
HAL Id: tel-01488408
https://theses.hal.science/tel-01488408

Submitted on 13 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ignorance is bliss : observability-based dynamic
epistemic logics and their applications

Faustine Maffre

To cite this version:
Faustine Maffre. Ignorance is bliss : observability-based dynamic epistemic logics and their applica-
tions. Logic in Computer Science [cs.LO]. Université Paul Sabatier - Toulouse III, 2016. English.
�NNT : 2016TOU30112�. �tel-01488408�

https://theses.hal.science/tel-01488408
https://hal.archives-ouvertes.fr

 et discipline ou spécialité

 Jury :

le

Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Faustine MAFFRE
vendredi 23 septembre 2016

Le bonheur est dans l'ignorance :
logiques épistémiques dynamiques basées sur l'observabilité

et leurs applications

ED MITT : Domaine STIC : Intelligence Artificielle

Institut de Recherche en Informatique de Toulouse (UMR 5505)

Martin COOPER, Professeur, UT3 Paul Sabatier, examinateur
Sylvie DOUTRE, Maître de conférences, UT1 Capitole, examinatrice
Jan van EIJCK, Professeur, Université d'Amsterdam, rapporteur

Andreas HERZIG, Directeur de recherche, CNRS, directeur de thèse
Emiliano LORINI, Chargé de recherche, CNRS, co-directeur de thèse

Mark RYAN, Professeur, Université de Birmingham, rapporteur
Nicolas TROQUARD, ATER, Université Paris-Est Créteil, examinateur

Bruno ZANUTTINI, Maître de conférences, Université de Caen Basse-Normandie, examinateur

Andreas HERZIG, Directeur de recherche, CNRS
Emiliano LORINI, Chargé de recherche, CNRS

Ignorance is bliss:
observability-based dynamic epistemic logics

and their applications

Le bonheur est dans l’ignorance :
logiques épistémiques dynamiques basées

sur l’observabilité et leurs applications

Faustine Maffre

Abstract

A recent trend in epistemic logic consists in studying construction of
knowledge from the agents’ observational abilities. It is based on the
intuition that an agent’s knowledge comes from three possible sources:
her observations, communication with other agents, and inference. The
approaches mainly focus on the first and suppose that the object of ob-
servations are propositional variables. This allows us to model knowl-
edge in a more compact and intuitive way than with Hintikka’s possible
worlds semantics, where ignorance leads to an increase of the size of
models.

The present thesis is part of that line of work. Its aim is to demon-
strate that visibility-based epistemic logics provide a suitable tool for
several important applications in the field of artificial intelligence. This
requires to overcome some difficulties that seem to be inherent to the
approach. At the heart of these problems are some counter-intuitive
validities such as common knowledge of visibilities or the knowledge
operator distributing over disjunctions. The first aim of the thesis is
to solve these two issues and to illustrate logics of visibility with well-
known toy examples of epistemic logic as well as with more general
applications such as epistemic planning and boolean games.

We first introduce a dynamic epistemic logic that is based on what
an agent can observe, including joint observation and observation of
what other agents observe. This generalizes current visibility-based
epistemic logics by solving the first issue: visibilities are not common
knowledge, allowing us to reason about higher-order knowledge and
furthermore, higher-order ignorance. We show how epistemic operators
can be interpreted in this framework and identify the conditions under
which the principles of positive and negative introspection are valid.
We include dynamic operators: facts of the world and their observabil-
ity can both be modified by assignment programs. We also provide a
sound and complete axiomatization and prove that the model checking
problem is PSPACE-complete.

We illustrate our framework by the gossip problem. Given n agents
each of which has a secret (a fact not known to anybody else), the goal
of the classical version of the gossip problem is to achieve shared knowl-
edge of all secrets in a minimal number of phone calls. We generalize
that problem and focus on higher-order shared knowledge: how many
calls does it take to obtain shared knowledge of order k? This requires
not only the communication of secrets, but also the communication of
knowledge about secrets. We give a protocol and prove that it is correct
and optimal.

An important application of our work is multi-agent epistemic plan-

i

ning. Given the description of the individual actions, using our formal
logic allows us to reduce the solvability of a planning task to a model
checking problem. This proves its low complexity compared to standard
approaches to epistemic planning. We present an encoding of planning
problems expressed in our logic into the standard planning language
PDDL. Feeding the resulting problem into a PDDL planner provides a
provably correct plan for the original planning problem.

We then extend our logic with control and strategic operators and
study epistemic boolean games in this extension. We provide an ax-
iomatization of the logic and establish that the model checking problem
is PSPACE-complete. We show how one can reason about equilibria in
epistemic boolean games, generalizing current approaches while keep-
ing the same complexity.

We finally extend the original framework by adding public announce-
ments and more generally publicly executed programs. This solves the
second issue of visibility-based epistemic logics: epistemic operators do
not distribute over disjunction any more. With this framework, we are
now able to model most of the classical epistemic problems, starting
with the muddy children puzzle. We establish that the model checking
problem is PSPACE-complete.

Keywords: dynamic epistemic logic, higher-order observation, gos-
sip problem, epistemic planning, epistemic boolean games, public an-
nouncements

ii

Résumé

Une tendance récente en logique épistémique consiste à étudier com-
ment construire la connaissance à partir des capacités d’observation
des agents. Cela est basé sur l’intuition que la connaissance d’un agent
provient de trois sources possibles : ses observations, la communication
avec d’autres agents, et l’inférence. Les approches se concentrent prin-
cipalement sur les observations et supposent que l’objet de ces obser-
vations sont des variables propositionnelles. Cela permet de modéliser
les connaissances d’une manière plus compacte et intuitive qu’avec la
sémantique des mondes possibles d’Hintikka, où l’ignorance conduit à
une augmentation de la taille des modèles.

Cette thèse suit cette ligne de travail. Son objectif est de démontrer
que les logiques épistémiques basées sur la visibilité constituent un ou-
til approprié pour plusieurs applications importantes dans le domaine
de l’intelligence artificielle. Cela exige de surmonter certaines difficul-
tés qui semblent être inhérentes à l’approche : ces logiques incluent des
validités contre-intuitives telles que la connaissance commune des visi-
bilités ou l’opérateur de connaissance distribuant sur la disjonction. Le
but premier de la thèse est de résoudre ces deux problèmes et d’illustrer
les logiques de visibilité obtenues sur des exemples bien connus de la lo-
gique épistémique ainsi que sur des applications plus générales comme
la planification épistémique et les jeux booléens épistémiques.

Nous présentons d’abord une logique épistémique dynamique qui est
basée sur ce qu’un agent peut observer, y compris l’observation jointe et
l’observation de ce que les autres agents observent. Cela généralise les
logiques basées sur la visibilité actuelles en résolvant le premier pro-
blème : les visibilités ne sont plus connaissance commune, ce qui permet
de raisonner sur des connaissances d’ordre supérieur, mais surtout sur
l’ignorance d’ordre supérieur. Nous montrons comment les opérateurs
épistémiques peuvent être interprétés dans ce cadre et identifions les
conditions sous lesquelles les principes d’introspection positive et néga-
tive sont valides. Nous incluons des opérateurs dynamiques : les valeurs
de vérité des faits du monde et de la visibilité des agents sur ces faits
peuvent être modifiées par des affectations. Nous fournissons également
une axiomatisation adéquate et complète et prouvons que le problème
de model checking est PSPACE-complet.

Nous illustrons notre logique par le problème du bavardage. Étant
donnés n agents avec chacun un secret (un fait non connu par les autres),
le but de la version classique du problème du bavardage est de parvenir
à ce chaque agent connaisse tous les secrets en un nombre minimal d’ap-
pels téléphoniques. Nous généralisons ce problème et nous concentrons
sur le partage des connaissances d’ordre supérieur : combien d’appels

iii

sont nécessaires pour obtenir la connaissance partagée d’ordre k ? Cela
nécessite non seulement la communication des secrets, mais aussi la
communication de la connaissance à propos de secrets. Nous exposons
un protocole et prouvons qu’il est correct et optimal.

Une application importante est la planification épistémique multi-
agents. Compte tenu de la description des actions individuelles, utiliser
notre logique formelle nous permet de réduire la solvabilité d’une tâche
de planification à un problème de model checking. Cela prouve sa faible
complexité par rapport aux approches standards. Nous présentons un
encodage des problèmes de planification exprimés dans notre logique
vers PDDL, le langage classique de planification. Donner le problème
résultant à un planificateur PDDL fournit un plan qui résout le pro-
blème de planification original.

Nous étendons ensuite notre logique en ajoutant le contrôle des va-
riables et des opérateurs stratégiques et étudions les jeux booléens épis-
témiques dans cette extension. Nous fournissons une axiomatisation de
la logique et établissons que le problème de model checking est PS-
PACE-complet. Nous montrons comment il est possible de raisonner sur
les équilibres dans les jeux booléens épistémiques, généralisant les ap-
proches actuelles tout en gardant la même complexité.

Finalement, nous étendons la logique originale en ajoutant des an-
nonces publiques et plus généralement des programmes exécutés pu-
bliquement. Cela résout le second problème des logiques épistémiques
basées sur la visibilité : les opérateurs épistémiques ne distribuent plus
sur la disjonction. Grâce à cette nouvelle logique, nous sommes capables
de modéliser la plupart des problèmes épistémiques classiques, notam-
ment le problème des enfants sales. Nous établissons que le problème
model checking est PSPACE-complet.

Mots-clés : logique épistémique dynamique, observation d’ordre su-
périeur, problème du bavardage, planification épistémique, jeux boo-
léens épistémiques, annonces publiques

iv

Remerciements

Il m’a été dit de ne pas trop attendre pour rédiger les remerciements.
Ce type d’exercice n’étant pas mon domaine de prédilection, j’ai choisi
de les limiter à un nombre restreint de personnes. Je suis cependant
persuadée que l’aboutissement d’un projet tel qu’une thèse passe par
un ensemble de rencontres et d’environnements propices, d’abord à son
amorçage, puis à son développement. En tout cas, cela a été le cas pour
moi : l’université Champollion d’Albi, l’IRIT et en particulier l’équipe
LILaC dans laquelle j’ai travaillée, la communauté scientifique de mon
domaine, mes parents et mes amis, sont tout autant à citer que les per-
sonnes qui vont suivre.

Je commence bien sûr par remercier mes encadrants : Andreas Her-
zig et Emiliano Lorini. Pendant toute la thèse et même avant, lors de
mon stage de fin de master, ils ont su m’inspirer dans ma façon de faire
de la recherche et je les considère comme les meilleurs exemples que j’ai
pu suivre dans ce domaine. Ils ont su m’aiguiller tout en me laissant tra-
vailler de façon autonome, corriger mes erreurs et critiquer mon travail
avec indulgence et bienveillance. J’ai beaucoup apprécié de travailler
avec eux et j’ai énormément appris pendant ces trois ans.

Je remercie Jan van Eijck et Mark Ryan, pour avoir relu la thèse
avec attention et y avoir apporté des retours pertinents. Je remercie
aussi Martin Cooper, pour avoir diminué de façon significative la quan-
tité de fautes de grammaire anglaise dans la thèse, ainsi que Frédéric
Maris, pour avoir organisé les journées MAFTEC auxquelles j’ai eu le
plaisir de participer et lors desquelles j’ai pu présenter mes travaux
de thèse. De plus, j’ai été ravie de travailler avec Martin, Frédéric et
Pierre Régnier sur les applications de notre logique à la planification
et d’avoir pu tenter avec eux de réduire la frontière entre ces deux do-
maines. Merci aussi à Sylvie Doutre, Nicolas Troquard et Bruno Zanut-
tini d’avoir accepté de faire partie de mon jury de soutenance. À tout
le jury, merci pour leurs questions et remarques pertinentes pendant
la soutenance et pour l’ambiance d’échange qu’ils ont su créer lors de
celle-ci. Quoiqu’un peu stressée au départ, j’ai trouvé ce moment et la

v

journée en général très agréable.
J’adresse des remerciements particuliers à Martin Strecker, pour

m’avoir offert l’occasion de découvrir l’IRIT et la recherche avant même
le début du master, et pour avoir suivi mes progrès depuis ce moment
jusqu’à la fin de la thèse. Je remercie aussi Thierry Montaut, pour avoir
été un si bon enseignant durant mes années de licence à Albi. J’espère
avoir l’opportunité de retourner dans cette université, peut-être pour y
enseigner quelques heures, dans laquelle je me suis tant plu pendant
trois ans.

Enfin, je voudrais remercier Armelle Bonenfant, avec qui j’ai passé
de très bons moments de travail, lors de l’organisation des projets de
programmation, ou de détente, autour d’un chocolat ou d’un jeu de so-
ciété.

Je remercie aussi le Centre International de Mathématiques et d’In-
formatique de Toulouse (CIMI) pour avoir financé ce travail de thèse.

vi

Contents

1 Introduction: state of the art 1
1.1 Epistemic logics and visibility 2
1.2 Dynamic logics . 15
1.3 Control, strategies and boolean games 17
1.4 Automated planning . 19
1.5 Aim and contributions of the thesis 21

2 A simple dynamic epistemic logic based on observation 25
2.1 Language of DEL-PAO . 28
2.2 Semantics of DEL-PAO . 30
2.3 Axiomatization . 43
2.4 Complexity of model checking 55
2.5 Applications . 65
2.6 Conclusion . 67

3 How to share higher-order knowledge by gossiping 69
3.1 The generalised problem . 71
3.2 An algorithm achieving shared knowledge 72
3.3 Calls in the language of DEL-PAO 74
3.4 Correctness . 76
3.5 Optimality . 80
3.6 Two and three agents . 82
3.7 Gossiping with ignorance goals 84
3.8 Conclusion . 86

4 A simple account of multi-agent epistemic planning 87
4.1 DEL-PAOS : DEL-PAO without joint visibility 88
4.2 Epistemic planning with conditional effects 91
4.3 Normal forms . 93
4.4 Complexity results . 97
4.5 Encoding into PDDL . 105
4.6 Applications . 106

vii

4.7 Conclusion . 111

5 Epistemic boolean games based on visibility and control 113
5.1 Language of DEL-PAOC . 114
5.2 Semantics of DEL-PAOC . 116
5.3 Axiomatization . 117
5.4 Complexity of model checking 122
5.5 Epistemic boolean games . 123
5.6 Relationship between exclusive control and visibility . . . 127
5.7 Conclusion . 129

6 Adding public announcements and programs 131
6.1 Language of DEL-PAO-PP . 133
6.2 Semantics of DEL-PAO-PP 135
6.3 Complexity of model checking 139
6.4 Properties of the public programs operator 140
6.5 Muddy children, proved . 142
6.6 Conclusion . 144

7 Complexity of model checking: upper bound 145
7.1 DL-PA-PMP: DL-PA with public and mental programs . . . 147
7.2 Translation into DL-PA-PMP 150
7.3 The model checking problem 161
7.4 The PSPACE algorithm . 161
7.5 Conclusion . 166

8 Conclusion and perspectives 167

viii

1 Introduction: state of the art

This chapter introduces several notions on which we will rely
in the thesis, then gives the general outline. It also implicitly
presents notation that will be adopted in the following.

Throughout the whole thesis we assume Prop = {p, q, . . .} is a count-
able non-empty set of propositional variables and Agt = {1, . . . , n} is a
finite non-empty set of agents.

Contents
1.1 Epistemic logics and visibility 2

1.1.1 A logic of visibility: ECL-PC 3
1.1.2 Relation with Kripke models 11
1.1.3 Other observation-based logics 14

1.2 Dynamic logics . 15
1.2.1 Logic of propositional assignments 15
1.2.2 On the relation with visibility logics 17

1.3 Control, strategies and boolean games 17
1.3.1 Control . 17
1.3.2 Boolean games and epistemic boolean games . . 18

1.4 Automated planning 19
1.4.1 Classical planning 20
1.4.2 Epistemic planning 20

1.5 Aim and contributions of the thesis 21
1.5.1 Aim of the thesis 21
1.5.2 Outline of the thesis 22
1.5.3 Contributions not detailed in this thesis 23

Résumé du chapitre

Ce chapitre présente les notions sur lesquelles nous allons nous ap-
puyer dans la thèse, puis en donne les grandes lignes. Implicitement, il
présente aussi les notations qui seront adoptées dans ce qui suit.

1

Chapter 1. Introduction: state of the art

Le sujet principal de la thèse concerne les logiques épistémiques ba-
sées sur la visibilité, c’est-à-dire les logiques dans lesquelles la connais-
sance d’un agent est construite à partir de ce qu’elle voit. La première
section est consacrée aux logiques existantes de ce type.

La deuxième section concerne les logiques dynamiques, et plus prin-
cipalement la logique DL-PA [Herzig et al., 2011; Balbiani et al., 2013b],
dans laquelle les programmes atomiques sont des affectations de va-
riables à vrai ou faux. Les logiques présentées dans la thèse incluront
toutes des programmes de ce type, qui nous permettront de modifier de
façon simple les connaissances des agents.

La troisième section donne quelques logiques incluant une notion
de contrôle : si un agent contrôle une variable, elle peut changer sa
valeur de vérité. Des logiques comme CL-PC [van der Hoek and Wool-
dridge, 2005] utilisent ce contrôle pour exprimer les capacités straté-
giques des agents, un peu de la même façon que la visibilité par rapport
à la connaissance. Nous allons voir dans la thèse qu’intégrer le contrôle
à notre logique permet de raisonner sur les jeux booléens, dans les-
quels les agents peuvent modifier les variables sous leur contrôle pour
atteindre leur but, et même sur les jeux booléens épistémiques, dans
lesquels ces buts peuvent concerner la connaissance.

La quatrième section donne des informations sur la planification
ainsi que sur la planification épistémique, où les actions et les buts
peuvent concerner les connaissances des agents. Souvent, la planifica-
tion épistémique est basée sur DEL [Bolander and Andersen, 2011; Löwe
et al., 2011], qui offre un cadre très expressif, mais très rapidement in-
décidable. D’autres méthodes plus modestes ont été développées pour
palier à ce problème. Dans ce même but, nous proposons dans la thèse
d’appliquer notre formalisme à la planification épistémique.

Enfin, la dernière section explicite le but de la thèse et son organi-
sation, ainsi que les contributions produites durant la thèse mais non
détaillées dans celle-ci.

1.1 Epistemic logics and visibility

In his seminal book [Hintikka, 1962], Jaakko Hintikka proposed to give
truth conditions to epistemic operators in terms of possible worlds: agent
i knows that ϕ if, from the perspective of the actual world, this state-
ment is true in all worlds that are possible, or indistinguishable, for i.
Such epistemic logics resort to Kripke’s possible worlds semantics and
were popularized in computer science in the 90’s by Fagin et al. [Fagin
et al., 1995], who were also the first to advocate the use of S5 as the logic
of knowledge (while Hintikka had settled for S4).

While these semantics are natural for modalities such as temporal

2

1.1. Epistemic logics and visibility

or dynamic operators, there is a bigger gap between knowledge and
possible worlds models. The problem is that the number of possible
worlds entertained by an agent is inversely proportional to her knowl-
edge. Possible worlds are therefore not very plausible candidates for
cognitive models. Furthermore, when one tries to model things such as
distributed systems, such models are typically way too big to be stored
and analysed on a computer. Possible worlds models as they stand are
therefore not a good basis for system verification. This lead theoretical
computer scientists to investigate other, more compact ways to repre-
sent knowledge, with the aim of making things more feasible.

A first attempt based on interpreted systems can be found in [Lo-
muscio and Raimondi, 2006], using the model checker MOCHA. In in-
terpreted systems, agents are associated with private local states, which,
put together, make up the global state. Their idea is to construct knowl-
edge from these local states: i cannot distinguish two global states if her
local states in these global states are equal.

Taking this work as an inspiration, several authors [van der Hoek
et al., 2011, 2012] investigated how epistemic logic could be grounded
on the notion of visibility (or observability) of propositional variables.
The basic idea is that the sentence “agent i knows that the atomic fact
p is true” can be reduced to:

• p is true and

• agent i observes the truth value of p.

Similarly, “agent i knows that p is false” can be reduced to:

• p is false and

• agent i observes the truth value of p.

It is therefore supposed that every agent has a set of propositional vari-
ables that she can observe, in the sense that she knows their truth
values. The other way round, any combination of truth values of the
non-observable variables is possible for the agent. Such observability
information allows us to reconstruct Hintikka’s semantics: two worlds
are indistinguishable for agent i if and only if every variable observed
by i has the same value in both worlds. The motivation of van der Hoek
et al. was not only to decrease the complexity of the model checking
problem, but also to conceptually study and axiomatize these logics of
visibility.

1.1.1 A logic of visibility: ECL-PC

As in standard epistemic logic, the language of logics of visibility ex-
tends the language of propositional logic with the unary epistemic oper-
ator Ki.

3

Chapter 1. Introduction: state of the art

In this section, we present observability-based epistemic logics as
done in [van der Hoek et al., 2011]. In this paper, van der Hoek et al.
introduce the logic ECL-PC (Epistemic Coalition Logic of Propositional
Control), which extends the logic of control and strategy CL-PC [van der
Hoek and Wooldridge, 2005] (Coalition Logic of Propositional Control)
with epistemic operators.

We focus here on the epistemic part: we will come back to the strate-
gic operator 3i in Section 1.3. On the other hand, we include the op-
erator of common knowledge CK (that is not studied in [van der Hoek
et al., 2011]) in the standard sense: CKϕ reads “it is common knowledge
among all the agents that ϕ is true” (that is, “everybody knows ϕ is true
and everybody knows that everybody knows that ϕ is true, and so on ad
infinitum”). We propose an axiomatization of the epistemic fragment of
ECL-PC extended by common knowledge.

In ECL-PC, each agent is associated to a (fixed) set of propositional
variables, which are the variables she sees. We choose to encode visibil-
ities not in the model, but by atomic propositions of the form Si p, as we
will reuse them in the rest of the thesis. The atomic formula Si p reads
“agent i sees the value of the propositional variable p.” We call these,
along with propositional variables, atomic formulas, or, for short, atoms.
Formulas are interpreted over a valuation, which is a set of atoms, and
a visibility model, which contains every possible valuation (every com-
bination of atoms). To comply with ECL-PC semantics, we constrain the
indistinguishability relation so that visibilities stay the same in every
related valuation. (It is a hypothesis that we will relax in the following
chapters.)

Language of ECL-PC

From the set of propositional variables Prop we define the set of atoms
by

ATM = Prop ∪ {Si p : i ∈ Agt , p ∈ Prop}.

We denote atoms by α, α′, β, β′, etc.
Then the language we study is defined by the following grammar:

ϕ ::= α | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | CKϕ

where α ranges over ATM and i over Agt . The formula Kiϕ reads “i
knows that ϕ on the basis of what she observes” and CKϕ reads “all
agents commonly know that ϕ on the basis of what they observe.” We
define the operator of shared knowledge EKJ , for J ⊆ Agt a non-empty
set of agents, by

EKJϕ =
∧
i∈J

Kiϕ.

4

1.1. Epistemic logics and visibility

The formula EKJϕ reads “every agent in J knows that ϕ.”

Semantics of ECL-PC

In order to prepare the ground for the following chapters, we give the
semantics of ECL-PC in a form that slightly differs from the original
presentation, while being equivalent.

A valuation V ∈ 2ATM is a subset of the set of atoms ATM : the atoms
that are currently true. For an atom α, we write V (α) = V ′(α) if and
only if α has the same value in V and in V ′, i.e., either α ∈ V and α ∈ V ′,
or α /∈ V and α /∈ V ′. The (unique) visibility modelMvis = 2ATM contains
every possible valuation.

As said above, the indistinguishability relations of Mvis are con-
structed from visibility information. We denote by V ∼i V ′ the fact
that valuation V is indistinguishable from valuation V ′ for i. Formally:

V ∼i V ′ iff Si p ∈ V implies V (p) = V ′(p), and
for every j ∈ Agt , V (Sj p) = V ′(Sj p).

The first part is the formal counterpart of the intuition behind visibility:
two valuations V and V ′ are related for i if every atom α that i sees
at V has the same value in V and V ′. The second part ensures that
visibilities of all agents on every propositional variable are identical in
all related valuations; remember that this is a hypothesis of ECL-PC. We
will see how this implies complete information about visibility.

As the reader may observe, each relation ∼i is reflexive, transitive
and euclidean, and is therefore an equivalence relation. So each ∼i
divides the visibility model Mvis into equivalence classes of valuations
in which visibilities remain constant.

From this relation, we define the relation for common knowledge,
noted ∼Agt , as:

∼Agt =
(⋃
i∈Agt

∼i
)∗

where, for a relation R, R∗ is the reflexive and transitive closure of R.
This is the standard way [Fagin et al., 1995]: a statement ϕ must be
true in any reachable world by any agent in any number of steps for it
to be common knowledge.

Example 1.1. Suppose Prop = {p, q} and Agt = {1, 2}. Then ATM =
{p, q, S1 p, S1 q, S2 p, S2 q} and thus the visibility model contains 26 = 64
valuations. Let us only consider the subset of this model where 1 only
sees p and 2 only sees q. It is made up of the following four valuations:

{S1 p, S2 q}, {S1 p, S2 q, p}, {S1 p, S2 q, q}, {S1 p, S2 q, p, q}.

5

Chapter 1. Introduction: state of the art

These valuations are related such that 1 cannot distinguish valuations
differing only in the value of q and 2 cannot distinguish valuations dif-
fering only in the value of p. This is illustrated in Figure 1.1.

{S1 p, S2 q, p} oo 1 //
OO

2
��

1,2
��

{S1 p, S2 q, p, q}OO

2
��

1,2
��

{S1 p, S2 q} oo 1
//

1,2

KK
{S1 p, S2 q, q}

1,2

SS

Figure 1.1: Part of the visibility model where agent 1 only sees p and
agent 2 only sees q.

Example 1.2. Consider the same sets of propositional variables Prop
and agents Agt as in Example 1.1. The subset where 1 sees p and q
while 2 only sees q is depicted in Figure 1.2.

{S1 p, S1 q, S2 q, p}OO

2
��

1,2
��

{S1 p, S1 q, S2 q, p, q}OO

2
��

1,2
��

{S1 p, S1 q, S2 q}

1,2

KK
{S1 p, S1 q, S2 q, q}

1,2

SS

Figure 1.2: Part of the visibility model where agent 1 has full visibility
but agent 2 only sees q.

Formulas are interpreted at a valuation of Mvis . As the visibility
model is unique we keep it implicit and only mention the current valu-
ation V in the truth conditions. They are defined as follows:

V |= α iff α ∈ V
V |= ¬ϕ iff not (V |= ϕ)

V |= ϕ ∧ ϕ′ iff V |= ϕ and V |= ϕ′

V |= Kiϕ iff V ′ |= ϕ for every V ′ such that V ∼i V ′

V |= CKϕ iff V ′ |= ϕ for every V ′ such that V ∼Agt V
′

Therefore agent i knows that ϕ if ϕ holds in every valuation i con-
siders possible, based on what i sees; and ϕ is common knowledge if it
holds in any valuation accessible by a path over any indistinguishability
relation.

6

1.1. Epistemic logics and visibility

When V |= ϕ we say that V is a model of ϕ. The set of models of ϕ is
noted ‖ϕ‖. A formula ϕ is satisfiable if it has a model, i.e., if ‖ϕ‖ 6= ∅; it
is valid if ϕ is true in all models, i.e., if ‖ϕ‖ = 2ATM .

Example 1.3. In Example 1.2, no valuation other than the current one
is possible for agent 1; so she always knows the state of the valuation:

V |= (K1p ∨K1¬p) ∧ (K1q ∨K1¬q)

for every V of Figure 1.2. In contrast, agent 2 only knows the value of q,
but knows that 1 knows the value of p:

V |= (¬K2p ∧ ¬K2¬p) ∧ (K2q ∨K2¬q) ∧K2(K1p ∨K1¬p)

for every V of Figure 1.2. Finally, we have

{S1 p, S1 q, S2 q, q} |= CK q.

The reader may observe that the interpretations of CK and EKAgt actu-
ally coincide. This does not only happen in this example, as we shall see
in the next section.

Axiomatization of ECL-PC

Thanks to the visibility atoms we can axiomatize the epistemic frag-
ment of ECL-PC by means of reduction axioms, in a way that is a bit
simpler than that of [van der Hoek et al., 2011]. This also simplifies
the completeness proof. Our axiomatization of ECL-PC without strategic
operators is as follows:

• some axiomatization of S5nC (epistemic logic S5 with n agents and
with common knowledge), e.g. that of [Fagin et al., 1995];

• axioms reducing literal knowledge to visibility:

Kip↔ p ∧ Si p (RedK,p)
Ki¬p↔ ¬p ∧ Si p (RedK,¬p)

• positive and negative mutual introspection of visibility:

Si p→ KjSi p (PI S)
¬Si p→ Kj¬Si p (NI S)

• distribution of knowledge over disjunction of literals:

Ki

(∨
α∈A+

α ∨
∨

α∈A−
¬α
)
↔
(∨
α∈A+

Kiα
)
∨
(∨
α∈A−

Ki¬α
)

(RedK,∨)

where A+ and A− are sets of atoms such that A+ ∩A− = ∅.

7

Chapter 1. Introduction: state of the art

Observe that Axiom (RedK,∨) is not valid when the clause contains con-
tradictory literals, i.e., when A+ ∩A− 6= ∅.

Proposition 1.1. Our axiomatization of ECL-PC without strategic oper-
ators is sound.

Proof. The axiomatization of S5nC is sound because, as we will see in Sec-
tion 1.1.2, the model of ECL-PC is a particular Kripke model. Therefore
the axioms of S5nC are valid and its inference rules preserve validity.

• Axioms (RedK,p), (RedK,¬p) and (RedK,∨) will still be true in the log-
ics of visibility that we will present in the next chapters; their
proofs are similar to Proposition 2.10 on page 44.

• On the other hand, we will render invalid (PI S) and (NI S) in the
following; we detail their proof here.

Consider an arbitrary valuation V ∈ 2ATM . By the definition of ∼j ,
we have V (Si p) = V ′(Si p) for every V ′ such that V ∼j V ′.
Suppose V |= Si p, then for every V ′ such that V ∼j V ′ we have
V ′ |= Si p and therefore V |= KjSi p. Now suppose V 6|= Si p, then
for every V ′ such that V ∼j V ′ we have V ′ 6|= Si p and therefore
V |= Kj¬Si p.

Therefore all axioms are valid.

Proposition 1.2. The following formulas are theorems of ECL-PC.

• Reduction of visibility to knowing whether:

Kip ∨Ki¬p↔ Si p (1.1)

• Reduction of common knowledge to shared knowledge:

CKp↔ EKAgtp (1.2)
CK¬p↔ EKAgt¬p (1.3)

• Common knowledge of visibility:

Si p→ CKSi p (1.4)
¬Si p→ CK¬Si p (1.5)

• Distribution of common knowledge over disjunction of literals:

CK
(∨
α∈A+

α ∨
∨

α∈A−
¬α
)
↔
(∨
α∈A+

CKα
)
∨
(∨
α∈A−

CK¬α
)

(1.6)

where A+ and A− are sets of atoms such that A+ ∩A− = ∅.

8

1.1. Epistemic logics and visibility

Proof. We derive formulas from axioms.

• (1.1). It follows from the reduction axioms (RedK,p) and (RedK,¬p)
that Kip ∨Ki¬p is equivalent to (p ∧ Si p) ∨ (¬p ∧ Si p). The latter
is equivalent to Si p by propositional logic.

• (1.2). The left-to-right sense is a theorem of S5nC . For the right-
to-left sense, we have EKAgtp → Kjp by propositional reasoning.
Moreover, we have EKAgtp → Kj

∧
i∈Agt Si p by (RedK,p) and (PI S).

Thus

EKAgtp→ Kj

(
p ∧

∧
i∈Agt

Si p
)

which by (RedK,p) is nothing but EKAgtp→ KjEKAgtp, for arbitrary
j. It follows that EKAgtp → EKAgt EKAgtp. From the latter we
obtain CK (EKAgtp → EKAgt EKAgtp) by necessitation. Now we are
ready to apply the induction axiom for common knowledge, which
tells us that

CK (EKAgtp→ EKAgt EKAgtp)→ (EKAgtp→ CKp),

whence the result.
The proof for (1.3) is similar.

• (1.4). From the positive introspection axiom (PI S) it follows that
Si p → EKAgtSi p, from which we obtain CK (Si p → EKAgtSi p) by
necessitation. The induction axiom for common knowledge then
tells us that

CK (Si p→ EKAgtSi p)→ (Si p→ CKSi p),

hence the result.
The proof for (1.5) is similar.

• (1.6). The right-to-left direction is a theorem of S5nC . For the left-
to-right direction we only state the proof for m = 2 and proposi-
tional variables; the generalisation is straightforward. Using ax-
ioms (1.2) and (RedK,p) and the definition of EKAgt , it suffices to
prove that

CK (p ∨ q)→ (p ∧ Si p ∧ Sj p) ∨ (q ∧ Si q ∧ Sj q).

We distribute ∧ over ∨ in the right side and prove that CK (p ∨ q)
implies each of the nine disjuncts.

1. CK (p ∨ q)→ (p ∨ q). This is a theorem of S5nC .

9

Chapter 1. Introduction: state of the art

2. CK (p ∨ q) → (p ∨ Si q). First, CK (p ∨ q) implies Ki(p ∨ q) in
S5nC . Second, Ki(p ∨ q) implies Kip ∨ Kiq by (RedK,∨). Third,
Kip ∨Kiq implies p ∨ Si q by (RedK,p).

3. CK (p ∨ q)→ (p ∨ Sj q). The proof is similar to case (2).

4. CK (p ∨ q)→ (Si p ∨ q). The proof is similar to case (2).

5. CK (p ∨ q)→ (Si p ∨ Si q). First, CK (p ∨ q) implies Ki(p ∨ q) in
S5nC . Second, Ki(p ∨ q) implies Kip ∨ Kiq by (RedK,∨). Third,
Kip ∨Kiq implies Si p ∨ Si q by (RedK,p).

6. CK (p ∨ q)→ (Si p ∨ Sj q). First, CK (p ∨ q) implies KiKj(p ∨ q)
in S5nC . Second, the latter is equivalent to Ki(Kjp ∨ Kjq) by
(RedK,∨). Third, Ki(Kjp∨Kjq) implies Ki(p∨Sj q) by the truth
axiom of S5nC . Fourth, the latter is equivalent to Kip ∨KiSj q
by (RedK,∨). Finally, the latter implies Si p ∨ Sj q by (RedK,p)
and the truth axiom of S5nC .

7. CK (p ∨ q)→ (Sj p ∨ q). Similar to (2).

8. CK (p ∨ q)→ (Sj p ∨ Si q). Similar to (6).

9. CK (p ∨ q)→ (Sj p ∨ Sj q). Similar to (5).

Putting together these cases we obtain the result.

Therefore all the formulas are valid.

Proposition 1.3. Our axiomatization of ECL-PC without strategic oper-
ators is complete.

Proof. Completeness follows from the fact that our axiomatics allows us
to derive a complete set of reduction axioms for the epistemic operator
Ki and CK . We start by showing that these operators can be eliminated
when they face a boolean formula.

• When Ki faces a literal then it can be eliminated: first, when that
literal is a propositional literal (a variable or a negation thereof)
then the reduction axioms (RedK,p) and (RedK,¬p) apply; second,
when the literal is a visibility atom then we have KjSi p ↔ Si p
by the axiom of positive introspection (PI S) and the truth axiom of
S5nC ; third, when the literal is the negation of a visibility atom then
we have Kj¬Si p ↔ ¬Si p by the axiom of negative introspection
(NI S) and the truth axiom of S5nC .

• When CK faces a literal then it can be eliminated in a way sim-
ilar to the above: we apply equivalences (1.2) and (1.3) of Propo-
sition 1.2 for variables, and we apply implications (1.4) and (1.5)
and the truth axiom of S5nC for visibility atoms.

10

1.1. Epistemic logics and visibility

• When Ki faces a clause then it can be replaced by > if the clause is
tautological (by standard principles of normal modal logics); oth-
erwise it can be distributed by the implication (RedK,∨) and its
converse (which is a principle of S5nC).

• When CK faces a clause then it can be replaced by> if the clause is
tautological (by standard principles of normal modal logics); oth-
erwise it can be distributed by the equivalence (1.6) of Proposi-
tion 1.2.

• When Ki or CK face a conjunction or a double negation then they
can be simplified by standard principles of normal modal logics.

Now that we can eliminate epistemic operators facing boolean formulas,
we can start by innermost such operators and—applying the rule of re-
placement of equivalents of S5nC—eliminate all epistemic operators. The
result is a boolean combination of atoms. Such a formula is satisfiable
in ECL-PC if and only if it is satisfiable in propositional logic.

Complexity of model checking of ECL-PC

The model checking of ECL-PC is defined as:

• Input: a couple 〈V, ϕ〉 where ϕ is a ECL-PC formula and V is finite
a valuation;

• Output: yes if V |= ϕ, no otherwise.

Its complexity was proven to be PSPACE-complete [van der Hoek et al.,
2011].

1.1.2 Relation with Kripke models

We have seen that logics of visibility-based knowledge still rely on possi-
ble worlds and indistinguishability relations that are constructed from
what agents can see. In this section, we examine the link between
visibility-based models and standard Kripke models in more detail.

The language of standard epistemic logic (with common knowledge)
is the language of ECL-PC but without visibility atoms. It can therefore
be defined by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | CKϕ

where p ranges over Prop and i over Agt .
In the semantics, a Kripke model for epistemic logic is usually de-

fined as a tuple M = 〈W,∼1, . . . ,∼n, v〉, where W is a set of worlds,
∼1, . . . ,∼n are equivalence relations, one per agent, and v : Prop → 2W

11

Chapter 1. Introduction: state of the art

is a valuation function mapping every propositional variable to a set of
worlds where it is true. With M = 〈W,∼1, . . . ,∼n, v〉 a Kripke model and
w ∈W a world:

M,w |= p iff w ∈ v(p)

M,w |= ¬ϕ iff not (M,w |= ϕ)

M,w |= ϕ ∧ ϕ′ iff M,w |= ϕ and M,w |= ϕ′

M,w |= Kiϕ iff M,w′ |= ϕ for every w′ such that w ∼i w′

M,w |= CKϕ iff M,w′ |= ϕ for every w′ such that w ∼Agt w
′

where ∼Agt =
(⋃

i∈Agt ∼i
)∗ as in ECL-PC.

Again, we write w(p) = w′(p) if and only if p has the same value in w
and in w′.

From visibilities to Kripke models

In logics of visibility, every subset of the set of propositional variables is
a possible world. This means that a visibility model is always made up
of 2|ATM | worlds (with |ATM | the cardinality of ATM).

Formally, given a valuation V0 ∈ 2ATM , we are going to build a
pointed Kripke model (MV0 , wV0) that is bisimilar to (Mvis , V0) w.r.t. the
standard language of epistemic logic of the beginning of this section. We
define MV0 = 〈W,∼1, . . . ,∼n, v〉 as follows:

W = 2Prop

∼i = {(w,w′) : w,w′ ∈W and
for every p ∈ Prop, Si p ∈ V0 implies w(p) = w′(p)}

v(p) = {w : w ∈W and p ∈ w}

and wV0 = V0 ∩ Prop. Therefore only a part of our unique visibility
model Mvis remains in the Kripke model: all those equivalence classes
where the agents’ knowledge complies with the visibility information
contained in V0.

Proposition 1.4. The visibility model (Mvis , V0) and the pointed Kripke
model (MV0 , wV0) are bisimilar w.r.t. Prop.

Proof. Consider the relation Z ⊆ 2ATM ×W such that

Z = {(V,w) : for every p ∈ Prop, V (p) = w(p) and
for every p ∈ Prop, i ∈ Agt , V (Si p) = V0(Si p)}.

We check the three conditions for Z to be a bisimulation.

1. Atomicity. (V,w) ∈ Z implies V (p) = w(p) holds for all p ∈ Prop
by definition of Z.

12

1.1. Epistemic logics and visibility

2. Forth. Suppose (V,w) ∈ Z and V ∼i V ′ and let w′ = V ′ ∩ Prop.
Then:

• We have (V ′, w′) ∈ Z because, first, V ′(p) = w′(p) for all
p by definition of w′; and second, because for all p and j:
V ′(Sj p) = V (Sj p) by definition of ∼i and V (Sj p) = V0(Sj p)
because (V,w) ∈ Z.

• We have w ∼i w′ because we have: first, Si p ∈ V implies
V (p) = V ′(p) by definition of ∼i; second, as (V,w) ∈ Z, we
have V (Si p) = V0(Si p), so Si p ∈ V0 implies V (p) = V ′(p);
third, again as (V,w) ∈ Z we have V (p) = w(p), so Si p ∈ V0

implies w(p) = V ′(p). Hence Si p ∈ V0 implies w(p) = w′(p) by
definition of w′.

3. Back. Suppose (V,w) ∈ Z and w ∼i w′. Let V ′ = w ∪ (V0 \ Prop).
The proof that “V ∼i V ′ and (V ′, w′) ∈ Z” follows the same steps
as the proof of the “forth” condition, in reverse order.

Moreover, we have (V0, wV0) ∈ Z. Therefore (Mvis , V0) and (MV0 , wV0) are
bisimilar w.r.t. the standard language of epistemic logic.

The pointed Kripke model and the valuation being bisimilar, they
satisfy the same formulas: we have V0 |= ϕ if and only if MV0 , wV0 |= ϕ.

Example 1.4. Consider Prop and Agt of examples 1.1 and 1.2. Con-
sider the valuation V0 = {p, S1 p, S2 q}. Then MV0 = 〈W,∼1,∼2, v〉 with
W = {∅, {p}, {q}, {p, q}}, where the indistinguishability relations are as
depicted in Figure 1.3 and where wV0 = {p}. Observe that this corre-
sponds to the subset of Example 1.1.

{p} oo 1 //
OO

2
��

1,2
��

{p, q}
OO

2
��

1,2
��

∅ oo
1
//

1,2

LL {q}

1,2

SS

Figure 1.3: Kripke model MV0 for V0 = {p, S1 p, S2 q}.

From Kripke models to visibilities

We have seen that every visibility model can be transformed into a to
Kripke model. The other way round, it is in general not possible to
transform a Kripke model to a visibility model. There are two reasons
for that.

13

Chapter 1. Introduction: state of the art

1. First, visibilities stay the same across the indistinguishability re-
lations. This implies that who sees what is common knowledge:

Si p→ CKSi p

¬Si p→ CK¬Si p

which, along with validity (1.1) of Proposition 1.2, gives:

(Kip ∨Ki¬p)→ CK (Kip ∨Ki¬p)
(¬Kip ∧ ¬Ki¬p)→ CK (¬Kip ∧ ¬Ki¬p)

We have also seen there that this leads to the validity of CKp ↔
EKAgtp, which is invalid in standard epistemic logic.

This is annoying because theory of mind is “flattened”: it becomes
impossible to reason about higher-order knowledge. This is how-
ever fundamental in the gossip problem (generalized to higher-
order knowledge) or in any other reasoning task requiring theory
of mind.

2. Second, as we have seen in the previous section, a visibility model
always contains 2|ATM | worlds: every possible subset of ATM is
contemplated. This implies the distribution of knowledge over dis-
junction of literals:

Ki

(∨
α∈A+

α ∨
∨

α∈A−
¬α
)
↔
(∨
α∈A+

Kiα
)
∨
(∨
α∈A−

Ki¬α
)

when A+ ∩ A− = ∅. This problem is inherent to the notion of
visibility: if an agent knows that p or q is true by looking at them,
she immediately knows which one is true.

This forbids to model things such as the muddy children puzzle,
where each child knows that at least one of the children is muddy
without knowing which.

In this thesis, we will propose solutions to these two issues.

1.1.3 Other observation-based logics

Besides ECL-PC, other logics of visibility were also studied in recent
years.

The Logic of Revelation and Concealment LRC [van der Hoek et al.,
2012] allows us to express, as programs, that a variable is revealed to an
agent or concealed from her, modifying the visibilities. However, like in
ECL-PC, these visibilities also stay the same across the indistinguisha-
bility relations, and therefore who sees what is still common knowledge

14

1.2. Dynamic logics

among all agents. In the following, we will see how to include dynamic
modalities that will change visibilities of agents.

In Flatland Logic [Balbiani et al., 2013a], visibility is grounded on
geometry in order to give semantics to epistemic operators: an agent can
(or cannot) observe the positions of other agents and can reason about
what they observe. Visibility can be higher-order and is also fully deter-
mined by geometric constraints such as the position of agents and their
angle of view. A notable difference with other visibility-based epistemic
logics is that agents see other agents instead of propositional variables.
A successor of Flatland Logic is Big Brother Logic [Gasquet et al., 2014]
where agents have a fixed position and angle of view, but can rotate
freely. We will see how to fully relax these types of constraints.

1.2 Dynamic logics

Inspired from [Engeler, 1967; Hoare, 1969; Yanov, 1959], Algorithmic
Logic AL [Salwicki, 1970], and then Dynamic Logic DL [Pratt, 1976]
were designed as “logics of programs”: to each computer program is
associated a modality expressing the fact that when the program ter-
minates, the system is in a state satisfying a statement. Propositional
Dynamic Logic PDL [Fischer and Ladner, 1979] is the propositional vari-
ant of DL.

In dynamic logics, complex programs are built from abstract atomic
programs by sequential composition, non-deterministic composition, it-
eration and test. Other operators can be considered, like converse or
intersection, and iteration is sometimes dropped in so-called “star-free”
fragments. Formulas are interpreted over labelled transition systems,
where each transition between states is labelled with the name of an
atomic program and indicates a possible execution of this atomic pro-
gram.

1.2.1 Logic of propositional assignments

A recent contribution, Dynamic Logic of Propositional Assignments DL-
PA [Herzig et al., 2011; Balbiani et al., 2013b], instantiates PDL atomic
programs: they are now assignments of propositional variables to true
or to false. We recall the syntax and semantics of this logic as we heavily
rely on it in the following.

15

Chapter 1. Introduction: state of the art

Language of DL-PA

The language of formulas and programs of DL-PA is defined by the fol-
lowing grammar:

π ::= +p | −p | (π;π) | (π t π) | π∗ | ϕ?

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [π]ϕ

where p ranges over Prop.
The formula [π]ϕ reads “after every execution of π, ϕ is true” as

in standard dynamic logics. As for programs, assignments +p and −p
make p true or false; π;π′ is sequential composition: it executes π fol-
lowed by π′; π t π′ is non-deterministic choice: it executes either π or π′,
choosing non-deterministically; π∗ is unbounded iteration: it executes
π a finite, but non-deterministically determined number of times; ϕ? is
test: it checks if ϕ is currently true and continue if this is the case, or
fails and ends the execution otherwise.

Semantics of DL-PA

Formulas are interpreted on valuations V ∈ 2ATM , like the ones we have
seen in ECL-PC in Section 1.1.1. Again, the whole model is unique and
we keep it implicit in the truth conditions. They are as follows:

V |= p iff p ∈ V
V |= ¬ϕ iff not (V |= ϕ)

V |= ϕ ∧ ϕ′ iff V |= ϕ and V |= ϕ′

V |= [π]ϕ iff V ′ |= ϕ for every V ′ such that V RπV ′

where Rπ is a binary relation on valuations defined by:

V R+pV
′ iff V ′ = V ∪ {p}

V R−pV
′ iff V ′ = V \ {p}

V Rπ;π′V
′ iff V (Rπ ◦Rπ′)V ′

V Rπtπ′V
′ iff V (Rπ ∪Rπ′)V ′

V Rπ∗V
′ iff V (

⋃
k∈N0

(Rπ)k)V ′

V Rϕ?V
′ iff V = V ′ and V |= ϕ

The semantics are standard except that atomic programs, being con-
crete, have always the same effect of updating the current valuation by
adding or removing a given variable.

16

1.3. Control, strategies and boolean games

Complexity of model checking of DL-PA

The model checking of DL-PA is defined as:

• Input: a couple 〈V, ϕ〉 where ϕ is a DL-PA formula and V is a finite
valuation;

• Output: yes if V |= ϕ, no otherwise.

Its complexity was proven to be PSPACE-complete [Balbiani et al., 2014].

1.2.2 On the relation with visibility logics

As we have glimpsed, observation-based logics are often related with
dynamics, like LRC [van der Hoek et al., 2012], where programs modify
visibilities, and hence agents’ knowledge.

Note that the new semantics that we presented for ECL-PC in Sec-
tion 1.1.1 fit well with the ones of DL-PA. While relaxing the constraint
on visibilities of ECL-PC (which stay constant across indistinguishability
relations), one of the main contributions of this thesis will be to study
a dynamic epistemic logic based on observation, where the truth values
of visibilities, but also facts of the world, can evolve using assignments.
We will also show that the complexity of the model checking in this new
setting does not increase compared to ECL-PC and DL-PA.

1.3 Control, strategies and boolean games

Logics of control, such as Coalition Logic of Propositional Control CL-
PC [van der Hoek and Wooldridge, 2005], have been proposed in recent
years to model capabilities of agents in a rather simple and elegant way.
They allow us to reason about the strategic abilities of agents, i.e., the
states an agent is able to reach by modifying the variables she controls.
This can be extended to coalitions (sets of agents) by considering vari-
ables at least one of them controls.

1.3.1 Control

In CL-PC [van der Hoek and Wooldridge, 2005], each agent controls a
set of variables, much like visibilities of ECL-PC (which is an extension
of CL-PC as we have mentioned). Control is assumed to be exclusive and
exhaustive: a variable is controlled by exactly one agent. With control,
it is possible to define the ceteris paribus operator 3J , with J a coalition,
such that 3Jϕ reads “agents in J can change values of variables they
control while the other agents do not act so that ϕ is true.” It is true
at V if and only if there exists a valuation V ′ that satisfies ϕ, such that

17

Chapter 1. Introduction: state of the art

only variables controlled by at least one agent in J are modified between
V and V ′.

The ceteris paribus operator 3J allows us to reconstruct the “coali-
tion logic-like” strategic operator 〈〈J〉〉 [Pauly, 2001, 2002; Alur et al.,
2002], such that 〈〈J〉〉ϕ reads “agents in J are able to achieve ϕ by mod-
ifying variables they control, whatever the other agents do”: 〈〈J〉〉ϕ =
3J2Agt\Jϕ, with 2J the dual operator of 3J reading that “agents in J
cannot avoid ϕ by changing values of variables they control.”

The connection between CL-PC and DL-PA was studied in [Herzig
et al., 2011], where it was shown that the former can be polynomially
embedded in the star-free fragment of the latter.

Another work on control is [Grossi et al., 2015] in which the au-
thors present a ceteris paribus logic, called CP, whose formulas are in-
terpreted on the equivalence classes induced by finite sets of proposi-
tional atoms. This logic has modal operators of the form [X] where X is
a finite set of propositional variables. The formula [X]ϕ is read “ϕ is the
case in all states which are X-equivalent to the current state,” where
two states are X-equivalent if they assign the same truth values to the
variables in X. The authors show that CL-PC as well as the star-free
fragment of DL-PA can be embedded in CP.

1.3.2 Boolean games and epistemic boolean games

Boolean games [Harrenstein et al., 2001; Bonzon et al., 2006; Dunne
et al., 2008] are games in which each player wants to achieve a certain
goal that is represented by a propositional formula. They correspond to
the specific subclass of normal-form games in which agents have binary
preferences (i.e., payoffs are either 0 or 1) and are widely accepted as a
useful and natural abstraction for reasoning about social interaction in
multi-agent systems.

Boolean games

A boolean game is a tuple (Agt ,Propf , (Ψi)i∈Agt , (γi)i∈Agt) where Propf is
a finite subset of Prop, each Ψi ⊆ Propf is the set of variables agent i con-
trols, and γi is a boolean formula such that ATM (γi) ⊆ Propf . The latter
expresses i’s personal goal, i.e., the state of affairs i wants to achieve.
Exclusive and exhaustive control is assumed: the sets Ψi partition the
set of variables Propf .

A strategy for an agent i, noted si, is an interpretation of variables
controlled by i, that is to say, si ⊆ Ψi. Therefore the set of all possible
strategies of agent i is 2Ψi . Given a strategy si for each member of a
coalition J , the induced strategy for J is sJ =

⋃
i∈J si. A strategy sAgt

for Agt is called a strategy profile. It can be seen as an interpretation of

18

1.4. Automated planning

the set of variables Propf . Agent i’s utility function maps every strategy
profile to i’s reward; this reward depends only on the truth value of i’s
goal in sAgt :

Ui(sAgt) =

{
1 if sAgt |= γi

0 otherwise.

Let 〈si, sAgt\{i}〉 be the strategy profile composed of the strategy si of
i and of the strategy sAgt\{i} of i’s opponents. We say that si is a best
response to sAgt\{i} if and only if, for every strategy s′i ∈ 2Ψi ,

Ui(〈s′i, sAgt\{i}〉) ≤ Ui(〈si, sAgt\{i}〉)

holds, i.e., every other strategy of i against the same strategy of oppo-
nents would not increase i’s reward.

A strategy profile sAgt is a Nash equilibrium if and only if si is a
best response to sAgt\{i} for every i ∈ Agt . This means that every agent
cannot get a bigger reward by choosing another strategy if the others do
not change theirs.

Epistemic boolean games

In [Ågotnes et al., 2013], epistemic boolean games are studied. In these
games, agents’ goals are no longer restricted to boolean formulas, but
may contain epistemic operators. Semantics, like in ECL-PC, are based
on valuations and visibility sets of variables associated to agents, with
the drawbacks that we saw in Section 1.1. In particular, agents can af-
fect the truth value of propositional variables and, indirectly, the knowl-
edge of those agents’ who can see these variables; but agents cannot
modify the visibility conditions of propositional variables.

It is shown in [Ågotnes et al., 2013] that for their class of epistemic
boolean games, membership and existence of Nash equilibria (i.e., de-
ciding if the current strategy is a Nash equilibrium and deciding if there
exists one) are PSPACE-complete. Using atoms of control in addition to
atoms of visibility, we will show in Chapter 5 how to encode a more gen-
eral class of epistemic boolean games, where agents can affect the truth
value of propositional variables but also the visibilities of conditions
of propositional variables, including higher-order visibility. We will also
show that the complexity of deciding membership and existence of Nash
equilibria is not affected by this generalisation.

1.4 Automated planning
Automated planning [Ghallab et al., 2004] is a field of artificial intel-
ligence that aims to, given some actions, generate a plan that can be

19

Chapter 1. Introduction: state of the art

executed by an agent and that leads her to her goal.

1.4.1 Classical planning

In its simplest form, a planning task is composed of the initial state,
a set of actions, and the goal; a plan is a sequence of actions. It is
assumed that the initial state is unique and known, that actions are
instantaneous, deterministic and fully observable.

The three components can be described with the help of proposi-
tional logic: the initial state being a set of propositional variables, ac-
tions adding or removing these variables, possibly with preconditions to
be executed, and the goal being a boolean formula. The planning task is
solvable if there exists a sequence of actions which, executed from the
initial state, leads to a state where the goal is satisfied.

Planning is furthermore interested in the design of algorithms that
solve planning tasks, i.e., that find a solution plan. Several languages
for representing such tasks were developed; the most commonly known
are STRIPS [Fikes and Nilsson, 1971] (Stanford Research Institute Prob-
lem Solver) and PDDL [McDermott et al., 1998] (Planning Domain Def-
inition Language), the latter including the former. New planners are
regularly proposed and evaluated at competitions such as the Interna-
tional Planning Competition.1

1.4.2 Epistemic planning

Epistemic planning focuses on planning under uncertainty: agents may
be uncertain about the state of the world, about the actions performed
by other agents or about the effects of actions. Goals may also concern
the knowledge of agents in addition to facts of the world.

Dynamic Epistemic Logic DEL [van Ditmarsch et al., 2007] provides
a formal framework for the representation of knowledge and update of
knowledge. Its dynamics rely on event models which modify Kripke
models with an operation called product update. These models allow us
to represent actions together with the agents’ perception of their occur-
rence.

Several recent approaches to multi-agent epistemic planning are
based on DEL, starting with [Bolander and Andersen, 2011; Löwe et al.,
2011]. While DEL provides a very expressive framework, it was unfortu-
nately proven to be undecidable even for rather simple fragments of the
language. For example, if actions make factual changes to the world,
then the problem is undecidable whenever epistemic operators are al-
lowed in preconditions of actions; if actions are purely epistemic, then it
is undecidable whenever two agents are involved or the epistemic depth

1 http://www.icaps-conference.org/index.php/Main/Competitions

20

http://www.icaps-conference.org/index.php/Main/Competitions

1.5. Aim and contributions of the thesis

exceeds 2 [Aucher and Bolander, 2013; Charrier et al., 2016a]. Some de-
cidable fragments were studied, most of which focused on public events
[Löwe et al., 2011; Yu et al., 2015]. However, we will see that some tasks
such as the gossip problem requires private communication.

There exist other approaches on planning with uncertainty that do
not use DEL. The framework presented in [Kominis and Geffner, 2015]
allows us to reason about knowledge on literals in a multi-agent set-
ting. A similar approach with beliefs can be found in [Muise et al.,
2015]. While restricted to a single agent, the framework of [Petrick and
Bacchus, 2004] deals with “knowing that” but also “knowing whether”
formulas (i.e., knowing p or knowing ¬p).

We will show in Chapter 4 how to encode more general multi-agent
epistemic planning problems within the framework of our logic of vis-
ibility, keeping the complexity low in comparison with DEL-based ap-
proaches.

1.5 Aim and contributions of the thesis

1.5.1 Aim of the thesis

The aim of the present thesis is to demonstrate that visibility-based
epistemic logics provide a suitable tool for important applications in
the field of artificial intelligence. This requires to solve the two is-
sues we identified in Section 1.1.2: common knowledge of visibilities
and the epistemic operator distributing over disjunctions. We illustrate
the result with well-known toy examples of epistemic logic as well as
with more general applications such as epistemic planning and boolean
games.

A higher-level motivation behind logics of visibility and the gener-
alisations we propose is also notable: we consider that, given a partic-
ular problem, the design and use of an epistemic model is easier with
them. As an example, designing the Kripke model which describes the
initial situation the muddy children problem may be a difficult task, es-
pecially for someone not fully familiar with modal logic. As we will see
in Chapter 6, writing down the same situation in terms of visibility is
obvious. One could argue hat models do not have to be constructed from
scratch: there exist techniques to infer a model from a formula, such as
the tableaux method [Fitting, 1983]. The resulting models may still be
complex to handle and to work with for non-logicians. Moreover, adding
actions to standard epistemic logic leads to DEL. While being highly ex-
pressive, the design of a DEL event model (representing an action) is
even more complex than of an epistemic Kripke model. This hardness
has led to the research of fragments such as Public Announcement Logic
PAL. We have also seen that in the field of epistemic planning, where the

21

Chapter 1. Introduction: state of the art

standard approach relies on DEL, alternative methods are proposed to
avoid its arduousness. We will see that the inclusion of actions in our
logics of visibility is straightforward and that they are easy to handle.
We hope that this encourage the use of formal methods for concrete
applications involving reasoning about knowledge such as in cyber se-
curity, autonomous vehicles or video games.

1.5.2 Outline of the thesis

In Chapter 2, we add higher-order knowledge to observability-based log-
ics and allow for situations where, e.g., agent i sees variable p but agent
j does not see whether i sees p. This logic, which we call DEL-PAO, solves
the first issue: observations are not common knowledge any more. This
chapter is based on [Herzig et al., 2015].

DEL-PAO allows us to model in a natural way scenarios such as a
generalisation of the gossip problem. In the original gossip problem,
friends exchange secrets via telephone calls until everyone knows all
secrets. In the novel generalisation studied in Chapter 3, we want that
everyone knows all secrets, but also that everyone knows this, and so on
until a fixed depth. This chapter is based mostly on [Herzig and Maffre,
2016], with the exception of the proof of optimality that can be found in
[Cooper et al., 2016b].

In Chapter 4, we apply DEL-PAO to epistemic planning. We show
how our framework allows us to express many problems of epistemic
planning (such as the gossip problem) while avoiding the undecidability
of current methods based on DEL. This chapter is based on [Cooper et al.,
2016a].

The framework of DEL-PAO can also be easily extended with atoms
of control, modelling strategic abilities and epistemic boolean games as
introduced in Section 1.3. This extension is presented in Chapter 5.
This chapter is based on [Herzig et al., 2016].

We show in Chapter 6 how to take into account public announce-
ments, as popularized in dynamic epistemic logics and more generally
publicly executed programs. Knowledge may now originate from two
sources: observations and communication. This solves the second issue:
knowledge operators do not distribute over disjunctions any more. This
chapter is based on [Charrier et al., 2016a].

Finally, Chapter 7 settles the complexity of the model checking prob-
lem of all presented logics. It introduces a framework into which ev-
ery given logic can be translated and presents an algorithm solving the
model checking problem for this framework that runs in PSPACE. This
chapter is based on a section of [Charrier et al., 2016a].

Every paper this thesis is based on is, for most parts, the result of
collaborative work between all its authors. Notable parts in which the

22

1.5. Aim and contributions of the thesis

author of the thesis has less participated in are: the optimality proof of
Chapter 3; the translation into PDDL of Chapter 4; the application to
epistemic boolean games of Chapter 5; the model checking algorithms
of Chapter 7.

Moreover, several changes have been made by the author of the the-
sis to some parts of the papers, including corrections of errors and new
results, the most important being the inclusion of the Kleene star into
the language of programs. They are signalled by footnotes indicating
what was altered. Explanations and proofs have also been globally ex-
panded. Finally, drawings have been added, with the sole aim to dec-
orate examples given throughout the thesis. These illustrations were
made by the author and are free to use.

1.5.3 Contributions not detailed in this thesis

Formal properties of the generalized gossip problem

Other interesting properties of the generalized gossip problem, intro-
duced in Chapter 3, and not included in this thesis can be found in
[Cooper et al., 2016b] (with a long version in [Cooper et al., 2016c]). In
this paper, we more generally consider the case where graphs are not
complete, i.e., where some agents cannot call each other. We study the
necessary number of calls and the complexity of the generalised gossip
problem and its variant with ignorance goals, as well as:

• the one-way gossip, where calls are replaced by e-mails;

• the parallel gossip, where we are interested in the number of steps
required rather than in the number of calls;

• the gossip with variable secrets, where agents can switch the value
of their secrets.

An important result of this paper, namely, the proof of optimality of the
algorithm for the standard generalized gossip problem, is nevertheless
included in Chapter 3.

Alternating-time temporal logic with commitments

In [Herzig et al., 2013], the authors introduce Alternating-time Tem-
poral Logic with Explicit Actions ATLEA, which extends the language
of Alternating-time Temporal Logic ATL with commitments on actions.
These commitments specify the next action the agent will perform. This
is a first step towards a full specification of strategies that is not in-
cluded in ATL: operators 〈〈J〉〉 only indicates whether the coalition of
agents J has a strategy to ensure some state or not, without giving any
hint on the actions composing this strategy.

23

Chapter 1. Introduction: state of the art

In [Herzig et al., 2014], we followed this line of work and intro-
duced Alternating-time Temporal Logic with Explicit Programs ATLEP.
In ATLEP, atomic commitments are ATLEA commitments, and complex
commitments are constructed using dynamic logic operators. Agents
may not only commit to the next action, but also on the ones following
the next action. They can also commit on different actions depending
on the current state, by using tests, and even commit infinitely thanks
to a special operator of infinite iteration.

This work was set aside because we were only able to specify the se-
mantics of ATLEP in a very complicated way, making the study of prop-
erties such as axiomatization or complexity difficult, and decreasing the
chances of building interesting work over it. One lead might be to not
consider PDL but instead the less complex language of DL-PA for actions,
but this was not investigated. We do not include this work in this thesis
because of its lack of connection with the more recent contributions on
logics of visibility.

24

2 A simple dynamic epistemic logic
based on observation

A drawback of current logics of visibility is that what each
agent can see is common knowledge to all agents. This is a
strong hypothesis that we are going to relax in the present
chapter.
In existing frameworks, visibility information is in terms of
propositional variables associated to agents. We here consider
propositional variables associated to sequences of agents, giv-
ing the central logic of this thesis: DEL-PAO.

Syntactically, we represent visibility information by means of
atomic formulas that we call visibility atoms. They take the form
Si1 Si2 . . . Sin p, where p is a propositional variable and i1, i2, . . . , in are
agents. When n=0 then we have nothing but a propositional variable.
For n=1, the atom Si1 p reads “agent i1 sees the value of the variable p,”
and for n=2, the second-order observation Si1 Si2 p reads “agent i1 sees
whether i2 sees the value of p,” and so on.

Our models are valuations as presented in the introduction, i.e., sets
of atoms. In order to guarantee positive and negative introspection we
have to ensure that agents are always aware of what they see: for every
agent i and propositional variable p, we require Si Si p to be in every
valuation. We say that a valuation V is introspective when it contains
every visibility atom having two consecutive Si, such as Sj Si Si Sk p.

Visibility information allows us to interpret epistemic operators as
in other visibility-based logics; the truth condition for Kiϕ is based on
a relation between valuations that can be defined from our visibility
atoms: V ∼i V ′ if every atom that i sees in V has the same truth value
in V and in V ′. While the relations ∼i are reflexive on the set of all val-
uations, they are symmetric and transitive—and therefore equivalence
relations—on the set of introspective valuations only. The positive and
negative introspection axioms Kiϕ → KiKiϕ and ¬Kiϕ → Ki¬Kiϕ are
valid in the set of introspective valuations.

25

Chapter 2. A simple dynamic epistemic logic based on observation

A further novelty of our approach as compared to existing visibility-
based epistemic logics is that we also account for common knowledge:
our language includes a special atomic formula for joint attention of the
form JS p that reads “all agents jointly see the value of p.” Metaphori-
cally, joint attention about a propositional variable p can be understood
as eye contact between the agents when observing p. Just as individ-
ual visibility, we generalize our account to higher-order joint visibility,
adding a constraint on valuations that guarantees introspection of com-
mon knowledge. We moreover require that joint visibility implies indi-
vidual visibility by imposing that Si p ∈ V whenever JS p ∈ V . We can
then interpret a modal operator of common knowledge CK in the same
way as the modal operator of individual knowledge.

Just as several existing proposals, we take inspiration from dynamic
epistemic logics DEL [van Ditmarsch et al., 2007] and add dynamics to
our observation-based epistemic logic. This will allow us to model sys-
tems where knowledge, but also facts of the world, change over time.
Specifically, we adapt van der Hoek et al.’s logic LRC which has two
update operations modifying visibility: reveal and conceal the value of
a variable to some agent. These two primitives can however not be
taken over as they stand because the naive update of a valuation may
no longer be introspective. We exclude this by an appropriate definition
of update. We relate our assignment programs to DL-PA [Herzig et al.,
2011; Balbiani et al., 2013b]. We show how visibility updates can cap-
ture private announcements of literals, conjunctions and knowledge of
literals.

We call our logic DEL-PAO: Dynamic Epistemic Logic of Propositional
Assignment and Observation.

Contents
2.1 Language of DEL-PAO 28
2.2 Semantics of DEL-PAO 30

2.2.1 Introspective valuations 31
2.2.2 Introspective causes and consequences 33
2.2.3 Indistinguishability relations 35
2.2.4 Valuation updates 36
2.2.5 Truth conditions and validity 37
2.2.6 Discussion . 42

2.3 Axiomatization . 43
2.3.1 Reduction axioms for epistemic operators 44
2.3.2 Reduction axioms for dynamic operators 46
2.3.3 Soundness and completeness 52

2.4 Complexity of model checking 55
2.4.1 From infinite to finite models 55

26

2.4.2 Simulating epistemic operators with programs . 56
2.4.3 Relevant atoms 62
2.4.4 The model checking problem 64

2.5 Applications . 65
2.5.1 Two Generals’ problem 65
2.5.2 Private announcements 66

2.6 Conclusion . 67

Résumé du chapitre

Un inconvénient des logiques actuelles de visibilité est que ce que
chaque agent voit est connaissance commune pour tous les agents. Ceci
est une hypothèse forte que nous allons relâcher dans ce chapitre. Dans
les logiques existantes, les informations de visibilité sont sous forme
d’ensembles de variables propositionnelles associés aux agents. Nous
considérons ici des variables propositionnelles associées à des séquences
d’agents, ce qui donne la logique centrale de la thèse : DEL-PAO.

Syntaxiquement, nous représentons les informations de visibilité au
moyen de formules atomiques que nous appelons atomes de visibilité.
Ils sont de la forme Si1 Si2 . . . Sin p, où p est une variable proposition-
nelle et i1, i2, . . . , in sont des agents. Pour n=0 nous obtenons simple-
ment variable propositionnelle. Pour n=1, l’atome Si1 p se lit “l’agent i1
voit la valeur de la variable p”, et pour n=2, l’observation du second
ordre Si1 Si2 p se lit “l’agent i1 voit si i2 voit la valeur de p”, etc.

Nos modèles sont les valuations comme celles présentées dans l’in-
troduction, c’est-à-dire, des ensembles d’atomes. Afin de garantir l’in-
trospection positive et négative, nous devons nous assurer que les agents
sont toujours conscients de ce qu’ils voient : pour chaque agent i et va-
riable propositionnelle p, chaque valuation doit contenir Si Si p. Une va-
luation V est dite introspective si elle contient tout atome de visibilité
ayant deux Si consécutifs, comme par exemple Sj Si Si Sk p.

Ces informations de visibilité nous permettent d’interpréter les opé-
rateurs épistémiques de la même façon que dans les autres logiques
basées sur la visibilité ; la condition de vérité pour Kiϕ est basée sur
une relation entre les valuations qui peut être définie à partir de nos
atomes de visibilité : V ∼i V ′ si chaque atome que i voit dans V a la
même valeur de vérité dans V et dans V ′. Alors que les relations ∼i
sont réflexives sur l’ensemble des valuations, elles sont symétriques et
transitives, et donc des relations d’équivalence, sur l’ensemble des va-
luations introspectives seulement. Les axiomes d’introspection positive
et négative Kiϕ → KiKiϕ et ¬Kiϕ → Ki¬Kiϕ sont valables dans l’en-
semble des évaluations introspectives.

27

Chapter 2. A simple dynamic epistemic logic based on observation

Une autre nouveauté de notre approche par rapport aux logiques
épistémiques basées sur la visibilité existantes est que nous considé-
rons la connaissance commune : notre langage inclut une formule ato-
mique spéciale pour l’attention jointe, de la forme JS p, lue “tous les
agents voient conjointement la valeur de p”. Métaphoriquement, l’atten-
tion jointe sur une variable propositionnelle p peut être comprise comme
un contact visuel entre les agents lors de l’observation p. Tout comme
la visibilité individuelle, nous prenons en compte l’ordre supérieur en
ajoutant une contrainte sur les valuations qui garantit l’introspection
de la connaissance commune. De plus, nous exigeons que la visibilité
commune implique la visibilité individuelle en imposant que Si p ∈ V
lorsque JS p ∈ V . On peut alors interpréter un opérateur modal CK de
connaissance commune de la même manière que l’opérateur modal de
connaissance individuelle.

Tout comme plusieurs propositions existantes, nous nous inspirons
des logiques épistémiques dynamiques DEL [van Ditmarsch et al., 2007]
et ajoutons des opérateurs dynamiques à notre logique épistémique ba-
sée sur l’observation. Cela nous permettra de modéliser des systèmes où
la connaissance, mais aussi les propositions, evoluent au fil du temps.
Plus précisément, nous adaptons la logique LRC de van der Hoek et al.,
qui propose deux opérations de mise à jour modifiant la visibilité : ré-
véler et cacher la valeur d’une variable à un agent. Ces deux primitives
ne peuvent toutefois pas être utilisées en l’état, car la mise à jour naïve
d’une valuation peut ne plus être introspective. Nous excluons ce cas par
une définition appropriée de l’opération de mise à jour. Nos programmes
d’affectation sont similaires à ceux de DL-PA [Herzig et al., 2011; Bal-
biani et al., 2013b]. Nous montrons comment les mises à jour de visibi-
lité peuvent capturer des annonces privées de littéraux, de conjonctions
et de connaissance de littéraux.

Nous appelons notre logique DEL-PAO : une logique épistémique dy-
namique des affectations propositionnelles et de l’observation.

2.1 Language of DEL-PAO

Remember that Prop is a countable non-empty set of propositional vari-
ables and Agt is a finite non-empty set of agents.

In our language, an atomic formula is a sequence of visibility oper-
ators, possibly empty, followed by a propositional variable. The formal
definition is as follows.

The set of observability operators is

OBS = {Si : i ∈ Agt} ∪ {JS},
where Si stands for individual visibility of agent i and JS stands for joint
visibility of all agents. The set of all sequences of visibility operators is

28

2.1. Language of DEL-PAO

noted OBS ∗ and the set of all non-empty sequences is noted OBS +. We
use σ, σ′, etc. for elements of OBS ∗. The depth of a sequence of operators
σ, noted depth(σ), is the number of operators composing it. Moreover,
we note σ[k:], for 0 ≤ k ≤ depth(σ), the sub-sequence starting at the k-
th element of σ, such that the first element’s index is 0. For example,
JS S1 S2 [1:] = S1 S2 and JS S1 S2 [2:] = S2. Therefore σ[0:] = σ and we
suppose σ[depth(σ):] is the empty sequence.

The set of atomic formulas is

ATM = {σ p : σ ∈ OBS ∗, p ∈ Prop}.

Elements of that set are called visibility atoms, or atoms for short. Here
are some examples:

• S1 p reads “1 sees the value of p.” It means that 1 knows whether p
is true or false.

• JS S2 q reads “all agents jointly see whether agent 2 sees the value
of q.” In other words, there is joint attention in the group of all
agents concerning 2’s observation of q. This does not imply that 2
sees the value of q.

• S1 S2 S3 p reads “1 sees whether 2 sees whether 3 sees p.”

• ... and so on.

We use α, α′, β, β′, etc. for elements of ATM .
The language of DEL-PAO is then defined by the following grammar:

π ::= +α | −α | (π;π) | (π t π) | π∗ | ϕ?

ϕ ::= α | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | CKϕ | [π]ϕ

where α ranges over ATM and i over Agt .2

Programs have the same meaning as in DL-PA: +α makes α true
and −α makes α false, π;π′ is sequential composition, π t π′ is non-
deterministic choice, π∗ is unbounded iteration, and ϕ? is test. Just as
in dynamic logic, the formula [π]ϕ reads “after every execution of π, ϕ is
true.”

As in other visibility logics, the formula Kiϕ reads “i knows that ϕ
on the basis of what she observes.” Moreover, CKϕ reads “all agents
commonly know that ϕ on the basis of what they jointly observe.” Our
epistemic operators account for forms of individual and common knowl-
edge that are respectively obtained via individual observation and joint

2 As mentioned in the introduction, the Kleene star ∗ was not included in the original
language of DEL-PAO [Herzig et al., 2015].

29

Chapter 2. A simple dynamic epistemic logic based on observation

observation of facts. As we have seen, this differs therefore conceptu-
ally from the classical operators of individual and common knowledge
as studied in the area of epistemic logic [Fagin et al., 1995]. We will
come back to this in Section 2.2.6.

The other boolean operators >, ⊥, ∨, → and ↔ are defined in the
standard way. Dual operators K̂iϕ (“ϕ is compatible with i’s knowledge”)
abbreviates ¬Ki¬ϕ and 〈π〉ϕ (“there exists an execution of π after which
ϕ is true”) abbreviates ¬[π]¬ϕ. The program skip abbreviates >? and
fail abbreviates ⊥?.

We also use πm (“π is repeated m times”), with m ≥ 0, inductively
defined by π0 = skip and πm+1 = π;πm, and π≤m (“π is repeated m at
most times”) for

⊔
0≤k≤m π

k. Finally, if ϕ then π abbreviates (ϕ?;π) t
¬ϕ? and if ϕ then π else π′ abbreviates (ϕ?;π) t (¬ϕ?;π′).

The set of atomic formulas from ATM occurring in the formula ϕ is
noted ATM (ϕ). It is inductively defined as:

ATM (α) = α

ATM (¬ϕ) = ATM (ϕ)

ATM (ϕ ∧ ϕ′) = ATM (ϕ) ∪ATM (ϕ′)

ATM (Kiϕ) = ATM (ϕ)

ATM (CKϕ) = ATM (ϕ)

ATM ([π]ϕ) = ATM (π) ∪ATM (ϕ)

with ATM (π) the set of atoms occurring is the program π, defined as:

ATM (+α) = α

ATM (−α) = α

ATM (π;π′) = ATM (π) ∪ATM (π′)

ATM (π t π′) = ATM (π) ∪ATM (π′)

ATM (π∗) = ATM (π)

ATM (ϕ?) = ATM (ϕ)

For example, let π = q?; +S2 p and ϕ = [π]S1 JS p. Then ATM (π) =
{q, S2 p} and ATM (ϕ) = {q, S2 p, S1 JS p}. Note that JS p is not an atom
of ϕ.

2.2 Semantics of DEL-PAO

We denote valuations by V , V ′, etc. Remember that a valuation is sim-
ply a subset of the set of atoms ATM . The set of all valuations is again
2ATM .

In this section, we stipulate constraints that are motivated by the re-
quirement that visibility information should be introspective and that

30

2.2. Semantics of DEL-PAO

joint visibility should imply individual visibility. We then define indis-
tinguishability relations between valuations and show how to interpret
formulas and programs.

2.2.1 Introspective valuations

A valuation V ∈ 2ATM is introspective if and only if the five following
constraints hold, for every α ∈ ATM and i ∈ Agt :

Si Si α ∈ V (C1)
JS JS α ∈ V (C2)
JS Si Si α ∈ V (C3)
if JS α ∈ V , then Si α ∈ V (C4)
if JS α ∈ V , then JS Si α ∈ V (C5)

The set of all introspective valuations is noted INTR.
In words, (C1) impose introspection of individual sight: an agent al-

ways sees whether she sees the value of an atom. (C2) requires the
same for joint sight; indeed, if JS α is true then JS JS α should be true
by introspection, and if JS α is false then all agents jointly see that at
least one of them has broken eye contact. (C3) forces the first to be com-
mon knowledge. (C4) guarantees that joint visibility implies individual
visibility. The constraints (C4) and (C5) ensure that JS α ∈ V implies
σ α ∈ V for σ ∈ OBS +.

This motivates the following relation of introspective consequence be-
tween atoms:

α⇒I β iff either α = β, or α = JS α′ and β = σ α′ for some σ ∈ OBS +.

When α⇒I β, we say that α is an introspective cause of β and that β
is an introspective consequence of α. For a given α, we note α⇐ the set
of introspective causes of α, and α⇒ the set of its introspective conse-
quences.

Proposition 2.1. A valuation V ⊆ ATM is introspective if and only if,
for every α, β ∈ ATM and i ∈ Agt :

σ Si Si α ∈ V for every σ ∈ OBS ∗ (P1)
σ JS α ∈ V for every σ ∈ OBS + (P2)
if α ∈ V and α⇒I β then β ∈ V (P3)

Proof. We prove that, for a valuation V , the constraints (C1)-(C5) are
satisfied if and only if (P1), (P2) and (P3) hold.

For the left-to-right direction, we begin with (P3). The interest-
ing case is when α = JS α′ (otherwise the only introspective conse-
quence of α is itself). Suppose JS α′ ∈ V . By constraint (C5), we know

31

Chapter 2. A simple dynamic epistemic logic based on observation

that JS Si1 α
′ ∈ V , and also that JS Si2 Si1 α

′ ∈ V for any i1 and i2,
and so on. By repeating the application of (C5), we can generate any
JS Sim . . . Si1 α

′ and then, by (C4), we can obtain Si Sim . . . Si1 α
′ for any

agents i1, . . . im and i. Moreover, we have JS JS α′ ∈ V by (C2), and in the
same way, we can generate Si Sim . . . Si1 JS α′ for any agents i1, . . . im and
i. By choosing α′ appropriately, we can therefore obtain any sequence
containing any Si and JS , that is, all σ α′ for any σ ∈ OBS +.

Using the same technique, we obtain σ Si Si α and σ JS α, the first
with (C1) (for σ empty) and (C3) (for σ non-empty), and the second with
(C2).

The other way round, constraints (C1), (C2) and (C3) are respectively
instances of (P1), (P2) and (P1); and constraints (C4) and (C5) are both
guaranteed by (P3).

An atom α ∈ ATM is called valid in INTR, or introspectively valid,
if and only if α belongs to every valuation in INTR.

Proposition 2.2. The atom α is valid in INTR if and only if α is:

• either of the form σ Si Si α
′ with σ ∈ OBS ∗;

• or of the form σ JS α′ with σ ∈ OBS +.

Proof. The right-to-left direction is obvious by Proposition 2.1.
For the left-to-right direction, we prove that every atom in INTR,

i.e., every atom specified in Proposition 2.1, is of one of the given forms.
The first two items of Proposition 2.1 are already in the right form;

we only need to prove that for every β such that either σ Si Si α′⇒I β or
σ JS α′⇒I β, β is of the form σ Si Si α

′ or σ JS α′.

• Take α = σ Si Si α
′ with σ ∈ OBS ∗. Suppose that σ contains at

least one observability operator and starts with a JS (otherwise,
the only consequence of α is itself). Thus α = JS σ′ Si Si α

′ with
σ′ ∈ OBS ∗. Then by the definition of introspective consequence,
α⇒I β if and only if β = σ′′ σ′ Si Si α

′ with σ′ ∈ OBS ∗ and σ′′ ∈
OBS +, that is, β is captured by the form (P1) of Proposition 2.1.

• Now take α = σ JS α′ with σ ∈ OBS +, and suppose that σ starts
with a JS : α = JS σ′ JS α′ with σ′ ∈ OBS ∗. Thus α⇒I β if and
only if β = σ′′ σ′ JS α′ with σ′ ∈ OBS ∗ and σ′′ ∈ OBS +, that is, β is
captured by the form (P2) of Proposition 2.1.

Hence closure under introspective consequence characterizes introspec-
tive valuations.

Therefore valid atoms are exactly of the two given forms.

32

2.2. Semantics of DEL-PAO

In words, any atom containing a sequence Si Si or containing (but
not starting with) a JS is introspectively valid.

Observe that we do not impose the constraint “if σ α ∈ V for every
σ ∈ OBS ∗ then JS α ∈ V ,” which corresponds to the greatest fixed point
definition of the operator of common knowledge from shared knowledge.
We will comment on this in Section 2.2.6.

2.2.2 Introspective causes and consequences

In this section, we study in more detail the relation of dependence be-
tween atoms that we defined in the previous section:

α⇒I β iff either α = β, or α = JS α′ and β = σ α′ for some σ ∈ OBS +.

As we will see, this relation is omnipresent in DEL-PAO, especially
when dealing with assignments. Remember that we note α⇐ the causes
of α and α⇒ its consequences. We characterize them depending on the
form of α:

• α = p with p ∈ Prop:

– α⇐ = {p};
– α⇒ = {p}.

• α = Si σ p with σ ∈ OBS ∗ and p ∈ Prop:

– α⇐ = {JS σ[k:] p : 0 ≤ k ≤ depth(σ)} ∪ {Si σ p};
– α⇒ = {Si σ p}.

• α = JS σ p with σ ∈ OBS ∗ and p ∈ Prop:

– α⇐ = {JS σ[k:] p : 0 ≤ k ≤ depth(σ)};
– α⇒ = {σ′ σ p : σ′ ∈ OBS +}.

Consequences are obvious from the definition of ⇒I : only atoms
starting with a JS may have consequences different from themselves;
they are all atoms obtained by replacing the JS operator by any se-
quence of visibility operators.

Causes are less straightforward. The first case is easy: p has no
cause but itself. For the other cases, we actually are in two similar
situations: the only difference is that when α starts with a JS , then it is
itself contained in the set {JS σ[k:] p : 0 ≤ k ≤ depth(σ)} (case k = 0).

This latter set may seem complicated so let us illustrate it with an
example. Suppose we want the causes of JS S1 S2 p. We are looking for
every atom starting with a JS operator such that we can replace the JS
by any sequence of depth at least 1 to obtain JS S1 S2 p. There are three
of them:

33

Chapter 2. A simple dynamic epistemic logic based on observation

1. JS S1 S2 p itself (replace JS by JS);

2. JS S2 p (replace JS by JS S1);

3. JS p (replace JS by JS S1 S2).

JS JS S1 S2 p, for example, would not be eligible because the first JS can-
not be replaced by a sequence of depth at least 1. (This implies that
the depths of causes of α are always smaller or equal to the depth of
α.) Therefore the causes of Si σ p or JS σ p are every atom starting with
a JS operator and followed by any postfix of σ (including the empty se-
quence), hence the result. Note the special case of JS p: its only cause is
itself.

We will use these definitions and the following properties to demon-
strate equivalences between sequences of assignments in Section 2.3.

Proposition 2.3. Let α be an atom. Then α⇐ ∩ α⇒ = {α}.

Proof. With the above definitions, the cases where α = p and α = Si σ p
are obvious. The last case, where α = JS σ p, derives from the fact that
all other causes of α have a depth strictly lower than α and all other
consequences of α starting with a JS have depth strictly higher than
α.

Proposition 2.3 implies that if α⇒I β and β⇒I α, then α = β.

Proposition 2.4. Let α, β, γ be three atoms. If α⇒I γ and γ⇒I β, then
α⇒I β.

Proof. Suppose γ 6= α and γ 6= β, otherwise the result is obvious. Since
α⇒I γ, we have α = JS α′ and γ = σ1 α

′ with σ1 ∈ OBS +. Moreover,
because γ⇒I β, we have γ = JS γ′ and β = σ2 γ

′ with σ2 ∈ OBS +.
Thus γ′ = σ3 α

′ with σ3 ∈ OBS ∗ and hence β = σ2 σ3 α
′ (where σ2 ∈

OBS +) which is of the form σ1 α
′, with σ1 ∈ OBS +, and therefore a

consequence of α. Therefore α⇒I β.

Proposition 2.4 implies that if α⇒I β, then α⇐ ⊆ β⇐ and β⇒ ⊆ α⇒.

Proposition 2.5. Let α and β be two atoms. If α 6⇒I β and β 6⇒I α, then
α⇐ ∩ β⇒ = ∅ and α⇒ ∩ β⇐ = ∅.

Proof. To prove that α⇐ ∩ β⇒ = ∅, suppose there exists an atom γ such
that γ ∈ α⇐ and γ ∈ β⇒. This implies that γ⇒I α and that β⇒I γ.
Hence by Proposition 2.4, β⇒I α, which contradicts our hypothesis.

The reasoning for α⇒ ∩ β⇐ = ∅ is similar.

34

2.2. Semantics of DEL-PAO

2.2.3 Indistinguishability relations

As usual in visibility logics, two valuations are related by the indistin-
guishability relation for agent i, noted ∼i, if every α that i sees has the
same value. The relation ∼Agt acts similarly for joint indistinguishabil-
ity. They are defined as follows:

V ∼i V ′ iff Si α ∈ V implies V (α) = V ′(α)

V ∼Agt V
′ iff JS α ∈ V implies V (α) = V ′(α)

with, as in the introduction, V (α) = V ′(α) when either α ∈ V and α ∈ V ′,
or α /∈ V and α /∈ V ′. In the following, let us write V =A V ′, with
A ⊆ ATM , in place of “V (α) = V ′(α) for every α ∈ A.” Thus V ∼i V ′ if
and only if V ={α:Si α∈V } V

′ and V ∼Agt V
′ if and only if V ={α:JS α∈V } V

′.
Now that we account for higher-order knowledge and that visibilities

are not constant across ∼i and ∼Agt , the two binary relations are not
equivalence relations. Indeed, while being reflexive, they are neither
symmetric nor transitive in the general case. For example, ∅ ∼i {p, Si p}
while {p, Si p} 6∼i ∅ since p /∈ ∅. However, both properties hold on valua-
tions satisfying the introspection constraints (C1) and (C2).

Proposition 2.6. The relation ∼Agt and every ∼i are equivalence rela-
tions on INTR.

Proof. Reflexivity is obvious from the definition of relations. We prove
symmetry and transitivity of ∼i for an arbitrary agent i. The proof for
∼Agt is analogous, but with (C2) instead of (C1).

• Symmetry. Take two valuations V, V ′ ∈ INTR. Suppose V ∼i V ′
and V ′ 6∼i V . By the former, for every α, if Si α ∈ V then V (α) =
V ′(α). By the latter, there exists a β such that Si β ∈ V ′ and V (β) 6=
V ′(β). Thus this β is such that Si β /∈ V . Therefore there exists a
β such that Si β ∈ V ′ but Si β /∈ V , that is, V (Si β) 6= V ′(Si β).
Since V ∈ INTR, we have Si Si α ∈ V for every α by constraint
(C1). This means that for every α, V (Si α) = V ′(Si α). We obtain a
contradiction, thus V ′ ∼i V .

• Transitivity. Take three valuations V, V ′, V ′′ ∈ INTR. Suppose
V ∼i V ′, V ′ ∼i V ′′ and V 6∼i V ′′. By the first two hypotheses, for
every α, if Si α ∈ V then V (α) = V ′(α) and if Si α ∈ V ′ then V ′(α) =
V ′′(α). As observed above, since V ∈ INTR, V (Si α) = V ′(Si α) for
every α. Therefore if Si α ∈ V , then Si α ∈ V ′, that is, if Si α ∈ V ,
V (α) = V ′(α) and V ′(α) = V ′′(α), thus V (α) = V ′′(α), for every α.
This contradicts the third hypothesis since the latter implies that
there exists a β such that Si β ∈ V and V (β) 6= V ′′(β). Therefore
V ∼i V ′′.

35

Chapter 2. A simple dynamic epistemic logic based on observation

Therefore ∼Agt and ∼i are equivalence relations on INTR.

Lemma 2.1. Let V ∈ INTR and V ′ ∈ 2ATM . If V ∼i V ′ or V ∼Agt V
′ then

V ′ ∈ INTR.

Proof. Suppose that V ∼i V ′ for an arbitrary agent i and that V ∈ INTR.
We prove that V ′ satisfies constraints (C1)-(C5). Recall that the five
constraints are equivalent to the three properties (P1)-(P3) of Proposi-
tion 2.1. The proof for ∼Agt is analogous.

Take an arbitrary agent j.

• (C1). By (P1), Si Sj Sj α ∈ V and Sj Sj α ∈ V . Thus Sj Sj α ∈ V ′.

• (C2). By (P2), Si JS JS α ∈ V and JS JS α ∈ V . Thus JS JS α ∈ V ′.

• (C3). By (P1), Si JS Sj Sj α ∈ V and JS Sj Sj α ∈ V . Thus
JS Sj Sj α ∈ V ′.

• (C4). Suppose JS α ∈ V ′. By (P2), Si JS α ∈ V , thus V (JS α) =
V ′(JS α) and thus JS α ∈ V . By (P3), this implies that both
Si Sj α ∈ V and Sj α ∈ V . Thus Sj α ∈ V ′.

• (C5). Suppose JS α ∈ V ′. As observed with the previous item,
this implies that JS α ∈ V . Thus by (P3), both Si JS Sj α ∈ V and
JS Sj α ∈ V . Thus JS Sj α ∈ V ′.

Therefore V ′ ∈ INTR.

Together, Proposition 2.6 and Lemma 2.1 ensure that ∼i and ∼Agt

have a “proper behaviour” on introspective valuations and that they
cannot exit them. While only (C1) and (C2) are necessary to ensure
the former, for the latter all constraints are required.

2.2.4 Valuation updates

Given an introspective valuation V , our update operations add or re-
move atoms from V . This requires some care: we want the resulting
valuation to be introspective. For example, removing Si Si p should be
impossible. Another example is when V does not contain Si p: then
V ∪ {JS p} would violate (C4).

Thus, when adding an atom to V , we also have to add all its intro-
spective consequences; symmetrically, when removing an atom we also
have to remove its introspective causes. To that end, let us define the
following update operations on valuations:

V+α = V ∪ α⇒

V−α = V \ α⇐

36

2.2. Semantics of DEL-PAO

Proposition 2.7. Let V ∈ INTR and α ∈ ATM . Then V+α ∈ INTR.
Moreover, if α is not valid in INTR, then V−α ∈ INTR.

Proof. Doing either V+α, or V−α such that α is not valid in INTR, im-
plies that we are not deleting any valid atom in the process. Therefore
we only have to take care that property (P3) of Proposition 2.1 (intro-
spective consequence) is preserved:

• when adding α, adding every β such that α⇒I β ensures that it is;

• when removing α, removing every β such that β⇒I α ensures that
no atom can still introspectively imply α, thus preserving intro-
spective consequence.

Therefore V+α and V−α are introspective.

V+α and V−α will be the updated worlds resulting from adding α
to V or removing α (if not valid) from V . Proposition 2.7 ensures that
corresponding atomic programs +α and −α will preserve introspection.

2.2.5 Truth conditions and validity

Truth conditions are as follows:

V |= α iff α ∈ V
V |= ¬ϕ iff not (V |= ϕ)

V |= ϕ ∧ ϕ′ iff V |= ϕ and V |= ϕ′

V |= Kiϕ iff V ′ |= ϕ for every V ′ such that V ∼i V ′

V |= CKϕ iff V ′ |= ϕ for every V ′ such that V ∼Agt V
′

V |= [π]ϕ iff V ′ |= ϕ for every V ′ such that V RπV ′

where Rπ is a binary relation on valuations defined by:

V R+αV
′ iff V ′ = V+α

V R−αV
′ iff V ′ = V−α and α is not valid in INTR

V Rπ;π′V
′ iff V (Rπ ◦Rπ′)V ′

V Rπtπ′V
′ iff V (Rπ ∪Rπ′)V ′

V Rπ∗V
′ iff V (

⋃
k∈N0

(Rπ)k)V ′

V Rϕ?V
′ iff V = V ′ and V |= ϕ

Truth conditions are defined on any valuation V ∈ 2ATM . However,
we have seen that indistinguishability relations ∼i and ∼Agt will not
be equivalence relations outside of introspective valuations. Therefore
knowledge operators may have unexpected behaviour in that case.

37

Chapter 2. A simple dynamic epistemic logic based on observation

The relation Rπ is defined like in dynamic logic for the program op-
erators ;, t, ∗ and ?. As noted in the previous section, the interpretation
of assignments is designed in a way such that we stay in INTR: the
program +α adds all the consequences of α; the program −α fails if α
is valid in INTR and otherwise removes all the causes of α. For ex-
ample, we never have V R−S1 S1 pV

′, i.e., the program −S1 S1 p always
fails (thus the formula [−S1 S1 p]ϕ is always true, whatever ϕ). In con-
trast, the program−S1 S2 p always succeeds, and we have V R−S1 S2 p (V \
{S1 S2 p, JS S2 p, JS p}) because as we have seen in Section 2.2.2, the only
atoms—beyond S1 S2 p itself—whose consequence is S1 S2 p are JS S2 p
and JS p. Therefore V |= [−S1 S2 p]¬JS p for every V .

We say that two programs π1 and π2 are equivalent, noted π1 ≡ π2, if
and only if Rπ1 equals Rπ2 , i.e., for every V, V ′ ∈ 2ATM we have V Rπ1V ′

if and only if V Rπ2V ′.

Lemma 2.2. Let V ∈ INTR and V RπV
′. Then V ′ ∈ INTR.

Proof. By Proposition 2.7, we know that R+α and R−α preserve intro-
spection. Rπ;π′ , Rπtπ′ and Rπ∗ make unions and compositions and thus
preserve introspection, assuming Rπ and Rπ′ do. Finally, Rϕ? relates the
current valuation to itself and thus trivially stays in INTR.

Proposition 2.8. For every V ∈ INTR, i ∈ Agt and program π, V is
related by ∼i, ∼Agt and Rπ only to valuations in INTR.

Proof. This is a direct consequence of lemmas 2.1 and 2.2.

When V |= ϕwe say that V is a model of ϕ. The set of (not necessarily
introspective) models of ϕ is noted ‖ϕ‖.

A formula ϕ is satisfiable in INTR if ϕ has an introspective model,
i.e., if ‖ϕ‖ ∩ INTR 6= ∅; it is valid in INTR if INTR ⊆ ‖ϕ‖. A formula ϕ
is plainly satisfiable if it has a model, i.e., if ‖ϕ‖ 6= ∅; it is plainly valid
if ϕ is true in all models, i.e., if ‖ϕ‖ = 2ATM .

For example, JS p ∧ ¬Si p is plainly satisfiable but not satisfiable in
INTR. On the other hand, [−S1 S2 p]¬JS p is valid in INTR (and even
plainly valid).

Proposition 2.9. Let ϕ be a formula without epistemic operators. Let
V, V ′ ∈ 2ATM be such that V =ATM (ϕ) V

′. Then V |= ϕ if and only if
V ′ |= ϕ.

Remember that V =A V
′ means that V (α) = V ′(α) for every α ∈ A.

Proof. We prove by mutual recursion on formulas and programs the two
following hypotheses:

• Hf(ϕ): if V =ATM (ϕ) V
′, then V |= ϕ if and only if V ′ |= ϕ;

38

2.2. Semantics of DEL-PAO

• Hp(π): for every A ⊆ ATM : if V =ATM (π)∪A V ′, then for every U ∈
2ATM such that V RπU , there exists U ′ ∈ 2ATM such that V ′RπU ′

and U =A U
′.

Take two arbitrary valuations V, V ′ ∈ 2ATM .
We begin with Hf(ϕ). Using the definition of ATM (ϕ), the proof is

straightforward for atoms and boolean operators. We only examine the
case where ϕ = [π]ϕ′.

By definition of ATM (ϕ), we have ATM (ϕ) = ATM (π) ∪ ATM (ϕ′),
hence suppose V =ATM (π)∪ATM (ϕ′) V

′. We prove that for every U such
that V RπU , U |= ϕ′ if and only if for every U ′ such that V ′RπU ′, U ′ |= ϕ′.

By Hp(π), we have:

for every U such that V RπU,
there exists U ′ such that V ′RπU ′ and U =ATM (ϕ′) U

′.

We also have:

for every U ′ such that V ′RπU ′,
there exists U such that V RπU and U =ATM (ϕ′) U

′.

By Hf(ϕ
′), they become:

for every U such that V RπU,
there exists U ′ such that V ′RπU ′

and U |= ϕ′ if and only if U ′ |= ϕ′ (2.1)
and for every U ′ such that V ′RπU ′,

there exists U such that V RπU
and U |= ϕ′ if and only if U ′ |= ϕ′. (2.2)

For the left-to-right direction, suppose that U |= ϕ′ for every U such
that V RπU , but that there exists U ′ such that V ′RπU ′ and U ′ 6|= ϕ′. By
(2.2), the latter implies that there exists U such that V RπU and U 6|= ϕ′,
which contradicts the former. The right-to-left direction is analogous
but using (2.1).

Therefore for every U such that V RπU , U |= ϕ′ if and only if for every
U ′ such that V ′RπU ′, U ′ |= ϕ′.

We now move to Hp(π). We suppose that in all cases, π does not fail;
otherwise, Hp(π) is trivially true since there is no U such that V RπU .
Moreover, as we will see in the axiomatization (Section 2.3), π∗ can be
reduced to π≤22|ATM (π)| , which is a non-deterministic composition of se-
quences of π. Therefore we skip this case.

Take an arbitrary set of atoms A ⊆ ATM .

39

Chapter 2. A simple dynamic epistemic logic based on observation

• π = +α. We have ATM (π) = {α}, thus suppose V ={α}∪A V
′. The

program is deterministic: U = V+α and U ′ = V ′+α. Take an
arbitrary atom β ∈ A.

– Suppose α⇒I β: then β was added by +α and thus β ∈ U and
β ∈ U ′.

– Now suppose α 6⇒I β: then β was not modified by +α. Thus
U(β) = V (β) and U ′(β) = V ′(β). Since V (β) = V ′(β) (because
β ∈ A), then U(β) = U ′(β).

In both cases, β has the same value in U and in U ′: U =A U
′.

• π = −α. The proof is analogous to the case π = +α.

• π = π1;π2. We have ATM (π) = ATM (π1) ∪ ATM (π2), thus sup-
pose V =ATM (π1)∪ATM (π2)∪A V

′. By Hp(π1), this implies that:

for every U1 such that V Rπ1U1,

there exists U ′1 such that V ′Rπ1U
′
1

and U1 =ATM (π2)∪A U
′
1.

This time by Hp(π2), this gives:

for every U1 such that V Rπ1U1,

there exists U ′1 such that V ′Rπ1U
′
1

and for every U such that U1Rπ2U,

there exists U ′ such that U ′1Rπ2U
′

and U =A U
′.

Since π does not fail:

for every U such that there exists U1 such that V Rπ1U1 and U1Rπ2U,

there exists U ′ and U ′1 such that V ′Rπ1U
′
1 and U ′1Rπ2U

′

and U =A U
′.

This is equivalent to:

for every U such that V Rπ1;π2U,

there exists U ′ such that V ′Rπ1;π2U
′

and U =A U
′,

which is our result.

40

2.2. Semantics of DEL-PAO

• π = π1 t π2. We have ATM (π) = ATM (π1) ∪ ATM (π2), thus sup-
pose V =ATM (π1)∪ATM (π2)∪A V

′. By applying Hp(π1) and Hp(π2), we
obtain:

for every U1 such that V Rπ1U1,

there exists U ′1 such that V ′Rπ1U
′
1 and U1 =ATM (π2)∪A U

′
1

and for every U2 such that V Rπ2U2,

there exists U ′2 such that V ′Rπ2U
′
2 and U2 =ATM (π1)∪A U

′
2.

Note that if V =B∪A V
′, then V =A V

′, thus:

for every U1 such that V Rπ1U1,

there exists U ′1 such that V ′Rπ1U
′
1 and U1 =A U

′
1

and for every U2 such that V Rπ2U2,

there exists U ′2 such that V ′Rπ2U
′
2 and U2 =A U

′
2.

This implies, by addition:

for every U1 such that V Rπ1U1,

there exists U ′1 such that V ′Rπ1U
′
1 and U1 =A U

′
1

or there exists U ′2 such that V ′Rπ2U
′
2 and U1 =A U

′
2

and for every U2 such that V Rπ2U2,

there exists U ′2 such that V ′Rπ2U
′
2 and U2 =A U

′
2

or there exists U ′1 such that V ′Rπ1U
′
1 and U2 =A U

′
1.

Thus:

for every U1 such that V Rπ1U1,

there exists U ′ such that V ′Rπ1U
′ or V ′Rπ2U

′

and U1 =A U
′

and for every U2 such that V Rπ2U2,

there exists U ′ such that V ′Rπ2U
′ or V ′Rπ1U

′

and U2 =A U
′,

that is:

for every U such that V Rπ1U or V Rπ2U,
there exists U ′ such that V ′Rπ1U

′ or V ′Rπ2U
′

and U =A U
′.

This is equivalent to:

for every U such that V Rπ1tπ2U,
there exists U ′ such that V ′Rπ1tπ2U

′

and U =A U
′,

which is our result.

41

Chapter 2. A simple dynamic epistemic logic based on observation

• π = χ?.We have ATM (π) = ATM (χ), hence suppose V =ATM (χ)∪A
V ′. As we have seen, this implies V =ATM (χ) V

′, and by Hf(χ), we
thus have V |= χ if and only if V ′ |= χ. We have assumed that π
does not fail; this implies that V |= χ and thus that V ′ |= χ, hence
U = V and U ′ = V ′. Thus U =ATM (χ)∪A U

′ and therefore U =A U
′.

Therefore if V =ATM (ϕ) V
′, V |= ϕ if and only if V ′ |= ϕ.

This proposition will be instrumental in many places across the the-
sis. Observe that it does not hold when ϕ contains epistemic operators.
For example, the truth value of Kip depends on that of Si p, which how-
ever does not occur in ATM (Kip). We will see in Section 2.4 how to
account for these operators.

2.2.6 Discussion

Both the operators of individual knowledge and the operator of common
knowledge of DEL-PAO satisfy all the principles of the standard epis-
temic logic S5.

We have seen in the introduction that there are also some further
validities. For example the distribution of knowledge over disjunction
of literals is still valid in DEL-PAO:

Ki(p ∨ q)→ (Kip ∨Kiq),

cf. the axiom (RedK,∨) below. This is a strong principle: to give an ex-
ample, if one knows that the butler or the gardener was the murderer
then one knows which of them it was. We will see how to relax it in
Chapter 6.

Our common knowledge operator obeys the fixed point axiom:

CKp→ p ∧
(∧
i∈Agt

KiCKp
)
.

This is ensured by constraints (C2) and (C4) that make the formula∧
i∈Agt

Si JS p

valid in INTR. Our notion of common knowledge is however weaker
than standard common knowledge because the induction axiom(

ϕ ∧ CK
(
ϕ→

∧
i∈Agt

Kiϕ
))
→ CKϕ

is invalid in INTR. To see this, take as an example Agt = {1, 2} and
Prop = p. Take the valuation V = {p} ∪ {σ p : σ ∈ OBS + \ {JS}}, i.e.,

42

2.3. Axiomatization

everybody sees p and everybody knows that, but there is no joint visibil-
ity of p. This valuation is introspective since every introspectively valid
atom belongs to V and JS p, which is absent from V , has no introspective
causes but itself. Then

(
p ∧ CK

(
p→ (K1p ∧K2p)

))
→ CKp

is not true at V . Indeed, given an arbitrary V ′ ∈ 2ATM , we have:

V ′ |= CK
(
p→ (K1p ∧K2p)

)
⇔ V ′ |= CK

(
¬p ∨ (K1p ∧K2p)

)
⇔ V ′ |= CK

(
¬p ∨ (S1 p ∧ S2 p)

)
⇔ V ′ |= CK¬p ∨ (CKS1 p ∧ CKS2 p)

⇔ V ′ |= CK¬p ∨ (JS S1 p ∧ S1 p ∧ JS S2 p ∧ S2 p)

by the axioms of Proposition 2.10. While V 6|= CK¬p, the atoms JS S1 p,
S1 p, JS S2 p and S2 p belong to V . Therefore V |= p ∧ CK

(
p → (K1p ∧

K2p)
)
. On the other hand, V 6|= CKp since this is equivalent to JS p ∧ p,

and the former is false in V . Therefore the induction axiom is invalid in
INTR.

Observe that defining the indistinguishability relation for common
knowledge ∼Agt as (

⋃
i∈Agt ∼i)∗ instead of relying on the JS operator

would make the induction axiom valid. Beyond the technical reason
for that choice (the corresponding constraint is infinite and thus cannot
be axiomatized by formula built from visibility atoms) we follow [Lorini
and Herzig, 2014; Herzig, 2014] and assume that such a principle is too
strong for a logic of common knowledge.

2.3 Axiomatization

Our axiomatization relies on reduction axioms. With them, we are able
to reduce any DEL-PAO formula to a propositional formula.

43

Chapter 2. A simple dynamic epistemic logic based on observation

2.3.1 Reduction axioms for epistemic operators

Proposition 2.10. The following formulas are plainly valid, where α is
an atom and A+ and A− are sets of atoms:

Kiα↔ Si α ∧ α (RedK,α)
CKα↔ JS α ∧ α (RedCK ,α)
Ki¬α↔ Si α ∧ ¬α (RedK,¬α)

CK¬α↔ JS α ∧ ¬α (RedCK ,¬α)
Ki(ϕ ∧ ϕ′)↔ Kiϕ ∧Kiϕ

′ (RedK,∧)
CK (ϕ ∧ ϕ′)↔ CKϕ ∧ CKϕ′ (RedCK ,∧)

Ki

(∨
α∈A+

α ∨
∨

α∈A−
¬α
)
↔

(∨
α∈A+

Kiα
)
∨
(∨
α∈A−

Ki¬α
)

if A+∩A− = ∅

> otherwise
(RedK,∨)

CK
(∨
α∈A+

α ∨
∨

α∈A−
¬α
)
↔

(∨
α∈A+

CKα
)
∨
(∨
α∈A−

CK¬α
)

if A+∩A− = ∅

> otherwise
(RedCK ,∨)

Proof. For each validity, consider an arbitrary valuation V ∈ 2ATM .
Some proofs are skipped due to their similarity with those of standard
epistemic logic [Fagin et al., 1995].

• (RedK,α). From left to right, suppose V 6|= α ∧ Si α. If V 6|= α then
V 6|= Kiα because ∼i is reflexive. If V 6|= Si α then by definition of
∼i there exists V ′ such that V ∼i V ′ and α 6∈ V ′, thus V 6|= Kiα.

From right to left, suppose V |= Si α and V |= α. Then by definition
of ∼i, every valuation V ′ such that V ∼i V ′ contains α, thus V |=
Kiα.

• Proofs for (RedCK ,α), (RedK,¬α) and (RedCK ,¬α) are analogous to the
proof for (RedK,α).

• Proofs for (RedK,∧) and (RedCK ,∧) are standard.

• (RedK,∨). The case where A+ ∩ A− 6= ∅ is obvious: Ki faces a
tautological disjunction and the formula is therefore equivalent to
>.

For the other case, the proof for the right-to-left direction is stan-
dard; here we examine only the left-to-right direction. As we shall
see, this unusual validity is due to the fact that any subset of ATM

44

2.3. Axiomatization

is an eligible world. We give a proof by contraposition. Suppose:

V |=
(∧
α∈A+

K̂i¬α
)
∧
(∧
α∈A−

K̂iα
)
, (2.3)

we prove:

V |= K̂i

(∧
α∈A+

¬α ∧
∧

α∈A−
α
)
,

i.e., there exists a valuation related to V by ∼i where every atom
from A+ is false and every atom from A− is true.3 Let us define
the four following sets of atoms:

A+
S = {α : α ∈ A+ and Si α ∈ V }

A+
6S = {α : α ∈ A+ and Si α /∈ V }

A−S = {α : α ∈ A− and Si α ∈ V }
A−6S = {α : α ∈ A− and Si α /∈ V }

(Note that the sets are mutually disjoint because A+ and A− are.)
We can reformulate (2.3) by splitting each conjunction into two
parts:

V |=
(∧
α∈A+

S

K̂i¬α
)
∧
(∧
α∈A+

6S

K̂i¬α
)
∧
(∧
α∈A−S

K̂iα
)
∧
(∧
α∈A−6S

K̂iα
)
. (2.4)

Let us first look at atoms that are seen by i. Take an atom α ∈
A+
S . By (2.4), we have V |= K̂i¬α, and by the definition of A+

S , we
have V |= Si α. Note that K̂i¬α ∧ Si α ↔ Ki¬α is plainly valid (by
(RedK,α) and (RedK,¬α)). This implies that every α ∈ A+

S is false
in V and in every related valuation. Analogously, every α ∈ A−S is
true in V and in every related valuation. Atoms from A+

6S and A−6S ,
on the other hand, are not seen by i and thus can have any value
in the current and in related valuations.

Take V ′ = (V \A+
6S) ∪A−6S . No atom α that i sees in V varies in V ′:

– if α is outside ofA+ andA− then, seen or not, it is not modified
between V and V ′;

– if α is either in A+ or A−, Si α ∈ V implies that α /∈ A+
6S and

α /∈ A−6S . Hence α is not modified either between V and V ′.

3 Remember that K̂iϕ reads “ϕ is compatible with i’s knowledge.”

45

Chapter 2. A simple dynamic epistemic logic based on observation

Therefore V ∼i V ′.
Now let us examine the truth values of our atoms in V ′. If α ∈ A+

S ,
then we have seen that α is false in every valuation related to V .
Moreover, if α ∈ A+

6S , then by construction of V ′, α is false in V ′.
Thus every atom from A+ is false in V ′. Similarly, we can prove
that every atom from A− is true in V ′. Since V ∼i V ′, we have:

V |= K̂i

(∧
α∈A+

¬α ∧
∧

α∈A−
α
)
.

• The proof for (RedCK ,∨), is analogous to the proof for (RedK,∨).

Therefore the given formulas are plainly valid.

Distribution of knowledge over disjunction (RedK,∨) entails that, for
example,

Ki(p ∨ q)→ Kip ∨Kiq

is valid. However, the following formula is invalid:

Ki(Kjp ∨Kj¬p)→ KiKjp ∨KiKj¬p,

as it would mean that if i knows that j knows the value of p (i.e., that
j sees p), then she knows that j knows p or she knows that j does not
know p, and therefore that she knows the value of p herself. This implies
that DEL-PAO is not closed under propositional substitution: we cannot
replace p by Kjp and q by Kj¬p in the first (valid) formula and obtain
a new validity. While this is a property of standard epistemic logic,
dynamic epistemic logics are not closed under propositional substitution
either [van Ditmarsch et al., 2007].

2.3.2 Reduction axioms for dynamic operators

The three lemmas give equivalences for sequence of affectations, that
will be useful in the proof of the proposition.

Lemma 2.3. We have the following program equivalences, where α is an
atom and p is a propositional variable:

+α; +α ≡ +α (+=+)
−α;−α ≡ −α (−=−)

−α; +α ≡

+α if α = p or α = JS p

+α;−JS σ p if α = Si σ p with σ ∈ OBS ∗

+α;−JS σ[1:] p if α = JS σ p with σ ∈ OBS +

(−=+)

46

2.3. Axiomatization

Proof. For every equivalence, take a valuation V ∈ 2ATM and suppose
we execute the sequence of assignments from V . We assume that α is
not introspectively valid (otherwise −α fails and the equivalences are
trivially valid). Remember that by the truth conditions, executing +α
from V leads to the valuation V ∪ α⇒ and executing −α from V leads to
V \ α⇐. We use definitions of Section 2.2.2.

• (+=+). Obvious: (V ∪ α⇒) ∪ α⇒ = V ∪ α⇒.

• (−=−). Obvious again: (V \ α⇐) \ α⇐ = V \ α⇐.

• (−=+). We examine each three cases:

– Suppose α = p or α = JS p. In the first case, α⇐ = α⇒ = {p};
in the second case, α⇐ = {JS p} and α⇒ = {σ p : σ ∈ OBS +}.
In both cases, α⇐ ⊆ α⇒; hence (V \ α⇐) ∪ α⇒ = V ∪ α⇒.

– Now suppose α = Si σ p with σ ∈ OBS ∗. Then we have α⇐ =
{JS σ[k:] p : 0 ≤ k ≤ depth(σ)} ∪ {Si σ p} and α⇒ = {Si σ p}.
Thus

(V \ α⇐) ∪ α⇒

= (V \ ({JS σ[k:] p : 0 ≤ k ≤ depth(σ)} ∪ {Si σ p})) ∪ {Si σ p}
= (V ∪ {Si σ p}) \ {JS σ[k:] p : 0 ≤ k ≤ depth(σ)}
= (V ∪ α⇒) \ JS σ p⇐,

hence the result.

– Finally, suppose α = JS σ p with σ ∈ OBS +. Then α⇐ =
{JS σ[k:] p : 0 ≤ k ≤ depth(σ)} and α⇒ = {σ′ σ p : σ′ ∈ OBS +}.
We have seen with Proposition 2.3 that α⇐∩α⇒ = {α}. There-
fore, intuitively, removing causes then adding consequences
of α is like adding consequences, then removing all causes of
α except α itself. We have {JS σ[k:] p : 0 ≤ k ≤ depth(σ)} \
{JS σ p} = {JS σ[k:] p : 1 ≤ k ≤ depth(σ)}, thus

(V \ α⇐) ∪ α⇒

= (V \ {JS σ[k:] p : 0 ≤ k ≤ depth(σ)}) ∪ {σ′ σ p : σ′ ∈ OBS +}
= (V ∪ {σ′ σ p : σ′ ∈ OBS +}) \ {JS σ[k:] p : 1 ≤ k ≤ depth(σ)}
= (V ∪ α⇒) \ JS σ[1:] p⇐,

hence the result.

Therefore all equivalences are valid.

47

Chapter 2. A simple dynamic epistemic logic based on observation

Lemma 2.4. Suppose α and β are atoms such that α⇒I β and α 6= β:
then α = JS σ p with p a propositional variable. Then we have the follow-
ing program equivalences:

+α; +β ≡ +β; +α ≡ +α (+⇒+)
−α;−β ≡ −β;−α ≡ −β (−⇒−)

−α; +β ≡ +β;−α (−⇒+)

−β; +α ≡

{
+α if α = JS p

+α;−JS σ[1:] p otherwise
(−⇐+)

Proof. For every equivalence, take a valuation V ∈ 2ATM and suppose
we execute the sequence of assignments from V . We assume that α is
not introspectively valid (otherwise −α fails and the equivalences are
trivially valid). Like for the previous proof, we use definitions of Sec-
tion 2.2.2.

• (+⇒+). Since α⇒I β, by Proposition 2.4, we have β⇒ ⊆ α⇒.
Hence (V ∪ α⇒) ∪ β⇒ = (V ∪ β⇒) ∪ α⇒ = V ∪ α⇒.

• (−⇒−). Since α⇒I β, by Proposition 2.4, we have α⇐ ⊆ β⇐.
Hence (V \ α⇐) \ β⇐ = (V \ β⇐) \ α⇐ = V \ β⇐.

• (−⇒+). To prove that (V \ α⇐) ∪ β⇒ = (V ∪ β⇒) \ α⇐, we prove
that, when α⇒I β while α 6= β, α⇐ ∩ β⇒ = ∅. Suppose there exists
an atom γ such that γ ∈ α⇐ and γ ∈ β⇒, i.e., γ⇒I α and β⇒I γ.

Since α⇒I β and by Proposition 2.4, the former implies that γ⇒I β.
With the latter and by Proposition 2.3, it implies that γ = β.

On the other hand, again since α⇒I β and by Proposition 2.4, the
latter implies α⇒I γ. With the latter and by Proposition 2.3, it
implies that α = γ.

Hence both hypothesis together imply that α = β, which contra-
dicts our hypothesis. Therefore α⇐ ∩ β⇒ = ∅ and (V \ α⇐) ∪ β⇒ =
(V ∪ β⇒) \ α⇐.

• (−⇐+). We examine both cases:

– Suppose α = JS p. Then α⇒ = {σ p : σ ∈ OBS +}, i.e., any
sequence of visibility operators of depth at least 1, followed
by p. Since α⇒I β, β is of the form σ p with σ ∈ OBS +, that is,
either of the form Si σ

′ p or of the form JS σ′ p with σ′ ∈ OBS ∗.
In both cases, each cause of β is a consequence of α: β⇐ ⊆ α⇒.
Hence (V \ β⇐) ∪ α⇒ = V ∪ α⇒.

48

2.3. Axiomatization

– Now suppose α = JS σ p with σ ∈ OBS +. Then α⇒ = {σ′ σ p :
σ′ ∈ OBS +}. As a consequence of α, β is either of the form
Si σ

′′ σ p or JS σ′′ σ p with σ′′ ∈ OBS ∗.
In the first case, β⇐ = {JS σ′′[k:]σ p : 0 ≤ k ≤ depth(σ′′)} ∪
{JS σ[k:] p : 0 ≤ k ≤ depth(σ)} ∪ {Si σ′′ σ p}. The first and last
parts are included in α⇒; the second part only intersects with
α⇒ for k = 0.
In the second case, β⇐ = {JS σ′′[k:]σ p : 0 ≤ k ≤ depth(σ′′)} ∪
{JS σ[k:] p : 0 ≤ k ≤ depth(σ)}. Almost like in the previous
case, the first part is included in α⇒; the second part only
intersects with α⇒ for k = 0.
Intuitively, removing causes of β then adding consequences of
α is like adding consequences of α then removing all causes
of β but the ones included in α⇒:

(V \ β⇐) ∪ α⇒

= (V ∪ {σ′ σ p : σ′ ∈ OBS +}) \ {JS σ[k:] p : 1 ≤ k ≤ depth(σ)}
= (V ∪ α⇒) \ JS σ[1:] p⇐,

hence the result.

Therefore all equivalences are valid.

Lemma 2.5. We have the following program equivalences, where α and
β are atoms such that α 6⇒I β and β 6⇒I α:

+α; +β ≡ +β; +α (+6⇒+)
−α;−β ≡ −β;−α (−6⇒−)
−α; +β ≡ +β;−α (−6⇒+)

Proof. For every equivalence, take a valuation V ∈ 2ATM and suppose
we execute the sequence of assignments from V . We assume that α is
not introspectively valid (otherwise −α fails and the equivalences are
trivially valid).

• (+ 6⇒+). Obvious: (V ∪ α⇒) ∪ β⇒ = (V ∪ β⇒) ∪ α⇒ whatever α⇒

and β⇒.

• (−6⇒−). Obvious again: (V \ α⇐) \ β⇐ = (V \ β⇐) \ α⇐ whatever
α⇐ and β⇐.

• (−6⇒+). Since α 6⇒I β and β 6⇒I α, we know by Proposition 2.5 that
α⇐ ∩ β⇒ = ∅. Therefore (V \ α⇐) ∪ β⇒ = (V ∪ β⇒) \ α⇐.

49

Chapter 2. A simple dynamic epistemic logic based on observation

Proposition 2.11. The following formulas are plainly valid, where α
and β are atoms:

[+α]β ↔

{
> if α⇒I β

β otherwise
(Red+α)

[−α]β ↔

> if α is valid in INTR

⊥ if α is not valid in INTR and β⇒I α

β otherwise
(Red−α)

[+α]¬ϕ↔ ¬[+α]ϕ (Red+α,¬)

[−α]¬ϕ↔

{
> if α is valid in INTR

¬[−α]ϕ otherwise
(Red−α,¬)

[+α](ϕ ∧ ϕ′)↔ [+α]ϕ ∧ [+α]ϕ′ (Red+α,∧)
[−α](ϕ ∧ ϕ′)↔ [−α]ϕ ∧ [−α]ϕ′ (Red−α,∧)

[π;π′]ϕ↔ [π][π′]ϕ (Red ;)
[π t π′]ϕ↔ [π]ϕ ∧ [π′]ϕ (Redt)

[π∗]ϕ↔ [π≤22|ATM (π)|
]ϕ (Red∗)

[ϕ?]ϕ′ ↔ ϕ→ ϕ′ (Red?)

Proof. For each validity, consider an arbitrary valuation V ∈ 2ATM .
Some proofs are skipped due to their similarity with those of PDL [Fis-
cher and Ladner, 1979] or DL-PA [Balbiani et al., 2013b].

• (Red+α). This is an extension of the corresponding validity of DL-
PA for propositional variables:

[+p]q ↔

{
> if p = q

q otherwise

to our atoms. When α is put to true, all of its introspective conse-
quences also are, hence the condition α⇒I β replacing p = q.

• (Red−α). This is again an extension of a DL-PA validity:

[−p]q ↔

{
⊥ if p = q

q otherwise

to atoms. Here we need to deal again with introspective conse-
quences, hence β⇒I α instead of p = q, and also with introspec-
tively valid atoms: trying to remove an atom valid in INTR will
lead to a failure of the program (and thus to the formula being
true).

50

2.3. Axiomatization

• (Red+α,¬). Already true in DL-PA, this is due to the program +α
always succeeding and being deterministic.

• (Red−α,¬). Provided that α is not valid in INTR, the program −α
always succeeds and is deterministic. If α is valid in INTR, try-
ing to remove it will lead to a failure of the program (no related
valuations).

• Proofs for (Red+α,∧), (Red−α,∧), (Red ;), (Redt) and (Red?) are stan-
dard.

• (Red∗).We establish that the program π∗ actually leads to at most
22|ATM (π)| different valuations, and that it implies that it is suffi-
cient to repeat π∗ at most 22|ATM (π)| times.

Like in DL-PA, each execution of a DEL-PAO program π∗ consists
in a sequence of assignments τ such that ATM (τ) ⊆ ATM (π∗) =
ATM (π).

Let us take such a sequence τ . Using axioms (−=+), (−⇒+),
(−⇐+) and (−6⇒+) of lemmas 2.3, 2.4 and 2.5, we can transform
τ into a sequence τ ′ of the form +α1; . . . ; +αp;−β1; . . . ;−βq. These
exchanges may create new atoms when applying (−=+) or (−⇐+);
let us write them αR for a given atom α. Formally:

αR =

{
JS σ p if α = Si σ p with σ ∈ OBS ∗

JS σ[1:] p if α = JS σ p with σ ∈ OBS +.

Note that αR⇒I α.

Then we can transform τ ′ into another sequence τ ′′ of the form
+α1; . . . ; +αp′ ;−β1; . . . ;−βq′ , where the ordering of positive assign-
ments as well as the ordering of negative assignments does not
matter and where p′, q′ ≤ |ATM (π)|, using axioms (+=+), (−=−),
(+⇒+), (−⇒−), (+6⇒+) and (−6⇒−) of lemmas 2.3, 2.4 and 2.5.
These transformations only decrease the number of atoms, remov-
ing causes or consequences, but do not add new atoms. Since
αR⇒I α, at most one of them will appear positively and at most
one of them will appear negatively in the final transformation,
hence the result p′, q′ ≤ |ATM (π)|.

This means that for any sequence of assignments of atoms from a
set ATM (π), there exists an equivalent sequence of assignments
composed of at most |ATM (π)| positive assignments, then at most
|ATM (π)| negative assignments, in which the ordering does not
matter. There exist at most 2|ATM (π)| such sequences of positive

51

Chapter 2. A simple dynamic epistemic logic based on observation

assignments, and at most 2|ATM (π)| such sequences of negative as-
signments, hence at most 2|ATM (π)| × 2|ATM (π)| = 22|ATM (π)| differ-
ent, in the sense that they are not equivalent, sequences of assign-
ments of atoms from ATM (π). This implies that the program π∗

can lead to at most 22|ATM (π)| different valuations.

Now to prove π∗ ≡ π≤22|ATM (π)| , if suffices to prove that there is a
k ≤ 22|ATM (π)| such that π≤k+1 ≡ π≤k. We proceed by contradiction.
Suppose there is no k ≤ 22|ATM (π)| such that π≤k+1 ≡ π≤k. So there
is a valuation V and a chain of strict inclusions

Rπ≤0(V) ⊂ Rπ≤1(V) ⊂ . . . ⊂ R
π≤22|ATM (π)|+1(V)

where Rπ(V) = {V ′ : V RπV
′}. In other words, there is a sequence

of valuations V1, . . ., V22|ATM (π)|+1 such that Vk /∈ Rπ≤k−1(V) and
Vk ∈ Rπ≤k(V) for every k ≤ 22|ATM (π)|+ 1. Observe that these valu-
ations are pairwise different (if k 6= ` then Vk 6= V`) and that all of
them are contained inRπ∗(V). However, we have seen there can be
at most 22|ATM (π)| such valuations, so we end up in a contradiction.

Therefore there is a k ≤ 22|ATM (π)| such that π≤k+1 ≡ π≤k. If fol-
lows that π∗ ≡ π≤k and thus that π∗ ≡ π≤22|ATM (π)| (by the definition
of π≤k).

Therefore the given formulas are plainly valid.

2.3.3 Soundness and completeness

The above equivalences can be applied anywhere in a formula because
the inference rule of replacement of equivalents preserves validity.

Proposition 2.12. Let ϕ′ be obtained from ϕ by replacing some occur-
rence of ψ in ϕ by ψ′. If ψ ↔ ψ′ is plainly valid then ϕ ↔ ϕ′ is plainly
valid.

Proof. This is due to the fact that the following rules of inference for Ki,
CK and [π]:

ϕ↔ ϕ′

Kiϕ↔ Kiϕ
′

ϕ↔ ϕ′

CKϕ↔ CKϕ′
ϕ↔ ϕ′

[π]ϕ↔ [π]ϕ′

all preserve plain validity.

Theorem 2.1. For every DEL-PAO formula ϕ there exists a formula with-
out modal operators ϕ′ such that ϕ↔ ϕ′ is plainly valid.

Proof. We provide a procedure to remove modal operators.
Procedure 2.1. While there is a modal operator in ϕ:

52

2.3. Axiomatization

1. if there is a sub-formula Kiϕ
′ such that ϕ′ does not contain modal

operators, put ϕ′ in conjunctive normal form and eliminate Ki by
applying equivalences (RedK,∧), (RedK,∨), (RedK,α) and (RedK,¬α) of
Proposition 2.10;

2. if there is a sub-formula CKϕ′ such that ϕ′ does not contain
modal operators, put ϕ′ in conjunctive normal form and eliminate
CK by applying equivalences (RedCK ,∧), (RedCK ,∨), (RedCK ,α) and
(RedCK ,¬α) of Proposition 2.10;

3. if there is a sub-formula [π]ϕ′ such that ϕ′ does not contain
modal operators, eliminate [π] by applying equivalences of Propo-
sition 2.11.

So by iterating elimination of innermost modal operators we obtain
a formula without modal operators. These transformations are possible
thanks to the rule of replacement of equivalents that preserves plain
validity.

Proposition 2.13. The following formulas are valid in INTR, where i
is an agent and α is an atom:

Si Si α (VisC1)
JS JS α (VisC2)
JS Si Si α (VisC3)
JS α→ Si α (VisC4)
JS α→ JS Si α (VisC5)

Proof. These formulas are the syntactical counterparts of the five con-
straints (C1)-(C5) of introspective valuations.

Let us call Tvis the collection of the above formulas, i.e.:

Tvis = {Si Si α : i ∈ Agt , α ∈ ATM } ∪ {JS JS α : α ∈ ATM }
∪ {JS Si Si α : i ∈ Agt , α ∈ ATM } ∪ {JS α→ Si α : i ∈ Agt , α ∈ ATM }
∪ {JS α→ JS Si α : i ∈ Agt , α ∈ ATM }.

Proposition 2.14. For ϕ without modal operators, ϕ is valid in INTR
if and only if Tvis |=CPL ϕ, where |=CPL is logical consequence in classical
propositional logic.

Proof. The theory Tvis describes the constraints defining the set of in-
trospective valuations INTR.

Proposition 2.15. For formulas ϕ without modal operators, `DEL-PAO ϕ
if and only if Tvis `CPL ϕ.

53

Chapter 2. A simple dynamic epistemic logic based on observation

Proof. For the left-to-right direction, first, if ϕ is DEL-PAO-provable then
ϕ is valid in INTR, since our axioms are sound and rules of inference
preserve plain validity.

Moreover, if ϕ is valid in INTR then ϕ is CPL-valid in the Tvis models.
This is trivial because the models are isomorphic. (It is actually an
equivalence.)

Then, if ϕ is CPL-valid in the Tvis models then ϕ is derivable from
Tvis in CPL, by completeness of classical propositional logic. (It is again
actually an equivalence.)

Thus, if ϕ is DEL-PAO-provable then ϕ is derivable from Tvis in CPL.

For the right-to-left direction, if ϕ is derivable from Tvis in CPL then
ϕ is DEL-PAO-provable is obviously true because the axiomatics of DEL-
PAO contains the elements of Tvis as schemas.

The axiomatization of DEL-PAO is given by:

• the axioms of CPL (Classical Propositional Logic);

• the reduction axioms for epistemic operators given in Proposi-
tion 2.10;

• the reduction axioms for dynamic operators given in Proposi-
tion 2.11;

• the introspection axioms given in Proposition 2.13;

• the rule of Modus Ponens and the rules of inference for Ki, CK,
and [π]:

ϕ↔ ϕ′

Kiϕ↔ Kiϕ
′

ϕ↔ ϕ′

CKϕ↔ CKϕ′
ϕ↔ ϕ′

[π]ϕ↔ [π]ϕ′

Theorem 2.2. The axiomatization of DEL-PAO is sound and complete
w.r.t. the set of introspective valuations.

Proof. Let ϕ be a DEL-PAO formula. Let ϕ′ be its reduction to a boolean
formula.

To prove soundness, suppose ϕ is a theorem of DEL-PAO. By Theo-
rem 2.1, ϕ′ is a theorem of DEL-PAO, too. By Proposition 2.15 we have
Tvis `CPL ϕ

′. Then Tvis |=CPL ϕ
′ by soundness of classical propositional

logic. Hence ϕ′ is valid in INTR by Proposition 2.14. Finally, ϕ is valid
in INTR because all the equivalences used in Theorem 2.1 are valid in
INTR.

The completeness proof follows the lines of the soundness proof in re-
verse order, resorting to completeness of classical logic instead of sound-
ness.

54

2.4. Complexity of model checking

2.4 Complexity of model checking

Given an introspective valuation V and a formula ϕ, we are interested
in deciding whether V |= ϕ. An issue here is that introspective valu-
ations are always infinite. We show that a finite number of atoms are
actually necessary to interpret a formula ϕ, even when it contains epis-
temic operators. These operators can be reduced to programs if enough
atoms are involved in the valuation.4

2.4.1 From infinite to finite models

The valuations that we are interested in DEL-PAO, i.e., the introspective
valuations, are always infinite. However, the model checking problem
must be defined on finite models. To this end, we define a notion of
“introspective enough” valuations.

A valuation V is introspective w.r.t. a set of atoms A if for every atom
α ∈ A:

1. if α is valid in INTR then α ∈ V ;

2. if there exists β ∈ V such that β⇒I α then α ∈ V ;

3. if there exists β /∈ V such that α⇒I β then α /∈ V .

Observe that if A is finite, given an introspective valuation V , it is
always possible to find a finite valuation which is introspective w.r.t. A,
the simplest one being V ∩A. Indeed, since V is introspective:

1. every introspectively valid atom belongs to V , thus every intro-
spectively valid atom from A belongs to V ∩A;

2. for every β ∈ V , every introspective consequence of β is in V , thus
every introspective consequence of β from A is in V ∩A;

3. for every β /∈ V , no introspective cause of β is in V , thus no intro-
spective cause of β is in V ∩A.

Obviously, if V is introspective w.r.t. A, then it is introspective w.r.t.
B if B ⊆ A. A “fully” introspective valuation V ∈ INTR is introspective
w.r.t. ATM ; therefore it is also introspective w.r.t. any subset of atoms.

4 This section was expanded compared to [Herzig et al., 2015] with a more precise
definition of the problem.

55

Chapter 2. A simple dynamic epistemic logic based on observation

2.4.2 Simulating epistemic operators with programs

Let us define the following programs:

varyIfNotSeen(i, α) = if ¬Si α then (+α t −α)

varyIfNotSeen(Agt , α) = if ¬JS α then (+α t −α)

As their names suggest, varyIfNotSeen(i, α) checks whether i sees
α, and non-deterministically varies the truth value of α otherwise;
varyIfNotSeen(Agt , α) behaves similarly for joint visibility. We extend
them to a set of atoms A = {α1, . . . , αm}:

varyIfNotSeen(i, A) = varyIfNotSeen(i, α1); . . . ; varyIfNotSeen(i, αm)

varyIfNotSeen(Agt , A) = varyIfNotSeen(Agt , α1); . . . ; varyIfNotSeen(Agt , αm)

where we suppose that both programs are skip if A is empty.
We do not impose any ordering on sub-programs; however, one could

argue that such ordering is important. For example, suppose we execute
varyIfNotSeen(i, JS p); varyIfNotSeen(i, p). The first program, if ¬Si JS p
then (+JS p t −JS p), might put JS p to true, thus making Si p true (by

introspective consequence) in the process. This may change the execu-
tion of the second program, if ¬Si p then (+p t −p), if Si p was previ-
ously false. However, note that Si JS p is introspectively valid: on intro-
spective valuations, varyIfNotSeen(i, JS p) will actually never change the
value of JS p. This can be generalized.

Lemma 2.6. Let V be a valuation, i an agent and α and β two different
atoms. Then:

1. if V is introspective w.r.t. {Si β}, then for every valuation V1 such
that V RvaryIfNotSeen(i,β)V1, we have V |= Si α if and only if V1 |= Si α;

2. if V is introspective w.r.t. {JS α, JS β}, then for every valuation V2

such that V RvaryIfNotSeen(Agt ,β)V2, we have V |= JS α if and only if
V2 |= JS α.

Proof. We detail both items, since the proof for joint visibility is slightly
different from the one for individual visibility here. Remember that by
applying the programs +α and −α to V we respectively obtain V+α and
V−α.

1. Recall that varyIfNotSeen(i, β) = if ¬Si β then (+β t −β). We dis-
tinguish two cases.

• Suppose Si β ∈ V . Then the program is equivalent to skip and
thus V = V1, making the result obvious.

56

2.4. Complexity of model checking

• Now suppose Si β /∈ V . Then varyIfNotSeen(i, β) is equivalent
to +β t −β and thus V1 = V+β or V1 = V−β. Note that β
cannot be valid in INTR, otherwise Si β would also be valid
in INTR and belong to V since V is introspective w.r.t. Si β.
Thus −β cannot fail and V−β exists.
We have to prove that V |= Si α if and only if V+β |= Si α and
V |= Si α if and only if V−β |= Si α. We again split into two
cases.

– V+β |= Si α if and only if Si α ∈ V+β, i.e., Si α ∈ V or
β⇒I Si α. Recall that Si β must not be valid in INTR.
Suppose β⇒I Si α. Thus either β = Si α and Si β = Si Si α
which is valid in INTR, or β is of the form JS β′ and Si β =
Si JS β′ which is also valid in INTR. This implies that
β 6⇒I Si α. Therefore V+β |= Si α is equivalent to Si α ∈ V .

– V−β |= Si α if and only if Si α ∈ V−β, i.e., Si α ∈ V
and Si α 6⇒I β. This time suppose Si α⇒I β. Then since
the only introspective consequence of Si α is itself, Si β =
Si Si α, which is introspectively valid. This is impossible
since Si β /∈ V . This implies that Si α 6⇒I β. Therefore
V−β |= Si α is equivalent to Si α ∈ V .

In all cases, V |= Si α if and only if V1 |= Si α for every V1 such that
V RvaryIfNotSeen(i,β)V1.

2. For the second case, remember that varyIfNotSeen(Agt , β) = if ¬JS β
then (+β t −β).

• Suppose JS β ∈ V , then again the result is obvious.
• Now suppose JS β /∈ V . This time we prove V |= JS α if and

only if V+β |= JS α and V |= JS α if and only if V−β |= JS α.
The latter exists because β is not valid in INTR (otherwise
JS β would belong to V since V is introspective w.r.t. JS β).

– The first case is analogous to the one for individual vis-
ibility: β⇒I JS α implies that either β = JS α or β is of
the form JS β′. In both cases, JS β is introspectively valid,
which leads to a contradiction. Therefore V+β |= JS α if
and only if V |= JS α.

– The second case is trickier. We have V−β |= JS α if and
only if JS α ∈ V−β, i.e., JS α ∈ V and JS α 6⇒I β.
Suppose V−β |= JS α. Then obviously JS α ∈ V .
Now suppose V−β |= ¬JS α. Then JS α /∈ V or JS α⇒I β.
The latter implies that β is of the form σ α, with σ ∈
OBS +. Hence JS α⇒I JS β. Since we assumed that JS β /∈
V and because V is introspective w.r.t. JS α, we get JS α /∈

57

Chapter 2. A simple dynamic epistemic logic based on observation

V . Thus JS α⇒I β implies that JS α /∈ V , that is, V−β |=
¬JS α implies that JS α /∈ V .
Therefore V−β |= JS α if and only if V |= JS α.

In all cases, V |= JS α if and only if V2 |= JS α for every V2 such
that V RvaryIfNotSeen(i,β)V2.

Therefore both items are true.

Proposition 2.16. Let V be a valuation, i an agent and α and β two
different atoms. Then:

1. if V is introspective w.r.t. {Si α, Si β}, then for every val-
uation V1, V RvaryIfNotSeen(i,α);varyIfNotSeen(i,β)V1 if and only if
V RvaryIfNotSeen(i,β);varyIfNotSeen(i,α)V1;

2. if V is introspective w.r.t. {JS α, JS β}, then for every val-
uation V2, V RvaryIfNotSeen(Agt ,α);varyIfNotSeen(Agt ,β)V2 if and only if
V RvaryIfNotSeen(Agt ,β);varyIfNotSeen(Agt ,α)V2.

Proof. We only detail the proof of the first item since the proof for the
second is analogous.

Recall that varyIfNotSeen(i, α) = if ¬Si α then (+α t −α). We distin-
guish three cases.

• Suppose Si α ∈ V . Then varyIfNotSeen(i, α) is reduced to skip and
V RvaryIfNotSeen(i,α);varyIfNotSeen(i,β)V1 if and only if V RvaryIfNotSeen(i,β)V1.
Moreover, by Lemma 2.6, since V is introspective w.r.t. Si β, the
value of Si α is not modified by the execution of varyIfNotSeen(i, β).
Therefore we also have V RvaryIfNotSeen(i,β);varyIfNotSeen(i,α)V1 if and only
if V RvaryIfNotSeen(i,β)V1, hence the result.

• Now suppose Si β ∈ V . The reasoning is similar and both sides
are reduced to varyIfNotSeen(i, α) due to V being introspective w.r.t.
Si α.

• Finally, suppose Si α /∈ V and Si β /∈ V . Again by Lemma 2.6,
since V is introspective w.r.t. Si α and Si β, the values of Si α and
Si β are not modified by varyIfNotSeen(i, β) and varyIfNotSeen(i, α).
This implies that V RvaryIfNotSeen(i,α);varyIfNotSeen(i,β)V1 if and only if
V R(+αt−α);(+βt−β)V1, and V RvaryIfNotSeen(i,β);varyIfNotSeen(i,α)V1 if and
only if V R(+βt−β);(+αt−α)V1. Using distributivity properties, the
first program becomes (+α; +β) t (+α;−β) t (−α; +β) t (−α;−β)
and the second (+β; +α)t(+β;−α)t(−β; +α)t(−β;−α). We prove
that these two are equivalent by examining equivalences between
sub-programs. Observe that since Si α /∈ V and Si β /∈ V , and
again because V is introspective w.r.t. Si α and Si β, α and β are
not introspectively valid, thus −α and −β cannot fail.

58

2.4. Complexity of model checking

1. We have seen with lemmas 2.4 and 2.5 that +α; +β ≡ +β; +α.

2. If α⇒I β, and since α and β are different, then α is of the
form JS α′. Thus Si α = Si JS α′, which is introspectively
valid. This leads to a contradiction with our hypothesis that
Si α /∈ V since V is introspective w.r.t. Si α. Therefore α 6⇒I β.
Similarly, we have β 6⇒I α. By Lemma 2.5, we know that in
this case, +α;−β ≡ −β; +α.

3. Similarly, −α; +β ≡ +β;−α by Lemma 2.5.

4. We have seen with lemmas 2.4 and 2.5 that −α;−β ≡ −β;−α.

Therefore (+α; +β) t (+α;−β) t (−α; +β) t (−α;−β) is equivalent
to (+β; +α) t (+β;−α) t (−β; +α) t (−β;−α).

In all cases, we have that V RvaryIfNotSeen(i,α);varyIfNotSeen(i,β)V1 if and only
if V RvaryIfNotSeen(i,β);varyIfNotSeen(i,α)V1. In the general case, the ordering
of sub-programs in varyIfNotSeen(i, A) is irrelevant whenever V is intro-
spective w.r.t. {Si α : α ∈ A}.

The programs varyIfNotSeen(i, A) and varyIfNotSeen(Agt , A) will simu-
late the behaviour of Ki and CK .

Proposition 2.17. Let V be a valuation, i an agent and ϕ a formula
without epistemic operators. Then

1. if V is introspective w.r.t. {Si α : α ∈ ATM (ϕ)} ∪ ATM (ϕ), then
V |= Kiϕ↔ [varyIfNotSeen(i,ATM (ϕ))]ϕ;

2. if V is introspective w.r.t. {JS α : α ∈ ATM (ϕ)} ∪ ATM (ϕ), then
V |= CKϕ↔ [varyIfNotSeen(Agt ,ATM (ϕ))]ϕ.

Proof. Again we only describe the case of individual knowledge; the
proof for common knowledge is analogous.

We are going to compare relations associated to the modalities Ki

and [varyIfNotSeen(i,ATM (ϕ))], i.e., the valuations related with V by ∼i
and by RvaryIfNotSeen(i,ATM (ϕ)).

First of all, since ϕ does not contain epistemic operators, remember
that by Proposition 2.9, only atoms from ATM (ϕ) are important when
evaluating ϕ; the other atoms may vary without influencing its truth
value. Therefore we will only take into account these atoms when de-
scribing relations.

59

Chapter 2. A simple dynamic epistemic logic based on observation

The definition of ∼i, restricted to atoms from ϕ, goes as follows:

for every α ∈ ATM (ϕ),

if Si α ∈ V, then
for every V1 such that V ∼i V1, V (α) = V1(α) and (2.5)

if Si α /∈ V, then
there is V1 such that V ∼i V1 and α ∈ V1 and (2.6)
there is V1 such that V ∼i V1 and α /∈ V1. (2.7)

On the other hand, the relation RvaryIfNotSeen(i,ATM (ϕ)) is slightly more
complicated. Remember that by Proposition 2.16, the ordering of sub-
programs in varyIfNotSeen(i,ATM (ϕ)) does not matter since V is intro-
spective w.r.t. {Si α : α ∈ ATM (ϕ)}. In other words, each sub-program
varyIfNotSeen(i, α) will have the same behaviour whenever it is executed.
In particular, we have seen that truth values of conditions stay the
same, and therefore are identical to the ones of the initial state.

Remember that varyIfNotSeen(i, α) = if ¬Si α then (+α t −α). The
program +α adds α and all its introspective consequences to the cur-
rent valuation, while −α removes α and all its introspective causes. In
other words, each α ∈ ATM (ϕ), if not seen, may vary, but its causes or
consequences may also vary. Let us abbreviate varyIfNotSeen(i,ATM (ϕ))
by vins. We can describe the behaviour of the program as follows:

for every α ∈ ATM (ϕ),

if Si α ∈ V, then
if there exists β ∈ ATM (ϕ) such that Si β /∈ V and β⇒I α,

then there is V2 such that V RvinsV2 and α ∈ V2 and (2.8)
if there exists β ∈ ATM (ϕ) such that Si β /∈ V and α⇒I β,

then there is V2 such that V RvinsV2 and α /∈ V2 and (2.9)
there is V2 such that V RvinsV2 and V (α) = V2(α) and (2.10)

if Si α /∈ V, then
there is V2 such that V RvinsV2 and α ∈ V2 and (2.11)
there is V2 such that V RvinsV2 and α /∈ V2. (2.12)

In words, if α is seen by agent i, it will not be modified “directly” by the
program. Indeed, if Si α is true the sub-program varyIfNotSeen(i, α) will
be equivalent to skip. However, another atom β appearing in ϕ and not
seen by i might vary α, making it true with +β if α is a consequence
of β (case (2.8)) or false with −β if β is a consequence of α (case (2.9)).
Finally, there always exists a state where α was not modified, either
because there is no β or because it was put to its initial value (case
(2.10)). Otherwise, when α is not seen by i, it is directly modified by the

60

2.4. Complexity of model checking

program (cases (2.11) and (2.12)). Observe that since V is introspective
w.r.t. {Si α : α ∈ ATM (ϕ)}, α is not valid in INTR, otherwise Si α would
belong to V . Hence it can be removed safely.

So it seems that atoms not seen or not in ϕ may vary while they
should not. However, we are going to see that this does not happen.
Take an arbitrary atom α such that α ∈ ATM (ϕ) and Si α ∈ V , and an
arbitrary β such that β ∈ ATM (ϕ) and Si β /∈ V . By definition, β is
different from α.

• First, we consider case (2.8): suppose β⇒I α. Since they are dif-
ferent, β must be of the form JS β′. Thus Si β = Si JS β′, which
is introspectively valid. Therefore Si β belongs to V because V is
introspective w.r.t. {Si α : α ∈ ATM (ϕ)}: we get a contradiction.

• Now for case (2.9): suppose α⇒I β. This time, α is of the form
JS α′, and β = σ α′, with σ ∈ OBS +. Thus Si β is also an introspec-
tive consequence of α. Since Si β /∈ V , then α /∈ V , otherwise V
would not be introspective w.r.t. ATM (ϕ). Thus α /∈ V2 is the same
as V (α) = V2(α).

In the end, case (2.8) cannot happen and case (2.9) reduces to case (2.10).
We obtain:

for every α ∈ ATM (ϕ),

if Si α ∈ V, then
for every V2 such that V RvinsV2, V (α) = V2(α) and (2.10’)

if Si α /∈ V, then
there is V2 such that V RvinsV2 and α ∈ V2 and (2.11)
there is V2 such that V RvinsV2 and α /∈ V2. (2.12)

Hence∼i = RvaryIfNotSeen(i,ATM (ϕ)) on valuations introspective w.r.t. {Si α :
α ∈ ATM (ϕ)}∪ATM (ϕ) for atoms that are relevant to the truth value of
ϕ. Therefore V |= Kiϕ ↔ [varyIfNotSeen(i,ATM (ϕ))]ϕ if V is introspec-
tive w.r.t. {Si α : α ∈ ATM (ϕ)} ∪ATM (ϕ).

Proposition 2.17 can be turned into a procedure eliminating epis-
temic operators: it suffices to iterate the application of the equivalences,
starting with the innermost operators. These transformations are pos-
sible thanks to the rule of replacement of equivalents that preserves
plain validity (see Proposition 2.12).
Procedure 2.2. While there is an epistemic operator in ϕ:

1. if there is a sub-formula Kiϕ
′ such that ϕ′ does not contain epis-

temic operators, replace Kiϕ
′ by [varyIfNotSeen(i,ATM (ϕ))]ϕ′;

2. if there is a sub-formula CKϕ′ such that ϕ′ does not contain epis-
temic operators, replace CKϕ′ by [varyIfNotSeen(Agt ,ATM (ϕ))]ϕ.

61

Chapter 2. A simple dynamic epistemic logic based on observation

2.4.3 Relevant atoms

We have seen in Proposition 2.17 that to reduce epistemic operators
to programs, we needed some specific atoms to be true or false in the
current world. In this section, we extend the definition of ATM (ϕ) to
include such atoms. We note this new set of atoms RATM (ϕ), the “rele-
vant atoms” of ϕ. Formally:

RATM (Kiϕ) = RATM (ϕ) ∪ {Si α : α ∈ RATM (ϕ)}
RATM (CKϕ) = RATM (ϕ) ∪ {JS α : α ∈ RATM (ϕ)}

and equal to ATM (ϕ) otherwise. So RATM (ϕ) includes ATM (ϕ). For
instance:

ATM (q ∧ CKKip) = {q, p}
RATM (q ∧ CKKip) = {q, p, JS p, Si p, JS Si p}

Moreover, for a formula ϕ without epistemic operators, RATM (ϕ) =
ATM (ϕ). Note that while RATM (ϕ) is finite, its cardinality can be ex-
ponential in the length (the number of symbols) of ϕ: for example, the
cardinality of RATM (Ki1 . . .Kimp) is in 2m.

These relevant atoms of a formula ϕ are exactly the atoms appear-
ing in the reduction of ϕ given by Procedure 2.2: starting with the in-
nermost, each replacement of Ki or CK by [varyIfNotSeen(i,ATM (ϕ))] or
[varyIfNotSeen(Agt ,ATM (ϕ))] makes Si α or JS α appear, for every α in
the formula following the operator. Moreover, by Proposition 2.17, this
reduction is equivalent to the original formula ϕ on any valuation intro-
spective w.r.t. RATM (ϕ).

Proposition 2.18. Let ϕ be a formula. Let V , V ′ ∈ 2ATM such that
V and V ′ are introspective w.r.t. RATM (ϕ) and V =RATM (ϕ) V

′. Then
V |= ϕ if and only if V ′ |= ϕ.

Proof. Let (ϕ)R be the formula obtained by applying Procedure 2.2 to ϕ.
We know that ϕ is equivalent to (ϕ)R on valuations introspective w.r.t.
RATM (ϕ) and that RATM (ϕ) = ATM ((ϕ)R).

We have:

V |= ϕ

⇔ V |= (ϕ)R since V is introspective w.r.t. RATM (ϕ),

⇔ V ′ |= (ϕ)R by Proposition 2.9, since V =ATM ((ϕ)R) V
′,

⇔ V ′ |= ϕ since V ′ is introspective w.r.t. RATM (ϕ).

Therefore V |= ϕ if and only if V ′ |= ϕ.

62

2.4. Complexity of model checking

Proposition 2.18 implies that if V ∈ INTR, then V |= ϕ if and only if
V ∩ RATM (ϕ) |= ϕ for any ϕ, since we have seen that V ∩ RATM (ϕ) is
introspective w.r.t. RATM (ϕ) if V is introspective.

Before finally defining the model checking problem, we give some
properties of relevant atoms that will be useful in the next chapter.

Proposition 2.19. The equivalence

Ki1 . . .Kimα↔
(∧
β∈RATM (Ki1 ...Kimα)

β
)

is plainly valid, for m ≥ 0.

Proof. We prove it by induction on m.
If m = 0, then RATM (α) = α and the equivalence is obvious.
For general m, suppose Ki1 . . .Kimα ↔

(∧
β∈RATM (Ki1 ...Kimα) β

)
is

plainly valid. Take a valuation V ∈ 2ATM and an agent `. Then:

V |= K`Ki1 . . .Kimα

⇔ V |= K`

(∧
β∈RATM (Ki1 ...Kimα)

β
)

⇔ V |=
(∧
β∈RATM (Ki1 ...Kimα)

K`β
)

⇔ V |=
(∧
β∈RATM (Ki1 ...Kimα)

(β ∧ S` β)
)

⇔ V |=
(∧
β∈RATM (Ki1 ...Kimα)

β
)
∧
(∧
β∈RATM (Ki1 ...Kimα)

S` β
)

⇔ V |=
(∧
β∈RATM (Ki1 ...Kimα)

β
)
∧
(∧
β∈{S` γ:γ∈RATM (Ki1 ...Kimα)}

β
)

⇔ V |=
(∧

β∈RATM (Ki1 ...Kimα)∪
{S` γ:γ∈RATM (Ki1 ...Kimα)}

β
)

⇔ V |=
(∧
β∈RATM (K`Ki1 ...Kimα)

β
)
,

hence the result.

We note 〈r1, . . . , rp〉 v 〈1, . . . ,m〉 for 〈r1, . . . , rp〉 a subset of {1, . . . ,m}
in the same order. For example, we have 〈1, 3, 4〉 v 〈1, 2, 3, 4, 5〉 or 〈〉 v
〈1, 2, 3, 4, 5〉 but not 〈1, 4, 3〉 v 〈1, 2, 3, 4, 5〉. The next proposition charac-
terizes the set of relevant atoms of a formula of the type Ki1 . . .Kimα.

63

Chapter 2. A simple dynamic epistemic logic based on observation

Proposition 2.20. We have, for m ≥ 0:

RATM (Ki1 . . .Kimα) = {Sir1 . . . Sirp α : 〈r1, . . . , rp〉 v 〈1, . . . ,m〉}

Proof. We prove it by induction on m.
The case where m = 0 is obvious since RATM (α) = {α} and the only

subset of 〈〉 is 〈〉.
For general m, suppose

RATM (Ki1 . . .Kimα) = {Sir1 . . . Sirp α : 〈r1, . . . , rp〉 v 〈1, . . . ,m〉}.

Then

RATM (K`Ki1 . . .Kimα)

= RATM (Ki1 . . .Kimα) ∪ {S` α′ : α′ ∈ RATM (Ki1 . . .Kimα)}
= {Sir1 . . . Sirp α : 〈r1, . . . , rp〉 v 〈1, . . . ,m〉} ∪

{S` α′ : α′ ∈ {Sir1 . . . Sirp α : 〈r1, . . . , rp〉 v 〈1, . . . ,m〉}}
= {Sir1 . . . Sirp α : 〈r1, . . . , rp〉 v 〈1, . . . ,m〉} ∪

{S` Sir1 . . . Sirp α : 〈r1, . . . , rp〉 v 〈1, . . . ,m〉}
= {Sir1 . . . Sirp α : 〈r1, . . . , rp〉 v 〈`, 1, . . . ,m〉},

hence the result.

2.4.4 The model checking problem

The model checking problem for DEL-PAO is defined as follows:

• Input: a couple 〈V ∩ RATM (ϕ), ϕ〉 where ϕ is a DEL-PAO formula
and V is an introspective valuation;

• Output: yes if V |= ϕ, no otherwise.

As seen with Proposition 2.18, if V is introspective, an eligible valu-
ation to perform model checking on is V ∩ RATM (ϕ). While RATM (ϕ)
may be exponential in the size of ϕ, we will see in Chapter 7 that this
does not impact the complexity result.

Theorem 2.3. The DEL-PAO model checking problem is PSPACE-
complete.

Proof. The model checking of DL-PA, which is a fragment of DEL-PAO
without visibility operators Si and JS was proven to be PSPACE-hard
[Balbiani et al., 2014]. This establishes the lower bound.

We will show in Chapter 7 that the problem is in PSPACE.

64

2.5. Applications

2.5 Applications
In this section we propose the Byzantine Two Generals’ problem as a
application, and a discussion on private announcements.

2.5.1 Two Generals’ problem

The Byzantine Two Generals’ problem [Akkoyunlu et al., 1975; Gray,
1978]. is an experiment illustrating the problem of coordination by com-
municating over an unreliable link, highlighting the importance of com-
mon knowledge. It goes as follows.

Two generals, leading two armies, need to coordinate an at-
tack on a fortified city; they can succeed only if they attack
at the same time. The armies are located on each side of the
city and they can only communicate by sending messengers
that can be captured. The two generals have agreed that
they will attack; however, they did not agree upon a time for
the attack. This is required; but more importantly, it is re-
quired that each general knows that the other has agreed,
and knows that the other knows he has agreed, and so on:
common knowledge of the moment of the attack is expected.

Messengers carrying acknowledgements of receipt can also be captured:
an infinite number of messages is required to reach common knowledge.

Formally, let Agt = {1, 2} be the set of agents and Prop = {ta} be the
set of variables, with ta representing the time of the attack. We define
the atom Sm1,2ta as:

Sm1,2ta =

S1 S2 S1 . . .S2︸ ︷︷ ︸
m alternations

ta if m is even

S2 S1 S2 . . .S2︸ ︷︷ ︸
m alternations

ta if m is odd

Then we define the program

sndMsgm = +S1 ta; +S2 ta; +S2
1,2ta; . . . ; +Sm1,2ta,

which formalizes the first general learning the time of the attack, then
the second general learning it, then the first learning that the second
know it, and so on until m.

Proposition 2.21. Let V0 = {α : α is valid in INTR} ∪ {ta}. We have,
for every m > 0:

V0 |= [sndMsgm]¬CK ta.

65

Chapter 2. A simple dynamic epistemic logic based on observation

Proof. V0 is introspective: it contains all introspectively valid atoms and
ta. We are not interested in the truth value of the latter; making it
initially true allows us to more succinctly write CK ta instead of CK ta ∨
CK¬ta.

To have V |= CK ta, and since ta is true, we only need JS ta. Because
JS ta is not valid in INTR, it must be added by the program sndMsgm.
Moreover, JS ta has no other introspective causes than itself, thus it
should be added explicitly by sndMsgm. However, JS ta is not present
in sndMsgm, whatever the value of m. Therefore CK ta will never be
satisfied whatever m > 0.

DEL-PAO allows us to simply model this kind of problem where we
perform private announcements of variables and visibility of variables.
We generalize this in the next section.

2.5.2 Private announcements

Public Announcement Logic PAL [Plaza, 1989] is a logic of the DEL fam-
ily, extending standard epistemic logic with an operator [ψ!], such that
[ψ!]ϕ reads “after ψ is publicly and truthfully announced, ϕ is true.”
We show in Chapter 6 how to extend DEL-PAO with public announce-
ments, and more generally, publicly executed programs. In this section
we show how to express private announcements [Baltag et al., 1998] of
certain kinds of formulas within the language of DEL-PAO.

We write i : ϕ for “ϕ is privately announced to i.” We model purely
private announcements here, i.e., no agent observes that ϕ was an-
nounced to i. Suppose we want to announce to agent i that p is true.
Then we can use the following program:

i : p! = p?; +Si p

66

2.6. Conclusion

Indeed, [i : p!]Kip is plainly valid because after the execution of p?; +Si p,
both p and Si p are true. This also works for the announcement of ¬p:

i : ¬p! = ¬p?; +Si p

and more generally for the announcement of a visibility atom or the
negation of a visibility atom, i.e., for literals:

i : α! = α?; +Si α

i : ¬α! = ¬α?; +Si α

Similarly, we can safely announce a conjunction of literals:

i : (α1 ∧ . . . ∧ αm)! = (α1 ∧ . . . ∧ αm)?; +Si α1; . . . ; +Si αm

Observe that the ordering of the αj is not important since we only add
atoms. This implies that we can also privately announce knowledge of
literals, since they can be reduced to a conjunction of atoms. Here are
some examples:

i : Kjp! = Kjp?; +Si Sj p; +Si p

i : KjK`¬q! = KjK`¬q?; +Si Sj S` q; +Si S` q; +Si Sj q; +Si q

i : CKSj α! = CKSj α?; +Si JS Sj α; +Si Sj α

In the general case, if ϕ is a sequence of epistemic operators (Ki or CK)
followed by a literal, any Si α with α ∈ RATM (ϕ) must be set to true in
order to announce ϕ to i.

Because we only modify visibilities of atoms, we cannot properly an-
nounce disjunctions in the general case. However, we can announce a
special case of disjunction: the fact of knowing whether a literal. For
example:

i : (Kjp ∨Kj¬p)! = (Kjp ∨Kj¬p)?; +Si Sj p

Observe that we add less information here than when we were announc-
ing Kjp: we do not include the visibility of i on p.

We will extensively use these kinds of announcements when mod-
elling the gossip problem in Chapter 3.

2.6 Conclusion
Using visibility atoms instead of visibility sets of propositional vari-
ables, DEL-PAO avoids the strong hypothesis of common knowledge of
visibilities that other observation-based epistemic logics make. It also
includes joint visibility atoms, that allows us to express common knowl-
edge. These atoms can be modified by assignments programs, modifying

67

Chapter 2. A simple dynamic epistemic logic based on observation

facts of the world and of knowledge of agents in a simple way. The model
checking requires reducing the infinite models to finite models contain-
ing only the relevant atoms. However, the merge of knowledge and pro-
grams comes without increasing the complexity: the model checking
problem is PSPACE-complete like in ECL-PC and DL-PA.

The logic DEL-PAO is the central contribution of this thesis and the
base of all other logics that will be presented. We have seen that it solves
the first problem of visibility-based logics that we have identified in the
introduction; we are now able to reason about higher-order knowledge.
This will be necessary in order to study the generalized gossip problem
in Chapter 3 and other epistemic planning problems in Chapter 4. As
for the second problem (distribution of knowledge operators over dis-
junctions), we will propose a solution to it in Chapter 6. Moreover, in
Chapter 5 we will see an extension of DEL-PAO with control atoms and
its application to epistemic boolean games.

68

3 How to share higher-order knowl-
edge by gossiping

There are contexts where agents have to achieve higher-order
knowledge, typically in order to coordinate some joint action.
In the original gossip problem, all secrets are shared knowl-
edge after 2(n−2) calls, but they fail to be common knowledge.
Unless everybody knows the protocol and there is a global
clock, such common knowledge cannot be attained. More mod-
estly, the agents may want to achieve second-order shared
knowledge: they may have the goal that everybody knows that
everybody knows all secrets. This chapter investigates how
such higher-order knowledge can be achieved.

The original version of the gossip problem [Akkoyunlu et al., 1975;
Hurkens, 2000] goes as follows.

There are six agents each of which knows some secret not
known to anybody else. Two agents can make a telephone
call and exchange all secrets they know. How many calls
does it take to share all secrets, i.e., how many calls have to
take place until everybody knows all secrets?

The problem can be generalized from six to arbitrary numbers of agents
n. In the literature one can find various protocols achieving the goal in
2(n−2) calls. It has been proved that they are optimal: no protocol exists
achieving the goal with less calls [Baker and Shostak, 1972; Tijdeman,
1971; Hajnal et al., 1972].

In this chapter, we are interested in a novel generalisation of the
gossip problem including higher-order knowledge: the goal is not only
that every agent knows every secret, but also that every agent knows
this, and that every agent knows this... and so on until a given depth
k. We are going to express this generalisation within the framework of
DEL-PAO. Thanks to this formalisation, we are able to formally study

69

Chapter 3. How to share higher-order knowledge by gossiping

the problem, giving a protocol that achieves the goal and proving that it
is optimal for any depth of knowledge k.

Contents
3.1 The generalised problem 71
3.2 An algorithm achieving shared knowledge 72
3.3 Calls in the language of DEL-PAO 74
3.4 Correctness . 76
3.5 Optimality . 80
3.6 Two and three agents 82
3.7 Gossiping with ignorance goals 84
3.8 Conclusion . 86

Résumé du chapitre

La version originale du problème du bavardage [Akkoyunlu et al.,
1975; Hurkens, 2000] est la suivante.

Il y a six agents, chacun connaissant un secret inconnu de
tous les autres. Deux agents peuvent s’appeler au téléphone
et d’échanger tous les secrets qu’ils connaissent. Combien
d’appels sont nécessaires pour partager tous les secrets, c’est-
à-dire, combien d’appels doivent avoir lieu pour que tout le
monde connaisse tous les secrets ?

Le problème peut être généralisé de six à un nombre arbitraire d’agents
n. Dans la littérature, il est possible de trouver différents protocoles qui
atteignent l’objectif en 2(n−2) appels. Il a été prouvé qu’ils sont opti-
maux : il n’existe aucun protocole qui atteint l’objectif en moins d’appels
[Baker and Shostak, 1972; Tijdeman, 1971; Hajnal et al., 1972].

Il existe des contextes où les agents ont besoin d’acquérir des connais-
sances d’ordre supérieur, généralement afin de coordonner une action
conjointe. Dans le problème du bavardage original, tous les secrets sont
connaissance partagée après 2(n−2) appels, mais à moins que tout le
monde connaisse le protocole et qu’il y ait une horloge globale, une
telle connaissance commune ne peut pas être atteinte. Plus modeste-
ment, nous nous intéressons à une généralisation du problème du ba-
vardage qui inclue les connaissances d’ordre supérieur : le but est non
seulement que chaque agent connaisse tous les secrets, mais aussi que
chaque agent sache cela, et que chaque agent sache cela... et ainsi de
suite jusqu’à une profondeur donnée k. Nous allons exprimer cette gé-
néralisation dans le cadre de DEL-PAO. Grâce à cette formalisation, nous

70

3.1. The generalised problem

sommes en mesure d’étudier formellement le problème, en donnant pro-
tocole qui permet d’atteindre l’objectif, et en prouvant qu’il est optimal
pour toute profondeur de connaissance k.

3.1 The generalised problem

Let Agt = {1, . . . , n} be the set of all agents. Let us denote the secret of
agent i by si: Prop = {si : i ∈ Agt}. To simplify things we suppose that
si is true.

The initial situation before the agents start gossiping is expressed
by ∧

i∈Agt

(
si ∧Kisi ∧

∧
j∈Agt ,j 6=i

(
¬Kjsi ∧ ¬Kj¬si

))
and the formula ∧

i∈Agt

Ki

(∧
j∈Agt

sj

)
expresses the goal that every agent knows every secret. Let us abbre-
viate the conjunction

∧
i∈J si of secrets of agents in J by sJ ; remember

that EKJϕ abbreviates the conjunction
∧
i∈J Kiϕ. We usually drop set

parentheses and write write EKi1,...,im and si1,...,im instead of EK{i1,...,im}
and s{i1,...,im}. Then:

• EKAgt sAgt expresses that all secrets are shared knowledge: every
agent knows every secret;

• EKAgt EKAgt sAgt expresses the goal that every agent knows that all
secrets are shared knowledge;

• EKAgt . . .EKAgt︸ ︷︷ ︸
k times

sAgt expresses that all secrets are shared knowl-

edge up to depth k ≥ 1.

We define the iteration of EKJ inductively, for m ≥ 0, by EK0
Jϕ = ϕ and

EKm+1
J ϕ = EKJEKm

J ϕ. Thus our goal is:

EKk
Agt sAgt

The result of a phone call between two agents is that their knowledge
increases. We model a call between two agents i and j by a DEL-PAO
action noted Callij . Then

[Callij]EKi,j(si ∧ sj),

71

Chapter 3. How to share higher-order knowledge by gossiping

also noted

[Callij]EKi,jsi,j ,

expresses that the result of Callij is that i and j know their secrets. When
we say that during a call the agents communicate all they know then
this not only concerns secrets, but also knowledge about secrets and
more generally higher-order knowledge. Therefore calls achieve com-
mon knowledge between the calling agents:

[Callij]EKm
i,jsi,j

is the case for arbitrary nesting m of EKi,j . Furthermore, the formula

[Calli1j1] . . . [Call
i2(n−2)

j2(n−2)
]︸ ︷︷ ︸

2(n−2) times

EKAgt sAgt

expresses that the protocol where i1 calls j1 first, then i2 calls j2, . . . ,
and finally i2(n−2) calls j2(n−2) achieves shared knowledge.

We note Gossip(k, n) the instance of the generalized gossip problem
with n ≥ 2 agents and the goal to achieve depth k ≥ 1 of shared knowl-
edge. So the original problem corresponds to the instance Gossip(1, 6).
We are going to introduce a protocol achieving shared knowledge of
depth k in (k+1)(n−2) calls, for n ≥ 4. We moreover prove that our
protocol is optimal: at least (k+1)(n−2) calls are necessary to achieve
the goal of Gossip(k, n).

3.2 An algorithm achieving shared knowledge

The following algorithm generates a sequence of calls for a given in-
stance Gossip(k, n) of the generalized gossip problem, for k ≥ 1 and
n ≥ 4. Throughout the algorithm two of the agents, which we call left
and right , will have a central, fixed role: each of the other agents only
communicates with either left or right . The n−2 remaining agents will
be numbered 0, 1, . . ., n−3.

The algorithm is made up of turns. During each turn, left and right
collect the secrets of other agents. Together with the last agent they
talked to in that turn, they thereby become what we call “semi-experts.”
A further call between complementary semi-experts turns them into full
experts. The last agents talked to, left and right , play a crucial role.
These two further semi-experts are permuted at each turn in a way
that will guarantee that the goal is reached.

72

3.2. An algorithm achieving shared knowledge

n-6

n-5

n-4

n-3

0

1

2

n-7
n-8

...

...

Turn 0

n-6

n-5

n-4

n-3

0

1

n-7
n-8

2
...

...

Turn 1

n-6

n-5

n-4

n-3

0
1

n-7

n-8

2

...

...

Turn 2

Figure 3.1: Graphical representation of the first three turns of Algo-
rithm 3.1.

Algorithm 3.1.
procedure gossip(k, n):

for t = 0..k:
agent left calls agent 0−t mod n−2;
agent left calls agent 1−t mod n−2;
...
agent left calls agent n−4−t mod n−2;
agent right calls agent n−3−t mod n−2.

In words:

• at the first turn (turn 0), agent left calls agent 0, then 1, . . . , then
n−4, and finally agent right calls agent n−3;

• at the second turn (turn 1), agent left calls agent n−3, then 0, then
4, . . . , then n−5; and finally agent right calls agent n−4;

• ... and so on.

So each turn involves n−2 calls, and overall the algorithm produces a
sequence of (k+1)(n−2) calls. In the rest of the chapter, we assume that
every index of agent is taken modulo n−2 and we omit “mod n−2.”

Figure 3.1 gives a visual representation of Algorithm 3.1: agents 0, 1,
. . ., n−3 are put on a wheel which, between each turn, rotates clockwise.
Agent left calls everyone in ascending order, except the agent at the
rightmost position of the wheel, then right calls this agent.

Theorem 3.1. The minimal number of calls needed to solve the instance
Gossip(k, n) of the generalized gossip problem, for k ≥ 1 and n ≥ 4, is
(k+1)(n−2).

The main part of the chapter is devoted to the proof of the above
theorem: we prove that the sequence of calls produced by the algorithm
is indeed a solution in Section 3.4 and that it is optimal in Section 3.5.
Our proofs will be done in the formal language of DEL-PAO.

73

Chapter 3. How to share higher-order knowledge by gossiping

3.3 Calls in the language of DEL-PAO

DEL-PAO provides a suitable framework to model calls between agents
and to reason about the evolution of their knowledge. Before the proof
of correctness of our algorithm, we show how to express calls and we
give some of their properties.

In the standard version of the gossip problem, agents only commu-
nicate their factual knowledge during a call. In order to achieve higher-
order knowledge they also have to tell what they know about others: for
shared knowledge of level k they have to exchange all their knowledge
up to depth k−1.

More formally, let the level k of intended shared knowledge be given.
Let i and j be two agents. For a given integer m, we note {Si, Sj}≤m the
set all non-empty sequences of visibility operators Si and Sj of length at
most m. For example:

{Si, Sj}≤2 = {Si, Sj , Si Si, Si Sj , Sj Si, Sj Sj}.

Then Callij is the sequential composition of programs of the form

if KiKi1 · · ·Kims ∨KjKi1 · · ·Kims

then +σ1Si1 · · ·Sim s; . . . ; +σ`Si1 · · ·Sim s

for secret s in Prop, integer m ≤ k−1, agents i1, . . . , im ∈ Agt and se-
quences {Si, Sj}≤k−m = {σ1, . . . , σ`}. (Remember that if ϕ then π ab-
breviates (ϕ?;π) t ¬ϕ?.) For example, for k = 3 the following is an
element of the sequence:

if KiK`s ∨KjK`s

then +Si S` s; +Sj S` s; +Si Si S` s; +Si Sj S` s; +Sj Si S` s; +Sj Sj S` s

That piece of program tests whether K`s is known by i or j and if so,
makes S` s visible for both i and j and i’s observation of S` s visible for
j, and vice versa. Remember that this is procedure we used in Sec-
tion 2.5.2 to model private announcements. We observe that the addi-
tions +Si Si S` s and +Sj Sj S` s are trivial because they are introspec-
tively valid.

The following properties of the program Callij and of its interaction
with the shared knowledge operator will be useful in our proofs.

First of all, the dynamic operators [Callij] and the shared knowledge
operators EKJ are normal modal operators. So in particular [Callij]ϕ ∧
[Callij]ψ ↔ [Callij](ϕ ∧ ψ) and (EKJϕ ∧ EKJψ) ↔ EKJ(ϕ ∧ ψ) are plainly
valid. Moreover, we can put coalitions together: the schema

(EKJ1ϕ ∧ EKJ2ϕ)↔ EKJ1∪J2ϕ

74

3.3. Calls in the language of DEL-PAO

is plainly valid for every J1, J2 ⊆ Agt . (To see this reduce EK according
to its definition.) Finally, calls preserve positive knowledge and produce
shared knowledge, which is a property that we state formally.

Proposition 3.1. Let s ∈ Prop and m ≥ 0. Let ϕ be of the form either
Ki1 . . .Kims or EKJ1 . . .EKJms. Then the formulas:

ϕ→ [Callij]ϕ (Prsv)

Kiϕ→ [Callij]EKk−m
i,j ϕ (Incr)

are plainly valid.

Proof. We prove each implication thanks to properties of DEL-PAO.

• (Prsv). This is due to ϕ not containing negations and calls only
making atoms true.

• (Incr). Suppose ϕ = Ki1 . . .Kims. The proof for ϕ = EKJ1 . . .EKJms
is similar since EKJ is a conjunction of Ki.

We have seen in DEL-PAO (see Proposition 2.19 on page 63) that
ϕ↔

(∧
β∈RATM (ϕ) β

)
is plainly valid. Moreover, RATM (EKm

i,jϕ) =

{σ α : α ∈ RATM (ϕ), σ ∈ {Si, Sj}≤m} by the definition of the rele-
vant atoms. Therefore we want to prove that

Kiϕ→ [Callij]
(∧
β∈{σ α:α∈RATM (ϕ),σ∈{Si,Sj}≤k−m}

β
)
.

We have:

KiKi1 . . .Kims → KiKir1
. . .Kirp s,

for every 〈r1, . . . , rp〉 v 〈1, . . . ,m〉, by axiom T of standard epis-
temic logic. Remember that 〈r1, . . . , rp〉 v 〈1, . . . ,m〉 means that
〈r1, . . . , rp〉 is a subset of 〈1, . . . ,m〉, in the same order.

Since KiKir1
. . .Kirp s obviously implies KiKir1

. . .Kirp s ∨
KjKir1

. . .Kirp s, for every subset 〈r1, . . . , rp〉 v 〈1, . . . ,m〉, we
have:

KiKi1 . . .Kims → [Callij]
(∧
β∈{σ Sir1...Sirp s:σ∈{Si,Sj}≤k−p}

β
)
,

by the definition of programs composing Callij . This means that

KiKi1 . . .Kims → [Callij]
(∧
β∈{σ Sir1...Sirp s:σ∈{Si,Sj}≤k−m}

β
)
,

75

Chapter 3. How to share higher-order knowledge by gossiping

because p ≤ m.

Since this is true for any 〈r1, . . . , rp〉 v 〈1, . . . ,m〉, we can apply
Proposition 2.20 on page 64 and we obtain

KiKi1 . . .Kims → [Callij]
(∧
β∈{σ α:α∈RATM (Ki1 ...Kims),σ∈{Si,Sj}≤k−m}

β
)
,

which is our result.

Therefore both implications are plainly valid.

With the help of the call actions, we can define the turn t of Algo-
rithm 3.1 as:

turnt = Callleft
0−t; . . . ;Call

left
n−3;Callleft

0 ; . . . ;Callleft
n−4−t;Call

right
n−3−t.

3.4 Correctness
We now prove that the algorithm returns a solution.

Let us rename the agents: Agt = {left , right , 0, . . . , n−3}. The initial
state is modelled by the valuation

V0 = {si : i ∈ Agt} ∪ {Si si : i ∈ Agt} ∪ {α : α is valid in INTR}.

So all secrets are true, each agent knows her own secret, and moreover
the introspectively valid atoms are true (so that V0 ∈ INTR). We have:

V0 |=
∧
i∈Agt

(
Kisi ∧

∧
j∈Agt ,j 6=i

¬Kjsi

)
.

An agent is an expert for depth t if her personal goal for depth t is
reached. Precisely, agent i is an expert for depth t ≥ 1 if and only if we
have:

KiEKt−1
Agt sAgt .

The dynamic modalities of DEL-PAO nicely allow us to express that
a further call would turn an agent i into an expert, i.e., that i is a semi-
expert. Indeed, two agents i and j are complementary for depth t (“semi-
experts”), noted complt(i, j), if a call between i and j would make them
both experts for depth t. More formally:

complt(i, j) = [Callij]EKi,jEKt−1
Agt sAgt .

Furthermore, two pairs of agents (i1, i2) and (j1, j2) are complementary
for depth t if and only if we have:

complt(i1, j1) ∧ complt(i1, j2) ∧ complt(i2, j1) ∧ complt(i2, j2).

76

3.4. Correctness

We will prove that at each turn, two pairs of agents are complemen-
tary: the first pair is agent left along with the last agent she called at
this turn, and the second is agent right along with the last (and only
agent) she called at this turn.

The first turn is a special case where semi-experts of depth 1 are
produced.

Lemma 3.1. We have:

V0 |= [turn0]
(
EKleft ,n−4sleft ,0,...,n−4 ∧ EKright ,n−3sright ,n−3

)
.

Proof. Let us write ij for the call between i and j. The first turn (turn
0) of Algorithm 3.1 produces the following sequence of calls:

left0, left1, . . . , left(n−4), right(n−3).

By (Incr) of Proposition 3.1 we have V0 |= [Callleft
0]EKleft ,0sleft ,0 and

therefore V0 |= [Callleft
0]Kleft sleft ,0. We do the same for the next call:

V0 |= [Callleft
0][Callleft

1]EKleft ,1sleft ,0,1

⇒ V0 |= [Callleft
0][Callleft

1]Kleft sleft ,0,1,

and so on until

V0 |= [Callleft
0][Callleft

1] . . . [Callleft
n−4]EKleft ,n−4sleft ,0,1,...,n−4.

In the same vein we also have V0 |= [Callright
n−3]EKright ,n−3sright ,n−3.

By (Prsv) of Proposition 3.1 we then obtain

V0 |= [Callleft
0] . . . [Callleft

n−4][Callright
n−3]

(
EKleft ,n−4sleft ,0,...,n−4 ∧
EKright ,n−3sright ,n−3

)
which is the same as

V0 |= [turn0]
(
EKleft ,n−4sleft ,0,...,n−4 ∧ EKright ,n−3sright ,n−3

)
,

hence the result.

We now characterize the turns after turn0.

Lemma 3.2. For t ≥ 1, we have:

V0 |= [turn0; . . . ; turnt]
(
EKleft ,n−4−tEKleft ,0−t,...,n−4−tEKt−1

Agt sAgt ∧

EKright ,n−3−tEKright ,n−3−tEKt−1
Agt sAgt

)
.

77

Chapter 3. How to share higher-order knowledge by gossiping

Proof. We prove it by induction on t. Both cases resemble the proof of
Lemma 3.1.

Base case: t = 1. The turn 1 of Algorithm 3.1 produces the following
sequence:

left(n−3), left0, left1, . . . , left(n−5), right(n−4).

By Lemma 3.1 and (Incr) of Proposition 3.1 we have

V0 |= [turn0][Callleft
n−3]EKleft ,n−3EKleft ,n−3sAgt

⇒ V0 |= [turn0][Callleft
n−3]Kleft EKleft ,n−3sAgt .

Then again by (Incr),

V0 |= [turn0][Callleft
n−3][Callleft

0]EKleft ,0EKleft ,n−3,0sAgt

⇒ V0 |= [turn0][Callleft
n−3][Callleft

0]Kleft EKleft ,n−3,0sAgt ,

and for the next call

V0 |= [turn0][Callleft
n−3][Callleft

0][Callleft
1]EKleft ,1EKleft ,n−3,0,1sAgt

⇒ V0 |= [turn0][Callleft
n−3][Callleft

0][Callleft
1]Kleft EKleft ,n−3,0,1sAgt ,

and so on until

V0 |= [turn0][Callleft
n−3][Callleft

0][Callleft
1] . . . [Callleft

n−5]EKleft ,n−5EKleft ,n−3,0,1,...,n−5sAgt .

Similarly we have

V0 |= [turn0][Callright
n−4]EKright ,n−4EKright ,n−4sAgt .

Finally we obtain the result by (Prsv) of Proposition 3.1:

V0 |= [turn0][Callleft
n−3][Callleft

0] . . . [Callleft
n−5][Callright

n−4]
(
EKleft ,n−5EKleft ,n−3,0,1,...,n−5sAgt

∧ EKright ,n−4EKright ,n−4sAgt

)
⇔ V0 |= [turn0][turn1]

(
EKleft ,n−5EKleft ,n−3,0,1,...,n−5sAgt

∧ EKright ,n−4EKright ,n−4sAgt

)
.

Inductive case. The reasoning is similar, but generalized to turn t+1.
Suppose the formula is true for turn t. The turn t+ 1 is:

left(n−3−t), left(0−t), . . . , left(n−5−t), right(n−4−t).

By our induction hypothesis and (Incr) of Proposition 3.1 we have

V0 |= [turn0; . . . ; turnt][Call
left
n−3−t]EKleft ,n−3−tEKleft ,n−3−tEKAgt EKt−1

Agt sAgt ,

78

3.4. Correctness

that is,

V0 |= [turn0; . . . ; turnt][Call
left
n−3−t]EKleft ,n−3−tEKleft ,n−3−tEKt

Agt sAgt ,

which implies

V0 |= [turn0; . . . ; turnt][Call
left
n−3−t]Kleft EKleft ,n−3−tEKt

Agt sAgt .

Then by (Prsv) of Proposition 3.1,

V0 |= [turn0; . . . ; turnt][Call
left
n−3−t][Call

left
0−t]EKleft ,0−tEKleft ,n−3−t,0−tEKt

Agt sAgt

⇒ V0 |= [turn0; . . . ; turnt][Call
left
n−3−t][Call

left
0−t]Kleft EKleft ,n−3−t,0−tEKt

Agt sAgt ,

and so on until

V0 |= [turn0; . . . ; turnt][Call
left
n−3−t][Call

left
0−t] . . . [Call

left
n−5−t]

EKleft ,n−5−tEKleft ,n−3−t,0−t,...,n−5−tEKt
Agt sAgt .

Moreover, by (Incr),

V0 |= [turn0; . . . ; turnt][Call
right
n−4−t]EKright ,n−4−tEKright ,n−4−tEKAgt EKt−1

Agt sAgt ,

that is,

V0 |= [turn0; . . . ; turnt][Call
right
n−4−t]EKright ,n−4−tEKright ,n−4−tEKt

Agt sAgt .

We end as usual with (Prsv):

V0 |= [turn0; . . . ; turnt][Call
left
n−3−t] . . . [Call

left
n−5−t][Call

right
n−4−t](

EKleft ,n−5−tEKleft ,n−3−t,...,n−5−tEKt
Agt sAgt ∧

EKright ,n−4−tEKright ,n−4−tEKt
Agt sAgt

)
⇔ V0 |= [turn0; . . . ; turnt][turnt+1](

EKleft ,n−5−tEKleft ,n−3−t,...,n−5−tEKt
Agt sAgt ∧

EKright ,n−4−tEKright ,n−4−tEKt
Agt sAgt

)
,

which is our result for t+1.

Lemma 3.3. After turn t−1 of Algorithm 3.1, the pairs (left , n−3−t) and
(right , 0−t) are complementary for depth t.

Proof. From Lemma 3.2 we can deduce

V0 |= [turn0; . . . ; turnt−1]
(
Kleft EKleft ,1−t,...,n−3−tEKt−2

Agt sAgt ∧

Kright EKright ,0−tEKt−2
Agt sAgt

)
.

79

Chapter 3. How to share higher-order knowledge by gossiping

Applying (Incr) of Proposition 3.1 we obtain

V0 |= [turn0; . . . ; turnt−1][Callleft
right]EKleft ,right EKAgt EKt−2

Agt sAgt ,

that is,

V0 |= [turn0; . . . ; turnt−1][Callleft
right]EKleft ,right EKt−1

Agt sAgt ,

which is equivalent to

V0 |= [turn0; . . . ; turnt−1]complt(left , right).

By the same reasoning for left and 0−t, right and n−3−t, and finally
n−3−t and 0−t, we obtain that each of them are complementary, hence
the result.

Lemma 3.4. The goal for depth t, EKt
Agt sAgt , is reached after the turn t

of Algorithm 3.1.

Proof. Turn t of Algorithm 3.1 is:

left(0−t), left(1−t), . . . , left(n−4−t), right(n−3−t).

By Lemma 3.3, after turn t−1 and the first call left(0−t) of turn
t, agents left and 0−t become experts for depth t. (Hence we have
EKleft ,0−tEKt−1

Agt sAgt .) Then after the n−4 calls left(1−t), . . . , left(n−4−t)
we get by (Incr) of Proposition 3.1:

K1−tEKt−1
Agt sAgt ∧ . . . ∧Kn−4−tEKt−1

Agt sAgt ,

that is, 1−t, . . ., n−4−t are all experts for depth t. Finally, after the
last call right(n−3−t), and also by Lemma 3.3, agents right and n−3−t
become experts for depth t. (Thus EKright ,n−3−tEKt−1

Agt sAgt .) Therefore
after the n−2 calls of turn twe have EKAgt EKt−1

Agt sAgt , which is equivalent
to EKt

Agt sAgt .

Proposition 3.2. The sequence resulting from Algorithm 3.1 gives a
solution to the generalized gossip problem for k ≥ 1 and n ≥ 4.

Proof. By Lemma 3.4, the goal for depth t is reached after turn t of
Algorithm 3.1. Thus the goal for depth k is reached after turn k (k+1
turns), i.e., at the end of the algorithm.

Proposition 3.2 implies that at most (k+1)(n−2) calls are required to
solve the instance Gossip(k, n) of the generalized gossip problem.

3.5 Optimality

80

3.5. Optimality

In this section, we prove that the sequence
of calls returned by our algorithm has an
optimal length.5

We first show a property of the gossip
problem that may seem obvious but that
we prefer to clarify.

Lemma 3.5. Suppose m agents know a
fact ϕ not known to the remaining agents.
Then it takes at least n−m calls for the re-
maining agents to know ϕ.

Proof. It suffices to prove that a call Callij
increases the knowledge on a fact ϕ of at
most one agent. We distinguish four cases
depending on the knowledge of i and j on
ϕ.

• Neither i nor j know ϕ. Then
Kiϕ ∨ Kjϕ is false and no agent
knows ϕ after Callij .

• i knows ϕ but j does not know ϕ.
Then Kiϕ ∨ Kjϕ is true and both
agents know ϕ after Callij but only j
learned it.

• i does not know ϕ but j knows ϕ.
Then Kiϕ ∨ Kjϕ is true and both
agents know ϕ after Callij but only i
learned it.

• i and j know ϕ. Then Kiϕ ∨Kjϕ is
true but both agents know ϕ after
Callij but no one learned it.

Therefore n−m calls are necessary to spread a piece of gossip to n−m
agents.

Proposition 3.3. The minimal number of calls needed to solve the in-
stance Gossip(k, n) of the generalized gossip problem, for k ≥ 1 and n ≥ 4,
is at least (k+1)(n−2).

5 These results from [Cooper et al., 2016b] were not included in [Herzig and Maffre,
2016].

81

Chapter 3. How to share higher-order knowledge by gossiping

Proof. We prove it by induction on k.

Base case: k = 1. As we have seen, protocols achieving the goal in
2(n−2) calls have been proved to be optimal [Baker and Shostak, 1972;
Tijdeman, 1971; Hajnal et al., 1972] for k = 1.

Inductive case. Suppose that we need at least (k+1)(n−2) calls to
achieve the goal for depth k. This implies that after (k+1)(n−2) − 1
calls, at least one agent, let us call her i, does not know a piece of infor-
mation of depth k − 1:

V0 |= [Calli1j1 ; . . . ;Call
i(k+1)(n−2)−1

j(k+1)(n−2)−1
]¬KiK`1 · · ·K`k−1

s.

Observe that i could also not know facts of a lower depth; in this case
she would also not know facts of depth k − 1 by the truth axiom T. For
example, suppose that i does not know the secret of 1; then she cannot
know that 2 knows the secret of 1, and that 1 knows that 2 knows the
secret of 1, and so on.

Then the (k+1)(n−2)-th call involves i (otherwise her knowledge
does not evolve) and another agent, say j. This call establishes not only
KiK`1 · · ·K`k−1

s and thus the goal for depth k:

V0 |= 〈Calli1j1 ; . . . ;Call
i(k+1)(n−2)−1

j(k+1)(n−2)−1
〉〈Callij〉EKk

Agt sAgt ,

but also the fact that i and j both know this:

V0 |= 〈Calli1j1 ; . . . ;Call
i(k+1)(n−2)−1

j(k+1)(n−2)−1
〉〈Callij〉EKi,jEKk

Agt sAgt ,

while no other agent does:

V0 |= [Calli1j1 ; . . . ;Call
i(k+1)(n−2)−1

j(k+1)(n−2)−1
][Callij]

(∧
`∈Agt\{i,j}

¬K`EKk
Agt sAgt

)
.

To establish the goal for depth k + 1, EKAgt EKk
Agt sAgt , it is necessary to

distribute EKk
Agt sAgt from i and j to all other agents. By Lemma 3.5, we

know that this takes at least n−2 calls. Therefore, we need (k+1)(n−2)+
n− 2 = (k+2)(n−2) calls to achieve the goal for depth k + 1.

Propositions 3.2 and 3.3 together ensure Theorem 3.1, i.e., that the
minimal number of calls needed to solve the instance (k, n) of the gen-
eralized gossip problem, for k ≥ 1 and n ≥ 4, is exactly (k+1)(n−2).

3.6 Two and three agents
Our algorithm works when four or more agents are involved; it trivially
does not for two and three agents.6

6 The case of two and three agents was not discussed in [Herzig and Maffre, 2016].

82

3.6. Two and three agents

The former case is easy: only one call is necessary for two agents
to reach knowledge on their secrets of level k, whatever k is. (This is
ensured by (Incr) of Proposition 3.1.) Obviously, less calls are not suffi-
cient.

For three agents, we number them 0, 1 and 2 and we give an algo-
rithm that takes k+2 turns of one call each.
Algorithm 3.2.
procedure gossip(k, 3):

for t = 0..k+1:
agent 0 calls agent (t mod 2) + 1.

Hence the algorithm produces sequences of the form Call01;Call02;Call01;
Call02; . . ., k+2 times; each turn consists in one call: turn0 = Call01, turn1 =
Call02, turn2 = Call01, and so on. We prove that it is correct and optimal.

Theorem 3.2. The minimal number of calls needed to solve the instance
Gossip(k, 3) of the generalized gossip problem, for k ≥ 1, is k+2.

Proposition 3.4. The sequence resulting from Algorithm 3.2 gives a
solution to the generalized gossip problem for k ≥ 1 and n = 3.

Proof. We prove it by induction on k.

Base case: k = 1. It is easy to check that the sequence Call01;Call02;Call01
establishes the goal for depth 1.

Inductive case. Suppose k+2 turns of the algorithm achieve the goal
for depth k:

V0 |= [turn0; turn1; . . . ; turnk+2]EKk
Agt sAgt .

Because turnk+2 = Call0(k+2 mod 2)+1, we also have

V0 |= [turn0; turn1; . . . ; turnk+2]EK0,(k+2 mod 2)+1EKk
Agt sAgt ,

which implies

V0 |= [turn0; turn1; . . . ; turnk+2]K0EKk
Agt sAgt ,

and hence by (Incr) of Proposition 3.1,

V0 |= [turn0; turn1; . . . ; turnk+2][turnk+3]EK0,(k+3 mod 2)+1EKk
Agt sAgt .

since turnk+3 = Call0(k+3 mod 2)+1. Therefore, because 0, (k+2 mod 2) + 1
and k+3 mod 2) + 1 are all different, we obtain by (Prsv) of Proposi-
tion 3.1:

V0 |= [turn0; turn1; . . . ; turnk+2][turnk+3]EKAgt EKk
Agt sAgt ,

83

Chapter 3. How to share higher-order knowledge by gossiping

that is,

V0 |= [turn0; turn1; . . . ; turnk+2][turnk+3]EKk+1
Agt sAgt ,

which is our goal for depth k + 1.

Proposition 3.5. The minimal number of calls needed to solve the in-
stance Gossip(k, 3) of the generalized gossip problem, for k ≥ 1, is at least
k+2.

Proof. This proof is similar to the proof of optimality for n ≥ 4 (see
Proposition 3.3).

Base case: k = 1. It was proven—and it is easy to check—that 3 calls
are necessary, in the original problem, when three agents are involved
[Baker and Shostak, 1972; Tijdeman, 1971; Hajnal et al., 1972].

Inductive case. Suppose that at least k+2 calls are necessary to
achieve the goal for depth k. Then after k+1 calls, at least one agent
i does not know a piece of information of depth k − 1. The k+2-th call,
between i and j, makes i know this piece of information, and i and j be
aware of this. At least one call is necessary to inform the third agent
that the goal for depth k was reached, establishing the goal for depth
k + 1 in k+3 calls.

3.7 Gossiping with ignorance goals
In the gossip problem, we aim for full knowledge of every agent on se-
crets. We could also consider scenarios where we want that some agents
do not learn some secrets. Assuming agents cannot omit to tell secrets
they know (say, for example, because they do not know the goal), the
ordering of calls might be influenced by these “ignorance goals.” This
section discusses some aspects of this variant which, to the best of our
knowledge, was not investigated before. Unlike the version with full
knowledge goal though, we do not provide a result on the number of
calls or a generic algorithm, but rather protocols in specific cases and
general remarks.7

Let us start with the original gossip problem, i.e., with k = 1. Sup-
pose we do not want agent 1 to know the secret of 2, and full knowledge
otherwise. Our goal is(

EKAgt\{1}sAgt

)
∧
(
K1sAgt\{2} ∧ ¬K1s2

)
.

While this is obviously unsolvable for 2 agents, for at least 3 agents, a
protocol would be for 1 to call every other agent but 2 before they have

7 This discussion, inspired from [Cooper et al., 2016a], was not included in [Herzig
and Maffre, 2016].

84

3.7. Gossiping with ignorance goals

called 2. Then 2 and the remaining agents could solve the problem not
involving 1. Slightly more generally, if 1 must not know the secret of 2,
. . ., m, she must call m+1, . . ., n before they call any of 2, . . ., m, then 2,
. . ., m, m+1, . . ., n can freely acquire full knowledge.

It gets quickly more complicated, even for k = 1, when several agents
should be ignorant. For example, suppose n = 4 and 1 should not know
the secret of 3, while 2 should not know the secret of 4. Then 1 should
call 2 first, before she calls 4 and before 2 calls 3. Then 1 can call 4, 2 can
call 3 and 3 can call 4. Now suppose that 1 should not know the secret
of 3, while 3 should not know the secret of 1. Then no sequence of calls
lead to a solution, since every agent that 1 calls cannot be called by 3
and conversely.

Now we skip to higher-order order goals. Take k = 2 and suppose we
want 1 not to know whether 2 knows the secret of 3 (but we do want 1
and 2 to know the secret of 3):(

EKAgt\{1}EKAgt sAgt

)
∧
(
(K1EKAgt\{2}sAgt ∧K1K2sAgt\{3}) ∧ ¬K1K2s3

)
.

Then the following protocol gives a solution:

1. 2 calls every agent but 3;

2. all agents but 2 call themselves until full knowledge of depth 2 is
acquired;

3. 2 calls every agent but 1.

After the second step, every agent i different from 2 has almost reached
her goal, except that she does not know whether 2 knows the secret of
3 (because it is not the case yet). At the third step, 2 calls everyone but
1, to learn the secret of 3, acquire the required depth of knowledge and
inform every other agent.

Observe that if we increase the depth k, the goal that only 1 does not
to know whether 2 knows the secret of 3 becomes unsolvable. By the
truth axiom T of epistemic logic, we have, for example:

K1K4K2s3 → K1K2s3,

and hence the latter cannot be false without the former being false.
Therefore for k > 2, the correct specification will be that every goal
of the form

K1Ki1 . . .KimK2Kj1 . . .Kjps3

is false, for m+p+2 ≤ k.

85

Chapter 3. How to share higher-order knowledge by gossiping

3.8 Conclusion
We have provided a logical analysis of the gossip problem, focusing on
how higher-order shared knowledge can be obtained. DEL-PAO integra-
tion of knowledge modalities and dynamic modalities provides a handy
language in order to reason about concepts such as an agent being a
semi-expert, which is pivotal in our algorithm. With DEL-PAO, we were
able to prove both the correctness and optimality of our algorithm, gen-
eralizing the results from [Baker and Shostak, 1972; Tijdeman, 1971;
Hajnal et al., 1972] on the necessary number of calls.

The gossip problem recently attracted quite some attention in the
dynamic epistemic logic community [Attamah et al., 2014a,b; van Dit-
marsch et al., 2015]. We believe that our generalization as well as these
variations provide interesting, canonical multi-agent problems in the
field of epistemic logic and automated planning, that can be compared
to the blocksworld in classical planning. First steps towards the lat-
ter, as well as an encoding of the generalized gossip problem with and
without ignorance goals, are reported in Chapter 4.

86

4 A simple account of multi-agent
epistemic planning

The generalized gossip problem can be viewed as perhaps the
simplest multi-agent planning problem: it is only the agents’
knowledge that evolves, while the facts of the world remain
unchanged.

In this chapter, we apply DEL-PAO to epistemic planning, as it
allows us to model actions and epistemic planning tasks such
as the gossip problem.

While DEL-PAO visibility atoms and epistemic formulas allow us to
model epistemic planning problems and to reduce conditions and goals
to boolean formulas, we are able to formalize the existence of a plan
with its dynamic operators, giving the complexity result. We also study
an encoding of actions into PDDL, the standard Planning Domain Defi-
nition Language [McDermott et al., 1998]. This allows us to find a plan
efficiently with a PDDL planner, which we do with the generalized gos-
sip problem and with the “exam problem” where truth values of facts
can also evolve.

Contents
4.1 DEL-PAOS : DEL-PAO without joint visibility 88

4.1.1 Language of DEL-PAOS 89
4.1.2 Semantics of DEL-PAOS 89

4.2 Epistemic planning with conditional effects . . . 91
4.2.1 Actions with conditional effects 91
4.2.2 Simple epistemic planning tasks 92

4.3 Normal forms . 93
4.3.1 Boolean formulas 93
4.3.2 Actions . 94
4.3.3 Planning tasks . 97

4.4 Complexity results . 97

87

Chapter 4. A simple account of multi-agent epistemic planning

4.4.1 Storing variables 97

4.4.2 Encoding of actions 98

4.4.3 Solvability of a planning task 101

4.4.4 Planning actions and joint visibility 104

4.5 Encoding into PDDL 105

4.5.1 Translation of formulas 105

4.5.2 Encoding of actions 106

4.6 Applications . 106

4.6.1 The exam problem 107

4.6.2 The generalized gossip problem 109

4.7 Conclusion . 111

Résumé

Le problème du bavardage généralisé peut être considéré comme le
problème de planification multi-agent le plus simple : seuls les connais-
sances des agents évoluent, alors que l’état du monde reste inchangé.
Dans ce chapitre, nous appliquons DEL-PAO à la planification épisté-
mique : elle nous permet de modéliser des actions et des tâches de pla-
nification épistémiques comme le problème du bavardage.

Alors que les atomes de visibilité et les formules épistémiques de
DEL-PAO nous permettent de modéliser des problèmes de planification
épistémique et de réduire les conditions et les buts à des formules boo-
léennes, nous sommes en mesure de formaliser l’existence d’un plan
avec ses opérateurs dynamiques, donnant le résultat de complexité. Nous
décrivons également un encodage des actions en PDDL [McDermott
et al., 1998]. Cela nous permet de trouver un plan efficace à l’aide un
planificateur PDDL, ce que nous faisons avec le problème du bavardage
généralisé et avec le “problème de l’examen” où les valeurs de vérité des
propositions peuvent aussi évoluer.

4.1 DEL-PAOS: DEL-PAO without joint visibility

In this chapter, we consider the fragment of DEL-PAO without the JS op-
erator, and thus without common knowledge. This avoids dealing with
introspective consequences; we will come back to this in Section 4.4.4.

We call this logic DEL-PAOS .

88

4.1. DEL-PAOS : DEL-PAO without joint visibility

4.1.1 Language of DEL-PAOS

Recall that Prop is a countable non-empty set of propositional variables
and Agt is a finite non-empty set of agents.

The set of visibility operators is now:

OBSS = {Si : i ∈ Agt}.

Like in DEL-PAO, the set of all sequences of visibility operators is noted
OBSS

∗.
The set of atomic formulas becomes:

ATM = {σp : σ ∈ OBSS
∗, p ∈ Prop}

The language of programs and formulas of DEL-PAOS is defined by
the following grammar:

π ::= +α | −α | (π;π) | (π t π) | π∗ | ϕ?

ϕ ::= α | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | [π]ϕ

where α ranges over ATM and i over Agt .
Programs and all operators are to be read like in DEL-PAO (see Sec-

tion 2.1). The other boolean operators and dual modal operators ab-
breviate like in DEL-PAO (i.e., in the standard way). The set of atoms
appearing in the formula ϕ and in the program π, noted ATM (ϕ) and
ATM (π), are also defined like in DEL-PAO. Hence the only difference is
that JS operators and the common knowledge modal operator CK are
not included. We note Fmlbool the set of boolean formulas, i.e., formulas
that do not contain Ki or [π].

4.1.2 Semantics of DEL-PAOS

In this chapter, we denote valuations by s or t instead of V , as auto-
mated planning usually deals with “states” instead of worlds or valua-
tions.

Since we do not include joint visibility operators, a state s ∈ 2ATM

is introspective if and only if it contains every atom of the form σ Si Si α
with σ ∈ OBSS

∗. Therefore an atom is valid in INTR if and only if it is
of the form σ Si Si α with σ ∈ OBSS

∗.
Accessibility relations for Ki are defined exactly like in DEL-PAO:

s ∼i s ′ iff Si α ∈ s implies s(α) = s ′(α)

where s(α) = s ′(α) when either α ∈ s and α ∈ s ′, or α /∈ s and α /∈ s ′.
We verify that the introspective properties of DEL-PAO still hold.

Proposition 4.1. All relations ∼i are equivalence relations on INTR.

89

Chapter 4. A simple account of multi-agent epistemic planning

Proof. The proof of Proposition 2.6 on page 35 is still valid.

Proposition 4.2. Let s ∈ INTR and s ′ ∈ 2ATM . If s ∼i s ′ then s ′ ∈ INTR.

Proof. Suppose that s ∼i s ′ for an arbitrary agent i and that s ∈ INTR.
Take an arbitrary atom α of the form σ Sj Sj α with σ ∈ OBS ∗. Since

s ∈ INTR, α belongs to s, and moreover Si α also belongs to s. Thus α
belongs to s ′ for every s ∼i s ′.

Therefore s ′ ∈ INTR.

For the dynamic part, we do not have to deal with introspective con-
sequences as we do not include the JS operator. Valuations updates
become simpler than in DEL-PAO:

s+α = s ∪ {α}
s−α = s \ {α}

Obviously, if s is introspective, the only way to lead to a non-introspective
valuation is to remove an introspectively valid atom. Therefore when s
is introspective then both s+α and s−α are as well, unless α is valid in
INTR.

Truth conditions are as follows:

s |= α iff α ∈ s

s |= ¬ϕ iff not (s |= ϕ)

s |= ϕ ∧ ϕ′ iff s |= ϕ and s |= ϕ′

s |= Kiϕ iff s ′ |= ϕ for every s ′ such that s ∼i s ′

s |= [π]ϕ iff s ′ |= ϕ for every s ′ such that sRπs ′

where Rπ is a binary relation on valuations defined by:

sR+αs ′ iff s ′ = s+α

sR−αs ′ iff s ′ = s−α and α not valid in INTR

sRπ1;π2s ′ iff s(Rπ ◦Rπ′)s ′

sRπ1tπ2s ′ iff s(Rπ ∪Rπ′)s ′

sRπ∗s
′ iff s(

⋃
k∈N0

(Rπ)k)s ′

sRϕ?s ′ iff s = s ′ and s |= ϕ

Truth conditions are identical to DEL-PAO (see Section 2.2.5) for epis-
temic operators; for dynamic operators, as we have mentioned, the re-
lation for assignments is simplified.

90

4.2. Epistemic planning with conditional effects

4.2 Epistemic planning with conditional effects
In this section, we formally define actions and planning tasks within
our framework. We assume that we perform planning tasks in fully
observable, deterministic domains.

4.2.1 Actions with conditional effects

An conditional action is a pair a = 〈pre(a), eff (a)〉 where:

• pre(a) ∈ Fmlbool is a boolean formula: the precondition of a;

• eff (a) ⊆ Fmlbool × 2ATM × 2ATM is a set of triples ce of the form

〈cnd(ce), ceff +(ce), ceff −(ce)〉,

the conditional effects of a, where cnd(ce) is a boolean formula (the
condition) and ceff +(ce) and ceff −(ce) are sets of atoms (added and
deleted atoms respectively).

We impose that there is no conflicting effects: for every ce1, ce2 ∈ eff (a)
with cnd(ce1) and cnd(ce2) consistent, ceff +(ce1) ∩ ceff −(ce2) = ∅.

We extend the set of atoms to an action a as expected:

ATM (a) = ATM (pre(a)) ∪
(⋃
ce∈eff (a)

ATM (cnd(ce)) ∪ ceff +(ce) ∪ ceff −(ce)
)

For example, consider the conditional action togglep of flipping the
truth value of the propositional variable p. It is described as togglep =
〈pre(togglep), eff (togglep)〉 with:

pre(togglep) = >
eff (togglep) = {〈p, ∅, {p}〉, 〈¬p, {p}, ∅〉}

The conditions p and ¬p are inconsistent, thus not leading to conflict.

Example 4.1. Suppose we want to model the original gossip problem,
i.e., the gossip problem presented in Chapter 3 with a depth k = 1.
Let Agt = {1, . . . , n} and Prop = {si : i ∈ Agt}. As in Chapter 3, each
propositional variable si represents the secret of agent i. (We suppose
each si is true.)

During the action Callij , we have seen that agents i and j tell each
other every secret they know among all n secrets. We have Callij =

〈pre(Callij), eff (Callij)〉 with pre(Callij) = > and:

eff (Callij) = {〈Si s1 ∨ Sj s1, {Si s1, Sj s1}, ∅〉,
. . . ,

〈Si sn ∨ Sj sn, {Si sn, Sj sn}, ∅〉}.

91

Chapter 4. A simple account of multi-agent epistemic planning

Unlike the specification of Chapter 3, here formulas must not contain
epistemic operators. Since secrets will be initially true and actions do
not make them false, the conditionKis`∨Kjs` is equivalent to Si s`∨Sj s`,
hence the current specification.

There is no possible conflict since Callij has no negative effects.

A conditional action a determines a relation between states that is a
partial function:

sRas ′ iff s |= pre(a), and
for every ce ∈ eff (a) such that

(ceff +(ce) ∪ ceff −(ce)) ∩ {α : α is valid in INTR} 6= ∅,
s 6|= cnd(ce), and

s ′ =
(

s \
⋃

ce∈eff (a)
and s|=cnd(ce)

ceff −(ce)
)
∪

⋃
ce∈eff (a)

and s|=cnd(ce)

ceff +(ce).

In words, an action adds and removes atoms as expected if its precon-
dition is satisfied and none of its conditional effects involving an in-
trospective atom can be triggered. We will see why this constraint on
introspective atoms is required in Section 4.3.

4.2.2 Simple epistemic planning tasks

We say that a state s is reachable from a state s0 via a set of conditional
actions Act if there exists a sequence of actions a1, . . . , am ∈ Act and a
sequence of states t0, . . . , tm ∈ 2ATM with m ≥ 0 such that s0 = t0, s = tm
and tk−1Raktk for every k such that 1 ≤ k ≤ m.

A simple epistemic planning task is a triple P = 〈Act , s0,Goal〉where
Act is a finite set of actions, s0 ∈ 2ATM is a finite state (the initial state)
and Goal ∈ Fmlbool is a boolean formula. It is solvable if at least one
state s such that s |= Goal is reachable from s0 via Act ; otherwise it is
unsolvable.

We define the set of atoms of a planning task P = 〈Act , s0,Goal〉 as
expected:

ATM (P) =
(⋃

a∈Act

ATM (a)
)
∪ s0 ∪ATM (Goal)

Example 4.2. The planning task corresponding to the original gossip
problem is G1 = 〈ActG1 , sG1

0 ,GoalG1〉 with:

• ActG1 = {Callij : i, j ∈ Agt and i 6= j};

• sG1
0 = {Si si : i ∈ Agt} ∪ {si : i ∈ Agt};

92

4.3. Normal forms

• GoalG1 =
∧
i,j∈Agt Si sj ,

as specified in Chapter 3 (such that, like conditions in Example 4.1, the
goal formula must not contain epistemic operators).

4.3 Normal forms
The depth of atoms being unbounded, introspective states are infinite
since they contain every atom of the form σ Si Si α with σ ∈ OBSS

∗.
However, we want to deal with finite states, especially when encoding
our problem into PDDL (see Section 4.5). We thereby impose that plan-
ning tasks are in normal form: they must not include an introspectively
valid atom. In this form, we show that they are solvable starting from
an introspective, but infinite initial state if and only if they are from the
same state without atoms valid in INTR.

4.3.1 Boolean formulas

We say that a boolean formula ϕ is in normal form if and only if for
every α ∈ ATM (ϕ), α is not valid in INTR.

Given a boolean formula ϕ, the following procedure produces a for-
mula in normal form.
Procedure 4.1. For every α ∈ ATM (ϕ) such that α is valid in INTR,
replace every occurrence of α in ϕ by >.

We note the resulting formula NF (ϕ).

Proposition 4.3. Let ϕ be a boolean formula. Then

ϕ↔ NF (ϕ)

is valid in INTR.

Proof. Procedure 4.1 replaces every introspectively valid atom α by >.
For such α, α ↔ > is valid in INTR. Therefore NF (ϕ) is equivalent to
ϕ on introspective states because the rule of replacement of equivalents
preserves plain validity.

Proposition 4.4. For every state s ∈ 2ATM , every boolean formula ϕ in
normal form, and every α valid in INTR, we have

s\{α} |= ϕ if and only if s∪{α} |= ϕ.

Proof. Since ϕ is in normal form, any α which is valid in INTR does
not belong to ATM (ϕ). Hence since ϕ is boolean, by Proposition 2.9 on
page 38, only atoms from ATM (ϕ) influence the truth value of ϕ, and
thus, no introspectively valid α do. In other words, s\{α} |= ϕ if and
only if s∪{α} |= ϕ.

93

Chapter 4. A simple account of multi-agent epistemic planning

4.3.2 Actions

We say that the action a is in normal form if and only if:

• the formulas pre(a) and cnd(ce) for every ce ∈ eff (a) are in normal
form;

• for every ce ∈ eff (a), if α ∈ ceff +(ce) ∪ ceff −(ce) then α is not intro-
spectively valid.

Given an action a, the following procedure produces an action in nor-
mal form.

Procedure 4.2.

1. For every conditional effect ce ∈ eff (a) such that (ceff +(ce) ∪
ceff −(ce)) ∩ {α : α is valid in INTR} 6= ∅, replace the precondition
pre(a) by pre(a) ∧ ¬cnd(ce) and remove ce from eff (a);

2. Put the resulting pre(a) and cnd(ce), for every ce ∈ eff (a), in nor-
mal form using Procedure 4.1.

We note the resulting action NF (a).

Proposition 4.5. Let a be an action. Then

sRat if and only if sRNF (a)t

for every s, t ∈ INTR.

Proof. First we can remark that by the definition of Ra, no introspec-
tively valid atom can be modified by a. Therefore if s ∈ INTR, then
t ∈ INTR. (In other words, we do not “miss” any valuation by assuming
that t ∈ INTR.)

We split the set of conditional effects of a into two parts depending
on whether they contain an introspectively valid atom or not:

CEINTR = {ce ∈ eff (a) :

(ceff +(ce) ∪ ceff −(ce)) ∩ {α : α is valid in INTR} 6= ∅}
CE���INTR = {ce ∈ eff (a) :

(ceff +(ce) ∪ ceff −(ce)) ∩ {α : α is valid in INTR} = ∅}

Therefore we can characterise NF (a), returned by Procedure 4.2, by:

• pre(NF (a)) = NF (pre(a) ∧
∧

ce∈CEINTR
¬cnd(ce));

• eff (NF (a)) = {〈NF (cnd(ce)), ceff +(ce), ceff −(ce)〉 : ce ∈ CE���INTR}.

94

4.3. Normal forms

Intuitively, every conditional effect from CEINTR may modify an intro-
spective atom, and thus is removed from the set of effects, while the
negation of its condition is added to pre(a). Moreover, every formula is
put to normal form.

We know that:

sRat iff s |= pre(a), and (4.1)
for every ce ∈ CEINTR, s 6|= cnd(ce), and (4.2)

t =
(

s \
⋃

ce∈eff (a)
and s|=cnd(ce)

ceff −(ce)
)
∪

⋃
ce∈eff (a)

and s|=cnd(ce)

ceff +(ce). (4.3)

On the other hand, the specification of sRNF (a)t is simpler because the
problematic effects have been removed:

sRNF (a)t iff s |= NF (pre(a) ∧
∧

ce∈CEINTR

¬cnd(ce)), and (4.4)

t =
(

s \
⋃

ce∈CE���INTR

and s|=NF (cnd(ce))

ceff −(ce)
)
∪

⋃
ce∈CE���INTR

and s|=NF (cnd(ce))

ceff +(ce). (4.5)

To prove that sRat and sRNF (a)t are equivalent, we are going to prove
that (4.1) together with (4.2) are equivalent to (4.4) and that (4.2) to-
gether with (4.3) are equivalent to (4.5).

• (4.1) and (4.2) together are equivalent to:

s |= pre(a) ∧
∧

ce∈CEINTR

¬cnd(ce),

which, by Proposition 4.3, is equivalent to:

s |= NF (pre(a) ∧
∧

ce∈CEINTR

¬cnd(ce))

since s in introspective.

• Since by (4.2), for every ce ∈ CEINTR, s 6|= cnd(ce), (4.3) is equiva-
lent to:

t =
(

s \
⋃

ce∈CE���INTR

and s|=cnd(ce)

ceff −(ce)
)
∪

⋃
ce∈CE���INTR

and s|=cnd(ce)

ceff +(ce)

which is equivalent, by Proposition 4.3, to:

t =
(

s \
⋃

ce∈CE���INTR

and s|=NF (cnd(ce))

ceff −(ce)
)
∪

⋃
ce∈CE���INTR

and s|=NF (cnd(ce))

ceff +(ce)

since s in introspective.

95

Chapter 4. A simple account of multi-agent epistemic planning

Therefore sRat if and only if sRNF (a)t.

Proposition 4.6. For every s, t ∈ 2ATM , every action a in normal form,
and every α valid in INTR,

s\{α}Ra t\{α} if and only if s∪{α}Ra t∪{α}.

Proof. Since a is in normal form, we have:

s\{α}Ra t\{α} iff s\{α} |= pre(a), and

t\{α} =
(

(s\{α}) \
⋃

ce∈eff (a)
and s\{α}|=cnd(ce)

ceff −(ce)
)
∪
⋃

ce∈eff (a)
and s\{α}|=cnd(ce)

ceff +(ce)

and:

s∪{α}Ra t∪{α} iff s∪{α} |= pre(a), and

t∪{α} =
(

(s∪{α}) \
⋃

ce∈eff (a)
and s∪{α}|=cnd(ce)

ceff −(ce)
)
∪
⋃

ce∈eff (a)
and s∪{α}|=cnd(ce)

ceff +(ce).

We examine each part that differs between the two definitions.

• Since a is in normal form, pre(a) is in normal form. Hence by
Proposition 4.4, s\{α} |= pre(a) is equivalent to s∪{α} |= pre(a)
because α valid in INTR.

• Since a is in normal form, cnd(ce), for every ce ∈ eff (a), is also in
normal form. Therefore, again by Proposition 4.4, s\{α} |= cnd(ce)
is equivalent to s∪{α} |= cnd(ce).

• Finally, and again since a is in normal form, α does not belong to
ceff +(ce) or ceff −(ce), for every ce ∈ eff (a). Thus

t\{α} =
(

(s\{α}) \
⋃

ce∈eff (a)
and s\{α}|=cnd(ce)

ceff −(ce)
)
∪

⋃
ce∈eff (a)

and s\{α}|=cnd(ce)

ceff +(ce)

if and only if

t∪{α} =
(

(s∪{α}) \
⋃

ce∈eff (a)
and s∪{α}|=cnd(ce)

ceff −(ce)
)
∪

⋃
ce∈eff (a)

and s∪{α}|=cnd(ce)

ceff +(ce).

Therefore s\{α}Ra t\{α} is equivalent to s∪{α}Ra t∪{α}.

96

4.4. Complexity results

4.3.3 Planning tasks

The planning task P = 〈Act , s0,Goal〉 is in normal form if and only if:

• every action a ∈ Act is in normal form;

• the formula Goal is in normal form.

Propositions 4.4 and 4.6 imply that P = 〈Act , s0,Goal〉 is solvable if
and only if P ′ = 〈Act , s ′0,Goal〉 with s ′0 = s0 \ {α : α is valid in INTR} is
solvable.

Observe that Example 4.2 is trivially in normal form since no higher-
order knowledge is involved. We will however need to be careful when
specifying the generalized gossip problem (see Section 4.6.2).

One could wonder why we did not apply the technique we used in
DEL-PAO for defining the model checking problem, that consists in re-
stricting the valuation to (relevant) atoms appearing in the actions and
in the goal. This would indeed be an alternative. However, the trans-
formation of epistemic formulas into boolean formulas is required for
encoding the planning task into PDDL; we believe that this method is
more intuitive and less technical than the one we previously used.

4.4 Complexity results

Consider the planning task P = 〈Act , s0,Goal〉. In this section, we show
how actions from Act can be encoded into DEL-PAOS programs. Then we
prove that the solvability of P is in PSPACE by showing that it can be
polynomially reduced to a DEL-PAOS model checking problem.

4.4.1 Storing variables

The conditional effects of the actions that we have defined in Section 4.2
are produced in parallel. We have to simulate this in DEL-PAOS by se-
quential composition. We therefore have to take care that the truth
value of no condition is modified by an effect. To achieve this, we store
the values of our conditions before executing the action, and evaluate
such values. This problem does not arise in PDDL where all conditions
are checked before any effects are produced.

We use new atomic variables noted c, called storage variables, which
we suppose do not appear in the planning task under concern. Then the
program storing the value of a formula is defined as:

str(ϕ, c) = if ϕ then +c else −c.

97

Chapter 4. A simple account of multi-agent epistemic planning

Lemma 4.1. If c does not occur in ϕ, then the equivalence

ϕ↔ [str(ϕ, c)]c

is plainly valid.

Proof. Take an arbitrary valuation s ∈ 2ATM . Using axioms from Propo-
sition 2.11 on page 50 that are plainly valid, we have:

s |= [str(ϕ, c)]c

⇔ s |= [if ϕ then +c else −c]c

⇔ s |= [(ϕ?; +c) t (¬ϕ?;−c)]c

⇔ s |= [ϕ?; +c]c ∧ [¬ϕ?;−c]c

⇔ s |= (ϕ→ [+c]c) ∧ (¬ϕ→ [−c]c)

⇔ s |= (ϕ→ >) ∧ (¬ϕ→ ⊥) (since c is not valid in INTR)
⇔ s |= ϕ ∧ ϕ
⇔ s |= ϕ,

hence the result.

After the execution of our program, we want all storage variables to
be put to false so that we do not have to worry about them later. The
program resetting the value of a given set of storage variables is simply
defined as

rst({c1, . . . , cm}) = −c1; . . . ;−cm.

4.4.2 Encoding of actions

Intuitively, an action is a DEL-PAOS program, only executed if the pre-
condition is fulfilled, applying each conditional effect whose condition
is satisfied. For example, the action togglep (flipping the value of the
variable p) corresponds to the program:

str(p, c1); str(¬p, c2); if c1 then −p; if c2 then +p.

This highlights the importance of storing values of conditions: the pro-
gram if p then −p; if ¬p then +p would actually always make p true.

We first show how to perform one conditional effect ce whose condi-
tion’s value was stored in c:

exeCE(ce, c) = if c then +α1; . . . ; +αm;−β1; . . . ;−β`

where ceff +(ce) = {α1, . . . , αm} and ceff −(ce) = {β1, . . . , β`}. Note that
the ordering of atoms is not important since ceff +(ce) ∩ ceff −(ce) = ∅.

98

4.4. Complexity results

Then we can associate to action a the DEL-PAOS program exeAct(a):

exeAct(a) = pre(a)?;

str(cnd(ce1), c1); . . . ; str(cnd(cem), cm);

exeCE(ce1, c1); . . . ; exeCE(cem, cm);

rst({c1, . . . , cm}),

with eff (a) = {ce1, . . . , cem}.

Proposition 4.7. For every s, t ∈ 2ATM such that s does not contain any
storage variable, and every action a in normal form:

s Ra t if and only if s RexeAct(a) t.

Proof. By the definition of RexeAct(a), we have:

s RexeAct(a) t iff there exist s1, s2, s3 ∈ 2ATM such that

sRpre(a)?s1, and

s1Rstr(cnd(ce1),c1);...;str(cnd(cem),cm)s2, and

s2RexeCE(ce1,c1);...;exeCE(cem,cm)s3, and

s3Rrst({c1,...,cm})t,

that is:

s RexeAct(a) t iff there exist s2, s3 ∈ 2ATM such that

s |= pre(a), and
sRstr(cnd(ce1),c1);...;str(cnd(cem),cm)s2, and

s2RexeCE(ce1,c1);...;exeCE(cem,cm)s3, and

s3Rrst({c1,...,cm})t.

Observe that:

• First, the storage variable ci does not appear in the boolean
formula cnd(cej). Since str(cnd(cei), ci) only modifies ci,
it does not change the truth value of cnd(cej), for any
j. Therefore between s and s2, during the execution of
str(cnd(ce1), c1); . . . ; str(cnd(cem), cm), every cnd(cej) keeps the
same value, i.e., the value it had in s.

• Second, the storage variable ci does not appear in effects ceff +(cej)
and ceff −(cej). Hence exeCE(cej , cj) does not modify ci, for
any j. Therefore between s2 and s3, during the execution of
exeCE(ce1, c1); . . . ; exeCE(cem, cm), every ci keeps the same value,
i.e., the value it had in s2. By Lemma 4.1, we know that the value

99

Chapter 4. A simple account of multi-agent epistemic planning

of ci in s2 is the value of the corresponding condition cnd(cei) before
the execution of str(cnd(cei), ci), i.e., in s (since we have seen that
the execution of str(cnd(cej), cj) does not change the truth value of
cnd(cei)).

• Third, the program rst({c1, . . . , cm}) makes every storage variable
ci false.

With this in mind, and in order to simplify the writing, let us define:

C 6|= = {ci : cei ∈ eff (a) and s 6|= cnd(cei)}
C|= = {ci : cei ∈ eff (a) and s |= cnd(cei)}
C = {ci : cei ∈ eff (a)}

CEFF− =
⋃

ce∈eff (a)
and s|=cnd(ce)

ceff −(ce)

CEFF + =
⋃

ce∈eff (a)
and s|=cnd(ce)

ceff +(ce)

Obviously C 6|= ∪ C|= = C and C6|= and C|= are disjoint with CEFF− and
CEFF +.

We obtain:

s RexeAct(a) t iff there exist s2, s3 ∈ 2ATM such that

s |= pre(a), and
s2 = (s \ C 6|=) ∪ C|=, and

s3 = (s2 \ CEFF−) ∪ CEFF +, and
t = s3 \ C,

i.e.:

s RexeAct(a) t iff s |= pre(a), and

t = ((((s \ C 6|=) ∪ C|=) \ CEFF−) ∪ CEFF +) \ C.

Since C 6|= and C|= are disjoint with CEFF− and CEFF +, we can reorder
operations to obtain:

s RexeAct(a) t iff s |= pre(a), and

t = ((((s \ CEFF−) ∪ CEFF +) \ C 6|=) ∪ C|=) \ C,

which, since C 6|= ∪ C|= = C, gives:

s RexeAct(a) t iff s |= pre(a) and t = (s \ CEFF−) ∪ CEFF +,

100

4.4. Complexity results

or in other words:

s RexeAct(a) t iff s |= pre(a) and

t =
(

s \
⋃

ce∈eff (a)
and s|=cnd(ce)

ceff −(ce)
)
∪

⋃
ce∈eff (a)

and s|=cnd(ce)

ceff +(ce).

Therefore s RexeAct(a) t if and only if s Ra t.

Example 4.3 (Example 4.1, ctd.). The action Callij , for any i, j ∈ Agt , is
associated to the program:

exeAct(Callij) = >?;

str(Si s1 ∨ Sj s1, c1); . . . ; str(Si sn ∨ Sj sn, cn);

if c1 then +Si s1; +Sj s1;

. . . ;

if cn then +Si sn; +Sj sn;

rst({c1, . . . , cn})

Note that in this case, pre(Callij)? can clearly be dropped.

4.4.3 Solvability of a planning task

Now that we have defined the encoding of actions, we can capture the
solvability of a planning task in DEL-PAOS .

Proposition 4.8. A planning task 〈Act , s0,Goal〉 in normal form such
that ATM (〈Act , s0,Goal〉) does not contain any storage variable is solv-
able if and only if

s0 |=
〈(⊔

a∈Act

exeAct(a)
)∗〉

Goal .

Proof. By the truth conditions, we have:

s0 |=
〈(⊔

a∈Act

exeAct(a)
)∗〉

Goal iff

there exist t0, . . . , tm ∈ 2ATM with m ≥ 0 such that
s0 = t0, and
for every 1 ≤ k ≤ m, tk−1R

⊔
a∈Act exeAct(a) tk, and

tm |= Goal ,

101

Chapter 4. A simple account of multi-agent epistemic planning

that is, if we detail
⊔

a∈Act exeAct(a):

s0 |=
〈(⊔

a∈Act

exeAct(a)
)∗〉

Goal iff

there exist t0, . . . , tm ∈ 2ATM with m ≥ 0 such that
s0 = t0, and
for every 1 ≤ k ≤ m, there exists a ∈ Act such that tk−1RexeAct(a) tk, and

tm |= Goal .

By Proposition 4.7, we thus have:

s0 |=
〈(⊔

a∈Act

exeAct(a)
)∗〉

Goal iff

there exist t0, . . . , tm ∈ 2ATM with m ≥ 0 such that
s0 = t0, and
for every 1 ≤ k ≤ m, there exists a ∈ Act such that tk−1Ra tk, and
tm |= Goal .

For the equivalence between RexeAct(a) and Ra to be valid, every tk−1

must not contain any storage variable. This is the case because:

1. First, we assumed that s0 does not contain any storage variable;

2. Second, assuming that tk−1 does not contain any storage variable,
ending exeAct(a) with rst({c1, . . . , cm}) ensures that all used stor-
age variables are set to false, or in other words, that tk does not
contain any storage variable.

Therefore:

s0 |=
〈(⊔

a∈Act

exeAct(a)
)∗〉

Goal iff

there exist t0, . . . , tm ∈ 2ATM and a1, . . . , am ∈ Act with m ≥ 0 such that
s0 = t0, and
for every 1 ≤ k ≤ m, tk−1Rak tk, and
tm |= Goal ,

that is:

s0 |=
〈(⊔

a∈Act

exeAct(a)
)∗〉

Goal iff

there exists tm ∈ 2ATM such that tm is reachable from s0 via Act , and
tm |= Goal ,

i.e., s0 |=
〈(⊔

a∈Act exeAct(a)
)∗〉

Goal if and only if 〈Act , s0,Goal〉 is solv-
able.

102

4.4. Complexity results

It may seem that we assume many hypothesis on planning tasks,
such as boolean formulas and actions in normal form. (This allows a
straightforward translation into PDDL.) However, the previous proce-
dures and propositions show how to transform a general planning task
into a “well-behaved” one.

Suppose you have a finite set Act of pairs a of the form 〈pre(a), eff (a)〉,
where pre(a) is a formula (that may contain epistemic operators), and
eff (a) is a set of tuples 〈cnd(ce), ceff +(ce), ceff −(ce)〉, where cnd(ce) is a
formula (that may contain epistemic operators) and ceff +(ce) and ceff −(ce)
are set of atoms such that for every ce1, ce2 ∈ eff (a), we have ceff +(ce1)∩
ceff −(ce2) = ∅. We cannot call them “actions” yet since the formulas ap-
pearing in these structures are not necessarily boolean formulas. Sup-
pose you also have an initial state s0 ∈ INTR, i.e., infinite, and a goal
formula Goal that may also contain epistemic operators. Then:

1. Using Procedure 2.1 on page 52 of DEL-PAO, that is based on equiv-
alences of Proposition 2.10 on page 44 which are still plainly valid,
and on the rule of replacement of equivalents that still preserves
plain validity, remove epistemic operators from Goal , pre(a) for ev-
ery a ∈ Act , and cnd(ce) for every ce ∈ eff (a). After this step, all
formulas are boolean formulas.

2. Following procedures 4.1 and 4.2, put Goal and every action a ∈
Act in normal form. By propositions 4.3 and 4.5, we know that
the resulting formulas and actions are equivalent on introspective
states.

3. Remove every atom α valid in INTR from s0. By propositions 4.4
and 4.6, we know that formulas and actions in normal form behave
in the same way in the original and new s0.

4. Remove every atom α not appearing in the planning task from s0,
i.e., replace s0 by

s0 ∩
(⋃

a∈Act

ATM (a) ∪ATM (Goal)
)
.

Since there is no epistemic operator, by Proposition 2.9 on page 38,
we know that formulas and actions will behave in the same way
in the original and new s0.

In the end, Act is a set of actions in normal form, s0 is finite and and
Goal is in normal form. Therefore we can apply Proposition 4.8 to solve
the planning task 〈Act , s0,Goal〉.

Theorem 4.1. Deciding the solvability of a planning task with DEL-
PAOS is PSPACE-complete.

103

Chapter 4. A simple account of multi-agent epistemic planning

Proof. For the lower bound, we know that deciding this problem is al-
ready PSPACE-hard in classical planning [Bylander, 1994].

For the upper bound, we reduced the problem to a problem of model
checking of DEL-PAOS by Proposition 4.8. We will see in Chapter 7 that
DEL-PAOS can be translated into DL-PA-PMP whose model checking is
in PSPACE.

This establishes that deciding the solvability of a planning task in
DEL-PAOS is in PSPACE.

This result compares favourably to DEL-based epistemic planning,
which is undecidable even for simple fragments [Aucher and Bolander,
2013; Charrier et al., 2016a]. The difference is due to the simplicity of
our underlying epistemic logic as well as to the limited expressivity of
our actions: we can basically model private announcements, while DEL
has more general event models.

4.4.4 Planning actions and joint visibility

We did not include the operator of joint visibility to our language. The
reason behind this choice should appear more clearly now that we have
given our encoding into DEL-PAO.8

In planning, when conditional effects are permitted, every effect of
an action is assumed to be executed in parallel. This is not possible with
our DEL-PAO programs: we must execute them in sequence. This leads
to the specific measures we have taken: we have to include and deal
with storage variables to ensure that the execution is running correctly.
However, once this is taken into account, the execution of effects are
not a problem any more: assignment programs can be performed in
any order—we arbitrary chose to execute all positive effects, then all
negative ones.

Now suppose JS operators are included; this also brings about in-
trospective causes and consequences. We have seen in DEL-PAO (see
Lemma 2.4 on page 47) that the ordering in sequences of assignments
becomes important. For example, +JS p;−JS Si p is neither equivalent
to −JS Si p; +JS p, nor to +JS p, nor to −JS Si p. Therefore even if effects
are non-conflicting, arbitrarily choosing an ordering is not an option. An
alternative would be to generate all possible orderings (we will see how
to do this in Chapter 5 with the star) then to quantify over them with
our dynamic modalities [π] and 〈π〉. In this case, actions become non-
deterministic. This deflects from our main objective to design a simple
approach to epistemic planning.

It is interesting to mention that we have investigated ways to in-
clude the parallel operator “ ‖ ” to DEL-PAO, without success. One of the

8 This discussion was not present in [Cooper et al., 2016a].

104

4.5. Encoding into PDDL

reasons corresponds to the problem given above: deciding what should
be the outcome of +JS p ‖ −JS Si p is not trivial (especially without non-
determinism).

4.5 Encoding into PDDL

In this section we present a method for encoding planning problems de-
fined in DEL-PAOS into PDDL. As already observed, in PDDL we do not
need to store conditions as we were obliged to do in DEL-PAOS . Consider
a planning task 〈Act , s0,Goal〉. We show how to encode boolean formulas
and actions in PDDL.

4.5.1 Translation of formulas

Some PDDL requirement flags should be set depending on the form of
conditions cnd(ce) of conditional effects ce of actions and of the formula
Goal :

• the default flag :strips for conjunctions;

• the flag :negative-preconditions for negations;

• the flag :disjunctive-preconditions for negations of conjunctions,
and disjunctions, if used to simplify writing.

Given a boolean formula ϕ ∈ Fmlbool , we define a recursive function
trPDDL(ϕ) which returns the encoding of ϕ into PDDL:

trPDDL(Si1 . . . Sim p) =

{
(p) if m = 0

(S-m i1 ... im p) otherwise

trPDDL(¬ϕ) = (not trPDDL(ϕ))

trPDDL(ϕ1 ∧ ϕ2) = (and trPDDL(ϕ1) trPDDL(ϕ2))

with p ∈ Prop, m ≥ 0, and i1, . . . , im ∈ Agt .
In words, a visibility atom α = Si1 . . . Sim p is encoded by a special

fluent with m+1 parameters. If m = 0, then the propositional variable p
is encoded as a fluent without parameters. We note trPDDL(α) the trans-
lation of an atom α in the general case (p or Si1 . . . Sim p). Other boolean
operators are encoded as expected.

The initial state s0 is trivially encoded as a set of fluents thanks to
trPDDL(α). The formula Goal and the preconditions of every action can
be encoded using trPDDL(ϕ) since they are all boolean formulas.

105

Chapter 4. A simple account of multi-agent epistemic planning

4.5.2 Encoding of actions

As we consider actions with conditional effects, the requirement flag
:conditional-effects must be set.

Consider an action a. For every ce ∈ eff (a) with ceff +(ce) = {α1, . . . , αm}
and ceff −(ce) = {β1, . . . , β`}, we add the conditional effect:

(when trPDDL(cnd(ce))

(and trPDDL(α1) . . . trPDDL(αm)

(not trPDDL(β1)) . . . (not trPDDL(β`))))

Note that, again, the ordering is not important.

Example 4.4 (Example 4.1, ctd.). The action Call12 is coded in PDDL as
follows:
(:action call-1-2

:effect (and
(when (or (S-1 1 s1) (S-1 2 s1))

(and (S-1 1 s1) (S-1 2 s1)))
...
(when (or (S-1 1 sn) (S-1 2 sn))

(and (S-1 1 sn) (S-1 2 sn)))))
This is the direct encoding of a call into PDDL. Observe that we

could generalize it to any i and j by:
(:action call

:parameters (?i ?j)
:effect (and (forall (?s)

(and
(when (or (S-1 ?i ?s) (S-1 ?j ?s))

(and (S-1 ?i ?s) (S-1 ?j ?s)))))))

Almost all planners from last International Planning Competition
(IPC 2014)9 handle conditional effects and negative preconditions, and
most of them handle disjunctive preconditions. For experiments, we
used the planner FDSS-2014 [Röger et al., 2014] that satisfied all these
properties.

4.6 Applications
In this section, we first study the “exam problem” (a simple illustrative
example concerning privacy of information), then the generalized gossip
problem.10

9 http://helios.hud.ac.uk/scommv/IPC-14/planners.html
10 All resources and PDDL files we used for experiments are available at http://www.

irit.fr/%7EAndreas.Herzig/P/Ecai16.html.

106

http://helios.hud.ac.uk/scommv/IPC-14/planners.html
http://www.irit.fr/%7EAndreas.Herzig/P/Ecai16.html
http://www.irit.fr/%7EAndreas.Herzig/P/Ecai16.html

4.6. Applications

4.6.1 The exam problem

Suppose we have two agents:
a teacher and a student.
The teacher has prepared
the exam and keeps it
in her office; the goal of
the student is to know
the exam topic, but with-
out the teacher seeing her
doing this. To achieve
this goal, the student must
enter the teacher’s office,
read the exam while the
teacher is not inside, and
exit the office. Let us
write the corresponding
planning task Exam =
〈ActExam , sExam

0 ,GoalExam〉.
Let Agt = {t , s} and

Prop = {exam, open, int , ins}.
Agent t is the teacher and
agent s is the student. The
variable exam represents the topic of the exam. Like secrets in the gos-
sip problem, its value is not relevant and we only reason about the
knowledge of it (we will assume it is true). The variable open reads
“the teacher’s office is open,” and ini, for i an agent, “agent i is in the
teacher’s office.”

Initially, we assume the office is empty and the door is closed:

sExam
0 = {exam}.

As we said, the goal for the student is to know the exam topic without
being caught by the teacher. The goal is Ss exam ∧ ¬KtSs exam ∧ ¬ins .
In terms of visibility atoms, this gives:

GoalExam = Ss exam ∧
¬St Ss exam ∧
¬ins .

We study two variants of this problem with different actions.

107

Chapter 4. A simple account of multi-agent epistemic planning

Vigilant teacher

In this first version, we suppose the teacher always closes her office door
when leaving. The set of actions is

ActExam = {openAndGoInt , goOutAndCloset , goIns , goOuts , readExams},

where

openAndGoInt = 〈¬int , {〈>, {open, int , St Ss exam}, ∅〉}〉
goOutAndCloset = 〈int ∧ ¬Ss exam, 〈>, ∅, {St Ss exam, int , open}〉}〉

goIns = 〈open ∧ ¬ins , {〈>, {ins}, ∅〉}〉
goOuts = 〈open ∧ ins , {〈>, ∅, {ins}〉}〉

readExams = 〈ins , {〈>, {Ss exam}, ∅〉}〉

Action openAndGoInt makes the teacher open and enter the room, and
thus watch the exam. Action goOutAndCloset makes her leave and close
the room; she cannot watch the exam anymore. We add the precondition
¬Ss exam to ensure that the teacher cannot leave if she has witnessed
the student see the exam, so that she cannot forget this fact.11 For the
student, goIns and goOuts makes her enter and leave the office, with the
precondition that it is open; readExams makes her read the exam topic,
acquiring the knowledge on its value.

In this case, no plan reaching the goal exist. Indeed, the student
can only enter the room if the door is open, which can only happen
when the teacher is inside the room. Therefore the student cannot read
the exam’s topic without the teacher knowing it: we have Ss exam →
KtSs exam. This was confirmed by experiments: FDSS-2014 cannot find
a plan.

Inattentive teacher

Now we assume that the teacher can leave the room without closing the
door. This is done by dividing actions openAndGoInt and goOutAndCloset

each in two parts:

• we replace openAndGoInt by:

opent = 〈¬open, {〈>, {open}, ∅〉}〉
goInt = 〈open ∧ ¬int , {〈>, {int , St Ss exam}, ∅〉}〉,

11 It is interesting to note that this occurs because knowledge only comes from ob-
servation. It constitutes one of the limits of the approach: not seeing any more means
forgetting. If we want the teacher to exit the room to perform another action only if
she has seen the student read the exam (for example, inform one of her colleagues), we
need to use auxiliary variables representing the fact that she knows that the student
has cheated (while not currently seeing it).

108

4.6. Applications

• we replace goOutAndCloset by:

goOutt = 〈open ∧ int ∧ ¬Ss exam, {〈>, ∅, {St Ss exam, int}〉}〉
closet = 〈open, {〈>, ∅, {open}〉}〉.

Thus the set of actions becomes

ActExam = {opent , closet , goInt , goOutt , goIns , goOuts , readExams}.

In this setting, the problem becomes solvable: for example, the
plan opent ; goInt ; goIns ; goOutt ; readExams ; goOuts is a solution plan. More
mundanely, FDSS-2014 finds the shortest plan: opent ; goIns ; readExams ;
goOuts .

Note that in these two examples, we are more interested in the ex-
istence of a plan than in the plan itself: the first variant is safe for the
teacher, while the second is not.

4.6.2 The generalized gossip problem

We formalize the problem exactly like in Chapter 3. Let Agt = {1, . . . , n}
and Prop = {si : i ∈ Agt}. Let us write the planning task for the gener-
alized gossip problem of depth k Gk = 〈ActGk , sGk

0 ,GoalGk〉.
Our goal is

ϕGk = EKk
Agt sAgt .

Remember that sAgt abbreviates
∧
i∈Agt si, that EKAgtϕ abbreviates∧

i∈Agt Kiϕ and that EKk
Agt is the iteration of EKAgt , k times. As a

boolean formula, this becomes:

GoalGk =
∧

α∈RATM−(ϕGk
)

α,

where

RATM−(ϕ) = RATM (ϕ) \ {α : α is valid in INTR}.

The set RATM−(ϕ) contains the relevant atoms of ϕ as defined in DEL-
PAO (see Section 2.4.3), without all introspectively valid atoms, as we
require the goal to be in normal form.

The initial state and the set of actions are still the same:

sGk
0 = {Si si : i ∈ Agt} ∪ {si : i ∈ Agt}

ActGk = {Callij : i, j ∈ Agt , i 6= j},

109

Chapter 4. A simple account of multi-agent epistemic planning

where pre(Callij) = > and every conditional effect ce ∈ eff (Callij) is of the
form:

cnd(ce) =
(∧
α∈RATM−(KiKi1...Kims`)

α
)
∨
(∧
α∈RATM−(KjKi1...Kims`)

α
)

ceff +(ce) = {σ Si1 . . . Sim s` : σ ∈ {Si, Sj}≤k−m}
ceff −(ce) = ∅

for every 0 ≤ m < k and i1, . . . , im, ` ∈ Agt such that for every 1 ≤ p < m,
ip 6= ip+1, and i 6= i1 and j 6= i1. The description of effects ensures
that there is not valid atom modified, so that Callij is in normal form.
Remember that {Si, Sj}≤k−m denotes the set all non-empty sequences
of visibility operators Si and Sj of length at most k −m.

It is also possible to easily model the gossip with ignorance goals as
introduced in Section 3.7. Given a set of atoms A such that A ∩ {α :
α is valid in INTR} = ∅, let us write the planning task for the general-
ized gossip problem of depth k with the atoms of A as the only negative
goals G-negk,A = 〈ActG-negk,A , s

G-negk,A
0 ,GoalG-negk,A〉.

The initial state and the actions remains the same:

s
G-negk,A
0 = {Si si : i ∈ Agt} ∪ {si : i ∈ Agt}

ActG-negk,A = {Callij : i, j ∈ Agt , i 6= j},

but the goal changes:

GoalG-negk,A =
(∧
α∈RATM−(ϕGk

)\A

α
)
∧
(∧
α∈A
¬α
)
.

Here are some examples:

• G-neg1,{S1 s2} corresponds to the case where we want everyone to
know all secrets, except 1 that should not know the secret of 2;

• G-neg1,{S1 s3,S2 s4}, to the case where only 1 does not know the secret
of 3 and 2, the secret of 4;

• G-neg2,{S1 S2 s3}, to the case of epistemic depth 2 where only 1 does
not know whether 2 knows the secret of 3, while 1 and 2 know the
secret of 3; G-neg3,{S1 S2 s3} the same goal but of depth 3.

(We had discussed these instances in Section 3.7.)
The resources available at http://www.irit.fr/%7EAndreas.Herzig/

P/Ecai16.html include an open-source PDDL generator that was devel-
oped in Python (the direct link is https://github.com/FaustineMaffre/
GossipProblem-PDDL-generator). It allows us to create the domain and

110

http://www.irit.fr/%7EAndreas.Herzig/P/Ecai16.html
http://www.irit.fr/%7EAndreas.Herzig/P/Ecai16.html
https://github.com/FaustineMaffre/GossipProblem-PDDL-generator
https://github.com/FaustineMaffre/GossipProblem-PDDL-generator

4.7. Conclusion

problem files for the generalized gossip problem and its variant with ig-
norance goals. In its basic settings, the program needs the depth k and
the number of agents n. It is also possible to specify sets of negatives
goals, either directly by giving the index of agents (such as {S1 s3, S2 s4}),
or with constraints (such as {Si sj : i 6= j and j < 3} if we want every
agent not to know secrets of all agents except 1 and 2). Feeding the
resulting files to a PDDL planner returns a sequence of calls which is
a solution to the corresponding gossip problem. As examples, here are
the shortest plans that were produced by FDSS-2014 for the examples
above, with 4 agents:

• G-neg1,{S1 s2}: Call
1
3;Call14;Call24;Call34;

• G-neg1,{S1 s3,S2 s4}: Call
1
2;Call14;Call23;Call34;

• G-neg2,{S1 S2 s3}: Call
1
2;Call24;Call34;Call13;Call23;Call24 and no solution for

G-neg3,{S1 S2 s3}.

4.7 Conclusion
In this chapter, we have made a first step towards a realistic and
provably-correct method for multi-agent epistemic planning. Our use
of a logic of action and knowledge together with an state of the art au-
tomatic planner (which is assumed to be correct in the case of classi-
cal planning with conditional effects) provides a method for producing
plans which are guaranteed to be correct.

Our approach contrasts with the undecidability of DEL-based epis-
temic planning which occurs even for simple fragments [Aucher and
Bolander, 2013; Charrier et al., 2016a]. Of course, the low complex-
ity of DEL-PAOS compared to DEL comes at the price of expressivity.
We have seen that our epistemic logic DEL-PAOS has more validities
than standard epistemic logic. We have also seen in the exam problem
that considering knowledge instead of belief is a restriction leading to
counter-intuitive design of actions (the teacher must not exit the room
if she has seen the student see the exam). While relaxing knowledge in
DEL is simple, this is not easy in DEL-PAO. However, our framework at
least allows us to update knowledge along with facts of the world and
to specify epistemic preconditions of any form. Since any epistemic for-
mula can be reduced to a boolean formula, the translation to PDDL is
immediate.

111

5 Epistemic boolean games based
on visibility and control

In this chapter, we extend DEL-PAO by adding further special
atoms: control atoms. This allows us to interpret, in addition
to epistemic operators, the operator of “ceteris paribus strate-
gic ability” and to capture epistemic boolean games.

The atom of control Ci p reads “agent i controls the value of p”; CiCj p
reads “i controls whether agent j controls p”; etc. We allow nesting with
visibility: Ci Sj p reads “i controls j’s visibility of the truth value of p”;
SiCj p reads “i sees whether j controls p”; and so on. We are now able to
interpret the strategic operator 3J , which intuitively means that agents
in the set J can make a statement true by modifying variables they
control, if the other agents do nothing [van der Hoek and Wooldridge,
2005; Herzig, 2014]. With the help of this operator, we show how to
capture epistemic boolean games and to reason about equilibria in such
games.

We call this logic DEL-PAOC: Dynamic Epistemic Logic of Proposi-
tional Assignment, Observation and Control.

Contents
5.1 Language of DEL-PAOC 114
5.2 Semantics of DEL-PAOC 116
5.3 Axiomatization . 117

5.3.1 Reduction of the strategic operator 117
5.3.2 Soundness and completeness 121

5.4 Complexity of model checking 122
5.5 Epistemic boolean games 123

5.5.1 Epistemic boolean games in DEL-PAOC 123
5.5.2 Strategies and introspection 123
5.5.3 Nash equilibrium 124

5.6 Relationship between exclusive control and vis-
ibility . 127

113

Chapter 5. Epistemic boolean games based on visibility and control

5.7 Conclusion . 129

Résumé du chapitre

Dans ce chapitre, nous étendons DEL-PAO en y ajoutant de nouveaux
atomes spéciaux : des atomes des contrôle. Cela nous permet d’interpré-
ter, en plus des opérateurs épistémiques, l’opérateur de capacité straté-
gique ceteris paribus et de capturer les jeux booléens épistémiques.

L’atome de contrôle Ci p se lit “l’agent i contrôle la valeur de p” ;
CiCj p se lit “i contrôle si l’agent j contrôle p” ; etc. Nous permettons
l’imbrication avec la visibilité : Ci Sj p est lu “i contrôle la visibilité de
j sur la valeur de vérité de p” ; SiCj p est lu “i voit si j contrôle p” ; etc.
Nous sommes alors en mesure d’interpréter l’opérateur stratégique 3J ,
qui signifie intuitivement que les agents de l’ensemble J peuvent rendre
une propriété vraie en modifiant les variables qu’elles contrôlent, en
supposant que les autres agents n’agissent pas [van der Hoek and Wool-
dridge, 2005; Herzig, 2014]. Avec l’aide de cet opérateur, nous montrons
comment capturer les jeux booléens épistémiques et comment raisonner
sur les équilibres de tels jeux.

Nous appelons cette nouvelle logique DEL-PAOC : une logique épisté-
mique dynamique des affectations propositionnelles, de l’observation et
du contrôle.

5.1 Language of DEL-PAOC

Remember that Prop is a countable non-empty set of propositional vari-
ables and Agt is a finite non-empty set of agents.

Like in Chapter 4, in this chapter we consider the fragment of DEL-
PAO without JS operators and thus without common knowledge. As we
will discuss in Section 5.6, including the joint visibility operator implies
dealing with introspective consequences and leads to problems with ex-
clusive control.

The set of visibility operators is

OBSS = {Si : i ∈ Agt}.

The set of control operators is

CTRL = {Ci : i ∈ Agt},

where Ci stands for control of agent i. The set of all sequences of visi-
bility and control operators is noted (OBSS ∪ CTRL)∗ and the set of all
non-empty sequences is noted (OBSS ∪CTRL)+. As in DEL-PAO, we use
σ, σ′, . . . for elements of (OBSS ∪ CTRL)∗.

114

5.1. Language of DEL-PAOC

Atomic formulas are now sequences of visibility, but also control op-
erators followed by propositional variables:

ATM = {σ p : σ ∈ (OBSS ∪ CTRL)∗, p ∈ Prop}.

Therefore our new atoms include Ci operators. Here are some examples:

• C1 p reads “1 controls the value of p.” This means that 1 has the
ability to change the truth value of the variable p.

• C1C2 p reads “1 controls whether 2 controls the value of p.”

• S1C2 q reads “1 sees whether 2 controls the value of q.” Recall that
this does not imply that 2 controls the value of q.

• C1 S2 p reads “1 controls whether 2 sees the value of p.”

• ... and so on.

The language of DEL-PAOC is then defined by the following gram-
mar:

π ::= +α | −α | (π;π) | (π t π) | π∗ | ϕ?

ϕ ::= α | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | [π]ϕ | 3Jϕ

where α ranges over ATM , i over Agt and J over 2Agt .
Programs and all operators except 3J should be read like in DEL-

PAO (see Section 2.1). 3Jϕ is a strategic operator that reads “agents in
J can achieve ϕ by modifying variables they control if other agents do
not act.” This refers to the ceteris paribus strategic ability in the sense
of [van der Hoek and Wooldridge, 2005; Herzig, 2014].

The other boolean operators and dual modal operators abbreviate
like in DEL-PAO (i.e., in the standard way). Moreover, 2Jϕ (“agents in J
cannot avoid ϕ by changing values of variables they control while other
agents do not act”) abbreviates ¬3J¬ϕ.

The set of atoms appearing in the formula ϕ and in the program π,
noted ATM (ϕ) and ATM (π), are also defined like in DEL-PAO, with the
addition of:

ATM (3Jϕ) = ATM (ϕ).

Following [van der Hoek and Wooldridge, 2005], we can express the
“coalition logic-like” strategic formula 〈〈J〉〉ϕ that reads “agents in J are
able to achieve ϕ by modifying variables they control, whatever the
other agents do” from 3J by

〈〈J〉〉ϕ = 3J2Agt\Jϕ,

along with its dual [[J]]ϕ = ¬〈〈J〉〉¬ϕ.

115

Chapter 5. Epistemic boolean games based on visibility and control

5.2 Semantics of DEL-PAOC

Like in Chapter 4, a valuation V ∈ 2ATM is introspective if and only
if it contains every atom of the form σ Si Si α with σ ∈ OBSS

∗, and not
(OBSS ∪ CTRL)∗, and α ∈ {σ p : σ ∈ (OBSS ∪ CTRL)∗, p ∈ Prop}. This
means that, for example, Cj Si Si p is not valid in INTR (but Si SiCj p is).

Accessibility relations for Ki are defined exactly like in DEL-PAO (see
Section 2.2.3):

V ∼i V ′ iff Si α ∈ V implies V (α) = V ′(α)

where, again, V (α) = V ′(α) when either α ∈ V and α ∈ V ′, or α /∈ V
and α /∈ V ′. As we have seen in Chapter 4, the properties of DEL-PAO
still hold: all ∼i are equivalence relations on INTR and if V ∈ INTR, if
V ∼i V ′ then V ′ ∈ INTR.

For the dynamic part, we again do not have to deal with introspective
consequences as we do not include the JS operator. Like in Chapter 4,
valuations updates are simpler than in DEL-PAO:

V+α = V ∪ {α}
V−α = V \ {α}

With our new set of atoms, we have seen that when V is introspective
then both V+α and V−α are so, unless α is valid in INTR.

Truth conditions are as follows:

V |= α iff α ∈ V
V |= ¬ϕ iff not (V |= ϕ)

V |= ϕ ∧ ϕ′ iff V |= ϕ and V |= ϕ′

V |= Kiϕ iff V ′ |= ϕ for every V ′ such that V ∼i V ′

V |= [π]ϕ iff V ′ |= ϕ for every V ′ such that V RπV ′

V |= 3Jϕ iff there exist α1, . . . , αm ∈ ATM with m ≥ 0 such that
for every 1 ≤ k ≤ m, there is i ∈ J such that Ci αk ∈ V
and V |= 〈(+α1 t −α1); . . . ; (+αm t −αm)〉ϕ

where Rπ is a binary relation on valuations defined by:

V R+αV
′ iff V ′ = V+α

V R−αV
′ iff V ′ = V−α and α not valid in INTR

V Rπ1;π2V
′ iff V (Rπ ◦Rπ′)V ′

V Rπ1tπ2V
′ iff V (Rπ ∪Rπ′)V ′

V Rπ∗V
′ iff V (

⋃
k∈N0

(Rπ)k)V ′

V Rϕ?V
′ iff V = V ′ and V |= ϕ

116

5.3. Axiomatization

Truth conditions are identical to DEL-PAO (see Section 2.2.5) for epis-
temic operators. For dynamic operators, the relation for assignments is
simplified like in DEL-PAOS . The new operator 3J is interpreted like in
[Herzig et al., 2011]: agents in J can make ϕ true while others do not
act if there exists a sequence of assignments of variables they control
that leads to a state where ϕ is satisfied. Remember that 〈π〉ϕ reads
“there exists an execution of π after which ϕ is true.”12 We suppose that
the program becomes skip if m = 0, that is, agents in J can simply leave
the world in its current state.

Introspective validity and plain validity are defined like in DEL-PAO
(see Section 2.2.5).

5.3 Axiomatization

Our axiomatization will consist, like for DEL-PAO, in reduction axioms.
We axiomatize the richer language where the JS operator is included

(along with common knowledge), since they are needed to characterize
introspective valuations. In other words, we axiomatize the language of
DEL-PAO with control atoms. In this language, valuation updates V+α
and V−α are defined like in DEL-PAO (see Section 2.2.4). The semantics
of the new operator 3J is unchanged, but assignments may now concern
atoms with JS operators.

Since their truth conditions were not modified, reduction axioms for
knowledge operators (see Proposition 2.10 on page 44) and dynamic op-
erators (see Proposition 2.11 on page 50) are still valid. We show how to
reduce the strategic operator to a program.

5.3.1 Reduction of the strategic operator

In the vein of varyIfNotSeen(i, A) for epistemic operators defined in Sec-
tion 2.4.2, we are going to define varyIfCtrl(J,A) which, as its name sug-
gest, will vary the variables of A if the coalition J controls them.

Our truth condition for 3J indicates that agents must control each
variable initially, before the modification of any other variable. Since we
can consider control over control of variables, this means that control
may evolve and that we have to store its initial value, like we did for
conditions of conditional effects in Chapter 4. We reuse the notion of

12 The semantics of 3Jϕ were modified between [Herzig et al., 2016] and here. In
[Herzig et al., 2016], truth conditions were defined as: V |= 3Jϕ if and only if V |= ϕ for
some V ′ such that V RJV

′, where V RJV
′ if only atoms controlled by at least one agent

in J were modified between V and V ′. This led to technical issues with introspective
valuations and axiomatization, such as the possibility to remove introspectively valid
atoms. Some of these issues are discussed in Section 5.6.

117

Chapter 5. Epistemic boolean games based on visibility and control

storage variables, noted c, and the programs

str(ϕ, c) = if ϕ then +c else −c,

which stores the value of the formula ϕ into the storage variable c, and

rst({c1, . . . , cm}) = −c1; . . . ;−cm,

which resets the value of a given set of storage variables.
Then, for a coalition of agents J and a set of atoms A = {α1, . . . , αm},

we define the program

varyIfCtrl(J,A) = str(
∨
i∈J

Ci α1, c1); . . . ; str(
∨
i∈J

Ci αm, cm);(⊔
αk∈A

varyIf(ck, αk)
)∗

;

rst(A),

where varyIf(c, α) = c?; (+α t −α).
The programs first stores, for every variable αk inA, whether at least

one agent in J controls αk. Then the program may vary each αk that
was originally controlled, and this an undetermined number of times,
generating all possible sequences of assignments of variables from A.
We then reset the value of control variables so that, like in Chapter 4,
they do not interfere with following executions.

Proposition 5.1. Let V ∈ 2ATM be a valuation that does not contain
any storage variable, J a set of agents and ϕ a formula without modal
operators. Then we have

V |= 3Jϕ↔ 〈varyIfCtrl(J,ATM (ϕ))〉ϕ.

Proof. We are going to compare the truth conditions associated to the
modalities 3Jϕ and 〈varyIfNotSeen(i,ATM (ϕ))〉ϕ. Take an arbitrary val-
uation V ∈ 2ATM :

V |= 3Jϕ iff
there exist α1, . . . , αm ∈ ATM such that

for every 1 ≤ k ≤ m, there exists i ∈ J such that Ci αk ∈ V, and
V |= 〈(+α1 t −α1); . . . ; (+αm t −αm)〉ϕ,

that is:

V |= 3Jϕ iff
there exist α1, . . . , αm ∈ ATM such that

for every 1 ≤ k ≤ m,V |=
∨
i∈J

Ci αk, and

V |= 〈(+α1 t −α1); . . . ; (+αm t −αm)〉ϕ,

118

5.3. Axiomatization

i.e.:

V |= 3Jϕ iff

there exist α1, . . . , αm ∈ ATM and U0, . . . , Um, V
′ ∈ 2ATM such that

V = U0, V
′ = Um, and

for every 1 ≤ k ≤ m,V |=
∨
i∈J

Ci αk and Uk−1R+αkt−αkUk, and

V ′ |= ϕ.

By Proposition 2.9 on page 38, we know that we can restrict atoms to
the ones appearing in ϕ. Thus we have:

V |= 3Jϕ iff

there exist α1, . . . , αm ∈ ATM (ϕ) and U0, . . . , Um, V
′ ∈ 2ATM such that

V = U0, V
′ = Um, and

for every 1 ≤ k ≤ m,V |=
∨
i∈J

Ci αk and Uk−1R+αkt−αkUk, and

V ′ |= ϕ.

On the other hand:

V |= 〈varyIfCtrl(J,ATM (ϕ))〉ϕ iff

there exist V1, V2, V
′ ∈ 2ATM such that

V Rstr(
∨
i∈J Ci α1,c1);...;str(

∨
i∈J Ci αm,cm)V1, and

V1R(⊔
α`∈ATM (ϕ) varyIf(c`,α`)

)∗V2, and

V2Rrst(ATM (ϕ))V
′, and

V ′ |= ϕ.

Similarly to the proof of Proposition 4.7 on page 99, we define

C 6|= = {c` : α` ∈ ATM (ϕ) and V 6|=
∨
i∈J

Ci α`}

C|= = {c` : α` ∈ ATM (ϕ) and V |=
∨
i∈J

Ci α`}

C = {c` : α` ∈ ATM (ϕ)}

Obviously C 6|= ∪ C|= = C.

119

Chapter 5. Epistemic boolean games based on visibility and control

We obtain:

V |= 〈varyIfCtrl(J,ATM (ϕ))〉ϕ iff

there exist V1, V2, V
′ ∈ 2ATM such that

V1 = (V \ C 6|=) ∪ C|=, and

V1R(⊔
α`∈ATM (ϕ) varyIf(c`,α`)

)∗V2, and

V ′ = V2 \ C, and
V ′ |= ϕ,

that is:

V |= 〈varyIfCtrl(J,ATM (ϕ))〉ϕ iff

there exist V1, V2, V
′ ∈ 2ATM such that

V1 = (V \ C 6|=) ∪ C|=, and

there exist U0, . . . , Um ∈ 2ATM such that V1 = U0, V2 = Um, and
for every 1 ≤ k ≤ m,Uk−1R

⊔
α`∈ATM (ϕ) varyIf(c`,α`)

Uk, and

V ′ = V2 \ C, and
V ′ |= ϕ,

i.e.:

V |= 〈varyIfCtrl(J,ATM (ϕ))〉ϕ iff

there exist V1, V2, V
′ ∈ 2ATM such that

V1 = (V \ C 6|=) ∪ C|=, and

there exist α1, . . . , αm ∈ ATM (ϕ) and U0, . . . , Um ∈ 2ATM such that
V1 = U0, V2 = Um, and
for every 1 ≤ k ≤ m,Uk−1RvaryIf(ck,αk)Uk, and

V ′ = V2 \ C, and
V ′ |= ϕ.

which becomes, when decomposing varyIf(ck, αk):

V |= 〈varyIfCtrl(J,ATM (ϕ))〉ϕ iff

there exist V1, V2, V
′ ∈ 2ATM such that

V1 = (V \ C 6|=) ∪ C|=, and

there exist α1, . . . , αm ∈ ATM (ϕ) and U0, . . . , Um ∈ 2ATM such that
V1 = U0, V2 = Um, and
for every 1 ≤ k ≤ m,Uk−1 |= ck and Uk−1R+αkt−αkUk, and

V ′ = V2 \ C, and
V ′ |= ϕ.

120

5.3. Axiomatization

We are getting close to the truth condition of 3Jϕ, with additional mod-
ifications of storage variables.

As we have seen in the proof of Proposition 4.7 on page 99, only stor-
age variables are modified between V and V1, where each ck takes the
value of

∨
i∈J Ci αk. Afterwards, during the execution of varyIf(c`, α`), the

value of storage variables is not modified. Therefore saying Uk−1 |= ck is
like V |=

∨
i∈J Ci αk. Finally, all storage variables, which by definition,

do not appear in ϕ, are removed.
Therefore V |= 3Jϕ↔ 〈varyIfCtrl(J,ATM (ϕ))〉ϕ.

5.3.2 Soundness and completeness

The rule of replacement of equivalents still preserves plain validity.

Proposition 5.2. Let ϕ′ be obtained from ϕ by replacing some occur-
rence of ψ in ϕ by ψ′. If ψ ↔ ψ′ is plainly valid then ϕ ↔ ϕ′ is plainly
valid.

Proof. This is due to the fact that, along with the ones for Ki and [π]
(see Proposition 2.12 on page 52) the following rule of inference for 3J :

ϕ↔ ϕ′

3Jϕ↔ 3Jϕ
′

preserves plain validity.

Theorem 5.1. For every DEL-PAOC formula ϕ there exists a formula
without modal operators ϕ′ such that ϕ↔ ϕ′ is plainly valid.

Proof. We extend Procedure 2.1 on page 52 to strategic operators.
Procedure 5.1. While there is a modal operator in ϕ:

1. if there is a sub-formula Kiϕ
′ or [π]ϕ′ such that ϕ′ does not contain

modal operators, apply Procedure 2.1;

2. if there is a sub-formula 3Jϕ
′ such that ϕ′ does not contain modal

operators, replace 3Jϕ
′ by 〈varyIfCtrl(J,ATM (ϕ′))〉ϕ′, according to

Proposition 5.1.

So by iterating elimination of innermost modal operators we obtain
a formula without modal operators. These transformations are possible
thanks to the rule of replacement of equivalents that preserves plain
validity.

The axiomatization of DEL-PAOC is given by:

• the axioms of DEL-PAO given in Section 2.3;

• the reduction axiom for strategic operators given in Proposition 5.1.

121

Chapter 5. Epistemic boolean games based on visibility and control

Theorem 5.2. The axiomatization of DEL-PAOC is sound and complete
w.r.t. the set of introspective valuations.

Proof. The proof follows the lines of its counterpart for DEL-PAO (see
Theorem 2.2 on page 54).

5.4 Complexity of model checking

For model checking, we will reduce the epistemic operator Ki to the
program varyIfNotSeen(i, A) as we did in DEL-PAO (see Section 2.4.2).
We will do the same with the strategic operator 3J , reducing it to the
program varyIfCtrl(J,A) thanks to Proposition 5.1. Like in DEL-PAO, this
transformation may add new atoms to the formula. In order to include
these new atoms, we extend the definition of relevant atoms RATM (ϕ),
defined in Section 2.4.3, to strategic operators as follows:

RATM (3Jϕ) = RATM (ϕ) ∪ {Ci α : i ∈ J, α ∈ RATM (ϕ)}

Observe that the relevant atoms of ϕ are exactly the atoms of its re-
duction obtained by Procedure 5.1, minus storage variables that do not
influence the final value of ϕ.

We also extend Proposition 2.18 on page 62 to DEL-PAOC.

Proposition 5.3. Let ϕ be a formula. Let V , V ′ ∈ 2ATM such that V and
V ′ are introspective w.r.t. RATM (ϕ) and V =RATM (ϕ) V

′. Then V |= ϕ if
and only if V ′ |= ϕ.

Proof. The proof follows the line of Proposition 2.18. The new set of
relevant atoms ensures that all atoms appearing in the reduction of ϕ
(except storage variables) are equal in V and V ′ (including atoms of
control).

Then the model checking problem for DEL-PAOC is defined as follows:

• Input: a couple 〈V ∩RATM (ϕ), ϕ〉 where ϕ is a DEL-PAOC formula
and V is an introspective valuation;

• Output: yes if V |= ϕ, no otherwise.

Theorem 5.3. The DEL-PAOC model checking problem is PSPACE-
complete.

Proof. The model checking of DL-PA, which is a fragment of DEL-PAOC
without visibility operators Si and control operators Ci was proven to be
PSPACE-hard [Balbiani et al., 2014]. This establishes the lower bound.

We will show in Chapter 7 that the problem is in PSPACE.

122

5.5. Epistemic boolean games

5.5 Epistemic boolean games
In this section, we show how to express that a given strategy is a Nash
equilibrium and whether a Nash equilibrium exists in an epistemic
boolean game within DEL-PAOC.

5.5.1 Epistemic boolean games in DEL-PAOC

We define ATMOBSS to be the subset of ATM which only visibility atoms:

ATMOBSS = {σ p : σ ∈ OBSS
∗, p ∈ Prop}.

Informally, ATMOBSS is exactly the set of atoms considered in Chapter 4,
i.e., DEL-PAO atoms without joint visibility and without control.

An epistemic boolean game is a tuple

B = (Agt ,ATM f
OBSS

, (Ψi)i∈Agt , (γi)i∈Agt)

where ATM f
OBSS

is a finite subset of ATMOBSS , the sets (Ψi)i∈Agt (the
sets of control) partition ATM f

OBSS
, and the formulas γi (the goals) are

such that RATM (γi) ⊆ ATM f
OBSS

.
Remember that the relevant atoms of ϕ, introduced in Section 2.4.3

and noted RATM (ϕ), contains the atoms of ϕ plus visibility atoms re-
lated to epistemic operators appearing in ϕ (e.g., RATM (Kip) = {p, Si p}).
This means that if γj = Kip, then p but also Si pmust belong to ATM f

OBSS
because both influence the truth value of γj .

5.5.2 Strategies and introspection

Strategies of individuals and coalitions are defined like in the context of
standard boolean games: si ∈ 2Ψi and sJ =

⋃
i∈J si. We however impose

a constraint on strategy profiles sAgt : they must be introspective w.r.t.
ATM f

OBSS
.

We have seen in Section 2.4 that valuations introspective w.r.t. a spe-
cific set of atoms can be finite while being “introspective enough” for the
model checking to work correctly. Without introspective consequences,
the definition given in Section 2.4.1 reduces to: a valuation V is intro-
spective w.r.t. to a set of atoms A if every introspectively valid atom from
A belongs to V . Strategy profiles are sets of atoms and therefore are of
the same nature as valuations. When requiring them to be introspec-
tive w.r.t. ATM f

OBSS
, we implicitly impose that every agent controlling

an introspectively valid atom chooses to make it true; it appears like a
reasonable condition.

Besides strategies, utilities over strategy profiles, best responses and
Nash equilibria are defined exactly as in the context of standard boolean
games (see Section 1.3.2). Remember that the utility of an agent is 1 if
she reaches her goal, and 0 otherwise.

123

Chapter 5. Epistemic boolean games based on visibility and control

5.5.3 Nash equilibrium

The Nash equilibria of a given epistemic boolean game can be charac-
terised in the language of DEL-PAOC. Given the sets of control (Ψi)i∈Agt ,
we define Ctrl = {Ci α : i ∈ Agt , α ∈ Ψi} which describes the control
abilities of agents in the boolean game in terms of atoms.

Proposition 5.4. Let B = (Agt ,ATM f
OBSS

, (Ψi)i∈Agt , (γi)i∈Agt) be an epis-
temic boolean game and let

Nash =
∧
i∈Agt

(3{i}γi → γi).

Then sAgt is a Nash equilibrium for B if and only if

sAgt ∪ Ctrl |= Nash.

The contraposition of the formula is easier to understand: ¬γi →
¬3{i}γi intuitively reads “if i has not reached her goal, then she cannot
reach it by modifying the variables under her control.” In other words,
her strategy is a best response to the strategies of the other agents. If
this is the case for every agent, i.e., if

∧
i∈Agt(3{i}γi → γi) is true, then

the current situation is a Nash equilibrium.

Proof. Take an arbitrary agent i. We prove that si is a best response to
sAgt\{i} (with 〈si, sAgt\{i}〉 = sAgt) if and only if sAgt ∪ Ctrl |= 3{i}γi → γi.
We distinguish two cases.

• First suppose sAgt |= γi. Then Ui(sAgt) = 1 and therefore si is
trivially a best response to sAgt\{i}.

Now if sAgt |= γi then sAgt ∪Ctrl |= γi by Proposition 2.9 on page 38
since γi does not contain any atom from Ctrl . Thus sAgt ∪ Ctrl |=
3{i}γi → γi.

• Now suppose sAgt 6|= γi. Then Ui(sAgt) = 0 and si is a best response
to sAgt\{i} if and only if for every strategy s′i ∈ 2Ψi , Ui(〈s′i, sAgt\{i}〉) =

0, i.e., if and only if for every strategy s′i ∈ 2Ψi , s′i ∪ sAgt\{i} 6|= γi,
that is, if and only if for every s′Agt such that sAgt =ATM f

OBSS
\Ψi s

′
Agt ,

s′Agt 6|= γi.

On the other hand, again by Proposition 2.9, sAgt 6|= γi if and only
if sAgt ∪ Ctrl 6|= γi, i.e., sAgt ∪ Ctrl |= 2{i}¬γi since sAgt ∪ Ctrl |=
3{i}γi → γi. In other words, for every α1, . . . , αm ∈ ATM such that
for every 1 ≤ k ≤ m, Ci αk ∈ sAgt ∪ Ctrl , we have sAgt ∪ Ctrl |=
[(+α1t−α1); . . . ; (+αmt−αm)]¬γi. Since the control of i is defined
by Ψi, this is equivalent to: for every α1, . . . , αm ∈ Ψi, we have
sAgt ∪Ctrl |= [(+α1t−α1); . . . ; (+αmt−αm)]¬γi. Our formula does

124

5.5. Epistemic boolean games

not contain any control atom or strategic operator any more, hence
by Proposition 2.9, this is equivalent to: for every α1, . . . , αm ∈ Ψi,
we have sAgt |= [(+α1 t −α1); . . . ; (+αm t −αm)]¬γi, i.e., for every
s′Agt such that sAgt =ATM f

OBSS
\Ψi s

′
Agt , s

′
Agt 6|= γi.

In both cases, we have that si is a best response to sAgt\{i} if and only
if sAgt ∪ Ctrl |= 3{i}γi → γi. The formula Nash generalizes this to the
whole set of agents.

The following proposition provides a characterization in the logic
DEL-PAOC of the existence of a Nash equilibrium in a certain epistemic
boolean game.

Proposition 5.5. Let B = (Agt ,ATM f
OBSS

, (Ψi)i∈Agt , (γi)i∈Agt) be an epis-
temic boolean game. Then B has at least one Nash equilibrium if and
only if

Ctrl ∪ {α ∈ ATM f
OBSS

: α is valid in INTR} |= 3Agt Nash.

Proof. The set {α ∈ ATM f
OBSS

: α is valid in INTR} ensures that Ctrl ∪
{α ∈ ATM f

OBSS
: α is valid in INTR} is introspective w.r.t. ATM f

OBSS
.

Let us write this set ATM f
OBSS |INTR.

We have: Ctrl ∪ATM f
OBSS |INTR |= 3Agt Nash if and only if there exists

α1, . . . , αm ∈ ATM such that for every 1 ≤ k ≤ m, there exists i ∈ Agt
such that Ci αk ∈ Ctrl ∪ ATM f

OBSS |INTR, and Ctrl ∪ ATM f
OBSS |INTR |=

〈(+α1 t −α1); . . . ; (+αm t −αm)〉Nash. Since the sets (Ψi)i∈Agt parti-
tion ATM f

OBSS
, agents together control exactly the set ATM f

OBSS
and

this is equivalent to: there exists α1, . . . , αm ∈ ATM f
OBSS

such that
Ctrl ∪ATM f

OBSS |INTR |= 〈(+α1 t−α1); . . . ; (+αm t−αm)〉Nash. Therefore
the program (+α1 t −α1); . . . ; (+αm t −αm) will either add or remove
atoms from ATM f

OBSS
. Observe that the only atoms from ATM f

OBSS

that are already in Ctrl ∪ ATM f
OBSS |INTR are introspectively valid and

therefore cannot be removed. Thus the program can only add new
atoms among α1, . . . , αm (the others will stay false). Hence the pre-
vious statement is equivalent to: there exists α1, . . . , αk ∈ ATM f

OBSS

(with k ≤ m) such that Ctrl ∪ ATM f
OBSS |INTR ∪ {α1, . . . , αk} |= Nash.

ATM f
OBSS |INTR ∪ {α1, . . . , αk} can be viewed as a strategy for all agents

which is, as required, introspective w.r.t. ATM f
OBSS

. In other words,
there exists sAgt such that Ctrl ∪sAgt |= Nash, i.e., there exists a strategy
sAgt such that sAgt is a Nash equilibrium by Proposition 5.4, that is, the
game has at least one Nash equilibrium.

The preceding two propositions together with Theorem 5.3 about
complexity of model checking for DEL-PAOC provide a complexity result

125

Chapter 5. Epistemic boolean games based on visibility and control

both for the membership problem, described in Proposition 5.4, and for
the existence problem, described in Proposition 5.5, of Nash equilibria
in epistemic boolean games.

Theorem 5.4. The membership problem and the existence problem of
Nash equilibria in epistemic boolean games are both in PSPACE.

Proof. From propositions 5.4 and 5.5, both problems polynomially re-
duce to the DEL-PAOC model checking problem.

The PSPACE-completeness remains an open problem.
Let us illustrate epistemic boolean games with an example of a coor-

dination game.

Example 5.1. Suppose we have two agents 1 and 2 each of which knows
a bit of information, respectively noted b1 and b2, that the other agent
does not know. Both 1 and 2 have the same goal: 1 wants 2 to know her
secret only if 1 knows the secret of 2, and similarly for 2. Each agent
can change her secret, and can either talk or keep quiet; in other words,
each agent has control on her bit and on the other agent’s visibility of
her bit.

We define Bb = (Agt ,ATM f
OBSS

, (Ψi)i∈Agt , (γi)i∈Agt) where:

• Agt = {1, 2};

• ATM f
OBSS

= {b1, b2, S2 b1, S1 b2};

• Ψ1 = {b1, S2 b1} and Ψ2 = {b2, S1 b2};

• γ1 = γ2 = (K1b2 ∨K1¬b2)↔ (K2b1 ∨K2¬b1).

Two interesting Nash equilibria are the following. Either they both
share their secrets: sAgt = {b1, b2, S2 b1, S1 b2}; or they both remain silent:
sAgt = {b1, b2}.

Indeed, with Ctrl = {C1 b1, C2 b2, C1 S2 b1, C2 S1 b2}, we have:

{b1, b2, S2 b1, S1 b2} ∪ Ctrl |= (3{1}γ1 → γ1) ∧ (3{2}γ2 → γ2)

{b1, b2} ∪ Ctrl |= (3{1}γ1 → γ1) ∧ (3{2}γ2 → γ2)

Intuitively, each agent can only modify the other agent’s visibility of her
secret; if only one of them changes her strategy then it will break the
equivalence of the goal.

Observe that we omit other Nash equilibria such as {b1, S2 b1, S1 b2}
or {b2}, where the values of bi is modified. It actually suffices that S2 b1

and S1 b2 are either both true or both false to obtain a Nash equilibrium.

126

5.6. Relationship between exclusive control and visibility

5.6 Relationship between exclusive control and
visibility

We have seen that we did not include the joint visibility operator JS
in the language of DEL-PAOC. This would indeed lead to problems with
exclusive control, that is required in boolean games, because of intro-
spective causes and consequences.13

For example, suppose agent 1 controls JS p, and that agent 2 controls
Si p. It seems that exclusive control is ensured; however if 1 makes JS p
true, then an infinite number of other atoms, including Si p, will become
true. Therefore the control on Si p is actually not exclusive. The other
way round, if 2 makes Si p false, then JS p will also become false. It is
interesting to note that 1 does not have a “full control” on Si p: she can
only make it true. Similarly, 2 can only make JS p false.

A way to solve this issue would be to define constraints on atoms of
control, like introspective constraints defined in Section 2.2.1:

Si Si α

JS JS α

JS Si Si α

JS α→ Si α

JS α→ JS Si α

New constraints would define a new set of introspective valuations INTR
where, for example, no agent can control an introspectively valid atom
such as σ Si Si α with σ ∈ OBS ∗ or σ JS α with σ ∈ OBS +. This would
require at least constraints of the form:

¬Cj Si Si α
¬Cj JS JS α

¬Cj JS Si Si α

Yet these are not sufficient to ensure ¬Cj σ Si Si α for every σ ∈ OBS ∗

and ¬Cj σ JS α for every σ ∈ OBS +. We also need to “generate” every
sequence σ using the JS operator. However, the constraints:

¬Cj JS α→ ¬Cj Si α
¬Cj JS α→ ¬Cj JS Si α

echoing the last two introspective constraints, are intuitively too strong:
an agent should be able to make individual visibility true without con-
trolling joint attention.

13 This discussion was not included in [Herzig et al., 2016].

127

Chapter 5. Epistemic boolean games based on visibility and control

As observed in the previous paragraph, we might consider a more
subtle notion of control, with positive and negative control over vari-
ables: C+

i α means that i can only make α true; C−i α means that i can
only make α false. Then Ci α is a shortcut for C+

i α ∧ C
−
i α. Our con-

straints become:

¬C−j Si Si α
¬C−j JS JS α

¬C−j JS Si Si α

¬C−j JS α→ ¬C−j Si α
¬C−j JS α→ ¬C−j JS Si α

or if we rewrite the last two:

C−j Si α→ C−j JS α

C−j JS Si α→ C−j JS α

This seems to be more intuitive: if one can make individual visibility
false, then she can make joint visibility false. From this we can derive:

if C−j α ∈ V and β⇒I α, then C−j β ∈ V,

that is, if agent j negatively controls α, then she also negatively controls
all its introspective causes. Then the constraints that come to mind for
positive control are:

C+
j JS α→ C+

j Si α

C+
j JS α→ C+

j JS Si α

implying that:

if C+
j α ∈ V and α⇒I β, then C+

j β ∈ V.

This set of constraints seems acceptable, however it remains to en-
sure that if V follows all of them, then every V ′ such that V ∼i V ′ or
V ∼Agt V

′ also follows them, which is not the case right now. Another
work to be done is to tune the relation Rπ of programs so that it also
does not exit the new set of introspective valuations. These were the
hardest part when defining the introspective constraints in DEL-PAO; it
is plausible that with an extended set of constraints, this task becomes
much more challenging.

This might be rewarding however, as with such constraints we may
also impose further relations between control and visibility, such as the
requirement “control implies visibility”:

Ci α→ Si α

128

5.7. Conclusion

or knowledge of control:

SiCi α.

5.7 Conclusion
We have studied an extension of DEL-PAO with control in which one can
deduce strategic abilities of coalitions of agents. It accounts for concepts
from boolean games such as the existence of a Nash equilibrium that
can be extended to epistemic boolean games in a straightforward way.

As the model checking of the DEL-PAOC is PSPACE-complete, it fol-
lows that the membership problem and existence problem of a Nash
equilibria in epistemic boolean games are both in PSPACE. Agents can
now modify the visibility conditions of propositional variables, including
higher-order visibility. In the previous work of Ågotnes et al., agents
can only affect the truth value of propositional variables and, indirectly,
the knowledge of those agents’ who can see the truth value of these vari-
ables; but agents cannot modify the visibility conditions of propositional
variables. In other words, visibility conditions remain static, whereas
in our framework, they can change. It remains to establish the lower
bound.

129

6 Adding public announcements
and programs

Another main drawback of visibility-based epistemic logics,
including DEL-PAO, is that the epistemic operators may dis-
tribute over disjunctions: Ki(p ∨ q) → (Kip ∨ Kiq) is valid.
This is annoying because it does not allow us to model things
such as the muddy children puzzle (where each child knows
that one of the children is muddy without knowing which). In
the present chapter, we propose a solution to this problem.

Following [Castelfranchi, 1994; van Linder et al., 1997], we observe
that an agent’s knowledge may originate from three processes: obser-
vation, communication, and inference. We do not consider knowledge
obtained via inference and assume that agents are omniscient. We
therefore do not model formation of knowledge via (time-consuming)
application of inference rules and leave it to future work to integrate
existing logics of time-bounded reasoning [Alechina et al., 2004; Grant
et al., 2000; Balbiani et al., 2016]. While current observability-based ap-
proaches only account for the former, we here take into account the most
basic form of communication modifying the agents’ knowledge: public
announcements. We do so by adding a public information state to the
model, which is a set of valuations, as proposed in [Lomuscio et al.,
2000; Su et al., 2007] and recently used in [Charrier and Schwarzentru-
ber, 2015; van Benthem et al., 2015]. Public announcements make the
public information state shrink just as in public announcement logic.
We can then model that although no p-worlds nor q-worlds are acces-
sible for i because the information state contains no such world, there
is an accessible p∧q-world. This may be due to the announcement of
p ∧ q, or to the announcement (in some order) of p and of q, or to the
announcement (in some order) of p and of p→ q, etc.

In this chapter, we view DEL-PAO programs as being executed pub-
licly, thereby updating the public information state. Public announce-
ments become a particular case of such programs: they are publicly

131

Chapter 6. Adding public announcements and programs

executed tests.
We call this logic DEL-PAO-PP: Dynamic Epistemic Logic of Proposi-

tional Assignment and Observation with Public Programs.

Contents
6.1 Language of DEL-PAO-PP 133
6.2 Semantics of DEL-PAO-PP 135
6.3 Complexity of model checking 139
6.4 Properties of the public programs operator 140

6.4.1 Expressing public announcement of formulas . . 140
6.4.2 Some reduction axioms 140
6.4.3 Replacement of equivalents 142

6.5 Muddy children, proved 142
6.6 Conclusion . 144

Résumé du chapitre

Un autre inconvénient majeur des logiques épistémiques basées sur
la visibilité, y compris DEL-PAO, est que les opérateurs épistémiques
peuvent distribuer sur les disjonctions : Ki(p ∨ q) → (Kip ∨Kiq) est va-
lide. Ceci est gênant, car cela nous empêche de modéliser les problèmes
comme celui des enfants sales (où chaque enfant sait que l’un des en-
fants est boueux sans savoir qui). Dans ce chapitre, nous proposons une
solution à ce problème.

En suivant [Castelfranchi, 1994; van Linder et al., 1997], nous obser-
vons que la connaissance d’un agent peut provenir de trois processus :
l’observation, la communication, et l’inférence. Nous ne considérons pas
la connaissance obtenue par inférence et supposons que les agents sont
omniscients. Alors que les approches actuelles basées sur l’observabi-
lité ne prennent en compte que le premier processus, nous incluons ici
la forme la plus basique de communication modifiant les connaissances
des agents : les annonces publiques. Nous le faisons en ajoutant un état
d’information au modèle, c’est-à-dire un ensemble de valuations, tel que
proposé dans [Lomuscio et al., 2000; Su et al., 2007] et récemment uti-
lisé dans [Charrier and Schwarzentruber, 2015; van Benthem et al.,
2015]. Les annonces publiques font rétrécir l’état d’information, comme
en logique des annonces publiques. Nous pouvons alors modéliser que
même si aucun p-monde ni q-monde n’est accessible pour i car l’état
d’information ne contient pas un tel monde, il existe un p∧q-monde ac-
cessible. Cela peut être dû à l’annonce de p ∧ q, ou bien à celle (dans un
ordre quelconque) de p et de q, ou à celle (dans un ordre quelconque) de
p et de p→ q, etc.

132

6.1. Language of DEL-PAO-PP

Dans ce chapitre, nous considérons les programmes DEL-PAO comme
étant exécutés publiquement, mettant ainsi à jour l’état d’information.
Les annonces publiques deviennent un cas particulier de ces programmes :
elles sont des tests exécutés publiquement.

Nous appelons cette nouvelle logique DEL-PAO-PP : une logique épis-
témique dynamique des affectations propositionnelles, de l’observation
et du contrôle avec des programmes publics.

6.1 Language of DEL-PAO-PP

Remember that Prop is a countable non-empty set of propositional vari-
ables and and Agt is a finite non-empty set of agents. The set of observ-
ability operators OBS and atoms ATM is defined like in DEL-PAO:

OBS = {Si : i ∈ Agt} ∪ {JS}
ATM = {σ p : σ ∈ OBS ∗, p ∈ Prop}

The language of programs and formulas of DEL-PAO-PP is defined by
the following grammar:

π ::= +α | −α | (π;π) | (π t π) | ϕ?

ϕ ::= α | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | CKϕ | [π!]ϕ

where α ranges over ATM and i over Agt .
The language is therefore the one of DEL-PAO, except that programs

are now executed publicly: we read [π!]ϕ as “ϕ will be true after the up-
date of the current local and information states by π.” As we shall see,
the publicly performed test ϕ? behaves exactly as the public announce-
ment of ϕ. Unlike in DEL-PAO, we do not include the Kleene star ∗ to
the language of (public) programs as it is not required in applications
and complexity with it has to be decided.

Kiϕ reads “ϕ is known by i” and CKϕ reads “ϕ is common knowledge
among all agents.” Another difference with DEL-PAO in that, while Si
still expresses sensor information, now Ki expresses information com-
ing from both sensors and communication.

The other boolean operators and dual epistemic operators abbrevi-
ate like in DEL-PAO (in the standard way). Moreover, 〈π!〉ϕ (“there exists
a public execution of π after which ϕ is true”) abbreviates ¬[π!]¬ϕ. The
set of atoms appearing in the formula ϕ and in the program π, noted
ATM (ϕ) and ATM (π), are also defined like in DEL-PAO, with the addi-
tion of:

ATM ([π!]ϕ) = ATM (π) ∪ATM (ϕ).

133

Chapter 6. Adding public announcements and programs

Example 6.1 (Representing the muddy children puzzle). Let us illus-
trate by means of the muddy children puzzle [Lehmann, 1984; Fagin
et al., 1995] how knowledge can be represented in our language.

The version of this puzzle with two agents goes as follows. Two chil-
dren come back from playing in the park. When their father sees them,
he notices that they both have mud on their foreheads. He says, “at
least one of you has mud on her forehead,” and then asks, “Do you know
if you have mud on your forehead?” The children simultaneously an-
swer “No.” Then the father repeats his question, “Do you know if you
have mud on your forehead?” This time the two children simultaneously
answer, “Yes, I have.”

Let Agt = {1, . . . , n} be the set of children. Let Prop = {m1, . . . ,mn}
be the propositional variables, where mi expresses that child i is muddy.

Suppose all children are muddy. This fact is described by the con-
junction:

Muddy =
∧
i∈Agt

mi.

Second, agents’ observational capabilities are expressed by:

Obs =
(∧
i∈Agt

¬Simi

)
∧
(∧
i,j∈Agt ,
i 6=j

Simj

)
∧
(∧
i,j∈Agt

JS Simj

)
.

The first two conjuncts express that the agents see the states of other
agents but not their own states. The last conjunct expresses that the
agents jointly observe their observational capabilities. For instance,
JS Simi reads “all agents jointly see whether i sees mi.” Recall that
it does not imply that i sees mi however.

Third, the agents’ (sensor and communicational) information in the
initial situation is described by the formula:

Ign =
∧
i∈Agt

(¬Kimi ∧ ¬Ki¬mi).

So the muddy children puzzle where all children are muddy is fully
described by the conjunction:

Muddy ∧Obs ∧ Ign.

Let us now look at the consequences of this description in the se-
mantics to be defined. First, the implication

(Muddy ∧Obs ∧ Ign)→ 〈
(∨
i∈Agt

mi

)
?!〉Ign

134

6.2. Semantics of DEL-PAO-PP

will be valid for n ≥ 2: each child is still ignorant about her muddiness
after the announcement that one of them is muddy. Furthermore, the
implications

(Muddy ∧Obs ∧ Ign)→ 〈
(∨
i∈Agt

mi

)
?!〉〈Ign?!〉kIgn

will be valid for 0 ≤ k ≤ n−2 and n ≥ 2, where 〈π!〉k is the iteration of
〈π!〉, k times: the children keep on being ignorant about their state after
n−2 rounds of the announcement of that ignorance.

It is important to note that, unlike in DEL-PAO, in DEL-PAO-PP the
intended meaning of the formulas ¬Kimi ∧ ¬Ki¬mi and ¬Simi is dif-
ferent: the former says that according to her information state, i is ig-
norant about mi, while the latter says that i does not observe mi. The
status of the latter remains unchanged when the children gain new in-
formation via the public announcement of Ign. In contrast, the status of
the former changes after n−1 announcements:

(Muddy ∧Obs ∧ Ign)→ 〈
(∨
i∈Agt

mi

)
?!〉〈Ign?!〉n−1

(∧
i∈Agt

Kimi

)
and even

(Muddy ∧Obs ∧ Ign)→ 〈
(∨
i∈Agt

mi

)
?!〉〈Ign?!〉n−1CK

(∧
i∈Agt

mi

)
will be valid: knowledge and even common knowledge of muddiness is
achieved after n−1 rounds.

6.2 Semantics of DEL-PAO-PP

We interpret our formulas on pointed models. A pointed model is a cou-
ple 〈U,w〉 where:

• U ⊆ 2ATM is the public information state, or simply information
state. This set of worlds will evolve when programs are publicly
executed. For example, the program ϕ? will make the public infor-
mation state shrink so that only worlds satisfying ϕ are kept.

• w ∈ 2ATM is a world, or valuation, or sometimes local state (in
contrast to information state).

A valuation w of DEL-PAO-PP will behave like a valuation of DEL-
PAO. In particular, we note INTR the set of worlds w where the five
constraints (C1)-(C5) defined in Section 2.2.1 hold. We write them w to
empathize that we do not necessarily consider all possible combinations

135

Chapter 6. Adding public announcements and programs

of atoms from ATM any more, but only the ones from the public infor-
mation state U . Our valuations hence become closer to standard Kripke
“worlds.”

Accessibility relations for Ki and CK are defined exactly like in DEL-
PAO (see Section 2.2.3):

w ∼i w′ iff Si α ∈ w implies w(α) = w′(α)

w ∼Agt w
′ iff JS α ∈ w implies w(α) = w′(α)

where, again, with w(α) = w′(α) when either α ∈ w and α ∈ w′, or α /∈ w
and α /∈ w′.

The same properties hold: the relation ∼Agt and every ∼i are equiv-
alence relations on INTR and if w ∈ INTR, if w ∼i w′ or w ∼Agt w

′ then
w′ ∈ INTR.

Example 6.2 (Two muddy children). Consider the valuation

w = {S1m2, S2m1}

∪ {α : α is valid in INTR}
∪ {σSimj : σ ∈ OBS +, i, j ∈ {1, 2}}.

The last two lines ensure that w is introspective: the second adds all
introspective validities and the third adds JS Simj and all its introspec-
tive consequences. Then the four relevant introspective valuations are
depicted in Figure 6.1, together with relations ∼1 and ∼2.

w ∪ {m1} oo 2 //
OO

1

��

1,2
��

w ∪ {m1,m2}
OO
1
��

1,2
��

w oo
2
//

1,2

MM w ∪ {m2}

1,2

SS

Figure 6.1: Two muddy children.

For the dynamic part, we reuse our notation for updates of valua-
tions defined in Section 2.2.4:

w+α = w ∪ α⇒

w−α = w \ α⇐

where α⇐ is the set of introspective causes of α and α⇒ the set of its
introspective consequences, defined like in DEL-PAO (see Section 2.2.1).

136

6.2. Semantics of DEL-PAO-PP

We extend it to a public information state U ⊆ 2ATM :

U+α = {w+α : w ∈ U}
U−α = {w−α : w ∈ U}

Again, Proposition 2.7 on page 37 ensures that when w is introspective
then both w+α and w−α are so, too (unless α is valid in INTR). By defi-
nition, this is still obviously true for the information state: when U only
contains introspective worlds then both U+α and U−α only contains
introspective worlds, too (unless α is valid in INTR).

Truth conditions are as follows:

U,w |= α iff α ∈ w
U,w |= ¬ϕ iff not (U,w |= ϕ)

U,w |= ϕ ∧ ϕ′ iff U,w |= ϕ and U,w |= ϕ′

U,w |= Kiϕ iff U,w′ |= ϕ for every w′ ∈ U such that w ∼i w′

U,w |= CKϕ iff U,w′ |= ϕ for every w′ ∈ U such that w ∼Agt w
′

U,w |= [π!]ϕ iff U ′, w′ |= ϕ for every 〈U ′, w′〉 such that 〈U,w〉Pπ〈U ′, w′〉

where Pπ is a binary relation on pointed models is defined by:

〈U,w〉P+α〈U ′, w′〉 iff U ′ = U+α and w′ = w+α

〈U,w〉P−α〈U ′, w′〉 iff U ′ = U−α and w′ = w−α
and α is not valid in INTR

〈U,w〉Pπ;π′〈U ′, w′〉 iff 〈U,w〉(Pπ ◦ Pπ′)〈U ′, w′〉
〈U,w〉Pπtπ′〈U ′, w′〉 iff 〈U,w〉(Pπ ∪ Pπ′)〈U ′, w′〉
〈U,w〉Pχ?〈U ′, w′〉 iff U,w |= χ, w′ = w, and U ′ = {u ∈ U : U, u |= χ}

Note that we do not require w ∈ U .
For epistemic operators, truth conditions are similar to DEL-PAO’s,

but require the related world w′ to be in the public information state U .
For the new dynamic operator, the relation Pπ includes the modification
of the information state. This operator is therefore distinct from the dy-
namic operator [π] of DEL-PAO. Observe that tests make the information
state shrink while assignments may shrink, but also transpose it.

Example 6.3 (Two muddy children, continued). Remember that

Obs = (¬S1m1 ∧ ¬S2m2) ∧ (S1m2 ∧ S2m1) ∧
(JS S1m1 ∧ JS S1m2 ∧ JS S2m1 ∧ JS S2m2)

and

Ign = (¬K1m1 ∧ ¬K1¬m1) ∧ (¬K2m2 ∧ ¬K2¬m2).

137

Chapter 6. Adding public announcements and programs

Let U be the set of all valuations in Figure 6.1. We have:

U, u |= Obs ∧ Ign, for every u ∈ U
U,w ∪ {m1,m2} |= 〈(m1 ∨m2)?!〉Ign

U,w ∪ {m1,m2} |= 〈(m1 ∨m2)?!〉〈Ign?!〉(K1m1 ∧K2m2)

The proof of last line will be detailed in Section 6.5.

Let C be a class of pointed models. A formula ϕ is satisfiable in C if
and only if there is a 〈U,w〉 ∈ C such that U,w |= ϕ; it is valid in C if and
only if ¬ϕ is unsatisfiable. For example, the equivalence [χ?!]⊥ ↔ ¬χ is
valid in the class of all pointed models.

An introspective pointed model is a pointed model 〈U,w〉 such that:

• w ∈ U ;

• U ⊆ INTR is a set of introspective valuations.

For example, Si JS p is valid in the class of epistemic models. The fol-
lowing conditions guarantee that when we interpret a formula in an
introspective pointed model we stay within the class of introspective
pointed models.

Proposition 6.1. Let 〈U,w〉 be an introspective pointed model. Then the
following hold:

1. If w ∼i w′ and w′ ∈ U then 〈U,w′〉 is an introspective pointed model.

2. If w ∼Agt w
′ and w′ ∈ U then 〈U,w′〉 is an introspective pointed

model.

3. If 〈U,w〉Pπ〈U ′, w′〉 then 〈U ′, w′〉 is an introspective pointed model.

Proof. (1) and (2) are obvious since U does not change and we impose
that w′ ∈ U .

The third item can be proven by induction on the form of π:

• π = +α. We have seen that if U ⊆ INTR, then U+α ⊆ INTR.
Moreover, by definition of U+α, w+α is obviously contained in
U+α.

Therefore 〈U+α,w+α〉 is an introspective pointed model.

• π = −α. If α is valid in INTR, then there is no world related to
〈U,w〉 by P−α. Otherwise, the proof follows the lines of the proof
for π = +α.

• The proofs for π = π1;π2 and π = π1 t π2 are straightforward.

138

6.3. Complexity of model checking

• π = χ?. If U,w 6|= χ, then there is no world related to 〈U,w〉 by
Pχ?.

Otherwise, the resulting information state {u ∈ U : U, u |= χ} ⊆
INTR since it is included in U ⊆ INTR. Moreover, w ∈ {u ∈ U :
U, u |= χ} since U,w |= χ.

Therefore 〈{u ∈ U : U, u |= χ}, w〉 is an introspective pointed model.

It follows that every 〈U ′, w′〉 such that 〈U,w〉Pπ〈U ′, w′〉 is an introspec-
tive pointed model.

Therefore, as it was the case for introspective valuations in DEL-
PAO, we cannot “exit” the class of introspective pointed models when
interpreting Kiϕ, CKϕ or [π!]ϕ.

It is important to observe that the schemas

Si α ∧ α→ Kiα

Si α ∧ ¬α→ Ki¬α

are still valid in the class of all pointed models (even non-epistemic
ones). In contrast, the converse of the implication is now invalid. For ex-
ample, imagine a public information state where p was publicly tested,
i.e., publicly announced: U = {w ∈ 2ATM : p ∈ w}. Then we have
〈U, {p}〉 |= Kip because in every world from the public information state,
p is true, while 〈U, {p}〉 6|= Si p since Si p is currently false.

6.3 Complexity of model checking
We define the relevant atoms of a DEL-PAO-PP formula ϕ like in DEL-
PAO (see Section 2.4.3), as epistemic operators will reduce in the same
way:

RATM (Kiϕ) = RATM (ϕ) ∪ {Si α : α ∈ RATM (ϕ)}
RATM (CKϕ) = RATM (ϕ) ∪ {JS α : α ∈ RATM (ϕ)}

and equal to ATM (ϕ) otherwise.
Then the model checking problem for DEL-PAO-PP is defined as fol-

lows:

• Input: a couple 〈w ∩ RATM (ϕ), ϕ〉 where ϕ is a DEL-PAO-PP for-
mula and w is an introspective valuation;

• Output: yes if INTR, w |= ϕ, no otherwise.

Note that we do not consider the more general problem of checking
a triple 〈U,w, ϕ〉 where U is a set of valuations. The reason is that the

139

Chapter 6. Adding public announcements and programs

explicit representation of U may require exponential space in the size
of w (that may be double-exponential in the length of ϕ). One might
consider representing U by a boolean formula, as done in [Lomuscio
et al., 2000; Su et al., 2007; van Benthem et al., 2015]; however, one
cannot represent the set of all introspective valuations INTR in that
way.

Theorem 6.1. The DEL-PAO-PP model checking problem is PSPACE-
complete.

Proof. The model checking of DL-PA, which is a fragment of DEL-PAO-
PP without visibility operators Si and JS and public information states
was proven to be PSPACE-hard [Balbiani et al., 2014]. This establishes
the lower bound.

We will show in Chapter 7 that the problem is in PSPACE.

6.4 Properties of the public programs operator

In this section, we discuss a list of properties of the public programs
operator [π!].

6.4.1 Expressing public announcement of formulas

Consider the operator [χ!] of public announcement of a formula χ as
studied in dynamic epistemic logics [van Ditmarsch et al., 2007]. In the
present setting, its truth condition has to be formulated as follows:

U,w |= [χ!]ϕ iff U,w |= χ implies {u ∈ U : U, u |= χ}, w |= ϕ.

The set {u ∈ U : U, u |= χ} is called the relativisation of U to the exten-
sion of χ in U .

Let us compare this to the public performance of tests: the relativi-
sation of U to the extension of χ in U is nothing but the result of the
public update of U by χ?. Indeed, 〈U,w〉Pχ?〈U ′, w′〉 is the case if and
only if U,w |= χ and U ′ is the restriction of U to the extension of χ in U .
So [χ!]ϕ and [χ?!]ϕ have identical truth conditions.

6.4.2 Some reduction axioms

We could not find a complete axiomatization based on reduction axioms:
as we have seen, the equivalences

Kiα↔ Si α ∧ α
Ki¬α↔ Si α ∧ ¬α

140

6.4. Properties of the public programs operator

are not valid any more, preventing the reduction of the epistemic oper-
ators like in DEL-PAO. We will see in the next chapter that these oper-
ators can nevertheless be reduced to another kind of program that do
not change the public information state when executed. However, these
programs, while being useful for deciding the complexity, cannot be fully
reduced and therefore are not sufficient to provide an axiomatization ei-
ther. We discuss some valid and invalid equivalences.

The following equivalences reduce all programs to either atomic pro-
grams or public tests:

[π;π′!]ϕ↔ [π!][π′!]ϕ

[π t π′!]ϕ↔ [π!]ϕ ∧ [π′!]ϕ

The proofs given in Proposition 2.11 on page 50 still apply.

As to public tests, they can be reduced against boolean operators and
the individual knowledge operator; the following equivalences are valid
on introspective pointed models:

[χ?!]β ↔ ¬χ ∨ β
[χ?!]¬ϕ↔ ¬χ ∨ ¬[χ?!]ϕ

[χ?!](ϕ ∧ ϕ′)↔ [χ?!]ϕ ∧ [χ?!]ϕ′

[χ?!]Kiϕ↔ ¬χ ∨Ki[χ?!]ϕ

[χ?!]CKϕ↔ ¬χ ∨ CK [χ?!]ϕ

where β is an atom. Observe that these axioms are exactly the reduction
axioms of public announcement logic PAL [Wang and Cao, 2013] plus an
axiom for common knowledge that is due to the similarity between this
operator and the individual knowledge operator. As we have seen, our
public test has the same truth conditions as public announcements.

As to positive public assignments, they are deterministic and dis-
tribute over the boolean operators:

[+α!]β ↔

{
> if α⇒I β

β otherwise

[+α!]¬ϕ↔ ¬[+α!]ϕ

[+α!](ϕ ∧ ϕ′)↔ [+α!]ϕ ∧ [+α!]ϕ′

141

Chapter 6. Adding public announcements and programs

Similarly, for negative public assignments we have

[−α!]β ↔

> if α is valid in INTR

⊥ if α is not valid in INTR and β⇒I α

β otherwise

[−α!]¬ϕ↔

{
> if α is valid in INTR

¬[−α!]ϕ otherwise

[−α!](ϕ ∧ ϕ′)↔ [−α!]ϕ ∧ [−α!]ϕ′

We have already proven them within the framework of DEL-PAO (see
Proposition 2.11 on page 50).

6.4.3 Replacement of equivalents

The above equivalences can be applied anywhere in a formula because
the inference rule of replacement of equivalents preserves validity.

Proposition 6.2. Let ϕ′ be obtained from ϕ by replacing some occur-
rence of χ in ϕ by χ′. Let U be a set of valuations. If U,w |= χ ↔ χ′ for
every w ∈ U then U,w |= ϕ↔ ϕ′ for every w ∈ U .

Proof. This is due to the fact that, along with the ones for Ki and CK
(see Proposition 2.12 on page 52) the following rule of inference for [π!]:

ϕ↔ ψ

[π!]ϕ↔ [π!]ψ

preserves validity.

6.5 Muddy children, proved
In this section we formally prove the statement we made in Example 6.3
about the muddy children puzzle for the case of two children. Remember
that we have assumed that each child is muddy:

Muddy = m1 ∧m2.

As usual, each child sees the other but cannot see herself:

Obs = (¬S1m1 ∧ ¬S2m2) ∧ (S1m2 ∧ S2m1) ∧
(JS S1m1 ∧ JS S1m2 ∧ JS S2m1 ∧ JS S2m2),

and initially each child does not know whether she is muddy or not:

Ign = (¬K1m1 ∧ ¬K1¬m1) ∧ (¬K2m2 ∧ ¬K2¬m2).

We use the following validity of PAL.

142

6.5. Muddy children, proved

Proposition 6.3. Let ϕ and ϕ′ be boolean formulas. Then

(Kiϕ ∧ ¬Kiϕ
′ ∧ ¬Ki¬ϕ′)→ [(ϕ ∨ ϕ′)?!](¬Kiϕ

′ ∧ ¬Ki¬ϕ′)

is valid in introspective pointed models.

Intuitively, the above proposition says that if agent i knows a fact ϕ
but does not know the fact ϕ′, then publicly announcing that ϕ or ϕ′ is
true does not increase her knowledge about ϕ′.

Proof. Suppose U,w |= Kiϕ. Then for every 〈U ′, w′〉 such that 〈U,w〉 ∼i
〈U ′, w′〉, U ′, w′ |= ϕ. Moreover, suppose U,w |= ¬Kiϕ

′ ∧ ¬Ki¬ϕ′. Then
there exists a 〈U1, w1〉 such that U1, w1 |= ϕ′ and there exists a 〈U2, w2〉
such that U2, w2 6|= ϕ′.

Now suppose we announce that ϕ ∨ ϕ′. Every pointed model which
was previously related to 〈U,w〉 by ∼i will still be since ϕ, and hence
ϕ∨ϕ′, is true in all of them. Therefore there still exists a related pointed
model where ϕ′ is true and a related pointed model where ϕ′ is false.
Thus after the announcement of ϕ∨ϕ′, we still have ¬Kiϕ

′∧¬Ki¬ϕ′.

The formulas

(K1m2 ∧ ¬K1m1 ∧ ¬K1¬m1)→ [m2∨m1?!](¬K1m1 ∧ ¬K1¬m1)

and

(K2m1 ∧ ¬K2m2 ∧ ¬K2¬m2)→ [m1∨m2?!](¬K2m2 ∧ ¬K2¬m2)

143

Chapter 6. Adding public announcements and programs

are instances of the above PAL validity. Observe that Muddy ∧ Obs im-
plies K1m2 and K2m1 while Ign implies ¬K1m1 ∧¬K1¬m1 and ¬K2m2 ∧
¬K2¬m2. Therefore:

(Muddy ∧Obs ∧ Ign)→ [m1∨m2?!]Ign.

Moreover:

Muddy → 〈m1∨m2?!〉>.

Putting the last two implications together we obtain:

(Muddy ∧Obs ∧ Ign)→ 〈m1∨m2?!〉Ign.

Similarly, we can establish that

(Muddy ∧Obs ∧ Ign)→ 〈m1∨m2?!〉〈Ign?!〉(K1m1 ∧K2m2)

is valid in introspective pointed models.

6.6 Conclusion
We have extended DEL-PAO in such a way that knowledge of agents
is deduced from what they see and from what is publicly announced to
them. We thereby solve the second issue of previous observability-based
approaches: knowledge operators do not distribute over disjunction any
more. This latter feature allows us to formalize the muddy children
puzzle in a natural way.

Beyond public announcements, we can reason about publicly exe-
cuted programs: public announcements are special cases of publicly
executed tests. This allows us to formalize variants of the muddy chil-
dren puzzle where the children e.g. clean their forehead [van Ditmarsch
et al., 2005]. The addition of public programs again comes without in-
creasing the complexity as the model checking problem of DEL-PAO-PP
is still PSPACE-complete. It however remains to find an axiomatization.

144

7 Complexity of model checking:
upper bound

In this chapter, we prove that the model checking problem
for all logics presented in this thesis—DEL-PAO in Chapter 2,
DEL-PAOS in Chapter 4, DEL-PAOC in Chapter 5 and DEL-
PAO-PP in Chapter 6—is in PSPACE. We do so by providing
an algorithm for a language into which all formulas from ev-
ery previous logic can be translated. This language includes
publicly executed programs, used to encode DEL-PAO-PP pro-
grams, as well as “mental programs” that do not modify the
public information state, allowing us to encode DEL-PAO pro-
grams.

To cover all languages, we provide semantics based on a public in-
formation state and a valuation (like in Chapter 6). However, public
programs of DEL-PAO-PP modify the public information state and thus
differ from programs presented in DEL-PAO, DEL-PAOS and DEL-PAOC.
We have also seen in Chapter 2 and in Chapter 5 how to reduce epis-
temic and strategic operators to programs. Therefore it will be useful to
include in our language both public programs and a new operator Kπ,
where π will be a “mental program,” i.e., will not modify the public in-
formation state. Such operators were introduced e.g. in [van Benthem
et al., 2006; Charrier and Schwarzentruber, 2015; Herzig et al., 2015].
Intuitively, [π!]ϕ is read “ϕ will be true after the public update of the
current local and information states by π,” while Kπϕ is read “ϕ will be
true after the update of the current local state by π (keeping the current
information state constant).” So at a given local state w and informa-
tion state U , the public program operator [π!] updates both U and w; in
contrast, the mental program operator Kπ keeps U constant and only
updates w. The latter can be viewed as traversing the space of current
epistemic possibilities.14

14 This chapter is inspired by a section of [Charrier et al., 2016a], but has been revised

145

Chapter 7. Complexity of model checking: upper bound

We call this logic DL-PA-PMP: Dynamic Logic of Propositional As-
signments with Public and Mental Programs.

Contents
7.1 DL-PA-PMP: DL-PA with public and mental programs147

7.1.1 Language of DL-PA-PMP 147
7.1.2 Semantics of DL-PA-PMP 148

7.2 Translation into DL-PA-PMP 150
7.2.1 From DEL-PAO . 150
7.2.2 From DEL-PAOS 153
7.2.3 From DEL-PAOC 153
7.2.4 From DEL-PAO-PP 156

7.3 The model checking problem 161
7.4 The PSPACE algorithm 161
7.5 Conclusion . 166

Résumé du chapitre

Dans ce chapitre, nous prouvons que le problème de vérification de
modèle pour toutes les logiques présentées dans la thèse—DEL-PAO dans
le chapitre 2, DEL-PAOS dans le chapitre 4, DEL-PAOC dans le chapitre 5
et DEL-PAO-PP dans le chapitre 6—est en PSPACE. Nous le faisons en
fournissant un algorithme pour un langage dans lequel toutes les for-
mules de toutes les précédentes logiques peuvent être traduites. Ce lan-
gage comprend des programmes exécutés publiquement, utilisés pour
encoder les programmes de DEL-PAO-PP, ainsi que des “programmes
mentaux” qui ne modifient pas l’état d’information, ce qui nous permet
d’encoder des programmes de DEL-PAO.

Pour couvrir tous les langages, nous fournissons une sémantique
s’appuyant sur un état d’information et une valuation (comme dans le
chapitre 6). Toutefois, les programmes publics de DEL-PAO-PP modifient
l’état d’information et diffèrent donc des programmes présentés dans
DEL-PAO, DEL-PAOS et DEL-PAOC. Nous avons également vu dans le
chapitre 2 et dans le chapitre 5 comment réduire les opérateurs épisté-
miques et stratégiques à ces programmes. Par conséquent, il sera utile
d’inclure dans notre langage à la fois les programmes publics et un nou-
vel opérateur Kπ, où π sera un “programme mental”, c’est-à-dire, qui ne
modifiera pas l’état d’information. Ces opérateurs ont été introduits par

in order to include properly all presented logics: the Kleene star has been added and
translations from every language, along with proofs of correctness, have been added.
The model checking algorithms remain unchanged (apart from the star that was in-
cluded, following [Charrier et al., 2016b]).

146

7.1. DL-PA-PMP: DL-PA with public and mental programs

exemple dans [van Benthem et al., 2006; Charrier and Schwarzentru-
ber, 2015; Herzig et al., 2015]. Intuitivement, [π!]ϕ est lu “ϕ sera vrai
après la mise à jour des états local et d’information actuels par π”, tan-
dis que Kπϕ est lu “ϕ sera vrai après la mise à jour de l’état local actuel
par π (en gardant l’état d’information courant constant)”. Donc, étant
donnés un état local w et un état d’information U , l’opérateur de pro-
gramme public [π!] met à jour à la fois U et w, alors que l’opérateur de
programme mental Kπ garde U constant et met seulement à jour w. Ce
dernier peut être vu comme traversant l’espace des possibilités épisté-
miques actuelles.

Nous appelons cette logique DL-PA-PMP : une logique dynamique des
affectations propositionnelles avec des programmes publics et mentaux.

7.1 DL-PA-PMP: DL-PA with public and mental pro-
grams

To show that the problem is in PSPACE, we adapt the alternating al-
gorithm in [Charrier and Schwarzentruber, 2015], originally designed
for a variant of a dynamic logic with propositional assignments, pub-
lic announcements and arbitrary public announcements. Here we con-
sider another, novel variant without arbitrary public announcements
but with public programs: DL-PA-PMP.

7.1.1 Language of DL-PA-PMP

Remember that Prop is a countable non-empty set of propositional vari-
ables and and Agt is a finite non-empty set of agents.

The set of visibility operators OBS is defined like in DEL-PAO:

OBS = {Si : i ∈ Agt} ∪ {JS}.

We also include the set of control operators CTRL from DEL-PAOC:

CTRL = {Ci : i ∈ Agt},

so that atoms are about both visibility and control:

ATM = {σ p : σ ∈ (OBS ∪ CTRL)∗, p ∈ Prop}.

Then the syntax of DL-PA-PMP is defined by the following grammar:

πp ::= α←> | α←⊥ | (πp;πp) | (πp t πp) | ϕ?

πm ::= α←> | α←⊥ | (πm;πm) | (πm t πm) | πm∗ | ϕ?

ϕ ::= α | ¬ϕ | (ϕ ∧ ϕ) | [πp!]ϕ | Kπmϕ

147

Chapter 7. Complexity of model checking: upper bound

where α ranges over ATM .
Unlike in previous logics, here assignments are noted α←> and

α←⊥ to highlight that they are different from our previous +α and −α.
Indeed, even if we include joint visibility operators JS , we will see that
their semantics do not take introspective consequences and introspec-
tively valid atoms into account.

The other boolean operators abbreviate as usual, in the standard
way. The set of atoms appearing in the formula ϕ and in the program
π, noted ATM (ϕ) and ATM (π), are also defined like in DEL-PAO for
boolean operators. Moreover:

ATM ([πp!]ϕ) = ATM (πp) ∪ATM (ϕ)

ATM (Kπmϕ) = ATM (πm) ∪ATM (ϕ)

The language of DL-PA-PMP is slightly different from the one pre-
sented in [Charrier and Schwarzentruber, 2015]; here, we:

• consider general programs [πp!]ϕ instead of only public announce-
ments;

• drop arbitrary public announcements;

• include the Kleene star in mental programs.

This implies that the model checking procedure will have to consider
general publicly executed programs and the Kleene star. The latter is
however included in an extended version of [Charrier and Schwarzen-
truber, 2015] that can be found in [Charrier et al., 2016b].

7.1.2 Semantics of DL-PA-PMP

Formulas are interpreted on pointed models 〈U,w〉 (see Section 6.2):
public programs will modify the public information state while men-
tal programs will not. The latter will allow us to simulate DEL-PAO
programs within the framework of DL-PA-PMP.

As we have mentioned, assignments do not take into account intro-
spective consequences even with JS operators, so that a finite number
of atoms is modified; it is the translation of other logics formulas into
DL-PA-PMP that will deal with consequences. We define:

w+α = w ∪ {α}
w−α = w \ {α}

and

U+α = {w+α : w ∈ U}
U−α = {w−α : w ∈ U}

148

7.1. DL-PA-PMP: DL-PA with public and mental programs

Then the truth conditions of DL-PA-PMP are as follows:

U,w |= α iff α ∈ w
U,w |= ¬ϕ iff not (U,w |= ϕ)

U,w |= ϕ ∧ ϕ′ iff U,w |= ϕ and U,w |= ϕ′

U,w |= [π!]ϕ iff U ′, w′ |= ϕ for every 〈U ′, w′〉 such that 〈U,w〉Pπ〈U ′, w′〉
U,w |= Kπϕ iff U,w′ |= ϕ for every w′ ∈ U such that 〈U,w〉Mπ〈U,w′〉

where Pπ is the public relation on pointed models is defined by:

〈U,w〉Pα←>〈U ′, w′〉 iff U ′ = U+α and w′ = w+α

〈U,w〉Pα←⊥〈U ′, w′〉 iff U ′ = U−α and w′ = w−α
〈U,w〉Pπ;π′〈U ′, w′〉 iff 〈U,w〉(Pπ ◦ Pπ′)〈U ′, w′〉
〈U,w〉Pπtπ′〈U ′, w′〉 iff 〈U,w〉(Pπ ∪ Pπ′)〈U ′, w′〉
〈U,w〉Pχ?〈U ′, w′〉 iff U,w |= χ, w′ = w, and U ′ = {u ∈ U : U, u |= χ}

andMπ is the mental relation on pointed models that is defined by:

〈U,w〉Mα←>〈U ′, w′〉 iff U ′ = U and w′ = w+α

〈U,w〉Mα←⊥〈U ′, w′〉 iff U ′ = U and w′ = w−α
〈U,w〉Mπ;π′〈U ′, w′〉 iff 〈U,w〉(Mπ ◦Mπ′)〈U ′, w′〉
〈U,w〉Mπtπ′〈U ′, w′〉 iff 〈U,w〉(Mπ ∪Mπ′)〈U ′, w′〉

〈U,w〉Mπ∗〈U ′, w′〉 iff 〈U,w〉(
⋃
k∈N0

(Mπ)k)〈U ′, w′〉

〈U,w〉Mχ?〈U ′, w′〉 iff U ′ = U, w′ = w and U,w |= χ

Observe that mental programs indeed do not change the public in-
formation state: when 〈U,w〉Mπ〈U ′, w′〉 then U ′ = U . However, the ex-
ecution of mental programs may exit the information state. To see this,
take as an example U = {w ∈ 2ATM : p /∈ w}, i.e., the set of valuations
where p is false. Mp←> relates the pointed model 〈U, ∅〉 to the model
〈U, {p}〉, but {p} /∈ U .

As we will translate DEL-PAO-PP’s epistemic operators, that depend
on the information state, into mental programs, we impose that truth
condition for Kπ requires w′ ∈ U : valuations outside the U will not be
taken into account.

Note also that unlike in all other semantics presented in this thesis,
introspectively valid atoms can be removed by the public or mental ex-
ecution of α←⊥. Like introspective consequences, the translation into
DL-PA-PMP will have to deal with them.

149

Chapter 7. Complexity of model checking: upper bound

7.2 Translation into DL-PA-PMP

In this section, we show how to translate formulas of the previously
presented logics into the language of DL-PA-PMP. We prove that the
translation is correct on models we are interested in: the formula is
satisfied in a given (introspective) model of its original framework if
and only if it is satisfied in the corresponding (finite) model of DL-PA-
PMP that we will use for model checking.

We define the restriction of a set of valuations to a set of atoms A as:

U |A = {u ∩A : u ∈ U}.

Note that U |A is a finite set of finite valuations whenever A is finite.
To avoid confusion, we indicate to which semantics we refer to by

subscripting the satisfaction relation |= by the name of the logic. When
we mention translation functions, we always refer to the ones defined
at the beginning of the current subsection.

7.2.1 From DEL-PAO

Take a DEL-PAO formula ϕ. We define the following procedure of trans-
lation of ϕ into DL-PA-PMP.
Procedure 7.1.

1. eliminate all epistemic operators Ki and CK from ϕ using Proce-
dure 2.2 on page 61; call the resulting formula ϕ′;

2. translate ϕ′ into the DL-PA-PMP formula trfmlATM (ϕ′)(ϕ
′) according to

the following definition:

trfmlA (α) = α

trfmlA (¬ϕ) = ¬trfmlA (ϕ)

trfmlA (ϕ1 ∧ ϕ2) = trfmlA (ϕ1) ∧ trfmlA (ϕ2)

trfmlA ([π]ϕ) = Ktr
prg
A (π)tr

fml
A (ϕ)

where tr
prg
A (π) is defined as:

tr
prg
A (+α) = β1←>; . . . ;βm←>

tr
prg
A (−α) =

{
fail if α valid in INTR

β′1←⊥; . . . ;β′p←⊥ otherwise

tr
prg
A (π1;π2) = tr

prg
A (π1); tr

prg
A (π2)

tr
prg
A (π1 t π2) = tr

prg
A (π1) t tr

prg
A (π2)

tr
prg
A (π∗) = tr

prg
A (π)∗

tr
prg
A (χ?) = trfmlA (χ)?

150

7.2. Translation into DL-PA-PMP

with

{β1, . . . , βm} = α⇒ ∩A
{β′1, . . . , β′p} = α⇐ ∩A

Remember that α⇐ and α⇒ are the introspective causes and conse-
quences of α. We note trDEL-PAO(ϕ) the formula obtained after applying
Procedure 7.1 to ϕ.

Lemma 7.1. Let π be a DEL-PAO program and A ⊆ ATM a set of atoms.
Let w be a DL-PA-PMP valuation such that w ∈ INTR. Then for every w′
such that 〈INTR|A, w ∩A〉Mtr

prg
A (π)〈INTR|A, w′〉, we have w′ ∈ INTR|A.

Proof. Observe that w ∈ INTR implies that w ∩ A ∈ INTR|A. We prove
the property by induction on the form of π.

• π = +α. In this case, we have tr
prg
A (π) = β1←>; . . . ;βm←> with

{β1, . . . , βm} = α⇒ ∩ A. Hence by the truth conditions of DL-PA-
PMP, w′ = (w ∩A)∪ (α⇒ ∩A) = (w ∪α⇒)∩A. Since w ∈ INTR, we
have seen in DEL-PAO that w ∪ α⇒ ∈ INTR, hence (w ∪ α⇒) ∩ A ∈
INTR|A.

• π = −α. If α is valid in INTR, tr
prg
A (−α) = fail and the property is

trivially valid. Otherwise, the proof is similar to the case π = +α.

• The proofs for π = π1;π2 and π = π1 t π2 are straightforward
since their translation is homomorphic and the associated relation
Mtr

prg
A (π) is a composition or union ofMtr

prg
A (π1) andMtr

prg
A (π2).

• π = χ?. Then tr
prg
A (π) = trfmlA (χ)?. Like when assigning to false

an introspectively valid atom, the proof is obvious if the program
fails. Otherwise, the truth condition indicates that w′ = w ∩ A,
hence w′ trivially belongs to INTR|A.

In all cases we have w′ ∈ INTR|A.

Lemma 7.1 implies that on specific states, translations of DEL-PAO
programs cannot exit the public information state. This helps us prove
the next equivalences.

Proposition 7.1. Let A ⊆ ATM be a set of atoms and w ∈ INTR an
introspective valuation. Then we have:

INTR|A, w ∩A |=DL-PA-PMP Ktr
prg
A (π1;π2)ϕ↔ Ktr

prg
A (π1)Ktr

prg
A (π2)ϕ

INTR|A, w ∩A |=DL-PA-PMP Ktr
prg
A (π1tπ2)ϕ↔ Ktr

prg
A (π1)ϕ ∧Ktr

prg
A (π2)ϕ

INTR|A, w ∩A |=DL-PA-PMP Ktr
prg
A (π∗)ϕ↔ K

tr
prg
A (π22|ATM (π)|

)
ϕ

INTR|A, w ∩A |=DL-PA-PMP Ktr
prg
A (χ?)ϕ↔ trfmlA (χ)→ ϕ

151

Chapter 7. Complexity of model checking: upper bound

Proof. All these equivalences are plainly valid in DEL-PAO (see Proposi-
tion 2.11 on page 50) and most are equivalences of dynamic logics. They
still apply in DL-PA-PMP on certain models because, first, the transla-
tion of these program operators is homomorphic, and second, because of
Lemma 7.1 that ensures that on this kind of model, translations of pro-
grams for the set A do not exit the public information state. This is es-
pecially important for the sequence: Ktr

prg
A (π1;π2)ϕ ↔ Ktr

prg
A (π1)Ktr

prg
A (π2)ϕ

is not valid in the general case.

Proposition 7.2. Let V ∈ INTR be an introspective valuation and ϕ a
DEL-PAO formula. Then we have:

V |=DEL-PAO ϕ if and only if
INTR|RATM (ϕ), V ∩ RATM (ϕ) |=DL-PA-PMP trDEL-PAO(ϕ)

Proof. We follow the translation procedure and use properties of DEL-
PAO and DL-PA-PMP programs to prove the equivalence.

• First of all, remove epistemic operators from ϕ, and write the re-
sulting formula ϕ′; by Proposition 2.17 on page 59, it is equiva-
lent to ϕ since V is introspective. We have seen that RATM (ϕ) =
ATM (ϕ′). Call this set A. Translate the resulting formula into
DL-PA-PMP; we obtain trfmlA (ϕ′).

• In DEL-PAO, apply validities (Red ;), (Redt), (Red∗) and (Red?) of
Proposition 2.11 on page 50 to ϕ′. We obtain a formula ϕ′′ equiva-
lent to ϕ′ and with the same atoms, but with only boolean opera-
tors and assignment programs.

In DL-PA-PMP, apply validities of Proposition 7.1 to trfmlA (ϕ′), with-
out “breaking” sequences of assignments that originate from the
same DEL-PAO assignment. (For example, suppose we translate
[+JS p]Si p, we will obtainKJS p←>;Si p←>Si p, with JS p←>;Si p←>
both originating from +JS p.) We obtain a new formula that is
equivalent to trfmlA (ϕ′), and actually identical to the translation of
ϕ′′ (noted trfmlA (ϕ′′)) since, first, translations of program operators ;,
t, ∗ and ? are homomorphic and second, because the equivalences
that we apply are identical to the ones of Proposition 2.11.

Therefore we only need to prove that

V |=DEL-PAO ϕ′′ if and only if INTR|A, V ∩A |=DL-PA-PMP trfmlA (ϕ′′).

We do it by induction on the form of ϕ′′ (remember that it only contains
boolean operators and assignments programs):

152

7.2. Translation into DL-PA-PMP

• ϕ′′ is boolean. In this case, trfmlA (ϕ′′) = ϕ′′. Then V |=DEL-PAO ϕ′′

is equivalent to V ∩ A |=DEL-PAO ϕ′′ by Proposition 2.9 on page 38,
which is equivalent to U, V ∩A |=DL-PA-PMP ϕ

′′ for any public infor-
mation state U since the truth conditions for boolean formulas are
identical in DEL-PAO and in DL-PA-PMP and only depend on the
local state. In particular, INTR|A, V ∩A |=DL-PA-PMP ϕ

′′.

• ϕ′′ = [+α]ψ. Then we have trfmlA (ϕ′′) = Kβ1←>;...;βm←>trfmlA (ψ) with
{β1, . . . , βm} = α⇒ ∩A. Hence:

INTR|A, V ∩A |=DL-PA-PMP Kβ1←>;...;βm←>trfmlA (ψ)

⇔ INTR|A, (V ∩A) ∪ (α⇒ ∩A) |=DL-PA-PMP trfmlA (ψ)

⇔ INTR|A, (V ∪ α⇒) ∩A |=DL-PA-PMP trfmlA (ψ)

⇔ V ∪ α⇒ |=DEL-PAO ψ (by induction hypothesis)
⇔ V |=DEL-PAO [+α]ψ.

• ϕ′′ = [−α]ψ. The proof is obvious if α is introspectively valid (as
it translates to fail) and similar to the case ϕ′′ = [+α]ψ otherwise.

Therefore the translation is correct.

This settles the case of DEL-PAO. The properties of other logics are
slightly different due to their respective operators and semantics, but
we will see that the method is the same.

7.2.2 From DEL-PAOS

Observe that DEL-PAOS is a fragment of DEL-PAOC: neither of them con-
sider the operator of joint visibility JS or common knowledge, and their
semantics are strictly identical for boolean, epistemic and dynamic op-
erators; DEL-PAOC simply further includes the strategic operator 3J .
Therefore we do not detail any procedure for DEL-PAOS , as it is com-
pletely identical to the one for DEL-PAOC, without the reduction of strate-
gic operators at the beginning.

7.2.3 From DEL-PAOC

Take a DEL-PAOC formula ϕ. We define the following procedure of trans-
lation of ϕ into DL-PA-PMP.

Procedure 7.2.

1. eliminate all epistemic operators Ki and strategic operators 3J
from ϕ using Procedure 5.1 on page 121; call the resulting formula
ϕ′;

153

Chapter 7. Complexity of model checking: upper bound

2. translate ϕ′ into the DL-PA-PMP formula trfml(ϕ′) according to the
following definition:

trfml(α) = α

trfml(¬ϕ) = ¬trfml(ϕ)

trfml(ϕ1 ∧ ϕ2) = trfml(ϕ1) ∧ trfml(ϕ2)

trfml([π]ϕ) = Ktrprg(π)tr
fml(ϕ)

where trprg(π) is defined as:

trprg(+α) = α←>

trprg(−α) =

{
fail if α valid in INTR

α←⊥ otherwise

trprg(π1;π2) = trprg(π1); trprg(π2)

trprg(π1 t π2) = trprg(π1) t trprg(π2)

trprg(π∗) = trprg(π)∗

trprg(χ?) = trfml(χ)?

Observe that we do not need to keep the set of atoms of ϕ′ in this
case, as we do not have to deal with introspective causes and conse-
quences in assignments. We note trDEL-PAOC(ϕ) the formula obtained
after applying Procedure 7.2 to ϕ.

Lemma 7.2. Let π be a DEL-PAOC program and A ⊆ ATM a set of
atoms such that ATM (π) ⊆ ATM . Let w be a DL-PA-PMP valua-
tion such that w ∈ INTR. Then for every w′ such that 〈INTR|A, w ∩
A〉Mtrprg(π)〈INTR|A, w′〉, we have w′ ∈ INTR|A.

Proof. We prove it by induction on the form of π.

• π = +α. In this case, trprg(π) = α←>. Hence by the truth con-
ditions of DL-PA-PMP, w′ = (w ∩ A) ∪ {α} = (w ∪ {α}) ∩ A since
α ∈ A (because ATM (π) ⊆ ATM). Since w ∈ INTR, we have seen
in DEL-PAOC that w ∪ {α} ∈ INTR, hence (w ∪ {α}) ∩A ∈ INTR|A.

• π = −α. If α is valid in INTR, trprg(−α) = fail and the property is
trivially valid. Otherwise, the proof is similar to the case π = +α.

• The proofs for π = π1;π2, π = π1 t π2 and π = χ? are similar to
their cases in the proof of Lemma 7.1 as their truth conditions are
identical to DEL-PAO’s.

In all cases we have w′ ∈ INTR|A.

154

7.2. Translation into DL-PA-PMP

This counterpart of Lemma 7.1 indicates that, again, the execution
of mental programs cannot exit the public information state in models
that interest us.

Proposition 7.3. Let A ⊆ ATM be a set of atoms and w ∈ INTR an
introspective valuation. Then we have:

INTR|A, w ∩A |=DL-PA-PMP Ktrprg(π1;π2)ϕ↔ Ktrprg(π1)Ktrprg(π2)ϕ

INTR|A, w ∩A |=DL-PA-PMP Ktrprg(π1tπ2)ϕ↔ Ktrprg(π1)ϕ ∧Ktrprg(π2)ϕ

INTR|A, w ∩A |=DL-PA-PMP Ktrprg(π∗)ϕ↔ K
trprg(π22|ATM (π)|

)
ϕ

INTR|A, w ∩A |=DL-PA-PMP Ktrprg(χ?)ϕ↔ trfml(χ)→ ϕ

Proof. The proof is similar to Proposition 7.1 for the translation of DEL-
PAO programs. It likewise relies on Lemma 7.2.

Proposition 7.4. Let V ∈ INTR be a valuation and ϕ a DEL-PAOC for-
mula. Then we have:

V |=DEL-PAOC ϕ if and only if
INTR|RATM (ϕ), V ∩ RATM (ϕ) |=DL-PA-PMP trDEL-PAOC(ϕ)

Remember that relevant atoms of DEL-PAOC also include control
atoms that are “hidden” in strategic operators.

Proof. The proof follows the lines of Proposition 7.2 from the previous
section: we first remove epistemic and strategic operators from ϕ and
obtain a formula ϕ′, equivalent to ϕ by Proposition 5.1 on page 118
and such that RATM (ϕ) = ATM (ϕ′). Then we apply validities (Red ;),
(Redt), (Red∗) and (Red?) of Proposition 2.11 on page 50 to ϕ′, getting ϕ′′,
and equivalences of Proposition 7.3 to its translation trfml(ϕ′), obtaining
trfml(ϕ′′) like in the previous setting. We again need to prove that

V |=DEL-PAOC ϕ
′′ if and only if INTR|A, V ∩A |=DL-PA-PMP trfml(ϕ′′),

with A = ATM (ϕ′). We again do it by induction on the form of ϕ′′.

• The case when ϕ′′ is boolean is the same as for Proposition 7.2
(because the translation is still homomorphic).

• ϕ′′ = [+α]ψ. This time we have trfml(ϕ′′) = Kα←>trfml(ψ). Ob-
serve that α ∈ A. Hence:

INTR|A, V ∩A |=DL-PA-PMP Kα←>trfml(ψ)

⇔ INTR|A, (V ∩A) ∪ {α} |=DL-PA-PMP trfml(ψ)

⇔ INTR|A, (V ∪ {α}) ∩A |=DL-PA-PMP trfml(ψ)

⇔ V ∪ {α} |=DEL-PAOC ψ (by induction hypothesis)
⇔ V |=DEL-PAOC [+α]ψ.

155

Chapter 7. Complexity of model checking: upper bound

• ϕ′′ = [−α]ψ. The proof is obvious if α is introspectively valid (as
it translates to fail) and similar to the case ϕ′′ = [+α]ψ otherwise.

Therefore the translation is correct.

7.2.4 From DEL-PAO-PP

In DEL-PAO-PP, we consider public programs and epistemic operators.
The formers will be translated homomorphically (except, as before, for
assignments) to DL-PA-PMP public programs. We have already seen
in DEL-PAO how to reduce epistemic operators to programs; we reuse
these in DEL-PAO-PP. As epistemic operators do not modify the public
information state and as we only keep indistinguishable worlds that
are in this information state, we translate them to mentally executed
programs, whose semantics fit perfectly.

Take a DEL-PAO-PP formula ϕ. We define the following procedure of
translation of ϕ into DL-PA-PMP.

Procedure 7.3.

1. translate ϕ into the DL-PA-PMP formula trfmlRATM (ϕ)(ϕ) according to
the following definition:

trfmlA (α) = α

trfmlA (¬ϕ) = ¬trfmlA (ϕ)

trfmlA (ϕ1 ∧ ϕ2) = trfmlA (ϕ1) ∧ trfmlA (ϕ2)

trfmlA (Kiϕ) = Ktr
prg
A (varyIfNotSeen(i,RATM (ϕ)))tr

fml
A (ϕ)

trfmlA (CKϕ) = Ktr
prg
A (varyIfNotSeen(Agt ,RATM (ϕ)))tr

fml
A (ϕ)

trfmlA ([π!]ϕ) = [tr
prg
A (π)!]trfmlA (ϕ)

where tr
prg
A (π) is defined as:

tr
prg
A (+α) = β1←>; . . . ;βm←>

tr
prg
A (−α) =

{
fail if α valid in INTR

β′1←⊥; . . . ;β′p←⊥ otherwise

tr
prg
A (π1;π2) = tr

prg
A (π1); tr

prg
A (π2)

tr
prg
A (π1 t π2) = tr

prg
A (π1) t tr

prg
A (π2)

tr
prg
A (χ?) = trfmlA (χ)?

with

{β1, . . . , βm} = α⇒ ∩A
{β′1, . . . , β′p} = α⇐ ∩A

156

7.2. Translation into DL-PA-PMP

Observe that unlike in Procedure 7.1 for DEL-PAO and in Proce-
dure 7.2 for DEL-PAOC, we use RATM (ϕ) instead of ATM (ϕ′) (with ϕ′

the formula resulting from eliminating epistemic operators from ϕ) as
epistemic operators have not be eliminated yet. This is however equiv-
alent, as we have seen that RATM (ϕ) = ATM (ϕ′) in previous cases. We
simulate epistemic operators with our programs varyIfNotSeen(., .) on the
relevant atoms of the nested formula as it may contain other epistemic
operators; then we translate these programs so that assignments be-
have correctly. This translation is identical for public programs (and is
the same as previous translations of DEL-PAO and DEL-PAOC programs).
We do not include the star since it does not appear in varyIfNotSeen(i, A)
and varyIfNotSeen(Agt , A). We note trDEL-PAO-PP(ϕ) the formula obtained
after applying Procedure 7.3 to ϕ.

We verify that epistemic operators are indeed equivalent to their
mentally executed programs counterparts.

Proposition 7.5. Let U be a public information state such that U ⊆
INTR, w ∈ U a valuation, i an agent and ϕ a formula without epistemic
operators. Then:

1. for every A ⊆ ATM such that RATM (Kiϕ) ⊆ A,
U,w |=DEL-PAO-PP Kiϕ if and only if U |A, w ∩ A |=DL-PA-PMP
Ktr

prg
A (varyIfNotSeen(i,ATM (ϕ)))tr

fml
A (ϕ);

2. for every A ⊆ ATM such that RATM (CKϕ) ⊆ A,
U,w |=DEL-PAO-PP CKϕ if and only if U |A, w ∩ A |=DL-PA-PMP
Ktr

prg
A (varyIfNotSeen(Agt ,RATM (ϕ)))tr

fml
A (ϕ).

Proof. We only examine the first case as the case of common knowledge
is similar.

Observe that since ϕ is boolean, RATM (ϕ) = ATM (ϕ). We have seen
in the proof of Proposition 2.17 on page 59 that varyIfNotSeen(i,ATM (ϕ))
correctly simulates the epistemic operator on valuations that are intro-
spective enough (which is the case of w ∩ A since RATM (Kiϕ) ⊆ A).
However, we are now also dealing with public information states.

According to the semantics of mental programs of DL-PA-PMP, we
only take into account worlds related byMtr

prg
A (varyIfNotSeen(i,ATM (ϕ))) that

are in the public information state U |A. This is important when simulat-
ing epistemic operators as their truth conditions in DEL-PAO-PP specify
that we only keep worlds related by ∼i that are in U (which is the main
purpose of the public information state).

Take an atom α ∈ ATM (ϕ).

• If Si α ∈ w, then w(α) = u(α) for every u such that w ∼i u,
hence for every u ∈ U such that w ∼i u. This moreover im-
plies that Si α ∈ w ∩ A as α ∈ A (since RATM (Kiϕ) ⊆ A). As

157

Chapter 7. Complexity of model checking: upper bound

varyIfNotSeen(i,ATM (ϕ)) behaves like Ki, we have that w(α) =
u′(α) for every u′ such that w ∩AMtr

prg
A (varyIfNotSeen(i,ATM (ϕ)))u

′, and
thus for every u′ ∈ U |A such that w∩AMtr

prg
A (varyIfNotSeen(i,ATM (ϕ)))u

′.

• Now suppose Si α /∈ w. We distinguish three cases depending on
the public information state.

– Suppose α is true in the information state, i.e., α ∈ v for every
v ∈ U . Then of course, α ∈ u for every u ∈ U such that w ∼i u.
Our hypothesis also implies that α ∈ v′ for every v′ ∈ U |A,
as α ∈ A. Therefore α ∈ u′ for every u′ ∈ U |A such that
w ∩AMtr

prg
A (varyIfNotSeen(i,ATM (ϕ)))u

′.

– Now suppose α /∈ v for every v ∈ U . This case is similar to
the previous one: this implies that α /∈ v′ for every v′ ∈ U |A,
and thus α is always false in all valuations related by ∼i or
byMtr

prg
A (varyIfNotSeen(i,ATM (ϕ))).

– Finally, suppose α ∈ v1 for some v1 ∈ U and α /∈ v2 for some
v2 ∈ U . This implies that α ∈ v′1 for some v′1 ∈ U |A and α /∈ v′2
for some v′2 ∈ U |A. Since they behave in the same way, and
because w and w∩A agree on atoms from A and thus on atoms
from ATM (ϕ), we know that if w ∼i v1 for some v1 ∈ U such
that α ∈ v1, then w ∩ AMtr

prg
A (varyIfNotSeen(i,ATM (ϕ)))v

′
1 for some

v′1 ∈ U |A such that α ∈ v′1, and that if w ∼i v2 for some v2 ∈ U
such that α /∈ v2, then w ∩ AMtr

prg
A (varyIfNotSeen(i,ATM (ϕ)))v

′
2 for

some v′2 ∈ U |A such that α /∈ v′2; and conversely.

In all cases, if one relation leads to a world within the public information
state where α is true, then the other can lead to a world within the
information state where α is true; if one relation leads to a world within
the information state where α is false, then the other can lead to a world
within the information state where α is false.

ThereforeKiϕ andKtr
prg
A (varyIfNotSeen(i,ATM (ϕ)))ϕ are still equivalent on

the given models.

Like in previous sections for mental programs, here we study the
properties of public programs.

Proposition 7.6. Let A ⊆ ATM be a set of atoms. Let U be a public
information state such that U ⊆ INTR|A and w ∈ U a valuation. Then

158

7.2. Translation into DL-PA-PMP

we have:

U,w |=DL-PA-PMP [tr
prg
A (π1;π2)!]ϕ↔ [tr

prg
A (π1)!][tr

prg
A (π2)!]ϕ

U,w |=DL-PA-PMP [tr
prg
A (π1 t π2)!]ϕ↔ [tr

prg
A (π1)!]ϕ ∧ [tr

prg
A (π2)!]ϕ

U,w |=DL-PA-PMP [tr
prg
A (χ?)!]β ↔ ¬trfmlA (χ) ∨ β

U,w |=DL-PA-PMP [tr
prg
A (χ?)!]¬ϕ↔ ¬trfmlA (χ) ∨ ¬[tr

prg
A (χ?)!]ϕ

U,w |=DL-PA-PMP [tr
prg
A (χ?)!](ϕ ∧ ϕ′)↔ [tr

prg
A (χ?)!]ϕ ∧ [tr

prg
A (χ?)!]ϕ′

U,w |=DL-PA-PMP [tr
prg
A (χ?)!]Ktr

prg
A (varyIfNotSeen(RATM (ϕ),))ϕ↔

¬trfmlA (χ) ∨Ktr
prg
A (varyIfNotSeen(i,RATM (ϕ))))[χ?!]ϕ

U,w |=DL-PA-PMP [tr
prg
A (χ?)!]Ktr

prg
A (varyIfNotSeen(Agt ,RATM (ϕ)))ϕ↔

¬trfmlA (χ) ∨Ktr
prg
A (varyIfNotSeen(Agt ,RATM (ϕ)))[χ?!]ϕ

where β is an atom.

Proof. This is again due to translation being homomorphic for the given
program operators, and because these equivalences are already valid
in DEL-PAO-PP (see Section 6.4). The test is a special case that as
we have seen, behaves like the public announcement of PAL. The last
two equivalences are the counterparts of [χ?!]Kiϕ ↔ ¬χ ∨Ki[χ?!]ϕ and
[χ?!]CKϕ↔ ¬χ ∨ CK [χ?!]ϕ of DEL-PAO-PP.

Lemma 7.3. Let π be a DEL-PAO-PP program and A ⊆ ATM a set of
atoms. Let U be a public information state such that U ⊆ INTR|A
and w a valuation such that w ∈ U . Then for every 〈U ′, w′〉 such that
〈U,w〉Ptr

prg
A (π)〈U ′, w′〉, we have U ′ ⊆ INTR|A and w′ ∈ U ′.

Proof. First we can remark that since INTR|A = {u∩A : u ∈ INTR}, we
have U ⊆ INTR|A if and only if for every u ∈ U , there exists v ∈ INTR
such that v ∩A = u.

We prove the property by induction on the form of π.

• π = +α. Then tr
prg
A (π) = β1←>; . . . ;βm←> with {β1, . . . , βm} =

α⇒ ∩ A. Hence since 〈U,w〉Ptr
prg
A (π)〈U ′, w′〉, we have: for every u′ ∈

U ′, there is u ∈ U such that u′ = u ∪ (α⇒ ∩ A), by the semantics of
Ptr

prg
A (π). We have seen that this is equivalent to, for every u′ ∈ U ′,

there is v ∈ INTR such that v∩A = u and u′ = u∪(α⇒∩A), i.e., for
every u′ ∈ U ′, there is v ∈ INTR such that u′ = (v∩A)∪ (α⇒∩A) =
(v ∪ α⇒) ∩ A. Since if v ∈ INTR, then v ∪ α⇒ ∈ INTR, and we
obtain: for every u′ ∈ U ′, there is v′ ∈ INTR such that u′ = v′ ∩ A,
which is equivalent to U ′ ⊆ INTR|A. Moreover w′ is the trivially
in new public information state U ′ since w ∈ U .

• π = −α. If α is valid in INTR, tr
prg
A (−α) = fail and the property is

trivially valid. Otherwise, the proof is similar to the case π = +α.

159

Chapter 7. Complexity of model checking: upper bound

• The proofs for π = π1;π2 and π = π1 t π2 are straightforward
since their translation is homomorphic and the associated relation
Ptr

prg
A (π) is a composition or union of Ptr

prg
A (π1) and Ptr

prg
A (π2).

• π = χ?. Like when assigning to false an introspectively valid atom,
the proof is obvious if the program fails. Otherwise, we have seen
that a public test can only shrink the public information state.
Moreover w′ = w if and only if it satisfies χ, hence it is in the
resulting state.

In all cases we have U ′ ⊆ INTR|A and w′ ∈ U ′.

Lemma 7.3 implies that as we will start performing model checking
in INTR|A, we will always stay in subset of this public information state,
where all our properties apply.

Proposition 7.7. Let w ∈ INTR be an introspective valuation and ϕ a
DEL-PAO-PP formula. Then we have:

INTR, w |=DEL-PAO-PP ϕ if and only if
INTR|RATM (ϕ), w ∩ RATM (ϕ) |=DL-PA-PMP trDEL-PAO-PP(ϕ)

Proof. We follow a procedure similar to the ones of propositions 7.2 and
7.4. First translate ϕ into DL-PA-PMP; we obtain trfmlA (ϕ).

We have seen in Proposition 7.5 that epistemic operators are equiva-
lent to their translation into mental programs on every public informa-
tion state U ⊆ INTR|A, which are the only ones that are reachable by
Lemma 7.3. Hence we focus on public programs.

We have shown with Proposition 7.6 that the properties for opera-
tors ;, t and ? of DL-PA-PMP are identical to the ones of DEL-PAO-PP
(see Section 6.4.2). Since their translation is homomorphic, we make
the same reasoning than in previous sections: we remove them from ϕ,
getting ϕ′, and trfmlA (ϕ), getting trfmlA (ϕ′) and prove that the resulting
formulas are equivalent:

INTR, w |=DEL-PAO-PP ϕ
′ if and only if INTR|A, w ∩A |=DL-PA-PMP trfmlA (ϕ′),

for ϕ′ with boolean operators and public assignments andA = RATM (ϕ).
We do it by induction on the form of ϕ′.

• The case when ϕ′ is boolean is the same as for Proposition 7.2
(because the translation is still homomorphic).

• ϕ′ = [+α!]ψ. Then we have trfmlA (ϕ′) = [β1←>; . . . ;βm←>!]trfmlA (ψ)

160

7.3. The model checking problem

with {β1, . . . , βm} = α⇒ ∩A. Hence:

INTR|A, w ∩A |=DL-PA-PMP [β1←>; . . . ;βm←>!]trfmlA (ψ)

⇔ {u ∪ (α⇒ ∩A) : u ∈ INTR|A},
(w ∩A) ∪ (α⇒ ∩A) |=DL-PA-PMP trfmlA (ψ)

⇔ {(u ∩A) ∪ (α⇒ ∩A) : u ∈ INTR},
(w ∩A) ∪ (α⇒ ∩A) |=DL-PA-PMP trfmlA (ψ)

⇔ {(u ∪ α⇒) ∩A : u ∈ INTR},
(w ∪ α⇒) ∩A |=DL-PA-PMP trfmlA (ψ)

⇔ INTR+α,w ∪ α⇒ |=DEL-PAO-PP ψ (by induction hypothesis)
⇔ INTR, w |=DEL-PAO-PP [+α]ψ.

• ϕ′ = [−α!]ψ. The proof is obvious if α is introspectively valid (as
it translates to fail) and similar to the case ϕ′ = [+α!]ψ otherwise.

Therefore the translation is correct.

7.3 The model checking problem
The model checking problem for DL-PA-PMP is defined as follows:

• Input: a couple 〈w ∩ATM (ϕ), ϕ〉 where ϕ is a DL-PA-PMP formula
and w is an introspective valuation;

• Output: yes if INTR, w |= ϕ, no otherwise.

Remember that DL-PA-PMP does not include epistemic or strategic
operators; hence ATM (ϕ) = RATM (ϕ).

Theorem 7.1. The DL-PA-PMP model checking problem is in PSPACE.

The next section provides an algorithm that establishes the upper
bound.

7.4 The PSPACE algorithm
In this section, we give the procedures performing the model checking
algorithm on formulas of DL-PA-PMP. These formulas have been ob-
tained from every language presented in the thesis by the translation
presented in the previous section.

Let us define the size of a pair 〈A,ϕ〉, with A ⊆ ATM a set of atoms
and ϕ a formula, as the cardinality of A plus the length of ϕ (i.e., the
number of symbols used to write it down). Note that the size of the
translation ϕ′ of ϕ may be exponential in the size of ϕ because of the

161

Chapter 7. Complexity of model checking: upper bound

reduction of epistemic and strategic operators. However, the size of 〈w∩
ATM (ϕ′), ϕ′〉 is polynomial in the size of 〈w ∩ RATM (ϕ), ϕ〉. Therefore
we have a polynomial reduction from the model checking of our logics to
the model checking of DL-PA-PMP.

Algorithms 7.1, 7.2, 7.3 and 7.4 are adapted from [Charrier and
Schwarzentruber, 2015], and Algorithm 7.5 is from [Charrier et al.,
2016b].

The set of valuations INTR|ATM (ϕ) is fixed in the beginning: we write
it INTR0 in the following procedures. Remember that INTR0 is a finite
set of finite valuations, as ATM (ϕ) is finite.

The procedures are alternating, meaning that existential and uni-
versal choices are performed. For instance, the instruction “(∀)(∀)(∀) choose
w′ ∈ U” succeeds if every choice of w′ leads to the accepting state. We
also quantify over choices of sub-procedures: for instance, “(∃)(∃)(∃) algo1 or
algo2” means that at least one of the calls algo1 or algo2 must succeed.
More precisely, (∀)(∀)(∀)algo1 and algo2 is an abbreviation for:

(∀)(∀)(∀) choose i ∈ {1, 2}
if i = 1:

algo1

else:
algo2

and similarly for (∃)(∃)(∃)algo1 or algo2. Observe that in each case, either
algo1 or algo2 is executed, but not both.

• Algorithm 7.1 describes mc(w,ϕ), the main model checking proce-
dure for DL-PA-PMP.

– Parameters: a finite valuation w and a DL-PA-PMP formula
ϕ.

– Behaviour: calls the procedure mcyes with an empty list and
accepts the input if mcyes does not reject it.

• Algorithm 7.2 describes mcyes(L,w, ϕ), the model checking sub-
procedure.

– Parameters: a list of announcements and assignments L, a
finite valuation w and a DL-PA-PMP formula ϕ.

– Behaviour: verifies the formula ϕ depending on its form.
The surviving set of valuations is represented by L, a list of
announcements and assignments. (For this reason the set
INTR0 is represented by the empty list [].) Making an as-
signment or a public test recursively calls mcyes with the new

162

7.4. The PSPACE algorithm

assignment or test (if it passes) appended to L. Then evaluat-
ing Kπmψ means finding a valuation w′ related to w by πm that
is in the public information state, described by L, and where
ψ is verified.

• Algorithm 7.3 describes survivesyes(L,w), the procedure checking
whether a valuation survives announcements and tests made.

– Parameters: a list of announcements and assignments L
and a finite valuation w.

– Behaviour: checks whether w satisfies every public assign-
ment and test made until now. The procedure unstacks the
list L and verifies that tested formulas are satisfied and atoms
assigned to true or false are indeed true or false. Whenever
the list is not empty, the procedure calls itself with every val-
uation possible before the effect of the assignment or the test.

• Algorithm 7.4 describes ispathyes(L,w,w′, πm), the path searching
procedure for mental programs.

– Parameters: a list of announcements and assignments L,
two finite valuations w and w′ and a DL-PA-PMP mental pro-
gram πm.

– Behaviour: checks whether there is a πm-path from w to w′,
depending on the form of πm. The list L is specifically required
in the case of the test, where the procedure calls mcyes . When
πm = πm

′∗ we have seen with Axiom (Red∗) of Proposition 2.11
on page 50 that it actually suffices to repeat the program at
most 22|ATM (πm′)| times.

• Algorithm 7.5 describes iteryes(L,w,w′, πm, i), the program iterat-
ing procedure.

– Parameters: a list of announcements and assignments L,
two finite valuations w and w′, a DL-PA-PMP mental program
πm and an integer i ≥ 0.

– Behaviour: checks whetherw′ is reachable fromw by repeat-
ing πm i times. If i is even, we recursively call iteryes , dividing
i in two; if i is odd, we execute the program once to reduce to
a case where i is even.

We implicitly define the dual of mcyes , called mcno , by replacing and
by or , (∀)(∀)(∀) by (∃)(∃)(∃), mcyes by mcno , etc., in the pseudo-code of mcyes . While
mcyes reads “reject if L,w does not satisfy ϕ,” its dual mcno reads “reject

163

Chapter 7. Complexity of model checking: upper bound

if L,w satisfies ϕ.” The procedure survivesno , ispathno and iterno are
defined similarly from the code of survivesyes , ispathyes and iteryes .

Algorithm 7.1.
procedure mc(w,ϕ):

mcyes([], w, ϕ)
accept

Algorithm 7.2.
procedure mcyes(L,w, ϕ):

match ϕ with
case ϕ = α:

if α 6∈ w:
reject

case ϕ = ¬ψ:
mcno(L,w, ψ)

case ϕ = (ψ1 ∧ ψ2):
(∀)(∀)(∀) choose i ∈ {1, 2}
mcyes(L,w, ψi)

case ϕ = Kπmψ:
(∀)(∀)(∀) choose w′ ∈ INTR0

(∃)(∃)(∃) ispathno(L,w,w′, πm)
or survivesno(L,w′)
or mcyes(L,w′, ψ)

case ϕ = [α←>!]ψ:
mcyes(L :: (α←>), w[α←>], ψ)

case ϕ = [α←⊥!]ψ:
mcyes(L :: (α←⊥), w[α←⊥], ψ)

case ϕ = [(πp1;πp2)!]ψ:
mcyes(L,w, [πp1!][πp2!]ψ)

case ϕ = [(πp1 t πp2)!]ψ:
mcyes(L,w, [πp1!]ψ ∧ [πp2!]ψ)

case ϕ = [χ?!]ψ:
(∀)(∀)(∀) mcno(L,w, χ)

or mcyes(L :: (χ!), w, ψ)

164

7.4. The PSPACE algorithm

Algorithm 7.3.
procedure survivesyes(L,w):

match L with
case L = []:

do nothing
case L = L′ :: (α←>):

(∀)(∀)(∀) α ∈ w
and
(∃)(∃)(∃) survivesyes(L′, w[α←>])

or survivesyes(L′, w[α←⊥])

case L = L′ :: (α←⊥):
(∀)(∀)(∀) α 6∈ w

and
(∃)(∃)(∃) survivesyes(L′, w[α←>])

or survivesyes(L′, w[α←⊥])

case L = L′ :: (ϕ!):
(∀)(∀)(∀) mcyes(L′, w, ϕ)

and survivesyes(L′, w)

Algorithm 7.4.
procedure ispathyes(L,w,w′, πm):

match πm with
case πm = α←>:

if w′ 6= w ∪ {α}:
reject

case πm = α←⊥:
if w′ 6= w \ {α}:

reject
case πm = (πm1;πm2):

(∃)(∃)(∃) choose a valuation v ∈ INTR0

(∀)(∀)(∀) ispathyes(L,w, v, πm1)
and ispathyes(L, v, w′, πm2)

case πm = (πm1 t πm2):
(∃)(∃)(∃) choose k ∈ {1, 2}
ispathyes(L,w,w′, πmk)

case πm = χ?:
(∀)(∀)(∀) w = w′

and mcyes(L,w, χ)
case πm = πm

′∗:
(∃)(∃)(∃) choose i ∈ {0, . . . , 22|ATM (πm′)|}
iteryes(L,w,w′, πm

′, i)

165

Chapter 7. Complexity of model checking: upper bound

Algorithm 7.5.
procedure iteryes(L,w,w′, πm, i):

match i with
case i = 0:

if w′ 6= w:
reject

case i even:
(∃)(∃)(∃) choose a valuation v ∈ INTR0

(∀)(∀)(∀) iteryes(L,w, v, πm, i/2)
and iteryes(L, v, w′, πm, i/2)

case i odd:
(∃)(∃)(∃) choose a valuation v ∈ INTR0

(∀)(∀)(∀) ispathyes(L,w, v, πm)
and iteryes(L, v, w′, πm, i−1)

Proposition 7.8. The procedure mc is implementable by an alternating
Turing machine running in polynomial time.

Proof. The critical case of procedure mcyes is when ϕ = Kπmψ. It was al-
ready proven that the procedure ispathyes without the case of the Kleene
star ∗ could be implemented by an alternating Turing machine in poly-
nomial time [Charrier and Schwarzentruber, 2015]. For the case of the
star, remember that when running (∀)(∀)(∀)algo1 and algo2 or (∃)(∃)(∃)algo1 or
algo2, either algo1 or algo2 is executed, but not both. Hence in ispathyes ,
the procedure iteryes is called for only one value of i. For the same rea-
son, the procedure survivesyes runs in polynomial time.

The model checking of DL-PA-PMP is then in AP. Since AP = PSPACE
[Chandra and Stockmeyer, 1976], we have shown that our model check-
ing is in PSPACE.

7.5 Conclusion
This technical chapter introduces an auxiliary logic into which every
other logic presented in the thesis can be translated. We are not inter-
ested in concepts it may express or in a potential axiomatization (which
might be difficult to find for the same reasons as for DEL-PAO-PP) but
in the PSPACE complexity of its model checking as it proves the up-
per bound of the model checking problems of DEL-PAO, DEL-PAOS , DEL-
PAOC and DEL-PAO-PP. We established this complexity by providing an
alternating algorithm that runs in polynomial time.

166

8 Conclusion and perspectives

This thesis follows recent works in epistemic logic which study
how knowledge can be constructed using information on vis-
ibilities of agents over variables. Observability-based logics
offer a nice alternative to standard semantics, but come with
the two main drawbacks that we identified. We proposed so-
lutions to both issues by encoding visibility information with
special “visibility atoms” of unbounded depth instead of sets
of propositional variables and by including communication
in terms of publicly executed programs. We moreover intro-
duced a “joint visibility” operator to build common knowledge
and control atoms that allow us to discuss strategic abilities
of agents.

It is notable that the addition of higher-order observability and of
joint observability, and also of strategic operators and publicly executed
programs, comes without supplementary cost for model checking, which
stays PSPACE-complete. We have seen that its definition is however
not direct as it requires to transform our infinite models into finite, but
“introspective enough” ones. It remains to show the complexity of the
satisfiability problem.

We have illustrated our framework with toy examples of epistemic
logic, such as the muddy children problem, but also with more general
applications. We believe that the generalisation of the gossip problem
that we introduced may be the simplest and most tunable epistemic
planning problem, much like the blocksworld problem in classical plan-
ning, and we have seen that our framework is well suited for such a
task. In the long term, we aim to generalize our approach to tempo-
ral planning, where actions are durative and may overlap, to flexible
planning, where actions may happen between intervals of time, and to
contingent planning, with uncertainty on the initial state or on the ef-
fects of actions.

We close this thesis with a discussion on one central topic of it:
knowledge and ignorance. The latter is an important part of the mo-

167

Chapter 8. Conclusion and perspectives

tivation behind this work. As we have seen in the introduction, logics
of visibility were first investigated because modelling ignorance with
possible worlds semantics was counter-intuitive and led to models im-
practical for system verification. Moreover, our first goal when we de-
signed DEL-PAO was to relax the assumption that visibilities are com-
mon knowledge, so that higher-order knowledge, but more importantly
higher-order ignorance, becomes non-trivial.

How to ensure introspection of knowledge with our visibility atoms
appeared clear: we simply imposed that an agent always sees whether
she sees something. However, ensuring that introspection is preserved
in all related worlds was not so straightforward and led to the definition
of the five constraints (C1)-(C5). It is interesting to note that we have
made several attempts at generalizing our framework to beliefs without
success. A way we investigated was to replace the visibility operator Si
by two operators Oi and Ci, respectively reading “i has an opinion on”
and “i is correct on.” However, we were not able to find counterparts
of the five introspective constraints that ensure KD45 properties in the
current and all related valuations. This is only important if we consider
building an axiomatization; it remains an interesting line of work even
only conceptually. Beliefs would provide a more general framework in
which, with the help of our current dynamic operators, one could intu-
itively formalize a theory of mind.

Another interesting future work is to define the indistinguishability
relation for common knowledge as usual as the reflexive and transitive
closure of the union of individual indistinguishability relations. This
would allow us to consider common knowledge for an arbitrary num-
ber of agents instead of only for the whole set of agents. This however
should be done with care, as the axiomatization of the common knowl-
edge operator would be different and as this might also influence the
complexity result.

Finally, one may wonder whether, after including visibility and pub-
lic announcements, there still exists a validity that is not a validity of
standard epistemic logic. Here is one:

K1(p ∨ q) ∧ ¬K1p ∧ ¬K1q → K1K2(p ∨ q).

Intuitively: if I know that p∨q while not knowing that p and not knowing
that q, then I must have learned it via a public announcement. There-
fore I know that the others also know p ∨ q. A way to relax this validity
is by integrating private announcements. We have shown that we can
model at least some forms of private announcements thanks to our vis-
ibility atoms; it would be interesting to investigate to which extent one
can capture action models of dynamic epistemic logics. One might then
imagine to find combinations of gossip problems and muddy children
puzzles...

168

Conclusion et perspectives

Cette thèse fait suite à des travaux récents dans la logique épis-
témique qui étudient comment la connaissance peut être construite en
utilisant des informations sur les visibilités des agents sur les variables.
Les logiques basées sur l’observabilité offrent une bonne alternative à
la sémantique standard, mais sont accompagnées avec les deux princi-
paux inconvénients que nous avons identifiés. Nous avons proposé des
solutions aux deux problèmes en encodant les informations de visibilité
avec des “atomes de visibilité” spéciaux de profondeur illimitée au lieu
d’ensembles de variables propositionnelles et en incluant la communi-
cation sous forme de programmes exécutés publiquement. Nous avons
en outre introduit un opérateur de “visibilité jointe” pour construire la
connaissance commune et des atomes de contrôle qui nous permettent
de considérer les capacités stratégiques des agents.

Il est à noter que l’ajout de l’observabilité d’ordre supérieur et de
l’observabilité jointe, ainsi que des opérateurs stratégiques et des pro-
grammes exécutés publiquement, n’est pas accompagné d’un coût sup-
plémentaire pour le model checking, qui reste PSPACE-complet. Nous
avons vu que sa définition n’est toutefois pas directe car elle nécessite
de transformer nos modèles infinis en modèles finis, mais “suffisamment
introspectifs”. Il reste à démontrer la complexité du problème de satis-
fiabilité.

Nous avons illustré notre logique sur des exemples classiques de la
logique épistémique, tels que le problème des enfants sales, mais aussi
sur des applications plus générales. Nous estimons que la généralisa-
tion du problème du bavardage que nous avons introduit est peut-être
le problème de planification épistémique le plus simple et paramétrable,
comme l’est le problème “blocksworld” en planification classique, et nous
avons vu que notre logique est adaptée à ce type de tâche. À long terme,
nous visons à généraliser notre approche à la planification temporelle,
où les actions ont une durée et peuvent se chevaucher, à la planifica-
tion flexible, où les actions peuvent se produire entre des intervalles de
temps, et à la planification contingente, avec incertitude sur l’état initial
ou sur les effets des actions.

Nous terminons cette thèse avec une discussion sur un sujet central
de celle-ci : la connaissance et l’ignorance. Cette dernière est une partie
importante de la motivation derrière ce travail. Comme nous l’avons vu
dans l’introduction, les logiques de visibilité ont d’abord été étudiées car
la modélisation de ignorance avec la sémantique des mondes possibles
est contre-intuitive et conduit à la construction de modèles peu adaptés
à la vérification de système. De plus, notre premier objectif lorsque nous
avons conçu DEL-PAO était de relâcher le fait que les visibilités soient

169

Chapter 8. Conclusion and perspectives

connaissance commune, de sorte que les connaissances d’ordre supé-
rieur, ou plus important encore l’ignorance d’ordre supérieur, soient non
triviales.

Comment assurer l’introspection des connaissances avec nos atomes
de visibilité parut clair : nous avons simplement imposé qu’un agent voit
toujours si elle voit quelque chose. Cependant, veiller à ce que cette pro-
priété soit conservée dans tous les mondes liés n’a pas été aussi simple
et a conduit à la définition des cinq contraintes (C1)-(C5). Il est intéres-
sant de noter que nous avons fait plusieurs tentatives de généralisation
de notre logique aux croyances sans succès. Une façon que nous avons
étudiée était de remplacer l’opérateur de visibilité Si par deux opéra-
teurs Oi et Ci, respectivement lus “i a une opinion sur” et “i est correcte
sur”. Cependant, nous n’avons pas réussi à trouver les homologues des
cinq contraintes introspectives pour assurer les propriétés KD45 dans la
valuation courante et dans toutes les valuations reliées. Ceci est seule-
ment important si l’on considère la construction d’une axiomatique ; cela
reste intéressant à étudier, même seulement sur le plan conceptuel. Les
croyances fournirait un cadre plus général dans lequel, avec l’aide de
nos opérateurs dynamiques actuels, il serait possible de formaliser in-
tuitivement une théorie de l’esprit.

Un autre travail intéressant pour le futur est de définir la relation
d’indistinguabilité pour la connaissance commune comme d’habitude,
par la fermeture réflexive et transitive de l’union des relations indistin-
guabilité individuelles. Cela nous permettrait d’envisager la connais-
sance commune pour un nombre arbitraire d’agents au lieu de seule-
ment pour l’ensemble des agents. Cela doit toutefois être examiné avec
soin : l’axiomatique de l’opérateur de connaissance commune serait dif-
férente et cela pourrait également influer sur le résultat de complexité.

Enfin, on peut se demander si, après y inclus la visibilité et les an-
nonces publiques, il existe encore des validités qui ne sont pas valides
en logique épistémique standard. En voici une :

K1(p ∨ q) ∧ ¬K1p ∧ ¬K1q → K1K2(p ∨ q).

Intuitivement : si je sais que p ∨ q tout en ne sachant pas que p et en ne
sachant pas que q, alors j’ai du l’apprendre par une annonce publique.
Par conséquent, je sais que les autres savent aussi p ∨ q. Une façon
de se relâcher cette validité est d’intégrer les annonces privées. Nous
avons montré que nous pouvons modéliser au moins certaines formes
d’annonces privées grâce à nos atomes de visibilité ; il serait intéressant
d’étudier dans quelle mesure nous pouvons capturer des modèles d’ac-
tion des logiques épistémiques dynamiques. On pourrait alors imaginer
des combinaisons des problèmes du bavardage et des enfants sales...

170

Bibliography

Ågotnes, T., Harrenstein, P., van der Hoek, W., and Wooldridge, M.
(2013). Boolean games with epistemic goals. In Grossi, D., Roy, O.,
and Huang, H., editors, Proceedings of the 4th International Work-
shop on Logic, Rationality, and Interaction (LORI 2013), pages 1–14.
Springer.

Akkoyunlu, E. A., Ekanadham, K., and Hubert, R. V. (1975). Some con-
straints and tradeoffs in the design of network communications. In
Proceedings of the 5th ACM Symposium on Operating Systems Prin-
ciples (SOSP 1975), pages 67–74. ACM Press.

Alechina, N., Logan, B., and Whitsey, M. (2004). A complete and de-
cidable logic for resource-bounded agents. In Proceedings of the 3rd
International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2004), pages 606–613. IEEE Computer Society.

Alur, R., Henzinger, T. A., and Kupferman, O. (2002). Alternating-time
temporal logic. Journal of the ACM, 49(5):672–713.

Attamah, M., van Ditmarsch, H., Grossi, D., and van der Hoek, W.
(2014a). A framework for epistemic gossip protocols. In Bulling, N.,
editor, Proceedings of the 12th European Conference on Multi-Agent
Systems (EUMAS 2014), pages 193–209. Springer.

Attamah, M., van Ditmarsch, H., Grossi, D., and van der Hoek, W.
(2014b). Knowledge and gossip. In Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI 2014), pages 21–26.

Aucher, G. and Bolander, T. (2013). Undecidability in epistemic plan-
ning. In Rossi, F., editor, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), pages 27–33. AAAI
Press.

Baker, B. and Shostak, R. (1972). Gossips and telephones. Discrete
Mathematics, 2(3):191–193.

171

Bibliography

Balbiani, P., Fernandez-Duque, D., and Lorini, E. (2016). A logical the-
ory of belief dynamics for resource-bounded agents. In Proceedings of
the 15th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2016).

Balbiani, P., Gasquet, O., and Schwarzentruber, F. (2013a). Agents that
look at one another. Logic Journal of the IGPL, 21(3):438–467.

Balbiani, P., Herzig, A., Schwarzentruber, F., and Troquard, N. (2014).
DL-PA and DCL-PC: model checking and satisfiability problem are
indeed in PSPACE. CoRR, abs/1411.7.

Balbiani, P., Herzig, A., and Troquard, N. (2013b). Dynamic logic of
propositional assignments: a well-behaved variant of PDL. In Kupfer-
man, O., editor, Proceedings of the 28th Annual IEEE/ACM Sympo-
sium on Logic in Computer Science (LICS 2013), pages 143–152.

Baltag, A., Moss, L. S., and Solecki, S. (1998). The logic of public an-
nouncements, common knowledge, and private suspicions. In Pro-
ceedings of the 7th Conference on Theoretical Aspects of Rationality
and Knowledge (TARK 1998), pages 43–56. Morgan Kaufmann.

Bolander, T. and Andersen, M. B. (2011). Epistemic planning for single
and multi-agent systems. Journal of Applied Non-Classical Logics,
21(1):9–34.

Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J., and Zanuttini, B. (2006).
Boolean games revisited. In Brewka, G., Coradeschi, S., Perini, A.,
and Traverso, P., editors, Proceedings of the 17th European Conference
on Artificial Intelligence (ECAI 2006), pages 265–269.

Bylander, T. (1994). The computational complexity of propositional
STRIPS planning. Artificial Intelligence, 69:165–204.

Castelfranchi, C. (1994). Guarantees for autonomy in cognitive agent
architecture. In Wooldridge, M. J. and Jennings, N. R., editors, Pro-
ceedings of the 1994 ECAI Workshop on Agent Theories, Architectures
and Languages, volume 890, pages 56–70. Springer-Verlag.

Chandra, A. K. and Stockmeyer, L. J. (1976). Alternation. In Proceed-
ings of the 17th Annual Symposium on Foundations of Computer Sci-
ence (FOCS 1976), pages 98–108.

Charrier, T., Lorini, E., Herzig, A., Maffre, F., and Schwarzentruber, F.
(2016a). Building epistemic logic from observations and public an-
nouncements. In Proceedings of the 15th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016).

172

Bibliography

Charrier, T., Pinchinat, S., and Schwarzentruber, F. (2016b). Public
announcements with mental programs: relevance and computational
complexity. Unpublished manuscript.

Charrier, T. and Schwarzentruber, F. (2015). Arbitrary public announce-
ment logic with mental programs. In Proceedings of the 14th Inter-
national Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2015), pages 1471–1479. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Cooper, M. C., Herzig, A., Maffre, F., Maris, F., and Régnier, P. (2016a).
A simple account of multi-agent epistemic planning. In Proceedings of
the 22nd European Conference on Artificial Intelligence (ECAI 2016),
pages 193–201.

Cooper, M. C., Herzig, A., Maffre, F., Maris, F., and Régnier, P. (2016b).
Simple epistemic planning: generalised gossiping. In Proceedings of
the 22nd European Conference on Artificial Intelligence (ECAI 2016),
pages 1563–1564.

Cooper, M. C., Herzig, A., Maffre, F., Maris, F., and Régnier, P. (2016c).
Simple epistemic planning: generalised gossiping. ArXiv e-prints,
abs/1606.0.

Dunne, P. E., van der Hoek, W., Kraus, S., and Wooldridge, M. (2008).
Cooperative boolean games. In Proceedings of the 7th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2008), pages 1015–1022. International Foundation for Autonomous
Agents and Multiagent Systems.

Engeler, E. (1967). Algorithmic properties of structures. Mathematical
Systems Theory, 1(3):183–195.

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995). Reasoning
about Knowledge. MIT Press.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial Intelli-
gence, 2(3/4):189–208.

Fischer, M. J. and Ladner, R. E. (1979). Propositional dynamic logic
of regular programs. Journal of Computer and System Sciences,
18(2):194–211.

Fitting, M. (1983). Proof methods for modal and intuitionistic logics.
D. Reidel ; Sold and distributed in the U.S.A. and Canada by Kluwer
Boston.

173

Bibliography

Gasquet, O., Goranko, V., and Schwarzentruber, F. (2014). Big brother
logic: logical modeling and reasoning about agents equipped with
surveillance cameras in the plane. In Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2014), pages 325–332.

Ghallab, M., Nau, D. S., and Traverso, P. (2004). Automated Planning:
Theory and Practice. Elsevier.

Grant, J., Kraus, S., and Perlis, D. (2000). A logic for characterizing
multiple bounded agents. Journal of Autonomous Agents and Multi-
Agent Systems, 3(4):351–387.

Gray, J. (1978). Notes on data base operating systems. In Operating
Systems, An Advanced Course, pages 393–481. Springer-Verlag.

Grossi, D., Lorini, E., and Schwarzentruber, F. (2015). The ceteris
paribus structure of logics of game forms. Journal of Artificial In-
telligence Research, 53:91–126.

Hajnal, A., Milner, E. C. B., and Szemerédi, E. (1972). A cure for the
telephone disease. Canadian Mathematical Bulletin, 15(3):447–450.

Harrenstein, P., van der Hoek, W., Meyer, J.-J., and Witteveen, C.
(2001). Boolean games. In Proceedings of the 8th Conference on The-
oretical Aspects of Rationality and Knowledge (TARK 2001), pages
287–298. Morgan Kaufmann Publishers Inc.

Herzig, A. (2014). Logics of knowledge and action: critical analysis and
challenges. Journal of Autonomous Agents and Multi-Agent Systems,
29(5):1–35.

Herzig, A., Lorini, E., and Maffre, F. (2015). A poor man’s epistemic logic
based on propositional assignment and higher-order observation. In
van der Hoek, W., Holliday, W. H., and Wang, W.-f., editors, Proceed-
ings of the 5th International Conference on Logic, Rationality and In-
teraction (LORI 2015), pages 156–168. Springer Verlag.

Herzig, A., Lorini, E., Maffre, F., and Schwarzentruber, F. (2016). Epis-
temic boolean games based on a logic of visibility and control. In
Kambhampati, S., editor, Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI 2016). AAAI Press.

Herzig, A., Lorini, E., Maffre, F., and Walther, D. (2014). Alternating-
time Temporal Logic with Explicit Programs. In Proceedings of the 7th
Workshop on Logical Aspects of Multi-Agent Systems (LAMAS 2014).

174

Bibliography

Herzig, A., Lorini, E., Troquard, N., and Moisan, F. (2011). A dynamic
logic of normative systems. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI 2011), pages 228–
233.

Herzig, A., Lorini, E., and Walther, D. (2013). Reasoning about actions
meets strategic logics. In Grossi, D., Roy, O., and Huang, H., editors,
Proceedings of the 4th International Workshop on Logic, Rationality,
and Interaction (LORI 2013), pages 162–175. Springer.

Herzig, A. and Maffre, F. (2016). How to share knowledge by gossip-
ing. In Proceedings of the 3rd International Conference on Agreement
Technologies (AT 2015). Springer-Verlag.

Hintikka, J. (1962). Knowledge and Belief: An Introduction to the Logic
of the Two Notions. Cornell University Press.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580.

Hurkens, C. A. J. (2000). Spreading gossip efficiently. Nieuw Archief
voor Wiskunde, 5/1(2):208–210.

Kominis, F. and Geffner, H. (2015). Beliefs in multiagent planning: from
one agent to many. In Brafman, R. I., Domshlak, C., Haslum, P., and
Zilberstein, S., editors, Proceedings of the 25th International Confer-
ence on Automated Planning and Scheduling (ICAPS 2015), pages
147–155. AAAI Press.

Lehmann, D. J. (1984). Knowledge, common Knowledge and related
puzzles (extended summary). In Proceedings of the 3rd Annual ACM
Symposium on Principles of Distributed Computing (PODC 1984),
pages 62–67.

Lomuscio, A. and Raimondi, F. (2006). Model checking knowledge,
strategies, and games in multi-agent systems. In Proceedings of the
5th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), pages 161–168.

Lomuscio, A., van der Meyden, R., and Ryan, M. (2000). Knowledge
in multiagent systems: initial configurations and broadcast. ACM
Transactions on Computational Logic, 1(2):247–284.

Lorini, E. and Herzig, A. (2014). Direct and indirect common belief. In
Konzelmann Ziv, A. and Schmid, H. B., editors, Institutions, Emo-
tions, and Group Agents: Contributions to Social Ontology, pages
355–372. Springer.

175

Bibliography

Löwe, B., Pacuit, E., and Witzel, A. (2011). DEL planning and some
tractable cases. In Proceedings of the 3rd International International
Workshop on Logic, Rationality and Interaction (LORI 2011), pages
179–192. Springer Berlin Heidelberg.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso,
M., Weld, D., and Wilkins, D. (1998). PDDL – The Planning Do-
main Definition Language. Technical report, Yale Center for Com-
putational Vision and Control.

Muise, C., Belle, V., Felli, P., McIlraith, S. A., Miller, T., Pearce, A. R.,
and Sonenberg, L. (2015). Planning over multi-agent epistemic states:
A classical planning approach. In Proceedings of the 29th AAAI Con-
ference on Artificial Intelligence (AAAI 2015), pages 3327–3334. AAAI
Press.

Pauly, M. (2001). Logic for Social Software. PhD thesis, University of
Amsterdam.

Pauly, M. (2002). A modal logic for coalitional power in games. Journal
of Logic and Computation, 12(1):149–166.

Petrick, R. P. A. and Bacchus, F. (2004). Extending the Knowledge-
Based Approach to Planning with Incomplete Information and Sens-
ing. In Proceedings of the Fourteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2004), pages 2–11.

Plaza, J. (1989). Logics of public communications. In Emrich, M. L.,
Pfeifer, M. S., Hadzikadic, M., and Ras, Z., editors, Proceedings of
the 4th International Symposium on Methodologies for Intelligent Sys-
tems (ISMIS 1989), pages 201–216. Oak Ridge National Laboratory,
ORNL/DSRD- 24.

Pratt, V. R. (1976). Semantical considerations on Floyd-Hoare logic. In
Proceedings of the 17th Annual Symposium on Foundations of Com-
puter Science (FOCS 1976), pages 109–121.

Röger, G., Pommerening, F., and Seipp, J. (2014). Fast downward stone
soup 2014. In The 2014 International Planning Competition.

Salwicki, A. (1970). Formalized algorithmic languages. Bulletin de
l’Academie Polonaise des Sciences, Serie des sciences mathematiques,
astronomiques et physiques, 18:227–232.

Su, K., Sattar, A., and Luo, X. (2007). Model checking temporal logics of
knowledge via OBDDs. The Computer Journal, 50(4):403–420.

176

Bibliography

Tijdeman, R. (1971). On a telephone problem. Nieuw Archief voor
Wiskunde, 19(3):188–192.

van Benthem, J., van Eijck, J., Gattinger, M., and Su, K. (2015). Sym-
bolic model checking for Dynamic Epistemic Logic. In van der Hoek,
W., Holliday, W. H., and Wang, W.-f., editors, Proceedings of the 5th
International Conference on Logic, Rationality and Interaction (LORI
2015), pages 366–378. Springer-Verlag.

van Benthem, J., van Eijck, J., and Kooi, B. (2006). Logics of commu-
nication and change. Information and Computation, 204(11):1620–
1662.

van der Hoek, W., Iliev, P., and Wooldridge, M. (2012). A logic of reve-
lation and concealment. In van der Hoek, W., Padgham, L., Conitzer,
V., and Winikoff, M., editors, Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2012), pages 1115–1122. IFAAMAS.

van der Hoek, W., Troquard, N., and Wooldridge, M. (2011). Knowl-
edge and control. In Sonenberg, L., Stone, P., Tumer, K., and Yolum,
P., editors, Proceedings of the 10th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), pages 719–
726. IFAAMAS.

van der Hoek, W. and Wooldridge, M. (2005). On the logic of cooperation
and propositional control. Artificial Intelligence, 164(1-2):81–119.

van Ditmarsch, H., van der Hoek, W., and Kooi, B. (2005). Dynamic epis-
temic logic with assignment. In Proceedings of the 4th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2005), pages 141–148.

van Ditmarsch, H., van der Hoek, W., and Kooi, B. (2007). Dynamic
Epistemic Logic. Springer Publishing Company, Incorporated, 1st edi-
tion.

van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., and
Schwarzentruber, F. (2015). Dynamic gossip. ArXiv e-prints,
abs/1511.0.

van Linder, B., van der Hoek, W., and Meyer, J.-J. (1997). Seeing is be-
lieving: and so are hearing and jumping. Journal of Logic, Language
and Information, 6(1):33–61.

Wang, Y. and Cao, Q. (2013). On axiomatizations of public announce-
ment logic. Synthese, 190(Supplement-1):2013.

177

Bibliography

Yanov, J. (1959). On equivalence of operator schemes. Problems of Cy-
bernetic, 1:1–100.

Yu, Q., Li, Y., and Wang, Y. (2015). A dynamic epistemic framework
for conformant planning. In Proceedings of the 15th conference on
Theoretical Aspects of Rationality and Knowledge (TARK 2015), pages
249–259.

178

Dans les logiques épistémiques, la connaissance est généralement
modélisée par un graphe de mondes possibles, qui correspondent aux
alternatives à l’état actuel du monde. Ainsi, les arêtes entre les mondes
représentent l’indistinguabilité. Connaître une proposition signifie que
cette proposition est vraie dans toutes les alternatives possibles. Les
informaticiens théoriques ont cependant remarqué que cela a conduit
à plusieurs problèmes, à la fois intuitifs et techniques : plus un agent
est ignorant, plus elle a d’alternatives à examiner ; les modèles peuvent
alors devenir trop grands pour la vérification de système. Ils ont récem-
ment étudié comment la connaissance pourrait être réduite à la notion
de visibilité. Intuitivement, l’idée de base est que quand un agent voit
quelque chose, alors elle sait sa valeur de vérité. A l’inverse, toute com-
binaison de valeurs de vérité des variables non observables est possible
pour l’agent. Ces informations d’observabilité permettent de reconsti-
tuer la sémantique standard de la connaissance : deux mondes sont in-
distinguables pour un agent si et seulement si chaque variable observée
par cet agent a la même valeur dans les deux mondes. Notre objectif
est de démontrer que les logiques épistémiques fondées sur la visibilité
constituent un outil approprié pour plusieurs applications importantes
dans le domaine de l’intelligence artificielle.

Dans le cadre actuel de ces logiques de visibilité, chaque agent a un
ensemble de variables propositionnelles qu’elle peut observer ; ces visi-
bilités sont constantes à travers le modèle. Cela accompagne une hypo-
thèse forte : les visibilités sont connues de tous, et sont même connais-
sance commune. De plus, la construction de la connaissance à partir de
la visibilité entraîne des validités contre-intuitives, la plus importante
étant que l’opérateur de la connaissance distribue sur les disjonctions
de littéraux : si un agent sait que p ou q est vrai, alors elle sait que p est
vrai ou que q est vrai, parce qu’elle peut les voir.

Dans cette thèse, nous proposons des solutions à ces deux problèmes
et les illustrons sur diverses applications telles que la planification épis-
témique ou les jeux booléens épistémiques, et sur des exemples plus spé-
cifiques tels que le problème des enfants sales ou le problème du bavar-
dage. Nous étudions en outre des propriétés formelles des logiques que
nous concevons, fournissant axiomatisations et résultats de complexité.

