Mark Van

Sandrine Blazy

Olivier Barais

Arnaud Blouin

First and foremost, I would like to thank all the members of my jury

people thank the heads of their team and laboratory because they are politically obliged to do so. It is instead a pleasure for me to thank Benoit Baudry and Jean-Marc Jézéquel, not because I have to, but because they inspired me a lot, played an important role in the work presented here and, most crucially, in shaping my future research. Regarding my other friends from DiverSE, I must confess that I am way too scared to write down an explicit list of names here, as I would hate myself if I forget anyone. How would I have sorted this list anyway? I thank each and every one of them, as they all played a different but important role in these three years. I cannot stress this enough:

DiverSE is an amazing team in every way.

You guys are amazing. Thank you.

Of course, I do not forget that the first persons who led me to the realm of research during my master's thesis are Jean-Marie Mottu and Gerson Sunyé. Is there any better way to start research than by killing mutants? I do not think so. Had I not met such kind and supportive researchers, I would probably never have pursued on this path. Besides, I am entirely beholden to you for my arrival in DiverSE. Thank you! One can easily consider Melange -or was it K3SLE? ;) -as one of the main contributions of this thesis. As such, all the people involved in Melange deserve a place here. In particular, I would like to thank the awesome scientific engineers who actively worked on its implementation. Thank you Fabien for all the great stuff you did, especially for maturing Melange from the ever-buggy research prototype I was developing to an actually usable software project. Thank you Didier for all the time you spent integrating our stuff with the other software platforms of the team. I really enjoyed working with both of you, and you truly played an important role in the results presented in this thesis. I apologize in advance for all the time you will spend maintaining and developing Melange in the future.

I do not really feel comfortable with the idea of thanking my family and friends here -they will never read these lines anyway. Rather than on a piece of paper, I express my gratitude to them through every moment we share.

iii

Contexte

Le développement de systèmes à forte composante logicielle, tels que les systèmes de systèmes, les systèmes cyber-physiques ou l'Internet des objets, soulève de nombreux nouveaux enjeux de génie logiciel. De nombreux spécialistes, issus de domaines variés, prennent part au développement de tels systèmes, chacun contribuant sa propre expertise. Ces spécialistes ont pour habitude de traduire leurs connaissances sous la forme de modèles en utilisant des concepts et des notations couramment utilisés au sein de leur discipline (par exemple, le génie mécanique, la gestion d'énergie, ou l'ingénierie système). Une approche intuitive pour favoriser la participation des spécialistes au développement de systèmes complexes est de leur fournir les moyens adaptés pour exprimer leurs modèles du système, et d'utiliser ces modèles de manière active tout au long du processus de développement. À long terme, l'objectif est d'effacer progressivement les frontières entre le génie logiciel et les autres disciplines d'ingénierie, en permettant aux spécialistes du domaine de participer activement au développement des systèmes.

L'ingénierie dirigée par les modèles [START_REF] Douglas | Model-driven Engineering[END_REF] contribue à la réalisation de cette vision de différentes manières. Tout d'abord, l'ingénierie dirigée par les modèles permet de réduire la complexité accidentelle associée au développement de systèmes complexes en rapprochant les abstractions utilisées par les spécialistes du domaine pour décrire le problème, et les concepts utilisés pour implémenter le système final [START_REF] France | Model-driven development of complex software: A research roadmap[END_REF]. En outre, s'appuyant sur les bonnes pratiques de séparation des préoccupations, l'ingénierie dirigée par les modèles préconise l'utilisation de multiples langages dédiés (DSLs), chacun proposant son propre lot de concepts, de notations et d'outils appropriés à la modélisation d'un aspect particulier du système. Une idée fondamentale de l'ingénierie dirigée par les modèles est de transformer les modèles descriptifs -faisant office de simple documentation -en modèles prescriptifs activement utilisés pour la construction du système final. Ces modèles permettent de réaliser en amont vii des activités de vérification et de validation, et d'automatiser la génération d'artefacts logiciels essentiels tels que des composants logiciels, des cas de test, ou de la documentation. Les bénéfices attribués à l'ingénierie dirigée par les modèles vont ainsi d'une meilleure productivité des développeurs à une qualité logicielle accrue [START_REF] Baker | Model-Driven engineering in a large industrial context-motorola case study[END_REF][START_REF] Hutchinson | Empirical assessment of MDE in industry[END_REF].

Les études récentes montrent que l'utilisation de DSLs est l'un des facteurs clés pour l'adoption de l'ingénierie dirigée par les modèles dans un contexte industriel [START_REF] Hutchinson | Model-driven engineering practices in industry: Social, organizational and managerial factors that lead to success or failure[END_REF][START_REF] Whittle | The state of practice in model-driven engineering[END_REF]. L'utilisation de DSLs vise à combler le fossé entre l'espace du problème (au sein duquel travaillent les spécialistes du domaine) et l'espace de la solution (les artefacts logiciels définissant le système final) [START_REF] Fowler | Domain-specific languages[END_REF]. Les DSLs sont des langages logiciels intuitifs dont les concepts et l'expressivité sont centrés sur un domaine d'application particulier. Puisque "les langages logiciels sont aussi des logiciels" [START_REF] Favre | Empirical language analysis in software linguistics[END_REF], le développement de DSLs et de leurs environnements (éditeurs, générateurs, simulateurs, etc.) hérite de la complexité du développement logiciel en général. De plus, puisque les domaines qu'ils visent sont en constante évolution, les DSLs tendent à évoluer à un rythme plus soutenu que les langages logiciels d'usage général, comme les langages de programmation. Les préoccupations usuelles telles que la réutilisabilité, la maintenabilité ou l'évolution doivent donc être prises en compte lors de leur développement. Fort heureusement, les bonnes pratiques du génie logiciel peuvent être adaptées pour atteindre ces objectifs. Le besoin de méthodes et d'outils appropriés lors du développement de DSLs a donné lieu à l'émergence du domaine de recherche de l'ingénierie des langages, défini par Kleppe comme étant "l'application d'approches systématiques, disciplinées et mesurables au développement, à l'usage, au déploiement et à la maintenance de langages logiciels" [START_REF] Kleppe | Software language engineering: creating domain-specific languages using metamodels[END_REF].

L'ingénierie dirigée par les modèles et l'ingénierie des langages ne doivent pas être considérées en isolation. D'une part, l'ingénierie dirigée par les modèles s'appuie sur des techniques d'ingénierie des langages pour le développement de DSLs. D'autre part, l'ingénierie dirigée par les modèles fournit une théorie pour la définition de langages logiciels utile à l'ingénierie des langages. L'ingénierie dirigée par les modèles et l'ingénierie des langages se complémentent donc l'une l'autre. Cette thèse se place à l'intersection des deux domaines de recherche.

Énoncé du problème

Les DSLs se présentent sous différentes formes, allant des interfaces de programmation applicatives [START_REF] Fowler | Fluent interface[END_REF] aux DSLs externes. Les DSLs externes, notamment, offrent une grande flexibilité et une grande valeur ajoutée à leurs utilisateurs, mais sont les plus coûteux à mettre en oeuvre puisqu'ils ne peuvent s'appuyer sur l'infrastructure fournie par un langage hôte [START_REF] Fowler | Language workbenches: The killer-app for domain specific languages[END_REF]. Le développement d'un DSL externe comprend la définition de sa syntaxe abstraite, de sa syntaxe concrète, de sa sémantique, et d'un environnement dédié constitué d'un viii ensemble de services accompagnant les utilisateurs du langage dans la création, l'analyse et la gestion des modèles s'y conformant. En se basant sur les principes de l'ingénierie dirigée par les modèles, le développement d'un nouveau DSL commence typiquement par la définition d'un métamodèle, la pierre angulaire définissant sa syntaxe abstraite. Les syntaxes concrètes, ainsi que la sémantique, sont ensuite spécifiées par traduction vers les co-domaines appropriés [START_REF] Harel | Meaningful modeling: what's the semantics of" semantics[END_REF]. Enfin, l'environnement accompagnant un DSL consiste en un ensemble de services intégrés (comme des transformations, des vérificateurs) qui analysent, manipulent et transforment les modèles s'y conformant.

La définition de chacun de ces éléments est complexe, sujette à erreurs et requiert des efforts d'ingénierie conséquents [START_REF] Karsai | Design guidelines for domain specific languages[END_REF][START_REF] Voelter | DSL engineering: Designing, implementing and using domain-specific languages[END_REF]. De plus, le même processus est répété pour chaque nouveau DSL, ou nouvelle version d'un DSL existant. Afin de favoriser leur adoption par l'industrie, les gains en termes de productivité liés à l'utilisation de DSLs doivent surpasser l'investissement initial requis pour leur développement. Par conséquent, de nouveaux outils et de nouvelles méthodes doivent être développés pour assister les développeurs de langages logiciels lors du développement de nouveaux DSLs et lors de leur évolution, afin d'alléger les coûts de production. Les techniques permettant de favoriser la réutilisation d'un DSL à l'autre et de personnaliser les langages existants pour les adapter à de nouvelles exigences sont par conséquent particulièrement bienvenues.

En outre, la prolifération de DSLs développés de manière indépendante et en constante évolution dans de nombreux domaines soulève de nouveaux enjeux liés à leur intégration et à l'interopérabilité de leurs environnements [START_REF] Bhc Cheng | Globalizing Domain-Specific Languages[END_REF][START_REF] Benoit Combemale | Globalizing modeling languages[END_REF]. Les fondements théoriques de l'ingénierie dirigée par les modèles impliquent que les modèles sont fortement couplés aux DSLs auxquels ils se conforment, et que les environnements sont fortement couplés aux DSLs pour lesquels ils ont été définis. Ce couplage fort a des conséquences sévères sur les possibilités d'évolution des DSLs et sur l'interopérabilité de leurs environnements. Lorsqu'un DSL évolue, les modèles s'y conformant, ainsi que son environnement, doivent être adaptés en conséquence. Il n'est pas possible de définir des services génériques permettant de manipuler des modèles conformes à différentes versions du même DSL. De plus, les utilisateurs de DSLs ne peuvent bénéficier de services définis pour d'autres langages, même s'ils sont similaires. Pour prendre un exemple concret, il n'est par exemple pas possible d'ouvrir et de manipuler un modèle d'automate hiérarchique dans un environnement prévu pour les automates non-hiérarchiques. Ce manque de flexibilité entrave le partage de modèles entre différents environnements, et donc la collaboration entre différents acteurs contribuant au développement du même système.

À partir de ces observations, nous résumons les limitations actuelles pour les utilisateurs et développeurs de DSLs sous la forme de deux enjeux interdépendants: ix Enjeu #1 La multiplication de DSLs développés de manière indépendante et en constante évolution soulève le problème de l'interopérabilité entre langages et environnements similaires. Les utilisateurs des langages doivent être en mesure d'ouvrir et de manipuler leurs modèles de manière flexible à travers différentes variantes et versions de différents environnements et services afin d'encourager la collaboration dans le développement de systèmes complexes.

Enjeu #2 Puisque les DSLs et leurs environnements souffrent de coûts de développement élevés, des outils et méthodes doivent être proposés afin d'assister les développeurs de langages et de diminuer les coûts de développement. Une approche prometteuse est de s'appuyer sur les bonnes pratiques de réutilisation et de modularité issues du génie logiciel, et de les adapter aux spécificités de l'ingénierie des langages.

Contributions

Afin d'aborder les enjeux précédemment évoqués, nous structurons notre approche autour de trois contributions interdépendantes, symbolisées 1 , 2 , et 3 dans la Figure 1. Tout d'abord, comme base aux deux autres contributions, nous proposons la notion d'interface de langage [START_REF] Aranega | Towards an automation of the mutation analysis dedicated to model transformation[END_REF] pour améliorer les capacités d'abstraction et de généricité dans le développement de DSL. Les interfaces de langage permettent d'abstraire la complexité intrinsèque des implémentations de langages en exposant l'information appropriée (i) concernant un aspect d'un langage (par exemple, ces constructions syntaxiques) (ii) pour un objectif spécifique (par exemple, la composition, la réutilisation ou la coordination) (iii) dans un formalisme approprié (par exemple, un métamodèle). De ce point de vue, les interfaces de langage peuvent être vues comme une couche de réflexion sur les implémentations de langages. En utilisant des interfaces de langage, il est possible de faire varier ou évoluer l'implémentation d'un DSL tout en conservant la compatibilité avec les services et environnements définis sur son interface. Les interfaces de langage permettent de définir des services génériques qui ne dépendent pas d'une version ou variante particulière d'un DSL, et qui peuvent être réutilisés pour tout DSL respectant l'interface, quel que soit son implémentation concrète. Nos deux autres contributions, dirigées à la fois vers les utilisateurs et les développeurs de langages, reposent sur cette notion fondamentale d'interface de langage.

Afin de s'attaquer à l'Enjeu #1, nous proposons une approche disciplinée qui repose sur le polymorphisme de famille [START_REF] Ernst | Family Polymorphism[END_REF] et le typage structurel [START_REF] Cardelli | Structural subtyping and the notion of power type[END_REF] pour fournir un système de type dédié à la manipulation de modèles, de manière polymorphique, à travers différentes interfaces de langage (2). Dans notre approche, ces interfaces sont matérialisées sous la forme de types de modèles, et supportées par une relation de typage entre modèles et types de modèles [START_REF] Steel | On model typing[END_REF], et une relation de sous-typage entre types de modèles [START_REF] Guy | On model subtyping[END_REF].

Les types de modèles constituent l'interface structurelle d'un langage. Ils sont utilisés pour définir un ensemble de contraintes sur les modèles admissibles. Les relations de sous-typage définissent les substitutions sûres d'un DSL à l'autre, fournissant ainsi plus de flexibilité aux utilisateurs de DSLs lors de la manipulation des modèles s'y conformant. Nous nommons ce mécanisme fondamental le polymorphisme de modèle, c'est-à-dire la capacité de manipuler un modèle à travers différentes interfaces de langage. Le polymorphisme de modèle permet de manipuler des modèles de manière sûre en utilisant divers services et environnements de modélisation. Afin de s'attaquer à l'Enjeu #2, nous proposons un méta-langage dédié au développement modulaire de DSLs. De nombreux DSLs, bien que centrés sur des domaines d'application particuliers, partagent des paradigmes et constructions communs [START_REF] Pescador | Pattern-based development of domainspecific modelling languages[END_REF]. Lors du développement de nouveaux DSLs, il est vraisemblable que les efforts de développement mis en oeuvre pour d'autres langages puissent être mis à contribution, particulièrement lorsque leurs domaines d'application se chevauchent. Afin de favoriser la réutilisation d'un DSL à l'autre, nous proposons une algèbre d'opérateurs qui permet aux développeurs de langages de réutiliser des DSLs existants, de les composer, de les étendre, et de les personnaliser afin de s'adapter à de nouvelles exigences (3). Notre approche repose sur le système de type précédemment mentionné, qui fournit une couche de raisonnement assurant la correction structurelle des langages composés et leur manipulation sûre.

xi Nous implémentons chacune de nos contributions dans un nouvel environnement de développement de langage nommé Melange. 1 Melange supporte la définition de la syntaxe et de la sémantique des DSLs de manière modulaire et réutilisable, ainsi que la manipulation flexible des modèles s'y conformant. Melange est intégré avec l'environnement de référence Eclipse Modeling Framework (EMF) et fournit le mécanisme de polymorphisme de modèle à tout outil de l'écosystème de modélisation d'Eclipse se basant sur EMF. Nous utilisons Melange pour évaluer nos contributions sur différents cas d'étude.

Applications

Afin de valider nos contributions et leur implémentation dans Melange, nous évaluons la capacité de Melange à résoudre des problèmes d'ingénierie des langages communément rencontrés par les développeurs et utilisateurs de DSLs.

Dans une première application, nous montrons comment le mécanisme de polymorphisme de modèle de Melange fournit une interopérabilité sûre et transparente entre des langages structurellement similaires, et une compatibilité entre les versions successives d'un même langage (Enjeu #1). Plus particulièrement, nous étudions quatre versions du métamodèle de l'Unified Modeling Language [START_REF]OMG. Unified Modeling Language (UML), Infrastructure Specification[END_REF] (UML) et montrons que Melange fournit la flexibilité attendue, permettant ainsi d'ouvrir et de manipuler les mêmes modèles en utilisant différentes versions du métamodèle d'UML. De plus, nous montrons comment différentes transformations de modèles peuvent être réutilisées d'un langage à l'autre, dès lors qu'ils partagent certaines similitudes matérialisées par une interface de langage commune. Plus précisément, nous détaillons comment différentes transformations, exprimées en Java et en ATL [START_REF] Jouault | ATL: A Model Transformation Tool[END_REF], peuvent être réutilisées pour une famille de langages d'automates composée de huit variantes exposant des points de variation syntaxiques et sémantiques.

Dans une seconde application, nous utilisons Melange pour concevoir un nouveau langage dédié à la modélisation des systèmes d'Internet des objets. Plutôt que de commencer de zéro, nous utilisons Melange pour construire ce nouveau langage par assemblage de trois implémentations de langages publiquement disponibles: (i) le langage de description d'interface de l'OMG [205] (ii) le diagramme d'activité d'UML [START_REF]OMG. Unified Modeling Language (UML), Infrastructure Specification[END_REF] et (iii) le langage de programmation Lua [START_REF] Ierusalimschy | Lua-an extensible extension language[END_REF]. Nos résultats montrent que l'utilisation de Melange permet de réutiliser et de personnaliser des implémentations de langage existantes lors de la création de nouveaux DSLs, diminuant ainsi leurs coûts de développement élevés (Enjeu #2).

Introduction

In this chapter, I first introduce the context of this thesis (Section 1.1) and detail the research questions I address (Section 1.2). Then, I give an overview of our approach, list the various scientific contributions (Section 1.3), and the different applications on which we validate them (Section 1.4). Finally, I mention the industrial and international collaborations that motivated our contributions (Section 1.5) and outline the general organization and the different chapters of this manuscript (Section 1.6).

Context

The advent of complex software-intensive systems, such as Systems of Systems, Cyber-Physical Systems or the Internet of Things, raises numerous new software engineering challenges. The development of these systems involves many stakeholders, each with diverse areas of expertise, who contribute their knowledge on specific aspects of the system of interest. Typically, stakeholders are accustomed to express their knowledge in the form of models using specialized concepts and notations commonly used within their discipline (e.g., mechanical engineering, energy management, systems engineering). An intuitive approach to foster the involvement of stakeholders in the development of such systems is to provide them with appropriate means to express their models of the system, and to use these models actively throughout the development process. The ultimate vision is to break down the barrier between software engineering and other engineering disciplines by enabling domain specialists to actively participate in the development of software systems in which they have an interest.

Model-Driven Engineering (MDE) [START_REF] Douglas | Model-driven Engineering[END_REF] contributes to this vision in various ways. First, MDE proposes to reduce the accidental complexity associated with the development of complex systems by bridging the gap between the problem-level abstractions used by stakeholders and the implementation-level concepts used to realize the target software system [START_REF] France | Model-driven development of complex software: A research roadmap[END_REF]. Second, leveraging the time-honored practice of separation of concerns, MDE advocates the use of multiple Domain-Specific Languages (DSLs), each with a dedicated set of concepts, notations, and tools suitable for modeling a particular aspect of the system. One key idea of MDE is to move from descriptive models to prescriptive models that are used to construct the target system. Such models are used to perform early verification and validation activities, and automate the generation of essential software artifacts (e.g., components, test cases, documentation). The benefits of MDE range from improvements in the productivity of developers to enhanced software quality [START_REF] Baker | Model-Driven engineering in a large industrial context-motorola case study[END_REF][START_REF] Hutchinson | Empirical assessment of MDE in industry[END_REF].

Recent studies show that the use of appropriate DSLs is one of the key factor for the successful adoption of MDE in industrial settings [START_REF] Hutchinson | Model-driven engineering practices in industry: Social, organizational and managerial factors that lead to success or failure[END_REF][START_REF] Whittle | The state of practice in model-driven engineering[END_REF]. DSLs aim at bridging the gap between the problem space (in which stakeholders work) and the solution space (the concrete software artifacts defining the target system) [START_REF] Fowler | Domain-specific languages[END_REF]. They are usually small and intuitive software languages whose concepts and expressiveness are focused on a particular domain [START_REF] Mernik | When and How to Develop Domain-Specific Languages[END_REF].

As "software languages are software too" [START_REF] Favre | Empirical language analysis in software linguistics[END_REF], the development of DSLs and their supporting environment (editors, generators, simulators, etc.) inherits the complexity of software development in general. Because the domains they focus are continuously evolving, DSLs tend to evolve at a faster rate than general-purpose languages. It follows that concerns such as reusability, maintainability or evolution must be taken into account when engineering them. Fortunately, good practices from the software engineering community can be leveraged to achieve these engineering goals. The need for proper tools and methods supporting the development of DSLs led to the emergence of the Software Language Engineering (SLE) research field which Kleppe defines as "the application of systematic, disciplined, and measurable approaches to the development, use, deployment, and maintenance of software languages" [START_REF] Kleppe | Software language engineering: creating domain-specific languages using metamodels[END_REF].

On the one hand, MDE relies on SLE techniques for efficient and maintainable engineering of DSLs. On the other hand, MDE proposes a solid theory of language definition for the definition of DSLs. MDE and SLE thus cross-fertilize each others, and this thesis is positioned at the intersection of these two research fields.

Problem Statement

DSLs exist in different shapes, ranging from fluent application programming interfaces [START_REF] Fowler | Fluent interface[END_REF] to external DSLs. Notably, external DSLs offer the best flexibility and added value for the end users but are the most costly to engineer as they cannot rely on the infrastructure of a host language [START_REF] Fowler | Language workbenches: The killer-app for domain specific languages[END_REF]. The development of an external DSL encompasses the definition of its abstract syntax, concrete syntax, semantics, and a dedicated environment that assists users of the language in the creation, analysis, and management of the conforming models. Following the principles of MDE, the development of a new DSL usually starts with the definition of a metamodel, the cornerstone artifact that specifies its abstract syntax. Concrete syntaxes and semantics are then specified as mappings from the abstract syntax to the appropriate co-domains [START_REF] Harel | Meaningful modeling: what's the semantics of" semantics[END_REF]. Finally, the environment accompanying a DSL consists of a set of integrated services (e.g., transformations, checkers) that analyze, manipulate, and transform the conforming models.

The definition of each of these artifacts is prone to errors and requires substantial engineering efforts [START_REF] Karsai | Design guidelines for domain specific languages[END_REF][START_REF] Voelter | DSL engineering: Designing, implementing and using domain-specific languages[END_REF]. Moreover, using today's technologies, the same process is typically repeated from scratch for every new DSL or new version of a DSL. To foster their adoption in the industry, the benefits in terms of productivity when using DSL technologies must offset the initial investment required in developing such DSLs. Therefore, tools and methods must be provided to assist language designers in the development of new DSLs and the evolution of legacy ones to mitigate development costs. Techniques for increasing reuse from one DSL to another and supporting the customization of legacy ones to meet new requirements are thus particularly welcomed.

In addition, the proliferation of independently developed and constantly evolving DSLs in numerous areas raises new challenges concerning their integration and the interoperability of their environments [START_REF] Bhc Cheng | Globalizing Domain-Specific Languages[END_REF][START_REF] Benoit Combemale | Globalizing modeling languages[END_REF]. The theoretical foundations of MDE imply that models are tightly coupled with the DSL to which they conform, and modeling environments are tightly coupled with the DSL they support. This has severe consequences on the evolution of DSLs and the interoperability between modeling environments. First, when a DSL evolves, both its conforming models and its environment must be updated accordingly. It is hardly possible to define generic services that manipulate models conforming to different versions of the same DSL. Second, DSL users cannot benefit from services defined for different, yet similar, languages. As a concrete example, it is not possible to open and manipulate a hierarchical statechart model in a modeling environment defined for flat statecharts. This lack of flexibility for the DSL users hinders the sharing of models between different environments, and thereby the collaboration between stakeholders.

From these two observations, we summarize the current limitations imposed on both DSL designers and users as two interrelated challenges:

Challenge #1 The proliferation of independently developed and constantly evolving DSLs raises the problem of interoperability between similar languages and environments. Language users must be given the flexibility to open and manipulate their models using different variants and versions of various environments and services to foster collaboration in the development of complex systems.

Challenge #2 Since DSLs and their environments suffer from high development costs, tools and methods must be provided to assist language designers and mitigate development costs. A promising approach is to build on the time-honored practices of modular development and reuse in software engineering and adapt them to the specificities of SLE.

Contributions

To tackle the aforementioned challenges, we structure our approach around three interconnected contributions depicted as 1 , 2 , and 3 in Figure 1.1.

As a basis for the two other contributions, we propose the notion of language interface (1) as a mean to enhance abstraction and genericity in DSL engineering. Language interfaces allow to abstract the intrinsic complexity carried in the implementation of languages, by exposing meaningful information (i) concerning an aspect of a language (e.g., syntactical constructs) (ii) for a specific purpose (e.g., composition, reuse, coordination) (iii) in an appropriate formalism (e.g., a metamodel). In this regard, language interfaces can be thought of as a reasoning layer atop language implementations. Using language interfaces, one can vary or evolve the implementation of a DSL while retaining the compatibility with the services and environments defined on its interface. Language interfaces enable the definition of generic services that do not depend on a particular version or variant of a DSL and that can be reused for any DSL matching the interface, regardless of its concrete implementation. Our two other contributions, aimed at both language designers and users, rely on this common fundamental notion of language interfaces. To address Challenge #1, we propose a disciplined approach that leverages family polymorphism [START_REF] Ernst | Family Polymorphism[END_REF] and structural typing [START_REF] Cardelli | Structural subtyping and the notion of power type[END_REF] to provide an advanced type system for manipulating models, in a polymorphic way, through different language interfaces (2). In our approach, these interfaces are captured in model types and supported by a typing relation between models and model types [START_REF] Steel | On model typing[END_REF] and a subtyping relation between model types [START_REF] Guy | On model subtyping[END_REF]. Model types are structural interfaces over a language. They are used to define a set of constraints over admissible models. The subtyping relations define the safe substitutions from one DSL to another, thereby providing more flexibility to DSL users in the manipulation of models conforming to these DSLs. We call this fundamental mechanism model polymorphism, i.e., the ability to manipulate a model through different language interfaces. Model polymorphism opens up the possibility to safely manipulate models using different modeling environments and services (e.g., transformations, checkers, compilers).

To address Challenge #2, we propose a meta-language for modular and reusable development of DSLs. Many DSLs, despite being targeted at specialized domains, share common paradigms and constructs [START_REF] Pescador | Pattern-based development of domainspecific modelling languages[END_REF]. When engineering new DSLs, it is thus likely that previous efforts spent on the development of other languages could be leveraged, especially when their domains overlap. For this purpose, we propose an algebra of operators that enables language designers to reuse legacy DSLs, compose them, extend them, and customize them to meet new requirements (3). This approach relies on the aforementioned dedicated type system to provide a reasoning layer for ensuring the structural correctness of composed DSLs and their safe manipulation.

We implement all our contributions in a new language workbench named Melange. 1 Melange supports the modular and reusable definition of the syntax and semantics of DSLs, and flexible manipulation of the conforming models. Melange is seamlessly integrated with the de facto standard Eclipse Modeling Framework (EMF) and provides model polymorphism to any EMF-based tool of the Eclipse modeling ecosystem. We use Melange to evaluate our contributions on various case studies.

Applications

To validate our contributions and their implementation in the Melange language workbench, we evaluate the capability of Melange to solve challenging language engineering scenarios commonly faced by DSL designers and users.

Our first application shows how the model polymorphism mechanism provided by Melange provides safe and seamless interoperability between structurally similar languages, and compatibility between subsequent versions of the same language (Challenge #1). Specifically, we study four versions of the UML metamodel and show that Melange provides the expected flexibility, allowing to open and manipulate the same models using different versions of the UML metamodel. In addition, we show how various model transformations can be reused from one language to other ones, provided that they share some 1.5. Context of this Thesis commonalities materialized in a common language interface. Specifically, we detail how several transformations, expressed in Java and ATL [START_REF] Jouault | ATL: A Model Transformation Tool[END_REF], can be reused for a family of statechart languages consisting of eight variants exposing syntactic and semantic variation points.

In our second application, we use Melange to design a new language for modeling Internet of Things (IoT) systems. Instead of starting its definition from scratch, we use Melange to build the IoT language as an assembly of three publicly available language implementations: (i) the Interface Description Language from the OMG [205] (ii) the Activity Diagram from UML [START_REF]OMG. Unified Modeling Language (UML), Infrastructure Specification[END_REF] and (iii) the Lua programming language [START_REF] Ierusalimschy | Lua-an extensible extension language[END_REF]. Results show that using Melange allows to reuse and customize existing language implementations in the creation of new DSLs, thereby taming their high development costs (Challenge #2).

Context of this Thesis

This thesis was conducted through many fruitful interactions with academic and industrial partners. Many ideas leading to the contributions presented here and the Melange language workbench emerged from discussions raised within the collaborative projects ITEA2 MERgE,2 ANR INS GEMOC, 3 and LEOC Clarity. 4Melange was extensively used in the context of the ANR GEMOC project to modularly define executable modeling languages, and support their extension. The Melange language workbench is integrated in the GEMOC studio, an Eclipse package supporting the methodology developed within the GEMOC initiative [2].

In collaboration with Thales Group, we have also experienced Melange in the context of the Clarity project for the definition of extensions and viewpoints on a large-scale systems engineering language named Capella5 .

Outline

Part I -Background and State of the Art

Chapter 2 introduces the foundations and current practices of MDE and SLE, with particular emphasis on the engineering of DSLs and the role of language workbenches.

Chapter 3 reviews the state of the art of modularity and composition of DSLs, and current support for flexibility and interoperability in the MDE ecosystem.

Part II -Contributions

Chapter 4 summarizes the purposes of interfaces in software engineering and programming, introduces the notion of language interface, and highlights the benefits of language interfaces for the engineering of software languages.

Chapter 5 presents our contribution on safe model polymorphism, increasing interoperability and flexibility in MDE ecosystems.

Chapter 6 presents our contribution to the modular and reusable development of DSLs through a dedicated meta-language.

Part III -Implementation

Chapter 7 presents the various features of the Melange language workbench through many illustrative examples.

Part IV -Conclusion and Perspectives

Chapter 8 resumes our contributions and identifies the perspectives that directly stem from them.

Part I

Background and State of the Art

Chapter 2

Background

In this chapter, I introduce the theoretical background and main concepts used in the remainder of this thesis. Specifically, I introduce the notion of software language (Section 2.1), and present the main principles of software language engineering (Section 2.2) and model-driven engineering (Section 2.3). I put a particular emphasis on the specificities of domain-specific languages and the role of language workbenches. Along the presentation of these concepts, I draw the boundaries of our contributions.

Software Languages

Software languages play a primary role in many areas of computer science and software engineering. The term software language encompasses all kinds of languages used in the development of software systems: modeling languages, programming languages, configuration languages, markup languages, formal languages, ontologies, etc. [START_REF] Kleppe | Software language engineering: creating domain-specific languages using metamodels[END_REF]. Orthogonally to the different kinds of software languages, one can make a distinction between General-Purpose Languages (GPLs) and Domain-Specific Languages (DSLs) [START_REF] Van Deursen | Domain-Specific Languages: An Annotated Bibliography[END_REF]. 1A GPL is a software language that can be used in any application domain. Most programming languages (e.g., Scala, Haskell, Go), together with some modeling languages (e.g., the Unified Modeling Language -UML [START_REF]OMG. Unified Modeling Language (UML), Infrastructure Specification[END_REF]), fall into this category. A prime characteristic of GPLs is that they lack specialized concepts and notations tailored to a specific domain of application. Instead, their expressiveness makes them applicable in many areas. Therefore, while GPLs can be employed to implement any kind of software system, it can be difficult for developers to manually bridge the gap between the problem-level concepts that pertain to the application domain and their implementation in a GPL. By their very nature, GPLs are meant to be used by software experts, and hinder the involvement of domain specialists in the development process.

By contrast, a DSL is a software language whose expressiveness is focused on (and usually restricted to) a particular domain of application [START_REF] Fowler | Domain-specific languages[END_REF][START_REF] Mernik | When and How to Develop Domain-Specific Languages[END_REF]. The abstractions and notations provided by a DSL are specifically tailored to its domain of application. It follows that DSLs cannot be used to realize any kind of software systems, but only to solve a particular class of problems. Their main benefit lies in the fact that they allow solutions to be expressed at the level of abstraction of the problem domain. Thus, specifications, models, or programs2 expressed in a DSL can be directly understood, analyzed, and even manipulated by domain specialists [START_REF] Van Deursen | Domain-Specific Languages: An Annotated Bibliography[END_REF]. Programs expressed in a DSL are typically more concise and intuitive, easier to understand, reason about, and maintain [START_REF] Van Deursen | Little languages: little maintenance?[END_REF]. The scope of applicability of DSLs ranges from narrow and specific areas (e.g., the Makefile syntax is dedicated to build automation) to broader domains (e.g., a DSL for statechart modeling may be used in many application domains such as language processing, user interfaces, and computer networks). As of today, DSLs are developed and actively used in countless domains [START_REF] Nascimento | A systematic mapping study on domain-specific languages[END_REF]. DSLs are also the fundamental mean for the realization of language-oriented programming [START_REF] Fowler | Language workbenches: The killer-app for domain specific languages[END_REF][START_REF] Martin | Language-oriented programming[END_REF] or language-oriented modeling [START_REF] Benoit | Towards Language-Oriented Modeling[END_REF] as proposed by model-driven engineering (cf. Section 2.3). To foster their use, DSLs rely on a dedicated infrastructure, i.e., a set of tools and services that support the users in writing, analyzing, and manipulating models written in the language. These tools support the development process, help finding errors in the specifications, and automate tedious tasks. However, the design of domain-specific tools, or the adaptation of existing tools to the specificities of a particular DSL is an expensive and error-prone task [START_REF] Voelter | Generic tools, specific languages[END_REF].

An important decision when designing a DSL concerns the "shape" of the resulting language. Language designers can choose to build either an external or an internal DSL. 3 The construction of an external DSL encompasses the creation of a new language with its own dedicated infrastructure: editors, compilers, interpreters, analyzers, etc. In such a case, language designers can freely design the syntax and semantics of their language, but must write a complete specification using dedicated formalisms that offer the suitable expressiveness for defining each implementation concern [START_REF] Visser | A Language Designer's Workbench: A One-Stop-Shop for Implementation and Verification of Language Designs[END_REF]. Since those formalisms are languages intended to specify languages, they are usually known as meta-languages and vary according to the chosen technological space or language workbench (cf. Section 2.2.4).

In the case of internal DSLs, the principle is to take advantage of the infrastructure already provided by a host language [START_REF] Hudak | Building domain-specific embedded languages[END_REF]. The high-level domain concepts of the DSLs are encoded using the language constructs offered by the host language. Editors, parsers, or compilers of the host language can be reused as is, thus lowering the development costs compared to external DSLs. However, following this approach also implies that the capabilities of an internal DSL are restricted to those of the host language: it must comply with the programming paradigm, the type system, and the tooling provided by the host language. For all these reasons, an appropriate selection of the host language is of crucial importance [START_REF] Renggli | Why Smalltalk wins the host languages shootout[END_REF]. Concretely, an internal DSL may take the form of a fluent Application Programming Interface (API) that has the "look and feel" of a distinct language [START_REF] Fowler | Fluent interface[END_REF], or rely on implementation techniques that introduce new syntactic constructs or "sugar" over a GPL (e.g., using macros [START_REF] Brabrand | Growing languages with metamorphic syntax macros[END_REF], desugaring [START_REF] Erdweg | SugarJ: library-based syntactic language extensibility[END_REF], extensible compilers [START_REF] Nystrom | Polyglot: An extensible compiler framework for Java[END_REF], or meta-objets [START_REF] Tatsubori | OpenJava: A class-based macro system for Java[END_REF]).

At the crossroads of these approaches, other authors argue that language designers should not be forced into choosing a particular shape once and for all, but that the shape of a given DSL should adapt according to particular users and uses [START_REF] Valerio Cosentino | A Model-Driven Approach to Generate External DSLs from Object-Oriented APIs[END_REF]. Such DSLs are named metamorphic DSLs [START_REF] Mathieu Acher | Metamorphic Domain-Specific Languages: A Journey Into the Shapes of a Language[END_REF]. In this thesis and the remainder of this section, we focus on external DSLs and simply use the term DSL to refer to them.

Software Language Engineering

The development of software languages is an historically complex task (see for example the development of the Fortran language which reportedly took 18 man-year [START_REF] Backus | The FORTRAN automatic coding system[END_REF]). Although the techniques used to engineer DSLs are similar to the ones used to engineer any software language, the development of DSLs carries its own specificities and implementation techniques [START_REF] Spinellis | Notable design patterns for domain-specific languages[END_REF][START_REF] Voelter | DSL engineering: Designing, implementing and using domain-specific languages[END_REF]. "Software languages are software too" [START_REF] Favre | Empirical language analysis in software linguistics[END_REF] and, consequently, the development of software languages inherits all the complexity of software development in general: concerns such as maintainability, reusability, evolution, user experience are recurring requirements in the daily work of software language engineers. Additionally, the development of DSLs encompasses the definition of Integrated Development Environments (IDEs) and services that provide crucial added value to language users but are costly to engineer.

Because DSLs have a rather narrow scope of application and are by definition doomed to evolve with the domain they abstract, the benefits of using them must offset the original effort required to engineer them. Therefore, there is room for applying software engineering techniques to facilitate the development of DSLs. This motivation supported the emergence of the Software Language Engineering (SLE) discipline, which Kleppe defines as as "the application of systematic, disciplined, and measurable approaches to the development, use, deployment, and maintenance of software languages" [START_REF] Kleppe | Software language engineering: creating domain-specific languages using metamodels[END_REF]. Just as traditional GPLs, DSLs are typically defined through three main constituents: abstract syntax, concrete syntax, and semantics [START_REF] Harel | Meaningful modeling: what's the semantics of" semantics[END_REF]. In this section, we review how SLE supports the definition of these artifacts.

Abstract Syntax

The abstract syntax of a software language is its fundamental constituent: it defines its syntactic constructs, independent of their representation [START_REF] Mccarthy | Towards a mathematical science of computation[END_REF]. One can say that the abstract syntax of a language defines the "form" of its programs. To be automatically processed by tools, a program or model written in a given language is usually first represented in the form of a data structure called an Abstract Syntax Tree (ASTs): the abstract syntax of a language prescribes the structure of such ASTs. Thus, in a sense, the abstract syntax defines the set of all legal ASTs, i.e., the way programs look like from the point of view of language-supporting tools such as compilers and analyzers.

Usually, a dedicated meta-language is used to specify the abstract syntax of software languages. The two most widely used formalisms for specifying abstract syntaxes are (context-free) grammars and metamodels. In the following, we mainly present the use of grammars and defer the presentation of metamodels to Section 2.3.1. In the original ALGOL report [START_REF] Backus | Report on the algorithmic language ALGOL 60[END_REF], the syntax of ALGOL was described in a notation now known as the Backus-Naur Form (BNF) that specifies both the abstract syntax of a language and its textual representation (i.e., its keywords). McCarthy later argued that the two (abstract syntax and concrete syntax) should be separated [START_REF] Mccarthy | Towards a mathematical science of computation[END_REF]. As of today, BNF and Extended BNF [START_REF] Wirth | What can we do about the unnecessary diversity of notation for syntactic definitions?[END_REF] are still heavily used for specifying the context-free grammars of (mainly programming) languages.

While grammars are used for the formal specification and verification of languages, they also play an important role from a software language engineering perspective. They serve as the primary input for compiler-compilers, i.e., programs that generate (part of) compilers from high-level language specifications. As an illustration, parsers generators (e.g., Yacc [START_REF] Stephen | Yacc: Yet another compiler-compiler[END_REF], ANTLR [START_REF] Parr | The definitive ANTLR 4 reference[END_REF]) are programs that can automatically generate a language-specific parser from a grammar specification. The pgen component of ASF+SDF [START_REF] Van Den | The ASF+SDF meta-environment: A component-based language development environment[END_REF], for instance, generates parser tables from grammar specifications expressed in SDF [START_REF] Heering | The syntax definition formalism sdf-reference manual[END_REF]. Similarly, Spoofax [START_REF] Lennart | The spoofax language workbench: rules for declarative specification of languages and IDEs[END_REF] and MontiCore [START_REF] Holger Krahn | MontiCore: a framework for compositional development of domain specific languages[END_REF] also derive a set of classes corresponding to the grammar. After parsing, the resulting ASTs are set of objects instance of those classes. Many language workbenches also automatically derive editor support (including e.g., syntax highlighting and document outline) from a grammar specification. Others, such as Xtext [START_REF] Eysholdt | Xtext: Implement your Language Faster than the Quick and Dirty Way[END_REF], integrate grammars and metamodels through a unified formalism. We refer the interested reader to other works for more information on the relation between grammars and metamodels [START_REF] Alanen | A relation between context-free grammars and meta object facility metamodels[END_REF][START_REF] Bergmayr | Generating Metamodels from Grammars by Chaining Translational and By-Example Techniques[END_REF][START_REF] Kleppe | Software language engineering: creating domain-specific languages using metamodels[END_REF][START_REF] Kunert | Semi-automatic generation of metamodels and models from grammars and programs[END_REF]. Klint et al. coined the term grammarware to designate grammars and the software that support or use them [START_REF] Klint | Toward an engineering discipline for grammarware[END_REF].

Concrete Syntax

While the abstract syntax defines the concepts of a language, the concrete syntax defines how they are represented and manipulated by users of the language. Concrete syntax may be either textual, in which case a program is represented as a sequence of characters, or graphical, in which case the program is represented in a graphical layout of arbitrary symbols (e.g., as for UML diagrams or visual programming languages such as Scratch [START_REF] Resnick | Scratch: programming for all[END_REF]).

As mentioned in Section 2.2.1, the (E)BNF formalism specifies both the abstract syntax and the textual concrete syntax of a language. Terminal symbols of a grammar define the concrete keywords which users use to build syntactically correct programs, following the grammar rules.

There may be many concrete syntaxes for the same abstract syntax. An example would be the representation of integer addition in concrete programs using either the infix, prefix, or postfix notations. The same concept of integer addition, for instance, may be represented either as (3 + 4), (+ 3 4), or (3 4 +) in a textual form.

Many modeling languages are manipulated through a graphical concrete syntax. The UML specifications, for instance, directly specify the notations that must be employed for each UML diagram [206]. In this case, model editing consists in the manipulation of graphical shapes (e.g., boxes, arrows, actors).

Semantics

The role of semantics is to attach meaning to the constructs of a language. The formal definition of a language's semantics enables formal reasoning about properties and runtime behavior of the programs written in it. Similarly to formal grammars, formal semantic specifications are employed to automatically generate language-supporting tools such as interpreters, compilers, or type checkers.

On the one hand, the static semantics of a language defines additional constraints on the structure of valid programs that cannot easily be expressed in the meta-language describing its abstract syntax. This includes, depending on the language's semantics, checking that every variable declaration is unique within a scope, checking that every identifier is declared before it is used, etc. Type systems (which assign a type to constructs of a program) are also often included into the static semantics of a language.

On the other hand, the dynamic semantics of a language specifies the runtime behavior of its programs. There are three prominent approaches to define such dynamic semantics [START_REF] Peter | The varieties of programming language semantics and their uses[END_REF]. It is worth noting that they are not mutually exclusive, as each of them provides particular benefits and eases certain kinds of analyses and implementations: Axiomatic Semantics In axiomatic semantics, the semantics of a language is given in terms of predicates over its syntax (axioms) [START_REF] Robert | Assigning meanings to programs[END_REF]. Concretely, an axiomatic semantics can be specified using e.g., Hoare triples [START_REF] Antony | An axiomatic basis for computer programming[END_REF].

One can consider that axiomatic semantics describes the properties of a program rather than its precise meaning, and is thus particularly suitable for program reasoning and verification.

Translational Semantics A translational semantics defines an exogenous transformation from the abstract syntax of a language to another language whose semantics is well-defined (this includes classic compilers).

When the translational semantics constructs mathematical objects (called denotations), the term denotational semantics is usually preferred [START_REF] Schmidt | Denotational Semantics: A Methodology for Language Development[END_REF].

Operational Semantics

The operational semantics of a language defines the meaning of programs in terms of their execution, specified as a sequence of computation steps. Typically, it takes the form of a transition function over program configurations (i.e., states). Operational semantics further refines into small-step operational semantics [START_REF] Gordon D Plotkin | A structural approach to operational semantics[END_REF] and big-step operational semantics (also known as natural semantics [START_REF] Kahn | Natural semantics[END_REF]). In the small-step style, computations are defined one step at a time whereas in the big-step style programs are directly related to the result of their execution.

In this thesis, we focus on languages whose semantics are defined operationally, in a small-step style. Structural Operational Semantics (SOS) [START_REF] Gordon D Plotkin | A structural approach to operational semantics[END_REF] and its extensions (e.g., MSOS [START_REF] Peter | Modular structural operational semantics[END_REF] and I-MSOS [START_REF] Peter | Implicit propagation in structural operational semantics[END_REF]) are the prominent formalism used to describe the small-step operational semantics of languages, in the form of an inductive transition system. SOS inspired many frameworks that are able to automatically generate interpreters from a SOS-style specification. For example, Prolog interpreters can be derived from MSOS and I-MSOS specifications [START_REF] Bach | Generating specialized interpreters for modular structural operational semantics[END_REF], AST-based Java interpreters can be derived from DynSem specifications [START_REF] Vergu | DynSem: A DSL for dynamic semantics specification[END_REF], and Maude interpreters can be derived from K specifications [START_REF] Roşu | An overview of the K semantic framework[END_REF].

Another popular formalism used to specify formal semantics of languages is attribute grammars [START_REF] Paakki | Attribute grammar paradigms-a high-level methodology in language implementation[END_REF] (as in e.g., LISA [START_REF] Mernik | An object-oriented approach to language compositions for software language engineering[END_REF]). Attribute grammars can be used to compute values along the nodes of an AST to enrich it with semantic information (e.g., for static semantics checking purposes), or to define an operational semantics by computing evaluation results. Examples of environments supporting the definition of languages based on attribute grammars include the Silver system [START_REF] Van Wyk | Silver: An extensible attribute grammar system[END_REF] and the JastAdd system for compiler construction [START_REF] Ekman | The JastAdd system-modular extensible compiler construction[END_REF].

Language Workbenches

The term language workbench originates from the seminal work of Martin Fowler [START_REF] Fowler | Language workbenches: The killer-app for domain specific languages[END_REF]. The main intent of language workbenches is to provide a unified environment to assist both language designers and users in, respectively, engineering new DSLs and using them. The idea of language workbench is however not new. The CENTAUR system [START_REF] Borras | Centaur: the system[END_REF], for instance, implemented the same idea in the late eighties. Modern language workbenches typically offer a set of meta-languages that language designers use to express each of the implementation concerns of a DSL [START_REF] Visser | A Language Designer's Workbench: A One-Stop-Shop for Implementation and Verification of Language Designs[END_REF], along with tools and methods for composing and analyzing their specifications. Language workbenches are one of the main medium for innovation in SLE and many state-of-the-art approaches ultimately materialize as features of a language workbench.

As of today, many language workbenches have been developed for various technological spaces: Rascal [START_REF] Klint | Rascal: A domain specific language for source code analysis and manipulation[END_REF], GME [START_REF] Ledeczi | The generic modeling environment[END_REF], Monticore [START_REF] Grönniger | Monticore: a framework for the development of textual domain specific languages[END_REF][START_REF] Holger Krahn | MontiCore: a framework for compositional development of domain specific languages[END_REF][START_REF] Holger Krahn | Monticore: Modular development of textual domain specific languages[END_REF], Spoofax [START_REF] Lennart | The spoofax language workbench: rules for declarative specification of languages and IDEs[END_REF][START_REF] Visser | A Language Designer's Workbench: A One-Stop-Shop for Implementation and Verification of Language Designs[END_REF][START_REF] Guido H Wachsmuth | Language Design with the Spoofax Language Workbench[END_REF], LISA [START_REF] Mernik | An object-oriented approach to language compositions for software language engineering[END_REF], Neverlang [START_REF] Vacchi | Neverlang: a framework for feature-oriented language development[END_REF], ASF+SDF [START_REF] Van Den | The ASF+SDF meta-environment: A component-based language development environment[END_REF], MPS, to name just a few. The interested reader can refer to a recent study of Erdweg et al. for an in-depth study of the features offered by different popular language workbenches [START_REF] Erdweg | Evaluating and comparing language workbenches: Existing results and benchmarks for the future[END_REF]. In Chapter 3, we specifically analyze their support for language composition and interoperability.

Model-Driven Engineering

Model-driven engineering (MDE) is a development paradigm that aims at reducing the accidental complexity in the development of complex software systems [START_REF] France | Model-driven development of complex software: A research roadmap[END_REF][START_REF] Douglas | Model-driven Engineering[END_REF]. Typically, the development of complex systems involve many stakeholders with diverse backgrounds who contribute their knowledge on specific aspects of the system under development (e.g., performance, security). Accidental complexity arises from the wide gap between the high-level concepts used by stakeholders and the low-level concepts provided by programming languages to realize the final system. MDE helps overcome the gap between the problem space and solution space and tame the complexity of the development of such systems in two main ways:

• MDE advocates separation of concerns through the use of multiple DSLs that provide the appropriate abstractions, notations, and tools for modeling a particular aspect of the system. This way, stakeholders can focus on their particular task without losing the "big picture";

• MDE helps to automatically bridge the gap between low-level and highlevel concepts by automatically generating crucial software artifacts (e.g., components, documentation, test cases) from high-level models of the system.

Overall, one key idea of MDE is to move from descriptive models -that merely serve as documentation -to prescriptive models that can be manipulated as first-class entities and used to construct the target system [START_REF] Bézivin | In search of a basic principle for model driven engineering[END_REF][START_REF] Bézivin | On the unification power of models[END_REF]. Such models are used to perform early verification and validation of the system, e.g., through simulation or model checking [START_REF] Edmund M Clarke | Model checking[END_REF], thus bringing forward the detection of possible errors and reducing their impact. Because models are expressed at a higher level of abstraction that concrete software artifacts, MDE also eases evolution and maintenance of software systems [START_REF] Atkinson | Model-driven development: a metamodeling foundation[END_REF], and foster the integration of different technological spaces [START_REF] Favre | Towards a basic theory to model model driven engineering[END_REF]. Recent empirical studies show that the benefits of MDE range from improvements in the productivity of developers to enhanced software quality [START_REF] Baker | Model-Driven engineering in a large industrial context-motorola case study[END_REF][START_REF] Hutchinson | Model-driven engineering practices in industry[END_REF][START_REF] Hutchinson | Empirical assessment of MDE in industry[END_REF].

Because MDE relies on the definition of appropriate DSLs to model different aspects of a system, it proposes fundamental techniques for engineering such languages. The MDE foundations and techniques can be referred to as the modelware technological space, by analogy with the grammarware technological space. It is worth noting that the two are however not mutually exclusive and can complement each other [START_REF] Richard F Paige | A tutorial on metamodelling for grammar researchers[END_REF][START_REF] Wimmer | Bridging grammarware and modelware[END_REF]. In the next sections, we introduce the fundamental concepts of MDE and detail the techniques it provides for engineering DSLs.

Metamodels

An important foundation of MDE is metamodeling [START_REF] Atkinson | Model-driven development: a metamodeling foundation[END_REF], i.e., the process of engineering metamodels. A metamodel is the cornerstone artifact of the definition of a language in MDE [START_REF] Clark | Applied metamodelling: a foundation for language driven development[END_REF]. In contrast to grammars, metamodels solely specify the abstract syntax of languages. They materialize the knowledge on a given domain: the appropriate concepts, their properties, and the relations between them. Metamodels are themselves models and can be defined in many different formalisms, e.g., using an entity-relationship diagram (as in AToM 3 [START_REF] De | AToM3: A Tool for Multiformalism and Meta-modelling[END_REF]), or an object-oriented meta-language such as the Meta-Object Facility (MOF) formalism [206] (as in Kermeta [START_REF] Jézéquel | Mashup of Meta-Languages and its Implementation in the Kermeta Language Workbench[END_REF]). In this thesis, we focus on object-oriented metamodels as envisioned in some of the seminal work in MDE [START_REF] Bézivin | Towards a Precise Definition of the OMG/MDA Framework[END_REF]. An object-oriented metamodel (hereinafter referred to simply as metamodel), uses meta-classes to represent a language's concepts. These meta-classes may contain properties which are either simple named attributes (e.g., an integer) or references towards other meta-classes. Meta-classes can inherit one another to materialize concept specialization, and can be abstract, meaning that they cannot be instantiated in concrete models.

Figure 2.1 depicts the metamodel of a simple finite-state machine (FSM) language named MiniFsm using a class diagram notation. We use this illustrative language throughout this section to illustrate the concepts of abstract syntax, concrete syntax, and semantics of a DSL in the modelware space. The metamodel consists of three meta-classes which correspond to the three concepts of the language: finite-state machines (FSM), states (State), and transitions (Transition). A finite-state machine is composed of a set of states (one of which being its initial state) and transitions. A state is identified by its name, and a transition is fired when it receives a particular event. A transition links a source state to a target state. Conversely, a state is associated to the list of its incoming and outgoing transitions. Metamodels do not always offer the appropriate expressiveness to specify all the structural constraints of a language. In Figure 2.1, it is for example not possible to specify that the initial state must not have any incoming transition. To cope with this limitation, one can complement a metamodel with static semantics rules. The static semantics defines well-formedness rules that must hold for all the models conforming to the metamodel, and that cannot be expressed in the formalism used to describe a metamodel. They are typically expressed in the form of pre-conditions, post-conditions, and invariants. Listing 2.1 shows how to specify an invariant on top of the Transition meta-class of Figure 2.1 in the Object Constraint Language (OCL) [START_REF] Omg | Object Constraint Language (OCL)[END_REF], a widely used language for expressing queries and predicates over object-oriented metamodels such as the UML and MOF.

context Transition inv: self.target <> self.owningFsm.initial Listing 2.1: An OCL invariant specifying that a Transition cannot target the initial state. The <> operator checks for object inequality.

The Essential Meta-Object Facility (EMOF) [206], standardized by the Object Management Group (OMG), is a widely used standard for objectoriented metamodeling in the modeling community. EMOF is a subset of the MOF specification that is easily amenable to implementation in concrete tools and integrated with OCL [START_REF] Omg | Object Constraint Language (OCL)[END_REF]. On the technological side, the Eclipse Modeling Framework (EMF) proposes the Ecore meta-language which is closely aligned with EMOF [START_REF] Steinberg | EMF: Eclipse Modeling Framework[END_REF]. Additionally, the EMF ecosystem contributes numerous generative tools around the Ecore language such as editors and model transformation languages (cf. Section 2.3.3). Therefore, EMF is the de facto technological standard both in industry and academia: many popular tools such as ATL [START_REF] Jouault | ATL: A Model Transformation Tool[END_REF], Xtext [START_REF] Eysholdt | Xtext: Implement your Language Faster than the Quick and Dirty Way[END_REF], Kermeta [START_REF] Jézéquel | Mashup of Meta-Languages and its Implementation in the Kermeta Language Workbench[END_REF], and Epsilon [START_REF] Kolovos | Eclipse development tools for epsilon[END_REF] are built on top of -or interoperable with -EMF and Ecore.

Models

From the description of metamodels given in Section 2.3.1, we give in this section a precise description of models. In the MDE paradigm, a model conforms to a metamodel if each object in the model is an instance of a concrete meta-class of the metamodel, and if the model satisfies the static semantics rules of the metamodel [START_REF] Jean Bézivin | Principles, Standards and Tools for Model Engineering[END_REF]. The relation that links models to metamodels is called the conformance relation. For the sake of conciseness, we can simply write that a model conforms to a language, which means that the model conforms to the metamodel defining the abstract syntax of this language. The characteristics and properties of the conformance relation are the main motivation for one of our contribution. Thus, we refer the reader to Chapter 5 for an in-depth analysis of the properties and limitations of the conformance relation from theoretical and experimental points of view.

Building on the MiniFsm metamodel depicted in Figure 2.1, Figure 2.2 depicts a model conforming to the MiniFsm metamodel in the form of an object diagram [206]. The object diagram makes explicit the instantiation relations between objects of the model and meta-classes of the metamodel. A model is thus a set of objects (a graph of objects) where each object is instance of exactly one meta-class of the metamodel. Each object instantiates concrete values for the properties defined in its meta-class. By analogy with the terms used in the programming language community, a model is an Abstract Syntax Tree (AST) whose structure is prescribed by the metamodel it conforms to. Naturally, it is not intuitive for language users to directly manipulate models in their abstract form. To support the work of language users, language designers may define one of several concrete syntaxes of their language. These concrete syntax may be graphical, textual, or a mix thereof. Figure 2.3 depicts two alternative concrete representations for the model depicted in Figure 2.2. The choice of a concrete syntax is influenced by the language users' culture and habits. On the technological side, the EMF ecosystem includes frameworks for defining the textual syntax (e.g., Xtext [START_REF] Eysholdt | Xtext: Implement your Language Faster than the Quick and Dirty Way[END_REF]) or graphical syntax (e.g., Sirius [START_REF]Eclipse[END_REF]) of languages.

Model Transformations

Model transformations play a crucial role in MDE and as such have been identified as the "heart and soul" of MDE [START_REF] Sendall | Model transformation the heart and soul of model-driven software development[END_REF]. Model transformations are programs that are specifically dedicated to the manipulation of models. They are essential to MDE as they allow to automate recurring modeling activities such as model refactoring [START_REF] Zhang | Generic and domain-specific model refactoring using a model transformation engine[END_REF], slicing [START_REF] Blouin | Kompren: Modeling and Generating Model Slicers[END_REF], code generation and many more [START_REF] Czarnecki | Classification of model transformation approaches[END_REF][START_REF] Mens | A taxonomy of model transformation[END_REF].

A model transformation takes as input an arbitrary number of input models and produces as output an arbitrary number of output models (if any). For the sake of clarity however, we limit our presentation to model transformations that accept a single input model and produce a single output model in the remainder of this section. Similarly to functions, procedures, and methods in programming languages, the input and output models of a model transformation are typed by their respective metamodels (named input and output metamodels of the transformation). To be processed by a given transformation, a model must conform to its input metamodel, and possibly an additional set of transformation pre-conditions. The transformation then ensures that the produced model (if any) conforms to its output metamodel and post-conditions.

Model transformations may be implemented using any programming language and, by extension, any programming paradigm. However, most of the languages used to implement model transformations fall into one of the following paradigms: imperative (e.g., Java, Kermeta [START_REF] Jézéquel | Mashup of Meta-Languages and its Implementation in the Kermeta Language Workbench[END_REF]), declarative (e.g., QVT-R [START_REF] Omg | Meta Object Facility (MOF) 2.0 Query/View/Transformation[END_REF], VIATRA [START_REF] Csertán | VIATRA-visual automated transformations for formal verification and validation of UML models[END_REF]), triple graph grammars [START_REF] Königs | Model transformation with triple graph grammars[END_REF][START_REF] Schürr | Specification of graph translators with triple graph grammars[END_REF], or hybrid (e.g., ETL [START_REF] Kolovos | The epsilon transformation language[END_REF], ATL [START_REF] Jouault | ATL: A Model Transformation Tool[END_REF]). Model transformation languages may even be derived directly from an existing language, so that they incorporate linguistic abstractions that are tailored to a specific domain of application [START_REF] Holldobler | Systematically deriving domain-specific transformation languages[END_REF].

Model transformations are usually classified into three categories [START_REF] Mens | A taxonomy of model transformation[END_REF]:

Exogenous transformations are transformations whose input metamodel and output metamodel differ. Examples of transformations falling into this category are transformations used to implement the translational semantics of a language, or integration transformations that transform models from one formalism to the other;

Endogenous transformations are transformations whose input metamodel and output metamodel are the same. Examples of transformations falling into this category are model refactoring and refinement transformations;

In-place transformations are a particular kind of endogenous transformations whose input and output models are the same. An in-place transformation directly modifies its input model "in place" and returns it as output.

As an illustrative example, Listing 2.2 depicts a simple in-place model transformation for the MiniFsm language written in ATL, containing one simple transformation rule AddSuffix. It takes as input a model conforming to the metamodel depicted in Figure 2.1 and produces as output an equivalent model where all state names are prefixed with "state". In particular, in this thesis, we use model transformations to define the operational semantics of languages. Such transformations are in-place transformations that take a model in a given configuration and perform computation steps over it. Following the good practice of separation of concerns in language definition [START_REF] Visser | A Language Designer's Workbench: A One-Stop-Shop for Implementation and Verification of Language Designs[END_REF], the semantics of the MiniFsm language is defined separately from its syntax, using a dedicated meta-language. As an example, Listing 2.3 shows how to define the different computation steps defining the operational semantics of MiniFsm using K3, an imperative meta-language mainly used for specifying the operational semantics of languages (cf. Chapter 7 for a complete presentation of K3). Following the Kermeta approach, computation steps are defined as methods that are woven in corresponding concepts of the abstract syntax using aspects [START_REF] Jézéquel | Mashup of Meta-Languages and its Implementation in the Kermeta Language Workbench[END_REF], similar to the open class mechanism [START_REF] Clifton | MultiJava: Modular open classes and symmetric multiple dispatch for Java[END_REF]. One of them is chosen as the entry point for execution. Listing 2.3: Weaving the computation steps defining the operational semantics of MiniFsm using K3 aspects Model Transformation Footprinting When applying a model transformation on a given model, it is likely that it does not access all the elements contained in the model, but only a subset. The subset of the elements accessed or modified by a model transformation is called its model footprint [START_REF] Jeanneret | Estimating Footprints of Model Operations[END_REF]. Just like other analysis techniques, model footprinting may be realized either statically or dynamically, as depicted in Figure 2.4.

The dynamic model footprint of the application of a model transformation on a given model is the set of model elements that are effectively manipulated during the execution of the transformation. Inferring the dynamic model footprint requires to execute the model transformation, and collect the accessed elements along its execution (e.g., by instrumenting the transformation or analyzing its execution trace). Footprinting can also be used at the metamodel level. The static metamodel footprint of a model transformation is the set of metamodel elements required to write the transformation. This information can be extracted by analyzing the definition of a model transformation. From the static metamodel footprint of a model transformation, one can derive its static model footprint on a given model, which is the set of all model elements [START_REF] Jeanneret | Estimating Footprints of Model Operations[END_REF] that are instances of the meta-classes found in the static static metamodel footprint.

Footprints of model transformations have multiple uses. They have for instance been used to distribute model transformations across clusters [START_REF] Benelellam | Efficient Model Partitioning for Distributed Model Transformations[END_REF], modularize model transformations [START_REF] Sánchez Cuadrado | Reverse engineering of model transformations for reusability[END_REF], and implement model slicers [START_REF] Blouin | Modeling model slicers[END_REF]. In this thesis, we use model transformation footprinting to acquire knowledge on the syntactic elements manipulated by a given computation step of the semantics of a language, and to infer the elements accessed and modified by tools and services defined around a given language (cf. Chapter 5).

Summary

In this chapter, we introduced the main concepts used in the remainder of this thesis. Software languages have a long and rich history in computer science, and many techniques have been proposed for supporting their definition. We identified the key foundations on which we build our contributions: we focus on domain-specific languages, their abstract syntax is defined by a metamodel written in an object-oriented meta-language such as MOF, their operational semantics is defined using in-place model transformations expressed for instance in the K3 meta-language, and their concrete syntax takes an arbitrary form.

Chapter 3

State of the Art

In this chapter, I detail a comprehensive state of the art of modularity and composition capabilities in software language engineering, and flexibility and interoperability in model-driven engineering. To this end, I review both theoretical and technological approaches, including support in language workbenches. I highlight the benefits and limitations of each with regard to the challenges identified in previous chapters.

Introduction

In this chapter, we give a comprehensive study of the literature in light of the challenges identified in Chapter 1 and foundations presented in Chapter 2. Specifically, we look for tools and methods that increase flexibility in the manipulation of languages and their environment (Challenge #1) and support modularity and reuse in the development of DSLs (Challenge #2). We specifically look for methods that support reuse and composition of previouslydefined (legacy) language artifacts that have not been designed specifically with reuse and composition in mind (e.g., with explicit interfaces and extension points). Language artifacts includes fragments or whole specifications of syntax and semantics, and services and tools supporting existing languages. When reusing and composing such legacy artifacts, various contraints and requirements must be satisfied. We introduce then in Section 3.2.

Figure 3.1 gives a graphical outline of the remainder of this chapter. To support the reuse of legacy language artifacts, fragments of syntax and semantics must first be imported into new language definitions, as depicted on the left side of Figure 3.1. We review current approaches to the reuse and assembly of legacy artifacts, along with the composition of languages, in Section 3.3. In Section 3.4, we then review interoperability capabilities in MDE (e.g., through the definition of generic tools and transformations) and flexible model manipulation (e.g., the ability to open and manipulate the same model in different modeling environments). Finally, in Section 3.5, we give a comprehensive overview of the support for such facilities in popular and actively maintained language workbenches.

Constraints and Requirements

As mentioned in Chapter 2, the implementation of a language's abstract syntax consists of a set of interrelated types (group of types), implemented for instance as a set of classes automatically generated from a grammar or metamodel. The tools and services defined around a language, such as editors and transformations, use these groups of types to manipulate the conforming models (i.e., the sets of objects instantiating these classes). Achieving composition of languages, and reuse of tools from one language to the other thus implies to achieve composition and reuse over groups of types (also known as families of types [START_REF] Ernst | Family Polymorphism[END_REF]). The challenge we describe here is akin to Oliveira's "expression families problem", which formulates the problem of achieving reusability and composability when families of interrelated types are involved [START_REF] Bruno | Modular visitor components[END_REF]. This problem is inspired from the original Expression Problem, which aims at defining new variants of a datatype and new functions over this datatype, without recompiling existing code and while retaining static type safety [START_REF] Wadler | The expression problem[END_REF]. Translated to the context of SLE, variants correspond to language variants, and operations over these variants correspond to the tools and services supporting a particular language, as illustrated in Figure 3.2. Language variants may have been generated one from the other (e.g., a language for hierarchical statecharts extending a language for flat statecharts), or correspond to variants found in the wild (e.g., the family of statecharts languages [START_REF] Michelle | UML vs. Classical vs. Rhapsody Statecharts: Not All Models Are Created Equal[END_REF]). The goal is to achieve reusability and composability over the different variants and their tooling, so that tools defined for a particular language (e.g., a flattening transformation) can be reused for its variants. Constraints from the expression families problem still apply: reuse of tools and transformations over a family of languages should be checked statically, the semantics of type groups substitutability [START_REF] Ernst | Family Polymorphism[END_REF] should not be violated when creating variants or extensions of a given language, and separate compilation of variants and tools should be supported. From these observations and the challenges identified in Chapter 1, we identify the following list of requirements:

Composition at the specification and implementation levels When reusing existing languages to compose new ones, the composition must be done both at the specification level (i.e., composed specifications must be analyzable the same way original specifications are) and the implementation level (i.e., the implementations of composed languages must cooperate or be composed together). Moreover, the composition should ideally crosscut all language aspects: abstract syntax, concrete syntax, semantics, and tooling;

Fine-grained customization It is likely that existing languages do not exactly match the requirements of a new application domain. An ideal approach should support fine-grained customization of languages in order to tailor them to specific contexts, and to implement syntactic and semantic variation points whenever needed. Typical customizations include restriction or extension of the expressiveness of an existing language, and refinement of its semantics;

Reuse of legacy artifacts Because we emphasize the reuse of existing artifacts, no assumption should be made on the way models, languages, and tools have been defined, for instance with modularization or reuse in mind. Tool support is a crucial facility for the adoption of a DSL. When composing languages, the tools and services (i.e., editors, analyzers, transformations) defined around them should be available on the resulting language, without having to rewrite or re-generate them;

Separate compilation When composing languages, their implementation should not have to be re-generated from scratch to form the resulting language. Instead, the composition mechanism should be able to reuse existing implementations as is (e.g., an interpreter), possibly with glue code to make the different parts fit together;

Tool-supported The proposed approaches for composition and interoperability should be tool-supported, i.e., provide concrete means for a language designer to apply them in practice. Ideally, these facilities should be integrated in a language workbench.

Modularity and Composition in DSL Engineering

There may be a significant overhead in creating both a language itself (syntax and semantics) and the infrastructure supporting it (e.g., an IDE with a dedicated set of tools and services). Numerous works propose to adapt the time-honored concepts of modularity, reusability, and composition to the specificities of software language development. For instance, some authors advocate the definition of reusable and composable language modules (also known as language units or language fragments) to support modular software language engineering [START_REF] Mustafiz | Towards Modular Language Design Using Language Fragments: The Hybrid Systems Case Study[END_REF][START_REF] Vacchi | Neverlang: a framework for feature-oriented language development[END_REF]. Others directly refer to the heritage of the component-based software engineering community and aim at applying the same techniques for modularizing language development [START_REF] Cleenewerck | Component-based DSL development[END_REF], including reverseengineering language modules from existing implementations [START_REF] Méndez-Acuña | Reverse-engineering reusable language modules from legacy domain-specific languages[END_REF]. In this section, we give a comprehensive overview of these works. As we shall see, the capabilities provided by a particular framework in terms of modularity and composition are highly dependent on the way languages are defined within this particular framework. Many design decisions influence the modularity and composition capabilities: the choice of an internal or external DSL, a grammar or metamodel to define the abstract syntax, a parsing-based approach or a projectional editor, the implementation of the dynamic semantics in a high-level declarative formalism or directly in a programming language, the way tools and services are defined, etc.

Taxonomy of language composition

In this section and the remainder of this thesis, we follow the taxonomy of Erdweg et al. in considering language composition as encompassing language extension,1 restriction, unification, and extension composition [START_REF] Erdweg | Language composition untangled[END_REF]. 2 The notion of self-extension, also introduced by Erdweg et al., refers to the ability of a language to extend itself, e.g., to embed specialized DSLs within it. We deem this notion out of the scope of this thesis, as it is not relevant for the development of external DSLs. Erdweg et al. consider that "language restriction does not require special support by languagedevelopment systems. Instead, a language restriction can be implemented as an extension of the validation phase of the base language: The extension rejects any program that uses restricted language constructs" [START_REF] Erdweg | Language composition untangled[END_REF]. This view of language restriction is also shared by other authors (e.g., Mernik [START_REF] Mernik | An object-oriented approach to language compositions for software language engineering[END_REF]). Following this definition, the restricted language constructs are virtually hidden but are not removed from the language implementation. This definition of language restriction may be problematic in some cases. As an illustration, consider a scenario involving the extraction of a subset of the UML (e.g., the class diagram language) for reuse in another language. Simply "hiding" the unnecessary parts with validation rules to virtually extract the class diagram language is not satisfactory, as all the other constructs of UML are part of the resulting language (although not accessible). Language restriction should instead actually prune the unnecessary parts to avoid overloading the resulting language with unnecessary features and complicating its implementation. Thus, in this thesis, we prefer the following definition of language restriction, given in the style of Erdweg et al.'s paper [START_REF] Erdweg | Language composition untangled[END_REF]:

Definition 1 A language-development system supports the restriction of a base language if the implementation of a base language can be pruned to extract a subset of interest. All other syntactic and semantic elements are removed from the base language to form the resulting language.

Syntax Modularity and Composition

On the syntax side, modularity and composition capabilities for external DSLs development depend on the underlying techniques and formalisms: grammars, metamodels, or projectional editors. We review each of them in this section.

According to the scope of this thesis, we pay particular attention to modularity and composition of metamodels.

Modularity and composition with grammars

Regarding the grammar world, parsing-based techniques are known to have limited support for modularity and composition [START_REF] Diekmann | Eco: a Language Composition Editor[END_REF]. LR parsing, generalized parsing, scannerless parsing, PEG (Parsing Expression Grammars) parsing suffer from either ambiguity or overwhelming complexity when it comes to modularity and composition. The interested reader can refer to Diekmann et al. for a thoughtful discussion on the limitations of different parsing techniques [START_REF] Diekmann | Eco: a Language Composition Editor[END_REF]. Nonetheless, the field of grammar modularisation and composition is still under active development, as illustrated for instance by the work of Johnstone et al. who provide a module system for context-free grammars [START_REF] Johnstone | Modular grammar specification[END_REF]. Naturally, these limitations have severe consequences on the frameworks for textual DSL development: for instance Xtext [START_REF] Eysholdt | Xtext: Implement your Language Faster than the Quick and Dirty Way[END_REF], which relies on the LL(*) parser generator ANTLR [START_REF] Parr | The definitive ANTLR 4 reference[END_REF] internally, supports single grammar inheritance but does not support more advanced composition mechanisms, such as the composition of two arbitrary language grammars. As we shall see in Section 3.5, some textual language workbenches, such as MontiCore [START_REF] Holger Krahn | MontiCore: a framework for compositional development of domain specific languages[END_REF] and Spoofax [START_REF] Lennart | The spoofax language workbench: rules for declarative specification of languages and IDEs[END_REF], alleviate some of these limitations.

Modularity and composition with projectional editors

In parallel to parsing-based editors, projectional editors (also known as Syntax Directed Editors -SDE) emerged in the eighties as an alternative way to envision program editing [START_REF] Teitelbaum | The Cornell program synthesizer: a syntax-directed programming environment[END_REF]. With projectional editors, users directly manipulate an AST conforming to the language, avoiding the need for parsing and setting aside the limitations of parsing-based techniques [START_REF] Voelter | Language modularization and composition with projectional language workbenches illustrated with MPS[END_REF]. However, early attempts to implement SDE failed to get the acceptance of users, who were reluctant to the general feeling of projectional editors [START_REF] Amir | Syntax-directed editing environments: Issues and features[END_REF]. More recently, modern syntaxdirected language workbenches (such as MPS [144] and the Intentional Domain Workbench [START_REF] Simonyi | Intentional software[END_REF]) alleviate most of these limitations [START_REF] Berger | Efficiency of projectional editing: A controlled experiment[END_REF]. Projectional editors are now considered again as a viable alternative to parsing-based editors [START_REF] Voelter | Projecting a Modular Future[END_REF].

Additionally, projectional editors open up new horizons for program editing:

program text can be arbitrarily mixed with tables, symbols, and graphical elements. At the crossroads of parsing-based and syntax-directed editing, other authors attempt to combine the best of both worlds: the Eco editor, for instance, emulates the feeling of parsing-based editors while serializing files in their tree structure form [START_REF] Diekmann | Eco: a Language Composition Editor[END_REF].

Modularity and composition with metamodels

When the abstract syntax of a language is defined by a metamodel, the problem of abstract syntax modularity and composition boils down to the problem of metamodel modularity and composition. The modeling community has long recognized the need for reusing and composing all or parts of existing metamodels to create new ones, leveraging previously formalized domain knowledge [START_REF] Lédeczi | On metamodel composition[END_REF].

Since metamodels are themselves models, model composition techniques also apply to metamodel composition. There is a rich literature of model and metamodel modularity and composition. These different approaches differ in their degree of automation, their support for fine-grained refinement, and the formalisms on which they can be applied [START_REF] Emerson | Techniques for metamodel composition[END_REF]. We introduce a representative subset of them hereafter. The interested reader can refer to Clavreul's thesis for an in-depth analysis of model and metamodel composition techniques [START_REF] Clavreul | Model and Metamodel Composition: Separation of Mapping and Interpretation for Unifying Existing Model Composition Techniques[END_REF]. More formally, Hamiaz et al. use Coq [START_REF] Barras | The Coq proof assistant reference manual: Version 6.1[END_REF] to formalize popular composition operators in MDE [START_REF] Mounira | Correct-by-construction model driven engineering composition operators[END_REF].

Within the Generic Modeling Environment (GME) [START_REF] Ledeczi | The generic modeling environment[END_REF], Lédeczi et al. use the UML class diagram as a metamodeling language and extend it with three operators dedicated to metamodel composition: the union operator which unifies two concepts, and the implementation-inheritance and interfaceinheritance operators which refine the semantics of the UML inheritance relation for fine-grained specialization of concepts in composed metamodels [START_REF] Karsai | Composition and cloning in modeling and meta-modeling[END_REF][START_REF] Lédeczi | On metamodel composition[END_REF]. The MOF specification defines the PackageMerge operator, which is used to merge a receiving package and a merged package to form a new resulting package [206]. Informally, the PackageMerge operator operates recursively within two package definitions and unifies the common concepts (same name and meta-type) while copying the unique concepts from both side in the resulting package definition, so that "a resulting element will not be any less capable than it was prior to the merge" [206]. Emerson et al. identify a set of common patterns that are often found in metamodels such as composition hierarchies, data-flow graphs, and state-transition patterns. They propose the template instantiation technique which consists in reifying these patterns as firstclass entities to be instantiated on (i.e., merged with) concrete metamodels [START_REF] Emerson | Techniques for metamodel composition[END_REF]. Fleurey et al. propose to compose models written in arbitrary languages using Kompose [START_REF] Fleurey | A generic approach for automatic model composition[END_REF]. The Kompose approach operates on two phases: the languagespecific match phase identifies common concepts in different models, and the language-agnostic merge phase integrates the common concepts to form the resulting model. Fleurey et al. illustrate their approach on the Ecore language, thus defining a composition operator for Ecore metamodels. Although they do not address the problem of semantics modularity and composition, all these works are good candidates for the definition of a composition operator for metamodel-based abstract syntaxes.

Along the UML and MOF specifications, the OMG defines the concept of Profiles that can be used to extend the syntax and -to some extent -the semantics of a given metamodel [START_REF]OMG. Unified Modeling Language (UML), Infrastructure Specification[END_REF]. A profile consists of a set of sterotypes, constraints, and tagged values. Each stereotype extends a meta-class of an existing metamodel. The main intent of profiles is to tailor existing metamodels to particular domains or platforms. Profiles have been used extensively in practice, especially to extend UML. Examples include the MARTE [START_REF] Omg | UML Profile For MARTE: Modeling and Analysis of Real-Time Embedded Systems[END_REF] profile for real-time embedded systems modeling, and the SysML [209] profile for systems engineering modeling. While profiles ensure that the tooling defined on the super-language can be reused, they have limited specialization powers: for instance, a profile cannot break the static semantics (i.e., constraints) of the metamodel it extends (e.g., the UML).

Clark et al. propose to leverage object-oriented practices in the development of languages and contribute to reusable and modular language design with a dedicated package specialization mechanism [START_REF] Clark | Engineering modelling languages: A precise meta-modelling approach[END_REF]. Amálio et al. present a theory of fragmentation for MDE revolving around a mathematical formalization of model fragments and ensuring that composed fragments yield valid models. Şutîi et al. present the multilevel metamodeling environment MetaMod. MetaMod consists of a minimalistic metamodeling language built around the concepts of groups, fragment abstractions, and applications with modularity in mind [START_REF] Maria Şutîi | Modular multilevel metamodeling with MetaMod[END_REF]. The interested reader can refer to the work of Atkinson et al. for a comprehensive study of language customization approaches in the MDE world [START_REF] Atkinson | A tour of language customization concepts[END_REF]. The aim of these works is to propose a prescriptive way to engineer models and metamodels, and are not applicable for the modular reuse of existing languages. A promising approach however is the recent work of Bruneliere et al. who propose a dedicated DSL for customizing existing languages [START_REF] Bruneliere | On Lightweight Metamodel Extension to Support Modeling Tools Agility[END_REF]. A limitation of their work is that it does not deal with the adaptation of all other language aspects when customization are applied (e.g., semantics and tooling).

Semantics Modularity and Composition

The need to modularize the semantics of programming languages suppose to modularize existing formal frameworks for semantics specification. This led for example to the definition of modular denotational semantics [START_REF] Cartwright | Extensible denotational language specifications[END_REF][START_REF] Liang | Modular denotational semantics for compiler construction[END_REF] and modular structural operational semantics [START_REF] Peter | Modular structural operational semantics[END_REF][START_REF] Peter | Implicit propagation in structural operational semantics[END_REF]. Churchill et al. explicitly advocate the definition of reusable components of semantic specifications, named funcons (fundamental constructs), that are specified in I-MSOS [START_REF] Peter | Implicit propagation in structural operational semantics[END_REF] and can be independently developed and validated. The general idea is to reduce the development costs of new languages by translating their constructs to such funcons. The DynSem meta-language for dynamic semantics specification, for instance, is directly inspired from I-MSOS and, as such, provides similar modularity features [START_REF] Vergu | DynSem: A DSL for dynamic semantics specification[END_REF]. Other frameworks for semantics specification, such as Redex [START_REF] Felleisen | Semantics engineering with PLT Redex[END_REF] or K [START_REF] Roşu | An overview of the K semantic framework[END_REF], inherit the modularity and composition features of rewrite systems.

At the implementation level, the operational semantics of a language is often implemented as an interpreter [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF]. The problem of modular interpreter development thus garnered significant interest. In the functional programming community, one of the most popular class of solutions, originally proposed by Liang et al., uses monad transformers [START_REF] Liang | Monad transformers and modular interpreters[END_REF]. One of the main idiom used to implement interpreters is the visitor pattern [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF], which allows to separate ASTs from the algorithms that operate on them. The original visitor pattern has however poor support for composition and extensibility. Several authors proposed extensions to the visitor pattern to alleviate these limitations. The interested reader can refer to the work of Oliveira for a comprehensive review of these extensions [START_REF] Bruno | Modular visitor components[END_REF].

Object algebras were originally proposed by Oliveira et al. as a solution to the expression problem that does not require advanced typing features such as F-bounded quantification and can thus be implemented in most object-oriented programming languages [START_REF] Bruno | Extensibility for the Masses -Practical Extensibility with Object Algebras[END_REF]. Several authors proposed to leverage object algebras for implementing languages in a modular way. Gouseti et al. identify that object algebras support the implementation of recursive data types (such as ASTs) and as such support modular definition and extension of both the syntax of a language and the algorithms operating on it (e.g., interpreters, static analyses) [START_REF] Gouseti | Extensible language implementation with Object Algebras (short paper)[END_REF]. More recently, Inostroza et al. propose a new method for the development of modular interpreters relying on the theory of object Algebras [START_REF] Bruno | Extensibility for the Masses -Practical Extensibility with Object Algebras[END_REF]. In their approach, interpreters exposing heterogeneous signatures can be composed and extended thanks to implicit context propagation [START_REF] Inostroza | Modular interpreters with implicit context propagation[END_REF]. As an illustration, they demonstrate how to implement a modular interpreter for Featherweight Java [START_REF] Igarashi | Featherweight Java: a minimal core calculus for Java and GJ[END_REF] as an assembly of language fragments, and how to extend the resulting language to add support for state. All these works propose specific patterns for the definition of languages that offer better support for modularity and extensibility. They are however not immediately applicable to languages that have not been defined with modularity and reuse in mind.

The problem of language composition also arises when engineering software systems written in different general-purpose languages (say, Python and C#). In this case, the goal is not to create a new unified language per se, but to make programs written in different languages cooperate. A well-known approach is to leverage Foreign Function Interfaces (FFI) and inter-process communication (IPC) mechanisms, but these mechanisms are clumsy to manipulate and not reified at the language level. It is clearly easier to compose interpreters that run on the same underlying virtual machine: for instance, interpreters for JVM-based languages such as Groovy, Java, and Scala. Conversely, it is much more challenging to compose interpreters that run on heterogeneous platforms. The challenge here is to "glue" together two interpreters, by aligning the basic data types they manipulate and coordinate their execution. Barrett et al.'s approach aims at gluing together GPLs such as Python and PHP using metatracing techniques [START_REF] Barrett | Fine-grained Language Composition: A Case Study[END_REF][START_REF] Barrett | Approaches to interpreter composition[END_REF]. Although in their approach the languages are not composed per se, the techniques they propose may be relevant for coordinating the execution of interpreters when several languages are composed.

Finally, although these techniques are beyond our scope, it is interesting to note that several authors demonstrated the possibility to create language units using attribute grammars [START_REF] Kastens | Modularity and reusability in attribute grammars[END_REF][START_REF] Mernik | Reusability of formal specifications in programming language description[END_REF][START_REF] Saraiva | Component-based programming for higher-order attribute grammars[END_REF]. As attribute grammars unify the definition of abstract syntax, concrete syntax, and semantics, these works support, to some extent, modularity and composition of all aspects of a language. However, because of this unification, all the constituents of a language are mixed in the same artifact. In our opinion, this hampers separation of concerns in language development and independent evolution of each concern.

Interoperability and Flexibility in MDE

Software languages are constantly evolving to meet new requirements. This is especially true for DSLs: by their very nature, they must evolve with the domain they abstract. In the MDE technological space, these changes mainly impact the metamodel of a language. They may result from handmade customizations or systematic applications of composition mechanisms such as the ones presented in Section 3.3. Because models, metamodels, and transformations are highly interrelated, is it often hard to evolve one artifact without evolving the others. This lack of flexibility in MDE has been identified by several authors who argue that the problem lies in the overconstraining dependency of MDE artifacts towards metamodels through the conformance relation [START_REF] Gabrysiak | How can metamodels be used flexibly[END_REF][START_REF] Kolovos | Programmatic Muddle Management[END_REF]. As a result, evolving a language has severe consequences on the models conforming to it and the ecosystem defined around it [START_REF] Richard F Paige | Evolving models in model-driven engineering: State-of-the-art and future challenges[END_REF].

A modeling environment dedicated to a particular DSL -including editors, interpreters, services, etc. -revolve around a particular metamodel, and can only be used to manipulate models conforming to this particular metamodel. When the metamodel evolves, all depending artifacts must evolve to cope with new or evolving concepts and constraints. This raises many questions regarding the support of MDE for evolution and interoperability of environments. One way to tackle this problem is to support the automatic co-evolution of metamodels and the artifacts that depend on them (e.g., models and transformations). Numerous work try to address these issues, including model-metamodel co-evolution (e.g., [83, 111, 118, 128-132, 197, 268]) and transformation-metamodel co-evolution (e.g., [START_REF] Cicchetti | Automating co-evolution in model-driven engineering[END_REF]172,[START_REF] Mendez | Towards Transformation Migration After Metamodel Evolution[END_REF]). Other authors propose to relax the conformance relation that stands between models and their metamodels to increase flexibility in the manipulation of models [START_REF] Kolovos | Programmatic Muddle Management[END_REF][START_REF] Zolotas | Type inference in flexible model-driven engineering[END_REF]. We do not discuss further the limits of the conformance relation here. Chapter 5 gives a thorough analysis of the limits of the conformance relation from theoretical and experimental points of view. For higher-level discussions of the notions of evolution and compatibility in MDE, the interested reader can refer to the work of Kühne [START_REF] Kühne | On Model Compatibility with Referees and Contexts[END_REF] and Meyers et al. [START_REF] Meyers | A framework for evolution of modelling languages[END_REF].

In this thesis, we name flexible modeling the ability for a language user to open and manipulate its models in various modeling environments defined around various languages. As a concrete example, consider the case of statecharts languages. Many statechart languages are developed within independent company for specific purposes. Language users must be given the flexibility to open their statechart models in different statechart modeling environments, even if their models do not conform to the particular statechart language of this environment. Thus, they can reuse the tools and transformations defined by other engineers, and foster model sharing between stakeholders. To this end, we review in Section 3.4.1 approaches that support the definition of generic transformations and the reuse of transformations.

Model Transformation Reuse

In this thesis, we consider every tool and service defined around a given language to be a model transformation manipulating the models conforming to it: editors create and modify them, analyzers check them, interpreters and compilers execute and generate code from them, etc. It follows that increasing the compatibility and interoperability of modeling environments implies to tackle the problem of transformation reuse and genericity. In this section, we examine state of the art approaches to the definition of reusable and generic model transformations that alleviate the limitations of the overly restrictive conformance relation, and provide more flexibility in the manipulation of models. Several approaches have been proposed over the last decade for model transformation reuse. These approaches can be divided into two categories: model transformation reuse without adaptation (i.e., reuse between isomorphic metamodels) and reuse allowing to fix structural heterogeneities through adaptation. [START_REF] Varró | Generic and Meta-transformations for Model Transformation Engineering[END_REF]. These entities only express the concepts (types, attributes, etc.) required to apply a transformation rule. This allows tokens with these concepts to match the pattern and be processed by the rule. Later, Cuccuru et al. introduced the notion of semantic variation points in metamodels [START_REF] Cuccuru | Templatable Metamodels for Semantic Variation Points[END_REF]. Variation points are specified through abstract classes defining a template. Metamodels can fix these variation points by binding them to classes extending the abstract classes.

Reuse without Adaptation Model transformation reuse without adaptation was first proposed by Varró et al. who introduced variable entities in patterns for declarative transformation rules

Steel et al. propose to leverage existing works in object-oriented typing to better cater a model-oriented context. They introduce the concept of model type to define structural contracts over metamodels [START_REF] Steel | On model typing[END_REF]. The idea is to supersede the conformance relation between models and metamodels with a typing relation between models and model types. Guy et al. build on Steel et al.'s model types and describe a family of model-oriented type systems that differ in their support for adaptation (isomorphic and nonisomorphic subtyping) and partial or total subtyping. One benefit of model types is that they are expressed in the same formalism as metamodels, which means that they can be directly manipulated using classical tools of the modeling ecosystem, such as model transformations, editors, etc. Sun et al. propose to enrich model types with static semantics rules, to go beyond pure structural substitutability and support behavioral substitutability [START_REF] Sun | Using Model Types to Support Contract-aware Model Substitutability[END_REF]. Sánchez Cuadrado et al. propose a notion of substitutability based on model typing and model type matching [START_REF] Sánchez | Approaches for Model Transformation Reuse: Factorization and Composition[END_REF]. Instead of using an automatic algorithm to check the matching between two model types, they propose a DSL to manually declare the matching.

All these approaches require either to insert new concepts in the definition of languages or transformations, or to manually declare matchings between two languages, even when they are structurally similar. Because these approaches are intrusive, they are hardly applicable to the reuse of legacy tools and transformations that cannot be modified.

Reuse through Adaptation

Adaptation enables the reuse of model transformations between metamodels in spite of structural heterogeneities. Two kinds of approaches exist. The first one adapts models conforming to a metamodel M M into models conforming to a metamodel M M on which is defined the transformation of interest. The second one adapts a transformation defined on M M to obtain a valid transformation on M M , using a higher-order transformation.

De Lara et al. present the notion of concept, along with model templates and mixin layers [START_REF] De | Generic Meta-modelling with Concepts, Templates and Mixin Layers[END_REF][START_REF] Rose | Genericity for model management operations[END_REF]. These notions are borrowed from the idea of generic programming, as found in mainstream programming languages (e.g., templates in C++ and Java). Concepts are similar to model types as they define the requirements that a metamodel must fulfill for its models to be processed by a transformation. However, in their current form, concepts do not benefit from subtyping relations between different concepts, and a metamodel must be explicitly binded to the concept of each transformation to be reused. The authors also propose a DSL to bind a metamodel to a concept and a mechanism to generate a specific transformation from the binding and the generic transformation defined on the concept. Cuadrado et al. extend this binding mechanism to go further than strict structural mapping by renaming, mapping, and filtering metamodel elements [START_REF] Sánchez Cuadrado | A Component Model for Model Transformations[END_REF]. Concepts are inspired from parametric polymorphism (aka. generics) while model types are inspired from inclusion polymorphism (aka. subtype polymorphism). Parametric and inclusion polymorphism serve similar purposes and are known to be complementary [START_REF] Cardelli | On Understanding Types, Data Abstraction, and Polymorphism[END_REF].

De Lara et al. introduce a-posteriori typing for MDE, which allows to uncouple the creation type of a model from its classification types and to reclassify models after their creation to enable their manipulation in other contexts [START_REF] De | A-posteriori Typing for Model-Driven Engineering[END_REF]. A-posteriori typing goes beyond previous approaches by enabling instance-level classification, which inherits the benefits and drawbacks of dynamic typing, and is implemented in the MetaDepth platform [START_REF] De | Deep meta-modelling with metadepth[END_REF].

Kerboeuf et al. present an adaptation DSL named Modif which handles deletion of elements from a model (that conforms to a metamodel M M) to make it substitutable to an instance of the metamodel M M [START_REF] Kerboeuf | A DSML for Reversible Transformations[END_REF]. For this, a trace of the adaptation is saved to be able to go back from the result of the transformation (conforming to M M) to the corresponding instance of M M . Garcia et al. proposed to semi-automatically adapt a transformation with respect to metamodel changes [START_REF] Garcia | Adaptation of Transformations to Metamodel Changes[END_REF]. A classification of metamodel evolutions is proposed as well as automatic adaptations of the transformation for some of them.

Support in Language Workbenches

As introduced in Chapter 2, language workbenches are one of the main innovation medium in software language engineering. Most language workbenches support the definition of the abstract syntax, the concrete syntax, the semantics, and the tooling of DSLs [START_REF] Erdweg | Evaluating and comparing language workbenches: Existing results and benchmarks for the future[END_REF]. As such, they have to deal with modularity and composition at all levels of language definition coherently. In this section, we present the mechanisms provided by actively maintained language workbenches for modularity and composition (Section 3.5.1), and their support for flexible manipulation of models and programs (Section 3.5.2).

Since this thesis focuses on the engineering of external DSLs, we do not review frameworks dedicated to the engineering of internal DSLs (e.g., using meta-programming, "languages as libraries", or dialects) such as Cedalion [START_REF] David | Cedalion: a language for language oriented programming[END_REF], LMS [START_REF] Rompf | Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs[END_REF], Racket [START_REF] Flatt | Creating languages in Racket[END_REF], Recaf [START_REF] Biboudis | Recaf: Java Dialects as Libraries[END_REF], SugarJ [START_REF] Erdweg | SugarJ: library-based syntactic language extensibility[END_REF], TSL [START_REF] Omar | Safely composable type-specific languages[END_REF], or XPL [START_REF] Clark | XPL: A language for modular homogeneous language embedding[END_REF]. As a complement to the state of the art presented here, the interested reader can refer to the recent study of Erdweg et al. for complementary information on the landscape of language workbenches features [START_REF] Erdweg | Evaluating and comparing language workbenches: Existing results and benchmarks for the future[END_REF], or to the website of the language workbench challenge which is an initiative of the community to regularly evaluate and compare various language workbenches on challenging case studies.3

Modularity and Composition

Monticore MontiCore is a language workbench for the development of textual domain-specific languages [START_REF] Holger Krahn | Monticore: Modular development of textual domain specific languages[END_REF]. MontiCore relies on an enriched BNF-like grammar formalism that defines the abstract and concrete syntax of languages. Their semantics can be defined either denotationally or operationally, based on automatically-generated visitors. MontiCore provides two mechanisms for language composition: language inheritance -used to extend an existing language while refining its grammar productions -and language embedding -used to complete intentional holes in the specification of a language with other language specifications [START_REF] Haber | Integration of heterogeneous modeling languages via extensible and composable language components[END_REF][START_REF] Holger Krahn | MontiCore: a framework for compositional development of domain specific languages[END_REF]. In both cases, language designers must introduce explicit interfaces in language definitions that serve as "hooks" for inheritance and embedding. MontiCore supports multiple inheritance of grammars, which can be used in practice to unify two independent languages. Recently, the same authors proposed a way to also compose the generated visitors when languages are composed [START_REF] Heim | Compositional Language Engineering Using Generated, Extensible, Static Type-Safe Visitors[END_REF]. Each nonterminal in a Monti-Core grammar results in a concrete class at the implementation level. When composition operators are used, new classes are created by inheriting from their corresponding classes in the super-languages. In some cases, this may break the consistency of type groups and result in unsafe manipulations of the resulting ASTs, as explained by Steel et al. [START_REF] Steel | On model typing[END_REF].

LISA LISA is a language workbench that relies on attribute grammars for the definition of textual domain-specific languages [START_REF] Mernik | LISA: An interactive environment for programming language development[END_REF]. LISA supports multiple attribute grammars inheritance [START_REF] Mernik | Multiple attribute grammar inheritance[END_REF], which serves as a mean for incremental language development, language extension, restriction, and unification [START_REF] Mernik | An object-oriented approach to language compositions for software language engineering[END_REF]. Grammars can be inherited and subsequently refined by overriding the production rules and the associated computations. From attribute grammars specifications, LISA automatically derives a set of language-specific tools such as editors, visualizers, and evaluators [START_REF] Rangel Henriques | Automatic generation of language-based tools using the LISA system[END_REF]. One issue with the approach is that all language concerns (abstract and concrete syntax, semantics) are mixed in a single meta-language: the attribute grammar formalism of LISA. As a result, it is hard for a language engineer to evolve each concern independently, e.g., for engineering syntactic and semantic variation points. Also, the authors do not directly address the problem of reusing tools and programs across versions or variants of a language.

Spoofax Spoofax [START_REF] Lennart | The spoofax language workbench: rules for declarative specification of languages and IDEs[END_REF][START_REF] Guido H Wachsmuth | Language Design with the Spoofax Language Workbench[END_REF] is a language workbench dedicated to the engineering of textual DSLs. The main idea of Spoofax is to foster the use of high-level and declarative meta-languages to specify each aspect of a language: SDF for syntax definition, NaBL for name binding rules, TS for type analysis, Stratego and DynSem for dynamic semantics, etc. [START_REF] Visser | A Language Designer's Workbench: A One-Stop-Shop for Implementation and Verification of Language Designs[END_REF]. A language designer can directly conduct analyses at the specification level, for instance to check for correctness properties and generate documentation. The combination of these high-level specifications forms the overall language specification, from which concrete implementations (e.g., interpreters), proof materials (e.g., Coq specifications) and IDE services are derived. Semantics specification in Spoofax relies on the Stratego [START_REF] Bravenboer | Stratego/XT 0.17. A language and toolset for program transformation[END_REF] program transformation language. 4 Stratego specification consists of term rewriting rules that are used for the analysis, manipulation, and generation of programs. Concretely, language designers can derive interpreters, compilers, or static analyses from Stratego specifications. Language extension and composition in Spoofax is supported thanks to the composability of its underlying meta-languages SDF and Stratego. However, Völter et al. recognize that "such extensions requires anticipation of extensibility in the design of the base language by including proper extension points" [START_REF] Völter | Language extension and composition with language workbenches[END_REF].

JetBrains MPS The Meta-Programming System (MPS) is a language workbench developed by JetBrains and based on projectional editing [144]. MPS has notably been employed to re-engineer programming languages such as C (through the mbeddr environment [START_REF] Voelter | mbeddr: an extensible C-based programming language and IDE for embedded systems[END_REF]) and Java, and is also used for engineering DSLs. MPS offer dedicated meta-languages for specifying, for instance, the syntax, projection rules, type system, and generator of a DSL. Because MPS relies on projectional editing, it does not suffer from the problem associated to parsing-based techniques and proposes advanced extension and composition mechanisms [START_REF] Voelter | Language modularization and composition with projectional language workbenches illustrated with MPS[END_REF]. However, Voelter admits that "in many cases, languages have to be designed explicitly for reuse, in order to make them reusable" [START_REF] Voelter | Language and IDE Modularization and Composition with MPS[END_REF]. Similar problems arise when considering language composition. Also, MPS suffers from similar problems as we have described for MontiCore. In particular, the extension of concepts in a sub-language or composed language relies on classic object-oriented inheritance in the small (i.e., between individual concepts), and not in the large (i.e., between the whole groups of types defining a language's concepts), which can lead to type groups inconsistency and unsafe manipulations [START_REF] Steel | On model typing[END_REF].

Neverlang The idea of feature-oriented language development is to support the definition of languages à la carte, as an assembly of independently-developed language components [START_REF] Kühn | Choosy and picky: configuration of language product lines[END_REF]. One proponent of this approach is the Neverlang framework, which proposes the concept of slices and modules that materialize a language construct along with its semantics [START_REF] Vacchi | Neverlang: a framework for feature-oriented language development[END_REF]. These slices can then be assembled as a puzzle to form new languages. This idea has for instance been applied to implement a "growable" programming language for teaching purposes [START_REF] Cazzola | Gradually Learning Programming Supported by a Growable Programming Language[END_REF]. Continuing in the same direction, Cazzola et al. later proposed to leverage Scala's traits as an alternative implementation technique for modular development of external DSLs [START_REF] Cazzola | Language components for modular DSLs using traits[END_REF]. Their approach addresses the modularization of both the syntax and semantics of external DSLs, hence supporting the implementation of DSL as an assembly of components and maximizing code reuse between languages. It is however not clear how their approach ensures type groups consistency, and how they address the reuse of tools from one language to the other.

Xtext Xtext is a framework for engineering textual DSLs [START_REF] Eysholdt | Xtext: Implement your Language Faster than the Quick and Dirty Way[END_REF] that internally relies on EMF and the LL(*) parser generator ANTLR [START_REF] Parr | The definitive ANTLR 4 reference[END_REF]. The definition of a language in Xtext consists of a BNF-like grammar specification. From this specification, Xtext derives a set of integrated tools such as a parser, a full-blown editor, etc. Xtext grammars can inherit one another to reuse and refine production rules. Due to the limitations of the underlying parsing technology, Xtext does not support more advanced language composition scenarios such as modular and incremental language definition, and arbitrary grammar composition.

MetaEdit+ MetaEdit+ is a mature environment dedicated to the engineering of domain-specific modeling languages [START_REF] Tolvanen | MetaEdit+: defining and using integrated domain-specific modeling languages[END_REF][START_REF] Tolvanen | MetaEdit+: defining and using domain-specific modeling languages and code generators[END_REF]. In Metaedit+, languages are specified by a metamodel upon which language designers can define static semantics rules, graphical representations, and code generators. While authors report that MetaEdit+ supports certain kinds of language extension and composition [START_REF] Erdweg | Evaluating and comparing language workbenches: Existing results and benchmarks for the future[END_REF], we were not able to find any documentation or publication describing these mechanisms in detail.

Rascal Rascal [START_REF] Klint | Rascal: A domain specific language for source code analysis and manipulation[END_REF] is the successor of the ASF+SDF meta-environment [START_REF] Van Den | The ASF+SDF meta-environment: A component-based language development environment[END_REF]. It is a full-blown environment for source code analysis and transformation, and is also used as a language workbench [START_REF] Van Der | The Rascal language workbench[END_REF]. Concrete syntaxes in Rascal are defined using grammars that can be arbitrarily composed at the price of the use of generalized parsing technologies, which may be possibly ambiguous as stated in Section 3.3. The corresponding abstract syntaxes are implemented as algebraic data types [START_REF] Van Der | The Rascal language workbench[END_REF]. From these specification, Rascal supports the generation of domain-specific editors, outline, etc. as Eclipse plug-ins.

Flexible Model Manipulation

Support for flexibility in the manipulation of models depends on the choice of grammars or metamodels for syntax specification.

In the grammar world, using parsing-based techniques, models and programs are serialized and persisted in their concrete syntax form. From a given file, there is no way to statically infer (i.e., without parsing the file), the language that was used to create and serialize it. The only information one can extract from a model serialized in its concrete form is the file type and extension, which is not precise enough to determine its exact language. As a concrete example, it is not possible to determine a priori which particular version of the C++ language was used to write a given C++ file. The only way to find out is to actually try to parse the file using a compiler implementing a given version of the C++ standard. If it encounters a construct it cannot process, it may fail unpredictably and raise an error. Conversely, parsers provide some flexibility as they always allow to try to parse a model. Parsing a program written in the C++14 standard using a C++03 compiler may succeed, or may fail if it contains a construct specific to C++14. All in all, this amounts to some kind of "Russian roulette": the flexibility in model loading occurs at the price of safety.

In the metamodel world, models are serialized in their abstract syntax form (typically, as an XML file conforming to the appropriate metamodel schema). This is for example the case in EMF, which serialize each model in the XMI format with an explicit URI identifying the metamodel it conforms to [START_REF] Steinberg | EMF: Eclipse Modeling Framework[END_REF]. Thus, the XML parser can determine a priori which metamodel must be used to parse a model, just by looking at its URI. This means that, in this case, parsing a model is always safe. Conversely, this mechanism hinders 3.6. Summary flexibility in model manipulation: it is not possible to bypass the conformance relation, and a model can only be manipulated using its exact metamodel. If the metamodel evolves (and, consequently, it's URI), the conforming models cannot be loaded anymore. The safety in model loading occurs at the price of flexibility. As mentioned in Section 3.4.1, recent works in MDE propose to discard the conformance relation and to classify models a posteriori [START_REF] De | A-posteriori typing for Model-Driven Engineering[END_REF]. These approaches are in essence similar to dynamic typing in programming languages and provide similar benefits and drawbacks. In particular, they do not allow to statically state whether a given model can be manipulated through a given metamodel.

As a summary, the MDE approach to model manipulation is always safe, but hinder the flexible manipulation of models in different environments. On the other side, the grammarware approach offers greater flexibility by always allowing to "try" to load a model or program, but is not safe as the parser may unpredictably fail if it encounters a construct that is not supported. A promising idea would be to take the best of both worlds: the safety of the MDE approach, and the flexibility of the grammar approach. In this vision, it should be possible to statically list all the languages that can be used to load and manipulate a given model, and to safely apply the corresponding tools and services upon it.

Summary

The vast majority of the approaches we introduced in this chapter prescribe a development method for modular and reusable development of software languages. They suppose the explicit definition of interfaces and extension points in the base languages, or the application of specific development patterns. This means that modularity and composition must be anticipated, which hampers the applicability of these approaches on legacy artifacts that have not been defined in a particular way. Similarly, approaches for generic transformations and flexibility in MDE suppose the adaptation of either the models, the languages, or the transformations themselves. An approach for modular development of DSLs, reuse of tools and transformations, and flexibility in model manipulation that is applicable to legacy languages and tools is still to be developed.

Regarding operators for language composition, language restriction is an essential facility when reusing language definitions whose scopes are too broad, such as UML. Current approaches to language restriction are however not satisfactory as they only hide the unwanted elements without pruning them. Also, the customization capabilities of the syntax and semantics of reused languages differ from one approach to the other. In the case of legacy language composition, fine-grained composition and customization mechanisms are however needed.

In the next chapters, we present new contributions that address these limitations by providing modularity, reuse, and interoperability for legacy languages in a seamless way.

Part II

Contributions

Chapter 4

On Language Interfaces

In this chapter, I develop our first contribution: the notion of language interface. After introducing the general idea of language interfaces in Section 4.1, I summarize in Section 4.2 the use and benefits of interfaces in software engineering and programming. Then, I outline in Section 4.3 the benefits of language interfaces in the context of software language engineering.1

Introduction

The implementation of a DSL highly depends on the mechanisms provided by the language workbench. Consequently, the various services associated to a DSL (such as editors, model checkers, debuggers, and composition operators) are tightly coupled to the DSL's implementation. Due to the lack of explicit abstraction mechanism on top of DSLs, the definition of services requires in-depth understanding of the DSL implementation (for instance, metamodels for abstract syntax definition and OCL for the description of static semantics). The information a service requires on a DSL is scattered over various artifacts, and expressed in different formalisms. It is thus complex for language designers to gather the appropriate information required to implement a particular service. Moreover, this high coupling of the services with the DSL implementation prevents their reuse from one DSL to the other, even when they share commonalities.

While the implementation of most language services crosscut the different DSL concerns (abstract syntax, concrete syntax and semantics), they usually require only partial information on each, possibly given in a new form which abstract the initial concrete language implementation (e.g., control-flow graph). The lack of possible abstraction prevents the reuse of services among close DSLs, and increases the complexity of service implementation.

Leveraging the time-honored concept of interfaces from software engineering to software language engineering can facilitate the reuse of language services among various DSLs, and reduce the required language implementation expertise for their development. Language interfaces enable to encapsulate language (and model) functionalities in an accessible fashion, can be used to guide and validate the correct usage of languages with respect to specific purposes, and even facilitate substitution of specific languages for different services. Language interfaces can also define the protocol one should follow to interact with its models to enable concurrent execution and global analysis of heterogenous models. Recently, different initiatives such as the Language Server Protocol2 or the concept of micro-grammars [START_REF] Brown | How to Build Static Checking Systems Using Orders of Magnitude Less Code[END_REF] proposed to make explicit the concept of language interface to ease the definition and reuse of services. We hope our conceptualization of language interfaces will serve as an underlying theory for the development of such approaches.

In this chapter, we review the various uses and benefits of software interfaces in software engineering, including in programming languages and componentbased software engineering. We then demonstrate the alignment of the benefits of software interfaces with regards to current challenges in software language engineering, and shape the concept of language interface. Our main intent in this chapter is to reflect on past experiences and propose a vision for software language engineering. This chapter is thus purposely abstract, and does not aim at giving a fixed definition of language interfaces. We refine and concretize our vision in Chapters 5 and 6 with a special kind of structural language interface: the model type.

Interfaces in Software Engineering

The time-honored concept of interface has been studied since the early days of computer science in many areas of programming and software engineering. Despite variability in their exact realization, interfaces invariably rely on common fundamental concepts and provide similar benefits. Historically, the notion of interface is intrinsically linked to the need for abstraction, one of the fundamental concept of computer science. As stated by Parnas et al., "an abstraction is a concept that can have more than one possible realization" and "by solving a problem in terms of the abstraction one can solve many problems at once" [START_REF] Lorge | Abstract types defined as classes of variables[END_REF]. One can refer to an abstraction, leaving out the details of a concrete realization and the details that differ from one realization to another [START_REF] Kell | In search of types[END_REF]. Originally, in programming, the key idea was to encapsulate the parts of a program that are more prone to change into so-called modules, and to design a more stable interface around these change-prone parts. This concept, known as information hiding, eliminates hard-wired dependencies between change-prone regions, thereby protecting other modules of the program from unexpected evolution [START_REF] Lorge | On the criteria to be used in decomposing systems into modules[END_REF].

As different realizations may be used in place of an abstraction, interfaces also foster reuse: one module can substitute another one in a given context provided that they realize the same interface expected by a client. The choice of a concrete module is transparent from the point of view of the client of the interface. Because interfaces expose only a portion or an aspect of a realization, leaving out some details, the nature of an interface is highly dependent on the nature of the concrete realization it abstracts from. Following the evolution of programming paradigms, authors have thus defined various kinds of interfaces for various concrete realizations: modules (module interfaces in Modula-2 [START_REF] Wirth | Modula: A language for modular multiprogramming[END_REF]), packages (package specifications in Ada [START_REF] Jean D Ichbiah | Reference manual for the Ada programming language[END_REF]), objects (protocols in Smalltalk [START_REF] Goldberg | Smalltalk-80: the language and its implementation[END_REF]), or components in Component-Based Software Engineering (CBSE) [START_REF] George | Component-based software engineering[END_REF], to name a few.

The expressiveness in which one can specify an interface for a given kind of realization also varies: interfaces over objects in standard Java consists merely of a set of method signatures, while languages supporting design-by-contract enable the expression of behavioral specifications, e.g., in the form of preand post-conditions on those signatures [START_REF] Meyer | Applying'design by contract[END_REF]. The expressiveness of contracts themselves range from purely syntactical levels to extra-functional (e.g., quality of service) levels [START_REF] Beugnard | Making components contract aware[END_REF]. Interfaces are also closely linked to the notion of data type in programming languages [START_REF] Peter S Canning | Interfaces for strongly-typed object-oriented programming[END_REF]. Types abstract over the concrete values or objects manipulated by a program along its execution. Type systems use these types to check their compatibility, reduce the possibilities of bugs, and foster reuse and genericity through polymorphism and substitutability [START_REF] Cardelli | On Understanding Types, Data Abstraction, and Polymorphism[END_REF].

While in programming languages the realizations hidden behind a given kind of interface are mostly homogeneous, this is usually not the case in CBSE. As an illustration, component models enable communication between components written in different programming languages and deployed on heterogeneous platforms [START_REF] Siegel | CORBA 3 fundamentals and programming[END_REF]. In such a case, interfaces abstract away from implementation technologies to enable interoperability between heterogeneous environments. The associated runtime model is most of the time unaware of the functional aspect of components and uses generic interfaces to manage their life cycle (e.g., deploying or updating the configuration of a component). Most component models also provide the notion of required interface as a mean to make explicit the dependencies between components and to reason about how different components interact together and must be composed.

In summary, interfaces are used in many ways and vary according to the purpose they serve. While "interfaces as types" mainly target the safe reuse and substitutability of modules and objects in different contexts and focus on functional aspects, the interfaces used in CBSE allow components to be independently developed and validated, and focus on extra-functional aspects. From these observations, we explore in the next section possible applications of the concept of interfaces at the language level, to improve the current practice of software language development.

Interfaces for Software Language Engineering

"Software languages are software too" [START_REF] Favre | Languages evolve too! changing the software time scale[END_REF] and, consequently, they inherit all the complexity of software development in terms of maintenance, evolution, user experience, etc. Not only do languages require traditional software development skills, but they also require specialized knowledge for conducting the development of complex artifacts such as grammars, metamodels, interpreters, code generators, model transformations, or type systems. As stated in Chapter 2, the need for proper tools and methods in the development of software languages recently led to the emergence of the software language engineering research field. While the notions presented in this chapter are applicable to both general-purpose languages and domain-specific languages, we put a particular emphasis on the specificities of DSLs.

New DSLs are usually developed using a language workbench, a "one-stop shop" for the definition of languages and their environments [START_REF] Fowler | Language workbenches: The killer-app for domain specific languages[END_REF]. The main intent of language workbenches is to provide a unified environment to assist both language designers and users in, respectively, creating new DSLs and using these. Modern language workbenches typically offer a set of meta-languages that language designers use to express each of the implementation concerns of a DSL, along with tools and methods for manipulating their specifications [START_REF] Visser | A Language Designer's Workbench: A One-Stop-Shop for Implementation and Verification of Language Designs[END_REF].

One of the current trends in SLE is to consider more and more languages as first-class entities that can be extended, composed, and manipulated as a whole. However, to the best of our knowledge, there exists no previous work dealing with the explication of language interfaces, i.e., interfaces at the language level, explicitly separated from language implementations. The main purpose of language interfaces is to provide the appropriate abstraction to ease the manipulation of languages as first-class entities and foster reuse in SLE. To motivate the need for language interfaces, we explore in this section some of the current challenges faced in SLE and highlight how they match the challenges that have been addressed with the use of interfaces in programming and software engineering.

Supporting the Definition and Reuse of Services

The development of services (e.g., code and documentation generators, static analyses) is an essential part of the development of software languages. Defining a new service requires gathering the appropriate information which is often scattered in the various concerns of a given language (abstract syntax, concrete syntax, semantics), in different formalisms. Naturally, the information to be extracted varies according to the purpose of the service. Some services, such as simple static analyses, only require access to a subset of the syntax definition of a language. More complex services may require to aggregate information from different sources, or an abstraction thereof. Moreover, services may be defined at the meta-language level and used at the language level (e.g., analysis of the completeness of a formal semantics specification), or at the language level and used at the model level (e.g., dead code elimination for programs written in a particular language). Rather than searching for the right information in the various concerns of a language, one can first design a language interface that aggregates the appropriate information in an easily manipulable form for a specific purpose. Using the appropriate interfaces eases the cognitive effort and abbreviates the definition of services. Moreover, since different languages can match the same interface, the services written on an interface can be applied to all compatible languages. Some generic services do not even require any information on the syntax or semantics of a language. Generic debuggers, such as the one found in the GEMOC studio [START_REF] Bousse | Supporting efficient and advanced omniscient debugging for xDSMLs[END_REF] or on top of the ASF+SDF meta-environment [START_REF] Van Den Brand | TIDE: A generic debugging framework-tool demonstration[END_REF], only require the ability to start, pause, or inspect the execution of a model or program [START_REF] Bousse | Supporting efficient and advanced omniscient debugging for xDSMLs[END_REF]. Such common operations can be captured in a generic interface, and any language implementing it can benefit from debugging facilities.

Supporting the Coordination of DSLs

In the last decade, the development of MDE and the advances in language workbenches have strengthened the proliferation of DSLs. MDE advocates the use of DSLs to address each concern separately in the development of complex systems with appropriate abstractions and tools [START_REF] France | Model-driven development of complex software: A research roadmap[END_REF]. As a result, the development of modern software-intensive systems often involves the use of multiple models expressed in different DSLs to capture different system aspects [START_REF] Benoit Combemale | Globalizing modeling languages[END_REF]. This trend is very similar to what was proposed by Ward in his seminar work on language-oriented programming [START_REF] Martin | Language-oriented programming[END_REF]. Even in traditional software development, multiple languages are often used to describe different aspects of the system of interest. Java projects, for instance, typically consist of Java source files, XML files describing the structure of modules and the deployment scenarios, Gradle build files expressed in Groovy, and various other artifacts for building and deploying.

When multiple languages are used, the need for relating their "sentences" (that, for example, describe the same underlying system in different languages) arises. In this context, models are seldom manipulated independently: checking a given property on a system requires gathering information that is scattered in various models written by various stakeholders in various languages. In addition, the set of languages used to describe a given system is likely to change over time. A new, more expressive language can replace an existing one. New languages may be added, merged, or split. While the support of language workbenches for engineering isolated languages is becoming more and more mature, there is still little support for relating concepts expressed in different DSLs together. The necessity of coordinated use of languages used in the development of a given system has recently been recognized [START_REF] Cheng | On the Globalization of Domain-Specific Languages[END_REF][START_REF] Benoit Combemale | Globalizing modeling languages[END_REF]. One promising approach is to leverage language interfaces to expose the appropriate information that allows relating concepts from one language to the other [START_REF] Clark | Conceptual model of the globalization for domain-specific languages[END_REF]. The type systems of two languages, for instance, may be related through the appropriate interface that would expose their respective type definitions to allow their integration. Overall, the challenges that must be tackled are very similar to the ones that were faced a few decades ago with the use of modules in software development.

The coordinated use of DSLs engineered with different language workbenches is even more challenging. Indeed, there are no abstraction mechanisms, at the language level that allow abstracting from the concrete implementation techniques of a language workbench, e.g., a particular meta-language for defining the abstract syntax or a particular implementation technique for the semantics. The use of interfaces and connectors has been thoroughly studied in the context of CBSE to alleviate the problem of technological space compatibility. Explicitly separating the implementation of a language from its interface can help to break the barriers between language workbenches if a common agreement on technology-agnostic interfaces is found.

Enabling Language Composition

We project the CBSE vision of reusable building blocks to software language engineering. The idea of building reusable and independently-validated language components to ease the definition of new languages has already been studied by several authors. A language component, such as a simple expression language or a for-loop construct, can be defined and thoroughly validated independently and then reused as such in other languages that encompass the definition of expressions or for-loops. In the same way languages are defined, the definition of such component encompasses both the definition of its abstract syntax, concrete syntax, and semantics. This leads to what is known as compositional language engineering: the ability to design new languages as assemblies of existing language components, thus lowering the development costs [START_REF] Holger Krahn | MontiCore: a framework for compositional development of domain specific languages[END_REF]. In this context, language interfaces serve as support to denote what is provided and required by each component. They are later used to reason about the composition of several language components and the correctness of the assembly (e.g., through interface compatibility checking).

Interfaces are used to detect whether the constructs of different language components are in conflict, without having to dive into their intrinsic implementation details. Language interfaces are also the concrete mean for several language components to communicate with each other at runtime. For instance, when two executable languages are composed together, their interpreter must also be coordinated. Language interfaces provide the appropriate information for relating the two interpreters.

Engineering Language Families

A language family (also known as language product line) is a set of languages that share meaningful commonalities but differ on some aspects [START_REF] Kühn | Apples and oranges: comparing top-down and bottom-up language product lines[END_REF][START_REF] Méndez-Acuña | Leveraging Software Product Lines Engineering in the Development of External DSLs: A Systematic Literature Review[END_REF]. Finite-state machine languages, for instance, are all used to model some form of computation but expose syntactic variation points (e.g., nested states, orthogonal regions) and semantic variation points (e.g., inner or outer transition priority) [START_REF] Michelle | UML vs. Classical vs. Rhapsody Statecharts: Not All Models Are Created Equal[END_REF]. Altogether, these different variants form a family of finite-state machine languages. Similarly, when a language evolves, the subsequent versions form a set of variants, which raises the question of backward and forward compatibility between them [START_REF] Kühne | On Model Compatibility with Referees and Contexts[END_REF]. Recently, different approaches have been proposed for automating the generation of such language variants based on earlier work from the software product line engineering community [START_REF] Kühn | Choosy and picky: configuration of language product lines[END_REF][START_REF] Vacchi | Variability support in domain-specific language development[END_REF].

In the presence of a language family, language designers must be given the possibility to reuse as much as possible the environment and services (e.g., editors, generators, checkers) from one variant to the other. Naturally, the opportunities of reuse must be framed, as not all services are compatible with all variants. Language interfaces can be employed to reason about the commonalities of various language variants and the applicability of a given service or environment. Model types [START_REF] Steel | On model typing[END_REF], for instance, can be used to assign a type to a language and specify the safe substitutions between different artifacts based on subtyping relations [START_REF] Guy | On model subtyping[END_REF].

The definition of those types is precisely an example of language interface. Types abstract over the details of the implementation of different variants and are used to reason about substitutability between them. In this context, language interfaces can support the definition of common abstractions that are shared by all or by a subset of the members of a family, abstracting from the details that vary from one member of the family to the other.

Conclusion

The lack of abstraction in the manipulation of DSL implementations complexifies the definition of services over DSLs (e.g., debuggers, generators, composition operators) and hampers their reuse. In this chapter, we have reflected on the use of interfaces in programming and software engineering, and advocated the definition of interfaces at the language level for software language engineering. We have shown that various challenges of today's language development can be addressed through the use of language interfaces. The concept of language interface presented here is purposely abstract. The two next chapters concretize the idea of language interfaces for two specific purposes: interoperability and flexibility in MDE (Chapter 5), and modular DSL development (Chapter 6). To this end, they focus on one particular kind of structural language interface: model types.

Chapter 5 Safe Model Polymorphism for Flexible Modeling

In this chapter, I present our second contribution: an approach for manipulating models, in a polymorphic way, through various language interfaces. This mechanism, named model polymorphism, increases compatibility and interoperability of DSL environments, and offers flexibility in the manipulation of models to DSL users. In Section 5.1, I introduce the context and motivation of our contribution. In Section 5.2, I analyze the fundamental properties of the conformance relation in MDE, and list its limitations from theoretical and experimental points of view. In Section 5.3, I present our proposal on superseding the conformance relation with a typing relation enabling greater flexibility in the manipulation of models. I detail in Section 5.4 its implementation in the Melange language workbench, and evaluate our contributions in Section 5.5. Finally, I conclude in Section 5.6 on the observed benefits of our contribution.1

Introduction

The constant evolution of DSLs and their necessary coordination raise the need of more flexibility for DSL users in their manipulation of the models through various modeling tools (either using different versions of a given DSL or different DSLs). This requires increased compatibility of modeling tools between different versions of a given DSL, and interoperability between the modeling tools used by different stakeholders. MDE technologies assist domain experts in defining problem-space DSLs, without requiring strong skills in language implementation or compiler construction [START_REF] Hutchinson | Empirical assessment of MDE in industry[END_REF]. Using MDE technologies, new DSLs are typically first specified through metamodels that define their abstract syntax. The MDE community has developed a rich ecosystem of interoperable, generative tools defined over standardized object-oriented metamodeling technologies such as EMOF [206]. These tools can generate supporting DSL tools such as parsers, code generators, and other integrated development environment services.

MDE technologies strongly rely on the conformance relation, which states that a model conforms to a metamodel if each of its elements is an instance of a meta-class defined in the metamodel. As a result, a model conforms to a unique metamodel: the one used to create it. This implementation-oriented view prevents model polymorphism, i.e., the ability to manipulate a given model through different interfaces, each one associated to a particular DSL for a specific domain of expertise or particular modeling tools. Therefore, while models could be manipulated by a family of similar DSLs, in practice it is not possible.

In the last decade, significant efforts were devoted to model and metamodel co-evolution, as presented in Chapter 2. However, we demonstrate in this chapter that an important part of the required interoperability and compatibility appears between structurally similar DSLs, opening up the possibility to automatically provide more flexibility in their manipulation. To motivate this claim, we report in this chapter the results of an experimental study on the UML models publicly available on Github. 2 This study shows up to 93% of compatibility opportunities to load the models according to four subsequent versions of the UML standard. We also identify different intermediate flexibility levels according to the objective (support of the application of read-only model transformations, or in-place model transformations that modify the model) and the usage context (support of the compatibility to apply any model transformations, or for a particular model transformation whose footprint can be computed [START_REF] Jeanneret | Estimating Footprints of Model Operations[END_REF]).

To address these limitations, we propose to circumvent the overly restrictive conformance relation standing between models and metamodels with a dedicated typing relation. We explore this principle through a disciplined approach that leverages family polymorphism [START_REF] Ernst | Family Polymorphism[END_REF] to provide an advanced type system for manipulating models, in a polymorphic way, through different DSL interfaces. A DSL interface specifies a set of features, or services, available on the model it types. In our approach, these interfaces are captured in model types and supported by a typing relation between models and model types [START_REF] Steel | On model typing[END_REF] and a subtyping relation between model types [START_REF] Guy | On model subtyping[END_REF]. Model types are structural contracts over a language. They are used to define a set of constraints over admissible models, where a model is a graph of meta-class instances referred to as objects. Subtyping relations define the safe structural substitutions from one DSL to another. This opens up the possibility to define model manipulation tools (e.g., transformations, checkers, compilers) that can be reused for different languages, provided that they implement the required interface. This is the approach followed by the Melange language workbench to support reusable DSL specifications [7], as we shall see in Chapter 6.

In this chapter:

• We list the properties of the conformance relation that are at the heart of the current MDE approaches and show how they hinder flexible modeling.

We complete this study by analyzing the flexibility opportunities through an experimental study of the UML models publicly available on Github;

• We present the necessary concepts and relations for MDE that lift the current limitations by complementing the conformance relation with a typing relation based on an explicit structural language interface -model type, therefore providing increased compatibility and interoperability to manipulate a model through different DSL interfaces;

• We describe a model-oriented type system that supports these concepts and relations to provide a safe mechanism of polymorphism for models. This type system ensures safe structural substitutability of models conforming to different languages;

• We introduce Melange, a language workbench seamlessly integrated with the Eclipse Modeling Framework (EMF) ecosystem, with an implementation of the model-oriented type system. We detail how the implementation of Melange successfully emulates type groups polymorphism and structural typing to provide model polymorphism seamlessly on top of the legacy EMF ecosystem;

• We illustrate the validity and practicability of our approach through a controlled experiment on a family of finite-state machine languages, and an uncontrolled experiment on the UML models collected on Github.

On the Limits of the Conformance Relation

To state whether a model is a valid instance of a DSL, MDE relies on the conformance relation that stands between a model and its metamodel. The conformance relation plays a crucial role in MDE as it identifies which models are valid instances of a given DSL and how they should be manipulated. In this section, we first review the conformance relation definitions used in the literature, tools, and standards. Based on these definitions, we provide and detail theoretical limits of this conformance. We then conduct a systematic analysis of UML models gathered from the popular repository hosting service Github. Specifically, we show that the constraints enforced by the conformance relation can be relaxed to increase the level of flexibility in model manipulation without losing any guarantee in terms of safe model manipulation.

Limits of the Conformance Relation from a Theoretical Point of View

In MDE, the abstract syntax of DSLs is usually defined by a metamodel [START_REF] Douglas | Model-driven Engineering[END_REF].

Based on this cornerstone artifact, concrete syntaxes, semantics, and various tools can be defined [START_REF] Steinberg | EMF: Eclipse Modeling Framework[END_REF]. To determine whether a model is a valid statement of a DSL, MDE relies on the conformance relation that stands between a model and a metamodel. While no standard definition of the conformance relation exists, a recurring definition has emerged from the literature: a model conforms to a metamodel if every element of the model is an instance of one of the elements of the metamodel. Different names have been given to this relation in the literature: "sem" (e.g., Bézivin et al. [START_REF] Bézivin | Towards a Precise Definition of the OMG/MDA Framework[END_REF]), "instantiation" (e.g., Atkinson et al. [START_REF] Atkinson | Profiles in a Strict Metamodeling Framework[END_REF]) or "conformance" (e.g., Bézivin et al. [START_REF] Jean Bézivin | Principles, Standards and Tools for Model Engineering[END_REF]). All these relations are directly based on the abstract syntax of DSLs, expressed in the form of a metamodel. In the following, we use the term conformance relation to refer to this relation between models and metamodels. Table 5.1 presents several definitions of the conformance relation from the literature over the last decade.

Favre considers every representation of a language as a metamodel, and thus builds the conformance relation between a model and any of these representations (abstract or concrete syntax, documentation, tool, etc.) [START_REF] Favre | Foundations of Meta-Pyramids: Languages vs. Metamodels -Episode II: Story of Thotus the Baboon[END_REF]. Favre's definition is thus less strict than the other ones presented in this section. However, while this definition is sufficient for the study and understanding of MDE, it is not precise enough for DSLs tooling or automated checking of the validity of a model wrt. a DSL.

Other authors define the conformance relation through the instantiation relation that stands between an object and the class from which it is built: "every element of an Mm-level model must be an instance-of exactly one element of an Mm+1-level model" [START_REF] Atkinson | Profiles in a Strict Metamodeling Framework[END_REF]; "metamodels and models are connected by the instanceOf relation" [START_REF] Gasević | On Metamodeling in Megamodels[END_REF]; "every object in the model has a corresponding non-abstract class in the metamodel" [START_REF] Egea | Formal Executable Semantics for Conformance in the MDE Framework[END_REF]. Bézivin et al. do not directly refer to classes, but prefer the terms "definition" [START_REF] Bézivin | Towards a Precise Definition of the OMG/MDA Framework[END_REF] or "meta-element" [START_REF] Jean Bézivin | Principles, Standards and Tools for Model Engineering[END_REF] (i.e., element of a metamodel). Such definitions authorize the definition of the abstract syntax of a DSL under a different form than a set of classes. With the exception of the definition given by Favre, definitions from the literature presented in Table 5.1 all agree on one point: the conformance relation is based on the instantiation relation between objects and classes.

The Meta-Object Facility (MOF) specification [206] from the Object Management Group (OMG) and the Eclipse Modeling Framework [START_REF] Steinberg | EMF: Eclipse Modeling Framework[END_REF] (EMF) are de facto technological standards in the MDE community. Many tools and frameworks are based on these standards, such as ATL [START_REF] Jouault | ATL: A Model Transformation Tool[END_REF], Kermeta [START_REF] Jézéquel | Mashup of Meta-Languages and its Implementation in the Kermeta Language Workbench[END_REF], Epsilon [START_REF] Kolovos | The epsilon transformation language[END_REF], or Xtext [START_REF] Eysholdt | Xtext: Implement your Language Faster than the Quick and Dirty Way[END_REF] to name just a few. The way these standards define the relation between models and metamodels is thus central in today's tooling support of MDE.

Bézivin et al. [START_REF] Bézivin | Towards a Precise Definition of the OMG/MDA Framework[END_REF] "Let us consider model X containing entities a and b.

There exists one (and only one) meta-model Y defining the "semantics" of X. The relationship between a model and its meta-model (or between a meta-model and its meta-meta-model) is called the sem relationship. The significance of the sem relationship is as follows. All entities of model X find their definition in meta-model Y."

Atkinson et al. [START_REF] Atkinson | Profiles in a Strict Metamodeling Framework[END_REF] "In an n-level modeling architecture, M0, M1. . . Mn-1, every element of an Mm-level model must be an instanceof exactly one element of an Mm+1-level model, for all m < n -1, and any relationship other than the instanceof relationship between two elements X and Y implies that level(X)=level(Y)."

Favre [START_REF] Favre | Foundations of Meta-Pyramids: Languages vs. Metamodels -Episode II: Story of Thotus the Baboon[END_REF] Favre does not give a definition for conformance relation, but presents it as a shortcut for the sequence of two other relations: "elementOf" (which stands between a model of a language and this language) and "repre-sentationOf" (which stands between a metamodel and modeling language). MOF permits the definition of the abstract syntax of DSLs in the form of an object-oriented metamodel. MOF, however, does not give any indication regarding the relation that stands between a model and a metamodel. Besides, UML is said to be an instance of MOF and "every model element of UML is an instance of exactly one model element in MOF" [START_REF]OMG. Unified Modeling Language (UML), Infrastructure Specification[END_REF].

EMF does not give any definition either, but relies on two technologies to manipulate models: Java classes for instantiating elements of models and XML Schema for model serialization [START_REF] Steinberg | EMF: Eclipse Modeling Framework[END_REF]. 3 On the Java side, one class is generated for each concept of the abstract syntax and models are sets of object instances of these generated classes. On the XML side, an XML Schema describes the structure of a metamodel for enabling the serialization of models as XML documents. The XML Schema recommendation states that Conformance (i.e., validity) checking can be viewed as a multi-step process [267]: first, the root element of the document instance is checked to have the right contents; then, each sub-element is checked to conform to its description in a schema. Moreover, "to check an element for conformance, the processor first locates the declaration for the element in a schema" [267]. Thus, an element of an XML document without a corresponding declaration in a XML Schema does not conform to this schema, neither does the whole document. Metamodels being described through XML Schemas and models through XML documents, a model conforms to a given metamodel if all the elements of the model have a corresponding declaration in the XML Schema of the metamodel.

The three following major limitations of the conformance relation stand out from these definitions:

(1) The conformance relation is instantiation-based. The relation between a model and its metamodel is set up at the time the model is instantiated. In practice, a model is typically stored in an XML file, with an unchangeable and explicit URI that identifies the metamodel used to create it.

(2) The conformance relation is nominal. In the type system domain, nominal typing refers to a type system that relies on types' names to define explicitly the typing relations [START_REF] Bruce Findler | Semantic Casts: Contracts and Structural Subtyping in a Nominal World[END_REF]. For instance, the Java language has a nominal type system: in "class A extends B", the keyword "extends" explicitly appoints B as the super type of A. By analogy, the conformance relation in MDE is nominal: a model explicitly refers to its "type" materialized in the URI that points to its metamodel.

(3) A model conforms to one and only one metamodel. This property is a consequence of the two previous ones. Because the conformance relation is instantiation-based, nominal, and only one metamodel is used to create a model, a model conforms to this metamodel only, throughout its lifetime.

These three properties make explicit the metamodel that must be used to manipulate a model, thereby avoiding unsafe manipulations. The immediate drawback is that, by requiring one particular metamodel, it is not possible to use another one (even a close one, e.g., a subsequent version) to manipulate a model. For instance, when a language evolves, the URI of its metamodel is usually updated to materialize the new version. So, models, tools, and transformations defined over the previous version must be subsequently updated, even when the two versions are forward-compatible [START_REF] Kühne | On Model Compatibility with Referees and Contexts[END_REF]. Some tools (e.g., ATL [START_REF] Jouault | ATL: A Model Transformation Tool[END_REF]) rely on dynamic typing mechanisms and are thus less fragile to evolution. In this case, however, it is not possible to determine statically whether a model can be manipulated by a given tool. The gains in terms of flexibility thus occur at the cost of safety.

One can astutely cope with this limitation by sharing the same URI among the versions of the language, even though they actually describe different languages. This, however, implies that language tools cannot determine a priori whether they will be able to process a model. This limitation also extends to languages that share commonalities modelers want to handle seamlessly. In other words, as we shall see in the next section, the strong insurances in terms of safety occur at the cost of flexibility.

Limits of the Conformance Relation from an Experimental Point of View: the Case of the UML Models on Github

UML is widely used for the object-oriented analysis and design of software systems [START_REF] Budgen | Empirical Evidence about the UML: a Systematic Literature Review[END_REF]. Various tool providers provide their own implementation of the different versions of the UML specification. Within the Eclipse ecosystem, the Model Development Tools4 sub-project (MDT) provides an EMF-based implementation of the UML2 specification, along with other closely related technologies such as the Object Constraint Language (OCL). 5 Each new revision of the UML specifications (every two or three years) leads to new major versions of the MDT-UML2 implementation. On UML metamodel changes, UML models need to be updated subsequently to take the novelties into account -even when changes in the metamodel do not directly impact them. To help modelers migrate their UML models, MDT-UML2 provides migration guides6 that detail the changes for each new version. As the guides show, new versions usually add, remove, and modify elements, operations, and constraints of the metamodel, consequently breaking parts of the associated API. To cope with these changes, each guide usually describes a migration procedure that UML modelers should follow.

In this section, we present a systematic analysis of UML models hosted on Github. We show that, although the conformance relation prevents it, most UML models can be loaded using different versions of the MDT-UML2 metamodel without having to be explicitly migrated. This requires to manually bypass the nominal typing constraint (i.e., the metamodel URI) imposed by the conformance relation.

Dataset Collection

We collect an initial dataset of UML models by crawling Github repositories and gathering all the files having either the uml file extension, or the xmi file extension and containing the term uml. This query retrieves a total of 8737 files at the date of 2014-07-07. We first discard all the duplicates7 and the models created using another modeling tool such as ArgoUML or Modelio, as they cannot be processed using MDT-UML2. At that point, we obtain 3647 models that specify one version of the MDT-UML2 metamodel as the URI of their metamodel. We then automatically process those models and prune from the dataset those that cannot be loaded because (i) their XMI serialization is ill-formed or (ii) they exhibit external dependencies towards other metamodels or custom UML profiles that cannot be systematically resolved. Table 5.2 depicts the results of this selection. A model is considered "loadable" if there exist at least one version of the MDT-UML2 metamodel that can be used to load it. In our experiment, we consider the UML2.2 to 2.5 specifications that correspond to the four major revisions of MDT-UML2 (2.x to 5.x). Besides the UML metamodel, MDT provides a validation framework that defines a set of constraints derived from the UML specifications and implemented as Java code. This validation framework ensures that a given model conforms to its metamodel and the associated constraints (i.e., its static semantics). We systematically run the validation framework on each loaded model and obtain 1651 valid models. In the remainder of this section, the set of valid models constitutes our base dataset for different analyses. We then identify for each valid model the precise metamodel version to which it conforms, i.e., the one used to create it. This information is directly extracted from their serialized form, as each of them contains an explicit URI referring to its precise metamodel. As depicted in Table 5 EMF normally relies on the URI stored in the XMI of a serialized model to determine the metamodel that should be used for loading and manipulating it. As an immediate consequence, it prevents loading the same model using different versions of a metamodel, as the URI is likely to change to reflect the current version of the metamodel (this is the case for UML). In this experiment, we purposely try to load each valid model with each different version of UML, even though EMF would usually prevent it. To do so, we change the URI stored in the models on-the-fly, just before invoking the parser. Then, for the models that are successfully loaded with a given metamodel, we run the corresponding validations. As shown in Table 5.5, only 7.21% of the UML models are strictly tied to a specific version of their metamodel, while 83.16% of them may be loaded and validated using any version. Overall, as shown in Table 5.4, each version of the UML metamodel can load around 90% of all the valid UML models, regardless of the original metamodel they conform to. These results can be explained by several factors. First, the EMF parser relies on an XML parser that only traverses the nodes present in the serialized model. This means that any model making use of features that are left unchanged across several metamodel versions can be loaded using any of these versions. Second, the parser creates in-memory model elements that are instances of the meta-classes of the metamodel it was configured to use, regardless of the meta-classes that were used to serialize the model. This means that, for example, an Association serialized using UML2.3 may be later parsed using UML2.4, provided that the features of Association used in the model did not change in the meantime. This implies that the subsequent validation phase will run just fine, as the manipulated types are the expected ones, thereby avoiding run-time errors. Naturally, validation may fail if the model does not meet the updated set of constraints. This is similar to a common situation in the programming world where, for instance, the same .cpp file may be processed using various versions of a C++ compiler, implementing various versions of the C++ standard. A compiler implementing the C++03 standard may try to load a .cpp file written in C++11, but will ultimately raise an error if the file makes use of constructs specific to C++11. In this case, the gains in terms of flexibility occur at the price of safety, since it is no more possible to determine a priori if the program can be safely manipulated.

Admittedly, models found on Github may not always represent the state of the modeling practice in the industry. However, we find that the models we analyzed have an average size of 102 model elements and that their footprint [START_REF] Jeanneret | Estimating Footprints of Model Operations[END_REF] cover, on average, 40% of the UML metamodel. Moreover, we find that among the 1651 footprints extracted from the valid models, only 382 are unique. This is due to the fact that, for instance, UML models describing a class diagram share the same or similar footprints (the subset of UML necessary for expressing class diagrams).

Opportunities of Flexible Modeling Beyond the Conformance Relation

From this experiment, we envision that flexibility and safety in the manipulation of models are two frictional forces that must be constantly balanced. Safe manipulation of a model is highly dependent on the nature of the manipulations one would like to apply to it. Other authors have studied this notion of usage context in modeling [START_REF] Kühne | On Model Compatibility with Referees and Contexts[END_REF]. While the conformance relation ensures that manipulating a model through its metamodel is always safe, regardless of the context, it hinders flexible modeling by preventing the manipulation of models in other contexts where safety could still be ensured.

From our study of the UML models on Github, we see that flexibility can be drastically improved when the set of expected manipulations (in this case, parsing and validation) can be bounded. Naturally, the method employed in our experiment is not satisfactory, as it ultimately amounts to some kind of "Russian roulette": most of the time, models can be loaded safely, but when it is not the case the parser unpredictably fails -and the only way to find out is to actually try.

What is missing here is a relation that would state whether a model can be safely manipulated with respect to a set of expected manipulations or not. This relation would prevent unsafe manipulations and ensure that the right level of flexibility can be achieved for a given context. As an illustration, in the UML experiment, the only requirement is the read-only access to the subset of the metamodel that is actually used by the model (i.e., its footprint), hence the substantial reuse opportunities. Conversely, applying a transformation with side effects (e.g., an in-place transformation) to the model would require readwrite access to its footprint, thereby strengthening the constraints on the model and restraining the opportunities of flexible manipulation. If the impact of all manipulations cannot be easily determined, the relation must ensure complete access to the entire model, which would further reduce the opportunities of flexibility, as the relation would have to take the whole metamodel into account. Finally, the guarantees that must be ensured through model manipulation may go up to behavioral substitutability, where every desirable property of the manipulating program should be kept [START_REF] Sun | Using Model Types to Support Contract-aware Model Substitutability[END_REF].

As we are interested in model manipulation, we need to be able to express the minimal contract required to safely manipulate a model in a given context. In MDE, this contract is usually materialized in the metamodel defining the abstract syntax of a DSL. As we have shown, however, metamodels and the conformance relation are too restrictive to achieve the right level of flexibility. To alleviate these limitations, we propose to explicitly reify the contract imposed by a given context. This contract may be manually written or automatically inferred, for instance by extracting the metamodel footprint of a given model transformation [START_REF] Jeanneret | Estimating Footprints of Model Operations[END_REF]. This relaxes the constraints imposed by the conformance relation by enabling the safe manipulation of models fulfilling the appropriate contract, regardless of the metamodel used to create them.

We propose to reify such contracts as explicit structural interfaces expressed in the form of model types that abstract the possibly arbitrarily complex implementation techniques used to construct a DSL. Section 5.3 presents the structural interfaces we propose, along with the associated type system that supports flexible modeling through model polymorphism.

A Type System for Flexible Modeling

As shown in the previous section, the conformance relation hinders flexible modeling by preventing the manipulation of the same model in different modeling contexts or environments. In this section, we propose a modeloriented type system for flexible modeling that alleviate this limitation by enabling model polymorphism, i.e., the possibility to consider and manipulate a model under different forms. This type system relies on explicit structural interfaces captured in model types [START_REF] Steel | On model typing[END_REF] that materialize the contract models must fulfill to be manipulated in a given context. Specifically, we show how to ensure structural substitutability between models that conform to different languages.

Section 5.3.1 introduces the necessary concepts and relations for separating implementations of languages from their structural interfaces and expressing such contracts. Section 5.3.2 presents the different subtyping relations we use to check the substitutability between model types and enable model polymorphism.

Reifying Model Types as Structural Language Interfaces for Model Polymorphism

The implementation techniques employed to define the different concerns of a DSL (e.g., syntax, semantics) are diverse and arbitrarily complex. For instance, different formalisms can be used to define a metamodel (e.g., an entity-relationship diagram, a class diagram, the MOF formalism) and to define the operational semantics on top of a metamodel (e.g., ATL transformations [START_REF] Jouault | ATL: A Model Transformation Tool[END_REF], Kermeta or K3 aspects [START_REF] Jézéquel | Mashup of Meta-Languages and its Implementation in the Kermeta Language Workbench[END_REF], or simply Java code). To ease reasoning on language implementations, we propose to reify the concept of structural language interface and to explicitly separate language implementations from their interfaces. A structural language interface is similar to a metamodel as it exposes a set of concepts and their features and specifies how the models matching this interface must be manipulated, i.e., what is the contract they must fulfill. Contrary to metamodels, language interfaces are inherently abstract and cannot be used to instantiate models. We choose to use model types [START_REF] Steel | On model typing[END_REF] as the formalism for expressing structural language interfaces. The benefit of model types compared to metamodels is that the same model can be manipulated through various model types thanks to subtyping relations [START_REF] Guy | On model subtyping[END_REF]. Explicitly separating interfaces from implementations permits to use interfaces as first-class entities. Therefore, they can be used to explicitly state what is the contract a model must fulfill in order to be manipulated in a given context or environment. Figure 5.1 presents an overview of the concepts and relations of the proposed type system and how they seamlessly integrate with the existing modeling concepts. These concepts and relations are detailed hereafter and are explained Object Types. Mainstream object-oriented programming languages provide developers with the concept of explicit interface (e.g., the interface keyword in Java). Such explicit interfaces permit the definition of types as contracts, usually consisting of a set of method signatures. This enables instances of a certain class to be manipulated through these interfaces, provided that the class implements the appropriate interfaces. An object type is an explicit structural interface: it exposes a subset of the features defined in the implementing class and thus available on its instances. We use the term object type instead of interface to avoid any confusion with other uses of the term interface in this work. We graphically denote the concept of object type using the class representation supplemented with the symbol OT . Model types consists of a set of object types and their relations, and a model can be typed by multiple model types. A model type thus defines a group of interrelated types. To avoid unsafe manipulations, the consistency of type groups must be ensured, i.e., types of different groups must not be mixed [START_REF] Ernst | Family Polymorphism[END_REF]. Among all the model types of a given model, its exact model type contains all the exact object types corresponding to the classes of its metamodel. The exact model type of a model is thus its most precise type. It can be directly extracted from the metamodel used to create the model. Formally, the exact model type Ex(M M) of models conforming to a metamodel M M is a model type such that ∀T ∈ Ex(M M), ∃C ∈ M M , and ∀C ∈ M M, ∃T ∈ Ex(M M) such that T = Ex(C).

Figure 5.4 illustrates the concept of model type using the FSM example. We graphically denote the concept of model type using the class representation supplemented with the symbol MT . The structure of a model type is graphically denoted by a class diagram of its object types. 5.4b. We graphically denote the implementation relation that stands between a metamodel and a model type using the standard implementation representation. Figure 5.6 depicts a model type GuardFsmMT of GuardFsm. In this example, we graphically denote the concept of metamodel by tagging a class with the symbol MM . Using the proposed definition, GuardFsm implements the model type GuardFsmMT since all object types of GuardFsmMT have a corresponding implementation (a class) defined in GuardFsm.

The two previous definitions (model typing and implementation relations) are independent of different choices in the implementation of a model type checker [START_REF] Guy | On model subtyping[END_REF].

Supporting Flexible Modeling with Model Polymorphism

In the previous section, we introduced the necessary concepts and relations for explicitly separating DSLs implementations from their structural interfaces.

We capture these interfaces using model types, which express the contract a model must fulfill to be manipulated in a given context. In order to enable the manipulation of the same model through different interfaces, i.e., model polymorphism, a subtyping relation is needed to state in which cases substitutability is safe. This relation takes the form MT × MT → Boolean where MT is the set of all model types. It states whether models typed by a model type can be substituted safely to models typed by another model type. Our approach do not assume a particular subtyping relation in general, but is instead parameterized by a chosen subtyping relation, which can vary according to particular needs [START_REF] Guy | On model subtyping[END_REF]. In the remainder of this chapter, we focus on the total isomorphic subtyping relation introduced by Guy et al. This relation, denoted <:, checks subgraph isomorphism between the concepts (i.e., object types) of two model types, ensuring that all the concepts of the supermodel type have a matching concept in the sub-model type [START_REF] Guy | On model subtyping[END_REF]. The total isomorphic subtyping relation strengthen the model type matching relation proposed by Steel et al. [START_REF] Steel | On model typing[END_REF] to prevent model manipulation from instantiating an element without its mandatory properties. Naturally, our approach remains applicable using other subtyping relations, such as the ones introduced by Guy et al. to support adaptation between two model types or partial subtyping. Furthermore, the concepts presented can be applied to support behavioral substitutability, e.g., by taking into account contracts expressed as pre-and post-conditions [START_REF] Sun | Using Model Types to Support Contract-aware Model Substitutability[END_REF], or simulation relations based on event structures [START_REF] Latombe | Weaving Concurrency in Executable Domain-specific Modeling Languages[END_REF].

In this chapter, however, we focus on safe structural substitutability, and leave the deeper issue of behavioral substitutability to future work.

While the total isomorphic subtyping relation states whether structural substitutability between two model types is safe, regardless of the context, it hinders other scenarios of flexible modeling that arise when considering the context. For instance, as envisioned in Section 5.2.3, the additional constraint introduced by Guy et al. on elements instantiation can be relaxed when it is known that the manipulations have no side effects on their input models and do not instantiate new elements. To gather such information, one can extract the static footprint of the transformations she would like to apply [START_REF] Jeanneret | Estimating Footprints of Model Operations[END_REF]. In this case, the contract a model must fulfill in order to be manipulated through these transformations can be reified as a model type corresponding to the footprint. The substitutability between two model types in the context of a transformation t can then be formulated as M T <: f p(t, M T) where M T, M T ∈ MT and f p(t, M T) is the footprint of the transformation t on M T .

Statically inferring the footprint of a transformation may not always be possible when the transformation is black-box or because of the cost of static analysis; and is imprecise at best. To improve the preciseness of footprints, one can rely on dynamic footprinting [START_REF] Jeanneret | Estimating Footprints of Model Operations[END_REF]. In this case, the transformation is invoked on a model of interest while recording a trace of its execution. Doing so, the footprint is much more precise but the benefits of static checking are lost, and substitutability between model types cannot be checked statically.

Implementation of Model Polymorphism in Melange

Melange 8 is an open-source language workbench bundled as a set of Eclipse plug-ins. Melange provides support for executable and aspect-oriented metamodeling, along with operators for DSL assembly and customization (cf. Chapter 6). We refer the reader to Chapter 7 for an in-depth presentation of Melange and K3. In this section instead, we focus on its support for flexible modeling through the type system introduced in Section 5.3 and a dedicated mechanism named the MelangeResource. We briefly present the syntax of Melange for defining languages and model types (Section 5.4.1). We then put the emphasis on its support for model polymorphism (Section 5.4.2) and seamless integration with the EMF ecosystem (Section 5.4.3).

Language and Model Type Definition in Melange

Melange relies on various meta-languages for expressing the different concerns that compose a DSL, in particular Ecore [START_REF] Steinberg | EMF: Eclipse Modeling Framework[END_REF] (provided by the EMF framework) for defining their abstract syntax in the form of metamodels and K3 for defining their operational semantics as a set of aspects [START_REF] Jézéquel | Mashup of Meta-Languages and its Implementation in the Kermeta Language Workbench[END_REF]. The choice of Ecore is motivated by the success of EMF both in the industry and academic areas.

Melange comes with a textual editor that enables the definition of DSLs using a dedicated syntax. The minimal definition of the GuardFsm language introduced in Figure 5.2b is given in Listing 5.1. The syntax keyword specifies the Ecore file that defines its abstract syntax. The with keyword is used to weave the aspects defining its operational semantics. Finally, the exactType keyword automatically extracts from its implementation its exact model type GuardFsmMT which exposes both the features defined in its metamodel and the features woven by aspects. Every language definition in Melange must specify its exact type using the exactType keyword. Listing 5.2 illustrates the explicit definition of the exact model type of Fsm depicted in Figure 5.2a. The modeltype keyword explicitly defines a model type to enable fine-grained control over the exact required set of features for a specific purpose (e.g., opening a model in a specific environment or applying a given transformation). Nonetheless, FsmMT and GuardFsmMT share the same nature: they are structural language interfaces expressed in the form of a model type. From a Melange specification, such as the one presented in Listings 5.1 and 5.2, the type system of Melange automatically infers the subtyping relations among the declared model types and the implementation relations between languages and model types, as specified in Section 5.3. To this end, the modeloriented type system of Melange relies on the total isomorphic subtyping relation introduced by Guy et al. [START_REF] Guy | On model subtyping[END_REF]. Naturally, every language directly implements its exact model type (e.g., GuardFsm implements the GuardFsmMT model type). Subtyping relations among model types are also inferred in this phase. For instance, in this case the type checker infers that GuardFsmMT is a subtype of FsmMT since all the features of the latter are also present in the former. It is worth noting that our implementation of the type system relies on structural typing by default: the type system analyses the structure of metamodels and model types to determine the typing relations, without requiring the user to explicitly specify the typing relations (as with nominal typing). However, users can require that a language implements a specific set of model types using the implements keyword (e.g., Line 12 of Listing 5.2). In this case, the type checker reports an error to the user as long as the language does not implement one of its interfaces. This form of nominal typing enables a simple kind of design-by-contract in the case where the language designer knows, at design time, in which environments models conforming to it should be manipulated. Finally, Melange enables to fix simple structural dissimilarities by allowing users to rename concepts in a metamodel or model type using a renaming clause. As we are interested in flexibility between structurally similar languages, we do not detail this mechanism further.

Implementation of the Support for Model Polymorphism

With the conformance relation, models can only be manipulated through their original metamodel. The core idea of model polymorphism is to supersede the conformance relation with typing relations that enable the manipulation of models through different interfaces materialized by model types. We detail in this section the mechanism we use to enable model polymorphism on top of the EMF framework. EMF is a Java framework, which does not provide any support for type groups polymorphism and structural typing. We detail hereafter how Melange successfully emulates such concepts atop the EMF framework.

For each meta-class in a Ecore metamodel, EMF generates a corresponding Java interface that materializes its features (e.g., an attribute is implemented as a pair of getters/setters). It also generates a Java class implementing the interface where actual values of the persistent features are stored in memory. Therefore, each model element in a model is an instance of the Java class generated from its meta-class. The whole model is a graph of objects that can be manipulated using the generated Java types. Along the generated Java types, EMF also generates a dedicated factory [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF], responsible for the creation of new model elements. Any transformation that encompasses the creation of new model elements must use the generated factory.

Melange uses a similar mechanism for materializing model types at the Java level. For each model type, Melange leverages the EMF generator to generate the corresponding Java interfaces. These interfaces are used to manipulate a model in the same way one would manipulate a model through its metamodel. From a user's point of view, there is no difference between manipulating a model through a metamodel or through a model type. The Melange's compiler also generates an abstract factory declaring methods for creating new elements of the model type. Because model types are inherently abstract, no classes implementing them are generated. Instead, concrete implementations are provided by the languages that implement a model type, thereby enabling the manipulation of models written in a given language through the model types it implements, i.e., model polymorphism.

The set of all possible model types implemented by a given language are, however, not known at the creation of a language; typing relations are only inferred a posteriori by the structural type checker of Melange. So, there is no direct relation between the Java classes that form a language and the Java interfaces that form a model type. To solve this problem, we employ the adapter design pattern [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF] to create the implementation relations between classes and interfaces a posteriori. The general idea is to generate a set of adapters for each pair language, implemented model type (one per object type in the model type). Each adapter implements an object type and delegates the implementation of its features to the corresponding class in the implementing language. Along the adapters for model elements, Melange generates a concrete factory that provides the implementation of the abstract factory of the model type for a given language. For each creation method in the abstract factory, the concrete factory delegates to the factory of the underlying language and encapsulates the result in an appropriate adapter. Melange uses a generative approach to generate the code of adapters by the time the implementation relation between languages and model types are inferred. The generation of these adapters is safe since the type checker ensures that each object type and feature in a model type has a corresponding implementation in the language.

The generated adapters ensure several properties. First, the graph of all adapters for manipulating a given model through a given model type is built lazily. Only the adapter of the root model element is initially created. Then, adapters of the other elements are built on demand when navigating references from one object to the other. For example, in Figure 5.4b, State adapters are only generated when navigating the states reference from FSM to State. Second, because a model type constitutes a family of types, generated adapters ensure that the semantics of type groups is respected, i.e., elements of different type groups cannot be mixed together. This constraint is inherited from family polymorphism [START_REF] Ernst | Family Polymorphism[END_REF] to ensure safe model polymorphism. Adapters also support dynamic dispatching by default. For instance, when a model type exposes an operation in one of its object type, calling this operation on a model will dynamically dispatch to the implementation provided by the actual language of the model. To limit memory overhead, the framework ensures that, for each model element, there is at most one adapter in memory -they are cached and retrieved whenever needed. Finally, adapters support model polymorphism through both direct manipulation and reflective manipulation of models using the reflective API provided by EMF [START_REF] Steinberg | EMF: Eclipse Modeling Framework[END_REF]. Supporting polymorphism through the reflective API is especially important as many tools of the EMF ecosystems (e.g., Sirius [START_REF]Eclipse[END_REF], ATL [START_REF] Jouault | ATL: A Model Transformation Tool[END_REF]) rely heavily on reflection. Overall, our adapter approach allows to seamlessly manipulate models through model types, without disrupting language engineers habits in EMF. This is in contrast with other approaches providing similar benefits, such as concepts [START_REF] De | Generic Meta-modelling with Concepts, Templates and Mixin Layers[END_REF], which require to explicitly parameterize metamodels with explicit template parameters. We

Seamless Integration with EMF

Melange aims at providing model polymorphism for EMF-based languages and tools in a seamless and non-intrusive way: the models, their metamodels, and the transformations manipulating them must remain unchanged. To do so, Melange provides a dedicated mechanism, named the MelangeResource, that allows to specify in which context (i.e., through which model type) a model must be loaded. The same model can thus be loaded in different environments if its metamodel implements the appropriate model types. EMF relies on the concepts of resources and resource sets to load serialized models in memory and save them back as persistent document [START_REF] Steinberg | EMF: Eclipse Modeling Framework[END_REF]. A resource represents a persistent model and, when loaded, provides access to the model elements it contains. Resources are created using dedicated resource factories responsible for loading a particular kind of models stored in a particular format. Each resource is identified by a unique Unified Resource Identifier (URI) [START_REF] Berners-Lee | RFC 2396: Uniform resource identifiers (URI): Generic Syntax[END_REF] that locates it on the file system (e.g., file:/path/Model.guardfsm). When a user requests the loading of a model, the file extension and protocol of its URI are analyzed to determine the appropriate resource factory that must be used to instantiate a new resource representing the model in memory. Then, the resource factory identifies the metamodel of the loaded model (from the nominal reference stored in the serialized model) and uses the metamodel's factory to create the appropriate AST nodes and obtain the graph of objects representing the model in memory.

Melange provides a specialized resource mechanism named the Melan-geResource to seamlessly support model polymorphism on top of the EMF framework. Melange contributes a new protocol parser to EMF that automati-cally delegates model loading to the MelangeResource when the protocol of its URI is melange (e.g., melange:/file/path/Model.guardfsm). When the user specifies the melange protocol the MelangeResource is used. In this case, the user can adjoin an additional query string parameter named mt to the URI. The mt parameter specifies the model type that is expected, regardless of the actual metamodel of the model. The MelangeResource ensures that the model can safely be loaded through this model type based on the typing relation inferred earlier. Internally, the MelangeResource instantiates the appropriate adapters that enable the manipulation of the model as typed by the expected model type. For example, the URI melange:/file/Model.guardfsm?mt=FsmMT specifies that the model stored in the Model.guardfsm file should be loaded as a (i.e., typed by) FsmMT model type. If no implementation relation between the metamodel of the loaded model and the requested model type exists, an error is reported to the user.

The benefit of using a Melange URI is that neither the model nor its metamodel or the transformation code has to be changed. Only the inputs of the transformations are modified: the URI of the models to be manipulated. Listing 5.3 depicts the typical code used to load a model using the EMF framework, with or without the MelangeResource. The only visible difference is the URI used to load the model. The model polymorphism mechanism and its runtime support (i.e., the adapters and the specialized resource system) are completely transparent for the user. In this case, the root of the model (Line 5) is returned as typed by the FSM object type defined in the FsmMT model type, even though the concrete type of the root of the model is the meta-class FSM defined in GuardFsm.

1 ResourceSet rs = new ResourceSetImpl(); 2 //String oldUri = "file:/Model.guardfsm"; 3 String uri = "melange:/file/Model.guardfsm?mt=FsmMT"; 4 // Requests the model serialized at the given URI 5 Resource res = rs.getResource(URI.createURI(uri), true); 6 // Retrieve the first element of the model (ie. its root) 7 // getContents() is a generic function of EMF, 8 // the cast thus cannot be avoided 9 FSM root = (FSM) res.getContents().get(0); Listing 5.3: Loading a model using a Melange URI

Experiments

In this section, we evaluate our approach for safe model polymorphism on the two axes of flexible modeling we consider: compatibility between subsequent versions of the same language and interoperability between structurally similar languages. We show that the type system described in Section 5.3 and implemented in Section 6.4 within Melange provides safe and seamless model polymorphism for EMF-based languages and tools. Section 5.5.1 shows how the high level of flexibility envisioned for UML models in Section 5.2.2 can be achieved with the MelangeResource. Section 5.5.2 shows how model polymorphism supports flexible model loading and manipulation within a family of related DSLs describing variants of finite-state machines.

Flexible Loading of UML Models

In Section 5.2.2, we showed that the conformance relation hinders many loading opportunities for UML models: 93% of the models we analyzed could be loaded and validated using at least two versions of the UML metamodel when forcing EMF to bypass the conformance relation. The technique used was however not satisfactory as the parser were unpredictably failing when a model could not be loaded with a given version of UML.

In this experiment, we aim to achieve the same scores in terms of flexibility while avoiding the "Russian roulette" downside. To this end, we leverage the information we gathered from the kind of manipulations applied to the loaded models. Only the meta-classes corresponding to the model elements they contain are used by the parser. If changes between two versions of the UML metamodel do not affect the subset of the metamodel used in a model, it can be loaded using both of them. Similarly, when invoking the validator, only the elements created by the parser are visited.

In consequence, while the footprint statically computed for the loading mechanism and the validator potentially corresponds to the entire metamodel, we can restrict this footprint to the meta-classes corresponding to the elements contained in the model (i.e., dynamic footprinting [START_REF] Jeanneret | Estimating Footprints of Model Operations[END_REF]). In other words, the contract an UML model must fulfill in order to be safely loaded and validated by a given UML version can be captured in a model type corresponding to the subset of the meta-classes actually required to type the elements it contains.

We use Kompren [START_REF] Blouin | Kompren: Modeling and Generating Model Slicers[END_REF] to generate a pruner [START_REF] Sen | Meta-model Pruning[END_REF] for the different versions of the UML metamodel. Then, we visit each model to extract the meta-elements it uses and prune the resulting metamodel with respect to each version of the UML metamodel we consider. As a result, we obtain the effective footprint of each model on each version of UML. The resulting footprint corresponds to the dynamic footprint of the loading and validation phase of UML models. Then, when trying to validate a model with respect to a particular version of UML, we use the subtyping relation introduced in Section 5.3.2 to find whether the target UML metamodel is a subtype of the computed footprint. When it is the case, the model can be safely loaded and validated; otherwise, the program prevents subsequent crashes and reports an error to the user. The experiment results show that using this technique, we obtain the exact same scores as those envisioned in Section 5.2.2.

NamedElement

Model Polymorphism for a Family of DSLs

Finite-state machine (FSM) languages are a typical example of DSLs used in a wide range of contexts (e.g., systems and software engineering [START_REF] Harel | Statecharts: a Visual Formalism for Complex Systems[END_REF], language processing [START_REF] Roche | Finite-state Language Processing[END_REF], user interfaces [START_REF] Blouin | Improving Modularity and Usability of Interactive Systems with Malai[END_REF]). This leads to a rich diversity of implementations that exposes syntactic and semantic variation points [START_REF] Michelle | UML vs. Classical vs. Rhapsody Statecharts: Not All Models Are Created Equal[END_REF]. Syntactic variants comprise flat or composite states, presence of temporal constraints or complex guards, etc. Semantic variants comprise different models of execution, e.g., with or without run-to-completion [START_REF] Gill | Introduction to the Theory of Finite-state Machines[END_REF]. DSL designers usually design dedicated environments for each of these variants. Because of the conformance relation, there is a strong coupling between models and the modeling environments used to create them. So, DSL users cannot benefit from tools and transformations (e.g., editors, simulators, or code generators) integrated in different environments.

To solve this problem, a language designer can leverage model polymorphism as promoted in this work: a language designer can design a generic tool or transformation based on a model type. The model type makes explicit the required set of features that a model must provide (i.e., the contract it must fulfill) in order to be manipulated by this specific tool. So, any model typed by this model type can then benefit of this tool, regardless of the actual language that was originally used to create it.

In this case study, we show the benefits of model polymorphism on a family of FSM languages. On the syntactic side, the FSM languages differ in their support for composite states, time constraints, both, or none. On the semantic side, they differ on whether they implement a run-to-completion or simultaneous events processing semantics. Altogether, by combining syntactic and semantic variations, our final family comprises eight variants. These languages are representative of the actual variation points that are exposed by popular languages enabling the expression of FSMs such as UML, Rhapsody, and classical statecharts [START_REF] Michelle | UML vs. Classical vs. Rhapsody Statecharts: Not All Models Are Created Equal[END_REF].

Figure 5.8 presents the variations in the abstract syntax of the languages of the FSM family. The gray part (the Region and Composite classes) is specific to the hierarchical FSM metamodels. The attribute time of Transition, formatted in bold font, is specific to the timed FSM variants. For the sake of conciseness, the other attributes are not represented.

We define each language in Melange. We create four Ecore metamodels representing the four syntactic variants of the family. The two semantic variants consist of two sets of aspects we wrote in K3 that define the operational semantics associated to run-to-completion and simultaneous events processing (see Section 5.4.1). Listing 5.4 illustrates the definition of two of the eight variants. The complete Melange file comprising the eight FSM variants is given in Listing A.1. Melange takes care of assembling a particular syntax with a particular semantics to produce the expected language. Note that in this case, most of the syntax and semantics is duplicated from one language to the other. One way to cope with this duplication is to leverage the composition operators of Melange presented in Chapter 6. Each language declares its exactType (Lines 7 and 18), i.e., the precise model type that represents the contract implemented by the models conforming to it. The type checker of Melange automatically infers the subtyping hierarchy among the exact model types, and the implementation relations between metamodels and model types. Based on the resulting hierarchy, the code generation phase generates the adaptation code supporting model polymorphism between the compatible variants (see Section 5.4.2).

Then, we implement two typical transformations on FSMs: execute checks whether a given sequence of events is recognized by a particular FSM model; f latten produces an equivalent FSM model without composite states. The former is defined over the most general model type FlatFsmRtcMT and can thus be polymorphically invoked on models conforming to any of the eight variants, taking into account the semantic variations thanks to the dynamic dispatch. The latter is defined over the model type of hierarchical FSMs and can thus be polymorphically invoked on models conforming to the four hierarchical variants.

1 // Delegate the execution of the state machine "fsm" 2 // to the "execute" method of its operational semantics. 23 } Listing 5.5: Polymorphically invoking the execute transformation Listing 5.5 shows the pseudo-code required for specifying the execute transformation in Java and calling it. The fsm parameter of the transformation is typed by the root object type StateMachine of FlatFsmRtcMT, and can thus be polymorphically invoked on models conforming to any of the eight variants. In this case, the execution semantics is directly woven using the aspects depicted in Listing 5.4: the execute methods simply delegates to the appropriate execute method of StateMachine through dynamic dispatch. However, manipulations in execute may be arbitrarily complex and use all the features depicted in Figure 5.8. The MelangeResource is automatically invoked by the use of a melange: URI and transparently instantiates the appropriate adapter to enable the manipulation of the different models through the common interface FlatFsmRtcMT. 6 depicts an excerpt of the flatten transformation written in ATL [START_REF] Jouault | ATL: A Model Transformation Tool[END_REF]. Most of the transformation rules are omitted for the sake of conciseness. In this case, the transformation requires as input a model typed by the CompositeFsmMT model type and produces a corresponding flattened state machine conforming to the FlatFsm metamodel. The flatten transformation thus accepts models conforming to any of the four hierarchical variants. One can write an ATL transformation on a model type in the exact same way than on a metamodel. When invoking the transformation the use of a Melange URI automatically invokes the MelangeResource so that the ATL engine transparently manipulates the models through the appropriate adapters. Making an ATL transformation generic only requires to change the type of its input models to the appropriate model type.

1

Discussion

Through the two presented experiments, we illustrate the benefits of safe model polymorphism on the two axes of flexible modeling we consider: compatibility between subsequent versions of a same language; interoperability between structurally similar languages. Our framework and its implementation in Melange through the MelangeResource allows to state in which cases a model can be safely manipulated, without requiring any work from the language designers or users. As mentioned in Section 5.3.2, our framework is parameterized by a particular subtyping relation between model types. In our experiments, we use the total isomorphic subtyping relation introduced by Guy et al. [START_REF] Guy | On model subtyping[END_REF]. As a result, our experiments only focus on structural substitutability and do not consider the harder problem of behavioral substitutability. For instance, while the MelangeResource ensures that the flatten transformation presented in Section 5.5.2 can safely be applied on a model conforming to different languages, it cannot state whether its behavioral properties will be preserved (e.g., are the resulting state machine models flat and semantically equivalent to the inputs models?). Other experiments involving augmented model types on which behavioral contracts are expressed in the form of invariants, pre-, and post-conditions to assess property preservation through the use of the contract-aware subtyping relation introduced by Sun et al. [START_REF] Sun | Using Model Types to Support Contract-aware Model Substitutability[END_REF] are left for future work. Finally, we envision that the overhead in terms of time and memory consumption implied by our generative approach relying on adapters is highly dependent on the size of the considered models and metamodels.

Conclusion

In this chapter, we proposed to overcome the limitations of the conformance relation that hinder the flexibility DSL users would expect between structurally similar DSLs. We described a model-oriented type system that provides a safe mechanism of polymorphism for models. This type system is implemented into Melange, which is itself integrated with the EMF ecosystem. Through an experiment on UML models gathered from Github and a case study on a family of syntactically and semantically variant FSM languages, we showed the benefits of safe model polymorphism on the two axes of flexible modeling we consider: compatibility between subsequent versions of the same language and interoperability between structurally similar languages.

Chapter 6 Modular and Reusable Development of DSLs

In this chapter, I present our third contribution: a meta-language for modular and reusable development of DSLs. I introduce in Section 6.1 the context and motivation of our contribution. In Section 6.2, I give a general overview of our proposal, further detailed with an algebra of operators for DSL assembly and customization in Section 6.3 and its implementation in the Melange language workbench in Section 6.4. In Section 6.5, I evaluate the benefits of Melange by assembling and customizing several DSL implementations gathered from publicly available repositories to create a new DSL for Internet of Things systems modeling. Finally, I conclude in Section 6.6 on the observed benefits of Melange.1

Introduction

Despite the wide range of domains in which DSLs are used, many of them share commonalities such as a common paradigm for expressing workflows, components, or expressions [START_REF] Pescador | Pattern-based development of domainspecific modelling languages[END_REF]. It is long recognized that language designers benefit from reusing existing language definition for the creation of new languages [START_REF] Emerson | Techniques for metamodel composition[END_REF][START_REF] Lédeczi | On metamodel composition[END_REF]. Similarly, many DSLs exist in different variants, such as the family of languages for statecharts modeling [START_REF] Michelle | UML vs. Classical vs. Rhapsody Statecharts: Not All Models Are Created Equal[END_REF]. Therefore, it is likely that engineering efforts spent on the development of existing languages could be leveraged in the development of new ones. Following the time-honored practice of reuse in software engineering, one would like to reuse and combine existing language artifacts (e.g., a particular action language) in the development of new DSLs. Recent work in the community of Software Language Engineering focused on language workbenches that support the modular design of DSLs, and the possible reuse of such modules, usually using a scattered clause import linking separate artifacts (see e.g., [START_REF] Lennart | The spoofax language workbench: rules for declarative specification of languages and IDEs[END_REF][START_REF] Vacchi | Neverlang: a framework for feature-oriented language development[END_REF]). Besides, particular composition operators have been proposed for unifying or extending existing languages (cf. Chapter 3). However, while most of the approaches propose either a diffuse way to reuse language modules, or to reuse as is complete languages, there is still little support for easily assembling language modules with customization facilities (e.g., restriction of expressiveness or semantics specialization) in order to finely tune the resulting DSL according to the language designer's requirements or the specificities of a new domain of application. In addition, being able to reuse the services (e.g., editors, static analyses) accompanying an existing DSL would be highly beneficial for language designers. This issue is however seldom addressed by current approaches.

In this chapter, we present a tool-supported meta-language supporting the assembly and customization of legacy DSLs to produce new ones. This meta-language consists of a set of integrated operators dedicated to language manipulation. The operators enable to (i) merge different languages (ii) inherit from one language to the other (iii) restrict the scope of an existing language and (iv) finely customize the syntax and semantics of assembled languages. These operators can be used conjointly to solve advanced language engineering scenarios involving the composition of several languages. The meta-language is implemented in the Melange language workbench. Melange provides specific constructs to assemble various abstract syntax and operational semantics artifacts into a DSL. DSLs can then be used as first-class entities to be reused, extended, restricted, or adapted into other DSLs. Melange relies on the structural interfaces introduced in Chapter 5 to statically ensure the structural correctness of the produced DSLs, and subtyping relations between DSLs to reason about their substitutability and the reuse of services from one language to the other. Newly produced DSLs are correct by construction, ready for production (i.e., the result can be deployed and used as is), and reusable in a new assembly. We illustrate the benefits of the proposed meta-language by designing a new executable modeling language for the Internet Of Things domain. Specifically, we show how Melange eases the definition of new DSLs by maximizing the reuse of legacy artifacts without introducing issues in terms of performance, technical ecosystem compatibility, or generated code volume.

Approach Overview

As introduced in Chapter 2, DSLs are typically defined through three main concerns: abstract syntax, concrete syntax(es), and semantics. Various approaches may be employed to specify each of them, usually using dedicated meta-languages [START_REF] Visser | A Language Designer's Workbench: A One-Stop-Shop for Implementation and Verification of Language Designs[END_REF]. The abstract syntax specifies the domain concepts and their relations, and is defined by a metamodel or a grammar. The semantics of a DSL can be defined using various approaches including axiomatic semantics, denotational semantics, operational semantics, and their variants [START_REF] Peter | The varieties of programming language semantics and their uses[END_REF]. Concrete syntaxes are usually specified as a mapping from the abstract syntax to textual or graphical representations, e.g., through the definition of a parser or a projectional editor [START_REF] Voelter | Projecting a Modular Future[END_REF].

In this chapter, we focus on DSLs whose abstract syntaxes are defined with metamodels and whose semantics are defined in an operational way through the definition of computation steps designed following the interpreter pattern [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF]. Computation steps may be defined in different ways, e.g., using aspect-oriented modeling [START_REF] Jézéquel | Model driven design and aspect weaving[END_REF] or endogenous transformations [START_REF] Benoit Combemale | Essay on semantics definition in MDE-an instrumented approach for model verification[END_REF]. In this chapter, however, we only focus on the weaving of computation steps in an object-oriented fashion with the interpreter pattern. In such a case, specifying the operational semantics of a DSL involves the use of an action language to define methods that are statically introduced directly in the concepts of its abstract syntax, i.e., the meta-classes of its metamodel [START_REF] Jézéquel | Mashup of Meta-Languages and its Implementation in the Kermeta Language Workbench[END_REF]. It is worth noting that the proposed approach can easily be adapted to other kinds of operational semantics specification mechanisms, such as endogenous transformations in a functional way. We do not address in this chapter the problem of concrete syntaxes composition and customization. The remainder of this section presents the high-level operators we propose for assembling and customizing DSL, as depicted in Figure 6.1.

The right part of Figure 6.1 depicts the legacy language artifacts to be reused and assembled in the creation of new DSLs. Imported artifacts include abstract syntax and semantic specifications, possibly with their corresponding tools and services (e.g., checkers, transformations). These services manipulate the models conforming to a particular metamodel to perform specific tasks. Similarly, semantic specifications directly access and manipulate model elements for execution or compilation purposes. Hence, abstract syntax and semantics artifacts are related one another through binding relations: semantics artifacts require a particular shape of abstract syntax, which is provided by a given metamodel.

The left part of Figure 6.1 depicts the new languages built from legacy artifacts. Assembly operators (merge S , weave) realize the transition from legacy artifacts to new DSLs. They import and connect disparate language artifacts, e.g., by merging different abstract syntaxes or by binding an existing semantics to a new syntax. Naturally, the same artifact can be reused in different assemblies. The output of assembly operators is encapsulated in a language definition. Once new assemblies are created, customization operators (slice, merge L , inherits) offer the possibility to refine the newly built DSLs so as to meet additional requirements or to fit a specialized context. These customization operators closely match the taxonomy of language operators introduced by Erdweg et al. [START_REF] Erdweg | Language composition untangled[END_REF]: the slice operator supports language restriction, the merge L operator supports language unification, and the inherits operator supports language extension. We describe in detail all the operators for language assembly and customization in Section 6.3.

Assembling and customizing DSLs is a challenging task that requires checking the composability of heterogeneous artifacts and the validity of the result. For example, from Figure 6.1, it is clear that Sem 1 can be woven on L 4 only if it can be bound to its syntax, i.e., if the elements originally provided by M M 1 to Sem 1 are also available in L 4 . Similarly, the intuitive meaning of inheritance, as found in most object-oriented languages, implies the compatibility between the super-and sub-elements (super-and sub-languages in this case). It follows that the compatibility between L 1 and L 3 in Figure 6.1 must be ensured to guarantee that L 1 's tooling can be reused for its sub-language L 3 . What is missing here to guarantee these properties is an abstraction layer that would support reasoning about the compatibility between different languages artifacts. In our approach, we rely on the capabilities provided by model types, as presented in Chapter 5, that provide an abstraction layer to reason about the structural compatibility and substitutability of heterogeneous artifacts. For this purpose, each language artifact is associated to its exact model type (e.g., L 1 to M T 1 and L 2 to M T 2 in Figure 6.1). Imported artifacts (metamodels and semantics) are also associated to their structural interface in the form of a model type (M T 3 and M T 4). We introduce later in this chapter how these structural interfaces are inferred.

Finally, when reusing fragments of syntax and semantics from one language to another, one would also like to reuse the tools and services associated to them. Several languages may implement the same model type, meaning that transformations and tools defined over a model type can be reused for all matching languages. The framework for model typing introduced in Chapter 5 enables reasoning about compatibility between different artifacts, e.g., to check whether a given semantics can be applied to a given syntax, or to ensure that within an inheritance relation the sub-language remains compatible with the tools and services of its super-languages.

An Algebra for DSL Assembly and Customization

In this section, we introduce an abstract algebraic specification of operators for language assembly and customization. Various implementation choices, such as the concrete formalisms for syntax and semantics definition of languages, are left open in the specification. This specification is mainly intended to serve as a reference for the implementation of a concrete meta-language that would support the aforementioned approach. It is up to the implementor to instantiate the abstract operators, e.g., in the context of a particular language workbench. Section 6.4 details how we instantiate the operators in the Melange language workbench, where Ecore is used for defining the abstract syntax of language, and K3 their semantics. We first provide the definitions and concepts required to define the algebra (Section 6.3.1). Then, we formalize the operators for language assembly (Section 6.3.2) and language customization (Section 6.3.3).

Language Definition

Based on the informal conceptual model of Section 6.2, we define a language L as a 3-tuple of its abstract syntax, semantics, and exact model type:

L AS, Sem, M T (6.1)
Including the exact model type of a language into the tuple allows to directly specify the impact of each of the operators of the algebra on the typing layer. Thereby, this makes explicit in which cases tools and services can be reused from one language to another, based on the model polymorphism mechanism introduced in Chapter 5. In the remainder of this section, for any language L, we denote AS(L) its abstract syntax, Sem(L) its semantics, and M T (L) its exact model type. On non-ambiguous cases, we simply refer to them as AS, Sem, and M T . The next subsections detail each of these constituents.

Syntax and Syntax Merging

In our algebra, the abstract syntax AS of a language L is specified using a metamodel, i.e., a multigraph of meta-classes and their relations [START_REF] Mounira | Correct-by-construction model driven engineering composition operators[END_REF]. When assembling several abstract syntaxes, their concepts must be merged together so that the resulting abstract syntax is no less capable than its ancestors [START_REF] Erdweg | Language composition untangled[END_REF]. Informally, this means that the abstract syntax resulting from the merge must incorporate concepts from all languages and merge the definitions of shared elements. In our specific case, merging several abstract syntaxes boils down to the problem of metamodel composition [START_REF] Emerson | Techniques for metamodel composition[END_REF]. Figure 6.2 illustrates the syntax merging operator on a simple example. In this example, the metamodel depicted in Figure 6.2b is merged into the metamodel The syntax merging operator depicted in Figure 6.2a to produce the metamodel depicted in Figure 6.2c. We use the terms receiving metamodel, merged metamodel, and resulting metamodel to refer to the three metamodels involved in the merging operation. Similarly, the terms receiving language, merged language, and resulting language will be used throughout this section.

Depending on the meta-language used for defining metamodels, different merging operators may be employed with different policies for matching and merging rules, conflicts management, etc. The choice of the concrete semantics of the syntax merging operator is left to the implementer of the algebra, and a concrete implementation is described in Section 6.4.2. In the remainder of this section, we denote • the abstract syntax merging operator.

Semantics and Semantics Merging

The semantics Sem of a language L consists in a sequence of aspect definitions A t i , where A is a class, t is a pointcut and i is the index of A in the sequence. In this case, the pointcut t specifies the concept of the language's abstract syntax (a meta-class) on which the aspect must be ultimately woven. This makes explicit the binding relation of Figure 6.1 between the syntax and the semantics of a language. The advice is the class A itself, consisting of attributes and methods. When a joinpoint is found, i.e., when a matching concept is found in the language, elements of the advice are inserted in the target meta-class. Typically, for semantics definition, the advice consists of a set of methods that describe the computation steps of the concept matched by t [START_REF] Jézéquel | Mashup of Meta-Languages and its Implementation in the Kermeta Language Workbench[END_REF]. Since aspects are defined using classes in an object-oriented fashion, they may inherit from each other. To cope with possible specializations and redefinitions of methods, aspects are ordered by hierarchy in a sequence:

Sem(L) (A t i ∈ Aspects) where ∀A t i ∈ Sem(L), ∃c ∈ AS(L) : c <# t ∀A t i , A t j ∈ Sem(L) : A t i A t j =⇒ i > j (6.2)
where <# denotes the object type matching relation introduced by Bruce et al. [START_REF] Kim | Semantics-Driven Language Design:: Statically Type-Safe Virtual Types in Object-Oriented Languages[END_REF] and used to formalize the model typing relation [START_REF] Steel | On model typing[END_REF], and denotes the class inheritance operator. For a language L to be well-formed, each of the aspects of its semantics Sem(L) must have a matching meta-class in its abstract syntax AS(L); this is what the first property ensures. Ordering the aspects that compose a semantics in a sequence leaves the choice of linearization and/or disambiguation opened to the implementer when several aspects are in conflicts (e.g., insert the same method on the same target t). The merging of two semantics, denoted Sem • Sem , consists in producing a new sequence of aspects. As the definition shows, merging two semantics is equivalent to concatenating their sequences of aspects. As a result, this operator is not commutative and any redefinition of an aspect or method in Sem overrides the previous definition in Sem:

Sem • Sem ≡ Sem Sem (6.3)
where denotes the sequence concatenation operator. We also denote sig(A) the signature of an aspect A. The signature of an aspect is a metamodel that exposes all the features (i.e., properties and methods) defined in an aspect and its dependencies, omitting the concrete method bodies. Figure 6.3b depicts the signature extracted from the aspect depicted in Figure 6.3a using the K3 meta-language. It follows that the signature of a semantic specification Sem is defined as the structural merge (through •) of the signature of the aspects that compose it:

sig(Sem) • A t i ∈Sem sig(A t i) (6.4) 1 @Aspect(className = C1) 2 class A { 3 int i 4 @Containment C2 myC

Model Typing

Each language L has one exact model type M T . Like abstract syntaxes, model types are described with a metamodel. The exact model type of a language is its most precise structural interface, i.e., the model type that exposes all its features. Thus, the exact model type of a language exposes both its concepts and their relations (i.e., its metamodel) and the signature of its semantics (newly inserted features and methods). Hence, the exact type M T of a language L is defined as the structural merge of its abstract syntax and the signature of its semantics:

M T (L) AS(L) • sig(Sem(L)) (6.5)
Any change in either the abstract syntax or the signature of the semantics of a language will result in a different type. The issue of tooling is indirectly addressed through the reasoning capabilities provided by the model typing layer: if the result of the application of operators leads to a language L whose model type M T is a subtype of the model type M T of another language L , then tools defined for L can be reused as is for L. In the following, we denote <: the subtyping relation between model types.

Operators for Language Assembly

Syntax Merging When building new languages, it is likely that previously defined language abstract syntax fragments may be reused as is. For instance, the syntactic constructs of a simple action language (e.g., with expressions, object manipulation, basic I/O) may be shared by any language encompassing the expression of queries or actions. This first scenario of language assembly thus consists in importing a fragment of abstract syntax from another language to reuse its definition. In such a case, the language resulting from the merge of the receiving language and the merged abstract syntax must incorporate all the concepts of both, while preserving the semantics of the receiving language. Also, its model type must be updated accordingly to incorporate the new syntactic constructs. Hence, we specify the merging of an abstract syntax AS into a language L, denoted m ← -, as follows:

L m ← -AS = AS • AS , Sem, M T • AS (6.6)
In most cases, the resulting model type M T = M T • AS is a subtype of both AS and M T since it incorporates the features of both. It is, however, worth noting that new elements introduced in a model type with the • operator may break the compatibility with the super model type in some cases (e.g., the introduction of a new mandatory feature [START_REF] Guy | On model subtyping[END_REF]). In the former case, when the compatibility can be ensured through subtyping, tooling defined over AS and/or L (e.g., transformations, checkers) can be reused as is on the resulting language.

Semantics Weaving Another scenario of language assembly consists in importing predefined semantics elements in a language. When different languages share some close abstract syntax, such as different flavors of an action language, their semantics are likely to be similar, at least for the common subparts (e.g., the semantics of integer addition is likely to remain unchanged). When the case arises, one would like to import the semantics definition of addition from one action language to another. We denote w ← -the semantics weaving operator, which consists in weaving a semantics Sem on a language L. In such a case, the two semantics are merged and the exact type of L is updated to incorporate the syntactic signature of the new semantics:

L w ← -Sem = AS, Sem • Sem , M T • sig(Sem) (6.7)
Following the previous definitions, this operator can be successfully applied only if there is a matching meta-class in AS for each aspect of Sem . That is, ∀A t i ∈ Sem , ∃c ∈ AS : c <# t. Because the two semantics are concatenated through •, Sem may override any previous definition of Sem (such as a particular computation step implemented as a method in an aspect). It follows that the semantics weaving operator may be employed either to augment or to override part of the semantics of the receiving language L. The semantics weaving operator is thus particularly relevant for incrementally implementing semantic variation points [START_REF] Chauvel | Code generation from UML models with semantic variation points[END_REF].

Operators for Language Customization

In the previous section, we specified how the syntax merging and semantics weaving operators help to build new languages by assembling predefined fragments of abstract syntax and semantics. However, although the reuse of language artifacts significantly decreases the development costs, the resulting languages may not fit exactly the language designer's expectations, or the particular requirements of a new domain. We introduce in this section an algebra for language customization. Customization may include specialization of the abstract syntax or semantics of a language for a given context, restriction to a subset of its scope or composition with (possibly part of) other language definitions. In a recent paper, Erdweg et al. propose a taxonomy of different composition operators between languages, namely language extension, restriction, unification, and self-extension [START_REF] Erdweg | Language composition untangled[END_REF]. The operators of our algebra closely match their taxonomy: the inheritance operator supports language extension, the slicing operator supports language restriction, and the merging operator supports language unification. Self-extension is deemed out of scope since it refers to the ability of a language to extend itself (aka. language embedding). We detail each of our language customization operators in the next subsections.

Language Merging Situations arise where two independent languages must be composed to form a more powerful one. For instance, a finite-state machine language may be defined as a basic language of states and labeled transitions combined to an action language for expressing complex guards and actions. The resulting language may in turn be merged with a language for expressing classifiers where the state machines would describe the behavior of their methods. Another intuitive example is the association of markup languages (e.g., HTML) styling languages (e.g., CSS) and programming languages (e.g., Javascript), which together enable the development of modern dynamic webpages. Instead of keeping these languages separated -resulting in e.g., coherency problemsan alternative would be to unify them in a single, coherent, language for web engineering. To support this kind of scenario, we introduce the language merging operator, denoted . The output of this binary operator is a new language that incorporates the syntax and semantics of its two operands. In this case, the receiving language is augmented with the merged language to produce the resulting language. Because the merged language L can override part of the semantics of the receiving language L, the two languages do not commute under .

L L = AS • AS , Sem • Sem , M T • M T (6.8)
Naturally, language merging may be equivalently reformulated in terms of language assembly operators:

L L ≡ (L m ← -AS) w ← -Sem (6.9)
The resulting language incorporates the syntax of both operands (merging the common concepts), as well as their semantics (with possible redefinitions in Sem). The exact model type M T = M T • M T of the resulting language results from the merge of the exact types of the operands: it exposes the features of both. In most cases, the resulting exact type M T is thus a subtype of both M T and M T . If one of the two languages exposes a mandatory property that is not present in the other, however, the subtyping relation does not stand [START_REF] Guy | On model subtyping[END_REF].

Language Inheritance

In essence, the language inheritance operator is similar to the language merging operator, as both aims to combine the definitions of two languages. The language inheritance operator, denoted ⊕, differs from the language merging operator in that it does not consider the two languages on equal terms: a sub-language inherits from a super-language. Moreover, the language inheritance operator ensures that the sub-language remains compatible with its super-language. Regardless the subsequent operators applied to the sub-language, it must remain compatible with the super-language, otherwise an error is reported. Concretely, it means that the exact model type of the sublanguage must remain a subtype of the exact model type of the super-language: the M T <: M T property is conservative, meaning that any operators apply on L must not violate it. In a sense, the language inheritance operator supports a form of language design-by-contract, as the language designer is assured that tools defined over L can be reused on L.

L ⊕ L = AS • AS , Sem • Sem, M T where M T = M T • M T and M T <: M T (6.10)
Note that in this case, the sub-language first inherits the abstract syntax and semantics of its super-language, and may then override part of the inherited artifacts to refine its definition, provided that the conservative subtyping relation stands.

Naturally, the language inheritance operator can be equivalently formulated in terms of assembly operators, provided that the aforementioned constraints hold:

L ⊕ L ≡ (L m ← -AS) w ← -Sem (6.11)
Language Slicing Model slicing [START_REF] Blouin | Kompren: Modeling and Generating Model Slicers[END_REF][START_REF] Sen | Meta-model Pruning[END_REF] is a model comprehension technique inspired by program slicing [START_REF] Weiser | Program slicing[END_REF]. The process of model slicing involves extracting from an input model a subset of model elements that represent a model slice. Slicing criteria are model elements from the input model that provide entry points for producing a model slice. The slicing process starts by slicing the input model from model elements given as input (the slicing criteria). Then, each model element linked (e.g., by inheritance or reference) to a slicing criterion is sliced, and so on until no more model elements can be sliced. For instance, model slicing can be used to extract the static metamodel footprint M M of a model operation defined over a metamodel M M , i.e., extracting the elements of M M used by the operation [START_REF] Jeanneret | Estimating Footprints of Model Operations[END_REF]. Model slicing can be positive or negative. Positive model slicing consists of slicing models according to structural criteria. These criteria are the required model elements from which the slice is built. For instance, based on the simple metamodels of Figure 6.2, one may want to slice the M M 1 metamodel using as slicing criterion The language slicing operator the reference a of the class A. This slicing consists of statically extracting all the elements of M M 1 in relation with a (a included). The result of this slicing is depicted by Figure 6.4a: the class A that contains a is sliced; the super class of A (F) is sliced; the A's references with a lower cardinality greater than 0 are sliced (only the mandatory references and attributes are sliced); the target classes of these references (e.g., D) are sliced. This slicing process continues recursively until no more elements can be sliced. We extend the model slicing principles proposed by Blouin et al. [START_REF] Blouin | Kompren: Modeling and Generating Model Slicers[END_REF] to support negative slicing. Negative slicing consists of considering the slicing criteria as model elements not to have in the slice. For instance, a negative slicing of M M 1 with the class D as slicing criterion produces the slice depicted by Figure 6.4b: a clone, that will be the output slice, of M M 1 is created; The class D is removed from this clone; all the classes that have a mandatory reference to D are removed (class A); subclasses of the removed classes are also removed (classes B and C). This slicing process continues recursively until no more elements can be removed. Model slicing can be used to perform language restriction. For instance, a language designer may want to shrink a legacy metamodel to its sub-set used by a set of model operations of interest [START_REF] Jeanneret | Estimating Footprints of Model Operations[END_REF]. This consists of a positive slicing from a set of operations. A language designer may also want to restrict the features of a language (e.g., removing specific features of a programming language) for education purposes or to reduce its expressiveness [START_REF] Erdweg | Language composition untangled[END_REF]. This consists of a negative slicing from unwanted elements. A concrete example would be the extraction of one of the diagram of UML (e.g., the class diagram) to be reused in another context.

In the context of language engineering, we leverage the slicing operation to permit language designer to slice a language according to some slicing criteria, as formalized as follows. Given a language L (AS, Sem, M T).

Slicing L using the slicing criteria c consists of slicing positively or negatively (respectively denoted Λ + and Λ -, or Λ + -when considering both operators) its abstract syntax AS using c to produce a new abstract syntax AS , such that AS ⊆ AS. Then, the aspects A t i , that compose Sem, that only refer to elements defined in AS are extracted to form Sem , as formalized as follows:

Λ + -(L, c) = AS , Sem , M T , where: AS λ + -(AS, c), AS ⊆ AS, Sem (A t i ∈ Sem, f p(A t i , AS) ⊆ AS), M T <: M T (6.12)
The footprint operation (denoted f p) extracts the metamodel elements of AS used in the aspects a, similarly to model operation footprinting [START_REF] Jeanneret | Estimating Footprints of Model Operations[END_REF]. The choice of applying a positive (Λ+) or negative (Λ-) slicing is made by the language designer during at language design time according to her requirements. The abstract syntax slicing operation [START_REF] Blouin | Kompren: Modeling and Generating Model Slicers[END_REF] (denoted λ + , λ -, or λ + -) slices a given abstract syntax AS according to slicing criteria c to produce an output abstract syntax AS . Because of the strict slicing that extracts metamodel elements by assuring the conformance, the original model type M T is a subtype of the resulting model type M T .

Implementation of the Algebra in Melange

After introducing Melange's support for model polymorphism in Chapter 5, we detail in this section the features of Melange that are targeted to the implementation of the algebra specified in Section 6.3. Specifically, we detail the implementation choices used to instantiate the algebraic specification into the Melange language. We refer the reader to Chapter 7 for an in-depth presentation of Melange and K3.

Instead of providing its own dedicated meta-languages for the specification of each part of a DSL (abstract syntax, type system, semantics, etc.), Melange relies on other independently-developed components to provide such features. The abstract syntax of DSLs is specified using the Ecore implementation of the EMOF standard provided by the Eclipse Modeling Framework (EMF). 2The choice of Ecore is motivated by the success of EMF both in the industry and academic areas. This allows Melange to possibly integrate a wide range of existing DSLs: over 300 Ecore metamodels exists in the "metamodel zoo" [247], over 9000 on Github. For semantics specification, Melange relies on the K3 meta-language to express operational semantics through the definition of aspects. The algebra introduced in Section 6.3 has been implemented within Melange, providing features for assembly and customization of legacy DSLs artifacts. Overall, Melange is tightly integrated with the EMF ecosystem. Newly built DSLs can thus benefit from other EMF-based components such as Xtext [START_REF] Eysholdt | Xtext: Implement your Language Faster than the Quick and Dirty Way[END_REF] for defining their textual syntax or Sirius [START_REF]Eclipse[END_REF] for their graphical representation.

In this section, we present the Melange language through its abstract syntax (Section 6.4.1), implementation choices (Section 6.4.2), and integration with the EMF ecosystem (Section 6.4.3). The concrete syntax and pragmatics of Melange are exemplified through the case study presented in Section 6.5.

Abstract Syntax

The abstract syntax of Melange (the metamodel depicted in Figure 6.5) includes the concepts and relations discussed in Section 6.2. LanguagesSpec, the root of Melange's abstract syntax, defines a meta-program that (i) specifies an assembly of DSLs (ii) delimits the scope for the inference and checking of model typing relations.

A Language is defined by its Metamodel and its associated Semantics. A Metamodel is composed of a set of Classes. A Semantics consists of a set of Aspects used to weave behavior into its meta-classes. This mechanism relies on static introduction and is inspired by the concept of open classes [START_REF] Jézéquel | Mashup of Meta-Languages and its Implementation in the Kermeta Language Workbench[END_REF]. As specified in Section 6.3, both assembly and customization operators can be applied on languages. The MergeSyn operator is used to import and merge a metamodel into a given language, whereas the Weaving operator is used to weave a given aspect on the abstract syntax of a language. For the customization part, a language can inherit (Inheritance operator) from a "super" language. The MergeLge operator allows language designers to merge one language into another one. Finally, the Slicing operator permits to slice a language given a specific slicing criterion.

A ModelType defines an interface to manipulate models. It consists of a set of ObjectTypes, thereby defining a group of interrelated types. Model types can be created from scratch, or automatically inferred from a concrete language. In the latter case, the language explicitly references this new model type as its exactT ype. Model types are linked one another by subtyping relations: if M T is a subtype of M T , then there is one and only one Subtyping instance that references M T as its subType and M T as its superType.

Implementation Choices

The algebra introduced in Section 6.3 can be implemented in various ways. We report here on additional choices we made in its concrete implementation within Melange. The algebra does not impose a particular formalism for expressing metamodels. In our implementation, we rely on the Ecore implementation of the EMOF standard provided by EMF to specify the abstract syntax of DSLs. Different operators for metamodel merging have been proposed in the literature (e.g., [START_REF] Emerson | Techniques for metamodel composition[END_REF][START_REF] Kolovos | Merging models with the epsilon merging language (EML)[END_REF]). As introduced in Chapter 3, the UML2.0 specification introduces the notion of PackageMerge that specifies "how the contents of one package are extended by the contents of another package" [START_REF]OMG. Unified Modeling Language (UML), Infrastructure Specification[END_REF]. Informally, the UML specification states that "a resulting element will not be any less capable than it was prior to the merge". Matching of elements of both sides mostly occurs based on name equality. When a match is found between two elements, the resulting package incorporates both sides of its definition. We choose to use a slightly improved version of the PackageMerge operator as defined in the UML specification and refined by Dingel et al. [START_REF] Dingel | Understanding and improving UML package merge[END_REF]. To meet our requirements, we adapt the PackageMerge operator by trading its UML specificities with EMOF specificities, while preserving its general spirit. For example, we do not consider the concept of Profile and adapt the concept of UML Association to the concept of EMOF Reference. The PackageMerge operator specifies a set of constraints that must be ensured for the merge to succeed. If one of the constraints is violated, the merge is ill-formed and an error is reported. It follows that operators of the algebra that rely on the abstract syntax merging operator share the same property: if the constraints are violated the operation is invalid and an error is reported to the user, otherwise the result is guaranteed to be well-formed. On the semantics part, we choose to use the K3 meta-language, based on the Xtend programming language, for the definition of operational semantics. Xtend compiles directly to Java code, providing a seamless integration with other artifacts generated using the EMF framework. A simple example of an aspect used to weave executability in the State meta-class of a FSM language is given in Listing 6.1. The special variable _ self refers to the element on which the aspect is ultimately woven, i.e., its joinpoint (the fsm.State meta-class in this case). It allows the aspect to access all its features (e.g., outgoingTransitions in Listing 6.1). Here, the ExecutableState aspect inserts a step method in the State meta-class to fire the appropriate transition given an input character c. Note that aspects may also declare new attributes and references that are introduced in the target meta-classes. The @Aspect annotation specifies the pointcut of the aspect, while the rest of the class definition defines its advice (new methods and attributes to be inserted). Since pointcuts and advices are not explicitly separated, the process of re-binding a set of aspects to a new abstract syntax consists in copying the aspects while updating their pointcuts to target the appropriate concepts of the new abstract syntax. Note that in Listing 6.1, the step method of ExecutableState assumes the presence of a fire method in fsm.Transition. This method could be directly defined in the metamodel of the FSM language or, most likely, inserted using another aspect ExecutableTransition.

We also made the following choices in the priorities given to each operator. The inheritance operator has the highest priority, followed by the merge and slice operator (in order of appearance), ending with the aspect weaving operator. The rationale behind these choices is as follows. First, languages may inherit part of their definition from a super-language. As a consequence, the type system ensures that the sub-typing relation between the two languages is kept, otherwise an error is reported. Then, other artifacts may be assembled, merged or sliced on top of the inherited definition. Finally, aspect weaving comes last to support both the redefinition of imported parts and the addition of "glue code" to make the different parts fit together. As an example, when two merged languages exhibit no common subparts, a new aspect can be woven to connect them in a meaningful way by adding structural references between their abstract syntax, or by inserting some additional code to make their respective interpreters cooperate, e.g., through context translation. Finally, for each language declaration, Melange infers its corresponding exact model type. The embedded model-oriented type system automatically infers the subtyping hierarchy through structural typing. This hierarchy is used to ensure the subtyping relation when inheritance is involved, as described in Chapter 5.

Compilation Scheme and Integration with EMF

From a Melange specification, the Melange compiler first reads and imports the external definitions and assembles them according to the rules of the algebra. Once the new DSLs are assembled, customization operators are applied. Then, the compiler completes the resulting model by inferring the subtyping hierarchy among the model types inferred for each language. The implementation relations between metamodels and model types are also inferred in this phase, leading to a complete Melange model conforming to the metamodel of Figure 6.5. Then, it generates a set of artifacts for each declared language: (i) an Ecore file describing its abstract syntax (ii) a set of aspects describing its semantics attached to the concepts of its abstract syntax (iii) an Ecore file describing its exact model type and (iv) an Eclipse plug-in that can be deployed as is in a new Eclipse instance to support the creation and manipulation of models conforming to it. To generate the runtime code for the new artifacts, Melange relies on the EMF compiler (a genmodel generating Java code from an Ecore file), and the Xtend compiler (generating Java code from the aspects file). For each language definition, the Java code generated by both compilers is associated to a plug-in. Since Melange reuse the formalism for language definition of EMF, along with its compilation chain, it is fully interoperable with the EMF ecosystem. Newly created DSLs may thus benefit from other tools of the EMF ecosystem such as Xtext for the definition of a textual editor or Sirius for a graphical representation. More information on the compilation scheme of Melange and its integration with the EMF ecosystem is given in Chapter 7.

Case Study

In this section, we illustrate how the proposed algebra implemented within Melange can be used by language designers to leverage legacy DSLs in the creation of new ones. We introduce in Section 6.5.1 the case study we consider. Section 6.5.2 details how the proposed case study is implemented in Melange. Finally, Section 6.5.3 discusses the results we gather from this experiment.

Language Requirements

To illustrate Melange, we propose to design a new executable modeling language for the Internet of Things (IoT) domain, i.e., for embedded and distributed systems. This language is inspired by general-purpose executable modeling languages (e.g., Executable UML [START_REF] Stephen | Executable UML: A foundation for model-driven architectures[END_REF], fUML [START_REF] Seidewitz | UML with meaning: executable modeling in foundational UML and the Alf action language[END_REF]) and modeling languages dedicated to the IoT domain (e.g., ThingML [START_REF] Fleurey | MDE to manage communications with and between resource-constrained systems[END_REF]). This language enables the modeling of the behavior of communicating sensors built on top of resourceconstrained embedded systems, such as low-power sensors and micro-controller devices (e.g., Arduino,3 Raspberry Pi4). Such a language aims at providing appropriate abstractions and dedicated simulators, interpreters, or compilers depending on the targeted platforms. To illustrate the benefits of Melange, the resulting language is built as an assembly of other publicly-available languages. Instead of starting the definition of our language from scratch, we leverage the assembly and customization operators introduced in Section 6.3 to reuse as much as possible the definition of other languages developed externally. We consider the three following requirements while designing this language:

1. The language has to provide an IDL (2. The language must support the modeling of IoT scenarios. Scenarios, or "sketches", model how different sensors and actuators hosted on different board interact with each other (e.g., a thermometer hosted on one board sends the current temperature to another board which in turn manages the heater accordingly). Various languages may be employed to model this concern. For instance, process modeling languages such as the (f)UML/SysML activity diagram, BPEL [START_REF] Andrews | Business process execution language for web services[END_REF], or BPMN [START_REF] Omg | Business Process Model and Notation (BPMN) 2.0[END_REF] are good candidates.

3. The primitive actions that can be invoked within the activities must be expressed with a popular language IoT developers are familiar with. Such a language can be shared by the community and embedded on a set of devices used in the IoT domain. Even though the C language is the common base language of most embedded platforms, its lack of abstraction hinders its exploitation in a modeling environment. Instead, we choose the Lua language [START_REF] Ierusalimschy | Lua-an extensible extension language[END_REF]. Lua is a dynamically-typed language commonly used as an extension or scripting language. Lua is notably popular in the IoT domain since it is compact enough to fit on a variety of host platforms.

The first step of the design of the IoT language is to define its minimal abstract syntax which captures its domain. Figure 6.6 depicts the initial metamodel of the IoT language. A System is composed of a set of boards (e.g., an Arduino) which host a set of hardware components (e.g., a thermometer, a motor). Each HWComponent exposes a set of services that are described by an OperationDef, i.e., a method with a name, a list of typed parameters and a return type. Finally, the scenario one would like to experiment on the system is called a Sketch which is described by an Activity diagram. It is important to note that OperationDef and Activity are merely placeholders. Leveraging the assembly and customization operators proposed in Section 6.3, the concrete implementation of these concepts will be provided by other languages that are suitable for describing services and activities. With the aim of validating Melange, the experimental protocol consists in selecting three publicly-available implementations of existing EMF-based languages to support the three aforementioned requirements. Interface Description Language For the definition of the structural interfaces of sensors, we choose the OMG Interface Description Language (IDL) [205], part of the Common Object Request Broker Architecture (CORBA) standard defined by the OMG [START_REF] Omg | Common Object Request Broker Architecture (CORBA) Specification 3.3[END_REF]. The metamodel of IDL is depicted in Figure 6.7. Informally, the IDL enables the expression of user-defined data structures and interfaces, which consist in a set of attributes and operations. In the context of our IoT language, we use the IDL to express the structural interfaces of sensors in terms of provided services (e.g., to query the temperature in a room or turn on a light). We use an EMF-based implementation of the IDL language publicly available on Github. 5 It consists of an Ecore metamodel matching the abstract syntax described in the OMG specifications, and an Xtext grammar that eases the definition of textual models conforming to it. As we only use the IDL to express the structural interfaces of sensors, we do not require its semantics definition.

Contained

Activity Modeling

For the activity modeling part, we reuse materials from the Model Execution Case of the TTC'15 tool contest. 6 The case foresees the specification of the operational semantics of a subset of the UML activity diagram with transformation languages [START_REF] Mayerhofer | The TTC 2015 Model Execution Case[END_REF]. We directly reuse the Ecore metamodel specifying the abstract syntax of the activity diagram provided by the organizers. 7 For the operational semantics, we reuse the materials provided along our solution to the TTC'15 contest [START_REF] Combemale | A Solution to the TTC'15 Model Execution Case Using the GEMOC Studio[END_REF]. The operational semantics consists of a set of aspects expressed in K3, is publicly available on the companion webpage of our solution, 8 and detailed in our submission [START_REF] Combemale | A Solution to the TTC'15 Model Execution Case Using the GEMOC Studio[END_REF]. Figure 6.8 depicts an excerpt of the metamodel of the activity diagram.

Action Language For the action language part, we reuse a publicly-available implementation of the Lua language developed using Xtext. 9 We implement the operational semantics of the Lua language using K3 in the same way we defined the operational semantics of the activity diagram. Figure 6.9 depicts an excerpt of the metamodel of the Lua language.

Language Design using Melange

The resulting language is built using the Melange assembly definition given in Listing 6.2. We detail hereafter each part of the Melange file.

First, The abstract syntax of the IDL language is imported using the syntax keyword to define a new language named Idl (Lines 3-5). Then, the ActivityDiagram language is defined in the same way but uses the with keyword to import the aspects defining its operational semantics (Lines 7-11). for a formalisation of the semantics of activity diagrams in terms of tokens and offers as Petri nets [START_REF] Syriani | Operational semantics of UML activity diagram: An application in project management[END_REF]. The Lua language is defined in the same way as the assembly of its abstract syntax and operational semantics (Lines 13-16). Finally, the IoT language is defined as an assembly of the three previouslydefined languages. First, its syntax, depicted in Figure 6.6, is imported. Then, its specification is merged with the result of the slice operation (Lines 20-21). This slice specifies that only the OperationDef and PrimitiveDef of Idl -and their mandatory dependencies -must be retained in the resulting language. All other concepts of Idl -which are not relevant for our IoT language -are discarded. Then, the resulting language is merged with the Lua language (Line 22) and ActivityDiagram language (Line 24). For the sake of clarity, the renaming clauses ensure that all the concepts imported from other languages using the slice and merge operators end up in the same package iot (Lines 21, 23, 25). At this point, because there is no overlapping concepts between the assembled languages (i.e., concepts with the same name), the new IoT language consists of concepts that are not yet linked together. To glue together these concepts and their semantics, two new aspects are woven on the assembly (Lines 26-27). The role of these aspects is to create links between the assembled languages, and customize them to fit the IoT specificities. Listing 6.3 depicts the OperationDefAspect. This aspect glues together the OperationDef meta-class of the Idl language and the Block meta-class of the Lua language. On the syntactic side, it inserts a new containment reference from OperationDef to Block, specifying that each OperationDef service is implemented by a Block of Lua code. On the semantics side, it weaves a new method execute in the OperationDef meta-class that delegates its execution to the already-implemented execute method of Lua's Block semantics. Similarly, the other aspect OpaqueActionAspect takes care of gluing together ActivityDiagram's OpaqueAction with Idl's OperationDef, specifying that an opaque action of the activity diagram can invoke a particular service on a particular board. For the sake of conciseness, the complete code of OpaqueActionAspect is given in Listing A.2. Each language is implicitly associated to its automatically-inferred exact model type (named after the language's name suffixed with M T , e.g., LuaMT). The type checking algorithm of Melange can thus infer the subtyping hierarchy among the different languages, as described in Chapter 5. In this case, for instance, the exact model type of the resulting language IoTMT subtypes both LuaMT and ActivityDiagramMT, as it exposes all of their features that have been retrieved through the merge operator. Consequently, tools and transformation defined on e.g., the Lua language can be reused to manipulate models conforming to the IoT language, thanks to model polymorphism. IoTMT does not subtype IdlMT, however, as the slice operator has removed all the concepts of Idl that are not related to OperationDef and PrimitiveDef. In the end, we obtain a new executable modeling language for IoT resulting from the composition of three legacy languages for which reuse was unforeseen. Additionally, the tools previously defined on the assembled languages can be reused as is for the resulting language.

Action

1 @Aspect(className = OperationDef) 2 class OperationDefAspect { 3 @Containment
As explained in Section 6.4.3, new languages built using Melange (such as the IoT language) are fully EMF-compliant. They can thus benefit from other tools of the EMF ecosystem. For the sake of the experiment, we designed both a textual editor (using Xtext) and a graphical editor (using Sirius) for our IoT language. Listing 6.4 depicts an example model expressed in a textual form. The comments highlight which languages are used to write each part of the model. and Beagle boards in this case). The description of each service takes the form of a method, with optional parameters and return types, expressed using the IDL. Finally, the implementation of each of these services is specified in Lua (not shown in Figure 6.10). As the operational semantics of the IoT language is fully defined, this model can be executed -the output of its execution is shown in the lower part of Figure 6.10.

Results and Discussion

Ability of Melange to be integrated into an existing ecosystem -The integration using Melange of three existing EMF languages allows a language designer to obtain a new EMF language. If we do not consider the imposed methodology for defining the language semantics (the use of the interpreter pattern [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF]), no modification of these languages was required to support that composition. This illustrates how Melange can be integrated into an existing language workbench without any change in the legacy abstract syntaxes. All the Melange operators are used for this case study. Although this does not guarantee that these operators are sufficient, it highlights that all of them are required when a language designer needs to compose existing languages.

Possible overhead in term of performance and lines of code that stem from the use of Melange -Compared to a top-down approach where the IoT language is built from scratch by an expert in language design, we observe no additional concepts integrated into the abstract syntax definition. At the semantics level, glue code is injected for the implicit conversion of the interpreter pattern context resulting from the composition of the various contexts stemming from various operational semantics. At runtime, no additional cost in terms of performance were observed to the use of the language resulting from the composition. Table 6 Performance comparison is obtained by loading and executing a model with 10 objects that contains one operation with a workflow with 1000 basic actions that do mainly 10 numeric operations. The comparison was done on the same laptop designed with an Intel i7 with 16Gb of memory, a Linux 64bit operating system, and an Oracle Java 8 virtual machine.

Alignment with the taxonomy of language composition -Interestingly, our approach for assembling the three languages to create the IoT language perfectly matches Erdweg et al.'s taxonomy of language composition. In the experiment, we use language extension, restriction, unification, and composition extension. Moreover the composition is realized "by adding glue code only" [START_REF] Erdweg | Language composition untangled[END_REF], using aspects.

Nevertheless, these results may be moderated by the following threats to validity. First, all the languages must be designed in the same technical ecosystem. Melange does not provide any support for integrating heterogeneous languages in terms of technical ecosystem. Second, Melange cannot compose any language semantics. The composition can be done if and only if the semantics is operational and defined following the interpreter pattern (e.g., through static introduction or a visitor). Third, concepts with different names in different languages may represent the same concept. In such a case, adaptation mechanisms are required to align them before composition. Melange provides a simple renaming mechanism that allows to rename concepts, but lacks a powerful mechanism for realizing complex adaptations. Finally, the same person implemented the language using Melange and a traditional top-down approach. This person is an expert in language design and modeling technologies. Besides, the top-down language design has been reviewed by three experts in language design.

Conclusion

While current language workbenches provide import mechanisms, they usually lack an explicit support for customization and safe composition of imported artifacts. In this chapter, we proposed an approach for building DSLs by safely assembling and customizing legacy DSLs artifacts. We proposed different operators for assembling (merge S /weave), restricting (slice), extending (inherits), and merging (merge l) DSLs. The use of typing and subtyping relations that provides a reasoning layer for DSLs manipulation is also promoted. The approach is implemented in the Melange language workbench. We illustrated and discussed the usefulness of Melange by designing a new executable modeling language for IoT showing that: all the proposed operators are relevant for designing a new language based on the composition and the specialization of three legacy DSLs; the use of Melange does not introduce specific technical issue compared to a traditional top-down approach. Besides, our approach for assembling the three languages to create the IoT language perfectly matches Erdweg et al.'s taxonomy of language composition.

Chapter 7

The Melange Language Workbench

In Chapters 5 and 6, I detail the specific features of Melange that support, respectively, model polymorphism, and modular language development. In this chapter, I give a broader description of the Melange workbench including its support for language definition, extension, and composition (Section 7.1), model typing (Section 7.2), and its integration with the EMF ecosystem (Section 7.3). Since Melange relies on the K3 meta-language for the definition of operational semantics, I also introduce K3 in greater details.

Melange [START_REF]The Melange Language Workbench[END_REF] is a language workbench bundled as a set of Eclipse plug-ins, built atop the Eclipse Modeling Framework (EMF), and distributed under the Eclipse Public License (EPL-1.0). Melange integrates all the contributions presented in this thesis. We paid particular attention to its development in order to validate and spread our ideas in collaborative projects. In Chapters 5 and 6, we present the support in Melange for, respectively, model polymorphism and modular development of DSLs, including the implementation choices and technical details. This chapter is mainly intended as a reference manual that describes the different features of Melange from a user point of view. As a complement to this chapter, we refer the reader to the official websites of Melange1 and K32 for the most up-to-date documentation.

Language Definition in Melange

Melange permits language designers to specify the abstract syntax and the operational semantics of software languages. Melange does not directly support the manipulation of concrete syntax specifications as first-class entities: it is thus not possible to compose two arbitrary grammars or graphical editors.

However, as we shall see, the languages generated by Melange are plain EMF languages. Language designers can thus manually define the concrete syntaxes of the generated languages, using other tools of the EMF ecosystem such as Xtext [START_REF] Eysholdt | Xtext: Implement your Language Faster than the Quick and Dirty Way[END_REF] or Sirius [START_REF]Eclipse[END_REF]. In this section, we present the two meta-languages employed to define abstract syntaxes and operational semantics. We use a simple extension of the MiniFsm language presented in Chapter 2 to illustrate the features of Melange. The complete source code of the example is available on the Melange repository.3

Abstract Syntax definition in Ecore

As introduced in Chapter 2, Ecore is an object-oriented meta-language for the specification of metamodels aligned with the EMOF specification of the OMG and bundled as part of EMF. In Melange, Ecore is used to specify the abstract syntax of languages in the form of a metamodel. Ecore being a popular language for metamodel definition (over 300 Ecore metamodels in the "metamodel zoo" and over 9000 on Github), new languages in Melange can leverage a rich variety of existing metamodels. As we have already introduced Ecore in Chapter 2 and used it in Chapters 5 and 6, we do not detail it further here. Figure 7.1 depicts the metamodel of the MiniFsm language we use throughout this chapter.

Operational Semantics definition in K3

K3 is a meta-language for operational semantics definition inspired from Kermeta [START_REF] Jézéquel | Mashup of Meta-Languages and its Implementation in the Kermeta Language Workbench[END_REF]. In particular, it follows an aspect-oriented modeling approach [START_REF] Jézéquel | Model driven design and aspect weaving[END_REF] for defining operational semantics where the computation steps of the semantics are implemented as methods contained in an aspect [START_REF] Jézéquel | Mashup of Meta-Languages and its Implementation in the Kermeta Language Workbench[END_REF]. K3 aspects leverage the concepts of open-classes [START_REF] Clifton | MultiJava: Modular open classes and symmetric multiple dispatch for Java[END_REF] and inter-type declarations [START_REF] Apel | On the structure of crosscutting concerns: Using aspects or collaborations[END_REF] to statically weave new methods, attributes, and references in the corresponding metaclasses of a metamodel. Concretely, K3 consists of a set of active annotations on top of the Xtend programming language. 4 These annotations are processed by dedicated annotation processors that complement the Xtend compiler to generate the corresponding Java code at design time. 7.1. The @Aspect annotation takes as parameter a className that points to an existing meta-class. The new runtime concept currentState stores a reference to the current State at each execution step, while the currentEvent attribute stores the event to be processed at a given step. In the context of an aspect, the _ self variable is an implicit variable referring to the joinpoint of the aspect (a particular FSM instance). The execute method receives a list of events and processes them sequentially while triggering the execution of each state and firing the appropriate transitions. The methods execute on State and isFireable on Transition are themselves inserted by other aspects woven on the corresponding concepts, not shown here for the sake of conciseness. Aspect methods call each other to define the overall control flow of the operational semantics, mimicking a classical visitor pattern [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF].

Aspects can also inherit one another. This mechanism is particularly useful for customizing the semantics of an existing language, and gradually inserting semantic variation points. For instance, when extending a language, a new aspect can be woven on the resulting language to override one or several methods of its semantics (using the @OverrideAspectMethod annotation), possibly calling the super-implementation within the overriding method. Listing 7.2 depicts a simple aspect FSMAspectOverride that inherits from the FSMAspect of Listing 7.1 and overrides its execute method to first preprocess the input events, and then call back the overridden implementation of execute (Line 8). Finally, the attributes declared in an aspect can be supplemented with additional annotations that precise their semantics in a modeling context. These annotations include @Containment to specify that a reference towards another class is a containment reference, or @Opposite to specify that a reference towards another class is the opposite of another reference in the target class. These annotations are taken into account when inferring the signature of an aspect (cf. Chapter 6). The resulting signature metamodel incorporates the additional semantics expressed through annotations. The documentation website of K3 lists all these annotations together with their uses.5

Assembling Abstract Syntax and Semantics in Melange

The two artifacts presented in Sections 7.1.1 and 7.1.2 are defined separately to foster separation of concerns in language development. This means that the same set of aspects can be applied to different metamodels, if they expose the appropriate concepts. Conversely, different sets of aspects can be applied to the same metamodel, which provides a mean to define different semantics for the same abstract syntax (e.g., an interpreter, a set of validation rules, and a compiler). Despite being defined separately, the abstract syntax and semantics of a language must ultimately be assembled together to form the overall language's implementation. As illustrated in Figure 7.2a, new languages are declared using the language keyword. Each language has a unique name and resides in a given package. Within a language, language designers can import existing Ecore files using the syntax keyword and weave aspects using the with keyword. If multiple syntax are imported, they are merged together. Different validation rules ensure that the imported artifacts are compatible one another, e.g., that there is no conflicting concept in two syntax specifications, or that each aspect has a corresponding meta-class in the language's syntax (as explained in Chapter 6). If any validation rule is violated, Melange reports an error to the user detailing the problem. The MiniFsm language is defined as depicted in Figure 7.2a, where each imported aspect defines the operational semantics of the corresponding concepts FSM, State, and Transition defined in "MiniFsm.ecore". On the user interface side, the Melange editor comes with a dedicated outline that highlights the different constituents of a language, as depicted in Figure 7.2b. Here, the MiniFsm language is composed of its abstract syntax represented as a package minifsm, and a set of aspects, each woven (denoted @) on a meta-class of its abstract syntax. Each aspect contains another package corresponding to its signature in the form of a metamodel, as explained in Chapter 6.

Language Extension and Composition

Melange distinguishes itself from over language workbenches by considering languages as first-class entities that can be extended and composed. In this section, we build on the MiniFsm language to illustrate typical language extension and composition scenarios. The reader can refer to Chapter 6 for a precise definition of the semantics of the composition operators of Melange.

Language extension

In Melange, language extension is realized with the inherits keyword. Similarly to class inheritance in object-oriented programming, language inheritance allows to reuse the definition of a previous language as the basis for a new one. Additionally, Melange ensures that the sub-language remains compatible with the tools of the super-language, i.e., that its exact model type is a subtype of the exact model type of its super-language (cf. Chapter 5).

This mechanism is often used to extend a language with its execution semantics, as depicted in Listing 7.3. Here, we create an executable variant of the MiniFsm. Because ExecutableMiniFsm inherits from MiniFsm, the tools and services defined on MiniFsm can be reused on ExecutableMiniFsm. For instance, editors defined on MiniFsm are immediately available on ExecutableMiniFsm, and new tools such as an animator or a simulator can be defined on ExecutableMiniFsm. Alternatively, Listing 7.4 depicts another inheritance scenario where the MiniFsm language is extended to override one of the computation step defining its semantics in a new MiniFsmVariant language. MiniFsmVariant reuses all the syntax and semantics of MiniFsm, and weaves the new aspect FSMAspectOverride depicted in Listing 7.2 to override the execute method woven on the FSM metaclass. The syntax keyword can also be used in sub-languages to augment previous syntax definitions. In this case, the metamodel imported in the sub-language is merged with the metamodel defining the syntax of its superlanguage. Multiple inheritance is also supported, in which case the different languages are linearized following the rules described in Chapter 6.

Language composition

To present the composition mechanisms of Melange, we introduce the new language MiniActionLang. MiniActionLang is a minimalistic action language that supports the expression of blocks of code, consisting of a set of statements and expressions. It supports basic definition and manipulation of Boolean and integer variables, and basic control flow constructs such as conditional if statements and while loops. In Melange, MiniActionLang is defined as shown in Listing 7.5. The "MiniActionLang.ecore" metamodel describes concepts such as IntegerVariable, If, Block, etc. The "RuntimeConcepts.ecore" metamodel describes the runtime concepts of the action language, such as the current value of variables. The merge of these two Ecore files (Lines 2-3), along with the aspects that define their semantics (Line 4) form the overall language implementation. 61 language MiniActionLang { 2 syntax "MiniActionLang.ecore" MiniFsm lacks the expressiveness required to express guards on transitions, and actions in states. The composition operators of Melange can be used to solve these problems by composing the MiniActionLang language with the MiniFsm language in a meaningful way to create a new language Fsm, as depicted in Listing 7.6.

Model Types

As seen in Chapters 5 and 6, every language in Melange implements its exact model type, a structural language interface exposing all its features. Melange automatically infers the exact model type of each language and, by convention, names it with the name of the language suffixed by MT. From Figure 7.2a, Melange thus generates a new model type named MiniFsmMT. The name and URI of the inferred model type can be overridden using the clause exactType <mt-name> [uri <mt-url>] in a language definition. From the language specification depicted in Figure 7.2a, Melange generates the model type depicted in Figure 7.3. The new features and methods woven by the aspects defining the semantics of MiniFsm are highlighted in gray.

Model types can also be defined explicitly using the modeltype keyword. In this case, the Ecore file imported using the syntax keyword defines the concepts and features of the model type. This feature is typically used to follow a design-by-contract method for language definition. In this situation, a language designer first explicitly defines one or several model types, and then implement a new language definition that implements these model types. Doing so, she ensures that her language implements the appropriate interfaces, and can thus benefit from the tools and services defined on these interfaces. This situation is depicted in Figure 7.4a. If the type checker of Melange detects that one of the model type pointed by the implements keyword is not implemented by the language, an error listing the elements that do not match is reported to the user.

Integration with Eclipse and EMF

EMF is a rich ecosystem that includes numerous modeling technologies such as transformation engines, graphical and textual editors, and persistence frameworks. Throughout the development of Melange, we have paid a particular attention to the seamless integration of Melange with the EMF ecosystem. This integration is beneficial for both parts. First, Melange relies internally on EMF technologies for the definition of languages (such as Ecore), and can thus benefit from a rich diversity of existing metamodels. Second, any language designer familiar with the EMF ecosystem can benefit from the composition and interoperability facilities provided by Melange, without disrupting her workflow.

As detailed in the remainder of this section, the integration of Melange and EMF relies on two main pillars. First, any language generated by Melange (e.g., the result of the extension of an existing language) is itself a plain EMF language that can be manipulated using other EMF technologies (Section 7.3.1). Second, the MelangeResource, as introduced in Chapter 5, can be used to provide model polymorphism capabilities to any EMF-based technology transparently (Section 7.3.2).

Compilation Scheme

In Eclipse, a contextual menu on Melange files enables users to request the generation of the runtime of each language defined in a Melange file. For each language, the compiler of Melange generates a new Eclipse plug-in project containing (i) an Ecore file describing its abstract syntax and another describing its exact model type in the model directory (ii) the Java implementation generated by EMF from the Ecore files in the src directory (iii) the aspects implementing its semantics in the src-gen directory and (iv) a plugin.xml file that contributes several extension points used to register the language in Eclipse. The typical structure of a language project generated by Melange is depicted in Figure 7.5.

When deployed as a plug-in in a new Eclipse instance, each project automatically registers the corresponding languages and model types. Each language is registered as a classic EMF project. Users can thus leverage other tools of the EMF ecosystem, such as a tree editor or a graphical editor, to edit models conforming to it. They can also define new model transformations, either directly on the metamodels, or on the model types. In the latter case, combined with the MelangeResource, these transformations are inherently generic and can be reused for any other registered language that implements the appropriate model type.

The MelangeResource

The MelangeResource, presented in Chapter 5, is a mechanism integrated with EMF that transparently provides model polymorphism to any EMF-based tool of the Eclipse modeling ecosystem. In this section, we present how the MelangeResource is used to polymorphically invoke tools and services defined around a DSL, for instance implemented as Java, ATL [START_REF] Jouault | ATL: A Model Transformation Tool[END_REF], or QVTo [START_REF] Omg | Meta Object Facility (MOF) 2.0 Query/View/Transformation[END_REF] transformations.

Illustration with Java Listing 7.8 depicts how to invoke Java transformations polymorphically using the MelangeResource. The methods execute and prettyPrint are defined as taking as parameter an object typed by the object type FSM of MiniFsmMT (cf. Figure 7.3). The method execute simply delegates the execution of the state machine to the operational semantics using the execute method woven on FSM. Dynamic dispatch applies here, and the most precise implementation of the execute method is used. For instance, if this transformation is applied to a model conforming to the MiniFsmVariant language, the execute method of the FSMAspectOverride aspect is invoked (cf. Listing 7.4). The reflexivePrettyPrint method illustrates that model polymorphism also works when using the reflexive API of EMF [START_REF] Steinberg | EMF: Eclipse Modeling Framework[END_REF]. In this case, the reflexive API calls (e.g., eClass()) are catched directly at the model type level: the information returned describes the MiniFsmMT model type (cf. Illustration with QVTo Just like ATL, QVTo transformations can be defined on a model type. 7 Listing 7.10 depicts a QVTo transformation equivalent to the ATL transformation of Listing 7.9. Here again, the transformation can be applied to any model conforming to a language that implements the MiniFsmMT model type, using a Melange URI. This URI can be specified through QVTo's launch configuration interface, or programmatically.

Conclusion

In this chapter, we have presented the Melange language workbench from a user point of view. This chapter thus complements the presentation of Melange in Chapters 5 and 6 where the internal implementation of the support for model polymorphism and modular language development is detailed. Thorough this chapter, we used the illustrative language MiniFsm to present syntax and semantics definition, syntax and semantics assembling, and language extension and composition. We also presented how models can be flexibly loaded by users of the language using the MelangeResource.

To the best of our knowledge, despite the popularity of EMF in both academia and industry, Melange is the first language workbench to provide such support for advanced language assembly, composition and interoperability in the EMF ecosystem. Melange is a key component of the GEMOC studio, 8where it serves as an assembly and extension language for the definition of heterogeneous modeling languages. Melange is also used in the context of the

Part IV

Conclusion and Perspectives

Chapter 8

Conclusion and Perspectives

In this chapter, I resume the contributions of this thesis and offer concluding remarks (Section 8.1). Then, I develop two main perspectives that directly stem from the contributions presented in this thesis (Section 8.2).

Conclusion

DSLs are software languages specifically tailored to a particular domain of application. They allow reasoning about and implementing software systems at the level of abstraction of the problem domain. The dedicated tools accompanying a DSL automatically bridge the gap between abstractions at the problem level and their implementation in specific technologies at the solution level. Both model-driven engineering and language-oriented programming rely on the definition of appropriate DSLs to address each concern in systems development. Specifically, external DSLs offer essential added value for the end users as their syntax and semantics can be fully tailored to a specific domain of application, without restriction.

In this thesis, we identified two main challenges to be addressed for the engineering of external DSLs. First, the proliferation of independently-developed and constantly-evolving DSLs raises the problem of interoperability between different DSLs and their ecosystem (IDEs, transformations, etc.). Second, since DSLs and their environment are costly to develop, the benefits in terms of productivity when using DSL technologies must offset the initial investment required in developing them. Techniques must thus be developed to ease the engineering of new DSLs.

To tackle these challenges, we first introduced the notion of language interface as a fundamental mean to raise the level of abstraction in different activities of DSLs engineering. A language interface is a relevant abstraction for a specific purpose of a language or language component. A language interface can be defined manually, or inferred automatically from a language implementation. Language implementations are linked to language interfaces through an implementation relation, and multiple languages may match the same interface. This enables language designers to (i) reason about languages through dedicated abstractions and (ii) define generic tools and services on a language interface that can be reused for all matching languages.

Then, we used model types (a specific structural language interface) to provide a safe mechanism of model polymorphism to increase flexibility and interoperability in DSLs engineering (Challenge #1). We based our contribution on the theory of model typing, which is inspired by seminal works on type groups and family polymorphism in the programming community. We have shown how model polymorphism can be achieved in practice (i) to define generic transformations on a family of eight finite-state machine language variants and (ii) to support flexible manipulation of UML models gathered from Github using four different versions of the UML standard. The model polymorphism mechanism we propose is flexible yet safe, and increases interoperability between the environments of different DSLs.

Finally, to foster reuse and composition in DSLs engineering, we proposed a meta-language dedicated to modular and reusable development of DSLs from legacy language artifacts (Challenge #2). This meta-language provides a set of operators dedicated to DSL assembly and customization inspired from previous taxonomies of language composition in the SLE community. Furthermore, it includes a new restriction operator that is missing from this taxonomies as a way to restrict the scope and expressiveness of existing languages. We have shown how the dedicated set of operators we propose allows to engineer a new language for IoT systems modeling as an assembly of three publicly-available language implementations: the OMG Interface Description Language, the UML activity diagram, and Lua. Our three contributions are highly interrelated, as depicted in Figure 8.1. Language interfaces -and more precisely model types -are used both for model polymorphism, and DSL reuse and composition. Furthermore, model polymorphism is directly used when composing DSLs to reason about their structural compatibility, the substitutability of their models, and to define generic transformations over language families created using composition operators. We implemented all our contributions in a new language workbench named Melange. Every language in Melange is associated to its structural interface materialized by a model type. The structural type system of Melange automatically infers the subtyping relation between different model types. When subtyping relations are inferred, Melange automatically provides model polymorphism and substitutability among the appropriate DSLs. Melange is seamlessly integrated with the Eclipse Modeling Framework, the de facto technological standard in both academia and industry. As such, Melange transparently provides model polymorphism and language composition capabilities to language designers working in this technological space. To the best of our knowledge, Melange is the first language workbench to provide such DSL engineering capabilities in the EMF ecosystem.

In conclusion, the contributions presented in this thesis address the two challenges we identified. The Melange language workbench constitutes a solid technical contribution that has been applied in different collaborative projects for different purposes: the definition of executable DSLs, the definition of generic tools and transformations, and the composition of independentydeveloped language artifacts.

Perspectives

We consider this thesis as a first step towards a better understanding of composition and interoperability in DSLs engineering. Along the way, we identified many promising perspectives of our work. In this section, we choose to detail two of these long-term perspectives: component-based language engineering, and viewpoint engineering.

Component-Based Language Engineering

In this thesis, we specifically focused on the reuse of legacy language artifacts, including syntax, semantics, and their associated tools and services. In this context, we cannot make any assumption on the way legacy artifacts are defined (e.g., with modularity and reuse in mind). The reuse and composition capabilities we propose are thus by definition limited compared to a development method that would anticipate modularity and reuse.

One way to go further in this direction would be to support the definition of explicit language modules, i.e., fragments of language that cannot be used as is, but are meant to be composed by language designers to create complete languages. This would require to be able to express explicit provided and required interfaces of language modules. As an example, a simple "for-loop" construct consists of a condition (its stop condition) and the block of code on which it iterates. So, a "for-loop" module would require a language module to express conditions (and an evaluation function), and another module to express its inner block of code (and an evaluation function). In turn, the "for-loop" module would provide the concept of for-loop and the associated evaluator. The modules, as well as the interfaces, crosscut the different concerns of a language (syntax, semantics), and can be independently developed and validated. Instead of starting from scratch, a language designer could pick some modules and compose them together à la carte in a meaningful way to produce a new DSL. The derivation of a new language could be for instance supported by a feature model, acting as the front-end for the configuration and derivation of a new language.

The general objective is to reduce further the development costs of DSLs by enabling DSL designers to reuse as much as possible previous (fragments of) language definitions. These fragments could be independently implemented, tested, and validated. They could possibly be written by other language designers, and available "off-the-shelf" in a language workbench. This would also enable domain experts who lack strong knowledge in language theory to build their own language easily.

Going towards component-based language engineering raises many scientific questions: what is the appropriate level of granularity for modularizing languages; what is the appropriate formalism to write the provided and required interfaces; when composing at the specification level, how to compose at the implementation level without having to re-generate everything (e.g., making the interpreters cooperate); if some properties have been formally checked on a given module, do they still hold on the composed languages; how to unify the basic data types, type systems, etc. when composing; how to handle crosscutting concerns that are inherently hard to modularize (e.g., exceptions); and many more.

We believe some of the contributions presented in this thesis could be leveraged to realize this vision. The notion of language interface may be used to realize the concept of provided and required interfaces of a language: model types, for instance, allow to abstract away some of the intrinsic complexity of language implementations, and to reason about language modules substitutability and composition. The composition and customization operators may then be used to realize the concrete composition of different modules, while possibly customizing them to fit a new particular domain of application.

Viewpoint Engineering

In software and systems engineering, the idea of viewpoints is to materialize multiple perspectives in the development of complex systems. Each viewpoint typically materializes a stakeholder's point of view on a system, tailored to her specific needs. While the idea of viewpoint engineering is not new, it garnered a considerable interest in the last years through the definition of the ISO/IEC 42010. The ISO/IEC 42010 aims to standardize the description of architectures in systems engineering and heavily relies on the notion of viewpoints. In the following paragraphs, we detail our vision on the interaction between software language engineering and viewpoint engineering.

In model-driven engineering, separation of concerns is supported by the use of dedicated DSLs that materialize the natural decomposition of the system in different domains of expertise. For instance, a language dedicated to variability modeling typically includes the concepts of variant, feature, configuration, etc. The interaction between the user of a language and the language itself is supported by the use of tools that the user leverages to undertake concrete tasks (e.g., editing a model, analyzing it, generating artifacts, etc.). In the variability modeling example, different stakeholders have different interests and different ways to manipulate the same underlying concepts. Some want to manipulate the modeled features through a tree structure editor, others as product-comparison matrices, others using a configurator for deriving specialized products.

More generally, we observe that the separation of concerns in different DSLs is not always natural for the realization of concrete tasks. The use of languages indeed varies according to the particular task at hand. Since each stakeholder interacts with a given language in a particular context, the use of a language must vary according to its users. Viewpoint engineering aims at adjusting the interaction with languages to the need of specific stakeholders. From the same underlying concepts (e.g., the ones specific to variability modeling), different viewpoints provide the most appropriate views of the same system to carry on specific tasks. Thereby, viewpoint engineering supports a new layer of decomposition, namely the separation of tasks, atop the separation of concerns. Figure 8.2 depicts the interaction between software language engineering and viewpoint engineering. Naturally, software language engineering and viewpoint engineering are highly complementary. The former provides the appropriate abstractions leveraged by the latter to provide adapted views for manipulating the underlying models. While many viewpoints may be defined on the same language, some others are orthogonal to the decomposition of domains materialized in different languages. Some tasks, such as security and safety analysis or global simulation indeed crosscut multiple domains of expertise. For instance, in the variability modeling example, a particular stakeholder may have to relate abstract features of the variability model to functional artifacts expressed for instance in SysML.

The definition of a new viewpoint may involve the projection (i.e., selection) of information from base DSLs or the insertion of new syntactic and semantic elements only relevant for a particular task. The operators for language extension, restriction, and customization presented in this thesis are thus particularly relevant in this context as they provide a way to manipulate languages as first-class entities. In complement, the idea of language interfaces, and in particular model types, may be useful for the definition of viewpoints. Model types allow to filter information from a language, by exposing only a subset of the features of its abstract syntax and semantics. Moreover, transformations can be directly defined upon a model type to define the tools and services supporting particular tasks of a given stakeholder. The language interface materialize a stakeholder's view on the system, and the tools and services define how she interact with the underlying models.

The definition of viewpoints on a particular DSL is already a reality, e.g., in systems engineering. Capella, the systems engineering language developed by Thales Group and part of the PolarSys initiative1 , for instance, is already complemented with a framework for viewpoint engineering named KitAlpha2 . In the context of the LEOC Clarity project, first experiments show that Melange could be used as an alternative to KitAlpha for the design and manipulation of viewpoints on the Capella language.

xFigure 1 :

 1 Figure 1: Vue d'ensemble des contributions

Figure 1 . 1 :

 11 Figure 1.1: Overview of the contributions

Figure 2 . 1 :

 21 Figure 2.1: Metamodel of the MiniFsm language

Figure 2 . 2 :

 22 Figure 2.2: A model conforming to the metamodel depicted in Figure 2.1

5 transition a from 0 to 1 6 transition b from 1 to 2 7 }Figure 2 . 3 :

 56723 Figure 2.3: Two concrete representations of the model depicted in Figure 2.2

Figure 2 . 4 :

 24 Figure 2.4: Static and dynamic model transformation footprinting, as proposed by Jeanneret et al.[START_REF] Jeanneret | Estimating Footprints of Model Operations[END_REF]

Figure 3 . 1 :

 31 Figure 3.1: Graphical outline of this chapter

Figure 3 . 2 :

 32 Figure 3.2: Reusing tools and services over language variants

Figure 5 . 1 :

 51 Figure 5.1: Separating implementations and interfaces of languages

Figure 5 . 2 :

 52 Figure 5.2: The metamodels of two variants of a finite-state machine language

Figure 5 .Figure 5 . 3 :

 553 Figure 5.3: An object type of the Transition class

Figure 5 Figure 5 . 4 :

 554 Figure 5.4: Examples of model types of the GuardFsm metamodel

Figure 5 .

 5 4b shows an example of a model type (GuardFsmMT) of GuardFsm. GuardFsmMT does not expose all the features of all its object types. The source feature of the Transition object type and the Guard object type are omitted. Therefore, GuardFsmMT cannot be considered as the exact model type of GuardFsm but only as one of its model type.Model Typing Relation. We call model typing relation, the typing relation that stands between a model and its model types. This typing relation brings flexibility against the standard conformance relation since it allows a model to have several model types. While each model element in a model is instance of only one specific class (defined in its metamodel), it can be typed by multiple object types (defined in different model types). However, because model types form a group of interrelated types, their consistency must be ensured and types of different groups must not be mixed[START_REF] Ernst | Family Polymorphism[END_REF]. Consequently, a model m is typed by a model type M T if all the model elements in the model are typed by an object type defined by M T . Formally, the model typing relation (:) is a binary relation from the set of all models M to the set of all model types MT , such that m : M T iff ∀o ∈ M, ∃t ∈ M T such that o is typed by t, where m ∈ M, and M T ∈ MT .

Figure 5 . 5 :Figure 5 . 6 :

 5556 Figure 5.5: Model typing relation example

Figure 5 .

 5 Figure 5.6 illustrates the implementation relation using the model type depicted in Figure5.4b. We graphically denote the implementation relation that stands between a metamodel and a model type using the standard implementation representation. Figure5.6 depicts a model type GuardFsmMT of GuardFsm. In this example, we graphically denote the concept of metamodel by tagging a class with the symbol MM . Using the proposed definition, GuardFsm implements the model type GuardFsmMT since all object types of GuardFsmMT have a corresponding implementation (a class) defined in GuardFsm.

1 language GuardFsm { 2 syntaxListing 5 . 2 :

 252 The FsmMT model type

Figure 5 . 7 :

 57 Figure 5.7: Leveraging the adapter pattern to polymorphically load a model as a specific model type

Figure 5 . 8 :

 58 Figure 5.8: Excerpt of the metamodels of the FSM language variants

18 exactType HierarchicalFsmSimultaneousMT 19 } 5 . 4 :

 181954 Listing Two of the eight variants of finite-state machine languages

Listing 5 . 6 :

 56 Excerpt of a generic ATL flatten transformation Listing 5.

Figure 6 . 1 :

 61 Figure 6.1: Assembling and customizing DSLs from legacy artifacts

 Figure 6.2: The syntax merging operator

Figure 6 . 3 :

 63 Figure 6.3: The signature sig(A) of an aspect A

 Figure 6.4: The language slicing operator

Figure 6 . 5 :

 65 Figure 6.5: Excerpt of the abstract syntax of Melange

Figure 6 . 6 :

 66 Figure 6.6: Initial metamodel of the IoT language

Figure 6 . 7 :

 67 Figure 6.7: Excerpt of the metamodel of the IDL

Figure 6 . 8 : 1 Figure 6 . 9 :

 68169 Figure 6.8: Excerpt of the metamodel of activity diagram (from [180])

7 _ 8 } 9 }

 789 self.lua.execute(env) Listing 6.3: The OperationDefAspect linking IDL's OperationDef to Lua's Block

19 initial 24 [27 flow e1 from init to m1, 28 [Figure 6 .Figure 6 . 10 :

 192427286610 Figure 6.10 depicts the same model in its graphical form. The left part depicts the general sketch of the IoT scenario one would like to experiment in the form of an activity diagram. Each activity in the diagram corresponds to the invocation of a particular service. Services are represented on the right part of Figure 6.10 and are associated to a particular device (Arduino, Raspberry Pi,

FinalStateFigure 7 . 1 :

 71 Figure 7.1: MiniFsm's metamodel

1 @ 7 / 9 } 10 } 7 . 2 :

 1791072 Aspect(className = FSM) 2 class FSMAspectOverride extends FSMAspect { 3 @OverrideAspectMethod 4 def void execute(EList<String> events) { 5 // Preprocess the events 6 val preprocessedEvents = events.map[toUpperCase] / Call back the overriden implementation in FSMAspect 8 _ self.super _ execute(preprocessedEvents)Listing Aspect inheritance and method overriding in K3

Figure 7 . 2 :

 72 Figure 7.2: Assembling the MiniFsm language in Melange

1 language MiniFsm { 2 syntax 9 }

 29 Listing 7.3: Defining the executable variant of MiniFsm

1 3 with semantics.FSMAspectOverride 4 } 7 . 4 :

 3474 language MiniFsm { / * cf. Listing 7.2a * / } 2 language MiniFsmVariant inherits MiniFsm { Listing Extending the MiniFsm language to define a semantic variation point

5 }

 5 Listing 7.5: The MiniActionLang language in Melange

24 } 25 }

 2425 Listing 7.7: The StateGlue and TransitionGlue aspects

Figure 7 . 3 :

 73 Figure 7.3: MiniFsm's exact model type: MiniFsmMT

 Explicit model type definition and implementation in Melange (b) Corresponding outline view

Figure 7 . 4 :

 74 Figure 7.4: Model types in Melange

Figure 7 . 5 :

 75 Figure 7.5: Eclipse project generated from the MiniFsm language of Figure 7.2a

28 }

 28 Listing 7.9: A generic model the ransformation in ATL

20 : 24 }

 2024 17 outgoing := self.incoming -> map mapTransition(); 18 } 19 mapping MiniFsmMT::Transition::mapTransition() MiniFsm::Transition { 21 event := "Inverted" + self.event 22 target := self.source.map mapState(); 23 source := self.target.map mapState(); Listing 7.10: A generic model transformation in QVTo

Figure 8 . 1 :

 81 Figure 8.1: Overview of the contributions, as presented in Chapter 1

Figure 8 . 2 :

 82 Figure 8.2: Software language engineering and viewpoint engineering

A. 2

 2 The OpaqueActionAspect linking ActivityDiagram's OpaqueAction to IDL's OperationDef . A.3 The complete Melange specification of the MiniFsm language presented in Chapter 7 . A.4 The aspects defining the glue between the languages of Listing A.3161 A.5 Adapter generated between the Transition meta-class of the Fsm language and the Transition object type of the FsmMT model type .

Table 5 .

 5 1: Definitions of the conformance relation in the literature

	Bézivin et al. [37]	"A model M conforms to a metamodel MM if and only
		if each model element has its metaelement defined in
		MM."
	Gasević et al. [113]	"metamodels and models are connected by the in-
		stanceOf relation meaning that a metamodel element
		(e.g., the Class metaclass from the UML metamodel)
		is instantiated at the model level (e.g., a UML class
		Collie)."
	Rose et al. [225]	"A model conforms to a metamodel when the metamodel
		specifies every concept used in the model definition, and
		the model uses the metamodel concepts according to
		the rules specified by the metamodel. [...] For example,
		a conformance constraint might state that every object
		in the model has a corresponding non-abstract class in
		the metamodel."
	Egea et al. [87]	"Namely, the objects of a "conformant" model are nec-
		essarily instances of the classes of the associated meta-
		model (possibly) related by instances of associations
		between the metamodel's classes."

Table 5 .

 5

	Extracted Duplicates Uniques MDT-UML2 Valid
	8737	2767	5970	3647	1651

2: Initial dataset collection

 .3, they cover all the major revisions of UML we are considering.

	Version of UML	2.2 2.3 2.4 2.5 All
	Conforming models 183 726 682 60 1651
	Table 5.3: Distribution of the UML versions of valid models
	Analysis We then analyze the resulting models with respect to the four
	major version of UML implemented in MDT-UML2, namely UML2.2 to 2.5.

Table 5

 5

	UML Version	2.2	2.3	2.4		2.5
	Validated	1502 1497 1502 1460
	% of all valid models 90.98 90.67 90.98 88.43
	Table 5.4: Valid models per version	
	Number of compatible versions	1	2	3	4
	Number of models		119 127	32	1373
	% of all valid models		7.21 7.69 1.94 83.16
	Table 5.5: Compatible versions per model

.4 sums up how many of the 1651 models can be loaded and validated with each different version. If a model makes use of a feature that does not exist in the metamodel used to load it, the parser may fail. For instance, a model that makes use of a feature introduced in UML2.4 cannot be loaded using the UML2.3 version of the metamodel. Similarly, constraints introduced, modified, or removed from a specific version can influence the result of the validation.

1

 // Flat state machine complying to the 2 // run-to-completion policy, e.g. UML/Rhapsody 3 language FlatFsmRtc { 4

		syntax	"metamodels/FlatFsm.ecore"
	5	with	rtc.ExecutableStateMachine
	6	with	rtc.ExecutableState
	7	exactType FlatFsmRtcMT
	8 }		
	9		
	10 // Hierarchical state machine complying
	11 // to the simultaneous events processing
	12 // policy, e.g. Classical statecharts
	13 language HierarchicalFsmSimultaneous {
	14	syntax	"metamodels/HierarchicalFsm.ecore"
	15	with	simultaneous.ExecutableStateMachine
	16	with	simultaneous.ExecutableState
	17	with	simultaneous.ExecutableTransition

 3 // StateMachine is the root object type of FlatFsmRtcMT 4 public void execute(StateMachine fsm, String input) { 5 List<String> models = new ArrayList<String>(); 11 models.add("melange:/file/m1.flat?mt=FlatFsmRtcMT"); 12 models.add("melange:/file/m2.timed?mt=FlatFsmRtcMT"); 13 models.add("melange:/file/m3.hiearchical?mt=FlatFsmRtcMT"); 14 models.add("melange:/file/m4.timedhierarchical?mt=FlatFsmRtcMT"); 15 ResourceSet rs = new ResourceSetImpl(); 16 17 // Load the model pointed by the given URI, 18 // retrieve its root StateMachine, and execute it 19 for (String uri : models) { 20

		// Dynamically dispatched on the actual
	6	// language's implementation of execute()
	7	root.execute(input);
	8 }	
	9	
	10 Resource res = rs.getResource(uri, true);
	21	StateMachine root = (StateMachine) res.getContents().get(0);
	22	execute(res, "{x;y;z;o;p;q}");

 Interface Definition Language) to model the sensors' interfaces in terms of provided services. Examples of popular languages that provide the appropriate abstractions include the class diagram of (f)UML, the SysML block definition diagram [209], MOF, or languages dedicated to interface definition such as the OMG IDL [205], as they all provide an object-oriented interface definition language.

Table 6 .

 6 .1 sums up the results. 1: Comparison of Melange and a top-down approach for the IoT language

		Melange Top-down
	Metaclasses (#)	104	104
	LoC for the glue (#)	27	0
	Efficiency (sec)	30,0	25,9

 Listing 7.1: Weaving an execute method in FSM using K3 Listing 7.1 depicts a simple aspect inserting a new reference currentState, a new attribute currentEvent, and a new method execute() in the FSM metaclass depicted in Figure

	1 @Aspect(className = FSM)
	2 class FSMAspect {
	3	State currentState
	4	String currentEvent
	5	
	6	def void execute(EList<String> events) {
	7	val eventIt = events.iterator
	8	
	9	if(eventIt.hasNext)
	10	_ self.currentEvent = eventIt.next
	11	
	12	_ self.currentState = _ self.initialState
	13	
	14	
	22	_ self.currentState = candidate?.output
	23	}
	24	}
	25	}
	26 }	

while (_ self.currentState !== null) { 15 _ self.currentState.execute 16 17 if(_ self.currentState instanceof FinalState) 18 _ self.currentState = null 19 else { 20 val candidate = _ self.transitions.findFirst[21 input === _ self.currentState && isFireable]

1

 --@nsURI MiniFsm=http://minifsm/ 2 --@nsURI MiniFsmMT=http://minifsmmt/ 3 4 module DummyInvert; 5 create OUT : MiniFsm from IN : MiniFsmMT; 6 7 rule InvertFsm { 8

		from inputFsm : MiniFsmMT!FSM
	9	to	outputFsm : MiniFsm!FSM (
	10	states <-inputFsm.state,
	11	initial <-inputFsm.finalState->first(),
	12	final	<-inputFsm.initial
	13)	
	14 }		
	15 rule InvertStates {
	16	from inputState : MiniFsmMT!State
	17	to	outputState : MiniFsm!State (
	18	name <-'Inverted' + inputState.name
	19)	
	20 }		
	21 rule InvertTransitions {
	22		

from inputTrans : MiniFsmMT!Transition

 1 modeltype MiniFsmMT uses 'http://minifsmmt/';

	2 modeltype MiniFsm	uses 'http://minifsm/';
	3		
	4 transformation dummyInvert(
	5	in inFsm : MiniFsmMT, out outFsm : MiniFsm);
	6		
	7 main() {	
	8	inFsm.rootObjects()[MiniFsmMT::FSM] -> map mapFSM();
	9 }		
	10 mapping FsmMT::FSM::mapFSM() : Fsm::FSM {
	11	ownedState	:= self.states -> map mapState();
	12	initialState := self.finalState -> first().map mapState();
	13	finalState	:= self.initial.map mapState();
	14		

} 15 mapping MiniFsmMT::State::mapState() : MiniFsm::State { 16 name := "Inverted" + self.name;

http://melange-lang.org

http://www.merge-project.eu/

http://gemoc.org/ins/

http://www.clarity-se.org/

https://polarsys.org/capella/

Some authors distinguish DSLs and DSMLs (Domain-Specific Modeling Languages). In this thesis, we consider DSMLs to be a particular class of DSLs, and use the term DSL consistently to designate both.

It is important to note that, in this thesis, we deliberately do not make any fundamental distinction between a model and a program, i.e., a sentence or linguistic utterance expressed in a given software language. Some authors even propose to use the portmanteau "mogram" to emphasize this idea[START_REF] Kleppe | Software language engineering: creating domain-specific languages using metamodels[END_REF].

Although the terms "internal" and "embedded" are sometimes used interchangeably, we use the term internal DSL to avoid the confusions sometimes associated with embedding[START_REF] Mernik | An object-oriented approach to language compositions for software language engineering[END_REF]

By analogy with inheritance in object-oriented programming, we use the terms superlanguage and sub-language to refer to the two languages involved in a language extension scenario.

 2 This notion of language composition contrasts with the notion of language coordination, which aims at integrating languages a posteriori for global reasoning or global simulation of a system described in different languages to support socio-technical coordination[START_REF] Cheng | On the Globalization of Domain-Specific Languages[END_REF]

http://www.languageworkbenches.net/

The DynSem meta-language[START_REF] Vergu | DynSem: A DSL for dynamic semantics specification[END_REF] is currently under development as an alternative to Stratego.

The material presented in this chapter led to the following publication:[START_REF] Degueule | On Language Interfaces[END_REF].

https://github.com/Microsoft/language-server-protocol

The material presented in this chapter led to the following publication:[8].

https://github.com/

EMF can also instantiate models reflectively or using a dedicated serialization mechanism provided by users of the framework. However, we only consider the case of XML Schema which is the default behavior of EMF.

http://www.eclipse.org/modeling/mdt/

http://www.omg.org/spec/OCL/

https://wiki.eclipse.org/MDT/UML2#Guides

Duplicates were mined and removed using the fdupes program that relies on full MD5 hashes and byte-to-byte comparison, i.e., syntactically and semantically equivalent models may not be detected as duplicates in this phase

http://melange-lang.org

The material presented in this chapter led to the following publication:[7].

https://www.eclipse.org/modeling/emf/

http://www.arduino.cc/

https://www.raspberrypi.org/

https://github.com/catedrasaes-umu/idl4emf

http://www.transformation-tool-contest.eu/

https://code.google.com/archive/a/eclipselabs.org/p/moliz/source/ ttc2015/source

http://gemoc.org/ttc15/

https://xtexterience.wordpress.com/2011/05/17/xtext-based-lua-editor/

http://melange-lang.org

http://diverse-project.github.io/k3/

https://github.com/diverse-project/melange/tree/master/examples/MiniFSM

http://xtend-lang.org

http://diverse-project.github.io/k3/

The wildcard character * in Line 4 specifies that all the aspects defined in the minilang.semantics package must be imported.

Note that QVTo's modeltype keyword should not be confused with Melange's modeltype keyword.

http://gemoc.org/studio/

http://www.clarity-se.org/

https://polarsys.org/capella/

https://www.polarsys.org/

https://polarsys.org/kitalpha/

Acknowledgments

Here, we create a new variant of the MiniFsm language (Line 1). This new variant is complemented with a subset of the MiniActionLang language, where only the relevant concepts are kept. Because the control flow of the new language is defined by the states and transitions of the state machine, the If and While statements of MiniActionLang are pruned using the slice keyword (Lines 2). The slice clause extracts, from a given language, the syntax matching the slicing criterion specified after the on clause, and the associated aspects. The renaming clause then ensures that all the concepts gathered from both MiniFsm and MiniActionLang end up in the same package "minifsm". Finally, two new aspects StateGlue and TransitionGlue are woven on the resulting language to glue together the two languages at the syntax and semantic levels. The code of these two aspects is given in Listing 7.7 with appropriate comments. Figure 7.3). When the developer uses this information to manipulate the model (e.g., through the eGet method, Line 27), the calls are dispatched directly to the language the model conforms to (in this case, either MiniFsm or Fsm).

The main method loads two different models: Simple.minifsm conforms to the MiniFsm language (cf. Figure 7.2a), and Simple.fsm conforms to the Fsm language (cf. Listing 7.6). Both implement the MiniFsmMT model type and can invoke the three tranformation methods. Illustration with ATL Every EMF-based tool of the Eclipse modeling ecosystem loads models using the EMF API, in a similar way than depicted in Listing 7.8. Because metamodels and model types are described by Ecore files, defining an ATL transformation on a model type is done in the exact same way than on a metamodel. Listing 7.9 depicts a simple ATL transformation that takes as input a model typed by the MiniFsmMT model type, and produces as output a new MiniFsm model where the transitions are inverted. This transformation can be applied to any model conforming to a language that implements the MiniFsmMT model type (e.g., MiniFsm, Fsm, or MiniFsmVariant). To do so, the user must invoke the ATL transformation with the proper Melange URI, which can be specified either directly in the graphical launch configuration of an ATL transformation, or when invoking the ATL transformation programmatically.

Abstract

Following the principles of Model-Driven Engineering and Language-Oriented Programming, Domain-Specific Languages (DSLs) are now developed in numerous domains to address specific concerns in the development of complex systems. However, despite many advances in Software Language Engineering, DSLs and their tooling still suffer from substantial development costs which hamper their successful adoption in the industry.

We identify two main challenges to be addressed. First, the proliferation of independently developed and constantly evolving DSLs raises the problem of interoperability between similar languages and environments. Language users must be given the flexibility to open and manipulate their models using different variants and versions of various environments and services to foster collaboration in the development of complex systems. Second, since DSLs and their environments suffer from high development costs, tools and methods must be provided to assist language designers and mitigate development costs.

In this thesis, we address these challenges through three interconnected contributions. First, we propose the notion of language interface. Using language interfaces, one can vary or evolve the implementation of a DSL while retaining the compatibility with the services and environments defined on its interface. Then, we present a mechanism, named model polymorphism, for manipulating models through different language interfaces. Model polymorphism opens up the possibility to safely manipulate models using different modeling environments and services. Finally, we propose a meta-language that enables language designers to reuse legacy DSLs, compose them, extend them, and customize them to meet new requirements. This approach relies on language interfaces to provide a reasoning layer for ensuring the structural correctness of composed DSLs and their safe manipulation.

We implement all our contributions in a new language workbench named Melange. Melange supports the modular definition of DSLs, and the interoperability of their environments. Melange is seamlessly integrated with the de facto standard Eclipse Modeling Framework (EMF) and provides model polymorphism to any EMF-based tool of the Eclipse modeling ecosystem. Using Melange, we show how to reuse tools and services over various language families (four versions of the Unified Modeling Language, and a family of statechart languages), and how to flexibly manipulate their models. We also show how Melange eases the development of new DSLs by designing a new modeling language for Internet of Things systems as an assembly of various independently developed languages.

Different perspectives directly stem from the contributions presented in this thesis. In particular, we discuss how our contributions constitutes a first step towards component-based language engineering and viewpoints engineering.