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Abstract
Latent variable models are powerful probabilistic tools for extracting useful latent
structure from otherwise unstructured data and have proved useful in numerous ap-
plications such as natural language processing and computer vision. A special case
of latent variable models are latent linear models, where observations originate from
a linear transformation of latent variables. Despite their modeling simplicity, latent
linear models are useful and widely used instruments for data analysis in practice and
include, among others, such notable examples as probabilistic principal component
analysis and correlation component analysis, independent component analysis, as well
as probabilistic semantic indexing and latent Dirichlet allocation. That being said,
it is well known that estimation and inference are often intractable for many latent
linear models and one has to make use of approximate methods often with no recovery
guarantees.

One approach to address this problem, which has been popular lately, are methods
based on the method of moments. These methods often have guarantees of exact re-
covery in the idealized setting of an infinite data sample and well specified models,
but they also often come with theoretical guarantees in cases where this is not exactly
satisfied. This is opposed to more standard and widely used methods based on varia-
tional inference and sampling and, therefore, makes moment matching based methods
especially interesting.

In this thesis, we focus on moment matching based estimation methods for different
latent linear models. In particular, by making more apparent connections between
independent component analysis (ICA) and latent Dirichlet allocation (LDA), we
introduce a topic model which we call discrete ICA. Through the close connection
to ICA, which is a well understood latent linear model from the signal processing
literature, we develop new estimation algorithms for the discrete ICA model with
some theoretical guarantees and, in particular, with the improved sample complexity
compared to the previous methods. Importantly, the discrete ICA model is semipara-
metric and the proposed estimation methods do not require any assumption on the
prior distributions of the latent variables in the model.

Moreover, through the close connection between ICA and canonical correlation analy-
sis (CCA), we propose several novel semiparametric multi-view models, closely related
to both ICA and CCA, which are adapted to work with count or continuous data or
with the mixture of the two. We prove the identifiability of these models, which is a
necessary property to ensure their interpretability. It appears that some linear models
which are widely used for interpretability are unidentifiable and more meaningful ana-
logues are of interest. We also develop moment matching based estimation algorithms
for the introduced semiparametric multi-view models, which again does not require
any assumptions on the prior distributions of the latent variables.

For all mentioned models, we perform extensive experimental comparison of the pro-
posed algorithms on both synthetic and real datasets and demonstrate their promising
practical performance.
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Introduction

The goal of the estimation task in latent linear models is the estimation of latent pa-
rameters of a model, in particular, the estimation of a linear transformation matrix.
One approach to this task is based on the method of moments, which has been more
and more popular recently due to its theoretical guarantees. This thesis brings several
contributions in the field of moment matching-based estimation for latent linear mo-
dels in machine learning. The main part of this thesis consists of four chapters, where
the first two chapters are introductory and bring together several concepts which are
further used in the last two chapters for constructing new models and developing new
estimation algorithms. Below we summarize main contributions of each chapter.

Chapter 1 : We start with an overview of some important latent linear models for different
types of data : continuous vs. count data and single-view vs. multi-view, which
we present in a unified framework with an emphasis on their identifiability
properties.

Chapter 2 : Despite the simplicity of these models, the estimation and inference are of-
ten intractable. In this thesis, we focus on moment matching-based estimation
methods, which often have some theoretical guarantees as opposed to widely
used methods based on variational inference or sampling. In Chapter 2, we (a)
review the main ideas of tensors and their decompositions, (b) connect higher-
order statistics of latent linear models with the so-called canonical polyadic
(CP) decomposition of tensors, and (c) briefly review the estimation and infe-
rence methods with the emphasis on the moment matching-based techniques
with theoretical guarantees.

Chapter 3 : As the first contribution of this thesis, we present a novel semiparametric to-
pic model—called discrete ICA—which is closely related to independent com-
ponent analysis and such linear topic models as probabilistic latent semantic
indexing and latent Dirichlet allocation, but has a higher expressive power since
it does not make any assumptions on the distribution of latent variables. We
prove that the higher-order cumulant-based tensors of discrete ICA, in the po-
pulation case, are tensors in the form of the symmetric CP decomposition. This
result is closely related to the previous result for higher-order moment-based
tensors of LDA. However, the derivations in the discrete ICA case are somew-
hat more straightforward due to the properties of cumulants and the estimators
have the improved sample complexity. The estimation methods are then based
on the approximation of this symmetric CP decomposition from sample esti-
mates using different (orthogonal) diagonalization algorithms, which include
the eigendecomposition-based (spectral) algorithm and the tensor power me-
thod. Note that the theoretical guarantees for these algorithms extend directly
to the discrete ICA case. We further improve this by using orthogonal joint
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diagonalization techniques. In an extensive set of experiments on synthetic and
real data, we compare these algorithms among each other and with the varia-
tional inference-based estimation methods.

Chapter 4 : As the second contribution of this thesis, we present a novel semiparametric
linear model for multi-view data, which is closely related to the probabilis-
tic version of canonical correlation analysis. We call this model non-Gaussian
CCA and prove it is identifiable as opposed to many other related latent li-
near models, especially, for multi-view or aligned data. We further prove that
the cumulant-based higher-order statistics of this new model, in the idealized
population case, are tensors in the form of CP decomposition, i.e. they are
equal to a diagonal tensor multiplied by matrices along all modes. As opposed
to discrete ICA and many other latent linear models in the machine learning
literature in the context of moment matching-based estimation, these CP de-
compositions are not symmetric. However, we show that the estimation still
can be performed using algorithms for the computation of the non-symmetric
CP decomposition which we refer to as non-orthogonal joint matrix diagonali-
zation (NOJD) algorithms by similarity (which is only equivalent to NOJD by
congruence only in the orthogonal case). Moreover, we consider another im-
portant tool from the ICA literature—generalized covariance matrices—which
can replace cumulant tensors in this algorithmic framework, which significantly
simplifies derivations. We demonstrate on a set of experiments with real and
synthetic data the improved qualities of the new models and estimation me-
thod.

In final Chapter 5, we summarize the results and discuss future work. Note that the
content of this thesis was previously published as Podosinnikova et al. [2015] and
Podosinnikova et al. [2016]. Another publication by the author which is not included
but was written while working on this thesis is Podosinnikova et al. [2014] and presents
an extension of the author’s Master’s thesis.
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Notation
Vectors are denoted with lower case bold letters, e.g., x, z, 𝛼, etc. Their elements are
denoted with lower case non-bold letters with subscript, e.g., 𝑥𝑚 denotes the 𝑚-th
element of the vector x and 𝛼𝑘 denotes the 𝑘-th element of the vector𝛼. All vectors are
assumed to be column vectors. Matrices are denoted with upper case bold letters, e.g.,
D, I, A, Q, etc. The matrix I always denotes the identity matrix. Unless otherwise
specified, the matrix Q stands for an orthogonal matrix, i.e. Q⊤Q = QQ⊤ = I,
where Q⊤ is the transpose of Q. An element of a matrix is denoted with an upper
case non-bold letter with subscripts, e.g., 𝐷𝑚𝑛 denotes the (𝑚,𝑛)-th element of the
matrix D. A column of a matrix is denoted with a lower case bold letter with a
subscript, e.g., d𝑘 stands for the 𝑘-th column of the matrix D. Tensors of order-3 and
higher are denoted with a capital calligraphic bold letter, e.g., 𝒯 , 𝒢, etc. An element
of a tensor is denoted with a capital calligraphic non-bold letter with appropriate
subscripts, e.g., 𝒯𝑚1𝑚2...𝑚𝑆

, where 𝑆 stands for the order of this tensor.

We use upper case non-bold letters to denote dimensions and sizes. For instance :
- 𝑀 denotes the dimension of an observed variable, such as the dimension of the

signal in the ICA context or the number of words in the vocabulary in the topic
modeling context ;

- 𝐾 stands for the dimension of a latent variable, such as the number of sources
in the ICA context or the number of topics in the topic modeling context ;

- 𝑁 stands for the number of observations in a sample, such as the number of
documents in a corpus ;

- 𝐿 stands for the document length (i.e. the number of tokens in a document) in
the topic modeling context ;

- 𝑆 is used to denote the order of a tensor, cumulant, or moment.
The indices for any dimension or size are denoted with the respective lower case
letter, e.g., 𝑚 ∈ [𝑀 ] or 𝑛 ∈ [𝑁 ]. The lower case non-bold letter 𝑖 is reserved for the
imaginary unit

√
−1.

The matrix D is always a real matrix of size 𝑀×𝐾 and denotes a linear transformation
of the latent variables, e.g., the mixing matrix (in ICA), the factor loading matrix (in
factor analysis), the dictionary (in dictionary learning), the topic matrix (in topic
modeling), etc. In some cases, some structure is assumed for the matrix D. The
vector x ∈ R𝑀 always refers to an observed variable such as the signal (in ICA)
or the count vector of a document (in topic modeling). The vector 𝛼 ∈ R𝐾 always
refers to a latent variable such as the latent sources in ICA. If the vectors of latent
variables additionally constrained to the probability simplex, e.g. the topic intensities
or proportions in topic modeling, it is denoted as 𝜃 ∈ Δ𝐾 , where the (𝐾 − 1)-
probability simplex is Δ𝐾 =

{︀
𝜃 ∈ R𝐾 :

∑︀𝐾
𝑘=1 𝜃𝑘 = 1, 𝜃𝑘 ≥ 0, ∀𝑘 ∈ [𝐾]

}︀
. For

a vector x ∈ R𝑀 , the ℓ2-norm is denoted as ‖x‖2 =
(︀∑︀𝑀

𝑚=1 𝑥𝑚

)︀1/2 and the ℓ1-
norm is denoted as ‖x‖1 =

∑︀𝑀
𝑚=1 |𝑥𝑚|. For a matrix A ∈ R𝑀×𝐾 , the Frobenius

norm is defined as ‖A‖𝐹 =
(︀∑︀𝑀

𝑚=1

∑︀𝐾
𝑘=1𝐴

2
𝑚𝑘

)︀1/2
=
√︀

Tr(AA⊤). For any matrix A,

x



the diagonal matrix Diag(A) contains the diagonal values of A on its diagonal, i.e.
[Diag(A)]𝑚𝑚 = 𝐴𝑚𝑚. For any vector a, the diagonal matrix Diag(a) contains the
vector a on its diagonal, i.e. [Diag(a)]𝑚𝑚 = 𝑎𝑚. The Kronecker delta 𝛿(𝑚1, . . . ,𝑚𝑆) is
equal to 1 if and only if 𝑚1 = · · · = 𝑚𝑆 and 0 otherwise. In Appendix A.1, we recall
some of the probability distributions used in this thesis.

For the illustration of probabilistic models, we use the standard in the graphical
modeling literature plate notation [see, e.g., Buntine, 1994, Bishop, 2006]. In this
notation, bold black dots denote parameters of a model ; transparent circles stand
for latent variables ; shaded circles stand for observed variables ; and plates denote
repetitions of such (conditionally) independent variables, where the number on a plate
denotes the number of such repetitions.

xi



Chapitre 1

Latent Linear Models

Abstract
Latent linear models assume that the observations originate from a linear transfor-
mation of common latent variables and are widely used for unsupervised data mode-
ling and analysis. Despite the modeling simplicity, there are a number of challenging
problems that have to be addressed for such models. The identifiability property of
latent linear models, which directly affects the interpretability of a model, is one of
such problems. It appears that many popular latent linear models are unidentifiable
and, therefore, unsuitable for interpretation purposes. In this chapter, we first outline
some of the most important and widely used latent linear models in a unified frame-
work with an emphasis on their identifiability properties, including : factor analysis
(Section 1.1.2) and its particular case of probabilistic principal component analysis
(Section 1.1.3) ; independent component analysis (Section 1.1.4) as its identifiable
analogue ; probabilistic canonical correlation analysis as their extension to multi-view
aligned data ; and the most basic topic models—probabilistic latent semantic indexing
and latent Dirichlet allocation (Section 1.2)—designed to handle count data. This
forms the modeling basis of this thesis and helps us to introduce new models in later
sections.



1.1 Latent Linear Models for Single-View Data

1.1.1 Gaussian Mixture Models

One of the simplest latent linear models for continuous data is the Gaussian mixture
model (GMM) [see, e.g., Bishop, 2006, Murphy, 2012, and references therein]. The
model assumes 𝐾 hidden states and a Gaussian distribution associated with each
state. The generative process consists of two steps : (a) sampling the state from a
discrete distribution and (b) sampling an observation from the Gaussian distribution
associated to the sampled state (see a graphical representation of such model in
Figure 1-1a).

To formalize this model, one introduces a latent variable 𝑧 which can take one of 𝐾
discrete states {1, 2, . . . , 𝐾}. It is convenient to model 𝑧 using one-hot encoding, i.e.
as a 𝐾-vector z with only 𝑘-th element equal to one and the rest are zeros (the 𝑘-th
canonical basis vector e𝑘), which corresponds to 𝑧 = 𝑘. The discrete prior (see (A.4)
in Appendix A.1 for the definition) is then used for the state z :

𝑝(z) = Mult(1,𝜃) =
𝐾∏︁
𝑘=1

𝜃𝑧𝑘𝑘 , (1.1)

where the parameter 𝜃 is constrained to the (𝐾 − 1)-simplex, i.e. 𝜃 ∈ Δ𝐾 . For
every state 𝑘, a base distribution of the R𝑀 -valued observed variable x is modeled
as a Gaussian distribution (A.1), i.e. 𝑝(x|𝑧𝑘 = 1) = 𝒩 (x|𝜇𝑘,Σ𝑘), which gives the
conditional distribution

𝑝(x|z) =
𝐾∏︁
𝑘=1

𝒩 (x|𝜇𝑘,Σ𝑘)𝑧𝑘 . (1.2)

Therefore, the marginal distribution of the observation variable x is given by

𝑝(x) =
∑︁
z

𝑝(z) 𝑝(x|z) =
𝐾∑︁
𝑘=1

𝜃𝑘𝒩 (x|𝜇𝑘,Σ𝑘), (1.3)

which is a convex combination of the base Gaussian distributions 𝒩 (x|𝜇𝑘,Σ𝑘) or a
Gaussian mixture, hence the name. The fact that the expectation E(x) = D𝜃, where
the matrix D is formed by stacking the centers 𝜇𝑘, i.e. D = [𝜇1,𝜇2, . . . ,𝜇𝐾 ], explains
why the GMM belongs to latent linear models. The GMM is illustrated using the
standard in the graphical modeling literature plate notation [Buntine, 1994, Comon
and Jutten, 2010, see also Notation Section] in Figure 1-1b. By choosing different
distributions as the base distributions, one can obtain mixtures of other distributions
with topic models as an example (see Section 1.2).

The estimation for Gaussian mixture models is a difficult task [see, e.g., Dasgupta,
1999, Arora and Kannan, 2001, Anandkumar et al., 2012b].
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Figure 1-1 – The Gaussian mixture model (GMM).

1.1.2 Factor Analysis

One problem with mixture models is that they only use a single state to generate
observations, i.e. each observation can only come from one of 𝐾 base distributions.
Indeed, the latent variable in mixture models is represented using one-hot encoding
and only one state is sampled at a time. An alternative is to use a real valued vector
𝛼 ∈ R𝐾 to represent the latent variable. The simplest choice of the prior is again a
Gaussian : 1

𝛼 ∼ 𝒩 (0, I). (1.4)

It is also natural to choose a Gaussian for the conditional distribution of the conti-
nuous observation vector x ∈ R𝑀 :

x|𝛼 ∼ 𝒩 (𝜇+ D𝛼,Ψ), (1.5)

where the vector 𝜇 ∈ R𝑀 , the matrix D ∈ R𝑀×𝐾 is called the factor loading matrix,
and Ψ ∈ R𝑀×𝑀 is the covariance matrix. The elements of the latent variable are
also called factors while the columns of D are called factor loadings. This model
is known under the name of factor analysis [Bartholomew, 1987, Basilevsky, 1994,
Bartholomew et al., 2011] and it makes the conditional independence assumption that
the elements 𝑥1, 𝑥2, . . . 𝑥𝑀 of the observed variable x are conditionally independent
given the latent variable 𝛼. Therefore, the covariance matrix Ψ is diagonal.

It is not difficult to show that the marginal distribution of the observed variable is
also a Gaussian :

𝑝(x) =

∫︁
𝑝(x|𝛼) 𝑝(𝛼) 𝑑𝛼 = 𝒩 (x|𝜇,DD⊤ + Ψ). (1.6)

1. Note that the zero mean and unit covariance for the factor analysis latent variable can be
chosen without loss of generality [see, e.g., Murphy, 2012].
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(b) An FA generative process diagram.

Figure 1-2 – The factor analysis (FA) model.

Intuitively, this means that the factor analysis model explains the covariance of the
observed data as a combination of two terms : (a) the independent variance associated
with each coordinate (in the matrix Ψ) and (b) the covariance between coordinates
(captured in the matrix D). Moreover, this representation of the covariance uses
a low-rank decomposition (if 𝐾 < 𝑀) and only 𝑂(𝑀𝐾) parameters instead of a
full covariance Gaussian with 𝑂(𝑀2) parameters. Note, however, that if Ψ is not
restricted to be diagonal, it can be trivially set to a full matrix and D to zero, in
which case the latent factors would not be required. The factor analysis model is
illustrated using the plate notation in Figure 1-2a.

One can view the factor analysis model from the generative point of view. In this
case, the observed variable x is sampled by (a) first sampling the latent factors 𝛼,
then (b) applying the linear transformation D to this sampled latent factors and the
linear shift 2 𝜇, and finally (c) adding the Gaussian noise :

x = 𝜇+ D𝛼+ 𝜀, (1.7)

where the R𝑀 -valued additive Gaussian noise is 𝜀 ∼ 𝒩 (0,Ψ) (see an illustration
using the plate notation in Figure (1-2b)). This point of view explains why factor
analysis is a latent linear model : it is essentially a linear transformation of latent
factors.

Although inference in the factor analysis model is an easy task, the model is unidenti-
fiable. Indeed, the covariance of the observed variable under the factor analysis model
in (1.6) has the term DD⊤. Let Q be an arbitrary 𝑀 ×𝑀 orthogonal matrix. Then
right-multiplying D by this orthogonal matrix, i.e. ̃︀D = DQ, does not change the dis-
tribution : ̃︀D̃︀D⊤ = DQQ⊤D⊤ = DD⊤. Thus a whole family of matrices ̃︀D gives rise

2. Note that the linear shift 𝜇 can be omitted in practice if one preliminary centers observations
by subtracting the empirical mean. Therefore, this variable is often ignored.
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to the same likelihood (1.6). Geometrically, multiplying D by an orthogonal matrix
can be seen as a rotation of the latent factors 𝛼 before generating the observations x.
However, since 𝛼 is drawn from an isotropic Gaussian, this does not influence the
likelihood. Consequently, one can not uniquely identify the parameter D, nor can one
identify the latent factors 𝛼, independently of the type of estimation and inference
methods used.

This unidentifiability does not influence the predictive performance of the factor ana-
lysis model, since the likelihood does not change. However, it does affect the factor
loading matrix, and, therefore, the interpretation of the latent factors. Since factor
analysis is often used to uncover the latent structure in the data, this issue causes
serious problems. Numerous attempts were made to address this problem by adding
additional assumptions on the model. This includes some heuristic methods for choo-
sing a “meaningful” rotation of the latent factors, e.g., the varimax approach [Kaiser,
1958], which maximizes the variance of the squared loadings of a factor on all the
variables. More rigorous approaches are based on adding supplementary constraints
on the factor loading matrix, the most noticeable one is perhaps sparse principal
component analysis [Zou et al., 2006], which is a separate field of research on its own
[see, e.g., Archambeau and Bach, 2008, d’Aspremont et al., 2008, Journée et al., 2010,
d’Aspremont et al., 2014]. An alternative approach is to use non-Gaussian priors for
the latent factors, which is well known under the name of independent component
analysis (see Section 1.1.4).

Factor analysis was also extended to multiway data 3 as parallel factor analysis (Pa-
rafac) [Harshman and Lundy, 1994], or three-mode principal component analysis
[Kroonenberg, 1983]. Interestingly, Parafac is also the tensor decomposition which is
used in the algorithmic framework of this thesis (see Section 2.1.2).

1.1.3 Probabilistic Principal Component Analysis

Standard principal component analysis (PCA) [Pearson, 1901, Jolliffe, 2002] is an
algebraic tool that finds a low-dimensional subspace such that if the original data
is projected onto this subspace then the variance of the projected data is maximi-
zed. It is well known that this subspace can be defined by the empirical mean of
the data sample and the eigenvectors of the empirical covariance matrix. The eigen-
vectors of this covariance matrix, sorted in the decreasing order of the eigenvalues,
are called principal directions. Although this PCA solution is uniquely defined (gi-
ven all eigenvalues are distinct), principal component form a possible basis of the
“best” low-dimensional subspace ; any other basis, e.g., obtained with any orthogo-
nal transformation of principal components, would be a solution as well. As we shall
see shortly, this solution is directly related to a special case of the factor analysis
model. Therefore, standard PCA partially resolves the unidentifiability of factor ana-
lysis. However, since each principal component is a linear combination of the original

3. By multiway data we mean data presented in the form of a multidimensional (i.e. dimension
3 or higher ; dimension 2 corresponds to a matrix) array.
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(b) An ICA plate diagram.

Figure 1-3 – The probabilistic PCA and ICA models.

variables, the PCA solution is still difficult to interpret.

Although PCA is not necessarily considered to be a method based on Gaussian dis-
tributions, it can be justified using Gaussians. Indeed, a particular case of the factor
analysis model when the covariance is isotropic, i.e. Ψ = 𝜎2I :

𝛼 ∼ 𝒩 (0, I),

x|𝛼 ∼ 𝒩 (𝜇+ D𝛼, 𝜎2I),
(1.8)

is known under the name of probabilistic principal component analysis (see an illus-
tration using the plate notation in Figure 1-3a).

[Roweis, 1998, Tipping and Bishop, 1999] show a probabilistic interpretation of PCA :
the PCA solution can be expressed as a maximum likelihood solution of the proba-
bilistic principal component analysis model when 𝜎 → 0. In particular, the factor
loading matrix of probabilistic PCA is equal to D = V(Λ − 𝜎2I)1/2Q, where V is
the matrix with principal directions in the columns, Λ is the diagonal matrix with
respective eigenvalues of the empirical covariance matrix on the diagonal, and Q is an
arbitrary orthogonal matrix. This unidentifiability of probabilistic PCA is inherited
from factor analysis. Therefore, PCA is unidentifiable as well. Despite the fact that
the standard PCA solution is unique, PCA is defined as a subspace and the principal
directions are a basis of this subspace. An arbitrary rotation of this basis does not
change the subspace.

1.1.4 Independent Component Analysis
Independent component analysis (ICA) [Jutten, 1987, Jutten and Hérault, 1991,
Hyvärinen et al., 2001, Comon, 1994, Comon and Jutten, 2010] was originally de-
veloped in the blind source separation (BSS) context. A typical BSS problem is the
so called cocktail party problem : we are given several speakers (sources) and several
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microphones (sensors), detecting a linear combination of the mixed noisy signal. The
task is to separate the individual sources from the mixed signal.

Noisy ICA. ICA models this problem in a natural way as follows

x = D𝛼+ 𝜀, (1.9)

where the vector x ∈ R𝑀 represents the observed signal, the vector 𝛼 ∈ R𝐾 with
mutually independent components stands for latent sources, the vector 𝜀 ∈ R𝑀 is the
additive noise, and the matrix D ∈ R𝑀×𝐾 is the mixing matrix.

Noiseless ICA. Often, to simplify the estimation and inference in the ICA model,
it is common to assume that the noise level is zero, in which case one rewrites the
ICA model (1.9) as :

x = D𝛼. (1.10)

Alternatively, another simplifying assumption for the noisy ICA model in (1.9) is that
the noise 𝜀 is Gaussian (see, e.g., Section 2.4).

Identifiability. It is straightforward to see the connection between the factor ana-
lysis formulation in (1.7) and the ICA model in (1.9). In fact, factor analysis is a
special case of the ICA model where the sources and additive noise are constrained to
be independent Gaussians (one can ignore the shift vector 𝜇 since observations can
be centered to have zero-mean). However, ICA generally relaxes the Gaussianity as-
sumption, preserving only the independence of sources, although assumptions on the
additive noise may vary. The Gaussianity assumption on the sources can be too res-
trictive and considering other priors can lead to models with higher expressive power.
Moreover, as we mentioned in Section 1.1.2, the Gaussian latent factors (sources) are
actually the reason of the unidentifiability of factor analysis. Indeed, a well known
result 4 says that the mixing matrix and the latent sources of ICA are essentially
identifiable (see below) if at most one source is Gaussian [Comon, 1994]. Hence, one
can see ICA as an identifiable version of factor analysis.

In any case, the permutation and scaling of the mixing matrix and sources in the
ICA model (as well as all other latent linear models) can never be identified. Indeed,
the product d𝑘𝛼𝑘 does not change if one simultaneously rescales (including the sign
change) the terms by some non-zero constant 𝑐 ̸= 0 : (𝑐d𝑘)(𝑐−1𝛼𝑘) = d𝑘𝛼𝑘 ; nor does
the product D𝛼 change if one consistently permutes both the columns of D and the
elements of 𝛼. Therefore, it only makes sense to talk about the identifiability up to
permutation and scaling, which is sometimes referred to as essential identifiability
[see, e.g., Comon and Jutten, 2010]. One can also define a canonical form where, e.g.,
the columns of the mixing matrix are constrained to have the unit ℓ1-norm.

Independent Subspace Analysis (ISA). An interesting geometric interpretation
of the permutation and scaling unidentifiability was provided by Cardoso [1998], where

4. Given the number of latent sources does not exceed the number of observations, 𝐾 ≤𝑀 , and
the mixing matrix is full rank. In Section 1.4, we briefly discuss the other case.
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ICA is equivalently interpreted as the sum of vectors w𝑘 ∈ 𝒮𝑘 :

x =
𝐾∑︁
𝑘=1

w𝑘 + 𝜀, (1.11)

from one-dimensional subspaces 𝒮𝑘 :=
{︀
w ∈ R𝑀 : w = 𝛼d𝑘, 𝛼 ∈ R

}︀
determined by

the vectors d𝑘. Each such subspace can actually be identified, given the vectors d𝑘

are linearly independent, but the representation of every such subspace is clearly not
unique. This gives rise to multidimensional independent component analysis (MICA),
which looks for orthogonal projections on (not necessary one-dimensional) subspaces
𝒮𝑟 :=

{︀
w ∈ R𝑀 : w =

∑︀𝑆𝑟

𝑠=1 𝛼
(𝑟)
𝑠 d

(𝑟)
𝑠 , ∀𝛼(𝑟)

𝑠 ∈ R
}︀
, where 𝑆𝑟 is the dimension of the

𝑟-th subspace, rather than looking for the linear transformation D𝛼. In such a model,
the source vector consists of blocks, 𝛼 =

(︀
𝛼(1),𝛼(2), . . . ,𝛼(𝑅)

)︀
, where each block is

𝛼(𝑟) =
(︀
𝛼
(𝑟)
1 , 𝛼

(𝑟)
2 , . . . , 𝛼

(𝑟)
𝑆𝑟

)︀
and the total number of sources is preserved

∑︀𝑅
𝑟=1 𝑆𝑟 = 𝐾.

For such sources, the independence assumption is replaced with the following : the
tuples inside of one block 𝛼

(𝑟)
1 , 𝛼

(𝑟)
2 , . . . , 𝛼

(𝑟)
𝑆𝑟

can be dependent, however, the blocks
𝛼(1),𝛼(2), . . . ,𝛼(𝑅) are mutually independent.

This model is also known under the name of independent subspace analysis (ISA) 5

[Hyvärinen and Hoyer, 2000]. Cardoso [1998] conjectured that the ISA problem can
be solved by first solving the ICA task and then clustering the ICA elements into
statistically independent groups. Szaboó et al. [2007] prove that this is indeed the
case : under some additional conditions, the solution of the ISA task reduces to a
permutation of the ICA task [see also Szaboó et al., 2012].

A special case of ICA estimation and inference algorithms—known as algebraic cumulant-
based algorithms—are of central importance in this thesis. We describe these algo-
rithms in Section 2.2.2 and 2.4.2. and use them to develop fast and efficient algorithms
for topic models through a close connection to ICA (see Chapter 3).

1.1.5 Dictionary Learning
Another class of latent linear models is the signal processing tool called dictionary
learning [Olshausen and Field, 1996, 1997], which targets approximation of the ob-
served signal x ∈ R𝑀 with the linear combination of the dictionary atoms, which
are columns of the matrix D ∈ R𝑀×𝐾 . A special case of dictionary learning is the
ℓ1-sparse coding problem. It aims at minimizing ‖x−D𝛼‖22 + 𝜆 ‖𝛼‖1, which is well
known to enforce sparsity on 𝛼 given the regularization parameter is chosen appro-
priately [Tibshirani, 1996, Chen et al., 1999]. This minimization problem is equivalent
to the maximum a posteriori estimator of the noisy ICA model (1.9) where the addi-
tive noise is Gaussian and the sources are independent Laplace variables. The Laplace
distribution is often considered as sparsity inducing prior since it has (slightly) hea-
vier tails than Gaussian. Another way to see the connection between the two models

5. Note that although Hyvärinen and Hoyer [2000] make additional assumptions on the density
of the source tuples, the name ISA is used in the literature in the more general setting.
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is replacing the ℓ2-distance with the KL-divergence and looking for the so-called de-
mixing matrix which minimizes the mutual information between the demixed signals
[this is one of approaches to ICA ; see, e.g., Comon and Jutten, 2010]. However, these
topics are outside of the scope of this thesis.

1.2 Latent Linear Models for Count Data

1.2.1 Admixture and Topic Models

The models described in Section 1.1 are designed for continuous data. Similar tech-
niques are often desirable for count data, i.e. non-negative and discrete, which often
appears when working, e.g., with text or images. Directly applying these models to
count data does not work in practice (in the noiseless setting) : the equality x = D𝛼
is only possible when both D and 𝛼 are discrete and usually non-negative. Moreover,
negative values, that can appear in the latent factor vectors or factor loading matrix,
create interpretation problems [Buntine and Jakulin, 2006]. To fix this, one could
turn count data into continuous, e.g., using the term frequency–inverse document
frequency (tf-idf) values for text documents [Baeza-Yates and Ribeiro-Neto, 1999].
However, this does not solve the interpretability issues.

Topic Models. An algebraic adaptation of PCA to discrete data is well known
as non-negative matrix factorization [Lee and Seung, 1999, 2001]. NMF with the
KL-divergence as the objective function is equivalent to probabilistic latent semantic
indexing (pLSI) [see Section 1.2.3 ; Hofmann, 1999a,b], which is probably the simplest
and historically one of the first probabilistic topic model. Topic models can be seen as
probabilistic latent (linear) models adapted to count data. Latent Dirichlet allocation
(LDA) [Blei et al., 2003] is probably the most widely used topic model and extends
pLSI from a discrete mixture model to an admixture model (see below). In fact, it was
shown that pLSI is a special case 6 of LDA [Girolami and Kabán, 2003]. Buntine and
Jakulin [2006] propose to use an umbrella term discrete component analysis for these
and related models. Indeed, all these models enforce constraints on the latent variables
and linear transformation matrix to preserve non-negativity and discreteness, which
are intrinsic to count data.

Admixture Model for Count Data. A natural extension of the models from Sec-
tion 1.1 to count data is to replace the equality x = D𝛼 with the equality in expec-
tation E(x|𝛼) = D𝛼, which gives an admixture model [Pritchard et al., 2000] :

𝛼 ∼ PD𝛼(c1),

x|𝛼 ∼ PDx(D𝛼, c2), such that E(x|𝛼) = D𝛼,
(1.12)

where PD𝛼(·) is a continuous vector valued probability density function of the latent
vectors 𝛼 with a hyper-parameter vector c1 ; and PDx(·) is a discrete-valued pro-
bability distribution of the observation vector x conditioned on the latent vector 𝛼

6. Roughly speaking, pLSI is an ML/MAP estimate of LDA under the uniform prior on 𝜃.
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with a hyper-parameter vector c2 [Buntine and Jakulin, 2005]. Admixture models are
latent linear models since the expectation of the observation vector is equal to a linear
transformation of the latent vector.

1.2.2 Topic Models Terminology
Topic models [Steyvers and Griffiths, 2007, Blei and Lafferty, 2009, Blei, 2012] are
probabilistic models that allow to discover thematic information in text corpora and
annotate the documents using this information.

“Genetics” “Evolution” “Disease” “Computers”
human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations

Table 1.1 – An example of topics obtained by fitting the 100-topic LDA model to
17,000 articles from the journal Science. Each topic is represented by the top 15 most
frequent words. An example is due to Blei [2012].

Although it is common to describe topic models using the text modeling terminology,
applications of topic models go far beyond information retrieval applications. For
example, topic models were successfully applied in computer vision using the notion
of visual words and the computer vision bag-of-words model [Sivic and Zisserman,
2003, Wang and Grimson, 2008, Sivic and Zisserman, 2009]. However, we restrict
ourselves to the standard text corpora terminology, which we summarize below.

The vocabulary is a set 𝒲 := {𝜔1,𝜔2, . . . ,𝜔𝑀} of all the words in the language. The
number 𝑀 of words in the vocabulary is called the vocabulary size. Each word 𝜔𝑚

is represented using the one-hot encoding over 𝑀 words. In the literature, the name
term is also used to refer to a word.

The document is a set 𝒟 := {w1,w2, . . . ,w𝐿} of tokens wℓ ∈ R𝑀 , for ℓ ∈ [𝐿], where
a token is some word, i.e. wℓ = 𝜔𝑚, and 𝐿 is the length of a document. Two tokens
in a document can be equal to the same word from the vocabulary, but words are
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unique. The bag-of-words model [Baeza-Yates and Ribeiro-Neto, 1999] assumes that
the order of tokens in a document does not matter. The count vector x ∈ R𝑀 of a
document 𝒟 is a vector with the 𝑚-th element 𝑥𝑚 equal to the number of times the
𝑚-th word from the vocabulary appears in this document, i.e. x =

∑︀
𝐿
ℓ=1 wℓ.

The corpus is a set 𝒞 := {𝒟1,𝒟2, . . . ,𝒟𝑁} of 𝑁 documents. The count matrix X
of this corpus is the 𝑀 × 𝑁 matrix with the 𝑛-th column equal to the count vector
x𝑛 of the 𝑛-th document. The matrix X is sometimes also called (word-document)
co-occurrence matrix.

There are 𝐾 topics in a model, where the 𝑘-th topic d𝑘 is a parameter vector of
a discrete distribution over the words in the vocabulary, i.e. d𝑘 ∈ Δ𝑀 (see also
Figure 1.1 for an example of topics displayed as the most probable words). The 𝑚-th
element of such a vector indicates the probability with which the 𝑚-th word from the
vocabulary appears in the 𝑘-th topic. The matrix D ∈ R𝑀×𝐾 obtained by stacking
the 𝐾 topics together, D = [d1,d2, . . . ,d𝐾 ], is called the topic matrix. Note that in
our notation 𝐷𝑚𝑘 = 𝑑𝑘𝑚, i.e. the index order is reverted.

We will always use the index 𝑘 ∈ [𝐾] to refer to topics, the index 𝑛 ∈ [𝑁 ] to refer to
documents, the index 𝑚 ∈ [𝑀 ] to refer to words from the vocabulary, and the index
ℓ ∈ [𝐿𝑛] to refer to tokens of the 𝑛-th document.

1.2.3 Probabilistic Latent Semantic Indexing
Latent Semantic Indexing. LSI [Deerwester et al., 1990] is a linear algebra tool for
mapping documents to a vector space of reduced dimensionality, the latent semantic
space. LSI is obtained as a low-rank-𝐾 approximation (see Section 2.1.3) of the (word-
document) co-occurrence matrix. LSI is nearly equivalent to standard PCA : the only
difference is that in LSI the documents are not centered (the mean is not subtracted)
prior to computing the SVD of the co-occurrence matrix, which is normally done
to preserve sparsity. The hope behind LSI is that words with the same common
meaning are mapped to roughly the same direction in the latent space, which allows
to compute meaningful association values between pairs of documents, even if the
documents do not have any terms in common. However, LSI does not guarantee
non-negative values in the latent space, which is undesirable for the interpretation
purposes of non-negative count data.

Probabilistic Latent Semantic Indexing. A direct probabilistic extension of LSI
is probabilistic latent semantic indexing (pLSI) [Hofmann, 1999a,b]. The pLSI model
is a discrete mixture model and, similarly to the Gaussian mixture model (see Sec-
tion 1.1.1), the latent variable 𝑧 of the pLSI model can take one of 𝐾 states, modeled
as before by the 𝐾-vector z with the one-hot encoding. The observed variables are do-
cuments, modeled as the 𝑁 -vector i with the one-hot encoding, and tokens, modeled
as the 𝑀 -vectors w with the one-hot encoding.

The generative pLSI model of a token in the so-called symmetric 7 parametrization (a)

7. A more common asymmetric parametrization of pLSI is described below.
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Figure 1-4 – The probabilistic latent semantic indexing model (pLSI).

first picks the topic z and then, given this topic, (b) picks the document i and (c) picks
the token w for the picked document form the discrete distribution characterized by
the 𝑘-th topic d𝑘, where 𝑘 is such that 𝑧𝑘 = 1. This gives the following joint probability
model :

𝑝(i,w) =
∑︁
z

𝑝(z) 𝑝(i|z) 𝑝(w|z). (1.13)

The respective graphical model is illustrated in Figure 1-4a. It is interesting to notice
that in this formulation pLSI can be seen as a model for working with multi-view
data (see Section 1.3 and Chapter 4) and directly admits extension to more than two
or three views (see the explanation under the probabilistic interpretation of the non-
negative CP decomposition of tensors in Section 2.1.2). Therefore, pLSI easily extends
to model co-occurrence of three and more variables. It is also well known [Gaussier
and Goutte, 2005, Ding et al., 2006, 2008] that pLSI can be seen as probabilistic inter-
pretation 8 of non-negative matrix factorization (NMF) [Lee and Seung, 1999, 2001].
Therefore, the mentioned multi-view extension of pLSI can be seen as a probabilistic
interpretation of the non-negative canonical polyadic (NCP) decomposition of tensors
(see Section 2.1.2).

The symmetric pLSI model makes the following two independence assumptions :
(a) the bag-of-words assumption, i.e. the observation pairs (i,w) are assumed to be
generated independently and (b) tokens w are generated conditionally independent
of the specific document identity i given the latent class (topic) z.

Such model allows to handle (a) polysemous words, i.e. words that may have multiple
senses and multiple types of usage in a different context, and (b) synonyms, i.e.
different words that may have similar meaning or denote the same context.

It is not difficult to show with the help of the Bayes rule applied to 𝑝(i|z), that the
joint density in (1.13) can be equivalently represented as

𝑝(i,w) = 𝑝(i) 𝑝(w|i), 𝑝(w|i) =
∑︁
z

𝑝(w|z) 𝑝(z|i), (1.14)

8. The maximum likelihood formulation of pLSI is equivalent to the minimization of KL diver-
gence for NMF.
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which is known under the name of the asymmetric parametrization (see an illustration
using the plate notation in Figure 1-4b).

The conditional distribution 𝑝(z|i) is the discrete distribution with the parameter
𝜃𝑛 ∈Δ𝐾 , where 𝑛 is such that 𝑖𝑛 = 1 :

𝑝(z|i) =
𝐾∏︁
𝑘=1

𝜃𝑧𝑘𝑛𝑘.

Note that for each document, there is one parameter 𝜃𝑛 ; one can form a matrix
Θ = [𝜃1,𝜃2, . . . ,𝜃𝑁 ] of these parameters. Substituting 𝑝(z|i) into the expression for
𝑝(w|i), we obtain :

𝑝(w|i) =
𝐾∑︁
𝑘=1

𝜃𝑛𝑘𝑝(w|z𝑘), (1.15)

where we used z𝑘 to emphasize that this is the vector z with the 𝑘-th element equal
to 1. Therefore, the conditional distribution of the tokens in a document is the mix-
ture of discrete distributions 𝑝(w|z𝑘) over the vocabulary of 𝑀 words with 𝐾 latent
topics. Substituting the discrete distributions 𝑝(w|z𝑘) with the parameters d𝑘 into
the conditional distribution (1.15), we obtain :

𝑝(w|i) =
𝐾∑︁
𝑘=1

𝜃𝑛𝑘

𝑀∏︁
𝑚=1

𝑑𝑤𝑚
𝑘𝑚

(𝑎)
=

𝐾∑︁
𝑘=1

𝑀∏︁
𝑚=1

(𝜃𝑛𝑘𝑑𝑘𝑚)𝑤𝑚 =
𝑀∏︁

𝑚=1

[︃
𝐾∑︁
𝑘=1

𝜃𝑛𝑘𝑑𝑘𝑚

]︃𝑤𝑚

,

where, in the second equality (a), we could exchange the sum and the product due to
the special form of the one-hot encoded vector w. The sum in the brackets is actually
the 𝑚-th element of the vector D𝜃𝑛 and the conditional distribution 𝑝(w|i𝑛) of tokens
in the 𝑛-th document is the discrete distribution with the parameter D𝜃𝑛 :

w|i𝑛 ∼ Mult(1, [D𝜃𝑛]),

where we used i𝑛 to emphasize that this is the 𝑛-th document. This demonstrates
that pLSI is a latent linear model : indeed, E(w|i𝑛) = D𝜃𝑛.

A significant drawback of pLSI is the number of parameters : the matrix Θ ∈ R𝐾×𝑁

and the topic matrix D ∈ R𝑀×𝐾 give in total 𝑂(𝑁𝐾 + 𝑀𝐾) parameters, i.e. the
number of parameters grows linearly not only in the number of topics 𝐾 and the
number of words in the vocabulary 𝑀 , but also in the number of documents 𝑁 .
Therefore, pLSI is prone to overfitting [Blei et al., 2003].

1.2.4 Latent Dirichlet Allocation

Instead of defining a parameter for each document as 𝜃𝑛 in pLSI, latent Dirichlet
allocation (LDA) [Blei et al., 2003] defines a single parameter c ∈ R𝐾

++ for a corpus and
the topic intensities or topic proportions 𝜃 for each document are modeled as another
latent variable. This Δ𝐾-valued random variable 𝜃 has the Dirichlet distribution
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(hence, the name) since it is the conjugate prior to the multinomial distribution,
which simplifies the estimation and inference procedure in the variational inference
framework (see Section 2.4). However, note that although formally the number of
parameters in the LDA model, 𝑂(𝐾𝑀), is lower than in pLSI, in the variational
inference procedure for LDA a vector of topic intensities has to be estimated for every
document and in this sense there is not much difference between the two models and
LDA just does kind of “smoothing” to avoid overfitting.

Therefore, in the LDA model, all documents in a corpus are drawn independent
and identically distributed in accordance with the following generative process of a
document (see the definitions of the Poisson and Dirichlet distributions in Appen-
dix A.1) :

(0. Draw the document length 𝐿 ∼ Poisson(𝜆). )
1. Draw the topic proportions 𝜃 ∼ Dirichlet(c).
2. For each of the 𝐿 tokens wℓ :

(a) Draw the topic zℓ ∼ Mult(1,𝜃).
(b) Draw the token wℓ|zℓ ∼ Mult (1,dzℓ).

Note that dzℓ denotes the 𝑘-th topic where 𝑘 corresponds to the non-zero entry of
the vector zℓ. The number of topics 𝐾 is assumed to be known and fixed. Although,
the Poisson assumption on 𝐿 is normally ignored in practice, this assumption will
be important to show the connection 9 of LDA with the gamma-Poisson model (see
Chapter 3). We concisely summarize this generative process as follows :(︀

𝐿 ∼ Poisson(𝜆)
)︀
,

𝜃 ∼ Dirichlet(c),

zℓ|𝜃 ∼ Mult(1,𝜃),

wℓ|zℓ ∼ Mult (1,dzℓ) .

(1.16)

We emphasize that it is formulated using tokens. This model (1.16) is illustrated with
a plate diagram in Figure (1-5).

One can think of the latent variables zℓ in the model 1.16 as auxiliary variables which
were introduced for the convenience of inference. In fact, they can be marginalized out
[Buntine, 2002, Buntine and Jakulin, 2004, 2006] to obtain an equivalent and more
compact representation of the model. For completeness, we rigorously demonstrate
the equivalence.

Marginalizing Out the Latent Variable z. The conditional distribution of the
topic state vector zℓ of the ℓ-th token in a document given the latent vector of the
topic intensities 𝜃 is

𝑝(zℓ|𝜃) =
𝐾∏︁
𝑘=1

𝜃𝑧ℓ𝑘𝑘

9. The result is basically that the two models are equivalent given the Poisson assumption on 𝐿
for the LDA model.
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𝜃𝑛 𝑧𝑛ℓ 𝑤𝑛ℓ

Dc

𝐿𝑛

𝑁

Figure 1-5 – The latent Dirichlet allocation (LDA) model.

and the conditional distribution of the ℓ-th token, given the respective latent topic
state vector zℓ and the latent topic intensities vector 𝜃 has the form

𝑝(wℓ|zℓ,𝜃) =
𝐾∏︁
𝑘=1

𝑀∏︁
𝑚=1

𝑑𝑤ℓ𝑚𝑧ℓ𝑘
𝑚𝑘 .

The joint distribution of all the tokens, w1,w2, . . . ,w𝐿, in a document and the res-
pective latent states, z1, z2, . . . , z𝐿, take the form

𝑝(w1,w2, . . . ,w𝐿, z1, z2, . . . , z𝐿|𝜃) =
𝐿∏︁

ℓ=1

𝑝(wℓ, zℓ|𝜃),

where 𝑝(wℓ, zℓ|𝜃) = 𝑝(wℓ, zℓ|𝜃)𝑝(zℓ|𝜃). Substituting the expressions from above to
the marginal distribution of all the tokens we get

𝑝(w1,w2, . . . ,w𝐿|𝜃) =
𝐿∏︁

ℓ=1

∑︁
zℓ∈𝒵

𝑝(wℓ, zℓ|𝜃)

(𝑎)
=

𝐿∏︁
ℓ=1

∑︁
zℓ∈𝒵

𝐾∏︁
𝑘=1

𝑀∏︁
𝑚=1

[𝜃𝑘𝑑𝑚𝑘]𝑤ℓ𝑚𝑧ℓ𝑘

=
𝐿∏︁

ℓ=1

𝐾∑︁
𝑘=1

𝑀∏︁
𝑚=1

[𝜃𝑘𝑑𝑘𝑚]𝑤ℓ𝑚

(𝑏)
=

𝐿∏︁
ℓ=1

𝑀∏︁
𝑚=1

([D𝜃]𝑚)𝑤ℓ𝑚 ,

where 𝒵 stands for the set of all possible values of the one-hot encoded 𝐾-vector ; in
the equality (a) we used that

∏︀𝐾
𝑘=1 𝜃

𝑧ℓ𝑘
𝑘 =

∏︀𝐾
𝑘=1 (𝜃𝑧ℓ𝑘𝑘 )

∑︀𝑀
𝑚=1 𝑤ℓ𝑚 =

∏︀𝐾
𝑘=1

∏︀𝑀
𝑚=1 𝜃

𝑧ℓ𝑘𝑤ℓ𝑚
𝑘

since
∑︀𝐿

ℓ=1𝑤ℓ = 1 ; and in the equality (b) we used that we can exchange the summa-
tion and the product due to the one-hot encoding of the vector wℓ. Finally, we can
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further rewrite this marginal distribution as

𝑝(w1,w2, . . . ,w𝐿|𝜃) =
𝑀∏︁

𝑚=1

([D𝜃]𝑚)
∑︀𝐿

ℓ=1 𝑤ℓ𝑚 .

Recall that the count vector of a document x is equal to the sum of all tokens wℓ, i.e.
x =

∑︀𝐿
ℓ=1 wℓ. Let 𝐶𝑚 denote the number of times the 𝑚-th word from the vocabulary

appears in a document, then the vector 𝐶 = [𝐶1, 𝐶2, . . . , 𝐶𝑀 ]⊤ represents the counts
of all words in this document. Given 𝜃, the event that the random variable x is equal to
the vector 𝐶 is then equal to the event that among the tokens w1,w2, . . . ,w𝐿 of this
document there are 𝐶𝑚 tokens corresponding to the 𝑚-th word. The second event
can be represented in 𝐿!/(𝐶1!𝐶2! . . . 𝐶𝑀 !) different ways, where 𝐿 is the document
length. Therefore, the count vector x is distributed in accordance with the multinomial
distribution with the parameter D𝜃 and 𝐿 trials :

𝑝(x|𝜃) =
𝐿!

𝑥1!𝑥2! . . . 𝑥𝑀 !

𝑀∏︁
𝑚=1

[D𝜃]𝑥𝑚
𝑚 .

This gives an equivalent formulation of the generative process (1.16) of a document
under the LDA model : (︀

𝐿 ∼ Poisson(𝜆)
)︀
,

𝜃 ∼ Dirichlet(c),

x|𝜃 ∼ Mult(𝐿,D𝜃).

LDA model (1.17)

In this formulation, LDA is a special case of the admixture model (1.12), which justifies
the place of the LDA model in the list of latent linear models. In formulation (3.2),
the LDA model is also known under the names of multinomial PCA or the Dirichlet-
multinomial model [Buntine, 2002, Buntine and Jakulin, 2004, 2006]. This formulation
will prove useful in Chapter 3 for the formulation and motivation of the novel discrete
ICA model.

1.2.5 Other Topic Models
LDA and pLSI do not model correlations between topics (e.g., that a topic about
geology is more likely to appear together with a topic about chemistry than about
sport). To address this, several classes of topic models were proposed, such as the
correlated topic model [Blei and Lafferty, 2007] and pachinko allocation model [Li and
McCallum, 2006]. However, the estimation and inference in these models is a more
challenging task. Arabshahi and Anandkumar [2016] proposed recently latent norma-
lized infinitely divisible topic models with an estimation method based on the method
of moments, which goes along the lines of the methods developed in Chapter 3. Some
models from this class allow modeling both positive and negative correlations among
topics (see also Section 3.2). Moreover, we assumed that the number of topics 𝐾 is
fixed and known, which is rarely the case in practice. The Bayesian nonparametric
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topic model [Teh et al., 2006] addresses this issue : the number of topics is determi-
ned by the collection during posterior inference. However, these and many other topic
models are outside the scope of this thesis [for more details see, e.g., Blei, 2012].

1.3 Latent Linear Models for Multi-View Data

1.3.1 Probabilistic Canonical Correlation Analysis

Aligned or multi-view data often naturally arise in applications. For two views, such
data is represented as two data sets such that each observation from one view is aligned
with one observation in the other view and other way round. For instance, one view
can consist of sentences in one language and the other can contain translations of
these sentences into another language such that the same sentences in two different
languages are aligned. Formally, one is given two data sets (finite samples) :

X(1) =
{︀
x
(1)
1 ,x

(1)
2 , . . . ,x

(1)
𝑁

}︀
⊂ R𝑀1 , X(2) =

{︀
x
(2)
1 ,x

(2)
2 , . . . ,x

(2)
𝑁

}︀
⊂ R𝑀2 , (1.18)

such that each pair
(︀
x
(1)
𝑛 ,x

(2)
𝑛

)︀
is aligned. Naturally, the number of views can be larger

than two with tuples of aligned observations. Such data is also known in the literature
under the names of dyadic, coupled, or paired data.

Canonical Correlation Analysis. Classical canonical correlation analysis (CCA)
[Hotelling, 1936] aims to find a pair of linear transformations D1 ∈ R𝑀1×𝐾 and
D2 ∈ R𝑀2×𝐾 of two observation vectors x(1) ∈ R𝑀1 and x(2) ∈ R𝑀2 each represen-
ting a data-view, such that each component of transformed variables in one data set,
D⊤

1 x
(1), is correlated with a single component in the other set, D⊤

2 x
(2), i.e. the cor-

relation is maximized. The columns of the matrices D1 and D2 are called canonical
correlation directions. Likewise classical PCA, the CCA solution boils down to solving
a generalized SVD problem.

Probabilistic Canonical Correlation Analysis. The following probabilistic inter-
pretation of CCA was proposed by Browne [1979], Bach and Jordan [2005], Klami
et al. [2013]. Given that 𝐾 sources are independent and identically distributed stan-
dard normal random variables, 𝛼 ∼ 𝒩 (0, I𝐾), such probabilistic CCA model, which
we will refer to as the Gaussian CCA model, is given by

x(1)|𝛼 ∼ 𝒩 (𝜇1 + D1𝛼,Ψ1),

x(2)|𝛼 ∼ 𝒩 (𝜇2 + D2𝛼,Ψ2),
(1.19)

where the covariance matrices Ψ1 ∈ R𝑀1×𝑀1 and Ψ2 ∈ R𝑀2×𝑀2 are positive semi-
definite. The maximum likelihood estimators of the parameters D1 and D2 coincide
with canonical correlation directions, up to permutation, scaling, and left-multiplication
by any invertible matrix. Therefore, likewise factor analysis and probabilistic PCA,
probabilistic CCA is unidentifiable.

By analogy with factor analysis, the Gaussian CCA model (1.19) can be equivalently

17



𝛼𝑛𝑘

𝑥
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(a) A PCCA plate diagram.
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(b) A PCCA generative process diagram.

Figure 1-6 – The probabilistic CCA model.

represented through the following generative process

x(1) = 𝜇1 + D1𝛼+ 𝜀(1),

x(2) = 𝜇2 + D2𝛼+ 𝜀(2),
(1.20)

where the additive noise vectors are multivariate normal random variables :

𝜀(1) ∼ 𝒩 (0,Ψ1), 𝜀(2) ∼ 𝒩 (0,Ψ2), (1.21)

and the following independence assumptions are made

𝛼1, . . . , 𝛼𝐾 are mutually independent,

𝛼 ⊥⊥ 𝜀(1), 𝜀(2) and 𝜀(1) ⊥⊥ 𝜀(2).
(1.22)

Therefore, Gaussian CCA is nearly an extension of factor analysis to two views. The
difference is that the covariance matrices of the noise, Ψ1 and Ψ2, are not restricted
to be diagonal and the view-specific noise may be arbitrary correlated. The only
requirement is that there are no correlations across the views. More specifically, to
see how Gaussian CCA is related to factor analysis, one can stack the view specific
vectors (matrices) into a single vector (matrix) :

x =

(︂
x(1)

x(2)

)︂
, 𝜇 =

(︂
𝜇1

𝜇2

)︂
, D =

(︂
D1

D2

)︂
, 𝜀 =

(︂
𝜀(1)

𝜀(2)

)︂
, (1.23)

which leads exactly to the generative model of factor analysis (1.7) with a single
difference of the assumptions on the additive noise. Indeed, in factor analysis the
additive noise is zero-mean Gaussian variable with the diagonal covariance matrix Ψ,
while in Gaussian CCA, the covariance of the zero-mean Gaussian additive noise has
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the block diagonal structure :

Ψ =

(︂
Ψ1 0
0 Ψ2

)︂
, (1.24)

Using such stacking trick, one can see that the marginal distribution of the observa-
tions under the Gaussian CCA model is the same as the one for factor analysis (1.6)
with the covariance matrix of the noise in the form (1.24). Extension to more than
two views are possible [see, e.g., Kettenring, 1971, Bach and Jordan, 2002], but are
not considered in this thesis.

By relaxing the Gaussianity assumption, ICA is transformed into an identifiable ver-
sion of factor analysis. Similarly, by relaxing the Gaussianity assumption on the in-
dependent latent sources in Gaussian CCA, we obtain an identifiable version of CCA
(see Chapter 4). Some other multi-view models are outlined in Section 4.2.

1.4 Overcomplete Latent Linear Models
It is common to distinguish the undercomplete and overcomplete cases of latent linear
models. The undercomplete case assumes that there are less latent variables than
observations in a model, i.e. 𝐾 < 𝑀 (in the ICA literature, this case is also known as
overdetermined). On the contrary, the overcomplete case assumes that there are more
latent variables than observations in a model, i.e. 𝐾 > 𝑀 (in the ICA literature, this
case is also known as underdetermined). The equality case, 𝑀 = 𝐾 corresponds to the
complete or determined case if the linear transformation matrix D is full rank.

In the undercomplete case, the problem D𝛼 is well-posed if the matrix D has full
column rank in a sense that the latent sources and the matrix D can be identified up
to permutation and scaling. This is an easier problem and such setting is assumed all
over this thesis.

On the contrary, in the overcomplete case at least some columns of the linear trans-
formation matrix are linearly dependent and the recovery problem of the matrix D
is a more difficult problem. Nevertheless, (essentially) unique recovery of the matrix
D is still possible without any additional assumptions [Lee et al., 1999, Lewicki and
Sejnowski, 2000, Comon, 2004, De Lathauwer et al., 2007, De Lathauwer and Cas-
taing, 2008, Comon, 1998] or in the topic modeling case [Anandkumar et al., 2015c].
However, recovery of the latent sources 𝛼 requires additional assumptions in such
case.
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Chapitre 2

Tensors and Estimation in Latent
Linear Models

Abstract
In accordance with the method of moments, parameters of a model are estimated
by matching the population moments (or other statistics such as cumulants) of this
model with respective sample estimates of this moments (or other statistics). When
the method of moments is used for the estimation in latent linear models, higher-order
statistics, which happen to be tensors, have often to be taken into account. Therefore,
we first provide an overview of tensors and their decompositions in this chapter, with
the emphasis on the canonical polyadic (CP) decomposition (in Section 2.2), and
recall different higher-order statistics (moments and cumulants ; in Section 2.2). We
then connect this CP decomposition of tensors with higher-order statistics of latent
linear models, using as example such models as independent component analysis (in
Section 2.2.2) and latent Dirichlet allocation (in Section 2.2.3), and then make an
overview of algorithms for the CP decomposition (in Section 2.3). This eventually
allows us to perform the estimation in some latent linear models.



2.1 Tensors, Higher Order Statistics, and CPD

2.1.1 Tensors

Let V(1), V(2), . . . , V(𝑆) be 𝑆 vector spaces of dimension 𝑀1, 𝑀2, . . . , 𝑀𝑆, respectively.
An order-𝑆 tensor 𝒯 is an element of the vector space obtained as a tensor product
of these 𝑆 vector spaces, V := V(1) ⊗V(2) ⊗ · · · ⊗V(𝑆), where ⊗ stands for the tensor
(outer) product. The order 𝑆 of a tensor is the number of dimensions, also known
as ways or modes. Thus, an order-1 tensor is a vector, an order-2 tensor is a matrix,
and order-3 or higher tensors are referred to as higher-order tensors. For a detailed
overview of tensors see, e.g., McCullagh [1987], Comon [2002], Kolda and Bader [2009],
Comon [2009], Landsberg [2012], Comon [2014], and references therein.

Let E(𝑠) :=
{︀
e
(𝑠)
1 , e

(𝑠)
2 , . . . , e

(𝑠)
𝑀𝑠

}︀
denote a basis of the vector space V(𝑠). Then the

coordinates 𝒯𝑚1𝑚2...𝑚𝑆
of any tensor 𝒯 ∈ V correspond to

𝒯 =
𝑆∑︁

𝑠=1

𝑀𝑠∑︁
𝑚𝑠=1

𝒯𝑚1𝑚2...𝑚𝑆
e(1)𝑚1
⊗ e(2)𝑚2

⊗ · · · ⊗ e(𝑆)𝑚𝑆
, (2.1)

where the summation is performed along all modes. Unless otherwise specified, we
restrict ourselves to the vector spaces over the field R of real numbers, in which
case we write 𝒯 ∈ R𝑀1×𝑀2×···×𝑀𝑆 . Moreover, a basis E(𝑠) is often chosen to be the
canonical basis of R𝑀𝑠 , i.e. the vector e(𝑠)𝑚 is the 𝑚-th column of the 𝑀𝑠×𝑀𝑠 identity
matrix, for all 𝑚 ∈ [𝑀𝑠]. In this case, a tensor 𝒯 defined in (2.1) can be seen as
an 𝑆-way array with the (𝑚1,𝑚2, . . . ,𝑚𝑆)-th element equal to 𝒯𝑚1𝑚2...𝑚𝑆

. The latter
representation, however, is basis dependent.

The 𝑠-mode product of a tensor 𝒯 ∈ R𝑀1×𝑀2×···×𝑀𝑆 with a matrix A ∈ R𝐾×𝑀𝑠 is
denoted as 𝒯 ×𝑠 A and is a tensor of size 𝑀1 × · · · ×𝑀𝑠−1 ×𝐾 ×𝑀𝑠+1 × · · · ×𝑀𝑆

with the (𝑚1, . . . ,𝑚𝑠−1, 𝑘,𝑚𝑠+1, . . . ,𝑚𝑆)-th element equal to

[𝒯 ×𝑠 A]𝑚1 ...𝑚𝑠−1 𝑘𝑚𝑠+1 ...𝑚𝑆
:=

𝑀𝑠∑︁
𝑚𝑠=1

𝒯𝑚1 ...𝑚𝑠−1 𝑚𝑠 𝑚𝑠+1 ...𝑚𝑆
𝐴𝑘𝑚𝑠 . (2.2)

The 𝑠-mode product is directly related to a change of basis and the so-called multi-
linearity property. Indeed, let e

(𝑠)
𝑚 = A(𝑠)e′(𝑠)𝑚 , for 𝑚 = 1, 2, . . . ,𝑀𝑠, denote a change

of basis in R𝑀𝑠 for some given matrices A(𝑠) ∈ R𝑀𝑠×𝑀𝑠 , for all 𝑠 ∈ [𝑆]. Then the new
coordinates 𝒯 ′

𝑘1𝑘2...𝑘𝑆
of the tensor 𝒯 are expressed as a function of the original ones

[Comon et al., 2009a] as

𝒯 ′
𝑘1𝑘2...𝑘𝑆

=
𝑆∑︁

𝑠=1

𝑀𝑠∑︁
𝑚𝑠=1

𝐴
(1)
𝑘1𝑚1

𝐴
(2)
𝑘2𝑚2

. . . 𝐴
(𝑆)
𝑘𝑆𝑚𝑆

𝒯𝑚1𝑚2...𝑚𝑆
. (2.3)

This, essentially, can be denoted as 𝒯 ′ = 𝒯 ×1 A(1) ×2 A(2) ×3 · · · ×𝑆 A(𝑆). The
property (2.3) of tensors is referred to as multilinearity and, in particular, it allows
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to treat higher-order statistics (moments and cumulants) as tensors (see Property 2
in Section 2.2).

Let us also define several special types of tensors. A tensor 𝒯 is called diagonal if
the only non-zero elements are the ones on the diagonal, i.e. 𝒯𝑚1𝑚2...𝑚𝑆

̸= 0 only if
𝑚1 = 𝑚2 = · · · = 𝑚𝑆. A tensor 𝒯 is called cubical if the dimensions along all its
modes coincide, i.e. 𝑀1 = 𝑀2 = · · · = 𝑀𝑆 = 𝑀 . A cubical tensor 𝒯 ∈ R𝑀×𝑀×···×𝑀

is called symmetric if it remains unchanged under any permutation 𝜋 of its indices,
i.e.

𝒯𝜋(𝑚1)𝜋(𝑚2)...𝜋(𝑚𝑆) = 𝒯𝑚1𝑚2...𝑚𝑆
. (2.4)

Otherwise, a tensor 𝒯 is called non-symmetric.

A fiber of a tensor is a vector obtained by fixing all but one indices in this tensor.
Fibers are extensions of the matrix rows and columns to tensors. A fiber is called
mode-𝑠 fiber, if the unfixed index is along the 𝑠-th dimension (or mode). A slice is a
two-dimensional section of a tensor obtained by fixing all but two indices. Unfolding
(a.k.a. matricization) refers to the process of rearranging the elements of a tensor
into a matrix. Vectorization is the process of rearranging the elements of a tensor
into a vector. For both unfolding and vectorization, the ordering of the elements is
not important as long as it is consistent.

2.1.2 The Canonical Polyadic Decomposition

It turns out that working with tensors is much more challenging than working with
matrices. To emphasize the difference, let us first briefly recall an important result
from linear algebra—the singular value decomposition—and its possible extensions
to tensors.

The Singular Value Decomposition. Matrices — order-2 tensors — are well stu-
died and their properties are well understood [see, e.g., Horn and Johnson, 2013].
One noticeable property of matrices is the singular value decomposition (SVD). It
says that given a real or complex 𝑀1 × 𝑀2 matrix A of rank 𝑅, there exist uni-
tary matrices U and V, of size 𝑀1 × 𝑀1 and 𝑀2 × 𝑀2 respectively, and values
𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑅 > 0 = 𝜎𝑅+1 = · · · = 𝜎𝐹 , where 𝐹 = min [𝑀1,𝑀2], such
that

A = UΣV*, (2.5)

where Σ is an 𝑀1 ×𝑀2 diagonal matrix with the diagonal elements equal to 𝜎1, . . . ,
𝜎𝐹 , and V* stands for the conjugate transpose of V. The columns of the matrix U
are called the left singular vectors, the columns of the matrix V are called the right
singular vectors, and the values 𝜎𝑚 are referred to as the singular values.

The SVD formulation (2.5) can be equivalently rewritten as the sum of rank-1 terms :

A =
𝑅∑︁

𝑟=1

𝜎𝑟 u𝑟v
*
𝑟 , (2.6)
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where the vectors u1, . . . , u𝑅 and v1, . . . , v𝑅 are the first 𝑅 left and right singular
vectors, respectively, and the superscript (·)* stands for the conjugate transpose. Here
the terms u𝑟v

*
𝑟 are the rank-1 matrices. Any rank-𝑅 matrix admits the singular value

decomposition and it is unique (up to scaling by −1) given all singular values are
different.

An extension of the SVD to tensors is not straightforward. Consider the following
decomposition of an order-3 tensor introduced by Tucker [1966]

𝒯 = 𝒢 ×1 U×2 V ×3 W, (2.7)

where 𝒢 is an order-3 tensor called the core tensor and the matrices U, V, and W
are called the factor matrices. The decomposition problem would be to estimate the
core tensor 𝒢 and factor matrices U, V, and W given the tensor 𝒯 . To obtain an
equivalent of the SVD for tensors, we would have to make two assumptions in (2.7) :
(a) the tensor 𝒢 is diagonal and (b) the matrices U, V, and W are orthonormal. In
general, if the number of free parameters in the right-hand side of (2.7) is smaller
than the number of equations, then one can not solve the problem. This happens to
be the case for an order-3 tensor under the mentioned diagonality and orthogonality
assumptions. Therefore, it is impossible to define an extension of the SVD to higher-
order tensors without relaxing some assumptions.

By relaxing one or the other assumption, two main tensor equivalents of the SVD
for tensors can be found in the literature. One of these decompositions, a tensor
equivalent of the formulation in (2.5), is the Tucker decomposition [Tucker, 1966]
where the tensor 𝒢 in (2.7) is allowed to have non-zero non-diagonal entries, but
the orthonormality constraint is preserved. Note that in this case the dimensions
of the core tensor 𝒢 are normally significantly smaller than the dimensions of the
tensor 𝒯 . In the following, we use equation (2.7) to refer to the Tucker decomposition.
Another decomposition, a tensor equivalent of the formulation in (2.6), is the so-called
canonical polyadic decomposition, or the CP decomposition, where the tensor 𝒢 is
constrained to be diagonal, but the orthonormality constraint on the factor matrices
U, V, and W is relaxed, allowing, in particular, factor matrices with more columns
than rows. The CP decomposition is of central importance in this thesis and will be
discussed in detail in this and other sections.

Not only the mentioned extensions of the SVD for tensors differ, but computing these
decompositions is also a challenging task. In fact, most of the tensor problems are
NP-hard [Hillar and Lim, 2013].

The Canonical Polyadic Decomposition. An order-𝑆 tensor 𝒯 ∈ R𝑀1×𝑀2×···×𝑀𝑆

is called a rank-1 tensor if it can be written as the tensor product of 𝑆 vectors, i.e.
𝒯 = u(1) ⊗ u(2) ⊗ · · · ⊗ u(𝑆), where u(𝑠) ∈ R𝑀𝑠 for 𝑠 ∈ [𝑆]. Any tensor 𝒯 admits a
decomposition into a sum of rank-1 tensors as follows

𝒯 =
𝐹∑︁

𝑗=1

u
(1)
𝑗 ⊗ u

(2)
𝑗 ⊗ · · · ⊗ u

(𝑆)
𝑗 , (2.8)
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𝒯 = u1

w1

v1

+ . . . + u𝐹

w𝐹

v𝐹

Figure 2-1 – A canonical polyadic decomposition of an order-3 tensor 𝒯 .

with potentially very large 𝐹 , which is called the canonical polyadic decomposition
or CP decomposition (see an illustration on Figure 2-1). Note that for 𝑆 = 3 this is
equivalent to the decomposition in (2.7) with the diagonal core tensor 𝒢 and relaxed
orthonormality assumption on the factor matrices (with u := u(1), v := u(2), and
w := u(3)), since we can eliminate the scalar factors 𝒢𝑚𝑚𝑚 by respectively rescaling
the factor vectors. For 𝑠 ∈ [𝑆], the order-𝑠 factor matrix U(𝑠) ∈ R𝑀𝑠×𝐹 of the CP
decomposition is obtained by stacking the factors u

(𝑠)
1 , u

(𝑠)
2 , . . . , u

(𝑠)
𝐹 columnwise

into a matrix, i.e. U(𝑠) :=
[︀
u
(𝑠)
1 u

(𝑠)
2 . . . u

(𝑠)
𝐹

]︀
. We emphasize one more time that the

matrices U(𝑠) are not assumed to be orthonormal. Moreover, the number of factors 𝐹
does not have to be equal to any of dimensions and can, in particular, be larger than
any of 𝑀1, 𝑀2, . . . , 𝑀𝑆.

It is worth noting that the naming convention between the CP decomposition and
factor analysis is confusing (see Section 1.1.2). The factors of the CP decomposition
correspond to the factor loadings in factor analysis. The factors in factor analysis
refer to the latent variables and, therefore, mean something different from the factors
in the CP decomposition. Overall, the factor matrix of the CP decomposition is an
equivalent of the factor loading matrix in factor analysis (see also a probabilistic
interpretation of the non-negative CP decomposition below).

The canonical polyadic decomposition was originally introduced by Hitchcock [1927a,b].
The name canonical decomposition was given by Carroll and Chang [1970] and the
name Parafac was introduced by Harshman [1970], Harshman and Lundy [1994], both
in the psychometrics literature. For a detailed introduction to the CP decomposition
and a literature overview see, e.g., Kolda and Bader [2009], Comon et al. [2009a].

The coordinate representation of the CP decomposition is as follows. Let 𝑢(𝑠)
𝑚𝑠𝑟 denote

the 𝑚𝑠-th coordinates of the vector u
(𝑠)
𝑟 in a basis E(𝑠), then the CP decomposi-
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tion (2.8) can be rewritten as

𝒯 =
𝐹∑︁

𝑗=1

(︃
𝑀1∑︁

𝑚1=1

𝑢𝑚1𝑗e
(1)
𝑚1

)︃
⊗

(︃
𝑀2∑︁

𝑚2=1

𝑢𝑚2𝑗e
(2)
𝑚2

)︃
⊗ · · · ⊗

(︃
𝑀𝑆∑︁

𝑚𝑆=1

𝑢𝑚𝑆𝑗e
(𝑆)
𝑚𝑆

)︃

=
𝑆∑︁

𝑠=1

𝑀𝑠∑︁
𝑚𝑠=1

(︃
𝐹∑︁

𝑗=1

𝑢
(1)
𝑚1𝑗

𝑢
(2)
𝑚2𝑗

. . . 𝑢
(𝑆)
𝑚𝑆𝑗

)︃
e(1)𝑚1
⊗ e(2)𝑚2

⊗ · · · ⊗ e(𝑆)𝑚𝑆
,

(2.9)

which shows that the coordinates are related as 𝒯𝑚1𝑚2...𝑚𝑆
=
∑︀𝐹

𝑗=1 𝑢
(1)
𝑚1𝑗

𝑢
(2)
𝑚2𝑗

. . . 𝑢
(𝑆)
𝑚𝑆𝑗

.
However, by analogy with the coordinate representation of a tensor in (2.1), the repre-
sentation in (2.9) is basis dependent as opposed to the representation in (2.8).

Symmetric CP Decomposition. It is common to distinguish special types of CP
decompositions. One of them is the symmetric CP decomposition [Comon et al., 2008] :
for a symmetric tensor 𝒯 ∈ R𝑀×𝑀×···×𝑀 the symmetric CP decomposition is defined
as

𝒯 =
𝐹∑︁

𝑗=1

𝜆𝑗 u𝑗 ⊗ u𝑗 ⊗ · · · ⊗ u𝑗. (2.10)

Likewise the symmetric case, the matrix U := [u1,u2, . . . ,u𝐹 ] ∈ R𝑀×𝐹 is not assumed
to be orthogonal and 𝐹 can be larger than 𝑀 . As opposed to the non-symmetric CP
decomposition (2.8), introduction of the scalar factors 𝜆𝑟 is essential. Indeed, in the
non-symmetric decomposition (2.8), we can simply rescale the factors u

(1)
𝑗 , u(2)

𝑗 , . . . ,
u
(𝑆)
𝑗 by 𝜆𝑗 without changing the result. However, in the symmetric case such rescaling

is not always possible : take for example an even order tensor and 𝜆𝑗 = −1.

Nonnegative CP Decomposition. Another type of the CP decomposition is the
nonnegative canonical polyadic (NCP) decomposition of a nonnegative tensor 𝒯 ∈
R𝑀1×𝑀2×···×𝑀𝑆 which is defined as

𝒯 =
𝐹∑︁

𝑗=1

𝜆𝑗 u
(1)
𝑗 ⊗ u

(2)
𝑗 ⊗ · · · ⊗ u

(𝑆)
𝑗 , (2.11)

where all factors are nonnegative, i.e. u
(𝑠)
𝑗 ≥ 0 and 𝜆𝑗 ≥ 0, for all 𝑗 ∈ [𝐹 ] and

𝑠 ∈ [𝑆] [Carroll et al., 1989, Krijnen and Ten Berge, 1991, Paatero, 1997, Shashua
and Hazan, 2005, Lim and Comon, 2009]. Note that, without loss of generality, the
vectors u(𝑠)

𝑗 can be restricted to belong to the probability simplex, i.e. u(𝑠)
𝑗 ∈Δ𝑀𝑠 , for

all 𝑠 ∈ [𝑆]. The nonnegative CP decomposition (2.11) is a straightforward extension of
nonnegative matrix factorization [Paatero and Tapper, 1994, Lee and Seung, 1999] to
tensors. Moreover, since NMF is equivalent 1 to probabilistic latent semantic indexing
(pLSI ; see Section 1.2.3) [Gaussier and Goutte, 2005, Ding et al., 2006, 2008], and
since the NCP decomposition is an extension of NMF to tensors, the nonnegative CP

1. The KL-divergence based NMF objective is equivalent to the maximum likelihood objective
of pLSI.
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z

w(1) w(2) w(3)

Figure 2-2 – The probabilistic interpretation of NCP (multi-view pLSI).

decomposition (2.11) has a probabilistic interpretation as extension of pLSI to more
than two random variables [Lim and Comon, 2009]. Importantly, the best low-rank
approximation problem of the nonnegative CP decomposition is well-posed [De Silva
and Lim, 2008, Comon et al., 2008, Lim and Comon, 2009], i.e. a solution always
exists. Some CP uniqueness results also extend to nonnegative tensors [Qi et al.,
2016].

Probabilistic Interpretation of the NCP Decomposition. We discussed pLSI
in Section 1.2.3, where we mentioned that pLSI admits straightforward extension to
the multi-view case via its symmetric parametrization (see also Figure 1-4a). Indeed,
one just needs to add more observed variables (views), which are conditionally inde-
pendent of other variables given the latent variable (i.e., the naïve Bayes hypothesis)
Lim and Comon [2009]. We illustrate such extension to the case of three observed
variables in Figure 2-2.

Extending the pLSI generative model to this case of three views, we directly obtain
the following marginal distribution

𝑝
(︀
w(1),w(2),w(3)

)︀
=
∑︁
z

𝑝(z)𝑝
(︀
w(1)|z

)︀
𝑝
(︀
w(2)|z

)︀
𝑝
(︀
w(3)|z

)︀
,

where 𝑝(z) and 𝑝
(︀
w(𝑗)|z

)︀
, for 𝑗 = 1, 2, 3, are some discrete distributions. Therefore,

this probability mass function can be rewritten as a non-negative CP decomposi-
tion, provided we “store” the distributions 𝑝(w(𝑗)|z𝑘), for all 𝑗 and 𝑘, in matrices
D(𝑗) ∈ R𝑀𝑗×𝐾 . Likewise the minimization of the KL divergence in NMF is equivalent
to the maximization of the maximum likelihood in pLSI, this equivalence of NCP and
extended to three views pLSI is the same : although the formulations of the problems
are equivalent, different algorithms can be used for solving the factorization or esti-
mation and inference problems. This probabilistic interpretation of NCP clearly has
straightforward extensions to more than three views (to tensors of order higher than
three).

2.1.3 Tensor Rank and Low-Rank Approximation

Tensor Rank. The tensor rank is defined as the minimal number 𝑅 of rank-1 terms in
the CP decomposition (2.8) of a tensor [Hitchcock, 1927a, Kruskal, 1977]. The tensor
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rank always exists and is well defined [see, e.g., Comon et al., 2009a]. Although the
definition of the tensor rank is an exact extension of the definition of the matrix
rank, the properties are quite different. For example, the rank of a real valued tensor
may actually be different over R and C [see, e.g., Kruskal, 1989, Ten Berge, 1991,
Kolda and Bader, 2009]. Moreover, there does not exist a straightforward algorithm
to determine the rank of a specific given tensor ; in fact, the problem is NP-hard
[Håstad, 1990, Hillar and Lim, 2013]. Due to this complexity of the tensor rank, other
types of tensor ranks are also introduced in the literature.

The symmetric tensor rank is defined as the minimal number 𝑅𝑠𝑦𝑚 of rank-1 terms
in the symmetric CP decomposition (2.10) of a tensor [Comon et al., 2008]. It is clear
that 𝑅𝑠𝑦𝑚 ≥ 𝑅 for any symmetric tensor 𝒯 , since any constraint on decomposable
tensor may only increase the rank. However, it has been conjectured by Comon et al.
[2008] that the rank and the symmetric rank are always equal, but this has not yet
been proved in the general case.

The nonnegative tensor rank is defined as the minimal number 𝑅𝑛 of nonnegative
rank-1 terms in the nonnegative CP decomposition (2.11) of a tensor [Lim and Comon,
2009]. The nonnegative rank is generally strictly larger than the rank. This is already
the case for matrices, order-2 tensors [Comon, 2014].

A natural generalization of the matrix row and column rank to tensors is the mode-𝑠
rank of a tensor. The mode-𝑠 rank of a tensor 𝒯 is the dimension of the space spanned
by the mode-𝑠 fibers 2 of this tensor. We denote the mode-𝑠 rank of a tensor 𝒯 as 𝑅𝑠.
For matrices, the row rank is equal to the column rank and is equal to the number
of the rank-1 terms in the SVD, where the latter is the equivalent of the tensor
rank 𝑅. For tensors, however, the numbers 𝑅, 𝑅1, 𝑅2, . . . , and 𝑅𝑆 can all be different.
Therefore, the 𝑆-tuple (𝑅1, 𝑅2, . . . , 𝑅𝑆) of all the mode-𝑠 ranks of a tensor, which is
called the multirank of this tensor, is of interest as well.

Generic (resp. typical) ranks are the ranks that one encounters with probability one
(resp. nonzero probability), when their entries are drawn independently according to
some continuous distribution [Lickteig, 1985, Comon, 2002, Comon and Ten Berge,
2008, Comon et al., 2009b, Comon, 2014]. For matrices, the generic and typical rank
are equal to min(𝑀1,𝑀2). For a higher-order tensor, a generic rank over the real num-
bers does not necessary exist (although, over the complex numbers it always exists)
and both generic and typical rank can be strictly greater than min(𝑅1, 𝑅2, . . . , 𝑅𝑆)
and, in general, are hard to compute. This is another striking difference of the tensor
rank from the matrix rank. The generic and typical rank for some order-3 tensors
of small dimensions have been determined by Comon and Ten Berge [2008], Comon
et al. [2009b]. The probabilities for the typical rank of some tensors have been stu-
died with numerical simulations. For example, the rank of a 2 × 2 × 2 tensor with
elements drawn as independent and identically distributed standard normal random
variables 𝒩 (0, 1) is equal to 2 with probability 0.25𝜋, and to 3 with probability 0.75𝜋

2. Recall that an mode-𝑠 fiber of a tensor 𝒯 ∈ R𝑀1×···×𝑀𝑆 is the 𝑀𝑠-dimensional vector obtained
from 𝒯 by changing the index 𝑚𝑠 ∈ [𝑀𝑠] while keeping all other indices fixed.
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[Kruskal, 1989]. For this particular setting, the exact values of the probabilities were
also derived by Bergqvist [2013].

Finally, another useful notion of tensor rank is the border rank which is defined as the
minimum number of rank-1 terms that are sufficient to approximate the given tensor
with arbitrary small nonzero error. This notion of border rank arises when considering
the best low-rank approximation of tensors (see below) and provides an explanation
of the ill-posedness of this problem. The idea behind this problem is that a series of
rank-𝑆 tensors can converge to a rank-(𝑆 + 1) tensor, i.e. the space of rank-𝑆 tensors
is not closed [Kruskal et al., 1989]. Once more, the rank and border rank always
coincide for matrices, but they do not generally coincide for higher-order tensors. An
exception here is the nonnegative CP decomposition, where the nonnegative border
rank coincides with the nonnegative rank [Lim and Comon, 2009] and, therefore, the
low-rank approximation problem (see below) is well-posed in this case.

Tensor Low-rank Approximation. In practice, matrices or tensors are often ex-
pected to have approximate low rank structure. For example, as we will see in Sec-
tions 2.2.2 and 2.2.3, population higher-order statistics of some models are tensors
with a low-rank CP structure (given the undercomplete setting). However, their
sample estimators are perturbed by noise, which poses the question of the approxima-
tion rather than exact estimation. The low-rank approximation is of special interest
because, as we will see later, having high rank in the approximation often does not
guarantee the uniqueness of the decomposition [see, e.g., Comon et al., 2009a].

The best low-rank approximation problem for matrices is well-posed and the solution
can be easily obtained through the SVD. Indeed, recall that the best low-rank ap-
proximation of a rank-𝑅 matrix A ∈ R𝑀1×𝑀2 by a matrix Â ∈ R𝑀1×𝑀2 of the rank
𝐾 < 𝑅 is defined as

Â = arg min
B∈R𝑀1×𝑀2

‖A−B‖2𝐹 subject to rank [B] ≤ 𝐾. (2.12)

By the renowned Eckart-Young theorem [Eckart and Young, 1936], the solution to
this problem is directly obtained from the truncated singular value decomposition,
that is Â =

∑︀𝐾
𝑘=1 𝜎𝑘 u𝑘 ⊗ v𝑘, where 𝜎1, . . . , 𝜎𝐾 are the first 𝐾 largest singular

values of the matrix A and u𝑘 and v𝑘, for 𝑘 ∈ [𝐾], are the respective left and right
singular vectors.

Similarly to the matrix case, given a fixed value 𝐾 < 𝑅 = rank[𝒯 ], one can be
interested in approximating this tensor 𝒯 by a low rank-𝐾 tensor. A natural way to
define this problem for a given 𝒯 is as follows :

inf

⃦⃦⃦⃦
⃦𝒯 −

𝐾∑︁
𝑘=1

u
(1)
𝑘 ⊗ u

(2)
𝑘 ⊗ · · · ⊗ u

(𝑆)
𝑘

⃦⃦⃦⃦
⃦
2

, (2.13)
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where the (Frobenius) norm ‖𝒯 ‖ of a tensor 𝒯 ∈ R𝑀1×𝑀2×···×𝑀𝑆 is defined as

‖𝒯 ‖2 =
𝑆∑︁

𝑠=1

𝑀𝑠∑︁
𝑚𝑠=1

𝒯 2
𝑚1𝑚2...𝑚𝑆

, (2.14)

which is essentially an equivalent of the matrix Frobenius (or Euclidean) norm. 3 The
major difficulty with the problem (2.13) is that there exists a tensor 𝒯 such that this
infimum may not be attained. This failure can occur with positive probability over a
wide range of dimensions, orders, ranks, and for any continuous measure of proximity
(this includes all norms and Bregman divergences) used instead of the Frobenius norm
[Kruskal et al., 1989, De Silva and Lim, 2008, Comon et al., 2009a]. Moreover, such
failures can occur with positive probability and in some cases with certainty, i.e. where
the infimum in (2.13) is never attained. From the algorithmic point of view, the ill-
posedness of the low-rank tensor decomposition is a serious issue, since what can we
compute when a problem does not have a solution ? In practice, this ill-conditioning
comes out in a form of rank-1 summands that grew unbounded in magnitude but
their sum remains bounded [Bini et al., 1979, 1980, Paatero, 2000, Kruskal et al.,
1989, Comon et al., 2009a, Lim and Comon, 2009]. This phenomenon is known in the
literature under the name of CP degeneracy.

However, there are several exceptional cases, where the low-rank tensor approxima-
tion problem is known to be well-posed. The first case is the case where 𝑅 = 1 which
is the best rank-1 tensor approximation problem [De Lathauwer et al., 2000]. This is
also true in the case of symmetric tensors : the best symmetric rank-1 tensor approxi-
mation problem is well posed [Kofidis and Regalia, 2002]. Note that the best rank-1
approximation of a symmetric tensor is symmetric [Comon et al., 2008]. The second
case where the CP decomposition is well posed is the case of the matrices—order-2
tensors—where the low-rank approximation can always (given all singular values are
distinct) be found by the Eckart-Young theorem [Eckart and Young, 1936]. The third
case is the case of the nonnegative CP decomposition which is always well posed
[Lim and Comon, 2009]. However, in general the best rank approximation problem is
ill-posed for tensors, including the symmetric case [Comon et al., 2008, De Silva and
Lim, 2008]. Moreover, computing the best rank approximation for tensors, even the
best rank-1 approximation, is NP-hard in general [Hillar and Lim, 2013].

2.1.4 CP Uniqueness and Identifiability

As we have already mentioned, each rank-1 term in the CP decomposition is not uni-
quely represented by an outer product of vectors ; moreover the order of the rank-one
terms can be arbitrary changed. Therefore, one is more interested in the uniqueness
of the rank-1 terms, and scalar factors 𝜆𝑟 (if any), in the CP decomposition, which
is sometimes referred to as the essential uniqueness or essential identifiability (up to
permutation and scaling) [Comon, 2014].

3. In fact, the norm in (2.14) is the Euclidean norm of any unfolding of the tensor 𝒯 .
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Sufficient Condition. The essential uniqueness of the CP-decomposition (2.8) of a
tensor 𝒯 is ensured if the sufficient condition below is satisfied [Kruskal, 1977, Sidiro-
poulos and Bro, 2000, Stegeman and Sidiropoulos, 2007, Comon et al., 2009a] :

𝑆∑︁
𝑠=1

rank𝑘

(︀
U(𝑠)

)︀
≥ 2𝑅 + 𝑆 − 1,

where 𝑅 is the rank of a tensor and the Kruskal rank or 𝑘-rank of a matrix A,
denoted rank𝑘(A), is the maximal number 𝑟 such that any set of 𝑟 columns of A is
linearly independent [Kruskal, 1977]. With probability one, this condition is equivalent
to

𝑆∑︁
𝑠=1

min [𝑀𝑠, 𝐹 ] ≥ 2𝐹 + 𝑆 − 1,

where 𝑀𝑠 denotes the 𝑠-th dimension of 𝒯 and 𝐹 is the number of rank-1 terms in
the CPD of 𝒯 . This condition is not necessary. Some attempts to relax this condition
for special types of tensors or in general were made by De Lathauwer [2006], Comon
et al. [2009a], Domanov and De Lathauwer [2013a,b, 2014, 2016]. In the symmetric
tensor case, the symmetric CP decomposition is essentially unique with probability 1
if the dimension does not exceed the order [Mella, 2006], however, this condition is
quite restrictive as well.

Consequences. This condition basically says that if one tries to approximate a
tensor by a sum of rank-1 terms, there is an upper limit on the number of terms in
such approximation which guarantees uniqueness. This limit can be increased in some
special cases (e.g. with additional sparsity constraints), however, in general, this result
is a motivation for a low-rank tensor approximation. We very briefly discuss some of
the algorithms for the computation the CP decomposition in Section 2.3.

2.2 Higher Order Statistics
In this section, we demonstrate how the CP decomposition of tensor is related to
the estimation and inference in latent linear models. In fact, population higher-order
statistics of some latent linear models (see, e.g., Sections 2.2.2 and 2.2.3) are tensors in
the CP form with the factors of this CP decomposition being the linear transformation
matrix(ces). Approximating such decomposition of sample estimators of these higher-
order statistics (see Section 2.3 for some algorithms), thus allows to perform the
estimation in these models (see Sections 2.4.2, 3.4, and 4.5).

2.2.1 Moments, Cumulants, and Generating Functions

Higher-order moments and higher-order cumulants are examples of higher-order sta-
tistics. There is a one-to-one correspondence between moments and cumulants. Mo-
reover, cumulants are often introduced as functions of moments. Despite a simpler
definition of higher-order moments, most of statistical calculations using cumulants
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are easier than most of statistical computations using moments, especially, when dea-
ling with independent random variables. Hence, the importance of cumulants.

In this section, we recall the definitions of moments, cumulants and closely related
concepts, such as the moment- and cumulant-generating functions as well as the
first and second characteristic functions. Higher-order cumulants of ICA (see Sec-
tion 2.2.2), higher-order moment-based statistics of LDA (see Section 2.2.3), as well
as higher-order cumulant-based statistics of other models (see Sections 3.3.2 and 4.4.1)
are tensors in the form of (sometimes symmetric and sometimes non-negative) CP
decomposition. The cumulant generating function is used for defining the generalized
cumulants (in Section 4.4) and the proof of the identifiability results for the models
introduced in Chapter 4 is based on the second characteristic function and its pro-
perties (see Section 4.3.2). For details on the topics covered in this section, see, e.g.,
McCullagh [1987], Stuart and Ord [1994], De Lathauwer [2010].

Moments. The order-𝑆 moment tensor 𝜇(𝑆)
x ∈ R𝑀×𝑀×···×𝑀 of an R𝑀 -valued random

variable x is defined element-wise as[︀
𝜇(𝑆)

x

]︀
𝑚1𝑚2...𝑚𝑆

:= E (𝑥𝑚1𝑥𝑚2 . . . 𝑥𝑚𝑆
) , (2.15)

for all 𝑚1,𝑚2, . . . ,𝑚𝑆 ∈ [𝑀 ]. Note that the order-1 moment of a random vector x is
equal to its mean, i.e. 𝜇(1)

x = E (x). Just as the expectation of a random variable, some
random variables do not have finite moments and sometimes moments are not defined
at all. For example, no mean or higher moments exist for the Cauchy distribution.
Another example is the student’s t-distribution with infinite moments of the order-3
or higher.

The Moment-Generating Function. The moment-generating function (MGF) of
an R𝑀 -valued random variable x is

Mx(t) := E(𝑒t
⊤x), (2.16)

for any t ∈ R𝑀 . The MGF of a random variable does not always exist (since the
expectation may not be finite). When the MGF is finite in the neighborhood of zero,
it uniquely determines the probability distribution, i.e. if two random variables have
the same MGF, they have the same distribution (except possibly at a countable
number of points having 0 probability).

The Taylor series expansion of the MGF at zero has the following form

Mx(t) =
∞∑︁
𝑗=0

1

𝑗!
∇𝑗Mx(0)×1 t×2 t · · · ×𝑗 t

= 1 + ⟨t,∇Mx(0)⟩+
1

2!

⟨︀
t,∇2Mx(0) t

⟩︀
+ . . .

(2.17)

where ⟨·, ·⟩ is the inner product, i.e. ⟨a,b⟩ = a⊤b, the mode-𝑠 product ×𝑠 of a tensor
with a vector is defined in (2.2) (note that 𝐾 = 1 for a vector), and the derivatives
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of the MGF are the moments, i.e. ∇𝑆Mx(0) = 𝜇
(𝑆)
x for any 𝑆 = 1, 2, 3, . . . . Many

distributions, e.g., normal, exponential, Poisson, etc., are uniquely defined by their
moments. Such distributions are called M-determinate. However, unlike the MGF,
two (or even infinitely many) distinct distributions may have the same moments.
Such distributions are called M-equivalent and each of them is M-indeterminate. One
of the best known M-indeterminate distributions is the log-normal distribution [see,
e.g., Heyde, 1963]. Indeed, the log-normal distribution

𝑝(𝑥) :=
1

𝑥
√

2𝜋
exp

(︂
−(ln𝑥)2

2

)︂
, 𝑥 > 0

and the “perturbed” log-normal distribution

𝑞(𝑥) := 𝑝(𝑥)(1 + sin(2𝜋 log 𝑥))), 𝑥 > 0

have the same moments [see also Durrett, 2013, Chapter 3]. Another example of M-
indeterminate distributions is the cube of the Laplace distribution [Stoyanov, 2006].
For more details and examples see, e.g., Stoyanov [2006], Lin and Stoyanov [2009],
Durrett [2013] and references therein. Note however that non-uniqueness occurs only
when the MGF Mx(t) is not analytic at zero [McCullagh, 1987, Section 2.2.1].

The First Characteristic Function. The first characteristic function of an R𝑀 -
valued random variable x is defined as

𝜑x(t) := E(𝑒𝑖t
⊤x), (2.18)

for any t ∈ R𝑀 , where 𝑖 is the imaginary unit. From the definition in (2.18) it
follows that the first characteristic function 𝜑x(t) is the Fourier transform of the
probability measure (if the random variable x has a probability density). Unlike the
moment-generating function, the first characteristic function always exists. Moreo-
ver, in accordance with the uniqueness theorem [see, e.g., Jacod and Protter, 2004,
Durrett, 2013], the Fourier transform of a probability measure on R𝑀 characterizes
this probability measure. This means that the first characteristic function of any real-
valued random variable completely defines its probability distribution. If a random
variable admits a probability density function (PDF), then there is a one-to-one cor-
respondence between this PDF and the first characteristic function : the latter is the
inverse Fourier transform of the former.

Cumulants. The order-𝑆 cumulant tensor 𝜅(𝑆)
x ∈ R𝑀×𝑀×···×𝑀 of an R𝑀 -valued

random variable x is defined element-wise as

[︀
𝜅(𝑆)

x

]︀
𝑚1𝑚2...𝑚𝑆

:=
∑︁

(−1)𝑠−1(𝑠− 1)!E

[︃∏︁
𝑗∈𝑃1

𝑥𝑗

]︃
E

[︃∏︁
𝑗∈𝑃2

𝑥𝑗

]︃
. . .E

[︃∏︁
𝑗∈𝑃𝑠

𝑥𝑗

]︃
, (2.19)

where the summation involves all possible partitions [𝑃1, 𝑃2, . . . , 𝑃𝑠], for 1 ≤ 𝑠 ≤ 𝑆,
of the integers {𝑚1,𝑚2, . . . ,𝑚𝑆}. Note that the first cumulant is equal to the mean ;
the second cumulant is equal to the covariance matrix ; the third cumulant is equal
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to the third central moment :

𝜅(1)
x = E(x),

𝜅(2)
x = cov(x),

𝜅(3)
x = E [(x− E(x))⊗ (x− E(x))⊗ (x− E(x))] .

(2.20)

However, for order-4 and higher, the cumulants are different from the central moments
and the interpretation of cumulants of order higher than 3 is not straightforward. For
example, the order-4 cumulant is equal to[︀

𝜅(4)
x

]︀
𝑚1𝑚2𝑚3𝑚4

= E[�̄�𝑚1�̄�𝑚2�̄�𝑚3�̄�𝑚4 ]− E[�̄�𝑚1�̄�𝑚2 ]E[�̄�𝑚3�̄�𝑚4 ]

− E[�̄�𝑚1�̄�𝑚3 ]E[�̄�𝑚2�̄�𝑚4 ]− E[�̄�𝑚1�̄�𝑚4 ]E[�̄�𝑚2�̄�𝑚3 ],
(2.21)

where �̄�𝑚 stands for the centered 𝑚-th element of the random vector x, i.e. �̄�𝑚 =
𝑥𝑚 − E[𝑥𝑚]. The cumulants of a set of random variables give an indication of their
mutual statistical dependence (as we will see below, completely independent variables
have zero cross-cumulants) and the higher-order cumulants of a single random variable
are some measure of its non-Gaussianity since the cumulants of a Gaussian random
variable are all equal to zero for 𝑆 > 2.

The (𝑚,𝑚′)-th element of a covariance matrix cov(x), which is an order-2 cumulant,
is sometimes called cross-covariance if 𝑚 ̸= 𝑚′. By analogy, we sometimes refer to
non-diagonal elements of higher-order cumulants as cross-cumulants.

The Cumulant-Generating Function. The cumulant-generating function (CGF)
of an R𝑀 -valued random variable x is defined as

Kx(t) := logE(𝑒t
⊤x), (2.22)

for any t ∈ R𝑀 . That is the CGF is the logarithm of the MGF defined in (2.16).
Likewise moments are the coefficients of the Taylor series of the moment-generating
function evaluated at zero, cumulants are the coefficients of the Taylor series of the
cumulant-generating function evaluated at zero :

𝜅(𝑠)
x = ∇𝑠Kx(0), 𝑠 = 1, 2, . . . (2.23)

Note that this way to define cumulants will be important in Chapter 4, where we
introduce the so-called generalized cumulants. Since there is a one-to-one corres-
pondence between moments and cumulants, the discussion related to the unique-
ness of moments extends directly to cumulants. Marcinkiewicz [1939] showed that
the normal distribution is the only distribution whose cumulant generating func-
tion is a polynomial, i.e. the only distribution having a finite number of non-zero
cumulants (we will use this property in the proof on the identifiability theorem
from Section 4.3.2 in Appendix 4.3.3). The MGF of a Poisson random variable
with mean 𝜆 is M𝑥(𝑡) = exp[𝜆(𝑒𝑡 − 1)] ; and the CGF of this random variable is
K𝑥(𝑡) = 𝜆(𝑒𝑡 − 1). Consequently, all the cumulants of a Poisson random variable are
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equal to the mean (we will use this property for the derivation of the DICA cumulants
in Section 3.3.2).

The Second Characteristic Function. The second characteristic function of an
R𝑀 -valued random variable x is defined as

𝜓x(t) := logE(𝑒𝑖 t
⊤x), (2.24)

for any t ∈ R𝑀 . Hence, the second characteristic function is the logarithm 4 of the first
characteristic function 𝜓x(t) defined in (2.18) and, therefore, it also uniquely defines
a distribution. The second characteristic function is the key tool for the identifiability
proof in Chapter 4.

Properties of Cumulants. Since the definition of higher-order moments is somew-
hat simpler, they might seem more interesting at the first sight than higher-order
cumulants. However, cumulants have a number of important properties which they
do not share with moments. Some of these properties are as follows [Nikias and Men-
del, 1993, Nikias and Petropulu, 1993, De Lathauwer, 2010] :

1. Symmetry : real moments 𝜇(𝑆)
x and cumulants 𝜅(𝑆)

x are symmetric tensors
(see (2.4) for definition), i.e. they remain unchanged under any permutation
of their indices.

2. Multilinearity : if an R𝑀 -valued random variable x and an R𝐾-valued random
variable 𝛼 are linearly dependent, i.e. x = D𝛼 for some D ∈ 𝑅𝑀×𝐾 , then
moments 𝜇(𝑆)

x and cumulants 𝜅(𝑆)
x , for all 𝑆 = 1, 2, . . . , are multilinear :

𝜇(𝑆)
x = 𝜇(𝑆)

𝛼 ×1 D
⊤ ×2 D

⊤ · · · ×𝑆 D⊤,

𝜅(𝑆)
x = 𝜅(𝑆)

𝛼 ×1 D
⊤ ×2 D

⊤ · · · ×𝑆 D⊤.
(2.25)

Let D be a basis transformation (𝑀 = 𝐾). Then (2.25) is the rule in accor-
dance to which moments and cumulants change under basis transformations.
This is exactly the multilinearity property of tensors in (2.3) and therefore is
the reason we can refer to moments and cumulants as tensors.

3. Even distribution : if a real random variable 𝑥 has an even probability density
function 𝑝𝑥(𝑥), i.e., 𝑝𝑥(𝑥) is symmetric about the origin, then the odd moments,
𝜇

(𝑆)
𝑥 , and cumulants, 𝜅(𝑆)

𝑥 for 𝑆 = 1, 3, 5, . . . , of 𝑥 vanish.

4. Independence : if all the elements of an R𝐾-valued random variable 𝛼 are mu-
tually independent, then the order-𝑆 cumulant 𝜅(𝑆)

𝛼 of this variable is diagonal
for all 𝑆 = 1, 2, 3, . . . . For example, for order-2 cumulant (i.e. the covariance
matrix) it holds

𝜅(2)
𝛼 = cov(𝛼) = Diag[var(𝛼)] (2.26)

4. Note that the complex logarithm in general is not uniquely defined. It is common to choose the
principal value of log(𝑧), where 𝑧 = 𝑥+ 𝑖𝑦 is a complex number, as the logarithm whose imaginary
part lies in the interval [−𝜋, 𝜋].
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and in general for order-S cumulant (element-wise) one has[︀
𝜅(𝑆)

𝛼

]︀
𝑚1𝑚2...𝑚𝑆

= 𝛿(𝑚1,𝑚2, . . . ,𝑚𝑆)E[(𝑥𝑚1 − E(𝑥𝑚1))
𝑆], (2.27)

where 𝛿 is the Kronecker delta, i.e. 𝛿(𝑚1,𝑚2, . . . ,𝑚𝑆) = 1 if all indices are
equal 𝑚1 = 𝑚2 = · · · = 𝑚𝑆 and 0 otherwise. Such property in general does
not hold for moments.

5. Sum of independent variables : if an R𝑀 -valued random variable x and an
R𝑀 -valued random variable y are independent, i.e. x ⊥⊥ y then the cumulant
of their sum is equal to the sum of cumulants :

𝜅
(𝑆)
x+y = 𝜅(𝑆)

x + 𝜅(𝑆)
y , 𝑆 = 1, 2, 3, . . . (2.28)

This property does not hold for moments either.

6. non-Gaussianity : if 𝑦 is a Gaussian variable with the same mean and variance
as a given random variable 𝑥, then for 𝑆 ≥ 3 it holds :

𝜅(𝑆)
𝑥 = 𝜇(𝑆)

𝑥 − 𝜇(𝑆)
𝑦 . (2.29)

As a consequence, higher-order cumulants of a Gaussian random variable are
all zero. Therefore, in combination with the multilinearity property, this leads
to an interesting property that higher-order cumulants do not change under
additive Gaussian noise. That is, if 𝑧 is a Gaussian random variable, it holds
that 𝜅(𝑆)

𝑥+𝑧 = 𝜅
(𝑆)
𝑥 for all 𝑆 ≥ 3.

7. The law of total cumulance : for two R𝑀 -valued random variables x and y the
following laws hold. For 𝑆 = 1, the law of total expectation, also known under
the name of the tower property :[︀

𝜅(1)
x

]︀
𝑚

= E[𝑥𝑚] = E[E(𝑥𝑚|y)]. (2.30)

For 𝑆 = 2, the law of total covariance :[︀
𝜅(2)

x

]︀
𝑚1𝑚2

= cov(𝑥𝑚1 , 𝑥𝑚2)

= E[cov(𝑥𝑚1 , 𝑥𝑚2|y)] + cov[E(𝑥𝑚1|y),E(𝑥𝑚2|y)].
(2.31)

For 𝑆 = 3, the law of total cumulance :[︀
𝜅(3)

x

]︀
𝑚1𝑚2𝑚3

= E[cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3|y)]

+ cum[E(𝑥𝑚1|y),E(𝑥𝑚2 |y),E(𝑥𝑚3|y)]

+ cov[E(𝑥𝑚1|y), cov(𝑥𝑚2 , 𝑥𝑚3|y)]

+ cov[E(𝑥𝑚2|y), cov(𝑥𝑚1 , 𝑥𝑚3|y)]

+ cov[E(𝑥𝑚3|y), cov(𝑥𝑚1 , 𝑥𝑚2|y)].

(2.32)

One of the key differences between the MGF and CGF (similar expressions can be
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written for the first and second characteristic functions) is as follows. The MGF of
a sum of two independent random variables 𝛼1 and 𝛼2 is equal to the product of
their MGFs : M𝛼1+𝛼2(𝑡) = M𝛼1(𝑡)M𝛼2(𝑡). The CGF of a sum of two independent
random variables 𝑋 and 𝑌 , however, is equal to the sum of their CGFs : K𝛼1+𝛼2(𝑡) =
K𝛼1(𝑡) + K𝛼2(𝑡). This explains why cumulants, but not moments, of independent
variables are diagonal. The CGF is separable and taking derivatives with respect to
𝛼1 and 𝛼2 enforces zero cross-terms ; this does not hold for the MGF (we will make
extensive use of this property in Chapter 4, e.g., when deriving the CP form of the
so-called generalized cumulants for multi-view linear models in Section 4.4.2).

2.2.2 CPD of ICA Cumulants

In this section, we present a well known result that higher-order population cumulants
of independent component analysis (ICA) are tensors in the form of symmetric CP
decomposition (plus potentially some noise). The CP factors in this decomposition
are the mixing matrix and, therefore, this structure can be used for the estimation in
the ICA model. Some references to the ICA methods based on this idea include but
are not limited to Cardoso [1989, 1990], Cardoso and Souloumiac [1993], Souloumiac
[1993], Cardoso [1999], De Lathauwer [2010]. Note that this is only one of many other
possible approaches to the estimation in the ICA model [see, e.g., Comon and Jutten,
2010] ; the details are beyond the scope of this thesis.

ICA cumulants. By the multilinearity (Property 2) and the sum of independent
variables (Property 5) properties of cumulants from Section 2.2, the covariance and
higher-order cumulants of the noisy ICA model (1.9) take the form :

cov(x) = D cov(𝛼)D⊤ + cov(𝜀), (2.33)

𝜅(𝑆)
x = 𝜅(𝑆)

𝛼 ×1 D⊤ ×2 D⊤ · · · ×𝑆 D⊤ + 𝜅(𝑆)
𝜀 , 𝑆 = 3, 4, . . . , (2.34)

where the covariance cov(𝛼) and higher-order cumulants 𝜅(𝑆)
𝛼 of the sources are dia-

gonal by the independence property (Property 4) of cumulants since the sources are
independent. Furthermore, a higher-order cumulant 𝜅(𝑆)

𝜀 , for 𝑆 = 3, 4, . . . , of the ad-
ditive noise vanishes whenever the noise is Gaussian by the non-Gaussianity property
(Property 6).

In the noiseless version (1.10) of ICA the noise is assumed to be zero and the covariance
and higher-order cumulants take the form

cov(x) = D cov(𝛼)D⊤, (2.35)

𝜅(𝑆)
x = 𝜅(𝑆)

𝛼 ×1 D⊤ ×2 D⊤ · · · ×𝑆 D⊤, 𝑆 = 3, 4, . . . , (2.36)

where cov(𝛼) and 𝜅(𝑆)
𝛼 are diagonal. Therefore, these population ICA covariance (2.35)

and cumulants (2.36) are represented as a (weighted) sum of rank-1 terms, which, in
fact, is the symmetric CP decomposition (2.10) described in Section 2.1.2 (see illus-
tration in Figure 2-3). In Section 2.4.2, we discuss how to use this decomposition for
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cov(x) = D ×
cov(𝛼)

× D⊤

(a) The ICA population covariance matrix (2.33).

𝜅
(3)
x =

𝜅
(3)
𝛼D

×

×

D⊤

D⊤×

(b) The order-3 ICA population cumulant (2.34).

Figure 2-3 – The ICA population covariance and order-3 cumulant.

the estimation in the ICA model.

2.2.3 CPD of LDA Moments
In this section, we present a known result that a well defined combination of higher-
order population moments 5 of the LDA model (1.16), likewise ICA cumulants, are
tensors in the form of the symmetric CP decomposition [Anandkumar et al., 2012a,
2013a, 2015a]. In addition to being symmetric, the CP decomposition of these LDA
moments is also non-negative.

LDA Moments. For deriving the LDA moments, a document is assumed to be
composed of at least three tokens : 𝐿 ≥ 3. As the LDA generative model (1.16)
is only defined conditional on the length 𝐿, this is not too problematic. However,
given that we present (see Chapter 3) models which also model 𝐿, we mention for
clarity that we can suppose that all expectations and probabilities defined below are
implicitly conditioning on 𝐿 ≥ 3.

The order-3 LDA population moment is defined [see, e.g., Anandkumar et al., 2012a]
as the outer product of the first three tokens w1, w2, and w3 of a document :

𝜇(3)
x := E(w1 ⊗w2 ⊗w3), (2.37)

5. To be more exact, some higher-order statistics closely related to moments.
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where we used the count vector x of a document as a general reference to these three
tokens. Indeed, the tokens wℓ in the LDA generative model (1.16) are conditionally
independent and identically distributed given the topic intensities 𝜃 of this document
or equivalently the order of the tokens in a document does not matter [Blei et al.,
2003]. Therefore, we can use any three tokens from this document to define the order-3
LDA moment :

𝜇(3)
x = E(wℓ1 ,wℓ2 ,wℓ3),

for any 1 ≤ ℓ1 ̸= ℓ2 ̸= ℓ3 ≤ 𝐿. To highlight this arbitrary choice of tokens and to
make the links with the U-statistics estimator presented later in (2.49), we thus use
generic distinct ℓ1, ℓ2, and ℓ3 in the definition of the LDA moments, instead of ℓ1 = 1,
ℓ2 = 2, and ℓ3 = 3 as done by Anandkumar et al. [2012a].

Using this notation, by the law of total expectation and the properties of the Dirichlet
distribution, the moments of the LDA model (1.16) take the form [Anandkumar et al.,
2012a] :

𝜇(1)
x = E(wℓ1) = D

c

𝑐0
, (2.38)

𝜇(2)
x = E(wℓ1 ⊗wℓ2) =

𝑐0
𝑐0 + 1

𝜇(1)
x ⊗ 𝜇(1)

x +
1

𝑐0(𝑐0 + 1)
DDiag (c)D⊤, (2.39)

𝜇(3)
x = E(wℓ1 ⊗wℓ2 ⊗wℓ3) (2.40)

= 𝐶1

[︀
E(wℓ1 ⊗wℓ2 ⊗ 𝜇(1)

x ) + E(wℓ1 ⊗ 𝜇(1)
x ⊗wℓ3) + E(𝜇(1)

x ⊗wℓ2 ⊗wℓ3)
]︀
,

− 𝐶2𝜇
(1)
x ⊗ 𝜇(1)

x ⊗ 𝜇(1)
x + 𝐶3

𝐾∑︁
𝑘=1

𝑐𝑘 d𝑘 ⊗ d𝑘 ⊗ d𝑘.

where 𝐶1 = 𝑐0(𝑐0 + 2)−1, 𝐶2 = 2𝑐20 [(𝑐0 + 1)(𝑐0 + 2)]−1, 𝐶3 = 2 [𝑐0(𝑐0 + 1)(𝑐0 + 2)]−1,
and ⊗ denotes the tensor product.

The last term in Equation (2.39) and the last term in Equation (2.40) are a matrix
and an order-3 tensor in the form of non-negative symmetric CP decomposition.
Therefore, moving all but these terms from the LHS to the RHS of these equations,
we obtain :

(𝑃𝑎𝑖𝑟𝑠) = S𝐿𝐷𝐴 := 𝜇(2)
x −

𝑐0
𝑐0 + 1

𝜇(1)
x ⊗𝜇(1)

x , LDA S-moment (2.41)

(𝑇𝑟𝑖𝑝𝑙𝑒𝑠) = 𝒯 𝐿𝐷𝐴 := 𝜇(3)
x + 𝐶2𝜇

(1)
x ⊗ 𝜇(1)

x ⊗ 𝜇(1)
x . LDA 𝒯 -moment (2.42)

− 𝑐0
𝑐0 + 2

[︀
E(wℓ1 ⊗wℓ2 ⊗ 𝜇(1)

x ) + E(wℓ1 ⊗ 𝜇(1)
x ⊗wℓ3) + E(𝜇(1)

x ⊗wℓ2 ⊗wℓ3)
]︀
,

where 𝐶2 = 2𝑐20 [(𝑐0 + 1)(𝑐0 + 2)]−1. Slightly abusing terminology, we refer to the
matrix S𝐿𝐷𝐴 and tensor 𝒯 𝐿𝐷𝐴 as the LDA moments. They have the following diagonal
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structure

S𝐿𝐷𝐴 =
1

𝑐0(𝑐0 + 1)

𝐾∑︁
𝑘=1

𝑐𝑘 d𝑘 ⊗ d𝑘, (2.43)

𝒯 𝐿𝐷𝐴 =
2

𝑐0(𝑐0 + 1)(𝑐0 + 2)

𝐾∑︁
𝑘=1

𝑐𝑘 d𝑘 ⊗ d𝑘 ⊗ d𝑘, (2.44)

which is the symmetric non-negative CP decomposition (2.10).

Asymptotically Unbiased Finite Sample Estimators for the LDA Moments.
In the rest of this section, we present asymptotically unbiased finite sample estima-
tors for the LDA moments. In Appendix C.1.1, we also derive expressions for fast
implementation of these estimators.

Given realizations w𝑛ℓ, 𝑛 ∈ [𝑁 ], ℓ ∈ [𝐿𝑛], of the token random variable wℓ, we now
give the expressions for the finite sample estimates 6 of the LDA moments S𝐿𝐷𝐴 and
𝒯 𝐿𝐷𝐴. We use the notation ̂︀E below to express a U-statistics empirical expectation
over the token within a documents, uniformly averaged over the whole corpus. For
example,

̂︀E(wℓ1 ⊗wℓ2 ⊗ ̂︀𝜇(1)
x ) :=

1

𝑁

𝑁∑︁
𝑛=1

1

𝐿𝑛(𝐿𝑛 − 1)

𝐿𝑛∑︁
ℓ1=1

𝐿𝑛∑︁
ℓ2=1
ℓ2 ̸=ℓ1

wℓ1 ⊗wℓ2 ⊗ ̂︀𝜇(1)
x ,

where 𝐿𝑛 stands for the number of tokens in the 𝑛-th document. This gives the
following expressions for the finite sample estimates of the LDA moments :

̂︀S𝐿𝐷𝐴 := ̂︀𝜇(2)
x −

𝑐0
𝑐0 + 1

̂︀𝜇(1)
x ⊗ ̂︀𝜇(1)

x , (2.45)

̂︀𝒯 𝐿𝐷𝐴 := ̂︀𝜇(3)
x +

2𝑐20
(𝑐0 + 1)(𝑐0 + 2)

̂︀𝜇(1)
x ⊗ ̂︀𝜇(1)

x ⊗ ̂︀𝜇(1)
x (2.46)

− 𝑐0
𝑐0 + 2

[︁̂︀E(wℓ1 ⊗wℓ2 ⊗ ̂︀𝜇(1)
x ) + ̂︀E(wℓ1 ⊗ ̂︀𝜇(1)

x ⊗wℓ3) + ̂︀E(̂︀𝜇(1)
x ⊗wℓ2 ⊗wℓ3)

]︁
,

where, as suggested by Anandkumar et al. [2014], unbiased U-statistics estimates of

6. Note that because non-linear functions of ̂︀𝜇(1)
x appear in the expression for ̂︀S𝐿𝐷𝐴 (2.45)

and ̂︀𝒯 𝐿𝐷𝐴 (2.46), the estimator is biased, i.e., E
[︀̂︀S𝐿𝐷𝐴

]︀
̸= S𝐿𝐷𝐴. The bias is small though :

‖E(̂︀S𝐿𝐷𝐴) − ̂︀S‖ = 𝑂(𝑁−1) and the estimator is asymptotically unbiased. This is in contrast with
the estimator for the DICA cumulants (see Section 3.3.2) which is easily made unbiased.
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𝜇
(1)
x , 𝜇(2)

x and 𝜇(3)
x are :

̂︀𝜇(1)
x := ̂︀E(wℓ) = 𝑁−1

𝑁∑︁
𝑛=1

𝐿−1
𝑛

𝐿𝑛∑︁
ℓ=1

w𝑛ℓ, (2.47)

̂︀𝜇(2)
x := ̂︀E(wℓ1 ⊗wℓ2) = 𝑁−1

𝑁∑︁
𝑛=1

1

𝐿𝑛(𝐿𝑛 − 1)

𝐿𝑛∑︁
ℓ1=1

𝐿𝑛∑︁
ℓ2=1
ℓ2 ̸=ℓ1

w𝑛ℓ1 ⊗w𝑛ℓ2 , (2.48)

̂︀𝜇(3)
x := ̂︀E(wℓ1 ⊗wℓ2 ⊗wℓ3) = 𝑁−1

𝑁∑︁
𝑛=1

𝛿3𝑛

𝐿𝑛∑︁
ℓ1=1

𝐿𝑛∑︁
ℓ2=1
ℓ2 ̸=ℓ1

𝐿𝑛∑︁
ℓ3=1
ℓ3 ̸=ℓ2
ℓ3 ̸=ℓ1

w𝑛ℓ1 ⊗w𝑛ℓ2 ⊗w𝑛ℓ3 . (2.49)

Here, the vectors 𝛿1, 𝛿2 and 𝛿3 ∈ R𝑁 are defined element-wise as 𝛿1𝑛 := 𝐿−1
𝑛 ; 𝛿2𝑛 :=

(𝐿𝑛(𝐿𝑛 − 1))−1, i.e., 𝛿2𝑛 =
[︀(︀

𝐿𝑛

2

)︀
2!
]︀−1

is the number of times to choose an ordered
pair of tokens out of 𝐿𝑛 tokens ; 𝛿3𝑛 := (𝐿𝑛(𝐿𝑛 − 1)(𝐿𝑛 − 2))−1, i.e., 𝛿3𝑛 =

[︀(︀
𝐿𝑛

3

)︀
3!
]︀−1

is the number of times to choose an ordered triple of tokens out of 𝐿𝑛 tokens. Note
that the vectors 𝛿1, 𝛿2, and 𝛿3 have nothing to do with the Kronecker delta 𝛿.

There is a slight abuse of notation in the expressions above as wℓ is sometimes trea-
ted as a random variable (i.e., in ̂︀E(wℓ), ̂︀E(wℓ1 ⊗ wℓ2), etc.) and sometimes as its
realization. However, the difference is clear from the context.

2.3 Algorithms for the CP Decomposition

In this section we review two special types of CP decompositions : the orthogonal
symmetric CP decomposition (in Section 2.3.1) and non-orthogonal non-symmetric
CP decomposition (in Section 2.3.2) and discuss some of the algorithms for the ap-
proximation of these decompositions. The orthogonal decomposition is further used
for the prewhitening based estimation algorithms for the LDA and discrete ICA mo-
dels (in Chapter 3) and the non-orthogonal decomposition is the basis for the new
estimation algorithms for multi-view models (in Chapter 4).

2.3.1 Algorithms for Orthogonal Symmetric CPD

Orthogonal Symmetric CP Decomposition. Given a symmetric 𝐾 × 𝐾 × 𝐾
tensor 𝒯 , the goal is to approximate this tensor as follows

𝒯 ≈ 𝒢 ×1 V
⊤ ×2 V

⊤ ×3 V
⊤, (2.50)
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where the core tensor 𝒢 is diagonal with at most one zero diagonal element and the
matrix V ∈ R𝐾×𝐾 is orthogonal, which can be equivalently rewritten as

𝒯 ≈
𝐾∑︁
𝑘=1

𝑔𝑘 v𝑘 ⊗ v𝑘 ⊗ v𝑘 =
𝐾∑︁
𝑘=1

𝑔𝑘 v
⊗3
𝑘 , (2.51)

where 𝑔𝑘 = 𝒢𝑘𝑘𝑘 and the vectors v1, . . . ,v𝐾 are the columns of V and are orthogonal as
well. In fact, this is a special case of the symmetric orthogonal CP decomposition, since
the number of factors is equal to the dimension 𝐾. However, moment-based estimation
methods for latent linear models can often be reduced to such decomposition, which
explains their interest. The orthogonal symmetric tensor decomposition has been
first investigated by Comon [1994]. The proposed algorithm was based on the idea of
Jacobi-like sweeping.

The decomposition in (2.51) can be seen as a direct extension of the symmetric
matrix eigendecomposition to tensors (see also Section 2.1.2). However, the tensor
decomposition in (2.50) or (2.51) is very different from its matrix predecessor. For
example, the Eckart–Young SVD approximation theorem does not extend to this
decomposition [Kolda, 2003] and not every symmetric tensor admits such (exact)
decomposition. Contrary to the matrix case, this tensor decomposition is up to trivial
indeterminacies unique if at most one diagonal entry of the core tensor 𝒢 is equal to
zero [De Lathauwer, 2010].

Symmetric tensors which admit an exact decomposition in the form (2.51) are called
orthogonally decomposable [Kolda, 2001]. In general, symmetric tensors do not neces-
sary admit an orthogonal CP decomposition (see Robeva [2016] for a classification of
tensors that have such decompositions). This leaves a room for different algorithms,
which deal with the estimation error in a different manner. In this section, we dis-
cuss two types of such algorithms : one—orthogonal joint diagonalization—is based
on the ideas of contracting a tensor to matrices and jointly diagonalizing them and
another—tensor power method—is based on the extension of matrix power iterations
to the tensor case.

Tensor Contraction or Projection. Since it is easier to work with matrices rather
than with tensors, it is natural to define a transformation of a tensor to a matrix.
One such transformation is the contraction (a.k.a. projection) of an order-3 tensor 𝒯
with (onto) a vector a, which is defined element-wise as follows

[𝒯 (a)]𝑘1𝑘2 =
𝐾∑︁

𝑘3=1

𝒯𝑘1𝑘2𝑘3𝑎𝑘3 . (2.52)

This definition can naturally be extended to higher-order tensors. For example, a
contraction of an order-4 tensor ℱ with a matrix A is defined as

[ℱ(A)]𝑘1𝑘2 =
𝐾∑︁

𝑘3=1

𝐾∑︁
𝑘4=1

ℱ𝑘1𝑘2𝑘3𝑘4𝐴𝑘3𝑘4 . (2.53)
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Such matrix ℱ(A) is also known in the literature under the name of a cumulant
matrix [see, e.g. Cardoso, 1999]. Note that, although we are not going to use order-4
tensors in the algorithms described in this or other sections, this extension justifies
that these algorithms can also be extended.

The Eigendecomposition Based Algorithm

For a tensor in the (nearly) orthogonal form, e.g. (2.51), the contraction with some
vector a takes the form :

𝒯 (a) ≈
𝐾∑︁
𝑘=1

𝑔𝑘 ⟨v𝑘, a⟩v𝑘 ⊗ v𝑘 = VΛV⊤, (2.54)

where Λ is the diagonal matrix with the 𝑘-th diagonal element equal to Λ𝑘𝑘 =
𝑔𝑘⟨v𝑘, a⟩ and ⊗ is the outer product, i.e. v𝑘 ⊗ v𝑘 = v𝑘v

⊤
𝑘 . Since V is an ortho-

gonal matrix, the expression on the RHS is actually the eigenvalue decomposition
of a symmetric matrix, which is uniquely defined (up to permutation) given all the
diagonal elements of the matrix Λ are distinct.

This suggests a straightforward algorithm for the estimation of the orthogonal CP
factors V, which we will call the eigendecomposition (ED-) based algorithm, consis-
ting of two simple steps : (a) contract a tensor 𝒯 with a vector a and (b) compute
the eigendecomposition of the contraction 𝒯 (a). The vector a can be chosen, e.g.,
uniformly at random from the unit ℓ2-sphere. In this case, the eigenvalues are distinct
with probability 1. This turns such ED-based approach to a valid algebraic technique
and, indeed, if a tensor is exactly in the form of the orthogonal symmetric CP de-
composition (i.e. with the equality in (2.51)), such algorithm finds an exact solution
with probability 1. This ED-based algorithm is well known in the signal processing
and machine learning literature [Cardoso, 1989, 1990, Anandkumar et al., 2012a,b,
Hsu and Kakade, 2013].

Orthogonal Joint Matrix Diagonalization

The things get more complicated when a tensor is not exactly in the orthogonal
symmetric CPD form, which is always the case in practice. In this case, the contraction
of a tensor with a vector leads to a significant loss of information since a tensor
has 𝐾3 elements, while its contraction only 𝐾2. Therefore, in the presence of noise
the estimate of V obtained with the ED-based algorithm is quite poor (see Section 3.5)
and alternative methods are needed.

Target Matrices. One such approach is to consider several, instead of only one,
contractions with random vectors [Cardoso and Souloumiac, 1993, Kuleshov et al.,
2015a]. Indeed, if we project a tensor 𝒯 onto 𝑃 vectors a1, a2, . . . , a𝑃 , we get :

𝒯 (a1) ≈ VΛ1V
⊤, 𝒯 (a2) ≈ VΛ2V

⊤, . . . , 𝒯 (a𝑃 ) ≈ VΛ𝑃V
⊤, (2.55)
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where each Λ𝑝 is a diagonal matrix with the 𝑘-th diagonal element equal to [Λ𝑝]𝑘𝑘 =
𝑔𝑘⟨a𝑝,v𝑘⟩ for 𝑝 ∈ [𝑃 ]. In this section, we assume that the number 𝑃 is fixed and
known ; the choice of this number is discussed in Sections 2.4.2 and 3.4.

Let us denote each contracted tensor as a matrix A𝑝 = 𝒯 (a𝑝), for 𝑝 ∈ [𝑃 ]. This gives
the following set 𝒜 of 𝑃 matrices :

𝒜 = {A1, A2, . . . , A𝑃} , (2.56)

where each square 𝐾 × 𝐾 matrix A𝑝 is expected to be approximately in the form
A𝑝 ≈ VΛ𝑝V

⊤. These matrices, which we aim to jointly diagonalize, are called the
target matrices.

Orthogonal Joint Matrix Diagonalization Problem. The problem is formulated
as follows : find an orthogonal matrix Q that the matrices obtained by the congruence
transformation of the target matrices :

Q⊤𝒜Q =
{︀
Q⊤A1Q, Q⊤A2Q, . . . , Q⊤A𝑃Q

}︀
, (2.57)

are jointly as diagonal as possible. This can be formalized as the following optimization
problem. For a square matrix A, let Off(A) denote the sum of squared off-diagonal
elements :

Off(A) =
𝐾∑︁

𝑘1=1

𝐾∑︁
𝑘2=1
𝑘2 ̸=𝑘1

𝐴2
𝑘1𝑘2

= ‖A−Diag(A)‖2𝐹 , (2.58)

where Diag(A) is the diagonal matrix with the diagonal values of A on its diagonal,
i.e. [Diag(A)]𝑚𝑚 = 𝐴𝑚𝑚. Then the orthogonal joint matrix diagonalization (OJD)
problem is :

Q⋆ = arg min
Q∈𝒮𝐾

𝑃∑︁
𝑝=1

Off(Q⊤A𝑝Q), (2.59)

where 𝒮𝐾 stands for the Stiefel manifold, i.e. the set of all orthogonal matrices in
R𝐾 : 𝒮𝐾 =

{︀
Q ∈ R𝐾 : Q⊤Q = QQ⊤ = I

}︀
. Below we outline a Jacobi-like algorithm

for this optimization problem.

On Gradient-Based Methods. Note that one could alternatively formulate this
joint diagonalization problem by substituting the VΛ𝑝V

⊤, for 𝑝 ∈ [𝑃 ], into the
objective function (2.58) and then minimizing

∑︀𝑃
𝑝=1

⃦⃦
VΛ𝑝V

⊤ − Diag(VΛ𝑝V
⊤)
⃦⃦2
𝐹

using gradient methods, such that at the the optimum A𝑝 ≈ VΛ𝑝V
⊤, for 𝑝 ∈ [𝑃 ].

However, rigorously this would not be a correct approach to solving the original
problem of the CPD in (2.51), since the matrices Λ𝑝 depend on V (nevertheless, some
joint diagonalization algorithms are build on such idea). It is also straightforward to
construct gradient based methods to optimize the problem in (2.59) over the Stiefel
manifold. In fact, we compared the Jacobi-type algorithms described below with the
gradient based methods implemented in the manopt toolbox [Boumal et al., 2014].
However, the latter was significantly slower while achieving equivalent results in terms
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of the objective value and accuracy of the solution. This speed improvement of the
Jacobi-like algorithm described below can be explained by the fact that this algorithm
admits a closed form solution for the optimal Jacobi angle at every iteration.

Jacobi Rotation Matrix. The Jacobi (a.k.a. Givens) rotation matrix is the 𝐾×𝐾
matrix G(𝑟, 𝑞, 𝜃) defined as :

G(𝑟, 𝑞, 𝜃) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟 𝑞

1 · · · 0 · · · 0 · · · 0
... . . . ...

...
...

𝑟 0 · · · cos(𝜃) · · · sin(𝜃) · · · 0
...

... . . . ...
...

𝑞 0 · · · − sin(𝜃) · · · cos(𝜃) · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.60)

where the angle 𝜃 is called the Jacobi (Givens) angle. A Jacobi rotation matrix is
orthogonal and corresponds to a rotation transformation in the (𝑟, 𝑞)-plane when
applied to a vector or matrix. The update G(𝑟, 𝑞, 𝜃)⊤A affects only two rows (𝑟-th
and 𝑞-th) of A. Likewise, the update AG(𝑟, 𝑞, 𝜃) affects just two columns (𝑟-th and
𝑞-th) of A.

The Jacobi-Like Algorithm for Several Matrices. This algorithm is a direct
extension of the Jacobi algorithm [Golub and Van Loan, 2013] for the computation
of the eigendecomposition of a normal matrix. 7

In the single matrix case, any normal matrix can be diagonalized through a congruence
transformation by an orthogonal matrix, i.e. there exits an orthogonal Q such that
Λ = Q⊤AQ, where Λ is a diagonal matrix with eigenvalues of A on the diago-
nal and the columns of Q contain the respective eigenvectors of A. In the multiple
matrix case (2.56), however, similar decomposition is in general not possible, unless
the matrices are jointly diagonalizable [Horn and Johnson, 2013]. The problem of
approximate joint diagonalization through a congruence transformation by an ortho-
gonal matrix can be formulated as the optimization problem in (2.59) and below we
describe an extension of the Jacobi algorithm to this problem [Bunse-Gerstner et al.,
1993, Cardoso and Souloumiac, 1993, 1996].

The algorithm iteratively constructs the sequence of matrices𝒜(0),𝒜(1),𝒜(2), . . . ,𝒜(𝐽),
where 𝐽 is the number of iterations of the algorithm until the convergence, such that
𝒜(0) = 𝒜 and

𝒜(𝑗+1) = G(𝑟, 𝑞, 𝜃(𝑗))⊤𝒜(𝑗) G(𝑟, 𝑞, 𝜃(𝑗)), 𝑗 = 1, 2, 3, . . . , 𝐽, (2.61)

where 𝑟 and 𝑞 are chosen in accordance with some rule (see below) for each 𝑗. At

7. A real square matrix A is called normal if A⊤A = AA⊤. A symmetric matrix is a special
case of normal matrices.
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Algorithm 1 Jacobi-Like Orthogonal Joint Diagonalization of Several Matrices

1: Initialize : 𝒜(0) ← 𝒜 and Q(0) ← I𝑀 and iterations 𝑗 = 0
2: for sweeps 1, 2, . . . do
3: for 𝑟 = 1, . . . , 𝐾 − 1 do
4: for 𝑞 = 𝑟 + 1, . . . , 𝐾 do
5: Compute the optimal Jacobi angle 𝜃(𝑗) (closed form)
6: Update Q(𝑗+1) ← Q(𝑗)G

(︀
𝑟, 𝑞, 𝜃(𝑗)

)︀
7: Update 𝒜(𝑗+1) ← G(𝑗)⊤𝒜(𝑗)G(𝑗)

8: Increase 𝑗 ← 𝑗 + 1
9: end for

10: end for
11: end for
12: Output : Λ̂𝑝 = Q(𝑗)⊤A

(0)
𝑝 Q(𝑗) and ̂︀V = [Q(𝑗)]⊤

every iteration, the optimal Jacobi angle 𝜃(𝑗) is found as

𝜃(𝑗) = arg min
|𝜃|≤𝜋/4

𝑃∑︁
𝑝=1

Off
[︀
G(𝑟, 𝑞, 𝜃)⊤A(𝑗)

𝑝 G(𝑟, 𝑞, 𝜃)
]︀
. (2.62)

This is a linearly constrained 8 quadratic optimization problem in a single dimension
and a solution always exists and a closed form expression for the optimal Jacobi angle
can be obtained [Cardoso and Souloumiac, 1996, Fu and Gao, 2006, Iferroudjene et al.,
2009]. This iterative procedure is summarized in Algorithm 1. We will refer to this
algorithm as orthogonal joint diagonalization or simply OJD. In the ICA literature,
the algorithm is widely known under the name of joint approximate diagonalization
of eigen-matrices (JADE) [Cardoso and Souloumiac, 1993].

In the case of a single matrix 𝑃 = 1, this algorithm is exactly equivalent to the Jacobi
algorithm and the update (2.61) with the optimal Jacobi angle satisfying (2.62) has
a property that each new matrix A(𝑗+1) is “more diagonal” than its predecessor A(𝑗).
The algorithm converges when the off-diagonal entries, respectively, the objective
Off
(︀
A(𝑗+1)

)︀
, are small enough to be declared zero.

Convergence Rate in the Single Matrix Case. In the single matrix case, each Ja-
cobi update (2.61) involves 𝑂(𝑀) flops plus the cost of finding optimal indices 𝑟 = 𝑟(𝑗)
and 𝑞 = 𝑞(𝑗). In the classical Jacobi algorithm for a single matrix, one targets to maxi-
mize the reduction of non-diagonal elements of A(𝑗), and 𝑟 and 𝑞 are chosen such that
𝐴2

𝑟𝑞 is maximal. In this case, one can show that Off
(︀
A(𝑗)

)︀
≤ (1−𝑁−1)

𝑗
Off
(︀
A(0)

)︀
,

𝑁 = 𝐾(𝐾 − 1)/2, which implies a linear convergence rate. Moreover, the asymp-
totic convergence rate of the classical Jacobi algorithm is considerably better [see,
e.g., Golub and Van Loan, 2013] : for 𝑗 large enough there is a constant 𝑐 such that

8. Note that the choice 𝜋/4, and not 𝜋/2, in the constraint is conventional, since the objective
is 𝜋/2-periodic (it is quadratic in sin(𝜃) and cos(𝜃)) and, in the convergence theory of the classical
Jacobi iteration, it is critical that |𝜃| < 𝜋/4 [Golub and Van Loan, 2013].
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̂︀𝒢 ≈

Figure 2-4 – The form of the core tensor of (2.50) approximated with OJD.

√︁
Off
(︀
A(𝑗+𝑁)

)︀
≤ 𝑐 ·Off

(︀
A(𝑗)

)︀
, which implies a (local) quadratic convergence rate. In-

dependently of the pivot 𝑟 and 𝑞 choice, the Jacobi algorithm converges to the global
optimum.

Convergence Rate in the Case of Several Matrices. Bunse-Gerstner et al. [1993]
analyzed the convergence properties of Algorithm 1 in the case of two matrices and
proven the local quadratic convergence rate. They conjectured the global convergence
properties of the algorithm in the two matrix case, which they confirmed with simu-
lation experiments. However, no global convergence results are known in the multiple
matrix case for Algorithm 1.

The Cyclic Order. The problem of the classical Jacobi algorithm is that the optimal
index choice requires 𝑂(𝑀2) flops and thus is more expensive than the cost of the
Jacobi update. Therefore, in practice it is common to follow a lexicographic rule for
the choice the indices 𝑟 and 𝑞 in the row-by-row and column-by-column fashion,
which is known as the cyclic Jacobi algorithm. In this case, the linear and (locally)
quadratic convergence rates are not applicable anymore, although the algorithm is
still guaranteed to converge to the global optimum.

Sweep. It is common to refer to 𝐾(𝐾−1)/2 consecutive iterations of any Jacobi-like
algorithm as a sweep. In the case of the cyclic order, this refers to one pass over all
elements of (symmetric) matrices.

Perturbation Analysis. Cardoso [1994a] provided first order perturbation analysis
of joint diagonalizers Q in the case when matrices A𝑝 are perturbed with the additive
noise.

Relation to the CP Decomposition of Tensors. We motivated the OJD Al-
gorithm 1 as a method for approximating the orthogonal symmetric CPD (2.50)
or (2.51). The approximation comes from the fact that an approximated core ten-
sor ̂︀𝒢 is not diagonal, since the matrices ̂︀V𝒜̂︀V⊤ are not exactly diagonal. Moreover,
even if these matrices were very close to diagonal, the core tensor ̂︀𝒢 would still have
different from diagonal structure : all the fibers ̂︀𝒢𝑘𝑘: are not guaranteed to be zero
due to the contraction along the 3-rd dimension of this tensor (see Figure 2-4).

Tensor Orthogonal Diagonalization (COM2). Another Jacobi-like algorithm
for approximately finding the orthogonal symmetric CPD (2.50) does not project this
tensor onto vectors but instead works with the tensor directly [COM2 ; Comon, 1994].
Instead of problem (2.59), it is formulated via the following optimization problem
Q⋆ = arg minQ∈𝒮𝐾

Off(𝒯 ×1 Q
⊤ ×2 Q

⊤ ×3 Q
⊤), where the objective is again the
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sum of squared non-diagonal elements, i.e. Off(𝒯 ) =
∑︀

𝑚1 ̸=𝑚2 ̸=𝑚3
𝒯 2
𝑚1𝑚2𝑚3

, and 𝒮𝐾
is the Stiefel manifold. This algorithm directly extends the idea of iterative Jacobi
updates.

It has been proved by Souloumiac and Cardoso [1993] that the asymptotical accuracy
(for infinitesimal errors in the cumulant estimate) of COM2 and JADE are the same,
when these algorithms are applied to the ICA cumulant tensors. By Chevalier [1995],
an experimental comparison of these algorithms was performed, which indicates that
both methods seem to have the same accuracy in the (under)complete case.

Tensor Power Method

Another algorithm for computing the orthogonal symmetric CP decomposition in (2.51)
is the tensor power method (TPM) [Anandkumar et al., 2014, and references therein].
The idea behind the algorithm is to extend the matrix power method. Indeed, simi-
larly to matrices, one can define eigenvalues and eigenvectors of a tensor [Lim, 2005,
Qi, 2005] : a vector u that satisfy 𝒯 (I,u,u) = 𝜆u is called an eigenvector of the
tensor 𝒯 and 𝜆 is called its eigenvalue. Note that 𝒯 (I,u,u) := 𝒯 ×1 I×2 u×3 u. It
is straightforward to show that the vectors v𝑘 and scalars 𝜆𝑘 in (2.51) are the eigen-
vectors and eigenvalues of 𝒯 respectively. Contrary to the matrix case, these are not
the only eigenvalues and eigenvectors. For example, if (𝜆1,v1) and (𝜆2,v2) are two
eigenpairs of 𝒯 , then any vector u := (1/𝜆1)v1 + (1/𝜆2)v2 is an eigenvector as well
[Anandkumar et al., 2014]. However, one can define the so-called robust eigenvectors of
a tensor 𝒯 : if there exists an 𝜀 > 0 such that for all u ∈

{︀
v′ ∈ R𝐾 : ‖v′ − v‖2 ≤ 𝜀

}︀
,

repeated iteration of the map v̄ ↦→ 𝒯 (I,v̄,v̄)
‖𝒯 (I,v̄,v̄)‖2

starting from u converges to v, then v

is called a robust eigenvector. If a tensor 𝒯 admits the decomposition in (2.51) then
(a) the set of u ∈ R𝐾 which do not converge to some v𝑘 under the repeated iteration
from above has measure zero and (b) the set of robust eigenvectors of 𝒯 is equal to
{v1,v2, . . . ,v𝐾} (fixed-point characterization). Therefore, the orthogonal decomposi-
tion in (2.51) can be obtained with the tensor power method, which is summarized
in Algorithm 2. Note that 𝒯 (u,u,u) := 𝒯 ×1 u ×2 u ×3 u and this version of the
algorithm recovers the vectors v𝑘 one by one through the deflation principle [see,
e.g., Mackey, 2009, Comon and Jutten, 2010, Chapter 6]. This is also known in the
literature as the analysis view. See also Wang et al. [2014] for an implementation and
experimental comparison of the TPM for LDA.

Convergence Rate and Perturbation Analysis. When a tensor is orthogonally
decomposable, the TPM guarantees the global recovery of the decomposition in (2.51)
up to trivial indeterminancies at the quadratic convergence rate [Anandkumar et al.,
2014]. However, in practice tensors are only approximately orthogonally decomposable
(e.g., due to the finite sample noise). In this case, the TPM presented in Algorithm 2
is still able to approximately recover the decomposition (2.51). In particular, Anand-
kumar et al. [2014] provide perturbation analysis similar to the Wedin’s perturbation
theorem for singular vectors of matrices [Wedin, 1972] that bound the error of ap-
proximate decomposition in the case of additive noise. This analysis allows to set
values 𝐿𝑇𝑃𝑀 and 𝑁𝑇𝑃𝑀 for the TPM Algorithm 2, which guarantee robust and fast
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Algorithm 2 Robust Tensor Power Method

1: Initialize : 𝒯 (0) ← 𝒯
2: for deflation step 𝑗 = 1, 2, . . . , 𝐾 do
3: for random restarts 𝜏 = 1, 2, . . . , 𝐿𝑇𝑃𝑀 do
4: Draw u

(𝑗,𝜏)
0 ∈ R𝐾 uniformly at random from the ℓ2-unit sphere

5: for power iterations 𝑡 = 1, 2, . . . , 𝑁𝑇𝑃𝑀 do

6: Update u
(𝑗,𝜏)
𝑡 =

𝒯 (𝑗)
(︀
I,u

(𝑗,𝜏)
𝑡−1 ,u

(𝑗,𝜏)
𝑡−1

)︀
⃦⃦⃦⃦
𝒯 (𝑗)
(︀
I,u

(𝑗,𝜏)
𝑡−1 ,u

(𝑗,𝜏)
𝑡−1

)︀⃦⃦⃦⃦
2

7: end for
8: Set v(𝑗,𝜏) ← u

(𝑗,𝜏)
𝑡

9: Compute 𝜆(𝑗,𝜏) =
𝒯 (𝑗)
(︀
v(𝑗,𝜏),v(𝑗,𝜏),v(𝑗,𝜏)

)︀
⃦⃦⃦⃦
𝒯 (𝑗)
(︀
v(𝑗,𝜏),v(𝑗,𝜏),v(𝑗,𝜏)

)︀⃦⃦⃦⃦
2

10: end for
11: Find 𝜆(𝑗) ← 𝜆(𝑗,𝜏⋆) and v(𝑗)./𝑞 ← v(𝑗,𝜏⋆), where 𝜏⋆ := arg max𝜏

{︀
𝜆(𝑗,𝜏)

}︀𝐿𝑇𝑃𝑀

𝜏=1

12: Perform deflation : 𝒯 (𝑗) ← 𝒯 (𝑗−1) − 𝜆(𝑗)[v(𝑗)]⊗3

13: end for
14: Output : eigenvectors v(1),v(2), . . . ,v(𝐾) and eigenvalues 𝜆(1), 𝜆(2), . . . , 𝜆(𝐾)

recovery of the decomposition. Intuitively, the meaning behind these numbers is the
following. At every deflation step, 𝐿𝑇𝑃𝑀 defines the number of random restarts which
is necessary to estimate a vector v𝑘 and, at every restart, while 𝑁𝑇𝑃𝑀 defines the
maximal number of tensor power update for every restart. If the number of power
iterations 𝑡 exceeds 𝑁𝑇𝑃𝑀 , then the starting point was “bad” and such restart is not
converging to any of vectors v𝑘. If an initialization for a random restart was “good,”
the power iterations converge quite fast (quadratically) to one of vectors v𝑘 and in
this case the number of iterations 𝑡 at convergence is below 𝑁𝑇𝑃𝑀 . Hence, 𝐿𝑇𝑃𝑀 and
𝑁𝑇𝑃𝑀 have to be large enough for some restarts to converge, but not too large to
avoid unnecessary computations. On the contrary, an advantage of the tensor power
method over the orthogonal joint diagonalization algorithms is that the TPM admits
a direct extension to the overcomplete regime [Anandkumar et al., 2015b].

The tensor power method is very similar 9 to such ICA methods as, e.g., FastICA
[Hyvärinen, 1999], which is also a deflation-based algorithm in the orthogonal (prew-
hitened) subspace, but its variations depend on the choice of the contrast function. In
general, an important benefit of such approach is, under ideal conditions, the absence
of spurious local extrema and global convergence [Hyvärinen, 1999, Papadias, 2000,
Anandkumar et al., 2014].

9. FastICA with the cubic contrast is very close to the TPM for ICA cumulants, but the algo-
rithms are not exactly equivalent.
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2.3.2 Algorithms for Non-Orthogonal Non-Symmetric CPD

Non-Orthogonal Non-Symmetric CPD. The problem is as follows (see also Sec-
tion 2.1.2). Given a non-symmetric 𝑀1×𝑀2×𝑀3 tensor 𝒯 , the goal is to approximate
this tensor as

𝒯 ≈ 𝒢 ×1 V
(1)⊤ ×2 V

(2)⊤ ×3 V
(3)⊤, (2.63)

where the 𝐾×𝐾×𝐾 core tensor 𝒢 is assumed to be diagonal with non-zero diagonal
elements, but the matrices V(𝑠) ∈ R𝑀𝑠×𝐾 , for 𝑠 = 1, 2, 3, do not have to be all the
same and are not assumed to be orthogonal as opposed to the orthogonal symmetric
case (2.50) (see also Section 2.1.2). An equivalent vector representation of (2.63)
is :

𝒯 ≈
𝐾∑︁
𝑘=1

𝑔𝑘 v
(1)
𝑘 ⊗ v

(2)
𝑘 ⊗ v

(3)
𝑘 , (2.64)

where 𝑔𝑘 = 𝒢𝑘𝑘𝑘 are again non-zero and the vectors v
(𝑠)
𝑘 are the columns of the

matrix V(𝑠), for 𝑠 = 1, 2, 3 and are not assumed to be orthogonal. Note that we assume
the number 𝐾 of the CP factors in (2.64) known and fixed ; we discuss the choice
of 𝐾 in Section 4.5. We also assume that 𝐾 < min(𝑀1,𝑀2) and the matrices V(1)

and V(2) have a full column rank. 10

In this section, we show that the approximation problem in (2.63) or (2.64) can
be reduced to the so-called non-orthogonal joint diagonalization by similarity and
describe Jacobi-like algorithms for this problem [Fu and Gao, 2006, Iferroudjene et al.,
2009, Luciani and Albera, 2010].

Non-Orthogonal Joint Diagonalization by Similarity

Target Matrices. Let us contract both sides of the expression (2.64) with a vector a0

(see Equation (2.52) for the definition) :

𝒯 (a0) ≈ V(1)Λ0V
(2)⊤,

where the 𝐾 ×𝐾 matrix Λ0 is diagonal with a diagonal element Λ0,𝑘𝑘 := 𝑔𝑘⟨v(3)
𝑘 , a0⟩.

Assuming that the matrix 𝒯 (a1) has rank 𝐹 (if the vector a1 is picked uniformly at
random from the unit ℓ2-sphere, this is true with probability 1) and diagonalizable,
one can then construct matrices W1 and W2 that W1𝒯 (a0)W

⊤
2 = I. Note that since

the decomposition in (2.64) is only identifiable up to permutation and scaling we can
rescale the matrices V(1) and V(2) in 𝒯 (a0) such that 𝒯 (a0) = V(1)V(2)⊤, without
loss of generality. This means that matrices W1V1 and W2V2 are invertible and

W1V1 = (W2V2)
−⊤.

Let us denote V := W1V1, then it immediately follows from the expression above
that (W2V2)

⊤ = V−1. This essentially leads to the following set 𝒜 of target ma-

10. This corresponds to the (under)complete case of Chapter 4.
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trices :
𝒜 = {A1, A2, . . . , A𝑃} , (2.65)

where the 𝐾 ×𝐾 square matrices A𝑝 := W1𝒯 (a𝑝)W
⊤
2 , for 𝑝 ∈ [𝑃 ], are all expected

to be approximately in the form A𝑝 ≈ VΛ𝑝V
−1.

Non-Orthogonal Joint Diagonalization by Similarity Problem. This leads to
the problem of approximate non-orthogonal joint diagonalization (NOJD) by simila-
rity : find a matrix Q ∈ R𝐾×𝐾 such that the (not necessary normal 11) matrices 𝒜
are (jointly) as diagonal as possible when subject to the similarity transformation
with Q :

Q−1𝒜Q =
{︀
Q−1A1Q, Q−1A2Q, . . . , Q−1A𝑃Q

}︀
.

Note that in general this problem is different from the so-called problem of non-
negative joint diagonalization by congruence [see e.g. Afsari, 2006, 2008, Souloumiac,
2009a], where the inverse of Q is replaced by the transpose. The two problems are
only equivalent in the case when Q is orthogonal.

Jacobi-like algorithms [Fu and Gao, 2006, Iferroudjene et al., 2009, Luciani and Al-
bera, 2010] for this problem extend both the orthogonal joint diagonalization algo-
rithm from Section 2.3.1 and Jacobi-like algorithms for the eigendecomposition of
non-normal matrices [see, e.g., Ruhe, 1968, Eberlein, 1962].

The Shear Matrix. Similar to the Jacobi rotation matrix (2.60), the shear matrix
is the 𝐾 ×𝐾 matrix S(𝑟, 𝑞, 𝑦) defined as :

S(𝑟, 𝑞, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟 𝑞

1 · · · 0 · · · 0 · · · 0
... . . . ...

...
...

𝑟 0 · · · cosh(𝑦) · · · sinh(𝑦) · · · 0
...

... . . . ...
...

𝑞 0 · · · sinh(𝑦) · · · cosh(𝑦) · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.66)

where 𝑦 ∈ R is called the shear parameter. A shear matrix S(𝑟, 𝑞, 𝑦) is non-orthogonal
and corresponds to a skew transformation in the (𝑟, 𝑞)-plane when applied to a vec-
tor or matrix. The update S(𝑟, 𝑞, 𝑦)⊤A affects only two rows (𝑟-th and 𝑞-th) of A.
Likewise, the update AS(𝑟, 𝑞, 𝑦) affects just two columns (𝑟-th and 𝑞-th) of A.

Non-Orthogonal Joint Diagonalization by Similarity Algorithms. The main
idea behind all the NOJD by similarity algorithms is to construct a sequence of
matrices 𝒜(0), 𝒜(1), 𝒜(2), . . . , 𝒜(𝐽) :

𝒜(𝑗) =
{︀
A

(𝑗)
1 , A

(𝑗)
2 , . . . , A

(𝑗)
𝑃

}︀
,

11. Recall that a matrix A is normal if AA⊤ = A⊤A.
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such that 𝒜(0) = 𝒜 and at every iteration 𝑗, the matrices are constructed by consecu-
tive similarity transformations first with the optimal shear matrix S(𝑗) = S

(︀
𝑟, 𝑞, 𝑦(𝑗)

)︀
and then with the optimal Jacobi rotation G(𝑗) = G

(︀
𝑟, 𝑞, 𝜃(𝑗)

)︀
:

𝒜(𝑗) = G(𝑗)⊤S(𝑗)−1𝒜(𝑗−1)S(𝑗)G(𝑗), (2.67)

where the indices 𝑟 = 𝑟(𝑗) and 𝑞 = 𝑞(𝑗) are chosen in accordance with some rule
(see below) and we discuss below the choice of the optimal shear parameter 𝑦(𝑗) and
Jacobi angle 𝜃(𝑗). Note that in expression (2.67), the matrix S(𝑗)−1 denotes the inverse
of the optimal shear matrix S(𝑗).

For convenience, let us separate the similarity transformations with a shear and Jacobi
rotation matrices. Given matrices 𝒜(𝑗−1) after the (𝑗 − 1)-th iteration, define :

𝒜′(𝑦) = S−1(𝑟, 𝑞, 𝑦) 𝒜(𝑗−1) S(𝑟, 𝑞, 𝑦), 𝒜′(𝑗) = 𝒜′(︀𝑦(𝑗))︀, (2.68)

𝒜(𝜃) = 𝒜′′(𝜃) = G⊤(𝑟, 𝑞, 𝜃) 𝒜′(𝑗) G(𝑟, 𝑞, 𝜃), 𝒜(𝑗) = 𝒜
(︀
𝜃(𝑗)
)︀
. (2.69)

Considering each of these transformations separately at each iteration of the algorithm
leads to two consecutive updates : the shear and Jacobi updates.

The Shear Update. The shear update is defined as such shear transformation
from (2.68) that the respective shear parameter 𝑦 is optimal in some way. In fact,
the algorithms by Fu and Gao [2006], Iferroudjene et al. [2009], Luciani and Albera
[2010] differ essentially in the way this optimality of the shear transformation is de-
fined. The sh-rt algorithm [Fu and Gao, 2006] and the JUST algorithm [Luciani and
Albera, 2010] define the optimal shear parameter as :

𝑦(𝑗) = arg min
𝑦∈R

𝑃∑︁
𝑝=1

⃦⃦
A′

𝑝(𝑦)
⃦⃦2
𝐹
, (2.70)

and propose some heuristics to approximate this optimal shear parameter since a
closed form solution to this problem can not be easily represented as opposed to the
Jacobi update case (see Section 2.3.1). Note that the Frobenius norm ‖A‖2𝐹 appearing
in the objective is called the normality measure (see below). The JUST algorithm
formulates the optimal shear parameter as 𝑦(𝑗) = arg min𝑦∈R

∑︀𝑃
𝑝=1 Off(A′

𝑝(𝑦)), where
the sum of squared off-diagonal elements Off(·) is defined in (2.58), and proposes
complex expressions for a closed form solution. Note that in both cases the objectives
tend to infinitely whenever 𝑦 → ±∞. Therefore, one can rewrite these optimization
problems with the constraint 𝑦 ∈ [𝑦𝐿, 𝑦𝑅] for 𝑦𝐿 and 𝑦𝑅 sufficiently large. This allows
to compute the optimal solution of (2.70) with an exhaustive search approach. We
compared experimentally all four approaches to the NOJD problem and observed
that although the convergence properties of the algorithms can slightly differ, the
difference in the accuracy of the obtained solutions can be barely noticed.

The Jacobi Update. The Jacobi update (2.69) is exactly equivalent to the Jacobi
update of the orthogonal joint diagonalization algorithm from Section 2.3.1 applied

52



Algorithm 3 Non-Orthogonal Joint Diagonalization (NOJD) by Similarity

1: Initialize : 𝒜(0) ← 𝒜 and Q(0) ← I𝑀 and iterations 𝑗 ← 0
2: for sweeps 1, 2, . . . do
3: for 𝑟 = 1, . . . , 𝐾 − 1 do
4: for 𝑞 = 𝑟 + 1, . . . , 𝐾 do
5: Increase 𝑗 ← 𝑗 + 1
6: Compute or approximate the optimal shear parameter 𝑦(𝑗)

7: Compute the optimal Jacobi angle 𝜃(𝑗) (closed form)
8: Update Q(𝑗) ← Q(𝑗−1)S(𝑗)G(𝑗)

9: Update 𝒜(𝑗) ← G(𝑗)⊤S(𝑗)−1𝒜(𝑗−1)S(𝑗)G(𝑗)

10: end for
11: end for
12: end for
13: Output : Q(𝑗)

to the matrices 𝒜′(𝑗) and therefore the description is omitted. Note that although Fu
and Gao [2006], Iferroudjene et al. [2009] propose a different approach from Cardoso
and Souloumiac [1996] to obtain a closed form solution for the optimal Jacobi angle,
one can show that the solutions are equivalent. The NOJD by similarity algorithms
are summarized in Algorithm 3.

Convergence. To the best of our knowledge, no theoretical analysis of the NOJD
by similarity algorithms [Fu and Gao, 2006, Iferroudjene et al., 2009, Luciani and
Albera, 2010] is available in the literature, except for the single matrix case when
they boil down to the (non-normal or non-symmetric) eigendecomposition [Eberlein,
1962, Ruhe, 1968]. In the latter case, the algorithms converge globally at a (locally)
quadratic convergence rate given some sophisticated rule for the order of the indices
𝑟 and 𝑞. A quadratic convergence rate is conjectured in the multiple matrix case, but
has not been proved yet. In practice, we always use the lexicographical order for the
choice of the indices 𝑟 and 𝑞.

Perturbation Analysis. To the best of our knowledge, no perturbation analysis of
the NOJD by similarity algorithms is available in the literature. Potential extension
of the results for the NOJD by congruence algorithms [Afsari, 2008, Kuleshov et al.,
2015b,a] could be of interest.

Intuition Behind the Algorithms. The Schur decomposition says that for any
diagonalizable matrix A there exists an orthogonal matrix Q that Q⊤AQ = Λ + N,
where the matrix Λ is diagonal with the eigenvalues of A on the diagonal and the
matrix N is strictly upper triangular [Golub and Van Loan, 2013, Chapter 7] . Mo-
reover, for any non-singular matrix M it holds that infM ‖M−1AM‖2𝐹 = ‖Λ‖2𝐹 , and,
therefore, a diagonalized version of the matrix A must have the smallest Frobenius
norm [Ruhe, 1968]. Since the Jacobi transformation G(𝑟, 𝑞, 𝜃)⊤AG(𝑟, 𝑞, 𝜃) does not
change the Frobenius norm, the Frobenius norm of ‖M−1AM‖2𝐹 can only be mi-
nimized with a shear transformation, i.e. when M is equal to (a multiplication of)
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shear matrices. This explains why a shear transformation is necessary for the NOJD-
type algorithms. If a matrix is normal, the strictly upper triangular matrix N in its
Schur decomposition vanishes and the matrix M contains the eigen vectors of A in
its columns. This explains why the squared Frobenius norm is called the normality
measure : decreasing the normality measure of a matrix “moves” this matrix closer
to a normal matrix ; this also explains why a normal diagonalizable matrix can be
diagonalized by an orthogonal matrix, such as a Jacobi rotation matrix, which pre-
serves the Frobenius norm. Hence, the optimal shear transformation by minimizing
the normality measure decreases the deviation from normality and then the optimal
Jacobi transformation by minimizing the diagonality measure (the sum of squared
off-diagonal elements) decreases the deviation from diagonality.

2.4 Latent Linear Models : Estimation and Inference
In this thesis, we refer to as estimation the process of estimating model parameters,
while we use the term inference for the process of inferring the latent variables given
an observation, which is a more standard terminology in the frequentist literature.
For most probabilistic models of practical interest, the estimation and inference are
intractable : for example, this is the case of almost all the models from Chapter 1,
with the exception of principal and canonical correlation analyses. For example, it
was shown that the maximum a posteriori (MAP) based inference for LDA is NP-
hard if the effective number of topics per document is large [Sontag and Roy, 2011].
Moreover, e.g., the maximum likelihood-based estimation of the topic matrix in topic
models is also NP-hard [Arora et al., 2012]. Therefore, one is interested in approxima-
tion methods. Below we briefly recall some of them : the expectation maximization
algorithm-based methods as well as some moment matching-based methods.

2.4.1 The Expectation Maximization Algorithm

The EM Algorithm

The expectation-maximization (EM) algorithm [Dempster et al., 1977, McLachlan
and Krishnan, 2007] is a powerful method for finding maximum likelihood solutions
for models with latent or missing variables. In general, let x denote all observed
variables, z denote all latent variables, and 𝜃 denote all parameters of the model, and
the likelihood function is given by

𝑝(x|𝜃) =

∫︁
𝑝(x, z|𝜃)𝑑z,

and the goal is to maximize the log of the likelihood log[𝑝(x|𝜃)] (the discussion is
similar to the case of discrete latent variables). The EM algorithm is of interest
when direct maximization of the likelihood 𝑝(x|𝜃) is difficult, but optimization of the
complete-data likelihood 𝑝(x, z|𝜃) is significantly easier (e.g., the case of the GMMs
or pLSI model).
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For any distribution 𝑞(z) over latent variables, such that 𝑞(z) > 0 if 𝑝(x, z|𝜃) > 0, it
holds by the Jensen’s inequality that

ℒ(𝜃) := log

∫︁
𝑞(z)

𝑝(x, z|𝜃)

𝑞(z)
𝑑𝑧 ≥

∫︁
𝑞(z) log

𝑝(x, z|𝜃)

𝑞(z)
𝑑z := ℱ(𝑞,𝜃),

where the functional ℱ(𝑞,𝜃) on the RHS is a lower bound. The EM algorithm then
maximizes this lower bound by the alternating maximization with respect to the
distribution 𝑞(z) over latent variables, keeping the parameters 𝜃𝑜𝑙𝑑 fixed (the E step),
and then by the maximization of the parameters 𝜃, keeping the distribution 𝑞𝑜𝑙𝑑(z)
over latent variables fixed (the M step). One can show that such procedure increases
(or does not change) the log-likelihood function ℒ(𝜃) at every iteration. However,
even if the maximization problems at the E and M steps have closed form solutions,
the overall procedure is not guaranteed to converge to a local optimum (although
it usually does), but it is guaranteed to converge to a stationary point. In general,
however, the EM algorithm does not have any global convergence guarantees.

Variational Inference

Variational inference can be used for the approximation of the E step of the EM algo-
rithm for the models where the E step is intractable. In such case, the EM algorithm
is referred to as the variational EM algorithm. The idea of variational inference [Jor-
dan, 1999, Jaakkola, 2001] is to approximate the distribution of the latent variables
by maximizing the lower bound ℱ(𝑞,𝜃) over some class of functions (probability dis-
tributions) keeping the parameters 𝜃 fixed. This has a straightforward probabilistic
meaning since ℒ(𝜃)−ℱ(𝑞,𝜃) = 𝐾𝐿(𝑞||𝑝), where 𝐾𝐿(𝑞||𝑝) is the KL divergence bet-
ween the original distribution 𝑝 of the latent sources and 𝑞 is the approximate one.
Therefore, maximizing the lower bound ℒ(𝜃) is equivalent to minimizing the KL-
divergence 𝐾𝐿(𝑞||𝑝), which finds a closest to 𝑞 distribution 𝑝 from a given class of
distributions. The class of distributions is chosen to be some tractable class, such as
distributions that factorize, i.e. 𝑞(z) =

∏︀
𝑘 𝑞𝑘(𝑧𝑘), which gives the so-called variatio-

nal mean field inference procedure. For more details, see, e.g., Bishop [2006], Murphy
[2012].

Sampling Methods

Using sampling methods is another way to approximate the E step of the EM al-
gorithm for models where the E step does not have a closed form solution. Markov
chain Monte Carlo (MCMC) [Gilks et al., 1995] is a class of algorithms for sampling
from complicated probability distributions based on constructing a Markov chain that
converges to a desired distribution and then sampling from this Markov chain to ap-
proximate the objective of the M step. Each state of the chain is an assignment of
values to the variables being sampled and, in practice, the state of the chain after a
number of steps is used as a sample of the desired distribution. A popular sampling
method is Gibbs sampling, which requires all the conditional distributions of the tar-
get distribution to be sampled exactly. For example, Griffiths [2002] describe such
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Gibbs sampling procedure for latent Dirichlet allocation. Since the Markov chain is
only known to converge to a desired distribution asymptotically, the practical im-
plementation with a finite number of steps (which is often difficult to choose) does
not have any guarantees on the obtained solution. For more details, see, e.g., Bishop
[2006], Murphy [2012].

2.4.2 Moment Matching Techniques

In this section, we outline the main idea of the method of moments for the estima-
tion of the linear transformation matrix in latent linear models on the example of
the LDA model using the diagonal (symmetric CPD) form of the LDA cumulants
(see Section 2.2.3). An advantage of this approach over the variational inference and
sampling approaches described in Section 2.4.1 are theoretical guarantees on the qua-
lity of the recovered topic matrix [Anandkumar et al., 2012a, 2014]. Note that other
algorithms for the estimation and inference with theoretical guarantees are available
[Arora et al., 2012, 2013, 2015].

The algorithms described in this section are applicable only in the case when the
columns of the topic matrix are linearly independent, which implies that 𝐾 ≤𝑀 , i.e.
the (under)complete case.

This class of algorithms is well known in the signal processing and machine learning
literature (some of related references can be found in Section 3.2). In the ICA litera-
ture, these algorithms are known as cumulant-based algorithms with the prewhitening
[see, e.g., Cardoso, 1989, 1990, Cardoso and Souloumiac, 1993, De Lathauwer, 2006,
Comon and Jutten, 2010].

The common idea behind all these methods is to use the diagonal structure of the
population statistics of a model for the estimation of the topic matrix. The problem
is that the second-order information is often not sufficient for recovery (unless some
additional assumptions, such as sparsity of the topic matrix, are made). This moti-
vates to use the third-order 12 jointly with the second-order information, which can
be seen as a problem of joint diagonalization of the matrix S := S𝐿𝐷𝐴 and tensor
𝒯 := 𝒯 𝐿𝐷𝐴 both in the symmetric CP form with the topic matrix in place of the
factor matrix, i.e.

S = ̃︀D̃︀D⊤,

𝒯 = 𝒢 ×1
̃︀D⊤ ×2

̃︀D⊤ ×3
̃︀D⊤,

the core tensor 𝒢 ∈ R𝐾×𝐾×𝐾 is diagonal and this form of the matrix S is without
loss of generality due to the permutation and scaling unidentifiability of the model
(however, the columns of the “topic” matrix ̃︀D do not have to sum to one anymore).
Let A ∈ R𝑀×𝐾 be a matrix such that ASA⊤ and 𝒯 ×1A

⊤ ×2A
⊤ ×3A

⊤ are diagonal.

12. Sometimes higher order information is used. For instance, when the sources in the ICA model
are expected to have symmetric priors, the fourth-order information is used since the odd-order
cumulants are zero for symmetric distributions.
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Then, up to permutation and scaling, Ã︀D = I and one can recover ̃︀D as ̃︀D = A† (see
more details in Section 3.4).

Prewhitening. The goal of the prewhitening procedure is to find a matrix W ∈
R𝐾×𝑀 , which is called the whitening matrix, such that

WSW⊤ = I. (2.71)

This procedure takes its name from the fact that in the ICA context the matrix S
is just a covariance matrix cov(x). Hence, the prewhitening transformation (2.71)
corresponds to such linear transformation of the observation vector x into another
vector x := Wx with unit covariance cov(z) = I.

A whitening matrix is not uniquely defined. Indeed, let Q be an arbitrary orthogonal
matrix of the appropriate size and W be a whitening matrix. Then the matrix ̃︁W
obtained by the right multiplication of the whitening matrix W with this orthogonal
matrix Q, i.e. ̃︁W := WQ, is still a whitening matrix since it preserves the equality
in (2.71) : ̃︁WS̃︁W⊤ = QWSW⊤Q⊤ = QQ⊤ = I.

A whitening matrix can be computed via the eigendecomposition of S. Let S =

UΛU⊤, then W =
[︀
Λ

1/2
1:𝐾

]︀†
U†

1:𝐾 , where Λ1:𝐾 is the diagonal matrix formed by the
first 𝐾 largest eigenvalues and U1:𝐾 is the matrix which contains the respective
eigenvectors in columns.

The “Correct” Rotation. When W is found, the matrix A can be formed as A =
QW, for some “correct” orthogonal matrix Q. Therefore, one is left with the problem
of finding such orthogonal matrix Q from the third-order information. For that, let us
transform the tensor 𝒯 with the found whitening matrix along all modes, this gives
the 𝐾 × 𝐾 × 𝐾 tensor 𝒯 := 𝒯 ×1 W⊤ ×2 W⊤ ×3 W⊤. In the ideal population
case, this tensor 𝒯 is an orthogonally decomposable tensor (see Section 2.3.1 and the
decomposition 2.50). In the practical finite sample case, such decomposition holds
approximately. In any case, finding the factor matrix with one of the algorithms
described in Section 2.3.1 boils down to finding a “correct” orthogonal matrix Q.
More details on such algorithms can be found in Section 3.4.

Guarantees. Hence, in the ideal population case, such two-step procedure with, e.g.,
the ED-based algorithm or the tensor power method used as the algorithm for the
second step, guarantees the global solution the estimation problem in LDA. In the
practical finite sample case, lower bounds on the quality of the recovery are available
[Anandkumar et al., 2012a, 2014].

Non-Orthogonal Approaches. Note that the prewhitening step introduces some
error and is not necessary the best way to solve the estimation problem [Cardoso,
1994b, De Lathauwer et al., 2005, Souloumiac, 2009b] given finite sample estimates
of the matrix S and tensor 𝒯 in the symmetric CP form. Another class of algorithms
is the so-called non-orthogonal joint diagonalization algorithms by congruence, which
contract the tensor 𝒯 with random vectors without the preliminary prewhitening and
then jointly diagonalize the obtained matrices but with a non-orthogonal matrix [see,
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e.g., Afsari, 2006, 2008, Souloumiac, 2009a]. This problem is more difficult than the
OJD problem described in Section 2.3.1.
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Chapitre 3

Moment Matching-Based Estimation
in Topic Models

Abstract
In this chapter, we draw explicit links between latent Dirichlet allocation (LDA ; see
Section 1.2.4) and discrete versions of independent component analysis (ICA ; see
Section 1.1.4). Using this strong connection between LDA and ICA, we introduce
a novel semiparametric topic model, which we call discrete independent component
analysis (DICA). In the DICA model, no assumption on latent sources is made (al-
though, non-Gaussian assumption is needed for identifiability ; see Chapter 4) and it
is not necessary to know the distributions of latent sources in order to perform the
estimation, which increases the expressive power of the model.

While early work has focused on graphical-model approximate inference techniques
such as variational inference or Gibbs sampling (see Section 2.4), tensor-based mo-
ment matching techniques have recently emerged as strong competitors due to their
computational speed and theoretical guarantees [Anandkumar et al., 2012a, 2013a,
2014, 2015a]. We show that similar to the higher-order statistics closely related to
moments of the LDA model (see Section 2.2.3), the population higher-order statis-
tics closely related to cumulants of the discrete ICA model can be represented as
tensors in the form of symmetric non-negative canonical polyadic decomposition (see
Section 2.1.2). This allows us to reuse numerous techniques from the ICA literature
to develop novel tensor-based algorithms based on joint diagonalization for the es-
timation in topic models, showing improvement over its predecessors the spectral
algorithm [Anandkumar et al., 2012a, 2015a] and the tensor power method [Anand-
kumar et al., 2014], which nevertheless has strong theoretical guarantees. We also
prove that in some practical scenarios the new cumulant based DICA tensors have
improved sample complexity over the LDA based moment tensors. The content of
this chapter was previously published as Podosinnikova et al. [2015].
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3.1 Contributions
Below we outline the contributions of this chapter.

- In Section 3.3, we introduce a novel semiparametric topic model—discrete ICA—
which is closely related to both latent Dirichlet allocation and independent ana-
lysis, but has higher expressive power due to its semiparametric nature, where
the distributions of the latent sources are not specified.

- In Section 3.3.2, we derive novel cumulant-based tensors for the gamma-Poisson
and discrete ICA models and show that the population versions of these tensors
takes the form of the symmetric non-negative canonical polyadic decomposition
(a.k.a. diagonal form). We also present sample complexity results for natural
sample estimators of these tensors.

- In Section 3.4, we propose a novel algorithm for the estimation in topic models,
which is based on orthogonal joined diagonalization of contractions of DICA
cumulant-based tensors after prewhitening. Other algorithms, such as the tensor
power method and ED-based algorithm (a.k.a. spectral method) are applicable
for the estimation as well. Since the gamma-Poisson topic model is a special
case of the DICA model, the algorithms also apply to the gamma-Poisson model
without any modification.

- In Section 3.5, we perform an extensive experimental comparison of the diagona-
lization algorithms (orthogonal joint diagonalization, the tensor power method,
and the spectral method) for the estimation in the LDA and DICA models as
well as, for the first time 1 to the best of our knowledge, compare these algo-
rithms with the variational inference-based algorithms.

3.2 Related Work
The algorithms proposed in this chapter are closely related to both recent learning
algorithms for latent Dirichlet allocation (LDA) [Anandkumar et al., 2012a, 2013a,
2015a, 2014, Arabshahi and Anandkumar, 2016] as well as orthogonal joint diagona-
lization type ICA algorithms [Bunse-Gerstner et al., 1993, Cardoso and Souloumiac,
1993, 1996, Cardoso, 1999, De Lathauwer, 2010]. Note also that a scalable implemen-
tation of the tensor power method for LDA [Anandkumar et al., 2014] is proposed
by Wang et al. [2014]. Such algorithms often come with theoretical guarantees as
opposed to the variational inference and sampling methods.

Another class of topic modeling algorithms with theoretical guarantees is based on
the matrix factorization point of view [Arora et al., 2012, 2013, 2015]. In this case,
the key assumption is the presence of anchor words in topics, i.e. words that appear
mostly in this topic, which is related to sparsity. Similar to discrete ICA introduced
in this chapter, they do not make any assumptions on the topic intensity distribution,

1. Some of these algorithms were previously compared with the Gibbs sampling-based methods
by Wang et al. [2014], but our experiments are more detailed.
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but the assumptions on the topic matrix are somewhat stronger than the ones in this
chapter.

Another related work is by Arabshahi and Anandkumar [2016], where a new class of
topic models, called latent normalized infinitely divisible topic models, is introduced.
They prove that moment-based higher-order statistics of these topic models are ten-
sors in the CP form and the tensor power method can be used for the estimation. This
class of models is a direct extension of LDA where the topic intensities are modeled
as a normalized infinitely divisible (NID) random vector [Favaro and Hadjicharalam-
bous, 2011, Mangili and Benavoli, 2015], which is formed by normalizing independent
positive infinitely divisible variables. The LDA model is a special case of such class
of models. Moreover, some models from this class allow to model both positive and
negative correlations among topics, thus, being more flexible than correlated topic
models or pachinko allocation [Li and McCallum, 2006]. Note that diagonalization
algorithms discussed in this chapter are also applicable for the estimation in latent
NID topic models. As opposed to the DICA model, latent NID topic models require
specification of the prior for topic intensities, while DICA is a semiparametric model,
where the distribution is left unspecified.

3.3 Discrete ICA
In Section 1.2, we outlined latent linear models for count data, which include topic
models and latent Dirichlet allocation in particular. We recalled the equivalence of the
LDA model in the standard tokens formulation (1.16) to the counts formulation (1.17),
which is also known as the multinomial PCA or Dirichlet-multinomial models. We also
saw that these models are examples of the admixture model (1.12). In this section, we
show that under mild assumptions the LDA model is equivalent to the gamma-Poisson
model, which motivates us to introduce a new semiparametric model of discrete ICA
in Section 3.3.1. This model is designed for working with non-negative discrete data
and is able to adjust to different prior distributions on latent factors, hence having
higher expressive power. We also show (in Section 3.3.2) that population higher-order
cumulant-based statistics of this DICA model admit a representation in the form of
the symmetric non-negative CP decomposition with the topic vectors as factors, which
further allows to develop fast and efficient estimation algorithms (in Section 3.4). In
Section 3.3.3, we present some sample complexity results for the DICA cumulant-
based tensors.

3.3.1 Topic Models are PCA for Count Data
Latent Dirichlet Allocation [Blei et al., 2003] is a generative probabilistic model
for discrete data such as text corpora. In accordance with this model, a document
is modeled as an admixture over the vocabulary of 𝑀 words with 𝐾 latent topics.
Specifically, the latent Dirichlet variable 𝜃 (a.k.a. the vector of topic intensities) re-
presents the topic mixture proportion over 𝐾 topics for a document. The variable 𝜃
takes values in the (𝐾 − 1)-probability simplex Δ𝐾 . Given 𝜃, the topic state vector
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zℓ|𝜃 of the ℓ-th token of this document is drawn from the discrete distribution with
probability vector 𝜃. The ℓ-th token wℓ|zℓ,𝜃 is then sampled from the discrete dis-
tribution with probability vector dzℓ , which stands for the 𝑘-th topic d𝑘 where 𝑘 is
such that [zℓ]𝑘 = 1. Each topic is a vector of probabilities over the words from the
vocabulary subject to the probability simplex constraint, i.e., d𝑘 ∈Δ𝑀 for all 𝑘. This
generative process 2 of a document is summarized as(︀

𝐿 ∼ Poisson(𝜆)
)︀
,

𝜃 ∼ Dirichlet(c),

zℓ|𝜃 ∼ Mult(1,𝜃),

wℓ|zℓ ∼ Mult (1,dzℓ) ,

LDA-tok model (3.1)

which is illustrated with the plate notation in Figure 3-1a on page 65. The Poisson
assumption on the document length is discussed below. In Section 1.2.4, we rigorously
showed the equivalence to the LDA-tok model to the LDA-counts model (1.17), which
we refer to as the LDA model in this section :(︀

𝐿 ∼ Poisson(𝜆)
)︀
,

𝜃 ∼ Dirichlet(c),

x|𝜃 ∼ Mult(𝐿,D𝜃),

LDA model (3.2)

which is illustrated with a plate diagram in Figure 3-1b. This model is also known
under the names of multinomial PCA, the Dirichlet-multinomial model, or discrete
PCA [see also Buntine, 2002, Buntine and Jakulin, 2004, 2006] :

LDA as Discrete PCA. Principal component analysis (PCA) admits the follo-
wing probabilistic interpretation [Roweis, 1998, Tipping and Bishop, 1999, see also
Section 1.1.3] :

𝛼 ∼ 𝒩 (0, I𝐾),

x |𝛼 ∼ 𝒩 (D𝛼, 𝜎2I𝑀),
(3.3)

where D ∈ R𝑀×𝑘 is a linear transformation matrix called the factor loading matrix
and 𝜎 ∈ R++ is a positive parameter. Since the maximum likelihood estimate of
the matrix D in the model above is equivalent to the standard PCA solution, the
model (3.3) is referred to as probabilistic principal component analysis (PPCA).

The expectation of the observation vector in both models, (3.2) and (1.8), is equal to
the linear transformation of the latent variables : E𝑝(x|𝜃)(x) = D𝜃 and E𝑝(x|𝛼) = D𝛼,
respectively. Therefore, through the close connection between these two models, Bun-
tine [2002] proposes to consider the LDA model (3.2) as a discretization of principal
component analysis via replacing the normal likelihood in (3.3) with the multinomial
one and appropriately adjusting the prior, which is usually chosen as the conjugate
prior for the likelihood. This lets us see LDA as PCA for count data.

2. Recall the probability density function of the Dirichlet distribution in (A.2) and the probability
mass function of the discrete distribution in (A.4).
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Note that other extensions of PCA to count data were proposed in the literature. For
example, the canonical PCA model [Murphy, 2012, Chapter 12] :

𝛼 ∼ 𝒩 (0, I),

x|𝛼 ∼
𝑀∏︁

𝑚=1

Mult(1,𝒮(D𝑚𝛼+ w𝑚)),

where the parameters D𝑚 ∈ R𝑀×𝐾 and w𝑚 ∈ R𝑀 , and the softmax function 𝒮(y)
transforms a 𝐾-vector y of arbitrary real values to a 𝐾-dimensional vector z = 𝒮(y)
such that z ∈ Δ𝐾 : 𝑧𝑗 = [𝒮(y)]𝑗 = 𝑒𝑦𝑗/

∑︀
𝑘 𝑒

𝑦𝑘 . Similar to probabilistic PCA, this
model is unidentifiable due to the isotropic Gaussian prior for the latent variable.
Moreover, the estimation and inference in this model are difficult tasks, especially,
since the prior is not conjugate.

The LDA Document Length. Importantly, the LDA model does not model the
document length. Indeed, although the original paper [Blei et al., 2003] proposes to
model the document length as 𝐿 ∼ Poisson(𝜆), this is never used in practice and, in
particular, the parameter 𝜆 is not learned. Therefore, in the way that the LDA model
is typically used, it does not provide a complete generative process of a document as
there is no rule to sample 𝐿. In this section, by modeling the document length we
make the link with the gamma-Poisson model and further motivate the discrete ICA
model.

The Gamma-Poisson Model. The GP model 3 was introduced by Canny [2004].
It models the latent variables 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝐾) as independent gamma variables
and the counts 𝑥𝑚|𝛼 (observations) are independent Poisson variables :

𝛼𝑘 ∼ Gamma(𝑐𝑘, 𝑏𝑘),

𝑥𝑚|𝛼 ∼ Poisson([D𝛼]𝑚),
GP model (3.4)

where, as before, the matrix D = [d1,d2, . . . ,d𝐾 ] ∈ R𝑀×𝐾 , the shape parameters
c = (𝑐1, 𝑐2, . . . , 𝑐𝐾) ∈ R𝐾

++, and the rate parameters b = (𝑏1, 𝑏2, . . . , 𝑏𝐾) ∈ R𝐾
++. The

GP model is illustrated with a plate diagram in Figure 3-1c. Since the expectation of
the count vector x = (𝑥1, 𝑥2, . . . , 𝑥𝑀) is equal to E𝑝(x|𝛼)(x) = D𝛼, the GP model is a
particular case of the admixture model (1.12). In fact, the rate parameter controls the
length of documents in the GP model and it is convenient to set 𝑏1 = 𝑏2 = · · · = 𝑏𝐾 =
𝑏 ∈ R++ (see below). The gamma-Poisson model is known as a probabilistic model
for non-negative matrix factorization : the original NMF updates [Lee and Seung,
1999, 2001] appear as the updates of the EM algorithm for maximum likelihood
estimation in a particular gamma-Poisson model [Cemgil, 2009, Dikmen and Févotte,
2012, Paisley et al., 2014].

We will see shortly, that the LDA model (3.1) with a small extension is equivalent to

3. Recall the probability density function of a gamma random variable in (A.6) and the proba-
bility mass function of a Poisson random variable in (A.5).
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the GP model (3.4) [Buntine and Jakulin, 2004, Canny, 2004]. The extension naturally
arises when the document length for the LDA model is modeled as a random variable
from the gamma-Poisson mixture (which is equivalent to a negative binomial random
variable), i.e.,

𝐿|𝜆 ∼ Poisson(𝜆), 𝜆 ∼ Gamma(𝑐0, 𝑏), (3.5)

where 𝑐0 :=
∑︀𝐾

𝑘=1 𝑐𝑘.

The Connection Between the LDA and GP Models. We further show that
the LDA model supplemented with the additional constraint (3.5) on the document
length is equivalent to the GP model (3.4). Let y = D𝜃 ∈ Δ𝑀 . It is known [see,
e.g., Ross, 2010], that if 𝐿 ∼ Poisson(𝜆) and x|𝐿 ∼ Mult(𝐿,y) (which means that
𝐿 =

∑︀
𝑚 𝑥𝑚 with probability one), then 𝑥1, 𝑥2, . . . , 𝑥𝑀 are mutually independent

Poisson random variables with parameters 𝜆𝑦1, 𝜆𝑦2, . . . , 𝜆𝑦𝑀 . Hence, the LDA model
with the document length assumption (3.5) is equivalent to the following model

𝜆 ∼ Gamma(𝑐0, 𝑏),

𝜃 ∼ Dirichlet(c),

𝑥𝑚 |𝜆, 𝜃 ∼ Poisson([D(𝜆𝜃)]𝑚),

(3.6)

where 𝑐0 :=
∑︀

𝑘 𝑐𝑘. To show the equivalence of the model (3.6) to the gamma-Poisson
model (3.4), we use the fact that a Dirichlet random variable can be constructed from
the normalization of independent gamma random variables [see, e.g., Frigyik et al.,
2010]. More specifically, when 𝛼1, 𝛼2, . . . , 𝛼𝐾 are mutually independent gamma ran-
dom variables, each 𝛼𝑘 ∼ Gamma(𝑐𝑘, 𝑏), their sum is also a gamma random variable∑︀

𝑘 𝛼𝑘 ∼ Gamma(
∑︀

𝑘 𝑐𝑘, 𝑏). The former is equivalent to 𝜆. It is known [see, e.g.,
Frigyik et al., 2010], that a Dirichlet random variable can be sampled by first sam-
pling independent gamma random variables (𝛼𝑘) and then dividing each of them by
their sum (𝜆) : 𝜃𝑘 = 𝛼𝑘/

∑︀
𝑘′ 𝛼𝑘′ , and, in other direction, the variables 𝛼𝑘 = 𝜆𝜃𝑘 are

mutually independent, giving back the gamma-Poisson model (3.4).

The GP Document Length. The derivations above also imply that the document
length of a document from the gamma-Poisson model (3.4) is the gamma-Poisson va-
riable (3.5). Hence, by the law of total expectation and the law of total variance :

E(𝐿) = E [E(𝐿|𝜆)] = E(𝜆) = 𝑐0/𝑏,

var(𝐿) = var [E(𝐿|𝜆)] + E [var(𝐿|𝜆)] = var(𝜆) + E(𝜆) = 𝑐0/𝑏 + 𝑐0/𝑏
2.

This means that the rate parameter 𝑏 can be seen as the scaling parameter for the
document length, when 𝑐0 is already prescribed : the smaller 𝑏, the larger E(𝐿). On
the other hand, if we allow 𝑐0 to vary as well, only the ratio 𝑐0/𝑏 is important for
the document length. We can then interpret the role of 𝑐0 as actually controlling
the concentration of the distribution for the length 𝐿 (through the variance). More
specifically, we have that :

var(𝐿)

(E(𝐿))2
=

1

E(𝐿)
+

1

𝑐0
. (3.7)
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(d) DICA (3.8)

Figure 3-1 – Plate diagrams for the models from Section 3.3.

For a fixed target document length E(𝐿), we can increase the variance (and thus
decrease the concentration) by using a smaller 𝑐0.

Discrete ICA. Buntine and Jakulin [2004] propose to refer to the gamma-Poisson
model (3.4) as a discrete ICA (by analogy with the discrete PCA for LDA). It is more
natural, however, to name the following model

𝛼1, . . . , 𝛼𝐾 ∼ mutually independent,
𝑥𝑚|𝛼 ∼ Poisson([D𝛼]𝑚)

DICA model (3.8)

as the discrete 4 ICA (DICA) model. The only difference between (3.8) and the stan-
dard ICA model without the additive noise (see, e.g., Section 1.1.4) is the presence
of the Poisson noise which induces discrete, instead of continuous, values of 𝑥𝑚. Note
also that (a) the discrete ICA model (3.8) is a semiparametric model [Bickel et al.,
1998] that can adapt to any distribution on the topic intensities 𝛼𝑘 (the distribution
is unknown and we do not care to estimate this distribution) ; (b) the GP model (3.4)
is a particular case of both the LDA model (3.2) and the DICA model (3.8) ; and (c)
the DICA model is identifiable if the matrix D is full rank (note that the sources 𝛼
in the DICA model are assumed to be non-negative valued and, therefore, can not be
Gaussian). The discrete ICA model is illustrated with a plate diagram in Figure 3-
1d.

3.3.2 GP and Discrete ICA Cumulants
In this section, we derive and analyze the novel cumulant-based tensors of the DICA
model (3.8). As the GP model (3.4) is a particular case of the DICA model, the

4. Note that the name discrete ICA was also used in the literature in the different context :
for the separation of discrete sources, not the discreet observations as here [see, e.g., Senecal and
Amblard, 2000, 2001].
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results of this section also apply to the GP model. See Section 2.2 for the definition
of cumulants and some of their properties which are necessary for the understanding
of this section.

Cumulants. The first three cumulants of an R𝑀 -valued random variable x are defi-
ned as (see also Section 2.2) :

cum(x) := E(x), (3.9)
cum(x,x) := cov(x,x) = E

[︀
(x− E(x))(x− E(x))⊤

]︀
, (3.10)

cum(x,x,x) := E [(x− E(x))⊗ (x− E(x))⊗ (x− E(x))] , (3.11)

where we denoted cum(x) = 𝜅
(1)
x , cum(x,x) = 𝜅

(2)
x , and cum(x,x,x) = 𝜅

(3)
x in the

notation of Section 2.2. The essential property of cumulants, which does not hold for
moments and that we use in this chapter, is that the cumulant tensor for a random
vector with independent components is diagonal.

The SDICA Cumulant. Let y = D𝛼 ; then for the Poisson random variable 𝑥𝑚|𝑦𝑚 ∼
Poisson(𝑦𝑚), the expectation is E(𝑥𝑚|𝑦𝑚) = 𝑦𝑚. Hence, by the law of total expectation
and the linearity of expectation, the expectation in (3.9) has the following form

E(x) = E(E(x|y)) = E(y) = DE(𝛼). (3.12)

Further, the variance of the Poisson random variable 𝑥𝑚 is var(𝑥𝑚|𝑦𝑚) = 𝑦𝑚 and, as
𝑥1, 𝑥2, . . . , 𝑥𝑀 are conditionally independent given y, then their covariance matrix
is diagonal, i.e., cov(x,x|y) = Diag(y). Therefore, by the law of total covariance, the
covariance in (3.10) has the form

cov(x,x) = E [cov(x,x|y)] + cov [E(x|y),E(x|y)]

= Diag [E(y)] + cov(y,y)

= Diag [E(x)] + D cov(𝛼,𝛼)D⊤,

(3.13)

where the last equality follows by the multilinearity property of cumulants. Moving
the first term from the RHS of (3.13) to the LHS, we define

S𝐷𝐼𝐶𝐴 := cov(x,x)−Diag [E(x)] . DICA S-cum. (3.14)

By the independence property of cumulants, the covariance of the latent variables 𝛼
is a diagonal matrix. Substituting this into the covariance matrix (3.13), and the
covariance matrix (3.13) into the definition (3.14) of S𝐷𝐼𝐶𝐴, we obtain the following
diagonal structure of S𝐷𝐼𝐶𝐴 :

S𝐷𝐼𝐶𝐴 = D cov(𝛼, 𝛼)D⊤ =
∑︁

𝑘
var(𝛼𝑘)d𝑘 ⊗ d𝑘 = DDiag [var(𝛼)]D⊤, (3.15)

where d𝑘 ⊗ d𝑘 = d𝑘d
⊤
𝑘 is the outer product. This diagonal structure is illustrated in

Figure 3-2 and is different from the eigendecomposition : there is no orthogonality
constraint on the matrix D in (3.15), but each column of D is constrained to the

66



S𝐷𝐼𝐶𝐴 = D ×
cov(𝛼)

× D⊤

(a) The DICA population S𝐷𝐼𝐶𝐴 cumulant (3.15).

𝒯 𝐷𝐼𝐶𝐴 =

𝜅
(3)
𝛼D

×

×

D⊤

D⊤×

(b) The DICA population 𝒯 𝐷𝐼𝐶𝐴 cumulant (3.18).

Figure 3-2 – The DICA population S𝐷𝐼𝐶𝐴 and 𝒯 𝐷𝐼𝐶𝐴 cumulants.

(𝑀 − 1)-simplex.

The 𝒯 DICA Cumulant. By analogy with the second order case, using the law of
total cumulance, the multilinearity property of cumulants, the independence of 𝛼,
and the expression (3.13), we derive in Appendix B.1 the expression (B.2), similar
to (3.13), for the order-3 cumulant (3.11) of the DICA model :

cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3) =
[︀
cum(𝛼,𝛼,𝛼)×1 D

⊤ ×2 D
⊤ ×3 D

⊤)
]︀
𝑚1𝑚2𝑚3

− 2𝛿(𝑚1, 𝑚2, 𝑚3)E(𝑥𝑚1) + 𝛿(𝑚2, 𝑚3) cov(𝑥𝑚1 , 𝑥𝑚2)

+ 𝛿(𝑚1, 𝑚3) cov(𝑥𝑚1 , 𝑥𝑚2) + 𝛿(𝑚1, 𝑚2) cov(𝑥𝑚1 , 𝑥𝑚3),

(3.16)

where 𝛿 is the Kronecker delta. Moving all but the first terms in the RHS of this
expression to the LHS, we define the tensor 𝒯 𝐷𝐼𝐶𝐴 element-wise as follows

𝒯 𝐷𝐼𝐶𝐴
𝑚1𝑚2𝑚3

:= cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3) + 2𝛿(𝑚1, 𝑚2, 𝑚3) E(𝑥𝑚1)

− 𝛿(𝑚2, 𝑚3) cov(𝑥𝑚1 , 𝑥𝑚2) DICA T-cum.
− 𝛿(𝑚1, 𝑚3) cov(𝑥𝑚1 , 𝑥𝑚2)− 𝛿(𝑚1, 𝑚2) cov(𝑥𝑚1 , 𝑥𝑚3).

(3.17)

Again, by the independence property of cumulants, the order-3 cumulant of the latent
variable 𝛼 is a diagonal tensor. Substituting this into the order-3 cumulant (3.16) and
then the order-3 cumulant in the definition (3.17) of the tensor 𝒯 𝐷𝐼𝐶𝐴, we obtain the
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following diagonal structure of the tensor 𝒯 𝐷𝐼𝐶𝐴 :

𝒯 𝐷𝐼𝐶𝐴 =
∑︁

𝑘
cum(𝛼𝑘, 𝛼𝑘, 𝛼𝑘)d𝑘 ⊗ d𝑘 ⊗ d𝑘, (3.18)

where ⊗ is the outer product. In fact, this is a non-negative symmetric CP decompo-
sition (see Section 2.1.2) of the tensor 𝒯 𝐷𝐼𝐶𝐴. See also the illustration in Figure 3-2.
Sometimes, we will also refer to this form of the 𝒯 𝐷𝐼𝐶𝐴 tensor and the form (3.15)
of the S matrix as the diagonal form or structure. In Section 3.4, we demonstrate
how to use these properties of the DICA cumulants for the estimation in the DICA
model.

The LDA Moments. In Section 2.2.3, we reviewed the moment-based LDA matrix
S𝐿𝐷𝐴 (2.41) and tensor 𝒯 𝐿𝐷𝐴 (2.42) [Anandkumar et al., 2012a, 2015a], which are
analogues of the cumulant-based DICA matrix S𝐷𝐼𝐶𝐴 (3.14) and tensor 𝒯 𝐷𝐼𝐶𝐴 (3.17).
Slightly abusing terminology, we refer to the matrix S𝐿𝐷𝐴 (2.41) and the tensor
𝒯 𝐿𝐷𝐴 (2.42) as the LDA moments and to the matrix S𝐷𝐼𝐶𝐴 (3.14) and the tensor
𝒯 𝐷𝐼𝐶𝐴 (3.17) as the DICA cumulants. The diagonal structure (2.43) and (2.44) of
the LDA moments is similar to the diagonal structure (3.15) and (3.18) of the DICA
cumulants, though arising through a slightly different argument. Indeed, the former
is the result of properties of the Dirichlet distribution, while the latter is the result
of the independence of 𝛼’s. However, one can think of the elements of a Dirichlet
random vector as being almost independent (as, e.g., a Dirichlet random vector can
be obtained from independent gamma variables through dividing each by their sum).
Also, this closeness of the structures of the LDA moments and the DICA cumulants
can be explained by the closeness of the respective models as discussed in Section 3.3.
Importantly, due to this similarity, the algorithmic frameworks for both the DICA
cumulants and the LDA moments coincide. However, LDA is parametric, while DICA
is semiparametric.

The DICA cumulants have a somewhat more intuitive derivation than the LDA mo-
ments as they are expressed via the count vectors x (which are the sufficient statistics
for the model) and not the tokens wℓ’s. Note also that the construction of the LDA
moments depend on the unknown parameter 𝑐0. Given that we are in an unsupervised
setting and that moreover the evaluation of LDA is a difficult task [Wallach et al.,
2009b], setting this parameter is non-trivial. In Section 3.5.4, we observe experimen-
tally that the LDA moments are sensitive to the choice of 𝑐0.

Note that another (slight) difference, which can be seen as an advantage, of the DICA
cumulants from the LDA moments is that the former does not require a somewhat
artificial condition of the 𝐿 ≥ 3 document length : they are well-defined for any
document length.

3.3.3 Sample Complexity

Unbiased Finite Sample Estimators for the DICA Cumulants. In practice,
population cumulants are never available and they have to be estimated using finite
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sample estimators. Given a sample X = {x1,x2, . . . ,x𝑁} of 𝑁 observations or do-
cuments, we define a finite sample estimate ̂︀S𝐷𝐼𝐶𝐴 of S𝐷𝐼𝐶𝐴 (3.14) and ̂︀𝒯 𝐷𝐼𝐶𝐴 of
𝒯 𝐷𝐼𝐶𝐴 (3.17) for the DICA cumulants as :

̂︀S𝐷𝐼𝐶𝐴 := ̂︁cov(x,x)−Diag
(︁̂︀E(x)

)︁
, (3.19)

̂︀𝒯 𝐷𝐼𝐶𝐴
𝑚1𝑚2𝑚3

:= ̂︂cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3) + 2𝛿(𝑚1,𝑚2,𝑚3)̂︀E(𝑥𝑚1)

− 𝛿(𝑚2,𝑚3)̂︁cov(𝑥𝑚1 , 𝑥𝑚2)

− 𝛿(𝑚1,𝑚3)̂︁cov(𝑥𝑚1 , 𝑥𝑚2)

− 𝛿(𝑚1,𝑚2)̂︁cov(𝑥𝑚1 , 𝑥𝑚3),

(3.20)

where unbiased estimators of the first three cumulants are

̂︀E(𝑥𝑚1) =
1

𝑁

𝑁∑︁
𝑛=1

𝑥𝑛𝑚1 ,

̂︁cov(𝑥𝑚1 , 𝑥𝑚2) =
1

𝑁 − 1

𝑁∑︁
𝑛=1

𝑧𝑛𝑚1𝑧𝑛𝑚2 ,

̂︂cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3) =
𝑁

(𝑁 − 1)(𝑁 − 2)

𝑁∑︁
𝑛=1

𝑧𝑛𝑚1𝑧𝑛𝑚2𝑧𝑛𝑚3 ,

(3.21)

where the word vocabulary indices are 𝑚1,𝑚2,𝑚3 = 1, 2, . . . ,𝑀 and the centered
documents 𝑧𝑛𝑚 := 𝑥𝑛𝑚− ̂︀E(𝑥𝑚). (The latter is introduced only for compact represen-
tation of (3.21) and is different from the latent variable z in the LDA as well as other
models.)

Expressions for fast implementation of these finite sample estimators are derived in
Appendix C.1.2. These expressions are used for fast implementation of algorithms in
a software package, which is a part of this thesis work (see Appendix C).

Similar expressions for finite sample estimators of the LDA moment-based tensors are
presented in Section 2.2.3 and expressions for their fast implementation are derived
in Appendix C.1.1. These expressions are also used for fast implementation of the
respective algorithms in the mentioned software package.

Sample Complexity. The following sample complexity results apply to the sample
estimates of the GP cumulants : 5

Proposition 3.3.1. Under the GP model, the expected error for the sample estimator

5. Note that the expected squared error for the DICA cumulants is similar, but the expressions
are less compact and, in general, depend on the prior on 𝛼𝑘.
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̂︀𝑆 (3.19) for the GP cumulant 𝑆 (3.14) is :

E
[︁
‖̂︀S𝐺𝑃 − S𝐺𝑃‖𝐹

]︁
≤
√︂

E
[︁
‖̂︀S𝐺𝑃 − S𝐺𝑃‖2𝐹

]︁
≤ 𝑂

(︂
1√
𝑁

max
[︀
∆�̄�2, 𝑐0�̄�

]︀)︂
,

(3.22)

where ∆ := max 𝑘 ‖d𝑘‖22, 𝑐0 := min(1, 𝑐0) and �̄� := E(𝐿).

A high probability bound could be derived using concentration inequalities for Poisson
random variables [Boucheron et al., 2013] ; but the expectation already gives the right
order of magnitude for the error (for example via Markov’s inequality). A sketch of a
proof for Proposition 3.3.1 can be found in Appendix B.2. See also the discussion of
this sample complexity results in the end of Section 3.4.1.

We do not present the exact expression for the expected squared error for the estima-
tor of 𝒯 𝐺𝑃 , but due to a similar structure in the derivation, we expect the analogous
bound of E

[︀
‖ ̂︀𝒯 𝐺𝑃 − 𝒯 𝐺𝑃‖𝐹

]︀
≤ 1/

√
𝑁 max{∆3/2�̄�3, 𝑐

3/2
0 �̄�3/2}.

Current sample complexity results of the LDA moments [Anandkumar et al., 2012a]
can be summarized as 𝑂(1/

√
𝑁). However, the proof (which can be found in the sup-

plementary material [Anandkumar et al., 2013a]) analyzes only the case when finite
sample estimates of the LDA moments are constructed from one triple per docu-
ment, i.e., w1 ⊗ w2 ⊗ w3 only, and not from the U-statistics that average multiple
(dependent) triples per document as in the practical expressions (2.45) and (2.46)
(Section 2.2.3). Moreover, one has to be careful when comparing upper bounds. Ne-
vertheless, comparing the bound (3.22) with the current theoretical results for the
LDA moments, we see that the GP/DICA cumulants sample complexity contains the
ℓ2-norm of the columns of the topic matrix D in the numerator, as opposed to the
𝑂(1) coefficient for the LDA moments. This norm can be significantly smaller than 1
for vectors in the simplex (e.g., ∆ = 𝑂(1/ ‖d𝑘‖0) for sparse topics). This suggests that
the GP/DICA cumulants may have better finite sample convergence properties than
the LDA moments and our experimental results in Section 3.5 are indeed consistent
with this statement. This difference, however, should decrease with the growth of the
average document length in a corpus.

3.4 Estimation in the GP and DICA Models

In this section, we propose several algorithms for the estimation in the GP and DICA
models. These algorithms are based on the symmetric CP structure of the DICA
cumulant-based matrix S𝐷𝐼𝐶𝐴 and third-order tensor 𝒯 𝐷𝐼𝐶𝐴 and consist of a two
step procedure similar to the one used for the estimation in the LDA (ICA) models
as described in Section 2.4.2) : first, (a) the prewhitening of the matrix S𝐷𝐼𝐶𝐴 and,
second, (b) finding the “right” orthogonal transformation using one of the algorithms
for the orthogonal symmetric CPD of the prewhitened version of the tensor 𝒯 𝐷𝐼𝐶𝐴.
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The second step can be performed in several different ways : through the eigendecom-
position of a contraction of the prewhitened tensor 𝒯 𝐷𝐼𝐶𝐴, through the tensor power
method of the prewhitened tensor 𝒯 𝐷𝐼𝐶𝐴, or through orthogonal joint diagonalization
of several contractions of the prewhitened tensor 𝒯 𝐷𝐼𝐶𝐴.

Prewhitening. By analogy with Section 2.4.2, we perform the prewhitening of the
matrix S𝐷𝐼𝐶𝐴, that is we find a matrix W ∈ R𝐾×𝑀 such that WS𝐷𝐼𝐶𝐴W⊤ = I𝐾 .
Such matrix W is not uniquely defined, but can be easily found through the SVD of
S𝐷𝐼𝐶𝐴 and truncation of the 𝑀 −𝐾 smallest eigenpairs.

The diagonal form (3.15) of the matrix S𝐷𝐼𝐶𝐴 can be rewritten, without loss of
generality, in the form S𝐷𝐼𝐶𝐴 = ̃︀D̃︀D⊤, where ̃︀D := Dcov(𝛼)1/2, since cov(𝛼) is
diagonal and due to the scaling unidentifiability. Since an orthogonally transformed
whitening matrix is still a whitening matrix, there exists an orthogonal matrix Q
such that QW ̃︀D = I (up to unidentifiable permutation and scaling which we ignore
in this section). This means, finding the “right” orthogonal matrix Q would allow
us to recover the matrix ̃︀D (up to permutation and scaling). To fix this degree of
freedom, we use the third-order tensor 𝒯 𝐷𝐼𝐶𝐴.

Let us transform the tensor 𝒯 𝐷𝐼𝐶𝐴 with our whitening matrix W along all modes :

𝒯 𝐷𝐼𝐶𝐴
:= 𝒯 𝐷𝐼𝐶𝐴 ×1 W⊤ ×2 W⊤ ×3 W⊤. (3.23)

When the matrix Q from above is known, transforming this tensor along all modes
with Q diagonalizes the tensor, i.e. 𝒯 𝐷𝐼𝐶𝐴 ×1 Q⊤ ×2 Q⊤ ×3 Q⊤ is diagonal. This
suggests a two-step routine for the estimation of D, which consists of computing a
whitening matrix W and an orthogonal matrix Q. Below we briefly outline three algo-
rithms for the approximation of such matrix Q, which were described in Sections 2.1.2
and 2.4.2. These algorithms can be applied to any pair of S and 𝒯 in the diago-
nal (symmetric CP) form (4.21), including the ICA cumulants (see Section 2.2.2),
the LDA moments (see Section 2.2.3), the DICA cumulants (see Section 3.3.2), and
higher-order statistics of many other models.

The Eigendecomposition Based Algorithm. The easiest approach to the ap-
proximation of the matrix Q is through the eigendecomposition (ED) of a contracted
with some vector u ∈ R𝐾 tensor 𝒯 𝐷𝐼𝐶𝐴 (see Section 2.4.2 for the definition of the
contraction, a.k.a. projection, of a tensor with a vector), which is a matrix 𝒯 𝐷𝐼𝐶𝐴

(u).
In the ideal case of the population cumulants, this method finds the global solu-
tion. However, in practice, when one deals with finite sample estimates of S𝐷𝐼𝐶𝐴 and
𝒯 𝐷𝐼𝐶𝐴, the diagonal form in (4.21) is only approximate. In this case, contracting a
tensor with only one vector leads to an important loss of information (reducing 𝐾3 to
𝐾2 elements), which leads to poor approximations in practice, which we also observe
in experiments (see Section 3.5).

The Tensor Power Method. Another approach for the approximation of Q is the
tensor power method [see Anandkumar et al., 2014, and references therein], which
is a direct extension of the matrix power method to tensors. The main idea of the
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Algorithm 4 The OJD algorithm for GP/DICA cumulants

1: Input : X ∈ R𝑀×𝑁 , 𝐾, 1 ≤ 𝑃 ≤ 𝐾 (number of random contractions)
2: Compute sample estimate ̂︀S𝐷𝐼𝐶𝐴 ∈ R𝑀×𝑀

3: Compute a whitening matrix ̂︁W ∈ R𝐾×𝑀 of ̂︀S
4: Construct vectors {v1,v2, . . . ,v𝑃} for random contractions as v𝑝 = ̂︁W⊤u𝑝 and :

option (a) : Choose 𝑃 vectors {u1,u2, . . . ,u𝑃} ⊆ R𝐾 uniformly at random from
the unit ℓ2-sphere (𝑃 = 1 yields the ED-based algorithm)
option (b) : Set 𝑃 = 𝐾 and choose vectors {u1,u2, . . . ,u𝑃} ⊆ R𝐾 as the canonical
basis e1, e2, . . . , e𝐾 of R𝐾

5: Construct target matrices B𝑝 = ̂︁W ̂︀𝒯 𝐷𝐼𝐶𝐴(̂︁W⊤u𝑝)̂︁W⊤ ∈ R𝐾×𝐾 for each 𝑝 ∈ [𝑃 ]
6: Find an orthogonal matrix Q ∈ R𝐾×𝐾 that jointly diagonalizes the matrices

̂︁Ŵ︀S𝐷𝐼𝐶𝐴̂︁W⊤, B𝑝, 𝑝 ∈ [𝑃 ]

7: Output : the matrix Q̂︁W and (nearly diagonal) matrices QB𝑝Q
⊤

algorithm is to estimate the columns of Q one-by-one using the deflation approach.
At each deflation step, a vector q𝑘 is approximated through iterative tensor power
updates as we outlined in Section 2.1.2. In the ideal case of the population cumulants,
the algorithm finds the global solution at the quadratic convergence rate. In the
practical case with the finite sample and possibly misspecification errors, tensor power
method only finds an approximation of the matrix Q. Given the additive noise to the
orthogonal symmetric CPD structure of the sample estimate of the tensor 𝒯 𝐷𝐼𝐶𝐴 is
not large, a TPM approximation of a vector q𝑘 is close to this vector q𝑘 in terms of
the ℓ2-error in accordance with the perturbation analysis of the tensor power method
[Anandkumar et al., 2014].

Orthogonal Joint Matrix Diagonalization. Another algorithm for the approxi-
mation of the matrix Q can be seen as a stabilization of the eigendecomposition-based
algorithm. The key idea is to take several contractions of the prewhitened tensor̂︀𝒯 𝐷𝐼𝐶𝐴 ×1

̂︁W⊤ ×2
̂︁W⊤ ×3

̂︁W⊤ with different vectors u𝑝, for 𝑝 ∈ [𝑃 ], and jointly
diagonalize the obtained matrices ̂︁W ̂︀𝒯 𝐷𝐼𝐶𝐴(̂︁W⊤u𝑝)̂︁W⊤. This is also known as joint
(symmetric) eigendecomposition of several matrices and we described a Jacobi-like
algorithm for this problem in Section 2.3.1. This method applied to the estimation
problem in the DICA model is outlined in Algorithm 4.

The choice of the number 𝑃 of the contraction (projection) vectors v1, v2, . . . , v𝑃 is
not straightforward. The case 𝑃 = 1 corresponds to the ED-based algorithm described
above and leads to tremendous loss of information contained in the original tensor.
The choice of the canonical basis in R𝐾 and vectors v𝑝 := ̂︁W⊤e𝑝 for 𝑝 ∈ [𝐾] preserves
all information contained in the original tensor, but can be computationally expensive
if 𝐾 is too large. Choosing 𝑃 between 1 and 𝐾 which leads to a good trade-off between
the quality of the approximation and the computational complexity is thus of interest.
In practice, choosing even small values of 𝑃 , e.g, 𝑃 = 2 or 3, lead to a significant
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improvement over the ED-based algorithm. Ideally, it would be of interest to show
rigorously that setting 𝑃 to a value close to log(𝐾) is sufficient for an accurate
approximation (which is observed in practice).

Estimation of the Topic Matrix. An eventual goal of the procedure is the esti-
mation of the topic matrix D given the outputs of the algorithms above : ̂︁W and Q.
Since (up to permutation and scaling) Q̂︁WD = I, one can estimate ̂︀D in a multistep
procedure : (a) compute a matrix ̂︁W†Q⊤, (b) for each column of this matrix, set the
sign such that the vector (column) has less negative elements than positive, which
is measured by the sum of squares of the elements of each sign, (c) truncate all ne-
gative values, and (d) normalize the columns of the resulting matrix to sum to one.
The step in (b) is necessary due to the scaling unidentifiability which includes the
scaling by −1. This heuristic procedure is necessary to preserve the non-negativity
of the elements of the topic matrix. More justified procedure would be of interest,
however, it is not readily available. One could consider using the non-negative CP
decomposition instead of the two-step procedure outlined in this section, but this is
not straightforward because of (a) the symmetric case and (b) the high dimension 𝑀
of the original space before prewhitening. We tried to integrate a non-negativity en-
forcing regularization into the optimization problem of the OJD algorithm. However,
the search space, which is the Stiefel manifold in this case, is too restrictive and
the resulting algorithm does not have any significant increase of the approximation
quality in practice.

3.4.1 Analysis of the Whitening and Recovery Error

In this section, we extend the topic recovery guarantees of Anandkumar et al. [2013a]
to the ED-based algorithm for the GP and DICA models. Let S := S𝐷𝐼𝐶𝐴 and
𝒯 := 𝒯 𝐷𝐼𝐶𝐴.

We can follow a similar analysis as in Appendix C of Anandkumar et al. [2013a] to
derive the topic recovery error given the sample estimate error. In particular, if we
define the following sampling errors 𝐸S and 𝐸𝒯 :

‖̂︀S− S‖ ≤ 𝐸S,

‖ ̂︀𝒯 (u)− 𝒯 (u)‖ ≤ ‖u‖2𝐸𝒯 ,

then the following form of their Lemma C.2 holds for the DICA cumulants :

‖̂︁W ̂︀𝒯 (̂︁W⊤u)̂︁W⊤ −W𝒯 (W⊤u)W⊤‖ ≤ 𝜈

[︃
(max𝑘𝛾𝑘)𝐸S

𝜎𝐾

(︀ ̃︀D)︀2 +
𝐸𝒯

𝜎𝐾

(︀ ̃︀D)︀3
]︃
, (3.24)

where 𝜎𝑘(·) denotes the 𝑘-th singular value of a matrix, 𝜈 is a universal constant,
and ̃︀D is such that S = ̃︀D̃︀D⊤. The values of 𝛾𝑘 := cum(𝛼𝑘)[𝛥(𝛼𝑘)]−1.5 for the
DICA cumulants. Note that similar expression holds for the LDA moments with

𝛾𝑘 = 2
√︁

𝑐0(𝑐0 + 1)) [𝑐𝑘(𝑐0 + 2)2]−1. Moreover, the GP cumulants are a special case
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of the DICA cumulants and substituting the gamma prior on 𝛼 one readily obtains
𝛾𝑘 := 2𝑐−0.5

𝑘 .

We note that the scaling for S is 𝑂(𝐿2) for the GP/DICA cumulants, in contrast
to 𝑂(1) for the LDA moments. Thus, to compare the upper bound (3.24) for the
two types of moments, we need to put it in quantities which are common. In the
first section of the Appendix C of Anandkumar et al. [2013a], it was mentioned that

𝜎𝐾

(︀ ̃︀D)︀ ≥ √︁𝑐min [𝑐0(𝑐0 + 1)]−1𝜎𝐾(D) for the LDA moments, where 𝑐min := min𝑘 𝑐𝑘.
We further switch to the GP model, where the dependence on 𝐿 is transparent.
However, similar results are readily available for the DICA model. So, in contrast, for
the GP cumulants, we can show that 𝜎𝐾

(︀ ̃︀D)︀ ≥ �̄�
√
𝑐min𝑐

−1
0 𝜎𝐾(D), where �̄� := 𝑐0/𝑏

(i.e. �̄� := E(𝐿)) is the expected length of a document in the GP model. Using this
lower bound for the singular vector, we thus get the following bound for the GP
cumulant :

‖̂︁W ̂︀𝒯 𝐺𝑃 (̂︁W⊤u)̂︁W⊤−W𝒯 𝐺𝑃 (W⊤u)W⊤‖

≤ 𝜈

𝑐
3/2
min

[︃
𝐸S

�̄�2

2𝑐20[︀
𝜎𝐾

(︀
D
)︀]︀2 +

𝐸𝒯

�̄�3

𝑐30
[𝜎𝐾(D)]3

]︃
.

(3.25)

The 𝑐
3/2
min factor is common for both the LDA moment and GP cumulant, however,

the sample error 𝐸S term gets divided by �̄�2 for the GP cumulant, as expected.
Indeed, the prewhitening transformation for the GP S𝐺𝑃 matrix redivides the error
𝐸S on S𝐺𝑃 (3.22) by �̄�2, which is the scale of S𝐺𝑃 . This means that the contribution
from ̂︀S𝐺𝑃 to the recovery error will scale as 𝑂(1/

√
𝑁 max{∆, 𝑐0/�̄�}), where both ∆

and 𝑐0/�̄� are smaller than 1 and can be very small. This argument indicates that the
(bound on the) sample complexity is better for GP cumulants vs. LDA moments.

The recovery error bound by Anandkumar et al. [2013a] is based on the bound (3.25),
and thus by showing that the error 𝐸S/�̄�

2 for the GP cumulant is lower than the 𝐸S

term for the LDA moment, we expect to also gain a similar gain for the recovery error,
as the rest of the argument is the same for both types of moments (see Appendix C.2,
C.3 and C.4 by Anandkumar et al. [2013a]).

3.5 Experiments

In this section, (a) we compare experimentally the GP/DICA cumulants with the LDA
moments and (b) the spectral algorithm [Anandkumar et al., 2012a], the tensor power
method [Anandkumar et al., 2014] (TPM), the joint diagonalization (JD) algorithm
from Algorithm 4, and variational inference for LDA [Blei et al., 2003].
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3.5.1 Datasets
Real Data. Real data includes the associated press (AP) dataset, from D. Blei’s
web page, 6 with 𝑁 = 2, 243 documents and 𝑀 = 10, 473 vocabulary words and the
average document length ̂︀𝐿 = 194 ; the NIPS papers dataset 7 [Globerson et al., 2007]
of 2, 483 NIPS papers and 14, 036 words, and ̂︀𝐿 = 1, 321 ; the KOS dataset, 8 from
the UCI Repository, with 3, 430 documents and 6, 906 words, and ̂︀𝐿 = 136.

Semi-Synthetic Data. Semi-synthetic data are constructed by analogy with Arora
et al. [2013] : (1) the LDA parameters D and c are learned from the real datasets with
variational inference and (2) synthetic data are sampled from a model of interest with
the given parameters D and c. This provides the ground truth parameters D and c.
For each setting, data are sampled 5 times and the results are averaged. We plot error
bars that are the minimum and maximum values. For the AP data, 𝐾 ∈ {10, 50}
topics are learned and, for the NIPS data, 𝐾 ∈ {10, 90} topics are learned. For
larger 𝐾, the obtained topic matrix is ill-conditioned, which violates the identifiability
condition for topic recovery using moment matching techniques [Anandkumar et al.,
2012a]. All the documents with less than 3 tokens are resampled.

Sampling Techniques. All the sampling models have the parameter c which is set
to c = 𝑐0c̄/ ‖c̄‖1, where c̄ is the learned c from the real dataset with variational
LDA, and 𝑐0 is a parameter that we can vary. The GP data are sampled from the
gamma-Poisson model (3.4) with 𝑏 = 𝑐0/̂︀𝐿 so that the expected document length iŝ︀𝐿. The LDA-fix(𝐿) data are sampled from the LDA model (3.2) with the document
length being fixed to a given 𝐿. The LDA-fix2(𝛾,𝐿1,𝐿2) data are sampled as follows :
(1 − 𝛾)-portion of the documents are sampled from the LDA-fix(𝐿1) model with a
given document length 𝐿1 and 𝛾-portion of the documents are sampled from the
LDA-fix(𝐿2) model with a given document length 𝐿2.

3.5.2 Code and Complexity
Our (mostly Matlab) implementations of the diagonalization algorithms (JD, Spec,
and TPM) for both the GP/DICA cumulants and LDA moments are available online. 9

Moreover, all datasets and the code for reproducing our experiments are available. 10

Each experiment was run in a single thread.

The bottleneck for the spectral (i.e. ED-based), JD, and TPM algorithms is the
computation of the cumulants/moments. However, the expressions (C.5) and (C.4)
provide efficient formulas for fast computation of the GP/DICA cumulants and LDA
moments (𝑂(𝑅𝑁𝐾 +𝑁𝐾2), where 𝑅 is the largest number of non-zeros in the count
vector 𝑥 over all documents, see Appendix C.1), which makes even the Matlab im-
plementation fast for large datasets (see, e.g., Table 3.1). Since all diagonalization

6. http://www.cs.columbia.edu/~blei/lda-c
7. http://ai.stanford.edu/~gal/data
8. https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
9. https://github.com/anastasia-podosinnikova/dica-light

10. https://github.com/anastasia-podosinnikova/dica
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algorithms (spectral, JD, TPM) perform the whitening step once, it is sufficient to
compare their complexities by the number of times the cumulants/moments are com-
puted.

Spectral. The spectral algorithm estimates the cumulants/moments only once lea-
ding to 𝑂(𝑁𝐾(𝑅 + 𝐾)) complexity and, therefore, is the fastest.

OJD. For JD, rather than estimating 𝑃 cumulants/moments separately, one can
jointly estimate these values by precomputing and reusing some terms (e.g., 𝑊𝑋).
However, the complexity is still 𝑂(𝑃𝑁𝐾(𝑅+𝐾)), although in practice it is sufficient
to have 𝑃 = 𝐾 or even smaller.

TPM. For TPM some parts of the cumulants/moments can also be precomputed,
but as TPM normally does many more iterations than 𝑃 , it can be significantly
slower. In general, the complexity of TPM can be significantly influenced by the
initialization of the parameters of the algorithm. There are two main parameters :
𝐿𝑇𝑃𝑀 is the number of random restarts within one deflation step and 𝑁𝑇𝑃𝑀 is the
maximum number of iterations for each of 𝐿𝑇𝑃𝑀 random restarts (note that these are
different from the number of documents 𝑁 and document 𝐿). Some restarts converge
very fast (in much less than 𝑁𝑇𝑃𝑀 iterations), while others are slow. Moreover, as
follows from theoretical results [Anandkumar et al., 2014] and, as we observed in
practice, the restarts which converge to a good solution converge fast, while slow
restarts, normally, converge to a worse solution. Nevertheless, in the worst case, the
complexity is 𝑂(𝑁𝑇𝑃𝑀𝐿𝑇𝑃𝑀𝑁𝐾(𝑅 + 𝐾)).

Note that for the experiment in Figure 3-3, 𝐿𝑇𝑃𝑀 = 10 and 𝑁𝑇𝑃𝑀 = 100 and the
run with the best objective is chosen. We believe that these values are reasonable
in a sense that they provide a good accuracy solution (𝜀 = 10−5 for the norm of
the difference of the vectors from the previous and the current iteration) in a little
number of iterations, however, they may not be the best ones.

JD Implementation. For the orthogonal joint diagonalization algorithm, we im-
plemented a faster C++ version of the previous Matlab implementation 11 by J.-
F. Cardoso. Moreover, the orthogonal joint diagonalization routine can be initialized
in different ways : (a) with the 𝐾 ×𝐾 identity matrix or (b) with a random ortho-
gonal 𝐾 ×𝐾 matrix. We tried different options and in nearly all cases the algorithm
converged to the same solution, implying that initialization with the identity matrix
is sufficient.

Whitening Matrix. For the large vocabulary size 𝑀 , computation of a whitening
matrix can be expensive (in terms of both memory and time). One possible solution
would be to reduce the vocabulary size with, e.g., by selecting according to the tf-idf
score, which is a standard practice in the topic modeling context. Another option is
using a stochastic eigendecomposition [see, e.g., Halko et al., 2011] to approximate
the whitening matrix.

Variational Inference. For variational inference, we used the code of D. Blei and

11. http://perso.telecom-paristech.fr/~cardoso/Algo/Joint_Diag/joint_diag_r.m
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modified it for the estimation of a non-symmetric Dirichlet prior c, which is known to
be important [Wallach et al., 2009a]. The default values of the tolerance/maximum
number of iterations parameters are used for variational inference. The computational
complexity of one iteration for one document of the variational inference algorithm is
𝑂(𝑅𝐾), where 𝑅 is the number of non-zeros in the count vector for this document,
which is then performed a significant number of times for each document.

Evaluation. The evaluation of topic recovery for semi-synthetic data is performed
with the ℓ1-error between the recovered ̂︀D and true D topic matrices with the best
permutation of columns : errℓ1(̂︀D,D) := min𝜋∈PERM

1
2𝐾

∑︀
𝑘 ‖̂︀d𝜋𝑘

− d𝑘‖1 ∈ [0, 1].
The minimization is over the possible permutations 𝜋 ∈ PERM of the columns of ̂︀D
and can be efficiently obtained with the Hungarian algorithm for bipartite matching
[Kuhn, 1955].

Evaluation of the Real Data Experiments. For the evaluation of topic recovery
in the real data case, we use an approximation of the log-likelihood for held out
documents as the metric. The approximation is computed using a Chib-style method
as described by Wallach et al. [2009b] using the implementation by the authors. 12

Importantly, this evaluation method is applicable for both the LDA model as well as
the GP model. Indeed, as it follows from Section 3.3, the GP model is equivalent to
the LDA model when conditioning on the length of a document 𝐿 (with the same
𝑐𝑘 hyper parameters), while the LDA model does not make any assumption on the
document length. For the test log-likelihood comparison, we thus treat the GP model
as a LDA model (we do not include the likelihood of the document length).

We use our Matlab implementation of the GP/DICA cumulants, the LDA moments,
and the diagonalization algorithms. The datasets and the code for reproducing our
experiments are available online. 13

Initialization of the Parameter 𝑐0 for the LDA Moments. The construction
of the LDA moments requires the parameter 𝑐0, which is not trivial to set in the
unsupervised setting of topic modeling, especially taking into account the complexity
of the evaluation for topic models [Wallach et al., 2009b]. For the semi-synthetic
experiments, the true value of 𝑐0 is provided to the algorithms. It means that the
LDA moments, in this case, have access to some oracle information, which in practice
is never available. For real data experiments, 𝑐0 is set to the value obtained with
variational inference. Experiments show that this choice was somewhat important
(see, e.g., Figure 3-5). However, this requires more thorough investigation.

3.5.3 Comparison of the Diagonalization Algorithms

In Figure 3-3, we compare the diagonalization algorithms on the semi-synthetic AP
dataset for 𝐾 = 50 using the GP sampling. We compare the tensor power method
[TPM ; Anandkumar et al., 2014], the spectral algorithm (Spec), the orthogonal joint

12. http://homepages.inf.ed.ac.uk/imurray2/pub/09etm
13. https://github.com/anastasia-podosinnikova/dica
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Figure 3-3 – Comparison of the diagonalization algorithms. The topic matrix D and
Dirichlet parameter c are learned for 𝐾 = 50 from AP ; c is scaled to sum up to 0.5
and 𝑏 is set to fit the expected document length ̂︀𝐿 = 200. The semi-synthetic dataset
is sampled from GP ; number of documents 𝑁 varies from 1, 000 to 50, 000. Left :
GP/DICA moments. Right : LDA moments. Note : a smaller value of the ℓ1-error is
better.

diagonalization algorithm (JD) described in Algorithm 4 with different options to
choose the random projections : JD(k) takes 𝑃 = 𝐾 vectors u𝑝 sampled uniformly
from the unit ℓ2-sphere in R𝐾 and selects v𝑝 = W⊤u𝑝 (option (a) in Algorithm 4) ;
JD selects the full basis e1, . . . , e𝐾 in R𝐾 and sets v𝑝 = W⊤e𝑝 (as JADE [Cardoso
and Souloumiac, 1993]) (option (b) in Algorithm 4) ; 𝐽𝐷(𝑓) chooses the full canonical
basis of R𝑀 as the projection vectors (computationally expensive).

Both the GP/DICA cumulants and LDA moments are well-specified in this setup.
However, the LDA moments have a slower finite sample convergence and, hence, a
larger estimation error for the same value 𝑁 . As expected, the spectral algorithm is
always slightly inferior to the joint diagonalization algorithms. With the GP/DICA
cumulants, where the estimation error is low, all algorithms demonstrate good per-
formance, which also fulfills our expectations. However, although TPM shows almost
perfect performance in the case of the GP/DICA cumulants (left), it significantly
deteriorates for the LDA moments (right), which can be explained by the larger es-
timation error of the LDA moments and lack of robustness of TPM. Overall, the
orthogonal joint diagonalization algorithm with initialization of random projections
as W⊤ multiplied with the canonical basis in R𝐾 (JD) is both computationally effi-
cient and fast.

Runtimes of the Diagonalization Algorithms

In Table 3.1, we present the running times of the algorithms from Section 3.5.3. JD
and JD(k) are significantly faster than JD(f) as expected, although the performance in
terms of the ℓ1-error is nearly the same for all of them. This indicates that preference
should be given to the JD or JD(k) algorithms.

The running time of all LDA-algorithms is higher than the one of the GP/DICA-
algorithms. This indicates that the computational complexity of the LDA-moments
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min mean max
JD-GP 148 192 247
JD-LDA 252 284 366
JD(k)-GP 157 190 247
JD(k)-LDA 264 290 318
JD(f)-GP 1628 1846 2058
JD(f)-LDA 2545 2649 2806
Spec-GP 101 107 111
Spec-LDA 107 140 193
TPM-GP 1734 2393 2726
TPM-LDA 12723 16460 19356

Table 3.1 – The running times in seconds of the algorithms from Figure 3-3, corres-
ponds to the case when 𝑁 = 50, 000. Each algorithm was run 5 times, so the times
in the table display the minimum (min), mean, and maximum (max) time.

is slightly higher than the one of the GP/DICA-cumulants (compare, e.g., the times
for the spectral algorithm which almost completely consist of the computation of the
moments/cumulants). Moreover, the runtime of TPM-LDA is significantly higher (half
an hour vs. several hours) than the one of TPM-GP/DICA. This can be explained
by the fact that the LDA-moments have more noise than the GP/DICA-cumulants
and, hence, the convergence is slower. Interestingly, all versions of JD algorithm are
not that sensitive to noise.

Computation of a whitening matrix is roughly 30 sec (this time is the same for all
algorithms and is included in the numbers above).

3.5.4 The GP/DICA Cumulants vs. the LDA Moments

In Figure 3-4, when sampling from the GP model (top, left), both the GP/DICA cu-
mulants and LDA moments are well specified, which implies that the approximation
error (i.e., the error w.r.t. the model (mis)fit) is low for both. The GP/DICA cumu-
lants achieve low values of the estimation error already for 𝑁 = 10, 000 documents
independently of the number of topics, while the convergence is slower for the LDA
moments. When sampling from the LDA-fix(200) model (top, right), the GP/DICA
cumulants are then mis-specified and their approximation error is high, although the
estimation error is low due to the faster finite sample convergence. One reason of poor
performance of the GP/DICA cumulants, in this case, is the absence of variance in the
document length. Indeed, if documents with two different lengths are mixed by sam-
pling from the LDA-fix2(0.5,20,200) model (bottom, left), the GP/DICA cumulants
performance improves. Moreover, the experiment with a changing fraction 𝛾 of do-
cuments (bottom, right) shows that a non-zero variance on the length improves the
performance of the GP/DICA cumulants. As in practice real corpora usually have
a non-zero variance for the document length, this bad scenario for the GP/DICA
cumulants is not likely to happen.
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Figure 3-4 – Comparison of the GP/DICA cumulants and LDA moments. Two topic
matrices and parameters c1 and c2 are learned from the NIPS dataset for 𝐾 = 10
and 90 ; c1 and c2 are scaled to sum up to 𝑐0 = 1. Four corpora of different sizes
𝑁 from 1, 000 to 50, 000 : top, left : 𝑏 is set to fit the expected document lengtĥ︀𝐿 = 1300 ; sampling from the GP model ; top, right : sampling from the LDA-fix(200)
model ; bottom, left : sampling from the LDA-fix2(0.5,20,200) model. Bottom, right :
the number of documents here is fixed to 𝑁 = 20, 000 ; sampling from the LDA-
fix2(𝛾,20,200) model varying the values of the fraction 𝛾 from 0 to 1 with the step 0.1.
Note : a smaller value of the ℓ1-error is better.

The LDA Moments vs. Parameter c0

In this section, we experimentally investigate the dependence of the LDA moments
on the parameter 𝑐0. In Figure 3-5, the joint diagonalization algorithm with the LDA
moment is compared for different values of 𝑐0 provided to the algorithm. The data is
generated similarly to Figure 3-4. The experiment indicates that the LDA moments
are somewhat sensitive to the choice of 𝑐0. For example, the recovery ℓ1-error doubles
when moving from the correct choice 𝑐0 = 1 to an alternative 𝑐0 = 0.1 for 𝐾 = 10 on
the LDAfix(200) dataset (JD-LDA(10) line on the right of Figure 3-5).

Comparison of the ℓ1- and ℓ2-Errors

The sample complexity results [Anandkumar et al., 2012a] for the spectral algorithm
for the LDA moments allow straightforward extensions to the GP/DICA cumulants,
if the results from Proposition 3.3.1 are taken into account. The analysis is, however,
in terms of the ℓ2-norm. Therefore, in Figure 3-6, we provide experimental comparison
of the ℓ1- and ℓ2-errors to verify that they are indeed behaving similarly.
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Figure 3-5 – Performance of the LDA moments depending on the parameter 𝑐0. 𝐷
and 𝑐 are learned from the AP dataset for 𝐾 = 10 and 𝐾 = 50 and true 𝑐0 = 1.
JD-GP(10) for 𝐾 = 10 and JD-GP(50) for 𝐾 = 50. Number of sampled documents
𝑁 = 20, 000. For the error bars, each dataset is resampled 5 times. Data (left) : GP
sampling ; (right) : LDAfix(200) sampling. Note : a smaller value of the ℓ1-error is
better.
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Figure 3-6 – Comparison of the ℓ1- and ℓ2-errors on the NIPS semi-synthetic dataset
as in Figure 3-4 (top, left). The ℓ2-norms of the topics were normalized to [0,1] for
the computation of the ℓ2 error.

3.5.5 Real Data Experiments

In this section, we compare the algorithms on the AP, KOS, and NIPS datasets.

Datasets. The detailed experimental setup is as follows. Each dataset is separated
into 5 training/evaluation pairs, where the documents for evaluation are chosen ran-
domly and non-repetitively among the folds (600 documents are held out for KOS ;
400 documents are held out for AP ; 450 documents are held out for NIPS). Then,
the model parameters are learned for a different number of topics. The evaluation of
the held-out documents is performed with averaging over 5 folds. In Figure 3-7a and
Figure 3-7b, on the y-axis, the predictive log-likelihood in bits averaged per token is
presented.

Note that, as the LDA moments require at least 3 tokens in each document, 1 docu-
ment from the NIPS dataset and 3 documents from the AP dataset, which did not
fulfill this requirement, were removed.
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(a) The AP (left) and KOS (right) Datasets.
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Figure 3-7 – Experiments with real data. Note : a higher value of the log-likelihood
is better.

Algorithms. In Figure 3-7a, JD-GP, Spec-GP, JD-LDA, and Spec-LDA are com-
pared with variational inference (VI) and with variational inference initialized with
the output of JD-GP (VI-JD). We measure the held out log-likelihood per token.
The orthogonal joint diagonalization algorithm with the GP/DICA cumulants (JD-
GP) demonstrates promising performance. In particular, the GP/DICA cumulants
significantly outperform the LDA moments. Moreover, although variational inference
performs better than the JD-GP algorithm, restarting variational inference with the
output of the JD-GP algorithm systematically leads to better results. Similar behavior
has already been observed [see, e.g., Cohen and Collins, 2014].

Importantly, we observed that VI when initialized with the output of the JD-GP
is consistently better in terms of the predictive log-likelihood. Therefore, the new
algorithm can be used for more clever initialization of other LDA/GP inference me-
thods.

We also observe that the joint diagonalization algorithm for the LDA moments is
worse than the spectral algorithm. This indicates that the diagonal structure (2.43)
and (2.44) might not be present in the sample estimates (2.45) and (2.46) due to
either model misspecification or to finite sample complexity issues.
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3.6 Conclusion
In this chapter, we have proposed a new set of tensors for a discrete ICA model
related to LDA, where word counts are directly modeled. These moments make fe-
wer assumptions regarding distributions, and are theoretically and empirically more
robust than previously proposed tensors for LDA, both on synthetic and real data.
Following the ICA literature, we showed that our joint diagonalization procedure is
also more robust. Once the topic matrix has been estimated in a semiparametric
way where topic intensities are left unspecified, it would be interesting to learn the
unknown distributions of the independent topic intensities.
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Chapitre 4

Moment Matching-Based Estimation
in Multi-View Models

Abstract
Canonical correlation analysis (CCA), originally introduced by Hotelling [1936], and
its probabilistic extension [e.g., Bach and Jordan, 2005], which we call Gaussian CCA,
are widely used tools in applications with multi-view data, e.g., when working with
text in several languages [e.g., Vinokourov et al., 2002] or in scene text recognition
[e.g., Gordo, 2015]. Some extensions of Gaussian CCA are also applied, e.g., for map-
ping visual and textual features to the same latent space [e.g., Socher and Fei-Fei,
2010] or for machine translation [e.g., Haghighi et al., 2008].

In this chapter, we introduce a novel semiparametric extension of Gaussian CCA for
multi-view models, which is able to model discrete data, count data, or a combination
of discrete and count data that appear, e.g., in the applications mentioned above. We
prove the essential identifiability of the new model, which also imply the identifiabi-
lity of the discrete ICA model from Chapter 3. We first show that the higher-order
cumulants of this model are in the form of the non-symmetric non-negative CPD and
non-orthogonal joint diagonalization (NOJD) algorithms by congruence can be ap-
plied for the estimation. We further introduce generalized covariance matrices, which
reduce the estimation problem in the model to the problem of (approximate) non-
symmetric simultaneous eigendecomposition, which can be solved with the NOJD by
congruence algorithms. The algorithms based on both higher-order cumulants and
generalized covariance matrices demonstrate equivalent performance in terms of the
solution quality, while dealing with the generalized covariance matrices is much easier
than dealing with tensors, which significantly simplifies implementations. The content
of this chapter was previously published as [Podosinnikova et al., 2016].
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4.1 Contributions
Below we outline the contributions of this chapter.

- In Section 4.3, we introduce the novel non-Gaussian CCA model by relaxing
the Gaussianity assumption on the sources in the Gaussian CCA model. We
distinguish several special cases : (a) the discrete non-Gaussian CCA model,
which is a direct extension of the discrete ICA model, to model multi-view
count data and (b) the mixed CCA model, where one view models continuous
data while the other models count data.

- In Section 4.4.1, we introduce cumulant-based higher order statistics of the
discrete CCA model and show that their population variant has the form of the
non-negative non-symmetric CPD. Moreover, in Section 4.4.2, we introduce the
so called generalized covariance matrices which are Hessians of the cumulant
generating function evaluated at some vector and are somewhat related to the
contractions of third-order cumulants. In the population case, these matrices
can jointly be reduced to the simultaneous non-symmetric eigendecomposition
form. Importantly, the form of the generalized covariance matrices and higher-
order cumulants is not dependent of the view specific noise and only requires
the independence of the noise between the views.

- In Section 4.5, we show that the estimation in the non-Gaussian CCA models
can be reduced to an (approximate) non-symmetric eigendecomposition pro-
blem which can be solved with the non-negative joint diagonalization algorithms
by congruence. Note that this problem is difference from the (approximate)
symmetric eigendecomposition problem and, in particular, such algorithms as
non-orthogonal joint diagonalization by congruence or the prewhitening-based
methods as in Section 3.4, can not be applied.

- In Section 4.6, we experimentally compare the new models and algorithms on
synthetic and real datasets.

4.2 Related Work
The models introduced in this chapter are closely related to many other models. In
particular, we have already mentioned (see Section 1.2.3 and 2.1.2) that probabilistic
latent semantic indexing can actually be seen as a model for multi-view data [Hof-
mann, 1999a,b, Hofmann et al., 1999, Chew et al., 2007]. This is also similar to topic
models for annotated data [Blei and Jordan, 2003]. The key difference of the models
introduced in this chapter from such topic models for annotated data is that the non-
Gaussian CCA models are semiparametric and do not make any assumptions on the
distributions of the latent sources.

Some other extensions of Gaussian CCA were proposed in the literature : exponential
family CCA [Virtanen, 2010, Klami et al., 2010] and Bayesian CCA [see, e.g., Klami
et al., 2013, and references therein]. Although exponential family CCA can also be
discretized, it assumes in practice that the prior of the sources is a special combination
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of Gaussians. Bayesian CCA models the factor loading matrices and the covariance
matrix of Gaussian CCA. Sampling or approximate variational inference are used for
estimation and inference. Both models, however, lack our identifiability guarantees
and are quite different from the non-Gaussian CCA models.

Note that non-Gaussian CCA is different from the independent subspace model. Ano-
ther similar model — multiset canonical correlation analysis [Li et al., 2009] and simi-
lar models—where each data view is modeled as a separate ICA problem—is different
from non-Gaussian CCA as well.

In the context of the estimation through the method of moments, Song et al. [2014]
consider a multi-view framework to deal with non-parametric mixture components,
while our approach is semi-parametric with an explicit linear structure (our loading
matrices) and makes the explicit link with CCA. Moreover, the non-Gaussian CCA
model is closely related to the model of Anandkumar et al. [2013b]. However, they
consider the DAG point of view and, like Arora et al. [2012], they assume that the
topic matrix follows the graph expansion property which is related to the anchor
words assumption.

4.3 Non-Gaussian CCA
In Section 1.3.1, we review classical CCA for the so called multi-view or aligned data as
well as its probabilistic interpretation in the form of probabilistic CCA graphical model
[Browne, 1979, Bach and Jordan, 2005, Klami et al., 2013]. Similar to factor analysis
and probabilistic PCA, this probabilistic CCA model has isotropic Gaussian latent
variables and, therefore, is unidentifiable. In this section, we extend probabilistic CCA
to a more general case of non-Gaussian latent variables and prove the identifiability
of this model.

Likewise ICA (see Section 1.1.4) and discrete ICA, introduced in Section 3.3, this non-
Gaussian CCA model is semiparametric and no assumptions on the latent sources are
needed for the estimation. We also consider two special cases of discrete and mixed
CCA, where the observations are in the form of count data or a combination of
count and continuous data respectively. First, let us recall the main concepts from
Section 1.3.1.

4.3.1 Non-Gaussian, Discrete, and Mixed CCA
Gaussian Canonical Correlation Analysis. We saw in Section 1.3.1, that the
following model, which we will refer to as the Gaussian CCA (GCCA) model,

x(1)|𝛼 ∼ 𝒩 (𝜇1 + D1𝛼,Ψ1),

x(2)|𝛼 ∼ 𝒩 (𝜇2 + D2𝛼,Ψ2),
(4.1)

where the independent sources 𝛼 ∼ 𝒩 (0, I𝐾) are Gaussian and the matrices Ψ1 ∈
R𝑀1×𝑀1 and Ψ2 ∈ R𝑀2×𝑀2 are positive definite, can be seen as a probabilistic inter-
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pretation of CCA. Indeed, the maximum likelihood estimators of the parameters D1

and D2 coincide with canonical correlation directions, up to permutation, scaling, and
left-multiplication by any invertible matrix. Likewise factor analysis and probabilistic
PCA, Gaussian CCA is unidentifiable due to the Gaussian prior on the sources.

By analogy with factor analysis, the GCCA model (4.1) can be equivalently repre-
sented with the following generative process

x(1) = 𝜇1 + D1𝛼+ 𝜀(1),

x(2) = 𝜇2 + D2𝛼+ 𝜀(2),
(4.2)

where the additive noise vectors are normal random variables, 𝜀(1) ∼ 𝒩 (0,Ψ1) and
𝜀(2) ∼ 𝒩 (0,Ψ2), and are independent :

𝛼1, . . . , 𝛼𝐾 are mutually independent,

𝛼 ⊥⊥ 𝜀(1), 𝜀(2) and 𝜀(1) ⊥⊥ 𝜀(2).
(4.3)

The formulation in (4.2) indicates that GCCA is an extension of factor analysis to two
views. The difference between the two models is that the CCA covariance matrices
of the noise, Ψ1 and Ψ2, are not restricted to be diagonal as in factor analysis and
hence the view-specific CCA noise may be arbitrary correlated. The only requirement
is that there are no correlations across the views.

The Stacking Trick. More specifically, to see how GCCA is related to factor ana-
lysis, one can stack the view specific vectors (matrices) into a single vector (ma-
trix) :

x =

(︂
x(1)

x(2)

)︂
, 𝜇 =

(︂
𝜇1

𝜇2

)︂
, D =

(︂
D1

D2

)︂
, 𝜀 =

(︂
𝜀(1)

𝜀(2)

)︂
, (4.4)

which leads exactly to the generative model of factor analysis (1.7), i.e. x = 𝜇 +
D𝛼 + 𝜀, with the only difference of the assumptions on the additive noise. Indeed,
in factor analysis the additive noise is zero-mean Gaussian variable with the diago-
nal covariance matrix Ψ, while in GCCA the covariance of the zero-mean Gaussian
additive noise is :

Ψ =

(︂
Ψ1 0
0 Ψ2

)︂
, (4.5)

i.e. it has a block diagonal structure. Using such stacking trick, one can see that the
marginal distribution of the observations under the GCCA model is the same as the
one for factor analysis (1.6) with the covariance matrix of the noise in the form (4.5).

Non-Gaussian Canonical Correlation Analysis. ICA addresses the unidentifia-
bility of factor analysis by relaxing the Gaussianity assumption. We use the same
strategy of relaxing the Gaussianity assumption of the sources in the GCCA model
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Figure 4-1 – The non-Gaussian CCA model.

to introduce the new model

x(1) = D1𝛼+ 𝜀(1),

x(2) = D2𝛼+ 𝜀(2),
Non-Gaussian CCA (4.6)

where we only keep the independence assumption (4.3). We refer to this model as
non-Gaussian CCA (NCCA) and illustrate it in Figure 4-1. Note that we put the
constant shift parameters to zero, 𝜇1 = 𝜇2 = 0, which can be done without loss of
generality since in practice data can be centered to zero-mean.

Discrete Canonical Correlation Analysis. Similarly to discrete ICA from Sec-
tion 3.3 we can further “discretize” non-Gaussian CCA (4.6) by applying the Poisson
distribution to each view (independently on each variable) :

x(1)|𝛼, 𝜀(1) ∼ Poisson
(︀
D1𝛼+ 𝜀(1)

)︀
,

x(2)|𝛼, 𝜀(2) ∼ Poisson
(︀
D2𝛼+ 𝜀(2)

)︀
,

Discrete CCA (4.7)

where again the independence (4.3) assumption on the latent sources is made. This
gives us the (non-Gaussian) discrete CCA (DCCA) model, which is adapted to count
data (e.g., such as word counts in the bag-of-words model of text). In this case, the
sources 𝛼, the noise 𝜀(1) and 𝜀(2), and the matrices D1 and D2 have non-negative
components. Note that this model can be seen as a semiparametric extension of
the multi-view topic models, i.e. topic models for annotated data [see, e.g, Blei and
Jordan, 2003].

Noisy Discrete ICA. Using the stacking trick (4.4), it is straightforward to show
that the discrete CCA model (4.7) is a special case of the following noisy discrete
ICA model :

x|𝛼 ∼ Poisson(D𝛼+ 𝜀), Noisy Discrete ICA (4.8)

where the sources 𝛼 are independent and the noise and sources are independent

89



𝛼 ⊥⊥ 𝜀. This model reduces to discrete ICA (3.8) when the noise 𝜀 tends to zero.
When the noise 𝜀 takes the form

𝜀 =

(︂
𝜀(1) 0
0 𝜀(2)

)︂
, (4.9)

we obtain the discrete CCA model (4.7). This connection allows us to adapt the
discrete ICA cumulant-based tensors from Section 3.3.2 to construct similar higher-
order statistics for the discrete CCA model in Section 4.4.1.

Note that there are significant differences between discrete CCA (or non-Gaussian
CCA) and discrete ICA (or respectively classical independent component analysis).
One difference, as we will see later, is that the estimation in discrete (non-Gaussian)
CCA can be performed not only in the presence of Gaussian noise, 1 but for noise
with a more general structure as long as the view-specific noises, 𝜀(1) and 𝜀(2), are
independent. More importantly, the estimation methods for discrete (non-Gaussian)
CCA proposed in this chapter can also be applied in the overcomplete case. For
example, let us consider the following linear discrete ICA model :

x(1)|𝛼, 𝜀(1) ∼ Poisson(D1𝛼+ F1𝛽
(1)),

x(2)|𝛼, 𝜀(2) ∼ Poisson(D2𝛼+ F2𝛽
(2)),

(4.10)

where 𝜀(1) = F1𝛽
(1) and 𝜀(2) = F2𝛽

(2) and the independence assumption (4.3) takes
place. By stacking variables we obtain the discrete ICA model x|𝛾 ∼ Poisson(D𝛾),
where

x =

(︂
x(1)

x(2)

)︂
, 𝛾 =

⎛⎝ 𝛼
𝜀(1)

𝜀(2)

⎞⎠ , D =

(︂
D1 F1 0
D2 0 F2

)︂
.

The matrix D ∈ R𝑀×𝐾0 , where 𝑀 = 𝑀1 + 𝑀2, 𝐾0 = 𝐾 + 𝐾1 + 𝐾2, and 𝐾1 and 𝐾2

are the numbers of columns in the matrices D1 and D2 respectively. Discrete CCA
can perform the estimation in such model even if 𝐾0 > 𝑀 as long as D1 and D2

have full column rank. On the contrary, the cumulant-based estimation method for
discrete ICA (see Section 3.4) can not work if 𝐾0 > 𝑀 (see also the experiments in
Section 4.6.1).

Mixed Canonical Correlation Analysis. Finally, by combining non-Gaussian and
discrete CCA, we also introduce the mixed CCA (MCCA) model :

x(1) = D1𝛼+ 𝜀(1),

x(2)|𝛼, 𝜀(2) ∼ Poisson
(︀
D2𝛼+ 𝜀(2)

)︀
,

Mixed CCA (4.11)

which is adapted to a combination of non-negative discrete and continuous data (e.g.,
such as images represented as continuous vectors aligned with text represented as

1. Note that the cumulant-based estimation for ICA, as well as for the new models, can handle
Gaussian noise with known covariance due to the properties of cumulants (see Section 2.2.1 or Comon
and Jutten [2010]).
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counts). Note that no assumptions are made on distributions of the sources 𝛼 except
for independence (4.3), which makes the MCCA model, as well as the NCCA and
GCCA models, semiparametric.

Both discrete and mixed CCA models can be seen as special cases of the non-Gaussian
CCA model with a complicated noise structure. However, it is useful to distinguish
these two cases from the practical point of view plus we can benefit from the special
structure when constructing the algorithms. All the three models can be used with
different applications, e.g., in machine translation of text data in different languages
[Vinokourov et al., 2002, Haghighi et al., 2008] or in computer vision for annotated
images or videos [Socher and Fei-Fei, 2010, Gordo, 2015].

4.3.2 Identifiability of Non-Gaussian CCA

In this section, the identifiability of the factor loading matrices D1 and D2 is discussed.
As before, the identifiability that we consider is the essential identifiability, i.e. the
identifiability up to permutation and scaling.

ICA can be seen as an identifiable analog of factor analysis (see Section 1.1.4). In-
deed, it is well known that ICA is identifiable if at most one source is Gaussian
[Comon, 1994], while factor analysis is unidentifiable (see Section 1.1.2). Note that
this identifiability results of ICA assume the linear independence of the columns of
the mixing matrix which also implies that we are in the (over-)determined, a.k.a.
(under-)complete, case (𝐾 ≤ 𝑀). The other overcomplete case is more complicated
and is outside of the scope of this chapter.

The factor loading matrices, D1 and D2, and the latent sources, 𝛼, of the Gaussian
CCA model (4.1), which can be seen as a multi-view extension of PPCA, are identi-
fiable only up to multiplication by any invertible matrix [Bach and Jordan, 2005]. We
show the identifiability results for the new models (4.6), (4.7), and (4.11) : the factor
loading matrices D1 and D2 (hence the latent sources 𝛼) of these models are identi-
fiable if at most one source is Gaussian (see the following Section 4.3.3 for a proof).
These results also apply to the discrete ICA model (3.8) from Section 3.3

Theorem 4.3.1. Assume that matrices D1 ∈ R𝑀1×𝐾 and D2 ∈ R𝑀2×𝐾, where
𝐾 ≤ min(𝑀1, 𝑀2), have full rank. If the covariance matrices cov

(︀
x(1),x(1)

)︀
and

cov
(︀
x(2),x(2)

)︀
exist and if at most one source 𝛼𝑘, for 𝑘 = 1, . . . , 𝐾, is Gaussian and

none of the sources are deterministic, then the models (4.6), (4.7), and (4.11) are
identifiable (up to scaling and joint permutation).

Importantly, the permutation unidentifiability does not destroy the alignment in the
factor loading matrices, that is, for some permutation matrix Π, if D1Π is the factor
loading matrix of the first view, than D2Π must be the factor loading matrix of the
second view. This property is important for the interpretability of the factor loading
matrices and, in particular, is used in our experiments in Section 4.6.
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4.3.3 The Proof of Theorem 4.3.1

In this section, we prove that the factor loading matrices D1 and D2 of the non-
Gaussian CCA (4.6), discrete CCA (4.7), and mixed CCA (4.11) models are identi-
fiable up to permutation and scaling if at most one source 𝛼𝑘 is Gaussian. We provide
a complete proof for the non-Gaussian CCA case and show that the other two cases
can be proved by analogy.

Identifiability of Non-Gaussian CCA (4.6)

The proof uses the notion of the second characteristic function (SCF) of an R𝑀 -valued
random variable x (see Section 2.2) :

𝜑x(t) = logE(𝑒𝑖t
⊤x),

for all t ∈ R𝑀 . The SCF completely defines the probability distribution of x. Impor-
tant difference between the SCF and the cumulant generating function (2.22) is that
the former always exists.

The following property of the SCF is of central importance for the proof : if two
random variables, z(1) and z(2), are independent, then 𝜑A1z(1)+A2z(2)(t) = 𝜑z(1)(A

⊤
1 t)+

𝜑z(2)(A
⊤
2 t), where A1 and A2 are any matrices of compatible sizes.

We can now use our CCA model to derive an expression of 𝜑x(t), where x is the vector
formed by stacking two vectors x(1) and x(2). Indeed, defining a vector x by stacking
the vectors x(1) and x(2), the SCF of x for any t = [t1; t2], takes the form

𝜑x(t) = logE(𝑒𝑖t
⊤
1 x(1)+𝑖t⊤2 x(2)

)

(𝑎)
= logE(𝑒𝑖𝛼

⊤(D⊤
1 t1+D⊤

2 t2)+𝑖t⊤1 𝜀(1)+𝑖t⊤2 𝜀(2))

(𝑏)
= logE(𝑒𝑖𝛼

⊤(D⊤
1 t1+D⊤

2 t2))

+ logE(𝑒𝑖t
⊤
1 𝜀(1)) + logE(𝑒𝑖t

⊤
2 𝜀(2))

= 𝜑𝛼(D⊤
1 t1 + D⊤

2 t2) + 𝜑𝜀(1)(t1) + 𝜑𝜀(2)(t2),

where in (𝑎) we substituted the definition (4.6) of x(1) and x(2) and in (𝑏) we used
the independence 𝛼 ⊥⊥ 𝜀(1) ⊥⊥ 𝜀(2). Therefore, the blockwise mixed derivatives of 𝜑x

are equal to
𝜕1𝜕2𝜑x(t) = D1𝜑

′′
𝛼(D⊤

1 t1 + D⊤
2 t2)D

⊤
2 , (4.12)

where 𝜕1𝜕2𝜑x(t) := ∇t1∇t2𝜑x(h(t1, t2)) ∈ R𝑀1×𝑀2 and 𝜑′′
𝛼(u) := ∇2

u𝜑𝛼(u), does
not depend on the noise vectors 𝜀(1) and 𝜀(2). Note that we denoted h(t1, t2) =
D⊤

1 t1 + D⊤
2 t2.

For simplicity, we first prove the identifiability result when all components of the
common sources are non-Gaussian. The high level idea of the proof is as follows.
We assume two different representations of x(1) and x(2) and using (4.12) and the
independence of the components of 𝛼 and the noises (assumption (1.22)), we first
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show that the two potential dictionaries are related by an orthogonal matrix (and
not any invertible matrix), and then show that this implies that the two potential
sets of independent components are (orthogonal) linear combinations of each other,
which, for non-Gaussian components which are not reduced to point masses, imposes
that this orthogonal transformation is the combination of a permutation matrix and
marginal scaling—a standard result from the ICA literature [Comon, 1994, Theorem
11].

Let us then assume that two equivalent representations of non-Gaussian CCA exist :

x(1) = D1𝛼+ 𝜀(1) = E1𝛽 + 𝜂(1),

x(2) = D2𝛼+ 𝜀(2) = E2𝛽 + 𝜂(2),
(4.13)

where the other sources 𝛽 = (𝛽1, . . . , 𝛽𝐾)⊤ are also assumed mutually independent
and non-degenerate. As a standard practice in the ICA literature and without loss
of generality as the sources have non-degenerate components, one can assume that
the sources have unit variances, i.e. cov(𝛼,𝛼) = 𝐼 and cov(𝛽,𝛽) = 𝐼, by respectively
rescaling the columns of the factor loading matrices. Under this assumption, the two
expressions of the cross-covariance matrix are

cov(x(1),x(2)) = D1D
⊤
2 = E1E

⊤
2 , (4.14)

which, given that D1, D2 have full rank, implies that 2

E1 = D1M, E2 = D2M
−⊤, (4.15)

where M ∈ R𝐾×𝐾 is some invertible matrix. Substituting the representations (4.13)
into the blockwise mixed derivatives of the SCF (4.12) and using the expressions (4.15)
give

D1𝜑
′′
𝛼(D⊤

1 t1 + D⊤
2 t2)D

⊤
2

= D1M𝜑
′′
𝛽(M⊤D⊤

1 t1 + M−1D⊤
2 t2)M

−1D⊤
2 ,

for all t1 ∈ R𝑀1 and t2 ∈ R𝑀2 . Since the matrices D1 and D2 have full rank, this can
be rewritten as

𝜑′′
𝛼(D⊤

1 t1 + D⊤
2 t2)

= M𝜑′′
𝛽(M⊤D⊤

1 t1 + M−1D⊤
2 t2)M

−1,

which holds for all t1 ∈ R𝑀1 and t2 ∈ R𝑀2 . Moreover, still since D1 and D2 have full
rank, we have, for any u1,u2 ∈ R𝐾 the existence of t1 ∈ R𝑀1 and t2 ∈ R𝑀2 , such
that u1 = D⊤

1 t1 and u2 = D⊤
2 t2, that is,

𝜑′′
𝛼(u1 + u2) = M𝜑′′

𝛽(M⊤u1 + M−1u2)M
−1, (4.16)

for all u1,u2 ∈ R𝐾 .

2. The fact that D1, D2 have full rank and that E1, E2 have 𝐾 columns, combined with (4.14),
implies that E1, E2 have also full rank.
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We will now prove two facts :

(F1) For any vector v ∈ R𝐾 , then 𝜑′′
𝛽((M⊤M − I)v) = −I, which will imply that

MM⊤ = I because of the non-Gaussian assumptions.

(F2) If MM⊤ = I, then 𝜑′′
𝛼(u) = 𝜑′′

M𝛽(u) for any u ∈ R𝐾 , which will imply that
M is the composition of a permutation and a scaling. This will end the proof.

Proof of fact (F1). By letting u1 = Mv and u2 = −Mv, we get :

𝜑′′
𝛼(0) = M𝜑′′

𝛽((M⊤M− I)v)M−1, (4.17)

Since 3 𝜑′′
𝛼(0) = −cov(𝛼) = −I, one gets

𝜑′′
𝛽((M⊤M− I)v) = −I,

for any v ∈ R𝐾 .

Using the property that 𝜑′′
A⊤𝛽(v) = A⊤𝜑′′

𝛽(Av)A for any matrix A, and in particular
with A = M⊤M− I, we have that 𝜑′′

A⊤𝛽(v) = −A⊤A, i.e. is constant.

If the second derivative of a function is constant, the function is quadratic. Therefore,
𝜑A⊤𝛽(·) is a quadratic function. Since the SCF completely defines the distribution of
its variable (see, e.g., Jacod and Protter [2004]), A⊤𝛽 must be Gaussian (the SCF of
a Gaussian random variable is a quadratic function). Given Lemma 9 from Comon
[1994] (i.e., Cramer’s lemma : a linear combination of non-Gaussian random variables
cannot be Gaussian unless the coefficients are all zero), this implies that A = 0, and
hence M⊤M = I, i.e., M is an orthogonal matrix.

Proof of fact (F2). Plugging M⊤ = M−1 into (4.16), with u1 = 0 and u2 = 𝑢,
gives

𝜑′′
𝛼(u) = M𝜑′′

𝛽(M⊤u)M⊤ = 𝜑′′
M𝛽(u), (4.18)

for any u ∈ R𝐾 . By integrating both sides of (4.18) and using 𝜑𝛼(0) = 𝜑M𝛽(0) = 0,
we get that 𝜑𝛼(u) = 𝜑M𝛽(u)+𝑖𝛾⊤u for all u ∈ R𝐾 for some constant vector 𝛾. Using
again that the SCF completely defines the distribution, it follows that 𝛼−𝛾 and M𝛽
have the same distribution. Since both 𝛼 and 𝛽 have independent components, this
is only possible when M = ΛP, where P is a permutation matrix and Λ is some
diagonal matrix [Comon, 1994, Theorem 11].

Case of a Single Gaussian Source

Without loss of generality, we assume that the potential Gaussian source is the first
one for 𝛼 and 𝛽. The first change is in the proof of fact (F1). We use the same
argument up to the point where we conclude that A⊤𝛽 is a Gaussian vector. As
only 𝛽1 can be Gaussian, Cramer’s lemma implies that only the first row of A can
have non-zero components, that is A = M⊤M− I = e1f

⊤, where e1 is the first basis

3. Note that ∇2
u𝜑𝛼(u) = −

E(𝛼𝛼⊤𝑒𝑖u
⊤𝛼)

E(𝑒𝑖u⊤𝛼)
+ ℰ𝛼(u)ℰ𝛼(u)

⊤, where ℰ𝛼(u) =
E(𝛼𝑒𝑖u

⊤𝛼)

E(𝑒𝑖u⊤𝛼)
.
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vector and f any vector. Since M⊤M is symmetric, we must have

M⊤M = I + 𝑎e1e
⊤
1 ,

where 𝑎 is a constant scalar different than −1 as M⊤M is invertible. This implies
that M⊤M is an invertible diagonal matrix Λ, and hence MΛ−1/2 is an orthogonal
matrix, which in turn implies that M−1 = Λ−1M⊤.

Plugging this into (4.16) gives, for any u1 and u2 :

𝜑′′
𝛼(u1 + u2) = M𝜑′′

𝛽(M⊤u1 + Λ−1M⊤u2)Λ
−1M⊤.

Given that diagonal matrices commute and that 𝜑′′
𝛽 is diagonal for independent

sources, this leads to

𝜑′′
𝛼(u1 + u2) = MΛ−1/2𝜑′′

𝛽(M⊤u1 + Λ−1M⊤u2)Λ
−1/2M⊤.

For any given v ∈ R𝐾 , we are looking for u1 and u2 such that M⊤u1 + Λ−1M⊤u2 =
Λ−1/2M⊤v and u1 + u2 = v, which is always possible by setting M⊤u2 = (Λ−1/2 +
I)−1M⊤v and M⊤u1 = M⊤v −M⊤u2 by using the special structure of Λ. Thus, for
any v,

𝜑′′
𝛼(v) = MΛ−1/2𝜑′′

𝛽(Λ−1/2M⊤v)Λ−1/2M⊤ = 𝜑′′
MΛ−1/2𝛽

(v).

Integrating as previously, this implies that the characteristic function of𝛼 and MΛ−1/2𝛽
differ only by a linear function 𝑖𝛾⊤v, and thus, that 𝛼 − 𝛾 and MΛ−1/2𝛽 have the
same distribution. This in turn, from Comon [1994, Theorem 11], implies that MΛ−1/2

is a product of a scaling and a permutation, which ends the proof.

Identifiability of Discrete CCA (4.7) and Mixed CCA (4.11)

Given the discrete CCA model, the SCF 𝜑x(t) takes the form

𝜑x(t) = 𝜑𝛼(D⊤
1 (𝑒𝑖t1 − 1) + D⊤

2 (𝑒𝑖t2 − 1))

+ 𝜑𝜀(1)(𝑒
𝑖t1 − 1) + 𝜑𝜀(2)(𝑒

𝑖t2 − 1),

where 𝑒𝑖t𝑗 , for 𝑗 = 1, 2, denotes a vector with the 𝑚-th element equal to 𝑒𝑖[t𝑗 ]𝑚 , and
we used the arguments analogous with the non-Gaussian case. The rest of the proof
extends with a correction that sometimes one has to replace D𝑗 with Diag[𝑒𝑖t𝑗 ]D𝑗 and
that u𝑗 = D⊤

𝑗 (𝑒𝑖t𝑗 − 1) for 𝑗 = 1, 2. For the mixed CCA case, only the part related
to x(2) and D2 changes in the same way as for the discrete CCA case.

4.4 Cumulants and Generalized Covariance Matrices
In this section, we first derive the cumulant-based tensors for the discrete CCA model
(Section 4.4.1). We show that the population versions of these higher-order statistics
take the form of a non-symmetric canonical polyadic decomposition (see Section 2.1.2).
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This is different from Chapter 3, where the decomposition of the cumulant-based
tensor of discrete ICA was instead symmetric. Nevertheless, this allows us to develop
fast algorithms for the estimation in DCCA model (see Section 4.5).

We further introduce generalized covariance matrices (Section 4.4.2) for all the new
models (4.6), (4.7), and (4.11). We show that these generalized covariance matrices
have a special diagonal form, which is equivalent to non-symmetric CP decomposition
in the matrix case. This allows us to develop fast algorithms for the estimation in
the new models (Section 4.5). The use of generalized covariance matrices allows us
to achieve the results equivalent to the ones based on tensors while working with
matrices, which simplifies the derivations tremendously. This makes the generalized
covariance matrices an attractive tool in the moment matching framework.

4.4.1 Discrete CCA Cumulants

In this section, we derive the DCCA cumulant-based higher-order statistics as an
extension of the discrete ICA cumulant-based statistics derived in Section 3.3.2.

Discrete ICA Cumulants. In Section 3.3, we introduced the discrete ICA mo-
del (3.8), where the observation vector x ∈ R𝑀 has conditionally independent Poisson
components with mean D𝛼 and the latent sources vector 𝛼 ∈ R𝐾 has independent
non-negative components :

x|𝛼 ∼ Poisson(D𝛼), (4.19)

where for the estimation of the topic matrix D, we proposed an algorithm based on
the moment matching method with the DICA cumulants. In Section 3.3.2, we defined
these DICA cumulants : the S𝐷𝐼𝐶𝐴-covariance matrix and 𝒯 𝐷𝐼𝐶𝐴-cumulant tensor,
as

S𝐷𝐼𝐶𝐴 := cov(x,x)−Diag [E(x)] ,

𝒯 𝐷𝐼𝐶𝐴
𝑚1𝑚2𝑚3

:= cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3) + 𝜏𝑚1𝑚2𝑚3 ,
(4.20)

where the indices 𝑚1, 𝑚2, and 𝑚3 take the values in 1, . . . ,𝑀 , and

𝜏𝑚1𝑚2𝑚3 = 2𝛿 (𝑚1,𝑚2,𝑚3)E(𝑥𝑚1)− 𝛿 (𝑚2𝑚3) cov(𝑥𝑚1 , 𝑥𝑚2)

− 𝛿 (𝑚1,𝑚3) cov(𝑥𝑚1 , 𝑥𝑚2)− 𝛿 (𝑚1,𝑚2) cov(𝑥𝑚1 , 𝑥𝑚3),

where 𝛿 stands for the Kronecker delta. For completeness, we outline the derivation
from Section 3.3.2 below. Let y := D𝛼. By the law of total expectation E(x) =
E(x|y) = E(y) and by the law of total covariance

cov(x,x) = E[cov(x,x|y)] + cov[E(x|y), E(x|y)]

= Diag[E(y)] + cov(y,y),

since all the cumulants of a Poisson random variable with parameter y are equal to y.
Therefore, S𝐷𝐼𝐶𝐴 = cov(y,y). Similarly, by the law of total cumulance 𝒯 𝐷𝐼𝐶𝐴 =
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cum(y,y,y). Then, by the multilinearity property for cumulants, one obtains

S𝐷𝐼𝐶𝐴 = D cov(𝛼,𝛼)D⊤,

𝒯 𝐷𝐼𝐶𝐴 = cum(𝛼,𝛼,𝛼)×1 D
⊤ ×2 D

⊤ ×3 D
⊤,

(4.21)

where ×𝑖 denotes the 𝑖-mode tensor-matrix product (see Section 2.1.1). Since the
covariance cov(𝛼,𝛼) and cumulant cum(𝛼,𝛼,𝛼) of the independent sources are dia-
gonal, (4.21) is called the diagonal form. The expressions (4.21) are also known as
the symmetric non-negative CP decomposition of tensors (see Section 2.1.2) ; it is
non-negative since the columns of the topic matrix are non-negative.

Noisy Discrete ICA Cumulants. We showed that the noisy DICA model (4.8)
contains both discrete CCA and discrete ICA models as special cases. It is straight-
forward to obtain the cumulants of the noisy DICA model. Let y := D𝛼 + 𝜀
and S𝑁𝐷𝐼𝐶𝐴 := S𝐷𝐼𝐶𝐴 and 𝒯 𝑁𝐷𝐼𝐶𝐴 := 𝒯 𝐷𝐼𝐶𝐴 are defined as in (4.20). Then
a simple extension of the derivations from above gives S𝑁𝐷𝐼𝐶𝐴 = cov(y,y) and
𝒯 𝑁𝐷𝐼𝐶𝐴 = cum(y,y,y). Since the covariance matrix (cumulant tensor) of the sum
of two independent multivariate random variables, D𝛼 and 𝜀, is equal to the sum of
the covariance matrices (cumulant tensors) of these variables, the “perturbed” version
of the decomposition in (4.21) follows

S𝑁𝐷𝐼𝐶𝐴 = D cov(𝛼,𝛼)D⊤ + cov(𝜀),

𝒯 𝑁𝐷𝐼𝐶𝐴 = cum(𝛼,𝛼,𝛼)×1 D
⊤ ×2 D

⊤ ×3 D
⊤ + cum(𝜀, 𝜀, 𝜀).

(4.22)

Note that this expressions are essentially equivalent to the ones for the noisy cumu-
lants of noisy ICA model from Section 2.2.2.

DCCA Cumulants. By the stacking trick (4.4), discrete CCA (4.7) gives a noisy
version of discrete ICA with a special form of the covariance matrix of the noise :

cov(𝜀, 𝜀) =

(︂
cov
(︀
𝜀(1), 𝜀(1)

)︀
0

0 cov
(︀
𝜀(2), 𝜀(2)

)︀)︂ , (4.23)

which is due to the independence 𝜀(1) ⊥⊥ 𝜀(2). Similarly, the cumulant cum(𝜀, 𝜀, 𝜀)
of the noise has only two diagonal blocks which are non-zero. Therefore, considering
only those parts of the S𝑁𝐷𝐼𝐶𝐴-covariance matrix and 𝒯 𝑁𝐶𝐶𝐴-cumulant tensor of
noisy DICA that correspond to zero blocks of the covariance cov(𝜀, 𝜀) and cumulant
cum(𝜀, 𝜀, 𝜀), gives immediately a matrix and tensor with a diagonal structure similar
to the one in (4.21). Those blocks are the cross-covariance and cross-cumulants of x(1)

and x(2).

We define the S𝐷𝐶𝐶𝐴-covariance matrix of discrete CCA 4 as the cross-covariance
matrix of x(1) and x(2) :

S𝐷𝐶𝐶𝐴
12 := cov(x(1),x(2)). (4.24)

4. Note that S𝐷𝐶𝐶𝐴
21 := cov(x(2),x(1)) is just the transpose of S𝐷𝐶𝐶𝐴

12 .
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From (4.22) and (4.23), the matrix S𝐷𝐶𝐶𝐴
12 has the following diagonal form

S𝐷𝐶𝐶𝐴
12 = D1 cov(𝛼,𝛼)D⊤

2 . (4.25)

Similarly, we define the 𝒯 𝐷𝐶𝐶𝐴-cumulant tensors of discrete CCA, 𝑀1 ×𝑀2 ×𝑀1

tensor 𝒯 𝐷𝐶𝐶𝐴
121 and 𝑀1×𝑀2×𝑀2 tensor 𝒯 𝐷𝐶𝐶𝐴

122 , through the cross-cumulants of x(1)

and x(2), for 𝑗 = 1, 2 :[︀
𝒯 𝐷𝐶𝐶𝐴
12𝑗

]︀
𝑚1𝑚2�̃�𝑗

:= cum
(︀
𝑥(1)
𝑚1

, 𝑥(2)
𝑚2

, 𝑥(𝑗)
𝑚𝑗

)︀
− 𝛿 (𝑚𝑗, �̃�𝑗) cov

(︀
𝑥(1)
𝑚1

, 𝑥(2)
𝑚2

)︀
, (4.26)

where the indices 𝑚1, 𝑚2, and �̃�𝑗 take the values 𝑚1 ∈ 1, . . . ,𝑀1, 𝑚2 ∈ 1, . . . ,𝑀2, and
�̃�𝑗 ∈ 1, . . . ,𝑀𝑗. From (4.21) and the mentioned block structure (4.23) of cov(𝜀, 𝜀),
the DCCA 𝒯 𝐷𝐶𝐶𝐴-cumulants have the diagonal form :

𝒯 𝐷𝐶𝐶𝐴
121 = cum(𝛼,𝛼,𝛼)×1 D

⊤
1 ×2 D

⊤
2 ×3 D

⊤
1 ,

𝒯 𝐷𝐶𝐶𝐴
122 = cum(𝛼,𝛼,𝛼)×1 D

⊤
1 ×2 D

⊤
2 ×3 D

⊤
2 .

(4.27)

In Section 4.5, we show how to estimate the factor loading matrices D1 and D2 using
the diagonal form (4.25) and (4.27). Before that, in Section 4.4.2, we first derive the
generalized covariance matrices of discrete ICA and the CCA models (4.6), (4.7),
and (4.11) as an extension of ideas by Yeredor [2000], Todros and Hero [2013].

4.4.2 Generalized Covariance Matrices

In this section, we introduce the generalization of the S-covariance matrix for both
DICA and the CCA models (4.6), (4.7), and (4.11), which are obtained through the
Hessian of the cumulant generating function. We show that (a) the generalized co-
variance matrices can be used for approximation of the 𝒯 -cumulant tensors using
directional derivatives and (b) in the DICA case, these generalized covariance ma-
trices have the diagonal form analogous to (4.21), and, in the CCA case, they have
the diagonal form analogous to (4.25). Therefore, generalized covariance matrices can
be seen as a substitute for the 𝒯 -cumulant tensors in the moment matching fra-
mework. This (a) significantly simplifies derivations and the final expressions used
for implementation of resulting algorithms and (b) potentially improves the sample
complexity, since only the second-order information is used.

Generalized Covariance Matrices

The idea of generalized covariance matrices is inspired by the similar extension of the
ICA cumulants by Yeredor [2000].

Cumulants and the Cumulant-Generating Function. We review some of the
notions introduced in Section 2.2. The cumulant generating function (CGF) of a
multivariate random variable 𝑥 ∈ R𝑀 is defined as :

Kx(t) = logE(𝑒t
⊤x), (4.28)
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for t ∈ R𝑀 . The cumulants 𝜅(𝑠)
x , for 𝑠 = 1, 2, 3, . . . , are the coefficients of the Taylor

series expansion of the CGF evaluated at zero. Therefore, the cumulants are the
derivatives of the CGF evaluated at zero : 𝜅(𝑠)

x = ∇𝑠Kx(0), 𝑠 = 1, 2, 3, . . . , where
∇𝑠Kx(t) is the 𝑠-th order derivative of Kx(t) with respect to t. Thus, the expectation
of x is the gradient E(x) = ∇Kx(0) and the covariance of x is the Hessian cov(x,x) =
∇2Kx(0) of the CGF evaluated at zero.

Generalized Cumulants. The extension of cumulants then follows immediately :
for t ∈ R𝑀 , we refer to the derivatives ∇𝑠Kx(t) of the CGF as the generalized
cumulants. The respective parameter t is called a processing point. In particular, the
gradient,∇Kx(t), and Hessian,∇2Kx(t), of the CGF are referred to as the generalized
expectation and generalized covariance matrix, respectively :

ℰ𝑥(𝑡) := ∇Kx(t) =
E
(︀
x𝑒t

⊤x
)︀

E
(︀
𝑒t⊤x

)︀ , (4.29)

𝒞𝑥(𝑡) := ∇2Kx(t) =
E
(︀
xx⊤𝑒t

⊤x
)︀

E
(︀
𝑒t⊤x

)︀ − ℰx(t)ℰx(t)⊤. (4.30)

Finite Sample Estimators of Generalized Cumulants. Following Yeredor [2000],
Slapak and Yeredor [2012b], we use the most direct way of defining finite sample es-
timators of the generalized expectation (4.29) and covariance matrix (4.30). Given
a finite sample X = {x1,x2, . . . ,x𝑁}, an estimator of the generalized expectation
is ̂︀ℰx(t) =

∑︀𝑁
𝑛=1 x𝑛𝑤𝑛∑︀𝑁
𝑛=1 𝑤𝑛

(4.31)

where weights 𝑤𝑛 = 𝑒t
⊤x𝑛 and an estimator of the generalized covariance is

̂︀𝒞x(t) =

∑︀𝑁
𝑛=1 x𝑛x

⊤
𝑛𝑤𝑛∑︀𝑁

𝑛=1𝑤𝑛

− ̂︀ℰx(t) ̂︀ℰx(t)⊤. (4.32)

Similarly, an estimator of the generalized S-covariance matrix is then

̂︀𝒞x(1),x(2)(t) =

∑︀𝑁
𝑛=1 x

(1)
𝑛 x

(2)⊤
𝑛 𝑤𝑛∑︀𝑁

𝑛=1𝑤𝑛

−
∑︀𝑁

𝑛=1 x
(1)
𝑛 𝑤𝑛∑︀𝑁

𝑛=1𝑤𝑛

∑︀𝑁
𝑛=1 x

(2)⊤
𝑛 𝑤𝑛∑︀𝑁

𝑛=1 𝑤𝑛

,

where x =
[︀
x(1);x(2)

]︀
and t =

[︀
t1; t2

]︀
for some t1 ∈ R𝑀1 and t2 ∈ R𝑀2 . Note that

some properties of the generalized expectation (4.29) and covariance matrix 5 (4.30)
and their finite sample estimators (4.31) and (4.32) are analyzed by Slapak and Ye-
redor [2012b].

Generalized Covariance Matrix is Diagonal for an Independent Vector.
Likewise cumulants, the generalized cumulants are diagonal if a vector is independent.

5. Note that we find the name “generalized covariance matrix” to be more meaningful than
“charrelation” matrix as was proposed by previous authors [see, e.g. Slapak and Yeredor, 2012a,b].
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We show this in particular for the generalized expectation and covariance. Indeed,
the sources 𝛼 = (𝛼1, . . . , 𝛼𝐾) are mutually independent. Therefore, for some h ∈ R𝐾 ,
their CGF (4.28) K𝛼(h) = logE(𝑒𝛼

⊤h) takes the form

K𝛼(h) =
𝐾∑︁
𝑘=1

log
[︀
E(𝑒𝛼𝑘ℎ𝑘)

]︀
.

Therefore, the 𝑘-th element of the generalized expectation (4.29) of 𝛼 is (separable
in 𝛼𝑘) :

[ℰ𝛼(h)]𝑘 =
E(𝛼𝑘𝑒

𝛼𝑘ℎ𝑘)

E(𝑒𝛼𝑘ℎ𝑘)
, (4.33)

and the generalized covariance (4.30) of 𝛼 is diagonal due to the separability and its
𝑘-th diagonal element is :

[𝒞𝛼(h)]𝑘𝑘 =
E(𝛼2

𝑘𝑒
𝛼𝑘ℎ𝑘)

E(𝑒𝛼𝑘ℎ𝑘)
− [ℰ𝛼(h)]2𝑘 . (4.34)

Likewise covariance matrices, these Hessians (a.k.a. generalized covariance matrices)
are subject to the multilinearity property for a linear transformations of a vector,
hence the resulting diagonal structure of the form (4.21). This is essentially the
previous ICA work [Yeredor, 2000, Todros and Hero, 2013]. Below we generalize
these ideas first to the discrete ICA case and then to the CCA models (4.6), (4.7),
and (4.11).

Discrete ICA Generalized Covariance Matrices

Likewise covariance matrices, generalized covariance matrices of a vector with inde-
pendent components are diagonal : they satisfy the multilinearity property 𝒞D𝛼(h) =
D𝒞𝛼(h)D⊤, and are equal to covariance matrices when h = 0. Therefore, we can
expect that the derivations of the diagonal form (4.21) of the S-covariance matrices
extends to the generalized covariance matrices case. By analogy with (4.20), we define
the generalized S-covariance matrix of DICA :

S𝐷𝐼𝐶𝐴(t) := 𝒞x(t)−Diag[ℰx(t)]. (4.35)

To derive the analog of the diagonal form (4.21) for S𝐷𝐼𝐶𝐴(t), we have to compute all
the expectations in (4.29) and (4.30) for a Poisson random variable x with the para-
meter y = D𝛼. In the derivations below we use the fact that the moment generating
function of a Poisson random variable 𝑥 with the parameter 𝑦 has a very special form
M𝑥(𝑡) = 𝑦(𝑒𝑡 − 1) and therefore all the cumulants of 𝑥 are equal to 𝑦.

Given the discrete ICA model (3.8), the generalized expectation (4.29) of x ∈ R𝑀
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takes the form

ℰx(t) =
E(x𝑒t

⊤x)

E(𝑒t⊤x)
=

E
[︁
E(x𝑒t

⊤x|𝛼)
]︁

E
[︀
E(𝑒t⊤x|𝛼)

]︀
= Diag[𝑒t]D

E(𝛼𝑒𝛼
⊤h(t))

E(𝑒𝛼⊤h(t))

= Diag[𝑒t]Dℰ𝛼(h(t)),

where t ∈ R𝑀 is a parameter, h(t) = D⊤(𝑒t − 1), and 𝑒t denotes an 𝑀 -vector
with the 𝑚-th element equal to 𝑒𝑡𝑚 . Note that in the last equation we used the
definition (4.29) of the generalized expectation ℰ𝛼(·).

Further, the generalized covariance (4.30) of x takes the form

𝒞x(t) =
E(xx⊤𝑒t

⊤x)

E(𝑒t⊤x)
− ℰx(t)ℰx(t)⊤

=
E
[︁
E(xx⊤𝑒t

⊤x|𝛼)
]︁

E
[︀
E(𝑒t⊤x|𝛼)

]︀ − ℰx(t)ℰx(t)⊤.

Plugging into this expression the expression for ℰx(t) and

E(xx⊤𝑒t
⊤x|𝛼) = Diag[𝑒t]DE(𝛼𝛼⊤𝑒𝛼

⊤h(t))D⊤Diag[𝑒t]

+ Diag[𝑒t]Diag
[︁
DE(𝛼𝑒𝛼

⊤h(t))
]︁

we get
𝒞x(t) = Diag[ℰx(t)] + Diag[𝑒t]D𝒞𝛼(h(t))D⊤Diag[𝑒t],

where we used the definition (4.30) of the generalized covariance of 𝛼. This gives

S𝐷𝐼𝐶𝐴(t) =
(︀
Diag[𝑒t]D

)︀
𝒞𝛼 (h(t))

(︀
Diag[𝑒t]D

)︀⊤
, (4.36)

which is a diagonal form similar (and equivalent for t = 0) to (4.21) since the generali-
zed covariance matrix 𝒞𝛼(h) of independent sources is diagonal (see Equation (4.34)).
Therefore, the generalized DICA S-covariance matrices, estimated at different proces-
sing points t, can be used as a substitute of the contractions of the DICA 𝒯 -cumulant
tensors in the moment matching framework. Interestingly enough, the latter can be
approximated by the former via the directional derivatives, as we now show.

Approximating DICA 𝒯 -Cumulants with a Generalized Covariance Ma-
trix. Let 𝑓𝑚𝑚′(t) = [𝒞x(t)]𝑚𝑚′ be a function R→ R𝑀 corresponding to the (𝑚,𝑚′)-
th element of the generalized covariance matrix. Then the following holds for its
directional derivative at t0 along the direction t :

⟨∇𝑓𝑚𝑚′(t0), t⟩ = lim
𝛿→0

𝑓𝑚𝑚′(t0 + 𝛿t)− 𝑓𝑚𝑚′(t0)

𝛿
,
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where ⟨·, ·⟩ stands for the inner product. Therefore, when using the fact that∇𝑓(t0) =
∇𝒞x(t0) is the generalized order-3 cumulant of x at t0 and the definition of the
contraction of a tensor 𝒯 with a vector t, defined element-wise as [𝒯 (t)]𝑚1𝑚2 =∑︀𝑀

𝑚3=1 𝒯𝑚1𝑚2𝑚3𝑡𝑚3 , one obtains for t0 = 0 the approximation of the cumulant cum(x,x,x)
with the generalized covariance matrix 𝒞x(t). Indeed, in such case ⟨∇𝑓𝑚𝑚′(t0), t⟩ be-
comes the (𝑚,𝑚′)-th element of the cumulant cum(x,x,x) contracted with t, while
the terms on the RHS are 𝑓𝑚𝑚′(𝛿t) = 𝒞x(𝛿t) and 𝑓𝑚𝑚′(0) = 𝒞x(0) = cov(x,x).

CCA Generalized Covariance Matrices

For the CCA models (4.6), (4.7), and (4.11), straightforward generalizations of the
ideas from Section 2.2.1 leads to the following definition of the generalized CCA S-
covariance matrix :

S12(t) :=
E
(︀
x(1)x(2)⊤𝑒t

⊤x
)︀

E(𝑒t⊤x)
−

E
(︀
x(1)𝑒t

⊤x
)︀

E
(︀
𝑒t⊤x

)︀ E
(︀
x(2)⊤𝑒t

⊤x
)︀

E(𝑒t⊤x)
, (4.37)

where the vectors x and t are obtained by vertically stacking x(1) and x(2) and t1
and t2 as in the stacking trick (4.4). We first briefly show that the generalized CCA
S-cumulants contain equivalent information to the one from contracted CCA 𝒯 -
cumulants, which is similar to the discrete ICA case above. We then prove the diagonal
form of the generalized CCA S-cumulants for the mixed, non-Gaussian, and discrete
CCA models.

Approximating CCA 𝒯 -Cumulants with a Generalized Covariance Ma-
trix. Let us define v1 = W⊤

1 u1 and v2 = W⊤
2 u2 for some u1,u2 ∈ R𝐾 . Then,

approximations for the 𝒯 -cumulants (4.26) of discrete CCA take the following form :
W1𝒯121(v1)W2 is approximated by the generalized S-covariances (4.37) S12(t) via
the following expression

W1𝒯121(v1)W2 ≈
W1S12(𝛿t1)W

⊤
2 −W1S12(0)W⊤

2

𝛿
−W1Diag(v1)S12W

⊤
2 ,

where t1 =

(︂
v1

0

)︂
and W1𝒯122(v2)W2 is approximated by the generalized S-covariances

S12(t) via

W1𝒯122(v2)W2 ≈
W1S12(𝛿t2)W

⊤
2 −W1W12(0)W⊤

2

𝛿
−W1S12Diag(v2)W

⊤
2 ,

where t2 =

(︂
0
v2

)︂
and 𝛿 are chosen to be small.

Mixed CCA. To show the diagonal form, similar to the one in (4.36), of the genera-
lized CCA S-cumulants, we present the detailed proof for the mixed CCA case ; the
other two cases are contained in this proof and therefore are omitted. The CGF (4.28)
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of mixed CCA (4.11) can be written as

Kx(t) = logE
(︀
𝑒t

(1)⊤x(1)+t(2)⊤x(2))︀
= logE

[︁
E
(︀
𝑒t

(1)⊤x(1)+t(2)⊤x(2) ⃒⃒
𝛼, 𝜀(1), 𝜀(2)

)︀]︁
(𝑎)
= logE

[︁
E
(︀
𝑒t

(1)⊤x(1) ⃒⃒
𝛼, 𝜀(1)

)︀
E
(︀
𝑒t

(2)⊤x(2)|𝛼, 𝜀(2)
)︀]︁

(𝑏)
= logE

(︂
𝑒t

(1)⊤
(︀
D1𝛼+𝜀(1)

)︀
𝑒

[︀
D2𝛼+𝜀(2)⊤(𝑒t2−1)

]︀)︂
(𝑐)
= logE

(︁
𝑒𝛼

⊤h(t)
)︁

+ logE
(︁
𝑒𝜀

(2)⊤(𝑒t2−1)
)︁

+ logE(𝑒t
(1)⊤𝜀(1)),

where h(t) = D⊤
1 t1 + D⊤

2 (𝑒t2 − 1), in (𝑎) we used the conditional independence of x(2)

and x(2), in (𝑏) we used that E(𝑒t
⊤x) = 𝑒y

⊤(𝑒t−1), and in (𝑐) we used the independence
assumption (4.3).

The generalized CCA S-covariance matrix is defined (equivalent to (4.37)) as

S12(t) := ∇t2∇t1Kx(t).

Its gradient with respect to t1 is

∇t1Kx(t) =
D1E

(︀
𝛼𝑒𝛼

⊤h(t)
)︀

E
(︀
𝑒𝛼⊤h(t)

)︀ +
E
(︀
𝜀(1)𝑒t

(1)⊤𝜀(1)
)︀

E
(︀
𝑒t(1)⊤𝜀(1)

)︀ ,

where the last term does not depend on t2. Computing the gradient of this expression
with respect to t2 gives

S𝑀𝐶𝐶𝐴
12 (t) = D1𝒞𝛼(h(t))

(︀
Diag

[︀
𝑒t2
]︀
D2

)︀⊤
,

where we substituted expression (4.34) for the generalized covariance of the inde-
pendent sources. Straightforward extension of this argument leads to similar ex-
pressions for discrete and non-Gaussian CCA. We summarize below these expres-
sions.

Discrete, Non-Gaussian, and Mixed Generalized Covariance. In the dis-
crete CCA case, S𝐷𝐶𝐶𝐴

12 (t) is essentially the upper-right block of the generalized
S-covariance matrix S𝐷𝐼𝐶𝐴(t) of DICA and has the form

S𝐷𝐶𝐶𝐴
12 (t) =

(︀
Diag[𝑒t1 ]D1

)︀
𝒞𝛼(h(t))

(︀
Diag[𝑒t2 ]D2

)︀⊤
, (4.38)

where h(t) = D⊤(𝑒t−1) and the matrix D is obtained by vertically stacking D1 and
D2 by analogy with (4.4). For non-Gaussian CCA, the diagonal form is

S𝑁𝐶𝐶𝐴
12 (t) = D1 𝒞𝛼 (h(t)) D⊤

2 , (4.39)
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where h(t) = D⊤
1 t1 + D⊤

2 t2. Finally, for mixed CCA,

S𝑀𝐶𝐶𝐴
12 (t) = D1 𝒞𝛼 (h(t))

(︀
Diag[𝑒t2 ]D2

)︀⊤
, (4.40)

where h(t) = D⊤
1 t1 + D⊤

2 (𝑒t2 − 1). Since the generalized covariance matrix of the
sources 𝒞𝛼(·) is diagonal, expressions (4.38)–(4.40) have the desired diagonal form.

4.5 Estimation in Non-Gaussian, Discrete, and Mixed
CCA

The standard algorithms such as TPM or orthogonal joint diagonalization cannot be
used for the estimation of D1 and D2. Indeed, even after whitening, the matrices
appearing in the diagonal form (4.25) and (4.27) or (4.38)–(4.40) are not orthogonal.
This can be explained by the fact that in the CCA case the population cumulant-
tensors take the form of non-symmetric rather than symmetric, as in the ICA or
discrete ICA case, CP decomposition. As an alternative, we use Jacobi-like non-
orthogonal diagonalization (by similarity) algorithms [Fu and Gao, 2006, Iferroudjene
et al., 2009, Luciani and Albera, 2010]. These algorithms are discussed in Section 2.3.2
and we briefly outline the main ideas here.

The estimation of the factor loading matrices D1 and D2 of the CCA models (4.6), (4.7),
and (4.11) via non-orthogonal joint diagonalization algorithms consists of the follo-
wing steps : (a) construction of a set of matrices, called target matrices, to be jointly
diagonalized (using finite sample estimators), (b) the prewhitening step, (c) a non-
orthogonal joint diagonalization step, and (d) the final estimation of the factor loading
matrices.

Target Matrices. There are two ways to construct target matrices : either with
the CCA S-matrices (4.24) and 𝒯 -cumulants (4.26) or the generalized covariance
matrices (4.37) (D/N/MCCA). These matrices are estimated with finite sample esti-
mators (see Section 4.4).

When dealing with the S- and 𝒯 -cumulants, the target matrices are obtained via
tensor projections. We define a projection 𝒯 (v) ∈ R𝑀1×𝑀2 of a third-order tensor
𝒯 ∈ R𝑀1×𝑀2×𝑀3 onto a vector v ∈ R𝑀3 as

[𝒯 (v)]𝑚1𝑚2 :=

𝑀3∑︁
𝑚3=1

[𝒯 ]𝑚1𝑚2𝑚3𝑣𝑚3 . (4.41)

Note that the projection 𝒯 (v) is a matrix. Therefore, given 2𝑃 vectors

{v11,v21,v12,v22, . . . ,v1𝑃 ,v2𝑃} ,

one can construct 2𝑃 + 1 matrices

{S12, 𝒯121(v1𝑝), 𝒯122(v2𝑝), for 𝑝 = 1, . . . , 𝑃}, (4.42)
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which have the diagonal form (4.25) and (4.27). Importantly, the tensors are never
constructed (see Anandkumar et al. [2012a, 2014], Podosinnikova et al. [2015] and Ap-
pendix C.2.1). The (computationally efficient) construction of target matrices from S-
and 𝒯 -cumulants is discussed by in Appendix C.2.1.

Alternatively, the target matrices can be constructed by estimating the generalized
S-covariance matrices at 𝑃 + 1 processing points 0, t1, . . . , t𝑃 ∈ R𝑀1+𝑀2 :

{S12 = S12(0), S12(t1), . . . , S12(t𝑃 )}, (4.43)

which also have the diagonal form (4.38)–(4.40). It is interesting to mention the
connection between the 𝒯 -cumulants and the generalized S-covariance matrices. The
𝒯 -cumulant can be approximated via the directional derivative of the generalized
covariance matrix. However, in general, e.g., S12(t) with t = [t1;0] is not exactly the
same as 𝒯121(t1) and the former can be non-zero even when the latter is zero. This is
important since order-4 and higher statistics are used with the method of moments
when there is a risk that an order-3 statistic is zero like for symmetric sources. In
general, the use of higher-order statistics increases the sample complexity and makes
the resulting expressions quite complicated. Therefore, replacing the 𝒯 -cumulants
with the generalized S-covariance matrices is potentially beneficial.

Prewhitening. The matrices W1 ∈ R𝐾×𝑀1 and W2 ∈ R𝐾×𝑀2 are called whitening
matrices of S12 if

W1S12W
⊤
2 = I𝐾 , (4.44)

where I𝐾 is the 𝐾-dimensional identity matrix. W1 and W2 are only defined up
to multiplication by any invertible matrix W ∈ R𝐾×𝐾 , since any pair of matriceŝ︁W1 = QW1 and ̂︁W2 = Q−⊤W2 also satisfy (4.44). In fact, using higher-order
information (i.e. the 𝒯 -cumulants or the generalized covariances for t ̸= 0) allows to
solve this ambiguity.

The whitening matrices can be computed via SVD of S12 as in the DICA case (see
Section 3.4). When 𝑀1 and 𝑀2 are too large, one can use a randomized SVD algorithm
[see, e.g., Halko et al., 2011] to avoid the construction of the large matrix S12 and to
decrease the computational time.

Applying Whitening Transform to DCCA 𝒯 -Cumulants. Transformation of
the 𝒯 -cumulants (4.42) with whitening matrices W1 and W2 gives new tensors ̂︀𝒯12𝑗 ∈
R𝐾×𝐾×𝐾 : ̂︀𝒯12𝑗 := 𝒯12𝑗 ×1 W

⊤
1 ×2 W

⊤
2 ×3 W

⊤
𝑗 , (4.45)

where 𝑗 = 1, 2. Combining this transformation with the projection (4.41), one obtains
2𝑃 + 1 matrices

W1S12W
⊤
2 , W1𝒯12𝑗(W

⊤
𝑗 u𝑗𝑝)W

⊤
2 , (4.46)

where 𝑝 = 1, . . . , 𝑃 and 𝑗 = 1, 2 and we used v𝑗𝑝 = W⊤
𝑗 u𝑗𝑝 to take into account

whitening along the third direction. By choosing u𝑗𝑝 ∈ R𝐾 to be the canonical vectors
of the 𝑅𝐾 , the number of tensor projections is reduced from 𝑀 = 𝑀1 + 𝑀2 to
2𝐾.
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The Choice of Projection Vectors or Processing Points. For the DCCA S
and 𝒯 -cumulants (4.42), we choose the 𝐾 projection vectors as v1𝑝 = W⊤

1 e𝑝 and
v2𝑝 = W⊤

2 e𝑝, where e𝑝 is one of the columns of the 𝐾-identity matrix (i.e., a canonical
vector). For the generalized S-covariances (4.43), we choose the processing points as
t1𝑝 = 𝛿1v1𝑝 and t2𝑝 = 𝛿2v2𝑝, where 𝛿𝑗, for 𝑗 = 1, 2 are set to a small value such as 0.1
divided by

∑︀
𝑚 E(|𝑥𝑗𝑚|)/𝑀𝑗, for 𝑗 = 1, 2.

When projecting a tensor 𝒯12𝑗 onto a vector, part of the information contained in this
tensor gets lost. To preserve all information, one could project a tensor 𝒯12𝑗 onto the
canonical basis of R𝑀𝑗 to obtain 𝑀𝑗 matrices. However, this would be an expensive
operation in terms of both memory and computational time. In practice, we use the
fact, that the tensor 𝒯12𝑗, for 𝐽 = 1, 2, is transformed with whitening matrices (4.45).
Hence, the projection vector has to include multiplication by the whitening matrices.
Since they reduce the dimension to 𝐾, choosing the canonical basis in R𝐾 becomes
sufficient. Hence, the choice v1𝑝 = W⊤

1 e𝑝 and v2𝑝 = W⊤
2 e𝑝, where e𝑝 is one of the

columns of the 𝐾-identity matrix. Importantly, in practice, the tensors are never
constructed (see Appendix C.2.1).

The choice of the processing points of the generalized covariance matrices has to be
done carefully. Indeed, if the values of t1 or t2 are too large, the exponentials blow
up. Hence, it is reasonable to maintain the values of the processing points very small.
Therefore, for 𝑗 = 1, 2, we set t𝑗𝑝 = 𝛿𝑗v𝑗𝑝 where 𝛿𝑗 is proportional to a parameter 𝛿
which is set to a small value (𝛿 = 0.1 by default), and the scale is determined by the
inverse of the empirical average of the component of x(𝑗), i.e. :

𝛿𝑗 := 𝛿
𝑁𝑀𝑗∑︀𝑁

𝑛=1

∑︀𝑀𝑗

𝑚=1 |𝑋
(𝑗)
𝑚𝑛|

, (4.47)

for 𝑗 = 1, 2. See Section 4.6 for an experimental comparison of different values of 𝛿
(the default value used in other experiments is 𝛿 = 0.1).

Non-Orthogonal Joint Diagonalization (NOJD). Let us consider joint diago-
nalization of the generalized covariance matrices (4.43) (the same procedure holds
for the S- and 𝒯 -cumulants (4.42)). Given the whitening matrices W1 and W2, the
transformation of the generalized covariance matrices (4.43) gives 𝑃+1 matrices

{W1S12W
⊤
2 , W1S12(t𝑝)W

⊤
2 , 𝑝 ∈ [𝑃 ]}, (4.48)

where each matrix is in R𝐾×𝐾 and has reduced dimension since 𝐾 < 𝑀1,𝑀2. In
practice, finite sample estimators are used to construct (4.43).

Due to the diagonal form (4.25) and (4.38)–(4.40), each matrix in (4.43) has the form 6

(W1D1) Diag(·) (W2D2)
⊤. Both D1 and D2 are (full) 𝐾-rank matrices and W1 and

W2 are 𝐾-rank by construction. Therefore, the square matrices V1 = W1D1 and
V2 = W2D2 are invertible. From (4.25) and prewhitening, we get V1cov(𝛼,𝛼)V⊤

2 = I

6. Note that when the diagonal form has terms Diag[𝑒t], we simply multiply the expression by
Diag[𝑒−t].
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and hence V2 = Diag[var(𝛼)−1]V−1
1 (the covariance matrix of the sources is dia-

gonal and we assume they are non-deterministic, i.e. var(𝛼) ̸= 0). Substituting
this into W1S12(t)W

⊤
2 and using the diagonal form (4.38)–(4.40), we obtain that

the matrices in (4.43) have the form V1Diag(·)V−1
1 . Hence, we deal with the pro-

blem of the following type : Given 𝑃 non-defective (a.k.a. diagonalizable) matrices
ℬ = {B1, . . . , B𝑃}, where each matrix B𝑝 ∈ R𝐾×𝐾 , find an invertible matrix
Q ∈ R𝐾×𝐾 such that

QℬQ−1 = {QB1Q
−1, . . . , QB𝑃Q

−1} (4.49)

are (jointly) as diagonal as possible. This can be seen as a joint non-symmetric ei-
genvalue problem. This problem should not be confused with the classical joint dia-
gonalization problem by congruence (JDC), where Q−1 is replaced by Q⊤, except
when Q is an orthogonal matrix [Luciani and Albera, 2010]. JDC is often used for
ICA algorithms or moment matching based algorithms for graphical models when
a whitening step is not desirable (see, e.g., Kuleshov et al. [2015a] and references
therein). However, neither JDC nor the orthogonal diagonalization-type algorithms
[such as, e.g., the tensor power method by Anandkumar et al., 2014] are applicable
for the problem (4.49).

To solve the problem (4.49), we use the Jacobi-like non-orthogonal joint diagonali-
zation (NOJD) by similarity algorithms [e.g., Fu and Gao, 2006, Iferroudjene et al.,
2009, Luciani and Albera, 2010]. These algorithms are an extension of the ortho-
gonal joint diagonalization algorithms based on Jacobi (=Givens) rotations [Golub
and Van Loan, 1996, Bunse-Gerstner et al., 1993, Cardoso and Souloumiac, 1996].
Although these algorithms are quite stable in practice, we are not aware of any theo-
retical guarantees about their convergence or stability to perturbation. 7

ED-Based Algorithm. By analogy with the orthogonal case [Section 3.4 ; Cardoso,
1989, Anandkumar et al., 2012a], we can easily extend the idea of the ED-based algo-
rithm to the non-orthogonal one. Indeed, it amounts to performing whitening as before
and constructing only one matrix with the diagonal structure, e.g., B = W1S12(t)W

⊤
2

for some t. Then, the matrix Q is obtained as the matrix of the eigenvectors of B.
The vector t can be, e.g., chosen as t = Wu, where W = [W1;W2] and u ∈ R𝐾 is a
vector sampled uniformly at random.

This ED-based algorithm and the NOJD algorithms are closely connected. In parti-
cular, when B has real eigenvectors, the ED-based algorithm is equivalent to NOJD
of B. Indeed, in such case, NOJD boils down to an algorithm for a non-symmetric
eigenproblem [Eberlein, 1962, Ruhe, 1968]. In practice, however, due to the presence
of noise and finite sample errors, B may have complex eigenvectors. In such case, the
ED-based algorithm is different from NOJD. Importantly, the joint diagonalization

7. Note that recently novel perturbation analysis results were obtained for the simultaneous Schur
decomposition, which is an algorithms that can be used for the computation of the non-orthogonal
joint diagonalization problem by similarity [Colombo and Vlassis, 2016a,b,c]. An experimental com-
parison and potential extension of these results to the Jacobi-like algorithms could be of interest.
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type algorithms are known to be more stable in practice [see, e.g., Bach and Jordan,
2002, Podosinnikova et al., 2015].

While deriving precise theoretical guarantees is beyond the scope of this thesis, the
techniques outlined by Anandkumar et al. [2012a] for the ED-based (spectral) algo-
rithm for latent Dirichlet Allocation can potentially be extended. The main difference
is obtaining the analogue of the SVD accuracy [Lemma C.3, Anandkumar et al.,
2013a] for the eigendecomposition. This kind of analysis can potentially be extended
with the techniques outlined by Stewart and Sun [1990, Chapter 4]. Nevertheless,
with appropriate parametric assumptions on the sources, we expect that the above
described extension of the ED-based algorithm should lead to similar guarantee as
the ED-based (spectral) algorithm of Anandkumar et al. [2012a].

4.6 Experiments
In this section, we illustrate the proposed algorithms on both synthetic and real data.
In Section 4.6.1, we illustrate the estimation in the DCCA model on synthetic count
data. In Section 4.6.2, we illustrate the estimation in the non-Gaussian CCA model
on synthetic continuous data. In Section 4.6.3, we illustrate the estimation in the
DCCA model on real data. The code for reproducing the experiments described in
this section is available at https://github.com/anastasia-podosinnikova/cca.

4.6.1 Synthetic Count Data

Synthetic Data. We first consider multi-view models for count data, which we also
sometimes refer to as discrete data, and sample synthetic data to have ground truth
information (i.e., matrices D1 and D2) for evaluation. We sample data from the linear
DCCA model, which is defined as follows

𝛼 ∼ Gamma(c,b),

𝛽(𝑗) ∼ Gamma(c𝑗,b𝑗), 𝑗 = 1, 2,

x(𝑗) ∼ Poisson(D𝑗𝛼+ F𝑗𝛽
(𝑗)), 𝑗 = 1, 2,

(4.50)

where the vector with independent components 𝛼 corresponds to the common sources
and vectors with independent components 𝛽(𝑗), for 𝑗 = 1, 2, are the view-specific
(noise) sources. Let us define s(𝑗) ∼ Poisson(D𝑗𝛼) to be the part of the sample due
to the common sources and n(𝑗) ∼ Poisson(F𝑗𝛽

(𝑗)) to be the part of the sample due to
the noise (i.e., x(𝑗) = s(𝑗) +n(𝑗)). Below we explain the choice of the parameters.

We define the expected sample length due to the common sources and noise sources,
respectively :

𝐿(𝑗)
𝑠 := E

⎡⎣ 𝑀𝑗∑︁
𝑚=1

𝑠(𝑗)𝑚

⎤⎦ , 𝐿(𝑗)
𝑛 := E

⎡⎣ 𝑀𝑗∑︁
𝑚=1

𝑛(𝑗)
𝑚

⎤⎦ , 𝑗 = 1, 2.
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Figure 4-2 – An example of a 2D Discrete Synthetic Data sample drawn from
the linear DCCA model (4.50) as explained in Section 4.6.1. The parameters are set
to the following values : the dimensions are 𝑀1 = 𝑀2 = 𝐾1 = 𝐾2 = 2 and 𝐾 = 1 ;
the scale parameters are 𝑐 = 𝑐1 = 𝑐2 = 0.1 ; the rate parameters are set to ensure
𝐿𝑠 = 𝐿𝑛 = 100 ; the matrices are D1 = D2 with [D1]11 = [D1]12 = 0.5 and F1 = F2

with [F1]11 = [F1]22 = 0.9 and [F1]12 = [F1]21 = 0.1.

For sampling, we fix the target values 𝐿𝑠 := 𝐿
(𝑗)
𝑠 = 𝐿

(2)
𝑠 and 𝐿𝑛 := 𝐿

(1)
𝑛 = 𝐿

(2)
𝑛 .

We assume that the prior parameters are uniform, i.e. c = 𝑐1, c𝑗 = 𝑐𝑗1, b = 𝑏1,
and b𝑗 = 𝑏𝑗1, for 𝑗 = 1, 2, where 1 denotes a vector with all elements equal to 1 of a
respective (not always equal) dimension. We set the parameters 𝑏 and 𝑏𝑗 to ensure the
chosen values of the document lengths 𝐿𝑠 and 𝐿𝑛, i.e. 𝑏 = 𝐾𝑐/𝐿𝑠 and 𝑏𝑗 = 𝐾𝑗𝑐𝑗/𝐿𝑛

(see below the values of 𝑐 and 𝑐𝑗). We sample :

(a) 2D Data, where the dimensions are 𝑀1 = 𝑀2 = 𝐾1 = 𝐾2 = 2 and 𝐾 = 1,
the matrices are D1 = D2 with [D1]11 = [D1]12 = 0.5 and F1 = F2 with
[F1]11 = [F1]22 = 0.9 and [F1]12 = [F1]21 = 0.1, the scale parameters of the
sources are 𝑐 = 𝑐1 = 𝑐2 = 0.1, and the rate parameters of the sources are set
to ensure the document lengths 𝐿𝑠 = 𝐿𝑛 = 100 (see Figure 4-2).

(b) 20D Data, where the dimensions are 𝑀1 = 𝑀2 = 𝐾1 = 𝐾2 = 20 and 𝐾 = 10,
each column of the matrices D𝑗 and F𝑗, for 𝑗 = 1, 2, is sampled from the
symmetric Dirichlet distribution with the concentration parameter equal to
0.5, the scale parameters of the sources are 𝑐 = 0.3, and 𝑐1 = 𝑐2 = 0.1, and
the rate parameters of the sources are set to ensure the document lengths
𝐿𝑠 = 𝐿𝑛 = 1, 000.

For each experiment, D𝑗 and F𝑗, for 𝑗 = 1, 2, are sampled once and, then, the stacked
observations x𝑛, for 𝑛 ∈ [𝑁 ] are sampled for different sample sizes 𝑁 = 500 ; 1, 000 ;
2, 000 ; 5, 000 ; and 10, 000. For each 𝑁 , 5 samples are drawn.

Metric. The evaluation is performed on a matrix D obtained by stacking D1 and D2
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(a) 2D Data : the dimensions 𝑀1 = 𝑀2 =
𝐾1 = 𝐾2 = 2, and 𝐾 = 1, the scale pa-
rameters 𝑐 = 𝑐1 = 𝑐2 = 0.1, and the do-
cument lengths 𝐿𝑠 = 𝐿𝑛 = 100.
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(b) 20D Data : the dimensions 𝑀1 =
𝑀2 = 𝐾1 = 𝐾2 = 20, 𝐾 = 10, the scale
parameters 𝑐 = 0.3, 𝑐1 = 𝑐2 = 0.1, and
the document lengths 𝐿𝑠 = 𝐿𝑛 = 1, 000.

Figure 4-3 – Synthetic experiment with count data.

vertically. 8 As in Section 3.5.2, we use as evaluation metric the normalized ℓ1-error
between a recovered matrix ̂︀D and the true matrix D with the best permutation of
columns err1(̂︀D,D) := min𝜋∈PERM

1
2𝐾

∑︀
𝑘 ‖̂︀d𝜋𝑘

− d𝑘‖1 ∈ [0, 1]. The minimization is
over the possible permutations 𝜋 ∈ PERM of the columns of ̂︀D and can be efficiently
obtained with the Hungarian algorithm for bipartite matching [Kuhn, 1955]. The
(normalized) ℓ1-error takes the values in [0, 1] and smaller values of this error indicate
better performance of an algorithm.

Algorithms. We compare DCCA (implementation with the S- and 𝒯 -cumulants)
and DCCAg (implementation with the generalized S-covariance matrices and the
processing points initialized as described in Section 4.5) to DICA and the non-negative
matrix factorization (NMF) algorithm with multiplicative updates for divergence [Lee
and Seung, 2001]. To run DICA or NMF, we use the stacking trick (4.4). DCCA is
set to estimate 𝐾 components. DICA is set to estimate either 𝐾0 = 𝐾 + 𝐾1 + 𝐾2 or
𝑀 = 𝑀1+𝑀2 components (whichever is the smallest, since DICA cannot work in the
overcomplete case). NMF is always set to estimate 𝐾0 components. For the evaluation
of DICA/NMF, the 𝐾 columns with the smallest ℓ1-error are chosen. NMF∘ stands
for NMF initialized with a matrix D of the form (4.4) with induced zeros ; otherwise
NMF is initialized with (uniformly) random non-negative matrices. The running times
are discussed in Section 4.6.3.

Synthetic Experiment. We first perform an experiment with discrete synthetic
2D Data (see Figure 4-3a) and then repeat the same experiment when the size of
the problem is 10 times larger (see Figure 4-3b). In practice, we observed that for
𝐾 < 𝑀 all models work approximately equally well, except for NMF which breaks
down in high dimensions. In the overcomplete case as in Figure 4-3, DCCA works

8. Note that the column order of matrices D1 and D2 is preserved (see the comment after
Theorem 4.3.1).
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Figure 4-4 – An experimental analysis of the performance of DCCAg with genera-
lized covariance matrices using different parameters 𝛿𝑗 for the processing points. The
numbers in the legend correspond to the values of 𝛿 defining 𝛿𝑗 via (4.47). The default
value (def) is 𝛿 = 0.1. The experiment is performed on 20D Data (see description in
the text).

better.

Sensitivity of the Generalized Covariance Matrices to the Choice of the
Processing Points. We experimentally analyze the performance of the DCCAg al-
gorithm based on the generalized S-covariance matrices vs. the parameters 𝛿1 and
𝛿2. We use the experimental setup of the synthetic count data from this section with
𝐾1 = 𝐾2 = 𝐾 = 10, i.e. 20D Data. The results are presented in Figure 4-4.

4.6.2 Synthetic Continuous Data

This experiment is essentially a continuous analogue to the synthetic experiment with
the discrete data from Section 4.6.1.

Synthetic Data. We sample synthetic data from the linear non-Gaussian CCA
(NCCA) model :

𝛼 ∼𝑧𝛼Gamma(c,b),

𝛽𝑗 ∼𝑧𝛽𝑗
Gamma(c𝑗,b𝑗), 𝑗 = 1, 2,

x(𝑗) = D𝑗𝛼+ F𝑗𝛽
(𝑗), 𝑗 = 1, 2,

(4.51)

where 𝑧𝛼 and 𝑧𝛽𝑗
, for 𝑗 = 1, 2, are Rademacher random variables (i.e., they take

the values −1 or 1 with the equal probabilities). As in the count data case (see
Section 4.6.1), 𝛼 stands for the common sources, and 𝛽𝑗 stands for the view-specific
(noise) sources. Note that both vector sources are non-Gaussian. The rate parameters
of the gamma distribution are initialized by analogy with the discrete case. The
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(a) The number of factors : 𝐾1 = 𝐾2 =
𝐾 = 1.
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(b) The number of factors : 𝐾1 = 𝐾2 =
𝐾 = 10.

Figure 4-5 – Synthetic experiment with continuous data. For both experiments, the
parameters are 𝑀1 = 𝑀2 = 20, 𝑐 = 𝑐1 = 𝑐2 = 0.1 and 𝐿𝑛 = 𝐿𝑠 = 1000. The data are
synthetic continuous (see the description in Section 4.6.2).

elements of the matrices D𝑗 and F𝑗, for 𝑗 = 1, 2, are sampled independently from the
uniform distribution in [−1, 1]. Each column of D𝑗 and F𝑗, for 𝑗 = 1, 2, is normalized
to have unit ℓ1-norm.

Algorithms. We compare gNCCA (the implementation of NCCA with the genera-
lized S-covariance matrices with the default values of the parameters 𝛿1 and 𝛿2 as
described in Section 4.5), the ED-based algorithm for NCCA (also with the genera-
lized S-covariance matrices), the JADE algorithm 9 [Cardoso and Souloumiac, 1993]
for independent component analysis (ICA), and classical CCA.

Synthetic Experiment. In Figure 4-5, the results of the experiment for the different
number of topics are presented. The error of the classical CCA is high due to the
mentioned unidentifiability issues.

4.6.3 Real Data Experiment – Translation Topics

Real Data (Translation). Following Vinokourov et al. [2002], we illustrate the
performance of DCCA by extracting bilingual topics from the Hansard collection
[Vinokourov and Girolami, 2002] with aligned English and French proceedings of the
36-th Canadian Parliament. In Tables 4.1–4.5 on pages 115–117, we present the topics
extracted after running DCCA with 𝐾 = 20.

For the real data experiment, we estimate the factor loading matrices (topics, in the
following) D1 and D2 of aligned proceedings of the 36-th Canadian Parliament in
English and French languages. 10

Although going into details of natural language processing (NLP) related problems

9. The code is available at http://perso.telecom-paristech.fr/ cardoso/Algo/Jade/jadeR.m.
10. The data are available at http://www.isi.edu/natural-language/download/hansard/.
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is not the goal of this thesis, we do minor preprocessing (see below) of this text data
to improve the presentation of the estimated bilingual topics D1 and D2.

The 20 topics obtained with DCCA are presented in Tables 4.1–4.5 pages 115–117.
For each topic, we display the 20 most frequent words (ordered from top to bottom
in the decreasing order). Most of the topics have quite clear interpretation. Moreover,
we can often observe the pairs of words which are each others translations in the
topics. For example,

- in the topic 10 : the phrase “pension plan” can be translated as “régime de
retraite,” the word “benefits” as “prestations,” and abbreviations “CPP” and
“RPC” stand for “Canada Pension Plan” and “Régime de pensions du Canada,”
respectively ;

- in the topic 3 : “OTAN” is the French abbreviation for “NATO,” the word “war”
is translated as “guerre,” and the word “peace” as “paix ;”

- in the topic 9 : “Nisga” is the name of an Indigenous (or “aboriginal”) people in
British Columbia, the word “aboriginal” translates to French as “autochtontes,”
and, e.g., the word “right” can be translated as “droit.”

Note also that, e.g., in the topic 10, although the French words “ans” and “années”
are present in the French topic, their English translation “year” is not, since it was
removed as one of the 15 most frequent words in English (see below).

Data Preprocessing

For the experiment, we use House Debate Training Set of the Hansard collection.
To preprocess this text data, we perform case conversion, stemming, and removal of
some stop words. For stemming, we use the SnowballStemmer of the NLTK toolbox
[Bird et al., 2009] for both English and French languages. Although this stemmer has
some problems (such as mapping several different forms of a word to a single stem in
one language but not in the other), they are left beyond our consideration. Moreover,
in addition to the standard stop words of the NLTK toolbox, we also removed the
following words that we consider to be stop words for our task 11 (and their possible
forms) :

- from English : ask, become, believe, can, could, come, cost, cut, do, done, follow,
get, give, go, know, let, like, listen, live, look, lost, make, may, met, move, must,
need, put, say, see, show, take, think, talk, use, want, will, also, another, back,
day, certain, certainly, even, final, finally, first, future, general, good, high, just,
last, long, major, many, new, next, now, one, point, since, thing, time, today,
way, well, without ;

- from French (translations in brackets) : demander (ask), doit (must), deve-
nir (become), dit (speak, talk), devoir (have to), donner (give), ila (he has),
met (put), parler (speak, talk), penser (think), pourrait (could), pouvoir (can),

11. This list of words was obtained by looking at words that appear in the top-20 words of a large
number of topics in a first experiment. Removing these words did not change much the content of
the topics, but made them more interpretable.
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prendre (take), savoir (know), aller (go), voir (see), vouloir (want), actuelle-
ment, après (after), aujourd’hui (today), autres (other), bien (good), beaucoup
(a lot), besoin (need), cas (case), cause, cela (it), certain, chose (thing), déjà
(already), dernier (last), égal (equal), entre (between), façon (way), grand (big),
jour (day), lorsque (when), neuf (new), passé (past), plus, point, présent, prêts
(ready), prochain (next), quelque (some), suivant (next), unique.

After stemming and removing stop words, several files had different number of docu-
ments in each language and had to be removed too. The numbers of these files are :
16, 36, 49 55, 88, 103, 110, 114, 123, 155, 159, 204, 229, 240, 2-17, 2-35.

We also removed the 15 most frequent words from each language. These include :
- in English : Mr, govern, member, speaker, minist(er), Hon, Canadian, Canada,

bill, hous(e), peopl(e), year, act, motion, question ;
- in French : gouvern(er), président, loi, déput(é), ministr(e), canadien, Canada,

projet, Monsieur, question, part(y), chambr(e), premi(er), motion, Hon.
Removing these words is not necessary, but improves the presentation of the learned
topics significantly. Indeed, the most frequent words tend to appear in nearly every
topic (often in pairs in both languages as translations of each other, e.g., “member” and
“député” or “Canada” in both languages, which confirms one more time the correctness
of our algorithm).

Finally, we select 𝑀1 = 𝑀2 = 5, 000 words for each language to form matrices X(1)

and X(2) each containing 𝑁 = 11, 969 documents in columns. As stemming removes
the words endings, we map the stemmed words to the respective most frequent original
words when showing off the topics in Tables 4.1-4.5.

Running Time

For the real data experiment, the runtime of DCCA algorithm is 24 seconds in-
cluding 22 seconds for SVD at the whitening step. In general, the computational
complexity of the D/N/MCCA algorithms is bounded by the time of SVD plus
𝑂(𝑅𝑁𝐾) + 𝑂(𝑁𝐾2), where 𝑅 is the largest number of non-zero components in the
stacked vector x = [x(1);x(2)], plus the time of NOJD for 𝑃 target matrices of the
𝐾-by-𝐾 size. In practice, DCCAg is faster than DCCA.

4.7 Conclusion
We have proposed the first identifiable versions of CCA, together with moment mat-
ching algorithms which allow the identification of the loading matrices in a semi-
parametric framework, where no assumptions are made regarding the distribution of
the source or the noise. We also introduced new sets of moments (our generalized
covariance matrices), which could prove useful in other settings.
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farmers agriculteurs division no nato otan tax impôts
agriculture programme negatived vote kosovo kosovo budget budget
program agricole paired rejetée forces militaires billion enfants

farm pays declare voix military guerre families économie
country important yeas mise war international income années
support problème divided pairs troops pays country dollars
industry aide nays porte country réfugiés debt pays

trade agriculture vote contre world situation students finances
provinces années order déclaration national paix children familles

work secteur deputy suppléant peace yougoslavie money fiscal
problem provinces thibeault vice international milosevic finance milliards

issue gens mcclelland lethbridge conflict forces education libéraux
us économie ms poisson milosevic serbes liberal jeunes
tax industrie oversee mme debate intervention fund gens

world dollars rise plantes support troupes care important
help mesure past harvey action humanitaire poverty revenu

federal faut army perdront refugees nations jobs mesure
producers situation peterson sciences ground conflit benefits argent
national réformiste heed liberté happen ethnique child santé
business accord moral prière issue monde pay payer

Table 4.1 – The real data (translation) experiment. Topics 1 to 4.

work travail justice jeunes business entreprises board commission
workers négociations young justice small petites wheat blé
strike travailleurs crime victimes loans programme farmers agriculteurs

legislation grève offenders systéme program banques grain administration
union emploi victims crime bank finances producers producteurs

agreement droit system mesure money important amendment grain
labour syndicat legislation criminel finance économie market conseil
right services sentence contrevenants access secteur directors ouest

services accord youth peine jobs argent western amendement
negotiations voix criminal ans economy emplois election comité
chairman adopter court juge industry assurance support réformiste

public réglement issue enfants financial financiére party propos
party article law important billion appuyer farm important

employees retour community gens support créer agriculture compte
collective gens right tribunaux ovid choc clause prix
agreed conseil reform droit merger accés ottawa no
board collectivités country problème information milliards us dispositions

arbitration postes problem réformiste size propos vote information
grain grain person traité korea pme cwb mesure
order trésor support faut companies obtenir states produits

Table 4.2 – The real data (translation) experiment. Topics 5 to 8.

115



nisga nisga pension régime newfoundland terre health santé
treaty autochtones plan pensions amendment droit research recherche

aboriginal traité fund cotisations school modifications care fédéral
agreement accord benefits prestations education provinces federal provinces

right droit public retraite right école provinces soins
land nations investment emploi constitution comité budget budget

reserve britannique money assurance provinces éducation billion dollars
national indiennes contribution investissement committee enseignement social systéme
british terre cpp fonds system systéme money finances

columbia colombie retirement années reform enfants tax transfert
indian réserves pay ans minority vote system milliards
court non billion argent denominational amendement provincial domaine
party affaires change important referendum constitution fund sociale
law négociations liberal administration children religieux country années

native bande legislation dollars quebec référendum quebec maladie
non réformiste board propos parents article transfer important

constitution constitution employment milliards students réformiste debt programme
development application tax gens change québec liberal libéraux

reform user rate taux party constitutionnelle services environnement
legislation gestion amendment rpc labrador confessionnelles issue assurance

Table 4.3 – The real data (translation) experiment. Topics 9 to 12.

party pays tax agence quebec québec court pêches
country politique provinces provinces federal québécois right droit
issue important agency revenu information fédéral fisheries juge
us comité federal impôts provinces provinces decision cours

debate libéraux revenue fiscal protection protection fish gens
liberal réformiste taxpayers fédéral right renseignements issue décision

committee gens equalization contribuables legislation droit law important
work débat system payer provincial personnel work pays
order accord services taxe person privé us traité

support démocratique accountability péréquation law protéger party conservateur
reform québécois amendment argent constitution électronique debate région
election réglement billion services privacy article justice problème
world propos money fonction country commerce problem supréme
quebec collégue party modifier electronic provinciaux community tribunaux

standing parlementaire provincial article court bloc supreme faut
national appuyer public ministére bloc vie country situation
interest opposition business administration students application area victimes

important élections reform déclaration section citoyens case appuyer
right bloc office tps clear non order mesure
public industrie support provinciaux states nationale parliament trouve

Table 4.4 – The real data (translation) experiment. Topics 13 to 16.
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legislation important national important vote voix water eau
issue environnement area gens yeas no trade ressources

amendment mesure parks environnement division adopter resources accord
committee enfants work parcs nays vote country environnement
support comité country pays agreed non agreement important

protection propos us marine deputy contre provinces industrie
information pays development mesure paired dépenses industry américains

industry appuyer support propos responsible accord protection pays
concerned protection community fédéral treasury conseil export provinces

right article federal jeunes divided budget environmental exportations
important droit issue appuyer order crédit us échange

change accord legislation années fiscal trésor freshwater conservateur
world gens help assurance amount oui federal responsabilité
law amendement liberal gestion pleased mise world effet

families adopter world conservateur budget propos issue quantité
work industrie responsible accord ms porte legislation traité

children non concerned région infrastructure lib environment commerce
order société committee problème board pairs responsible unis

national porte problem nationale consent veuillent development économie
states no important québec estimates vice culture alena

Table 4.5 – The real data (translation) experiment. Topics 17 to 20.
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Chapitre 5

Conclusion and Future Work

5.1 Algorithms for the CP Decomposition
In Sections 2.2.2, 2.2.3, 3.3.2, and 4.4.1, we saw that population higher-order statistics
of many latent linear models admit representation in the form of (often symmetric) CP
decomposition (sometimes also non-negative) with the linear transformation matrix
as the factor matrix. This clearly poses a question of an optimal algorithm for the
CPD computation. Importantly, computation of the symmetric, rather than non-
symmetric, CPD is a more challenging task.

The Symmetric CPD

Orthogonal Approaches. In the literature, numerous approaches were proposed
to this problem. One approach—the approach chosen in this thesis—is based on the
prewhitening step, which leads to the problem of (approximately) orthogonal symme-
tric CPD. The popularity of this approach can be explained by : (a) relatively easy
theoretical analysis due to the orthogonality and availability of the global solution
guarantees in the idealized population case, (b) reduced dimension of the target tensor
due to the prewhitening step leading, in particular, to relatively low computational
complexity. Several algorithms are readily available for the approximation of the or-
thogonal symmetric CPD (see Section 2.3, plus gradient-based algorithms), however,
the choice of one or another algorithm is not obvious in practical applications and
more extensive theoretical and experimental analysis is of interest.

We saw in Section 3.5 that the tensor power method does not always finds accurate
approximations of q𝑘 when applied to the estimation of latent linear models (see,
e.g., Section 3.5). A possible explanation is the error introduced at the prewhitening
step since a sample estimate of the matrix S𝐷𝐼𝐶𝐴 is also not exactly in the diagonal
form (4.21). This is a known problem of orthogonal diagonalization methods based
on prewhitening [see, e.g., Cardoso, 1994b, Souloumiac, 2009b]. Another potential
problem is the deflation procedure. It is well known, that an error obtained at a
deflation step propagates to all consecutive steps. Moreover, Kolda [2001] provides
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an example where the best rank-one approximation of a cubic tensor is not a factor
in the best rank-two approximation, which could potentially be an issue in the finite
sample case, where the target tensor is not exactly orthogonally decomposable. These
and related questions still require further investigation.

Non-Orthogonal Approaches. The well known issue of the prewhitening-based ap-
proach is the propagation of the whitening error [Cardoso, 1994b] in the non-idealized
case of finite sample estimates of higher order statistics. Therefore, multiple attempts
to develop algorithms without prewhitening were made. In the symmetric case, these
algorithms are mostly based on the idea of non-orthogonal joint matrix diagonaliza-
tion : which include both gradient-based algorithms [Yeredor, 2002, Yeredor et al.,
2004, Vollgraf and Obermayer, 2006] as well as multiplicative updates-based methods
[Ziehe et al., 2004, Afsari, 2006, Souloumiac, 2009a, Mesloub et al., 2012]. Howe-
ver, these approaches are more difficult than in the orthogonal case [Afsari, 2007].
Although some comparison of these algorithms among each other and with some
orthogonal-type methods is available in the literature [Dégerine and Kane, 2007,
Souloumiac, 2009b, Chabriel et al., 2014], a more comprehensive study (especially
gradient-based vs. multiplicative update-based approaches) is needed, especially, in
the context when these algorithms are applied to the problem of estimation in latent
linear models.

As opposed to the orthogonal case, non-orthogonal joint diagonalization does not per-
form preliminary dimensionality reduction. This means that all computations have
to be performed with the original non-reduced tensor (of size 𝑀 , where 𝑀 is the
number of words in the vocabulary and not the number of topics 𝐾), which can
be often significantly larger especially in the undercomplete case with 𝐾 ≪ 𝑀 ma-
king non-orthogonal approaches computationally unattractive. One way to address
this problem is the so called sketching technique [Wang et al., 2015, Keriven et al.,
2016a,b], which is becoming more and more popular in the context of large-scale lear-
ning. Another approach is adapting stochastic optimization methods [e.g., similar to
Vu et al., 2015, Ge et al., 2015].

Non-Negative Approaches. The estimation problem in many latent linear models
actually reduces to the joint non-negative symmetric CPD of second- and third-order
statistics, with emphasis on non-negativity. The approaches widely known in the li-
terature, including the ones of this thesis, do not explicitly handle the non-negativity
constraint. Explicit integration of this constraint would necessary lead to an improved
accuracy of the estimation given the respective algorithms can be solved efficiently.
Indeed, we performed multiple experiments for the different orthogonal-type diago-
nalization algorithms in the context of topic models (Chapter 3), where we computed
the so called Amari metric [Amari et al., 1996], which measures the quality of the joint
diagonalization type algorithms, before and after the heuristic truncation (of negative
values) step which ensures the non-negativity (see Section 3.4). We saw significant
increase of the error after such truncation step.

A potential approach to resolving this issue is performing the non-negative symmetric
joint CP decomposition of second- and third-order statistics. Since the low rank ten-
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sor approximation in the non-negative setting is well-posed [Lim and Comon, 2009],
it makes sense to investigate this direction. In the non-symmetric non-negative case,
numerous algorithms, often based on alternating minimization, are known [Krijnen
and Ten Berge, 1991, Bro and Jong, 1997, Bro and Sidiropoulos, 1998, Welling and
Weber, 2001, Hazan et al., 2005, Shashua and Hazan, 2005, Cichocki et al., 2009,
Lim and Comon, 2009, Royer et al., 2011, Zhou et al., 2014, Kim et al., 2014]. Ex-
tensions and comparisons of these algorithms to the symmetric case is therefore of
interest.

The Non-Symmetric CPD

Gradient-Based Methods and Alternating Least Squares. Similar questions
of theoretical and experimental comparison of the CPD algorithms naturally arise in
the non-symmetric case. An extremely widely-used approach in practice is the one
based on the low-rank approximation formulation and alternating least squares type
of methods [Comon et al., 2009a, Kolda and Bader, 2009]. Major drawback of all
these algorithms are different CP degeneracies : bottlenecks, swamps, and general ill-
posedness of the problem, which do cause problems in practice [Comon et al., 2009a].
Hence, understanding whether joint diagonalization-based approaches are more pre-
ferable in this case is another important question.

Simultaneous Schur Decomposition. In addition to the non-orthogonal joint dia-
gonalization (NOJD) by similarity algorithms (see Section 2.3.2), simultaneous Schur
decomposition is another important approach to the non-symmetric CPD approxima-
tion problem. New perturbation analysis results have just became available for these
methods [De Lathauwer et al., 2004, Colombo and Vlassis, 2016a,b,c]. The most no-
table results are the so called a posteriori bounds on the quality of the approximation,
which take into account an approximate solution (an output of the algorithm) rather
than a global minimizer as in a priori bounds [Cardoso, 1994a]. Comparison of these
algorithms to NOJD by similarity as well as potential extension of this perturbation
analysis is of interest.

Joint Diagonalization Algorithms

(Orthogonal and non-orthogonal) joint diagonalization algorithms are of interest on
their own, e.g., in the generalized covariance matrices framework. Note that the latter
is an important area of research on its own and further results, e.g., on the sample
complexity of the generalized covariance matrices or showing asymptotic equivalence
(which is observed experimentally) of the higher-order cumulants-based algorithms
with the generalized covariance matrices-based algorithms, are of interest.

An important question to answer for joint diagonalization methods is the choice of
the number of target matrices or contraction vectors. Indeed, it is experimentally
observed that choosing the number of matrices of the order of the logarithm of the
dimension is sufficient. However, no theoretical results in this respect are known.
Moreover, the results on the convergence rate and global convergence properties of
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joint diagonalization algorithms are very limited. It would be interesting, e.g., to
perform analysis similar to the one of [Colombo and Vlassis, 2016a,b,c] to better
understand these properties.

The Overcomplete Case

The estimation in overcomplete models is a much more difficult task, but, nevertheless,
it is still possible in some special cases or under additional assumptions [Cardoso, 1991,
Yeredor, 2002, De Lathauwer et al., 2007, Anandkumar et al., 2015c]. Extension of the
ideas presented in this thesis to the overcomplete case is another important direction
for the future research.

5.2 Inference for Semiparametric Models
The models introduced in Chapters 3 and 4 of this thesis are semiparametric and
supposed to adapt to the densities of the latent sources. In the signal processing li-
terature, some methods are known [see, e.g. Comon and Jutten, 2010] for density
approximation and can be directly applied for the inference in the introduced semi-
parametric models. Therefore, developing inference methods for the discrete ICA and
discrete, non-Gaussian, and mixed CCA models is another interesting direction for
the future research.
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Annexe A

Notation

In Appendix A, we outline the list of probability distributions which are widely used
in this thesis.

A.1 The List of Probability Distributions
In this section, we recall the probability distributions used in this thesis.

Multivariate Gaussian. The probability density function of the multivariate Gaus-
sian distribution with the mean 𝜇 and the covariance matrix Σ of an R𝑀 -valued
continuous random variable x is :

𝒩 (x |𝜇,Σ) =
1√︀

(2𝜋)𝑀 |Σ|
exp

[︂
1

2
(x− 𝜇)⊤Σ−1 (x− 𝜇)

]︂
, (A.1)

where the covariance matrix Σ is strictly positive definite and |Σ| is its determinant.
We write x ∼ 𝒩 (𝜇,Σ) to denote that x is a Gaussian random variable with the
mean 𝜇 and the covariance matrix Σ.

Dirichlet. The probability distribution function of the Dirichlet distribution is :

𝑝(𝜃|c) :=
Γ (𝑐0)∏︀
𝐾
𝑘=1 Γ(𝑐𝑘)

𝐾∏︁
𝑘=1

𝜃𝑐𝑘−1
𝑘 I (𝜃 ∈Δ𝐾) , (A.2)

where the parameter c ∈ R𝐾
++, the parameter 𝑐0 :=

∑︀
𝐾
𝑘=1 𝑐𝑘, Γ(·) is the Gamma

function, 1 and I (·) is the indicator function (it is 1 if the condition in the brackets
is true and 0 otherwise). The Dirichlet distribution is supported on the (𝐾 − 1)-
simplex. We write 𝜃 ∼ Dirichlet(c) to denote that 𝜃 is a Dirichlet variable with the
parameter c.

1. For complex numbers with a positive real part, the gamma function is defined via a convergent
improper integral Γ(𝑡) =

∫︀∞
0

𝑥𝑡−1𝑒−𝑥𝑑𝑥.
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When all elements of c are the same, 𝑐1 = 𝑐2 = · · · = 𝑐𝐾 , the Dirichlet distribution
is symmetric. When c = 1, the Dirichlet distribution is equivalent to the uniform
distribution on the (𝐾 − 1)-simplex. When every 𝑐𝑘 > 1 (or 𝑐0 > 𝐾), then the mode
of the density function is somewhere in the middle of the simplex, therefore, most
or all elements in a sampled vector 𝜃 are likely to be significantly larger than zero.
When every 𝑐𝑘 < 1 (or 𝑐0 < 𝐾), then the mode of the density function is almost
at the vertices of the simplex, therefore, only few elements in a sampled vector 𝜃
are likely to be significantly large than zero. In the limit 𝑐0 → 0, only one element
of a sampled vector is significantly larger than zero (and nearly equal to one). It is
useful sometimes to write the Dirichlet parameter c as a product c = 𝑐n, where 𝑐 is
called the concentration parameter and n is the base measure. See also Frigyik et al.
[2010].

Multinomial and Discrete. The multinomial distribution models the trials for rol-
ling 𝑀 -sided dice 𝐿 times. A multinomial random vector x, which takes non-negative
discrete values which sum to 𝐿, i.e.

∑︀𝑀
𝑚=1 𝑥𝑚 = 𝐿, has the following probability mass

function :

𝑝(x|𝐿,y) =
𝐿!∏︀𝑀

𝑚=1 𝑥𝑚!

𝑀∏︁
𝑚=1

𝑦𝑥𝑚
𝑚 , (A.3)

where the parameter y ∈ Δ𝑀 . We write x ∼ Mult(𝐿;y) to denote that x is a
multinomial variable for 𝐿 trials with the parameter y. When 𝐿 = 1, the multinomial
distribution is equivalent to the discrete distribution :

𝑝(x|y) =
𝑀∏︁

𝑚=1

𝑦𝑥𝑚
𝑚 , (A.4)

and we denote x ∼ Mult(1,y). For such a vector x, which has only one non-negative
𝑚-th element equal to 1 and the rest is zero, we say that it is represented using
one-hot encoding.

Poisson. The probability mass function of the Poisson distribution with the para-
meter 𝜆 of a random variable 𝑥, which takes positive discrete values, is

𝑝(𝑥|𝜆) =
𝜆𝑥𝑒−𝜆

𝑥!
, (A.5)

where 𝜆 ∈ R++. We write 𝑥 ∼ Poisson(𝜆) to denote that 𝑥 is a Poisson random
variable with the parameter 𝜆. We also write x ∼ Poisson(𝜆) to denote that each
element 𝑥𝑚 of x is a Poisson random variable with the parameter 𝜆𝑚. In Chapter 3,
we use the fact that all cumulants of a Poisson random variable are equal to each
other and equal to the parameter 𝜆 (see also Section 2.2).

Gamma. The density function of the gamma distribution with the shape 𝑐 and rate 𝑏
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parameters of an R++-valued random variable 𝑥 is

𝑝(𝑥|𝑐, 𝑏) =
𝑏𝑐

Γ(𝑐)
𝑥𝑐−1𝑒−𝑏𝑥, (A.6)

where the parameters 𝑐 ∈ R++ and 𝑏 ∈ R++. We write 𝑥 ∼ Gamma(𝑐, 𝑏) to denote
that 𝑥 is a gamma random variable with the shape and rate parameters 𝑐 and 𝑏
respectively. We write x ∼ Gamma(c,b) to denote that each element 𝑥𝑚 of x is a
gamma random variable with the shape and rate parameters 𝑐𝑚 and 𝑏𝑚, respectively.
Note that this definition is preferable to the one with the scale parameter (equal to
1/𝑏) since the density (A.6) leads to a convex optimization problem for the maximum
likelihood estimation as opposed to the other one.

Note that we mostly omit the dependence on parameters in the notation, e.g. instead
on 𝑝(x|𝜃) we write 𝑝(x), and we use conditional dependence to show the dependence
on latent variables only, e.g. 𝑝(x|z), where z is a latent variable.
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Annexe B

Discrete ICA

Appendix B is organized as follows :

- In Appendix B.1, we derive the symmetric canonical polyadic (a.k.a. diagonal)
form of the population third-order cumulant of the DICA model.

- In Appendix B.2, we outline the proof of the sample complexity result for the
DICA model (Proposition 3.3.1).

B.1 The Order-Three DICA Cumulant

In this section, we derive the order-3 DICA (and GP) cumulant. See Section 2.2 for
the definition and properties of cumulants.

We also use the property that all cumulants of a Poisson random variable with a
parameter 𝜆 are equal to this parameter.

For a Poisson random variable with the parameter 𝜆, all cumulants are equal to this
parameter (see Section 2.2). Therefore the order-3 cumulant of a univariate Poisson
random variable 𝑥𝑚 with the parameter 𝑦𝑚 is

E((𝑥𝑚 − E(𝑥𝑚))3 | 𝑦𝑚) = 𝑦𝑚.

By the independence property of cumulants, the order-3 cumulant of x |y is a diagonal
tensor with the (𝑚1, 𝑚2, 𝑚3)-th element equal to

cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3 |y) = 𝛿(𝑚1, 𝑚2, 𝑚3) 𝑦𝑚1 , (B.1)

where 𝛿 is the Kronecker delta. Recall that the low of total cumulance reads as

cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3) = E [cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3 |y)]

+ cum [E(𝑥𝑚1 |y),E(𝑥𝑚2 |y),E(𝑥𝑚3 |y)] + cov [E(𝑥𝑚1 |y), cov(𝑥𝑚2 , 𝑥𝑚3 |y)]

+ cov [E(𝑥𝑚2 |y), cov(𝑥𝑚1 , 𝑥𝑚3 |y)] + cov [E(𝑥𝑚3 |y), cov(𝑥𝑚1 , 𝑥𝑚2 |y)] .
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Substituting the cumulant (B.1) of x |y into this law of total cumulance, we ob-
tain

cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3) = 𝛿(𝑚1, 𝑚2, 𝑚3)E(𝑦𝑚1) + cum(𝑦𝑚1 , 𝑦𝑚2 , 𝑦𝑚3)

+ 𝛿(𝑚2, 𝑚3)cov(𝑦𝑚1 , 𝑦𝑚2) + 𝛿(𝑚1, 𝑚3)cov(𝑦𝑚1 , 𝑦𝑚2) + 𝛿(𝑚1, 𝑚2)cov(𝑦𝑚1 , 𝑦𝑚3)

= cum(𝑦𝑚1 , 𝑦𝑚2 , 𝑦𝑚3)− 2𝛿(𝑚1, 𝑚2, 𝑚3)E(𝑥𝑚1)

+ 𝛿(𝑚2, 𝑚3)cov(𝑥𝑚1 , 𝑥𝑚2) + 𝛿(𝑚1, 𝑚3)cov(𝑥𝑚1 , 𝑥𝑚2) + 𝛿(𝑚1, 𝑚2)cov(𝑥𝑚1 , 𝑥𝑚3),

where we used the previous result from (3.13) that cov(y, y) = cov(x, x)−Diag(E(x)).
Finally, by the multilinearity property for cum(𝑦𝑚1 , 𝑦𝑚2 , 𝑦𝑚3), we obtain

cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3) =
[︀
cum(𝛼,𝛼,𝛼)×1 D

⊤ ×2 D
⊤ ×3 D

⊤)
]︀
𝑚1𝑚2𝑚3

− 2𝛿(𝑚1, 𝑚2, 𝑚3)E(𝑥𝑚1) + 𝛿(𝑚2, 𝑚3)cov(𝑥𝑚1 , 𝑥𝑚2)

+ 𝛿(𝑚1, 𝑚3)cov(𝑥𝑚1 , 𝑥𝑚2) + 𝛿(𝑚1, 𝑚2)cov(𝑥𝑚1 , 𝑥𝑚3),

(B.2)

where, in the third equality, we used the previous result from (3.13) that cov(y, y) =
cov(x, x)−Diag(E(x)).

B.2 The Sketch of the Proof for Proposition 3.3.1

B.2.1 Expected Squared Error for the Sample Expectation

The sample expectation is ̂︀E(x) = 1
𝑁

∑︀𝑁
𝑛=1 x𝑛 is an unbiased estimator of the expec-

tation and its squared error is : 1

E
(︁
‖̂︀E(x)− E(x)‖22

)︁
=

𝑀∑︁
𝑚=1

E
[︂(︁̂︀E(𝑥𝑚)− E(𝑥𝑚)

)︁2]︂

= 𝑁−2

𝑀∑︁
𝑚=1

[︃
E

(︃
𝑁∑︁

𝑛=1

(𝑥𝑛𝑚 − E(𝑥𝑚))2
)︃

+ E

(︃
𝑁∑︁

𝑛=1

𝑁∑︁
𝑛′=1
𝑛′ ̸=𝑛

(𝑥𝑛𝑚 − E(𝑥𝑚)) (𝑥𝑛′𝑚 − E(𝑥𝑚))

)︃]︃

= 𝑁−1

𝑀∑︁
𝑚=1

E
[︀
(𝑥𝑚 − E(𝑥𝑚))2

]︀
= 𝑁−1

𝑀∑︁
𝑚=1

var(𝑥𝑚).

1. Note that these derivations are partially based on the lecture notes to the “Machine Learning”
course read at Saarland University in winter semester of 2011/2012 by Prof. M. Hein.
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Further, by the law of total variance :

E
(︁
‖̂︀E(x)− E(x)‖22

)︁
= 𝑁−1

𝑀∑︁
𝑚=1

[E(var(𝑥𝑚|y)) + var(E(𝑥𝑚|y))]

= 𝑁−1

𝑀∑︁
𝑚=1

[E(𝑦𝑚) + var(𝑦𝑚)] = 𝑁−1

[︃
𝐾∑︁
𝑘=1

E(𝛼𝑘) +
𝐾∑︁
𝑘=1

⟨d𝑘,d𝑘⟩var(𝛼𝑘)

]︃
,

using the fact that
∑︀𝑀

𝑚=1 𝐷𝑚𝑘 = 1 for any 𝑘.

B.2.2 Expected Squared Error for the Sample Covariance

The following finite sample estimator of the covariance matrix, defined as cov(x,x) =
E(xx⊤)− E(x)E(x)⊤,

̂︁cov(x,x) = (𝑁 − 1)−1

𝑁∑︁
𝑛=1

x𝑛x
⊤
𝑛 − ̂︀E(x)̂︀E(x)⊤

= (𝑁 − 1)−1

𝑁∑︁
𝑛=1

(︃
x𝑛x

⊤
𝑛 −𝑁−2

𝑁∑︁
𝑛′=1

𝑁∑︁
𝑛′′=1

x𝑛′x⊤
𝑛′′

)︃

= 𝑁−1

𝑁∑︁
𝑛=1

(︃
x𝑛x

⊤
𝑛 − (𝑁 − 1)−1x𝑛

𝑁∑︁
𝑛′=1
𝑛′ ̸=𝑛

x⊤
𝑛′

)︃ (B.3)

is unbiased, i.e., E(̂︁cov(x,x)) = cov(x,x). Its squared error is equal to

E
(︀
‖̂︁cov(x,x)− cov(x,x)‖2𝐹

)︀
=

𝑀∑︁
𝑚=1

𝑀∑︁
𝑚′=1

E
[︀
(̂︁cov(𝑥𝑚, 𝑥𝑚′)− E[̂︁cov(𝑥𝑚, 𝑥𝑚′)])2

]︀
.

The (𝑚,𝑚′)-th element of the sum above is equal to :

1

𝑁2

∑︁
𝑛,𝑛′

cov

(︃
𝑥𝑛𝑚𝑥𝑛𝑚′ − 1

𝑁 − 1
𝑥𝑛𝑚

∑︁
𝑛′′ ̸=𝑛

𝑥𝑛′′𝑚′ , 𝑥𝑛′𝑚𝑥𝑛′𝑚′ − 1

𝑁 − 1
𝑥𝑛′𝑚

∑︁
𝑛′′′ ̸=𝑛′

𝑥𝑛′′′𝑚′

)︃

=
1

𝑁2

∑︁
𝑛,𝑛′

cov (𝑥𝑛𝑚𝑥𝑛𝑚′ , 𝑥𝑛′𝑚𝑥𝑛′𝑚′)− 2

𝑁2(𝑁 − 1)

∑︁
𝑛,𝑛′

cov

(︃
𝑥𝑛𝑚

∑︁
𝑛′′ ̸=𝑛

𝑥𝑛′′𝑚′ , 𝑥𝑛′𝑚𝑥𝑛′𝑚′

)︃

+
1

𝑁2(𝑁 − 1)2

∑︁
𝑛,𝑛′

cov

(︃
𝑥𝑛𝑚

∑︁
𝑛′′ ̸=𝑛

𝑥𝑛′′𝑚′ , 𝑥𝑛′𝑚

∑︁
𝑛′′′ ̸=𝑛′

𝑥𝑛′′′𝑚′

)︃
;
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this (𝑚,𝑚′)-th element is further equal to :

1

𝑁2

𝑁∑︁
𝑛=1

cov (𝑥𝑛𝑚𝑥𝑛𝑚′ , 𝑥𝑛𝑚𝑥𝑛𝑚′)

− 2

𝑁2(𝑁 − 1)

[︃∑︁
𝑛

∑︁
𝑛′′

cov (𝑥𝑛𝑚𝑥𝑛′′𝑚′ , 𝑥𝑛𝑚𝑥𝑛𝑚′) +
∑︁
𝑛

∑︁
𝑛′

cov (𝑥𝑛𝑚𝑥𝑛′𝑚′ , 𝑥𝑛′𝑚𝑥𝑛′𝑚′)

+
∑︁
𝑛

∑︁
𝑛′′

∑︁
𝑛′′′

cov (𝑥𝑛𝑚𝑥𝑛′′𝑚′ , 𝑥𝑛𝑚𝑥𝑛′′′𝑚′) +
∑︁
𝑛′

∑︁
𝑛

∑︁
𝑛′′

cov (𝑥𝑛𝑚𝑥𝑛′′𝑚′ , 𝑥𝑛′𝑚𝑥𝑛𝑚′)

+
∑︁
𝑛′

∑︁
𝑛

∑︁
𝑛′′′

cov (𝑥𝑛𝑚𝑥𝑛′𝑚′ , 𝑥𝑛′𝑚𝑥𝑛′′′𝑚′) +
∑︁
𝑛′

∑︁
𝑛

∑︁
𝑛′′

cov (𝑥𝑛𝑚𝑥𝑛′′𝑚′ , 𝑥𝑛′𝑚𝑥𝑛′′𝑚′)

]︃
,

where the summations of the form
∑︀

𝑛

∑︀
𝑛′ denote

∑︀𝑁
𝑛=1

∑︀𝑁
𝑛′=1, 𝑛′ ̸=𝑛 and the sum-

mations of the form
∑︀

𝑛

∑︀
𝑛′
∑︀

𝑛′′ denote
∑︀𝑁

𝑛=1

∑︀𝑁
𝑛′=1, 𝑛′ ̸=𝑛

∑︀𝑁
𝑛′′=1, 𝑛′′ ̸=𝑛′, 𝑛′′ ̸=𝑛. We also

used mutual independence of the observations x𝑛 in a sample {x𝑛}𝑁𝑛=1 to conclude
that the covariance between the two expressions involving only independent variables
is zero. Substituting these elements back to the sum, we get :

E
(︀
‖̂︁cov(x,x)− cov(x,x)‖2𝐹

)︀
=

1

𝑁2

∑︁
𝑚,𝑚′

𝑁
(︀
E(𝑥2

𝑚𝑥
2
𝑚′)− [E(𝑥𝑚𝑥𝑚′)]2

)︀
− 4

𝑁2(𝑁 − 1)

∑︁
𝑚,𝑚′

𝑁(𝑁 − 1)
(︀
E(𝑥2

𝑚𝑥𝑚′)E(𝑥𝑚′)− E(𝑥𝑚𝑥𝑚′)E(𝑥𝑚)E(𝑥𝑚′)
)︀

+
2

𝑁2(𝑁 − 1)2

∑︁
𝑚,𝑚′

𝑁(𝑁 − 1)(𝑁 − 2)
(︀
E(𝑥2

𝑚) [E(𝑥𝑚′)]2 − [E(𝑥𝑚)]2 [E(𝑥𝑚′)]2
)︀

+
2

𝑁2(𝑁 − 1)2

∑︁
𝑚,𝑚′

𝑁(𝑁 − 1)(𝑁 − 2)
(︀
E(𝑥𝑚𝑥𝑚′)E(𝑥𝑚)E(𝑥𝑚′)− [E(𝑥𝑚)]2 [E(𝑥𝑚′)]2

)︀
+ 𝑂

(︀
𝑁−2

)︀
,

where some terms with 𝑁 are left to emphasize that we used the fact that each
document is independent and identically distributed. The summation of the form∑︀

𝑚,𝑚′ denote
∑︀𝑀

𝑚=1

∑︀𝑀
𝑚′=1. Subsequent simplification gives :

E
(︀
‖̂︁cov(x,x)− cov(x,x)‖2𝐹

)︀
=

1

𝑁

∑︁
𝑚,𝑚′

[︀
var(𝑥𝑚𝑥𝑚′) + 2 [E(𝑥𝑚)]2 var(𝑥𝑚′)

]︀
+

1

𝑁

∑︁
𝑚,𝑚′

[2E(𝑥𝑚)E(𝑥𝑚′)cov(𝑥𝑚, 𝑥𝑚′)− 4E(𝑥𝑚)cov(𝑥𝑚𝑥𝑚′ , 𝑥𝑚′)] + 𝑂
(︀
𝑁−2

)︀
,

where in the last equality, by symmetry, the summation indexes 𝑚 and 𝑚′ can be
exchanged. As 𝑥𝑚 ∼ Poisson(𝑦𝑚), by the law of total expectation and law of total
covariance, it follows, for 𝑚 ̸= 𝑚′ (and using the auxiliary expressions from Sec-
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tion B.2.4) :

var(𝑥𝑚𝑥𝑚′) = E(𝑥2
𝑚𝑥

2
𝑚′)− [E[𝑥𝑚𝑥𝑚′ ]]2 = E

[︀
E(𝑥2

𝑚𝑥
2
𝑚′|y)

]︀
− [E [E(𝑥𝑚𝑥𝑚′|y)]]2

= E
[︀
𝑦2𝑚𝑦

2
𝑚′ + 𝑦2𝑚𝑦𝑚′ + 𝑦𝑚𝑦

2
𝑚′ + 𝑦𝑚𝑦𝑚′

]︀
− [E(𝑦𝑚𝑦𝑚′)]2 ,

[E(𝑥𝑚)]2 var(𝑥𝑚′) = [E(𝑦𝑚)]2 E(𝑦𝑚′) + [E(𝑦𝑚)]2 E(𝑦2𝑚′)− [E(𝑦𝑚)]2 [E(𝑦𝑚′)]2 ,

E(𝑥𝑚)E(𝑥𝑚′)cov(𝑥𝑚, 𝑥𝑚′) = E(𝑦𝑚𝑦𝑚′)E(𝑦𝑚)E(𝑦𝑚′)− [E(𝑦𝑚)]2 [E(𝑦𝑚′)]2 ,

E(𝑥𝑚)cov(𝑥𝑚𝑥𝑚′ , 𝑥𝑚′) = E(𝑦𝑚)
[︀
E(𝑦𝑚𝑦𝑚′) + E(𝑦𝑚𝑦

2
𝑚′)− E(𝑦𝑚𝑦𝑚′)E(𝑦𝑚′)

]︀
.

Now, considering the 𝑚 = 𝑚′ case, we have :

var(𝑥2
𝑚) = E[E(𝑥4

𝑚|y)]−
[︀
E[E(𝑥2

𝑚|y)]
]︀2

= E
[︀
𝑦4𝑚 + 6𝑦3𝑚 + 7𝑦2𝑚 + 𝑦𝑚

]︀
−
[︀
E
[︀
𝑦2𝑚 + 𝑦𝑚

]︀]︀2
,

E(𝑥𝑚)E(𝑥𝑚)cov(𝑥𝑚, 𝑥𝑚) = E(𝑦𝑚)2
[︀
E(𝑦2𝑚) + E(𝑦𝑚)− [E(𝑦𝑚)]2

]︀
,

E(𝑥𝑚)cov(𝑥2
𝑚, 𝑥𝑚) = E(𝑦𝑚)

[︀
E(𝑦3𝑚) + 3E(𝑦2𝑚) + E(𝑦𝑚)− E(𝑦𝑚)

[︀
E(𝑦2𝑚) + E(𝑦𝑚)

]︀]︀
.

Substitution of 𝑦𝑚 =
∑︀𝐾

𝑘=1𝐷𝑚𝑘𝛼𝑘 gives the following

E
(︀
‖̂︁cov(x,x)− cov(x,x)‖2𝐹

)︀
= 𝑁−1

∑︁
𝑘,𝑘′,𝑘′′,𝑘′′′

⟨d𝑘,d𝑘′⟩⟨d𝑘′′ ,d𝑘′′′⟩𝒜𝑘𝑘′𝑘′′𝑘′′′

+ 𝑁−1
∑︁

𝑘,𝑘′,𝑘′′

[⟨d𝑘,d𝑘′⟩⟨d𝑘′′ ,1⟩ℬ𝑘𝑘′𝑘′′ + ⟨d𝑘 ∘ d𝑘′ ,d𝑘′′⟩ℰ𝑘𝑘′𝑘′′ ]

+ 𝑁−1
∑︁
𝑘,𝑘′

[⟨d𝑘,1⟩⟨d𝑘′ ,1⟩E(𝛼𝑘𝛼𝑘′) + ⟨d𝑘,d𝑘′⟩ℱ𝑘𝑘′ ] +
∑︁
𝑘

⟨d𝑘,1⟩E(𝛼𝑘) + 𝑂
(︀
𝑁−2

)︀
,

where 1 is the vector with all the elements equal to 1, the sign ∘ is the element-wise
Hadamard product, and

𝒜𝑘𝑘′𝑘′′𝑘′′′ = E(𝛼𝑘𝛼𝑘′𝛼𝑘′′𝛼𝑘′′′)− E(𝛼𝑘𝛼𝑘′′)E(𝛼𝑘′𝛼𝑘′′′) + 2E(𝛼𝑘)E(𝛼𝑘′)E(𝛼𝑘′′𝛼𝑘′′′)

− 2E(𝛼𝑘)E(𝛼𝑘′)E(𝛼𝑘′′)E(𝛼𝑘′′′) + 2E(𝛼𝑘𝛼𝑘′′)E(𝛼𝑘′)E(𝛼𝑘′′′)− 2E(𝛼𝑘)E(𝛼𝑘′)E(𝛼𝑘′′)E(𝛼𝑘′′′)

− 4E(𝛼𝑘)E(𝛼𝑘′𝛼𝑘′′𝛼𝑘′′′) + 4E(𝛼𝑘)E(𝛼𝑘′𝛼𝑘′′)E(𝛼𝑘′′′),

ℬ𝑘𝑘′𝑘′′ = 2E(𝛼𝑘𝛼𝑘′𝛼𝑘′′) + 2E(𝛼𝑘)E(𝛼𝑘′)E(𝛼𝑘′′)− 4E(𝛼𝑘)E(𝛼𝑘′𝛼𝑘′′),

ℰ𝑘𝑘′𝑘′′ = 4E(𝛼𝑘𝛼𝑘′𝛼𝑘′′) + 6E(𝛼𝑘)E(𝛼𝑘′)E(𝛼𝑘′′)− 10E(𝛼𝑘𝛼𝑘′)E(𝛼𝑘′′),

ℱ𝑘𝑘′ = 6E(𝛼𝑘𝛼𝑘′)− 5E(𝛼𝑘)E(𝛼𝑘′),

where we used the expressions from Section B.2.4.
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B.2.3 Expected Squared Error of the Estimator ̂︀S for the GP/DICA
Cumulants

As the estimator ̂︀𝑆 (3.19) of 𝑆 (3.14) is unbiased, its expected squared error is

E
[︁
‖̂︀S− S‖2𝐹

]︁
= E

[︂⃦⃦⃦
(̂︁cov(x,x)− cov(x,x)) +

(︁
Diag[̂︀E(x)]−Diag [E(x)]

)︁⃦⃦⃦2
𝐹

]︂
= E

[︁
‖̂︀E(x)− E(x)‖2𝐹

]︁
+ E

[︀
‖̂︁cov(x,x)− cov(x,x)‖2𝐹

]︀
+ 2

𝑀∑︁
𝑚=1

E
[︁(︁̂︀E(𝑥𝑚)− E(𝑥𝑚)

)︁
(̂︁cov(𝑥𝑚, 𝑥𝑚)− cov(𝑥𝑚, 𝑥𝑚))

]︁
.

(B.4)
As ̂︀E(𝑥𝑚) and ̂︁cov(𝑥𝑚, 𝑥𝑚) are unbiased, the 𝑚-th element of the last sum is equal
to

cov
[︁̂︀E(𝑥𝑚), ̂︁cov(𝑥𝑚, 𝑥𝑚)

]︁
= 𝑁−2

∑︁
𝑛,𝑛′

cov
[︀
𝑥𝑛𝑚, 𝑥

2
𝑛′𝑚

]︀
−𝑁−2(𝑁 − 1)−1

∑︁
𝑛,𝑛′,𝑛′′ ̸=𝑛′

cov [𝑥𝑛𝑚, 𝑥𝑛′𝑚𝑥𝑛′′𝑚]

= 𝑁−2
∑︁
𝑛

cov
[︀
𝑥𝑛𝑚, 𝑥

2
𝑛𝑚

]︀
− 2𝑁−2(𝑁 − 1)−1

∑︁
𝑛,𝑛′ ̸=𝑛

cov [𝑥𝑛𝑚, 𝑥𝑛′𝑚𝑥𝑛𝑚] + 𝑂
(︀
𝑁−2

)︀
= 𝑁−1E(𝑥3

𝑚)− 2𝑁−1
(︀
E(𝑥2

𝑚)E(𝑥𝑚)− [E(𝑥𝑚)]3
)︀

+ 𝑂
(︀
𝑁−2

)︀
≤ 𝑁−1E(𝑥3

𝑚) + 2𝑁−1 [E(𝑥𝑚)]3 + 𝑂
(︀
𝑁−2

)︀
= 𝑁−1

[︀
E(𝑦3𝑚) + 3E(𝑦2𝑚) + E(𝑦𝑚) + 2 [E(𝑦𝑚)]3

]︀
+ 𝑂

(︀
𝑁−2

)︀
,

where we neglected the negative term −E(𝑥2
𝑚)E(𝑥𝑚) for the inequality, and the last

equality follows from the expressions in Section B.2.4. Further, the fact that 𝑦𝑚 =∑︀𝐾
𝑘=1𝐷𝑚𝑘𝛼𝑘 gives

𝑀∑︁
𝑚=1

cov
[︁̂︀E(𝑥𝑚), ̂︁cov(𝑥𝑚, 𝑥𝑚)

]︁
= 𝑁−1

∑︁
𝑘,𝑘′,𝑘′′

⟨d𝑘 ∘ d𝑘′ ,d𝑘′′⟩𝒞𝑘𝑘′𝑘′′

+ 3𝑁−1
∑︁
𝑘,𝑘′

⟨d𝑘,d𝑘′⟩E(𝛼𝑘𝛼𝑘′) + 𝑁−1
∑︁
𝑘

⟨d𝑘,1⟩E(𝛼𝑘) + 𝑂
(︀
𝑁−2

)︀
,

where ∘ denotes the element-wise Hadamard product and

𝒞𝑘𝑘′𝑘′′ = E(𝛼𝑘𝛼𝑘′𝛼𝑘′′) + 2E(𝛼𝑘)E(𝛼𝑘′)E(𝛼𝑘′′).
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Plugging this and the expressions for E(‖̂︀E(x)−E(x)‖2𝐹 ) and E(‖̂︁cov(x,x)−cov(x,x)‖2𝐹 )
from Sections B.2.1 and B.2.2, respectively, into (B.4) gives

E
[︁
‖̂︀S− S‖2𝐹

]︁
= 𝑁−1

∑︁
𝑘

⟨d𝑘,d𝑘⟩var(𝛼𝑘) + 𝑁−1
∑︁
𝑘

E(𝛼𝑘)

+ 𝑁−1
∑︁

𝑘,𝑘′,𝑘′′,𝑘′′′

⟨d𝑘,d𝑘′⟩⟨d𝑘′′ ,d𝑘′′′⟩𝒜𝑘𝑘′𝑘′′𝑘′′′

+ 𝑁−1
∑︁

𝑘,𝑘′,𝑘′′

[⟨d𝑘,d𝑘′⟩ℬ𝑘𝑘′𝑘′′ + 2⟨d𝑘 ∘ d𝑘′ ,d𝑘′′⟩𝒞𝑘𝑘′𝑘′′ ]

+ 𝑁−1
∑︁
𝑘,𝑘′

(1 + 6 ⟨d𝑘,d𝑘′⟩)E(𝛼𝑘𝛼𝑘′) + 2𝑁−1
∑︁
𝑘

E(𝛼𝑘) + 𝑂
(︀
𝑁−2

)︀
,

where we used that, by the simplex constraint on the topics, ⟨d𝑘,1⟩ = 1 for all 𝑘.
To analyze this expression in more details, let us now consider the GP model, i.e.,
𝛼𝑘 ∼ Gamma(𝑐𝑘, 𝑏) :∑︁
𝑘,𝑘′,𝑘′′,𝑘′′′

𝒜𝑘𝑘′𝑘′′𝑘′′′ ≤
30𝑐40 + 23𝑐30 + 14𝑐20 + 8𝑐0

𝑏4
, and

∑︁
𝑘,𝑘′,𝑘′′

ℬ𝑘𝑘′𝑘′′ ≤
6𝑐30 + 10𝑐20 + 4𝑐0

𝑏3
,

∑︁
𝑘,𝑘′,𝑘′′

𝒞𝑘𝑘′𝑘′′ ≤
7𝑐30 + 6𝑐20 + 2𝑐0

𝑏3
, and

∑︁
𝑘,𝑘′,𝑘′′

ℰ𝑘𝑘′𝑘′′ ≤
12𝑐30 + 10𝑐20 + 8𝑐0

𝑏3
,

∑︁
𝑘,𝑘′

ℱ𝑘𝑘′ ≤
2𝑐20 + 𝑐0

𝑏2
and

∑︁
𝑘,𝑘′

E(𝛼𝑘𝛼𝑘′) ≤
2𝑐20 + 𝑐0

𝑏2
,

where we used the expressions from Section B.2.4, which gives

E
[︁
‖̂︀S− ̂︀S‖2𝐹]︁ ≤ 𝜈𝑁−1

[︃
max

𝑘
‖d𝑘‖22

𝑐0
𝑏2

+
𝑐0
𝑏

+

(︂
max
𝑘,𝑘′
⟨d𝑘,d𝑘′⟩

)︂2

max

[︂
𝑐40
𝑏4
,
𝑐0
𝑏4

]︂]︃

+ 𝜈𝑁−1

[︂
max
𝑘,𝑘′
⟨d𝑘,d𝑘′⟩max

[︂
𝑐30
𝑏3
,
𝑐0
𝑏3

]︂
+

(︂
max
𝑘,𝑘′,𝑘′′

⟨d𝑘 ∘ d𝑘′ ,d𝑘′′⟩
)︂

max

[︂
𝑐30
𝑏3
,
𝑐0
𝑏3

]︂]︂
+ 𝜈𝑁−1

[︂(︂
1 + max

𝑘,𝑘′
⟨d𝑘,d𝑘′⟩

)︂
max

[︂
𝑐20
𝑏2
,
𝑐0
𝑏2

]︂]︂
+ 𝑂

(︀
𝑁−2

)︀
,

where 𝜈 ≤ 30 is a universal constant. As, by the Cauchy-Schwarz inequality,

max
𝑘,𝑘′
⟨d𝑘,d𝑘′⟩ ≤max

𝑘
‖d𝑘‖22 =: ∆1,

max
𝑘,𝑘′,𝑘′′

⟨d𝑘 ∘ d𝑘′ ,d𝑘′′⟩ ≤ max
𝑘
‖d𝑘‖∞ ‖d𝑘‖22 ≤ max

𝑘
‖d𝑘‖32 =: ∆2.
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(note that for the topics in the simplex, ∆2 ≤ ∆1 as well as ∆2
1 ≤ ∆1), it follows

that

E
[︁
‖̂︀S− S‖2𝐹

]︁
≤ 𝜈𝑁−1

[︂
∆1

(︂
𝐿2

𝑐0
+

𝐿3

𝑐20

)︂
+ 𝐿 + ∆2

1

𝐿4

𝑐30
+

𝐿2

𝑐20
+ ∆2

𝐿3

𝑐20

]︂
+ 𝑂

(︀
𝑁−2

)︀
≤ 2𝜈𝑁−1(𝑐0)

−3
[︀
∆2

1𝐿
4 + 𝑐0∆1𝐿

3 + 𝑐20𝐿
2 + 𝑐30𝐿

]︀
+ 𝑂

(︀
𝑁−2

)︀
,

where 𝑐0 = min(1, 𝑐0) ≤ 1 and, from Section 3.3, 𝑐0 = 𝑏𝐿 where 𝐿 is the expec-
ted document length. The second term 𝑐0∆1𝐿

3 cannot be dominant as the system
𝑐0∆1𝐿

3 > 𝑐20𝐿
2 and 𝑐0∆1𝐿

3 > ∆2
1𝐿

4 is infeasible. Also, with the reasonable assump-
tion that 𝐿 ≥ 1, we also have that the 4th term 𝑐30𝐿 ≤ 𝑐20𝐿

2. Therefore,

E
[︁
‖̂︀S− S‖2𝐹

]︁
≤ 3𝜈𝑁−1 max

[︀
∆2

1𝐿
4, 𝑐20𝐿

2
]︀

+ 𝑂
(︀
𝑁−2

)︀
.

B.2.4 Auxiliary Expressions

As {𝑥𝑚}𝑀𝑚=1 are conditionally independent given 𝑦 in the DICA model (3.4), we have
the following expressions by using the law of total expectation for 𝑚 ̸= 𝑚′ and using
the moments of the Poisson distribution with parameter 𝑦𝑚 :

E(𝑥𝑚) = E[E(𝑥𝑚|𝑦𝑚)] = E(𝑦𝑚),

E(𝑥2
𝑚) = E[E(𝑥2

𝑚|𝑦𝑚)] = E(𝑦2𝑚) + E(𝑦𝑚),

E(𝑥3
𝑚) = E[E(𝑥3

𝑚|𝑦𝑚)] = E(𝑦3𝑚) + 3E(𝑦2𝑚) + E(𝑦𝑚),

E(𝑥4
𝑚) = E[E(𝑥4

𝑚|𝑦𝑚)] = E(𝑦4𝑚) + 6E(𝑦3𝑚) + 7E(𝑦2𝑚) + E(𝑦𝑚),

E(𝑥𝑚𝑥𝑚′) = E[E(𝑥𝑚𝑥𝑚′|y)] = E[E(𝑥𝑚|𝑦𝑚)E(𝑥𝑚′ |𝑦𝑚′)] = E(𝑦𝑚𝑦𝑚′),

E(𝑥𝑚𝑥
2
𝑚′) = E[E(𝑥𝑚𝑥

2
𝑚′|y)] = E[E(𝑥𝑚|𝑦𝑚)E(𝑥2

𝑚′ |𝑦𝑚′)] = E(𝑦𝑚𝑦
2
𝑚′) + E(𝑦𝑚𝑦𝑚′),

E(𝑥2
𝑚𝑥

2
𝑚′) = E[E(𝑥2

𝑚|𝑦𝑚)E(𝑥2
𝑚′|𝑦𝑚′)] = E(𝑦2𝑚𝑦

2
𝑚′) + E(𝑦2𝑚𝑦𝑚′) + E(𝑦𝑚𝑦

2
𝑚′) + E(𝑦𝑚𝑦𝑚′).

Moreover, the moments of 𝛼𝑘 ∼ Gamma(𝑐𝑘, 𝑏) are

E(𝛼𝑘) =
𝑐𝑘
𝑏
, E(𝛼2

𝑘) =
𝑐2𝑘 + 𝑐𝑘

𝑏2
, E(𝛼3

𝑘) =
𝑐3𝑘 + 3𝑐2𝑘 + 2𝑐𝑘

𝑏3
,

E(𝛼4
𝑘) =

𝑐4𝑘 + 6𝑐3𝑘 + 11𝑐2𝑘 + 6𝑐𝑘
𝑏4

, etc.
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Annexe C

Implementation

Appendix C is organized as follows :

- In Appendix C.1, we derive expressions for scalable and memory-efficient imple-
mentation of the LDA moments (see Section 2.2.3) and DICA cumulants (see
Section 3.3.2).

- In Appendix C.2, we derive expressions for scalable and memory-efficient im-
plementation of the DCCA cumulants (see Section 4.4.1).

C.1 Implementation of Finite Sample Estimators
Since both population statistics 𝒯 𝐿𝐷𝐴 and 𝒯 𝐷𝐼𝐶𝐴 are tensors in the CP form with
D being the CP factors, the same algorithms are used for the estimation of the
topic matrix D from finite sample estimators of these tensors. Clearly, working with
tensors directly is prohibitive due to the computation and storage issues. Most if
not all algorithms, however, do not require construction of these tensors. Instead,
the matrices of the form ̂︁W ̂︀𝒯 (v)̂︁W⊤ are of interest. In practice, these matrices can
be computed from a finite sample directly (avoiding the construction of tensors) in
𝑂(𝑀𝑠𝑁𝐾) + 𝑂(𝑁𝐾2) + 𝑂(𝑁𝐾) flops, where 𝑀𝑠 is the largest number of non-zero
counts (unique words) in a document over the corpus : 𝑀𝑠 = max𝑛=1,2,...,𝑁 ‖x𝑛‖0,
where ‖·‖0 counts the number of non-zero elements of a vector.

In this appendix, we derive the formulas for computation of ̂︁W ̂︀𝒯 (v)̂︁W⊤, for both
LDA and DICA tensors, in the claimed number of flops. The derivations are straight-
forward, but quite tedious.

C.1.1 Expressions for Fast Implementation of the LDA Mo-
ments Finite Sample Estimators

Finite Sample Estimators for the First Three LDA Moments. The unbiased
estimators ̂︀𝜇(1)

x , ̂︀𝜇(2)
x , and ̂︀𝜇(3)

x were defined in Equations (2.47)-(2.49). We rewrite
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these expressions as :

̂︀𝜇(1)
x = 𝑁−1

𝑁∑︁
𝑛=1

𝛿1𝑛x𝑛 = 𝑁−1X𝛿1, (C.1)

̂︀𝜇(2)
x = 𝑁−1

𝑁∑︁
𝑛=1

𝛿2𝑛

[︃
x𝑛 ⊗ x𝑛 −

𝐿𝑛∑︁
ℓ=1

w𝑛ℓ ⊗w𝑛ℓ

]︃
= 𝑁−1

𝑁∑︁
𝑛=1

𝛿2𝑛 (x𝑛 ⊗ x𝑛 −Diag(x𝑛))

(C.2)
= 𝑁−1

[︀
XDiag(𝛿2)X

⊤ −Diag(X𝛿2)
]︀
,

̂︀𝜇(3)
x = 𝑁−1

𝑁∑︁
𝑛=1

𝛿3𝑛

[︃
x𝑛 ⊗ x𝑛 ⊗ x𝑛 −

𝐿𝑛∑︁
ℓ=1

w𝑛ℓ ⊗w𝑛ℓ ⊗w𝑛ℓ (C.3)

−
𝐿𝑛∑︁
ℓ1=1

𝐿𝑛∑︁
ℓ2=1
ℓ2 ̸=ℓ1

(w𝑛ℓ1 ⊗w𝑛ℓ1 ⊗w𝑛ℓ2 + w𝑛ℓ1 ⊗w𝑛ℓ2 ⊗w𝑛ℓ1 + w𝑛ℓ1 ⊗w𝑛ℓ2 ⊗w𝑛ℓ2)

⎤⎥⎦
= 𝑁−1

𝑁∑︁
𝑛=1

𝛿3𝑛

[︃
x𝑛 ⊗ x𝑛 ⊗ x𝑛 + 2

𝑀∑︁
𝑚=1

𝑥𝑛𝑚(e𝑚 ⊗ e𝑚 ⊗ e𝑚)

−
𝑀∑︁

𝑚1=1

𝑀∑︁
𝑚2=1

𝑥𝑛𝑚1𝑥𝑛𝑚2(e𝑚1 ⊗ e𝑚1 ⊗ e𝑚2 + e𝑚1 ⊗ e𝑚2 ⊗ e𝑚1 + e𝑚1 ⊗ e𝑚2 ⊗ e𝑚2)

]︃
.

Finite Sample Estimators for the Matrix ̂︁W ̂︀𝒯 𝐿𝐷𝐴(v)̂︁W⊤. A finite sample esti-
mate of ̂︀𝒯 𝐿𝐷𝐴 was defined in Equation (2.46). The contraction with (a.k.a. projection
onto) some vector v ∈ R𝑀 of this 𝑀 ×𝑀 ×𝑀 -tensor can be written element-wise
as :[︁ ̂︀𝒯 𝐿𝐷𝐴(v)

]︁
𝑚1𝑚2

=
𝑀∑︁

𝑚3=1

[︁̂︀𝜇(3)
x

]︁
𝑚1𝑚2𝑚3

𝑣𝑚3 + 𝐶2

𝑀∑︁
𝑚3=1

[̂︀𝜇(1)
x ]𝑚1 [̂︀𝜇(1)

x ]𝑚2 [̂︀𝜇(1)
x ]𝑚3𝑣𝑚3

− 𝐶1

𝑀∑︁
𝑚3=1

[︁̂︀E(wℓ1 ⊗wℓ2 ⊗ ̂︀𝜇(1)
x ) + ̂︀E(wℓ1 ⊗ ̂︀𝜇(1)

x ⊗wℓ3) + ̂︀E(̂︀𝜇(1)
x ⊗wℓ2 ⊗wℓ3)

]︁
𝑚1𝑚2𝑚3

𝑣𝑚3 ,

where 𝐶1 = 𝑐0(𝑐0 + 2)−1 and 𝐶2 = 2𝑐20 [(𝑐0 + 1)(𝑐0 + 2)]−1. Plugging into this expres-
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sion the expression (C.3) for the estimate ̂︀𝜇(3)
x , we get

[︁ ̂︀𝒯 𝐿𝐷𝐴(v)
]︁
𝑚1𝑚2

= 𝑁−1

𝑁∑︁
𝑛=1

𝛿3𝑛

[︃
𝑥𝑛𝑚1𝑥𝑛𝑚2 ⟨x𝑛,v⟩+ 2

∑︁
𝑚3

𝛿(𝑚1,𝑚2,𝑚3)𝑥𝑛𝑚3𝑣𝑚3

]︃

−𝑁−1

𝑁∑︁
𝑛=1

𝛿3𝑛

𝑀∑︁
𝑚3=1

[︃
𝑀∑︁

𝑖,𝑗=1

𝑥𝑛𝑖𝑥𝑛𝑗 (e𝑖 ⊗ e𝑖 ⊗ e𝑗 + e𝑖 ⊗ e𝑗 ⊗ e𝑖 + e𝑖 ⊗ e𝑗 ⊗ e𝑗)

]︃
𝑚1𝑚2𝑚3

𝑣𝑚3

+ 𝐶2 [̂︀𝜇(1)
x ]𝑚1 [̂︀𝜇(1)

x ]𝑚2⟨̂︀𝜇(1)
x ,v⟩

− 𝐶1

[︃
[̂︀𝜇(2)

x ]𝑚1𝑚2⟨̂︀𝜇(1)
x ,v⟩+

𝑀∑︁
𝑚3=1

(︁
[̂︀𝜇(2)

x ]𝑚1𝑚3 [̂︀𝜇(1)
x ]𝑚2𝑣𝑚3 + [̂︀𝜇(2)

x ]𝑚2𝑚3 [̂︀𝜇(1)
x ]𝑚1𝑣𝑚3

)︁]︃
,

where e1, e2, . . ., e𝑀 denote the canonical basis of R𝑀 (i.e., the columns of the 𝑀×𝑀
identity matrix I). This further gives :[︁̂︁W ̂︀𝒯 𝐿𝐷𝐴(v)̂︁W⊤

]︁
𝑘1𝑘2

= 𝑁−1

𝑁∑︁
𝑛=1

𝛿3𝑛

[︃
⟨x𝑛,v⟩⟨x𝑛,̂︁W𝑘1⟩⟨x𝑛,̂︁W𝑘2⟩+ 2

𝑀∑︁
𝑚=1

𝑥𝑛𝑚𝑣𝑚̂︁𝑊𝑘1𝑚
̂︁𝑊𝑘2𝑚

]︃

−𝑁−1

𝑁∑︁
𝑛=1

𝛿3𝑛

𝑀∑︁
𝑖,𝑗=1

𝑥𝑛𝑖𝑥𝑛𝑗

(︁̂︁𝑊𝑘1𝑖
̂︁𝑊𝑘2𝑖𝑣𝑗 +̂︁𝑊𝑘1𝑖

̂︁𝑊𝑘2𝑗𝑣𝑖 +̂︁𝑊𝑘1𝑖
̂︁𝑊𝑘2𝑗𝑣𝑗

)︁
− 𝐶1

[︁
⟨̂︁W𝑘1 , ̂︀𝜇(2)

x
̂︁W𝑘2⟩+ ⟨̂︁W𝑘1 , ̂︀𝜇(2)

x v⟩⟨̂︀𝜇(1)
x
̂︁W𝑘2⟩+ ⟨̂︁W𝑘2 , ̂︀𝜇(2)

x v⟩⟨̂︀𝜇(1)
x ,̂︁W𝑘1⟩

]︁
+ 𝐶2⟨̂︀𝜇(1)

x ,̂︁W𝑘1⟩⟨̂︀𝜇(1)
x ,̂︁W𝑘2⟩⟨̂︀𝜇(1)

x ,v⟩,

where ̂︁W𝑘 denotes the 𝑘-th row of ̂︁W as a column vector. Introducing the counts
matrix X ∈ R𝑀×𝑁 where each element 𝑋𝑚𝑛 is the count of the 𝑚-th word in the 𝑛-th
document, this further simplifies to :

̂︁W ̂︀𝒯 𝐿𝐷𝐴(v)̂︁W⊤ = 𝑁−1(̂︁WX) Diag
[︀
(X⊤v) ∘ 𝛿3

]︀
(̂︁WX)⊤

+ 𝑁−1̂︁WDiag
[︀
2[(X𝛿3) ∘ v]−X[(X⊤v) ∘ 𝛿3]

]︀ ̂︁W⊤

−𝑁−1(̂︁WDiag[v]X) Diag[𝛿3](̂︁WX)⊤ −𝑁−1(̂︁WX)Diag[𝛿3](̂︁WDiag[v]X)⊤

− 𝐶1

[︁
⟨̂︀𝜇(1)

x ,v⟩(̂︁Ŵ︀𝜇(2)
x
̂︁W⊤) + (̂︁W(̂︀𝜇(2)

x v))(̂︁Ŵ︀𝜇(1)
x )⊤ + (̂︁Ŵ︀𝜇(1)

x )(̂︁W(̂︀𝜇(2)
x v))⊤

]︁
+ 𝐶2⟨̂︀𝜇(1)

x ,v⟩(̂︁Ŵ︀𝜇(1)
x )(̂︁Ŵ︀𝜇(1)

x )⊤.

Rewriting the last expression in a more compact form, we get :

̂︁W ̂︀𝒯 𝐿𝐷𝐴(v)̂︁W⊤ = 𝑁−1
[︀
T1 + T2 −T3 −T⊤

3

]︀
+ 𝐶2 ⟨̂︀𝜇(1)

x ,v⟩(̂︁Ŵ︀𝜇(1)
x )(̂︁Ŵ︀𝜇(1)

x )⊤

− 𝐶1

[︁
⟨̂︀𝜇(1)

x ,v⟩(̂︁Ŵ︀𝜇(2)
x
̂︁W⊤) + T4 + T⊤

4

]︁
, (C.4)
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where 𝐶1 = 𝑐0(𝑐0 + 2)−1, 𝐶2 = 2𝑐20 [(𝑐0 + 1)(𝑐0 + 2)]−1 and

T1 = (̂︁WX)Diag
[︀
(X⊤v) ∘ 𝛿3

]︀
(̂︁WX)⊤,

T2 = ̂︁WDiag
[︀
2[(X𝛿3) ∘ v]−X[(X⊤v) ∘ 𝛿3]

]︀ ̂︁W⊤,

T3 = [̂︁WDiag(v)X]Diag(𝛿3)(̂︁WX)⊤,

T4 = [̂︁W(̂︀𝜇(2)
x v)](̂︁Ŵ︀𝜇(1)

x )⊤.

C.1.2 Expressions for Fast Implementation of the DICA Cu-
mulants Finite Sample Estimators

The finite sample estimator ̂︀𝒯 𝐷𝐼𝐶𝐴 was defined in Equation (3.20). The contraction
with (a.k.a. projection onto) some vector v ∈ R𝑀 of this 𝑀 ×𝑀 ×𝑀 -tensor can be
written element-wise as :[︁ ̂︀𝒯 𝐷𝐼𝐶𝐴(v)

]︁
𝑚1𝑚2

=
𝑀∑︁

𝑚3=1

̂︂cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3)𝑣𝑚3 + 2
𝑀∑︁

𝑚3=1

𝛿(𝑚1,𝑚2,𝑚3)̂︀E(𝑥𝑚3)𝑣𝑚3

−
𝑀∑︁

𝑚3=1

𝛿(𝑚2,𝑚3)̂︁cov(𝑥𝑚1 , 𝑥𝑚2)𝑣𝑚3

−
𝑀∑︁

𝑚3=1

𝛿(𝑚1,𝑚3)̂︁cov(𝑥𝑚1 , 𝑥𝑚2)𝑣𝑚3

−
𝑀∑︁

𝑚3=1

𝛿(𝑚1,𝑚2)̂︁cov(𝑥𝑚1 , 𝑥𝑚3)𝑣𝑚3

=
𝑀∑︁

𝑚3=1

̂︂cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3)𝑣𝑚3 + 2𝛿(𝑚1,𝑚2)̂︀E(𝑥𝑚1)𝑣𝑚1

− ̂︁cov(𝑥𝑚1 , 𝑥𝑚2)𝑣𝑚2 − ̂︁cov(𝑥𝑚1 , 𝑥𝑚2)𝑣𝑚1 − 𝛿(𝑚1,𝑚2)
𝑀∑︁

𝑚3=1

̂︁cov(𝑥𝑚1 , 𝑥𝑚3)𝑣𝑚3 .
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This further gives :[︁̂︁W ̂︀𝒯 𝐷𝐼𝐶𝐴(v)̂︁W⊤
]︁
𝑘1𝑘2

= ̂︁W⊤
𝑘1
̂︀𝒯 𝐷𝐼𝐶𝐴(v)̂︁W𝑘2

=
𝑀∑︁

𝑚1=1

𝑀∑︁
𝑚2=1

𝑀∑︁
𝑚3=1

̂︂cum(𝑥𝑚1 , 𝑥𝑚2 , 𝑥𝑚3)𝑣𝑚3
̂︁𝑊𝑘1𝑚1

̂︁𝑊𝑘2𝑚2

+ 2
𝑀∑︁

𝑚1=1

𝑀∑︁
𝑚2=1

𝛿(𝑚1,𝑚2)̂︀E(𝑥𝑚1)𝑣𝑚1
̂︁𝑊𝑘1𝑚1

̂︁𝑊𝑘2𝑚2

(𝑎)

−
𝑀∑︁

𝑚1=1

𝑀∑︁
𝑚2=1

̂︁cov(𝑥𝑚1 , 𝑥𝑚2)𝑣𝑚2
̂︁𝑊𝑘1𝑚1

̂︁𝑊𝑘2𝑚2

(𝑏)

−
𝑀∑︁

𝑚1=1

𝑀∑︁
𝑚2=1

̂︁cov(𝑥𝑚1 , 𝑥𝑚2)𝑣𝑚1
̂︁𝑊𝑘1𝑚1

̂︁𝑊𝑘2𝑚2

−
𝑀∑︁

𝑚1=1

𝑀∑︁
𝑚3=1

̂︁cov(𝑥𝑚1 , 𝑥𝑚3)𝑣𝑚3
̂︁𝑊𝑘1𝑚1

̂︁𝑊𝑘2𝑚1 ,

where ̂︁W𝑘 denotes the 𝑘-th row of ̂︁W as a column vector. Note that the expressions
(a) and (b) in the 4-th and 5-th line are not equal, due to the presence of 𝑘1 and 𝑘2
indices. By further plugging in the expressions (3.21) for the unbiased finite sample
estimates of ̂︁cov and ̂︂cum, we get :

[︁̂︁W ̂︀𝒯 𝐷𝐼𝐶𝐴(v)̂︁W⊤
]︁
𝑘1𝑘2

= 𝐴1

𝑁∑︁
𝑛=1

⟨̂︁W𝑘1 ,x𝑛 − ̂︀E(x)⟩⟨̂︁W𝑘2 ,x𝑛 − ̂︀E(x)⟩⟨v,x𝑛 − ̂︀E(x)⟩

+ 2
𝑀∑︁

𝑚=1

̂︀E(𝑥𝑚)𝑣𝑚̂︁𝑊𝑘1𝑚
̂︁𝑊𝑘2𝑚

− 𝐴2

𝑁∑︁
𝑛=1

⟨̂︁W𝑘1 ,x𝑛 − ̂︀E(x)⟩⟨v ∘ ̂︁W𝑘2 ,x𝑛 − ̂︀E(x)⟩

− 𝐴2

𝑁∑︁
𝑛=1

⟨v ∘ ̂︁W𝑘1 ,x𝑛 − ̂︀E(x)⟩⟨̂︁W𝑘2 ,x𝑛 − ̂︀E(x)⟩

− 𝐴2

𝑁∑︁
𝑛=1

⟨̂︁W𝑘1 ∘ ̂︁W𝑘2 ,x𝑛 − ̂︀E(x)⟩⟨v,x𝑛 − ̂︀E(x)⟩,

where 𝐴1 = 𝑁 [(𝑁 − 1)(𝑁 − 2)]−1, 𝐴2 = (𝑁 − 1)−1, and ∘ denotes the element-wise
Hadamard product. Introducing the counts matrix X ∈ R𝑀×𝑁 where each element
𝑋𝑚𝑛 is the count of the 𝑚-th word in the 𝑛-th document, this further simplifies
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to :̂︁W ̂︀𝒯 𝐷𝐼𝐶𝐴(v)̂︁W⊤ = 𝐴1 (̂︁WX)Diag[X⊤v](̂︁WX)⊤

+ 𝐴1 ⟨v, ̂︀E(x)⟩
[︁
2𝑁(̂︁Ŵ︀E(x))(̂︁Ŵ︀E(x))⊤ − (̂︁WX)(̂︁WX)⊤

]︁
− 𝐴1

[︁̂︁WX(X⊤v)(̂︁Ŵ︀E(x))⊤ + ̂︁Ŵ︀E(x)(̂︁WX(X⊤v))⊤
]︁

+ 2̂︁WDiag[v ∘ ̂︀E(x)]̂︁W⊤

− 𝐴2

[︁
(̂︁WX)(̂︁WDiag(v)X)⊤ + (̂︁WDiag(v)X)(̂︁WX)⊤ + ̂︁WDiag[X(X⊤v)]̂︁W⊤

]︁
+ 𝐴2

[︁
(̂︁Ŵ︀E(x))(̂︁WDiag[v]̂︀E(x))⊤ + (̂︁WDiag[v]̂︀E(x))(̂︁Ŵ︀E(x))⊤

]︁
+ 𝐴2⟨v, ̂︀E(x)⟩̂︁WDiag[̂︀E(x)]̂︁W⊤.

Rewriting the last expression in a more compact form, we get :

̂︁W ̂︀𝒯 𝐷𝐼𝐶𝐴(v)̂︁W⊤ =
𝑁

(𝑁 − 1)(𝑁 − 2)

[︁
T1 + ⟨v, ̂︀E(x)⟩ (T2 −T3)− (T4 + T⊤

4 )
]︁

+
1

𝑁 − 1

[︁
T5 + T⊤

5 −T6 −T⊤
6 + ̂︁WDiag(t)̂︁W⊤

]︁
,

(C.5)
where

T1 = (̂︁WX)Diag[X⊤v](̂︁WX)⊤,

T2 = 2𝑁(̂︁Ŵ︀E(x))(̂︁Ŵ︀E(x))⊤,

T3 = (̂︁WX)(̂︁WX)⊤,

T4 = ̂︁WX(X⊤v)(̂︁Ŵ︀E(x))⊤,

T5 = (̂︁WX)(̂︁WDiag(v)X)⊤,

T6 = (̂︁WDiag(v)̂︀E(x))(̂︁Ŵ︀E(x))⊤,

t = 2(𝑁 − 1)[v ∘ ̂︀E(x)] + ⟨v, ̂︀E(x)⟩̂︀E(x)−X(X⊤v).

C.2 Multi-View Models

C.2.1 Finite Sample Estimators of the DCCA Cumulants

In this section, we sketch the derivation of unbiased finite sample estimators for the
CCA cumulants S12, 𝒯121, and 𝒯122. Since the derivation is nearly identical to the deri-
vation of the estimators for the DICA cumulants (see Appendix F.2 of Podosinnikova
et al. [2015]), all details are omitted.

Given a finite sample X(1) =
{︁
x
(1)
1 ,x

(1)
2 , . . . ,x

(1)
𝑁

}︁
and X(2) =

{︁
x
(2)
1 ,x

(2)
2 , . . . ,x

(2)
𝑁

}︁
,

the finite sample estimator of the discrete CCA S-covariance (4.24), i.e., S12 :=
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cum(x(1),x(2)), takes the form

̂︀S12 = 𝜂1

[︁
X(1)X(2)⊤ −𝑁̂︀E(x(1))̂︀E(x(2))⊤

]︁
, (C.6)

where ̂︀E(x(1)) = 𝑁−1
∑︀𝑁

𝑛=1 𝑥
(1)
𝑛 , ̂︀E(x(2)) = 𝑁−1

∑︀𝑁
𝑛=1 𝑥

(2)
𝑛 , and 𝜂1 = 1/(𝑁 − 1).

Substitution of the finite sample estimators of the 2nd and 3rd cumulants (see, e.g.,
Appendix C.4 of Podosinnikova et al. [2015]) into the definition of the DCCA 𝒯 -
cumulants (4.26) leads to the following expressions

̂︁W1
̂︀𝒯12𝑗(v𝑗)̂︁W⊤

2 = 𝜂2[(̂︁W1X
(1))Diag(X(𝑗)⊤v𝑗)]⊗ (̂︁W2X

(2))

+ 𝜂2⟨v𝑗, ̂︀E(x(𝑗))⟩2𝑁 [̂︁W1
̂︀E(x(1))]⊗ [̂︁W2

̂︀E(x(2))]

− 𝜂2⟨v𝑗, ̂︀E(x(𝑗))⟩(̂︁W1X
(1))⊗ (̂︁W2X

(2))

− 𝜂2[(̂︁W1X
(1))(X(𝑗)⊤v𝑗)]⊗ [̂︁W2

̂︀E(x(2))]

− 𝜂2[̂︁W1
̂︀E(x(1))]⊗ [(̂︁W2X

(2))(X(𝑗)⊤v𝑗)]

− 𝜂1̂︁W(𝑗)
1 X(1))⊗ (̂︁W(𝑗)

2 X(2))

+ 𝜂1𝑁 [̂︁W(𝑗)
1
̂︀E(x(1))]⊗ [̂︁W(𝑗)

2
̂︀E(x(2))],

where 𝜂2 = 𝑁/((𝑁 − 1)(𝑁 − 2)) and ̂︁W(1)
1 = ̂︁W1Diag(v1), ̂︁W(1)

2 = ̂︁W2, ̂︁W(2)
1 = ̂︁W1,

and ̂︁W(2)
2 = ̂︁W2Diag(v2).

In the expressions above, ̂︁W1 and ̂︁W2 denote whitening matrices of ̂︀S12, i.e. such that̂︁W1
̂︀S12
̂︁W⊤

2 = I.
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Résumé
Les modèles linéaires latentes sont des modèles statis-
tique puissants pour extraire la structure latente utile à
partir de données non structurées par ailleurs. Ces mo-
dèles sont utiles dans de nombreuses applications telles
que le traitement automatique du langage naturel et la vi-
sion artificielle. Pourtant, l’estimation et l’inférence sont
souvent impossibles en temps polynomial pour de nom-
breux modèles linéaires latents et on doit utiliser des mé-
thodes approximatives pour lesquelles il est difficile de
récupérer les paramètres.

Plusieurs approches, introduites récemment, utilisent la
méthode des moments. Elles permettent de retrouver les
paramètres dans le cadre idéalisé d’un échantillon de
données infini tiré selon certains modèles, mais ils vien-
nent souvent avec des garanties théoriques dans les cas
où ce n’est pas exactement satisfait. Ceci n’est pas le
cas pour les méthodes couramment utilisés, fondées sur
l’inférence variationnelle et l’échantillonnage ce qui rend
les méthodes à base de moment particulièrement inté-
ressantes.

Dans cette thèse, nous nous concentrons sur les mé-
thodes d’estimation fondées sur l’appariement de mo-
ment pour différents modèles linéaires latents. L’utilisa-
tion d’un lien étroit avec l’analyse en composantes in-
dépendantes, qui est un outil bien étudié par la commu-
nauté du traitement du signal, nous présentons plusieurs
modèles semiparamétriques pour la modélisation théma-
tique et dans un contexte multi-vues. Nous présentons
des méthodes à base de moment ainsi que des algo-
rithmes pour l’estimation dans cesmodèles, et nous prou-
vons pour cesméthodes des résultats de complexité amé-
liorée par rapport aux méthodes existantes. Nous don-
nons également des garanties d’identifiabilité, contraire-
ment à d’autres modèles actuels. C’est une propriété im-
portante pour assurer leur interprétabilité.

Pour tous les modèles mentionnés, nous effectuons une
comparaison expérimentale extensive des algorithmes
associés, à la fois sur des données synthétiques et des
données réelles. Elle démontre leurs bonnes performan-
ces en pratique.

Mots Clés
modèles thématique,modèles à variable latents, méthode
des moments

Abstract
Latent linear models are powerful probabilistic tools for
extracting useful latent structure from otherwise unstruc-
tured data and have proved useful in numerous applica-
tions such as natural language processing and computer
vision. However, the estimation and inference are often
intractable for many latent linear models and one has to
make use of approximate methods often with no recovery
guarantees.

An alternative approach, which has been popular lately,
are methods based on the method of moments. These
methods often have guarantees of exact recovery in the
idealized setting of an infinite data sample and well spec-
ified models, but they also often come with theoretical
guarantees in cases where this is not exactly satisfied.
This is opposed to more standard and widely used meth-
ods based on variational inference and sampling and,
therefore, makes moment matching-based methods es-
pecially interesting.

In this thesis, we focus on moment matching-based esti-
mation methods for different latent linear models. Using
a close connection with independent component analy-
sis, which is a well studied tool from the signal processing
literature, we introduce several semiparametricmodels in
the topic modeling context and for multi-view models and
develop moment matching-based methods for the esti-
mation in these models. These methods come with im-
proved sample complexity results compared to the previ-
ously proposed methods. The models are supplemented
with the identifiability guarantees, which is a necessary
property to ensure their interpretability. This is opposed
to some other widely used models, which are unidentifi-
able.

For all mentioned models, we perform extensive exper-
imental comparison of the proposed algorithms on both
synthetic and real datasets and demonstrate their promis-
ing practical performance.

Keywords
topic models, latent variablemodels, method of moments
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