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.													Abstract	

The purpose of the present study is to describe and characterize the anisotropic flow and 

fracture behaviour of a high-strength aluminium alloy. To this end, 20 mm  thick plates of 

AA7075-T651 aluminium alloy have been tested. Different specimen geometries were used to 

investigate various stress states. Each specimen was machined in different directions of the 

plate to enlighten the anisotropy of the material. For all tests, the plastic flow exhibited a slight 

anisotropy while the failure strain and failure modes showed a very important dependence to 

the loading direction. 

A microstructure analysis of the virgin material was performed by scanning electron 

microscope (SEM) and electron back-scatter diffraction to identify its texture, grain shape and 

particle distribution. A transmission electronic microscope analysis gave information of the 

precipitate free zones and their composition. 

Tensile tests were performed on smooth axisymmetric specimens under uniaxial 

tension. Tensile tests were also conducted on notched axisymmetric specimens of notch radii 

2.0 mmR  and 0.8 mmR   to obtain higher stress triaxiality states. Shear tests were 

performed on butterfly specimens and compression tests were performed on cylindrical 

specimens. Fracture surface analyses were carried out by SEM to identify the failure modes, 

supported by the microstructure analysis. 

Based on the plastic anisotropy observed experimentally, the Yld2004-18p anisotropic 

yield function proposed by Barlat et al. (2005) was chosen to model the elasto-plastic 

behaviour of the AA7075-T651 alloy. The plastic parameters were calibrated using seven in-

plane uniaxial tensile tests, a compression test in the normal direction of the plate and a shear 

test in the rolling direction. Numerical simulations of all the experimental tests were performed 

using the anisotropic elasto-plastic model. Predicted stress-strain curves were in very good 

agreement with the experimental curves for all tests including the tensile tests on notched 

specimens, which were not used in the calibration of the model. The overestimation of 

predicted stress level, generally observed (e.g. by Wilson, 2002) with notched specimens and 

isotropic pressure independent yield function, was significantly decreased when taking into 
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account anisotropy. The stress and strain states on elements where failure is experimentally 

observed were evaluated. The establishment of a failure locus (relation between failure strain 

and stress triaxiality) was also discussed. 

Analytical approaches were used to gain some insight of the failure process. First, the 

void growth approach proposed by Rice and Tracey (1969) was extended to an anisotropic 

matrix. Then, the usual localization criterion (Rice, 1976) was developed with various 

constitutive characteristics to account for the shape of the yield function, non-associative 

plastic flow, large deformations and thermo-mechanical couplings. 

For industrial applications, a phenomenological failure criterion based on “plastic 

work”, called the anisotropic extended Cockcroft-Latham (AECL), was proposed. The criterion 

was calibrated using the seven uniaxial in-plane tensile tests and the shear test performed in the 

rolling direction. Numerical simulations of all tests were, once again, performed accounting for 

plastic anisotropy. A parameter study was carried out to enlighten the influence of parameters 

such as the plastic anisotropy and the failure anisotropy. The predicted failure strain and failure 

modes were not accurate enough to give predictive capability to this failure criterion in all 

material tests. 

Finally, this anisotropic failure criterion was also used in numerical simulations of some 

impact tests on AA7075-T651 plates with ogival and blunt projectiles. A thermoelasto-

thermoviscoplastic model with anisotropic yielding was used and as for the material tests, a 

parameter study was performed. Ballistic limits were predicted and compared with the 

experimental results obtained by Børvik et al. (2010). It was found that the anisotropy of 

plastic flow and failure had almost no influence at very high impact velocities, while it had a 

substantial effect at impact velocities close to the ballistic limit. The introduced anisotropy was 

not found to improve the ballistic limit prediction for all cases, and also other parameters (e.g. 

yield shape, temperature coefficients and contact algorithms) have a prominent influence on 

the predicted ballistic limit. However, supported by experimental observations of non-

axisymmetric failure modes (Pedersen et al., 2011), both the plastic anisotropy and the failure 

anisotropy are believed to be important ingredient of the constitutive model. 
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.													Résumé	

L’objectif de l’étude est d’analyser les effets de l’anisotropie sur le comportement et la 

rupture d’alliages d’aluminium haute-performance. Pour ce faire, le cas d’étude choisi 

est l’alliage AA7075-T651 fourni en tôles de 20 mm  d’épaisseur obtenues par 

laminage. Des éprouvettes de géométries différentes sont utilisées pour soumettre le 

matériau à divers états de contraintes. Chaque type d’éprouvette est usiné dans 

différentes directions de la tôle afin de révéler l’anisotropie du matériau. La faible 

texture cristallographique de l’alliage engendre une légère anisotropie de l’écoulement 

plastique. L’anisotropie de la rupture en traction uniaxiale (déformation à rupture et 

mode de rupture) est, quant à elle, très prononcée. 

Une analyse de la microstructure du matériau vierge est effectuée à des échelles 

différentes. La morphologie des grains et la répartition des particules de l’alliage sont 

obtenue par microscopie optique. Des observations au microscope électronique à 

balayage (MEB) et par EBSD permettent d’identifier l’orientation des grains et d’en 

déduire la texture du matériau. Enfin, une analyse par microscope électronique à 

transmission offre des images le long des joints de grains, montrant l’absence de 

précipités (PFZ) et permettant d’évaluer leur composition. 

Des éprouvettes axisymétriques cylindriques sont utilisées pour soumettre le 

matériau à de la traction uniaxiale. Ces éprouvettes sont usinées dans sept directions du 

plan de la tôle de 0° à 90° ainsi que dans l’épaisseur de la tôle (éprouvettes miniatures). 

Des éprouvettes axisymétriques avec rayon d’entailles 2.0 mmR  et 0.8 mmR  sont 

usinées dans le plan de la tôle à 0°, 45° et 90° et utilisées pour atteindre des triaxialités 

plus élevées. Des essais de cisaillement sont réalisés à l’aide d’éprouvettes papillon 

usinées dans le plan de la tôle à 0°, 45° et 90°. Pour finir, des essais de compression 

uniaxiale sont effectués sur des éprouvettes cylindriques usinées dans le plan de la tôle à 

0°, 45° et 90° et dans son épaisseur. Le temps, la force et le déplacement de la machine 
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sont enregistrés afin de tracer les courbes de contrainte-déformation. Certains essais tels 

que les essais de cisaillement sont réalisés munis d’une caméra. La corrélation d’image 

est alors utilisée pour identifier les champs de déplacement et en déduire les 

déformations locales, qui sont des données importantes lors d’essais inhomogènes. Tous 

les faciès de ruptures sont observés au MEB et l’étude de microstructure réalisée en 

amont permet d’identifier les modes de rupture. 

Pour représenter l’anisotropie de la plasticité observée expérimentalement, la 

surface de charge anisotrope proposée par Barlat et al. (2005) pour modéliser le 

comportement elasto-plastique de l’alliage AA7075-T651 a été utilisé. Les paramètres 

du modèle sont calibrés à partir des sept essais de traction uniaxiale effectués dans le 

plan de la tôle, du test de compression effectué dans l’épaisseur de la tôle et du test de 

cisaillement effectué dans la direction de laminage. Les simulations numériques de tous 

les essais expérimentaux sont réalisées avec le modèle elasto-plastique ainsi calibré. Les 

courbes de contraintes-déformations simulées sont en accord avec les courbes 

expérimentales pour tous les essais, y compris les essais sur éprouvettes entaillées 

n’ayant pas été utilisés pour calibrer le modèle. On s’aperçoit notamment que la 

surestimation du niveau de contrainte, généralement observée pour ces derniers tests, est 

atténuée par la prise en compte de l’anisotropie de la plasticité. Les états locaux de 

contrainte et déformation des éléments situés aux lieux de rupture obtenue 

expérimentalement sont extraits et permettent d’expliquer les observations précédentes. 

Ces états locaux pouvant être particulièrement inhomogènes amènent  à se poser la 

question de la pertinence d’une unique relation entre déformation à rupture et triaxialité 

de contrainte. 

Plusieurs approches analytiques sont ensuite évaluées dans l’espoir de modéliser 

la rupture de notre alliage. L’analyse de croissance de cavité proposée par Rice et 

Tracey (1969) est ici développée pour un modèle de plasticité anisotrope. Cette analyse 

révèle que le principal effet du modèle anisotrope se limite à la définition anisotrope du 

taux de déformation plastique et de la triaxialité. Ensuite, la théorie de la localisation 

(Rice, 1976) est développée pour différents modèles constitutifs établis dans un cadre 

thermodynamique. L’influence de la forme de la surface de charge, celle de la non-

associativité de l’écoulement plastique, celle de la prise en compte des larges 

déformations ainsi que celle de conditions de chargement adiabatiques sont évaluées. 

Ces développement analytiques ne mènent pas à un critère de rupture directement 

utilisable pour le cas d’étude qu’est l’alliage AA7075-T651, mais apporte une vue 
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d’ensemble sur les théories existantes, leurs qualités prédictives et les limites de leur 

champs d’application. 

Pour les applications industrielles, un critère de rupture phénoménologique 

dénommé AECL (Cockcroft-Latham enrichi et anisotrope) a été développé pour rendre 

compte de l’anisotropie. Ce critère, basé sur une variable d’endommagement liée au 

travail plastique, non-couplée pour cette étude, est calibré à partir des sept essais de 

traction uniaxiale effectués dans le plan de la tôle et du test de cisaillement effectué 

dans la direction de laminage. À nouveau, les simulations numériques de tous les essais 

expérimentaux sont réalisées avec le modèle elasto-plastique anisotrope et le critère de 

rupture anisotrope ainsi calibré. Une étude est réalisée pour mettre en lumière les 

influences respectives de l’anisotropie de la plasticité et celle de l’endommagement. Les 

déformations à rupture et modes de ruptures obtenus numériquement ne sont pas assez 

précis pour qualifier le critère AECL de prédictif. Cependant, les résultats obtenus pour 

les tests ayant servis à calibrer le modèle sont corrects en termes de déformation à 

rupture, et une extension du domaine de calibration est envisageable. Dans tous les cas, 

ce critère de rupture AECL associé à une technique d’érosion des éléments n’est pas 

capable de prédire les modes de rupture. Il est d’ailleurs objecté qu’un raffinement du 

maillage est une condition sine qua none de prédiction des modes de rupture.  

Finalement, ce critère de rupture AECL est utilisé pour les simulations d’impact 

de tôle par des projectiles à extremité ogive et tronquée. Un modèle thermoelasto-

thermovisocoplastique avec surface de charge anisotrope est utilisé et la même étude 

paramétrique que pour les tests sur éprouvettes simples est réalisée. Les limites 

balistique sont évaluées et comparées aux limites obtenues expérimentalement par 

Børvik et al. (2010). L’anisotropie de l’écoulement plastique et du critère de rupture 

n’ont qu’une très faible d’influence pour les vitesses d’impact élevées. Par contre, pour 

les vitesses d’impact proche de la limite balistique, l’anisotropie peut modifier la 

prédiction numérique de façon non-négligeable. Les résultats obtenus ne sont pas 

systématiquement améliorés avec l’anisotropie. Néanmoins, l’anisotropie est un 

ingrédient important du modèle puisqu’il est le seul capable de reproduire les modes de 

ruptures non-axisymétrique observés par Pedersen et al. (2011). L’anisotropie mérite 

donc, au même titre que d’autres paramètres influents (forme de la surface de charge, 

coefficients thermiques ou algorithme de contact), d’être prise en compte lors du choix 

de modèle constitutif. 

Les conclusions de cette étude sont enrichies d’une étude préliminaire réalisée 

dans le cadre d’un projet plus large de modélisation des PFZs. Un modèle numérique de 
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grain et de joint de grain avec une couche unique d’éléments 3D est simulé. Les 

modeles de plasticité attribués à l’intérieur des grains et aux PFZs diffèrent afin de 

reproduire qualitativement la localisation des déformations aux joints de grains. 

 



ix 
 

.													Publications	related	to	the	thesis	

Fourmeau, M., Benallal, A., Børvik, T., Hopperstad, O.S., 2010. Modes d'endommagement et 

de rupture pour quelques alliages ductiles. Colloque National MECAMAT. 
 

Fourmeau, M., Børvik, T., Benallal, A., Hopperstad, O.S., 2011. Computation of the fracture 

behaviour of a high-strength aluminium alloy at low stress triaxialities. CFRAC - International 

Conference on Computational Modeling of Fracture and Failure of Materials and Structures. 
 

Fourmeau, M., Børvik, T., Benallal, A., Lademo, O.G., Hopperstad, O.S., 2011. On the plastic 

anisotropy of an aluminium alloy and its influence on constrained multiaxial flow. 

International Journal of Plasticity 27 (12), 2005-2025. Special issue in honor of Nobutada 

Ohno. 
 

Fourmeau, M., Børvik, T., Benallal, A., Hopperstad, O.S., 2011. Failure at low triaxialities. 

Workshop on Microstructural effects on damage, fracture and crashworthiness in high 

performance automotive material. 
 

Fourmeau, M., Børvik, T., Benallal, A., Hopperstad, O.S., 2011 Fracture of aluminium alloy 

AA7075-T651. 3rd International Conference on Impact Loading of Lightweight Structures. 
 

Hopperstad, O.S., Børvik, T., Fourmeau, M., Benallal, A., 2012. Anisotropic fracture of quasi-

brittle aluminium alloy. ICTAM - 23rd International Congress of Theoretical and Applied 

Mechanics. 
 

Fourmeau, M., Børvik, T., Benallal, A., Hopperstad, O.S., 2012. Anisotropic failure of 

aluminium alloy AA7075-T651. ESMC – 8th European Solid Mechanics Conference. 
 

Fourmeau, M., Børvik, T., Benallal, A., Hopperstad, O.S., 2013. Anisotropic failure modes of 

high-strength aluminium alloy under various stress states. International Journal of Plasticity 48, 

34-53. 



x 
 

 



xi 
 

.													Acknowledgements	

I would like to acknowledge the precious members of the Franco-Norwegian Philarmecanic 

Orchestra, who I was privileged to play with: 
 

Conductor (Tore Børvik): gather the better of every one to create an impacting harmony 

Solo violin (Odd Sture Hopperstad): the noble instrument, which lightness arises from great 

virtuosity 

Solo cello (Ahmed Benallal): which sound diffusion bifurcates to localize in ear and create 

remarkable gradients of emotions 

Violins (Simlab-team): all together, promising a sunny-friday hyttatur 

Violas (Simlab friends flying to Sintef): the “small-big sisters” of violins 

Cellos (Lmt-team): which rich melodies are resourcing, up to exhausting 

Double basses (Raka Bumedijen, Trond Auestad, Tore Wisth, Hans I. Lange): laughing back-

stage, but essential to the orchestra balance 

Piccolo (Calin Marioara, Patrick Aimedieu): a uniquely high tessitura opening towards 

invisible sounds 

Flute (Stephane Dumoulin): which crystal sound and technicity are widely-appreciated 

Clarinet (Vegard Martinsen, Ida M. Larsen): neighbouring and laugthing with (at) the oboe 

Bassoon (Ketill Olav Pedersen): the “grand-father”, quite-strength of the woods 

Horn (Odd-Geir Lademo): a majestic presence expressed through endless and remarkable solos 

Trumpet (Rodrigue Desmorat): an explosive and inspiring classic, recognizable from far away 

Percussion (Torodd Berstad, David Morin): which stability and accuracy relieve the  orchestra 

Harp (Egil Fagerholt): giving a full picture with only one chord 

Triangle (Alexandre Kane): contrary to common idea, has the most important resonance effect 

 

Administration (KT, LMT-Cachan): organizing rehearsals and concerts as well as world tours 

Financial founding (Norwegian Research council): providing furniture, sounds and light 

systems     





xiii 
 

.													Content	

.             Preface ............................................................................................................................. i 

.             Abstract.......................................................................................................................... iii 

.             Résumé ............................................................................................................................ v 

.             Publications related to the thesis ................................................................................... ix 

.             Acknowledgements ....................................................................................................... xi 

.             Content ........................................................................................................................ xiii 

.             Notations .................................................................................................................... xvii 

 

Chapter 1.  Introduction ............................................................................................................. 1 

1.1  Background .................................................................................................................... 1 

1.2  Plastic anisotropy towards failure .................................................................................. 2 

1.3  Failure mechanisms ....................................................................................................... 4 

1.4  Structural simulations .................................................................................................... 6 

1.5  Objectives and scope ..................................................................................................... 8 

1.6  Invariants of the stress tensor ......................................................................................... 9 

Chapter 2.  The AA7075-T651 aluminium alloy ..................................................................... 11 

2.1  Introduction .................................................................................................................. 11 

2.2  Optical microscope analysis ........................................................................................ 11 

2.3  Scanning electron microscope (SEM) analysis ........................................................... 12 

2.4  Transmission electron microscope (TEM) analysis..................................................... 14 

Chapter 3.  Experimental study ................................................................................................ 19 

3.1  Introduction .................................................................................................................. 19 

3.2  Tensile tests on smooth axisymmetric specimens (uniaxial tension) .......................... 21 

3.3  Tensile tests on notched axisymmetric specimens (multiaxial tension) ...................... 26 



xiv 
 

3.4  Compression tests on cylindrical specimens (uniaxial compression) ......................... 28 

3.5  Shear tests on butterfly specimens .............................................................................. 32 

3.6  Fracture surfaces and strain ratios ............................................................................... 36 

Chapter 4.  Anisotropic plasticity model ................................................................................. 41 

4.1  Introduction ................................................................................................................. 41 

4.2  Constitutive model ...................................................................................................... 41 

4.3  Identification of the Yld2004-18p material constants ................................................. 44 

4.3.1  The shape parameter m  ...................................................................................... 44 

4.3.2  The anisotropy parameters ................................................................................... 44 

4.4  Numerical procedures and finite element models ....................................................... 48 

Chapter 5.  Numerical analysis ................................................................................................ 51 

5.1  Introduction ................................................................................................................. 51 

5.2  Macroscopic stress-strain curves ................................................................................. 51 

5.2.1  Isotropic version of Yld2004-18p ........................................................................ 52 

5.2.2  Anisotropic version of Yld2004-18p ................................................................... 54 

5.2.3  Influence of plastic anisotropy ............................................................................. 56 

5.3  Local stress and strain along fracture surface ............................................................. 59 

5.4  Conclusions ................................................................................................................. 64 

Chapter 6.  Analytical considerations ...................................................................................... 67 

6.1  Introduction ................................................................................................................. 67 

6.2  Void growth approach for anisotropic materials ......................................................... 67 

6.2.1  Rice and Tracey analysis...................................................................................... 68 

6.2.2  Extension of the Rice and Tracey analysis for anisotropic matrix behaviour ..... 72 

6.2.3  Conclusions .......................................................................................................... 73 

6.3  Localization criteria ..................................................................................................... 74 

6.3.1  General constitutive framework ........................................................................... 74 

6.3.2  Localization analysis for a homogeneous material .............................................. 78 

6.3.3  Some applications ................................................................................................ 81 

6.3.4  Conclusions .......................................................................................................... 87 



xv 
 

Chapter 7.  Anisotropic failure criterion .................................................................................. 89 

7.1  Introduction .................................................................................................................. 89 

7.2  Extended Cockcroft–Latham (ECL) criterion ............................................................. 89 

7.3  Anisotropic extended Cockcroft–Latham (AECL) criterion ....................................... 91 

7.4  Quasi-static tests at different stress triaxialities ........................................................... 94 

7.4.1  Numerical aspects ................................................................................................. 95 

7.4.2  Analysis of results ................................................................................................ 96 

Chapter 8.  Structural impact of AA7075-T651 plates .......................................................... 105 

8.1  Introduction ................................................................................................................ 105 

8.2  Experimental and numerical results from Børvik et al. (2010) ................................. 105 

8.3  Anisotropic thermoelastic-thermoviscoplastic constitutive relations ........................ 110 

8.4  Numerical results and discussion ............................................................................... 112 

8.4.1  Ballistic limit curves and velocities .................................................................... 113 

8.4.2  Anisotropy versus isotropy ................................................................................. 114 

8.4.3  Sensitivity study ................................................................................................. 116 

8.5  Conclusions ................................................................................................................ 119 

Chapter 9.  Conclusions and further work ............................................................................. 121 

9.1  Conclusions ................................................................................................................ 121 

9.2  Further work .............................................................................................................. 126 

.             References ................................................................................................................... 131 

.             Appendix ..................................................................................................................... 141 

A.  Elastic 4th order tensor and related ............................................................................. 141 

B.  Thermodynamic framework ...................................................................................... 143 

C.  Localization condition with infinitesimal strains - solutions ..................................... 145 

D.  Localization condition with finite strains – formulation and solutions ..................... 150 

E.      Localization condition with adiabatic conditions - formulation ................................ 155 

F.      Particular yield functions ........................................................................................... 156 





xvii 
 

.													Notations	

The notations used in the manuscript are summed up in the table below. The variables with no 

denomination and the notations used in the Appendix are not reported for the sake of lightness. 
 

x  scalar 
, ix x  1st order tensor (vector) and components  1,2,3i  

, ,ij kx xx  2nd order tensor, components    , 1,2,3i j   and principal values  , ,k I II III  

, ijklXX  4th order tensor and components    , , , 1,2,3i j k l   

 , : ,   Simple, double contracted and dyadic product between tensors 
 diag  diagonal matrix 

 tr  trace of a matrix 
RD rolling direction of the plate (also denoted 0° direction) 
TD transverse direction of the plate (also denoted 90° direction) 
ND normal direction of the plate (also denoted thickness direction) 
LS, TS longitudinal and transverse direction of the specimen 
EBSD electron back-scatter diffraction 
SEM scanning electron microscope 
TEM transmission electron microscope 
EDS energy dispersive spectroscopy 
PFZ precipitate free zone 
GB grain boundary 
HAGB high angle grain boundary 
LAGB low angle grain boundary 

G nl  , PFZl  average length of a grain in the n  direction and of a PFZ 
GT generalized tension 
GS generalized shear 
GC generalized compression 
CT uniaxial compression test 
ST shear test 
UT uniaxial tensile test 
NT2.0 tensile test on notched specimen of notch radius 2.0 mmR   

NT0.8 tensile test on notched specimen of notch radius 0.8 mmR   
σ  stress tensor 
s  deviatoric stress tensor 
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I  2nd order identity tensor 

1I  first invariant of the stress tensor 

2J  second invariant of the deviatoric stress tensor 

3J  third invariant of the deviatoric stress tensor 

H  hydrostatic stress 

eq  von Mises equivalent stress 

  normalized third stress invariant 

L  Lode angle 

L  Lode parameter 
*  stress triaxiality ratio 

  Cauchy stress obtained experimentally 
  logarithmic longitudinal strain obtained experimentally 
ε  strain tensor 

eε  elastic strain tensor 
E  Young’s modulus 
E   apparent Young’s modulus 
  Poisson ratio 
  shear modulus 
K  bulk modulus 
  density 

tE  elasto-plastic tangent modulus 

,a R  geometrical parameters of the notched specimens 

0 0,h D  initial height and diameter of the cylindrical specimens 
F  reaction force measured by the machine 

0 0 0 0, , ,L D A V  initial length, diameter, area, and volume of a specimen 
, , ,nL D A V  current length, diameter in the n  direction, area and volume of a specimen 

DIC digital image correlation 

eff  effective strain obtained experimentally 

f  effective strain at failure obtained experimentally 
  in-plane direction of a specimen 
R  strain ratio in the   direction 

p
n  current plastic strain rate in the n direction 

r  flow stress ratio in the   direction 

biaxR  strain ratio for compression tests in the ND 

biaxr  flow stress ratio for compression tests in the ND 

C  yield stress under uniaxial compression in the ND 

ˆ ˆ,σ σ  corotational stress tensor and corotational rate-of-stress tensor 
, ,R F U  rotation, deformation gradient and right stretch 2nd order tensors 

d  rate-of-deformation tensor (symmetric part of the velocity gradiant) 

d̂  corotational rate-of-deformation tensor 
ˆ ˆ,e pd d  elastic and plastic part of d̂  
ˆ

elC  4th order elastic tensor 
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f  yield function 
  equivalent stress defined by a chosen yield function 
  plastic multiplier 

p  equivalent plastic strain rate (conjugate of  ) 
p accumulated plastic strain associated to p  

fp  accumulated plastic strain at failure 
Yld2004-18p anisotropic non-quadratic yield function from Barlat et al. (2005) 
  Yld2004-18p potential 
m  yield shape parameter 
ˆ ˆ, , ,ij ijc c   C C  4th order tensors and components from the Yld2004-18p function    , 1..6i j   

T  deviatoric transformation 4th order tensor 
  plastic hardening law 

0  yield stress under uniaxial tension in RD 
,Q C  Voce hardening law coefficients 

0PFZ  yield stress inside the PFZ 
,PFZ PFZQ C  Voce hardening law coefficients for the PFZ 

ˆ , ,T T T
el E C  thermo-visco versions of ˆ , ,el E C  

f  friction coefficient between a AA7075-T651 specimen and steel platens 

eh  mesh size 
RT Rice and Tracey 

0 0,R R  initial void radius and average void growth rate 

 e , e , eR    spherical coordinate system associated to the spherical coordinates  , ,R    

d  solid angle 

 , ,S Σ E  value of  , ,s σ ε  tensors at infinity 

,e iQ Q  external and internal power 
, ,m vV V V  total, matrix and void volume 
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, ,D Eu u u    total, radial and non-radial velocity field 
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,p P  equivalent plastic strain rate (conjugate of eq ) and value at infinity 

RRE  radial component of the tensor E  

RT  third invariant of the strain rate tensor 

M Hill matrix composed of , , , , ,F G H L M N  parameters 

, hh x  Hill parameter in RT and Hill version of any variable x  
LC localization condition 

, ,i a Jx x x  isothermal, adiabatic and Jaumann formulation versions of any variable x  
, ,L E H  4th order tangant modulus, elastic modulus and elasto-plastic modulus 

  thermo-mechanical potential 
F  plastic flow potential 
s  entropy 
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T  temperature 
th  thermal dilatation coefficient 

thc  specific heat 

 ,i i   inelastic internal variables and associated driving forces 
ω  spin tensor: anti-symmetric part of the velocity gradient 
h hardening modulus 
n  normal vector to the band 
g  intensity of the discontinuity vector 

,k ijh h  hardening modulus solutions of the LC    , , 1,2,3i j k   

ch  critical hardening modulus 

mT , rT  melting and reference temperature 
CL Cockcroft-Latham failure criterion 
IT integral Tresca failure criterion 
(A)ECL (anisotropic) extended Cockcroft-Latham failure criterion 

, CD D  damage variable and critical damage 

0 0,S s  damage evolution parameters 

  weighing parameter of the damage evolution 
, iPP  anisotropy diagonal matrix for the damage evolution and components  1..6i  

,A As s  anisotropy coefficients of the damage evolution 

CW  critical plastic work 
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iv , rv  impact and residual velocity of a projectile 
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RVE representative volume element 
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Also, a linear transformation applied to this 1st order tensor in Voigt notation is a 6 6  matrix 

and corresponds to a 4th order tensor applied to a symmetric 2nd order tensor with usual 

notations. 



 

 
 

Chapter	1. Introduction	

1.1 Background	

Context	

For the last decades, components made of high-strength aluminium alloys have been 

increasingly used by the industry. For such alloys, the modelling of fracture has become 

important as the strength is obtained at the expense of ductility. These components are obtained 

after various manufacturing operations, e.g. extrusion and rolling processes, which impose 

extremely large deformations to the material. These operations may lead to strongly anisotropic 

properties, which cannot always be neglected if one wishes to correctly represent the 

mechanical behaviour of the processed material. On the one hand, the yielding is often 

anisotropic when texture exists, i.e. there is a preferential crystallographic orientation of the 

grains. This anisotropic yielding can have an influence on the plastic flow and therefore on the 

stress state. On the other hand, the failure process, resulting in a failure mode and a strain at 

failure, can also be anisotropic. The plastic anisotropy is believed to have an influence on the 

failure through the resulting stress state and through the deformation incompatibilities between 

grains. Also, the anisotropic distribution of microstructural features (such as particles and grain 

boundaries for instance) is believed to play a role in the failure process. For industrial 

applications, a quantification of the influence of these multiple anisotropies is helpful to ensure 

relevant and efficient modelling. Depending on the purpose, different modelling scales or 

approaches might be necessary to exhibit correctly these anisotropies. 

AA7075‐T651	aluminium	alloy	

This thesis focuses on the high-strength aluminium alloy AA7075-T651 in the form of 20 mm 

thick plates. This alloy was developed by the Japanese company Sumitomo metal, in 1936. In 

the later 40’s the Imperial Japanese Navy started to use this alloy in the Mitsubishi A6M Zero 

fighter’s air frame. Then, the AA7075 was sold under various trade names such as Zircal, Ergal 
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and Fortal Constructal (www.wikipedia.com). Due to its high strength-to-density ratio, this 

alloy is often used in transport applications such as automotive or aviation industries, but also 

in civil and military protection systems (Pedersen et al., 2011). However, the AA7075-T651 

alloy has low resistance to corrosion, which limit the applications to non-corrosive 

environments. Depending on the application, the loading conditions seen by the alloy are from 

quasi-static ( 3 110 s  ) to impact loading ( 6 110 s ), and the stress triaxiality state varies from 

negative (compressive) to highly positive (multiaxial tension). These various loadings will be 

investigated in the following of the thesis. Chapter 2 presents the microstructural study 

performed by scanning electron microscope and transmission electron microscope on the 

AA7075-T651 in order to identify its texture, grain morphology and grain boundary 

characteristics. 

1.2 Plastic	anisotropy	towards	failure		

Plastic	anisotropy	

Since metallic materials are often provided as extruded or rolled plates, the deformation-

induced plastic anisotropy is an important aspect of their material behaviour. Due to their 

crystallographic texture, the yielding behaviour of such materials depends on the loading 

direction. The plastic behaviour of a metallic material is usually described through a yield 

surface in stress space, the associative flow rule and an isotropic hardening law. Since the 

pioneering work of Hill (1948), a tremendous effort has been made during the last two decades 

to improve the modelling of anisotropy in macroscopic models (Hill, 1987, 1990; Van Houtte 

et al., 1989; Arminjon and Bacroix, 1991; Barlat and Chung, 1993; Karafillis and Boyce, 1993; 

Arminjon et al., 1994; Barlat et al., 2003; Bron and Besson, 2004; Van Houtte and Van Bael, 

2004; Choi et al., 2006; Leacock, 2006; Aretz et al., 2007; Hu, 2007; Kim et al., 2007; 

Monchiet et al., 2008; Soare and Barlat, 2010). The modelling of plastic anisotropy is still a 

difficult task for macroscopic models and particularly for complex multiaxial paths. The use of 

crystal plasticity theories can help in this direction, but their use is restricted by computational 

limitations and the observation that they do not predict the flow stress and the plastic flow 

simultaneously, as shown for instance in Darrieulat and Montheillet (2003) and Lopes et al. 

(2003). 

Hydrostatic	stress	influence	

Most theories of plasticity assume that the hydrostatic pressure has no or very limited effect on 

the strain hardening of metals and metallic alloys. Another common assumption in these 

theories is plastic incompressibility. Since the beginning of the eighties, Richmond and Spitzig 
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(1980), Brownrigg et al. (1983), Spitzig and Richmond (1984) and Brünig (1999) reported 

pressure dependence of the flow stress for metals such as steel and aluminium. The effect of 

this observation is an increase in flow stress of metals with hydrostatic pressure. In these 

studies (despite the claimed dependence of the flow stress on the hydrostatic pressure), the 

plastic dilatancy is considered negligible and not related to the normality rule. Even though the 

effect of hydrostatic pressure was not directly studied, Freed and Sandor (1985) observed 

plastic volume change in uniaxial tension of the aluminium alloy AA7075-T651. They found 

elastic and plastic volume changes of similar magnitude and suggested plastic anisotropy to be 

the prime cause of this plastic compressibility. 

Modelling	of	the	AA7075‐T651	plastic	anisotropy	

The objective of Chapter 3 and Chapter 4 of this thesis is to analyse in detail the effects of 

anisotropy on the mechanical behaviour and constrained plastic flow for the high-strength 

aluminium alloy AA7075-T651. In these chapters, only its effects on the yielding behaviour of 

the alloy are considered. Though some works (see e.g. Stoughton and Yoon, 2009; Rousselier, 

2010) have studied the effect of anisotropy on strain hardening of aluminium alloys, elastic 

behaviour and strain hardening are here assumed isotropic. The hardening parameters are 

identified from tensile tests in the rolling direction of the plate. The yield surface is represented 

by the linear transformation-based yield function Yld2004-18p proposed by Barlat et al. 

(2005), and a corotational formulation (Belytschko et al., 2000) is adopted to simplify the 

formulation of plastic anisotropy. The stress measure is defined with respect to the un-rotated 

configuration and expressed in the rectangular Cartesian coordinate system corresponding to 

the principal axes of anisotropy of the material. This formulation was successfully used by e.g. 

Grytten et al. (2008) to model the plastic behaviour of the aluminium alloy AA5083-H116. The 

defined yield function together with the associative flow rule presumes pressure insensitivity. 

In this thesis, the yield criterion is identified through tension tests on smooth tensile specimens 

with longitudinal axes aligned at different directions with respect to the rolling direction of the 

plate and compression test in the thickness direction of the plate. Both the directional yield 

stresses and the ratios of transverse to thickness plastic strain increments are measured and 

used to identify the coefficients of the yield function. The shear test performed in the rolling 

direction is also used to enhance the calibration by using a trial and error method. The model is 

then applied in non-linear finite element simulations to reproduce the plastic behaviour of 

different type of specimens (notched axisymmetric specimens, butterfly shear specimens and 

cylindrical specimens for compression tests) cut from different material directions. It will be 

shown that the effects of anisotropy must be taken into account for a good representation of the 

mechanical behaviour of the alloy at various stress states. 
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Plasticity	towards	failure	

In addition to anisotropic yielding (Hill, 1948; Barlat et al., 2005; Rousselier et al., 2012), 

some alloys also show anisotropic failure (e.g. Chen et al., 2009; Holmen et al., 2013). The 

stress triaxiality and the strain intensity are usually considered the most important factors that 

control the initiation of fracture. Therefore, the deformation and loading histories are important 

to correctly predict failure. In that context, using an appropriate anisotropic model for 

aluminium alloys is an essential step to enable a proper description of the damage leading to 

anisotropic fracture. In Chapter 5, based on the experimental and numerical work presented in 

Chapter 3 and Chapter 4, the effect of the anisotropy on the effective strain to failure is 

evaluated taking into account the stress triaxiality and the direction of loading. These effects 

are then discussed. 

1.3 Failure	mechanisms	

The variety of fracture mechanisms for aluminium alloys have been investigated for more than 

four decades, and fracture maps were presented by Teirlinck et al. (1988). In this part, only the 

mechanisms observed in the failure of the aluminium alloy AA7075-T651 are introduced. 

Void	growth	at	high	stress	triaxialities	

At high stress triaxiality, voids can nucleate around particles or materials defects, then grow 

and coalesce to lead to final ductile failure. The growth mechanism was first described 

analytically for an infinite perfectly plastic isotropic medium containing either a cylindrical 

void by McClintock (1968) or a spherical void by Rice and Tracey (1969). These studies 

revealed that the growth of a void is controlled by the stress triaxiality factor and the plastic 

strain intensity. Later, Gurson (1977) derived an expression for the yield locus of an isotropic 

medium containing a spherical void. Since these pioneering works, the description of the void 

growth mechanism has been enriched in many different ways, as outlined in a recent review by 

Lecarme et al. (2011). Criteria describing nucleation and coalescence of voids were included in 

the Gurson model by Chu and Needleman (1980) and Tvergaard and Needleman (1984), 

leading to the well-known GTN model. Hahn and Rosenfield (1975) pointed out that two 

populations of particles of different magnitude are involved in the fracture process at different 

levels. Void growth occurs around large constituent particles, while localization leading to 

coalescence is facilitated by void growth around smaller dispersoids. The void shape effect was 

further introduced in the Gurson model by Gologanu et al. (1993–1994a). In parallel, the 

distribution of spherical voids in an isotropic matrix has been numerically investigated by 

Gologanu et al. (1994b), showing that an anisotropic distribution could influence the 
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coalescence process. More recently, Pardoen and Hutchinson (2000) proposed to couple this 

model with the Thomason criterion (Thomason, 1990) for void coalescence. Yerra et al. (2010) 

numerically described the fracture inside a grain using a crystal plasticity material model 

around a spherical void. Inclusion of the anisotropy in the Gurson approach was studied by 

Benzerga and Besson (2001), while Monchiet et al. (2008) analysed the role of anisotropy both 

on the yield behaviour and the growth of voids. The first part of Chapter 6 presents the 

analytical solution of Rice and Tracey (1969) and quantifies the influence of an anisotropic 

plastic model on the rate of void growth. In addition, these developments point out the 

assumptions necessary to obtain the well-known exponential triaxiality dependence of the void 

growth, in particular the influence of the third invariant, often omitted for its assumed small 

effect. However, despite extensive developments, the theory only considers the void growth 

mechanism, which is not the only one occurring in metallic materials. 

Modelling	of	failure	at	lower	stress	triaxialities	

At lower and negative stress triaxiality states or shear dominated loadings, fracture often occurs 

by shear localization. Efforts have been made to reproduce experimental observations under 

such conditions. These models are often empirical, since the physics of the underlying fracture 

process is not clearly identified. For instance, Khan and Liu (2012) proposed a new empirical 

failure criterion based on the relationship between the hydrostatic pressure and the magnitude 

of the stress vector and obtained better results than with other well-established criteria, such as 

the maximum shear stress criterion (Stoughton and Yoon, 2011), the von Mises criterion ( 2J -

based) and the Xue-Wierzbicki criterion (Wierzbicki et al., 2005). Based on experimental tests 

at low stress triaxialities, Bao and Wierzbicki (2004) observed that the strain to failure drops at 

stress triaxialities close to zero. They proposed to distinguish between void growth, which is 

predominant at high stress triaxialities, and shear fracture, which dominates at low stress 

triaxialities. Barsoum and Faleskog (2007) have shown experimentally the influence of the 

third invariant of the deviatoric stress tensor on ductile failure, while Nahshon and Hutchinson 

(2008) introduced the third invariant in the Gurson model to reproduce the shear dominated 

failure mode observed at low stress triaxiality states. To introduce the influence of the third 

invariant, Bai and Wierzbicki (2010) proposed a modified Mohr-Coulomb fracture criterion 

formulated in the space of stress triaxiality, Lode angle and equivalent plastic strain. Dunand 

and Mohr (2011) showed the capabilities of such models to predict fracture of an aluminium 

alloy over a large range of stress triaxialities and values of the Lode parameter. Gruben et al. 

(2012) proposed an extension of the Cockcroft-Latham (ECL) failure criterion and analysed the 

influence of the third invariant captured by this criterion. In a similar way as done for 

anisotropic yielding, Luo et al. (2012) proposed an anisotropic damage evolution based on a 

linear transformation of the plastic strain-rate tensor. The six parameters can be calibrated 
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using the same tests as those for calibration of the anisotropic yield function. Chapter 7 

presents the combination of this anisotropic linear transformation with the uncoupled ECL 

failure criterion called the anisotropic extended Cockcroft-Latham criterion (AECL). This 

criterion is then calibrated for the AA7075-T651 alloy and its predictive capability is evaluated 

using the tests presented in Chapter 3. 

Localization	analysis	

A phenomenological model was developed by Benallal et al. (2008) to predict the localization 

of strains along an inclined band and its propagation for the aluminium alloy AA5083 

exhibiting the Portevin-Le Chatelier effect. A usual approach to model localization of strains is 

to envisage a bifurcation in the material model. When a ductile metal is deformed into the 

plastic range, a localized zone of deformation sometimes appears in the form of a narrow band 

in highly stressed regions, not only at low stress triaxiality states. A typical example is the 

tensile failure of a sheet material by the so-called process of localized necking. The non-

uniform deformation within the band generally leads to ductile fracture by various 

mechanisms. In the context of ductile fracture, the mechanisms of growth and coalescence of 

voids presented earlier are often advocated (see e.g. Rice and Tracey, 1969). However, it is not 

always clear whether the localization occurs because of the progressive softening of the 

material due to void growth (see e.g. Gurson, 1977) or because some other instability of the 

plastic flow process first occurs (see e.g. Rice, 1976). Rudnicki and Rice (1975) and Rice 

(1976) formulated the analytical condition for the localization of strains along a band in a 

previously homogeneous solid. Chapter 6 presents, in addition to the Rice and Tracey 

analysis, the condition of localization for various elasto-plastic material models (following a 

thermodynamic framework) and evaluates its capability to predict physical observations. 

1.4 Structural	simulations	

Ballistic	application	

For a material such as the AA7075-T651 aluminium alloy, exhibiting various failure modes 

and significant anisotropy, one must keep in mind the computational cost/efficiency constraint 

imposed by the industrial context. Indeed, plastic anisotropy modelling brings an additional 

experimental cost compared with isotropy, and physically-based failure criteria are 

computationally demanding. Due to a large number of elements necessary for structural 

simulations, such as ballistic impact, the CPU time can increase dramatically even with simple 

material models (Børvik et al., 2010). Therefore, the contribution of the previously presented 

models to the validity of numerical prediction must be evaluated. Chapter 8 presents the 
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numerical simulations of ballistic impact against the AA7075-T651 plate with blunt and ogival 

projectiles. Both the anisotropic plasticity model (presented in Chapter 4) and the anisotropic 

failure criterion (presented in Chapter 7) are used. The predictive capability of the anisotropic 

model is evaluated and the influence of anisotropy is quantified. 

Microstructure	modelling	

Experimental observations tend to show that microstructural features (not only voids) can play 

an important role in the failure process. None of the previous failure modelling approaches is 

capable of taking this information into account. Based on tensile tests performed in the three 

orthotropic directions of a rolled AA7075-T651 aluminium plate and fracture surface 

observations, Jordon et al. (2009) quantified the influence of two different size-order particle 

populations (constituent and dispersoids) on the damage process and their anisotropic 

characteristics. They proposed a continuum-based damage model enriched by internal variables 

related to the two populations of particles. Hahn and Rosenfield (1975) observed that under 

certain loading conditions, failure can be partly intergranular. Børvik et al. (2010) and Pedersen 

et al. (2011) also observed a competition between intragranular and intergranular fracture due 

to the existence of precipitate free zones (PFZs) along the grain boundaries. This was modelled 

numerically by Pardoen et al. (2003). Based on microscopic observations of the failure surface 

presented in Chapter 3 for the AA7075-T651 alloy, it seems that the grain morphology and 

inclusions (seen to be very anisotropic in Chapter 2) may also play a role in the anisotropy of 

failure. A numerical model of the microstructure coupled with damage models enabled 

Steglich et al. (2008) to represent the anisotropic ductile fracture of an aluminium alloy. 

Together with the conclusions, Chapter 9 presents some preliminary results of the modelling 

of anisotropic grains and grain boundaries, in order to capture the localization of strains inside 

the PFZ. 
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1.5 Objectives	and	scope	

The main objective of the study is to understand and model the anisotropy of flow and failure 

exhibited by high-strength aluminium alloys obtained by rolling or extrusion processes. To this 

end, the aluminium alloy AA7075-T651 is exclusively studied and different steps were 

followed: 

 Experimental campaign under quasi-static loading conditions: several specimens were 

loaded until fracture to exhibit the influence of stress triaxiality on the failure strain and failure 

modes. Several directions were also investigated to determine the anisotropic behaviour. 

Microscopic observations of failed specimens enabled to identify the physical features of the 

failure process. 

 Anisotropic plasticity: an anisotropic yield function was calibrated using uniaxial 

tension and shear tests, and numerical simulations of all tests were performed to capture the 

local stresses and strains at fracture. 

 Anisotropic fracture: several theories were investigated and their capability to predict 

the experimental observations was evaluated. A phenomenological failure criterion was 

proposed, calibrated and evaluated through numerical simulations of quasi-static tests and 

ballistic impact experiments. 

The study was limited to the AA7075-T651 alloy. All material tests were performed under 

quasi-static loading conditions even though ballistic numerical simulations were performed. It 

is believed that a good understanding of the failure mechanisms under quasi-static loading 

conditions is the starting point of further investigations at higher velocities (Børvik et al., 2010; 

Pedersen et al., 2011). Temperature effects were not studied in this thesis, but thermal 

parameters (used in the localization analysis and in the ballistic impact simulations) were taken 

from previous studies. The coupling between temperature and strain-rate effects is obviously 

an issue to be pursued. 
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1.6 Invariants	of	the	stress	tensor	

Some variables and notations that are extensively used in this thesis are defined in the 

following. The stress invariants are given as 
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where 1I  is the first invariant of the stress tensor σ , while 2J  and 3J  are the second and third 

invariants of the deviatoric stress tensor H s σ I , with I  the 2nd order identity tensor. H  

is the hydrostatic stress, while eq  is the von Mises equivalent stress. Also,   is the normalized 

third stress invariant and L  is the Lode angle. In addition, the Lode parameter L  is 

introduced as the normalized location of the second principal ordered deviatoric stress IIs  with 

respect to the first and third principal ordered deviatoric stresses Is  and IIIs , i.e. 
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Figure 1.1 illustrates the definitions of the Lode parameter L  and the Lode angle L , while  

Table 1.1 gives values of  , L  and L  for some particular loading conditions. 

 

(a) (b) (c) 
Figure 1.1. Lode angle domain (a) in a trigonometric circle and (b) in the principal deviatoric 
stress plane. (c) Lode parameter in the Mohr circle representation of the deviatoric stresses. 
Specific loadings such as generalized tension, shear and compression are specified as (GT), 
(GS) and (GC), respectively. 
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Table 1.1. Normalized third invariant, Lode angle and Lode parameter for specific loadings 

Stress state , ,I II IIIs s s    L  L  

Generalized tension (GT) I II IIIs s s   1 6  -1 

Generalized shear (GS) 2 II I IIIs s s   0 0 0 

Generalized compression (GC) I II IIIs s s   -1 6  1 

 

A particular and convenient property of the Lode angle is that the deviatoric stress 

tensor s  can be written with principal ordered values in the principal frame, i.e. 
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Thus, a yield function expressed in terms of principal deviatoric stresses can be easily 

transformed to a function of the equivalent stress eq  and the Lode angle L . 

 



 

 
 

Chapter	2. The	AA7075‐T651	aluminium	alloy	

2.1 Introduction	

In this chapter, the microstructure of the AA7075-T651 aluminium alloy is studied at different 

scales. First, an optical microscope is used to disclose the grain morphology and the 

distribution of large particles. Second, a scanning electron microscope (SEM) and electron 

back-scatter diffraction (EBSD) technique are used to determine the texture of the alloy. Third, 

a transmission electron microscope (TEM) is used to analyse the grain boundaries at the 

nanometre scale. 

2.2 Optical	microscope	analysis	

The studied material is the AA7075 aluminium alloy in temper T651. The nominal chemical 

composition is given in Table 2.1. This high-strength aluminium alloy has nominal yield and 

tensile strengths in the rolling direction of 505MPa  and 570 MPa, respectively (based on data 

from the supplier). All material specimens presented in this study were manufactured from a 

20 mm thick rolled plate. Temper T651 implies that the alloy is slightly stretched and aged to 

peak strength. The grain structure of the as-received AA7075-T651 plate is shown in Figure 

2.1 (a) as tri-planar optical micrographs along the three orthogonal directions of the rolled 

plate, i.e. the rolling direction (RD), the transverse direction (TD) and the normal direction 

(ND). 

The bulk of the AA7075-T651 alloy has a complex microstructure with different 

classes of particles. Coherent precipitates containing Mg and Zn, the so-called η -phase, 

appear during the artificial age hardening of temper T6. The element Cu can also enter in the 

η -phase composition (see Marioara et al., 2013). These precipitates are at the nanoscopic 

scale and densely distributed inside the grains. They contribute to the hardening of the material 

by preventing the dislocation movements (Park and Ardell, 1988). According to Andreatta et 
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al. (2003a, 2003b), 7xxx alloys also contain dispersoids of different size ( 0.05 0.15 μm ) and 

composition (Al3Ti, Al6Mn, Al3Zr, Al12Mg2Cr, Al20Cu2Mn3), acting as barriers that limit the 

recrystallization during tempering. This explains the non-recrystallized grain structure of the 

AA7075-T651 alloy with flat and elongated grains in the rolling plane of the plate. Large iron-

based intermetallic inclusions (at micrometre scale), such as Al6(Fe,Mn), Al3Fe, Al(Fe,Mn,Si) 

and Al7Cu2Fe (or silicon-based such as Mg2Si) are preferentially distributed along the rolling 

direction (RD), as quantified by Jordon et al. (2009) and illustrated in Figure 2.1 (b). This is 

made possible since they are formed before the rolling operations. The distribution of 

inclusions is of interest since they can play a major role in the fracture process. 

Table 2.1. Nominal chemical composition (in wt%) of the AA7075-T651 aluminium alloy. 

Al Zn Mg Cu Cr Fe Ti Si Mn Others 
Balance 5.7 2.4 1.3 0.19 0.19 0.08 0.06 0.04 0.15 

 

(a) (b) 
Figure 2.1. Tri-planar optical micrographs showing (a) the grain structure and (b) the 
distribution of inclusions for the AA7075-T651 aluminium alloy (Børvik et al., 2010). 

2.3 Scanning	electron	microscope	(SEM)	analysis	

The rolling process implies a crystallographic texture and leads to anisotropic characteristics 

(Børvik et al., 2010). The texture of the plates of AA7075-T651 was determined using the 

electron back-scatter diffraction (EBSD) technique in a scanning electron microscope (SEM). 

The scans presented in Figure 2.2 exhibit the crystallographic orientations of the alloy in the 

three different orthotropic planes. The black spots correspond to inclusions and no orientation 

is associated to them. These scans were also used to determine the average grain size in the 

principal directions of the plate ( 138 μmG RDl    along RD, 62 μmG TDl    along TD and 

11 μmG NDl    along ND). In average, the grains are more than 10 times longer than thick, so 

the grain boundaries and inclusions are 10 times more densely distributed in the normal 
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direction (ND) than along the rolling direction (RD) of the plate. The pole figures of the 

AA7075-T651 alloy presented in Figure 2.3 show that the texture is rather weak (maximum 

intensity of 2.596). The anisotropy of the shape of the grains and distribution of inclusions is 

then more important than the crystallographic texture. These are important observations in 

order to understand the effect of the anisotropy of the plastic flow and fracture in this particular 

aluminium alloy. 

 

 

 
Figure 2.2. Scans giving grains and orientations in the orthotropic planes of the AA7075-T651 
plates. 
 

 
Figure 2.3. Pole figures of the AA7075-T651 plates. 
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2.4 Transmission	electron	microscope	(TEM)	analysis	

Another very important microstructural characteristic of the 7xxx (and 6xxx) series of 

aluminium alloys is the presence of precipitate free zones (PFZs) at nanometre scale created 

during the quenching operation of the heat treatment and generally located around the grain 

boundaries (GBs). These zones are generally softer than the matrix hardened by precipitates. 

Experiments indicate that plastic strain can be highly localized inside these zones and can 

therefore lead to premature failure of such materials (Dumont et al., 2003). The PFZs are 

engendered by two closely related phenomena: 

 the local depletion of vacancies which inhibits the formation of fine dispersion of 

precipitates 

 the local solute depletion initiated by heterogeneous precipitation of phases at the GBs 

These two phenomena require atom mobility and occur therefore during the thermal treatment 

of the alloy. The cooling rate of the quenching operation influences the width of the PFZs 

(Deschamps et al., 2009). For instance, a fast cooling inhibits the migration of vacancy and 

solute toward the GBs and therefore prevents the PFZs from growing. 

A transmission electron microscope (TEM) study was performed by Calin Marioara 

(SINTEF Materials and Technology) on the AA7075-T651 alloy to reveal some of the features 

of the microstructure. Figure 2.4 (a) is taken in the plane of the plate and shows that grains are 

elongated and dispersoids are aligned in the rolling direction (RD). Figure 2.4 (b)–(d) shows 

the hardening precipitates inside the grains and the presence of PFZs along the GBs. In 

average, these PFZs are wider in the case of high angle grain boundaries HAGB (

40 nmPFZ Hl   ) than for low angle grain boundaries LAGB ( 20 nmPFZ Ll   ). The GBs are 

defined as LAGB (HAGB) when the disorientation between the two neighbouring grains is 

10  ( 15  ) (see Verhoeven, 1975). A fortiori, sub-grains within the same grain are separated 

by a LAGB since they have nearly the same orientation (within a few degrees). The misfit in 

the orientation of two grains is accommodated by perturbations in the atomic packing. In the 

case of HAGBs, these perturbations become severely disordered and promote the vacancy and 

solute migration more than the LAGBs. The PFZ formation is then facilitated around the 

HAGBs. It is also observed that the LAGBs contains a higher amount of GB precipitates. In 

the case of 7xxx alloys, the precipitates that form at the GBs (Mg-Zn(-Cu)) need a certain 

degree of coherency with the matrix in order to form and grow. This cannot be achieved if the 

adjacent grains have large misorientations. The orientations <110> and <112> stipulated on the 

TEM pictures correspond to the zone axis (orientation) of the respective grains along the 

viewing direction. 
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(a) (b) 

(c) (d) 

Figure 2.4. TEM pictures of the AA7075-T651 alloy (bright field CM30 operated at 150 kV). 
 

An energy dispersive X-ray spectroscopy (EDS) analysis was performed in parallel to 

the TEM analysis and gave information about the chemical composition of the microstructural 

features. Figure 2.5 gives the maps of several alloying elements on a given scanned area. The 

upper-left picture in Figure 2.5 presents the scanned area and depicts a PFZ along a GB, fine 

precipitates in the adjacent grains, two large precipitates formed at the GB (3-4) and a large 

precipitate in the bulk (1) that was formed on a dispersoid (2). The five other maps given in 

Figure 2.5 are the spatial distribution of different alloying elements (Zn, Mg, Cu, Cr, Fe) 

within the area. 



Chapter 2 - The AA7075-T651 aluminium alloy 

16 
 

The following observations can be drawn from the maps 

 The fine precipitates contain Zn and Mg, as expected. Based on Marlaud et al. (2010), 

Cu may enter the composition of the precipitates as well, but to a level below the 

detection limit. 

 The large precipitates (1), (3) and (4) also have a Zn-Mg(-Cu) composition. 

 Cr is present in the dispersoid (2) on which particle (1) is nucleated, and in another 

dispersoid on which particle (3) is nucleated. The alloying element Cr does not play a 

role in the grain/GB composition. 

 Mg, Cu and to a lower extent Zn are present along the GB as thin continuous films. 

Figure 2.4 (b) exhibits a black GB due to layered precipitates, in contrast to the grey 

aluminium grain. 

 Cu is also spread in solid solution inside the rest of the matrix. 

 Fe has no preferential location, indicating that this element is not associated with 

precipitation and mostly left in solid solution. This is also the case for the elements Mn, 

Ti and Si, which maps are not presented here. 

 

Figure 2.5. TEM image and x-ray maps for five different elements (Zn, Mg, Cu, Cr, Fe) of the 
AA7075-T651 alloy (Annular Dark Field Scanning TEM mode using a Jeol 2010F microscope 
operated at 200kV). 
 

Figure 2.6 gives a more accurate description of the alloying content across the whole 

scanned area (i.e. the whole picture), inside the grain (bulk) (5) and inside the PFZ (6). These 

data confirm the observations made in Figure 2.5 and give the following additional 

information:  
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 Zn and Mg have slightly lower values in the bulk than in the alloy composition. This 

confirms the presence of a low volume fraction of large MgZn(Cu) precipitates (like (1) 

and (3) in Figure 2.5 nucleated on dispersoids), in addition to a much higher volume 

fraction of small MgZn(Cu) hardening precipitates. 

 Zn, Mg and possibly Cu are depleted in the PFZ area, most probably due to the 

formation of MgZn(Cu) GB precipitates that use this solute. 

 Compared with the bulk (5), the Zn content in the PFZ (6) is lower by a factor of 5, 

whereas the Mg and Cu content is only lower by a factor of 2 or less. This suggests that 

the PFZs contain alloying elements (except Zn) in solid solution even though it is free 

from precipitates. 

 Cr is strongly depleted in the bulk (5) and PFZ (6), indicating that most of it is absorbed 

into dispersoids. However, its (low) value is similar in bulk and PFZ. This observation 

and the next one indicate that the formation of PFZs is a vacancy driven process. 

Consequently, the composition of a certain element in the PFZs should be equal to its 

composition in the nearby bulk. The exceptions are Zn, Mg and perhaps Cu, as 

mentioned above, because GB precipitates contain these elements and therefore they 

become depleted in the neighbouring PFZ. 

 Fe, Mn, Ti and Si have similar values in all areas and close to their respective nominal 

compositions, indicating that these elements do not have a strong association with 

precipitation and therefore most of them are left in solid solution. 

 Cu has unrealistically high values in all areas. This might be an artefact due to the 

presence of an oxide layer on the sample's surface, as a consequence of the sample 

preparation. 

Element Nominal Picture  5:bulk  6: FZ 
Zn  5.70  4.56  4.79  1.16  
Mg  2.40  2.05  1.97  0.99  
Cu  1.30  2.98  3.09  2.11  
Fe  0.19  0.28  0.26  0.23  
Cr  0.19  0.23  0.04  0.07  
Ti  0.08  0.10  0.06  0.07  
Si  0.06  0.12  0.11  0.08  
Mn  0.04  0.04  0.02  0.04  

Figure 2.6. STEM image and alloying content (in wt%) in different areas for the picture. 
 

This analysis suggests that the PFZs, although often considered as pure aluminium 

zones inside a stronger matrix, contain non-negligible amount of alloying elements in solid 

solution. The behaviour of the PFZs could then differ from pure aluminium, in terms of plastic 

hardening for instance. These observations are both important and helpful for the modelling of 

the microstructure. 





 

 
 

Chapter	3. Experimental	study	

3.1 Introduction	

In this chapter, the various material tests performed during the project are presented. The 

effects of both stress triaxiality and loading direction on the plastic and fracture behaviour of 

the AA7075-T651 alloy are investigated. The stress triaxiality is defined as the ratio 

 * 1

23 3
H

eq

I

J




   (5) 

where 1I  is the first invariant of the stress tensor σ , 2J  is the second invariant of the deviatoric 

stress tensor s , H  is the hydrostatic stress and eq  is the von Mises equivalent stress. All 

these variables are defined in Chapter 1.6. Different specimen geometries were chosen to 

define a wide range of stress triaxiality states. The different geometries displayed in Figure 3.1 

are designed to give initial stress triaxiality states according to Eq.(5) of 1 3  for the pure 

compression tests on cylindrical specimens, 0 for the shear tests on butterfly specimens, 1 3  

for the tensile tests on smooth axisymmetric specimens and higher than 1 3 for the tensile tests 

on notched axisymmetric specimens (of notch root radius 2mmR  and 0.8mmR ). 

Bridgman (1952) gave a theoretical expression for the maximum stress triaxiality in the centre 

of an axisymmetric tensile specimen after necking as 

 
1

ln 1
3 2

a

R
      

 
 (6) 

where a  is the radius of the specimen at minimum cross section and R  is the curvature radius 

of the neck. When the radius R   , i.e. the specimen is smooth, the stress triaxiality takes the 

value of 1 3   . It should be kept in mind that this expression is based on several 

assumptions, such as isotropy, the von Mises yield function, homogeneous strains over the 
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cross section of the neck and a circular cross section throughout the test (Dieter, 1988), which 

are not fulfilled in our study. Even so, Eq.(6) will be used here to give an estimate of the initial 

stress triaxiality in the notched specimens. The notched specimens are usually used to 

investigate the influence of the stress state on the fracture strain, whereas the butterfly 

specimens allow for an approximate shear stress field. In addition, specimens were sampled in 

several orientations of the plate to evaluate the anisotropic properties of the material. Figure 3.1 

presents the specimen geometries for the tensile tests (smooth specimens in (a)-(b) and notched 

specimens in (c)), the compression tests on cylinders of aspect ratio unity in (d) and the shear 

tests on butterfly specimen in (e). 

 

 
(a) (b) (c) 

 
 

(d) (e) 
Figure 3.1. Specimen geometries for the material tests: smooth axisymmetric specimen for 
tensile tests (a) in-plane of the plate and (b) in ND, (c) notched axisymmetric specimen for 
tensile tests, (d) cylinders with 0 0 1h D   for compression tests and (e) butterfly specimens for 
shear tests. 
 

The tests were performed using various universal testing machines at room temperature 

and nominal strain-rates at the order of 3 110 s   (i.e. quasi-static loading conditions). Time, 
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force and displacement were continuously measured during all tests until fracture of the 

specimens. Table 3.1 sums up the number of duplicate tests performed on the AA7075-T651 

alloy in each direction and for each specimen. For each type of test the following is presented: 

 the experimental procedure and specimen geometry 

 the post treatment of force and displacement measured from the machines 

 the failure strain for all directions 

 the failure mode for all directions (and in some cases micrographs) 

Table 3.1. Experimental campaign with number of tests performed on the AA7075-T651 alloy. 

Specimen Initial stress state    
Direction of loading (°) 

0 15 30 45 60 75 90 ND
Smooth axisymmetric Uniaxial tension 1/3 5 2 2 3 2 2 3 6 
Notched axisymmetric 

2.0 mmR   Multiaxial tension 0.89 2 - - 2 - - 2 - 

Notched axisymmetric 
0.8mmR   Multiaxial tension 1.39 2 - - 2 - - 2 - 

Cylinder / 1h D   Uniaxial compression -1/3 5 - - 5 - - 5 3 
Cylinder / 1.5h D   Uniaxial compression -1/3 2 - - 2 - - 2 - 

Butterfly Shear 0 6 - - 7 - - 6 - 

3.2 Tensile	tests	on	smooth	axisymmetric	specimens	(uniaxial	tension)	

Tensile tests were carried on axisymmetric smooth tensile specimens with a cross-section 

diameter of 6mm and a gauge length of about 30mm  (Figure 3.1 (a)) to study uniaxial 

tension stress triaxiality states. The tensile axis was oriented at 0°, 15°, 30°, 45°, 60°, 75° and 

90° with respect to the rolling direction (RD) of the plate. Additional tests were performed in 

the normal direction (ND) of the plate on miniature smooth specimens especially designed for 

plates of 20mm thickness (Figure 3.1 (b)). During testing, the diameter at minimum cross 

section of the specimen was continuously measured until fracture. This was made possible 

using a purpose-built measuring rig with two perpendicular lasers that accurately measured the 

specimen diameter. The lasers were installed on a mobile frame to ensure that the diameters 

always were measured at the minimum cross section. Each laser projected a beam with 

dimension 213 0.1mm  towards the detector on the opposite side of the specimen. Thus, the two 

orthogonal lasers created a box of laser light of 313 13 0.1mm   around the minimum cross 

section of the sample. As the specimen was deformed, the continuous change in diameters was 

observed by the detectors. This dual-axis micrometre was made up of a high-speed, contact-

less AEROEL XLS13XY laser gauge with 1 m  resolution. During elongation, the sample 
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was scanned at a frequency of 1200Hz  and the measured data was transferred by the built-in 

electronics to the remote computer via fast Ethernet. The diameters were measured in the 

normal direction (ND) of the plate and in the transverse direction of the specimen (TS), 

denoted NDD  and TSD , respectively. For the specimens loaded in the normal direction (ND), 

the diameters were measured in the rolling direction (RD) and in the transverse direction (TD) 

of the plate, denoted RDD  and TDD , respectively. 

The stress-strain curves for the duplicate tensile tests on smooth axisymmetric 

specimens are presented in Figure 3.2 in terms of Cauchy stress versus logarithmic axial strain 

averaged over the minimum cross section of the specimen. The Cauchy stress is directly 

computed from the measurements as 

 
4

ND TS

F F

A D D



   (7) 

where F  is the force measured by the load cell in the machine and 4 ND TSA D D  is the current 

elliptical area of the specimen. The logarithmic longitudinal strain is computed from the 

diameter measurements, assuming plastic incompressibility. The elastic volumetric dilatation is 

    2
0 0 0

1 2
tr 1 where tre eND TSLD DV
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   ε ε  (8) 

where eε  is the elastic strain tensor, E  and   are the elastic parameters, 0V , 0L  and 0D  are 

the initial volume, length and diameter of the specimen, and V  and L  are the current volume 

and length of the specimen. The logarithmic longitudinal strain is then defined as 
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 (9) 

By neglecting the elastic contribution, the total strain reduces to 

 
2

0 0

0

ln ln ln
ND TS

A DL

L A D D


          
    

 (10) 

In our case, since plastic deformations are large, neglecting the elastic contribution seems 

reasonable. However, it should be noted that this assumption makes the “apparent stiffness” 

differ from the nominal Young’s modulus of aluminium ( 70 GPaE  ): on the Cauchy stress 

versus logarithmic strain curve calculated with Eq.(7) and Eq.(10), the apparent elastic 

modulus is  2 117 GPaE E    , where 0.3   is the nominal Poisson ratio. 
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(a) 

 
(b) 

 
(c) 

Figure 3.2. Cauchy stress versus logarithmic strain for tensile tests on smooth specimens in the 
(a) 0°, 45° and 90°, (b) 15°, 30°, 60° and 75° in-plane directions and (c) in ND. 
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The yield limit and the strain hardening show good repeatability in each direction, but a 

significant anisotropy on the flow stress is exhibited. Figure 3.2 (a) and (b) reveal that the 

strength level is almost identical and highest at 0° and 90°, while it is lowest at 45° and 60°. It 

is further similar at 15°, 30° and 75° and lies between the two above-mentioned limits. The 

stress-strain curves for the tests in the normal direction (ND), presented in Figure 3.2 (c), and 

in the rolling direction (RD) are found to be similar; except around the yielding point, where 

the yielding is more gradual for the specimens loaded in ND. A more remarkable difference is 

the large scatter in the strain to failure observed for the uniaxial tension tests in ND. An 

explanation for this scatter, based on the microstructure of the material, is presented later in 

this chapter. 

Since the elastic part of the strain is negligible compared with the total strain, this study 

will consider that the plastic strain at failure p

f  is approximately equal to the total strain at 

failure given in Eq.(10) and will be denoted f . Figure 3.3 illustrates the anisotropy of fracture 

by showing the average failure strain (and the associated range of values) versus the direction 

of loading for the tensile tests (in the in-plane directions  0 ;90    and in the normal 

direction (ND) of the plate). For tensile loading in the normal direction (ND), the failure strain 

is low and the scatter is considerable. 

Figure 3.3. Average experimental failure strain versus specimen orientation for tensile tests on 
smooth and notched specimens. The error bars represent the range of failure strains between 
duplicate tests. 
 

The different fracture modes obtained during the uniaxial tensile tests are presented in 

Figure 3.4. For the tests showing the lowest failure strains (i.e. those performed in the 0° and 

90° in-plane directions), fracture occurred along a shear band oriented at approximately 45° 

with respect to the loading direction. The resulting surface is flat, smooth and crosses the 

whole specimen width. On the contrary, for tests showing the largest failure strains (tests 
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performed in the 45° and 60° directions), the fracture surface tends to a cup-and-cone shape. 

For the loading directions showing intermediate failure strains (15°, 30° and 75°), fracture 

occurred along disrupted shear bands. Thus, for the same initial stress triaxiality state (1 3), the 

fracture modes differ significantly with the direction of loading. 
 

Figure 3.4. Failure modes observed with the smooth specimens in different directions. The 
label at the top and bottom give the orientation and the average fracture strain, respectively. 
 

(a) (b) 

(c) (d) 

Figure 3.5. Micrographs of the fracture surface of a tensile test on a smooth specimen in ND: 
(a)-(c) views at different magnifications and (d) mid-section at the fracture location. 
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In addition, most fracture surfaces obtained from the tensile tests in the normal 

direction (ND) were orthogonal to the specimen axis, and revealed intergranular fracture. 

Figure 3.5 presents SEM micrographs of the fracture surface of the specimen loaded in the 

normal direction (ND) which exhibited the lowest failure strain (see also Figure 3.2 (c)). As 

visible on Figure 3.5 (b), plastic deformation and void growth around constituent particles 

seem involved in the failure process. However, a zoom on what seems like a flat area (Figure 

3.5 (c)) reveals that fracture occurred along a large grain boundary. The high-magnification 

micrograph of the longitudinal mid-section presented in Figure 3.5 (d) confirms this statement. 

These observations indicate delamination of the material along grain boundaries at low plastic 

strains, as already suggested by Pedersen et al.(2011). Since the cross section of these 

specimens is only 3mm in diameter, it contains just a few grains, which explains the scatter in 

failure strain observed between duplicate tests in this direction. 

3.3 Tensile	tests	on	notched	axisymmetric	specimens	(multiaxial	tension)	

Notched axisymmetric specimens, used to obtain initial stress triaxialities higher than with 

smooth specimens, were sampled in the 0°, 45° and 90° directions with respect to RD (Figure 

3.1 (c)). Two different notch root radii were studied, 2.0 mmR  and 0.8 mmR , giving 

initial stress triaxialities of 0.89  and 1.39 , respectively, according to Eq.(6). The same 

experimental set-up and data analysis as for the tensile tests on smooth specimen were used. 

Figure 3.6 (a) and Figure 3.6 (b) show Cauchy stress versus logarithmic strain curves 

for the notched axisymmetric specimens loaded in the 0°, 45° and 90° in-plane directions, and 

for two different notch root radii 2.0 mmR  and 0.8 mmR , respectively. The Cauchy 

stress (averaged over the cross section) and the logarithmic strain are computed following 

Eq.(7) and Eq.(10) for all duplicate tests. The introduction of a notch in the tensile test 

specimen increases the stress level and significantly reduces the ductility compared to the 

behaviour under uniaxial tensile stress states. This is due to the positive hydrostatic stress 

induced by the notch, which facilitates the growth of voids. Also, following Eq.(6), the stress 

triaxiality increases with decreasing radius and so does the stress level. Regarding the 

anisotropy, the introduction of a notch reduces the difference between the stress levels in 

different directions (Fourmeau et al., 2011). The strain to failure is also less sensitive to the 

direction of loading than for the smooth specimens. The effect of anisotropy is thus reduced by 

increasing the multiaxiality of the stress state. This is illustrated in Figure 3.6 (c), where 

representative true stress-strain curves are presented for all tensile geometries in three different 

directions. The curves are stopped at the average failure strain found between duplicate tests. 
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(a) 

 
(b) 

 
(c) 

Figure 3.6. Cauchy stress versus logarithmic strain for the tensile tests on notched specimens 
with (a) 2.0 mmR  and (b) 0.8 mmR  in the 0°, 45° and 90° in-plane directions. (c) 
Representative curves for all specimens in the 0°, 45° and 90° in-plane directions plotted up to 
the average failure strains. 
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The experimental failure strains for tensile tests on notched specimens are computed in 

the same manner as for uniaxial tensile tests and are depicted in Figure 3.3. The strain to failure 

is also found less sensitive to the direction of loading than for the smooth specimens. The 

failure modes are illustrated in Figure 3.7. As pointed out by Børvik et al. (2010), the notched 

specimens exhibit a cup-and-cone fracture mode and, in addition, the increased stress triaxiality 

caused by the notch leads to secondary cracks in the plane of the plate. The secondary cracks 

follow the boundaries of the flat and elongated grains, and are observed in the specimens with 

the smallest notch radius in Figure 3.7 (a) where the stress triaxiality is highest. It should be 

noted that in contrast to smooth specimens exhibiting various failure modes, the failure mode 

for notched specimens is constrained by the notch geometry and remains rather similar for all 

loading directions. 

 

 
(a) (b) 

Figure 3.7. Failure modes observed for the tensile tests on notched specimens with (a) 
2.0 mmR  and (b) 0.8 mmR  in the rolling direction (RD) (Børvik et al., 2010). 

3.4 Compression	tests	on	cylindrical	specimens	(uniaxial	compression)	

For negative stress triaxialities, compression tests were performed on cylindrical specimens 

with diameter 0 10mmD   and height 0 10mmh   (see Figure 3.1 (d)) and 0 15mmh  . The 

specimen axes were oriented at 0°, 45° and 90° with respect to RD. In addition, compression 

tests on specimens with loading axes along the normal direction (ND) of the plate were 

conducted with 0 10mmh   only. The specimens were compressed between two hardened steel 

platens, and a graphite paste was used to lubricate the surfaces to minimize the effect of 

friction (Børvik et al., 2010). Five tests were performed on specimens from each of the in-plane 

directions, while three tests were performed on specimens sampled in the normal direction 

(ND). The two first tests using the in-plane specimens and all tests in the short transverse 
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direction were carried out using an extensometer attached to the platens to measure the overall 

deformation of the specimen. A fine grained speckle pattern was spray painted on the 

remaining specimens in the in-plane directions, and a Prosilica GC2450 digital camera 

equipped with a 28 105mm  Nikon lens was used to record images during loading at a 

framing rate of 10Hz. The image series were post-processed using an in-house 2D digital 

image correlation (DIC) code (Fagerholt et al., 2010), providing displacement and strain fields 

of the observed specimen surface. The image series were then analysed to give the 

displacement of the platen on top of the specimen. This measure is more accurate than the 

displacement measured by the machine, and comparable to the displacement obtained with an 

extensometer. Additional tests were carried out on cubic specimens of size 0 10mmh  . These 

specimens were designed to get straight-forward DIC analysis of the strain fields. 

Unfortunately, the corner effect associated with friction engendered more scatter in the force 

level and the displacement to failure. It was therefore chosen not to present these results. 

The Cauchy stress versus logarithmic strain curves from the compression tests in the 0°, 

45° and 90° in-plane directions and in the normal direction (ND) of the plate are presented in 

Figure 3.8. The global values of the Cauchy stress and logarithmic strain for these specimens 

are 
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where F  is the force measured by the load cell of the testing machine, and 0L  and 0A  are the 

initial length and cross-section area of the specimen, respectively. The current length of the 

specimen L is determined from the displacement measurements. Since the repeatability of the 

tests was very good, only one representative curve is depicted in Figure 3.8 for each direction. 

The curves are terminated at the average failure strain obtained between duplicate tests. 

For the three in-plane directions (0°, 45° and 90°), the curves obtained with 0 0 1h D   

and 0 0 1.5h D   specimens are similar until a logarithmic strain of 0.2  . Then, for the 

specimen with 0 0 1.5h D  , the buckling observed experimentally leads to a decrease in stress 

level as seen from the stress-strain curves in Figure 3.8 (a). Due to this instability, only the 

tests performed on the specimen with 0 0 1h D   will be analysed further. The flow stress in the 

45° loading direction is found lower than in the 0° and 90° directions, in a similar way as in the 

uniaxial tensile tests. However, in contrast to what is observed for uniaxial tension conditions, 

the flow stress in the 90° direction is found slightly higher than in the 0° direction. The strain 

hardening is also found to be higher in the normal direction (ND) than in the in-plane 

directions, while the strain to failure is significantly reduced. Also, as depicted in Figure 3.8 (b) 
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the yielding in the different in-plane directions of loading is somewhat different compared with 

the uniaxial tensile tests. In the study of Pedersen et al. (2011), it was found that the stress-

strain curves from the uniaxial tension test in the 0° direction coincided with that from the 

compression test through the normal direction (ND) of the plate. This is in some conflict with 

the results found here, where the stress level is higher in the normal direction (ND) 

compression test. It should be kept in mind that friction can play an important role in the 

material response since uniaxial compression loading conditions may not be fulfilled when the 

plastic deformation becomes large. 

 

(a) (b) 

Figure 3.8. (a) Representative Cauchy stress-logarithmic strain curves for the compression 
tests on cylindrical specimens in the 0°, 45° and 90° in-plane directions and in ND. (b) 
Comparison between Cauchy stress-logarithmic plastic strain curves from tension and 
compression tests in the 0° and 45° directions plotted for small plastic strains. 
 

As shown in Figure 3.9, the specimens fail along 45° planes under compressive loading. 

The fracture surfaces were flat but not always observable, since the specimens did not always 

split in two. The repeatability in terms of failure was compromised by friction and barrelling 

effects, so the specimens were arranged into different classes depending on the fracture mode. 

Some specimens failed abruptly across their whole height and the force dropped 

instantaneously to zero. In other experiments, the strain localization occurred on the edge of the 

specimen, and only small force drops were observed in the measured data. Finally, some 

specimens did not show any drop in the stress-strain curve, although they showed multiple 

fracture bands spread around the rim of the sample. Such fracture modes were the case for 

three out of five tests in the 45° direction, and for one out of six tests in the 90° direction. For 

this latter class of specimens it was not possible to identify the strain to failure, and 

consequently they are not used in the computation of the average failure strain. 
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Even though excluded from the study, it should be noted that the cylindrical specimens 

with 0 0 1.5h D   and the cubic specimens also exhibited failure along 45° bands. The fracture 

surface of a specimen with 0 0 1.5h D   is presented in Figure 3.10, where vertical white lines 

are traces due to the sliding of the two broken parts along each other. Due to this sliding, the 

observation of damage mechanism leading to failure is difficult. Moreover, only few specimens 

broke into two separate pieces. 

 

(a) (b) (c) (d) 

Figure 3.9. Failure modes observed for the compression tests in the (a) 0°, (b) 45°, (c) 90° in-
plane directions and (d) in ND. The lines depicted on the top of the specimen (a), (b) and (c) 
represent ND. 
 

 
Figure 3.10. SEM picture of the fracture surface from a compression test with 0 0 1.5h D   in 

the 45° in-plane direction. 
 

For the specimens with 0 0 1h D  , the average values of the strains to failure f  are 

presented in Figure 3.11 as a function of the loading direction. The error bars represent the 

range of values obtained from duplicate tests and are seen to be quite significant. Given the 

scatter between duplicate tests and the exclusion of several of the tests, no precise conclusion 

can be drawn on the anisotropy of the strain to failure for compression tests in the in-plane 

directions. However, the strain to failure is found significantly lower for the tests preformed in 

the normal direction (ND), compared to the in-plane directions. 
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Figure 3.11. Average experimental failure strain versus specimen orientation for compression 
and shear tests. The error bars represent the range of failure strains from duplicate tests. The 
shear tests without DIC measurements and the compression tests not showing clear fracture 
are excluded. 

3.5 Shear	tests	on	butterfly	specimens	

To obtain a stress triaxiality close to zero, shear specimens of 2 mm  thickness with geometry 

as shown in Figure 3.1 (e) were used (Gruben et al., 2011). The longitudinal axes of the spark-

eroded specimens were oriented at 0°, 45° and 90° with respect to the rolling direction (RD). 

The specimens were bolted to the gripping system of the testing machine to allow for possible 

in-plane rotations of the specimen. The force in the load cell and the displacement of the cross-

head of the testing machine were continuously recorded. Owing to the scatter in results, about 

6–7 duplicate tests were performed for each direction, out of which 2–3 were instrumented 

using optical measurements. The same camera and digital image correlation (DIC) analysis as 

for the compression tests were used, providing displacement and strain fields of the observed 

specimen surface. This technique is particularly relevant in these tests, since the strains were 

found to be inhomogeneous over the gauge sections of the specimens and eventually strain 

localization occurred. One additional test was performed in the 0° direction using a high-speed 

camera running at a frame rate of 10 000Hz  to observe the final stage of the test. This was 

done in an attempt to capture the localization of the strains leading to final failure in more 

detail. 
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(a) 

 
(b) 

 
(c) 

Figure 3.12. Force versus displacement for the shear tests on butterfly specimens in the (a) 0°, 
(b) 45° and (c) 90° in-plane directions. 
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Figure 3.13. Representative force-displacement curves for the shear tests on butterfly 
specimens in the 0°, 45° and 90° in-plane directions. 

 

Force versus displacement curves for duplicate shear tests in the 0°, 45° and 90° 

directions are shown in Figure 3.12, while representative force-displacement curves from the 

tests in the three directions are compared in Figure 3.13. Large scatter is observed in these tests 

(as also observed by Erice and Galvez, 2014). The force-displacement curves were corrected to 

account for the machine flexibility, but the remaining scatter in terms of load level is 

significant and reaches 18% of the maximum force level for the 45° loading direction. Several 

sources of error can be identified. A misalignment in the mounting of the specimen might lead 

to a scatter in the plastic behaviour. The tests were performed in two different laboratories 

(SIMLab and LMT-Cachan), and some sensitivity to the different gripping systems was 

observed (either bolted or clamped). The literature also proposes some microstructural reasons 

for the scatter. Rauch (1998) pointed out that shear tests in the +45° and –45° directions may 

show different behaviour. Since orthotropic behaviour of the material was assumed when 

machining the specimens, this possible effect was not considered. Nonetheless, Figure 3.13, 

which presents the representative force-displacement curves for each direction, indicates that 

the ductility is somewhat lower in the 45° direction than in the 0° and 90° directions. However, 

the rest of the study will only account for the shear tests performed in the 0° direction and no 

anisotropy will be considered for plasticity and failure under shear loading conditions. 

For the shear tests, the strain field at the surface of the specimen was determined by use 

of DIC. The von Mises effective strain is adopted here for the shear tests 
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where 1  and 2  are the principal logarithmic strains in the rolling plane of the plate. The 

maximum strains are found along a band slightly inclined from the axis of loading, as shown in 

Figure 3.14. The DIC analysis indicats that fracture occurs almost instantaneously along this 

band, since the propagation of the crack was not even captured at a frame rate of 10 000Hz . 

The strain at failure f  is therefore defined as the average effective strain in the elements 

located along this shear band. The width of the band used for averaging was chosen equal to 

0.6mm and is represented by the white line on Figure 3.14. Figure 3.11 presents the average 

strain to failure as a function of the loading direction, and the error bars indicate the range of 

values from duplicate tests. Only the results from duplicate tests instrumented with DIC are 

included in Figure 3.11. As for the force-displacement curves, there is a large scatter in 

measured strain to failure between duplicate tests. In this respect, it should also be kept in mind 

that the results depend on the width of the zone chosen for averaging the failure strain. The 

choice of 0.6mm was made to be able to take several elements into account while focusing on 

the area of strain localization. 

 

 
Figure 3.14. Effective strain field obtained by DIC for a shear test on butterfly specimen in the 
45° in-plane direction (last image before failure). 

 

Figure 3.15 presents micrographs of the failure surface obtained from a shear test 

performed in the 0° direction. For all directions, fracture occured along a band inclined at 

approximately 10° with respect to the symmetry axis of the initial geometry (see Figure 3.15 

(a)). However, since the specimens rotated somewhat during these tests, the orientation of the 

surface is aligned with the direction of the loading when fracture occured. It can be seen from 

Figure 3.15 (a) that the fracture surface is slightly outside from the minimum cross section of 

the specimen. The flat and smooth surfaces (shown for the 0° loading direction in Figure 3.15 

(b)) were similar in all directions of loading. However, dimples revealing ductile damage are 
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present in certain areas (see Figure 3.15 (c)) and grain boundaries are also visible (see Figure 

3.15 (d)), suggesting intergranular failure. 

 

(a) (b) 

(c) (d) 
Figure 3.15. Fracture surface observed for a shear test on butterfly specimen in the 0° in-plane 
direction: (a) picture and (b)-(d) SEM micrographs. 

3.6 Fracture	surfaces	and	strain	ratios	

For both uniaxial tensile and compression tests in which shear failure occurred, the fracture 

surfaces were oriented at approximately 45° with respect to the loading direction, but not in a 

random manner. If one considers that the cross section of the specimen has an elliptic shape, 

Figure 3.16 shows two possible orientations (among infinitely many) of the 45° fracture 

surface with respect to the loading axis. In Figure 3.16 (a), the fracture surface is oriented at 

45° to the loading direction and contains the semi-major axis of the ellipse, whereas in Figure 

3.16 (b) it is also oriented at 45° to the loading direction but contains the semi-minor axis. 

Observations of the various fracture surfaces revealed that the latter case occurred consistently 

in uniaxial tension and preferentially in compression. A reasonable conclusion is that fracture 

surfaces are aligned with the orthotropic directions of the plate. 
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(a)  (b) 

Figure 3.16. Schematic representation of two possible orientations of a 45° fracture surface on 
an elliptical cylinder. The surface contains (a) the semi-major and (b) the semi-minor axis of 
the ellipse. 
 

The observation that the fracture surface orientation depends on the elliptical axis of the 

cylinder suggests that the localization process is related to the strain ratio R , defined for the 

loading direction   as 

 
p

TS
p
ND

R









 (13) 

where p
TS  and p

ND  are the logarithmic plastic strain rates in the transverse direction of the 

specimen (TS) and in the normal direction (ND) of the plate, respectively. For the tests in the 

normal direction (ND), the strain ratio NDR  is defined as the ratio between p
RD  and p

TD , i.e. the 

logarithmic plastic strain rates in the rolling direction (RD) and in the transverse direction (TD) 

of the plate. Figure 3.17 presents the average experimental strain ratios and failure strains for 

the uniaxial tensile tests performed in the seven in-plane directions of the plate (  0 ;90   ) 

and in the normal direction (ND) of the plate. The value of R  for each test was determined by 

averaging over the plastic regime, while the error bars represent the range of values from 

duplicate tests. It should, however, be noted that in the normal direction (ND), the strain ratio 

varied substantially within each test, and for this direction the average value was calculated 

after stabilization, which occurred around a plastic strain 0.05p  . The strain ratios for the 

uniaxial compression tests are not presented since no continuous measurement of the diameter 

was performed during these tests. However, the elliptical fractured specimens for compression 

tests suggest that the strain ratios are similar in uniaxial tension and compression. 
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The directional variation of the fracture strain obtained from uniaxial tension tests on 

smooth specimens in the plane of the plate is found to be correlated to the directional variation 

of the strain ratio R . Figure 3.17 shows that a relatively low strain ratio implies a relatively 

low ductility and vice versa. Low values of the strain ratio imply a greater tendency of thinning 

of the plate than higher values. The fracture surface is oriented in such a way as to minimize its 

area, which also relates to the strain ratio. 

 

 
Figure 3.17. Experimental failure strain and strain ratio versus specimen orientation for 
tensile tests on smooth specimens. The error bars represent the range of failure strains from 
duplicate tests. 
 

For tension tests in the 0° direction the strain ratio 0R   is less than unity. The semi-

minor axis of the ellipse is then parallel to the normal direction (ND), and the observed fracture 

surface, oriented at 45° to the loading direction, contains this axis, as shown in Figure 3.16 (b). 

In contrast, for the compression test in the same direction, the semi-minor axis of the ellipse is 

now parallel to the transverse direction of the specimen (TS) and, as depicted on Figure 3.9 (a), 

the fracture surface is oriented at 45° to the loading direction and contains this axis. 

For the 45° loading direction, shear failure occurred only in compression. Then, as the 

strain ratio 45R   is greater than unity and contrary to the 0° direction, the fracture surfaces, still 

oriented at 45° with the loading, contains the normal direction ND (see Figure 3.9 (b)). 

The strain ratio 90R   obtained for the tensile test in the 90° direction is very close to 

unity, and in this case fracture occurs on planes randomly located around the loading axis (see 

Figure 3.9 (c) for the compression test in the 90° direction). For the intermediate directions 

showing shear failure (15°, 30° and 70° with respect to the RD), the fracture surfaces are more 
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disrupted but are also globally oriented at 45° with respect to the loading direction and contain 

the semi-minor axis of the ellipse. 

The tests performed in the normal direction (ND) of the plate show a lower strain to 

failure, but also a larger scatter than for the tests performed in the in-plane directions. The 

fracture surfaces, mainly orthogonal to the loading direction, show inter-granular failure. Here, 

grains with size of the same order as the width of the specimen can lead to premature failure. 

Also, the PFZs are preferentially oriented perpendicular to this loading direction, which may 

facilitate growth and coalescence of voids along planes orthogonal to the loading direction. 

These observations finally enable to assume that failure is facilitated when the PFZ 

concentration is high in the load-carrying plane (i.e. where the largest strains occur). 





 

 
 

Chapter	4. Anisotropic	plasticity	model	

4.1 Introduction	

In this chapter, the constitutive model used to describe the elasto-plastic behaviour of the 

AA7075-T651 alloy is presented, followed by the calibration of the corresponding material 

parameters. Finally, the numerical models used to simulate the material tests performed in 

Chapter 3 are presented. 

4.2 Constitutive	model	

A hypoelasto-plastic constitutive model based on the yield surface representation Yld2004-18p 

proposed by Barlat et al. (2005) is used to describe the anisotropic behaviour of the AA7075-

T651 aluminium alloy. This yield surface was shown to be very efficient to describe the 

anisotropy of aluminium plates (Grytten et al., 2008) and due to the numerous experimental 

data available, the calibration of the anisotropy parameters is possible. The model accounts for 

isotropic elasticity, anisotropic yielding, associated plastic flow and isotropic strain hardening. 

The elastic strains are assumed small while the plastic strains may be finite. A corotational 

formulation is adopted to simplify the formulation of plastic anisotropy. The stress measure is 

realized in the unrotated configuration and expressed in a Cartesian coordinate system aligned 

with the principal directions of the orthotropic anisotropy. These axes are assumed to remain 

orthogonal during deformation. 

The corotational Cauchy stress and corotational rate-of-deformation tensors are defined 

by (e.g. Belytschko et al., 2000) 

 ˆˆ ,   T Tσ = R σ R d = R d R  (14) 

where σ  is the Cauchy stress tensor, d  is the rate-of-deformation tensor and R  is the rotation 

tensor defined through the polar decomposition of the deformation gradient ( F = R U , where 
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U  is the right stretch tensor). The corotational rate-of-deformation tensor is decomposed into 

elastic and plastic parts 

 ˆ ˆ ˆe p d d d  (15) 

The linear hypoelastic formulation gives the relation between the rate of the corotational 

Cauchy stress and the elastic part of the corotational rate-of-deformation 

 ˆ ˆˆ : e
elσ C d  (16) 

where ˆ
elC  is the 4th order tensor of elastic moduli. As elastic isotropy is assumed,  is 

uniquely defined by Young’s modulus E   and Poisson’s ratio   (a detailed expression is given 

in Appendix A).  

The yield function is assumed convex and is written as 

      ˆ ˆ,f p p  σ σ  (17) 

where   is the equivalent stress,   is the flow stress in uniaxial tension in the rolling direction 

and p is the accumulated plastic strain. To model the anisotropy of the material, the equivalent 

stress defined by Barlat et al. (2005) is used 

 
11

( )
4

m   (18) 

where 

 
1 1 1 2 1 3 2 1 2 2

2 3 3 1 3 2 3 3
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m m m m m

m m m m

S S S S S S S S S S

S S S S S S S S

                       

              

S S           

       
 (19) 

The exponent m  is used to determine the shape of the yield surface. In Eq.(19), S and S  are 

collections of the principal values iS  and jS  of the tensors s  and s . These two last tensors 

are defined by linear transformations of the corotational Cauchy stress 

 ˆ ˆˆ ˆ: : : , : : :      s = C s C T σ s = C s C T σ   (20) 

where the 4th order tensor T transforms the corotational Cauchy stress σ̂  into its deviatoric part 

ŝ . The 4th order tensors C  and C  contain the anisotropy weighting coefficients. For 

orthotropic symmetries, only 9 of these constants are non-trivial so that the tensors C  and C  

in Voigt notation read 

ˆ
elC
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and T reads 

 

2 1 1 0 0 0

1 2 1 0 0 0

1 1 2 0 0 01

0 0 0 3 0 03

0 0 0 0 3 0

0 0 0 0 0 3

  
   
  

  
 
 
 
 

T  (22) 

To obtain an isotropic version of this material model, all the coefficients of C  and C  are set 

to unity. For more details on Yld2004-18p the reader is referred to Barlat et al. (2005). The 

evolution of the flow stress is defined by assuming isotropic hardening, using a Voce 

hardening rule 

     0 1 expp Q Cp      (23) 

where 0 , Q  and C  are material parameters. The evolution of the plastic part of the 

corotational rate-of-deformation tensor ˆ pd  and the equivalent plastic strain-rate p  are defined 

by the normality of the yield surface 

 ˆ ,
ˆ

p f f
p  


    
 

d
σ

    (24) 

where   is the plastic multiplier satisfying the usual loading-unloading conditions, written in 

Kuhn-Tucker form as 

 0, 0, 0f f      (25) 

This material model involves two elastic parameters E  and  , and 22 parameters for 

plasticity, namely 0 , Q , C , m , ijc  and ijc . 
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4.3 Identification	of	the	Yld2004‐18p	material	constants	

The three parameters of the isotropic hardening law 0 , Q  and C  are calibrated based on the 

tensile test in the rolling direction (RD) and the two elastic parameters E  and   are chosen 

equal to nominal values for aluminium (see Table 4.1). The plastic anisotropy of the material is 

taken into account with the 18 parameters in C  and C  calibrated using the experimental 

results presented in Chapter 3. 

4.3.1 The	shape	parameter	m 	

The m  parameter is not calibrated as the other parameters. Hosford (1972) and Hill (1979) 

showed that 8m  is reasonable for f.c.c. crystal structures. Since aluminium is studied here, 

8m   was used in a first approach. Then, since the parameter m  controles the shape of the 

yield surface, it was of interest to investigate its influence on the predicted behaviour of the 

different tests. Indeed, and as suggested by Barlat et al. (1991), the crystallographic texture and 

grain morphology of rolled aluminium plates could increase the exponent of the yield function 

compared to an isotropic microstructure, by changing the active slip systems during the plastic 

process. Then, a new set of anisotropic parameters was determined with 12m  . The two 

identifications led to about the same residual in the least squares approach used in the 

calibration. 

4.3.2 The	anisotropy	parameters	

From a tension test on a smooth specimen in a given in-plane direction  , the yield stress and 

the strain in the transverse and normal directions are obtained. The flow stress ratio is defined 

as 

 
0

r 





  (26) 

Thus,   is the flow stress in the direction   and 0  is the corresponding flow stress in the 

rolling direction (RD). The flow stress ratios were determined by use of the 0.2% proof stresses 

in the different directions before being adjusted by inverse identification using trial and error. 

By definition, the flow stress ratio represents a point on the yield surface and is equal to unity 

in the rolling direction (RD). Then, the strain ratio R  defined in Eq.(13) is the ratio between 

p
TS  and p

ND , the logarithmic plastic strain rates in the transverse direction of the specimen 

(TS) and the normal direction (ND) of the plate. As plastic flow normal to the yield surface is 

assumed, the strain ratio determines the normal to the yield surface at a given stress state. 
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Figure 4.1 shows p
TS  versus p

ND  for tensile tests on smooth and notched tensile specimens in 

the 0°, 45° and 90° in-plane directions. The strain ratios are the slopes of the curves presented 

in Figure 4.1 (a) and are obtained by a least square fit of these curves to a linear function. Both 

the stress and the strain ratios provide relations between the parameters of the yield surface. 

Consequently, the seven in-plane tension tests on smooth specimen bring 14 constraints to the 

calibration of the anisotropic parameters. 

 
(a) 

(b)  (c) 

Figure 4.1. Experimental and predicted logarithmic strain in the transverse direction of the 
specimen (TS) versus logarithmic strain in the normal direction (ND) of the plate for (a) 
smooth specimens, (b) notched specimens with 2.0mmR  and (c) notched specimens with 

0.8mmR , with the anisotropic model ( 8m  ) calibrated for the AA7075-T651alloy. 

 

For the compression tests in the normal direction (ND), the strain and stress ratios are defined 
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   (27) 

where p
RD  and p

TD  are the measured final strains in the rolling direction (RD) and transverse 

direction (TD) of the plate, respectively, and C  is the yield strength in compression (along 
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the normal direction (ND)). The compression tests performed in the normal direction (ND) 

give two additional constraints to the set of anisotropic parameters. It should be noted that due 

to the pressure insensitivity of the model, the yield function is symmetric in tension and 

compression. Consequently, the uniaxial compression in the normal direction (ND) is 

equivalent to equibiaxial tension in the plane of the plate. In the optimization, the compression 

data is used as a biaxial data point to find the anisotropic yield surface. 

The calibration of the set of 18 anisotropic parameters was made in two steps. A first 

calibration was obtained by using the 16 experimental constraints (14 constraints from the 

uniaxial tension tests and two from uniaxial compression, as presented earlier). Then, 

numerical simulations of the different tests were run using the obtained values. The stress-

strain curves of the tensile tests on smooth specimens in the seven different directions were 

found to be in good agreement with the experimental curves. In contrast, the shear tests on 

butterfly specimens aligned with the 0° direction of the plate showed a discrepancy of 23% on 

the force. The scatter observed between duplicate shear tests in Chapter 3 leads to conclude 

that the anisotropy of yielding in shear is not quantified in a reliable way. Consequently, the 

shear tests aligned with the 0° direction of the plate (showing the smallest scatter) will be 

considered for the calibration of the anisotropic yield surface. This choice implies that no 

anisotropy of yielding is expected in the numerical study of shear tests. The yield limits for the 

shear tests in the 0° and 90° directions were corrected and set as two new constraints. A second 

calibration of the set of 18 parameters is obtained combining seven tensile tests in the plane of 

the plate and one compression test in the short transverse direction (16 constraints), and two 

shear tests in the plane of the plate (two constraints). The resulting parameters obtained with 

8m  and 12m  are presented in Table 4.1. Figure 4.2 compares the predicted and 

experimental flow stress ratios (a) and strain ratios (b). Those are found similar for 8m  and 

12m , except for the 60° direction which exhibits a difference of 12% in the strain ratio. 

Then, the yield surfaces are illustrated in Figure 4.3. Several contours of each yield function 

are given in two different planes in stress space. As expected, the yield surface with 12m  is 

sharper than with 8m . An isotropic calibration of the parameters ( 1ij ijc c   ) is also plotted 

in Figure 4.3 to show the influence of anisotropy. 

Note that the uniaxial tensile test performed in the normal direction (ND) of the plate 

was not used for the calibration. The first reason is that these tests were performed much later 

than all the other tests and the calibration published in Fourmeau et al. (2011) was already 

satisfactory. The second reason is that these tests did not bring much improvement. Indeed, 

with the pressure independency of the yield function, uniaxial tension and uniaxial 

compression in the normal direction (ND) are assumed to be equivalent, yet their yield limits 

and strain ratios are similar. 
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(a) (b) 

Figure 4.2. (a) Flow stress ratio and (b) strain ratio given by the Yld2004-18p model 
calibrated with 8m  and 12m  for the AA7075-T651 alloy. 
 

(a) (c) 

(b) (d) 
Figure 4.3. Illustration of yield surface given by the Yld2004-18p model calibrated with (a-b) 

8m  and (c-d) 12m  for the AA7075-T651 alloy. The isotropic yield functions ( 1ij ijc c   ) 

are plotted in dashed lines for comparison. The x  axis is aligned with RD, the y  axis with TD 

and the z  axis with ND. 
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Table 4.1. Material data for the model Yld2004-18p calibrated for the AA7075-T651 alloy. 

 E (GPa)    (g/cm3) 0 (MPa) Q (MPa) C  K (GPa)  (GPa) m  

 70 0.3 2.7 538.8 177.24 12.58 58.334 26.924 8 

 12c  13c  21c  23c  31c  32c  44c  55c  66c
8m   0.157 0.696 -0.446 0.198 1.169 0.436 0.895 1 1 

12m  -0.066 0.101 -0.624 0.504 0.988 0.563 0.881 1 1 

 12c  13c  21c  23c  31c  32c  44c  55c  66c
8m   0.485 1.009 1.232 1.408 0.181 1.534 1.329 1 1 

12m  0.690 1.128 1.218 1.356 -0.055 1.495 1.290 1 1 

4.4 Numerical	procedures	and	finite	element	models	

The constitutive relations described above were implemented as a user-defined material 

subroutine (see Grytten et al., 2008) in the non-linear finite element code LS-DYNA (LSTC, 

2007). All tests presented in Chapter 3 were simulated using the explicit solver of LS-DYNA 

with 8-node fully integrated solid elements. To reduce the computational time, affected both by 

the element size and the number of elements, the mesh was only refined in the area exposed to 

large deformations and mass-scaling was applied. As boundary conditions, a function was 

applied to smoothly reach a constant velocity. The finite element geometries of the different 

specimens are shown in Figure 4.4, while the numbers and minimum size of the elements eh  

are given in Table 4.2. Compression tests were performed with 0 0h D {1,1.5} but only the 

results for 0 0 1h D   will be presented for the reasons explained in Chapter 3. A friction 

coefficient 0.02f   was used between the lubricated platens and the cylindrical specimen 

loaded in compression. This value was found by trial and error: the friction coefficient was not 

found to influence yielding but only the behaviour at very large strains. 

To characterize the local stress and strain fields in the test specimens up to incipient 

failure, the spatial distribution of the accumulated plastic strain p and the stress triaxiality    

were determined from the simulations. It should be noted that since the tests are carried out for 

axisymmetric specimens of different shapes as well as shear specimens, the deviatoric stress 

state will differ significantly from one specimen to the other. However, to limit the 

investigation, the stress triaxiality was selected to represent the stress state. The accumulated 

plastic strain is defined by 

 
0 0

ˆˆ :
d d

t tp

p t t


  
σ d   (28) 
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where   is the equivalent stress defined by the Yld2004-18p yield function, and σ̂  and ˆ pd  are 

the corotational Cauchy stress and plastic rate-of-deformation tensors, respectively (see 

Fourmeau et al. (2011) for details). The numerical fracture point is then defined at the instant 

of loading where fracture occurs experimentally. It is important to note that the accumulated 

plastic strain p  computed from the numerical simulations is different from the strain measured 

experimentally and these two strain measures should not be directly compared. Also, the 

choice to work with the accumulated plastic strain p  is supported by the analysis presented in 

Chapter 6. The stress triaxiality is here defined as 

 1

3

I


   (29) 

where  1 ˆtrI  σ  is the first invariant of the stress tensor σ̂  and plastic anisotropy is included 

by using the equivalent stress   defined by the Yld2004-18p yield function. Note that in this 

definition of the stress triaxiality   , the equivalent stress   defined by the Yld2004-18p 

yield function have replaced the von Mises equivalent stress eq  used in Chapter 3. A more 

detailed presentation of the numerical results is given in Chapter 5. 

(a) (b) (c) (d) (e) 
Figure 4.4. Finite element meshes of the specimens for the numerical simulations: (a) cylinder 
with 0 0 1h D   for compression tests, (b) butterfly specimen for shear, (c) smooth 

axisymmetric specimen, (d) notched specimen with 2.0mmR  and (e) notched specimen with 
0.8mmR  for tensile tests. 
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Table 4.2. Number and initial size of elements for each discretized specimen geometry. 

 Compression Butterfly Smooth 
Notch 

2.0mmR  
Notch 

0.8mmR  

Number of elements 30050 18628 36000 43136 57000 

eh  (mm) 0.15 0.15 0.4 0.3 0.2 

 



 

 
 

Chapter	5. Numerical	analysis	

5.1 Introduction	

In this chapter, all the results obtained from the numerical simulations presented in the Chapter 

4 are presented. Firstly, the numerical stress-strain curves are given and compared with the 

experimental curves. Then, the local stresses and the strain states in the elements where 

fracture occurred experimentally are analysed. Figure 5.1 shows these elements for each 

geometry of specimen. 

 

 
(a)  (b)  (c)  (d) 

Figure 5.1. Part of the various discretized specimens shown in Figure 4.4 with black elements 
where fracture is experimentally observed (the two cases given in (c) correspond to two failure 
modes). 

5.2 Macroscopic	stress‐strain	curves	

Numerical stress-strain curves from the various tests described in Chapter 4 are presented in 

Figure 5.2 to Figure 5.5 and compared with the experimental results. The stress and strain are 

computed in the same manner as for the experiments. Diameter reduction is used for tensile 
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tests, total elongation is used for compression tests and displacement of the upper bolt is used 

for the shear tests. Both the isotropic and anisotropic ( 8m   and 12m ) calibrations of the 

material model are used. The simulated stress-strain curves were found to be in good 

agreement with the experimental results for all the tests, validating the calibrated material 

model from a macroscopic point of view. The errors between experimental and numerical 

results are presented in Table 5.1. Note that only the shear test in the rolling direction is 

studied, following the discussions in Chapter 3 and Chapter 4. 

5.2.1 Isotropic	version	of	Yld2004‐18p	

The numerical simulations were first run without including anisotropy. Thus, all the anisotropy 

parameters ijc  and ijc  were set equal to unity and the coefficient m  was chosen equal to 8 and 

12. In those cases, only the tests in the rolling direction are studied. 

As the isotropic material model was calibrated using uniaxial tensile tests in the rolling 

direction, the simulation of this particular test is in good agreement with the experiment (see 

Figure 5.2 (a)). However, for both the tensile tests on notched specimens (Figure 5.2 (a)) and 

the shear tests (Figure 5.3), the numerical stress-strain curves (force-displacement curve for 

shear) clearly overestimate the experimental curves in the 0° direction. This behaviour has 

already been reported in several studies, see e.g. Wilson (2002) and Bai and Wierzbicki (2008), 

and has been explained by the effect of hydrostatic pressure. However, it may also be due to 

anisotropic effects which were not considered in those studies. Indeed, and as underlined in the 

introduction, effects of pressure sensitivity on the flow stress have been claimed for many 

materials among which aluminium alloys (see e.g. Spitzig and Richmond, 1984, Wilson, 2002, 

Bai and Wierzbicki, 2008). These former studies included pressure-dependence into the yield 

function, as determined by inverse identification, and obtained correct stress-strain curves for 

tensile test on both smooth and notched specimens. In our case, the calibration was done in the 

rolling direction, and this choice has a direct influence on the numerical results for the notched-

specimen tests. In the following part, results are presented for simulations taking the anisotropy 

of the material into account. 

Table 5.1. Error (in %) between experimental and numerical tests at 2% strain or 0.6mm  
displacement for the shear tests on butterfly specimens. 

Shape parameter 8m   12m  
Direction of loading Isotropic 0° 45° 90° ND Isotropic 0° 45° 90° 
Notch 2.0mmR  6.28 2.15 1.20 0.20 - 6.28 1.61 0.56 0.83 

Notch 0.8mmR  10.54 5.11 3.51 2.58 - 10.54 1.59 0.99 0.85 

Cylinder 0 0 1h D  2.81 2.81 9.21 7.56 7.42 - - - - 

Butterfly 10.85 0.10 - 5.98 - - - - - 
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(a) 

 

(b) 

 

(c) 
Figure 5.2. Experimental and predicted Cauchy stress-logarithmic strain curves for tensile 
tests on smooth and notched specimen in the (a) 0°, (b) 45° and (c) 90° in-plane directions, 
with the anisotropic model ( 8m   and 12m ). Figure (a) also shows the prediction with the 
isotropic model. 
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Figure 5.3. Experimental and predicted force-displacement curves for the shear test on a 
butterfly specimen in the 0° in-plane direction with the isotropic and anisotropic models (

8m  ). 

5.2.2 Anisotropic	version	of	Yld2004‐18p	

Numerical simulations of the various material tests were run with the anisotropic version of the 

model with 8m   and 12m  , and their associated parameters obtained in the calibration 

presented in Chapter 4. Results are presented for both values when differences were observed. 

Otherwise, only the calibration with 8m   is used. Note that the uniaxial tension, shear and 

compression tests are not affected by the value of m , while the results for tensile tests on 

notched specimens are affected. For tensile tests on notched specimens, the strain ratios were 

not affected by the value of m , but the stress-strain curves with 12m   are in general more 

accurate than those obtained with 8m   (the maximum error in stress level decreases from 5% 

to 2%, see Table 5.1). This illustrates that the notch-strengthening effect is sensitive to the 

shape of the anisotropic yield surface. 

As this model was calibrated using uniaxial tensile tests and shear tests, the simulations 

are in good agreement with these experimental results. Stress-strain curves for the tensile tests 

in seven different directions on smooth specimens are presented in Figure 5.4 (c), where they 

can be compared to the experimental data in Figure 5.4 (a). The error between experimental 

and numerical yield stresses is directly linked to the inaccuracy in the calibration of the 

material model (see Figure 4.2 (a)). The simulation error is small for all directions with a 

maximum of 3.5%. The simulated force-displacement curve for the shear tests is presented in 
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experiments is better with the anisotropic than with the isotropic material model (see also Table 

5.1). The stress-strain curves for tests on notched specimens in different directions and for the 

two notch root radii are presented in Figure 5.2. The overestimation observed with the isotropic 

model is considerably reduced with the anisotropic model (maximum values of the error are 

5% of logarithmic strain with 8m  , see Table 5.1). One remarkable result is that the reduced 

effect of anisotropy on the stress-strain curves observed experimentally is reproduced with the 

anisotropic material model. 

Concerning the strain ratios, numerical results are in good agreement with experiments 

for tensile tests on smooth specimens in the seven different directions. The logarithmic strain in 

the transverse direction of the specimen (TS) versus the logarithmic strain in the normal 

direction (ND) of the plate is presented in Figure 4.1 (a) for the 0°, 45° and 90° in-plane 

directions. For the tensile tests on notched specimens, the predicted strain ratios show more 

deviation (see Figure 4.1 (b) and (d)). 

 

(a) (c) 

(b) (d) 

Figure 5.4. Representative experimental Cauchy stress-logarithmic strain curves for tensile 
tests on (a) smooth specimens and (b) notched specimens taken in different in-plane directions 
and (c)-(d) corresponding numerical predictions with the anisotropic model ( 8m  ). 
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Compression tests have also been simulated for the 0°, 45°, 90° in-plane directions and 

normal direction (ND) of the plate (Figure 5.5 (b)) and compared with experimental results in 

Figure 5.5 (a). Some deviations are seen between these simulations and the experimental 

results (see Table 5.1). One possible reason for this is believed to be the friction between the 

specimen and the rigid platens. Another possible reason is that the yield surface is insensitive 

to the pressure and is thus symmetric in uniaxial tension and uniaxial compression. Then, the 

experimental yield stress in uniaxial compression, not similar to the yield stress in uniaxial 

tension, cannot be predicted correctly with the chosen yield function. In addition, the deviation 

between predicted and experimental stress-strain curves is increasing with plastic strains and 

can reach 12% at a strain 0.6   in the 0° direction for instance. This is due to the saturating 

plastic hardening law which was calibrated under uniaxial tension up to 16% strain (the failure 

strain in the 0° direction) and validated on the uniaxial tension test in the 45° direction up to 

strains of 45%. The use of a non-saturating hardening law or the calibration on compression 

tests could have enhanced the numerical predictions. 

 

(a) (b) 
Figure 5.5. (a) Representative experimental Cauchy stress-logarithmic strain curves for 
compression tests on cylindrical specimens ( 0 0 1h D  ) in different directions of the plate and 
(b) corresponding numerical predictions with the anisotropic model ( 8m  ). 

5.2.3 Influence	of	plastic	anisotropy	

It was found that the anisotropic material model provides a more accurate description of the 

notch-strengthening effect in the numerical simulations of the notched specimen tensile tests. 

The model is able to reproduce the experimental observations despite the assumptions of non-

evolution of the anisotropy, incompressibility and pressure insensitivity. 

To explain this observation, the normal coordinate stresses in the numerical simulations 

were extracted at the minimum cross section of the notched specimens. The shear stresses 

along the coordinate axes were found to be negligible compared to the normal stresses. Hence, 

Logarithmic strain
0.0 0.1 0.2 0.3 0.4 0.5 0.6

C
au

ch
y 

st
re

ss
 (

M
P

a
)

0

200

400

600

800
ND 90°

 45°

 0°

Logarithmic strain
0.0 0.1 0.2 0.3 0.4 0.5

C
au

ch
y 

st
re

ss
 (

M
P

a)

0

200

400

600

800
ND

90°
 45°

 0°



Chapter 5 - Numerical analysis 

57 
 

the longitudinal (LS) and transverse (TS) directions of the specimen and the normal direction 

(ND) of the palte can be considered as the principal axes of the stress tensor. Three steps of 

the loading must be distinguished. First, the loading is totally elastic and the behaviour of the 

material is isotropic. Second, plasticity starts at the root of the notch and propagates to the 

central part of the section. Third, the whole minimum section is plastified and the plastic flow 

continues until fracture. These three steps explain the better predictions of the notch-

strengthening effect in the anisotropic simulations of the notched tensile tests: 

 1st step: Figure 5.6 (a) shows the hydrostatic stress, deviatoric stress and stress 

triaxiality along the transverse axis of the specimen (TS) during elastic loading. The stresses 

are found to be heterogeneous in the minimum cross section. The boundary conditions at the 

root of the notch induce a stress state close to uniaxial tension in the loading direction (LS). In 

the central part, the notched geometry induces a multiaxial stress state. The major principal 

stress is along the direction of loading direction (LS) while the intermediate and minor 

principal stresses are the components orthogonal to the loading direction (TS and ND). The 

major and intermediate stresses are shown in Figure 5.6 (b) for the central element at the 

minimum cross section. The corresponding stress state decreases the value of the deviatoric 

stresses (which drive the plastic process) compared to the behaviour at the root of the notch. 

 2nd step starts when the material at the root of the notch reaches the yield limit. This is 

represented by a cross in Figure 5.6 (b). With an anisotropic material model, the plastification 

does not occur simultaneously in the transverse direction of the specimen (TS) and the normal 

direction (ND) of the plate. This asymmetric plastic behaviour induces a non-equibiaxial stress 

state inside the remaining elastic central part of the minimum cross section. The stress path of 

the central element will differ from the isotropic case. Consequently, the yield surface will be 

reached in this element at a different location in stress space in the simulations with isotropic 

and anisotropic material models. This is represented by the points in Figure 5.6 (b), which also 

reveals that the stress values at yielding are lower for the anisotropic case. One explanation is 

that the deviatoric stresses increase slightly faster in the anisotropic case (see Figure 5.7 (a)). 

Consequently, yielding in the centre of the minimum cross section (and plasticity overall the 

cross section) is reached at an earlier stage of the loading in the anisotropic case. 

 3rd step starts once the minimum cross section is totally plastified. As the yielding stress 

states are different for the isotropic and anisotropic cases, the plastic flow will also differ for 

the two cases. This is illustrated by Figure 5.7 (b), which shows that the hydrostatic stress 

increases at a lower rate in the anisotropic case. 
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(a) (b) 
Figure 5.6. Predicted data from the tensile test on notched specimen ( 2.0mmR ) in the 0° 
direction using the anisotropic model ( 8m  ): (a) equivalent stress, hydrostatic stress and 
stress triaxiality in the minimum cross section along the transverse direction of the specimen 
(TS) in the elastic domain and (b) yield loci with 0 0.46TS    and stress paths of the central 

element of the minimum cross section of the specimen. ND  denotes the normal stress in ND, 

LS  in LS and TS  in TS. 

 

(a) (b) 
Figure 5.7. Predicted stresses in the centre of the minimum cross section of the notched 
specimen ( 2.0mmR ) for the tensile test in the 0° direction using the isotropic and 

anisotropic models ( 8m ): evolution until fracture of (a) the deviatoric stresses in LD and TD 
and (b) the hydrostatic stress. 
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5.3 Local	stress	and	strain	along	fracture	surface	

To evaluate the stress and strain fields in the specimens, we consider the trajectories of 

accumulated plastic strain p versus stress triaxiality    from incipient plastic deformation to 

fracture for the finite elements defining the experimentally observed failure surface (cf. Figure 

5.1). The envelopes of all trajectories and/or some selected trajectories are presented for the 

different tests (see Figure 5.8, Figure 5.10 and Figure 5.11). It is important to repeat here that 

the accumulated plastic strain p  computed from the numerical simulations is different from 

the strains measured experimentally and these different strain measures should not be directly 

compared. However, the difference between these measures has no influence on the discussion 

regarding the heterogeneity of the stress and strain fields and the impact of plastic anisotropy 

on the establishment of a failure criterion. 

The results for the uniaxial tensile tests in the 0°, 45° and 90° directions are shown in 

Figure 5.8 (a). The trajectories of one of the surface elements and the element at the centre of 

the specimen correspond to the left and right parts of the envelope. Note that the elements 

considered to build the envelope depend on the loading direction and the corresponding failure 

mode. Thus, the elements marked in Figure 5.1 (c) left are used for the 0° and 90° directions, 

while the elements indicated in Figure 5.1 (c) right are used for the 45° direction. The upper 

part of the envelope is defined by the experimentally observed diameter reduction at fracture, 

i.e. fracture in the simulations is defined by the instant in the loading process where the 

predicted diameter reduction is equal to the measured diameter reduction at fracture in the 

experiments. The trajectories displayed in Figure 5.8 (a) show that the stress triaxiality 

increases from the initial value at the centre of the specimen, while it slightly decreases close to 

the surface. This change in stress triaxiality is due to necking of the specimens and is distinct at 

45° while more limited for the two other directions. The envelopes for the different directions 

are similar for low plastic strains, especially at 0° and 90°, although the failure strain itself is 

quite different for these two directions. For the 45° direction the stress triaxiality at the centre 

of the specimen increases significantly with the accumulated plastic strain, since the large 

ductility in this direction allows for marked necking before fracture. The accumulated plastic 

strain at failure, fp , in the elements located in the critical cross section of the specimen is 

homogeneous when failure occurs at small plastic strains (  0.156;0.164fp   for the tensile 

test in the 0° direction), whereas a substantial variation is seen when the failure strain increases 

(  0.336;  0.406fp   for the tensile test in the 45° direction). The maximum values of fp  and 

   at failure are reached at the centre of the specimens in all directions. 
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(a) 

 

(b) 

 

(c) 

Figure 5.8. Envelopes of the trajectories of accumulated plastic strain versus stress triaxiality 
for elements depicted in black in Figure 5.1 for tensile tests in the 0°, 45° and 90° in-plane 
directions on (a) smooth specimens, (b) notched specimens ( 2.0mmR ) and (c) all tensile 
tests performed in the 0° direction. All trajectories are terminated at the loading 
corresponding to failure in the experiment. 
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The influence of anisotropy on the stress triaxiality is studied in Figure 5.8 (b), which 

presents the envelopes for the notched specimens with 2.0 mmR  loaded in different 

directions. Figure 5.8 (b) further presents the results obtained with the smooth and notched 

specimens with the two radii 2.0 mmR  and 0.8 mmR , loaded in the 0° direction, for 

comparison. The trajectories for the surface element, giving the minimum stress triaxiality, and 

the element in the centre of the specimen, not always giving the highest stress triaxiality, are 

shown. All other trajectories are comprised between these two lines. As explained by 

Fourmeau et al. (2011), the plastic flow initiates at the root of the notch and influences the 

stress state in the whole minimum cross section. Since this plastic flow is anisotropic, the stress 

state becomes non-axisymmetric and the stress triaxiality at the centre of the minimum cross 

section (at the initiation of plastic deformation) can be affected. In a similar way as for tests on 

smooth specimens, the stress triaxiality at the centre of the minimum cross section increases 

more for the 45° loading direction than for the other directions. Indeed, both the stress 

triaxiality and the accumulated plastic strain at failure are found to be highest for the 45° 

loading direction in the centre of the specimen. The accumulated plastic strains at failure are 

very different at the root of the notch and the centre of the minimum cross section, giving a 

considerably larger strain range than under uniaxial loading conditions (e.g. in the 0° direction, 

 0.068;  0.127fp   for 2.0 mmR  and  0.004;  0.013fp   for 0.8 mmR , see Figure 5.8 

(c)). Fracture occurs after a very small plastic straining at the centre of the minimum cross 

section (0.068 and 0.004 for notched specimens loaded in the 0° direction with 2.0 mmR  

and 0.8 mmR , respectively), while the strain at the surface of the specimen is much larger. 

In some cases, the centre was not the point of maximum stress triaxiality in the minimum cross 

section. This was the situation for the notched specimen with 0.8 mmR , where the trajectory 

of the central element was actually inside the envelope (see Figure 5.8 (c)). The envelope is in 

this case limited by the trajectory of an element located between the centre of the specimen and 

the root of the notch. 

Another way to visualize the heterogeneities in the strain and stress fields is presented 

in Figure 5.9. Here the spatial distributions of the accumulated plastic strain and the stress 

triaxiality over the minimum cross section are depicted for the 0° direction at the global 

displacement corresponding to experimental failure. For the tensile test on smooth specimens 

(Figure 5.9 (a)) p  and   are found rather homogeneous across the section. For the tensile 

tests on notched specimens (Figure 5.9 (b) and (c)) p  is the highest at the root of the notch, 

where    is the lowest. Further, Figure 5.9 shows that the stress and strain fields are not 

axisymmetric due to anisotropy, and for the notched specimen with 0.8 mmR ,    is 
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maximum at the centre of the specimen. The latter observation was also made by El-Magd et 

al. (1997) and Børvik et al. (2003a) for steels. 

 

Accumulated plastic strain Stress triaxiality 

 

(a) 

 

(b) 

 

(c) 

Figure 5.9. The distributions of accumulated plastic strain and stress triaxiality over the 
minimum cross section at the point of failure for tensile tests in the 0° in-plane direction on (a) 
smooth specimen, (b) notched specimen with 2.0 mmR  and (c) notch specimen with 

0.8 mmR . 

 

The results for the compression test performed in the 0° in-plane direction are shown in 

Figure 5.10. Fracture is assumed in the simulation when the length of the specimen 

corresponds to the average length at fracture in duplicate experiments. The accumulated plastic 

strain and the stress triaxiality in the elements of the fracture surface are found very 

heterogeneous. The strong inhomogeneity in the accumulated plastic strain at fracture (e.g. 
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 0.394; 0.789fp   in the 0° direction) makes the strains obtained from measurements of the 

global change in length of the specimen inaccurate and not representative for the real strains 

inside the specimen. Concerning the stress triaxiality, a highly compressive state of stress is 

found at the interface with the platen (point S2 in Figure 5.1 (c) and Figure 5.10), where 

friction effects are important, while a uniaxial compression stress state is only ensured at mid 

height on the surface of the cylinder (point S1). This reveals the importance of the barrelling 

effect. The inclined fracture surface contains the points with the maximum stress triaxiality. 

This suggests that under these negative stress triaxiality states, fracture preferentially occurs 

where the stress triaxiality is the highest. Note that the initial stress triaxiality is not even equal 

to the theoretical value of 1 3  in the entire specimen due to friction occurring also in the 

elastic regime. 

 

Figure 5.10. Trajectories of accumulated plastic strain versus stress triaxiality for elements 
depicted in black in Figure 5.1 (a) for the compression tests on cylinders with 0 0 1h D   in the 

0° in-plane direction. All trajectories are terminated at the displacement corresponding to 
failure in the experiment. 
 

Figure 5.11 shows the results for the shear test in the 0° direction, revealing that the 

specimen experiences a complex loading history that deviates significantly from shear loading 

in some locations. Fracture was assumed when the central surface element C reached the 

experimentally obtained strain to failure. The rim element S and the element I1 (see Figure 5.1 

(d) and Figure 5.11) experience stress triaxiality states deviating considerably from the 

theoretical value of zero. However, the elements located at the middle height of the shear band 

named I2, I3 and C experience a loading close to shear. The element at point M, which 
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corresponds to the maximum strain location, is also shown. This point is subjected to large 

plastic strains, but is not located on the fracture surface and is consequently not critical. The 

distribution of stress triaxiality and accumulated plastic strain in the shear specimen 

demonstrates that the minimum cross section is not subjected to a homogeneous shear stress. 

The influence of the direction of loading on the stress triaxiality field was found to be small. 

 

 

Figure 5.11. Trajectories of accumulated plastic strain versus stress triaxiality for elements 
depicted in black in Figure 5.1 (b) for the shear test in the 0° direction. All trajectories are 
terminated when the strain in the central surface element C corresponds to the failure strain 
determined in the DIC analysis. 

5.4 Conclusions	

It was found that Yld2004-18p provided an adequate description of the plastic anisotropy of 

the AA7075-T651 plate. Moreover, it was shown that plastic anisotropy is pivotal for an 

accurate prediction of the notch-strengthening effect. In particular it was shown that an 

isotropic yield function overestimates the stress level in the notched specimens. The shape of 

the anisotropic yield surface was revealed to significantly affect the prediction of the notched-

specimen behaviour. These findings are important since notched specimens often are used to 

determine the fracture locus of materials, and in this context an accurate description of the 

stress state within the notch is essential. Also, the scatter in the results further enforces us to 

take the fracture strains at low stress triaxiality into account in a rather qualitative way. 

A fracture locus giving the failure strain as a function of the stress triaxiality is a widely 

used way of representing the ductility of an isotropic material. It is usually constructed from 

experimentally obtained (global) failure strains and theoretical initial stress triaxiality values 

available for given specimen geometries. Figure 5.12 gives the experimental failure strains 
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obtained in Chapter 3 for the different tests in the different loading directions performed on 

specimens taken from the AA7075-T651 plate. It was assumed more prudent not to attribute a 

unique stress triaxiality value to each test. However, tests are ordered by increasing initial 

theoretical stress triaxiality. Figure 5.12 clearly shows that the usual representation of a 

“unique” fracture locus in terms of accumulated plastic strain versus stress triaxiality is not 

sufficient to describe the fracture behaviour for the AA7075-T651 alloy. This is expected since 

this kind of representation was first proposed for isotropic materials (e.g. McClintock, 1968; 

Rice and Tracey, 1969). To improve this representation, plastic anisotropy should be included. 

A possible route towards this aim is to include plastic anisotropy in Rice and Tracey’s analysis 

as done for instance by Benzerga et al. (2001) and in the Gurson model by Monchiet et al. 

(2008). In the analysis of Benzerga et al. (2001) both the accumulated plastic strain and the 

equivalent stress are simply replaced by the accumulated plastic strain and the equivalent stress 

associated to the anisotropic yield criterion used in the analysis. Recently, the effect of loading 

path on the fracture locus was examined theoretically by means of an axisymmetric void cell 

model by Benzerga et al. (2012). They found that the fracture loci under radial and non-radial 

loadings are quite distinct from each other. Under radial loadings, a unique fracture locus may 

be constructed for given initial values of microstructural variables. Under non-radial loadings, 

however, an infinite number of fracture loci in terms of failure strain versus average stress 

triaxiality and Lode parameter can be constructed. Thus, they claimed that the notion of a 

fracture locus is a “misnomer”. Moreover, as suggested by several researchers (e.g. Zhang et 

al., 2001; Nahshon and Hutchinson, 2008; Bai and Wierzbicki, 2008; Barsoum and Faleskog, 

2011), the Lode parameter (as a function of the third invariant of the deviatoric stress tensor) 

seems to play an important role in the ductile fracture process. 

 

Figure 5.12. Average experimental strain to failure for the compression tests (CT), shear tests 
(ST), uniaxial tension tests (UT), notched tension tests with 2.0mmR  (NT2.0) and with 

0.8mmR  (NT0.8). The error bars represent the range of failure strains from duplicate tests. 
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Based on the stress and strain field analysis, the presented study points out another 

difficulty in establishing a failure locus: the presence of several failure modes in addition to 

anisotropic plastic behaviour (see also Luo et al., 2012). For instance, for the uniaxial tension 

tests on smooth specimens, very different failure processes are observed (see Figure 3.4). 

Existing macroscopic failure models are not believed capable of capturing both the failure 

mode transition and the influence of the direction of loading. With respect to those 

observations, it might become necessary to include a description of the microstructure of the 

material and especially the distribution of the inclusions and the precipitate free zones (PFZs). 

The PFZs are the weakest zones in the material and are potential locations for strain 

localization and fracture initiation. As far as the AA7075-T651 aluminium alloy is concerned, 

the location of PFZs (related to the grain morphology) and the distribution of inclusions are 

both anisotropic. 

 



 

 
 

Chapter	6. Analytical	considerations	

6.1 Introduction	

In this chapter, two issues regarding failure are considered. First, the effect of anisotropic 

matrix behaviour is studied in the light of the analysis for void growth developed by Rice and 

Tracey (1969). Second, the usual localization criterion, given by Rice (1976), is analyzed with 

various constitutive characteristics among which shape of the yield surface, non-associativity 

and thermo-mechanical couplings. 

6.2 Void	growth	approach	for	anisotropic	materials	

As discussed in Chapter 1, the void growth approach has for half a century been extensively 

used to describe the damage occurring in metals at the microstructural level, while subjected to 

plastic deformations. Nowadays, several stages of damage are usually distinguished: the 

nucleation of voids, their growth, and finally their coalescence leading to macroscopic failure. 

The earlier works concerned the growth of a single cylindrical void (McClintock, 1968) or a 

single spherical void (Rice and Tracey, 1969) inside an infinite rigid perfectly plastic medium. 

Later, Gurson (1977) studied a spherical void inside a finite rigid perfectly plastic spherical 

medium. Gurson’s analysis was successively enriched by accounting for nucleation and 

coalescence of voids (Tvergaard and Needleman, 1984), but also by strain hardening (Gurson, 

1977; Leblond, 1995), two populations of voids (Marini, 1985), void shape and distribution 

(Gologanu et al. 1993, 1994a), third invariant (Nahshon and Hutchinson, 2008) and plastic 

anisotropy (Monchiet et al., 2008). Gurson’s analysis leads to an expression for the yield 

function resulting from a finite matrix containing a void. This development introduces the 

porosity since the matrix is of finite size. On the contrary, the Rice and Tracey analysis is 

performed inside an infinite medium and results only in the expression of the void growth rate. 

This expression does not give any influence of the void on the material behaviour and can be 

used as an uncoupled damage criterion. Regarding the present study of the AA7075-T651 
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alloy, no significant void growth was observed before failure for the tests performed in Chapter 

3. Therefore, the influence of a void on the material behaviour can be neglected and for this 

reason, the Rice and Tracey (RT) analysis is relevant and will be further extended to an 

anisotropic material in the following. Inclusion of the anisotropy in the Gurson approach was 

studied by Benzerga and Besson (2001), while Monchiet et al. (2008) analysed the role of 

anisotropy both on the yield behaviour and the growth of voids. 

6.2.1 Rice	and	Tracey	analysis	

Geometry	and	boundary	conditions	

As depicted in Figure 6.1, in the Rice and Tracey (RT) analysis, a spherical cavity of initial 

radius 0R  in an infinite medium is subjected to a multi-axial stress field Σ , obtained by 

imposing a strain rate field E  at the boundary of the body (i.e. at infinity). The fields inside the 

medium are denoted with small letters ( , ,s σ ε ) while their values at infinity are denoted with 

capital letters ( , ,S Σ E ). 

 

Figure 6.1. Geometry of a spherical void inside an infinite medium and coordinate system used 
by Rice and Tracey (1969). 
 

The spherical coordinate system associated to this geometry is defined as 

 

     1 2 3 1 2 3 1 2 3, , , , , ,

sin cos sin cos cos

e sin sin , e cos , e cos sin

cos 0 sin
R

x x x x x x x x x

 

    
    
 

     
            
          

 (30) 

Constitutive	behaviour	

The material of the medium is considered to be rigid perfectly plastic (i.e. no elastic strain and 

no plastic hardening) and the plastic flow is associated to a von Mises yield function defined as 



Chapter 6 - Analytical considerations 

69 
 

 0
3

0 with :
2eq eqf       s s  (31) 

where s  is the deviatoric stress, defined by H s σ I  with the hydrostatic stress 

 tr 3H  σ . Consequently, the deviatoric stress s  is directly linked to the strain rate ε  

according to 

 02
3 p
s ε


 (32) 

where 2
3 :p  ε ε   is the energy conjugate equivalent strain rate. 

Equilibrium	

In the RT analysis, the weak form of the equilibrium equations is established from the internal 

work iQ  and external work eQ  
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 (33) 

where  s ε  and ε  are the deviatoric stress and strain rate fields inside the body and S  and Σ 

correspond to the deviatoric and total stress fields at infinity. mV  is the volume of the medium 

and fulfils m vV V V  ; V  is the total volume and vV  is the volume of the void. S  is the 

external surface of the medium located at infinity, n  is the normal vector to that surface, u  is 

the velocity field and ε  is the associated strain rate field. The divergence theorem can be used 

to transform the two integrals presented in Eq.(33) and the weak form of the equilibrium 

equations is obtained through the minimization of the function 

          :
v

i e

V S

Q u Q u Q u dV n u dS      s ε S ε Σ       (34) 

where vS  is the surface of the void. 

Field(s)	

Rice and Tracey selected a specific velocity field u  as 

 D Eu x Du Eu  E    (35) 
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where the factors D  and E  refer to the spherical and deviatoric expansion, respectively, E  is 

the strain rate field applied at infinity and eRx R  is the current coordinate. Rice and Tracey 

showed that the shape changing velocity field Eu  has no significant effect on the void growth 

rate at high stress triaxiality and is therefore neglected. The hydrostatic velocity field Du  is 

radial and vanishes at infinity to respect the boundary condition. Thus, E  is the only quantity 

of Eq.(35) remaining at infinity. A convergence analysis additionally constrains the velocity 

field to fall off as 2R , where R is the radius, see Figure 6.1. The selected velocity field and the 

corresponding strain rate field are 
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 (36) 

where P  is the equivalent plastic strain rate at infinity. Note that the remote strain rate field E  

is necessarily deviatoric since any hydrostatic component applied at infinity would bring an 

infinite change of volume. Also, this field induces a change of shape of the cavity. 

Insertion	 of	 the	 chosen	 fields	 and	 constitutive	 behaviour	 into	 the	 equilibrium	

equation	

Assuming that the remote deviatoric stress does not carry out any work on the surface 

involving the radial velocity field Du  (i.e. RT split the deviatoric and hydrostatic contributions 

of the work), the minimization given in Eq.(34) reduces to 

     :
v

D
H

V S

D dV n u dS   s ε S ε    (37) 

where H  is the hydrostatic stress at infinity. The solution of this equation will give an 

expression for D , which is the unknown of the problem. Inserting the field given in Eq.(36) 

and the constitutive behaviour given in Eq.(32) into the equilibrium given in Eq.(37) gives 

(details are skipped) leads to 
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where RT RRE P     (with e eRR R RE   E  ) is related to the third invariant of the strain tensor 

(see Rice and Tracey, 1969) and sind d d    denotes the solid angle. At this stage of the 

development RT assumed that D  is large ( 1D ) to get an analytical solution. Thus, the 

terms of order 1 / D  can be neglected and the terms involving D  can be integrated over the 

unit sphere, giving 

 
0

3
exp

2
HD C


 
  
 

  (39) 

where    1 1
exp 1 log 1

4 4 RT RTC d 
 

 
    

 
 . Note that C  is a function of RT  but is almost 

constant and can be approximated to its value for uniaxial tension loading conditions 

0.283C  . 

Averaged	rate	of	growth	

The average void growth rate 0R  can be deduced from Eq.(39) taken at the void interface 

0R R . Only the radial expansion is accounted for, so the rate of displacement can be projected 

on eR  and integrated over d  

 0 0 0RRR E R d DPR d
 

       (40) 

The integration of RRE  over the unit sphere is equal to zero (E  is necessarily deviatoric), and 

D  and 0R  do not depend on the angular variables, so the rate of void growth is found as 

 0

0 0

3
0.283 exp

2
HR

P
R 

 
  

 

   (41) 

It should be recalled that this expression is obtained following several assumptions: 

 No elasticity and no plastic hardening 

 1D  (i.e. large stress triaxiality states) 

 Influence of deviatoric stress field neglected 

 Expansion of the void averaged as spherical 

Otherwise, it should be noted that the macroscopic (and necessarily deviatoric) plastic strain 

rate is driving the radial expansion process, while the influence of the hydrostatic part of the 

loading appears in an additional exponential term. 
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6.2.2 Extension	of	the	Rice	and	Tracey	analysis	for	anisotropic	matrix	behaviour	

The Rice and Tracey analysis is reconsidered here with an anisotropic yield function. The yield 

function expressed in Eq.(31) is now defined as a Hill yield function (1948) 

 0 0 with : :f       s M s  (42) 

where   is the Hill equivalent stress replacing the von Mises equivalent stress eq  given in 

Eq.(31) and M is the anisotropic matrix expressed as a diagonal matrix in a modified version 

of the Voigt notation as 
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M s  (43) 

where the six components , , , , ,F G H L M N  need to be calibrated and in case of purely isotropic 

behaviour, 1 2F G H    and 3L M N   . With associative plasticity, the relation between 

stress and strain rate expressed in Eq.(32) becomes 

 10 :
p
 s M ε  (44) 

where 1M  is the inverse of the anisotropic diagonal matrix M. The equivalent plastic strain 

rate, denoted p , is energy conjugate to the Hill equivalent stress  . The fields are the same as 

in the original RT analysis (Eq.(36)) but the definition of equivalent plastic strain rate is 

different, viz. 
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The equilibrium equation to solve, given in Eq.(37) for isotropic material, remains unchanged 

for the anisotropic material. Nevertheless, the development of this equilibrium equation is 

altered by anisotropy in the following way 
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where 11
2 : :D Dh  e M e  and 11

2
: :h D

RT hP
  e M E

 . The parameter h is a function of the 

anisotropy parameters, but also of the spherical coordinates and cannot be taken out of the 

integral. By assuming again that D  is large, the previous equation can be simplified to 
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  and 1

4avh hd 
   is the 

normalized parameter h  averaged over the unit sphere. As in Rice and Tracey (1969), the 

average void growth rate can be expressed as 
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   (48) 

The calibration of the anisotropic parameters of M was done for the AA7075-T651 alloy and 

gave the values 0.515F H  , 0.485G  , 2.764N   and 3L M  . For these specific values,

1.0066avh  . A consequence is that the function hC  is not much affected by the anisotropy, 

which allows to express the average growth rate of a void as 

 0
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   (49) 

where the only remaining difference with the original Rice and Tracey analysis (given in 

Eq.(41)) is the anisotropic definition of P . With the yield stress now equal to 

0 : :    S M S , the triaxiality *
H     also contains the plastic anisotropy. 

6.2.3 Conclusions	

This development enables to evaluate the influence of the plastic anisotropy on the expression 

of the void growth rate as obtained by Rice and Tracey (1969). In this study, this influence is 

found to be limited and with reasonable approximation, the solution of Rice and Tracey (1969) 

is still valid but with a different definition of the equivalent plastic strain rate and triaxiality 
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ratio. This analysis suggests that the failure locus, usually expressed for isotropic materials in 

the  ( *2 3
23 : , :p p

ff H   ε ε s s ) space, should be represented in the “anisotropic space” 

when the material is anisotropic: ( 1 *: : , : :p p
ff H   ε M ε s M s ). This is consistent 

with the definitions of the accumulated plastic strain and stress triaxiality used in the 

anisotropic plasticity model used in Chapter 5. 

6.3 Localization	criteria	

Examples have been provided in Chapter 3 showing inclined fracture modes under uniaxial 

tension. In this chapter the conditions for localization are considered. We adopt a general set of 

rate-independent constitutive relations, and derive conditions for strain localization to occur. 

Rudnicki and Rice (1975) adopted the viewpoint that the macroscopic constitutive relations 

may permit homogeneous deformation of an initially uniform material to give way to an 

incipient non-uniform deformation field, concentrated within a localized band but uniform 

outside it. This approach will be developed in the following with the associated conditions 

solved. But before this, the constitutive framework we have in mind will be presented in the 

fully thermo-mechanical context, as thermal effects may play an important role in the 

localization process. 

6.3.1 General	constitutive	framework	

It is now well established that features of the behaviour of materials that may lead to 

localization are mostly mechanisms linked with softening: this may be strain softening 

(plasticity, damage and other phenomena), thermal softening, geometrical softening (as in 

single crystals for instance) and even strain-rate softening (dynamic strain ageing and 

consecutive negative strain-rate sensitivity observed through the Portevin-Le Châtelier 

phenomenon). Another source of localization is non-symmetry of the inelastic behaviour as 

observed in non-associative behaviour (non-Schmidt effects, friction and dilatancy effects), but 

also in the inclusion of thermo-mechanical couplings. Some of these effects will be underlined 

in the following of this work. The coming section introduces indeed the set of constitutive 

equations that incorporate these effects. 

Thermodynamic	framework	

The thermodynamic framework with infinitesimal strains is presented with more details in 

Appendix B for thermo-inelastic behaviour of various materials. The main ingredients of the 

framework are summed up below 
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where   is the density and thc  is the heat capacity. In the case of elasto-plastic behaviour with 

hardening and thermal softening, the adequate internal variables are chosen as 

    , and ,p
i ip    ε σ  (51) 

and the potentials are defined by 
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where ( )i TE , given in detail in Appendix A, is the 4th order elastic tensor, 0( )th th T T ε I  is 

the thermal strain, ( )th T  is the thermal expansion coefficient and ( , )a p T  represents the 

plastic hardening. The state and evolution laws are 
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Isothermal	tangent	modulus	 iH 	

The isothermal tangent modulus relates the stress rate to the strain rate under isothermal 

conditions 0T  . The constitutive behaviour obtained from the framework under these 

circumstances is given as 
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Note that under isothermal conditions and for the sake of clarity, the variables { , , ,i i i ihE α β } 

will be nominated { , , ,hE α β } and no dependency on the temperature will be accounted for. 

Adiabatic	tangent	modulus	 aH 	

The adiabatic modulus relates the strain rate to the stress rate under adiabatic conditions. Under 

adiabatic conditions, one assumes the absence of external heat sources and conduction (no heat 

fluxes, 0r k  ) so that the evolution of the temperature (through the heat equation) becomes 

  :   with     , ,p

a
th th th th th a

i i i pc T T A A A T T
T T T

  
   

         
ε

σ σ
ε A σ   (55) 

Under adiabatic conditions, it is therefore possible to compute the rate of temperature. For the 

sake of simplicity, we neglect here the variations of thermo-elastic coefficients with respect to 

temperature. If needed, these variations can be incorporated. With this assumption we get 
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Further, the plastic multiplier is obtained using the consistency condition enriched with the 

evolution laws (see Appendix B), and the following rate constitutive behaviour is established 
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Note that the product a aβ α  is not symmetric when the thermal coefficients are non-zero, 

even with associated plastic flow. Some additional details about the adiabatic 4th order elastic 

tensor aE  are given in Appendix A. The only remaining unknown in the expressions for 

tensors aα  and aβ  is the yield function f , which will be particularized later. 

Finite	strains	

When taking finite strains into account, some changes must be brought to the above 

presentation. For the sake of simplicity, this will be carried out here only under isothermal 

conditions. The rate-of-deformation tensor d  is decomposed into elastic and plastic parts 

 e p d d d  (58) 

where the elastic strains are assumed to be small and a linear hypoelastic formulation is 

adopted, i.e. 
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: ,
if 0 and 0,

J J J J J
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  (59) 

where JH and E are the 4th order tangent and elastic modulus tensors, respectively, f  is the 

yield function and Jσ  is the Jaumann stress rate defined by 

 J     σ σ σ ω ω σ  (60) 

with ω  the spin, i.e. anti-symmetric part of the velocity gradient, while d  is its symmetric part. 

A particular property of the Jaumann stress rate is that for a first order positive homogeneous 

yield function f  we have 

 : : Jf f  


 
σ σ

σ σ
  (61) 

Consequently, the rate constitutive relations considered in Eq.(54) give the expression of the 

hardening modulus h  through 

 1: , : and   : :J J J J Jf F
H h H 

      
 

α E α β E β α E β
σ σ
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6.3.2 Localization	analysis	for	a	homogeneous	material	

Localization	Condition	(LC)	for	infinitesimal	strains	

The usual viewpoint for addressing the localization phenomenon (see Rudnicki and Rice, 

1976) considers that the macroscopic constitutive relations may permit the homogeneous 

deformation of an initially uniform material to give way to an incipient non-uniform 

deformation field, concentrated within a localized band but uniform outside it. A bifurcation 

approach is thus used to exhibit the conditions which allow this transition for an infinite block, 

from its initially uniform state to the non-uniform one containing a planar band as sketched in 

Figure 6.2. The rate constitutive laws given for the material are those developed earlier and we 

start with the isothermal situation. 

Let’s consider a homogenous medium M , in which strain localization could occur 

along a planar band B  of normal n , as depicted in Figure 6.2. If this localization is to happen, 

a jump in velocity gradient should appear at the interface between the rest of the block and the 

incipient band, even though the velocity is assumed to remain continuous. This compatibility 

requirement imposes  

 
v v v

g n
x x x

  
   

  

      M B

 (63) 

where v  is the velocity vector, x  is the current position, n  is the normal vector to the band 

and g  defines the intensity of the discontinuity. The strain rate discontinuity is consequently 

    1

2
g n n g     ε ε ε  M B  (64) 

Assuming Eq.(54) to be valid in the homogeneous medium and inside the band it follows that 

    :
:

:


 



σ = L ε
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M M
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 (65) 

The other requirement is continuous equilibrium which corresponds to n n  σ σ M B  and 

consequently to 

      1 1
: 0

2 2
n g n n g n n n g          σ L L  (66) 
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For localization to happen, Eq.(66) should have a non-zero solution g , which corresponds to 

 det 0n n  L . The elastic tensor E  satisfies  det 0n n  E  (details in Appendix A), so the 

condition of localization (LC) reads 

  det 0n n  H  (67) 

and corresponds to the loss of ellipticity condition. The equality sign is changed into < 0 if one 

considers plastic loading inside the band and elastic unloading outside it (Benallal and Comi, 

1993). 

 
Figure 6.2. Schematic representation of a loaded homogeneous medium and localization along 
a planar band. 
 

The acoustic tensor n n H  can be transformed into (details in Appendix A) 
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 (68) 

The multiplicative property of the determinant transforms the LC into det det 0e A B  and 

since det eA  is strictly positive (see Appendix A), the study reduces to solving det 0B . The 

tensor B  has two eigenvectors orthogonal to n α  and nβ  with corresponding eigenvalues 

1 2 1B B   (Benallal and Comi, 1993) so 

      1

3 3

1
det , 1 eB B n n

H


      B α A β  (69) 
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The localization condition (LC) given in Eq.(67) then becomes 

      
1

det 0 eH n n


      B α A β  (70) 

This last equation is the general LC with isotropic elasticity, without any assumption on the 

yield function and plastic flow, in a small strains framework. The geometrical method 

presented in Benallal and Comi (1993), also developed in Appendix C, is used here to get the 

six solutions for Eq.(70) which are kH  and ijH  with    , , 1,2,3i j k  . The six associated 

solutions for the hardening modulus h ( kh  and ijh ) can be computed using Eq.(54). From these 

six solutions the critical hardening modulus ch , which is the maximum of the six last solutions, 

can be deduced. 

Effects	of	thermo‐mechanical	couplings	

The inclusion of thermal effects and thermo-mechanical couplings in the above analysis can be 

found in Benallal and Bigoni (2004). The localization condition reduces, with the notations 

adopted above, to the singularity of either the isothermal or the adiabatic tangent moduli. As 

these moduli have the general form adopted in the solution technique described above, it can 

also be applied to the thermo-mechanical case. It is not repeated here. 

Effects	of	geometrical	nonlinearities	and	finite	strains	

With the same requirements as in Eq.(64), we have 

  1
2

g n n g   ω    (71) 

and continuum equilibrium across the band (given in Eq.(66) for small strains) leads now to 

        1
: 0

2
n g n n g n             

σ L σ ω ω σ  (72) 

It follows after some manipulations that 
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 (73) 

The condition for localization (given in Eq.(67) for small strains formulation) becomes with 

the Jaumann formulation (details in Appendix D) 
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 det 0
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2

J

J

n n

n n n n n n  

   

         

H A

A σ I σ σ σ
 (74) 

where it is recalled that tangent modulus tensor H  is unchanged compared to the previous 

formulation. As in the infinitesimal case, six solutions for the hardening modulus h  ( kh  and 

ijh ) can be associated to the six solutions for H  ( kH  and ijH ). The critical hardening modulus 

ch  is again defined as the maximum of these six solutions. Note that the stress tensor σ  is now 

directly involved in the localization condition. 

6.3.3 Some	applications	

We consider here the non-quadratic and pressure-independent yield function (Hershey, 1954) 

      
1

1 2 2 3 3 1 0
1
2

mm mm
f s s s s s s       
        (75) 

where 1 2 3, ,s s s  are the principal deviatoric stresses and the coefficient m   is an even number 

that may give a non-quadratic yield function. Note that when 2m  , f  corresponds to the von 

Mises yield function 2 03f J   . Several constitutive models are built based on the 

Hershey yield function and listed in Table 6.1, where 0  and 0  are the pressure sensitivity 

terms related to the yield function and plastic flow potential, respectively, defined in Appendix 

F. 

Table 6.1. Different cases studies for yield function, plastic flow and formulation. 

 
Associativity 

Yield function f Plastic flow F  Formulation 

 shape pressure shape pressure strains thermal 

CASE 1 yes m  0 0   m  0 0   small isothermal

CASE 2 yes m  0 0   m  0 0   small isothermal

CASE 2 no m  0 0   m  0 0   small isothermal

CASE 3 no m  0 0   n m 0 0   small isothermal

CASE 4 yes m  0 0   m  0 0   Jaumann isothermal

CASE 5 no m  0 0   m  0 0   Jaumann isothermal

CASE 6 yes m  0 0   m  0 0   small adiabatic 

 

In some cases, the stress tensor intervenes in the result so the plastic behaviour is of 

importance. For the study of AA7075-T651 aluminium alloy, the Voce hardening law was 
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calibrated in Chapter 4. The yield condition was written ( )eqf p    and the Voce 

hardening law was given as 

     0 1 expp Q Cp      (76) 

with the values of 0 , Q  and C  calibrated for the AA7075-T651 alloy presented in Table 4.1. 

CASE	1:	Hershey	yield	function	‐	associative	plastic	flow	

With the Hershey yield function and associative plastic flow, the six solutions of hardening 

moduli ( kh  and ijh ) normalized with the shear modulus  , are presented in Figure 6.3 (a) for 

16m  , and the critical hardening modulus ch  is the maximum of the six values. Note that the 

curves obtained are symmetric with respect to the Lode parameter 0L  , corresponding to 

shear conditions, and that   13max ;c k ijh h h h   (details in Appendix F). Figure 6.3 (b) 

presents the critical normalized hardening modulus ch , with different values of the shape 

parameter m . 

With associated and pressure-independent flow rule, the critical hardening moduli ch  is 

always negative, whatever the Lode parameter L  and shape parameter m  are. This means 

that with a strictly increasing hardening law and without any softening mechanism, the 

material will not localize. However, it is noted here that a larger shape parameter m  promotes 

localization by increasing the value of ch  for all Lode parameters different than the particular 

values  1;0;1L   . Also, the critical hardening modulus depends here on the Lode 

parameter, not on the stress triaxiality. 

(a) (b) 
Figure 6.3. Normalized hardening moduli with a Hershey yield function and associative plastic 
flow:   (a) six moduli ijh   and kh   for 16m   and (b) critical ch   for  2; 8;16m  . 
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CASE	2:	Hershey	yield	function	with	pressure	dependency	‐	associative	plastic	flow	

The Hershey yield function is now enriched with a pressure dependency term 0f  in the 

following way 

        
1

1 2 2 3 3 1 0 0
1

, ,
2

mm mm
L H Hf s s s s s s f          

         (77) 

so that the gradient of f  is not deviatoric anymore and its trace is proportional to 0f . A 

realistic pressure sensitive term 0 0.015f   is obtained by assuming a different of 1% between 

the yield stress under uniaxial tension and compression (more details are given in Appendix F). 

Figure 6.4 shows the critical normalized hardening modulus with 2m   and 16m   for this 

realistic pressure dependency and compare it with pressure independent yielding ( 0 0f  ). It is 

observed that the pressure dependency decreases the value of the critical hardening modulus in 

the range 0.5,0.5L     . Also, the curve is slightly shifted towards the positive Lode 

parameters and is not symmetric with respect to 0L  . The shift occurs towards negative 

Lode parameters for negative value of 0f . 

The LC is modified with a linear pressure dependency of the yield surface, but is still 

independent of the stress triaxiality state. With a non-linear dependence of the function f  to 

H  (as e.g. in the Gurson’s yield function), the stress triaxiality ratio would intervene in the 

expression of ch  and the condition for localization would explicitly appear as a function of the 

Lode parameter and the stress triaxiality. This would be in agreement with the studies on the 

Lode and triaxiality influence on failure mentioned in the Chapter 1, and needs to be 

investigated further. 

 
Figure 6.4. Normalized critical hardening moduli with associative plastic flow, pressure 
dependent term  0 0,0.015f   and  2,16m  . 
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CASE	3:	Pressure	dependent	Hershey	yield	function	‐	non‐associative	Hershey	plastic	

flow	

As described in the introduction, non-associative plastic flow is, besides softening, a way to 

promote localization. Non-associativity can be obtained by using a plastic flow potential 

slightly different from the yield function. The assumption of pressure-independent yielding and 

plastic flow is relevant for metallic materials. However, as discussed in Chapter 5, an isotropic 

model solely based on deviatoric stresses is not always perfectly predictive for high stress 

triaxiality states. Thus, in our case, a pressure dependent yield function is a reasonable 

alternative. The same realistic term 0 0.015f   as in CASE 2 is used to obtain the curves 

presented in Figure 6.5, where the associative and pressure independent model (CASE 1) is 

given for the sake of comparison. Note that in both cases the plastic flow is isochoric. Figure 

6.5 exhibits that with non-associative plastic flow, the critical hardening modulus can be 

positive for some values of the Lode parameter. With the positive term 0 0.015f  , the range of 

positive ch  is shifted towards 1L   . The curve obtained with a negative values 0f  (not 

presented here) is the symmetric of the curve for 0f  with respect to the axes 0L  . Again, a 

shaper yield surface is observed to promote localization for a wider range of Lode parameter. 

The maximum value of the critical hardening modulus with 16m  , reached at 0.34L  , is 

1.25 MPach  . This value is low and shows that the influence of reasonable non associativity is 

quantitatively small but offers a possible localization of strains with a strictly increasing 

hardening like the Voce hardening law. However, for 1L    corresponding to uniaxial 

tension, the effect of the non-associativity is negligible and the critical hardening modulus 

remains negative. 

 
Figure 6.5. Normalized critical hardening moduli with non-associated plastic flow (pressure-
dependent yield function) for  0 0,0.015f   and  2,16m  . 
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CASE	4:	Hersey	yield	function	‐	non‐associative	Hershey	plastic	flow	(different	shape	

parameter)	

The plastic flow potential is now based on the Hersey yield function and only its shape 

parameter is changed from m  to n . Then, the tensors α  and β  are still pressure-insensitive 

and β  corresponds to the tensor α  with parameter m  replaced by n . Indeed, this attempt of 

non-associativity only gives an “average” of the curves obtained with associativity for different 

values of m . 

CASE	5:	Hershey	yield	function	‐	associative	plastic	flow	–	Jaumann	formulation	

The CASE 1 is now presented with large strain formulation in Figure 6.6, at the yield stress 

level ( 0 538.8 MPaeq   ) and exhibits that the critical hardening modulus is positive for a 

range of the Lode parameter symmetric around 0L  . This range is again larger for a higher 

shape parameter m . Also, the maximum value of the critical hardening modulus with 16m  , 

reached for 0L  , is 2.32 MPach  . This value is of the same order as the value obtained with 

non-associative plastic flow. 

 
Figure 6.6. Normalized critical hardening modulus with Jaumann formulation for associated 
plastic flow with  2,16m  . 
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0 538.8 MPaeq   . A linear dependency of the temperature T  is chosen for the elasto-plastic 

parameters such as the plastic hardening   and the isothermal elastic tensor iE , i.e. 

 

   ,

i m

m r

m

m r

T T

T T

T T
p T p

T T
 

  
  
 

E E

 (78) 

where rT  is the reference temperature and mT  the melting temperature. The value of the 

material parameters related to thermal behaviour are 32810 kg m   , 903 KmT  , 

6 123.1 10 Kth     and 1 1897 J kg Kthc    . The normalized critical hardening modulus is 

presented for the adiabatic formulation in Figure 6.7, using the small strain formulation. At the 

reference temperature rT , the curve for ch  is almost similar to the curve under isothermal 

conditions. This indicates that the adiabatic influence is negligible compared to the influence of 

non-associativity or Jaumann formulation. However, the temperature T  has an effect and tend 

to increase ch  significantly for the extreme values of the Lode parameters  1;1L   . Even 

though the critical hardening modulus ch  remains negative, localization may occur owing to 

the thermal softening. 

 
Figure 6.7. Normalized critical hardening modulus with adiabatic formulation and 

 293,593KT   for associative plastic flow and 16m  . 
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6.3.4 Conclusions	

This analysis has led to the expressions of the critical hardening modulus ch  as defined by the 

condition for localization of strains, for several constitutive characteristics. The main 

conclusions from this study are given below 

 The critical hardening modulus was always expressed as a function of the Lode 

parameter and no dependence to the other stress invariants (i.e. stress triaxiality ratio) 

was obtained. However, by introducing a non-linear dependency of the yield function 

to the hydrostatic stress, ch  becomes a function of both the Lode parameter and the 

stress triaxiality.  

 For the small strain formulation with associative plastic flow, ch  is negative for all 

Lode parameters L . The maximum value ( 0ch  ) is reached for 0L   and the 

minima are reached for  1;1L   . 

 The shape parameter of the yield function m  modifies the shape of the curves for ch  

between the values  1;0;1L   . The localization condition is ensured at higher ch  

with a sharper yield surface. 

 The non-associative plastic flow and the large strain formulation increase the value of 

ch  in a similar manner, so ch  becomes positive for a certain range of the Lode 

parameter around the value 0L  . This range increases as the shape parameter m  

increases. 

 The thermo-mechanical couplings only have an influence if the material parameters 

depend on the temperature and may increase ch  around the extreme values  1;1L   . 

However, with no dependence to T  (yet adiabatic conditions), the critical hardening 

modulus is unchanged. 

 Whatever the constitutive equations, ch  is always negative under uniaxial tension 

loading condition ( 1L   ). 

These analytical developments indicate that the localization theory with enriched formulations 

(non-associativity or large strains) can increase the critical hardening modulus ch  but a more 

extensive study (with anisotropy or small perturbation, see Chapter 9 for further outlooks) is 

necessary to obtain results corresponding to experimental observations (positive hardening 

modulus when localization occurs under uniaxial tension for instance). 

 





 

 
 

Chapter	7. Anisotropic	failure	criterion	

7.1 Introduction	

This chapter presents the formulation and calibration of an anisotropic version (AECL) of the 

phenomenological extended Cockcroft-Latham (ECL) failure criterion originally presented by 

Gruben et al. (2012). Numerical simulations of the material tests performed experimentally 

(presented in Chapter 3 and already simulated with anisotropic plasticity in Chapter 4) are 

carried out using the uncoupled AECL criterion to evaluate its predictive capability. 

7.2 Extended	Cockcroft–Latham	(ECL)	criterion	

Various failure criteria are used to model the failure of ductile metallic material. A very simple 

approach is to impose a critical plastic strain. Somewhat more elaborated criteria are based on 

the plastic work. For instance, the Cockcroft-Latham (CL) criterion (Cockcroft and Latham, 

1968) is based on the “plastic work” computed from the positive part of the maximum 

principal stress. Another possibility is to compute the “plastic work” from the maximum shear 

stress, when shear is believed to be the dominating failure mechanism (integral-based Tresca, 

IT). An extended version of the Cockcroft-Latham criterion, denoted the ECL criterion, 

presented by Gruben et al. (2012), takes into account contributions from both the maximum 

principal stress and the maximum shear stress in computing the damage evolution. A slightly 

modified version of the ECL criterion will be studied here. 

Formulation	

In the modified version of the ECL criterion, the evolution of the damage variable D  is 

defined by 

 
   0

0

ˆ ˆ ˆ1
s

I I IIID p
S

     
   (79) 
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where  max ,0x x , ˆ ˆ ˆI II III     are the ordered principal values of the corotational 

Cauchy stress tensor σ̂ , and 0 0S  , 0 0s   and 0 1   are constants identified from available 

experimental data. Failure occurs when the variable D  reaches a critical value 1CD  , i.e. 

damage is not coupled to the constitutive relation in this study. The ECL criterion represents a 

weighting of two failure criteria, obtained by using specific values of the parameters; 

 When 0 1s   and 1  , the ECL criterion transforms into the Cockcroft-Latham (CL) 

criterion, as a “plastic work”-based criterion 

 
0 0 0

ˆ 1
ˆ

fp

I
C ID p D dp

S S


      (80) 

where fp  is the accumulated plastic strain at fracture. This criterion is often calibrated 

through the Cockcroft-Latham parameter 0C CW D S , which is the critical “plastic work”. 

 When 0 1s   and 0  , the ECL criterion transforms into an Integral-based Tresca (IT) 

criterion and involves the maximum shear stress through 

 
0 0 0

ˆ ˆ 1
ˆ ˆ

fp

I III
C I IIID p D dp

S S

 
 


      (81) 

Coupled	versus	uncoupled	damage	

Naturally, the question of coupling appeared as soon as a damage variable was introduced. For 

the AA7075-T651 alloy, the observation of fracture surfaces (see Chapter 3) does not exhibit 

evidence of large plastic damage (such as large void growth for instance), and the stress-strain 

curves do not exhibit any softening. The inter-granular failure reveals that a damage process is 

occurring at the PFZs along grain boundaries, but the volume fraction concerned (i.e. the 

volume fraction of PFZs) is so low that no macroscopic softening is observed.  Thus, the 

damage does not influence substantially the material behaviour. In terms of modeling, this 

means that the damage may not need to be coupled to the constitutive behaviour of the 

material. For that reason and in a first attempt, an uncoupled damage modeling approach was 

chosen. Then, the damage variable formulation should not be misinterpreted: the aim of the 

study is only to show the capability of a failure criterion (e.g. predictive capability for other 

stress states than those used in the calibration). Another consequence of the uncoupled 

approach is that the critical damage is not a material parameter and was chosen equal to unity (

1CD  ). 
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7.3 Anisotropic	extended	Cockcroft–Latham	(AECL)	criterion	

Formulation	

The anisotropy of failure for the AA7075-T651 alloy is exhibited in Figure 7.1, which presents 

the experimental critical “plastic work”, 
0

ˆ
fp

C IW dp  , as a function of the loading direction 

for the uniaxial tensile tests. This anisotropy can be taken into account in the ECL criterion 

through a factor depending on the direction of the loading. The equivalent plastic strain rate p  

is modified following the work presented by Dunand and Mohr (2011). A new equivalent 

plastic strain rate is defined as 

 A Ap s p   (82) 

where 

 
ˆ

: : ,
ˆ

f f f
A

f
s

f

 
 

 
σ

n P n n
σ

 (83) 

in which :x x x  and the unit tensor fn  gives the direction of the plastic flow. The 4th 

order tensor P is defined in Voigt form as 

  1 2 3 4 5 6diag , , , , ,P P P P P PP  (84) 

The parameters of P are non-negative and describe the anisotropy of the material with respect 

to failure. This anisotropy is embedded into Ap  through the factor As . It is noted that p  

through its definition already accounts for the plastic anisotropy of the material. Then, the 

damage evolution transforms into 

 
   0

0

ˆ ˆ ˆ1
s

I I III
AD s p

S

     
   (85) 

This criterion is denoted the AECL criterion for short. Another version of the AECL could be 

stress-based by defining the damage and the scaling factor in the following way 

 
   0
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ˆ ˆ ˆ1 ˆ ˆ: :
,

ˆ ˆ:
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I I III
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σ P σ

σ σ
   (86) 

This stress-based AECL criterion will be evaluated and compared with the strain-based AECL 

criterion in the following section. 
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Figure 7.1. Critical “plastic work” versus loading direction for tensile tests on smooth 
specimens for the AA7075-T651 alloy. 

Calibration	of	the	AECL	criterion	

Firstly, the parameters of the ECL criterion are calibrated using different tests in the 0° 

direction. Then, the anisotropy parameters of the AECL criterion are calibrated using the 

uniaxial tests in different loading directions. The calibration of the parameters of the ECL 

criterion is not straight forward, since no usual test enables to isolate 0S , 0s  and  . The tests 

selected to do the calibration are the uniaxial tensile test and the shear test performed in the 0° 

direction. The tensile tests performed on notched specimens are not used for the calibration, 

since the stress state they provide is inhomogeneous. Then, to simplify the identification 

procedure, a choice is made to set the parameter 0 1s  . The following method is used to 

calibrate the parameters 0S  and   (given in Table 7.1). 

 The uniaxial tensile tests performed in the 0° direction enable to calibrate the parameter 0S  

since ˆ ˆ 0II III    we get 
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  (87) 

Thus, a representative experimental Cauchy stress-plastic strain curve from the tensile tests on 

smooth specimen in the 0° direction is used to compute 0CW   and deduce the value of 0S . 
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 The shear tests performed in the 0° direction enable to calibrate the parameter  , assuming 

12ˆ ˆ ˆ ˆ, 0I III II      , we get 
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 (88) 

For the shear tests performed on the AA7075-T651 alloy, the only experimental data available 

are the force, the displacement and the strain field at the surface of the specimen, based on DIC 

measurements. The plastic strains and the principal stresses necessary to compute the “plastic 

work” are not accessible. Consequently, the “plastic work” is extracted from the numerical 

simulation at the central element of the butterfly specimen, where a stress state of shear is 

ensured. The value of the critical “plastic work” CshearW  is obtained from the numerical 

simulation at the point where the predicted displacement reaches the displacement at failure 

obtained experimentally. Note that depending on the element chosen to extract the “plastic 

work”, the parameter   may vary significantly. In the following, it should be kept in mind that 

this parameter might need to be readjusted if necessary. Note also that since the parameter 

 0;1 , Eq.(88) implies the inequality 0 2Cshear C CshearW W W  . This is inherent to the 

formulation of the damage variable D  when 0 1s   and is fullfilled by the AA7075-T651 

alloy. It remains to investigate if this inequality also applies to other materials. 

For the AECL criterion, the calibration of the six anisotropy parameters iP  ( 1,2,...,6i 

) is done using experimental data from the uniaxial tensile tests in different directions. The 

parameters 1P , 2P  and 4P  can be calibrated from uniaxial tensile tests performed in the plane 

of the plate (seven in-plane directions from 0° to 90°), while the test in the normal direction 

(ND) of the plate enables to calibrate the parameter 3P . The parameters 5P  and 6P  are left 

equal to unity in this study since no tests are available to calibrate them in a trivial manner. The 

calibration is performed using a least squares method based on experimental data averaged 

between duplicate tensile tests. For a uniaxial tension test performed in the direction  , the 

stress state is assumed to be perfectly uniaxial ( ˆ ˆ 0II III   ) and the plastic strain rate 

components are computed from the experimental strain ratio to deduce the constant coefficient 

A As s  . The failure condition reads 

 0 1
0

0 0

ˆ1
fp

sA
C C A C

s
D dp W s W

S




        (89) 
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The calibrated values are presented in Table 7.1 and the analytical predictions of the critical 

plastic work are plotted in Figure 7.1, where they also are compared to the experimental values. 

It is seen that the “plastic work” at failure obtained with the analytical calibration is in good 

agreement with the experimental values. The anisotropy parameters of the stress-based version 

of the AECL were calibrated in the same manner through As  , but the residual from the least 

square method was found twice as large as the residual obtained with the strain-based 

formulation. Consequently, the strain-based formulation was kept as the better candidate for 

this material. 

Table 7.1. Parameters of the AECL criterion calibrated for the AA7075-T651 alloy. 

0 0CS W  [MPa] CshearW [MPa]   1P  2P  3P  4P  5P  6P  

102.64  84.23  0.781 0.759 0.134 0.902 0  1 1 

7.4 Quasi‐static	tests	at	different	stress	triaxialities	

Numerical simulations of all the tests were performed using the AECL criterion calibrated in 

Chapter 7.3 and the anisotropic plasticity relation (Yld2004-18p) calibrated in Chapter 4. Then, 

a parametric study was performed for all tests (except for the tensile tests on smooth 

specimens), to capture the influence of anisotropy on the failure strain and failure modes. To 

facilitate the description of the analysis, we will use the following denominations for the 

various combination of models (with 0.781   and 12m  ): 

 A‐A  : plastic anisotropy (Yld2004-18p) and anisotropic failure criterion (AECL) 

 I‐A	 : plastic isotropy ( 1ij ijc c   ) and anisotropic failure criterion (AECL) 

 A‐I  : plastic anisotropy (Yld2004-18p) and isotropic failure criterion (ECL) 

 I‐I  : plastic isotropy ( 1ij ijc c   ) and isotropic failure criterion (ECL) 

Also, the influence of the parameter   is studied by using 0   and 1   with the A‐A 

model. Elements are eroded when the damage variable D  reaches the critical value 1CD  . 

The first eroded element initiates a crack, which propagates towards final failure (i.e. specimen 

broken in two separate pieces) within several computation steps. The instant of failure (and 

strain at failure) is defined when the first element is eroded. 
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7.4.1 Numerical	aspects	

Mesh	sensitivity	for	tensile	tests	on	notched	specimens	

The influence of the minimum mesh size eh  was studied using three different element sizes: 

0.375mmeh  , 0.25mmeh   and 0.125mmeh   (see Figure 7.2 for 2.0mmR ). The 

simulations were performed with the I‐I model. For the notch with 0.8mmR , as presented in 

Table 7.2, the largest mesh size 0.375mmeh   gives a different result than the two other finer 

meshes (7% of difference). The localization of strains in the minimum cross section is better 

captured with smaller elements. On the contrary, due to a smoother geometry and less localized 

strains, the strain to failure was almost not mesh size dependent with 2.0mmR . Also, no 

substantial influence of the mesh was observed on the failure modes. The rest of the study was 

therefore performed with the intermediate mesh size 0.25mmeh   to save computational time. 

Table 7.2. Predicted failure strains for tensile tests on notched specimens (I‐I model). 

Geometry Direction Experiment 0.375mmeh   0.25 mmeh   0.125mmeh   

2.0mmR  0° 0.110 0.120 0.120 0.121 

0.8mmR  0° 0.061 0.057 0.048 0.048 
 

 
(a) 0.375mmeh   (b) 0.25mmeh   (c) 0.125mmeh   

Figure 7.2. Meshes for notched specimens ( 2.0mmR  ) with different mesh sizes eh . 

Friction	coefficient	 f 	for	compression	tests	

In compression, the predicted stress softening, due to localization at large strains, and the 

failure strain are sensitive to the friction coefficient f  between the cylindrical specimen and 

the platens. The coefficient was optimized to make the predicted stress-strain curves fit the 

experimental curves. Table 7.3 shows that the predicted failure strain obtained with the A‐A 

model in the 0° direction decreases as the values of f  (and thus the barrelling effect) 

increases. A friction coefficient 0.02f  , found to be the most predictive for the 0° direction, 

was chosen for the rest of the study. 

Table 7.3. Predicted failure strain for compression tests on cylinder 0 0 1h D   (A‐A model). 

Geometry Direction Experiment 0f  0.005f  0.01f  0.02f   0.05f 

0 0 1h D   0° 0.597 0.757 0.710 0.667 0.610 0.525 
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7.4.2 Analysis	of	results	

(a) 

 
(b) 

(c) 

(d) 

Figure 7.3. Failure strains obtained experimentally and in numerical simulations using the A‐
A model for (a) tensile tests on smooth specimens, (b) tensile tests on notched specimens, (c) 
compression tests on cylinder specimen with 0 0 1h D   and (d) shear tests on butterfly 

specimens. 
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Failure	strains	

The predicted failure strains obtained with the A‐A model are given in Figure 7.3 for all tests. 

The results obtained with the smooth specimen (used in the calibration of the AECL criterion) 

given in Figure 7.3 (a) are in good agreement with the experimental data, whereas the 

predictions for the notched specimens given in Figure 7.3 (b) are less accurate (especially for 

the notched specimens with 2.0mmR ). For the compression tests, the results given in Figure 

7.3 (c) are far from quantitatively correct, except in the 0° direction, which was used in the 

calibration of the friction coefficient f . In addition, the anisotropy is not correctly predicted 

(i.e. lowest in-plane ductility in the 45° direction and a very low ductility in the normal 

direction ND). For the shear tests, the strains at failure given in Figure 7.3 (d) were extracted 

from the area used in the digital image correlation analysis. The failure strain in the 0° 

direction is 25% lower than the experimental value, but the anisotropy is qualitatively predicted 

(i.e. that the material is less ductile in the 45° direction). 

Failure	modes	

The predicted failure modes obtained with the A‐A model are shown for all tests from Figure 

7.4 to Figure 7.7, exhibiting the spatial distribution of the damage variable on the various 

specimens. 

For tensile tests on smooth specimens (see Figure 7.4), fracture occurs orthogonal to the 

specimen axis and is flat for all directions of loading except 45°. The 45° fracture surface 

observed experimentally (see Chapter 3) is not predicted. However, as depicted in Figure 7.4 

(b), an inclination of the elements in the necking area and of the failure surface is observed for 

the 45° direction. 

 

 
(a) 

 

(b) 
Figure 7.4. Spatial distributions of the damage variable obtained with the A‐A model for 
smooth specimens loaded in the (a) 0° and (b) 45° in-plane directions before and after failure. 
The minimum cross section is shown just before failure. 
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For notched specimens with 2.0 mmR  (similar results were obtained for 0.8 mmR  

and are therefore not presented) loaded in the 0° and 90° directions, failure occurs along a flat 

surface at the minimum cross section of the specimen (see Figure 7.5). On the contrary, for the 

45° direction, the failure surface is disrupted and not located along the minimum cross section. 

Indeed, the first eroded elements are located outside the minimum cross section and the crack 

propagates along an inclined surface. To conclude, the predicted failure modes are not 

generally representative of the experimental observations. However, with a higher damage in 

the centre of the minimum cross section than at the borders observed for all tensile tests (see 

Figure 7.4 (b) right), one could expect to reproduce a cup-cone failure with a finer mesh 

(Gruben et al., 2013). 

Before failure After complete failure 

 
(a) 

(b) 

 
(c) 

Figure 7.5. Spatial distributions of the damage variable obtained with the A‐A model for 
notched specimens with 2.0 mmR  loaded in the (a) 0°, (b) 45° and (c) 90° in-plane 
directions. 
 

For the compression tests (see Figure 7.6), bands of localized damage are located within 

the orthotropic planes, as observed experimentally in Chapter 3.4. Note that for the 45° and 90° 

directions, the specimens are plotted at a deformation much before failure, since the elements 

were too distorted at failure. For the 0° direction, the maximum damaged elements are located 

at the surface and mid-height of the cylinder, on the face aligned with the direction along 

which transverse strains are the largest (Figure 7.6 (a)). This is due to a strain ratio very 
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different from unity 0( 0.645)R    which enhances the barrelling and promotes tensile stresses 

at mid-height of the specimen. Due to buckling in the 45° direction, the location of the 

maximum damage is displaced toward the contact surface but an inclined band of damage is 

still visible inside the specimen (Figure 7.6 (b)). With strain ratio close to unity, the 90° and the 

normal directions see a more limited barrelling. Then, the maximum damaged elements are 

located at mid-height, inside the specimens. 
 

 
(a) (b) 

(c) (d) 

Figure 7.6. Spatial distributions of the damage variable obtained with the A‐A model for 
cylindrical specimens with 0 0 1h D   loaded in the (a) 0°, (b) 45°, (c) 90° in-plane directions 

and (d) in ND. 
 

  
(a) 

  
(b) 

  
(c) 

Figure 7.7. Spatial distribution of the damage variable obtained with the A‐A model for 
butterfly specimens loaded in the (a) 0°, (b) 45° and (c) 90° in-plane directions. 
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For the three in-plane shear tests, the failure starts at the notch of the shear zone (see 

Figure 7.7 ). The resulting failure surface is flat for the 0° direction. On the contrary, the band 

where the damage is maximum is wider for the 45° direction and the resulting failure surface is 

more disrupted. Such disrupted failure surface was not observed experimentally. 

Influence	of	anisotropy	

Except for tensile tests on smooth specimen, numerical simulations were performed with the 

four different combinations of models presented in the beginning of Chapter 7.4 (A‐A,	I‐A,	A‐I 

and I‐I) to exhibit the influence of the anisotropy. The predicted failure strains are presented in 

Table 7.4. 

Table 7.4. Predicted failure strain obtained for some of the tests with different models and 
parameters. 

Geometry Direction Experiment
0.781   0   1   

A‐A I‐A A‐I I‐I A‐A	 A‐A 

2.0mmR  0° 0.110 0.121 0.143 0.106 0.120 0.127 0.120 

2.0mmR  90° 0.085 0.191 0.172 0.114 0.120 - - 

0.8mmR  0° 0.061 0.047 0.054 0.042 0.048 0.052 0.047 

0 0 1h D   0° 0.597 0.610 0.821 0.565 0.684 0.193 1.162 

Butterfly 0° 0.405 0.330 0.362 0.187 0.170 0.278 0.330 

 

For the notched specimens loaded in the 0° direction, plastic isotropy increases the 

failure strain while isotropic failure decreases it. These opposite effects make the result with 

the A‐A and I‐I models very similar (difference of 1% for 2.0mmR  and 2% for 0.8mmR

). This observation is valid for the two notch radii and for all directions except one case: in the 

90° direction with 2.0mmR , the plastic isotropy gives a lower failure strain with the 

anisotropic failure criterion (I‐A model). This exception will be enlightened below. In general, 

the A‐A model is not observed to be the most predictive model in terms of failure strain. For 

the four material models, failure always occurs in a flat manner for the 0° direction. On the 

contrary, for the 90° direction, an inclined failure surface is obtained with the I‐A model, as 

previously observed for the 45° direction (Figure 7.5 (c)). Again, an unphysical response is 

responsible for the inclined surface and premature failure strain and helps understanding why 

the I‐A model decreases the failure strain, contrary to what was expected and observed for the 

0° direction. 

For compression, the plastic isotropy increases the failure strain, while the isotropy of 

failure decreases it, as for the notched specimens. The difference between failure strains 

obtained with the A‐A	and I‐I models is however larger (11%). This is due to a fundamental 

changes of the structural behaviour shown in Figure 7.8. With isotropic plasticity (I‐A	and I‐I 
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models), the cylinder deforms in an axisymmetric manner and barrelling is limited. Then, as 

observed for 90° and normal directions with the A‐A model, the maximum damage is located 

inside the specimen and no preferential plane exists. On the contrary, observations with the A‐I	

model are not very different from results obtained with the A‐A	model (see Figure 7.6 (a)). 
 

(a) (b)	

(c)

Figure 7.8. Spatial distributions of the damage variable for cylinder specimens with 0 0 1h D   

loaded in the 0° in-plane direction with the (a) I‐A model, (b) A‐I model and (c) I‐I model. 
 

(a) 

(b) 

(c) 

Figure 7.9. Spatial distributions of the damage variable for butterfly specimen loaded in the 0° 
in-plane direction with the (a) I‐A model, (b) A‐I model and (c) I‐I model. 
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For shear, contrary to all other tests, the plastic anisotropy has only a small influence 

and makes the failure strain vary less than 10%. This is due to the calibration of the Yld2004-

18p yield function performed with the shear tests in the 0° in-plane direction only, under the 

assumption of negligible anisotropy in shear (see Chapter 4). On the contrary, the anisotropy of 

the failure criterion has a strong influence, since the failure strain with the ECL criterion is 

approximately half that with the AECL criterion. This is a possible consequence of a large 

difference between failure strain under uniaxial tension in the 0° and 45° direction, handled by 

the AECL parameters iP . As also shown in Figure 7.9, the failure mode (or band) obtained 

with the AECL criterion (A‐A	and I‐A models) are more localized than with the ECL criterion 

(A‐I	and I‐I models). This is a realistic effect of the AECL criterion. 

Influence	of	the	weighting	parameter	 		

Table 7.4 also give the failure strains obtained in the 0° direction with the A‐A model for 

different   parameters. For higher stress triaxiality states (notched specimens), the CL 

criterion ( 1  ) gives an earlier failure than the IT criterion ( 0  ). The principal stresses 

inside the notch are strictly positive so ˆ ˆ ˆI III I    . An increasing   (i.e. giving more weight 

to the CL criterion) increases the damage evolution. With the A‐A model, the difference in the 

failure strain between the two extreme values of   is 5% for 2.0 mmR  and 10% for 

0.8mmR . The failure modes are not significantly modified by the variation of the 

parameter  . 

On the contrary, for lower stress triaxiality states (shear and compression tests), the IT 

criterion ( 0  ) promotes failure compared with the CL criterion ( 1  ). This observation is 

inherent to the criterion and can be explained using the definition of the damage evolution. For 

shear loading conditions, the damage variable evolution is proportional to   12ˆ2   , so the 

larger the parameter  , the slower the damage evolves. Also, the damage evolution is 

generated by the positive contributions of the maximum principal and shear stresses. Under 

uniaxial compression, which ideally implies ˆ ˆ 0I II    and ˆ 0III  , the damage will be 

similar to uniaxial tension 0  , while no damage evolution is envisaged for 1  . Thus, the 

predicted failure strain is increased by a factor of 5 by the CL criterion in the numerical 

simulations. The large overestimation of failure strains for all directions of loading (except 0° 

direction) suggests that, based on the available experimental and numerical data, the   

parameter might be overestimated. 
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Discussions	and	conclusions	

An anisotropic yield function (Yld2004-18p) and an anisotropic failure criterion (AECL) were 

calibrated for the AA7075-T651 aluminium alloy, using uniaxial tensile tests, one shear test 

and one compression test. The calibrations of the isotropic versions of the yield function and 

the failure criterion (ECL) were performed on tests in the 0° direction. The 0° direction 

exhibits the highest yield limit and the lowest critical plastic work for all in-plane directions. 

Consequently, the plastic anisotropy decreases the predicted strength and the anisotropy of the 

failure criterion increases the predicted critical plastic work, compared with isotropic models. 

The plastic anisotropy modifies the equivalent plastic strain rate. In addition, a side-

effect of the plastic anisotropy is the loss of axisymmetry in stresses and strains in the tensile 

and compression tests, which eventually leads to a higher maximum shear stress ˆ ˆI III   

(contrary to the maximum principal stress ˆI  which is assumed to decrease). Thus, depending 

on the value of the weighting parameter   of the failure criterion (controlling the relative 

importance of ˆI  and ˆ ˆI III   in the damage evolution), the plastic anisotropy can either 

increase or decrease the failure strain. For tensile tests on notched specimens, it is generally 

observed that the plastic anisotropy decreases the failure strain. For shear tests, the plastic 

anisotropy (i.e. the variation between directions) is weak, due to the calibration of the yield 

function. However, as observed in the predicted force-displacement curves obtained in Chapter 

4, the plastic anisotropy modifies the stresses and accumulated plastic strains and the failure 

strain predicted with anisotropic plasticity and isotropic plasticity differs. 

The AECL criterion is not physically based and leads to quantitative discrepancies with 

experiments, observed for the notched tensile tests in our study. The maximum damage can 

sometimes be located outside the minimum cross section of the specimen, where fracture is 

expected and experimentally observed. This eventually leads to premature failure and disrupted 

failure surfaces. Another aspect of the AECL (and ECL) failure criterion is that the damage 

evolution is generated by the positive contributions of the maximum principal and shear 

stresses. This enlightens the importance of an accurate calibration of the weighting parameter 

 , particularly for the lower stress triaxiality states. In this study, the shear tests in the 0° 

direction, used in the calibration of  , have shown high scatter between duplicate tests. This 

experimental uncertainty for the shear tests irradiates on the global predictive capability of the 

AECL criterion. 

Another issue here is the mesh size. Since the strain localization is often a precursor to 

fracture, a finer mesh capable of better describing the localization, could have changed some of 

the conclusions drawn here. One should also remember that these conclusions are drawn based 

on the anisotropy of the AA7075-T651 alloy. Other materials and calibration procedures might 
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change the influence of both plastic and fracture anisotropy. However, it is believed that the 

analyses presented here are valid and would only need adjustments. Finally, it should be 

noticed that this failure criterion is simple to calibrate, especially as it is based on tests already 

carried out for the calibration of the anisotropic yield surface. 



 

 
 

Chapter	8. Structural	impact	of	AA7075‐T651	

plates	

8.1 Introduction	

The aluminium alloy AA7075 is considered as one of the most important engineering 

aluminium alloys on the market today due to its high strength-to-density ratio (Hatch, 1984). 

Owing to this, the alloy is used in various industrial applications, such as aircraft bodies, 

automotive components or light-weight protective structures (e.g. Forrestal et al., 1992; Vlot, 

1996; Gooch et al., 2007; Demir et al., 2008). 

Børvik et al. (2010) carried out an experimental and numerical study to reveal the 

ballistic properties of the AA7075-T651 during impact generated loading conditions. They also 

investigated if simple isotropic constitutive relations and fracture criteria could be used in finite 

element simulations of high-strength aluminium components with a complex, non-

recrystallized micro-structure subjected to structural impact. Here, the work by Børvik et al. 

(2010) is continued by introducing anisotropic plastic flow and anisotropic fracture in the 

numerical models. The main idea is to investigate to which extent an anisotropic material 

description will affect the ballistic properties, and to check if such an approach will improve 

the description of the fracture and fragmentation process in the numerical simulations. For 

completeness, some of the main experimental and numerical findings from Børvik et al. (2010) 

will first be repeated. Then anisotropic numerical models for the impact problem are 

introduced. Numerical simulations are finally carried out using both anisotropic and isotropic 

models, and the results are compared and discussed with regards to the experimental data. 

8.2 Experimental	and	numerical	results	from	Børvik	et	al.	(2010)	

Component tests using hardened steel projectiles ( 20 mm  diameter, 197 g  mass, 52 HRC) 

with blunt and ogival nose shapes (see Figure 8.1) were carried out in a compressed gas-gun 
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facility. The projectiles were mounted in a serrated sabot and launched at impact velocities just 

below and well above the ballistic limit velocity, i.e. the critical impact velocity, of the target. 

The sabot pieces were stopped by a sabot trap prior to impact. Target plates with dimension 
2600 600 mm  and nominal thickness of 20 mm  were clamped in a 500 mm  diameter circular 

frame and tightened with 16 bolts. The penetration event was captured by a Photron Ultima 

APX-RS digital high-speed video camera operating at a constant framing rate of 50000 Hz . 

Initial and final velocities were measured using different laser-based optical devices (shown to 

be accurate to within 1-2 %), as well as by the high-speed camera system. Both initial and final 

target deformations were measured in-situ before and after each test. More details regarding the 

experimental set-up and the instrumentation used during testing can be found in Børvik et al. 

(2003b; 2010). 

 
Figure 8.1. Geometry and dimensions (in mm) for blunt and ogival projectiles (Børvik et al., 
2010). 
 

Six impact tests with blunt and six impact tests with ogival projectiles were conducted 

for the 20 mm  thick AA7075-T651 plates using the experimental equipment described above. 

All parameters were kept constant within each test series except for the impact velocity that 

varied between 180 m/s  and 350 m/s . Initial ( iv ) and residual ( rv ) velocities of the projectile 

were measured in each test, and the results are plotted in Figure 8.2. Based on these 

measurements, the initial versus residual velocity curves were constructed. The ballistic limit 

velocities ( blv ) were taken as the lowest impact velocity within each test series, since they 

were found to be very close to the respective ballistic limits. The lines through the data points 

were determined based on a generalization of an analytical model originally proposed by Recht 

and Ipson (1963) 

  1 pp p
r i blv a v v   (90) 

Where a  and p may be considered as empirical constants and blv  is the obtained ballistic 

limit. Both a  and p were in this study fitted to the test data using the method of least squares. 

Figure 8.2 also gives experimentally obtained initial versus residual velocity curves for each 

projectile nose shape, together with the values of a  and p. Even though some spread is seen in 

these plots, the agreement between the experimental data points and the Recht-Ipson model is 

in general good. 
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(a) (b) 
Figure 8.2. Initial versus residual velocity curves for 20 mm  thick AA7075-T651 plates 
impacted by (a) blunt and (b) ogival projectiles (Børvik et al., 2010). 
 

Figure 8.3. Perforation of the 20 mm  thick AA7075-T651 target plate by a 20 mm  diameter, 
197 gram mass blunt nose projectile ( 199.8 m/s, 60.8 m/si rv v  ). The given times (in s ) 
refer to the first image taken by the high-speed camera system (Børvik et al., 2010). 
 

Figure 8.4. Perforation of the 20 mm  thick AA7075-T651 target plate by a 20 mm  diameter, 
197 gram mass ogival nose projectile ( 277.7 m/s, 186.2 m/si rv v  ). The given times (in μs ) 

refer to the first image taken by the high-speed camera system (Børvik et al., 2010). 
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Figure 8.3 and Figure 8.4 show typical high-speed camera images of the perforation 

process for blunt and ogival projectiles, respectively. The perforation process is mainly due to 

plugging for blunt projectiles, and a plug with height approximately equal to the plate thickness 

is ejected from the target. In addition, fragmentation from the rear side of the target is seen due 

to the rather low ductility of the material. No fragments from the front side of the target are 

observed. For ogival projectile, the perforation process starts as ductile hole growth, which is 

the dominating fracture mode for pointed-nose projectiles impacting ductile materials. 

However, the perforation process quickly changes into fragmentation, and a large number of 

fragments are ejected from both sides of the target plate. The perforation process is found to be 

much more brittle than normally seen during perforation of ductile steel or aluminium alloys 

(see e.g. Børvik et al., 2004). The reason for this can be related to the complex microstructure 

of the AA7075-T651 alloy (see Chapter 2). This results in local variation in properties and 

strain localization to soft areas (PFZs), which may lead to inter-crystalline cracking, 

delamination and fragmentation during impact (Pedersen et al., 2011). It should finally be 

noticed that more energy is required to push material aside by ductile hole growth than 

shearing through the plate by localized plugging, which means that the ballistic limit velocity is 

higher for ogival than for blunt projectiles (see Figure 8.2). This has also been observed in 

similar tests on ductile steel plates by e.g. Børvik et al. (2002). 

Numerical simulations of the impact tests were also performed by Børvik et al. (2010) 

in an attempt to predict the correct residual velocity and ballistic limit. All impact tests were 

analysed using the explicit solver of the non-linear finite element code LS-DYNA, and both 2D 

axisymmetric and 3D solid elements where used in the simulations. For 3D conditions, 8-node 

constant-stress solid elements with one integration point and stiffness-based hourglass control 

were applied. Contact was modelled using an eroding surface-to-surface algorithm available 

for SMP/MPP simulations. Independent of the projectile nose shape, a fixed element mesh was 

used. To save computational time, the 3D model was coarsened towards the fully clamped 

boundary using tetrahedral elements in a transition zone. The element size in the impact region 

was equal to 30.5 0.5 0.8 mm  , giving 25 elements through the thickness, while only 7 

elements were used over the target thickness in the global part of the plate. This resulted in 

about 330 000 elements and 850 000 nodes in the numerical model. An example of a solid 

element mesh used in 3D simulations is shown in Figure 8.5. 

A thermoelastic-thermoviscoplastic constitutive model (the modified Johnson-Cook 

model) and a ductile fracture criterion (the Cockcroft-Latham criterion) were chosen by Børvik 

et al. (2010) in an attempt to model the target response. Thus, the constitutive behaviour and 

the fracture process of the material were assumed to be isotropic. To check the possible effect 

of anisotropy on the predictions, Børvik et al. used two different sets of material constants for 

the constitutive relation and fracture criterion in the simulations. The first set (Set 1) was 
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entirely based on uniaxial tensile tests in the rolling direction, while the second set (Set 2) was 

based on the uniaxial tension tests in the 45° direction. It is referred to Børvik et al. (2010) for 

more details regarding the various material tests, material models and the calibration of the 

different material parameter sets. 

Figure 8.5. Mesh used in simulation of blunt and ogival projectile impact (Børvik et al., 2010). 
 

Based on a number of simulations using these finite element models and the two 

different sets of material parameters, the initial versus residual velocity curves in Figure 8.6 

were constructed. This figure shows that when the target is impacted by blunt projectiles, some 

spread in the initial versus residual velocity curves is obtained when the material constants are 

varied. For Set 1 an almost perfect fit to the experimental data was obtained, while for Set 2 the 

ballistic limit velocity was overestimated by 5%. For ogival projectiles the numerical results 

are less accurate. Set 1 gave an overestimation of the ballistic limit by about 30%, while the 

ballistic limit was slightly higher for Set 2 owing to the increased ductility of the material in 

the 45° direction. 

 

(a) (b) 
Figure 8.6. Predicted initial versus residual velocity curves for 20 mm  thick AA7075-T651 
plates by (a) blunt and (b) ogival projectiles using 3D constant-stress solid elements. The lines 
through the data points are best fits to the numerical results (Børvik et al., 2010). 
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Figure 8.7 shows some typical plots of the perforation process when 20 mm  thick 

AA7075-T651 plates are perforated by blunt and ogival projectiles using material parameters 

obtained from the tension tests in the 0° direction (Set 1). The quasi-brittle behaviour seen 

experimentally (see Figure 8.3 and Figure 8.4) is partly captured in the simulation. Thus, the 

qualitative agreement between experimental tests and 3D simulations is good, even though 

there are some quantitative deviations. The reason for this seems to be that the FE models are 

not able to fully capture the quasi-brittle fracture behaviour of the alloy (i.e. the fragmentation 

and delamination process), especially during impact by ogival projectiles, and the predictions 

tend to overestimate the ballistic capacity of the target plates. In the following, the numerical 

simulations by Børvik et al. (2010) will be repeated using an anisotropic description of the 

material behaviour. 

 
(a) 300 m/s, 221 m/si rv v   

 
(b) 300 m/s, 127 m/si rv v    

Figure 8.7. Perforation of 20 mm  thick AA7075-T651 plates by (a) blunt and (b) ogival 
projectiles from simulations using 3D constant-stress solid elements and material parameters 
from Set 1. Plotted as fringe levels of accumulated plastic strain in the range 0 (light grey) to 
0.5 (dark grey). The 3D model has been sliced through the centre to better show the 
perforation process (Børvik et al., 2010). 

8.3 Anisotropic	thermoelastic‐thermoviscoplastic	constitutive	relations	

Since the impact process described above implies high strain-rates and possibly induces 

adiabatic conditions, an anisotropic thermoelastic-thermoviscoplastic constitutive relation is 

required for the AA7075-T651 plate. The corotational Cauchy stress tensor and the 
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corotational rate-of-deformation tensor are given in Eq.(14) and Eq.(15) of Chapter 4.1, 

respectively. Their relation is given by 

   1ˆ ˆˆ ˆ: 3
T

T e th
el T

E
T K T

E T


 
    

σ C d σ I   (91) 

where ˆ T
elC  is a 4th order isotropic tensor of thermo-elastic moduli and is defined by Poisson’s 

ratio   and Young’s modulus ( )T TE E T  depending of the temperature T , given by 

  T m

m r

T T
E T E

T T



 (92) 

where E  is Young’s modulus at the reference temperature rT  and mT  is the melting 

temperature. A linear dependence of the temperature is chosen here. The dynamic yield 

function is defined as 

      ˆ ˆ, , , , ,Tf p p T p p T  σ σ   (93) 

where the equivalent stress   is defined by the Yld2004-18p of Barlat et al. (2005) given by 

Eq.(18) to Eq.(22). The behaviour is elastic if 0f  , while plastic deformations occur for 

0f  . Further, T  is the flow stress in uniaxial tension in the reference direction, now 

affected by the temperature and the strain rate, viz. 
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The temperature rise caused by adiabatic heating is calculated as 

 ˆˆ :
th

p
thT

c



 σ d  (95) 

where th  is the Taylor-Quinney coefficient, defining the fraction of the plastic work 

converted into heat,   is the density and thc  is the specific heat of the material. Thermo-

elastic coupling is neglected and thc  is assumed independent of the temperature. The 

calibration of the anisotropic yield function, the plastic hardening and the anisotropic fracture 

is the same as for the numerical simulations of the material tests presented in Chapter 4 and 

Chapter 6, and the parameters are given in Table 4.1 and Table 7.1. The thermal coefficients 



Chapter 8 - Structural impact of AA7075-T651 plates 

112 
 

and strain rate sensitivity parameters for the AA7075-T651 alloy are taken from Børvik et al. 

(2010), and these are given in Table 8.1. An elasto-plastic material model with linear hardening 

is used for the hardened steel projectiles (Børvik et al., 2001), and the material parameters are 

given in Table 8.2. 

Table 8.1. Thermal and strain-rate parameters for the material model of the AA7075-T651. 

0p [/s] 0C  rT  [K] mT  [K] th [/K] 
thc [J/kg/K] 

th  

0.0005 0.001 293 893 623.1 10  897 0.9 
 

Table 8.2. Material data for the hardened steel projectile. 

E [GPa]    [g/cm3] 0 [MPa] tE [GPa] 

204 0.33 7.85 1900 15 
 

As for the material tests presented in Chapter 7, the damage is not coupled to the 

constitutive behaviour in this study. This involves that the elements are eroded when the 

damage variable D  reaches the critical value 1CD  . Note that the fracture criterion only 

depends on the temperature and strain rate through the stress tensor. 

8.4 Numerical	results	and	discussion	

To reveal the effects of an anisotropic material description on the ballistic properties of the 

AA7075-T651 alloy, numerical simulations with blunt and ogival projectiles were first 

performed using anisotropic plasticity (Yld2004-18p) and anisotropic fracture (AECL) 

(defined as the A‐A model in Chapter 7). Except for the constitutive relation and the fracture 

criterion, the numerical models were identical to those used by Børvik et al. (2010). However, 

these differences make difficult a direct comparison between the results presented here and 

those by Børvik et al. (2010). A number of simulations were carried out for each nose shape, 

where the only variable was the initial impact velocity, and the residual velocity of the 

projectile was registered. The Recht-Ipson model in Eq.(90) was then fitted to the numerical 

data to obtain the ballistic limit curves and velocities. 

Next, the four possible combinations of constitutive relation (anisotropic versus 

isotropic) and failure criterion (AECL versus ECL) were used in FE simulations of the ballistic 

impact problem. These models were defined as A‐A, I‐A, A‐I and I‐I in Chapter 7. The ballistic 

limit curves and velocities were not sought in this part of the study. Instead, simulations were 

run with constant impact velocity (one close to and one well above the ballistic limit) to see the 

direct influence of the different model combinations on the residual projectile velocity. 
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Note that all simulations discussed so far were run with 0.781   and 12m  . 

Therefore, two rather limited sensitivity studies were carried out at the end to investigate the 

effect of the weighting parameter   in the AECL criterion and the effect of the shape of the 

yield surface controlled by m  on the ballistic predictions. 

8.4.1 Ballistic	limit	curves	and	velocities	

Figure 8.8 shows predicted ballistic limit curves and velocities as obtained using the A‐A 

model compared with the experimental results. The numerical predictions for blunt projectiles 

overestimate the residual velocities (giving conservative results), while for ogival projectiles 

they underestimate the residual velocities (giving non-conservative results). Compared to the 

experimental data, the ballistic limit velocity is underestimated by -7% for blunt projectiles, 

while it is overestimated by 23% for ogival projectiles (see also Figure 8.2). The predicted 

ballistic limits are somewhat lower, but still rather close, to those predicted by Børvik et al. 

(2010) using 2J  flow theory and an isotropic Cockcroft-Latham fracture criterion (see Figure 

8.6). The deviation is -7% for the blunt projectile and -4% for the ogival projectile. However, 

at higher impact velocities, the ballistic limit curves seem to coincide with the experimental 

results (as also seen in a number of similar numerical studies). This clearly indicates that in 

order to study the effects of constitutive relation and fracture criterion in structural impact, the 

impact velocity should be close to the ballistic limit of the target material. 

 
Figure 8.8. Experimental fits and predicted initial versus residual velocity curves and ballistic 
limits using the A‐A model for 20 mm  thick AA7075-T651 plates impacted by blunt and ogival 
projectiles. 
 

Plots of the perforation process for blunt and ogival projectiles using the A‐A model are 

given in Figure 8.9. If compared to the plots in Figure 8.7 from Børvik et al. (2010), the 
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perforation and fragmentation process are quite similar. However, the plug obtained with the 

A‐A model and the blunt projectile is less damaged than the plug obtained by Børvik et al. 

(2010), and this seem more physical. Nevertheless, the main conclusion from this preliminary 

study is that the introduction of full anisotropic material properties in finite element 

simulations of structural impact does not significantly alter the ballistic properties for high-

strength aluminium targets with a complex microstructure. 

 

(a) 185 m/s, 85 m/si rv v    

 
(b) 275 m/s, 101 m/si rv v    

Figure 8.9. Perforation of the 20 mm  thick AA7075-T651 plates by (a) blunt and (b) ogival 
projectiles from simulations using 3D constant-stress solid elements (A‐A model). Fringe levels 
of the damage variable in the range 0 (dark blue) to 1 (red), sliced through the centre. 

8.4.2 Anisotropy	versus	isotropy	

Here, the four possible combinations of constitutive relation (A‐A, I‐A, A‐I and I‐I models) are 

used. Only two different impact velocities iv  were applied: one slightly higher than and one 

well above the ballistic limit for blunt and ogival projectiles, respectively. Interpreting the 

effect of anisotropy is a challenging task since the loadings during impact are very complex. 

For tensile tests on notched specimens, the influence of anisotropy was analysed using loading 

paths and yield loci (see Figure 5.6 (b)) but impact tests lead to much more heterogeneous 

stresses and strains than tensile tests on notched specimens. Thus, only general trends from 

these numerical results will be discussed. Predicted residual velocities rv  are presented in 

Table 8.3, while typical plots of the perforation process for blunt projectiles using the A‐A, I‐A, 

A‐I and I‐I models are shown in Figure 8.10. 
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Residual	velocity	

 At high impact velocities: for impact velocities well above the ballistic limits (300 m/s  

for blunt projectiles and 375 m/s  for ogival projectiles), the predicted residual velocities are 

similar for all configurations. Thus, fully anisotropic and fully isotropic models give almost 

identical results (having a difference in residual velocity of only about 1% for both projectile 

types). However, as the impact velocities get closer to the ballistic limit (185 m/s  for blunt 

projectiles and 275 m/s  for ogival projectiles), the influence of anisotropy becomes more 

important and can vary with the impact velocity. Indeed, due to the strain-rate sensitivity and 

the temperature effect, the elements in the impacted area are subjected to stress states which 

may vary with iv . Consequently, no systematic trend for the effect of anisotropic plasticity or 

anisotropic failure can be enlightened. 

 At impact velocities close to the ballistic limit: for both projectiles, the plastic 

anisotropy decreases rv , i.e. makes the target stronger. In contrast, the influence of the failure 

anisotropy is not so clear, since rv  is decreased for blunt projectiles and slightly increased for 

ogival projectiles when using the AECL criterion. The overall trend is that, at impact velocities 

close to the ballistic limit, the residual velocity is considerably reduced when introducing 

anisotropy both in the plastic flow and fracture (giving reduction of 20% for blunt projectiles 

and 13% for ogival projectiles between the I‐I and the A‐A models). A reduction in residual 

velocity gives an increase in ballistic limit. Thus, the perforation resistance of the target seems 

to increase by introducting anisotropic effects. 

Table 8.3. Predicted residual velocity (in m/s) for impact of AA7075-T651 plates obtained with 
different constitutive relation and fracture criterion. 

Geometry 
Initial velocity 

iv  [m/s] 
Fitted experimental 

residual velocity 
0.781   0   1   

A‐A I‐A A‐I I‐I	 A‐A	 A‐A
Blunt 300 218 227 226 232 230 233 219 
Blunt 185 28 85 93 88 107 123 49 

Ogival 375 295 276 271 282 279 345 271 
Ogival 275 182 101 122 88 116 240 85 

Failure	modes	

It is seen in Figure 8.10 that the fracture and fragmentation process is influenced by the 

anisotropy. By including anisotropy in the plastic flow and/or failure criterion (i.e. the A‐A,	I‐A 

and A‐I models), the failure process is not axisymmetric anymore (see Figure 8.10 (a)). This 

may lead to deviations of the plug and projectile during perforation. Also, with anisotropy in 

the fracture criterion (A‐A and I‐A models), the plug does not crack as it does for an isotropic 

criterion. 
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(a) (b) (c) (d) 

Figure 8.10. Plots of the perforation of 20 mm  thick AA7075-T651 plates by blunt projectiles 
with 175 m/siv   using the (a) A‐A, (b) I‐A, (c) A‐I and (d) I‐I models. 

8.4.3 Sensitivity	study	

Influence	of	the	weighting	parameter	 	

So far, all simulations have been carried out using a constant weighting parameter   in the 

fracture criterion. To investigate the effect of   on the ballistic properties of the aluminium 

alloy, the simulations in Table 8.3 with the A‐A model were rerun with two extreme values of 

  (i.e. 0   and 1  ). Keep in mind that when 0  , the AECL fracture criterion 

transforms into an anisotropic version of the integral-based Tresca criterion, while for 1   it 

turns into an anisotropic version of the Cockcroft-Latham criterion (see Chapter 6). The results 

from these simulations are given in Table 8.3. 

A distinct increase in residual velocity is observed when 0  , especially at impact 

velocities close to the ballistic limits. The obvious reason for this is that the integral-based 

Tresca criterion is much less sensitive to varying stress-states than the Cockcroft-Latham 

criterion (see Gruben et al., 2012). Thus, the influence of the   parameter becomes very strong 

at shear-dominated stress-states. At higher impact velocities, the difference is only 6% between 

the two extreme values of   for blunt projectiles, while for ogival projectiles the difference is 

26%. This is somewhat counter-intuitive since blunt projectiles induce localised shear plugging 

of the plate in contrast to ductile hole enlargement for ogival projectiles. Indeed, the failure 

mode observed for blunt projectile starts with tensile damage at the bottom of the plate 

followed by shear bands in front of the projectile. However, the elements in contact with the 

nose of the ogival projectile are exposed to very large plastic deformations involving shear 

strains, and this causes a softening effect of the plate. Figure 8.11 shows some plots of the 

perforation process by blunt and ogival projectiles from typical simulations using the A‐A 

model with 0   and 1  . It is seen that the failure processes obtained with 0   are not 

realistic since all elements are eroded and almost no material is left in the plug or fragments 
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after perforation. On the contrary, with 1  , the elements subjected to tensile stresses 

intervenes more in the failure process, and a more realistic failure process is observed. Partial 

fragmentation as seen in is also detected when 1  . This is lacking when 0  . 

 
(a) 0, 185 m/s, 123 m/si rv v     

(b) 1, 185 m/s, 49 m/si rv v      

 
(c) 0, 275 m/s, 240 m/si rv v     

 
(d) 1, 275 m/s, 85 m/si rv v      

Figure 8.11. Plots of the perforation process by (a)-(b) blunt and (c)-(d) ogival projectiles 
from typical simulations using the A‐A model where 0   for (a)-(c) and 1   (b)-(d). 
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In conclusion, when 1   the results are rather similar to those for 0.781   and close 

to the experimental value for blunt projectiles, while for ogival projectiles the ballistic limit is 

slightly overpredicted, giving non-conservative results. For 0   the results are unphysical 

due to the low prediction of the shear capacity of the material during impact. 

Influence	of	the	shape	parameter	m 	

The predicted results seem to differ somewhat from the results obtained by Børvik et al. (2010) 

using a thermoelastic-thermoviscoplastic constitutive model (the modified Johnson-Cook 

model and 2J  flow theory) and an isotropic fracture criterion (the Cockcroft-Latham model), 

also when applying the fully isotropic I‐I model. One possible reason is that all simulations 

have been run with a high exponent ( 12m  ), while for 2J  flow theory 2m  . This exponent 

is used to determine the shape of the yield surface (see Chapter 4). 

 

Figure 8.12. Predicted residual velocity curves for 20 mm  thick AA7075-T651 plates impacted 
by blunt projectiles with initial velocity 175 m/siv   with different shape parameter m . 

 

In order to investigate the effect of the shape of the yield surface on the perforation 

resistance of the material, a number of simulations using the I‐I model and the A‐A model were 

run using m as the only variable. The results from these simulations are plotted in Figure 8.12. 

For the I‐I model, a rather steady increase in residual velocity is obtained with increasing m . 

Thus, the ballistic limit velocity of the target plate is reduced as the yield surface is sharpened. 

The reason is that a high exponent of the yield surface promotes strain localization. For the A‐

A model the results are more random. However, the general trend is that the residual velocity is 

reduced, i.e. making the ballistic limit increase, with increasing m . This suggests that the 

influence of anisotropy can be opposite and of the same order of magnitude as the influence of 
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the shape parameter. It is also interesting to note that for 12m   the residual velocity using the 

I‐I model reaches a local maximum and the A‐A model a local minimum, maximizing the 

difference between the I‐I and A‐A models at this value of m . From Figure 8.12 it is in any 

case rather clear that the shape of the yield surface has an equally large (if not larger) effect on 

the predicted results as the introduction of anisotropy in the plastic flow and fracture. This 

somehow illustrates the complexity in the problem.  

8.5 Conclusions	

An anisotropic failure criterion based on the extended Cockcroft-Latham criterion has been 

proposed and used in numerical simulations of ballistic impacts against 20 mm  thick plates of 

AA7075-T651. The criterion was calibrated based on uniaxial tensile and shear tests in the 0° 

direction, and evaluated through a number of simulations of various material tests in a similar 

way as for the anisotropic yield surface. In the numerical simulations of the ballistic impact 

problem, both blunt and ogival projectiles were applied, and the results were assessed against 

available experimental data. 

The influence of anisotropy in the constitutive relation and fracture criterion is most 

important at impact velocity close to the ballistic limit velocity. Plastic anisotropy seems to 

decrease the perforation resistance of the plate, while the anisotropic failure criterion (AECL) 

affects the capacity of the plate in a different manner for blunt and ogival projectiles. This 

enlightens that the stress state, which is different for the two projectiles, plays a significant role 

in the perforation process. However, the overall observation from this study is that the residual 

velocity is considerably reduced when introducing anisotropy both in the plastic flow and 

fracture at impact velocities close to the ballistic limit. Also the fracture process itself is to 

some extent influenced by anisotropy. A reduction in residual velocity indicates an increase in 

ballistic limit. Thus, the plate gets stronger by introducing anisotropy. However, these 

conclusions may depend on how the isotropic criterion is calibrated. In this study, the isotropic 

criterion is calibrated based on tensile tests in the 0° direction, i.e. the material direction 

showing the lowest plastic work to failure. 

The weighting parameter  , giving the relative importance of the CL criterion (based 

on the first principal stress) and the IT criterion (based on the maximum shear stress), was 

found to have a significant influence on the predicted results. For impact velocities close to the 

ballistic limits of the target, the residual velocity could vary by as much as 60% for the extreme 

values of this parameter (i.e. 0   and 1  ). This means that the validity of the model 

strongly depends on the calibration of the weighting parameter   and thus, on the quality of 

the shear test used in the calibration. Also the shape factor of the yield function m  influences 
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the ballistic properties, and the general trend is that with the A‐A model, the residual velocity is 

reduced with increasing m . 

Several other factors may have a strong influence on the results in numerical 

simulations of ballistic impact (see e.g. Johnsen et al, 2013). Such factors may be the mesh 

size, the contact algorithm, the effect of friction, the coupled effect of temperature and strain 

rate on the flow stress, etc. The influence of anisotropy was admittedly not negligible, 

especially at impact velocities close to the ballistic limit, but it was not found larger than the 

influence of other factors. Taking anisotropy of plasticity and failure into account should be 

done in a wider optimization process of all parameters. 

Finally, even though taking the anisotropy of plastic flow and failure into account was 

not found to significantly improve the numerical predictions, one should remember that the 

chosen anisotropic failure criterion has limitations. It was shown in Chapter 7 that the accuracy 

of this criterion was limited for shear dominated stress states and negative stress triaxialities. 

Even so, the main idea of this study was to investigate to what extent a simple anisotropic 

failure criterion could be used in a very complex problem like the impact and perforation of a 

high-strength aluminium alloy. 

 



 

 
 

Chapter	9. Conclusions	and	further	work	

9.1 Conclusions	

In this thesis, the anisotropic behaviour of the AA7075-T651 aluminium alloy in the form of 

20 mm thick plates has been studied. Experiments were performed on several specimen 

geometries to quantify the anisotropy of plasticity and failure. In addition to micoroscopic 

observations of the virgin material, the failure surfaces were observed to identify the failure 

modes. An anisotropic yield function and an anisotropic failure criterion were calibrated and 

evaluated. Two analytical approaches for damage were examined with respect to the failure 

modes observed experimentally. Numerical simulations of impact on the AA7075-T651 plates 

were carried out and compared with experimental results obtained by Børvik et al. (2010). 

Finally, a first attempt of microstructural modeling of this alloy was proposed as further work 

with some preliminary results. 

Experimental	investigations	

The AA7075-T651 aluminium alloy plates were observed with SEM and TEM, and were 

found to have some particular microstructural features: 

 Pancake-shaped grains and a weak texture 

 Inclusions distributed along the rolling direction of the plate 

 Precipitate free zones (PFZs) of nanometer width 

The PFZs, often considered as a pure aluminium zones inside a stronger matrix, were found to 

contain non-negligible amount of alloying elements in solid solution. This may have an 

influence on the plastic behaviour of these zones. 

Material tests were carried out on the AA7075-T651 alloy at room temperature, under 

quasi-static conditions and until complete failure. Specimens were designed to expose the 

material to various stress states (e.g. initial stress triaxiality) and were machined in different 
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directions of the plate. Two classes of tests can be distinguished by their Lode parameter (third 

stress invariant). The axisymmetric geometries used for tensile tests on smooth and notched 

specimen and compression tests on cylindrical specimens give a Lode parameter 1L   , 

while the shear tests performed on in-plane butterfly specimens give a Lode parameter 0L  . 

The failure surfaces were observed in a SEM when possible. The experimental results are 

summed up below. 

 Tensile tests on smooth axisymmetric specimens were performed in seven different in-

plane directions and in the normal direction (ND) of the plate (giving an initial stress 

triaxiality * 1 3  ). A marked anisotropy in yielding and plastic flow, and a large 

anisotropy in failure strain were observed. In in-plane uniaxial tension, the strain to 

failure varied strongly with the loading direction, in a similar way as the strain ratio. 

The ductility was low for low values of the strain ratio and vice versa. Failure occured 

in a cup-and-cone mode in the directions with the highest ductility and in a shear mode 

in the directions with lowest ductility. An exception was found for the tests in the 

normal direction (ND), which failure strain was the lowest (with a large scatter between 

duplicate tests). These sepcimens exhibited a more disrupted failure surface with a 

tendency to flat areas following grain boundaries, orthogonal to the loading direction. 

 Tensile tests on notched axisymmetric specimens of radius 2.0mmR  and 0.8mmR  

were performed in the 0°, 45° and 90° in-plane directions of the plate. The strain to 

failure for the notched specimens wass markedly reduced compared with the smooth 

specimens due to the increased levels of stress triaxiality. The fracture occured in a cup-

and-cone mode in all orientations and secondary cracks in the rolling plane were 

observed. The directional variation of the strain to failure was moderate. 

 Shear tests were performed on butterfly specimens in the 0°, 45° and 90° in-plane 

directions of the plate to reach stress triaxiality states close to zero. The failure surface 

was flat and aligned with the direction of loading, and the DIC analysis indicated that 

fracture occurs almost instantaneously along the entire gauge length. The direction 

dependency of the strain to failure was moderate, but the results were compromised by 

the large scatter between duplicate tests. However, contrary to uniaxial tension, the 

ductility was observed lower in the 45° direction than in 0° and 90° directions. The 

finite element simulations demonstrated that only the middle part of the gauge section 

was subjected to pre-dominant shear loading, while close to the edges, complex, non-

radial loadings were observed. 

 Compression tests were performed on cylinder specimens in the 0°, 45° and 90° in-

plane directions and in the normal direction (ND) of the plate, to reach negative stress 
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triaxialities. The variation in strain to failure with direction was moderate, but due to 

the lower stress triaxiality, strain to failure was consistently higher than in the 

corresponding uniaxial tension test. Also, as observed for tensile tests on smooth 

specimens, the ductility was found markedly lower in the normal direction of the plate. 

Despite the scatter in failure strain, systematic failure modes (localized along inclined 

bands) were observed. 

 The tensile and compression tests in the nomal direction (ND) of the plate exhibited 

low ductility, and the average strain to failure was similar, even if the overallǁ stress 

triaxiality was very different. In the tension tests, the failure occured in the rolling plane 

along the flat and elongated grain boundaries where precipitate free zones are located. 

The scatter was large, probably due to the small dimensions of the specimen compared 

to the grain size. In compression, failure occured in a shear mode with a fracture 

surface inclined 45° to the loading axis. 

 Owing to the plastic anisotropy, the cross section of the uniaxial tension and 

compression specimens deformed into an elliptic shape. In the cases where failure 

occurred in a shear mode, the orientation of the fracture surface was approximately 45° 

with the loading axis and contained either the semi-major axis or the semi-minor axis of 

the ellipse. 

These experiments offer a large data base to build a representative constitutive model. 

However, although performed with care, the shear test results are difficult to include in the 

calibration of the model due to the large scatter between duplicate tests. It is believed that the 

geometry might be partly responsible for the scatter and other specimen should be envisaged. 

The behaviour under shear loading conditions (i.e. yielding and failure) was shown to be 

crucial for an accurate description of the material. Compression tests were initially performed 

on cylinders with 0 0 1.5h D  , but buckling implied large scatter in the failure strain. The use of 

cylinders with 0 0 1h D   enabled to avoid the buckling effect, but the scatter in failure strain 

was not completely avoided. Specimens designed to limit the friction, responsible for 

barrelling of the specimens, can be used (Bai and Wierzbicki, 2004; Forrestal et al., 2013). 

Also, microscopic observations of the failure surfaces helped to identify the failure modes, 

while observations of interrupted tests could capture the physical mechanisms leading to final 

failure. 

Modelling	of	plastic	anisotropy	

An elastic-plastic model including the Yld2004-18p anisotropic yield criterion proposed by 

Barlat et al. (2005), the associated flow rule and isotropic hardening was determined for the 

material, and numerical simulations were performed of all the material tests. It was found that 
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Yld2004-18p provided an adequate description of the plastic anisotropy of the AA7075-T651 

material. Moreover, it was shown that plastic anisotropy is pivotal for an accurate prediction of 

the notch-strengthening effect. In particular it was shown that an isotropic yield function 

overestimated the stress level in the notched specimens, as also found by Wilson (2002). The 

shape of the anisotropic yield surface was revealed to significantly affect the prediction of the 

notched-specimen behaviour. These findings are important since notched specimens are often 

used to determine the fracture locus of materials, and in this context an accurate description of 

the stress state within the notch is essential. 

Modelling	of	anisotropic	failure	

Void	growth	analysis	

The Rice and Tracey (RT) analysis was developed with an anisotropic yield function. The 

analysis exhibited that the only non-negligible influence of anisotropy on the void growth lied 

on the equivalent plastic strain rate p  and in the stress triaxiality (defined from the anisotropic 

equivalent stress). This supports the idea that the plastic anisotropy is an important aspect of 

the behaviour to take into account when modeling failure. The failure locus for proportional 

loading situations should then be expressed in the space formed by the anisotropic equivalent 

strain at failure and stress triaxiality. 

However, the void growth analyzed under the assumptions of RT (spherical void and 

growth) is not believed to be the most important failure mechanisms for the AA7075-T651. To 

overcome this issue, the analysis of void growth submitted to large shear deformations inside 

the PFZs can be envisaged. However, in that case, analytical solutions might be impossible to 

find and use of numerical tools may be required. 

Localization	analysis	

The localization condition was solved to express the critical hardening modulus ch  for several 

constitutive relations. All softening mechanisms (sharper yield surface, non-associativity, finite 

strain formulation and thermal dependence of the parameters) tended to increase ch , but no 

formulation was found to lead to a positive ch  for the Lode parameter 1L    (i.e. generalized 

tension). Other softening mechanisms could be more extensively investigated to obtain better 

results. These applications have shown that this material seems to be very resistant to the 

localization in the case of axisymmetric extension or compression, but also under other stress 

states. To overcome these difficulties, Rice (1976), inspired by the Marciniak and Kuczynski 

approach in localized necking of sheets (Marciniak and Kuczynski, 1967), proposed a rigorous 

and three-dimensional analysis involving initial imperfections. As summarized in Yamamoto 
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(1978), the idea can be explained in the sense that a part of a material may have slightly 

different properties from the remaining portion and that continuing concentrated deformation 

within this inhomogeneity (imperfection) leads to failure at a strain smaller, than a value 

required for a perfectly homogeneous body. Both the localization band and the imperfection 

bands are taken in the form of planar bands. Also, in this approach, the material in the band is 

assumed to have slightly weaker properties within the imperfection than outside it. This 

imperfection may appear within the material by any process during plastic deformation (Rice, 

1976), but is assumed to be present from the beginning (initial imperfection). For the AA7075-

T651 alloy, the PFZs along grain boundaries can be interpreted as initial imperfections so this 

last formulation is a promising outlook and will be developed in further work. 

Also, the localization condition obtained with a Hershey-type yield function (pressure-

independent) was dependent on only one stress invariant, the Lode parameter. Yield surfaces 

with non-linear dependency to the hydrostatic stress, such as the Gurson’s limit analysis for 

porous material, would offer the localization condition a dependency to the stress triaxiality 

ratio. It is believed that the resolution of the localization condition with an anisotropic 

constitutive behaviour could improve the results. However, efforts must be put into the 

formalism of the representative variables since only three stress invariants cannot represent the 

loading conditions anymore. To avoid this complexity, one outlook for the accomplishment of 

the localization analysis in the anisotropic context is the resolution of the localization condition 

implemented in a finite element code (Barsoum and Faleskog, 2011). This would allow solving 

the localisation condition with any constitutive behaviour without additional effort. Moreover, 

this would extend the resolution to non-homogeneous structures. 

Anisotropic	Extended	Cockcroft‐Latham	criterion	and	ballistic	application	

An anisotropic version of the plastic work-based extended Cockcroft-Latham criterion (Gruben 

et al, 2012) was calibrated and evaluated for various loading conditions. Obtained failure strain 

and failure modes were compared to experimental observations. The predicted failure strains 

for tensile tests on smooth specimen (used in the calibration) were in good agreement with the 

experimental values for all directions. However, the failure modes were not predicted correctly. 

For tensile tests on notched specimens, the results were qualitatively correct, but the anisotropy 

was not correctly predicted and the results were only slightly enhanced compared with an 

isotropic model. Numerical simulations of the tests at low stress triaxiality (shear and 

compression tests) exhibited more realistic location for maximum damage than with an 

isotropic model, but the results in terms of failure strain were still inaccurate. Numerical 

simulations of the perforation of 20 mm thick AA7075-T651 plates by ogival and blunt 

projectiles were also performed. The effect of anisotropy was larger close to the ballistic limit 
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than for high impact velocities. The results were not qualitatively enhanced by the anisotropic 

model, but more realistic description of the failure was observed (such as the cracking along a 

preferential direction). Also, the influence of the anisotropy is not larger than the influence of 

other parameters such as the hardening law, the mesh size and the yield surface shape 

parameter m . 

The weighting parameter  , controlling the contribution of the Cockcroft-Latham 

(maximal principal stress) and Tresca-based (maximum shear stress) criterions, have an 

important influence on the predicted failure strain and thus on the residual velocity, particularly 

for shear dominated stress states. In our study, this parameter was calibrated on the shear test 

performed in the 0° direction of the plate. Unfortunately, the scatter obtained between duplicate 

shear tests gives an uncertainty in the value of the parameter  . As also suggested in the 

outlooks for the experimental part, the repeatability of the shear tests could be enhanced by 

designing a more appropriate shear specimen. 

Failure is predicted numerically by eroding elements, which is a rudimentary method 

since parts of the material mass are irreversibly lost. Recent hybrid numerical techniques were 

developed to replace element erosion with node splitting (www.impetus.com). This may lead 

to more realistic results in terms of failure modes. 

9.2 Further	work	

One main conclusion from this study is that we have to go down in scale in order to fully 

understand and model the underlying mechanisms for the behaviour and fracture of complex 

alloys like the AA7075-T651. The anisotropy in the failure strains and the failure modes 

observed experimentally, under uniaxial tension for instance, is also found to be very important 

(see Chapter 3). Without being exhaustive, it is believed that what causes the anisotropic 

failure are the plastic anisotropy, the anisotropic grain morphology (and the PFZ distribution) 

and the anisotropic distribution of inclusions. It is believed that all microstructural ingredients 

are needed to predict this failure anisotropy. On the one hand, this implies the modelling of the 

precipitate free zones (PFZs) of nanometre size. On the other hand, if one wants to predict the 

macroscopic failure modes, a representative number of pancake-shaped grains should be 

modelled (at a millimetre scale). It is numerically challenging to cover six orders of magnitude 

with the finite element method, especially regarding the computational efficiency. 

First	attempt	of	microstructure	modelling	

A first approach was to model hexagonal grains and PFZs with one layer of solid elements in 

order to qualitatively observe the localization of strains. Hexagonal grains in 2D and grain 
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boundaries associated to each grain are represented. The grain and PFZ sizes are defined as GL  

and PFZL , respectively, and each grain contains 882 elements. The number of elements through 

the thickness of the PFZ was found to have no significant influence and was fixed to two for 

the rest of the study. The ratio between the grain size and the PFZ size is then defined as 

G PFZ G PFZA L L  . In Chapter 2, the experimental ratio, defined as G PFZ G PFZa l l  , was found 

to lie within the range  275;6900G PFZa   . This physical ratio is very large and challenging to 

reproduce numerically. Consequently, numerical simulations were performed with 

G PFZ G PFZA a  , but a parametrical study enabled to evaluate the sensitivity of the results to this 

ratio. Due to the poor aspect ratio of the elements inside the PFZs, fully-integrated elements 

with second-order accuracy (LSDYNA, 2007) were used to avoid shear locking. The thickness 

of the model (i.e. the thickness of all elements) was chosen of the same order as the in-plane 

dimensions of the elements. Also, due to the continuity between the mesh of the PFZs and the 

mesh of the grains, (which is a limitation imposed by the in-house grain generation tool used 

for this analysis), the number of element inside the grain is necessarily large. Consequently, 

only 16 grains were modelled in order to keep the computation time reasonable. The 

dimensions of the grains and PFZs are illustrated in Figure 9.1 (a). 

 

(a) (b) 

Figure 9.1. (a) Mesh for grain modelling with a length ratio 20G PFZ G PFZA L L    and (b) 
boundary conditions applied to the model. 
 

The boundary conditions applied for uniaxial tension illustrated in Figure 9.1 (b) are 

 displacement imposed in one direction to the node set (3), while no displacement along 

that direction is imposed to the opposite node set (1) 

 planar constraint (parallelism) for the node sets (2) and (4), and (5) and (6), to allow 

displacements but avoid large normal distortions 
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The planar constraint was preferred to periodic boundary conditions because with only 1 

element in the thickness of the model, the out-of plane displacements were unrealistically 

large. On the contrary, plain strain conditions lead to unrealistically high stress triaxiality. 

Grains are modelled with Yld2004-18p calibrated for the AA7075-T651 alloy (see Chapter 4) 

with same hardening law. The PFZs are assumed to have the same crystallographic orientation 

as the grains they belong to. Consequently, the yield function assigned to the half-thickness of 

a PFZ is the same as its neighbouring grain. However, as exhibited in Chapter 2, the PFZs 

present in the AA7075-T651 alloy are depleted of hardening precipitates and are composed of 

an aluminium matrix containing alloying elements in solid solution. This suggests that the 

behaviour of the PFZs is different from the inside of the grains. Typical yield stresses for low-

strength aluminium alloys lie between 100 300 MPa , so the yielding stress of the PFZ ( 0PFZ ) 

is also chosen lower than the yielding stress of the AA7075-T651 alloy ( 0 538.81 MPa  ). 

On the contrary, lower-strength aluminium alloys usually show higher values of hardening than 

high-strength aluminium, so the saturation stress of the PFZ is also chosen higher than for the 

AA7075-T651 alloy ( 177.24 MPaQ ). Moreover, the model of grains being regular (contrary 

to the real material), the localization of the plastic strains inside the PFZs is continuous through 

the model without obstacles, in an unrealistic manner. Then, if one wants a global yielding of 

the grains, the stress level in the PFZs should reach the yield stress of the grains. This could be 

accommodated by the fact that the strains inside the PFZs are highly constrained. 

Consequently, the gradient effects, stress triaxiality and a high concentration of dislocations 

may possibly harden the PFZs. The chosen material parameters for the PFZs are given in Table 

9.1, while those of the grains are given in Table 4.1. 

Table 9.1. Flow and hardening parameters of the material model Yld2004-18p for the PFZ. 

0PFZ [MPa] PFZQ [MPa] PFZC  

100 616 1.81 

Some	results	

The overall Cauchy stress and the overall logarithmic strain of the models can be computed 

from the displacement imposed and the total reaction force. Figure 9.2 (a) shows the stress-

strain curves obtained from the model loaded in the 0° direction with ratio  20,133G PFZA   . 

Figure 9.2 (b) gives the maximum plastic strain at the instant when experimental failure strain 

is reached ( 0 0.159f
   for the 0° direction and 45 0.427f

   for the 45° direction). The plastic 

strain distributions presented in Figure 9.3 are obtained at these same failure instants. These 

plots show that with the chosen material parameters, the maximum plastic strains are located 

inside the PFZs for small strains and moves towards the grains for larger strains. Also, when 

this maximum is located inside the PFZs, the maximum strain seems to converge with 
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decreasing size of the PFZs. On the contrary, when located outside of the PFZs, the maximum 

strain is not markedly influenced by the PFZ size. 

 

Figure 9.2. (a) Cauchy stress-true strain curves from microstructure simulations in the 0° 
direction with two different ratios G PFZA   (dashed line is the experimental curve) and (b) 

maximum plastic strain for different ratios G PFZA   for the 0° direction stopped at 0 0.159f
   

(black) and for the 45° direction stopped at 45 0.427f
   (pink) (dashed lines give the 

macroscopic plastic strain for comparison). 
 

 
(a) (b) 

Figure 9.3. Plots of deformed grains modelled with 20G PFZ G PFZA L L    loaded in (a) the 0° 

direction and stopped at 0 0.159f
   and (b) the 45° direction and stopped at 45 0.427f

  . 

 

Taking into account the different orientations of the grains could enable to reproduce the 

incompatibility of the deformation between grains and introduce an additional source of 

heterogeneity. To that aim, crystal plasticity could be envisaged but this approach is 

computationally heavy. Another approach could be to use the yield functions Yld2004-18p 
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calibrated for the generic textures of rolled aluminium as shown by Saai et al. (2010) and to 

attribute them to a representative volume element (RVE) of grains. The PFZs being 

determinant for failure, a realistic representation of the pancake-shaped grains with sub-grains 

in a 3D model would enable obtaining different behaviour in the different directions. This is an 

affordable effort which is planned in the near future. In addition, choosing adapted failure 

criterions for the grain and for the PFZ would hopefully help to predict the correct macroscopic 

failure modes, but a larger amount of grains than presented here will be needed to be 

representative. 

 



 

 
 

.													References	

Andreatta, F., Terryn, H., De Wit, J.H.W., 2003a. Effect of solution heat treatment on galvanic 
coupling between intermetallics and matrix in AA7075-T6. Corrosion Science 45 (8), 1733-
1746. 
 
Andreatta, F., Lohrengel, M.M.,Terryn, H., De Wit, J.H.W., 2003b. Electrochemical 
characterisation of aluminium AA7075-T6 and solution heat treated AA7075 using a micro 
capillary cell. Electrochimica Acta 48 (20-22), 3239-3247. Electrochemistry in Molecular and 
Microscopic Dimensions. 
 
Aretz, H., Hopperstad, O.S., Lademo, O.G., 2007. Yield function calibration for orthotropic 
sheet metals based on uniaxial and plane strain tensile tests. Journal of Materials Processing 
Technology 186 (1-3), 221-235. 
 
Arminjon, M., Bacroix, B., 1991. On plastic potentials for anisotropic metals and their 
derivation from the texture function. Acta Mechanica 88 (3), 219-243. 
 
Arminjon, M., Bacroix, B., Imbault, D., Raphanel, J.L., 1994. A fourth-order plastic potential 
for anisotropic metals and its analytical calculation from the texture function. Acta Mechanica 
107 (1-4), 33-51. 
 
Bai, Y., Wierzbicki, T., 2008. A new metal plasticity and fracture with pressure and Lode 
dependence. International Journal of Plasticity 24 (6), 1071-1096. 
 
Bai, Y., Wierzbicki, T., 2010. Application of extended Mohr–Coulomb criterion to ductile 
fracture. International Journal of Fracture 161 (1), 1-20. 
 
Bao, Y., Wierzbicki, T., 2004. On fracture locus in the equivalent strain and stress triaxiality 
space. International Journal of Mechanical Sciences 46 (1), 81-98. 
 
Barlat, F., Lege, D., Brem, J.C., 1991. Six-component yield function for anisotropic materials. 
International Journal of Plasticity 7 (7), 693-712. 
 
Barlat, F., Chung, K., 1993. Anisotropic potentials for plastically deformation metals. 
Modelling and Simulation in Materials Science and Engineering 1 (4), 403-416. 
 



References 

132 
 

Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, 
S.-H., Chu, E., 2003. Plane stress yield function for aluminum alloy sheets - Part 1: theory. 
International Journal of Plasticity 19 (9), 1297-1319. 
 
Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E., 2005. Linear 
transformation-based anisotropic yield functions. International Journal of Plasticity 21 (5), 
1009-1039. 
 
Barsoum, I., Faleskog, J., 2007. Rupture mechanisms in combined tension and shear - 
experiments. International Journal of Solids and Structures 44 (6), 1768-1786. 
 
Barsoum, I., Faleskog, J., 2011. Micromechanical analysis on the influence of the Lode 
parameter on void growth and coalescence, International Journal of Solids and Structures 48 
(6), 925-938. 
 
Belytschko, T., Liu, W.K., Moran, B., 2000. Nonlinear Finite Elements for Continua and 
Structures. John Wiley & Sons, Ltd., Chichester, England. 
 
Benallal, A., Comi, C., 1993. The role of deviatoric and volumetric non-associativities on 
strain localization. Rend. Mat. Acc. Lincei 9 (4), 279-290. 
 
Benallal, A., Bigoni, D., 2004. Effects of temperature and thermo-mechanical couplings on 
material instabilities and strain localization of inelastic materials. Journal of Mechanics and 
Physics of Solids, 52 (3), 725-753. 
 
Benallal, A., Berstad, T., Børvik, T.,Hopperstad, O.S., Koutiri, I., Nogueira de Codes, R., 
2008. An experimental and numerical investigation of the behaviour of AA5083 aluminium 
alloy in presence of the Portevin–Le Chatelier effect. International Journal of Plasticity 24 (10), 
1916-1945. 
 
Benzerga, A., Besson, J., 2001. Plastic potentials for anisotropic porous solids. European 
Journal of Mechanics A/Solids 20 (3), 397-434. 
 
Benzerga, A., Surovik, D., Keralavarma, S.M., 2012. On the path-dependence of the fracture 
locus in ductile materials – Analysis. International Journal of Plasticity 37, 157-170. 
 
Bridgman, P.W., 1952. Studies in large plastic flow and fracture: with special emphasis on the 
effects of hydrostatic pressure. Harvard University Press, Cambridge, Mass. 
 
Bron, F., Besson, J., 2004. A yield function for anisotropic materials - Application to 
aluminum alloys. International Journal of Plasticity 20 (4-5), 937-963. 
 
Brownrigg, A., Spitzig, W.A, Richmond, O., Teirlinck, D., Embury, J.D., 1983. The influence 
of hydrostatic pressure on the flow stress and ductility of a spherodized 1045 steel. Acta 
Metallurgica 31 (8), 1141-1150. 
 
Brünig, M., 1999. Numerical simulation of the large elastic-plastic deformation behavior of 
hydrostatic stress-sensitive solids. International Journal of Plasticity 15 (11), 1237-1264. 
 



References 

133 
 

Børvik, T., Hopperstad, O.S., Berstad, T., Langseth, M., 2001. A computational model of 
viscoplasticity and ductile damage for impact and penetration. European Journal of Mechanics. 
A/Solids 20 (5), 685-712. 
 
Børvik, T., Langseth, M., Hopperstad, O.S., Malo, K.A., 2002. Perforation of 12 mm thick 
steel plates by 20 mm diameter projectiles with blunt, hemispherical and conical noses, Part I: 
Experimental study. International Journal of Impact Engineering 27, 19-35. 
 
Børvik, T., Hopperstad, O.S., Berstad, T., 2003a. On the influence of stress triaxiality and 
strain rate on the behaviour of a structural steel. Part II. Numerical study. European Journal of 
Mechanics A/Solids 22 (1), 15-32. 
 
Børvik, T., Hopperstad, O.S., Langseth, M., Malo, K.A., 2003b. Effect of target thickness in 
blunt projectile penetration of Weldox 460 E steel plates. International Journal of Impact 
Engineering 28, 413-464. 
 
Børvik, T., Clausen, A.H., Hopperstad, O.S., Langseth, M., 2004. Perforation of AA5083-
H116 aluminium plates with conical-nose steel projectiles – experimental study. International 
Journal of Impact Engineering 30 (4), 367-384. 
 
Børvik, T., Hopperstad, O.S., Pedersen, K.O., 2010. Quasi-brittle fracture during structural 
impact of AA7075-T651 aluminium plates. International Journal of Impact Engineering 37 (5), 
537-551. 
 
Chen, Y., Pedersen, K.O., Clausen, A.H., Hopperstad, O.S., 2009. An experimental study on 
the dynamic fracture of extruded AA6xxx and AA7xxx aluminium alloys. Materials Science 
and Engineering: A 523 (1-2), 253-262. 
 
Choi, Y., Han, C.S., Lee, J.K., Wagoner, R.H., 2006. Modelling multiaxial deformation of 
planar anisotropic elasto-plastic materials, part I: Theory. International Journal of Plasticity 22 
(9), 1745-1764. 
 
Chu, C.C., Needleman, A., 1980. Void nucleation effects in biaxially stretched sheets. Journal 
of engineering materials and technology-transactions of the ASME 102 (3), 249-256. 
 
Clausen, A.H., Børvik, T., Hopperstad, O.S., Benallal, A., 2004. Flow and fracture 
characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and 
triaxiality. Materials Science and Engineering: A 364 (1-2), 260-272. 
 
Cockcroft, M.G., Latham, D.J., 1968. Ductility and the workability of metals. Journal Institute 
of Metals 96, 33-39. 
 
Darrieulat, M., Montheillet, F., 2003. A texture based continuum approach for predicting the 
plastic behaviour of rolled sheet. International Journal of Plasticity 19 (4), 517-546. 
 
Deschamps, A., Texier, G., Ringeval, S., Delfaut-Durut, L., 2009. Influence of cooling rate on 
the precipitation microstructure in a medium strenght Al-Zn-Mg alloy. Materials Science and 
Engineering: A 501 (1-2), 133-139. 
 



References 

134 
 

Demir, T., Ubeyli, M., Yildirim, R.O., 2008. Investigation on the ballistic impact behavior of 
various alloys against 7.62mm armor piercing projectile. Materials and Design 29, 2009-2016. 
 
Dieter, G. E, 1988. Mechanical Metallurgy, SI ed., McGraw-Hill, Singapore. 
 
Dumont, D., Deschamps, A., Brechet, Y., 2004. A model for predicting fracture mode and 
toughness in 7000 series aluminium alloys. Acta Materialia 52 (9), 2529-2540. 
 
Dunand, M., Mohr, D., 2011. On the predictive capabilities of the shear modified Gurson and 
the modified Mohr-Coulomb fracture models over a wide range of stress triaxialities and Lode 
angles. Journal of the Mechanics and Physics of Solids 59 (7), 1374-1394. 
 
El-Magd, E., 1997. Influence of strain rate on ductility of metallic materials. Steel Research 68 
(2), 67-71. 
 
Erice and Galvez, 2014. A coupled elastoplastic-damage constitutive model with Lode angle 
dependent failure criterion. International Journal of Solids and Structures 51, 93-110. 
 
Fagerholt, E., Dørum, C., Børvik, T., Laukli, H.I., Hopperstad, O.S., 2010. Experimental and 
numerical investigation of fracture in a cast aluminium alloy. International Journal of Solids 
and Structures 47 (24), 3352-3365. 
 
Forrestal, M.J., Luk, V.K., Rosenberg, Z., Brar, N.S., 1992. Penetration of 7075-T651 
aluminum targets with ogival-nose projectiles. International Journal of Solids and Structures 
29, 1729-1736. 
 
Forrestal, M.J., Børvik, T., Warren, T.L., Chen, W., 2013. Perforation of 6082-T651 
Aluminum Plates with 7.62 mm APM2 Bullets at Normal and Oblique Impacts. Accepted for 
publication in Experimental Mechanics (DOI 10.1007/s11340-013-9817-3). 
 
Fourmeau, M., Børvik, T., Benallal, A., Lademo, O.G., Hopperstad, O.S., 2011. On the plastic 
anisotropy of an aluminium alloy and its influence on constrained multiaxial flow. 
International Journal of Plasticity 27 (12), 2005-2025. Special Issue In Honor of Nobutada 
Ohno. 
 
Fourmeau, M., Børvik, T., Benallal, A., Hopperstad, O.S., 2013. Anisotropic failure modes of 
high-strength aluminium alloy under various stress states. International Journal of Plasticity 48, 
34-53. 
 
Freed, A.D., Sandor, B.I., 1985. The plastic compressibility of 7075-T651 aluminum-alloy 
plate. Experimental Mechanics 26 (2), 119-121. 
 
Gologanu, M., Leblond, J.B., Devaux, J., 1993. Approximate models for ductile metals 
containing nonspherical voids — case of axisymmetric prolate ellipsoidal cavities. Journal of 
the Mechanics and Physics of Solids 41 (11), 1723-1754. 
 
Gologanu, M., Leblond, J.-B., Devaux, J., 1994a. Approximate models for ductile metals 
containing nonspherical voids — case of axisymmetric oblate ellipsoidal cavities. Journal of 
Engineering Materials and Technology 116 (3), 290-297. 
 



References 

135 
 

Gologanu, M., Leblond, J.-B., Devaux, J., 1994b. Numerical and theoretical study of 
coalescence of cavities in periodically voided solids. Computational Material Modelling 42, 
223-244. 
 
Gooch, W.A., Burkins, M.S., Squillacioti, R.J., 2007. Ballistic testing of commercial aluminum 
alloys and alternative processing techniques to increase the availability of aluminum armor. 
Proceedings of the 23rd International Symposium on Ballistics, Spain. 
 
Grytten, F., et al., 2008. Evaluation of identification methods for Yld2004-18p. International 
Journal of Plasticity 14 (18), 2248-2277. 
 
Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth. Part I 
: yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and 
Technology 99 (1), 2-15. 
 
Gruben, G., Hopperstad, O.S., Børvik, T., 2012. Evaluation of uncoupled ductile fracture 
criteria for the dual-phase steel Docol 600DL. International Journal of Mechanical Sciences 62, 
133-146. 
 
Gruben, G., Hopperstad, O.S., Børvik, T., 2013. Simulation of ductile crack propagation in 
dual phase steel. International Journal of Fracture, 180 (1), 1-22. 
 
Hahn, G., Rosenfield, A., 1975. Metallurgical factors affecting fracture toughness of aluminum 
alloys. Metallurgical and Materials Transactions: A 6 (4), 653-668. 
 
Hatch, J.E., 1984. Aluminium: Properties and Physical Metallurgy. American Society for 
Metals, Metals Park, Ohio. 
 
Hershey, A.V., 1954. The plasticity of an isotropic aggregate of anisotropic face centred cubic 
crystals. Journal of Applied Mechanics, 21, 241-249. 
 
Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic metals. Proceedings of 
the Royal Society of London. Series A, Mathematical and Physical Sciences 193 (1033), 281-
297. 
 
Hill, R., 1979. Theoretical plasticity of textured aggregates. Mathematical Proceedings of the 
Cambridge Philosophical Society 85 (1), 179-191. 
 
Hill, R., 1987. Constitutive dual potentials in classical plasticity. Journal of the Mechanics and 
Physics of Solids 35 (1), 22-33. 
 
Hill, R., 1990. Constitutive modelling of orthotropic plasticity in sheet metals. Journal of the 
Mechanics and Physics of Solids 38 (3), 405-417. 
 
Holmen, J.K., Johnsen, J., Jupp, S., Hopperstad, O.S., Børvik, T., 2013. Effects of heat 
treatment on the ballistic properties of AA6070 aluminium alloy. International Journal of 
Impact Engineering 57, 119-33. 
 
Hosford, W.F., 1972. A generalized isotropic yield criterion. Journal of Applied Mechanics 39 
(2), 607-609. 



References 

136 
 

 
Hu, W., 2007. Constitutive modeling of orthotropic sheet metals by presenting hardening-
induced anisotropy. International Journal of Plasticity 23 (4), 620-39. 
 
Johnsen, J., Holmen, J.K., Myhr, O.R., Hopperstad, O.S., Børvik, T., 2013. A nano-scale 
material model applied in finite element analysis of aluminium plates under impact loading. 
Computational Materials Science 79, 724-735. 
 
Jordon, J. B., Horstemeyer, M. F., Solanki, K., Bernard, J. D., J.T. Berry, J. T., Williams, T. 
N., 2009. Damage characterization and modeling of a 7075-T651 aluminum plate. Material 
Sciences and Engineering: A 527 (1-2), 169-178. 
 
Karafillis, A.P., Boyce, M.C., 1993. A general anisotropic yield criterion using bounds and a 
transformation weighting tensor. Journal of Mechanics and Physics of Solids 41 (12), 1859-
1886. 
 
Khan, A.S., Liu, H., 2012. A new approach for ductile fracture prediction on Al 2024-T351 
alloy. International Journal of Plasticity 35, 1-12. 
 
Kim, D., Barlat, F., Bouvier, S., Rabahallah, M., Balan, T., Chung, K., 2007. Non-quadratic 
anisotropic potential based on linear transformation of plastic strain rate. International Journal 
of Plasticity 23 (8), 1380–1399. 
 
Leacock, A.G., 2006. A mathematical description of orthotropy in sheet metals. Journal of the 
Mechanics and Physics of Solids 54 (2), 425–444. 
 
Leblond, J.-B., Perrin, G., Devaux, J., 1995. An improved Gurson-type model for hardenable 
ductile metals. European Journal of Mechanics and Solids 14 (4), 499-527. 
 
Lecarme, L., Tekoglu, C., Pardoen, T., 2011. Void growth and coalescence in ductile solids 
with stage III and stage IV strain hardening. International Journal of Plasticity 27 (8), 1203-
1223. 
 
Lopes, A.B., Barlat, F., Gracio, J.J., Ferreira Duarte, J.F., Rauch, E.F., 2003. Effect of texture 
and microstructure on strain hardening anisotropy for aluminium deformed in uniaxial tension 
and simple shear. International Journal of Plasticity 19 (1), 1-22. 
 
LSTC, LS-DYNA Keyword User’s Manual, Version 971, 2007. Livermore Software 
Technology Corporation, California. 
 
Luo, M., Dunand, M., Mohr, D., 2012. Experiments and modelling of anisotropic aluminium 
extrusions under multi-axial loading - Part II: Ductile fracture. International Journal of 
Plasticity 32-33, 36-58. 
 
Marciniak, Z., Kuczynski, K., 1967. Limit strains in the processes of stretch-forming sheet 
metal. International Journal of Mechanical Sciences 9 (9), 613-620. 
 
Marioara, C. D., Lefebvre, W. ,  Andersen, S. J., Friis, J., 2013. Atomic structure of hardening 
precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles 
calculations: relation to η-MgZn2. Journal of Materials Science 48 (10), 3638-3651.  



References 

137 
 

 
Marini, B., Mudry, F., Pineau, A., 1985. Experimental study of cavity growth in ductile 
rupture. Engineering Fracture Mechanics 22 (6), 989-996. 
 
Marlaud, T., Deschamps, A., Bley, F., Lefebvre, W., Baroux, B., 2010. Influence of alloy 
composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys. Acta 
Materialia 58 (1), 248-260. 
 
McClintock, F.A., 1968. A criterion for ductile fracture by the growth of holes. Journal of 
Applied Mechanics 35 (2), 363-371. 
 
Monchiet, V., Cazacu, O., Charkaluk, E., Kondo, D., 2008. Macroscopic yield criteria for 
plastic anisotropic materials containing spheroidal voids. International Journal of Plasticity 24 
(7), 1158-1189. 
 
Nahshon, K., Hutchinson, J.W., 2008. Modification of the Gurson Model for shear failure, 
European Journal of Mechanics A/Solids 27 (1), 1-17.  
 
Pardoen, T., Hutchinson, J.W., 2000. An extended model for void growth and coalescence. 
Journal of the Mechanics and Physics of Solids 48 (12), 2467-2512. 
 
Pardoen. T., Dumont, D., Deschamps, A., Brechet, Y., 2003. Grain boundary versus 
transgranular ductile failure. Journal of the Mechanics and Physics of Solids 51 (4), 637-665. 
 
Park, J.K., Ardell, A.J., 1988. Precipitate microstructure of peak-aged 7075 Al. Scripta 
Metallurgica 22 (7), 1115-1119. 
 
Pedersen, K.O., Børvik, T., Hopperstad, O.S., 2011. Fracture mechanisms of aluminium alloy 
AA7075-T651 under various loading conditions. Material and Design 32 (1), 97-107. 
 
Rauch, E.F., 1998. Plastic anisotropy of sheet metals determined by simple shear tests. 
Material Sciences and Engineering: A 241 (1-2), 179-183. 
 
Recht, R.F., Ipson, T.W., 1963. Ballistic perforation dynamics. Journal for Applied Mechanics 
30, 384-390. 
 
Rice, J.R., Tracey, D.M., 1969. On the ductile enlargement of voids in triaxial stress fields. 
Journal of Mechanics and Physics of Solids 17 (3), 201-217. 
 
Rice, J.R., 1976. The localization of plastic deformation. Theoretical and Applied Mechanics, 
1, 207-220 
 
Richmond, O., Spitzig, W.A., 1980. Pressure dependence and dilatancy of plastic flow. 
Theoretical and Applied Mechanics 15, 377-386. 
 
Rousselier, G., Barlat, F., Yoon, J.W., 2010. A novel approach for anisotropic hardening 
modelling. Part II: Anisotropic hardening in proportional and non-proportional loadings, 
application to initially isotropic material. International Journal of Plasticity 26 (7), 1029-1049. 
 



References 

138 
 

Rousselier, G., Luo, M., Mohr, D., 2012. Macroscopic plasticity modeling of anisotropic 
aluminum extrusions using a Reduced Texture Methodology. International Journal of Plasticity 
30-31, 144-165. 
 
Rudnicki, J.W., Rice, J.R., 1975. Conditions for the localization of deformation in pressure-
sensitive dilatants materials. International Journal of Mechanics and Physics of Solids 23,371-
394. 
 
Saai, A., Dumoulin, S., Hopperstad, O.S., Lademo, O.-G., 2013. Simulation of yield surfaces 
for aluminium sheets with rolling and recrystallization textures. Computational Materials 
Science 67, 424-433. 
 
Soare, S., Barlat, F., 2010. Convex polynomial yield functions. Journal of the Mechanics and 
Physics of Solids 58 (11), 1804-1818. 
 
Spitzig, W.A., Richmond, O., 1984. The effect of pressure on the flow stress of metals. Acta 
Metallurgica 32 (3), 457-463. 
 
Steglich, D., Brocks, W., Heerens, J., Pardoen, T., 2008. Anisotropic ductile fracture of Al 
2024 alloys. Engineering Fracture Mechanics 75 (12), 3692-3706. 
 
Stoughton, T.B., Yoon, J.W., 2009. Anisotropic hardening and non-associated flow in 
proportional loading of sheet metals. International Journal of Plasticity 25 (9), 1777–1817. 
 
Stoughton, T.B., Yoon, J.W., 2011. A new approach for failure criterion for sheet metals. 
International Journal of Plasticity 27 (3), 440-459. 
 
Teirlinck, D., Zok, F., Embury, J.D., Ashby, M.F., 1988. Fracture mechanism maps in stress 
space. Acta Metallurgica 36 (5), 1213-1228. 
 
Thomason, P.F., 1990. Ductile fracture of metals. Pergamon Press, Oxford. 
 
Tvergaard, V., Needleman, A., 1984. Analysis of the cup-cone fracture in a round tensile bar. 
Acta Metallurgica 32 (1), 157-169. 
 
Van Houtte, P., Mols, K., Van Bael, A.,  Aernoudt, E., 1989. Application of yield loci 
calculated from texture data. Textures and Microstructures 11, 23-39. 
 
Van Houtte, P., Van Bael, A., 2004. Convex plastic potentials of fourth and sixth rank for 
anisotropic materials. International Journal of Plasticity 20 (8-9), 1505-1524. 
 
Verhoeven, J. D., 1975. Fundamentals of Physical Metallurgy 
 
Vlot, A., 1996. Impact loading on fibre metal laminates. International Journal of Impact 
Engineering 18, 291-307 
 
Wierzbicki, T., Bao, Y., Lee, Y.W., Bai, Y., 2005. Calibration and evaluation of seven fracture 
models. International Journal of Mechanical Sciences 47 (4-5), 719-743. 
 
Wikipedia, http://en.wikipedia.org/wiki/7075_aluminium_alloy, [cited: 06-11-2013]. 



References 

139 
 

 
Wilson, C.D., 2002. A critical re-examination of classical metal plasticity. Journal of Applied 
Mechanics 69, 63-68. 
 
Yamamoto, 1978. Conditions for shear localization in the ductile fracture of void-containings 
materials. International Journal of Fracture, 14 (4), 347-365. 
 
Yerra, S. K., Tekoglu, C., Sheyvaerts, F., Delannay, L., Van Houtte, P., Pardoen, T., 2010. 
Void growth and coalescence in single crystals. International Journal of Solids and Structures 
47 (7-8), 1016-1029. 
 
Zhang, K.S., Bai, J.B., François, D., 2001. Numerical analysis of the influence of the Lode 
parameter on void growth, International Journal of Solids and Structures 38 (32-33), 5847-
5856. 
 





 

 
 

.													Appendix	

A. Elastic	4th	order	tensor	and	related	

Isothermal	conditions	

At room temperature, some elastic parameters are defined for convenience of the writing 
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where  ,   are the Lame coefficients, K  is the bulk modulus, E  is the Young’s modulus 

and   the Poisson ratio. The Hooke tensor is defined by 42i S    E E Ι I I , where 

 4 2S
ik jl il jk    I  is the symmetric part of the 4th order identity tensor. This gives with 

Voigt notations 
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The inverse of this tensor is 1 41 2 6S K     E Ι I I , i.e. 
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Two tensors of interest for the localiation analysis are 
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The determinant respect the following property 

    det deta b b a     A A A  (A-100) 

where   1det A A A  is the transposed of the cofactor matrix of A . This leads to 
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Then, the term n n H , containing the 4th order tangent tensor H , can transform into 
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Adiabatic	conditions	

The 4th order elastic tensor under adiabatic conditions is 
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where  i TE  is called the isothermal 4th order elastic tensor. The newly define Lame 

coefficient a   contains the influence of adiabatic conditions on the elastic behaviour. Note 
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that consequently, the Young modulus aE  under adiabatic conditions is smaller than the 

isothermal iE . Also, the following terms are of interest 
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B. Thermodynamic	framework	

We consider hereafter constitutive behaviour describing the thermo-inelastic behaviour of 

various materials. For small strains, this behaviour is defined by the free-energy potential per 

unit mass 

  , ,i T e Ts   ε  (A-105) 

where e  is the internal energy, s  is the specific entropy and T  the temperature. ε  is the total 

strain while i  denotes a collection of internal variables (scalar, vector or second order tensor) 

describing all mechanisms governing inelastic deformation. The total strain ε  is usually split 

into three components including the mechanical elastic strain eε , the inelastic strain pε  and the 

thermal strain thε . A yield function  , , 0if Z T σ  defines the range of reversibility (elastic 

process) and is defined by 

 
 
 

, , 0 reversible behaviour

, , 0 irreversibility (inelastic process)

i

i

f Z T

f Z T






σ

σ
 (A-106) 

During yielding and inelastic flow, the Prager’s consistency holds, i.e. 

 0 0i
i

f f f
f Z T

Z T

  
    

  
σ

σ
    (A-107) 

We note that f  can, when necessary, be a function of the internal variables i  instead or 

besides the driving forces iZ . An inelastic potential  , ,iF F Z T σ  may be introduced to 

define the evolution of the inelastic flow through normality rule as 

 i
i

F  



   (A-108) 
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where 0  , called the plastic multiplier, must satisfy the Kuhn-Tucker condition 0f  . In 

the case of f F , the plastic flow is said to be associative. Note that the Prager’s consistency 

condition given in Eq.(A-107) gives a mean to obtain this plastic multiplier. The first law of 

thermodynamic states the local balance of energy and can be expressed through the rate of 

specific internal energy of a system as 

 

   grad  is the heat flux 
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where   is the mass density. The second law of thermodynamics expresses the irreversibility 

of the thermodynamic process and states that the intrinsic dissipation is never negative. This 

dissipation is not detailed here but leads to the state laws, giving the relations between the 

internal variables and their associated driving forces, the stress and the strain, and the entropy 

and the temperature, i.e. 
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The relation between internal and free energy given in Eq.(A-105) can be developed to give 

another expression for the rate of specific internal energy of a system 
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Combining the specific internal energy given in Eq.(A-109) and Eq.(A-111) leads to a new 

version of the balance equation and to the so-called heat equation giving the evolution of 

temperature as 
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C. Localization	condition	with	infinitesimal	strains	‐	solutions	

The localization condition (LC) is presented in the Chapter 6.3.2. Here, we aim at finding the 

critical hardening modulus which enables the localization and the orientation of the localization 

band given by the vector n . The LC given in Eq.(69) and the expression of the hardening 

modulus h  given in Eq.(54) can be combined to obtain the solution to localization in terms of 

h  
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The geometrical method used to solve the LC is detailed in the following. 

Geometrical	method	

In the LC, the deviatoric part of the stress state s  is involved only through the variables 
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 (A-114) 

  is the normal component of the stress vector in the direction n  and T  is its magnitude. The 

vector n  being a unit vector ( 2 2 2
1 2 3 1n n n   ), for a given stress s  (defined by its three 

principal values 1 2 3, ,s s s ), the variables   and T  allow to compute the components of n  as  
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where    , , 1,2,3i j k   are distinct values. Figure A-0.1 exhibits the admissible stress domain 

S  in the  ,T  space, defined by a triangle corresponding to the three conditions 0 1kn  , 

 1,2,3k . This domain is just another representation (convenient for the calculations) of the 
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Mohr diagram usually defined in the  , S  space, where 2S T    is the tangent 

component of s . When 1, 0k i jn n n   , the values of   and T  are uniquely defined and 

correspond to the vertex kP , extremity of the domain S . When 0kn  , Eq.(A-115) can be 

interpreted as a straight line ijL  between the points iP  and jP , border of the domain S . To solve 

the problem of localization, the LC must be satisfied by the stress state s . This corresponds to 

inserting the Eq.(A-115) S  into the LC given in Eq.(A-113) and brings a “stress-state-

admissible” LC solution for H  
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where k  and k  with  1,2,3k are the principal values of the tensors α  and β . This 

equation is a second order polynomial function in   and T  (through the expressions of kn ) 

and can be interpreted as a hyperbola curve C  in the  ,T  plane. 

 
Figure A-0.1. Schematic geometrical interpretation of the localization condition in the  ,T  

plane. 
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The resolution of the problem simplifies when the three principal deviatoric stresses are not 

distinct so three cases will be solved separately. The following presents the case with three 

distinct principal deviatoric stresses, the case with only two distinct principal deviatoric 

stresses and finally, the case with all principal stresses equal. 

 The three principal values of s  are first considered distinct so that    0jk i j i kS s s s s     

and kn  is defined for every  1,2,3k . The solution for H  given in Eq.(A-116) comes from 

two configurations: 

 kH : C  reaches S  at one of its three vertices kP  

 ijH : C  is tangent to S  (i.e. to one of the sides ijL ) and reaches S  

The first case ( kH ) is solved directly using 1, 0k i jn n n   . The three points kP  are defined 

in the  ,T  plane by 
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After several manipulations, the three corresponding values for kH  are found as 
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For the second case ( ijH ), the following methodology must be followed (details i Appendix C) 

Step 1- Obtain explicitly the localization condition LC. 

Step 2- Write the tangency condition between S  and C . 

Step 3- Write the belonging to S  through a contact condition CC and obtain. 

Step 4- Insure contact and tangency to define a unique solution  . 

Step 5- Insert the last solution   into LC to obtain the solution ijH . 

Step 6- Insure that the solution   belongs to S  (i.e. lies between iP  and jP  ) 

Step 1 of the methodology gives 
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Step 1 finally gives a polynomial of second order 

 

     
  
  

     
  

 

2 1 0

2

1 2

0 1 2

2 2 2

2

2

, 2

2

2
2

2

ij i i iT T T

i j i j

T

i j i k

i i j j j i j i j j

j kT T
i j i k

j j j k j kT T T

H T h s s T T h s T h

h
s s s s

h s s h
s s s s

h s s h s s h



    
 

          
 

  
 

         

 
  

    
         
 

   


 (A-120) 

Step 2, corresponding to the tangency between C  and the line ijL , gives 

 

: 0 0ij k k i j

ij

k
ij

k

n T s s s

T T T s
T

s

 



     

                    

L

LC C
C C

L CC

 (A-121) 

Step 3 gives the contact between the curve C  and the line ijL  through 0kn   

  k i jT s s s    (A-122) 

Step 4 gives 
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Step 4 finally gives the solution for   
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Step 5 leads to an explicit expression of LC 
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Combining Eq.(A-123) and Eq.(A-125) gives 
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Step 6 imposes that the variable   lies between is  and js , j is s   , which after several 

manipulations gives 
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Admissible domains imposed by step 6 are given for the case studies in Appendix F. Then, the 

normal to the localization band associated to the solutions kH  and ijH  are given by 
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 The case 0jkS   corresponds to a stress state with only two distinct principal values 
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1 2 312
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 (A-129) 

These situations can be graphically interpreted as the triangle of Figure A-0.1 reducing to two 

superimposed lines. The three points kP  reduce to the two distinct points 1P  and 3P  (with 2 1P P  

for GC and 2 3P P  for GT). Then, the first set of three solutions kH  reduces to two solutions 

1H  and 3H  still defined by Eq.(A-118) (with 2 1H H  for GC and 2 3H H  for GT). Also, the 

three lines ijL  reduce to 13L  only ( 23 13L L  for GC and 12 13L L  for GT). This solution is still 

defined by Eq.(A-126). Finally, three solutions for hardening modulus h  ( 1h , 3h  and 13h ) can 

be associated to the three solutions for H  ( 1H , 3H  and 13H ). 

 The case 0jk ikS S   corresponds to 1 2 3 0s s s    and therefore to hydrostatic state of 

stresses and can be easily handled on its own. 

D. Localization	condition	with	finite	strains	–	formulation	and	solutions	

Formulation	

The function  det Jn n  H A  must be expressed. The term Jn n  H A  can be transformed 

with the methodology used in Appendix A 
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Then, the determinant is 
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    det det detJ e J Jn n    H A A A B  (A-131) 

Since JA  is small compared to   1e 
A , one can assume that  det 0e J A A . Therefore, as 

presented in Chapter 6.3.2, the second determinant of the right hand side of this last equation is 
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with 

           
1 11 1 1 1e J e e J e J e
    

        A A A I A A I A A A  (A-133) 

Since   1e J
A A  is small compared to I , one can use the approximation given by Rice 

(1976):   1
...

     I M I M M M  when M  is small. A first order approximation gives 

        1 1 1 1e J e e J e   
    A A A A A A  (A-134) 

The explicit expression of the second right-hand term is 
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The 4th order tensor given in Eq.(A-133) becomes 
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The LC becomes then 
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Analogically to Eq.(A-113), the LC becomes 
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where H  is the critical value found in Eq.(A-113). Note that with the large deformations 

formulation, the value of the critical modulus is a function of the stress state σ . The 

methodology to solve the LC previously and detailed in Appendix C is again followed but the 

situation is now more complex and we assume that the stress is coaxial with the constitutive 

tensors nα  and nβ . 

Geometrical	method	

The LC can be expressed in the  ,T  space with the vector n  still defined by Eq.(A-115). 

The LC given in Eq.(A-116), now of third order since  32
in  is involved, becomes 
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 With three distinct principal deviatoric stresses, the two sets of three solutions coming from 

contact with kP  and tangency with ijL  must be considered again. The first set of three solutions 

kH  ( 1kn  ) reads now 
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For the second set of solutions ijH  coming from the tangency with ijL , some useful 

expressions are given here 
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Step 1 finally gives a polynomial of third order 
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Steps 2 and 3 give the same tangency condition and contact condition as given in Appendix C. 

However, the derivatives of LC involved in TC are changed owing to the Jaumann 

formulation. 
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Step 4 is solution of a second order polynomial 
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Step 5 becomes 
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The expression of J
ijH  as a function of k  and k  is not given for sake of simplicity, and was 

only computed numerically. 
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E. Localization	condition	with	adiabatic	conditions	‐	formulation	

As a recall from Chapter 6.3.1, the rate constitutive behaviour under adiabatic conditions is 
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Formulation	

The localization condition  det 0an n  H  can be transformed into 
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The multiplicative property of the determinant transforms the localization condition (LC) into 

 det det 0ae a A B  (A-148) 

It is shown in Appendix A that  det aeA  is strictly positive since the temperature T  (and 

consequently a ) is positive. Therefore, as presented in Chapter 6.3.2, the second determinant 

of the left hand side of this last equation is 
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Analogically to Eq.(A-113), the LC becomes 
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F. Particular	yield	functions	

Hershey	yield	function	

The chosen Hershey yield function f  can be expressed in the following way 
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with cosL Lc   and sinL Ls  . Its derivative is then 
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In particular, 

 

   

   

 

     
2

11 1

3
3 2 3

2

3

2 1 2 1
2 2 1

1
33

,
sin 3 273 3 =

2 32

2tr

3 9

3
3 3 2 3 3

2

m

mm
L LL

Leq

L LLeq
L

eq

m m
m m

L L L L L L L L L L L

ff
f ff

s
c

J

f s c c s s c s c c s




  
 





 


        
 

                   
 

      



          

s Ss
σ σ σσ

s s
S s s I s s I

σ





 (A-153) 

with  3 cos 3L Lc   and  3 sin 3L Ls  . The normalized deviatoric stress tensor eqN s  is 

defined 
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where 2
3 LN s  is a picture of the Lode parameter in a similar way as in Benallal and Comi 

(1993), i.e. 
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Using 2 2
2 9eq   N S N N I  and gathering the four terms given in Eq.(A-153), the derivative 

of f  is 
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with  3 tan 3L Lt  . The second order tensors N , 2N  (and consequently s , S  and the 

derivative of f ) are defined by the variable N , which is a picture of the Lode angle L . The 

term α  becomes then 

 

 

 

1

1

3

2

3

, 2 1

:     with    
3

, 2

m

m

L
L L L

L

L
L L

L L

f
m f t

ff

f
m f

c f

   

 

   

  
                      

α E N N
σ

 (A-157) 

The tensor α  is deviatoric, pressure-independent and independent of the equivalent stress eq . 

For the CASE 1, described in Chapter 6.3.2 (associative plastic flow), the localization 

condition LC is, as the tensor α , a function of the Lode angle L  only (i.e. L  and N ). By 

combining the two sets of solutions (Eq.(A-118) and Eq.(A-126)) with the Eq.(A-113), the six 

hardening moduli kh  and ijh  are found for an associated model with pressure independent 

yield function 
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Hershey	yield	function	with	pressure‐dependency	

The previous yield function is now enriched by a pressure-dependence term 0f  so 

    
1

0 0, ,
3
eq

m
eq L H L Hf f f


        (A-159) 

The derivative of this yield function becomes 
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Then the term α  becomes 
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where 0  is directly related to the pressure-dependence term 0f . 

Contrary to the CASE 1, the CASE 3 applies the non-associative plastic flow so f F , 

α β  and the expression of α  and β  are now stated 
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With a Hershey-shaped pressure-independent plastic flow (non-associative), the solutions for 

hardening modulus h  become 
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A value of 0f  can be computed for the AA7075-T651 
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where TCd , the percentage of difference between YC  and YT , is taken equal to 1% for a 

realistic (though imaginary) case. 

Admissibility	domains	of	 ijH 	for	Hersey	yield	function	

For the associated case (CASE 1), the admissibility of the solutions ijh  given in Appendix C 

simplifies, and intervals of admissibility are given by 
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For non-associated case with a pressure-dependant flow stress for instance (CASE 3), the 

admissibility of the solutions ijh  becomes 
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The three functions ijB  are given in Figure A-0.2 for a Lode parameter  1;1L   , with the 

Hershey yield function with  2;16m   and for associated plastic flow (CASE 1: 0 0  ) and 

non-associated plastic flow (CASE 3: 0 0  ) 
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Figure A-0.2. Graphs for 12B (red), 23B (green) and 31B  (yellow) as functions of the Lode 

parameter and admissible domains. 
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