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Introduction

Nowadays, the numerical simulation has become indispensable to analyse and optimise the problems in every part of engineering processes. Without using real prototype, the virtual testing drastically reduces the cost and at the meantime highly speed up the design process. Such as in automotive industry, abiding by the standards against pollution, the objective of enterprise is to produce a lighter vehicle with improved comfort for passenger. However decreasing the weight of vehicle often leads to the fact that it is more susceptible to vibrations, which are mainly generated by acoustic effect. It requires designers to take account of all these factors in the conception of automotive structure. Another example is in the aerospace industry. Given the limited budget, designers endeavor to minimise the total mass of launcher and on the other hand abate the increasing vibrations. Last example is in construction of harbor, which agitated by ocean waves. To amass the maximum vessels and to alleviate the water agitation, designers search the optimised conception for the geometry of harbor.

Characterised by the frequency response function, a vibration in the mechanic field could be classified into three zones as shown in Figure 1.

The low-frequency range is characterized by the local response. The resonance peaks are distinct from one to another. The behavior of vibration can be represented by the combination of several normal modes. The Finite Element Methods (FEM) [START_REF] Zienkiewicz | The finite element method[END_REF] is most commonly used to analyse the low-frequency vibration problem. Making use of polynomial shape functions to approximate the vibration field, the FEM gives an efficient and robust performance. Considerable commercial software of this method is well developed and is widely used in the industry. With the increasing complexity of numerical model, large numbers of researchers still continue their effort to develop this method in the aspect of intensive calculation and parallel calculation techniques.

In the high-frequency range the dimension of object is much larger than the wave length. There exist many small overlapping resonance peaks. Moreover the system is extremely sensible to uncertainties. In this context, the Statistical Energy Analysis (SEA) [Lyon et Maidanik, 1962] is developed to solve the vibration problems in this range. In fact, the SEA method neglects the local response. Instead it studies the global energy by taking the averages and variances of dynamic field over large sub-systems. These features enable the SEA well performs in the high-frequency range but on the other hand limits the use of the SEA only into this range. Therefore the SEA will become incapable facing to low-frequency and mid-frequency problem.

Figure 1: A typical frequency response function divided in low-mid-and high-frequency zones [Ohayon et Soize, 1998].

In the mid-frequency range, the problem is characterised by intense modal densification. Thus it contains both the characteristics of low-frequency and high-frequency problem. It presents many high and partially overlapping resonance peaks. In this reason, the local response could not be neglected as in high-frequency range. In addition, the system is very sensible to uncertainties. Due to these features, the methods for low-frequency or high-frequency such as the FEM and the SEA could not be applied to mid-frequency problem. For high-frequency method, the neglecting of local response will lead to its undoing. For the low-frequency method, the need of prohibitively increased refinement of mesh will be its undoing due to the pollution effect [START_REF] Deraemaeker | Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions[END_REF].

Facing to mid-frequency problem, one category of approaches could be classified into the extensions of the standard FEM, such as the Stabilized Finite Element Methods including the Galerkin Least-Squares FEM [Harari et Hughes, 1992] the Galerkin Gradient Least-Squares FEM (G∇LS-FEM) [Harari, 1997], the Variational Multiscale FEM [Hughes, 1995], The Residual Free Bubbles method (RFB) [START_REF] Franca | Residual-free bubbles for the Helmholtz equation[END_REF], the Adaptive Finite Element method [Stewart et Hughes, 1997b]. There also exists the category of energy based methods, such as the Hybrid Finite Element and Statistical Energy Analysis (Hybrid FEM-SEA) [De Rosa et Franco, 2008, De Rosa et Franco, 2010], the Statistical modal Energy distribution Analysis [START_REF] Franca | Residual-free bubbles for the Helmholtz equation[END_REF], the Wave Intensity Analysis [Langley, 1992], the Energy Flow Analysis [START_REF] Belov | Propagation of vibrational energy in absorbing structures[END_REF][START_REF] Buvailo | [END_REF], the Ray Tracing Method [START_REF] Krokstad | Calculating the acoustical room response by the use of a ray tracing technique[END_REF], Chae et Ih, 2001], the Wave Enveloppe Method [Chadwick et Bettess, 1997].

Other approaches have been developed in order to solve mid-frequency problem, namely the Trefftz approaches [Trefftz, 1926]. They are based on the use of exact ap-proximations of the governing equation. Such methods are, for example, the partition of unity method (PUM) [Strouboulis et Hidajat, 2006], the ultra weak variational method (UWVF) [Cessenat et Despres, 1998a, Huttunen et al., 2008], the least square method [Monk et Wang, 1999, Gabard et al., 2011], the plane wave discontinuous Galerkin methods [START_REF] Gittelson | Plane wave discontinuous Galerkin methods: analysis of the h-version[END_REF], the method of fundamental solutions [Fairweather et Karageorghis, 1998, Barnett et Betcke, 2008] the discontinuous enrichment method (DEM) [START_REF] Farhat | The discontinuous enrichment method[END_REF], Farhat et al., 2009], the element free Galerkin method [Bouillard et Suleaub, 1998], the wave boundary element method [START_REF] Perrey-Debain | Wave boundary elements: a theoretical overview presenting applications in scattering of short waves[END_REF], Bériot et al., 2010] and the wave based method [START_REF] Desmet | An indirect Trefftz method for the steady-state dynamic analysis of coupled vibro-acoustic systems[END_REF], Van Genechten et al., 2012].

The Variational Theory of Complex Rays (VTCR), first introduced in [Ladevèze, 1996], belongs to this category of numerical strategies which use waves in order to get some approximations for vibration problems. It has been developed for 3-D plate assemblies in [Rouch et Ladevèze, 2003], for plates with heterogeneities in [START_REF] Ladevèze | A multiscale computational method for medium-frequency vibrations of assemblies of heterogeneous plates[END_REF], for shells in [START_REF] Riou | Extension of the Variational Theory of Complex Rays to shells for medium-frequency vibrations[END_REF], and for transient dynamics in [START_REF] Chevreuil | Transient analysis including the low-and the medium-frequency ranges of engineering structures[END_REF]. Its extensions to acoustics problems can be seen in [START_REF] Riou | The multiscale VTCR approach applied to acoustics problems[END_REF], Ladevèze et al., 2012, Kovalevsky et al., 2013]. In [START_REF] Barbarulo | Proper generalized decomposition applied to linear acoustic: a new tool for broad band calculation[END_REF] the broad band calculation problem in linear acoustic has been studied. In opposition to FEM, the VTCR has good performances for medium frequency applications, but is less efficient for very low frequency problems.

Recently, a new approach called the Weak Trefftz Discontinuous Galerkin (WTDG) method is first introduced in [Ladevèze et Riou, 2014]. It differs from the pure Trefftz methods, because the necessity to use exact solution of the governing equations can be weaken. This method could achieve the hybrid use of the FEM (based on polynoms) and the VTCR (based on waves) approximations at the same time in different adjacent subdomains of a problem. Therefore for a global system which contains both low-frequency range vibration dominated sub-structures and mid-frequency vibration dominated substructures, the WTDG outperforms the standard FEM and the standard VTCR.

Numerous methods for solving the mid-frequency range problem are presented above and among them those issued from Trefftz method seem more efficient. However most of them are limited to constant wave number Helmholtz problem. In other word, the system is considered as piecewise homogeneous medium. The reason lies on the fact that it is easy to find free space solutions of the Helmholtz equation with a constant wave number. It is not necessarily the case when the wave number varies in space. Indeed the spatially constant wave number is encountered in some applications of the Helmholtz equation, such as the wave propagation in geophysics or electromagnetics and underwater acoustics in large domains. Therefore these mid-frequency range methods will make the numerical result deviate from the real engineering problem. To alleviate this phenomenon, the UWVF proposes special solutions in the case of a layered material in [START_REF] Luostari | Improvements for the ultra weak variational formulation[END_REF]. Its studies of the smoothly variable wave number problem in one dimension by making use of exponentials of polynomials to approximate the solution can be seen in [START_REF] Després | Generalized plane wave numerical methods for magnetic plasma[END_REF]. The DEM method also suggests special solutions in case of layered material in [START_REF] Tezaur | A discontinuous enrichment method for capturing evanescent waves in multiscale fluid and fluid/solid problems[END_REF] and its extension to the smoothly variable wave number problem can be seen in [START_REF] Tezaur | The discontinuous enrichment method for medium-frequency Helmholtz problems with a spatially variable wavenumber[END_REF]. For smoothly variable wave number, the DEM introduces special forms of wave functions to enrich the result.

The objective of the dissertation is to deal with heterogeneous Helmholtz problem. First, one considers the media with the square of wave number varying linearly. It is resolved by extending the VTCR. Then a general way to handle heterogeneous media by the WTDG method is proposed. In this case, there is no a priori restriction for the wave number. The WTDG solves the problem by approximately satisfying the governing equation in each subdomain.

In extended VTCR, one solves the governing equation by the technique of separation of variables and obtains the general solution in term of Airy functions. However the direct use of Airy functions as shape functions suffer from numerical problem. The Airy wave function is a combination of Airy functions. They are built in the way that they tends towards the plane wave functions asymptotically when the wave number varies slowly. Through academic studies, the convergence properties of this method are illustrated. In engineering the heterogeneous Helmholtz problem often exists in harbor agitation problem [START_REF] Modesto | Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation[END_REF]. Therefore a harbor agitation problem solved by the extended VTCR further gives a scope of its performance in engineering application [Li et al., 2016a].

In the WTDG method, one locally develops general approximated solution of the governing equation, the gradient of the wave number being the small parameter. In this ways, zero order and first order approximations are defined. These functions only satisfy the local governing equation in the average sense. In this dissertation, they are denoted by the Zero Order WTDG and the First Order WTDG. The academic studies are presented to show the convergence properties of the WTDG. The harbor agitation problem is again solved by the WTDG method and a comparison with the extended VTCR is made [START_REF] Li | On weak Trefftz discontinuous Galerkin approach for medium-frequency heterogeneous Helmholtz problem[END_REF].

Lastly the WTDG is extended to mix the polynomial and the wave approximations in the same subdomains, at the same time. In this dissertation it is named FEM/WAVE WTDG method. Trough numerical studies, it will be shown that such a mix approach presents better performances than a pure FEM approach (which uses only a polynomial description) or a pure VTCR approach (which uses only a wave description). In other words, this Hybrid FEM/WAVE WTDG method could well solve the vibration problem of both low-frequency and mid-frequency range [START_REF] Li | Hybrid Finite Element method and Variational Theory of Complex Rays for Helmholtz problems[END_REF]. This dissertation is divided into five chapters. Chapter 1 is the description of the reference problem and the relevant literature analysis. Chapter 2 recalls the VTCR in the constant wave number acoustic Helmholtz problem and its cardinal results in previous work of VTCR. Chapter 3 addresses the Extended VTCR in slowly varying wave number heterogeneous Helmholtz problem. Chapter 4 illustrates the the Zero Order and the First Order WTDG in heterogeneous Helmholtz problem. Chapter 5 presents the FEM/WAVE WTDG method to constant wave number low-frequency and mid-frequency Helmholtz problem. The last Chapter draws the final remarks and conclusions.

Chapter 1 Bibliographie

The purpose of this chapter is to briefly introduce the principal computational methods that are developed for structural vibrations and acoustics. Up to the present day, there exist numerous methods indeed. Some are commonly adopted by the industry and others are still in the research phase. Depending on the frequency of problem, these methods could be globally classified into three categories, which are the polynomial methods, the energetic methods and the wave-based methods. Respectively, they are developed for the low-frequency, high-frequency and mid-frequency problems. Granted, this chapter could not cover all the details of each method, but the essential ideas and features will be fully illustrated in the context of Helmholtz related problems. The finite element method (FEM) is a predictive technique applied on a rewrite of reference problem into the weak form formulation, which is equivalent to reference problem.

Then it makes a finite number elements discretization of problem. In each element, the vibrational field, acoustic pressure of the fluid or the displacement of the structures, is approximated by the polynomial functions. These functions are not the exact solutions of the governing equation. For the FEM, it is required to have a fine discretization to obtain a precise solution.

Generally the weak formulation could be written as a(u,v) = l(v), where a(•,•) is a bilinear form and l(•) is a linear form. This formulation could be obtained by the virtual work principle or by minimisation of energy of system. It should be noticed that the working space of u is that U = u|u ∈ H 1 , u = u d on ∂Ω u d and v ∈ H 1 0 , where Ω u d represents the boundary ∂Ω imposed by Dirichlet type boundary condition. This means that the functions of working space need to satisfy the displacement imposed on boundary. Then it is to solve the formulation problem in a finite dimensional basis of working space. The domain Ω should be discretized into numerous small elements Ω E in the way that Ω

= n E E=1 Ω E , Ω ⋍ Ω and Ω E Ω E ′ = / 0, ∀E = E ′ .
This discretization allows one to approximate the Helmholtz problem by a piecewise polynomial base, whose support is locally defined by Ω E :

u(x) ≃ u h (x) = N E ∑ e=1 u E e φ E e (x), x ∈ Ω E (1.1)
When the vibration becomes oscillating, large numbers of piecewise polynomial shape functions are needed to be used. It has been proved in [Ihlenburg et Babuška, 1995, Bouillard et Ihlenburg, 1999] that the upper limit of error could be yielded by:

ε C 1 kh p p + C 2 kL kh p 2p (1.2)
where C 1 and C 2 are constants, k is the wave number of problem, h is the maximum element size, p is the degree of the polynomial shape functions. This error contains two terms. The first term represents the interpolation error which caused by the fact that the oscillation phenomenon is approximated by the polynomial functions. It is the predominant term for the low-frequency problem and could be remained small by keeping the term kh constant [Thompson et Pinsky, 1994]. The second term represents the pollution error due to the numerical dispersion [START_REF] Deraemaeker | Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions[END_REF] and is preponderant when the wave number increases. It could be seen that unlike the first term, the second term of error could only be kept small when the element size h reduces drastically. This will lead to a prohibitive expensive cost of computer resources. This drawback of FEM inhibits it to solve mid-frequency problem.

The extension of FEM

The adaptive FEM

To counteract the interpolation error and the pollution effect, reducing the size h and augment the order p of the polynomial could both be the solutions. Respectively they are called h-refinement and p-refinement. For a given problem, a refinement of mesh will create a large number of degrees of freedom. It it wiser to use a refinement of mesh only on the severely oscillating or shape gradient region and other case the coarse mesh instead. Therefore a posteriori error indicator is proposed. The idea is to give a first rough analysis and to evaluate the local error by the error indicator created. Then it is to add a refinement on specific region depending on the local error. This kind of technique could be seen in [Ladevèze et Pelle, 1983, Ladevèze et Pelle, 1989] for structures, in [Bouillard et Ihlenburg, 1999, Stewart et Hughes, 1996[START_REF] Irimie | [END_REF] for acoustics and in [START_REF] Bouillard | A waveoriented meshless formulation for acoustical and vibro-acoustical applications[END_REF] for the coupling of vibro-acoustics. Depending on different way to achieve the refinement, the corresponding techniques could be classified into p-refinement, h-refinement and hp-refinement. p-refinement introduces high order polynomial shape functions on the local region without changing the mesh [Komatitsch et Vilotte, 1998, Zienkiewicz et Taylor, 2005]. Conversely, h-refinement only refines the mesh without changing the shape functions [Stewart et Hughes, 1997a, Tie et al., 2003].

Of course hp-refinement is the combination of the two former methods [START_REF] Demkowicz | Toward a universal hp adaptive finite element strategy, part 1. constrained approximation and data structure[END_REF], Oden et al., 1989, Rachowicz et al., 1989].

Although the adaptive FEM outperforms the standard FEM and considerably reduces the unnecessary cost of computer resource, it still suffers from the pollution effect and expensive computational cost in mid-frequency problem.

The stabilized FEM

As one knows that when wave number increases, it will create the numerical dispersion problem due to the bilinear form. Because in this case the quadratic form associated to the bilinear form will risk losing its positivity [START_REF] Deraemaeker | Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions[END_REF]. To alleviate this problem, some methods are proposed to modify the bilinear form in order to stabilize it.

The Galerkin Least-Squares FEM (GLS-FEM) proposes to modify the bilinear form by adding a term to minimize the equilibrium residue [Harari et Hughes, 1992]. It is fully illustrated in [Harari et Hughes, 1992], the pollution effect is completely counteracted in 1D acoustic problem. However in the coming work [Thompson et Pinsky, 1994] it shows that facing to higher dimension problems, this method is not as successful as in 1D problem. It could only eliminate the dispersion error along some specific directions.

The Galerkin Gradient Least-Squares FEM (G∇LS-FEM) is similar to the GLS-FEM method. The only difference is that the G∇LS-FEM adds a term to minimize the gradient of the equilibrium residue [Harari, 1997]. It shows that its performance depends on the problems. It deteriorates the solution quality in acoustic problem. In the mean time, however, it well performs in the elastic vibration problems. Conversely to the GLS-FEM, the G∇LS-FEM offsets the dispersion error in all directions on the 2D problem.

The Quasi Stabilized FEM (QS-FEM) paves a way to modify the matrix rather than the bilinear form. The objective is to suppress the dispersion pollution in every direction. It is proved that this method could eliminate totally the dispersion error on 1D problem. For the 2D problem, it is valid under the condition that regular mesh is used [START_REF] Babuška | A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution[END_REF].

The Multiscale FEM

The Variational Multiscale (VMS) is first introduced in [Hughes, 1995]. Based on the hypothesis that the solution could be decomposed into u = u p + u e where u p ∈ U p is the solution associated with the coarse scale and u e ∈ U e is the solution associated with the fine scale. The coarse solution u p could be calculated with the standard FEM method. Compared to the characteristic length of coarse scale, the mesh size h of the FEM is small. But on the other hand, h is rather big, compared to the fine scale. Therefore u e needs to be calculated analytically.

The solution is split into two scale solutions. This nature could generate two variational problems. In this case, this method is to find u p + u e ∈ U p ⊕ U e such that a(u p ,v p ) + a(u e ,v p ) = b(v p ) ∀v p ∈ U p a(u p ,v e ) + a(u e ,v e ) = b(v e ) ∀v e ∈ U e

(1.

3)

The functions of fine scale u e has the zero trace on the boundary of each element. Let us denote the integrating by part as a(u e ,v p ) = (u e ,L * v p ) ∀v p ∈ U p a(u p + u e ,v e ) = (L(u p + u e ),v e ) ∀v e ∈ U e (1.4) where L * is the adjoint operator of L. In addition, the linear form b(v) only contains the terms of sources

b(v) = Ω f vdV (1.5)
where f represents the source. By denoting ( f ,v) Ω = Ω f vdV , (1.3) could be rewritten in the form of

a(u p ,v p ) + (u e ,L * v p ) = b(v p ) ∀v p ∈ U p (Lu e ,v e ) Ω = -(Lu p -f ,v e ) Ω ∀v e ∈ U e
(1.6)

It could be seen that the second equation describes the fine scale and the solution u e strongly depends on the residue of equilibrium Lu pf . Therefore the second equation of (1.6) is solvable and u e could be expressed as

u e = M(Lu p -f ) (1.7)
where M is a linear operator. Replacing (1.7) into the first equation of (1.6), one could obtain the variational formulation only comprises u p in the form of

a(u p ,v p ) + (M(Lu p -f ),L * v p ) Ω = b(v p ), ∀v p ∈ U p (1.8)
Since u e has the zero trace on the boundary of each element, the expression (1.8) could be decomposed into each element without coupling terms. In [START_REF] Baiocchi | Virtual bubbles and Galerkin-least-squares type methods (Ga. LS)[END_REF], Franca et Farhat, 1995], the problem is solved in each element

u e (x) = - Ω E g(x E ,x)(Lu p -f )(x E )dΩ E (1.9)
where g(x E ,x) is the Green function's kernel of the dual problem of fine scale

L * g(x E ,x) = δ(x) on Ω E g(x E ,x) = 0 on ∂Ω E (1.10)
Approximating g(x E ,x) by the polynomial functions [Oberai et Pinsky, 1998]. This technique gives an exact solution on 1D problem. However on 2D the error depends on the orientation of waves.

The Residual-Free Bubbles method (RFB) introduced in [START_REF] Franca | Residual-free bubbles for the Helmholtz equation[END_REF] is very similar to the VMS method. They base on the same hypothesis, which nearly leads to the same variation formulation as (1.8). The RFB modifies the linear operator M and has the variational formulation as follow:

a(u p ,v p ) + (M RFB (Lu p -f ),L * v p ) Ω = b(v p ), ∀v p ∈ U p (1.11)
The approximation space of the fine scale u h e is U p,RFB = ∪ n E E=1 U p,RFB,E . The spaces U p,RFB,E are generated by m + 1 bubble functions defined in each element

U p,RFB,E = Vect b 1 , b 2 , • • • , b m , b f (1.12)
The where ϕ e denotes the shape functions associated with the coarse scale. The function b f is the solution of

Lb f = f on Ω E b f = 0 on ∂Ω E (1.14)
Resolution of these equations in each element could be very expansive, especially on 2D and on 3D. In [Cipolla, 1999], infinity of bubble functions are added into the standard FEM space and the performance of this method is improved.

Domain Decomposition Methods

The Domain Decomposition Methods (DDM) resolves a giant problem by dividing it into several sub-problems. Even though the stabilized FEM could eliminate the numerical dispersion effect, it still resolve the problem in entirety. Facing to mid-frequency problem it still requires a well refined mesh. This phenomenon will give rise to expensive computational cost. The DDM provides a sub-problem affordable by a single computer. Moreover, the DDM is endowed with great efficiency when paralleling calculation is used.

The Component Mode Synthesis (CMS) is a technique of sub-structuring dynamic. It is first introduced in [Hurty, 1965]. The entire structure is divided into several substructures, which are connected by the interfaces. Then the modal analysis is applied on each sub-structure. After obtaining the preliminary proper mode of each sub-structure, the global solution could be projected on this orthogonal base. Furthermore, by condensing the inside modes on the interfaces, the CMS highly reduces the numerical cost. Then considerable methods are developed from the CMS. These methods use different ways to handle the interfaces. Such as fixed interfaces [Hurty, 1965, Craig Jr, 1968], free interfaces [MacNeal, 1971], or the mix of fixed and free interfaces [Craig Jr et Chang, 1977].

The Automated Multi-Level Substructuring (AMLS) divides the substructures into several levels in the sense of numerical model of FEM. In this case the substructure is no longer a physical structure and the lowest level are elements of FEM. Then, by assembling the substructures of lower level, one could obtain a substructure of higher level. In work [Kropp et Heiserer, 2003], this method is proposed to study the vibro-acoustic problem inside the vehicle. The Guyan's decomposition introduced in [START_REF] Sandberg | Domain decomposition in acoustic and structure-acoustic analysis[END_REF] uses the condensed Degrees of Freedoms (DoFs). In fact some of the DoFs could be classified into slave nodes and master nodes. The idea of this method is to solve a system only described by the master nodes, which contains the information of its slave notes.

The Finite Element Tearing and Interconnecting (FETI) is a domain decomposition method based on the FEM and it is first introduced in [Farhat et Roux, 1991]. The formulation of displacement problem is decomposed into substructures, which are arranged into a functional minimization under constraints. These constraints are the continuity conditions of the displacement along the interfaces between substructures and could be taken into account by using the Lagrange multipliers. In [START_REF] Farhat | Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems[END_REF], Magoules et al., 2000] it is applied to acoustic problems. In [Mandel, 2002] it is applied to vibro-acoustic problems.

The boundary element method

The boundary element method (BEM) based on a integral formulation on the boundary of focusing domain. This method comprises two integral equations. The first one is an integral equation. Its unknowns are only on the boundary. The second integral equation describes the connection between the field inside the domain and the quantity on the boundary. Therefore for the BEM, the first step is to figure out the solution on the boundary field through the first integral equation. Then knowing the distribution of the solution on the boundary, one could use another integral equation to approximate solutions at any point inside the domain [Banerjee et Butterfield, 1981, Ciskowski et Brebbia, 1991].

Considering an acoustic problem where u(x) satisfy the Helmholtz equation

∆u(x) + k 2 u(x) = 0 (1.15)
The two integral equations could be written as follow:

u(x) 2 = G(x 0 , x) - ∂Ω G(y, x) ∂u ∂n (y) -u(y) ∂G(y, x) ∂n(y) dS(y) x ∈ ∂Ω (1.16) u(x) = G(x 0 , x) - ∂Ω G(y, x) ∂u ∂n (y) -u(y) ∂G(y, x) ∂n(y) dS(y) x ∈ Ω (1.17)
where in (1.16) x, y are the points on the boundary ∂Ω. In (1.17) x is the point in the domain Ω and y is the point on the boundary ∂Ω. And x 0 represents the point of acoustic source. G(x 0 , x) is the Green function to be determined. As presented before, u(x) on ∂Ω could be determined by replacing the prescribed boundary conditions into (1.16). Based on this thought, BEM divides the boundary ∂Ω into N non overlapping small pieces, which are named boundary elements and denoted by ∂Ω 1 , ∂Ω 2 , • • • , ∂Ω N . By interpolation on these elements, one could resolve (1.16) and obtain the approximated u(x) on ∂Ω.

It should be noticed that these integral equations could be obtained by direct boundary integral equation formulation or by indirect boundary integral equation formulation. The difference is that the direct one is derived from Green's theorem and the indirect one is derived from the potential of the fluid.

Compared with FEM method, the BEM has the following advantages: (1) Instead of discretizing the volume and doing the integration on volume, the BEM only undertakes the similar work on the boundary. This drastically reduces the computational cost. (2) Facing to the unbounded problem, the integral equations (1.16) and (1.17) are still valid in the BEM method. The solution u(x) satisfies the Sommerfeld radiation conditions. The drawback of the BEM is to solve a linear system where the matrix needed to be inversed is fully populated. Conversely the matrix of FEM to inverse is quite sparse. This means for the FEM, it is easier to store and solve the matrix. Despite of its efficiency, facing to midfrequency problem the BEM still possesses the drawback of polynomial interpolation.

The energetic methods

The Statistical Energy Analysis

The Statistical Energy Analysis (SEA) is a method to study high-frequency problems [Lyon et Maidanik, 1962]. This method divides the global system into substructures. Then it describes the average vibrational response by studying the energy flow in each substructure. For each substructure i, the power balance is hold

P i in = P i diss + ∑ j P i j coup (1.18)
where P i in and P i diss represents the power injected and dissipated in the substructure i. P i j coup denotes the power transmitted from the substructure i to its adjacent substructure j. If the model is hysteretic damping, the dissipated work is related with the total energy of the substructure i in the form of

P i diss = ωη i E i (1.19)
where η i is the hysteretic damping and E i is the total energy. Then the coupling between the substructures could be expressed as

P i j coup = ωη i j n i E i n i - E j n j (1.20)
where n i and n j are the modal densities of the substructure i and j respectively. η i j is the coupling loss factor. This equation illustrates the fact that the energy flow between the substructures i and j is proportional to the modal energy difference. The SEA lies on some strong assumptions that are generally true only at high frequency:

• the energy is transmitted only to adjacent subdomains.

• the energy field is diffuse in every sub-system.

It should be mentioned that at very high frequency the energy field is not diffuse. [Mace, 2003] provides an excellent SEA review.

The Hybrid FEM-SEA

The Hybrid FEM-SEA method splits the system into two systems, namely the master and the slave systems [Shorter et Langley, 2005]. The standard FEM is used to treat the master system, which represents a deterministic response. On the other hand, the slave system is solved by the SEA method because it will show a randomized response. This hybrid use of the FEM and the SEA possesses both of their advantages. In fact, the uncertainty fields are directly described by the SEA without any information on stochastic parameters. The counterpart which does not require any Montecarlo simulation seems quite appropriate for the application of the FEM method .

Wave Intensity Analysis

The prediction of the SEA is valid under the diffuse field hypothesis. The calculation of the coupling loss factors are based on this hypothesis. The Wave Intensity Analysis (WIA) [Langley, 1992] proposes the hypothesis that the vibrational field diffuses and could be mainly represented by some preliminary directions, which are in the form of

u(x) = 2π 0 A(θ)e ik(θ)•x dθ (1.21)
where k(θ) represents the wave vector which propagates in the direction θ. Supposing the waves are totally uncorrelated

2π 0 2π 0 A(θ 1 )A * (θ 2 )e ik(θ 1 -θ 2 )•x dθ 1 dθ 2 = g(θ 1 )δ(θ 1 -θ 2 ) (1.22)
where g(θ 1 ) is the measure of the energy in the direction θ 1 and δ represents the Dirac function. The energy could be expressed by the relation

E(x) = 2π 0 e(x,θ)dθ (1.23)
The energy e(x,θ) is then homogenised in space and developed by the Fourier series e(x,θ) = +∞ ∑ p=0 e p N p (θ) (1.24)

The power balance therefore provides the amplitude e p . This method gives a better result than the SEA method on plate assemblies [START_REF] Langley | Statistical energy analysis of periodically stiffened damped plate structures[END_REF]. However, the local response is not addressed and the coupling coefficients are hard to determine.

The Energy Flow Analysis

The Energy Flow Analysis was first introduced in [Belov et Rybak, 1975, Belov et al., 1977]. This method studies the local response by a continue description of the energy value which characterizes the vibrational phenomenon of the mechanical system. The effective energy density, which is denoted by e, is the unknown. The energy flow is related to this energy by

I = - c 2 g ηω ∇e (1.25)
where c g is the group velocity. Then the work balance divI = P in j -P diss could lead to ωηec 2 g ηω ∆e = -P in j (1.26)

Because the quantity e varies slowly with the space variable, the simplicity of this equation makes it easily be treated with an existant FEM code. This method well performs in 1D problem in [START_REF] Lase | Energy flow analysis of bars and beams: theoretical formulations[END_REF], Ichchou et al., 1997], however it is difficult to be applied in 2D coupling problem [Langley, 1995]. In addition, using the equation (1.26) creates numerous difficulties [Carcaterra et Adamo, 1999]. For example, the 2D field radiated by the source decays as 1/ √ r. Yet in the analytic theory it decays as 1/r. In the stationary case, this model only correctly represents the evaluation of energy while the waves are uncorrelated [Bouthier et Bernhard, 1995].

Ray Tracing Method

The Ray Tracing Method (RTM) is derived from the linear optic theory and it was first introduced in [START_REF] Krokstad | Calculating the acoustical room response by the use of a ray tracing technique[END_REF] to predict acoustic performances in rooms. The vibrational response is calculated following a set of propagative waves until fully damped. Transmissions and reflections are computed using the classical Snell formula. If frequency and damping are enough elevated, the RTM is cheap and accurate. Otherwise, computational costs could be unduly expensive. Moreover, complex geometries are difficult to study due to their high scattering behaviour. This technique is applied to acoustic [START_REF] Allen | [END_REF], Yang et al., 1998, Chappell et al., 2011] and to plates assemblies in [Chae et Ih, 2001, Chappell et al., 2014].

The wave-based methods

Ultra Weak Variational Formulation

The Ultra Weak Variational Formulation (UWVF) discretizes the domain into elements. It introduces a variable on each interface and this variable satisfies a weak formulation on the boundary of all the elements. The vibrational field is approximated by a combination of the plane wave functions. Then the Galerkin method leads this approach to solve a matrix system and the solution is the boundary variables. The continuity between the elements verified by a dual variable. Once the interface variables are calculated, one could build the solution inside each element. However the matrix is generally ill-conditioned. In [Cessenat et Despres, 1998b] a uniform distribution of wave directions is proposed to maximize the matrix determinant. Of course, the idea of pre-conditioner is also introduced to alleviate this problem.

A comparison of the UWVF and the PUM on a 2D Helmholtz problem with irregular meshes is done in [START_REF] Huttunen | Comparison of two wave element methods for the Helmholtz problem[END_REF]. It presents that both of the methods could lead to a precise result with coarse mesh. Moreover, the UWVF outperforms the PUM at mid-frequency and PUM outperforms UWVF at low-frequency. As to the conditioning numbers, PUM is always better that the UWVF at mid-frequency. It is proved in [START_REF] Gittelson | Plane wave discontinuous Galerkin methods: analysis of the h-version[END_REF] that the UVWF is a special case of the Discontinuous Galerkin methods using plane waves. In [START_REF] Luostari | Improvements for the ultra weak variational formulation[END_REF], it is proposed to use special solutions in the case of a layered material.

Wave Based Method

The Wave Based Method (WBM) makes use of evanescent wave functions and plane wave functions to approximate the solution [START_REF] Desmet | An indirect Trefftz method for the steady-state dynamic analysis of coupled vibro-acoustic systems[END_REF].

p E = +∞ ∑ m=0 a jm cos mπx L jx e ±i k 2 -( mπ L jx ) 2 y + +∞ ∑ n=0 a jn cos nπy L jy e ±i k 2 -( nπ L jy ) 2 x (1.27)
where L ix and L iy represents the dimensions of the smallest encompassing rectangle of subdomain Ω j . In order to implement this approach, series in (1.27) must be truncated.

The criteria to choose the number of shape functions is

n ix L ix ≈ n iy L iy ≈ T k π (1.28)
where T is a truncation parameter to be chosen. It is proposed in [Desmet, 1998] to take T = 2, which makes sure that the wave length λ min of the shape function is smaller than the half of the characteristic wave length of problem. The boundary conditions and the continuity conditions between subdomains is satisfied by a residues weighted variational technique. Moreover, since the test functions in the formulation are taken from the dual space of the working space, this method could not be categorized into the Galerkin method. The final unknown vector to be solved by the matrix system is the complex amplitude of waves. The study of the normal impedance on the interface is addressed in [START_REF] Pluymers | Trefftz-based methods for time-harmonic acoustics[END_REF] to improve the stability of this method. Introducing the damping in the model could achieve this objective. For the WBM method, p-convergence performs a much more efficient way than the h-convergence. Similar to other Trefftz methods, the matrix of the WBM suffers from the ill-condition. In [START_REF] Desmet | An indirect Trefftz method for the steady-state dynamic analysis of coupled vibro-acoustic systems[END_REF], Van Hal et al., 2005] the WBM is applied to 2D and 3D acoustics. Its application to plate assemblies in [START_REF] Vanmaele | An efficient wave based prediction technique for plate bending vibrations[END_REF], to the unbounded problem in [Van Genechten et al., 2010].

Wave Boundary Element Method

The Wave Boundary Element Method (WBEM) is an extension of the standard BEM presented in Section 1.1.3. It is proposed in [START_REF] Perrey-Debain | Plane wave interpolation in direct collocation boundary element method for radiation and wave scattering: numerical aspects and applications[END_REF][START_REF] Perrey-Debain | Wave boundary elements: a theoretical overview presenting applications in scattering of short waves[END_REF] that the WBEM enriches the the base of the standard BEM by multiplying the propagative plane waves with the polynomial functions on the boundary. The number of the wave directions is free to choose. Generally a uniform distribution of wave directions is used. In [START_REF] Perrey-Debain | Wave boundary elements: a theoretical overview presenting applications in scattering of short waves[END_REF] it also proposes the idea that if the propagations of waves of problem are known a priori, one could use a non-uniform distribution of wave directions. Again this method could not escape from the ill-conditioning of the matrix due to the plane wave functions. Of course, compared to the standard BEM, the gain of this method largely reduces the cost. The mesh used in WBEM is much coarser than the standard BEM.

Discontinuous Enrichment Method

The Discontinuous Enrichment Method (DEM) was first introduced in [START_REF] Farhat | The discontinuous enrichment method[END_REF]. This method is similar to the multi-scale FEM. However the enrichment functions of the DEM are not zero-trace on the boundaries. In the DEM, the exact solutions of governing equations are taken as enrich functions for the fine scale solution u e . These functions neither satisfy the continuity condition between elements nor satisfy the boundary conditions. Therefore the Lagrange multipliers are introduced to meet these conditions. In order to have a good stability, the number of the Lagrange multipliers on each boundary is directly related to the number of plane waves used in each element. This inf-sup condition is presented in [Brezzi et Fortin, 1991]. Therefore the elements built by this method is specially noted such as R -4 -1: R denotes rectangle element, 4 the wave numbers in the element and 1 means the number of the Lagrange multiplier on the boundary of element. This method is applied to 2D problem in [START_REF] Farhat | The discontinuous enrichment method for multiscale analysis[END_REF][START_REF] Farhat | A discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of short wave exterior Helmholtz problems on unstructured meshes[END_REF] and to 3D problem in [Tezaur et Farhat, 2006]. It is also proved in [Farhat et al., 2004a] that the coarse solution calculated by the FEM does not contribute to the accuracy of the solution in Helmholtz problem. In this case the polynomial functions could be cut out and correspondingly the method is named the Discontinuous Galerkin method (DGM). As the WBEM, the DEM requires a much coarser mesh. Application of this method to acoustics is presented in [Gabard, 2007], to plate assemblies in [START_REF] Massimi | A discontinuous enrichment method for the efficient solution of plate vibration problems in the mediumfrequency regime[END_REF], Zhang et al., 2006], to high Péclet advection-diffusion problems in [START_REF] Kalashnikova | A discontinuous enrichment method for the finite element solution of high Péclet advection-diffusion problems[END_REF]. Recently, facing to the varying wave number Helmholtz problem, the DEM uses Airy functions as shape functions. In [START_REF] Tezaur | The discontinuous enrichment method for medium-frequency Helmholtz problems with a spatially variable wavenumber[END_REF] these new enrich functions are used to resolve a 2D under water scattering problem.

Conclusion

This chapter mainly presented the principal computational methods in vibrations and in acoustic, which could be classified into low-, mid-and high-frequency problems. Considerable approaches have been specifically developed depending on the frequency of the problem. In the low frequency range, the principal methods are the FEM and the BEM.

Both of these methods require the refinement of mesh. Their difference is that for the BEM only the boundary is required to be discretized and for the FEM however, the mesh covers the whole volume. These two methods are reliable and robust in low-frequency problem. Facing to the mid-frequency problem, the FEM suffers from the numerical dispersion effect. To alleviate this effect, the mesh of the FEM needs to be greatly refined.

Consequently, the FEM becomes extremely expensive. Even though the BEM has a much smaller numerical model to manipulate, its numerical integrations are expensive. In addition, since the BEM interpolates the polynomial functions on the boundary, consequently a refined mesh is also necessary. Both the FEM and the BEM are no longer fit to solve mid-frequency problem.

Being contrary to the low-frequency problems, the high-frequency problems could not be analysed by the local response of modes. Instead, the energetic approaches are more practical and efficient. However these methods neglect the local response. In addition, sometimes the parameters in the methods needs to be determined by experience or by very intensive calculation.

Lastly, it mainly resorts to the waves based method to solve the mid-frequency problems. These methods commonly adopt the exact solutions of the governing equation as shape functions or enrichment functions. The fundamental difference is the way they deal with the boundary conditions and continuity conditions between the subdomains.

The VTCR is categorized into these waves based method. Especially, the VTCR possesses an original variational formulation which naturally incorporates all conditions on the boundary and on the interface between subdomains. Moreover there is a priori independence of the approximations among each subdomains. This feature enables one freely to choose the approximations which locally satisfy the governing equation in each subdomain. In the Helmholtz problem of constant wave number, the plane wave functions are taken as shape functions.

However, most of the existent mid-frequency methods are confined to solve the Helmholtz problem of piecewise constant wave number. In the extended VTCR, Airy wave functions are used as shape functions. The extended VTCR could well solve the Helmholtz problem when the square of wave number varies linearly. Then the WTDG method is applied to solve the heterogeneous Helmholtz problem in more generous cases. In this dissertation, two WTDG approaches are proposed, namely the Zero Order and the First Order WTDG .

Moreover, the survey mentioned above shows that there lacks a efficient method to solve the problem with bandwidth ranging from the low-frequency to the mid-frequency.

Even there it is one such as DEM, supplementary multipliers are necessarily needed, which complicates the numerical model. The FEM/WAVE WTDG method could achieve this goal by making a hybrid use of polynomial approximations and plane wave approximations.

Chapter 2

The Variational Theory of Complex Rays in Helmholtz problem of constant wave number

The objective of this chapter is to illustrate the basic features of the standard Variational Theory of Complex Rays. The problem background lies in acoustics. A rewriting of the reference problem into variational formulation is introduced.

The equivalence of formulation, the existence and the uniqueness of the solution are demonstrated. This specific variational formulation naturally comprises all the boundary conditions and the continuity conditions on the interface between subdomains. Since the shape functions are required to satisfy the governing equation, the variational formulation has no need to incorporate the governing equation. These shape functions contain two scales. The slow scale is chosen to be discretized and calculated numerically. It corresponds to the amplitude of vibration. Meanwhile the fast scale represents the oscillatory effect and is treated analytically. Furthermore, three kinds of classical VTCR approximations are discussed. They are correspondingly the sector approximation, the ray approximation and the Fourier approximation. The numerical implementation of the VTCR is introduced, including ray distribution and iterative solvers.

Then an error estimator and convergence properties of the VTCR is presented. At last, an adaptive version of the VTCR is introduced. 

Ω u d pressure prescribed over ∂ 1 Ω Ω E subdomain of Ω Γ EE ′ interface between subdomains Ω E and Ω E ′ {u} EE ′ (u E + u E ′ ) |Γ EE ′ [u] EE ′ (u E -u E ′ ) |Γ EE ′ q u (1 -iη)gradu ζ (1 -iη) -1/2
2.1 Reference problem and notations To illustrate the methods in this dissertation, a 2-D Helmholtz problem is taken as reference problem (see Figure 2.1). Acoustics or underwater wave propagation problem could be all abstracted into this model. Let Ω be the computational domain and ∂Ω = ∂ 1 Ω ∪ ∂ 2 Ω be the boundary. Without losing generality, Dirichlet and Neumann conditions are prescribed on ∂ 1 Ω, ∂ 2 Ω in this dissertation. Treatment of other different boundary conditions can be seen in [Ladevèze et Riou, 2014]. The following problem is considered:

Ω Ω E Γ EE ′ r d Ω u d ∂ 1 Ω ∂ 2 Ω g d Ω E ′
find u ∈ H 1 (Ω) such that (1 -iη)∆u + k 2 u + r d = 0 over Ω u = u d over ∂ 1 Ω (1 -iη)∂ n u = g d over ∂ 2 Ω (2.1)
where ∂ n u = gradu • n and n is the outward normal. u is the physical variable studied such as the pressure in acoustics. η is the damping coefficient, which is positive or equals to zero. The real number k is the wave number and i is the imaginary unit. u d and g d are the prescribed Dirichlet and Neumann data.

Rewrite of the reference problem

The reference problem (2.1) can be reformulated by the weak formulation. Both the reformulation and demonstration of equivalence are introduced in [Ladevèze et Riou, 2014].

Variational formulation

As Figure 2.1 shows, let Ω be partitioned into N non overlapping subdomains

Ω = ∪ N E=1 Ω E . Denoting ∂Ω E the boundary of Ω E , we define Γ EE = ∂Ω E ∩ ∂Ω and Γ EE ′ = ∂Ω E ∩ Ω E ′ .
The VTCR approach consists in searching solution u in functional space U such that

U = {u | u |Ω E ∈ U E } U E = {u E | u E ∈ V E ⊂ H 1 (Ω E )|(1 -iη)∆u E + k 2 u E + r d = 0} (2.2)
The variational formulation of (2.1) can be written as: find u ∈ U such that

Re   ik   ∑ E,E ′ ∈E Γ EE ′ 1 2 {q u • n} EE ′ { ṽ} EE ′ - 1 2 [ qv • n] EE ′ [u] EE ′ dS -∑ E∈E Γ EE ∩∂ 1 Ω qv • n (u -u d ) dS + ∑ E∈E Γ EE ∩∂ 2 Ω (q u • n -g d ) ṽdS = 0 ∀v ∈ U 0 (2.3)
where ˜ represents the conjugation of . The U E,0 and U 0 denote the vector space associated with U E and U when r d = 0.

Properties of the variational formulation

First, let us note that Formulation (2.3) can be written:

find u ∈ U such that b(u,v) = l(v) ∀v ∈ U 0 (2.4)
Let us introduce

u 2 U = ∑ E∈E Ω E gradu.grad ũdΩ (2.5) Property 1. u U is a norm over U 0 .
Proof. The only condition which is not straightforward is

u U = 0 for u ∈ U 0 ⇒ u = 0 over Ω. Assuming that u ∈ U 0 such that u U = 0, it follows that q u = 0 over Ω. Hence, from divq u + k 2 u = 0 over Ω E with E ∈ E where E = {1,2, • • • , N}, we have u = 0 over Ω E and, consequently, over Ω. Property 2. For u ∈ U 0 , b(u,u) kη u 2 U , which means that if η is positive the formulation is coercive. Proof. For u ∈ U 0 , we have b(u,u) = Re ik ∑ E∈E ∂Ω E q u .n ũdS (2.6) Consequently, b(u,u) = Re ik ∑ E∈E Ω E -k 2 u ũ + (1 -iη)gradu.grad ũ dΩ (2.7) Finally, b(u,u) = kη ∑ E∈E Ω E gradu.grad ũdΩ (2.8) Then, b(u,u) kη u 2 U .
Property 1 implies that if η is positive the solution of (2.3) is unique. Since the exact solution of Problem (2.1) verifies (2.3), Formulation (2.3) is equivalent to the reference problem (2.1). Besides, it can be observed that for a perturbation ∆l ∈ U ′ 0 of the excitation the perturbation ∆w of the solution verifies

∆w U 1 kη |∆l| U ′ 0 (2.9)
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Approximation and discretization of the problem

To solve the variational problem (2.3), it is necessary to build the approximations u h E and the test functions v h E for each subdomain Ω E . Such u h E and v h E belongs to the subdomain

U h E ⊂ U E .
The projection of solutions into the finite dimensional subdomain U h E makes the implementation of the VTCR method be feasible.

Re

  ik   ∑ E,E ′ ∈E Γ EE ′ 1 2 {q u h • n} EE ′ ṽh EE ′ - 1 2 [ q v h • n] EE ′ u h EE ′ dS -∑ E∈E Γ EE ∩∂ 1 Ω q v h • n u h -u d dS + ∑ E∈E Γ EE ∩∂ 2 Ω (q u h • n -g d ) ṽh dS = 0 ∀v h ∈ U h 0
(2.10) The solution could be locally expressed as the superposition of finite number of local modes namely complex rays. These rays are represented by the complex function:

u E (x) = u (E) n (x, k)e ik•x
(2.11)

where u

(E)
n is a polynomial of degree n of the spatial variable x. The complex ray with the polynomial of order n is called ray of order n. k is a wave vector. The functions belonging to U h 0 satisfy the Helmholtz equation ( 2 The evanescent rays only exist on the boundary and do not appear in the pure acoustic problem. However it is necessary to introduce these rays in some problems. For example in the vibro-acoustic where the nature of waves in the structure and that in the fluid are quite different, there exist the evanescent rays. The wave vector of these rays is in the form of k = ζk[±cosh(θ), -isinh(θ)] T with θ ∈ [0, 2π[. In this dissertation, these evanescent rays will not be used in the problem.

For the ray of order 0, the polynomial u

(E)
n becomes a constant, and at the same time the solution of the Helmholtz problem could be written in the form

u E (x) = C E A E (k)e ik•x dC E (2.12)
where A E is the distribution of the amplitudes of the complex rays and C E is the curve described by the wave vector when it propagates to all the directions of the plane. In the linear acoustic C E is a circle. The expression (2.12) describes two scales. One is the slow scale, which is the distribution of amplitudes A E (k). It slowly varies with the wave vector k. The other one is the fast scale, which corresponds to e ik•x . It depicts the vibrational effect. This scale fast varies with wave vector k and the spatial variable x.

Sectors approximation: To achieve the approximation in finite dimension, in the VTCR, the fast scale is taken into account analytically and the slow scale is discretized into finite dimension. That is to say the unknown distribution of amplitudes A E needs to be discretized. Without a priori knowing of the propagation direction of the solution, the VTCR proposes an integral representation of waves in all directions. In this way A E is considered as piecewise constant and the approximation could be expressed as

u E (x) = C E A E (k)e ik•x dC E = J ∑ j=1 A jE C jE e ik•x dC jE (2.13)
where C jE is the angular discretization of the circle C E and A jE is the piecewise constant approximation of A E (k) on the angular section C jE . The shape functions of (2.13) are called sectors of vibration and they could be rewritten on function of the variable θ

ϕ jE (x) = θ j+ 1 2 θ j-1 2 e ik(θ)•x dθ (2.14)
Therefore, the working space of shape functions could be generated as

U h E = Vect ϕ jE (x), j = 1, 2, • • • , J (2.15)
Rays approximation: Denoting ∆θ as the angular support, it should be noticed that when ∆θ → 0 the sectors become rays. In this case, the expression of approximation becomes:

u E (x) = J ∑ j=1 A jE e ik•x
(2.16)

ϕ jE (x) = e ik(θ j )•x (2.17)
where A jE becomes the amplitude associated with the complex ray which propagates in direction θ j .

Fourier approximation: Both the sectors and the rays are engaged to discretize the slow scale of (2.12), whose fast scale is treated analytically. In previous work of ( [START_REF] Kovalevsky | The Fourier version of the Variational Theory of Complex Rays for medium-frequency acoustics[END_REF]) it proposes an new idea to discretize the slow scale. The corresponding method is to take advantage of the Fourier series to achieve this discretization.

On the 2D dimension, this approximation could be written into

u E (x) = 2π 0 A E (k)e ik•x dθ = J ∑ j=-J A jE 2π 0 e i jθ e ik•x dθ (2.18)
The shape functions of this discretization is in the form of

ϕ jE (x) = 2π 0 e i jθ e ik(θ)•x dθ (2.19)
It is proved that the Fourier approximation outperforms the sectors approximation and the rays approximation. Compared to the other two approximations, this approximation alleviates ill conditioning of matrix.

In this dissertation, for the simplicity of implementation, among the three types of VTCR approximations presented above, discrete complex rays are chosen to be used. By this way, the approximation could be expressed as

u E (x) = A T E • ϕ E (x) (2.20)
where

ϕ E = [ϕ 1E , ϕ 2E , • • • , ϕ JE ]
is the vector of the shape functions ϕ jE of (2.17) and A T E is the vector of the associated amplitudes A jE . By this way, the formulation (2.3) could be written into a matrix problem

KA = F (2.21)
K corresponds to the discretization of the bilinear form of weak formulation. Inside K there are N 2 partitioning of blocks K EE ′ , whose dimension are J ×J. When Γ EE ′ = / 0, the blocks corresponding to K EE ′ are non zero fully populated. Otherwise K EE ′ are zero blocks. The vector

A = [A 1 , • • • , A E , • • •A N ]
corresponds to the total amplitudes , which is the degree of freedom in the VTCR. F is the linear form of weak formulation and corresponds to the loading.

Ray distribution and matrix recycling

For rays approximation, one has to discretize the propagative wave direction in [0, 2π[. In works [Ladevèze et Riou, 2005, Riou et al., 2004, Riou et al., 2008, Kovalevsky et al., 2014], a symmetric ray distribution was adopted. The idea is to evenly distribute the wave directions over the unit circle. There are two advantages of the symmetric ray distribution. First, it is easy to calculate the wave direction. Second, the distribution always keeps symmetric. However, this distribution requires a complete matrix recomputation as the number of rays changes. In the VTCR, matrix construction is a relevant (predominant in some cases) operation in terms of computational costs. Therefore the symmetric ray distribution is not ideal to save computational costs. In work [Cattabiani, 2016], a quasisymmetric ray distribution method is proposed. In this algorithm previous rays are fixed as new ones are added. The first ray can be placed in any direction. After that, new rays are inserted in gaps among previous rays in the most possible symmetric way. The distribution enables one to recycle matrices. But the drawback is that, for a given ray number, its distribution could be asymmetric. Compared to the symmetric distribution, the asymmetric distribution has a less efficient convergence rate. This phenomenon only exists when insufficient number of rays are used. When the ray number increases, their difference will decrease. In practice, when convergence is reached, the difference between these two distributions is already negligible. To save computational cost, the asymmetric ray distribution is used in this dissertation.

Iterative solver

The VTCR suffers from ill-conditioning. Typically, the VTCR suddenly converges when ill-conditioning appears. However, there is not a deterioration of the error. To offer a numerical example, as Figure 2.3 shows, a domain Ω with square geometry [0 m,1 m]× [0 m,1 m] and η = 1 -0.01i is considered. The wave number is k = 40m -1 over the domain. The boundary conditions are

u d = 4 ∑ n=1 A i e ikζcosθ i x+ikζsinθ i y with A 1 = 1, A 2 = 1.5, A 3 = 2, A 4 = 4, θ 1 = 6 • , θ 2 = 33 • , θ 3 = 102 • , θ 4 = 219 • .
In order to figuratively illustrate the fact that the VTCR suffers from ill-conditioning, only one subdomain is used in the calculation and the number of rays is gradually increased to make the result converge. The relative error and the condition number along with the increasing of number of rays could be seen in Figure 2.4. Since the exact solution is known over the domain, the real error is defined as following:

ε ex = u h -u re f L 2 (Ω) u re f L 2 (Ω) (2.22)
Result shows that when the VTCR converges, the condition number drastically increases.

In this situation, it means that the matrix is quasi-singular. In order to have a precise resolution, the proper iterative solver is required. Four iterative solvers considered are:

Ω u d = u ex u d = u ex u d = u ex u d = u ex
• backslash. It is the standard direct MATLAB solver. It is considered for reference.

• pinv. This algorithm returns the Moore-Penrose pseudoinverse of matrix. It is suggested for ill-conditioning since it normalizes to one the smallest singular values.

The result is a relatively well-conditioned pseudoinverse [Courrieu, 2008].

• gmres. It uses the Arnoldi's method to compute an orthonormal basis of the Krylov subspace. The method restarts if stagnation occurs [Saad et Schultz, 1986].

• lsqr. It is based on the Lanczos tridiagonalization [START_REF] Paige | [END_REF].

The numerical example defined in Figure 2.3 is reused here to compare the four solvers. Since the real error could be calculated, the performance of the four solvers are shown in Figure 2.5. It shows that the pinv possesses the best accuracy. The lsqr and the gmres perform similarly but with less accuracy. The backslash explodes immediately when the condition number gets worse. Therefore pinv is chosen to be the iterative solver in this dissertation.

Convergence of the VTCR

Convergence criteria

In [START_REF] Kovalevsky | On the use of the Variational Theory of Complex Rays for the analysis of 2-D exterior Helmholtz problem in an unbounded domain[END_REF], it is proposed that the geometrical heuristic criterion of convergence for the VTCR with plane waves in 2D follows the relation that where N e is the number of directions of waves, τ a parameter to be chosen, k the wave number and R e is the characteristic radius of domain. In the VTCR, one generally chooses τ = 2.

Error indicator

In general, the exact solution is unknown. Therefore one needs to define an error estimator. It is not easy because there may be some subdomains Ω E which do not touch the boundary ∂Ω. The only way to evaluate the accuracy of the approximated solution in such a subdomain is to verify the continuity in terms of displacement and velocity with all the other subdomains in the vicinity of Ω E . But this verification is difficult because the solutions in the surrounding subcavities are only approximated solutions.

In work [START_REF] Ladevèze | The Variational Theory of Complex Rays. MID-FREQUENCY-CAE Methodologies for Mid-Frequency Analysis in Vibration and Acoustics[END_REF], a local error estimator is defined as:

ε h E = E d,Ω E (u h E -u pv E )/mes(Ω E ) ∑ E E d,Ω E (u pv E )/mes(Ω) (2.24)
where E d,Ω E (u) is the dissipated energy, mes(Ω) and mes(Ω E ) denote respectively the measures of Ω and Ω E , and u pv E corresponds to the solution of the problem in Ω E when the pressure and normal gradient of pressure are prescribed at the boundaries of Ω E in such way that they correspond to the pressure and normal gradient of pressure in all the Ω E ′ adjacent to Ω E . Particularly, when the boundary of Ω E coincides with the boundary of the domain, the prescribed quantities are introduced. It should be noticed that this error measures the relative difference between u h E and u pv E in terms of dissipated energy. The dissipated energy is interesting in the medium-frequency range because at these frequencies it is a relevant quantity. In the similar way, one could define a global error indicator as:

ε = max E {ε h E } (2.25)
In [START_REF] Ladevèze | The Variational Theory of Complex Rays. MID-FREQUENCY-CAE Methodologies for Mid-Frequency Analysis in Vibration and Acoustics[END_REF] a comparison among the true local error, the H 1 relative error and the local error estimator (2.24) was made. The work proves that error estimator (2.24) comes very close to the classical H 1 error, and is a relevant error measure for assessing the quality of the calculated solution.

h-and p-convergence of VTCR

This subsection paves quick scope to the convergence properties of the standard VTCR.

There exists two methods leading the VTCR to the convergent result. The first one is

u d = 1 u d = 1 u d = 1 u d = 1 Ω Figure 2
.6: The definition of numerical example in Section 2.4.3. named h-method, which is to fix the number of rays and to decrease the size of the subdomains. The second one is named p-method, which is to fix the size of sub-domains and to increase the number of rays. Here, a simple numerical example will show the performance of the VTCR. A domain Ω with square geometry [0 m,1 m]×[0 m,1 m] and η = 1 -0.01i is considered as Figure 2.6 shows. The wave number is k = 40m -1 over the domain. The boundaries conditions imposed are u d = 1 along all the boundaries. In order to capture the error, one uses the error indicator defined in Section 2.4.2.

The conclusion drawn from the result is that in the VTCR the p-convergent method is far more efficient than the h-convergent method. To obtain the same level precision, the p-convergent method only uses much fewer degrees of freedom. This numerical test is consistent with the results proved in [Melenk, 1995] that the p-convergence is exponential while the h-convergence is much slower. By taking advantage of this feature, the VTCR could lead to a precise solution with a relatively small numerical model.

Adaptive VTCR

An adaptive version of the VTCR is presented in [START_REF] Ladevèze | The Variational Theory of Complex Rays. MID-FREQUENCY-CAE Methodologies for Mid-Frequency Analysis in Vibration and Acoustics[END_REF]. For the VTCR, it needs a proper angular discretization in each subdomain. If the amplitudes of waves are sparsely distributed, a coarse angular discretization is enough for the VTCR. Otherwise when the amplitudes of waves are densely distributed, a refined angular discretization is required. Beginning with a coarse angular discretization, the adaptive version VTCR will adopt a refined angular discretization when it is needed. Thus, the process is completely analogous to that used in the adaptive FEM [Stewart et Hughes, 1997b] and consists of three steps:

• In the first step, a global analysis of the problem is carried out using a uniform, low-density angular wave distribution based angular grid ν M .

• The objective of the second step is to calculate the proper angular discretization.

The quality of the approximation from the first step is quantified using an error indicator I Ω E which indicates whether a new angular discretization is locally nec- essary. If it is, a refined angular grid ν m locally replaces the coarse angular grid ν M .

• The third step is a new full calculation using angular grid ν m .

If the last calculation is not sufficiently accurate, the procedure can be repeated until the desired level of accuracy is attained.

In the second step, the error estimator defined in (2.24) serves as the error indicator

I Ω E . It can be useful to set two limit levels m 0 and m 1 : if I Ω E < m 0 , the quality of the solution is considered to be sufficient and no angular rediscretization of subdomain Ω E is necessary. If m 0 < I Ω E m 1 , the error is moderate, but too high and a new refined angular discretization is necessary. If m 1 < I Ω E , the solution is seriously flawed and the boundary conditions of Ω E must be recalculated more accurately, which requires a new first step. In practice, one often chooses m 0 = 10% and m 1 = 40%. As explained before, a large I Ω E indicates a poor solution in Ω E due to too coarse an angular discretization of the wave amplitudes. A new and better angular discretization is required. Then, the number of rays used for the coarse and refined discretizations are defined as:

N M e = τ M kR e /(2π) N m e = τ m kR e /(2π) τ M = τ m + ∆τ (2.26)
where τ M , τ m and ∆τ are positive real numbers. ∆τ is a parameter for angular discretization refinement. In practice, one chooses τ M = 0.2 and ∆τ = 0.2.The angles of rays added for the refinement are determined by the quasi-symmetric ray distribution presented in Section 2.2.4.

Conclusion

This chapter has presented the standard VTCR applied in the Helmholtz problem of constant wave number. The VTCR uses the general solutions of the governing equation as shape functions. The solution of problem is approximated by a combination of these shape functions. Generally, the general solutions are plane wave functions, evanescent wave functions. The approximations in different subdomains are a priori independent. Since the governing equation is satisfied, only the boundary conditions and the continuity conditions on the interfaces should be taken into account. The VTCR naturally introduces these conditions in a variational formulation. The unknowns are the amplitudes associated with waves in all subdomains. To achieve the numerical implementation in finite dimension, an angular discretization should be done. An asymmetric ray distribution is used for recycling the matrix. In the VTCR, the condition number increases when result begins to converge. Even though this phenomenon will not deteriorate the error, a proper iterative solver should be chosen for solution. By comparison, an iterative solver namely pinv is chosen for the VTCR. Since the VTCR uses the wave functions to approximate solutions, it requires only a very small number of degrees of freedom to obtain a precise result. Therefore the VTCR outperforms the FEM when h-convergence is used. Furthermore it shows that the p-convergence is much more efficient than the h-convergence. Finally, a geometrical heuristic criterion of convergence, an error estimator of VTCR and an adaptive version VTCR are presented.

Chapter 3

The Extended VTCR for Helmholtz problem of slowly varying wave number This chapter is dedicated to extend the VTCR in Helmholtz problem of a slowly varying wave number. Based on the governing equation, the exact solutions, named Airy wave functions, are developed thoroughly. Construction of the finite dimensional approximation comes into discretizing the unknown distribution of the amplitudes of Airy wave functions. Then, in the first numerical example, its convergence properties will be studied. It will show that the convergence properties of this extended VTCR quite resemble the standard VTCR. It could well solve the mid-frequency problem with a small amount of degrees of freedom. Of course as a heritage of standard VTCR, the performances of p-convergence are also remarkable in the extended VTCR.

The second numerical study concerns a complicated semi-unbounded harbor agitation problem, on which the extended VTCR is applied to get the solution. The result further proves the advantages and efficiency of the extended VTCR method. In this chapter the wave number k in (2.1) is no longer a constant. Instead it is supposed to be in the form that k 2 = αx + βy + γ, where α, β, γ are constant parameters.

For simplicity, in this section we denote that

k 2 † = k 2 /(1 -iη) = α † x + β † y + γ † , where α † = α/(1 -iη), β † = β/(1 -iη), γ † = γ/(1 -iη) respectively. Presented in Chapter 2,
for the VTCR method, the exact solutions need to be known a priori to serve as shape functions. Therefore exact solutions of heterogeneous Helmholtz equation in (2.1) are required to be found. In order to solve the equation, the technique of separation of variable is considered here. On 2D, by introducing u(x) = F(x)G(y) into (2.1), it can be obtained that:

F ′′ F + α † x + γ † = - G ′′ G + β † y ≡ δ (3.1)
where δ is a free constant parameter. The analytic solutions of (3.1) are:

F(x) =            C 1 Ai   -α † x -γ † + δ α 2/3 †   +C 2 Bi   -α † x -γ † + δ α 2/3 †   if |α † | = 0 C 1 cos γ † -δx +C 2 sin γ † -δx if |α † | = 0 (3.2) G(y) =          D 1 Ai   -β † y -δ β 2/3 †   + D 2 Bi   -β † y -δ β 2/3 †   if |β † | = 0 D 1 cos √ δy + D 2 sin √ δy if |β † | = 0 (3.3)
where Ai and Bi are Airy functions [Zaitsev et Polyanin, 2002]. C 1 , C 2 , D 1 , D 2 are constant coefficients. When a variable named z → +∞, function Ai(z) tends towards 0 and function Bi(z) tends towards infinity (see Figure 3.1). Moreover when -z → -∞, the asymptotic expression of function Ai and Bi are:

           Bi(-z) ∼ cos( 2 3 z 3 2 + π 4 ) √ πz 1 4 |arg(z)| < 2π/3 Ai(-z) ∼ sin( 2 3 z 3 2 + π 4 ) √ πz 1 4 |arg(z)| < 2π/3 (3.4)
Since when z → +∞, Bi(z) goes to infinity and it has no physical meaning. To avoid of using Airy functions in this interval, the idea is to create functions in combination of Airy where k 2 m represents the minimum value of k 2 on Ω and (x m , y m ) is the coordinate which enables k 2 to take its minimum value k 2 m over the domain. Denoting P = [P 1 ,P 2 ] = [cos(θ), sin(θ)], where θ represents an angle parameter ranging from 0 to 2π, k 2 can be expressed in form that:

k 2 = k 2 m + α(x -x m ) + β(y -y m ) = k 2 m P 2 1 + k 2 m P 2 2 + α(x -x m ) + β(y -y m ) (3.6)
As the similar procedure to get (3.2) and (3.3), functions F and G can be composed by:

F( x) = Bi(-x) + i * Ai(-x) (3.7) G( ỹ) = Bi(-ỹ) + i * Ai(-ỹ) (3.8)
where x and ỹ are defined as follows:

x = k 2 m * P 2 1 + α(x -x m ) α 2/3 (1 -iη) 1/3 = k 2 1 α 2/3 (1 -iη) 1/3 (3.9) ỹ = k 2 m * P 2 2 + β(y -y m ) β 2/3 (1 -iη) 1/3 = k 2 2 β 2/3 (1 -iη) 1/3 (3.10)
By such a way, -x andỹ always locate in [-∞,0] on the domain Ω. The new wave function ψ(x,P) is built as:

ψ(x,P) = F( x) * G( ỹ) (3.11)
Asymptotically, when α tends to 0

F( x) → cos(ζk 1 • x) + i * sin(ζk 1 • x) (3.12)
Asymptotically, when β tends to 0

G( ỹ) → cos(ζk 2 • y) + i * sin(ζk 2 • y) (3.13)
It can be observed that ψ(x,P) function is the general solution of Helmholtz equation in (2.1). Especially when α = 0 and β = 0, ψ(x,P) function becomes plane wave function.

The angle parameter θ in P describes the propagation direction of plane wave. Analogous to plane wave case, when α = 0 and β = 0, ψ function still represents a wave propagates on the 2D plane. P decides its propagation direction. In order to be distinct from plane wave, this wave is named Airy wave. An example of Airy wave and plane wave can be seen in Figure 3.2.

Variational Formulation

To solve this heterogeneous Helmholtz problem, again, the VTCR approach consists in searching solution u in functional space U such that

U = {u | u |Ω E ∈ U E } U E = {u E | u E ∈ V E ⊂ H 1 (Ω E )|(1 -iη)∆u E + k 2 u E + r d = 0} (3.14)
The variational formulation of (2.1) can be written as: find u ∈ U such that

Re   ik   ∑ E,E ′ ∈E Γ EE ′ 1 2 {q u • n} EE ′ { ṽ} EE ′ - 1 2 [ qv • n] EE ′ [u] EE ′ dS -∑ E∈E Γ EE ∩∂ 1 Ω qv • n (u -u d ) dS + ∑ E∈E Γ EE ∩∂ 2 Ω (q u • n -g d ) ṽdS = 0 ∀v ∈ U 0 (3.15)
The U E,0 and U 0 are the vector space associated with U E and U when r d = 0. It could be noticed that the variational formulation (3.15) is exactly the same as (2.3). Therefore, to prove the equivalence of this weak formulation with the reference problem, one could refer to the demonstration in Section 2.2.2. The only difference between (3.15) and (2.3) is the definition of their working space. In (2.3), the working space is composed by the plane wave functions. In (3.15), instead, the working space is composed by the Airy wave functions. 

Approximations and discretization of the problem

The ψ(x,P) function defined in (3.11) only represents the fast oscillatory scale of the wave propagating in heterogeneous field. Meanwhile the amplitude associated with the Airy wave function corresponds to the slow scale. Similarly, here only the slow scale is discretized and the fast scale is obtained analytically. The amplitude, which is a function that depends on the propagation direction θ, could be discretized by the similar way as the disretization of plane wave functions in Chapter 2. The general solution of heterogeneous Helmholtz equation could be locally written as

u E (x) = C E A E (k,P)ψ(x,P)dC E (3.16)
where A E is the distribution of the amplitudes of the complex rays and C E curve is described by the wave vector when it propagates to all the directions of the plane. In the linear acoustic C E is a circle. The expression (3.16) describes two scales.

In order to further discretize the general solution to achieve the finite dimensional implementation, instead of the circular integration, the general solution could be approximately composed by complex rays of several directions. With the rays approximation, (3.16) could be rewritten into

u E (x) = J ∑ j=1 A jE ψ(x,P j )
(3.17)

ϕ jE (x) = ψ(x,P j ) (3.18)
where A jE becomes the amplitude of the Airy wave which propagates in direction θ associated with P j .

Here, it is no need to repeat the procedure to generate the matrix system. It is exactly the same with the procedure presented in Chapter 2. One could refer to it for all the details and the properties.

Numerical implementation

Numerical integration

Since Airy wave function behaves in a quick oscillatory way, the general Gauss quadrature is no longer fit for the numerical integration. Due to the complexity of the Airy wave function, analytic solution of integration is difficult to be explicitly expressed. One must resort to other powerful numerical integration techniques. The integration methods considered are:

• trapz. It performs numerical integration via the trapezoidal method. This method approximates the integration over an interval by breaking the area down into trapezoids with more easily computable areas. For an integration with N+1 evenly spaced points, the approximation is:

b a f (x)dx ≈ b -a 2N N ∑ n=1 ( f (x n ) + f (x n+1 )) = b -a 2N [ f (x 1 ) + 2 f (x 2 ) + • • • + 2 f (x N ) + f (x N+1 )] (3.19)
where the spacing between each point is equal to the scalar value ba N . If the spacing between the points is not constant, then the formula generalizes to

b a f (x)dx ≈ 1 2 N ∑ n=1 (x n+1 -x n ) [ f (x n ) + f (x n+1 )] (3.20)
where (x n+1x n ) is the spacing between each consecutive pair of points.

• quad. It adopts the adaptive Simpson quadrature rule for the numerical integration. One derivation replaces the integrand f (x) by the quadratic polynomial P(x) which takes the same values as f (x) at the end points a and b and the midpoint m = (a + b) 2 . One can use Lagrange polynomial interpolation to find an expression for this polynomial.

P(x) = f (a) (x -m)(x -b) (a -m)(a -b) + f (m) (x -a)(x -b) (m -a)(m -b) + f (b) (x -a)(x -m) (b -a)(b -m) (3.21)
An easy integration by substitution shows that

b a P(x) = b -a 6 f (a) + 4 f ( a + b 2 ) + f (b) (3.22)
Consequently, the numerical integration could be expressed as:

b a f (x)dx ≈ b -a 6 f (a) + 4 f ( a + b 2 ) + f (b) (3.23)
The quad function may be most efficient for low accuracies with nonsmooth integrands.

• quadl. It adopts the Gauss-Lobatto rules. It is similar to Gaussian quadrature with mainly differences. First, the integration points include the end points of the integration interval. Second, it is accurate for polynomials up to degree 2n -3,

where n is the number of integration points. Lobatto quadrature of function f (x) on interval [-1, 1]:

1 -1 f (x)dx ≈ 2 n(n -1) [ f (1) + f (-1)] + n-1 ∑ i=2 w i f (x i ) (3.24)
where the abscissas x i is the (i -1)st zero of P ′ n-1 (x) and the weights w i could be expressed as:

w i = 2 n(n -1)[P n-1 (x i ) 2 ] , x i = ±1 (3.25)
The quadl function might be more efficient than quad at higher accuracies with smooth integrands.

• quadgk. Gauss-Kronrod quadrature is a variant of Gaussian quadrature, in which the evaluation points are chosen so that an accurate approximation can be computed by reusing the information produced by the computation of a less accurate approximation. Such integrals can be approximated, for example, by n-point Gaussian quadrature:

b a f (x)dx ≈ n ∑ i=1 w i f (x i ) (3.26)
where w i and x i are the weights and points at which to evaluate the function f (x).

If the interval [a, b] is subdivided, the Gauss evaluation points of the new subintervals never coincide with the previous evaluation points (except at the midpoint for odd numbers of evaluation points), and thus the integrand must be evaluated at every point. Gauss-Kronrod formulas are extensions of the Gauss quadrature formulas generated by adding n + 1 points to an n-point rule in such a way that the resulting rule is of order 2n + 1. These extra points are the zeros of Stieltjes polynomials. This allows for computing higher-order estimates while reusing the function values of a lower-order estimate.

The quadgk function might be most efficient for high accuracy and oscillatory integrands. It supports infinite intervals and can handle moderate singularities at the endpoints. It also supports contour integration along piecewise linear paths.

A quick numerical example is done to test the performance of these four different numerical integrations on a simple square domain of [0 m,1 m]×[0 m, 1 m] and the origin being the left upper vertex( see Figure 3.3). The integrations are defined as

∂L u A • u i with i = 1, 2, • • • , 32
, where u A = ψ(x,P) is an Airy wave with θ = 0 • and its amplitude is 1. u i = ψ(x,P i ) are Airy waves with the angle shown in Table 3.1 and their amplitudes are all chosen to be 1. In this way, one constructs respectively thirty two integrations along the boundary on the bottom, which is denoted by ∂L. The other parameters are η = 0.01, α = 0 m -3 , β = -800 m -3 , γ = 1500 m -2 . This example is typical because to do the numerical implementation by the VTCR (3.14) one will always encounter the integrations resembling the integrations in our test. The symbol integration with MATLAB is used to yield the reference result as Table 3.2 shows. The symbol integration in MATLAB is the most accurate method but with extreme low efficiency. This is the reason why one choose the numerical integrations instead of symbol integrations in MATLAB. The differences of results between the reference results with the four numerical integration methods are made in Table 3.3, Table 3.4, Table 3.5, Table 3.6 correspondingly. It could be seen from Table 3.2 that the reference results are of order 10 0 . The differences between the reference results with the results calculated by trapz, guad, guadl and guadgk are of order 10 0 , 10 0 , 10 -10 and 10 -14 respectively. By comparison, one could draw the conclusion that quadgk could yield the most accurate results.

The VTCR suffers from ill-conditioning when it converges. In this situation, it is possible that even a disturbance of small value in the system may generate totally different solution. Therefore the accuracy is the crucial point for us to choose the numerical integration method. One could draw the conclusion from the results that the quadgk is most accurate and suitable since in the VTCR there are many quick oscillatory integrands. Table 3.1: The angle θ of Airy wave functions for the numerical test ×10 0 1.0344 + 0.0000i 0.0122 -0.0045i 0.0007 + 0.0000i -0.0013 -0.0078i 0.7028 -0.3261i 0.0067 -0.0039i 0.0001 -0.0077i 0.0852 -0.7668i -0.0177 -0.0862i -0.0008 + 0.0001i 0.0006 + 0.0006i -0.0540 + 0.0663i -0.0396 + 0.0080i -0.0023 -0.0017i 0.0022 + 0.0015i 0.0361 -0.0082i -0.0228 -0.0347i -0.0047 -0.0044i 0.0053 + 0.0012i 0.0311 + 0.0155i 0.0189 -0.0224i 0.0046 -0.0065i 0.0023 -0.0055i 0.0100 -0.0195i 0.0080 + 0.0150i 0.0050 + 0.0048i -0.0047 -0.0004i -0.0106 -0.0044i 0.0000 + 0.0046i -0.0029 + 0.0001i -0.0012 + 0.0014i 0.0020 + 0.0020i Table 3.2: Reference integral values ×10 -14 0.0000 + 0.0000i -0.0029 -0.0048i 0.0052 -0.0147i 0.0032 -0.0019i 0.1776 -0.2776i -0.0108 + 0.0082i -0.0048 + 0.0094i -0.1360 -0.3109i -0.1676 -0.0444i -0.0011 -0.0103i 0.0072 + 0.0074i 0.0604 + 0.1485i 0.0847 + 0.0808i 0.0133 -0.0024i -0.0050 + 0.0019i -0.0749 -0.0753i -0.0385 -0.0097i 0.0109 -0.0096i 0.0092 + 0.0096i 0.0343 -0.0049i -0.0073 -0.0021i -0.0143 -0.0031i -0.0169 -0.0013i -0.0168 + 0.0014i -0.0014 + 0.0024i 0.0044 + 0.0054i -0.0032 -0.0027i 0.0014 + 0.0006i 0.0061 -0.0047i -0.0032 + 0.0031i -0.0054 + 0.0031i 0.0021 -0.0046i Table 3.3: Difference between the quadgk integral values and the reference integral values

Iterative solver

Similar to the VTCR method, the extended VTCR also suffers from ill-conditioning. The research of the iterative solvers for the VTCR have been thoroughly studied in Section 2.3.

Convergence of the Extended VTCR

Convergence criteria

The geometrical heuristic criterion of convergence for the VTCR in the Helmholtz problem of constant wave number is shown in (2.23). Since k is not constant here, its maximum value k max on the domain is used in the heuristic criterion (2.23), which leads to

N e = τk max R e /(2π) (3.27)
where N e is the number of rays, τ a parameter to be chosen and R e is the characteristic radius of domain. τ = 2 is chosen in this dissertation.

×10 -10 0.0001 + 0.0000i 0.0005 + 0.0004i 0.0038 + 0.0000i 0.0003 -0.0003i -0.0715 -0.1134i -0.2077 + 0.1253i -0.0006 + 0.2415i -0.1334 + 0.0024i 0.0016 -0.0030i 0.7817 + 0.0680i -0.4297 -0.6301i -0.0033 + 0.0006i 0.2674 + 0.5459i 0.0976 + 0.0593i -0.0907 -0.0523i -0.2568 -0.4949i 0.0419 -0.0236i -0.0186 -0.0222i 0.0228 + 0.0083i -0.0204 + 0.0347i -0.0047 + 0.0069i 0.0891 -0.1254i 0.0438 -0.1065i -0.0022 + 0.0058i -0.0482 -0.0246i 0.0238 + 0.0190i -0.0204 + 0.0003i 0.0462 + 0.0006i -0.0221 + 0.0470i 0.0097 -0.0089i -0.2798 + 0.5013i -0.0101 + 0.0274i Table 3.4: Difference between the quadl integral values and the reference integral values ×10 0 0.0000 + 0.0000i -0.0006 + 0.0002i -0.0002 -0.0000i 0.0001 + 0.0004i -0.0000 + 0.0000i -0.0014 + 0.0008i -0.0000 + 0.0016i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0002 -0.0000i -0.0001 -0.0001i 0.0000 -0.0000i 0.0001 -0.0000i 0.0004 + 0.0003i -0.0004 -0.0003i -0.0001 + 0.0000i 0.0001 + 0.0001i 0.0007 + 0.0007i -0.0008 -0.0002i -0.0001 -0.0001i -0.0002 + 0.0002i -0.0006 + 0.0008i -0.0003 + 0.0007i -0.0001 + 0.0002i -0.0002 -0.0003i -0.0005 -0.0005i 0.0005 + 0.0000i 0.0002 + 0.0001i -0.0000 -0.0002i 0.0002 -0.0000i 0.0001 -0.0001i -0.0001 -0.0001i

Table 3.5: Difference between the trapz integral values and the reference integral values

Error indicator

The extended VTCR possesses the same feature as VTCR for error estimation. In each subdomain, its shape functions satisfy the governing equation. Meanwhile the boundary conditions are not satisfied automatically. Consequently, for the extended VTCR, the way to evaluate the accuracy of the approximated solution in subdomain is still to verify the continuity in terms of displacement and velocity with all the other subdomains in the vicinity of Ω E . Therefore, the definition of error indicator for the extended VTCR is the same as (2.24).

Numerical examples

Academic study of the extended VTCR on medium frequency heterogeneous Helmholtz problem

A simple geometry of square [0 m; 1 m]×[0 m; 1 m] is considered for domain Ω. In this domain, η = 0.01, α = 150 m -3 , β = 150 m -3 , γ = 1000 m -2 . Boundary conditions ×10 0 0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 -0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 -0.0000i -0.0000 -0.0000i 0.0000 -0.0000i -0.0000 -0.0000i -0.0000 + 0.0000i 0.0000 -0.0000i -0.0000 -0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 -0.0000i -0.0000 -0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 -0.0000i -0.0000 + 0.0000i -0.0000 -0.0000i -0.1461 -0.1707i 0.1487 + 0.0262i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.1906 -0.1578i 0.0126 -0.1533i -0.0000 + 0.0000i 

= 10 • , θ 2 = 55 • , θ 3 = 70 •
correspond to propagation angle in P 1 , P 2 , P 3 respectively. The definition of the problem and the discretization strategy can be seen on Figure 3.4. This choice of geometry and boundary conditions allow one to calculate the real relative error of the extended VTCR method with exact solution. Therefore, the real relative error is defined as following:

ε ex = u -u ex L 2 (Ω) u ex L 2 (Ω) (3.28)
The result could be seen in Figure 3.5. The convergence curves of this extended VTCR method in heterogeneous problem behaves in the similar way as the convergence curves of the VTCR in the Helmholtz problem of constant wave number. Merely a small amount of degrees of freedom is sufficient to attain the convergence of numerical result, which is under a small relative error.

It can be seen that to obtain the result with same precision, refinement of subdomains results in the need of more degrees of freedom. This phenomena could be explained by the convergence properties of the VTCR. As presented in Chapter 2, for the standard VTCR both the p-convergence and the h-convergence will lead to convergent results but p-convergence performs in a far more efficient way. This special feature is inherited from the standard VTCR to this extended VTCR. Correspondingly, in Figure 3.5, the extended VTCR with only one computational domain converges the fastest. The one with nine subdomains is the slowest and the one with four subdomains locates in the middle.

Study of the extended VTCR on semi-unbounded harbor agitation problem

This example corresponds to a study of water agitation of a harbor. The movement of waves is dominated by Helmholtz equation. Incoming wave from far away field gives rise to reflected wave inside the harbor. The water wave length is much smaller than the geometry size of harbor. It is a medium frequency Helmholtz problem since there exists many periods of wave in the harbor.

Ω 1m 1m Ω Ω 1 Ω 2 Ω 3 Ω 4 Ω 1 Ω 2 Ω 3 Ω 4 Ω 5 Ω 6 Ω 7 Ω 8 Ω 9
The work in [START_REF] Modesto | Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation[END_REF] solves the agitation of a real harbor with multi input data in an heterogeneous media and with an unbounded domain. There are mainly three difficulties in this problem. The first one is the pollution errors. The problem requires a large amount of degrees of freedom of FEM since there are large numbers of waves over the computational domain. The second difficulty is to solve the influence of small geometric features to the solution. The proper generalized decomposition (PGD) model reduction approach was used to obtain a separable representation of the solution at any point and for any incoming wave direction and frequency. By this approach, the calculation cost is drastically reduced. The third difficulty is to solve the unbounded problem. Facing to this task, the perfectly matched layers (PMLs) [Berenger, 1994, Modesto et al., 2015] was proposed to satisfy the Sommerfeld radiation condition. A special artificial layer is created around the studied domain to absorb the non-physical waves. The work [START_REF] Giorgiani | High-order continuous and discontinuous Galerkin methods for wave problems[END_REF] compares three Galerkin methods-continuous Galerkin, Compact Discontinuous Galerkin, and hybridizable discontinuous Galerkin in terms of performance and computational efficiency in 2-D scattering problems for low and high-order polynomial approximations. It shows the superior performance of high-order elements. It also presents the similar capabilities for continuous Galerkin and hybridizable discontinuous Galerkin, when high-order elements are adopted, both of them outperforming compact discontinuous Galerkin. Model of problem: Definition of the harbor is shown in Figure 3.6. The agitation of harbor depends on incoming wave. In later part of this section, one can see different numerical results calculated with different parameters including the angle of incoming wave and the frequency of incoming wave. Without losing generality, all boundaries of the harbor are supposed to be totally reflecting boundaries, which is denoted by Γ R :

(1iη)∂ n u = 0 over Γ R (3.29) u + 0 represents incoming wave from far away onto the harbor. It can be expressed as

u + 0 = A + 0 e ik + 0 ζ(cosθ + 0 x+sinθ + 0 y)
, where A + 0 is the amplitude of wave and θ + 0 is the angle of wave propagation direction. The origin of coordinate is O, located in the middle point of the harbor entrance. As Figure 3.7 shows, the sea bottom of the region outside the harbor varies slowly and the depth of water is considered as constant there. The depth of water inside the harbor decreases when it is closer to the land. Consequently, the length of wave varies inside the harbor. An assumption is proposed in this example that the depth of water h complies with the following relation:

h = 1 a + by (3.30)
where a, b are constant parameters. This relation could describe the variation of the water depth with respect to y. The relation between wave frequency ω and water depth h follows the non linear dispersion relation:

ω 2 = kgtanh(kh) (3.31)
where g = 9.81 m/s 2 is the gravitational acceleration and k is the wave number. In the case h ≪ λ, when the depth of water is far more less than the length of wave, there is the following shallow water approximation:

tanh(kh) ≈ kh (3.32)
This approximation is valid in the underwater field near seashore. The numerical result of this section will further validate of this approximation. Thus it can be obtained that:

k 2 = g -1 ω 2 (a + by) (3.33)
Incoming waves cause two kinds of reflection, which include the wave reflected by the boundary inside the harbor and the wave reflected by the boundary locating outside the harbor. Part of these reflected waves propagate from the harbor to far away field. This phenomenon leads to a semi-unbounded problem. In physics these waves need to satisfy Sommerfeld radiation condition. In our 2D model it is represented by:

lim r→+∞ √ r ∂u(r) r -iku(r) = 0 (3.34)
where r is the radial direction in polar coordinate.

Unbounded problem: Many methods have been proposed to solve unbounded problem such as perfectly matched layer (PMLs) [Berenger, 1994, Modesto et al., 2015], Nonreflecting artificial boundary conditions (NRBC) [Givoli, 2004], Bayliss, Gunzburger and Turkel Local non-reflecting boundary conditions (BGT-like ABC) [Bayliss et Turkel, 1980, Antoine et al., 1999] and Dirichlet to Neumann non-local operators [Givoli, 1999].

PMLs creates an artificial boundary and a layer outside the region of interest in order to absorb the outgoing waves. NRBC, ABC and Dirichlet to Neumann non-local operators introduce a far away artificial boundary which leads to minimize spurious reflections. VTCR method can combine these artificial boundary techniques to solve the semi-unbounded harbor problem without difficulty. But here analytic solution is taken into account to solve the problem. This choice allows us to take great advantage of VTCR method. Since analytic solution verifies Helmholtz equation and Sommerfeld radiation condition, it can be used as shape functions in VTCR. Compared with artificial boundary techniques, this approach leads to a simpler strategy of calculation.

The idea of seeking for analytic solution on the unbounded domain outside the harbor can be illustrated by two steps. As Figure 3.8 shows, in the first step a relatively simple problem is considered. Without the region inside the harbor, incoming wave u + 0 agitates on a straight boundary which is infinitely long. The boundary condition here is same as (3.29). The reflected wave is denoted by u a . It is evident that for such a problem, when

u + 0 = A + 0 e ik + 0 ζ(cosθ + 0 x+sinθ + 0 y) , it can be obtained that u a = A + 0 e ik + 0 ζ(cosθ a x+sinθ a y) ,
where θ a = 2π -θ + 0 . For the second step as Figure 3.9 shows, it is exactly the original harbor agitation problem in this Section. If u a of the first step is taken as exact solution here, it will create the residual value because the governing equation inside the harbor and boundary conditions are not satisfied. It is logical to add a complementary solution outside the harbor to offset the residual value. In this point of view, the origin O is chosen to develop the expansion of this complementary solution, which is denoted by u b . Here u b is required to satisfy governing equation outside the harbor, where the wave number is constant. Furthermore u b is required to satisfy the boundary condition on Γ O and Sommerfeld radiation condition. In previous work of VTCR [START_REF] Kovalevsky | The Fourier version of the Variational Theory of Complex Rays for medium-frequency acoustics[END_REF], it is shown that for 2D acoustic domain exterior to a circular boundary surface, the analytic solution of reflected wave U s of scattering problem in polar coordinate is in form of [Herrera, 1984]:

U s = ∞ ∑ n=0 (A n sin(nθ) + B n cos(nθ)) H (1) n (ζkr) (3.35)
where H It can be verified that (3.36) satisfies boundary conditions on Γ O . Therefore u b is found. Except on the origin point, the analytic solution on the domain outside the harbor equals to the sum of u + 0 , u a and u b .

Computational strategy: As mentioned before, our computational strategies are shown in Figure 3.11 and Figure 3.12. The domain outside the harbor is divided into two computational subdomains Ω 1 and Ω 2 . The subdomain Ω 2 is a semicircular domain, whose center locates at the origin point. The subdomain Ω 1 ranges from the boundary of Ω 2 to infinity. On this domain the analytic solution presented before is used. Computational domain Ω 2 is created to separate origin point from Ω 1 . Since k is considered as constant value of the region outside the harbor, plane wave function is used as shape function on subdomain Ω 2 .

Inside the harbor two different strategies of discretization are chosen in Figure 3.11 and Figure 3.12. The first strategy is that the domain inside the harbor is divided into one computational subdomain (See Figure 3.11). The second strategy is that the domain inside the harbor is divided into four computational subdomains (See Figure 3.12). By When the subdivision of computational domain is done, one needs to choose shape functions used on each subdomain. As mentioned before, u on domain Ω 1 contains u + 0 , u a and u b . This relation can be represented by u|

Ω 1 = u + 0 + u a + u b .
The unknown value u b can be expanded in the series written as (3.36). To achieve a discrete version of the VTCR, finite-dimensional space is required. Thus (3.36) needs to be truncated into finite series. The working space of u b denoted by U b Ω 1 is defined as:

U b Ω 1 = u b ∈ L 2 (Ω 1 ) : u b (x,y) = N 1 ∑ n=0 A 1n cosnθH (1) n (ζkr), A 1n ∈ C, n = 0, • • • ,N 1 (3.37)
where A 1n is the unknown degree of freedom. N 1 is the number of degree of freedom on Ω 1 . Working space of Ω 2 is defined as follows: U

Ω 2 = u ∈ L 2 (Ω 2 ) : u(x,y) = N 2 ∑ n=0 A 2n e ikζ(cosθ n x+sinθ n y) , A 2n ∈ C, n = 1, • • • ,N 2 (3.38)
where A 2n is the unknown amplitude of plane wave. N 2 is the number of degree of freedom on Ω 2 . On the computational domain of inside harbor, the working space is constituted by the ψ(x,P) functions and it is in the form of

U Ω m = u ∈ L 2 (Ω m ) : u(x,y) = N m ∑ n=0 A mn ψ(x,P n ), A mn ∈ C, n = 1, • • • ,N m (3.39)
where A mn is the unknown amplitude of the Airy waves on subdomain Ω m with m 3. N m is the number of degrees of freedom on Ω m .

Numerical result:

Here ω = 0.5 rad/s, a = 4.8 • 10 -2 m -1 , b = 4.8 • 10 -5 m -2 , η = 0.03 are the chosen as parameters. Therefore the depth of water ranges from -20.83 m to -8.33 m, which corresponds to slow variation of water depth near the seashore. The relation between k 2 and y follows (3.33). Taking into account the parameters, it can be derived that: andλ ∈ [104.72 m, 181.38 m]. The shallow water approximation (3.32) is approved to be valid since λ ≫ h.

k 2 = 1.2 • 10 -3 -1.2 • 10 -6 y (3.40) Inside the harbor k 2 ∈ [1.2 • 10 -3 m -2 , 3.0 • 10 -3 m -2 ]
Let the amplitude of incoming wave corresponds to A + 0 = 2 m and the angle of incoming wave corresponds to θ + 0 = 45 • . Following the computational strategies mentioned above, numerical results are shown in Figure 3.13. In this example the exact solution is unknown, therefore one adopts the error indicator (2.24). For the first strategy, one chooses N 1 = 20, N 2 = 100, N 3 = 160. The result error is 6.21 • 10 -3 . For the second strategy, one chooses

N 1 = 20, N 2 = 100, N 3 = 100, N 4 = 160, N 5 = 160, N 6 = 160. The result error is 1.52 • 10 -2 .
The results could be seen in Figure 3.13 and Figure 3.14. Figure 3.13 presents the global results over all subdomains. Since Ω 1 is the semi-unbounded domain, here the numerical result only shows a truncated part with r ∈ [1000 m, 2000 m] in polar coordinate. Figure 3.14 shows the results inside the harbor calculated by the first strategy and the second strategy. One can see from the results that the two different computational strategies of the extended VTCR lead to the same result. It should be noticed that the performance of the first strategy is slightly better than the second strategy and it uses less degrees of freedom. Again, this phenomenon can be explained by the fact that the p-convergence always outperforms the h-convergence in the VTCR. It should also be noticed that only 280 degrees of freedom in all are sufficient to solve this medium frequency heterogeneous Helmholtz problem. The coarse domain disretization and small amounts of degrees of freedom used by the VTCR typify the advantage of this method. It also can be seen from Figure 3.13 that the numerical solution has a good continuity between adjacent subdomains. With the same parameters and with the first computational strategy mentioned before, two other results are calculated by changing the angle of incoming wave to θ + 0 = 35 • and θ + 0 = 65 • (see Figure 3.15). Again, results show that the continuity of displacement and velocity between subdomains are well verified.

Conclusion

This chapter proposes an extended VTCR method, which is able to solve heterogeneous Helmholtz problem. In this extended VTCR, new shape functions are created. In the context of Trefftz Discontinuous Galerkin method, these new shape functions satisfy governing equation a priori. Therefore the extended VTCR is only required to meet the continuity conditions between subdomains and the boundary conditions. All these conditions are included in the variational formulation, which is equivalent to the reference problem.

From the academic studies one learns the convergence properties of the extended VTCR. This approach converges in the same way as the VTCR method presented in Chapter 2. Then a harbor agitation problem is studied. Compared with previous examples, the harbor has a more complex geometry. By applying the extended VTCR, the problem is solved by a simple domain discretization and a small amount of rays. To satisfy Sommerfeld radiation condition, the analytic solutions of unbounded subdomain are developed. Then these analytic solutions are further used as the shape functions by the VTCR on the unbounded subdomain. Inside the harbor, where the square of wave number varies linearly due to the variation of depth of water, the Airy wave functions are used as shape functions. In the calculation, one adopts two different strategies. The first strategy only has one subdomain inside the harbor, while the second strategy has four subdomains inside the harbor. From the results it could be seen that with a good angular discretization, the two strategies lead the calculation converges to the same result. It successfully illustrates that the VTCR has a significant potential to solve true engineering problem in an efficient and flexible way. 

Chapter 4

The Zero Order and the First Order WTDG for heterogeneous Helmholtz problem

This chapter presents a wave based Weak Trefftz Discontinuous Galerkin method for heterogeneous Helmholtz problem. One locally develops general approximated solution of the governing equation, the gradient of the wave number being the small parameter. In this ways, zero order and first order approximations are defined. These functions only satisfy the local governing equation in the average sense. In this way, the Zero Order WTDG adopts the plane wave functions as shape functions. The First Order WTDG adopts the Airy wave functions as shape functions. Academic studies will show the features of the Zero Order WTDG and the First Order WTDG for heterogeneous Helmholtz problem. Lastly, the harbor agitation example is restudied by the Zero Order WTDG method. Its results are compared with the results calculated by the extended VTCR method in Chapter 3. The WTDG was first introduced in [Ladevèze, 2011, Ladevèze et Riou, 2014]. In this method, the domain is divided into several subdomains. Shape functions are independent from one subdomain to another. The solution continuity between two adjacent subdomains is verified weakly through the variational formulation of reference problem.

The reference problem considered is an heterogeneous Helmholtz problem over a domain Ω. Let Ω be partitioned into N non overlapping subdomains

Ω = ∪ N E=1 Ω E . Denoting ∂Ω E as the boundary of Ω E , we define Γ EE = ∂Ω E ∩ ∂Ω and Γ EE ′ = ∂Ω E ∩ Ω E ′ .
The proposed approach here is searching the solution u in the functional space U such that

U = {u | u |Ω E ∈ U E } U E = {u E | u E ∈ V E ⊂ H 1 (Ω E )|(1 -iη)∆u E + k2 E u E + r d = 0} (4.1)
where kE is an approximation of k in subdomain Ω E . Although it could be close to k, kE is still an approximation and the shape functions defined in (4.1) will not satisfy a priori the governing equation in (2.1). This is the reason why this method is named as weak Trefftz method instead of Trefftz method. In Section 4.1.3 the concrete form of kE will be further discussed. When r d = 0 the vector spaces associated with U and U E are defined as U 0 and U E,0 . The variational formulation can be written as: find u ∈ U such that

Re   ik(x)   ∑ E,E ′ ∈E Γ EE ′ 1 2 {q u • n} EE ′ { ṽ} EE ′ - 1 2 [ qv • n] EE ′ [u] EE ′ dS -∑ E∈E Γ EE ∩∂ 1 Ω qv • n (u -u d ) dS + ∑ E∈E Γ EE ∩∂ 2 Ω (q u • n -g d ) ṽdS -∑ E∈E Ω E divq u + k 2 u + r d ṽdΩ = 0 ∀v ∈ U 0 (4.2)
where ˜ represents the conjugation of . It should be mentioned that the term which contains the governing equation in the formulation ∑

E∈E Ω E divq u + k 2 u + r d ṽdΩ could also be replaced by ∑ E∈E Ω E 1 2 divq u + k 2 u + r d ṽ + 1 2 divq v + k 2 v
ũdΩ and the demonstrations in the Section 4.1.2 will keep unchanged.

Equivalence of the reference problem

Let us note that the WTDG formulation (4.2) can be written as:

find u ∈ U such that b(u,v) = l(v) ∀v ∈ U 0 (4.3)
where b meets the property that b(u,u) is real.

Property 1. By defining u 2 U = ∑ E∈E Ω E grad ũ • gradudΩ, u U is a norm over U 0 .
Proof. When u U = 0, we can find that gradu = 0. Then u could be a non-zero constant or zero. From the definition of U 0 , it follows that:

(1 -iη)∆u + k2 E u = 0 over Ω E with k2 E > 0. It can be deduced that u = 0 over Ω. Therefore u U is a norm over U 0 .
Property 2. When η is positive, the WTDG formulation is coercive.

Proof. If it is the weak Trefftz formulation case, then we have:

b(u,u) = Re ik ∑ E∈E ∂Ω E (q u • n) ũdS -∑ E∈E Ω E divq u ũdΩ ∀u ∈ U 0 (4.4) Consequently, b(u,u) = ∑ E∈E kη Ω E grad ũ • gradudΩ (4.5)
Let us denote cl Ω a bounded closed set, which contains Ω and ∂Ω. Because k is a continuous function, k has an minimum value on cl Ω. Denoting

k in f = inf{k(x)| x ∈ cl Ω}, it is evident that when η is positive, for u ∈ U 0 , b(u,u) k in f η u 2 U .
Property 3. The WTDG formulation (4.2) is equivalent to reference problem (2.1).

And it has a unique solution.

Proof. If u is a solution of (2.1), it is also a solution of (4.2). Therefore the existence of solution is proved. From Property (1) and Property (2), it can be directly deduced that the solution u is unique.

The shape functions of the Zero Order WTDG and the First Order WTDG

Defined in (4.1), the shape functions used in each subdomain need to satisfy the Helmholtz equation where kE is an approximation of k on Ω E . Defining x e ∈ Ω E , one has the Taylor's series expansion of k 2 at the point x e : T . ξ = 0 or 1.

k 2 = k 2 (x e ) + ξ∇(k 2 )| x=x e • (x -x e ) + o( x -x e ( 1+ξ 
Taking the Zero Order approximation of (4.6) and replacing it in (2.1), it can be obtained that:

(1iη)∆u + k 2 (x e )u = 0 (4.7)

In this case k2 E = k 2 (x e ) and it is known that the shape functions which satisfy (4.7) are the plane wave functions.

Taking the First Order approximation of (4.6) and replacing it in to (2.1), it can be obtained that: 

(1 -iη)∆u + k 2 (x e ) + ∇k 2 | x=x e • (x -x e ) u =

Approximations and discretization of the problem

To implement the WTDG method, it is required to take a finite dimensional subspace U h 0 of U 0 . In Section 4.1.3, two kinds of shape functions are generated by taking the approximation of wave number k on subdomain. For both the plane wave functions and the Airy wave functions, they represent waves propagating in the 2D plane. Thus by using an angular discretization, one can build the functional space U h 0 .

For the plane wave functions, U h 0 is defined as:

U h 0 = u ∈ L 2 (Ω) : u(x) |Ω E = M E ∑ m E =1 A m E e ik•x , A m E ∈ C, E = 1, • • • ,N (4.10)
For the Airy wave functions, U 0,s is defined as: 4.11) where M E is the number of waves and A m E is the amplitude of the wave.

U h 0 = u ∈ L 2 (Ω) : u(x) |Ω E = M E ∑ m E =1 A m E ψ(x,P m E ), A m E ∈ C, E = 1, • • • ,N ( 

Numerical implementation 4.3.1 Integration of the WTDG

To implement the WTDG method, numerical integrations need to be done over the domain and along the boundary. Since the Zero Order WTDG and the First Order WTDG all use the quick oscillatory shape functions. Standard integration methods such as the Gauss integration method are not suitable in this kind of problems. Due to the complexity of the Airy wave function, one needs to resort to numerical integration presented in Chapter 3.3.

Benefiting from the feature of plane wave functions, numerical integration of the Zero Order WTDG could be achieved totally by semi-analytic integration. There are mainly two reasons to explain this. First, as the plane wave functions are always in form of exponential functions, multiplication of two shape functions will be still in form of an exponential function. Instead of the direct multiplication operation, one could add the indexes of the two exponential functions to get the index of the result and multiply the two coefficients to get the final coefficient. Second, integration of the exponential function could be calculated analytically if the index and the coefficient of the exponential function are given. As the geometry of the subdomain of the WTDG here is in a rectangle shape, all of its boundaries are straight lines.

Since the weak formulation of the WTDG contains the governing equation, the continuity of displacement and velocity on interfaces and the boundary conditions. Consequently, there are three kinds of integrations. Correspondingly, they are integration over the domain, integration along the interface between subdomains and integration along the boundary.

For the first kind of integration, it could be done analytically without difficulty. In fact, any integration over the domain for the Zero Order WTDG could be decomposed into the following basic integration problem. Supposing (k 1 cosθ 1 + k 2 cosθ 2 ) = 0 and (k 1 sinθ 1 + k 2 sinθ 2 ) = 0, the analytic integration could be calculated in the following way:

y 2 y 1 x 2 x 1 C 1 e ik 1 cosθ 1 x+ik 1 sinθ 1 y •C 2 e ik 2 cosθ 2 x+ik 2 sinθ 2 y = y 2 y 1 x 2 x 1 C 1 •C 2 e i(k 1 cosθ 1 +k 2 cosθ 2 )x+i(k 1 sinθ 1 +k 2 sinθ 2 )y = -C 1 •C 2 (k 1 cosθ 1 + k 2 cosθ 2 ) • (k 1 sinθ 1 + k 2 sinθ 2 ) e i(k 1 cosθ 1 +k 2 cosθ 2 )x+i(k 1 sinθ 1 +k 2 sinθ 2 )y x 2 x 1 y 2 y 1 (4.12) If (k 1 cosθ 1 + k 2 cosθ 2 ) = 0 and (k 1 sinθ 1 + k 2 sinθ 2 ) = 0,
the integration becomes:

y 2 y 1 x 2 x 1 C 1 e ik 1 cosθ 1 x+ik 1 sinθ 1 y •C 2 e ik 2 cosθ 2 x+ik 2 sinθ 2 y = y 2 y 1 x 2 x 1 C 1 •C 2 e i(k 1 cosθ 1 +k 2 cosθ 2 )x+i(k 1 sinθ 1 +k 2 sinθ 2 )y = C 1 •C 2 (x 2 -x 1 ) 2i(k 1 sinθ 1 + k 2 sinθ 2 ) e i(k 1 sinθ 1 +k 2 sinθ 2 )y y 2 y 1 (4.13) If (k 1 sinθ 1 + k 2 sinθ 2 ) = 0 and (k 1 cosθ 1 + k 2 cosθ 2 ) = 0
, the integration becomes:

y 2 y 1 x 2 x 1 C 1 e ik 1 cosθ 1 x+ik 1 sinθ 1 y •C 2 e ik 2 cosθ 2 x+ik 2 sinθ 2 y = y 2 y 1 x 2 x 1 C 1 •C 2 e i(k 1 cosθ 1 +k 2 cosθ 2 )x+i(k 1 sinθ 1 +k 2 sinθ 2 )y = C 1 •C 2 (y 2 -y 1 ) 2i(k 1 cosθ 1 + k 2 cosθ 2 ) e i(k 1 cosθ 1 +k 2 cosθ 2 )x x 2 x 1 (4.14) 
If (k 1 sinθ 1 + k 2 sinθ 2 ) = 0 and (k 1 cosθ 1 + k 2 cosθ 2 ) = 0, the integration becomes:

y 2 y 1 x 2 x 1 C 1 e ik 1 cosθ 1 x+ik 1 sinθ 1 y •C 2 e ik 2 cosθ 2 x+ik 2 sinθ 2 y = y 2 y 1 x 2 x 1 C 1 •C 2 e i(k 1 cosθ 1 +k 2 cosθ 2 )x+i(k 1 sinθ 1 +k 2 sinθ 2 )y = C 1 •C 2 (x 2 -x 1 )(y 2 -y 1 ) 4 (4.15)
For the second kind of integration, it could also be calculated analytically. The integration is along the interface. The analytic method is similar to the integration over domain. Here it is preferable not to repeat the process. One could refer to (4.12), (4.13), (4.14) and (4.15).

For the third kind of integration, when the boundary condition can be decomposed by the Fourier expansions in form of exponential functions, the calculation could be done analytically. In this situation the integration is similar as the case along the interface.

However, when the boundary of the domain is irregular, the integration needs to be implemented numerically. The numerical integration methods are proposed in Chapter 3.3.1.

Iterative solver of the WTDG

Since in the WTDG the shape functions are the wave functions in form of ray approximations, the matrix will suffer from ill-conditioning when the number of shape functions become too large. A similar feature is observed on the VTCR in Chapter 2. Thereby, the pinv iterative solver is chosen again for both the Zero Order WTDG and the First Order WTDG. More details could be seen in Section 2.3.

Convergence of the Zero Order and the First Order WTDG 4.4.1 Convergence criteria

The common point of the VTCR and the WTDG is that they all take the wave functions as shape functions. As mentioned before, the shape functions of the VTCR satisfy a priori the governing equation. Therefore the residue will only appear on the boundary of each subdomain. Upon the convergence criteria of (2.23) and (3.27), a sufficient large number of rays will make the results of standard VTCR and the extended VTCR converge with a desired precision. Unlike the VTCR method, the WTDG will not only incur residues on the boundary but also inside the domain, because the governing equation is not satisfied by the shape functions. In this case, only a sufficient large number of rays could make the result converge but at the mean time there may exist a big residue inside the domain. For the WTDG, a sufficient number of subdomains and rays are both the essential conditions to obtain an accurate solution. The technique to choose a sufficient number of subdomains will be illustrated in Section 4.4.2. Here, the criteria for the number of rays is proposed.

For the Zero Order WTDG the criteria is defined as:

N e = τk e,0 R e /(2π) (4.16)
where N e is the number of rays, τ a parameter to be chosen and R e is the characteristic radius of the domain. k e,0 is a constant average value of the wave number on the domain. τ = 2 is chosen in this dissertation.

For the First Order WTDG the criteria is defined as:

N e = τk e,max R e /(2π) (4.17)
where N e is the number of rays, τ a parameter to be chosen and R e is the characteristic radius of domain. k e,max is the maximum value of the linearisation approximation of the wave number on the domain. τ = 2 is chosen in this dissertation.

Error indicator and convergence strategy

Unlike the VTCR, in each subdomain the shape functions of the WTDG neither satisfy the governing equation nor satisfy the boundary conditions. In this case, the definition of (2.24) is not a valid error estimator because the error inside the subdomain is not taken into account.

It leaves an open question to define the error estimator for the WTDG. In this dissertation, since the numerical examples are academic, it is practicable to take a precalculated WTDG solution as a reference solution. As (4.18) shows, the error estimator for the WTDG method is only based on the results of the WTDG. The reference solution is calculated with an overestimated number of subdomains and an overestimated number of rays.

ε W T DG = u h -u re f L 2 (Ω) u re f L 2 (Ω) (4.18)
where u re f is the overestimated solution of the WTDG. Criteria (4.16) and ( 4.17) are used to overestimate the solution. τ = 4 is chosen in this dissertation for the overestimation.

Convergence strategy: Since the WTDG requires a sufficient number of subdomains to decrease the residues inside the domain, a convergence strategy of the WTDG is proposed as following:

• 1. Start the calculation with several subdomains and quasi-sufficient rays; Calculate the error and assign its value to ε 0 .

If m stop ε 0 , go to step 4.

If m stop < ε 0 , go to step 2.

• 2. Increase the number of rays; Calculate the error and assign its value to ε 1 ;

If m stop ε 1 , go to step 4.

If m stop < ε 1 < ε 0 , assign the value of ε 1 to ε 0 and repeat step 2.

If ε stop < ε 1 and ε 0 = ε 1 , go to step 3.

• 3. Increase subdomains and set a quasi-sufficient number of rays; Calculate the error and assign its value to ε 0 . Then go to step 2.

• 4. Obtain the result with the desired precision and finish the calculation.

where m stop is a desired precision. The quasi-sufficient rays means that the angular discretization meets the criteria of (4.16) if plane wave functions are used and meets (4.17) if Airy wave functions are used. τ = 2 is used to determine the number of quasi-sufficient rays. • correspond to propagation angles in P 1 , P 2 and P 3 respectively. This choice of geometry and boundary conditions allows one to calculate the relative error of the Zero Order WTDG method with the exact solution. The real relative error is defined as:

ε ex = u -u ex L 2 (Ω) u ex L 2 (Ω) (4.19)
The definition of the problem and the discretization strategy can be seen on Figure 4.1. It is evident that in this case the Airy wave function is the exact solution of the governing equation. This example has already been studied by the extend VTCR method in Chapter 3. Here it serves as a quick example to show the capacity of the Zero Order WTDG in dealing with the medium frequency Helmholtz problem of slowly varying wave number. In Figure 4.1, it shows five strategies to discretize the subdomains of the Zero Order WTDG. For each strategy, the number of subdomains is fixed and the number of wave is gradually increased to draw the convergence curve. It corresponds to the p-convergence study. Moreover, for each strategy, the number of wave keeps the same in each subdomain. Figure 4.2 shows the convergence curves. First, it implies that for each strategy, the convergence curve will remain nearly unchangeable after certain degrees of freedom. This could be explained by the fact that a sufficient number of rays is used in each subdomain. But due to the number of subdomains is fixed, the residue inside the subdomain can not be further decreased. Second, it could be observed that the performance of the convergence curve depends on the number of subdomains. The reason is that the WTDG takes an approximation value of wave number in each subdomain. When more subdomains are used, the residue caused by approximation of the governing equation will decrease correspondingly. This phenomenon is consistent with the convergence study presented in Section 4.4.1. It reflects the significant feature of the WTDG that it can smoothly approximate the exact solution of an heterogeneous Helmholtz problem through the refinement of subdomains. It can be seen that, by this method, one could obtain a result with a desired precision.
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Academic study of the First Order WTDG in the heterogeneous Helmholtz problem of sharply varying wave number

In this numerical example, the geometry definition of reference problem keeps the same as the one in Section 4.5.1. A square computational domain with η = 0.01. But here k = 5x + 5y + 40. Therefore k varies 25% on Ω. The boundary condition on ∂Ω are Dirichlet type such that u d = 1. Since in this problem the general solution of governing equation is unknown, one could not use VTCR method to solve it. However, by smoothly approximating of the governing equation, the WTDG method could treat the problem. Both the Zero Order WTDG and the First Order WTDG are employed to show the performance of the WTDG approach. In this example, the error estimator defined by (4.18) is adopted here to capture the error. For the Zero Order WTDG, the overestimated calculation uses 225 subdomains and 40 plane waves in each subdomain to obtain u re f . For the First Order WTDG, the overestimated calculation uses 25 subdomains and 80 Airy waves in each subdomain to obtain u re f . The visual illustration of some results calculated by the First Order WTDG are presented in Figure 4.6. Besides, in Figure 4.6, there is also a result calculated by the FEM with 625 elements of quadric mesh of order 3. This result could be used to make a comparison with the results calculated by the Zero Order WTDG and First Order WTDG. It could be seen that both the Zero Order WTDG and the First Order WTDG are all capable to well solve this problem. There are three points to be mentioned here. First, the Zero Order WTDG needs a fine discretization of subdomains. This is because in this problem the wave number k varies greatly on Ω. Compared to the medium frequency Helmholtz problem of slowly varying wave number in Section 4.5.1, the problem becomes a fast varying wave number one. In this condition, it is necessary to divide more subdomains for the Zero Order WTDG. Otherwise, there will be a large residue inside the domain. Second, the First Order WTDG requires much less subdomains to obtain an accurate result. The reason is that the First Order WTDG makes a higher order approximation of the governing equation. The Zero Order WTDG takes the average value of the wave number on the subdomain while the First Order takes into account not only the average value of the wave number, but also its linear variation. Consequently, compared with the Zero Order WTDG, the First Order WTDG uses much less subdomains. Third, when more subdomains are used in WTDG, less waves are needed in each subdomain. This phenomenon can be explained by the convergence criteria (4.16) and (4.17), which determine the number of the plane waves and of the Airy waves for convergence. Again, it should also be noticed that in the WTDG a sufficient number of rays is only a necessary condition and is not the sufficient condition for its accuracy. Its residue is also influenced by the method to approximate the wave number. Therefore sufficient subdomains are essential in the WTDG to lead to the accurate result. Otherwise, it could be seen from the example on 4.5.1 that when there are insufficient subdomains, increasing the amount of waves will not further improve the accuracy of the WTDG.

Study of the Zero Order WTDG on the semi-unbounded harbor agitation problem

The harbor agitation problem is studied by the extended VTCR in Chapter 3. In this section, one uses the WTDG to solve this problem. For the region outside the harbor, the discretization of subdomain and the choice of their working space remain unchanged. However, inside the harbor, the zero order WTDG is adopted. As mentioned above, the working space of u b denoted by U b Ω 1 is defined as:

U b Ω 1 = u b ∈ L 2 (Ω 1 ) : u b (x,y) = N 1 ∑ n=0 A 1n cosnθH (1) 
n (ζkr), A 1n ∈ C, n = 0, • • • ,N 1 (4.20
) where A 1n is the unknown degree of freedom. N 1 is the number of degrees of freedom on Ω 1 . Working space of Ω 2 is defined as follows:

U Ω 2 = u ∈ L 2 (Ω 2 ) : u(x,y) = N 2 ∑ n=0 A 2n e ikζ(cosθ n x+sinθ n y) , A 2n ∈ C, n = 1, • • • ,N 2 (4.21)
where A 2n is the unknown amplitude of plane wave. N 2 is the number of degrees of freedom on Ω 2 .

For the working space U Ω j of subdomain Ω j inside the harbor, where j 3, it is expressed as follows:

U Ω j = u ∈ L 2 (Ω j ) : u(x,y) = N j ∑ n=0 A jn e ik j ζ(cosθ n x+sinθ n y) , A jn ∈ C, n = 1, • • • ,N j (4.22)
where k j = k(x j ) and x j is the coordinate of center point on Ω j . A jn is the unknown amplitude of plane wave. N j is the number of degrees of freedom on Ω j .

To implement the numerical calculation, parameters of the model remain the same as adopted in Chapter 3. The amplitude of incoming wave corresponds to A + 0 = 2 m and the angle of incoming wave θ + 0 = 45 • . Other parameters are chosen as: ω = 0.5 rad/s, a = 4.8 • 10 -2 m -1 , b = 4.8 • 10 -5 m -2 , η = 0.03. By replacing the parameters into (3.33), it can be derived that: The error indicator ε W T DG defined in (4.18) is used here to pilot the calculation to converge. Following the computational strategies mentioned above, the overestimated solution u re f takes 20 subdomains and 200 waves in each subdomain inside the harbor. The calculation here is carried out with three different dicretization strategies. The first strategy takes five subdomains and 120 waves in each subdomain. The result error is 5.32 • 10 -3 . Totally, 720 degrees of freedom are used. The second strategy takes ten subdomains and 120 waves in each subdomain. The result error is 1.27 • 10 -3 . Totally, 1320 degrees of freedom are used. The third strategy takes fifteen subdomains and 120 waves in each subdomain. The result error is 3.06•10 -4 . Totally, 1920 degrees of freedom are used.

k 2 = 1.2 • 10 -3 -1.2 • 10 -6 y (4.23)
The results are shown in Figure 4.8 and in Figure 4.9. Figure 4.8 shows the global results which contain the region inside the harbor and outside the harbor. Since Ω 1 is the semi-unbounded domain, the numerical result only shows a truncated part with r ∈ [1000 m, 2000 m] in polar coordinates. Figure 4.9 shows the detailed results inside the harbor. Besides, the result calculated by the VTCR in Chapter 3 is also shown here to give a visual comparison with the WTDG method.

It could be inferred from the results that this medium frequency heterogeneous Helmholtz problem could be well solved by the WTDG. One could also know from the result that increasing the subdomains inside the harbor could reduce the residue. However the improvement could not longer be judged visually since the error is already small. Therefore one could see that the different strategies in Figure 4.8 and Figure 4.9 always lead to the same result. This phenomenon reflects the stability of the WTDG and is consistent with the its performance in previous academic study of Section 4.5.1. Another point to be mentioned is that though considerable subdomains it uses, the WTDG guarantees good continuity between adjacent subdomains. The fact that the WTDG could smoothly approximate the wave varying Helmholtz problem is proved again in this harbor agitation problem.

Mid/high frequency model: Lastly, a quick calculation is executed with the change of the wave number parameter. One increases the wave number of the model (4.23) four times. The results could be seen in Figure 4.10 and Figure 4.11. Again, since Ω 1 is the semi-unbounded domain, here the numerical result only shows a truncated part with r ∈ [1000 m, 2000 m] in polar coordinates. In this case, there are nearly 90 periods of waves inside the computation domain. This calculation adopts 3940 degrees of freedom. This kind of calculation will pose a great numerical challenge to the FEM method while the WTDG could solve it without difficulty. 

Conclusion

Facing to heterogeneous Helmholtz problem, this chapter proposed two wave based WTDG approaches. For the WTDG, there is no requirement for the shape functions to satisfy a priori the governing equation. In this chapter, wave functions are proposed as shape functions. Approximating the wave number of governing equation by its zero order Taylor series, one could obtain an approximated equation, whose exact solutions are plane wave functions. Approximating the wave number of governing equation by its first order Taylor series, one could obtain an approximated equation, whose exact solutions are Airy wave functions. These wave functions only satisfy the governing equation approximately. In other words, these shape functions do not satisfy the governing equation in the variational formulation. Therefore residue will be created inside each subdomain. The finer the subdomains discretization is, the smaller the residue inside the subdomain will be. The reason is that when the region of subdomain reduces, the approximated wave number will be closer to the real wave number of the problem. In short, the WTDG could smoothly approximate the solution of reference problem.

Academic studies have been done in this chapter to show the convergence properties of the WTDG method. Both the Zero Order WTDG and the First Order WTDG lead to the convergent and accurate numerical result. In addition, the WTDG is also used to study the habor agitation problem, which has an engineering application background and has been studied by the extended VTCR in Chapter 3. The result shows that the wave based WTDG performs well in this problem.

Chapter 5 FEM/WAVE WTDG approach for frequency bandwidth including LF and MF

This chapter is focusing on the hybrid use of the FEM approximation and the wave approximation for the constant wave number Helmholtz problem, which ranges from low-frequency to mid-frequency. Benefiting from the FEM approximation , the FEM/WAVE WTDG method well solves the low frequency problem. Moreover, benefiting from the wave approximation, the FEM/WAVE WTDG method could solve the mid-frequency problem in an efficient way as VTCR does. The feasibility of this hybrid method is ensured by the weak Trefftz discontinuous Galerkin method. The WTDG introduces a variational formulation of the reference problem and its shape functions could be found under fewer restrictions compared to the VTCR method. Shape functions are not required to satisfy the governing equation a priori.

The equivalence of the formulation is proved and discretization strategies are proposed in this chapter. Of course, numerical studies illustrate the performance of the FEM/WAVE WTDG approach.

Rewriting of the reference problem

The WTDG was first introduced in [Ladevèze, 2011]. In [Ladevèze et Riou, 2014], a coupling between the FEM approximation and the wave approximation has been developed by the WTDG in the way that FEM approximation and wave approximation are used separately in each subdomain. In this Chapter, the WTDG is extended to mix them in the same subdomains, at the same time.

Variational Formulation

In this chapter the reference problem is defined by (2.1), where the wave number is a constant. Particularly the wave number locates either in the low-frequency range or in the mid-frequency range. In order to get an equivalent variational formulation of (2.1), the domain is divided into subdomains Ω E with E ∈ E. Γ EE ′ denotes the interface between two subdomains E and E ′ . Γ EE denotes the interface between subdomain Ω E and boundary ∂Ω. The approach proposed consists in using the working space U ⊂ H 1 (Ω):

U = {u | u |Ω E ∈ U E } U E = {u E | u E ∈ V E ⊂ H 1 (Ω E )} (5.1)
The vector spaces associated with U and U E where r d = 0 are denoted by U 0 and U E,0 .

Then the WTDG formulation can be written as: find u ∈ U such that

Re   ik   ∑ E,E ′ ∈E Γ EE ′ 1 2 {q u • n} EE ′ { ṽ} EE ′ - 1 2 [ qv • n] EE ′ [u] EE ′ dS -∑ E∈E Γ EE ∩∂ 1 Ω qv • n (u -u d ) dS -∑ E∈E Γ EE ∩∂ 1 Ω α • i • ṽ(u -u d ) dS + ∑ E∈E Γ EE ∩∂ 2 Ω (q u • n -g d ) ṽdS -∑ E∈E Ω E divq u + k 2 u + r d ṽdΩ = 0 ∀v ∈ U 0 (5.
2) where α is a parameter strictly positive to enforce the boundary Dirichlet condition. As one can see, there is no a priori constraint on the choice of the spaces U and U 0 . Consequently, one can select polynomial approximation, like in the FEM, or wave approximation, like in the VTCR, or even both.

Equivalence of the reference problem

Let us note that (5.2) can be written as: find u ∈ U such that b(u,v) = l(v) ∀v ∈ U 0 (5.3) where b has the property that b(u,u) is real.

Property 1. For u ∈ U 0 , we have b(u,u) = ∑ E∈E kη Ω E grad ũ • gradudΩ + ∑ E∈E Γ EE ∩∂ 1 Ω kαu ũdS 0 (5.4) Proof. b(u,u) = Re ik ∑ E∈E ∂Ω E (q u • n) ũdS -∑ E∈E Ω E divq u ũdΩ + ∑ E∈E Γ EE ∩∂ 1 Ω αiu ũdS (5.5) Consequently, b(u,u) = ∑ E∈E kη Ω E grad ũ • gradudΩ + ∑ E∈E Γ EE ∩∂ 1 Ω kαu ũdS (5.6)
From Property 1 it can be deduced that if b(u,u) = 0, then u is equal to zero over ∂Ω E ∩ ∂ 1 Ω. It is a piecewise constant within subdomains Ω E , E ∈ E. To keep the uniqueness of the solution, condition (P) is introduced to be satisfied by the shape functions which belong to U 0 .

Refering to work [Ladevèze et Riou, 2014], one could obtain the Condition (P), which is crucial for the demonstration. Its definition is as follows:

Condition (P) Let a E ∈ U E be a piecewise constant function within subdomains E ∈ E. a E satisfies condition (P) if    ∀v ∈ U 0 , ∀E ∈ E, Re   ik   ∑ E,E ′ ∈E ∂Ω E (q v • n) ãE ′ dS     = 0    ⇒ a E = ±a
(5.7) where E

′ is a subdomain sharing a common boundary with E. And let us take the convention a E ′ = -a E over ∂Ω E ∩ ∂Ω.

Property 2. If U 0 satisfies condition (P) and if η is positive, the WTDG formulation (5.2) has a unique solution.

Proof. In finite dimension, existence of solution will be confirmed if uniqueness can be proved. Let us suppose (5.2) has two solutions u 1 and u

2 . v = u 1 -u 2 ∈ U 0 and b(v,v) = ∑ E∈E kη Ω E grad ṽ • gradvdΩ + ∑ E∈E Γ EE ∩∂ 1 Ω kαv ṽdS = 0 (5.8)
It can be observed that v E = a E with E ∈ E, where a E is piecewise constant within the subdomains and a E = 0 in the subdomains sharing a common boundary with ∂ 1 Ω. Backsubstituting this result into (5.2), one also finds b(v,v * ) = 0 ∀v * ∈ U 0 , which leads to

∀v * ∈ U 0 , Re   ik   ∑ E,E ′ ∈E ∂Ω E (q v • n) ãE ′ dS     = 0 (5.9)
(5.9) corresponds to the condition (P), where E ′ represents a subdomain sharing a common boundary with E, with the convention a E ′ = -a E over ∂Ω E ∩ ∂Ω. Consequently, a E = ±a ∀E ∈ E. Moreover, given that a E = 0 over ∂ 1 Ω, we have a = 0.

Refering to work [Ladevèze et Riou, 2014], one could obtain the Property 3, which is crucial for the demonstration. Its definition and demonstration are as follows:

Property 3. If U E is the combination of solution spaces of FEM and VTCR, then the condition (P) is satisfied, and

u 2 U 0 = b(u,u) + γ 2 (u) (5.10)
is a norm over U 0 . We define (5.11) where C E is constant vector over Ω E and X E is the position vector relative to the center of inertia of element E. U 0 denotes the associated space defined over Ω of U E,0 . And for u ∈ U 0 the definition of quantity γ is defined as (5.12) where C v corresponds to the vector C E of v according to (5.11).

U E,0 = u|u ∈ V E , u = C E • X E
γ(u) = sup v∈U 0 b(u,v)/||C v || L 2 (Ω)
Proof. 

= β E + a E . z E is continuous because z E|Γ EE ′ = a E ′ + a E = z E ′ |Γ EE ′ .
It follows that z is constant over Ω. Since z is zero over ∂Ω, z = 0 over Ω and β E = -a E . Consequently, a E can be only the values of +a or -a, a being a constant over Ω.

To demonstrate that ||u|| 2 U 0 is a norm over U 0 , let us consider that u 2 U 0 = b(u,u) + γ 2 (u) = 0. It follows that b(u,u) = 0 and γ(u) = 0. From (5.6) it can be obtained that

u |Ω E = a E is constant over Ω E and that u = 0 over ∂ 1 Ω. Then γ(u) is equal to γ(u) = sup v∈U 0 1 ||C v || L 2 (Ω) Re   ik   ∑ E,E ′ ∈E ∂Ω E (q v • n) ãE ′ dS     = 0 (5.13)
Since condition (P) is satisfied, it can be derived that u E = ±a, a being a constant over Ω.

Finally from u = 0 on ∂ 1 Ω, one gets u = 0 over Ω.

Approximations and discretization of the problem

Defined by (5.1), the working space U could be split into two subspaces U w and U p , which represent the subspace generated by the plane wave functions and the subspace generated by the polynomial functions.

U = U w ⊕ U p (5.14) For numerical implementation, U w and U p are then truncated into the finite dimensional subspaces, which could be noted by U h w and U h p respectively.

Plane wave approximation : The approximation solution in subspace U h w could be expressed such as

u w (x) = N w ∑ n=0
A n e ik•x (5.15) where A n is the unknown amplitude of plane wave. N w is the number of plane waves.

Polynomial approximation : The approximation solution in subspace U h p could be expressed such as

u p (x) = N p ∑ n=0 U n φ n (x) (5.16)
where U n is the unknown degrees of freedom of polynomial interpolation. φ n (x) is the standard interpolation functions of the polynomial approximation. The mesh of polynomial approximation could be built in the same way as the standard FEM method. Without losing generality, in this dissertation the meshes are regular square types.

However it should be noticed that being different from the standard FEM method, the approximation solution u p (x) is not required to a priori satisfy the Dirichlet condition imposed on the boundary. Instead, it is evident that the sum of u w (x) and u p (x) should satisfy this condition, which is weakly comprised in the variational formulation (5.2).

Numerical implementation

Since the shape functions contains both the polynomial and the wave approximations, terms in matrix to integrate composed by polynomial-polynomial terms, wave-wave terms and polynomial-wave terms. Polynomial-polynomial terms are the productions of two polynomials. Gauss quadrature is capable to treat this type of integrations. For the wave-wave terms, the productions of two plane wave functions, their integration could be achieved analytically. Details have been illustrated in Section 4.3.1. As for the terms of the productions of polynomial and plane wave functions, one could still calculate the integrations analytically by the technique of integration by part. The following illustration is typical since each integration of polynomial-wave term could be decomposed into following integration unit: (5.17) where ikcosθ = 0 and iksinθ = 0. This integration is the most complicated form that could appear in integration of polynomial-wave terms. It takes account of high order approximation of polynomial and the integration over the domain. Other cases of polynomial-wave terms could be simplified and derived from it. ) for the same model of problem, in the solution. It can be studied from this example how the FEM/WAVE WTDG method works in low-frequency problem and in mid-frequency problem. The definition of the problem and the discretization strategy can be seen on Figure 5.1. In the FEM/WAVE WTDG formulation (5.2), α = 0.0001. For the FEM approximation in the WTDG, a regular squared mesh of degree 1 is used. One uses 10 elements per wave length. For the wave approximation in the WTDG, one uses only one subdomain and a regular angular distribution of the waves from 0 to 2π. The choice for angular distribution is determined by the geometrical heuristic criterion (2.23). Since the exact solution is given, the convergence of the FEM/WAVE WTDG strategy is assessed by computing the real relative error defined as following:

y 2 y 1 x 2 x 1 x m y n • e ikcosθx+iksinθy dxdy = x 2 x 1 x m e ikcosθx dx • y 2 y 1 y n e iksinθy dy = x m ikcosθ e ikcosθx x 2 x 1 - x 2 x 1 mx m-1 ikcosθ e ikcosθx dx • y n iksinθ e iksinθy y 2 y 1 - y 2 y 1 ny n-1 iksinθ e iksinθy dy = . . . = m+1 ∑ p=1 m!(-1) p+1 x m-p+1 (m -p + 1)!(ikcosθ) p + m!(-1) m+2 (ikcosθ) m+1 e ikcosθx x 2 x 1 × n+1 ∑ q=1 n!(-1) q+1 y n-q+1 (n -q + 1)!(iksinθ) q + n!(-1) n+2 (iksinθ) n+1 e iksinθy
ε ex = u -u ex L 2 (Ω)
u ex L 2 (Ω) (5.18) A comparison of the pure FEM approach (which uses only a polynomial description), the pure VTCR approach (which uses only a wave description) and the FEM/WAVE WTDG approach (which uses at the same time the polynomial and the wave descriptions) is made. For each wave number k, the pure FEM uses the same discretization strategy as the FEM approximation in the WTDG. The pure VTCR uses the same discretization strategy as the wave approximation in the WTDG. The convergence curve is represented on Figure 5.2.

As one can see, the FEM/WAVE WTDG presents a better behaviour than the pure FEM or the pure VTCR. The pure FEM suffers from a lack of accuracy when the frequency becomes to be too high. The pure VTCR is not so efficient in the low frequency domain. This shows the benefits of using the WTDG method for finding the solution for low and mid frequency problems with the same descriptions, at the same time.

The convergence of the FEM/WAVE WTDG method relies on both the FEM approximation and the wave approximation. A study is made to see how the wave approximation affects the performance of the FEM/WAVE WTDG method. With the model of the same computational domain and the same boundary condition defined in this section, we take k = 25 m -1 . Seven different wave approximations have been used to draw the convergence curves of the FEM/WAVE WTDG method as Figure 5.3 shows. For each wave approximation strategy, only one subdomain and a fixed number of rays are used. Meanwhile, for the FEM approximation in the FEM/WAVE WTDG, the mesh is gradually refined until the result converges. As one can see, for a fixed number of waves, the results converge along with the increase of degrees of freedom of the FEM approximation. It can be seen that using the same degrees of freedom of the FEM approximation, a refinement of the angular discretization of the wave approximation in the FEM/WAVE WTDG leads to more precise result. An interesting phenomenon is that the FEM/WAVE WTDG with 32 waves always has a precise solution. The reason is that depending on the criterion (2.23), 32 waves are sufficient to make the result converge.

Non-homogeneous Helmholtz problem with two scales in the solution

The problem considered is an Helmholtz problem defined on Ω = [-0.5 m; 0. y) , k e = 10 m -1 and η = 0.0001. The boundary condition is y) . This boundary condition enables one to know the exact solution of problem with u ex = u d . Therefore, the real relative error could be measured by (5.18). This example is again interesting, because it corresponds to a non-homogeneous Helmholtz problem with two scales in the solution (slow varying scale with k e and fast varying scale with k). The exact solution u ex could be seen on Figure 5.4.

5 m]× [-0.5 m; 0.5 m], with k = 100 m -1 , θ 1 = 30 • , θ 2 = 82 • , r d = (k 2 -k 2 e )e ik e ζ(cosθ 2 •x+sinθ 2 •
u d = e ikζ(cosθ 1 •x+sinθ 1 •y) + e ik e ζ(cosθ 2 •x+sinθ 2 •
The FEM/WAVE WTDG is used to solve this problem. In the variational formulation, one has α = 0.0001. The objective of this method is to use the wave approximation to approximate the fast varying scale solution and to use the FEM approximation for the slow varying scale solution. Correspondingly, a regular squared mesh of degree 2 is used for the FEM approximation. The criteria is to choose 10 elements per wave length. The wave approximation uses 2 waves, which propagate in the 30 • and 210 • two directions. It should be noticed that the exact solution of fast varying scale is taken directly as shape The VTCR curve corresponds to the solution obtained with a pure VTCR discretization explained in Section 5.4.1. The WTDG curve corresponds to the solution obtained with an enrichment of the FEM shape functions with waves, according to the FEM/WAVE WTDG approach. function in wave approximation. Consequently, there is no need to add more shape function to simulate the fast varying scale. With such a choice, the solutions given by the wave approximation, denoted u V TCR and the polynomial approximation, denoted u FEM are depicted in Figure 5.4. The comparison between the exact solution and the FEM/WAVE WTDG solution is shown in Figure 5.5. The real relative error is 4.48×10 -5 . As one can see, the FEM/WAVE WTDG gives a good approximation. This example shows the advantage of the FEM/WAVE WTDG. Due to the fact that the fast varying scale is in mid-frequency, it will require considerable degrees of freedom for the FEM to solve this problem. However, with the FEM/WAVE WTDG, solutions of different scales are solved by different approximations. For the FEM approximation, only a small amount of degrees of freedom are used to get the slow varying scale solution. At the same time, only two more degrees of freedom of the wave approximation could well recover the fast vary scale solution.

The FEM/WAVE WTDG method applied with different types of approximations

The problem considered has a computational domain defined on Figure 5.6. This L shape domain is filled with a fluid with k = 30 m -1 and η = 0.0001. The boundary conditions is u d = e ikζ(cosθ•x+sinθ•y) + e ikζ(sinθ•x+cosθ•y) with θ = 60 • . This choice of the boundary condition enables one to know the exact solution of problem with u ex = u d . Then the performance of the approach could be evaluated by the real relative error.

On this example, three kinds of approximations are used: even a pure FEM approximation, or a pure VTCR approximation, or a mix of the polynomial approximation and the wave approximation (see Figure 5.6). The variational formulation of the WTDG allows this possibility. In order to have a good approximation, one needs select the discretization criteria of each approximation. For the FEM, the choice is to use 20 elements of degree 1 per wave length. For the VTCR, the choice is τ = 14. The FEM/WAVE WTDG uses τ = 17 for the wave approximations and 6 elements of degree 1 in the subdomain for the FEM approximation. It should be noticed that the criteria is highly overestimated for the FEM, for the VTCR and for the FEM/WAVE WTDG in order to have a convergent result. The reason for this overestimation lies in the fact that the convergence criteria for this mix use of approximations is unknown. Even though the criteria for each individual approximation is known, there is no previous study for this mix situation. When the approximations are coupled, they will interact with each other. In [Ladevèze et Riou, 2014], a coupling between the FEM approximation and the wave approximation have been developed by the WTDG in the way that FEM approximation and wave approximation are used separately in each subdomain. Its results show that compared to their individual application, this coupling use requires more degrees of freedom for the FEM approximation and the wave approximation. Consequently, the criteria for each individual approximation can only serve as a reference for our choice. The true criteria for this mix use is still an open question. Here, the objective of the example is only to give a scope of the practicability to achieve a mix use of the FEM/WAVE approximation with the FEM and the VTCR. Again, in the variational formulation, one has α = 0.0001. The exact solution and the FEM/WAVE WTDG solution are depicted in Figure 5.7. As one can see, the solutions are very closed. This is because the variational formulation the WTDG allows the couple use of the FEM, the VTCR and the FEM/WAVE approximation. According to the definition of the error in (5.18), the error is here 2.187×10 -2 .

It can be deduced from this example that all combinations of methods such as pure FEM, pure VTCR, hybrid of FEM and VTCR can be integrated together in one complex geometry problem. In each subdomain the concrete method can be chosen depend on specific requirement of engineering problems. 

Conclusion

This chapter proposes an hybrid use of the FEM approximation and the wave approximation thanks to the Weak Trefftz Discontinuous Galerkin method. It is illustrated on the Helmholtz problem. The FEM/WAVE WTDG method allows one to use a combination of FEM approximation and wave approximation. It is based on a variational formulation which is equivalent to the reference problem. All the conditions such as the governing equation, the transmission continuity and the boundary conditions are included in the formulation. No a priori constraint is needed for the definition of the shape functions. As a consequence, any shape function can be used, with no difficulty. It gives the FEM/WAVE WTDG method a great flexibility, as one can select polynomials or wave shape functions (or a combination of them) very easily in the working space, with no restriction. It is successfully illustrated on different examples of different complexity, ranging from low-frequency to mid-frequency, homogeneous or not, with sometimes two scales in the solution.

Conclusion

Along with the development of computer science, numerical technique becomes a fundamental tool to solve engineering problem. The vibration problem dominated by the Helmholtz equation vastly exists in aerospace and automotive industries. Finite elements method is the most common used method in industry. However, the nature of the approximation of this method limits its application to low-frequency problem. Surpassing the low-frequency range, numerical dispersion and pollution effect arise and consequently large amounts of degrees of freedom are required to solve the problem. On the other hand, the existent method in high-frequency problem such as Statistical Energy Analysis method only studies the global energy of system and neglects the local response. The midfrequency vibration problem contains features of the low-frequency and high-frequency. The local response is still required and the system is more sensible to uncertainties that at low-frequency. Therefore it is essential to develop a specific numerical technique for mid-frequency problem.

The Variational Theory of Complex Rays is designed to treat piecewise homogeneous mid-frequency vibro-acoustic problem. This method mainly possesses two hallmarks:

• It rewrites the reference problem into a new formulation. This formulation allows one to use independently the approximations in each subdomain. Continuity conditions between subdomains and boundary conditions are incorporated directly into the formulation.

• It uses the shape functions that satisfy the governing equation in each subdomain. These shape functions are in form of the linear combination of propagative waves.

They have two scales of approximations. The fast variation scale corresponds to the wave functions. The amplitude of wave is the slow variation scale. The VTCR calculates the fast variation scale analytically. Only the slow variation scale is discretized.

The VTCR was first introduced in [Ladevèze, 1996]. It has been developed for 3-D plate assemblies in [Rouch et Ladevèze, 2003], for plates with heterogeneities in [START_REF] Ladevèze | A multiscale computational method for medium-frequency vibrations of assemblies of heterogeneous plates[END_REF], for shells in [START_REF] Riou | Extension of the Variational Theory of Complex Rays to shells for medium-frequency vibrations[END_REF], and for transient dynamics in [START_REF] Chevreuil | Transient analysis including the low-and the medium-frequency ranges of engineering structures[END_REF]. Its extensions to acoustics problems can be seen in [START_REF] Riou | The multiscale VTCR approach applied to acoustics problems[END_REF], Ladevèze et al., 2012, Kovalevsky et al., 2013]. In [START_REF] Barbarulo | Proper generalized decomposition applied to linear acoustic: a new tool for broad band calculation[END_REF] the broad band calculation problem in linear acoustic has been studied. Nevertheless, all these developments are limited to the Helmholtz problem of piecewise constant wave number.

The originality of this dissertation is to solve the heterogeneous Helmholtz problem. Two numerical approaches are developed. The first approach is presented in Chapter 3. It is the extension of the VTCR. New shape functions are developed namely Airy wave functions. These Airy wave functions satisfy the Helmholtz equation when the square of wave number varies linearly. Through academic studies, the convergence properties of this method are illustrated. The convergence of the VTCR could be quickly achieved with a small amount of degrees of freedom. p-convergence is more efficient than h-convergence. Then the extended VTCR is applied to solve an unbounded harbor agitation problem. This example is studied by adopting different domain discretization strategies and by modifying the direction parameter of incoming wave. The result is evaluated by an error estimator and it proves the practicability of the extended VTCR in engineering problem. The second approach is presented in Chapter 4. It is the Weak Trefftz Discontinuous Galerkin method. One locally develops general approximated solution of the governing equation, the gradient of the wave number being the small parameter. In this ways, zero order and first order approximations are defined. These functions only satisfy the local governing equation in the average sense. Consequently, residue exists in each subdomain and a refined domain discretization strategy is necessary to decrease the residue. The academic studies present the convergence properties of the WTDG. The harbor agitation problem is again solved by the WTDG and a comparison with the extended VTCR is made. Finally a modified harbor problem with the parameter of wave number being raised to mid-/high-frequency range is resolved. In Chapter 5, the WTDG is extended to mix the polynomial and the wave approximations in the same subdomains, at the same time. Through numerical studies, it illustrates that such a mix approach presents better performances than a pure FEM approach or a pure VTCR approach in the problem with a bandwidth including low-frequency and mid-frequency. Parallel with theoretical development, a software is created: HeterHelm(HETERogeneous HELMholtz). This software is programmed in the environment of MATLAB during the thesis. All the numerical results in this dissertation are obtained from this software. Following this thesis, there are mainly two prospectives of the possible developments. The first prospective is to extend the extended VTCR and the WTDG to vibration for heterogeneous media. Since the excitation problem is different from acoustic, it is not easy to conduct the extended VTCR to this extension. On the other side, without restriction of the governing equation, the extension of the WTDG could be achieved without difficulty. The second prospective is the extension of the WTDG to transient nonlinear problems. In work [Cattabiani, 2016], the VTCR was proved to be able to solve transient problem in a piecewise homogeneous media. The extension to nonlinear ones as viscoplasticity and damage phenomena imposes to work with heterogeneous media. Then, the work with the WTDG could be seen as a first step toward this goal.

French resume

Le sujet de thèse s'intéresse au développement des méthodes numériques pour résoudre les problèmes de Helmholtz, en moyennes fréquences, dans les milieux hétérogènes. Les problèmes de Helmholtz jouent un rôle majeur dans le monde industriel. C'est le cas par exemple dans l'industrie automobile où les contraintes du marché et le respect des normes antipollution ont conduit les constructeurs à produire des véhicules toujours plus légers, mais de ce fait beaucoup plus sujets aux vibrations. Le confort acoustique des passagers dans un avion ou des habitants dans un bâtiment en est un autre exemple. Il nécessite la maîtrise du comportement vibro-acoustique de la structure, qui doit être pris en compte dès la conception. Un dernier exemple est celui de l'industrie navale, où la problématique du comportement vibratoire est intégrée très tôt dans la conception des navires de grande taille. Aujourd'hui, avec le développement des outils informatiques, on est capable de traiter ce genre de problème par des méthodes numériques. C'est l'approche qui est proposée dans ce travail.

Dans cette thèse, on considère principalement le problème de vibration issu de l'équation d'Helmholtz hétérogène. C'est cette équation qui peut être utilisée, par exemple, dans la modélisation de l'agitation des vagues dans un port, dans lequel la profondeur varie au fur et à mesure que le rivage est proche. Dans les travaux de [START_REF] Modesto | Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation[END_REF], ce problème est traitée par la méthode des élément finis avec la technique Perfectly Matched Layer. La Proper Generalized Decomposition, technique de la réduction de modèle, est utilisée pour étudier l'influence des différents paramètres sur le résultat. Ici, nous proposons de le faire par une méthode de Trefftz. Il est d'usage de définir les gammes de fréquences selon la taille relative des composants d'un système par rapport à une longueur d'onde (voir la Figure 8). Lorsque la taille d'un composant est plus petite que la longueur d'onde de sa réponse, on parle alors de basse fréquence (BF) qui est essentiellement caractérisé par un comportement modal du système, avec des pics de résonance bien distincts les uns des autres. Les problèmes de cette plage de fréquences ne sont pas sensibles à l'incertitude. Les méthodes de calcul les plus utilisées pour BF sont basées sur la méthode des éléments finis (FEM). Lorsque la taille d'un composant est beaucoup plus grande par rapport à longueur d'onde, sa réponse implique généralement un grand nombre de modes locaux. On parle alors du domaine de la haute fréquence (HF). Dans ce domaine, l'aspect local de la réponse du système disparait. Le champ vibratoire comporte tellement d'oscillations que la réponse locale du système perd de son sens. Les approches dédiées à ce domaine s'appuient donc sur [Ohayon et Soize, 1998].

des considérations statistiques appliquées à des grandeurs énergétiques globales comme l'analyse statistique de l'énergie (SEA) [Lyon et Maidanik, 1962], FEM-SEA [De Rosa et Franco, 2008, De Rosa et Franco, 2010], Wave Intensity Analysis [Langley, 1992], The Energy flow Analysis [START_REF] Belov | Propagation of vibrational energy in absorbing structures[END_REF][START_REF] Buvailo | [END_REF], Ray tracing méthode [START_REF] Krokstad | Calculating the acoustical room response by the use of a ray tracing technique[END_REF], Chae et Ih, 2001]. La gamme de fréquences intermédiaires est le domaine de la moyenne fréquence (MF). Ce domaine est caractérisé par une densification modale importante et une hypersensibilité du champ vibratoire par rapport aux conditions sur le bord. Ces caractéristiques impliquent l'impossibilité d'utiliser des méthodes de la BF et de la HF vers cette gamme de fréquences. C'est une des raisons qui a fait apparaître les approches ondulatoires, basée sur les travaux de Trefftz [Trefftz, 1926], qui utilisent les solutions générales des équations d'équilibre comme les fonctions de forme.

Parmi ces méthodes, celle qui a été retenue pour ce travail est la Théorie Variationnelle des Rayons Complexes (TVRC). Elle a été introduite pour la première fois dans [Ladevèze, 1996], et depuis l'activité de recherche sur cette approche a porté sur nombreux aspects. Tout d'abord, la TVRC a montré son efficacité dans le traitement des vibrations des assemblages complexes de structures planes [Rouch et Ladevèze, 2003] et de type coques [START_REF] Riou | Extension of the Variational Theory of Complex Rays to shells for medium-frequency vibrations[END_REF]. Ensuite des travaux ont porté sur l'utilisation de la méthode dans le cadre d'une approche fréquentielle pour la résolution de problème de dynamique transitoire incluant le domaine des MF [START_REF] Chevreuil | Transient analysis including the low-and the medium-frequency ranges of engineering structures[END_REF]. La TVRC a ensuite été étendue au traitement des vibrations acoustiques [START_REF] Riou | The multiscale VTCR approach applied to acoustics problems[END_REF], Ladevèze et al., 2012, Kovalevsky et al., 2013]. Avec le PGD, elle a été appliquée aux problèmes sur des bandes de fréquence [START_REF] Barbarulo | Proper generalized decomposition applied to linear acoustic: a new tool for broad band calculation[END_REF]. Plus récemment, des travaux ont été également effectués sur la réponse du choc [Cattabiani, 2016]. Néanmoins, la TVRC et la plupart des autres méthodes ondulatoires se limitent aux milieux homogènes par morceau. Pour les problèmes de Helmholtz hétérogènes, le Ultra Week Variational Formulation (UWVF) exploite l'exponentiel du polynôme pour approximer la solution. Le Discontinuous Enrichment Method (DEM) utilise les fonctions d'Airy pour résoudre le problème. Les travaux de cette thèse sont principalement liés à l'extension de la TVRC et la weak Trefftz discontinuous Galerkin méthode (WTDG) (voir [Ladevèze et Riou, 2014]) pour résoudre le problème de Helmholtz hétérogène. La WTDG n'utilise pas la solution exacte de l'équation d'équilibre comme fonction de forme. Par conséquent l'équation d'équilibre est pas vérifiée à priori et elle est introduite dans la formulation variationnelle pour être approchée. Cette approche est capable d'intégrer des fonctions de forme polynomiales dans sa formulation, et donc de coupler les éléments finis avec la TVRC dans les différentes sous-domaines d'un système. • p-convergence permet d'obtenir des niveaux de précision très grands avec peu de degré de libertés (ddls).
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• Moins de sous-domaines sont utilisés, plus vite le résultat converge. Un autre exemple plus compliqué pour illustrer la capacité de cette extension de la TVRC est celui de l'agitation du port. Les vagues viennent de loin, et agissent sur le port. Dans le modèle du port, le profondeur d'eau varie linéairement le long de l'axe y à l'intérieur du port. Étant donné la vitesse de l'eau v et la pulsation w, l'expression du nombre d'onde k est connue explicitement. Les conditions aux limites sur les bords sont de type réflection totale. Comme le problème défini est non borné, la solution doit vérifier la condition de Sommerfeld. Le domaine du problème est globalement divisé dans trois sous-domaines. Les fonctions de forme sont les fonctions Hankel modifiée en Ω 1 , les ondes planes en Ω 2 et les fonctions d'onde d'Airy en Ω 3 . Avec seulement 20 ddls en Ω 1 , 100 ddls en Ω 2 , 160 ddls en Ω 3 . Un résultat est obtenu avec une erreur relative de 6.21 • 10 -3 (voir Figure 11). Si on divise l'intérieure du port en 4 sous-domaines et avec 160 ddls en chaque de ces sous-domaines, le résultat est obtenu avec une erreur relative de 1.52 • 10 -2 (voir Figure 12). 

U = {u | u |Ω E ∈ U E } U E = {u E | u E ∈ V E ⊂ H 1 (Ω E )|(1 -iη)∆u E + k2 E u E + r d = 0} (21)
où kE est un valeur approximé par l'expansion de Taylor de k(x). En utilisant l'ordre 0 de l'équation, la solution générale de l'équation d'équilibre peut être approximée par la fonction d'onde plane. Avec l'approximation d'ordre 1, on peut utiliser la fonction d'onde d'Airy. Ces deux approximations sont définies comme le zéro ordre WTDG et le premier ordre WTDG. Dans un des exemples numériques, on considère un domaine Ω en Le chapitre 5 s'intéresse au couplage entre une approximation de type onde et une approximation de type FEM dans le cadre de la formulation variationnelle de WTDG. C'est par la réalisation d'un tel couplage que les problèmes de bande passante qui contient la BF et la MF sont bien résolus. La capacité de cette méthode de pouvoir traiter des problèmes multi-échelles ayant des sous-systèmes à MF couplés à des sous-systèmes BF est aussi illustrée.

Ce travail de thèse développe des stratégies de calcul pour résoudre les problèmes de Helmholtz, en moyennes fréquences, dans les milieux hétérogènes. Il s'appuie sur l'utilisation de la TVRC, et enrichit l'espace des fonctions qu'elle utilise par des fonctions d'Airy, quand le carré de la longueur d'onde du milieu varie linéairement. Il généralise aussi la prédiction de la solution par la WTDG pour des milieux dont la longueur d'onde varie d'une quelconque autre manière. Pour cela, des approximations à l'ordre zéro et à l'ordre un sont définies, et vérifient localement les équations d'équilibre selon une certaine moyenne sur les sous domaines de calcul. Plusieurs démonstrations théoriques des performances de l'extension de la TVRC et de la WTDG sont menées, et plusieurs exemples numériques illustrent les résultats. La complexité retenue pour ces exemples montrent que les approches retenues permettent de prédire le comportement vibratoire de problèmes complexes, tel que le régime oscillatoire des vagues dans un port maritime. Ils montrent également qu'il est tout à fait envisageable de mixer les stratégies de calcul développées avec celles classiquement utilisées, telle que la méthode des éléments finis, pour construire des stratégies de calcul utilisables pour les basses et les moyennes fréquences, en même temps.
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 21 Figure 2.1: Left: reference problem. Right: discretization of computational domain.

  .1) with r d = 0. By replacing (2.11) back in to the Helmholtz equation, one could find two classes of waves, namely propagative wave and evanescent wave. Examples of propagative wave and evanescent wave could be seen in Figure 2.2.
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 22 Figure 2.2: Left: propagative wave. Right: evanescent wave.
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 23 Figure 2.3: The definition of numerical example in Section 2.3.

Figure 2 . 4 :Figure 2 . 5 :

 2425 Figure 2.4: The evaluation of condition number along with the convergence of result in Section 2.3.

  Figure 2.7: The comparison of h-convergence and p-convergence in Section 2.4.3.
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 31 Figure 3.1: Behaviors of Airy functions.
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 32 Figure 3.2: Example of Airy wave and plane wave. Left: Airy wave with η = 0.001, α = 300 m -3 , β = 300 m -3 , γ = 600 m -2 , P = [cos(π/6),sin(π/6)]. Right: plane wave with η = 0.001, α = 0 m -3 , β = 0 m -3 , γ = 600 m -2 , P = [cos(π/6),sin(π/6)].

  Figure 3.3: Geometry definition for the test of numerical integration performance in Section 3.3.1.
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 3435 Figure 3.4: From left to right: First: definition of domain. Second: 1 subdomain discretisation. Third: 4 subdomains discretisation. Fourth: 9 subdomains discretisation.
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 36 Figure 3.6: Top view of Harbor in Section 3.5.2. θ + 0 represents the direction of incident wave.
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 37 Figure 3.7: Side view of Harbor in Section 3.5.2. Variable h represents depth of water from sea surface to the bottom. The depth h increases when it points from harbor inside to harbor outside.
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 38 Figure 3.8: First step for seeking analytic solution ouside the harbor
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 310 Figure 3.10: Half plane problem with boundary Γ O .
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 3 Figure 3.11: The first strategy in Section 3.5.2: domain inside the harbor divided into one computational subdomain.
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 3 Figure 3.12: The second strategy in Section 3.5.2: domain inside harbor divided into four computational subdomains.
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 3 Figure 3.13: Up: numerical result calculated by the first strategy of Figure 3.11 with θ + 0 = 45 • . Down: numerical result calculated by the second strategy of Figure 3.12 with θ + 0 = 45 • . Results of semi-unbounded domain Ω 1 are shown in a truncated part with r ∈ [1000 m, 2000 m] in polar coordinate.

Figure 3 .

 3 Figure 3.14: Up: numerical result inside the harbor calculated by the first strategy with θ + 0 = 45 • . Down: numerical result inside the harbor calculated by the second strategy with θ + 0 = 45 • .

Figure 3 .

 3 Figure 3.15: Up: numerical result calculated by the first strategy with θ + 0 = 35 • . Down: numerical result calculated by the first strategy with θ + 0 = 65 • . Results of semi-unbounded domain Ω 1 are shown in a truncated part with r ∈ [1000 m, 2000 m] in polar coordinate.
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 5 Numerical examples 4.5.1 Academic study of the Zero Order WTDG in the heterogeneous Helmholtz problem of slowly varying wave number A simple geometry of a square [0 m; 1 m]×[0 m; 1 m] is considered for the domain Ω. In this domain, k 2 = 150x + 150y + 1000, η = 0.01. k varies 14.02% on Ω. Boundary conditions on ∂Ω are Dirichlet type such that u d = 3 ∑ j=1 ψ(x,P j ), where ψ(x,P j ) is the Airy wave solution of heterogeneous Helmholtz equation in domain Ω. θ 1 = 10 • , θ 2 = 55 • , θ 3 = 70
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 41 Figure 4.1: From left to right: First: definition of domain, Second: 1 subdomain discretisation, Third: 4 subdomains discretisation, Fourth: 9 subdomains discretisation, Fifth: 16 subdomains discretisation, Sixth: 25 subdomains discretisation.

Figure 4 . 2 :

 42 Figure 4.2: The convergence curves for the example of Section 4.5.1. The five convergence curves of the Zero Order WTDG calculated with the strategies showed in Figure 4.1.
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 43 Figure 4.3: The convergence curves of the Zero Order WTDG in Section 4.5.2.

Figure 4 . 4 :

 44 Figure 4.4: The convergence curves of the First Order WTDG in Section 4.5.2.

Figure 4 . 5 :

 45 Figure 4.5: From left to right: First: the Zero Order WTDG with 4 subdomains and 100 waves per subdomain. Second: the Zero Order WTDG with 25 subdomains and 80 waves per subdomain. Third: the Zero Order WTDG with 100 subdomains and 40 waves per subdomain.

Figure 4 . 6 :

 46 Figure 4.6: From left to right: First: the First Order WTDG with 1 subdomain and 160 waves per subdomain. Second: the First Order WTDG with 4 subdomains and 120 waves per subdomain. Third: Solution calculated by the FEM with 625 elements of quadric mesh of order 3.

Figure 4 . 7 :

 47 Figure 4.7: Left: computational strategy of the VTCR. Right: computational strategy of the Zero Order WTDG.

Figure 4 . 8 :

 48 Figure 4.8: The direction of incoming wave being θ + 0 = 45 • . Up left: reference numerical result calculated by the VTCR in Chapter 3. Up Right: numerical result calculated by the Zero Order WTDG with five subdomains. Down left: numerical result calculated by the Zero Order WTDG with ten subdomains. Down Right: numerical result calculated by the Zero Order WTDG with fifteen subdomains.
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 49 Figure 4.9: The direction of incoming wave being θ + 0 = 45 • . Up left: reference numerical result calculated by the VTCR. Up Right: numerical result calculated by the Zero Order WTDG with five subdomains. Down left: numerical result calculated by the Zero Order WTDG with ten subdomains. Down Right: numerical result calculated by the Zero Order WTDG with fifteen subdomains.

Figure 4 .

 4 Figure 4.10: Global result considered in Section 4.5.3 with incoming wave direction θ + 0 = 45 • and the wave numbers increased to four times.

Figure 4 .

 4 Figure 4.11: Result of harbor inside considered in Section 4.5.3 with incoming wave direction θ + 0 = 45 • and the wave numbers increased to four times.
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 45 Numerical examples 5.4.1 Homogeneous Helmholtz problem of frequency bandwidth including LF and MF The domain being considered is the square Ω = [0 m; 0.5 m]×[0 m; 0.5 m]. The prescribed boundary conditions are u d = j=1 e ikζ(cosθ j •x+sinθ j •y) with θ 1 = 5.6 • , θ 2 = 12.8 • , θ 3 = 18 • , θ 4 = 33.5 • , θ 5 = 41.2 • and η = 0.0001. The bandwidth of the wave number k ranges from 5 m -1 to 72 m -1 . This example is interesting, because it covers different scales (from slow varying scale with k = 5 m -1 to fast varying scale with k = 72 m -1
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 51 Figure 5.1: Left: definition of domain. Middle: VTCR wave directions discretisation. Right: FEM mesh refinement.

Figure 5 . 2 :

 52 Figure 5.2: The convergence curves for the example of Section 5.4.1. The FEM curve corresponds to the solution obtained with a pure FEM discretization explained in Section.The VTCR curve corresponds to the solution obtained with a pure VTCR discretization explained in Section 5.4.1. The WTDG curve corresponds to the solution obtained with an enrichment of the FEM shape functions with waves, according to the FEM/WAVE WTDG approach.
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 53 Figure 5.3: The convergence curves for the example of Section 5.4.1. For each convergence curve, a fixed number of wave directions of VTCR part is chosen in FEM/WAVE WTDG strategy. The degrees of freedom of FEM part is varied in order to attain the convergence.
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 54 Figure 5.4: Up left: definition of the computational domain. Up right: exact solution u ex . Down left: representation of the fast varying scale result simulated by VTCR part u V TCR . Down right: representation of the slow varying scale result simulated by FEM part u FEM .
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 55 Figure 5.5: Up: WTDG solution u W T DG . Down: exact solution u ex .

Figure 5 . 6 :

 56 Figure 5.6: Left: computational domain Ω. Right: selected discretizations in the subdomains

Figure 5 . 7 :

 57 Figure 5.7: Up: FEM/WAVE WTDG solution. Down: exact solution.

Figure 8 :

 8 Figure8: Fonction de réponse en fréquence d'une structure complexe[Ohayon et Soize, 1998].

Figure 9 :

 9 Figure 9: Problème de référence et discrétisation du domaine

Figure 10 :

 10 Figure 10: Exemple d'onde d'Airy et d'onde plane. À gauche: Airy wave with η = 0.001, α = 300 m -3 , β = 300 m -3 , γ = 600 m -2 , P = [cos(π/6),sin(π/6)]. À droite: plane wave with η = 0.001, α = 0 m -3 , β = 0 m -3 , γ = 600 m -2 , P = [cos(π/6),sin(π/6)].

Figure 11 :

 11 Figure 11: À gauche: la première stratégie. À droite: résultat de la première stratégie avec θ + 0 = 45 • .Le chapitre 4 est consacré au développement de la WTDG basé sur les ondes, pour les les problèmes de Helmholtz hétérogènes. L'équation d'équilibre n'est pas vérifiée a priori. L'espace admissible de la WTDG est composée par les solutions u qui vérifient l'équation d'équilibre approximée:

Figure 12 :

 12 Figure 12: À gauche: la deuxième stratégie. À droite: résultat de la deuxième stratégie avec θ + 0 = 45 • .

Figure 13 :Figure 14 :

 1314 Figure 13: En haut: résultat du Zéro Ordre WTDG en utilisant 4, 25, 100 sous-domaines. En bas: courbes de convergence du Zéro Order WTDG
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Table 3 .

 3 6: Difference between the quad integral values and the reference integral values on ∂Ω are Dirichlet type such that u d =

3

∑ j=1 ψ(x,y,P j ), where ψ(x,y,P j ) is the Airy wave solution of heterogeneous Helmholtz equation in domain Ω. θ 1

  To demonstrate that condition (P) is satisfied, let us take a E ∈ U E , E ∈ E a piecewise constant. Since U E is the combination of FEM and VTCR, u could be any linear combination of polynoms and wave functions. Therefore when u = a E a piecewise constant, u could only be the polynomial function of order 0. Let us note that ∀E ∈ E a E ′ = β E (β E constant over Ω E ) for any subdomain E ′ sharing a common boundary with E. Let us introduce z E

Titre : Sur des stratégies de calcul ondulatoires pour les milieux hétérogènes Mots-clés : hétérogène, moyennes fréqences, TVRC, WTDG Résumé : Ce travail de thèse s'intéresse au développement de stratégies de calcul pour résoudre les problèmes de Helmholtz, en moyennes fréquences, dans les milieux hétérogènes. Il s'appuie sur l'utilisation de la Théorie Variationnelle des Rayons Complexes (TVRC), et enrichit l'espace des fonctions qu'elle utilise par des fonctions d'Airy, quand le carré de la longueur d'onde du milieu varie linéairement. Il s'intéresse aussi à une généralisation de la prédiction de la solution pour des milieux dont la longueur d'onde varie d'une quelconque autre manière. Pour cela, des approximations à l'ordre zéro et à l'ordre un sont définies, et vérifient localement les équations d'équilibre selon une certaine moyenne sur les sous domaines de calcul.

Plusieurs démonstrations théoriques des performances de la méthodes sont menées, et plusieurs exemples numériques illustrent les résultats. La complexité retenue pour ces exemples montrent que l'approche retenue permet de prédire le comportement vibratoire de problèmes complexes, tel que le régime oscillatoire des vagues dans un port maritime. Ils montrent également qu'il est tout à fait envisageable de mixer les stratégies de calcul développées avec celles classiquement utilisées, telle que la méthode des éléments finis, pour construire des stratégies de calcul utilisables pour les basses et les moyennes fréquences, en même temps.

Title : On wave based computational approaches for heterogeneous media

Keywords : heterogeneous, mid-frequency, VTCR, WTDG Abstract : This thesis develops numerical approaches to solve mid-frequency heterogeneous Helmholtz problem. When the square of wave number varies linearly in the media, one considers an extended Variational Theory of Complex Rays(VTCR) with shape functions namely Airy wave functions, which satisfy the governing equation. Then a general way to handle heterogeneous media by the Weak Trefftz Discontinuous Galerkin (WTDG) is proposed. There is no a priori restriction for the wave number. One locally develops general approximated solution of the governing equation, the gradient of the wave number being the small parameter. In this way, zero order and first order approximations are defined, namely Zero Order WTDG and First Order WTDG. Their shape functions only satisfy the local governing equation in average sense.

Theoretical demonstration and academic examples of approaches are addressed. Then the extended VTCR and the WTDG are both applied to solve a harbor agitation problem. Finally, a FEM/WAVE WTDG is further developed to achieve a mix use of the Finite Element method(FEM) approximation and the wave approximation in the same subdomains, at the same time for frequency bandwidth including LF and MF.
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