

2010 (prior to the work at hand) at ground level on Ø 47 mm quartz 

Leckel SE  (for collection of 

aerosol particles with diameter < 2.5 μm). Each sample was collected over 72 h at 2.3 m3 h 1, 

corresponding to about 165 m3 of air. Prior to sampling, the quartz ted at 600°C 

for 12 h to remove any potential residual contaminants appearing during the filter production. 

lters were packed in plastic Petri dishes and stored in a freezer (-18°C) until analysis. The total 

aerosol particles 

and after sampling under controlled temperature (20°C) and humidity conditions (50 % RH), 

with an accuracy of 10 3 mg and assuming a density of 1 g cm 3

samples were grouped together to obtain a sampled aerosol particles mass of about 2 mg, to 

exceed the detection limit for surface tension measurements, which resulted in a total of 11 

samples. 
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2.1.2.2. Villeurbanne, France: urban station 

 

The city of Villeurbanne in France is urban and situated in a continental polluted region. The 

aerosols were sampled at the campus of the University of Lyon 1, on the 5th floor of the 

“Institut de Physique Nucléaire” building (Figure 2.3) near the highway and national roads of 

Lyon (45°47'00.3"N 4°52'02.9"E). The interest of sampling at this place was especially to 

compare the properties of the surfactants in polluted and non-polluted aerosols. 

 
Figure 2.3: (A) Location (red arrow) and (B) sampling site at Villeurbanne, France. 

 

The aerosols were collected from 1st to 17th of December 2014 and from 12th to 19th of 

January 2015 on Ø 150 mm quartz 

equipped with PM1 inlets (for collection of aerosol particles with diameter < 1 μm). PM1 

aerosol particles collection was chosen over PM2.5 because this diameter is critical for the 

formation of cloud droplets, bigger particles being activated more easily. Each sample was 

collected over 12 h and at a flow rate of 30 m3 h 1 (T = 15°C, P = 1013 hPa), corresponding to 

a total sampled volume of about 360 m3 of air per sample. Prior to sampling, the quartz 

were backed in oven inside aluminum foils at 500°C for 6 h to remove contaminants and 

placed in plastic bags before being used. For quality analysis, blank samples (about one for 

seven . A blank filter corresponded to a clean filter taken on the 

top of the filter stock in the sampler. This filter was left in the stock during seven days without 

being sampled. The blanks were subjected to the same analysis as the samples in order to 

check for potential artefacts or contamination in the sampling or analysis procedure. After 

 

a freezer (-18°C) until analysis. The total aerosol particles 
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and humidity conditions, with an accuracy of 10 1 mg and assuming a density of 1 g cm 3. 

 

2.1.2.3. Pallas-Sammaltunturi, Finland: boreal station 

 

The Pallas-Sammaltunturi station is situated in northern Finland (67°58.400'N 24°06.939'E, 

565 meters above sea level, Figure 2.4) inside the Pallas-Yllästunturi National Park and belongs 

to the Pallas Atmosphere-Ecosystem Supersite in Muonio, Finland, hosted by the Finnish 

Meteorological Institute (FMI). 

 
Figure 2.4: Location of Pallas-Sammaltunturi station (red arrow) in Pallastunturi-Yllästunturi National 
Park (from [Hatakka, 2003] © Copyright 2003 Boreal Environment Research, reproduced with 
permission from the publisher). 

  



2. Experimental techniques 
 

30 

The station is located inside a subarctic region at the northernmost limit of the northern 

boreal forest zone, on top of a sub-arctic hill about 100 m above the tree line and rises about 

300 m above the surrounding area. The vegetation on hill top is sparse, consisting mainly of 

low vascular plants, moss and lichen (Figure 2.5). 

 
Figure 2.5: Pallas-Sammaltunturi station in October 2015 with the aerosol particles sampler (Digitel 
DA80). 

 

The area to the east and west of the hills is mainly lowland covered with boreal forest 

and swamps. It can be considered as a remote continental site, since it has an annual average 

particle concentration below 1000 # cm-3 and because the area has no significant local or 

regional pollution sources. A more detailed description of the site can be found in [Aalto, 2002; 

Hatakka, 2003; Lohila, 2015].

The aerosol masses arriving at the station can be marine or continental and can be 

distinguished into five different sources: Local (North Scandinavia), Arctic, East, South and 

North Atlantic (Figure 2.6) [Aalto, 2002]. 
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Figure 2.6: Schematic representation of source regions for air parcels arriving to Pallas-
Sammaltunturi (red arrow): I Local (North Scandinavia), II Arctic, III East, IV South, V North Atlantic 
(reproduced from [Aalto, 2002] © Copyright 2002). 

 

This station was chosen for the study of the link between surfactant properties and 

concentrations and cloud events because it is frequently inside a cloud [Lihavainen, 2008; 

Anttila, 2012], mostly orographic due to the topography of the surrounding terrain. This type 

of cloud is produced by orographic lifting of moist air to saturation (example in Figure 2.7). 

 

 

Figure 2.7: Example of orographic cloud (Pallastunturi-Yllästunturi National Park, Finland, October 
2015). Orographic lift occurs when an air mass is forced from a low elevation to a higher elevation in 
response to the earth topography (mountains for example). 

 

Another advantage of doing the study at this site was the annual presence of several 

meteorological instruments running in parallel [Hatakka, 2003] (visibility, size distribution of 

particles,…) essential for the study. 

Moist, warm air rises 

Moisture condenses as air cools 

Wind 
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The aerosols were collected at the Pallas-Sammaltunturi station during 7 months from 

April to November 2015 on Ø 150 mm quartz Fioroni) with a DIGITEL DA80 aerosol 

sampler (Figure 2.5) equipped with PM1 inlets (for collection of aerosols with diameter < 1 

μm). PM1 aerosol particles collection was chosen because this diameter is critical for the 

formation of cloud droplets, bigger particles being activated more easily. Each sample was 

collected over 24 h and at a flow rate of 30 m3 h 1 (T = 15°C, P = 1013 hPa), corresponding to 

a total sampled volume of about 720 m3 of air per sample. Prior to sampling, the quartz 

were backed in oven inside aluminum foils at 500°C for 6 h to remove contaminants and 

placed in plastic bags before being used. For quality analysis, blank samples (about one for ten

lter samples) were also taken. A blank filter corresponded to a clean filter taken on the top 

of the filter stock in the sampler. This filter was left in the stock during ten days without being 

sampled. The blanks were subjected to the same analysis as the samples in order to check for 

potential artefacts or contamination in the sampling or analysis procedure. After sampling, 

placed again in the plastic bags in their aluminum foils and stored in a freezer 

(-18°C) until analysis. The total aerosol particles obtained 

from the size distributions of PM0.5 measured with a differential mobility particle sizer 

(DMPS) connected to an inlet preventing the sampling of cloud droplets, multiplied by a 

proportional factor obtained from the PM1 volume measured in the absence of cloud by 

another DMPS and an Aerodynamic Particle Sizer (APS) (see Section 2.8.4). The aerosol 

samples leaded to a collection of 230 PM1 samples during the 7 months (April - November 

2015). The station was inside clouds 25 % of the time during the 7-months campaign, which 

corresponded to 72 cloud events. 
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2.2. Surfactant extraction from aerosols 

 

After the collection of atmospheric aerosols on filters, the surfactants were extracted from 

the aerosols on the filters before further analysis.  

The development of a method for extracting the surfactants from the aerosols was an 

important part of the study, but it is presented in the Experimental section for more clarity. 

This development was carrying out on reference surfactants before applying the method on 

the genuine environmental samples. 

The extraction procedure was published in [Gérard, 2016] and more technical details 

have been submitted for publication [Nozière, 2016 under review]. 

 

2.2.1. Reference surfactants 

 

To develop the surfactant extraction method, to determine the extraction efficiency (and to 

perform the surfactant analysis methods), reference surfactants were used (Figure 2.8 and 

details in Appendix 8.1 and 8.2). The surfactants were chosen with two compounds at least 

for each type (anionic, cationic and non-ionic) and source (synthesized and biological). 
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     Synthesized surfactants 

    Anionic surfactants 

     SDS 

AOT            
    Cationic surfactants 

     Zephiramine 

CTAC        
    Non-ionic surfactants 

         Triton X114 

 Brij 35         
    Biological surfactants 

    Amphoteric surfactants 

         L-a phosphatidylcholine 
 
    Non-ionic surfactants (at neutral pH) 

            
Surfactin      Rhamnolipid 

 

Figure 2.8: Reference surfactants used in this study (details available in Appendix 8.1 and 8.2). 
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2.2.2. Surfactant extraction 
 

Once the aerosols were collected on the filters, they underwent a double extraction. As 

explained further, in this work the initial method [Ekström, 2010; Baduel, 2012] was 

optimized. The first extraction (in water) remained whereas the second extraction was 

replaced by a Solid-Phase Extraction (SPE). 
 

2.2.2.1. Principle 
 

The first extraction of aerosols was performed by a water extraction. The filters with collected 

aerosols were soaked in ultrapure water. Because the quartz filter left a few fibers and to 

remove big particles, the solution needed to be filtered before the second extraction.  

In order to concentrate and remove interfering molecules of the aqueous matrix, a 

second extraction was necessary. The solution underwent a Solid-Phase Extraction (SPE), a 

sample preparation process used to concentrate and purify liquid samples [Berrueta, 1995; 

Rouessac, 2004].  

The principle of SPE involves a partitioning of compounds between two phases. 

Extraction is performed by forcing the liquid through the sorbent material (the solid phase, 

packed into a small cartridge) by means of pressure, vacuum or diffusion. The analytes to be 

extracted are retained by the solid phase, having a greater affinity for the solid phase than for 

the sample matrix (retention and absorption step). Compounds retained on the solid phase 

are then removed by elution with a solvent in which the analytes have a greater affinity than 

for the solid phase (elution or desorption step). The different mechanisms of retention or 

elution are due to intermolecular forces between the analytes, the active sites on the surface 

of the adsorbent and the liquid phase or matrix.  

The choice of the cartridge (solid phase) and elution solvent depends on the matrix 

(interfering compounds, affinity with the analytes,…) and the properties of the analytes to be 

extracted. For example a normal phase is used for polar molecules (elution with a highly polar 

solvent or a buffer of the appropriate pH), while a reversed phase is used for molecules with 

a mid to low polarity due to hydrophobic effects (elution with a weakly polar or non-polar 

solvent), as in our study. 
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A simple SPE procedure involves the following steps (Figure 2.9): 

1. Conditioning: the solid phase of the cartridge is first wetted with the elution solvent 

(e.g. acetonitrile) for activating the sorbent, then the solid phase is washed with the 

solvent in which the sample is dissolved (the matrix of the solution, e.g. water); 

2. Sample application: the liquid sample is loaded in the cartridge. As the sample passes 

through the stationary solid phase, the analytes which have a better affinity for the 

phase interact with it and are retained on the sorbent (absorption step), while the 

solvent and other impurities (molecules which have a better affinity for the solvent 

than for the solid phase) pass through the cartridge; 

3. Washing: the interfering compounds retained in step 2 are removed with a solvent 

which does not remove the analytes; 

4. Elution: the analytes are eluted from the cartridge with an appropriate solvent 

(desorption step). 

 
 
Figure 2.9: Schematic SPE (Solid-Phase Extraction) procedure used for this work (redrawn and adapted 
from [Macherey-Nagel-GmbH-&-Co, 2015] © Copyright 2015 MACHEREY-NAGEL GmbH & Co. KG). 
 

After the elution, the solution of solvent containing the analytes (here, the surfactant 

fraction) is obtained. The solvent is then evaporated under a nitrogen flux, i.e. a constant N2 

flux is applied over the vial containing the solution until complete evaporation of the solvent. 

A solid or liquid extract is thus obtained (in this study, the surfactant fraction) and redissolved 

in water (or other solvents) for further experiments.

Sorbent 

   1. Conditioning                    2. Sample application              3. Washing     4. Elution 

Interfering compounds 

Analytes in 
elution solvent  
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2.2.2.2. Improvement of the extraction 

 

The extraction method developed prior to this study [Ekström, 2010; Baduel, 2012] involved 

the following steps: 

1. extraction of the filters in ultrapure water followed by filtration; 

2. microextraction of the water extracts onto silicon tubes; 

3. recovery of the compounds of interest by drying the silicon tubes, eluting with 

methanol, evaporating, and redissolving in ultrapure water. 

 

This method was improved for the present work. The main improvement was the 

replacement of the silicon tubes by Solid-Phase Extraction (SPE) cartridges using a derivative 

of silicon, silica C18, providing a better reproducibility.

Before being applied on the genuine aerosol samples, the method was optimized from 

the reference surfactants given in Section 2.2.1. To determine the most efficient procedure of 

each step, the extraction efficiencies were determined from concentration measurements 

using the colorimetric methods described in Section 2.4.2.  

For this study, the water extraction has been tested under different conditions 

(magnetic stirring, rest, ultrasound bath) and different temperatures (6°C, room temperature 

of 23°C, 30°C) during 2 h (minimum extraction time defined by [Baduel, 2012]). These different 

conditions applied on the reference surfactants showed similar extraction efficiencies. 

However a low temperature is better to avoid potential degradation of molecules. Moreover 

performing water extraction under stirring or ultrasound bath crumbled the quartz filters 

making the filtration through the syringe filter more difficult. For these reasons it was decided 

to perform the water extraction at rest on Petri glass dishes placed in fridge. Concerning the 

volume of water used for extraction, the minimum volume for a good extraction was 7 mL for 

Ø 47 mm quartz-filters and 35 mL H2O for Ø 150 mm quartz filters. Moreover the extraction 

in water rather than an extraction in an organic solvent was favored because it reduced the 

number of steps (hence a gain of time and cost and a decrease of contamination probabilities).  

For the filtration through syringe filter, a PVDF (PolyVinyliDene Fluoride) membrane with 

pore sizes of 0.40 μm was chosen because of its cost-extraction effectiveness compared to 
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other materials such as PTFE (PolyTetraFluoroEthylene) or cellulose acetate. The pore size of 

0.40 μm was favored over lower pore sizes to reduce the potential surfactant retention on the 

membrane. 

For the SPE procedure, a reversed phase, a silica-based C18 cartridge, was chosen 

because it is widely used for the analysis of surfactants in waters [Olkowska, 2011, 2012]. The 

type of surfactant in aerosol being not known, the SPE procedure was conducted without 

adjusting the pH of the solution. For our study, two extraction solvents were tested for the 

elution: acetonitrile (ACN)  

10 - 20 % more than acetonitrile) but the blank method for the surface tension measurements 

was better if acetonitrile was used. Indeed, impurities due to methanol extraction lowered 
-1 whereas the decrease was < 5 mN m-1 for 

ACN. So the acetonitrile was used as solvent for the study. The volumes of water and 

acetonitrile for conditioning, washing and elution were also optimized by choosing the 

minimum volume required for an efficient extraction and a satisfactory blank. Note that it was 

not possible to choose a different procedure for each type of surfactant because of the very 

low concentrations of surfactant aerosol samples. 

 

2.2.2.3. Experimental procedure 

 

The schematic of the modified and optimized extraction procedure is shown in Figure 2.10. 

This method was published in [Gérard, 2016] and more technical details have been submitted 

for publication [Nozière, 2016 under review]. 

The procedure involved the following steps:  

extraction of quartz ultrapure water (7 mL for Ø 47 mm quartz-filters and 35 

mL for Ø 150 mm quartz filters) for 2 h at 6 (± 1) °C

precleaned syringe filters (0.40 

suspension; 

a solid-phase extraction on C18-E cartridges (500 mg / 3 mL, Phenomenex). The 

cartridge was pre-cleaned with 6 mL acetonitrile then 6 mL of water. Then the aerosol 

solution was loaded onto the cartridge at a flow rate of less than 1 mL/min. Then the 
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cartridge was cleaned with 1 mL ultrapure water (to remove any traces of the residual 

interferents from the matrix, such as salts) and dried (for a better elution and to avoid 

the presence of water in the eluted organic solution). The surfactants absorbed on the 

SPE cartridge were then eluted with 4 mL of acetonitrile; 

evaporation of the eluted solution under a stream of N2 and redissolution in 60 μL of 

ultrapure water (or other solvent). 

Figure 2.10: Schematic of the developed extraction method: 1. water extraction of aerosols from the 
sampled filter; 2. filtration of the solution through syringe filter; 3. SPE procedure; 4. Evaporation of 
SPE extraction solvent under N2 flux; 5. adding of water on the dry surfactant extract; 6. sample ready 
for further analysis. 
 

 

(anionic, cationic, and non-ionic), was determined as the ratio of the concentrations of 

reference compounds before and after extraction, the concentrations 

colorimetric techniques described in Section 2.4.2. For this, 10 9 to 10 4 moles of reference 

surfactants (in ~ 0.5 - 1.0 mL ultrapure water) were spiked onto clean quartz 

were dried for 24 h 

1.     2.  

3.  

  4.     5.         6.  

distilled water

sample

N2 flux

evaporation

distilled water
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was determined for the nine reference surfactants (Section 2.2.1), representing the three 

classes of surfactants: sodium dodecyl sulfate (SDS) and dioctyl sulfosuccinate sodium (AOT) 

representing anionic surfactants, benzyltetradecyl dimethylammonium (zephiramine), 

cetyltrimethyl ammonium chloride (CTAC) representing cationic surfactants, and (1,1,3,3 - 

tetramethylbutyl) phenyl-polyethylene glycol (Triton X114), polyethylene glycol dodecyl ether 

(Brij35), surfactin, rhamnolipid, and L- -phosphatidylcholine representing non-ionic 

surfactants. For anionic surfactants, the maximum in the experimental 

range was 65 (± 10) %, for cationic surfactants 20 (± 15) % and for non-ionic surfactants 90 (± 

5) %. The experimental calculations of the 

concentration values obtained with this method. 

For the aerosol samples, the extraction technique was shown to remove the entire 

surfactant fraction of these samples (i.e. all of the aerosol components contributing to the 

surface tension) by measuring the surface tension of the residual solutions obtained after the 

rst and second extraction steps [Ekström, 2010; Baduel, 2012]. 

extraction), the surface tension of the residual solutions was around 50 mN m 1, which was 

consistent with the surface tension of aerosol samples resulting from a simple water 

extraction [Mircea, 2005]. After the second extraction step, the surface tension of the residual 

aqueous solutions had increased back to 72.8 (± 1) mN m 1 (i.e., the value of pure water), thus 

demonstrating that all of the surface-active compounds had been transferred to the extracts. 

 

s obtained from each aerosol sample were used as parent solutions for 

surface tensions, concentration measurements, fluorescence and LC-MS/MS experiments. 

ng surface 

tension curves were determined by successively diluting the extracts in ultrapure water (see 

Section 2.3). The diluted solutions obtained at the end of this procedure were then separated 

into several aliquots and used for the measurement of anionic, cationic, and non-ionic 

surfactant concentrations (Section 2.4), fluorescence (Section 2.5) and LC-MS/MS 

measurements (Section 2.6). 
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2.3. Surface tension by pendant drop tensiometry 
 

For this study, the pendant drop method (also called hanging drop method) was chosen for 

determining the surface tension of the surfactants in atmospheric aerosols. Indeed, this 

method requires a small amount of solution, which is an advantage when the available mass 

of sample is low, and it is currently the only method to determine the surface tension of 

aerosols. Associated to concentration measurements, surface tension curves could be 

obtained. 
 

2.3.1. Principle 

The principle of the pendant drop method is based on the formation of a small droplet of 

liquid suspending at the end of a vertical tube (Figure 2.11). The shape of the droplet before 

it falls is correlated to the surface tension.  

                      
Figure 2.11: Schematic of (A) pendant drop and (B) parameters of droplet shape. 
 

The surface tension, between the droplet and the air surrounding it, can be determined 

from equation (2.1) resulting from Young-Laplace equation [Bashforth, 1883; Andreas, 1938; 

Fordham, 1948; Rotenberg, 1983]: 

=    ( )       (2.1) 

where g is the gravitational acceleration,  is the difference of density between the solution 

and the air, de is the main diameter of the pendant droplet and H is function of a shape factor 

defined by  (Figure 2.11) and is determined from tables (e.g. empirical tables such as in 

[Andreas, 1938; Fordham, 1948]).  
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The surface tension value for an aqueous solution containing surfactants results only 

from the total concentration of surfactants in this solution, including those at the surface and 

those in micelles in the bulk, which are in equilibrium. Thus, sample (or droplet) size should 

not affect the surface tension value measured. This question has been stirring strong 

controversies in the atmospheric community. But recent experiments measuring directly the 

surface tension of micron-sized particles in laboratory have now confirmed that, for a given 

concentration, the surface tension measured on millimeter droplets is identical to that 

measured on micron-scale droplets [Morris, 2015; Bzdek, 2016] (Figure 2.12). This remains 

true even at low concentrations of surfactant (10-5 - 10-4 M) for strong surfactants (CMC ~      

10-4 - 10-3 M) [Reid, 2017 in preparation]. 

 

 

Figure 2.12: Comparison of the surface tension curve (surface tension as a function of surfactant 
concentration) of the glutaric acid between bulk tensiometry and measurements on micron-sized 
droplets (atomic force microscopy [Morris, 2015] and optical tweezer). The lines are the surface 
tension parametrizations performed by [Shulman, 1996; Gaman, 2004; Aumann, 2010; Lee, 2014]. The 
upper axis gives the water activity aw (Raoult’s term). ([Bzdek, 2016] - Published by The Royal Society 
of Chemistry) 
 

Thus although the surface tensions measured in this work have been determined from 

measurements at a macroscopic scale (bulk measurements), they were representative of the 

surface tension of micron-sized cloud droplets. This validates the principle of measurement 

applied in this work.   
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2.3.2. Experimental procedure 

This procedure applied to surfactants in aerosols was published in [Gérard, 2016] and more 

technical details have been submitted for publication [Nozière, 2016 under review]. 

The surface tension of reference solutions and sample extracts was measured with the 

pendant drop method using a Dataphysics OCA 15EC tensiometer and Dataphysics SCA 

software for OCA version 4 - 4.1. The software provided the surface tension of the solution by 

tting the Young-Laplace equation to the shape of the drop of solution hanging from the 

syringe needle before it falls (Figure 2.13).  

 

 

Figure 2.13: (A) Dataphysics OCA 15EC tensiometer and (B) drop formation. The shape of the droplet 
before it falls is correlated to the surface tension.  

 
Syringes with needle tips thinner than usual were used in order to use a volume of 

sample as small as possible: Ø 0.30 mm tips for solutions with low surface tensions                         

(< 50 mN m 1) and Ø 0.51 mm tips for solutions with larger surface tensions (> 50 mN m 1). 

These needle tips produced droplets with diameters between 1.4 and 2.4 mm. The 
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tensiometer was calibrated with ultrapure water, and the measurements were carried out at 

24 (± 2) °C. Before each measurement, the droplet was left to equilibrate [Nozière, 2014] until 

the value of the surface tension did not evolve

and the reproducibility between the results was ± (1 - 3) %. The instrument also allowed the 

volume of the droplet to be monitored in real time and ensured that the latter did not 

ce 

tension measurement were ± (0.3 - 1.0) mN m 1. 

These surface tension measurements were used not only to determine the surface 

tension of the sampled aerosols but also to determine the surface tension curves (surface 

tension concentration Csurf,w) and the Critical Micelle 

Concentrations (CMC, concentration above which the surface tension has reached its 

minimum) 

on the surface tension curves as the intersection between the sharp slope and the minimum 

surface tension level (Figure 2.14).  

  
Figure 2.14: Example of determination, from a surface tension curve, of the CMC value for a surfactant 
extract sample from aerosols. The red dot represents the initial extract, the black dots at lower 
concentrations are those obtained from successive dilutions, and the black dot at the largest 
concentration, corresponding to the concentration in the aerosol, is obtained from the volume ratio 
between the extract and the aerosol. The blue dashed line represents the value for pure water, and 
red dashed lines illustrate the graphical determination of the CMC. (reproduced with permission from 
[Gérard, 2016] © Copyright 2016 American Chemical Society)  
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The surface tension curves, including the minimum surface tensions and CMCs, are 

surfactants, they were measured for the nine reference surfactants listed in Section 2.2.1: SDS, 

AOT, zephiramine, CTAC, Triton X114, Brij35, surfactin, rhamnolipid, and L- -

phosphatidylcholine. The surface tension curves, minimum surface tensions, and CMCs 

obtained were consistent with the literature (see Appendix Section 8.3). 

Surface tension curves were then determined for the aerosol samples. First, the surface 

were then successively diluted with ultrapure water, and the surface tension was measured 

at each dilution step until the surface tension value for pure water was reached (Figure 2.14). 

For each sample, the absolute position of the curve on the X-axis was given by the surfactant 

concentrations obtained by the colorimetric techniques described in Section 2.4.2, and the 

CMC was determined graphically by the same method as described above for the reference 

surfactants. 

For samples from Askö station, in spite of the extraction, a few atmospheric samples had 

a low surfactant concentration (i.e., close to or slightly larger than the CMC), and their surface 

tension was slightly larger than their minimum surface tension. Overestimating the minimum 

surface tension in surface tension curves, in turn, slightly underestimated the CMC value. The 

uncertainties on these CMCs were thus determined as the combination (the square root of 

the sum of the squares) of the uncertainties on the concentrations (20 %; see Section 2.4.2.5) 

and those on the minimum surface tension values. The latter were taken as the relative value 

concentration measured, which should be zero if the actual minimum surface tension is 

reached. In nearly all of the atmospheric samples from Askö station, these uncertainties were 

less than 3.5 %, corresponding to about 1 mN m 1 and indicating that the surface tension 

measured for the sample was equal to the minimum surface tension for the surfactant, within 

uncertainties.  

For samples from Pallas-Sammaltunturi station, only the samples attaining the plate 

were considered so the uncertainties on the measurements of the surface tension were those 

of the instruments, i.e. around 0.3 - 1.0 mN m-1.   
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2.4. Surfactant concentration by colorimetric methods 

 

Colorimetric techniques were chosen in this work to determine surfactant concentrations 

in aerosols because they provided absolute concentrations and have been shown to be 

sensitive enough for aerosol surfactants [Latif, 2004; Roslan, 2010; Jaafar, 2014; Mustaffa, 

2014]. However, because there is no dye reacting with all types of surfactants, it was necessary 

to measure anionic, cationic, and non-ionic surfactants separately to obtain the total 

surfactant concentration. Although the colorimetric methods were used for the determination 

of surfactants in aerosols prior to this work, they provided only anionic and cationic surfactant 

concentrations. In this work we went further by applying in addition a colorimetric method to 

determine the non-ionic surfactant concentration. 

that concentrations for non-ionic surfactants in atmospheric aerosols are reported, whereas 

they represent a major fraction of aerosol surfactants, as shown by this work (Section 3.2.2). 

Moreover, in the previous studies [Latif, 2004; Roslan, 2010; Jaafar, 2014; Mustaffa, 2014] 

the potential interferences on the method from other species present in aerosols were not 

checked, whereas a simple water extraction was applied. Thus in addition to surfactants, it 

was quite certain that other species were extracted such as salts or small non-surfactant 

organics. Consequently, the possible interferences from other species present in aerosols 

were also studied in this work. 

Thus, in this work, for the first time, a method to determine the total surfactant 

concentration in atmospheric aerosols including anionic, cationic and non-ionic surfactants 

was developed and the potential interferences on the colorimetric methods was studied.  

 

The development of the method and the experimental procedure were published in part 

in [Gérard, 2016] and more technical details about the procedure have been submitted for 

publication [Nozière, 2016 under review]. 
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2.4.1. Principle 

 

Briefly, the principle of these colorimetric methods is to titrate the surfactants with a dye 

speci c to the surfactant class (anionic, cationic, or non-ionic). The resulting surfactant-dye 

complex is then extracted in an organic phase and its concentration determined by UV visible 

absorption spectroscopy using calibration curves established with reference compounds. The 

advantage of this technique is to provide a unique calibration curve for each class of 

surfactants, thus making it possible the determination of the concentration of unknown 

surfactants belonging to each class. 

Thus, the first step of the colorimetric methods is the formation of a surfactant-dye 

complex (Figure 2.15). For this, a dye is added to the surfactant solution. The surfactants form 

a complex with the dye. Then a liquid/liquid extraction is performed: a second phase (an 

organic phase), not miscible with the first one (the aqueous phase), is added and agitated. 

Because the surfactant-dye complex has a better solubility in the organic phase compared to 

the aqueous phase, by mixing the solutions the complex goes into the organic phase. To avoid 

the effect of interfering substances and to increase the extraction efficiency, other 

compounds such as salting out agents are added to the aqueous solution before introducing 

the second phase. 

 

Figure 2.15: Principle of colorimetric method by formation of a surfactant-dye complex followed by a 
liquid-liquid extraction.  

Both phases mixed 

  Surfactant    Dye-surfactant complex  
     Other molecules                  better solubility in organic phase 
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Then the absorbance of the phase containing the dye-surfactant complex is determined 

from a UV spectrometer (Figure 2.16). The dye-surfactant complex absorbs in the visible, far 

from the possible absorbance of interfering molecules from the matrix, which could be 

extracted at the same time in the organic phase. 

Figure 2.16: Schematic of a UV visible spectrometer.

 

At a given wavelength, the absorbance A of a solution is directly proportional to the 

concentration of the absorbing species in the solution and the path length according to the 

Beer-Lambert law: 

A = log =  C L    (2.2) 

where I0 is the intensity of the incident light at a given wavelength, I is the transmitted 

intensity, L is the path length through the sample, C is the concentration of the absorbing 

species and  is the absorption coefficient which is specific to each species in a given solvent 

and at a particular temperature and pressure.  

Thus, calibration curves giving the intensity at a maximum of absorption as a function of 

the concentration can be plotted for a compound. So, measuring the absorbance of the phase 

containing this compound and using a calibration curve allow the concentration of the 

compound in the phase to be determined.   
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2.4.2. Experimental procedure: adaptation to extracts 

 

As explained at the beginning of Section 2.4, although this section includes some results 

and graphs which were not present in literature before this work, they will be presented in 

the experimental section for more clarity. The development of the method and the 

experimental procedure were published in part in [Gérard, 2016] and more technical details 

about the procedure have been submitted for publication [Nozière, 2016 under review]. 

 

The colorimetric methods used for the determination of surfactant concentrations were 

specific to each type of surfactants (anionic, cationic and non-ionic) and will be detailed 

further. This section includes also the determination of the calibration curves for 

quantification, the uncertainties, the detection limits of the concentrations and the 

investigation of the potential interferences on the methods from other species found in 

aerosols.  

 

2.4.2.1. Determination of anionic surfactants concentration 

 

The dye used to quantify anionic surfactants RX- was ethyl violet (C31H42N3Cl) [Motomizu, 

1982; Yamamoto, 1987; Schmitt, 2001; Latif, 2004]:  

C H N  +  RX  
,   

 C H N XR (purple organic phase). (2.3) 

The reaction (2.3) was carried out by adding to 10 mL aqueous samples (surfactant extracts in 

water): 5 (acetic acid solution 0.2 M / sodium acetate solution 

0.2 M, 30 / 70 in volume), 
1). A total of 2.5 mL of toluene was then 

added, and the solutions were stirred for 1 h. Once the aqueous and organic phases were 

separated, the toluene phase (upper phase) was removed and analyzed by UV visible 

spectroscopy. 

Note that the sodium sulfate solution is used to accelerate the phase separation, EDTA 

is used to reduce interferences of multivalent ions and the reaction is performed at pH = 5 

because the extraction has been found to be the most effective at this pH [Motomizu, 1982]. 



2. Experimental techniques 
 

50 

2.4.2.2. Determination of cationic surfactants concentration 

 

The dye chosen to quantify cationic surfactants RY+ 27H32N2O6S2Na) 

[Hummel, 2000; Latif, 2004]:  

 C H N O S  + RY  
,   

  C H N O S YR (blue organic phase). (2.4) 

The reaction (2.4) was carried out by adding to the 10 mL aqueous samples (surfactant extracts 

in water): 1 in a 

mixture of 90 / 10 water / ethanol solution), and 2.5 mL of chloroform. The mixture was stirred 

for 1 h. Once the aqueous and organic phases were separated, the chloroform phase (lower 

phase)  

 

 

2.4.2.3. Determination of non-ionic surfactants concentration 

 

non-ionic surfactants RZ was more challenging than for anionic and 

cationic ones because there is no known dye able to react with all types of non-ionic 

surfactants. In this work, we chose cobalt thiocyanate (Co(NCS)2) as a reagent because it reacts 

with compounds containing a wide range of organic groups (in particular, ethoxylated-

polyoxyethylene groups (or “EO-PO”), -(CH2)n-O)-, that are common in surfactants) [Shin, 

1997; Amirov, 2003; Pacheco e Silva, 2013]: 

2 Co + 4 NCS + 2 RZ
  

 {Co[Co(NCS) ](RZ) } (blue organic phase). (2.5) 

The reaction (2.5) was carried out by adding to the 3 mL aqueous samples (surfactant extracts 

in water): 1 mL of cobalt thiocyanate solution (6.2 g of ammonium thiocyanate and 2.8 g of 

cobalt nitrate hexahydrate in 10 mL water) and 2 mL of chloroform. The mixture was stirred 

for 1 h. Once the aqueous and organic phases were separated, the chloroform phase (lower 

phase)  

 

The references of chemicals used for these colorimetric methods are given in Appendix 8.2. 
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2.4.2.4. Quantification, uncertainties and detection limits 

 

The concentrations of the surfactant- ible absorption 

spectroscopy by placing small amounts of solutions in a 1 cm quartz cell and measuring the 

absorption over 190 - visible spectrophotometer. 

Calibration curves for each surfactant class were established by measuring the maximum 

absorbance of known solutions of reference surfactants. For anionic surfactants, the 

maximum absorbance was at 612 nm, and the reference compounds were SDS and AOT. They 

resulted in a single ca = 0.37 (± 0.02) 1 cm-1 (Figure 2.17) 

at 612nm, and in a detection limit (intercept on the Y- (or  

0.016 mg L 1 for SDS).

Note that the absorbance at Csurf = 0 (corresponding to a water sample in absence of 

surfactant subjected to the colorimetric method = blank solution) does not correspond to an 

absorbance A = 0 because a small portion of dye alone is extracted in the organic phase. 

 

Figure 2.17: 
of SDS. Upper right corner: calibration curve for anionic surfactants obtained from the absorbance at 
612 nm for SDS (blue points) and AOT (orange points). Gray points: blanks. (adapted with permission 
from [Gérard, 2016] © Copyright 2016 American Chemical Society)   
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For cationic surfactants, the maximum absorbance was at 628 nm, and the reference 

compounds were zephiramine and CTAC, which resulted in a single calibration curve with a 

slope of = 0.35 (± 0.05) 1 cm-1 (Figure 2.18) at 628nm 

(thus, 0.011 mg L 1 for zephiramine).  

 

Figure 2.18 reaction of disulfine blue with various 
concentrations of zephiramine. Upper right corner: calibration curve for cationic surfactants obtained 
from the absorbance at 628 nm for zephiramine (blue points) and CTAC (orange points). Gray points: 
blanks.  

 

Thus, for anionic and cationic surfactants, these colorimetric methods are more 

sensitive in mass concentration than relative techniques for surfactant concentration 

measurement (e.g. [ -Leko, 2010; Frka, 2012]). 

For non-ionic surfactants, two peaks of maximum absorbance could be used (317 and 

riton X114, Brij35, surfactin, 

rhamnolipid, and L- -phosphatidylcholine). They resulted in calibration curves containing 

each ± 10 

surfactant molecule (number of ethoxylated-polyoxyethylene groups EO-PO units) and 

-PO units) and Brij35 (23 EO-
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PO units). Previous works reported a similar range of variability between seven industrial 

surfactants measured with cobalt thiocyanate [Amirov, 2003]. Because the objective of this 

work was to determine the importance of surfactants for cloud formation, we chose to 

determine lower limits for their concentrations by using the calibration curve with the largest 

slope (i.e., giving the smallest concentrations), = 0.013 (± 0.001) 1 cm-1 at 317nm, which 

was the one for Brij35 (Figure 2.19). 

 

Figure 2.19
concentrations of Brij35. Upper right corner: calibration curve for non-ionic surfactants obtained from 
the absorbance at 317 nm. Gray points: blanks. 

 

With this curve, the detection limit for non-ionic surfactants was estimated to be            

different non-ionic surfactants 

present in aerosols, using the calibration curve for Brij35 potentially underestimated the 

overall non-ionic concentrations in aerosols. The extent of this potential underestimation 

(systematic errors on the measurements) was determined from the calibrations slopes of non-

ionic reference compounds with surface tension curves similar to those found for aerosol 
4 min 1, Chapter 3). Those were surfactin, 

rhamnolipid, and Triton X114. Their calibration slopes spanned over a factor of 3.5 in total, 
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thus implying an average underestimation of the concentrations of a mixture of such 

compounds by a factor of 1.75. However, because the dye could also miss some non-ionic 

surfactants entirely (those not containing EO-PO units, for instance), the potential 

underestimation on the non-ionic concentrations in aerosols was estimated to be a factor of 

2 on average. The resulting systematic errors in the total surfactant concentrations were, 

however, lower (see Section 2.4.2.5). 

 

2.4.2.5. Determination of total surfactant concentrations 

 

Before 

reference compounds, that the cationic method did not detect any anionic surfactants and 

vice versa, and that the non-ionic method detected neither anionic nor cationic surfactants. 

non-ionic surfactants. Only the 

anionic method was found to weakly detect some biological non-ionic surfactants (10 - 30 % 

of the calibration slope). But as these compounds were also weakly detected by the non-ionic

method (10 - 50 % of the calibration slope for Brij35), summing up their concentrations 

obtained with the anionic and the non-ionic methods still accounted for less than 100 % of 

their concentration. Therefore, the total surfactant concentration in aerosols was determined 

as the sum of the concentrations of anionic, cationic, and non-ionic surfactants obtained with 

e estimated to be              

± 20 % as the square roots of the sums of those on anionic (5 %), cationic (15 %), and non-

ionic surfactant concentrations (10 

random errors, the potential underestimation of the non-ionic surfactant concentrations by a 

factor of 2 was estimated to result in potential underestimation of 33 % on the total surfactant 

concentrations, as non-ionic surfactants contributed to about 1/3 of the total surfactant 

concentration in the samples (see Section 3.2).  

Once the surfactant concentrations (for each class of surfactant and in total) were 

determined for each sample volume, they were determined for the corresponding aerosol 

particles volume by multiplying the concentration in the sample volume by the ratio between 

the sample volume and the total aerosol particles volume.  
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For aerosols from Askö station, the total aerosol particles volume was determined by 

weighting the filters before and after the aerosol sampling. For the aerosols from Pallas-

Sammaltunturi station, it was determined from the aerosol particles size distributions 

measured in parallel to the aerosol particles collection on filters (see Section 2.8.4). 

 

2.4.2.6. Interferences from other species 

 

The possibility of interferences on the measured concentrations due to the reaction of the 

dyes with other ionic species than surfactants present in the atmospheric samples was 

studied, what the previous studies [Latif, 2004; Roslan, 2010; Jaafar, 2014; Mustaffa, 2014] 

did not check. For this, sodium chloride (NaCl), ammonium sulfate ((NH4)2SO4), and oxalic acid, 

representing some the most abundant species in atmospheric aerosols, were added in 

concentrations of 1 mM to 1 M to known solutions of reference surfactants, and the surfactant 

concentrations were measured using the colorimetric methods. All of these compounds were 

found to interfere positively or negatively (i.e., leading to over - or underestimations) with all 

classes of surfactants (Figure 2.20). 

 

In the presence of interferents, the absolute 

concentrations and the calibration curves became larger than the uncertainties for interferent 

directly on water extracts of atmospheric samples might lead to erroneous surfactant 

concentrations. In our work, however, the surfactant concentrations obtained after the 

concentrations as high as 1 M. This was because they were not retained (and thus eliminated) 

by the second (SPE) extraction step. This showed that this second step is essential for the 

accurate measurement of surfactant concentrations.  
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Figure 2.20: the measured absorbance for the different types of surfactants 
relative to the calibration curve (horizontal full lines) and the incertitude range (horizontal dashed 
lines): NaCl (blue squares), ammonium sulfate (green circles), and oxalic acid (red triangles). The color 
dashed colorimetric 
method for for cati
for non-ionic surfactants (Brij35, 20 ). 
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2.5. Fluorescence spectroscopy 
 

The investigation of the biological origin of surfactants was done by different approaches. The 

fluorescence spectroscopy which measures the fluorescence of a sample is one of them. 

 

2.5.1. Principle 

 

The fluorescence spectroscopy measures the emission of light due to the transition from the 

excited energy state of a compound to its ground energy state following the absorption of a 

photon by the compound (Figure 2.21).  

 
Figure 2.21: Simplified representation of fluorescence principle. After absorption of a photon of high 
energy by the electrons of the molecule, the system is excited into one of the many higher energy 
vibrational states. Some energy is transferred into vibrational energy and then the excited electron 
relaxes into the ground state, releasing a photon of lower energy than the photon initially absorbed. 
(adapted from Jablonski diagram). 
 

Fluorescent molecules are excited only at specific wavelengths and emit at specific 

emission wavelengths. For fluorescence emission measurements, the excitation wavelength 

is kept constant (preferably at a wavelength of high absorption energy) and the detection 

wavelength varies, while for fluorescence excitation measurements, the detection wavelength 

(the wavelength passing though the emission filter or monochromator) is fixed and the 

excitation wavelength is varied across a region of interest (example in Figure 2.22). A three 

dimensional surface data set can also be measured, i.e. emission fluorescence intensity as a 

function of excitation and emission wavelengths.   
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Figure 2.22: (A) Absorbance (dark blue line) and fluorescence spectra of methylene blue solution CAS 
61-73-4 (emission spectrum at a fixed excited wavelength of 292 nm in light blue line and excitation 
spectrum at a fixed emission wavelength of 700 nm in dashed blue-green line) and (B) methylene blue 
chemical structure (spectra determined in this work, consistent with [Chu, 2009]). 
 

Fluorescence is measured using a fluorescence spectrometer (Figure 2.23). 

 

 
Figure 2.23: Schematic of a fluorescence spectrometer. 
 

The light from an excitation source (for example Pulsed Xenon lamp for a continuous source 

of radiation) passes through a filter or monochromator (to select a transmitted wavelength) 

and strikes the sample. A proportion of the incident light is absorbed by the sample, and some 

of the molecules in the sample fluoresce. The fluorescent light is emitted in all directions. 

Some of this fluorescent light passes through a second filter or monochromator and reaches 
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a photodetector that converts any incident fluorescence photons into an electronic signal. The 

detector is usually placed at 90° to the incident light beam to avoid interference of the 

transmitted incident light.  

 

Fluorescence can be used qualitatively or quantitatively. Because the composition of 

surfactant extracts in aerosols is unknown and because fluorescence intensity varies from a 

species to another, only qualitative fluorescence was used in this work. 

 

2.5.2. Experimental procedure 

 

Three-dimensional fluorescence spectra of the samples were measured using the Perkin Elmer 

LS 45 fluorescence spectrometer (Figure 2.24) with the software FL WinLab, using quartz cells 

(1 x 1 cm).  

 

 
Figure 2.24: (A) Perkin Elmer LS 45 fluorescence spectrometer and (B) quartz cell containing the 
sample. 
 

For each sample, the aqueous solutions at each step of the surfactant extraction from filters 

were studied, namely: 

The extract after the first extraction in water (after step 2 Figure 2.10, Section 2.2.2.3); 

The surfactant extract after the whole extraction (step 6 Figure 2.10, Section 2.2.2.3); 

The remaining solution after SPE, i.e. the aqueous matrix containing the interferents

(step 3 Figure 2.10, Section 2.2.2.3). 
 

The measurements were qualitative. Blanks (extraction method applied to ultrapure water) 

were analyzed between each measurements.  
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2.6. Chemical characterization of surfactants by LC-MS/MS 
 

To prove the biological origin of the surfactants, their chemical structure in the aerosol 

extracts was also investigated. This was done by Liquid Chromatography - Tandem Mass 

Spectrometry (LC-MS/MS). This study was done at ICCF (Institut de Chimie de Clermont-

Ferrand) with the group of Anne-Marie Delort, France, and especially with Pascal Renard. 

 

2.6.1. Principle 

The LC-MS/MS method is an analytical chemistry technique used to determine the 

composition or the structure of molecules in complex mixtures. It combines the molecules 

separation capabilities of Liquid Chromatography (LC) and the mass analysis capabilities of 

Mass Spectrometry (MS). The schematic of LC-MS/MS is shown in Figure 2.25. 

 

 
Figure 2.25: Schematic of Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS).
 

Liquid chromatography separates the components of a liquid mixture on the basis of 

their molecular structure and composition. This involves a stationary phase and a mobile 

phase. The mobile phase flows through the stationary phase contained in a column and carries 

the components of the mixture with it. The separation is based on differential partitioning 

(conducting to a differential retention) between the mobile and stationary phases. Sample 

components that display stronger interactions with the stationary phase will move more 

slowly through the column than components with weaker interactions. This difference in 

speed during the travel into the column causes the separation of various components. 

Liquid chromatography can be used for identification and quantification (in simple 

mixtures) and/or separation. For this study, the LC-step was used to separate as much as 

possible the components of the complex mixture. 
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Mass spectrometry is an analytical technique that identifies the chemical composition 

of a sample based on the mass-to-charge ratio of charged particles [Skoog, 2013]. A mass 

spectrometer is composed of three essential modules: an ion source, a mass analyzer and a 

detector (Figure 2.26). 

 
Figure 2.26: Schematic of a Mass Spectrometer (MS) (redrawn from [Premier-Biosoft, 2016] 
© Copyright 2016 Premier Biosoft). 

 

The sample is loaded onto the instrument and undergoes an ionization of the 

components in the ion source, which results on the generation of ions (charged molecules or 

molecule fragments for unstable molecular ions and/or highly energetic sources) involving 

usually the addition of a proton to the analyte [M+H]+ when the ion source is operated in 

positive ion mode or the loss of a proton [M-H]- when operated in negative ion mode. After 

the ionization, the charged molecules or fragments are then separated and detected 

according to their mass-to-charge m/z ratio.  

However, for structural analysis, that was the interest of Section 6.2.5, LC-MS was not 

sufficient. Indeed, the mass-to-charge ratios m/z were not enough to determine the structure 

of the compounds since different molecules can have the same m/z but not the same 

structure. The only way to determine the structure of a molecule at a given m/z and to 

distinguish it from another is to break the molecule into fragments and to analyze them, 

because each molecule produces its own characteristic fragmentation ions. For this, a second 

MS was required, forming the tandem mass spectrometry (MS/MS) (Figure 2.27). 
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Figure 2.27: Schematic of tandem mass spectrometry (MS/MS) for product or daughter ion scanning 
(adapted from [ThermoFisher-Scientific, 2015] © 2015 Copyright ThermoFisher Scientific). 

 

The tandem mass spectrometer combines two mass spectrometers: one for selecting 

the precursor ion from the ions generated in the ion source, and one for analyzing the product 

ions of the selected precursor produced by the collision chamber. The resulting MS/MS-

spectrum consists only of product ions from the selected precursor. The chemical background 

and other mixture components are absent. 

 

2.6.2. Experimental procedure 
 

The following experimental procedure will be submitted for publication [Renard, 2017 in 

preparation]. 

The samples to be analyzed by LC-MS/MS were the surfactant extracts used for the study 

of Chapter 4, since a part of the surfactant extract in water was kept for LC-MS. To concentrate 

the aqueous surfactant extracts, a second SPE procedure was performed in the same 

conditions than the one in Section 2.2.2.3. After the solvent evaporation, the dry surfactant 

extracts were dissolved in 120 μL ACN/H2O 1 / 1 for LC-MS/MS analysis.  

For this study, the analysis were performed on a UHPLC Dionex Ultimate 3000 Rapid 

Separation LC (ThermoScientific) with a detector DAD UV/VIS 3000 RS (wavelength 200 -       

400 nm) coupled with a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer 

(ThermoScientific) equipped with a Heated Electrospray Ionization source (H-ESI)                  

(Figure 2.28).  
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Figure 2.28: LC-MS/MS used for this study: Dionex UltiMate 3000 UHPLC coupled with a Q Exactive 
Hybrid Quadrupole-Orbitrap mass spectrometer, Thermo Scientific, USA. 

 

The chromatographic separation was performed on a C18 column (Kinetex EVO C18; 100 

x 2.1 mm; 1.7 μm, Phenomenex) with a flow rate of 0.45 mL min-1. A volume of 30 μL of sample 

(on the 120 μL prepared) was injected in the column maintained at 30°C. The mobile phase 

was composed by (A) water with 0.1 % formic acid and (B) acetonitrile with 0.1 % formic acid. 

The following elution gradient was used: at initial time (B) was at 5 % and was linearly 

increased to 99 % within 7.5 min; this ratio was maintained constant for 2 min before returning 

to initial conditions ((B) at 5 %) in 0.5 min and kept constant for 2 min. Electrospray ionization 

was performed in positive (ESI+) and negative (ESI-) modes using the following conditions: 

spray voltage 3.3 kV (ESI+) and -3.0 kV (ESI-), AGC target 106, maximum IT 50 ms, capillary 

temperature 320°C, sheath gas (N2) flow rate 50 (arbitrary units), auxiliary gas (N2) flow rate 

10 (arbitrary units), spare gas (N2) flow rate 2 (arbitrary units), auxiliary temperature 400°C,  

S-lens RF level 60. Moreover energy collisional dissociation 35 was applied for MS/MS 

measurements. The data were treated using the software Thermo Xcalibur 4.0.27.10. Before 

selecting specific masses from the LC-MS/MS measurements, the mass spectrometer was 

operated in full MS mode with a scanning range from 170 to 2550 m/z (with a mass accuracy 

< 3 ppm) and a mass resolution of 35 000. Blanks of method and solvent were analyzed every 

five samples for quality analysis. 
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Masses with retention time between 5 and 11 min were studied since analyzed 

reference surfactants appeared in this range of retention time. A particular attention has been 

paid to surfactant compounds with masses above 800 m/z because masses below 800 could 

be attributed to HULIS compounds (e.g. [Samburova, 2005; Gao, 2006; Stone, 2009; Chen, 

2016]). The masses were compared with surfactants from literature and from the surfactant 

database created by the group of Anne-Marie Delort, ICCF (Institut de Chimie de Clermont-

Ferrand), France. 

This study being not finished, only the preliminary results will be presented in Section 6.2.5. 

 

 

2.7. Study of micron-sized droplets using an optical trap 

 

To study the effect of surfactants on the evaporation and condensation of water on micron-

sized cloud droplets, an optical trap, similar to the one described by [Mitchem, 2006] was built 

by Amanda Frossard from the Ronald C. Cohen research group at the University of California, 

Berkeley, USA, collaborator of the project. The goal of this technique was to study individual 

droplets at sizes as close as possible to atmospheric cloud droplets. 

We participated, at the University of California, Berkeley, USA, in the preliminary tests 

that defined the experimental conditions, and we aided in experiments that used different 

surfactant solutions. We also participated in the discussions about the experiments to be 

completed and the results. Because we did not participate in building the instrument or in the 

calculations of droplet radii from Raman spectroscopy, the set-up and the Raman data analysis 

will be described briefly.  

 

2.7.1. Principle 

 

The aerosol “optical trap” (also called “optical tweezer”) technique holds an individual micron-

sized aqueous droplet suspended in air using a focused laser beam [Ashkin, 1986; Omori, 

1997]. The change in droplet size with a change in relative humidity is measured using Raman 
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scattering and bright-field microscopy [Hopkins, 2004; Mitchem, 2006]. The schematic of the 

set-up is shown in Figure 2.29.  

 

 

 

Figure 2.29: Schematic of the optical trap (adapted from [Frossard, 2016 under review]). 

 

Droplets (~ 2 to 4 radius) are introduced with an atomizer into the trapping 

chamber (temperature and relative humidity controlled). A tightly focused laser beam creates 

a three dimensional trap in the chamber resulting in a suspended individual droplet. The size 

of the droplet is determined from Raman spectroscopy. When the droplets were too small to 

size with the Raman method (i.e. right before evaporating completely), the normalized radius 

from the image sizing was used. 

Measured Raman scattering spectra, including Whispering Gallery Mode peaks, are 

matched with predictions from Mie scattering theory (Figure 2.30). Mie theory calculates the 

pattern of light reflecting in a sphere. The resulting spectral pattern and the peak locations 

are a function of both droplet size and refractive index [Hopkins, 2004]. Consequently, the 

optical trap method allows us to measure the radius of a droplet and its evolution with time, 

given a change in chamber conditions, including relative humidity (e.g. [Knox, 2011]). 
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Figure 2.30: Example of measured Raman spectrum from a single droplet (611 mM NaCl in water, 
droplet diameter 3722 nm) of overlaid on the matching Mie theory spectrum, which is a function of 
the droplet radius and refractive index. 

 

The optical trap technique has already been used in previous atmospheric studies to 

measure properties of aerosols, e.g. the structure and phase of mixed salt-organic-water 

aerosols [Buajarern, 2007c, 2007b, 2007a; Dennis-Smither, 2012], the dynamics of water 

uptake by glassy organic particles [Bones, 2012], the transfer of mass and heat during water 

evaporation/condensation [Miles, 2010], and the droplet size of salt solutions at equilibrium 

relative humidity [Mitchem, 2006]. This study is the first use of an optical trap to study the 

effect of a proxy atmospheric surfactant (Igepal CA-630) on the evaporation of water from 

droplets 2 - 4 μm in radius.  

 

 

2.7.2. Experimental procedure 

 

The optical trap set-up (Figure 2.31) and methods used to trap and study the radius of 

individual droplets for this work are fully detailed in [Frossard, 2016 under review]. 
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Figure 2.31: (A) Optical trap set-up built by Amanda A. Frossard from Ronald C. Cohen research group, 
University of California, Berkeley, USA, with (B) zoom on the elements to manipulate for each 
experiment. 

 

For the study, the radius of individual droplets with different surfactant concentrations 

of the non-ionic surfactant Igepal was studied. Igepal CA-630 was used as proxy for 

atmospheric aerosol particles since it has a CMC value (0.08 mM [Mohanty, 2012]) in the range 

of CMC values of surfactants measured in atmospheric aerosols [Gérard, 2016] (Section 6.2.1). 

NaCl was also added in each solution to be atomized at a concentration of 0.611 M, similar to 

the concentration of salt in seawater. This helped to reduce the vapor pressure and allows the 

droplet to remain trapped in the subsaturated conditions inside the chamber [Hopkins, 2004; 

Buajarern, 2007a]. To demonstrate the effect of surfactants on the particles growth, individual 

droplets of solutions with NaCl only were also studied for comparison. The different 

concentrations and compositions of studied droplets are listed in Table 2.1.  

 

Table 2.1: Concentrations of Igepal and NaCl in the micron-sized droplets studied by the optical trap 
method (modified from [Frossard, 2016 under review]) 

Samples Igepal CA-630 + NaCl NaCl only 
Concentration (relative to CMC)* 0.4x 4x 22x 48x n/a 

Igepal Concentration (mM)** 0.04 0.35 1.76 3.87 0 

NaCl Concentration (mM)** 611.2 611.2 611.3 611.1 611.3 

Number of droplets 10 10 11 17 10 
* Igepal CA-630 CMC value of 0.08 mM [Mohanty, 2012]; Sigma- A-630 CAS Number 
9002-93-1. 
** 50 mL of each solution was prepared for the atomizer container. 
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The individual droplets from the surfactant solutions described in Table 2.1 were 

trapped in the chamber. To study the effect of surfactants on the evaporation and 

condensation of water from and onto cloud droplets, the growth of the droplets by changing 

the relative humidity in the chamber was recorded. First the droplet was maintained initially 

at a relative humidity of 80 %, then the relative humidity was reduced to 70 % (evaporation of 

the droplet) and finally, the relative humidity was brought back up to 80 % (condensation of 

water onto the droplet) (example in Figure 2.32). For each droplet of a given composition, the 

procedure lasted ~ 15 minutes and was repeated at least 10 times. In the experiments, the 

radius of the droplets at 70 - 80 % RH ranged from 2 μm to 4 μm. 

 

Figure 2.32: Droplet radius as a function of relative humidity and time (with example of a droplet 
composed of 611 mM NaCl and 0.35 mM Igepal in water). The decrease of the radius corresponds to 
the evaporation of water at the surface of the droplet and the increase corresponds to the 
condensation of water onto the droplet.  
 

To attest to the validity of the method for studying the effect of surfactants, the 

reliability of the set-up measurements was checked. This was done in two ways. First, to test 

the equilibrium of the chamber, the sizes of the initial and final droplets at 80 % were 

compared (Figure 2.33 (A)), i.e. the radius of the droplet at initial relative humidity of 80 % 

and after the evaporation and condensation steps. They were found to be unchanged                

(R² = 0.98, slope = 1.01). This held true for both the NaCl only and the NaCl with Igepal droplets. 

Secondly, the consistency between the experimental and theoretical diameters of droplets for 

which the behavior was known, namely droplets containing NaCl only, was confirmed by 
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comparison with Köhler theory [Köhler, 1936] and a previous study of sea salt particles [Tang, 

1997; Lewis, 2004] (Figure 2.33 (B)). These measurements also showed that the concentration 

of the solution in the container of the atomizer was representative of the concentration in the 

individual droplets sent to the optical trap by the atomizer.  

 

Figure 2.33: (A) Comparison of droplet radii initially and finally at 80 % RH for all of the droplets in the 
evaporation and condensation experiment. (B) Comparison of droplet radii of aqueous NaCl at 80 % 
and 70 % RH calculated using Köhler theory (grey squares) and measured in the experiment (circles). 
The black line represents the r70/r80 ratio (0.91 [Tang, 1997; Lewis, 2004]) for similar droplets 
(reproduced from [Frossard, 2016 under review]). 

 

Both verifications attested to the validity of the method (for more details, see [Frossard, 2016 

under review]).  
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2.8. Other atmospheric and geophysical data 
 

Parallel to sampling, extraction and characterization of surfactants in atmospheric aerosols, 

other devices and techniques were used to characterize the aerosols masses: chlorophyll-a 

data and back trajectories provided by the NOAA (National Oceanic and Atmospheric 

Administration) for Askö campaign and data provided by the instruments in the station (cloud 

events, volume of aerosol particles) for Pallas-Sammaltunturi campaign. 

 

2.8.1. Chlorophyll data from MODIS aqua satellite 
 

Because the surfactants in aerosols were expected to be mostly biological [Ekström, 2010], for 

the study of Askö campaign, a correlation with biological parameters around the station was 

investigated (Section 6.2.3).  

Seawater concentrations of chlorophyll-a and other biological seawater markers near 

Askö station and at other locations in the Baltic Sea were available in the SHARK database 

(Svenskt HavsARKiv, Swedish Meteorological and Hydrological Institute, SMHI). However, 

because these data were missing for too many days over the sampling period, concentrations 

of chlorophyll-a, from the aqua MODIS satellite instrument (Level L3, 1 day composite)   

(Figure 2.34), provided by the National Oceanic and Atmospheric Administration (NOAA) 

ERDDAP data server, were preferred. Whenever they were available, they agreed within 10 % 

with those given by the SHARK database.  

 
Figure 2.34: Example of data given by the MODIS Aqua satellite (Level 3 Global Monthly): Chlorophyll-
a in July 2010 [OceanColor-NASA, 2015].  
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The daily chlorophyll-a MODIS concentrations were averaged over the time periods 

corresponding to each aerosol sample and over areas between 50 and 300 km2 around Askö. 

A total of 10 % of uncertainties was attributed to the chlorophyll concentrations thus obtained 

to account for the fact that these data were available only for about 70 % of the days over the 

sampling period. 

 

2.8.2. Air mass sources by HYSPLIT model trajectories 

Another indirect way to learn more about the surfactants in atmospheric aerosols was to study 

their origin, namely the air masses history. For this, HYSPLIT (Hybrid Single Particle Lagrangian 

Integrated Trajectory) Model vertical velocity provided by the National Oceanic and 

Atmospheric Administration NOAA (https://ready.arl.noaa.gov/HYSPLIT.php) was used 

[Draxler, 2015; Rolph, 2015]. This model can calculate air parcel backward trajectories 

(example in Figure 2.35).  

 
Figure 2.35: Example of 24 h - back trajectories (with a new trajectories starting every hour) at Askö 
station, Sweden, obtained from HYSPLIT model [Draxler, 2015; Rolph, 2015].   
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For Askö campaign, back trajectories were used to check if the air masses came majority 

from the Sea. For Pallas-Sammaltunturi campaign, they were used to classify the samples 

according to their sources. 

 

2.8.3. Presence of clouds by visibility data 

 

The visibility was used to determine the presence of clouds at Pallas-Sammaltunturi station 

using a Vaisala FD12P weather sensor (Figure 2.36).  

 
Figure 2.36: (A) Simplified schematic of visibility measurement ([Vaisala, 2002] © Copyright 2002 
Vaisala) operated by (B) the Vaisala FD12P weather sensor. 

 

The sensor combines forward scatter visibility meter, a weather sensor (temperature, 

humidity, wind speed) and can measure the amount of liquid precipitation. The part 

measuring the visibility is composed by a transmitter that pulses near-infrared light and a 

receiver that measures the scattered part of the light from the transmitter. The visibility was 

measured every minute on a scale of 10 - 50 000 m with the Vaisala FD12P weather sensor 

installed on the roof of the Pallas-Sammaltunturi station. 

  

 

Transmitter Receiver 

Sample volume 

Measurement from scattered light 

A              B 



2. Experimental techniques 
 

73 

The presence of clouds was defined by a visibility  1000 m [Anttila, 2012] (example in 

Figure 2.37). 

 
Figure 2.37: Example of visibility data (blue line) at Pallas-Sammaltunturi in July 2015. Cloud events 
were considered when a sudden drop in the visibility below 1000 m (red dashed line) appeared. 

 

 

2.8.4. Volume of PM1 aerosol particles by DMPS and APS 

 

For Pallas-Sammaltunturi campaign, the volume of aerosol particles collected on the filters 

was determined from aerosol size distributions from on-line instruments: Differential Mobility 

Particle Sizers (size range 7 - 500 nm) and Aerodynamic Particle Sizer (size range 500 - 20 000 

nm) combined. Indeed, the determination of the volume by weighting the filters was not 

convenient since it required specific conditions (micro-balance with large chamber for the        

Ø 150 mm filters, long conditioning and storage of filters at controlled relative humidity and 

temperature,…). Moreover, to calculate the volume of aerosol particles from masses, the 

density of the aerosol would have been approximated from aerosol composition 

measurement running in parallel to the aerosols sampler.  
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2.8.4.1. Principle 

 

DMPS 

A Differential Mobility Particle Sizer (DMPS) is a standard tool in atmospheric science to 

measure the particle size distribution of a size range 7 - 500 nm. The DMPS consists of a 

Differential Mobility Analyzer (DMA) and a Condensation Particle Counter (CPC) (Figure 2.38). 

 
Figure 2.38: Simplified principle of the operating of the Differential Mobility Particle Sizer (DMPS) 
constituted of a Differential Mobility Analyzer (DMA) and a Condensation Particle Counter (CPC). 

 

The particles are first size selected with the DMA, by separating the generated charged 

particles according to their electrical mobility in an electric field. Then the CPC counts the 

particles of a specific mobility [Morawska, 2006; Kulkarni, 2011]. The schematic of the DMA 

and CPC is shown in Figure 2.39.  
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Figure 2.39: Schematic of the two main parts composing the DMPS: (A) Differential Mobility Analyzer 
(DMA) and (B) Condensation Particle Counter (CPC) ([TSI, 2002, 2014] © Copyright 2002, 2014, TSI 
Incorporated). 

 

The principle of the DMA is the following. The aerosols enter a cylindrical chamber 

through an annular slit and are carried downward in a laminar flow parallel to the axis of the 

cylinder. A high voltage is applied between the walls of the cylinder and a central rod. The 

difference of voltage generates an electric field, which deflects the charged particles toward 

the center rod by a radial electric field. At a particular applied voltage, particles of a specific 

mobility exit through the slit in the lower part of the center rod. The CPC counts the aerosol 

particles that pass through the DMA and outputs a particulate concentration. It involves three 

processes: supersaturation of a fluid, growth of particles by condensation of vapors and 

detection of particles. Particles are grown by creating vapor from a working fluid (usually 

butanol) which condenses onto the particles so they grow in size and can be optically detected 

with a laser beam. The scattered light from the aerosol is detected in the photodetector. The 

signal from individual particles (pulses of scattered light) can be identified and counted, or the 

intensity of the scattered light is used as an indication of the particle concentration. 
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Figure 2.40 shows an example of data provided by the DMPS. 

  
 

Figure 2.40: Example of size distribution graphs obtained from the DMPS instruments, at Pallas-
Sammaltunturi in 2015: (A) time resolved PM0.5 size distribution for days 187-189 (year 2015) and (B) 
average number of particles (blue line) and calculated particles volume (red line) as a function of 
particle diameter for day 187.  
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APS 

 

For the size distribution of larger particles, an Aerodynamic Particle Sizer (APS) was used. As 

for the DMPS, the APS provides real-time aerodynamic measurements of particles but covers 

size range of larger particles with diameters from 0.5 to 20 μm [Peters, 2003]. The particles 

are separated according to their size using a time-of-flight method and their size and 

distribution are determined using light scattering measurements. A schematic of the APS is 

given in Figure 2.41. 

 

Figure 2.41: Schematic of an aerosol flow through an Aerodynamic Particle Sizer Spectrometer (APS) 
([TSI, 2012] © Copyright 2012 TSI Incorporated). 

 

The particles are accelerating in a flow field and are constricted through a nozzle. The 

particles pass through two laser beams separated by about 200 μm. An elliptical mirror 

collects scattered light onto a photodetector. A particle passing through both beams produces 

two pulses of scattered light. The time delay between the pulses is related to the velocity of 

the particle and hence to the aerodynamic diameter of the particle, which is defined as a 

particle that has the same settling speed than a solid spherical particle with the density of         
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1 g cm-3 and thus depends on the particle mass (the larger particles exhibit greater inertia and 

thus accelerate more slowly, thereby attaining lower velocities).  

 

2.8.4.2. Experimental procedure 

 

In order to obtain the volume of PM1 (diameter < 1 μm) aerosol particles, the data of the 

following devices were combined (Figure 2.42): two differential mobility particle sizers 

(DMPSs) for size range of 7 - 500 nm (total inlet and inlet preventing cloud droplets to enter) 

and an Aerodynamic Particle Sizer (APS) for size range 500 - 20 000 nm (total inlet). At the 

Pallas-Sammaltunturi station, the two DMPSs had the structure described by [Komppula, 

2005]. The APS was an built by TSI. The DMPSs and APS 

measured the size distribution of the aerosols entering in the inlet after evaporating the water 

in the particles by heating them to 70°C. The whole size distributions were scanned every 5 

minutes. 

 
Figure 2.42: DMPS and APS instruments with the total inlet at Pallas-Sammaltunturi station.
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The volume of PM1 aerosol particles per m3 air per day Vday was calculated by summing 

the volume V  of all particles with a diameter below 1 μm, assuming spherical particles over   

24 h, corresponding to the time of aerosol sampling: 

V  = V ,
:

:
     (2.6) 

with V , = V , , ,
, ,  

, ,  
= ( , , )  N , , ,

, ,  

, ,  
  

 (2.7) 

where V , , ,  is the total volume of all dry particles having a diameter i (i ranging from 7 nm 

to 1 μm), N , , ,  is the number of particles at diameter D , ,  at the time t  obtained from 

the DMPS and APS data. 

 

The PM1 volume of aerosol particles collected on the filters was obtained from the size 

distributions of PM0.5 measured with the differential mobility particle sizers (DMPS) 

connected to the inlet preventing the sampling of cloud droplets, multiplied by a proportional 

factor obtained from the PM1 aerosol particles volume measured in the absence of cloud by 

the other DMPS and the Aerodynamic Particle Sizer (APS) combined, connected to the total 

inlet. The correlation coefficient between the volume VPM0.5 given by the first DMPS and the 

volume VPM1 obtained from the second DMPS and the APS with the total inlet was R2 = 0.97 

(for data during no-cloud periods over the 7 months of aerosol sampling) making this 

extrapolation reliable. This method ensured that the PM1 volume, VPM1, did not include any 

activated particles. 

 

2.8.5. Calculation of theoretical number of activated particles

 

To illustrate the importance of surfactants evidenced in this work for the Pallas-Sammaltunturi 

campaign (Chapter 4), the theoretical number of activated particles, CCN numbers, was 

calculated for various ratios Csurf,p/CMC and average conditions at the Pallas-Sammaltunturi 

site during the campaign. Three w, as currently assumed in all 

surf,p/CMC = 100 and 3000, 

covering the variability found in this work for aerosol surfactants (Chapter 4, Figure 4.5). 
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CCN number concentrations in the PM1 population at the site were obtained for 

different values of the saturation, S (%), by summing the number of particles exceeding the 

critical size in this population. For this, the critical saturation and critical diameter were first 

calculated for each size bin in the population, using the original Köhler equation: 

S(%) = 100 a × exp
  

        (2.8) 

where a =
  

 [Kiss, 2004]   .    (2.9) 

In this equation, D  (m) is the diameter of the particle, thus the main variable,   (N m-1) is 

the surface tension of the droplet evolving with D , while T the temperature (277 K, 

corresponding to the average temperature at the Pallas-Sammaltunturi site over the 7-months 

campaign), R the gas constant,  M  the molecular mass of water (0.018 kg mol-1), and  the 

density of water (1000 kg m-3), are constant.  

 

The two ratios Csurf,p/CMC studied in these calculations corresponded to two different 

surface tension curves for the surfactants in the particles. For each value of D  and 

corresponding value of Csurf,w, the surface tension of the particle,  , was obtained from 

these surface tension curves and used in the Köhler equation. 

For the Raoult’s term, a , depending on the bulk composition of the particles, an 

average composition of 50 % (NH4)2SO4 and 50 % organics, the latter represented by succinic 

acid, was assumed, according to a recent Aerosol Mass Spectrometer analysis of the PM1 

aerosol particles at the site [Jaatinen, 2014]. For each value of D  (m), corresponding to a 

different concentration of the mixture (NH4)2SO4 /organics, the Raoult’s term was calculated 

from the osmotic pressure,  C  (kg-1), the latter being calculated as the combination of the 

osmotic pressures of both components, the variations of each of them with concentration 

being taken from [Ekström, 2009]:  

  



2. Experimental techniques 
 

81 

 

C  =  ,    ,( )     (2.10) 

where,  
C , = (1018.1 C + 9.8) 10  kg
C ,( )  = (1946 C + 15.3) 10  kg  

   (2.11) 

with C = ,   ,

,   
 and 

V , = ,

V =
   (2.12) 

where M ,  = 0.118 kg mol-1 and ,  = 1572 kg m-3 for the succinic acid and M ,  = 0.132 

kg mol-1 and ,  = 1770 kg m-3 for (NH4)2SO4. 

The determination of the critical saturation Sc was graphical (Figure 2.43). The critical 

saturation at a given particle size corresponds to the maximum of its Köhler curve. If the 

ambient saturation Sc exceeds the critical saturation for this size of particles, for a same 

composition, every particle at this size and above activates and grows into a cloud droplet. 

 
Figure 2.43: Example of determination of critical saturation Sc from Köhler curve calculated as 
explained in Section 2.8.5, for a dry particle with a diameter Dp,dry = 43 nm and with w = 72.8 mN 
m-1. The critical saturation Sc corresponds to the maximum of the Köhler curve. For this example, at S 
= Sc = 100.8 % and for a same composition, all particles with a diameter Dp,dry 43 nm are activated. 
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The ratio of activated particles CCN over the number of initial particles CN was 

determined for each value of S (%). The number of particles was determined from the average 

size distribution over the 7-months campaign at Pallas-Sammaltunturi (Figure 2.44). 

 
Figure 2.44: Average size distribution of PM1 determined from DMPS and APS data at Pallas-
Sammaltunturi station (Section 2.8.4.2) over the 7-months campaign (Avril-November 2015). 

 

 

 

 

 

All the experimental methods detailed in the Chapter 2 were applied to the samples of the 

studies developed in the next Chapters (3, 4, 5 and 6). 
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3. First study: Absolute concentrations and surface 
tension curves of surfactants in aerosols at a 
coastal site in Sweden 

 

This chapter focuses on the application of the developed methods for the extraction and 

analysis of surfactants from environmental aerosols collected on filters. This study allowed us 

to investigate the potential implication of surfactants for cloud droplet formation, by 

determining the absolute concentrations of surfactants in aerosols and their absolute surface 

tension curves.  

The results presented in this chapter constituted the first part of this PhD work and were 

published in part in [Gérard, 2016].  

 

3.1. Objectives and method 

 

Prior to the study on the surfactant properties in atmospheric aerosols, an important part of 

this work was the development of a method to extract and to analyze the surfactants from 

atmospheric aerosols for a better characterization of surfactants. For more clarity, this 

development is detailed in the Experimental Section (Chapter 2) but the main points will be 

reminded.  

In order to determine the surfactant properties in atmospheric aerosols, which could 

influence the cloud droplet formation, the developed method was applied to PM2.5 aerosol 

collected at the coastal marine research station of Askö, Sweden (Section 2.1.2.1). This site 

was chosen in particular because it is influenced by biogenic emissions from the sea. Indeed 

the interest of collecting the aerosols at this site was also to investigate the potential origin of 

surfactants by comparing their concentrations found in aerosols to biological markers at the 

site (this part of the study will be described in Section 6.2.3). The PM2.5 aerosols were 

collected from July to October 2010 (Section 2.1.2.1) resulting in 11 samples, listed in           

Table 3.1.  
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3.2. Results and discussion 

 

3.2.1. Development of a method for the extraction and analysis of 
surfactants in aerosols 

 

The development of a method for the extraction and analysis of surfactants in aerosols was 

an important part of this work. This included the improvement of the extraction of surfactants 

from atmospheric aerosols and the determination of their absolute surfactant concentrations 

in order to determine absolute surface tension curves.  

These methods have been fully detailed in the Experimental Section (Chapter 2). Briefly, 

the aerosols were collected on quartz filters (Section 2.1). Then, the total surfactant fraction 

was extracted with a double extraction method: a water extraction followed by a Solid-Phase 

Extraction (SPE) removing interferents and concentrating the surfactants (Section 2.2). The 

surface tension curves of the aerosol surfactants were determined with the pendant drop 

technique (Section 2.3) and the absolute surfactant concentrations were measured by 

colorimetric methods (Section 2.4). 

 

The main points of the development were the following: 

the double extraction method recently developed [Ekström, 2010; Baduel, 2012] was 

improved by replacing the second extraction by SPE (Solid-Phase Extraction). This 

provided a better reproducibility and extraction efficiency; 

the colorimetric methods to determine the surfactant concentration in aerosols were 

improved by introducing a method to determine the concentration of non-ionic 

surfactants in addition to the ionic surfactants and by studying the potential effect of 

interferents. This allowed us to obtain the absolute total concentration of surfactants 

in aerosols including anionic, cationic and non-ionic surfactants. Indeed, to our 

knowledge, it was the first time that the absolute concentration of non-ionic 

surfactants in aerosol was determined. This measurement was challenging because 

the calibration curves used to determine their absolute concentrations had a different 
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slope according to the structure of the non-ionic surfactant. So it was decided to 

consider the largest slope to avoid the overestimation of the surfactant concentration; 

the study of potential interferents on the colorimetric methods showed that a simple 

extraction in water could bias the measurements, whereas the double extraction 

developed in this work allowed the interferents to be removed providing more 

reliable results than previous studies (e.g. [Latif, 2004; Roslan, 2010; Jaafar, 2014; 

Mustaffa, 2014]) which used a simple extraction of surfactants in water; 

combining the improved extraction and colorimetric methods allowed us to obtain for 

the first time absolute surface tension curves for surfactants in atmospheric aerosols. 

 

3.2.2. Atmospheric surfactant concentrations 

 

The first application of the method was the determination of the absolute surfactant 

concentrations in the aerosol extracts. The surfactant concentrations in aerosol particles 

volume, Csurf,p, and in air, Csurf,a, obtained for the 11 atmospheric samples, are shown in     

Figure 3.1.  

The surfactant concentrations, Csurf,p and Csurf,a, varied between 27 (± 6) and                       

143 (± 29) mM and 104 (± 21) and 785 (± 157) pmol m 3 , respectively, and, as discussed in the 

Experimental Section 2.4.2.5, were potentially underestimated by 33 %. The concentrations 

in volume of air Csurf,a reported in this work are consistent with those reported for PM2.5 

aerosols from the Middle Adriatic using a relative method (224 - 496 pmol m-3) [Frka, 2012] 

and with the anionic and cationic surfactant concentrations measured in aerosols from rural 

and semi urban locations with similar colorimetric methods (1 - 1000 pmol m-3) [Latif, 2004; 

Roslan, 2010; Jaafar, 2014; Mustaffa, 2014].  

As shown in Figure 3.1, in the Askö aerosols, the total surfactant fraction was dominated 

by anionic and non-ionic compounds, while cationic surfactants were in very small 

explained in the Experimental Section 2.4.2.4, the concentrations for non-ionic surfactants 

could be underestimated by up to a factor of 2, and these compounds could thus have been 

even more abundant in the samples than suggested by Figure 3.1.   
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Figure 3.1: Concentration of anionic (blue and vertical lines), cationic (red), and non-ionic (green and 
diagonal lines) surfactants in the aerosols sampled at Askö, Sweden, from July to October 2010: (A) 
in the aerosol particles volume and (B) in sampled air. Concentrations not shown (in particular for 
cationic surfactants) are under the detection limit. (reproduced with permission from [Gérard, 2016] 
© Copyright 2016 American Chemical Society) 

 

Figure 3.1 also shows that the relative abundance of anionic, cationic, and non-ionic 

surfactants in the aerosols remained relatively constant from July to October (60, 8, and 32 %, 

on average, respectively, with only 10 - 15 % of variability). This suggested that the sources 

for these surfactants remained the same throughout the sampling period. However, no 

significant correlations were found between the different classes of surfactants, suggesting 

that anionic, cationic, and non-ionic surfactants had distinct sources. The main variability 

observed between the samples from July to October was in the total surfactant 

A 
 
 
 
 
 
 
 
 
 
 
B 
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concentrations. This suggested that the surfactant sources varied mostly in intensity, rather 

than in composition, over the sampling period. 

 

3.2.3. Absolute surface tension curves and CMC values 
 

Combining the measurement of surfactant concentrations and surface tension curves, we 

obtained for the first time absolute surface tension curves (Figure 3.2). 

 

Figure 3.2: Absolute surface tension curves for the surfactant fractions of the 11 aerosol samples 
collected in Askö, Sweden. See the sample list in Table 3.1. (reproduced with permission from [Gérard, 
2016] © Copyright 2016 American Chemical Society) 

 

These absolute surface tension curves showed the presence of strong surfactants in all 

min = 32 - 40 mN m-1 . These values were 

consistent with the surface tensions reported for aerosols from other regions, using a similar 

method [Ekström, 2010; Baduel, 2012]. The surface tension values for aerosol and fog water 

samples reported previously by other groups were, however, significantly larger (usually 50 

mN m-1) [Capel, 1990; Facchini, 1999; Mircea, 2005; Salma, 2006; Taraniuk, 2007] and did not 

display any lower plateau, indicating that the minimum surface tension was not reached. This 

indicated that the surfactants were not concentrated enough in the samples and underlines 

the importance of using a targeted extraction for this type of investigation.  
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For each sample, the CMC values and Csurf,p/CMC ratio (Table 3.1) were also determined 

from the absolute surface tension curves, which, to our knowledge, is the first time for aerosol 

surfactants. In previous works, surface tension was only related to the total organic fraction 

in aerosols or fog water because the compounds responsible for the surface tension effect 

were not isolated [Capel, 1990; Facchini, 1999; Mircea, 2005].  

Table 3.1: List of aerosol samples, CMC (μM) values determined in this work from Askö field campaign 
and ratios to the aerosol surfactant concentration (Csurf,p in μM) (adapted with permission from 
[Gérard, 2016] © Copyright 2016 American Chemical Society). 
 

Sample label Sample dates CMC  Csurf,p/CMC 
a  96 ± 19 417 

b  245 ± 69 139 

c  129 ± 26 279 

d  49 ± 10 580 

e  118 ± 24 338 

f  139 ± 28 268 

g  95 ± 20 694 

h  210 ± 42 268 

i  212 ± 42 207 

j  232 ± 46 315 

k  134 ± 27 1117 
 

Figure 3.2 and Table 3.1 provided also valuable information on a possible biological 

origin of surfactant. This aspect will be discussed in Chapter 6 (Section 6.2.1). 
 

3.2.4. Implications for particle activation 
 

 

The quantitative results obtained for aerosol surfactants in this work bring some unique 

information for the prediction of cloud droplet activation, which cannot be obtained by other 

techniques. During activation, an aerosol particle typically undergoes a radius increase 

between 3 and 10 (ratios of critical radius over dry radius), which is true both for inorganic salt 

particles [McFiggans, 2006] and for mixed organic-inorganic particles such as secondary 

organic aerosols [McFiggans, 2006]. This corresponds to a volume increase by a factor of 27 

to 1000. The surface tension curves determined in this work show that lowering the surfactant 

concentrations by these factors still leads to low surface tension values, typically below             

50 mN m-1 (Figure 3.3).   
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Figure 3.3: Schematic representation of the importance of Csurf,p/CMC in particle activation, based on 
the absolute surface tension curves determined at Askö station. The average Csurf,p/CMC being at 27 - 
1000 means that the CCN particle can take water and grow by about a factor of 3 - 10 in radius, while 
keeping a low surface tension (< 50 mN m-1).  

 

These results thus show that surfactant concentrations in atmospheric aerosols are large 

enough to maintain the surface tension of growing droplets very low (  50 mN m-1) until 

activation and that the Csurf,p/CMC ratio is a critical parameter. This conclusion is reinforced by 

the fact that the concentrations determined in this work are likely to be underestimated and 

that the surfactants might not have been present in all the aerosol particles collected but only 

in some of them, where they would have been at even larger concentrations. Lowering the 

surface tension of growing droplets to 50 mN m-1 or less until activation is, in turn, expected 

to have substantial effects on the activation efficiency of aerosol particles. For instance, using 

surface tension values of about 50 mN m-1 was shown previously to predict 30 - 50 % larger 

CCN numbers in various regions of the atmosphere [Irwin, 2010]. 

Another implication of these results is that the surface tension of forming droplets 

would vary little or not at all with surfactant concentration during activation. This is because, 

as shown by the ratios Csurf,p/CMC in Table 3.1, a particle volume increase by a factor of 27 to 

1000 at activation, corresponds to a surfactant concentration of the order of, or slightly larger 

than, the CMC. In nearly all of the samples studied, the particles can undergo a volume 

CCN Activated droplet 

Csurf,p/CMC ~ 27 - 1000 

Radius increase factor ~ 3 - 10 

min < 50 mN m-1 Csurf,p  
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increase by at least a factor of 200 until activation (i.e., a radius increase by at least a factor of 

6) without any significant change on their surface tension. Such a nearly constant and minimal 

surface tension in growing droplets is in contradiction with the Szyszkowski equation, 

[Sorjamaa, 2004; Prisle, 2008; Farmer, 2015] which is used in nearly all models for cloud 

 

this equation is thus likely to significantly underestimate the effects of aerosol surfactants on 

cloud droplet formation. 

 

3.3. Conclusion 

 

In conclusion, for the first time, absolute surface tension curves were determined using an 

improved method providing absolute concentrations thanks to an extraction method which 

removes the interferent and the use of colorimetric methods providing absolute total 

surfactant concentrations. They showed that surfactants are concentrated enough in 

atmospheric aerosols to keep the surface tension of growing droplets very low until 

activation, which should enhance the cloud-forming efficiency. This ability is reflected by the 

Csurf,p/CMC ratio, which is a critical parameter (this statement is reinforced by the study in 

Chapter 4). The results also show that the surface tension of growing droplets remains nearly 

constant and close to its minimum during activation, and thus does not follow the Szyszkowski 

equation. Models using this equation are thus expected to significantly underestimate the role 

of surfactants on cloud droplet formation. All of these conclusions are reinforced by the fact 

that the concentrations reported in this work might be underestimated by about 30 % and 

that the surfactants might have been present in only a fraction of the collected particles, in 

which their concentration would have been much larger than reported here.  

This study was also used to investigate the origin of surfactants in Chapter 6 (Section 

6.2.1 and 6.2.3). 

 

This work was pursued (Chapter 4) by the application of the developed method on 

smaller aerosol size fractions (PM1), which are more critical for CCN numbers, to investigate 

the role of surfactants in cloud formation directly from atmospheric observations.  
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4. Second study: Atmospheric evidence for the role of 
aerosol surfactants in cloud formation at a boreal 
site in northern Finland 

 

This chapter follows the study of Chapter 3 but goes further: it focuses on the investigation of 

direct proofs in atmosphere of the role of surfactants in cloud formation.  

The results presented in this chapter have been submitted for publication [Gérard, 2016 

under review].  

 

4.1. Objectives and method 

 

In the previous study (Chapter 3), we showed that the properties and concentrations of 

surfactants found in atmospheric aerosols should enhance cloud formation but no real link 

with cloud events was shown.  

The purpose of this study was to obtain direct proofs in atmosphere of the role of 

surfactants in cloud formation. For this, we investigated the relationship between surfactants 

and clouds by a statistical analysis based on the surfactant properties and concentrations over 

several months’ field campaign in a site frequently impacted by cloud events.  

The boreal Pallas-Sammaltunturi station (Section 2.1.2.3) was chosen for this study 

because this station is frequently inside clouds [Komppula, 2005] and because CCN numbers 

at this site have been previously underestimated by models [Jaatinen, 2014] suggesting the 

contribution of other effects than those commonly taken into account in modeling of cloud 

formation, such as those of surfactants. The measurements were performed continuously 

over a 7-months campaign (April - November 2015) to have enough data and cloud events for 

statistical analysis (Figure 4.1, with the example of the surfactant concentration in air Csurf,a). 

A collection of 230 PM1 aerosol samples (24 h-sampling) corresponding to 72 cloud events 

were obtained. PM1 aerosols were collected instead of PM2.5 (as the previous study in 

Section 3) since the aerosol composition (so their potential effect on the surface tension is 



4. Second study: Atmospheric evidence for the role of aerosol surfactants in cloud formation 
at a boreal site in northern Finland 
 

92 

more critical for submicron particles. As explained further, the collected aerosols were 

interstitial but representative of CCNs. The analysis were not performed for all samples, being 

very time- and sample-consuming. Thus the surfactant concentrations were analyzed for 

about 150 of them covering the entire campaign and the surfactant properties were 

determined on a sub-set of 35 samples but included 5 - 6 samples per month of the campaign 

on average and covered the entire range of % cloud time. Clouds events were monitored by 

recording visibility (Section 2.8.3), a quantity shown previously to be a reliable proxy for the 

CCN efficiency of the PM1 population at the site [Kivekäs, 2009].  

 
Figure 4.1: Overview of the period of sampling at Pallas-Sammaltunturi (April - November 2015): cloud 
events determined from visibility < 1000 m (grey lines) and measured concentration of surfactants in 
air Csurf,a (blue line) over 24-h sampling in the 150 analyzed samples.  
 

The experimental details concerning the extraction and analysis of surfactants are 

detailed in the Experimental Section (Chapter 2): the aerosol sampling in Section 2.1.2.3, the 

extraction of surfactants in Section 2.2.2, the surface tension measurements in Section 2.3.2, 

the determination of surfactant concentration in Section 2.4.2, the volume of aerosol particles 

in Section 2.8.4.2, and the CCN efficiency calculations in Section 2.8.5.  

For the study, we compared the concentrations and properties of surfactants in 

aerosols, representative from CCNs, with cloud events by introducing a new variable: “% cloud 

time”. This variable was determined over the same timescale than the aerosol samples and 

calculated by summing up the total cloud duration (determined from visibility data, Section 

2.8.3) over the 24 h-sampling and dividing it by 24 h. Thus the “% cloud time” took into account 

both the frequency and duration of the clouds. Moreover from the results we calculated the 

impact of CCN efficiency in this site, i.e. the fraction of particles that activate into cloud 

droplets at a given supersaturation.  
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4.2. Results and discussion 
 

4.2.1. Correlation between cloud occurrence and surfactant 
concentrations 

 

The first result obtained in this work was that cloud occurrence at the site, quantified as           

“% cloud time”, increased proportionally with surfactant concentration in the aerosol particles 

volume Csurf,p (mM) (Figure 4.2 (A)).  

 
Figure 4.2: Correlations between surfactant concentrations in PM1 aerosols with % cloud time for all 
the aerosol samples analyzed in this work over the 7-months campaign: (A) Csurf,p in aerosol particles 
volume (mM) and (B) Csurf,a in air (pmol m-3). The grey points are the original data, and the red and blue 
ones are the averaged data over 10 % - increments in % cloud time [Gérard, 2016 under review]. 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 

R2 = 0.78 

R2 = 0.87 
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The trend is clear in Figure 4.2 (A) in spite of the scatter in the data, and the average Csurf,p 

values over 10 % increments in % cloud time resulted in a large correlation coefficient                 

(R2 ~ 0.8). This provided the first indication that surfactants might play a role in cloud 

formation at the site. The scatter in the data was attributed to the contribution of additional 

parameters beside surfactant effects to the observed cloud events, such as meteorological 

parameters (i.e. temperature, relative humidity, etc.) or other CCN properties 

(hygroscopicity). The samples for which % cloud time was equal to 0 or 100 % were more 

widely scattered around the regression line, which was attributed to cloud events where these 

other parameters were probably the main controlling factors. But, despite these larger 

scatters, the average values were in reasonable agreement with the regression line.  

Figure 4.2 also shows that, even for the samples with % cloud time = 0, Csurf,p was above 

the detection limit in surfactant concentrations, indicating the presence of surfactants in the 

PM1 aerosols even in the absence of cloud event (“background surfactants”). 

The next result obtained in this work was that the surfactants concentrations and their 

variations were identical in the interstitial and activated particles during the cloud events. This 

was shown by correlating the surfactant concentrations in air volume, Csurf,a (pmol m-3), with 

% cloud time (Figure 4.2 (B)), instead of Csurf,p. Csurf,a (pmol m-3) also increased with % cloud 

time for low values of this variable, but decreased beyond about 50 % cloud time. This 

decrease resulted from the activation, thus apparent removal, of the surfactant-containing 

particles from the interstitial PM1 aerosol during the cloud events. This was demonstrated by 

the decrease of PM1 volume, VPM1 on filters, observed in real-time during nearly all cloud 

events (Figure 4.3 and Figure 8.2 in Appendix Section 8.5 and discussion in next paragraph). 

The fact that dividing Csurf,a by VPM1 to obtain Csurf,p compensated for the removal of surfactants 

at large % cloud time and resulted in the continuous increase shown in Figure 4.2 (A). This 

implied that the amount of surfactants removed by activation was proportional to the volume 

of the particles, thus that these compounds were homogeneously distributed between the 

interstitial and activated particles. This, in turn, implied that their particulate-phase 

concentrations were equal in the interstitial and activated particles. 
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4.2.2. Real-time evolution of surfactant concentration and visibility 

 

The variations of Csurf,a (pmol m-3) and Csurf,p (mM) were further investigated in the time-

dependent profiles (Figure 4.3 and Figure 8.2 in Appendix Section 8.5).  

 

 
Figure 4.3: Example of real-time evolution of the visibility (m) (blue line), the surfactant concentration 
in aerosol particles volume Csurf,p, (mM) (orange line) and the PM1 volume on filters VPM1 (10-2 nm3) 
(grey line) during the cloud event of days 246 - 252 [Gérard, 2016 under review]. 

 

In nearly all the observed cloud events (67 out of 72), these concentrations increased 

around the time of cloud formation. In most of these events, 39 out of 72, the time-profiles 

clearly showed that both concentrations had increased before cloud formation itself, and 

independently of the variations of VPM1. For 28 other events, Csurf,a (pmol m-3) and Csurf,p (mM) 

also increased at the beginning of the event, but the sampling resolution prevented to 

determine if this had happened before or during the cloud event. Only in 5 out of 72 events 

no increase of surfactant concentration was observed connected to the cloud event, 

suggesting that cloud formation was controlled by other parameters than surfactants. Thus, 

in most of the observed events, the increase in surfactant concentration with % cloud time 

displayed in Figure 4.2 (A) had occurred before cloud formation itself, suggesting a cause-

effect relationship.  
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4.2.3. Correlation between cloud occurrence and surfactant properties 

 

It was shown in Section 4.2.1 and 4.2.2 that surfactant concentrations correlated strongly with 

cloud events and a cause-effect relationship was suggested. However, although these 

conditions are necessary if surfactants play a role in cloud formation, there were not sufficient 

to prove their role.  

To determine if cloud occurrence increased specifically because of surfactants and not 

because of other parameters or compounds that correlated with them, the surfactants 

present in the PM1 samples were further analyzed. The average surface tension of the PM1 

samples, dry (mN m-1), and the surface tension curves for the corresponding surfactants were 

investigated. The resulting surface tension curves are shown in Figure 4.4. 

 
Figure 4.4: Absolute surface tension curves for the surfactants extracted from the 35 PM1 samples 
(including on average 5 to 6 samples per month of campaign and covering the entire range of % cloud 
time). Each color represents a range of % cloud time: black = 0 %; brown = 0 - 20 %; blue = 20 - 40 %; 
green = 40 - 60 %; orange = 60 - 90 %; red = 100 %. The blue dashed line represents the surface tension 
of pure water, and black dashed lines illustrate the graphical determination of the CMC. [Gérard, 2016 
under review]. 
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The end point of these curves represent the surfactant concentrations Csurf,p (M) and 

surface tension of the dry aerosol samples dry (mN m-1), while the curves represent the 

evolution of the surface tension of the growing droplet,  (mN m-1), upon water uptake.  

Figure 4.4 shows that  (mN m-1) did not vary much between samples, with an average 

value of dry = 33 (± 5) mN m-1. Such a low surface tension was consistent with those measured 

for aerosols from other regions in previous works ([Ekström, 2010; Baduel, 2012; Gérard, 

2016], Section 3.2.3) and confirmed that the surface tension of atmospheric CCNs is much 

lower than that of pure water ( w = 72.8 mM m-1), unlike what is systematically assumed in 

cloud models. However, the lack of variability of dry between samples, thus with % cloud time, 

indicated that this parameter alone was not controlling cloud formation. 

 

In contrast with dry, Csurf,p (M) and the CMC, the value of the surfactant concentrations 

at the beginning of the lowest plateau, varied each by about one order of magnitude between 

samples (Figure 4.2 (A) and Figure 4.5). The CMC is a characteristic of the air-water interface 

represented by the surface tension curves. It is thus as compound-specific as vapor pressure 

in phase diagrams, for instance, but much less affected by temperature and chemical 

composition [Kang, 2001; , 2004; Mohajeri, 2012]. The CMC of a surfactant is important 

for cloud droplet formation as it determines the amount of water that a droplet can take up 

before its surface tension increases compared to dry (the lower the CMC, the more water can 

be taken up while maintaining a low surface tension). Maintaining a low surface tension during 

droplet growth, in turn, controls whether this droplet can reach its critical size and be 

activated ([Gérard, 2016], Section 3.2.4). In this work, comparing the CMC of the surfactants 

in the PM1 samples with % cloud time (Figure 4.5 (A)) resulted in a very strong anti-correlation 

(R2 = 0.94). 
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Figure 4.5: Correlations between (A) CMC values and (B) ratios Csurf,p/CMC with % cloud time. Grey 
points are the original data and red ones are the averaged data over 10 % - increments in % cloud time 
[Gérard, 2016 under review]. 

 

As the CMC is an intrinsic property of surfactants, the correlation in Figure 4.5 (A) cannot 

be biased by parameters such as particle size, shape, chemical composition, or meteorological 

variables (water vapor, temperature, etc.) that might correlate with cloud events. 

Experimental biases can also be excluded as the CMC values have been obtained by absolute 

concentration measurements in the sample extracts, thus were not impacted by any field 

parameter that could be correlated with the cloud events (PM1 volume or number, 

A 
 

 
 
 
 
 
 
 
 
 
 
 
 
B 

R2 = 0.94 

R2 = 0.77 
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temperature, relative humidity, etc.). The strong correlation displayed in Figure 4.5 (A) is thus 

a solid evidence that cloud occurrence at the site increased specifically because of surfactants, 

and not because of other parameters or compounds correlated to them.  

 

The order of magnitude of variability in the CMC values displayed in Figure 4.5 (A) 

reflected the presence of very different surfactants in the different samples. Thus, cloud 

occurrence at the site resulted not simply from an increase in concentration of the background 

surfactants, but rather from the influx of a new population of surfactants with low CMC values. 

The real-time PM1 measurements did not display any significant increase in particle number 

concentration or volume before the cloud events, indicating that these new surfactants were 

internally mixed with the background ones. This was also consistent with the increase in total 

surfactant concentration, Csurf,p (mM), in Figure 4.2 (A). Thus, both types of surfactants would 

be equally removed by activation during cloud events, resulting in the same average CMC 

values in the activated and interstitial particles. The CMC values reported in Figure 4.5 (A) 

were thus also those in activated particles, even though they were determined in interstitial 

ones.  

 

As explained in Sections 3.2.3 and 3.2.4, the combined effect of Csurf,p and CMC, i.e. the 

Csurf,p/CMC ratio, gives the full range of water volume that a droplet can take up before its 

surface tension increases, thus directly affects CCN numbers. This ratio was plotted against % 

cloud time in Figure 4.5 (B), where, as with Csurf,p and CMC, it represented both the activated 

and the interstitial particles. It can be seen in this figure that combining the factor 10 of 

variability in Csurf,p and CMC resulted in about a factor 30 of variability in their ratio, which also 

displayed a strong correlation with % cloud time, confirming its importance for CCN numbers.  
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4.2.4. CCN efficiency calculation 

 

The factor 30 of variability in the Csurf,p/CMC ratio (Figure 4.5 (B)) meant that the presence of 

the new surfactants in the PM1 aerosol particles increased by a factor up to 30 the volume of 

water that these particles could take up before their surface tension increased. As this was 

expected to directly affect the CCN numbers at the site, the extreme values of the ratio 

obtained in Figure 4.5 (B) (~ 100 to 3000), together with typical conditions and PM1 

distribution at the site [Jaatinen, 2014] were used to calculate CCN numbers using a simple 

Köhler model (see Experimental Section 2.8.5 for details). The results are presented in       

Figure 4.6. 

 

 

Over the supersaturation range S = 0 - 0.5 %, the CCN numbers, corresponding to aerosol 

particles where the surfactants had a Csurf,p/CMC ratio of 3000, were on average three times 

larger than those where this ratio was equal to 100, and nearly four times larger than when 

assuming  = w. These results clearly show that effects of surfactants on CCN numbers can 

be very significant, and underline the importance of taking them into account in CCN 

calculations and cloud models. 
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Figure 4.6: Results of the CCN calculations as a function of saturation S (%): (A) CCN efficiency 
(“CCN/CN”) for the PM1 population for  = w (grey dashed line), Csurf/CMC = 100 (blue line) and 3000 
(red line) and (B) corresponding ratios CCN3000/CCN  (grey dashed curve) and CCN3000/CCN100 (red line) 
between the different scenarios [Gérard, 2016 under review].  
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4.3. Conclusion 

To conclude, we reported for the first time evidence of the role of surfactants in cloud droplet 

formation from direct observations of cloud events and aerosol surfactants in the atmosphere.  

Indeed, the investigation of surfactants in the PM1 aerosols from Pallas-Sammaltunturi 

site during 72 cloud events and 7 months showed that, at this site: 

1) Surfactants were homogeneously distributed between the interstitial and activated 

particles, therefore the analysis performed on the interstitial PM1 aerosols were 

representative of the CCNs. 

2) Cloud occurrence correlated strongly with surfactant concentrations and average 

CMC in PM1 aerosols. In particular, the correlation with CMC provided the first clear 

atmospheric evidence for a specific role of surfactants in cloud formation. 

3) In most cases, cloud formation was clearly consecutive to, thus resulted from, an 

increase in surfactant concentration and a decrease in their CMC, indicating the influx 

of new, internally mixed, surfactants with low CMCs.  

4) The combined increase in concentration and decrease in CMC enhanced the volume 

of water that the PM1 particles could take up, while maintaining a low surface tension, 

by about a factor of 30. This ability was represented by the Csurf,p/CMC ratio, which is 

therefore a critical parameter in the activation of cloud droplets. 

5) Simple Köhler calculations showed that these conditions corresponded to CCN 

numbers about four times larger than when assuming the surface tension of water.  

 

These results underline the quantitative effect of surfactants on CCN activation and 

numbers and the importance of taking them into account in the prediction of clouds in 

atmospheric and climate models. 
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5. Third study: Effect of surfactants on the growth of 
individual micron-sized droplets using an optical 
trap 

 

This chapter focuses on the investigation of the effect of surfactants on the condensation of 

water onto micron-sized droplets using an aerosol optical trap.  

The results presented in this chapter have been submitted for publication [Frossard, 

2016 under review]. As mentioned earlier, this work was done in collaboration with the Ronald 

C. Cohen research group, and especially with Amanda A. Frossard, at the University of 

California, Berkeley, USA, where the experiments were carried out. 

 

5.1. Objectives and method 

 

It was shown in the previous chapters, by direct proofs in atmosphere, that the presence of 

surfactants should enhance cloud droplet formation. However the measurements were done 

at a macroscopic scale (bulk measurements) and were not studied on droplets at the scale of 

cloud droplets. Thus the purpose of the study presented in this chapter was to demonstrate, 

in laboratory, that the effect of surfactants on cloud droplet formation remained true at a 

microscopic scale on individual droplets. 

 

A few studies have been carried out on micron-sized droplets. For example, recent work 

has demonstrated that the surface tension depression within a micron-sized droplet is the 

same as that within a bulk system [Bzdek, 2016]. This attests that the measurements done at 

a macroscopic scale (Chapters 3 and 4) should be valid. Moreover, the effect of surfactants on 

micron-sized droplets using an optical trap has been studied [Buajarern, 2007c; Davies, 2012] 

and recently laboratory experiments have demonstrated that surface-active compounds 

enhance the formation of cloud droplets [Ruehl, 2016]. However no experiments at a 

microscopic scale have been reported using real surfactants with the properties and 

concentrations found in atmospheric aerosols. 
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To our knowledge, this study is the first use of an optical trap to study the effect of 

surfactants on the growth of individual micron-sized droplets, using a proxy atmospheric 

surfactant (Igepal CA-630) having a similar concentration and CMC value to the surfactants 

extracted from atmospheric aerosol particles determined in this study (Chapters 3 and 4).  

In this work, the effect of the proxy surfactant, Igepal CA-630, on the growth of 

individual micron-sized droplets was investigated using an aerosol optical trap set-up, coupled 

with bright-field microscopy and Raman spectroscopy (see Experimental Section 2.7). The 

change in radius of individual droplets containing NaCl and the surfactant Igepal CA-630 was 

studied at different surfactant concentrations (Table 2.1 Section 2.7.2) evolving with the 

relative humidity from 80 % to 70 % (evaporation step) and 70 % to 80 % (condensation step).  

 

5.2. Results and discussion 

 

5.2.1. Effect of surfactants on the change of droplet size  

 

For this study, the ratio of the droplet radii at 70 % RH compared to that at 80 % RH (r70/r80) 

was used to quantify the change in droplet size. The advantage of this method, in addition to 

being able to study individual micron-sized droplets, was the possibility to maintain the 

droplet trapped long enough to give to the surfactants time in the droplet and the surface 

tension of the droplet to come to equilibrium (more than 10 seconds for some surfactants and 

on the order of minutes for others [Nozière, 2014]), contrary to traditional on-line 

instruments.  

The radius changes of the droplets containing the different concentrations of the 

surfactant Igepal compared to the droplets without any surfactant, obtained in this work, are 

given in Figure 5.1.  
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Figure 5.1: Ratio of the equilibrium radius at 70 % RH (r = r70) to the equilibrium radius at 80 % RH (r80) 
for droplets containing NaCl only and NaCl with 0.4 and 4 times the CMC concentration of Igepal (r = 
r70). For droplets with NaCl and 22 and 48 times the CMC concentration of Igepal, the equilibrium radius 
at the point the droplet was lost (higher than 70 % RH) is used in the ratio (r = rlost). The black markers 
represent individual values.  The solid line is the median, boxes represent the 25 to 75 percentiles, and 
the whiskers are the 10 and 90 percentiles. The dashed horizontal lines are at r70/r80 = 0.87 (Köhler 
theory) and 0.91 [Tang, 1997] for droplets containing NaCl only (adapted from [Frossard, 2016 under 
review]) 

 

Figure 5.1 shows that droplets containing the surfactants at a concentration of about 

half the CMC value (0.04 mM) have a smaller r70/r80 ratio (0.81 ± 0.03) compared to the NaCl 

only droplets (0.86 ± 0.06). This means that, for a given % RH change (here from 70 to 80 % 

RH), the presence of the surfactants allows the formation of larger droplets (as illustrated in 

Figure 5.2), which may be the consequence of a reduction in surface tension caused by the 

presence of surfactants in the droplets. For surfactant concentrations about 4 times greater 

than the CMC (0.35mM), the same trend was observed with an average r70/r80 ratio of 0.84 ± 

0.04. These results indicated that low concentrations of surfactant Igepal could influence the 

surface tension and affect the water evaporation from and condensation onto the droplet. 
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Figure 5.1 shows also that increasing the Igepal concentration to more than 20 times the CMC 

value (22 times the CMC (1.76 mM) and 48 times the CMC (3.87 mM)) corresponds to a higher 

size change (0.67 ± 0.04 on average) compared to droplets without surfactants but results in 

a different behavior than droplets with a lower surfactant concentration (0.4 and 4 times the 

CMC). Indeed, when the RH was decreased in the chamber, the water from these droplets 

started rapidly to evaporate at 75 ± 2 % RH and the droplets were too small to remain trapped. 

As a result, the condensation step could not be completed. So for these cases, the ratios of 

the radius were calculated when the droplet was lost (rlost) to r80.  

 

The larger change in the size of droplets containing surfactants compared to droplets 

without surfactant is consistent with a surface tension depression that enables water to 

evaporate from droplets more easily during a decrease in RH or to condense onto the droplets 

more easily during an increase in RH. Lowering the surface tension should decrease the energy 

barrier (as illustrated in Figure 5.2) and allow water to move across the interface more easily. 

However the difference in r70 or lost/r80 ratios and apparent stronger effect for more than 20 

times the CMC (0.67 ± 0.04 together) compared to 0.4 and 4 times the CMC (0.82 ± 0.04 

together) is not explained yet. This effect certainly resulted from effects other than the surface 

tension depression, such as the formation of a monolayer, a phase separation, or other 

effects, due to the higher concentration of surfactants.  

  



5. Third study: Effect of surfactants on the growth of individual micron-sized droplets using 
an optical trap 
 

107 

 

 

 
 

Figure 5.2: Illustration of comparison between different r70/r80 ratios (blue: higher ratio; orange: lower 
ratio) with (A) schematic Köhler curves representing RH (%) as a function of the droplet radius r (blue 
line: droplet with NaCl only; orange line: droplet with surfactant Igepal + NaCl) and (B) corresponding 
droplet growth for RH varying from 70 to 80 % RH. (Note: schematics not at scale). 

 

In studies adhering to the partitioning theory (e.g. [Sorjamaa, 2004]), the surfactant 

effect on the hygroscopicity of the droplet is neglected: the decreasing of the surface tension 

by the surfactant would be canceled out by their effect on the Raoult’s term. But this claim is 

controversial and it was shown that this theory was inaccurate [Nozière, 2014]. Moreover, in 

this study, the Igepal concentrations relative to the concentrations of NaCl (see Table 2.1 in 

Section 2.7.2) were low enough to not significantly affect the hygroscopicity (Raoult’s term) 
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of the droplet (while being kept in the concentration range of measured atmospheric aerosol 

particles of Chapter 3). Consequently, it was guaranteed that the changes in the droplet 

behavior with the addition of Igepal were attributed to the change in surface tension.  

 

The r70/r80 ratio for the droplets containing Igepal was less than the value predicted by 

Köhler theory for the large droplets used in this experiments. This observation is consistent 

with [Petters, 2016] where they found that the CCN activity of non-ionic surfactants was 

greater than predicted by Köhler theory including surface tension reduction and surface 

partitioning. The difference between the predicted values and the ones determined in this 

work shows that the role of surfactants in atmospheric particles may be to enhance droplet 

growth with changing meteorological conditions by even more than predicted by Köhler 

theory. 

 

5.2.2. Implication for droplet size distribution 

 

It was shown in the previous part that an increase of 10 % in RH (from 70 % to 80 % RH) for 

droplets containing Igepal (from 0.4 times to 4 times the CMC) can increase their growth 

compared to droplets without surfactants. This effect was illustrated with an example of size 

distribution of aerosol particles. The resulting size distribution at 70 % RH and 80 % RH was 

estimated from Köhler theory (Figure 5.3), assuming properties of NaCl particles, since Igepal 

contributed only for 0.06 % - 0.6 % of the dry particle mass in the proxy aerosol studied in this 

work. 
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Figure 5.3: Number size distributions at an initial RH of 70 % (green) and final RH of 80 %. For NaCl at 
80 % RH (dark blue), the number size distribution was calculated using Köhler theory growth from 70 % to 
80 % RH. For the NaCl and Igepal mixtures, the number size distribution at 80 % RH (light blue) was 
calculated using the average ratio of r70/r80 (0.82) measured in the experiment for low Igepal 
concentrations of 0.4 or 4 times the CMC value (reproduced from [Frossard, 2016 under review]). 

 

Figure 5.3 shows that for particles containing surfactants with similar properties to 

Igepal, the size distribution from 70 % RH to 80 % RH would shift to higher diameters than 

those without surfactants. Thus for a same change in relative humidity, this increase of droplet 

diameters should favor the growth into cloud droplets for the particles containing surfactants 

which may activate before those without. Therefore, the fraction of particles activated as CCN 

should be larger for particles containing surfactants.  
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5.3. Conclusion 

In this work, we observed that the evaporation and growth of individual micron-sized 

droplets containing surfactants was greater than those that did not contain any surfactants, 

even for a small change in RH. If extended to higher RH values, this would imply that droplets 

containing surfactants would grow larger, given the same increase in RH. This larger growth in 

droplet size could lead to increased formation of cloud droplets or activation of particles at 

lower critical supersaturations. This is consistent with Köhler theory calculations, which 

predict lower required critical supersaturations for droplets with lower surface tensions. The 

broader scale or cloud-level scale of this effect, however, should be investigated. 

Thus this study allowed us to show that surfactants have an effect on the growth of 

micron-sized droplet and reinforces our claims from macroscopic experiments that 

surfactants should enhance cloud formation (Chapter 3 and 4). Moreover, the possibility to 

study the growth of droplets without time limitation using an optical trap with Raman 

spectroscopy is a real advantage for studying the effect of surfactants on cloud droplets. Next 

steps could be to compare the effects of different types of surfactants (especially the ones 

found in genuine atmospheric aerosol extracts) and to study mixtures of surfactants with 

other organics and salts found in atmospheric aerosols. 
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6. Fourth study: Investigation of the origin of 
surfactants in aerosols  

This chapter focuses on the investigation of the origin of surfactants present in atmospheric 

aerosols. Indeed, since the importance of surfactants in cloud droplet formation has been 

shown (Chapters 3, 4 and 5), it is important to know their origin to understand the mechanisms 

and efficiency due to their structure and the relationship between the biosphere and the 

clouds. 

 

6.1. Objectives and method 

 

Surfactants found in atmospheric aerosols are suspected to be from biological origin (e.g. 

[Delort, 2010; Ekström, 2010]). Thus in this work we tried to find evidence of this biological 

origin using different approaches, all of them based on the study on the environmental 

samples. This included:  

the comparison of the surfactant properties found in aerosols with references,  

fluorescence measurements,  

the comparison of surfactant concentrations with a marine biological marker, the 

chlorophyll-a, 

the comparison of surfactant concentrations and properties with sources (vegetation 

and seas),  

the investigation of the surfactants chemical structure.  

 

The different studies presented in this chapter gather results from [Gérard, 2016], 

[Gérard, 2016 under review], [Renard, 2017 in preparation] and preliminary results.  
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6.2. Results and discussion 

 

6.2.1. Surfactant properties (CMC) 

 

This biological origin of surfactants from atmospheric aerosols was first investigated based on 

their surfactant properties.  

The average surface tension curves of the aerosols collected from the different regions 

in this work (Section 2.1.2) were compared with references (Figure 6.1 and Table 8.3 in 

Appendix Section 8.4).  

 

 

Figure 6.1: Comparison of average surface tension curves of aerosols extracts with reference 
surfactants: coastal aerosols PM2.5 from Askö, Sweden (green line); boreal aerosols PM1 from Pallas-
Sammaltunturi, Finland (pink line); urban aerosols PM1 from Villeurbanne, France (red line); HULIS 
(Humic-like substances) (dashed orange line) [Salma, 2006]; salt and small organic molecules found in 
atmospheric aerosols (dashed grey line) [Ekström, 2010]; typical ranges of CMC of man-made 
surfactants (orange area) [Mukerjee, 1971] and biological surfactants (green area) [Desai, 1997]. 

biological surfactants man-made surfactants  
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The surface tension curves determined in this work show the presence of strong 

surfactants in the atmospheric aerosols, which are unlikely small molecules according to their 

properties. Note that one must be careful using the term “surfactants”. Some small organic 

molecules found in atmospheric aerosols (e.g. carboxylic acids) and HULIS (Humic-like 

substances) are considered as surface-active agents in the atmospheric literature [McNeill, 

2014], but this is untrue, compared to strong surfactants. Indeed for this species, as shown in 

Figure 6.1, the surface tension decrease is not significant, especially for the small molecules 
-1), and/or is effective only for high concentrations (> 10-2 M). 

For the investigation of the origin of surfactants (biological or not), although Figure 6.1 

shows that the minimum surface tension of the different aerosols is very low (30 -

35 mN m-1), this did not constitute a proof of the biological origin of surfactant, since these 

values are comparable to those of strong surfactants whether biological or not, such as the 

reference compounds used in this work (SDS, AOT, zephiramine, CTAC, Triton X114, Brij35, 

surfactin, rhamnolipid, and L- -phosphatidylcholine, see Section 8.3). 

The CMC, intersection between the sharp slope and the minimum surface tension level 

of the surface tension curves, is much more characteristic of specific surfactants and is used 

for comparison with reference surfactants. As shown in Figure 6.1, the CMC of the aerosols 

from the clean stations (coastal and boreal) is situated in the typical range of biological 

surfactants, suggesting a biological origin, whereas the one from the polluted urban site is 

situated in the typical range of man-made surfactants, suggesting an anthropogenic origin or 

a mixture between biological surfactants and Humic-like substances (HULIS) that could have 

been extracted with the surfactants.  

This could imply that efficient surfactants are mostly biological but their effect is 

reduced by the presence of anthropogenic surfactants in polluted regions. 

However although these results constituted a first proof of the biological origin of 

surfactants, they were not enough, since artificial surfactants can also have a low CMC and at 

the contrary biological surfactants can have a high CMC (see examples in Table 8.2 in Appendix 

Section 8.3). Thus other evidences to prove the biological origin of surfactants have been 

investigated (see next sections of this chapter).   
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6.2.2. Fluorescence 
 

The fluorescence spectroscopy was used in this work to investigate if the surfactants in

aerosols had a specific biological signature (e.g. [Hoekstra, 2007; Pan, 2015]). 

The fluorescence spectra of samples for two different regions (boreal aerosols from 

Pallas-Sammaltunturi and urban aerosols from Villeurbanne) and at the different steps of the 

extraction (details of the method in Section 2.5.2) were measured and compared (Figure 6.2 

and Figure 6.3). 
 

   
 

   
Figure 6.2: Fluorescence spectra at the different steps of extraction of PM1 collected on quartz filters 
at Villeurbanne, France: (A) blank method, (B) after water extraction, (C) remaining solution after SPE 
(matrix containing the interferents) and (D) surfactant fraction extracted after SPE. The diagonal lines 
appearing in the blank are interferences (Rayleigh scattering and Raman scattering) but do not prevent 
(here) the observation of the fluorescence spectra of the samples.   
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Figure 6.3: Fluorescence spectra at the different extraction steps of PM1 collected on quartz filters at 
Pallas-Sammaltunturi, Finland: (A) blank method, (B) after water extraction, (C) remaining solution 
after SPE (matrix containing the interferents) and (D) surfactant fraction extracted after SPE. The 
diagonal lines appearing in the blank are interferences (Rayleigh scattering and Raman scattering) but 
do not prevent (here) the observation of the fluorescence spectra of the samples.  

 

The fluorescence spectra (Figure 6.2 and Figure 6.3) are quite similar between each step 

of extraction (regardless the intensities of fluorescence). The spectra show a broad emission 

band between 300 and 500 nm for an excitation band between 250 and 400 nm, with a 

maximum at emission = 400 (± 15) nm for excitation = 325 (± 15) nm for Villeurbanne aerosols, 

and emission = 425 (± 10) nm for excitation = 300 (± 10) nm for Pallas-Sammaltunturi aerosols. 

The fluorescent molecules seem to be shared between the matrix and the surfactant extract, 

which were separated by the second extraction of the double extraction method, regarding 

the decrease of intensity compared to the first extraction. The fluorescence spectra result 

from the average of the different fluorescent properties of the components mixed in the 
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samples, but the solutions at the different steps having similar spectra does not mean 

necessarily that the same species were present in each solution. Besides, because other 

compounds could have been potentially extracted by our method (such as HULIS), it was not 

possible to know if the fluorescence in the extracts (Figure 6.2 (D) and Figure 6.3 (D)) resulted 

from these other compounds and/or the surfactants. Moreover the comparison of the spectra 

did not reveal any specific signature or an obvious differences between the surfactant extracts 

from the different regions (Figure 6.2 (D) and Figure 6.3 (D)), except a slightly broader range 

of emission for the aerosols from Villeurbanne. This could be explained by the presence of a 

higher number and variety of molecules present in the aerosols of Villeurbanne, being more 

impacted by pollution than the boreal aerosols from Pallas-Sammaltunturi.  

Thus, it was not possible to deduce the nature of the extracted surfactants using this 

method. To be able to distinguish different species, another method should have been 

developed. For example the components of the extracts should have been separated (for 

example using chromatography techniques) and concentrated before fluorescence 

measurements. However this study was not continued and other methods more adapted to 

the study were favored to investigate the biological origin of the surfactants in atmospheric 

aerosols.  

 

6.2.3. Comparison with a marine biological marker: chlorophyll-a 
 

To further examine the origin of the aerosol surfactants studied in this work, we compared 

the surfactant concentrations in air, Csurf,a, of the aerosols from Askö campaign with the 

concentrations of a tracer for biological activity in seawater: seawater chlorophyll-a 

concentrations, Cchlorophyll-a (Figure 6.4), from MODIS aqua satellite data (Experimental Section 

2.8.1). Indeed, the aerosols at this station were expected to contain a major part of aerosols 

produced from seawater since at this site the aerosol air mass sources (HYSPLIT back 

trajectories, Section 2.8.2) were dominated by the sea. 

When averaged over an area of 50 km × 50 km around the Askö station, the surfactant 

and chlorophyll-a concentrations displayed some correlations with anionic (R2 = 0.65), cationic 

(R2 = 0.75), and total (R2 = 0.67) surfactant concentrations, the correlation with total 

surfactants not resulting directly from those with anionic and cationic surfactants. These 

correlations suggested a biological and marine origin for these compounds.   
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Figure 6.4: Correlations between anionic (blue circles), cationic (red triangles), non-ionic (green 
squares), and total surfactant (black diamonds) concentrations in the atmospheric samples and 
seawater chlorophyll-a concentrations, provided by aqua MODIS satellite (adapted with permission 
from [Gérard, 2016] © Copyright 2016 American Chemical Society). 

 

Note that chlorophyll-a concentrations Cchlorophyll-a averaged over larger areas (100 km × 

100 km) did not correlate with the surfactant concentrations Csurf,a (R2 < 0.35), indicating that, 

if the surfactants were indeed produced by biological sources in seawater, these sources were 

local. 

A marine and biological origin for the surfactants might seem contradictory with the lack 

of correlation between non-ionic surfactants and chlorophyll concentrations because most 

biological surfactants are non-ionic. This lack of correlation could be attributed either to large 

uncertainties (mostly underestimations) in the non-ionic concentrations or to the choice of 

the wrong marker for their sources. Chlorophyll-a was chosen in this work mostly because the 

available data had a frequency similar to those of our samples but has been reported not to 

be the best surrogate for the organic matter transferred from the sea surface to atmospheric 

aerosols [Rinaldi, 2013] or for the biological processes controlling the sea-surface organic 

composition [Vaida, 2015; Wang, 2015]. In future studies, correlations between aerosol 

surfactants and other seawater markers should thus be sought and with more statistics to be 

more compelling.  
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6.2.4. Comparison with vegetation and seas 

 

To have a first idea of the sources of air masses bringing the most efficient surfactants, we 

tried to find links between the surfactant properties or concentrations and the different air 

mass sources determined from air masses back trajectories (Section 2.8.2). Different 

approaches were possible. The sources defined by the vegetation (and seas) rather than 

directions were chosen first, since [Renard, 2016] suggested a link between the vegetation 

and phyllosphere (bacteria living on plants) and because the purpose of this study was to 

prove the biological origin of surfactants. This study being not finished, only preliminary 

results will be presented and briefly discussed.  

The study was done on the aerosol samples from the boreal Pallas-Sammaltunturi 

station (Section 2.1.2.3). The surfactant concentrations and properties (Section 4.2.1 and 

4.2.3) were compared to the different air mass sources. Six sources have been distinguished: 

boreal vegetation, temperate vegetation, tundra vegetation and Arctic sea, North Atlantic sea 

and Baltic sea as marine sources (Figure 6.5 (A)). For each sample, the sources were 

determined from the HYSPLIT 72 h - back trajectories (Section 2.8.2) (see examples in Figure 

6.5 (B) and Figure 8.3 in Appendix Section 8.6).  

 
 

 

Figure 6.5: (A) Vegetation map of Europe (adapted from [Adams, 1997]) and (B) Example of back 
trajectories (30/08/15 22:00 UTC) arriving at the station Pallas-Sammaltunturi (red arrows). The 
trajectories were obtained from HYSPLIT back trajectories ([Draxler, 2015; Rolph, 2015]): source at 
67.97N 24.12E, 72 h - back trajectories (with a new trajectories starting every three hours during the 
72 h), model vertical velocity, height 10 m AGL (above ground level).  
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72 h-backward trajectories were chosen because this duration is about the life time of 

aerosol particles in air masses. A sample was considered from a certain source if more than 

the half part or the totality of the back trajectories were coming from this source.  

 

The comparison between the surfactant concentrations and properties with the 

different sources are given in Figure 6.6. 

 
Figure 6.6: Comparison of the surfactant concentrations ((A) concentration in aerosol particle Csurf,p 
and (B) concentration in air volume Csurf,a) and properties ((C) CMC and (D) Csurf,p/CMC) in aerosols from 
Pallas-Sammaltunturi with the air mass sources. The solid line is the median, boxes represent the 25 
to 75 percentiles, and the whiskers are the minimum and maximum values (note: preliminary results).  
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From Figure 6.6, it seems that the aerosols with the highest surfactant concentrations 

in aerosol particles volume Csurf,p, the most powerful surfactants (lowest CMC) and 

consequently the highest Csurf,p/CMC ratio come from: 

regions with trees (boreal and temperate vegetation) rather than lichen (tundra) that 

could confirm the “phyllosphere hypothesis” from [Renard, 2016]; 

the Baltic sea, where the biology such as the presence of algae is active, rather than 

colder seas (Arctic and North Atlantic). 

Besides, the surfactant concentration in air masses Csurf,a seems higher for aerosols from 

tundra and boreal vegetation, which are sources situated close to the site. This could imply 

that the sources bringing the higher number of surfactants (but not necessarily the strongest) 

would be rather local and/or that a part of the surfactants brought by sources from further 

would be lost during the travel of the air masses.  

 

Thus, this study suggests a link between the biology (from vegetation and sea) and the 

surfactant efficiency, strengthening the hypothesis of the biological origin of surfactants. 

 

These results are preliminary and would be worth to be investigated deeper. For 

example, other sources area (continental or marine, directional, specific area…) could be 

considered to define more precise sources of surfactants. Moreover the results could be 

refined by considering only the samples from a unique source. Indeed the values considered

in Figure 6.6 corresponded to samples from mixed air masses, for most of them, due the high 

aerosol collection time (24 h) during which air masses from different sources could pass at the 

sampling site. This could bias the comparison between the different sources. These results 

could also be compared by seasons or with cloud events.  

 

6.2.5. Chemical structure 

 

Finally, to prove the biological origin of surfactants, their chemical structure has been 

investigated by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). 

The analysis were made in collaboration with the group of Anne-Marie Delort, especially with 
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Pascal Renard, at ICCF (Institut de Chimie de Clermont-Ferrand), France. The study being not 

finished, only preliminary results will be presented. The results of this study will be submitted 

for publication [Renard, 2017 in preparation].  

 

LC-MS/MS experiments were performed on the surfactant extracts from aerosols from 

Pallas-Sammaltunturi (Chapter 4) with the LC-MS/MS method described in Section 2.6.2.  

The LC-MS spectra of these extracts are complex but revealed the presence of 

compounds with high m/z ratio (example in Figure 6.7).  

 

Figure 6.7: Example of LC-MS (ESI+, full MS) spectra of a surfactant aerosol extract from Pallas-
Sammaltunturi: (A) LC-chromatogram and corresponding (B) MS-spectra for the retention time range 
5 - 11 min and m/z > 1000. 
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Since surfactants in aerosols are expected to be biological as shown previously (Section 

6.2.1 and 6.2.3), these high m/z ratio are certainly the signature of biological surfactants, 

generally macromolecules. These masses need now to be compared with reference surfactant 

molecular masses and the structure of the corresponding surfactants needs to be checked 

from MS/MS measurements to confirm their nature and structure. 

 

6.3. Conclusion 

 

This study brought some evidence of the biological origin of surfactants in atmospheric 

aerosols from different approaches. The biological origin was suspected from the low CMC 

values similar to the ones of biological surfactants and the slight correlation of surfactant 

concentrations with chlorophyll-a from seawater. Moreover comparisons between 

surfactant concentrations and properties with the air mass sources suggested a link between 

surfactants and vegetation. In addition, structural analysis from LC-MS/MS started to show 

the presence of macromolecules in the samples suspected to be from a biological origin.  

 

Thus all these studies support the biological origin of surfactants but need to be further 

investigated. This should help to understand the biosphere-atmosphere exchanges and the 

climate system.  
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7. Summary and outlook 
 

Although the role of surface tension and surfactants in cloud droplet formation from fine 

aerosol particles (< 1 μm) was predicted 80 years ago by Köhler theory, it has been largely 

neglected in the studies of cloud formation until now. The reasons for this were, on one hand, 

the lack of observation of surfactant effects on cloud droplet formation with the classical (“on-

line”) investigation techniques and, on the other hand, the absence of technique to determine 

the concentration of surfactants in atmospheric aerosols and their effects on the surface 

tension.  

 

This PhD work has resulted in the development of the first method, to our knowledge, 

to determine the absolute concentration of surfactants in atmospheric aerosols, which, 

combined with extraction and surface tension measurements, has led to the first 

determinations of the surface tension of atmospheric aerosols and of the absolute surface 

tension curves for atmospheric surfactants. These measurements were applied to aerosol 

samples from different regions and brought some important progress in the understanding of 

atmospheric surfactants and their role in cloud formation such as 

evidencing the role of surfactants on clouds, for the first time from atmospheric 

observations, by correlating surfactant properties and cloud formation events, 

showing the mode of action of surfactants, that the C/CMC ratio controls cloud 

droplet formation, and not the surface tension of the particles itself or the total 

concentration of surfactants only, 

bringing evidence that the surfactants found in aerosols from various regions have a 

biological origin, which is important for the understanding of the biosphere-

atmosphere exchanges and the climate system. 

 

In addition, the importance of surfactants in cloud droplet formation was investigated 

in laboratory on micron-sized particles using an optical tweezer set-up. The results confirmed 

that the presence of surfactants should enhance droplet radius changes, in particular 

droplet growth.  
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None of these results were expected before these studies, and they are generally 

contradicting many conventions in the disciplines. In addition, they lead to calculations of 

Cloud Condensation Nuclei numbers, thus eventually cloud droplets, that are much larger 

(factor four) than when neglecting surfactants, as it is currently done in all models. Thus, 

unlike what is currently believed in the community, taking into account surfactant effects 

should be important when predicting cloud formation and precipitation, and in the climate 

budget.  

 

 

Several steps could be taken to further improve and validate the methods and 

applications presented in this work: 
 

identifying a better (more “universal”) dye to detect non-ionic surfactants and 

improving the extraction of cationic surfactants (which are often at the detection 

limit). This would lower the main source of uncertainties in the concentration 

measurements, 
 

intercomparing the surfactant concentrations obtained with the colorimetric method 

with those obtained with the electrochemical method (e.g. [Frka, 2012]), 

adding a separation step to eliminate UV- or fluorescent-active compounds from the 

extracts, to remove any potential contribution of HULIS. 

 

Moreover, the investigations presented, in particular the correlations clouds / 

surfactants, would need to be performed at other locations and seasons to confirm our 

results. 

 

As the role of surfactants on clouds is currently denied by most of the community, all 

these studies will probably be necessary to change the opinions.  
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However, while the topic of surfactants had been neglected for decades, it has been 

undergoing some fast changes in the last years, which might have been inspired by the work 

performed in this PhD work and the SONATA project. In particular, the role of surfactants in 

droplet growth was evidenced for the first time in laboratory and acknowledged by a journal 

with large impact factor [Ruehl, 2016]. And while, until recently, no technique was able to 

measure directly the surface tension of micron- or submicron-sized particles, several groups 

have now developed such techniques, either by atomic force microscopy [Morris et al. 2015] 

or optical tweezer [Bzdek, 2016; Reid, 2017 in preparation]. In particular, these works have 

now confirmed that, for a given concentration of surfactant, the surface tension measured on 

macroscopic samples is identical to that measured on micron-sized particles, thereby 

validating the methods in this PhD work. The optical tweezer studies have also confirmed the 

minute-long delay to equilibration of surfactants in micron-particles [Reid, 2017 in 

preparation] recently predicted from dynamic surface tension measurements of aerosol 

surfactants [Nozière, 2014]. These delays imply that classical instruments cannot measure 

surfactant effects and that, for decades, the absence of observation of surfactant effects in 

cloud formation was in fact due to instrumental artifacts. Even more recently, another group 

previously known for their study of the Raoult’s term, has now started to study surfactants 

[Petters, 2016]. All this new interests for this topic might be indicating the beginning of a 

change in the community.  

 

An important evolution that will be necessary to further investigate this topic is to 

modify the “on-line” instruments to allow them to detect surfactant effects (extend their 

measurement times). It will be also necessary to develop techniques to measure more directly 

the Raoult’s term and the surface tension of atmospheric particles, as current techniques are 

too indirect and involve too many assumptions.  

 

Finally, in parallel to demonstrating the effects of surfactants on clouds, the 

investigation of their origins will need to be pursued, by investigating chemical structures or 

correlations with biogenic tracers. Determining the exact size fraction in which surfactants are 

presents, by analyzing different particles sizes, for instance, could also help identifying their 

sources.  
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We hope that the present work and resulting interactions with the atmospheric 

community will be a decisive factor in the recognition of the role of chemistry, and in particular 

of surfactants, in cloud formation and properties. 
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8.Appendix 

8.1. Reference surfactants 

The list of reference surfactants used in this study is given in Table 8.1. 

Table 8.1: Name, formula, CAS and molecular mass of reference surfactants used for the development 
of the extraction and analysis methods of surfactants in aerosols. 
 

Name 
and formula CAS 

Molecular 
mass 

M (g mol-1)
SDS 
Sodium dodecyl sulfate 
C12H25NaO4S

151-21-3 288.4 

AOT  
Dioctyl sulfosuccinate sodium salt  
CH3(CH2)3CH(C2H5)CH2O2CCH2CH(SO3Na)CO2CH2CH(C2H5)(CH2)
3CH3 

577-11-7 444.56 

Zephiramine 
Benzyltetradecyldimethylammonium chloride 
CH3(CH2)13N(Cl)(CH3)2CH2C6H5 

139-08-2 368.04 

CTAC 
Cetyltrimethylammonium chloride 
CH3(CH2)15N(Cl)(CH3)3 

112-02-7 320.00 

Triton X114  
(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol 
(C2H4O)n C14H22O, n = 7 or 8 

9036-19-5 ~537 

Brij® 35 
Polyethylene glycol dodecyl ether 
C12H25(OCH2CH2)nOH, n~23 

9002-92-0 1199.54 

L- -Phosphatidylcholine from egg yolk 
1,2-Diacyl-sn-glycero-3-phosphocholine 8002-43-5 ~768 

Surfactin from Bacillus subtilis 
C53H93N7O13

24730-31-2 1036.34 

Rhamnolipid
Dirhamnolipid : Decanoic acid,3-((6-deoxy-2-O-(6-deoxy-
alpha-L-mannopyranosyl)-alpha-L-mannopyranosyl)oxy)-,1-
(carboxymethyl)octyl ester  
C32H58O13 

R-95Dd rhamnolipid (95 % dirhamnolipid, 5 % 
monorhamnolipid) 

 
4348.76-9 

 
 
 

1492023-69-4 

 
650.80 

 
 
 

~ 643 

Igepal CA-630* 
Nonylphenyl-polyethylenglycol, Octylphenoxy  
poly (ethyleneoxy) ethanol, branched  
(C2H4O)nC14H22O 

9002-93-1 ~603 

 

* used only for the study in Chapter 5   
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8.2. Chemicals used in the study 

 

All of the chemicals used in the study were purchased directly from the manufacturers and 

 

They included: S  98.5 % Bioreagent, Sigma-Aldrich; Dioctyl 

sulfosuccinate sodium salt, 98 %, Aldrich; Benzyltetradecy  99.0 % 

anhydrous, Fluka; Cetyltrimethylammonium chloride solution, 25 wt % in H2O, Aldrich; Triton 

X114, laboratory grade, Sigma-Aldrich; Brij35, Fluka Bio Chemika; L- -phosphatidylcholine 

from egg yolk, type XVI-  99 %, Sigma-Aldrich; Surfactin from Bacillus  

 98 %, Sigma-Aldrich; R-95Dd Rhamnolipid (95 % dirhamnolipid, 5 % 

monorhamnolipid) Aldrich; -630 CMC 0.083 mM, Sigma-Aldrich; Ethyl violet, 

cationic triarylmethane dye, Sigma-Aldrich; Patent Blue VF, dye content 50 %, Sigma-Aldrich; 

A  99 % puriss. p.a., ACS reagent; Sigma-Aldrich; Cobalt(II) nitrate 

 98 % ACS reagent, Sigma-Aldrich; S  99.0 % anhydrous Reagent 

Plus, Sigma-Aldrich; Ethylenediaminetetraacetic acid, 99.4 - 100.6 % ACS reagent powder, 

Sigma-Aldrich; S  99.0 % granulated puriss. p.a. ACS reagent, Fluka; 

Ammonium thiocyanate  99.5 % puriss. ACS reagent, Fluka Chemika Sigma-Aldrich; Ethanol 

puriss. p.a. ACS Reagent  reag. Ph. Eur. 96 % (v/v), Sigma-Aldrich;  99 %, Aldrich; 

 99.0 % BioXtra; Sigma-Aldrich; Sodium chloride,  99.5 %, puriss. P.a., 

ACS reagent; M  99.9 % Chromasolv for HPLC, Sigma-Aldrich; acetoni  99.9 % 

HiPerSolv Chromanorm Reag. Ph. Eur. (European Pharmacopoeia Reagent) grade gradient for 

HPLC, VWR BDH Prolabo; Chloroform (99 %  % ethanol, Alfa Aesar; Toluene, 

> 99 %, Chimie Plus. 
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8.3. Surface tension curves and min, CMC) 
of reference surfactants 

 

The surface tension curves and the comparison between reference surfactant properties 

min) determined from the procedure detailed in Section 2.3.2 using thin needles 

are given in Figure 8.1 and Table 8.2. The surface tension curves, minimum surface tensions 

min, and CMCs obtained from the procedure used in this study were consistent with the 

literature. 

 

 

Figure 8.1: Surface tension curves of reference surfactants (listed in Sections 8.1 and 8.2) plotted as 
explained in Experimental Section 2.3.2. 
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Table 8.2: Comparison between experimental min and CMC of reference surfactants (listed 
in Sections 8.1 and 8.2) determined from experimental procedure described in Section 2.3.2 and values 
from literature, at room temperature. The differences can be attributed to differences of purity. 

Surfactants 
Experimental In literature 

Ref.* 
CMC (μM) min (mN m-1) CMC (μM) min (mN m-1) 

SDS 8 000 33-34 5 000-10 000 30-37 a 

AOT 3 200 22-26 600-10 000 32-33 b 

Zephiramine 2 000 34-36 2 000  c 

CTAC 1 400 37-39 1 300-3 000  d 

Triton X114 200 26-28 200-300 31-33 e 

Brij 35 150 40-42 30-100  f 

L-a phosphatidylcholine 20 000 33-35 2 000-20 000 26-31 g 

Surfactin 34 31-38 20-40 (until 500) 27-49 h 

rhamnolipid 130 27-30 0.4-200 25-33 i 
 

* 

a. [Mysels, 1986; Rana, 2002; Cheikh, 2005; Mitsionis, 2012] 
b. [Mohammad, 2004; Sansanwal, 2006; Mahajan, 2011; Mitsionis, 2012] 
c. [Asakawa, 2001; González-Pérez, 2003] 
d. [Asakawa, 2001; Asakawa, 2005; Cepeda, 2013] 
e. [Schulze, 1985] 
f. [Patist, 2000; Sansanwal, 2006] 
g. [Tausk, 1974; Eastoe, 1998] 
h. [Arima, 1968; Cooper, 1981; Bodour, 2003; Razafindralambo, 2004; Abdel-Mawgoud, 2008; 

Ekström, 2010] 
i. [Parra, 1989; Bodour, 2003; , 2004; Costa, 2010; Ekström, 2010; , 2014] 
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8.4. Average and range of CMC values of surfactants in 
atmospheric aerosols and of reference surfactants 

 

Table 8.3: Comparison of CMC between aerosol samples determined in this work and known microbial 
and artificial surfactants. 

 Samples 
Average 

 

Range of 

 

Number of 

samples 

Aerosol 
samples 

PM2.5, Askö, Sweden 
Coastal site 
July-October 2010 

151 ± 30 49 - 245 11 samples 

PM1, Villeurbanne, France 
Urban site 
December 2014-January 2015 

1011 ± 202 34 - 2171 14 samples 

PM1, Pallas-Sammaltunturi, Finland 
Boreal site 
April-November 2015 

140 ± 28 21 - 398 35 samples 

Bacterial 
surfactants 

Trehalose dicorynomycolate, surfactin, 
sophorolipids, viscosin, rhamnolipids 

 3 - 200a  

Artificial 
surfactants 

Triton X114, Tween 20, CTAC, 
zephiramine, AOT, SDS 

 200 - 10 000b  

 

a [Desai, 1997] and this work (Table 8.2 in Appendix Section 8.3) 
b [Christofi, 2002] and this work (Table 8.2 in Appendix Section 8.3) 
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8.5. Real-time evolution of visibility and surfactant concentration 
in aerosols at Pallas-Sammaltunturi 

 

Figure 8.2 gives the real time evolution of the visibility data and corresponding surfactant 

concentrations in aerosol particles volume and aerosol particles volume on filters for the 

different cloud events for the campaign at Pallas-Sammaltunturi. 
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Figure 8.2: Real-time evolution of the visibility (m) (grey lines), the 24 h - averaged surfactant 
concentrations in aerosol particles volume, Csurf,p (mM) (orange lines) and the PM1 volumes on filters, 
VPM1 (10-2 nm3) (blue lines), for the 72 cloud events observed during the campaign at Pallas-
Sammaltunturi [Gérard, 2016 under review] 
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8.6. Back trajectories at Pallas-Sammaltunturi 

 

Examples of back trajectories for each air mass type, classified by vegetation and seas, coming 

at Pallas-Sammaltunturi, are shown in Figure 8.3. 

  
 

  
 

  
 

Figure 8.3: Example of 72 h - back trajectories arriving at the station Pallas-Sammaltunturi classified by 
vegetation and seas: (A) Arctic sea (05/07/15 22:00 UTC), (B) North Atlantic sea (13/08/15 22:00 UTC), 
(C) Baltic sea (22/08/15 22:00 UTC), (D) boreal vegetation (26/07/15 22:00 UTC), (E) temperate 
vegetation (18/11/16 UTC+2) and (F) Tundra (03/07/15 22:00 UTC). The trajectories were obtained 
from HYSPLIT back trajectories [Draxler, 2015; Rolph, 2015]: source at 67.97N 24.12E, 72 h -back 
trajectories (with a new trajectories starting every three hours during the 72h), model vertical velocity, 
height 10 m AGL (above ground level). 

 

A       B 
 
 
 
 
 
 
 
 
 
C       D 
 
 
 
 
 
 
 
 
E       F 
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9. Résumé étendu de la thèse en français 
 

La formation des nuages est essentielle dans le cycle de l’eau et demeure le principal facteur 

refroidissant du budget climatique, mais elle est également la plus grande source 

d’incertitude. Les processus de formation ne sont pas encore totalement compris, notamment 

le rôle des composés chimiques et en particulier celui des surfactants. La formation des 

gouttes de nuage à partir des particules d’aérosols est dictée par la théorie de Köhler qui ne 

repose que sur deux facteurs: le terme de Raoult, reliant la pression de vapeur d’eau à la 

composition volumique des particules, et la tension de surface des gouttelettes qui peut être 

affectée par la présence de molécules surfactantes. Cependant le rôle des surfactants n’est 

actuellement pas pris en compte dans les modèles prédisant la formation des gouttes de 

nuage; la tension de surface est alors considérée comme celle de l’eau pure. Au moment de 

ce travail de thèse, quelques études avaient commencé à apporter des preuves du contraire 

par des expériences en laboratoire et sur des aérosols atmosphériques. En effet, des études 

ont démontré l’importance des surfactants dans le grossissement des gouttes de nuage en 

laboratoire et la présence de surfactants forts a été mise en évidence dans des aérosols 

atmosphériques. Mais jusqu’à ce jour aucune étude n’avait apporté de preuves directes, dans 

l’atmosphère, du rôle des surfactants dans la formation des gouttes de nuage.  

Ainsi le but de cette étude, présentée dans cette thèse, était notamment de prouver le 

rôle des surfactants dans la formation des nuages par l’étude de leurs propriétés et 

concentrations dans les aérosols atmosphériques et de leurs liens avec les nuages. De plus 

l’origine des surfactants dans les aérosols, suspectés d’être d’origine biologique, a été étudiée.  

 

Le premier chapitre présente le contexte scientifique. L’atmosphère terrestre, où les 

nuages se forment, y est brièvement décrite, ainsi que leur importance. Ensuite la formation 

des gouttes de nuage est expliquée : les gouttes ne se forment que sur des petites particules 

d’aérosols atmosphériques appelées « noyaux de condensation » et leur grossissement est 

contrôlé par l’équation de Köhler [Köhler, 1936] qui dépend, en dehors de la taille des 

particules initiales, du terme de Raoult et de la tension de surface, dont les valeurs dépendent 

de la composition chimique de l’aérosol. Dans cette partie, les mesures actuellement 
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effectuées sur le terrain et en laboratoire, pour l’étude de l’activation et le grossissement des 

aérosols en gouttes de nuage, sont également discutées ainsi que leurs limites et les 

développements récents. Ensuite ce chapitre introduit les surfactants et leurs propriétés 

étudiées dans cette étude. Puis l’état actuel des connaissances des surfactants dans les 

aérosols atmosphériques est présenté. Enfin les objectifs de cette étude sont définis. Il s’agit 

1) de mettre en évidence le rôle des surfactants dans la formation des nuages et de 

caractériser leur mécanisme d’action (caractérisation de leurs propriétés dans les aérosols et 

preuves directes dans l’atmosphère de leur lien avec l’apparition de nuages) et 2) de 

déterminer leur origine.  

 

Le deuxième chapitre détaille le principe et la procédure expérimentale de chaque 

méthode utilisée dans cette étude. Ces méthodes incluent en particulier : l’échantillonnage 

des aérosols atmosphériques et les différents sites de mesure, l’extraction des surfactants de 

ces aérosols, les mesures de tension de surface par méthode de la goutte pendante et la 

détermination de la concentration en surfactants dans les extraits par méthodes 

colorimétriques amenant à des courbes de tension de surface absolues. Il est à noter qu’une 

partie importante de cette étude était le développement de ces méthodes. Pour l’étude, les 

techniques suivantes ont également été employées : la fluorescence, la caractérisation 

chimique des surfactants par chromatographie liquide couplée à la spectrométrie de masse 

en tandem et l’étude de gouttes microscopiques par pince optique associée à la spectrométrie 

Raman. De plus, des données atmosphériques et géophysiques ont été utilisées : la 

concentration en chlorophylle-a dans la mer obtenue par des données satellites, les sources 

des masses d’air par modèle HYSPLIT, la présence de nuages par mesures de visibilité, la 

mesure de la distribution en taille des particules pour le volume d’aérosols et les calculs du 

nombre de particules activées en gouttes de nuage.  

 

Les chapitres 3 à 6 présentent les différentes études répondant à la problématique de 

cette thèse. 

Le troisième chapitre présente le développement et l’application de la méthode pour 

l’extraction et l’analyse des propriétés et concentrations des surfactants dans les aérosols 

atmosphériques. Cette première étude a été effectuée sur des aérosols atmosphériques de 
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zone côtière PM2.5 (particules de diamètre < 2.5 

Elle a permis notamment de mettre en évidence des surfactants forts dans les aérosols 

atmosphériques avec des concentrations suffisantes pour que la tension de surface des 

gouttes de nuage reste basse même au moment de l’activation, ce qui devrait favoriser la 

formation des gouttes.  

Le quatrième chapitre poursuit l’étude du troisième chapitre, c’est-à-dire l’extraction et 

l’analyse des propriétés et concentrations des surfactants dans les aérosols atmosphériques, 

mais va plus loin puisqu’elle amène pour la première fois des preuves directes dans 

l’atmosphère, de l’effet des surfactants dans la formation des nuages. En effet, cette étude 

appliquée sur des aérosols PM1 (particules de diamètre < 1 provenant de la station 

boréale Pallas-Sammaltunturi en Finlande, un site fréquemment impacté par la présence de 

nuages, a montré qu’à ce site l’apparition de nuages était fortement corrélée à la 

concentration et aux propriétés des surfactants. Cette corrélation est notamment importante 

au niveau du ratio de la concentration en surfactants dans les particules sur la CMC 

(Concentration Micellaire Critique), paramètre intrinsèque des surfactants obtenu par la 

détermination de courbes de tensions de surface absolues, qui semble être un facteur critique 

déclencheur de la formation des gouttes. Des calculs ont également mis en évidence 

l’importance de prendre en compte la tension de surface réelle des aérosols et non celle de 

l’eau pure comme considérée actuellement dans les modèles. En effet, négliger les surfactants 

sous-estime quantitativement le nombre de gouttes de nuage prédit. 

Le cinquième chapitre se concentre sur l’effet des surfactants en laboratoire sur des 

gouttes individuelles microniques produites par une pince optique par faisceau laser couplée 

à la spectrométrie Raman dans une cellule à température et humidité contrôlées. En effet les 

études du troisième et du quatrième chapitre ont été réalisées à une échelle macroscopique 

alors que les gouttes de nuages se forment à une échelle microscopique ou sous-

microscopique. Il était donc nécessaire de vérifier que les effets des surfactants restaient vrais 

à cette échelle. Cette étude a permis alors de montrer que la présence de surfactants, aux 

propriétés similaires à celles trouvées dans les aérosols atmosphériques, conduisait à un 

changement du rayon des gouttes supérieur à celui des gouttes n’en contenant pas, quand 

elles étaient soumises à des changements d’humidité dans la cellule de mesure. Ce résultat a 
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permis de confirmer la fiabilité des résultats des chapitres précédents qui avaient été 

déterminés à une échelle macroscopique. 

Le sixième chapitre s’intéresse à l’origine des surfactants dans les aérosols 

atmosphériques. En effet, puisque l’importance des surfactants pour la formation des nuages 

a été démontrée dans les chapitres précédents, il est nécessaire de connaitre leur origine pour 

mieux comprendre les mécanismes mis en jeu entre atmosphère et biologie. Puisque les 

surfactants étaient suspectés être d’origine biologique, différentes approches ont été utilisées 

pour démontrer cette origine. Les propriétés des surfactants ont été comparées à des 

surfactants de référence, à des marqueurs biologiques (chlorophylle-a) ou encore aux sources 

des masses d’air apportant les aérosols; la structure chimique des surfactants extraits des 

aérosols a également été étudiée. Les résultats ont montré que ces surfactants étaient des 

macromolécules et ont commencé à démontrer leur origine biologique.  

 

Enfin le septième chapitre vient résumer les travaux décrits et leurs perspectives. Les 

études présentées dans cette thèse ont permis une grande avancée dans le domaine de la 

formation des nuages. En effet, par le développement d’une méthode d’extraction et 

d’analyse des surfactants dans les aérosols atmosphériques, pour la première fois, des 

preuves de l’importance des surfactants dans la formation des gouttes de nuage à partir de 

mesures directes dans l’atmosphère ont été apportées. De plus les travaux récents effectués 

par d’autres groupes viennent confirmer nos conclusions. Cela souligne l’importance de 

prendre en compte l’effet des surfactants dans les modèles prédisant la formation des nuages. 

Pour aller plus loin, ces études devraient être réalisées sur d’autres sites afin d’obtenir une 

vision plus globale du rôle des surfactants dans l’atmosphère. Une meilleure compréhension 

de la formation des nuages devrait être bénéfique pour les prédictions météorologiques, 

hydrologiques et climatiques.  
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