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Introduction

Back in 2010 Erin Johnson and co-workers came up with a new tool for analysing noncovalent interactions, the NCI method. This tool allows for a fast and visual characterisation of chemical interactions. The warm reception of the method by the community was so, that the second article on the NCI method was among the ten most read articles in the Journal of Chemical Theory and Computation in 2011. Supporters and detractors of the method grew equally and questions about the theoretical basis of the method and its reliability beyond correlation with "chemical intuition" expectations arose. The present manuscript is aimed at rebutting such criticisms, showing in a comprehensive manner the advantages, limitations and possibilities of the method. I have tried to collect the state of the art of the NCI method, weaving some new thoughts and ideas aiming at further pushing its limits .

Before describing the structure of this manuscript, it is worthy to frame the exceptional conditions that enabled the rapid success of the NCI method. The reader may figure out that all this story starts with the chemical bonding and the ever-lasting quest for a definitive consensus on its definition. Contrary to other observables such as energy polarizability, momentum, the chemical bond is not a physical observable, and thus a pure quantum mechanical definition of chemical bonding does not exist. Perhaps because it is a concept and not a property, seeking for their corresponding operator is senseless. I would not like to disappoint the reader so early, but I do not have the answer yet. Other cornerstone ideas in chemistry such as atomic shell, lone pair, (hyper-)conjugation, aromaticity, etc suffer from the same pathology. Nevertheless all of them constitute such a rich set of "fuzzy", yet invaluably set of concepts, that many efforts have been devoted to understand their underlying mechanistic nature.

In face of this quandary, many people follow Coulson's point of view "Sometimes it seems to me that a bond between two atoms has become so real, so tangible, so friendly, that I can almost see it. Then I awake with a little shock, for a chemical bond is not a real thing. It does not exist. No one has ever seen one. No one ever can. It is a figment of our own imagination". In keeping with this comment chemical bond was compared to a unicorn "a mythical but useful creature, which brings law [. . .] in an otherwise chaotic world". These "imaginary" and discouraging thinkings trace back to the early observations about the transformation of matter that took place at the dawn of chemistry as a scientific branch. At that time, physics or mathematics were not developed enough to provide a formalism able to account for such observations. The advent of quantum mechanics paved the way for the understanding of such phenomena, a way we are still walking.

Almost 90 years latter of Dirac's utterance "the underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that Introduction approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main feature of complex atomic systems without to much computation.", we haven't overcome the mathematical difficulties encountered in solving the Schrödinger equation for molecular systems. Even for the most "simple" chemical bond, covalent bonding, there is even controversy on its its mechanistic origin. This situation has been clearly stated in the very recent paper entitled "The Nature of the Fourth Bond in the Ground State of C 2 : The Quadruple Bond Conundrum" by Danovich et al [START_REF] Danovich | The nature of the fourth bond in the ground state of c2: The quadruple bond conundrum[END_REF].

In trying to overcome this dichotomy, it is worthy to focus on simpler objects than the wave function as uttered by Coulson "in recognising the bond as a figment of our imagination [but that it is] worthwhile to adopt pragmatic schemes for getting molecular structure out of wave functions whenever possible". Hohenberg and Kohn were apparently the first to reckon the importance of the electron density, setting the basis of density functional theory. The electron density is the starting point of the topological approaches, which ascribe chemical concepts to the topological features of some scalar field defined from the electron density or reduced density matrices in general.

Topological approaches or real space approaches offer a series of advantages over other traditional approaches widely used to understand molecular structure such as molecular orbital theory. First they are independent on the route taken for computing the wave function, that is the theory level. Secondly they are orbital invariant and finally they are defined in real space, where chemical concepts have been traditionally defined. In this regard, they enable the visualisation of these "pieces of our imagination" and their connection with quantum mechanical objects.

However, a mismatching between the solution provided by these topological approaches and the traditional chemical wisdom is very often found. This is the case for instance of non-covalent interactions (NCI). The lacking of chemical bonding definition hampers the design of suitable indicators able to properly characterise all interaction types, while matching "chemical intuition". One may thing that using "chemical intuition" and not physics as guideline may hamper the discovering of new insight into the nature chemical matter. For the moment, we will consider this "inherited knowledge" as right.

The NCI method presents a compromise solution for characterising different interaction types no matter their strength. We shall not attempt to summarise all the literature on the NCI method, but to present in a comprehensive manner the theory and applications of the method along four chapters divided into three blocks: theory (Chapter 4 ), implementation (Chapter 5 ) and application (Chapters 6 to 8), thus yielding a comprehensive view of the the NCI method within the fields of theoretical and computational chemistry.

Chapter 1

The first chapter is a brief summary of the main methods used for computing the electron density. It is oriented to readers unfamiliar with quantum chemistry. We will specially focus on those methods more used all along the manuscript, albeit CCSD and solid state calculations are performed in Chapters 5 and 7 respectively, they are not presented here since they remain punctual. The reader is directed to textbooks like Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory by Atila Szabo and Neil S. Ostlund, Molecular Electronic-Structure Theory by Trygve Helgaker, Poul Jorgensen and Jeppe Olsen, Density-Functional Theory of Atoms and Molecules by Robert G. Parr and Weitao Yang and A Chemist's Guide to Density Functional Theory by Wol-fram Koch and Max C. Holthausen for a complete compilation of methods in a rather educational framework.

Chapter 2

Throughout this manuscript chemical bonding is mainly analysed by topological approaches. Thus, we considered adequate to collect in a stand alone chapter the most relevant topological aspects of the analysis of chemical bonding. Additionally, we present some notions and algorithms commonly used in the visualisation community. For further reading we recommend the book Computational Topology: An Introduction by Herbert Edelsbrunner and John L. Harer.

Chapter 3

Chapter 3 is devoted to introducing topological approaches and emphasising quantum chemical topology. This part will set the basis for the rest of the manuscript. In the zoo of functions encompassed under the umbrella of quantum chemical topology, I have tried to focus on those more related to the NCI method. The number of textbook that collects all topological approaches is quite limited so far. For the interested readers I recommend Atoms in Molecules, A Quantum Theory by Richard F. W. Bader 

Chapter 4

This chapter is entirely devoted to the NCI method; theoretical basis and modus operandi.

In the first part we connect the theoretical grounds of the method with some of the concepts introduced in Chapter 3. Then some examples of its application to the analysis of non-covalent interactions are presented.

Chapter 5

All the NCI calculations herein presented were performed with the NCIPLOT code. This chapter intends to summarise the technical aspects of the code and its possibilities in a tutorial-like manner. Additionally, the method is tested on a list of a benchmark calculations in order to disclose its dependency with the method and basis used to compute the electron density.

Introduction

collected in form of answer to a semantic question related to the nomenclature of chemical interactions.

Chapter 8

Chemical reactions are characterised by the interplay of chemical interactions of different strengths. Since the range of the applicability of the NCI method ranges form strong covalent interactions to very weak NCI. This chapter is devoted to chemical reactivity. The NCI method is applied to understanding the outcome of some prototype chemical reactions in terms of the role of non-covalent interactions in the transition state.

Chapter 1

Methods of quantum mechanics Sommaire

Any problem concerning the electronic structure of matter is covered by the Schrödinger equation [START_REF] Szabo | Modern quantum chemistry: introduction to advanced electronic structure theory[END_REF] i ∂Ψ(x, t) ∂t = HΨ(x, t), (1.1) where H is the Hamiltonian operator, Ψ(x, t) is the wave function of a N particle system, x = {x 1 , x 2 ,...,x N } stands for the collection of all space-spin coordinates needed to describe each of the N particles and t for the time. For conservative or stationary systems, where the potential energy part of the Hamiltonian is not a function of time, a possible solution of Equation 1.1 is Ψ(x, t) = ψ(x, t)e -iEt/ , (

where E is the energy of the system. Inserting this factorized form of the wave function in 1.1, leads to a time-independent equation Ĥψ(x) = Eψ(x).

(1.3) Equation 1.3 is the so-called time-independent Schrödinger equation.

Born-Oppenheimer approximation

In the non-relativistic approach, the Hamiltonian operator of a system formed by N electrons moving around M nuclei, considering all the terms in atomic units, is given by

H = - 1 2 M A=1 ∇ 2 A M A - 1 2 N i ∇ 2 i + i>j 1 r ij - A,i Z A |r i -R A | + A>B Z A Z B |R A -R B | , ( 1.4) 
where the indices A, B and i, j designate nuclei and electrons, respectively, M A is the mass of atom A, Z A , Z B are the nuclear charges of atoms A and B respectively, and ∇ 2 i ,∇ 2 A are the electron and nuclear Laplacian operators, respectively. The Hamiltonian of Equation 1.4 is composed of five terms: the two first terms are the electronic and the nuclear kinetic energy respectively, and the remaining three terms are the electronelectron, nucleus-electron and nucleus-nucleus Coulomb interactions respectively. These five contributions may be grouped in electronic H el , nuclear H nuc , and nucleus-electron H el-nuc terms:

H = - 1 2 M A=1 ∇ 2 A M A + A>B Z A Z B |R A -R B | Hnuc - 1 2 N i ∇ 2 i + i>j 1 r ij H el - A,i Z A |r i -R A | H el-nuc , ( 1.5) 
The corresponding wave function must contain both, nuclear and electronic coordinates. The Hamiltonian of Equation 1.4 may be simplified if we notice the huge difference in the mass of electrons and nuclei (a factor of 10 3 -10 5 ). The nuclei are much heavier and consequently they move considerably slower than electrons. Under this consideration nuclear kinetic energies may be neglected and the nuclear electrostatic interaction may be considered as constant. Then the whole term H nuc becomes constant. This approximation is known as the Born-Oppenheimer approximation and its main consequence is the decoupling of the electron and the nuclear motion, in such a way that the total wave function may be factorized in an electronic and nuclear part 1.1. Born-Oppenheimer approximation Ψ(x, R) = Ψ el (x; R)Ψ nuc (R), (1.6) The electronic wave function Ψ el (x; R) describes the motion of electrons at a fixed position of nuclei. It depends on the electronic coordinates and parametrically of the nuclear coordinates R. Under the Born-Oppenheimer approximation the electronic problem may be set as

H el + H el-nuc Ψ el (x; R) = E el Ψ el (x; R), (1.7) 
where E el is the electronic energy. The total energy is defined as the addition of E el and the nuclear electrostatic interaction

E(R) = E el + A>B Z A Z B |R A -R B | . (1.8)
The nuclear wave function Ψ nuc (R) is the solution of the corresponding nuclear Schrödinger equation

- 1 2 M A=1 ∇ 2 A M A + E(R) Ψ nuc (R) = E nuc Ψ nuc (R). (1.9) 
In what follows, we will focus on how to solve the electronic problem, posed by Equation 1.7. On referring to H elec , Ψ elec and E elec we will drop the subscript.

Electron spin

The electron wave function obtained by solving Equation 1.7 depends on spin-space coordinates x and parametrically on the nuclear arrangement R. To completely describe an electron it is necessary to specify not only its spatial coordinates r, but also an intrinsic angular momentum called spin. Electrons are known to have a value of the spin quantum number equal to 1 2 , whose z component may take two possible values + 1 2 and -1 2 . Under the non-relativistic model, the spin coordinates (σ) are included on the wave function by two spin functions α(σ) and β(σ), corresponding to eigenvalues of the z component of the spin operator equal to + 1 The electronic generic coordinates x may be defined as the composition of spatial r={x,y,z} and spin cordinates (σ), and they are called spatial-spin coordinates x={r,σ}.

Spin orbitals

Strictly speaking an orbital is the solutions of Equation 1.3 for the hydrogen atom (or any hydrogen-like ion). From here on we shall refer to orbital as a one-electron wave function.

For an atom, one has atomic orbitals and for molecules, molecular orbitals. As it has been already said, an electron is characterised by spatial and spin coordinates, and in the non-relativisitc approach spatial-spin coordinates are defined as composition of both. Similarly, we may define spatial and spin orbitals. A spatial orbital ψ i (r) is a function of the position vector r and describes the spatial distribution of the i-th electron, such that |ψ i (r)| 2 dr is the probability of finding the electron i in the small volume element dr surrounding the position r, Similar to spin function α(σ) and β(σ), spatial orbitals are assumed to form an orthonormal set:

ψ * i (r)ψ j (r)dr = δ ij , (1.12)
where δ ij is Dirac's delta. If the spin part is added, we can define a spin orbital φ i (x) as a one electron wave function that describes both space and spin coordinates. In the non-relativistic approach a spin-orbital may be defined as the direct product of a spatial orbital and a spin function.

φ α i (x) = ψ i (r)α(σ), φ β i (x) = ψ i (r)β(σ).
(1.13)

Since both spatial orbitals and spin function form orthonormal sets, spin orbitals are therefore orthonormal φ * i (x)φ j (x)dx = δ ij .

(1. [START_REF] Perdew | Accurate and simple analytic representation of the electron-gas correlation energy[END_REF] In what follows, we will refer to spatial orbitals as orbitals and will reserve the term spin orbital when spin functions are added.

The symmetry of the wave function

The fact that electrons are identical particles must be reflected on the wave function. Suppose a two electron system at spin space coordinates x 1 and x 2 and with wave function Ψ(x 1 , x 2 ). The probability of finding both electrons simultaneously in volume elements dx 1 and dx 2 around points x 1 and x 2 is given by |Ψ(x 1 , x 2 )| 2 dx 1 dx 2 . If the two particles are interchanged, the corresponding probability |Ψ(x 2 , x 1 )| 2 dx 1 dx 2 should be the same, since electrons are indistinguishable particles,

|Ψ(x 1 , x 2 )| 2 = |Ψ(x 2 , x 1 )| 2 .
(1. [START_REF] Perdew | Generalized gradient approximation made simple[END_REF] This property is satisfied only if the wave function is either symmetric or antisymmetic with respect to the interchange of the coordinates of both electrons

Ψ(x 1 , x 2 ) = Ψ(x 1 , x 2 ) (symmetric), Ψ(x 1 , x 2 ) = -Ψ(x 1 , x 2 ) (antisymmetric).
(1.16)

Pauli's exclusion principle imposes wave function the antisymmetric choice. Such conclusion may be generalised to many electron case resulting in the antisymmetry principle:

Antisymmetry Principle The wave function Ψ(x 1 , x 2 , ..., x N ) describing any state of an N-electron system is antisymmetric under any permutation of any two electrons:

P Ψ(x 1 , x 2 , ..., x N ) = (-1) p Ψ(x 1 , x 2 , ..., x N )
where P is a permutation operator and p is the number of permuted electron pairs.

The independent particle model

A first approach to solve Equation 1.7 consists of neglecting the electron-electron interaction term i>j 1 rij . Let us consider electrons as non-interacting particles moving in a nuclear potential. This model is known as independent particle model (IPM). Under this approximation the electronic Hamiltonian may be written as a sum of one-electron

Hamiltonians h i H = N i=1 h i , h i = - 1 2 ∇ 2 i - M A=1 Z A |r i -R A |
.

(1.17)

The wave function provided by this model is nothing but the product of spin orbitals, known as the Hartree product (HP) Ψ HP (x 1 , x 2 , ..., x N ) = φ 1 (x 1 )φ 2 (x 2 )...φ N (x N ), (1.18) and the electronic energy is given by the action of H on Ψ HP E = Ψ HP | H|Ψ HP , (

= N i=1 Ψ HP | h i |Ψ HP , = N i i , 1.19) 
where i is the eigenvalue of h i ,

h i φ i (x i ) = i φ i (x i ). (1.20)
It is well known that the HP does not follow the antisimmetry principle because |Ψ(x 1 , x 2 , ..., x N )| 2 dx 1 dx 2 ...dx N = (1.21)

|φ 1 (x 1 )| 2 dx 1 |φ 2 (x 2 )| 2 dx 2 ..|φ N (x N )| 2 dx N ,
which states that the simultaneous probability of finding electron 1 in the volume dx 1 , centred at x 1 , electron 2 in dx 2 centered at x 2 , etc, is equal to the probability of finding electron 1 in dx 1 times the probability that electron 2 in dx 2 and so on. This statement does not take account of electron indistinguishability and therefore, the antisymmetry principle. However we can construct a correct wave function by linear combination of HPs. Lets consider a two electron case with spin orbitals φ i and φ j . It is possible to construct two HPs, Ψ HP 12 with electron one in φ i and electron two in φ j , and the opposite distribution Ψ HP 21 with electron one in φ j and electron two in φ i

Ψ HP 12 (x 1 , x 2 ) = φ i (x 1 )φ j (x 2 ), (1.22) 
Ψ HP 21 (x 1 , x 2 ) = φ i (x 2 )φ j (x 1 ). (1.23) Taking an appropriate linear combination of Ψ HP 12 and Ψ HP 21 we can obtain a correct antisymmetrized wave function

Ψ(x 1 , x 2 ) = 1 √ 2 Ψ HP 12 (x 1 , x 2 ) -Ψ HP 21 (x 1 , x 2 ) , (1.24) = 1 √ 2 |φ i (x 1 )φ j (x 2 ) -φ i (x 2 )φ j (x 1 )|, (1.25) = 1 √ 2 
φ i (x 1 ) φ j (x 1 ) φ i (x 2 ) φ j (x 2 )
, (1.26) where 1/ √ 2 is a normalisation factor. This determinantal form of the wave function is known as Slater determinant. For an N-electron system we may generalise this form as

Ψ HF = 1 √ N ! φ 1 (x 1 ) φ 2 (x 1 ) . . . φ N (x 1 )
φ 1 (x 2 ) φ 2 (x 2 ) . . . φ N (x 2 ) . . . . . . . . . . . .

φ 1 (x N ) φ 2 (x N ) . . . φ N (x N )
.

(1.27)

Slater determinants satisfy the antisymmetry principle: if two rows or two columns are swapped, Ψ(x 1 , x 2 , . . . , x i , x j , . . . , x n ) = -Ψ(x 1 , x 2 , . . . , x j , x i , . . . , x n ). By extension the Pauli exclusion principle is also satisfied, i.e two identical fermions cannot be found in the same quantum state. If φ i = φ j , two rows are identical and therefore, Ψ = 0. Slater determinants are often called in terms of the N occupied spin orbital φ i , φ j , φ k , . . . , φ N , we note Ψ(x 1 , x 2 , . . . , x N ) = | . . . i . . . k . . . .

In contrast to the HP, which is a truly independent-electron wave function, a Slater determinant correlates same spin electrons through Pauli exclusion principle, that is known as exchange or Fermi correlation. Since different spin electrons remain uncorrelated, a single determinantal wave function is referred as uncorrelated wave function, although Fermi correlation is included.

The Hartree-Fock approximation

The Hartree-Fock (HF) method is the next step to solve Equation 1.7. The HF approximation is a single determinantal theory which searches variationally for the set of orthonomalised spin orbitals such that, the single determinant formed by them minimizes the electronic energy of the system. The HF hamiltonian for a many electron system adds electron-electron interaction to the IPM hamiltonian

H = N i h i + N ij v ij , (1.28)
where h i is the one-electron operator introduce in IPM and v ij is a two-electron operator which represents the Coulomb electron-electron interaction, and is given by

v ij = 1 |r i -r j | = 1 r ij . (1.29)
The expectation value of the HF energy E HF is given by inserting the HF wave function Ψ HF on Equation 1.28

E HF = Ψ HF | Ĥ|Ψ HF = i h i + 1 2 i j (J ij -K ij ), (1.30) 
where

h i = φ * i (x) - 1 2 ∇ 2 i - M A=1 Z A |r i -R A | φ i (x)dx, (1.31) 
is the average kinetic energy and potential energy for the electrostatic attraction between the nuclei and the electron described by φ i , and they define a core hamiltonian operator h i . The integrals J ij and K ij are two electron integrals called Coulomb and exchange integrals respectively,

J ij = φ i (x 1 )φ * i (x 1 ) 1 r 12 φ j (x 2 )φ * j (x 2 )dx 1 dx 2 ,
(1.32)

K ij = φ i (x 1 )φ * i (x 2 )
1 r 12 φ j (x 2 )φ * j (x 1 )dx 1 dx 2 .

(1.33)

J ij may be understood as the Coulomb interaction between electron i in φ i and an average local potential given by

j k (x 1 ) = [φ * k (x 2 ) 1 r 12 φ k (x 2 )]dx 2 . ( 1.34) 
Following this interpretation we may define a Coulomb operator acting on φ i (x 1 ) ĵk (x 1 )φ i (x 1 ) = [φ * k (x 2 ) 1 r 12 φ k (x 2 )]dx 2 φ i (x 1 ).

(1.35)

The exchange term arises from the antisymmetric nature of the wave function and contrary to j ij , it does not have a simple classical interpretation. Similarly to the Coulomb operator, we may define a exchange operator k j (x 1 ), by its action on a spin orbital φ i kj (x 1 )φ i (x 1 ) = [φ * j (x 2 ) 1 r 12 φ i (x 2 )]dx 2 φ j (x 1 ). (1.36) Whereas the Coulomb operator is nothing but a local operator, the exchange operator is a non-local operator, in the sense that there does not exist a unique multiplicative operator uniquely defined at a position x 1 . From h, k and ĵ, we define the Fock operator F i as

F i = h i + j =i ĵij -kij .
(1.37)

Since F is identical for all electrons we drop the subindex i, F i = F . In the following section, we shall see that F arises in a natural way in the derivation of the HF equations. It is important to notice the key difference between the HF Hamiltonian (Equation 1.28) and the Fock operator (Equation 1.37). The former returns the energy of the many-electron system, the latter is nothing but the sum of one-electron operators whose eigenvectors are the set of spin orbitals from which the HF wave function is constructed.

Hartree-Fock equations

As aforementioned, the HF method target is the set of spin orbitals that minimise E HF under the orthonormalization condition φ i |φ j = δ ij . We may face the problem using Lagrange multipliers. We consider therefore the Lagrangian (1.38) where λ ij are the Langrange multipliers. L HF is stationary with respect to small changes in spin orbitals

L HF = E HF - N ij λ ij ( φ i |φ j -δ ij ),
δL HF = δE HF - N ij λ ij ( δφ i |φ j -φ i |δφ j ) = 0.
(1.39)

We may express this equation in terms of the Fock operator

δE HF = N i ( δφ i | F i |φ i -φ i | F i |δφ i ).
(1.40)

Equation 1.40 leads to

δL HF = N i δφ i | F |φ i - N i λ ij |φ j + c.c. = 0, (1.41) 
where c.c. denotes the complex conjugate. Since δφ i is arbitrary, the term in the squared bracket should be zero for all i. Therefore,

F |φ i = N j λ ij |φ i .
(1.42)

Since F is an hermitian operator, the matrix form by Langrange multipliers λ ij is also hermitian and therefore, it can be diagonalized by a unitary transformation U

U † λU = λ = λ ij = 0, λ ii = i . (1.43)
Applying the same unitary transformation to spin orbital φ i , we transform the above equation into a diagonal form leading to the canonical Hartree-Fock equations

F |φ i = i |φ i .
(1.44)

The corresponding spin orbitals are the canonical Hartree-Fock spin orbitals and the eigenvalues i are known as orbital energies. Under the canonical formulation, we note that the HF method is an independent-particle model, in the sense that each spin orbital is an eigenfunction of an effective one-electron operator F . The electron interactions are only taken into account in an averaged form; each electron does not feel the instantaneous field generated by the remaining N -1 electrons of the system, but an average field given by the Coulomb and exchange operators.

The Hartree-Fock energy may be recovered from the orbital energies as

E HF = i i - 1 2 N i,j J ij -K ij .
(1.45)

The second term disccounts the electronic repulsion energy that is counted twice in i i .

Although canonical HF equations are written as linear eigenvalue equations, they are non-linear equations, since the Fock operator depends on the spin orbital φ i through the Coulomb and exchange operators. Hence they must be solved by an iterative procedure.

Restricted and unrestricted Hartree-Fock

The above Hartree-Fock equations have been presented for a general set of spin orbitals {φ i }. As discussed in section 1.1.2, a spin orbital herein considered is defined as the product of an orbital φ i and a α(σ) or β(σ) spin function. In the general case the spatial parts of both α and β spin orbitals are different, leading to the unrestricted Hartree-Fock formalism (UHF). By contrast, if the spatial parts are forced to be identical it leads to the restricted Hartree-Fock formalism (RHF). Being the spin functions already defined, we may rewrite Equation 1.44 in terms of the orbitals

F α ψ α i (r) = α i ψ α i (r), (1.46) 
F β ψ β i (r) = β i ψ β i (r). (1.47) 
These two set of equations depend on the formalism we are working in. In the UHF case both equations are coupled since F α acts over α and β orbitals

F α = h α i + Nα j =i ( ĵα ij -kα ij ) + N β j =i ĵβ ij , (1.48) 
where h α i , j α ij and k α ij act over N α orbitals, ψ α i , occupied by α electrons. The additional term j β ij acts over N β = N -N α orbitals occupied by β electrons. An equivalent equation may be written for F β . The last Coulomb term in Equation 1.48 prevents solving it independently since F α depends on the occupied β functions, ψ β i , and F α depends on the occupied α functions, ψ α i . The two equations must be solved simultaneously. The RHF formalism is only applicable if the electronic state under consideration is a closed shell state, thus it has an even number, N , of electrons with all electrons paired such that there are N/2 doubly occupied orbitals, {φ i }. Since α and β orbitals are restricted to be identical

ψ α i (r) = ψ β i (r) = ψ i (r)
, and the number of occupied α and β orbitals are identical and equal to N/2, Equation 1.48 becomes

F i ψ i (r) = i ψ i (r), (1.49) 
where

F i = h i + N/2 j =i (2 ĵij -kij ). (1.50)
The core hamiltonian operator h i is independent of the spin, thus it is the same in the UHF and in the RHF formalism. Since α and β spin orbitals have the same spatial form in the RHF case, Equation 1.44 is the same for both α and β functions, being RHF equations less involved than the UHF ones. UHF calculations may be applied to describe either open or closed shell electronic states. There is a third formalism to deal with open shell states known as Restricted Open Shell Hartree Fock (ROHF), where RHF is applied to paired electrons, while unpaired ones are described by UHF.

Roothaan equations

Hartree-Fock Equation 1.44 is in general too complicated to be solved numerically. In 1950's Roothaan showed how, by using a basis sets expansion approach, the HF integrodifferential equations may be converted to an algebraic set of equations and solved by standard matrix techniques. Strictly speaking, Roothaan method is only applicable to RHF equations 1.49. The generalization of this method to deal with the UHF equations 1.46 and 1.47 was given by Pople and Nesbet, and we do not describe it in this manuscript. In the Roothaan method each spatial function, ψ i , is expanded in a linear expansion of N basis known spatial functions χ ν

ψ i = N basis ν C νi χ ν (r).
(1.51)

The functions χ ν (r) are usually atomic orbitals, this approach is thus known as linear combination of atomic orbitals method (LCAO). If the set {χ ν } were complete, expansion 1.51 would be exact. In practice, we are limited to a finite set of N basis functions, and the orbitals {ψ i } are thus approximated solutions of the HF equations. N basis should be at least as large as the number of spin orbitals N basis = N . In practice as N basis increases, the closer to the completeness the basis set is, so in most cases N basis > N . Inserting the expansion 1.51 into Equation 1.44 and multiplying by χ nu | we obtain

N basis ν C νi χ µ | F |χ ν = i N basis ν C νi χ µ |χ ν .
(1.52)

We now define the overlap matrix S with elements

S µν = χ µ |χ ν , (1.53) 
and the Fock matrix with elements

F µν = χ µ | F |χ ν . (1.54)
Equation 1.44 may now be rewritten as

N basis ν F µν C νi = i N basis ν S µν C νi . (1.55)
These are the so-called Roothaan equations, that can be written more compactly as

FC = SC , (1.56)
where C is the matrix of expansion coefficients C νi and is a diagonal matrix of orbital energies i . So far we have replaced the integro-differential Equation 1.44 by matrix Equation 1.56. To obtain the matrices C and , we need an explicit expression for the Fock matrix elements, F µν

F µν = H core µν + σλ P σλ [ µλ|νσ - 1 2 µλ|σν ], (1.57) 
where we have introduced a core Hamiltonian matrix

H core µν = µ| h|ν , ( 1.58) 
and a density matrix

P µν = 2 N/2 j C µj C νj , ( 1.59) 
Because the Fock matrix depends on the expansion coefficients through the density matrix, Roothaan equations are non-linear

F(C)C = SC , (1.60)
and therefore they will be solved by an iterative procedure. To transform the Equation 1.60 into a conventional eigenvalue problem we need to orthonormalize the basis by a unitary transformation U

U † SU = I, (1.61) 
where U † is the adjoint matrix of U, and I is the identity matrix. As long as U is non-singular, Roothaan equations can be written as

(U † FU)(U -1 C) = (U † SU)(U -1 C) , (1.62)
If we define the matrices F and

C F = U † FU, (1.63) 
C = UC . (1.64) Equation 1.60 is transformed into F C = C . (1.65)
Equations 1.63-1.65 are the transformed Roothaan equations, which can be solved by diagonalizing F . However, these equations are still nonlinear; F depends on the matrix C, so we need to provide an initial guess of a set of orbitals. With this guess, approximate F matrices can be constructed and digonalized, and therefore, a new set of orbitals is obtained. Similarly, with this new orbitals a new Fock matrix is constructed and diagonalized and so on. This procedure is repeated until the change in the density matrix or the total electronic energy between two successive iterations is below a given threshold. When the convergence is attained, we say that such orbitals represent the self-consistent-field (SCF) solution. This approach is thus referred as the Self-Consistent-Field method. The size of all the matrices presented in Roothaan equations is N basis × N basis , this means that the number of eigenvectors of F is N basis . The ground state wave function are constructed by filling the eigenvectors with lower orbital energies with N electrons and ignoring the remaining ones. These eigenvectors are referred to as occupied orbitals, while the remaining empty eigenvectors are known as virtual orbitals. Note that only occupied orbitals are used in the construction of the Fock operator, and therefore, they are the only ones which are optimized in the SCF procedure.

Electron correlation

As we have seen, the Hartree-Fock theory makes the basic assumption that each electron moves in the static average field created by all the other electrons regardless their instantaneous positions. This image is obviously wrong. In reality, there is a mutual correlation in the motion of electrons. We say there is electron correlation. The HF theory only correlates electrons with parallel spins through the Pauli principle, since the probability of finding two like spin electrons at the same point of space is zero. That is Fermi or exchange correlation. However, the HF method deals with unlike spin electrons as if they were independent particles, in other words, they are uncorrelated. Conventionally the correlation energy E corr is defined as the difference between the exact non-relativistic energy of the system (E exact ) and the Hartree-Fock energy (E HF ) at the complete basis set limit

E corr = E exact -E HF .
(1.66)

Since E HF is an upper bound to E exact , E corr is always negative. Sometimes electron correlation is described in terms of two effects: dynamic correlation and static correlation [START_REF] Cramer | Essentials of computational chemistry: theories and models[END_REF].

• Dynamic correlation

Dynamic correlation arises from the Coulomb repulsion term in the Hamiltonian, r -1 ij . The correlation cusp condition states that in regions where r ij = 0, the exact wave function contains a cusp. The HF wave function does not show this cusp, and consequently does not describe correctly dynamic correlation. Since Coulomb repulsion is spin independent, spin-like electrons feel both Fermi and dynamic correlation.

• Static correlation

Static or non-dynamical correlation arises when many HF configurations have nearby or exactly the same energy. For this reason it is also referred to as near-degeneracy correlation. In this case, the flaw of the HF approximation is not so much that the correlated motion of electrons is neglected, but rather than a single determinant wave function is not able to describe this effect. As we will see, this kind of correlation can be usually dealt with by adding more Slater determinants to the wave function.

In the rest of this chapter we will focus on how to improve the HF approximation by including electron correlation in the wave function.

Configuration interaction

The configuration interaction (CI) method is the next step for improving the electronic structure description. Lets expand the wave function in terms of a set of Slater determinants D i

Configuration interaction

Ψ = i C i D i ,
(1.67)

D i = 1 √ N ! |φ i1 (x 1 ) . . . φ i N (x N )|. (1.68)
For a N electrons system and M functions basis set, {φ i } is a set of M spin orbitals, φ i1 , φ i2 ,. . . ,φ i N is the subset of N < M spin orbitals used to construct the determinant D i , and C i are coefficients obtained variationally by minimizing the total energy, E = Ψ| H|Ψ . When all possible independent combinations of determinants are included in the expansion 1.67 the method is called full CI and it is the exact solution for a given basis set {φ i }. However this limit is computationally very demanding, being only possible to perform full CI calculations for relatively small systems. The CI expansion is usually truncated at a given excitation level, giving a hierarchy of methods: CIS (includes all single excitations), CISD (includes all single and double excitations) and so on. The CISD is the most usual truncation, since single and doubly excitations are the most important ones for lowering the ground state energy.

CI matrix

The CI energy is obtained by diagonalizing the matrix of the electronic Hamiltonian in the basis of Slater determinants. To show the structure of this CI matrix, we express the ground state wave function of the system Ψ o in a symbolic form

|Ψ o = c o |Φ o + c S |S + c D |D + c T |T + . . . , (1.69) 
where |Φ o is the ground state Hartree-Fock wave function, |S is the set of single excitations, |D the set of double excitations and so on. The Brillouin's theorem and the Slater rules simplify the structure of the CI matrix.

Brillouin's Theorem Singly excited determinants will not interact directly with a reference Hartree-Fock determinant.

This theorem cancels all the elements of the form Φ o | H|S . The Slater rules cancel all those matrix elements which couple two determinants that differ in more than two spin orbitals, i.e., Φ o | H|T , S| H|Q , . . .. The CI matrix takes then a block structure 

        Φ o | H|Φ o 0 Φ o | H|D 0 0 . . . 0 S|

Correlation energy

The correlation energy E corr was defined in Equation 1.66. In this section, we will show how to recover it at the full CI level for the ground state of a molecular system. First we write again Equation 1.69 in more detail:

|Ψ o = |Φ o + ar c r a |Φ r a +
a<b,r<s c rs ab |Φ rs ab + . . . , (1.70) where |Φ r a means a determinant created replacing the spin orbital r by the spin orbital a in |Ψ o , |Φ rs ab is a determinant created replacing the spin orbitals r and s with the spin orbitals a and b respectively, and so on. Now, we impose an intermediate normalization condition

Ψ o |Φ o = 1.
(1.71)

The greater the contribution of the HF configuration to |Ψ o , the more exact the intermediate approximation is. Similarly to the HF case, the ground state energy E o is the solution of the equation

H|Ψ o = E o |Ψ o . (1.72)
Applying the correlation energy definition (Equation 1.66 ), and multiplying both sides of the above equation by Φ o | we have

Φ o | H -E HF |Ψ o = Φ o |E o -E HF |Ψ o = E corr , (1.73)
where the intermediate condition was used. Combining the Brioullin's theorem and the Slater rules, E corr becomes:

E corr = a<b,r<s c rs ab Ψ o | H|Ψ rs ab . (1.74)
With the intermediate normalization condition, the correlation energy is solely determined by the double excitations. The single excitations only contribute indirectly by coupling with the double excitations. Although third and higher excitations are also coupled, their weights in the CI wave function are much lower. That is why single and double truncation are the most employed.

The main advantage of truncated CI methods is they offer a systematic procedure to improve the HF approximation in a variational way; the higher the degree of truncation, the closer to the full CI limit, which is the exact solution of Equation 1.3 for a given basis set. Unlike the HF and the full CI methods, the truncated CI approximations are not size-consistent, nor size-extensive. The size consistency refers to the fact that the energy of two infinitely separated systems should be equal to the sum of each individual system. The size extensivity property indicates that the energy of a system should increases linearly with the number of subsystems.

Multiconfigurational methods

CI calculations use canonical Hartree-Fock orbitals to construct configurations. Since virtual orbitals do not contribute to the HF energy they are not optimized at this level of calculation. The philosophy of multiconfigurational methods (MCSCF) is to find the best choice for all orbitals: occupied and virtual orbitals. In this approximation, the wave function is expanded in terms of a set of configurations, {|Ψ i },

|Ψ M CSCF = i C i |Ψ i .
(1.75)

Unlike the CI method, in which only C i coefficients are optimized, in the MCSCF procedure both, C i and the orbitals that define |Ψ i are optimized. This makes the process much more computationally demanding, limiting then the number of configurations that 1.6. Perturbation theory can be included in the calculation. The choice of the configurations depends on some a priori knowledge of the problem; which occupied and virtual orbitals are expected to be involved in the chemical phenomenon. The cost of MCSCF may be reduced by choosing not only the orbitals to be included in each configuration, but also the number of electrons to be excited from the HF configuration. That is, the orbitals are split in two sets; frozen and active orbitals. The former will have occupations equal to two in all the configurations. The latter are allowed to have occupations lower than two. The active space is specified by the number of electrons to be excited (m) and the number of active orbital (n). This kind of MCSCF method is known as Complete Active Space Self Consisted Field (CASSCF). A CASSCF (m, n) means that all the configurations coming from distributing m electrons in n orbital, are included in the wave function.

Perturbation theory

Alternative to variational methods, electron correlation effects, namely dynamical correlation, may be tackled by means of perturbation theory. In what follows we shall consider the non-degenerate Rayleigh-Schrödinger perturbation theory, namely the Möller-Plesset (MP) perturbation theory. In this theory the Hamiltonian of the system is divided in two pieces: a zero-order part, H 0 , whose solution is known, and a perturbation, V .

H = H 0 + λ V ; H 0 |Ψ 0 i = E 0 i |Ψ 0 i (1.76)
where H 0 is the Hartree-Fock hamiltonian, λ is an ordering parameter, |Ψ 0 i , and E 0 i are its i -th eigenvector and eigenfunction respectively. To improve the eigenvalues and eigenfuctions of H, from the HF (λ = 0) to the fully correlated solution (λ = 1), |Ψ i and E i are expanded in a Taylor series in λ

E i = E 0 i + λE 1 i + λ 2 E 2 i + . . . , |Ψ i = |Ψ 0 i + λ|Ψ 1 i + λ 2 |Ψ 2 i + . . .
The terms E n i and |Ψ n i are the n order energy and wave function, respectively. To express these quantities in terms of the zero order energies and wave functions, we choose the intermediate normalization condition as we did before (Equation 1.71)

Ψ i |Ψ 0 i = 1, (1.77) 
Ψ 0 i |Ψ n i = 0 ∀ n = 0. (1.78)
The expression for E n i may be found by grouping all the terms that multiplied λ n

E 0 i = Ψ 0 i | H 0 |Ψ 0 i , (1.79) E 1 i = Ψ 0 i | V |Ψ 0 i , (1.80) E 2 i = Ψ 0 i | V |Ψ 1 i , (1.81) E 2 i = Ψ 0 i | V |Ψ 2 i . (1.82)
To find the expression for the n order wave function,

|Ψ n i is expanded is term of the eigenfunctions of H 0 , |Ψ 0 j |Ψ n i = j c i j |Ψ 0 j . (1.83)
Since the set {|Ψ 0 n } forms an orthonormal set, the previous equation may be written as

|Ψ n i = j |Ψ 0 j Ψ 0 j ||Ψ n i . (1.84)
First order corrections to E n and |Ψ i are given by

E 1 i = n>0 Ψ 0 0 | V |Ψ 0 n E 0 i -E 0 n , ( 1.85 
)

|Ψ i = |Ψ 0 i + n>0 Ψ 0 0 | V |Ψ 0 n E 0 i -E 0 n |Ψ 0 n . (1.86)
E 1 is the sum of the 0th and first order energies, that is the HF energy. The second order correction (E 2 ) is the first term which includes electron correlation

E 2 i = n>0 Ψ 0 0 | V |Ψ 0 n Ψ 0 0 | V |Ψ 0 n E 0 i -E 0 n . ( 1.87) 
The second order MP (MP2) method is probably the cheapest approach for dealing with dynamical correlation and typically accounts for 80-95% of the correlation energy. Unlikely truncated CI methods, MP theory is size-extensive.

Electron density and related functions

All of the methods described so far obtain the properties of the system from the wave function. However electronic wave functions are in general objects so complex that a further simplification is required in order to extract any chemical insight. The reduced density matrices provide us with a feasible formalism to recover not only the collective behaviour of electrons but also any property of the system as state by the Hohenberg-Kohn theorems [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF]. In the following section we will not explain the overall reduced density matrices formalism, but we will only present their more physically sound part: their diagonal elements [START_REF] Mcweeny | Methods of molecular quantum mechanics[END_REF].

The Electron distribution

The wave functions obtained by each of the methods described in the previous sections are built by not observable objects defined in the Fock space, spin orbitals. According to the statistical interpretation of the quantum mechanics, only the square of the wave function has a true physical meaning.

Considering a single electron in orbital φ i (r) with spin α(σ). The wave function is then ψ i (x) = φ i (r)α(σ). The probability of finding a particle in the volume element dr and with spin σ and σ + dσ is given by 1.7. Electron density and related functions

ρ(x) = |ψ i (x)| 2 dx = |φ i (r)| 2 |α(σ)| 2 drdσ.
(1.88)

The probability of finding the electron in a volume dr with any spin, is given by integration over the spin coordinates

P (r)dr = dr |ψ i (x)| 2 ds,
(1.89) ρ(x) and P (r) are then probability densities. They admit a generalisation if ψ i is replaced by a many electron wave function Ψ(x 1 , x 2 , . . . , x n ). The probability of finding electron 1 in a volume dx 1 , electron 2 in a volume dx 2 and the electron n in dx n is given by

Ψ(x 1 , x 2 , . . . , x N )Ψ * (x 1 , x 2 , . . . , x N )dx 1 , dx 2 , . . . ,dx N .
(1.90)

If Ψ(x 1 , x 2 , . . . , x N ) is normalised, the electron distribution 1.90 satisfies Ψ(x 1 , x 2 , . . . , x N )Ψ * (x 1 , x 2 , . . . , x N )dx 1 , dx 2 , . . . , dx N = N. (1.91)
These probability functions may be "reduced" to those that lead to the probability of finding a set of n electrons in dx 1 , . . . , dx n , given by integration over all the N electrons of the system but n.

dx 1 , dx 2 , . . . ,dx n Ψ(x 1 , x 2 , . . . , x N )Ψ * (x 1 , x 2 , . . . , x N )dx n+1 , . . . ,dx N . (1.92)
Since the indistinguishability of the electrons N n n! times Equation 1.92 gives the probability of finding any set of n electrons. Thus the probability density associated with such n electrons is given by

ρ n (x 1 , . . . , x n ) = N n n! Ψ(x 1 , x 2 , . . . , x N )Ψ * (x 1 , x 2 , . . . , x N )dx n+1 , . . . ,dx N . (1.93)
Similarly to Equation 1.89 the spinless counterpart of ρ n (x 1 , . . . , x n ) may be obtained by integration over the spin coordinates

ρ n (r 1 , . . . , r n ) = ρ n (x 1 , . . . , x n )ds 1 , . . . , ds n .
(1.94)

For n = 1, we get the ordinary electron function obtained in the DFT calculations and by X-ray crystallographers at experimental level. For n = 2, the so-called pair density is obtained. All ρ n are normalized to the n -tuple of electrons

ρ n (r 1 , . . . , r n )dr 1 , . . . , dr n = N n n!, ( 1.95) 
i.e. for n = 1 and n = 2

• n = 1 ρ 1 (r 1 )dr 1 = N, (1.96) • n = 2 ρ 2 (r 1 , r 2 )dr 1 dr 2 = N (N -1).
(1.97)

Pair density and electron correlation

The probability of finding two electrons at points r 1 and r 2 with any combination of spins is given by ρ 2 (r 1 , r 2 ), and therefore, any information about electron correlation, as a pairwise effect, is contained in it. It is convenient to divide ρ 2 (r 1 , r 2 ) into two components,

ρ 2 (r 1 , r 2 ) = ρ 1 (r 1 )ρ 1 (r 2 ) -ρ xc (r 1 , r 2 ). (1.98) (1.99)
The first term is the simple product on independent densities and does not contain any information about the electron correlation at all. The second term adds the influence of the Fermi and Coulomb correlation to ρ 2 (r 1 , r 2 ). It is therefore known as exchangecorrelation density, ρ xc (r 1 , r 2 )

One may wonder now how likely is to find an electron at r 2 knowing that there is a reference electron at r 1 . To definite such statistical event we define the conditional probability P cond (r 1 |r 2 ), [START_REF] Koch | A chemist's guide to density functional theory[END_REF] 

P cond (r 1 |r 2 ) = ρ 2 (r 1 , r 2 ) ρ(r 1 ) . (1.100)
Since the reference electron is arbitrarily fixed at r 1 , P cond (r 1 |r 2 ) integrates to N -1

P cond (r 1 |r 2 )dr 1 dr 2 = N -1. (1.101)
The effect of a reference electron on ρ(r) may be explored by the exchange-correlation hole h xc (r 1 |r 2 )

h xc (r 1 |r 2 ) = P cond (r 1 |r 2 ) -ρ(r 1 ), = - ρ xc (r 1 , r 2 ) ρ(r 2 ) . (1.102)
Thus h xc (r 1 |r 2 ) accounts for the number of electrons excluded by electron at r 2 due to the presence of a reference electron at r 1 , that is, electron correlation. h xc (r 1 |r 2 ) satisfies the following properties

h xc (r 1 |r 2 )dr 2 = -1, (1.103) h xc (r 1 → r 2 |r 2 ) = -ρ(r 1 ). (1.104) (1.105)

Density functional theory

We now go a step further and distinguish the correlation effects only between spin like electrons

h xc (r 1 |x 2 ) = h s1=s2 xc (r 1 |r 2 ) + h s1,s2 xc (r 1 |r 2 ) (1.106) = h F (r 1 |r 2 ) + h C (r 1 |r 2 ) (1.107) h F (r 1 |r 2 )
is known as the Fermi hole, and takes into account the correlation between electrons with the same spin (Fermi correlation) as a consequence of the exclusion principle. h C (r 1 |r 2 ) contains the correlation between electrons of either spin (Coulomb correlation) and its known as the Coulomb hole. It is a consequence of the repulsion suffered by the electron due to its charge no matter the spin. Strictly speaking only h xc (r 1 |r 2 ) has a true physical meaning, leaving h F (r 1 |r 2 ) and h C (r 1 |r 2 ) as mere artefacts to analyse electron correlation. It is worthy noticing that the Fermi and Coulomb classification of electron correlation is completely independent of that introduced in section 1.3, i.e the HF wave function only shows Fermi correlation even if dynamic and static correlation are absent. It is interesting to analyse separately h F (r 1 |r 2 ) and h C (r 1 |r 2 ):

• h F (r 1 |r 2 )
is the main contribution to h xc (r 1 |r 2 ) and it shows some interesting properties

h F (r 1 |r 2 )dr 2 = -1. (1.108) 
The presence of a reference electron with spin σ excludes this electron from the electron distribution. Thus P cond (r 1 |r 2 ) integrates to N sigma -1, where N σ is there number of electron with spins s.

h F (r 1 → r 2 |r 2 ) = -ρ(r 1 ). (1.109)
Since the Pauli principle does not allow two like spin electrons to be at the same position of space, h F (r 1 |r 2 ) tends to the value of the density at the position of the reference electron, r 1 , as r 2 → r 1 .

h F (r 1 |r 2 ) < 0.

(1.110)

• By contrast, h C (r 1 |r 2 ) does not satisfy so many properties as h F (r 1 |r 2 ) does. We have

h C (r 1 |r 2 )dr 2 = 0. (1.111)
P cond (r 1 |r 2 ) integrates to N s for electrons of unlike spin. This result also implies that contrary to h F (r 1 |r 2 ), h C (r 1 |r 2 ) may take positive and negative values. The coulombic nature of h C (r 1 |r 2 ) forces it to show a cusp as r 1 → r 2 .

Density functional theory

The Density Functional Theory (DFT) is a different approach that extracts, in principle, any property of the system not from the wave function but from a simpler object: the electron density [7]. Besides an statistical distribution, ρ(r) is closely connected to energetics through the Hohenberg-Kohn theorems [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF].

First Hohenberg-Kohn theorem

First Hohenberg-Kohn Theorem For any system of interacting particles in an external potential V ext (r), this potential is determined uniquely, except for a constant, by the ground state particle density ρ(r).

From this theorem it follows that since the Hamiltonian of the system is fully determined by V ext (r), all the properties of the system are completely determined given ρ(r).

Proof. Suppose that there were two different external potentials V

(1) ext (r) and V

(2) ext (r) which differ in more than a constant and which lead to the same ground state density ρ(r). The two potentials lead to different Hamiltonians , H (1) and H (2) , with different ground state wave functions, Ψ (1) and Ψ (2) . Since Ψ (2) is not the ground state of H (1) , from the variational principle it follows that E (1) = Ψ (1) | H (1) |Ψ (1) < Ψ (2) | H (1) |Ψ (2) .

(1.112)

It is supposed that the ground state is non-degenerate. Otherwise it would not be possible to assure the above inequality. The last term may be rewritten as

Ψ (2) | H (1) |Ψ (2) = Ψ (2) | H (2) |Ψ (2) + Ψ (2) | H (1) -H (2) |Ψ (2) (1.113) = E (2) + [ V (1) ext (r) -V (2) ext (r)]ρ(r)dr, (1.114) 
so that

E (1) < E (2) + [ V (1) ext (r) -V (2)
ext (r)]ρ(r)dr.

(1.115)

Considering E (2) in the same way as E (1) leads to

E (2) < E (1) + [ V (2) ext (r) -V (1)
ext (r)]ρ(r)dr.

(1.116)

Adding the two equations, it yields a contradictory inequality E (1) + E (2) < E (1) + E (2) . This establishes that there cannot be two different external potentials differing by more than a constant which give rise to the same non-degenerate ground state charge state density.

Second Hohenberg-Kohn theorem

Second Hohenberg-Kohn Theorem A universal functional for the energy E[ρ] in terms of the density ρ(r) can be defined, valid for any external potential V ext (r). For any particular V ext (r) the exact ground state energy of the system is the global minimum value of this functional, and the density ρ(r) that minimizes the functional is the exact ground state density.

Proof. Since all the properties are determined by ρ(r), each property may be viewed as a functional of ρ(r)

E[ρ] = F HK [ρ] + V ext ρ(r)dr + V N N , (1.117)
where V N N is the interaction energy of the nuclei and F HK [ρ] is a universal functional of the density which contains the kinetic and interaction energy functionals,

F HK [ρ] = T [ρ] + V ee [ρ]. (1.118)
Now consider a system with ground state density ρ (1) (r) corresponding to an external potential V

(1)

ext and a wave function Ψ (1) . The energy of the system is

E (1) = E HK [ρ (1) ] = Ψ (1) | H (1) |Ψ 1 . (1.119)
Consider now a different density ρ (2) (r), which corresponds to a different wave function Ψ (2) . The variational principle assures that E (1) = Ψ (1) | H (1) |Ψ (1) < Ψ (2) | H (1) |Ψ (2) , (1.120) so any trial density different from the exact gives an upper limit to the exact ground state energy. In the Hohenberg-Kohn original work the search of densities was constrained to those densities associated with some external potential V ext . These densities are called V-representable. This condition may be relaxed by the N-representability constrain introduced by Levy [8,[START_REF] Levy | Electron densities in search of hamiltonians[END_REF][START_REF] Sahni | Study of the density-gradient expansion for the exchange energy[END_REF]. A density is said to be N-representable if it derives from a well-behaved wave function and integrates to the correct number of electrons. The formulation given by Levy, not only replaces the V-representability constrain by the Nrepresentability constrain, but extends the Hohenberg-Kohn theorems to degenerated ground states.

From the second theorem of Hohenberg-Kohn it follows that if F HK [ρ] is known, the ground state density and the energy are available by minimization of the total energy of the system with respect to the density. However, F HK [ρ] is not known. The Kohn-Sham approach tackles this problem replacing true the kinetic energy by that of a set of non-interacting electrons, and the electron correlation is modelled as density functionals.

Kohn-Sham formulation

The Hohenberg-Kohn theorems provide a method for calculating ground-state properties such that if a form of F [ρ] can be found, we have to minimize E [ρ]. But the task of finding good approximations to F [ρ] is not easy. There is a problem with the expression of the kinetic part T [ρ] in terms of the density, which represents the main drawback of the Thomas-Fermi approach, the old practical application of DFT.

In 1965, Kohn and Sham (KS) introduced a method for evaluating T [ρ] by replacing the kinetic energy of the interacting electrons with an equivalent non-interacting reference system whose ground-state density is that of the interacting one ρ o [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF]. Assuming that ρ o is the ground-state density of the non-interacting Hamiltonian H KS ĤKS = T + VKS , (1.121) where VKS is the external local Kohn-Sham potential VKS = v ks (r) ρ(r)dr, and the potential v KS (r) is such that:

1. its wave function is a single Slater determinant Φ[ρ] from which the ground-state density may be derived

ρ o = Φ[ρ]|ρ(r)|Φ[ρ] ,
2. it minimises the expectation value of T .

The ground state energy is then given by

E KS = min ρ v KS (r)ρ(r)dr + T s [ρ] = v KS (r)ρ o (r)dr + T s [ρ o ], (1.122) 
where

T s [ρ] = Φ[ρ]| T |Φ[ρ] is a non-interacting kinetic energy functional. Rearrang- ing Equation 1.118, it is possible to include T s [ρ] in F [ρ] F [ρ] = T s [ρ] + E H [ρ] + E xc [ρ], (1.123) 
where

E H [ρ] = 1 2 ρ(r)ρ(r ) |r -r | drdr , (1.124)
is the classical electrostatic Hartree energy functional and E xc [ρ] is the unknown exchange-correlation energy functional

E xc [ρ] = T [ρ] -T s [ρ] + V ee [ρ] -E H [ρ].
(1.125)

The minimization of Equation 1.122 leads to the KS equations for determining the lowest N eigenfunctions of ĤKS , ψ i , which form the minimising determinant Φ[ρ]

ĤKS |ψ i = i |ψ i , (1.126) 
where i is the eigenvalue corresponding to the i-th eigenfunction ψ i . Just as in Hartree-Fock theory, these equations must be solved self-consistently since ĤKS depends on ρ(r), and where the self-consistency is achieved ρ(r) = ρ o (r). The KS method is in principle exact, though in practice we must find approximations for E xc [ρ]. In this regard, it is worthy to notice that E xc [ρ] admits a further partition into exchange and correlation contributions

E xc [ρ] = E x [ρ] + E c [ρ], (1.127) 
where E x [ρ] is the exchange energy functional

E x [ρ] = Φ[ρ]| Vee |Φ[ρ] -E H [ρ], (1.128) 
and E c [ρ] is the correlation energy functional

E c [ρ] = Ψ[ρ]| T + Vee |Ψ[ρ] -Φ[ρ]| T + Vee |Φ[ρ] , (1.129) 
where Ψ[ρ] is the true wave function of the system. Moreover, the correlation energy may split into kinetic and potential components

E c [ρ] = T c [ρ] + V c [ρ], (1.130) 
where

T c [ρ] = T [ρ] -T s [ρ] and V c [ρ] = V ee [ρ] -(E H [ρ] + E x [ρ]).
It is possible to analyse this partition in terms of ρ 2 (r 1 , r 2 )

V ee [ρ] = Φ[ρ]| Vee |Φ[ρ] = 1 2 ρ 2 (r 1 , r 2 ) r 12 dr 1 dr 2 . (1.131)
We can rewrite ρ 2 (r 1 , r 2 ) in terms of h xc (r 1 |r 2 ) and not H ks . The main difference between these two Hamiltonians comes from T s . In order to provide a proper E xc derived from H KS , Becke outlined the adiabatic connection formulation. In a nutshell, the adiabatic connection envisages a path that connects the non-interacting reference system whose Hamiltonian does not posses the coulombic r -1 ij and the real system where this term operates at full strength. These two systems are connected by increasing the coupling strength parameter λ from 0 to 1 whereas ρ always equals that of the fully interacting system. The main result of this formulation is that Equation 1.135 is replaced by 

ρ 2 (r 1 , r 2 ) = ρ(r 1 )ρ(r 2 ) + h F (r 1 |r 2 )ρ(r 1 ) + h C (r 1 |r 2 )ρ(r 1 ). (1.132) Then V ee [ρ] = 1 2 ρ 2 (
E xc [ρ] = 1 2 ρ(

Exchange-correlation functionals

Local density approximations

The simplest approach for computing E xc [ρ] is found in the Thomas-Fermi-Dirac (TFD) model. This approximation considers the electronic system as a uniform electron gas which moves on a positive background charge distribution such that the total ensemble is electrically neutral. The electron density of such system attains a constant value everywhere. Thus this model is commonly known as homogeneous electron gas (HEG). In the traditional Thomas-Femi (TF) model, electron-electron interaction is solely replaced by the Coulomb term in Equation 1.133 J[ρ] and the kinetic energy is derived form the HEG model.

T HEG = C F ρ 5/3 (r)dr, C F = 3 10 (3π 2 ) 2/3 , (1.140)
where C F is the Fermi constant. Similarly to E xc , we may define the TF kinetic energy density

T F (ρ) = -C F ρ 1/3 . (1.141)
All kinetic energy density functionals are somehow based on the TF model. The TFD model adds the exchange contribution to electron-electron interaction leading to the famous exchange-energy Dirac formula

K D = -C x ρ 4/3 (r)dr, C x = 3 4 3 π 1/3 . (1.142)
and the HEG exchange energy density HEG xc , frequently called Salter exchange, is defined as

HEG xc = C x ρ 1/3 (r).
(1.143)

The local density approximation (LDA) is defined by using HEG x (r) as exchange functional into KS equations. For the correlation part LDA c (r) no such explicit formula is known. However, some expressions are available from highly accurate numerical quantum Monte-Carlo simulations [START_REF] Ceperley | Ground state of the electron gas by a stochastic method[END_REF] and further parametrisation schemes, as those developed by Vosko, Wilk, and Nusair [START_REF] Vosko | Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis[END_REF] or the most recently proposed by Perdew and Wang [START_REF] Perdew | Accurate and simple analytic representation of the electron-gas correlation energy[END_REF].

LDA may be adapted to deal with spin polarised systems; ρ(r) is split into α(ρ ↑ (r)) and β(ρ ↓ (r)) spin densities such that ρ(r) = ρ ↑ (r) + ρ ↓ (r). Equation 1.142 becomes

E LSD x = -2 1/3 1 2 C x ρ 4/3 (r) (1 + ζ(r)) 4/3 + (1 -ζ(r)) 4/3 dr, = ρ(r) x (ρ, ζ)dr, (1.144) where x (ρ, ζ) = (ρ, 0) + [ x (ρ, 1) -x (ρ, 0)]f (ζ), (1.145) f (ζ) = 1 2(2 1/3 -1) [(1 + ζ(r)) 4/3 + (1 -ζ(r)) 4/3 -2]. (1.146)
The degree of spin polarisation is accounted by the spin polarisation density ζ(r)

1.9. Kohn-Sham formulation

ζ(r) = ρ ↑ (r) -ρ ↓ (r) ρ(r) . (1.147)
ζ attains values from 0 for spin compensated system to 1 for full spin polarized systems. ρ ↑ (r) and ρ ↑ (r) may be written in terms of ζ(r)

ρ ↑ (r) = 1 2 (1 + ζ(r)ρ(r), ρ ↓ (r) = 1 2 (1 -ζ(r))ρ(r). (1.148)
The resulting formalism is known as the local spin density approximation (LSDA) and the exchange-correlation energy is now a function of ρ(r) and ζ(r)

E LSDA x [ρ ↑ (r), ρ ↓ (r)] = [ρ ↑ (r) + ρ ↓ (r)] HEG xc (ρ(r), ζ(r))dr.
(1.149)

The LDA works well in systems where the electron density is quite uniform such as bulk metals. However as expected for a simple model such as HEG, it is a very crude approximation for systems where the density varies rapidly such as atoms and molecules. The origin of such deficiencies may be found in the structure of the LDA exchange hole. Although it satisfies the properties above mentioned for the exact exchange hole, it is always symmetric around the reference electron while the exact hole has a pronounced angular structure.

Generalized gradient approximation

The erratic homogeneous behaviour of LDA may be corrected by adding density derivatives to E LDA xc [ρ] trough a gradient expansion of E xc . The Generalized Gradient Approximation (GGA) [START_REF] Perdew | Generalized gradient approximation made simple[END_REF] improves LDA results by including not only ρ(r), but also derivatives of ρ(r) in E xc

E GEA x [ρ ↑ (r), ρ ↓ (r)] = ρ(r) xc (ρ ↑ (r), ρ ↓ (r))dr + σ,σ C σ,σ xc (ρ ↑ (r), ρ ↓ (r)) | ∇ρ σ (r)| 2 ρ 4/3 σ (r) dr + . . . (1.150)
where GEA means gradient expansion approximation. This kind of expansions was introduced by Hohenberg and Khon [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF] and they showed that they require: 1) slow varying and 2) uniform density. The first condition may be mathematically describes as

| ∇ρ(r)| ρ(r) << k F (r), k F (r) = (3π 2 ρ(r)) 1/3 , (1.151)
where k F (r) is the Fermi wave momentum. The second condition prevents ρ from showing short-wavelength oscillations. Mathematically it requires

|H ij (ρ)(r)| | ∇ρ(r)| << k F (r), (1.152) 
where H ij (ρ)(r) is the element i, j of the Hessian matrix of ρ(r). Surprisingly GEA functionals do not improved LDA results since GEA h xc (r 1 |r 2 ) does not fulfil any of the properties aforementioned (Equations 1.108, 1.109,and 1.110), nor the negative condition. To define well-behaved exchange-correlation functionals based on the GEA, Perdew prosed to truncate h F (r 1 |r 2 ) and h C (r 1 |r 2 ) to integrate to -1 and 0 respectively. Functionals that include the gradient of ρ and are forced to satisfy the properties of the exact h xc (r 1 |r 2 ) are referred, to as generalise gradient approximations (GGA) [START_REF] Perdew | Generalized gradient approximation made simple[END_REF]. The GGA exchange contributions to E GGA xc [ρ] may be written as

E GGA x [ρ] = ρ(r) HEG x F x (s, | ∇ρ(r)|)dr, (1.153) 
where the function F xc [ρ] is an enhancement function constructed to satisfy the properties of the exact h xc (r 1 |r 2 ). It is a function of the reduced density gradient s(r)

s(r) = | ∇ρ(r)| 2k F (r)ρ(r) , = | ∇ρ(r)| 2(3π 2 ) 1/3 ρ 4/3 (r)
.

(1.154) s(r) accounts for the local inhomogeneity, therefore for the HEG s(r)=0 and F (s) = 1. As shown in Equation 1.151 gradient expansion requires s(r) << 1 to convergence. It assumes very large values in regions where not only the gradient is large, but also where density is small, such as the exponential tails far from the nuclei. By contrast, s(r) takes small values for small gradients, but also for large densities as in bonding regions and close to nuclear positions. It is worthy to say that the 4/3 exponent in the denominator is not an arbitrary choice, but is needed to make s(r) a dimensionless variable. The function F x defines the E GGA x functional. We may distinguish between those functionals that use some empirical parameter to fit E GGA x to the exact exchange energy of some reference system, such as B88 of Becke [START_REF] Becke | Density-functional exchange-energy approximation with correct asymptotic behavior[END_REF] or PW91 developed by Perdew Burke and Wang, and those functionals that are free of semiempirical parameter, i.e B86 by Becke, PBE developed by Perdew, Becke and Ernzerhof [START_REF] Perdew | Generalized gradient approximation made simple[END_REF].

The GGA correlation energy E GGA c has in general a more complicated shape than the exchange and we will not enter into details. Among the most popular E GGA c we find the parameter free PW91 by Perdew and Wang, and the one empirical parameter LYP developed by Lee Yang and Parr [START_REF] Lee | Development of the colle-salvetti correlation-energy formula into a functional of the electron density[END_REF].

Meta-generalised gradient approximations

A further improvement in exchange-correlation functional may be achieved if instead of looking at GEA of E xc we analyse the spherical average of ρ x (r 1 |r 2 ) , ρ xσ (r 12 ) at small interelectronic distance.

ρ xσ (r 12 ) = ρ σ (r) + 1 6 ∇ 2 ρ σ (r) -2τ σ + 1 2 | ∇ρ σ (r)| 2 ρ σ r 2 12 + . . . . (1.155)
This expansion was firstly developed by Becke [START_REF] Becke | Hartree-fock exchange energy of an inhomogeneous electron gas[END_REF][START_REF] Becke | Correlation energy of an inhomogeneous electron gas: A coordinate-space model[END_REF]. He highlighted that not only | ∇ρ(r)| is a key component at small r 12 , but also the Laplacian of ρ(r), ∇ 2 ρ(r) and the positive definite kinetic energy density for a HEG τ (r)

τ (r) = 1 2 occ i=1 | ∇φ i (r)| 2 .
(1.156)

As showed by Becke, the coefficient of the quadratic term may be used as a predictor for further corrections to the LSDA hole, without imposing sharp cut-offs to h xc (r 1 |r 2 ) as GGA does. Functionals that includes τ (r) have been termed as meta-GGA, 1.9. Kohn-Sham formulation

E meta-GGA x [ρ] = ρ(r) HEG x F x (| ∇ρ|, τ, τ w )dr, (1.157) 
where τ w (r) denotes the von Weizsacker kinetic energy density

τ w σ (r) = 1 8 | ∇ρ(r)| 2 ρ(r) .
(1.158) meta-GGA functionals offer two main improvements with respect to GGA functions; in the one hand their main variable τ (r) admits a clearest physically interpretation than the dimensionless variable s(r). In Chapter 4 we shall show that is possible to understand s(r) in terms of kinetic energy densities.

One of the most sound problems of exchange-correlation functional is the self-correlation error. For a one electron system, such as the hydrogen atom the E H [ρ] and E xc [ρ] terms in Equation 1.123 should cancel each other out. For many functional this is not the case. One strategy for designing self-correlation free functionals is based on the relationship between τ (r) and τ w (r) [START_REF] Jaramillo | Local hybrid functionals[END_REF]. Self-Correlation Corrections (SCC) are based on the following property

τ w (r) ≤ τ (r), (1.159) 
where the equality only holds if ρ(r) is represented by a single orbital. This property is usually used to define SCC

η SCC (r) = 1 - τ w (r) τ (r) . ( 1.160) 
From Equation 1.159 it follows that η SCC (r) ≤ 1 and it vanishes for any one-orbital system. In the following chapters we shall revisit τ w (r) properties to construct bonding descriptors.

SCC is not possible at GGA level since only s(r)( and not τ (r)) is used as a main variable. Among the most famous meta-GGA functionals we found the Becke's 1995 correlation functional (B95) [START_REF] Becke | Thermochemical tests of a kinetic-energy dependent exchangecorrelation approximation[END_REF] Perdew-Kurth-Zupan-Blaha(PKZB) [START_REF] Perdew | Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation[END_REF] correlation functional, Tao-Perdew-Staroverov-Scuseria (TPSS) exchange-correlation functional [START_REF] Tao | Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids[END_REF] or Krieger-Chen-Iafrate-Savin (KCIS) exchange correlation functional [START_REF] Krieger | Electron correlations and materials properties[END_REF].

Hybrids

All the approximations hitherto presented reproduce to different extents h xc (r 1 |r 2 ). However it is known that h F (r 1 |r 2 ) is the main component of h xc (r 1 |r 2 ) and it may be exactly computed from the HF wave function by Equation 1.33. Including a rational portion of the exact exchange and combining it with some correlation functionals is the spirit of hybrids functionals. The main issue of this approach rests on the incapacity of h F (r 1 |r 2 ) and h C (r 1 |r 2 ), taken individually, for reproducing the properties of h xc (r 1 |r 2 ); h F (r 1 |r 2 ) should be complemented by h C (r 1 |r 2 ). In terms of the adiabatic connection we may consider hybrids functionals as interpolation schemes between the exact exchange (λ = 0) and the exact exchange-correlation functionals (λ = 1). The simplest approach is to assume a linear extrapolation of λ, leading to the half-and-half (HH) exchange-correlation functional introduced by Becke [START_REF] Becke | Density-functional thermochemistry. iii. the role of exact exchange[END_REF].

E HH xc = 1 2 E λ=0 xc + 1 2 E λ=1 xc .
(1.161)

Becke used E LDA xc for E λ=1 xc . Further improvements on the interpolation scheme leads to more sophisticated exchange-correlation functionals where the amount of exact exchange and the approximative exchange and correlation contributions is determined by some parametrisation scheme. Among the hybrid functionals we find the most widely used functional, the exchange-correlaton B3LYP functional [START_REF] Becke | A new mixing of hartree-fock and local density-functional theories[END_REF] 

E B3LY P xc = aE HF x + (1 -a)E LSDA x + bE b88 x + cE LY P c + (1 -c)Ec V W N , (1.162)
where the parameters (a = 0.2, b = 0.72, c = 0.81) were adjusted to the G2 set of experimental data. Many efforts have be done to reduce the number of parameter, as B1B95 due to Becke [START_REF] Beck | Density-functional thermochemistry. iv. a new dynamical correlation functional and implications for exact-exchange mixing[END_REF][START_REF] Becke | Density-functional thermochemistry. iii. the role of exact exchange[END_REF] which reduces the number of parameters to one. However there are certain technical disadvantages that make B1B95 less appealing than B3LYP.

Aside from hybrid functionals based on empirical parametrisations, Perdew Burke and Erhzerhof proposed a parameter-free hybrid where the amount was derived from theoretical derivations

E hybrid xc = E GGA xc + 0.25(E HF x -E GGA x ).
(1.163)

The most successful of these functional is the PBE1PBE functional (also known as PBE0) where the PBE exchange-correlation functional is chosen as the GGA component [START_REF] Adamo | Toward reliable density functional methods without adjustable parameters: The pbe0 model[END_REF].

Range-separated hybrids

It is well known that approximate v xc (r) fails in reproducing the asymptotic behaviour the exact potential; none of them has the correct -r -1 decay, they rather decrease exponentially, and therefore they are less attractive that the exact potential at large r; i.e. at distances far from the atoms. This ill-behaviour turns out to be critical for those properties that not only depend on the occupied KS orbitals, but also on the virtual orbital, such as polarizabilities or excitation energies. In the spirit of hybrid functionals, one may include some amount of the exact exchange and correlation to correct the longrange behaviour of approximated v xc (r). Range-separated functionals [START_REF] Leininger | Combining long-range configuration interaction with short-range density functionals[END_REF][START_REF] Savin | Density functionals for the yukawa electron-electron interaction[END_REF] where the parameter µ controls the separation between the long-range (erf(µr 12 )/r 12 ) and the short-range (erfc(µr 12 /r 12 ) interactions. This is equivalent to representing E xc as

E xc = E SR xc (µ) + E LR xc (µ). (1.165)
This partition scheme admits the combination of wave function and DFT methods depending if a long-range corrected or a screened functional is sought. The first mix long-range HF with short range DFT providing the proper -r -1 decay of v xc (r), and therefore, improving properties such as charge-transfer, Rydberg excitations and van der Waals interactions [START_REF] Toulouse | Long-range-short-range separation of the electron-electron interaction in density-functional theory[END_REF][START_REF] Chai | Systematic optimization of long-range corrected hybrid density functionals[END_REF][START_REF] Sharkas | Double-hybrid density-functional theory made rigorous[END_REF]. There is room for improvements if the HF contribution is replaced by MCSCF, leading to the multiconfigurational hybrid functionals. This way, then non-dinamical correlation may be included. The latter approach is mainly used in solid state physics and where mixing long-range DFT with short range HF to define a screened potential, improves band-gaps, lattice constants, etc [START_REF] Heyd | Hybrid functionals based on a screened coulomb potential[END_REF][START_REF] Heyd | Efficient hybrid density functional calculations in solids: assessment of the heyd-scuseria-ernzerhof screened coulomb hybrid functional[END_REF][START_REF] Heyd | Assessment and validation of a screened coulomb hybrid density functional[END_REF][START_REF] Krukau | Influence of the exchange screening parameter on the performance of screened hybrid functionals[END_REF]. In Chapter 1 we have shown that a chemical system is characterised by its wave function and how the quality of these magnitudes may be systematically improved by means of the variational principle or perturbation theory. Along with the wave function, one may obtain the averaged value of any property, as long as it has an associated quantum operator, this is, if it is an observable. However chemical concepts were introduced many years before the birth of quantum mechanics, and recovering this ideas in a quantum mechanical manner is not an easy task at all. In the forthcoming chapters we shall introduce an approach that has successfully recovered many of the firmly rooted chemist ideas from quantum mechanics, quantum chemical topology. In a nutshell, this approach exploits the topology of any chemically or physically-sound scalar field defined from reduced density matrices. The aim of the present chapter is to let the reader become acquainted with some of the topological concepts that will be used in the rest of the manuscript. Additionally, some of the algorithms and formalism used for computing different topological properties will be presented.

The birth of Topology as a scientific branch dates from Euler's publication on the Kröninsberg bridge problem. This seminal work showed a property of graphs that is true regardless of their geometry. Soon after he proposed his formula for polyhedra: V -E + F = 2 (where V refers to the number of vertices of the polyhedra, E refers to the number of edges and F refers to the numbers of faces). Several years later Simon Lhuilier corrected this Euler's formula to account for genus (G):V -E + F = 2 -2G. The Kröninsberg problem revealed the topology as a the study of aspects of space, regardless of geometric metrics. Much of the formal structure used in topology was formalised in 1895 by Jules Poincaré who introduced the ideas of homotopy, homology and Betti numbers to characterise the topology of an object.

Topological spaces

The notion of topological space was established in order to tackle questions related to the connectivity of point sets. The topology of a point set defines which points are close without defining how close they are from each other, that is, without defining a particular metric. A topology on a point set X is a collection U of subsets of X, called open sets, such that

• X is open and the empty set ∅ is open;

• if U 1 and U 2 are open, then U 1 U 2 is open; • if U i is
open for all i in some possibly infinite, possible uncountable, index set, then the union of all U i is open.

The pair (X, U) is called a topological space, and U is said to be a topology of X. Through the combination of open sets that satisfies the three above conditions, different topologies may be built. These open sets form the basis of a topology on X. Definition 2.1 A basis of a topology on a point set X is a collection B of subsets of X, called basis elements, such that each x ∈ X is contained in at least one B ⊆ B and x ∈ B 1 B 2 implies there is a third basis element with x ⊆ B 3 ⊆ B 1 B 2 . The topology U generated by B consists of all sets U ⊆ X for which x ∈ U implies there is a basis element x ∈ B ⊆ U . 

As an example

B 1 = (x -k 1 , x + k 1 ) and B 2 = (x -k 2 , x + k 2 ), with k 1 and k 2 ≥ 1, such that B 3 ⊆ B 1 B 2 .
The union of all possible B 3 constructs a topology on R.

As pointed out at the beginning of this chapter, the topology of a point set, say X, defines how close are the points of X between them without reference to any metric. This is done through the concept of neighbourhood.

Definition 2.2 A subset Y ⊆ X is a neighbourhood of x ∈ Y if there exists an open set U such that x ∈ U ⊆ Y .
Furthermore, if for every x, y ∈ X, x = y, there are neighbourhoods A, B of x, y, respectively such that A B = ∅, X is said to be a Hausdorff space (see Figure 2.1). The separability of a topological space is guaranteed if it has a countable basis of neighbourhoods, then it is said that a topological space is separable.

In Topology it is interesting to compare topological structures between different topological spaces. This is done through the notion of homeomorphism.

Definition 2.3

Given two topological spaces, X and Y, a homeomorphism is a bijective function f : X → Y, such that f and its inverse f -1 are continuous. If such an f exits, X is said to be homeomorphic to Y, and that X and Y have the same topological type.

In practice, we deal with metric spaces, such as Euclidean spaces. A metric space S is a set with a metric function d : S × S → R such that,

• Positivity. For all x, y ∈ S, d(x, y) ≥ 0.

• Non-degeneracy. If d(x, y) = 0, then x = y.

• Symmetry. For all x, y ∈ S, d(x,y) = d(y,x). 2 we may define the n-dimensional Euclidean space R n as the Cartesian product of n copies of the real line R with metric d(x, y). Alternatively a metric space may be defined as a topological space, where open balls serve as basis neighborhoods for a topology of a set. 1 All metric space is Hausdorff; being S a metric space, and x, y ∈ S, it is possible to define two balls of radius d(x, y)/2 around each point, such that they do not overlap. 

• Triangle inequality. ∀ x, y, z ∈ S, d(x, y) + d(y, z) ≥ d(x, z). For example, if d(x, y) = n i=0 (x i -y i )

Manifolds

Before introducing a formal definition of manifold, let's imagine an Euclidean space M, such that, for each point P ∈ M, there exists a neighbourhood homeomorphism, ϕ, to an open set in R m , In order to prevent two different charts (U , ϕ 1 ), (V , ϕ 2 ) from pointing into the same local coordinates (x 1 , x 2 , . . . , x m ) ∈ R m , we impose both charts to be C ∞ -related, Definition 2.5 Given a topological space X and two charts (U, ϕ 1 ) and (V, ϕ 2 ) such that

ϕ : M → R m P → (x 1 , x 2 , . . . , x m ), that is, for every P , ϕ[P ] defines a local set of coordinates (x 1 , x 2 , . . . , x m ) in R m .
ϕ 1 : U ⊂ X → R m (2.1) ϕ 2 : V ⊂ X → R m , ( 2.2 
)

they are said to be C ∞ -related if U V = ∅, else if ϕ 1 • ϕ -1 2 and ϕ 2 • ϕ -1 1 are smooth 2 . ϕ 2 • ϕ -1 1 : ϕ 1 [U 1 U 2 ] ⊂ R m → ϕ 2 [U 1 U 2 ] ⊂ R m . (2.3) A C ∞ -related pair of charts is depicted in Figure 2.3. Formally a d-manifold is a separable Hausdorff space X if at every point x ∈ X there is a d-dimensional chart. This means that every point x ∈ X has a neighbourhood homeomorphic to R d . y x y x X p U V ϕ 1 • ϕ -1 2 ϕ 2 • ϕ -1 1 ϕ 1 [p] ϕ 2 [p] Figure 2.3: Two C ∞ -related charts (U, ϕ 1 ),(V, ϕ 2 ) through the conditions ϕ 1 • ϕ -1 2 and ϕ 2 • ϕ -1
1 to be smooth, and U V = ∅.

The set of charts (U, ϕ) that covers a d-manifold X, defines the atlas of X. Furthermore if any pair of charts in the atlas of X are C ∞ -related, this atlas is C ∞ . To admit a chart in a C ∞ atlas, it has to be C ∞ -related to every chart in the atlas, and it is said that this chart is admissible to that C ∞ -atlas. If a given C ∞ -atlas contains all admissible charts, it is known as an atlas maximum, and it defines a C ∞ -manifold Definition 2.6 A C ∞ -manifold is a topological manifold together with all the admissible charts of some C ∞ -atlas.

C ∞ -manifolds play a major role in the Morse theory, thus for the sake of simplicity, the term manifold is used as synonym of C ∞ -manifold.

Morse theory

Morse theory deals with the relationship between the structures of spaces, and functions defined on those spaces. Specially, this theory draws the relationship between critical points of a smooth function defined on a manifold and the global topology of that manifold. Smooth functions are ideal for data analysis; they are dense, and they can be represented in abstract terms, such as Reeb graphs or Morse-Smale complexes. Although smooth functions admit derivatives of any order in practices, most commonly we just need derivatives of first and second order. Using the first order derivatives of a smooth function f : R n → R, we may define the gradient of f , ∇f as

∇f = ∂f ∂x 1 , . . . , ∂f ∂x n . (2.4)
The gradient of a scalar function is a vector field that points in the direction of steepest ascent. Given a point p ∈ R n , p = (x 1 , x 2 , . . . , x n ), it is said to be a regular point of f if ∇f (p) = 0, and a critical point (CP) otherwise,

∂f ∂x 1 (p) = ∂f ∂x 2 (p) = . . . = ∂f ∂x n (p) = 0. (2.5)
The image of a CP, f (p), is called a critical value of f . All other values are regular values of f . We use second derivatives to further distinguish between different types of CPs. The Hessian of f at the point p 0 is the matrix of second derivatives, i.e. in M 3 :

H(p = p 0 ) =      ∂ 2 f ∂x 2 ∂ 2 f ∂x∂y ∂ 2 f ∂x∂z ∂ 2 f ∂y∂x ∂ 2 f ∂y 2 ∂ 2 f ∂y∂z ∂ 2 f ∂z∂x ∂ 2 f ∂z∂y ∂ 2 f ∂z 2      p=p0 .
(2.6)

A CP x is non-degenerate if the Hessian is non-singular, that is, detH(x) = 0, and degenerate otherwise. The Morse theory deals with a special type of smooth functions, called Morse functions;

Definition 2.7 Given a smooth function f : M :→ R, it is a Morse function if
• all its CPs are non-degenerate,

• all its CPs have distinct function values.

It is worthy to say that the second condition is sometimes dropped. A unique feature of Morse functions is their behaviour near CPs, where the gradient is negligible. Given a Morse function in M d , f : M d → R, its behaviour in a small neighbourhood around a CP u, is dominated by the quadratic terms. Even more, we can find local coordinates of u = (0, 0, . . . , 0) such that there are no higher-order terms

f (p) = f (u) -x 2 1 -. . . -x 2 q + x 2 q+1 + . . . + x 2 d , (2.7) 
for every point p = (x 1 , x 2 , . . . , x d ) in a small neighbourhood of u. This result is known as Morse lemma. From this lemma it can be shown that u is the only CP in such neighbourhood and therefore, u is said to be isolated. The number of minus signs in the quadratic polynomial is the index of the CP, index(u) = q. This index classifies the non-degenerate CPs into d+1 types. This result is equivalent to say that the index of a CP is equal to the the number of negative eigenvalues of the Hessian at such critical point. For a 3-manifold, we have four types, minima with index 0, 1-saddles with index 1, 2-saddles with index 2 and maxima with index 3. CPs are often classified in terms of their rank r, and their signature, s, by the notation (r, s). The rank is the number of non-zero eigenvalues of the Hessian matrix at the CP, and the signature is defined as the difference between the number of positive and negative eigenvalues. For instance in M 3 , maxima, 2-saddles, 1-saddles and minima are denoted by (3,-3), (3,-1), (3,-2) and (3,3) respectively.

A major result of Morse theory is its ability to define the global shape of a manifold in terms of its CPs since non-degenerate CPs are isolated, and therefore, the topology of the level set is guaranteed not to change between CPs. This results may be summarised in the following theorem;

Definition 2.8 Let M be a closed manifold and f : M → R a Morse function. Let M t = {p ∈ M|f (p) ≤ t} for a value t of f . If f has no CPs in [a,b]∈ R, then M a and M b are homeomorphic.
If there is a CP in [a, b], there is not a homeomorphism between M a and M b any more. To preserve this diffeomorphism through CPs, we need to attach a q-handle to M a . Definition 2.9 A q-handle D d q corresponding to a CP p with index q such that f (a

) < f (p) < f (b), is a d-manifold homeomorphic to a d-ball that is attached through a disjoint union to M a , so that, M a D d q is diffeomophic to M b .
A manifold may be constructed by handle decomposition, that is by gluing handles to the manifolds, as seen in Figure 2.4. When handles are attached in increasing order of CPs, the handle decomposition discloses the topological features of a manifold. 

Morse inequalities

The number of CPs of a Morse function f : M → R is limited by the Morse inequalities.

The weak and the strong Morse inequalities provide lower bounds to the number of CPs of some index q, c q , in terms of Betti numbers of the q -th homology group of M, β q (M)3 :

Definition 2.10 Let M be a manifold of dimension d and f : M → R a Morse function. Then (i) weak: c q ≥ β(M) for all q (ii) strong: q j=0 (-1) q-j c j ≥ q j=0 (-1) q-j β j (M) for all q,

The strong Morse inequality becomes an equality for j = d. Morse inequalities connect the number of CPs of M with its Euler characteristic, χ(M), through the Euler-Poincare theorem

χ(M) = d q≥0 (-1) q β q (M), then χ(M) = d q=0 (-1) q β q (M) = d q=0 (-1) q c q .

Manifold partitioning

The Morse theory states that all the relevant features of a Morse function and the manifolds defined by its level sets rest on its critical points and the connection between them. Therefore, one may try to decompose a Morse manifold in subsets containing the relevant features of some Morse function defined on it. In many applications understanding the response of a system to a external perturbation is only possible if each of its parts may be analysed separately, thus a partition of space defined by our physical system is required. Morse theory provides us with an invaluable topological arsenal for performing such task. Usually the partitioning engines are based on the behaviour of level sets (Reeb graphs) or on the the behaviour of the gradient (Morse Complex).

Reeb graphs

The creation, destruction, merging, and splitting of connected components of level sets may be recovered by Reeb graphs. Intuitively, the Reeb graph is the result of contracting each connected component of a level set to a point, such that, every node in the graph corresponds to a level set containing a CP and arcs between nodes represent the evolution of the connected components of the level sets between CPs. Formally, the Reeb graph sets an equivalence relationship between points belonging to a common connected component of a level set of a scalar function f :

M → R ReebGraph 2.11 Let f : M → R be a scalar function on a compact manifold M. The Reeb graph of f is the quotient space f in M × R by the equivalence relation ∼ : (X 1 , f (X 1 )) ∼ (X 2 , f (X 2 )) if and only if f (X 1 ) = f (X 2 ), and X 1 , X 2 belong to the same connected component of f -1 (f (X 1 )).
The evolution of the level set of a height function defined on a torus is shown in Figure 2.5. If the Reeb graph is defined over a simply connected Euclidean space, it is a called contour tree. 

Morse complex

A different partitioning of a manifold may be achieved if instead of the relationship between level sets, the gradient is analysed. In fact, the behaviour of level sets may be understood in terms of the gradient. Given a Morse function, the gradient flow may be used to decompose a manifold depending on where the flow originated and where it ends. The gradient flow is defined by integral lines and they lead to Morse and Morse-Smale complexes.

Definition 2.12 Given a Morse function

f : M → R, a curve γ(t) is an integral line of f if γ(t) = ∇f (γ(t)) for all t ∈ R.
Because γ is defined for all t ∈ R, the integral line necessarily approaches a CP, both for t going to +∞ and to -∞. We call these limits the origin org and the destination dest of the integral line,

org(γ) = lim t→-∞ γ(t), (2.8 
)

dest(γ) = lim t→∞ γ(t).
(2.9)

f increases along the integral lines which implies that org(γ) = dest(γ). Integral lines exhibit the following properties:

1. Two integral lines are either disjoint or the same.

Integral lines cover all M.

The origin and destination of an integral line is either a CP of f or ∞.

The first property is a consequence of the existence and Uniqueness Theorems of differential equations, and it implies that every point in M has exactly one integral line passing through it. This property suggests we may decompose the manifold into integral lines or unions of integral lines with shared characteristics.

Definition 2.13

The stable manifold of a CP u of f , S(u), is the point itself together with all regular points whose integral lines end at u. Symmetrically, the unstable manifold of u, U (u), is the point itself together with all regular points whose integral lines originate at u. More formally,

S(u) = u ∪ x ∈ M|dest(γ x ) = u,
(2.10)

U (u) = u ∪ x ∈ M|org(γ x ) = u. (2.11)
The function increases along integral lines. It follows that f (u) ≥ f (x) for all point x in S(u). This is the reason why S(u) is sometimes referred as the descending manifold of u. Symmetrically, f (u) ≤ f (y) for all points y in U (u) and it is sometimes referred to as ascending manifold of u. Viewing M as a terrain, S(u) and U (u) correspond to "basins" and "mountains" respectively. Subsets of S(u) and U (u) of a function in R 3 are shown in Figure 2.6.

Suppose the dimension of M is d and the index of the CP u is q. Then there is a q-sphere of directions along which integral lines approach u. It can be proved that together with u, these integral lines form an open ball of dimension q, called open q-cell and the S(u) is a submanifold homeomorphic to R q that is immersed in M. The complex formed by the descending manifolds of a Morse function f : M → R, is called the Morse complex. Each point in the Morse complex is classified according to dest(γ). For instance, let's analyse the Morse complex of the function

f (x, y) = -x 4 + 4(x 2 - y 2 ) -3. R 2 → R (2.12) f (x, y) → -x 4 + 4(x 2 -y 2 ) -3,
The CPs of this function are such points where its gradient vanishes, ∇f (x, y) f (x, y) exhibits three CPs ( √ 2, 0) , (-√ 2, 0) and (0, 0). Glancing at Figure 2.7, we can realise that maxima are at ( √ 2, 0) and (-√ 2, 0), and the saddle point at (0, 0). Nevertheless, a complete analysis of the function requires the calculation of its Hessian matrix and its eigenvalues at the CPs

∇f (x, y) = (-4x 3 + 8x) i -8y j = 0 i, 0 j. ( 2 
H(x, y) =   -12x 2 + 8 0 0 -8  
Since H(x, y) is diagonal everywhere, its eigenvalues at every point of R 2 are -12x 2 +8 and -8. At ( √ 2, 0) and (-√ 2, 0) both eigenvalues are negatives (-16,-8), then maxima are located at these positions. At the origin, (0, 0), H eigenvalues have different sign (8,-8), indicating therefore the presence of a saddle point. The indices of CPs in R 2 are two for maxima and one saddle points.

Although the integral lines of f (x, y) are not here displayed, the behaviour of ∇f (x, y) is showed in Figure 2.8. Since integral lines are tangent at every point of space to ∇f (x, y), they exhibit a similar behaviour; all of them die at maxima forming a plane (a 2-sphere), that is, ( √ 2, 0) and (-√ 2, 0) are dest(γ) of these lines. The stable manifold of (-√ 2, 0) and ( √ 2, 0), Ω a and Ω b respectively are displayed in Figure 2.8. The stable and unstable manifold of the saddle point form lines (1-sphere) parallel to the Y and X directions respectively. The Morse complex of f (x, y) is formed by two disjoint regions as shown in Figure 2.8.

-2 -1 0 1 2 -2 -1 0 1 2 Y X -2 -1 0 1 2 -2 -1 0 1 2 Y X Figure 2.8: (Left) f (x, y) = -x 4 + 4(x 2 -y 2 ) -3 vector field, ∇f (x, y).
The thick black lines are symbolic representations of the integral lines connecting the CPs. (Right) Topological partition obtained from ∇f (x, y). Ω a and Ω b stand for the stable manifolds of each of the maxima of f (x, y).

It is also possible to classify points according to both dest(γ) and org(γ), leading to a generalisation of the Morse complex, called the Morse-Smale complex. To consistently define this complex it is required that S and U intersect transversally; Definition 2.14 Two submanifolds M a and M b with dimension a and b respectively, belonging to M with dimension d, are said to intersect transversally if the tangent space of M a and the tangent space of M b generate the tangent space of M, or when their intersection is empty. When a + b = d, the intersection is a single point.

Similarly to the Morse complex, the Morse-Smale complex is defined in terms of the integral lines of some Morse-Smale function

Definition 2.15 A Morse function is Morse-Smale if its stable and unstable manifolds only intersect transversally.

This condition implies that a pair of CPs of a Morse-Smale function f connected by an integral line cannot have the same index, and, the index of the CP at the origin of such integral line is less than the index of the CP at the destination. Similarly to the Morse complex, we may define a Morse-Smale complex as follows: Definition 2. [START_REF] Becke | Density-functional exchange-energy approximation with correct asymptotic behavior[END_REF] Given a Morse-Smale function f , the Morse-Smale complex of f is the complex formed by the intersection of the Morse complex of f and the Morse complex of -f . The cells of the Morse-Smale complex are formed by the set of points whose associated integral lines share a common orig and dest.

Given the transversality of the Morse complex of f and -f , the boundary of every S is a union of Ss of lower dimension. The intersection of a S of dimension q of f and an U of dimension p of f has dimension q + p -d. The intersections of Ss constructs the Morse Smale complex adding one dimension at a time.

Piecewise linear functions

In data analysis and visualization, data are usually available by sampling some function over some manifold not necessarily smooth. Smooth manifolds are replaced by discrete approximations defined by simplicial complexes, and smooth functions by piecewise linear functions.

Simplicial complexes

Let u 1 , u 2 , . . . , u n be points in R d , such that, for all x ∈ R d , a set of

λ i ∈ R d exists, such that, x = n i λ i u i . If n i λ i = 1 it is said that x is an affine combination of u i .
Furthermore if all λ i are non-negative this combination is said to be convex. The convex hull is defined by the set of convex combinations. A k-simplex is nothing but the convex hull of k + 1 affinely independent points, σ = {u 0 , u 2 , . . . , u k }. The dimension of σ is k. The first four dimension simplicies have geometrical names, such as vertex for 0-simplex, edge for 1-simplex, triangle for 2-simplex and tetrahedron for 3-simplex. Using the same geometrical nomenclature, we define a face of σ as the convex hull of a non-empty subset of the u i set. If τ is a face of σ, σ is a coface of τ . A specially appealing kind of simplex in data analysis is the simplicial complex defined as follows.

Definition 2.17 A simplicial complex is a finite collection of simplicies K such that

• If σ ∈ K and τ < σ → τ ∈ K,
• If σ and σ 0 ∈ K ∴ σ σ 0 is empty or a face of both.

Piecewise linear functions

Let K be a triangulation of a compact manifold M with vertices u i , and f some function not necessarily smooth defined over the vertices of K. A piecewise linear (PL) function f : |K| → R, where |K| means that f takes values at the vertices of K, is defined by

f (x) = i b i (x)f (u i )
, where b i (x) are the barycentric coordinates at point x. If f takes different values at all vertices it is said to be generic. To localise the CPs of f it is convenient to order the vertices of K in increasing function values of the function as

f (u 1 ) < f (u 2 ) < . . . < f (u n ).
Then, instead of computing its gradient at each point,

Piecewise linear functions

the neighbourhood of each vertex of u i is analysed. It is said that u i is critical if the topologies of the level sets below and above are different. The neighbourhood of u i is analysed in terms of its star and link. Definition 2. [START_REF] Becke | Hartree-fock exchange energy of an inhomogeneous electron gas[END_REF] The star of a vertex v ⊂ K is the subset defined by all the cofaces of v Stv = {σ ⊂ K|v ≤ σ}.

Stv may not be closed, and therefore, it does not define a simplicial complex. We can circumvent this problem by adding all missing faces, and defining the closed star Stv, as the smallest complex that contains Stv. The difference between Stv and Stv, constitutes the link of v, Lkv as shown by Figure 2.9. Adding up information on the value of f at vertex v and assuming it is generic, we can define its lower and upper links,

Definition 2.19 The link of a vertex v ⊂ K is defined as the set of all simplicies in

Stv disjoint from v, Lkv = {τ ⊂ Stv|τ ∩ v = ∅}.

Definition 2.20 The lower link of a vertex

v ⊂ K is Lk -v = {σ ⊂ Lkv|f (u) ≤ f (v), u ≤ σ}.

Definition 2.21 The upper link of a vertex

v ⊂ K is Lk + v = {σ ⊂ Lkv|f (v) ≥ f (u), u ≤ σ}.
Regular points are characterised by having upper and lower link with exactly one connected components. Otherwise it is a CP and every level set passing through the vertex will change its topology (see Figure 2.10). Critical and regular points may be distinguished by the Betti number of the lower link, and also indicate the index of the CP. In practice this is determined by the connected component of the lower link; maxima and minima are characterized lower links with one and zero connected components respectively.

In contrast to the smooth case, integral lines of PL functions may merge, therefore the Morse-Smale complex is not defined. Instead, given a triangulation K and a PL function f : |K| → R, we may define a segmentation of K whose nodes are the set of PL critical points of f , pairs of nodes are connected through arcs, quads are defined by the union of arcs, and crystals by the union of quads. If there are not CPs within arcs, quads or crystals, this segmentation defines the quasi Morse-Smale complex, and it is structurally equivalent of the Morse-Smale complex of some smooth function. 

Alternating sum of indices

Similarly to a Morse manifold, the Euler characteristic of a given K triangulation, and PL Morse function f : |K| → R are closely connected through the alternating sum of the simple PL critical points, u i ,

χ(K) = ui (-1) index(ui) .

Dynamical systems

Morse theory provides us with the proper machinery to analyse the topology a manifold in terms of the CPs of some Morse function defined in such manifold. Quantum chemical topology was originally formulated within dynamical systems theory. The aim of this section is to show that many of the concepts used in both theories are equivalent.

Consider a system of n differential equations, F . We are interested in its set of solutions y j (t; x ∈ R N , c α ∈ W ) defined over a manifold M

F i y i ; c α ; t; ∂y j ∂t , ∂ 2 y j ∂t 2 , . . . ; x l ; ∂y j ∂x l , ∂ 2 y j ∂x l x m , . . . ; dx 1 , . . . = 0, (2.14) 
where

1 ≤ i , j ≤ n 1 ≤ l , m ≤ N (2.15) 1 ≤ α ≤ k
where c α denotes the control parameters which are the elements of the set W referred to as the control space of dimension k. x and t may be regarded as space and time coordinates. In order to make the problem much more tractable, we can apply a sequence of simplifications;

1. We assume that the Equation 2.14 involves neither integrals, space derivatives nor space dependence:

F i = y i ; c α ; t; ∂y j ∂t , ∂ 2 y j ∂t 2 , . . . , = 0. (2.16)
2. Moreover, we assume that Equation 2.16 has no higher derivatives than the first order ∂yi ∂t :

F i = ∂y i ∂t -f i (y j ; c α ; t) = 0.
(2.17)

Systems of equations described by Equation 2.17 are called dynamical systems.

3. Further simplification is achieved if f i (y j ; c α ; t) is time independent:

F i = ∂y i ∂t -f i (y j ; c α ) = 0.
(2.18)

A system of equations given by Equation 2.18 is called an autonomus dynamical system.

The integration of Equation 2.17 under some initial conditions yields a unique set of solutions y(c α , t), which are known as trajectories in M. Any trajectory fulfils the properties previously cited for the gradient lines of some scalar field. Conversely trajectories do not start or end at CPs of some scalar field, but at points where f i (y j ; c α ; t) = 0 (we shall see that for a particular kind of dynamical system these CPs match with those of some scalar field). These points are the CPs of the dynamical system, also called singular or equilibrium points. CPs of a dynamical system may be classified through the analysis of its trajectories y j , in their neighbourhood of a CP, t c , y c = y(t c ; c α ). A linear expansion of y j near t c leads to

∂y i ∂t = f i (y j ; c α ; t c ) ≈ f i (y c ; c α ; t c ) + J(t -t c ) = J(t -t c ), (2.19) (2.20) 
where J is the Jacobian matrix of the system at t c ,

J = ∂f (y i ; c α ; t c ) ∂t yi=y c .
(2.21)

Shifting the coordinates origin to t c , the linear system may be written as

∂y i ∂t = J(t). (2.22)
Being J a symmetric matrix it is possible to find an orthogonal matrix U that diagonalises J at t c ,

U t JU = diag(λ i ), (2.23) 
where λ i are the eigenvalues of J. The eigenvectors of J, η, define a new coordinate system,

y = Uη (2.24) ∂y ∂t = U ∂η ∂t (2.25) (2.26)
Replacing in the previous equations,

∂η ∂t = diag(λ i )η, (2.27) 
whose trivial solution is

η i (t) = η i (t o )e λi(t-to) .
(2.28)

The eigenvalues of J, λ i , are the characteristic or Lyapunov's exponents, and define the behaviour of the dynamical system in the neighbourhood of a CP. λ i are in general complex numbers. A CP is called hyperbolic if none of its characteristic exponents have a zero real part. Otherwise it is a non-hyperbolic CP, and the linear expansion is not enough to characterise it. The index of a CP, I(f, y c ), is defined by the number of positive Lyapunov's exponents. Similarly to the Morse rule, the Poincaré-Hopf theorem limits the number of CPs of a dynamical system: if M is a compact manifold and f (y; c α , t) has only isolated hyperbolic CPs, then they fulfill the following relation:

(-1) I(f,y s ) = χ(M).
(2.29)

A hyperbolic CP may be a maximum, a minimum or a saddle point. For a given point y o ∈ M q the limit sets of y o (c α , t) for t → -∞ and t → +∞ are referred to as α-limit and ω-limit, respectively. A maximum is characterised by I(X, y s ) = 0, and is also known as attractor. The set of trajectories that have an attractor as ω-limit defines the stable manifold of such CP, and all the points within constitutes the basin (Ω) of such attractor. The boundary points between basins are called separatrices, defined by the so-called zero flux condition:

Ω f (f i (y j ; c α ; t))dt = 0.
(2.30)

α and ω-limits lead to a partition of M into basins and separatrices similar to that defines by the Morse complex. Conversely, a minimum or repellor in R q is characterised by I(X, y s ) = q. The set of trajectories that have an attractor as α-limit defines the stable manifold of such repellor.

An interesting property of autonomus dynamical systems (Equation 2.18) is that they can be derived from the gradient of some potential function V (y j ; c α ), f (y j ; c α ) = ∇V (y j ; c α ). Such system is called a gradient dynamical system,

f i (y j ; c α ; t) = ∂y i (c α ; t) ∂t = ∂V (y j ; c α ) ∂y i , ( 2.31) 
and the CPs of the system are defined by

∂V (y j ; c α ) ∂y i = 0. (2.32)
Furthermore, if V is a Morse function all the concepts previously defined within the Morse theory find some equivalent in the dynamical systems theory. The trajectories of the gradient dynamical system defined by ∇V are nothing but the integral lines of V , and they may be written as a set of parametric equations

y(t) = y(t o ) + t to ∇V (y j ; c α )dt.
(2.33)

α and ω limit definitions match with those of org(y) and dest(y) in the Morse theory jargon, and therefore, the stable and unstable definitions are also the same. Furthermore the basins of such dynamical system, are exactly the basins of the Morse complex of the potential function V , leading thereby to the same topological partition of M.

The nomenclature of the CPs, by contrast, is ambiguous; whereas the number of positive eigenvalues of the Hessian matrix is used as index in the dynamical systems framework, the number of negative eigenvalues is used the Morse theory. In what follows we shall use the nomenclature (r, s) for convenience.

Critical Point

I λ (r, s)

Maximum (attractor) 0 3 (3,-3) 2-saddle 1 2 (3,-1) 1-saddle 2 1 (3, 1)
Minimum (repellor) 3 0 (3, 3) Table 2.1: Classification of the critical points for a M 3 manifold. I and λ and (r,s) stand for the dynamical system, Morse theory and (r, s) nomenclature, respectively.

It is worthy to notice that for a gradient dynamical system the following relationship holds,

J(f ) = J( ∇V ) = H(V ), (2.34) 
where H(V ) is the Hessian matrix of V . Thus, the Lyapunov's exponents are the eigenvalues of H(V ). Since H(V ) is symmetric, it only shows real eigenvalues, and therefore, only hyperbolic CPs are present in gradient dynamical systems. There is no doubt that chemistry is founded in three main aspects; chemical structure, properties and reactivity. The former is completely associated with the arrangement of atoms in the space. The second and the third aspects are consequences of the interactions between atoms through chemical bonds. Therefore, atoms and chemical bonds constitutes the fundamental blocks in chemistry. Although many strategies have been put forward for defining atoms in a quantum mechanical framework, the quest for an unambiguous quantum definition of chemical bond still remains. The lack of quantum mechanical operator associated with chemical bonding has created a gap between classical concepts such as electron shells, lone pairs, aromaticity, (hyper-) conjugation, strain, etc and quantum theory, and thus hampers any understanding of their mechanistic origin.

Chapter 3

Quantum chemical topology

To overcome this gap several approaches have been developed to provide a quantum mechanical equivalent of such "fuzzy" concepts in Hilbert and in real space. Whereas Hilbert space approaches are based on some unitary transformation of the occupied orbitals of the system, they are somehow unbiased since they depend on the initial set of orbitals. Real space approaches completely exploit the topological properties of some scalar field as explained in Chapter 2. In this chapter we will focus in this second approach that is often termed as quantum chemical topology.

Quantum chemical topology

Quantum chemical topology (QCT) [START_REF] Popelier | Atomic properties of amino acids: Computed atom types as a guide for future force-field design[END_REF] embraces all work that shares the central idea of the gradient vector field of some scalar function as partitioning scheme of a quantum system. As shown in Chapter 2 any vectorial field may be defined as a dynamical system able to split a manifold into basins (Ω a ), defined as the set of trajectories which share a common ω-limit. In QCT the dynamical system is defined by the gradient vector field of some 3D scalar field, therefore this partition is equivalent to those obtained by the Morse complex of such scalar field. As any trajectory (or integral line) belongs to one and only one basin, it does not transverse the surface of any basin. This result is known as "zero flux condition" and is mathematically expressed as

∇f (r) • n(r) = 0, (3.1) 
where n(r) is a normal vector to the surface at point r and ∇f (r) is the gradient of f (r) at r. One consequence of the zero flux condition is that the partition obtained for some vectorial field is always exhaustive

∪ M a Ω a = R 3 , Ω a ∩ Ω b = ∅, a = b, (3.2)
where M is the number of basins. Once the system is split into non-overlapping regions, the next step in QCT is to assign a physical/chemical significance to these regions in order to recover the distribution in real space of some property. The meaning of Ω a is inherited from the scalar field whose gradient has been used as partitioning engine. The scalar fields used in QCT are usually defined in terms of density matrices and may be easily visualised by the representation of their isosurfaces or contour lines.

Topology of the electron density

The electron density ρ(r) was already introduced in Chapter 1 as well as its paramount role in the electronic structure of matter through the Hohenberg and Kohn theorems [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF].

The electron localisation function

Its gross form is dominated by maxima at the nuclear positions. However, at these positions its gradient shows a discontinuity resulting in in a cusp. As shown by Kato [START_REF] Kato | On the eigenfunctions of many-particle systems in quantum mechanics[END_REF] this cusp condition may be mathematically described as lim

r iA →0 ∂ ρ(r) ∂r + 2Z A ρ(r) = 0, (3.3) 
where ρ(r) , Z A and r iA are the spherical average of ρ(r), the nuclear charge and the coordinates of the nucleus A, respectively. Conversely the behaviour of ρ(r) far from nuclei positions is described by an exponential decay [START_REF] Hoffmann-Ostenhof | schrödinger inequalities" and asymptotic behavior of the electron density of atoms and molecules[END_REF] 

ρ(r) ∝ e -( √ 2I)r , ( 3.4) 
where I is the first ionisation potential. The cusp condition avoids ρ(r) to be a true differentiable field. However it is possible to replace the cusp at nuclear positions by maxima, identifying the nuclear positions as (3,-3) CPs. Quantum atoms may be defined then as basins of ρ(r). Since (3,-1) CPs always take place between maxima, they have been identified as indicators of chemical bonding, and therefore they are known as bond critical points (BCPs). It is said that there is a chemical bond between two atoms if they are connected through a BCP. From the topology of ρ(r), a molecular system may be envisaged as a set of atoms connected through interatomic surfaces (IASs). We note that an IAS only appears if there is a BCP between two basins (atoms). The CPs of ρ(r) do not only identify chemical bonds, but also provide insight about their nature. ∇ρ(r) represents the charge flow through the system, thus stable and unstable manifolds of CPs of ρ(r) represent directions of charge concentration and depletion respectively. Maxima are characterised by 3D stable manifolds, this is a charge concentration in all directions. By contrast, stable and unstable manifolds of a BCP form a plane and a line, respectively; the charge is depleted through a integral line which connects the two bonded atoms, known as bond path, and there is a charge concentration in the plane perpendicular to such line. The presence of BCP may be then identified with the accumulation of ρ(r) in a plane. The two blocks of chemistry are therefore recovered; atoms and bonds. Joining all maxima through BCPs following bond paths we may render the molecular graph of a chemical system, and therefore, its molecular structure.

Further CPs have less clear chemical meaning and they are often connected with regions where it is expected to find some kind of strain. (3,1) CPs appear in plains limited by BCPs, and they represent a plane of charge depletion (the unstable manifold of a (3,-1) CP is a plane). Minima are characterize by charge depletion along all directions and they are identified as [START_REF] Cramer | Essentials of computational chemistry: theories and models[END_REF][START_REF] Cramer | Essentials of computational chemistry: theories and models[END_REF] CPs.

Besides of identifying atoms, the basins of ρ(r) are the only regions where the virial theorem is defined (apart from R 3 ) and they may be considered as open quantum subsystems leading to the quantum theory of atom in molecules (QTAIM) owed to Bader [START_REF] Bader | Atoms in Molecules: A Quantum Theory[END_REF]. In the literature QTAIM is often used for referring to the topological analysis of ρ(r).

The electron localisation function

The electron localisation function (ELF) [START_REF] Becke | A simple measure of electron localization in atomic and molecular systems[END_REF] is a powerful tool to identify regions where electrons are localised. The ELF was derived by Becke et Edgecombe expanding the Hartree-Fock spherically averaged spin conditional probability density

P σs cond (r, s) = 1 3 τ σ (r) - 1 4 | ∇ρ σ (r)| 2 ρ(r) σ (r) s 2 + . . . , (3.5) 
where the arguments (r, s) denote the spherically averaged on a shell of radius s about the reference point r, and τ σ (r) is the positive definite kinetic energy density introduced in the meta-GGA framework 1.156.

A number of insights may be extracted from P σσ cond (r, s); the smaller the probability of finding a second like-spin electron near the reference point, the higher the localisation of the reference electron. Hence, the coefficient of the quadratic term in Equation 3.5 is an index of electron localisation

D σ (r) = τ σ (r) - 1 4 | ∇ρ σ (r)| 2 ρ σ (r) . (3.6)
It may be proved that D σ is necessarily non-negative and it vanishes in the special case of one-electron systems and hence also vanishes in multielectron systems in regions dominated by a single localised σ-spin orbital, reinforcing therefore the interpretation of D σ as a measure of electron delocalisation. To provide an index of electron localization that renders a proper visualisation, Becke and Edgecombe defined ELF as

ELF(r) = (1 + χ σ (r) 2 ) -1 , ( 3.7) 
where

χ σ (r) = D σ (r) D 0 σ (r) , D 0 σ (r) = 3 5 (6π 2 )ρ 5/3 σ (r). (3.8) 
D 0 σ (r) corresponds to an HEG with equal spin density as the real system. ELF is bounded from below and above,

0 ≤ ELF(r) ≤ 1, (3.9) 
The upper limit ELF(r)=1 corresponds to perfect localisation, and the value ELF(r)=1/2 to gas-like behaviour. Strictly speaking ELF(r) maxima identify regions dominated by a single spin-orbital. Since at Hartee-Fock level, unlike spin electrons are independent D α (r) and D β (r) are identical, and therefore ELF(r) maxima identify regions with high probability of finding an electron pair, i.e. atomic shells, core, bonding, or lone pairs. Contrary to the topological analysis of ρ(r), CPs further than maxima do not convey any clear chemical significance, and therefore the topological analysis of ELF(r) is limited to the localisation of its maxima and the characterisation of its basins.

Classification of the ELF(r) basins

The geometrical arrangement of the ELF(r) maxima allows to differentiate two types of basins; core and valence. The former are highly localised around nuclei with Z > 2 and denoted by C(A) where A stands for the atomic symbol of the atom. The latter fill the remaining spaces. The localisation of valence basins closely matches with the electron pair arrangements defined by Gillespie in the Valence Shell Electron Pair Repulsion model (VSEPR), and therefore it provides a mathematical support for Lewis' valence theory and for VSEPR. Valence basins are denoted by V(A,B), where A and B are the atomic center which share the basin. The synaptic order of a valence basin [START_REF] Silvi | The synaptic order: a key concept to understand multicenter bonding[END_REF] is defined as the number of core basins which have a common boundary with it. According to their synaptic order the valence basins can be asynaptic (synaptic order zero), monosynaptic, disynaptic or polysinaptic (see Table 3.1). F centers in solid state, lone pairs, two-center bonds are examples of asysnaptic, monosynaptic and dysnaptic basins, respectively. Basins with synaptic higher order are characteristic of polyatomic bonding, such as the trysynaptic basin V(H,B,H) in diborane [START_REF] Silvi | The synaptic order: a key concept to understand multicenter bonding[END_REF].

Synptic order Name

Symbol 0 Asynaptic 1 Monosynaptic V(A) 2 Disynaptic V(A,B) 3 Tisynaptic V(A,B,C) >3 Polisynaptic V(A,B,C,. . . )
Table 3.1: ELF(r) basin classification according its synapticity. Contrary to ρ(r), ELF(r) is specially well suited for visualisation analysis, since it is bounded from above and from below. Additionally to the partition induced by the gradient of ELF(r), we can analyse the partition defined by its level sets, i.e. the Reeb Graph. In the ELF(r) parlance, a domain is defined as a region bounded by a closed level set ELF(r)=f . An f -localisation domain [START_REF] Silvi | Classification of chemical bonds based on topological analysis of electron localization functions[END_REF] is the subset of points such that each point satisfies ELF(r)>f . If a localisation domain surrounds as much as one maximum it is called irreducible, otherwise it is reducible. Depending on the nature of the basins contained in a domain, it is possible to differentiate three types of domains. Core domains only contain core maxima, valence domains only valence maxima and composite domains contain both valence and core ones (see Figure 3.1).

Kinetic energy density based descriptors

Among the scalar fields proposed to analyse chemical interactions, scalar fields based on any of the forms of the kinetic energy density are specially useful for the visual analysis of chemical interactions. The success of this family of scalar fields rests on the decrease in the interatomic kinetic energy during the formation of a covalent interaction [START_REF] Kutzelnigg | Chemical bonding in higher main group elements[END_REF][START_REF] Ruedenberg | Why does electron sharing lead to covalent bonding? a variational analysis[END_REF][START_REF] Bitter | Toward a physical understanding of electron-sharing two-center bonds. i. general aspects[END_REF]; therefore any function able to map this variations should be a good candidate as a real space bonding indicator. It is well known that there is an infinity of kinetic energy densities; the only requirement is that they integrate to the total kinetic energy of the system T. [START_REF] Cohen | Local kinetic energy in quantum mechanics[END_REF][START_REF] Cohen | Representable local kinetic energy[END_REF] T = drτ g (r), (3.10) where τ g (r) is any form of the kinetic energy density. Two particular forms of τ g have been widely use in the literature τ (r) and K(r)

K(r) = - 1 2 occ i n i ψ i (r)∇ 2 ψ i (r) (3.11) τ (r) = 1 2 occ i n i ∇ψ i (r) ∇ψ i (r), (3.12) 
where ψ i are real natural orbital and n i their occupation numbers such that ρ(r) =

i n i ψ i (r)ψ i (r). As kinetic energy densities both of these function integrates to the same total kinetic energy density, but they differ locally. Whereas τ (r) is positive everywhere, K(r) exhibits positive and negative values and is the definition used by Schrödinger. Both definition are related via the Laplacian of the electron density.

K(r) = - 1 4 ∇ 2 ρ(r) + τ (r). (3.13)
Since ∇ 2 ρ(r) is a divergence term, its net contribution to T cancels

∇ 2 ρ(r) = 0. (3.14)
The positive definite condition of τ (r) enables the interpretation of its local behaviour in terms of classical effects, and thus many chemical bonding descriptors have profited from this property. It worthy noticing that for a Hartree-Fock wave function Equation 3.11 becomes

τ (r) = 1 2 occ i=1 | ∇ψ i (r)| 2 , ( 3.15) 
where ψ i (r) are occupied Hartree-Fock orbitals. If ψ i are replaced by Kohn-Sham orbitals Equation 1.156 of Chapter 1 is obtained. Contrary to Equation 3.15 , Equation 1.156 integrates to the Kohn-Sham kinetic energy.

The limiting behaviour of τ (r) at r = 0 and r → ∞ is determined by the von Weizsäcker kinetic energy density [START_REF] Weizsäcker | On the theory on nuclear masses[END_REF] τ w (r) as introduced in Equation 1.158 of Chapter 1. It may be shown that it constitutes a rigorous lower bound for τ (r). Although τ w (r) is not a kinetic energy density in the sense that it does not satisfies Equation 3.10 and it integrates to the von Weizsäcker correction to the Thomas-Fermi model, it constitutes a useful tool for revealing atomic and molecular structure [START_REF] Bohórquez | A localized electrons detector for atomic and molecular systems[END_REF][START_REF] Boto | Interpretation of the reduced density gradient[END_REF].

Bonding descriptors based on τ (r)

The chemical content of τ (r), was already used by Schmider and Becke to define the localised-orbital locator (LOL) [START_REF] Schmider | Chemical content of the kinetic energy density[END_REF]. LOL is defined from the dimensionless variable t(r)

t(r) = τ T F (r) τ (r) . (3.16)
The function t(r) is bounded by zero from below, but has no an upper boundary:

0 ≤ t(r) < ∞. (3.17)
To circumvent this problem, they proposed to map t(r) onto the range [0,1]. They referred to this map as ν:

ν(r) = t(r) 1 + t(r) = 1 1 + τ (r) τ T F (r) . (3.18)
LOL refers both to t(r) and to its bounded counterpart ν(r). In what follows, we shall refer to t LOL (r) = τ (r)/τ T F (r) as the LOL kernel. The properties of this dimensionless ratio were already discussed by Finzel [START_REF] Finzel | Elf and its relatives a detailed study about the robustness of the atomic shell structure in real space[END_REF]. At the positions of the stationary points of localized orbitals, t LOL (r) is driven to small values (ν → 1). In regions dominated by the overlap of localized orbitals, t LOL (r) attains large values (ν → 0). Thus, the chemical content of LOL is similar to that of ELF(r).

Bonding descriptors based on τ w (r)

The term τ w (r) is the kinetic energy density in the absence of the Pauli principle, hence it accounts for the bosonic character of the system. As aforementioned, τ (r) is bounded from below by τ w (r), they exhibit the same limiting behaviour at near and far way from the nuclear coordinates. Moreover τ w (r) is exact for any system described by a single spatial orbital [START_REF] Tal | Studies of the energy density functional approach. i. kinetic energy[END_REF]. In many electron systems, it also approaches τ (r) for those systems that are well described by strongly localized orbitals in separate regions. Additionally, τ w (r) is the kinetic energy density of the marginal probability amplitude introduced by Hunter some time ago [START_REF] Hunter | The exact one-electron model of molecular structure[END_REF]. τ w (r) may be thereby understood as a measure of the single particle character of the system. Because a localized electron pair behaves as a single particle, namely as a boson, its kinetic energy density is given by τ w (r). This was already noticed by Bohórquez et al. who proposed a partition of molecular space based on the local behaviour of τ w (r)/ρ(r), valid for every pair of atoms connected through a BCP [START_REF] Bohórquez | A localized electrons detector for atomic and molecular systems[END_REF]. They also introduced the localized electron detector LED defined as the local momentum associated with τ w (r)/ρ(r), P (r) :

P (r) = - ∇ρ(r) 2ρ(r) . (3.19)
Contrary to all descriptors hitherto introduced, P (r) is not a scalar field, but a vectorial field. The analysis of LED is based on the visualisation of the modulus of P (r), (| P (r)|), and not on the partition induced by P (r) itself. As argued by Bohórquez et al. , critical points of P (r) match with those of ρ(r), and therefore not further partitions need to be analysed. Just as for t LOL (r), we may rescale τ w (r) by τ T F (r) defining the dimensionless variable t bose (r) [START_REF] Boto | Interpretation of the reduced density gradient[END_REF] as:

t bose (r) = τ w (r) τ T F (r) , ( 3.20) 
t bose (r) carries the same chemical information as τ w (r); both account for the single particle character of the system.

Similar to τ w (r) and τ (r), t bose (r) is a lower bound to t LOL (r), and they approach each other in regions well described by a single orbital, as it occurs where there is electron pair localization [START_REF] Savin | Electron localization in solid-state structures of the elements: the diamond structure[END_REF]. We may establish a parallelism between both functions: if t LOL is understood as an indicator of positions where localized orbitals attain their stationary points, t bose may be understood as a locator of the stationary points of the electron density. As explained by Savin [START_REF] Savin | The electron localization function (elf) and its relatives: interpretations and difficulties[END_REF], at regions where localized orbitals attain their maxima, | ∇ρ(r)| is expected to be close to 0, and both functions t LOL and t bose are driven to small values. Thus, one requirement (though not sufficient) for electron localization is small values of | ∇ρ(r)|, and therefore of τ w (r) as well as t bose . Note that the opposite is not true; not all regions of low values of | ∇ρ(r)| involve maxima of localized orbitals. In this regard t bose (r) contains more chemical information than t LOL (r); it shows minima at regions where the Pauli repulsion accounted for the Pauli kinetic energy (see following subsection) is relatively low. For the sake of comparison with LOL, we define β(r) = 1/1 + t bose (r), as an upper limit to LOL(r) (Fig. 7.1). It may be seen that the chemical picture obtained by the two functions is the same; maxima account for regions of electron-pair localisation, i.e. cores, lone and bonding electron pairs. This interpretation is also valid for any function derived from τ w (r), such as τ w (r)/ρ(r) or LED. As noted by Bohórquez et al. [START_REF] Bohorquez | Local Quantum Chemistry[END_REF] both τ w (r)/ρ(r) and LED are bounded by physical limits, whereas t bose (r) is an unbounded variable.

Contrary to the bonding descriptors based on τ (r), τ w (r) bonding descriptors have the unique feature of revealing not only atomic shells, bonding and lone electron pairs, but also non-covalent interactions as we shall see in Section 3.5

Bonding descriptors based on τ (r) and τ w (r)

Since τ w (r) contains the bosonic information of the system, for a single determinantal wave function the difference between τ (r) and τ (r) w is a measure of the excess of kinetic energy density due to the Pauli principle. This difference is known as the Pauli kinetic energy density t p (r) [START_REF] Savin | Electron localization in solid-state structures of the elements: the diamond structure[END_REF] t p = τ (r) -τ w (r).

(3.21)

The right hand term of Equation 3.21 matches with the Laplacian of the conditional propablity density D(r) introduced to define ELF [START_REF] Becke | A simple measure of electron localization in atomic and molecular systems[END_REF]. Additionally the term

D 0 σ = 3 5 (6π 2 )ρ 5/3 σ
is the Thomas-Fermi kinetic energy density τ T F (r). As proposed by Savin et al [START_REF] Savin | Electron localization in solid-state structures of the elements: the diamond structure[END_REF] ELF may be understood as the excess of kinetic energy compared with a system of bosons of the same density due to the Pauli principle, all of it scaled by the Thomas-Fermi term.

χ(r) = t p (r) τ T F (r) = τ (r) -τ w (r) τ T F (r) . (3.22)
From this kinematic interpretation of ELF, all the chemical meaning of ELF is contained in t p (r) as the only measure of electron localization [START_REF] Gatti | Chemical bonding in crystals: new directions[END_REF]. Nevertheless it is known that t p (r) is not able to reveal chemical structure features. As explained by Schmider et al. [START_REF] Schmider | Two functions of the density matrix and their relation to the chemical bond[END_REF] the origin of this may be found in the scaling relation between the kinetic energy τ (r) and the density; τ (r) is completely dominated by the core regions. To circumvent this problem, Becke and Edgecombe chose τ T F (r) as reference. Within the local quantum theory framework, Bohórquez et al. chose the electron density as reference [START_REF] Bohórquez | A localized electrons detector for atomic and molecular systems[END_REF]. They analysed the local values of all the functions involved in t p (r), t p (r)/ρ(r), τ (r)/ρ(r) and τ w (r)/ρ(r). They have not only shown, that t p (r)/ρ(r) provides a better depiction of electron localization than t p (r), but τ (r)/ρ(r) and τ w (r)/ρ(r) are useful chemical bonding descriptors too. Although χ(r) is given by the difference between t LOL (r) and t bose (r), its features as bonding descriptor are closer to those of t LOL (r) than to those of t bose (r). For instance, non-covalent interactions are identified as saddle points of χ(r) and t LOL (r) while noncovalent interactions are easily identified as minima of t bose (r). For visualisation purposes it is much better to work with extrema, i.e. maxima and minima, than saddle points.

The ratio between τ (r) and τ w (r) has been widely used to define self-correlation-free meta-GGAs and local hybrid functionals [START_REF] Jaramillo | Local hybrid functionals[END_REF][START_REF] Schmidt | One-electron selfinteraction and the asymptotics of the kohn-sham potential: an impaired relation[END_REF].

g(r) = τ w (r) τ (r) . (3.23)
Similarly to t p (r), g(r) detects regions where the density is dominated by a single orbital ("iso-orbital" regions). Unlike t p (r), t LOL (r) or t bose (r), g(r) is a bounded function

0 ≤ g(r) ≤ 1, (3.24) 
"Iso-orbital" regions are characterised by g(r) → 1. In Figure 3.4 g(r) is computed for H 2 and N 2 at B3LYP level. For H 2 the electron density is computed using only one Kohn-Sham orbital and g(r) = 1 is expected everywhere. For g(r) cancels at the bond critical point and it displays a higher g(r) value minima at nuclear positions. Between these two regions g(r) attains its maximum value 1. Far away from nuclear positions τ w (r) → τ (r) and thus g(r) approaches to 1 Although g(r) does not suffer from the same scaling problem as t p (r), in fact it is already scaled by τ (r), it is expected to suffer from the same pathologies as χ(r) for describing non-covalent interactions. It is worth noting that η SCC (r) = 1 -g(r) introduced in Chapter 1 may be rewritten in terms of t p (r).

η SCC (r) = 1 -g(r) = t p (r) τ (r) . (3.25)

Bonding descriptors from τ (r) ansatzs

Searching for a density based ansatz of τ (r), Fintzel defined the ratios [START_REF] Finzel | Elf and its relatives a detailed study about the robustness of the atomic shell structure in real space[END_REF] 

f 2 (r) = τ (r) -τ T F (r) τ w (r) , ( 3.26 
)

f 3 (r) = τ (r) τ w (r) + τ (r) . (3.27)
She analysed the ability of these two indicators for revealing atomic shells and chemical bonds. She also showed that all the based kinetic energy density descriptors herein described may be understood as modifying functions for describing τ (r) (See Table 3.2).

Ansatz

Modifier

τ (r) =τ w (r) + χ(r)τ T F (r) χ(r) = τ (r)-τw(r) τ T F (r) τ (r)= τ w (r)f 2 (r) + τ T F (r) f 2 (r) = τ (r)-τ T F (r) τw(r) τ (r)= f 3 (τ (r) w + τ T F (r)) f 3 (r) = τ (r) τw(r)+τ (r) τ (r)= t LOL (r)τ T F (r) t LOL (r) = τ (r) τ T F (r) τ (r)= τw(r) g(r) g(r) = τw(r) τ (r)
Table 3.2: Kinetic energy density functionals (left) analysed by Fintzel, along with their modifier function (right).

The local-wave vector

The local-wave vector is defined as k(r) = -∇ρ(r)/ρ(r) [START_REF] Nagy | Ratio of density gradient to electron density as a local wavenumber to characterize the ground state of spherical atoms[END_REF]. It has been shown to reveal the atomic shell structure [START_REF] Kohout | Contribution to the electron distribution analysis. i. shell structure of atoms[END_REF] and characterise atomic and molecular ground states. From the information theory point of view, Nagy and Liu have shown that the the local-wave vector is nothing but the gradient of Shanon's information per particle and the square of Fisher information's per particle [START_REF] Nagy | Local wave-vector, shannon and fisher information[END_REF]. The success of many of the descriptors based on τ w (r) may be understood in terms of k(r) and its connection to τ w (r)

τ w (r) = ρ(r)| k(r)| 2 8 . ( 3.28) 
LED ( P (r)) is nothing but half the modulus of k(r).

P (r) = - k(r) 2 . ( 3.29) 
Comparing | P (r)| with that of a suitable reference system such as HEG , one may obtain the reduced density gradient s(r) introduced in the GGA exchange functionals

s(r) = | P (r)| p T F (r) , (3.30) = | k(r)| 2k T F (r) , ( 3.31) 
where p T F (r) and k T F (r) are the Thomas-Fermi momentum k T F (r) = 2p T F (r) and the Fermi momentum as defined in Equation 1.154.

Conversely a more elaborated scaling is used by the density overlap regions indicator (DORI) proposed by de Silva et al. [START_REF] Silva | Simultaneous visualization of covalent and noncovalent interactions using regions of density overlap[END_REF] LED and s(r) provide very similar chemical pictures for N 2 as displayed in Figure 3. [START_REF] Mcweeny | Methods of molecular quantum mechanics[END_REF] As it has been already discussed [START_REF] Boto | Interpretation of the reduced density gradient[END_REF], core, lone pairs and interatomic bonding regions may be identified as minima of s(r). LED provides a similar picture of that obtained by s(r). Due to the different exponent of ρ(r) in the denominator, 4/3 for s(r) and 1 for LED, the difference between maxima and minima are much more highlighted in s(r) than in LED. This effect is specially notable in the minima associated with lonepairs. One of the strong points of LED is that it is a bounded function and different chemical entities may be visualised by tuning the LED value. In Figure 3.5 core regions are coloured in yellow and they were obtained obtained by a LED=6.0 isosurface, while the cyan isosurface identifying the bonding region was obtained setting LED=0.6.

Since LED, s(r) and DORI use the same basic variable, k(r), it is the local-wave vector who carries all the chemical content. An important property of the local-wave vector, and in general, of any function of the form | ∇ρ(r)|/ρ n (r), is that the information from the electron density and its Laplacian ∇ 2 ρ(r) is added up. Critical points of ρ(r) are identified as zeros of | ∇ρ(r|/ρ n (r). Information from ∇ 2 ρ(r) may obtained by analysing its gradient

∇ | ∇ρ(r)| ρ n (r) = 1 | ∇ρ(r)|ρ n (r) 3 u=1 3 v=1 ∂ 2 ρ(r) ∂x u ∂x v ∂ρ(r) ∂x v -n | ∇ρ(r)| 2 ρ(r) ∂ρ(r) ∂x u x u ,
(3.32) where u and v run over x, y and z. Because | ∇ρ(r)| appears in the denominator of the right-hand side of Equation 3.32, | ∇ρ(r)|/ρ n (r) is not differentiable at critical points of ρ(r). However at these points | ∇ρ(r)|/ρ n (r) behaves formally like a minimum, and this problem may be circumventedby considering these points as minima. Since the Atoms In Molecules Theory focusses on critical points of ρ(r) we will refer to these point as AIM-CPs. By contrast we will call Non-AIM-CPs to points where 3.32 cancels. To analyse Non-AIM-CPs it is convenient to rewrite Equation 3.32 in a matricial form

∇ | ∇ρ(r)| ρ n (r) = X | ∇ρ(r)|ρ n (r) H(ρ(r)) -n | ∇ρ(r)| 2 ρ(r) I ∇ t ρ(r), (3.33) 
where H(ρ(r)) is the electron density Hessian matrix (Equation 2.6) and I is the identity matrix of order 3. 

∇ t ρ(r) =      ∂ρ ∂x ∂ρ ∂y ∂ρ ∂z      , X = ( x y z). ( 3 
∇ 2 ρ(r) = λ 1 + λ 2 + λ 3 = 3n | ∇ρ(r)| 2 ρ(r) . ( 3.36) 
Thus ∇ 2 ρ(r) is always positive at Non-AIM-CPs which means that these critical points appear in regions of electron density depletion (see Chapter 4 for a detailed explanation). A similar relation to that given by Eq 3.36 is found in the one-electron potential (OEP(r)) [START_REF] Hunter | The exact one-electron model of molecular structure[END_REF][START_REF] Sagar | An examination of the shell structure of atoms and ions as revealed by the one-electron potential[END_REF]:

OEP(r) = 1 4 ∇ 2 ρ(r) ρ(r) - 1 2 ∇ρ(r) ρ(r) 2 , (3.37) = ∇ 2 ρ(r) 2 ρ(r) , ( 3.38) 
Hunter showed that OEP(r) is the exact local kinetic energy for a one-electron wave function θ(r), whose square is proportional to the electron density

ρ(r) = N |θ(r)| 2 , (3.39)
where N is a normalisation constant. For a one-electron distribution OEP(r) is formally identical to Bohm's quantum potential. Kohout found a similar relationship for the many-electron case [START_REF] Kohout | On the relationship between the one-electron and bohm's quantum potential[END_REF]. Regions of negative OEP(r) have been identified as classically allowed regions, in the sense that the kinetic energy takes positive values. Conversely, the regions where OEP(r) attains positive values, have negative kinetic energy, and therefore have been identified as classically forbidden regions. This separation has been used to identify atomic shells and bonding regions as the classically allowed ones. Transition between both regions occur at points where n = 1/6 in Equation 3.36, thus CPs of | k(r)|/ρ(r) 6 match with zeros of OEP(r).

Basin properties

Once the real space is exhaustively partitioned into basins, it is possible to define the basin average of an operator A as

A Ω = A Ω = Ω dr N 2 Ψ * AΨ + ( AΨ) * Ψ]dr . ( 3.40) 
A basin property is therefore determined by the integration of a corresponding property density, ρ A (r), over the basin Ω

A Ω = Ω ρ A (r)dr, (3.41) 
where

ρ A (r) = N 2 [Ψ * AΨ + ( AΨ) * Ψ]dr . (3.42)
Equations 3.41 and 3.42 can also be expressed in terms of the reduced density matrices. If A is a one-electron operator, Equation 3.41 becomes

A Ω = Ω A(r; r )ρ(r; r )dr | r=r . (3.43)
If A is by contrast a two-electron operator

A Ω = Ω dr 1 Ω A(r 1 , r 2 )ρ 2 (r 1 , r 2 )dr 2 . (3.44)
The most important consequence of the definition of a basin property is that the average value of any observable may be partitioned into basin contributions The simplest operator that we can integrate over a basin is the unity, A = 1. The property density associated to the unity operator is the charge density and, from Equation 3.42, the basin population of Ω (defined as the average number of electrons in the Ω, N Ω ) is given by

A = Ω A Ω . ( 3 
N Ω = Ω ρ(r)dr. (3.46)
Equivalently the average number of pairs in Ω may be casted as

D 2 (Ω, Ω) = Ω Ω ρ 2 (r 1 ; r 2 )dr 1 dr 2 . (3.47)
Any component of the energy of the system may be also partitioned into basin contributions. For instance the electron-nucleus interaction may be partitioned as

V AB en = -Z B Ω A ρ(r) |r -R B | dr, ( 3.48) 
where V AB en is the interaction between electrons in the basin Ω A and the nucleus B. The electron-electron interaction may be casted as

V AB ee = 1 2 Ω A Ω B r -1 12 ρ 2 (x 1 , x 2 )dx 1 dx 2 , ( 3.49) 
where V AB ee is the electron repulsion between electrons in the basin A and the electrons in the basin B.

Population analysis

Among the aforementioned properties the most widely used for analysing chemical bonding has been the electron population (Equation 3.46). Undoubtedly chemical concepts were developed in R 3 , and are understood in terms of how electrons guard the space, that is, the electron distribution. Along with the average number of electrons in a given region, the electronic fluctuations among different regions provide insight into the electron localisation/delocalisation. Many of the modern chemical bond theories are defined in terms of statistics of the electron population after the chemical system of interest has been partitioned according to the QCT methodology.

The probability of finding n electrons in the region Ω and the other (N -n) in the complementary region Ω = R 3 -Ω,P n (Ω) is given by [START_REF] Bader | Spatial localization of the electronic pair and number distributions in molecules[END_REF] 

P n (Ω) = N n Ω dr 1 . . . dr n Ω ρ N (r 1 , . . . .r N )dr n+1 . . . dr N . (3.50)
The averaged number of electrons and electron pairs in a region Ω were defined by Equation 3.46 and Equation 3.47 and they may rewritten in terms of P n (Ω)

N Ω = n P n (Ω)n, (3.51) D 2 (Ω, Ω) = n P n (Ω)n(n -1). (3.52) From ρ 2 (r 1 , r 2 ) = ρ(r 1 )ρ(r 2 ) -ρ xc (r 1 , r 2 ), D 2 (Ω, Ω) becomes D 2 (Ω, Ω) = N Ω 2 -N Ω,Ω , (3.53) 
where

N Ω,Ω = Ω dr 1 Ω ρ xc (r 1 , r 2 )dr 2 . (3.54)
The quantity N Ω,Ω may be understood as a measure of the total correlation inside the region Ω, since it reduces the number of pairs created by an independent electron distribution. N Ω,Ω is closely connected with the fluctuation in the population of Ω, defined as

Λ(Ω) = N n=0 P n (Ω)(n -N Ω ) 2 , = N n=0 n 2 P n (Ω) - N n=0 nP n (Ω), = N 2 Ω -N Ω 2 . (3.55)
On the other hand, D 2 (Ω, Ω) in Equation 3.53 may also be written as

D 2 (Ω, Ω) = n P n (Ω)n(n -1) = N 2 Ω -N Ω . (3.56)
From Equations 3.55 and 3.56, we have

N 2 Ω = N Ω 2 + N Ω -N Ω,Ω , (3.57) 
and substituting this equation in Equation 3.55 we finally have

Λ(Ω) = N Ω -N Ω,Ω . (3.58) 
N Ω,Ω decreases the fluctuation in the population of Ω, increasing the electron localization in such region. Due to this property this term receives the name of localization index. When N Ω,Ω attains its maximum value, N Ω , the fluctuation Λ(Ω) becomes zero, generating a situation of maximum localization. In such a case, the probability of finding n electrons in Ω, P n (Ω), becomes one, N Ω is equal to n, and the average number of pairs in Ω is N Ω ( N Ω -1). This limit situation is known as a pure pair population.

Similarly, one can measure the degree of localization of the electrons in two different regions Ω 1 and Ω 2 by determining the fluctuation in the population of the combined region

Ω = Ω 1 + Ω 2 Λ(Ω) = Λ(Ω 1 ) + Λ(Ω 2 ) -2 N Ω1,Ω2 , (3.59) 
where

N Ω1,Ω2 = Ω1 dr 1 Ω2 ρ xc (r 1 , r 2 )dr 2 , ( 3.60) 
and Λ(Ω 1 ) and Λ(Ω 2 ) are given by Equation 3.55. The quantity 2 N Ω1,Ω2 is a measure of the extent to which electrons in Ω 1 are delocalised over Ω 2 and viceversa and it is known as delocalisation index δ Ω1Ω2 . If these two regions complete the space, Ω 1 ∪ Ω 2 = R 3 , one finds that

N Ω1,Ω1 + N Ω2,Ω2 + 2 N Ω1,Ω2 = N. (3.61)
Since for a closed system the number of electrons remains constant, maximising the degree of localisation in a given region leads to a minimisation of the electron delocalisation between different regions. The number of pairs that can be formed between electrons in different regions is given by

D 2 (Ω 1 , Ω 2 ) = Ω1 dr 1 Ω2 ρ 2 (r 1 , r 2 )dr 2 = N Ω1 N Ω2 -N Ω1,Ω2 . (3.62)
In the limit of pure pair population, N Ω1,Ω1 and N Ω2,Ω2 attain their maximal values, N Ω1 and N Ω2 , respectively. In that case, the delocalisation index, 2 N Ω1,Ω2 , becomes zero and the electrons are perfectly localised in both regions. The number of pairs formed between the two regions, becomes from Equation 3.59 equal to the number of pairs that can be formed with two sets of distinct objects.

If real space is partitioned into several regions, ∪ m i=a Ω a = R 3 (m ≥ 2), the above relations between the delocalization and localization indices may be generalized. For instance, Eq. 3.62 becomes

a N aa + 2 a =b N ab = N, ( 3.63) 
where the indices a, b, . . . run over all the basins. The definitions of localization and delocalisation indices both together with Eqs 3.55 and 3.56 show how the inter and intra correlation may be described from the exchange-correlation density, ρ xc (r 1 , r 2 ). Indeed, ρ xc (r 1 , r 2 ) may be seen as a generator of 2-particle fluctuation in the electron distributions [START_REF] Ziesche | Attempts toward a pair density functional theory[END_REF]. All these concepts many be generalized, not only for two disjoint domains in real space, but for any number (m ≥ 2) of regions by means of n th order cumulants [START_REF] Francisco | A hierarchy of chemical bonding indices in real space from reduced density matrices and cumulants[END_REF][START_REF] Menéndez | Oneelectron images in real space: Natural adaptive orbitals[END_REF].

Chapter 4

The NCI method The electron density has a fundamental advantage over MO-based descriptors because it is an experimentally accessible scalar field and is a local function defined within the exact-many body theory and supported by the Hohenberg-Kohn theorems [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF]. The relationship between electron density topology and physical/chemical properties can be understood from the Hohenberg-Kohn theorem (see Chapter 1), which asserts that a system's ground-state properties are a consequence of its electron density. Furthermore because chemical reactions proceed by ρ(r) redistributions, methods that analyse ρ(r) distributions should help to understand the electron structure of molecules and thus chemical reactivity.

Our approach, introduced in the coming sections, uses the density and its derivatives, allowing simultaneous analysis and visualisation of a wide range of interaction types as real space surfaces and adds an important tool to the chemist's arsenal [START_REF] Johnson | Revealing noncovalent interactions[END_REF][START_REF] Contreras-García | Nciplot: a program for plotting noncovalent interaction regions[END_REF][START_REF] Contreras-García | Analysis of hydrogenbond interaction potentials from the electron density: integration of noncovalent interaction regions[END_REF].

The reduced density gradient

The reduced density gradient, s(r), or RDG, is a fundamental dimensionless quantity in DFT used to describe the deviation from a homogeneous electron distribution 1.154. Properties of s(r) have been investigated in depth in the process of developing increasingly accurate functionals [START_REF] Sahni | Study of the density-gradient expansion for the exchange energy[END_REF][START_REF] Perdew | Generalized gradient approximation made simple[END_REF][START_REF] Pearson | Local asymptotic gradient corrections to the energy functional of an electron gas[END_REF][START_REF] Zupan | Distributions and averages of electron density parameters: Explaining the effects of gradient corrections[END_REF][START_REF] Tognetti | A new parameter-free correlation functional based on an average atomic reduced density gradient analysis[END_REF].

The origin of s(r) can be traced back to the generalised gradient contribution to the GGA exchange energy

E GGA x [15] E GGA x -E LDA x = - F (s)ρ 4/3 (r)dr, (4.1) 
where F (s) is a function of s(r) for a given spin with

s(r) = 1 C s | ∇ρ(r)| ρ(r) 4/3 , ( 4.2) 
C s = 2(3π 2 ) 1/3 and the 4/3 exponent of the density ensures that s(r) is a dimensionless quantity.

The lower bound of the reduced density gradient is zero, as occurs throughout a homogeneous electron gas and at bond critical points.

The effect of bonding on the reduced density gradient is especially easy to visualise when s(r) is plotted as a function of the density. Graphs of s(r) versus ρ(r) assume the form s(r) = aρ(r) -1/3 , where a is a constant. This can be easily proven from a Slater orbital model density (STO). For a single atomic orbital ψ(r) = e -αr , the density is ρ(r) = e -2αr and the gradient is ∇ρ(r) = -2αρ(r), such that

s ST O (r) = 1 C s 2αρ(r) ρ(r) 4/3 = 2α C s ρ(r) -1/3 . (4.3)
When there is overlap between atomic orbitals, a spike in the s(r) versus ρ(r) diagram appears. The points forming this spike identify the interaction when they are mapped back to real space. This procedure is used to reveal non-covalent interactions, such as hydrogen bonds, steric repulsions, van der Waals interactions, and even covalent and ionic bondings.

To explore the features associated with a small reduced density gradient, we first examine the plots of s(r) versus ρ(r). Additionally, plots of g(r) = τ w (r)/τ p (r) versus ρ(r) are able to reveal regions of orbital overlapping [START_REF] Schmidt | One-electron selfinteraction and the asymptotics of the kohn-sham potential: an impaired relation[END_REF]. In "iso-orbital regions" g(r) → 1, therefore deviations from 1 characterise regions of orbital overlapping, revealing spikes in the g(r) versus ρ(r) diagram as s(r) does. These plots were generated by evaluating the reduced density gradient with DFT densities for methane and water dimers (Figure 4.1). Plotting s(r) versus ρ(r), reveals the basic pattern of intramolecular and intermolecular interactions. Methane illustrates the typical covalent pattern. The left-side points (small density and large density gradient) corresponds to C-H covalent bonds. Covalent bonds have their characteristic BCP, corresponding to s ≈ 0. Regions near the nuclei have larger density values and appear beyond the right edge of the plot. Additionally g(r) diagrams disclose the same pattern as s(r) showing spikes at the same positions, revealing regions of high orbital overlapping. s(r) versus ρ(r) diagrams have an overall shape of the forms aρ -1/3 because atomic and molecular densities are piecewise exponential. The results for water are very similar. Plots of s(r) versus ρ(r) for these systems exhibit a new feature: one or more spikes in the low-density, low-gradient region, a signature of non-covalent interactions. This is the basis of the NCI method. 

Physical interpretation of s(r)

It may be straightforwardly shown that s(r) is the kernel of t bose (r) introduced in Chapter 3 [START_REF] Boto | Interpretation of the reduced density gradient[END_REF]:

s(r) = 3 10 
1/2 1 2(C F ) 1/2 | ∇ρ(r)| ρ(r) 4/3 , ( 4.4 
)

t bose (r) = τ w (r) τ T F (r) = 5 3 s(r) 2 . (4.5)
We may notice that its CPs match with those of t bose (r) 

∇t bose (r) = 10 
∇ 2 t bose (r cp ) = 5 3 s(r cp )∇ 2 s(r cp ) . ( 4.8) 
Thus, the critical points of s(r) and t bose (r) are identical both in location and in nature. Because of the presence of the gradient of ρ in the numerator, and their positive semidefinite condition, at every CP of ρ(r) both functions cancel and have a minimum. This result may be clearly shown, if we develop the explicit expressions for ∇t bose (r). Inserting Equation 3.35 into 4.6 one obtains

∇t bose (r) = X 4C F ρ(r) 8/3 H(ρ(r)) - 4 3 ( ∇ρ(r)) 2 ρ(r) I ∇ t ρ(r), (4.9) 
where X and ∇ t ρ(r) were introduced in Equation 3.34. It is worth noticing that in contrast to s(r) (and functions of the form | ∇ρ(r)|/ρ n (r) in general), t bose (r) is differentiable at critical points of ρ(r). Similarly to | ∇ρ(r)|/ρ n (r) we may differentiate two different situations where ∇t bose (r) is cancelled: As pointed out above, AIM-CPs correspond to minima of t bose (r) and s(r). Non-AIM-CPs involve that H(ρ(r)) is diagonal and its eigenvalues, λ 1 , λ 2 and λ 3 , are identical and equal to 4 3 | ∇ρ(r)| 2 /ρ(r). The Laplacian of the electron density may be rewritten as:

∇ 2 ρ(r) = λ 1 + λ 2 + λ 3 = 4 | ∇ρ(r)| 2 ρ(r) . ( 4 

.11)

As discussed in Section 3.5 the variables in Equation 4.1.1 for the non-AIM-CPs are also involved in the one-electron potential (OEP(r)) [START_REF] Hunter | The exact one-electron model of molecular structure[END_REF][START_REF] Sagar | An examination of the shell structure of atoms and ions as revealed by the one-electron potential[END_REF] 

OEP(r) = 1 4ρ(r) ∇ 2 ρ(r) - 1 2 | ∇ρ(r)| 2 ρ(r) , ( 4.12) 
When OEP(r) cancels, the ratio between ∇ 2 ρ(r)/ρ(r) and ( ∇ρ(r)) 2 /ρ 2 (r) is equal to 1/2, whereas it is 4 when Eq 4.1.1 is satisfied. Thus, any non-AIM CPs of t bose (r) is anticipated by a zero of OEP(r), and therefore by a transition from a classically allowed to a forbidden region. The origin was set at the BCP. The features of s(r) for N 2 have already been discussed in Section 3.5. t bose (r) differentiates the core, lone-pairs and interatomic bonding regions as minima separated by maxima. As revealed by ELF(r) maxima, these minima correspond to large electron pair localisation. Nuclear and bond critical points of ρ(r) are identified as zeros of t bose (r). Conversely lone pairs are not revealed by critical points of ρ(r), but by critical points of the Laplacian of the electron density. t bose (r) shows minima at such positions driven by the non-AIM-CP condition (Eq 4.10), following thereby a transition from a classically forbidden region to a classically allowed region, as may be seen in Figure 4.2. We highlight that all CPs of t bose given by Eq 4.10 are anticipated by roots of OEP, but the opposite is not true; not all roots of OEP are followed by Eq 4.10. This situation may be found in N 2 . Even though no CP of t bose (r) is found between the external core-maxima and the BCP, the former is localized at regions of positive OEP, whereas the latter is found in a region of negative OEP. We may notice that the BCP for F 2 is localised at a region of positive OEP. It is well known that F 2 exhibits a positive value of the Laplacian of the electron density at the BCP, being thereby identified as a region of electron depletion (thus called charge-shift bond). Because the signs of OEP and ∇ 2 ρ(r) are the same at CPs of ρ(r), the BCP for F 2 is localized at a classically forbidden region. The connection of s(r) with τ w (r) allows to identify regions with a marked bosoniclike character as those where s(r) attains small values and which are characterised by peaks in the s(r) versus ρ(r) diagram.

The electron density Hessian second eigenvalue

According to the divergence theorem, the sign of the Laplacian of the density (∇ 2 ρ(r)) indicates whether the net gradient flux is entering (∇ 2 ρ(r) < 0) or leaving (∇ 2 ρ(r) > 0) an infinitesimal volume around a reference point. Hence, it highlights whether the density is concentrated or depleted at that point, relative to the surrounding environment. To understand bonding in more detail, it is often useful to decompose the Laplacian into the contributions along the three particular axes of maximal variation. These components are the three eigenvalues, λ i , of the electron density Hessian matrix, H(ρ), such that

Tr(H(ρ)) = ∇ 2 ρ = λ 1 + λ 2 + λ 3 λ 1 < λ 2 < λ 3 . (4.13)
where λ 3 is the eigenvalue associated with the eigenvector which expands along the intermolecular axis, and λ 1 , λ 2 represents variations in the plane perpendicular to the λ 3 eigenvector.

The sign of ∇ 2 ρ(r) determines whether the compression (∇ 2 ρ(r) < 0) or the expansion (∇ 2 ρ(r) > 0) of the electron density is the dominant effect at the reference point. Bader smartly showed that these compressions and expansions are related with the balance between τ (r) and V(r)

V(r) = 1 4 ∇ 2 ρ(r) -2τ (r), = 1 4 (λ 1 + λ 2 + λ 3 ) -2τ (r). ( 4 

.14)

He classified chemical interactions as closed-shell, for which ∇ 2 ρ(r) > 0 at the BCP and are dominated by the kinetic energy. Conversely, shared interaction implies a lowering of the potential energy and therefore ∇ 2 ρ(r) < 0.

Weak interaction falls into the category of closed-shell, not being possible to differentiate them using the overall sign of ∇ 2 ρ. To this purpose it is much more convenient to focus on its eigenvalue contributions.

At nuclei, all the eigenvalues are negative, while at the center of cages or holes (minima of ρ) all the eigenvalues are positive. In the remaining points of space λ 3 > 0, λ 1 < 0, and λ 2 can be either positive or negative. In terms of τ (r) and V(r), λ 3 > 0, λ 1 < 0 represent directions dominated by the kinetic and potential energies respectively, whereas along the direction of λ 2 there is a balance between both terms.

Van der Waals interactions and hydrogen bonds show negatives values of λ 2 at the BCP and can be differentiated by properties at the corresponding BCPs. Characteristic densities of van der Waals interactions are much smaller than densities at which hydrogen bonds appear. However, steric clashes and hydrogen bonds span similar densities ranges and overlap in plots of s(r) versus ρ(r). In the cases where λ 2 is positive (as in rings or cages), usually several atoms interact but are not bonded, which can correspond to steric crowding according to classical chemistry. Although there is no repulsion in an equilibrium system since V(r) is negative everywhere, it is often found in the literature that regions of positive λ 2 are said to be repulsive, while regions of negative λ 2 attractive. the same molecule or in-between molecules. (dashed green line in Fig. 2(a)).

• Van der Waals forces: These attractive forces have a purely quantum mechanical nature. In particular, the constant movement of electrons around the nucleus transforms an atom into a f uctuating multipole. These temporary charges can cause attraction between close oppositely charged atoms yielding a stable bonding of weak energy. Although the force of an individual van der Waals bond is relatively weak, the cumulative effect of multiple of them may strongly inf uence the global structure of large molecular systems -as shown in many chemical reactions and protein-ligand interactions.

• Steric repulsion: These repulsive forces are short range interactions which occur when two atoms approach one another. Intuitively, they are due to the fact that too many electrons occupy the same space (Pauli principle). This can be pictured as forces occurring in regions of space bounded by negatively charged elements, such as covalent bonds and negatively charged atoms forming molecular cycles [START_REF] Tao | Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids[END_REF]. The localization of these interactions is of major importance for chemical design tasks since they indicate regions of space that cannot receive additional electrons.

Input Data

The input of our analysis are two scalar f elds derived from the electron density: the signed electron density and the reduced gradient. In the following, we provide a brief description of these two f elds. We refer the reader to [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF][START_REF] Perdew | Accurate and simple analytic representation of the electron-gas correlation energy[END_REF][START_REF] Becke | Density-functional exchange-energy approximation with correct asymptotic behavior[END_REF][START_REF] Savin | Density functionals for the yukawa electron-electron interaction[END_REF] for a more detailed description.

Signed Electron Density. In quantum chemistry, electrons behave simultaneously as waves and particules, which only allows for a probabilistic evaluation of their positions. The relative probability that electrons can be found in a particular location of a space Ω is described by the electron density ρ : Ω → R+. Density cusps are expected at the nuclei, the center of the atoms, whereas charges decrease exponentially away from them. Thus, the nuclei dictate the overall behavior of ρ. Weak atomic interactions are very often occluded and cannot be directly computed or visualized. For instance, while the ethanediol molecule admits a noncovalent bond (dashed green line, Fig. 2(b)), this bond is not captured by the electron density ρ [START_REF] Heyd | Efficient hybrid density functional calculations in solids: assessment of the heyd-scuseria-ernzerhof screened coulomb hybrid functional[END_REF]. Investigating the f ow of ∇ρ in Fig. 2(b) reveals that the f ow enters the molecular cycle from the outside and uniformly covers all atoms forming the cycle. The circular structure shown in Fig. 2(a) is not captured by the f ow while it is crucial for the analysis of attractive and repulsive interactions. A differentiation of these interactions solely based on the density ρ is not possible, in general. To compensate therefore, a direct investigation of the Hessian Hρ and its eigenvalues is needed [START_REF] Becke | Density-functional exchange-energy approximation with correct asymptotic behavior[END_REF]. Assuming the eigenvalues λi are given in increasing order, i.e., λ1 < λ2 < λ3, we observe the following behavior. In the vicinity of the nuclei all eigenvalues are negative. Away from it, λ3 becomes positive and varies along the internuclear axis representing covalent bonds. λ1 and λ2 describe the density variation orthogonal to this internuclear axis. λ1 represents the inf uence of the nuclei, and is always negative away from the nuclei. Contrarily, λ2 can be either positive or negative depending on the type of interaction. While attractive interactions concentrate electron charge perpendicular to the bond (λ2 ≤ 0), repulsive interactions cause density depletion (λ2 ≥ 0). Using this localized information, the signed electron density ρ is def ned as ρ : Ω → R with ρ(x) = sign(λ2(x))ρ(x) [START_REF] Becke | Density-functional exchange-energy approximation with correct asymptotic behavior[END_REF]. In contrast to ρ which only assesses the interaction strength of atoms, the signed electron density ρ additionally enables the differentiation of attracting and repulsive interactions. Fig. 2(c) shows an isosurface of the signed electron density for the ethanediol molecule. In contrast to the electron density, the gradient ∇ ρ captures nicely the attraction between the hydrogen and oxygen (red arrows), which forms a noncovalent bond creating a molecular cycle. This folded conformation also introduces repulsion in the molecule captured by ∇ ρ (blue arrows).

While the electron density ρ is a continuous smooth scalar f eld away from the nuclei [START_REF] Becke | Thermochemical tests of a kinetic-energy dependent exchangecorrelation approximation[END_REF], ρ is discontinuous, in general. While ρ is necessary to investigate attractive and repulsive interactions, this property challenges its analysis. The theoretical setting of topological data analysis assumes continuous functions. To conform to this, we need to interpret ρ as a result of a convolution with a mollif er [START_REF] Savin | Electron localization in solid-state structures of the elements: the diamond structure[END_REF]. However, given a mollif cation that interpolates the grid points, the convolution does not need to be performed explicitly in the discrete case, i.e., dealing with piecewise-linear or discrete Morse functions.

Reduced Gradient. To further reveal weak noncovalent interactions, the reduced gradient s : Ω → R+ of ρ was introduced [START_REF] Savin | Density functionals for the yukawa electron-electron interaction[END_REF] 

s = 1 2(3π2)1/3 | ∇ρ| ρ4/3 . (1) 
The reduced density gradient s describes the deviation in atomic densities due to interactions [START_REF] Savin | Density functionals for the yukawa electron-electron interaction[END_REF]. Intuitively, covalent and noncovalent In what follows we will use this last convention, even though it only refers to the balance between τ (r) and V(r) along the λ 2 direction. ρ(r) and sign of λ 2 information may be added up defining the signed electron density, sign(λ 2 )ρ, as the product of sign(λ 2 ) and ρ(r). Contrary to ρ(r), sign(λ 2 )ρ(r) is discontinuous in general. In principle this hurdle may be solved considering sign(λ 2 )ρ(r) as a result of a convolution with a mollifier [START_REF] Voronin | Convolution based smooth approximations to the absolute value function with application to non-smooth regularization[END_REF]. Figure 4.2 depicts the gradient flow of ρ(r) and sign(λ 2 )ρ(r) for 1.2-ethanediol. When analysing the hydrogen bond between the oxygen and hydrogen atoms (Figure 4.2a) ∇ρ(r) does not identify these interactions, uniformly covering all atoms (Figure 4.2b). By contrast, ∇sign(λ 2 )ρ(r) identified a region of incoming flow (attraction) coming from the interacting oxygen and hydrogen atoms (red arrows). This folded conformation also introduces a region of outflow (blue arrows) that covers all the others atoms of the molecule.

Interpreting NCI

The 2D plot

Thus, the interaction type can be distinguished if the s(ρ) diagrams are modified using sign(λ 2 )ρ as the ordinate. This is illustrated for the phenol dimer in Figure 4.4. This is a hydrogen-bonded complex that also exhibits non-bonding interactions within each benzene ring and a stacking interaction between the benzene rings. We thus have the three main types of interactions.

Analysis of the sign of λ 2 thus helps to discern the different types of weak interactions, whereas the density itself provides information on their strength; both are combined in the value of sign(λ 2 )ρ. This is illustrated in Figure 4.4 which shows a modification of the s(r) plot, such that the ordinate is now sign(λ 2 )ρ. When the Hessian eigenvalues are considered, the different nature of these interactions is made clear. The 2D NCI plots will then be used as inputs to construct 3D NCI plots, consisting in isosurfaces of the reduced gradient of the density enabling the visualisation of close contacts. As shown in Table 4.1, the benzene-ring interactions remain at positive value of λ 2 with density value 0.067 a.u., whereas the hydrogen bond now lies at negative value of λ 2 with density value 0.026 a.u. (-0.026 a.u. in terms of sign(λ 2 )ρ). The NCI spikes nearest zero density correspond to weakly-attractive dispersion interactions between the phenyl ring (-0.0054 a.u. and 0.0047 a.u.). Therefore the value of the sign(λ 2 )ρ at the position of the peaks in s(ρ) plots may be used as the signature of non-covalent interactions. 4.1: sign(λ 2 )(ρ) value for each peak of the s vs sign(λ 2 )(ρ) for the phenol dimer.

In order to facilitate the corresponding between 2D and 3D representation, in Fig- ure 4.5c we use the same colouring scheme on these two representations.

The 3D plot

The 3D spatial visualisation of the non-covalent interactions as defined above is done using the data from the 2D plots as input to construct 3D plots composed of reduced density gradient isosurfaces. In a nutshell, a cut-off value of s close to zero, typically s < 0.5 is chosen in order to recover all the non-covalent interactions in the system, i.e. all the spikes in the 2D plots. The corresponding reduced density gradient isosurfaces give rise to closed domains in the molecular space which highlight the spatial localisation of the interactions within the system (see Figure 4.5a). Since 3D isosurfaces are, by definition, regions of low reduced gradient, the density is nearly constant within these.

The isovalue (or cut-off) of s(ρ) chosen for plotting the 3D isosurface determines which features will appear in the NCI plot as well as their spatial extension. In the one hand, all NCI spikes do not strictly achieve s = 0 so that too low a value might miss some of the interaction of interests. In the other hand, too high a value would disclose atomic tails of the density. The cut-off is therefore chosen from the 2D plot so that all spikes, but only spikes, are captured to render a meaningful picture which discovers both attractive and repulsive interactions.

At this stage, however, the types of interaction corresponding to the several isosurfaces are not present. In order to discriminate between them, the density oriented by the sign of λ 2 is further used (as in the 2D plot). A RGB (red-green-blue) colouring scheme is chosen to rank interactions, where red is used for destabilising interactions, blue for stabilising interactions and green for delocalised weak interactions (see Figure 4.5b). The purity of the blue and the red (i.e. the deepness of the color) is associated with a higher density and therefore to a strong interaction.

In some cases, noticeable in ring closings, bicolored isosurfaces appear. They result from stabilising features (revealed by the blue color), counterbalanced by destabilising interactions due to steric crowding (revealed by the red color), such as ring closure.

Stability

Topological features of the electron density are very stable with respect to the calculation method. The main effect of different methods on the s vs ρ diagram is a shift of spikes. The only rule of thumb seems that the same s value should be used when comparing various NCI plots, both in the same or in different systems, provided a single method was employed to obtain the various electron densities. If this is not the case, different s values are seemingly required to compare on similar grounds the s-based results for different computed electron density (e.g. from wave function, promolecular). In other words, a shift of cut-offs is needed to obtain comparable images. This can be related to the fact that s roughly behaves like ρ 1/3 (Equation 4.3) so that the effect of the method on the density is directly followed by s.

It emerges that a one-to-one inverse correlation seems to exist among the directionality (and the strength) of specific non-covalent interaction and the surface/volume ratio of the corresponding s isosurface. In particular, the stronger the interaction is, the smaller and more disc-shaped the s surface appears in real space (and the more negative the ρ sign(λ 2 ) values are). LED isosurfaces display similar shapes, and it has been explained in terms of the relative magnitudes of the curvatures of the electron density at CPs of ρ(r). Given the close relationship between LED and the s(r) the same applies for the latter.

In Table 4.2 the local shapes of both functions are summarised. NCIs are characterised by λ 1 ≈ λ 2 << λ 3 and thus are displayed as planar isosurfaces, as may be seen for methane and water dimer. In order to differentiate between the two not only the shape but also the size of the isosurface should be considered, as we will show latter. This connection between the shape and the nature of the interaction relays on the stability of topological features with the value of the surfaces.

Promolecular densities

Densities are stable to such an extent that their main features are already contained in the sum of atomic densities, ρ at . The resulting molecular density, also known as promolecular density, ρ pro , is then given by:

ρ pro (r) = i ρ at i (r), (4.15) 
A promolecular density obtained from simple exponential atomic pieces is able to predict low-density, low-reduced-gradient regions qualitatively similar to density-functional results. The free atomic densities used in these calculations consist of one Slater-type function for each electron shell, fit to closely reproduce spherically-averaged, density functional atomic densities.

Resultant plots of s pro (r) versus ρ pro (r) for these species show the same 2D features (see Figure 4.6a and Figure 4.7a). Also, 3D isosurfaces generated from the promolecular densities are very similar to those obtained with self-consistent DFT level. For all cases considered, results at the self-consistent and promolecular level are qualitatively equivalent. Quantitative differences are introduced by the density relaxation that, as expected, shift the s versus ρ spikes to more bonding regimes. Specifically, a large shift toward smaller density values is obtained in the spikes corresponding to non-bonded overlap, introducing less repulsion and greater stability. This is to be expected, since the approximate promolecular densities used to generate these isosurfaces cannot adjust to alleviate Pauli repulsion in the manner of self-consistent DFT electron densities. However, once the shift is taken into account (by changing the density cut-off), results at the self-consistent and promolecular level are qualitative equivalent. For example, to generate similar isosurfaces using DFT and promolecular densities for the phenol dimer the value of s were set at 0.5 and 0.3, respectively (see Figure 4 The match between SCF and promolecular densities is a consequence of the stepwise exponential behaviour of the electron density and the fact that we are analysing regions of small perturbation, which may be highlighted by the local-wave vector and any related functions. Even though the gross topological features of ρ(r) may be recovered, this is not the case for any operator computed from a promolecular density. 

Defining NCI regions

Given that chemical interactions are identified as peaks in s(ρ) plots and the visualisation of these peaks leads to closed isosufaces of s(r), the integration of different properties within such isosurfaces may lead to some insight into the nature of the interactions. To performs such integration, it is first necessary to establish a unique definition of the NCI region (Ω N CI ). Given a proper non-interacting reference system, it is possible to define Ω N CI as the region whose points in the s(ρ) plot lie below the s(ρ) curve for the reference system, s ref (r). Mathematically, NCI regions are defined by the condition

s(r) -s ref (r) < 0. (4.16)
To identify these regions, both the reference and the interacting system must be computed and compared. The lower edge of s ref (r) is splined and all points of the interacting system s(r) lying below the splined curve are localised in real space. In Figure 3 Ω N CI is extracted for the methane dimer along with its 3D representation. Density properties can be then integrated within such region to obtain its volume (V N CI ) or its electron population (N N CI )

V N CI = Ω N CI dr, (4.17 
)

N N CI = Ω N CI ρ(r)dr, ( 4.18) 
Furthemore, attractive (att) and repulsive (rep) contributions (in the NCI method parlance) may be defined if sign(λ 2 ) is considered:

V rep N CI = Ω N CI dr λ 2 (r) < 0, (4.19) V att N CI = Ω N CI dr λ 2 (r) > 0, (4.20) 
Contreras et al. [START_REF] Contreras-García | Analysis of hydrogenbond interaction potentials from the electron density: integration of noncovalent interaction regions[END_REF] defined the quantity q n bind as an indicator of the binding effects in Ω N CI q n bind = -

Ω N CI sign(λ 2 )ρ n (r)dr, (4.21) 
where the exponent n is a fitting parameter to mimic the hydrogen-bond bindingenergy curve.

Connection with energetics

The kinetic interpretation of s(r) enables a identification of regions of marked bosoniclike character, and therefore, relevant for chemical interactions. Additionally, it allows to connect s(r) with the Weizäcker kinetic energy density and with the energy density H(r) [START_REF] Bader | A bond path: a universal indicator of bonded interactions[END_REF]. For a system in a stationary state, H(r) is defined as

H(r) = τ (r) + V(r), (4.22) 
where τ (r) is the positive definite kinetic energy density and V(r) is the local virial field

V(r) = 1 4 ∇ 2 ρ(r) -2τ (r). (4.23) 
V(r) represents the average effective potential field felt by an electron at r, and provides a short-range description for the potential energy density. Since V(r) is negative everywhere [START_REF] Keith | Structural homeomorphism between the electron density and the virial field[END_REF] regions with positive H(r) are not repulsive but dominated by τ (r). Regions where H(r) is negative are dominated by V(r). Since τ p (r) = τ w (r) + t(r), Equation 4.22 may be rewritten as:

H(r) = τ w (r) + t p (r) + V(r). (4.24) 
Since H(r) integrates to the total electronic energy E, it is plausible to define a local stabilising energy, ∆H(r) as the difference between H(r) and that for a system of non-interacting reference fragments in equilibria H ref (r). ∆H(r) integrates to the stabilisation energy relative to the non-interacting fragments in equilibrium ∆E = E -

E ref ∆E = E -E ref = ∆H(r)dr ∆H(r) = τ w (r) -τ ref w (r) + t p (r) -t ref p (r) + V(r) -V ref (r) = ∆τ w (r) + ∆t p (r) + ∆V(r). (4.25)
Analysing ∆τ w (r), ∆t p (r) and ∆V(r) in Ω N CI one may obtain insight into the local energetic contributions and whether they contribute to the stabilisation by decreasing the kinetic or potential energy terms. The structural homeomorphism between -V(r) and ρ(r) [START_REF] Keith | Structural homeomorphism between the electron density and the virial field[END_REF] states that the increase of the electron density in the interaction regions is followed by a decrease of V(r), so ∆V(r) is expected to be negative in Ω N CI . As explained in section 4.4, Ω N CI is defined by the condition given by Equation 4.16. Using the relation τ w (r) = (5/3)t T F (r)s 2 (r), ∆τ w (r) is negative in the NCI regions, and thus the balance between ∆t p (r) and ∆τ w (r) + ∆V(r) will indicate whether the stabilisation in Ω N CI is locally dominated by the kinetic or the potential energy.

The term ∆τ w (r) is closely connected with the steric energy proposed by Liu [START_REF] Liu | Steric effect: A quantitative description from density functional theory[END_REF]. Seeking for a partition of electron energy in terms of steric E s [ρ], electrostatic E e [ρ] and quantum effects E q [ρ], Liu proposed a partition of electron energy where T w = τ w (r)dr accounts for the steric energy.

E [ ρ] = E s [ρ] + E e [ρ] + E q [ρ], (4.26) 
In this context one may understand Ω N CI as those regions where the steric effects decrease.

E e [ρ] = V ne [ρ] + J[ρ] + V nn [ρ], E q [ρ] = E xc [ρ] + T s [ρ] -T w [ρ]. (4.27)
From the van der Waals DFT framework, it is found that non-local van der Waals density functionals are defined in terms on models of the static polarizability α(iu, 0) based on s [START_REF] Marques | Fundamentals of time-dependent density functional theory[END_REF],

α(iu, 0) ∝ 1 k 4 F F (s) 4 , (4.28) 
where F (s) is some function of s 2 . For instance in vdW-DF-09 a particular simple choice is made F = 1 + µs 2 . The dispersion interaction energy between two systems A and B can be written in terms of local polarisabilities

E disp = - 3 π ∞ 0 du A dr B α(r, iu), α(r , iu) |r -r | 6 dr , ( 4.29) 
where iu is an imaginary frequency, r is within the domain of system A, and r' is within the domain of B. Regions of lower s, contribute larger to the local polarizabilites and therefore, to the overall dispersion energy. This result is supported by the correlation found between the volume of such regions V N CI and E disp [START_REF] Alonso | Understanding the fundamental role of π/π, σ/σ, and σ/π dispersion interactions in shaping carbon-based materials[END_REF].

A very interesting example where we can first cast from a visual approach the relative energies is found in 4 -Methyl,-5 ' -Phenyl-[1,1' ;2' ,1"; 3", 1" ',2" ',1" ",3" ",1" " ']-sexiphenyl (See Figure 4.9). This system is formed by a central toluene ring with other six rings placed in three branches, one with one ring, another one with two rings and the last one with three rings. We have analysed the effect of rotating two dihedral angles in order to release T-shape interactions. Rotation ϕ 5 gives rise to structures 1-2 (Figure 4.9b and 4.9c respectively ); whereas structures 3-4 (Figure 4.9d and 4.9e respectively) result from the rotation of ϕ 3 . Structures 1 and 3 present a T-shape interaction, whereas it has been respectively released in 2 and 4. A first look to Table 4.3 shows a good agreement between relative volumes and the stability of the system, in such a way that energetic ordering corresponds to the same ordering in NCI volumes (the more stable, the bigger volume). Moreover, NCI enables to detect the presence of the T-shape interactions 1 and 3 that explain their greater stability over rotamers 2 and 4, respectively (see Figure 4.10 and Table 4.3). It should be noted that this kind of structural-stability information is a necessary step in inverse design and in the rationalisation of chemistry. This relation is not completely unexpected since the stabilisation through dispersion interaction is proportional to the overlap area between molecular surfaces. One may In this chapter we describe the algorithms implemented in our principal code for performing NCI calculations: NCIPLOT. The first version of the code was realised in 2010 and developed by Julia Contreras-García, Erin R. Johnson, S. Keinan and W. Yang. This first code was mainly focussed on the visualisation of NCI regions, as extracted from the s vs ρ diagrams, as shown in Chapter 4. The recruit of Alberto Otero-de-la-Roza to the NCIPLOT project lead to a parallelised version of the code, NCIPLOT3. Moreover it added some new keywords to the original code. In order to compute properties within NCI regions as shown in Chapter 4, we developed a new version of NCIPLOT3. For the sake of simplicity we divide this chapter in three parts: i) algorithm for visualising NCI regions, ii) algorithm for computing properties within NCI regions, iii) we perform several benchmark calculations to outline the possibilities and limitations of the algorithms hereby presented.

Algorithm for visualising NCI regions

Figure 5.1 shows the protocol for visualising non-covalent interaction in NCIPLOT, and it is used in all versions of the code. Two basic types of data constitute the input: the density information (based on wave functions or molecular geometries) and the analysis options, which determine the non-covalent interactions to be plotted. Four algorithms analyse the data: i) the selection of interactions (through the input), ii) the construction of the cube and the grid, iii) the calculation of properties at each point (using a number of routines), and iv) the calculation of visualisation data (carried by the main routine, NCIPLOT). Since the input is keyword oriented, the program includes a number of parsing routines. These main features are discussed in the following sections.

Building the cube

Interaction analysis is based on examination of local properties on a cubic grid constructed within the program. This procedure was found to be extremely efficient for computing stable properties (as is the case of NCI). Furthermore, this approach enable us to discard contributions from high-density points in the construction of isosurfaces. The spatial region to be analysed is determined by default, in terms of the molecular geometry. Unless otherwise noted, a cube is constructed for the outermost x,y,z coordinates for all the molecules in the input. An extra radial threshold in each directions is added to ensure that the isosurfaces are contained within the cube (no intermolecular interactions are expected in those regions, but isosurfaces can spread beyond the atoms. A practical threshold was defined as 2 Å:

x i (0) = min[x i ] -2Å
(5.1)

x i (1) = max[x i ] + 2Å, (5.2) 
where x i = x, y, z. This step eliminates spurious symmetry-related cancellations in case of planar systems.

It can be useful to construct a user-defined cube or to analyse the interaction only around one point or molecule. With this purpose in mind, two possibilities when choosing a given interaction from its location in 3D space have been implemented:

• An appropriate choice of the cube boundaries enables the selection of individual interactions (CUBE keyword). The cube boundaries may be defined by cartesian coordinates or by choosing a list of atoms (ATCUBE and LIGAND keywords) (See Figure 5.2c). This selection by atoms was found to be chemically more useful and intuitive than the initial CUBE keyword, so it is a simple but very useful addition to the code.

• An alternative implementation for the geometric criterion consists on defining the center of the cube instead of its boundaries (RADIUS keywords). This option used the origin and length of the box sides as input rather that the Cartesian coordinates themselves.

Pure intermolecular interactions

All of the interactions with at least, a specified fraction (e.g., f = 0.9) of the density from a single molecule are turned off:

ρ monomer ρ tot = ≥ f intramolecular < f intermolecular
This choice causes only intermolecular interactions to be plotted, screening out the intermolecular interactions. This is readily automated if each monomer is uploaded in different files. This procedure enabless the characterisation of monomers and the construction of ρ monomer .

Promolecular densities

The features of promolecular densities have been already discussed in Section 4.3.4 of Chapter 4. In NCIPLOT, promolecular densities are constructed from the atomic positions stored in an xyz coordinate file(s). In order to store atomic densities, two sets of promolecular densities can be used; exponential or radial fits. The former are generated by fully numerically LSDA free-atomic densities for the neutral atom H to Ar, spherically averaged over space and summed over spins. Because atomic densities are piece-wise exponentially decaying for each shell of electrons, they were then fit to one (H,He), two (Li-Ne), or three (Na-Ar) Slater-type functions of the form ρ at = j c j e -r/ζj . Once these densities are written as simple sums of exponential functions, the NCI surfaces can be calculated very efficiently for each (supra)molecule, since all of the necessary data (ρ, sλ 2 ) can be obtained analytically. Radial fits were added to the NCIPLOT3 are available up to Pu.

Visualisation: The cut-offs

The ρ, s coordinated of the density peaks define the appropriate cut-offs for non-covalent interactions. For example, in the formic acid dimer a cut-off of ρ < 0.05 a.u. is appropriate for recovering all the non-covalent interactions. All points giving rise to ρ values above this threshold need to have their s values set to a large value. This enables the user to recover only the non-covalent interactions when s ≤ S (for some isosurface value S). Tuning the cut-off value, the non-covalent interactions of the system may be recovered as individual isosurfaces. The formic acid dimer peaks appear at ρ = 0.01 a.u. for vdW contacts, and ρ = 0.05 a.u. for hydrogen bonds. If the cut-off is set to ρ = 0.01 a.u. the isosurface will only recover the vdW interactions in the system (Figure 5.2b). Furthermore, placing a threshold for the interval ρ = [0.01 -0.06] a.u. enables the user to isolate the hydrogen bonds in a similar manner.

Computing properties within NCI regions

It is convenient, therefore, to perform a preliminary run, where only s(ρ) values are produced, and the user can use these data to determine optimal cut-offs. A second run can subsequently target the non-covalent interactions in a given molecule with no interference from other density regions. For this reason, the current implementation enables the user to decide which file types are to be output. 

Computing properties within NCI regions

Quantitative calculations have been added to the code. As shown in Section 4.4 of Chapter 4, the NCI regions (Ω N CI ) may be directly defined from the s vs ρ diagram, as the domain(s) in R 3 with ρ and s values lying in the s(ρ) peak. To identify this region, both the reference and the interest system densities and reduced density gradients must be computed and compared. The lowest edge of the reference s ref (ρ) curve is splined. A point r i is said to belong to Ω N CI if it satisfies the following three conditions;

r i ∈ Ω N CI      s(r i ) < s ref (r i ) s(r i ) < s cut-of f ρ(r i ) < ρ cut-of f ,
where s ref (r i ) is the reference value of s at r i , and s cut-of f and ρ cut-of f are the reduced density gradient and the density cut-offs respectively.

Density properties can be then integrated within Ω N CI , as defined in Equations 4.4-4.21. Although in principle any integration method is valid, the current version of the code performs a mere sum over volume elements contained in Ω N CI

A N CI = i∈Ω N CI A(r i )∆x i ∆y i ∆z i , ( 5.3) 
where A(r i ) is the value of the property A at r i and ∆x, ∆y and ∆z stand for the increments along the x, y and z direction. Their product ∆x i ∆y i ∆z i defines a volume element around r i . For visualisation purposes, the property values are set to very big values for such points not belonging to Ω N CI . The simplest property one can compute is the volume of the NCI region V N CI which is given by the sum of all the elements ∆x i ∆y i ∆z i contained in Ω N CI . Besides s and ρ which should be computed in all points of the grid in order to define the NCI regions, all the other properties are only computed in those points belonging to Ω N CI .

Selecting s ref

We have implemented two possible choices of the NCI regions; i) selecting only one of the constituent fragments of the system (See Figure 5.3), ii) fixing an upper cut-off for s. The former has more physical grounds, and is therefore highly recommended. The latter gains importance when monomer (or fragments in general) structures are not available or not defined, e.g. intramolecular interactions. Its validity has only been "confirmed" ad hoc by comparison with interaction energies [START_REF] Saleh | Energetics of non-covalent interactions from electron and energy density distributions[END_REF].

Benchmark

One of the most striking and controversial points of the NCI method is the match between the results obtained with promolecular and self-consistent densities. As discussed in Section 4.3.4 of Chapter 4, this result may be traced back to the stepwise exponential behaviour of the electron density. This raises a theoretical issues: "What it the influence of the method and the basis set on the NCI index? How trustworthy are promolecular results?". To explore the dependence of the NCI method with the quality of the electron density, we have performed a number of benchmark calculations. 

NCIPLOT

Computational details

All the geometries were taken from the S22 set and not reoptimised. Wave functions were obtained with the Gaussian09 package. In order to compare the results from different SCF methods, we have included in our study Hartree-Fock(HF), post-HF methods (MP2, CISD, CCSD) and density functional approaches. Second-order Möller-Plesset perturbation theory (MP2) is the most affordable wave function-based method beyond the HF approximation that provides an approximate description of all relevant vdW interactions, electrostatics, induction and dispersion. Furthermore, MP2 is free from spurious electron self-interaction, which leads to noticeable improvements for hydrogen bond description. However, one of the serious shortcomings of MP2 theory is a noticeable overestimation of the dispersion interaction energy. As a reference, we have included the quantum chemistry gold standard: coupled cluster theory with single and double excitations. Perturbative triple excitation have not been included since they do not affect the underlying electron density and the output of wfn files is not yet implemented in Gaussian. CISD has been included for completeness.

Since nowadays calculation of big systems, where NCIs are extremely relevant, are usally performed with density functional theory (DFT) methods, we have also included two of the most common functionals: B3LYP and B97D. B3LYP is by far the most popular density functional in chemistry, but there is growing evidence showing that B3LYP degrades as the systems becomes larger and fails to bind vand der Waals systems. Last years have been marked by an intense research of new DFT variants accounting for dispersive effects. From the comparative benchmark studies emerges that the M06-2X, w-B97X-D, and B97-D functionals significantly outdo B3LYP in estimating interaction energies in π-complexes. Since these studies are done at fixed geometry, a posteriori corrections become a fair test for the results. Pople basis sets have been used to test the dependence with the basis, including separately polarisation and diffusse functions to independently analyse their effect. NCI isosurfaces were obtained using grids of 0.1 Å along each axis. Electron densities at the AIM critical points were obtained with promolden. Non-AIM critical points were obtained from 2D graphs with increments of 0.05 bohr along each axis. For the sake of simplicity we shall refer to both AIM and Non-AIM critical points as Interaction Critical Point (ICPs). As aforementioned, volume and electron density integrations, are performed using pseudo-densities (approximated monomer densities from the dimer wave functions) for each of the monomers and performing a cubic spline interpolation of the resulting s(ρ) curve. We used the following default value: grids of 0.09 bohr along each axis, and threshold of 0.05 a.u. and 0.5 in the density and s, respectively.

The effects of the method

In order to understand the effect of the method we will analyse a set of representative molecular systems:

• a hydrogen bond (water dimer), a dispersive interaction (CH 4 dimer) and a repulsive clash (bicyclo[2.2.2], from now on, bicyclooctene) showing critical points of the electron density.

• formic acid dimer as an example of mixed interactions of different strength (hydrogen bonds and dispersion).

• ethanediol where the hydrogen bond does not have an associated AIM critical point.

A stand-alone section is included on the analysis of promolecular (non-relaxed densities) at the end of the chapter Since the main objectif of this section is to analyse the effects of the method on NCI results, we will use fixed geometries in all cases. As highlighted in the previous section, it corresponds to a very weak interaction where both positive and negative eigenvalues of the electron density Hessian matrix are present in the absence of AIM critical points.

SCF method

Table 5.1 collects the electron density at the ICP for our test systems. Except for HF, the influence of the electronic structure method is rather small. In general, peaks at the HF level appear at smaller densities. This is due to the localising effect of HF. Hartree-Fock densities localise the electrons within molecular units, so that the electron density at ICP diminishes in all the interaction types. Inclusion of correlation, either directly (MP2, CISD) or by parametrisation (functionals re-establish values similar to the CCSDD reference. It is interesting to note how the method failures are translated into the electron density. MP2 leads to overbinding, with slightly overestimation of densities at the ICP, specially (as noted in the literature) in dispersion interactions. As far as DFT calculations are concerned, they have an effect contrary to that of HF, since functionals tend to delocalise. Thus, the electron density at the ICP is always larger than for CCSD in attractive interactions. The effect however is not as well behaved due to the parametrisations. B97D seems to specially overbind the strong hydrogen bonds, whereas it behaves better in methane dimer (but not in formic acid dimer). The case of bicyclooctene is interesting: both functionals find smaller densities at the ICP than CCSD, which seems to indicate that they underestimate steric repulsion probably due to self-interaction errors.

It is interesting to note that the calculations have been carried out at the S22 fixed geometry, so that the over(under)binding is not translated into the geometry, but only into the electron density. These effects are small and do not yield qualitative (not even quantitative) differences in the NCI picture of the systems. Two main conclusions can be extracted.

On the one hand, global quantities are more affected by the method (see Table 5.2), but the qualitative behaviour remains. This is related to the stability of NCI results, and backs up the fact that NCI can be applied in spite of the method used of evaluating the density. Even non-dispersive methods, such as HF or B3LYP give global result that qualitatively agree with CCSD calculations. Changes in the global quantities confirm that NCI does change with the calculation method, but the changes are not very important (even for the volume) and conserve the trends, as long as the geometry is fixed.

On the other hand, the same behaviour in ICPs and NCI volumes is observed in all cases. This is a very interesting observation since the calculation of electron densities at the ICP is much faster than the integration of volumes, so the former can be directly taken as an indicator of the quantitative deviations that should be expected. a Grid increments of 0.09 bohr along each axis and a threshold of 0.05 a.u. and 0.5 in the density and s, respectively, were used in the integrations.

in Chapter 4, volumes confirm that the same s value should be used when densities have been calculated with the same method and shifted otherwise.

No relaxation: promolecular densities

Promolecular densities lack the relaxation introduced in a SCF Hartree-Fock or DFT calculation; but are very fast to compute. Thus, qualitative NCI analysis is applicable to large systems, including biosystems, where the description of the interplay of structure and reactivity is crucial. Because the calculation of the electron density in these subsystems becomes extremely computationally expensive, the promolecular density becomes an attractive option.

Of course, it is important in these cases to understand how to use of promolecular densities affects the NCI calculation. When relaxed densities are compared to promolecular ones, a shift in the peak is observed, with the promolecular approximation yielding bigger values in all cases (Table 5.3). The largest shift is observed in the non-bonded overlap cases, whereas it is moderate in the case of stabilising interactions. This can be understood as the process of relaxing densities at a fixed geometry: steric clashes play the major role, which affects the whole interacting region, and to a smaller extent the stabilising ones. As an example, the electron density at the peak in bicyclooctene changes from 0.053 to 0.023 a.u. upon convergence, whereas it only changes from 0.023 to 0.027 a.u. and from 0.018 to 0.014 a.u. in water dimer and ethanediol, respectively. Non-bonded dispersive interactions also show big relative changes (e.g. from 0.006 to 0.002 a.u. in methane dimer), but since these densities are smaller in absolute value, the absolute difference stays negligible from a visual point of view. This same pattern is reproduced when the interaction pattern becomes more complicated, as is the case of formic acid dimer.

Since in the promolecular case, the changes are not negligible, cut-off values need to be changed if we want to obtain similar pictures to SCF ones: the electron density cut-off needs to be bigger and the s isovalue smaller. The isosurface value need to be diminished because reduced densities are contracted around the ICPs upon relaxation. This is reflected in Figure 5.7-5.9 for all interaction types. As already observed in the analysis of ICPs, the greatest change is observed in steric clashes, where the repulsive region is greatly reduced upon convergence.

In the same line, all volumes are bigger in the promolecular approximation (Table 5.4). Indeed, values start to look of the same order when s = 0.4 in the promolecular calculation (except in bicyclooctene), whereas s = 0.5 is used in the SCF ones. As a guiding line, the default values for visualisation in the NCIPLOT code go from ρ = 0.05 a.u. and s = 0.5 in SCF calculations to ρ = 0.07 a.u. and s = 0.3 in the promolecular case.

The basis set

Table 5.5 shows the variation of the electron density with the basis set on going from double to triple zeta, and on adding diffuse and polarisation functions. CCSD has been used in all cases. Linear dependency problems were found with the convergence for Dunning basis sets (and also for 6-311G * * calculations of bicyclooctene), so we have restricted ourselves to Pople basis set as a proof of principle of basis set dependency. It has been observed in the study of benzene dimers with Dunning basis sets, the influence Table 5.4: Variation of the NCI volume between CCSD(pseudo-densities of monomers are used as reference) and the promolecular approach for test molecules at the 6-311G level: water dimer, methane dimer, bicyclooctene, formic acid dimer and ethanediol. Two different thresholds for s where used in the integrations of the volume for promolecular densities: 0.5 and 0.4. a Grid increments of 0.09 bohr, ρ <0.05 a.u. b A threshold of 0.5 in s was used in the integrations for the CCSD volumes. c s < 0.6 in bicyclooctene due to the big shift in the peaks. CCSD and promolecular integrated volumes are displayed as solid and transparent isosurfaces respectively for ethanediol. of adding diffuse functions was negligible, since an almost identical distribution of lowgradient spikes was obtained for the aug-cc-VTZ and cc-VTZ basis sets. As in the previous section, we have focused on electron densities at the ICP and NCI volumes to quantify changes. It is important to separate attractive and repulsive interactions here, and to make a joint analysis of ICP densities and NCI volumes. As a general trend, in attractive interactions, the increase of the basis set leads to a diminution of the electron density at the ICP. This is clearly observed in water and methane dimers. In both cases, polarisation functions have the greatest effect. This can probably be attributed to the match between the method and the base: since CCSD allows for correlation to take place, the use of higher order angular momenta functions is favoured. It also highlights the relevance of a well balancing method and basis set. Correlation diminishes bond order in general and reduces the electron density at the critical points, but has different effects on the total NCI volume.

Method

A localised interaction, such as the one in the water dimers leads to smaller NCI volumes along with the diminution of ICP density. However, the effect in methane dimer volume is the opposite. Due to the nature of dispersion, the main effect of the basis set in methane dimer is a delocalisation of the electron density, an increase in its planarity, leading to bigger NCI volumes. So the bigger basis variability reduced the density at the ICP and increases the NCI volume in vdW interactions. A similar effect is observed in ethanediol, although in this case the biggest effect is by inclusion of diffuse functions. Since these two effects are opposite, they are more difficult to analyse when interactions are mixed in the same system, as in the formic acid dimer example. However, the bigger NCI volumes due to an electronic delocalisation in the interaction region remain. Finally, repulsive interactions like the one in bicyclooectene yield both and increase in density and volume as the basis set increased.

All in all, this highlights the need for a compensated basis set, which can have an important role in providing the variability necessary for electronic delocalisation. However, this is only relevant for a quantitative description, and does not yield important qualitative differences in the NCI picture. Grid increments of 0.09 bohr along each axis and a threshold of 0.05 a.u. and 0.5 in the density and s, respectively, were used in the integrations. † The calculation did not converge due to nearly linear dependency.

Baiss

In Chapter 4 we have presented an interpretation of the reduced density gradient in terms of the von Weiszäcker kinetic energy and how this term may be understood as an indicator of regions where the bosonic character is more important. Moreover this link connects the reduced density gradient with other bonding descriptors already introduced in the literature such as the local-wave vector, the electron localisation function or the localised orbitals locator. Although a quick look at the shape of the reduced density gradient should be enough for differentiating between interaction types, the mapping of another scalar field over a given s isosurface may help to characterise interactions. This practice is quite common in the chemistry community. For instance, the mapping of the molecular electrostatic potential over a electron density isosurface is widely used for analysing non-covalent interactions. In the same spirit, the NCI method maps the product of the sign of second eigenvalue of the electron density Hessian matrix and the electron density on a given reduced density gradient isosurface. In a nutshell, the reduced density gradient isosurfaces grow from the minima of such function, which identifies core, and interaction regions, then these regions are characterised by the shape of the isosurface along with the mapping of sign(λ 2 )ρ(r).

It is well known that interaction strength grows with the electron density values in the interaction region, so sign(λ 2 )ρ(r) differentiates interaction types by their relative electron density values on the reduced density gradient isosurfaces. The sign of λ 2 provides information on the flux of the electron density along the e 2 eigenvector of the electron density Hessian. When passing from a bond critical point to a ring critical points ((3,-1) and (3, 1) critical points of the electron density respectively) only λ 2 changes its sign. The former are usually related to favoured exchange channels, the latter appear in regions where many atoms interact and have been classically identified with steric clashes. Independently of the local potential energy contribution, regions of positive and negative λ 2 values have been characterised as attractive and repulsive, respectively.

In this chapter we will apply the NCI method to the analysis of bonding in small molecules. We have selected a small set of diatomic molecules which involve from covalent to ionic interaction passing through the more challenging charge-shift bonding. After describing the computational information, we will characterise the bonding in these systems only by the bare reduced density gradient in Section 6.2. In Section 6.3 we will complement the previous analysis by adding information of sign(λ 2 )ρ, that is, by the NCI method.

Computational details

The electron density and the reduced density gradient have been computed for several chemically representative systems in their ground states: H 2 , O 2 , F 2 , CO, FCl, FBr, HF, LiH, NaF, NaCl and KCl. The wave functions were calculated at the restricted B3LYP level with the aug-cc-pVTZ basis as implemented in the GAUSSIAN 09 package [START_REF] Frisch | Gaussian09 Revision E.01[END_REF]. To explore the topography of the reduced density gradient along with other functions related to any of the forms of the kinetic energy density we have developed our own code CHECKIN. Whereas the later code is used for exploratory works, a modified version of NCIPLOT3 is used for performing NCI calculations Scalar field visualization was performed with ParaView version 4.3.1. [START_REF] Ahrens | Paraview: An end-user tool for large data visualization, visualization handbook[END_REF] and VMD version 1.9.1 [START_REF] Humphrey | VMD -Visual Molecular Dynamics[END_REF] 6.2. Chemical bonding by means of the s(r) topography

Chemical bonding by means of the s(r) topography

Figure 6.1 shows the color-coded map of s(r), where blue color corresponds to s(r) = 0, and red color to s(r) ≥ 1. As shown in Figure 6.1a the hydrogen molecule is characterised by a bonding region that expands from one hydrogen nucleus to the other. Core and bonding regions are barely separated by s(r) maxima in the hydrogen molecule. Contrary to N 2 , O 2 and F 2 which are characterised by a narrowing of the bonding region along the interatomic axis and an expansion along the perpendicular direction (see Figures 6.1c and 6.1d). Along with this compression in the interatomic direction, s(r) minima appear between the core-valence maxima and the BCP (see Figures 6.2c and 6.2d). Atomic shell structure for group II atoms is depicted by only one maximum, therefore this additional region of bosonic behaviour may be attributed to the charge-shift character of O 2 and F 2 [START_REF] Shaik | Chargeshift bonding a class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach[END_REF].

Turning to polar bonds the symmetry of the bonding region is broken by a shift of the BCP. Additionally, the core region of the less electronegative atom occupies larger areas as may be seen in Figure 6.2. For CO (Figures 6.1e and 6.2e), the carbon core region is larger than that of the oxygen atom, and is strongly compressed along the internuclear direction. This results in an effect of the additional minima between the BCP and the oxygen core-valence maxima; the Pauli repulsion between electrons localised in that region and the bonding electron pair is strong enough to push the latter against the carbon atom.

For FCl (Figures 6.1f and 6.2f) and FBr (Figures 6.1g and 6.3a) the compression around the core regions comes from a perpendicular direction to the internuclear axis. Comparing CO, FCl and FBr, one may notice that there is a narrowing of the bonding region, which correlates with their increasing charge-shift nature. This effect is boosted in ionic interactions. Figures 6.1h and 6.3b, and 6.1i and 6.3c show the bonding pattern of HF and LiH, respectively. They are completely different to precedent plots. The hydrogen cation and the bonding region for HF are completely merged with the fluorine anion valence. For LiF the bonding region and the hydride anion are embedded in a large flat region. By contrast, the lithium cation is so strongly polarized that it is completely surrounded by a region of s(r) > 1. The bonding pattern for NaF, reflects what is expected for an ionic interaction, two disconnected ions with a thin interacting region. As soon as the hardness of the anion decrees, its valence starts to merge with the interacting regions resulting in a picture akin to that found for LiH, as it is also found for NaCl and KCl.

Bonding analysis by means of the NCI method

In the following section we will apply the NCI method to analyse the diatomic molecules in Figures 6.4, 6.5 and 6.6. Following the prescription of Chapters 4 and 5, we use a red-green-blue color scale ranging from sign(λ 2 ) -0.5 a.u. to 0.5 a.u. This range allows us to compare on equal footing all the chemical interactions herein presented. The selection of the s(r) depends on what regions one wants to visualise. Extracting core, lone-pairs and bonding regions as separated connected components requires a fine tuning of the values of s(r), and it is very system dependent. For all these reasons we prefer to set the value of s(r) to 0.5 and only pinpoint the distribution of sign(λ 2 )ρ(r) on these s(r)=0.5 isosurfaces. Let us start with the homoatomic systems: H 2 , N 2 , O 2 and F 2 . s(r) versus sign(λ 2 )ρ(r) diagrams (see Figure 6.4) display three peaks, two in the negative part corresponding to the nuclear positions and the BCP, and another one in the positive (repulsive) part. The nuclear peaks are often out of our sign(λ 2 )ρ(r) range, it can only be seen for H 2 (Figure 6.4a)is showed since it appears at almost the same density as the BCP. When displayed over the s(r) isosurfaces, the negative regions cover almost all the isosurface, except for a region around the BCP where the electron density tends to "swell away" from the BCP along the λ 2 direction. This pairing between peaks in the negative and positive parts of the diagram is found in all the systems here analysed. Another noticeable effect is that the stronger the density at BCP peak (more negative sign(λ 2 )ρ(r) ), the stronger the repulsive peak (more positive sign(λ 2 )ρ(r)). As shown in Figures 6.6c and 6.6d the narrowing of the interaction regions for O 2 and F 2 is easily visualised as an expansion of the isosurface perpendicular to the internuclear axis. A split of both positive and negative branches of the s(r) versus sign(λ 2 )ρ(r) diagrams is found when moving towards heteronuclear systems. In regions where ρ(r) is dominated by one of the atoms, such as regions close to nuclear positions, ρ(r) may be approximated by a sum of atomic contributions, that is, by a promolecular density. As explained in Chapter 4, atomic densities can be modelled by exponential basis functions

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)
ρ prom at (r) n c n e -ζnr , (6.1) 
where n, c n and ζ n stand for the number of shells, the expansion coefficient and exponent corresponding to the shell n, respectively. In the interaction regions, this is reduced to the outermost shell, so the density for a A B pair at mutual distance R is given by

ρ(r) = ρ prom A (r) + ρ prom B (ρ) = ae -αr + be -β(R-r) , ( 6.2) 
where a, α, b and β are positive constants characteristic of A and B ions, respectively. As r → A, we can assume that ρ(r) approximates to ρ A (r) = e -αr , and analogously for r → B. In these cases, the reduced density gradient reduces to the free-ion behaviour:

s A (r) = 1 2(3π 2 ) 1/3 | ∇ρ A (r)| ρ A (r) 4/3 , (6.3) 
Thus, these regions give rise to two curves in the s(r) versus ρ(r) diagram. Although promolecular densities describe fairly well ionic interactions, these models also account for the splitting in polar bonds, being more important as the polarity of the bond increases. Within the promolecular approximation, the polarity of the bond is taken into account by the exponents α and β, which for ionic systems are associated with the hardness of the ions. The relative position of the curves can be associated with the relative hardness of the ions, or with the relative electronegativity in general. This is exactly what is observed in the heteronuclear systems here analysed (Figures 6.4e-6.5e). The upper curves correspond to the carbon, chloride and bromine atoms in CO, FCl and FBr, respectively (Figures 6.4f, 6.5a), and to the cationic species in all the other systems. The hardness difference between the fluorine anion and a proton is not enough to observe this effect in HF, as disclosed in Figure 6.5b. It is worth noticing that all systems with chlorine, FCl, NaCl and KCl exhibit atomic shell structure as an additional peak with s(r) value higher than 0 (Figures 6.5e-6.5f). This peak is ascribed to the outermost shell of the Cl atom, the L shell. The M shell of potassium in KCl is also displayed. For all the other systems the valence shell occurs at higher densities than 1.0 a.u and out of our sign(λ 2 )ρ(r) range.

In Figure 6.6 it is observed that the red branches enclosing the interacting regions are shifted towards C, Cl and Br in CO, FCl and FBr, respectively. Along with this effect, it is observed that the larger the core region, the bumpier the isosurface around it, and the more compressed around the bonding regions. This effect is already noticeable for CO, and much more accused for FCl. Eventually, for FBr the isosurface is broken in three components, two around core regions and one around the BCP. This change in the number of connected components of the isosurface is a consequence of the apparition of CPs of s(r) as stated by the Morse theory. In all the other systems the increase in the number of connected components occurs at values of s(r) lower that 0.5, therefore a fine tuning of the isosurface value is necessary for extracting core and bonding regions separately, as it has been already commented. Figures 6.6i-6.6l show s(r) isosurfaces for LiH, NaF, NaCl and KCl respectively. A similarly split into three components to that found in FBr is observed. HF is an exception in this regard, the low density at the hydrogen core, prevents the appearance of CPs between core and bonding regions with value 0.5. At this stage, we hope the reader becomes acquainted with the main subject of this manuscript, the NCI method. As it was aforementioned, it was envisaged as a tool for a fast qualitative analysis of non-covalent interactions. The subsequent work on this topic revealed that behind beautiful pictures there is some chemical content; regions of relatively high bosonic character. After having applied the NCI method for analysing covalent and ionic bondings, we will revisited its prime playground, NCIs.

Among NCIs, hydrogen bonding (HB) has always received special attention, since it appears in almost all biological, solvation and crystallization processes. Its existence was first postulated in the early 20 th century based on the stunning macroscopic differences between the first and second row hydrides, i.e. water is a high temperature boiling liquid without which there would be no life, while hydrogen sulphide is a stinking gas under ambient conditions [START_REF] Pauling | General Chemistry[END_REF].

With the advent of molecular beam and cryogenic experimental methods as well as the ever advancing theoretical methods, HBs have been proved to exist in H 2 S as well [START_REF] Desiraju | A bond by any other name[END_REF]. Its elusive nature motivated the International Union of Pure and Applied Chemists (IUPAC) to revisit its definition. The result of such task was a set of guidelines to characterise hydrogen bonds not only from practical perspectives but also from theoretical considerations, enlarging considerably its original definition. In a nutshell, we may define a hydrogen bond X-H • • • Y-Z as an attractive interaction between a positive charged hydrogen and two electronegative species X and Y. X is termed proton donor and Y proton acceptor. Traditionally the role of Y has been undoubtedly assigned to O or N, however less electronegative atoms, such as C, or even negatively charged regions, such as σ or π bonds, are now also accepted as proton acceptors.

But things go even further. About a century later, chemists have identified a wealth of new bonding types along the periodic table. Halogen bonds (XBs) (group 17) are frequently exploited for crystal engineering [START_REF] Metrangolo | Halogen bonding: a paradigm in supramolecular chemistry[END_REF]. Recently, similar bonding mechanisms have been proposed for adjacent main-group elements, such as non-covalent "chalcogen bonds" (group 16) [START_REF] Murray | A predicted new type of directional noncovalent interaction[END_REF] and "pnictogen bonds" (group 15) [START_REF] Scheiner | A new noncovalent force: Comparison of p • • • n interaction with hydrogen an halogen bonds[END_REF][START_REF] Scheiner | The pnicogen bond: Its relation to hydrogen, halogen, and other noncovalent bonds[END_REF] have also been identified in crystal structures. Recently, even carbon bonding (group 14) [START_REF] Mani | The x-cy (x= o/f, y= o/s/f/cl/br/n/p)'carbon bond'and hydrophobic interactions[END_REF] has been proposed as a stabilizing interaction.

But not only the concept of HB has been enlarged, also new interactions have appeared in the chemist vocabulary. Some of these interactions even break down the assumption that HB entails "special characteristics". Hydrogen bonding was usually characterized by been highly directional, in the sense that X, H and Z form an angle of almost 180 • . This preference for a linear orientation is usually considered a consequence of its electrostatic nature, and it was taken as a unique feature among other NCIs which are much more isotropic.

On the one hand, the new definition of HBs lets in much less anisotropic interactions fall into the definition (e.g. very weak HBs) [START_REF] Kui | Observation of intramolecular c h f c contacts in non-metallocene polyolefin catalysts: Model for weak attractive interactions between polymer chain and noninnocent ligand[END_REF]. On the other hand, the venue of halogen bonding broadened the spectrum of directional NCIs. In a halogen bond, the halogen atom plays the role of H in a hydrogen atom X-Hal • • • Y-Z where Hal termed an electropositive halogen atom and X, Y, and Z fulfil the same roles as they do in a hydrogen bond. The counterintuitive origin of halogen bonding was explained in terms of the concept of σ-hole i.e. a region of positive electrostatic potential along the X-Hal bond [START_REF] Murray | A predicted new type of directional noncovalent interaction[END_REF]. Similar to hydrogen bonding, these interactions are driven by electrostatic forces, though some authors state that dispersion and induction are the crucial energetic contributions [START_REF] Scheiner | A new noncovalent force: Comparison of p • • • n interaction with hydrogen an halogen bonds[END_REF].

Although with some exceptions, specially pnictogen bonding, the unexpected directionality of the great majority of the directional NCIs has found a common origin; the σ-hole concept. As shown by Murray et al. [START_REF] Murray | σ -holes,πholes and electrostatically-driven interactions[END_REF], directional interactions are not limited to linear arrangements of atoms but they are also found in perpendicular ones. In analogy with the σ-hole, they introduced the concept of π-hole: a region of low electronic density that is perpendicular to a portion of a molecular framework. Regardless their geometry, all these interactions can be regarded as electrostatic in nature.

In other words, the panorama of weak interactions is lately suffering a continuous update, and it is difficult to tell where it will stop. Although it might look this is just an epistemological question, it is far from being just so. Molecular force fields are parametrized for pair-wise atomic contacts. These interatomic potentials have to be tuned so as to recognize these interactions and reproduce the corresponding potential energy surface reliably. If one depends on the "naming" of an interaction, force fields are as prone to error and interaction obliviations as our interaction dictionary. One such example in the recent literature is the cation-π interaction. Jorgensen found that OPLS parameters that are quite successful in modeling benzene-water and water-TMA (tetramethylammonium), could not properly model benzene-TMA [START_REF] Duffy | Do denaturants interact with aromatic hydrocarbons in water?[END_REF]. This defect was due to their inability to describe cation-π interactions. As a consequence, the description of potentials was re-adapted in AMBER, which is now able to account for this type of interactions.

In words of Desiraju, "a term is acceptable if the largest number of chemists are in a maximum degree of agreement about what it means" [START_REF] Desiraju | A bond by any other name[END_REF]. Thus in the absence of general consensus, the chemical community has the verdict. In other words, the unabated research on NCI is expected to enlarge the realm of known chemical interactions This is showing to be a never ending quest. Or at least very prolific. But an alternative can be proposed.

Traditionally, chemical interactions have been classified in terms of their nature no matter which atoms are involved in them. Whereas covalent interactions occur through electron sharing, ionic interactions are electrostatic in nature. Differences are not so well defined in the case of non-covalent interactions. The relative weights of the different terms in the multipolar expansion can be used to identify different interaction types. Another approach is to look at the electron density. Before and beyond the identification and characterization of an interaction, the signature on the electron density will be present. It can provide a distinct approach, where interactions are categorized by their characteristics and not by their atomic composition, which can become limiting and cumbersome.

In this chapter we will first perform a quantitative NCI analysis of some model systems classified by interaction types: pnictogen, weak-hydrogen and halogen bonding. In section II, we will apply the NCI method to shed some light on the source of some complex systems as the self-assembled monolayers and metallocenes systems. We will conclude by addressing a philosophical question: if so similar in nature, do all these interactions deserve distinctive names? Beyond philosophy, this question has great implications in theoretical chemistry, in the construction of models and in the development of methods.

Model systems

Computational details

All the geometries were optimized at MP2 level using aug-cc-pVDZ basis set as implemented in the GAUSSIAN 09 package [START_REF] Frisch | Gaussian09 Revision E.01[END_REF]. Structures were verified as minima having all real vibrational frequencies. Interaction energies were computed as the difference between the dimer and the sum of the monomers when they have the same structure as in the complex. These quantities were corrected for basis set superposition error by the counterpoise procedure [START_REF] Boys | The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors[END_REF]. The optimised geometries were used to compute the electron density at B3LYP/aug-cc-pVTZ level of theory combined with the Grimme D3 dispersion correction and with the Becke-Johnson damping function [START_REF] Johnson | A post-hartree-fock model of intermolecular interactions[END_REF]. Dispersion energies were calculated at the same level with the the DFTD3 code version 3.1 Rev 1 [START_REF] Grimme | A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu[END_REF][START_REF] Grimme | Effect of the damping function in dispersion corrected density functional theory[END_REF]. NCI isosurfaces were obtained with a modified version of the NCIPLOT code [START_REF] Contreras-García | Nciplot: a program for plotting noncovalent interaction regions[END_REF] with grids of 0.1 Å along each axis. In order to improve the visualisation of FH• • • HLi the grid step was reduced to 0.05 Å. To assure the convergence of NCI volumes (V N CI ) a 0.05 Å grid along each axis was used. The NCI isosurfaces were visualised with VMD version 1.9.2 [START_REF] Humphrey | VMD -Visual Molecular Dynamics[END_REF].

Pnictogen bonds

The simplest example of pnictogen bonding is the complex between NH 3 and PH 3 , where the N atom is the donor of electron density [START_REF] Scheiner | A new noncovalent force: Comparison of p • • • n interaction with hydrogen an halogen bonds[END_REF]: the two molecules are oriented such that the P and the N atom face one another directly, without the intermediacy of a H atom. Natural bonding orbital analysis has revealed that this attraction is due in part to the charge transfer of electron density from the N lone pair to the P-H σ * antibonding orbital [START_REF] Scheiner | A new noncovalent force: Comparison of p • • • n interaction with hydrogen an halogen bonds[END_REF]. Unlike the hydrogen bonds, the pertinent hydrogen is oriented about 180 • away from the N (instead of toward), and the N lone pair overlaps with the lobe of the P-H σ * orbitals that is closest to the P atom. Surprisingly, the binding energy of the pnictogen bonded complex is larger than the hydrogen bonded complex formed between the same two molecules where the N atom is the proton acceptor (see Table 7 The NCI analysis of the NH 3 -PH 3 complexes shows the presence of a NCI and this is illustrated by the 3D isosurfaces of both complexes as shown in Fig. 7 mediated complex, a typical picture of the hydrogen bond is obtained, a thick surface is obtained in the case of pnictogen bonding, which is extended like in the case of the van der Waals, but thick like the hydrogen bonded ones. Scheiner has shown that there is a gain of electron density in the N lone pair of both PH 3 /NH 3 configurations. Additionally energetics show that all interactions herein analysed are in the typical range of dispersion interactions [START_REF] Scheiner | A new noncovalent force: Comparison of p • • • n interaction with hydrogen an halogen bonds[END_REF].

It is interesting to note that in contrast to halogen bonds, there is no requirement for a σ-hole nearby the P atom, nor it is necessary for the two interacting atoms to be of differing potential. In fact, the two atoms can be identical, as the global minimum of the PH 3 homodimer has the same structure, characterized by a P• • • P attraction. Indeed, for the complex between PH 3 and PH 3 the P atoms posses a partial positive charge and none of the located minima found on the potential energy surface corresponds to a hydrogenbonded complex [START_REF] Scheiner | A new noncovalent force: Comparison of p • • • n interaction with hydrogen an halogen bonds[END_REF]. The two minima that were located correspond to complexes where the P atoms approach one another. The complex with the symmetric geometry was found to be dominated by electrostatic interactions, corresponding to pnictogen bonding, whereas the second structure was found to be dominated by dispersion. This shows in the NCI isosurfaces where the interaction region in Figure 7.1d) occupies a larger volume than that of Figure 7.1c). This is in agreement with the more diffuse character of the dispersion interaction compared to the pnictogen bond which is more concentrated along the bonding direction. As showed in Table 7.1, V N CI correlates with this effect.

Although the PH 3 /NH 3 and PH 3 /PH 3 complexes do not show σ-hole, it is worth noting that generally as soon as any of the hydrogen atoms is replaced by some electronwithdrawing group, such as CN or F, a σ-hole is formed along the R-X bond strengthening the X-Y interaction. A similar effect is observed when N or P are substituted with a more polarizable atom as At [START_REF] Murray | A predicted new type of directional noncovalent interaction[END_REF].

Weak-hydrogen bonds

We have also studied a series of six complexes presenting "weak hydrogen bonds": 

HCCH• • • OH 2 , HOH• • • π, HCCH• • • π, HCCH• • • HLi, FH• • • π, FH• • • HLi. We

Halogen bonds

Halogen bonds (XBs) occur between a halogen atom, playing the role of Lewis acid, and a Lewis base. This non-covalent interaction is analogous to hydrogen bonding (HB) in the sense that in both cases an atom or group of atoms with high electron density donates an electron to an acceptor which is electron poor. We have studied a series of complexes of the type CF 3 X• • • B, with X=Cl, Br and B=dimethylether (DME), trimethylamine (TMA) and dimethylthiol (DMS). Table 7.3 contains V N CI , E int and E disp for the selected halogen bonded systems. Although the interaction energies are of the same order as in the pnictogen and weak hydrogen bonded system, the dispersion is much stronger. Nevertheless, these complexes have been characterised for having a σ hole and have been said to be dominated by electrostics [START_REF] Politzer | Halogen bonding: An interim discussion[END_REF]. The disc-shaped NCI isosurface support the electrostatic origin of halogen interactions. The missmatches between V N CI and E disp may ascribe to the fact that electrostatic and not dispersion is the driving force in halogen bonding.

System

V 

Complex systems

After analysing model systems, we have decided to check the ability and utility of the NCI method in bigger systems.

Binding in self-assembled monolayers

Another challenging binding mode is that existing between long alkyl chains molecules in self-assembly monolayers (SAM). The stability of such systems is mainly due to a competition between metal-molecule and molecule-molecule interactions. Understanding the nature and the strength of the interaction between surfaces and long chain molecules is thus of great importance and may help in the design of systems with specific moleculesurface and molecule-molecule strengths. The intermolecular interactions in SAMs come from the vicinity of the neighbouring molecules that form an ordered two-dimensional layer and are mainly caused by dispersion forces. This molecular arrangement exhibits an extra stabilisation when compared with the corresponding isolated molecular dimer, known as packing. The role of the dispersion forces between the alkyl chains is poorly understood although it may become crucial in the stabilisation of SAMs.

As example of SAM system the platinium (100)-octylamine system (NH 2 C 8 H 17 ) has been chose because it has been recently reported to lead to stable cubic platinum nanoparticles [START_REF] Salzemann | Influence of hydrogen on the morphology of platinum and palladium nanocrystals[END_REF][START_REF] Aguilera-Porta | Understanding how in situ generated hydrogen controls the morphology of platinum nanoparticles[END_REF]. The calculations were carried out with the revised PBE functional (rPBE) [START_REF] Perdew | Generalized gradient approximation made simple[END_REF][START_REF] Zhang | Comment on "generalized gradient approximation made simple[END_REF] as implemented in the VASP code [START_REF] Kresse | Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[END_REF][START_REF] Kresse | Ab initio molecular dynamics for liquid metals[END_REF]. Projector Augmented Wave (PAW) pseudopotentials [START_REF] Blöchl | Projector augmented-wave method[END_REF][START_REF] Kresse | From ultrasoft pseudopotentials to the projector augmented-wave method[END_REF] combined with plane wave (cut-off=400 eV) represent the electron distribution. Periodic boundary conditions apply and a vacuum of at least 15 Å is included to avoid interaction between successive layers. Starting from the gas-phase optimised geometry at the rPBE level, calculations are done without geometrical optimisation for the gas-phase studies and with the conjugate-gradient algorithm for the surface-molecule interaction studies, with the geometrical constrains specified in each case. The interactions energies were calculated by the formula:

A + B = [AB] where E int = E [AB] -E A -E B , ( 7.1) 
whereby E int < 0 for exothermic reactions and E A stand for the energy of the octylamine in the complex geometry. Dispersion interaction were included by using the Grimme D2 approach as implemented in the VASP code (parameters for Pt: ra-dius=1.676Å and C 6 =19.46 Jnm 6 mol -1 obtained from [START_REF] Grimme | A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu[END_REF]). As notice in the literature [START_REF] Mercurio | Structure and energetics of azobenzene on ag (111): benchmarking semiempirical dispersion correction approaches[END_REF], the problem of metal screening of dispersive forces can be roughly corrected by including dispersion only on the uppermost slab layer. We have considered this possibility together with the pure rPBE and full D2, denoted as 1L, rPBE and D2, respectively. Tests on the propylamine dimer potential energy curve have been carried out at MP2/6-311g(3df,2pd), BSSE corrected, together with the rPBE and rPBE+D2 levels, and show very good agreement with the rPBE+D2 results. Contrary to the previous systems, the NCI analysis has been carried out with the critic2 code [START_REF] Otero-De-La Roza | Critic: a new program for the topological analysis of solid-state electron densities[END_REF] where NCI is implemented for solids.

An in-depth analysis of the factors that determine the stability of octyalmine/Pt was carried out by Calatayud et al [START_REF] Boto | The role of dispersion forces in metal-supported self-assembled monolayers[END_REF]. They concluded that a proper description of packing in SAM systems requires accounting for dispersion effects, since only the rPBE+D2 functional is able to explain the additional stability of octyalmine SAM when compared to the octylamine dimer (see Figure 7.4). The interaction between alkyl chains depends on their relative orientation. Figure 7.5 displays the relative orientation of two neighboring octylamines in the x and y directions. It can be observed that they are not equivalent since they involve different H-H interactions. Along the y directions, octylamine molecules are oriented in such a way that the hydrogen atoms in the chains face those of the neighbouring molecule. Instead, there is no such orientation when molecules are arranged along the x direction and hydrogens are not face to face.

A closer look at the geometries enables understanding that this difference comes from a different geometrical arrangement. In Figure 7.5 the y alignment is highlighted and it can be seen that it is clearly different from the x one as regards H-H interaction. In order to gain more information on the role of the relative orientation of the two chains, we have considered polymers of octylamine in the x and y directions separately. For the octyalmine dimer in the gas phase the most favourable situation is found when the molecules are rotated 80 degrees in the z-axis. This orientation is similar to the one obtained for the y-polymer that would correspond to 90 degrees.

Figure 7.4 shows the energetic profile of 1D polymers alongs x and y directions as a function of the distance between neighbouring molecules d N N . It can be observed that the stabilisation in the alignment along the y direction is higher than in the x direction with and without dispersion correction. Comparing now the 2D pattern to the addition of x and y polymers (Figure 7.4) the result is a net stabilisation of the 2D square pattern with respect to the addition of x plus y, almost inexistent for rPBE but significant when using the D2 approach. Although the method used overstabilizes the interactions in the y direction, the overall stabilisation of the 2D pattern compared to the sum of the polymers is significant. This result highlights the key role of second neighbours in the stabilisation of the squared superstructure.

The differences along x and y are also evident from the NCI isosurfaces as shown in Figure 7.5. The symmetric arrangement along the y direction gives rise to localised H-H interactions between alkyl molecules. Similarly to that found for all directional interactions previously analysed, the directionality of H-H interactions is characterised within the NCI approach by the small, round shape of the regions and the strength by the relatively large accumulation of electron density. Weak interaction such as the ones found in the x polymer give rise to interacting regions, rather than localised NCI domains, and present a relatively low electron density. In both cases, the color of the NCI isosurfaces reveals the weak non-bonding nature of all the interactions, which agrees with the need to resort to D2 corrections to account for them. The shapes of the NCI isosurfaces point that the dispersion and electrostatic contribution to E int are at least as important as in the pnictogen, halogen and weak-hydrogen bonded systems analysed so far.

Moreover, the stabilising effect of H-H interactions along x and y directions raises a fundamental problem in crystal packing, which is still an open question. These interactions are usually assumed to give rise to steric clashes, and contribute to the destabilisation of the crystal. However, topological approaches such as QTAIM point towards their stabilising nature.

The H-H BCPs were first interpreted by Cioslowsky and Mixon in kekulene [START_REF] Cioslowski | Weak bonds in the topological theory of atoms in molecules[END_REF] and ortho-substituted biphenyls [START_REF] Cioslowski | Topological properties of electron density in search of steric interactions in molecules: electronic structure calculations on ortho-substituted biphenyls[END_REF] and assigned to "non-bonded repulsive contacts", a view supported by later studies with a different energy partition [START_REF] Poater | Hydrogen-hydrogen bonding in planar biphenyl, predicted by atoms-in-molecules theory, does not exist[END_REF][START_REF] Dunitz | Molecular recognition in organic crystals: directed intermolecular bonds or nonlocalized bonding?[END_REF]. QTAIM atomic energies, on the other hand, predict a stabilisation caused by H-H contacts of up to 10 kcal/mol in the general case of polybenzenoid molecules [START_REF] Matta | Hydrogenhydrogen bonding: a stabilizing interaction in molecules and crystals[END_REF]. It should be noted that the weakness of dihydrogen interactions and the arbitrariness in the choice of energy partition precludes determining how much these interactions contribute to the total binding energy of a crystal, so it would be extremely difficult to determine in an unbiased manner the strength and character of these interactions, except in those cases where the total stabilisation is to a good approximation, only given by those interactions. This is the case of the y polymer. Being hydrogen interactions the main source of interactions in the y direction (very little dispersion is observed), the attractive interaction observed in this polymer can only be attributed to H-H interactions. This highlights the advantage of local approaches in complex systems From the visual analysis of NCI isosurfaces of the linear polymers and the 2D arrangement, the x and y components are perfectly recovered, along with an extra region between interactions along x and y direction. This interaction between diagonal elements of the arrangements, may be identified as the responsible of its relative stability. In other words, the diagonal interaction is related to packing. It is interesting to note that once again, these interactions are dispersive-like, which explains why the are so difficult to track in solids.

Binding in metallocenes

Dispersion interactions plays an outstanding role in metallocenes dimers. Vargas-Caamal et al [START_REF] Vargas-Caamal | How strong are the metallocene-metallocene interactions? cases of ferrocene, ruthenocene, and osmocene[END_REF] have performed an in-depth survey of the nature of the bonding in different metallocene dimers: ferrocene, ruthenocene, osmocene. These systems exhibit higher dissociation energies than the water dimer at low temperatures. The additional stability of metallocene dimers was ascribed to the collective action of very weak interactions of dispersive nature. An EDA analysis reveals that in these systems the contribution of the dispersion term to the energy is larger than in the parallel-displaced benzene dimer, the prototype example of system stabilised by dispersion interactions.

As shown in Figure 7.6 the NCI analysis of the most stables conformations of the ferrocene dimer correspond to a typical dimer stabilized mainly by dispersion where attractive surfaces cover a very large area between both monomers. Similar results are found for osmocene and ruthenocene dimers. Once again, a correlation is found between the size and the electron population within the NCI region and the relative stability of the two conformers as shown in 

Do all these interactions deserve distinctive names?

The energetic statements here conveyed reveal that with a few exceptions, pnictogen, halogen and weak-hydrogen bonds and even H-H interactions expand over the same range of energy. The NCI picture sorts this interactions between those characterised by having small and round-shaped isosurfaces and those exhibiting large and thin isosurfaces. The former are very directional and the electrostatic contribution to the stabilisation of the complex is at least as large as the dispersion term. The latter are mainly driven by the dispersion contribution to the energy and expand large areas, being the consequence of the collective action of very weak dispersion interactions. Given the correlation between the "directionality" of the interaction and the weights of the dispersion and electrostatic contributions to the interaction energy, it seems more convenient to refer to these interactions as dispersive, electrostatic or both, forgetting any reference to the composition of the interacting fragments. Since the "directionality" is transcribed into the shape of the NCI regions, the NCI method allows, with some caveats, a first estimation of the localisation and energetic nature of the interaction. For instance, it is expected that the electrostatic contribution to E int is larger in the interaction between the alkyl chains in the SAM systems (specially along the y direction) than in metallocene dimers. This approach has the advantage of being fast and applicable to big systems, including the difficult-to-characterise intramolecular interactions. As defined by Linus Pauling "Chemistry is the science of substances: their structure, their properties, and the reactions that change them into other substance" [START_REF] Pauling | General Chemistry[END_REF]. The first aspects, structure and properties, are clearly associated with the arrangement of atoms in a molecule, i.e. the chemical bond. These bonds determine Pauling's third aspect, chemical reactivity.

In the precedent chapters it was shown how bonding is defined within the NCI method. Qualitatively, chemical interactions are displayed as isosurfaces of the reduced density gradient around the minima of this function. Chemical bonds may be characterised by the shapes of such isosurfaces and differentiated by the mapping of sign(λ 2 )ρ on them. A more quantitative characterisation may achieved by computing the volume and the electron population within NCI regions. One of most appealing features of the NCI method is the simultaneous visualisation of interactions of any energetic range, from strong covalent interactions to very weak non-covalent interactions. In chemical reactions interactions of different strength interplay during bond breaking and formation. The transition from weak to strong interactions (or the opposite) that occurs during chemical reactions may be casted by following the evolution of the NCI isosurfaces.

In this chapter we apply the NCI method to qualitatively understand the outcome of different chemical reactions. We have chosen two reactions that have been crucial in the history of theoretical chemistry: the thermal ring-opening of disubstituted cyclobutenes as example of the success of Woodward-Hoffmann rules in rationalisation from orbital grounds, and the Houk-List reacton as one of the first achievements in reactivity of computational chemistry.

Torquoselectivity

Pericyclic reactions represent the favourite playground for quantum chemistry reactivity models since Woodward and Hoffmann proposed their seminal list of rules [START_REF] Woodward | The conservation of orbital symmetry[END_REF]. By definition, pericyclic reactions evolve via a cyclic aromatic transition state of delocalized electrons where bond making and bond breaking occurs simultaneously in a cyclic array. Using the orbital symmetry conservation, Woodward and Hoffmann proposed a list of rules of thumb able to predict the mechanism and, hence the stereoselectivity of pericyclic reactions. Examples include cycloadditions, electrocyclisations, sigmatropic rearrangments, and chelotropic reactions. Much work has been devoted to show that electron circulation of the pericyclic transitions states may be smartly characterised by the topology of ELF [START_REF] Matito | Electron fluctuation in pericyclic and pseudopericyclic reactions[END_REF].

One example of application of NCI to predict the outcome of pericyclic reaction is provided by the thermal ring-opening of trans-1,2,3,4-tetrafluoro-3,4-bis(pentafluorosulfanyl)cyclobutene (see figure 8.1). As a thermal, 4n electron process, the Woodward-Hoffmann rules predict that the conrotatory opening is more favourable than the disrotatory one [START_REF] Woodward | The conservation of orbital symmetry[END_REF]. Additionally, a given terminal substituent may either rotate "outwards" leading to (E,E)-1,2,3,4-tetrafluoro-1,4-bis(pentafluorosulfanyl)butadiene (from now on outward compound) or "inwards" yielding (Z,Z)-1,2,3,4-tetrafluoro-1,4-bis(pentafluorosulfanyl)butadiene (from now on inwards compound). Activation energies obtained at ωB97X-D/6-31G * level for outwards and inwards transition states are 41.55 kcal/mol and 21.12 kcal/mol respectively. Because this kind of stereoselectivity is related to the direction of the twist, it was named torquoselectivity by Houk and co-workers [START_REF] Houk | Transition structures of hydrocarbon pericyclic reactions[END_REF].

Rondan and Houk proposed in 1984 a widely accepted orbital model able to explain torquoselectivity [START_REF] Kirmse | Stereoselective substituent effects on conrotatory electrocyclic reactions of cyclobutenes[END_REF][START_REF] Rondan | Theory of stereoselection in conrotatory electrocyclic reactions of substituted cyclobutenes[END_REF]. Since only certain orbitals are included in the model, a wrong selection of the interacting orbitals leads to wrong predictions. This shortcoming is com- mon for all theories based on a selected group of orbitals, such as the frontier orbital theory [START_REF] Dewar | A critique of frontier orbital theory[END_REF]. To avoid this flaw, Ponec decided to reinvestigate the problem in terms of an electron density based indicator, such as the molecular similarity approach [START_REF] Ponec | Similarity approach to chemical reactivity. torquoselectivity in pericyclic reactions[END_REF]. He showed that the origin of the torquoselectivity underlies on the low electron reorganisation required to transform reactants into products. Additionally, NCI analyses of both outwards and inwards transition states provide us with the topological arguments to understand this differential selectivity.

As shown in Figure 8.2, apart from the breaking carbon-carbon covalent interaction (blue isosurface) and its repulsive counterpart ring tension (red isosurface), we can differentiate three types of non-covalent interactions (green isosurfaces):

Type 1 Fluor-fluor interaction between pentafluorosulfanyl groups.

Type 2 Pentafluorosulfanyl-carbon interaction.

Type 3 Fluor-fluor interaction between pentafluorosulfanyl and fluoro groups.

All of them are present in the inwards transition state, whereas only interactions of type 3 are found in the outwards one (See Figure 8.2). Thus, dispersion interactions between pentafluorosulfanyl groups and those with the carbon cycle should be the driving force of the process. Thus, torquoselectivity can also be understood in terms of neighbour interactions as revealed by NCI: within this approach products are driven by the stabilisation through non-covalent interactions in the transition state. formation, two purely non-covalent regions appear:

• The region around the heteroatoms (C=O• • • N) shows stabilising features in all the conformers, whereas it is most important in anti and syn conformers, it is much weaker in the ent -anti and ent -syn ones. This 3D view coincides with the previous approaches, which locate the relevance in the NCH δ+ • • • O δ-interaction. However, along with the electrostatic interactions, green dispersive interactions appear elongating the NCI feature which highlight the importance of the planarity of this region and which cannot be merely explained by electrostatics.

• An extra region in the syn conformer, a green surface between the proline and the R=Ph group. This interaction can be identified as tilted T-shape interaction or as π-facial hydrogen bond. It is important to note that this interaction, which stabilises the syn conformers, had not been identified before by mere geometric inspections. However, its presence enables us to explain the fact that the syn conformers are the ones with largest dispersion correction.

Thus, a combination of NCH δ+ • • • O δ-electrostatics and dispersion (either in the NCH δ+ • • • O δ-or T-shape/π-facial H-bond in the ring region) determine the outcome of the reaction, with only anti and syn as observable diasteroisomers. It should be noted that this balance between electrostatic and dispersive interactions highlights, once again, the necessity to include dispersion effects in the calculations, else the correct energetics and geometrics would not be obtained. Chapter 9

Conclusions and outlook

This thesis is intended to present the current state of the art of the NCI method and its applications to understand structural stability and chemical reactivity. Following the QCT spirit, the NCI method focuses on the properties of the electron density and its derivatives to obtain some insight into chemical bonding, namely of the reduced density gradient (RDG) and the electron density Laplacian eigenvalues. On the one hand, RDG is used as an indicator of chemical interactions, critical points, namely its minima, match with those of the electron density, and with very weak interactions not revealed by BCPs. This gain of RDG respect to the electron density is related to the fact that the former adds up information from the gradient and the Laplacian of the latter. Since the origin of the reduced density gradient is traced back to the DFT development of GGA functionals, it was interpreted as a measure of the local inhomogeneity of the system, which is not very appealing from a chemical point of view. A conceptual laguna arose regarding the chemical content of the NCI pictures. The connection with QTAIM foresaw that minima of RDG may be ascribed with changes in the electron density Laplacian, and therefore with some kind of interaction. The strength of these changes may determine whether these interactions occur through a BCP or not. A more satisfactory interpretation has been given in terms of the von Weiszäcker kinetic energy. Minima of this term identify regions more prone to exhibit a bosonic behaviour. For a fermionic system this occurs in regions with low Pauli repulsion accounted by the Pauli kinetic energy. This happens in regions well described by a single orbital, i.e. where there is a strong electron pairing, or like-spin electron repulsion is relatively small. Independently of the NCI method, different functions have been proposed which exhibit similar results than those of the reduced density gradient. We refer to LED and DORI. The former is derived from the local quantum theory of momentum and it uses a formula equivalent to that of the local-wave vector. The latter is based on the geometrical features of the electron density, and it uses an elaborated scaled form of the local-wave vector. Since the reduced density gradient may be viewed as a scaled form of LED, the three descriptors turn around the same function, the local-wave vector. Once again the importance of the gradient of the electron density is stressed.

Additionally the NCI method came up with a new type of digram scarcely used in the chemistry community. RDG versus ρ representations collect a lot of information of the system in two dimensions. By tuning the ρ range, one can tune which kind of interaction to visualise, non-covalent interactions appear at low values of ρ (typically ρ < 0.1 a.u.), covalent interactions at intermediated values and core regions at higher densities. When plotting s(ρ) values, troughs in the diagram may be ascribed to some kind of chemical interaction. These peaks represent deviations from a single exponential decay density model, which is used as reference of non-interacting system. The points in the diagrams forming these peaks are then represented in real space for some value of s inside the peak, and visualised as isosurfaces. Analysing these diagrams is similar to analysing some kind of spectra, where transitions have been replaced with chemical interactions. Since each peak is the signature of some chemical interactions, resolving such spectra is the main issue. Since a peak is a very vague definition, a unique definition of the region should be provided, that is a baseline in the spectroscopy jargon. This first problem has been circumvented by defining a reference pseudodensity whose reduced density gradient will define the baseline, points under such reference curve defined what we have called throughout this manuscript, NCI regions. The use of pseudodensities defined from real fragments of the system resolves the problem of the arbitrariness on the choice of the isosurface value. This approach has been already implemented in our main code for performing NCI analysis, NCIPLOT.

Once chemical interactions are identified, we proposed different criteria for differentiating beetween interaction types based on the curvature of the electron density. i) The shape of the s isosurfaces representing such interactions ii) the electron density Laplacian eigenvalues.

i) Since minima of the reduced density gradient usually appear at low values of the electron density gradient, the shape of the isosurfaces encompassing such minima are determined by the behaviour of the eigenvalues of the Laplacian of the electron density. Shared shell interactions are characterised by cylindrical shapes. Among closed shell interaction, highly localized interaction involving only a pair of atoms, such as hydrogen or pnictogen bonding are characterised by a disc-shape isosurface, while dispersion interactions result of a sum of several weak interactions and are disclosed as extended misshaped isosurfaces. Isosurfaces around ring critical points and cage critical points, which have been ascribed to steric clases, appears as ellipsoidal shapes. Among closed shell interactions, highly localized interactions involving only a pair of atoms, such as hydrogen or pnictogen bonding are characterized by a disc-shape interaction, while dispersion interactions, which result of a sum of several weak interactions, are disclosed as extended misshaped surfaces ii) Since non-covalent interactions involve a positive value of the electron density Laplacian in the interaction region it is not possible to sort non-covalent interaction only with the sign of the Laplacian. Instead, one may focus on the eigenvalue responsible of the different signature of BCP and ring critical points, that is, the second eigenvalue of the electron density Laplacian λ 2 , (λ 1 < λ 2 <λ 3 ). Due to the fact that ring critical points occur traditionally where it is said to be steric crowing, regions with positive value of λ 2 have been said to be repulsive and regions with negative value of λ 2 attractive.

Mapping the values of sign(λ 2 )ρ over the reduced density gradient isosurfaces one may identify and differentiate chemical interactions. The relative strength of a interaction is given by the ρ values, and therefore, the strongest interactions are represented as isosurfaces with the purest red or blue colour.

Contributions

The main contributions of this manuscript are the following:

• A novel physical interpretation of the reduced density gradient based on its connection with the von Weizsäcker kinetic energy density. Additionally the critical points of the reduced density gradient have been connected with the AIM theory and one-electron potential.

• An algorithm for defining NCI regions and computing properties within them has been implemented in NCIPLOT. The results thereby obtained reveal a close correlation between the size the NCI regions and the stabilisation energy in that systems mainly stabilised by dispersion forces.

• We asses the dependence of the NCI method with the theory level. From a visual point of view, results are very stable with respect to the geometry, but from the quantitative point of view, NCI is able to reveal changes in the geometry and electron distribution when very subtle effects are at play.

• We demonstrate the ability of the NCI method for analysing covalent bonds. The close relationship between the reduced density gradient and other widely used bonding descriptors enables the application of the NCI method for analysing any interaction type.

• A characterisation of non-covalent interactions in terms of the shapes of the NCI domains, the values of the sign(λ 2 )ρ(r) and energetics.

• We apply the NCI method for assessing the role of dispersion interactions in complex systems: SAMs, methallocene dimers and transition states. The relative stability of such systems is often analysed in terms of energy partitions, which provide global quantities. Local approaches such as NCI have the advantage of revealing the key interactions of the systems.

Setbacks

So far so good, but then comes the poison arrow. In the zoo of methods which are nowadays available for analysing chemical bonding, we have selected quantum chemical topology (QCT) as our main approach. QCT embraces all those methodologies that used the dynamical system induced by the gradient field of some physical meaningful scalar field as partition engine. Along Chapter 2 we introduced the theory required for understanding the topological aspects behind QCT. The reader may have realised that a topological partition of the reduced density gradient has not been presented yet, so this excludes the NCI method and many of the analysis herein presented from QCT. Despite my commitment to perform such task, I found two main hurdles I could not overcome:

• Due to the absolute value in the numerator of the reduced density gradient, this function is piecewise smooth, and therefore, analytical searching for critical points are not accurate enough to guarantee that the relation between number of different critical points satisfies the Morse rule.

• The implementation of the combinatorial methods introduced in Chapter 2 needs for rewriting our main code NCILOT from FORTAN to C++, in order to profit from the libraries already implement for such kind of task.

Despite these limitations, all is not lost! As commented in Chapter 2 the split and merge of the connected components of an isosurface is related to the presence of critical points. This information is nicely collected into the Reeb graphs. This approach has already been implemented for analysing ELF and RDG under the name of bifurcation trees. In a nutshell, a rough idea of the localisation and value of critical points may be obtained by tuning the isosurface value. When visualising RDG, an isosurface of s = 0.5 is often enough to grasp all the RDG minima.

Regarding the second aspect of QCT, chemical meaningful scalar fields, we have convinced the reader of the connection between regions of marked bosonic character and the minima of the reduced density gradient, and so with relevant chemical features.

Turning back to the spectroscopy analogy, the ability for extracting different regions from s(ρ) diagrams, depends on how well resolved are the peaks, i.e. symmetric regions will be represented by the same peak in the diagram and they cannot be extracted as separate isosurfaces by mere observation of the diagram. This hurdle is intrinsic to the method and no solution has been envisaged. Some improvements have been made from the visualisation community. Recently Carr et al have proposed an algorithm for extracting surfaces from arbitrary regions of the s(ρ) diagrams, and for any two scalar fields in general [START_REF] Carr | Fiber surfaces: Generalizing isosurfaces to bivariate data[END_REF].

Open issues

It is hard to put a final point to this thesis when there are so many things to do. Considering that the conceptual basis of the NCI method has been already established, the future research lines within NCI project should be focussed in the implementation part. Although the NCI method has been adopted by the QCT community, it is far from being a "full member". Efforts in such direction should be taken. In what follows I will try to list the tasks that still remain not only in my "TO DO" list but also for future members of the NCI project:

1. The first step is to perform a robust code able to compute the Morse complex of RDG. Despite having outlined the shape of such partition, as far as I know no one has performed it yet. Such code will develop the NCI method up to the other QCT approaches. Moreover, such basins of RDG (namely its negative since basins are developed around maxima of a scalar field) will split the real space into atomic and interaction regions. With this methodology in hand, s(ρ) diagrams will be pushed into the background, since critical points will be directly localised in real space.

2. In order to compute average properties within RDG basins, improvements of the integration methods is mandatory. In this regard, integration algorithms over grid points are already available. Although the target of the NCI method are big systems, an step by step test of the RDG topology should be performed starting from atoms, then small molecules and gradually increasing the size of the system.

3. If we success in the previous two points, we should deal with the main difficulty of the QCT approach, big systems. Although QCT algorithms have been sped up during the last decade, they are far from being a real possibility in dealing with big systems coming from other disciplines such as Biology and Material Sciences. This is one of the main advantage of RDG: it is fast to compute and robust in such extent that promolecular densities retain the main signatures of the NCI method. Given these two points, one may envisage a two steps algorithm for dealing with big systems; a first quick NCI analysis for localising the interaction regions, and a second step in which accurate topological analyses are performed within NCI regions. Tierny et al [START_REF] Gunther | Characterizing molecular interactions in chemical systems[END_REF] have made some progress in this direction.

They proposed an algorithm for searching critical points of the electron density, within NCI regions.

4. Last but not the least. Working with researches from the visualisation community I realised the potential applications of the topology to tackle with our main issue, chemical bonding. In words of Popelier the number of concepts handled by QCT is so limited that sometimes it is closer to topography than to topology [START_REF] Popelier | Quantum chemical topology: on bonds and potentials[END_REF].

Since the seminal work of Bader, little improvement has been done in applying new topological concepts to the analysis of chemical bonding. In this regard, there are a plenty of choices. For instance the simultaneous analysis of several scalar fields is available through the notions of Jacobi sets or continuous scatter plots. A close collaboration between both communities is mandatory for the success of this endeavour.

The list could probably be longer and I am pretty sure it will be. Although I am running out of time for facing all these fascinating challenges, I wish they would be solve in the near future either by me or my collaborators.

Résumé en français

L'étude de la chimie, et les sciences de matériaux en général, est constituée autour de trois aspects principaux; structure chimique, propriétés et réactivité. La structure chimique est directement déterminé par la disposition des atomes dans l'espace. Les interactions entre les atomes, c'est à dire les liaisons chimiques, dictent les propriétés et par conséquent la réactivité. Malgré son caractère fondamental, la liaison chimique, elle ne fut jamais uniquement et proprement définie. Ce problème touche autres idées fondamentales pour la chimique comme couche atomique, pair libre, aromaticité, etc, et pose difficultés pour comprendre ses natures.

Cette dilemme a suscité beaucoup de réflexions, notamment auprès de Coulson "Sometimes it seems to me that a bond between two atoms has become so real, so tangible, so friendly, that I can almost see it. Then I awake with a little shock, for a chemical bond is not a real thing. It does not exist. No one has ever seen one. No one ever can. It is a figment of our own imagination". Ce dilemme est très bien évoqué par Frenking, qui a comparé la liaison chimique avec un licorne "a mythical but useful creature, which brings law [. . .] in an otherwise chaotic world". À différence d'autres propriétés comme l'énergie, le moméntum ou la polarisabilité, la liaison chimique est une idée, une concept chimique et par conséquence, elle n'est pas le valeur propre d'aucune opérateur quantique. L'origine de ce point de vue décourageante date de ses origines dans la alchimie, l'état de la physique et le mathématiques à l'époque étaient loin pour expliquer les transformations de la matière qui sont sujet de intérêt de la chimie. L'avènement de la mécanique quantique apporta la solution pour traiter cette phénoménologie. Comme Dirac disait "the underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main feature of complex atomic systems without to much computation.". Les difficultés induites par la résolution de l'équation de Schrödinger pour une système moléculaire et l'absence d'une définition unique de liaison nous ont éloigné de la compréhension de la nature des liaison chimique depuis une perspective purement quantique. Un clair exemple de cette situation a été présenté dans l'article "The Nature of the Fourth Bond in the Ground State of C 2 : The Quadruple Bond Conundrum" by Danovich et al On peut différentier au moins deux écoles pour traiter les interactions chimiques; celles qui utilisent les théories des orbitales moléculaire ou la liaison de valence pour et retrouver et définir concepts, et celles qui considèrent l'énergie et la densité électronique comme grandeurs fondamentaux. La première école sont nées à partir des travaux de Mulliken et Pauling. La théorie de la liaison de valence, proposée par Pauling dans les années 1930, permet l'insertion des idées de Lewis dans le formalisme de la mécanique quantique ainsi que de récupérer les structure résonantes de Lewis. La théorie des orbitales moléculaire (MO) fut la fuite du travail Mulliken et al. A différence les structure résonantes obtenues par la théorie VB, les MOs sont tellement localisés que est difficile obtenir aspects aussi localisées comme les liaisons ou les paires libre à partir de eaux. Malgré tout, la théorie MO est devenue historiquement favorisé par rapport à la théorie VB. Cet succès fut conséquence des travaux des plusieurs auteures, comme Hückel, qui proposé la séparation σ-π pour comprendre la structure des hydrocarbures conjugués, Coulson, Dewar, ou Woodward et Hoffmann qui proposent son théorie pour comprendre lés réactions péricycliques. Les deux théories, MO et VB donnent des descriptions complémentaires de la structure chimique. D'une autre côté les théorèmes de Hohenberg et Kohn que montrées que toutes les propriétés du système peuvent être complètement déterminées par la densité électronique (ρ) de l'état fondamental. À partir de ces théorèmes il apparut une école de pensée qui considéré que les orbitales ne sont plus nécessaires, et tous les concepts peuvent être obtenus à partir de la densité électronique ou de une façon plus générale à partir des matrices de densité réduites. En étant la densité électronique un champ scalaire définie dans R. Ces approximations sont appelées approximations dans l'espace réel et se caractérisent par: i) Être invariantes à transformation orbitales. Par example, la densité électronique ne dépend de quel orbitales on utilise, orbitales canoniques ou localisées.

ii) Être définies dans l'espace réel R 3 .

iii) Si possible être indépendant de la méthode utilisé pour calculer la densité électronique.

Parmi les approximations dans l'espace réel on trouve la topologie chimique quantique, les analyses du potentiel électrostatique, les orbitales naturelles de liaison, la méthode NCI ou les domaines de probabilité maximal (MPD). La topologie chimique quantique (QCT) est devenue une des approximations plus utilisé pour la localisation et analyse de la liaison chimique. La QCT comprend toutes les méthodologies utilisant le champ de gradient de une des champs scalaire avec sens chimique pour diviser un système quantique en différents régions. L'utilité de ces régions dépend des sens chimiques dont le gradient utilisé pour diviser le système. Ainsi la densité électronique aboutit à une partition en régions atomiques et les liaison sont identifiés à partir de "bond paths". La fonction de localisation électronique (ELF) récupère régions associées à paires d'électrons, et les liaison sont identifié par régions dans R 3 . À différence des approximation orbitales, ou on mis l'effort en la obtenir des concepts, les approximations dans l'espace réel requièrent faire des calculs pour obtenir des concepts chimiques. On peut résumé ce dilemme dans la célèbre citation de Wigner: "It is nice to know that the computer understands the problem. But I would like to understand it too"

Ce manuscrit traite des approximations réel et liaison chimique. Pour la suite nous focalisons dans le analyse des liaison chimique en utilisant des approximations dans l'espace réel.

Comme ont a montré l'image que la QCT donné de la liaison chimique dépendent de la fonction dont la topologie ont analyse. La validité de ces résultats peuvent être validé par le modèle de Lewis. Après on le peux utiliser pour analyser nouvelles types de interaction où il n'a pas encore aucune modèle existant. Dans ce contexte les interactions non-covalents (NCI) ont devenues très problématique.

Traditionnellement les NCI ont été traitées à partir de la théorie de perturbations. Par contré depuis un point de vue topologique, il n'exista pas une façon claire de comme les analyser. Par example, les interactions de dispersion sont caractériser par l'action simultanée de plusieurs atomes. Un analyse de la densité donnera un "bond path" qui connectera certains atomes mais pas tous les atomes que on considère dans l'interaction. À cet point on peut pose la question si est l'analyse de la densité électronique ou notre "intuition chimique" qui a raison? La réponse qui nos apportera cet analyse est que il y a interaction entre tous les atomes, mais certains interactions sont plus fortes qu'autres. L'analyse de la fonction de localisation électronique nos donnera un réponse assez pareille. Maxima de cette fonction identifient points où la probabilité de trouver paires de électrons est très haute. Les NCI sont tellement faible qui l'ELF ne montrera aucune maxima dans la région de interactions, par contre elle montrera points de selle entre quelques maxima, indicative de que il y a certain type de localisation dans la régions de localisation électronique.

La méthode NCI fut proposée par Erin Johnson et collaborateurs en 2010 comme une méthode pour l'étude des interactions non-covalentes. Cette méthode permet l'analyse des interactions chimiques d'une façon visuelle et rapide. La méthode NCI utilise les propriétés d'une fonction déjà connue dans la théorie de la fonctionnelle de la densité, comme le gradient réduit (RDG) de la densité pour identifier des interactions chimiques, celles que des NCI, ces interactions correspondent à des minima de RDG et sont visualisés comme des isosurfaces autour des ces minima. Les points critiques du RDG sont utilisés comme des indicateurs des interactions chimiques, ses minima étant dans la même position que celles de la densité électronique, et avec des interactions très faibles non montrées par points critiques de la densité électronique. Cet avantage respect la densité électronique est la conséquence que le RDG contient information du gradient et de la laplacien de la densité.

À l'origine le RDG a été proposé comme une mesure de la inhomogénéité de un système quantique. Depuis un perspective chimique cet interprétation n'est pas très util. Une autre interprétation a été proposée en terme de la densité de énergie cinétique de von Weizsäcker. Les minima de ce terme identifié les régions où les comportement des électrons ressemblent à ceux des bosons. ii) La laplacien de la densité électronique a des valeurs positives pour toutes NCIs. Donc elle n'est pas capable de différentier parmi les types de NCIs. Par contre, la deuxième valeur propre de la Hessian de la densité électronique λ 2 , change de signe dans les points critiques de liaison et les points critiques de cage. Car les derniers appareillent dans régions où il y a un encombrement stérique. En général les régions avec value positive de λ 2 sont considères comme répulsive. Les régions avec value négative de λ 2 attractives.

Si ont colorie les isosurfaces de RDG par correspondance à la valeur de sign(λ 2 )ρ il est possible d'identifier et classer les différent interaction chimiques. La force de l'interaction est proportionnelle au valeur de ρ et par conséquent les isosurfaces avec la colleur plus pure représente l'interaction plus forte.

Dans ce manuscrit montré à travers de huit chapitres l'état actuelle de la méthode NCI et on la cadre parmi les approximations dans l'espace réel.

Chapitre 1

Dans le premier chapitre le problème à plusieurs corps est traité brièvement. Ce problème implique la résolution de l'équation de Schrödinger. Il est dirigé aux lecteurs non-familiarisés avec la chimie quantique. On se focalise spécialement sur les méthodes que plus on a utilisé le plus fréquemment dans ce manuscrit. On commence pour les approximations plus simples, c'est à dire, sans tenir en compte de la corrélation électronique et progressivement on introduit la corrélations électronique de une façon variationnelle à travers de fonctions d'onde décrit par la combinaison linéaire de déterminants de Slater et de manière perturbative avec la théorie de perturbations de Moller-Plesset. Malgré l'utilisation de la méthode couple-cluster 

Chapitre 2

La liaison chimique et son analyse topologique sont les principaux sujets de cette thèse. Dans le chapitre 2 on fait une bref introduction à la topologie et notamment à la théorie de Morse. L'application des idées de la théorie de Morse à l'étude de différents phénomènes physiques, surtout de la mécanique des fluides a donne des résultats très intéressants. Cette théorie permet la partition de l'espace en différentes régions liés à entités physiques. Par exemple dans la figure 9 nous analysons la fonction f (x, y) = -x 4 + 4(x 2 -y 2 ) -3 montre deux maxima à ( √ 2,0) et (-√ 2,0) et un point de selle à (0,0). L'analyse de son champ gradient permet diviser le domaine de cette fonction R 2 en deux régions Ω a et Ω b .

Pour bien comprendre la théorie de Morse, tout d'abord les notions de espaces topologiques et variétés sont traitées puis la théorie de Morse ainsi que ses conséquent dans la visualisation des champs scalaires. Dans la pratique on travaille avec des échantillonnages des fonctionnes linéaires par morceau et la théorie de Morse ne peut être pas applicable. Ce problème à été déjà traité par la communauté de la visualisation scientifique et sa solution est montrée ici brièvement. Pour une introduction plus complète on recommande le livre Computational Topology: An Introduction par Herbert Edelsbrunner et John L. Harer. En appliquant les méthodes topologiques à la chimique, on applique la théorie de systèmes dynamiques. À la fin de cette chapitre on rappellé cette théorie brièvement et on la lie avec la théorie de Morse.

Chapitre 3

Dans ce chapitre le problème de la liaison chimique est étudié, c'est à dire, l'absence d'une définition unique. Traditionnellement la liaison chimique à été étudié par la théorie des orbital moléculaires ou au travers de différentes décompositions énergétiques. Il n'est pas possible de comprendre la liaison chimique sans la théorie des orbitales moléculaires, la liaison π ou σ naquirent du langage orbitale. Néanmoins, pendant les orbitas ont été définies dans un espace de Hilbert, la chimie a été développé dans l'espace réel R 3 . Les partitions énergétiques décrivent la liaison à partir des différentes contributions énergétiques, ainsi on peut dire que une liaison Traditionnellement les interaction non-covalentes s'ont visualisé à partir de fonctions qui dépendent de la distance entre les atomes et du rayon de van der Waals. Ces approximations ne permettent pas inclure les effet de l'environnement. Les approximations topologiques offrent une visualisation beaucoup plus réaliste des interaction non-covalentes.

La topologie du gradient réduit de la densité identifie les interaction chimiques (covalents et non-covalents) comme minima de sa fonction. Après les interactions sont classées à partir des courbures de la densité électronique. Notamment la deuxième valeur propre de la matrice hessienne de la densité électronique permet de différentier les interaction non-covalents. Dans le figure 2 

Chapitre 5

Tous les calculs NCI présentés dans le manuscrit ont été faits avec le code NCI-PLOT. Ce chapitre résume tous les aspects techniques de la méthode. La méthode NCI a été introduit comme une approximation plus visuelle que quantique. À partir des diagrammes du gradient réduit de densité versus la densité électronique on peut définir régions de NCI, où régions de interaction. En calculant des propriétés dans tous les points qui forment ces régions, est possible computer la valeur moyenne d'une opérateur dans cette région. La figure 3 montre la région NCI pour le dimére de méthane.

Un des avantages de la méthode NCI est la stabilité des dessins par rapport avec la qualité de la densité électronique. Dans ce chapitre on étude la dépendance des résultats de la méthode par rapport à la méthode et à la basse de calcul. 

Chapitre 6

Trois chapitres sont dédiés à l'application de la méthode NCI afin d'analyser les différents types de interactions. Dans le chapitre 6 on traite les liaisons covalentes, ioniques et transfer de charge. Malgré la méthode NCI fut proposée et spécialement conçue pour visualiser les interactions non-covalentes, les propriétés de gradient réduit de la densité permettent l'analyses de toutes les interactions chimiques indépendamment de leur force.

D'abord la forme des isosurfaces du gradient réduit de la densité est déterminée par la laplacien de la densité électronique et par conséquent à la accumulation et la fuit de densité autour des minima du gradient réduit de la densité. Puis on ajoute des informations provenant de la fonction sign(λ 2 )ρ pour colorer les isosurfaces, c'est à dire, on applique la méthode NCI. Le but de ce chapitre est montré la validité de la méthode NCI pour analyser toutes les types d'interactions chimique. La figure 4 montre l'analyse NCI pour la molécule de FBR

Chapitre 7

Dans le Chapitre 7 on analyse diverses interactions faibles. Ce chapitre est divisé en deux parties. Dans la première partie on applique la méthode NCI de une façon quantitative à l'analyse des interactions non-covalents directionnelles: liaisons pnictogène, halogène et liaison hydrogènes faibles. On compare la taille des régions de NCI, avec l'énergie d'interactions et la contribution de dispersion à l'énergie d'interaction. Nous trouvons une corrélation acceptable entre la taille de Tous les résultats sont résumés afin de montrer notre avis sur le problème qu'induit la nomenclature des interactions chimiques.

Chapitre 8

Les réaction chimiques sont caractérisées par une transformation continue des interactions fortes en faibles et viceversa. Dans ce dernier chapitre on applique la méthode NCI à l'étude de la réactivité chimique. D'abord nous étudions le phénomène connu comme "Torquo" sélectivité. Nous montrons le rôle des interactions noncovalentes entre les substituents (Figure 6 (gauche)).

En suit on analyse l'état de transition de Houk-List dans les réactions catalysées par prolines, et on montre la importance des interactions secondaires pour la stabilité de l'état de transition Figure 6 (droite). Aussi important que la topologie, la QCT se focalise dans fonctions avec signification chimique. On a montré que les minima du RDG identifient des régions où le caractère bosonique est remarquable.

Une des limitations de la méthode NCI est l'extraction de l'information des diagrammes de RDG versus ρ. Par exemple les régions identiques par symétrie sont représentées par le même pic dans le diagramme, et elles ne peuvent pas être extraites à partir du diagramme. Cette difficulté est intrinsèque à la méthode. Carret al ont proposé un algorithme pour obtenir des surfaces à partir des régions arbitraires du le diagramme.

Perspectives

Il est difficile de mettre un point final à cette thèse où tant de choses restent à faire et à explorer. En ayant établi les bases théoriques de la méthode NCI, la future recherche sur la méthode devrait se focaliser sur la partie computationnelle. Je vais essayer ici de résumer les perspectives que ce travail a engendrées et qui restent sur ma "TO DO" liste et aussi pour les prochains membres du project NCI: i) D'abord il faudra développer un code capable de obtenir le complexe de Morse du RDG. Malgré on connais déjà beaucoup de ses caractéristiques, personne n'a fait ce type de partition. Les basins du RDG (notamment les basins de -RDG, car ils sont définis à partir des maxima) divisent l'espace en régions atomiques et de interaction. Une fois que cette partition sera effectuée, le diagrammes de RDG versus resteront dans un plaine secondaire, car les points critiques du RDG seront localisés directement dans R 3 .

ii) Les méthodes d'intégrations dans les régions de NCI devront être améliorées pour obtenir des résultats précis. Malgré le but final de la méthode NCI sont des gros systèmes, les intégrations devront être testées avec des systèmes atomique, puis petites molécule et augmenter la taille du système d'une façon graduelle.

iii) Une des principales difficultés de la QCT, a été les gros systèmes. Malgré l'accéleration de méthodes d'intégrations durant ces dis dernières années, elle ne sont pas suffisamment rapide et précis pour traiter de gros systèmes d'intérêt dans la biologie ou les sciences de la matière. Un des avantages du RDG est sa capacité pour calculer au niveaux promolecular les principales caractéristiques des NCIs. On peut envisager un algorithme en deux étapes: une première analyse NCI rapide pour localiser les NCIs, et une deuxième pour accomplir des analyses topologiques précises dans las régions NCI. Tierny et al on proposé un algorithme pour chercher point critiques de la densité dedans les régions de NCI. iv) Lorsque je travaillais avec chercheurs de la communauté de la visualisation scientifique, j'a constaté le potentielle de la topologie pour l'analyse de la liaison chimique. Poperlier avait déjà noté les concepts topologiques que on a utilisés dans la QCT, sont tellement limitées que on est plus proche à la topographie que à la topologie. Depuis les travaux de Bader, il y 40 ans déjà, la quantité des idées outils topologiques utilisés par la QCT ont été assez limitées. À mon avis il faudra une collaboration plus forte entre les deux communautés pour réussir garantir le futur de la QCT.
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 21 respectively. These two spin functions are orthonormal,α * (σ)α(σ)dσ = β * (σ)β(σ)dσ = 1, (1.10) α * (σ)β(σ)dσ = β * (σ)α(σ)dσ = 0. (1.11) 
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 21 Figure 2.1: Hausdorff condition for two points x, y ∈ R 2

Figure 2 . 2 :

 22 Figure 2.2: Homeomorphism (ϕ) onto an open subset of R 2 . The pair (U , ϕ), where U ⊆ X, forms a chart at p ∈ X.

Figure 2 .

 2 2 shows an homeomorphism to an open set in R 2 . This local homeomorphism is accounted by charts, Definition 2.4 A chart at x ∈ X is the pair (U , ϕ), where U ⊆ X is an open set containing x, and ϕ is a homeomorphism onto an open subset of R m . The dimension of the chart ϕ is m.
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 24 Figure 2.4: Handle decomposition of a torus. Attaching 1-handle corresponding to a 1-saddle (b) to a cylinder (a) is homeomorphic to a capped torus (c). Adding a 2-handle corresponding to a maximum to a capped torus (d) is homeomorphic to a torus (e).
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 25 Figure 2.5: (Right) Reeb graph of the height function (f ) defined on a torus (left). The CPs of f are the nodes of the Reeb graph, and the arcs divide the torus into sections where level sets have a single connected component.
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 26 Figure 2.6: Subsets of S (red) and U (blue) manifolds of f : R 3 → R for the four kinds of CPs of f .
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 27 Figure 2.7: (Left) f (x, y) = -x 4 + 4(x 2 -y 2 ) -3 and (right) its contour lines.
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 29 Figure 2.9: From left to right: the star, the closed star and the link of a point in a bidimensional manifold.

Figure 2 . 10 :

 210 Figure 2.10: From left to right: the lower star and lower link of a regular point, a minimum, a saddle and a maximum for a bidimensional manifold.

Sommaire 3 . 1

 31 Quantum chemical topology . . . . . . . . . . . . . . . . . . . 3.2 Topology of the electron density . . . . . . . . . . . . . . . . 3.3 The electron localisation function . . . . . . . . . . . . . . . . 3.4 Kinetic energy density based descriptors . . . . . . . . . . . 3.4.1 Bonding descriptors based on τ (r) . . . . . . . . . . . . . . . 3.4.2 Bonding descriptors based on τw(r) . . . . . . . . . . . . . . 3.4.3 Bonding descriptors based on τ (r) and τw(r) . . . . . . . . . 3.4.4 Bonding descriptors from τ (r) ansatzs . . . . . . . . . . . . . 3.5 The local-wave vector . . . . . . . . . . . . . . . . . . . . . . . 3.6 Basin properties . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3 . 1 :

 31 Figure 3.1: ELF(r) localisation domains for: N 2 (f =0.8)(left), F 2 (f =0.6)(right). Monosynaptic and disynaptic basins are coloured in cyan and green respectively.

Figure 3 . 2 :

 32 Figure 3.2: β(r) (solid red line) and LOL (dashed blue line) along internuclear axis for N 2 . The zero was set at the BCP.

Figure 3 . 3 :

 33 Figure 3.3: t p (r) isocontours (left) and (right) t p (r)(solid black line) along with the ELF kernel χ(r) = t p (r)/t T F (r) values along the internuclear axis (right) for N 2 . LP and B stand for lone and bonding pair, respectively.

Figure 3 . 4 :

 34 Figure 3.4: g(r) along internuclear axis for N 2 (red line) and H 2 (blue dashed line).

Figure 3 . 5 :

 35 Figure 3.5: s(r) (top), LED(r)(middle) (bottom) for N 2 . (Left) Representation along internuclear axis. (Right) s(r) = 0.33, LED(r) = 0.6(cyan) and LED(r) = 6.0 (yellow) isosurfaces.
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 34 Since | ∇ρ(r)| = 0, Equation 3.33 is zero if and only if the expression in brackets cancelsH(ρ(r)) -n | ∇ρ(r)| 2 ρ(r) I = 0. (3.35)Equation 3.35 implies that H(ρ(r)) is diagonal and its eigenvalues, λ i , are positive and equal to n| ∇ρ(r)| 2 /ρ(r). Since the Laplacian of the electron density, ∇ 2 ρ(r), is equal to the trace of H(ρ(r)), Equation 3.35 leads to:
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 45 Equation 3.45 states that each basin makes an additive contribution to any property of the system.
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Figure 4 . 1 :

 41 Figure 4.1: s(r) and g(r) versus ρ(r) diagrams (a) methane (b) and methane dimer. (c) The water dimer.

  3 s(r) ∇s(r). (4.6) Since s(r) is positive semidefinite, at CPs the signs of their laplacians are the same ∇ 2 t bose (r) = 10 3 ∇s(r) • ∇s(r) + s(r)∇ 2 s(r) . (4.7) At CPs | ∇t bose (r cp |) = | ∇s(r cp )| = 0, and

1 .

 1 AIM-CPs: CPs of ρ(r), for which | ∇ρ(r)| = 0. 2. Non-AIM-CPs: Points where H(ρ(r)) -
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 42 Figure 4.2: t bose (r) along with ELF(r) values (solid black line) for N 2 (a) and F 2 (b).Negative (classically allowed) and positive (classically forbidden) regions of OEP(r) are displayed as cyan and red-colored areas respectively. Labels B and LP stand for bond and lone pair ELF maxima, respectively.

Figure 4 .

 4 Figure 4.2 displays t bose(r), ELF(r) along the internuclear axis for F 2 and N 2 . The origin was set at the BCP. The features of s(r) for N 2 have already been discussed in Section 3.5. t bose (r) differentiates the core, lone-pairs and interatomic bonding regions as minima separated by maxima. As revealed by ELF(r) maxima, these minima correspond to large electron pair localisation. Nuclear and bond critical points of ρ(r) are identified as zeros of t bose (r). Conversely lone pairs are not revealed by critical points of ρ(r), but by critical points of the Laplacian of the electron density. t bose (r) shows minima at such positions driven by the non-AIM-CP condition (Eq 4.10), following thereby a transition from a classically forbidden region to a classically allowed region, as may be seen in Figure4.2. We highlight that all CPs of t bose given by Eq 4.10 are anticipated by roots of OEP, but the opposite is not true; not all roots of OEP are followed by Eq 4.10. This situation may be found in N 2 . Even though no CP of t bose (r) is found between the external core-maxima and the BCP, the former is localized at regions of positive OEP, whereas the latter is found in a region of negative OEP. We may notice that the BCP for F 2 is localised at a region of positive OEP. It is well known that F 2 exhibits a positive value of the Laplacian of the electron density at the BCP, being thereby identified as a region of electron depletion (thus called charge-shift bond). Because the signs of OEP and ∇ 2 ρ(r) are the same at CPs of ρ(r), the BCP for F 2 is localized at a classically forbidden region.

  Molecular structure of the 1,2ethanediol molecule. Noncovalent bonding (green) occurs between the hydrogen and oxygen. (b) The ρ-f eld does not capture the noncovalent bond. The gradient f ow ∇ρ (blue arrows) uniformly covers all atoms. (c) The hydrogen-oxygen attraction is captured by ∇ ρ. The attraction (blue arrows) closes a molecular cycle generating a repulsion (red arrows).(d) The noncovalent bond is given in s by an isolated component (red surface) highlighting the interaction site of the oxygen and hydrogen atom.

Fig. 2 .

 2 Fig. 2. Isosurfaces and gradient behavior (colored arrows) of the electron density ρ, its derived signed electron density ρ, and the reduced gradient s for the 1,2-ethanediol molecule. Oxygen (O), carbon (C), and hydrogen (H) atoms are shown as red, green, and purple spheres, respectively. Covalent and noncovalent bonds are shown as white sticks and dashed green lines respectively.
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 43 Figure 4.3: (a) Molecular structure of the 1,2-ethanediol. A hydrogen bond is represented in green. Isosurfaces and gradient flows of (b) ρ(r), ∇ρ(r) (blue) and (c) sign(λ 2 )ρ(r), ∇sign(λ 2 )(ρ(r). Negative and positive flows are indicated with red and blue arrows, respectively.
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 44 Figure 4.4: NCI analysis for the phenol dimer. (Top) s(r) versus ρ(r) diagram. (Bottom) s(r) versus sign(λ 2 )ρ

Figure 4 . 5 :

 45 Figure 4.5: NCI analysis for the phenol dimer. (a) s(r) versus ρ diagram (b) and s(r) = 0.5 isosurface. (c) s(r) versus sign(λ 2 )ρ diagram (d) and s(r)=0.5 isosurface coloured over the range -0.04(blue) < sign(λ 2 )ρ < 0.04(red). (e) Surface extraction based on sign(λ 2 ); λ 2 > 0 isosurface and (f) λ < 0 isosurface.
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 4647 Figure 4.6: Comparison between SCF and promolecular NCI results for the methane dimer. (a) The same s(ρ) features are obtained using self-consistent (green) and promolecular (red) calculations, with a shift toward negative (stabilising) regimes. Taking the shift in spikes into account (i.e. changing the cut-off), the isosurface shapes remain qualitatively unaltered. (b) For SCF densities s(r)=0.6 and color scales of -0.04 < sign(λ 2 )ρ) < 0.03 a.u. (c) For promolecular densities s(r)=0.5. and -0.04 < sign(λ 2 )ρ) < 0.03 a.u.
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 48 Figure 4.8: (a) Ω N CI for the methane dimer. (b) s(r) = 2.0 isosurface containing Ω N CI .

Figure 4 .Figure 4 . 10 : 5 . 1

 441051 Figure 4.9: a) Numbering of the conformationally relevant dihedral angles ϕ=1 to 6 in sexiphenyl, b) and c) pair of structures differing by orientation of the ϕ5 dihedral angle (designated by blue arrow): b) structure sexiphenyl-1 , where ring "V" forms a Tshape contact with ring "Y" and c) structure sexiphenyl-2, where the T shaped contact is absent. d) and e) pair of structures differing by orientation of the ϕ3 dihedral angle (designated by red arrow): d) structure sexiphenyl-3, where ring "O" forms a T-shaped contact (red dashed line) with ring "C" and e) structure sexiphenyl-4, where the T shaped contact is absent. 95

Figure 5 . 2 :

 52 Figure 5.2: NCI analysis of formic acid dimer. (a) s(ρ) plot for CCSD/6-311G density. Peaks appear at 0.05 for vdW (green) and 0.008 a.u. for hydrogen bonds (blue). Isosurface extraction with the ATCUBE keyword: (b) Hydrogen bonds may be selected by setting the cube boundaries around the hydrogen and oxygen atoms, (c) vdW interactions may be recovered by setting a thin cube boundaries around the carbon atoms. The NCI color scale is -0.05 < sign(λ 2 )ρ < 0.05 a.u.
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 5355 Figure 5.3: Flowchart for program routines for non-covalent interactions visualisation and integration in NCIPLOT.

Figures 5 . 4 - 5 . 6

 5456 collect the 2D and 3D NCI diagrams of the selected molecules. The hydrogen bond in water dimer shows a negative value of λ 2 at the critical point (Figures. 5.4a,c), whereas λ 2 ≈ 0 (either positive or negative) for van der Waals interaction in methane dimer (Figures. 5.

  4b,d). Non-bonding interactions in bicyclooctene result in density depletion, so that λ 2 > 0 (Figures. 5.

  5b, d). It can be observed that both hydrogen bonds and steric clashes appear at greater densities (although different λ 2 sign) that van der Waals (see Figures. 5.

  5a-c and Table 5.1). Both strong and weak interactions are present in formic acid dimer (Figs. 5.5a, c). The case of non-AIM-CPs is illustrated with ethanediol (Figs. 5.6a-b).
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 35758 Figure 5.7: Comparison of NCI CCSD/6-311G and promolecular for test molecules. CCSD and promolecular integrated volumes are displayed as solid and transparent isosurfaces respectively: (a, c) water dimer and (b, d) methane dimers
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 59 Figure 5.9: Comparison of NCI CCSD/6-311G and promolecular for test molecules. CCSD and promolecular integrated volumes are displayed as solid and transparent isosurfaces respectively for ethanediol.
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 61 Figure 6.1: s(r) contours for (a) H 2 , (b) N 2 , (c) O 2 , (d) F 2 , (e) CO, (f) FCl, (g) FBr, (h) HF, (i) LiH, (j) NaF, (k) NaCl and (l) KCl. Atoms in the same order as in the notation on the top-left corner.
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 6263 Figure 6.2: s(r) along intermolecular axis for a) H 2 , b) N 2 , c) O 2 , d) F 2 , e) CO, f) FCl. Labels C, B and LP stand for core, bonding and lone-pair minima respectively. Arrows in O 2 , F 2 and CO plots indicate additional minima in the bonding region.
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 646566 Figure 6.4: s(r) along intermolecular axis for a) H 2 , b ) N 2 , c)O 2 , d)F 2 , e) CO.
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 71 Figure 7.1: NCI isosurfaces of the PH 3 -NH 3 (top) and PH 3 -PH 3 (bottom) complexes. (a) , (c) pnictogen bonded, (b) PH 3 -NH 3 hydrgogen bonded configuration and (d) PH 3 -NH 3 secondary minima. 3D isosurfaces were produced using cut-off values of s(r) = 0.5 coloured over the range -0.05(blue) < sign(λ 2 )ρ < 0.05(red).

  have divided them in two groups HOH• • • π, HCCH• • • π and FH• • • π represent T-shaped complexes where the π electrons of the acetylene are the proton acceptor. HCCH• • • HLi, FH• • • HLi and HCCH• • • OH 2 are linear complexes where the proton acceptor and donor are hydrogens X-H -δ • • • +δ H-Y.

Figure 7 . 2 andFigure 7 . 2 :

 7272 Figure 7.2: NCI isosurfaces for (a) HCCH• • • π, (b) HOH• • • π, (c) FH• • • π, (d) (HCCH)• • • OH 2 , (e) HCCH• • • HLi and (f ) FH• • • HLi. 3D isosurfaces were produced using cut-off values of s(r) = 0.5 and coloured over the range -0.05(blue) < sign(λ 2 )ρ < 0.05(red).

a) CF 3 Figure 7 . 3 :

 373 Figure 7.3: 3D plots for halogen bonded complexes: a) CF 3 Cl-DME b) CF 3 Cl-DMS c) CF 3 Br-DME d) CF 3 Br-TMP e) CF 3 I-NHC f) CF 3 I-TMA. NCI isosurfaces correspond to s=0.5 and a color scale of -0.04 < sign(λ 2 )ρ < +0.04 a.u.

Figure 7 . 4 :Figure 7 . 5 :Figure 7 . 6 : 2

 7475762 Figure 7.4: (a) Energy profile for the molecule-molecule interaction along the x and y directions and (b) energy diference between the 2D polymer and the x and y separately as a function of the d N N .
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 81 Figure 8.1: "Outwards" and "inwards" conrotatory product for the thermal ring opening of trans-1,2,3,4-tetrafluoro-3,4-bis(pentafluorsulfanyl)cyclobutene.
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 82 Figure 8.2: Non-covalent interaction types in outwards and inwards transition states. Black, read and blue dashed lines represent type 1, 2 and 3 interactions respectively. The reduced density gradient isosurfaces (s=0.3) are coloured on blue-green-red scale according the sign(λ 2 )ρ over the range -0.03 to 0.03 a.u.
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 8485 Figure 8.4: The stereochemical possibilities for the asymmetric aldol reaction. Cahn-Ingold-Prelog conventions are shown for R=Ph.
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 86 Figure 8.6: NCI analysis of several conformers of the computed transition state: a) the lowest energy isomer, b) the highest energy isomer, c) the highest D3 corrections isomer. The reduced density gradient isosurfaces (s = 0.5) are coloured on a blue-green-red scale according to the sign(λ 2 )ρ over the range -0.03 to 0.03 a.u.

Figure 1 :

 1 Figure 1: Fonction f (x, y) = -x 4 + 4(x 2 -y 2 ) -3 (gauche) et la partition induite par son champ de gradient (droite).

  on montre l'analyse NCI pour le dimère de phénol. Le diagramme de RDG versus sign(λ 2 )ρ présente quatre pics colorés en fonction du valeur de sign(λ 2 )ρ. Le isosurface du RDG colorées à partir des valeur de sign(λ 2 )ρ sont montrées à droite. On peut voir que le pic bleu à -0.03 a.u. est associé à une liaison d'hydrogène montrée par le composante de l'isosurface en bleu à droite. Les deux pics en vert correspondent à interactions de dispersion entre les anneaux de phénol. Les encombrements stériques au milieu de chaque anneau sont identifiés par le pic jaune-orange.Dans ce chapitre on montre le lien entre le gradient réduit de la densité et la densité d'énergie cinétique de von Weizäcker. À partir de cette lien il est possible associé les minima du gradient réduit de la densité avec des régions où le comportement des électrons ressemble à celui des bosons et par conséquent la répulsion de Pauli est assez basse. Le comportement bosonique est caractéristique des régions de noyaux, pair-libres, liaisons covalente et régions d'interaction en général.

Figure 2 :

 2 Figure 2: Analyses NCI pour le dimére de phénol. (Gauche) Diagramme de RDG versus sign(λ2)ρ coloré avec les valuers de sign(λ2)ρ. (Droite) RDG=0.5 isosurface coloré avec les valuers de sign(λ2)ρ.

Figure 3 :

 3 Figure 3: (Left) Ω N CI pour le dimére de methane. Dans le diagramme de RDG versus la densité électronique (gauche) et dans la représentation tridimensionnel (droite) Ω N CI .

Figure 4 :

 4 Figure 4: Analyses NCI pour la molécule de FBr. (Gauche) Diagramme de RDG versus sign(λ2)ρ coloré avec les valuers de sign(λ2)ρ. (Droite) RDG=0.5 isosurface coloré avec les valuers de sign(λ2)ρ.
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 56 Figure 5: RDG=0.5 isosurfaces pour les dimères de ferrocene en configuration orthogonale (gauche) et parallele (droite)

  

  and Applications of Topological Methods in Molecular Chemistry by R. Chauvin, C. Lepetit, B. Silvi and E. Alikhani.

  Similarly to h xc (r 1 |r 2 ), xc is usually split into exchange x and correlation c contributions

			r 1 , r 2 ) r 12	dr 1 dr 2 ,	(1.133)
	=	1 2	ρ(r 1 )ρ(r 2 ) r 12	dr 1 dr 2 +	1 2	ρ(r 1 )h F (r 1 |r 2 ) r 12	dr 1 dr 2 +
	+	1 2	ρ(r 1 )h C (r 1 |r 2 ) r 12	dr 1 dr 2 ,
	= J[ρ] + E x [ρ] + E c [ρ].		(1.134)
	From the latter formulation of V ee [ρ], it is possible to define the exchange correlation
	density xc (r)						
			xc (r 1 ) =	1 2		h xc (r 1 |r 2 ) r 12	dr 2 ,	(1.135)
			E xc [ρ] =	1 2			ρ(r 1 )h xc (r 1 |r 2 ) r 12	dr 1 dr 2 ,
			=		ρ(r) xc (r)dr,	(1.136)
				xc (r) = x (r) + c (r)	(1.137)
	Although the KS equation (Equation 1.126) provides us with the exact ρ and E, it is
	extremely complicate to solve it due to the xc (r) term. Equation 1.135 is only valid for
	the exact wave function Ψ which is solution of the Hamiltonian described by Equation 1.3

  |r 2 ) and h xc (r 1 |r 2 ) share the same properties. The DFT challenge relies on a proper modelling of xc (r), and specially h xc (r 1 |r 2 ). Different models lead to different exchange-correlation functionals, whose quality rely on how well they reproduce the properties of the exact h xc aforementioned.

	r 1 ) hxc (r 1 |r 2 ) r 12	dr 1 dr 2 ,	(1.138)
	where hxc is the coupling strength integrated exchange-correlation hole
	1		
	hxc (r 1 |r 2 ) =	h xc (r 1 |r 2 )dλ.	(1.139)
	0		
	Fortunately hxc (r 1		
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Table 5 .

 5 As observedMethod H 2 O dimer CH 4 dimer Bicyclooctene a 1: Method dependency of the ICP electron density for test molecules: water dimer, methane dimer, bicyclooctene, formic acid dimer (HB in first column, vdW in the second) and ethanediol. a All calculations with 6-311G basis set. b Due to their similarty (Ref[START_REF] Lane | Are bond critical points really critical for hydrogen bonding?[END_REF]) only attractive points is shown in ethanediol. † Approximated value obtained from 2D plot due to the absence of AIM critical point.

	Formic acid dimer	Ethanediol b

Table 5 .

 5 

	Method	H 2 O dimer CH 4 dimer Bicyclooctene a	Formic acid dimer	Ethanediol b
	CCSD(6-31G)	0.027328	0.0025130	0.023781	0.049234	0.0081382	0.014290
	Promolecular	0.029861 †	0.0063881 †	0.053456 †	0.051855 † 0.0013996 †	0.018327 †

Table 5 .

 5 H 2 O dimer CH 4 dimer Bicyclooctene a 5: Basis set dependence of the ICP electron density for test molecules :water dimer, methane dimer, bicyclooctene, formic acid dimer (HF in first column, vdW in the second) and ethanediol. a All calculations at the CCSD level. b Due to their similarity, only attractive point is shown in ethanediol. † The calculation did not converge due to nearly linear dependency. ‡ Approximated value obtained from 2D plot due to the absence of AIM critical point.

	Formic acid dimer	Ethanediol b

Table 5 . 6

 56 H 2 O dimer CH 4 dimer Bicyclooctene a Formic acid dimer Ethanediol

	6-31G	0.28	0.83	1.28	0.77	0.32
	6-311G	0.25	0.90	1.50	0.82	0.36
	6-311G * *	0.24	0.97	1.43	†	0.32
	6-311G ++	0.24	0.85	1.57	0.84	0.38

: Basis set dependency of the NCI volume (pseudo-densities of monomers are used as reference) for test molecules at the CCSD level: water dimer, methane dimer, bicyclooctene, formic acid dimer and ethanediol. a All calculations at the CCSD level.

Table 7 .

 7 .1. The green color of both interactions indicate that the two types of bonding have similar bonding strengths corresponding to that of the van der Waals interactions. Whereas for the H-1: NCI volumens(V N CI , a.u.), interaction (E int , kcal/mol) and dispersion energies (E disp , kcal/mol) of PH 3• • • PH 3 , the pnicogen (PH 3 • • • NH 3 and H 3 P• • • PH 3 ) and hydrogen (H 3 P• • • NH 3 )bonded complexes. ) complexes.

	System	V N CI	E int E disp
	H 3 P• • • NH 3	32.33 -1.60 -3.70
	PH 3 • • • NH 3 12.72 -0.81 -2.97
	H 3 P• • • PH 3	52.86 -1.10 -4.83
	PH 3 • • • PH 3 49.80 -0.70 -4.83

Table 7 .

 7 2: NCI volumens (V N CI , (a.u.)), interaction (E int , kcal/mol) and relative dispersion energies (E disp , kcal/mol) of the hydrogen bonded systems investigated here. complexes.

		N CI	E int E disp
	(HCCH)• • • OH 2 21.34	-2.62 -2.37
	HOH• • • π	38.05	-2.16 -2.80
	HCCH• • • π	38.65	-1.19 -3.88
	HCCH• • • HLi	3.28	-3.99 -2.22
	FH• • • π	27.61	-0.17 -2.48
	FH• • • HLi	0.71 -10.74 -0.87
	System	V N CI	E int	E disp
	CF 3 Br• • • DME	10.73	-3.73	-9.97
	CF 3 Br• • • TMA	30.7	-5.81 -15.60
	CF 3 Cl• • • DME	9.63	-2.69	-9.23
	CF 3 Cl• • • DMS	8.50 -10.83 -11.74
	CF 3 Cl• • • DMS a	2.27		

Table 7 .

 7 3: NCI volumes (V N CI , (a.u.)), interaction energies (E int , kcal/mol) and relative dispersion energies (E disp , kcal/mol) of the halogen bonded systems investigated here. a V N CI correspoding to the Cl• • • S interaction.

Table 7 .

 7 

	4.

Table 7 .

 7 4: Interaction energy (∆E total ), NCI volume (V Ω N CI (a.u.)) and NCI electron population (N Ω N CI (a.u.)) for the ferrocene dimers. † Energies extracted from[START_REF] Vargas-Caamal | How strong are the metallocene-metallocene interactions? cases of ferrocene, ruthenocene, and osmocene[END_REF].

  Les systèmes fermioniques montrent ce comportement dans régions où la répulsion de Pauli n'est pas très haute, comme par example dans régions décrites par une unique orbital, c'est à dire, où l'appariement électronique est très fort. Indépendant de la méthode NCI, le descripteur des électrons localisés (LED) ou l'indicateur de régions de recouvrement de la densité (DORI) montrent des résultats similaires aux RDG. LED est dérivé de la théorie quantique local, et DORI est désigné pour bénéficié les propriétés géométrique de la densité électronique. Les ressemblances entre les résultats obtenus par RDG, LED et DORI sont la conséquence de leurs liens avec le vecteur d'onde local.Dans la méthode NCI, l'information provenant du ρ et RDG est représentée en deux dimensions. En modifiant l'intervalle de ρ, différentes interactions sont visualisées, interactions non-covalentes apparaissent à basses valeurs de la densité (< 0.1 a.u.), interactions covalentes à valeurs intermédiaire et à plus hautes valeurs les noyaux. Les dépressions dans le diagramme sont associés avec des interactions chimique. Les points dans la dépression sont ensuite représentés dans l'espace réel. L'analyse de ces diagrammes est semblable à l'analyse spectroscopie, où les transitions ont été remplacées par interactions chimiques. Trouver la correspondance entre les dépressions et les interactions chimiques est le sujet principal de la méthode NCI. Le premier point est de définir les limites de ces dépressions, c'est à dire, la ligne de base. Dans notre code pour faire des calculs NCI, NCIPLOT, on définit la ligne de base à partir du RDG de pseudodensités crées à partir des fragments du système. Tous les points sous la ligne de base forment les régions NCI.Après avoir identifié les interactions, on propose deux solutions pour les différencier. i) La première utilise la forme des isosurface du RDG. ii) La deuxième est basée sur la valeur propres de la matrice hessienne de la densité électronique. i) Car les minima du RDG normalement appareillent à basse valeurs de la densité électronique, la forme des isosurfaces qui contient celles minima est déterminée par les valeurs propres de la matrice hessienne de la densité électronique. Les interactions covalentes sont caractérisées par isosurfaces cylindriques. Par contre les interactions non-covalentes et ioniques entre deux paire des atomes ont des isosurfaces en forme de disque. Si la interaction est non-covalente et entre plusieurs atomes au même temps, les isosurfaces du RDG sont amorphes et très allongées. Les isosurfaces qui entourent point critiques d'anneau et de cage ont des formes ellipsoïdales.

  dans le chapitre 5, on ne le décrit pas car il est un cas ponctuelle. Dans le chapitre 7 on décris les résultats obtenus avec des systèmes périodiques, les méthodes pour résoudre l'équation de Schrödinger pour des systèmes infinies ne sont pas inclus. La théorie de la fonctionnelle électronique (DFT) est aussi traitée, avec tout d'abord ses fondements théoriques données par les théorèmesde Hohenberg et Kohn puis l'approche de Kohn et Sham. Les différentes fonctionnelles d'échange et corrélation sont aussi décrites, en commençant pour la plus simple comme LDA jusque les approximation plus complexes comme la séparation de portée de l'interaction électronique. Le lecteur est dirigé aux livres plus didactiques comme Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory de Atila Szabo and Neil S. Ostlund, Molecular Electronic-Structure Theory par Trygve Helgaker, Poul Jorgensen et Jeppe Olsen, Density-Functional Theory of Atoms and Molecules by Robert G. Parr et Weitao Yang et A Chemist's Guide to Density Functional Theory par Wolfram Koch et Max C. Holthausen.

  2 -y 2 ) -3 (gauche) et la partition induite par son champ de gradient (droite). ionique est formée à partir d'interactions plutôt électrostatique. Bien que nécessaires, les approximations énergétiques sont globales et est dure à extraire quelle contribution est la dominante quand un atome est lié à plusieurs atomes au même temps. Les approximations topologiques donnent une solution a ces problèmes. En utilisant des fonctions dans R 3 on peut étudier la topologie de cet fonctions, c'est à dire analyser son comportement dans chaque point de l'espace et son rapport avec son voisinage. Si la fonction a en plus une signification chimique on peut récupérer des idées chimiques dans R 3 . Le systèmes sont divisés en régions autour des noyaux, et par conséquence elles sont liées aux atomes. Cet est l'idée de la théorie chimique quantique, analyser le système dynamique défini par le gradient de un champ scalaire pour diviser les système en différent régions. Parmi tous les fonctions proposés par la QCT, on étudions le plus utilisée pour l'analyse des interactions chimique. Tout d'abord nous étudions la fonction plus basique pour la QCT, la densité électronique, après nous continuons avec la fonction de localisation électronique. Puis nous focalisons sûr de fonctions dérivées des densitésde énergie cinétique. Ces fonctions ont résulté très outil pour visualiser la liaison chimique. Nous terminons avec des fonctions liées au vecteur d'onde local. Cet type de fonctions permettent la visualisation des interaction covalent et non-covalent; le sujet principal de cette thèse. Pour aller plus loin, on recommande Atoms in Molecules, A Quantum Theory par Richard F. W. Bader et Applications of Topological Methods in Molecular Chemistr par R. Chauvin, C. Lepetit, B. Silvi et E. Alikhani.Ici on introduit la méthode NCI; la théorie et son modus operandi. Les interactions non-covalentes jouent un rôle fondamental dans les chimie. Les interactions entre un catalyseur et son substrat, le synthèse de énantiomers et plusieurs réactions chimiques sont régies par interactions non-covalentes. Également la réorganisation moléculaire résultante la cristallisation de un matériel, est guidée par interactions non-covalentes. Par conséquence elles déterminent les propriétés du matériel. La compréhension des forces qui contrôlent la cristallisation permet le conception des matières premières avec les propriétés désirées. Parmi les interaction non-covalentes on peut trouver les liaison d'hydrogène, interactions dipôle-dipôle et la dispersion de London. Dans les dernières années les interaction non-covalents directionnelles ont été très étudiées comme les interactions pnictogène, halogène, chalcogène et les liaisons carbone-hydrogène.

	Chapitre 4

An open ball B(x, r) with center x and radious r > 0 with respect to metric d(x, y) is defined as B(x, r) = {y|d(x, y) < r}.

A function f : U → R d is smooth or C ∞ -continuous or C ∞ ifall coordinate functions have partial derivatives for all orders and types.

Informally the qth Betti number may be understood as the number of q-dimensional holes on a topological surface, i.e. β 0 is the number of connected components, β 1 is the number of "circular" holes, β 2 is the number of two-dimensional "cavities",...
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conclude that dispersion interactions occur through large regions of marked bosonic character. However, this correlation only holds for systems mainly stabilised by dispersion.

Using the parameter q n bind (Equation 4.21) Contreras-García et al were able to mimic the potential energy curve of several hydrogen-bonded complexes [START_REF] Contreras-García | Analysis of hydrogenbond interaction potentials from the electron density: integration of noncovalent interaction regions[END_REF], showing that it is possible to correlate interaction energies with properties computed within regions provided by the NCI method.

In the same line, Saleh et al analysed the correlation between the stabilisation energy and the energy density computed in regions with s(r) lower than a given constant cutoff δ (s(r) < δ) [START_REF] Saleh | Energetics of non-covalent interactions from electron and energy density distributions[END_REF]. They analysed the correlation of H(r), V(r) and τ (r) in such regions with the stabilisation energies, and they found that τ (r) presents the best fitting. 

NCIPLOT

The Houk-List transition states

Organocatalysed intermolecular aldol additions (see Figure 8.3) have been nicely rationalised by the Houk-List model, which involves a one-proline mechanism based on enamine activation [START_REF] Bahmanyar | Transition states of amine-catalyzed aldol reactions involving enamine intermediates: theoretical studies of mechanism, reactivity, and stereoselectivity[END_REF][START_REF] Bahmanyar | The origin of stereoselectivity in prolinecatalyzed intramolecular aldol reactions[END_REF][START_REF] Bahmanyar | Quantum mechanical predictions of the stereoselectivities of proline-catalyzed asymmetric intermolecular aldol reactions[END_REF][START_REF] Bahmanyar | Origins of opposite absolute stereoselectivities in proline-catalyzed direct mannich and aldol reactions[END_REF][START_REF] Hoang | Kinetic and stereochemical evidence for the involvement of only one proline molecule in the transition states of proline-catalyzed intra-and intermolecular aldol reactions[END_REF]. The carbon-carbon bond formation is the rate-determining step of the intermolecular aldol catalytic cycle in which the catalytic active enamine attacks an electrophile. Houk and Bahmanyar suggested that the energy differences between these transition states, and so the origin and degree of stereoselectivity displayed by the reaction, depends on two critical structural elements: the relative degree to which each transition state can adopt a planar enamine, and the degree of electrostatic stabilisation provided to the forming alkoxide. A planar enamine allows for the greatest possible nucleophilicity of the terminal olefin while also reducing the geometric distortion experienced by the forming iminium group. The proton transfer from the carboxylic acid to the forming alkoxide was suggested to provide the majority of the electrostatic stabilisation and is key to the Houk-List model. Smaller, yet important, stabilising contributions also result from NCH δ+ • • • O δ-interactions from the pyrrolidine ring.

In order to reproduce and expand the original calculations performed by Houk and List for R=Ph and R=iPr,"chair" and "twist-boat" conformations for the cyclohexene ring and puckering of the proline ring away from or towards the proton transfer (Figure 8.5) were considered for each stereochemical outcome shown in Figure 8.4 for both R=Ph and R=iPr, resulting in 16 transition states for both R=Ph and R=iPr. Several computational aspects such as the quality of the functional, basis set, the need for dispersion corrections and the effect of solvent have been in-depth scrutinised in Ref [START_REF] Armstrong | The houk-list transition states for organocatalytic mechanisms revisited[END_REF]. Our collaborators concluded that geometries obtained at the larger triple-ζ-quality TZVP basis set with inclusion of the CPCM solvation model at B3LYP+D3 level were reliable enough to be considered as our base standard.

It is worth to note the importance of considering dispersion correction in the DFT functional, which results in a increase of the planarity of the enamine. Examining the enamine geometries for R=Ph, a correlation between the planarity of the enamine and the relative stability is found; the lowest energy structure, (S,R) conformation 2, has • Interpretation of the reduced density gradient. R. A. Boto, J. Contreras-García, J. Tierny, J-P Piquemal. Molecular Physics, 2016, 114, 1406-1414.
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Contributions

Les principales contributions de cette thèse sont: i) Une nouvelle interprétation du RDG en terme de la densité d'énergie cinétique de von Weizsäcker. Les points critiques du RDG ont été liés à la théorie des atomes en molécules (AIM) et le potentielle mono-électronique (OEP).

ii 

Difficultés

Parmi tous les outils disponibles pour l'analyse de la liaison chimique, on a choisi la topologie chimique quantique (QCT). QCT comprend toutes les méthodologies utilisant la champ de gradient de un des champs scalaire avec une signification chimique pour diviser un system quantique en différents régions. Toute la théorie nécessaire pour bien comprend la QCT a été introduite dans le Chapitre 3. Par contre la méthode NCI n'utilise pas le gradient d'aucune fonctions pour diviser l'espace. Ce point empêche de parler de la méthode NCI comme une partie de la QCT. Dans le courant de cette thèse on a trouvé les problèmes suivants pour implémenter une partition du type QCT avec la méthode NCI i) La valeur absolut dans le numérateur du RDG fait cette fonction "smooth" par morceau, et par conséquent la recherche de ses points critiques n'est pas le suffisamment précise pour garantir la règle de Morse.

ii) Notre code principal de calcul NCIPLOT écrit en Fortran, la plupart des librairies nécessaires pour implementer les méthodes combinatoires introduites dans le chapitre 2 sont écrites en C++. Pour les utiliser il faudrait récrire notre code NCIPLOT en C++.

À partir des analyses des isosurfaces du RDG on peut avoir une idée de les positions des point critiques. Les arbres de bifurcartion on déjà été introduits pour l'analyse de l'ELF et le RDG. En visualisuant le RDG, une isosurface de 0.5 est normalement suffisante pour obtenir un isosurface qui contient tous les minima du RDG.