

ENSMA : Ecole Nationale Supérieure de Mécanique et d’Aérotechnique

LIAS : Laboratoire d’Informatique et d’Automatique pour les Systèmes

THESE
pour l’obtention du Grade de

DOCTEUR DE L'ÉCOLE NATIONALE SUPÉRIEURE

DE MÉCANIQUE ET D'AÉROTECHNIQUE

(Diplôme National — Arrêté du 7 août 2006)

Ecole Doctorale : Science et Ingénierie pour l’Information, Mathématiques

Secteur de Recherche : INFORMATIQUE ET APPLICATIONS

Présentée par :

Ahcène BOUKORCA

**

Hypergraphs in the Service of Very Large Scale Query

Optimization

Application: Data Warehousing

Les Hypergraphes au Service de l’Optimisation de Requêtes à très

Large Echelle

Application: Entrepôt de Données

**

Directeurs de Thèse : Ladjel BELLATRECHE

Soutenue le 12 Décembre 2016
devant la Commission d’Examen

JURY

Rapporteurs : Yannis MANOLOPOULOS Professor, Aristotle University of Thessaloniki, Greece

 Sofian MAABOUT Maître de Conférences (HDR), Université de Bordeaux

Examinateurs : Omar BOUSSAID Professeur, ERIC, Université de Lyon 2

 Arnaud GIACOMMETI Professeur, Université de Tours

 Ladjel BELLATRECHE Professeur, ISAE-ENSMA, Poitiers

 Sid-Ahmed BenAli SENOUCI Dr, Mentors Graphics, Grenoble

ENSMA : Ecole Nationale Supérieure de Mécanique et d'Aérotechnique
LIAS : Laboratoire d'Informatique d'Automatique pour les Systèmes

THESE

pour l'obtention du Grade de

DOCTEUR DE L'ECOLE NATIONALE SUPERIEURE

DE MECANIQUE ET D'AEROTECHNIQUE

(Diplôme National � Arrêté du 7 août 2006)

Ecole Doctorale : Sciences et Ingénierie pour l'Information, Mathématiques
Secteur de Recherche : Informatique et Applications

Présentée par :

Ahcène BOUKORCA

Hypergraphs in the service of very large scale query

optimization.

Application: data warehouse

������������

Les hypergraphes au service de l'optimisation de requêtes

à très large échelle.

Application: entrepôts de données

Directeurs de Thèse : Ladjel BELATRECHE

Soutenue le 12 Décembre 2016
devant la Commission d'Examen

JURY

Yannis MANOLOPOULOS Professor, Aristotle University of Thessaloniki, Greece Rapporteur
So�an MAABOUT Maître de Conférences (HDR), Université de Bordeaux Rapporteur

Omar BOUSSAID Professeur, ERIC, Université de Lyon 2 Examinateur
Arnaud GIACOMMETI Professeur, Université de Tours Examinateur
Ladjel BELLATRECHE Professeur, ISAE-ENSMA, Poitiers Examinateur

Sid-Ahmed Benali SENOUCI Dr, Mentors Graphics, Grenoble Invité

Acknowledgment

I would like to express my sincere gratitude to my supervisor Ladjel BELLATRECHE
for his guidance, suggestions, and encouragement to my research. I have learn a lot
from him and I’m very thankful to him for all the opportunities which he gave me
in the research domain. His availability and his pedagogical and scientific skills were
invaluable. This thesis would not have been possible without the help, support and
patience of my supervisor.

I wish to express my deep appreciation to Yannis MANOLOPOULOS and Sofian
MAABOUT, for having accepted to report this work and for their valuable comments
and suggestions. I also thank Omar BOUSSAID, Arnaud GIACOMMETI and Sid-
Ahmed Benali SENOUCI for honoring us in my jury members and their interest to my
work.

I wish also to express my deep appreciation to Zoe Faget and Sid-Ahmed Benali Snouci
for their help and guidance on the progress of this thesis study, and on the validation
of our contribution.

I would like to extend my gratitude to the members of LIAS who accompanied me and
played a crucial role in the preparation of this thesis, Specially a thanks for Mr Em-
manuel GROLLEAU for kindly welcoming me in the laboratory LIAS for supporting
my PhD program.

I would also like to thank Selma BOUARAR et Amira KERKAD for helping me with
important comments and suggestions. And a thanks for Soumia BENKRID for his
intellectual contributions in Chapter 4. Also thanks to all other lab colleagues (Zouhir,
Yacine, Baron, Brice, Amine) for their scientific help during the research program.

My sincere thanks also go to all friends Ilyes, Guillaume , Okba, Nadir, Lahcene, Ay-
men, Thomas, Zahira, Bery, Géraud, Zakaria for their supports and good humour.

I would like to thank everybody who was important to the successful realization of
thesis, as well as expressing my apology that I could not mention personally one by one.

Finally, I would express a deep sense of gratitude to my wife, who has always stood
by me like a pillar in times of need and to whom I owe my life for her constant love,
encouragement, moral support and blessings.

Dedication

To my parents MOHAMED and FATIMA,

my wife SOUAD,

my children MOHAMED, WASSIM and WAEL,

my sisters and brothers,

my all those who are dear to me.

Contents

1 Introduction 3
I Context . 3
II Thesis objectives and contributions . 6

II.1 Contributions . 7
III Thesis Outline . 11

Part I Backgrounds 13

2 Background & State of Art 15
I Introduction . 17
II The Data Warehousing Technology . 18

II.1 De�nitions . 18
II.2 Data warehouse architecture . 19
II.3 Data warehouse design methods . 21
II.4 Summary . 26

III Factors Impacting Query Processing and Optimization 27
III.1 Dimension 1: The Logical Model of our Target Warehouse 28
III.2 Dimension 2: OLAP Queries . 28
III.3 Dimension 3: Logical and Physical Optimizations 29
III.4 Dimension 4: Deployment Phase . 46

IV Data structures and access algorithms . 51
IV.1 Data structures in implementation level 51
IV.2 Data structures in access level . 52

i

IV.3 Optimization level . 52
IV.4 Discussion . 53

V Conclusion . 53

Part II Contributions 55

3 Modeling Query Interaction using Hypergraphs 57
I Introduction . 59
II Hypergraphs and their usages . 60

II.1 De�nitions . 60
II.2 Hypergraph partitioning algorithms . 62
II.3 Applications of hypergraph theory . 66
II.4 Discussion . 67

III Analogy between UQP and EDA . 67
III.1 Analogy between UQP and Electronic circuit 67
III.2 Hypergraph as DS in VLSI circuits . 69

IV Hypergraph as a solution of scalability . 69
IV.1 Query workload representation . 71
IV.2 Hypergraph generation . 74
IV.3 Hypergraph partitioning . 75
IV.4 Transforming hypergraph to UQP . 76
IV.5 Merging the local UQP . 81

V Complexity of the algorithms . 82
VI Performance evaluation . 83

VI.1 Experimental setting . 83
VI.2 The obtained results . 83

VII Conclusion . 85

4 What-if UQP Analysis 87
I Introduction . 89
II A new approach for selecting OS . 91

II.1 Generation of MV-oriented UQP . 91
II.2 Generation of HDP-oriented UQP . 92

III Application of OS-oriented UQP . 93
III.1 UQP as input for selecting materialized views 93
III.2 UQP as input for dynamic materialization and query scheduling 94
III.3 UQP as input for selecting data partitioning schema 97

IV Experimental Evaluation and Analysis . 99
IV.1 Experimental setting . 99

ii

IV.2 OS-Sensitivity of UQP . 100
IV.3 The quality of OS-oriented UQP . 101
IV.4 Dynamic Materialization with query scheduling 103

V Conclusion . 107

5 Query Interaction Serving the Deployment Phase 109
I Introduction . 111
II Parallel Database Design Alternatives . 112
III Motivating Example . 114
IV UQP as a service for designing PRDW . 116

IV.1 The Data Partitioning Phase . 116
IV.2 Partitioning Algorithm Description . 117

V Experimental Evaluation and Analysis . 119
V.1 BQ-Design vs. F &A . 120
V.2 BQ-Design Scalability . 122

VI Conclusion . 125

6 Big-Queries framework 127
I Introduction . 129
II System architecture . 130

II.1 Features Extractor . 130
II.2 UQP Generator . 131
II.3 Physical Design Advisor . 132
II.4 Deployment Advisor . 132

III System Modules . 132
III.1 Query parser module . 132
III.2 Logical query plan generator . 133
III.3 Hypergraph module . 133
III.4 Query processing cost estimator . 134
III.5 Materialized views selection . 136
III.6 Data partitioner . 136
III.7 Deployment designer . 136

IV Implementation . 136
IV.1 Development environment . 137

V Conclusion . 138

Part III Conclusion and Perspectives 139

7 Wrap-up 141

iii

I Summary . 141
I.1 Surveys of Logical and Physical Optimizations 142
I.2 Hypergraphs driven Data Structure for Management of Volume and Shar-

ing of Queries . 142
I.3 What if Uni�ed Query Plan Generation 143
I.4 Query Interaction in the Deployment Phase 143
I.5 Big-Queries . 143

II Future Work . 144
II.1 Hypergraph Structure . 144
II.2 Testing Other Partitioning Hypergraph Tools 144
II.3 Dynamic Construction of Hypergraphs 144
II.4 Advanced Algorithms to Explore our Hypergraphs 145
II.5 Hypergraph for Mixed Workload . 145
II.6 Consideration of others problems in the Deployment Phase 145
II.7 Other Usages of our Findings . 145

Part IV Appendices 147

Cost models 149
III Introduction . 149
IV Cardinality estimation . 150

IV.1 Statistics computation . 150
IV.2 Intermediate results cardinality . 151

V Cost estimation . 154
V.1 Cost model parameters . 155
V.2 Estimation functions for query processing 158

SSB-Based Benchmark Query Templates 163
VI Introduction . 163
VII List of query template . 163

hMetiS: A hypergraph partitioning Package 167
VIII Introduction . 167
IX Overview of hMeTiS . 167

IX.1 hMeTiS algorithms . 167
IX.2 Advantages of hMeTiS . 168

X Using of hmetis program . 168
X.1 Format of hypergraph �le . 171
X.2 Format of the Fix File . 171

iv

X.3 Format of Output File . 172
X.4 hMeTiS Library Interface . 172

XI General Guidelines . 173
XII System Requirements . 173

Relational Algebra 175

Résumé 179

Related Publications 185

List of Figures 188

List of Tables 191

Glossary 191

References 191

1

2

Introduction

I. Context

The success stories of the database technology keep companies continuously demanding more
and more e�cient services (such as data storage, query processing/optimization, security, trans-
action processing, recovery management, etc.) to deal with dimensions that Big Data brought.
They include: large volumes of high velocity, complex and variable data that require advanced
techniques and technologies to enable the capture, storage, distribution and management anal-
ysis of the information. These dimensions have been rapidly advocated by the database com-
munity, where several thematic conferences and products have been launched. We would like
to draw attention to another dimension, which in our opinion, does not get the same buzz as
the traditional dimensions. It concerns the sharing in the world of database. The sharing may
concern several database entities: data, resource, and queries.

From data perspective nowadays, large amounts of data are continuously generated in many
domains like Life Science Research, Natural Resource Exploration, Natural Catastrophe Pre-
vention, Tra�c Flow Optimization, Social Networks, Business Competition, etc. These data
need to be collected, stored and analyzed in order to be well exploited by organization's man-
agers and researchers to perform day-to-day company's tasks such as: (i) decisions making, (ii)
generation of added-value to be more competitive and (iii) sharing the whole or fragments of
their data stored in storage systems with other users and communities. Recently, large and
small companies and organizations raise demands for more data sharing. Usually these data
are stored in DBMSs. For instance, the Competition and Markets Authority (CMA) has or-
dered Britain's high street banks to adopt opening banking principles to increase data-sharing
between �nancial service organisations1. In other disciplines such as behavioral Science, the

1
http://www.experian.co.uk/blogs/latest-thinking/a-new-era-of-data-sharing-how-the-cma-is-shaking-up-retail-banking/

3

http://www.experian.co.uk/blogs/latest-thinking/a-new-era-of-data-sharing-how-the-cma-is-shaking-up-retail-banking/

CHAPTER 1. INTRODUCTION

data sharing contributes in facilitating the reproduction of computational research [88]. The
need of data sharing pushes several countries (such as Australia, Ireland, etc.) to legislate the
usage sharing policy (for privacy issues) in several sectors including government sector2.

From computation resources and storage systems perspective, database storage systems are
evolving towards decentralized commodity clusters that can scale in terms of capacity, pro-
cessing power, and network throughput. The e�orts that have been deployed to design such
systems share simultaneously physical resources and data between applications [106]. Cloud
computing largely contributed in augmenting sharing capabilities of these systems thanks to
their nice characteristics: elasticity, �exibility, on-demand storage and computing services.

Queries which represent one of the most important entities of the database technology are
also concerned by the sharing phenomenon. The query sharing got a particular interest in 80's,
where Timos Sellis identi�ed a new phenomenon known by query interaction and gave rise
to a new problem called Multi-Query Optimization (MQO) [223]. Solving this problem aims at
optimizing the global performance of a query workload, by augmenting the reuse of intermediate
query results. One of the main characteristics of this research problem is that it has been tack-
led throughout all query languages associated to all database generations: traditional databases
(RDB-SQL) [223], object oriented databases (OODB - OQL) [277], semantic databases (SDB
- Sparql) [166, 110], distributed databases [153], stream database (STDB - CQL) [96], data
warehouses (SQL OLAP) [273], etc. as shown in Figure 1.1. The advent of MapReduce for
large-scale data analysis brings the notion of job sharing. Hence, MQO has proved to be a
serious candidate to exploit the common jobs and then factorize them [190]. The main idea of
this work has been borrowed from multi-query optimizations developed in traditional databases.

To integrate the actual reality, the query sharing has to consider a new dimension representing
the volume of queries that storage systems have to deal with. This volume is motivated by the
explosion of E-commerce Web sites, social media, etc. For instance, in Amazon, 100 million
queries for various objects can arrive at its databases. The same fact is identi�ed in Alibaba
the giant Chinese E-commerce site. These queries are complex (require heavy operations such
as joins and aggregations [30]) and repetitive. Another aspect that contributes in increasing
the number of queries that a particular DBMS has to handle is the recommendation and the
exploration of queries [99]. Faced to this situation, the traditional query sharing has to be
revisited to integrate the volume of queries.

Based on this discussion, we claim that any data storage system has to deal with three joint
dimensions: data volume, query volume (we call it big queries) and query sharing issues. The
data volume impacts seriously the performance of queries. Having e�cient methods to accel-
erate data processing becomes more important and urgent than ever, and hence they receive

2http://www.legislation.nsw.gov.au/acts/2015-60.pdf

4

 http://www.legislation.nsw.gov.au/acts/2015-60.pdf

I. CONTEXT

special attention from academic and industrial researchers. This is well illustrated by the huge
number of proposals, aiming at optimizing queries at the logical level [227, 167, 236, 168, 210,
266, 85, 224], the physical level [279, 79, 14, 33, 73, 81, 154] and the deployment level [36].
The query sharing has largely contributed in optimizing queries [110, 273] and physical design
[191, 7]). These e�orts ignore the volume of queries.

Thus, we would like to issue a think tank about sharing among large amount of queries. This
think tank is discussed in the context of relational data warehouses usually modeled by a
star schema or its variants (ex. snow�ake schemas) that provide a query centric view of the
data. Another important characteristic of this schema is that it increases the interaction among
OLAP (Online Analytical Processing) queries, since they perform joins involving the central
fact table(s) and peripheral tables, called dimensions.

Fig. 1.1 � MQO in database generations

As we said before, data and queries are related to the advanced deployment platforms such as
parallel, database clusters, etc. [36]. Designing a database in a such platform requires sensitive
steps/phases, such as: (1) partition data into many fragments, (2) allocate the fragments in
their corresponding processing nodes, and (3) give a query processing strategy over processing
nodes, to ensure load balancing of queries. Data partitioning, data allocation and query load
balancing problems have, as main inputs: a workload of queries, the characteristics of process-
ing nodes and the database schema.

To deal with the volume of interacted queries, the development of advanced data structures
that capture their sharing is widely recommended in de�ning intelligent algorithms. The graph
theory and its data structures largely contribute in solving complex problems involving large
scale of search space, such as data partitioning for centralized databases, where traditional

5

CHAPTER 1. INTRODUCTION

graph representations have been used by several researchers: (i) Navathe et al. [186, 184]
to de�ne vertical and horizontal data partitioning algorithms for relational databases and (ii)
Bellatreche et al. [29] for horizontal partitioning in the context of object oriented databases.
Recently, Curino et al. [81] propose a generalization of the graph concept: hypergraphs, to
partition and replicate the instances of a particular database in the case of distributed OLTP
(Online Transaction Processing), where the processing of distributed transactions is expensive
due to consensus protocol, distributed locks and communication cost. In this context, the nodes
and the edges of a such graph represent respectively, instances of the database and transactions,
where each edge is weighted by a number of transactions. A such the graph can be very huge,
since its nodes are associated to the number of tuples of a database. To manipulate this very
big graph, the authors are motivated to use hypergraph-partitioning algorithms that can en-
sure the scalability. In which, Hypergraph partitioning is well studied by the Electronic Design
Automation (EDA) to test electronic circuit, besides, a large panoply of partitioning libraries
exist such as hMETIS and Zoltan-PHG.

This motivates us to explore hypergraphs in dealing with large volume of interacted queries
(since they were used to dealing with large number of instances). As a consequence, we ap-
proached, Mentors Graphics company located in Grenoble - France, a leader in EDA software
to get their expertise in hypergraph usage and elaborate an analogy between our problem and
their �nding. This collaboration was fruitful, since after several months of collaboration, we
succeed to �nd an analogy between an electronic circuit and an uni�ed query plan, by represent-
ing it as a hypergraph. We also adjust the using of their tools to be exploited for our problem.
Once this hypergraph is generated, we consider it in logical and physical optimizations and the
deployment phase of the life cycle of a data warehouse design. This rich experience will be
wholly discussed in this thesis.

II. Thesis objectives and contributions

Due to the large spectrum of topics that we studied in this thesis, covering: logical optimiza-
tions of queries; physical optimizations; data warehousing; optimization structures selection;
multi-query optimization problem, cost models, deployment phase, hypergraphs, etc. It is nec-
essary to present a synthetic survey on (i) the data warehouse technology, its life cycle that
includes several phases (requirement collection, conceptual phase, logical phase, ETL (Extract,
Transform, Load), deployment phase, physical phase and exploitation phase), (ii) logical and
physical query optimizations, knowing that the former have been largely studied in the context
of the traditional databases, whereas the latter have been ampli�ed in the context of the data
warehouses, and (iii) the deployment phase on a parallel database architecture.
Since we deal with the phenomenon of big queries and their interactions, we have to show
the importance of a scalable data structure that easily captures this interaction, and can be
used as a support to de�ne intelligent algorithms with less computation and high quality for

6

II. THESIS OBJECTIVES AND CONTRIBUTIONS

selecting logical and physical optimizations. We have also to consider case studies to deploy
our �ndings. To do so, we consider the problem of selecting two optimizations structures
which are the materialized views (MV) and the horizontal partitioning for centralized and
parallel environment. We have also developed a tool to assist designers and DBA (Database
Administrator) when dealing with the physical design involving the interaction among queries.

II.1. Contributions

This section highlights the contributions of the thesis. First, we discuss the typical design
of data warehouse to provide a general understanding of the design choices and deployment
architectures. We will focus on The logical and physical optimizations, because they are the
most important tasks of query optimizers. Another point concerns the deployment phase of
the life cycle of the data warehouse.
From these overviews, we discuss the origin of our data structure to represent the query inter-
action issued from our collaboration with Mentors Graphics company. We would like to share
this experience and the e�orts provided to �nd an analogy between our problem and electronic
circuit.
Parallel to the de�nition of this structure, many other developments have been conducted to un-
derstand the algorithms and the tools used by VLSI (Very-Large-Scale Integration) community
and adapt them to our context. Once, this adaptation is done, we consider two workload-driven
problems : the selection of materialized views and the selection of horizontal partitioning. Fur-
thermore, we discuss how we can improve the life cycle of the deployment phase by integrating
our �nding that concerns our data structure and its associated algorithms. Finally, we inves-
tigate the scalability of our algorithms and the quality of their solutions, by stressing them in
terms of database size, size of queries, etc.

II.1.1. Survey of Logical and Physical Optimizations

We conduct an in-depth analysis of how the state-of-art database manages the interaction
among queries and how it is used in logical, physical optimizations and the deployment phase
of the life cycle of the data warehouse. Based on this survey, we give new classi�cations of the
existing studies and techniques used in the context of query optimization, and a clari�cation
of the process of selecting optimization structures during the physical design phase, considered
as one of the major phase. This material was published in the following paper:

[47] Ahcène Boukorca, Ladjel Bellatreche, Sid-Ahmed Benali Senouci, Zoé Faget: Cou-
pling Materialized View Selection to Multi Query Optimization: HyperGraph Approach.
International Journal of Data Warehousing and Mining (IJDWM), 11(2): 62-84 (2015).

7

CHAPTER 1. INTRODUCTION

II.1.2. HyperGraphs as a Data Structure

We present an analogy between electronic circuit and uni�ed query graph, that is usually
generated by merging individual query trees. Note that the leaves of a tree are operands
� either variables standing for relations or particular, constant relations. Interior nodes are
algebraic operators, applied to their child or children. On the other hand, a logical circuit
is composed of gates (or standard cells) that perform logical operations and connected by
metal wires [196]. The same electrical signal may propagate from one gate to several other
gates � such a connection is called a net, and can be conveniently represented by a hyperedge.
The hypergraph corresponding to a logic circuit directly maps gates to vertices and nets to
hyperedges. Figure 1.2 shows the usage of hypergraphs in representing logical circuit. The
processors in today's PCs contain tens of millions of microscopic transistors. This scalability
is usually ensured by graph partitioning techniques [196]. We can cite for instance PaToH
(Partitioning Tool for Hypergraphs) [66] and hMETIS - Hypergraph & Circuit Partitioning3.
hMETIS is a set of programs for partitioning hypergraphs such as those corresponding to VLSI
circuits.
Making the analogy between our problem and electronic circuit allows us borrowing techniques
and tools of the EDA community and adapting them to the generation of an uni�ed query
plan from numerous queries. Our �nding is then exploited to solve the problem of MQO and
to evaluate its e�ciency and quality against the most popular study of the state-of-art. This
material was published in the following paper:

[50] Ahcène Boukorca, Ladjel Bellatreche, Sid-Ahmed Benali Senouci, Zoé Faget: SONIC:
Scalable Multi-query OptimizatioN through Integrated Circuits. 24th International Con-
ference on Database and Expert Systems Applications (DEXA), pp. 278-292, Prague,
Czech Republic, August 26-29, 2013.

i1

i2

i3

i4

i5

o1

o2

g1
g2

g3

g4
g10

g9
g5

g6 g7

g8
g11

g12

i3

i4

i5

o1

o2

g1
g2

g3

g4
g10

g9

g8
g11

g12

i1

i2 g5

g6
g7

Fig. 1.2 � From Logical Circuit to a HyperGraph

II.1.3. What-if Uni�ed Query Plan Generation

The query interaction represented by a uni�ed query plan (UQP) is lying at the intersection
of two worlds: the world of multi-query optimization and the world of physical design. An

3http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview

8

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview

II. THESIS OBJECTIVES AND CONTRIBUTIONS

optimal uni�ed query plan is not necessary good for all instances of the physical design problem
[273, 274]. Thus, it is needed to choose a good plan as input in order to produce a good set of an
optimization structure candidates. Moreover, a good UQP for an optimization structure (OS),
is not necessary good for another structure. Choosing the best a UQP requires enumerating
all possible plans, what is impossible because of the huge number of possible plans in the case
of big workloads (big-queries). On the other side, the size of candidates proposed by any UQP
in big-queries context, may be very big. As a consequence, �nding the optimal optimization
structure con�guration becomes very di�cult or even impossible (complexity of combinatorial
algorithms).
To overcome these problems, we have proposed a new approach that incorporates the knowledge
related to optimization structures when generating UQP, in order to minimize their enumeration
cost. Our proposal captures query interaction in an UQP, by dividing the initial problems in
several small disjoint sub-problems, which can be executed in parallel. Dividing multi-query
optimization search space implies splitting the set of candidate elements in several small subsets,
which minimizes the complexity of combinatorial algorithms to select the best con�guration
of an optimization structure. Our approach works around the hypergraph: a data structure
(DS) used to model query interaction. This DS supports a big number of candidate elements
and has already the adequate algorithms to partition the initial con�guration into several
sub-con�gurations with minimum loss of its characteristic (query interaction). The approach
is inspired from the hypergraph partitioning and its contributions in testing logical circuits.
More concretely, we propose a greedy approach that produces an adequate UQP for an OS,
called OS-oriented UQP, by injecting optimization structure knowledge in the process of UQP
generation.
This proposal was published in the following paper:

[52] Ahcène Boukorca, Zoé Faget, Ladjel Bellatreche: What-if Physical Design for Multiple
Query Plan Generation. 25th International Conference on Database and Expert Systems
Applications (DEXA), pp.492-506, Munich, Germany, September 1-4, 2014.

To evaluate the e�ciency and e�ectiveness of our approach, we consider two traditional op-
timization structures: materialized views and horizontal partitioning � both are based on a
workload of queries, but use di�erent constraints. For materialized views, we evaluate our
proposal for static and dynamic cases, with taking account or not of the problem of query
scheduling.
This material was published in the following paper:

[49] Ahcène Boukorca, Ladjel Bellatreche, Alfredo Cuzzocrea: SLEMAS: An Approach for
Selecting Materialized Views Under Query Scheduling Constraints. 20th International
Conference on Management of Data (COMAD), pp. 66-73, Hyderabad, India, December
17-19, 2014.

[212] Amine Roukh, Ladjel Bellatreche, Ahcène Boukorca, Selma Bouarar: Eco-DMW:
Eco-Design Methodology for Data warehouses. Proceedings of the ACM Eighteenth In-

9

CHAPTER 1. INTRODUCTION

ternational Workshop on Data Warehousing and OLAP (DOLAP), pp. 1-10, Melbourne,
VIC, Australia, October 19-23 2015.

II.1.4. Query Interaction in the Deployment Phase

Since queries are used by all phases of the deployment steps: data partitioning, data allocation
and load balancing, we think that it could be interesting to push our re�ection of incorporating
our hypergraph structure in all query sensitive problems, in the deployment phase. The promis-
ing results obtained in a project in our lab, that aims at proposing a joint approach to deploy
a data warehouse in a parallel architecture [36], motivate us to integrate the dimension of the
interaction among queries to deploy a data warehouse in a parallel architecture, especially the
horizontal data partitioning and data allocation.
This material was published in the following paper:

[48] Ahcène Boukorca, Ladjel Bellatreche, Soumia Benkrid: HYPAD: Hyper-Graph-Driven
Approach for Parallel Data Warehouse Design. 15th International Conference on Algo-
rithms and Architectures for Parallel Processing (ICA3PP), pp. 770-783, Zhangjiajie,
China, November 18-20, 2015.

� [141] Dhouha Jemal, Rim Faiz, Ahcène Boukorca, Ladjel Bellatreche: MapReduce-DBMS:
An Integration Model for Big Data Management and Optimization. 26th International
Conference on Database and Expert Systems Applications (DEXA), pp. 430-439, Valen-
cia, Spain, September 1-4, 2015

II.1.5. The development of Advisor Big-queries

Based on our �ndings, it will be opportune to develop an advisor inspired from the well-known
tools developed by commercial editors and academicians to assist both designers and DBAs dur-
ing their deployment activities and administration tasks when selecting optimization structures.
As a consequence, we develop a tool called Big-Queries that combines two main functionali-
ties: selecting optimization structures and deploying a DW in parallel machines. This interface
allows DBA visualizing the state of his/her database that concerns three aspects: (i) tables
of the target data warehouse (their descriptions, de�nition and domain of each attribute), (ii)
the used workload (their SQL descriptions, access frequency of each query, selectivity factors
of selection and join predicates), and (iii) resources required by physical design phase (size of
the bu�er, page size, the constraints related to our OS), (iv) the interaction among queries
visualized as hypergraphs, the di�erent schemes related to our OS (materialized views and
horizontal partitioning), the deployment schema with their respective costs (inputs/outputs,
maintenance costs, storage costs). It is doted of gateway connection to several types of DBMS
(Oracle11g, Oracle 12c, PostgreSQL).
Big-queries tool is available in the forge of our laboratory: http://www.lias-lab.fr/forge/
projects/bigqueries.

10

http://www.lias-lab.fr/forge/projects/bigqueries
http://www.lias-lab.fr/forge/projects/bigqueries

III. THESIS OUTLINE

III. Thesis Outline

Fig. 1.3 � Repartition of thesis chapters

The remainder of the manuscript is organized as follows:

Chapter 2: provides the necessary background to understand our contributions. In
this chapter, we start by zooming on data warehousing technology on which our exper-
iments validation are done. Thereafter, we detail the parameters that a�ect response
query processing time, materialized views, data partitioning and mulit-query optimiza-
tion problems, and we give overviews of designing parallel data warehouse.

Chapter 3: details our main contribution that consists at using graph theory to overcome
the of managing big-queries. The contribution aims at merging the MQO and physical
design problems to generate target candidates for a speci�c optimization technique (MV ,
index, and data partitioning). This is done by injecting OS knowledge in the generation
of UQP.

Chapter 4: presents the application of our oriented-UQP approach in the selection
of di�erent OS. First, the UQP is applied for MV selection issue with and without
constraints, and exploited in dynamic materialization with query scheduling. Secondly,
the UQP is used for horizontal data partitioning (HDP).

11

CHAPTER 1. INTRODUCTION

Chapter 5: details our approach to design a parallel data warehouse taking into account
query interaction that represented by uni�ed query plan.

Chapter 6: gives a description of our tool Big-Queries used to validate our work.

Conclusion: concludes the thesis by providing a summary and an evaluation of the
presented work. This chapter also discusses several opportunities for future work.

The main contributions of this thesis are presented in chapters 3, 4, 5 and 6. Figure 1.3 shows
schematically the main axes of this work and their distribution in each chapter.

12

Part I

Backgrounds

Chapter

2

Background & State of Art

Contents

I Introduction . 17

II The Data Warehousing Technology . 18

III Factors Impacting Query Processing and Optimization 27

IV Data structures and access algorithms . 51

V Conclusion . 53

Abstract

This chapter is divided into two parts: (i) the background that presents di�erent
concepts and de�nitions related to the context of our study which represents the data
warehouse. A special focus on its design life cycle is given. It includes the following
phases: (a) elicitation of user requirements, (b) the conceptual modelling, (c) the logical
modelling, (d) ETL (Extract, Transform, Load), (e) the deployment, (f) the physical
modelling, and (g) the exploitation phase. This background aims at facilitating the
presentation and the understanding the set of our contributions that covers three chained
phases: logical, deployment and physical. (ii) Due to the complexity of these phases, we
propose to present state of art related to logical and physical optimizations of queries
running on centralized and parallel platforms. In this state of art, we also discuss the role
of interaction between queries � a phenomenon well present in the context of relational
data warehouses.

15

CHAPTER 2. BACKGROUND & STATE OF ART

16

I. INTRODUCTION

I. Introduction

Processing and optimization of queries in all database generations (traditional databases, object
oriented databases, XML databases, data warehouses, graph databases, factorized databases,
etc.) strongly depend on the proprieties of their: logical models, query languages and physical
models, which are the funnel of all other phases of the database life cycle. This situation o�ers
two main types of query optimizations: (i) logical optimizations and (ii) physical optimizations.
As regards the �rst type of optimizations, when a query is issued by a user or an application,
it is parsed to check whether the query is correctly speci�ed, resolve any names and references,
verify consistency, and perform authorization tests. When the query passes these tests, it is
converted into an internal representation that can be easily processed by the subsequent phases.
Then, the "query rewrite" module transforms the query into an equivalent form by carrying
out a number of optimizations o�ered by the properties of the used query languages (e.g. al-
gebraic properties the relational model) [205]. In the context of very large databases requiring
complex queries involving joins and aggregations, the logical optimizations are not enough [72].
As a consequence, the physical optimizations (such as materialized views, indexes, partition-
ing, data compression, etc.), selected during the physical phase (PYP), are necessary. These
optimizations are crucial for performance of the �nal database/data warehouse, since they deal
with decisions about selecting physical storage structures and access methods for data �les.
It should be noticed that the PYP exploits the properties of the deployment platform of the
target databases/data warehouses.

The query processing and optimization have been one of the most active research topics in the
Core Databases and Information Systems. By scholar.googling "query processing databases",
in 2016, we �nd 11 300 entries. Queries can be executed either in an isolated way or in a
joint manner. In this later, the exploitation of common intermediate results of the queries is
usually considered when selecting optimization structures. The problems related to query opti-
mization and physical design are both known as hard tasks. They integrate several parameters
belonging to various phases of the life cycle of database/data warehouse design: conceptual,
logical and deployment and constraints (e.g. storage, maintenance, energy). Consequently,
their search spaces may be very large [222, 78, 201, 220, 68, 24]. To reduce the complexity of
these problems, pruning of these search spaces is mandatory [162].
In early researches on databases, the majority of the studies were focused on logical optimiza-
tions. The importance of physical optimizations and especially physical design, were ampli�ed
as query optimizers became sophisticated to cope with complex decision support queries that
share intermediate results [72]. To strengthen our �nding, we consider the multi-query opti-
mization, initially discussed by Professor Timos Sellis in 1988 [223], in the context of logical
optimizations. It aims at exploiting common sub-expressions to reduce evaluation cost of
queries. Modelling this problem has been exploited by the process of physical optimization
structures such as materialized views [273]. This clearly shows the strong dependency between
logical (LOP) and physical (POP) optimizations. This means that if a change in the LOP

17

CHAPTER 2. BACKGROUND & STATE OF ART

often results in a change in that of POP . With the explosion of data volumes, the increasing
needs of end users and decision makers in terms of exploring data [143] and recommending
queries [9], and the diversity of deployment platforms motivate us to consider the dependency
between logical and physical optimizations in the context of big-queries. In this chapter, we
introduce the foundations on which this work is built, and position our contributions.
This chapter begins with an overview of the data warehouse technology, its architecture, its
design life cycle (Section II). In Section III, we present factors that in�uence the logical and
physical optimizations of OLAP queries. Section discusses the most popular data structures
used in database context. Finally, Section V concludes the background material.

II. The Data Warehousing Technology

Traditional databases, called operational databases, are designed for building day-to-day ap-
plications. They aim at ensuring fast and concurrent accesses to data while guaranteeing
consistency. They are based on the On-Line Transaction Processing (OLTP) paradigm. These
databases are designed with high normalization degree using functional dependencies and nor-
mal forms [101]. Generally, the OLTP transactions access and return few records [101]. On the
other hand, analytical requirements imposed by big companies such as Wal-Mart [267] need
to aggregate a large volume of historical data from many tables (using joins). Unfortunately,
operational databases fail to support analytical queries. This is because they were not designed
to store the historical data and process them in e�cient way. These limitations largely con-
tributed to the birth of a new technology which is the data warehousing that supports On-Line
Analytical Processing (OLAP).
A Data Warehouse (DW) aims at supporting decision's making. It collects data from various
heterogeneous, autonomous, evolving and distributed data sources, transforms and cleans them
and �nally loads them into new data structures designed to support OLAP queries. These
structures are represented by a hypercube, with dimensions corresponding to various business
perspectives, and their cells contain the measures to be analyzed.
In the sequel, we give an overview related to a DW . A brief description of the conventional
architecture, query languages and designing steps of a DW are discussed. A large discussion
about the logical and physical optimizations is also given.

II.1. De�nitions

De�nition 1. DW is a repository of integrated data issued from di�erent sources for data
analytic purposes [158]. More technically, a DW is de�ned as a collection of subject-oriented,
integrated, non-volatile, and time-varying data to support management decisions [256].

Below, we explain the four key characteristics of a DW [256]:

18

II. THE DATA WAREHOUSING TECHNOLOGY

� Subject oriented: means that the DW focuses on analytical needs which depend on
the nature of activities performed by the companies (e.g. inventory management, product
sales recommendation, etc.).

� Integrated: means that data are extracted from several organizational and external
sources have to be integrated after the processes of cleaning, transformation usually per-
formed through an Extraction, Transformation, and Loading Process (ETL).

� Non-volatile: means that durability of data is guaranteed by disallowing data modi�-
cation and removal, thus expanding the scope of the data to long period than operation
systems usually o�er.

� Time varying: indicates the possibility of keeping, for the same information, di�erent
values related to its changes (evolution).

De�nition 2. On-Line Analytical Processing (OLAP) deals with analytical queries that
handle a heavy load of data which involves aggregation of values captured by scanning all records
in a database [59].

De�nition 3. Multidimensional model is a data representation in an n-dimensional space
[117]. Usually called data cube or hypercube. It is used as a data structure to save data and
to facilitate the optimization of OLAP queries.

A multidimensional model is composed of a set of dimensions and set of facts. A dimension is
composed of either one level or one or more hierarchies. A level is analogous to an entity type
in Entity-Relationship model [75]. A hierarchy comprises several related levels (e.g. year −→
semester −→ month −→ day). A dimension may contain several hierarchies. Levels in a
hierarchy permit analyzing data at various granularities or level of details. These levels impact
the query processing and optimization (e.g., the case of bitmap join indexes [32]). Figure 2.1
shows an example of a cube representing sales activities. It has three dimensions: Product,
Time, and Customer.

De�nition 4. Data mart: is a specialized data warehouse oriented for a speci�c business line
or a team (department) [114].

II.2. Data warehouse architecture

In the literature, the general architecture of a DW is composed of �ve tiers [158] as shown in
Figure 2.2.

1. Data sources tier: represents the operational activities that are saved in operational
databases, XML �les, etc. Data sources can be internal (produced inside the companies)
or external (from the Web).

19

CHAPTER 2. BACKGROUND & STATE OF ART

Time (week)

P
ro

d
u

c
t

(C
a
te

g
o

ry
)

C
lie

nt (
C
ity

)

2
2

2
1
0

Paris

Poitiers

Lyon

Week#4Week#3Week 2Week#5

C
at

eg
o
ry

#2

C
at

eg
o
ry

#3

C
at

eg
o
ry

#1

D
im

e
n

s
io

n
s

measures

Fig. 2.1 � An example of multidimensional model representation

Data

Sources

Integraion

Tier

DW

Tier

OLAP

Tier

End user

Tier

Internal

Sources

ETL

Process

Data

Staging

Operational

Databases

Data

warehouse

Data

Marts

OLAP

Server

OLAP

tools

reporting

tools

Data

mining

tools

Fig. 2.2 � Data warehouse architecture

2. The Integration tier: is composed of ETL tools (Extract, Transform, Load) involved
to feed DW by data from sources (see. Section II.3). The ETL process needs an inter-
mediate temporary database called data staging area [258], which is used to temporarily
save extracted data to facilitate the integration and transformation processes before their
loading into the DW .

3. The data warehouses tier: represents the data repository dedicated to store a DW or
several data marts. The DWs and data marts are described by Meta-data that de�nes
the semantic of data and organizational rules, policies, and constraints related to data
items [114].

4. The OLAP tier: is composed of OLAP server usually used for business use of multidi-

20

II. THE DATA WAREHOUSING TECHNOLOGY

mensional data representation.

5. The end user tier: contains tools allowing users to exploit the DW contents. It in-
cludes: (1) tools to execute OLAP queries. (2) reporting and statistical tools to provide
dashboards following the decision requirements, and (3) data mining tools to discover
some valuable knowledge from data currently stored in the DW . To load data, the end
user tools can use the OLAP server, DW , or data marts.

II.3. Data warehouse design methods

In this section, we present di�erent phases of the life-cycle of its design inherited from tra-
ditional databases. Usually, it includes the following phases: data source analysis, elicitation
of requirements, conceptual, logical, deployment, and physical design. ETL is appended as a
design phase responsible for analytical processing [156]. Phases depicted in Figure 2.3 have to
be follow when designing a DW .

Requirements

specification

Conceptual

design

Logical

design

ETL

design

Deployment

design

Physical

design

Fig. 2.3 � Phases in data warehouse design

Data Sources. As we said before a DW is built from heterogeneous data sources, with dif-
ferent data representations, and provenance. The heterogeneity poses serious problems when
designing the DW . This is due to the presence of con�icts that may exist among sources. Goh
et al. [111] suggest the following taxonomy of con�icts: naming con�icts, scaling con�icts, con-
founding con�icts and representation con�icts. These con�icts may be encountered at schema
level and at data level.

� Naming con�icts: occur when naming schemes of concepts di�er signi�cantly. The most
frequently case is the presence of synonyms and homonyms. For instance, the status of a
person means her familial status or her employment status.

� Scaling con�icts : occur when di�erent reference systems are used to measure a value (for
example price of a product can be given in Dollar or in Euro).

� Confounding con�icts : occur when concepts seem to have the same meaning, but di�er in
reality due to di�erent measuring contexts. For example, the weight of a person depends
on the date where it was measured. Among properties describing a data source, we can
distinguish two types of properties: context dependent properties (e.g. the weight of a
person) and context non-dependent properties (gender of a person).

21

CHAPTER 2. BACKGROUND & STATE OF ART

� Representation con�icts : arise when two source schemas describe the same concept in
di�erent ways. For example, in one source, student's name is represented by two elements
FirstName and LastName and in another one it is represented by only one element Name.

The data sources may be grouped into �ve main categories [206]: (i) production data, (ii)
internal data, (iii) archived data, (iv) external data and (v) experimental data. The production
data come from the various operational systems of the enterprise. The internal data include the
data stored in spreadsheets, documents, customer pro�les, databases which are not connected
to the operational systems. External data such as data produced by external agencies, weather
forecast services, social network, and recently knowledge bases such as Yago [133], etc. play
an crucial role in DW design of adding new values to the warehouses [39]. Recently, the
computational science community such as physics, aeronautic, etc. is building warehouses from
the experiment results. We can cite for instance, the example of project AiiDA1.
The data of sources range from traditional ones, to semantic data, passing by graph databases
[132, 102]).

Data Warehouse Requirements. As any product, the development of a DW application is
based on functional and non-functional requirements [114]. Note that functional requirements
describe the functionalities, the functioning, and the usage of the DW applications to satisfy
the goals and expectations of decision makers. These requirements are known as business re-
quirements [55] that represent high-level objectives of the organization for the DW application.
They identify the primary bene�ts that the DW technology brings to the organization and its
users. They express business opportunities, business objectives and describe the typical users
and organizations requirements and their added-values. Other functional requirements are as-
sociated to users of the DW (called user requirements) describe the tasks that the users must
be able to accomplish with thanks to the DW application. User requirements must be collected
from people who will actually use and work with this technology. Therefore, these users can
describe both the tasks they need to perform with the DW . These requirements are modelled
using several formalisms such as: UML use cases, scenario descriptions and goals [46].

Non-functional requirements, called quality attributes are either optional requirements or need-
s/constraints [164], they are detailed in system architecture. They describe how the system
will do the following objectives: the security, the performance (e.g. response time, refresh time,
processing time, data import/export, load time), the capacity (bandwidth transactions per
hour, memory storage), the availability, the data integrity, the scalability, the energy, etc. This
type of requirements has to be validated over the majority of the phases of the DW life-cycle.

Conceptual Design. It aims at deriving an implementation-independent and expressive con-
ceptual schema according to the conceptual model. As said in [256] that database community

1http://www.aiida.net/

22

http://www.aiida.net/

II. THE DATA WAREHOUSING TECHNOLOGY

agreed for several decades that conceptual models allow better communication between design-
ers in terms of understanding application requirements. However, there is no well-established
conceptual model for multidimensional data. Several formalisms mainly borrowed from tra-
ditional databases exist to design the conceptual model of a DW : E/R model [112, 218],
object-oriented model [3, 252, 173], and non-graphical representation [200]. The quality of a
DW conceptual model is evaluated using testing methods [247].

Logical Design. There are three main approaches to represent logical model of a DW , de-
pending on how the data cube is stored: (i) the relational ROLAP (ROLAP), which stores
data cube in relational databases and uses an extension of SQL language to process these data.
Two main schemes are o�ered by ROLAP: the star schema and snow�ake schema. Figures 2.4a
and 2.4b show, respectively, an example of DW star and snow�ake schemes of SSB benchmark
[193]. A star schema consists of a one or several large fact table (s) connected to multiple
dimension tables via foreign keys. Dimension tables are relatively small compared to the fact
table and are rarely updated. They are typically non normalized so that the number of needed
join operations is reduced. To avoid redundancy, the dimension tables of a star schema can
be normalized. There is a debate on the bene�ts of having such normalized dimension tables,
since it will, in general, slow down query processing, but in some cases it provides a necessary
logical separation of data such as in the case of the demographic information [169]. (ii) multi-

LineOrder

orderKey

partKey

custKey

suppKey

dateKey

quantity

discount

revenue

totalPrice

tax

extendendPrice

Supplier

suppKey

name

address

phone

city

nation

region

Customer

custKey

name

address

phone

MKTSEGMENT

city

nation

region

Part

partKey

name

mfgr

category

brand1

color

type

size

container

date

dateKey

date

dayofweek

month

year

yearmonth

sellingseason

weeknumyear

daynumweek

daynummonth

monthnumyear

(a) Star schema

LineOrder

orderKey

partKey

custKey

suppKey

dateKey

quantity

discount

revenue

totalPrice

tax

extendendPrice

Supplier

suppKey

name

address

phone

Customer

custKey

name

address

phone

MKTSEGMENT

Part

partKey

name

mfgr

category

brand1

color

type

size

container

date

dateKey

date

dayofweek

month

year

yearmonth

sellingseason

weeknumyear

daynumweek

daynummonth

monthnumyear

City

cityKey
city
nation

region

cityKey

(b) Snow�ake schema

Fig. 2.4 � Examples SSB schemes

dimensional OLAP (MOLAP) stores cube data in multidimensional array format. The OLAP
operations are easily implemented on this structure. For high dimensionality of data, ROLAP
solutions are recommended [256]. (iii) Hybrid OLAP (HOLAP) combines both approaches. It
gets bene�t from the storage capacity of ROLAP and the processing power of MOLAP.

23

CHAPTER 2. BACKGROUND & STATE OF ART

ETL design. ETL processes are responsible for extracting and transforming data from het-
erogeneous business information sources to �nally loading them into the target warehouse.
This phase plays a crucial role in the process of the DW design. The quality of the warehouse
strongly depends on ETL (the garbage in garbage out principle) [2]. The di�erent steps of
ETL need to understand di�erent schemes (conceptual, logical and physical) of data sources
[232, 31, 259, 262, 251, 2, 268, 254]. Several commercial and academic tools of ETL are also
available such as: Oracle Warehouse Builder (OWB), SAP Data Services, Talend Studio for
Data Integration, Pentaho Data Integration, etc.2.

The �rst studies on ETL were concentrated on the physical models of data sources that in-
cludes the deployment platform (centralized, parallel, etc.) and the storage models used by the
physical models (e.g. tables, �les). In [254], a set of algorithms was proposed to optimize the
physical ETL design. Alkis et al. [232] propose algorithms for optimizing the e�ciency and per-
formance of ETL process. Other non-functional requirements such as freshness, recoverability,
and reliability have been also considered [233]. The work of [183] proposes an automated data
generation algorithm assuming the existing physical models for ETL to deal with the problem
of data growing.

Other initiatives attempted to move backward ETL from physical models to logical models.
[262] proposed an ETL work-�ow modelled as a graph, where nodes of the graph are activ-
ities, record-sets, attributes, and the edges are the relationship between nodes de�ning ETL
transformations. It should be noticed that graphs contributing in modelling ETL activities.
In [259], a formal logical ETL model is given using Logical Data Language (LDL) [229] as a
formal language for expressing the operational semantics of ETL activities. Such works assume
that ETL work�ow knows the logical models of data sources and the elements of their schemes
(relations, attributes).

Another move backward to conceptual models has been also identi�ed, where approaches based
on ad-hoc formalisms [260], standard languages using UML [251], model driven architecture
(MDA) [140], Business Process Model and Notation(BPMN) [268, 8] and mapping modelling
[62, 174]. However, these approaches are based on semi-formal formalisms and do not allow
the representation of semantic operations. They are only concentrated on the graphical design
of ETL processes without specifying the operations and transformations needed to overcome
the arising structural and semantic con�icts. Some works use ontologies as external resources
to facilitate and automate the conceptual design of ETL process. [234] automated the ETL
process by constructing an OWL ontology linking schemes of semi-structured and structured
(relational) sources to a target data warehouse (DW) schema. Other studies have been concen-
trated on semantic models of data sources such as the work of [187] that considers data source
provided by the semantic Web and annotated by OWL ontologies. However, the ETL process

2https://www.etltool.com/list-of-etl-tools/

24

https://www.etltool.com/list-of-etl-tools/

II. THE DATA WAREHOUSING TECHNOLOGY

in this work is dependent on the storage model used for instances which is the triples. Note
that after each research progress on ETL, its operations have to be speci�ed and rewritten.
This situation motivates researchers to make ETL more generic. In [262], the authors propose
a generic model of ETL activities that plays the role of a pivot model, where it can de�ne
10 generic ETL operator [235]. The signature of each operator is personalized to the context
where target data source contains integrated record-sets related to attributes extracted from
sources satisfying constraints:

1. Retrieve(S,A,R): retrieves record-sets R related to attributes A from Source S;

2. Extract(S,A,R,CS): enables selection and extraction of data from source S satisfying
constraint CS;

3. Merge(S,A1, A2, R1, R2): merges record-sets R1 and R2 belonging to the same source S;

4. Union(S1, S2, A1, A2, R1, R2): uni�es record-sets R1 and R2 belonging to di�erent sources
S1 and S2 respectively;

5. Filter(S,A,R,CS
′
): �lters incoming record-sets R, allowing only records with values

satisfying constraints CS
′
;

6. Join(S,A1, A2, R1, R2): joins record-sets R1 and R2 having common attributes;

7. Convert(S,A,R, FS, FT): converts incoming record-sets R from the format FS of source
S to the format of the target data source FT ;

8. Aggregate(S,A,R, F): aggregates incoming record-set R applying the aggregation func-
tion F (count, sum, avg, max) de�ned in the target source.

9. DD(R): detects and deletes duplicate values on the incoming record-sets R;

10. Store(T,A,R): loads record-sets R related to attributes A in target data source T ,

Building the ETL process is potentially one of the biggest tasks of building a warehouse; it is
complex, time consuming, and takes the lion's share of design and implementation e�orts of
any warehouse project. This is because it requires several tasks and competencies in terms of
modelling, work-�ows, and implementations. Non-functional requirements such as quality and
the performance are taken into account when designing ETL [261, 231, 53]. In this thesis, we
assume that ETL phase is already performed.

Deployment Phase. This phase consists in choosing the adequate platform in which the
target warehouse will be deployed. Several platforms can candidates to store the warehouse:
centralized, database clusters, parallel machines, Cloud, etc. The choice of the deployment
platform depends on the company budget and the �xed non-functional requirements [36].

25

CHAPTER 2. BACKGROUND & STATE OF ART

Physical design. It is a crucial phase of the DW life cycle. Note that the majority of non-
functional requirements are evaluated during this phase. It uses the inputs of deployment and
the logical phases. In this design, optimization structures such as materialized views, indexes,
data partitioning, etc. are selected to optimize one or several non-functional requirements such
as query performance and energy.
Since, we concentrate on processing and optimizing big queries that take into account the
logical, deployment and physical phases, a special focus on deployment and physical phases
will be given in next sections.

II.4. Summary

Based on the above discussion, we �gure out the presence of diversity that concerns all phases
of the life cycle that designers have to consider when designing a DW application. If we project
this diversity on our contributions (related to processing and optimizing big queries), we have
identi�ed four main dimensions that have to be taken into account when o�ering adequate
optimizations of these queries:

1. the chosen logical model (LM) of the DW application identi�ed during the logical phase
of the life cycle;

2. the used query language (QL) o�ered by the DBMS;

3. the used deployment platform (DP) including the target DBMS and hardware;

4. the available logical and physical optimizations (PO) o�ered by the DBMS that have
to be exploited by DBA either in isolated or joint manners to ensure the performance of
her/his workload.

Once these dimensions are chosen, they give the signature of a warehouse application. The
particularity of these dimensions is that the �rst three are generally supposed as frozen, and
the last one may vary according the DBA expertise and the query optimization requirements.

Example 1. To illustrate these four dimensions that we considered as the core of our think tank,
we give an example of tested results obtained by the Transaction Processing Council (TPC).
http: // www. tpc. org/ tpch/ results/ tpch_ perf_ results. asp presents the TPC-H - Top
Ten Performance Results. We focus on the 100,000 GB Results (last table of this Web Site).
It presents a TPC-H schema (variant of the star schema) (corresponding to our dimension 1)
with its queries (corresponding to our dimension 2), executed on EXASOL EXASolution 5.0
database and Dell PowerEdge R720xd using EXASolution 5.0 (dimension 3). The dimension
4 is related to di�erent optimizations o�ered by the used database.

In this context, our work consists in getting bene�t from the characteristics of the frozen di-
mensions and exploiting them to optimize very large number of queries. More correctly, our

26

http://www.tpc.org/tpch/results/tpch_perf_results.asp

III. FACTORS IMPACTING QUERY PROCESSING AND OPTIMIZATION

problem of optimizing big queries may be formalized as follows: given:

� A workload W of queries, expressed in:

� a query language (QL) related to:

� a logical model (LM) translated to:

� a physical model (PM) associated to:

� a set of physical optimizations (PO) deployed in:

� a platform (P).

The objective of our problem is to optimize the workload W by:
exploiting as much as possible the characteristics of each input.

To taking better advantages of these characteristics, we propose in next sections to review each
dimension and their interaction. Figure 2.5 presents an UML model illustrating our proposal.

Fig. 2.5 � UML Model of our Big-Queries Optimization Problem

III. Factors Impacting Query Processing and Optimization

In this section, we �rst review each entry, its characteristics and its role in optimizing big
queries.

27

CHAPTER 2. BACKGROUND & STATE OF ART

III.1. Dimension 1: The Logical Model of our Target Warehouse

We have already reviewed the major logical schemes of DW . In our study, we concentrate on
a DW modelled by a relational schema such as the star schema or its variants.

III.2. Dimension 2: OLAP Queries

Operations in DW applications are mostly read ones and are dominated by large and complex
queries. Two main classes of query languages exist in the context of DW . They depend on the
architecture of the target DW : ROLAP (Relational OLAP) and MOLAP (Multidimensional
OLAP). The ROLAP exploits the maturity and standardization of relational database solu-
tions. The typical queries de�ned on the most popular logical schema which is the star schema
are called star join queries. They have the following characteristics:

1. a multi-table join among a large fact table and dimension tables,

2. each one of the dimension tables involved in the join operation has multiple selection
predicates on its descriptive attributes,

3. there is no join operation between dimension tables.

o�ers a fast response time for queries, but it su�ers from modelling all user requirements.
Naturally, ROLAP uses an extension of SQL languages that includes OLAP operations such as
cube, roll-up, drill-down, etc. For MOLAP, MDX (multidimensional Expressions) language is
mainly used. While SQL operates over tables, attributes, and tupes of the relational schemes
(e.g. star schema), MDX works over data cubes, dimensions, hierarchies and members (at the
instance level).
The syntax of a typical MDX query is as follows:

SELECT <axis specification>

FROM <cube>

[WHERE <slicer specification>]

In this thesis, we concentrate on a SQL language for ROLAP DW . This language uses several
operators with a rich set of properties on their compositions that impact the deployment and
the physical design phases. These properties are described in the Appendix XII.
In the �rst generation of query processing, the queries were treated in isolation. In 1988, the
concept of multi-query optimization has been introduced in [223].

De�nition 5. Multiple query optimization (MQO) (called also global query optimiza-
tion) exploits the interaction among queries by the means of intermediate results of a given the
workload [223].

To understand this phenomenon of MQO, let us consider the following example.

28

III. FACTORS IMPACTING QUERY PROCESSING AND OPTIMIZATION

Example 2. Let Q1 and Q2 be two queries. Q1 has joins between the base relations R1,R2

and R3 with a selection on R1 using the predicate p(att1=val). Q2 has joins between base relations
R1,R3 and R4 and the same selection as Q1. Their query trees are given in isolated way in
Figures 2.7a and 2.7a. Figure 2.7c presents a merging of these two tree by exploiting a common
node.

This phenomenon has been largely exploited by logical and physical optimizations as we will
show in next Sections.

III.3. Dimension 3: Logical and Physical Optimizations

As we said before, in this dimension, we distinguish two main types of optimizations: logical
and physical.

III.3.1. Logical Optimizations

The logical optimizations are related to di�erent operations that a query optimizer has to
performed when generating the best query plan (for a given query) among numerous plans.
This is done by the exploitation of the properties of relational algebra. Note that all plans are
equivalent in terms of their �nal output, but vary in their costs. This cost quanti�es a metric
of a non functional requirement such as the amount of time that they need to run [137]. One
of the main task of a query optimizer is to select the plan with minimum amount of time. This
requires smart algorithms associated with advanced data structures.
More concretely, the query trees and plans are one the most important inputs of any query
optimizer. The process of executing a given query passes through four main steps: (i) parsing,
(ii) rewriting, (iii) planning/optimizing, and (iv) executing. The parser checks the query
string for valid syntax using a set of grammar rules, then translates the query into an equivalent
relational algebra expression. The output is the query tree. The rewriter processes and rewrites
the tree using a set of rules. The planner/optimizer creates an optimal execution plan using
a cost model that accounted for CPU costs as well Inputs Outputs (IO) costs. This type of
optimization is called cost-based optimizations. Figure 2.6 summarizes the di�erent steps of a
query optimizer.
A cost model speci�es the arithmetic formulas that are used to estimate the cost corresponding
a given non functional requirement metric of execution plans (e.g., execution time, energy
consuming, etc.). For every di�erent join implementation, for every di�erent index type access,
and in general for every distinct kind of step that can be found in an execution plan, there is
a formula that gives its costs [137]. In Appendix I, we detail our used cost models.
The discussion that we had above concerns queries executed in isolation way. If all queries are
considered in a batch fashion, the problem of MQO arises. It can be de�ned as follows:
for given a set of queries Q={Q1, .., Qn} to be optimized, each query Qi has a set of possible
individual local plans Pi ={p1, .., pki}; MQO consists in �nding a global execution plan obtained
by merging individual plans such that the query processing cost of all queries is minimized.

29

CHAPTER 2. BACKGROUND & STATE OF ART

SQL Query Parse

Rewrite

Grammar Rules

Rewriting rules

Optimized Algebra

Tree

Plan

Optimize Multi
Plan

Best Execution
Plan

Search Strategy

Execute

Query OutPut

Execution
Strategy

Cost Models

Database
Data/Statistics

Relational Algebra
Tree

DX

NL
MJ

SQ

HJ

Fig. 2.6 � Query optimizer steps

30

III. FACTORS IMPACTING QUERY PROCESSING AND OPTIMIZATION

Example 3. To illustrate the process of selecting the best plan of queries in isolated and joint
ways, let us consider the queries discussed in Example 3, where we suppose that the base relations
R1, R2, R3 and R4 have respectively a scan cost of 1000, 10, 50 and 70 units and we assume
the absence of any optimization structure.
The query optimizer suggests individual best plans for each query and the DBMS uses these
plans to execute the queries independently. As shown in Figures 2.7a and 2.7b, the optimal
plans of the queries Q1 and Q2 are (σatt1=val(R1) on R2) on R3 and (σatt1=val(R1) on R3) on R4

respectively. The total cost of the two queries is 20 380 units. However, we remark that the
intermediate result (σatt1=val(R1) on R3) can be shared by both queries. As shown in Figure 2.7c,
the global plan has a total cost of 14430 units. So, by using MQO technique, we can easily reduce
the execution cost by about 30%.

R3R2

Q1

att1=val

R11000 10 50

100

1000

5000

(a) Individual query
plan (Q1)

R4R3

Q2

att1=val

R11000 50 70

100

5000

7000

(b) Individual query
plan (Q2)

R2

Q1

10

1000

R4R3

Q2

att1=val

R11000 50 70

100

5000

7000

100 100

(c) Multi query plan
(Q1&Q2)

Fig. 2.7 � Example of MQO bene�t

In the above example, the process of merging individual plans is straightforward. But, in a
large workload, �nding the best merging of di�erent query plans is a hard problem. Since 80, it
has been widely studied [74, 80, 105, 198, 222, 223, 228, 240, 280]. Sellis [223] proposed an A∗
algorithm search algorithm to produce a global execution plan based on all possible local plans
of each query. Alternatively, the local plan is constructed by either a dynamic programming
algorithm [198] or a branch bound algorithm [116]. Subsequently, the local plans are merged
into a single global plan such that the results of common sub-expressions can be shared as much
as possible. These methods may take considerable memory resource and time to generate an
optimized plan. Accordingly, many heuristic algorithms are proposed to improve signi�cantly
the generation time. They reduce the size of the search space for A∗ algorithm, but they
produce a sub-optimal global plan.
Logical optimizations have a great impact on physical optimizations, as we will show in the
next sections.

31

CHAPTER 2. BACKGROUND & STATE OF ART

III.3.2. Physical Optimizations

Physical optimizations have been ampli�ed by the explosion of data and the necessity to opti-
mize them [72]. These optimizations are ensured by the means of advanced structures such as
materialized views, advanced indexing, data partitioning, etc. In this section, we describe the
most used database optimization structures (OS). A particular interest to the OS used by our
study. We start by materialized views that is a redundant OS and is widely used to optimize
OLAP queries in the context of the DW . The second structure is horizontal data partitioning
that is considered as a non-redundant OS that can be applied in several entities: a table, a
materialized view and an index. Another particularity of the horizontal partitioning is that
it can be used in centralized and distributed databases. A brief discussion on indexes is also
presented, because they are usually associated to data structures (e.g., trees).

Materialized views

De�nition 6. Virtual Views: is a de�nition of a relation constructed logically from tables by
an expression much like a query, bu it do not exist physically.

De�nition 7. Materialized views (MV) is a de�nition of a relation constructed periodically
from tables by an expression much like a query and they are theirs tuples are stored in the storage
devices.

Materialized views are used to pre-compute either stored aggregated data or joins with/without
aggregations. So, materialized views are suitable for queries with expensive joins or aggrega-
tions. Once materialized views are selected, all queries will be rewritten using materialized
views (this process is known as query rewriting). A rewriting of a query Q using views is a
query expression Q′ referencing to these views. The query rewriting is done transparently by
the query optimizer. To generate the best rewriting for a given query, a cost-based selection
method is used [35]. Figure 2.8 illustrates this process.
Two major problems related to materialized views are: (a) the view selection problem and (b)
the view maintenance problem.

Views selection problem. The database administrator cannot materialize all candidate
views, as he/she is constrained by some resources like, disk space, computation time, mainte-
nance overhead and cost required for query rewriting process [125]. Hence, he/she needs to
pick an appropriate set of views to materialize under some resource constraints.

Formally, view selection problem (VSP) is de�ned as follows: given:

1. a set of most frequently used queries Q = {Q1, Q2, ..., Qn}, where each query Qi has an
access frequency fi (1 ≤ i ≤ n);

2. a set of constraints C (e.g., storage cost, maintenance cost, etc.);

32

III. FACTORS IMPACTING QUERY PROCESSING AND OPTIMIZATION

Generation

of the plan

Fig. 2.8 � The query rewriting process

3. a set of non-functional requirements NFR (e.g., query processing cost, maintenance cost,
energy consumption, etc.).

The VSP consists in selecting a set of materialized views that satis�es the NFR and respect
the constraints C.

From the above generic formalization, several variants of the VSP can be derived, by in-
stantiating either the set of NFR or the constraints. The most important variants are:

� minimizing the query processing cost subject to storage size constraint [121];

� minimizing query cost and maintenance cost subject to storage space constraint [165];

� minimizing query cost under a maintenance constraint [119], and

� minimizing query processing and energy consumption under storage constraint [212].

The problems corresponding to these variants known as an NP-hard problem [120]. Several al-
gorithms were proposed to deal with variants. For a complete classi�cation of these algorithms,
we recommend the readers to refer to the survey paper of Mami et al. [177] which divides
algorithms in the following categories: deterministic algorithms [230, 89, 243], randomized al-
gorithms [139], evolutionary algorithms [212] and hybrid algorithms [279].
The analysis of di�erent variants of the VSP allows us giving a multidimensional representation
(called the VSP cube) of these studies including three dimensions which are: Non-functional
requirements, used algorithms, and constraints (Figure2.9). This cube can instantiate any work
dealing with the VSP .

33

CHAPTER 2. BACKGROUND & STATE OF ART

Fig. 2.9 � Views Selection Problem

Data structures & Algorithms for MV selection The traditional formalization selects
views in a static manner, where it assumes that the queries are a priori known [121, 273]. To
relax this hypothesis, a dynamic selection has been proposed. Algorithms in this selection may
be divided into two categories, based on their incoming workload [86]: algorithms in the �rst
category suppose that the query workload is prede�ned [203], whereas in the second category,
the workload is unknown [161, 219].
Our discussion onMV selection algorithms is guided by two dimensions: the constraints and
the NFR.

� Chronologically, the �rst studies related to the VSP assume the absence of the constraints
[273, 274]. After that and due to the large size of the stored selected materialized views,
the storage space becomes the main constraint that the selection process has to inte-
grated [279]. Then, maintenance cost becomes an important parameter since the selected
materialized views need to be updated once the base tables change [120]. Some studies
considered both constraints [120].

� NFR that the selected materialized views have to satisfy span several objectives: the
minimization of query response time [211], the satisfaction of the maintenance cost [121].
Recently, we enriched these objectives by considering the energy consumption when exe-
cuting a workload [212]. These objectives may be combined to give rise a multi-objective
formalization of the problem of materialized view section problem such as in [273] (where
response time and maintenance cost were considered) and in [212] (where response time
and consuming energy are used).

The process of selecting materialized views passes through the identi�cation of view candidates
to be materialized. The number of these views can be very large [119]. Several research e�orts
have been conducted to represent e�ciently the search space of the VSP . Many data structures

34

III. FACTORS IMPACTING QUERY PROCESSING AND OPTIMIZATION

Q Q

Fig. 2.10 � Example of
AND-OR graph

QQQQ

R1 R2 R3 R4 R5

Fig. 2.11 � Example of
acyclic graph

V1

V3

V8

None

V4

V5

V2

V7

Fig. 2.12 � Example of
Lattice Graph

have been used to represent and/or to prune the search space. The most used data structures
are:

� AND/OR view graph: is a directed acyclic graph (DAG), which can be seen as the
union of all possible execution plans of each query. It is composed of two types of nodes:
operation and equivalent nodes. Each operation node corresponds to an operation in the
query plan (selection, join, projection, etc.). Each equivalence node corresponds to a set
of equivalent logical expressions (i.e., that yield the same result). The operation node
have only equivalent nodes as children and equivalent nodes have only operation nodes as
children. Many algorithms have been proposed in the literature to exploit this structure
[120, 180, 213, 14, 178, 93]. Figure 2.10 gives an example of AND/OR graph, for a query.

� Multi-View Processing Plan (MVPP): is a directed acyclic graph in which the
root nodes represent the queries, the leaf nodes correspond to the relations (base tables),
and the intermediate nodes represent di�erent operations used by the queries such as:
selection, join, projection, etc. MVPP has been introduced by Yang et al. [273, 273].
Figure 2.11 gives an example of a MVPP.

� Data Cube Lattice: is a directed acyclic graph, proposed in the context of multidi-
mensional data warehousing, which the nodes represent the queries or views (the views
are characterized by grouping operation), and the edges de�ne the relationship between
views in each nodes [125, 144, 275]. Figure 2.12 gives an example of Latice graph.

� Syntactical Analysis: is a technique used by many algorithms that identify the candi-
date views directly by analysing synthetically the workload [5, 73].

� Query plan: it has been used by some algorithms to identify candidate views and rewrite
queries [242, 243].

VSP may be either combined or not with the MQO problem. The work of Yang et al. [273] is
the pioneer in the context of DW that deals with two interdependent problems: (a) construct-
ing an optimal global plan of queries and (b) use this plan to select views to be materialized.

35

CHAPTER 2. BACKGROUND & STATE OF ART

Construction of the global plan is performed following the bottom up scenario. Initially, the
authors select the join local plans of each query (logical plans that have only join operations).
These plans are merged in a single plan, called Multi-Views Processing Plan MVPP. The plan
represented by an acyclic graph. This plan has four levels: at level 0, we �nd the leave nodes
representing the base tables of the DW . At level 1, we �nd nodes which represent the results
of unary algebraic operations such as selection and projection. At level 2, we �nd nodes rep-
resenting binary operations such as join, union, etc. The last level represents the results of
each query. Each intermediate node of the graph is tagged with the cost of each operation
and its maintenance cost. Two algorithms are proposed for selecting the best MVPP which
has the minimum cost. The �rst algorithm, called A feasible solution, generates all possible
MVPP and the plan with the minimum cost will be chosen. This algorithm is costly in terms of
computation. To simplify the previous algorithm, a second algorithm is proposed based on 0-1
integer programming. The view selection algorithm is performed in two steps: (1) generation of
materialized views candidates which have positive bene�t between query processing and view
maintenance. This bene�t corresponds to the sum of query processing using the view minus
the maintenance cost of this view, (2) only candidate nodes with positive bene�t are selected
to be materialized [273, 274].
In [110, 40], a connection between MQO and the process of selecting materialized views for
Sparql queries in the context of semantic databases has been established.

Based on this discussion, the traditional classi�cation proposed in [177, 212] can be enriched.
In addition to the traditional dimensions (the used constraints, non-functional requirements,
type of selection algorithms), we can include other dimensions such as: nature of the selection
(static/dynamic), used data structures to represent the search space, involving MQO. Figure
2.13 summarizes this classi�cation.

View maintenance problem. Note that materialized views store data from base tables. In
order to keep the views in the data warehouse up to date, it is necessary to maintain them
in response to the changes at the base tables. This process of updating views is called view
maintenance which has generated a great deal of interest in the past years. Views can be either
recomputed from scratch, or incrementally maintained by propagating the base data changes
onto the views. As re-computing the views can be prohibitively expensive, the incremental
maintenance of views is of signi�cant value [120].

Data Partitioning . Data partitioning is an OS that divides the data of database into
distinct small parts called fragment. It aims at minimizing the unnecessary accesses to tables.
Initially, it is considered as a logical database design technique which facilitates e�cient execu-
tion of queries by reducing the irrelevant data accessed [29]. Nowadays, it is one of important
aspect of physical design [6]. It is a divide-and-conquer approach that improves query perfor-
mance, operational scalability, and the management of ever-increasing amounts of data. It is

36

III. FACTORS IMPACTING QUERY PROCESSING AND OPTIMIZATION

Views Selection

Nature of
the selection

Dynamic
[203, 86,
161, 49]

Static
[273, 211,
120, 5]

Constraints

Unbounded
[273, 273, 243]

DiskSpace
[242, 125, 5]

Update cost
[120, 178]

Performance
guarantee
[124]

The both
[178]

Data
Structures

AND/OR
Graph

[120, 14, 93]

MVPP
[273, 273]

Lattice
[125, 144, 275]

Syntactical
Analysis
[5, 73]

Query plan
[242, 243]

Algorithms

Deterministic
[211, 125]

Randomize
[275, 93, 144]

Evolutionary
[134, 278]

Hybrid
[279, 178]

MQO

Using MQO
[180, 213, 180]

Without
[230, 230,
279, 138]

Goal

Maintenance
[120]

Processing
[273, 273,
278, 120]

Fig. 2.13 � Classi�cation of view selection techniques

also been widely used in the distributed and parallel databases.
Three types of data partitioning exists: horizontal, vertical and mixed.

� Horizontal data partitioning allows tables, indexes and materialized views to be parti-
tioned into disjoint sets of rows that are physically stored and accessed separately [6]
or in parallel. Horizontal partitioning may have a signi�cant impact on performance of
queries and manageability of very large data warehouses. It has the ability to be com-
bined with other optimization structures like indexes, materialized views. Splitting a
table, a materialized view or an index into smaller pieces makes all operations on individ-
ual pieces much faster. Contrary to materialized views and indexes, data partitioning does
not replicate data, thereby reducing space requirements and minimizing update overhead
[197].

A native database de�nition language support is available for horizontal partitioning,
where several fragmentation modes are available in Oracle 11G DBMS: range, list and
hash. In the range partitioning, an access path (table, view, and index) is decomposed
according to a range of values of a given set of columns. The hash mode decomposes the
data according to a hash function (provided by the system) applied to the values of the
partitioning columns. The list partitioning splits a table according to the listed values of
a column. These methods can be combined to generate composite partitioning (List-List,
Range-Range, Hash-Hash, Range-List, etc.). Another mode of horizontal partitioning is
also available in Oracle11g, called virtual column based Partitioning. It is de�ned by one

37

CHAPTER 2. BACKGROUND & STATE OF ART

of the above mentioned partition techniques and the partitioning key is based on a virtual
column. Virtual columns are not stored on disk and only exist as meta-data.

Two versions of horizontal partitioning are available [195]: primary and derived horizontal
partitioning. Primary horizontal partitioning of a table is performed using predicates
de�ned on that relation. It can be performed using the di�erent fragmentation modes
above cited. Derived horizontal partitioning is the partitioning of a table that results
from predicates de�ned in other table(s). The derived partitioning of a table R according
to a fragmentation schema of table S is feasible if and only if there is a join link between
R and S.

Example 4. Using star schema of DW shown in Figure 2.4, that contains a fact table
Lineorder and four dimension tables Customer,Supplier,Product and Dates. If the table
Customer is candidate for partitioning, it may be divided using the attribute Region as
follows:

� CustomerEurope =σRegion=′EUROPE′(Customer)

� CustomerOthers =σRegion<>′EUROPE′(Customer)

The execution of the query that gives the European orders may be rewritten as follows:
SELECT Count (*)
FROM Customer PARTITION (CustomerEurope) C, L ineorder L
WHERE L .CID=C.CID ;

The fragmentation of the Customer table can be propagated on the fact table Lineorder
as follows:

� LineorderEurope =Lineorder n CustomerEurope

� LineorderOthers =Lineorder n CustomerOthers

Consequently, the search of number of European orders may be optimized as follows:
SELECT Count (*)
FROM Lineorder PARTITION(LineorderEurope) ;

In the context of relational data warehouse, derived horizontal partitioning is well adapted.
In other words, to partition a data warehouse, the best way is to partition some/all di-
mension tables using their predicates, and then partition the fact table based on the frag-
mentation schemas of dimension tables [24]. This fragmentation takes into consideration
star join queries requirements (these queries impose restrictions on the dimension values
that are used for selecting speci�c facts; these facts are further grouped and aggregated
according to the user demands). To illustrate this fragmentation, let us suppose a rela-
tional warehouse modelled by a star schema with d dimension tables and a fact table F .
Among these dimension tables, g tables are fragmented (g ≤ d). Each dimension table

38

III. FACTORS IMPACTING QUERY PROCESSING AND OPTIMIZATION

Di (1 ≤ i ≤ g) is partitioned into mi fragments: {Di1, Di2, ..., Dimi
}, where each fragment

Dij is de�ned as:
Dij = σclij(Di), where clij and σ (1 ≤ i ≤ g, 1 ≤ j ≤ mi) represent a conjunction of simple
predicates and the selection operator, respectively. Thus, the fragmentation schema of
the fact table F is de�ned as follows: Fi = F nD1j nD2k n ...nDgl, (1 ≤ i ≤ mi), where
n represents the semi join operation.

The number of schemes N equals to the number of fragments of fact tables and can be
as the product of the number of fragments of each dimension tables.

N =
d∏

i=1

Fragi (2.1)

which Fragi is the number of fragments of g dimension tables.

Derived horizontal partitioning (or referential partitioning in Oracle DBMS) has two
main advantages in relational data warehouses, in addition to classical bene�ts of data
partitioning: (1) pre-computing joins between fact table and dimension tables partici-
pating in the fragmentation process of the fact table [22] and (2) optimizing selections
de�ned on dimension tables.

The derived horizontal partitioning of a DW has been formalized as follows [24]: Given:

� DW with a set of d dimension tables {D1, D2, ..., Dd} and a fact table F ;

� a workload of queries Q and

� a maintenance constraint W �xed by DBA that represents the maximal number of
fact fragments that he/she can maintain.

The referential horizontal partitioning problem consists in (1) identifying candidate di-
mension table(s), (2) splitting them using single partitioning mode and (3) using their
partitioning schemes to decompose the fact table into N fragments, such that: (a) the
cost of evaluating all queries is minimized and (b) N ≤ W . This problem has been proven
as a NP-complete problem [24].

� Vertical data partitioning can be viewed as a redundant structure even if it results in
little storage overhead. The vertical partitioning of a table T splits it into two or more
tables, called, sub-tables or vertical fragments, each of which contains a subset of the
columns in T . Note that the key columns are duplicated in each vertical fragment, to
allow "reconstruction" of an original row in T . Since many queries access only a small
subset of the columns in a table, vertical partitioning can reduce the amount of data
that needs to be scanned to answer the query. Unlike horizontal partitioning, indexes or
materialized views, in most of today's commercial database systems there is no native
database de�nition language support for de�ning vertical partitions of a table [6].

39

CHAPTER 2. BACKGROUND & STATE OF ART

To vertically partition a table with m non primary keys, the number of possible fragments
is equal to B(m), which is the mth Bell number [195]. For large values of m, B(m) ∼= mm.
For example, for m = 10; B(10) ∼= 115 975. These values indicate that it is futile to
attempt to obtain optimal solutions to the vertical partitioning problem. Many algorithms
were proposed and classi�ed into two categories: grouping and splitting [195]. Grouping
starts by assigning each attribute to one fragment, and at each step, joins some fragments
until some criteria is satis�ed. Splitting starts with a table and decides on bene�cial
partitioning based on the query frequencies.
In the data warehousing environment, [113] proposed an approach for materializing views
in vertical fragments, each including a subset of measures possibly taken from di�erent
cubes, aggregated on the same grouping set. This approach may unify two or more views
into a single fragment.

� The above partitioning techniques can be mixed. In this thesis, we mainly focus on
horizontal data partitioning.

Classical methodology of HDP In DW , horizontal data partitioning follows two main
phases [45]:

� preparation phase: in this phase selection predicates and candidate tables are identi�ed.
Once this identi�cation done, each domain of a fragmentation attribute (belonging to a
selection predicate) is divided into sub-domains. Finally, the set of minterms is generated
[195]

� selection phase that identi�es the �nal partitioning schema using a given algorithm.

Correction rules for HDP In horizontal data partitioning, the partitioning process is ver-
i�ed using three rules: completeness, disjunction, reconstruction [45]. To understand these
rules, we suppose that we have a table T partitioned into k fragments {T1, .., Tk}.
Completeness: means that for all tuples in the table T must be existing at list in one fragment
Ti, 1 ≤ i ≤ k. This rule ensures that no loss of data and all data exist in the partitioned schema.
Disjunction: means that for all instances i in the fragment Tj, no other fragment Tk that
contains this instance i. This rules ensures that non redundant of data.
Reconstruction: means that the original table T can be formed using the set of fragments
Ti, 1 ≤ i ≤ k. This rule ensures that data partitioning is a reversible operation.

A Taxonomy of data partitioning approaches Due to its importance, the data parti-
tioning has been widely studied in the literature. By analysing these studies, we propose to
classify using the following criteria: type of partitioning, type of databases, type of algorithms,
the platform and the using of data structure (Figure 2.15).

40

III. FACTORS IMPACTING QUERY PROCESSING AND OPTIMIZATION

� Type of partition: There are three types of data partitions, vertical data partition
[185, 186], horizontal data partitioning [18, 82, 241, 281], and hybrid data partitioning
[45, 84, 209, 238, 188, 199].

� Type of database: Data partitioning has been applied in all database generations:
relational databases [186, 115], object-databases [209, 188, 184, 34], deductive database
[182], DW [18, 45, 189], and recently in graph databases [202]. Also data partitioning are
applied on some optimization structures like indexes [241].

� The used Algorithms: In the �rst generation of the existing work, the problem is
treated without any constraint: based on Minterms [67, 195] or a�nity [146]. In the second
generation, the maintenance constraint is considered that is de�ned by the maximum
number of fragments, in which cost based approaches have been proposed [29]. In this
generation, others techniques based on data mining are proposed [175]. Choosing the best
predicates is not a easy task. Another point is the ignorance of the interaction between
queries, except the work of Kerkad et al. [155, 154]. Figure 2.14 shows the evolution
approaches of HDP .

Hard approaches
(Minterms)

Simple approaches
(Affinity)

Cost Model
Based approaches

Data Mining
Based approaches

Query Interaction
Based approaches

Fig. 2.14 � The evolution of HDP approaches

� Platforms: used to allocate the fragments di�erentiate data partitioning approach, in
which it can be centralized platform [45, 18, 82, 186, 185, 115, 76], distributed platform
[34, 184, 189] or parallel platform [281, 238, 209, 241, 188, 199, 87].

� Data structures: used to represent the candidates or the result of the process of data
partitioning, in which, the most used is the array structures like a�nity Matrix [185, 186],
graphs [271] and hypergraphs [81];

III.3.3. HDP in Distributed Environments

In the context of distributed databases, the fragmentation/partitioning is tightly coupled with
the so-called fragment allocation problem [128]. Indeed, in real-life application scenarios, these
two processes, even thought inter-related, are tackled in an isolated manner. This evidence has
generated two di�erent research contexts. The �rst one is focused on the data fragmentation
problem, whereas the second one on the issue of allocating partition-generated fragments. Also,
this dichotomy implies the presence of two di�erent cost models for the fragmentation and allo-
cation phases, respectively. As a consequence, the fragmentation cost model very often does not

41

CHAPTER 2. BACKGROUND & STATE OF ART

Data partition methods

Type of
partitioning

HDP
[18, 82, 241]

Vertical [186,

185, 115]

Mixed

[76, 184]

Type of
databases

Database

[186, 115]

Object DB
[184, 34]

DW
[18, 45, 189]

Index

[241]

XML DB
[82]

Partitioning
Algrithms

A�nity

[185, 186]

Glouton

[87, 209, 238]

Data Mining

[82, 76]

Genetic

[188]

Gl+Graph

[18, 189, 115]

Deploiement
plateform

Centralized

[45, 18, 186]

Distributed

[34, 184, 189]

Parallel

[241, 199, 87]

Data
Structure

Graph

[271]

Matrix

[185, 186]

Hypergraph

[81]

Fig. 2.15 � Taxonomy of data partitioning methods

take into account the yet-relevant allocation parameters. To face-o� deriving drawbacks, sev-
eral approaches have been proposed with the goal of integrating the two distinct fragmentation
and allocation processes, usually according to a sequential manner.
In line with this approach, Furtado [108] discusses partitioning strategies for node-partitioned
data warehouses. The main suggestion coming from [108] can be synthesized in a �best-practice�
recommendation stating to partition the fact table on the basis of the larger dimension tables
(given a ranking threshold). In more detail, each larger dimension table is �rst partitioned by
means of the Hash mode approach via its primary key. Then, the fact table is again partitioned
by means of the Hash mode approach via foreign keys referencing the larger dimension ta-
bles. Finally, the so-generated fragments are allocated according to two alternative strategies,
namely round robin and random. Smaller dimension tables are instead fully-replicated across
the nodes of the target data warehouse. The fragmentation approach [108] does not take into
account speci�c star query requirements, being such queries very often executed against data
warehouses, and it does not consider the critical issues of controlling the number of generated
fragments, like in [237, 24].

In [171], Lima et al. focus the attention on data allocation issues for database clusters. Authors
recognize that how to place data/fragments on the di�erent PC of a database cluster in the
dependence of a given criterion/goal (e.g., query performance) plays a critical role, hence the
following two straightforward approaches can be advocated: (i) full replication of the target
database on all the PC, or (ii) meaningful partition of data/fragments across the PC. Starting

42

III. FACTORS IMPACTING QUERY PROCESSING AND OPTIMIZATION

from this main intuition, authors propose an approach that combines partition and replication
for OLAP-style workloads against database clusters. In more detail, the fact table is partitioned
and replicated across nodes using the so-called chained de-clustering, while dimension tables
are fully-replicated across nodes. This comprehensive approach enables the middleware layer to
perform load balancing tasks among replicas, with the goal of improving query response time.
Furthermore, the usage of chained de-clustering for replicating fact table partitions across nodes
allows the designer not to detail the way of selecting the number of replicas to be used during
the replication phase. Just like [108], [171] does not control the number of generated fact table
fragments.
In [237], Stöhr et al. propose an approach for constructing and managing a data warehouse
on a disk-shared parallel machine having K disks. Here, the data warehouse is modeled via
a star schema with one fact table and a number of dimension tables. The fragmentation
process is performed as follows: each dimension table is virtually partitioned by means of the
Interval mode on attributes belonging to the lower levels of dimensional hierarchies, and the fact
table is consequentially partitioned on the basis of so-partitioned dimension tables. Dimension
tables and ad-hoc B -tree indexing data structures are duplicated over each disk of the parallel
machine. To speed-up queries, bitmap join indexes are selected over fact table fragments via
using attributes of dimension tables belonging to the higher levels of dimensional hierarchies.
Note that this approach may generate a number of fragments NF largely greater than the
available number of disks K. To ensure a high parallelism degree and e�cient load balancing,
a round robin allocation of fact fragments and associated bitmap indexes over the K disks is
�nally performed, with the goal of placing bitmap indexes that are associated to the same fact
fragment onto consecutive disks. In [238], the same authors further extend they research by
proposing a data allocation tool, called Warlock, for parallel data warehouses. The novelty of
Warlock consists in taking into account the number of �nal fact fragments that the designer is
interested to. Finally, in [27] an innovative design methodology for data warehouses over shared-
nothing architectures that initially argues to perform fragmentation and allocation jointly is
proposed. Table 2.1 summarizes main characteristics of comparison approaches for designing
data warehouses in distributed environments via fragmentation and allocation paradigms.

Table 2.1 � A Comparison of main approaches

Fragmentation & Allocation Design Environment Control over
the Number of Fragments

[83] Yes Sequential Grid Yes
[108] Yes Sequential DB Cluster No
[171] Yes Sequential DB Cluster No
[237] Yes Sequential Disk-Shared No
[27] Yes Combined Shared-Nothing Yes

43

CHAPTER 2. BACKGROUND & STATE OF ART

Indexes. Indexing has been at the foundation of performance tuning for databases for many
years. A database index is a data structure that improves the speed of operations in a table.
Indexes can be created using one or more columns. An index can be either clustered or non-
clustered. It can be de�ned on one table, fragment, views or many tables using a join index
[192]. The traditional indexing strategies used in database systems do not work well in data
warehousing environments since most OLTP queries are point queries. B-trees, which are used
in most common relational database systems, are geared towards such point queries. In the
data warehouse context, indexing refers to two di�erent things: (a) indexing techniques and
(b) index selection problem.

Indexing techniques. A number of indexing strategies have been suggested for data ware-
houses: Value-List Index, Projection Index, Bitmap Index, Bit-sliced Index, Data Index, Join
Index, and Star Join Index. Bitmap index is probably the most important result obtained in
the data warehouse physical optimization �eld. The bitmap index is more suitable for low car-
dinality attributes, since its size strictly depends on the number of distinct values of the column
on which it is built. Besides disk space saving (due to their binary representation and potential
compression), such index speeds up queries having Boolean operations (such as AND, OR and
NOT) and COUNT operations. Bitmap join index is proposed to speed up join operations. In
its simplest form, it can be de�ned as a bitmap index on a table R based on a single column of
another table S, where S commonly joins with R in a speci�c way.

Index selection problem. The task of index selection is to automatically select an ap-
propriate set of indices for a data warehouse (having a fact table and dimension tables) and
a workload under resource constraints (storage, maintenance, etc.). It is challenging for the
following reasons [68]: The size of a relational data warehouse schema may be large (many
tables with several columns), and indices can be de�ned on a set of columns. Therefore, the
search space of indices that are relevant to a workload can be very large [32]. To deal with this
problem, most selection approaches use two main phases: (1) generation of candidate attributes
and (2) selection of a �nal con�guration. The �rst phase prunes the search space of index
selection problem, by eliminating non relevant attributes. In the second phase, the �nal indices
are selected using greedy algorithms [70], linear programming algorithms [68], etc. The quality
of the �nal set of indices depends essentially on the pruning phase. To prune the search space
of index candidates, many approaches were proposed [68, 32, 22], that can be classi�ed into
two categories: heuristic enumeration-driven approaches and data mining driven approaches.
In heuristic enumeration-driven approaches, heuristics are used. For instance, in [70], a greedy
algorithm is proposed that uses optimizer cost of SQL Server to accept or reject a given con-
�guration of indices. The weakness of this work is that it imposes the number of generated
candidates. IBM DB2 Advisor is another example belonging to this category [257], where the
query parser is used to pick up selection attributes used in workload queries. The generated
candidates are obtained by a few simple combinations of selection attributes [257].

44

III. FACTORS IMPACTING QUERY PROCESSING AND OPTIMIZATION

In data mining-driven approaches, the pruning process is done using data mining techniques,
like in [32]. In this approach, the number of index candidates is not a priori known as in the
�rst category. The basic idea is to generate frequent closed itemsets representing groups of
attributes that could participate in selecting the �nal con�guration of bitmap join indexes. A
data mining based approach has been developed for selecting bitmap join indexes [32].

III.3.4. MQO and physical design problems

In the section, we present the uni�cation of the problem of MQO and the physical design.

MQO andMV problems MQO contributes largely in di�erent stages of materialized views:
in the selection of the best views [13, 120, 273] and in their maintenance [131, 180, 211].
Construction of the UQP is performed following a bottom up scenario. Initially, the authors
select the join local plans of each query. These plans are merged in a single UQP, called in
[273] Multi-Views Processing Plan (MVPP). Each intermediate node of the MVPP is tagged
with the cost of the processing data and the maintenance cost in the case if it is materialized.
Then, the MVPP is used as an input for selection algorithms.

MQO and data partitioning problems To the best of our knowledge, the work proposed
by Kerkad et al. [30] is the only work that exploits query interaction for resolving the problem
of horizontal data partitioning in the context of relational data warehouses. More correctly,
it uses the sub-domains of attributes obtained by applying selection predicates of the queries
to prune the search space of the horizontal partitioning problem and identi�es the selection
predicates candidates for partitioning by considering the most in�uenced attributes and their
sub-domains in terms of reducing the cost of the UQP.

MQO and Bu�er management and query scheduling The query ordering has used to
improve MQO algorithm [80]. Hence, Kerkad et al., [155], have proposed a new technique of
using intermediate results to solve the bu�er management and query scheduling problems, in
which the intermediate results have been used to de�ne a strategy for managing the bu�er
(allocation/deallocation) and schedule queries. In [284] a cooperative scans have been proposed
to improve sharing between queries by dynamic scheduling queries that share the scans of data
from base tables.

MQO and caching of query results Another related area is caching of query results. MQO
can optimize a batch of queries given together, caching takes a sequence of queries over time,
deciding what to materialize and keep in the cache as each query is processed [280, 161, 74].
It should be noticed that the algorithms used in these di�erent selections are workload sensitive.
Since, the used queries are too small, these algorithms may su�er from scalability in the context
of big queries.

45

CHAPTER 2. BACKGROUND & STATE OF ART

The queries are also one of the main components of the deployment phase that we discuss it in
the following section.

III.4. Dimension 4: Deployment Phase

The DBMS hosting a DW application is deployed in a hardware platform that o�ers storage
layers. It should be noticed that the logical and physical optimizations strongly depends on
the deployment platforms of the target DW . The deployment phase of the life cycle design
of DW uses is one of the consumers of OLAP queries. There exist two fundamental types of
architecture suitable for deploying database applications. The most well-known and ubiquitous
architectural type is the centralized DBMS architecture. It is very well de�ned and mature.
The other type is distributed and parallel DBMS.
In this section, we consider an example of parallel DW . This is motivated by the spectacular
explosion of the data volume and the queries. The terms "parallel DW " and �distributed /dw�
are very often used interchangeably. In practice, however, the distinction between the two has
historically been quite signi�cant. Distributed DWs, much like distributed databases, grew out
of a need to place processing logic and data in proximity to the users who might be utilizing
them. In general, multi-location organizations (motivated by globalization) consist of a few
distinct sites, each typically associated with a subset of the information contained in the global
data pool. In the DW context, this has traditionally led to the development of some form
of federated architecture. In contrast to monolithic, centralized DWs, federated models are
usually constructed as a cooperative coalition of departmental or process speci�c data marts
[28]. For the most part, design and implementation issues in such environments are similar to
those of distributed operational DBMS [195]. For example, it is important to provide a single
transparent conceptual model for the distinct sites and to divide data to reduce the e�ects of
network latency and bandwidth limitations .

Choice of the
Platform

Data
Partitioning

Fragment
Allocation

Fragment
Replication

Query
Processing

Load
Balancing

Fig. 2.16 � Life cycle of the parallel database design

Designing a parallel DW goes through a well-identi�ed life cycle including six main steps
(Figure 2.16) [27]: (1) choosing the hardware architecture, (2) partitioning the target DW ,
(3) allocating the so-generated fragments over available nodes, (4) replicating fragments for
e�ciency purposes, (5) de�ning e�cient query processing strategies and (6) de�ning e�cient
load balancing strategies. Each one of these steps will be detailed in the following paragraphs.

1. The choice of the platform: The choice of the deployment platform is a pre-condition
to achieve the scalability and availability of data. Hardware architectures are classi�ed
into �ve main categories: (i) shared-memory, (ii) shared-disk, (iii) shared-nothing, (iv)

46

III. FACTORS IMPACTING QUERY PROCESSING AND OPTIMIZATION

shared-something and (v) shared-everything. As we said before, the Shared-everything
architecture has been adopted by DW for parallelization purpose. Shared memory
and shared disk architectures have the advantage that they are relatively easy to
administer as the hardware transparently performs much of the �magic�. This architecture
has been recommended by the leaders of Gamma project as the reference architecture
for supporting high-performance data warehouses modelled in terms of relational star
schemes. That being said, shared everything designs also tend to be quite expensive and
have limited scalability in terms of both the CPU count and the number of available disk
heads. In Petabyte-scale DW environments, either or both of these constraints might
represent a serious performance limitation. As the choice of the hardware architecture is
in�uenced by price, high-performance features, extensibility and data availability, clusters
of workstations are very often used as a valid alternative to Shared-Nothing architectures
(e.g., [171]). Figure 2.17 summarizes these architectures.

CPU

Main Memory

Storage Area Network

CPU CPU

Memory bus

...

I/O bus

(a) SMP on Shared-Memory Ar-
chitecture

Storage Area Network

...

Main Memory

CPU

Main Memory

CPU

Main Memory

CPU

I/O bus

(b) MPP on Shared-Disk Architec-
ture

Disk

Main Memory

CPU

Disk

Main Memory

CPU

Disk

Main Memory

CPU

...

(c) Shared-Nothing Architecture

Fig. 2.17 � Data warehouse system architectures

2. Data partitioning. The partitioning in the context of parallel DW is based mainly in
horizontal partitioning (for more details, see the section III.3.2).

3. Data allocation consists in placing generated fragments over nodes of a reference paral-

47

CHAPTER 2. BACKGROUND & STATE OF ART

lel machine. This allocation may be either redundant (with replication) or non-redundant
(without replication) [12]. Once fragments are placed, global queries are executed over
the processing nodes according to parallel computing paradigms. In more detail, parallel
query processing on top of a parallel DW (a critical task within the family of parallel
computing tasks) includes the following phases [36]: (i) rewriting the global query accord-
ing to the �xed DW partitioning schema; (ii) scheduling the evaluation of so-generated
sub-queries over the parallel machine according to a suitable allocation schema. Gener-
ating and evaluating sub-queries such that the query workload is evenly balanced across
all the processing nodes is the most di�cult task in the parallel processing above.

4. Replication of fragments. is related to two major problems: (1) replica creation and
(2) maintenance of materialized replicas. Our study focuses on the problem of creat-
ing replicas which is strongly in�uenced by the number of replicas and their placement.
Indeed, the reference Replica Placement Problem (RPP) consists in choosing the best
replica placement on the distributed system in order to optimize given performance crite-
ria. The optimal replica placement problem has been shown to be an NP-Hard problem
[270]. Therefore, it is often solved by means of approximate solutions in a feasible time,
and a relevant amount of work has been devoted to this paradigm in the literature [171].

Three complexes problems related to replication technique: (1) the selection of candidate
fragments to be replicated and how much, (2) the placement of replicas and, (3) the
updating methods. Replication techniques and updating replicas can be classi�ed into
two strategy [118].

5. Load balancing of queries Once partitioning, allocation and replication data are done;
load balancing of queries occurs to rewrite each query in many sub-queries and a�ect
them over processing nodes. The main challenge is to ensure the most equilibrate work of
processing nodes to response a query or workload, and minimize the average processing
time, in which minimize the di�erence of consuming time from node to anther.

To obtain a good load balancing, it is necessary to determine the best degree of parallelism
and choose wisely the processing nodes for executing a query. The load balancing process
has four steps [179]:

� partitioning of the workload: The coordinator node handles to partition the
workload of queries into a set of sub-queries according to the horizontal partitioning
scheme for the database. Indeed, the horizontal partitioning produces sub-queries
that can run on independent processing nodes. The size of fragments a�ect the
quality of load balancing, the small fragments ensures more �exibility and reduces
the e�ects of skew. Thus, each sub-query is characterized by its size that corresponds
to the access time of loading fragments from disks.

� Selection of processing nodes: For each sub-query, all possible processing nodes
are determined by the placement pattern of fragments on the processing nodes and

48

III. FACTORS IMPACTING QUERY PROCESSING AND OPTIMIZATION

the cache status of each node.

� Scheduling of sub-queries: Sub-queries are assigned to processing nodes, in which
all nodes have approximately the same workload. Scheduling sub-queries is to mini-
mize the average response time of tasks and maximize the degree of resource utiliza-
tion. The determination of the distribution of the �nal charge is predetermined by
the data allocation, system architecture, the cache, and the dependencies between
data. The scheduling of sub-queries also de�nes the order of query execution.

� Processing of sub-queries : When sub-queries are a�ected to processing nodes,
they start to verify the existence of fragments on its disks (If the needed fragments
are not found, they get a copy from its neighbours). Once all fragments are available,
the execution of sub-queries start.

A good load balancing is critical to the performance of a parallel system where the re-
sponse time corresponds to later processing node. Load balancing can be in�uenced by
several problems: competition control (parallel execution requires simultaneous access to
shared resources.), interference and communication, and the skewed distribution[67].

The bad balancing is mainly a�ected by the skewed distribution of data and / or pro-
cessing. Walton et al. [265] have classi�ed the e�ects of a poor distribution of data in a
parallel execution as follows:

� Attribute Value Skew: it occurs when the attribute values are not distributed
uniformly over processing nodes. This means that some attribute values appear with
much higher frequencies than others.

� tuples Placement Skew: is the consequence when the initial partition and allo-
cation based on attributes with poor distribution of values.

� Selectivity Skew: is due to the variation of the selectivity of the selection predicates
between processing nodes.

� Redistribution Skew: occurs when there is a di�erence between the distribution
of values of join keys.

� Result Size Skew: It occurs when there is a big di�erence between the size of the
results obtained by each processing nodes.

� Capacity Skew: It represents the workload that each processor is able to process
it. This may be due to heterogeneity for the architecture and the operating system
such as memory size, version of the operating system, computing power, storage
capacity.

� Processing Skew: It occurs when there a di�erence of the execution time of the
sub-queries on the processing nodes.

49

CHAPTER 2. BACKGROUND & STATE OF ART

III.4.1. Metrics of deployment quality

To evaluate the quality of deployment two main metrics are used: speed-up and scale up. The
speeding factor (Speed-Up) measures the performance gain obtained by increasing the number
of processing nodes. If a query Q, needs Ts units (e.g., seconds) to be executed sequentially,
and Tp units to be executed in parallel manner on p processing nodes, the speed-up is de�ned
as follow:

speed− up(p) =
Ts

Tp

(2.2)

The scaling factor (Scale-Up) measures the change of query response time following a propor-
tional increase of database size and the number of processing nodes. The scale-up is ideal if it
is still equal to 1 (called also linear scaling).
Let db1 and db2 be two databases with the following sizes: size(db1) and size(db2). If size(db2)
= N * size(db2), and Tdbi,pi

is query response time of the query Q on the dbi using pi processing
nodes, the scale factor is de�ned as follows:

scale− up =
Tdb1,p1

Tdb2,N∗p1

(2.3)

Based on the above discussion, we can give a formalization of the parallel DW design: Given:

� a logical schema of data warehouse that contains a fact table F , and a setD of d dimension
tables D ={D1, .., Dd} ;

� a workload Q of k queries Q ={Q1, .., Qn}, each query iq has a access frequency fi, for
for 1 ≤ i ≤ n;

� a set N ofM processing nodes N ={N1, .., NM}, in which each Ni has a storage capacity
Si, for 1 ≤ i ≤M ;

� a set of non-functional requirements like the maximum query response time (responsemax);

� technical constraints like maximum number of fragments W .

The problem of designing a parallel consists in fragmenting the DW and then allocating its
obtained fragments over the nodes that the overall the cost of executing queries is minimized
and the used constraints are satis�ed [36].

50

IV. DATA STRUCTURES AND ACCESS ALGORITHMS

Implementation Level

Access Level

Optimization Level

Fig. 2.18 � Data structures and algorithms space of data processing in databases

IV. Data structures and access algorithms

In this section, we discuss the di�erent usages of data structures in the context of databases.
We can distinguish three main usages: (i) representation and modelling stored data, (ii) sup-
ports for algorithms dedicated to all problems that we can �nd in di�erent phases of the life
cycle of the design, and (iii) representation of access methods. So, these data structures span
three levels concerning optimizations, accesses and implementations.

The implementation level describes data modelling (logically and physically) and access al-
gorithms to retrieve, add or update data from and to storage devices. The access level
describes the real implementations of optimizations structures such as MV , indexes, logical
query plan, data partitioning, data cube. The optimization level contributes in implement-
ing and resolving traditional optimization problems (e.g., physical design, ETL, deployment,
etc.).
Figure 2.18 shows the three dimensions describing the roles of DS in the context of databases.
In the following, we overview some data structures used in di�erent levels.

IV.1. Data structures in implementation level

In the implementation level, the data are stored in secondary storage devices (e.g., hard
disks), where DS are used to represent data. In the logical DS, data are represented by many
formats like, �le, unstructured data, key-value, semi-structured data like XML �le [170], table
[221], row-store [1], column-store [163, 1, 239], etc. In the physical DS, data are stored based
on speci�c format of �le system, like HDFS 3, NTFS 4, etc. The �le system depends on the
type of storage devices (Hard disk, Flash memory, etc.). For example, data in HDFS, the
data are chopped up in several blocks of 64 MB. Each DS needs basic operations like reading,
adding, updating, deleting or �nding a value of data, which they are implemented with many

3https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
4https://technet.microsoft.com/en-us/library/cc781134%28v=ws.10%29.aspx

51

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://technet.microsoft.com/en-us/library/cc781134%28v=ws.10%29.aspx

CHAPTER 2. BACKGROUND & STATE OF ART

algorithms, e.g., for reading, the basic implementation of the algorithm is to read page by page.
Note that, these DS are used to store data and accessing algorithms, de�ne the e�ciency of
any DBMS [172, 91]. So, In physically store, data are allocated generally, on pages, cluster
and sectors. And in the logically store, data are stored as many formats like, �les, tables [75],
binary [244], key-values [90], triplet [40].
In this level, the main problems related to data are: reading, adding, deleting, and updating.
Due to the data volume, having e�cient access methods to �nd quickly a target data in storage
devices is necessary. As a consequence, many optimization structures like indexes have been
proposed and implemented.
Hence, in the implementation level, access methods are involved for several purposes: to rep-
resent data, to resolve a set of related problems (read, delete, insert data), and to use a set of
access techniques to facilitate and accelerate resolving related problems.

IV.2. Data structures in access level

In the access level, data concerns mainly optimization techniques to speed up queries. The
query optimization covers two main aspects: the physical design, identi�cation of the best
query plans. To ensure their e�ciency, the optimization structures have to contain a summary
of all or a part of original data needed by queries to avoid as much as possible costly accesses
to original data.

IV.3. Data structures in Optimization level

In the optimization level, the DBA is always working to �nd the optimal con�guration corre-
sponding to one or several OS. Selecting optimal OS has three main steps:

1. the representation of the search space by one or more data structures;

2. the reduction of the search space in small set of solution candidates to minimize the
complexity of selection algorithm;

3. the selection of the optimal con�guration based using naive or advanced algorithms (evo-
lutionary algorithms, systematic algorithms, randomize algorithms, etc.).

The elements of search space and the set of candidates of OS are de�ned using one or more
DS. Often; it is impossible to list all their elements which require de�ning the search space
using Abstract Data Type (ADT), like graph and tree. Applying rules and heuristics on these
ADT gives an in�nite possible OS, there they can be represented by a DS like array, graph,
tree, linked lists, etc.
The main related problems in this level are selecting the optimal OS under constraints, that
they often considered as combinatorial problems with NP-hard complexity [120, 68, 216]. Ac-
cordingly, the researchers have always used di�erent types of heuristics to reduce the complexity
of the problem and then identify a near optimal solution.

52

V. CONCLUSION

To summarize, in the optimization level, the elements of possible search space are usually
de�ned using ADT and the elements of candidate OS are de�ned using one or more DS. The
main problems related to data are the selection of the optimal con�guration of one or more
OS. Figure ?? gives the modelling space of data in the optimization level.

IV.4. Discussion

In this chapter, we show the role of the interaction among queries in physical design and deploy-
ment phases. This interaction has certainly exploited by researchers to propose large spectrum
of algorithms [177]: deterministic algorithms, randomized algorithms, genetic algorithms, hy-
brid algorithms. These algorithms explore the nodes of the global plan of the interacted queries
to identify the optimization schemes. These algorithms do not highlight their data structures.
In the context of big queries, the presence of �exible and scalable data structure is recommended
to de�ne advanced and e�cient algorithms. Note that the global plan is a graph, usually can be
partitioned to ensure scalability of algorithms. Graph partitioning is a fundamental problem,
with applications to many areas such as parallel computing and VLSI layout. The goal of graph
partitioning is to split the nodes in graph into several disjoint parts such that a prede�ned ob-
jective function, for example, ratio-cut, or normalized cut, is minimal. This partitioning saves
the characteristics of the initial search space represented by the global plan.
Another point that we realized when analyzing these studies is the absence of a connexion
between the problem of physical design and the problem of MQO. More precisely, to select an
optimization structure such as materialized views, the majority of the proposals use a sequential
methodology meaning that they assume that the problem MQO is already solved and then they
use its solution to run their algorithms. Due to the strong interdependency between these two
problems, a joint methodology is recommended.

V. Conclusion

This chapter gave an overview, accompanied with analysis and comparison of the di�erent con-
cepts used in our thesis. We started by introducing the data warehousing technology including
its design and exploitation by OLAP queries. The performance of the exploitation process
is linked to the physical design of the life cycle of the data warehouse design that includes:
user requirements, conceptual, logical, deployment and physical phases. Afterwards, we con-
centrated our discussion on the OLAP queries and their characteristics: they are routinely
and share common intermediate results. In the Era of very large database applications, their
optimization has become a crucial issue. The characteristics of OLAP queries force us to use
multi-query optimization solutions. Finally, based on this overview, we deduced the following:
to optimize very large queries de�ned on extremely large databases, we need a scalable data
structures associated with advanced algorithms.

53

CHAPTER 2. BACKGROUND & STATE OF ART

The next chapter, we present in details our scalable data structure based on hypergraphs to
represent queries and their intermediate results.

54

Part II

Contributions

Chapter

3 Modeling Query Interaction using

Hypergraphs

Contents

I Introduction . 59

II Hypergraphs and their usages . 60

III Analogy between UQP and EDA . 67

IV Hypergraph as a solution of scalability . 69

V Complexity of the algorithms . 82

VI Performance evaluation . 83

VII Conclusion . 85

Abstract

In this chapter, we present our �rst contribution that concerns the proposition of hyper-
graph driven data structure which is the fruit of our collaboration with Mentor Graphics,
Inc. In the EDA domain, we manipulate logical circuits with millions of gates. For sim-
ulation and testing purposes, the hypergraph data structures are widely used. This
manage this volume, simulation and testing algorithms use the divide and conquer prin-
ciple. As a consequence, several hypergraph partitioning libraries exit. This situation
motivates us to �nd an analogy between the representation of a uni�ed query plan and
a logical circuit. Once this analogy established, we adapt EDA hypergraph algorithms
and tools to our problem. Intensive experiments are conducted to evaluate the e�ciency
and the quality of our proposal.

57

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

58

I. INTRODUCTION

I. Introduction

As we have mentioned in the previous chapters, the generation of uni�ed query plan for a
workload with high interacted queries is an NP-hard problem [222]. Several research e�orts
have been triggered to tackle this problem, where a large panoply of algorithms have been
proposed that can be divide into three main categories: (a) dynamic programming algorithms
[246, 273], (b) genetic algorithms [17] and (c) randomized algorithms [139]. We would like to
mention that these algorithms have been tested for workloads with small sets of queries and can
require high computation time. Facing this situation, we have two scenarios: (i) reproduction
of the existing algorithms. However, it is not obvious that a particular algorithm Coarsening
is reproducible to a su�cient extent with this technique to deal with a large scale search space
and (ii) revisit our problem and solve it di�erently, by integrating the volume and sharing of
queries. In this thesis, we adopt the second scenario.

The database technology has a great experience in using advanced data structures such as
graphs, hypergraphs, tree (for indexing), etc. These structures are used either to speed up the
data access or as a support for algorithms dealing with large scale search space. We can cite the
example of the problem of vertical partitioning in relational databases. Shamkant B. Navathe
which is one of the pioneer who dealt with this problem, proposed a graphical algorithm with
less computational complexity than his �rst algorithms [185, 185] that generates all meaningful
fragments simultaneously [186]. The e�orts spent Shamkant B. Navathe were concentrated to
the transformation of the vertical partitioning problem to a graph.

A uni�ed query plan has been already represented by traditional graph. The presence of node
sharing of OLAP queries makes our problem similar to electronic circuit, where the hypergraph
corresponding to a logical circuit directly maps gates to vertices and nets (connection between
gates) to hyperedges [147]. Therefore, the hardness of our study is to make the analogy between
these two worlds: uni�ed query plan generation and logical circuits. Finally, our problem will
be transported in the context of EDA.

By the means of this Chapter, we would like to share our collaboration with Mentor Graphics
in terms of exploitation of their rich �ndings in terms of algorithms and tools.

This chapter begins by the presentation of the hypergraph theory (Section II) and their usages.
Section III focuses on the analogy between the electronic design automation (EDA) and multi-
query optimization problems. In the section IV, we detail our approach, in which we describe
hypergraph representation and partitioning, and we show the mapping between the hypergraph
and the uni�ed query plan. The hardness study of our problem is given in Section V. Section
VI describes the set of experiments that we conduct to validate our proposal. Finally, Section
VII concludes the chapter.

59

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

II. Hypergraphs and their usages

Hypergraphs give more expressive than traditional graphs in modeling sets of objects. This char-
acteristic allow the hypergraphs capturing any relationship between a group of objects, whereas
graphs can only capture binary relationships [65, 204]. This speci�city gives more �exibility in
accurately formulating several important problems in combinatorial scienti�c computing [276].
Since 20 years, the hypergraph theory contributes in modeling and solving several problems in
various domains such as location problems [159, 159], combinatorial problems [38] and so on
[94, 160, 54, 97, 264].
The major particularity that hypergraphs o�ers is their ability in dividing the search space of
a complex problem into several sub search spaces. Thus, hypergraph partitioning signi�cantly
reduces the complexity of the studied problems. The wide applicability of hypergraph theory
has motivated the development of fast partitioning tools, some are standardized. We can cite
the examples of as hMeTiS1 [147, 148, 152], PaToH 2 [66], and Mondriaan 3[263]. In addition,
we �nd also parallel partitioning tools such as Parkway 4 [250] and Zoltan 5[94].
This section presents a review of hypergraph theory and their applications to resolve combina-
torial problems, with a special focus on database related problems.

II.1. De�nitions

In this section, we present some fundamental de�nitions and underlying notions to understand
the hypergraph and its partitioning algorithms.

De�nition 8. Hypergraph: A hypergraph H =(V,E) is de�ned as a set V ={v1, .., vn}, of
nodes (vertices) and a set E ={e1, .., em} of hyperedges, where every hyperedge e connects a
non-empty subset of nodes.

We said that the hyperedge e ∈ E connects the vertex v ∈ V if, and only if, v ∈ e.
A weight and costs can be respectively associated with vertices and hyperedges of a hypergraph.
Let w[v] and c[e] denote respectively the weight of vertex v and the cost of hyperedge e.

De�nition 9. Vertex degree: The degree of vertex v ∈ V, denoted by d(v), is de�ned as the
number of distinct hyperedges in E that connect v.

De�nition 10. Hyperedge size: The hyperedge size (length) of the edge e ∈ E denoted by |e|,
is de�ned as it cardinality.

De�nition 11. Hypergraph partition: A partition of the hypergraph H (V,E), denoted by Π
={V1,V2,..,Vk }, is a �nite collection of subsets of V, called parts, such that :

1http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
2http://bmi.osu.edu/~umit/software.html
3http://www.staff.science.uu.nl/~bisse101/Mondriaan/
4http://www.doc.ic.ac.uk/~at701/parkway/
5http://www.cs.sandia.gov/Zoltan/ug_html/ug_alg_phg.html

60

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
http://bmi.osu.edu/~umit/software.html
http://www.staff.science.uu.nl/~bisse101/Mondriaan/
http://www.doc.ic.ac.uk/~at701/parkway/
http://www.cs.sandia.gov/Zoltan/ug_html/ug_alg_phg.html

II. HYPERGRAPHS AND THEIR USAGES

e1
v1

v3
v9

v10

v5
v4

v2

v6

v7
v8 v1

v3
v9

v10

v5v4

v2

v6

v7

v8

e3

e2

e4

e''1

e''3
e2

e4

e'1

e'3

split

Fig. 3.1 � Example of cutting hyperedge in hypergraph partitioning

� each subset V i is a non-empty subset of vertices, i.e., V i 6= ∅, for 1 ≤ i ≥ k;

� all subsets are pairwise disjoint, i.e., V i ∩ V j = ∅, for 1 ≤ i < j ≥ k;

� the union of all subsets is equal to V. i.e., ∪vi
=V, for 1 ≤ i < j ≥ k.

When the number of subsets |Π| = k and k > 2, the partition Π is called a k -way or a multi-way
partition. Otherwise (when k = 2), we call Π as a hypergraph bi-partitioning (it called also
bisections).

De�nition 12. Connectivity of hyperedge: In a partition Π of H (V,E), we say that a
hyperedge e ∈ E connects the part P i, if e connects at least one node from V i, and we say that e
connect the part P i or e connect the subset V i. We denote by Pe as the list of parts V i connected
by the hyperedge e. The connectivity of hyperedge e denoted by |Pe|, is the number of distinct
parts connected by e.

De�nition 13. Cut hyperedge: A hyperedge e ∈ E is cut if it connects more than one part
(i.e., |Pe| >1), and uncut otherwise (i.e., |Pe| =1).

As shown in Figure 3.1, the bi-partitioning, has produced two cut of hyperedges (e1 and e3),
which each one is split into two hyperedges. The �rst on e′1 and e′′1, and the second on e′3 and
e′′3.

De�nition 14. Cutset: A cutset of a partition Π denoted by C(Π), is the set of hyperedges
that are cut by Π. So, a hyperedge in the C(Π) has vertices in at least two distinct parts. The
cardinality of the cutset is called the partition cutsize.

61

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

II.2. Hypergraph partitioning algorithms

De�nition 15. Hypergraph partitioning: can be de�ned as the task of dividing a hyper-
graph into two or more partitions while minimizing the cutsize and maintaining a given balance
criterion ε among partitions weights.

II.2.1. Objectives of Hypergraph partitioning

Hypergraph partitioning is commonly used to model decomposition of problems, where the
interconnection within the decomposition (partition) is minimized. The decomposition is eval-
uated using a cost that represents a quantitative measure of partition quality (integer or real
value). This cost expresses the objective of the partitioning, which aims at minimizing or
maximizing this cost. Several cost objectives used to partition the hypergraph. Most of them
use the number of hyperedge cuts. Therefore, the partitioning aims at �nding the partition
with a minimum cut. For example, in VLSI placement, reducing hyperedges cut corresponds a
minimizing needed wires between gates. In parallel computation the minimum cut corresponds
at minimum of communication inter processors.

II.2.2. Formalization of Hypergraph partitioning

Formally, hypergraph partitioning is de�ned as:

� Inputs:
- a hypergraph H (V ,E);
- an integer k > 1 that represents the suitable partitions;
- a real value balance criterion 0 < ε < 1.

� Outputs:
a partition Π ={P1, .., Pk}, with corresponding part weights fw (P i), 1 ≤ i ≤ k.

� Constraints:
fw (P i)<(1+ε)*Wavg, for all 1 ≤ i ≤ k, where Wavg is the average weight.

� Objective: minimization of the number of cut of hyperedge cutsize. The objective
function may use other costs.

This partitioning has to ensure a balance between the weights of di�erent result parts. This
balance is considered as partitioning constraints. The weight of a given part is calculated as
the sum of the weights of its vertices. Let fw (P i) be the weight of a part P i, which is de�ned
as the sum of the weights of its vertices V i, as shown in the following equation:

fw(P i) =
∑
v∈Vi

w[v] (3.1)

62

II. HYPERGRAPHS AND THEIR USAGES

To ensure the balance constraint, we need the average weight Wavg of parts and an allowed
predetermined maximum imbalance ratio ε, where 0 < ε < 1. The average weights Wavg, is
de�ned as:

Wavg = (
∑
v∈V

w[v])/k (3.2)

where k is the number of partitions.
A partition is said to be balanced, if each partition P i satis�es the following criterion :

fw(P i) ≤ Wavg ∗ (1 + ε); 1 ≤ i ≤ k (3.3)

The cost of hypergraph partitioning Π can be de�ned by:

cost(Π) =
∑

e∈C(Π)

c[e] (3.4)

where C(Π) and c[e] represent respectively the cut set and the cost of the hyperedge e.

II.2.3. Methods of Hypergraph partitioning

Numerous approaches exist for solving the hypergraph partitioning problem that can be clas-
si�ed into four categories.

� Exhaustive Enumeration that produces all possible partitioning. At the end, it selects
the partition with optimal cost de�ned by the designers. This method gives the optimal
solution, but it has exponential complexity, since it requires an exploration of the search
space [61].

� Branch and Bound is proposed to improve the above approach by implementing a depth
left tree of partial partitioning. This tree allows having faster a sub-optimal solution by
verifying the balance constraints in each node. It prunes the illegal solutions. Despite its
performance, it may have an exponential complexity [61].

� Fiduccia-Mattheyses is proposed to scale partitioning algorithms [104], which is a linear
heuristic that improves a partitioning using iterative passes wherein each vertex is moved
exactly once. Passes are generally applied until little or no improvement remains. Initial
solutions are often produced using a simple randomized algorithm.

� Multilevel Fiduccia-Mattheyses Framework consists of three main components:
clustering, top-level partitioning and re�nement (these steps will be detailed below).

Other methods exist for solving hypergraph partitioning problem such as simulated anneal-
ing and Tabu search [100], spectral techniques [10], network-�ow driven algorithms [272], and
incidental �ow-solver [135, 136].

63

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

G0

G1

G2

G3

G4

G0

G1

G2

G3

Initial Partitioning Phase

U
n

c
o

a
rs

e
n

in
g

 p
h

a
s

e
C

o
a
rs

e
n

in
g

 p
h

a
s
e

Fig. 3.2 � Cut hyperedge splitting during recursive bisection

The Multilevel hypergraph partitioning is the most used technique for hypergraph partitioning.
It goes through three phases: coarsening, initial partitioning, and uncoarsening. In the �rst
phase, a bottom-up multilevel clustering is successively applied on the original hypergraph,
by adopting various heuristics, until the number of vertices reaches a predetermined threshold
value in the coarsened graph. In the second phase, the coarsest graph is bi-partitioned using
various bottom-up heuristics. In the third phase, the partition found in the second phase is
successively projected back towards the original graph by re�ning the projected partitions on
intermediate level uncoarser graphs using various top-down iterative improvement heuristics.
The following sub-sections brie�y summarize these three phases illustrated in Figure 3.2.

Coarsening Phase

In this phase, for given hypergraph H = (V ,E), undergo the object of sequence of successive ap-
proximations, the hypergraph is coarsened into a sequence of smaller hypergraphs H1 =(V1,E1),
H2 =(V2,E2) ... Hm =(Vm,Em). satisfying |V1| > |V2| >...>|Vm|, and the number of vertices
in the coarsest approximation Vm has some �xed upper bound that depends on the solicited
number of parts in the partition (k).
In [152], Karypis et al., give some desirable characteristics that a coarsening algorithm should
possess:

� a near-optimal partition of the coarsest hypergraph Hm should project to a near-optimal
partition of H.

� the successive coarser hypergraphs should have signi�cantly fewer large hyperedges than
the original hypergraph.

64

II. HYPERGRAPHS AND THEIR USAGES

� the sum of the hyperedge weights in the successive coarser hypergraphs should decrease
as quickly as possible

Coarsening Approaches

The early algorithms for coarsening graph [58, 130] use a purely random edge matching scheme.
Unmatched vertices are only allowed to match with other unmatched vertices, resulting in
vertex clusters of size two. In [15], Simon and Barnard coarsen the graph by �rst computing a
maximal independent set of vertices V ′ ⊆ V i, such that for any two vertices u, v ∈ V ′, there is
no hyperedge in E that connects u and v. Then constructing the coarse vertices by matching
vertices in the maximal independent set with their neighbors.
Toyonaga et al. [248] sort the hyperedges in non-decreasing order by cardinality and then
traverse the sorted list of hyperedges, with vertices of a hyperedge forming a cluster if they
have not been matched previously as part of another hyperedge.
Karypis et al. [147, 148] sort the hyperedges in a non-increasing order of weight and then
hyperedges of the same weight are sorted in a nondecreasing order of cardinality. The sorted
set of hyperedges is then traversed and vertices of a hyperedge form a cluster if they have not
been matched previously as part of another hyperedge.

Initial Partitioning Phase

The goal in this phase is to �nd a bipartition on the coarsest hypergraph Hm, that satis�es the
partition balance constraint and optimizes the objective function.
E�ectively, any heuristic optimization algorithm that can be applied to hypergraph partitioning
may be used to compute the initial partition. For example, Hauck and Borriello [127] evaluate a
number of simple methods for generating a starting feasible partition, prior to using a heuristic
partitioning algorithm. Random partition creation by randomly chosen vertices is proposed to
improve the previous algorithms in terms of the quality of the generated partitions and the
runtime. Similar initial partition generation methods are also used in [147, 152].
In [60], the authors have introduced a relaxation balance constraint of random computation by
adding deterministic computation. Generally, the quality of these algorithms is sensitive to the
choice of the initial random vertex.

Uncoarsening Phase

During this phase, a partition of the coarsest hypergraph is projected through each successive
�ner hypergraph, where at each level i (for i = m, m− 1,. . . , 1), bipartition Πi found on Hi

is projected back to a bipartition Πi−1 on Hi−1. A simple algorithm for projecting a partition
which runs in O (n) time proceeds as follows:
The vertices of a hypergraph Hi (Hi,E i) are traversed, and for each vertex v ∈ V i, the part
corresponding to the coarse vertex g(v) ∈ V i+1 is noted from Πi+1 and v is assigned to the same

65

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

part in Πi. Typically, iterative improvement algorithms based on the KL/FM framework are
used. Although [214] uses a Tabu search-based algorithm.

II.3. Applications of hypergraph theory

Recently, the hypergraph theory [148] allowed a hyperedge to connect an arbitrary number of
vertices instead of two in regular graphs. Therefore, it provides better understanding of large
range of real systems. The hypergraph theory is very useful in many domains like (1) in chem-
istry search they are used to giving more convenient description of molecular structures [160].
(2) In telecommunication, where they are used to modeling cellular mobile communication
systems to de�ne the groups of cells that cannot use simultaneously the same channel under
prede�ne distance [159]. (3) In image processing in which they are used to segmenting images
[54, 97]. (4) Other domains like recommendation [41, 226], analyzing public health [264], etc.
In the following, we detail some practical applications of hypergraph theory.

� Data mining implementation: hypergraph has been exploited by researchers in data
mining, where data are clustered in several groups, such that the intra-cluster similarity
is maximized, while inter-cluster similarity is minimized [122, 42, 129]. The set of vertices
and hyperedges of the hypergraph corresponds respectively to the set of data items and
the set of relations between them.

� Database schemes modeling: a database can be viewed as a set of attributes and
set of relations between these attributes. This property has motivated some works to
introduce hypergraph theory to model relational database schemes [103]. The vertices of
hypergraph is the set of attributes, and the set of hyperedges is the set of relations between
these attributes. Other applications have been discussed in the previous chapters.

� VLSI computer-aided design: the application of hypergraph partitioning within VLSI
design has been well-addressed in literature [11, 142, 79]. The hypergraph partitioning
problem is used to facilitate the task of designing modern integrated circuits that have
a very large number of components. A hypergraph is used to represent the connectiv-
ity information from the circuit speci�cation. Each vertex in the hypergraph represents
a gate in the circuit and each hyperedge represents a connection inter-gates [11]. Hy-
pergraph partitioning allows dividing a circuit speci�cation into clusters of components,
such that the cluster interconnect is minimized. Each component can then be assembled
independently, speeding up the design and the integration processes.

� Social network analysis: there is a tendency to use hypergraph theory to analyze
social networks. In this context, the vertices and hyperedges of a hypergraph represent
respectively the type of actors (e.g., peoples, groups, etc.) and the relationships between
them. The corresponding hypergraphs are used for many proposes such as: forensics

66

III. ANALOGY BETWEEN UQP AND EDA

analysis to solve crimes (e.g., identifying the regions of twitter [109]) and for identifying
topological features to understand tagged networks [283].

II.4. Discussion

In many applications of hypergraph theory, the size of input grows continually and rapidly. For
example, the number of transistors in VLSI design problem continues to grow exponentially in
which today tens of millions gates and in the near-future hundreds of millions are needed to
design logical circuits. Same situation concerns the social network medias, where the number of
worldwide users is expected to reach some 2.95 billion by 2020, around a third of Earth's entire
population6. The success story of hypergraphs, where they have has proved their motivates us
to use them in our context of big queries.

III. Analogy between UQP and EDA

In this section, we present the analogy between MQO problem and electronic design automation
(EDA). This analogy is the motivation to brow EDA techniques and tools to be used in our
problems.

III.1. Analogy between UQP and Electronic circuit

An UQP can be represented using an directed acyclic graph those nodes (vertices), represent
the query operators which are binary and unary. The edges describe the data �ow between
operators, where loading data start from the leaf nodes and each intermediate node passes its
results computing to their connected nodes, until root nodes (that describe the �nal results).
Similarly, a logical circuit can be represented by directed acyclic graph those nodes represent
theirs gates (ports) that can be associated to many inputs/outputs. An edge describes the data
�ux between gates that de�nes the sense of transforming data from one gate to another. The leaf
nodes capture data from external source, whereas intermediate nodes modify the captured data
and transform them to the connected nodes. The root nodes contain the results of electronic
circuit function. Hence, an UQP can be considered as electronic circuit with only unary and/or
binary ports.

Example

Consider the star schema benchmark SSB 7 [194]. The DW contains a fact table Lineorder
and four dimension tables: Customer, Supplier, Part and Dates. This schema is queried by a
set of 30 queries of SSB benchmark. Figure 3.3 describes a generated UQP of those 30 queries.

6https://www.statista.com/topics/1164/social-networks/
7http://www.cs.umb.edu/poneil/StarSchemaB.pdf

67

https://www.statista.com/topics/1164/social-networks/
http://www.cs.umb.edu/poneil/StarSchemaB.pdf

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

0

2

3

1

5

6

38
39

40
41

43

44

42

45

46

76

52

49
50

51

53

54

58

55

56
57

59
60

65

64

7

8

18

19

20

21

22

9

23

24

25

27

28

4

10

11

13

12

29

30

31

14

15

16

17

32

34

36 37

35

66
67

62

61

63

33

4826

Q11

Q12

Q13

Q14

Q15

Q16

Q30

Q17

Q18

Q19

Q20

Q21

Q22

Q23

Q24

Q25

Q26

Q27

Q28

Q29

Q1

Q2

Q3

Q4

Q5

Q8

Q7

Q6

Q10

Q9

0

2

3

1

5

6

38
39

40
41

43

44

42

45

46

76

52

49
50

51

53

54

58

55

56
57

59
60

65

64

7

8

18

19

20

21

22

9

23

24

25

27

28

4

10

11

13

12

29

31

14

15

16

17

32

34

36 37

35

66
67

62

61

63

33

4826

Q11

Q12

Q13

Q14

Q15

Q16

Q30

Q17

Q18

Q19

Q20

Q21

Q22

Q23

Q24

Q25

Q26

Q27

Q28

Q29

Q1

Q2

Q3

Q4

Q5

Q8

Q7

Q6

Q10

Q9

Selection operations Projection operationsBase tables Join operations

Fig. 3.3 � An example of UQP of 30 queries

Note that the UQP contains four levels of nodes (selection, join, projection and aggregation).
Figure 3.4 shows an UQP designed as an electronic circuit by replacing its intermediate results
by electronics ports (AND, OR, XOR).

Fig. 3.4 � Electronic circuit corresponding to the UQP

68

IV. HYPERGRAPH AS A SOLUTION OF SCALABILITY

This analogy allows us borrowing optimization techniques and tools de�ned in electronic cir-
cuits' domain to handle very large UQP.

III.2. Hypergraph as DS in VLSI circuits

In very large scale integration (VLSI) process, it is important to be able to split (or partition)
the circuit in many clusters, where the interconnection between ports is important inside a
cluster and minimal connections between clusters. It has many applications, like logic and
physical synthesis, circuit testing, mapping, �oor plan, place and root, timing analysis and
simulation. Particularly, the placement steps uses partitioning to situate a circuit of hundreds

1

2

3

4

6

5

a

b
c

d

e

(a) Circuit

1

3

4

6

5

a

b
c

d

2

(b) Hypergraph

Fig. 3.5 � Hypergraph representation of the circuit

of thousands or millions of gates with respect of the speci�cations of the blocks (constrained
by minimal timing and area). To address this problem, a circuit can be represented by a
hypergraph: gates of the circuits are the vertices of the hypergraph and the hyperedges are
considered as the connections between ports. Figure 3.5b gives a representation of the circuit
shown in the Figure 3.5a. The hypergraph will be partitioned in many clusters, where each
cluster will be designed and tested independently. Finally, a global test and merging of all
clusters is conducted.
By analogy the representation of query interaction by a hypergraph, allows us to use partitioning
algorithms to group queries in many sets, in which queries inside each set share the maximum
of intermediate results and have minimum interaction with the others queries.

IV. Hypergraph as a solution of scalability

The successful analogy inspires us to use similar techniques as those used in EDA. More
precisely, we model a workload by a hypergraph, and we partition it to facilitate the exploration
of the search space by dividing the global hypergraph in several disjoint subsets. These subsets
will be transformed in many local UQP (each subset of queries has an UQP), which will be

69

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

Electronic

Schema
Design & Test

Partition Design & Test

Design & Test

Cluster

Cluster

Queries MQO & OS UQP & OS

Queries

Partition

Merge

Component

Component

UQP & OS

Electronic

Schema

Optimized

Electronic Circuit

Optimized

Electronic Circuit

Fig. 3.6 � Analogy between VLSI circuit and MVPP generation approaches

ultimately merged to obtain the global UQP, for all queries. We detail below, the steps of our
5-steps methodology (Figure 3.7).

� Step 1: parses each SQL query of our workload to identify the logical operations (nodes).
Since, we are assuming SPJ (Select-Project-Join) queries, three types of nodes are distin-
guished: (a) selection nodes are determined by the selection predicate. Each predicate
has a selectivity factor; (b) join nodes are determined by a join predicate and two selec-
tion nodes and (c) projection nodes are determined by a predicate which correspond to
a set of columns projected by the query.

� Step 2: models the join nodes by a hypergraph, where the vertices represents the set of
join nodes and the hyperedge set represents the workload of queries8.

8In our work, we focus on only by join nodes that are the costly nodes and the other operations are pushed
as far down the logical query tree as possible.

70

IV. HYPERGRAPH AS A SOLUTION OF SCALABILITY

UQP

Parse

Graph Modeling

Graph partition

Merge

Queries

MQP

generation

MQP

generation

MQP

generation

…

Sub hypergraphs

Cost Model

Physical

implementation

DW
Parse

Graph Modeling

Graph partition

Merge

Queries

MQP

generation

MQP

generation

MQP

generation

…

Sub hypergraphs

Cost Model

Physical

implementation

DW

Logical operations

Hypergraph (H)

hypergraph (H1)
hypergraph (H2) hypergraph (Hn)

UQP1 UQP2 UQPn

Fig. 3.7 � UQP generation approach

� Step 3: generates connected components using hypergraph partitioning algorithms. The
result is a set of disjoint components of queries. Each component is represented by a
sub-hypergraph (SH i).

� Step 4: transforms each sub-hypergraph into an oriented graph using a mathematical
cost model and implementation algorithms to order the nodes. This step is crucial, since
we can plug any OS knowledge consumer of uni�ed graph such as materialized views,
horizontal partitioning, etc.

� Step 5: merges the graphs resulting from the previous transformation to generate the
global uni�ed query processing (UQP).

IV.1. Query workload representation

IV.1.1. Parsing query

The parser takes as input a SQL query and converts it into a parsed tree. This process is done
by:

� a syntactic analysis to give the basic grammar elements of the text query in the form of
a parse tree;

� a semantic checking of the parsed tree by verifying the used relations and attributes,
query clauses, etc.;

71

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

� a veri�cation whether views are involved in the current query or not.

Syntax analysis

The syntax analysis allows verifying the consistency of parse tree nodes. The leaves nodes of
the parse tree represent the atomic elements. They are the lexical elements of the query such
as keywords (e.g., SELECT, WHERE, FROM), names of relations and attributes, constants,
logical and arithmetic operators, etc. The other nodes of the parsed tree represent a composite
element formed by many atomic elements like Condition, other sub query. In Figure 3.9, the
composite elements are reported by elements between "<" and ">". Figure 3.9 shows the
parsed tree of SQL query presented in the Figure3.8.

SELECT studentName
FROM Stud i ent s
WHERE i dStud i ent IN (

SELECT idStud
FROM FollowCours
WHERE s p e c i a l i t y ='CS ') ;

Fig. 3.8 � Example of a text written query

<Query>

SELECT

<Attribute>

FROM <FormList> WHERE <Condition><SelList>

studentName

<RelName>

Studients

<Attribute> (IN) <Query>

SELECT FROM <FormList> WHERE <Conditions><SelList>

<Attribute>

idStud

<RelName>

FollowCours

<Attribute>>= <Const>

speciality CS

idStudient

Fig. 3.9 � The parse tree of the previous query (Figure 3.8)

Semantic checking of the parsed tree

The semantic parse tree checking is an intermediate step aiming at verifying the syntactical
and the semantic rules of the query. The checking process follows these main tasks:

� checking whether every relation, attribute, or view mentioned in the FROM-clause be-
longs to the schema of database or data warehouse (using the meta-model).

72

IV. HYPERGRAPH AS A SOLUTION OF SCALABILITY

� checking whether every attribute mentioned in the SELECT/WHERE-clause belongs to
the relations appeared in the FROM-clause.

� checking whether attributes' types are respected in the Condition-clause.

Views checking

In this step, each virtual view in the query parse tree will be replaced by a sub-parse tree that
represents the sub-query constructing this view. Note that in the case of materialized views,
there is no substitution, because these latter are considered as base tables (relations). Figure
3.10 shows the replacement of a virtual view by its sub-parse tree.

VR2

Q

X

X

R1

R4

X

R3

R2

Q

X

X

R1

View V

Fig. 3.10 � Virtual view substitution.

IV.1.2. Logical query plan selection

The logical query optimization is founded on the algebraic equivalences. In fact, many equiv-
alent expressions can be generated for a query [44] (cf. Chapter I) A query is composed of
di�erent operations which follow algebraic laws (commutativity, associativity, and distributiv-
ity), and can be applied in both directions: from left to right, and from right to left. So, a huge
space of equivalent expressions can be derived for one query. Finding a better plan, during the
logical step is not possible, since many implementation details required for the cost estimation
may be missed and eventually further added to the plan (during the physical phase).
The generation of the logical plan of a query presented as a parsed tree, goes through two
principal steps: (1) transforming this tree to a logical query plan, and (2) improving the logical
query plan using algebraic laws, and (3) selecting an appropriate logical plan. Figure 3.11
summarizes the principal steps of the logical query plan generation.

73

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

Parse tree

Transforming parse tree

Generate logical plans space

Select logical plan

Logical query plan

Fig. 3.11 � Logical plan generation steps

Parse tree translation

Transforming the parsed tree into more preferred logical query plans is performed through two
steps: (i) the nodes of the parsed tree are replaced by one or several operators of relational
algebra. (ii) the query optimizer applies the algebraic laws on the resulting query expression to
generate an expression more appropriate to be physically processed thereafter. The translation
applies the following rules:

� Relations are loaded from <FromList> of the parsed tree;

� Selections σC correspond to every C captured from <conditions> of the parsed tree;

� Projections ΠL correspond to each attribute present in the list L captured from <SelList>.

� the initial logical plan corresponds to the cross product of the relations, two by two, and
second a selection σC , and �nally a project ΠL. Figure 3.12 gives an example of an initial
logical query plan associated to the query in Figure 3.8.

� If the condition represents a sub-query, then it will be replaced by an expression of relation
algebra following the previous steps.

IV.2. Hypergraph generation

An hypergraph H is a set of vertices V and a set of hyperedges E . In our case, V represents a
set of join nodes, such that for each vertex vi ∈ V , corresponds a join node nj. The same way, E
represents the workload of queries Q, such that for each hyperedge ei ∈ E corresponds a query
qj. A hyperedge ei connecting a set of vertices corresponds to a join nodes that participate on
the execution of the query qj. As shown in Figure 3.13, an example of a join hypergraph is

74

IV. HYPERGRAPH AS A SOLUTION OF SCALABILITY

Student

X

Student

FollowCours

<Condition>

idStudent IN

FollowCours

Fig. 3.12 � Example of �rst translating parse tree

1

Q1 Q2

181716

19

20

Q7

Q9 2928

30

32

Q27

Q2333

31

Q24

Q28

22

Q16

28

Q10

Q14

20

24

25

Q526

21

1

181716

19

20
2928

30

32

33

31

22

28

20

24

25

26

21

Fig. 3.13 � An example of join hypergraph

1

Q1 Q2

181716

19

20

Q7

Q9 2928

30

32

Q27

Q2333

31

Q24

Q28

Q14

22

20

24

25

Q16

Q526

21

28

Q10

1

181716

19

20
2928

30

32

33

31

22

20

24

25

Q16

26

21

28

Fig. 3.14 � Result of hypergraph partitioning

given, where the hyperedge e23 corresponds to query q23 and connects the join nodes: n28, n30,
n32 and n33. The hypere-dge e2 corresponds to query q2 and connects one join node n1.
The set of join nodes will be partitioned into several disjoint sub-sets, called connected compo-
nents. Each component can be processed independently to generate a local UQP by ordering
the nodes.
Table 3.1 summarizes the mapping between the graph vision and the query vision.

IV.3. Hypergraph partitioning

As we explain in the section III, the hypergraph partitioning allows us to group queries in
many sets, in which queries inside each set share the maximum of intermediate results and
have minimum interaction with the others queries. To partition our hypergraph, we adapt an
existing algorithm derived from graph theory to aggregate the join nodes into small connected
components. The partition process is applied on initial hypergraph H (V ,E) and the result of
hypergraph partitioning is k sub-hypergraphs that are a hypergraphs Hi (V i,E i), where |E i| ≤
M , for all 1≤ i ≤ k. Our partitioning algorithm has the following steps:

75

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

hypergraph Vision Query vision
V = {vi} set of vertices {nj} set of join nodes

Hyperedge ej Query qj
Section (sub-hypergraph) Connect component

Hypergraph HA Workloads of queries Q
Oriented graph Processing Plans

Table 3.1 � Analogy Graph � Query.

1. Firstly, we adapt the code of the multilevel hypergraph partitioning (hMeTiS) to split
our hypergraph into several partitions such as no cut of hyperedges. hMeTiS is a free
software library developed by the Karypis laboratory. This software allows parallel and
serial partitioning. As we said before, it divides a hypergraph into k partitions (new
hypergraphs) such that the number of hyperedges cut is minimal [148, 151]. In our
context, the exact number of partitions to construct is unknown. In the same time, we
want to get all possible disjoint partitions (connected components). To do so, we adapt the
original algorithm to our problem by bi-partitions until no partition can be repartitioned
without cutting hyperedges. More precisely, the algorithm behaves as follows: (i) the set
of vertices will be divided if and only if the number of hyperedges cutting is null. (ii)
Each bisection result of the hypergraph partitioning will be divided in the same way until
no more divisible hypergraph is found.

2. Secondly, we use hMeTiS programs to partition each sub-hypergraph Hi (V i,E i), such as
|E i| ≥ M . The sub-hypergraph Hi will be partitioned into k′ partitions such as k′ =(|E i|/
M)+1.

Figure 3.14 presents the join hypergraph partitioning of the hypergraph shown in the Figure
3.13, where three connected components corresponding to three new hypergraphs are obtained.

IV.4. Transforming hypergraph to UQP

After the partitioning process of the hypergraph into several small sub-hypergraps, the gener-
ation of UQP becomes a simple transformation of each sub-hypergraph into an oriented graph
and �nally merging of resulting graphs. In this thesis, we assume that the queries of our
workload are represented only left-deep plan, so for a join uni�ed query plan will have many
connected components. Each component contains a query plan that shared at least one join
node. The �rst join node, called pivot node(pivot), which is shared by all queries of its com-
ponent. The pivot has a direct impact on the other nodes of its component. So, the quality of
component depends to the pivot nodes. Hence, the generation of OS-oriented UQP becomes
at �nding the adequate pivot node that de�nes the components of the OS-oriented UQP.

76

IV. HYPERGRAPH AS A SOLUTION OF SCALABILITY

To generate the local UQP (for one sub-hypergraph), the join hypergraph must be transformed
into oriented join graphs G. Adding an arc to a graph corresponds to establishing an order
between two join nodes. We start by the pivot node which is preferred for the OS that is
identi�ed using a function translating the knowledge of OS (see Chapter 4). The pivot node
will be added to the oriented graph (G) and deleted from the hypergraph. This operation is
repeated until all nodes are added to the graph.

Algorithm 1: transformHyperGraph(Hypergraph H)
1: while V not empty do
2: pivot ← findP ivot (H); {Algorithm 2}
3: if pivot ∈ all (ei ∈ H) then
4: addV ertexToGraph (pivot); {add pivot to G }
5: deleteV ertex (pivot); {delete pivot from V of H }
6: for all ei ∈ H do
7: if |ei| =0 then
8: deleteHyperEdge (ei); {delete all hyperedges which have no a vertex}
9: end if
10: end for
11: else
12: partitionP ivot (pivot, H1, H2); {Algorithm 3}
13: addV ertexToGraph (pivot);
14: transformHyperGraph (H1); {re-transformation}
15: transformHyperGraph (H2); {re-transformation}
16: end if
17: end while

Algorithm 1 describes the transformation steps of a hypergraph into an oriented graph.
Transforming a hypergraph into an oriented graph UQP is a two-part process. On one hand,
we select a pivot node from the hypergraph to be removed, while on the other hand the cor-
responding join node is added to the UQP. This process is repeated until there are no more
vertices in the hypergraph is found. Hence, the transformation has three steps: (1) choosing
the pivot node (pivot), depending on the target OS. (2) transforming the pivot node from the
hypergraph to the oriented graph. (3) removing the pivot node from the hypergraph.
Figure 3.15 shows the transformation steps of a hypergraph into an oriented graph. In which,
we have as input the hypergraph H (V ,E)=({n20, n21, n22, n24, n25, n26, n28 },{Q5,Q14,Q16 }). In
the �rst step, the node n20 is chosen as the pivot node, which is determined by two selections
S1 and S2. The transformation starts by inserting the �rst join node corresponding to n20 into
the oriented graph (basically in the �rst step, the oriented graph don't contain any nodes),
and deleting the n20 from the hypergraph H. In which produces two other sub-hypergraphs
: H1 (V1,E1)=({ n21, n24, n25, n26 },{Q5,Q14 }) and H2 (V2,E2)=({ n22, n28 },{Q16 }). In the

77

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

Q14

2220

Q16

Q5

21

28

24

25

26 S2

20

S3S1

24

Q5

20

24

25

S2S1 S3 S4

26

S5

S2S1

20

Add the first pivot which is
the node n° 20

(01)

Add the second pivot
which is the node n° 24

(02)

Add to the UQO the
nodes 25 and 26 of Q5

in descending
order of their benefit

(03)

Q5

20

24

25

S2S1 S3 S4

26

S5S6

21

Q14

S8 S7S7

22

28

Q5

20

24

25

S2S1 S3 S4

26

S5S6

21

Q14Q16

Initial sub-hypergraph

Add the remaining node
20 of Q14 to UQP

(04)

(05)

Final UQP

Add to the UQO the
nodes 22 and 28 of Q16

in descending
order of their benefit

Fig. 3.15 � Transformation steps of a join hypergraph to an oriented graph

second step, the n24 (determined by two selection S1 and S3) is chosen as pivot node. The
pivot node will be added into the graph after the node n20 (so, the right predecessor becomes
n20 instead S1). The removing the n24 from H1 will generate two other sub-hypergraphs H11

=({n25, n26 },{Q5 }) and H12 =({n21 },{Q14 }). These operations (choose pivot node, inset node
into oriented graph and removing node from hypergraph), will be repeated until no nodes into
any sub-hypergraph, and as consequence we obtain the �nal oriented graph (UQP).

78

IV. HYPERGRAPH AS A SOLUTION OF SCALABILITY

IV.4.1. Finding the pivot node

The choice of pivot node from the hypergraph at a given point is made through a bene�t function
which takes into account the characteristics of the speci�c problem. The function computes the
bene�t relative to the targeted OS for each remaining node of the section and adds the node
with maximum bene�t. For more details on the bene�t function, see Chapter 4.

Algorithm 2: findP ivot (Hypergraph H)
1: benefitemax ← 0;
2: for all vi ∈ V do
3: nbr ← nbrUse (vi); {nbr: number of hyperedges that connect vi }
4: benefit ← getBenefit(vi) {calculate the bene�t of vi following the OS }
5: if benefit > benefitemax then
6: benefitemax ← benefit;
7: pivot ← vi;
8: end if
9: end for
10: return pivot

Algorithm 2 allows �nding the vertex (node) which is the pivot in the hypergraph H. This
pivot corresponds to the node which has the best possible bene�t of intermediate results reuse.
The bene�t is the number of reuse multiplied by the processing cost minus the cost processing
to generate the intermediate result.

IV.4.2. Remove the pivot node from hypergraph

The removing of pivot node impacts on the hypergraph. A hypergraph is the disjoint union of
connected section. Two hyperedges belong to the same connected section if there is a connected
path of hyperedges between them. Let S be a hypergraph and vi ∈ S be a vertex being removed.
When a vertex is removed from a section, the remaining nodes of that section are a�ected in
di�erent ways depending on the following case:
Let vertex vj and vj two vertices the same hypergraph (section) the di�erent cases when re-
moving a vertex are:

� Case 1: vi and vj belongs to the same hyperedge and there is no hyperedge to which vj

belongs and not vi. The remove of vi, vj is unchanged.

� Case 2: vi and vj belongs to the same hyperedge and there exists an hyperedge to which
vj belongs and not vi. The remove of vi, vj is duplicated, one unchanged and one renamed
with v

′
j

� Case 3: vi and vj do not belong to the same hyperedge. The remove of vi, vj is unchanged.

79

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

Fig. 3.16 � Example of transformation Fig. 3.17 � A resulting UQP

We denote by t(S,v) the transformation that removes the vertex,v from section S. In Figure
3.16, we apply t(S,v), which means we remove the node C from S. If C is the vertex being
removed, then D is type 1 (there is an hyperedge to which both C and D belong, but no
hyperedge to which D belongs but not C), B is type 2 (there is a hyperedge to which both C
and B belong, and there is a hyperedge to which B belongs but not C), and A is type 3 (there
is no hyperedge to which A and C belong). Figure 3.16 shows the e�ect of t(S,C) on section S,
the result being three new sections S1, S2,S3. Figure 3.17 shows the result of transformations
t(S,C),t(S1,BA),t(S2,BC, t(S3,DC) on the example of Figure 3.16.
So, removing the pivot node from the hypergraph can generate a partitioning of the hypergraph
into two disjoint hypergraphs H1 and H2 by Algorithm 3. H1 includes all hyperedges that
including the pivot and H2 has the other hyperedges. Both hypergraphs are transformed the
same way into oriented graphsG.

Algorithm 3: partitionP ivot (Vertex pivot, Hypergraph H1, Hypergraph H1)
1: for all ei ∈ H do
2: if pivot ∈ ei then
3: addToGraph (ei, H1); {add the hyperedge ei to H1 }
4: else
5: addToGraph (ei, H2); {add the hyperedge ei to H2 }
6: end if
7: end for
8: for all vi ∈ H2.V do
9: if vi ∈ H1.V then
10: putNewID (vi, H2); {new ID for duplicate node }
11: end if
12: end for

Algorithm 3 allows partitioning a hypergraph into two disjoint hypergraphs using a node as
a pivot. The �rst hypergraph contains the hyperedges that use the pivot, and the second

80

IV. HYPERGRAPH AS A SOLUTION OF SCALABILITY

181716

19

20

Q7

Q9 2928

30

32

Q27

Q2333

31

Q24

Q28

Q10

Initial hypergraph

181716

19

20
2928

30

32

33

31

Q24

18

Q7

2928

30

32

Q27

Q2333

31

Q24

Q28

18

2928

30

32

33

31

331716

19

20 Q9

Q10

331716

19

20

HyperGraph 1

HyperGraph 2

Fig. 3.18 � An Example of hypergraph partitioning with node as a pivot

hypergraph contains the other hyperedges.

Figure 3.18 shows an example of the result of hypergraph partitioning with the pivot n28. We
note that the node n18 belong the case 2, which needs to be duplicated into the node n33 in the
second hypergraph, when removing n28. the nodes n29, n30, n31, n32 and n33, belong in the case
1. the nodes n17, n16, n19, and n20 belong the case 3.

IV.5. Merging the local UQP

The transformation step allows transforming a set of n hypergraphs {H1 (V1,E1),..,Hn (Vn,En)},
to n oriented graphs {G1 (V ′1,E ′1),..,Gn (V ′n,E ′n)}. The n oriented graphs are disjoints and their

81

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

merging is quite easy which gives the graph G (V” ,E”), where

V” =
⋃

1 ≤ i ≤ n
(V ′) (3.5)

E” =
⋃

1 ≤ i ≤ n
(E ′) (3.6)

V. Complexity of the algorithms

As we explained in the previous sections, our approach has three main sequential steps. The
complexity of each step is given separately:

� The �rst step consists in parsing the queries to identify the involved operations in order
to construct the hypergraph. This task has a linear complexity O(N ∗ P) where N and
P represent respectively the number of queries and the maximal number of operations
used by a given query. In the context of DW , if we have D dimension tables, we have
as maximum (D + 1) selections (by assuming the selection are grouped), D joins, D
projections and one aggregation so P =3*D +2.

� The second step concerns the process of hypergraph partitioning performed by hMeTiS
algorithm. The complexity of hMeTiS has been studied by Han et al. [123], where it
was shown that for a K-way partitioning the complexity is O((V +N)log(K)), where V
is the number of vertices (in our case, it has the number of logical operations involved in
the workload) and N is the number of edges (number of queries).

� The last step is the transformation of each sub-hypergraph into oriented graphs. During
this step, we need to successively identify the pivot node (pivot) and then remove it from
the sub-hypergraph until all nodes have been removed. Hence, identi�cation of the pivot,
the cost of each node of the sub-hypergraph is computed. Therefore, the complexity is
O(V 2), where V is the number of nodes inside the component. Each component has
a limited number of queries and can be transformed independently, which allows our
approach to scale.

In our approach, the queries and their operations (join nodes) are presented by a hypergraph.
A hyperedge that represents a query can represent all possible orders between their nodes.
This hyperedge can connect thousands of nodes. So our approach can scale with the number
of dimension tables. Note that our transformation algorithm is applied in the context of star
schema. If the structure of the schema changes (e.g. snow�ake), new transformations are
required.

82

VI. PERFORMANCE EVALUATION

VI. Performance evaluation

VI.1. Experimental setting

In this section, we present an experimental validation of our approach. We developed a simu-
lator tool in Java Environment. This tool is composed by the following modules.

� Two UQP generation modules associated to the two studied optimization structures (ma-
terialized views and horizontal data partitioning). Each module contains several roles:
(1) the parsing SQL-queries to get all selection, join, projection and aggregation nodes,
(2) the hypergraph construction, (3) hypergraph partitioning that adapts hMeTiS tool,
(4) the transformation of each hypergraph into an UQP using the appropriate bene�t
function according to the targeted OS (the bene�t function is detailed in the next Chap-
ter), (5) the merging process that assembles all selection, join, projection and aggregation
nodes to generate the �nal UQP and (6) the display functionalities that use Cytoscape9

plug-in to display the global processing plan.

� TheMV selection module that takes an UQP as input and produces candidate views to
be materialized (detailed in the next Chapter).

We have implemented another module implementing the of Yang et al.'s approach [273], by its
two proposed algorithms: feasible solution and 0-1 integer programming (cf. Chapter 2). To do
so, we were obliged to develop the following functions: (a) generation of individual plan tree,
(b) MVPP generation, using merging individual plans, (c) 0-1 matrix representation of using
queries and plans (d) selecting materialized views, (e) and an estimation of query processing
using materialized views (by the means of query rewriting capabilities).
Regarding the data sets used by our experiments, we consider the Star Schema Benchmark
(SSB) [194] with di�erent data sizes (01 Gb and 100 Gb).

VI.2. The obtained results

VI.2.1. UQP generation scalability

Size of components

In the �rst experiments, we evaluate the process of partitioning a workload of queries in several
subsets, where each subset contains queries that have high interaction between them. In this
case we suppose that no cutting of hyperedges exists. We consider di�erent query workloads
randomly generated using SSB query generator [194] and a 100 Gb data warehouse.
We run our UQP generation tool and we calculate the number of components and their sizes
(the number of queries in a component). As shown in the Table 3.2, the number of compo-
nents increases when the number of queries increases. Most components are small in terms of

9http://www.cytoscape.org

83

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

number of queries which reduces considerably the complexity of optimizing the queries of each
component. We can see also that the biggest component is still relatively small compared to
the initial workload. For example, the biggest component of our 10 000 queries workload only
has 357 queries.

Nbr of queries Nbr of components Max of queries/Component
100 20 15
200 38 31
400 72 62
500 89 83
800 120 123
1000 140 154
2000 204 178
5000 488 234
8000 703 278
10000 945 357

Table 3.2 � Component according to workload

VI.2.2. Quality of hypergraph partitioning

Computing cost

A battery of tests has been conducted to evaluate the UQP generation module against Yang 's
and Sellis 's modules. In each test, we change the number of input queries to monitor the
behavior of each algorithm. The set of the results are given in Figure 3.19. It should be noticed
that Sellis's algorithm [223] needs more than �ve days to generate a UQP for 30 queries. Yang's
algorithm [273] needs 10 hours generate a UQP for 20 00 queries. On the other hand, our
algorithm takes about �ve minutes to generate a UQP for 10 000 queries, for both OS (MV
and HDP). This proves the scalability of our approach (Figure 3.20).

Quality of the uni�ed query plan

To evaluate the quality of our approach, we consider the process of materialized view selection
using the traditional approaches (e.g. Yang's algorithm [273]) in generating UQP and our
�nding. Therefore, we run consider a workload of 30 queries and a 100 Gb SSB data warehouse
SSB deployed in Oracle 11g DBMS. We use a server of 32 GB of RAM with Intel Xeon
Processor E5530 (8M Cache, 2.40 GHz). The quality of each con�guration is estimated using
a cost model developed in our Lab (see Appendix IV). Figure 3.21 summarizes the obtained
results. It shows that our approach outperforms largely Yang et al. 's algorithm. The obtained

84

VII. CONCLUSION

0 5 10 15 20 25 30
0

100

200

300

400

500

Number of queries

E
x

e
c

u
ti

o
n

 t
im

e
 (

m
il

li
o

n
s

 o
f

m
il

is
e

c
o

n
d

e
s

)

Fig. 3.19 � Execution time to generate an
UQP using Sellis's Algorithm [223]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Queries

E
x

e
c

u
ti

o
n

 t
im

e
 (

M
il
li
o

n
s

 o
f

m
il
is

e
c

o
n

d
s

)

MV-Oriented UQP

HDP-Oriented UQP

Yang approach

Fig. 3.20 � Execution time to generate an
UQP using 3 methods

materialized views by Yang et al.'s and our approaches are then injected in Oracle 11g DBMS
and the initial queries are evaluated by considering these two sets of views. The obtained results
indicates the quality in reducing the overall cost of queries when our approach is considered.

Fig. 3.21 � Individual queries execution time

VII. Conclusion

In this chapter, we �rst identi�ed the limitations of the existing studies dealing with the problem
of generation of an optimal UQP. It should be noticed that this generation is crucial for the
process of selecting OS. Secondly, with the fruitful collaboration with Graphics, Inc. realized
for a long period to understand each other's, to �nd a correct analogy and get familiar with
their tools. Once the analogy found, we adapt the EDA partitioning algorithms and tools to
our problem to generate the best UQP for a given workload. The experimental results prove

85

CHAPTER 3. MODELING QUERY INTERACTION USING HYPERGRAPHS

Fig. 3.22 � Workload execution times

the e�ectiveness and the e�ciency of our approach when applied to a large workload of queries.
We also showed the impact of using our generated UQP for selecting materialized views.

86

Chapter

4

What-if UQP Analysis

Contents

I Introduction . 89

II A new approach for selecting OS . 91

III Application of OS-oriented UQP . 93

IV Experimental Evaluation and Analysis . 99

V Conclusion . 107

Abstract

Capturing the sharing of queries through a hypergraph driven scalable and e�cient data
structure is a good opportunity to evaluate the impact of changes of UQP on the process
of selecting optimization structures (OS). As we said in the previous chapters that
the majority of algorithms selecting OS in the context of relational data warehouse
consider an a priori generated UQP and then use it to run their selection algorithms.
As a consequence, they assume that the two processes are dependent. The aims of this
chapter at contradicting this assumption, by showing the strong dependency between
UQP and OS. This means that each OS has its own UQP.

87

CHAPTER 4. WHAT-IF UQP ANALYSIS

88

I. INTRODUCTION

I. Introduction

In the �rst generation of database, the query interaction phenomenon has mainly been stud-
ied to resolve the problem of multi-query optimization (MQO) without considering OS [223,
222, 198]. Afterwards, and after 10 years of waiting, it has been integrated to the process of
selecting OS, especially materialized views [273, 119] in 1999. This is due to the query inter-
action brought by data warehousing. Recently, the query interaction has been revisited and
exploited to deal with the classical database problems problem such as horizontal data par-
titioning schema selection [154], query scheduling [154, 245], bu�er management [154], query
caching in the context of distributed data stream [224]. As we said before (cf. Chapter 2),
and to the best of our knowledge, the work of Kamalakar Karlapalem group, when he was in
Hong Kong University of Science and Technology, was the pioneer that showed the dependency
between the generated of UQP and the selection of materialized views [273, 274], but he misses
to generalize his �ndings to consider other OS.
Recall that the generation of the optimal UQP needs the enumeration of all possible UQP,
which is not realistic in the context of big-queries. Furthermore, an UQP of big-queries can
o�er an exponential number of OS candidate. This makes the process of choosing the optimal
con�guration for OS hard. So, to facilitate the exploration of these candidates, subdividing
their search space is recommended.

Queries

UQP Solution

Space

UQP

Selection of

Algorithm

Algorithm

OS

knowledge

Is a good

UQP

Fig. 4.1 � Overlap between MQO and physical design problems

Summing up, the UQP �nds itself at the intersection between two worlds: the world of multi-
query optimization and the world of physical design. Combining MQO and physical design
problems gives raise to three challenging issues: (1) the generation of a UQP for a workload is
NP -hard problem [222], (2) the selection of the UQP for speci�c OS needs the enumeration

89

CHAPTER 4. WHAT-IF UQP ANALYSIS

of all possible UQP and (3) the identi�cation of the optimal OS from numerous candidate ele-
ments, has a high complexity. Figure 4.1 shows the overlap between two words MQO problems
and physical design problem.

In this chapter, we propose a scalable methodology to select the best OS based on UQP
that incorporates OS knowledge's in the UQP generation process. Our methodology uses
the hypergraph theory to generate the UQP (see Chapter 2), in which it captures the query
interaction in two ways: (i) dividing the initial problem in a set of several disjoint small sub-
problems, which each one concerns a component of queries that will be exploited by the OS
selection algorithm. This may contribute in reducing the overall complexity of the selection
process. (ii) Injecting the OS knowledge when constructing the near-optimal UQP. Figure 4.2
shows the our methodology of constructing an OS-oriented UQP.

Queries

UQP Solution

Space

Candidate UQP

Algorithm

Algorithm

OS

knowledge

Selected OS

M
u

lt
ip

le
 Q

u
e

ry
 O

p
ti

m
iz

a
ti

o
n

P
h

y
si

ca
l

D
e

si
g

n

UQP
Generation

OS

Selection

Fig. 4.2 � Injecting OS knowledge in MQO for physical design problems

To con�rm our claim regarding the strong dependencies between the processes of generation
of OS and UQP, we consider two problems: the selection of materialized views (considered
as redundant structures) and the selection of horizontal partitioning (considered as a non-
redundant structure).

This chapter begins by describing our methodology to generated OS-oriented UQP (Section
II). Section III shows the methods used to resolve our two problems by considering several
constraints and scenarios. Section IV presents our experiments that con�rm our proposal.
Finally, Section V concludes this chapter.

90

II. A NEW APPROACH FOR SELECTING OS

II. A new approach for selecting OS

To transform an hypergraph to uni�ed query plan by injecting OS knowledge, we need to de�ne
a bene�t function that re�ects the non-functional requirements using OS (like minimizing the
processing nodes, energy). This bene�t function is used to �nd the important node (pivot
node), that will be deleted from the hypergraph and add it, gradually to the UQP.
As detailed in the previous Chapter 2, the generation of UQP follows �ve main steps:

� Step 1: parses the SQL query to identify the logical operations (nodes).

� Step 2: models the join nodes by a hypergraph, where the vertices set represents the set
of join nodes and the hyperedge set represents the workload of queries.

� Step 3: generates connected components using hypergraph partitioning algorithms.

� Step 4: transforms each sub-hypergraph into an oriented graph using a cost model and
implementation algorithms to order the nodes, in which the algorithms useOS knowledge.

� Step 5: merges the graphs resulting from previous transformation to generate the global
uni�ed query processing (UQP).

To have a speci�c generation of OS-oriented UQP, the injection OS knowledge's in the step
4 is necessary. More concretely, it corresponds to de�ne a bene�t function to represent OS
related the considered non-function requirement in the general formalization of the OS selection
problem.

II.1. Generation of MV-oriented UQP

All views that have positive bene�t, are considered as potential materialized views. Intuitively,
the views with minimum processing cost time have more chance to be selected. Hence, the
non-functional requirement (minimizing query processing cost) can be translated to the bene�t
function of each node ni, as follows:

benefit(ni) = (nbr-1) ∗ costprocess(ni)− costmat(ni) (4.1)

where nbr is the number of queries using ni, given that each node must be generated at least once
before their use by queries, which gives the bene�t of reuse depends to the number of reusing
nodes (nbr-1). costprocess (ni) is the processing cost and costmat (ni)is the materialization cost
of ni. Vertices of the hypergraph which maximize the bene�t function are selected �rst so that
their bene�t will propagates towards as much queries as possible.

91

CHAPTER 4. WHAT-IF UQP ANALYSIS

II.2. Generation of HDP-oriented UQP

Using the selection predicate of a pivot node (that corresponds to the elected query), can
e�ciently improve the quality of the �nal partitioning schema by feeding the elected query
with a HDP-oriented UQP.
To this end, we push down join operations for which the gain on their selection predicates is
maximum. Nodes that have selection predicates with extreme selectivity factors (too high or
too low) are ignored. The bene�t function of the node ni, corresponds to the participation of
resulting fragments when their selection predicates are chosen. So, the bene�t function of the
horizontal data partitioning is :

benefit(ni) = (costnoFrag(ni)− costfrag(ni)) ∗ nbr (4.2)

where:
nbr: is the number of queries using ni,
costfrag (ni) is the processing cost of the node if its predicate selected for partitioning,
and costnoFrag (ni) is the processing cost of the node without data partitioning.
To satisfy the data partitioning constraints (maximum of fragments, and ignoring selection
predicates with extremely selectivity), the procedure of identifying the pivot node has be mod-
i�ed, as follows, to be more sensitive to the chosen OS:

Algorithm 4: getP ivotNodeHDP (Hypergraph H)
1: benefitemax ← 0;
2: for all vi ∈ V do
3: selectPredicate ← getSelectionPredicat (vi); { get the selection predicate of the

dimension table of the node}
4: if selectivity (selectPredicate) > thresholdmin and selectivity (selectPredicate)

<thresholdmax then
5: candidatePredicate ← selectPredicate; {ignore nodes with selectivity too

high(thresholdmax) or too low (thresholdmin) o�ts selection predicates }
6: nbr ← nbrUse (vi); {nbr: number of hyperedges that connect vi }
7: benefit ← getBenefit(vi, nbr) {the bene�t calculated using the equation 4}
8: if benefit > benefitemax then
9: benefitemax ← benefit;
10: pivot ← vi;
11: end if
12: end if
13: end for
14: return pivot

92

III. APPLICATION OF OS-ORIENTED UQP

III. Application of OS-oriented UQP

In this section, we give two applications of OS-oriented UQP to resolve the problem of selecting
materialized views and to de�ne the schema of horizontal data partitioning.

III.1. UQP as input for selecting materialized views

TheMV-oriented UQP is used to propose candidate views with and without the storage space
constraint.

III.1.1. New Formalization of MV selection

MV selection in DW usingMV-oriented UQP is formalized as following:

� Inputs:
- a DW with fact table F and d dimension tables {D1, .., Dd},
- a workload Q of n queries, Q ={Q1, .., Qn}.
- aMV-oriented UQP that represents the uni�ed query plan for Q.

� Outputs:
- a set of materialized views to be materialized.

� Constraints:
- a set of constraints S, related to store the selected views.

� Objectives:
- the total query processing is minimized and the set of constraints is satis�ed.

Resolving MV selection problem starts by proposing candidate views that are the join oper-
ations in the UQP (join nodes are chosen because they consume the most time to response
a query). Only nodes with positive bene�t will be selected as candidate, in which nodes are
ordered in descending order, following their bene�t. The bene�t of node is the cost of its
processing minus the cost of materializing it.

III.1.2. Description of selection algorithm

We look to materialized views independently in each connected component (CC). In each
selection of a view, the algorithm recalculates the bene�t of the remaining nodes by taking into
account already selected nodes until no node with positive bene�t is found. Algorithm 5 details
the di�erent steps of our selection of view in each component. To select all views that optimize
workload, we repeat the previous algorithm for each component in the UQP (Algorithm 6).

93

CHAPTER 4. WHAT-IF UQP ANALYSIS

Algorithm 5: Materialized views selection from component: selectMVC (Component C)

1: Input : C; {Component}
2: Output : LMV ; {List of materialized views} ;
3: LMV ← φ; {initialize materialized views set}
4: L ← getAllCandidateNodes (C); {All nodes of C that have positive bene�t}
5: calculateBenefit (L[0],L); calculate the bene�t of each node of L
6: descendingOrder (L); {Descending order of the candidate nodes set}
7: while benefit (L[0]) and L <> φ do
8: add (L[0],LMV); {Add the �rst candidate node to the selected nodes set}
9: delete (L[0],L);
10: calculateBenefit (L[0],L); re-calculate the bene�t of each node of L
11: descendingOrder (L);
12: end while

Algorithm 6: Materialized views selection from UQP: selectFinalMV (UQP p)

1: Input : p; {UQP }
2: Output : MV final ; {List of materialized views} ;
3: MV final ← φ; {initialize materialized views set}
4: C ← getComponents (UQP); {All connected component}
5: for all c ∈ C do
6: MV ← selectMV C (c); {get selectedMV , Algorithm 5}
7: MV final ← MV final ∪ MV ;
8: end for

III.2. UQP as input for dynamic materialization and query scheduling

Traditional selection of views supposes consider a static workload. To relax this hypothesis, we
propose a on demand dynamic materialized of views. If a view is no longer e�cient, it will be
removed from materialized view pool. To do so, we have to integrate query scheduling module
in the process of this materialization.

III.2.1. Formalization of the problem

Before formalizing theMV Problem (MV P) considering the Query Scheduling Problem (QSP ,
we think it would be wiser to propose a separate formalization of both MV P and QSP .
The MV problem considering QSP takes (i) A DW and (ii) a set of queries Q, (iii) a set of
intermediate nodes candidates for materialization; a constraint representing the limited storage
size. The problem aims at providing: (i) a scheduled set of queries and (ii) MV , minimizing
the overall processing cost of and satisfying the storage constraint.
Query scheduling problem (QSP) is formalized as follows:

94

III. APPLICATION OF OS-ORIENTED UQP

� Inputs:
- a DW with fact table F and d dimension tables {D1, .., Dd},
- a workload Q of n queries, Q ={Q1, .., Qn}.
- set of m candidate views to be materialized V ={v1, .., vm}.
- a disk allocation policy (e.g., FIFO).

� Outputs:
- scheduled queries of the workload into a new ordered set.

� Constraints:
- a set of constraints S, like disk space to materialize views.

� Objectives:
- the workload have the least execution cost.

The MV P considering QSP takes (i) A DW and (ii) a set of queries, (iii) a set of intermediate
nodes candidates for materialization; a constraint representing the limited storage size. The
problem aims at providing: (i) a scheduled set of queries and (ii) a set ofMV that minimize
the overall processing cost of queries and satisfying the storage constraint.
Consequently, we address the problem of dynamic materialized view selection by considering the
query scheduling. A formalization of the problem of view selection considering the re-ordering
of numerous queries is given as follows.

� Inputs:
- a DW with fact table F and d dimension tables {D1, .., Dd},
- a workload Q of n queries, Q ={Q1, .., Qn}.
- aMV-oriented UQP that represents the uni�ed query plan for Q,
- a disk allocation policy (e.g., FIFO).

� Outputs:
- scheduled queries of the workload into a new ordered set.
- set of m candidate views to be materialized, V ={v1, .., vm}.

� Constraints:
- a set of constraints S, like disk space to materialize views.

� Objectives:
- the workload have the least execution cost,
- satisfy all constraints, like the space occupied, in each period, byMV satis�es the space
constraint.

Dynamic materialization with query scheduling has three main modules: the �rst selectsMV
candidate, the second orders the queries and the third manages views materialization. These
modules are discussed in the next sections.

95

CHAPTER 4. WHAT-IF UQP ANALYSIS

III.2.2. MV Selection algorithm

Note that all nodes of the global plan are candidate for materialization which may represent
a huge number. For instance, in our experiments, we consider 1 000 queries involving 1552
join nodes. As a consequence, a pruning mechanism is needed. It shall take into account the
bene�t of the nodes and their constraints related to their storage and maintenance. To do so,
we de�ne some functions:

� costWO(qi,Φ): the processing cost of the query qi without view(s).

� costWV (qi, Vj): the query processing cost of query qi using the materialized view Vj.

� costMat(Vj): the maintenance cost of the view Vj.

� Size(Vj): the cost needed to store the view Vj.

We de�ne the bene�t of a given view Vj (denoted by Benefit(Vj)) by:

benefit(Vj) = costWO(Vj)− costWV (Vj)− costMat(Vj) (4.3)

where costWO(Vj) and costWV (Vj) represent respectively the total processing cost of queries
without/with the view Vj. Instead of treating the whole search space including all candidates
as in the usual approaches for MV , we propose to use a divide-conquer approach, where the
search space is divided into several sub search spaces, where each one corresponds to a connected
component of UQP. Contrary to the existing studies where they allocate the whole storage
constraint to all views candidate, our approach allocates this storage to each component to be
fair. Then, each component Ck is processed individually, where its nodes are sorted according
their bene�ts and their ability to satisfy the storage constraint. Three selection cases are
possible. Let NCk be the set of nodes of Ck having a greater bene�t. The top nodes satisfying
the storage constraint are selected.

III.2.3. Query scheduling

To avoid massively view dropping, we schedule queries. This is done by respecting the following
principle: when a view is materialized, it should optimize the maximum of queries before its
dropping. Therefore, we propose the following procedure supported by an example in which we
consider a connected component with 14 queries (Figure 4.3-a).

1. The identi�cation of node(s) of each component with maximal bene�t (called queen
nodes). In our example, four queen nodes are selected:
{qn1, qn2, qn3, qn4} (represented by solid nodes in Figure 4.3-a).

2. Ordering queen nodes: Let NCk be the number of nodes of the component Ck. Their
ordering is based on their bene�t. The bene�t of the queen nodes are propagated to their

96

III. APPLICATION OF OS-ORIENTED UQP

Algorithm 7: Materialized views selection from component: selectMVC (Component
C,space S)

1: Input : C; {Component}
2: Input : S; {disk space}
3: Output : LMV ; {List of materialized views} ;
4: LMV ← φ; {initialize materialized views set}
5: L ← getAllCandidateNodes (C); {All nodes of C that have positive bene�t}
6: calculateBenefit (L[0],L); calculate the bene�t of each node of L
7: descendingOrder (L); {Descending order of the candidate nodes set}
8: diskSpace ← 0;
9: while benefit (L[0]) and diskSpace ≤ S and L <> φ do
10: add (L[0],LMV); {Add the �rst candidate node to the selected nodes set}
11: diskSpace ← diskSpace + size(L[0]);
12: delete (L[0],L);
13: calculateBenefit (L[0],L); re-calculate the bene�t of each node of L
14: descendingOrder (L);
15: end while

queries. As a consequence, each query may be assigned to a weight representing the sum
of the bene�t of its nodes. These weight are then used to schedule the queries based on
their overall bene�t (Figure 4.3-d).

III.2.4. Manage Views materialization

Till now, materialized views candidate are identi�ed and the order of queries. Based on the dif-
ferent cost models, it can easily decide on materializing or de-materializing views by performing
simulation using Algorithm 8.

Algorithm 8: materializeView (mv)

1: cost← estimateMaintenance(mv);{Estimate the maintenance cost of the view }
2: changeStat(mv, true);{ change the stat of the view as materialized}
3: diskSpace← diskSpace− sizeOf(mv);
4: return cost ;

III.3. UQP as input for selecting data partitioning schema

III.3.1. Formalization of the problem

The horizontal data partitioning is formulated as following:

97

CHAPTER 4. WHAT-IF UQP ANALYSIS

Fig. 4.3 � Example of query scheduling method

� Inputs :
- a DW with fact table F and d dimension tables {D1, .., Dd},
- a workload Q of n queries, Q ={Q1, .., Qn},
- a threshold M , that de�nes the maximum of possible fragments.

� Outputs : - a data partitioning schema.

� Constraints : - a threshold M that de�nes the maximum of possible fragments.

III.3.2. Algorithm description

We have used an horizontal data partitioning algorithm, developed in our lab [50]. The al-
gorithm takes in consideration of query interaction (represented in UQP), in selecting HDP
schemes for relational data warehouses. The problem using incremental encoding of any hori-
zontal partitioning schema. The steps of algorithm are:

� Decomposition of an attributes' domain into sub-domains, following selection predicated
used in the UQP. The decomposition is systematically done incremental encoding based

98

IV. EXPERIMENTAL EVALUATION AND ANALYSIS

on the UQP. Note that, all selection predicate discarding selection with high or low
selectivity factors.

� HDP schema is represented by �xed coding, which is juxtaposition of arrays representing
attributes sub-domain.

� incremental encoding generation using successive vertical and horizontal split of the initial
array representations, which represent the selection predicate.

� pruning the search space using elected query, that correspond to the �rst query of pivot
node.

IV. Experimental Evaluation and Analysis

IV.1. Experimental setting

In this section, we present an experimental validation of our approach. We developed a simu-
lator tool in Java Environment. This tool consists in the following modules.

� Two UQP generation modules, one for each optimization structure (materialized views
and horizontal data partitioning). Each module contains several functions : (1) a parsing
SQL-queries function to get all selection, join, projection and aggregation nodes, (2)
hypergraph generation function to represent the queries by an hypergraph of nodes, (3)
hypergraph partitioning function that uses hMeTiS tools to partition the hypergraph into
several connected sections, (4) a transformation function, to transform each hypergraph
into an UQP using the appropriate bene�t function according to the targeted OS, (5) a
merging function that assembles all selection, join, projection and aggregation nodes to
generate the �nal UQP, (6) a display function that uses Cytoscape1 plug-in to display the
global processing plan.

� aMV selection module, that takes an UQP as input and produces candidate views to be
materialized.

� HDP module, that takes a UQP as input and generates a Horizontal Partition Schema.

Another module is developed to implement approach of Yang et al., [273] considering their two
algorithms: feasible solution and 0-1 integer programming. We have developed the following
functions: (a) generation of individual plan tree, (b) MVPP generation, using merging individ-
ual plans, (c) 0-1 matrix representation of using queries and plans (d) selecting materialized
views, (e) and an estimation of query processing using materialized views.
Our tests are run in star schema DW context, which we have chosen a star schema DW . We
have used Star Schema Benchmark (SSB) [194] with di�erent sizes (01 Gb and 100 Gb) of data.

1http://www.cytoscape.org

99

CHAPTER 4. WHAT-IF UQP ANALYSIS

Fig. 4.4 � Total cost of workload using MV selected using MV-oriented UQP and HDP-
oriented UQP

IV.2. OS-Sensitivity of UQP

IV.2.1. Theoretical validation

We now exhibit how the choice of UQP for OS-selection purposes in�uences the quality of the
resulting OS. We use a cost model developed in our lab IV, to estimate query processing and
views maintenance cost. This model estimates the number of Inputs/Outputs pages required
for executing a given query. To perform this experiment, we developed a simulator tool using
Java Environment. The tool can automatically extract the data warehouse's meta-data charac-
teristics. The data warehouse used in our test is SSB (Start Schema Benchmark) [193]. Its size
is 100Go, with a facts table Lineorder of 600 millions of tuples and four dimension tables: Part,
Customer, Supplier and Dates. We used a SSB query Generator to generate 10000 queries for
SSB data warehouse. Our evaluation is conducted using those queries, which cover most types
of OLAP queries.
We proceed to generateMV-oriented UQP and HDP-oriented UQP for di�erent workloads of
queries varying from 30 to ten thousands (10000) queries. The resulting UQP are then used
by two di�erent OS-selection algorithms : the MV-selection algorithm and the HDP-selection
algorithm. As shown in Figure 4.4 we see that theMV-oriented UQP always produces a better
set of candidate views to materialize than the HDP-oriented UQP. Reciprocally, Figure 4.5
shows that the HDP-oriented UQP always leads to a better fragmentation schema than the
MV-oriented UQP. The di�erence in performance gain increases with the number of queries.

IV.2.2. Oracle Validation

Finally, in order to validate our theoretical results, we select materialized views candidates and
the fragmentation schema using our OS-oriented UQP generation modules for two workloads
of 500 and 3000 queries respectively, and we deploy the results in Oracle 11g DBMS. Figures
4.6 and 4.7 compare maintenance costs, query processing costs and total execution costs using

100

IV. EXPERIMENTAL EVALUATION AND ANALYSIS

Fig. 4.5 � Total cost of workload using HDP selected using MV-oriented UQP and HDP-
oriented UQP

materialized views selected using either aHDP-oriented or aMV-oriented UQP. MV-oriented
UQP always give better results.

Fig. 4.6 � Di�erent costs using MV in Oracle
for 500 queries

Fig. 4.7 � Di�erent costs using MV in Oracle
for 3000 queries

Similarly, in Figures 4.8 and 4.9, we compare execution costs using a fragmentation schema
obtained by using either a HDP-oriented or aMV-oriented UQP.
The HDP-oriented UQP gives better results. Results are summarized in Figures 4.10 and 4.11.
Theoretical results are con�rmed by Oracle experiments.

IV.3. The quality of OS-oriented UQP

IV.3.1. Theoretical validation

To evaluate the impact of our obtainedMV-oriented UQP on the problem of selecting mate-
rialized views. We compare the algorithm detailed above and compare it against Yang et al.
[273]. To estimate the query processing and views maintenance costs in our tests, we used a

101

CHAPTER 4. WHAT-IF UQP ANALYSIS

Fig. 4.8 � Execution costs using HDP in Or-
acle for 500 queries

Fig. 4.9 � Execution costs using HDP in Or-
acle for 3000 queries

Fig. 4.10 � Validation of MV in Oracle for
3000 queries

Fig. 4.11 � Validation of HP in Oracle for
3000 queries

cost model developed in our lab (see Annex IV). This model estimates the number of Input-
s/Outputs pages required for executing a given query. We use hash-join implementation of
joins.

Yang feasible solution Yang 0 1 Programing Our approach
0

10

20

30

40

50

60

70

80

90

100

I/
O

 C
o

s
ts

 (
M

il
li
o

n
s
)

1GB

(a) 01 GB

Yang feasible solution Yang 0 1 Programing Our approach
0

5

10

15

20

25

30

35

I/
O

 C
o

s
ts

 (
B

il
li
o

n
s

)

100GB

(b) 100 GB

Fig. 4.12 � Query processing cost usingMV selected without constraint

To perform this experiment, Ww consider a workload of 30 OLAP queries running on two data

102

IV. EXPERIMENTAL EVALUATION AND ANALYSIS

warehouses (1GB and 100GB). The obtained results are described in Figure 4.12. They show
that our method is rather slightly better than its competitor.
To test our approach for a large number of queries, we conduct a series of tests with workload of
varying sizes (generated randomly using SSB-query generator). The di�erent types of queries
are: queries 1-joins, 2-joins, 3-joins and 4-joins; with also aggregation and group-by. For
each workload, its UQP is generated and MV selection algorithm is applied. We estimate
the cost of the workload with and without using views (costwith and costwithout respectively),
and we calculate the optimization rate (1-costwith/costwithout). As shown in Figure 4.13, our
approach becomes more interesting as the number of queries increase (90% optimization rate
for a workload of 10000 queries).

Fig. 4.13 � Optimization rate of query processing cost usingMV

IV.3.2. Oracle validation

Some of our simulated results are then deployed on Oracle 11g DBMS, running on a Core 2 Duo
server with 2.40GHZ CPU and 32 GB of main memory. We use the Star Schema Benchmark
(SSB) [194] with 100 GB of data. We consider a workload of 30 queries running on the data
warehouse with 100 GB. The obtained results described in Figure 4.14 are quite similar to those
obtained by our simulator.

IV.4. Dynamic Materialization with query scheduling

IV.4.1. Theoretical validation

We conduct several experiments to evaluate the e�ciency of our dynamic materialization al-
gorithm. we developed a simulation tool using Java that run the three algorithms: (1) our
dynamic materialization algorithm; (2) dynamic materialization algorithm proposed by Phan
et al.'s [203] and (3) MV selection algorithm proposed by Yang et al's [273] using a static
formalization. To analyze the behaviors of these algorithms, we consider four scenarios: (1)

103

CHAPTER 4. WHAT-IF UQP ANALYSIS

Fig. 4.14 � Oracle validation ofMV selection without constraint

using static materialization, (2) dynamic materialization, (3) with considering query scheduling
and (4) without query scheduling. These scenarios are tested by varying: (a) the size of data
warehouse, (b) consideration of di�erent query workload's randomly generated using SSB-query
generator and (c) varying the storage space constraint. The simulated results are then deployed
on Oracle 11g DBMS, running on a Core 2 Duo server with 2.40GHZ CPU and 32 GB of main
memory, and the star Schema Benchmark (SSB) with 100 GB.
In the �rst experiments, we test the interest of dynamic and query scheduling on optimiz-
ing queries. To perform our experiments, we consider a data warehouse with di�erent sizes
(1Gb, 10Gb, 100Gb and 1 Tb) and a workload of 30 queries, the candidate nodes are selected
using our approach. Three scenarios are considered: (i) naive scenario in which nodes are
materialized till the saturation of storage space, (ii) materializing without scheduling using our
dynamic approach and considering the workload as pre-ordered2 and (iii) materializing with
query scheduling. The overall cost of queries in terms of inputs/outputs is then computed by
varying the storage constraint. Figure 4.15 summarizes the obtained results. The main lesson
is: the dynamic materialization with query scheduling outperforms the other scenarios whatever
the size of the data warehouse. This shows the interest of incorporating the query scheduling
in materializing views.
In the second experiments: we test the performance of our approach compared with two exist-
ing approaches: Phan et al.'s method [203], and Yang et al.'s method [273]. For Phan method,
we have developed the following algorithms: (i) a genetic algorithm to �nd an optimal query
permutation by emulating Darwinian natural selection of 1000 generations; (ii) algorithm to
select candidate nodes which are the nodes that have greater bene�t have been selected as
candidates (in Phan et al.'s, they are used DB2 advisor to have those all nodes with greater
bene�t); (iii) pruning algorithm of candidate views using their bene�t; (iv) an evaluation algo-
rithm to estimate the total net bene�t of using pruned candidate views set by query workload;
(v) algorithm to manage the cache of the views (LRU). For Yang et al. approach's [273], we

2The query scheduling module of our approach in this case is obsolete.

104

IV. EXPERIMENTAL EVALUATION AND ANALYSIS

Fig. 4.15 � Advantage of dynamic materialization with query scheduling

have developed the following functions: (i) generation of individual plan tree, (ii) generating
MVPP, using merging individual plans (iii) selecting materialized views using MVPP (iv) esti-
mation of query MVPP using views. To show the performance of our approach three scenarios
are considered:

1. Static materialization: we consider a data warehouse with 1Gb and a workload of 30
queries, the nodes selected by each algorithm are materialized until the saturation of the
�xed storage space. As shown in the Figure 4.16-a, there is not a big di�erence between
the three methods. This proves that our approach does not avoid the selection of best
views.

2. Dynamic materialization without query scheduling, we have used the same con�g-
uration as static materialization. As shown in the Figure 4.16-b, Phan et al.'s approach
outperforms our approach. This is due to the di�erence of materialization/dematerial-
ization number (Figure 4.16-c). Phan et al.'s method tries to �nd best candidate views
that optimize all queries of the workload. This minimizes the dropping process of the
views. The views in our approach are divided a many sub sets, where each sub-set op-
timizes some queries, which increases the probability of dropping views if the query not

105

CHAPTER 4. WHAT-IF UQP ANALYSIS

scheduled.

3. Dynamic materialization with query scheduling: we have used data warehouse with
di�erent size (1Gb and 100Gb) and a workload of 30 queries. As shown in the Figures
4.16-c and 4.16-e, our approach outperforms Phan method because the number dropping
is minimal and each materialized views are used maximally to optimize the queries of the
component. As shown in the Figures 4.16-f, our approach outperforms the traditional
techniques in the context of big queries (in our tests: 1000 queries).

Fig. 4.16 � Performance of dynamic materialization approach

106

V. CONCLUSION

IV.4.2. Validation in Oracle

Due to the complexity and time needed to deploy all theoretical solutions on Oracle DBMS, we
propose the following to do our validation: we consider a workload of 30 queries running on two
data warehouses (1GB and 100GB). The disk storage is set to 400MB and 30Gb respectively.

(a) 100 Gb (b) 1 Gb

Fig. 4.17 � Oracle validation of dynamic materialization

The obtained results described in the Figures 4.17a and 4.17b which are quite similar to those
obtained by our simulator, which shows the quality of our used cost models. The results show
that using a hypergraph partitioning algorithms can e�ciently give a good solution.

V. Conclusion

In this chapter, we discussed an example-driven approach to select optimization structures
(materialized views and horizontal data partitioning) basing on OS-oriented UQP. The issue
of �nding candidate set of optimization structures dwarfed when compared to the complexity
and ambiguity associated with Big-queries. In the next chapter, we will discuss the example-
driven of modeling parallel data warehousing.

107

CHAPTER 4. WHAT-IF UQP ANALYSIS

108

Chapter

5 Query Interaction Serving the De-

ployment Phase

Contents

I Introduction . 111

II Parallel Database Design Alternatives . 112

III Motivating Example . 114

IV UQP as a service for designing PRDW . 116

V Experimental Evaluation and Analysis . 119

VI Conclusion . 125

Abstract

In this chapter, we detail our contribution that consists at using OS-oriented UQP
to resolve the problem of parallel data warehouse deployment design. This design is
complex, since it requires several phases: data partitioning, fragment allocation, load
balancing, query processing, etc. The main particularity of these phases is their property
to take into account the workload. Therefore, it is appropriate to generalize our �nding
in unifying UQP and MQO in the context of parallel data warehouse design.

109

CHAPTER 5. QUERY INTERACTION SERVING THE DEPLOYMENT PHASE

110

I. INTRODUCTION

I. Introduction

With the era of Big Data, we are facing a data deluge1. Multiple data providers are contributing
to this deluge. We can cite three main examples: (i) the massive use of sensors (e.g. 10
Terabyte of data are generated by planes every 30 minutes), (ii) the massive use of social
networks (e.g., 340 million tweets per day), (iii) transactions (Walmart handles more than
1 million customer transactions every hour, which is imported into databases estimated to
contain more than 2.5 Peta-bytes of data). The decision makers need fast response time to
their requests in order to predict in real time the behaviour of users, so they can o�er them
services via analyzing large volumes of data. The data warehouse (DW) technology deployed
on conventional platforms (e.g. centralized) has become obsolete, even with the spectacular
progress in terms of advanced optimization structures (e.g., materialized views, indexes, storage
layouts used by DBMS, etc.). Despite this, the sole use of these structures is not su�cient to
gain e�ciency during the evaluation complex OLAP queries over relational DW . To deal with
this data deluge and simultaneously satisfy the requirements of company's decision makers,
distributed and parallel platforms have been proposed as a robust and scalable solution to
store, process and analyze data, with the layers of modern analytic infrastructures [98]. Editors
of DBMS already propose turnkey parallel platforms to companies to adopt these solutions
(e.g., Teradata). Another alternative is to go to the Cloud (e.g. Amazon Redshift). Note that
these solutions may become rapidly expensive when data size grows. For instance, the cost of
storing 1 Tera-bytes of data per year in Amazon Redshift is about 5 500 USD. Several e�orts
have been deployed to ensure a balance between low cost and high performance solutions to
manage this deluge of data. Several initiatives have been deployed to avoid turnkey parallel
platforms, by constructing a series of commodity DBMS systems, "glued together" with a thin
partition-aware wrapper layer. Google's search clusters reportedly consist of tens of thousands
of shared-nothing nodes, each costing around $700 [95]. Such clusters of PCs are frequently
termed grid computers. Other initiatives combine the cheapest DBMS and Cloud technology.
We can consider the example of Alibaba company. In their recent works published in VLDB
2014 [64], they propose a MySQL driven solutions to deal with the data deluge over the Cloud.
The most used parallel DW systems are Oracle Exadata, Teradata, IBM Netezza, Microsoft
SQL server Parallel data warehouse, Greenplum.
Regardless of the way in which a parallel DW is designed, it requires integrating our �ndings in
the discussed phases. These steps are quite sensitive to the workload. We have already shown
the strong interaction between the UQP and the horizontal partitioning selection in the context
of centralized DW . Since the partitioning is a pre-condition of any parallel database design
[27] and its schema is used by all steps of the parallel DW life design life cycle, it is worthy to
integrate the volume and sharing of queries in this design.
In this chapter, we discuss this integration. To do so, we propose and experimentally assess
an innovative methodology guided by the big query interaction for designing Parallel RDW

1http://www.economist.com/node/15579717

111

http://www.economist.com/node/15579717

CHAPTER 5. QUERY INTERACTION SERVING THE DEPLOYMENT PHASE

(PRDW) on shared nothing database cluster architecture. To explore the large number of
queries, we use UQP that helps us in visualizing our workload and partitions it, if necessary,
into several components to reduce the complexity of the design. Then, we focus on two major
problems when designing PRDW which are data partitioning and fragment allocation.
The chapter is organized as follows. Section II discusses the main alternatives in designing
parallel relationalDW . Section III depicts a motivating example. Section IV contains the details
of our PRDW design methodology. Section V provides our experimental results obtained from
testing the performance of our approach using dataset of the Star Schema Benchmark (SSB).
Finally, Section VI concludes the chapter and discusses some open issues.

II. Parallel Database Design Alternatives

Based on the above discussion, we assert that parallel DW design can be modelled by the
following tuple [37]: < Arch,DP,DA,DR,LB >, where: Arch denotes the parallel architec-
ture, DP the data partitioning scheme, DA the data allocation scheme, DR the data replication
scheme and LB the load balancing scheme, respectively. Note that the problem corresponding
to each component of the above tuple is NP-hard [12, 270].
Two main methodologies exist to deal with the problem of parallel DW design: iterative de-
sign and conjoint design. Iterative design methodologies have been proposed in the context of
traditional distributed and parallel database design [215, 238, 208, 108]. The idea underlying
this class of methodologies consists in �rst fragmenting the relational DW using any parti-
tioning algorithm, and then allocating the so-generated fragments by means of any allocation
algorithm. In the most general case, each partitioning and allocation algorithm has its own
cost model. The main limitation of iterative design is represented by the fact that they neglect
the inter-dependency between the data partitioning and the fragment allocation phase, respec-
tively. Figure 5.1 (a) summarizes the steps of iterative design methodologies. To overcome
these limitations, the combined design methodologies were proposed in [27]. They consist in
merging some phases of the life cycle of the distributed/parallel life cycle. The main idea of
this merging is that a phase is performed knowing the requirements of the next step. Three
main variants of this methodology are distinguished (Figure 5.1 ((b),(c),(d)). The conjoint
design methodologies that have been addressed in Soumia BENKRID thesis, elaborated in our
laboratory LIAS [36] and tested in Teradata machine [19].
Figure 5.1 (b) depicts an architecture, where the basic idea consists in �rst partitioning the DW
using any partitioning algorithm and then determining how fragments are allocated to the nodes
by also determining replication of fragments. The main advantage of this architecture is that it
takes into account the inter-dependency between allocation and replication, which are closely
related [27]. The main limitation is the fact that it neglects the inter-dependency between the
data partitioning and fragment allocation. Figure 5.1 (c) shows a second variant of the conjoint
design, in which the DW is �rst horizontally partitioned into fragments, and then fragments
are allocated to nodes within the same phase as in [217]. After that, a replication algorithm is

112

II. PARALLEL DATABASE DESIGN ALTERNATIVES

Fig. 5.1 � Iterative and Variants of Conjoint Design Methodologies.

used in order to determine how to allocate replicated fragments. The advantage of this variant
consists in simultaneously performing the allocation phase at the partitioning time. However,
the drawback of the architecture is that it neglects the closely-related dependency between the
allocation and the replication process. Finally, Figure 5.1 (d) depicts an architecture such that
partitioning, allocation and replication are combined into a uni�ed process.
The basic di�erence between the four reference architectures depicted in Figure 5.1 is repre-
sented by the selection of partitioning attributes. The iterative approach determines the parti-
tioning attributes using a cost model that neglects the inter-dependency between partitioning,
allocation and replication.
Formally, our parallel DW design problem that considers the di�erent phases of the life cycle
can be formalized as the following Constraint Optimization Problem. Given:

� Inputs:
-a parallel platform (PP) with P nodes N = {N1, N2, . . . , NP};
- a relational DW modeled according to a star schema and composed of one fact table
F and d dimension tables D = {D1, D2, . . . , Dd} (similarly to [171], we suppose that all
dimension tables are replicated over the nodes of the parallel platform and can �t in main
memory);
-a set of star join queries Q = {Q1, Q2, . . . , QL} to be executed over PP , each query Ql

characterized by an access frequency fl.

� Outputs:

113

CHAPTER 5. QUERY INTERACTION SERVING THE DEPLOYMENT PHASE

-data partitioning schema;
-data allocation strategy of fragments over processing nodes;
-query processing strategy over processing nodes.

� Constraints:
-the maintenance constraint W representing the number of fragments that the designer
considers relevant for his/her target allocation process (note that this number must be
greater than the number of nodes, i.e. W � P)
-the replication constraint R, such that R ≤ P , representing the number of fragment
copies that the designer considers relevant for his/her parallel query processing;
-the attribute skewness constraint Ω representing the degree of non-uniform value dis-
tributions of the attribute sub-domain chosen by the designer for the selection of the
partitioning attributes;
-the data placement constraint α representing the degree of data placement skew that the
designer allows for the placement of data;
-the load balancing constraint δ representing the data processing skew that the designer
considers relevant for his/her target query processing.

The problem of designing a DW over the parallel platform (PP) consists in fragmenting the
fact table F based on the partitioning schemes of some/all dimension tables into N , N >> P
fragments and allocating them and the replicated fragments over di�erent nodes of the parallel
platform such that the total cost of executing all the queries in Q can be minimized while all
constraints of the problem are satis�ed.
In this thesis, we focus on the variant of DW parallel design in which the partitioning and
allocation phases are combined. This design has been called F &A design [27]. In the next
section, we show the impact of considering query interaction on the horizontal partitioning.

III. Motivating Example

, To the best of our knowledge, even some studies of PRDW design considering the interaction
between queries exist, but none considers the Big Interacted Queries Phenomenon. In this
section, we study the impact of this phenomenon in two phases: data partitioning and fragment
allocation. To illustrate this �nding, let us consider an example with a PRDW with the
following con�guration:

� A star schema composed of one fact table: Lineorder and four dimension tables : Supplier,
Dates, Customer, and Part.

� On the top of this schema, 10 star queries {Q1, .., Q10}. The uni�ed plan is described in
Figure 5.2-a. Three types of nodes of this plan are distinguished: a selection operation,
denoted by Si (with the form Attribute θ value, where Attribute ∈ Table, θ ∈ {=, <,>

114

III. MOTIVATING EXAMPLE

, ...} and V alue ∈ Domain(Attribute)), a join operation, denoted by Ji and a projection
operation denoted by π. We note that seven (7) selections and joins are identi�ed.

� The candidate attributes with their respective domains to perform the partitioning are
given in Figure 5.2-c.

� A database cluster with four nodes N = {N1, .., N4}.

{S1,S3}

Lineorder Supplier DatesDates PartPart CustomerCustomer

pivot nodes

S1

J1

S2 S3 S4 S5 S6 S7

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10Q7 Q9

J2

J3
J4

J5 J6

J7

S1
S2
S3
S4

S5
S6
S7

s_region='America'
s_nation='France'
d_year=1998
d_year=1997
p_mfgr='MFGR#1'
c_nation='United state'
c_region='America'

'America','Africa','Asia','Europa'

c_region and s_region

MPG#1,MPG#2,MPG#3,MPG#4

p_mfgr

'France', 'United State', 'China', 'United Kingdom'
c_nation and s_nation

1,2,3,4,5

p_brand
1994,1995,1996,1997,1998

d_year

C1={Q1,Q2,Q5,Q7,Q8,Q10}

C2={Q3,Q4,Q6,Q9}

F1={s_region='America' and c_nation='France'}
F2={s_region='America' and c_nation='United State'}
F3={s_region='America' and c_nation='China'}
F4={s_region='America' and c_nation='United Kingdom'}

F5={s_region <> 'America'}

F5={s_region <> 'America' and d_year=1998 and p_mfgr='MPG#1}
F6={s_region <> 'America' and d_year=1998 and p_mfgr='MPG#2}
F7={s_region <> 'America' and d_year=1998 and p_mfgr='MPG#3}
F8={s_region <> 'America' and d_year=1998 and p_mfgr='MPG#4}

F9={s_region <> 'America' and d_year<>1998}

a: UQP b: Components c:Selection predicates

d: Landmark predicate

e: attribute domaines

(f)

g:

Fig. 5.2 � UQP Representation example

By examining the UQP, generated using partitioning hypergraph, we �gure out that the
queries can be regrouped into two main groups called components (Figure 5.2-b): C1 =
{Q1, Q2, Q5, Q7, Q8, Q10} and C2 = {Q3, Q4, Q6, Q9}. Each component contains a set of queries
that share at least one join operation. The �rst shared join node is called the pivot node of the
component and the set of selection predicates of its branches called set of landmark predicates.
In our case, we have two pivot nodes (J1 for the component C1 and J2 for the component C2)
with their sets of landmark predicates are {s_region = ”America”} and {d_year = 1998},
respectively.
Note that the pivot node notion is quite important, since it guides the partitioning process of
a component by the means of its set of landmark predicates. A landmark predicate partitions

115

CHAPTER 5. QUERY INTERACTION SERVING THE DEPLOYMENT PHASE

its corresponding table (a leaf node of the plan) into two partitions, one with all instances
satisfying the predicate (e.g., s_region = ”America”) and another representing the ELSE
partition (s_region 6= ”America”). Note that the partitioning of dimension tables will be
propagated to partition the fact table. This partitioning is called derived partitioning [27]. This
initial partitioning schema of a component will be re�ned by considering other predicates of
the set of landmark predicates and other predicates do not belonging to pivot node (e.g., S4).
In the case, where the obtained fragments of each component are allocated over these nodes in
round robin fashion, the maximum number of algebraic operations will be executed over all the
cluster nodes. Therefore, queries of a given partitioned component (e.g., C1) will get bene�t
from this process.
The remaining fragment of the initial component (F5 in our example) will be concerned by
the partitioning process of the component C2. The above partitioning and allocation reasoning
applied to C2 (Figure 5.2-g). Note that the queries of the component C2 need fragments of the
component C1.
A partitioning order has to be de�ned among components. In our proposal, we favorite the
component involving most costly queries. The components with an empty landmark predicate
set are not considered for the partitioning process.

IV. UQP as a service for designing PRDW

In this section, we consider that data partitioning and allocation are performed iteratively and
exploits the query interaction. First of all, we start with the data partitioning phase then the
allocation of the obtained fragments.

IV.1. The Data Partitioning Phase

The problem of data partitioning in the context of PRDW may be formalized as follows:

� Inputs :
- a DW with fact table F and d dimension tables {D1, .., Dd},
- a workload Q of n queries, Q ={Q1, .., Qn},
- a DataBase Clusters (DBC) with M processing nodes, N ={N1, .., NM};

� Outputs : - a data partitioning schema.

� Constraints : - disk spaces of nodes, and maintenance cost representing the maximum
number of generated fragments that the designer want to have (W).

� Objective: - minimize the make-span of the workload Q over DBC and satisfy the cited
constraints.

116

IV. UQP AS A SERVICE FOR DESIGNING PRDW

IV.2. Partitioning Algorithm Description

The algorithm aims at ensuring equitable node processing by generating e�ective data par-
titioning and fragments allocation schemes using query interaction. The partitioning process
is guided by sharing expensive operations (e.g. joins), where data needed to process these
operations (determined using landmarks predicate), will be partitioned and distributed over
cluster-nodes.
The sharing operations are described using the UQP where they are regrouped in several com-
ponents. Thus, the partitioning is driven by one operation shared by one or more components
(component area). Each component area is becoming the subject of a sub-partition that op-
timizes a sub-set of queries presented by the component area. In the UQP, the components
are disjoint which allows subdividing the partitioning problem into a set of independent par-
tial data partitioning and the partitioning follows an incremental process. It starts by the
weighted component area and so on for the other. The �owchart for our proposed PRDW
design methodology is sketched in Figure 5.3 (called BQ-Design: BigQuery design).

- Data Warehouse Schema

- Database Cluster DBC

- Query Workload

BQ-Design: Preparation Stage

Construction of the UQP

Selection of landmark predicates

BQ-Design: Generation of Data partitioning

and Placement Schemes

Data Partitioning phase

Data Allocation phase

Fig. 5.3 � Flowchart for PRDW design methodology

The main steps of PRDW design methodology are:

� Generation UQP: to generate the UQP for a workload of queries, we useHDP-oriented
UQP as explained in the Chapter 3.

117

CHAPTER 5. QUERY INTERACTION SERVING THE DEPLOYMENT PHASE

� Identifying of landmark predicates: an UQP composed of a set of components, in
which each component has pivot node that corresponds to the �rst join operation, and
the landmark predicate corresponds to selection predicate of its branch.

� Annotation of UQP: is a operation to represent each component of the UQP by a
landmark predicate.

� Generation of partial data partitioning schema: is an operation to generate a
partial partitioning schema of one component (sub-set of queries).

� Generation of partial fragments allocation:: is an operation to generate a partial
fragments allocation of one component (sub-set of queries).

IV.2.1. Annotation of UQP

Each Landmark Predicate, noted by lp, represents one or more components but each component
is represented by only one landmark predicate. We call Components Area of lp (CAlp), all
components represented by lp. Hence, the query workload can be represented by a set of
Landmark Predicates, called LP .
Each landmark predicate lp, is annotated by a weight w(lp) which equals to the sum of processing
cost of all queries of their component area (CAlp). Let isComponentArea(Qi, lp) a boolean
function that returns 1 if Qi is in the component area of lp, 0 otherwise. W (lp) is de�ned as
follows:

W (lp) =
L∑
i=1

Cost(Qi)× isComponentArea(Qi, lp) (5.1)

The elements of landmark predicate list LP , are sorted in the descending order of their landmark
predicates weights W (lp).

IV.2.2. Generation of Partial Data Partitioning Schema

We use an incremental partitioning, where in each step, we generate a data partition schema
for a subset of queries presented by component area. For each component area, we start by a
fragment preparation that splits data into two fragments, using a landmark selection predicate
of the component area. The �rst is the initial fragment (noted CandidateFrag) that will be
used to generate the partial data partition schema and the second is the remaining partition
(noted NoCandidateFrag), which will be kept the next partitioning step. We note that the �rst
fragment is all data to be partitioned (e.g., fact table). In the following, we give the steps of
our Partial Data Partitioning :

� Preparation of attributes partitioning. We identify all possible attributes which
have more than value in their sub-domains in the de�nition of the fragment object to

118

V. EXPERIMENTAL EVALUATION AND ANALYSIS

the partial partition. These attributes are divided into two categories: the �rst category
called �rst candidates (FC) contains attributes not used by the queries in the component
area, and the remaining attributes are called second candidates (SC). The partition starts
using �rst candidates (FC) to split the fragment such that each query can be processed
by the maximum of cluster nodes. When there is none attribute in FC, the partition
process uses SC to select attribute partition.

� Iterative fragment splitting. The partial partitioning is a sequence of splitting oper-
ations, where each split is applied on one fragment to produce two fragments. So, the
partial partition schema starts with on fragment and it increases by one in each splitting.
Each split is applied on the most voluminous fragment. The volume is de�ned by the
selectivity factor that equal the multiplication of selectivity factors of all attributes that
participate on the de�nition of the fragment, and the selectivity of attribute is the sum of
the selectivity of their sub-domain. The splitting attribute corresponds to the attribute
that has the minimum values in its sub-domain, and the splitting operation divides the
sub-domain of n values into two sub-domains, each one has n/2 values if n is pair else one
sub-domain has (n+1)/2 values and the other has (n−1)/2 values. The splitting process
continues until produce m fragments (m is number of cluster nodes) are produced.

� The previous steps are repeated for all component areas.

IV.2.3. Generation of Partial Fragment Allocation Schema

To allocate each Partial Data Partitioning Schema generated, we use a round robin placement,
in which the allocation unit is a fragment. The placement algorithm is simple: we a�ect the
voluminous fragment in the node that has the maximum free space, and so on.
After placement process, the system veri�es the maintenance constraint. With the existence
of big-queries (big number of components), the number of fragments can be superior to the
prede�ned threshold W . In this case, it will be necessary to merge fragments in each cluster
node. The merging starts with the smallest fragments.
Once the data placement schema is generated, we compute the cost of executing the set of
queries Q over M nodes in terms of number of inputs-outputs.

V. Experimental Evaluation and Analysis

This section reports the results of an experimental evaluation of our proposed approach. Our
simulation conducted on a computer with 3.4GHz Intel(R) Core(TM) i7-3770 equipped with
8GB RAM. Algorithms were carried out in Java programming language. For the hardware
architecture, we simulate a homogeneous Database Cluster of 8 to 128 nodes. The dataset
from the Star Schema Benchmark (SSB) [194], it has di�erent sizes (from 100 GB to 2TB).

119

CHAPTER 5. QUERY INTERACTION SERVING THE DEPLOYMENT PHASE

Algorithm 9: Partial data partition algorithm (partialPartition)

1: Input : lp; { landmark predicate}
2: Input : CAlp; {List of components each one contains a set of queries}
3: Input : fragment; {The candidate fragment}
4: Input : m; {number of cluster nodes}
5: Output: PPS; {partial partition schema}
6: Output: noncandidate; {A fragment for the next partial partition }
7: (candidate, noncandidate)← split(fragment, lp);{Split the fragment using lp}
8: (FC, SC)← preparAttribute(candidate, CAlp);{select candidate attributes}
9: nbrFrag ← 1;{number of fragment in PPS }
10: PPS ← candidate;{initiate the PPS}
11: while nbrFrag < m do
12: frag ← getBigFragment(PPS);{get the volumounus fragement in PPS}
13: if |FC| > 0 then
14: att← getSmallAttribut(FC, frag);{get the small candidate attribut}
15: else
16: att← getSmallAttribut(SC, frag);
17: end if
18: (frag1, frag2)← split(frag, att);{Split the fragment using attribut att}
19: add(frag1, PPS); {add frag1 to PPS}
20: add(frag2, PPS); {add frag2 to PPS}
21: delete(frag, PPS); {delete frag from PPS}
22: nbrFrag ← nbrFrag + 1;
23: end while

Several workloads randomly generated, are used (their sizes vary from 32 to 10 000 queries).
In all experiments the query processing are estimated as the number of I/O. Our tests have
two objectives: (i) compare the performance of this approach with a recent good approach of
PRDW designing [27] and (ii) check the quality and scalability where workload and databases
size change.

V.1. BQ-Design vs. F &A

As a �rst experiment, we study the performance of our proposed methodology BQ-Design,
compared against F &A approach [27], where allocation phase is done at partitioning phase;
the fragmentation phase uses a Genetic Algorithm and the allocation phase is based in inno-
vative matrix-based formalism and a related fuzzy k-means clustering. For each PRDW design
methodology, we set the fragmentation threshold W to 500 and we measured the query exe-
cution time versus the variation of the number of database cluster nodes M over the interval

120

V. EXPERIMENTAL EVALUATION AND ANALYSIS

[8:32]. Figure 5.4 shows the results obtained and con�rms to us that the BQ-Design approach
outperforms the F &A one; since o�ers 18%-39% savings. The F &A approach has proven
that is practical and reliable a real-life parallel processing database system, Teradata DBMS
[27].

Fig. 5.4 � Computational Overhead Performance of BQ-Design against F &A Design

Fig. 5.5 � Performance of BQ-Design against F &A Design Approach

To check BQ-Design quality when changing the number of cluster, we conduct the same exper-
iment, we calculate the speed up factor for each approach. Figure 5.5, shows that this factor

121

CHAPTER 5. QUERY INTERACTION SERVING THE DEPLOYMENT PHASE

is not linear since BQ-Design does not ensure a load balancing processing. To determine the
cause of this imbalance processing, our second experiment is the study of the data placement
distribution of BQ-Design. To this end, we �x the number of nodes to M=8 and we check the
amount of data stored in each node. As sketched in the �gure 5.6, both approaches (F &A,
BQ-Design) su�ers by data placement skew with 43% and 48% respectively. This is due to
the selectivity skew. Indeed, both approaches are based on the multi-level partitioning that is
based on the splitting of the attribute's domain. This type of splitting depends on the nature
of the distribution of the attribute's domain.

Fig. 5.6 � BQ-Design Data Placement Distribution

In the third experiment, we focused on the e�ect of the size of the workload on the performance
of BQ-Design comparing with F &A approach. Here, we �xed the number of nodes to M = 16
and we ranged the workload size over the interval [30 :60] in order to study how the BQ-
Design query performance varies accordingly. Figure 5.7 gives more detail from the execution
of a workload of 30 queries under 16 processing. For BQ-Design, all queries bene�t from the
partitioning schema but for F &A only queries using the fragmentation attributes bene�t from
the partitioning.

V.2. BQ-Design Scalability

In this step, the experiments show the impact of the volume of queries and the size of the
DW on the quality BQ-Design. We used di�erent workload sizes (from 100 to 10 000 queries),
ranged the number of nodes over the interval [8:128], and varied the size of data warehouses
(100GB, 1TB, and 2TB). We note that the following tests are applied only by BQ-Design tool
because the F &A approach does not scale when many queries are used.

122

V. EXPERIMENTAL EVALUATION AND ANALYSIS

Fig. 5.7 � Queries Makspen

 1830

 1840

 1850

 1860

 1870

 1880

 1890

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

da
ta

 S
iz

e
(1

00
0

pa
ge

)

Nodes

100 Queries
1000 Queries

Fig. 5.8 � The impact of workload size on data distribution quality

The �rst experiments studies the impact of the workload size on the quality of data distribution.
To do so, we used 32 cluster nodes, dataset with 2 TB and two workloads with 100 and 1000
queries respectively. By analyzing the obtained results in Figure 5.8, we �gure out that the
data placement skew of BQ-Design is improved when considering more queries. The second
experiments aim at checking the scalability of BQ-Design to meet increasing workload and
database sizes. Intensive tests were applied using di�erent con�gurations by varying the number

123

CHAPTER 5. QUERY INTERACTION SERVING THE DEPLOYMENT PHASE

Fig. 5.9 � Scale-up of BQ-Design when workload size increase

of cluster nodes([8:128]), number of queries (from 100 to 10000 queries) and the size of dataset
(100GB, 1TB and 2TB). In each con�guration, the simulator estimates the total cost of query
processing. To check the scalability of BQ-Design when database size increases, we have �xed
the number of query on 1000 queries. Figure 5.10, shows that BQ-Design can scale-up where
data size increase. To check the scalability of BQ-Design when workload size increases, we

Fig. 5.10 � Scale-up of BQ-Design when database size increase

have �xed the size of dataset on 2TB. Figure 5.9, shows that BQ-Design can scale-up where
workload size increase.

124

VI. CONCLUSION

VI. Conclusion

In this chapter, we motivated the consideration of the query interaction in designing paral-
lel DW under concurrent analytical queries. We proposed a new scalable PRDW designing
approach that can generate e�ective data partition and data placement schemes. The main
steps of our approach are: (i) capturing of interaction among queries (HDP-oriented UQP).
(ii) Generation of landmark predicates that performed by using connected components that
compose the UQP. (iii) Elaboration of modular data partition and data allocation, guided by
the components of UQP.
Our approach has been compared against the most important state of art works and the ob-
tained results show the e�ciency and e�ectiveness of our approach. It has been tested under
big size workload (10 000 queries) and shows its scalability.

125

CHAPTER 5. QUERY INTERACTION SERVING THE DEPLOYMENT PHASE

126

Chapter

6

Big-Queries framework

Contents

I Introduction . 129

II System architecture . 130

III System Modules . 132

IV Implementation . 136

V Conclusion . 138

Abstract

In this chapter, we present Big-Queries, a database design advisor that assists a DBA
during her/his administration tasks when dealing with interaction numerous queries.
Speci�cally, Big-queries provides the following functionalities: (1) scale generation of
an uni�ed query plan oriented for a speci�c optimization structures (materialized views
and horizontal data partitioning). The generation of the UQP starts by transforming a
workload of queries into an hypergraph and applying di�erent partitioning algorithms
with injecting of OS knowledges. (2) Generation of near-optimal materialized basing on
the UQP and (3) generating horizontal data partitioning. (4) Use of query interaction
to design parallel relational data warehouse

127

CHAPTER 6. BIG-QUERIES FRAMEWORK

128

I. INTRODUCTION

I. Introduction

To assist administrators in their physical design tasks, several commercial advisor tools were
proposed to suggest recommendations to DBA for choosing optimization structures. We can
cite, for instance, the Microsoft AutoAdmin, Database Tuning Advisor (which is part of Mi-
crosoft SQL Server 2005) [4], the DB2 Design Advisor [257] and the Oracle Advisor [16]. Re-
cently, The Azure SQL Database1 provides recommendations for creating and dropping indexes,
parameterizing queries, and �xing schema issues. The recommendations that are best suited
for a query workload are recommended. Other advisors have been also developed by academi-
cians. Parinda ([176], developed by Data-Intensive Applications and Systems Laboratory of
the EPFL School, Lausanne, Switzerland, and SimulPh.D. [21, 23], developed in our laboratory
LIAS/ISAE-ENSMA, and RITA (An Index-Tuning Advisor for Replicated Databases) [249] �
a joint work between Oracle, Google and the University of California, Santa Cruz and EPFL,
etc. These advisors are DBMS-dependent and mainly concentrated in developing self-managing
systems that can relegate many of the database designer's more mundane and time-consuming
tasks [282]. These tools use cost models of their optimizers. Some of these tools focus on one
OS such as RITA elaborated for indexes, whereas the majority deals with several OS. Table
Table:advisors recapitulates these advisors in terms of used OS.
These tools intensively use cost models to suggest recommendations. They are not designed
to deal with volume of interacted queries. To overcome this limitation, we propose a new
tool, called Big-Queries that exploits the query interaction of numerous and complex queries.
The query interaction presented by an uni�ed query plan (UQP), that is generated thanks to
hypergraph partitioning techniques. Big-Queries has two main objectives: the �rst objective
consists in recommending materialized views and horizontal data partitioning con�gurations
for a given workload. (2) The second objective consists in taking pro�t from our experience in
centralized database in terms of query volume and sharing experience and deploying it in the
context of parallel DW design.

Advisors Supported Optimization Structures
SQL Database Tuning Advisor Partitioning; Materialized views, Indexes
Oracle SQL Access Advisor Partitioning; Materialized views; Indexes
DB2 Index Advisor Partitioning; Materialized Views; Indexes; Clustering
Parinda Partitioning; Indexes
SimulPh.D. Partitioning; Materialized views; Indexes

Table 6.1 � Presentation of well-known administration advisors

Big-queries plays the role of simulator that uses mathematical cost models (developed in Ap-
pendix 1) to quantify the quality of the di�erent recommendations. This chapter gives an
overview of Big-queries tool, its di�erent components and examples of its usages.

1https://azure.microsoft.com/en-us/documentation/articles/sql-database-advisor/

129

https://azure.microsoft.com/en-us/documentation/articles/sql-database-advisor/

CHAPTER 6. BIG-QUERIES FRAMEWORK

S
to

ra
g

e
 d

e
v
ic

e
s

p
a
ra

m
e
te

rs
.

O
S

C
o

n
s
tr

a
in

ts

Big-Queries

Tool

D
a
ta

b
a

s
e

p

a
ra

m
e
te

rs

S
y
s
te

m

a
rc

h
it

e
c
tu

re

B
u

ff
e
r

P
a
ra

m
e
te

rs

Queries

C
o

s
t

M
o

d
e
ls

Deploiement (partitioning, allocation, ...)

Optimization structures (MV, HDP,...)

Unified Query Plan
Non-functional

requirements

Fig. 6.1 � Functionalities of Big-Queries Tool

This chapter is structured as follows. Next section presents the architecture of Big-queries II.
In the section III, we describe the main modules of the framework. Section IV gives a technical
description of the frameworks. Finally, Section V concludes this chapter.

II. System architecture

In this section, we describe the architecture of Big-Queries. It is composed of four compo-
nents: feature extractor, UQP generator, physical design advisor and deployment advisor. The
feature extractor gets all needed parameters like database parameters. The UQP generator
transforms query interaction of workload in UQP, using a set of tools and algorithms inspired
from hypergraphs theories. The physical design advisor is a set of tools that help the DBA
to select OS following non-functional requirements and it estimates the quality of a schema
before their deployment in real system. The deployment advisor is a set of tools that help the
DBA to propose a deployment schema (data partitioning and allocation) tacking account many
parameters like the processing nodes, parallel execution, etc.

The framework architecture of our demonstration is described in Fig6.2. In the following
sections, we will brie�y present our underlying models.

II.1. Features Extractor

Features extractor allows to get databases parameters, system parameters (storage device,
bu�er, processing nodes, etc), related query properties (selectivity, operators, tables), OS con-
straints (injected by the DBA). These properties are extracted automatically using databases
statistical model, parsing queries and di�erent �les.

130

II. SYSTEM ARCHITECTURE

Features

Extractors

Queries

Cost Model

Fig. 6.2 � Big-Queries system architecture

II.2. UQP Generator

The UQP generator is used to transform a set of queries into an uni�ed query plan. It uses
a set hypergraphs algorithms (in our case, we have used multi-level hypergraph partitioning
algorithms [148]), UQP generator generates an uni�ed query plan oriented for a speci�cOS (See
Chapter 3). It uses a mathematical model called (cost model), to estimate the cost of query,
logical operation, workload of queries or related OS costs. The cost model uses parameters of
queries, system catalog (Bu�er, disk space, processor capability, main memory characteristics,
system architecture, etc), See Annexe annexe02. Big-queries can generate the UQP in speci�c
format that can be visualized directly Cytoscape Plug-in 2 as show in the Figure 6.3.

J28

S12

J35

CUSTOMER

S13 S14

DATES LINEORDER

J27

SUPPLIER

Q17
Q19Q20Q21 Q16

Q18

P57 P56
P53

P54

P52 P55

Fig. 6.3 � Example of an UQP of an component of workload

2http://www.cytoscape.org

131

http://www.cytoscape.org

CHAPTER 6. BIG-QUERIES FRAMEWORK

II.3. Physical Design Advisor

The physical design advisor takes the advantages of query interaction represented by an UQP
to propose near-optimal of two optimization structures: MV and HDP , under three scenarios:

� static selection ofMV under constraints;

� dynamic selection ofMV with scheduling of queries;

� static selection of horizontal data partitioning.

For each optimization structure, the physical design advisor can give an estimation of the
execution time within that structure. This assists DBA to take a decision about its selecting
or not.

II.4. Deployment Advisor

Deployment advisor proposes a data partitioning and data allocation for designing Parallel
RDW (PRDW) on shared nothing database cluster architecture. It allows simulating the
quality of parallel DW before their implementation in real machine.

III. System Modules

We develop our Big-queries is composed of a set of independent modules to integrate any
algorithm. This means that, the DBA can plug any OS selection algorithm for the studied
structures (UQP,MV , HDP schema, allocation schema). All these modules will be discussed
in the next sections.

III.1. Query parser module

In this module, users can give either a single SQL query or workload to be executed. Queries
supported vary from simple transactional operations to more complex reporting operations
involving several large size tables. The parser takes as an input a text written in a speci�c
language such as SQL and converts it into a parsed tree. Figure 6.4 shows an example of parse
tree. The parsed tree is done by:

� a syntactic analysis to give the basic grammar elements of the text query in the form of a
parsed tree; The leaves nodes of the parsed tree represent the atomic elements. They are
the lexical elements of the query such as keywords (e.g., SELECT, WHERE, FROM),
names of relations and attributes, constants, logical and arithmetics operators, etc. The
other nodes of the parsed tree represent a composite element formed by many atomic
elements like Condition, other sub query.

132

III. SYSTEM MODULES

Join
predecessors

Join
Predicate

Selection
Predicate

Base
Table

Selectivity

Node
Identifier

Fig. 6.4 � Example of the result of query parser

� a semantic checking of the parsed tree by verifying the used relations and attributes,
query clauses, etc. The checking process follows these steps:

� To check whether every relation, attribute, or view mentioned in the FROM-clause
belongs to the schema of database or data warehouse (using the meta-model).

� To check whether every attribute mentioned in the SELECT/WHERE-clause be-
longs to the relations appeared in the FROM-clause.

� To check whether attributes' types are respected in the Condition-clause.

� a veri�cation whether views are involved in the current query or not. Each virtual view
in the query parse tree will be replaced by a sub-parse tree that represents the sub-
query constructing this view. Note that in the case of materialized views, there is no
substitution, because these latter are considered as base tables (relations).

III.2. Logical query plan generator

The module of selection the logical query is based on the algebraic equivalences. A query is
composed of di�erent operations which follow algebraic laws (commutativity, associativity, and
distributivity), and can be applied in both directions: from left to right, and from right to left.
The generation of the logical plan of a query follows two principal steps: (1) transforming the
parsed tree to a logical query plan, and (2) improving the logical query plan using algebraic
laws, and (3) selecting an appropriate logical plan using a cost model. Figure 6.5, shows an
example of presenting a logical plan of a query.

III.3. Hypergraph module

Hypergraph module is responsible at generating an OS oriented UQP. It takes a set of log-
ical operations (selection, projection and join), their corresponding queries. To ensure the

133

CHAPTER 6. BIG-QUERIES FRAMEWORK

I/O Cost of eact operation Predecessors of

operations

Type of operation

Fig. 6.5 � Example of presenting logical plan of a query

scalability, at beginning, the workload is represented as an hypergraph and using a set of hy-
pergraph partitioning algorithms, the hypergraph on many sub-hypergraphs. Secondly, each
sub-hypergraph (called component of queries), will be transformed separately into a uni�ed
query plan. Finally, all uni�ed query plans will be merged into a global UQP. Figures 6.6
and 6.7 show an example of presenting respectively the sub-hypergraph and components of a
workload.

Vertex
Hyperedge

Fig. 6.6 � Example of presenting an hypergraph of workload

III.4. Query processing cost estimator

The module query processing cost estimator, allows estimating the cost of query or set of
queries taking account or not of optimization structures (materialized views and horizontal
data partitioning). To estimate query processing cost, this module needs to rewrite queries
following selected optimization structures.
In the relational model, the query is processed using a tree-like physical plan, where each node
represents an algebraic operator (selection, join, projection) and each operator is tagged by

134

III. SYSTEM MODULES

Fig. 6.7 � Example of presenting components of workload

D
B

 B
u

ff
e

r

p
a

ra
m

.

S
to

ra
g

e

p
a
ra

m
.

Cardinality

Estimation
Cost

Estimation

Cost estimate

O
p

e
ra

to
rs

Im
p

l.

S
y

s
te

m

a
rc

h
.

O
S

p
a

ra
m

.

Fig. 6.8 � Overview of cost estimation process

an implementation algorithm. Estimating query processing cost implies the estimation of the
execution cost of each operator, which needs also to calculate their cardinalities to estimate the
above operators.

The real cost of query processing is done by time unite (e.g., second), that corresponds to
consuming time from the starting query processing until the result is given by the DBMS.
This cost depends on two parameters: (1) The input/output cost that is the time of loaded
data from storage devices (in our case: Hard disk). (2) The CPU cost (CCPU) that depends
on the physical layout, input/output and the number of arithmetic and logical operations.
Figure 6.8, gives an overview and the parameters implied in the processes of estimating query
processing cost.

Parallel to using cost models to estimate query processing and to select the optimal plan, other
cost models are used in selecting the optimal OS as MV and HDP . In addition, each OS
has its own cost functions that estimate their impacts in query execution time and physical
parameter like disk space.

The cost model used to develop our estimator module is detailed in the appendix IV.

135

CHAPTER 6. BIG-QUERIES FRAMEWORK

III.5. Materialized views selection

This module takes a uni�ed query plan to select a set of views under the storage constraint and
the maintenance cost. It estimates the impact of using selected MV on the initial workload.
To ensure the scalability of selecting views, the proposed algorithm works on the components
of UQP which have small set of candidate views (for more detail, see Chapter 4). Also, selec-
tion following components allows proposing a solution of dynamic selection of the views with
scheduling of queries. The tools can gives the list of selectedMV and their correspondent I/O
costs as shown in the Figure 6.9.

I/O Cost related to MV

Fig. 6.9 � A example of the result of selecting materialized views of workload

III.6. Data partitioner

This module uses the query interaction presented as an UQP to select the horizontal data
partitioning schema (for more detail, see chapter 4). The module gives the partitioning schema
de�ned by a set of selection predicates, also it gives an estimation of the cost of this schema as
shown in the Figure 6.10.

III.7. Deployment designer

Deployment designer allows generating e�ective data partitioning and fragments allocation
schemes by exploiting the query interaction and o�ering equitable node processing. The par-
titioning process is guided by sharing expensive operations (e.g. joins). The data needed to
process these operations are partitioned and allocated over cluster-nodes.

IV. Implementation

In this section, we present the technical implementation of the framework.

136

IV. IMPLEMENTATION

Fig. 6.10 � A example of the result of data partitioning schema of workload

IV.1. Development environment

The framework has been implemented using the Java programming language. The choice was
rather obvious, Java being a solid tool for software development, being platform independent,
very robust and reliable and having excellent libraries (including libraries for user interface
development). Big-queries framework is developed in windows and Linux environments (Java
JDK 1.8. environment). Figure 6.11 shows the main interface of the framework.

Fig. 6.11 � Main Interface of Big-queries

The framework doted of gateway connection to any DBMS (Oracle 11g, oracle 12c and
PostGress). Figure 6.12, shows the implementation of the gateway connexion.

137

CHAPTER 6. BIG-QUERIES FRAMEWORK

Fig. 6.12 � Gateway connexion of database

The set of software of our simulator represents applications that give a graphic interface to
evaluate a solution without monopolizing of a real design of physical nodes processing. They
use a mathematical model to simulate the functionality of the target system with its physical
parameters. So, these softwares can give good indicates about query processing, material
architecture, system properties in a short amount of time with lower cost. The simulation
allows the comparison of many scenarios by measuring the performance of di�erent data.

V. Conclusion

In this chapter, we presented our Big-queries advisor composed of a set of tools to help the
DBA to perform the database physical design and deployment. Big-queries takes advantages of
the hypergraph theory to exploit in e�cient way the volume of interacted queries to select OS
and the deployment platform for a given DW application. Our tool is considered as the core
of the simulation of all processes that we discussed in this thesis thanks to our algorithms and
cost models. Currently, we are integrating other OS such as indexes and replication of data
fragments over cluster nodes.

138

Part III

Conclusion and Perspectives

Wrap-up

In this chapter, we summarize the contributions of our thesis, discuss the results and provide
an overview of possible future issues.

I. Summary

Processing large amount of queries issued by advanced applications involving mass data is-
sued from social media, E-commerce Web sites, scienti�c experiments, etc., as social network,
E-commerce, scienti�c, sensors, etc. has to consider the interaction among queries. This inter-
action is materialized by the reuse of common intermediate results of these queries. Another im-
portant point that motivates our claim is the crucial role that queries play in di�erent phases of
the life cycle of database/data warehouse design, especially for physical and deployment phases.
It should be noticed that various advisors and tools developed by the most important editors
of commercial and academic DBMS either in the context of centralized databases (e.g., DB2
Advsiors [257], Database Tuning Advisor for Microsoft SQL Server [4], [176] for PostgreSQL,
etc.) or in distributed databases (e.g. Schism [81]) exist. They aim at recommending to admin-
istrators optimization con�gurations such as indexes and materialized views. The majority of
them are based on workloads. Hence, the question of integrating the volume and interaction of
queries is no longer about why doing that, but instead how we can do it in an e�cient manner,
and for which phases ?
Therefore, this thesis revisits the multi-query optimization � a classical concept introduced
in 80's �, and leverages it by our two dimensions which are query volume and sharing. Our
methodology was designed to �rst de�ne a data structure adapted to our study, and then
to evaluate its e�ciency and e�ectiveness regarding two famous problems of the physical de-
sign of a relational data warehouses which are materialized view selection and horizontal data
partitioning, as well as the problem of parallel data warehouse design.

141

CHAPTER 7. WRAP-UP

We would like to mention that our thesis covers large spectrum of topics: multi-query op-
timizations, data warehouses, physical design, deployment phase, hypergraphs, cost models,
etc. To facilitate the presentation of our �nding, we �xed some objectives: (i) to conduct
a survey of the most important concepts, techniques, algorithms and tools presented in this
thesis. This objective forced us to be more precise and to present comparison and analysis of
the studied concepts. (ii) to clearly outline our collaboration with Mentor Graphics that yields
the analogy between the problem of representing a uni�ed query plan of a workload and an
electronic circuit. This collaboration is the key success of our thesis, since it brings us several
positive results at research (discovering a new discipline) and personal terms (working, sharing
and transmitting our problems and knowledge to the engineers of Mentor Graphics). (iiii) to
choose relevant case studies for the deployment of our hypergraph structures, (iv) to develop a
tool that capitalizes our �nding and assists designers and administrators during their tasks and
�nally (v) to conduct intensive experiments using our developed simulators within commercial
DBMS (Oracle in our case) to evaluate the quality of our �ndings.

I.1. Surveys of Logical and Physical Optimizations

We have elaborated an in-depth analysis of how state-of-the-art database manage the interac-
tion among queries and how it is exploited in logical, physical optimizations and the deployment
phase of the life cycle of the data warehouse. Based on these surveys, we provided new clas-
si�cations related to logical and physical optimizations that concern multi-query optimization,
generic formalization of the problem of the physical design, examples of its instances: materi-
alized views, indexes and horizontal data partitioning, and di�erent used algorithms with their
implementation environments (centralized, distributed and parallel architectures).

I.2. Hypergraphs driven Data Structure for Management of Volume

and Sharing of Queries

The �rst contribution of our thesis is the fruit of our collaboration with Mentor Graphics
Company to �nd an analogy between an electronic circuit and a uni�ed query graph. This col-
laboration gave rise to an approach called SONIC (Scalable Multi-query OptimizatioN through
Integrated Circuits). This latter is based on a hypergraph structure that can represent any
uni�ed query plan, by ignoring the query order as done in the most traditional approaches
[273]. Once it is generated, it is explored by a greedy algorithm that partitions it by the means
of hypergraphs partitioning library (HMETIS), and selects the most important node of each
partition (called pivot node) that can be candidate for sharing. The pivot node is similar to
the principle of queen-bee.
Our approach was validated to evaluate its e�ciency in terms of execution time and quality by
considering the process of selecting materialized views.
Furthermore, we investigated the scaling behavior of our approach by considering very large

142

I. SUMMARY

workloads of queries, and identi�ed a high scalability of our generated uni�ed query plan on
selecting materialized views.

I.3. What if Uni�ed Query Plan Generation

The second contribution of our thesis concerns the incorporation of the what-if question in the
physical design phase of advanced databases such as data warehouses. This incorporation is
performed by merging two problems: the multi-query optimization and the physical structure
selection, usually performed in a sequential way. As a consequence, we proposed to consider the
question which is what-if physical design for multiple query plan generation. A formalization
of our problem has been given and instantiated with two optimization structures: material-
ized views in static and dynamic contexts, and horizontal data partitioning. The hypergraph
data structure used for generating the best multiple query plan facilitate the development of
algorithms for selecting our optimization structures, where metrics related to each structures
are injected into the process of multiple query plan generation. Mathematical cost models
estimating the query processing cost are also developed. We conducted intensive experiments
using theoretical and a real validation in Oracle 11g. The results approve our what-if issue and
the theoretical results are con�rmed by Oracle experiments that demonstrate the quality of our
cost models.

I.4. Query Interaction in the Deployment Phase

We investigated the role of our hypergraph structures in the process of designing parallel ware-
houses. Due to the complexity of this phase that includes several steps: data partitioning, data
allocation, load balancing, etc. we have only focused on the two �rst phases; data partitioning
and data allocation. We thus presented HYPAD approach (HYper-graph-driven approach for
PArallel Data warehouse design) that does the following tasks: (i) capture of interaction among
queries. (ii) Generation of landmark predicates using connected components that compose the
uni�ed query plan. (iii) Elaboration of modular data partition and data allocation, guided
by the components of the uni�ed query plan. Our approach is compared against the most
important state of art works and the obtained results show its e�ciency and e�ectiveness. It
has been tested under big size workload (10000 queries), that shows its scalability. Note that
mathematical cost models have been elaborated and used by our simulator.

I.5. Big-Queries

We presented our tool textitBigQueries, a sort of advisor that takes advantages of the inter-
action among a large amount of queries. Actually, it gives recommendations for selecting two
optimization structures in isolated way: materialized views and horizontal partitioning. It is a
modular tool, that can: (1) o�er DBA the possibility to select di�erent optimization structures,
based on the interaction of queries, (2) give an estimation of query performance, (3) generates

143

CHAPTER 7. WRAP-UP

and displays a uni�ed query plan and (4) recommends optimization con�gurations regarding
the deployment phase that suggests partitioning schemes and fragment allocation schema for
a given workload. The functional architectures of these two tools have been elaborated based
on existing academic and commercial advisors and tools. We would like to mention that Big-
Queries tool has been used in Graduate Master course "Big Data" given in Poitiers University.
Based on the feedbacks of students, it has been incrementally improved in terms of interface
and di�erent functionalities such as cost models.
Our tools are open sources and available at the forge of our laboratory LIAS (http://www.lias-
lab.fr/forge/projects/bigqueries). Actually, 86 downloads have been done, which represents an
asset for students and researchers.

II. Future Work

In this section, we identify open issues related to the set of our contributions. We di�erentiate
between two major classes of issues, namely the hypergraph structure and its usages.

II.1. Hypergraph Structure

In this case of issues, we distinguish three main challenges that have to be addressed in the
near future: testing of other hypergraph partitioning tool, dynamic construction of hypergraph
and exploratory algorithms.

II.2. Testing Other Partitioning Hypergraph Tools

The popularity of hypergraphs and the increasing demands of IT companies in using them,
motivate the research community to develop e�ective hypergraph partitioning tools: hMeTiS
[151], PaToH [66] Mondriaan [263], and parallel tools such Parkway [250], and Zoltan [43]. In
this thesis, we only used one tool, which is hMeTis. The exploration of other tools is necessary
to evaluate the impact of the partitioning on the obtained results.

II.3. Dynamic Construction of Hypergraphs

In our study, we assume that the workload is known in advance. The construction of our hy-
pergraph is based on this static workload. In many applications of graph algorithms, including
communication networks, VLSI design, graphics, and assembly planning, graphs are subject to
discrete changes, such as insertions or deletions of vertices or edges. In the last two decades
there has been a growing interest in such dynamically changing graphs, and a whole body of
algorithmic techniques and data structures has been discovered [92]. Two types of problems
concern dynamic graphs : partially dynamic graphs subject only to either insertions, or dele-

144

II. FUTURE WORK

tions, but not both at the same time. Fully dynamic Graphs subject to intermixed sequences
of insertions and deletions.
These �ndings have to be integrated in our proposal, by proposing an algebra to construct
incremently our hypergraph. The dynamic aspect of graphs complicates the partitioning algo-
rithms. The usage of library managing dynamic graphs such as graph stream is recommended
(http://graphstream-project.org/).

II.4. Advanced Algorithms to Explore our Hypergraphs

In our thesis, we use simple algorithms (greedy) to explore our hypergraphs to select di�erent
pivot nodes. Hence, it would be bene�cial to investigate the e�ciency of advanced algorithms
such as evolutionary ones.

II.5. Hypergraph for Mixed Workload

Today's enterprise systems are partitioned into the so-called Online Transaction Processing
(OLTP) and Online Analytical Processing (OLAP). In this thesis, we have mentioned the work
performed by Curino et al. [81] about database replication and partitioning considering OLTP
transactions that use hypergraphs. In this thesis, we particularity focused on OLAP workload.
Merging these two hypergraphs structures is a nice opportunity to consider the problem of
mixed workload management. To do so, the development of metrics to measure performance
of the mixed workload have to be elaborated in our context.

II.6. Consideration of others problems in the Deployment Phase

Use hypergraph structures to include other complex phases in designing parallel data warehouse,
as data replication and load balancing. Also, including other dimensions in designing parallel
data warehouses, as optimization structures (materialized views and indexes), in which we will
use hypergraph structures to propose a new model of selecting OS in this new context.

II.7. Other Usages of our Findings

In our proposal, we concentrate our e�orts on selecting materialized views and data partitioning.
Note that there is a large panoply of optimization structures, where their selection is driven
by workloads such as indexes, vertical partitioning, etc. Our �nding has to be extended to
integrate any optimization structure. To do so, we have to make our tool more generic to allow
developers to enrich it by other structures.
Another usage of our �nding may concern the query recommendation and relaxation. A rec-
ommended or relaxed query is a super or sub query that already exists in the system.

145

http://graphstream-project.org/

CHAPTER 7. WRAP-UP

146

Part IV

Appendices

Cost models

III. Introduction

In the relational model, each query is processed using a tree-like physical plan, where each
node represents an algebraic operator (selection, join, projection) and each operator is tagged
by an implementation algorithm. Estimating query processing cost implies the estimation of
the execution cost of each operator, which needs also to calculate their cardinalities to estimate
the above operators.

The real cost of query processing is done by a time unit (e.g., second) that corresponds to
consuming time from the starting query processing until the result is given by the DBMS.
This cost depends on two main parameters: (1) The inputs/outputs cost (CI/O) that gives the
time of loaded data from storage devices (in our case: Hard disk) to the main memory. (2)
The CPU cost (CCPU) that depends on the physical layout, input/output and the number of
arithmetic and logical operations. Fig.7.1, gives an overview and the parameters implied in the
processes of estimating query processing cost.

Parallel to using cost models to estimate query processing and to select the optimal plan, other
cost models are widely used in database physical design. They usually used in selecting the
optimal OS as MV , indexes, data partitioning, etc. In addition, each OS has related cost
functions that estimate their impacts in query execution time and physical parameter like disk
space.

In this Chapter, we develop the cost models and their parameters used in our work. Firstly,
we give cardinality estimation functions of intermediate results in the physical query plan.
Secondly, we detail estimating functions of query processing cost representing the number of
inputs/outputs.

149

CHAPTER 7. COST MODELS

D
B

 B
u

ff
e
r

p
a
ra

m
.

S
to

ra
g

e

p
a
ra

m
.

Cardinality

Estimation
Cost

Estimation

Cost estimate

O
p

e
ra

to
rs

Im
p

l.

S
y
s
te

m

a
rc

h
.

O
S

p
a
ra

m
.

Fig. 7.1 � Overview of cost estimation process

IV. Cardinality estimation

The cardinality of a relation or an intermediate result is the number of its tuples. The cardinality
considered as the main input of any estimation functions of query processing cost or selecting
OS. Accordingly, the quality of any cost model depends on the quality of cardinality estimation
functions. Many works have shown that error estimation of cardinality implies choosing bad
plan that can be thousands times slower. [255, 181].
To estimate the cardinality of intermediate results, it is necessary to have statistics about data
distribution in base relations. So, to estimate cardinality or intermediate results, any query
optimizer uses tools to get and update the statistics of data distribution in databases and then
it applies functions on this statistic according query parameters.

IV.1. Statistics computation

The quality of a query optimizer is tightly tied to the quality of cost estimation functions,
which are, in turn, based on the cardinality estimation. Accordingly, bad statistics can easily
alter the execution plan, and the availability of good statistics can readily improve the quality
of the best processing plan[69]. Statistics are periodically re-computed by the DBMS, or right
after updating base relations. Today, most of existing DBMS have implemented statistics
catalogs [63, 56]. Although the fact that they do not undergo a radical change in a short
period, their computation may be very costly [71, 57]. These statistics can be categorized into
three categories:

� distribution of attribute values, like number of tuples, average size of column/tuple, dis-
tinct and maximum/minimum values of attributes. To reduce the complexity of statistics
computation issue, many DBMS assumes that there is a uniform distribution of values
[209, 107].

150

IV. CARDINALITY ESTIMATION

Parameters name Description
Ri a relation that may represents fact or dimension tables
|Ri| number of tuples of the relation Ri

||Ri|| number of pages on which the relation Ri is stored
|A| number of distinct values of the attribute A
maxA max value for an attribute A in the relation R
minA min value for an attribute A in the relation R
La(ARi

) average length of a value of attribute A of relation Ri (in bytes)
Lt(Ri) average length of a tuple of relation Ri in bytes

Table 7.1 � Cardinality estimation parameters

� DBMS Hardware parameters that include network, hard disk characteristics (e.g. band-
width and time of reading one page).

� Statistics of using access methods (index,MV , etc.), like spent-time to scan an index.

IV.2. Intermediate results cardinality

Cardinality estimation of the intermediate results depends on the type of the current operator
in the physical query plan. Next, we present basic functions used to estimate the cardinality
of intermediate results for every operator type (selection, projection, join, etc.). Note that the
goal of cardinality estimation is not to give an exact information, but instead an estimation to
select a good physical query plan or to select near-optimal OS.
For a given relation or an intermediate result Ri, we denote its cardinality by |Ri|. We need
some notations to present our functions, as depicted in Table 7.1. Our cost functions based on
the work of Selinger et al. [221].

IV.2.1. Cardinality of selection

The selection applied to one relation using one or more predicates. Let p, a selection predicate
applied to a relation R. We denote σp(R) as the result of this selection. To do so, we need
an extra parameter called the selectivity factor of the predicate p, which is de�ned as the part
of rows satisfying the predicate, and its value is between 0 and 1. In other words, it is the
probability to pick each tuple from relations to be used as arguments of operators. Let fp be
the selectivity factor of the predicate p. fp is de�ned as :

fp =
|σ(R)|
|R|

(7.1)

Therefore, the cardinality of the selection result can be de�ned as:

|σp(R)| = fp ∗ |R| (7.2)

151

CHAPTER 7. COST MODELS

Predicate p Selectivity fp

¬(p) 1-fp

p1 ∧ p2 fp1 *fp2

p1 ∨ p2 fp1 + fp2 - fp1 * fp2

A =val 1/|A|
A =B 1/max(|A|, |B|)

A >val (maxA − val)/(maxA −minA)

A <val (val−minA)/(maxA −minA)

val1 6 A 6 val2 (val2 − val1)/(maxA −minA)

Table 7.2 � Selectivity estimation of complex predicates

To estimate the cardinality, we suppose that we have uniform values in columns. One predicate
p can involve more than one attribute or value. So, the predicate p can be simple when it has
one value or complex when it involves boolean operators linking several simple predicates (like
p1 and p2). The selectivity of complex predicates can be easily computed based on their simple
predicates. In the Table 7.2, we summarize the selectivity estimation formulas, where A and
B denote attributes, val, val1 and val2 denote constants, maxA is the maximum value in the
column A, |A| is the number of distinct values in the attribute A. Note that, the optimizer
can use logical equivalents to detect if the condition equivalent to FALSE, and in this case the
cardinality is clear that equivalent to 0.

IV.2.2. Cardinality of projection

The cardinality of the result of a projection on the relation Ri is, in principle, the cardinality
of Ri itself:

|ΠA(R)| = |R| (7.3)

such that A, is an attribute or a set of attributes.
Sometimes, the query optimizer eliminates duplicate tuples to improve query plan, because
when these latter are used by other operators like join, the result is the same. In this case, the
cardinality is equal to:

|ΠA(R)| = |A| (7.4)

IV.2.3. Cardinality of Cross product

The cardinality of the result of a cross product of two relations is the multiplication of their
cardinalities.

|R1 ×R2| = |R1|×|R2| (7.5)

152

IV. CARDINALITY ESTIMATION

IV.2.4. Cardinality of Join

In our work, we have considered only the natural join. The natural join between two relations
involves only the equality of two attributes. So we study the join R1(A, b) on R2(b, C), where b
is the attribute of the join predicate, and A, C denote a set of attributes. The cardinality of
the join result |R1 on R2| depends on the values of the attribute b. For example:

� If R1 and R2 have disjoint sets of b -values, |R1 on R2| =0;

� If b is the key of R2 and the foreign key of R1, so each tuple of R1 joins exactly one tuple
in R2, and |R1 on R2| =|R1|.

In the general case, we suppose that bR1
and bR2

are the b attribute of R1 and R2 respectively,
and r1 is a tuple of R1, and r2 of R2. if |bR1

| > |bR2
|, then b-value of r2 is one value that appears

in the b-value of R1. Hence, the probability that r1 and r2 share the same b-value is 1/|bR1
|.

Similarly, if |bR1
| < |bR2

| , then the probability that r1 and r2 share the same b-value is 1/|bR2
|.

In join operation, the possible comparison of pairs r1 and r2 is |R1| *|R2|, So the cardinality of
the result of a natural join is:

|R1 on R2| = max(|R1|, |R2|)/max(|bR1
|, |bR2

|) (7.6)

The same goes for multiple join attributes. We suppose that B are a set of the attributes
involved in the join, the cardinality becomes:

|R1 on R2| = max(|R1|, |R2|)/max(|biR1
|, |biR2

|),∀bi ∈ B (7.7)

If we assume that JR1R2
is the probability that two rows verify join conditions, the cardinality

of the result of that join can be calculated as follows:

|R1 on R2| = max(|R1|, |R2|)×JR1R2
(7.8)

IV.2.5. Cardinality of aggregation

The number of tuples generated from an aggregation corresponds to the number of the resulting
groups. This latter can be between 1 and |R|, so the cardinality of the result of the aggregation
equals to:

|Γ (R)| = |R|/2 (7.9)

IV.2.6. Cardinality of Union

The maximum of tuples number generated from the union of two relations R1 and R2 (R1 ∪R2),
is the sum of their cardinalities |R1| and |R1|, and the minimum is the maximum between |R1|
and |R2|. So, the cardinality of the union can be the average of maximum and minimum values.

|R1 ∪R2| = max(|R1|, |R2|) + min(|R1|, |R2|)/2 (7.10)

153

CHAPTER 7. COST MODELS

IV.2.7. Cardinality of intersection

The cardinality of the result of the intersection of two relations R1 and R2 (R1 ∩R2), is in
the range of 0 to the minimum cardinality of the two relations. So, the cardinality can be
considered as the average value:

|R1 ∩R2| = min(|R1|, |R2|)/2 (7.11)

IV.2.8. Cardinality of di�erence

The maximum of tuples generated from the di�erence of two relations R1 and R2 (R1 \R2), is
the cardinality of R1 (|R1|) and the minimum is |R1|-|R2|. So, the cardinality of the di�erence
can be considered as the average:

|R1 \R2| = (|R1|− |R2|)/2 (7.12)

V. Cost estimation

The execution cost of an operator is the sum of two measures: (1) Input/output (CI/O) which
is the time of loading/storing data from/to the disk, and (2) CPU cost (CCPU) consumed by
arithmetic and comparison functions processed by the CPU . Note that, in the context of
distributed databases (interconnected sites), the network �ow involves additionally a network
cost (Cnet). The Cnet of a query is the necessary time to transfer all data and sub-results between
sites and �nally to produce the result.
Recently, with green computing, another measure has been considered is query cost estimation,
which is the power and energy consumption cost. In this case, the challenge is to reduce energy
[253] and CO2 pollution.
The query is executed following its physical plan that shows the data �ow between its di�erent
operators. The total I/O and CPU costs of a query is the sum of the cost of each operator
(op) occurring in the physical execution plan. For a given query the total costs are:

CI/O =
∑

op∈UQP

CI/O(op) (7.13)

CCPU =
∑

op∈UQP

CCPU(op) (7.14)

The system can execute operators in parallel, which makes the summation of the I/O and CPU
costs insigni�cant. For these reasons, researchers have proposed many techniques to calculate
the total cost of the query, as described below.

� Weighted sum of costs: The total cost CQ is equal to a weighted sum of the I/O and
CPU costs [221]:

CQ =CI/O +w × CCPU (7.15)

154

V. COST ESTIMATION

where w is an adaptive variable between I/O and CPU costs. The weight w increases
when CPU takes more time in executing operators and decreases when I/O takes more
time to load/store processes.

� Sum of the cost: due to the di�culty of de�ning the relation between CPU and I/O
cost by the weight value, some propositions ignore it [126]. Hence, the total cost becomes
the sum of CPU and I/O costs:

CQ =CI/O +CCPU (7.16)

� Maximum of the cost: In the previous approaches, the concurrency between CPU
processing time and I/O loading time is totally ignored. The time execution becomes
the maximum between CPU and I/O costs [77].

CQ = Max(CI/O +CCPU) (7.17)

V.1. Cost model parameters

As shown in Fig.7.1, estimation function depends on many parameters like bu�er size, storage
devices, system architectures, etc. [225]. Next, we describe these parameters:

V.1.1. Storage devices

Query processing time is sensitive to the storage access parameters [210]. The complexity of
storage systems has been increasing, and so do the cost parameters. The execution of a query
can involve various types of storage devices like hard disks, �ash disks, and main memory.
These storage devices can be classi�ed into three categories according to their storage capacity,
seek speed, and reading one-byte cost:

1. Cache: is founded using the same chip of the micro-processor, data can be accessed in a
few nanoseconds.

2. Main Memory: data can be accessed between 10 to 100 nanoseconds range.

3. Secondary storage: covers all types of hard/optical disks, �ash memory, etc. They
access and read data in milliseconds, and most of them are made of magnetic disks, and
have the following parameters:

� storage layout: like time of reading one page using direct access or sequential
access;

� storage device: like number of cylinder, track, sectors, seek cost, etc.

155

CHAPTER 7. COST MODELS

V.1.2. Database Bu�er

A part or all intermediate results can be directly stored in the bu�er for future use by parent
operators, what minimizes their input cost. Thus, the bu�er size and management algorithm
become necessary to estimate the I/O cost of intermediate results [269].

V.1.3. Access paths

data can be loaded from tables using sequential or random access. Each access mode has its
speci�c cost.

V.1.4. Query parameters

Cost estimating functions take as input the query in the form of a physical plan that contains
selection, join, projection, aggregation, and grouping operations. Each operator has a predicate
like selection and join predicates. These latter are used to estimate the cardinality of inter-
mediate results (For more details, see Section IV). In our work, we consider a workload of k
queries, W ={Q1, .., Qk}, where each query Qi has a frequency of use fi.

V.1.5. Database parameters

The schema of databases is always considered as input for any cost model, used for estimating
the cardinality of intermediate results and to identify OS characteristics. In our work, we have
used a star schema of DW , that has one fact table F and d dimension tables D ={D1, .., Dd}.
Two important parameters are associated to each table F or Di (1≤ i ≤ d): cardinality denoted
by |F | and |Di| respectively, and the real table size generally given in bytes (in our case we
have used the pagesize unit, PS =8192 bytes), denoted by ||F ||. Other parameters are needed
like tuple and columns average size (for more details, see Table 7.1).

V.1.6. Deployment parameters

DB or DW can be deployed according to di�erent architectures (SMP,MPP and Shared nothing
(More details, see Chapter 2). In our tests, we have used Shared Nothing Database Cluster,
denoted by SN-DBC ; and centralized DB. The SN-DBC is composed of M processing nodes
(servers) N ={N1, .., Nm}, where each node Ni has a storage capacity Si to store a part of data.
The nodes are interconnected using high-speed network and their processing are coordinated
by one node called coordinator node. Fig.7.2, illustrates an example of a SN −DBC.
The communication between nodes produces an extra cost called communication cost (Cnet).
It can expressed using an M ×M matrix CC, where either columns or lines represent the pro-
cessing nodes (Ni 1 ≤ i ≤M) and the value CC[i][j] represents the number of pages transferred
from the processing node Ni to the processing node Nj in a period of time. Thus, the total

156

V. COST ESTIMATION

Node2 Node3 NodeM

Node1
Coordinator

s
u
b
-q
u
e
ry
2

s
u
b
-r
e
s
u
lt
2

s
u
b
-q
u
e
ry
1

s
u
b
-r
e
s
u
lt
1

s
u
b
-q
u
e
ry
M

s
u
b
-r
e
s
u
lt
M

q
u
e
ry

re
s
u
lt
s

User

Fig. 7.2 � Example of SN −DBC

communication cost can be de�ned as :

Cnet =
∑

1 ≤ i, j ≤M,i 6= j

CC[i][j] (7.18)

The parameters that in�uences the cost model in Costmodel!SN −DBC system are:

� Data partitioning parameters : In a SN −DBC architecture, data are partitioned
over many clusters. Let NF be the number of fragments generated by the process of data
partitioning Pc ={F1, .., FNF

}. It is de�ned as follows:

NF =
d

Π
i=1
Fdi

(7.19)

Such as Fdi
is the number of fragments of the table Di, and it is assigned the default value

(1) whenever the table does not participate in the partitioning process [45]. To avoid the
explosion of fragments number that causes a di�culty to DBA in its maintenance task
[20], a threshold W that delimits the maximum number of fragments NF is therefore
required. For any partitioning schema, it is necessary to know which fragment is used by
each query. This is done using a matrix called matrix of use Mu. The columns and lines
of the matrix correspond to k queries and NF fragments respectively. Mu[i][j] equal to
value 1 if the query Qi use the fragment Fj and 0 otherwise. Table 7.3, illustrates the
parameters of fragments.

� Data allocation parameters : In NS −DBC, the set of fragments are allocated to
processing nodes N . If each fragment is allocated to one and only one cluster node,
we call it no-redundancy allocation, and redundancy allocation otherwise. To ease the
localization of fragments, the system uses a binary matrix of placement (Mp) [36]. The

157

CHAPTER 7. COST MODELS

Parameters name Description
DBC cluster of M processing nodes N ={N1, .., NM}
M number of processing nodes
Si storage capacity of the processing node Ni

NF number of fragments
W threshold of data partitioning
|Fi| cardinality of the fragment Fi

||Fi|| size of the fragment Fi in pages
Mu matrix of use of fragments

Table 7.3 � Data partitioning schema parameters

lines and columns of the matrix are the NF fragment andM processing nodes respectively.
Mp[i][j] has a value 1 if the fragment Fi is allocated in the processing node Nj, and a
value 0 otherwise. The size of data stored in each processing node Nj will be calculated
using the following equation:

size(Nj) =
M∑
i=1

||Fi||×Mp[i][j] (7.20)

V.1.7. OS parameters

� MV: update frequency and if they are automatically rewritten or not.

� Indexes: Index has three costs to de�ned, �rstly the cost of updating index following
updating in the indexed object. Cost of updating the structure of the index like bitmap
index and the cost of processing queries that equal to the scan index generally in the
main memory and the cost of accessing to data.

� Data partitioning: the number of partitions, size of each partitions. To estimate the
selection cardinality, the selectivity will be calculated for each partition.

V.2. Estimation functions for query processing

As has been previously mentioned, the cost of an operator or the whole query plan can be
represented by two costs: CPU and I/O.

V.2.1. CPU cost

CPU cost is the number of CPU cycles necessary to compare di�erent tuples. To estimate this
number, it is necessary to know the cardinality of the input(s) and the output of each operator
in the query execution plan. Once the input cardinality is estimated, it only remains to add

158

V. COST ESTIMATION

PS page size
tdisk disk transfer time for one page
tnet network transfer time for one page
||R|| size on pages of the relation R
|R| cardinality of the relation R (number of tuples)
Lt(R) tuple length for the relation R
La(CR) the average length of the column C of the relation R
|RC| number of distinct value of the column C of the relation R
fR selectivity factor for selection f on the relation R
πR selectivity factor for projection π on the relation R
JR1R2

selectivity factor for join J on the relations R1 and R2

Table 7.4 � Cost function parameters

the CPU cost of the comparison functions for each CPU cycle. The number of CPU cycles is
easy to compute for most comparison types (like boolean and number). However, it gets more
complicated when comparing string values. In our work, we have ignored this measure, because
CI/O is by far the most dominant cost in the context of very large DW .

V.2.2. I/O cost

We assume that every operator is responsible for conveying its result to the next operator
through main memory.
For our cost model, we consider some parameters, as depicted in Table 7.4:
The processing cost is concerned with measuring execution time, which is directly in�uenced
by the number of I/O pages. Thus, we represent the CI/O of any operator (op) either by loaded
pages number or time seconds, as follows:

CI/O(op) =

{
Pop, if the cost represented by number of I/O pages
Top, if the cost represented by elapsed time

(7.21)

where Pop is the number of pages read or written during the execution of the operator op, and
Top is the elapsed time while running the operator op. Pop and Top are de�ned as:

Poperator = Pinput + Pinterm + Poutput (7.22)

Toperator = Tinput + Tinterm + Toutput (7.23)

where Pinput and Tinput are the number of pages and time consumed in reading the input rela-
tion(s) respectively. Poutput and Toutput are respectively, the number of pages and time consumed
in forwarding output relation(s) to the next parent operator (task) or to disk, assuming that
the �nal output stream is written to disk for subsequent usage. Pinterm and Tinterm are the

159

CHAPTER 7. COST MODELS

number of pages and time consumed in storing intermediate results on disk. For some oper-
ators, Pinterm and Tinterm are null. Toperator can be directly estimated from Poperator by using
calibrating database parameters to de�ne the average time for loading pages using network or
disk. Knowing that unary operators need one relation to be read unlike binary ones, which
need two relations; the input cost of any operator is de�ned as:

Tinput =

Pinput ∗ tdisk, if unary operators
Pinput1 ∗ tdisk + Pinput2 ∗ tdisk, if binary operators without using pipeline
max(Pinput1 ∗ tdisk, Pinput2 ∗ tdisk), if binary operators with using pipeline

(7.24)

The output and intermediate costs remain the same whether for unary or binary operators:

Toutput = Poutput ∗ tdisk (7.25)

Tinterm = Pinterm ∗ tdisk (7.26)

Next, we give the I/O cost for each type of operator:

� Cost of a Selection: a selection on a relation R reduces the size of R: horizontally
by a selectivity factor fR and vertically by a �ltering factor φR,q (only q attributes are
retained). We de�ne φq

R as the ratio of the size of q columns from one tuple in the relation
R, φq

R can be de�ned as:

φq
R =

∑
c∈q

(La(Rc))/Lt(R) (7.27)

The output cost of a selection operation de�ned as:

Poutput = fR ∗ ||R|| ∗ φq
R (7.28)

For the input cost, all tuples of R are scanned, except if R comes sorted by restriction
attributes, then only tuples satisfying the selection condition will be scanned. So, the
input cost can be calculated as follows:

Pinput =

{
||R|| , if R is not sorted
fR × ||R|| , if R is sorted

(7.29)

Selection operator do not produce any intermediate result (Pinterm =0). Hence, the I/O
cost de�ned as:

CI/O =

{
||R|| + fR ∗ ||R|| ∗ φq

R , if R does not come sorted
fR × ||R|| + fR ∗ ||R|| ∗ φq

R , if R comes sorted
(7.30)

160

V. COST ESTIMATION

� Cost of a Projection: In projection, there are not redundant attributes to be removed,
i.e., the input is exactly the attributes to be forwarded to the parent operator.

Poutput = φR ∗ ||R|| (7.31)

If the projection must sort its input, the Pinterm becomes:

Pinterm =

{
0 , if PR ≤ M or no sorting is performed
PR×logM−1(PR) , otherwise

(7.32)

� Cost of a Join

We consider the classic join operator that is applied on two relations R1 an R2, and
produces an output relation R1 on R2 equivalent to:

Poutput = JR1R2
×PS× Lt(R1 on R2)

Lt(R1)×Lt(R2)
×||R1||×||R2|| (7.33)

Pinput and Pinterim depends on the used join algorithm, as follows:

� Nested loop algorithm In the nested loop algorithm, the outer relation should be
the smallest one, in order to reduce the number of iterations [157]. However, if only
one relation �ts in main memory, it is used as the inner relation to avoid repeated
disk accesses.

Let R1 and R2 be the relations implied in the join operator, where R1 is the outer
relation. So, ||R2|| ≤M ≤ ||R1|| As we have shown previously, Pinput is de�ned as:

Pinput =

{
||R1|| + ||R2|| , if no pipeline
max(||R1||, ||R2||) , if pipeline

(7.34)

For the intermediate cost, it di�ers whether inner relation (R1) can �t in memory or
not. If it does, the cost of the join is equal to the CPU-cost. Otherwise, R1 must be
stored on disk and be repeatedly read from it for every tuple of the outer relation
(R2). So, the Pinterm can be de�ned as:

Pinterm =

{
0 , if ||R1|| ≤ (M -||R2||)
|R1|×||R2|| , otherwise

(7.35)

But if the inner relation is already sorted, the comparison will be repeated only for
tuples satisfying condition predicate.

161

CHAPTER 7. COST MODELS

� Merge Join Algorithm The merge join algorithm is only used when both relations
come sorted on the join attribute. Relations are retrieved in parallel. So, Pinterm is
null, and Pinput is computed as follows:

Pinput = max(||R1||, ||R2||) (7.36)

� Hash Join AlgorithmWe assume that R1 is the outer relation. So, the hash table
is built for R2 and ||R2|| ≤ ||R1||. The cost of creating the hash table HT is the
cost of loading R2 and writing it to the disk. Then HT and R1 are joined following
a nested loop join such that HT is the inner relation. If we suppose that Jhash is
the percentage of tuples of R2 that depends on the join selectivity factor and on the
hash function, then the cost of input Pinput and intermediate Pinterm will be de�ned
as:

||HT || = Jhash×||R2|| (7.37)

Pinput =

{
||R1|| + ||R2|| + ||HT || , if no pipeline
max(||R1||, ||R2||) + ||HT || , if pipeline

(7.38)

Pinterm =

{
0 , if ||HT || ≤ (M -||R1||)
|R1|×||HT || , otherwise

(7.39)

162

SSB-Based Benchmark Query Tem-

plates

VI. Introduction

In our work, we have used a SSB-Query generator, that randomly generates a workload based
on list of template. The generator tool randomizes the values of selection and the number of
tables by using the following templates:

VII. List of query template

Q: 1 . 1
select

sum(lo_extendedpr ice * lo_discount) as revenue
from

l i n e o rd e r , dates
where

lo_orderdate = d_datekey
and d_year = [Y]
and lo_discount between [DL] and [DH] | [DL]= and [DH] and [DH] >[DL]
and lo_quantity [COMP] 25 ;

Q: 1 . 2
select

sum(lo_extendedpr ice * lo_discount) as revenue
from

l i n e o rd e r , dates
where

lo_orderdate = d_datekey
and d_yearmonthnum = [YMN]
and lo_discount between [DL] and [DH]
and lo_quantity between [QL] and [QH] ;

Q: 1 . 3
select

sum(lo_extendedpr ice * lo_discount) as revenue
from

l i n e o rd e r , dates
where

163

CHAPTER 7. SSB-BASED BENCHMARK QUERY TEMPLATES

lo_orderdate = d_datekey
and d_weeknuminyear = [WNY]
and d_year = [Y]
and lo_discount between [DL] and [DH]
and lo_quantity between [QL] and [QH] ;

Q: 2 . 1
select

sum(lo_revenue) , d_year , p_brand
from

l i n e o rd e r , dates , part , s upp l i e r
where

lo_orderdate = d_datekey
and lo_partkey = p_partkey
and lo_suppkey = s_suppkey
and p_category = [C]
and s_region = [R]

group by

d_year , p_brand
order by

d_year , p_brand ;
Q: 2 . 2

select

sum(lo_revenue) , d_year , p_brand
from

l i n e o rd e r , dates , part , s upp l i e r
where

lo_orderdate = d_datekey
and lo_partkey = p_partkey
and lo_suppkey = s_suppkey
and p_brand between [BL] and [BH]
and s_region = [R]

group by

d_year , p_brand
order by

d_year , p_brand ;
Q: 2 . 3

select

sum(lo_revenue) , d_year , p_brand
from

l i n e o rd e r , dates , part , s upp l i e r
where

lo_orderdate = d_datekey
and lo_partkey = p_partkey
and lo_suppkey = s_suppkey
and p_brand = [B]
and s_region = [R]

group by

d_year , p_brand
order by

d_year , p_brand ;
Q: 3 . 1

select

c_nation , s_nation , d_year ,
sum(lo_revenue) as revenue

from

customer , l i n e o rd e r , supp l i e r , dates
where

lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_orderdate = d_datekey
and c_region = [R]
and s_region = [R]

164

VII. LIST OF QUERY TEMPLATE

and d_year >= [YL] and d_year <= [YH]
group by

c_nation , s_nation , d_year
order by

d_year asc , revenue desc ;
Q: 3 . 2

select

c_city , s_city , d_year , sum(lo_revenue) as revenue
from

customer , l i n e o rd e r , supp l i e r , dates
where

lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_orderdate = d_datekey
and c_nation = [N]
and s_nation = [N]
and d_year >= [YL] and d_year <= [YH]

group by

c_city , s_city , d_year
order by

d_year asc , revenue desc ;
Q: 3 . 3

select

c_city , s_city , d_year , sum(lo_revenue) as revenue
from

customer , l i n e o rd e r , supp l i e r , dates
where

lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_orderdate = d_datekey
and (c_city=[CI1] or c_city=[CI2])
and (s_city=[CI1] or s_city=[CI2])
and d_year >= [YL] and d_year <= [YH]

group by

c_city , s_city , d_year
order by

d_year asc , revenue desc ;
Q: 3 . 4

select

c_city , s_city , d_year , sum(lo_revenue) as revenue
from

customer , l i n e o rd e r , supp l i e r , dates
where

lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_orderdate = d_datekey
and (c_city=[CI1] or c_city=[CI2])
and (s_city=[CI1] or s_city=[CI2])
and d_yearmonth = [YM]

group by

c_city , s_city , d_year
order by

d_year asc , revenue desc ;
Q: 4 . 1

select

d_year , c_nation ,
sum(lo_revenue − l o_supplycost) as p r o f i t

from

DATES, CUSTOMER, SUPPLIER, PART, LINEORDER
where

lo_custkey = c_custkey
and lo_suppkey = s_suppkey

165

CHAPTER 7. SSB-BASED BENCHMARK QUERY TEMPLATES

and lo_partkey = p_partkey
and lo_orderdate = d_datekey
and c_region = [R]
and s_region = [R]
and (p_mfgr = [MFGR1] or p_mfgr = [MFGR2])

group by

d_year , c_nation
order by

d_year , c_nation ;
Q: 4 . 2

select

d_year , s_nation , p_category ,
sum(lo_revenue − l o_supplycost) as p r o f i t

from

DATES, CUSTOMER, SUPPLIER, PART, LINEORDER
where

lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_partkey = p_partkey
and lo_orderdate = d_datekey
and c_region = [R]
and s_region = [R]
and (d_year = [Y1] or d_year = [Y2])
and (p_mfgr = [MFGR1] or p_mfgr = [MFGR2])

group by

d_year , s_nation , p_category
order by

d_year , s_nation , p_category ;
Q: 4 . 3

select

d_year , s_city , p_brand ,
sum(lo_revenue − l o_supplycost) as p r o f i t

from

DATES, CUSTOMER, SUPPLIER, PART, LINEORDER
where

lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_partkey = p_partkey
and lo_orderdate = d_datekey
and s_nation = [N]
and (d_year = [Y1] or d_year = [Y2])
and p_category = [C]

group by

d_year , s_city , p_brand
order by

d_year , s_city , p_brand ;

166

hMetiS: A hypergraph partitioning

Package

VIII. Introduction

A hypergraph is a generalization of a graph, where the set of edges is replaced by a set of
hyperedges. A hyperedge extends the notion of an edge by allowing more than two vertices to
be connected by a hyperedge.
Hypergraph partitioning is an important problem and has extensive applications in many do-
mains like VLSI design [11], transportation management, and data-mining [123], de�ning of
molecular structures in chemistry search [160], supervise of cellular mobile communication
[159], image segmentation [54, 97], etc.
Hypergraph partitioning is to partition the vertices of a hypergraph in k -roughly equal parts,
such that the number of hyperedges connecting vertices in di�erent parts is minimized.
In this chapter, we detail a hypergraph partitioning package, called hMeTiS [151, 148] 1, used
in our works.

IX. Overview of hMeTiS

IX.1. hMeTiS algorithms

hMeTiS is a software package for partitioning large hypergraphs, especially those arising in
circuit design. The algorithms in hMeTiS are based on multilevel hypergraph partitioning
described in [147, 149, 151]. Multilevel partitioning algorithms are illustrated in chapter the
third chapter (section II), that reduce the size of the graph (or hypergraph) by collapsing vertices

1hMeTiS is copyrighted by the regents of the University of Minnesota. This work was supported by IST/B-
MDO and by Army High Performance Computing Research Center under the auspices of the Department of
the Army

167

CHAPTER 7. HMETIS: A HYPERGRAPH PARTITIONING PACKAGE

and edges, partition the smaller graph (initial partitioning phase), and then uncoarsen it to
construct a partition for the original graph (uncoarsening and re�nement phase). The highly
tuned algorithms employed on hMeTiS allow it to quickly produce high-quality partitions for
a large variety of hypergraphs.

IX.2. Advantages of hMeTiS

The advantages of hMeTiS compared to other similar algorithms are the following:

� Quality of partitions : Experiments on a large number of hypergraphs arising in various
domains including VLSI, databases, and data mining show that hMeTiS produces par-
titions that are consistently better than those produced by other widely used algorithms
[150].

� Consuming of execution time : Experiments on a wide range of hypergraphs has
shown that hMeTiS is one to two orders of magnitude faster than other widely used
partitioning algorithms.

X. Using of hmetis program

The program hMeTiS is invoked by providing 9 or 10 command line arguments as follows:
hmetis HGraphFile Nparts UBfactor Nruns CType RType Vcycle Reconst dbglvl
or
hmetis HGraphFile FixFile Nparts UBfactor Nruns CType RType Vcycle Reconst dbglvl
The meaning of the various parameters is as follows:

HGraphFile : is the name of the �le that stores the hypergraph.

FixFile is the name of the �le that stores information about the pre-assignment of vertices
to partitions.

Nparts: is the number of desired partitions. hMeTiS can partition a hypergraph into an
arbitrary number of partitions, using recursive bisection. That is, for a 4-way partition.

UBfactor: This parameter is used to specify the allowed imbalance between the par-
titions during recursive bisection. This is an integer number between 1 and 49, and
speci�es the allowed load imbalance in the following way. Consider a hypergraph with n
vertices, each having a unit weight, and let b be the UBfactor. The number of vertices
assigned to each one of the two partitions will be between (50 - UBfactor)n/100 and (50
+ UBfactor)n/100, at each bi-sections.

168

X. USING OF HMETIS PROGRAM

Nruns: This is the number of the di�erent bisections that are performed by hMeTiS. It
is a number greater or equal to one, and instructs hMeTiS to compute Nruns di�erent
bisections, and select the best as the �nal solution. A default value of 10 is used.

CType: is the type of vertex grouping schema to use during the coarsening phase. It is
an integer parameter and the possible values are:

� 1: means that hMeTiS selects the hybrid �rst-choice schema. This schema is a
combination of the �rst-choice and greedy �rst-choice schema.

� 2: means that hMeTiS selects the �rst-choice schema. In this schema, vertices are
grouped together if they are present in multiple hyperedges. Groups of vertices of
arbitrary size are allowed to be collapsed together.

� 3: means that hMeTiS selects the greedy �rst-choice schema. In this schema,
vertices are grouped based on the �rst choice schema, but the grouping is biased in
favor of faster reduction in the number of the hyperedges that remain in the coarse
hypergraphs.

� 4: means that hMeTiS selects the hyperedge schema. In this schemz vertices are
grouped together that correspond to entire hyperedges.

� 5: means that hMeTiS selects the edge schema. In this schema, pairs of vertices
are grouped together if they are connected by multiple hyperedges.

You may have to experiment with this parameter to see which schema works better for
the classes of hypergraphs that you are using. In our experiments we have used the value
1.

RType: This is the type of re�nement policy to use during the uncoarsening phase. It
is an integer parameter and the possible values are:

� 1: means that hMeTiS selects the Fiduccia-Mattheyses (FM) re�nement schema
used by hMeTiS tool.

� 2: means that hMeTiS selects the one-way FM re�nement schema, where, during
each iteration of the FM algorithm, vertices are allowed to move only in a single
direction.

� 3: means that hMeTiS selects the early-exit FM re�nement schema. In this case,
the FM iteration is aborted if the quality of the solution does not improve after a
relatively small number of vertex moves.

In our case, we have used the value 1 that correspondent to using Fiduccia-Mattheyses
that is recommended by the developer of hMeTiS [150].

Vcycle: This parameter selects the type of V-cycle re�nement to be used by the algo-
rithm. It is an integer parameter and the possible values are:

169

CHAPTER 7. HMETIS: A HYPERGRAPH PARTITIONING PACKAGE

� 0: means that hMeTiS does not perform any form of V -cycle re�nement.

� means that hMeTiS performs V -cycle re�nement on the �nal solution of each
bisection step.

� 2: means that hMeTiS performs V -cycle re�nement on each intermediate solution
whose quality is equally good or better than the best found so far.

� 3: means that hMeTiS performs V -cycle re�nement on each intermediate solution.
That is, each one of the Nruns bisections is also re�ned using V-cycles.

In our experiments , we have used the third choice that best time/quality tradeo�s.

Reconst This parameter is used to select the schema to be used in dealing with hyper-
edges that are being cut during the recursive bisection. It is an integer parameter and
the possible values are:

� 0: means that hMeTiS removes any hyperedges that were cut while constructing
the two smaller hypergraphs in the recursive bisection step.

� 1: means that hMeTiS reconstructs the hyperedges that are being cut, so that each
of the two partitions retain the portion of the hyperedge that corresponds to its set
of vertices.

Reconst with the value 0, gives a good quality of k-way partitioning.

dbglvl This is used to request hMeTiS to print debugging information. The value of
dbglvl is computed as the sum of codes associated with each option of hMeTiS. The
various options and their values are as follows:

� 0: show no additional information.

� 1: show information about the coarsening phase.

� 2: show information about the initial partitioning phase.

� 4: show information about the re�nement phase.

� 8: show information about the multiple runs.

� 16: show additional information about the multiple runs.

For example, if we want to see all information about the multiple runs the value of dbglvl
should be 8 + 16 = 24.

170

X. USING OF HMETIS PROGRAM

a
b

c

d

e

Graph file

5 9

1 4

8 9 3

1 2

1 3 5 7

3 5 6

a:3
b:7

c:6

d:5

e:2

Graph file

5 9 1

3 1 4

7 8 9 3

6 1 2

5 1 3 5 7

2 3 5 6

a
b

c

d

e

Graph file

5 9 10

1 4

8 9 3

1 2

1 3 5 7

3 5 6

2

3

7

5

7

9

2

3

1

2

5
3

1

7

7

9

3

2

Graph file

5 9 11

3 1 4

7 8 9 3

6 1 2

5 1 3 5 7

2 3 5 6

2

3

7

5

7

9

2

3

1

2

5
3

1

7

7

9

3

2

b:7

d:5

a:3

c:6

e:2

(a) (b)

(d)(c)

Fig. 7.3 � Graph File representation for (a) unweighted hypergraph, (b) weighted hyperedges,
(c) weighted vertices, and (d) weighted hyperedges and vertices

X.1. Format of hypergraph �le

The primary input of hMeTiS is the hypergraph to be partitioned. A hypergraph H = (V , E
) with V vertices and E hyperedges is stored in a plain text �le that contains |E | + 1 lines, if
there are no weights on the vertices and |E | + |V | + 1 lines if there are weights on the vertices.
The �rst line contains either two or three integers. The �rst integer is the number of hyperedges
(|E |), the second is the number of vertices (|V |), and the third integer (fmt) contains information
about the type of the hypergraph. In particular, depending on the value of fmt, the hypergraph
|H| can have weights on either the hyperedges (fmt=1, shows Figure 7.3-b), the vertices(fmt=10,
shows Figure 7.3-c), or both (fmt=11, shows Figure 7.3)-d. In the case that H is unweighted,
fmt is omitted (shows Figure 7.3-a).

X.2. Format of the Fix File

The FixFile is used to specify the vertices that are pre-assigned to certain partitions. In general,
when computing a k-way partitioning, up to k sets of vertices can be speci�ed, such that each
set is pre-assigned to one of the k partitions. For a hypergraph with |V | vertices, the FixFile
consists of |V | lines with a single number per line. The i th line of the �le contains either the
partition number to which the i th vertex is pre-assigned to, or -1 if that vertex can be assigned

171

CHAPTER 7. HMETIS: A HYPERGRAPH PARTITIONING PACKAGE

to any partition . Note that the partition numbers start from 0.

X.3. Format of Output File

The output of hMeTiS is a partition �le. The partition �le of a hypergraph with |V | vertices,
consists of |V | lines with a single number per line. The ith line of the �le contains the partition
number that the ith vertex belongs to.

X.4. hMeTiS Library Interface

The hypergraph partitioning algorithms in hMeTiS can also be accessed directly using the
stand-alone library libhmetis.a. This library provides the routine HMETIS_PartRecursive().
The calling sequences and the description of the various parameters of this routines are as
follows:
HMETIS_PartRecursive (int nvtxs, int nhedges, int *vwgts, int *eptr, int *eind, int *hewgts,
int nparts, int ubfactor, int *options, int *part, int *edgecut)

nvtxs, nhedges: The number of vertices and hyperedges in the hypergraph, respectively.

vwgts: An array that stores the weight of the vertices. Speci�cally, the weight of vertex
i is stored at vwgts[i]. If the vertices in the hypergraph are unweighted, then vwgts
can be NULL.

eptr, eind: Two arrays that are used to describe the hyperedges in the graph. The �rst
array, eptr, is of size nhedges+1, and it is used to index the second array eind that
stores the actual hyperedges. Each hyperedge is stored as a sequence of the vertices that
it spans, in consecutive locations in eind. Speci�cally, the ith hyperedge is stored starting
at location eind[eptr[i]] up to eind[eptr[i +1]].

hewgts: An array of size nhedges that stores the weight of the hyperedges. The weight
of the i hyperedge is stored at location [i]. If the hyperedges in the hypergraph are
unweighted, then hewgts can be NULL.

nparts: The number of desired partitions.

ubfactor: This is the relative imbalance factor to be used at each bisection step. Its
meaning is identical to the UBfactor parameter described above.

options: This is an array of 9 integers that is used to pass parameters for the various
phases of the algorithm. If options[0]=0 then default values are used. If options[0]=1,
then the remaining elements of options are interpreted as follows:

� options[1]: is the Nruns parameter of hMeTiS, described above.

172

XI. GENERAL GUIDELINES

� options[2]: is the CType parameter of hMeTiS, described above.

� options[3]: is the RType parameter of hMeTiS, described above.

� options[4]: is the Vcycle parameter of hMeTiS, described above.

� options[5]: is the Reconst parameter of hMeTiS, described above.

� options[6]: determines whether or not there are sets of vertices that need to be
pre-assigned to certain partitions. A value of 0 indicates that no pre-assignment is
desired, whereas a value of 1 indicates that there are sets of vertices that need to be
pre-assigned.

� options[7]: determines the random seed to be used to initialize the random number
generator of hMeTiS. A negative value indicates that a randomly generated seed
should be used (default behavior).

� options[8]: is the dbglvl parameter of hMeTiS, described above.

XI. General Guidelines

The hMeTiS program allows controlling the multilevel hypergraph bisection paradigm by pro-
viding a variety of algorithms for performing the various phases. In particular, it allows checking
the following tasks:

1. How the vertices are grouped together during the coarsening phase. This is done by using
the CType parameter.

2. How the quality of the bisection is re�nement during the uncoarsening phase. This is
done by using the RType parameter.

Depending on the classes of the hypergraphs that are partitioned, these default settings may
not necessarily be optimal. You should experiment with these parameters to see which schemes
work better for your classes of problems.

XII. System Requirements

hMeTiS has been written in C language and it has been extensively tested on Sun, SGI, Linux,
and IBM. Even though, hMeTiS contains no known bugs. hMeTiS and its updates are made
available at: http://www.cs.umn.edu/~metis.

173

http://www.cs.umn.edu/~metis

CHAPTER 7. HMETIS: A HYPERGRAPH PARTITIONING PACKAGE

174

Relational Algebra

As the traditional relational queries, ROLAP queries are based on relational algebra which is
one of the two formal query languages associated with the relational model [207]. Queries in this
algebra can be viewed as a composition of a collection of operators (called a query expression).
These operators are classi�ed into two main categories:

� unary operations (e.g., selection(σ), projection (
∏
)) need only one relation/intermediate

result;

� binary operations (e.g., join (on), union, intersection, etc.) need two relations/intermedi-
ate results.

A query expression can be represented by a tree, whose leaves and internal nodes represent
respectively: base tables and relational algebra operators applied to node's children. The tree
is executed from leaves to root. For a given tree, there exists numerous equivalent query trees
(due the properties (laws) of the relational algebra). This makes its optimization undecidable.

� Commutative and associative laws: the most of the operators (Join, Union, Inter-
section, Cross Product) are commutative and associative.

� Selection laws: One of the most important action of a query optimizer (specially in
selecting a good logical query plan) is to push down selections in a query in order to
minimize the size of the manipulated relations. To perform this operations, some laws
exist:

� splitting laws: when the selection involves multiple predicates connected by AND
or OR, the condition will be broken into many sub-conditions as follows:

σC1 AND C2
(R) =σC1

(σC2
(R)) (7.40)

σC1 OR C2
(R) =σC1

(σC2
(R)) (7.41)

175

CHAPTER 7. RELATIONAL ALGEBRA

23

1

A

2

2 1

B

1

2

R

1

C

35 4

(a) relation R

C

3 2

D

1

S

5

(b) relation S

1

A

5 4

B

1

3

1

C

5

2

D

(e) natural join

1

A

2 1

B

1

2

1

R.C

3

3

2

2

DS.C

3 2 2 3 2

(i) theta-join

1

A

5 4

B

1

3

1

C

(g) left semi-join

1

3

C

5

2

D

(f) right semi-join

2

A

3 2

B

2

1

C

2

(h) anti-join

1

A B

1 1

C

5

D

22 1 null

23 2 null

35 4 2

(j) left outer join

1

A

5 4

B

1

3

1

C

5

2

D

(k) right outer join

A B

1 1

2 1

3 2

5 4

(d) projection on R

1

A B

1 1

C

22 1

(c) Selection

Fig. 7.4 � Overview of di�erent operator in relational model

X ∪ ∅ = X, X ∪ X = X, X ∩ ∅ = X, X ∩ X = X,
X \ ∅ = X, ∅ \X = ∅, X \X = ∅,

Basic laws

X ∪ Y = Y ∪X, X ∩ Y = Y ∩X, X \ Y 6= Y \X Commutativity
X ∪ (Y ∪Z) = (X ∪Y)∪Z, X ∩ (Y ∩Z) = (X ∩Y)∩Z,
X \ (Y \ Z) 6= (X \ Y) \ Z

Associativity

X ∪ (Y ∩ Z) = (X ∩ Y) ∪ (X ∩ Z), X ∩ (Y ∪ Z) =
(X ∪ Y) ∩ (X ∪ Z), (X ∪ Y) \ Z) = (X \ Z) ∪ (Y \ Z),

Distributivity

Table 7.5 � Overviews of laws for Set operations

� ordering laws: the order of sequence of selections is not important (commutative prop-
erties). σc1

(σc2
(R)) =σc2

(σc1
(R))

� pushing laws: there are three types of pushing selection through binary operations,
depending on which arguments the selection is pushed.

� the selection must be pushed to the both of arguments (like in the union operation);

� the selection must be pushed to one of argument and the second argument is optional
(like in the intersection and di�erence operations)

� the selection must be pushed only to one argument (like join cross product opera-
tions).

Example 5. Let us Consider two relations R (a,b) and S (b,c) and the expression
σa=2 AND b<val(R on S). The condition (a=2) applies only to R and the condition (b<val)
applies only to S. Pushing process needs three steps:

176

N Algebra properties
01 σp1∧p2(R) ≡ σp1

(σp2
(R))

02 σp1
(σp2

(R)) ≡ σp2
(σp1

(R))
03 R onp S ≡ S onp R
04 R× S ≡ S ×R
05 R× (S × T) ≡ (R× S)× T
06 R1 onp1,2

(R2 onp2,3
R3) ≡ (R1 onp1,2

R2) onp2,3
R3

07 σp(R× S) ≡ σp(R)× S
08 σp(R onq S) ≡ σp(R) onq S
09 ΠA(R onp S) ≡ ΠA1

(R) onp ΠA2
(S)

10 ΠA(R× S) ≡ ΠA1
(R)× ΠA2

(S)
11 σp(RθS) ≡ σp(R) θ σp(S) where θ ={∪,∩, \}
12 σp(R× S) ≡ R onp S
13 R onC S ≡ σC(R× S)

Table 7.6 � Relation algebra properties

� splitting selection using the logical operator AND, the expression becomes
σa=2(σb<val(R on S));

� push the selection with the condition b<val to S, the expression becomes σa=2(R on σb<val(S));

� push the �rst condition to R, the expression becomes σa=2(R) on σb<val(S).

� Projection laws: the projection can be pushed down like selection to minimize the size
of relation by reducing the size of tuples and then minimizing the cost of query processing.
Pushing down projection must veri�es some conditions:

� the projection in the expression must eliminate only the attributes that are not used
by all above operators;

� the projection must add the join attributes if there is above join operators;

� the projection must add all attributes used to de�ne a condition in above operators
(join, selection, etc.).

� Joins laws More than the join operators are commutative and associative, they can be
de�ned using selection on one or both relations that verify a join condition. So, R onC S
=σC(R× S)

177

CHAPTER 7. RELATIONAL ALGEBRA

178

Résumé

Contexte

Aujourd'hui, une grande quantité de données sont générées en continu dans de nombreux de
domaines tels que la science de la vie, l'exploitation des ressources naturelles, la prévention des
catastrophes naturelles, l'optimisation des �ux de circulation, les réseaux sociaux, la concur-
rence commerciale, etc. Ces données doivent être collectées, stockées et analysées a�n d'être
bien exploité par les gestionnaires des entreprises et les chercheurs pour e�ectuer leurs tâches
quotidiennes. Une autre réalité, est que ces données souvent nécessitent d'être partagées avec
d'autres utilisateurs et communautés. Où le partage de données commence à devenir un besoin
vital pour la réussite de plusieurs entreprises. Par exemple, l'Autorité de la concurrence et des
marchés (CMA) a ordonner les grandes banques de Grande-Bretagne à adopter l'ouverture des
principes bancaires pour augmenter le partage des données entre les organismes de services
�nanciers2. Le partage de données entre un nombre important d'utilisateurs impliquera l'appa-
rition du phénomène d'un nombre volumineux de requêtes que les systèmes de stockage et les
systèmes de gestion de base de données doivent faire face. Ce nombre est motivé par l'explosion
de site web de E-commerce, média sociaux, etc. A titre d'exemple, Amazon, 100 million de
requêtes peut arriver à ses bases de données. Le même constat est détecté sur le géant chinois
d'E-commerce Alibaba. Ces requêtes sont complexes et répétitives et nécessitent des opérations
lourdes comme les jointures et les agrégations. Aussi, la gestion de la recommandation et de
l'exploration des contribue fortement à augmenter le nombre de requêtes d'un SGBD particulier
[99]. Partant de ressources de calcul et les perspectives des systèmes de stockage, les systèmes
de stockage des bases de données optent vers la décentralisation des produits pour être capable
d'évoluer en termes de capacité, de puissance de traitement, et de débit de communication.
Des e�orts ont été déployés pour concevoir ces systèmes pour partager simultanément les res-

2
http://www.experian.co.uk/blogs/latest-thinking/a-new-era-of-data-sharing-how-the-cma-is-shaking-up-retail-banking/

179

http://www.experian.co.uk/blogs/latest-thinking/a-new-era-of-data-sharing-how-the-cma-is-shaking-up-retail-banking/

CHAPITRE 7. RÉSUMÉ

sources physiques et les données entre les applications [106]. Le Cloud Computing a largement
contribué à augmenter les capacités de partage de ces systèmes grâce à leurs caractéristiques :
l'élasticité, la souplesse, le stockage et le calcule à la demande. Par conséquent, les données et
les requêtes sont devenues liées aux plateformes avancées de déploiement, comme le parallèle,
clusters, etc. [36]. Concevoir une base de données dans une telle plateformes exige des phases
sensibles telles que : (1) la fragmentation de données on plusieurs fragments ; (2) l'allocation de
ces fragments dans leurs n÷uds de calcules correspondants, et (3) la stratégie d'exécution des
requêtes, pour assurer l'équilibre de charge des requêtes.

En outre, Les requêtes qui représentent l'un des entités les plus importants dans la technologie
des bases de données, sont aussi concernés par le phénomène de partage de données. Le par-
tage entre les requêtes connus sous le nom : Interaction de requêtes. Mr Timos Sellis a donné
la naissance d'un nouveau problème appelée optimisation multi-requêtes, qui vise à optimiser
l'exécution globale d'une charge de requêtes par l'augmentation de la réutilisation des résultats
intermédiaires des requêtes [223]. Cette interaction de requêtes a largement contribué à l'op-
timisation des requêtes [110, 273] et à la conception physique [191, 7]). Mais ces e�orts ont
ignorés le volume de requêtes.

Le volume de données a un impact sérieux les performances des requêtes. Avoir des méthodes
e�caces pour accélérer le traitement des données devient plus important et urgent que ja-
mais, et par conséquent, ils reçoivent une attention particulière de chercheurs universitaires
et industriels. Ceci est bien illustré par le grand nombre de propositions, vise à optimiser
les requêtes au niveau logique [227, 167, 236, 168, 210, 266, 85, 224], au niveau physique
[279, 79, 14, 33, 73, 81, 154] et au niveau de déploiement [36].

En se basant sur cette discussion, nous prétendons que tout système de stockage de données
doit faire face à trois dimensions communes : volume de données, le volume de requêtes (nous
l'appelons big-queries) et les questions de partage de la requête. Face à cette situation, le
partage de la requête traditionnelle doit être revu pour intégrer les requêtes nombreuses. Par
conséquent, nous aimerions émettre un groupe de ré�exions sur le partage entre les requêtes de
grande quantité. Ce groupe de ré�exion est discuté dans le contexte des entrepôts de données
relationnels, généralement modélisées par un schéma en étoile ou ses variantes (ex. schémas de
�ocon de neige) qui fournissent une vue centrée de requête sur les données. Une autre caracté-
ristique importante est que ce schéma augmente l'interaction entre les requêtes OLAP, car ils
e�ectuent des jointures impliquant une (des) table(s) de fait centrale(s) et tables périphériques,
appelés dimensions.

Pour faire face au volume de requêtes interagi, le développement des structures de données
évolutif qui capturent le partage est largement recommandé dans la dé�nition des algorithmes
intelligents. La théorie des graphes et ses structures de données à contribué largement à ré-
soudre des problèmes complexes impliquant à grande espace de recherche, telles que (1) le
fragmentation vertical et horizontale dans les bases de données relationnelles[186, 184], (2) le
fragmentation horizontale dans les bases de données orientés objets [29] (3), et récemment,
Curino et al. [81] ont proposé la généralisation du concept de graph par un hypergraphe pour

180

partitionner et répliquer les instances d'une base de données dans le cas distribuée. Où les som-
mets et les hyperarêtes de l'hypergraphe graphe représentent respectivement les instances de
la base de données et les transactions. Un tel graphe peut être très vaste, puisqu'il est associé
au nombre de tuples d'une base de données. Cela a rendu son partitionnement nécessaire pour
assurer le passage à l'échelle de ses algorithmes.
Le partitionnement de Hypergraphe est bien étudié par le Design Automation électronique (
de eda) pour tester le circuit électronique, en outre, une grande panoplie de bibliothèques de
partitionnement existent tels que hMETIS et Zoltan-PHG. Cela nous motive à explorer hyper-
graphes pour faire face le phénomène du grand volume de requêtes. En conséquence, nous avons
approché à la société Graphics Mentors situé à Grenoble- France, un leader de l'automatisation
de la conception électronique, pour obtenir leur expertise dans l'utilisation de hypergraphe et
d'élaborer une analogie entre notre problème et leur conclusion. Cette collaboration a fruc-
tueuse, puisque, après plusieurs mois de collaboration, nous réussissons à trouver une analogie
entre un circuit électronique et un plan uni�ée de requêtes, en le présentant comme un hy-
pergraphe. Nous approprions aussi leurs outils. Une fois que ce paragraphe est généré, nous le
considérons dans l'optimisation logique et physique et de la phase de déploiement du cycle de
vie d'une conception de l'entrepôt de données. Cette riche expérience sera entièrement discutée
dans cette thèse.

Objectifs de la thèse

Les principaux objectifs �xés pour cette thèse sont :

� En raison du large éventail de sujets que nous avons étudiés dans cette thèse qui couvre :
l'optimisations logiques de requêtes, l'optimisations physiques, l'entreposage de données,
lasélection de structures d'optimisation ; l'optimisation multi-requête, la phase de déploie-
ment, les hypergraphes, etc., il est nécessaire de présenter une étude de synthèse de tous
ces aspects.

� Puisque nous traitons le phénomène de big-queries et leurs interactions, nous devons
montrer l'importance d'une structure de données évolutive qui capte facilement cette
interaction, et utilisable comme un support pour dé�nir des algorithmes intelligents avec
moins de calculs et de haute qualité.

� Nous devons également tenir compte des études de cas pour déployer notre approche. Pour
ce faire, nous considérons le problème de la sélection de deux optimisations structures qui
sont les vues matérialisées et le fragmentation horizontal pour environnement centralisé
et parallèle.

� Nous avons également développé un outil pour aider les concepteurs et les administrateurs
de base de données pour perfectionner la conception physique en se basant sur l'interaction
entre les requêtes.

181

CHAPITRE 7. RÉSUMÉ

Solutions proposées

Cette section présente les contributions de la thèse. Tout d'abord, nous discutons la conception
typique de l'entrepôt de données pour fournir une compréhension générale des choix de concep-
tion et d'architectures de déploiement. Nous nous concentrerons sur l'optimisation logique et
physique, parce qu'ils sont les tâches les plus importantes d'optimiseurs de requêtes. Un autre
point concerne la phase de déploiement du cycle de vie de l'entrepôt de données.
A partir de ces vues d'ensemble, nous discutons de l'origine de notre structure de données
pour représenter l'interaction des requêtes émise à partir de notre collaboration avec la société
Mentors Graphics. Nous aimerions partager cette expérience et les e�orts fournis pour trouver
une analogie entre notre problème et le circuit électronique.
Parallèlement à la dé�nition de cette structure, de nombreux autres développements ont été
menées pour comprendre les algorithmes et les outils utilisés par la communauté VLSI et de les
adapter à notre contexte. Une fois, cette adaptation a été fait, nous considérons deux problèmes
dirigé par la charge de requêtes : la sélection des vues matérialisées et la détermination du
schéma de la fragmentation horizontal. De plus, nous examinons comment améliorer le cycle
de vie de la phase de déploiement en intégrant notre constatation selon laquelle notre structure
de données et ses algorithmes sont associés. En�n, nous étudions le passage à l'échelle de nos
algorithmes et la qualité de leurs solutions, en les soulignant en termes de taille de base de
données, la taille des requêtes, etc.

� Enquête sur l'optimisation logiques et physique : Nous procédons à une analyse en
profondeur de la façon dont l'état de l'art des bases de données gère l'interaction entre les
requêtes et comment elle est utilisée dans l'optimisation logique et physique, et la phase
de déploiement du cycle de vie de l'entrepôt de données. En se basant sur cette enquête,
nous donnons de nouvelles classi�cations des études existantes et les techniques utilisées
dans le cadre de l'optimisation des requêtes, et une clari�cation du processus de sélection
des structures d'optimisation lors de la phase de conception physique, qui est considéré
comme l'un de la phase majeure. En�n, nous proposons une méthodologie de référence
pour traiter le processus de sélection de ces optimisations en présence de l'interaction de
la requête.

� Hypergraphs comme structure de données :

Faire l'analogie entre notre problème de génération d'un plan uni�é de requêtes et le pro-
blème de conception des circuits électroniques. Cette analogie nous permet d'emprunter
des techniques et des outils de la communauté EDA et en les adaptant à la génération
d'un plan uni�é de requêtes. Où le problème est modélésé en utilisant les hypergraphe qui
fournissent support pour dé�nir des algorithmes qui passe à l'échelle. Cette évolutivité
est généralement assurée par des techniques de partitionnement de graphes [196]. Plu-
sieurs outils de partitionnement des hypergraphes ont été proposés, comme : PaToH [66]

182

et hMETIS 3. Notre conclusion est ensuite exploitée pour résoudre le problème d'opti-
misation multi-requêtes et d'évaluer son e�cacité et qualité contre les approches les plus
populaires de l'art state-of.

� What-if pour la génération du plan uni�é de requêtes :

L'interaction de requêtes représentées par un UQP est située à l'intersection de deux
mondes : le mode de l'optimisation multiple de requêtes et le monde de conception phy-
sique. L'interaction de requête participe e�cacement à résoudre les problèmes de concep-
tion physiques par la proposition d'un ensemble de candidats. Mais un UQP n'est pas
nécessaire qu'il est bien pour les instances du conception physique [273, 274], d'où la
nécessité de choisir un bon plan pour produire de bons candidats de structures d'optimi-
sation. En outre, un bon UQP pour une structure d'optimisation, ne soit pas nécessaire
bon pour une autre structure. En plus, la sélection du meilleur UQP exige l'énumération
de tous les plans possibles, ce qui est impossible en raison du grand nombre de plans
possibles, ce qui peut être in�nie dans le cas de Big-queries. De l'autre côté, le nombre
de candidats proposés par un UQP dans le contexte de Big-query, peut être très grand.
En conséquence, trouver la con�guration optimale de la structure d'optimisation devient
très di�cile, voire impossible (complexité des algorithmes combinatoires).

Pour surmonter ces problèmes, nous avons proposé une nouvelle approche qui utilise l'hy-
pergraphes et les algorithmes de partitionnement pour intègre les connaissances liées aux
structures d'optimisation lors de la génération du UQP orienté structure d'optimisation,
a�n de minimiser leur coût d'énumération. Notre proposition capture l'interaction de
la requête dans un UQP, en divisant les problèmes initiaux dans plusieurs petits sous-
problèmes disjoints, qui peuvent être exécutées en parallèle. La division de l'espace de
recherche du problème de l'optimisation multiple de requêtes implique la division de
l'ensemble des éléments candidats dans plusieurs petits sous-ensembles, ce qui minimise
la complexité des algorithmes combinatoires pour sélectionner la meilleure con�guration
d'une structure d'optimisation.

Pour évaluer l'e�cience et l'e�cacité de notre approche, nous considérons deux structures
d'optimisation traditionnelles : vues matérialisées et la fragmentation horizontal.

� L'interaction de requêtes dans la phase de déploiement : Comme les requêtes
sont utilisées par toutes les phases de déploiement : fragmentation de données, allocation
de données et équilibrage de charge, nous pensons que cela pourrait être intéressant de
pousser notre ré�exion d'intégrer notre structure de hypergraphe dans tous les problèmes
sensibles de la requête. En complétant le travail de déploiement d'un entrepôt de données
dans une architecture parallèle du Soumia BENKRID [36], réalisé dans notre lab, la di-
mension Interaction de requêtes a été intégrés à ses algorithmes, en particulier l'allocation
et la fragmentation horizontale de données.

3http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview

183

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview

CHAPITRE 7. RÉSUMÉ

� Le développement d'un outil d'aide "Big-queries" :

Sur la base de nos conclusions, nous avons développé un outil d'aide, inspiré des outils
bien connus développés par des éditeurs commerciaux et universitaires pour aider les
concepteurs et les DBAs au cours de leurs activités de déploiement et durant les tâches
d'administration, comme la sélection des structures d'optimisation. Cette interface permet
au DBA de visualiser l'état de sa base de données qui concerne trois aspect : (1) les tables
du DW en question, (2) la charge de requêtes utilisée, (3) les ressources requises pour
la conception physique, (4) l'interaction de requêtes visualisée par un hypergraph, le
schéma des di�érent structures d'optimisation (MV et HDP), le schéma de déploiement
et le coût relative. L'outil est doté d'une passerelle de connexion au di�érent type de
SGBD (oracle11g, Oracle12c et PostgresSQl).

L'outil big queries est disponible dans le forge de notre laboratoire http://www.lias-lab.
fr/forge/projects/bigqueries.

Plan du Mémoire

La première partie du manuscrit contient le chapitre qui fournit le contexte nécessaire pour
comprendre nos contributions. Dans ce chapitre, nous commençons par un zoom sur la techno-
logie d'entreposage de données sur lesquelles nos expériences de validation sont e�ectuées. Par
la suite, nous détaillons les paramètres qui in�uent sur le temps de réponse de traitement des
requêtes : vues matérialisées, fragmentation de données et le problème d'optimisation multiple
de requêtes, et nous donnons un aperçu de la conception de l'entrepôt de données parallèle.
La deuxième partie du manuscrit est consacrée à la contribution. Elle commence par le cha-
pitre 3, qui détail notre principale contribution qui consiste à utiliser la théorie des graphes
pour surmonter la gestion des grands-requêtes. La contribution vise à la fusion de la MQO
et les problèmes de conception physique pour générer des candidats cibles pour une technique
d'optimisation spéci�que (MV, index, et fragmentation de données). Ceci est réalisé en injec-
tant de la connaissance des structures d'optimisation dans la génération de UQP.
Le chapitre 4 présente l'application de notre UQP orienté structure d'optimisation, où il est
appliqué pour la sélection des vues matérialisées avec et sans contraintes, et est exploité dans
la matérialisation dynamique avec ordonnancement des requêtes. En plus, est utilisé pour la
fragmentation horizontale de données.
Le chapitre 5 détaille notre approche de conception d'un entrepôt de données parallèle en te-
nant compte de l'interaction entre les requêtes, représentée par un plan uni�é de de requêtes.
Le chapitre 6 donne une description de l'outil Big-queries, dévelopé dans notre laboratoire pour
valider les contribution.
Le chapitre 7 résume et conclut la thèse en discutant les résultats.

184

http://www.lias-lab.fr/forge/projects/bigqueries
http://www.lias-lab.fr/forge/projects/bigqueries

Related Publications

Ahcène Boukorca and adjel Bellatreche and Sid-Ahmed Benali Senouci and Zoé Faget. Cou-
pling Materialized View Selection to Multi Query Optimization: HyperGraph Approach. Inter-
national Journal of Data Warehousing and Mining (IJDWM), 11(2):62-84, 2015. [47]

Boukorca, Ahcène and Faget,Zoé and Bellatreche, Ladjel. What-if Physical Design for Multi-
ple Query Plan Generation. Proceedings of International Conference on Database and Expert
Systems Applications (DEXA), pages 492�506, edited by LNCS Springer, 204. [52].

Ahcène Boukorca and Ladjel Bellatreche and Alfredo Cuzzocrea . SLEMAS: an approach for
selecting materialized views under query scheduling constraints. Proceedings of the 20th Inter-
national Conference on Management of Data, pages= 66�73, 2014. [49]

Dhouha Jemal, Rim Faiz, Ahcène Boukorca, Ladjel Bellatreche: MapReduce-DBMS: An Inte-
gration Model for Big Data Management and Optimization. Proceedings of the 26th Interna-
tional Conference on Database and Expert Systems Applications (DEXA), pages= 430-439, ,
2015. [141]

Ahcène Boukorca and Ladjel Bellatreche and Sid-Ahmed Benali Senouci and Zoé Faget. SONIC:
Scalable Multi-query OptimizatioN through Integrated Circuits. Proceedings of International
Conference on Database and Expert Systems Applications (DEXA), pages 278-292, edited by
LNCS Springer, 2013. [50].

Ahcène Boukorca and Ladjel Bellatreche and Sid-Ahmed Benali Senouci and Zoé Faget. Votre
Plan d'Exécution de Requêtes est un Circuit Intégré : Changer de Métier. Actes des 9èmes
journées francophones sur les Entrepôts de Données et l'Analyse en ligne, pages 133�148, edited
by RNTI ,2013. [51].

185

CHAPTER 7. RELATED PUBLICATIONS

Ladjel Bellatreche and Salmi Cheikh and Sebastian Breÿ and Amira Kerkad and Ahcène Bouko-
rca and Jalil Boukhobza. How to exploit the device diversity and database interaction to propose
a generic cost model?. 17th International Database Engineering & Applications Symposium,
IDEAS '13, pages 142-147, edited by BytePress/ACM and ACM's Digital Library, 2013. [26].

Ladjel Bellatreche and Sebastian Breÿ and Amira Kerkad and Ahcène Boukorca and Cheikh
Salmi . The generalized physical design problem in data warehousing environment: towards a
generic cost model. 36th International Convention on Information & Communication Technol-
ogy Electronics & Microelectronics (MIPRO), pages 1131-1137, IEEE, 2013. [25]

Ramin Karimi and Ladjel Bellatreche and Patrick Girard and Ahcène Boukorca and András
Hajdu. BINOS4DNA: Bitmap Indexes and NoSQL for Identifying Species with DNA Signatures
through Metagenomics Samples. Proceedings of International conferenceInformation on Tech-
nology in Bio- and Medical Informatics (ITBAM), pages 1-14, edited by LNCS Springer,2014.
[145]

Submitted: other conference/journal articles are under submission.

186

187

List of Figures

1.1 MQO in database generations . 5
1.2 From Logical Circuit to a HyperGraph . 8
1.3 Repartition of thesis chapters . 11

2.1 An example of multidimensional model representation 20
2.2 Data warehouse architecture . 20
2.3 Phases in data warehouse design . 21
2.4 Examples SSB schemes . 23
2.5 UML Model of our Big-Queries Optimization Problem 27
2.6 Query optimizer steps . 30
2.7 Example of MQO bene�t . 31
2.8 The query rewriting process . 33
2.9 Views Selection Problem . 34
2.10 Example of AND-OR graph . 35
2.11 Example of acyclic graph . 35
2.12 Example of Lattice Graph . 35
2.13 Classi�cation of view selection techniques . 37
2.14 The evolution of HDP approaches . 41
2.15 Taxonomy of data partitioning methods . 42
2.16 Life cycle of the parallel database design . 46
2.17 Data warehouse system architectures . 47
2.18 Data structures and algorithms space of data processing in databases 51

3.1 Example of cutting hyperedge in hypergraph partitioning 61
3.2 Cut hyperedge splitting during recursive bisection 64
3.3 An example of UQP of 30 queries . 68
3.4 Electronic circuit corresponding to the UQP . 68
3.5 Hypergraph representation of the circuit . 69
3.6 Analogy between VLSI circuit and MVPP generation approaches 70
3.7 UQP generation approach . 71
3.8 Example of a text written query . 72
3.9 The parse tree of the previous query (Figure 3.8) 72
3.10 Virtual view substitution. 73

188

LIST OF FIGURES

3.11 Logical plan generation steps . 74
3.12 Example of �rst translating parse tree . 75
3.13 An example of join hypergraph . 75
3.14 Result of hypergraph partitioning . 75
3.15 Transformation steps of a join hypergraph to an oriented graph 78
3.16 Example of transformation . 80
3.17 A resulting UQP . 80
3.18 An Example of hypergraph partitioning with node as a pivot 81
3.19 Execution time to generate an UQP using Sellis's Algorithm [223] 85
3.20 Execution time to generate an UQP using 3 methods 85
3.21 Individual queries execution time . 85
3.22 Workload execution times . 86

4.1 Overlap between MQO and physical design problems 89
4.2 Injecting OS knowledge in MQO for physical design problems 90
4.3 Example of query scheduling method . 98
4.4 Total cost of workload usingMV selected usingMV-oriented UQP and HDP-

oriented UQP . 100
4.5 Total cost of workload using HDP selected usingMV-oriented UQP and HDP-

oriented UQP . 101
4.6 Di�erent costs using MV in Oracle for 500 queries 101
4.7 Di�erent costs using MV in Oracle for 3000 queries 101
4.8 Execution costs using HDP in Oracle for 500 queries 102
4.9 Execution costs using HDP in Oracle for 3000 queries 102
4.10 Validation of MV in Oracle for 3000 queries . 102
4.11 Validation of HP in Oracle for 3000 queries . 102
4.12 Query processing cost usingMV selected without constraint 102
4.13 Optimization rate of query processing cost usingMV 103
4.14 Oracle validation ofMV selection without constraint 104
4.15 Advantage of dynamic materialization with query scheduling 105
4.16 Performance of dynamic materialization approach 106
4.17 Oracle validation of dynamic materialization . 107

5.1 Iterative and Variants of Conjoint Design Methodologies. 113
5.2 UQP Representation example . 115
5.3 Flowchart for PRDW design methodology . 117
5.4 Computational Overhead Performance of BQ-Design against F &A Design . . . 121
5.5 Performance of BQ-Design against F &A Design Approach 121
5.6 BQ-Design Data Placement Distribution . 122
5.7 Queries Makspen . 123
5.8 The impact of workload size on data distribution quality 123

189

LIST OF FIGURES

5.9 Scale-up of BQ-Design when workload size increase 124
5.10 Scale-up of BQ-Design when database size increase 124

6.1 Functionalities of Big-Queries Tool . 130
6.2 Big-Queries system architecture . 131
6.3 Example of an UQP of an component of workload 131
6.4 Example of the result of query parser . 133
6.5 Example of presenting logical plan of a query 134
6.6 Example of presenting an hypergraph of workload 134
6.7 Example of presenting components of workload . 135
6.8 Overview of cost estimation process . 135
6.9 A example of the result of selecting materialized views of workload 136
6.10 A example of the result of data partitioning schema of workload 137
6.11 Main Interface of Big-queries . 137
6.12 Gateway connexion of database . 138

7.1 Overview of cost estimation process . 150
7.2 Example of SN −DBC . 157

7.3 Graph File representation for (a) unweighted hypergraph, (b) weighted hyper-
edges, (c) weighted vertices, and (d) weighted hyperedges and vertices 171

7.4 Overview of di�erent operator in relational model 176

190

List of Tables

2.1 A Comparison of main approaches . 43

3.1 Analogy Graph � Query. 76
3.2 Component according to workload . 84

6.1 Presentation of well-known administration advisors 129

7.1 Cardinality estimation parameters . 151
7.2 Selectivity estimation of complex predicates . 152
7.3 Data partitioning schema parameters . 158
7.4 Cost function parameters . 159

7.5 Overviews of laws for Set operations . 176
7.6 Relation algebra properties . 177

191

LIST OF TABLES

192

Bibliography

[1] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs. row-stores: how di�er-
ent are they really? In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 967�980. ACM, 2008.

[2] S. Abdellaoui, L. Bellatreche, and F. Nader. A quality-driven approach for building
heterogeneous distributed databases: The case of data warehouses. In IEEE/ACM 16th
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 631�
638, 2016.

[3] A. Abelló, J. Samos, and F. Saltor. Yam2: a multidimensional conceptual model extending
uml. International Journal on Information Systems, 31(6):541�567, 2006.

[4] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, and M. Syamala.
Database tuning advisor for microsoft sql server 2005: Demo. In ACM SIGMOD, pages
930�932, 2005.

[5] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of materialized
views and indexes in sql databases. In Proceedings of the International Conference on
Very Large DataBases (VLDB), pages 496�505. Morgan Kaufmann Publishers Inc., 2000.

[6] S. Agrawal, V. Narasayya, and B. Yang. Integrating vertical and horizontal partitioning
into automated physical database design. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 359�370. ACM, 2004.

[7] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala. Interaction-aware scheduling of
report-generation workloads. VLDB Journal, 20(4):589�615, 2011.

[8] Z. Akkaoui, J. Mazón, A. Vaisman, and A. Zimányi. Bpmn-based conceptual modeling
of etl processes. In DaWaK, pages 1�14, 2012.

193

BIBLIOGRAPHY

[9] J. Aligon, E. Gallinucci, M. Golfarelli, P. Marcel, and S. Rizzi. A collaborative �ltering
approach for recommending OLAP sessions. Decision Support Systems, 69:20�30, 2015.

[10] C. J. Alpert and A. B. Kahng. Multi-way partitioning via space�lling curves and dynamic
programming. In Proceedings of the Design Automation Conference, pages 652�657. ACM,
1994.

[11] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: a survey. Inte-
gration, the VLSI journal, 19(1):1�81, 1995.

[12] P. M. Apers. Data allocation in distributed database systems. ACM Transactions on
Database Systems (TODS), 13(3):263�304, 1988.

[13] E. Baralis, S. Baraboschi, and E. Teniente. Materialized view selection in a multidimen-
sional database. In Proceedings of the International Conference on Very Large DataBases
(VLDB), pages 156�165, August 1997.

[14] X. Baril and Z. Bellahsene. Selection of materialized views: A cost-based approach. In
Advanced Information Systems Engineering, pages 665�680. Springer, 2003.

[15] S. T. Barnard and H. D. Simon. Fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems. Concurrency: Practice and experience,
6(2):101�117, 1994.

[16] R. Bayer. The universal b-tree for multidimensional indexing: General concepts. In
Worldwide Computing and Its Applications, pages 198�209. Springer, 1997.

[17] M. Bayir, I. Toroslu, and A. Cosar. Genetic algorithm for the multiple-query optimization
problem. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, 37:147�153, 2007.

[18] L. Bellatreche. Utilisation des vues materialisees, des index et de la fragmentation dans
la conception logique et physique d'un entrepot de donnees. PhD thesis, Universite Blaise
Pascal Clermont Ferrand, 2000.

[19] L. Bellatreche, S. Benkrid, A. Ghazal, A. Crolotte, and A. Cuzzocrea. Veri�cation of par-
titioning and allocation techniques on teradata DBMS. In 11th International Conference
on Algorithms and Architectures for Parallel Processing (ICA3PP), pages 158�169, 2011.

[20] L. Bellatreche and K. Boukhalfa. An evolutionary approach to schema partitioning se-
lection in a data warehouse. In Proceedings of International Conference on Data Ware-
housing and Knowledge Discovery (DaWaK), pages 115�125. Springer, 2005.

194

BIBLIOGRAPHY

[21] L. Bellatreche, K. Boukhalfa, and Z. Alimazighi. Simulph.d.: A physical design simulator
tool. In 20th International Conference on Database and Expert Systems Applications
DEXA, pages 263�270, 2009.

[22] L. Bellatreche, K. Boukhalfa, and M. K. Mohania. Pruning search space of physical
database design. In DEXA, pages 479�488, 2007.

[23] L. Bellatreche, K. Boukhalfa, and P. Richard. Primary and referential horizontal parti-
tioning selection problems: Concepts, algorithms and advisor tool. Integrations of Data
Warehousing, Data Mining and Database Technologies: Innovative Approaches, 2011.

[24] L. Bellatreche, K. Boukhalfa, P. Richard, and K. Y. Woameno. Referential horizontal par-
titioning selection problem in data warehouses: Hardness study and selection algorithms.
International Journal of Data Warehousing and Mining (IJDWM), 5(4):1�23, 2009.

[25] L. Bellatreche, S. Breÿ, A. Kerkad, A. Boukorca, and C. Salmi. The generalized physi-
cal design problem in data warehousing environment: towards a generic cost model. In
International Convention on Information & Communication Technology Electronics &
Microelectronics (MIPRO), pages 1131�1137. IEEE, 2013.

[26] L. Bellatreche, S. Cheikh, S. Breÿ, A. Kerkad, A. Boukorca, and J. Boukhobza. How to
exploit the device diversity and database interaction to propose a generic cost model? In
17th International Database Engineering & Applications Symposium, IDEAS '13, pages
142�147, 2013.

[27] L. Bellatreche, A. Cuzzocrea, and S. Benkrid. E�ectively and e�ciently designing and
querying parallel relational data warehouses on heterogeneous database clusters: The f&a
approach. Journal of Database Management (JDM), 23(4):17�51, 2012.

[28] L. Bellatreche, K. Karlapalem, M. K. Mohania, and M. Schneider. What can partitioning
do for your data warehouses and data marts? In IDEAS, pages 437�446, 2000.

[29] L. Bellatreche, K. Karlapalem, and A. Simonet. Algorithms and support for horizon-
tal class partitioning in object-oriented databases. Distributed and Parallel Databases,
8(2):155�179, 2000.

[30] L. Bellatreche, A. Kerkad, S. Bress, and D. Geniet. Roupar: Routinely and mixed query-
driven approach for data partitioning. In OTM Confederated International Conferences
On the Move to Meaningful Internet Systems, volume 8185, pages 309�326. Springer
Berlin Heidelberg, 2013.

[31] L. Bellatreche, S. Khouri, and N. Berkani. Semantic data warehouse design: From ETL
to deployment à la carte. In DASFAA, pages 64�83, 2013.

195

BIBLIOGRAPHY

[32] L. Bellatreche, R. Missaoui, H. Necir, and H. Drias. A data mining approach for selecting
bitmap join indices. JCSE, 1(2):177�194, 2007.

[33] L. Bellatreche, M. Schneider, H. Lorinquer, and M. Mohania. Bringing together parti-
tioning, materialized views and indexes to optimize performance of relational data ware-
houses. In Proceedings of International Conference on Data Warehousing and Knowledge
Discovery (DaWaK), pages 15�25. Springer, 2004.

[34] L. Bellatreche, A. Simonet, and M. Simonet. Vertical fragmentation in distributed object
database systems with complex attributes and methods. In Proceedings of International
Conference on Database and Expert Systems Applications (DEXA), pages 15�21, 1996.

[35] R. G. Bello, K. Dias, A. Downing, J. Feenan, J. Finnerty, W. D. Norcott, H. Sun,
A. Witkowski, and M. Ziauddin. Materialized views in oracle. In Proceedings of the
International Conference on Very Large DataBases (VLDB), volume 98, pages 24�27,
1998.

[36] S. Benkrid. Le déploiement, une phase à part entière dans le cycle de vie des entrepôts
de données : application aux plateformes parallèles. PhD thesis, ISAE-ENSMA and ESI
of Algeria, jun 2014.

[37] S. Benkrid, L. Bellatreche, and A. Cuzzocrea. A global paradigm for designing parallel
relational data warehouses in distributed environments. Trans. Large-Scale Data- and
Knowledge-Centered Systems, 15:64�101, 2014.

[38] C. Berge. Hypergraphs: combinatorics of �nite sets, volume 45. Elsevier, 1984.

[39] N. Berkani, L. Bellatreche, and B. Benatallah. A value-added approach to design BI
applications. In DAWAK, pages 361�375, 2016.

[40] M. Bery. Conception physique des bases de données a base ontologique : le cas des vues
matérialisées. PhD thesis, ISAE-ENSMA, dec 2014.

[41] M. Blattner. B-rank: A top n recommendation algorithm. arXiv preprint arXiv:0908.2741,
2009.

[42] D. Boley, M. Gini, R. Gross, E.-H. S. Han, K. Hastings, G. Karypis, V. Kumar,
B. Mobasher, and J. Moore. Partitioning-based clustering for web document catego-
rization. Decision Support Systems, 27(3):329�341, 1999.

[43] E. G. Boman, Ü. V. Çatalyürek, C. Chevalier, and K. D. Devine. The zoltan and isor-
ropia parallel toolkits for combinatorial scienti�c computing: Partitioning, ordering and
coloring. Scienti�c Programming, 20(2):129�150, 2012.

196

BIBLIOGRAPHY

[44] W. Bosma, J. Cannon, and C. Playoust. The magma algebra system i: The user language.
Journal of Symbolic Computation, 24(3):235�265, 1997.

[45] K. Boukhalfa. De la conception physique aux outils d administration et de tuning des
entrepôts de données. PhD thesis, ISAE-ENSMA, jul 2009.

[46] I. Boukhari. Intégration et exploitation de besoins en entreprise étendue fondÃ©es sur
la sémantique. PhD thesis, ISAE-ENSMA, jan 2014.

[47] A. Boukorca, adjel Bellatreche, S. B. Senouci, and Z. Faget. Coupling materialized view
selection to multi query optimization: Hyper graph approach. International Journal of
Data Warehousing and Mining (IJDWM), 11(2):62�84, 2015.

[48] A. Boukorca, L. Bellatreche, and S. Benkrid. HYPAD: hyper-graph-driven approach
for parallel data warehouse design. In 15th International on Conference,Algorithms and
Architectures for Parallel Processing (ICA3PP), pages 770�783, 2015.

[49] A. Boukorca, L. Bellatreche, and A. Cuzzocrea. Slemas: an approach for selecting mate-
rialized views under query scheduling constraints. In Proceedings of International Con-
ference on Management of Data (COMAD), pages 66�73. Computer Society of India,
2014.

[50] A. Boukorca, L. Bellatreche, S.-A. B. Senouci, and Z. Faget. Sonic: Scalable multi-query
optimization through integrated circuits. In Proceedings of International Conference on
Database and Expert Systems Applications (DEXA), pages 278�292, 2013.

[51] A. Boukorca, L. Bellatreche, S.-A. B. Senouci, and Z. Faget. Votre plan d'exécution
de requêtes est un circuit intégré : Changer de métier. In Actes des 9èmes journées
francophones sur les Entrepôts de Données et l'Analyse en ligne, pages 133�148, 2013.

[52] A. Boukorca, Z. Faget, and L. Bellatreche. What-if physical design for multiple query plan
generation. In Proceedings of International Conference on Database and Expert Systems
Applications (DEXA), pages 492�506, 2014.

[53] J. Bowen. Getting Started with Talend Open Studio for Data Integration. Packt Publishing
Ltd, 2012.

[54] A. Bretto and L. Gillibert. Hypergraph-based image representation. In Graph-based
Representations in Pattern Recognition, pages 1�11. Springer, 2005.

[55] A. D. Brucker, I. Hang, G. Lückemeyer, and R. Ruparel. Securebpmn: modeling and
enforcing access control requirements in business processes. In ACM SACMAT, pages
123�126, 2012.

197

BIBLIOGRAPHY

[56] N. Bruno and S. Chaudhuri. Exploiting statistics on query expressions for optimization.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 263�274. ACM, 2002.

[57] N. Bruno and S. Chaudhuri. E�cient creation of statistics over query expressions. In
Proceedings of the International Conference on Data Engineering (ICDE), pages 201�212,
2003.

[58] T. Bui, C. Heigham, C. Jones, and T. Leighton. Improving the performance of the
kernighan-lin and simulated annealing graph bisection algorithms. In Proceedings of the
26th ACM/IEEE Design Automation Conference, pages 775�778. ACM, 1989.

[59] L. Cabibbo and R. Torlone. Querying multidimensional databases. In Database program-
ming languages, pages 319�335. Springer, 1998.

[60] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Improved algorithms for hypergraph
bipartitioning. In Proceedings of Asia and South Paci�c Design Automation Conference,
pages 661�666. ACM, 2000.

[61] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Optimal partitioners and end-case placers
for standard-cell layout. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(11):1304�1313, 2000.

[62] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data model-
ing. In Logics for Databases and Information Systems, pages 229�263, 1998.

[63] R. L. Cannon, J. V. Dave, and J. C. Bezdek. E�cient implementation of the fuzzy c-means
clustering algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-8(2):248�255, 1986.

[64] W. Cao, F. Yu, and J. Xie. Realization of the low cost and high performance mysql cloud
database. International Journal on Very Large DataBases, 7(13), 2014.

[65] Ü. V. Çatalyürek and C. Aykanat. Decomposing irregularly sparse matrices for parallel
matrix-vector multiplication. In Parallel Algorithms for Irregularly Structured Problems,
pages 75�86. Springer, 1996.

[66] U. V. Catalyürek and C. Aykanat. Patoh: a multilevel hypergraph partitioning tool,
version 3.0. Bilkent University, Department of Computer Engineering, Ankara, 6533,
1999.

[67] S. Ceri, M. Negri, and G. Pelagatti. Horizontal data partitioning in database design. In
SIGMOD Conference, pages 128�136, 1982.

198

BIBLIOGRAPHY

[68] S. Chaudhuri, M. Datar, and V. Narasayya. Index selection for databases: A hardness
study and a principled heuristic solution. IEEE Transactions on Knowledge and Data
Engineering, 16(11):1313�1323, 2004.

[69] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap technology. ACM
Sigmod record, 26(1):65�74, 1997.

[70] S. Chaudhuri and V. R. Narasayya. An e�cient, cost-driven index selection tool for mi-
crosoft sql server. In Proceedings of the International Conference on Very Large DataBases
(VLDB), volume 97, pages 146�155, 1997.

[71] S. Chaudhuri and V. R. Narasayya. Autoadmin 'what-if' index analysis utility. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data, pages
367�378, 1998.

[72] S. Chaudhuri and V. R. Narasayya. Self-tuning database systems: A decade of progress.
In Proceedings of the International Conference on Very Large DataBases (VLDB), pages
3�14, 2007.

[73] L. W. F. Chaves, E. Buchmann, F. Hueske, and K. Böhm. Towards materialized view se-
lection for distributed databases. In Proceedings of International Conference on Extending
Database Technology (EDBT), pages 1088�1099. ACM, 2009.

[74] C. M. Chen and N. Roussopoulos. The implementation and performance evaluation of the
adms query optimizer: Integrating query result caching and matching. In Proceedings of
International Conference on Extending Database Technology (EDBT), volume 779, page
323. Springer Science & Business Media, 1994.

[75] P. P. S. Chen. The entity relationship model toward a uni�ed view of data. ACM
Transactions on Database Systems (TODS), 1(1):9�36, 1976.

[76] C.-H. Cheng, W.-K. Lee, and K.-F. Wong. A genetic algorithm-based clustering approach
for database partitioning. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 32(3):215�230, 2002.

[77] J. Cheng, D. Haderle, R. Hedges, B. R. Iyer, T. Messinger, C. Mohan, and Y. Wang.
An e�cient hybrid join algorithm: A db2 prototype. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 171�180, 1991.

[78] S. Cluet and G. Moerkotte. On the complexity of generating optimal left-deep processing
trees with cross products. In Proceedings of the International Conference on Database
Theory (ICDT), pages 54�67. Springer, 1995.

199

BIBLIOGRAPHY

[79] J. Cong, M. Romesis, and M. Xie. Optimality, scalability and stability study of par-
titioning and placement algorithms. In Proceedings of the International Symposium on
Physical Design, pages 88�94. ACM, 2003.

[80] A. Cosar, E.-P. Lim, and J. Srivastava. Multiple query optimization with depth-�rst
branch-and-bound and dynamic query ordering. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 433�438. ACM, 1993.

[81] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven approach to
database replication and partitioning. International Journal on Very Large DataBases,
3(1-2):48�57, 2010.

[82] A. Cuzzocrea, J. Darmont, and H. Mahboubi. Fragmenting very large xml data ware-
houses via k-means clustering algorithm. International Journal of Business Intelligence
and Data Mining, 4(3):301�328, 2009.

[83] A. Cuzzocrea, J. Darmont, and H. Mahboubi. Fragmenting very large XML data ware-
houses via k-means clustering algorithm. IJBIDM, 4(3/4):301�328, 2009.

[84] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin. Automatic sql tuning
in oracle 10g. In Proceedings of the International Conference on Very Large DataBases
(VLDB), pages 1098�1109. VLDB Endowment, 2004.

[85] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan. Pipelining in multi-query opti-
mization. Journal of Computer and System Sciences, 66(4):728�762, 2003.

[86] N. Daneshpour and A. A. Barforoush. Dynamic view management system for query pre-
diction to view materialization. International Journal of Data Warehousing and Mining
(IJDWM), 7(2):67�96, 2011.

[87] A. Datta, B. Moon, and H. Thomas. A case for parallelism in data warehousing and olap.
In Proceedings of International Conference on Database and Expert Systems Applications
(DEXA), pages 226�231. IEEE, 1998.

[88] R. de la Sablonnière, E. Auger, M. Sabourin, and G. Newton. Facilitating data sharing
in the behavioural sciences. Data Science Journal, 11:DS29�DS43, 2012.

[89] M. F. de Souza and M. C. Sampaio. E�cient materialization and use of views in data
warehouses. SIGMOD Record, 28(1):78�83, 1999.

[90] J. Dean and S. Ghemawat. Mapreduce: simpli�ed data processing on large clusters.
Communications of the ACM, 51(1):107�113, 2008.

200

BIBLIOGRAPHY

[91] B. Debnath, S. Sengupta, and J. Li. Flashstore: high throughput persistent key-value
store. Proceedings of the International Conference on Very Large DataBases (VLDB),
3(1-2):1414�1425, 2010.

[92] C. Demetrescu and G. F. Italiano. Trade-o�s for dynamic graph problems. In Encyclopedia
of Algorithms, pages 958�961. Springer, 2008.

[93] R. Derakhshan, B. Stantic, O. Korn, and F. Dehne. Parallel simulated annealing for mate-
rialized view selection in data warehousing environments. In Algorithms and Architectures
for Parallel Processing, pages 121�132. Springer, 2008.

[94] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V. Catalyurek. Parallel
hypergraph partitioning for scienti�c computing. In 20th International Conference on
Parallel and Distributed Processing Symposium, IPDPS'06, pages 10�pp. IEEE, 2006.

[95] D. J. DeWitt, S. Madden, and M. Stonebraker. How to build a high-performance data
warehouse, 2006.

[96] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Sketch-based multi-query processing
over data streams. In Data Stream Management, pages 241�261. Springer, 2016.

[97] A. Ducournau, A. Bretto, S. Rital, and B. Laget. A reductive approach to hypergraph
clustering: An application to image segmentation. Pattern Recognition, 45(7):2788�2803,
2012.

[98] T. Eavis and R. Sayeed. High performance analytics with the r3-cache. In Proceedings
of International Conference on Data Warehousing and Knowledge Discovery (DaWaK),
pages 271�286, 2009.

[99] M. Eirinaki, S. Abraham, N. Polyzotis, and N. Shaikh. Querie: Collaborative database
exploration. IEEE Transactions on Knowledge and Data Engineering, 26(7):1778�1790,
2014.

[100] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. System level hardware/software parti-
tioning based on simulated annealing and tabu search. Design automation for embedded
systems, 2(1):5�32, 1997.

[101] R. Elmasri and S. B. Navathe. Fundamentals of database systems. Pearson, 2014.

[102] L. Etcheverry and A. A. Vaisman. Enhancing olap analysis with web cubes. In The
Semantic Web: Research and Applications, pages 469�483. Springer, 2012.

[103] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. Journal
of the ACM (JACM), 30(3):514�550, 1983.

201

BIBLIOGRAPHY

[104] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitions. In Conference on Design Automation, pages 175�181. IEEE, 1982.

[105] S. Finkelstein. Common expression analysis in database applications. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, pages 235�245.
ACM, 1982.

[106] M. Flouris, R. Lachaize, and A. Bilas. Orchestra: Extensible block-level support for
resource and data sharing in networked storage systems. In 14th International Conference
on Parallel and Distributed Systems, ICPADS, pages 237�244, 2008.

[107] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. International journal of high performance computing applications,
15(3):200�222, 2001.

[108] P. Furtado. Experimental evidence on partitioning in parallel data warehouses. In Pro-
ceedings of the 7th ACM international workshop on Data warehousing and OLAP, pages
23�30. ACM, 2004.

[109] J. Gentry. twitter: R based twitter client. R package version 0.99, 19, 2012.

[110] F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu. View selection in semantic
web databases. Proceedings of the International Conference on Very Large DataBases
(VLDB), 5(2):97�108, 2011.

[111] C. H. Goh. Context interchange: New features and formalisms for the intelligent integra-
tion of information. ACM TOIS, pages 270�293, 1999.

[112] M. Golfarelli, D. Maio, and S. Rizzi. Conceptual design of data warehouses from e/r
schemes. In Proceedings of the Thirty-First Hawaii International Conference on System
Sciences, volume 7, pages 334�343. IEEE, 1998.

[113] M. Golfarelli, V. Maniezzo, and S. Rizzi. Materialization of fragmented views in multidi-
mensional databases. Data Knowl. Eng., 49(3):325�351, 2004.

[114] M. Golfarelli and S. Rizzi. Data Warehouse Design: Modern Principles and Methodologies.
McGraw-Hill, Inc., 1 edition, 2009.

[115] N. Gorla and P. W. Y. Betty. vertical fragmentation in databases using data-mining.
Strategic Advancements in Utilizing Data Mining and Warehousing Technologies: New
Concepts and Developments: New Concepts and Developments, page 178, 2009.

[116] J. Grant and J. Minker. On optimizing the evaluation of a set of expressions. International
Journal of Computer & Information Sciences, 11(3):179�191, 1982.

202

BIBLIOGRAPHY

[117] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow,
and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Mining and Knowledge Discovery, 1(1):29�53, 1997.

[118] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The dangers of replication and a solution.
Proceedings of the ACM SIGMOD International Conference on Management of Data,
25(2):173�182, 1996.

[119] H. Gupta. Selection and maintenance of views in a data warehouse. Ph.d. thesis, Stanford
University, 1999.

[120] H. Gupta and I. S. Mumick. Selection of views to materialize under a maintenance cost
constraint. In Proceedings of the International Conference on Database Theory (ICDT),
pages 453�470. Springer, 1999.

[121] H. Gupta and I. S. Mumick. Selection of views to materialize in a data warehouse. IEEE
Transactions on Knowledge and Data Engineering, 17(1):24�43, 2005.

[122] L. W. Hagen, D. J. Huang, and A. B. Kahng. On implementation choices for iterative
improvement partitioning algorithms. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 16(10):1199�1205, 1997.

[123] E.-H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering in a high-dimensional
space using hypergraph models. Proceedings of data mining and knowledge discovery,
1997.

[124] N. Hanusse, S. Maabout, and R. Tofan. A view selection algorithm with performance
guarantee. In Proceedings of International Conference on Extending Database Technology
(EDBT), pages 946�957. ACM, 2009.

[125] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes e�ciently.
ACM SIGMOD Record, 25(2):205�216, 1996.

[126] E. P. Harris and K. Ramamohanarao. Join algorithm costs revisited. International
Journal on Very Large DataBases, 5(1):064�084, 1996.

[127] S. Hauck and G. Borriello. An evaluation of bipartitioning techniques. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 16(8):849�866, 1997.

[128] J. Hauglid, K. Nørvåg, and N. Ryeng. Dyfram: dynamic fragmentation and replica
management in distributed database systems. Distributed and Parallel Databases, 28(2�
3):157�185, 2010.

203

BIBLIOGRAPHY

[129] C. Hébert, A. Bretto, and B. Crémilleux. A data mining formalization to improve hy-
pergraph minimal transversal computation. Fundamenta Informaticae, 80(4):415�434,
2007.

[130] B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for
mapping parallel computations. SIAM Journal on Scienti�c Computing, 16(2):452�469,
1995.

[131] U. Herzog and J. Schlösser. Global optimization and parallelization of integrity constraint
checks. In Proceedings of International Conference on Management of Data (COMAD).
Citeseer, 1995.

[132] P. Hitzler, M. Krotzsch, and S. Rudolph. Foundations of semantic web technologies. CRC
Press, 2011.

[133] J. Ho�art, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo, and G. Weikum.
YAGO2: exploring and querying world knowledge in time, space, context, and many
languages. In WWW, pages 229�232, 2011.

[134] J.-T. Horng, Y.-J. Chang, B.-J. Liu, and C.-Y. Kao. Materialized view selection us-
ing genetic algorithms in a data warehouse system. In Proceedings of the Congress on
Evolutionary Computation (CEC), volume 3. IEEE, 1999.

[135] S.-W. Hur. Hybrid techniques for standard cell placement. PhD thesis, University of
Illinois at Chicago, 2000.

[136] S.-W. Hur and J. Lillis. Relaxation and clustering in a local search framework: application
to linear placement. VLSI Design, 14(2):143�154, 2002.

[137] Y. E. Ioannidis. Query optimization. ACM Comput. Surv., 28(1):121�123, 1996.

[138] Y. E. Ioannidis and Y. Kang. Randomized algorithms for optimizing large join queries.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 312�321. ACM, 1990.

[139] Y. E. Ioannidis and Y. C. Kang. Randomized algorithms for optimizing large join queries.
In ACM SIGMOD, pages 312�321, 1990.

[140] M. J-N. and J. Trujillo. An mda approach for the development of data warehouses. In
JISBD, pages 208�208, 2009.

[141] D. Jemal, R. Faiz, A. Boukorca, and L. Bellatreche. Mapreduce-dbms: An integration
model for big data management and optimization. In 26th International Conference on
Database and Expert Systems Applications (DEXA), pages 430�439, 2015.

204

BIBLIOGRAPHY

[142] A. B. Kahng. Futures for partitioning in physical design. In Proceedings of the Interna-
tional Symposium on Physical Design, pages 190�193, 1998.

[143] A. Kalinin, U. Çetintemel, and S. B. Zdonik. Searchlight: Enabling integrated search and
exploration over large multidimensional data. PVLDB, 8(10):1094�1105, 2015.

[144] P. Kalnis, N. Mamoulis, and D. Papadias. View selection using randomized search. Data
& Knowledge Engineering, 42(1):89�111, 2002.

[145] R. Karimi, L. Bellatreche, P. Girard, A. Boukorca, and A. Hajdu. BINOS4DNA: bitmap
indexes and nosql for identifying species with dna signatures through metagenomics sam-
ples. In Proceedings of International conference Information on Technology in Bio- and
Medical Informatics (ITBAM), pages 1�14, 2014.

[146] K. Karlapalem. Redesign of distributed relational databases. PhD thesis, Georgia Institute
of Technology, 1992.

[147] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning:
applications in vlsi domain. In 34th Design and Automation Conference, pages 526�529,
1997.

[148] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning:
applications in vlsi domain. IEEE Transactions on Very Large Scale Integration Systems,
7(1):69�79, 1999.

[149] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71�95, 1998.

[150] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71�95, 1998.

[151] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In ACM/IEEE
Design Automation Conference (DAC), pages 343�348. ACM, 1999.

[152] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. VLSI design,
11(3):285�300, 2000.

[153] A. Kementsietsidis, F. Neven, D. V. de Craen, and S. Vansummeren. Scalable multi-
query optimization for exploratory queries over federated scienti�c databases. PVLDB,
1(1):16�27, 2008.

[154] A. Kerkad. L'interaction au service de l'optimisation à grande èchelle des entrepôts de
données relationnels. PhD thesis, ISAE-ENSMA, dec 2013.

205

BIBLIOGRAPHY

[155] A. Kerkad, L. Bellatreche, and D. Geniet. Queen-bee: query interaction-aware for bu�er
allocation and scheduling problem. In Proceedings of International Conference on Data
Warehousing and Knowledge Discovery (DaWaK), pages 156�167, 2012.

[156] S. Khouri. Cycle de vie sémantique de conception de systèmes de stockage et de manipu-
lation de données. PhD thesis, ISAE-ENSMA and ESI of Algeria, oct 2013.

[157] W. Kim. On optimizing an sql-like nested query. ACM Transactions on Database Systems
(TODS), 7(3):443�469, 1982.

[158] R. Kimball and M. Ross. The data warehouse toolkit: the complete guide to dimensional
modeling. John Wiley & Sons, 2011.

[159] S. Klamt, U.-U. Haus, and F. Theis. Hypergraphs and cellular networks. PLoS Comput
Biol, 5(5):e1000385, 2009.

[160] E. V. Konstantinova and V. A. Skorobogatov. Application of hypergraph theory in chem-
istry. Discrete Mathematics, 235(1):365�383, 2001.

[161] Y. Kotidis and N. Roussopoulos. Dynamat: a dynamic view management system for data
warehouses. ACM Sigmod record, 28(2):371�382, 1999.

[162] W. Labio, D. Quass, and B. Adelberg. Physical database design for data warehouses. In
Proceedings of the International Conference on Data Engineering (ICDE), pages 277�288,
1997.

[163] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and C. Bear. The
vertica analytic database: C-store 7 years later. International Journal on Very Large
DataBases, 5(12):1790�1801, 2012.

[164] S. Lauesen. Task descriptions as functional requirements. IEEE Software, 20(2):58�65,
Mar. 2003.

[165] M. Lawrence and A. Rau-Chaplin. Dynamic view selection for OLAP. In 8th International
Conference on Data Warehousing and Knowledge Discovery, pages 33�44, 2006.

[166] W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable multi-query optimization for
sparql. In Proceedings of the International Conference on Data Engineering (ICDE),
pages 666�677. IEEE, 2012.

[167] C. Lee, C.-S. Shih, and Y.-H. Chen. Optimizing large join queries using a graph-based
approach. IEEE Transactions on Knowledge and Data Engineering, 13(2):298�315, 2001.

[168] A. Lerner and D. Shasha. Aquery: Query language for ordered data, optimization tech-
niques, and experiments. In Proceedings of the International Conference on Very Large
DataBases (VLDB), pages 345�356. VLDB Endowment, 2003.

206

BIBLIOGRAPHY

[169] M. Levene and G. Loizou. Why is the snow�ake schema a good data warehouse design?
Inf. Syst., 28(3):225�240, 2003.

[170] Q. Li, B. Moon, et al. Indexing and querying xml data for regular path expressions. In
Proceedings of the International Conference on Very Large DataBases (VLDB), volume 1,
pages 361�370, 2001.

[171] A. A. B. Lima, C. Furtado, P. Valduriez, and M. Mattoso. Parallel OLAP query processing
in database clusters with data replication. Distributed and Parallel Databases, 25(1-2):97�
123, 2009.

[172] K.-I. Lin, H. V. Jagadish, and C. Faloutsos. The tv-tree: An index structure for high-
dimensional data. International Journal on Very Large DataBases, 3(4):517�542, 1994.

[173] S. Luján-Mora, J. Trujillo, and I.-Y. Song. A uml pro�le for multidimensional modeling
in data warehouses. Data & Knowledge Engineering, 59(3):725�769, 2006.

[174] S. Luján-Mora, P. Vassiliadis, and J. Trujillo. Data mapping diagrams for data warehouse
design with uml. In ER, pages 191�204, 2004.

[175] H. Mahboubi and J. Darmont. Enhancing xml data warehouse query performance by
fragmentation. In Proceedings of ACM symposium on Applied Computing, pages 1555�
1562. ACM, 2009.

[176] C. Maier, D. Dash, I. Alagiannis, A. Ailamaki, and T. Heinis. PARINDA: an interactive
physical designer for postgresql. In Proceedings of International Conference on Extending
Database Technology (EDBT), pages 701�704, 2010.

[177] I. Mami and Z. Bellahsene. A survey of view selection methods. ACM SIGMOD Record,
41(1):20�29, 2012.

[178] I. Mami, R. Coletta, and Z. Bellahsene. Modeling view selection as a constraint sat-
isfaction problem. In Proceedings of International Conference on Database and Expert
Systems Applications (DEXA), pages 396�410. Springer, 2011.

[179] H. Märtens, E. Rahm, and T. Stöhr. Dynamic query scheduling in parallel data ware-
houses. Concurrency and Computation: Practice and Experience, 15(11-12):1169�1190,
2003.

[180] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized view selection and
maintenance using multi-query optimization. In ACM SIGMOD Record, volume 30, pages
307�318. ACM, 2001.

207

BIBLIOGRAPHY

[181] G. Moerkotte, T. Neumann, and G. Steidl. Preventing bad plans by bounding the im-
pact of cardinality estimation errors. International Journal on Very Large DataBases,
2(1):982�993, 2009.

[182] M. K. Mohania and N. L. Sarda. Some issues in design of distributed deductive databases.
In Proceedings of the International Conference on Very Large DataBases (VLDB), pages
60�71, 1994.

[183] E. Nakuçi, V. Theodorou, P. Jovanovic, and A. Abelló. Bijoux: Data generator for eval-
uating ETL process quality. In ACM DOLAP, pages 23�32, 2014.

[184] S. Navathe, K. Karlapalem, and M. Ra. A mixed fragmentation methodology for initial
distributed database design. IEEE Transactions on Software Engineering, 3(4):395�426,
1995.

[185] S. B. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical partitioning algorithms for
database design. ACM Transactions on Database Systems (TODS), 9(4):680�710, 1984.

[186] S. B. Navathe and M. Ra. Vertical partitioning for database design: a graphical algorithm.
ACM SIGMOD Record, 18(2):440�450, 1989.

[187] V. Nebot and R. Berlanga. Building data warehouses with semantic web data. Decision
Support Systems, 52(4):853�868, 2012.

[188] R. Nehme and N. Bruno. Automated partitioning design in parallel database systems.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 1137�1148. ACM, 2011.

[189] A. Y. Noaman and K. Barker. A horizontal fragmentation algorithm for the fact relation
in a distributed data warehouse. In Proceedings of the ACM International Conference on
Information and Knowledge Management (CIKM), pages 154�161. ACM, 1999.

[190] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas. Sharing across multiple
mapreduce jobs. ACM Trans. Database Syst., 39(2):12, 2014.

[191] K. O'Gorman, D. Agrawal, and A. El Abbadi. Multiple query optimization by cache-
aware middleware using query teamwork. In Proceedings of the International Conference
on Data Engineering (ICDE), page 274, 2002.

[192] P. O'Neil and G. Graefe. Multi-table joins through bitmapped join indices. ACM SIG-
MOD Record, 24(3):8�11, 1995.

[193] P. O'Neil, B. O'Neil, and X. Chen. Star schema benchmark, 2009.

208

BIBLIOGRAPHY

[194] P. O'Neil, E. O'Neil, X. Chen, and S. Revilak. The star schema benchmark and aug-
mented fact table indexing. In R. Nambiar and M. Poess, editors, Performance Evaluation
and Benchmarking, volume 5895 of Lecture Notes in Computer Science, pages 237�252.
Springer Berlin Heidelberg, 2009.

[195] M. T. Özsu and P. Valduriez. Principles of distributed database systems. Springer Science
& Business Media, 2011.

[196] D. A. Papa and I. L. Markov. Hypergraph partitioning and clustering. Approximation
algorithms and metaheuristics, 61:1�19, 2007.

[197] S. Papadomanolakis and A. Ailamaki. Autopart: Automating schema design for large
scienti�c databases using data partitioning. In Proceedings of the 16th International
Conference on Scienti�c and Statistical Database Management (SSDBM), pages 383�392,
2004.

[198] J. Park and A. Segev. Using common subexpressions to optimize multiple queries. In
Proceedings of the International Conference on Data Engineering (ICDE), pages 311�319,
1988.

[199] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database partitioning in
shared-nothing, parallel oltp systems. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 61�72. ACM, 2012.

[200] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. A foundation for capturing and
querying complex multidimensional data. International Journal on Information Systems,
26(5):383�423, 2001.

[201] A. Pellenkoft, C. A. Galindo-Legaria, and M. Kersten. The complexity of transformation-
based join enumeration. In Proceedings of the International Conference on Very Large
DataBases (VLDB), pages 306�315, 1997.

[202] P. Peng, L. Zou, L. Chen, and D. Zhao. Query workload-based RDF graph fragmentation
and allocation. In Proceedings of the 19th International Conference on Extending Database
Technology, EDBT, pages 377�388, 2016.

[203] T. Phan and W.-S. Li. Dynamic materialization of query views for data warehouse
workloads. In Proceedings of the International Conference on Data Engineering (ICDE),
pages 436�445. IEEE, 2008.

[204] A. Pinar, Ü. V. Çatalyürek, C. Aykanat, and M. Pinar. Decomposing linear programs
for parallel solution. In Applied Parallel Computing Computations in Physics, Chemistry
and Engineering Science, pages 473�482. Springer, 1996.

209

BIBLIOGRAPHY

[205] E. Pitoura. Query optimization. In Encyclopedia of Database Systems, pages 2272�2273.
Springer US, 2009.

[206] P. Ponniah. Data Warehousing Fundamentals for IT Professionals. Wiley, 2010.

[207] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill, Inc., 3
edition, 2003.

[208] J. Rao, C. Zhang, G. Lohman, and N. Megiddo. Automating physical database design in
a parallel database. In ACM SIGMOD, pages 558�569, 2002.

[209] J. Rao, C. Zhang, N. Megiddo, and G. Lohman. Automating physical database design in
a parallel database. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 558�569. ACM, 2002.

[210] F. R. Reiss and T. Kanungo. A characterization of the sensitivity of query optimization
to storage access cost parameters. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 385�396. ACM, 2003.

[211] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance and integrity
constraint checking: Trading space for time. In ACM SIGMOD Record, volume 25, pages
447�458. ACM, 1996.

[212] A. Roukh, L. Bellatreche, A. Boukorca, and S. Bouarar. Eco-dmw: Eco-design method-
ology for data warehouses. In ACM DOLAP, pages 1�10, 2015.

[213] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. E�cient and extensible algorithms for
multi query optimization. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 249�260. ACM, 2000.

[214] Y. G. Saab. An e�ective multilevel algorithm for bisecting graphs and hypergraphs. IEEE
Transactions on Computers, 53(6):641�652, 2004.

[215] D. Saccà and G. Wiederhold. Database partitioning in a cluster of processors. In Proceed-
ings of the International Conference on Very Large DataBases (VLDB), pages 242�247,
1983.

[216] D. Sacca and G. Wiederhold. Database partitioning in a cluster of processors. ACM
Transactions on Database Systems (TODS), 10(1):29�56, 1985.

[217] D. Saccà and G. Wiederhold. Database partitioning in a cluster of processors. ACM
Transactions on Database Systems, 10(1):29�56, 1985.

[218] C. Sapia, M. Blaschka, G. Hö�ing, and B. Dinter. Extending the e/r model for the mul-
tidimensional paradigm. In Advances in Database Technologies, pages 105�116. Springer,
1999.

210

BIBLIOGRAPHY

[219] P. Scheuermann, J. Shim, and R. Vingralek. Watchman: A data warehouse intelligent
cache manager. In Proceedings of the International Conference on Very Large DataBases
(VLDB), pages 51�62, 1996.

[220] W. Scheufele and G. Moerkotte. On the complexity of generating optimal plans with
cross products (extended abstract). In Proceedings of ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 238�248. ACM, 1997.

[221] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access
path selection in a relational database management system. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 23�34. ACM, 1979.

[222] T. Sellis and S. Ghosh. On the multiple query optimization problem. IEEE Transactions
on Knowledge and Data Engineering, pages 262�266, 1990.

[223] T. K. Sellis. Multiple-query optimization. ACM Transactions on Database Systems
(TODS), 13(1):23�52, March 1988.

[224] S. Seshadri, V. Kumar, and B. F. Cooper. Optimizing multiple queries in distributed
data stream systems. In Proceedings of the International Conference on Data Engineering
(ICDE), pages 25�25. IEEE, 2006.

[225] K. C. Sevcik. Data base system performance prediction using an analytical model. In
Proceedings of the International Conference on Very Large DataBases (VLDB), pages
182�198. VLDB Endowment, 1981.

[226] M.-S. Shang, Z.-K. Zhang, T. Zhou, and Y.-C. Zhang. Collaborative �ltering with
di�usion-based similarity on tripartite graphs. Physica A: Statistical Mechanics and its
Applications, 389(6):1259�1264, 2010.

[227] L. Shapiro, D. Maier, P. Benningho�, K. Billings, Y. Fan, K. Hatwal, Q. Wang, Y. Zhang,
H.-M. Wu, and B. Vance. Exploiting upper and lower bounds in top-down query opti-
mization. In International Symposium on Database Engineering and Applications, pages
20�33. IEEE, 2001.

[228] K. Shim, T. Sellis, and D. Nau. Improvements on a heuristic algorithm for multiple-query
optimization. Data & Knowledge Engineering, 12(2):197�222, 1994.

[229] O. Shmueli and S. Tsur. Logical diagnosis of ldl programs. New Generation Computing,
9(3/4):277�304, 1991.

[230] A. Shukla, P. Deshpande, J. F. Naughton, et al. Materialized view selection for mul-
tidimensional datasets. In Proceedings of the International Conference on Very Large
DataBases (VLDB), volume 98, pages 488�499, 1998.

211

BIBLIOGRAPHY

[231] A. Simitsis. Mapping conceptual to logical models for etl processes. In Proceedings of the
8th ACM international workshop on Data warehousing and OLAP, pages 67�76. ACM,
2005.

[232] A. Simitsis, P. Vassiliadis, and T.-K. Sellis. Optimizing etl processes in data warehouses.
In ICDE, pages 564�575, 2005.

[233] A. Simitsis, K. Wilkinson, U. Dayal, and M. Castellanos. Optimizing etl work�ows for
fault-tolerance. In ICDE, pages 385�396, 2010.

[234] D. Skoutas and A. Simitsis. Ontology-based conceptual design of etl processes for both
structured and semi-structured data. Int. J. Semantic Web Inf. Syst., 3(4):1�24, 2007.

[235] D. Skoutas and A. Simitsis. Ontology-based conceptual design of ETL processes for both
structured and semi-structured data. Int. J. Semantic Web Inf. Syst., 3(4):1�24, 2007.

[236] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. Bringing order to query optimization.
ACM SIGMOD Record, 31(2):5�14, 2002.

[237] T. Stöhr, H. Märtens, and E. Rahm. Multi-dimensional database allocation for parallel
data warehouses. In Proceedings of the International Conference on Very Large DataBases
(VLDB), pages 273�284, 2000.

[238] T. Stöhr and E. Rahm. Warlock: A data allocation tool for parallel warehouses. In
Proceedings of the International Conference on Very Large DataBases (VLDB), pages
721�722, 2001.

[239] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O'Neil, et al. C-store: a column-oriented dbms. In Proceedings of
the International Conference on Very Large DataBases (VLDB), pages 553�564. VLDB
Endowment, 2005.

[240] S. N. Subramanian and S. Venkataraman. Cost-based optimization of decision support
queries using transient-views. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 319�330. ACM, 1998.

[241] D. Taniar and J. W. Rahayu. A taxonomy of indexing schemes for parallel database
systems. Distributed and Parallel Databases, 12(1):73�106, 2002.

[242] D. Theodoratos, S. Ligoudistianos, and T. Sellis. View selection for designing the global
data warehouse. Data & Knowledge Engineering, 39(3):219�240, 2001.

[243] D. Theodoratos and T. K. Sellis. Data warehouse con�guration. In Proceedings of the
International Conference on Very Large DataBases (VLDB), pages 126�135, 1997.

212

BIBLIOGRAPHY

[244] Y. Theoharis, V. Christophides, and G. Karvounarakis. Benchmarking database repre-
sentations of rdf/s stores. In The Semantic Web�ISWC 2005, pages 685�701. Springer,
2005.

[245] D. Thomas, A. A. Diwan, and S. Sudarshan. Scheduling and caching in multiquery opti-
mization. In Proceedings of International Conference on Management of Data (COMAD),
pages 150�153, 2006.

[246] I. H. Toroslu and A. Cosar. Dynamic programming solution for multiple query optimiza-
tion problem. Information Processing Letters, 92(3):149�155, 2004.

[247] A. Tort, A. Olivé, and M. Sancho. An approach to test-driven development of conceptual
schemas. Data Knowl. Eng., 70(12):1088�1111, 2011.

[248] M. Toyonaga, S.-T. Yang, T. Akino, and I. Shirakawa. A new approach of fractal-
dimension based module clustering for vlsi layout. In IEEE International Symposium
on Circuits and Systems. ISCAS'94, volume 1, pages 185�188. IEEE, 1994.

[249] Q. T. Tran, I. Jimenez, R. Wang, N. Polyzotis, and A. Ailamaki. RITA: an index-tuning
advisor for replicated databases. In Proceedings of the 27th International Conference on
Scienti�c and Statistical Database Management SSDBM, pages 22:1�22:12, 2015.

[250] A. Trifunovic and W. J. Knottenbelt. Parkway 2.0: A parallel multilevel hypergraph
partitioning tool. In Computer and Information Sciences-ISCIS 2004, pages 789�800.
Springer, 2004.

[251] J. Trujillo and S. Luján-Mora. A uml based approach for modeling etl processes in data
warehouses. In ER, pages 307�320, 2003.

[252] J. Trujillo, M. Palomar, J. Gomez, and I.-Y. Song. Designing data warehouses with oo
conceptual models. IEEE Computer, 34(12):66�75, 2001.

[253] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the energy e�ciency of
a database server. In Proceedings of the International Conference on Data Engineering
(ICDE), pages 231�242. ACM, 2010.

[254] P. Tziovara, P. Vassiliadis, and A. Simitsis. Deciding the physical implementation of etl
work�ows. In DOLAP, pages 49�56, 2007.

[255] K. Tzoumas, A. Deshpande, and C. S. Jensen. E�ciently adapting graphical models for
selectivity estimation. International Journal on Very Large DataBases, 22(1):3�27, 2013.

[256] A. Vaisman and E. Zimányi. Data Warehouse Systems: Design and Implementation.
Springer, 2014.

213

BIBLIOGRAPHY

[257] G. Valentin, M. Zuliani, D. C. Zilio, G. Lohman, and A. Skelley. Db2 advisor: An opti-
mizer smart enough to recommend its own indexes. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 101�101. IEEE Computer Society, 2000.

[258] P. Vassiliadis. A survey of extract�transform�load technology. International Journal of
Data Warehousing and Mining (IJDWM), 5(3):1�27, 2009.

[259] P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis, and S. Skiadopoulos. A generic
and customizable framework for the design of etl scenarios. Inf. Syst., 30(7):492�525,
2005.

[260] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual modeling for etl processes.
In DOLAP, pages 14�21, 2002.

[261] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual modeling for etl processes.
In Proceedings of the 5th ACM international workshop on Data Warehousing and OLAP,
pages 14�21. ACM, 2002.

[262] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Modeling etl activities as graphs. In
DMDW, pages 52�61, 2002.

[263] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication. SIAM review, 47(1):67�95, 2005.

[264] A. Vazquez. Population strati�cation using a statistical model on hypergraphs. Physical
Review E, 77(6):066�106, 2008.

[265] C. B. Walton, A. G. Dale, and R. M. Jenevein. A taxonomy and performance model of
data skew e�ects in parallel joins. In Proceedings of the International Conference on Very
Large DataBases (VLDB), volume 91, pages 537�548, 1991.

[266] G. Wang and C.-Y. Chan. Multi-query optimization in mapreduce framework. Interna-
tional Journal on Very Large DataBases, 7(3):145�156, 2013.

[267] P. Westerman. Data Warehousing Using the Wal-Mart Model. Morgan Kaufmann Series,
2001.

[268] K. Wilkinson, A. Simitsis, M. Castellanos, and U. Dayal. Leveraging business process
models for etl design. In ER, pages 15�30, 2010.

[269] J. L. Wolf, B. R. Iyer, K. R. Pattipati, and J. Turek. Optimal bu�er partitioning for
the nested block join algorithm. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 510�519. IEEE, 1991.

214

BIBLIOGRAPHY

[270] O. Wolfson and S. Jajodia. Distributed algorithms for dynamic replication of data. In
PODS, pages 149�163, 1992.

[271] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: Theory
and its application to image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(11):1101�1113, 1993.

[272] H. Yang and D. Wong. E�cient network �ow based min-cut balanced partitioning. In
IEEE/ACM International Conference on Computer-Aided Design, pages 50�55, 1994.

[273] J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design in data
warehousing environment. In Proceedings of the International Conference on Very Large
DataBases (VLDB), pages 136�145. Morgan Kaufmann Publishers Inc., 1997.

[274] J. Yang, K. Karlapalem, and Q. Li. A framework for designing materialized views in
data warehousing environment. In Proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS), pages 458�465, 1997.

[275] J. X. Yu, X. Yao, C.-H. Choi, and G. Gou. Materialized view selection as constrained
evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 33(4):458�467, 2003.

[276] A. Yzelman and R. H. Bisseling. Cache-oblivious sparse matrix-vector multiplication
by using sparse matrix partitioning methods. SIAM Journal on Scienti�c Computing,
31(4):3128�3154, 2009.

[277] S. B. Zdonik and D. Maier, editors. Readings in Object-Oriented Database Systems.
Morgan Kaufmann, 1990.

[278] C. Zhang and J. Yang. Genetic algorithm for materialized view selection in data warehouse
environments. In DataWarehousing and Knowledge Discovery, pages 116�125. Springer,
1999.

[279] C. Zhang, X. Yao, and J. Yang. An evolutionary approach to materialized views selection
in a data warehouse environment. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 31(3):282�294, 2001.

[280] Y. Zhao, P. M. Deshpande, J. F. Naughton, and A. Shukla. Simultaneous optimization
and evaluation of multiple dimensional queries. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 271�282. ACM, 1998.

[281] D. C. Zilio, A. Jhingran, and S. Padmanabhan. Partitioning key selection for a shared-
nothing parallel database system. IBM TJ Watson Research Center, 1994.

215

BIBLIOGRAPHY

[282] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-Arellano, and S. Fad-
den. Db2 design advisor: integrated automatic physical database design. In Proceedings of
the International Conference on Very Large DataBases (VLDB), pages 1087�1097. VLDB
Endowment, 2004.

[283] V. Zlati¢, G. Ghoshal, and G. Caldarelli. Hypergraph topological quantities for tagged
social networks. Physical Review E, 80(3):036118, 2009.

[284] M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperative scans: dynamic band-
width sharing in a dbms. In Proceedings of the International Conference on Very Large
DataBases (VLDB), pages 723�734. VLDB Endowment, 2007.

216

Résumé

L'apparition du phénomène Big-Data, a conduit à l'arrivée de nouvelles besoins croissants et urgents de partage
de données qui a engendré un grand nombre de requêtes que les SGBD doivent gérer. Ce problème a été aggravé
par d'autres besoins de recommandation et d'exploration des requêtes. Vu que le traitement de données est
toujours possible grâce aux solutions liées à l'optimisation de requêtes, la conception physique et l'architecture
de déploiement, où ces solutions sont des résultats de problèmes combinatoires basés sur les requêtes, il est
indispensable de revoir les méthodes traditionnelles pour répondre aux nouvelles besoins de passage à l'échelle.
Cette thèse s'intéresse à ce problème de nombreuses requêtes et propose une approche, implémentée par un Fra-
mework appelé Big-Quereis, qui passe à l'échelle et basée sur le hypergraph, une structure de données �exible,
qui a une grande puissance de modélisation et permet des formulations précises de nombreux problèmes de
combinatoire informatique. Cette approche est le fruit de collaboration avec l'entreprise Mentor Graphics. Elle
vise à capturer l'interaction de requêtes dans un plan uni�é de requêtes et utiliser des algorithmes de partition-
nement pour assurer le passage à l'échelle et avoir des structures d'optimisation optimales (vues matérialisées et
partitionnement de données). Ce plan uni�é est utilisé dans la phase de déploiement des entrepôts de données
parallèles, par le partitionnement de données en fragments et l'allocation de ces fragments dans les n÷uds de
calcule correspondants. Une étude expérimentale intensive a montré l'intérêt de notre approche en termes de
passage à l'échelle des algorithmes et de réduction de temps de réponse de requêtes.

Mots-clefs : Conception physique, Entrepôt de données, Hypergraphe, Vues matérialisées, fragmentation de

données.

Abstract

The emergence of the phenomenon Big-Data conducts to the introduction of new increased and urgent needs
to share data between users and communities, which has engender a large number of queries that DBMS must
handle. This problem has been compounded by other needs of recommendation and exploration of queries.
Since data processing is still possible through solutions of query optimization, physical design and deployment
architectures, in which these solutions are the results of combinatorial problems based on queries, it is essential
to review traditional methods to respond to new needs of scalability.
This thesis focuses on the problem of numerous queries and proposes a scalable approach implemented on
framework called Big-queries and based on the hypergraph, a �exible data structure, which has a larger mod-
eling power and may allow accurate formulation of many problems of combinatorial scienti�c computing. This
approach is the result of collaboration with the company Mentor Graphics. It aims to capture the queries
interaction in an uni�ed query plan and to use partitioning algorithms to ensure scalability and to optimal opti-
mization structures (materialized views and data partitioning). Also, the uni�ed plan is used in the deployment
phase of parallel data warehouses, by allowing data partitioning in fragments and allocating these fragments in
the correspond processing nodes. Intensive experimental study showed the interest of our approach in terms of
scaling algorithms and minimization of query response time.

Keywords: Physical Design, Data Warehouse, Hypergraph, Materialized Views, Data Partitioning

Secteur de recherche : Informatique et applications

LABORATOIRE D'INFORMATIQUE ET D'AUTOMATIQUE POUR LES SYSTEMES
Ecole Nationale Supérieure de Mécanique et d'Aérotechnique

Téléport 2 � 1, avenue Clément Ader � BP 40109 � 86961 Chasseneuil-Futuroscope Cedex
Tél : 05.49.49.80.63 � Fax : 05.49.49.80.64

	Introduction
	Context
	Thesis objectives and contributions
	Contributions

	Thesis Outline

	I Backgrounds
	Background & State of Art
	Introduction
	The Data Warehousing Technology
	Definitions
	Data warehouse architecture
	Data warehouse design methods
	Summary

	Factors Impacting Query Processing and Optimization
	Dimension 1: The Logical Model of our Target Warehouse
	Dimension 2: OLAP Queries
	Dimension 3: Logical and Physical Optimizations
	Dimension 4: Deployment Phase

	Data structures and access algorithms
	Data structures in implementation level
	Data structures in access level
	Optimization level
	Discussion

	Conclusion

	II Contributions
	Modeling Query Interaction using Hypergraphs
	Introduction
	Hypergraphs and their usages
	Definitions
	Hypergraph partitioning algorithms
	Applications of hypergraph theory
	Discussion

	Analogy between UQP and EDA
	Analogy between UQP and Electronic circuit
	Hypergraph as DS in VLSI circuits

	Hypergraph as a solution of scalability
	Query workload representation
	Hypergraph generation
	Hypergraph partitioning
	Transforming hypergraph to UQP
	Merging the local UQP

	Complexity of the algorithms
	Performance evaluation
	Experimental setting
	The obtained results

	Conclusion

	What-if UQP Analysis
	Introduction
	A new approach for selecting OS
	Generation of MV-oriented UQP
	Generation of HDP-oriented UQP

	Application of OS-oriented UQP
	UQP as input for selecting materialized views
	UQP as input for dynamic materialization and query scheduling
	UQP as input for selecting data partitioning schema

	Experimental Evaluation and Analysis
	Experimental setting
	OS-Sensitivity of UQP
	The quality of OS-oriented UQP
	Dynamic Materialization with query scheduling

	Conclusion

	Query Interaction Serving the Deployment Phase
	Introduction
	Parallel Database Design Alternatives
	Motivating Example
	UQP as a service for designing PRDW
	The Data Partitioning Phase
	Partitioning Algorithm Description

	Experimental Evaluation and Analysis
	BQ-Design vs. F &A
	BQ-Design Scalability

	Conclusion

	Big-Queries framework
	Introduction
	System architecture
	Features Extractor
	UQP Generator
	Physical Design Advisor
	Deployment Advisor

	System Modules
	Query parser module
	Logical query plan generator
	Hypergraph module
	Query processing cost estimator
	Materialized views selection
	Data partitioner
	Deployment designer

	Implementation
	Development environment

	Conclusion

	III Conclusion and Perspectives
	Wrap-up
	Summary
	Surveys of Logical and Physical Optimizations
	Hypergraphs driven Data Structure for Management of Volume and Sharing of Queries
	What if Unified Query Plan Generation
	Query Interaction in the Deployment Phase
	Big-Queries

	Future Work
	Hypergraph Structure
	Testing Other Partitioning Hypergraph Tools
	Dynamic Construction of Hypergraphs
	Advanced Algorithms to Explore our Hypergraphs
	Hypergraph for Mixed Workload
	Consideration of others problems in the Deployment Phase
	Other Usages of our Findings

	IV Appendices
	Cost models
	Introduction
	Cardinality estimation
	 Statistics computation
	 Intermediate results cardinality

	Cost estimation
	Cost model parameters
	Estimation functions for query processing

	SSB-Based Benchmark Query Templates
	Introduction
	List of query template

	hMetiS: A hypergraph partitioning Package
	Introduction
	Overview of hMeTiS
	hMeTiS algorithms
	Advantages of hMeTiS

	Using of hmetis program
	Format of hypergraph file
	Format of the Fix File
	Format of Output File
	 hMeTiS Library Interface

	General Guidelines
	System Requirements

	Relational Algebra
	Résumé
	Related Publications
	List of Figures
	List of Tables
	Glossary
	References

