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The growing worldwide interest towards renewable energy is reflected in the investment done by each country in wind energy. According to surveys by Global Wind Energy Council (GWEC), in terms of both newly installed and cumulated capacity in 2015 China holds the leadership position, followed by the U.S.A. and Germany [1]. Globally the overall cumulative installed wind capacity shows an increasing trend for the last 15 years, as shown in Figure 1.1.

The formally known European Wind Energy Association (EWEA), renamed Wind Europe as of 2016, provides annual statistics reports on European wind power. Annual onshore and offshore installations in Europe in 2015, graphically depicted in Figure 1.2, show an increasing trend. It can also be noticed that the offshore installations play an increasing role in the overall figures. The 2015 offshore installations represent 24% of the annual European wind energy market [2]. Overall, Europe's increasing interest in renewable energy and especially wind energy is confirmed by the continuously increasing cumulative installed wind capacity, graphically depicted in Figure 1.3. Figure 1.2.: Annual onshore and offshore installations in Europe (in MW) [2] The current trends and forecasts [1] regarding the wind energy market are encouraging. Indeed, the wind energy marked is expected to continue growing in the following years. In Figure 1.3 both cumulative and annual installations are shown for the European marked. The share of newly installed wind turbines(WTs) in 2015 has dropped below 10% of total installations [START_REF] Cablea | Method of Analysing Non-stationary Electrical Signals[END_REF]. This means that while it is important to continue researching for new technologies and design, more effort should be devoted to operation and maintenance of existing wind farms. 

General introduction

Wind turbines

Wind turbines

Wind turbines(WTs) are complex electromechanical systems which convert kinetic energy into electric energy. The kinetic power from the wind is converted into mechanical power by the rotor and blades sub-assembly. The electrical generator then converts the mechanical power into electrical power. This energy conversion flow is graphically depicted in Figure 1 

. Wind turbines configurations

WTs comprise both electrical and mechanical components. Throughout the years a variety of WT configurations were developed [4]:

• upwind or downwind WT rotors • two-or three-blade rotors

• fixed speed or variable speed rotors

• stall regulated or pitch regulated

• direct drive or geared drive

The current tendency is towards three-blade, upwind, pitch regulated rotor WTs growing in size [4,[START_REF] Topić | Availability of Different Wind Power Plant Configurations Based on Components Performance Statistics[END_REF].

The main drive-train configurations used in the industry can be split into four categories which are graphically depicted in Figure 1.5 and they are as [4,[START_REF] Hansen | Wind turbine concept market penetration over 10 years (1995-2004)[END_REF]:

• Type A: fixed speed WT concept, also known as the "Danish concept", stall regulated WT with a geared drive low-voltage squirrel cage induction generator (SCIG) connected directly to the medium-voltage grid through a transformer with power factor correction and a soft starter to reduce the inrush current;

• Type B: limited variable speed WT concept with variable rotor resistance, stall regulated WT with geared drive low-voltage wound rotor induction generator (WRIG) connected directly to the medium-voltage grid through a transformer with power factor correction and a soft starter to reduce the inrush current;

• Type C: variable speed WT concept with partial-scale power converter and doubly fed induction generator (DFIG). This so-called DFIG configuration is the most commonly used for WTs ≥ 1.5 MW.

• Type D: variable speed concept with full-scale power converter direct drive wound rotor synchronous generator with exciter (WRSGE), permanent magnet synchronous generator (PMSG) or SCIG connected to the medium-voltage grid through a transformer. The most widely used WT configurations are derived from Type C and D concepts [START_REF] Hansen | Wind turbine concept market penetration over 10 years (1995-2004)[END_REF][START_REF] Topić | Availability of Different Wind Power Plant Configurations Based on Components Performance Statistics[END_REF].

Dependability of wind turbines

Improving WT dependability is a vital objective for WT manufacturers and WT farms operators. Dependability is a collective term used to describe the availability performance and its influencing factors: reliability performance, maintainability performance, availability performance, and maintenance support performance. The reliability of a sub-assembly is defined as the probability that it will meet its required function under stated conditions for a specified period of time. The availability of a sub-assembly is defined as its ability (under combined aspects of its reliability, maintainability, and maintenance support) to perform its required function at a stated instant of time. The maintainability of a sub-assembly corresponds to the ability of an item, under stated conditions of use, to be retained in, or restored to, a state in which it can perform its required functions, when maintenance is performed under stated conditions and using prescribed procedures and resources.

For a maintained item, the two main characteristics reliability times are the time to failure (TTF) and time to repair (TTR) : in reliability theory [START_REF] Rausand | System Reliability Theory -Models[END_REF], these times are considered as random variable and characterized by a probability distribution. One is often interested in the mean value of the time to failure (MTTF) and the mean value of the time to repair (MTTR). For an exponentially distributed failure time, the MTTF is equal to 1/λ, where λ is the constant failure rate of the considered item. On the other hand, the MTTR corresponds to the expected time for the component to be repaired and, for a series system or sub-assembly, it is a part of the downtime of the whole system, as it will not be operational as long as its component is in a failed state. The total system downtime includes the time to repair plus all the logistics times (time to detect the failure, to receive the spare parts, to send the maintenance crew on site, etc.).

In order to study the reliability of WT systems, several surveys [START_REF] Ribrant | Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005[END_REF][START_REF] Spinato | Reliability of wind turbine subassemblies[END_REF][START_REF] Faulstich | Wind turbine downtime and its impor-tance for offshore deployment[END_REF] were used which take into account the failure rate and annual downtime for each sub-assembly of various WT populations. Firstly, it should be noticed that each of the WT populations considered in the different surveys have different parameters: population size, location, WT configurations, age, components taxonomy, etc. These differences account for the non-uniform results obtained regarding the most critical sub-assemblies (higher failure rate and/or highest downtime generated).

The gearbox is the most critical component in geared drive WTs [START_REF] Ribrant | Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005[END_REF][START_REF] Daneshi-Far | Review of failures and condition monitoring in wind turbine generators[END_REF]. Gearbox failures consist in several failure modes, like bearing faults or gear wheel faults. However, by removing the gearbox in direct drive WTs, the overall reliability of the systems has not increased [START_REF] Spinato | Reliability of wind turbine subassemblies[END_REF][START_REF] Daneshi-Far | Review of failures and condition monitoring in wind turbine generators[END_REF]. In fact the failure distribution has changed. The elimination of the gearbox has resulted in a substantial increase in the failure rate of electrical-related sub-assemblies, while the downtime of electrical-related sub-assemblies is lower than the downtime of gearboxes [START_REF] Spinato | Reliability of wind turbine subassemblies[END_REF]. Another conclusion with respect to design is that the larger WTs have lower reliability than smaller WTs.

In [START_REF] Faulstich | Wind turbine downtime and its impor-tance for offshore deployment[END_REF] the failures were categorised as minor (can be resolved within one day) and major (which require longer). Using data on onshore WTs reliability it has been concluded that minor failures represent 75% of all failures and are responsible for only 5% of the downtime. Major failures on the other hand represent 25% of all failures and are responsible for 95% of the downtime.

General introduction

There are several ways in which the reliability of WTs can be improved [START_REF] Spinato | Reliability of wind turbine subassemblies[END_REF]:

• by improving the design of the WTs;

• by testing the sub-assemblies under different operating conditions;

• by improving the operations and maintenance activities through the implementation of condition monitoring techniques.

Better monitoring performances allow an earlier detection of impeding failures so that the maintenance operations can be better anticipated and prepared. The system downtime can be thus reduced. This clearly shows the importance of efficient monitoring for WT reliability.

Maintenance strategies and monitoring systems

Maintenance strategies

The maintenance strategies can be categorised as graphically depicted in Figure. The corrective maintenance, also called breakdown maintenance, is a strategy according to which maintenance work is only performed once a complete failure occurred. The advantages of such a method are summarized by the low maintenance cost during operation and by the maximum lifetime use of components. Amongst the drawbacks of this strategy are the high risk of damage to other components and the fact that no scheduling is possible, thus spare parts logistics is more complicated and long delivery periods for parts are likely [START_REF] Daneshi-Far | Review of failures and condition monitoring in wind turbine generators[END_REF].

There are several types of preventive maintenance. The scheduled maintenance is one of the preventive methods and it means that the maintenance operation takes place at scheduled times, before the failure occurred. The scheduling is based on estimations of the lifetime of components and ideally the intervention takes place right before the component would fail. It has the advantages of reducing downtimes and easy spare parts logistics. However, it is more costly and the components are not used for maximum lifetime [START_REF] Daneshi-Far | Review of failures and condition monitoring in wind turbine generators[END_REF].

The condition-based maintenance implies the use of condition monitoring techniques to evaluate the health state of the components. The decision of whether and when maintenance work is needed is taken based on the observed state of the components and comparing it to a given threshold. This type of maintenance strategy has several advantages, like: longer lifetime use of components, low expected downtimes and the scheduling leads to easier spare 1.2. Maintenance strategies and monitoring systems parts logistics. However, the cost of such a maintenance strategy is higher as the cost for condition monitoring systems is added to the intervention cost. Also, the identification of appropriate condition threshold values is difficult [START_REF] Daneshi-Far | Review of failures and condition monitoring in wind turbine generators[END_REF].

The predictive maintenance strategy is very similar to the condition-based one. The main difference is that instead of setting a fixed value threshold, the predictive approach tries to estimate the remaining useful life of the considered component based on the current state and a fault evolution model.

Monitoring systems

There are several approaches in terms of monitoring WTs [4]:

• supervisory control and data acquisition (SCADA) systems provide low-resolution monitoring to supervise the operation of the WT and provide a channel for data and alarms from the WT;

• condition monitoring system (CMS) provide high-resolution monitoring of high-risk subassemblies of the WT for diagnosis and prognosis of faults;

• structural health monitoring (SHM) provide low-resolution signals for the monitoring of key structural elements of the WT.

SCADA systems are usually considered a low-cost monitoring system. Typical SCADA signals correspond to statistical features (for example: mean, maximum and minimum values, standard deviation) of the signals (e.g. temperature, current, power, wind speed, etc.) computed over a time window of up to 10 minutes [START_REF] Qiao | A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis -Part II: Signals and Signal Processing Methods[END_REF]. Such approaches are becoming more and more popular for WT monitoring [START_REF] Lebranchu | Analyse de données de surveillance et synthèse d'indicateurs de défauts et de dégradation pour l'aide à la maintenance prédictive de parcs de turbines éoliennes[END_REF].

CMS rely on the use of various signals, amongst which: vibrations, acoustic emissions, oil analysis, electrical, etc. Condition monitoring (CM) techniques are especially beneficial for offshore wind farms, where operations and maintenance (O&M) costs at sea are higher and typically larger WTs are deployed [START_REF] García Márquez | Condition monitoring of wind turbines: Techniques and methods[END_REF]. Vibration analysis is the most popular technique for WT CM. Various types of vibration sensors can be used, however, the most commonly encountered sensors are accelerometers. While vibration-based CM technologies have been mature, vibration signals usually have a low signal-to-noise ratio (SNR) when used to diagnose an incipient fault [START_REF] Qiao | A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis -Part II: Signals and Signal Processing Methods[END_REF]. Another disadvantage of vibration analysis is that WTs are instrumented with many accelerometers [START_REF] Daneshi-Far | Review of failures and condition monitoring in wind turbine generators[END_REF] (since vibration sensors are mounted on each critical component), thus increasing the overall cost of the CMS. Voltage and current signals coming from the terminals of the WT generator are also used for condition monitoring [START_REF] Qiao | A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis -Part II: Signals and Signal Processing Methods[END_REF]. Such signals can be used to detect both electrical and mechanical faults in the generator itself or the adjacent drive-train. Another advantage of the CM techniques using electrical signals is that they require a lower number of sensors [START_REF] Daneshi-Far | Review of failures and condition monitoring in wind turbine generators[END_REF].

Once acquired, the signals used for CM are then processed and/or analysed using various techniques, like [START_REF] Qiao | A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis -Part II: Signals and Signal Processing Methods[END_REF][START_REF] García Márquez | Condition monitoring of wind turbines: Techniques and methods[END_REF]: statistical analysis, Hilbert transform, fast Fourier transform (FFT), Wavelet transform, model-based methods, etc. Depending on the domain on which the analysis is performed, the employed signal processing methods can be time domain and/or frequency domain. Frequency analysis of electrical signals is particularly interesting for mechanical fault detection, as such faults modulate the electrical signals [START_REF] Qiao | A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis -Part II: Signals and Signal Processing Methods[END_REF].

KAStrion project

KAStrion [START_REF]KAStrion -Current and vibration analysis for preventive and predictive condition-based maintenance in offshore wind farms[END_REF] is a European innovation project entitled "Current and vibration analysis for preventive and predictive condition-based maintenance in wind farms". The project was founded by KIC InnoEnergy for three years, from 2012 to December 2014. The goal of the project was to maximize the production time of wind turbine farms. The means by which this goal was to be achieved is by proposing a two modules diagnostics solution:

• an embedded CMS for monitoring the WT state of health

• a remote diagnostic centre to centralize CM data coming from multiple WTs and to offer a user interface to human experts.

This was an international project thus involving partners from various locations in Europe. Table 1.1 lists the involved partners and their main roles. The project partners involve both public research laboratories (GIPSA-lab on behalf of Grenoble-INP and IRIT for INP-Toulouse) as well as private structures. The role of GIPSA-lab in this project, besides the leading one, was to develop software solutions containing algorithms for CM of the complex electromechanical systems which would later be transferred to the ECS partner which was in charge of the complete software and hardware solution. The implemented KAStrion CMS consists in two major modules:

• AStrion -data-driven vibration analysis module comprising multiple sub-modules [START_REF] Martin | KAStrion project: a new concept for the condition monitoring of wind turbines[END_REF] and detailed in two resulting PhD theses [START_REF] Gerber | Suivi dynamique de composantes modulées[END_REF][START_REF] Firla | Automatic signal processing for wind turbine condition monitoring[END_REF];

• System monitoring by electrical signature analysis (SMESA) -three-phase electrical signals method developed throughout the current thesis.

The resulting algorithms were tested and validated using experimental data from two different sources: a test-bench conceived and built by CETIM and two WTs equipped with the KAStrion CMS prototype with the courtesy of VALOREM. These two testing platforms are briefly described in the following sub-sections.

Test-bench description

As previously mentioned, a test-bench was designed and built accordingly to the structure of a real wind turbine. This was done by the project partner CETIM and the test-bench is located at their site in Senlis, France. The blades and rotor of a real WT are replaced by a motor on the test-bench. The motor is connected to the low speed shaft (LSS), followed by the gearbox, then the high speed shaft (HSS) and the asynchronous generator. The maximum power of the bench is 10 kW, thus simulations a wind turbine at a smaller scale. Two loading units are placed in this configuration in order to apply axial and radial forces for accelerated deterioration of components. One such unit is placed on the main bearing located on the LSS and the second unit is located on the HSS. Figure 1.7 depicts the test-bench and Figure 1.8 indicates its main components.

The test-bench is equipped with a multitude of sensors for vibrations, three-phase electrical signals (both voltages and currents), shaft speeds (LSS and HSS), temperature, etc. More details on the signals used in this manuscript are found in Chapter 5, Section 5.1. 1. General introduction

Arfons installation

For this project two WTs located in a wind farm near Arfons, France, were equipped with the KAStrion CMS prototype. The wind farm is owned by VALOREM, while the project partner VALEMO is in charge of operations and maintenance actions. The turbines are upwind, three bladed, variable speed, geared drive independent pitch WTs. They have a rotor diameter of 80 meters and the nominal power of 2 MW. The gearbox is a planetary gearbox with two parallel stages and has a coefficient of 100.6. At their output there is an asynchronous generator with a nominal power of 2050 kW. This Ph.D. project started a year and a half into the KAStrion project. The main approach for mechanical faults detection was vibration analysis and the initial objective of the current thesis was set to provide complementary information to the project CMS by using electrical signals to monitor for electrical faults and eventually to confirm mechanical faults. However, due to lack of experimental data containing electrical unbalance and interesting results regarding mechanical faults detection, the focus of electrical analysis changed to mechanical faults detection.

Three-phase approaches need more sensors than single-phase approaches. Thus, another goal for this work was to evaluate if the extra added cost of the CMS for the sensors is justified by the added benefits of three-phase approaches. More so, the proposed algorithms need to be fast, easy to implement and to have relatively low memory consumptions. In other words, they need to respect the constraints for an on-line embedded condition monitoring system. What the proposed work did not set out to do due to time limitations is to set thresholds and trigger alarm. This is intended for future works.

Overview of the manuscript

Chapter 2 serves as a scientific introduction giving the background on which the Ph.D. research was based. It starts with a short overview of the basic concepts of three-phase electrical systems, thus introducing the notions that are used throughout the manuscript. Afterwards, a literature review on fault signature in electrical signals is given, followed by an overview of the most commonly used three-phase transforms and the relations between them. A literature review on condition monitoring of three-phase rotating machines and drive-trains is then given and the main limitations of existing methods are discussed. The last part of Chapter 2 gives the positioning of the manuscript.

Chapter 3 presents the first scientific contribution of the research: an exhaustive study on the effect of the instantaneous symmetrical components(ISCs) transform on the processed signals. The chapter starts with a three-phase signal model and the definition of the ISCs transform. Afterwards, the effect of the transform is studied in terms of frequency content, separation of components and SNR. The obtained results are validated using synthetic signals.

Chapter 4 gives the theoretical study of mechanical faults signatures in electrical quantities and proposes the methods to detect the faults, based on the ISCs. The chapter starts with some considerations on amplitude and phase modulations. Then a single-phase current signal model from the literature corresponding to mechanical faults inducing load torque oscillations is extended to three-phase signals. Based on this model methods using electrical signals for the detection of mechanical faults inducing both low-frequency and high-frequency modulation are proposed. The results are validated using simulations.

Chapter 5 presents the experimental results for both proposed methods for low-frequency and high-frequency modulation induced by mechanical faults. The experimental signals used in this chapter were acquired on the test-bench implemented for the KAStrion project.

Chapter 6 deals with fault related electrical unbalance in three-phase systems. It starts with the definition and interpretation of electrical unbalance and then proposes a method to detect and localise the faulty phase. Experimental results from different systems are presented. However, the work presented in this chapter is to be regarded as prospective work. Due to lack of experimental data, the focus of the thesis has shifted from the electrical faults and thus the work on this aspect is not complete.

Chapter 7 gives the general conclusions of the whole PhD work, as well as some perspectives for future research. In this chapter the theoretical background for this thesis is given. The chapter starts with a short reminder of three-phase electrical signals terminology. Afterwards, the most frequent faults in three-phase electrical machines and drive-trains are discussed and their signatures in electrical signals are presented. The third section of this chapter gives an overview of the most commonly used three-phase transforms and the relations between them. The forth section presents a review of the literature concerning the main research focus points in terms of condition monitoring (CM) of three-phase electrical machines and drive-trains using threephase electrical signal analysis (ESA). The last section of this chapter gives the positioning of the thesis and its scientific goals.

2. Condition monitoring of rotating machines and drive-trains using electrical signals

Three-phase electric systems and signals -basic concepts

The purpose of this section is to remind the reader some basic concepts in three-phase electric signals. This section introduces the definition of the three-phase notions further used in the manuscript.

Three-phase electric systems and signals

Three-phase systems are widely used in most industries like power supply, manufacturing plants (e.g. paper mills), transportation (e.g. electric vehicles) or power generation (e.g. wind turbines). These systems can refer to the main power distribution grid, three-phase rotating machines, three-phase transformers, etc. Based on their internal configuration, such systems can be classified in two main categories: delta connected (Figure 2.1b) or star connected (also called wye connected Figure 2.1a). The acquired electrical signals can be either voltages or currents. In Figure 2.1, the blue quantities represent phase signals. The red currents are called line currents (i 1 , i 2 and i 3 ), while the red voltages are called line-to-line voltages (v 12 , v 23 and v 31 ). For star connected systems, the line and phase currents are the same while for delta connected systems the line-to-line and phase voltages are equal. The most commonly acquired signals are the line currents and line-to-line voltages. Star connected circuits may or may not have a neutral wire connected at node (N) in Figure 2.1a. Thus, another classification of three-phase systems is: three-wires circuits or four-wires circuits.

(N) (1) (2) (3) i 1 i 2 i 3 i 1 i 2 i 3 v 12 v 23 v 31 v 1 v 2 v 3 (a) Star(wye) connection (1) (2) (3) i 1 i 2 i 3 i 12 i 23 i 31 v 12 v 23 v 31 v 12 v 23 v 31 (b) Delta connection

Waveform and phasor representation of electric signals

Such signals are almost periodic signals, most often described as a sum of sine waves of a given frequency and its harmonics. Indeed electrical signals have most of their content located around the fundamental frequency. In time domain, the electrical quantities of a three-phase system can be expressed as a sum of sine-waves. Equation (2.1) generically describes such signals under the assumption of stationary signals, meaning that their amplitude, frequency and phase do not vary in time.

   x 1 (t) = A 1 f 0 cos(2πf 0 t + α 0 ) + η(t) x 2 (t) = A 2 f 0 cos(2πf 0 t + α 0 -ϕ 12 ) + η(t) x 3 (t) = A 3 f 0 cos(2πf 0 t + α 0 -ϕ 23 ) + η(t) (2.1)
Considering that k ∈ 1, 2, 3 denotes the phase number, the parameters are:

• x k (t) represents the electrical signal, either voltage or current, on a given phase.

• A k f 0 represents the peak magnitude of the signal at frequency f 0 .

• f 0 represents the fundamental frequency.

• ϕ 12 and ϕ 23 represents the phase shift between the signals on different phases.

• α 0 represents the original phase shift of the signal x 1 (t) and it is considered a random variable uniformly distributed in the interval [0, 2π].

• η(t) stands for components at other frequencies and noise.

At any given frequency, the signals are fully characterised by their phasors at the considered frequency. The corresponding phasors at fundamental frequency f 0 for the signals defined in equations (2.1) are:

   x 1 (t) = A 1 f 0 e jα 0 e jω 0 t x 2 (t) = A 2 f 0 e jα 0 e jω 0 t e -jϕ 12 x 3 (t) = A 3 f 0 e jα 0 e jω 0 t e -jϕ 23 (2.2)
where ω 0 = 2πf 0 . The term "phasor" can refer either to:

• the whole complex quantities x k (t),

• or just the complex constants (ignoring the time dependent part). A compact angle notation for the phasor x 1 (t) for example is: A 1 f 0 α 0 .

Balanced three-phase systems and phase sequence

Ideally, three-phase electric systems are perfectly balanced at any given frequency. A balanced three-phase systems means that all the acquired quantities (currents and voltages) have the same amplitude on each on the phases and an equal phase shift of 2π 3 between each other. Figure 2.2 depicts a set of balanced three-phase signals generically denoted by x, either voltages or currents. Each of the three signals has the same amplitude A f 0 and they have a phase shift of 2π 3 between each other at a given frequency f 0 . Each of the sub-figures depicts both the signal waveforms at a constant given frequency, as well as a snapshot of their phasor representation at moment τ . While the signal waveforms evolve from left to right with time, the phasors rotate with time in the counter-clockwise direction and with the angular speed indicated by ω 0 .

The phase sequence can be deduced from the phasor representation of the signals by choosing a view point, for example located at an angle of π 2 , and following the rotating direction given by ω 0 . The phase sequence is given by the order in which the phasors pass the view 2. Condition monitoring of rotating machines and drive-trains using electrical signals Regarding the different types of connections in three-phase systems (see Figure 2.1) and the different types of acquired signals, for balanced three-phase systems the following relationships exist between line and phase quantities.

0 π 2 π 3π 2 A f 0 ω 0 2π 3 2π 3 2π 3 Phasors τ A f 0 2π 3 2π 3 ω 0 t Signal waveforms x 1 (t) x 2 (t) x 3 (t) (a) Phase sequence 1-2-3 0 π 2 π 3π 2 A f 0 ω 0 2π 3 2π 3 2π 3 Phasors τ A f 0 2π 3 2π 3 ω 0 t Signal waveforms x 1 (t) x 2 (t) x 3 (t) (b) Phase sequence 1-3-2

Star circuits:

Delta circuits:

v line = √ 3 v phase 30 • v line = v phase i line = i phase i line = √ 3 i phase 30 •

Phase shift between voltage and current and electric powers

With regard to waveforms, a phase shift represents the amount by which a wave is shifted horizontally with respect to another wave. Phase shifts are usually measured in degrees or radians. With respect to phasor representations, the phase shift represents the angle between two phasors. At any given frequency and on each of the phases, depending on the phase shift between them, the voltage may be either leading, lagging or in phase with the current signal. Figure 2.3 depicts such relative positions between a voltage (v(t)) and a current (i(t)) signal on one phase at a given frequency f 0 .

Further on, considering the generic phase voltage signal v(t) with peak amplitude at frequency f 0 of V f 0 and the corresponding phase current signal i(t) with peak amplitude at frequency f 0 of I f 0 and a phase shift of ϕ 0 with respect to the voltage, the single-phase instantaneous complex power around frequency f 0 is defined as in Equation (2.3).

p f 0 (t) = 1 2 v f 0 (t)i * f 0 (t) = 1 2 V f 0 I f 0 e jϕ 0 ∈ C (2.
3)

The active power around f 0 is the projection of the complex power on the real axis and writes as:

P f 0 (t) = {p f 0 (t)} = 1 2 V f 0 I f 0 cos ϕ 0 ∈ R.
The reactive power around f 0 is the projection of the complex power on the imaginary axis and writes as:

Q f 0 (t) = {p f 0 (t)} = 1 2 V f 0 I f 0 sin ϕ 0 ∈ R.
The apparent power around f 0 is the amplitude of the complex power vector in the complex 2.1. Three-phase electric systems and signals -basic concepts 

0 π 2 π 3π 2 V f 0 I f 0 ϕ 0 ω 0 Phasors τ V f 0 I f 0 ϕ 0 ω 0 t Signal waveforms v(t) i(t) (a) Voltage leads the current by 90 • 0 π 2 π 3π 2 V f 0 I f 0 ϕ 0 ω 0 Phasors τ V f 0 I f 0 ϕ 0 ω 0 t Signal waveforms v(t) i(t) (b) Voltage lags the current by 90 • 0 π 2 π 3π 2 V f 0 I f 0 ω 0 Phasors τ V f 0 I f 0 ω 0 t Signal waveforms v(t) i(t)
S f 0 (t) = |p f 0 (t)| = 1 2 V f 0 I f 0 ∈ R.
The power factor is defined as cos (ϕ 0 ), where ϕ 0 = arg {p f 0 (t)} is the angle of the complex power vector in the complex plane. ϕ 0 corresponds to the phase shift between voltage and current on the given phase at frequency f 0 . Figure 2.4 graphically depicts the relationship between the different electric powers and phase shift. The three-phase electrical power is defined as the sum of the powers in the three phases. 
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Fault signatures in electro-mechanical systems

Nowadays, three-phase rotating machines are widely used in most industries like manufacturing plants (e.g. paper mills), transportation (e.g. electric vehicles) or power generation (e.g. wind turbines). Particularly, three-phase induction machines are most commonly used due to their robustness and lower price. Either used as electric generators to convert mechanical energy to electrical energy, or as electric motors to convert the energy in the other direction, three-phase rotating machines are a connecting component between a mechanical system and an electrical one. Such electro-mechanical systems are subject to both electrical and mechanical faults. Mechanical faults consist for example in bearing faults or gearbox faults, and can be located in the machine itself, as well as in a connected mechanical system, i.e. in the drive-train.

The following subsections detail the most common types of faults in electro-mechanical systems containing three-phase rotating machines. The causes and effects of such faults are discussed and the fault signatures in electrical signals of the stator are given. Because the literature regarding induction machines is much richer, the next sections focus on mechanical and electrical faults in systems containing such machines. Eccentricity related faults, broken rotor bars, bearing faults and stator faults account for more than 90% of the total induction motor failures [START_REF]Electric machines: modeling, condition monitoring, and fault diagnosis[END_REF], thus these are the types of faults that are detailed in what follows. Nonetheless, since the gearbox has been identified as a critical component in wind turbines [START_REF] Ribrant | Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005[END_REF], its faults are also considered.

Mechanical faults

Air-gap eccentricity

The air-gap eccentricity fault is an internal fault of the rotating machine consisting in a non-uniform distance between the rotor and the stator. Most often such faults are due to radial forces on the shaft (rotor) leading to radial displacement of the shaft. Some of the causes for such a fault are [START_REF]Electric machines: modeling, condition monitoring, and fault diagnosis[END_REF]: improper mounting, non-circularity of the stator core, loose or missing bolt, bent rotor shaft or misalignment, bearing wear or rotor unbalance. A significant amount of eccentricity can lead to stator to rotor rub thus resulting in damage of the rotor and stator.

The eccentricity of a three-phase rotating machine can be split into three main categories [START_REF] Faiz | Different indexes for eccentricity faults diagnosis in three-phase squirrel-cage induction motors: A review[END_REF] [24]:

• Static eccentricity: The rotor geometrical and rotational centre are the same, but different from the stator centre. The length of the air-gap at any given point on the stator is constant.

• Dynamic eccentricity: The rotor geometrical centre is different than its rotational one, which in turn is the same as the stator rotational centre. The length of the air-gap for any given point on the stator varies in time.

• Mixed eccentricity: This type of eccentricity is a combination between the previous two.

In this case the rotor geometrical centre, rotor rotational centre and the stator centre are all different.

The different types of eccentricities are graphically depicted in Figure 2.5.

s t a to r r o t or [START_REF] Blodt | Mechanical fault detection in induction motor drives through stator current monitoring -theory and application examples[END_REF]. The intersection of the dashed lines marks the centre of the stator, the circle marks the rotor rotational centre and the triangle marks the rotor geometrical centre.

If the distance between the rotor and the stator varies, the varying magnetic flux in the air-gap creates amplitude modulations of the air-gap flux density [START_REF] Schoen | Motor bearing damage detection using stator current monitoring[END_REF] which lead to sidebands of the slot frequency [START_REF] Benbouzid | A review of induction motors signature analysis as a medium for faults detection[END_REF]. The characteristic fault frequency for eccentricity faults is given as [START_REF] Benbouzid | A review of induction motors signature analysis as a medium for faults detection[END_REF][START_REF] Corne | Stator current measurements as a condition monitoring technology -The-state-of-the-art[END_REF][START_REF] Nandi | Condition Monitoring and Fault Diagnosis of Electrical Motors -A Review[END_REF]:

f ecc = f s (kR ± n d ) 1 -s p ± η (2.4)
where the variables are:

• f ecc the eccentricity characteristic frequency

• f s the supply frequency

• k = 1, 2, 3, ... any integer
• R the number of rotor slots

• n d the eccentricity order. n d = 0 for static eccentricity and n d = 1, 2, 3, ... in case of dynamic eccentricity

• s the slip

• p the number of pole pairs

• η stator magneto-motive force (MMF) harmonic order For brushless DC motors, there are no rotor bars or rotor windings and therefore there are no rotor slots thus the corresponding variables are 0 [START_REF] Rajagopalan | Dynamic Eccentricity and Demagnetized Rotor Magnet Detection in Trapezoidal Flux (Brushless DC) Motors Operating Under Different Load Conditions[END_REF] in Equation (2.4). This approach requires very extensive knowledge particular to the machine itself (like the number of rotor slots). Thus, a simplified expression of the eccentricity fault characteristic frequency is used and it only considers the modulations due to the fundamental sidebands of the supply frequency [START_REF] Benbouzid | A review of induction motors signature analysis as a medium for faults detection[END_REF]:

f ecc = f s 1 ± 1 -s p (2.5)
For induction machines(IMs), it has been shown that the type of modulations that this type fault induces are amplitude modulations [START_REF] Blodt | Distinguishing Load Torque Oscillations and Eccentricity Faults in Induction Motors Using Stator Current Wigner Distributions[END_REF][START_REF] Blodt | Mechanical fault detection in induction motor drives through stator current monitoring -theory and application examples[END_REF]. However, it has also been concluded that pure static eccentricity cannot be detected using the stator current [START_REF] Blodt | Mechanical fault detection in induction motor drives through stator current monitoring -theory and application examples[END_REF]. Using simulations it has been shown that the fault-related harmonics would become undetectable in stator currents for the case with average zero static eccentricity (one end is 50% static eccentricity and the other end is -50% static eccentricity). Figure 2.6 graphically depicts the inclined static eccentricity. 

Rolling element bearing

Rolling element bearing faults can be internal to the rotating machine (affecting the bearings of the machine) or they can be located on the drive train. Bearing faults are of the most commonly encountered faults. For example, in IMs and depending on the type and size of the machine, bearing faults account for approximately 40% (for large machines) to 90% (for small machines) of faults [START_REF] Riera-Guasp | Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: State of the art[END_REF].

Bearing faults begin with small fissures located below the surface which gradually propagate to the surface. Continued stressing causes fragments of the material to break loose leading to localized faults called flaking or spalling [START_REF] Schoen | Motor bearing damage detection using stator current monitoring[END_REF]. In the end these single-point faults evolve into generalized roughness faults. Some of the causes which lead to bearing faults are [START_REF]Electric machines: modeling, condition monitoring, and fault diagnosis[END_REF][START_REF] Bindu | Diagnoses of internal faults of three phase squirrel cage induction motor -A review[END_REF]: fatigue, ambient mechanical vibration, overloading, misalignment, contamination, wrong lubrication, etc. Figure 2.7 gives the generic rolling element bearing geometry, indicating its different parts and variables used for determining the characteristic fault frequencies. The characteristic fault frequencies [START_REF] Randall | Rolling element bearing diagnostics-A tutorial[END_REF][START_REF] Blodt | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF][START_REF] Corne | Stator current measurements as a condition monitoring technology -The-state-of-the-art[END_REF] for localized single-point faults are split into four categories, depending on the location of the fault occurrence:

• ball pass frequency -outer race (BPFO)

BP F O = n 2 f r 1 - d b d c cos θ (2.6)
• ball pass frequency -inner race (BPFI)

BP F I = n 2 f r 1 + d b d c cos θ (2.7)
• fundamental train frequency (FTF), cage speed:

F T F = 1 2 f r 1 - d b d c cos θ (2.8)
• ball (or roller) spin frequency (BSF/RSF):

BSF = d c 2d b f r 1 - d b d c cos θ (2.9)
where the variables are:

• n the number of rolling elements

• f r the mechanical rotor frequency The given bearing fault characteristic frequencies may vary by 1 -2% from the theoretical values, both as deviation from the calculated value and as random variation around the mean frequency [START_REF] Randall | Rolling element bearing diagnostics-A tutorial[END_REF]. For most bearings with 6 ≤ n ≤ 12 rolling elements, the BPFO anf BPFI characteristic frequencies can be approximated by [START_REF] Schoen | Motor bearing damage detection using stator current monitoring[END_REF][START_REF] Blodt | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF]:

•
BP F O = 0.4nf r BP F I = 0.6nf r
Bearing faults have several types of mechanical effects. Firstly, they can lead to mechanical impacts (shocks) with the previously given frequencies. These shocks can be seen in mechanical vibrations and they are monitoring using vibration analysis. Secondly, bearing faults trigger radial displacement and torque variations on the shaft, with the same previously given frequencies. These two effects lead to modulations of electrical signals and motor current signature analysis (MCSA) can be used for monitoring. Models for mechanical faults signature in electrical signals have been developed throughout the years. A model for bearing fault signature was proposed in [START_REF] Schoen | Motor bearing damage detection using stator current monitoring[END_REF] based on the fact that such faults trigger air-gap eccentricities related to the faults. Such models have been later improved [START_REF] Blodt | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF] and it was shown that bearing faults may induce torque variations as well as eccentricity. Thus, they can trigger phase and/or amplitude modulations in the electrical signals at well defined frequencies for each case. Later the models were extended for any type of mechanical faults [START_REF] Blodt | Distinguishing Load Torque Oscillations and Eccentricity Faults in Induction Motors Using Stator Current Wigner Distributions[END_REF][START_REF] Blodt | Mechanical fault detection in induction motor drives through stator current monitoring -theory and application examples[END_REF], not just the bearings. Table 2.1 gives a summary of bearing fault characteristic frequencies visible in the current signals in IMs [START_REF] Blodt | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF]. Table 2.1.: Sidebands due to bearing faults according to [START_REF] Schoen | Motor bearing damage detection using stator current monitoring[END_REF] eccentricity [START_REF] Blodt | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF] torque variations [START_REF] Blodt | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF] Outer raceway

f s ± kBP F O f s ± kBP F O f s ± kBP F O Inner raceway f s ± kBP F I f s ± f r ± kBP F I f s ± kBP F I ball defect f s ± kBSF f s ± F T F ± kBSF f s ± kBSF
Most literature focuses on the signature of bearing faults in induction motors. However, the same characteristic BPFO and BPFI frequencies were successfully used for bearing fault detection using the current signals of a permanent magnet synchronous machine (SM) [START_REF] Pacas | Bearing damage detection in permanent magnet synchronous machines[END_REF].

Gear mesh

Most medium sized and large wind turbine configurations contain gearboxes [START_REF] Qiao | A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis -Part I: Components and Subsystems[END_REF], thus the fault signatures characteristic to such faults are also interesting to mention. Indeed, gearbox failures contribute to approximately 20% of the downtime of wind turbines(WTs). The two main components of a gearbox are gears and bearings and most gearbox failures start from bearing faults [START_REF] Qiao | A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis -Part I: Components and Subsystems[END_REF]. Some of the causes for gearbox faults are: manufacturing and installing errors, misalignment, torque overloads, surface wear, and fatigue. Bearing faults were detailed in the previous subsection thus this subsection focuses only on gear faults. The two possible fault modalities that are rather common in gears [START_REF] Strangas | Response of electrical drives to gear and bearing faults -Diagnosis under transient and steady state conditions[END_REF][START_REF] Riera-Guasp | Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: State of the art[END_REF] are:

1. gears wear uniformly, resulting in backlash; 2. one or more teeth wear out due to impact or a manufacturing fault, which can result in impact during teeth meshing and further degradation. 

f m = nf r1 = N f r2 (2.10)
where the variables are:

• f m the gear mesh frequency

• f r1 and f r2 the input and output rotating frequencies

• n and N the numbers of teeth of each gear wheel

The mechanical effect of the gearbox failure on the stator currents of an IM has been modelled as torque variations on the rotor shaft which induce phase modulations [START_REF] Kia | Analytical and Experimental Study of Gearbox Mechanical Effect on the Induction Machine Stator Current Signature[END_REF]. Denoting the stator fundamental frequency by f s , the main corresponding characteristic fault frequencies in the current spectrum are given by [START_REF] Kia | Analytical and Experimental Study of Gearbox Mechanical Effect on the Induction Machine Stator Current Signature[END_REF][START_REF] Kia | A comparative study of acoustic, vibration and stator current signatures for gear tooth fault diagnosis[END_REF]:

f Gr1 = |f s ± f r1 | f Gr2 = |f s ± f r2 | f Gmesh = |f s ± f m | f Gr1mesh = |f s ± f r1 ± f m | f Gr2mesh = |f s ± f r2 ± f m |
Once again, the signature of gear mesh faults consists in modulation sidebands in electrical quantities.

General remarks regarding mechanical faults

Mechanical faults affect mechanical components, like the rotating shaft, bearings, gears, etc. Such faults generate interesting mechanical effects (visible using electrical quantities):

• radial forces on the shaft leading to radial displacement of the rotor shaft triggering air-gap eccentricity;

• torque variations of the shaft leading to variations of the rotating speed of the rotor shaft.

These effects are visible in the stator electrical quantities through induction. [START_REF] Blodt | Mechanical fault detection in induction motor drives through stator current monitoring -theory and application examples[END_REF] showed that they generate amplitude and phase modulations of these quantities, leading to modulations sidebands in the electrical signals.

Electrical faults in three-phase induction machines

Electrical faults in three-phase rotating machines depend on the type of machine itself. In this section only induction machines(IMs) are considered. Depending on their location, electrical faults in induction motors can refer either to stator faults or rotor faults. The next subsections give the fault signatures in the frequency domain for the most common stator and rotor faults.

Stator faults

Stator winding breakdown account for 30 -40% of all faults in induction motors [START_REF] Siddique | A Review of Stator Fault Monitoring Techniques of Induction Motors[END_REF]. They are generally known as phase-to-ground or phase-to-phase faults. It is considered that these major faults start as undetected smaller inter-turn short-circuit (ITSC) faults [START_REF] Nandi | Condition Monitoring and Fault Diagnosis of Electrical Motors -A Review[END_REF][START_REF] Bouzid | New expressions of symmetrical components of the induction motor under stator faults[END_REF].

Condition monitoring of rotating machines and drive-trains using electrical signals

The major causes for stator windings failure are [START_REF] Corne | Stator current measurements as a condition monitoring technology -The-state-of-the-art[END_REF][START_REF] Siddique | A Review of Stator Fault Monitoring Techniques of Induction Motors[END_REF]:

• Thermal stresses caused by overload, electrical unbalance or voltage distortion;

• Electrical stresses caused by partial discharges;

• Mechanical stresses due to coil movement and rotor striking the stator. The causes for these stresses can be bearing failures, shaft deflection, rotor-to-stator misalignment, etc.

• Environmental stresses / contamination caused for example by moisture or dirt.

The fault frequency signature in the stator current characteristic to a short-circuit is given by [START_REF] Nandi | Condition Monitoring and Fault Diagnosis of Electrical Motors -A Review[END_REF][START_REF] Thomson | On-line MCSA to diagnose shorted turns in low voltage stator windings of 3-phase induction motors prior to failure[END_REF] 

f st = f s k p (1 -s) ± n (2.11)
where the variables are:

• f st the fault frequency

• f s the stator fundamental frequency

• k = 1, 2, 3, ...

an integer number

• p the number of pole pairs

• s the slip

• n = 1, 3, 5, 7, ...
Finally, the main effect of such faults is the electrical unbalance of the stator which triggers negative-sequence stator currents [START_REF] Nandi | Condition Monitoring and Fault Diagnosis of Electrical Motors -A Review[END_REF][START_REF] Bouzid | New expressions of symmetrical components of the induction motor under stator faults[END_REF].

Broken rotor bar

Rotor failures account for around 5%-10% of total induction motor failures [START_REF] Nandi | Condition Monitoring and Fault Diagnosis of Electrical Motors -A Review[END_REF]. The causes for such faults are similar to the stator faults and correspond mostly to thermal, mechanical, environmental or electrical stresses. This type of faults also lead to electrical unbalance in the rotor current signals.

The effect of such faults is that they lead to a rotor electrically unbalanced thus triggering negative-sequence rotor currents. These currents generate torque and speed ripples at 2sf s leading to phase modulation of the stator currents [START_REF] Filippetti | AI techniques in induction machines diagnosis including the speed ripple effect[END_REF]. This type of fault induces sidebands (due to torque and speed oscillation) in the motor currents and the fault signatures are given by [START_REF] Nandi | Condition Monitoring and Fault Diagnosis of Electrical Motors -A Review[END_REF]:

f b = f s (1 ± 2ks) (2.12)
where the variables are:

• f s the stator fundamental frequency

• k = 1, 2, 3, ... an integer number

• s the slip

General remarks regarding electrical faults

Electrical faults affect the electrical components: stator windings, rotor windings, rotor bars, etc. Such faults generally break the symmetry of the three-phase electrical circuit. For the stator, the generated unbalance can be directly measured in the stator quantities. The rotor faults generate torque variations and stator modulations.

Overview of the fault signatures in electrical signals

As a general conclusion, mechanical faults trigger amplitude and phase modulations of the fundamental frequency in the spectrum of the stator current signals. Electrical faults generally induce unbalance in the three-phase signals and fault-related harmonics.

Short review of three-phase transforms

In order to efficiently combine and process the information contained in the three phases as a whole during the first half of the 1900s various authors worked on the development of the symmetrical components(SCs) approach. Several three-phase transforms are now most commonly used such as the Fortescue transform [START_REF] Fortescue | Method of symmetrical co-ordinates applied to the solution of polyphase networks[END_REF], the Clarke/Concordia transform [START_REF] Clarke | Circuit Analysis of A-C Power Systems[END_REF] or the Park transform [START_REF] Park | Two-reaction theory of synchronous machines generalized method of analysis-part I[END_REF]. In [START_REF] Paap | Symmetrical components in the time domain and their application to power network calculations[END_REF], all these transforms are shown to be equivalent and they all have a common root in the Fortescue transform [START_REF] Ferrero | A systematic, mathematically and physically sound approach to the energy balance in three-wire, three-phase systems[END_REF].

In 1918 Fortescue proposed a method of decomposing any n-phase unbalanced system into a set of n symmetrical systems called symmetrical components [START_REF] Fortescue | Method of symmetrical co-ordinates applied to the solution of polyphase networks[END_REF]. As the most common type of poly-phase system is a three-phase one, most commonly this method is applied with the use of a three-phase matrix transform. The proposed transform considers the set of three-phase phasors (x 1 , x 2 and x 3 either voltage or current) which are decomposed as:

  x 1 x 2 x 3   =   1 1 1 a 2 a 1 a a 2 1   F   x + x - x 0   , with F -1 = 1 3   1 a a 2 1 a 2 a 1 1 1   (2.13)
where a = e j 2π 3 , F denotes the Fortescue matrix, x + , x -and x 0 denote the SCs:

• x + the positive-sequence SC,

• x -the negative-sequence SC,

• x 0 the zero-sequence SC.

If the original three-phase system is perfectly balanced, only the positive-sequence SC exists and the other SCs would be null. Thus, the positive-sequence SC quantifies the amount of balance in the three-phase signals, while the negative-and zero-sequence components quantify the electrical unbalance.

Condition monitoring of rotating machines and drive-trains using electrical signals

According to Fortescue, any unbalanced three-phase system can be resolved at its fundamental frequency into a sum of three symmetrical systems:

• 1 a 2 a T x + set of the positive-sequence component: balanced system of three phasors equal in magnitude, shifted by 2π 3 radians and in the same phase sequence as the original system;

• 1 a a 2 T x -set of the negative-sequence component: balanced system of three phasors equal in magnitude, shifted by 2π 3 radians and in the reverse phase sequence as the original system;

• 1 1 1

T x 0 set of the zero-sequence component: three phasors equal in magnitude and with no phase shift between them.

The term SCs is sometimes used for the whole system of SCs [START_REF] Ferrero | A systematic, mathematically and physically sound approach to the energy balance in three-wire, three-phase systems[END_REF] (for example positivesequence SC would refer to 1 a 2 a T x + ) or just the +, -, 0 quantities [START_REF] Bouzid | New expressions of symmetrical components of the induction motor under stator faults[END_REF]. In the current manuscript the accepted terminology is as described in the previous paragraphs, thus SCs refers to the +, -, 0 quantities. Usually, the SCs transform is used to obtain the SCs, thus the inverse Fortescue matrix F -1 is most commonly encountered. Depending on the application, the coefficient of the transform may be different. In (2.13), the matrix F -1 uses the coefficient 1 3 . When applied to perfectly balanced three-phase phasors, the resulting positive-sequence SC would have the same magnitude as the phase signals. However, for a magnitude invariant transformation of real-valued signals, a coefficient of 2 3 is generally used. For a unitary matrix transformation the coefficient is 1 3 .

The Fortescue transform was defined based on the steady-state phasors of sinusoidal functions [START_REF] Fortescue | Method of symmetrical co-ordinates applied to the solution of polyphase networks[END_REF][START_REF] Paap | Symmetrical components in the time domain and their application to power network calculations[END_REF]. Lyon is usually credited with the first application of the SCs transform to instantaneous signals [START_REF] Lyon | Transient Analysis of Alternating-current Machinery: An Application of Method of Symmetrical Components[END_REF][START_REF] Paap | Symmetrical components in the time domain and their application to power network calculations[END_REF]. When applied to instantaneous electrical signals, as opposed to phasors, the transform gives the so-called instantaneous symmetrical components(ISCs). The ISCs are further detailed in Chapter 3.

The transform defined by F -1 in (2.13) is a complex-valued transform. When the transform is applied to instantaneous real-valued signals, the negative-sequence ISC becomes redundant [START_REF] Paap | Symmetrical components in the time domain and their application to power network calculations[END_REF], as detailed in Chapter 3. Thus, another real-valued transform is used to obtain the so-called α -β -0 components and avoid this redundancy. This transform is called the Clarke transform [START_REF] Clarke | Circuit Analysis of A-C Power Systems[END_REF] and is given as:

  x α x β x 0   = 2 3   1 -1 2 -1 2 0 √ 3 2 - √ 3 2 1 2 1 2 1 2   C   x 1 x 2 x 3   , (2.14) 
where C denotes the Clarke transform and x α , x β and x 0 denote the resulting α -β -0 components. These components had various notations and denominations before settling on the α -β -0 ones [START_REF] Clarke | Circuit Analysis of A-C Power Systems[END_REF]. In fact, the α -β -0 components (obtained from real-valued phase signals) were defined [START_REF] Clarke | Circuit Analysis of A-C Power Systems[END_REF] based on the sum and difference between the positive-and negativesequence SCs as:

x α = x + + x - x β = 1 j (x + -x -)
In (2.14), if the coefficient 2 3 would be used for the positive-and negative-sequence component and 2 √ 3 for the zero-sequence one, the obtained transformation would be a unitary matrix [START_REF] Teodorescu | Grid converters for photovoltaic and wind power systems[END_REF].

The relation between the SCs and the α -β -0 components is given by the matrix T as:

  x + x - x 0   = 1 2   1 j 0 1 -j 0 0 0 2   T   x α x β x 0  
Both Fortescue and Clarke transforms are defined with respect to a static reference frame. Three-phase rotating machines usually have static components (stator) and rotating ones (rotor). Depending on the application for which the transforms are used, it might be interesting to use a rotating reference frame. In this case, the Park transform [START_REF] Park | Two-reaction theory of synchronous machines generalized method of analysis-part I[END_REF] might be better suited:

  x d x q x 0   = 2 3   cos (θ) cos θ -2π 3 cos θ + 2π 3 -sin (θ) -sin θ -2π 3 -sin θ + 2π 3 1 2 1 2 1 2   P (θ)   x 1 x 2 x 3   , (2.15) 
where P (θ) denotes the Park transform, θ denotes a time-dependent angle (usually the rotor position angle) and x d , x q and x 0 denote the resulting d -q -0 (direct-quadrature-zero)

2. Condition monitoring of rotating machines and drive-trains using electrical signals components. The Park transform P (θ) can also be expressed as a product of the Clarke transform C and an angle transformation R(θ) [START_REF] Paap | Symmetrical components in the time domain and their application to power network calculations[END_REF][START_REF] Teodorescu | Grid converters for photovoltaic and wind power systems[END_REF].

  x d x q x 0   =   cos (θ) sin (θ) 0 -sin (θ) cos (θ) 0 0 0 1   R(θ)   x α x β x 0   Figure 2.
11 gives an overview of the relations between the most common three-phase transforms which have been presented in this subsection. The Concordia transform is the powerinvariant particular case of the Clarke transform for the coefficient C R(θ) In this section a small overview of condition monitoring (CM) techniques is presented. The focus of this review are the CM techniques which use electrical signals from a three-phase rotating machine to monitor electrical and mechanical faults in an electro-mechanical system. This overview is not an exhaustive review of all the available literature, however it does give the main research focus points on the subject of CM of three-phase rotating machines and drive trains.

F -1 T P (θ) 1, 2, 3 α, β, 0 d, q, 0 +, -, 0 ∈ R ∈ C

Single-phase motor current signature analysis

The most widely used method for CM using electrical signals is MCSA. This method is based on frequency analysis performed on the the stator current signals of an electrical machine. The MCSA was initially developed for single-phase current signals. Three-phase approaches were based on this method and are associated with it [START_REF] Benbouzid | A review of induction motors signature analysis as a medium for faults detection[END_REF] and literature on the MCSA may also include three-phase methods. However, in this manuscript the accepted definition of MCSA only refers to the single-phase method.

The main advantages of MCSA are the fact that it is non-intrusive, it is simple to implement and it needs few sensors and acquired signals. The MCSA method has been successfully used to detect a wide range of both mechanical and electrical faults [START_REF] Benbouzid | A review of induction motors signature analysis as a medium for faults detection[END_REF][START_REF] Corne | Stator current measurements as a condition monitoring technology -The-state-of-the-art[END_REF][START_REF] Riera-Guasp | Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: State of the art[END_REF]. The main 2.4. Condition monitoring of three-phase rotating machines and drive trains disadvantages of using this approach are due to the usual limitations of spectral analysis (spectral leakage [START_REF] Corne | Stator current measurements as a condition monitoring technology -The-state-of-the-art[END_REF], limited spectral resolution, stationary assumption) and the fact that it is a single-phase approach, thus it does not consider the whole information available in a three-phase system. The limitations related to the spectral analysis can be overcome by Hilbert demodulation, parametric spectral estimation methods and time-frequency approaches. For example, due to the leakage of the MCSA, detecting broken bars at a very low slip is very complex [START_REF] Corne | Stator current measurements as a condition monitoring technology -The-state-of-the-art[END_REF]. In order to overcome this, the MCSA was extended by demodulating the signals using a Hilbert transform [START_REF] Puche-Panadero | Improved resolution of the MCSA method via Hilbert transform, enabling the diagnosis of rotor asymmetries at very low slip[END_REF]. In [START_REF] Al Ahmar | Advanced signal processing techniques for fault detection and diagnosis in a wind turbine induction generator drive train: A comparative study[END_REF] different spectral estimation techniques are compared using simulated electrical current containing various faults: air-gap eccentricity, broken rotor bars and bearing damage. The Welch periodogram gave better results in terms of signal-tonoise ratio (SNR) compared to classical periodogram method. Other research works focus on improving the spectral resolution by parametric spectral estimation methods [START_REF] El Bouchikhi | Induction machine faults detection using stator current parametric spectral estimation[END_REF]. Timefrequency approaches like the Wigner Distribution [START_REF] Blodt | Mechanical load fault detection in induction motors by stator current time-frequency analysis[END_REF][START_REF] Blodt | Distinguishing Load Torque Oscillations and Eccentricity Faults in Induction Motors Using Stator Current Wigner Distributions[END_REF] were also used for non-stationary signals. However, the partial information limitation can be overcome by three-phase approches described in the next section.

Three-phase electrical signature analysis

Electrical signal analysis (ESA) is the general term for a set of electrical machine CM techniques through the analysis of electrical signals such as current and voltage [START_REF] Bonaldi | Predictive Maintenance by Electrical Signature Analysis to Induction Motors[END_REF]. In this section a short overview of the research-focuses based on three-phase approaches is presented.

Methods based on the use of three-phase transforms Three-phase transforms in time domain Three-phase transform based methods for condition monitoring have been developed during the past two decades. Such methods rely on the processing of the outputs of the three-phase transforms. However, the CM literature is not consistent in terms of denominations. Indeed, the output of the transforms (i.e. the ISCs) are named differently in various publications, for example:

• space vector [START_REF] Ignatova | Space Vector Method for Voltage Dips and Swells Analysis[END_REF], which corresponds to the positive-sequence ISC (x + (t)). The space vector is usually computed based on the α -β components as: x + (t) = x α (t) + jx β (t).

• Park vector components [START_REF] Cardoso | Computer-aided detection of airgap eccentricity in operating three-phase induction motors by Park's vector approach[END_REF], which correspond to the α -β components [START_REF] Önel | Induction Motor Bearing Failure Detection and Diagnosis: Park and Concordia Transform Approaches Comparative Study[END_REF]. The Park vector itself is equivalent to the space vector and the positive-sequence ISC.

Demodulation techniques Especially for mechanical faults, but not exclusively, a major research focus point is the demodulation of the three-phase signals. More particularly, the positive-sequence ISC of the stator currents is generally demodulated to detect mechanical faults in three-phase rotating machines. One such method is the so-called Park's vector approach (PVA) [START_REF] Cardoso | Computer-aided detection of airgap eccentricity in operating three-phase induction motors by Park's vector approach[END_REF]. This method relies on the so-called Park's vector, which is actually the positive-sequence ISC with a different coefficient, obtained using the Concordia/Clarke transform. The method was extended by computing the squared modulus of the current Park's vector and analysing its frequency content and called extended Park's vector approach (EPVA) [START_REF] Cruz | Rotor Cage Fault Diagnosis in Three-Phase Induction Motors by Extended Park's Vector Approach[END_REF]. Though also applied for bearing fault detection [START_REF] Silva | Bearing failures diagnosis in three-phase induction motors by extended Park's vector approach[END_REF], the main focus of the PVA and its later developments are electrical faults either in three-phase machines or power converters [START_REF] Estima | Recent advances in fault diagnosis by Park's vector approach[END_REF]. In [START_REF] Fournier | Current-based detection of mechanical unbalance in an induction machine using spectral kurtosis with reference[END_REF], the instantaneous frequency (IF) of the positive-sequence ISC is estimated and used to monitor mechanical faults inducing load-torque oscillations on the machine shaft. In [START_REF] Kia | Gear tooth surface damage fault profile identification using stator current space vector instantaneous frequency[END_REF] the IF of the space vector is analysed for the detection of gear tooth surface damage fault. The positive-sequence ISC obtained with a Concordia transform is amplitude and frequency demodulated in [START_REF] Trajin | Hilbert versus Concordia transform for three-phase machine stator current time-frequency monitoring[END_REF], [START_REF] Amirat | Wind turbines condition monitoring and fault diagnosis using generator current amplitude demodulation[END_REF], [START_REF] Choqueuse | Diagnosis of Three-Phase Electrical Machines Using Multidimensional Demodulation Techniques[END_REF] and [START_REF] El Bouchikhi | Stator current demodulation for induction machine rotor faults diagnosis[END_REF], and the obtained results are compared to several other demodulation techniques. All these studies have one major limitation. All the demodulation steps applied directly on the positive-sequence ISC in the previous papers assume that this component is a mono-component analytic signal, which is generally false. Indeed, the presence of harmonics and/or electrical unbalance in three-phase signals lead to the presence of different components with positive and negative frequency in the positive-sequence ISC. Consequently, the methods proposed in the previous articles do not properly demodulate this signal in the general case.

Another way to demodulate the three-phase electrical signals is to compute the instantaneous three-phase power. This quantity can also be estimated using the three-phase transforms [START_REF] Granjon | Condition monitoring of motor-operated valves in nuclear power plants[END_REF][START_REF] Drif | Stator Fault Diagnostics in Squirrel Cage Three-Phase Induction Motor Drives Using the Instantaneous Active and Reactive Power Signature Analyses[END_REF]. However, the major disadvantage of this approach is that it requires six electrical sensors to measure both three-phase voltages and currents, thus increases the global cost of the condition monitoring system (CMS).

Frequency domain analysis Detailed models of the current SCs of an IM under stator faults were developed and tested in [START_REF] Bouzid | Accurate stator fault detection insensitive to the unbalanced voltage in induction motor[END_REF][START_REF] Bouzid | New expressions of symmetrical components of the induction motor under stator faults[END_REF]. These studies have shown that the amplitudes and angles of the negative-and zero-sequence SCs can be used to detect and localize stator faults like ITSC faults on a single phase, phase-to-phase faults and single phase-to-ground faults [START_REF] Bouzid | New expressions of symmetrical components of the induction motor under stator faults[END_REF]. The influence of the voltage unbalance on the negative-sequence SC was also studied in [START_REF] Jacob | Stator fault detection in induction motor under unbalanced supply voltage[END_REF].

In [START_REF] Briz | Stator Windings Fault Diagnostics of Induction Machines Operated From Inverters and Soft-Starters Using High-Frequency Negative-Sequence Currents[END_REF] the negative-sequence ISC is used to detect stator windings faults in inverter-fed IMs or operated from soft-starters. The proposed method builds fault indicators based on the fifth harmonic of the negative-sequence ISC. However, this method is valid only for certain modes of operation of power converters.

Interpretations of geometric properties

Various geometric properties of trajectories drawn by electrical signals in the complex plane have been used to detect mostly electrical faults. In [START_REF] Ignatova | Space Vector Method for Voltage Dips and Swells Analysis[END_REF] the geometric properties of the trajectory drawn by the space vector were used to define indicators for classification and characterization of voltage dips and swells. In [START_REF] Yang | Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators[END_REF] a criterion e was defined based on the pattern of the space vector and used to detect winding faults in both rotor and stator. Both of these works only consider electrical faults.

Observing the fact that the Concordia and the Park transform denominations are often mingled, [START_REF] Önel | Induction Motor Bearing Failure Detection and Diagnosis: Park and Concordia Transform Approaches Comparative Study[END_REF] proposed a comparison between the two approaches. The considered fault for the comparison was a bearing fault and the trajectories of the quantities obtained using the two three-phase transforms were analysed. For this analysis the actual Park transform reaches better diagnosis capabilities than the Concordia transform, though it also has the disadvantage of depending on an extra signal corresponding to the rotational speed.

Three-phase approaches other than classical transforms

Besides the three-phase methods based on the use of one of the three-phase transforms described in Section 2.3, other methods are also available in the literature. Another interesting approach is a statistical approach. The Principal component analysis (PCA) approach [START_REF] El Bouchikhi | Stator current demodulation for induction machine rotor faults diagnosis[END_REF][START_REF] Choqueuse | Diagnosis of Three-Phase Electrical Machines Using Multidimensional Demodulation Techniques[END_REF] has been shown to be equivalent to the three-phase transform method in terms of estimating the instantaneous amplitude (IA) and IF of the electric signals.

Positioning of the thesis

Another geometric approach to condition monitoring using three-phase electrical signals was used in [START_REF] Phua | Estimation of geometric properties of three-component signals for condition monitoring[END_REF]. In this case, the three-phase signals are not processed by a three-phase transform. Instead the analysed trajectory corresponds directly to the processed considered signals. Moreover, this more general method can also be applied using vibration signals acquired on the three axes. This research is continued by [START_REF] Frini | Gear Fault Detection Using the Geometric Properties of Electrical Currents in Three-Phase Induction Motor-Based Systems[END_REF].

Positioning of the thesis

A common argument for using ESA techniques for CM of WTs is that the electrical signals are available since they are also used for control purposes. However, while it is true that such signals are acquired it is not necessarily true that the signals are made available by the WT manufacturer outside the control loop scope. Thus, in order to justify the increased cost of CM systems by using more sensors for three-phase ESA, the advantages of three-phase approaches must be clearly proven.

While some comparisons between single-phase and three-phase ESA do exist in the literature [START_REF] Silva | Bearing failures diagnosis in three-phase induction motors by extended Park's vector approach[END_REF][START_REF] El Bouchikhi | Stator current demodulation for induction machine rotor faults diagnosis[END_REF], they are focused on the methods point of view. This means that the results using a single-phase method are compared to the results obtained using a different threephase method. However, a signal-processing point of view comparison is needed to show the advantages brought by using the whole information contained in the three-phase signals. For this purpose, the content of single-phase and three-phase signal, obtained after the transform, should be compared by using the same analysis techniques.

All in all, two major limitations have been identified in the literature on CM by threephase ESA based on three-phase transforms. Firstly, the demodulation techniques applied directly on the positive-sequence ISC in the previous papers assume that this component is a mono-component analytic signal, which is generally false. Secondly, the effect of the threephase transforms on the noises present in the electrical signals was not investigated. Indeed, the presence of noises in electrical signals has been generally ignored. Thus a study on the influence of the three-phase transform on the SNR is needed.

The current thesis proposes a method for three-phase ESA based on ISCs, capable of detecting both electrical and mechanical faults in electro-mechanical systems. A study on the content of the ISCs is performed and the effect of the three-phase transform on the SNR is investigated. The output of the proposed method consists in various fault indicators capable of detecting a fault from an incipient stage. The fault detection decision process itself is beyond the scope of this thesis. This chapter presents an extensive study into instantaneous symmetrical components(ISCs). Firstly, the three-phase signal model is given, followed by the definition of ISCs transform. The third section would present the effect of the transform, interpreting its content and listing the main advantages that the use of ISCs has over the phase-signals in terms of separation of balanced and unbalanced components in the three-phase signals as well as an improvement of the signal-to-noise ratio (SNR). The theoretical results are then supported by simulation results using synthetic signals. For clarity reasons, the considered signals in this chapter are the three-phase currents. However, the same transform and its advantages is available also for voltage signals.

3

Instantaneous symmetrical components

The results presented in this chapter are also presented in [START_REF] Cablea | Three-phase electrical signals analysis for mechanical faults monitoring in rotating machine systems[END_REF].

Three-phase signal model

In order to study the effect of the ISCs transform on three-phase signals, we consider the three-phase currents signals formulation as in Equation (3.1). For clarity, the formulation is done under the assumption of stationary operating conditions (amplitude and frequency do not vary in time) and only the components around the fundamental frequency f 0 are considered. As it will be further shown, these assumptions do not constrain the validity of the results.

i(t) = a.e j2πf 0 t + n(t) (3.1) 
In (3.1), the vector i(t

) = i 1 (t) i 2 (t) i 3 (t)
T comprises the three current signals, the vector a = A 1 A 2 A 3 T contains the complex-valued amplitudes of the signals around the fundamental frequency f 0 and n(t

) = n 1 (t) n 2 (t) n 3 (t)
T contains the additive noise present in the three-phase currents.

Real systems are never perfectly balanced and they also contain an inherent unbalance described as small amplitude differences and phase shifts slightly different from the desired 2π 3 value. Thus, the complex coefficients amplitudes in a contain the balanced amounts, as well as the eventual unbalance factors. The noise n k (t), with k ∈ {1, 2, 3}, appearing on each phase is considered to be uncorrelated with the periodic signal part of either phase as well as with the noise on the other phases. This noise is also assumed second order stationary with a power spectral density (PSD) S n k (f ) not necessarily constant over f .

Instantaneous symmetrical components transform

Any set of three-phase signals can be decomposed as a sum of three instantaneous symmetrical components(ISCs):

  i 1 (t) i 2 (t) i 3 (t)   =   1 1 1 a 2 a 1 a a 2 1     i + (t) i -(t) i 0 (t)   , (3.2) 
where a = e j 2π 3 verifies a 3 = 1, a 2 = a * , where * denotes complex conjugation, and 1 + a + a 2 = 0. The ISCs of the original three-phase signal i(t) are:

• i + (t) the positive-sequence ISC, • i -(t) the negative-sequence ISC, • i 0 (t) the zero-sequence ISC.
This equation can be rewritten in order to highlight the modal decomposition [START_REF] Ferrero | A systematic, mathematically and physically sound approach to the energy balance in three-wire, three-phase systems[END_REF] of i(t):

  i 1 (t) i 2 (t) i 3 (t)   =   1 a 2 a   α + i + (t) +   1 a a 2   α - i -(t) +   1 1 1   α 0 i 0 (t), (3.3) 
where α + , α -and α 0 are orthogonal to each other with respect to the inner product of complex-valued vectors defined as u, v = v † u, where † denotes the conjugate transpose.

Effect of the transform

In order to obtain i + (t), i -(t) and i 0 (t) from the measured currents, the inverse of this transform can be used, as:

  i + (t) i -(t) i 0 (t)   = 1 3   1 a a 2 1 a 2 a 1 1 1   F -1   i 1 (t) i 2 (t) i 3 (t)   , (3.4) 
where F -1 denotes the inverse of the Fortescue matrix [START_REF] Fortescue | Method of symmetrical co-ordinates applied to the solution of polyphase networks[END_REF]. Once again, this equation can be rewritten using the previous set of orthogonal vectors:

  i + (t) i -(t) i 0 (t)   = 1 3    α † + α † - α † 0    F -1   i 1 (t) i 2 (t) i 3 (t)   (3.5)
In this particular form the ISCs are expressed as a set of three scalar products, or equivalently as a set of three orthogonal projections of the three-phase current i(t) onto the orthogonal vectors α + , α -and α 0 .

In the rest of this manuscript, the transform defined in Equation (3.4) is referred to as ISCs transform.

Effect of the transform

In order to better understand the behaviour and the interest behind using the ISCs, the effect of the ISCs transform on the three-phase signals is studied in detail in this section.

Spectral redundancy for real-valued signals

When applied to real-valued signals (i 1 (t), i 2 (t), i 3 (t) ∈ R), Equation (3.4) leads to ISCs verifying i 0 (t) ∈ R and the time domain redundancy of i + (t) = i * -(t) ∈ C
, where * denotes complex conjugation. In the frequency domain, these two properties previously stated express as

I 0 (f ) = I * 0 (-f ) and I -(f ) = I * + (-f ) for f ∈ R.
These two relations highlight a redundancy in the spectral content of ISCs between positive and negative frequencies, which is illustrated in Figure 3.1 for the frequency f 0 . From this, it is clear that an exhaustive spectral analysis of a given set of ISCs is obtained by analysing their spectra only for positive frequencies. This strategy is applied in the rest of this manuscript, where the spectral content of the different ISCs is analysed only around +f 0 , the stator fundamental frequency. This spectral redundancy of the ISCs leads to one important remark regarding the positiveand negative-sequence components. That is, while i + (t) and i -(t) are complex valued signals, they may have components with negative frequencies and consequently are not analytic signals as graphically shown in Figure 3.1. This remark leads to the fact that raw demodulation techniques (i.e. taking the modulus and the derivative of the phase angle) are not defined to be applied directly on the symmetrical components. In other words, instantaneous amplitude and frequency defined on the whole quantity i + (t) do not have a correct physical meaning [START_REF] Boashash | Estimating and interpreting the instantaneous frequency of a signal. i. fundamentals[END_REF]. 

f I 0 (f ) -f 0 I * 0 (f 0 ) f 0 I 0 (f 0 ) f I + (f ) -f 0 I * -(f 0 ) f 0 I + (f 0 ) f I -(f ) -f 0 I * + (f 0 ) f 0 I -(f 0 )

Separation of balanced and unbalanced components

The main advantage of using the symmetrical components approach has been stated as the property of separating balanced and unbalanced components contained in a three-phase signal. The need to separate balanced quantities in unbalanced three-phase systems lead to the development of approaches based on symmetrical coordinates (Figure 3.2). For an initial phase sequence (see Chapter 2, Section 2.1) of the current vector i(t) from (3.4) of 1-2-3, the balanced part of the original three-phase signal is isolated in the positive-sequence component, whereas the negative-and zero-sequence components contain its unbalanced parts. However, if the ISCs transform is applied as defined in (3.4) and the phase sequence of the current signals is 1 -3 -2, the balanced amount will be concentrated in the negative-sequence. 

i m (t) = 1 3 i(t), α m = 1 3 α † m i(t) = 3 k=1 1 3 α * mk i k (t) (3.6) 
The inner product properties are satisfied as:

• Conjugate symmetry:

α m , i(t) * = α * m , i * (t) = 3 k=1 (i * k (t)) * α * mk = 3 k=1 i k (t)α * mk = i(t), α m (3.7)
• Linearity in the first argument:

ci(t), α m = c i(t), α m , with c-constant (3.8) 
and

i a (t) + i b (t), α m = i a (t), α m + i b (t), α m , with i a (t), i b (t) two additive components (3.9)
• Positive definiteness:

i(t), i(t) ≥ 0 (3.10) and i(t), i(t) = 0 ⇔ i(t) = 0 (3.11)
Equation (3.6) shows that each ISC can be expressed as an inner product between the vector of original phase currents and the corresponding line of the inverse Fortescue matrix. Equivalently, this relation can be considered as a projection of the phase signals on new axes. As, for example, α + = 1 a 2 a T describes a perfectly balanced system of three-phase signals in a positive sequence order, the obtained instantaneous positive sequence component i + (t) is actually a measure of similarity between the original three-phase current and the ideal perfectly balanced one. Similar statements can also be made for the instantaneous negativeand zero-sequence components. Moreover, in the case of a signal constituted by the sum of several components and considering the linearity property of the ISCs transform, it can be concluded that each of the additive components of the original signals is projected on the new axes. In this case, i + (t) contains the sum of the balanced parts of each additive component composing the phase currents, while i -(t) and i 0 (t) contain the sum of their unbalanced parts.

In case the real-valued currents are used at the input of the ISCs transform instead of analytical ones (as in (3.1)), we can use Euler formula (Equation (3.12)) to switch between the two representations.

e jθ = cos (θ) + j sin (θ) (3.12) cos (θ) = {e jθ } = e jθ + e -jθ 2 sin (θ) = {e jθ } = e jθ -e -jθ 2j 
By denoting i R (t) the real-valued phase currents expressed in terms of cosines, Equation (3.13) links the periodic parts of the real-valued signals to the analytical ones as defined by (3.1), where the additive noise has been omitted.

i R (t) = 1 2 i(t) + 1 2 i * (t) (3.13) 
Equation (3.13) means that the real valued currents contain one component at f 0 with half the original amplitude and in the same phase sequence as the analytical signals and another component at -f 0 with half the amplitude and in inverse phase sequence. The effect of the ISCs transform can thus be expressed as (using the linearity property):

1 3 i R (t), α m = 1 3 1 2 i(t), α m + 1 3 1 2 i * (t), α m (3.14)
To better grasp the meaning of the formulation in (3.14), let us consider the perfectly balanced case. In this case, the obtained positive sequence component will contain only the quantity 1 2 i(t), α m from equation (3.14), meaning its amplitude would be half of the instantaneous amplitude of the phase signals. The other half of the equation would be cancelled out as the phase sequence of that quantity located at -f 0 would be inverted due to the complex conjugation. All in all, the ISCs computed from real-valued signals would only have half the original amplitude. Thus, in this case, a factor of 2 should be applied in order to obtain the correct amplitude.

Improvement of the signal-to-noise ratio

In order to show the signal-to-noise ratio (SNR) improvement provided by the use of the ISCs transform, we firstly determine the SNR of the phase currents modelled by Equation (3.1), under the assumptions given in Section 3.1. Under these assumptions, the PSD S i k (f ) of each phase current can be expressed as in Equation (3.15), with S c (f ) denoting the PSD of the common phenomena in the phase currents, regardless of phase number k = 1, 2, 3.

S i k (f ) = |A k | 2 S c (f ) + S n k (f ) (3.15) 
In this particular case where the common part of the phase currents is only represented by e j2πf 0 t , the common frequency component S c (f ) = δ(f -f 0 ) consists in a Dirac delta function located at frequency f 0 . This remark jointly with Equation (3.15) enables the definition of a SNR for each phase current valid at the frequency of interest f 0 :

SNR i k (f 0 ) = |A k | 2 S n k (f 0 ) , where k = 1, 2, 3 (3.16) 
Using equations (3.6) and (3.1), each ISC can be written as:

i m (t) = 1 3 3 k=1 α * mk A k e j2πf 0 t + 1 3 3 k=1 α * mk n k (t), where m ∈ {+, -, 0} (3.17) 
and their corresponding PSD, considering the uncorrelated noise assumption, as:

S im (f ) = 1 3 3 k=1 α * mk A k 2 δ(f -f 0 ) + 3 k=1 1 3 α * mk 2 S n k (f ) = 1 9 3 k=1 α * mk A k 2 δ(f -f 0 ) + 1 9 3 k=1 S n k (f ) (3.18)
where |α mk | = 1 has been used in the last expression. In a similar way as for phase currents, a SNR at frequency f 0 can be deduced for each ISC:

SNR im (f 0 ) = 1 9 3 k=1 α * mk A k 2 1 9 3 k=1 S n k (f 0 ) = | a, α m | 2 3 k=1 S n k (f 0 ) (3.19)
Equation (3.16) compares the amount of noise with the fundamental component at frequency f 0 for one phase current, while Equation (3.19) does the same comparison for one ISC, obtained after the application of the ISCs transform. The effect of this transform in terms of SNR can therefore be summarized thanks to the following SNR gain:

SNR im (f 0 ) SNR i k (f 0 ) = | a, α m | 2 |A k | 2 × S n k (f 0 ) 3 k=1 S n k (f 0 ) (3.20)
The first term of the right hand side of Equation (3.20) highlights the effect of the transform on the fundamental component of frequency f 0 . More precisely, this term compares its magnitude squared in the ISC m (numerator) and in the phase current k (denominator). The second term focuses on the effect of the transform on uncorrelated noises by comparing the noise power spectral density in the ISCs (denominator) and in the phase current k (numerator) at frequency f 0 .

In order to get further insight into the effects of this transform, additional assumptions can be done. Assume for example that the three phase currents contain the same amount of noise at frequency f 0 (S n k (f 0 ) = S n (f 0 )), and that their fundamental components are perfectly balanced (A k = Ae -j 2π 3 (k-1) ). In that case, the quantity defined by Equation (3.20) can be explicitly expressed for each ISC as:

SNR i + (f 0 ) SNR i k (f 0 ) = | a, α + | 2 |A| 2 × S n (f 0 ) 3 k=1 S n (f 0 ) = 9 |A| 2 |A| 2 × S n (f 0 ) 3S n (f 0 ) = 3 (3.21) SNR i -(f 0 ) SNR i k (f 0 ) = SNR i 0 (f 0 ) SNR i k (f 0 ) = 0 (3.22) 
This means that at frequency f 0 , the signal to noise ratio is increased by a factor 3 in i + (t) compared to original phase currents, and that the other two ISCs only contain noise. In other words and as expected, the entire fundamental component of the phase currents is projected onto i + (t) only, while the uncorrelated noises are uniformly spread over the three ISCs. By the same way, if the fundamental component of the three-phase current contains an unbalanced part, this part is entirely projected onto i -(t) and/or i 0 (t) depending on the type of unbalance. This result is to be related to the one mentioned in [START_REF] Choqueuse | Maximum likelihood frequency estimation in smart grid applications[END_REF], where it is shown that for perfectly balanced three-phase signals the Cramer Rao Bound of the instantaneous frequency estimator is three times lower for the positive-sequence ISC than for single phase approaches.

In order to further study the effect of the ISCs transform on the noise levels and more specifically its limitations with respect to the SNR improvement the perfectly balanced fundamental component assumption is kept

(A k = Ae -j 2π 3 (k-1)
). However, the noise levels are considered to be different on each phase. The cleanest signal is considered to be on phase 1. The noise level at the fundamental frequency of the cleanest phase current signal is denoted S n 1 (f 0 ) = S n (f 0 ). For the other two phases, the amount of noise is expressed with respect to the smallest level, thus considering S n 2 (f 0 ) = S n (f 0 ) + ∆ 1 and S n 3 (f 0 ) = S n (f 0 ) + ∆ 2 . Thus, Equation (3.20) can be written as:

SNR i + (f 0 ) SNR i 1 (f 0 ) = 9 |A| 2 |A| 2 × S n 1 (f 0 ) 3 k=1 S n k (f 0 ) = 9S n (f 0 ) 3S n (f 0 ) + ∆ 1 + ∆ 2 (3.23)
The noise level on the positive-sequence ISC would actually be higher than the one on the cleanest phase current, thus the SNR decreased, if the SNR gain would be less than 1, hence:

9S n (f 0 ) 3S n (f 0 ) + ∆ 1 + ∆ 2 < 1 ⇒ 9S n (f 0 ) < 3S n (f 0 ) + ∆ 1 + ∆ 2 ⇒ ∆ 1 + ∆ 2 > 6S n (f 0 ) (3.24)
This result states that if the sum of the differences in terms of noise levels between the cleanest signal and the other two is greater than 6 times the noise level on the cleanest signal, the ISCs transform would actually decrease the SNR compared to the cleanest signal. However, as previously stated, the difference regarding noise levels on the phase signals has to be considerably high. As in practice the three-phase signals would be acquired with similar sensors, such high differences are not commonly encountered.

General remarks

Most times the three-phase electric systems would be balanced around the fundamental frequency, as an unbalance is usually related to an electrical fault in the system. The natural inherent unbalance is negligible. Thus, usually the SNR of the positive-sequence component around the fundamental frequency is very close to three times higher than for phase quantities.

The linearity property of the transform leads to the same effects for each additive frequency components. This means that if the phase signals contain several additive components, the local SNR around each of the components is improved in the corresponding ISCs (i + (t) for balanced components and in the other two for unbalanced components).

In the current section, the study has been presented using the current signals. However, the same considerations also apply for voltages.

Simulation results

Synthetic signal model

In order to illustrate the above presented effects of using the ISCs transform, a set of three synthetic phase current signals has been generated based on the formulation of (3.25). The choice of this model is motivated by existing bibliography on mechanical faults signature (Chapter 2) in current signals and it will be further detailed in Chapter 4. The reasoning behind using a real-valued signal for the simulation, as opposed to an analytical one, is that in practice the method would generally be directly applied to the measured real-valued signals.

i R (t) = i A cos (2πf 0 t + ϕ A ) + i B cos (2πf 0 t + ϕ B + p(t)) + n R (t) (3.25) where i R (t) = i 1 (t) i 2 (t) i 3 (t)
T ∈ R is a three-phase real-valued signal and:

• f 0 = 50 Hz is the fundamental frequency;

• n R (t) are three centred white gaussian noises with different variances, and uncorrelated with the other components;

• i A contains the amplitudes of the non-modulated part of the signal whereas ϕ A contains the phase shifts between the non-modulated parts of the phase signals. These parameters are set as i A = 2 * 0.98 1 1

T and ϕ A = π 6 π 6 -2π 3 + π 12 π 6 -4π 3 
T , thus also comprising a small quantity of unbalance as well as an initial phase shift of π 6 ;

• i B contains the amplitudes of the phase-modulated part of the signal whereas ϕ B contains the corresponding phase shifts. These parameters are set as i B = 2 * 1 1 1 T and

ϕ B = 0 -2π 3 -4π 3 
T , describing a perfectly balanced system of three-phase signals;

• p(t) represents the phase modulation, composed of a sum of two cosines: one cosine at 3 Hz with a small amplitude such that it can be hidden by noises, and a second cosine at 4 Hz with an amplitude much higher than the noise levels;

• f s = 1 kHz is the sampling frequency of the generated signals and their duration is 60 seconds.

In the end the ISCs transform has been applied to these signals. The following sections present the time-and frequency-domain analysis for the phase currents, as well as their corresponding ISCs. The positive-and negative-sequence components are complex-valued signals. Figure 3.5 depicts these quantities over the same 7 periods. The x and y axes of the plots correspond to the real and imaginary axes of the complex plane, respectively, while the z axis corresponds to time. The two sub-figures show two very similar spirals described by the sequence components in the 3D representation. The spiral described by the positive-sequence current is drawn in a counter-clockwise sense, as expected for phasors rotating at a positive frequency. The negative-sequence plot however shows a clockwise evolution with time. As the considered three-phase currents are mostly balanced, they are expected to have only a small negativesequence component located at +f 0 . Most of the content contained in i -(t) would actually be located at -f 0 and it would be equal to the complex conjugate of the positive-sequence component at +f 0 . This is why this phasor is seen to rotate in the opposite direction. Most times these two components are represented in the complex plane (ignoring the time axis from Figure 3.5). Figure 3.6 depicts the positive-and negative-sequence components in the complex plane over the whole simulation time. There are several considerations that should be made regarding this figure:

Time-domain analysis

• The amplitude of the phasors plotted in the complex plane is approximately 2, while it is equal to 4 in Figure 3.3. This is due to the fact that the transform has been applied as formulated in (3.4) on real-valued signals.

As it has been explained in subsection 3.3.2, a factor of 2 should be used to obtain the correct amplitudes of the signals.

• The shape described by the two components is almost a circle in the complex plane. In fact, the obtained shape is an ellipse. This comes to the fact that the phase signals do contain a small amount of unbalance. Due to the complex conjugation, the major and minor axis for the two ellipses are switched. If the phase currents were perfectly balanced, both symmetrical components would describe circles in the complex plane.

• Due to the presence of modulations in our original signals as well as noises, the elliptic shape of the components in the complex plane is not a thin line. 
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Frequency-domain analysis

Considering the aforementioned spectral redundancy of the ISCs (see sub-section 3.3.1), in this section we would only focus on the frequency content around +f 0 , the fundamental frequency. • While the noise floor has different levels on each phase quantity, the three ISCs present an equal lower noise floor, as predicted by (3.18).

• The unbalance in the phase currents at their fundamental frequency triggers the apparition of the peak at this frequency also in the instantaneous negative-and zero-sequence components PSDs. However, as the amount of the unbalance is small, the content in i -(t) and i 0 (t) is much smaller than the one in i + (t).

• The low amplitude modulations of 3Hz are not visible in all individual phase signals PSDs. Due to the improved SNR of the instantaneous positive-sequence component predicted by (3.20), these modulations are clearly visible in the PSD of i + (t) in Figure 3.7b.

• The modulations of 3 and 4 Hz present in each phase signal are only present in the PSD of i + (t) once the ISCs transform is applied. This is due to the projection property of the ISCs transform, proving that only the balanced components of the phase signals are modulated, while the unbalanced part is not.

In order to quantify the obtain SNR gain for the synthetic signals, the SNR was computed for each phase current as well as for the positive-sequence component. The noise levels have been estimated based on the obtained PSDs by averaging over a frequency band which contains only noise, while the signal power was obtained by summing the PSD under a given peak and the noise level under the peak has been subtracted. The results presented in Table 3.1 give the local SNR gain around the fundamental frequency.

Table 3.1 shows that the SNR is indeed improved in the positive sequence component compared to any of the phase currents. The biggest SNR improvement is with respect to the signal on phase 2, as expected since this corresponds to the poorest SNR of the three phase ones. The lowest gain is obtained with respect to the signal on the third phase, as it can be seen from its PSD in Figure 3.7 that this signal has the best SNR of the three. Overall, an average SNR gain has been obtained to be equal to 3.02. 

SNR i + (f c ) SNR i 1 (f c ) = 2.83 SNR i + (f c ) SNR i 2 (f c ) = 4.69 SNR i + (f c ) SNR i 3 (f c ) = 1.54

Conclusions

To summarize, the ISCs transform acts differently depending on the nature of the components present in the phase currents at the frequency of interest. The uncorrelated noises are uniformly spread over the three ISCs, while balanced and unbalanced parts are entirely projected onto specific ISCs and by the same way separated from each other. This leads to the three main advantages of using symmetrical components compared to single-phase quantities: the use of the whole information contained in three-phase electrical signals, the separation of balanced and unbalanced parts of three-phase signals, and the improvement of the signal-tonoise ratio. These conclusions have been drawn theoretically and they have been validated using synthetic data.

In the next chapter, a method for mechanical faults detection using electrical signals is proposed. The proposed method relies on the use of the ISCs theoretically studied in this chapter. Models for single-phase current signals have been developed in detail for mechanical faults in induction motors [START_REF] Blodt | Mechanical fault detection in induction motor drives through stator current monitoring -theory and application examples[END_REF]. It has been shown that such faults induce amplitude and/or phase modulations in current signals, depending on the effect of the mechanical fault. Thus, in order to detect mechanical faults signatures in electrical quantities, the modulations around the fundamental frequency have to be analysed. In the next section the case of phase modulations due to load torque oscillations is detailed. The choice of this model is based on two main reasons: the model is complex enough to demonstrate the various effects of the instantaneous symmetrical components(ISCs) transform, and it corresponds to the type of fault contained in the experimental data used in Section 5. In the following sections the proposed algorithms to detect mechanical faults are detailed. Throughout the chapter, simulation results are presented in order to validate the theoretical development, where the simulated signals contain phase modulations. However, the same algorithms is applicable to the detection of all mechanical faults, regardless of the type.

The results presented in this chapter are also partly presented in [START_REF] Cablea | Three-phase electrical signals analysis for mechanical faults monitoring in rotating machine systems[END_REF][START_REF] Cablea | Online condition monitoring of wind turbines through three-phase electrical signature analysis[END_REF][START_REF] Cablea | Bearing faults monitoring in electrical rotating machines through three-phase electrical signals analysis[END_REF].

Considerations on amplitude and phase modulations

Considering that the existing bibliography indicates that mechanical faults induce amplitude and phase modulations in electrical signals [START_REF] Blodt | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF][START_REF] Blodt | Distinguishing Load Torque Oscillations and Eccentricity Faults in Induction Motors Using Stator Current Wigner Distributions[END_REF][START_REF] Blodt | Mechanical fault detection in induction motor drives through stator current monitoring -theory and application examples[END_REF], a closer look at such behaviour is needed. Let us consider a simple sinusoidal signal s(t) as:

s(t) = A cos(2πf 0 t) (4.1)
with A its amplitude and f 0 its fundamental frequency. The amplitude spectrum of such a signal would present a peak of amplitude A at the frequency f 0 . 

s(t) = A(1 + m(t)) cos(2πf 0 t) (4.2)
with m(t) is the modulating signal. In the case of amplitude modulation by a sinusoidal signal m(t) = α cos(2πf m t) the signal can be expressed as:

s(t) = A(1 + α cos(2πf m t)) cos(2πf 0 t) = A cos(2πf 0 t) + Aα 2 cos(2π(f 0 -f m )t) + Aα 2 cos(2π(f 0 + f m )t) (4.3)
Thus, in the case of amplitude modulations the spectrum would present a peak of amplitude A at the frequency f 0 and two additional peaks at f 0 ± f m with equal amplitudes of Aα 2 . Figure 4.2 depicts such a signal and its spectrum for α = 0.4 and f 0 = 7 Hz.

Phase modulations are modelled as:

s(t) = A cos(2πf 0 t + m(t)) (4.4)
with m(t) is the modulating signal. In the case of phase modulation by a sinusoidal signal m(t) = β cos(2πf m t) and β being called the modulation index, the signal can be expressed as: All in all, in case of both amplitude and phase modulations induced by mechanical faults the frequencies of interest for fault detection would be f 0 ± f m . Even if phase modulations can theoretically also induce frequency components at other frequencies, such components would be really small and are generally considered negligible [START_REF] Blodt | Distinguishing Load Torque Oscillations and Eccentricity Faults in Induction Motors Using Stator Current Wigner Distributions[END_REF].

s(t) = A +∞ n=-∞ J n (β) cos(2π(f 0 + nf m )t) (4.

Three-phase signal model for load torque oscillations

In case of load torque variations in induction motors, a signal model for the stator current in an arbitrary phase has been proposed in [START_REF] Blodt | Mechanical load fault detection in induction motors by stator current time-frequency analysis[END_REF] and [START_REF] Blodt | Mechanical fault detection in induction motor drives through stator current monitoring -theory and application examples[END_REF], and is often used to propose and justify mechanical fault indicators. This model suggests that in case of mechanical faults which induce load torque variations, the stator current is a sum of two components: a non-modulated component and a modulated one. Equation (4.6) shows these two components, where i R (t) is the stator current in an arbitrary phase, I s and I r are the amplitudes of the current components resulting from the stator and the rotor magnetic fields, f 0 is the stator fundamental frequency, ϕ s and ϕ r are initial phase shifts and the fault signature is characterized by the phase modulation index β, its characteristic frequency f m and its initial phase shift ϕ m .

i R (t) =I s cos(2πf 0 t + ϕ s ) + I r cos(2πf 0 t + ϕ r + β cos(2πf m t + ϕ m )) (4.6)
Obviously, the healthy case is obtained by setting β = 0 in this equation.

In Equation (4.7), the current signal formulation given in Equation (4.6) is rewritten using phasor notations for periodic components.

i(t) = Ae j2πf 0 t + Be j(2πf 0 t+p(t)) , (4.7) 
where the described quantities are:

• i(t) -the current signal in one arbitrary phase;

• f 0 -the fundamental frequency;

• A and B -the complex amplitudes of the non-modulated and modulated parts of the signal. A and B are complex numbers, containing the amplitude of the respective component, as well as its initial phase;

• p(t) -which models the fault signature and may contain several modulating frequencies (as a sum of cosines for example).

In Equation (4.7), the amplitudes and fundamental frequency are constant because the model is developed under the assumption of stationary operating conditions, which has been made for the sake of simplicity.

Furthermore, in order to consider the three signals that can be measured in a three-phase electrical system, (4.7) can be updated to account for phase specific parameters, as described in (4.8). As k ∈ {1, 2, 3} denotes the index of each specific phase number, i k (t) represents the signal in each phase. Ideal three-phase systems are defined as being perfectly balanced, meaning that the signals in each phase would have the same amplitude and there would be a phase shift of 2π 3 between each of the phases. However, real systems also contain an inherent unbalance described as small amplitude differences and phase shifts slightly different from the desired 2π 3 value. Thus, the complex coefficients A k and B k in (4.8) contain the balanced amounts, as well as the eventual unbalance factors.

i k (t) = A k e j2πf 0 t + B k e j(2πf 0 t+p(t)) (4.8)

Three-phase signal model for load torque oscillations

For a more compact expression, Equation (4.9) gives a vectorial formulation of three-phase currents, where the component n(t) has been added to model the additive and stationary noise contained in three-phase signals (such as measurement noise). Thus, the signal model proposed by (4.9) is composed of a periodic part described by the first two factors and a random part described by the noise component. i(t) = ae j2πf 0 t + be j(2πf 0 t+p(t)) + n(t) (4.9)

In (4.9), the vector i(t

) = i 1 (t) i 2 (t) i 3 (t)
T comprises the three current signals, the vec-

tors a = A 1 A 2 A 3 T and b = B 1 B 2 B 3
T contain the complex-valued amplitudes of the non-modulated and phase modulated parts of the signals around the fundamental frequency

f 0 and n(t) = n 1 (t) n 2 (t) n 3 (t)
T contains the additive noise present in the three-phase currents.

The two components of frequency f 0 appearing in Equation (4.9) can equivalently be merged into one single component of frequency f 0 with a time-varying complex amplitude:

i(t) = c(t)e j2πf 0 t + n(t), (4.10) 
where c(t) = a + be jp (t) . The consequence of equation (4.10) is that electrical signatures of load torque variations in the three phase currents of the machine are both amplitude and phase modulations of the fundamental component when considered as a single sine wave, as already noticed in [START_REF] Blodt | Mechanical load fault detection in induction motors by stator current time-frequency analysis[END_REF] and [START_REF] Trajin | Hilbert versus Concordia transform for three-phase machine stator current time-frequency monitoring[END_REF]. This remark justifies classical demodulation techniques often used on phase currents to detect such faults [START_REF] Kia | Efficient digital signal processing techniques for induction machines fault diagnosis[END_REF]. The goal of this section is now to apply the same strategy to the instantaneous symmetrical components in order to take advantage of their properties. Based on the fact that working three-phase electrical systems are mostly balanced, the positive-sequence ISC of the currents contains most of the information, thus making it a reasonable choice for mechanical fault detection. According to equation (4.10) and (3.17), i + (t) can be written as:

i + (t) = C + (t)e j2πf 0 t + n + (t), (4.11) 
where C + (t) is a time-varying complex amplitude, with time-varying modulus and phase. This expression shows that as for the phase currents, phase modulations induced by load torque variations are not only visible in the instantaneous phase or frequency of the fundamental component of i + (t), but in its instantaneous amplitude as well. The term n + (t) describing the noise represents the resulting noise after applying the ISC transform on the noise components present in the phase currents.

General remarks regarding mechanical fault signatures

As long as the effects of the mechanical faults are present (torque variations and/or eccentricity) the fault signatures would be visible in the electrical quantities as modulations [START_REF] Blodt | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF]. When comparing the value of the modulating frequency to the carrier frequency we can either have low-frequency modulations or high-frequency modulations. Figure 4.5 shows the expected signatures for both low-frequency modulations and high-frequency modulations in ISCs, obtained from three-phase real-valued signals, for which only the balanced components of the signals are modulated. There are three considerations that need to be made regarding this figure :  1. Firstly, as explained in Chapter 3, there is a spectral redundancy in the ISCs. However, a full spectral analysis can be performed by only considering the modulations around +f 0 and this would be the case throughout the whole manuscript.

2. Secondly, if the negative-sequence ISC would also contain modulations, their amplitude would be really small. As seen in Section 4.1, the amplitude of the modulations depends on the amplitude of the fundamental and for a functioning three-phase system, the amplitude of the negative-sequence ISC around +f 0 is very small compared to the one of the positive-sequence ISC at the same frequency. Thus, for mechanical faults detection throughout this manuscript, only the positive-sequence ISC would be considered.

3. Thirdly, the modulating frequency is assumed to be known. Indeed, this frequency can be easily determined using the kinematics of the system and the known operating conditions, like the rotating speed of the shaft. In the current manuscript, this frequency would be considered as an input of the algorithm. The next sections will propose an algorithm for each of the two considered cases presented in Figure 4.5. The algorithms will take into account the three-phase signal model as well as the previous observations. Thus, only modulations around the positive fundamental frequency +f 0 of the positive-sequence ISC will be analysed.
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Proposed method for low-frequency modulations

In order to estimate the instantaneous amplitude and frequency of i + (t) around f 0 and extract fault signatures, a demodulation step can be used. As detailed in [START_REF] Picinbono | On instantaneous amplitude and phase of signals[END_REF], if i + (t) is narrowband i.e. with a spectral content concentrated around f 0 and a bandwidth much smaller than f 0 , it verifies the Bedrosian theorem and its instantaneous amplitude and phase can be closely estimated through its analytic signal and the Hilbert transform [START_REF] Boashash | Estimating and interpreting the instantaneous frequency of a signal. i. fundamentals[END_REF]. In the rest of this section, fault frequencies due to load torque oscillations are assumed to be small compared to f 0 , ensuring that i + (t) is narrowband around f 0 and that a Hilbert demodulation technique reaches good performance in this case. This remark justifies the structure of the algorithm described in Figure 4.6 used to compute the desired fault indicators. The structure of the algorithm presented in Figure 4.6 is justified thanks to the signal model in equation (4.11) and the expected behaviour graphically depicted in Figure 4.5a and it consists in three main steps:
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Hilbert demodulation technique fault indicators computation

1. The positive-sequence ISC is obtained using the ISC transform defined in Equaton (3.4) to the phase currents, which is a simple matrix product between the inverse Fortescue matrix and the three-phase measured currents. The other two components are ignored for the mechanical fault detection.

2. The instantaneous amplitude and frequency of the fundamental component of the positivesequence ISC is estimated by applying a Hilbert demodulation technique to i + (t) around +f 0 . This operation is detailed in the Subsection 4.3.1.

3.

A mechanical fault indicator is computed for each demodulated quantity, amplitude and frequency. Theoretically, this way load torque oscillations (which induce phase modulations) and eccentricities (amplitude modulations) are distinguishable [START_REF] Blodt | Distinguishing Load Torque Oscillations and Eccentricity Faults in Induction Motors Using Stator Current Wigner Distributions[END_REF]. This step is detailed in Subsection 4.3.2.

Amplitude and frequency demodulation

In order to estimate the instantaneous amplitude and frequency of its fundamental component, a Hilbert demodulation technique is applied to i + (t) around +f 0 . This is realized thanks to a complex-valued frequency-selective filter, with a central frequency +f 0 and a small bandwidth. The effect of this filter is to leave unchanged the component of i + (t) around +f 0 and greatly attenuate its other components.

The proposed filter is implemented as a finite impulse response filter with complex-valued coefficients. The filter coefficients are actually obtained by designing a low-pass filter using the window method [START_REF] Oppenheim | Discrete-time signal processing[END_REF] according to the desired specifications and then by multiplying the obtained coefficients by a complex exponential of frequency equal to the desired central frequency. This way, the central frequency of the pass-band is shifted from the 0 Hz frequency to the desired one. For example, a complex-valued finite impulse response filter was designed using a Hanning window, a transition bandwidth of 4 Hz and a sampling frequency of 1 kHz and the filter order is 777 samples. The frequency response of such a filter, with a central frequency of 50 Hz and a passband of 22 Hz is given in Figure 4.7 (C-valued). One important aspect to be noticed in this figure is its asymmetry with respect to 0 Hz frequency. For comparison Figure 4.7 shows the frequency response of a real-valued low-pass filter (LPF) and a real-valued band-pass filter (BPF) designed according to the same specifications.

The advantages of implementing the frequency-selective filter as a finite impulse response digital filter with complex-valued coefficients are that such filters are easy to implement and that they are always stable. The main disadvantage however is its large number of coefficients. Indeed, the filter order, in this case given by the number of its coefficients, gives the length of the transitory regime at its output and the filter delay, expressed in number of samples, is equal to half the filter order. However, the filter order can be kept small by limiting the sampling frequency or by introducing a down-sampling step before filtering.

As explained in [START_REF] Reilly | Analytic signal generation-tips and traps[END_REF], this filtering operation is equivalent to extract the analytic signal of i + (t) around +f 0 only, and can be realized thanks to a simple finite impulse response digital filter with complex-valued coefficients. Based on Equation (4.11), the output of this filter mostly consists in C + (t)e j2πf 0 t added to a small residual noise. The instantaneous amplitude and frequency of this analytic narrowband signal is then obtained thanks to its absolute value and the time derivative (estimated using a gradient function) of its instantaneous phase. In case of applying the ISCs transform to real-valued signals a factor of 2 has to be applied in order to obtain the correct instantaneous amplitude, due to the separation of components effect of the transform as described in Chapter 3.

Fault indicators

The last part of the algorithm consists in analysing the variations of the instantaneous amplitude and frequency and highlighting the fault frequencies to deduce efficient fault indicators. This is realized by first estimating their power spectral density (PSD), and then computing the sum of these PSDs over a given frequency band around fault frequencies. Indeed, the mechanical fault frequencies to be detected are considered to be known, based on system kinematics and operating conditions (i.e. shaft rotating speed). Consequently, by summing the obtained PSDs over a small frequency band B around each fault frequency, eventual faulty components can be detected. A normalized version m of such an indicator is given in (4.12).

m = (B) S(f ) df (B) S h (f ) df , (4.12) 
where B denotes the chosen frequency band, S h (f ) denotes a reference PSD obtained for a healthy system and S(f ) is the current PSD obtained for the system in an unknown state. In the case of an healthy condition, such an indicator stays obviously close to one, and tends to increase if faulty components appear in signals.

A few aspect have to be kept in mind when choosing the frequency band B and estimating the healthy state S h (f ). Firstly, the chosen frequency band B of the reference PSD may contain only noise or peaks may be already present. Thus, the indicator would actually monitor the evolution of the frequency components in this band with respect to the reference PSD, which may not be necessarily healthy. Secondly, the quality of estimation of S h (f ) is important for computing m, thus:

• if several measurements are available, S h (f ) can be estimated using an average of the PSDs in the chosen band B.

• if only one or very few acquisitions are available for estimating the healthy case a special attention is to be given to the choice of bandwidth B over which to sum. Indeed, if B is very narrow, like the width of one peak, the small random variations in the noise levels would play a very important role. In this case, the band B might contain one of the extreme high or low "peaks" in the noise level thus leading to a wrongful estimation of the noise level. As such, in order to better estimate the healthy case a wider bandwidth would be advised, e.g. three times the peak width.

Simulation results

Two sets of simulations are presented in this subsection in order to validate the proposed algorithm. The first simulation will use the developed signal model for mechanical faults inducing load torque oscillations to show how such fault signatures are visible in the positivesequence ISC and emphasize the role of the three-phase transform. The second simulation will show the detection capabilities of the proposed fault indicator and compare the results obtained by applying the algorithm on the positive-sequence component to applying it directly on the phase quantities.

Both sets of simulations use the signal model for three-phase currents in induction motors, containing load torque oscillations. The expression of the generated signals is given by Equation (4.13) and corresponds to the real part of the signal formulated in (4.9).

i R (t) = i A cos (2πf 0 t + ϕ A ) + i B cos (2πf 0 t + ϕ B + p(t)) + n R (t) (4.13) where i R (t) = i 1 (t) i 2 (t) i 3 (t)
T ∈ R is a three-phase real-valued signal and:

• f 0 = 50 Hz is the fundamental frequency;

• n R (t) are three centred white Gaussian noises uncorrelated with the other components;

• i A contains the amplitudes of the non-modulated part of the signals whereas ϕ A contains the phase shifts between their non-modulated parts.

• i B contains the amplitudes of the phase-modulated part of the signals whereas ϕ B contains the corresponding phase shifts. These parameters are set as i B = 2 * 1 1 1

T and ϕ B = 0 -2π 3 -4π 3 
T , thus describing a perfectly balanced system of three-phase signals;

• p(t) represents the phase modulation;

• f s = 1 kHz is the sampling frequency of the generated signals and their duration is 60 seconds.

Mechanical faults inducing load torque oscillations

The first set of simulations uses the model given in Equation (4.13) and the following parameters were set:

• n R (t) each have different variances;

• The parameters for the non-modulated part are set as i A = 2 * 0.98 1 1

T and ϕ A =

π 6 π 6 -2π 3 + π 12 π 6 -4π 3 
T , thus also comprising a small quantity of unbalance as well as an initial phase shift of π 6 ;

• p(t) is composed of a sum of two cosines: one cosine at 3 Hz with a small amplitude such that it can be hidden by noises, and a second cosine at 4 Hz with an amplitude much higher than the noise levels.

This signal has been previously used in Chapter 3 to present the spectral content of the phase signals and the ISCs in case of phase modulations and their different signal-to-noise ratios(SNRs) were compared.

In order to illustrate the performance of the proposed approach, the signals previously described have been further processed. The positive-sequence component has been demodulated using the technique previously described (Figure 4.6). In order to compare the results to the ones obtained for single-phase approach, the same processing has been applied to each phase signal. The complex-valued filter has been designed using the following characteristics: central frequency of 50 Hz, pass-band of 22 Hz and transition bandwidth of 4 Hz. After demodulation, the PSDs of the instantaneous amplitude and frequency of the currents positive-sequence ISC as well as the ones for each phase current are estimated and depicted in Figure 4.8. The PSD estimations are obtained with Welch averaged periodograms using a Hanning window of 2 14 samples, leading to a spectral resolution of approximately 0.12 Hz clearly sufficient to separate the different components of interest. As a reminder, the frequencies of interest, which can be assumed to correspond to faults, are 3 and 4 Hz. (a) PSD of the instantaneous amplitude In Figure 4.8 it can be observed that for both PSDs the ISCs approach provides better results in terms of SNR, compared to the single-phase approach. As expected considering the different noise levels contained by each simulated current signal, the results depicted in Figures 4.8a (for the instantaneous amplitude) and 4.8b (for the instantaneous frequency) provide different SNRs for each phase current. Considering the frequency component at 4 Hz, the local SNR was computed using the PSD of the instantaneous amplitude of each phase current as well as for the positive-sequence component. The noise levels have been estimated based on the obtained PSDs by averaging over a frequency band which contains only noise (5 to 10 Hz), while the signal power was obtained by summing the PSD under the peak at 4 Hz, where the noise level under the peak has been subtracted. The results presented in Table 4.1 give the local SNR gain around the given frequency and they show that the SNR is indeed improved in the positive-sequence component compared to any of the phase currents. 

i 1 (t) i 2 (t) i 3 (t) i + (t)
i 1 (t) i 2 (t) i 3 (t) i + (t)
i + (f c ) SNR i 1 (f c ) = 4.11 SNR i + (f c ) SNR i 2 (f c ) = 2.86 SNR i + (f c ) SNR i 3 (f c ) = 2.61
The same conclusions can be drawn also about the instantaneous frequency (PSD shown in Figure 4.8b), meaning the estimation using the positive-sequence ISC provides a better SNR than the phase signals.

Detection capabilities of the proposed mechanical fault indicator

In this subsection the detection capabilities of the proposed mechanical fault indicator are evaluated statistically. Moreover, the results of using the positive-sequence ISC are once more compared to the ones obtained using the phase quantities. For this statistical approach 1000 simulations were performed. For each simulation cycle several sets of signals have been generated using the same model as in (4.13) using the following parameters:

• n R (t) have the same standard deviation of 0.15;

• The parameters for the non-modulated part are set as i A = 2 * 1 1 1

T and ϕ A =

π 6 π 6 -2π 3 π 6 -4π 3 
T , thus perfectly balanced with an initial phase shift of π 6 ;

• p(t) represents the phase modulation expressed as β cos(2πf m t). The modulating frequency f m is equal to 4 Hz. The modulation index β takes different values according to Table 4.2.

To summarise the main changes from previous paragraph, the three-phase signals are perfectly balanced and they have the same noise levels on each phase. Thus, for each simulation cycle 5 three-phase signals have been generated with the only differences being the random noise (though the noise levels have not changed) and the modulation index β according to β 0 0 0.002 0.004 0.006

The first dataset (denoted H in Table 4.2) was used to estimate the reference PSD used for the fault indicator. The other 4 sets (denoted starting with the letter S) were used to compute the mechanical fault indicator. The parameters for the mechanical fault indicator are: only 1 measurement used for the estimation of the reference PSD and the considered bandwidth B = 4 ± 0.12 Hz, with 0.12 Hz being the spectral resolution. Since the three-phase currents are perfectly balanced, only i 1 (t) is used for comparison with i + (t). 4.2. For this simulation the presence of the modulation is not detectable using the instantaneous amplitude (IA). Using the instantaneous frequency (IF) of i + (t) the fault indicator value increases with the increase of the modulation index. For the phase current the result using the IF are not as clear, for the second value of the β the indicator slightly decreases, and the values of the indicator are generally lower than the ones for the same indicator computed using i + (t). As previously mentioned, 1000 such simulations have been performed. The results presented thus far correspond to only one of the simulations. For each simulation cycle the mechanical fault indicators' values have been saved and will be used for the statistical analysis. In order to build the receiver operating characteristic (ROC) curves [START_REF] Van Trees | Detection, estimation, and modulation theory: Part 1: Detection, estimation, and linear modulation theory[END_REF] for the indicators the thresholds have to be set. The considered thresholds belong to the interval [0 4], with an increment of 0.01. The value of the indicator surpassing the threshold marks a fault detection. For each threshold for each value of the modulation index (denoted starting with S in Table 4.2) the true positive rate was computed as the proportion of detection out of the whole datasets for which the modulation was introduced. The false positive rate was computed using the healthy simulations (denoted S0 in Table 4.2) and represents the proportion of false detections (the number of detections when there was no modulation over the total number of simulations in healthy case). Figure 4.12 depicts the obtained ROC curves. The ideal situation is to detect all modulations while never triggering a false alarm. This corresponds to the point (0, 1) on the ROC curve. As the value of the modulation index increases, the ROC curves get closer to the ideal (0, 1) point. For the indicators computed using the IA and especially for the lowest values of β the detection outcome is approximately random, being located on the main diagonal. However, for each of the values of the modulation index the use of the positive-sequence ISC provides better results than the use of the single current, as expected. By comparing the detection capabilities of the indicators computed using the IA and IF, it is clear that for this kind of modulations the IF provides better results. Also, the ROC curve for the fault indicators using the IF shows that the detection performance increases with the increase of β and that the positive-sequence ISC provides the best results.

i 1 (t); β = S1 i 1 (t); β = S2 i 1 (t); β = S3 i + (t); β = S1 i + (t); β = S2 i + (t); β = S3

General remarks

The algorithm developed in this section only relies on simple and usual operations such as matrix product, filters and power spectral density estimation and can be simply implemented.

Its global structure is similar to the usual current demodulation approaches used for example in [START_REF] Blodt | Mechanical fault detection in induction motor drives through stator current monitoring -theory and application examples[END_REF] or [START_REF] Puche-Panadero | Improved resolution of the MCSA method via Hilbert transform, enabling the diagnosis of rotor asymmetries at very low slip[END_REF], the main difference being that the processed quantity is not one phase current, but the positive-sequence ISC i + (t), giving access to the interesting properties of the ISCs presented in the previous chapter.

An important remark regarding the algorithm presented in this section is that it is general enough for both kinds of modulations that might be induced by mechanical faults: amplitude and/or phase modulations. While the algorithm has been validated using synthetic signals containing phase modulations, it can also be applied on amplitude modulated signals. The phase modulations are mostly visible in the IF and if their amplitude is high enough they will also appear in the IA. Amplitude modulations are expected to be visible mostly in the IA. Thus theoretically, by computing the fault indicators on both IA and IF, mechanical faults generating eccentricity and load torque oscillations can be distinguished. However, in practice, both types of effects might be expected to be present.

Proposed method for high-frequency modulations

The case of mechanical faults which have high-frequency signatures needs to be considered separately from the low-frequency one. Figure 4.5 depicts the two expected behaviours for these two cases. If the modulating frequency is higher than the fundamental frequency of the electrical quantities, as in Figure 4.5b, different aspects have to be taken into account:

1. The Hilbert demodulation technique previously used cannot be implemented as the necessary conditions are no longer fulfilled. In case of high-frequency modulations overlapping can occur between the modulation sidebands and other harmonics in the currents. Moreover, the positive-sequence ISC cannot be assumed to be an analytic signal because part of its frequency content is located in the negative frequency domain. For nondemodulated signals two frequency bands are to be considered B l (the left-hand sideband) and B r (the right-hand sideband). These bands will be centred around f 0 ± f m . Figure 4.13 graphically indicates the considered bands.

2. As the literature explains [START_REF] Randall | Rolling element bearing diagnostics-A tutorial[END_REF] and the existing experimental data within the KAStrion project confirms, bearing faults characteristic frequency may vary by ±2%. While for low-frequency faults this variation may be negligible, for high-frequency faults this aspect needs to be taken into account when computing the fault indicator. In case of high fault frequencies, for example 200 Hz, this leads to a rather wide frequency band that needs to be considered, i.e. the corresponding band [196 204] Hz is 8 Hz wide. The ±2% variation aspect is specific to bearing faults and the calculation of fault characteristic frequency bands for each possible mechanical fault is beyond the scope of this manuscript. However, what is important to consider is that the proposed algorithm for mechanical fault indicator computation must be robust with respect to the width of the fault characteristic frequency band. Figure 4.14 gives the general structure of the algorithm for computing mechanical faults indicators for faults which have a high-frequency signature. This structure is very similar to the one proposed for the low-frequency mechanical faults indicators in Figure 4.6. This simplified version of the algorithm structure has removed the demodulation step and the PSD is estimated directly for the positive-sequence ISC. Afterwards, the fault indicator is computed considering the two corresponding frequency bands. The next sub-sections will give more details into the proposed indicators. Indeed, several indicators are to be computed, not just one. The following indicators are not assumed to be optimal. However they are easy to implement and remain efficient in detecting the eventual faults. 
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Fault indicators based on the signal energy

Fault indicator 1

This first indicator is a simple extension of the indicator given in Equation (4.12) for mechanical faults inducing low-frequency modulations. The indicator corresponding to lowfrequency modulations is to be computed over a narrow frequency band B using demodulated signals. Instead of considering just the frequency band B, both modulation sidebands B l and B r located at f 0 ± f m are now considered when computing the proposed indicator m 1 for high-frequency faults. The expression of this new indicator is given in (4.14).

m 1 = (B l ) S(f ) df + (Br) S(f ) df (B l ) S h (f ) df + (Br) S h (f ) df , (4.14) 
where B l and B r denote the left and right frequency bands, S h (f ) denotes a reference PSD obtained for a healthy system and S(f ) is the current PSD obtained for the system in an unknown state. In the case of an healthy condition, such an indicator stays obviously close to one, and tends to increase if faulty components appear in the signals.

In case of wide frequency bands (B l and B r ), the contribution of two new peaks (one on each side) might be hard to detect in an incipient stage. Indeed, this indicator might not be sensitive enough to new peaks regardless of the frequency bands width.

Fault indicator 2

The second proposed indicator is an improvement of the previous one. Instead of using the whole energy in the given frequency bands B l and B r , the indicator can be computed using the amount of energy higher than the noise floor.

The first step in computing this indicator is to estimate the noise floor in each of the bands. The noise level can be estimated using a median filter over S(f ) for f ∈ (B l ∪ B r ). The obtained estimations are denoted S n (f ) and they only exist over B l and B r . Afterwards, a difference between the PSD S(f ) and the noise floor is computed. The quantity is denoted S d (f ) and is obtained as:

S d (f ) = S(f ) -S n (f ), for f ∈ (B l ∪ B r ) (4.15)
If the quantity S d (f ) is greater than 0 then the current spectrum contains energy that is higher than the noise level. Thus, the proposed indicator only considers this amount of energy and is expressed as:

m 2 = (B l ∪Br) S d (f ) S d (f )>0 df (B l ∪Br) S d h (f ) S d h (f )>0 df . (4.16) 
This indicator is normalised by the amount of energy computed for the healthy case.

Fault indicator based on frequency values

Fault indicator 3

The third proposed indicator uses the fact that the two modulation sidebands are symmetrical with respect to the fundamental frequency. In this case, a frequency is obtained for each sideband corresponding to the maximum difference between S(f ) and S h (f ) in the given band, as:

f l = arg max f ∈B l (S(f ) -S n (f )) f r = arg max f ∈Br (S(f ) -S n (f )) (4.17)
Thus, f l corresponds to the frequency for which (S(f ) -S h (f ))| (B l ) has the maximum value and consequently f r denotes the frequency for which (S(f ) -S h (f ))| (Br) reaches maximum. The electrical fundamental frequency denoted f 0 corresponds to the maximum in S(f ). Considering that mechanical faults induce modulations, the interest is to determine whether these differences correspond to modulations. Thus, two new quantities are computed:

f m l = |f l -f 0 | f mr = |f r -f 0 | (4.18)
Based on the two frequencies indicating the distance between the fundamental frequency and the frequencies of the maximal differences, a fault indicator is computed as:

m 3 = |f m l -f mr | (4.19)
In case the two maxima differences correspond to a modulation of the fundamental frequency, the indicator m 3 would be null. A threshold can be set as the spectral resolution in order to ensure no detection is missed due to precision. In case the indicator is null, f m l and f mr indicate the modulating frequency itself. This indicator is not very robust with respect to the content of the characteristic frequency bands. Indeed, it relies on the assumption that the modulation due to a mechanical fault represents the highest change with respect to the estimated healthy condition. This assumption is not necessarily true in all practical cases. For example one of the bands might present its highest change at a frequency location corresponding to a different modulation of a harmonic. The wider the bands the higher the chance is for them to also contain other components besides modulations of the fundamental frequency.

Simulation results

Two sets of simulations are presented in this subsection in order to better explain the behaviour of the proposed indicators. The first set of simulated signals focuses on the quantities that are used in defining each indicator. The second simulation shows some of the advantages of using the positive-sequence ISC versus the single-phase currents. Both simulations use the current signal model for phase modulations induced by load torque oscillations as in (4.13) with different parameters. The signal model is reminded here:

i R (t) = i A cos (2πf 0 t + ϕ A ) + i B cos (2πf 0 t + ϕ B + p(t)) + n R (t)
and the new parameters are:

• f 0 = 50 Hz is the fundamental frequency;

• n R (t) are three centred white Gaussian noises with standard deviation of 0.12, and uncorrelated with the other components;

• i A contains the amplitudes of the non-modulated part of the signals whereas ϕ A contains the phase shifts between their non-modulated parts. These parameters are set as i A = 2 * 0.99 1 1

T and ϕ A = π 6 π 6 + 0.01 -2π 3 π 6 -4π 3 
T , thus containing a small unbalance as well as an initial phase shift of π 6 ;

• i B contains the amplitudes of the phase-modulated part of the signals whereas ϕ B contains the corresponding phase shifts. These parameters are set as i B = 2 * 1 1 1

T and ϕ B = 0 -2π 3 -4π 3 
T , thus describing a perfectly balanced system of three-phase signals;

• p(t) represents the phase modulation expressed as β cos(2πf m t). The modulating frequency f m and the modulation index β are given in Table 4.3;

• f s = 1 kHz is the sampling frequency of the generated signals and their duration is 60 seconds.

Using the three-phase signals described above, the positive-sequence ISC was computed and then the corresponding PSD was estimated. Considering that for high-frequency modulations the fault indicators are computed over a large frequency band, the length of the time window used in the Welch averaged periodogram to estimate the PSD can be decreased. More so, by using a smaller window, the algorithm can be applied to shorter signals. The PSDs estimations in the next sub-sections are obtained using a Hanning window of 2 11 samples, leading to a spectral resolution of approximately 0.98 Hz. Two sets of three-phase signals were generated for this simulation: one that does not contain any modulations (considered healthy) and one that contains a high-frequency phase modulation (considered faulty). The signals contain a small electrical unbalance at their fundamental frequency of 50 Hz. The modulating frequency is 202 Hz and it is supposed to correspond to a bearing fault. Thus, the resulting frequency band accounting for ±2% variation is As it can be seen graphically, the noise does bear quite a large influence on the indicator in this case. The contribution of the two new peaks in the right-hand side sub-figure might not be sufficient in order to trigger a significant change in the indicator's value. This is due to the fact that the considered modulation bands over which the indicator is computed are quite wide. As the bands B l and B r become narrower, the performance of m 1 is expected to increase. the two considered frequency bands. Based on this difference ( (S(f ) -S h (f ))| B l ∪Br ) the two local maxima are determined, one corresponding to each band. The location of these maxima on the frequency axis indicates the frequency values f l and f r that will further be used to compute the indicator m 3 . In this case graphically depicted in Figure 4.17, the modulation frequency would be correctly identified using the frequency values f l and f r .

Let us imagine that the second set of signals did not contain any modulation in the considered bands. In this case, we are to ignore the two peaks for the local maxima. However, the next local maxima peaks would be located at just above -150 Hz and around 250 Hz. Thus, in this case, the indicator m 3 would falsely detect a modulating frequency of ≈ 100 Hz. This is due to the fact that the peaks in the noise are not ignored by the algorithm. Indeed, the computation of this third indicator can be improved by implementing a peak detection step and only return the location of the local maxima if they correspond to a peak representing a periodic signal. Two ways in which this can be achieved are:

• By using the quantity (S(f ) -S h (f ))| B l ∪Br depicted in Figure 4.17, the variations corresponding to the noise would be centred around 0. A threshold can be set on this quantity to detect the peaks that have appeared or increased compared to the healthy state.

• By using the quantities S(f ) and S n (f ) depicted in Figure 4.16. Firstly, a threshold can be set using the median absolute deviation. Afterwards, the peaks that surpass this threshold can be detected in S(f ).

Both of these approaches would detect zero, one or more peaks for each band B l and B r . From these peaks only the ones that are symmetrical with respect to the fundamental frequency f 0 would be considered to correspond to modulations.

Simulation set 2

For the second simulation only a single set of three-phase signals was generated. For these signals the fundamental frequency f 0 is 50 Hz, while the modulating frequency f m is 102 Hz. The interesting aspect of this simulation is that the left-hand side modulation frequency f l is equal to -52 Hz. Thus, f l is located close to -f 0 . As the considered three-phase signal contain a small amount of electrical unbalance, at -f 0 the PSD of the complex quantity i + (t) contains the small peak corresponding to the complex conjugate of the negative-sequence ISC at +f 0 (I * -(f 0 )). On the other hand, the PSDs of each of the real-valued phase signals are symmetrical with respect to the 0 Hz frequency. That means that the PSD of i 1 (t) at -f 0 contains a large peak, equal in amplitude to the one at +f 0 .

// f 0 f l f r S(f) -S h (f)
Figure 4.18 shows the modulation frequency bands in the PSDs of i 1 (t) and i + (t) for the simulated signals. There are two aspects to be observed in this figure. Firstly, as expected, the PSD of i + (t) provides a better SNR than the one for i 1 (t). Secondly, the modulation in the negative frequency band is only visible for i + (t) while for i 1 (t) it is completely hidden in the spectral leakage from the large peak at -f 0 . While it can be argued that the estimation of the PSD can be improved, the fact remains that the negative frequency side of i + (t) is cleaner than the one of a real-valued signal. Indeed, for the real-valued signal, the symmetry property will populate the negative frequencies with all the harmonics and modulations of the fundamental frequency. The positive-sequence ISC on the other hand will also contain some components relative to the negative-sequence ISC, though they are negligible compared to the ones corresponding to the positive frequencies. 

General remarks

In this section the algorithm for the detection of mechanical faults that induce highfrequency modulations has been proposed. The algorithm computes the mechanical fault indicators based on the PSD of the positive-sequence component. Using this quantity two kinds of mechanical fault indicators have been proposed based on the signal energy and on the frequency values of components located in the modulation sidebands corresponding to the faults.

Simulation results were used to show the strengths and weaknesses of the proposed indi-cators. Once more, as for the low-frequency modulations, the positive-sequence ISC provides better result than the phase signals. This is due to the better SNR as well as the fact that the PSD of the complex-valued ISC is cleaner than that of the real-valued phase currents, since the symmetry around the 0 Hz frequency is avoided. However, the proposed fault indicator relying on frequency values is prone to false alarms. This aspect has been discussed based on the simulation results in the previous section and several possible ways for improving it were proposed.

Unfortunately, due to time limitations the detection capabilities of the algorithm for detecting high-frequency modulations due to mechanical faults have not been statistically evaluated.

Conclusions

This chapter begins with some basic considerations regarding amplitude and phase modulations, based on the fact that these correspond to the signature of mechanical faults in electrical quantities. Following, the three-phase signal model for load torque oscillations has been developed starting from the single-phase current model proposed in literature for induction motors. In the end methods to detect generic mechanical faults, regardless of their effect, have been presented. Based on the fault characteristic frequency the methods were split into two categories for low-and high-frequency fault signatures with respect to the fundamental frequency. Another classification of the proposed methods can be based on the approach used for each case, thus algorithms for demodulated and non-demodulated signals. The outputs of both methods consist in mechanical fault indicators that are easy to use and implement. For the low-frequency method the performance of the indicator was statistically evaluated. Using simulations the advantage of using the positive-sequence ISC has been reiterated and it has been shown that this leads to better detection performance. For the high-frequency methods simulations were used to show the advantages of using the three-phase approach relying on complex-valued signals. Due to time limitations, the detection capabilities of the high-frequency method were not statistically eventuated.

As perspectives to this work, methods for automatically setting the thresholds correctly could be implemented. Regarding the mechanical fault indicators themselves, some improvements can be made. The fault indicator for low-frequency modulations can be extended in a similar way as m 2 , using a median filter on the PSDs of the demodulated signals. Regarding the fault indicator for high-frequency modulations which is based on the frequency value of the modulation, improvements can be made to avoid false detection. Details on these possibilities for improving the indicator m 3 were given in the previous section. Also, merging the results provided by the two types of indicators for high-frequency modulations into a single indicator could be interesting.

Another perspective for further development is to extend the amplitude modulated singlephase currents model corresponding to eccentricity faults to three-phase and to also validate the proposed algorithms on that type of faults.

The next chapter gives the experimental results obtained using the method presented here. The experimental signals come from two experiments performed on a test-bench and the considered faults are two bearing faults: one that induces low-frequency modulations and one that induces high-frequency modulations in the electrical signals. This chapter presents the experimental results for mechanical fault detention using electrical signals. The results concern both types of mechanical fault signatures theoretically considered in the previous Chapter 4: low-frequency and high-frequency modulations. The experimental signals used in this chapter were acquired on the test-bench implemented for the KAStrion project. Thus, the chapter starts by presenting the experimental set-up and the performed experiments. Both experiments resulted in bearing faults, one having a low-frequency signature and one with a high-frequency fault signature. Due to a higher data availability for the first experiment, the robustness of the indicators proposed in Chapter 4 is also evaluated with respect to different operating conditions. Throughout the chapter, single-phase and threephase results are compared as well.

The results presented in this chapter were also published in [START_REF] Cablea | Three-phase electrical signals analysis for mechanical faults monitoring in rotating machine systems[END_REF][START_REF] Cablea | Online condition monitoring of wind turbines through three-phase electrical signature analysis[END_REF][START_REF] Cablea | Bearing faults monitoring in electrical rotating machines through three-phase electrical signals analysis[END_REF][START_REF] Cablea | Method of Analysing Non-stationary Electrical Signals[END_REF].

Experimental set-up

As mentioned in Chapter 1, the current work has been developed in the context of the KAStrion European project [START_REF]KAStrion -Current and vibration analysis for preventive and predictive condition-based maintenance in offshore wind farms[END_REF] which proposes solutions for condition monitoring of wind turbines. In the framework of this project, a test-bench has been purposely designed and developed in the CETIM laboratory (Senlis, France) [START_REF] Bédouin | Endurance testing on a wind turbine test bench. a focus on slow rotating bearing monitoring[END_REF]. The bench emulates the structure and behaviour of a wind turbine, with an electrical motor replacing the wind turbine rotor, followed by a low speed shaft with the main bearing, a multiplier with a ratio of 1 : 100.75, the high speed shaft and the three-phase electrical generator, as seen in Figure 5.1. The operating conditions are determined by the speed and torque of the low speed shaft. 5.1 gives just the signals that are going to be used in this manuscript and their corresponding sampling frequencies. For both the low speed shaft (LSS) and the high speed shaft (HSS) we have access to speed measurements, though with a different sampling frequency. These signals have been acquired [START_REF] Bédouin | Endurance testing on a wind turbine test bench. a focus on slow rotating bearing monitoring[END_REF] using torque-meters and have afterwards been converted to speed signals with different constant sampling frequencies. For the electrical data, three-phase currents and voltages have been acquired using a high sampling frequency of ≈ 40 kHz. Considering that this acquisition frequency is much larger that the one needed for condition monitoring purposes for the given objectives and approach and that it would actually slow down the algorithm, the electric signals have been down-sampled to a lower frequency of ≈ 1 kHz. As explained in Subsection 4.3.1 of Chapter 4, a larger sampling frequency leads to a larger number of filter coefficients for the proposed algorithm for demodulation. Besides the signals presented in Table 5.1 there are also temperature measurements and various accelerometers placed on different mechanical components of the bench. However, since such signals are not used in this manuscript, they will not be further detailed. More details on vibration analysis on these test-bench signals can be found in [START_REF] Bédouin | Endurance testing on a wind turbine test bench. a focus on slow rotating bearing monitoring[END_REF][START_REF] Firla | Automatic signal processing for wind turbine condition monitoring[END_REF][START_REF] Gerber | Suivi dynamique de composantes modulées[END_REF]. Two experiments that have been performed on this test-bench are going to be presented in the following sections. The performed experiments are summarized in Table 5.2. Both of these experiments consist in bearing faults. The goal of these experiments is to simulate naturally evolving mechanical faults. In order to speed up the deterioration of the mechanical components, different loading forces are applied on the respective components. This beeing said, during Exp. A axial and radial forces were applied on the main bearing while no force was applied on the output bearing. During Exp. B only radial forces were applied on the output bearing. Usually the literature on bearing faults presents artificial faults, like for example, drilling a hole of a given diameter into the inner race of a bearing. The advantages of such an approach are that the fault type is known a priori (i.e. inner race fault) and that the values of the fault indicators could be linked to the fault severity. By applying different load forces on the bearing and letting the fault evolve naturally, the outcome of the experiment is not controlled. Otherwise said, one does not necessarily know a priory which type of fault would occur. On the other hand, this approach allows drawing a picture of the fault signature evolution with respect to time. 

-LSS speed -LSS torque
Measurements of all of these input signals defining the operating conditions are available throughout the experiments. This allows the computation of the fault indicators for each of the states. Operating conditions cycles are defined by alternating a succession of inputs for the control signals. These cycles are then repeated several times during the experiment.

Another important remark regarding the test-bench is that the output of the generator is not directly connected to the main grid. This means that the amplitude of the voltages and the electrical fundamental frequency are not imposed by the grid and may vary according to the operating conditions.

Detection of mechanical faults inducing low-frequency modulations

Experimental conditions

The first considered experiment, Exp. A, consisted in an accelerated deterioration of the main bearing, induced by applying axial and radial forces on it. The experiment was conducted for ≈ 200 hours. At the end of the experiment, the bearing was dismounted and a physical inspection was performed, finding faults on both inner and outer races. 5.3, where the LSS speed and torque are given as well as the signal duration. For the non-stationary operating conditions, the speed of the LSS emulates the actual variations of a measurement acquired on a real wind turbine. The non-stationary state is further detailed in Subsection 5.2.4. Based on the bearing geometry and the system kinematics, the fault characteristic frequencies have been computed. These are given in Table 5.4 for both ball pass frequency -outer race (BPFO) and ball pass frequency -inner race (BPFI) for both considered LSS speed values. Throughout the experiment, three-phase current and voltage signals have been acquired at the stator of the generator and 28 measurement sets are considered in this manuscript. However, electrical data is not available for each of the states in the 28 considered cycles. Table B.1 gives an overview of the available data for each state. Test time, expressed in hours, denotes the time when the operating conditions cycle has started, counting from the beginning of the experiment Exp. A.

Propagation of torque variations through the drive train

Considering that the main bearing is located to the opposite end of the drive train with respect to the generator, the fault signature has to propagate though the system in order to be visible in the electrical quantities. In the case of eccentricity it is expected that the gearbox would cancel this effect of a mechanical fault. On the other hand, torque oscillations are expected to propagate until the input of the generator. In order to show the propagation of this effect, in this section the speeds of the two shafts are analysed. The considered signals correspond to State A.2 and this choice is motivated by the fact that this state provides the most complete set of available data. Later on, this peak is also modulated by the LSS rotating frequency of 0.33 Hz.

• The BPFI signature is visible in the PSDs of both LSS and HSS, meaning that this fault signature propagates through the drive train and is available at the input of the generator.

• The BPFO fault signature is not visible in neither shaft speeds, thus it is not expected to be detectable using electrical quantities. Indeed, for this experimental configuration an outer race main bearing fault does not induce load torque oscillations. The lack of BPFO signature might be explained by the experimental conditions, more specifically by the fault location with respect to the applied forced to accelerate the bearing deterioration. However, this aspect has not been investigated further. Thus, for fault detection, only the results concerning BPFI are further presented for this experiment.

As the torque oscillations due to the fault only appear starting 149.23 hours into the experiment, this time represents the soonest possible time for the fault detection using electrical quantities. Since vibration analysis is based on different effects of the mechanical fault (i.e. shock, impulse), the fault signature might be detected at a different time. Indeed, this particular fault was detected sooner using vibration analysis [START_REF] Gerber | Time-Frequency Tracking of Spectral Structures Estimated by a Data-Driven Method[END_REF][START_REF] Firla | Automatic characteristic frequency association and all-sideband demodulation for the detection of a bearing fault[END_REF] for the BPFI signature.

Fault detection using electrical quantities

In this subsection the results regarding fault detection are presented using both current and voltage signals. Firstly, the PSDs of the instantaneous symmetrical components(ISCs) and the phase signals are depicted for comparison reasons. Based on the ISC approach, the positive-sequence ISC of the electrical signals (either current or voltage) is demodulated according to the algorithm depicted in Section 4.3. The complex-valued filter has a central frequency of 67.17 Hz equal to the fundamental frequency, its passband is of 22 Hz and transition band of 4 Hz. Considering the stationarity of the operating conditions, two mechanical fault indicators are computed by summing the PSD of the obtained instantaneous amplitude (IA) and instantaneous frequency (IF) around the fault frequency of 3.45 Hz over a frequency band equal to 0.12 Hz, the spectral resolution. The healthy condition estimate is obtained by averaging the signal power under the peak for the first 5 measurements, for each of the considered quantities individually. In order to achieve the comparison with a usual single-phase approach, the same processing is applied directly on the line currents and line-to-line voltages, leading to additional fault indicators. The PSDs are estimated with Welch averaged periodograms using a Hanning window of 2 14 samples, leading to a spectral resolution of approximately 0.12 Hz clearly sufficient to separate the different components of interest. Several important aspects are highlighted in Figure 5.5:

Fault detection using the current signals

• Most of the periodic components are most visible in the PSD of the positive-sequence component. This is particularly true for the two components at 57.9 Hz and 59.17 Hz which are almost completely hidden in the noise floor of the PSD of i 1 (t) and i 2 (t). This is also the case for the small modulation sidebands located around the fundamental component (at 63.72 Hz and 70.62 Hz), which should contain the bearing fault signature. This highlights their balanced nature, and the ability of the ISCs transform to improve the SNR regarding these balanced components.

• Some periodic components are partly unbalanced. For example, the presence of the fundamental component in the PSDs of the negative-and zero-sequence components indicates the presence of an electrical unbalance in the three-phase system. However, their small magnitudes could be accounted for by a natural inherent unbalance present in all real three-phase systems. Another case is the component at 63.17 Hz, which is only present in two of the three phase currents and therefore clearly visible in the negativeand zero-sequence components. This result highlights the ability of the ISCs transform to separate balanced and unbalanced parts of the different components constituting the signals.

• The noise levels on i + (t) and i -(t) are equal, as expected for uncorrelated phenomena. However, the slightly increased level on i 0 (t) suggests that there is a small correlated synchronous noise in the three phase currents. This might be due to a small amount of crosstalk usually present in synchronous multichannel acquisition systems. The fault indicators were computed and Figure 5.6 depicts the obtained results. Firstly, one can observe that the use of the instantaneous frequency provides better overall results for this type of fault, compared to the instantaneous amplitude. Secondly, the use of the positivesequence component gives better results than considering each phase signal individually. This result is expected due to the improved SNR obtained when the whole three-phase currents are considered, rather than single phase. Due to its poorest SNR, the current signal on line 2 provides the worst results and does not enable the detection of the mechanical fault in the case of a single-phase approach.

Another interesting remark concerning Figure 5.6 is that it shows the time evolution of the fault signature in electrical signals throughout the experiment. Because no maintenance work has been done during the experiment, a continuous increase of the deterioration of the bearing is expected. However, the fault signature does not show a continuous increase, especially around the 180 th hour of the experiment. This remark highlights the fact that the fault indicator describes the signature profile of the load torque oscillations induced by the (a) Fault indicator using the instantaneous amplitude 
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Fault detection using the voltage signals

Usually the current signals are analysed in order to detect mechanical faults. However, the usual configuration provided in the literature consists in three-phase induction motors driven at grid frequency. The test-bench used for this experiment contains a three-phase generator which is not directly connected to the grid. It was mostly this remark that triggered the curiosity to investigate the content of the voltage signals as well. Figure 5.7 depicts the PSDs of the line-to-line voltages as well as the voltage ISCs. The PSDs corresponding to all 28 measurements are all superposed in this figure .   It can be observed in this figure that the previous observations made for the current signals also stand for the voltages, mainly the separation of components, the SNR improvement and the equal noise levels of v + (t) and v -(t). As one can observe, only the positive-sequence ISC presents modulations. Unlike the currents, the voltage signals acquired on the three phases present mostly the same signal content and noise levels. Another interesting aspect depicted in Figure 5.7 is that there is a balanced wide-band phenomenon present in the voltage signals, in the band 60 -74 Hz.

Afterwards, the fault indicator was computed for the voltage positive-sequence ISC and for all three phase voltages. These results are depicted in Figure 5.8. Regarding the fault indicator computed using the IAs, the use of the voltage positive-sequence ISC does provide slightly better results than the phase voltages. Concerning the indicator computed using the estimated IFs, the profiles provided by all four indicators are almost the same. Unlike the current signals, the voltage positive-sequence component does not benefit as much from the SNR improvement when it comes to the computation of the fault indicators. This might be explained by the fact that the component corresponding to the fault does not arise directly from the noise floor but is added to the already existing signal content due to the wideband phenomena (seen in Figure 5.

7).

All in all, using the positive-sequence ISC does provide better or at least as good as results as the phase/line quantities. In case of load torque variations, the mechanical indicator computed using the IF provides better detection capability than the one using the IA. Last but not least, by comparing the results shown in Figure 5.8 and 5.6 for this experimental configuration the (a) Fault indicator using the instantaneous amplitude 
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Fault detection in case of small non-stationarities

In this subsection the performance of the mechanical fault indicator is evaluated for small non-stationarities and compared to the stationary results. For this purpose the considered electrical signals belong to states A.2 and A.2b according to Table 5.3. Indeed, all operating parameters have the same values for these states and the only difference between them is given by the profile of the rotating speed of the LSS. While for both states the average value of the rotating speed is 20 rpm, for state A.2b the speed varies around this value. Figure 5.9 gives speed profile of the LSS for state A.2 (considered stationary) and for state A.2b (nonstationary). The zoom on the spectrogram around the fundamental frequency of the electrical quantities shows that the operating conditions and more specifically the variations of the rotating frequency directly influences the electrical signals content. The profile of the fundamental frequency of this estimated quantity bears a close resemblance to the speed profile of the LSS presented in Figure 5.9. The variations of the instantaneous amplitude and frequency of the fundamental component contain information related to changes in the operating conditions as well as to mechanical phenomena occurring in the system, hence the need for demodulations. • The fault characteristic frequency is positioned very closely to a different frequency peak corresponding to a different mechanical phenomenon in the test-bench. This leads to a narrow selection of the frequency band B.

• Modulations of BPFI by the LSS rotating frequency of 0.33 Hz are visible for the stationary conditions. For very few datasets peaks appear also at 2 * BPFI, especially in the PSD of the IF. However, modulations and harmonics of BPFI are not really visible in case of non-stationary operating conditions. This observation also partly justifies why the fault indicator is only computed around the characteristic frequency.

Using the PSDs previously depicted in Figure 5.12 the mechanical fault indicator was computed over a frequency band B equal to the frequency resolution of 0.12 Hz. The healthy state was estimated by averaging over the first 5 measurements. These results are depicted in Figure 5.13. The figure shows that the indicator is influenced by operating conditions and its amplitudes are lower for state A.2b. However, the fault remains detectable for both stationary and non-stationary cases.

Even if the signals are non-stationary, the PSD was still used to analyse the frequency content of the signals. This does lead to poor results. However, for small variations, the PSD can still be used. The results could be improved by using time-frequency representations or angular re-sampling if the rotating speed is known. However, such approaches are beyond the scope of this manuscript. 

Effect of the operating conditions on the fault indicators

In this section a study of the robustness of the indicator with respect to the operating conditions is presented. In the previous section we have shown the study concerning signals non-stationarity using signals corresponding to states that have the same operating parameters (speed and torque) and the only difference was the variations in speed for one of the states. For this section all considered signals are stationary and they belong to the operating conditions states {A.1, A.2, A.3, A.4, A.5, A.6}, according to Table 5.3. Moreover, only results regarding the voltage and current positive-sequence ISCs are going to be discussed.

A consequence of the fact that the output of the generator on the experimental test bench is not directly connected to the grid is that its electrical quantities (i.e. amplitude, fundamental frequency) are allowed to vary depending on the operating conditions. Thus, Figure 5.14 presents the average values of the IF and the IA around the fundamental frequency for the electrical quantities. These values of the IA and IF vary with respect to operating conditions but they are more or less constant throughout the experiment. For example for state 4, for which more datasets are available, the voltage average amplitude varies between 315 and 320 V. The fundamental frequency estimated using both voltages and currents provides the same results, as presented in the lower sub-figures of Figure 5.14. Thus, for signals obtained at LSS speed of 20 rpm the fundamental frequency is around 67 Hz, while for half the shaft speed this frequency halves as well.

The mechanical fault indicator has been computed for each state in particular. This means that a healthy value is considered for each state. Because of the poorer availability of experimental signals, this healthy conditions estimation for the fault indicator does not use the first 5 measurements as previously. The reference PSD was estimated using only the first measurement, thus becoming more sensitive to the content of the estimated PSD. In order to decrease the sensitivity to the noise variations in the PSD, the bandwidth over which the indicator is computed is B = BPFI ±0.12 Hz, which corresponds to twice the spectral resolution. The fault characteristic frequency depends on the state, as in Table 5.4. The results are presented in Figure 5.15.

Figure 5.15 highlights some interesting aspects regarding the proposed faults indicator:

• The mechanical fault indicator computed for the demodulated voltage signals corresponding to states A.4 and A.6 seems to have a rather low performance. More data is needed to clarify this aspect. However, for these two states the signature of the mechanical fault is not present in the IA of the electrical signals. The fault seems to be detectable however using the IF. Regarding the state A.4 in particular, the mechanical fault indicator using the currents IF performs very similar to the one computed for state A.2 (same rotating speed, lower torque).

• For mechanical faults inducing load torque variations, thus leading to phase modulations in electrical signals, the use of the IF for condition monitoring provides better results that the IA. This statement applies to both voltages and currents.

• The indicators obtained using the IF of the voltage signals generally show a higher increase in amplitude after the occurrence of the fault than the ones computed using the IF of the currents. The only exception to this rule corresponds to state A.4. Once more, more experimental data is needed to determine whether this is the general case for this state or an outlier.

• Regarding the indicators computed using the IA, the performance varies wildly with the states. For states A.4 and A.6 the fault signature is not visible. For states A.2 and A.5, the fault is more visible in the voltage signals. For A.3 the results are similar, slightly in favour of the currents though. For state A.1 the fault signature is clearly more visible using the currents. However, due to the wild variation of the results and the poor data availability after the appearance of the fault, the results comparing the performance of using the IA of the currents versus voltages might be considered inconclusive. However, for most cases, the fault is also detectable using the IA.

• The lower sub-figures depicting the evolution of the fault indicators obtained from the estimated IF show that the fault is more clearly detectable in states A.1, A.3 and A.5. Indeed, for these states the fault characteristic frequency is half the one for the other states. This difference of performance with respect to the value of the fault frequency can easily be explained by the way the IF is estimated. The IF is obtained using the derivative of the instantaneous phase and the derivation operation amplifies the noise proportionally to the frequency. Thus at lower frequencies the estimated IF has better SNR.

• Though similar, the profiles of the fault indicators obtained for state A.2 are not exactly the same as the ones presented in Figures 5.6 (for the currents) and 5.8 (for the voltages) or in 5.13 (for both). This is because the indicators are sensitive to the estimation of the healthy value which is used for normalisation. Indeed, both the number of measurements used for estimating the normalisation factor and the bandwidth over which the indicators are computed have changed compared to previous sections.

The expected behaviour was that the detection performance for lower fault characteristic frequency to increase when using the IF of the electrical signals and this was confirmed by the experimental results. However, no clear conclusions can be drawn based on the obtained results regarding the influence of the torque.

All in all, the mechanical fault is still detectable using the proposed indicators regardless of the operating state of the test-bench. However, for some of the operating conditions the fault signature is visible in all four considered signals (currents and voltages, IA and IF) while for other states the fault is only detectable using particular signals.

For the results presented in this section both the number of measurements used for estimating the normalisation factor and the bandwidth over which the indicators are computed have changed compared to previous sections. This is partly due to a lower number of available datasets and partly to test the robustness of the indicators with respect to these parameters. Indeed, using fewer signals to estimate the normalization factor for the indicator does decrease the performance, as expected. Nonetheless, the method remains capable of detecting the mechanical fault. 

Detection of mechanical faults inducing high-frequency modulations

Experimental conditions

For this section we consider signals acquired during the experiment denoted Exp. B from Table 5.2. This experiment has run for ≈ 900 hours. For this experiment a radial load force was applied on the output bearing (located on the high-speed shaft) leading to an accelerated deterioration of this bearing. At the end, the output bearing was dismounted and the bearing was visually inspected. The visual inspection showed there was no flaking, but a distributed wear over half the outer race (remained smooth but cracked). There were also traces on the bore of the inner ring which show that this ring has rotated on the axis and therefore was not mounted sufficiently tight because of the radial force. Unfortunately, no picture is available for this damaged bearing. Figure 5.16 shows the operating conditions defined for one of the test cycles, emphasizing the state B.1 considered for this manuscript. Table 5.5 gives a short summary of the state defined by the operating conditions for the signals used in the following sections. 5.6 gives the considered frequency band for the considered outer race fault, allowing 2% variations for BPFO. The value for the BPFO was obtained using the kinematics of the system and the known rotating speed of the shaft. When analysing the electrical quantities the modulations will be expected in the left and right bands with respect to the fundamental frequency. Indeed, the bands of interest for the electrical quantities are located at B l = f 0 -BPFOband and B r = f 0 + BPFOband. 

Fault detection using electrical quantities

The computation of mechanical fault indicators is based on the estimated PSDs of the positive-sequence ISCs of the voltages and currents. For comparison reasons, the same processing is also applied directly to the phase electrical signals. For the considered experimental data the PSDs estimations are obtained with Welch averaged periodograms using a Hanning window of 2 11 samples, leading to a spectral resolution of approximately 0.95 Hz. Indeed, the spectral resolution is rather poor. However, it was chosen accordingly because the fault indicator is computed over a wide frequency band and there is not a real interest in precisely detecting any given peak. Figure 5.17 depicts a zoom in on the frequency bands of interest (the left-hand side band B l and the right-hand side band B r ) in the PSDs of the current signal on phase 1 and the positive-sequence ISC. The figure shows that i + (t) has a better signal-to-noise ratio than the current i 1 (t). Also, after 350 hours into the experiment new peaks appear in these bands. This can be clearly seen in the PSD of i + (t) and it is less clear for i 1 (t). Nonetheless, one of the datasets acquired after the 350 hours does not present any new peaks. The PSDs of the other two current signals are similar to that of i 1 (t). This approach allows the comparison in terms of detection capabilities between single-phase and three-phase methods. For all indicators, the healthy case estimation S h was considered to correspond to the first dataset acquired. (4.14). There are several aspects highlighted in this figure. Firstly, the indicators computed using positive-sequence ISCs provide better results than the ones using the single-phase quantities. The higher amplitudes of the indicator towards the end of the experiment are more clearly distinguishable from the lower values at the beginning. Secondly, the voltage signals provide better results than the current signals. This might be explained by the fact that the voltage signals have higher amplitudes than the currents around the fundamental, thus the amplitudes of the modulations are also higher. Another aspect contributing to this result is that for this test bench the generator output is not directly connected to the grid, thus its voltage amplitude and fundamental frequency is allowed to vary and are not imposed by the grid. Regarding the absence of the bearing fault signature in the signals acquired right before 800 hours, one possible reason could be the fact that the bearings were not tightly fixed. In this case the fault position might change with respect to the load area and this might lead to a difference or temporary absence of the signature.

Fault indicators based on signal energy

All in all, using the indicator m 1 computed for v + (t) and by setting an correct threshold the signature of the mechanical fault can be detected from the beginning of its apparition. However, this indicator performs rather poorly when applied to all other signals. This was expected considering the wide band (2 times 8.92 Hz) over which it was computed. The contribution added by the two new peaks is small compared to the integral over the ≈ 18 Hz.
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(b) Fault indicator using voltages The poor performance of the first indicator justifies the need for improvement, thus the definition of the second indicator named m 2 given in Equation (4.16). The order of the median filter used to estimate the noise floor is set as five times the spectral resolution. Figure 5.19 explains how this indicator is computed by depicting the modulation bands B l and B r for the first and last i + (t). In this figure the median (S n (f )) for each of these two PSDs is also depicted while the gray area indicates the quantities used to compute the indicator m 2 . For the first dataset, also considered healthy, the gray area is small. For the last dataset new peaks are visible and the gray area under them is large compared to the healthy case. Figure 5.20 shows the mechanical fault indicator m 2 . The indicator computed using singlephase current signals is still not capable to clearly separate the values before and after the fault appears. This result is expected to be poor, considering for example the PSD of i 1 (t) presented in Figure 5.17 which shows that the phase signal has a poorer SNR than i + (t). More so, the modulations in the left-hand side band of the currents PSDs are not visible for most of the single-phase signals. Using i + (t) the fault is detectable. The result provided by this indicator enables the detection of the fault starting before 400 hours using all voltage signals and the positive-sequence ISC for the currents. (a) Fault indicator using currents .21 shows the frequencies for the maximum difference between each given PSD and the one that was estimated for the first dataset considered healthy. These frequency values pairs correspond to f ml and f mr from Equations (4.18). At the beginning of the experiment these values vary all over the frequency band which corresponds to the bearing outer race fault. After 350 hours the left and right frequency value both converge towards the same value for all the voltages and for i + (t). This suggests that the actual modulating frequency is between 221 and 222 Hz, and not precisely equal to the theoretical value of 223 Hz. (a) Frequencies f ml and fmr for the currents of this indicator is lower than the spectral resolution of 0.95 Hz the results suggests that there is a modulation of the fundamental frequency present in the frequency bands corresponding to BPFO. Thus this indicator is able to detect the appearance of the modulation using all three phase voltage signals as well as v + (t). Regarding the currents, the indicator can detect the presence of the modulation using i + (t) but the fault is still not properly detected using the single-phase currents. If only random noise is present in the corresponding bands the current algorithm still returns a frequency value for each band. Thus the probability of false alarm is rather high in this case as randomly the maximum difference between the noises in the bands can falsely indicate a modulation as is the case for the value for i + (t) right after 200 hours. This indicator can be improved by adding a peak detection step and only providing values for f ml and f mr when peaks are present in the modulation sidebands of the estimated PSDs of the electrical quantities.
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Conclusions

In this chapter the experimental results concerning mechanical fault detection have been presented. The signals used in this chapter were coming from an experimental test-bench that simulates a wind turbine. The considered mechanical faults correspond to bearing faults. The experimental results validate the proposed methods for detection of both low-frequency and high-frequency signatures of mechanical faults in electrical signals.

For the mechanical fault inducing low-frequency modulations, the experimental results showed that the use of the positive-sequence ISC provides better detection capabilities than the single-phase approach. Indeed, using the positive-sequence ISC the fault signature was detectable using the proposed method for the electrical signals analysis as soon as torque oscillations appeared in the shaft speeds. This result stands both in the case of stationary signals, as well as in case of non-stationary signals presenting small variations. Also, the robustness of the proposed method was studied with respect to operating conditions showing that while the mechanical fault indicators are sensitive with respect to shaft rotating speed and torque, they are still capable of detecting the corresponding fault.

For the mechanical fault indicators proposed for detecting high-frequency signatures of mechanical faults, the results show that the proposed method is capable of attaining its goal. Both types of indicators were tested: the ones relying on the signal energy and the ones using the frequency values. The results showed that while using the single-phase current signals the mechanical fault is not detected, the fault signature becomes detectable when the three-phase approach is used. Indeed, the three-phase method gave overall batter results than when the same processing was applied on the single-phase signals.

However, one limitation of this method is represented by strongly non-stationary signals. Indeed, the method was designed for the stationary assumption. While for small variations the proposed algorithms can still be used, for highly non-stationary signals the method needs to be adapted.

As perspectives for experimental validation of the proposed algorithms, other types of mechanical faults would be desired. In terms of fault signature, eccentricity faults would be interesting to analyse. Also in terms of mechanical components there is room for validation. This chapter has only presented results regarding bearing faults. It would be interesting to also validate the method for example for gearbox faults. Another interesting variation would be to use the proposed algorithm to detect mechanical faults on different three-phase electromechanical systems, like for example a real wind turbine.

The next chapter presents the prospective work in terms of electrical unbalance detection and localisation. The research work presented in this manuscript has been performed in the context of the KAStrion European project, described in Chapter 1. The aim of the project was to develop a solution for condition monitoring of wind turbine components, whether electrical and/or mechanical. The initial plan was to use the electrical measurements mainly to detect electrical faults and secondly to eventually confirm mechanical faults (which would have been detected by using vibration analysis, for example). However, the project development and the data availability have changed the initial plan. The available electrical data for the KAStrion project does not contain electrical faults. However, data containing various types of mechanical fault was available. Consequently, the focus of using three-phase electrical signals for condition monitoring has shifted from electrical faults to mechanical ones. Some steps were taken towards electrical faults detection and they are presented in this chapter. However, this work is to be regarded as prospective. The chapter begins by giving a definition of the electrical unbalance as well as a geometric interpretation of this quantity. Based on this interpretation, an electrical unbalance indicator is then defined. Based on the existing bibliography [START_REF] Ignatova | Space Vector Method for Voltage Dips and Swells Analysis[END_REF][START_REF] Bouzid | New expressions of symmetrical components of the induction motor under stator faults[END_REF], the angles of the symmetrical components(SCs) can be used to localise the fault. Thus, the overall proposed method for electrical fault detection gives an algorithm to estimate the electrical unbalance, according to its definition, and to estimate the angles of the instantaneous symmetrical components(ISCs). The experimental results used to validate the proposed method come from various sources and three-phase systems, each emphasising different aspects of the algorithm.

The results presented in this chapter were partly presented in [START_REF] Cablea | Bearing faults monitoring in electrical rotating machines through three-phase electrical signals analysis[END_REF][START_REF] Cablea | Method for computing efficient electrical indicators for offshore wind turbine monitoring[END_REF].

Definition and interpretation of electrical unbalance

This section starts by giving a definition of electrical unbalance. The quantities that describe balanced and unbalanced parts of a three-phase signal are then given a graphical interpretation. For clarity reasons and to simplify the expressions the initial subsections concerning the definition and geometric interpretation are given in terms of phasors and SCs.

Definition of electrical unbalance

Let x be a three-phase generic complex-valued signal, with x denoting either voltage or current, defined in terms of its SCs [START_REF] Fortescue | Method of symmetrical co-ordinates applied to the solution of polyphase networks[END_REF]:

x =   x 1 x 2 x 3   =   1 1 1 a 2 a 1 a a 2 1   F   x + x - x 0   (6.1)
where a = e j 2π 3 , F denotes the Fortescue matrix, and the SCs of the original three-phase signal x are:

• x + the positive-sequence SC,

• x -the negative-sequence SC,

• x 0 the zero-sequence SC.

The goal of this section is to determine the correct manner to define and measure the eventual amount of unbalance present in x. However, unbalance is a non-property and is difficult to define by itself thus it can be defined as the absence of the balance property. A perfectly balanced three-phase signal has the same amplitude on each of the three phases and an equal phase shift of 2π 3 between each other. A reference balanced signal is given in Equation ( 6

.2). b =   1 a 2 a   = F   1 0 0   (6.2)
Consequently, an unbalance three-phase vector can be thought of as being completely different from the completely balanced vector b.

Geometric interpretation of the unbalance

Complex-valued vectors are elements of an inner product space for which the corresponding inner product, norm, and distance are defined as:

u, v = v † u (6.3) u = u, u (6.4) 
d(u, v) = u -v (6.5)
where u and v are two generic complex-valued vectors.

Figure 6.1 gives a graphical representation of the considered current vector x and the balanced vector b. The simplest way to define the balanced part of x is to consider it as the part of x pointing in the same direction as b. This is given by x p , the orthogonal projection of x onto b. Indeed, the vector x is decomposed into x = x p + x d . The quantities depicted in Figure 6.1 are defined as:

• the global difference between the two vectors:

d = b -x
• the difference between b and the part of x pointing in the same direction:

δ = b -x p
• the balanced part of x:

x p =
x, b b 2 b (6.6)

• the part of x pointing in the direction orthogonal to b, in other words the orthogonal complement of x with respect to b:

x d = x -x p (6.7) 
• the angle θ between the vectors x and b, with θ ∈ [0, π]. For this angle it is interesting to consider its sine and cosine:

cos θ = x p x sin θ = x d x (6.8)
All of the above quantities describe the link between the three-phase vector x and the perfectly balanced vector b. The vector x p has been established to quantify the balanced component in the system. However, δ and d do not present a particular interest since δ gives the difference between the reference balanced vector and the balanced quantity while d mixes the information regarding balanced and unbalanced parts. The vector x d is particularly interesting. Indeed, it points in a direction orthogonal to the completely balanced vector b, and is, in that sense, completely different from a balanced vector, or equivalently completely unbalanced. x d can therefore be considered as the unbalanced part of x.

Using equations (6.1), (6.2), (6.3) and (6.4), the equations linking the vector decomposition of x and the SCs are obtained as:

x p = x, b b 2 b = x + b = F  
x + 0 0   (6.9)

x d = x -x p = F   0 x - x 0   (6.10)
Once again, this show that x p or equivalently x + represents the balanced part of x, while x d or equivalently both x -and x 0 together represent its unbalanced part.

Proposed method for electrical unbalance detection and localisation

The previous section gave the considered definition for the electrical unbalance. Based on that definition and on its geometrical interpretation an electrical unbalance indicator is defined in this section. One important remark that needs to be made is that the electrical threephase signals can be mostly balanced for a given frequency while being mostly unbalanced for another frequency. In other words, the electrical unbalance might be different for each frequency component of the electrical signals. This remark justifies the filtering step depicted in Figure 6.2 which gives the structure of the algorithm proposed in this section.

As Figure 6.2 shows, the proposed method starts with the computation of the ISCs for the three-phase signal denoted x(t) (either voltage or current). Afterwards each of these components is filtered around the fundamental frequency f 0 using a complex-valued finite impulse response filter. This step is part of the demodulation technique which is detailed in Chapter 4, Section 4.3, Subsection 4.3.1 and would not be reiterated here. However, it is important to consider that throughout this Chapter, whether specified or not, all the considered electrical quantities would refer to the ones around the fundamental frequency of the electrical signals. The same stands for the computed unbalance indicator and angles.

Starting from the geometric interpretation of the unbalance the next subsection proposes an electrical unbalance indicator based on the filtered ISCs of the three-phase signals. The last subsection gives a prospective approach in characterising/localising eventual electrical faults. 

1 3   1 a a 2 1 a 2 a 1 1 1   f f0 |• | |• | |• | |• | 2 + |• | 2 |• | 2 + |• | 2 + |• | 2 • /• → • • /• → • x(t) |x + (t)| f0 |x -(t)| f0 |x 0 (t)| f0 u x (t) a -(t)

Definition of the unbalance indicator

In the previous section it has been shown that x p and x d quantify the balanced and unbalanced parts of the original three-phase signal x. However, these quantities themselves can vary with respect to operating conditions. For example, the amplitudes of the current signals acquired on the test bench presented in Chapter 5 vary between 4 and 16 A for the same experiment, depending on the operating conditions (see Figure 5.14). Thus, instead of just using the x p and x d quantities directly, a normalized indicator is proposed.

The proposed electrical unbalance indicator corresponds to the sinus of the angle (θ ∈ [0, π]) between the original three-phase signal x and the reference perfectly balanced signal b. As expressed in Equation (6.11), this sinus is given by the ratio between the amount of electrical unbalance over the total amount of signal in x.

sin θ = x d x = x d , x d x, x (6.11) 
By using Equations (6.1) and (6.10) in Equation (6.11) the sinus can be expressed as:

sin θ = |x -| 2 + |x 0 | 2 |x + | 2 + |x -| 2 + |x 0 | 2 (6.12)
Indeed, the quantity described in (6.12) gives the electrical unbalance indicator around a given frequency, for which the SCs were considered. By switching to instantaneous quantities and considering that the ISCs have been a priori filtered as in Figure 6.2, the proposed electrical unbalance indicator around f 0 denoted u x (t) is given as:

u x (t) = |x -(t)| 2 + |x 0 (t)| 2 |x + (t)| 2 + |x -(t)| 2 + |x 0 (t)| 2 (6.13)
Equation (6.13) gives the expression of the instantaneous electrical unbalance indicator around the fundamental frequency f 0 . This indicator belongs to the interval [0, 1], where the ideal case of a perfectly balanced system would yield u x (t) = 0 as the three-phase vector x would point in the direction of the balance signal. The worst case when x is orthogonal to a balanced three-phase signal would yield 1. The proposed indicator measures the global amount of unbalance thus it would be related to the fault severity and can be used for detection.

Angles between instantaneous symmetrical components

In literature regarding power quality monitoring, voltage dips and swells signatures were detected and classified based on the amplitudes and phases of the SCs [START_REF] Ignatova | Space Vector Method for Voltage Dips and Swells Analysis[END_REF]. Specifically for induction machines, expressions of SCs [START_REF] Bouzid | New expressions of symmetrical components of the induction motor under stator faults[END_REF] of the current under stator faults have been developed. Indeed, it has been shown that the angle of the negative-and zero-sequence SCs can be used to identify the type and phase location of an occurring electrical fault. However, the specific values of the computed angle depend on the electrical system itself and on its configuration and such computations are beyond the scope of this manuscript.

The proposed method based on ISCs (as opposed to SCs) can also be used to identify the unbalanced phase. As the computed quantities are instantaneous ones, the angle of the negative-and zero-sequence components would depend on time.

SCs around f 0

ISCs around f 0

x + = X + e jϕ + x + (t) = X + (t)e (j2πf 0 t+ϕ + (t))

x -= X -e jϕ - x -(t) = X -(t)e (j2πf 0 t+ϕ -(t))

x 0 = X 0 e jϕ 0 x 0 (t) = X 0 (t)e (j2πf 0 t+ϕ 0 (t))

where X + , X -and X 0 denote the amplitudes, f 0 represents the fundamental frequency, t denotes the time instant and ϕ + , ϕ -and ϕ 0 represent the corresponding angles. For the ISCs these quantities are time-dependent. In order to cancel the influence of f 0 , the positivesequence component can be used as a reference as in Equation (6.14).

r

-(t) = x -(t) x + (t) = X -(t) X + (t) e j(ϕ -(t)-ϕ + (t)) r 0 (t) = x 0 (t) x + (t) = X 0 (t) X + (t) e j(ϕ 0 (t)-ϕ + (t)) (6.14)
The ratio between the negative-and positive-sequence voltage SCs is also called voltage unbalance factor [START_REF] Hobson | Symmetrical components[END_REF]. If only the amplitudes of the SCs are used and the ratio is multiplied by 100 we obtain the voltage unbalance factor as it is defined in the European Standard for voltage supply [START_REF] Jacob | Stator fault detection in induction motor under unbalanced supply voltage[END_REF][START_REF] Fernandez | Current unbalance reduction in three-phase systems using single phase PHEV chargers[END_REF]. The angles of interest can then be obtained by simply taking the instantaneous argument/phase of these ratios:

a -(t) = arg {r -(t)} = ϕ -(t) -ϕ + (t)
a 0 (t) = arg {r 0 (t)} = ϕ 0 (t) -ϕ + (t) (6.15)

In (6.15), a -(t) denotes the angle between the negative-sequence ISC and the positivesequence one and is computed by extracting the phase of their ratio, while a 0 (t) denotes the angle between the zero-sequence ISC and the positive-sequence one. These two quantities are used in what follows to identify the unbalance fault.

Remarks regarding the type of acquired signals

Depending on the three-phase system connections (star or delta, see Figure 2.1) some quantities may not be available. For example, if the acquired signals are line-to-line voltages in a delta connected system, the zero-sequence voltage is not available. In four-wires connection there may be a neutral current flowing through the forth wire. The zero sequence component of the current will be strongly related to this neutral current, as:

I 0 = I 1 +I 2 +I 3 3 = I neutral 3 .
Usually the voltages in a three-phase system are measured between two lines. Though the available voltages are usually line-to-line voltages, the symmetrical components have been previously defined in terms of the line-to-neutral voltages. A relationship between line-to-line voltages symmetrical components and line-to-neutral ones can be easily determined. What makes this easy is the property of the Fortescue transformation to split any unbalanced Nphase system into N balanced systems, thus the symmetrical components from line-to-neutral and line-to-line measurements are related by a magnitude of √ 3 and an angle of π 6 rad.

The line-to-line voltages also produce a set of positive-sequence and negative-sequence SCs [START_REF] Hobson | Symmetrical components[END_REF]. Yet, they do not produce a zero-sequence component as v 0 LL (t) = 1 3 (v 12 (t) + v 23 (t) + v 31 (t)) = 0 according to Kirchhoff's law. The relationships between such quantities depends on the chosen reference frame [START_REF] Hobson | Symmetrical components[END_REF] and for reference frames v 1 for line-to-neutral voltages and v 12 for line-to-line voltages the following equalities exist:

v + LL = √ 3 v + LN e j π 6 = (1 -a 2 )v + LN (6.16) v -LL = √ 3 v -LN e -j π 6 = (1 -a)v -LN (6.17) v + LN = v + LL √ 3 e -j π 6 = 1 -a 3 v + LL (6.18) v -LN = v -LL √ 3 e j π 6 = 1 -a 2 3 v -LL (6.19)
For the currents similar relationships between line and phase sequence components can be determined and are described in detail in [START_REF] Hobson | Symmetrical components[END_REF].

The relation between the obtained angles for line and phase quantities can be deduced using such conversions. For example, Equation (6.20) shows that there is a shift of π 3 rad between the a -(t) angle computed for line-to-line voltages and the one for line-to-neutral voltages.

a -LL (t) = arg v -LL (t) v +LL (t) = arg √ 3 v -LN (t)e -j π 6 √ 3 v +LN (t)e j π 6 = a -LN (t) - π 3 (6.20) 

Experimental results

This section presents three sets of experimental results. For each of the experiment the signals were acquired on a different three-phase electric system and each of the experiments focuses on a different aspect of the proposed method:

1. Three-phase transformer. These signals consist in voltages that have been acquired from the secondary output of a three-phase transformer. The results are presented in Section 6.3.1 and they focus on the instantaneous characteristic of the unbalance indicators.

2. Induction motor. These signals were provided by the Laboratoire d'Informatique et d'Automatique pour les Systèmes, Ecole Nationale Supérieure d'Ingénieurs de Poitiers, during a scientific exchange and they were acquired on an induction motor under interturn short-circuit (ITSC) faults. The results are presented in Section 6.3.2 and they focus on the precision of estimating the ISCs and the electrical unbalance.

3. Test-bench generator. These signals come from the test-bench purposely designed for the KAStrion European project and they correspond to Exp. A detailed in Chapter 5, Section 5.2.1. The results are presented in Section 6.3.3 and they focus on the robustness of the proposed indicators with respect to operating conditions and their applicability for long-term condition monitoring.

Transformer

Winding faults in three-phase electrical systems have been shown to trigger electrical unbalance in three-phase electrical signals [START_REF] Bouzid | New expressions of symmetrical components of the induction motor under stator faults[END_REF]. For this experiment such faults were simulated by a progressive short-circuit with a resistance on one of the phases of a three-phase transformer.

In order to present the performance of the proposed method in terms of electrical unbalance faults, three-phase voltage signals have been acquired at the output of the three-phase transformer. The transformer connection is ∆ -Y , with the primary being ∆ and the secondary being Y connected. At the output of the transformer, artificial phase-to-ground faults have been induced through a resistance. Figure 6.3 depicts the connection for such a phase to ground fault located on phase 1. The measured electrical signals are line-to-neutral voltages. Moreover, using the line-toneutral measured voltages, line-to-line quantities have been computed using Equations (6.21).

v 12 (t) = v 1 (t) -v 2 (t) v 23 (t) = v 2 (t) -v 3 (t) v 31 (t) = v 3 (t) -v 1 (t) (6.21)
The values used for the resistance are depicted in Table 6.1. Phase to neutral faults have been triggered on each phase respectively, leading to three sets of measurements. Each measurement lasts for 35 s. The first 5 s are acquired in the absence of the fault and afterwards the resistance value was decreased and the fault severity increases every 5 s according to Table 6.1. The proposed electrical unbalance indicator is able to detect the occurrence of winding faults, as its definition given by Equation (6.13) considers the magnitudes of both the negativeand zero-sequence components. Such results are depicted in Figure 6.4. In Figure 6.4a, the performance of the indicator is shown for the case when the algorithm was directly applied on the acquired line-to-neutral voltage signals. As shown, the indicator is able to detect and track the evolution of the electrical unbalance occurring in the system whatever the faulty phase. Figure 6.4b depicts the same results, with the difference that the algorithm has been applied to the computed line-to-line voltages. As in this case the zero-sequence component is not available for computation, the obtained magnitude of the indicator is slightly smaller than in the previous scenario. However, fault detection is still possible for all three sets of experiments. Figure 6.5 depicts the ratios between instantaneous symmetrical components, computed as in Equation (6.14), for line-to-neutral voltages (r -(t) and r 0 (t)) as well as for line-to-line voltages (only r -(t) can be computed). It can be observed in the figures that the angles of the considered components are strongly correlated to the phase on which the unbalance occurs. The angles computed for each type of fault are separated by a phase shift of 2π 3 . Moreover, while the magnitude of the ratios computed as in (6.14) increases with the fault severity, the angles remain relatively constant in time. Another interesting aspect to observe on these figures is that the ratios have an initial offset from the center and that this offset is different with each experiment. This offset actually characterises the natural unbalance which is always present in three-phase systems. .6 depicts the angles a -(t), a 0 (t) and a -LL (t) between ISCs as defined in (6.15) and (6.20). It is clear from the figure that even during the first 5 seconds when the fault has not yet been triggered there is a certain angle indicated by these indicators. However, the figures depicting the angles between the negative-sequence and the positive-sequence ISCs show that right from the start of the fault, right after 5 seconds, the indicated angles change value and they remain fairly constant throughout each of the experiments. As expected, there is a difference of 2π 3 rad between the angle values, depending on the phase on which the windings were short-circuited. Also, as expected from (6.20), there is a difference of π 3 rad between a -(t) computed from line-to-neutral voltages and the same quantity computed using the line-to-line voltages. Concerning the angle between the zero-sequence ISC and the positive-sequence one, it can also be said that the evolution of the angle values starts after 5 seconds. However, these values keep changing as the fault increases until approximately 15 seconds. Because the zero-sequence components of the voltages is very small, it takes longer to compensate for the initial offset seen in Figure 6.5 in order to correctly indicate the faulty phase. All in all, it has been shown that the instantaneous approach for on-line condition monitoring of electrical three-phase systems is capable of detecting and estimating electrical unbalance in such systems. Empirically, it has also been shown in this section that fault localisation is possible using the proposed method. However, in order to correctly identify the phase(s) on which the unbalance occurs, theoretical studies have to be done for each system specifically.

Induction motor

The second set of experimental data comes from a three-phase induction motor. The twopair-pole squirrel cage induction motor is supplied by an open-loop industrial inverter and is further mechanically connected to a DC motor operating as a generator. By varying the resistance connected to the DC generator, the motor mechanical load varies as well. Each of the motor stator phase windings has 464 turns. The studied fault consists in inter-turn short-circuit (ITSC) fault on a single phase. More specifically, 6 of the 464 winding turns were short-circuited on one phase at a time, sequentially. Thus, the considered faults are every small with 1.29% of short-circuited turns in one of the windings. Figure 6.7 graphically depicts an ITSC fault on phase 1. Three sets of experiments were performed using this set-up under various load conditions: no load, half nominal load and full nominal load. For each of the experiment, two acquisitions were made for each state of the motor: healthy, ITSC on phase 1, ITSC on phase 2 and ITSC on phase 3. The three phase current signals and the voltage on phase 1 were acquired at a sampling frequency of 10 kHz for a duration of 5 seconds. The acquired signals have been down-sampled to 1 kHz, in order to reduce the number of coefficients for the filter used to select the content around the fundamental frequency. Afterwards, the algorithm to compute the electrical unbalance indicators has been applied according to the graphical depiction in Figure 6.2. Figure 6.8 depicts the results for the instantaneous electrical unbalance indicator obtained for the current signals, for each of the loading scenarios. The missing samples at the beginning correspond to the filter transitory. The results seem to be slightly influenced by the loading conditions. However, whatever the load, the faults on phase 2 and 3 are clearly distinguishable from the healthy case. The same cannot be said for the fault on phase 1. In fact, the computed electrical unbalance indicator for no load conditions is smaller when the controlled fault is present on phase 1. Since all threephase systems have an inherent natural unbalance, the new fault might have to compensate for that in order to make its signature visible.
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In order to better explain this situation, one can consider the situation graphically depicted in Figure 6.9. This figure presents three phasors corresponding to the negative-sequence SC of the currents. The phasor I n corresponds to the considered negative-sequence. However, this is obtained by summing the component characterising the natural unbalance that was already present in the healthy state of the system, I n h , and the component corresponding to the fault that was induced, I n f . As it can be seen in this graphical example, the inherent unbalance may hide incipient faults. The worst case scenario would be an initial negative component I n h pointing in exactly the opposite direction as the component I n f induced by the fault. In this case, the computed negative component I n would initially decrease until the magnitude of the phasors becomes equal and it would only be larger than I n h when the faulty component is twice as high. Figure 6.10 depicts the ratios between the negative-and positive-sequence ISCs of the current signals in the complex plane. There are some interesting aspects to be noticed in this figure. Firstly, there is an offset from the origin for the healthy case. It is this offset that masks the signatures of the newly developed faults. Secondly, this offset does seem to be different for each of the load conditions. Thirdly, the ratios corresponding to each of the faulty cases seem equally spread around the healthy one.

By extracting the arguments of the ratios presented in Figure 6.10, the resulting angles would correspond to the negative-sequence component resulting as a sum of the one in the healthy case and the one corresponding to the fault. In order to extract the phase induced only by the ITSC faults, the ratios have to be previously centred in the healthy case. Let r h be the average value of the ratio r -(t) computed for the healthy case, for each loading conditions. This quantity is then used to normalize the corresponding ratios as it would be subtracted from their instantaneous value. Figure 6.11 depicts the centred ratios r -(t) -r h plotted in the complex plane. Based on these results the angles between the negative-and positive-sequence ISCs were extracted. These obtained angles are depicted in the left side of Figure 6.13. As it can be observed in the figure, each one of the ITSC fault triggers a different angle and the obtained values are separated by 2π 3 rad, which is an interesting result for fault localisation. In order for these angles to be used to correctly localise the phase on which the fault occurs, theoretical computations of the expected angles are needed, since these values are system-dependent.

The unbalance indicator defined in Equation (6.13) using the amplitudes of the ISCs can also be expressed in terms of ratios from Equation (6.14) between the instantaneous components, thus obtaining the following expression in (6.22). By formulating the unbalance indicator as such and by considering also the healthy state, the correction can be applied as before, by centring the ratios. Figure 6.12 depicts the results obtained using this improved version of the indicator which uses the reference healthy state. As it can be seen from the figure, the faulty scenarios are now clearly distinguishable from the healthy ones. Thus, by using this improved version of the indicator the ITSC faults can be detected, whatever the faulty phase. 

u x (t) = |r -(t)| 2 + |r 0 (t)| 2 1 + |r -(t)| 2 + |r 0 (t)| 2 (6.22)
In [START_REF] Bouzid | New expressions of symmetrical components of the induction motor under stator faults[END_REF], the angle of the current negative-sequence SC of this type of induction motor under ITSC faults is given with respect to the voltage phasor on phase 1, as in Table 6.2. In order to validate the results presented in this section, the angles of the negative-sequence ISC have to be presented with respect to the same reference, the voltage on phase 1. In this regard, the average angles between i + (t) and v 1 (t) in the healthy case are given in Table 6.3. The righthand side of Figure 6.13 depicts the results of subtracting the values from Table 6.3 from the angles a -(t), depicted on the left-hand side and thus obtaining the estimated instantaneous angle between the negative-sequence of the currents and the voltage on phase 1. Table 6.2.: Theoretical angle of the negative-sequence SC (I n ) with respect to V 1 ITSC fault on phase 1 ITSC fault on phase 2 ITSC fault on phase 3

0 • 120 • -120 •
As it can be observed in the right-hand side of Figure 6.13, the obtained angles are close to the expected values of 0 • , 120 • and/or -120 • , depending on the phase on which the ITSC fault is located. There is a small offset from the expected values and these differences are given in Table 6.4. One possible explanation for this offset is that in [START_REF] Bouzid | New expressions of symmetrical components of the induction motor under stator faults[END_REF] the current induced by the ITSC fault was assumed to be in phase with the voltage on phase 1, which may not always be the case. However, these offset angles are small and the fault can be localised using the angle between the negative-sequence ISC of the current and the voltage on phase 1, if available. All in all, the results presented in this section have shown that the proposed approach can be used to detect very small ITSC faults in the incipient phase in stator windings of a threephase induction motor. The faults consist in short-circuiting 1.29% of the windings on a single phase and the proposed electrical unbalance indicator can be successfully used to detect this small fault for most of the cases under different load conditions. However, the fault detection might be missed if the new fault actually compensates for the inherent unbalance present in the three-phase system. This limitation can be overcome if there is available information regarding the healthy condition. Regarding the localisation of the fault, it has been shown that the fault might be localised based on the instantaneous angle of the negative-sequence component of the current obtained with respect to the voltage phasor on phase 1.

Test bench generator

The signals used in this section come from the test-bench purposely designed for the KAStrion European project. The three-phase current and voltage signals were acquired during the experiment for the main bearing accelerated deterioration. The experiment is denoted Exp. A and is detailed in Chapter 5, Section 5.2.1. During this experiment the test bench emulating a real wind turbine ran under different operating conditions defined by the speed and torque of the low speed shaft (LSS). The Table 6.5 gives an overview of these operating conditions. Throughout the ≈ 200 hours of experiment the states described in Table 6.5 were alternated and the three-phase signals were acquired. The goal of this section is to study the robustness 6. Electrical unbalance of the proposed electrical unbalance indicator with respect to operating conditions. Considering that the evolution of the proposed indicators will be evaluated over a longer period of time, each of the instantaneous indicators is characterised by three of its properties: mean value, standard deviation and difference between its maximum and minimum instantaneous values. However, the results depicted in this section only focus on the mean values of the proposed indicators. Figure 6.14 gives the electrical unbalance indicators computed for the currents as well as the voltages. Each point in these figures represents the average of the instantaneous electrical unbalance indicator computed on each measurement set. The figure shows that regardless of operating conditions, the order of magnitude of these indicators is the same: 10 -2 for the currents and 10 -3 for the voltages. However, the indicator might be slightly influenced by the operating conditions. The results are not conclusive to indicate a relation between the obtained values and the rotating speed and/or the torque of the shaft. Moreover, while the voltage unbalance indicator remains fairly constant throughout the experiment, the current indicator shows an increase right before the end. As the amplitudes of the negative-and zero-sequence components are very small when no electrical unbalance is present, the angle estimation varies very much. Indeed, it is hard to estimate the argument of a vector with almost 0 magnitude. Thus, to avoid the wild variations of this indicator and to only display valid angle estimations, a threshold of π 6 was proposed approach was successfully used to detect and localize very small ITSC faults in the stator windings of an induction motor.

There is still room for improvement for the proposed method. Firstly, the algorithm should be validated using data that contains controlled electrical faults. Unfortunately, very little such data was available for the work presented in this manuscript. Secondly, three-phase system specific angle computations could be made to link the angles between the ISCs to specific faults. From the signal processing point of view, the estimation performance of the algorithm should be evaluated with respect to the signal-to-noise ratio (SNR) and its detection capabilities should be statistically evaluated.
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General conclusions and perspectives

Conclusions

The main objective of this thesis was to propose a three-phase electrical signals method for condition monitoring of electromechanical systems. The proposed method relies on the use of three-phase transform and the resulting instantaneous symmetrical components(ISCs). With respect to the fault type, both mechanical and electrical faults are detectable using the described method. In terms of application, the focus was on condition monitoring of wind turbines(WTs) components. However, the proposed method can be applied on electromechanical systems in general.

The first chapter of the manuscript gave the motivation for the current thesis. It presented an industry perspective on condition monitoring (CM) of WTs and gave the context for the research work. Indeed, this work has been developed within the context of the KAStrion European innovation project which had the goal to propose a complete condition monitoring system (CMS) for WT monitoring. Within this project, the initial objective for the electrical approach was the CM for electrical faults which trigger electrical unbalance and to eventually confirm mechanical faults mainly detected by vibrations analysis. However, due to lack of experimental data containing electrical unbalance and interesting results regarding mechanical faults detection, the focus changed on the latter.

The second chapter of the manuscript gives the theoretical background for the thesis. It starts with the definitions of the notions in electrical systems and then gives a literature review regarding the faults signature in electrical currents. Afterwards, a short review of the most commonly encountered three-phase transforms is presented and the relations between the various transforms are given. The last part of the scientific context gives a short literature review of the most common CM methods using electrical signals. In the end, the thesis is positioned with respect to the existing literature. Indeed, two main limitations were found in the literature regarding condition monitoring using electrical signals. Firstly, the considered demodulation techniques applied on the positive-sequence ISC are based on the assumption, generally not true, that the three-phase electrical signals are perfectly balanced. Secondly, existing works did not study the effect of the three-phase transforms on the noises present in the current signals. Thus, the first objective of the research work was to provide an indepth study of the effect of the ISCs transform and an analysis of the content of the resulting components. Also an objective of this work was to propose synthesis methods for efficient fault indicators based on the three-phase signal analysis.

Chapter 3 gives the first scientific contribution of the thesis: the study of the effect of the ISC transform. Based on a three-phase signal model the effect of applying the three-phase transform is investigated in terms of separation of balanced and unbalanced components, frequency content and effect on the signal-to-noise ratio (SNR). The study shows that the transform applied on real-valued signals affects each frequency component contained in the initial signals differently, depending on its balanced or unbalanced nature. Moreover, the study shows that the ISC transform improves the SNR. This argument justifies the threephase approach to condition monitoring even if a higher number of sensors is needed. The theoretical results were validated using simulation results, where the content of single-phase signals and the ISCs was compared.

Chapters 4 and 5 consider the mechanical faults detection using three-phase electrical quantities. Chapter 4 gives the theoretical development of the proposed method. It splits mechanical faults into two categories: faults which induce low-frequency modulations and faults which induce high-frequency modulations. A different approach is proposed for each of the two cases, taking into account the particularities of each situation. However, both approaches are based on the use of the positive-sequence ISC only, a decision based on the theoretical study into the ISCs content. The outputs of the algorithms consist in fault indicators which enable the tracking of the evolution of the corresponding mechanical fault. For mechanical faults that induce low-frequency modulations, the fault indicators are computed based on the demodulation of the positive-sequence ISC. Using simulations, the performance of the three-phase method is compared to the single-phase one and the advantages of using the ISC transform are once more proven. For the high-frequency modulations case, the method is applied directly, without demodulating the positive-sequence ISC. Two types of indicators are defined for such faults: based on signals energy and based on frequency values.

In Chapter 5, the algorithms for mechanical fault detection are validated using experimental signals. The experimental signals were acquired on a test-bench emulating a wind turbine structure and functionality and two experiments were considered which resulted in different bearing faults. One of the bearing faults had a low-frequency signature while the other had a high-frequency one. For both situations, the proposed fault indicators were shown to be able to detect the mechanical fault. More so, for the low-frequency modulations the robustness of the algorithm was studied with respect to small non-stationarity and different operating conditions. Another important result presented in this chapter is that in some cases the mechanical fault is not detectable using single-phase signals while it is detectable using the positive-sequence ISC.

Chapter 6 begins by giving a definition and a geometrical interpretation of electrical unbalance. Afterwards, a method to detect and localize faults is proposed. The algorithm is then applied on experimental data coming from different systems: a transformer, an induction motor and an asynchronous generator on the test-bench. Each of these results focus on different aspects of the proposed indicators: their instantaneous characteristic, the precision of the estimations, the robustness with respect to operating conditions and the long time condition monitoring. The experimental results all look encouraging and show the strengths of the proposed method. However, due to time limitations the work presented in this chapter is considered as prospective.

All in all, this manuscript gives a complete solution for condition monitoring of three-phase electromechanical systems using three-phase electrical signals. The method is able to detect both mechanical and electrical signals and the three-phase approach is fully justified. The proposed algorithms use simple and easy to implement operations, making them suited for on-line monitoring implemented on an embedded CMS. The output of the proposed method consists in various fault indicators. However, a decision step could be designed and implemented in future works, for example by setting optimal thresholds for fault detection. Nonetheless, the proposed solution thus far is fully functional. Concerning the applicability of the method, while initially conceived for condition monitoring applications for wind turbines, it can be used in poly-phase electromechanical systems in general.

Short-term perspectives

Mechanical faults induce modulations in electrical signals. More so, depending on the effect that the faults trigger, the modulations are mostly phase modulations (for faults inducing torque oscillations) or mostly amplitude modulations (for faults that trigger eccentricity). Models for the faults signatures in induction motor single-phase currents for both types of effects exist in the literature. In this manuscript the model for load torque oscillations has been extended to the three-phase case. While the proposed method for mechanical faults detection applies to mechanical faults in general, it could be interesting for future works to extend the model for eccentricity faults signature in electrical signals to three-phase signals.

The method for mechanical faults detection can still be improved. One future work could be focused on improving the fault indicator for high-frequency modulations, based on frequency values. This indicator is prone to a rather high false alarm rate and it can be improved for example by using a peak-detection algorithm when the frequency components are located. Also, merging the results provided by the various indicators for high-frequency modulations into a single decision process could be interesting. In the end, the detection capabilities of the proposed method for the detection of mechanical faults inducing high-frequency modulations could be statistically evaluated. With respect to the method regarding the detection of lowfrequency modulations, the proposed fault indicator could be improved in a similar way as the one based on signal quantity for high-frequency modulations. Thus, the noise level in the low frequencies of the demodulated signals can be estimated and taken into account when the fault indicator is computed.

Another perspective work can consider the non-stationary case. The proposed method for mechanical faults detection has been tested in case of small variations in the signals. However, future works should consider the case of higher non-stationarity, when time-frequency methods, for example, are more appropriate. More so, the detection of the electrical faults in the highly non-stationary case could also be investigated.

The electrical faults detection method proposed in this manuscript is considered to be prospective. The algorithm has been tested using experimental signals. However, for a proper validation of the method, more data containing controlled electrical faults is needed. Also, a theoretical study regarding the fault localisation using the angles between the ISCs can be performed. The estimation performance of the indicators can be studied with respect to various parameters, like the SNR. Last but not least, the detection capabilities can be statistically evaluated.

Long-term perspectives

For a better completeness of the proposed method a fault detection and diagnosis step can be added. The detection methods can be binary, to classify the situations as healthy or faulty or more advanced. Indeed, it would be very interesting not only to detect the fault, but also to characterise its importance, its evolution and the overall state of health of the monitored components. A theoretical study of the link between the fault indicators and the state of health of the components can be also performed. Further steps towards the predictive maintenance would for example predict the remaining useful life.

Another interesting study would be to adapt and apply the method described in this manuscript to other types of signals. For example, this method could be applied to vibration signals acquired using accelerometer sensors. In this case, the phase shifts contained in the three-phase transform matrix might need to be adapted. Also, a thorough theoretical study would be needed in order to determine the fault signature on the various directions.
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Long term condition monitoring of real wind turbines

The algorithm proposed in this manuscript has been implemented on an embedded system developed for the KAStrion project, described in Chapter 1. This system has been installed on two wind turbines located in an onshore wind farm in the south of France and Figure C.1 depicts some of the wind turbines from the wind farm in Arfons. In this section, preliminary results obtained by the three-phase electrical analysis method are presented using the signals acquired on the two wind turbines of interest. The considered variable speed wind turbines have a rated power of 2 MW and are equipped with asynchronous generators. The acquired electrical signals are three-phase voltages and currents at the stator of the generator. and 1800 rpm. After the 20th of January 2015, only two operating conditions were defined and considered when acquiring the signals. The states were defined based solely on the rotating speed of the HSS: between 800 and 1200 rpm and between 1600 and 2000 rpm. The signals considered in this chapter were chosen such that they have the average fundamental frequency between 49.95 and 50.05 Hz and the delta (difference between maximum and minimum values) of the amplitude of the current positive-sequence component is less than 15% of its mean value. Considering that there is no such increase in the electrical unbalance of the currents, it can me assumed that the unbalance is probably due to outside factors (e.g. grid events) rather than an internal fault in the wind turbines. This conclusion is also supported by the fact that the increase in voltage unbalance is correlated between the two wind turbines. Abstract -This thesis proposes a three-phase electrical signals analysis method for condition monitoring of electromechanical systems. The proposed method relies on the use of instantaneous symmetrical components (ISCs) transform and simple signal processing tools to detect both electrical and mechanical faults in such systems. The advantages of using this three-phase approach for condition monitoring instead of single-phase ones are thoroughly detailed. Firstly, for electrical faults the use of the three-phase transform separates the balanced and unbalanced components thus making electrical unbalance detection easier. Secondly, for mechanical faults the ISCs approach has better signal-to-noise ratio (SNR). Indeed, by applying the same processing to both single-phase and ISCs, some mechanical faults are only detectable using the positive-sequence ISC. The complete methodology and algorithms to compute fault indicators for both electrical and mechanical faults are given and the results are validated using synthetic and experimental signals. In terms of application, the focus was on condition monitoring of wind turbine components. However, the proposed method can be applied on electromechanical systems in general and can easily be extended to poly-phase systems.

Keywords: electrical signals analysis ; condition monitoring ; instantaneous symmetrical components ; three-phase signals ; electromechanical systems ; wind turbines Résumé -Cette thèse propose une méthode d'analyse des signaux triphasés pour la surveillance d'état des systèmes électromécaniques. La méthode proposée repose sur l'utilisation de la transformée en composantes symétriques instantanées et d'outils simples de traitement du signal pour détecter les défauts électriques et mécaniques dans de tels systèmes. Les avantages de cette approche triphasée par rapport à une approche monophasée pour la surveillance d'état sont étudiés en détail. Tout d'abord, pour les défauts électriques, l'utilisation de la transformée triphasée permet de séparer les composantes symétriques et asymétriques, et facilite ainsi la détection d'un déséquilibre électrique. Ensuite, pour les défauts mécaniques, l'approche par transformée en composantes symétriques permet de travailler dans des espaces avec un meilleur rapport signal à bruit. En effet, en appliquant le même traitement à la fois en monophasé et en triphasé sur les composantes symétriques, on observe que certains défauts mécaniques ne sont détectables qu'en utilisant la séquence positive des composantes symétriques. La méthodologie complète et les algorithmes pour calculer les indicateurs de défaut pour les défauts électriques et mécaniques sont donnés et les résultats sont validés sur signaux synthétiques et expérimentaux. En termes d'application, l'accent est mis sur la surveillance d'état des composants de turbines éoliennes. Toutefois, le procédé proposé peut être appliqué à des systèmes électromécaniques en général et peut facilement être étendu à des systèmes polyphasés. 
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  Three types of signals are acquired on the installed WTs: vibrations, three-phase electrical signals (both current and voltages) and rotational speed of the HSS. These signals are acquired with high sampling frequencies and are used by the CMS. Besides these signals, operational parameters like the wind speed are also recorded, giving information regarding the operating conditions.
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 25 Figure 2.5.: Graphical representetion of different types of eccentricity[START_REF] Blodt | Mechanical fault detection in induction motor drives through stator current monitoring -theory and application examples[END_REF]. The intersection of the dashed lines marks the centre of the stator, the circle marks the rotor rotational centre and the triangle marks the rotor geometrical centre.
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 2 Figure 2.6.: Axial or inclined unequal air-gap[START_REF] Li | Performance Analysis of a Three-Phase Induction Machine With Inclined Static Eccentricity[END_REF] 

  Figure 2.7.: Geometry of a rolling element bearing[START_REF] Pacas | Bearing damage detection in permanent magnet synchronous machines[END_REF] 
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 2 Figure 2.8 graphically depicts a gear mesh, indicating the main variables needed to compute the gear mesh frequency given by Equation (2.10).
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 22 Figure 2.9 gives a geometric interpretation of the Fortescue decomposition while Figure 2.10 shows how the original phasors can be obtained by adding the symmetrical components.
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 2535432 [START_REF] García Márquez | Condition monitoring of wind turbines: Techniques and methods[END_REF]. Depending on the applications, the transforms may present different coefficients in the literature regarding three-phase signals.
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 2 Figure 2.11.: Overview of the relations between the most common three-phase transforms
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 31 Figure 3.1.: Frequency redundancy in ISCs

Figure 3 . 2 .

 32 Figure 3.2.: Axes defined by α + and α -

Figure 3 .

 3 Figure 3.3 depicts a 7 time periods sample of the three-phase signals. This figure shows the sinusoidal waveform of the signals, with only very small distortions due to modulations. The small electrical unbalance introduced in the signals is not really visible in the waveforms.

Figure 3

 3 Figure 3.3.: Time waveforms of the synthetic three-phase currents

Figure 3 .

 3 Figure 3.4.: Zero-sequence current

  i -(t) (b) Negative-sequence current

Figure 3 .

 3 Figure 3.5.: Time plot of the positive-and negative-sequence components

Figure 3 .

 3 Figure 3.6.: Positive-and negative-sequence currents in the complex plane

Figure 3 .

 3 Figure 3.7 depicts a zoom around the fundamental frequency in the PSDs of the individual phase signals, as well as those of the resulting ISCs estimated with Welch averaged periodograms using a Hanning window of 2 14 samples, leading to a spectral resolution of approximately 0.12 Hz clearly sufficient to separate the different components of interest. Several aspects of the ISC approach are highlighted in this figure.

  Figure 3.7.: PSDs of the simulated current signals around the fundamental frequency (left: individual phase quantities, right: ISCs)

Figure 4 .

 4 1 depicts the time waveform and amplitude spectrum of such a signal for A = 10 and f 0 = 50 Hz.

Figure 4 . 1 .

 41 Figure 4.1.: Time waveform and amplitude spectrum of a sinewave

Figure 4 . 2 .

 42 Figure 4.2.: Time waveform and amplitude spectrum of an amplitude modulated sinewave

  Figure 4.3 depicts a phase modulated signal and its spectrum for β = 2 and f 0 = 4 Hz. It can be observed in this figure that the component at the fundamental frequency is decreased due to the multiplication of its amplitude by the Bessel function of the first kind of order 0, J 0 (β).

  Figure 4.4 depicts the Bessel function of the first kind as a function of modulation index β , for orders 0, 1 and 2. It can be observed that the amplitude of the fundamental component can become null for several values of the modulation index. However, in practice, the modulation index for phase modulations induced by mechanical faults is very small, thus the component at the carrier frequency is not significantly decreased and orders of n ≥ 2 are very close to null.

Figure 4 .

 4 Figure 4.3.: Time waveform and amplitude spectrum of a phase modulated sinewave

Figure 4 .

 4 Figure 4.4.: Bessel function of the first kind as a function of modulation index, for orders 0, 1, 2

Figure 4 .

 4 Figure 4.5.: Frequency modulations in ISCs due to mechanical faults

Figure 4 . 6 .

 46 Figure 4.6.: Structure of the algorithm for mechanical fault indicators computation

Figure 4 . 7 .

 47 Figure 4.7.: Frequency response of a complex-valued FIR filter with central frequency of 50 Hz

  PSD of the instantaneous frequency

Figure 4 . 8 .

 48 Figure 4.8.: PSD of the demodulated i + (t) and each of the three-phase currents

Figure 4 .

 4 Figure 4.9 depicts the obtained fault indicators for one of the simulation cycles. The figure shows both the indicators for the positive-sequence ISC and for the current i 1 (t). The x-axis in Figure 4.9 corresponds to the values of β from Table 4.2. For this simulation the presence of the

  modulation index (a) Fault indicator using the instantaneous amplitude i 1 (t) i + (t) modulation index (b) Fault indicator using the instantaneous frequency

Figure 4 .

 4 Figure 4.9.: Fault indicators using the demodulated quantities of i + (t) and i 1 (t)

Figure 4 .

 4 Figure 4.10 depicts the PSDs of i 1 (t) and i + (t) for β = 0.006. The figure shows that the modulation is quite small but visible in both considered signals. The SNR improvement in i + (t) is visible as well.

Figure 4 .Figure 4 .

 44 Figure 4.10.: PSDs of the currents for β = 0.006

  PSD of the instantaneous amplitude

  PSD of the instantaneous frequency

Figure 4 .

 4 Figure 4.11.: PSD of the demodulated i + (t) and i 1 (t) for β = 0.006

  (a) ROC curve for the fault indicators using the IA ROC curve for the fault indicators using the IF

Figure 4 .

 4 Figure 4.12.: ROC curve for the fault indicators for different values of the modulation index (the false positive rate was estimated using S0)

Figure 4 .

 4 Figure 4.13.: High-frequency modulation sidebands

Figure 4 .

 4 Figure 4.14.: Structure of the algorithm for high-frequency mechanical fault indicators computation

  B m = 197.96 206.04 . The left and right frequency bands of interest are B l = f 0 -B m and B r = f 0 + B m .

Figure 4 .

 4 Figure 4.15 shows the PSDs of positive-sequence ISC for both the modulated (considered faulty) and non-modulated (considered healthy) signals. The grey area indicates the quantities that are used to estimate the fault indicator m 1 , the one corresponding to the current PSD (in the right-hand side sub-figure) and the one used for normalization (the left-hand side sub-figure).As it can be seen graphically, the noise does bear quite a large influence on the indicator in this case. The contribution of the two new peaks in the right-hand side sub-figure might not be sufficient in order to trigger a significant change in the indicator's value. This is due to the fact that the considered modulation bands over which the indicator is computed are quite wide. As the bands B l and B r become narrower, the performance of m 1 is expected to increase.

  PSD of the faulty i+(t)

Figure 4 .

 4 Figure 4.15.: Quantities used to compute indicator m 1

Figure 4 .

 4 Figure 4.16 shows the same PSDs as the previous Figure 4.15, as well as the estimated noise floor S n (f ). The noise floor was estimated using a median filter of an order equal to five times the spectral resolution. The grey area indicates the quantities used to compute the indicator m 2 . As it can be seen in this figure, the contribution of the peaks bears a greater importance in the value of the indicator m 2 compared to m 1 .

Figure 4 .

 4 Figure 4.17 depicts the difference between the PSDs of the faulty and healthy signals in

Figure 4 .

 4 Figure 4.16.: Quantities used to compute indicator m 2

Figure 4 .

 4 Figure 4.17.: Quantities used to compute indicator m 3
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 17 Figure 4.17.: Quantities used to compute indicator m 3

  Figure 4.17.: Quantities used to compute indicator m 3

Figure 4 .

 4 Figure 4.18.: Modulation frequency bands for i 1 (t) and i + (t)

Figure 5 . 1 .

 51 Figure 5.1.: Experimental test-bench

  Figure 5.2 shows flacking on both races.

Figure 5 . 2 .Figure 5 .

 525 Figure 5.2.: Photo of the main bearing components at the end of Exp. A

Figure 5 . 3 .

 53 Figure 5.3.: Operating conditions cycle in the testing procedure corresponding to Exp. A

Figure 5 .

 5 Figure 5.4 depicts the average speed of the two shafts (left-hand side) and a zoom on their corresponding power spectral densities (PSDs) (right-hand side). The upper part of the figure corresponds to the LSS while the lower figures correspond to the HSS. Regarding the average speeds of the two shaft, it is clear that they are assumed constant for this state throughout the whole experiment (the scale of the Y-axis of the figures on the left is very small).The right-hand side of Figure5.4 depicts all the PSDs of the speeds of the two shafts, superposed. The profiles in blue, marked as healthy, correspond to the first acquired signals, up to 144.77 hours into the test. Starting from 149.23 hours the PSDs profiles are marked as faulty. By analysing the PSDs of the two speeds some interesting observations can be made:

  Figure 5.4.: Average shaft speeds for State A.2 and their respective frequency content

Firstly, the

 the PSDs of the line currents and the ISCs are compared in Figure 5.5. This figure bares a resemblance to the equivalent one obtained for the simulated signals in Chapter 3, where the main advantages of the ISCs transform are shown to be the separation of balanced and unbalanced components and signal-to-noise ratio (SNR) improvement.

  Figure 5.5.: PSDs of the current signals of Exp. A around the fundamental frequency (left: phase quantities, right: ISCs)

  Figure 5.6.: Mechanical fault indicators computed from the currents signals (over the frequency band B = 3.45 ± 0.06 Hz, healthy state estimated using the first 5 measurements)

  Figure 5.7.: PSDs of the voltage signals of Exp. A around the fundamental frequency (left: phase quantities, right: ISCs)

  v

  Figure 5.8.: Mechanical fault indicators computed from the voltage signals (over the frequency band B = 3.45 ± 0.06 Hz, healthy state estimated using the first 5 measurements)

Figure 5 . 9 .Figure 5 .

 595 Figure 5.9.: Speed profiles of the LSS for stationary and non-stationary operating conditions

Figure 5 .

 5 Figure 5.11 depicts the estimation of the instantaneous fundamental frequency of the electrical signals as well as their instantaneous amplitude around this frequency, computed using the voltage positive-sequence component and Hilbert demodulation technique (under the assump-

  PSDs of IA of v+(t) for state A.2 PSDs of IA of v+(t) for state A.2b PSDs of IF of v+(t) for state A.2 PSDs of IF of v+(t) for state A.2b

Figure 5 .

 5 Figure 5.12.: PSDs ot the instantaneous amplitude and frequency of v + (t) (left: state A.2 stationary, right: state A.2b non-stationary)

Figure 5 .

 5 Figure 5.13.: Mechanical fault indicators computed from the positive-sequence ISCs (over the frequency band B = 3.45 ± 0.06 Hz, healthy state estimated using the first 5 measurements)

Figure 5 .

 5 Figure 5.14.: Average amplitude and frequency of the positive-sequence ISCs according to each operating conditions state

  Fault indicator using the IA of i+(t) Fault indicator using the IA of v+(t) Fault indicator using the IF of i+(t) for states corresponding to LSS speed of 20 rpm Fault indicator using the IF of v+(t) for states corresponding to LSS speed of 20 rpm Fault indicator using the IF of i+(t) for states corresponding to LSS speed of 10 rpm Fault indicator using the IF of v+(t) for states corresponding to LSS speed of 10 rpm

Figure 5 .

 5 Figure 5.15.: Mechanical fault indicators corresponding to various states computed using the positive-sequence ISCs (over the frequency band B = BPFI ±0.12 Hz, healthy state estimated using only the first measurement)

Figure 5 .

 5 Figure 5.16.: Operating conditions cycle in the testing procedure corresponding to Exp. B

Figure 5 .

 5 Figure 5.17.: PSD in the modulation frequency bands B l and B r of the current signals

Figure 5 .

 5 Figure 5.18 depicts the results obtained for the first mechanical fault indicator denoted m 1 and expressed in (4.14). There are several aspects highlighted in this figure. Firstly, the indicators computed using positive-sequence ISCs provide better results than the ones

Figure 5 .

 5 Figure 5.18.: Mechanical fault indicator m 1

  PSD of the last dataset

Figure 5 .

 5 Figure 5.19.: PSD and median in the modulation frequency bands B l and B r for i + (t)

Figure 5 .

 5 Figure 5.20.: Mechanical fault indicator m 2

  Figure 5.21.: Frequencies for the maximum difference between the PSDs

  (b) Fault indicator using the voltages

Figure 5 .

 5 Figure 5.22.: Mechanical fault indicator m 3
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 6 Figure 6.1.: Geometric representation of the complex vectors describing electrical unbalance

Figure 6 . 2 .

 62 Figure 6.2.: Structure of the algorithm for electrical unbalance indicators computation

Figure 6 . 3 .

 63 Figure 6.3.: Wye connection phase to neutral fault

  Voltage unbalance using line-to-line quantities

Figure 6 . 4 .

 64 Figure 6.4.: Voltage unbalance indicator results

Figure 6 . 5 .

 65 Figure 6.5.: Ratios between instantaneous symmetrical components

Figure 6 . 6 .

 66 Figure 6.6.: Angles between instantaneous symmetrical components
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Figure 6 . 7 .

 67 Figure 6.7.: ITSC fault on phase 1[START_REF] Bouzid | New expressions of symmetrical components of the induction motor under stator faults[END_REF] 

Figure 6 . 8 .Figure 6 . 9 .

 6869 Figure 6.8.: Current unbalance indicator

Figure 6 .Figure 6 .

 66 Figure 6.10.: Ratios between the negative-and positive-sequence ISCs

Figure 6 .

 6 Figure 6.12.: Corrected current unbalance indicator

Figure 6 .

 6 Figure 6.13.: Angles of the negative-sequence ISCs of the currents corresponding to the ITSC faults (left: with respect to i + (t); right: with respect to v 1 (t))

Figure 6 .Figure 6 .

 66 Figure 6.14.: Electrical unbalance indicators

Figure C. 1 .

 1 Figure C.1.: Wind turbines from the Arfons wind farm

Figure C. 2 Figure C. 2 .

 22 Figure C.2 depicts the results obtained on the wind turbine signals in terms of electrical unbalance around the fundamental frequency. As a reminder, the electrical unbalance indicator is a normalised quantity belonging to the interval [0, 1], with 0 representing perfect balance. Moreover, in order to present the behaviour of instantaneous indicators over a longer period of time, they have been characterised by their mean value. The electrical unbalance values depicted in Figure C.2 for both voltages and currents represent the mean value of the instantaneous quantity.

Figure C. 3

 3 Figure C.3 depicts the average values of the amplitudes of the instantaneous symmetrical components(ISCs). The voltage amplitudes indicate that the voltage electrical unbalance is due to the increase of the value of its negative-sequence component. The amplitudes of the current ISCs do not indicate any evolution in the electrical unbalance. However, they seem to define three operating states of the turbines, as their average values seem to vary around three different values.

Figure C. 4

 4 Figure C.4 depicts the angles between the ISCs. The relatively constant trend of these angles indicates that the existing electrical unbalance in the system is localised and its position has not changed throughout the observation period.

  Figure C.4.: Angles between the ISCs for the wind turbine signals
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 3 1.: Local SNR gains computed for the synthetic signals around +f 0

Table 4 .

 4 1.: Local SNR gains computed for the instantaneous amplitudes around 4 Hz SNR
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 4 2. 

	Table 4.2.: Values of the modulation index for each simulation cycle
	H S0	S1	S2	S3

Table 4 .

 4 3.: Parameters for the two sets of simulations for high-frequency modulations

		f m [Hz]	β
	Set 1	202	∈ {0, 0.005}
	Set 2	102	0.005
	Simulation set 1		

Table 5 .

 5 

		1.: Acquired test-bench signals used in this manuscript
	Nr. of sensors	Signal type	Acquisition frequency Sampling frequency
	1	LSS speed	varying	320 Hz
	1	HSS speed	varying	32 Hz
	3	Current signals	39, 062.5 Hz	976.5625 Hz
	3	Voltages signals	39, 062.5 Hz	976.5625 Hz

Table 5 .

 5 

		2.: Experiments performed on the test-bench
	ID	Faulty component	Fault signature Applied forces
	Exp. A	Main bearing on the LSS	low-frequency axial and radial
	Exp. B Output bearing on the HSS high-frequency	radial

The inputs of the experiments, or otherwise said the controlled signals, are:

• forces applied on bearing components -Radial force applied on the main bearing -Axial force applied on the main bearing -Radial force applied on the output bearing • LSS quantities defining operating conditions (or states)

Table 5 .

 5 

			3.: States defined for Exp. A
	State LSS torque LSS speed	Duration	Operating conditions
	A.1	low	10 rpm	≈ 185 -290 s	stationary
	A.2	low	20 rpm	≈ 140 s	stationary
	A.2b	low	≈ 20 rpm	≈ 130 s	varying
	A.3	medium	10 rpm	≈ 290 s	stationary
	A.4	medium	20 rpm	≈ 140 s	stationary
	A.5	high	10 rpm	≈ 250 s	stationary
	A.6	high	20 rpm	≈ 140 s	stationary

Table 5 .

 5 

	4.: Fault characteristic frequencies for Exp. A
	LSS speed [rpm] BPFO [Hz] BPFI [Hz]
	10	1.27	1.725
	20	2.55	3.45

  The considered electrical signals belong to State A.2, according to Table 5.3, thus stationary operating conditions with LSS speed of 20 rpm and low torque. The fault characteristic frequency is BPFI equal to 3.45 Hz. The choice of these signals conditions is motivated by data availability, as depicted in Table B.1.

Table 5 .

 5 6.: Fault characteristic frequency bands for Exp. B LSS speed [rpm] BPFO [Hz] BPFO ±2% band [Hz]

	20	223.03	[218.57 227.49]

6

  Electrical unbalance Contents 6.1. Definition and interpretation of electrical unbalance . . . . . . . . 94 6.1.1. Definition of electrical unbalance . . . . . . . . . . . . . . . . . . . . 94 6.1.2. Geometric interpretation of the unbalance . . . . . . . . . . . . . . . 94 6.2. Proposed method for electrical unbalance detection and localisation 96 6.2.1. Definition of the unbalance indicator . . . . . . . . . . . . . . . . . . 97 6.2.2. Angles between instantaneous symmetrical components . . . . . . . 97 6.2.3. Remarks regarding the type of acquired signals . . . . . . . . . . . . 98 6.3. Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3.1. Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3.2. Induction motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.3. Test bench generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Table 6 .

 6 1.: Resistance values used for phase-to-ground tests Resistance values: 79.55Ω 27.05Ω 13.78Ω 8.23Ω 5.51Ω 4.13Ω

Table 6 .

 6 3.: Average experimental angle between i + (t) and v 1 (t) in the healthy case No load Half load Full load

	-80.47 • -63.21 •	-47.31 •

Table 6 .

 6 4.: Differences between the average estimated angles between I n and V 1 and the the-

	oretical ones		
		ITSC fault on phase 1 ITSC fault on phase 2 ITSC fault on phase 3
	No load	-16.39 •	-16.54 •	-14.25 •
	Half load	-15.20 •	-16.39 •	-12.16 •
	Full load	-14.48 •	-14.88 •	-12.36 •

Table 6 .

 6 

		5.: States defined for Exp. A
	State LSS torque LSS speed Operating conditions
	A.1	low	10 rpm	stationary
	A.2	low	20 rpm	stationary
	A.2b	low	≈ 20 rpm	varying
	A.3	medium	10 rpm	stationary
	A.4	medium	20 rpm	stationary
	A.5	high	10 rpm	stationary
	A.6	high	20 rpm	stationary

Table B .

 B 1.: Available signals for Exp. A Test time [h] A.1 A.2 A.2b A.3 A.4 A.5 A.6 Figure B.2.: Operating conditions cycle in the testing procedure corresponding to Exp. B Table B.2 gives an overview of the available data for each state. Test time, expressed in hours, denotes the time when the operating conditions cycle has started, counting from the beginning of the experiment Exp. B.

	B.2. Experiment Exp. B -Output bearing degradation
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				119.81 128.27 129.23 133.69 138.15 144.77 149.23 153.69 158.65 163.11 168.57 174.53 178.99 180.45 182.41	x x x	x x Test time [h] B.1 x x x 27.54 x x x x 97.38 x x x x 167.22 x x 237.06 x x x 306.90 x x x 376.74 x x x x x 446.58 x x 516.42 x x x 586.26 x x x 656.10 x x x 725.94 x x x 778.86 x x x x 848.70 x	x x x	x x x	x x x
				184.37	x	x	x	x		x	x	x
				189.85		x	x				

Acknowledgements

After demodulating both voltage and current positive-sequence ISCs the PSDs of the resulting quantities were estimated. Figure 5.12 depicts a zoom on the PSDs of the IA and IF of the positive-sequence ISCs. The profiles marked as healthy correspond to the first acquired signals up to 144.77 hours into the test. Starting from 149.23 hours the PSDs profiles are marked as faulty. This separation has been done according to the conclusions of the analysis previously performed on the rotating speeds of the test-bench shafts which showed that the signature of torque oscillations only appears starting from 149.23 hours. Figure 5.12 highlights the following aspects:

• The frequency content of the demodulated signals is influenced by the stationariness of the operating conditions. Indeed, the sole difference between the two states is that the rotating frequency in state A.2b varies around the average of 20 rpm.

• The BPFI frequency peaks for the faulty datasets are clearly distinguishable for both stationary and non-stationary operating conditions. As expected, the peaks are clearer for the stationary conditions and they tend to be wider for state A.2b. The three grid lines marking the BPFI correspond to the computed characteristic frequency itself as (e) Amplitude of i0(t) (f) Amplitude of v0(t) Figure 6.15.: Average amplitudes of the ISCs used on the standard deviation of this indicator. Thus, Figure 6.16 depicts the average angle values for the negative-and zero-sequence components with a standard deviation of less than 60 • . Figure 6.16 shows that towards the end of the experiment an electrical event affected the current signals. The angle a 0 (t) has changed its average value, for all considered operating conditions. Also, the angle between i -(t) and i + (t) at the end of the experiment indicates right under 250 • , with very small variations with respect to operating conditions. This has changed since the beginning of the experiment where differences of ≈ 60 • can be observed between the estimations under different states. This focusing of the angles values towards a fixed value regardless of operating conditions indicates an event either in the sensors or the system itself.

All in all, an event did occur on the test-bench, in the sensors or in the system itself. However, the source of the event has not been identified and for following tests the electrical unbalance returned to lower values. The results presented in this section show that the electrical unbalance indicators are slightly affected by the operating conditions. The fact that the operating conditions only have a small influence on the proposed indicators is an encouraging (c) Angle between i0(t) and i+(t) Figure 6.16.: Average of the angles a -(t) and a 0 (t) for currents and voltages result for fault detection and localisation. However, the results are not conclusive and no effective electrical fault occurred during this experiment.

Conclusions

This chapter has presented the prospective work performed towards the detection of electrical faults. Since most electrical faults trigger an unbalance in the three-phase system, the work focused on detecting and quantifying the amount of electrical unbalance and trying to localise it. Thus, the chapter began with the definition and geometric interpretation of the three-phase electrical unbalance. Afterwards, a method to compute an unbalance indicator (used to quantify and detect unbalance) and several angles between ISCs (used for fault localisation) was proposed. The proposed algorithm is homogeneous with the one proposed for mechanical faults monitoring. Experimental data coming from different three-phase systems was used to validate the proposed algorithm. The considered systems are: a three-phase transformer, an induction motor and an asynchronous generator on the test-bench simulations a real wind turbine. The experimental signals coming from each of these systems were used to highlight the various strong points of the proposed method: its instantaneous characteristic, its precision in estimating the unbalance and in localising it, its robustness with respect to operating conditions and the fact that it is suited for long-term condition monitoring.

The experimental results presented in this chapter show that the proposed method is suited for tracking the instantaneous evolution of electrical unbalance, even for small values. Also interesting is the fact that the proposed unbalance indicator is normalized and thus it is not too affected by the operating conditions. The proposed algorithm uses simple operations suited for real-time implementation and it can be easily implemented on an embedded system. The