Multi-cell converter AC Motor Figure 0.1. PEMFC hybrid power system

It is clear that such a system requires sophisticated bus control algorithms in the background. In addition, automotive fuel cell applications have more rigorous operating requirements than stationary applications [8], as the risks of mechanical faults, leakage and explosion are higher in mobile systems. Technological malfunction can also turn the fuel-cell car into a potential hazard of life. These applications need precise control of performance, in order to guarantee reliability, health and safety of both, the fuel cell and the user. Along with control, health monitoring and safety systems are essential for the application of fuel cells in automobiles. These monitoring and control systems need to be precise, yet cost effective and computationally simple, so that they can be easily implemented on commercial automotive embedded system platforms. Both control and health-monitoring systems require precise measurements of different physical quantities in
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General Introduction

Polymer Electrolyte Membrane Fuel Cells (PEMFCs) have emerged as the most prominent technology for energizing future's automotive world. They are clean, quiet and efficient, and have been widely studied in automotive applications over the past two decades due to their relatively small size, light weight and easy manufacturing [START_REF] Al-Durra | Study of Nonlinear Control Schemes for an Automotive Traction PEM Fuel Cell System[END_REF][START_REF] Feroldi | Design and Analysis of Fuel-Cell Hybrid Systems Oriented to Automotive Applications[END_REF][START_REF] Pukrushpan | Control-Oriented Modeling and Analysis of Fuel Cell Reactant Flow for Automotive Fuel Cell Systems[END_REF][START_REF] Raminosoa | Design and Optimization of a Switched Reluctance Motor Driving a Compressor for a PEM Fuel-Cell System for Automotive Applications[END_REF]. While there are still major issues concerning cost, liability and durability to be addressed before they become a widely used alternative to Internal Combustion Engines (ICE), fuel cells are expected to lead the world towards fossil-fuel independent hydrogen economy in terms of energy and electro-mobility.

One hindrance of fuel cells in general, as independent electrical power sources, is that their dynamic response is slow. Therefore a fuel cell based power system requires additional storage elements with fast response time in order to handle rapid load variations. The most common elements are rechargeable batteries and super capacitors [START_REF] Suh | Modeling, Analysis and Control of Fuel Cell Hybrid Power Systems[END_REF]. Hybrid Electrical Vehicles (HEV), such as Audi Q5, carry high power batteries as well that can share the load with fuel cells. Obviously, their integration in the power system introduces additional converters in order to control their charging and discharging on the power bus. For example, let us consider a typical fuel-cell based hybrid automotive power system, shown in Fig. 0.1. The power electronics topology has numerous interconnected components, i.e.

• power elements (fuel cell stack and battery)

• a boost-type unidirectional DC/DC converter, for boosting fuel cell voltage to meet the power bus requirements

• a boost-type bidirectional DC/DC converter for connecting the battery to the bus 1

• a three-phase AC/DC rectifier, for occasional battery charging through external power source

• a three-phase DC/AC inverter for vehicle propulsion and traction motor(s)

• a multi-cell converter for DC loads (power windows, windshield wipers etc.) the fuel cell. However it is not always possible to use sensors for measurements, either due to prohibitive costs of the sensing technology or because the quantity is not directly measurable, specially in the conditions of humidified gas streams inside the fuel cell stack.

In these cases, state observers serve as a replacement for physical sensors, for obtaining the unavailable quantities, are of great interest. Observers form the heart of a general control problem and serve various purposes, such as identification, monitoring and control the system (Fig. 0.2). This thesis is dedicated to the problems associated with state observation in fuel cell systems. 

System Model

Motivation

We have seen that fuel cell based power generation systems are complex. Several additional equipments are required to make the fuel cell work at the optimal operating point. They are therefore vulnerable to system failure or mechanical faults that can cause the stop or the permanent damage of the fuel cell. Thus, reliable state observation and fault Detection and Isolation (FDI) schemes for such systems are necessary. As the entire fuel cell system cannot be covered in one study, the work carried out for this thesis is focused on the PEMFC air-feed system and power electronics systems. The motivation behind concentrating on these systems and the importance of their observation are discussed in the following subsections.

Air-Feed System

Fuel cells produce electricity through hydrogen and oxygen reaction. In PEMFCs, the anode and cathode sides are fed by hydrogen and oxygen, respectively. In fuel cell automobiles, hydrogen is stored in pressurized cylinders whereas air is used as oxygen source, pumped into the cathode by a compressor. The air-feed system introduces an interesting challenge in the overall PEMFC system performance. As the PEMFC system works as an autonomous power plant in automobiles, the compressor motor is also powered by the PEMFC. Therefore, the net power of the system is the difference of the power produced by the fuel cell and that consumed by the air-feed system (consumption by the other auxiliary systems is negligible). Experimental studies have shown that the air-feed system can consume up to 30% of the fuel-cell power under high load conditions [START_REF] Vahidi | Current Management in a Hybrid Fuel Cell Power System: A Model-Predictive Control Approach[END_REF]. Therefore, it needs to be operated at its optimal point, at which it supplies just sufficient oxygen necessary for the hydrogen and oxygen reaction.

Unfortunately, such type of control is not possible without the knowledge of exact oxygen partial pressure. Conventional sensors can only give the total air pressure inside the cathode, which contains the partial pressures of other mixture gases such as nitrogen, carbon dioxide etc. Imprecise knowledge of the oxygen quantity in the cathode can lead to serious problems, such as oxygen starvation during load transitions and hot-spots on the membrane surface [START_REF] Pukrushpan | Control of fuel cell breathing: initial results on the oxygen starvation problem[END_REF]. Observers can serve two important roles in the air-feed system.

First, they can provide precise estimate of the oxygen partial pressure. Second, they can detect any immediate variations in the nominal values of pressures throughout the air-feed system in order to identify anomalous behavior, thereby detecting and identifying faults and failures.

Power Electronics System

Hybrid power systems require power conditioning circuits with precise power control algorithms behind them in order for the output power to be compatible with the constraints of the power bus. The battery complements the fuel cell power during transient loading, thus hybridization in the fuel cell power system protects the fuel cell from harmful transition.

The fuel cell charges the battery in return, during steady load phases. Power converters are key components in managing the energy flow through such hybrid systems. Control of power electronic systems requires the knowledge of several states, whereas practical systems are equipped with a limited number of voltage sensors due to cost concerns. Observer can augment the number of available-for-control states by using the output voltage measurements to observe the unknown current values. Along with the objective for control, they can also be used to identify system faults by detecting abnormal currents.

Observation and FDI

The idea of using a dynamical system to generate estimates of the system states was proposed by Luenberger in 1964 for linear systems [START_REF] Luenberger | Observing the state of a linear system[END_REF]. Sliding mode techniques [START_REF] Utkin | Sliding Modes in Control and Optimization[END_REF] known for their insensitivity to parametric uncertainty and external disturbance, have been intensively studied and developed for observation and FDI problems, existing in the fuel cell power system. In particular, Higher Order Sliding Mode (HOSM) approaches are considered as a successful technique due to the following advantages [START_REF] Perruquetti | Sliding Mode Control in Engineering[END_REF]:

• Possible to work with reduced order observation error dynamics;

• Possible to estimate the system states in finite time;

• Possible to generate continuous output injection signals;

• Possible to offer 'chattering' attenuation;

• Robustness with respect to parametric uncertainties.

Contribution of the Study

In this thesis, sliding mode based observers and FDI methods are designed for the two critical PEMFC subsystems, i.e. air-feed system and power electronics converters for output feedback control and fault tolerant control. Observer and FDI design for PEMFC air-feed system is studied based on a 4 state model, which has been validated experimentally. Two efficient adaptive observers are developed for the PEMFC air-feed system, i.e. an adaptive algebraic observer and a novel adaptive-gain HOSM observer.

The adaptive algebraic observer is designed to observe the partial pressures of oxygen and nitrogen in the cathode of the PEMFC, from the measurements of compressor flow rate and supply manifold pressure. Lyapunov-based adaptive first and second order sliding mode differentiators is developed to estimate the time derivatives of the output, which are required for practical implementation of algebraic observer. The novel adaptive-gain HOSM observer is designed from available cathode pressure and supply manifold pressure measurements. The state estimation, parameter identification and fault reconstruction are performed simultaneously. The system states, i.e. nitrogen partial pressure, oxygen partial pressure and compressor speed, are observed and the stack current, considered as an uncertain parameter, is estimated through an adaptive update law, eliminating the need of an extra current sensor. Oxygen level is monitored to detect oxygen starvation conditions. The fault detection is focused on detecting sudden air leaks in the air supply manifold. The performance of these observers is evaluated by implementing on an instrumented Hardware in Loop (HIL) test bench that consists of a commercial twin screw compressor based physical PEMFC air-feed system and a real time PEMFC emulation system. The robustness against measurement noise and parameter variations is also validated experimentally.

Next, our focus is turned towards output feedback control and observer design for power converters. An efficient three-phase AC/DC power converter control system is designed, using output feedback HOSM control, only voltage measurement is required. A state observer and a parameter observer based on super-twisting algorithm (STA) are designed to observe the phase currents and load resistance, respectively. The proposed ST Sliding Mode Observer (SMO) guarantees faster convergence rate of the current observation error dynamics while the load resistance is estimated from so-called equivalent output error injection, facilitating the design of controller. Finally, multi-cell converters are studied, and an adaptive-gain Second Order Siding Mode (SOSM) observer for multi-cell converters is designed from measurement of the load current, with the objective of reducing the number of voltage sensors. A recent concept, Z (T N )-observability [START_REF] Kang | On the Observability of Nonlinear and Switched Systems[END_REF] is applied to observability analysis, since the states of the multi-cell system are only partially observable because the observability matrix never has full rank. During the sliding motion, the resulting reduced-order error system is proven to be exponentially stable.

Outline of the thesis

This dissertation is organized as follows:

Chapter 1 first provides SMO designs for both linear uncertain systems and nonlinear systems. Two kinds of SMO design based on Utkin's and Lyapunov's methods for uncertain linear system are recalled. Then, the SMO designs are extended to three forms of nonlinear systems (companion form, triangular input form and algebraical observable form). The applications of SMO based FDI have been presented and fault reconstruction via traditional SMOs is discussed. Then, our theoretical contribution in Second Order SMO based FDI is introduced. A novel adaptive SOSM Observer is developed and its application in FDI is presented. In the end, two illustrative examples are shown to both SMO designs and their applications in FDI.

Chapter 2 describes the model of PEMFC system which includes stack voltage model and air feed system model. The air feed system is modeled as a 4 state model which considers the dynamics of oxygen partial pressure, nitrogen partial pressure, compressor speed and supply manifold pressure. Then, a real time PEMFC emulator is designed using experimental data obtained from a 33kW PEMFC unit containing 90 cells in series.

Finally, the proposed air feed system model is validated experimentally through the HIL test bench which consists of a physical air-feed system, based on a commercial twin screw compressor and a real time PEMFC emulator.

Chapter 3 contains the major contributions related to higher order sliding mode observation and adaptive HOSMO based fault reconstruction approach for PEMFC air-feed system. First, an algebraical observer is designed for for the partial pressures of oxygen and nitrogen in the cathode of the PEMFC. The states of the PEMFC air-feed system are presented in terms of a static diffeomorphism involving the system outputs (compressor flow rate and supply manifold pressure) and their time derivatives, respectively.

The implementation of the algebraical observer on the HIL test bench is described. The bibliographical study of existing approaches in these fields will be followed by a brief presentation of some established first order and second order SMO algorithms. Then, first order SMO based FDI methods will be demonstrated. Finally, our contribution in bridging the gap of second order SMO and adaptive second order SMO based FDI will be presented, followed by two illustrating examples.

State-of-the-art

System observation is essential for obtaining unmeasurable states for precise control applications. In general, they are also used for cutting costs by replacing some physical sensors for observable states. Yet, modeling inaccuracy and parametric uncertainty in complex physical systems hinder correct state observation and induce errors. Sliding mode technique is known for its insensitivity to external disturbances, high accuracy and finite time 9

convergence. These properties make it an excellent choice for observation of higher order nonlinear systems such as fuel cell systems.

The early works were based on the assumption that the system under consideration is linear and that a sufficiently accurate mathematical model of the system is available. When the system under consideration is subject to unknown disturbances, the fault signal and unknown disturbance are very likely to produce a similar residual signal. This problem is known in the literature as robust FDI [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF], which usually involves two steps: the first step is to decouple the faults of interest from uncertainties and the second step is to generate residual signals and detect faults by decision logics. Several practical techniques for these steps have been proposed in contemporary literature, for example geometric approaches [START_REF] De Persis | A geometric approach to nonlinear fault detection and isolation[END_REF], H ∞ -optimization technique [START_REF] Qiu | Robust FDI systems and H ∞ -optimization-disturbances and tall fault case[END_REF][START_REF] Frank | Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis[END_REF][START_REF] Hou | An LMI approach to H -/H ∞ fault detection observers[END_REF], observer based approaches (e.g. adaptive observers [START_REF] Wang | On the use of adaptive updating rules for actuator and sensor fault diagnosis[END_REF][START_REF] Yang | Nonlinear adaptive observer design for fault detection[END_REF], High Gain Observers (HGO) [START_REF] Besançon | High-gain observation with disturbance attenuation and application to robust fault detection[END_REF][START_REF] Veluvolu | High-gain observer with sliding mode for nonlinear state estimation and fault reconstruction[END_REF], Unknown Input Observers (UIO) [START_REF] Hou | Design of observers for linear systems with unknown inputs[END_REF][START_REF] Saif | A new approach to robust fault detection and identification[END_REF][START_REF] Chen | Design of unknown input observers and robust fault detection filters[END_REF]).

Edwards et al. [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF] proposed a fault reconstruction approach based on equivalent output error injection. In this method, the resulting residual signal can approximate the actuator fault to any required accuracy. Based on the work of [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF], Tan et al. [START_REF] Tan | Sliding mode observers for detection and reconstruction of sensor faults[END_REF] proposed a sensor fault reconstruction method for well-modeled linear systems through the Linear Matrix Inequality (LMI) technique. This approach is of less practical interest, as there is no explicit consideration of disturbance or uncertainty. To overcome this, the same authors [START_REF]Sliding mode observers for robust detection and reconstruction of actuator and sensor faults[END_REF] proposed an FDI scheme for a class of linear systems with uncertainty, using LMI for minimizing the L 2 gain between the uncertainty and the fault reconstruction signal. Linear uncertain system models can cover a small class of nonlinear systems by representing nonlinear parts as unknown inputs.

Jiang et al. [START_REF] Jiang | Fault estimation in nonlinear uncertain systems using robust/sliding-mode observers[END_REF] proposed a SMO based fault estimation approach for a class of nonlinear systems with uncertainties. Yan et al. [START_REF] Yan | Nonlinear robust fault reconstruction and estimation using a sliding mode observer[END_REF] proposed a precise fault reconstruction scheme, based on equivalent output error injection, for a class of nonlinear systems with uncertainty. A sufficient condition based on LMI was presented for the existence and stability of a robust SMO, based on strong structural condition of the distribution associated with uncertainties. In their later work [START_REF]Adaptive Sliding-Mode-Observer-Based Fault Reconstruction for Nonlinear Systems With Parametric Uncertainties[END_REF], this structural constraint was relaxed and the fault distribution vector and the structure matrix of the uncertainty are allowed to be functions of the system's output and input. All these works require that the bounds of the uncer-tainties and/or faults are known.

First Order SMO Designs

In this section, several design methods of traditional SMO will be recalled.

SMO Design Based On Utkin's Method

Consider initially the following linear uncertain system [START_REF] Utkin | Sliding Modes in Control and Optimization[END_REF]:

ẋ(t ) = Ax(t ) + Bu(t ) +Gd (x, u, t ),
y(t ) = C x(t ), (1.1) 
where x ∈ R n is the state, u ∈ R m is the control input, y ∈ R p is the measurable output.

The matrices A, B and C are of appropriate dimensions. It is assumed that

d (x, u, t ) is unknown, but bounded d (x, u, t ) ≤ ρ, ∀ t ≥ 0, (1.2) 
where • represents the Euclidean norm. Gd (x, u, t ) represents the system uncertainties, with G is a full rank matrix in R n×q . The matrices B and C are assumed to be of full rank and the pair (A,C ) is observable. Furthermore, without loss of generality, the output distribution matrix C can be written as

C = C 1 C 2 , where C 1 ∈ R p×(n-p) , C 2 ∈ R p×p and d et (C 2 ) = 0.
The objective is to estimate the states x(t ) only from the measurements of input u(t ) and output y(t ).

Two cases are considered: d (x, u, t ) = 0 and d (x, u, t ) = 0. For the first case, a coordinate transformation is introduced in order to facilitate the observer design

  x 1 (t ) y(t )   =   I n-o 0 C 1 C 2   x = T x, (1.3)
where T is non-singular. With the transformation (1.3), System (1.1) can be written as

ẋ1 (t ) = A 11 x 1 (t ) + A 12 y(t ) + B 1 u(t ), ẏ(t ) = A 21 x 1 (t ) + A 22 y(t ) + B 2 u(t ), (1.4) 
where

T AT -1 =   A 11 A 12 A 21 A 22   , T B =   B 1 B 2   , C T -1 =   0 I p   .
(1.5)

The proposed observer has the following form

ẋ1 (t ) = A 11 x1 (t ) + A 12 y(t ) + B 1 u(t ) + Lν, ẏ(t ) = A 21 x1 (t ) + A 22 y(t ) + B 2 u(t ) + ν, (1.6) 
where x1 (t ), ŷ(t ) represent the estimates for x 1 (t ), y(t ), L ∈ R (n-p)×p is the constant gain matrix and the discontinuous terms ν is defined

ν i = sign y i (t ) -ŷi (t ) , i = 1, • • • , p (1.7)
where ν i is the it h component of ν.

Denote the errors e 1 (t ) = x 1 (t ) -x1 (t ) and e y (t ) = y(t ) -ŷ(t ). Then, the error dynamical system is obtained

ė1 (t ) = A 11 e 1 (t ) -Lν, (1.8) ėy (t ) = A 21 e 1 (t ) -ν.
(1.9)

Thus, for a large enough scalar , an ideal sliding motion is induced in finite time on the surface S = e ∈ R n : e y = C e = 0 .

(1.10)

During the sliding motion e y = ėy = 0, Eq. (1.9) is written as

ν eq = A 21 e 1 (t ), (1.11) 
where ν eq represents the equivalent output error injection term which is generated by a low pass filter. Substituting (1.11) into Eq. (1.8), it follows that the reduced order sliding motion is governed by

ė1 (t ) = (A 11 -L A 21 ) e 1 (t ).
(1.12)

Since the pair (A,C ) is observable, then the pair (A 11 , A 21 ) is also observable. Therefore, there exists L such that the matrix A 11 -L A 21 is stable. Consequently, x1 (t ) converges to

x 1 (t ) asymptotically.

The main disadvantage of the above formulation is the requirement of large value , to ensure sliding mode for a broad range of initial state estimation errors, especially when the underlying system in unstable. A trade-off between the requirement of a large and its subsequent reduction to prevent excessive chattering (whilst still ensuring sliding mode) is usually taken into account. Slotine et al. [START_REF] Slotine | On Sliding Observers for Nonlinear Systems[END_REF] proposed a method which include a linear output error injection term

ẏ(t ) = A 21 x1 (t ) + A 22 y(t ) + B 2 u(t ) +G l e y (t ) + ν, (1.13)
where the linear gain G l should be chosen to enhance the size of the so-called sliding patch,

i.e., the domain of the state estimation error in which sliding occurs. Under certain conditions, the properties of global convergence of state estimation error and robustness can be achieved [START_REF] Edwards | On the development and application of sliding mode observers[END_REF].

For the second case d (x, u, t ) = 0. Using the transformation (1.3), the linear uncertain system (1.1) can be transformed into following canonical form,

ẋ1 (t ) = A 11 x 1 (t ) + A 12 y(t ) + B 1 u(t ) +G 1 d (x, u, t ), ẏ(t ) = A 21 x 1 (t ) + A 22 y(t ) + B 2 u(t ) +G 2 d (x, u, t ). (1.14) 
Under the SMO (1.6), the equivalent control signal will be ν eq = A 21 e 1 (t ) +G 2 d (x, u, t ).

(1.15)

The error dynamics of e 1 will become

ė1 (t ) = (A 11 -L A 21 ) e 1 (t ) + (G 1 -LG 2 ) d (x, u, t ).
(1.16)

It is clear that e 1 (t ) will not approach zero if d (x, u, t ) is nonzero. It should be noted that even if G 1 is zero, the equivalent control signal will still introduce the uncertainties into its observer error dynamics. A direct approach is to select the gain L such that G 1 -LG 2 = 0. However, it may be very difficult to satisfy this condition. Another more reasonable approach is to force the estimation error to be below an acceptable threshold.

However, it requires that d (x, u, t ) is small enough, as discussed in [START_REF] Slotine | On Sliding Observers for Nonlinear Systems[END_REF][START_REF] Wang | On the use of adaptive updating rules for actuator and sensor fault diagnosis[END_REF].

SMO Design Based On Lyapunov Method

The SMO proposed by Wallcott and Żak [START_REF] Walcott | State observation of nonlinear uncertain dynamical systems[END_REF] attempts to provide exponentially convergent estimate of the state described in (1.1) in the presence of matched uncertainty.

Recall that the pair (A,C ) is assumed to be observable, thus, there exists a matrix K such that A 0 = A-K C is Hurwitz. Therefore, for every real Symmetrical Positive Definite (SPD) matrix Q ∈ R n×n , there exists a real SPD matrix P as the unique solution to the following Lyapunov equation

A T 0 P + P A 0 = -Q.
(1.17)

It is also assumed that the structural constraint

PG = (F C ) T , (1.18) 
is satisfied for some F ∈ R q×p .

The observer proposed by [START_REF] Walcott | Comparative study of non-linear stateobservation techniques[END_REF] has the form

ẋ(t ) = A x(t ) + Bu(t ) + K (y -C x) + ν, (1.19) 
where

ν =      ρ(t , y, u) F C e(t ) F C e(t ) if F C e(t ) = 0, 0 otherwise. (1.20) 
Denote e(t ) = x(t ) -x(t ), then, the following error dynamical system is obtained:

ė(t ) = A 0 e(t ) -ν +Gd (x, u, t ).
(1.21)

It can directly proof the stability by using V (e) = e T Pe as a Lyapunov function candidate, it is shown that V (e) ≤ -cV , for some positive value c, thus e(t ) converges to zero exponentially. Furthermore, an ideal sliding motion takes place on

S F = e(t ) ∈ R n : F C e(t ) = 0 , (1.22) 
in finite time.

The main difficulty in designing the above observer is the computation the matrices P and F such that (1.17) and (1.18) are satisfied. In [START_REF] Walcott | State observation of nonlinear uncertain dynamical systems[END_REF], a symbolic manipulation tool was used to solve a sequence of constraints that ensure that the principal minors of both P and the right hand side of (1.17) are positive and negative, respectively. It is convenient for low order systems, but not for high order systems. The conditions of the structural requirements (1.17, 1.18) to be solvable were given by Edwards et al. [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF] as follows :

• rank (CG) = m;

• any invariant zeros of (A,G,C ) lie in the left half plane.

For a square system (p = m), the above two conditions fundamentally require the triple (A,G,C ) to be relative degree one and minimum phase. A key development in [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF] is that there in no requirement for the pair (A,C ) to be observable. The SMOs can be designed as long as the triple (A,G,C ) satisfy the above two conditions. Details of the constructive design algorithms can be found in [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF][START_REF] Spurgeon | Sliding mode observers: a survey[END_REF]. Floquet et al. [START_REF] Floquet | Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF][START_REF] Floquet | On sliding mode observers for systems with unknown inputs[END_REF] show that the relative degree condition can be relaxed if a classical SMO is combined with the sliding mode robust exact differentiators [START_REF] Levant | Robust Exact Differentiation Via Sliding Mode Technique[END_REF]. Additional independent output signals can be generated from the available measurements.

SMO Design Based On Slotine's Method

Let us consider a nonlinear system in companion form [START_REF] Slotine | On Sliding Observers for Nonlinear Systems[END_REF] 

ẋ1 = x 2 , (1.23) 
ẋ2 = x 3 , (1.24) 
. . . (1.25) ẋn = f (x, t ), (1.26) 
where f (x, t ) is a nonlinear uncertain function and x 1 is a single measurable output.

An SMO is designed as follows

ẋ1 = -α 1 e 1 + x2 -k 1 sign(e 1 ), ẋ2 = -α 2 e 1 + x3 -k 2 sign(e 1 ), . . . ẋn = -α n e 1 + f -k n sign(e 1 ), (1.27) 
where 

e 1 = x1 -x 1 , f is an estimate of f (x, t ) and the constants α i , i ∈ {1, 2, • • • , n}
where f = ff (x, t ) is assumed to be bounded and the following condition holds

k n ≥ f .
(1.29)

The sliding condition

d d t
(e 1 ) 2 < 0 is satisfied in the region

e 2 ≤ k 1 + α 1 e 1 , if e 1 > 0, e 2 ≥ -k 1 + α 1 e 1 , if e 1 < 0.
(1.30)

Therefore, the sliding mode is attained on e 1 = ė1 = 0, it follows from Eq. (1.28) that e 2k 1 sign(e 1 ) = 0.

(1.31)

Substituting (1.31) into (1.28), it follows that the reduced order sliding motion is governed by

ė2 = e 3 - k 2 k 1 e 2 ,
. . .

ėn = f - k n k 1 e 2 .
(1.32)

The dynamics of sliding patch (1.32) are determined by

λI n-1 -            - k 2 k 1 1 0 • • • 0 - k 3 k 1 0 1 • • • 0 . . . . . . . . . . . . . . . - k n k 1 0 0 • • • 1            = 0.
(1.33)

Assuming that k i , i ∈ {2, • • • , n} are proportional with k 1 and the poles determining the dynamics of sliding patch are critically damped, i.e., are real and equal to some constant values -γ < 0, then Slotine et al. [START_REF] Slotine | On Sliding Observers for Nonlinear Systems[END_REF] show the precision of the state estimation error

e (i ) 2 ≤ 2γ i k 1 , i = 0, • • • , n -2.
(1.34)

The effect of measurement noise on SMOs was also discussed in [START_REF] Slotine | On Sliding Observers for Nonlinear Systems[END_REF], the system does not attain a sliding mode in the presence of noise, but remains within a region of the sliding patch which is determined by the bound of the noise. Moreover, it was demonstrated that the average dynamics can be modified by the choice of k i which in turn can tailor the effect of the noise on the state estimates.

Second Order SMO Designs

It should be noted that the traditional first order SMOs require low pass filters to obtain equivalent output injections. However, the approximation of the equivalent injections by low pass filters will typically introduce some delays that lead to inaccurate estimates or even to instability for high order systems [START_REF] Floquet | Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF]. To overcome this problem, continuous SOSM algorithms are used to replace the discontinuous first order sliding mode, such that continuous equivalent output injection signals are obtained. In the following, three kinds of SOSM algorithms will be introduced.

Super-Twisting Algorithm

The STA is one of the most popular and a unique absolutely continuous SOSM algorithms, ensuring all the main properties of first order sliding mode for systems with Lipschitz continuous matched uncertainties/disturbances with bounded gradients [START_REF] Gonzalez | Variable Gain Super-Twisting Sliding Mode Control[END_REF].

The STA is described by the differential equation

ẋ1 = -λ | x1 | 1 2 sign( x1 ) + x2 , ẋ2 = -αsign( x1 ) + φ( x), (1.35) 
where x = x1 x2 T ∈ R 2 are state variables, λ, α are gains to be designed and the function φ( x) is considered as a perturbation term, which is bounded

φ( x) ≤ Φ, (1.36)
where Φ is a positive constant which is assumed to be known. The solutions of (1.35) are all trajectories in the sense of Filippov [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides: Control Systems[END_REF].

Modified Super-Twisting Algorithm

It should be noted that the standard (constant gains) STA always requires the condition (1.36). It does not allow to compensate uncertainties/disturbances growing in time or together with the state variables due to its homogeneous nature. Thus, it is very important to design non-homogeneous extension of the standard STA allowing exact compensation of the smooth uncertainties/disturbances bounded together with their derivatives by the known functions, which could grow together with the state [START_REF] Gonzalez | Variable Gain Super-Twisting Sliding Mode Control[END_REF].

As shown in [START_REF] Wang | Design and analysis of a continuous hybrid differentiator[END_REF][START_REF] Moreno | A Lyapunov Approach to Second-Order Sliding Mode Controllers and Observers[END_REF] that linear growing perturbations are included by means of the addition of linear terms to the nonlinear SOSM terms (SOSML). The behavior of the STA near the origin is significantly improved compared with the linear case. Conversely, the additional linear term improves the behavior of the STA when the states are far from the origin. In other words, the linear terms can deal with a bounded perturbation with linear growth in time while the nonlinear terms of STA can deal with a strong perturbation near the origin. Therefore, the SOSML inherits the best properties of both the linear and the nonlinear terms.

The SOSML algorithm is described by the following differential equation

ẋ1 = -λ | x1 | 1 2 sign( x1 ) -k λ x1 + x2 , ẋ2 = -αsign( x1 ) -k α x1 + φ( x), (1.37) 
where λ, α, k λ , k α are positive gains to be determined and the perturbation term φ( x) is bounded by

φ( x) ≤ δ 1 + δ 2 | x1 | , (1.38) 
where δ 1 and δ 2 are some positive constant and are assumed to be known. The solutions of (1.37) are all trajectories in the sense of Filippov [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides: Control Systems[END_REF].

Step by Step Observer Design

Consider a SISO nonlinear system with triangular input observable form [START_REF] Floquet | Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF] 

ξ1 = ξ 2 + ḡ1 (ξ 1 , u), ξ2 = ξ 3 + ḡ2 (ξ 1 , ξ 2 , u), . . . ξn-1 = ξ n + ḡn-1 (ξ 1 , ξ 2 , • • • , ξ n-1 , u), ξn = fn (ξ, ω) + ḡn (ξ 1 , ξ 2 , • • • , ξ n , u), y = ξ 1 , (1.39) 
where ω ∈ R is considered as an unknown input.

Assume that system (1.39) is BIBS, the functions ḡi (•), fn (•) and ḟn (•) are bounded, i.e.

|ξ i | ≤ d i , i = 1, • • • , n, ḡi (•) ≤ K i fn (•) ≤ K , ḟn (•) ≤ K , (1.40) 
where d i , K i , K and K are some positive scalars.

The step-by-step SOSM observer for the system (1.39) is built as follows

ξ1 = ḡ1 (ξ 1 , u) + ν 1 ( ξ1 -ξ1 ), ξ2 = ḡ2 (ξ 1 , ξ2 , u) + E 1 ν 2 ( ξ2 -ξ2 ), . . . ξn-1 = ḡn-1 (ξ 1 , ξ2 , • • • , ξn-1 , u) + E n-2 ν n-1 ( ξn-1 -ξn-1 ), ξn = ḡn (ξ 1 , ξ2 , • • • , ξn , u) + E n-1 ν n ( ξn -ξn ), (1.41) 
where y = ξ 1 = ξ1 , ξj = ν i ( ξj-1 -ξj-1 ), 2 ≤ j ≤ n -1, the continuous output error injection ν i (•) is obtained from the SOSM algorithms and the scalar function E i is defined as

E i =      1 if ξj -ξj ≤ , ∀ j < i , 0 otherwise. (1.42)
where is a small positive constant.

First step: Denote e = ξξ and assume e 1 (t 0 ) = 0, the error dynamics is given by

ė1 = -ν 1 (e 1 ) + ξ 2 , ė2 = -E 1 ν 2 ( ξ2 -ξ2 ) + ξ 3 + g2 (ξ 1 , ξ 2 , ξ2 , u), . . . ėn-1 = -E n-2 ν n-1 ( ξn-1 -ξn-1 ) + ξ n + gn-1 (ξ 1 , ξ 2 , • • • , ξ n-1 , ξ2 , • • • , ξn-1 , u), ėn = -E n-1 ν n ( ξn -ξn ) + gn (ξ 1 , • • • , ξ n , ξ2 , • • • , ξn , u) + fn (ξ, ω), (1.43) 
where gi (ξ 1 ,

• • • , ξ i , ξ2 , • • • , ξi , u) = ḡi (ξ 1 , • • • , ξ i , u) -ḡi (ξ 1 , • • • , ξi , u).
It has been shown in [START_REF] Levant | Robust Exact Differentiation Via Sliding Mode Technique[END_REF][START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF] that a sliding mode appears in finite time on the set {e 1 = ė1 = 0} if λ 1 and α 1 are chosen as

α 1 > d 3 + K 2 , λ 2 1 > 4 (d 3 + K 2 ) α 1 + d 3 + K 2 α 1 -d 3 -K 2 .
(1.44)

The equivalent dynamics provides a continuous estimation of ξ 2 without introducing any low pass filters, i.e. ξ2 = ν 1 (e 1 ) = ξ 2 . The functions E i are introduced so that the errors e i , i = 2, • • • , n do not escape infinity before the good estimates of ξ1 and ξ2 are obtained.

Second step: Following the first step in finite time, one has E 1 = 1, and the error dynamics

(1.43) becomes ė1 = 0, ė2 = -ν 2 (e 2 ) + ξ 3 , . . . ėn-1 = -E n-2 ν n-1 ( ξn-1 -ξn-1 ) + ξ n + gn-1 (ξ 1 , ξ 2 , • • • , ξ n-1 , ξ2 , • • • , ξn-1 , u), ėn = -E n-1 ν n ( ξn -ξn ) + gn (ξ 1 , • • • , ξ n , ξ2 , • • • , ξn , u) + fn (ξ, ω).
(1.45)

Similar as the first step, the sliding mode appears in finite time on the set {e 2 = ė2 = 0}. As a consequence, ξ3 provides an estimate of ξ 3 . Following the same scheme until the n -1th

step, the estimates of state vector ξ are obtained in finite time.

n-th step: The error dynamics is given by

ė1 = • • • = ėn-1 = 0, ėn = -ν n (e n ) + fn (ξ, ω).
(

Thus, choosing

α n > K , λ 2 n > 4 K α n + K α n - K , (1.47) 
a second order sliding motion appears on set {e n = ėn = 0}. In case if the function fn (ξ, ω) can be written in linear form of ω, i.e. fn (ξ, ω) = β(ξ)ω. Then, a continuous approximation

ω is obtained ω = ν n (e n ) β( ξ)
, where β( ξ) = 0.

(1.48)

Algebraical Observer Design

Algebraic observers are ideal for implementation in real-time embedded systems because of their low computational requirements. Let us briefly recall the systems whose states can be expressed in terms of input and output variables and their time derivatives up to some finite degrees. First of all, the definition of algebraical observability will be introduced.

Definition 1.3.1. [START_REF] Ibrir | Online Exact Differentiation and Notion Of Asymptotic Algebraic Observers[END_REF] Consider the nonlinear system described by the following dynamic equations,

ẋ(t ) = f (x(t ), u(t )), y(t ) = h(x(t )), (1.49) 
where f (•, •) ∈ R n and h(•) ∈ R p are assumed to be continuously differentiable. x(t ) ∈ R n represents the system state vector, u(t ) ∈ R m is the control input vector and y(t ) ∈ R p is the output. System (1.49) is said to be algebraically observable if there exist two positive integers µ and ν such that

x(t ) = φ y, ẏ, ÿ, • • • , y (µ) , u, u, ü, • • • , u (ν) , (1.50) 
where φ(•) ∈ R n is a differentiable vector valued nonlinearity of the inputs, the outputs and their time derivatives.

The SOSM algorithms (STA, SOSML and adaptive SOSML) discussed in the previous subsections can be employed to design first order sliding mode differentiator. Moreover, the method proposed in [START_REF] Levant | Higher-Order Sliding Modes, Differentiation and Output-Feedback Control[END_REF] can be used to estimate higher order time derivatives in finite time.

A simple three order example

In order to illustrate the design procedure of algebraical observer. Let us consider a simple system with three states

ẋ1 = x 2 + g 1 (x 1 , u), ẋ2 = x 3 + g 2 (x 1 , x 2 , u), ẋ3 = g 3 (x 1 , x 2 , x 3 , u), y = x 1 , (1.51) 
where u ∈ R m is the control input, y ∈ R is a twice continuously differentiable measured output and the functions g 1 (x 1 , u), g 2 (x 1 , x 2 , u) and g 3 (x 1 , x 2 , x 3 , u) are smooth, non-singular and continuous nonlinearities. The system (1.51) is assumed to be BIBS.

From the system (1.51), we have

x 1 = y, x 2 = ẏ -g 1 (y, u), x 3 = ẋ2 -g 2 (y, x 2 , u), (1.52) 
where

ẋ2 = ÿ - ∂g 1 ∂y (y, u) ẏ - ∂g 1 ∂u (y, u) u.
(1.53) Thus, the system (1.52) can be rewritten as

x 1 = y, x 2 = ẏ -g 1 (y, u), x 3 = ÿ - ∂g 1 ∂y (y, u) ẏ - ∂g 1 ∂u (y, u) u -g 2 (y, ẏ -g 1 (y, u), u).
(1.54)

The algebraical observer for the system (1.51) is proposed as follows

x1 = y, x2 = ξ 1 -g 1 (y, u), x3 = ξ 2 - ∂g 1 ∂y (y, u)ξ 1 - ∂g 1 ∂u (y, u) u -g 2 (y, ξ 1 -g 1 (y, u), u), (1.55) 
where ξ 1 , ξ 2 are the estimates of ẏ and ÿ, respectively. Thus, precise numerical differentiators are required for the implementation of algebraical observer, i.e. finite time sliding mode differentiators [START_REF] Levant | Robust Exact Differentiation Via Sliding Mode Technique[END_REF][START_REF] Levant | Higher-Order Sliding Modes, Differentiation and Output-Feedback Control[END_REF], Linear Time Varying (LTV) differentiators [START_REF] Ibrir | Online Exact Differentiation and Notion Of Asymptotic Algebraic Observers[END_REF], high gain differentiators [START_REF] Dabroom | Discrete-time implementation of high-gain observers for numerical differentiation[END_REF].

Remark 1.3.2. The algebraical observer (1.55) is a finite time converging observer for the system (1.51), since ξ 1 , ξ 2 converge to ẏ, ÿ in finite time, respectively. However, only asymptotic convergence is guaranteed in case of LTV or high gain differentiators.

First Order SMO Based FDI

Let us now explore the utilization of SMOs for system fault detection and reconstruction.

Most observer-based FDI schemes generate residuals by comparing the measurement and its corresponding estimate provided by observers. Wrong estimates will be produced when faults occur, thus, a nonzero residual would raise an alarm. In this section, it is shown that SMO can not only detect the faults but also reconstruct the fault signal (its shape and magnitude). Fault reconstruction is of great interest in active fault tolerant control which can be employed in controller design [START_REF] Edwards | Sensor fault tolerant control using sliding mode observers[END_REF].

Preliminaries

Consider a nonlinear system [START_REF] Yan | Nonlinear robust fault reconstruction and estimation using a sliding mode observer[END_REF] 

ẋ = Ax +G(x, u) + E Ψ(t , x, u) + D f (y, u, t ), y = C x, (1.56) 
where x ∈ R n , u ∈ R m and y ∈ R p are the state variables, inputs and outputs, respectively.

A ∈ R n×n , E ∈ R n×r , D ∈ R n×q and C ∈ R p×n (n > p > q) are constant matrices. The matrices C and D are assumed to be of full rank. The known nonlinear term G(x, u) is Lipschitz with respect to x uniformly for u ∈ U , where U is an admissible control set. The bounded unknown function f (y, u, t ) ∈ R q represents the actuator fault which needs to be estimated and the uncertain nonlinear term Ψ(t , x, u) represents the modeling uncertainties and disturbances affecting the system. Some assumptions will be imposed on system (1.56). 

Assumption 1.4.1. rank(C [E , D]) = rank([E , D]) = q ≤ p.
f (y, u, t ) ≤ α(y, u, t ), ḟ (y, u, t ) ≤ α d (y, u, t ), (1.57) 
where α(y, u, t ) and α d (y, u, t ) are two known functions.

Assumption 1.4.4. The nonlinear term Ψ(t , x, u) and its time derivative are unknown but bounded:

Ψ(t , x, u) ≤ β, Ψ(t , x, u) ≤ β d , (1.58) 
where β and β d are known positive scalars.

Under the Assumption 1.4.1, there exists a coordinate system in which the triple (A, [E , D],C ) has the following structure

    A 1 A 2 A 3 A 4   ,   0 (n-p)×r 0 (n-p)×q E 2 D 2   , 0 p×(n-p) C 2   , (1.59) 
where

A 1 ∈ R (n-p)×(n-p) , C 2 ∈ R p×p is nonsingular and E 2 =   0 (p-q)×r E 22   , D 2 =   0 (p-q)×q D 22   , (1.60) 
with E 22 ∈ R q×r and D 22 ∈ R q×q of full rank.

Under the Assumption 1.4.2, there exists a matrix L ∈ R (n-p)×p with the form

L = L 1 0 (n-p)× q , (1.61) 
with L 1 ∈ R (n-p)×(p-q) such that A 1 + L A 3 is Hurwitz.

Without loss of generality, the system (1.56) has the form

ẋ1 = A 1 x 1 + A 2 x 2 +G 1 (x, u), ẋ2 = A 3 x 1 + A 4 x 2 +G 2 (x, u) + E 2 Ψ(t , x, u) + D 2 f (y, u, t ), y = C 2 x 2 , (1.62) 
where 

x := col(x 1 , x 2 ), x 1 ∈ R n-p , x 2 ∈ R p , G 1 (x,
T :=   I n-p L 0 I p   , (1.63) 
where L is defined in (1.61). Thus, in the new coordinate z, the system (1.62) has the following form

ż1 = F 1 z 1 + F 2 z 2 + I n-p L G(T -1 z, u), ż2 = A 3 z 1 + F 3 z 2 +G 2 (T -1 z, u) + E 2 Ψ(t , T -1 z, u) + D 2 f (y, u, t ), y = C 2 z 2 , (1.64) 
where z := col(z 1 , z 2 ), z 1 ∈ R n-p , z 2 ∈ R p and

F 1 = A 1 + L A 3 , F 2 = A 2 + L A 4 -(A 1 + L A 3 )L, F 3 = A 4 -L A 3 , (1.65) 
with the matrix F 1 is Hurwitz.

Consider the following dynamical observer for the system (1.64)

ż1 = F 1 ẑ1 + F 2 C -1 2 y + I n-p L G(T -1 ẑ, u), ż2 = A 3 ẑ1 + F 3 ẑ2 -K (y -C 2 ẑ2 ) +G 2 (T -1 ẑ, u) + ν(y, ŷ, ẑ, u, t ), ŷ = C 2 ẑ2 , (1.66)
where ẑ := col( ẑ1 ,C -1 2 y) and ŷ is the output of the observer system. The gain matrix K is chosen such that

F := C 2 F 3 C -1 2 +C 2 K (1.67)
is a symmetric negative definite matrix given that C 2 is nonsingular. The output error injection term ν(y, ŷ, ẑ, u, t ) is defined by

ν := k(y, ẑ, u, t )C -1 2 y -ŷ y -ŷ , if y -ŷ = 0, (1.68) 
where k(y, ẑ, u, t ) is a positive scalar function to be determined later.

Let e 1 = z 1 -ẑ1 and e y = y -ŷ = C 2 (z 2 -ẑ2 ). Then, the error dynamical system is described by

ė1 = F 1 e 1 + I n-p L G(T -1 z, u) -G(T -1 ẑ, u) , (1.69 
)

ėy = C 2 A 3 e 1 + F e y +C 2 G 2 (T -1 z, u) -G 2 (T -1 ẑ, u) (1.70) +C 2 E 2 Ψ(t , T -1 z, u) +C 2 D 2 f (y, u, t ) -C 2 ν.
Remark 1.4.5. The gain matrix K is introduced to guarantee that the following matrix 

  F 1 0 C 2 A 3 F   is
    P A 1 + A T 1 P + Y A 3 + A T 3 Y T + P + εγ 2 G P Y P -εI n-p 0 Y T 0 -εI p     < 0, (1.74) 
where Y := P L with P > 0. Moreover, a convex eigenvalue optimization problem can be posed which is to maximize γ G by determining the values of P , Y and ε [START_REF] Yan | Nonlinear robust fault reconstruction and estimation using a sliding mode observer[END_REF]. 

k(y, ẑ, u, t ) ≥ C 2 A 3 + C 2 γ G ω(t ) + C 2 E 2 β + C 2 D 2 α(y, u, t ) + η, (1.75)
where η is a positive constant and ω(t ) has the following dynamics

ω(t ) = - 1 2 ω(t ), ω(0) ≥ M e 1 (0) .
(1.76) Then, the system (1.70) is driven to the sliding surface

S = (e 1 , e y )|e y = 0 , (1.77) 
in finite time and remains on it thereafter.

It follows from Propositions 1.4.6 and 1.4.8 that system (1.66) is a SMO of system (1.64),

where ŷ is the observer output which will be used in the FDI. The proposed SMO will be analyzed in order to reconstruct or estimate the fault signal f (y, u, t ) in the presence of the uncertainty Ψ(t , x, u).

Fault Reconstruction

During the sliding motion, e y = ėy = 0. Since C 2 is nonsingular, it follows from Eq. (1.70)

A 3 e 1 + G 2 (T -1 z, u) -G 2 (T -1 ẑ, u) + E 2 Ψ(t , T -1 z, u) + D 2 f (y, u, t ) -ν eq = 0, (1.78) 
where ν eq is the equivalent output error injection signal, obtained from a low pass filter.

Since lim

t →∞ e 1 (t ) = 0 and lim

t →∞ G 2 (T -1 z, u) -G 2 (T -1 ẑ, u) ≤ γ G e 1 (t ) → 0.
Thus, Eq. (1.78) can be written as

D 2 f (y, u, t ) = ν eq -E 2 Ψ(t , T -1 z, u) + d 1 (t ), (1.79) where lim t →∞ d 1 (t ) = 0.
In the case when Ψ(t , T -1 z, u) = 0, the estimate of fault signal is

f (t ) = D + 2 ν eq , (1.80) 
where D + 2 is the pseudo-inverse of D 2 , i.e. D + 2 D 2 = I q and lim t →∞ f (t )f (y, u, t ) → 0.

In the case when Ψ(t , T -1 z, u) = 0, multiply both sides of Eq. (1.79) by D + 2 , it follows

f (t ) = D + 2 ν eq -D + 2 E 2 Ψ(t , T -1 z, u) + D + 2 d 1 (t ).
(1.81)

In view of Assumption 1.4.4 and Eq. (1.81), it follows

f (t ) -f (y, u, t ) ≤ D + 2 E 2 β + D + 2 d 1 (t ) , (1.82) 
where lim

t →∞ D + 2 d 1 (t ) = 0.
The objective here is to choose an appropriate matrix D + 2 such that the effect of the uncertainty

Ψ(t , T -1 z, u) is minimized, i.e. min D + 2 E 2 . Let D = X ∈ R q×p | X D 2 = I q .
The set D can be parameterized as

D = D T 2 D 2 -1 D T 2 + µD N 2 | µ ∈ R q×(p-q) , (1.83) 
where D N 2 ∈ R (p-q)×p spans the null-space of D 2 which implies that D N 2 D 2 = 0. Thus, for any D + 2 ∈ D, it follows

D + 2 E 2 = D T 2 D 2 -1 D T 2 E 2 + µD N 2 E 2 .
(1.84)

The objective is transformed into the following optimization problem

min µ∈R q×(p-q) = D T 2 D 2 -1 D T 2 E 2 + µD N 2 E 2 .
(1.85)

This can be easily solved using LMI optimization approach [START_REF] Zhou | Robust and Optimal Control[END_REF].

Remark 1.4.9. In the case when Ψ(t , T -1 z, u) = 0, detection is inherent since precise reconstruction is achieved. However, when precise reconstruction is unavailable, detection is more difficult since the presence of uncertainty will make the equivalent output error injection be nonzero. Thus, it is difficult to distinguish the fault from the uncertainty.

Provided the size of the bound D + 2 E 2 β is relatively small compared to the size of the fault, a reasonable solution is to set appropriate thresholds, and a level of detection can still be achieved.

Second Order SMO Based FDI

As mentioned before, to the best of our knowledge, second order SMOs have not used in FDI in contemporary literature. Therefore, after the bibliography and discussion of important theoretical results, we will now present our first contribution that consists of adaptive second order SMO design and its application for FDI. Real systems such as fuel cell systems are vulnerable to not only faults but also uncertain parameters. Adaptivegain SOSM algorithms handle the uncertainty with the unknown boundary by dynamically adapting their parameters. In this section, state estimation, parameter identification and fault reconstruction are studied for a class of nonlinear systems with uncertain parameters, simultaneously. The approach involves a simple adaptive update law and the proposed adaptive-gain SOSM observer. The adaptive law is derived via the so-called "time scaling" approach [START_REF] Hong | Stabilization of uncertain chained form systems within finite settling time[END_REF], which are adapted dynamically according to the observation error.

The uncertain parameters are estimated and then injected into an adaptive-gain SOSM observer, which maintains a sliding motion even in the presence of fault signals. Finally, once the sliding motion is achieved, the equivalent output error injection can be obtained directly and the fault signals are reconstructed based on this information.

Adaptive-Gain SOSM Algorithm

The adaptive-gain SOSML algorithm is described as follows

ẋ1 = -λ(t ) | x1 | 1 2 sign( x1 ) -k λ (t ) x1 + x2 , ẋ2 = -α(t )sign( x1 ) -k α (t ) x1 + φ( x), (1.86) the perturbation term φ( x) is bounded by φ( x) ≤ σ 1 + σ 2 | x1 | , (1.87)
where σ 1 and σ 2 are some positive constants and are assumed to be unknown.

The adaptive gains λ(t ), α(t ), k λ (t ) and k α (t ) are formulated as

λ(t ) = λ 0 l (t ), α(t ) = α 0 l (t ), k λ (t ) = k λ 0 l (t ), k α (t ) = k α 0 l 2 (t ), (1.88)
where λ 0 , α 0 , k λ 0 and k α 0 are positive constants to be determined and l (t ) is a positive, time-varying, scalar function.

The adaptive law of the time-varying function l (t ) is given by:

l (t ) =      k if | x1 | = 0, 0 otherwise. (1.89)
where k is a positive constant.

Theorem 1.5.1. Consider system (1.86, 1.88, 1.89). Suppose that the condition (1.87) hold with some unknown constants σ 1 and σ 2 . The trajectories of the system (1.86) converge to zero in finite time if the following condition is satisfied

4α 0 k α 0 > 8k 2 λ 0 α 0 + 9λ 2 0 k 2 λ 0 .
(1.90)

The proof of Theorem 1.5.1 is given in Appendix A3.

Adaptive SOSM Observer Design for FDI

Consider the following nonlinear system,

ẋ = Ax + g (x, u) + φ(y, u)θ + ω(y, u) f (t ), y = C x, (1.91) 
where the matrix

A =   A 1 A 2 A 3 A 4   , x ∈ R n is the system state vector, u(t ) ∈ U ⊂ R m is the
control input which is assumed to be known, y ∈ Y ⊂ R p is the output vector. The functions g (x, u) ∈ R n is Lipschitz continuous, φ(y, u) ∈ R n×q and ω(y, u) ∈ R n×r are assumed to be some smooth and bounded functions with p ≥ q + r . The unknown parameter vector θ ∈ R q is assumed to be constant and f (t ) ∈ R r is a smooth fault signal vector, which satisfies

f (t ) ≤ ρ 1 , ḟ (t ) ≤ ρ 2 , (1.92) 
where ρ 1 , ρ 2 are some positive constants that might be known or unknown.

Assume that (A,C ) is an observable pair, and there exists a linear coordinate transforma-

tion z = T x =   I p 0 -H (n-p)×p I n-p   x = z T 1 z T 2 T , with z 1 ∈ R p and z 2 ∈ R n-p , such that • T AT -1 =   A 11 A 12 A 21 A 22 
 , where the matrix

A 22 = A 4 -H A 2 ∈ R (n-p)×(n-p) is Hurwitz stable.
• C T -1 = I p 0 , where I p ∈ R p×p is an identity matrix.

Assumption 1.5.2. There exists a function ω 1 (y, u) such that

T ω(y, u) =   ω 1 (y, u) 0   , (1.93) 
where ω 1 (y, u) ∈ R p×r .

Remark 1.5. System (4.7) is described by the following equations in the new coordinate system,

ż = T AT -1 z + T g (T -1 z, u) + T φ(y, u)θ + T ω(y, u) f (t ), y = C T -1 z.
(1.94)

By reordering the state variables, System (1.94) can be rewritten as

ẏ = A 11 y + A 21 z 2 + g 1 (z 2 , y, u) + φ 1 (y, u)θ + ω 1 (y, u) f (t ), ż2 = A 22 z 2 + A 21 y + g 2 (z 2 , y, u) + φ 2 (y, u)θ, y = z 1 , (1.95) 
where

T φ(y, u) =   φ 1 (y, u) φ 2 (y, u)   , T g (T -1 z, u) =   g 1 (z 2 , y, u) g 2 (z 2 , y, u)   , (1.96 
)

φ 1 (•, •) : R p × R m → R p , φ 2 (•, •) : R p × R m → R n-p , g 1 (•, •, •) : R p × R n-p × R m → R p and g 2 (•, •, •) : R p × R n-p × R m → R n-p .
We now consider the problem of an adaptive SOSM observer for system (1.95), in which the uncertain parameter is estimated with the help of an adaptive law. Then, a SOSM observer with gain adaptation is developed using the estimated parameter. Finally, based on the adaptive SOSM observer, a fault reconstruction method which can be implemented online is proposed. The basic assumption on the System (1.95) is as follows:

Assumption 1.5.4. There exists a nonsingular matrix T ∈ R p×p , such that

T φ 1 (y, u) ω 1 (y, u) =   Φ 1 (y, u) 0 q×r 0 r ×q Φ 2 (y, u)   , (1.97) 
where Φ 1 (y, u) ∈ R q×q , Φ 2 (y, u) ∈ R r ×r are both nonsingular matrices and bounded in (y, u) ∈ Y × U .

Remark 1.5.5. The main limitation in the Assumption 1.5.4 is that the matrix

φ 1 (y, u), ω 1 (y, u) ,
must be block-diagonalizable by elementary row transformations [START_REF]Adaptive Sliding-Mode-Observer-Based Fault Reconstruction for Nonlinear Systems With Parametric Uncertainties[END_REF]. For the sake of simplicity, the case of only one fault signal and one uncertain parameter is considered

(q = r = 1).
Let z y = T y, where T is defined in Assumption 1.5.4. Then, System (1.95) can be described by

ży = T A 11 y + T A 21 z 2 + T g 1 (y, z 2 , u) +   Φ 1 (y, u) 0   θ +   0 Φ 2 (y, u)   f (t ), ż2 = A 22 z 2 + A 21 y + g 2 (z 2 , y, u) + φ 2 (y, u)θ, y = T -1 z y , (1.98) 
where

T • A 11 =   Ā11 Ā12   , T • A 12 =   Ā21 Ā22   , T • g 1 (y, z 2 , u) =   W g 1 (y, z 2 , u) W g 2 (y, z 2 , u)   .
(1.99)

Let us define z y = z y 1 , z y 2

T

, where z y 1 ∈ R q , z y 2 ∈ R r . Then, in view of (1.98) and (1.99), we obtain

ży 1 = Ā11 y + Ā21 z 2 + W g 1 (y, z 2 , u) + Φ 1 (y, u)θ, ży 2 = Ā12 y + Ā22 z 2 + W g 2 (y, z 2 , u) + Φ 2 (y, u) f (t ), ż2 = A 21 y + A 22 z 2 + g 2 (y, z 2 , u) + φ 2 (y, u)θ, y = T -1 z y 1 z y 2 T .
(1.100)

The adaptive SOSM observer is represented by the following dynamical system

ży 1 = Ā11 y + Ā21 ẑ2 + W g 1 (y, ẑ2 , u) + Φ 1 (y, u) θ + µ(e y 1 )
,

ży 2 = Ā12 y + Ā22 ẑ2 + W g 2 (y, ẑ2 , u) + µ(e y 2 ), ż2 = A 21 y + A 22 ẑ2 + g 2 (y, ẑ2 , u) + φ 2 (y, u) θ, (1.101) 
where µ(•) is the SOSM algorithm

µ(s) = λ(t )|s| 1 2 sign(s) + α(t ) ˆt 0 sign(s)dτ + k λ (t )s + k α (t ) ˆt 0 sd τ, (1.102)
and the adaptive gains λ(t ), α(t ), k λ (t ) and k α (t ) are determined later.

The observation errors are defined as

e y 1 = z y 1 -ẑy 1 , e y 2 = z y 2 -ẑy 2 , e 2 = z 2 -ẑ2 , θ = θ -θ.
The estimate of θ, denoted by θ, is given by the following adaptive law

θ = -K (y, u) Ā11 y + Ā21 ẑ2 + W g 1 (y, ẑ2 , u) + Φ 1 (y, u) θ -ży 1 , (1.103) 
where K (y, u) is a positive design matrix which will be determined later.

Remark 1.5.6. It can be seen that the adaptive law (1.103) depends upon ży 1 . A real time robust exact differentiator proposed in [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF] can be used to estimate the time derivative of z y 1 in finite time. The differentiator has the following form

ż0 = -λ 0 L 1 2 0 |z 0 -z y 1 | 1 2 sign(z 0 -z y 1 ) + z 1 , ż1 = -α 0 L 0 sign(z 0 -z y 1 ), (1.104) 
where z 0 and z 1 are the real time estimations of z y 1 and ży 1 respectively. The parameters of the differentiator λ 0 = 1, α 0 = 1.1 are suggested in [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF]. L 0 is the only parameter needs to be tuned according to the condition | zy 1 | ≤ L 0 .

Subtracting (1.101) from (1.100), the error dynamical equation is described by

ė2 = A 22 e 2 + g2 (y, z 2 , ẑ2 , u) + φ 2 (y, u) θ, (1.105) 
θ = -K (y, u) Ā21 e 2 + Wg 1 (y, z 2 , ẑ2 , u) + Φ 1 (y, u) θ , (1.106 
)

ėy 1 = -µ(e y 1 ) + Ā21 e 2 + Φ 1 (y, u) θ + Wg 1 (y, z 2 , ẑ2 , u),
(1.107)

ėy 2 = -µ(e y 2 ) + Ā22 e 2 + Φ 2 (y, u) f (t ) + Wg 2 (y, z 2 , ẑ2 , u), (1.108) 
where g2 (y,

z 2 , ẑ2 , u) = g 2 (y, z 2 , u)-g 2 (y, ẑ2 , u), Wg 1 (y, z 2 , ẑ2 , u) = W g 1 (y, z 2 , u)-W g 1 (y, ẑ2 , u) and Wg 2 (y, z 2 , ẑ2 , u) = W g 2 (y, z 2 , u) -W g 2 (y, ẑ2 , u).
Some assumptions are imposed upon the error dynamical systems (1.105-1.108):

Assumption 1.5.7. The known nonlinear terms

g 2 (y, z 2 , u), W g 1 (y, z 2 , u) and W g 2 (y, z 2 , u) are Lipschitz continuous with respect to z 2 g 2 (y, z 2 , u) -g 2 (y, ẑ2 , u) ≤ γ 2 z 2 -ẑ2 , W g 1 (y, z 2 , u) -W g 1 (y, ẑ2 , u) ≤ γ g 1 z 2 -ẑ2 , W g 2 (y, z 2 , u) -W g 2 (y, ẑ2 , u) ≤ γ g 2 z 2 -ẑ2 , (1.109) 
where γ g 1 , γ g 2 and γ 2 are the known Lipschitz constants of W g 1 (y, z 2 , u), W g 2 (y, z 2 , u) and g 2 (y, z 2 , u), respectively [START_REF] Zhang | Fault diagnosis of a class of nonlinear uncertain systems with lipschitz nonlinearities using adaptive estimation[END_REF].

Assumption 1.5.8. Assume that the Hurwitz matrix A 22 satisfies the following Riccati equation

A T 22 P 1 + P 1 A 22 + γ 2 2 P 1 P 1 + (2 + ε)I n-p = 0, (1.110) 
which has a SPD solution P 1 for some ε > 0 [START_REF] Rajamani | Observers for lipschitz nonlinear systems[END_REF].

Assumption 1.5.9. Assume that the positive design matrix K (y, u) satisfies the following equation

K (y, u)Φ 1 (y, u) + Φ T 1 (y, u)K T (y, u) -γ 2 g 1 K (y, u)K T (y, u) -I q = 0, (1.111) 
for some > 0.

Assumption 1.5.10.

It is assumed that Φ 1 (y, u) , Φ 2 (y, u) are bounded in (y, u) ∈ Y × U .
Now, we will first consider the stability of the error systems (1.105, 1.106).

Theorem 1.5.11. Consider the systems (1.105, 1.106) satisfying the Assumptions (1.5.7-1.5.9). Then, the error systems (1.105, 1.106) are exponentially stable, if for any (y, u) ∈ Y × U , the following matrix

Q 1 =   εI n-p P 1 φ 2 (y, u) -ĀT 21 K T (y, u) φ T 2 (y, u)P 1 -K (y, u) Ā21 I q   , (1.112) 
is positive definite.

Proof . A candidate Lyapunov function is chosen as

V 1 (e 2 , θ) = e T 2 P 1 e 2 + θT θ, (1.113) 
and the time derivative of V 1 along the solution of the system (1.105, 1.106) is given by

V1 = e T 2 (A T 22 P 1 + P 1 A 22 )e 2 -2e T 2 ĀT 21 K T (y, u) θ + 2e T 2 P 1 φ 2 (y, u) θ +2e T 2 P 1 g2 (y, z 2 , ẑ2 , u) -2 θT K (y, u) Wg 1 (y, z 2 , ẑ2 , u) -θT K (y, u)Φ 1 (y, u) + Φ T 1 (y, u)K T (y, u) θ ≤ e T 2 (A T 22 P 1 + P 1 A 22 + γ 2 2 P 1 P 1 + 2I n-p )e 2 +2e T 2 P 1 φ 2 (y, u) -ĀT 21 K T (y, u) θ -θT θ = -e T 2 θT Q 1   e 2 θ   .
(1.114)

Hence, the conclusion follows from the assumption that

Q 1 is positive definitive in (y, u) ∈ Y × U .
Remark 1.5.12. Theorem 1.5.11 shows that lim 

d d t Ā22 e 2 + Φ 2 (y, u) f (t ) + Wg 2 (y, z 2 , ẑ2 , u) ≤ χ 1 , d d t Ā21 e 2 + Φ 1 (y, u) θ + Wg 1 (y, z 2 , ẑ2 , u) ≤ χ 2 , (1.115) 
where χ 1 and χ 2 are some unknown positive constants.

In what follows, the objective is to prove the finite time convergence of the Systems (1.107)

and (1.108).

Theorem 1.5.13. Suppose that (1.115) holds and the adaptive gains

λ(t ), α(t ), k λ (t )
and k α (t ) in the SOSM algorithm (1.102) are formulated as

λ(t ) = λ 0 L(t ), α(t ) = α 0 L(t ), k λ (t ) = k λ 0 L(t ), k α (t ) = k α 0 L 2 (t ), (1.116) 
where λ 0 , α 0 , k λ 0 and k α 0 are positive constants and L(t ) is a positive, time-varying, scalar function.

The adaptive law of the time-varying function L(t ) is given by

L(t ) =      k if |e y i | = 0, i = {1, 2} 0 else. 
(1.117

)
where k is an arbitrary positive value. Then, the trajectories of the error system (1.107, 1.108) converge to zero in finite time, if λ 0 , α 0 , k λ 0 and k α 0 in (4.74) satisfy

4α 0 k α 0 > 8k 2 λ 0 α 0 + 9λ 2 0 k 2 λ 0 .
(1.118)

The proof of Theorem 1.5.13 follows the proof in Appendix A3.

Theorems 1.5.11 and 1.5.13 have shown that systems (1.101) and (1.103) are an asymptotic state observer and an uncertain parameter observer for the system (1.100), respectively.

In the next section, we will develop the fault reconstruction approach based on those two observers.

Fault Reconstruction

The fault signal f (t ) will be reconstructed based on the proposed observer by using an equivalent output error injection which can be obtained once the sliding surface is reached and maintained on it thereafter.

It follows from Theorem 1.5.13 that e y 2 and ėy 2 in (1.108) are driven to zero in finite time.

Thus, the equivalent output error injection can be obtained directly

µ(e y 2 ) = Ā22 e 2 + Φ 2 (y, u) f (t ) + Wg 2 (y, z 2 , ẑ2 , u).
(1.119)

From Assumption 1.5.4, Φ 2 (y, u) is a bounded nonsingular matrix in (y, u) ∈ Y × U and lim t →∞ Wg 2 (y, z 2 , ẑ2 , u) = 0, then the estimate of f (t ) can be constructed as

f (t ) = Φ -1 2 (y, u)µ(e y 2 )
.

(1.120)

Theorem 1.5.14. Suppose that conditions of Theorems (1.5.11, 1.5.13) are satisfied,

then f (t ) defined in (1.120) is a precise reconstruction of the fault signal f (t ) since lim t →∞ f (t ) -f (t ) = 0.
(1.121)

Proof . It follows from (1.119) and (1.120) that

f (t ) -f (t ) = Φ -1 2 (y, u) Ā22 e 2 + Wg 2 ≤ Φ -1 2 (y, u) Ā22 e 2 + γ g 2 Φ -1 2 (y, u) e 2 .
(1.122)

From Theorem 1.5.11, lim t →∞ e 2 = 0, it follows that

lim t →∞ f (t ) -f (t ) = 0.
(1.123)

Hence, Theorem 1.5.14 is proven.

Illustrative Examples

Let us now see some applicative examples of second order sliding mode observer design and observer based FDI. 

x 1 (0) 0 x1 (0) 0.3 x 2 (0) 0 x2 (0) 0.39 x 3 (0) 0 x3 (0) 0.3 1.6.

Second Order Sliding Mode Observers

In this example, we shall briefly outline the application of observers described in this chapter to a class of nonlinear systems. Consider the following nonlinear system [START_REF] Liu | Finite time observer design for a class of nonlinear systems with unknown inputs[END_REF],

ẋ1 = -x 1 -x 2 1 -x 2 + x 3 + ω(t ), ẋ2 = -x 1 -3x 2 1 + 2x 3 1 + 2x 1 x 2 + 2x 1 x 3 -2x 1 ω(t ), ẋ3 = x 1 + x 2 1 -x 2 -x 3 -x 2 3 , y T = y 1 y 2 = x 1 x 3 , (1.124) 
where

x T = x 1 x 2 x 3 are the states, ω(t ) = 2 • sin(5t
) is an unknown disturbance, and y are the measurable outputs.

Define the following coordinate transformation,

z = Φ(x) =     x 1 x 2 1 + x 2 x 3     , (1.125) 
The system (1.124) can be transformed into the following system

ż1 = -z 1 -z 2 + z 3 + ω(t ), ż2 = -z 1 + 4z 1 z 3 -5z 2 1 , ż3 = z 1 -z 2 -z 3 + 2z 2 1 -z 2 3 , y T = z 1 z 3 , (1.126)
The parameters for the simulation are shown in Table 1.1.

Step-by-step Adaptive-Gain SOSM Observer Design

The step-by-step SMO is proposed as follows

ż1 = -y 1 + y 2 + ν(e y 1 ), ż2 = -y 1 + 4y 1 y 2 -5y 2 1 + E 1 ν( z2 -ẑ2 ), ż3 = y 1 + 2y 2 1 -y 2 -y 2 2 + ν(e y 2 ), (1.127) 
where e y 1 = y 1 -ẑ1 , e y 2 = y 2 -ẑ3 , the error injection term ν(•) is obtained from the adaptive gain SOSM algorithm (1.5.1) and

z2 = -ν(e y 2 ), E 1 =      1 if e y 2 ≤ , 0 otherwise. (1.128)
where is a small positive constant.

Denote e 2 = z 2 -ẑ2 , the error dynamical system is given as follows:

ėy 1 = -ν(e y 1 ) -z 2 + ω(t ), ėy 2 = -ν(e y 2 ) -z 2 , ė2 = -E 1 ν 3 ( z2 -ẑ2 ).
(1.129)

With appropriate gains of the adaptive gain SOSM algorithm, the error dynamical system 

Algebraical Observer Design based on Adaptive SOSM Differentiator

The algebraic observer for the system (1.126) is designed as follows

ẑ2 = y 1 + 2y 2 1 -y 2 -y 2 2 -ξ 2 , (1.130) 
where ξ 2 is the estimate of ẏ2 . In view of Eq. (1.125), the estimates of x 2 and ω(t ) are obtained as follows

x2 = y 1 + y 2 1 -y 2 -y 2 2 -ξ 2 , ω(t ) = ξ 1 + y 1 -y 2 + y 2 1 + x2 , (1.131) 
where ξ 1 is the estimate of ẏ1 , which is obtained from sliding mode differentiators. The state observation and disturbance estimation is shown in Fig. 1.3. 

Second Order SMO based FDI

An example is given in order to illustrate the design of adaptive-gain SOSML observerbased fault reconstruction scheme. Consider a pendulum system [START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF] 

ẋ1 = x 2 + f (t ), ẋ2 = 1 J u - g L sin(x 1 ) - V s J x 2 , y = x 1 , (1.132) 
where x 1 , x 2 are the angle of oscillation and angular velocity, respectively. M = 1.1 kg is the pendulum mass, g = 9.815 m/s 2 is the gravitational force, L = 1 m is the pendulum length,

J = M L 2 = 1.1 kg•m 2 is the arm inertia, V s = 1.8 kg•m/s 2
is the pendulum viscous friction coefficient and f (t ) is considered as a bounded fault signal. For simulation purposes, it was taken as f (t ) = 0.5 sin(2t ) + 0.5 cos(5t ).

(1.133)

The controller u is known which is used to drive x 1 to the desired value x *

1 = sin(t ) u = -30sign(s) -25sign( ṡ), (1.134) 
where

s = x 1 -x * 1 .
The observer based on STA or SOSML is designed as

ẋ1 = x2 + µ(e y ), ẋ2 = 1 J u - g L sin(x 1 ) - V s J x2 , ŷ = x1 , (1.135) 
where e y = y -ŷ.

Let e 2 = x 2 -x2 , the error dynamics are given as follows

ėy = -µ(e y ) + e 2 + f (t ), ė2 = - V s J e 2 .
(1.136)

During the sliding motion e y = ėy = 0, a fault reconstruction signal f (t ) = µ(e y ) is introduced given that lim In the subsequent chapters, we shall concentrate on the applicative aspect of FDI. Namely, a complex nonlinear system, i.e., proton exchange membrane fuel cell (PEMFC) will be presented and the observation and FDI of its subsystems will be discussed. .

Chapter 2

Modeling of PEMFC Air Feed System

Fuel cells are electrochemical devices that convert the chemical energy of a gaseous fuel directly into electricity. They are under intensive development in the past few years as they are regarded as an efficient carbon free electricity production technology. The basic principle of the fuel cell was first discovered by William R. Grove [START_REF] Grove | A small voltaic battery of great energy[END_REF] in 1839, through an experiment that demonstrated that the reaction of hydrogen and oxygen produces electrical current. Modern fuel cells consist of an electrolyte sandwiched between two electrodes as shown in Fig. 2.1.

Fuel cells can be classified into five different categories based on the electrolyte chemistry:

proton exchange membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC) and aqueous alkaline fuel cell (AFC). Among these kinds of fuel cells, PEMFCs are suitable for automobile applications due to high energy density, low working temperature, simple structure and long life as well as low corrosion [START_REF] Pukrushpan | Control of fuel cell breathing: initial results on the oxygen starvation problem[END_REF]. Table 2.1 provides a summary of various fuel cell types and corresponding characteristics.

The fuel cell under consideration throughout this thesis is the PEMFC. The electrolyte membrane of a PEMFC has a special property that allows only positive protons to pass through while blocking electrons. Hydrogen molecules are split into protons and free electrons at the anode. These protons flow to the cathode through the electrolyte and react with the supplied oxygen and return electrons to produce water. During this process, 43 the electrons pass through an external load circuit and provide electricity. There are two important subsystems required for proper operation of PEMFCs. First is the air-feed system that supplies oxygen to the cathode and therefore indirectly regulates the net power output of the fuel cell. Then, there is the power converter system that forms a link between the fuel cell output and the power bus of the power system. This chapter is dedicated to the description and modeling of the air-feed system. We will start by a short description of the power generation in the PEMFC and highlight the importance of air-feed system in it. 

PEMFC Stack Voltage

In order to understand the importance of the air-feed system, let us look at the power generation mechanism of the PEMFC. A typical PEMFC polarization curve is shown in Fig. 2.2. The cell voltage is modeled from its static characteristic, which is a function of stack current, cathode pressure, reactant partial pressures, fuel cell temperature and membrane humidity [START_REF] Pukrushpan | Control of fuel cell breathing: initial results on the oxygen starvation problem[END_REF]:

v f c = E -v act -v ohm -v conc . (2.1)
The open circuit voltage E can be calculated as

E = 1.229 -0.85 • 10 -3 T f c -298.15 + 4.3085 • 10 -5 T f c ln p H 2 + 1 2 ln p O 2 , (2.2)
where T f c is the temperature of the FC (in Kelvin), p H 2 and p O 2 are the partial pressures of hydrogen and oxygen, respectively (in bar). It can be seen that the air-feed system indirectly controls the output voltage and hence the power, as it controls the oxygen pressure in the cathode.

The current density i is defined as

i = I st A f c , (2.3) 
where I st (A) is the stack current and A f c (cm 2 ) is the active area.

The activation loss v act , ohmic loss v ohm and concentration loss v conc are expressed as follows:

1. v act = a ln i i 0
is due to the difference between the velocity of the reactions in the anode and cathode [START_REF] Larminie | Fuel Cell Systems Explained[END_REF], a and i 0 are constants which can be determined empirically.

It should be noted that this equation is only valid for i > i 0 . Therefore, a similar function that is valid for the entire range of i is preferred:

v act = v 0 +v a 1 -e -b 1 i , v 0
(volts) is the voltage drop at zero current density, and v a (volts) and b 1 are constants that depend on the temperature and the oxygen partial pressure [START_REF] Kordesch | Fuel Cell and Their Applications[END_REF][START_REF] Amphlett | Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell II. Empirical Model Development[END_REF]. The values of v 0 , v a and b 1 can be determined from a nonlinear regression of experimental data.

The activation loss is shown in Fig. 2.3(a). The stack voltage V st is calculated as the sum of the individual cell voltages,

V st = nv f c , (2.4)
where n is the number of cells. Thus, the fuel cell power is calculated as: 

P st = I st V st .

PEMFC Air-Feed System Model

It is clear from the above discussion that the power generation inside the PEMFC core depends upon several variables and factors, such as oxygen and hydrogen pressures, temperature and various physical parameters of the fuel cell. All these must be controlled rigorously for proper and safe operation of the fuel cell. Hence an operational PEMFC system contains the fuel cell core and a certain number of auxiliary systems for control 2.4. The aim of the air-feed system is to regulate the oxygen quantity in the cathode. It usually consists of an electromechanical air compressor that maintains the required oxygen pressure and mass-flow in the cathode of PEMFC. As mentioned in the introduction, this system can consume up to 30% of the fuel cell power and requires precise control in order to optimize the net power output of the PEMFC system. This system has been modeled under the following assumptions [START_REF] Suh | Modeling, Analysis and Control of Fuel Cell Hybrid Power Systems[END_REF]:

• All gases obey the ideal gas law;

• The temperature of the air inside the cathode is equal to the stack temperature, also is equal to the temperature of the coolant exiting the stack. The stack temperature is well controlled;

• The input reactant flows are humidified in a consistent and rapid way and the high pressure compressed hydrogen is available;

• The water inside the cathode is only in vapor phase and any extra water in liquid phase is removed from the channels;

• The flooding of the gas diffusion layer is neglected;

• The spatial variations are neglected, it is assumed that the flow channel and the gas diffusion layer are lumped into one volume;

• The anode pressure is well controlled to follow the cathode pressure.

Supply Manifold Model

For the supply manifold, the inlet and outlet mass flows are the compressor flow W cp and supply manifold flow W sm,out , respectively. The supply manifold model is described by the following equations

d p sm d t = R a T cp,out V sm W cp -W sm,out , (2.6) 
where V sm is the supply manifold volume and T cp,out is the temperature of the air leaving the compressor which is calculated as follows:

T cp,out = T at m + T at m η cp p sm p at m γ-1 γ -1 , (2.7) 
where η cp is the compressor efficiency (its maximum value is 80%).

The relationship between the flow and the pressure drop can be simplified as a linear nozzle equation since the pressure difference between the supply manifold p sm and the cathode p ca is small:

W sm,out = k sm,out p sm -p ca , (2.8) 
where k sm,out is the supply manifold outlet flow constant.

Compressor Model

The air feed system consists of a twin screw compressor (Fig. 2.5) and a permanent magnet synchronous (PMSM) motor. In this part, the model of the air compressor is discussed, it is used to provide oxygen to the cathode side of the fuel cell system. The inputs to the model consist of inlet air pressure p cp,i n , inlet air temperature T cp,i n and supply manifold pressure p sm . The inlet air is typically atmospheric and its pressure and temperature are assumed to be p at m = 1 atm and T at m = 25 • C, respectively. The dynamic state in the model, i.e., compressor speed ω cp is given by the following equation

d ω c p d t = 1 J cp τ cm -τ cp -f ω cp , (2.9) 
where J cp is the motor and compressor inertia (kg• m 2 ), τ cm is the compressor motor torque input (N• m), τ cp is the torque of the compressor (N• m) and f is the friction coefficient.

τ cm = η cm k t I q , τ c p = C p T at m η cp ω cp p sm p at m γ-1 γ -1 W cp , (2.10) 
where η cm is the motor mechanical efficiency, k t is the motor constant, I q is the motor quadratic current, C p is the specific heat capacity of air (1004 J• kg -1 • K -1 ), γ is the ratio of the specific heats of air (1.4) and W cp is the compressor mass flow rate. The mass flow rate of the twin screw compressor W cp depends on its angular speed ω cp , which is independent of the supply manifold pressure p sm [START_REF] Talj | Experimental Validation of a PEM Fuel-Cell Reduced-Order Model and a Moto-Compressor Higher Order Sliding-Mode Control[END_REF]. The following relation is given as:

W cp = 1 2π η v-c V cpr /t r ρ a ω cp , (2.11) 
where η v-c is the volumetric efficiency, V cpr /t r is the compressed volume per turn and ρ a is the air density. The parameters used in the compressor model are given in Table 2.2.

The compressor motor power P cp is calculated as follows:

P cp = τ cm ω cp .
(2.12)

Cathode Flow Model

The thermodynamic properties and mass conservation are used to model the behavior of the air inside the cathode [START_REF] Pukrushpan | Control of fuel cell breathing: initial results on the oxygen starvation problem[END_REF]. In view of the mass continuity of the oxygen and nitrogen inside the cathode volume and ideal gas law yield

d p O 2 d t = RT f c M O 2 V ca W O 2 ,i n -W O 2 ,out -W O 2 ,r eact , d p N 2 d t = RT f c M N 2 V ca W N 2 ,i n -W N 2 ,out , (2.13) 
where W O 2 ,i n is the mass flow rate of oxygen entering the cathode;

W O 2 ,out is the mass flow rate of oxygen leaving the cathode;

W O 2 ,r eact is the rate of oxygen reacted;

W N 2 ,i n is the mass flow rate of nitrogen entering the cathode;

W N 2 ,out is the mass flow rate of nitrogen leaving the cathode;

M O 2 is the molar mass of oxygen;

M N 2 is the molar mass of nitrogen;

V ca is the cathode volume.

The inlet mass flow rate of oxygen W O 2 ,i n and nitrogen W O 2 ,out are calculated from the

inlet cathode flow W ca,i n W O 2 ,i n = x O 2 ,at m 1 + ω at m W ca,i n , W N 2 ,i n = 1 -x O 2 ,at m 1 + ω at m W ca,i n , (2.14) 
where x O 2 ,at m is the oxygen mass fraction of the inlet air

x O 2 ,at m = y O 2 ,at m M O 2 y O 2 ,at m M O 2 + 1 -y O 2 ,at m M N 2 , (2.15) 
with the oxygen molar ratio y O 2 ,at m = 0.21 for inlet air and the humidity ratio of inlet air ω at m is defined as

ω at m = M v y O 2 ,at m M O 2 + 1 -y O 2 ,at m M N 2 p v p at m -p v , (2.16) 
where M v is the molar mass of vapor and p v is the vapor pressure.

The vapor partial pressure p v is determined

p v = φ at m p sat T f c , (2.17) 
where φ at m is the relative humidify at ambient conditions (its value is set to 0.5), which can be used to describe the relation between the vapor partial pressure and the saturation pressure and p sat T f c is the vapor saturation pressure.

The saturation pressure p sat depends on the temperature and is calculated from the equation given in [START_REF] Nguyen | A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells[END_REF] 

log 10 p sat = -1.69 × 10 -10 T 4 f c + 3.85 × 10 -17 T 3 f c -3.39 × 10 -4 T 2
where the saturation pressure p sat is in kPa and the temperature T f c is in Kelvin.

The cathode inlet flow rate W c a,i n is assumed to be the same as the supply manifold outlet flow rate W sm,out (2.8)

W c a,i n = k ca,i n p sm -p ca , (2.19) 
where the cathode pressure p ca is assumed to be spatially invariant, which is the sum of oxygen, nitrogen and vapor partial pressures

p c a = p O 2 + p N 2 + p sat T f c .
(2.20)

The following equations are used to calculate the outlet mass flow rate of oxygen W O 2 ,out and nitrogen W N 2 ,out in (2.13)

W O 2 ,out = x O 2 ,ca 1 + ω ca,out W ca,out , W N 2 ,out = 1 -x O 2 ,ca 1 + ω ca,out W ca,out , (2.21) 
where x O 2 ,c a , ω c a,out are the oxygen mass fraction, humidity ratio inside the cathode, respectively.

x O 2 ,ca = y O 2 ,ca M O 2 y O 2 ,ca M O 2 + 1 -y O 2 ,ca M N 2 , ω ca,out = M v y O 2 ,ca M O 2 + 1 -y O 2 ,ca M N 2 p sat p O 2 + p N 2 .
(2.22)

Unlike the inlet flow, the oxygen mole fraction of the cathode outlet flow y O 2 ,ca is not constant since oxygen is reacted, which is calculated as

y O 2 ,ca = p O 2 p O 2 + p N 2 .
(2.23) Using (2.22, 2.23), Eq. (2.21) can be rewritten as

W O 2 ,out = M O 2 p O 2 M O 2 p O 2 + M N 2 p N 2 + M v p sat W ca,out , W N 2 ,out = M N 2 p N 2 M O 2 p O 2 + M N 2 p N 2 + M v p sat W ca,out .
(2.24)

The total cathode outlet flow rate W ca,out is calculated by the nozzle flow equation given in [START_REF] Pukrushpan | Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design[END_REF]. The rate of oxygen consumption W O 2 ,r eact is a function of the stack current I st , which is calculated using electrochemistry principles

W O 2 ,r eact = M O 2 × nI st 4F , (2.25) 
where F is the Faraday number.

Dynamic Model with Four States

In view of Eqs. (2.6, 2.9, 2.13), the nonlinear model of the fuel cell is completed with the following four states [START_REF] Suh | Modeling, Analysis and Control of Fuel Cell Hybrid Power Systems[END_REF] x = p O 2 p N 2 ω cp p sm T .

(2.26)

The four state dynamic model is written as follows

ẋ1 = c 1 (x 4 -x 1 -x 2 -c 2 ) - c 3 x 1 W ca,out c 4 x 1 + c 5 x 2 + c 6 -c 7 I st , ẋ2 = c 8 (x 4 -x 1 -x 2 -c 2 ) - c 3 x 2 W ca,out c 4 x 1 + c 5 x 2 + c 6 , ẋ3 = -c 9 x 3 - c 10 x 3 x 4 c 11 c 12 -1 W cp + c 13 u, ẋ4 = c 14 1 + c 15 x 4 c 11 c 12 -1 × W cp -c 16 (x 4 -x 1 -x 2 -c 2 ) .
(2.27)

The stack current I st is traditionally considered as a disturbance and the control input u is the motor's quadratic current. The outputs of the system are

y = y 1 y 2 y 3 T = p sm W cp V st T . (2.28) 
where the stack voltage V st , the supply manifold pressure p sm and the compressor air flow rate W cp are given in Eqs. (2.4, 2.6 and 2.11), respectively.

The system performance variables are defined as:

z = z 1 z 2 T = P net λ O 2 T , (2.29) 
where P net is the fuel cell net power and λ O 2 is the oxygen excess ratio.

The fuel cell net power P net is the difference between the power produced by the stack P st and the power consumed by the compressor. Thus, the net power can be expressed as:

P net = P st -P cp , (2.30) 
where the stack power P st and the compressor power P cp are given in Eqs. (2.5, 2.12).

The oxygen excess ratio λ O 2 is defined as the ratio between the oxygen entering the cathode W O 2 ,i n and the oxygen reacting in the fuel cell stack W O 2 ,r eact :

λ O 2 = W O 2 ,i n W O 2 ,r eact = c 18 p sm -p ca c 19 I st .
(2.31)

Due to the reasons of safety and high efficiency, it is typical to operate the stacks with this value equals 2 during step changes of current demand [START_REF] Pukrushpan | Control of fuel cell breathing: initial results on the oxygen starvation problem[END_REF]. It should be noted that positive deviations of λ O 2 above 2 imply lower efficiency, since excess oxygen supplied into the cathode will cause power waste and negative deviations increase the probability of the starvation phenomena. The parameters c i , i ∈ {1, • • • , 19} are defined in Appendix A1.

Experimental Validation

In this section, the experimental validation is performed through the Hardware-In-Loop The objective of the air-feed system is to provide sufficient quantity of oxygen to the PEMFC cathode, keeping the oxygen excess ratio (λ O 2 ) at its optimum value. The twin screw compressor of the PEMFC air-feed system has a flow rate margin 0-0.1 kg/s at a maximum velocity of 12000 RPM, it consists of two helical rotors which are coupled directly to its motor. Air intake is at the opposite side of the mechanical transmission and the output pressure is regulated by a servo valve. The compressor is driven by a permanent magnet synchronous motor (PMSM) through an inverter controlled by 3-phase currents I a , I b , I c . The system is controlled by a robust sub-optimal SOSM controller presented in [START_REF] Matraji | Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode[END_REF].

PEMFC Emulator

The PEMFC emulator (Fig. 2.7) has been designed using experimental data obtained from a 33kW PEMFC unit containing 90 cells in series. It has been developed on the FPGA platform of CompactRIO running at a clock frequency of 40MHz and an over all loop frequency of 10kHz. The nominal value of the PEMFC system parameters obtained from the PEMFC unit (as modeled in the emulator) are given in the Appendix (Table A2). The emulator parameters can be varied through software, in order to perform stability and robustness tests. The advantage of this emulator is that it provides an economical and safer alternative for real time experiments on auxiliary fuel cell system, that does not require excessive hydrogen consumption.

The PEMFC emulator runs a detailed 9 t h order dynamic PEMFC model, comprising of the following state vector:

x = p O 2 , p H 2 , p N 2 , p sm , m sm , p v,an , p v,ca , p r m , T st T , (2.32) 
where p H 2 is hydrogen pressure in the anode, m sm is mass of air in supply manifold, p v,an is vapor partial pressure in the anode, p v,ca is vapor partial pressure in the cathode, p r m is pressure of return manifold and T st is the stack temperature. This dynamic model is based on Pukrushpan et al. [START_REF] Pukrushpan | Control of fuel cell breathing: initial results on the oxygen starvation problem[END_REF], with the added temperature model described by a lumped thermal model [START_REF] Choe | Dynamic Simulator for a PEM Fuel Cell System With a PWM DC/DC Converter[END_REF]:

m st C p st d T st d t = Qsou -W c C p c T st -T c,i n , Qsou = I st - T ∆s 4F + v ac t + I st R ohm , (2.33) 
where m st is the heat mass of the stack, C p st and C p c are the specific heat, W c is the coolant flow rate considered as a control variable, T c,i n is the coolant temperature at the stack inlet and Qsou is the internal energy source. The latter is calculated as a function of the stack current, temperature, electrical resistance of stack layers R ohm , Faraday's number F and the entropy change ∆s. The physical parameters were obtained through extensive experimentation.

The PEMFC works under several safety constraints, the most important of which are the anode and cathode pressure difference (to be kept minimum) and stack temperature (to be regulated). These constraints require additional control in real fuel cells, which have been replicated in the emulator as well. An internal controller is implemented in the emulator to ensure that the anode pressure follows the cathode pressure at all times. The temperature is also controlled and its value can be set through software. This added characteristic is a key feature of the emulator, as compared with other works ( [START_REF] Pukrushpan | Control-Oriented Modeling and Analysis of Fuel Cell Reactant Flow for Automotive Fuel Cell Systems[END_REF][START_REF] Arce | Real-Time Implementation of a Constrained MPC for Efficient Airflow Control in a PEM Fuel Cell[END_REF][START_REF] Tekin | Energy-Management Strategy for Embedded Fuel-Cell Systems Using Fuzzy Logic[END_REF][START_REF] Gruber | Nonlinear MPC for the airflow in a PEM fuel cell using a volterra series model[END_REF]), since the heat produced in real fuel cells (due to heat produced by irreversible energy occurring in the chemical reactions and Joules losses) is a major factor that causes large parametric variations in the system.

Validation of 4-th Order Model with PEMFC Emulator

The experimental stack voltage, the predicted stack voltage by the 4-th order model and the predicted stack voltage by the PEMFC emulator, as well as the experimental data obtained from the 33kW PEMFC stack are shown and compared in Fig. 2.8. From this figure, it can be concluded that the 4-th order model replicates the characteristics of the Fuel Cell with sufficient precision with a relative error less than 2.5% (±1.6 volts).

To demonstrate the FC model characteristics, the stack current shown in Fig. 2.9 was varied between 100A and 450A during the tests and a static feedforward controller is used to control the compressor voltage so that the oxygen excess ratio maintains near 2.

It can be seen from the Fig. 2.10(b) that a step increase in the load current (i.e. t=20s) causes a drop in the oxygen excess ratio. The performance variables (P net , λ O 2 ) in Fig. 

Summary

In this chapter, we introduced different types of fuel cells, i.e. PEMFC, AFC, PAFC, SOFC and MCFC. The advantages and disadvantages of these fuel cells were summarized.

Then, we focus on the type of PEMFC, which is suitable for automobile applications due to its high energy density, low working temperature, simple structure and long life.

PEMFC is supplied with hydrogen and air at the anode and the cathode, respectively. The studied air feed system consists of a 33kW PEMFC containing 90 cells in series and a twin screw compressor, which has been modelled as a four state system. Finally, experimental validation was performed through the HIL test bench which consists of a physical air-feed system, based on a commercial twin screw compressor and a real time PEMFC emulator.

In the following chapter, algebraical observer and SOSM observer-based FDI approach will be designed for the PEMFC system based on the proposed model.

Chapter 3

Algebraical Observer and HOSMO Based FDI for PEMFC Air-Feed System

This chapter presents two major contributions of this thesis i.e. observation and FDI of automotive PEMFC air-feed system. As mentioned in the general introduction, it is not always possible to use sensors for measurements, either due to prohibitive costs of the sensing technology or because the quantity is not directly measurable. Also, in order to protect the system from malfunction or permanent damage, reliable FDI schemes need to be integrated in the control. For precise control applications, state observer can be used for obtaining unavailable state values instead of sensors. FDI is usually achieved by generating residual signals, obtained from the difference between the actual system outputs and their estimated values calculated from dynamic models. Such approach usually involves two steps : the first step is to decouple the faults of interest from uncertainties and the second step is to generate residual signals and detect faults by decision logics. Examples of such systems are geometric approaches [START_REF] De Persis | A geometric approach to nonlinear fault detection and isolation[END_REF], H ∞ -optimization technique [START_REF] Qiu | Robust FDI systems and H ∞ -optimization-disturbances and tall fault case[END_REF][START_REF] Hou | An LMI approach to H -/H ∞ fault detection observers[END_REF], observer based approaches (e.g. adaptive observers [START_REF] Yang | Nonlinear adaptive observer design for fault detection[END_REF][START_REF] Wang | On the use of adaptive updating rules for actuator and sensor fault diagnosis[END_REF], high gain observers [START_REF] Besançon | High-gain observation with disturbance attenuation and application to robust fault detection[END_REF][START_REF] Veluvolu | High-gain observer with sliding mode for nonlinear state estimation and fault reconstruction[END_REF], unknown input observers [START_REF] Hou | Design of observers for linear systems with unknown inputs[END_REF][START_REF] Chen | Design of unknown input observers and robust fault detection filters[END_REF][START_REF] Chen | Robust residual generation using unknown input observers[END_REF]) and active Fault Tolerant Control (FTC) systems [START_REF] Zhang | Bibliographical review on reconfigurable fault-tolerant control systems[END_REF][START_REF] Edwards | Sensor fault tolerant control using sliding mode observers[END_REF][START_REF] Alwi | Fault detection and fault-tolerant control of a civil aircraft using a sliding-mode-based scheme[END_REF].

The problems addressed in this chapter are the design of algebraic observer and HOSM observer based FDI scheme of PEMFC air-feed systems. A brief survey of existing methods in order to define the context of our work. Then, both these topics have been presented

individually. 63 Lira et al. [START_REF] Lira | LPV observer design for PEM fuel cell system: Application to fault detection[END_REF] for the application to fault detection in PEMFC systems, where the stack current was taken as the scheduling variable. In [START_REF] Kim | Nonlinear observer design for PEM fuel cell systems[END_REF][START_REF] Kim | Observer Based Nonlinear State Feedback Control of PEM Fuel Cell Systems[END_REF], sliding mode observers were designed to estimate cathode and anode pressures of a PEMFC system while low pass filters were required to estimate these pressure derivatives. The other states (i.e., supply manifold pressure, oxygen partial pressure, hydrogen partial pressure, return manifold pressure) were estimated by a nonlinear state observer, in order to design the state feedback controller. However, it should be noted that the employment of filters destroying the finite time convergence property of SMOs, consequently, the separation principle does not exist anymore. In [START_REF] Pisano | Observer-based output feedback control of a PEM fuel cell system by high-order sliding mode technique[END_REF], HOSMO-based output feedback control of a PEMFC system was developed with the measurements of the compressor angular velocity, the load current, and the supply and return manifold pressures. The estimated states were used to design an robust state-feedback controller. In [START_REF] Kunusch | Identification and observation in the anode line of pem fuel cell stacks[END_REF], the hydrogen flow rate and the membrane water transport were estimated based on the generalized STA, three variables (hydrogen humidifier pressure, anode pressure and consumed hydrogen) were assumed to be available.

Several observer based FDI approaches have been studies for the fuel cell systems. Arcak 

Algebraic Observers

The first contribution in this chapter is the design of an algebraic observer for the PEMFC air-feed system in automotive applications. This observer is designed for observing the partial pressures of oxygen and nitrogen in the cathode of the PEMFC. The necessity of this type of observation arises typically in fuel-cell powered vehicles where air is used as oxygen source in the cathode of the PEMFC. As air is composed primarily of nitrogen and oxygen, the partial pressure of each gas needs to be estimated in order to ensure the existence of sufficient quantity of oxygen in the cathode for the chemical reaction. Insufficient oxygen quantity can result in low power output and also lead to permanent physical damage to the PEMFC [START_REF] Arcak | A nonlinear observer design for fuel cell hydrogen estimation[END_REF]. As partial pressures cannot be measured from conventional sensors, their observation is essential for the control and fault detection, in order to ensure the safety and longevity of the PEMFC [START_REF] Talj | Experimental Validation of a PEM Fuel-Cell Reduced-Order Model and a Moto-Compressor Higher Order Sliding-Mode Control[END_REF][START_REF] Jemeï | A New Modeling Approach of Embedded Fuel-Cell Power Generators Based on Artificial Neural Network[END_REF][START_REF] Ramos-Paja | A PEM Fuel-Cell Model Featuring Oxygen-Excess-Ratio Estimation and Power-Electronics Interaction[END_REF].

The motivation behind this work is that algebraic observers [START_REF] Ibrir | Online Exact Differentiation and Notion Of Asymptotic Algebraic Observers[END_REF][START_REF] Diop | Interpolation and Numerical Differentiation for Observer Design[END_REF] are precise and easily implementable in automotive embedded systems. We first demonstrate that the states of the PEMFC air-feed system is algebraically observable, i.e. they can be presented in terms of a static diffeomorphism [START_REF] Isidori | Nonlinear control systems[END_REF] involving the system outputs (compressor flow rate and supply manifold pressure) and their time derivatives, respectively. As the algebraical observer requires the time derivatives of the output variables, its performance requires robust and exact differentiators [START_REF] Diop | Interpolation and Numerical Differentiation for Observer Design[END_REF]. The existing robust differentiators, such as [START_REF] Levant | Robust Exact Differentiation Via Sliding Mode Technique[END_REF], require a priori knowledge of the upper bound of a higher order time derivative, i.e. the Lipschitz constant. In many practical cases, this boundary can not be easily obtained and the results are possibly very conservative. To overcome this problem, we propose new Lyapunov-based adaptive first and second order sliding mode differentiators for practical implementation of our algebraic observation scheme. The adaptive gains adjust dynamically, therefore the Lipschitz constant is not required during the design.

The performance of the proposed observer is evaluated by implementing on the instrumented HIL test bench described in Chapter 2. In our experimental study, the main emphasis has been maintained on the robustness of the proposed observer against measurement noise and parameter variations. The use of the PEMFC emulation system permits to conduct experiments on fuel cell auxiliary systems in real time, while avoiding the risk of accidents (during worst case parametric variations) and cutting the consumption of expensive chemical reagents during fuel cell experiments that are not linked with fuel cell technology itself [START_REF] Choe | Dynamic Simulator for a PEM Fuel Cell System With a PWM DC/DC Converter[END_REF][START_REF] Gao | PEM Fuel Cell Stack Modeling for Real-Time Emulation in Hardware-in-the-Loop Applications[END_REF][START_REF] Ramos Paja | Switching and linear power stages evaluation for PEM fuel cell emulation[END_REF][START_REF] Restrepo | Fuel Cell Emulator for Oxygen Excess Ratio Estimation on Power Electronics Applications[END_REF][START_REF] Restrepo | Simplified Mathematical Model for Calculating the Oxygen Excess Ratio of a PEM Fuel Cell System in Real-Time Applications[END_REF].

Algebraic Observer Design using Sliding Mode Differentiators

Algebraic observers are ideal for implementation in real-time embedded systems because of their low computational requirements. The exact definition of algebraic observability is given in Definition 1.3.1. Our objective is to design an algebraical observer for the oxygen and nitrogen partial pressures in the PEMFC air-feed system from the available measurements of supply manifold pressure and compressor flow rate.

Let us briefly recall here that these observers are applicable to systems whose states can be expressed in terms of input and output variables and their time derivatives up to some finite degrees. Further details can be found in [START_REF] Diop | Interpolation and Numerical Differentiation for Observer Design[END_REF][START_REF] Ljung | On Global Identifiability for Arbitrary Model Parametrizations[END_REF]. In this section, we will first demonstrate the algebraic observability of PEMFC air-feed system. Then, we will present Lyapunov-based adaptive HOSM differentiators for the implementation of the algebraical observer. Finally, using these differentiators, we will present the algebraical observer for this system.

Algebraic Observability

Let us consider the model of PEMFC air-feed system (2.27). Define the cathode pressure = ϕ 2 (y 1 , ẏ1 , ÿ1 , ẏ2 ).

(3.2)
Then, in view of (3.1) and (3.2), the system states can be rewritten as

x 1 = 1 c 4 -c 5 c 3 (ϕ 1 -c 2 )W ca,out (c 1 + c 8 )(y 1 -ϕ 1 ) -ϕ 2 -c 7 ξ + c 2 c 5 -c 6 -c 5 ϕ 1 = ϕ 3 y 1 , ẏ1 , ÿ1 , y 2 , ẏ2 , x 2 = X -x 1 -c 2 = ϕ 4 (y 1 , ẏ1 , ÿ1 , y 2 , ẏ2 ), x 3 = y 2 c 17 = ϕ 5 (y 2 ),
x 4 = y 1 = ϕ 6 (y 1 ).

(

It can be seen from (3.3) that all states have been expressed as functions of the system outputs and a finite number of their time derivatives, i.e. ẏ1 , ÿ1 and ẏ2 . Therefore, according to the definition of algebraic observability 1.3.1, system (2.27) is algebraically observable.

Adaptive Sliding Mode Differentiators

Although system (3.3) is algebraically observable, it is necessary to estimate the time derivatives ẏ1 , ÿ1 and ẏ2 accurately. In this work, ẏ1 and ÿ1 are estimated through an adaptive second order sliding mode differentiator and ẏ2 is estimated through an adaptive first order differentiator. As discussed in the introduction, gain adaptation have been designed to overcome the requirement of knowledge of upper bounds on higher order time derivatives. The structure of both these differentiators is presented in the following subsections.

Adaptive second order differentiator y 1 (t)

Suppose that the output y 1 (t ) is a smooth function, consider the following third order system [START_REF] Levant | Higher-Order Sliding Modes, Differentiation and Output-Feedback Control[END_REF] ż0 = -λ0 (t ) z 0y 1 (t )

2 3 sign(z 0 -y 1 (t )) + z 1 , ż1 = -λ1 (t ) z 0 -y 1 (t ) 1 3 sign(z 0 -y 1 (t )) + z 2 , ż2 = -λ2 (t )sign(z 0 -y 1 (t )). (3.4) 
Denote σ 0 = z 0y 1 (t ), σ 1 = z 1 -ẏ1 (t ) and σ 2 = z 2 -ÿ1 (t ), System (3.4) can be rewritten as

σ0 = -λ0 (t ) |σ 0 | 2 3 sign(σ 0 ) + σ 1 , σ1 = -λ1 (t ) |σ 0 | 1 3 sign(σ 0 ) + σ 2 , σ2 = -λ2 (t )sign(σ 0 ) - ... y 1 (t ), (3.5) 
where ... y 1 (t ) ≤ L 3 and L 3 is an unknown positive constant. The time varying gains λ0 (t ), λ1 (t ) and λ2 (t ) are designed as follows

λ0 (t ) = 2 L 1 3 (t ), λ1 (t ) = 1.5 L 2 3 (t ), λ2 (t ) = 1.1 L(t ), (3.6) 
for some positive time varying scalar L(t ) which is adapted according to

L(t ) =      k if |σ 0 | = 0, 0 otherwise. (3.7)
where k > 0 is an arbitrary positive design constant.

Proposition 3.2.1. Consider the error system (3.5). Suppose that the gains λ0 (t ), λ1 (t ), λ2 (t ) satisfy (3.6, 3.7). Then, the states of the error system (3.5) converge to zero in finite time, i.e. σ i = 0, i ∈ {0, 1, 2}.

The proof of Proposition 3.2.1 is given in Appendix A4.

Adaptive first order differentiator y 2 (t)

Let us consider that the output y 2 (t ) is a smooth function. An adaptive first order sliding mode differentiator can be constructed for this signal as follows:

ξ1 = -λ(t ) |e 1 (t )| 1 2 sign(e 1 (t )) -k λ (t )e 1 (t ) + ξ 2 , ξ2 = -α(t )sign(e 1 (t )) -k α (t )e 1 (t ), (3.8) 
where e 1 (t ) = ξ 1y 2 (t ). Denote e 2 (t ) = ξ 2 -ẏ2 (t ) and its dynamics can be rewritten as

ė1 (t ) = -λ(t ) |e 1 (t )| 1 2 sign(e 1 (t )) -k λ (t )e 1 (t ) + ξ 2 , ė2 (t ) = -α(t )sign(e 1 (t )) -k α (t )e 1 (t ) -ÿ2 (t ), (3.9) 
where ÿ2 (t ) ≤ L 2 , L 2 is an unknown positive constant and the time varying gains λ(t ), α(t ), k λ (t ) and k α (t ) are formulated as

λ(t ) = λ 0 L(t ), α(t ) = α 0 L(t ), k λ (t ) = k λ 0 L(t ), k α (t ) = k α 0 L 2 (t ), (3.10) 
for some positive constants λ 0 , α 0 , k λ 0 , k α 0 and a positive, time-varying, scalar function L(t ) which is adapted according to

L(t ) =      k if |e 1 (t )| = 0, 0 otherwise. (3.11)
where k is an arbitrary positive constant.

Proposition 3.2.2. Consider the error system (3.9). Suppose that the coefficients λ 0 , α 0 , k λ 0 and k α 0 in (3.8) satisfy the following condition:

4α 0 k α 0 > 8k 2 λ 0 α 0 + 9λ 2 0 k 2 λ 0 . (3.12) 
Then, the states of the error system (3.9) converge to zero in finite time, i.e. e 1 (t ) = ė1 (t ) = 0.

The proof of Proposition 

L(t ) =      k if |σ 0 | ≥ ¯ , 0 otherwise. , L(t ) =      k if |e 1 (t )| ≥ , 0 otherwise. (3.15)
where and ¯ are sufficient small positive constants. In this sense, the gains L(t ) and L(t

)
will be adapted dynamically according to (3.15) and σ 0 and e 1 (t ) will be forced back into a real sliding mode regime in finite time.

Experimental Results

In order to investigate the implemental feasibility of the algebraic observer, the algorithm was evaluated on the HIL test bench described in Chapter 2. The complete architecture of the experimental system for this study is shown in Fig. 3.1. The observer itself is implemented on National Instruments CompactRIO real time controller and data acquisition system, using a sampling frequency of 1kHz.

In order to test the proposed observer's robustness against parametric uncertainties [START_REF] Kunusch | Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm[END_REF],

the system parameters, i.e. volumes, cathode inlet and outlet orifice, ambient temperature and stack temperature have been varied around their nominal values according to the worst-case percentages are given in Table 3.1.

During the tests, the load, i.e. the stack current shown in Fig. 2.9 was varied between 

HOSMO Based FDI for PEMFC Air-Feed System

In this section, we propose a fault detection and reconstruction method for the PEMFC air-feed system based on state estimation and parameter identification methods. This approach involves an adaptive-gain SOSM observer with a simple dynamic gain adaptation law. Once the sliding motion is achieved, the equivalent output error injection can be obtained directly and the fault signals are reconstructed based on this information [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF][START_REF] Spurgeon | Sliding mode observers: a survey[END_REF].

The uncertain parameters are estimated and then injected into the adaptive-gain SOSM observer, thus a sliding motion is maintained even in the presence of fault signals. The proposed fault reconstruction scheme is evaluated by implementing on an instrumented HIL test bench presented in Chapter 2.

Application to PEM Fuel Cell Air-Feed Systems

As discussed in Section 2.2, a block diagram of a typical PEM fuel cell system is shown in Fig. 2.4. It is assumed that the PEMFCs are supplied at the cathode with compressed air via a supply manifold. The compressor is used to draw air from the atmosphere. At the cathode exit, the air enters an outlet manifold that is open to the atmosphere. The anode pressure is assumed to be well controlled and equal to the cathode pressure [START_REF] Pukrushpan | Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design[END_REF].

Assumption 3.3.1. [START_REF] Talj | Experimental Validation of a PEM Fuel-Cell Reduced-Order Model and a Moto-Compressor Higher Order Sliding-Mode Control[END_REF] Define a new variable X = x 1 + x 2 + c 2 and suppose that

c 4 x 1 + c 5 x 2 + c 2 = κX , (3.16) 
holds in the operation domain for some positive constant κ. The Fig. 3.6 shows the exact value of κ and its constant approximation value.

The model of PEMFC air-feed system (2.27) can be simplified as follows :

Ẋ = -(c 1 + c 8 )(X -x 4 ) - c 3 (X -c 2 )W ca,out κX -c 7 ξ, ẋ2 = c 8 (x 4 -X ) - c 3 x 2 W ca,out κX , ẋ3 = -c 9 x 3 - c 10 x 3 x 4 c 11 c 12 -1 W cp + c 13 u, ẋ4 = c 14 1 + c 15 x 4 c 11 c 12 -1 × W cp -c 16 (x 4 -X ) , (3.17) 
where X := p ca is the cathode pressure, x 2 := p N 2 is the nitrogen partial pressure, x 3 := ω cp is the compressor speed and x 4 := p sm is the supply manifold pressure. W ca,out is the cathode flow rate which is a function of the cathode pressure [START_REF] Pukrushpan | Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design[END_REF] and W cp is the compressor flow rate which is a function of the angular speed of the compressor, i.e. W cp = h 3 (x 3 ) = c 17 ω cp [START_REF] Matraji | Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode[END_REF]. The stack current ξ is considered as an uncertain parameter denoted as θ.

The control input u represents the motor's quadratic current component. The cathode and supply manifold pressures are assumed to be available for measurement, i.e. the system outputs are y = X x 4 T . The system performance variable, oxygen excess ratio λ O 2 , is defined as the ratio between the oxygen entering the cathode W O 2 ,i n and the oxygen reacting in the fuel cell stack W O 2 ,r eact :

λ O 2 = W O 2 ,i n W O 2 ,r eact = c 18 (x 4 -X ) c 19 ξ . (3.18)
Due to the reasons of safety and high efficiency, it is typical to operate the stacks with this value equal 2 during step changes of current demand [START_REF] Pukrushpan | Control of fuel cell breathing: initial results on the oxygen starvation problem[END_REF]. It should be noted that positive deviations of λ O 2 above 2 imply lower efficiency, since excess oxygen supplied into the cathode will cause power waste, while negative deviations increase the probability of the starvation phenomena.

We consider a fault scenario : a suddenly air leak in the air supply manifold. This fault is simulated with an increment ∆c 16 in the supply manifold outlet flow constant c 16 := k sm,out , which is translated into a change in the outlet air flow in the supply manifold W sm,out = (c 16 + ∆c 16 )(x 4 -X ) [START_REF] Lira | LPV observer design for PEM fuel cell system: Application to fault detection[END_REF][START_REF] Escobet | Model-based fault diagnosis in PEM fuel cell systems[END_REF]. We assume that this fault appears after time t = 50 sec, i.e., ∆c 16 = 0.2c 16 . Thus the fault signal f (t ) appears in the output channel is defined as

f (t ) =      ∆c 16 × (x 4 -X ), kg/sec, if t ≥ 50 sec 0. else (3.19)
All the parameters c i , i ∈ {1, • • • , 19} are positive and depend on the physical values of the fuel cell (See Appendix A1).

In order to design the proposed observer for the fuel cell system. Let define z y 1 := X ,

z y 2 := x 4 , z 2 := x 2 x 3 T
and θ := ξ. Then, system (3.17) is described as the form of (1.100) as follows

ży 1 = -(c 1 + c 8 )(z y 1 -z y 2 ) - c 3 (z y 1 -c 2 )W ca,out κz y 1 -c 4 θ, ży 2 = c 14 1 + c 15 z y 2 c 11 c 12 -1 × h 3 (D 2 z 2 ) -(c 16 + ∆c 16 ) (z y 2 -z y 1 ) , ż2 =   -H 0 0 -c 9   A 22 z 2 +   -c 8 c 8 0 0   A 21 y +     D 1 z 2 H - c 3 W ca,out κz y 1 - c 10 D 2 z 2 z y 2 c 11 c 12 -1 h 3 (D 2 z 2 ) + c 13 u     g 2 (y,z 2 ,u)
,

y = z y 1 z y 2 T , (3.20) 
where (3.21)

D 1 = 1 0 , D 2 = 0 1 , W g 1 (y, z 2 , u) := - c 3 (z y 1 -c 2 )ψ(z y 1 ) κz y 1 , W g 2 (
The adaptive-gain SOSM observer for the system (3.20) is designed as the form (1.101) and (1.103)

ży 1 = -(c 1 + c 8 )(z y 1 -z y 2 ) - c 3 (z y 1 -c 2 )W ca,out κz y 1 -c 4 θ + µ(e y 1 )
,

ży 2 = c 14 1 + c 15 z y 2 c 11 c 12 -1 × h 3 (D 2 ẑ2 ) -c 16 (z y 2 -z y 1 ) + µ(e y 2 ), ż2 = A 22 ẑ2 + A 21 y + g 2 (y, ẑ2 , u), ŷ = ẑy 1 ẑy 2 T , (3.22) 
and

θ = -K c 4 θ + (c 1 + c 8 )(z y 1 -z y 2 ) + c 3 (z y 1 -c 2 )ψ(z y 1 )
κz y 1 + ży 1 , (3.23) 
where e y 1 = z y 1 -ẑy 1 , e y 2 = z y 2 -ẑy 2 and the adaptive-gains of the SOSM algorithm µ(e y 1 ), µ(e y 2 )

are designed according to (1.116, 1.117). The value of ży 1 is obtained from the robust exact finite time differentiator (1.104) in [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF].

The oxygen excess ratio λ O 2 and the fault signal f (t ) are estimated by the following expression

λO 2 = c 18 (x 4 -X ) c 19 θ , f (t ) = µ(e y 2 )
c 5 .

(3.24)

Remark 3.3.2. The Assumptions 1.5.7 and 1.5.10 are satisfied by the functions W g 1 (y, z 2 , u), W g 2 (y, z 2 , u), Φ 1 (y, u), Φ 2 (y, u) and g 2 (y, z 2 , u). The Riccati equation in the Assumption 1.5.8 will be satisfied by appropriate value of design gain H > 0. The Assumption 1.5.9

is also satisfied for an some > 0, since the equation (1.111) is simplified into a scalar equation.

Experimental Results

Experiments have been performed on a HIL test bench described in Chapter 2. The configuration of this test bench for the observer based fault reconstruction strategy is shown in Fig. 3.7 and the nominal values of the parameters for the HIL emulator are given in Appendix A2. In order to test the robustness of the proposed observer based fault reconstruction approach against parametric uncertainty, the system parameters, i.e. temperatures, volumes, cathode inlet and outlet orifice, motor constant and compressor inertia have been varied around their nominal values according to the worst-case percentages, are given in Table 3.1. The test bench is controlled by the robust sub-optimal SOSM controller presented in [START_REF] Matraji | Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode[END_REF], which is implemented on National Instruments CompactRIO real-time control system.

The stack current, considered as an uncertain parameter, is estimated through the adaptive update law. During the tests, the stack current was varied between 100A and 450A, corresponding to flow rate variation in the compressor between 0g/s and 28g/s. The measurement noise was also included to test the robustness of the proposed approach, that is, 

y 1 = p ca + (t ), y 2 = p sm + (t )

Chapter 4 Control and Observation of Power Converters

In the previous chapters, we have successfully designed adaptive HOSM based observers for state observation and FDI of the PEM fuel cell air-feed systems. We now turn our attention towards the power side of the PEMFC system. In fact, the PEMFC itself has severe dynamic limitations due to the time response of fuel flow and fuel delivery systems (hydrogen and air feed systems) [START_REF] Thounthong | Control strategy of fuel cell and supercapacitors association for a distributed generation system[END_REF]. In order to employ a PEMFC power system in varying load applications like electric automobiles, storage elements with fast response time need to be integrated in the system. A typical PEMFC power system usually relies on rechargeable batteries, super-capacitors or both for improved power dynamic characteristics in transient high power demands.

Evidently, such a hybrid power system requires power conditioning circuits with precise power control algorithms behind them in order for the output power to be compatible with the constraints of the power bus. These circuits include DC/DC boost converters for adapting the voltage of the fuel cell and storage elements to the bus voltage, rectifiers and inverters for DC/AC conversion and vice versa, and optimized switching algorithms for selecting the right power element for the load conditions. Precise control, and therefore observation, are equally important in this area of the PEMFC system as they were in the air-feed system.
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In this chapter, we will study the control and observation problems of different power converter systems that are employed in fuel cell hybrid power systems, using HOSM algorithms. The main focus is on the necessary modification and improvement of conventional HOSM methods for there application as output-feedback controllers in fuel cell power systems. This evidently requires integration of observers in the control system for obtaining unmeasured states. Firstly, three-phase AC/DC rectifiers are studied and observer-based SOSM output-feedback control is proposed for this system. Then, multi-cell converters are addressed and an adaptive-gain SOSM observer is designed for estimating their capacitor voltages. Both developments have been validated through multi-rate simulation approach.

SMC of Three-Phase AC/DC Rectifiers

With the advent of distributed DC power sources in the energy sector, the use of boost type three phase rectifiers has increased in industrial applications, especially, battery charger in hybrid electric vehicles (HEV) [START_REF] Egan | Power Factor Corrected Single Stage Inductive Charger for Electric Vehicle Batteries[END_REF][START_REF] Pahlevaninezhad | A Nonlinear Optimal Control Approach Based on the Control-Lyapunov Function for an AC/DC Converter Used in Electric Vehicles[END_REF][START_REF] Pahlevaninezhad | A New Control Approach Based on the Differential Flatness Theory for an AC/DC Converter Used in Electric Vehicles[END_REF][START_REF] Kuperman | Battery Charger for Electric Vehicle Traction Battery Switch Station[END_REF]. Power-factor-corrected utility interfaces are of great importance in the HEV industry. The complete energy conversion cycle of the HEV must convert electrical power from the utility to mechanical power as efficiently and as economically as possible [START_REF] Egan | Power Factor Corrected Single Stage Inductive Charger for Electric Vehicle Batteries[END_REF][START_REF] Guerrero | Advanced Control Architectures for Intelligent Microgrids;Part II: Power Quality, Energy Storage, and AC/DC Microgrids[END_REF][START_REF] Liu | A Direct Power Conversion Topology for Grid Integrations of Hybrid AC/DC Resources[END_REF]. Different power conversion systems of plug-in HEV power conditioning systems are presented in [START_REF] Cao | A New Battery/Ultra-Capacitor Hybrid Energy Storage System for Electric, Hybrid and Plug-In Hybrid Electric Vehicles[END_REF][START_REF] Lee | Advanced Integrated Bidirectional AC/DC and DC/DC Converter for Plug-In Hybrid Electric Vehicles[END_REF][START_REF] Wirasingha | Classification and Review of Control Strategies for Plug-In Hybrid Electric Vehicles[END_REF][START_REF] Camara | DC/DC Converter Design for Supercapacitor and Battery Power Management in Hybrid Vehicle Applications-Polynomial Control Strategy[END_REF][START_REF] Amjadi | Power Electronics Based Solutions for Plug-In Hybrid Electric Vehicle Energy Storage and Management Systems[END_REF].

Many schemes and solutions are proposed for the control of AC/DC rectifiers. Linear control methods using linear regulators for the output voltage control have been proposed in [START_REF] Pan | Modelling and Analysis of a Three Phase PWM AC-DC Convertor Without Current Sensor[END_REF][START_REF] Dixon | Indirect Current Control of a Unity Power Factor Sinusoidal Current Boost Type Three-Phase Rectifier[END_REF], which change the modulation index slowly, thus resulting in a slow dynamical response. Many nonlinear techniques have been proposed, such as input-output linearization [START_REF] Lee | Input-Output Linearization and Zero-Dynamics Control of Three-Phase AC/DC Voltage-Source Converters[END_REF], feedback linearization [START_REF] Lee | DC-bus Voltage Control of Three-Phase AC/DC PWM Converters Using Feedback Linearization[END_REF], fuzzy logic control [START_REF] Cecati | Implementation Issues of a Fuzzy-Logic-Based Three-Phase Active Rectifier Employing Only Voltage Sensors[END_REF], passivity-based control [START_REF] Escobar | An Adaptive Passivity-Based Controller for a Unity Power Factor Rectifier[END_REF], back-stepping technique control [START_REF] Allag | Tracking Control Via Adaptive Backstepping Approach for a Three Phase PWM AC-DC Converter[END_REF], Lyapunov-based control [START_REF] Pahlevaninezhad | A Nonlinear Optimal Control Approach Based on the Control-Lyapunov Function for an AC/DC Converter Used in Electric Vehicles[END_REF][START_REF] Kömürcügil | Lyapunov-Based Control for Three-Phase PWM AC/DC Voltage-Source Converters[END_REF], differential flatness based control [START_REF] Pahlevaninezhad | A New Control Approach Based on the Differential Flatness Theory for an AC/DC Converter Used in Electric Vehicles[END_REF][START_REF] Houari | Flatness-based control of three-phase inverter with output LC filter[END_REF][START_REF] Thounthong | Control of a Three-Level Boost Converter Based on a Differential Flatness Approach for Fuel Cell Vehicle Applications[END_REF], and sliding mode control [START_REF] Shtessel | Unity Power Factor Control in Three-Phase AC/DC Boost Converter Using Sliding Modes[END_REF][START_REF] Silva | Sliding Mode Control of Boost-Type Unity-Power-Factor PWM Rectifiers[END_REF][START_REF] Tan | A Fast-Response Sliding-Mode Controller for Boost-Type Converters With a Wide Range of Operating Conditions[END_REF]. However, most of the above works need continuous measurements of AC voltages, AC currents and DC voltage. This requires a large number of both voltage and current sensors, which increases system's complexity, cost, space and reduces system reliability. Moreover, the sensors are susceptible to electrical noise, which cannot be avoided during high-power switching. Reducing the number of sensors has a significant affect upon the control system's performance.

A few results have been proposed to reduce the current sensors [START_REF] Pan | Modelling and Analysis of a Three Phase PWM AC-DC Convertor Without Current Sensor[END_REF][START_REF] Andersen | Active Three-phase Rectifier with only One Current Sensor in the DC-link[END_REF][START_REF] Lee | AC Voltage and Current Sensorless Control of Three-Phase PWM Rectifiers[END_REF][START_REF] Lee | Comparison of Single-Sensor Current Control in the DC Link for Three-Phase Voltage-Source PWM Converters[END_REF] where the input phase currents are reconstructed from the switching states of the AC/DC rectifier and the measured DC-link currents, and then used in feedback control. However, they require digital sampling of the DC-link current in every switching cycle and numerical computations. The accuracy of measurement is inherently controlled by the sampling rate. In [START_REF] Nollet | Observer-based second order sliding mode control laws for stepper motors[END_REF], a flatness based SOSM control combined with an angular velocity SOSM observer was designed for the stepper motor. The angular displacement and the direct current are chosen as flat outputs such that other states or input variables can be presented as a function of the flat outputs and their time derivatives up to some finite number.

The practical stability of the closed-loop system was obtained inherently. For real time implementation of the designed control law, the online parameter identification should be taken into consideration. Shtessel et al. [START_REF] Shtessel | Unity Power Factor Control in Three-Phase AC/DC Boost Converter Using Sliding Modes[END_REF] designed a parameter observer to estimate the load resistance and parasitic phase resistance. An adaptive interconnected observer with online parameter identification (the stator inductance and the stator resistance) was proposed in [START_REF] Hamida | An Adaptive Interconnected Observer for Sensorless Control of PM Synchronous Motors With Online Parameter Identification[END_REF]. However, both of [START_REF] Shtessel | Unity Power Factor Control in Three-Phase AC/DC Boost Converter Using Sliding Modes[END_REF][START_REF] Hamida | An Adaptive Interconnected Observer for Sensorless Control of PM Synchronous Motors With Online Parameter Identification[END_REF] require the utilization of the current sensors.

In this section, we will design an efficient AC/DC power converter with unity power factor.

Only voltage sensors are required for measuring the output DC voltage and source voltages. A ST SMO and a ST parameter SMO are designed to observe the phase currents and load resistance from the measured output voltage, respectively. The proposed ST SMO guarantees fast convergence rate of the current observation error dynamics while the load resistance is estimated via equivalent output injection, facilitating the design of controllers.

The main contributions of the proposed method are as follows :

1. Only the output DC voltage and source voltage are assumed to be measurable, without requiring any current sensors. The proposed current observer ensures faster convergence by employing the ST sliding mode algorithm (STA). The equivalent output injections are obtained in a continuous way by the STA without the use of any low pass filters.

2. The load resistance considered as a varying parameter is estimated via the ST SMO and integrated in the proposed control design. The exponential stability of the closed loop system is established via Lyapunov analysis.

Modeling of AC/DC Rectifiers

The power circuit of the three phase voltage source AC/DC full-bridge boost converter under consideration is shown in Fig. 4.1. It is assumed that an equivalent resistive load R L is connected to the output of the AC/DC converter [START_REF] Pahlevaninezhad | A Nonlinear Optimal Control Approach Based on the Control-Lyapunov Function for an AC/DC Converter Used in Electric Vehicles[END_REF][START_REF] Pahlevaninezhad | A New Control Approach Based on the Differential Flatness Theory for an AC/DC Converter Used in Electric Vehicles[END_REF]. The control inputs, as they T 4 [START_REF] Shtessel | Unity Power Factor Control in Three-Phase AC/DC Boost Converter Using Sliding Modes[END_REF].

It is assumed that the input AC voltage is a balanced three-phase supply (i.e. U g 1 +U g 2 + U g 3 = 0), the mathematical model of the boost AC/DC converter in phase coordinate frame can be obtained through analyzing the circuit [START_REF] Pan | Modelling and Analysis of a Three Phase PWM AC-DC Convertor Without Current Sensor[END_REF] 

d i a d t = - r L i a - U 0 6L (2u 1 -u 2 -u 3 ) + 1 L U g 1 , d i b d t = - r L i b - U 0 6L (2u 2 -u 1 -u 3 ) + 1 L U g 2 , d i c d t = - r L i c - U 0 6L (2u 3 -u 1 -u 2 ) + 1 L U g 3 , dU 0 d t = - U 0 R L C + 1 2C (i a u 1 + i b u 2 + i c u 3 ) . (4.1) 
It can also be written as,

d i d t = - r L i - U 0 6L Bu + 1 L U g , dU 0 d t = - U 0 R L C + 1 2C u T i , (4.2) 
where r is parasitic phase resistance (including voltage source internal resistance and impedance of switching elements in open state), R L is the load resistance, L is phase 

inductor, C is output capacitor, U 0 is output voltage, i = i a i b i c T are the input phase currents, U g = U g 1 U g 2 U
B =     2 -1 -1 -1 2 -1 -1 -1 2     , U g = E       sin(ωt ) sin(ωt - 2 3 π) sin(ωt + 2 3 π)       . (4.3) 
where E is the magnitude of the source voltages [START_REF] Kömürcügil | Lyapunov-Based Control for Three-Phase PWM AC/DC Voltage-Source Converters[END_REF].

For modeling and control design, it is convenient to transform the three-phase variables into a rotating (d , q) coordinate frame. The transformed variables is defined as,

u d q =   u d u q   = Tu, i d q =   i d i q   = T i , T U g =   U g d U g q   , (4.4) 
where

T = 2 3    cos(ωt) cos(ωt - 2 3 
π) cos(ωt + 2 3 π) sin(ωt) sin(ωt - 2 3 
π) sin(ωt + 2 3 π)    , (4.5) 
is the Park's transformation [START_REF] Bose | Modern Power Electronics and AC Drives[END_REF][START_REF] Lee | Input-Output Linearization and Zero-Dynamics Control of Three-Phase AC/DC Voltage-Source Converters[END_REF].

It follows from Eqs. (4.3, 4.4, 4.5) that U g d = 0 and U g q = E . The dynamical model of the AC/DC converter in the rotating (d , q) frame can be expressed as [START_REF] Kömürcügil | Lyapunov-Based Control for Three-Phase PWM AC/DC Voltage-Source Converters[END_REF] 

d i d d t = - r L i d + ωi q - U 0 2L u d , d i q d t = - r L i q + E L -ωi d - U 0 2L u q , dU 0 d t = - U 0 R L C + 3 4C i d u d + i q u q , (4.6) 
where ω is the angular frequency of the source voltage. In the transformed state Eq.

(4.6), the state vector is defined as x = x 1 x 2 x 3 T = i d i q U 0 T and the control input vector u d q = u d u q T are the switching functions in synchronously rotating (d , q) coordinate. From the control point of view, the model of AC/DC converter in (d , q) frame has the advantage of reducing the current control task into a set-point tracking problem [START_REF] Lee | Input-Output Linearization and Zero-Dynamics Control of Three-Phase AC/DC Voltage-Source Converters[END_REF].

Assumption 4.1.1. The phase voltages U g and output voltage U 0 are measurable;

Control Objectives:

• The input phase currents i a , i b , i c should be in phase with corresponding input source voltage U g 1 ,U g 2 ,U g 3 in order to obtain a unity power factor.

• The DC component of the output voltage should be driven to some desired value U * 0 while its AC component has to be attenuated to a given level. The observed current Î is the output of the observer system (4.10).

Observer-based SOSM Controller Design

Power Balance Condition

Sliding Mode Current Controller

Observer System AC-DC Converter -- 

* 0 U 0 U * I Î u u 0 U g U 0 U Source Output Voltage ˆ(0) I 0 ˆ(0) U

Super-Twisting Sliding Mode Observer Design

The proposed ST SMO is designed in the following two steps, 1. Observability analysis of the nonlinear system;

2. Construction of the ST SMO;

Observability Analysis: In order to construct an observer for a system, it is necessary to verify its observability, i.e. there exists the possibility of obtaining the states of a system only from the knowledge of its inputs and outputs up to time t [START_REF] Besançon | Nonlinear Observers and Applications[END_REF]. Considering the following nonlinear system,

ẋ = f u (x, u), y = h 1 (x) • • • h p (x) T , (4.7) 
where x ∈ R n are the state vectors, u ∈ R m are the bounded inputs, y ∈ R p are the outputs.

Assume that the vector field f u (•, •) is a sufficiently smooth function.

Definition 4.1.2. The system described by (4.7) is locally observable if the matrix defined by (4.8) satisfies observability rank condition

d i m(O) = n at a point x 0 , O =         d L 0 f u (h 1 ) d L 0 f u (h 2 ) • • • d L 0 f u (h p ) d L 1 f u (h 1 ) d L 1 f u (h 2 ) • • • d L 1 f u (h p ) . . . . . . . . . . . . d L n-1 f u (h 1 ) d L n-1 f u (h 2 ) • • • d L n-1 f u (h p )         , (4.8) 
where L f u (h) denotes the Lie derivative of h with respect to f u [START_REF] Hermann | Nonlinear Controllability and Observability[END_REF].

Taking y = x 3 = U 0 as the output , the application of Definition 4.1.2 leads to the following observability matrix,

O =        0, 0, 1 3u d 4C , 3u q 4C , - 1 
RC -u d - 3ωu q 4C , 3ωu d 4C -u q , - 3 u d q 2 8LC + ( 1 
R L C ) 2        , (4.9) 
where

= 3 4C ( r L + 1 R L C
), and u d q

2 2 = u 2 d + u 2
q . Thus, it is possible to observe the currents i d , i q from the measurement of the output voltage U 0 when u d q 2 = 0. In the case of singular inputs u d = 0, u q = 0, the system (4.6) is transformed into a reduced system with detectability property. This property allows to construct an open-loop observer [START_REF] Besançon | Nonlinear Observers and Applications[END_REF][START_REF] Sarinana | On Nonlinear Observers Applied to Three-Phase Voltage Source Converters[END_REF].

Construction of ST SMO: Denote the observation errors e 1 = i d -îd , e 2 = i q -îq , e 3 = U 0 -Û0 . Then, a ST SMO for (4.6) is constructed as follows

d îd d t = r L îd + ω îq - U 0 2L u d + k 1 µ(e 3 ), d îq d t = r L îq -ω îd - U 0 2L u q + E L + k 2 µ(e 3 ), d Û0 d t = U 0 R L C + 3 4C ( îd u d + îq u q ) + µ(e 3 ), (4.10) 
where the output error injection µ(e 3 ) is defined by STA

µ(e 3 ) = λ|e 3 | 1 2 sign(e 3 ) + α ˆt 0 sign(e 3 )d τ, (4.11) 
with positive designing parameters λ, α.

Then the error dynamics is obtained as follows

ė1 = - r L e 1 + ωe 2 -k 1 µ(e 3 ), (4.12 
)

ė2 = -ωe 1 - r L e 2 -k 2 µ(e 3 ), (4.13) 
ė3 = 3 4C (u d e 1 + u q e 2 ) -µ(e 3 ). which take values from the discrete set {-1, +1}, the control variables u d and u q satisfy the following saturation constraint

u d q ≤ T u = λ max (T T T ) u ≤ 2 3 3 = 2, (4.15) 
where • denotes the Euclidean norm of a vector or the spectral norm of a matrix.

The design problem is transformed into determining α, λ and k 1 , k 2 which are the tuning parameters to ensure the convergence of the error system (4.12, 4.13, 4.14).

Proposition 4.1.3. Consider the system (4.14) under the condition (4.15). Then, the trajectories of the system (4.14) converge to zero in finite time, and the resulting reduced order dynamics (4.12, 4.13) are exponentially stable, if the gains α, λ of the STA and tuning parameters k 1 , k 2 are chosen as [START_REF] Levant | Robust Exact Differentiation Via Sliding Mode Technique[END_REF],

α > F, λ 2 > α.
(4. [START_REF] De Persis | A geometric approach to nonlinear fault detection and isolation[END_REF])

k 1 =      κu d if |e 3 | = 0, 0 otherwise. , k 2 =      κu q if |e 3 | = 0, 0 otherwise. (4.17) 
where F and κ are some positive constants.

Proof . The proof is divided into two steps. Firstly, the Eq. (4.14) is proven to be finite time stable. Secondly, the resulting reduced order dynamics (4.12, 4.13) are proven to be exponentially stable with faster convergence rate than its open loop dynamics.

We start from |e 3 | = 0, thus, the two correction gains k 1 , k 2 are zero according to Eq.(4.17).

Denoting e 12 = e 1 , e 2 T , the error system (4.12, 4.13) becomes its open loop dynamics

ė12 =   - r L ω -ω - r L   A e 12 . (4.18) 
The system (4.18) is exponentially stable given that A is a Hurwitz matrix. Consequently, it follows that e 12 (t ) ≤ e 12 (t 0 ) ,

ė12 (t ) ≤ A e 12 (t ) , (4.19) 
where t 0 is the initial value of time and

A = λ max (A T A) = ω 2 + r 2 L 2 .
In view of the Eqs. (4.18, 4.19), The Eq. (4.14) can be rewritten as

ė3 = -λ|e 3 | 1 2 sign(e 3 ) + ϕ, φ = -αsign(e 3 ) + g (e 1 , e 2 , u d , u q ), (4.20) 
where g (e 1 , e 2 , u d , u q ) = 3 4C

d d t
u d e 1 (t ) + u q e 2 (t ) . Due to the fact that the derivative of the control variable u d q designed in Eqs.(4.41,4.42) is bounded, i.e., udq ≤ U d q . It follows that g (e 1 , e 2 , u d , u q ) ≤ 3 4C u d q ė12 (t ) + udq e 12 (t )

≤ 3 4C e 12 (t ) U d q + 2 A , (4.21) 
where U d q is a positive value and g is bounded by a decreasing function given that e 12 (t ) converges to zero exponentially. Thus, after certain time, there exists a positive constant value F such that F > g (e 1 , e 2 , u d , u q ) .

Given that the gains of the STA are chosen as (4.16), e 3 , ė3 converge to zero in finite time [START_REF] Levant | Robust Exact Differentiation Via Sliding Mode Technique[END_REF]. Thereafter, the equivalent output-error injection µ(e 3 ) in (4.14) can be obtained directly without any low pass filters [START_REF] Floquet | Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF],

µ(e 3 ) = 3 4C (u d e 1 + u q e 2 ). (4.22) 
In the second step of the proof, the convergence of the reduced order dynamics (4.12, 4.13) is performed. Once the reaching phase is arrived (e 3 = 0, ė3 = 0) and maintains on it thereafter, the gains k 1 , k 2 will switch according to (4.17). Substitute the equivalent injection (4.22) into the system (4.12, 4.13), one can get the reduced order dynamics

ė12 = Ae 12 -Āe 12 , (4.23) 
where

Ā = 3κ 4C   u 2 d u d u q u d u q u 2 q   .
Consider a candidate Lyapunov function for system (4.23)

V Remark 4.1.4. It should be noted that e 3 may cross zero during its reaching phase.

Assume that at time instant t = t 1 that e 3 crosses zero. Then, according to the condition in (4.17), Eq. (4.18) becomes

ė12 = Ae 12 + ψ, (4.27) 
where ψ = -κµ(e 3 )u d q . Due to the fact that e 3 does not exhibit finite time escape, and ψ is a bounded function, we can write the solution as [START_REF] Hassan | Nonlinear Systems[END_REF] e 12 (t ) = e (t -t 0 )A e 12 (t 0 ) +

ˆt1 +∆t t 1 -∆t e (t -τ)A ψd τ, (4.28) 
where ∆t is arbitrary small. That is, the second term in the right side of Eq.(4.28) can be considered as zero. Therefore, the condition (4.19) holds for all t ≥ t 0 .

Remark 4.1.5. Concerning the practical implementation of (4.17), the condition e 3 = 0 in (4.17) can not be satisfied in the presence of measurement noise and numerical approximations [START_REF] Pisano | Globally convergent real-time differentiation via second order sliding modes[END_REF]. This obstacle can be overcome by modifying the condition e 3 = 0 using dead-zone technique [START_REF] Slotine | Applied nonlinear control[END_REF], as

k 1 =      κu d if |e 3 | < , 0 otherwise. , k 2 =      κu q if |e 3 | < , 0 otherwise. (4.29)
where in general is a small positive value.

In the next subsection, an output feedback ST current control is designed in order to achieve the objective of unity power factor and ripple free output voltage.

Output Feedback ST Sliding Mode Current Control

The STA is popular among the SOSM algorithms because it is an absolutely continuous sliding mode algorithm, therefore it does not suffer from the problem of chattering [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF][START_REF]Principles of 2-sliding mode design[END_REF]. The main advantages of the ST SMC are as follows [START_REF] Utkin | Sliding Mode Control in Electro-Mechanical Systems[END_REF]:

• It does not need the evaluation of the time derivative of the sliding variable;

• Its continuous nature suppresses arbitrary disturbances with bounded time derivatives;

The control objectives are defined in the Subsection 4.1.1.

Desired current calculation: Normally, the value of the inductance L 1 in the system (4.6) and the right-hand sides of the equations in (4.6) have the values of the same order.

Hence

d i d d t , d i q d t dU 0 d t
, implying that the dynamics of i d and i q are much faster than those of U 0 [START_REF] Utkin | Sliding Mode Control in Electro-Mechanical Systems[END_REF]. Provided that the fast dynamics are stable, based on the singular perturbation theory [START_REF] Hassan | Nonlinear Systems[END_REF], let the first and second equations of (4.6) be zero formally, then u d , u q can be obtained,

U 0 2L u d = - r L i * d + ωi * q , U 0 2L u q = - r L i * q -ωi * d + E L , dU 0 d t = - U 0 R L C + 3 4C (i * d u d + i * q u q ). (4.30) 
In view of Eq. (4.30), the reference currents i * d , i * q will be determined depending on the desired system performance. Substitute the first and second equations into the third equation of (4.30) yields,

dU 0 d t = - U 0 R L C + 3 2 i * q E -E r U 0 C , (4.31) 
where

E r = r (i * d 2 + i * q 
2 ) represents the power consumed by parasitic phase resistance r .

Considering the Power-Balance condition [START_REF] Kömürcügil | Lyapunov-Based Control for Three-Phase PWM AC/DC Voltage-Source Converters[END_REF],

3 2 (i * q E -E r ) = U * 2 0 R L . (4.32) 
The reference current i * d is set to zero for guaranteeing Unity-Power-Factor which leads to the following calculation of the reference current i * q ,

i * q = E 2r ± 1 2 E 2 r 2 - 8U * 2 0 3R L r , (4.33) 
under constraint for desired output voltage U * 0 ,

U * 0 ≤ E 3R L 8r . (4.34) 
Finally, due to minimal energy consumption, i * d and i * q are obtained as follows

i * d = 0, i * q = E 2r - 1 2 
E 2 r 2 - 8U * 2 0 3R L r . (4.35) 
As tracking error vector approaches zero, i.e. i d → i * d and i q → i * q , the zero dynamics have the form [START_REF] Lee | Input-Output Linearization and Zero-Dynamics Control of Three-Phase AC/DC Voltage-Source Converters[END_REF] 

dU 0 d t = - U 0 R L C + U * 2 0 R L CU 0 . (4.36) 
Define a new variable Z = U 2 0 , Eq. (4.36) can be rewritten as,

d Z d t = - 2 R L C (Z -U * 2 0 ). (4.37) 
For a positive initial value of the output voltage, the steady-state value of U 0 will converge to the desired level U * 0 with the time constant

R L C 2
exponentially. Therefore, the tracking of the reference current achieves the regulation of output voltage to the desired value U * 0 with a unity power factor. In the following part, the design of current control based on STA is proposed.

Output feedback SMC: We will now design ST SMC for the system (4.6) based on the proposed observer (4.10). The sliding variables for the current control are defined as,

s d = i * d -i d = i * d -îd + îd -i d = ŝd -e 1 , s q = i * q -i q = i * q -îq + îq -i q = ŝq -e 2 , (4.38) 
where i * d and i * q are the desired values of the currents in the (d , q) coordinate frame and e 1 , e 2 are observation errors. The desired value is selected to provide the DC power balance between the input power and the output power.

Taking the first time derivative of s d q = s d s q T yields,

ṡdq =    r L i d -ωi q i * q + r L i q - E L + ωi d    + U 0 2L   u d u q   . (4.39) 
The Eq. (4.39) can be rewritten as,

  ṡd ṡq   =   - r L s d + ωs q -ωs d - r L s q   +   φ d φ q   + U 0 2L   u d u q   , (4.40) 
where

φ d = -ωi * q , φ q = i * q + r L i * q - E L .
The control objective is to force the sliding variable s d , s q to zero. In order to satisfy the saturation constraint (4.15), the controllers u d , u q are designed as follows,

u d q =   u d u q   =   σ (m d ) σ m q   , (4.41) 
where m d , m q are designed as

m d =        2L U 0 r L ŝd -ω ŝq -µ( ŝd ) -φ d if ŝdq > S d q , 2L U 0 r L ŝd -ω ŝq -k d ŝd -φ d if ŝdq ≤ S d q . m q =        2L U 0 ω ŝd + r L ŝq -µ( ŝq ) -φ q if ŝdq > S d q , 2L U 0 ω ŝd + r L ŝq -k q ŝq -φ q if ŝdq ≤ S d q .
(4.42)

µ( ŝd ), µ( ŝq ) take the form of (4.11), ŝdq = ŝd ŝq T , k d , k q , S d q are some positive constants and σ(•) is the standard saturation function

σ(x) = x max{1,|x|} . (4.43) 
Remark 4.1.6. For digital implementation of the controller (4.41), Digital Signal Processors (DSP) is a good choice due to complicated calculations [START_REF] Sabanovic | Variable Structure Systems: From Principles to Implementation[END_REF]. Since the control signals (4.41) are continuous, a digital sawtooth signal is used to compare with the controller (4.41) in order to produce the PWM pulses which can directly control the AC/DC converter in the real world.

Closed-Loop Stability Analysis

It is well known that the so-called separation principle is available for linear systems, may not hold for nonlinear systems in general [START_REF] Mazenc | Global stabilization by output feedback: examples and counterexamples[END_REF][START_REF] Hong | Global finite-time stabilization: from state feedback to output feedback[END_REF]. This means that the observer and the controller can not be designed separately [START_REF] Nollet | Observer-based second order sliding mode control laws for stepper motors[END_REF]. Thus, Lyapunov analysis of the closed-loop system is employed to prove the convergence of the system (4.40) by taking the observation errors into account.

Theorem 4.1.7. Consider the system (4.6) in closed loop with the saturated controller (4.41). The state trajectories of the system (4.40) locally exponentially converge to the origin s d = 0, s q = 0, moreover, the output voltage locally exponentially converge to the desired constant voltage U * 0 if the gains of µ( ŝd ), µ( ŝq ) and U * 0 are chosen such that the following conditions are satisfied,

α d > F d q , λ 2 d > α d , α q > F d q , λ 2 q > α q , (4.44) 
U * 0 > 2 Lωi * q 2 + E -r i * q 2 , (4.45) 
where F d q is an arbitrary positive constant.

Proof . The proof is divided into two parts, firstly, we consider the case when the control vector u d q ≤ 2, thus we choose u d q = m d m q T

. Secondly, we consider the case when the control vector u d q > 2, thus the control is chosen as u d q = 2.

Case 1 : The controller is given by u d = m d and u q = m q in Eq. (4.42). When ŝdq > S d q , then Eq. (4.40) can be rewritten as

  ṡd ṡq   = -   µ( ŝd ) µ( ŝq )   - 3κ 4C   u 2 d u d u q u d u q u 2 q     e 1 e 2   φ(u d ,u q ,e 1 ,e 2 ) , (4.46) 
where the function φ(u d , u q , e 1 , e 2 ) can be rewritten as φ(u d , u q , e 1 , e 2 ) = 3κ 4C u T d q u d q e 12 (t ).

(4.47)

It can be deduced from Eq. (4.42) that the derivative of the control variable u d q is bounded, i.e. udq ≤ U d q . In view of Eqs. (4.15), one can write

d d t φ = 3κ 4C 2u T d q udq e 12 (t ) + u T d q u d q ė12 (t ) ≤ 3κ 2C e 12 (t ) 2U d q + A . (4.48) 
It is shown from Eq.(4.48) that the derivative of the function φ(u d , u q , e 1 , e 2 ) is bounded by a decreasing function given that e 12 (t ) converges to zero exponentially. Thus, after certain time, there exists a positive constant value

F d q such that F d q > d d t φ .
According to the result of [START_REF] Levant | Robust Exact Differentiation Via Sliding Mode Technique[END_REF], the trajectories of the system (4.46) will converge to

D = { ŝdq ∈ R n | ŝdq ≤ S d q } in
finite time with the gains chosen as (4.44).

Inside the set ŝdq ≤ S d q , Eq. (4.40) is presented as

  ṡd ṡq   = -   k d 0 0 k q     ŝd ŝq   - 3κ 4C
u T d q u d q e 12 (t ).

(4.49)

The solution of Eq. (4.49) is calculated as follows ŝdq (t ) = e (t -t 0 )K ŝdq (t 0 ) -

ˆt t 0 e (t -τ)K 3κ 4C u T d q (τ)u d q (τ)e 12 (τ)d τ, ( 4.50) 
where the matrix

K =   -k d 0 0 -k q   is Hurwitz.
Let us consider the bound e (t -t 0 )K ≤ k 1 e -λ 1 (t -t 0 ) for some positive constants k 1 and λ 1 [START_REF] Hassan | Nonlinear Systems[END_REF]. As Proposition 4.1.3 implies that e 12 (t ) converges to zero exponentially, one can get e 12 (t ) ≤ k 2 e -λ 2 (t -t 0 ) for some positive constants k 2 and λ 2 . It follows that

ŝdq (t ) ≤ k 1 e -λ 1 (t -t 0 ) ŝdq (t 0 ) + ˆt t 0 k 1 e -λ 1 (t -τ) 3κ 4C u T d q (τ)u d q (τ) e 12 (τ) d τ ≤ k 1 e -λ 1 (t -t 0 ) ŝdq (t 0 ) + k 1 k 2 3κ 2C ˆt t 0 e -λ 1 (t -τ) e -λ 2 (τ-t 0 ) d τ ≤ k 1 e -λ 1 (t -t 0 ) ŝdq (t 0 ) + 3κk 1 k 2 e -λ 2 (t -t 0 ) -e -λ 1 (t -t 0 ) 2C (λ 1 -λ 2 )
= c 1 e -λ 1 (t -t 0 ) + c 2 e -λ 2 (t -t 0 ) ,

where c 1 = k 1 ŝdq (t 0 ) -

3κk 1 k 2 2C (λ 1 -λ 2 ) , c 2 = 3κk 1 k 2 2C (λ 1 -λ 2 )
are some constant values.

It follows from (4.51) that ŝd and ŝq converge to zero exponentially. Given that e 1 and e 2 converge to zero exponentially, we can also conclude that s d and s q converge to zero exponentially.

Case 2 : According to the result of [START_REF] Escobar | A saturated output feedback controller for the three phase voltage sourced reversible boost type rectifier[END_REF], the sufficient condition for the control vector u d q to enter into the circle of radium 2, (i.e., u d q ≤ 2) is that

U * 0 > 2 Lωi * q 2 + E -r i * q 2 .
(4.52)

Thus, Theorem 4.1.7 is proven.

Remark 4.1.8. For practical implementation of the proposed controller, it is important to select the value of F d q as the controller's gains depend on this bound. As can be seen from the Eq. (4.48) that the value F d q depends on e 12 (t ) which converges to zero exponentially ( lim t →∞ e 12 (t ) = 0). Thus, after certain time, a sufficient large value can be chosen for F d q such that F d q > d d t

φ . The larger value of k d and k q will ensure faster convergence of ŝd and ŝq to zero. Therefore, the controller's gains can be simply chosen such that the condition (4.44) is fulfilled.

The proposed observer-based control law (4.41) requires real-time evaluation of sliding variables ŝd = i * d -îd , ŝq = i * q -îq . However, the current reference i * q in (4.35) requires the knowledge of load resistance R L and parasitic phase resistance r . Due to this fact, a ST parameter observer is employed to estimate the value of load resistance while phase resistance is assumed to have its nominal value [START_REF] Shtessel | Unity Power Factor Control in Three-Phase AC/DC Boost Converter Using Sliding Modes[END_REF] In this work, the load resistance R L in the system is assumed to vary around its nominal value R 0 . The last differential equation in (4.6) is used to construct the ST SMO

d Û0 d t = - U 0 R 0 C + 3 4C ( îd u d + îq u q ) + µ( Ũ0 ), (4.53) 
where R 0 is the nominal value of the load resistance.

Define the observation error Ũ0 = U 0 -Û0 and its dynamics are given by

U0 = -µ( Ũ0 ) - U 0 C 1 R L - 1 R 0 + 3 4C (e 1 u d + e 2 u q ) = -µ( Ũ0 ) + Ψ R L , (4.54) 
where µ(•) is the STA defined in (4.11). From Proposition 4.1.3, lim t →∞ e 1 = 0, lim t →∞ e 2 = 0 and

lim t →∞ Ψ R L = - U 0 C 1 R L - 1 R 0
. Sliding mode will be enforced with appropriate values of λ, α providing that the first time derivative of the term Ψ R L is bounded [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF][START_REF]Principles of 2-sliding mode design[END_REF]. It follows that when a sliding motion takes place, i.e.

µ( Ũ0 ) -

U 0 C 1 R L - 1 R 0 + 3 4C (e 1 u d + e 2 u q ) = 0. (4.55)
The load resistance R L can therefore be estimated in terms of its nominal value and observer's output with appropriate parameters exponentially,

RL = R 0 U 0 U 0 -R 0 C µ( Ũ0 ) , (4.56) 
since lim t →∞ RL -R L = 0.

Power Factor Estimation

Almost all utility interfaced applications, especially in the electric vehicle industry concern about power quality (higher power factor and less harmonic pollution). The unity-value power factor converter does not introduce any distortion (phase current has only main harmonic) to the energy source, phase shift between input phase current and main source voltage and maximizes the performance factor of the power conversion [START_REF] Egan | Power Factor Corrected Single Stage Inductive Charger for Electric Vehicle Batteries[END_REF][START_REF] Shtessel | Unity Power Factor Control in Three-Phase AC/DC Boost Converter Using Sliding Modes[END_REF]. Due to the fact that one of our control objective is to obtain the unity power factor, thus, the estimation of power factor value is of prime importance for analyzing the quality of the proposed observer-based control law.

The definition of power factor is given as the following formula,

PF = PF h × PF d = RMS(i 1 (t )) RMS(i (t )) × cos(φ), (4.57) 
where PF h is the harmonic distortion and PF d is the displacement between input phase current and source voltage.

The RMS(•) stands for the root-mean-square quantity which is calculated as follows

RMS(i (t )) = 1 T ˆT 0 i 2 (τ)d τ, (4.58)
where T is the period of the phase current i (t ), RMS(i 1 (t )) characterizes the fundamental component of the current (root-mean-square) and RMS(i (t )) corresponds to the total current (root-mean-square).

The overall power factor for the three-phase AC/DC converter is calculated from the estimates of phase current which will be a product of the three single phase power factor values,

PF total = PF a × PF b × PF c = RMS( îa 1 (t )) RMS( îa (t )) × cos( φa ) × RMS( îb 1 (t )) RMS( îb (t )) × cos( φb ) × RMS( îc 1 (t )) RMS( îc (t )) × cos( φc ), (4.59) 
where îa , îb , îc (t ) and îa 1 , îb 1 , îc 1 (t ) are the estimates of the input phase currents, their fundamental components, respectively. φa , φb , φc are the phase shift between the input currents and the source voltages.

The structure of single-phase power factor estimation is shown in Fig. 4.3, which includes two important modules of Matlab/Simulink: Fourier analysis and Harmonic analysis. The first module gives the phases of main-frequency input current and source phase voltage.

The other module is used to measure the total harmonic distortion of input current.

Source Voltage

Fourier Analysis 

Converters

In recent years, industrial applications requiring high power levels have used mediumvoltage semiconductors [START_REF] Meynard | Multi-Level Conversion: High Voltage Choppers and Voltage-Source Inverters[END_REF][START_REF] Rodriguez | Multilevel Inverters: a Survey of Topologies, Controls, and Applications[END_REF][START_REF] Rech | Hybrid Multilevel Converters: Unified Analysis and Design Considerations[END_REF][START_REF] Gerry | High-Voltage Multicellular Converters Applied to AC/AC Conversion[END_REF]. Because of the efficiency requirements, the power of the converter is generally increased by boosting the voltage. However, mediumvoltage switching devices are not available. Even if they did exist, the volume and the cost of such devices would be substantial [START_REF] Gateau | Multicell Converters: Active Control and Observation of Flying-Capacitor Voltages[END_REF]. In this sense, the topology of multi-level converters, which have been studied during the last decade, becomes attractive for high voltage applications [START_REF] Meynard | Multi-Level Conversion: High Voltage Choppers and Voltage-Source Inverters[END_REF]. From a practical point of view, the series of a multi-cell chopper designed by the LEEI (Toulouse, France) [START_REF] Bensaid | Sliding-Mode Observer For Multicell Converters[END_REF], leads to a safe series association of components working in a switching mode. This structure offers the possibility of reducing the voltage constraints evenly among each cell in a series. These lower-voltage switches result in lower conduction losses and higher switching frequencies. Moreover, it is possible to improve the output waveforms using this structure [START_REF] Gateau | Multicell Converters: Active Control and Observation of Flying-Capacitor Voltages[END_REF][START_REF] Bensaid | Floating Voltages Estimation In Three-Cell Converters Using a Discrete-Time Kalman Filter[END_REF][START_REF]Flying Capacitor Voltages Estimation In Three-Cell Converters Using a Discrete-Time Kalman Filter at One Third Switching Period[END_REF]. These flying capacitors have to be balanced to guarantee the desired voltage values at the output, which ensures that the maximum benefit from the multi-cell structure is obtained [START_REF] Meynard | Modeling of Multilevel Converters[END_REF]. These properties are lost if the capacitor voltage drifts far from the desired value [START_REF] Bejarano | Observability and Observer Design for Hybrid Multicell Choppers[END_REF]. Therefore, a suitable control of the switches is required to generate the desired values of the capacitor voltages. The control of switches allows the current harmonics at the cutting frequency to be canceled and the ripple of the chopped voltage to be reduced [START_REF] Djemaï | High-Order Sliding Mode Control of a DC Motor Drive Via a Switched Controlled Multi-Cellular Converter[END_REF][START_REF] Defoort | Robust Finite Time Observer Design for Multicellular Converters[END_REF].

Several control methods have been proposed for multi-cell converters, such as nonlinear control based on input-output linearization [START_REF] Gateau | Multicell Converters: Active Control and Observation of Flying-Capacitor Voltages[END_REF], predictive control [START_REF] Defaÿ | A Predictive Control With Flying Capacitor Balancing of a Multicell Active Power Filter[END_REF], hybrid control [START_REF] Bâja | Hybrid Control of a Three-Level Three-Cell DC-DC Converter[END_REF], model predictive control [START_REF] Defaÿ | A Predictive Control With Flying Capacitor Balancing of a Multicell Active Power Filter[END_REF][START_REF] Lezana | Model Predictive Control of an Asymmetric Flying Capacitor Converter[END_REF] and sliding mode control [START_REF] Djemaï | High-Order Sliding Mode Control of a DC Motor Drive Via a Switched Controlled Multi-Cellular Converter[END_REF][START_REF] Amet | Direct Control Based on Sliding Mode Techniques for Multicell Serial Chopper[END_REF][START_REF] Meradi | Sliding Mode and Fault Tolerant Control for Multicell Converter Four Quadrants[END_REF]. However, most of these techniques require measurements of the voltages of the capacitors to design the controller. That is, extra voltage sensors are necessary, which increases the cost and the complexity of the system. Hence, the estimation of the capacitor voltages using an observer has attracted great interest [START_REF] Besançon | Nonlinear Observers and Applications[END_REF].

It should be noted that the states of the multi-cell system are only partially observable because the observability matrix never has full rank [START_REF] Besançon | Nonlinear Observers and Applications[END_REF]. Hence, the observability matrix rank condition cannot be employed in an observability analysis of a hybrid system such as the one considered here [START_REF] Vidal | Observability of Linear Hybrid Systems[END_REF][START_REF] Babaali | Observability of switched linear systems in continuous time[END_REF]. A recent concept, Z (T N )-observability [START_REF] Kang | On the Observability of Nonlinear and Switched Systems[END_REF], can be used to analyze the observability of a switched hybrid system and is applied in this work because the observability of the converter depends upon the switching control signals. Various observers have been designed for the multi-cell converters based on concepts such as homogeneous finite-time observers [START_REF] Defoort | Robust Finite Time Observer Design for Multicellular Converters[END_REF], super-twisting sliding mode observers [START_REF] Bejarano | Observability and Observer Design for Hybrid Multicell Choppers[END_REF][START_REF] Ghanes | On Sliding Mode and Adaptive Observers Design for Multicell Converter[END_REF] and adaptive observer [START_REF] Bejarano | Observability and Observer Design for Hybrid Multicell Choppers[END_REF]. The concept of observability presented in [START_REF] Kang | On the Observability of Nonlinear and Switched Systems[END_REF] gives the condition under which there exists a hybrid time trajectory that makes the system observable. Using this concept, estimates of the capacitor voltages can be obtained from the measurements of the load current and the source voltage by taking advantage of the appropriate hybrid time trajectories. In the works of [START_REF] Bejarano | Observability and Observer Design for Hybrid Multicell Choppers[END_REF][START_REF] Ghanes | On Sliding Mode and Adaptive Observers Design for Multicell Converter[END_REF], based on a set of p -1 linearly independent equations with respect to the voltages in the p -1 capacitors, an algorithm is proposed to estimate the capacitor voltages which employs the pseudo-inverse of a matrix whose elements are the switching signals correspondingly.

In this section, an observability analysis based on the results of [START_REF] Kang | On the Observability of Nonlinear and Switched Systems[END_REF][START_REF] Bejarano | Observability and Observer Design for Hybrid Multicell Choppers[END_REF] is performed for the multi-cell converter assuming measurements of the load current and the source voltage under certain conditions of the switching input sequences. Then, a novel adaptive-gain SOSM observer for multi-cell converters is introduced that takes into account certain perturbations (load variations) in which the boundaries of their first time derivatives are unknown. The proposed adaptive-gain SOSM algorithm combines the nonlinear term of the super-twisting algorithm (ST) and a linear term, the so-called SOSML algorithm [START_REF] Moreno | A Lyapunov Approach to Second-Order Sliding Mode Controllers and Observers[END_REF]. The behavior of the ST algorithm near the origin is significantly improved compared with the linear case. Conversely, the additional linear term improves the behavior of the ST algorithm when the states are far from the origin. Therefore, the SOSML algorithm inherits the best properties of both the linear and the nonlinear terms. An adaptive law of the gains of the SOSML algorithm is derived via the so-called "time scaling" approach [START_REF] Respondek | Time scaling for observer design with linearizable error dynamics[END_REF].

The output observation error and its first time derivative converge to zero in finite time with the proposed SOSML observer such that the equivalent output-error injection can be obtained directly. Finally, the resulting reduced-order system is proven to be exponentially stable. That is, the estimates of the capacitor voltages, which are considered as the states of the observer system, converge to the real states exponentially. 

Modeling of the Multi-cell converter

The structure of a multi-cell converter is based on the combination of a certain number of cells. Each cell consists of an energy storage element and commutators [START_REF] Gateau | Multicell Converters: Active Control and Observation of Flying-Capacitor Voltages[END_REF]. The main advantage of this structure is that the spectral quality of the output signal is improved by a high switching frequency between the intermediate voltage levels [START_REF] Mcgrath | Analytical Modelling of Voltage Balance Dynamics for a Flying Capacitor Multilevel Converter[END_REF]. An instantaneous model that was presented in [START_REF] Gateau | Multicell Converters: Active Control and Observation of Flying-Capacitor Voltages[END_REF] and describes fully the hybrid behavior of the multi-cell converter is used here. Through circuit analysis, the dynamics of the p-cell converter were obtained as the following differential equations:

İ = - R L I + E L S p - p-1 j =1 V c j L (S j +1 -S j ), Vc 1 = I c 1 (S 2 -S 1 ), . . . Vc p-1 = I c p (S p -S p-1 ), (4.60) 
where I is the load current, c j is the j t h capacitor, V c j is the voltage of the j t h capacitor and E is the voltage of the source. Each commutation cell is controlled by the binary input signal S j ∈ {0, 1}, where S j = 1 indicates that the upper switch of the j th cell is on and the lower switch is off and S j = 0 indicates that the upper switch is off and the lower switch is on. The discrete inputs are defined as follows:

u j = S j +1 -S j , j = 1, . . . , p -1 u p = S p . (4.61) 
With equation (4.61), the system (4.60) can be represented as follows:

İ = - R L I + E L u p - p-1 j =1 V c j L u j , Vc 1 = I c 1 u 1 ,
. . .

Vc p-1 = I c p-1 u p-1 , y = I . (4.62)
Assuming that only the load current I can be measured, it is easy to represent the system (4.62) as a hybrid (switched affine) system:

ẋ = f (x, u) = A(u)x + B (u), y = h(x, u) = C x, (4.63) 
where

x = I V c 1 • • • V c p-1 T is the continuous state vector, u = u 1 u 2 • • • u p T
is the switching control signal vector which takes only discrete values and the matrices A(u), B (u), C are defined as:

A(u) =           - R L - u 1 L • • • - u p-1 L u 1 c 1 0 • • • 0 . . . . . . . . . . . . u p-1 c p-1 0 • • • 0           , B (u) = E L u p 0 • • • 0 T , C = 1 0 • • • 0 . (4.64)
The main objective is to design an observer based on the instantaneous model (4.62) that is able to estimate the capacitor voltages using only the measurement of the load current and the associated switching control input (which is assumed to be known).

Hybrid Observability Analysis

From the instantaneous model of the system (4.63) with p ≥ 3, it can be noted that there are several switching modes that make the system unobservable. For instance, if

u 1 = u 2 = • • • = u p-1 = 0,
the voltages V c j ( j = 1, . . . , p -1) become completely unobservable. These switching modes are not affected by the capacitor voltages. Fortunately, these cases are ones in which the p-cells are not switching and will not occur for all control sequences; otherwise, there is no interest in the physical sense.

The observability analysis of the system (4.63) is based on the measurement of the load current I and the knowledge of the control input sequence u. The so-called observability matrix [START_REF] Besançon | Nonlinear Observers and Applications[END_REF] is defined as

O p×p =            C C A C A 2 . . . C A p-1            =            1 0 • • • 0 - R L - u 1 L • • • - u p-1 L R L 2 - p-1 i =1 u 2 i Lc i Ru 1 L 2 • • • Ru p-1 L 2 . . . . . . . . . . . .            . ( 4.65) 
With simple computations, it can be shown that

rank(O ) = 2 < p. (4.66)
It follows that the continuous states are not observable using only the load current because the observability matrix (4.66) is not full rank.

Because of the switching sequences of the system (4.63), the observability is strongly linked to the hybrid behavior. Therefore, the recently developed concept of Z (T N )-observability [START_REF] Kang | On the Observability of Nonlinear and Switched Systems[END_REF] is applied to analyze the observability of the hybrid system (4.63). It is important to note the following definitions.

Definition 4.2.1. [START_REF] Kang | On the Observability of Nonlinear and Switched Systems[END_REF] A hybrid time trajectory is a finite or infinite sequence of intervals

T N = Γ N i =0 such that • Γ i = [t i ,0 , t i ,1 ), f or al l 0 ≤ i < N ;
• For all i < N , t i ,1 = t i +1,0 ;

• t 0,0 = t i ni and t N ,1 = t end .

Moreover, 〈T N 〉 is defined as the ordered list of inputs u associated with T N , u i i =0,N , where u i is the value of u on the interval Γ i . Definition 4.2.2. [START_REF] Kang | On the Observability of Nonlinear and Switched Systems[END_REF] The function z = Z (t , x) is said to be Z -observable with respect to the hybrid time trajectory T N and 〈T N 〉 if for any two trajectories (t , x, u) and (t , x , u ) Table 4.1 presents the eight possible configurations for a three-cell converter. The application of Lemma 4.2.3 to the three-cell converter is as follows. We take

defined in [t i ni , t end ], the equality h(x, u) = h(x , u ) implies that Z (t , x) = Z (t , x ).
: [S 1 , S 2 , S 3 ] V c 1 V c 2 u 1 u 2 Observable States 0 : [0,0,0] 0 0 I 1 : [0,0,1] 0 1 I ,V c 2 2 : [0,1,0] 1 -1 I ,V c 1 ,V c 2 3 : [0,1,1] 1 0 I ,V c 1 4 : [1,0,0] -1 0 I ,V c 1 5 : [1,0,1] -1 1 I ,V c 1 ,V c 2 6 : [1,1,0] 0 -1 I ,V c 2 7 : [1,1,1] 0 0 I • For all i < N , P i Z (t , x) is Z -observable for t ∈ Γ i ; • Rank([P T 0 , • • • , P T N ]) = d i m(z); • d Pi Z (t , x) d t = 0, for t ∈ Γ i ,
Z (t , x) = x 2 x 3 T = V c 1 V c 2 T
. For the discrete switching conditions [0, 0, 0] and [1, 1, 1], it can be verified that Z (t , x) is not Z (T N )-observable. Fortunately, from (4.60) the dynamics of V c 1 and V c 2 are zero, which means that these states remain constant during these time intervals. Next, assume that a trajectory of the system has the status [1, 0, 0] and [1, 1, 0] during time intervals Γ 1 and Γ 2 , respectively. Let us define P 1 = 1 0 and P 2 = 0 1 . We have

P1 Z = x 3 = V c 2 , d P1 Z d t = dV c 2 d t = 0, P2 Z = x 2 = V c 1 , d P2 Z d t = dV c 1 d t = 0 and r ank   P 1 P 2   = 2. All the assumptions in Lemma 4.2.3 are satisfied; therefore, Z (t , x) = V c 1 V c 2 T is Z (T N )-
observable. The symbols in Table 4.1 are defined as follows: indicates a constant value, indicates increasing and indicates decreasing.

In the next subsection, an adaptive-gain SOSML observer will be presented for the converter system (4.62).

Adaptive-Gain SOSML Observer Design

As discussed in [START_REF] Gateau | Multicell Converters: Active Control and Observation of Flying-Capacitor Voltages[END_REF], active control of the multi-cell converter requires the knowledge of the capacitor voltages. Usually, voltage sensors are used to measure the capacitor voltages. However, the extra sensors increase the cost, the complexity and the size, especially in high-voltage applications. Moreover, any sensors will introduce the measurement noise which will be directly transposed to the estimated value. Therefore, the design of a state observer using only the measurement of load current and the associated switching inputs is desirable.

In this subsection, an adaptive-gain SOSML observer for the three-cell converter (p = 3) is presented that is robust to perturbations (load variations) for which the boundaries of the first time derivative are unknown. A novel adaptive law for the gains of the SOSML algorithm with only one tuning parameter is designed via the so-called "time scaling" approach [START_REF] Respondek | Time scaling for observer design with linearizable error dynamics[END_REF]. The proposed approach does not require the a-priori knowledge of the perturbation bounds.

Define e 1 = I -Î , the system (4.62) is rewritten to include the perturbation f (e 1 ), i.e., the load resistance uncertainty [147]

İ = - R L I + E L u 3 - V c 1 L u 1 - V c 2 L u 2 + f (e 1 ), Vc 1 = u 1 c 1 I , Vc 2 = u 2 c 2 I . (4.67) 
The proposed observer is formulated as

İ = - R L I + E L u 3 - Vc 1 L u 1 - Vc 2 L u 2 + µ(e 1 ), Vc 1 = u 1 c 1 I + k 1 µ(e 1 ), Vc 2 = u 2 c 2 I + k 2 µ(e 1 ), (4.68) 
where µ( 

e 2 = V c 1 -Vc 1 , e 3 = V c 2 -Vc 2 .
(4.70)

Eqs. (4.67) and (4.68) yield the observation error dynamics as:

ė1 = -µ(e 1 ) - u 1 L e 2 - u 2 L e 3 + f (e 1 ), (4.71 
) ė2 = -k 1 µ(e 1 ), (4.72 
) ė3 = -k 2 µ(e 1 ). (4.73) 
The adaptive gains λ(t ), α(t ), k λ (t ) and k α (t ) are formulated as

λ(t ) = λ 0 l (t ), α(t ) = α 0 l (t ), k λ (t ) = k λ 0 l (t ), k α (t ) = k α 0 l 2 (t ), (4.74) 
where λ 0 , α 0 , k λ 0 and k α 0 are positive constants to be defined and l (t ) is a positive, timevarying, scalar function.

The adaptive law of the time-varying function l (t ) and the design parameters k 1 and k 2 are given by:

l (t ) =      k if |e 1 | = 0, 0 otherwise. (4.75) k 1 =      -κu 1 if |e 1 | = 0, 0 otherwise. , k 2 =      -κu 2 if |e 1 | = 0, 0 otherwise. (4.76)
where k, the initial value l (0) and κ are positive constants.

Remark 4.2.5. In view of practical implementation, the condition e 1 = 0 in (4. 75, 4.76) can not be satisfied due to measurement noise and numerical approximations. In order to make the adaptive algorithm (4.75) and the switching gains (4.76) practically implementable, one has to modify the condition e 1 = 0 by dead-zone technique [START_REF] Slotine | Applied nonlinear control[END_REF] as

l (t ) =      k if |e 1 | ≥ , 0 otherwise. (4.77) k 1 =      -κu 1 if |e 1 | ≤ , 0 otherwise. , k 2 =      -κu 2 if |e 1 | ≤ , 0 otherwise. (4.78)
where is a sufficiently small positive value.

Assumption 4.2.6. The system (4.67) and the observer system (4.68) are bounded input, bounded state (BIBS) because this is a physical system [START_REF] Perruquetti | Sliding Mode Control in Engineering[END_REF].

Assumption 4.2.7. There is a T N such that z Assume that the perturbation f (e 1 ) satisfies the following condition:

= x = I V c 1 V c 2 T is Z-
ḟ (e 1 ) ≤ χ 1 , and f (0) = 0,

where χ 1 is an unknown positive constant. Then, the trajectories of the error system (4.71) converge to zero in finite time with the adaptive gains in (4.74) and (4.75) satisfying the following condition:

4α 0 k α 0 > 8k 2 λ 0 α 0 + 9λ 2 0 k 2 λ 0 . (4.80) 
The proof of Theorem 4.2.8 is the same as the proof of Theorem 1.5.1 (see Appendix A3).

It follows from Theorem 4.2.8 that when the sliding motion takes place, e 1 = 0 and ė1 = 0.

Thus, the output-error equivalent injection µ(e 1 ) can be obtained directly from equation (4.71): to demonstrate its robustness with respect to load variation, due to the fact that the gains k p , k i of the PI control depend on the load resistance R L [START_REF] Silva | Sliding Mode Control of Boost-Type Unity-Power-Factor PWM Rectifiers[END_REF]. It should be noted that the STA works as a robust differentiator and Levant has given an estimate of the observation error with respect to the measurement noise in [START_REF] Levant | Higher-Order Sliding Modes, Differentiation and Output-Feedback Control[END_REF]. 

µ(e 1 ) = - u 1 L e 2 - u 2 L e 3 , (4.81) 

Simulation Results of Multi-Cell Converters

The performance of the proposed adaptive-gain SOSML observer was evaluated through simulation tests, the simulation parameters are shown in Table 4.3. To demonstrate the improvement of the proposed strategy, the results are compared with a Luenberger switched observer given in [START_REF] Riedinger | On the Algebraic Characterization of Invariant Sets of Switched Linear Systems[END_REF]. Furthermore, the parameter variations are taken into account in order to demonstrate the robustness of the proposed observer, i.e., the load resistance is varied up to 50%, the value of capacitors c 1 , c 2 are varied ±10% and the value of inductor L is varied ±20% at time t = 0.25s respectively.

The system in (4.67) is rewritten in a form convenient for designing the Luenberger switched observer [START_REF] Riedinger | On the Algebraic Characterization of Invariant Sets of Switched Linear Systems[END_REF]:

İ = - R L Î + E L u 3 - Vc 1 L u 1 - Vc 2 L u 2 + κ 0 e 1 , Vc 1 = u 1 c 1 I + (κ 1 u 1 + κ 3 u 2 + κ 5 u 3 )e 1 , Vc 2 = u 2 c 2 I + (κ 2 u 1 + κ 4 u 2 + κ 6 u 3 )e 1 . (4.86) 
The error dynamics of e T = e 1 e 2 e 3 are given by equations (4.67) and (4.86),

ė = ( Ã0 + u 1 Ã1 + u 2 Ã2 + u 3 Ã3 )e, (4.87) 
where

Ãi = A i -K i C , i = 0, 1, 2, 3, K T 0 = (κ 0 , 0, 0), K T 1 = (0, κ 1 , κ 2 ), K T 2 = (0, κ 3 , κ 4 ), K T 3 =
(0, κ 5 , κ 6 ). The constant gains κ 0 , κ 1 , κ 2 , κ 3 , κ 4 , κ 5 and κ 6 are chosen such that there exists a positive matrix P that satisfies ÃT i P + P Ãi ≤ 0, for i = 0, 1, 2, 3. All the details of the parameters can be found in [START_REF] Riedinger | On the Algebraic Characterization of Invariant Sets of Switched Linear Systems[END_REF]. 

Summary

In this chapter, we have considered control and observer designs for AC/DC and multi-cell power converters. Observer-based SOSM control were considered for the AC/DC converters and an adaptive-gain SOSM observer has been designed for the multi-cell converter. For the multi-cell converter, the main difficulty remains in its observability analysis, since its observability matrix does not satisfy the so-called rank condition. With the concept of Z (T N )-observability, the capacitor voltages were estimated under a certain condition of the input sequences, even though the system did not satisfy the observability matrix rank condition. That is, the system becomes observable in the sense of Z (T N )-observability after several switching sequences. Therefore, a novel adaptive-gain SOSML observer was designed based on the so-called equivalent output injection approach. The robustness of the proposed observer and the Luenberger switched observer were compared in the presence of output measurement noise and under parameter variations. It was found that the adaptive-gain SOSML observer was more robust than the Luenberger switched observer. Two main advantages of the proposed method are: 1) Only one parameter k has to be tuned; 2) A-priori knowledge of the perturbation bounds is not required.

Conclusion and Perspectives

Overview and concluding remarks

This thesis addressed efficient HOSM based observer design for control, monitoring and FDI of fuel cell systems. Observers provide a means of efficient feedback control and fault detection in systems in which it is not possible to measure physical states. This study was focused on two critical fuel cell subsystems, the air-feed system and the power converters.

The first part of this thesis discussed observer design for PEMFC air-feed system based on HOSM algorithms. A control-oriented PEMFC model was established and was validated experimentally through the HIL test bench which consists of a physical air-feed system, based on a commercial twin screw compressor and a real time PEMFC emulator. Two efficient observer were proposed: algebraical observer and adaptive HOSMO, based on the proposed model. Both of the proposed observer were successfully implemented on the HIL test bench. The first one was simple and precise since the state of the PEMFC air-feed system can be presented in terms of a static diffeomorphism involving the system outputs and their time derivatives, respectively. Robust Lyapunov based adaptive HOSM differentiators were proposed for implementation of the algebraic observer. The second one allows not only the state estimation but also parameter identification and fault reconstruction.

On-line health monitoring was performed through estimating a performance variable, i.e.

oxygen excess ratio, which is a clue of the oxygen starvation phenomenon. Satisfactory experimental results were obtained for both of the proposed observers.

The second part of this study was focused on the design of a novel adaptive HOSMO for a class of nonlinear uncertain systems and its application to FDI. This class of systems 123 

Future Research

This thesis may be extended in the future in the following aspects:

• The observer performance was evaluated on a HIL test bench with emulated fuel cell system in this study. True experimental validation and integration in real fuel cell power system is still required.

• Other fuel cell faults, such as drying or flooding at the cell stack and starvation and resulting voltage drop will be studied in future. The extension of proposed observer design for PEMFC air-feed system to the application fault-tolerant control designs will be considered.

• The PEMFC air-feed system is highly nonlinear and requires efficient control. In the future works, the proposed observer will be integrated into feedback control design, such as control of oxygen excess ratio. In addition, stability proof of the closed loop system should be provided.

• Power management control strategies for the fuel cell hybrid power system, especially for electric vehicle applications, will be considered in future. The control design will be integrated with observers in order to reduce additional physical sensors. 

Thus, the system in (1.86) can be rewritten as

ζ = l (t ) |ζ 1 |      - λ 0 2 0 1 2 0 -λ 0 0 -α 0 0 0      A 1 ζ + l (t )      - k λ 0 2 0 0 0 -k λ 0 1 0 -k α 0 0      A 2 ζ +        l 2l (t ) ζ 1 l 2l (t ) ζ 2 φ( x)        , (90) 
Then, the following Lyapunov function candidate is introduced for the system (90):

V (ζ) = 2α 0 ζ 2 1 + k α 0 ζ 2 2 + 1 2 ζ 2 3 + 1 2 λ 0 ζ 1 + k λ 0 ζ 2 -ζ 3 2 , (91) 
which can be rewritten as a quadratic form

V (ζ) = ζ T P ζ, P = 1 2     4α 0 + λ 2 0 λ 0 k λ 0 -λ 0 λ 0 k λ 0 k 2 λ 0 + 2k α 0 -k λ 0 -λ 0 -k λ 0 2     . (92) 
As ( 92) is a continuous Lyapunov function, the matrix P is positive definite.

Taking the derivative of (92) along the trajectories of ( 90),

V = - l (t ) |ζ 1 | ζ T Ω 1 ζ -l (t )ζ T Ω 2 ζ + φ( x)q 1 ζ + l (t ) l (t ) q 2 P ζ, (93) 
where q 1 = -λ 0 -k λ 0 2 , q 2 = ζ 1 ζ 2 0 , and

Ω 1 = λ 0 2     λ 2 0 + 2α 0 0 -λ 0 0 2k α 0 + 5k 2 λ 0 -3k λ 0 -λ 0 -3k λ 0 1     , Ω 2 = k λ 0     α 0 + 2λ 2 0 0 0 0 k α 0 + k 2 λ 0 -k λ 0 0 -k λ 0 1     . (94) 
It is easy to verify that Ω 1 and Ω 2 are positive definite matrices under the condition (1.90).

Using the fact λ min (P ) ζ 2 ≤ V ≤ λ max (P ) ζ 2 and q 1 = λ 2 + k 2 λ + 4. Eq. ( 93) can be rewritten as V ≤ -l (t ) λ min (Ω 1 )

λ 1 2 max (P ) V 1 2 -l (t ) λ min (Ω 2 ) λ max (P ) V + σ 1 q 1 2 λ 1 2 min (P ) V 1 2 + σ 2 l (t ) ζ T ∆Φζ + l (t ) 2l (t ) ∆Ω (95) 
where

∆Ω = (4α 0 + λ 2 0 )ζ 2 1 + 2λ 0 k λ 0 ζ 1 ζ 2 + 2k α 0 k 2 λ 0 ζ 2 2 -λ 0 ζ 1 ζ 3 -k λ 0 ζ 2 ζ 3 ≤ ζ T Qζ, ∆Φ =       λ 2 0 0 0 λ 2 -k λ + 1 0 0 0 1       , Q =        4α 0 + λ 2 0 + λ 0 k λ 0 + λ 0 2 0 0 0 2k α 0 k 2 λ 0 + λ 0 k λ 0 + k λ 0 2 0 0 0 λ 0 + k λ 0 2        . (96) 
With [START_REF] Pahlevaninezhad | A Nonlinear Optimal Control Approach Based on the Control-Lyapunov Function for an AC/DC Converter Used in Electric Vehicles[END_REF], Eq. ( 95) becomes 

where γ 1 , γ 2 , γ 3 , γ 4 and γ 5 are all positive constants. Thus, equation ( 97) can be simplified as

V ≤ -l (t )γ 1 -γ 2 V 1 2 -l (t )γ 3 - γ 4 l (t ) - l (t ) l (t ) γ 5 V, (99) 
Because l (t ) ≥ 0 such that the terms l (t )γ 1 -γ 2 and l (t )γ 3 -

γ 4 l (t ) - l (t ) l (t )
γ 5 are positive in finite time, it follows from (99) that

V ≤ -c 1 V 1 2 -c 2 V, ( 100 
)
where c 1 and c 2 are positive constants. By the comparison principle [START_REF] Hassan | Nonlinear Systems[END_REF], it follows that V (ζ) and therefore ζ converge to zero in finite time. Thus, Theorem 1.5.1 is proven.

A4: Proof of Proposition 3.2.1

Proof . Consider the following Lyapunov function candidate for the error system (3.5)

V (ξ, L(t )) = V0 (ξ) + 1 4 L(t ) -L * 4 , (101) 
where V0 (ξ) is based on the Lyapunov function proposed in [START_REF] Moreno | Lyapunov Function for Levant's Second Order Differentiator[END_REF] 

V0 (ξ) = ξ T Γξ, Γ =       γ 1 - 1 2 γ 12 0 - 1 2 γ 12 γ 2 - 1 2 γ 23 0 - 1 2 γ 23 γ 3       , (102) 
where ξ T = |σ 0 | Under conditions given in Theorem 1 [START_REF] Moreno | Lyapunov Function for Levant's Second Order Differentiator[END_REF] and for some positive constant ϑ, we have V0 (ξ) ≤ -ϑ V 3 4 0 (ξ).

Apply Jensen's inequality

|x| + |y| ≥ (|x| q + |y| q ) 1 q , q = 4 3 > 1, (

) 105 
According to the Theorem 4.2 in [START_REF] Bhat | Finite-Time Stability of Continuous Autonomous Systems[END_REF], it follows that ξ converges to zero in finite time, i.e. σ i = 0, i ∈ {0, 1, 2}. This completes the proof.

R ésum é :

Les syst èmes piles à combustible de type PEM pour des applications de transport reposent sur un ensemble d'auxiliaires (stockage d'hydrog ène, compresseur d'air, convertisseur de puissance, humidificateur, etc) qui assurent le bon fonctionnement du syst ème pile. La mise en place d'observateurs permet de disposer d'un outil pour reconstruire les états non mesur és de ce syst ème; cela permet de metre en place un controle par retour Dans la deuxi ème partie, nous nous sommes int éress é à l' élaboration d'observateurs et de commande par retour de sortie pour les convertisseurs associ é au syst ème pile dans une application transport. Ainsi, une commande novatrice par mode glissant d'ordre deux, de type retour de sortie, a ét é élabor é pour le convertisseur AC/DC. Dans un second temps, un observateur de type modes glissants d'ordre 2 adaptatif est synth étis é pour un convertisseur de type multicellulaire.

Mots cl és : Pile à combustible de type PEM, Mode glissant d'ordre deux adaptative, Observateur par mode glissant, Contr ôleur par retour de sortie, Hardware In Loop, Convertisseur de puissance.

Abstract:

Automotive PEM Fuel Cell systems rely upon a set of auxiliary systems for proper operation, such as humidifier, air-feed compressor, power converter etc. The internal physical states of the latter are often unmeasurable, yet required for their precise control. Observers provide a means of obtaining the unmeasured states of these auxiliary systems for feedback control, optimal energy consumption and Fault Diagnosis and Isolation (FDI). This thesis is based on higher order sliding mode observer design studies for two major PEMFC auxiliary systems found in modern automobiles, the air-feed system and the power electronics system.

The first part is focused on robust observation and FDI of the PEMFC air-feed systems. Sliding mode observer design and their applications to FDI have been studied in detail for this purpose and the key observation problems in this system have been identified. Based on this study, two solutions are proposed, a sliding mode algebraic observer for oxygen and nitrogen partial pressures and a novel robust adaptive-gain Second Order Sliding Mode (SOSM) observer based FDI for simultaneous state observation, parameter identification, health monitoring and fault reconstruction of the PEMFC air-feed system. The performance of the proposed observers has been validated on an instrumented Hardware-In-Loop (HIL) test bench.

The observation and output feedback control problems of different power electronic converters, commonly found in fuel cell vehicles, are addressed in the next part. Robust output feedback SOSM control for three phase AC/DC converters have been presented. A robust SOSM observer for multi-cell converters has also been designed. The performance of all these designs has been demonstrated through a multi-rate simulation approach. The results highlight the robustness of the observers and controllers against parametric uncertainty, measurement noise and external disturbance.

Keywords: PEM fuel cell, Adaptive second order sliding mode, Sliding mode observer, Output feedback control, Hardware In Loop, Power converter.
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 02 Figure 0.2. Observer as the heart of control systems [1].

  FDI is usually achieved by generating residual signals, obtained from the difference between the actual system outputs and their estimated values calculated from dynamic models. The basic configuration of observerbased FDI is shown in Fig. 0.3.

Figure 0 . 3 .

 03 Figure 0.3. Basic configuration of observer-based FDI. [2]

1 Sliding

 1 effectiveness and robustness of the observer are validated experimentally. Newt, State estimation, parameter identification and fault reconstruction problems of the PEMFC air-feed system are addressed simultaneously for FDI. The oxygen starvation phenomenon is monitored through an estimated performance variable (oxygen excess ratio). Satisfactory experimental results are obtained to show the effectiveness of the proposed observer. The effect of parameter variations and measurement noise are considered during the observer designs.Chapter 4 contains the major contributions related to output feedback control and observation of different power converters. An observer based output feedback controller for three-phase AC/DC rectifiers is developed. Then, a SOSM observer with gain adaptation is proposed for the multi-cell converters. Finally, simulation results of these design methods are compared and discussed.Chapter Mode Observers Design and Their Applications in FDISliding mode observers (SMOs) have found wide application in the areas of fault detection, fault reconstruction and health monitoring in recent years. Their well-known advantages are robustness and insensitivity to external disturbance. Higher order Sliding Mode Observers have better performance as compared to classical sliding mode based observers because their output is continuous and does not require filtering. However, insofar as we are aware, their application in FDI has remained unstudied. In this chapter, we shall develop the theoretical background of sliding mode observers and SMO based FDI. A

  are chosen to ensure asymptotic convergence for a classical Luenberger observer when k i = 0. The corresponding error dynamics are given by ė1 = -α 1 e 1 + e 2k 1 sign(e 1 ), ė2 = -α 2 e 1 + e 3k 2 sign(e 1 ), . . . ėn = -α n e 1 + fk n sign(e 1 ),

3 .

 3 Assumption 1.5.2 is a structural constraint on the fault distribution ω(•, •). It means that the faults only affect on the system output channel. It should be noted that there are no such structural constraints on the uncertain parameters distribution φ(•, •).

t →∞ e 2 (

 2 t ) = 0 and lim t →∞ θ(t ) = 0. Consequently, the errors e 2 , θ and its derivatives ė2 , θ are bounded. Under the Assumptions (1.5.7, 1.5.10), the time derivatives of the nonlinear terms in the error dynamics (1.107, 1.108) are bounded:
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 22 Figure 2.2. Typical fuel cell voltage.

2 .

 2 v ohm = i R ohm is due to the electrical resistance of the electrodes, and the resistance to the flow of ions through the electrolyte[START_REF] Larminie | Fuel Cell Systems Explained[END_REF]. R ohm (Ω • cm 2 ) represents the fuel cell internal electrical resistance. The ohmic loss is shown in Fig.2.3(b).3. v conc = i b 3 i i max b 4results from the drop in concentration of the reactants due to the consumption in the reaction. b 3 , b 4 and i max are constants that depend on the temperature and the reactant partial pressures. i max is the current density that generates the abrupt voltage drop. The concentration loss is shown in Fig.2.3(c).

Figure 2 . 3 .

 23 Figure 2.3. Voltage drops due to different types of losses in FC. (a) Activation losses; (b) Ohmic losses; (c) Concentration losses; (d) Total losses.

2 Figure 2 . 4 .

 224 Figure 2.4. Fuel cell system scheme
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 25 Figure 2.5. Twin screw compressor

(

  HIL) test bench shown in Fig. 2.6. It consists of a physical air-feed system, based on a commercial twin screw compressor and a real time PEMFC emulator. The complete architecture of the experimental system is shown in Fig. 2.7. The test bench is controlled by National Instruments CompactRIO real time controller and data acquisition system, using a sampling frequency of 1kHz.
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 27 Figure 2.7. Scheme of HIL system used in the experiments
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 2829 Figure 2.8. Stack voltage response
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 2102211 Figure 2.10. Experimental validation of P net and λ O 2 .
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 212 Figure 2.12. Experimental validation of ω cp and p sm .

3. 1

 1 State-of-Art of PEMFC Observers and Observer Based FDI Several research endeavors have been focused on observation and FDI problems in different fuel cell systems during the recent years. In [72], a Luenberger observer was employed in order to estimate the membrane water content in PEMFCs. The main limitation of these works is that they can only converge to a neighborhood of the real system states in the presence of disturbances. Mckay et al. [73] have employed open loop observers based on lumped dynamic models for estimating the anode and cathode relative humidities, experimental results are also presented which is a major breakthrough in PEMFC water content estimation. More recently, Linear Parameter Varying (LPV) observer was proposed by

et al. [ 79 ]

 79 developed an adaptive observer for hydrogen partial pressure estimation based on the fuel cell voltage. Görgün et al.[START_REF] Görgün | An algorithm for estimation of membrane water content in pem fuel cells[END_REF] developed an algorithm for estimating partial pressures and the membrane water content in PEMFCs based on the resistive cell voltage drop. This algorithm has incorporated two adaptive observers for hydrogen and oxygen partial pressures, adapted from the work of[START_REF] Arcak | A nonlinear observer design for fuel cell hydrogen estimation[END_REF]. However, both of the above works lack robustness against the fuel cell voltage's measurement noise and the internal model relies upon unmeasurable values. Ingimundarson et al.[START_REF] Ingimundarson | Model-based detection of hydrogen leaks in a fuel cell stack[END_REF] proposed a model based estimation approach for hydrogen leak detection in PEMFCs without the use of relative humidity sensors. Escobet et al.[START_REF] Escobet | Model-based fault diagnosis in PEM fuel cell systems[END_REF] designed a fault diagnosis methodology for PEMFCs where the residuals are generated from the differences between the PEMFC simulator included with a set of typical faults and a non-faulty fuel cell model. More recently, Linear Parameter Varying (LPV) observer was proposed by Lira et al.[START_REF] Lira | LPV observer design for PEM fuel cell system: Application to fault detection[END_REF] for the application to fault detection in PEMFCs, where the stack current was taken as the scheduling variable. Most of these works are based on model linearization around pre-defined operating points of the system, depending upon the operating conditions such as temperature, humidity and air flow.

pX = y 1 - y 2 c 16 + ẏ1 c 14 c 16 1 + c 15 ( y 1 c 11 ) c 12 - 1 = ϕ 1 (y 1 ,

 1111111 ca as a new variable X , i.e. X = x 1 + x 2 + c 2 . It follows from the last equation of (2.27) that ẏ1 , y 2 ).

(3. 1 )Ẋ = ẏ1 - ẏ2 c 16 + ÿ1 c 14 c 16 1 + c 15 y 1 c 11 c 12 - 1 - c 12 c 15 y

 11612115 The time derivative of X is given by

  100A and 450A, corresponding to flow rate variation in the compressor between 7g/s and 28g/s. Furthermore, in order to reproduce actual conditions of the automotive environment, additional noise was added to the measured signal y 1 = p sm + (t ), this noise is shown in Fig.3.2. Figs.3.3-3.4 show that the state variables are well estimated by the proposed numerical algebraic observer based on the adaptive sliding mode differentiators. Figs.3.3(b) and 3.4(b) show the response of observation errors based on the measurements (p sm , W cp , I st ). The initial errors of the states are set at 10% of maximum deviation from the emulated fuel cell system. Little overshoot and fast convergence can also be observed, e.g. at t=40 sec, a step increase in current (from 200 A to 300 A), the states converge within 2 sec. Fig.3.5 shows the efficiency of the proposed adaptive law. It is clear from the figures, the proposed observer is robust against parameter uncertainties and the effect of the noise is essentially imperceptible.
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 3132 Figure 3.1. Scheme of HIL system used in the experiments

Figure 3 . 3 .

 33 Figure 3.3. Estimate of oxygen partial pressure and its error.
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 34 Figure 3.4. Estimate of nitrogen partial pressure and its error.
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 35 Figure 3.5. The performance of the adaptive law L(t )
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 36 Figure 3.6. Approximation of parameter κ with respect to stack current

2 c 11 c 12 h 3 (D 2 z 2 ) 5 = -c 14 1 + c 15 z y 2 c 11 c 12 - 1 .

 21112325121 y, z 2 , u) := c 14 c 15 z yc 16 (z y 2z y 1 ) , Φ 1 (y, u) := -c 4 , Φ 2 (y, u) := c 5 , φ 2 (y, u) = 0 and the design gain parameter H is chosen to satisfy the Riccati equation (1.110). The fault signal is weighted by c 5 , modeled as c

Fig. 3 .

 3 Fig.3.11 shows that the adaptive law gives a good estimate for the stack current which is considered as an unknown parameter θ. The fault signal is reconstructed faithfully as shown in Fig.3.12. It is clear that the proposed scheme is capable of reconstructing fault signal and state estimation simultaneously in the presence of uncertain parameter. The estimate of oxygen excess ratio is shown in Fig.3.13(a). It is easy to see that this value decreases after t=50 s. This is due to the occurrence of the fault (air leak in the supply manifold) after t = 50 s. In this case, the air flow supplied by the compressor needs to increase, taking into account the effect of the fault, in order to ensure safe operation of the fuel cell. The time history of the adaptive-gain L(t ) is shown in Fig.3.13(b), where the exponential convergence of the observer is ensured. The gains of the SOSM algorithm stop increasing when the observation error converges to zero in finite time.
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 3738 Figure 3.7. Schematic diagram of the observer based fault reconstruction
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 310 Figure 3.10. Estimate of compressor speed and its error.
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 312 Figure 3.12. Fault reconstruction and its error.
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 313 Figure 3.13. Estimate of λ O 2 and gain L(t ) versus time (s).
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 341 Figure 4.1. Electrical circuit of the three phase AC/DC boost converter
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 33 are the source voltages which have different magnitudes but the same frequency and phase shift of 2π/3 electrical degrees (with respect to each other) and u = u 1 u 2 u are control signals. The gain matrix and source voltages are given as follows,

Fig. 4 .

 4 Fig. 4.2 shows the structure of the observer-based control system for three phase AC/DC converters, which consists of two important parts: sliding mode current controller and observer system. The desired current I * is calculated based on the Power Balance Condition.
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 42 Figure 4.2. Observer-Based Control Structure of a Three Phase AC/DC Converter

(4. 14 )

 14 According to the Park transformation (4.4, 4.5) and the switching functions u 1 , u 2 , u 3

(e 12 )- 3κL 4r C (u d e 1 + u q e 2 ) 2 .( 4 . 25 )

 1212425 which satisfies A T P + P A = -I 2×2 and I 2×2 is an identity matrix.The time derivative of V along the trajectories of system (4.23) is presented V (e 12 ) = -e T 12 e 12e T 12 ( ĀT P + P Ā)e 12 =e12 2 It can seen from Eq. (4.25) that V (e 12 ) =e 12 2 when u d q = 0. For any positive κ and u d q = 0, Eq. (4.25) can be rewritten as V (e 12 ) =convergence rate compared with the open loop dynamic (4.18) given that the matrix Ā is positive semi-definite (p.s.d). The Proposition 4.1.3 is proven.
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 1 .4 ST Parameter Observer Design and Power Factor Estimation

4. 1

 1 .4.1 Load Resistance Estimation

Figure 4 . 3 .

 43 Figure 4.3. Structure of the single-phase power factor estimation

Figure 4 . 4 .

 44 Figure 4.4. Multicell converter on RL load.

Fig. 4 .

 4 Fig. 4.4 depicts the topology of a converter with p independent commutation cells that is connected to an inductive load. The current I flows from the source E to the output through the various converter switches. The converter thus has a hybrid behavior because of the presence of both discrete variables (the switching logic) and continuous variables (the currents and the voltages).
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 423 [START_REF] Kang | On the Observability of Nonlinear and Switched Systems[END_REF] Consider the system (4.63) and a fixed hybrid time trajectory T N and 〈T N 〉. Suppose that z = Z (t , x) is always continuous under any admissible control input. If there exists a sequence of projections P i , i = 0, 1, • • • , N , such that

Remark 4 . 2 . 4 .

 424 where P is the complement of P (projecting z to the variables eliminated by P ), then, z = Z (t , x) is Z -observable with respect to the hybrid time trajectory T N and 〈T N 〉. In Lemma 4.2.3, the third condition requires that the components of Z that are not observable in Γ i must remain constant within this time interval. The hybrid time trajectory T N and 〈T N 〉 influences the observability property in a way similar to an input.

Fig. 4 .

 4 Fig. 4.8 shows the separate power factor value of each phase and their product as a combined characteristic of the AC/DC converter. It can be seen from the Figs. 4.8(a) and Fig. 4.8(b) that the power factor value is greater than 97% in case of observer-based ST SMC, while the PI Control results in less value (around 86%).
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 49 Figure 4.9. Estimate of capacitor voltage V c 1 when the system output is not affected by noise and parameter variations.
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 410 Figure 4.10. Estimate of capacitor voltage V c 2 when the system output is not affected by noise and parameter variations.
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 411 Figure 4.11.Estimation errors e V c 1 , e V c 2 when the system output is not affected by noise and parameter variations.
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 412 Figure 4.12. Estimate of capacitor voltage V c 1 when the system output is affected by noise and parameter variations.
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 413 Figure 4.13. Estimate of capacitor voltage V c 2 when the system output is affected by noise and parameter variations.
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 414415 Figure 4.14. Estimation errors e V c 1 , e V c 2 when the system output is affected by noise and parameter variations.

  An observer-based ST SMC was proposed for the AC/DC converters. The use of observer reduces the number of current sensors, decreases the system cost, volume and provides robustness to the change of operational condition (e.g. in load resistance R L and frequency of the source voltage ω). The input phase currents and load resistance are estimated only from the measurement of output voltage. The proposed observer-based ST SMC maintains the power factor close to unity. A strong Lyapunov function is introduced to prove the stability of the observer and controller as a whole system. Simulation results show that the observer-based controller performs better, compared to conventional PI control, with less overshoot and less sensitivity to disturbance and parametric uncertainty. The proposed controller is designed based on the current and estimated voltage signals.

  sufficiently define the nonlinear dynamics of PEMFC air-feed system. The proposed observer allows to achieve state estimation, parameter identification and fault reconstruction simultaneously. Both the bounds of uncertainties and faults are not required due to the proposed gain adaptation method. 'Ideal' sliding mode is established, i.e. the observation errors converge to zero exactly.The final part of this thesis was targeted on control and observation problems of AC/DC converters and multi-cell converters. Output feedback SOSM control was designed for the three-phase AC/DC converters. The proposed control forces the input phase currents to track the desired values, which can indirectly control the output voltage while keeping the power factor close to one. The phase currents and load resistance were estimated only from the measurement of output voltage. For the multi-cell converters which belong to a class of hybrid systems, an adaptive-gain SOSM observer was designed based on a novel concept of Z (T N )-observability. The capacitor voltages were successfully estimated only from the measurements of load current and switching signals.

Appendices A1: System Parameters c 1 = 4 = M O 2 ; c 5 = M N 2 ;

 14252 RT f c k c a,i n M O 2 V ca x O 2 ,at m 1 + ω c a,i n ; c 2 = p sat ; c V cpr /t r ρ a ; c = k ca,i n x O 2 ,at m 1 + ω ca,vector is introduced to represent the system in (1.86) in a more convenient form for Lyapunov analysis.

γ 4

 4 = σ 2 λ max (∆Φ) λ min (P ) , γ 5 = λ max (Q)2λ min (P ) ,

2 3

 2 sign(σ 0 ) σ 1 σ 2 2 , coefficients (γ 1 , γ 12 , γ 2 , γ 13 , γ 23 , γ 3 ) are chosen such that V0 (ξ) is positive definite and radially unbounded. Since the adaptation law (3.7) makes the adaptive law L(t ) bounded, it means that there exists a positive constant L * such thatL(t ) < L * for t ≥ 0.The derivative of the Lyapunov function candidate (101) is given by V (ξ, L(t )) = V0 (ξ) -k L(t ) -L * 3 ,[START_REF] Wirasingha | Classification and Review of Control Strategies for Plug-In Hybrid Electric Vehicles[END_REF] 

  de sortie en vue d'optimiser les performances du syst ème pile et ainsi d'ameliorer la d étection et l'isolation de d éfauts (FDI). Cette th èse est bas ée sur l' étude et la synth èse d'observateurs adaptatifs par mode glissant d'ordre sup érieur, pour deux principaux auxiliaires de la pile que sont, le syst ème d'alimentation en air et les convertisseurs de puissance associ és à la pile. La premi ère partie de la th èse est consacr ée à la synth èse d'observateurs pour la reconstruction des états et à la d étection et l'isolation des d éfauts sur le syst ème d'alimentation en air de la PEMFC. Dans un premier temps, un observateur alg ébrique par mode glissant d'ordre sup érieur est synth étis é pour la reconstruction de la pression partielle de l'oxyg ène et de l'azote. Dans un deuxi ème temps, un nouvel observateur adaptatif par mode glissant d'ordre deux est synth étis é pour assurer l'observation simultan ée des états, l'identification des param ètres, la surveillance et la reconstruction de d éfaut dans le circuit d'air. Les performances des observateurs propos ées ont ét é valid ées gr âce à un simulateur Hardware-In-Loop (HIL) du syst ème pile à combustible.

  u) and G 2 (x, u) are the first n -p and the last p components of G(x, u), respectively. The matrices E 2 and D 2 are given in Eq. (1.60).

	1.4.2 First Order SMO Design for FDI
	Consider the system (1.62), there exists a coordinate transformation z = T x

Table 1 . 1 :

 11 Parameters for the numerical simulation Original States Value Estimate States Value
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 21 Summary of typical fuel cell characteristics[START_REF]DUIT: Distributed Utility Integration Test[END_REF] 

	Electrolyte	Operating	Anticipated	Comments
	Material	Temperature	Applications	
	PEMFC	80 • C	Stationary and	Minimum
			automobile	contamination and
				material problem
	AFC	Approx 100 • C	Space program	Susceptible to
				contamination, very
				expensive
	PAFC	Approx 100 • C	Stationary	Higher temperature
				and longer warm up
				time makes unsuitable
				for vehicles
	SOFC	1000 • C	Stationary	Very high temperature
				create material
				problems, steam
				generation could
				increase efficiency by
				cogeneration
	MCFC	600 • C	Stationary	Same as SOFC

Table 2 . 2 :

 22 Parameters Used in Compressor Model

	Symbol Parameter	Value
	ρ a	Air density	1.23 kg/m 3
	k t	Motor constant	0.31 N m/A
	f	Motor friction	0.00136 V/(rad/s)
	J c p	Compressor inertia	671.9 ×10 -5 kg m 2
	η cp	Compressor efficiency	80%
	η cm	Motor mechanical efficiency	98%
	V cpr /t r	Compressor volume per turn	5×10 -4 m 3 /tr
	C p	Constant pressure specific heat of air 1004 J/(kg K)

  where ξ 2 and z 1 , z 2 are the estimates of ẏ2 (t ), ẏ1 (t ) and ÿ1 (t ) respectively, is a finite time observer for system (2.27).

	Proof . From the results of the Propositions 1 and 2, it follows that there exists a finite
	time t F after that ξ 2 , z 1 and z 2 converge to ẏ2 (t ), ẏ1 (t ) and ÿ1 (t ) exactly. Consequently,
	lim t ≥t F	xi = x i , i = {1, 2, 3, 4}.	(3.14)
	Remark 3.2.4. In practical implementation, ideal sliding mode is not achievable due to
	measurement noise and numerical approximation errors. Moreover, the adaptation laws in
	(3.7) and (3.11) will result in unbounded L(t ) and L(t ). A feasible alternative to overcome
	this disadvantage is to modify the adaptive laws by dead zone technique [92] as follows
	the following dynamic system		
	x1 = ϕ 3 y 1 (t ), z 1 , z 2 , y 2 (t ), ξ 2 ,	
	x2 = ϕ 4 y 1 (t ), z 1 , z 2 , y 2 (t ), ξ 2 , x3 = ϕ 5 (y 2 (t )),	(3.13)
	x4 = ϕ 6 (y 1 (t )),	

3.2.2 is the same as the proof of Theorem 4.2.8 given in Appendix A3. Propositions 3.2.1 and 3.2.2 imply that the states of the adaptive second order differentiator (3.4, 3.6, 3.7) and first order differentiator (3.8, 3.10, 3.11) converge to their real values in finite time, i.e. z 1 → ẏ1 (t ), z 2 → ÿ1 (t ) and ξ 2 → ẏ2 (t ), respectively. The algebraical observer is formulated as the following theorem: Theorem 3.2.3. For any u ∈ U such that y 1 (t ) and y 2 (t ) are continuously differentiable,

Table 3

 3 

				.1: VARIATIONS OF SYSTEM PARAMETERS
		Symbol Parameter					Value
		V ca	Cathode volume, m 3		+10%
		V sm	Supply manifold volume, m 3	-10%
		T amb	Ambient temperature, • C	+10%
		k c a,i n	Cathode inlet orifice constant, kg/(Pa•s)	+5%
		k ca,out	Cathode outlet orifice constant, kg/(Pa•s) +5%
		T st	Temperature of the fuel cell, • C	±10%
		Anode pressure controller				Ist	Load				psm	Adaptive
	Motor	M H2 storage ωcp	Wcp	psm msm	Humidifier	Vst	DC/DC PEMFC pO 2 pw,ca pN 2 pw,an pH 2	Tst	prm	Cooler Temperature controller	differentiators Adaptive observer algebraic cp Ŵ pN2 pO2 ˆṗ sm Wcp Ist psm
		Compressor	Iq	λO 2	controller	λO 2	
	Hardware		CompactRIO real time controller	Real time PEMFC emulator	Adaptive real time observer

  , where (t ) represents the measurement noise shown in Fig. 3.2. The state observations (p O 2 , p N 2 , ω cp ) in response to steps changes in the load current are shown in Figs. (3.8, 3.9, 3.10). It can be seen from these figures that the settling time

	of both upwards load changes (i.e. t=40 s, t=60 s) and downwards load changes (i.e. t=80
	s, t=100 s) is less than 2 s.

Table 4 . 1 :

 41 Switching modes and capacitor voltages for a three-cell converter

	Mode

  •) is the SOSML algorithm defined in the previous section, which has the following

	form						
	µ(e 1 ) = λ(t )|e 1 |	1 2 sign(e 1 ) + α(t )	ˆt 0	sign(e 1 )d τ + k λ (t )e 1 + k α (t )	ˆt 0	e 1 d τ,	(4.69)
	and the adaptive gains λ(t ), α(t ), k λ (t ), k α (t ) and the design parameters k 1 and k 2 are to
	be defined.						
	Define the observation errors as					

  observable under the condition of Lemma 4.2.3[START_REF] Defoort | Robust Finite Time Observer Design for Multicellular Converters[END_REF].

	Theorem 4.2.8. Consider the error system (4.71) under Assumptions (4.2.6) and (4.2.7).

Table 4 .

 4 

				2: Parameters Used For Simulation
	Parameter	Value	Description
	f 1	10 6			Simulation Rate, (Hz)
	f 2	10 5			Controller Evaluation Rate, (Hz)
	f 3	10 4			Pulse Width Modulator Rate, (Hz)
	r	0.02			Parasitic Phase Resistance, Ω
	R L	50	t =1.0s -→ 40	Load Resistance, Ω
	C	100			Output Capacitor, uF
	L	2			Phase Inductor, mH
	w	150π	t =1.5s -→ 300π	Source Voltage Angular Speed, rad/s
	E	150			Source Voltage, V
	U * 0	650			Desired Output Voltage, V
	U 0 (t 0 )	5			Initial Value of the Output Voltage, V
	κ, λ, α,	5, 2 • 10 3 , 5 • 10 2 , 0.01 Current Observer Parameters in (10)
	λ (d ,q) α (d ,q) , k (d ,q) , S d q 200, 20, 5, 5, 0.05	ST SMC Parameters in (41)
	k p , k i ,	500, 20	PI Control Parameters

A good estimate for the load resistance is shown in Fig.

4

.7. However, the PI Control results in higher fluctuation around the DC level and can not force the output voltage to its reference level compared with the observer-based ST SMC. The PI control is not able

Table 4 . 3 :

 43 Main Parameters of Simulation Model

	System Parameters	Values
	DC voltage(E)	150 V
	Capacitors(c 1 , c 2 )	40 µF
	Load resistance(R)	131 Ω
	Load Inductor(L)	10 mH
	Simulation rate f 1	10 6 Hz
	The sampling rate f 2	100 kHz
	The chopping frequency f 3 5 kHz

f c + 0.143T f c -20.92, (2.18) 

Summary

In this chapter, an algebraic observer based on adaptive sliding mode differentiators was designed for PEMFC air feed system. The system states, oxygen, nitrogen partial pressures, compressor angular speed and supply manifold pressure, were expressed in terms of input and output variables and a finite number of their time derivatives. The proposed adaptive differentiators estimate the time derivatives of output variables in finite time without any knowledge of the upper bounds of their higher-order time derivatives. The proposed observer was implemented on a HIL test bench. The oxygen and nitrogen partial pressures were successfully observed from the measurements of stack current, supply manifold pressure and compressor flow rate. The effectiveness and feasibility of the proposed observer was therefore experimentally validated.

Then, a robust SOSM observer based fault reconstruction method for PEMFC air feed system was discussed. An adaptive update law has been given to identify the uncertain parameter. The estimated parameter is then injected into an adaptive-gain SOSM observer, which maintains a sliding motion in the presence of the fault signal. The fault signal is reconstructed faithfully without any knowledge of the upper bound of its time derivative.

The proposed fault reconstruction approach was successfully implemented on a HIL test bench. The fault scenario of a suddenly air leak in the supply manifold is considered and reconstructed precisely. The experimental results have shown that the proposed approach is effective and feasible. In future, other faults that affect fuel cell performance, such as drying or flooding at the cell stack and starvation will also be considered. Substitute (4.81) into the error system (4.72) and (4.73), the following reduced-order system is obtained: Proposition 4.2.9. Consider the reduced-order system (4.82) with the switching gains k 1 and k 2 given by (4.76). Then, the trajectories of the error system (4.82) converge to zero exponentially if the following two conditions are satisfied [START_REF] Loría | Uniform exponential stability of linear time-varying systems: revisited[END_REF]:

• There exists a constant φ M > 0 such that for all t ≥ 0 and all u ∈ D, where D ∈ R 2 is a closed, compact subset, such that Ψ(t , u) ≤ φ M , where

• There exist constants T 1 > 0 and µ > 0 such that

Proof . Defining the vector e T V = e 2 e 3 and substituting k 1 and k 2 in (4.76) into the system in (4.82), it follows that

Because the switch signals u are generated by a simple Pulse-width modulation(PWM),

and T 1 can be chosen as one period of the switching sequence to verify the condition in (4.84). Given that the conditions (4.83) and (4.84) hold, it follows from [START_REF] Loría | Uniform exponential stability of linear time-varying systems: revisited[END_REF] that the reduced-order system (4.82) is exponentially stable. Thus, Proposition 4.2.9 is proven.

Remark 4.2.10. The proposed observer (4.68) is applicable to all converters that fall under the class of systems represented by (4.63). This class applies to a wide range of hybrid switched-affine multi-cell converter systems (see [START_REF] Kouro | Recent Advances and Industrial Applications of Multilevel Converters[END_REF]).

Simulation Results

In this section, simulation tests using Matlab/Simulink are performed to validate the effectiveness of the proposed output feedback control algorithms and observer design methods in the previous sections.

Simulation Results of Three Phase AC/DC rectifiers

The multi-rate simulation of the proposed three phase AC/DC boost power converter has been carried out, the parameters used in simulation are shown in Table 4.2. Multi-rate approach realizes the achievement of realistic simulation results by taking into account some implementation issues:

• The control evaluation rate f 2 is less than the simulation rate f 1 (i.e., the integration was carried out according to the Euler method).

• The power elements switch rate f 3 is less than the control evaluation rate f 2 due to switching loss.

The simulation is performed in order to test the robustness of the proposed controllers with respect to the measurement noise in the system output. The function used in the simulation is depicted in Fig. 3.2. Load resistance and frequency are varied to test controller's ability to handle with varying conditions at time 1.0s and 1.5s respectively (see Table 4.2 for details).

The simulation results of the proposed observer-based ST SMC compared with a well tuned linear PI regulator [START_REF] Silva | Sliding Mode Control of Boost-Type Unity-Power-Factor PWM Rectifiers[END_REF] are shown in Figs. For simulation purposes, the initial values were chosen as

The parameters of the adaptive SOSML algorithm given by (4.74) and (4.75) were chosen as λ 0 = 100, α 0 = 50, k λ 0 = 80, k α 0 = 0.2 and k = 8 • 10 3 . The parameter of the switching gains in (4.76) was chosen to be κ = 2.

Figs. (4.9, 4.10, 4.11) show the estimates of the capacitor voltages V c 1 and V c 2 and the errors when the system is not affected by output noise and without parameter variations.

Both the adaptive-gain SOSML observer and the Luenberger switched observer can achieve desired performance.

The estimates of the capacitor voltages V c 1 ,V c 2 and the errors when the system is affected by the output noise and under parameter variations are shown in Figs. (4.12, 4.13, 4.14).

The system output noise was included to test the robustness of the proposed observer, that is, y = I + (t ), where (t ) represents the noise [START_REF] Bejarano | Observability and Observer Design for Hybrid Multicell Choppers[END_REF]. The function (t ) used in the simulations is shown in Fig. 3.2. It is clear from the figures that the proposed observer is robust against parameter variations and the effect of the noise is essentially imperceptible.

On the other hand, the Luenberger switched observer is more sensitive to the noise and the parameter variations.

From [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF], we know that the SOSM observer works as a robust exact differentiator, and for this reason we obtain better performance from the proposed observer compared with the Luenberger switched observer. Fig. 4.15 shows that the adaptive law of (4.74) and (4.75) is effective under parameter variations.

Remark 4.3.1. From implementation point of view, the calculations required for the the adaptive-gain SOSML (4.68) are slightly more intensive than those of Leunberger observer. However, the correction term µ(e 1 ) and two design parameters k 1 , k 2 entails low real-time computational burden, as the computational capabilities of digital computers have greatly increased and the additional processing requirements can be easily accomplished (see [START_REF] Evangelista | Lyapunov-Designed Super-Twisting Sliding Mode Control for Wind Energy Conversion Optimization[END_REF][START_REF] Oettmeier | MPC of Switching in a Boost Converter Using a Hybrid State Model With a Sliding Mode Observer[END_REF][START_REF] Lienhardt | Digital Sliding-Mode Observer Implementation Using FPGA[END_REF]). As µ(e 1 ) is calculated only once, regardless of the number of cells, the complexity of the calculation increases linearly with the number of cells. This means that, for an n-cell system with 2 n permutations (n > 3), the additional computational burden comes only from the calculation of new parameters k 3 , • • • , k n-1 .