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Introduction

Back in 2010 Erin Johnson and co-workers came up with a new tool for analysing non-
covalent interactions, the NCI method. This tool allows for a fast and visual characterisa-
tion of chemical interactions. The warm reception of the method by the community was
so, that the second article on the NCI method was among the ten most read articles in
the Journal of Chemical Theory and Computation in 2011. Supporters and detractors of
the method grew equally and questions about the theoretical basis of the method and its
reliability beyond correlation with “chemical intuition” expectations arose. The present
manuscript is aimed at rebutting such criticisms, showing in a comprehensive manner
the advantages, limitations and possibilities of the method. I have tried to collect the
state of the art of the NCI method, weaving some new thoughts and ideas aiming at
further pushing its limits .

Before describing the structure of this manuscript, it is worthy to frame the excep-
tional conditions that enabled the rapid success of the NCI method. The reader may
figure out that all this story starts with the chemical bonding and the ever-lasting quest
for a definitive consensus on its definition. Contrary to other observables such as energy
polarizability, momentum, the chemical bond is not a physical observable, and thus a
pure quantum mechanical definition of chemical bonding does not exist. Perhaps because
it is a concept and not a property, seeking for their corresponding operator is senseless. I
would not like to disappoint the reader so early, but I do not have the answer yet. Other
cornerstone ideas in chemistry such as atomic shell, lone pair, (hyper-)conjugation, aro-
maticity, etc suffer from the same pathology. Nevertheless all of them constitute such a
rich set of “fuzzy”, yet invaluably set of concepts, that many efforts have been devoted
to understand their underlying mechanistic nature.

In face of this quandary, many people follow Coulson’s point of view “Sometimes it
seems to me that a bond between two atoms has become so real, so tangible, so friendly,
that I can almost see it. Then I awake with a little shock, for a chemical bond is not
a real thing. It does not exist. No one has ever seen one. No one ever can. It is
a figment of our own imagination”. In keeping with this comment chemical bond was
compared to a unicorn “a mythical but useful creature, which brings law [. . .] in an
otherwise chaotic world”. These “imaginary” and discouraging thinkings trace back to
the early observations about the transformation of matter that took place at the dawn
of chemistry as a scientific branch. At that time, physics or mathematics were not
developed enough to provide a formalism able to account for such observations. The
advent of quantum mechanics paved the way for the understanding of such phenomena,
a way we are still walking.

Almost 90 years latter of Dirac’s utterance “the underlying physical laws necessary
for the mathematical theory of a large part of physics and the whole of chemistry are
thus completely known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble. It therefore becomes desirable that
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Introduction

approximate practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main feature of complex atomic systems without to much
computation.”, we haven’t overcome the mathematical difficulties encountered in solving
the Schrödinger equation for molecular systems. Even for the most “simple” chemical
bond, covalent bonding, there is even controversy on its its mechanistic origin. This
situation has been clearly stated in the very recent paper entitled “The Nature of the
Fourth Bond in the Ground State of C2: The Quadruple Bond Conundrum” by Danovich
et al [1].

In trying to overcome this dichotomy, it is worthy to focus on simpler objects than
the wave function as uttered by Coulson “in recognising the bond as a figment of our
imagination [but that it is] worthwhile to adopt pragmatic schemes for getting molecular
structure out of wave functions whenever possible”. Hohenberg and Kohn were apparently
the first to reckon the importance of the electron density, setting the basis of density
functional theory. The electron density is the starting point of the topological approaches,
which ascribe chemical concepts to the topological features of some scalar field defined
from the electron density or reduced density matrices in general.

Topological approaches or real space approaches offer a series of advantages over other
traditional approaches widely used to understand molecular structure such as molecular
orbital theory. First they are independent on the route taken for computing the wave
function, that is the theory level. Secondly they are orbital invariant and finally they
are defined in real space, where chemical concepts have been traditionally defined. In
this regard, they enable the visualisation of these “pieces of our imagination” and their
connection with quantum mechanical objects.

However, a mismatching between the solution provided by these topological ap-
proaches and the traditional chemical wisdom is very often found. This is the case
for instance of non- covalent interactions (NCI). The lacking of chemical bonding defini-
tion hampers the design of suitable indicators able to properly characterise all interaction
types, while matching “chemical intuition”. One may thing that using “chemical intu-
ition” and not physics as guideline may hamper the discovering of new insight into the
nature chemical matter. For the moment, we will consider this “inherited knowledge” as
right.

The NCI method presents a compromise solution for characterising different interac-
tion types no matter their strength. We shall not attempt to summarise all the literature
on the NCI method, but to present in a comprehensive manner the theory and applica-
tions of the method along four chapters divided into three blocks: theory (Chapter 4 ),
implementation (Chapter 5 ) and application (Chapters 6 to 8), thus yielding a compre-
hensive view of the the NCI method within the fields of theoretical and computational
chemistry.

Chapter 1
The first chapter is a brief summary of the main methods used for computing the electron
density. It is oriented to readers unfamiliar with quantum chemistry. We will specially
focus on those methods more used all along the manuscript, albeit CCSD and solid state
calculations are performed in Chapters 5 and 7 respectively, they are not presented here
since they remain punctual. The reader is directed to textbooks like Modern Quantum
Chemistry: Introduction to Advanced Electronic Structure Theory by Atila Szabo and
Neil S. Ostlund, Molecular Electronic-Structure Theory by Trygve Helgaker, Poul Jor-
gensen and Jeppe Olsen, Density-Functional Theory of Atoms and Molecules by Robert
G. Parr and Weitao Yang and A Chemist’s Guide to Density Functional Theory by Wol-
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fram Koch and Max C. Holthausen for a complete compilation of methods in a rather
educational framework.

Chapter 2
Throughout this manuscript chemical bonding is mainly analysed by topological ap-
proaches. Thus, we considered adequate to collect in a stand alone chapter the most
relevant topological aspects of the analysis of chemical bonding. Additionally, we present
some notions and algorithms commonly used in the visualisation community. For further
reading we recommend the book Computational Topology: An Introduction by Herbert
Edelsbrunner and John L. Harer.

Chapter 3
Chapter 3 is devoted to introducing topological approaches and emphasising quantum
chemical topology. This part will set the basis for the rest of the manuscript. In the zoo
of functions encompassed under the umbrella of quantum chemical topology, I have tried
to focus on those more related to the NCI method. The number of textbook that collects
all topological approaches is quite limited so far. For the interested readers I recommend
Atoms in Molecules, A Quantum Theory by Richard F. W. Bader and Applications of
Topological Methods in Molecular Chemistry by R. Chauvin, C. Lepetit, B. Silvi and E.
Alikhani.

Chapter 4
This chapter is entirely devoted to the NCI method; theoretical basis andmodus operandi.
In the first part we connect the theoretical grounds of the method with some of the
concepts introduced in Chapter 3. Then some examples of its application to the analysis
of non-covalent interactions are presented.

Chapter 5
All the NCI calculations herein presented were performed with the NCIPLOT code. This
chapter intends to summarise the technical aspects of the code and its possibilities in a
tutorial-like manner. Additionally, the method is tested on a list of a benchmark calcu-
lations in order to disclose its dependency with the method and basis used to compute
the electron density.

Chapter 6
Three chapters are devoted to apply the NCI method to the analysis of different bonding
patterns. Covalent, ionic and charge-shift bonding constitute the scope of the Chapter 6.

Chapter 7
The NCI method is applied to the analysis of non-conventional weak bonding patterns
in Chapter 7. This chapter is divided in two sections. First, quantitative NCI analyses
are performed on non-covalent directional interactions: pnictogen, halogen and weak-
hydrogen bonding. Then, bonding in complex systems as a self-assembly monolayer
and metallocenes is explored. All the results obtained in this chapter are eventually

13



Introduction

collected in form of answer to a semantic question related to the nomenclature of chemical
interactions.

Chapter 8
Chemical reactions are characterised by the interplay of chemical interactions of different
strengths. Since the range of the applicability of the NCI method ranges form strong
covalent interactions to very weak NCI. This chapter is devoted to chemical reactivity.
The NCI method is applied to understanding the outcome of some prototype chemical
reactions in terms of the role of non-covalent interactions in the transition state.
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Chapter 1. Methods of quantum mechanics

Any problem concerning the electronic structure of matter is covered by the Schrödinger
equation [2]

i~
∂Ψ(x, t)
∂t

= ĤΨ(x, t), (1.1)

where Ĥ is the Hamiltonian operator, Ψ(x, t) is the wave function of a N particle system,
x = {x1, x2,...,xN} stands for the collection of all space-spin coordinates needed to
describe each of the N particles and t for the time. For conservative or stationary systems,
where the potential energy part of the Hamiltonian is not a function of time, a possible
solution of Equation 1.1 is

Ψ(x, t) = ψ(x, t)e−iEt/~, (1.2)

where E is the energy of the system. Inserting this factorized form of the wave function
in 1.1, leads to a time-independent equation

Ĥψ(x) = Eψ(x). (1.3)

Equation 1.3 is the so-called time-independent Schrödinger equation.

1.1 Born-Oppenheimer approximation
In the non-relativistic approach, the Hamiltonian operator of a system formed by N
electrons moving around M nuclei, considering all the terms in atomic units, is given by

Ĥ = −1
2

M∑
A=1

∇2
A

MA
− 1

2

N∑
i

∇2
i +

∑
i>j

1
rij
−
∑
A,i

ZA
|ri −RA|

+
∑
A>B

ZAZB
|RA −RB |

, (1.4)

where the indices A,B and i, j designate nuclei and electrons, respectively, MA is the
mass of atom A, ZA, ZB are the nuclear charges of atoms A and B respectively, and
∇2
i ,∇2

A are the electron and nuclear Laplacian operators, respectively. The Hamiltonian
of Equation 1.4 is composed of five terms: the two first terms are the electronic and
the nuclear kinetic energy respectively, and the remaining three terms are the electron-
electron, nucleus-electron and nucleus-nucleus Coulomb interactions respectively. These
five contributions may be grouped in electronic Ĥel, nuclear Ĥnuc, and nucleus-electron
Ĥel−nuc terms:

Ĥ = −1
2

M∑
A=1

∇2
A

MA
+
∑
A>B

ZAZB
|RA −RB |︸ ︷︷ ︸

Ĥnuc

−1
2

N∑
i

∇2
i +

∑
i>j

1
rij︸ ︷︷ ︸

Ĥel

−
∑
A,i

ZA
|ri −RA|︸ ︷︷ ︸

Ĥel−nuc

, (1.5)

The corresponding wave function must contain both, nuclear and electronic coordi-
nates. The Hamiltonian of Equation 1.4 may be simplified if we notice the huge difference
in the mass of electrons and nuclei (a factor of 103-105). The nuclei are much heavier
and consequently they move considerably slower than electrons. Under this consideration
nuclear kinetic energies may be neglected and the nuclear electrostatic interaction may
be considered as constant. Then the whole term Ĥnuc becomes constant. This approx-
imation is known as the Born-Oppenheimer approximation and its main consequence is
the decoupling of the electron and the nuclear motion, in such a way that the total wave
function may be factorized in an electronic and nuclear part
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1.1. Born-Oppenheimer approximation

Ψ(x,R) = Ψel(x;R)Ψnuc(R), (1.6)

The electronic wave function Ψel(x;R) describes the motion of electrons at a fixed
position of nuclei. It depends on the electronic coordinates and parametrically of the nu-
clear coordinates R. Under the Born-Oppenheimer approximation the electronic problem
may be set as (

Ĥel + Ĥel−nuc

)
Ψel(x;R) = EelΨel(x;R), (1.7)

where Eel is the electronic energy. The total energy is defined as the addition of Eel
and the nuclear electrostatic interaction

E(R) = Eel +
∑
A>B

ZAZB
|RA −RB |

. (1.8)

The nuclear wave function Ψnuc(R) is the solution of the corresponding nuclear
Schrödinger equation

(
− 1

2

M∑
A=1

∇2
A

MA
+ E(R)

)
Ψnuc(R) = EnucΨnuc(R). (1.9)

In what follows, we will focus on how to solve the electronic problem, posed by
Equation 1.7. On referring to Ĥelec, Ψelec and Eelec we will drop the subscript.

1.1.1 Electron spin
The electron wave function obtained by solving Equation 1.7 depends on spin-space
coordinates x and parametrically on the nuclear arrangement R. To completely describe
an electron it is necessary to specify not only its spatial coordinates r, but also an
intrinsic angular momentum called spin. Electrons are known to have a value of the spin
quantum number equal to 1

2~, whose z component may take two possible values + 1
2~

and - 1
2~. Under the non-relativistic model, the spin coordinates (σ) are included on the

wave function by two spin functions α(σ) and β(σ), corresponding to eigenvalues of the
z component of the spin operator equal to + 1

2~ and - 1
2~ respectively. These two spin

functions are orthonormal,

∫
α∗(σ)α(σ)dσ =

∫
β∗(σ)β(σ)dσ = 1, (1.10)∫

α∗(σ)β(σ)dσ =
∫
β∗(σ)α(σ)dσ = 0. (1.11)

The electronic generic coordinates x may be defined as the composition of spatial
r={x,y,z} and spin cordinates (σ), and they are called spatial-spin coordinates x={r,σ}.

1.1.2 Spin orbitals
Strictly speaking an orbital is the solutions of Equation 1.3 for the hydrogen atom (or any
hydrogen-like ion). From here on we shall refer to orbital as a one-electron wave function.
For an atom, one has atomic orbitals and for molecules, molecular orbitals. As it has
been already said, an electron is characterised by spatial and spin coordinates, and in
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Chapter 1. Methods of quantum mechanics

the non-relativisitc approach spatial-spin coordinates are defined as composition of both.
Similarly, we may define spatial and spin orbitals. A spatial orbital ψi(r) is a function
of the position vector r and describes the spatial distribution of the i-th electron, such
that |ψi(r)|2dr is the probability of finding the electron i in the small volume element dr
surrounding the position r, Similar to spin function α(σ) and β(σ), spatial orbitals are
assumed to form an orthonormal set:

∫
ψ∗i (r)ψj(r)dr = δij , (1.12)

where δij is Dirac’s delta. If the spin part is added, we can define a spin orbital φi(x)
as a one electron wave function that describes both space and spin coordinates. In the
non-relativistic approach a spin-orbital may be defined as the direct product of a spatial
orbital and a spin function.

φαi (x) = ψi(r)α(σ),
φβi (x) = ψi(r)β(σ). (1.13)

Since both spatial orbitals and spin function form orthonormal sets, spin orbitals are
therefore orthonormal ∫

φ∗i (x)φj(x)dx = δij . (1.14)

In what follows, we will refer to spatial orbitals as orbitals and will reserve the term
spin orbital when spin functions are added.

1.1.3 The symmetry of the wave function
The fact that electrons are identical particles must be reflected on the wave function.
Suppose a two electron system at spin space coordinates x1 and x2 and with wave
function Ψ(x1,x2). The probability of finding both electrons simultaneously in volume
elements dx1 and dx2 around points x1 and x2 is given by |Ψ(x1,x2)|2dx1dx2. If the
two particles are interchanged, the corresponding probability |Ψ(x2,x1)|2dx1dx2 should
be the same, since electrons are indistinguishable particles,

|Ψ(x1,x2)|2 = |Ψ(x2,x1)|2. (1.15)
This property is satisfied only if the wave function is either symmetric or antisymmetic

with respect to the interchange of the coordinates of both electrons

Ψ(x1,x2) = Ψ(x1,x2) (symmetric),
Ψ(x1,x2) = −Ψ(x1,x2) (antisymmetric). (1.16)

Pauli’s exclusion principle imposes wave function the antisymmetric choice. Such
conclusion may be generalised to many electron case resulting in the antisymmetry prin-
ciple:
Antisymmetry Principle The wave function Ψ(x1,x2, ...,xN ) describing any state of
an N-electron system is antisymmetric under any permutation of any two electrons:

P̂Ψ(x1,x2, ...,xN ) = (−1)pΨ(x1,x2, ...,xN )

where P̂ is a permutation operator and p is the number of permuted electron pairs.
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1.1. Born-Oppenheimer approximation

1.1.4 The independent particle model
A first approach to solve Equation 1.7 consists of neglecting the electron-electron inter-
action term

∑
i>j

1
rij

. Let us consider electrons as non-interacting particles moving in
a nuclear potential. This model is known as independent particle model (IPM). Under
this approximation the electronic Hamiltonian may be written as a sum of one-electron
Hamiltonians ĥi

Ĥ =
N∑
i=1

ĥi,

ĥi = −1
2∇

2
i −

M∑
A=1

ZA
|ri −RA|

. (1.17)

The wave function provided by this model is nothing but the product of spin orbitals,
known as the Hartree product (HP)

ΨHP (x1,x2, ...,xN ) = φ1(x1)φ2(x2)...φN (xN ), (1.18)

and the electronic energy is given by the action of Ĥ on ΨHP

E = 〈ΨHP |Ĥ|ΨHP 〉, (1.19)

=
N∑
i=1
〈ΨHP |ĥi|ΨHP 〉,

=
N∑
i

εi,

where εi is the eigenvalue of ĥi,

ĥiφi(xi) = εiφi(xi). (1.20)

It is well known that the HP does not follow the antisimmetry principle because

|Ψ(x1,x2, ...,xN )|2dx1dx2...dxN = (1.21)
|φ1(x1)|2dx1|φ2(x2)|2dx2..|φN (xN )|2dxN ,

which states that the simultaneous probability of finding electron 1 in the volume dx1,
centred at x1, electron 2 in dx2 centered at x2, etc, is equal to the probability of finding
electron 1 in dx1 times the probability that electron 2 in dx2 and so on. This statement
does not take account of electron indistinguishability and therefore, the antisymmetry
principle. However we can construct a correct wave function by linear combination of
HPs. Lets consider a two electron case with spin orbitals φi and φj . It is possible to
construct two HPs, ΨHP

12 with electron one in φi and electron two in φj , and the opposite
distribution ΨHP

21 with electron one in φj and electron two in φi

ΨHP
12 (x1,x2) = φi(x1)φj(x2), (1.22)

ΨHP
21 (x1,x2) = φi(x2)φj(x1). (1.23)
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Chapter 1. Methods of quantum mechanics

Taking an appropriate linear combination of ΨHP
12 and ΨHP

21 we can obtain a correct
antisymmetrized wave function

Ψ(x1,x2) = 1√
2

(
ΨHP

12 (x1,x2)−ΨHP
21 (x1,x2)

)
, (1.24)

= 1√
2
|φi(x1)φj(x2)− φi(x2)φj(x1)|, (1.25)

= 1√
2

∣∣∣∣∣∣ φi(x1) φj(x1)

φi(x2) φj(x2)

∣∣∣∣∣∣ , (1.26)

where 1/
√

2 is a normalisation factor. This determinantal form of the wave function
is known as Slater determinant. For an N-electron system we may generalise this form
as

ΨHF = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) . . . φN (x1)

φ1(x2) φ2(x2) . . . φN (x2)
...

...
. . .

...

φ1(xN ) φ2(xN ) . . . φN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣
. (1.27)

Slater determinants satisfy the antisymmetry principle: if two rows or two columns
are swapped, Ψ(x1,x2, . . . ,xi,xj , . . . ,xn) = −Ψ(x1,x2, . . . ,xj ,xi, . . . ,xn). By extension
the Pauli exclusion principle is also satisfied, i.e two identical fermions cannot be found in
the same quantum state. If φi = φj , two rows are identical and therefore, Ψ = 0. Slater
determinants are often called in terms of the N occupied spin orbital φi, φj , φk, . . . , φN ,
we note Ψ(x1,x2, . . . ,xN ) = | . . . i . . . k . . .〉.

In contrast to the HP, which is a truly independent-electron wave function, a Slater
determinant correlates same spin electrons through Pauli exclusion principle, that is
known as exchange or Fermi correlation. Since different spin electrons remain uncor-
related, a single determinantal wave function is referred as uncorrelated wave function,
although Fermi correlation is included.

1.2 The Hartree-Fock approximation
The Hartree-Fock (HF) method is the next step to solve Equation 1.7. The HF ap-
proximation is a single determinantal theory which searches variationally for the set of
orthonomalised spin orbitals such that, the single determinant formed by them minimizes
the electronic energy of the system. The HF hamiltonian for a many electron system
adds electron-electron interaction to the IPM hamiltonian

Ĥ =
N∑
i

ĥi +
N∑
ij

v̂ij , (1.28)

where ĥi is the one-electron operator introduce in IPM and v̂ij is a two-electron operator
which represents the Coulomb electron-electron interaction, and is given by

v̂ij = 1
|ri − rj |

= 1
rij
. (1.29)
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1.2. The Hartree-Fock approximation

The expectation value of the HF energy EHF is given by inserting the HF wave
function ΨHF on Equation 1.28

EHF = 〈ΨHF |Ĥ|ΨHF 〉 =
∑
i

hi + 1
2
∑
i

∑
j

(Jij −Kij), (1.30)

where

hi =
∫
φ∗i (x)

[
−1

2∇
2
i −

M∑
A=1

ZA
|ri −RA|

]
φi(x)dx, (1.31)

is the average kinetic energy and potential energy for the electrostatic attraction
between the nuclei and the electron described by φi, and they define a core hamiltonian
operator ĥi. The integrals Jij and Kij are two electron integrals called Coulomb and
exchange integrals respectively,

Jij =
∫ ∫

φi(x1)φ∗i (x1) 1
r12

φj(x2)φ∗j (x2)dx1dx2, (1.32)

Kij =
∫ ∫

φi(x1)φ∗i (x2) 1
r12

φj(x2)φ∗j (x1)dx1dx2. (1.33)

Jij may be understood as the Coulomb interaction between electron i in φi and an
average local potential given by

jk(x1) =
∫

[φ∗k(x2) 1
r12

φk(x2)]dx2. (1.34)

Following this interpretation we may define a Coulomb operator acting on φi(x1)

ĵk(x1)φi(x1) =
∫

[φ∗k(x2) 1
r12

φk(x2)]dx2φi(x1). (1.35)

The exchange term arises from the antisymmetric nature of the wave function and con-
trary to jij , it does not have a simple classical interpretation. Similarly to the Coulomb
operator, we may define a exchange operator k̂j(x1), by its action on a spin orbital φi

k̂j(x1)φi(x1) =
∫

[φ∗j (x2) 1
r12

φi(x2)]dx2φj(x1). (1.36)

Whereas the Coulomb operator is nothing but a local operator, the exchange operator
is a non-local operator, in the sense that there does not exist a unique multiplicative
operator uniquely defined at a position x1. From ĥ, k̂ and ĵ, we define the Fock operator
F̂i as

F̂i = ĥi +
∑
j 6=i

ĵij − k̂ij . (1.37)

Since F̂ is identical for all electrons we drop the subindex i, F̂i = F̂ . In the fol-
lowing section, we shall see that F̂ arises in a natural way in the derivation of the HF
equations. It is important to notice the key difference between the HF Hamiltonian
(Equation 1.28) and the Fock operator (Equation 1.37). The former returns the energy
of the many-electron system, the latter is nothing but the sum of one-electron opera-
tors whose eigenvectors are the set of spin orbitals from which the HF wave function is
constructed.
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Chapter 1. Methods of quantum mechanics

1.2.1 Hartree-Fock equations
As aforementioned, the HF method target is the set of spin orbitals that minimise EHF
under the orthonormalization condition 〈φi|φj〉 = δij . We may face the problem using
Lagrange multipliers. We consider therefore the Lagrangian

LHF = EHF −
N∑
ij

λij(〈φi|φj〉 − δij), (1.38)

where λij are the Langrange multipliers. LHF is stationary with respect to small
changes in spin orbitals

δLHF = δEHF −
N∑
ij

λij(〈δφi|φj〉 − 〈φi|δφj〉) = 0. (1.39)

We may express this equation in terms of the Fock operator

δEHF =
N∑
i

(〈δφi|F̂i|φi〉 − 〈φi|F̂i|δφi〉). (1.40)

Equation 1.40 leads to

δLHF =
N∑
i

〈δφi|
[
F̂ |φi〉 −

N∑
i

λij |φj〉
]

+ c.c. = 0, (1.41)

where c.c. denotes the complex conjugate. Since δφi is arbitrary, the term in the
squared bracket should be zero for all i. Therefore,

F̂ |φi〉 =
N∑
j

λij |φi〉. (1.42)

Since F̂ is an hermitian operator, the matrix form by Langrange multipliers λij is
also hermitian and therefore, it can be diagonalized by a unitary transformation U

U†λU = λ
′

=
{
λ
′

ij = 0,
λ
′

ii = εi.
(1.43)

Applying the same unitary transformation to spin orbital φi, we transform the above
equation into a diagonal form leading to the canonical Hartree-Fock equations

F̂ |φi〉 = εi|φi〉. (1.44)

The corresponding spin orbitals are the canonical Hartree-Fock spin orbitals and the
eigenvalues εi are known as orbital energies. Under the canonical formulation, we note
that the HF method is an independent-particle model, in the sense that each spin orbital
is an eigenfunction of an effective one-electron operator F̂ . The electron interactions are
only taken into account in an averaged form; each electron does not feel the instantaneous
field generated by the remaining N−1 electrons of the system, but an average field given
by the Coulomb and exchange operators.
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1.2. The Hartree-Fock approximation

The Hartree-Fock energy may be recovered from the orbital energies as

EHF =
∑
i

εi −
1
2

N∑
i,j

Jij −Kij . (1.45)

The second term disccounts the electronic repulsion energy that is counted twice in∑
i εi.
Although canonical HF equations are written as linear eigenvalue equations, they are

non-linear equations, since the Fock operator depends on the spin orbital φi through the
Coulomb and exchange operators. Hence they must be solved by an iterative procedure.

1.2.2 Restricted and unrestricted Hartree-Fock
The above Hartree-Fock equations have been presented for a general set of spin orbitals
{φi}. As discussed in section 1.1.2, a spin orbital herein considered is defined as the
product of an orbital φi and a α(σ) or β(σ) spin function. In the general case the spatial
parts of both α and β spin orbitals are different, leading to the unrestricted Hartree- Fock
formalism (UHF). By contrast, if the spatial parts are forced to be identical it leads to
the restricted Hartree-Fock formalism (RHF). Being the spin functions already defined,
we may rewrite Equation 1.44 in terms of the orbitals

F̂αψαi (r) = εαi ψ
α
i (r), (1.46)

F̂ βψβi (r) = εβi ψ
β
i (r). (1.47)

These two set of equations depend on the formalism we are working in. In the UHF
case both equations are coupled since F̂α acts over α and β orbitals

F̂α = ĥαi +
Nα∑
j 6=i

(ĵαij − k̂αij) +
Nβ∑
j 6=i

ĵβij , (1.48)

where ĥαi , ĵαij and k̂αij act overNα orbitals, ψαi , occupied by α electrons. The additional
term ĵβij acts over Nβ = N−Nα orbitals occupied by β electrons. An equivalent equation
may be written for F̂ β . The last Coulomb term in Equation 1.48 prevents solving it
independently since F̂α depends on the occupied β functions, ψβi , and F̂α depends on
the occupied α functions, ψαi . The two equations must be solved simultaneously.

The RHF formalism is only applicable if the electronic state under consideration is a
closed shell state, thus it has an even number, N , of electrons with all electrons paired
such that there are N/2 doubly occupied orbitals, {φi}. Since α and β orbitals are
restricted to be identical ψαi (r) = ψβi (r) = ψi(r), and the number of occupied α and β
orbitals are identical and equal to N/2, Equation 1.48 becomes

F̂iψi(r) = εiψi(r), (1.49)
where

F̂i = ĥi +
N/2∑
j 6=i

(2ĵij − k̂ij). (1.50)

The core hamiltonian operator ĥi is independent of the spin, thus it is the same in
the UHF and in the RHF formalism. Since α and β spin orbitals have the same spatial
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form in the RHF case, Equation 1.44 is the same for both α and β functions, being RHF
equations less involved than the UHF ones. UHF calculations may be applied to describe
either open or closed shell electronic states. There is a third formalism to deal with open
shell states known as Restricted Open Shell Hartree Fock (ROHF), where RHF is applied
to paired electrons, while unpaired ones are described by UHF.

1.2.3 Roothaan equations
Hartree-Fock Equation 1.44 is in general too complicated to be solved numerically. In
1950’s Roothaan showed how, by using a basis sets expansion approach, the HF integro-
differential equations may be converted to an algebraic set of equations and solved by
standard matrix techniques. Strictly speaking, Roothaan method is only applicable to
RHF equations 1.49. The generalization of this method to deal with the UHF equa-
tions 1.46 and 1.47 was given by Pople and Nesbet, and we do not describe it in this
manuscript. In the Roothaan method each spatial function, ψi, is expanded in a linear
expansion of Nbasis known spatial functions χν

ψi =
Nbasis∑
ν

Cνiχν(r). (1.51)

The functions χν(r) are usually atomic orbitals, this approach is thus known as
linear combination of atomic orbitals method (LCAO). If the set {χν} were complete,
expansion 1.51 would be exact. In practice, we are limited to a finite set of Nbasis
functions, and the orbitals {ψi} are thus approximated solutions of the HF equations.
Nbasis should be at least as large as the number of spin orbitals Nbasis = N . In practice
as Nbasis increases, the closer to the completeness the basis set is, so in most cases
Nbasis > N . Inserting the expansion 1.51 into Equation 1.44 and multiplying by 〈χnu|
we obtain

Nbasis∑
ν

Cνi〈χµ|F̂ |χν〉 = εi

Nbasis∑
ν

Cνi〈χµ|χν〉. (1.52)

We now define the overlap matrix S with elements

Sµν = 〈χµ|χν〉, (1.53)

and the Fock matrix with elements

Fµν = 〈χµ|F̂ |χν〉. (1.54)

Equation 1.44 may now be rewritten as

Nbasis∑
ν

FµνCνi = εi

Nbasis∑
ν

SµνCνi. (1.55)

These are the so-called Roothaan equations, that can be written more compactly as

FC = SCε, (1.56)

where C is the matrix of expansion coefficients Cνi and ε is a diagonal matrix of
orbital energies εi. So far we have replaced the integro-differential Equation 1.44 by
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1.2. The Hartree-Fock approximation

matrix Equation 1.56. To obtain the matrices C and ε, we need an explicit expression
for the Fock matrix elements, Fµν

Fµν = Hcore
µν +

∑
σλ

Pσλ[〈µλ|νσ〉 − 1
2 〈µλ|σν〉], (1.57)

where we have introduced a core Hamiltonian matrix

Hcore
µν = 〈µ|ĥ|ν〉, (1.58)

and a density matrix

Pµν = 2
N/2∑
j

CµjCνj , (1.59)

Because the Fock matrix depends on the expansion coefficients through the density
matrix, Roothaan equations are non-linear

F(C)C = SCε, (1.60)

and therefore they will be solved by an iterative procedure. To transform the Equa-
tion 1.60 into a conventional eigenvalue problem we need to orthonormalize the basis by
a unitary transformation U

U†SU = I, (1.61)

where U† is the adjoint matrix of U, and I is the identity matrix. As long as U is
non-singular, Roothaan equations can be written as

(U†FU)(U−1C) = (U†SU)(U−1C)ε, (1.62)

If we define the matrices F′ and C′

F′ = U†FU, (1.63)

C = UC′. (1.64)

Equation 1.60 is transformed into

F′C′ = C′ε. (1.65)

Equations 1.63-1.65 are the transformed Roothaan equations, which can be solved
by diagonalizing F′. However, these equations are still nonlinear; F′ depends on the
matrix C, so we need to provide an initial guess of a set of orbitals. With this guess,
approximate F′ matrices can be constructed and digonalized, and therefore, a new set of
orbitals is obtained. Similarly, with this new orbitals a new Fock matrix is constructed
and diagonalized and so on. This procedure is repeated until the change in the density
matrix or the total electronic energy between two successive iterations is below a given
threshold. When the convergence is attained, we say that such orbitals represent the
self-consistent-field (SCF) solution. This approach is thus referred as the Self-Consistent-
Field method. The size of all the matrices presented in Roothaan equations is Nbasis ×
Nbasis, this means that the number of eigenvectors of F′ is Nbasis. The ground state wave
function are constructed by filling the eigenvectors with lower orbital energies with N
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electrons and ignoring the remaining ones. These eigenvectors are referred to as occupied
orbitals, while the remaining empty eigenvectors are known as virtual orbitals. Note that
only occupied orbitals are used in the construction of the Fock operator, and therefore,
they are the only ones which are optimized in the SCF procedure.

1.3 Electron correlation
As we have seen, the Hartree-Fock theory makes the basic assumption that each electron
moves in the static average field created by all the other electrons regardless their instan-
taneous positions. This image is obviously wrong. In reality, there is a mutual correlation
in the motion of electrons. We say there is electron correlation. The HF theory only
correlates electrons with parallel spins through the Pauli principle, since the probability
of finding two like spin electrons at the same point of space is zero. That is Fermi or
exchange correlation. However, the HF method deals with unlike spin electrons as if they
were independent particles, in other words, they are uncorrelated. Conventionally the
correlation energy Ecorr is defined as the difference between the exact non-relativistic
energy of the system (Eexact) and the Hartree-Fock energy (EHF ) at the complete basis
set limit

Ecorr = Eexact − EHF . (1.66)

Since EHF is an upper bound to Eexact, Ecorr is always negative. Sometimes electron
correlation is described in terms of two effects: dynamic correlation and static correla-
tion [3].

• Dynamic correlation

Dynamic correlation arises from the Coulomb repulsion term in the Hamiltonian, r−1
ij .

The correlation cusp condition states that in regions where rij = 0, the exact wave
function contains a cusp. The HF wave function does not show this cusp, and conse-
quently does not describe correctly dynamic correlation. Since Coulomb repulsion is spin
independent, spin-like electrons feel both Fermi and dynamic correlation.

• Static correlation

Static or non-dynamical correlation arises when many HF configurations have nearby
or exactly the same energy. For this reason it is also referred to as near-degeneracy
correlation. In this case, the flaw of the HF approximation is not so much that the
correlated motion of electrons is neglected, but rather than a single determinant wave
function is not able to describe this effect. As we will see, this kind of correlation can be
usually dealt with by adding more Slater determinants to the wave function.

In the rest of this chapter we will focus on how to improve the HF approximation by
including electron correlation in the wave function.

1.4 Configuration interaction
The configuration interaction (CI) method is the next step for improving the electronic
structure description. Lets expand the wave function in terms of a set of Slater determi-
nants Di
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Ψ =
∑
i

CiDi, (1.67)

Di = 1√
N !
|φi1(x1) . . . φiN (xN )|. (1.68)

For a N electrons system and M functions basis set, {φi} is a set of M spin orbitals,
φi1 , φi2 ,. . . ,φiN is the subset of N < M spin orbitals used to construct the determinant
Di, and Ci are coefficients obtained variationally by minimizing the total energy, E =
〈Ψ|Ĥ|Ψ〉. When all possible independent combinations of determinants are included in
the expansion 1.67 the method is called full CI and it is the exact solution for a given
basis set {φi}. However this limit is computationally very demanding, being only possible
to perform full CI calculations for relatively small systems. The CI expansion is usually
truncated at a given excitation level, giving a hierarchy of methods: CIS (includes all
single excitations), CISD (includes all single and double excitations) and so on. The
CISD is the most usual truncation, since single and doubly excitations are the most
important ones for lowering the ground state energy.

1.4.1 CI matrix
The CI energy is obtained by diagonalizing the matrix of the electronic Hamiltonian in
the basis of Slater determinants. To show the structure of this CI matrix, we express the
ground state wave function of the system Ψo in a symbolic form

|Ψo〉 = co|Φo〉+ cS |S〉+ cD|D〉+ cT |T 〉+ . . . , (1.69)

where |Φo〉 is the ground state Hartree-Fock wave function, |S〉 is the set of single
excitations, |D〉 the set of double excitations and so on. The Brillouin’s theorem and the
Slater rules simplify the structure of the CI matrix.

Brillouin’s Theorem Singly excited determinants will not interact directly with a ref-
erence Hartree-Fock determinant.

This theorem cancels all the elements of the form 〈Φo|Ĥ|S〉. The Slater rules cancel
all those matrix elements which couple two determinants that differ in more than two
spin orbitals, i.e.,〈Φo|Ĥ|T 〉, 〈S|Ĥ|Q〉, . . .. The CI matrix takes then a block structure

〈Φo|Ĥ|Φo〉 0 〈Φo|Ĥ|D〉 0 0 . . .

0 〈S|Ĥ|S〉 〈S|Ĥ|D〉 〈S|Ĥ|T 〉 0 . . .

〈D|Ĥ|Φo〉 〈D|Ĥ|S〉 〈D|Ĥ|D〉 〈D|Ĥ|T 〉 〈D|Ĥ|Q〉 . . .
...

...
...

...
... . . .

 .

1.4.2 Correlation energy
The correlation energy Ecorr was defined in Equation 1.66. In this section, we will show
how to recover it at the full CI level for the ground state of a molecular system. First
we write again Equation 1.69 in more detail:

|Ψo〉 = |Φo〉+
∑
ar

cra|Φra〉+
∑

a<b,r<s

crsab|Φrsab〉+ . . . , (1.70)
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where |Φra〉 means a determinant created replacing the spin orbital r by the spin
orbital a in |Ψo〉, |Φrsab〉 is a determinant created replacing the spin orbitals r and s
with the spin orbitals a and b respectively, and so on. Now, we impose an intermediate
normalization condition

〈Ψo|Φo〉 = 1. (1.71)

The greater the contribution of the HF configuration to |Ψo〉, the more exact the inter-
mediate approximation is. Similarly to the HF case, the ground state energy Eo is the
solution of the equation

Ĥ|Ψo〉 = Eo|Ψo〉. (1.72)

Applying the correlation energy definition (Equation 1.66 ), and multiplying both sides
of the above equation by 〈Φo| we have

〈Φo|Ĥ − EHF |Ψo〉 = 〈Φo|Eo − EHF |Ψo〉 = Ecorr, (1.73)

where the intermediate condition was used. Combining the Brioullin’s theorem and
the Slater rules, Ecorr becomes:

Ecorr =
∑

a<b,r<s

crsab〈Ψo|Ĥ|Ψrs
ab〉. (1.74)

With the intermediate normalization condition, the correlation energy is solely de-
termined by the double excitations. The single excitations only contribute indirectly by
coupling with the double excitations. Although third and higher excitations are also
coupled, their weights in the CI wave function are much lower. That is why single and
double truncation are the most employed.

The main advantage of truncated CI methods is they offer a systematic procedure to
improve the HF approximation in a variational way; the higher the degree of truncation,
the closer to the full CI limit, which is the exact solution of Equation 1.3 for a given basis
set. Unlike the HF and the full CI methods, the truncated CI approximations are not
size-consistent, nor size-extensive. The size consistency refers to the fact that the energy
of two infinitely separated systems should be equal to the sum of each individual system.
The size extensivity property indicates that the energy of a system should increases
linearly with the number of subsystems.

1.5 Multiconfigurational methods
CI calculations use canonical Hartree-Fock orbitals to construct configurations. Since
virtual orbitals do not contribute to the HF energy they are not optimized at this level
of calculation. The philosophy of multiconfigurational methods (MCSCF) is to find the
best choice for all orbitals: occupied and virtual orbitals. In this approximation, the
wave function is expanded in terms of a set of configurations, {|Ψi〉},

|ΨMCSCF 〉 =
∑
i

Ci|Ψi〉. (1.75)

Unlike the CI method, in which only Ci coefficients are optimized, in the MCSCF pro-
cedure both, Ci and the orbitals that define |Ψi〉 are optimized. This makes the process
much more computationally demanding, limiting then the number of configurations that
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can be included in the calculation. The choice of the configurations depends on some a
priori knowledge of the problem; which occupied and virtual orbitals are expected to be
involved in the chemical phenomenon.

The cost of MCSCF may be reduced by choosing not only the orbitals to be included
in each configuration, but also the number of electrons to be excited from the HF config-
uration. That is, the orbitals are split in two sets; frozen and active orbitals. The former
will have occupations equal to two in all the configurations. The latter are allowed to
have occupations lower than two. The active space is specified by the number of electrons
to be excited (m) and the number of active orbital (n). This kind of MCSCF method
is known as Complete Active Space Self Consisted Field (CASSCF). A CASSCF (m,n)
means that all the configurations coming from distributing m electrons in n orbital, are
included in the wave function.

1.6 Perturbation theory
Alternative to variational methods, electron correlation effects, namely dynamical corre-
lation, may be tackled by means of perturbation theory. In what follows we shall consider
the non-degenerate Rayleigh-Schrödinger perturbation theory, namely the Möller-Plesset
(MP) perturbation theory. In this theory the Hamiltonian of the system is divided in
two pieces: a zero-order part, Ĥ0, whose solution is known, and a perturbation, V̂ .

Ĥ = Ĥ0 + λV̂ ; Ĥ0|Ψ0
i 〉 = E0

i |Ψ0
i 〉 (1.76)

where H0 is the Hartree-Fock hamiltonian, λ is an ordering parameter, |Ψ0
i 〉, and E0

i

are its i− th eigenvector and eigenfunction respectively. To improve the eigenvalues and
eigenfuctions of H, from the HF (λ = 0) to the fully correlated solution (λ = 1), |Ψi〉
and Ei are expanded in a Taylor series in λ

Ei = E0
i + λE1

i + λ2E2
i + . . . ,

|Ψi〉 = |Ψ0
i 〉+ λ|Ψ1

i 〉+ λ2|Ψ2
i 〉+ . . .

The terms Eni and |Ψn
i 〉 are the n order energy and wave function, respectively. To

express these quantities in terms of the zero order energies and wave functions, we choose
the intermediate normalization condition as we did before (Equation 1.71)

〈Ψi|Ψ0
i 〉 = 1, (1.77)

〈Ψ0
i |Ψn

i 〉 = 0 ∀ n 6= 0. (1.78)

The expression for Eni may be found by grouping all the terms that multiplied λn

E0
i = 〈Ψ0

i |Ĥ0|Ψ0
i 〉, (1.79)

E1
i = 〈Ψ0

i |V̂ |Ψ0
i 〉, (1.80)

E2
i = 〈Ψ0

i |V̂ |Ψ1
i 〉, (1.81)

E2
i = 〈Ψ0

i |V̂ |Ψ2
i 〉. (1.82)

To find the expression for the n order wave function, |Ψn
i 〉 is expanded is term of the

eigenfunctions of Ĥ0, |Ψ0
j 〉
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|Ψn
i 〉 =

∑
j

cij |Ψ0
j 〉. (1.83)

Since the set {|Ψ0
n〉} forms an orthonormal set, the previous equation may be written

as

|Ψn
i 〉 =

∑
j

|Ψ0
j 〉〈Ψ0

j ||Ψn
i 〉. (1.84)

First order corrections to En and |Ψi〉 are given by

E1
i =

∑
n>0

〈Ψ0
0|V̂ |Ψ0

n〉
E0
i − E0

n

, (1.85)

|Ψi〉 = |Ψ0
i 〉+

∑
n>0

〈Ψ0
0|V̂ |Ψ0

n〉
E0
i − E0

n

|Ψ0
n〉. (1.86)

E1 is the sum of the 0th and first order energies, that is the HF energy. The second
order correction (E2) is the first term which includes electron correlation

E2
i =

∑
n>0

〈Ψ0
0|V̂ |Ψ0

n〉〈Ψ0
0|V̂ |Ψ0

n〉
E0
i − E0

n

. (1.87)

The second order MP (MP2) method is probably the cheapest approach for dealing
with dynamical correlation and typically accounts for 80-95% of the correlation energy.
Unlikely truncated CI methods, MP theory is size-extensive.

1.7 Electron density and related functions
All of the methods described so far obtain the properties of the system from the wave
function. However electronic wave functions are in general objects so complex that a
further simplification is required in order to extract any chemical insight. The reduced
density matrices provide us with a feasible formalism to recover not only the collective
behaviour of electrons but also any property of the system as state by the Hohenberg-
Kohn theorems [4]. In the following section we will not explain the overall reduced
density matrices formalism, but we will only present their more physically sound part:
their diagonal elements [5].

1.7.1 The Electron distribution
The wave functions obtained by each of the methods described in the previous sections
are built by not observable objects defined in the Fock space, spin orbitals. According
to the statistical interpretation of the quantum mechanics, only the square of the wave
function has a true physical meaning.

Considering a single electron in orbital φi(r) with spin α(σ). The wave function is
then ψi(x) = φi(r)α(σ). The probability of finding a particle in the volume element dr
and with spin σ and σ + dσ is given by
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ρ(x) = |ψi(x)|2dx = |φi(r)|2|α(σ)|2drdσ. (1.88)
The probability of finding the electron in a volume dr with any spin, is given by

integration over the spin coordinates

P (r)dr = dr
∫
|ψi(x)|2ds, (1.89)

ρ(x) and P (r) are then probability densities. They admit a generalisation if ψi is
replaced by a many electron wave function Ψ(x1,x2, . . . ,xn). The probability of finding
electron 1 in a volume dx1, electron 2 in a volume dx2 and the electron n in dxn is given
by

Ψ(x1,x2, . . . ,xN )Ψ∗(x1,x2, . . . ,xN )dx1, dx2, . . . ,dxN . (1.90)
If Ψ(x1,x2, . . . ,xN ) is normalised, the electron distribution 1.90 satisfies∫

Ψ(x1,x2, . . . ,xN )Ψ∗(x1,x2, . . . ,xN )dx1, dx2, . . . , dxN = N. (1.91)

These probability functions may be “reduced” to those that lead to the probability of
finding a set of n electrons in dx1, . . . , dxn, given by integration over all the N electrons
of the system but n.

dx1, dx2, . . . ,dxn
∫

Ψ(x1,x2, . . . ,xN )Ψ∗(x1,x2, . . . ,xN )dxn+1, . . . ,dxN . (1.92)

Since the indistinguishability of the electrons
(
N
n

)
n! times Equation 1.92 gives the

probability of finding any set of n electrons. Thus the probability density associated
with such n electrons is given by

ρn(x1, . . . ,xn) =
(
N

n

)
n!
∫

Ψ(x1,x2, . . . ,xN )Ψ∗(x1,x2, . . . ,xN )dxn+1, . . . ,dxN . (1.93)

Similarly to Equation 1.89 the spinless counterpart of ρn(x1, . . . ,xn) may be obtained
by integration over the spin coordinates

ρn(r1, . . . , rn) =
∫
ρn(x1, . . . ,xn)ds1, . . . , dsn. (1.94)

For n = 1, we get the ordinary electron function obtained in the DFT calculations and
by X-ray crystallographers at experimental level. For n = 2, the so-called pair density is
obtained. All ρn are normalized to the n− tuple of electrons

∫
ρn(r1, . . . , rn)dr1, . . . , drn =

(
N

n

)
n!, (1.95)

i.e. for n = 1 and n = 2

• n = 1 ∫
ρ1(r1)dr1 = N, (1.96)
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• n = 2 ∫
ρ2(r1, r2)dr1dr2 = N(N − 1). (1.97)

1.7.2 Pair density and electron correlation
The probability of finding two electrons at points r1 and r2 with any combination of
spins is given by ρ2(r1, r2), and therefore, any information about electron correlation,
as a pairwise effect, is contained in it. It is convenient to divide ρ2(r1, r2) into two
components,

ρ2(r1, r2) = ρ1(r1)ρ1(r2)− ρxc(r1, r2). (1.98)
(1.99)

The first term is the simple product on independent densities and does not contain
any information about the electron correlation at all. The second term adds the influence
of the Fermi and Coulomb correlation to ρ2(r1, r2). It is therefore known as exchange-
correlation density, ρxc(r1, r2)

One may wonder now how likely is to find an electron at r2 knowing that there is
a reference electron at r1. To definite such statistical event we define the conditional
probability Pcond(r1|r2), [6]

Pcond(r1|r2) = ρ2(r1, r2)
ρ(r1) . (1.100)

Since the reference electron is arbitrarily fixed at r1, Pcond(r1|r2) integrates to N − 1

∫
Pcond(r1|r2)dr1dr2 = N − 1. (1.101)

The effect of a reference electron on ρ(r) may be explored by the exchange-correlation
hole hxc(r1|r2)

hxc(r1|r2) = Pcond(r1|r2)− ρ(r1),

= −ρxc(r1, r2)
ρ(r2) . (1.102)

Thus hxc(r1|r2) accounts for the number of electrons excluded by electron at r2 due
to the presence of a reference electron at r1, that is, electron correlation. hxc(r1|r2)
satisfies the following properties

∫
hxc(r1|r2)dr2 = −1, (1.103)

hxc(r1 → r2|r2) = −ρ(r1). (1.104)
(1.105)

32



1.8. Density functional theory

We now go a step further and distinguish the correlation effects only between spin
like electrons

hxc(r1|x2) = hs1=s2
xc (r1|r2) + hs1,s2

xc (r1|r2) (1.106)
= hF (r1|r2) + hC(r1|r2) (1.107)

hF (r1|r2) is known as the Fermi hole, and takes into account the correlation be-
tween electrons with the same spin (Fermi correlation) as a consequence of the exclusion
principle. hC(r1|r2) contains the correlation between electrons of either spin (Coulomb
correlation) and its known as the Coulomb hole. It is a consequence of the repulsion
suffered by the electron due to its charge no matter the spin. Strictly speaking only
hxc(r1|r2) has a true physical meaning, leaving hF (r1|r2) and hC(r1|r2) as mere arte-
facts to analyse electron correlation. It is worthy noticing that the Fermi and Coulomb
classification of electron correlation is completely independent of that introduced in sec-
tion 1.3, i.e the HF wave function only shows Fermi correlation even if dynamic and static
correlation are absent. It is interesting to analyse separately hF (r1|r2) and hC(r1|r2):

• hF (r1|r2) is the main contribution to hxc(r1|r2) and it shows some interesting
properties ∫

hF (r1|r2)dr2 = −1. (1.108)

The presence of a reference electron with spin σ excludes this electron from the
electron distribution. Thus Pcond(r1|r2) integrates to Nsigma − 1, where Nσ is
there number of electron with spins s.

hF (r1 → r2|r2) = −ρ(r1). (1.109)

Since the Pauli principle does not allow two like spin electrons to be at the same
position of space, hF (r1|r2) tends to the value of the density at the position of the
reference electron, r1, as r2 → r1.

hF (r1|r2) < 0. (1.110)

• By contrast, hC(r1|r2) does not satisfy so many properties as hF (r1|r2) does. We
have ∫

hC(r1|r2)dr2 = 0. (1.111)

Pcond(r1|r2) integrates to Ns for electrons of unlike spin. This result also implies
that contrary to hF (r1|r2), hC(r1|r2) may take positive and negative values. The
coulombic nature of hC(r1|r2) forces it to show a cusp as r1 → r2.

1.8 Density functional theory
The Density Functional Theory (DFT) is a different approach that extracts, in princi-
ple, any property of the system not from the wave function but from a simpler object:
the electron density [7]. Besides an statistical distribution, ρ(r) is closely connected to
energetics through the Hohenberg-Kohn theorems [4].
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1.8.1 First Hohenberg-Kohn theorem
First Hohenberg-Kohn Theorem For any system of interacting particles in an ex-
ternal potential Vext(r), this potential is determined uniquely, except for a constant, by
the ground state particle density ρ(r).

From this theorem it follows that since the Hamiltonian of the system is fully de-
termined by Vext(r), all the properties of the system are completely determined given
ρ(r).

Proof. Suppose that there were two different external potentials V (1)
ext (r) and V (2)

ext (r)
which differ in more than a constant and which lead to the same ground state density
ρ(r). The two potentials lead to different Hamiltonians , Ĥ(1) and Ĥ(2), with different
ground state wave functions, Ψ(1) and Ψ(2). Since Ψ(2) is not the ground state of Ĥ(1),
from the variational principle it follows that

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉. (1.112)

It is supposed that the ground state is non-degenerate. Otherwise it would not be possible
to assure the above inequality. The last term may be rewritten as

〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = 〈Ψ(2)|Ĥ(2)|Ψ(2)〉+ 〈Ψ(2)|Ĥ(1) − Ĥ(2)|Ψ(2)〉 (1.113)

= E(2) +
∫

[V̂ (1)
ext (r)− V̂ (2)

ext (r)]ρ(r)dr, (1.114)

so that

E(1) < E(2) +
∫

[V̂ (1)
ext (r)− V̂ (2)

ext (r)]ρ(r)dr. (1.115)

Considering E(2) in the same way as E(1) leads to

E(2) < E(1) +
∫

[V̂ (2)
ext (r)− V̂ (1)

ext (r)]ρ(r)dr. (1.116)

Adding the two equations, it yields a contradictory inequality E(1) + E(2) < E(1) +
E(2).

This establishes that there cannot be two different external potentials differing by
more than a constant which give rise to the same non-degenerate ground state charge
state density.

1.8.2 Second Hohenberg-Kohn theorem
Second Hohenberg-Kohn Theorem A universal functional for the energy E[ρ] in
terms of the density ρ(r) can be defined, valid for any external potential Vext(r). For
any particular Vext(r) the exact ground state energy of the system is the global minimum
value of this functional, and the density ρ(r) that minimizes the functional is the exact
ground state density.

Proof. Since all the properties are determined by ρ(r), each property may be viewed
as a functional of ρ(r)

E[ρ] = FHK [ρ] +
∫
Vextρ(r)dr + VNN , (1.117)
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where VNN is the interaction energy of the nuclei and FHK [ρ] is a universal functional
of the density which contains the kinetic and interaction energy functionals,

FHK [ρ] = T [ρ] + Vee[ρ]. (1.118)

Now consider a system with ground state density ρ(1)(r) corresponding to an external
potential V (1)

ext and a wave function Ψ(1). The energy of the system is

E(1) = EHK [ρ(1)] = 〈Ψ(1)|Ĥ(1)|Ψ1〉. (1.119)

Consider now a different density ρ(2)(r), which corresponds to a different wave function
Ψ(2). The variational principle assures that

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉, (1.120)

so any trial density different from the exact gives an upper limit to the exact ground state
energy. In the Hohenberg-Kohn original work the search of densities was constrained
to those densities associated with some external potential Vext. These densities are
called V-representable. This condition may be relaxed by the N-representability constrain
introduced by Levy [8, 9, 10]. A density is said to be N-representable if it derives from
a well-behaved wave function and integrates to the correct number of electrons. The
formulation given by Levy, not only replaces the V-representability constrain by the N −
representability constrain, but extends the Hohenberg-Kohn theorems to degenerated
ground states.

From the second theorem of Hohenberg-Kohn it follows that if FHK [ρ] is known, the
ground state density and the energy are available by minimization of the total energy
of the system with respect to the density. However, FHK [ρ] is not known. The Kohn-
Sham approach tackles this problem replacing true the kinetic energy by that of a set of
non-interacting electrons, and the electron correlation is modelled as density functionals.

1.9 Kohn-Sham formulation
The Hohenberg-Kohn theorems provide a method for calculating ground-state properties
such that if a form of F [ρ] can be found, we have to minimize E[ρ]. But the task of
finding good approximations to F [ρ] is not easy. There is a problem with the expression
of the kinetic part T [ρ] in terms of the density, which represents the main drawback of
the Thomas-Fermi approach, the old practical application of DFT.

In 1965, Kohn and Sham (KS) introduced a method for evaluating T [ρ] by replacing
the kinetic energy of the interacting electrons with an equivalent non-interacting reference
system whose ground-state density is that of the interacting one ρo [11]. Assuming that
ρo is the ground-state density of the non-interacting Hamiltonian ĤKS

ĤKS = T̂ + V̂KS , (1.121)

where V̂KS is the external local Kohn-Sham potential V̂KS =
∫
vks(r)ρ̂(r)dr, and the

potential vKS(r) is such that:

1. its wave function is a single Slater determinant Φ[ρ] from which the ground-state
density may be derived ρo = 〈Φ[ρ]|ρ̂(r)|Φ[ρ]〉,

2. it minimises the expectation value of T̂ .
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The ground state energy is then given by

EKS = minρ
[ ∫

vKS(r)ρ(r)dr + Ts[ρ]
]

=
∫
vKS(r)ρo(r)dr + Ts[ρo], (1.122)

where Ts[ρ] = 〈Φ[ρ]|T̂ |Φ[ρ]〉 is a non-interacting kinetic energy functional. Rearrang-
ing Equation 1.118, it is possible to include Ts[ρ] in F [ρ]

F [ρ] = Ts[ρ] + EH [ρ] + Exc[ρ], (1.123)

where

EH [ρ] = 1
2

∫ ∫
ρ(r)ρ(r′)
|r− r′| drdr′, (1.124)

is the classical electrostatic Hartree energy functional and Exc[ρ] is the unknown
exchange-correlation energy functional

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− EH [ρ]. (1.125)

The minimization of Equation 1.122 leads to the KS equations for determining the
lowest N eigenfunctions of ĤKS , ψi, which form the minimising determinant Φ[ρ]

ĤKS |ψi〉 = εi|ψi〉, (1.126)

where εi is the eigenvalue corresponding to the i-th eigenfunction ψi. Just as in
Hartree-Fock theory, these equations must be solved self-consistently since ĤKS depends
on ρ(r), and where the self-consistency is achieved ρ(r) = ρo(r). The KS method is
in principle exact, though in practice we must find approximations for Exc[ρ]. In this
regard, it is worthy to notice that Exc[ρ] admits a further partition into exchange and
correlation contributions

Exc[ρ] = Ex[ρ] + Ec[ρ], (1.127)

where Ex[ρ] is the exchange energy functional

Ex[ρ] = 〈Φ[ρ]|V̂ee|Φ[ρ]〉 − EH [ρ], (1.128)

and Ec[ρ] is the correlation energy functional

Ec[ρ] = 〈Ψ[ρ]|T̂ + V̂ee|Ψ[ρ]〉 − 〈Φ[ρ]|T̂ + V̂ee|Φ[ρ]〉, (1.129)

where Ψ[ρ] is the true wave function of the system. Moreover, the correlation energy
may split into kinetic and potential components

Ec[ρ] = Tc[ρ] + Vc[ρ], (1.130)

where Tc[ρ] = T [ρ]− Ts[ρ] and Vc[ρ] = Vee[ρ]− (EH [ρ] + Ex[ρ]).
It is possible to analyse this partition in terms of ρ2(r1, r2)

Vee[ρ] = 〈Φ[ρ]|V̂ee|Φ[ρ]〉 = 1
2

∫ ∫
ρ2(r1, r2)

r12
dr1dr2. (1.131)

We can rewrite ρ2(r1, r2) in terms of hxc(r1|r2)

ρ2(r1, r2) = ρ(r1)ρ(r2) + hF (r1|r2)ρ(r1) + hC(r1|r2)ρ(r1). (1.132)
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Then

Vee[ρ] = 1
2

∫ ∫
ρ2(r1, r2)

r12
dr1dr2, (1.133)

= 1
2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2 + 1

2

∫ ∫
ρ(r1)hF (r1|r2)

r12
dr1dr2 +

+ 1
2

∫ ∫
ρ(r1)hC(r1|r2)

r12
dr1dr2,

= J [ρ] + Ex[ρ] + Ec[ρ]. (1.134)

From the latter formulation of Vee[ρ], it is possible to define the exchange correlation
density εxc(r)

εxc(r1) = 1
2

∫
hxc(r1|r2)

r12
dr2, (1.135)

Exc[ρ] = 1
2

∫ ∫
ρ(r1)hxc(r1|r2)

r12
dr1dr2,

=
∫
ρ(r)εxc(r)dr, (1.136)

Similarly to hxc(r1|r2), εxc is usually split into exchange εx and correlation εc contri-
butions

εxc(r) = εx(r) + εc(r) (1.137)

Although the KS equation (Equation 1.126) provides us with the exact ρ and E, it is
extremely complicate to solve it due to the εxc(r) term. Equation 1.135 is only valid for
the exact wave function Ψ which is solution of the Hamiltonian described by Equation 1.3
and not Ĥks. The main difference between these two Hamiltonians comes from Ts. In
order to provide a proper Exc derived from ĤKS , Becke outlined the adiabatic connection
formulation. In a nutshell, the adiabatic connection envisages a path that connects the
non-interacting reference system whose Hamiltonian does not posses the coulombic r−1

ij

and the real system where this term operates at full strength. These two systems are
connected by increasing the coupling strength parameter λ from 0 to 1 whereas ρ always
equals that of the fully interacting system. The main result of this formulation is that
Equation 1.135 is replaced by

Exc[ρ] = 1
2

∫ ∫
ρ(r1)h̄xc(r1|r2)

r12
dr1dr2, (1.138)

where h̄xc is the coupling strength integrated exchange-correlation hole

h̄xc(r1|r2) =
∫ 1

0
hxc(r1|r2)dλ. (1.139)

Fortunately h̄xc(r1|r2) and hxc(r1|r2) share the same properties. The DFT challenge
relies on a proper modelling of εxc(r), and specially hxc(r1|r2). Different models lead to
different exchange-correlation functionals, whose quality rely on how well they reproduce
the properties of the exact hxc aforementioned.
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Chapter 1. Methods of quantum mechanics

1.9.1 Exchange-correlation functionals
Local density approximations

The simplest approach for computing Exc[ρ] is found in the Thomas-Fermi-Dirac (TFD)
model. This approximation considers the electronic system as a uniform electron gas
which moves on a positive background charge distribution such that the total ensemble
is electrically neutral. The electron density of such system attains a constant value
everywhere. Thus this model is commonly known as homogeneous electron gas (HEG). In
the traditional Thomas-Femi (TF) model, electron-electron interaction is solely replaced
by the Coulomb term in Equation 1.133 J [ρ] and the kinetic energy is derived form the
HEG model.

THEG = CF

∫
ρ5/3(r)dr, CF = 3

10(3π2)2/3, (1.140)

where CF is the Fermi constant. Similarly to Exc, we may define the TF kinetic energy
density

εTF (ρ) = −CF ρ1/3. (1.141)

All kinetic energy density functionals are somehow based on the TF model. The
TFD model adds the exchange contribution to electron-electron interaction leading to
the famous exchange-energy Dirac formula

KD = −Cx
∫
ρ4/3(r)dr, Cx = 3

4

( 3
π

)1/3
. (1.142)

and the HEG exchange energy density εHEGxc , frequently called Salter exchange, is
defined as

εHEGxc = Cxρ
1/3(r). (1.143)

The local density approximation (LDA) is defined by using εHEGx (r) as exchange
functional into KS equations. For the correlation part εLDAc (r) no such explicit formula is
known. However, some expressions are available from highly accurate numerical quantum
Monte-Carlo simulations [12] and further parametrisation schemes, as those developed
by Vosko, Wilk, and Nusair [13] or the most recently proposed by Perdew and Wang [14].

LDA may be adapted to deal with spin polarised systems; ρ(r) is split into α(ρ ↑ (r))
and β(ρ ↓ (r)) spin densities such that ρ(r) = ρ ↑ (r) + ρ ↓ (r). Equation 1.142 becomes

ELSDx = −21/3 1
2Cx

∫
ρ4/3(r)

[
(1 + ζ(r))4/3 + (1− ζ(r))4/3

]
dr,

=
∫
ρ(r)εx(ρ, ζ)dr, (1.144)

where

εx(ρ, ζ) = ε(ρ, 0) + [εx(ρ, 1)− εx(ρ, 0)]f(ζ), (1.145)

f(ζ) = 1
2(21/3 − 1)

[(1 + ζ(r))4/3 + (1− ζ(r))4/3 − 2]. (1.146)

The degree of spin polarisation is accounted by the spin polarisation density ζ(r)
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1.9. Kohn-Sham formulation

ζ(r) = ρ ↑ (r)− ρ ↓ (r)
ρ(r) . (1.147)

ζ attains values from 0 for spin compensated system to 1 for full spin polarized
systems. ρ ↑ (r) and ρ ↑ (r) may be written in terms of ζ(r)

ρ ↑ (r) = 1
2(1 + ζ(r)ρ(r), ρ ↓ (r) = 1

2(1− ζ(r))ρ(r). (1.148)

The resulting formalism is known as the local spin density approximation (LSDA)
and the exchange-correlation energy is now a function of ρ(r) and ζ(r)

ELSDAx [ρ ↑ (r), ρ ↓ (r)] =
∫

[ρ ↑ (r) + ρ ↓ (r)]εHEGxc (ρ(r), ζ(r))dr. (1.149)

The LDA works well in systems where the electron density is quite uniform such as
bulk metals. However as expected for a simple model such as HEG, it is a very crude
approximation for systems where the density varies rapidly such as atoms and molecules.
The origin of such deficiencies may be found in the structure of the LDA exchange hole.
Although it satisfies the properties above mentioned for the exact exchange hole, it is
always symmetric around the reference electron while the exact hole has a pronounced
angular structure.

Generalized gradient approximation

The erratic homogeneous behaviour of LDA may be corrected by adding density deriva-
tives to ELDAxc [ρ] trough a gradient expansion of Exc. The Generalized Gradient Approx-
imation (GGA) [15] improves LDA results by including not only ρ(r), but also derivatives
of ρ(r) in Exc

EGEAx [ρ ↑ (r), ρ ↓ (r)] =
∫
ρ(r)εxc(ρ ↑ (r), ρ ↓ (r))dr

+
∑
σ,σ′

∫
Cσ,σ

′

xc (ρ ↑ (r), ρ ↓ (r)) |
~∇ρσ(r)|2

ρ
4/3
σ (r)

dr + . . . (1.150)

where GEA means gradient expansion approximation. This kind of expansions was
introduced by Hohenberg and Khon [4] and they showed that they require: 1) slow
varying and 2) uniform density. The first condition may be mathematically describes as

|~∇ρ(r)|
ρ(r) << kF (r), kF (r) = (3π2ρ(r))1/3, (1.151)

where kF (r) is the Fermi wave momentum. The second condition prevents ρ from
showing short-wavelength oscillations. Mathematically it requires

|Hij(ρ)(r)|
|~∇ρ(r)|

<< kF (r), (1.152)

where Hij(ρ)(r) is the element i, j of the Hessian matrix of ρ(r). Surprisingly GEA
functionals do not improved LDA results since GEA hxc(r1|r2) does not fulfil any of the
properties aforementioned (Equations 1.108, 1.109,and 1.110), nor the negative condi-
tion. To define well-behaved exchange-correlation functionals based on the GEA, Perdew
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Chapter 1. Methods of quantum mechanics

prosed to truncate hF (r1|r2) and hC(r1|r2) to integrate to -1 and 0 respectively. Func-
tionals that include the gradient of ρ and are forced to satisfy the properties of the exact
hxc(r1|r2) are referred, to as generalise gradient approximations (GGA) [15]. The GGA
exchange contributions to EGGAxc [ρ] may be written as

EGGAx [ρ] =
∫
ρ(r)εHEGx Fx(s, |~∇ρ(r)|)dr, (1.153)

where the function Fxc[ρ] is an enhancement function constructed to satisfy the properties
of the exact hxc(r1|r2). It is a function of the reduced density gradient s(r)

s(r) = |~∇ρ(r)|
2kF (r)ρ(r) ,

= |~∇ρ(r)|
2(3π2)1/3ρ4/3(r)

. (1.154)

s(r) accounts for the local inhomogeneity, therefore for the HEG s(r)=0 and F (s) = 1.
As shown in Equation 1.151 gradient expansion requires s(r) << 1 to convergence. It
assumes very large values in regions where not only the gradient is large, but also where
density is small, such as the exponential tails far from the nuclei. By contrast, s(r) takes
small values for small gradients, but also for large densities as in bonding regions and
close to nuclear positions. It is worthy to say that the 4/3 exponent in the denominator
is not an arbitrary choice, but is needed to make s(r) a dimensionless variable. The
function Fx defines the EGGAx functional. We may distinguish between those functionals
that use some empirical parameter to fit EGGAx to the exact exchange energy of some
reference system, such as B88 of Becke [16] or PW91 developed by Perdew Burke and
Wang, and those functionals that are free of semiempirical parameter, i.e B86 by Becke,
PBE developed by Perdew, Becke and Ernzerhof [15].

The GGA correlation energy EGGAc has in general a more complicated shape than
the exchange and we will not enter into details. Among the most popular EGGAc we find
the parameter free PW91 by Perdew and Wang, and the one empirical parameter LYP
developed by Lee Yang and Parr [17].

Meta-generalised gradient approximations

A further improvement in exchange-correlation functional may be achieved if instead of
looking at GEA of Exc we analyse the spherical average of ρx(r1|r2) ,〈ρxσ(r12)〉 at small
interelectronic distance.

〈ρxσ(r12)〉 = ρσ(r) + 1
6

[
∇2ρσ(r)− 2τσ + 1

2
|~∇ρσ(r)|2

ρσ

]
r2

12 + . . . . (1.155)

This expansion was firstly developed by Becke [18, 19]. He highlighted that not only
|~∇ρ(r)| is a key component at small r12, but also the Laplacian of ρ(r), ∇2ρ(r) and the
positive definite kinetic energy density for a HEG τ(r)

τ(r) = 1
2

occ∑
i=1
|~∇φi(r)|2. (1.156)

As showed by Becke, the coefficient of the quadratic term may be used as a predictor
for further corrections to the LSDA hole, without imposing sharp cut-offs to hxc(r1|r2)
as GGA does. Functionals that includes τ(r) have been termed as meta-GGA,
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1.9. Kohn-Sham formulation

Emeta−GGAx [ρ] =
∫
ρ(r)εHEGx Fx(|~∇ρ|, τ, τw)dr, (1.157)

where τw(r) denotes the von Weizsacker kinetic energy density

τwσ (r) = 1
8
|~∇ρ(r)|2

ρ(r) . (1.158)

meta-GGA functionals offer two main improvements with respect to GGA functions;
in the one hand their main variable τ(r) admits a clearest physically interpretation than
the dimensionless variable s(r). In Chapter 4 we shall show that is possible to understand
s(r) in terms of kinetic energy densities.

One of the most sound problems of exchange-correlation functional is the self-correlation
error. For a one electron system, such as the hydrogen atom the EH [ρ] and Exc[ρ] terms
in Equation 1.123 should cancel each other out. For many functional this is not the
case. One strategy for designing self-correlation free functionals is based on the relation-
ship between τ(r) and τw(r) [20]. Self-Correlation Corrections (SCC) are based on the
following property

τw(r) ≤ τ(r), (1.159)

where the equality only holds if ρ(r) is represented by a single orbital. This property
is usually used to define SCC

ηSCC(r) = 1− τw(r)
τ(r) . (1.160)

From Equation 1.159 it follows that ηSCC(r) ≤ 1 and it vanishes for any one-orbital
system. In the following chapters we shall revisit τw(r) properties to construct bonding
descriptors.

SCC is not possible at GGA level since only s(r)( and not τ(r)) is used as a main
variable. Among the most famous meta-GGA functionals we found the Becke’s 1995 cor-
relation functional (B95) [21] Perdew-Kurth-Zupan-Blaha(PKZB) [22] correlation func-
tional, Tao-Perdew-Staroverov-Scuseria (TPSS) exchange-correlation functional [23] or
Krieger-Chen-Iafrate-Savin (KCIS) exchange correlation functional [24].

Hybrids

All the approximations hitherto presented reproduce to different extents hxc(r1|r2). How-
ever it is known that hF (r1|r2) is the main component of hxc(r1|r2) and it may be exactly
computed from the HF wave function by Equation 1.33. Including a rational portion of
the exact exchange and combining it with some correlation functionals is the spirit of
hybrids functionals. The main issue of this approach rests on the incapacity of hF (r1|r2)
and hC(r1|r2), taken individually, for reproducing the properties of hxc(r1|r2); hF (r1|r2)
should be complemented by hC(r1|r2). In terms of the adiabatic connection we may con-
sider hybrids functionals as interpolation schemes between the exact exchange (λ = 0)
and the exact exchange-correlation functionals (λ = 1). The simplest approach is to as-
sume a linear extrapolation of λ, leading to the half-and-half (HH) exchange-correlation
functional introduced by Becke [25].

EHHxc = 1
2E

λ=0
xc + 1

2E
λ=1
xc . (1.161)
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Chapter 1. Methods of quantum mechanics

Becke used ELDAxc for Eλ=1
xc . Further improvements on the interpolation scheme leads

to more sophisticated exchange-correlation functionals where the amount of exact ex-
change and the approximative exchange and correlation contributions is determined by
some parametrisation scheme. Among the hybrid functionals we find the most widely
used functional, the exchange-correlaton B3LYP functional [26]

EB3LY P
xc = aEHFx + (1− a)ELSDAx + bEb88

x + cELY Pc + (1− c)EcVWN , (1.162)

where the parameters (a = 0.2, b = 0.72, c = 0.81) were adjusted to the G2 set of
experimental data. Many efforts have be done to reduce the number of parameter, as
B1B95 due to Becke [27, 25] which reduces the number of parameters to one. However
there are certain technical disadvantages that make B1B95 less appealing than B3LYP.

Aside from hybrid functionals based on empirical parametrisations, Perdew Burke
and Erhzerhof proposed a parameter-free hybrid where the amount was derived from
theoretical derivations

Ehybridxc = EGGAxc + 0.25(EHFx − EGGAx ). (1.163)
The most successful of these functional is the PBE1PBE functional (also known as

PBE0) where the PBE exchange-correlation functional is chosen as the GGA compo-
nent [28].

Range-separated hybrids

It is well known that approximate vxc(r) fails in reproducing the asymptotic behaviour
the exact potential; none of them has the correct −r−1 decay, they rather decrease
exponentially, and therefore they are less attractive that the exact potential at large r;
i.e. at distances far from the atoms. This ill-behaviour turns out to be critical for those
properties that not only depend on the occupied KS orbitals, but also on the virtual
orbital, such as polarizabilities or excitation energies. In the spirit of hybrid functionals,
one may include some amount of the exact exchange and correlation to correct the long-
range behaviour of approximated vxc(r). Range-separated functionals [29, 30] separate
electron-electron interaction into short and long range terms

1
r12

= erf(µr12)
r12

+ erfc(µr12)
r12

, (1.164)

where the parameter µ controls the separation between the long-range (erf(µr12)/r12)
and the short-range (erfc(µr12/r12) interactions. This is equivalent to representing Exc
as

Exc = ESRxc (µ) + ELRxc (µ). (1.165)
This partition scheme admits the combination of wave function and DFT methods

depending if a long-range corrected or a screened functional is sought. The first mix
long-range HF with short range DFT providing the proper −r−1 decay of vxc(r), and
therefore, improving properties such as charge-transfer, Rydberg excitations and van der
Waals interactions [31, 32, 33]. There is room for improvements if the HF contribution
is replaced by MCSCF, leading to the multiconfigurational hybrid functionals. This way,
then non-dinamical correlation may be included. The latter approach is mainly used in
solid state physics and where mixing long-range DFT with short range HF to define a
screened potential, improves band-gaps, lattice constants, etc [34, 35, 36, 37].
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Chapter 2. Mathematical foundations

In Chapter 1 we have shown that a chemical system is characterised by its wave
function and how the quality of these magnitudes may be systematically improved by
means of the variational principle or perturbation theory. Along with the wave func-
tion, one may obtain the averaged value of any property, as long as it has an associated
quantum operator, this is, if it is an observable. However chemical concepts were intro-
duced many years before the birth of quantum mechanics, and recovering this ideas in a
quantum mechanical manner is not an easy task at all. In the forthcoming chapters we
shall introduce an approach that has successfully recovered many of the firmly rooted
chemist ideas from quantum mechanics, quantum chemical topology. In a nutshell, this
approach exploits the topology of any chemically or physically-sound scalar field defined
from reduced density matrices. The aim of the present chapter is to let the reader be-
come acquainted with some of the topological concepts that will be used in the rest of
the manuscript. Additionally, some of the algorithms and formalism used for computing
different topological properties will be presented.

The birth of Topology as a scientific branch dates from Euler’s publication on the
Kröninsberg bridge problem. This seminal work showed a property of graphs that is
true regardless of their geometry. Soon after he proposed his formula for polyhedra:
V − E + F = 2 (where V refers to the number of vertices of the polyhedra, E refers to
the number of edges and F refers to the numbers of faces). Several years later Simon
Lhuilier corrected this Euler’s formula to account for genus (G):V −E+F = 2−2G. The
Kröninsberg problem revealed the topology as a the study of aspects of space, regardless
of geometric metrics. Much of the formal structure used in topology was formalised
in 1895 by Jules Poincaré who introduced the ideas of homotopy, homology and Betti
numbers to characterise the topology of an object.

2.1 Topological spaces
The notion of topological space was established in order to tackle questions related to
the connectivity of point sets. The topology of a point set defines which points are close
without defining how close they are from each other, that is, without defining a particular
metric. A topology on a point set X is a collection U of subsets of X, called open sets,
such that

• X is open and the empty set ∅ is open;

• if U1 and U2 are open, then U1
⋂

U2 is open;

• if Ui is open for all i in some possibly infinite, possible uncountable, index set, then
the union of all Ui is open.

The pair (X, U) is called a topological space, and U is said to be a topology of X.
Through the combination of open sets that satisfies the three above conditions, different
topologies may be built. These open sets form the basis of a topology on X.

Definition 2.1 A basis of a topology on a point set X is a collection B of subsets of
X, called basis elements, such that each x ∈ X is contained in at least one B ⊆ B and
x ∈ B1

⋃
B2 implies there is a third basis element with x ⊆ B3 ⊆ B1

⋂
B2. The topology

U generated by B consists of all sets U ⊆ X for which x ∈ U implies there is a basis
element x ∈ B ⊆ U .

As an example, consider the real line, R, and let B be the collection of all open intervals
in R. Let x, be any number in R, and B3 an open interval around x, B3 = (x− ε, x+ ε)
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x y

Figure 2.1: Hausdorff condition for two points x, y ∈ R2

with ε > 0. It is always possible to find two open intervals B1 = (x − k1ε, x + k1ε) and
B2 = (x − k2ε, x + k2ε), with k1 and k2 ≥ 1, such that B3 ⊆ B1

⋂
B2. The union of all

possible B3 constructs a topology on R.
As pointed out at the beginning of this chapter, the topology of a point set, say X,

defines how close are the points of X between them without reference to any metric. This
is done through the concept of neighbourhood.

Definition 2.2 A subset Y ⊆ X is a neighbourhood of x ∈ Y if there exists an open set
U such that x ∈ U ⊆ Y .

Furthermore, if for every x, y ∈ X, x 6= y, there are neighbourhoods A, B of x, y,
respectively such that A

⋂
B = ∅, X is said to be a Hausdorff space (see Figure 2.1). The

separability of a topological space is guaranteed if it has a countable basis of neighbour-
hoods, then it is said that a topological space is separable.

In Topology it is interesting to compare topological structures between different topo-
logical spaces. This is done through the notion of homeomorphism.

Definition 2.3 Given two topological spaces, X and Y, a homeomorphism is a bijective
function f : X→ Y, such that f and its inverse f−1 are continuous. If such an f exits,
X is said to be homeomorphic to Y, and that X and Y have the same topological type.

In practice, we deal with metric spaces, such as Euclidean spaces. A metric space S
is a set with a metric function d : S× S→ R such that,

• Positivity. For all x, y ∈ S, d(x, y) ≥ 0.

• Non-degeneracy. If d(x, y) = 0, then x = y.

• Symmetry. For all x, y ∈ S, d(x, y) = d(y, x).

• Triangle inequality. ∀ x, y, z ∈ S, d(x, y) + d(y, z) ≥ d(x, z).

For example, if d(x, y) =
√(∑n

i=0(xi − yi)2
)
we may define the n-dimensional Eu-

clidean space Rn as the Cartesian product of n copies of the real line R with metric
d(x, y). Alternatively a metric space may be defined as a topological space, where open
balls serve as basis neighborhoods for a topology of a set.1 All metric space is Hausdorff;
being S a metric space, and x, y ∈ S, it is possible to define two balls of radius d(x, y)/2
around each point, such that they do not overlap.

1An open ball B(x, r) with center x and radious r > 0 with respect to metric d(x, y) is defined as
B(x, r) = {y|d(x, y) < r}.
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X
U
p

x

y

ϕ[p]
ϕ

Figure 2.2: Homeomorphism (ϕ) onto an open subset of R2. The pair (U , ϕ), where
U ⊆ X, forms a chart at p ∈ X.

2.1.1 Manifolds
Before introducing a formal definition of manifold, let’s imagine an Euclidean space M,
such that, for each point P ∈ M, there exists a neighbourhood homeomorphism, ϕ, to
an open set in Rm,

ϕ : M → Rm

P → (x1, x2, . . . , xm),

that is, for every P , ϕ[P ] defines a local set of coordinates (x1, x2, . . . , xm) in Rm.
Figure 2.2 shows an homeomorphism to an open set in R2. This local homeomorphism
is accounted by charts,

Definition 2.4 A chart at x ∈ X is the pair (U , ϕ), where U ⊆ X is an open set
containing x, and ϕ is a homeomorphism onto an open subset of Rm. The dimension of
the chart ϕ is m.

In order to prevent two different charts (U , ϕ1), (V , ϕ2) from pointing into the same
local coordinates (x1, x2, . . . , xm) ∈ Rm, we impose both charts to be C∞-related,

Definition 2.5 Given a topological space X and two charts (U, ϕ1) and (V, ϕ2) such
that

ϕ1 : U ⊂ X → Rm (2.1)
ϕ2 : V ⊂ X → Rm, (2.2)

they are said to be C∞-related if

U
⋂
V = ∅,

else if ϕ1 ◦ ϕ−1
2 and ϕ2 ◦ ϕ−1

1 are smooth 2.

ϕ2 ◦ ϕ−1
1 : ϕ1[U1

⋃
U2] ⊂ Rm → ϕ2[U1

⋃
U2] ⊂ Rm. (2.3)

A C∞-related pair of charts is depicted in Figure 2.3. Formally a d-manifold is a
separable Hausdorff space X if at every point x ∈ X there is a d-dimensional chart. This
means that every point x ∈ X has a neighbourhood homeomorphic to Rd.

2A function f : U → Rd is smooth or C∞-continuous or C∞ if all coordinate functions have partial
derivatives for all orders and types.
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y

x

y

x

XpU V

ϕ1 ◦ ϕ−1
2

ϕ2 ◦ ϕ−1
1

ϕ1[p] ϕ2[p]

Figure 2.3: Two C∞-related charts (U,ϕ1),(V, ϕ2) through the conditions ϕ1 ◦ ϕ−1
2 and

ϕ2 ◦ ϕ−1
1 to be smooth, and U

⋂
V 6= ∅.

The set of charts (U,ϕ) that covers a d-manifold X, defines the atlas of X. Furthermore
if any pair of charts in the atlas of X are C∞-related, this atlas is C∞. To admit a chart
in a C∞ atlas, it has to be C∞-related to every chart in the atlas, and it is said that this
chart is admissible to that C∞-atlas. If a given C∞-atlas contains all admissible charts,
it is known as an atlas maximum, and it defines a C∞-manifold

Definition 2.6 A C∞-manifold is a topological manifold together with all the admissible
charts of some C∞-atlas.

C∞-manifolds play a major role in the Morse theory, thus for the sake of simplicity,
the term manifold is used as synonym of C∞-manifold.

2.2 Morse theory
Morse theory deals with the relationship between the structures of spaces, and func-
tions defined on those spaces. Specially, this theory draws the relationship between
critical points of a smooth function defined on a manifold and the global topology of
that manifold. Smooth functions are ideal for data analysis; they are dense, and they
can be represented in abstract terms, such as Reeb graphs or Morse-Smale complexes.
Although smooth functions admit derivatives of any order in practices, most commonly
we just need derivatives of first and second order. Using the first order derivatives of a
smooth function f : Rn → R, we may define the gradient of f , ~∇f as

~∇f =
( ∂f
∂x1

, . . . ,
∂f

∂xn

)
. (2.4)

The gradient of a scalar function is a vector field that points in the direction of
steepest ascent. Given a point p ∈ Rn, p = (x1, x2, . . . , xn), it is said to be a regular
point of f if ∇f(p) 6= 0, and a critical point (CP) otherwise,

∂f

∂x1
(p) = ∂f

∂x2
(p) = . . . = ∂f

∂xn
(p) = 0. (2.5)

The image of a CP, f(p), is called a critical value of f . All other values are regular
values of f . We use second derivatives to further distinguish between different types of
CPs. The Hessian of f at the point p0 is the matrix of second derivatives, i.e. in M3:
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H(p = p0) =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2


p=p0

. (2.6)

A CP x is non-degenerate if the Hessian is non-singular, that is, detH(x) 6= 0, and
degenerate otherwise. The Morse theory deals with a special type of smooth functions,
called Morse functions;

Definition 2.7 Given a smooth function f : M :→ R, it is a Morse function if

• all its CPs are non-degenerate,

• all its CPs have distinct function values.

It is worthy to say that the second condition is sometimes dropped. A unique feature
of Morse functions is their behaviour near CPs, where the gradient is negligible. Given
a Morse function in Md, f : Md → R, its behaviour in a small neighbourhood around a
CP u, is dominated by the quadratic terms. Even more, we can find local coordinates of
u = (0, 0, . . . , 0) such that there are no higher-order terms

f(p) = f(u)− x2
1 − . . .− x2

q + x2
q+1 + . . .+ x2

d, (2.7)

for every point p = (x1, x2, . . . , xd) in a small neighbourhood of u. This result is
known as Morse lemma. From this lemma it can be shown that u is the only CP in such
neighbourhood and therefore, u is said to be isolated. The number of minus signs in
the quadratic polynomial is the index of the CP, index(u) = q. This index classifies the
non-degenerate CPs into d+1 types. This result is equivalent to say that the index of
a CP is equal to the the number of negative eigenvalues of the Hessian at such critical
point. For a 3-manifold, we have four types, minima with index 0, 1-saddles with index
1, 2-saddles with index 2 and maxima with index 3. CPs are often classified in terms of
their rank r, and their signature, s, by the notation (r, s). The rank is the number of
non-zero eigenvalues of the Hessian matrix at the CP, and the signature is defined as the
difference between the number of positive and negative eigenvalues. For instance in M3,
maxima, 2-saddles, 1-saddles and minima are denoted by (3,-3), (3,-1), (3,-2) and (3,3)
respectively.

A major result of Morse theory is its ability to define the global shape of a manifold
in terms of its CPs since non-degenerate CPs are isolated, and therefore, the topology of
the level set is guaranteed not to change between CPs. This results may be summarised
in the following theorem;

Definition 2.8 Let M be a closed manifold and f : M → R a Morse function. Let
Mt = {p ∈ M|f(p) ≤ t} for a value t of f . If f has no CPs in [a,b]∈ R, then Ma and
Mb are homeomorphic.

If there is a CP in [a, b], there is not a homeomorphism between Ma and Mb any
more. To preserve this diffeomorphism through CPs, we need to attach a q-handle to
Ma.

Definition 2.9 A q-handle Dd
q corresponding to a CP p with index q such that f(a) <

f(p) < f(b), is a d-manifold homeomorphic to a d-ball that is attached through a disjoint
union to Ma, so that, Ma

⋃
Dd
q is diffeomophic to Mb.
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A manifold may be constructed by handle decomposition, that is by gluing handles
to the manifolds, as seen in Figure 2.4. When handles are attached in increasing order
of CPs, the handle decomposition discloses the topological features of a manifold.

(a) (b) (c) (d) (e)

Figure 2.4: Handle decomposition of a torus. Attaching 1-handle corresponding to a
1-saddle (b) to a cylinder (a) is homeomorphic to a capped torus (c). Adding a 2-handle
corresponding to a maximum to a capped torus (d) is homeomorphic to a torus (e).

2.2.1 Morse inequalities

The number of CPs of a Morse function f : M→ R is limited by the Morse inequalities.
The weak and the strong Morse inequalities provide lower bounds to the number of CPs
of some index q, cq, in terms of Betti numbers of the q− th homology group of M, βq(M)
3:

Definition 2.10 Let M be a manifold of dimension d and f : M→ R a Morse function.
Then

(i) weak: cq ≥ β(M) for all q

(ii) strong:
∑q
j=0(−1)q−jcj ≥

∑q
j=0(−1)q−jβj(M) for all q,

The strong Morse inequality becomes an equality for j = d. Morse inequalities connect
the number of CPs of M with its Euler characteristic, χ(M), through the Euler-Poincare
theorem

χ(M) =
d∑
q≥0

(−1)qβq(M),

then

χ(M) =
d∑
q=0

(−1)qβq(M) =
d∑
q=0

(−1)qcq.

3Informally the qth Betti number may be understood as the number of q- dimensional holes on a
topological surface, i.e. β0 is the number of connected components, β1 is the number of “circular” holes,
β2 is the number of two-dimensional “cavities”,...
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2.3 Manifold partitioning
The Morse theory states that all the relevant features of a Morse function and the mani-
folds defined by its level sets rest on its critical points and the connection between them.
Therefore, one may try to decompose a Morse manifold in subsets containing the relevant
features of some Morse function defined on it. In many applications understanding the
response of a system to a external perturbation is only possible if each of its parts may be
analysed separately, thus a partition of space defined by our physical system is required.
Morse theory provides us with an invaluable topological arsenal for performing such task.
Usually the partitioning engines are based on the behaviour of level sets (Reeb graphs)
or on the the behaviour of the gradient (Morse Complex).

2.3.1 Reeb graphs
The creation, destruction, merging, and splitting of connected components of level sets
may be recovered by Reeb graphs. Intuitively, the Reeb graph is the result of contracting
each connected component of a level set to a point, such that, every node in the graph
corresponds to a level set containing a CP and arcs between nodes represent the evolution
of the connected components of the level sets between CPs. Formally, the Reeb graph sets
an equivalence relationship between points belonging to a common connected component
of a level set of a scalar function f : M→ R

ReebGraph 2.11 Let f : M → R be a scalar function on a compact manifold M. The
Reeb graph of f is the quotient space f in M× R by the equivalence relation ∼ :

(X1, f(X1)) ∼ (X2, f(X2))

if and only if f(X1) = f(X2), and X1, X2 belong to the same connected component
of f−1(f(X1)).

The evolution of the level set of a height function defined on a torus is shown in
Figure 2.5. If the Reeb graph is defined over a simply connected Euclidean space, it is a
called contour tree.

f

Figure 2.5: (Right) Reeb graph of the height function (f) defined on a torus (left). The
CPs of f are the nodes of the Reeb graph, and the arcs divide the torus into sections
where level sets have a single connected component.

2.3.2 Morse complex
A different partitioning of a manifold may be achieved if instead of the relationship
between level sets, the gradient is analysed. In fact, the behaviour of level sets may be
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understood in terms of the gradient. Given a Morse function, the gradient flow may be
used to decompose a manifold depending on where the flow originated and where it ends.
The gradient flow is defined by integral lines and they lead to Morse and Morse-Smale
complexes.

Definition 2.12 Given a Morse function f : M→ R, a curve γ(t) is an integral line of
f if γ̇(t) = ∇f(γ(t)) for all t ∈ R.

Because γ is defined for all t ∈ R, the integral line necessarily approaches a CP, both
for t going to +∞ and to −∞. We call these limits the origin org and the destination
dest of the integral line,

org(γ) = lim
t→−∞

γ(t), (2.8)

dest(γ) = lim
t→∞

γ(t). (2.9)

f increases along the integral lines which implies that org(γ) 6= dest(γ). Integral lines
exhibit the following properties:

1. Two integral lines are either disjoint or the same.

2. Integral lines cover all M.

3. The origin and destination of an integral line is either a CP of f or ∞.

The first property is a consequence of the existence and Uniqueness Theorems of
differential equations, and it implies that every point in M has exactly one integral line
passing through it. This property suggests we may decompose the manifold into integral
lines or unions of integral lines with shared characteristics.

Definition 2.13 The stable manifold of a CP u of f , S(u), is the point itself together
with all regular points whose integral lines end at u. Symmetrically, the unstable manifold
of u, U(u), is the point itself together with all regular points whose integral lines originate
at u. More formally,

S(u) = u ∪ x ∈M|dest(γx) = u, (2.10)
U(u) = u ∪ x ∈M|org(γx) = u. (2.11)

The function increases along integral lines. It follows that f(u) ≥ f(x) for all point x
in S(u). This is the reason why S(u) is sometimes referred as the descending manifold of
u. Symmetrically, f(u) ≤ f(y) for all points y in U(u) and it is sometimes referred to as
ascending manifold of u. Viewing M as a terrain, S(u) and U(u) correspond to “basins”
and “mountains” respectively. Subsets of S(u) and U(u) of a function in R3 are shown
in Figure 2.6.

Suppose the dimension of M is d and the index of the CP u is q. Then there is
a q-sphere of directions along which integral lines approach u. It can be proved that
together with u, these integral lines form an open ball of dimension q, called open q-cell
and the S(u) is a submanifold homeomorphic to Rq that is immersed in M. The complex
formed by the descending manifolds of a Morse function f : M→ R, is called the Morse
complex. Each point in the Morse complex is classified according to dest(γ).
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Maximum 2-Saddle

1-Saddle Minimum

Figure 2.6: Subsets of S (red) and U (blue) manifolds of f : R3 → R for the four kinds
of CPs of f .

For instance, let’s analyse the Morse complex of the function f (x, y) = −x4 + 4(x2 −
y2)− 3.

R2 → R (2.12)
f(x, y) → −x4 + 4(x2 − y2)− 3,

The CPs of this function are such points where its gradient vanishes, ~∇f(x, y)

~∇f(x, y) = (−4x3 + 8x)~i − 8y~j = 0~i, 0~j. (2.13)
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Figure 2.7: (Left) f(x, y) = −x4 + 4(x2 − y2)− 3 and (right) its contour lines.

f(x, y) exhibits three CPs (
√

2, 0) , (−
√

2, 0) and (0, 0). Glancing at Figure 2.7, we
can realise that maxima are at (

√
2, 0) and (−

√
2, 0), and the saddle point at (0, 0).

Nevertheless, a complete analysis of the function requires the calculation of its Hessian
matrix and its eigenvalues at the CPs
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2.3. Manifold partitioning

H(x, y) =

 −12x2 + 8 0

0 −8


Since H(x, y) is diagonal everywhere, its eigenvalues at every point of R2 are −12x2+8

and -8. At (
√

2, 0) and (−
√

2, 0) both eigenvalues are negatives (-16,-8), then maxima
are located at these positions. At the origin, (0, 0), H eigenvalues have different sign
(8,-8), indicating therefore the presence of a saddle point. The indices of CPs in R2 are
two for maxima and one saddle points.

Although the integral lines of f(x, y) are not here displayed, the behaviour of ~∇f(x, y)
is showed in Figure 2.8. Since integral lines are tangent at every point of space to
~∇f(x, y), they exhibit a similar behaviour; all of them die at maxima forming a plane (a
2-sphere), that is, (

√
2, 0) and (−

√
2, 0) are dest(γ) of these lines. The stable manifold

of (−
√

2, 0) and (
√

2, 0), Ωa and Ωb respectively are displayed in Figure 2.8. The stable
and unstable manifold of the saddle point form lines (1-sphere) parallel to the Y and X
directions respectively. The Morse complex of f(x, y) is formed by two disjoint regions
as shown in Figure 2.8.
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Figure 2.8: (Left) f(x, y) = −x4 + 4(x2 − y2) − 3 vector field, ~∇f(x, y). The thick
black lines are symbolic representations of the integral lines connecting the CPs. (Right)
Topological partition obtained from ~∇f(x, y). Ωa and Ωb stand for the stable manifolds
of each of the maxima of f(x, y).

It is also possible to classify points according to both dest(γ) and org(γ), leading to
a generalisation of the Morse complex, called the Morse-Smale complex. To consistently
define this complex it is required that S and U intersect transversally;

Definition 2.14 Two submanifolds Ma and Mb with dimension a and b respectively,
belonging to M with dimension d, are said to intersect transversally if the tangent space
of Ma and the tangent space of Mb generate the tangent space of M, or when their
intersection is empty. When a+ b = d, the intersection is a single point.

Similarly to the Morse complex, the Morse-Smale complex is defined in terms of the
integral lines of some Morse-Smale function

Definition 2.15 A Morse function is Morse-Smale if its stable and unstable manifolds
only intersect transversally.
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This condition implies that a pair of CPs of a Morse-Smale function f connected by
an integral line cannot have the same index, and, the index of the CP at the origin of
such integral line is less than the index of the CP at the destination. Similarly to the
Morse complex, we may define a Morse-Smale complex as follows:

Definition 2.16 Given a Morse-Smale function f , the Morse-Smale complex of f is the
complex formed by the intersection of the Morse complex of f and the Morse complex of
−f .

The cells of the Morse-Smale complex are formed by the set of points whose associated
integral lines share a common orig and dest.

Given the transversality of the Morse complex of f and −f , the boundary of every S
is a union of Ss of lower dimension. The intersection of a S of dimension q of f and an
U of dimension p of f has dimension q + p − d. The intersections of Ss constructs the
Morse Smale complex adding one dimension at a time.

2.4 Piecewise linear functions
In data analysis and visualization, data are usually available by sampling some function
over some manifold not necessarily smooth. Smooth manifolds are replaced by discrete
approximations defined by simplicial complexes, and smooth functions by piecewise linear
functions.

2.4.1 Simplicial complexes
Let u1, u2, . . . , un be points in Rd, such that, for all x ∈ Rd, a set of λi ∈ Rd exists,
such that, x =

∑n
i λiui. If

∑n
i λi = 1 it is said that x is an affine combination of ui.

Furthermore if all λi are non-negative this combination is said to be convex. The convex
hull is defined by the set of convex combinations. A k-simplex is nothing but the convex
hull of k + 1 affinely independent points, σ = {u0, u2, . . . , uk}. The dimension of σ is k.
The first four dimension simplicies have geometrical names, such as vertex for 0-simplex,
edge for 1-simplex, triangle for 2-simplex and tetrahedron for 3-simplex. Using the same
geometrical nomenclature, we define a face of σ as the convex hull of a non-empty subset
of the ui set. If τ is a face of σ, σ is a coface of τ . A specially appealing kind of simplex
in data analysis is the simplicial complex defined as follows.

Definition 2.17 A simplicial complex is a finite collection of simplicies K such that

• If σ ∈ K and τ < σ → τ ∈ K,

• If σ and σ0 ∈ K ∴ σ
⋂
σ0 is empty or a face of both.

2.4.2 Piecewise linear functions
Let K be a triangulation of a compact manifold M with vertices ui, and f some function
not necessarily smooth defined over the vertices of K. A piecewise linear (PL) function
f : |K| → R, where |K| means that f takes values at the vertices of K, is defined by
f(x) =

∑
i bi(x)f(ui), where bi(x) are the barycentric coordinates at point x. If f takes

different values at all vertices it is said to be generic. To localise the CPs of f it is
convenient to order the vertices of K in increasing function values of the function as
f(u1) < f(u2) < . . . < f(un). Then, instead of computing its gradient at each point,

54



2.4. Piecewise linear functions

the neighbourhood of each vertex of ui is analysed. It is said that ui is critical if the
topologies of the level sets below and above are different. The neighbourhood of ui is
analysed in terms of its star and link.

Definition 2.18 The star of a vertex v ⊂ K is the subset defined by all the cofaces of v
Stv = {σ ⊂ K|v ≤ σ}.

Stv may not be closed, and therefore, it does not define a simplicial complex. We can
circumvent this problem by adding all missing faces, and defining the closed star S̄tv, as
the smallest complex that contains Stv. The difference between Stv and S̄tv, constitutes
the link of v, Lkv as shown by Figure 2.9.

Definition 2.19 The link of a vertex v ⊂ K is defined as the set of all simplicies in S̄tv
disjoint from v, Lkv = {τ ⊂ S̄tv|τ ∩ v = ∅}.

Figure 2.9: From left to right: the star, the closed star and the link of a point in a
bidimensional manifold.

Adding up information on the value of f at vertex v and assuming it is generic, we
can define its lower and upper links,

Definition 2.20 The lower link of a vertex v ⊂ K is Lk−v = {σ ⊂ Lkv|f(u) ≤
f(v), u ≤ σ}.

Definition 2.21 The upper link of a vertex v ⊂ K is Lk+v = {σ ⊂ Lkv|f(v) ≥
f(u), u ≤ σ}.

Regular points are characterised by having upper and lower link with exactly one
connected components. Otherwise it is a CP and every level set passing through the
vertex will change its topology (see Figure 2.10). Critical and regular points may be
distinguished by the Betti number of the lower link, and also indicate the index of the
CP. In practice this is determined by the connected component of the lower link; max-
ima and minima are characterized lower links with one and zero connected components
respectively.

In contrast to the smooth case, integral lines of PL functions may merge, therefore
the Morse-Smale complex is not defined. Instead, given a triangulation K and a PL
function f : |K| → R, we may define a segmentation of K whose nodes are the set of
PL critical points of f , pairs of nodes are connected through arcs, quads are defined by
the union of arcs, and crystals by the union of quads. If there are not CPs within arcs,
quads or crystals, this segmentation defines the quasi Morse-Smale complex, and it is
structurally equivalent of the Morse-Smale complex of some smooth function.
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Figure 2.10: From left to right: the lower star and lower link of a regular point, a
minimum, a saddle and a maximum for a bidimensional manifold.

2.4.3 Alternating sum of indices
Similarly to a Morse manifold, the Euler characteristic of a given K triangulation, and
PL Morse function f : |K| → R are closely connected through the alternating sum of the
simple PL critical points, ui,

χ(K) =
∑
ui

(−1)index(ui).

2.5 Dynamical systems
Morse theory provides us with the proper machinery to analyse the topology a manifold
in terms of the CPs of some Morse function defined in such manifold. Quantum chemical
topology was originally formulated within dynamical systems theory. The aim of this
section is to show that many of the concepts used in both theories are equivalent.

Consider a system of n differential equations, F . We are interested in its set of
solutions yj(t;x ∈ RN , cα ∈W ) defined over a manifold M

Fi

(
yi; cα; t; ∂yj

∂t
,
∂2yj
∂t2

, . . . ;xl;
∂yj
∂xl

,
∂2yj
∂xlxm

, . . . ;
∫
dx1, . . .

)
= 0, (2.14)

where

1 ≤ i , j ≤ n
1 ≤ l , m ≤ N (2.15)

1 ≤ α ≤ k

where cα denotes the control parameters which are the elements of the setW referred
to as the control space of dimension k. x and t may be regarded as space and time
coordinates. In order to make the problem much more tractable, we can apply a sequence
of simplifications;

1. We assume that the Equation 2.14 involves neither integrals, space derivatives nor
space dependence:

Fi =
(
yi; cα; t; ∂yj

∂t
,
∂2yj
∂t2

, . . . ,
)

= 0. (2.16)

2. Moreover, we assume that Equation 2.16 has no higher derivatives than the first
order ∂yi

∂t :

Fi = ∂yi
∂t
− fi(yj ; cα; t) = 0. (2.17)
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Systems of equations described by Equation 2.17 are called dynamical systems.

3. Further simplification is achieved if fi(yj ; cα; t) is time independent:

Fi = ∂yi
∂t
− fi(yj ; cα) = 0. (2.18)

A system of equations given by Equation 2.18 is called an autonomus dynamical
system.

The integration of Equation 2.17 under some initial conditions yields a unique set of
solutions y(cα, t), which are known as trajectories in M. Any trajectory fulfils the proper-
ties previously cited for the gradient lines of some scalar field. Conversely trajectories do
not start or end at CPs of some scalar field, but at points where fi(yj ; cα; t) = 0 (we shall
see that for a particular kind of dynamical system these CPs match with those of some
scalar field). These points are the CPs of the dynamical system, also called singular or
equilibrium points. CPs of a dynamical system may be classified through the analysis of
its trajectories yj , in their neighbourhood of a CP, tc, yc = y(tc; cα). A linear expansion
of yj near tc leads to

∂yi
∂t

= fi(yj ; cα; tc) ≈ fi(yc; cα; tc) + J(t− tc) = J(t− tc), (2.19)

(2.20)

where J is the Jacobian matrix of the system at tc,

J = ∂f(yi; cα; tc)
∂t

∣∣∣
yi=yc

. (2.21)

Shifting the coordinates origin to tc, the linear system may be written as

∂yi
∂t

= J(t). (2.22)

Being J a symmetric matrix it is possible to find an orthogonal matrix U that diago-
nalises J at tc,

UtJU = diag(λi), (2.23)

where λi are the eigenvalues of J. The eigenvectors of J, η, define a new coordinate
system,

y = Uη (2.24)
∂y

∂t
= U

∂η

∂t
(2.25)

(2.26)

Replacing in the previous equations,

∂η

∂t
= diag(λi)η, (2.27)

whose trivial solution is
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ηi(t) = ηi(to)eλi(t−to). (2.28)

The eigenvalues of J, λi, are the characteristic or Lyapunov’s exponents, and define
the behaviour of the dynamical system in the neighbourhood of a CP. λi are in general
complex numbers. A CP is called hyperbolic if none of its characteristic exponents have
a zero real part. Otherwise it is a non-hyperbolic CP, and the linear expansion is not
enough to characterise it. The index of a CP, I(f, yc), is defined by the number of positive
Lyapunov’s exponents. Similarly to the Morse rule, the Poincaré-Hopf theorem limits
the number of CPs of a dynamical system: if M is a compact manifold and f(y; cα, t)
has only isolated hyperbolic CPs, then they fulfill the following relation:∑

(−1)I(f,y
s) = χ(M). (2.29)

A hyperbolic CP may be a maximum, a minimum or a saddle point. For a given
point yo ∈ Mq the limit sets of yo(cα, t) for t → −∞ and t → +∞ are referred to as
α-limit and ω-limit, respectively. A maximum is characterised by I(X, ys) = 0, and is
also known as attractor. The set of trajectories that have an attractor as ω-limit defines
the stable manifold of such CP, and all the points within constitutes the basin (Ω) of
such attractor. The boundary points between basins are called separatrices, defined by
the so-called zero flux condition:∫

Ω
f(fi(yj ; cα; t))dt = 0. (2.30)

α and ω-limits lead to a partition of M into basins and separatrices similar to that
defines by the Morse complex. Conversely, a minimum or repellor in Rq is characterised
by I(X, ys) = q. The set of trajectories that have an attractor as α-limit defines the
stable manifold of such repellor.

An interesting property of autonomus dynamical systems (Equation 2.18) is that
they can be derived from the gradient of some potential function V (yj ; cα), f(yj ; cα) =
∇V (yj ; cα). Such system is called a gradient dynamical system,

fi(yj ; cα; t) = ∂yi(cα; t)
∂t

= ∂V (yj ; cα)
∂yi

, (2.31)

and the CPs of the system are defined by

∂V (yj ; cα)
∂yi

= 0. (2.32)

Furthermore, if V is a Morse function all the concepts previously defined within the
Morse theory find some equivalent in the dynamical systems theory. The trajectories of
the gradient dynamical system defined by ~∇V are nothing but the integral lines of V ,
and they may be written as a set of parametric equations

y(t) = y(to) +
∫ t

to

~∇V (yj ; cα)dt. (2.33)

α and ω limit definitions match with those of org(y) and dest(y) in the Morse theory
jargon, and therefore, the stable and unstable definitions are also the same. Furthermore
the basins of such dynamical system, are exactly the basins of the Morse complex of the
potential function V , leading thereby to the same topological partition of M.
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The nomenclature of the CPs, by contrast, is ambiguous; whereas the number of
positive eigenvalues of the Hessian matrix is used as index in the dynamical systems
framework, the number of negative eigenvalues is used the Morse theory. In what follows
we shall use the nomenclature (r, s) for convenience.

Critical Point I λ (r, s)

Maximum (attractor) 0 3 (3,-3)

2-saddle 1 2 (3,-1)

1-saddle 2 1 (3, 1)

Minimum (repellor) 3 0 (3, 3)

Table 2.1: Classification of the critical points for a M3 manifold. I and λ and (r,s) stand
for the dynamical system, Morse theory and (r, s) nomenclature, respectively.

It is worthy to notice that for a gradient dynamical system the following relationship
holds,

J(f) = J(~∇V ) = H(V ), (2.34)

where H(V ) is the Hessian matrix of V . Thus, the Lyapunov’s exponents are the
eigenvalues of H(V ). Since H(V ) is symmetric, it only shows real eigenvalues, and there-
fore, only hyperbolic CPs are present in gradient dynamical systems.
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Quantum chemical topology

Sommaire
3.1 Quantum chemical topology . . . . . . . . . . . . . . . . . . . 62
3.2 Topology of the electron density . . . . . . . . . . . . . . . . 62
3.3 The electron localisation function . . . . . . . . . . . . . . . . 63
3.4 Kinetic energy density based descriptors . . . . . . . . . . . 65

3.4.1 Bonding descriptors based on τ(r) . . . . . . . . . . . . . . . 67
3.4.2 Bonding descriptors based on τw(r) . . . . . . . . . . . . . . 67
3.4.3 Bonding descriptors based on τ(r) and τw(r) . . . . . . . . . 68
3.4.4 Bonding descriptors from τ(r) ansatzs . . . . . . . . . . . . . 70

3.5 The local-wave vector . . . . . . . . . . . . . . . . . . . . . . . 71
3.6 Basin properties . . . . . . . . . . . . . . . . . . . . . . . . . . 74

61



Chapter 3. Quantum chemical topology

There is no doubt that chemistry is founded in three main aspects; chemical structure,
properties and reactivity. The former is completely associated with the arrangement of
atoms in the space. The second and the third aspects are consequences of the inter-
actions between atoms through chemical bonds. Therefore, atoms and chemical bonds
constitutes the fundamental blocks in chemistry. Although many strategies have been
put forward for defining atoms in a quantum mechanical framework, the quest for an
unambiguous quantum definition of chemical bond still remains. The lack of quantum
mechanical operator associated with chemical bonding has created a gap between classi-
cal concepts such as electron shells, lone pairs, aromaticity, (hyper-) conjugation, strain,
etc and quantum theory, and thus hampers any understanding of their mechanistic origin.

To overcome this gap several approaches have been developed to provide a quantum
mechanical equivalent of such “fuzzy” concepts in Hilbert and in real space. Whereas
Hilbert space approaches are based on some unitary transformation of the occupied
orbitals of the system, they are somehow unbiased since they depend on the initial set
of orbitals. Real space approaches completely exploit the topological properties of some
scalar field as explained in Chapter 2. In this chapter we will focus in this second approach
that is often termed as quantum chemical topology.

3.1 Quantum chemical topology
Quantum chemical topology (QCT) [38] embraces all work that shares the central idea
of the gradient vector field of some scalar function as partitioning scheme of a quantum
system. As shown in Chapter 2 any vectorial field may be defined as a dynamical system
able to split a manifold into basins (Ωa), defined as the set of trajectories which share a
common ω-limit. In QCT the dynamical system is defined by the gradient vector field
of some 3D scalar field, therefore this partition is equivalent to those obtained by the
Morse complex of such scalar field. As any trajectory (or integral line) belongs to one
and only one basin, it does not transverse the surface of any basin. This result is known
as “zero flux condition” and is mathematically expressed as

~∇f(r) · ~n(r) = 0, (3.1)

where ~n(r) is a normal vector to the surface at point r and ~∇f(r) is the gradient of f(r)
at r. One consequence of the zero flux condition is that the partition obtained for some
vectorial field is always exhaustive

∪Ma Ωa = R3, Ωa ∩ Ωb = ∅, a 6= b, (3.2)

where M is the number of basins. Once the system is split into non-overlapping
regions, the next step in QCT is to assign a physical/chemical significance to these
regions in order to recover the distribution in real space of some property. The meaning
of Ωa is inherited from the scalar field whose gradient has been used as partitioning
engine. The scalar fields used in QCT are usually defined in terms of density matrices
and may be easily visualised by the representation of their isosurfaces or contour lines.

3.2 Topology of the electron density
The electron density ρ(r) was already introduced in Chapter 1 as well as its paramount
role in the electronic structure of matter through the Hohenberg and Kohn theorems [4].
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3.3. The electron localisation function

Its gross form is dominated by maxima at the nuclear positions. However, at these
positions its gradient shows a discontinuity resulting in in a cusp. As shown by Kato [39]
this cusp condition may be mathematically described as

lim
riA→0

[∂ρ̄(r)
∂r + 2ZAρ̄(r)

]
= 0, (3.3)

where ρ̄(r) , ZA and riA are the spherical average of ρ(r), the nuclear charge and
the coordinates of the nucleus A, respectively. Conversely the behaviour of ρ(r) far from
nuclei positions is described by an exponential decay [40]

ρ(r) ∝ e−(
√

2I)r, (3.4)
where I is the first ionisation potential. The cusp condition avoids ρ(r) to be a true

differentiable field. However it is possible to replace the cusp at nuclear positions by
maxima, identifying the nuclear positions as (3,-3) CPs. Quantum atoms may be defined
then as basins of ρ(r). Since (3,-1) CPs always take place between maxima, they have
been identified as indicators of chemical bonding, and therefore they are known as bond
critical points (BCPs). It is said that there is a chemical bond between two atoms if
they are connected through a BCP. From the topology of ρ(r), a molecular system may
be envisaged as a set of atoms connected through interatomic surfaces (IASs). We note
that an IAS only appears if there is a BCP between two basins (atoms). The CPs of ρ(r)
do not only identify chemical bonds, but also provide insight about their nature. ~∇ρ(r)
represents the charge flow through the system, thus stable and unstable manifolds of CPs
of ρ(r) represent directions of charge concentration and depletion respectively. Maxima
are characterised by 3D stable manifolds, this is a charge concentration in all directions.
By contrast, stable and unstable manifolds of a BCP form a plane and a line, respectively;
the charge is depleted through a integral line which connects the two bonded atoms,
known as bond path, and there is a charge concentration in the plane perpendicular to
such line. The presence of BCP may be then identified with the accumulation of ρ(r) in
a plane. The two blocks of chemistry are therefore recovered; atoms and bonds. Joining
all maxima through BCPs following bond paths we may render the molecular graph of
a chemical system, and therefore, its molecular structure.

Further CPs have less clear chemical meaning and they are often connected with
regions where it is expected to find some kind of strain. (3,1) CPs appear in plains
limited by BCPs, and they represent a plane of charge depletion (the unstable manifold
of a (3,-1) CP is a plane). Minima are characterize by charge depletion along all directions
and they are identified as (3,3) CPs.

Besides of identifying atoms, the basins of ρ(r) are the only regions where the virial
theorem is defined (apart from R3) and they may be considered as open quantum subsys-
tems leading to the quantum theory of atom in molecules (QTAIM) owed to Bader [41].
In the literature QTAIM is often used for referring to the topological analysis of ρ(r).

3.3 The electron localisation function
The electron localisation function (ELF) [42] is a powerful tool to identify regions where
electrons are localised. The ELF was derived by Becke et Edgecombe expanding the
Hartree-Fock spherically averaged spin conditional probability density

Pσscond(r, s) = 1
3

[
τσ(r)− 1

4
|~∇ρσ(r)|2

ρ(r)σ
(r)
]
s2 + . . . , (3.5)
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Chapter 3. Quantum chemical topology

where the arguments (r, s) denote the spherically averaged on a shell of radius s about
the reference point r, and τσ(r) is the positive definite kinetic energy density introduced
in the meta-GGA framework 1.156.

A number of insights may be extracted from Pσσcond(r, s); the smaller the probability
of finding a second like-spin electron near the reference point, the higher the localisation
of the reference electron. Hence, the coefficient of the quadratic term in Equation 3.5 is
an index of electron localisation

Dσ(r) = τσ(r)− 1
4
|~∇ρσ(r)|2

ρσ(r) . (3.6)

It may be proved that Dσ is necessarily non-negative and it vanishes in the special
case of one-electron systems and hence also vanishes in multielectron systems in regions
dominated by a single localised σ-spin orbital, reinforcing therefore the interpretation of
Dσ as a measure of electron delocalisation. To provide an index of electron localization
that renders a proper visualisation, Becke and Edgecombe defined ELF as

ELF(r) = (1 + χσ(r)2)−1, (3.7)
where

χσ(r) = Dσ(r)
D0
σ(r) , D0

σ(r) = 3
5(6π2)ρ5/3

σ (r). (3.8)

D0
σ(r) corresponds to an HEG with equal spin density as the real system. ELF is

bounded from below and above,

0 ≤ ELF(r) ≤ 1, (3.9)
The upper limit ELF(r)=1 corresponds to perfect localisation, and the value ELF(r)=1/2

to gas-like behaviour. Strictly speaking ELF(r) maxima identify regions dominated by
a single spin-orbital. Since at Hartee-Fock level, unlike spin electrons are independent
Dα(r) and Dβ(r) are identical, and therefore ELF(r) maxima identify regions with high
probability of finding an electron pair, i.e. atomic shells, core, bonding, or lone pairs.
Contrary to the topological analysis of ρ(r), CPs further than maxima do not convey any
clear chemical significance, and therefore the topological analysis of ELF(r) is limited to
the localisation of its maxima and the characterisation of its basins.

Classification of the ELF(r) basins

The geometrical arrangement of the ELF(r) maxima allows to differentiate two types of
basins; core and valence. The former are highly localised around nuclei with Z > 2 and
denoted by C(A) where A stands for the atomic symbol of the atom. The latter fill the
remaining spaces. The localisation of valence basins closely matches with the electron
pair arrangements defined by Gillespie in the Valence Shell Electron Pair Repulsion model
(VSEPR), and therefore it provides a mathematical support for Lewis’ valence theory and
for VSEPR. Valence basins are denoted by V(A,B), where A and B are the atomic center
which share the basin. The synaptic order of a valence basin [43] is defined as the number
of core basins which have a common boundary with it. According to their synaptic order
the valence basins can be asynaptic (synaptic order zero), monosynaptic, disynaptic or
polysinaptic (see Table 3.1). F centers in solid state, lone pairs, two-center bonds are
examples of asysnaptic, monosynaptic and dysnaptic basins, respectively. Basins with
synaptic higher order are characteristic of polyatomic bonding, such as the trysynaptic
basin V(H,B,H) in diborane [43].
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3.4. Kinetic energy density based descriptors

Synptic order Name Symbol

0 Asynaptic

1 Monosynaptic V(A)

2 Disynaptic V(A,B)

3 Tisynaptic V(A,B,C)

>3 Polisynaptic V(A,B,C,. . . )

Table 3.1: ELF(r) basin classification according its synapticity.

Figure 3.1: ELF(r) localisation domains for: N2(f=0.8)(left), F2(f=0.6)(right).
Monosynaptic and disynaptic basins are coloured in cyan and green respectively.

Contrary to ρ(r), ELF(r) is specially well suited for visualisation analysis, since it
is bounded from above and from below. Additionally to the partition induced by the
gradient of ELF(r), we can analyse the partition defined by its level sets, i.e. the Reeb
Graph. In the ELF(r) parlance, a domain is defined as a region bounded by a closed
level set ELF(r)=f . An f -localisation domain [44] is the subset of points such that each
point satisfies ELF(r)>f . If a localisation domain surrounds as much as one maximum
it is called irreducible, otherwise it is reducible. Depending on the nature of the basins
contained in a domain, it is possible to differentiate three types of domains. Core domains
only contain core maxima, valence domains only valence maxima and composite domains
contain both valence and core ones (see Figure 3.1).

3.4 Kinetic energy density based descriptors
Among the scalar fields proposed to analyse chemical interactions, scalar fields based on
any of the forms of the kinetic energy density are specially useful for the visual analysis
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of chemical interactions. The success of this family of scalar fields rests on the decrease in
the interatomic kinetic energy during the formation of a covalent interaction [45, 46, 47];
therefore any function able to map this variations should be a good candidate as a real
space bonding indicator. It is well known that there is an infinity of kinetic energy
densities; the only requirement is that they integrate to the total kinetic energy of the
system T. [48, 49]

T =
∫
drτg(r), (3.10)

where τg(r) is any form of the kinetic energy density. Two particular forms of τg have
been widely use in the literature τ(r) and K(r)

K(r) = −1
2

occ∑
i

niψi(r)∇2ψi(r) (3.11)

τ(r) = 1
2

occ∑
i

ni~∇ψi(r)~∇ψi(r), (3.12)

where ψi are real natural orbital and ni their occupation numbers such that ρ(r) =∑
i niψi(r)ψi(r). As kinetic energy densities both of these function integrates to the same

total kinetic energy density, but they differ locally. Whereas τ(r) is positive everywhere,
K(r) exhibits positive and negative values and is the definition used by Schrödinger.
Both definition are related via the Laplacian of the electron density.

K(r) = −1
4∇

2ρ(r) + τ(r). (3.13)

Since ∇2ρ(r) is a divergence term, its net contribution to T cancels∫
∇2ρ(r) = 0. (3.14)

The positive definite condition of τ(r) enables the interpretation of its local behaviour
in terms of classical effects, and thus many chemical bonding descriptors have profited
from this property. It worthy noticing that for a Hartree-Fock wave function Equa-
tion 3.11 becomes

τ(r) = 1
2

occ∑
i=1
|~∇ψi(r)|2, (3.15)

where ψi(r) are occupied Hartree-Fock orbitals. If ψi are replaced by Kohn-Sham
orbitals Equation 1.156 of Chapter 1 is obtained. Contrary to Equation 3.15 , Equa-
tion 1.156 integrates to the Kohn-Sham kinetic energy.

The limiting behaviour of τ(r) at r = 0 and r → ∞ is determined by the von
Weizsäcker kinetic energy density [50] τw(r) as introduced in Equation 1.158 of Chapter 1.
It may be shown that it constitutes a rigorous lower bound for τ(r). Although τw(r) is
not a kinetic energy density in the sense that it does not satisfies Equation 3.10 and it
integrates to the von Weizsäcker correction to the Thomas-Fermi model, it constitutes a
useful tool for revealing atomic and molecular structure [51, 52].
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3.4. Kinetic energy density based descriptors

3.4.1 Bonding descriptors based on τ(r)
The chemical content of τ(r), was already used by Schmider and Becke to define the
localised-orbital locator (LOL) [53]. LOL is defined from the dimensionless variable t(r)

t(r) = τTF (r)
τ(r) . (3.16)

The function t(r) is bounded by zero from below, but has no an upper boundary:

0 ≤ t(r) <∞. (3.17)

To circumvent this problem, they proposed to map t(r) onto the range [0,1]. They
referred to this map as ν:

ν(r) = t(r)
1 + t(r) = 1

1 + τ(r)
τTF (r)

. (3.18)

LOL refers both to t(r) and to its bounded counterpart ν(r). In what follows, we shall
refer to tLOL(r) = τ(r)/τTF (r) as the LOL kernel. The properties of this dimensionless
ratio were already discussed by Finzel [54]. At the positions of the stationary points of
localized orbitals, tLOL(r) is driven to small values (ν → 1). In regions dominated by the
overlap of localized orbitals, tLOL(r) attains large values (ν → 0). Thus, the chemical
content of LOL is similar to that of ELF(r).

3.4.2 Bonding descriptors based on τw(r)
The term τw(r) is the kinetic energy density in the absence of the Pauli principle, hence
it accounts for the bosonic character of the system. As aforementioned, τ(r) is bounded
from below by τw(r), they exhibit the same limiting behaviour at near and far way from
the nuclear coordinates. Moreover τw(r) is exact for any system described by a single
spatial orbital [55]. In many electron systems, it also approaches τ(r) for those systems
that are well described by strongly localized orbitals in separate regions. Additionally,
τw(r) is the kinetic energy density of the marginal probability amplitude introduced by
Hunter some time ago [56]. τw(r) may be thereby understood as a measure of the single
particle character of the system. Because a localized electron pair behaves as a single
particle, namely as a boson, its kinetic energy density is given by τw(r). This was already
noticed by Bohórquez et al. who proposed a partition of molecular space based on the
local behaviour of τw(r)/ρ(r), valid for every pair of atoms connected through a BCP[51].
They also introduced the localized electron detector LED defined as the local momentum
associated with τw(r)/ρ(r), P̃ (r) :

P̃ (r) = −
~∇ρ(r)
2ρ(r) . (3.19)

Contrary to all descriptors hitherto introduced, P̃ (r) is not a scalar field, but a
vectorial field. The analysis of LED is based on the visualisation of the modulus of P̃ (r),
(|P̃ (r)|), and not on the partition induced by P̃ (r) itself. As argued by Bohórquez et al. ,
critical points of P̃ (r) match with those of ρ(r), and therefore not further partitions
need to be analysed. Just as for tLOL(r), we may rescale τw(r) by τTF (r) defining the
dimensionless variable tbose(r) [52] as:
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Chapter 3. Quantum chemical topology

tbose(r) = τw(r)
τTF (r) , (3.20)

tbose(r) carries the same chemical information as τw(r); both account for the single
particle character of the system.

Similar to τw(r) and τ(r), tbose(r) is a lower bound to tLOL(r), and they approach
each other in regions well described by a single orbital, as it occurs where there is electron
pair localization [57]. We may establish a parallelism between both functions: if tLOL is
understood as an indicator of positions where localized orbitals attain their stationary
points, tbose may be understood as a locator of the stationary points of the electron
density. As explained by Savin [58], at regions where localized orbitals attain their
maxima, |~∇ρ(r)| is expected to be close to 0, and both functions tLOL and tbose are driven
to small values. Thus, one requirement (though not sufficient) for electron localization is
small values of |~∇ρ(r)|, and therefore of τw(r) as well as tbose. Note that the opposite is
not true; not all regions of low values of |~∇ρ(r)| involve maxima of localized orbitals. In
this regard tbose(r) contains more chemical information than tLOL(r); it shows minima
at regions where the Pauli repulsion accounted for the Pauli kinetic energy (see following
subsection) is relatively low.
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Figure 3.2: β(r) (solid red line) and LOL (dashed blue line) along internuclear axis for
N2. The zero was set at the BCP.

For the sake of comparison with LOL, we define β(r) = 1/1 + tbose(r), as an upper
limit to LOL(r) (Fig. 7.1). It may be seen that the chemical picture obtained by the two
functions is the same; maxima account for regions of electron-pair localisation, i.e. cores,
lone and bonding electron pairs.

This interpretation is also valid for any function derived from τw(r), such as τw(r)/ρ(r)
or LED. As noted by Bohórquez et al. [59] both τw(r)/ρ(r) and LED are bounded by
physical limits, whereas tbose(r) is an unbounded variable.

Contrary to the bonding descriptors based on τ(r), τw(r) bonding descriptors have
the unique feature of revealing not only atomic shells, bonding and lone electron pairs,
but also non-covalent interactions as we shall see in Section 3.5

3.4.3 Bonding descriptors based on τ(r) and τw(r)
Since τw(r) contains the bosonic information of the system, for a single determinantal
wave function the difference between τ(r) and τ(r)w is a measure of the excess of kinetic
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energy density due to the Pauli principle. This difference is known as the Pauli kinetic
energy density tp(r)[57]

tp = τ(r)− τw(r). (3.21)

The right hand term of Equation 3.21 matches with the Laplacian of the conditional
propablity density D(r) introduced to define ELF [42]. Additionally the term D0

σ =
3
5 (6π2)ρ5/3

σ is the Thomas-Fermi kinetic energy density τTF (r). As proposed by Savin et
al [57] ELF may be understood as the excess of kinetic energy compared with a system of
bosons of the same density due to the Pauli principle, all of it scaled by the Thomas-Fermi
term.

χ(r) = tp(r)
τTF (r) = τ(r)− τw(r)

τTF (r) . (3.22)

From this kinematic interpretation of ELF, all the chemical meaning of ELF is con-
tained in tp(r) as the only measure of electron localization [60]. Nevertheless it is
known that tp(r) is not able to reveal chemical structure features. As explained by
Schmider et al. [61] the origin of this may be found in the scaling relation between the
kinetic energy τ(r) and the density; τ(r) is completely dominated by the core regions. To
circumvent this problem, Becke and Edgecombe chose τTF (r) as reference. Within the
local quantum theory framework, Bohórquez et al. chose the electron density as refer-
ence [51]. They analysed the local values of all the functions involved in tp(r), tp(r)/ρ(r),
τ(r)/ρ(r) and τw(r)/ρ(r). They have not only shown, that tp(r)/ρ(r) provides a bet-
ter depiction of electron localization than tp(r), but τ(r)/ρ(r) and τw(r)/ρ(r) are useful
chemical bonding descriptors too.
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Figure 3.3: tp(r) isocontours (left) and (right) tp(r)(solid black line) along with the ELF
kernel χ(r) = tp(r)/tTF (r) values along the internuclear axis (right) for N2. LP and B
stand for lone and bonding pair, respectively.

Although χ(r) is given by the difference between tLOL(r) and tbose(r), its features as
bonding descriptor are closer to those of tLOL(r) than to those of tbose(r). For instance,
non-covalent interactions are identified as saddle points of χ(r) and tLOL(r) while non-
covalent interactions are easily identified as minima of tbose(r). For visualisation purposes
it is much better to work with extrema, i.e. maxima and minima, than saddle points.

The ratio between τ(r) and τw(r) has been widely used to define self-correlation-free
meta-GGAs and local hybrid functionals [20, 62].
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g(r) = τw(r)
τ(r) . (3.23)

Similarly to tp(r), g(r) detects regions where the density is dominated by a single
orbital (“iso-orbital” regions). Unlike tp(r), tLOL(r) or tbose(r), g(r) is a bounded function

0 ≤ g(r) ≤ 1, (3.24)
“Iso-orbital” regions are characterised by g(r) → 1. In Figure 3.4 g(r) is computed

for H2 and N2 at B3LYP level. For H2 the electron density is computed using only one
Kohn-Sham orbital and g(r) = 1 is expected everywhere. For g(r) cancels at the bond
critical point and it displays a higher g(r) value minima at nuclear positions. Between
these two regions g(r) attains its maximum value 1. Far away from nuclear positions
τw(r)→ τ(r) and thus g(r) approaches to 1
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Figure 3.4: g(r) along internuclear axis for N2 (red line) and H2 (blue dashed line).

Although g(r) does not suffer from the same scaling problem as tp(r), in fact it
is already scaled by τ(r), it is expected to suffer from the same pathologies as χ(r)
for describing non-covalent interactions. It is worth noting that ηSCC(r) = 1 − g(r)
introduced in Chapter 1 may be rewritten in terms of tp(r).

ηSCC(r) = 1− g(r) = tp(r)
τ(r) . (3.25)

3.4.4 Bonding descriptors from τ(r) ansatzs
Searching for a density based ansatz of τ(r), Fintzel defined the ratios [54]

f2(r) = τ(r)− τTF (r)
τw(r) , (3.26)

f3(r) = τ(r)
τw(r) + τ(r) . (3.27)

She analysed the ability of these two indicators for revealing atomic shells and chem-
ical bonds. She also showed that all the based kinetic energy density descriptors herein
described may be understood as modifying functions for describing τ(r) (See Table 3.2).
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Ansatz Modifier

τ(r) =τw(r) + χ(r)τTF (r) χ(r) = τ(r)−τw(r)
τTF (r)

τ(r)= τw(r)f2(r) + τTF (r) f2(r) = τ(r)−τTF (r)
τw(r)

τ(r)= f3(τ(r)w + τTF (r)) f3(r) = τ(r)
τw(r)+τ(r)

τ(r)= tLOL(r)τTF (r) tLOL(r) = τ(r)
τTF (r)

τ(r)= τw(r)
g(r) g(r) = τw(r)

τ(r)

Table 3.2: Kinetic energy density functionals (left) analysed by Fintzel, along with their
modifier function (right).

3.5 The local-wave vector
The local-wave vector is defined as ~k(r) = −~∇ρ(r)/ρ(r) [63]. It has been shown to reveal
the atomic shell structure [64] and characterise atomic and molecular ground states. From
the information theory point of view, Nagy and Liu have shown that the the local-wave
vector is nothing but the gradient of Shanon’s information per particle and the square of
Fisher information’s per particle [65]. The success of many of the descriptors based on
τw(r) may be understood in terms of ~k(r) and its connection to τw(r)

τw(r) = ρ(r)|~k(r)|2

8 . (3.28)

LED (P̃ (r)) is nothing but half the modulus of ~k(r).

P̃ (r) = −
~k(r)

2 . (3.29)

Comparing |P̃ (r)| with that of a suitable reference system such as HEG , one may
obtain the reduced density gradient s(r) introduced in the GGA exchange functionals

s(r) = |P̃ (r)|
pTF (r) , (3.30)

= |~k(r)|
2kTF (r) , (3.31)

where pTF (r) and kTF (r) are the Thomas-Fermi momentum kTF (r) = 2pTF (r) and
the Fermi momentum as defined in Equation 1.154.

Conversely a more elaborated scaling is used by the density overlap regions indicator
(DORI) proposed by de Silva et al. [66]
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LED and s(r) provide very similar chemical pictures for N2 as displayed in Figure 3.5
As it has been already discussed [52], core, lone pairs and interatomic bonding regions
may be identified as minima of s(r). LED provides a similar picture of that obtained
by s(r). Due to the different exponent of ρ(r) in the denominator, 4/3 for s(r) and
1 for LED, the difference between maxima and minima are much more highlighted in
s(r) than in LED. This effect is specially notable in the minima associated with lone-
pairs. One of the strong points of LED is that it is a bounded function and different
chemical entities may be visualised by tuning the LED value. In Figure 3.5 core regions
are coloured in yellow and they were obtained obtained by a LED=6.0 isosurface, while
the cyan isosurface identifying the bonding region was obtained setting LED=0.6.

Since LED, s(r) and DORI use the same basic variable, ~k(r), it is the local-wave
vector who carries all the chemical content.
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Figure 3.5: s(r) (top), LED(r)(middle) (bottom) for N2. (Left) Representation along
internuclear axis. (Right) s(r) = 0.33, LED(r) = 0.6(cyan) and LED(r) = 6.0 (yellow)
isosurfaces.

An important property of the local-wave vector, and in general, of any function of
the form |~∇ρ(r)|/ρn(r), is that the information from the electron density and its Lapla-
cian ∇2ρ(r) is added up. Critical points of ρ(r) are identified as zeros of |~∇ρ(r|/ρn(r).
Information from ∇2ρ(r) may obtained by analysing its gradient
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~∇
( |~∇ρ(r)|
ρn(r)

)
= 1
|~∇ρ(r)|ρn(r)

3∑
u=1

[ 3∑
v=1

( ∂2ρ(r)
∂xu∂xv

)(∂ρ(r)
∂xv

− n |
~∇ρ(r)|2

ρ(r)

(∂ρ(r)
∂xu

)]
~xu,

(3.32)
where u and v run over x, y and z. Because |~∇ρ(r)| appears in the denominator of the

right-hand side of Equation 3.32, |~∇ρ(r)|/ρn(r) is not differentiable at critical points of
ρ(r). However at these points |~∇ρ(r)|/ρn(r) behaves formally like a minimum, and this
problem may be circumventedby considering these points as minima. Since the Atoms In
Molecules Theory focusses on critical points of ρ(r) we will refer to these point as AIM-
CPs. By contrast we will call Non-AIM-CPs to points where 3.32 cancels. To analyse
Non-AIM-CPs it is convenient to rewrite Equation 3.32 in a matricial form

~∇
( |~∇ρ(r)|
ρn(r)

)
=

~X

|~∇ρ(r)|ρn(r)

[
H(ρ(r))− n |

~∇ρ(r)|2

ρ(r) I
]
∇tρ(r), (3.33)

where H(ρ(r)) is the electron density Hessian matrix (Equation 2.6) and I is the
identity matrix of order 3.

∇tρ(r) =


∂ρ
∂x

∂ρ
∂y

∂ρ
∂z

 , ~X = (~x ~y ~z). (3.34)

Since |~∇ρ(r)| 6= 0, Equation 3.33 is zero if and only if the expression in brackets
cancels

[
H(ρ(r))− n |

~∇ρ(r)|2

ρ(r) I
]

= 0. (3.35)

Equation 3.35 implies that H(ρ(r)) is diagonal and its eigenvalues, λi, are positive
and equal to n|~∇ρ(r)|2/ρ(r). Since the Laplacian of the electron density, ∇2ρ(r), is equal
to the trace of H(ρ(r)), Equation 3.35 leads to:

∇2ρ(r) = λ1 + λ2 + λ3 = 3n |
~∇ρ(r)|2

ρ(r) . (3.36)

Thus ∇2ρ(r) is always positive at Non-AIM-CPs which means that these critical
points appear in regions of electron density depletion (see Chapter 4 for a detailed expla-
nation). A similar relation to that given by Eq 3.36 is found in the one-electron potential
(OEP(r)) [56, 67]:

OEP(r) = 1
4

[∇2ρ(r)
ρ(r) − 1

2

( ~∇ρ(r)
ρ(r)

)2]
, (3.37)

=
∇2
√
ρ(r)

2
√
ρ(r)

, (3.38)

Hunter showed that OEP(r) is the exact local kinetic energy for a one-electron wave
function θ(r), whose square is proportional to the electron density
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ρ(r) = N |θ(r)|2, (3.39)

where N is a normalisation constant. For a one-electron distribution OEP(r) is for-
mally identical to Bohm’s quantum potential. Kohout found a similar relationship for the
many-electron case [68]. Regions of negative OEP(r) have been identified as classically
allowed regions, in the sense that the kinetic energy takes positive values. Conversely, the
regions where OEP(r) attains positive values, have negative kinetic energy, and therefore
have been identified as classically forbidden regions. This separation has been used to
identify atomic shells and bonding regions as the classically allowed ones. Transition
between both regions occur at points where n = 1/6 in Equation 3.36, thus CPs of
|~k(r)|/ρ(r)6 match with zeros of OEP(r).

3.6 Basin properties
Once the real space is exhaustively partitioned into basins, it is possible to define the
basin average of an operator Â as

AΩ = 〈ÂΩ〉 =
∫

Ω
dr
∫
N

2
[
Ψ∗ÂΨ + (ÂΨ)∗Ψ]dr′. (3.40)

A basin property is therefore determined by the integration of a corresponding property
density, ρA(r), over the basin Ω

AΩ =
∫

Ω
ρA(r)dr, (3.41)

where

ρA(r) = N

2

∫
[Ψ∗ÂΨ + (ÂΨ)∗Ψ]dr′. (3.42)

Equations 3.41 and 3.42 can also be expressed in terms of the reduced density ma-
trices. If Â is a one-electron operator, Equation 3.41 becomes

AΩ =
∫

Ω
Â(r; r′)ρ(r; r′)dr′|r=r′ . (3.43)

If Â is by contrast a two-electron operator

AΩ =
∫

Ω
dr1

∫
Ω
Â(r1, r2)ρ2(r1, r2)dr2. (3.44)

The most important consequence of the definition of a basin property is that the average
value of any observable may be partitioned into basin contributions

〈Â〉 =
∑
Ω
AΩ. (3.45)

Equation 3.45 states that each basin makes an additive contribution to any property of
the system.

74



3.6. Basin properties

The simplest operator that we can integrate over a basin is the unity, Â = 1. The
property density associated to the unity operator is the charge density and, from Equa-
tion 3.42, the basin population of Ω (defined as the average number of electrons in the
Ω, NΩ) is given by

〈NΩ〉 =
∫

Ω
ρ(r)dr. (3.46)

Equivalently the average number of pairs in Ω may be casted as

D2(Ω,Ω) =
∫

Ω

∫
Ω
ρ2(r1; r2)dr1dr2. (3.47)

Any component of the energy of the system may be also partitioned into basin con-
tributions. For instance the electron-nucleus interaction may be partitioned as

V ABen = −ZB
∫

ΩA

ρ(r)
|r−RB |

dr, (3.48)

where V ABen is the interaction between electrons in the basin ΩA and the nucleus B.
The electron-electron interaction may be casted as

V ABee = 1
2

∫
ΩA

∫
ΩB
r−1
12 ρ2(x1,x2)dx1dx2, (3.49)

where V ABee is the electron repulsion between electrons in the basin A and the electrons
in the basin B.

Population analysis

Among the aforementioned properties the most widely used for analysing chemical bond-
ing has been the electron population (Equation 3.46). Undoubtedly chemical concepts
were developed in R3, and are understood in terms of how electrons guard the space,
that is, the electron distribution. Along with the average number of electrons in a given
region, the electronic fluctuations among different regions provide insight into the elec-
tron localisation/delocalisation. Many of the modern chemical bond theories are defined
in terms of statistics of the electron population after the chemical system of interest has
been partitioned according to the QCT methodology.

The probability of finding n electrons in the region Ω and the other (N − n) in the
complementary region Ω′ = R3 − Ω,Pn(Ω) is given by [69]

Pn(Ω) =
(
N

n

)∫
Ω
dr1 . . . drn

∫
Ω′
ρN (r1, . . . .rN )drn+1 . . . drN . (3.50)

The averaged number of electrons and electron pairs in a region Ω were defined by
Equation 3.46 and Equation 3.47 and they may rewritten in terms of Pn(Ω)

〈NΩ〉 =
∑

n
Pn(Ω)n, (3.51)

D2(Ω,Ω) =
∑

n
Pn(Ω)n(n− 1). (3.52)

From ρ2(r1, r2) = ρ(r1)ρ(r2)− ρxc(r1, r2), D2(Ω,Ω) becomes

D2(Ω,Ω) = 〈NΩ〉2 − 〈NΩ,Ω〉, (3.53)
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where

〈NΩ,Ω〉 =
∫

Ω
dr1

∫
Ω
ρxc(r1, r2)dr2. (3.54)

The quantity 〈NΩ,Ω〉 may be understood as a measure of the total correlation inside
the region Ω, since it reduces the number of pairs created by an independent electron
distribution. 〈NΩ,Ω〉 is closely connected with the fluctuation in the population of Ω,
defined as

Λ(Ω) =
N∑
n=0

Pn(Ω)(n− 〈NΩ〉)2,=
N∑
n=0

n2Pn(Ω)−
N∑
n=0

nPn(Ω),

= 〈N2
Ω〉 − 〈NΩ〉2. (3.55)

On the other hand, D2(Ω,Ω) in Equation 3.53 may also be written as

D2(Ω,Ω) =
∑

n
Pn(Ω)n(n− 1) = 〈N2

Ω〉 − 〈NΩ〉. (3.56)

From Equations 3.55 and 3.56, we have

〈N2
Ω〉 = 〈NΩ〉2 + 〈NΩ〉 − 〈NΩ,Ω〉, (3.57)

and substituting this equation in Equation 3.55 we finally have

Λ(Ω) = 〈NΩ〉 − 〈NΩ,Ω〉. (3.58)

〈NΩ,Ω〉 decreases the fluctuation in the population of Ω, increasing the electron local-
ization in such region. Due to this property this term receives the name of localization
index. When 〈NΩ,Ω〉 attains its maximum value, 〈NΩ〉, the fluctuation Λ(Ω) becomes
zero, generating a situation of maximum localization. In such a case, the probability of
finding n electrons in Ω, Pn(Ω), becomes one, 〈NΩ〉 is equal to n, and the average number
of pairs in Ω is 〈NΩ〉(〈NΩ〉 − 1). This limit situation is known as a pure pair population.

Similarly, one can measure the degree of localization of the electrons in two different
regions Ω1 and Ω2 by determining the fluctuation in the population of the combined
region Ω = Ω1 + Ω2

Λ(Ω) = Λ(Ω1) + Λ(Ω2)− 2〈NΩ1,Ω2〉, (3.59)

where

〈NΩ1,Ω2〉 =
∫

Ω1

dr1

∫
Ω2

ρxc(r1, r2)dr2, (3.60)

and Λ(Ω1) and Λ(Ω2) are given by Equation 3.55. The quantity 2〈NΩ1,Ω2〉 is a measure
of the extent to which electrons in Ω1 are delocalised over Ω2 and viceversa and it is
known as delocalisation index δΩ1Ω2 .

If these two regions complete the space, Ω1 ∪ Ω2 = R3, one finds that

〈NΩ1,Ω1〉+ 〈NΩ2,Ω2〉+ 2〈NΩ1,Ω2〉 = N. (3.61)

Since for a closed system the number of electrons remains constant, maximising the degree
of localisation in a given region leads to a minimisation of the electron delocalisation
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between different regions. The number of pairs that can be formed between electrons in
different regions is given by

D2(Ω1,Ω2) =
∫

Ω1

dr1

∫
Ω2

ρ2(r1, r2)dr2 = 〈NΩ1〉〈NΩ2〉 − 〈NΩ1,Ω2〉. (3.62)

In the limit of pure pair population, 〈NΩ1,Ω1〉 and 〈NΩ2,Ω2〉 attain their maximal values,
〈NΩ1〉 and 〈NΩ2〉, respectively. In that case, the delocalisation index, 2〈NΩ1,Ω2〉, becomes
zero and the electrons are perfectly localised in both regions. The number of pairs formed
between the two regions, becomes from Equation 3.59 equal to the number of pairs that
can be formed with two sets of distinct objects.

If real space is partitioned into several regions, ∪mi=aΩa = R3 (m ≥ 2), the above
relations between the delocalization and localization indices may be generalized. For
instance, Eq. 3.62 becomes ∑

a

〈Naa〉+ 2
∑
a 6=b
〈Nab〉 = N, (3.63)

where the indices a, b, . . . run over all the basins. The definitions of localization and
delocalisation indices both together with Eqs 3.55 and 3.56 show how the inter and intra
correlation may be described from the exchange-correlation density, ρxc(r1, r2). Indeed,
ρxc(r1, r2) may be seen as a generator of 2-particle fluctuation in the electron distributions
[70]. All these concepts many be generalized, not only for two disjoint domains in real
space, but for any number (m ≥ 2) of regions by means of nth order cumulants [71, 72].
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Chapter 4

The NCI method
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Chapter 4. The NCI method

The electron density has a fundamental advantage over MO-based descriptors be-
cause it is an experimentally accessible scalar field and is a local function defined within
the exact-many body theory and supported by the Hohenberg-Kohn theorems [4]. The
relationship between electron density topology and physical/chemical properties can be
understood from the Hohenberg-Kohn theorem (see Chapter 1), which asserts that a
system’s ground-state properties are a consequence of its electron density. Furthermore
because chemical reactions proceed by ρ(r) redistributions, methods that analyse ρ(r)
distributions should help to understand the electron structure of molecules and thus
chemical reactivity.

Our approach, introduced in the coming sections, uses the density and its derivatives,
allowing simultaneous analysis and visualisation of a wide range of interaction types as
real space surfaces and adds an important tool to the chemist’s arsenal [73, 74, 75].

4.1 The reduced density gradient
The reduced density gradient, s(r), or RDG, is a fundamental dimensionless quantity
in DFT used to describe the deviation from a homogeneous electron distribution 1.154.
Properties of s(r) have been investigated in depth in the process of developing increasingly
accurate functionals [10, 15, 76, 77, 78].

The origin of s(r) can be traced back to the generalised gradient contribution to the
GGA exchange energy EGGAx [15]

EGGAx − ELDAx = −
∑∫

F (s)ρ4/3(r)dr, (4.1)

where F (s) is a function of s(r) for a given spin with

s(r) = 1
Cs

|~∇ρ(r)|
ρ(r)4/3 , (4.2)

Cs = 2(3π2)1/3 and the 4/3 exponent of the density ensures that s(r) is a dimension-
less quantity.

The lower bound of the reduced density gradient is zero, as occurs throughout a
homogeneous electron gas and at bond critical points.

The effect of bonding on the reduced density gradient is especially easy to visualise
when s(r) is plotted as a function of the density. Graphs of s(r) versus ρ(r) assume the
form s(r) = aρ(r)−1/3, where a is a constant. This can be easily proven from a Slater
orbital model density (STO). For a single atomic orbital ψ(r) = e−αr, the density is
ρ(r) = e−2αr and the gradient is ∇ρ(r) = −2αρ(r), such that

sSTO(r) = 1
Cs

2αρ(r)
ρ(r)4/3 = 2α

Cs
ρ(r)−1/3. (4.3)

When there is overlap between atomic orbitals, a spike in the s(r) versus ρ(r) diagram
appears. The points forming this spike identify the interaction when they are mapped
back to real space. This procedure is used to reveal non-covalent interactions, such as
hydrogen bonds, steric repulsions, van der Waals interactions, and even covalent and
ionic bondings.

To explore the features associated with a small reduced density gradient, we first
examine the plots of s(r) versus ρ(r). Additionally, plots of g(r) = τw(r)/τp(r) versus ρ(r)
are able to reveal regions of orbital overlapping [62]. In “iso-orbital regions” g(r) → 1,
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4.1. The reduced density gradient

therefore deviations from 1 characterise regions of orbital overlapping, revealing spikes in
the g(r) versus ρ(r) diagram as s(r) does. These plots were generated by evaluating the
reduced density gradient with DFT densities for methane and water dimers (Figure 4.1).
Plotting s(r) versus ρ(r), reveals the basic pattern of intramolecular and intermolecular
interactions. Methane illustrates the typical covalent pattern. The left-side points (small
density and large density gradient) corresponds to C-H covalent bonds. Covalent bonds
have their characteristic BCP, corresponding to s ≈ 0. Regions near the nuclei have
larger density values and appear beyond the right edge of the plot. Additionally g(r)
diagrams disclose the same pattern as s(r) showing spikes at the same positions, revealing
regions of high orbital overlapping. s(r) versus ρ(r) diagrams have an overall shape of
the forms aρ−1/3 because atomic and molecular densities are piecewise exponential. The
results for water are very similar. Plots of s(r) versus ρ(r) for these systems exhibit a
new feature: one or more spikes in the low-density, low-gradient region, a signature of
non-covalent interactions. This is the basis of the NCI method.
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Figure 4.1: s(r) and g(r) versus ρ(r) diagrams (a) methane (b) and methane dimer. (c)
The water dimer.
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4.1.1 Physical interpretation of s(r)
It may be straightforwardly shown that s(r) is the kernel of tbose(r) introduced in Chap-
ter 3 [52]:

s(r) =
( 3

10

)1/2 1
2(CF )1/2

|~∇ρ(r)|
ρ(r)4/3 , (4.4)

tbose(r) = τw(r)
τTF (r) =

(5
3

)
s(r)2. (4.5)

We may notice that its CPs match with those of tbose(r)

~∇tbose(r) = 10
3 s(r)~∇s(r). (4.6)

Since s(r) is positive semidefinite, at CPs the signs of their laplacians are the same

∇2tbose(r) = 10
3

(
~∇s(r) · ~∇s(r) + s(r)∇2s(r)

)
. (4.7)

At CPs |~∇tbose(rcp|) = |~∇s(rcp)| = 0, and

∇2tbose(rcp) = 5
3

(
s(rcp)∇2s(rcp)

)
. (4.8)

Thus, the critical points of s(r) and tbose(r) are identical both in location and in
nature. Because of the presence of the gradient of ρ in the numerator, and their positive
semidefinite condition, at every CP of ρ(r) both functions cancel and have a minimum.
This result may be clearly shown, if we develop the explicit expressions for ∇tbose(r).
Inserting Equation 3.35 into 4.6 one obtains

∇tbose(r) =
~X

4CF ρ(r)8/3

[
H(ρ(r))− 4

3
(~∇ρ(r))2

ρ(r) I
]
∇tρ(r), (4.9)

where ~X and ∇tρ(r) were introduced in Equation 3.34. It is worth noticing that in
contrast to s(r) (and functions of the form |~∇ρ(r)|/ρn(r) in general), tbose(r) is differ-
entiable at critical points of ρ(r). Similarly to |~∇ρ(r)|/ρn(r) we may differentiate two
different situations where ∇tbose(r) is cancelled:

1. AIM-CPs: CPs of ρ(r), for which |~∇ρ(r)| = 0.

2. Non-AIM-CPs: Points where

[
H(ρ(r))− 4

3
(~∇ρ(r))2

ρ(r) I
]

= 0. (4.10)

As pointed out above, AIM-CPs correspond to minima of tbose(r) and s(r). Non-AIM-
CPs involve that H(ρ(r)) is diagonal and its eigenvalues, λ1, λ2 and λ3, are identical and
equal to 4

3 |~∇ρ(r)|2/ρ(r). The Laplacian of the electron density may be rewritten as:

∇2ρ(r) = λ1 + λ2 + λ3 = 4 |
~∇ρ(r)|2

ρ(r) . (4.11)
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As discussed in Section 3.5 the variables in Equation 4.1.1 for the non-AIM-CPs are
also involved in the one-electron potential (OEP(r)) [56, 67]

OEP(r) = 1
4ρ(r)

[
∇2ρ(r)− 1

2
|~∇ρ(r)|2

ρ(r)

]
, (4.12)

When OEP(r) cancels, the ratio between ∇2ρ(r)/ρ(r) and (~∇ρ(r))2/ρ2(r) is equal to
1/2, whereas it is 4 when Eq 4.1.1 is satisfied. Thus, any non-AIM CPs of tbose(r) is
anticipated by a zero of OEP(r), and therefore by a transition from a classically allowed
to a forbidden region.
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Figure 4.2: tbose(r) along with ELF(r) values (solid black line) for N2(a) and F2(b).
Negative (classically allowed) and positive (classically forbidden) regions of OEP(r) are
displayed as cyan and red-colored areas respectively. Labels B and LP stand for bond
and lone pair ELF maxima, respectively.

Figure 4.2 displays tbose(r), ELF(r) along the internuclear axis for F2 and N2. The
origin was set at the BCP. The features of s(r) for N2 have already been discussed in
Section 3.5. tbose(r) differentiates the core, lone-pairs and interatomic bonding regions as
minima separated by maxima. As revealed by ELF(r) maxima, these minima correspond
to large electron pair localisation. Nuclear and bond critical points of ρ(r) are identified
as zeros of tbose(r). Conversely lone pairs are not revealed by critical points of ρ(r), but
by critical points of the Laplacian of the electron density. tbose(r) shows minima at such
positions driven by the non-AIM-CP condition (Eq 4.10), following thereby a transition
from a classically forbidden region to a classically allowed region, as may be seen in
Figure 4.2. We highlight that all CPs of tbose given by Eq 4.10 are anticipated by
roots of OEP, but the opposite is not true; not all roots of OEP are followed by Eq 4.10.
This situation may be found in N2. Even though no CP of tbose(r) is found between the
external core-maxima and the BCP, the former is localized at regions of positive OEP,
whereas the latter is found in a region of negative OEP. We may notice that the BCP for
F2 is localised at a region of positive OEP. It is well known that F2 exhibits a positive
value of the Laplacian of the electron density at the BCP, being thereby identified as a
region of electron depletion (thus called charge-shift bond). Because the signs of OEP
and ∇2ρ(r) are the same at CPs of ρ(r), the BCP for F2 is localized at a classically
forbidden region.
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The connection of s(r) with τw(r) allows to identify regions with a marked bosonic-
like character as those where s(r) attains small values and which are characterised by
peaks in the s(r) versus ρ(r) diagram.

4.2 The electron density Hessian second eigenvalue
According to the divergence theorem, the sign of the Laplacian of the density (∇2ρ(r))
indicates whether the net gradient flux is entering (∇2ρ(r) < 0) or leaving (∇2ρ(r) > 0)
an infinitesimal volume around a reference point. Hence, it highlights whether the density
is concentrated or depleted at that point, relative to the surrounding environment. To
understand bonding in more detail, it is often useful to decompose the Laplacian into the
contributions along the three particular axes of maximal variation. These components
are the three eigenvalues, λi, of the electron density Hessian matrix, H(ρ), such that

Tr(H(ρ)) = ∇2ρ = λ1 + λ2 + λ3 λ1 < λ2 < λ3. (4.13)

where λ3 is the eigenvalue associated with the eigenvector which expands along the
intermolecular axis, and λ1, λ2 represents variations in the plane perpendicular to the
λ3 eigenvector.

The sign of ∇2ρ(r) determines whether the compression (∇2ρ(r) < 0) or the ex-
pansion (∇2ρ(r) > 0) of the electron density is the dominant effect at the reference
point. Bader smartly showed that these compressions and expansions are related with
the balance between τ(r) and V(r)

V(r) = 1
4∇

2ρ(r)− 2τ(r),

= 1
4(λ1 + λ2 + λ3)− 2τ(r). (4.14)

He classified chemical interactions as closed-shell, for which ∇2ρ(r) > 0 at the BCP
and are dominated by the kinetic energy. Conversely, shared interaction implies a low-
ering of the potential energy and therefore ∇2ρ(r) < 0.

Weak interaction falls into the category of closed-shell, not being possible to differ-
entiate them using the overall sign of ∇2ρ. To this purpose it is much more convenient
to focus on its eigenvalue contributions.

At nuclei, all the eigenvalues are negative, while at the center of cages or holes (minima
of ρ) all the eigenvalues are positive. In the remaining points of space λ3 > 0, λ1 < 0, and
λ2 can be either positive or negative. In terms of τ(r) and V(r), λ3 > 0, λ1 < 0 represent
directions dominated by the kinetic and potential energies respectively, whereas along
the direction of λ2 there is a balance between both terms.

Van der Waals interactions and hydrogen bonds show negatives values of λ2 at the
BCP and can be differentiated by properties at the corresponding BCPs. Characteristic
densities of van der Waals interactions are much smaller than densities at which hydrogen
bonds appear. However, steric clashes and hydrogen bonds span similar densities ranges
and overlap in plots of s(r) versus ρ(r). In the cases where λ2 is positive (as in rings
or cages), usually several atoms interact but are not bonded, which can correspond to
steric crowding according to classical chemistry. Although there is no repulsion in an
equilibrium system since V(r) is negative everywhere, it is often found in the literature
that regions of positive λ2 are said to be repulsive, while regions of negative λ2 attractive.
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(a) Molecular structure of the 1,2-
ethanediol molecule. Noncovalent
bonding (green) occurs between the hy-
drogen and oxygen.

(b) The ρ-f eld does not capture the
noncovalent bond. The gradient f ow
∇ρ (blue arrows) uniformly covers all
atoms.

(c) The hydrogen-oxygen attraction is
captured by ∇ρ̃ . The attraction (blue
arrows) closes a molecular cycle gen-
erating a repulsion (red arrows).

(d) The noncovalent bond is given in s
by an isolated component (red surface)
highlighting the interaction site of the
oxygen and hydrogen atom.

Fig. 2. Isosurfaces and gradient behavior (colored arrows) of the electron density ρ, its derived signed electron density ρ̃, and the reduced gradient
s for the 1,2-ethanediol molecule. Oxygen (O), carbon (C), and hydrogen (H) atoms are shown as red, green, and purple spheres, respectively.
Covalent and noncovalent bonds are shown as white sticks and dashed green lines respectively.

the same molecule or in-between molecules. (dashed green line
in Fig. 2(a)).

• Van der Waals forces: These attractive forces have a purely quan-
tum mechanical nature. In particular, the constant movement of
electrons around the nucleus transforms an atom into a f uctu-
ating multipole. These temporary charges can cause attraction
between close oppositely charged atoms yielding a stable bond-
ing of weak energy. Although the force of an individual van
der Waals bond is relatively weak, the cumulative effect of mul-
tiple of them may strongly inf uence the global structure of large
molecular systems – as shown in many chemical reactions and
protein-ligand interactions.

• Steric repulsion: These repulsive forces are short range interac-
tions which occur when two atoms approach one another. Intu-
itively, they are due to the fact that too many electrons occupy
the same space (Pauli principle). This can be pictured as forces
occurring in regions of space bounded by negatively charged el-
ements, such as covalent bonds and negatively charged atoms
forming molecular cycles [23]. The localization of these interac-
tions is of major importance for chemical design tasks since they
indicate regions of space that cannot receive additional electrons.

2.2 Input Data
The input of our analysis are two scalar f elds derived from the electron
density: the signed electron density and the reduced gradient. In the
following, we provide a brief description of these two f elds. We refer
the reader to [11, 14, 16, 30] for a more detailed description.

Signed Electron Density. In quantum chemistry, electrons be-
have simultaneously as waves and particules, which only allows for
a probabilistic evaluation of their positions. The relative probability
that electrons can be found in a particular location of a space Ω is
described by the electron density ρ : Ω → R+. Density cusps are ex-
pected at the nuclei, the center of the atoms, whereas charges decrease
exponentially away from them. Thus, the nuclei dictate the overall
behavior of ρ . Weak atomic interactions are very often occluded and
cannot be directly computed or visualized. For instance, while the
ethanediol molecule admits a noncovalent bond (dashed green line,
Fig. 2(b)), this bond is not captured by the electron density ρ [35].
Investigating the f ow of ∇ρ in Fig. 2(b) reveals that the f ow enters
the molecular cycle from the outside and uniformly covers all atoms

forming the cycle. The circular structure shown in Fig. 2(a) is not cap-
tured by the f ow while it is crucial for the analysis of attractive and
repulsive interactions. A differentiation of these interactions solely
based on the density ρ is not possible, in general. To compensate
therefore, a direct investigation of the Hessian Hρ and its eigenvalues
is needed [16]. Assuming the eigenvalues λi are given in increasing
order, i.e., λ1 < λ2 < λ3, we observe the following behavior. In the
vicinity of the nuclei all eigenvalues are negative. Away from it, λ3
becomes positive and varies along the internuclear axis representing
covalent bonds. λ1 and λ2 describe the density variation orthogonal
to this internuclear axis. λ1 represents the inf uence of the nuclei, and
is always negative away from the nuclei. Contrarily, λ2 can be either
positive or negative depending on the type of interaction. While at-
tractive interactions concentrate electron charge perpendicular to the
bond (λ2 ≤0), repulsive interactions cause density depletion (λ2 ≥0).
Using this localized information, the signed electron density ρ̃ is de-
f ned as ρ̃ : Ω → R with ρ̃(x) = sign(λ2(x))ρ(x) [16]. In contrast to
ρ which only assesses the interaction strength of atoms, the signed
electron density ρ̃ additionally enables the differentiation of attracting
and repulsive interactions. Fig. 2(c) shows an isosurface of the signed
electron density for the ethanediol molecule. In contrast to the elec-
tron density, the gradient ∇ρ̃ captures nicely the attraction between the
hydrogen and oxygen (red arrows), which forms a noncovalent bond
creating a molecular cycle. This folded conformation also introduces
repulsion in the molecule captured by ∇ρ̃ (blue arrows).

While the electron density ρ is a continuous smooth scalar f eld
away from the nuclei [21], ρ̃ is discontinuous, in general. While ρ̃
is necessary to investigate attractive and repulsive interactions, this
property challenges its analysis. The theoretical setting of topological
data analysis assumes continuous functions. To conform to this, we
need to interpret ρ̃ as a result of a convolution with a mollif er [57].
However, given a mollif cation that interpolates the grid points, the
convolution does not need to be performed explicitly in the discrete
case, i.e., dealing with piecewise-linear or discrete Morse functions.

Reduced Gradient. To further reveal weak noncovalent interac-
tions, the reduced gradient s : Ω → R+ of ρ was introduced [30]

s=
1

2(3π2)1/3
|∇ρ|
ρ4/3

. (1)

The reduced density gradient s describes the deviation in atomic den-
sities due to interactions [30]. Intuitively, covalent and noncovalent

(a) (b) (c)

Figure 4.3: (a) Molecular structure of the 1,2-ethanediol. A hydrogen bond is represented
in green. Isosurfaces and gradient flows of (b) ρ(r), ~∇ρ(r) (blue) and (c) sign(λ2)ρ(r),
~∇sign(λ2)(ρ(r). Negative and positive flows are indicated with red and blue arrows,
respectively.

In what follows we will use this last convention, even though it only refers to the balance
between τ(r) and V(r) along the λ2 direction.

ρ(r) and sign of λ2 information may be added up defining the signed electron den-
sity, sign(λ2)ρ, as the product of sign(λ2) and ρ(r). Contrary to ρ(r), sign(λ2)ρ(r) is
discontinuous in general. In principle this hurdle may be solved considering sign(λ2)ρ(r)
as a result of a convolution with a mollifier [79]. Figure 4.2 depicts the gradient flow of
ρ(r) and sign(λ2)ρ(r) for 1.2-ethanediol. When analysing the hydrogen bond between
the oxygen and hydrogen atoms (Figure 4.2a) ~∇ρ(r) does not identify these interactions,
uniformly covering all atoms (Figure 4.2b). By contrast, ~∇sign(λ2)ρ(r) identified a region
of incoming flow (attraction) coming from the interacting oxygen and hydrogen atoms
(red arrows). This folded conformation also introduces a region of outflow (blue arrows)
that covers all the others atoms of the molecule.

4.3 Interpreting NCI

4.3.1 The 2D plot
Thus, the interaction type can be distinguished if the s(ρ) diagrams are modified using
sign(λ2)ρ as the ordinate. This is illustrated for the phenol dimer in Figure 4.4. This
is a hydrogen-bonded complex that also exhibits non-bonding interactions within each
benzene ring and a stacking interaction between the benzene rings. We thus have the
three main types of interactions.

Analysis of the sign of λ2 thus helps to discern the different types of weak interactions,
whereas the density itself provides information on their strength; both are combined in
the value of sign(λ2)ρ. This is illustrated in Figure 4.4 which shows a modification of
the s(r) plot, such that the ordinate is now sign(λ2)ρ. When the Hessian eigenvalues are
considered, the different nature of these interactions is made clear. The 2D NCI plots
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will then be used as inputs to construct 3D NCI plots, consisting in isosurfaces of the
reduced gradient of the density enabling the visualisation of close contacts. As shown
in Table 4.1, the benzene-ring interactions remain at positive value of λ2 with density
value 0.067 a.u., whereas the hydrogen bond now lies at negative value of λ2 with density
value 0.026 a.u. (-0.026 a.u. in terms of sign(λ2)ρ). The NCI spikes nearest zero density
correspond to weakly-attractive dispersion interactions between the phenyl ring (-0.0054
a.u. and 0.0047 a.u.). Therefore the value of the sign(λ2)ρ at the position of the peaks
in s(ρ) plots may be used as the signature of non-covalent interactions.

Figure 4.4: NCI analysis for the phenol dimer. (Top) s(r) versus ρ(r) diagram. (Bottom)
s(r) versus sign(λ2)ρ
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Peak 1 Peak 2 Peak 3 Peak 4

sign(λ2)(ρ) -0.026 -0.0054 0.0047 0.067

Table 4.1: sign(λ2)(ρ) value for each peak of the s vs sign(λ2)(ρ) for the phenol dimer.

In order to facilitate the corresponding between 2D and 3D representation, in Fig-
ure 4.5c we use the same colouring scheme on these two representations.

4.3.2 The 3D plot
The 3D spatial visualisation of the non-covalent interactions as defined above is done
using the data from the 2D plots as input to construct 3D plots composed of reduced
density gradient isosurfaces. In a nutshell, a cut-off value of s close to zero, typically
s < 0.5 is chosen in order to recover all the non-covalent interactions in the system, i.e.
all the spikes in the 2D plots. The corresponding reduced density gradient isosurfaces
give rise to closed domains in the molecular space which highlight the spatial localisation
of the interactions within the system (see Figure 4.5a). Since 3D isosurfaces are, by
definition, regions of low reduced gradient, the density is nearly constant within these.

The isovalue (or cut-off) of s(ρ) chosen for plotting the 3D isosurface determines
which features will appear in the NCI plot as well as their spatial extension. In the one
hand, all NCI spikes do not strictly achieve s = 0 so that too low a value might miss
some of the interaction of interests. In the other hand, too high a value would disclose
atomic tails of the density. The cut-off is therefore chosen from the 2D plot so that all
spikes, but only spikes, are captured to render a meaningful picture which discovers both
attractive and repulsive interactions.

At this stage, however, the types of interaction corresponding to the several isosurfaces
are not present. In order to discriminate between them, the density oriented by the sign
of λ2 is further used (as in the 2D plot). A RGB (red-green-blue) colouring scheme
is chosen to rank interactions, where red is used for destabilising interactions, blue for
stabilising interactions and green for delocalised weak interactions (see Figure 4.5b). The
purity of the blue and the red (i.e. the deepness of the color) is associated with a higher
density and therefore to a strong interaction.

In some cases, noticeable in ring closings, bicolored isosurfaces appear. They result
from stabilising features (revealed by the blue color), counterbalanced by destabilising
interactions due to steric crowding (revealed by the red color), such as ring closure.

4.3.3 Stability
Topological features of the electron density are very stable with respect to the calculation
method. The main effect of different methods on the s vs ρ diagram is a shift of spikes.
The only rule of thumb seems that the same s value should be used when comparing
various NCI plots, both in the same or in different systems, provided a single method
was employed to obtain the various electron densities. If this is not the case, different
s values are seemingly required to compare on similar grounds the s-based results for
different computed electron density (e.g. from wave function, promolecular). In other
words, a shift of cut-offs is needed to obtain comparable images. This can be related to
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: NCI analysis for the phenol dimer. (a) s(r) versus ρ diagram (b) and s(r) =
0.5 isosurface. (c) s(r) versus sign(λ2)ρ diagram (d) and s(r)=0.5 isosurface coloured
over the range -0.04(blue) < sign(λ2)ρ < 0.04(red). (e) Surface extraction based on
sign(λ2); λ2 > 0 isosurface and (f) λ < 0 isosurface.
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4.3. Interpreting NCI

Curvature relations Shape ρ(r) CP

λ1 ≈ λ2 << λ3 Planar BCP, closed-shell interaction

λ1 << λ2 ≈ λ3 Cylindrical RCP, BCP shared interaction

λ1 ≈ λ2 ≈ λ3 Spheroidal BCP shared interactions; CCP, ACP

Table 4.2: Classification of CPs of ρ(r) according to the relative magnitude of the Hessian
eigenvalues |λ1| < |λ2| < |λ3|, along with the local shape of s(r) (or LED) around the
CP.

the fact that s roughly behaves like ρ1/3 (Equation 4.3) so that the effect of the method
on the density is directly followed by s.

It emerges that a one-to-one inverse correlation seems to exist among the directionality
(and the strength) of specific non-covalent interaction and the surface/volume ratio of
the corresponding s isosurface. In particular, the stronger the interaction is, the smaller
and more disc-shaped the s surface appears in real space (and the more negative the ρ
sign(λ2) values are). LED isosurfaces display similar shapes, and it has been explained
in terms of the relative magnitudes of the curvatures of the electron density at CPs of
ρ(r). Given the close relationship between LED and the s(r) the same applies for the
latter.

In Table 4.2 the local shapes of both functions are summarised. NCIs are characterised
by λ1 ≈ λ2 << λ3 and thus are displayed as planar isosurfaces, as may be seen for
methane and water dimer. In order to differentiate between the two not only the shape
but also the size of the isosurface should be considered, as we will show latter. This
connection between the shape and the nature of the interaction relays on the stability of
topological features with the value of the surfaces.

4.3.4 Promolecular densities
Densities are stable to such an extent that their main features are already contained
in the sum of atomic densities, ρat. The resulting molecular density, also known as
promolecular density, ρpro, is then given by:

ρpro(r) =
∑
i

ρati (r), (4.15)

A promolecular density obtained from simple exponential atomic pieces is able to pre-
dict low-density, low-reduced-gradient regions qualitatively similar to density-functional
results. The free atomic densities used in these calculations consist of one Slater-type
function for each electron shell, fit to closely reproduce spherically-averaged, density
functional atomic densities.

Resultant plots of spro(r) versus ρpro(r) for these species show the same 2D features
(see Figure 4.6a and Figure 4.7a). Also, 3D isosurfaces generated from the promolecu-
lar densities are very similar to those obtained with self-consistent DFT level. For all
cases considered, results at the self-consistent and promolecular level are qualitatively
equivalent. Quantitative differences are introduced by the density relaxation that, as
expected, shift the s versus ρ spikes to more bonding regimes. Specifically, a large shift
toward smaller density values is obtained in the spikes corresponding to non-bonded
overlap, introducing less repulsion and greater stability. This is to be expected, since the
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approximate promolecular densities used to generate these isosurfaces cannot adjust to
alleviate Pauli repulsion in the manner of self- consistent DFT electron densities. How-
ever, once the shift is taken into account (by changing the density cut-off), results at
the self-consistent and promolecular level are qualitative equivalent. For example, to
generate similar isosurfaces using DFT and promolecular densities for the phenol dimer
the value of s were set at 0.5 and 0.3, respectively (see Figure 4.6 and Figures 4.7).

The match between SCF and promolecular densities is a consequence of the stepwise
exponential behaviour of the electron density and the fact that we are analysing regions
of small perturbation, which may be highlighted by the local-wave vector and any related
functions. Even though the gross topological features of ρ(r) may be recovered, this is
not the case for any operator computed from a promolecular density.

(a)

(b) (c)

Figure 4.6: Comparison between SCF and promolecular NCI results for the methane
dimer. (a) The same s(ρ) features are obtained using self-consistent (green) and pro-
molecular (red) calculations, with a shift toward negative (stabilising) regimes. Taking
the shift in spikes into account (i.e. changing the cut-off), the isosurface shapes re-
main qualitatively unaltered. (b) For SCF densities s(r)=0.6 and color scales of -0.04 <
sign(λ2)ρ) < 0.03 a.u. (c) For promolecular densities s(r)=0.5. and -0.04 < sign(λ2)ρ)
< 0.03 a.u.
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(a)

(b) (c)

Figure 4.7: Comparison between SCF and promolecular NCI results for the phenol dimer.
(a) The same s(ρ) features are obtained using self-consistent (green) and promolecular
calculations (red), with a shift toward negative (stabilising) regimes. Taking the shift in
spikes into account (i.e. changing the cut-off), the isosurface shapes remain qualitatively
unaltered. (b) For SCF densities s(r)=0.6 and color scales of -0.04 < sign(λ2)ρ) < 0.03
a.u. (c) For promolecular densities and s(r)=0.3. and -0.04 < sign(λ2)ρ) < 0.1 a.u.
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4.4 Defining NCI regions
Given that chemical interactions are identified as peaks in s(ρ) plots and the visualisation
of these peaks leads to closed isosufaces of s(r), the integration of different properties
within such isosurfaces may lead to some insight into the nature of the interactions. To
performs such integration, it is first necessary to establish a unique definition of the NCI
region (ΩNCI). Given a proper non-interacting reference system, it is possible to define
ΩNCI as the region whose points in the s(ρ) plot lie below the s(ρ) curve for the reference
system, sref (r). Mathematically, NCI regions are defined by the condition

s(r)− sref (r) < 0. (4.16)
To identify these regions, both the reference and the interacting system must be

computed and compared. The lower edge of sref (r) is splined and all points of the
interacting system s(r) lying below the splined curve are localised in real space. In
Figure 3 ΩNCI is extracted for the methane dimer along with its 3D representation.

0.0

0.5

1.0

1.5

0.010 0.020 0.030

s

ρ(a.u.)

Methane dimer
Methane

ΩNCI

(a) (b)

Figure 4.8: (a) ΩNCI for the methane dimer. (b) s(r) = 2.0 isosurface containing ΩNCI .

Density properties can be then integrated within such region to obtain its volume
(VNCI) or its electron population (NNCI)

VNCI =
∫

ΩNCI
dr, (4.17)

NNCI =
∫

ΩNCI
ρ(r)dr, (4.18)

Furthemore, attractive (att) and repulsive (rep) contributions (in the NCI method
parlance) may be defined if sign(λ2) is considered:

V repNCI =
∫

ΩNCI
dr λ2(r) < 0, (4.19)

V attNCI =
∫

ΩNCI
dr λ2(r) > 0, (4.20)
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Contreras et al. [75] defined the quantity qnbind as an indicator of the binding effects
in ΩNCI

qnbind = −
∫

ΩNCI
sign(λ2)ρn(r)dr, (4.21)

where the exponent n is a fitting parameter to mimic the hydrogen-bond binding-
energy curve.

4.5 Connection with energetics
The kinetic interpretation of s(r) enables a identification of regions of marked bosonic-
like character, and therefore, relevant for chemical interactions. Additionally, it allows
to connect s(r) with the Weizäcker kinetic energy density and with the energy density
H(r) [80]. For a system in a stationary state, H(r) is defined as

H(r) = τ(r) + V(r), (4.22)

where τ(r) is the positive definite kinetic energy density and V(r) is the local virial
field

V(r) = 1
4∇

2ρ(r)− 2τ(r). (4.23)

V(r) represents the average effective potential field felt by an electron at r, and
provides a short-range description for the potential energy density. Since V(r) is negative
everywhere [81] regions with positive H(r) are not repulsive but dominated by τ(r).
Regions where H(r) is negative are dominated by V(r). Since τp(r) = τw(r) + t(r),
Equation 4.22 may be rewritten as:

H(r) = τw(r) + tp(r) + V(r). (4.24)

Since H(r) integrates to the total electronic energy E, it is plausible to define a
local stabilising energy, ∆H(r) as the difference between H(r) and that for a system
of non-interacting reference fragments in equilibria Href (r). ∆H(r) integrates to the
stabilisation energy relative to the non-interacting fragments in equilibrium ∆E = E −
Eref

∆E = E − Eref =
∫

∆H(r)dr

∆H(r) = τw(r)− τ refw (r) + tp(r)− trefp (r) + V(r)− Vref (r)
= ∆τw(r) + ∆tp(r) + ∆V(r). (4.25)

Analysing ∆τw(r), ∆tp(r) and ∆V(r) in ΩNCI one may obtain insight into the local
energetic contributions and whether they contribute to the stabilisation by decreasing
the kinetic or potential energy terms. The structural homeomorphism between -V(r)
and ρ(r) [81] states that the increase of the electron density in the interaction regions is
followed by a decrease of V(r), so ∆V(r) is expected to be negative in ΩNCI .

As explained in section 4.4, ΩNCI is defined by the condition given by Equation 4.16.
Using the relation τw(r) = (5/3)tTF (r)s2(r), ∆τw(r) is negative in the NCI regions,

93



Chapter 4. The NCI method

and thus the balance between ∆tp(r) and ∆τw(r) + ∆V(r) will indicate whether the
stabilisation in ΩNCI is locally dominated by the kinetic or the potential energy.

The term ∆τw(r) is closely connected with the steric energy proposed by Liu [82].
Seeking for a partition of electron energy in terms of steric Es[ρ], electrostatic Ee[ρ] and
quantum effects Eq[ρ], Liu proposed a partition of electron energy where Tw =

∫
τw(r)dr

accounts for the steric energy.

E[ρ] = Es[ρ] + Ee[ρ] + Eq[ρ], (4.26)

In this context one may understand ΩNCI as those regions where the steric effects
decrease.

Ee[ρ] = Vne[ρ] + J [ρ] + Vnn[ρ],
Eq[ρ] = Exc[ρ] + Ts[ρ]− Tw[ρ]. (4.27)

From the van der Waals DFT framework, it is found that non-local van der Waals
density functionals are defined in terms on models of the static polarizability α(iu, 0)
based on s [83],

α(iu, 0) ∝ 1
k4
FF (s)4 , (4.28)

where F (s) is some function of s2. For instance in vdW-DF-09 a particular simple
choice is made F = 1 + µs2. The dispersion interaction energy between two systems A
and B can be written in terms of local polarisabilities

Edisp = −3~
π

∫ ∞
0

du

∫
A

dr
∫
B

α(r, iu), α(r′, iu)
|r− r′|6 dr′, (4.29)

where iu is an imaginary frequency, r is within the domain of system A, and r’ is
within the domain of B. Regions of lower s, contribute larger to the local polarizabilites
and therefore, to the overall dispersion energy. This result is supported by the correlation
found between the volume of such regions VNCI and Edisp [84].

A very interesting example where we can first cast from a visual approach the relative
energies is found in 4́-Methyl,-5́’ -Phenyl-[1,1’ ;2’ ,1"; 3", 1" ’,2" ’,1" ",3" ",1" " ’]-sexiphenyl
(See Figure 4.9). This system is formed by a central toluene ring with other six rings
placed in three branches, one with one ring, another one with two rings and the last one
with three rings. We have analysed the effect of rotating two dihedral angles in order
to release T-shape interactions. Rotation ϕ5 gives rise to structures 1-2 (Figure 4.9b
and 4.9c respectively ); whereas structures 3-4 (Figure 4.9d and 4.9e respectively) result
from the rotation of ϕ3. Structures 1 and 3 present a T-shape interaction, whereas it has
been respectively released in 2 and 4. A first look to Table 4.3 shows a good agreement
between relative volumes and the stability of the system, in such a way that energetic
ordering corresponds to the same ordering in NCI volumes (the more stable, the bigger
volume). Moreover, NCI enables to detect the presence of the T-shape interactions 1 and
3 that explain their greater stability over rotamers 2 and 4, respectively (see Figure 4.10
and Table 4.3). It should be noted that this kind of structural-stability information is a
necessary step in inverse design and in the rationalisation of chemistry.

This relation is not completely unexpected since the stabilisation through disper-
sion interaction is proportional to the overlap area between molecular surfaces. One may
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a)

b) c)

d) e)

Figure 4.9: a) Numbering of the conformationally relevant dihedral angles ϕ=1 to 6
in sexiphenyl, b) and c) pair of structures differing by orientation of the ϕ5 dihedral
angle (designated by blue arrow): b) structure sexiphenyl-1 , where ring “V” forms a T-
shape contact with ring “Y” and c) structure sexiphenyl-2, where the T shaped contact
is absent. d) and e) pair of structures differing by orientation of the ϕ3 dihedral angle
(designated by red arrow): d) structure sexiphenyl-3, where ring “O” forms a T-shaped
contact (red dashed line) with ring “C” and e) structure sexiphenyl-4, where the T shaped
contact is absent.
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(a) (b)

(c) (d)

Figure 4.10: NCI results for the four sexiphenyl conformers. NCI regions corresponding
to stacking and T-Shape interactions have been labelled a) structure 1, b) structure 2. c)
structure 3 and d) structure 4. s(r) = 0.5 isosurfaces coloured over the range and color
scale -0.04(blue) > sign(λ2)ρ)< 0.04 (red).
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Conformer 1 2 3 4

T-shape X × X ×

Eint 0.00 9.46 1.29 8.12

VNCI 110.54 86.60 100.87 87.74

Table 4.3: Relative energy (Eint, kJ/mol) NCI volumes (VNCI, a.u.) for the four ro-
tamers (1 to 4) of sexiphenyl at the M06-2X/6-31g(d,p) level.

conclude that dispersion interactions occur through large regions of marked bosonic char-
acter. However, this correlation only holds for systems mainly stabilised by dispersion.
Using the parameter qnbind (Equation 4.21) Contreras-García et al were able to mimic the
potential energy curve of several hydrogen-bonded complexes [75], showing that it is pos-
sible to correlate interaction energies with properties computed within regions provided
by the NCI method.

In the same line, Saleh et al analysed the correlation between the stabilisation energy
and the energy density computed in regions with s(r) lower than a given constant cut-
off δ (s(r) < δ) [85]. They analysed the correlation of H(r), V(r) and τ(r) in such regions
with the stabilisation energies, and they found that τ(r) presents the best fitting.
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In this chapter we describe the algorithms implemented in our principal code for per-
forming NCI calculations: NCIPLOT. The first version of the code was realised in 2010
and developed by Julia Contreras-García, Erin R. Johnson, S. Keinan and W. Yang. This
first code was mainly focussed on the visualisation of NCI regions, as extracted from the
s vs ρ diagrams, as shown in Chapter 4. The recruit of Alberto Otero-de-la-Roza to the
NCIPLOT project lead to a parallelised version of the code, NCIPLOT3. Moreover it
added some new keywords to the original code. In order to compute properties within
NCI regions as shown in Chapter 4, we developed a new version of NCIPLOT3. For the
sake of simplicity we divide this chapter in three parts: i) algorithm for visualising NCI
regions, ii) algorithm for computing properties within NCI regions, iii) we perform sev-
eral benchmark calculations to outline the possibilities and limitations of the algorithms
hereby presented.

5.1 Algorithm for visualising NCI regions
Figure 5.1 shows the protocol for visualising non-covalent interaction in NCIPLOT, and
it is used in all versions of the code. Two basic types of data constitute the input: the
density information (based on wave functions or molecular geometries) and the analysis
options, which determine the non-covalent interactions to be plotted. Four algorithms
analyse the data: i) the selection of interactions (through the input), ii) the construction
of the cube and the grid, iii) the calculation of properties at each point (using a number
of routines), and iv) the calculation of visualisation data (carried by the main routine,
NCIPLOT). Since the input is keyword oriented, the program includes a number of
parsing routines. These main features are discussed in the following sections.

5.1.1 Building the cube
Interaction analysis is based on examination of local properties on a cubic grid con-
structed within the program. This procedure was found to be extremely efficient for
computing stable properties (as is the case of NCI). Furthermore, this approach enable
us to discard contributions from high-density points in the construction of isosurfaces.
The spatial region to be analysed is determined by default, in terms of the molecular
geometry. Unless otherwise noted, a cube is constructed for the outermost x,y,z coor-
dinates for all the molecules in the input. An extra radial threshold in each directions
is added to ensure that the isosurfaces are contained within the cube (no intermolecular
interactions are expected in those regions, but isosurfaces can spread beyond the atoms.
A practical threshold was defined as 2 Å:

xi(0) = min[xi]− 2Å (5.1)
xi(1) = max[xi] + 2Å, (5.2)

where xi = x, y, z. This step eliminates spurious symmetry-related cancellations in
case of planar systems.

It can be useful to construct a user-defined cube or to analyse the interaction only
around one point or molecule. With this purpose in mind, two possibilities when choosing
a given interaction from its location in 3D space have been implemented:

• An appropriate choice of the cube boundaries enables the selection of individual
interactions (CUBE keyword). The cube boundaries may be defined by cartesian
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5.1. Algorithm for visualising NCI regions

NCIPLOT

Build cube
and grid

Build molec-
ular ρ and s

Build pro-
molecular
ρ and s

If LIGAND
or INTER:
Atomic
densities

If ρ and s
< cut-offs

Write output

Choosing the interaction

Building the cube

Properties

Visualisation

Figure 5.1: Flowchart for program routines for non-covalent interactions visualisation in
NCIPLOT. The flow is divided into four main algorithmic parts: input, cube construc-
tion, properties, and visualisation
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coordinates or by choosing a list of atoms (ATCUBE and LIGAND keywords) (See
Figure 5.2c). This selection by atoms was found to be chemically more useful and
intuitive than the initial CUBE keyword, so it is a simple but very useful addition
to the code.

• An alternative implementation for the geometric criterion consists on defining the
center of the cube instead of its boundaries (RADIUS keywords). This option used
the origin and length of the box sides as input rather that the Cartesian coordinates
themselves.

5.1.2 Pure intermolecular interactions
All of the interactions with at least, a specified fraction (e.g., f = 0.9) of the density
from a single molecule are turned off:

ρmonomer
ρtot

=
{
≥ f intramolecular
< f intermolecular

This choice causes only intermolecular interactions to be plotted, screening out the
intermolecular interactions. This is readily automated if each monomer is uploaded
in different files. This procedure enabless the characterisation of monomers and the
construction of ρmonomer.

5.1.3 Promolecular densities
The features of promolecular densities have been already discussed in Section 4.3.4 of
Chapter 4. In NCIPLOT, promolecular densities are constructed from the atomic posi-
tions stored in an xyz coordinate file(s). In order to store atomic densities, two sets of
promolecular densities can be used; exponential or radial fits. The former are generated
by fully numerically LSDA free-atomic densities for the neutral atom H to Ar, spherically
averaged over space and summed over spins. Because atomic densities are piece-wise ex-
ponentially decaying for each shell of electrons, they were then fit to one (H,He), two
(Li-Ne), or three (Na-Ar) Slater-type functions of the form ρat =

∑
j cje

−r/ζj . Once
these densities are written as simple sums of exponential functions, the NCI surfaces
can be calculated very efficiently for each (supra)molecule, since all of the necessary
data (ρ, sλ2) can be obtained analytically. Radial fits were added to the NCIPLOT3 are
available up to Pu.

5.1.4 Visualisation: The cut-offs
The ρ, s coordinated of the density peaks define the appropriate cut-offs for non-covalent
interactions. For example, in the formic acid dimer a cut-off of ρ < 0.05 a.u. is appro-
priate for recovering all the non-covalent interactions. All points giving rise to ρ values
above this threshold need to have their s values set to a large value. This enables the
user to recover only the non-covalent interactions when s ≤ S (for some isosurface value
S). Tuning the cut-off value, the non-covalent interactions of the system may be recov-
ered as individual isosurfaces. The formic acid dimer peaks appear at ρ = 0.01 a.u. for
vdW contacts, and ρ = 0.05 a.u. for hydrogen bonds. If the cut-off is set to ρ = 0.01
a.u. the isosurface will only recover the vdW interactions in the system (Figure 5.2b).
Furthermore, placing a threshold for the interval ρ = [0.01− 0.06] a.u. enables the user
to isolate the hydrogen bonds in a similar manner.
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It is convenient, therefore, to perform a preliminary run, where only s(ρ) values are
produced, and the user can use these data to determine optimal cut-offs. A second
run can subsequently target the non-covalent interactions in a given molecule with no
interference from other density regions. For this reason, the current implementation
enables the user to decide which file types are to be output.

(a)

(b) (c)

Figure 5.2: NCI analysis of formic acid dimer. (a) s(ρ) plot for CCSD/6-311G density.
Peaks appear at 0.05 for vdW (green) and 0.008 a.u. for hydrogen bonds (blue). Iso-
surface extraction with the ATCUBE keyword: (b) Hydrogen bonds may be selected by
setting the cube boundaries around the hydrogen and oxygen atoms, (c) vdW interac-
tions may be recovered by setting a thin cube boundaries around the carbon atoms. The
NCI color scale is -0.05 < sign(λ2)ρ < 0.05 a.u.

5.2 Computing properties within NCI regions
Quantitative calculations have been added to the code. As shown in Section 4.4 of
Chapter 4, the NCI regions (ΩNCI) may be directly defined from the s vs ρ diagram, as
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the domain(s) in R3 with ρ and s values lying in the s(ρ) peak. To identify this region,
both the reference and the interest system densities and reduced density gradients must
be computed and compared. The lowest edge of the reference sref (ρ) curve is splined. A
point ri is said to belong to ΩNCI if it satisfies the following three conditions;

ri ∈ ΩNCI


s(ri) < sref (ri)
s(ri) < scut−off

ρ(ri) < ρcut−off ,

where sref (ri) is the reference value of s at ri, and scut−off and ρcut−off are the
reduced density gradient and the density cut-offs respectively.

Density properties can be then integrated within ΩNCI , as defined in Equations 4.4-
4.21. Although in principle any integration method is valid, the current version of the
code performs a mere sum over volume elements contained in ΩNCI

ANCI =
∑

i∈ΩNCI

A(ri)∆xi∆yi∆zi, (5.3)

where A(ri) is the value of the property A at ri and ∆x,∆y and ∆z stand for the
increments along the x, y and z direction. Their product ∆xi∆yi∆zi defines a volume
element around ri. For visualisation purposes, the property values are set to very big
values for such points not belonging to ΩNCI . The simplest property one can compute
is the volume of the NCI region VNCI which is given by the sum of all the elements
∆xi∆yi∆zi contained in ΩNCI . Besides s and ρ which should be computed in all points
of the grid in order to define the NCI regions, all the other properties are only computed
in those points belonging to ΩNCI .

5.2.1 Selecting sref

We have implemented two possible choices of the NCI regions; i) selecting only one of
the constituent fragments of the system (See Figure 5.3), ii) fixing an upper cut-off for s.
The former has more physical grounds, and is therefore highly recommended. The latter
gains importance when monomer (or fragments in general) structures are not available
or not defined, e.g. intramolecular interactions. Its validity has only been “confirmed”
ad hoc by comparison with interaction energies [85].

5.3 Benchmark
One of the most striking and controversial points of the NCI method is the match between
the results obtained with promolecular and self-consistent densities. As discussed in
Section 4.3.4 of Chapter 4, this result may be traced back to the stepwise exponential
behaviour of the electron density. This raises a theoretical issues: “What it the influence
of the method and the basis set on the NCI index? How trustworthy are promolecular
results?”. To explore the dependence of the NCI method with the quality of the electron
density, we have performed a number of benchmark calculations.
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NCIPLOT

Build cube
and grid

Build molec-
ular ρ and s

Build pro-
molecular
ρ and s

If LIGAND
or INTER:
Atomic
densities

If integraton

Build molec-
ular ρ and s
for references

Build pro-
molecular
ρ and s for
references

Spline s(ρ)
curve: sref

If s(ρ) < sref :
Build ΩNCI

Compute
properties
in ΩNCI

If ρ and s
< cut-offs

Write output

Figure 5.3: Flowchart for program routines for non-covalent interactions visualisation
and integration in NCIPLOT.
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(a) (b)

(c) (d)

Figure 5.4: 2D ((a), (b)) and 3D ((c),(d)) NCI plots of water ((a), (c)) and methane
((b), (d)) dimers (computed at CCSD/6-311G level of theory):The s = 0.5 isosurfaces
are coloured on a blue-green-red according to the sign(λ2)ρ value over the range -0.03 to
0.03 a.u.
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(a) (b)

(c) (d)

Figure 5.5: 2D ((a), (b)) and 3D ((c),(d)) NCI plots of formic acid dimer ((a), (c)) and
bicyclootene ((b), (d)) dimers (computed at CCSD/6-311G level of theory):The s = 0.5
isosurfaces are coloured on a blue-green-red according to the sign(λ2)ρ value over the
range -0.03 to 0.03 a.u.
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(a)

(b)

Figure 5.6: 2D (a) and 3D (b) NCI plots of ethanediol (computed at CCSD/6-311G
level of theory):The s = 0.5 isosurfaces are coloured on a blue-green-red according to the
sign(λ2)ρ value over the range -0.03 to 0.03 a.u.
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5.3.1 Computational details
All the geometries were taken from the S22 set and not reoptimised. Wave functions were
obtained with the Gaussian09 package. In order to compare the results from different
SCF methods, we have included in our study Hartree-Fock(HF), post-HF methods (MP2,
CISD, CCSD) and density functional approaches.

Second-order Möller-Plesset perturbation theory (MP2) is the most affordable wave
function-based method beyond the HF approximation that provides an approximate de-
scription of all relevant vdW interactions, electrostatics, induction and dispersion. Fur-
thermore, MP2 is free from spurious electron self-interaction, which leads to noticeable
improvements for hydrogen bond description. However, one of the serious shortcomings
of MP2 theory is a noticeable overestimation of the dispersion interaction energy. As a
reference, we have included the quantum chemistry gold standard: coupled cluster theory
with single and double excitations. Perturbative triple excitation have not been included
since they do not affect the underlying electron density and the output of wfn files is not
yet implemented in Gaussian. CISD has been included for completeness.

Since nowadays calculation of big systems, where NCIs are extremely relevant, are
usally performed with density functional theory (DFT) methods, we have also included
two of the most common functionals: B3LYP and B97D. B3LYP is by far the most
popular density functional in chemistry, but there is growing evidence showing that
B3LYP degrades as the systems becomes larger and fails to bind vand der Waals systems.
Last years have been marked by an intense research of new DFT variants accounting for
dispersive effects. From the comparative benchmark studies emerges that the M06-2X,
w-B97X-D, and B97-D functionals significantly outdo B3LYP in estimating interaction
energies in π-complexes. Since these studies are done at fixed geometry, a posteriori
corrections become a fair test for the results. Pople basis sets have been used to test
the dependence with the basis, including separately polarisation and diffusse functions
to independently analyse their effect.

NCI isosurfaces were obtained using grids of 0.1 Å along each axis. Electron densities
at the AIM critical points were obtained with promolden. Non-AIM critical points were
obtained from 2D graphs with increments of 0.05 bohr along each axis. For the sake
of simplicity we shall refer to both AIM and Non-AIM critical points as Interaction
Critical Point (ICPs). As aforementioned, volume and electron density integrations, are
performed using pseudo-densities (approximated monomer densities from the dimer wave
functions) for each of the monomers and performing a cubic spline interpolation of the
resulting s(ρ) curve. We used the following default value: grids of 0.09 bohr along each
axis, and threshold of 0.05 a.u. and 0.5 in the density and s, respectively.

5.3.2 The effects of the method
In order to understand the effect of the method we will analyse a set of representative
molecular systems:

• a hydrogen bond (water dimer), a dispersive interaction (CH4 dimer) and a repul-
sive clash (bicyclo[2.2.2], from now on, bicyclooctene) showing critical points of the
electron density.

• formic acid dimer as an example of mixed interactions of different strength (hydro-
gen bonds and dispersion).

• ethanediol where the hydrogen bond does not have an associated AIM critical point.
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A stand-alone section is included on the analysis of promolecular (non-relaxed den-
sities) at the end of the chapter Since the main objectif of this section is to analyse the
effects of the method on NCI results, we will use fixed geometries in all cases.

Figures 5.4-5.6 collect the 2D and 3D NCI diagrams of the selected molecules. The
hydrogen bond in water dimer shows a negative value of λ2 at the critical point (Fig-
ures. 5.4a,c), whereas λ2 ≈ 0 (either positive or negative) for van der Waals interaction
in methane dimer (Figures. 5.4b,d). Non-bonding interactions in bicyclooctene result in
density depletion, so that λ2 > 0 (Figures. 5.5b, d). It can be observed that both hydro-
gen bonds and steric clashes appear at greater densities (although different λ2 sign) that
van der Waals (see Figures. 5.5a-c and Table 5.1). Both strong and weak interactions
are present in formic acid dimer (Figs. 5.5a, c). The case of non-AIM-CPs is illustrated
with ethanediol (Figs. 5.6a-b). As highlighted in the previous section, it corresponds
to a very weak interaction where both positive and negative eigenvalues of the electron
density Hessian matrix are present in the absence of AIM critical points.

SCF method

Table 5.1 collects the electron density at the ICP for our test systems. Except for HF,
the influence of the electronic structure method is rather small. In general, peaks at
the HF level appear at smaller densities. This is due to the localising effect of HF.
Hartree-Fock densities localise the electrons within molecular units, so that the electron
density at ICP diminishes in all the interaction types. Inclusion of correlation, either
directly (MP2, CISD) or by parametrisation (functionals re-establish values similar to
the CCSDD reference. It is interesting to note how the method failures are translated
into the electron density. MP2 leads to overbinding, with slightly overestimation of
densities at the ICP, specially (as noted in the literature) in dispersion interactions. As
far as DFT calculations are concerned, they have an effect contrary to that of HF, since
functionals tend to delocalise. Thus, the electron density at the ICP is always larger
than for CCSD in attractive interactions. The effect however is not as well behaved due
to the parametrisations. B97D seems to specially overbind the strong hydrogen bonds,
whereas it behaves better in methane dimer (but not in formic acid dimer). The case
of bicyclooctene is interesting: both functionals find smaller densities at the ICP than
CCSD, which seems to indicate that they underestimate steric repulsion probably due
to self-interaction errors.

It is interesting to note that the calculations have been carried out at the S22 fixed
geometry, so that the over(under)binding is not translated into the geometry, but only
into the electron density. These effects are small and do not yield qualitative (not even
quantitative) differences in the NCI picture of the systems. Two main conclusions can
be extracted.

On the one hand, global quantities are more affected by the method (see Table 5.2),
but the qualitative behaviour remains. This is related to the stability of NCI results,
and backs up the fact that NCI can be applied in spite of the method used of evaluating
the density. Even non-dispersive methods, such as HF or B3LYP give global result that
qualitatively agree with CCSD calculations. Changes in the global quantities confirm that
NCI does change with the calculation method, but the changes are not very important
(even for the volume) and conserve the trends, as long as the geometry is fixed.

On the other hand, the same behaviour in ICPs and NCI volumes is observed in all
cases. This is a very interesting observation since the calculation of electron densities at
the ICP is much faster than the integration of volumes, so the former can be directly
taken as an indicator of the quantitative deviations that should be expected. As observed
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Method H2O dimer CH4 dimer Bicyclooctenea Formic acid dimer Ethanediolb

CCSD 0.027328 0.0025130 0.023781 0.049234 0.0081382 0.014290†

HF 0.025641 0.0023633 0.023113 0.046651 0.0072130 0.013501†

MP2 0.027456 0.0025443 0.024157 0.049405 0.0084400 0.014479†

CISD 0.027025 0.0024832 0.023535 0.048359 0.0077967 0.014072†

B3LYP 0.027572 0.0025944 0.023394 0.049895 0.0082705 0.014206†

B97D 0.027872 0.0025270 0.023435 0.050661 0.0083902 0.014206†

Table 5.1: Method dependency of the ICP electron density for test molecules: water
dimer, methane dimer, bicyclooctene, formic acid dimer (HB in first column, vdW in the
second) and ethanediol.a All calculations with 6-311G basis set. b Due to their similarty
(Ref [86]) only attractive points is shown in ethanediol. † Approximated value obtained
from 2D plot due to the absence of AIM critical point.

Method H2O dimer CH4 dimer Bicyclooctenea Formic acid dimer Ethanediol

CCSD 0.24 0.86 1.55 0.80 0.36

HF 0.21 0.79 1.33 0.69 0.28

MP2 0.25 0.88 1.64 0.84 0.38

CISD 0.24 0.85 1.48 0.76 0.33

B3LYP 0.25 0.90 1.50 0.82 0.37

B97D 0.25 0.88 1.48 0.81 0.37

Table 5.2: Method dependency of the NCI volume (pseudomolecules as reference) for test
molecules at the 6-311G level: water dimer, methane dimer, bicyclooctene, formic acid
dimer and ethanediol. a Grid increments of 0.09 bohr along each axis and a threshold of
0.05 a.u. and 0.5 in the density and s, respectively, were used in the integrations.
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in Chapter 4, volumes confirm that the same s value should be used when densities have
been calculated with the same method and shifted otherwise.

No relaxation: promolecular densities

Promolecular densities lack the relaxation introduced in a SCF Hartree-Fock or DFT
calculation; but are very fast to compute. Thus, qualitative NCI analysis is applicable to
large systems, including biosystems, where the description of the interplay of structure
and reactivity is crucial. Because the calculation of the electron density in these subsys-
tems becomes extremely computationally expensive, the promolecular density becomes
an attractive option.

Of course, it is important in these cases to understand how to use of promolecular
densities affects the NCI calculation. When relaxed densities are compared to promolec-
ular ones, a shift in the peak is observed, with the promolecular approximation yielding
bigger values in all cases (Table 5.3). The largest shift is observed in the non-bonded
overlap cases, whereas it is moderate in the case of stabilising interactions. This can
be understood as the process of relaxing densities at a fixed geometry: steric clashes
play the major role, which affects the whole interacting region, and to a smaller extent
the stabilising ones. As an example, the electron density at the peak in bicyclooctene
changes from 0.053 to 0.023 a.u. upon convergence, whereas it only changes from 0.023
to 0.027 a.u. and from 0.018 to 0.014 a.u. in water dimer and ethanediol, respectively.
Non-bonded dispersive interactions also show big relative changes (e.g. from 0.006 to
0.002 a.u. in methane dimer), but since these densities are smaller in absolute value,
the absolute difference stays negligible from a visual point of view. This same pattern
is reproduced when the interaction pattern becomes more complicated, as is the case of
formic acid dimer.

Since in the promolecular case, the changes are not negligible, cut-off values need
to be changed if we want to obtain similar pictures to SCF ones: the electron density
cut-off needs to be bigger and the s isovalue smaller. The isosurface value need to be
diminished because reduced densities are contracted around the ICPs upon relaxation.
This is reflected in Figure 5.7-5.9 for all interaction types. As already observed in the
analysis of ICPs, the greatest change is observed in steric clashes, where the repulsive
region is greatly reduced upon convergence.

In the same line, all volumes are bigger in the promolecular approximation (Table 5.4).
Indeed, values start to look of the same order when s = 0.4 in the promolecular calculation
(except in bicyclooctene), whereas s = 0.5 is used in the SCF ones. As a guiding line,
the default values for visualisation in the NCIPLOT code go from ρ = 0.05 a.u. and
s = 0.5 in SCF calculations to ρ = 0.07 a.u. and s = 0.3 in the promolecular case.

5.3.3 The basis set
Table 5.5 shows the variation of the electron density with the basis set on going from
double to triple zeta, and on adding diffuse and polarisation functions. CCSD has been
used in all cases. Linear dependency problems were found with the convergence for
Dunning basis sets (and also for 6-311G∗∗ calculations of bicyclooctene), so we have
restricted ourselves to Pople basis set as a proof of principle of basis set dependency. It
has been observed in the study of benzene dimers with Dunning basis sets, the influence
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Method H2O dimer CH4 dimer Bicyclooctenea Formic acid dimer Ethanediolb

CCSD(6-31G) 0.027328 0.0025130 0.023781 0.049234 0.0081382 0.014290

Promolecular 0.029861† 0.0063881† 0.053456† 0.051855† 0.0013996† 0.018327†

Table 5.3: Variation from promolecular to CCSD in the ICP electron density for test
molecules: water dimer, methane dimer, bicyclooctene, formic acid dimer (HF in first
column, vdW in the second) and ethanediol. a Approximated values obtained from 2D
plot with 0.05 a.u. grids except for ethanediol, where a 0.01 grid along each axis was
used to increase accuracy due to the planarity of the electron density. b Due to their
similarity, only attractive ICS is shown in ethanediol (Ref [86]). † Approximated value
obtained from 2D plot.

(a) (b)

(c) (d)

Figure 5.7: Comparison of NCI CCSD/6-311G and promolecular for test molecules.
CCSD and promolecular integrated volumes are displayed as solid and transparent iso-
surfaces respectively: (a, c) water dimer and (b, d) methane dimers
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(a) (b)

(c) (d)

Figure 5.8: Comparison of NCI CCSD/6-311G and promolecular for test molecules.
CCSD and promolecular integrated volumes are displayed as solid and transparent iso-
surfaces respectively: (a, c) formic acid dimer and (b, d) bicyclooctene.

Method H2O dimer CH4 dimer Bicyclooctenea,c Formic acid dimer Ethanediol

CCSDb 0.24 0.86 1.55 0.80 0.36

Promolecular s = 0.5 0.63 17.28 9.17 2.22 1.53

Promolecular s = 0.4 0.30 8.05 3.28 0.98 0.22

Table 5.4: Variation of the NCI volume between CCSD(pseudo-densities of monomers
are used as reference) and the promolecular approach for test molecules at the 6-311G
level: water dimer, methane dimer, bicyclooctene, formic acid dimer and ethanediol. Two
different thresholds for s where used in the integrations of the volume for promolecular
densities: 0.5 and 0.4. a Grid increments of 0.09 bohr, ρ <0.05 a.u. b A threshold of 0.5
in s was used in the integrations for the CCSD volumes. c s < 0.6 in bicyclooctene due
to the big shift in the peaks.
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(a)

(b)

Figure 5.9: Comparison of NCI CCSD/6-311G and promolecular for test molecules.
CCSD and promolecular integrated volumes are displayed as solid and transparent iso-
surfaces respectively for ethanediol.
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Method H2O dimer CH4 dimer Bicyclooctenea Formic acid dimer Ethanediolb

6-31G 0.28449 0.0025736 0.023113 0.049204 0.0075955 0.014496

6-311G 0.027328 0.0025130 0.023781 0.049234 0.0081382 0.014290

6-311G∗∗ 0.023977 0.0023279 † 0.046353 0.0074230 0.014234

6-311G++ 0.026571 0.0025064 0.024020 0.049072 0.0083187 0.001403

Table 5.5: Basis set dependence of the ICP electron density for test molecules :water
dimer, methane dimer, bicyclooctene, formic acid dimer (HF in first column, vdW in the
second) and ethanediol. a All calculations at the CCSD level. b Due to their similarity,
only attractive point is shown in ethanediol. † The calculation did not converge due
to nearly linear dependency. ‡ Approximated value obtained from 2D plot due to the
absence of AIM critical point.

of adding diffuse functions was negligible, since an almost identical distribution of low-
gradient spikes was obtained for the aug-cc-VTZ and cc-VTZ basis sets.

As in the previous section, we have focused on electron densities at the ICP and
NCI volumes to quantify changes. It is important to separate attractive and repulsive
interactions here, and to make a joint analysis of ICP densities and NCI volumes. As a
general trend, in attractive interactions, the increase of the basis set leads to a diminu-
tion of the electron density at the ICP. This is clearly observed in water and methane
dimers. In both cases, polarisation functions have the greatest effect. This can probably
be attributed to the match between the method and the base: since CCSD allows for
correlation to take place, the use of higher order angular momenta functions is favoured.
It also highlights the relevance of a well balancing method and basis set. Correlation
diminishes bond order in general and reduces the electron density at the critical points,
but has different effects on the total NCI volume.

A localised interaction, such as the one in the water dimers leads to smaller NCI
volumes along with the diminution of ICP density. However, the effect in methane dimer
volume is the opposite. Due to the nature of dispersion, the main effect of the basis set
in methane dimer is a delocalisation of the electron density, an increase in its planarity,
leading to bigger NCI volumes. So the bigger basis variability reduced the density at
the ICP and increases the NCI volume in vdW interactions. A similar effect is observed
in ethanediol, although in this case the biggest effect is by inclusion of diffuse functions.
Since these two effects are opposite, they are more difficult to analyse when interactions
are mixed in the same system, as in the formic acid dimer example. However, the bigger
NCI volumes due to an electronic delocalisation in the interaction region remain. Finally,
repulsive interactions like the one in bicyclooectene yield both and increase in density
and volume as the basis set increased.

All in all, this highlights the need for a compensated basis set, which can have an
important role in providing the variability necessary for electronic delocalisation. How-
ever, this is only relevant for a quantitative description, and does not yield important
qualitative differences in the NCI picture.
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Baiss H2O dimer CH4 dimer Bicyclooctenea Formic acid dimer Ethanediol

6-31G 0.28 0.83 1.28 0.77 0.32

6-311G 0.25 0.90 1.50 0.82 0.36

6-311G∗∗ 0.24 0.97 1.43 † 0.32

6-311G++ 0.24 0.85 1.57 0.84 0.38

Table 5.6: Basis set dependency of the NCI volume (pseudo-densities of monomers are
used as reference) for test molecules at the CCSD level: water dimer, methane dimer,
bicyclooctene, formic acid dimer and ethanediol.a All calculations at the CCSD level.
Grid increments of 0.09 bohr along each axis and a threshold of 0.05 a.u. and 0.5 in
the density and s, respectively, were used in the integrations.† The calculation did not
converge due to nearly linear dependency.
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Chapter 6. Bonding analysis by means of the NCI method I: Covalent and ionic interactions

In Chapter 4 we have presented an interpretation of the reduced density gradient in
terms of the von Weiszäcker kinetic energy and how this term may be understood as an
indicator of regions where the bosonic character is more important. Moreover this link
connects the reduced density gradient with other bonding descriptors already introduced
in the literature such as the local-wave vector, the electron localisation function or the
localised orbitals locator. Although a quick look at the shape of the reduced density
gradient should be enough for differentiating between interaction types, the mapping
of another scalar field over a given s isosurface may help to characterise interactions.
This practice is quite common in the chemistry community. For instance, the mapping
of the molecular electrostatic potential over a electron density isosurface is widely used
for analysing non-covalent interactions. In the same spirit, the NCI method maps the
product of the sign of second eigenvalue of the electron density Hessian matrix and the
electron density on a given reduced density gradient isosurface. In a nutshell, the reduced
density gradient isosurfaces grow from the minima of such function, which identifies core,
and interaction regions, then these regions are characterised by the shape of the isosurface
along with the mapping of sign(λ2)ρ(r).

It is well known that interaction strength grows with the electron density values in the
interaction region, so sign(λ2)ρ(r) differentiates interaction types by their relative elec-
tron density values on the reduced density gradient isosurfaces. The sign of λ2 provides
information on the flux of the electron density along the ~e2 eigenvector of the electron
density Hessian. When passing from a bond critical point to a ring critical points ((3,-1)
and (3, 1) critical points of the electron density respectively) only λ2 changes its sign.
The former are usually related to favoured exchange channels, the latter appear in re-
gions where many atoms interact and have been classically identified with steric clashes.
Independently of the local potential energy contribution, regions of positive and negative
λ2 values have been characterised as attractive and repulsive, respectively.

In this chapter we will apply the NCI method to the analysis of bonding in small
molecules. We have selected a small set of diatomic molecules which involve from cova-
lent to ionic interaction passing through the more challenging charge-shift bonding. After
describing the computational information, we will characterise the bonding in these sys-
tems only by the bare reduced density gradient in Section 6.2. In Section 6.3 we will
complement the previous analysis by adding information of sign(λ2)ρ, that is, by the
NCI method.

6.1 Computational details

The electron density and the reduced density gradient have been computed for several
chemically representative systems in their ground states: H2, O2, F2, CO, FCl, FBr, HF,
LiH, NaF, NaCl and KCl. The wave functions were calculated at the restricted B3LYP
level with the aug-cc-pVTZ basis as implemented in the GAUSSIAN 09 package [87].
To explore the topography of the reduced density gradient along with other functions
related to any of the forms of the kinetic energy density we have developed our own code
CHECKIN. Whereas the later code is used for exploratory works, a modified version
of NCIPLOT3 is used for performing NCI calculations Scalar field visualization was
performed with ParaView version 4.3.1. [88] and VMD version 1.9.1 [89]
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6.2. Chemical bonding by means of the s(r) topography

6.2 Chemical bonding by means of the s(r) topogra-
phy

Figure 6.1 shows the color-coded map of s(r), where blue color corresponds to s(r) = 0,
and red color to s(r) ≥ 1. As shown in Figure 6.1a the hydrogen molecule is characterised
by a bonding region that expands from one hydrogen nucleus to the other. Core and
bonding regions are barely separated by s(r) maxima in the hydrogen molecule. Contrary
to N2, O2 and F2 which are characterised by a narrowing of the bonding region along the
interatomic axis and an expansion along the perpendicular direction (see Figures 6.1c
and 6.1d). Along with this compression in the interatomic direction, s(r) minima appear
between the core-valence maxima and the BCP (see Figures 6.2c and 6.2d). Atomic shell
structure for group II atoms is depicted by only one maximum, therefore this additional
region of bosonic behaviour may be attributed to the charge-shift character of O2 and
F2 [90].

Turning to polar bonds the symmetry of the bonding region is broken by a shift of
the BCP. Additionally, the core region of the less electronegative atom occupies larger
areas as may be seen in Figure 6.2. For CO (Figures 6.1e and 6.2e), the carbon
core region is larger than that of the oxygen atom, and is strongly compressed along
the internuclear direction. This results in an effect of the additional minima between
the BCP and the oxygen core-valence maxima; the Pauli repulsion between electrons
localised in that region and the bonding electron pair is strong enough to push the latter
against the carbon atom.

For FCl (Figures 6.1f and 6.2f) and FBr (Figures 6.1g and 6.3a) the compression
around the core regions comes from a perpendicular direction to the internuclear axis.
Comparing CO, FCl and FBr, one may notice that there is a narrowing of the bonding
region, which correlates with their increasing charge-shift nature. This effect is boosted
in ionic interactions. Figures 6.1h and 6.3b, and 6.1i and 6.3c show the bonding pattern
of HF and LiH, respectively. They are completely different to precedent plots. The
hydrogen cation and the bonding region for HF are completely merged with the fluorine
anion valence. For LiF the bonding region and the hydride anion are embedded in
a large flat region. By contrast, the lithium cation is so strongly polarized that it is
completely surrounded by a region of s(r) > 1. The bonding pattern for NaF, reflects
what is expected for an ionic interaction, two disconnected ions with a thin interacting
region. As soon as the hardness of the anion decrees, its valence starts to merge with the
interacting regions resulting in a picture akin to that found for LiH, as it is also found
for NaCl and KCl.

6.3 Bonding analysis by means of the NCI method
In the following section we will apply the NCI method to analyse the diatomic molecules
in Figures 6.4, 6.5 and 6.6. Following the prescription of Chapters 4 and 5, we use a
red-green-blue color scale ranging from sign(λ2) -0.5 a.u. to 0.5 a.u. This range allows us
to compare on equal footing all the chemical interactions herein presented. The selection
of the s(r) depends on what regions one wants to visualise. Extracting core, lone-pairs
and bonding regions as separated connected components requires a fine tuning of the
values of s(r), and it is very system dependent. For all these reasons we prefer to set the
value of s(r) to 0.5 and only pinpoint the distribution of sign(λ2)ρ(r) on these s(r)=0.5
isosurfaces.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.1: s(r) contours for (a) H2, (b) N2, (c) O2, (d) F2, (e) CO, (f) FCl, (g) FBr, (h)
HF, (i) LiH, (j) NaF, (k) NaCl and (l) KCl. Atoms in the same order as in the notation
on the top-left corner.

Let us start with the homoatomic systems: H2, N2, O2 and F2. s(r) versus sign(λ2)ρ(r)
diagrams (see Figure 6.4) display three peaks, two in the negative part corresponding
to the nuclear positions and the BCP, and another one in the positive (repulsive) part.
The nuclear peaks are often out of our sign(λ2)ρ(r) range, it can only be seen for H2
(Figure 6.4a)is showed since it appears at almost the same density as the BCP. When
displayed over the s(r) isosurfaces, the negative regions cover almost all the isosurface,
except for a region around the BCP where the electron density tends to “swell away”
from the BCP along the λ2 direction. This pairing between peaks in the negative and
positive parts of the diagram is found in all the systems here analysed. Another notice-
able effect is that the stronger the density at BCP peak (more negative sign(λ2)ρ(r) ),
the stronger the repulsive peak (more positive sign(λ2)ρ(r)). As shown in Figures 6.6c
and 6.6d the narrowing of the interaction regions for O2 and F2 is easily visualised as an
expansion of the isosurface perpendicular to the internuclear axis.
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Figure 6.2: s(r) along intermolecular axis for a) H2, b) N2, c) O2, d) F2, e) CO, f) FCl.
Labels C, B and LP stand for core, bonding and lone-pair minima respectively. Arrows
in O2, F2 and CO plots indicate additional minima in the bonding region.
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Figure 6.3: s(r) along intermolecular axis for a) FBr, b) HF, c) LiH, d) NaF, e) NaCl,
f) KCl. Labels C, B and LP stand for core, bonding and lone-pair minima respectively.
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A split of both positive and negative branches of the s(r) versus sign(λ2)ρ(r) diagrams
is found when moving towards heteronuclear systems. In regions where ρ(r) is dominated
by one of the atoms, such as regions close to nuclear positions, ρ(r) may be approximated
by a sum of atomic contributions, that is, by a promolecular density. As explained in
Chapter 4, atomic densities can be modelled by exponential basis functions

ρpromat (r)
∑
n

cne
−ζnr, (6.1)

where n, cn and ζn stand for the number of shells, the expansion coefficient and
exponent corresponding to the shell n, respectively. In the interaction regions, this is
reduced to the outermost shell, so the density for a A B pair at mutual distance R is
given by

ρ(r) = ρpromA (r) + ρpromB (ρ) = ae−αr + be−β(R−r), (6.2)

where a, α, b and β are positive constants characteristic of A and B ions, respectively.
As r→ A, we can assume that ρ(r) approximates to ρA(r) = e−αr, and analogously for
r→ B. In these cases, the reduced density gradient reduces to the free-ion behaviour:

sA(r) = 1
2(3π2)1/3

|~∇ρA(r)|
ρA(r)4/3 , (6.3)

Thus, these regions give rise to two curves in the s(r) versus ρ(r) diagram. Although
promolecular densities describe fairly well ionic interactions, these models also account for
the splitting in polar bonds, being more important as the polarity of the bond increases.
Within the promolecular approximation, the polarity of the bond is taken into account
by the exponents α and β, which for ionic systems are associated with the hardness of
the ions. The relative position of the curves can be associated with the relative hardness
of the ions, or with the relative electronegativity in general. This is exactly what is
observed in the heteronuclear systems here analysed (Figures 6.4e-6.5e). The upper
curves correspond to the carbon, chloride and bromine atoms in CO, FCl and FBr,
respectively (Figures 6.4f, 6.5a), and to the cationic species in all the other systems. The
hardness difference between the fluorine anion and a proton is not enough to observe
this effect in HF, as disclosed in Figure 6.5b. It is worth noticing that all systems with
chlorine, FCl, NaCl and KCl exhibit atomic shell structure as an additional peak with
s(r) value higher than 0 (Figures 6.5e- 6.5f). This peak is ascribed to the outermost shell
of the Cl atom, the L shell. The M shell of potassium in KCl is also displayed. For all
the other systems the valence shell occurs at higher densities than 1.0 a.u and out of our
sign(λ2)ρ(r) range.

In Figure 6.6 it is observed that the red branches enclosing the interacting regions
are shifted towards C, Cl and Br in CO, FCl and FBr, respectively. Along with this
effect, it is observed that the larger the core region, the bumpier the isosurface around it,
and the more compressed around the bonding regions. This effect is already noticeable
for CO, and much more accused for FCl. Eventually, for FBr the isosurface is broken
in three components, two around core regions and one around the BCP. This change in
the number of connected components of the isosurface is a consequence of the apparition
of CPs of s(r) as stated by the Morse theory. In all the other systems the increase in
the number of connected components occurs at values of s(r) lower that 0.5, therefore a
fine tuning of the isosurface value is necessary for extracting core and bonding regions
separately, as it has been already commented.
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Figures 6.6i-6.6l show s(r) isosurfaces for LiH, NaF, NaCl and KCl respectively. A
similarly split into three components to that found in FBr is observed. HF is an exception
in this regard, the low density at the hydrogen core, prevents the appearance of CPs
between core and bonding regions with value 0.5.
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(a) H2 (b) N2

(c) O2 (d)F2

(e)CO (f) FCl

Figure 6.4: s(r) along intermolecular axis for a) H2, b ) N2, c)O2, d)F2, e) CO.
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(a) FBr (b) HF

(d) LiH (c) NaF

(e) NaCl (f) KCl

Figure 6.5: s(r) along intermolecular axis for a) FBr, b) HF, c) LiH, d) NaF, e) NaCl,
f) KCl.
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(a) H2 (b) N2 (c) O2

(d) F2 (e) CO (f) FCl

(g) FBr (h) HF (i) LiH

(j) NaF (k) NaCl (l) KCl

Figure 6.6: s(r) = 0.5 contours coloured on a blue-green-red according to the sign(λ2)ρ
value over the range -0.03 to 0.03 a.u.for a) H2, b) N2, c) O2, d) F2, e) CO, g) FCl, h)
FBr, i)HF, j) LiH, k) NaF, l) NaCl and k) KCl.
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Chapter 7. Bonding analysis by means of the NCI method II: Non-covalent interactions

At this stage, we hope the reader becomes acquainted with the main subject of this
manuscript, the NCI method. As it was aforementioned, it was envisaged as a tool for
a fast qualitative analysis of non-covalent interactions. The subsequent work on this
topic revealed that behind beautiful pictures there is some chemical content; regions of
relatively high bosonic character. After having applied the NCI method for analysing
covalent and ionic bondings, we will revisited its prime playground, NCIs.

Among NCIs, hydrogen bonding (HB) has always received special attention, since it
appears in almost all biological, solvation and crystallization processes. Its existence was
first postulated in the early 20th century based on the stunning macroscopic differences
between the first and second row hydrides, i.e. water is a high temperature boiling liquid
without which there would be no life, while hydrogen sulphide is a stinking gas under
ambient conditions [91].

With the advent of molecular beam and cryogenic experimental methods as well
as the ever advancing theoretical methods, HBs have been proved to exist in H2S as
well [92]. Its elusive nature motivated the International Union of Pure and Applied
Chemists (IUPAC) to revisit its definition. The result of such task was a set of guide-
lines to characterise hydrogen bonds not only from practical perspectives but also from
theoretical considerations, enlarging considerably its original definition. In a nutshell, we
may define a hydrogen bond X-H · · · Y-Z as an attractive interaction between a positive
charged hydrogen and two electronegative species X and Y. X is termed proton donor
and Y proton acceptor. Traditionally the role of Y has been undoubtedly assigned to O
or N, however less electronegative atoms, such as C, or even negatively charged regions,
such as σ or π bonds, are now also accepted as proton acceptors.

But things go even further. About a century later, chemists have identified a wealth
of new bonding types along the periodic table. Halogen bonds (XBs) (group 17) are
frequently exploited for crystal engineering [93]. Recently, similar bonding mechanisms
have been proposed for adjacent main-group elements, such as non-covalent “chalcogen
bonds” (group 16) [94] and “pnictogen bonds” (group 15) [95, 96] have also been identified
in crystal structures. Recently, even carbon bonding (group 14) [97] has been proposed
as a stabilizing interaction.

But not only the concept of HB has been enlarged, also new interactions have ap-
peared in the chemist vocabulary. Some of these interactions even break down the as-
sumption that HB entails “special characteristics”. Hydrogen bonding was usually char-
acterized by been highly directional, in the sense that X, H and Z form an angle of almost
180◦. This preference for a linear orientation is usually considered a consequence of its
electrostatic nature, and it was taken as a unique feature among other NCIs which are
much more isotropic.

On the one hand, the new definition of HBs lets in much less anisotropic interactions
fall into the definition (e.g. very weak HBs) [98]. On the other hand, the venue of
halogen bonding broadened the spectrum of directional NCIs. In a halogen bond, the
halogen atom plays the role of H in a hydrogen atom X-Hal · · ·Y-Z where Hal termed
an electropositive halogen atom and X, Y, and Z fulfil the same roles as they do in a
hydrogen bond. The counterintuitive origin of halogen bonding was explained in terms
of the concept of σ-hole i.e. a region of positive electrostatic potential along the X-Hal
bond [94]. Similar to hydrogen bonding, these interactions are driven by electrostatic
forces, though some authors state that dispersion and induction are the crucial energetic
contributions [95].

Although with some exceptions, specially pnictogen bonding, the unexpected direc-
tionality of the great majority of the directional NCIs has found a common origin; the
σ-hole concept. As shown by Murray et al. [99], directional interactions are not limited
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to linear arrangements of atoms but they are also found in perpendicular ones. In anal-
ogy with the σ-hole, they introduced the concept of π-hole: a region of low electronic
density that is perpendicular to a portion of a molecular framework. Regardless their
geometry, all these interactions can be regarded as electrostatic in nature.

In other words, the panorama of weak interactions is lately suffering a continuous
update, and it is difficult to tell where it will stop. Although it might look this is
just an epistemological question, it is far from being just so. Molecular force fields are
parametrized for pair-wise atomic contacts. These interatomic potentials have to be
tuned so as to recognize these interactions and reproduce the corresponding potential
energy surface reliably. If one depends on the “naming” of an interaction, force fields
are as prone to error and interaction obliviations as our interaction dictionary. One
such example in the recent literature is the cation-π interaction. Jorgensen found that
OPLS parameters that are quite successful in modeling benzene-water and water-TMA
(tetramethylammonium), could not properly model benzene-TMA [100]. This defect was
due to their inability to describe cation-π interactions. As a consequence, the description
of potentials was re-adapted in AMBER, which is now able to account for this type of
interactions.

In words of Desiraju, “a term is acceptable if the largest number of chemists are
in a maximum degree of agreement about what it means” [92]. Thus in the absence of
general consensus, the chemical community has the verdict. In other words, the unabated
research on NCI is expected to enlarge the realm of known chemical interactions This is
showing to be a never ending quest. Or at least very prolific. But an alternative can be
proposed.

Traditionally, chemical interactions have been classified in terms of their nature no
matter which atoms are involved in them. Whereas covalent interactions occur through
electron sharing, ionic interactions are electrostatic in nature. Differences are not so well
defined in the case of non-covalent interactions. The relative weights of the different
terms in the multipolar expansion can be used to identify different interaction types.
Another approach is to look at the electron density. Before and beyond the identification
and characterization of an interaction, the signature on the electron density will be
present. It can provide a distinct approach, where interactions are categorized by their
characteristics and not by their atomic composition, which can become limiting and
cumbersome.

In this chapter we will first perform a quantitative NCI analysis of some model sys-
tems classified by interaction types: pnictogen, weak-hydrogen and halogen bonding.
In section II, we will apply the NCI method to shed some light on the source of some
complex systems as the self-assembled monolayers and metallocenes systems. We will
conclude by addressing a philosophical question: if so similar in nature, do all these
interactions deserve distinctive names? Beyond philosophy, this question has great
implications in theoretical chemistry, in the construction of models and in the develop-
ment of methods.

7.1 Model systems

7.1.1 Computational details
All the geometries were optimized at MP2 level using aug-cc-pVDZ basis set as imple-
mented in the GAUSSIAN 09 package [87]. Structures were verified as minima having
all real vibrational frequencies. Interaction energies were computed as the difference
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between the dimer and the sum of the monomers when they have the same structure
as in the complex. These quantities were corrected for basis set superposition error by
the counterpoise procedure [101]. The optimised geometries were used to compute the
electron density at B3LYP/aug-cc-pVTZ level of theory combined with the Grimme D3
dispersion correction and with the Becke-Johnson damping function [102]. Dispersion
energies were calculated at the same level with the the DFTD3 code version 3.1 Rev
1 [103, 104]. NCI isosurfaces were obtained with a modified version of the NCIPLOT
code [74] with grids of 0.1 Å along each axis. In order to improve the visualisation
of FH· · · HLi the grid step was reduced to 0.05 Å. To assure the convergence of NCI
volumes (VNCI) a 0.05 Å grid along each axis was used. The NCI isosurfaces were
visualised with VMD version 1.9.2 [89].

7.1.2 Pnictogen bonds
The simplest example of pnictogen bonding is the complex between NH3 and PH3, where
the N atom is the donor of electron density [95]: the two molecules are oriented such
that the P and the N atom face one another directly, without the intermediacy of a H
atom. Natural bonding orbital analysis has revealed that this attraction is due in part
to the charge transfer of electron density from the N lone pair to the P-H σ∗ antibonding
orbital [95]. Unlike the hydrogen bonds, the pertinent hydrogen is oriented about 180◦
away from the N (instead of toward), and the N lone pair overlaps with the lobe of the
P-H σ∗ orbitals that is closest to the P atom. Surprisingly, the binding energy of the
pnictogen bonded complex is larger than the hydrogen bonded complex formed between
the same two molecules where the N atom is the proton acceptor (see Table 7.1).

(a) (b)

(c) (d)

Figure 7.1: NCI isosurfaces of the PH3-NH3(top) and PH3-PH3 (bottom) complexes.
(a) , (c) pnictogen bonded, (b) PH3-NH3 hydrgogen bonded configuration and (d) PH3-
NH3 secondary minima. 3D isosurfaces were produced using cut-off values of s(r) = 0.5
coloured over the range -0.05(blue) < sign(λ2)ρ < 0.05(red).

The NCI analysis of the NH3-PH3 complexes shows the presence of a NCI and this
is illustrated by the 3D isosurfaces of both complexes as shown in Fig. 7.1. The green
color of both interactions indicate that the two types of bonding have similar bonding
strengths corresponding to that of the van der Waals interactions. Whereas for the H-
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System VNCI Eint Edisp

H3P· · ·NH3 32.33 -1.60 -3.70

PH3 · · ·NH3 12.72 -0.81 -2.97

H3P· · ·PH3 52.86 -1.10 -4.83

PH3 · · ·PH3 49.80 -0.70 -4.83

Table 7.1: NCI volumens(VNCI , a.u.), interaction (Eint, kcal/mol) and dispersion ener-
gies (Edisp, kcal/mol) of PH3 · · ·PH3, the pnicogen (PH3 · · ·NH3 and H3P· · ·PH3) and
hydrogen (H3P· · ·NH3)bonded complexes. ) complexes.

mediated complex, a typical picture of the hydrogen bond is obtained, a thick surface is
obtained in the case of pnictogen bonding, which is extended like in the case of the van
der Waals, but thick like the hydrogen bonded ones. Scheiner has shown that there is a
gain of electron density in the N lone pair of both PH3/NH3 configurations. Additionally
energetics show that all interactions herein analysed are in the typical range of dispersion
interactions [95].

It is interesting to note that in contrast to halogen bonds, there is no requirement for
a σ-hole nearby the P atom, nor it is necessary for the two interacting atoms to be of
differing potential. In fact, the two atoms can be identical, as the global minimum of the
PH3 homodimer has the same structure, characterized by a P· · ·P attraction. Indeed, for
the complex between PH3 and PH3 the P atoms posses a partial positive charge and none
of the located minima found on the potential energy surface corresponds to a hydrogen-
bonded complex [95]. The two minima that were located correspond to complexes where
the P atoms approach one another. The complex with the symmetric geometry was
found to be dominated by electrostatic interactions, corresponding to pnictogen bonding,
whereas the second structure was found to be dominated by dispersion. This shows in
the NCI isosurfaces where the interaction region in Figure 7.1d) occupies a larger volume
than that of Figure 7.1c). This is in agreement with the more diffuse character of the
dispersion interaction compared to the pnictogen bond which is more concentrated along
the bonding direction. As showed in Table 7.1, VNCI correlates with this effect.

Although the PH3/NH3 and PH3/PH3 complexes do not show σ-hole, it is worth
noting that generally as soon as any of the hydrogen atoms is replaced by some electron-
withdrawing group, such as CN or F, a σ-hole is formed along the R-X bond strengthening
the X–Y interaction. A similar effect is observed when N or P are substituted with a
more polarizable atom as At [94].

7.1.3 Weak-hydrogen bonds
We have also studied a series of six complexes presenting “weak hydrogen bonds”:
HCCH· · ·OH2, HOH· · ·π, HCCH· · ·π, HCCH· · ·HLi, FH· · ·π, FH· · ·HLi. We have di-
vided them in two groups HOH· · ·π, HCCH· · ·π and FH· · ·π represent T-shaped com-
plexes where the π electrons of the acetylene are the proton acceptor. HCCH· · ·HLi,
FH· · ·HLi and HCCH· · ·OH2 are linear complexes where the proton acceptor and donor
are hydrogens X-H−δ · · ·+δH-Y. Figure 7.2 and Table 7.2 display NCI surfaces and VNCI
respectively for all the hydrogen bonded systems herein analysed. Energetic and NCI
results were obtained with the same methods and parameters used to obtain those of the

133



Chapter 7. Bonding analysis by means of the NCI method II: Non-covalent interactions

pnictogen bonded data. The results show that NCI allows to follow the evolution of the
interaction strength for different systems. The NCI isosurfaces range from those similar
to dispersive interactions (HOH· · ·π, HCCH· · ·π, FH· · ·π ) characterised for having more
diffuse character and therefore bigger volumes than those much more localised typical of
strong hydrogen bonds. As the electrostatic contribution to energetics increases VNCI
decreases and the NCI isosurfaces become more localised around the bond critical point.

a) b) c)

d) e) f)

Figure 7.2: NCI isosurfaces for (a) HCCH· · ·π, (b) HOH· · ·π, (c) FH· · ·π, (d)
(HCCH)· · ·OH2, (e) HCCH· · ·HLi and (f) FH· · ·HLi. 3D isosurfaces were produced
using cut-off values of s(r) = 0.5 and coloured over the range -0.05(blue) < sign(λ2)ρ <
0.05(red).

7.1.4 Halogen bonds
Halogen bonds (XBs) occur between a halogen atom, playing the role of Lewis acid, and
a Lewis base. This non-covalent interaction is analogous to hydrogen bonding (HB) in
the sense that in both cases an atom or group of atoms with high electron density donates
an electron to an acceptor which is electron poor. We have studied a series of complexes
of the type CF3X· · ·B, with X=Cl, Br and B=dimethylether (DME), trimethylamine
(TMA) and dimethylthiol (DMS).

Table 7.3 contains VNCI , Eint and Edisp for the selected halogen bonded systems.
Although the interaction energies are of the same order as in the pnictogen and weak
hydrogen bonded system, the dispersion is much stronger. Nevertheless, these complexes
have been characterised for having a σ hole and have been said to be dominated by
electrostics [105]. The disc-shaped NCI isosurface support the electrostatic origin of
halogen interactions. The missmatches between VNCI and Edisp may ascribe to the fact
that electrostatic and not dispersion is the driving force in halogen bonding.
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System VNCI Eint Edisp

(HCCH)· · ·OH2 21.34 -2.62 -2.37

HOH· · ·π 38.05 -2.16 -2.80

HCCH· · ·π 38.65 -1.19 -3.88

HCCH· · ·HLi 3.28 -3.99 -2.22

FH· · ·π 27.61 -0.17 -2.48

FH· · ·HLi 0.71 -10.74 -0.87

Table 7.2: NCI volumens (VNCI , (a.u.)), interaction (Eint, kcal/mol) and relative dis-
persion energies (Edisp, kcal/mol) of the hydrogen bonded systems investigated here.
complexes.

System VNCI Eint Edisp

CF3Br· · ·DME 10.73 -3.73 -9.97

CF3Br· · ·TMA 30.7 -5.81 -15.60

CF3Cl· · ·DME 9.63 -2.69 -9.23

CF3Cl· · ·DMS 8.50 -10.83 -11.74

CF3Cl· · ·DMSa 2.27

Table 7.3: NCI volumes (VNCI , (a.u.)), interaction energies (Eint, kcal/mol) and relative
dispersion energies (Edisp, kcal/mol) of the halogen bonded systems investigated here. a
VNCI correspoding to the Cl· · · S interaction.

7.2 Complex systems
After analysing model systems, we have decided to check the ability and utility of the
NCI method in bigger systems.

7.2.1 Binding in self-assembled monolayers
Another challenging binding mode is that existing between long alkyl chains molecules
in self-assembly monolayers (SAM). The stability of such systems is mainly due to a
competition between metal-molecule and molecule-molecule interactions. Understanding
the nature and the strength of the interaction between surfaces and long chain molecules
is thus of great importance and may help in the design of systems with specific molecule-
surface and molecule-molecule strengths. The intermolecular interactions in SAMs come
from the vicinity of the neighbouring molecules that form an ordered two-dimensional
layer and are mainly caused by dispersion forces. This molecular arrangement exhibits
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a) CF3Cl-DME b) CF3Cl-DMS

c) CF3Br-DME d) CF3Br-TMP

e) CF3I-NHC f) CF3I-TMA

Figure 7.3: 3D plots for halogen bonded complexes: a) CF3Cl-DME b) CF3Cl-DMS c)
CF3Br-DME d) CF3Br-TMP e) CF3I-NHC f) CF3I-TMA. NCI isosurfaces correspond
to s=0.5 and a color scale of -0.04 < sign(λ2)ρ < +0.04 a.u.

an extra stabilisation when compared with the corresponding isolated molecular dimer,
known as packing. The role of the dispersion forces between the alkyl chains is poorly
understood although it may become crucial in the stabilisation of SAMs.

As example of SAM system the platinium (100)-octylamine system (NH2C8H17) has
been chose because it has been recently reported to lead to stable cubic platinum nanopar-
ticles [106, 107]. The calculations were carried out with the revised PBE functional
(rPBE) [15, 108] as implemented in the VASP code [109, 110]. Projector Augmented
Wave (PAW) pseudopotentials [111, 112] combined with plane wave (cut-off=400 eV)
represent the electron distribution. Periodic boundary conditions apply and a vacuum
of at least 15 Å is included to avoid interaction between successive layers. Starting
from the gas-phase optimised geometry at the rPBE level, calculations are done with-
out geometrical optimisation for the gas-phase studies and with the conjugate-gradient
algorithm for the surface-molecule interaction studies, with the geometrical constrains
specified in each case. The interactions energies were calculated by the formula:

A + B = [AB] where Eint = E[AB] − EA − EB , (7.1)
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whereby Eint < 0 for exothermic reactions and EA stand for the energy of the
octylamine in the complex geometry. Dispersion interaction were included by using
the Grimme D2 approach as implemented in the VASP code (parameters for Pt: ra-
dius=1.676Å and C6=19.46 Jnm6mol−1 obtained from [103]). As notice in the litera-
ture [113], the problem of metal screening of dispersive forces can be roughly corrected by
including dispersion only on the uppermost slab layer. We have considered this possibil-
ity together with the pure rPBE and full D2, denoted as 1L, rPBE and D2, respectively.
Tests on the propylamine dimer potential energy curve have been carried out at MP2/6-
311g(3df,2pd), BSSE corrected, together with the rPBE and rPBE+D2 levels, and show
very good agreement with the rPBE+D2 results. Contrary to the previous systems, the
NCI analysis has been carried out with the critic2 code [114] where NCI is implemented
for solids.

An in-depth analysis of the factors that determine the stability of octyalmine/Pt
was carried out by Calatayud et al [115]. They concluded that a proper description
of packing in SAM systems requires accounting for dispersion effects, since only the
rPBE+D2 functional is able to explain the additional stability of octyalmine SAM when
compared to the octylamine dimer (see Figure 7.4). The interaction between alkyl chains
depends on their relative orientation. Figure 7.5 displays the relative orientation of two
neighboring octylamines in the x and y directions. It can be observed that they are
not equivalent since they involve different H-H interactions. Along the y directions,
octylamine molecules are oriented in such a way that the hydrogen atoms in the chains
face those of the neighbouring molecule. Instead, there is no such orientation when
molecules are arranged along the x direction and hydrogens are not face to face.

A closer look at the geometries enables understanding that this difference comes from
a different geometrical arrangement. In Figure 7.5 the y alignment is highlighted and
it can be seen that it is clearly different from the x one as regards H-H interaction. In
order to gain more information on the role of the relative orientation of the two chains,
we have considered polymers of octylamine in the x and y directions separately. For
the octyalmine dimer in the gas phase the most favourable situation is found when the
molecules are rotated 80 degrees in the z-axis. This orientation is similar to the one
obtained for the y-polymer that would correspond to 90 degrees.

Figure 7.4 shows the energetic profile of 1D polymers alongs x and y directions as a
function of the distance between neighbouring molecules dNN . It can be observed that
the stabilisation in the alignment along the y direction is higher than in the x direction
with and without dispersion correction. Comparing now the 2D pattern to the addition
of x and y polymers (Figure 7.4) the result is a net stabilisation of the 2D square pattern
with respect to the addition of x plus y, almost inexistent for rPBE but significant when
using the D2 approach. Although the method used overstabilizes the interactions in
the y direction, the overall stabilisation of the 2D pattern compared to the sum of the
polymers is significant. This result highlights the key role of second neighbours in the
stabilisation of the squared superstructure.

The differences along x and y are also evident from the NCI isosurfaces as shown
in Figure 7.5. The symmetric arrangement along the y direction gives rise to localised
H-H interactions between alkyl molecules. Similarly to that found for all directional
interactions previously analysed, the directionality of H-H interactions is characterised
within the NCI approach by the small, round shape of the regions and the strength by the
relatively large accumulation of electron density. Weak interaction such as the ones found
in the x polymer give rise to interacting regions, rather than localised NCI domains, and
present a relatively low electron density. In both cases, the color of the NCI isosurfaces
reveals the weak non-bonding nature of all the interactions, which agrees with the need
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to resort to D2 corrections to account for them. The shapes of the NCI isosurfaces point
that the dispersion and electrostatic contribution to Eint are at least as important as in
the pnictogen, halogen and weak-hydrogen bonded systems analysed so far.

Moreover, the stabilising effect of H-H interactions along x and y directions raises a
fundamental problem in crystal packing, which is still an open question. These interac-
tions are usually assumed to give rise to steric clashes, and contribute to the destabilisa-
tion of the crystal. However, topological approaches such as QTAIM point towards their
stabilising nature.

The H-H BCPs were first interpreted by Cioslowsky and Mixon in kekulene [116] and
ortho-substituted biphenyls [117] and assigned to “non-bonded repulsive contacts”, a view
supported by later studies with a different energy partition [118, 119]. QTAIM atomic
energies, on the other hand, predict a stabilisation caused by H-H contacts of up to 10
kcal/mol in the general case of polybenzenoid molecules [120]. It should be noted that the
weakness of dihydrogen interactions and the arbitrariness in the choice of energy partition
precludes determining how much these interactions contribute to the total binding energy
of a crystal, so it would be extremely difficult to determine in an unbiased manner
the strength and character of these interactions, except in those cases where the total
stabilisation is to a good approximation, only given by those interactions. This is the
case of the y polymer. Being hydrogen interactions the main source of interactions in
the y direction (very little dispersion is observed), the attractive interaction observed in
this polymer can only be attributed to H-H interactions. This highlights the advantage
of local approaches in complex systems

From the visual analysis of NCI isosurfaces of the linear polymers and the 2D ar-
rangement, the x and y components are perfectly recovered, along with an extra region
between interactions along x and y direction. This interaction between diagonal elements
of the arrangements, may be identified as the responsible of its relative stability. In other
words, the diagonal interaction is related to packing. It is interesting to note that once
again, these interactions are dispersive-like, which explains why the are so difficult to
track in solids.

7.2.2 Binding in metallocenes

Dispersion interactions plays an outstanding role in metallocenes dimers. Vargas-Caamal
et al [121] have performed an in-depth survey of the nature of the bonding in different
metallocene dimers: ferrocene, ruthenocene, osmocene. These systems exhibit higher
dissociation energies than the water dimer at low temperatures. The additional stability
of metallocene dimers was ascribed to the collective action of very weak interactions of
dispersive nature. An EDA analysis reveals that in these systems the contribution of the
dispersion term to the energy is larger than in the parallel-displaced benzene dimer, the
prototype example of system stabilised by dispersion interactions.

As shown in Figure 7.6 the NCI analysis of the most stables conformations of the
ferrocene dimer correspond to a typical dimer stabilized mainly by dispersion where
attractive surfaces cover a very large area between both monomers. Similar results are
found for osmocene and ruthenocene dimers. Once again, a correlation is found between
the size and the electron population within the NCI region and the relative stability of
the two conformers as shown in Table 7.4.
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∆E†total(kcal/mol) VΩNCI (a.u.) NΩNCI (a.u.)

Orthogonal -7.7 104.03 1.90

Parallel -5.7 87.47 1.78

Table 7.4: Interaction energy (∆Etotal), NCI volume (VΩNCI (a.u.)) and NCI electron
population (NΩNCI (a.u.)) for the ferrocene dimers.
† Energies extracted from [121].

7.3 Do all these interactions deserve distinctive names?
The energetic statements here conveyed reveal that with a few exceptions, pnictogen,
halogen and weak-hydrogen bonds and even H-H interactions expand over the same range
of energy. The NCI picture sorts this interactions between those characterised by having
small and round-shaped isosurfaces and those exhibiting large and thin isosurfaces. The
former are very directional and the electrostatic contribution to the stabilisation of the
complex is at least as large as the dispersion term. The latter are mainly driven by the
dispersion contribution to the energy and expand large areas, being the consequence of
the collective action of very weak dispersion interactions.

Given the correlation between the “directionality” of the interaction and the weights
of the dispersion and electrostatic contributions to the interaction energy, it seems more
convenient to refer to these interactions as dispersive, electrostatic or both, forgetting
any reference to the composition of the interacting fragments. Since the “directionality”
is transcribed into the shape of the NCI regions, the NCI method allows, with some
caveats, a first estimation of the localisation and energetic nature of the interaction.
For instance, it is expected that the electrostatic contribution to Eint is larger in the
interaction between the alkyl chains in the SAM systems (specially along the y direction)
than in metallocene dimers. This approach has the advantage of being fast and applicable
to big systems, including the difficult-to-characterise intramolecular interactions.
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Figure 7.4: (a) Energy profile for the molecule-molecule interaction along the x and y
directions and (b) energy diference between the 2D polymer and the x and y separately
as a function of the dNN .
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a) b) c)

Figure 7.5: NCI isosurfaces of the (a) y-polymer, (b) the x-polymer and (c) the 2
dimension polymer. Only the monomers are plotted. The linear polymers grow in the
plane.

a) b)

Figure 7.6: NCI isosurfaces for: a) orthogonal and b) parallel ferrocene dimers. A density
cut-off of ρ = 0.01 a.u. was applied and the pictures were created for an isosurface value
of s = 0.5 and coloured in the [-0.03, 0.03]a.u. sign(λ2)ρ.
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Chapter 8. Bonding analysis by means of the NCI method III: Reactivity

As defined by Linus Pauling “Chemistry is the science of substances: their structure,
their properties, and the reactions that change them into other substance” [91]. The first
aspects, structure and properties, are clearly associated with the arrangement of atoms
in a molecule, i.e. the chemical bond. These bonds determine Pauling’s third aspect,
chemical reactivity.

In the precedent chapters it was shown how bonding is defined within the NCI method.
Qualitatively, chemical interactions are displayed as isosurfaces of the reduced density
gradient around the minima of this function. Chemical bonds may be characterised
by the shapes of such isosurfaces and differentiated by the mapping of sign(λ2)ρ on
them. A more quantitative characterisation may achieved by computing the volume
and the electron population within NCI regions. One of most appealing features of the
NCI method is the simultaneous visualisation of interactions of any energetic range, from
strong covalent interactions to very weak non-covalent interactions. In chemical reactions
interactions of different strength interplay during bond breaking and formation. The
transition from weak to strong interactions (or the opposite) that occurs during chemical
reactions may be casted by following the evolution of the NCI isosurfaces.

In this chapter we apply the NCI method to qualitatively understand the outcome of
different chemical reactions. We have chosen two reactions that have been crucial in the
history of theoretical chemistry: the thermal ring-opening of disubstituted cyclobutenes
as example of the success of Woodward-Hoffmann rules in rationalisation from orbital
grounds, and the Houk-List reacton as one of the first achievements in reactivity of
computational chemistry.

8.1 Torquoselectivity
Pericyclic reactions represent the favourite playground for quantum chemistry reactivity
models since Woodward and Hoffmann proposed their seminal list of rules [122]. By
definition, pericyclic reactions evolve via a cyclic aromatic transition state of delocal-
ized electrons where bond making and bond breaking occurs simultaneously in a cyclic
array. Using the orbital symmetry conservation, Woodward and Hoffmann proposed a
list of rules of thumb able to predict the mechanism and, hence the stereoselectivity of
pericyclic reactions. Examples include cycloadditions, electrocyclisations, sigmatropic
rearrangments, and chelotropic reactions. Much work has been devoted to show that
electron circulation of the pericyclic transitions states may be smartly characterised by
the topology of ELF [123].

One example of application of NCI to predict the outcome of pericyclic reaction is
provided by the thermal ring-opening of trans-1,2,3,4-tetrafluoro-3,4- bis(pentafluorosul-
fanyl)cyclobutene (see figure 8.1). As a thermal, 4n electron process, the Woodward-
Hoffmann rules predict that the conrotatory opening is more favourable than the disro-
tatory one [122]. Additionally, a given terminal substituent may either rotate “outwards”
leading to (E,E)-1,2,3,4-tetrafluoro-1,4-bis(pentafluorosulfanyl)butadiene (from now on
outward compound) or “inwards” yielding (Z,Z)-1,2,3,4-tetrafluoro-1,4-bis(pentafluoro-
sulfanyl)butadiene (from now on inwards compound). Activation energies obtained at
ωB97X-D/6-31G∗ level for outwards and inwards transition states are 41.55 kcal/mol
and 21.12 kcal/mol respectively. Because this kind of stereoselectivity is related to the
direction of the twist, it was named torquoselectivity by Houk and co- workers [124].

Rondan and Houk proposed in 1984 a widely accepted orbital model able to explain
torquoselectivity [125, 126]. Since only certain orbitals are included in the model, a wrong
selection of the interacting orbitals leads to wrong predictions. This shortcoming is com-
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8.1. Torquoselectivity

Figure 8.1: “Outwards” and “inwards” conrotatory product for the thermal ring opening
of trans-1,2,3,4-tetrafluoro-3,4-bis(pentafluorsulfanyl)cyclobutene.

mon for all theories based on a selected group of orbitals, such as the frontier orbital
theory [127]. To avoid this flaw, Ponec decided to reinvestigate the problem in terms
of an electron density based indicator, such as the molecular similarity approach [128].
He showed that the origin of the torquoselectivity underlies on the low electron reor-
ganisation required to transform reactants into products. Additionally, NCI analyses of
both outwards and inwards transition states provide us with the topological arguments
to understand this differential selectivity.

As shown in Figure 8.2, apart from the breaking carbon-carbon covalent interac-
tion (blue isosurface) and its repulsive counterpart ring tension (red isosurface), we can
differentiate three types of non-covalent interactions (green isosurfaces):

Type 1 Fluor-fluor interaction between pentafluorosulfanyl groups.

Type 2 Pentafluorosulfanyl-carbon interaction.

Type 3 Fluor-fluor interaction between pentafluorosulfanyl and fluoro groups.

All of them are present in the inwards transition state, whereas only interactions of type
3 are found in the outwards one (See Figure 8.2). Thus, dispersion interactions between
pentafluorosulfanyl groups and those with the carbon cycle should be the driving force of
the process. Thus, torquoselectivity can also be understood in terms of neighbour inter-
actions as revealed by NCI: within this approach products are driven by the stabilisation
through non-covalent interactions in the transition state.

145



Chapter 8. Bonding analysis by means of the NCI method III: Reactivity

a) Type 1 b) Type 1 + 2

c) Type 1 + 2 +3 d) Type 3

Figure 8.2: Non-covalent interaction types in outwards and inwards transition states.
Black, read and blue dashed lines represent type 1, 2 and 3 interactions respectively.
The reduced density gradient isosurfaces (s=0.3) are coloured on blue-green-red scale
according the sign(λ2)ρ over the range -0.03 to 0.03 a.u.
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8.2 The Houk-List transition states
Organocatalysed intermolecular aldol additions (see Figure 8.3) have been nicely ra-
tionalised by the Houk-List model, which involves a one-proline mechanism based on
enamine activation [129, 130, 131, 132, 133]. The carbon-carbon bond formation is the
rate-determining step of the intermolecular aldol catalytic cycle in which the catalytic
active enamine attacks an electrophile.

Figure 8.3: Scheme of a generic proline-mediated assymetric intermolecular aldol reac-
tion.

Following Figure 8.4 the carboxylic acid group of proline plays a central role in the
model, directing the electrophilic to the Re face of the enamine. The enamine can be
either anti or syn, relative to the acid, and the electrophile can offer two prochiral faces
for attack, Re or Si resulting in four different stereochemical outcomes.

Houk and Bahmanyar suggested that the energy differences between these transition
states, and so the origin and degree of stereoselectivity displayed by the reaction, depends
on two critical structural elements: the relative degree to which each transition state
can adopt a planar enamine, and the degree of electrostatic stabilisation provided to
the forming alkoxide. A planar enamine allows for the greatest possible nucleophilicity
of the terminal olefin while also reducing the geometric distortion experienced by the
forming iminium group. The proton transfer from the carboxylic acid to the forming
alkoxide was suggested to provide the majority of the electrostatic stabilisation and is
key to the Houk-List model. Smaller, yet important, stabilising contributions also result
from NCHδ+ · · ·Oδ− interactions from the pyrrolidine ring.

In order to reproduce and expand the original calculations performed by Houk and
List for R=Ph and R=iPr,“chair” and “twist-boat” conformations for the cyclohexene
ring and puckering of the proline ring away from or towards the proton transfer (Fig-
ure 8.5) were considered for each stereochemical outcome shown in Figure 8.4 for both
R=Ph and R=iPr, resulting in 16 transition states for both R=Ph and R=iPr. Several
computational aspects such as the quality of the functional, basis set, the need for disper-
sion corrections and the effect of solvent have been in-depth scrutinised in Ref [134]. Our
collaborators concluded that geometries obtained at the larger triple-ζ-quality TZVP
basis set with inclusion of the CPCM solvation model at B3LYP+D3 level were reliable
enough to be considered as our base standard.

It is worth to note the importance of considering dispersion correction in the DFT
functional, which results in a increase of the planarity of the enamine. Examining the
enamine geometries for R=Ph, a correlation between the planarity of the enamine and
the relative stability is found; the lowest energy structure, (S,R) conformation 2, has
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Figure 8.4: The stereochemical possibilities for the asymmetric aldol reaction. Cahn-
Ingold-Prelog conventions are shown for R=Ph.

an almost totally planar enamine (177.2◦) whereas the highest energy structure (R,S)
conformation 3 is highly pyramidalised (167.0◦). Once the geometries were optimised
including dispersion corrections, further insights into the role of non-covalent interactions
in the relative stability of transition states may be disclosed by applying the NCI method.
In order to highlight certain features, three representative examples from the R=Ph
reaction have been chosen. Figure 8.6 dissects the diastereoisomer with the highest energy
(ent− anti), the diastereoisomer with the lowest energy (anti), and the diastereoisomer
with the highest dipersion correction (syn). The cut-off (ρ = 0.1a.u) has been chosen to
isolate the purely non-covalent interactions along the C-C formation. At first glance, both
the anti and the syn conformers show greater NCI isosurfaces, which confirms the role of
non-covalent interactions in stabilizing the diastereoisomeric transition states. For a more
detailed analysis, the most relevant interaction have been highlighted in Figure 8.6. The
deep blue feature corresponds in all three cases to the forming C-C bond. It corresponds
to a mid-range interaction, in-between covalent and non-covalent. Along with the C-C
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8.2. The Houk-List transition states

Figure 8.5: The four considered conformational possibilities for the asymmetric aldol
condensation.

formation, two purely non-covalent regions appear:

• The region around the heteroatoms (C=O· · ·N) shows stabilising features in all the
conformers, whereas it is most important in anti and syn conformers, it is much
weaker in the ent − anti and ent − syn ones. This 3D view coincides with the
previous approaches, which locate the relevance in the NCHδ+ · · ·Oδ− interaction.
However, along with the electrostatic interactions, green dispersive interactions
appear elongating the NCI feature which highlight the importance of the planarity
of this region and which cannot be merely explained by electrostatics.

• An extra region in the syn conformer, a green surface between the proline and the
R=Ph group. This interaction can be identified as tilted T-shape interaction or
as π-facial hydrogen bond. It is important to note that this interaction, which
stabilises the syn conformers, had not been identified before by mere geometric
inspections. However, its presence enables us to explain the fact that the syn
conformers are the ones with largest dispersion correction.

Thus, a combination of NCHδ+ · · · Oδ− electrostatics and dispersion (either in the
NCHδ+ · · · Oδ− or T-shape/π-facial H-bond in the ring region) determine the outcome
of the reaction, with only anti and syn as observable diasteroisomers. It should be noted
that this balance between electrostatic and dispersive interactions highlights, once again,
the necessity to include dispersion effects in the calculations, else the correct energetics
and geometrics would not be obtained.
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a) b)

c)

Figure 8.6: NCI analysis of several conformers of the computed transition state: a) the
lowest energy isomer, b) the highest energy isomer, c) the highest D3 corrections isomer.
The reduced density gradient isosurfaces (s = 0.5) are coloured on a blue-green-red scale
according to the sign(λ2)ρ over the range -0.03 to 0.03 a.u.

150



Chapter 9

Conclusions and outlook

This thesis is intended to present the current state of the art of the NCI method and
its applications to understand structural stability and chemical reactivity. Following the
QCT spirit, the NCI method focuses on the properties of the electron density and its
derivatives to obtain some insight into chemical bonding, namely of the reduced density
gradient (RDG) and the electron density Laplacian eigenvalues.

On the one hand, RDG is used as an indicator of chemical interactions, critical
points, namely its minima, match with those of the electron density, and with very weak
interactions not revealed by BCPs. This gain of RDG respect to the electron density
is related to the fact that the former adds up information from the gradient and the
Laplacian of the latter. Since the origin of the reduced density gradient is traced back
to the DFT development of GGA functionals, it was interpreted as a measure of the
local inhomogeneity of the system, which is not very appealing from a chemical point of
view. A conceptual laguna arose regarding the chemical content of the NCI pictures. The
connection with QTAIM foresaw that minima of RDG may be ascribed with changes in
the electron density Laplacian, and therefore with some kind of interaction. The strength
of these changes may determine whether these interactions occur through a BCP or not.
A more satisfactory interpretation has been given in terms of the von Weiszäcker kinetic
energy. Minima of this term identify regions more prone to exhibit a bosonic behaviour.
For a fermionic system this occurs in regions with low Pauli repulsion accounted by the
Pauli kinetic energy. This happens in regions well described by a single orbital, i.e. where
there is a strong electron pairing, or like-spin electron repulsion is relatively small.

Independently of the NCI method, different functions have been proposed which
exhibit similar results than those of the reduced density gradient. We refer to LED and
DORI. The former is derived from the local quantum theory of momentum and it uses a
formula equivalent to that of the local-wave vector. The latter is based on the geometrical
features of the electron density, and it uses an elaborated scaled form of the local-wave
vector. Since the reduced density gradient may be viewed as a scaled form of LED, the
three descriptors turn around the same function, the local-wave vector. Once again the
importance of the gradient of the electron density is stressed.

Additionally the NCI method came up with a new type of digram scarcely used in the
chemistry community. RDG versus ρ representations collect a lot of information of the
system in two dimensions. By tuning the ρ range, one can tune which kind of interaction
to visualise, non-covalent interactions appear at low values of ρ (typically ρ < 0.1 a.u.),
covalent interactions at intermediated values and core regions at higher densities. When
plotting s(ρ) values, troughs in the diagram may be ascribed to some kind of chemical
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interaction. These peaks represent deviations from a single exponential decay density
model, which is used as reference of non-interacting system. The points in the diagrams
forming these peaks are then represented in real space for some value of s inside the
peak, and visualised as isosurfaces. Analysing these diagrams is similar to analysing
some kind of spectra, where transitions have been replaced with chemical interactions.
Since each peak is the signature of some chemical interactions, resolving such spectra is
the main issue. Since a peak is a very vague definition, a unique definition of the region
should be provided, that is a baseline in the spectroscopy jargon. This first problem has
been circumvented by defining a reference pseudodensity whose reduced density gradient
will define the baseline, points under such reference curve defined what we have called
throughout this manuscript, NCI regions. The use of pseudodensities defined from real
fragments of the system resolves the problem of the arbitrariness on the choice of the
isosurface value. This approach has been already implemented in our main code for
performing NCI analysis, NCIPLOT.

Once chemical interactions are identified, we proposed different criteria for differen-
tiating beetween interaction types based on the curvature of the electron density. i) The
shape of the s isosurfaces representing such interactions ii) the electron density Laplacian
eigenvalues.

i) Since minima of the reduced density gradient usually appear at low values of the elec-
tron density gradient, the shape of the isosurfaces encompassing such minima are
determined by the behaviour of the eigenvalues of the Laplacian of the electron
density. Shared shell interactions are characterised by cylindrical shapes. Among
closed shell interaction, highly localized interaction involving only a pair of atoms,
such as hydrogen or pnictogen bonding are characterised by a disc-shape isosur-
face, while dispersion interactions result of a sum of several weak interactions and
are disclosed as extended misshaped isosurfaces. Isosurfaces around ring critical
points and cage critical points, which have been ascribed to steric clases, appears
as ellipsoidal shapes. Among closed shell interactions, highly localized interactions
involving only a pair of atoms, such as hydrogen or pnictogen bonding are charac-
terized by a disc-shape interaction, while dispersion interactions, which result of a
sum of several weak interactions, are disclosed as extended misshaped surfaces

ii) Since non-covalent interactions involve a positive value of the electron density Lapla-
cian in the interaction region it is not possible to sort non-covalent interaction only
with the sign of the Laplacian. Instead, one may focus on the eigenvalue respon-
sible of the different signature of BCP and ring critical points, that is, the second
eigenvalue of the electron density Laplacian λ2, (λ1 < λ2<λ3). Due to the fact that
ring critical points occur traditionally where it is said to be steric crowing, regions
with positive value of λ2 have been said to be repulsive and regions with negative
value of λ2 attractive.

Mapping the values of sign(λ2)ρ over the reduced density gradient isosurfaces one may
identify and differentiate chemical interactions. The relative strength of a interaction
is given by the ρ values, and therefore, the strongest interactions are represented as
isosurfaces with the purest red or blue colour.

Contributions
The main contributions of this manuscript are the following:

152



• A novel physical interpretation of the reduced density gradient based on its connection
with the von Weizsäcker kinetic energy density. Additionally the critical points
of the reduced density gradient have been connected with the AIM theory and
one-electron potential.

• An algorithm for defining NCI regions and computing properties within them has been
implemented in NCIPLOT. The results thereby obtained reveal a close correlation
between the size the NCI regions and the stabilisation energy in that systems mainly
stabilised by dispersion forces.

• We asses the dependence of the NCI method with the theory level. From a visual
point of view, results are very stable with respect to the geometry, but from the
quantitative point of view, NCI is able to reveal changes in the geometry and
electron distribution when very subtle effects are at play.

• We demonstrate the ability of the NCI method for analysing covalent bonds. The close
relationship between the reduced density gradient and other widely used bonding
descriptors enables the application of the NCI method for analysing any interaction
type.

• A characterisation of non-covalent interactions in terms of the shapes of the NCI
domains, the values of the sign(λ2)ρ(r) and energetics.

• We apply the NCI method for assessing the role of dispersion interactions in complex
systems: SAMs, methallocene dimers and transition states. The relative stability
of such systems is often analysed in terms of energy partitions, which provide global
quantities. Local approaches such as NCI have the advantage of revealing the key
interactions of the systems.

Setbacks
So far so good, but then comes the poison arrow. In the zoo of methods which are
nowadays available for analysing chemical bonding, we have selected quantum chemical
topology (QCT) as our main approach. QCT embraces all those methodologies that
used the dynamical system induced by the gradient field of some physical meaningful
scalar field as partition engine. Along Chapter 2 we introduced the theory required for
understanding the topological aspects behind QCT. The reader may have realised that a
topological partition of the reduced density gradient has not been presented yet, so this
excludes the NCI method and many of the analysis herein presented from QCT.

Despite my commitment to perform such task, I found two main hurdles I could not
overcome:

• Due to the absolute value in the numerator of the reduced density gradient, this func-
tion is piecewise smooth, and therefore, analytical searching for critical points are
not accurate enough to guarantee that the relation between number of different
critical points satisfies the Morse rule.

• The implementation of the combinatorial methods introduced in Chapter 2 needs for
rewriting our main code NCILOT from FORTAN to C++, in order to profit from
the libraries already implement for such kind of task.
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Despite these limitations, all is not lost! As commented in Chapter 2 the split and
merge of the connected components of an isosurface is related to the presence of critical
points. This information is nicely collected into the Reeb graphs. This approach has
already been implemented for analysing ELF and RDG under the name of bifurcation
trees. In a nutshell, a rough idea of the localisation and value of critical points may be
obtained by tuning the isosurface value. When visualising RDG, an isosurface of s = 0.5
is often enough to grasp all the RDG minima.

Regarding the second aspect of QCT, chemical meaningful scalar fields, we have
convinced the reader of the connection between regions of marked bosonic character and
the minima of the reduced density gradient, and so with relevant chemical features.

Turning back to the spectroscopy analogy, the ability for extracting different regions
from s(ρ) diagrams, depends on how well resolved are the peaks, i.e. symmetric regions
will be represented by the same peak in the diagram and they cannot be extracted as
separate isosurfaces by mere observation of the diagram. This hurdle is intrinsic to
the method and no solution has been envisaged. Some improvements have been made
from the visualisation community. Recently Carr et al have proposed an algorithm for
extracting surfaces from arbitrary regions of the s(ρ) diagrams, and for any two scalar
fields in general [135].

Open issues
It is hard to put a final point to this thesis when there are so many things to do.
Considering that the conceptual basis of the NCI method has been already established,
the future research lines within NCI project should be focussed in the implementation
part. Although the NCI method has been adopted by the QCT community, it is far from
being a “full member”. Efforts in such direction should be taken. In what follows I will
try to list the tasks that still remain not only in my “TO DO” list but also for future
members of the NCI project:

1. The first step is to perform a robust code able to compute the Morse complex of
RDG. Despite having outlined the shape of such partition, as far as I know no one
has performed it yet. Such code will develop the NCI method up to the other QCT
approaches. Moreover, such basins of RDG (namely its negative since basins are
developed around maxima of a scalar field) will split the real space into atomic and
interaction regions. With this methodology in hand, s(ρ) diagrams will be pushed
into the background, since critical points will be directly localised in real space.

2. In order to compute average properties within RDG basins, improvements of the
integration methods is mandatory. In this regard, integration algorithms over grid
points are already available. Although the target of the NCI method are big sys-
tems, an step by step test of the RDG topology should be performed starting from
atoms, then small molecules and gradually increasing the size of the system.

3. If we success in the previous two points, we should deal with the main difficulty
of the QCT approach, big systems. Although QCT algorithms have been sped up
during the last decade, they are far from being a real possibility in dealing with
big systems coming from other disciplines such as Biology and Material Sciences.
This is one of the main advantage of RDG: it is fast to compute and robust in
such extent that promolecular densities retain the main signatures of the NCI
method. Given these two points, one may envisage a two steps algorithm for
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dealing with big systems; a first quick NCI analysis for localising the interaction
regions, and a second step in which accurate topological analyses are performed
within NCI regions. Tierny et al [136] have made some progress in this direction.
They proposed an algorithm for searching critical points of the electron density,
within NCI regions.

4. Last but not the least. Working with researches from the visualisation community
I realised the potential applications of the topology to tackle with our main issue,
chemical bonding. In words of Popelier the number of concepts handled by QCT
is so limited that sometimes it is closer to topography than to topology [137].
Since the seminal work of Bader, little improvement has been done in applying
new topological concepts to the analysis of chemical bonding. In this regard, there
are a plenty of choices. For instance the simultaneous analysis of several scalar
fields is available through the notions of Jacobi sets or continuous scatter plots. A
close collaboration between both communities is mandatory for the success of this
endeavour.

The list could probably be longer and I am pretty sure it will be. Although I am
running out of time for facing all these fascinating challenges, I wish they would be solve
in the near future either by me or my collaborators.
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Résumé en français

L’étude de la chimie, et les sciences de matériaux en général, est constituée au-
tour de trois aspects principaux; structure chimique, propriétés et réactivité. La
structure chimique est directement déterminé par la disposition des atomes dans
l’espace. Les interactions entre les atomes, c’est à dire les liaisons chimiques, dictent
les propriétés et par conséquent la réactivité. Malgré son caractère fondamental, la
liaison chimique, elle ne fut jamais uniquement et proprement définie. Ce problème
touche autres idées fondamentales pour la chimique comme couche atomique, pair
libre, aromaticité, etc, et pose difficultés pour comprendre ses natures.
Cette dilemme a suscité beaucoup de réflexions, notamment auprès de Coulson
“Sometimes it seems to me that a bond between two atoms has become so real, so
tangible, so friendly, that I can almost see it. Then I awake with a little shock, for
a chemical bond is not a real thing. It does not exist. No one has ever seen one.
No one ever can. It is a figment of our own imagination”. Ce dilemme est très bien
évoqué par Frenking, qui a comparé la liaison chimique avec un licorne “a mythical
but useful creature, which brings law [. . .] in an otherwise chaotic world”. À
différence d’autres propriétés comme l’énergie, le moméntum ou la polarisabilité,
la liaison chimique est une idée, une concept chimique et par conséquence, elle n’est
pas le valeur propre d’aucune opérateur quantique.
L’origine de ce point de vue décourageante date de ses origines dans la alchimie,
l’état de la physique et le mathématiques à l’époque étaient loin pour expliquer les
transformations de la matière qui sont sujet de intérêt de la chimie. L’avènement
de la mécanique quantique apporta la solution pour traiter cette phénoménologie.
Comme Dirac disait “the underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws leads
to equations much too complicated to be soluble. It therefore becomes desirable
that approximate practical methods of applying quantum mechanics should be
developed, which can lead to an explanation of the main feature of complex atomic
systems without to much computation.”. Les difficultés induites par la résolution de
l’équation de Schrödinger pour une système moléculaire et l’absence d’une définition
unique de liaison nous ont éloigné de la compréhension de la nature des liaison
chimique depuis une perspective purement quantique. Un clair exemple de cette
situation a été présenté dans l’article “The Nature of the Fourth Bond in the Ground
State of C2 : The Quadruple Bond Conundrum” by Danovich et al
On peut différentier au moins deux écoles pour traiter les interactions chimiques;
celles qui utilisent les théories des orbitales moléculaire ou la liaison de valence
pour et retrouver et définir concepts, et celles qui considèrent l’énergie et la densité
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électronique comme grandeurs fondamentaux. La première école sont nées à partir
des travaux de Mulliken et Pauling. La théorie de la liaison de valence, proposée
par Pauling dans les années 1930, permet l’insertion des idées de Lewis dans le for-
malisme de la mécanique quantique ainsi que de récupérer les structure résonantes
de Lewis. La théorie des orbitales moléculaire (MO) fut la fuite du travail Mulliken
et al. A différence les structure résonantes obtenues par la théorie VB, les MOs
sont tellement localisés que est difficile obtenir aspects aussi localisées comme les
liaisons ou les paires libre à partir de eaux. Malgré tout, la théorie MO est devenue
historiquement favorisé par rapport à la théorie VB. Cet succès fut conséquence
des travaux des plusieurs auteures, comme Hückel, qui proposé la séparation σ-π
pour comprendre la structure des hydrocarbures conjugués, Coulson, Dewar, ou
Woodward et Hoffmann qui proposent son théorie pour comprendre lés réactions
péricycliques. Les deux théories, MO et VB donnent des descriptions complémen-
taires de la structure chimique.

D’une autre côté les théorèmes de Hohenberg et Kohn que montrées que toutes
les propriétés du système peuvent être complètement déterminées par la densité
électronique (ρ) de l’état fondamental. À partir de ces théorèmes il apparut une
école de pensée qui considéré que les orbitales ne sont plus nécessaires, et tous
les concepts peuvent être obtenus à partir de la densité électronique ou de une
façon plus générale à partir des matrices de densité réduites. En étant la densité
électronique un champ scalaire définie dans R. Ces approximations sont appelées
approximations dans l’espace réel et se caractérisent par:

i) Être invariantes à transformation orbitales. Par example, la densité électronique
ne dépend de quel orbitales on utilise, orbitales canoniques ou localisées.

ii) Être définies dans l’espace réel R3.

iii) Si possible être indépendant de la méthode utilisé pour calculer la densité
électronique.

Parmi les approximations dans l’espace réel on trouve la topologie chimique quan-
tique, les analyses du potentiel électrostatique, les orbitales naturelles de liaison,
la méthode NCI ou les domaines de probabilité maximal (MPD). La topologie
chimique quantique (QCT) est devenue une des approximations plus utilisé pour
la localisation et analyse de la liaison chimique. La QCT comprend toutes les
méthodologies utilisant le champ de gradient de une des champs scalaire avec sens
chimique pour diviser un système quantique en différents régions. L’utilité de ces
régions dépend des sens chimiques dont le gradient utilisé pour diviser le système.
Ainsi la densité électronique aboutit à une partition en régions atomiques et les liai-
son sont identifiés à partir de “bond paths”. La fonction de localisation électronique
(ELF) récupère régions associées à paires d’électrons, et les liaison sont identifié
par régions dans R3. À différence des approximation orbitales, ou on mis l’effort en
la obtenir des concepts, les approximations dans l’espace réel requièrent faire des
calculs pour obtenir des concepts chimiques. On peut résumé ce dilemme dans la
célèbre citation de Wigner: “It is nice to know that the computer understands the
problem. But I would like to understand it too”

Ce manuscrit traite des approximations réel et liaison chimique. Pour la suite nous
focalisons dans le analyse des liaison chimique en utilisant des approximations dans
l’espace réel.
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Comme ont a montré l’image que la QCT donné de la liaison chimique dépendent
de la fonction dont la topologie ont analyse. La validité de ces résultats peu-
vent être validé par le modèle de Lewis. Après on le peux utiliser pour analyser
nouvelles types de interaction où il n’a pas encore aucune modèle existant. Dans
ce contexte les interactions non-covalents (NCI) ont devenues très problématique.
Traditionnellement les NCI ont été traitées à partir de la théorie de perturbations.
Par contré depuis un point de vue topologique, il n’exista pas une façon claire de
comme les analyser. Par example, les interactions de dispersion sont caractériser
par l’action simultanée de plusieurs atomes. Un analyse de la densité donnera un
“bond path” qui connectera certains atomes mais pas tous les atomes que on con-
sidère dans l’interaction. À cet point on peut pose la question si est l’analyse de
la densité électronique ou notre “intuition chimique” qui a raison? La réponse qui
nos apportera cet analyse est que il y a interaction entre tous les atomes, mais cer-
tains interactions sont plus fortes qu’autres. L’analyse de la fonction de localisation
électronique nos donnera un réponse assez pareille. Maxima de cette fonction iden-
tifient points où la probabilité de trouver paires de électrons est très haute. Les
NCI sont tellement faible qui l’ELF ne montrera aucune maxima dans la région
de interactions, par contre elle montrera points de selle entre quelques maxima,
indicative de que il y a certain type de localisation dans la régions de localisation
électronique.
La méthode NCI fut proposée par Erin Johnson et collaborateurs en 2010 comme
une méthode pour l’étude des interactions non-covalentes. Cette méthode permet
l’analyse des interactions chimiques d’une façon visuelle et rapide. La méthode NCI
utilise les propriétés d’une fonction déjà connue dans la théorie de la fonctionnelle
de la densité, comme le gradient réduit (RDG) de la densité pour identifier des inter-
actions chimiques, celles que des NCI, ces interactions correspondent à des minima
de RDG et sont visualisés comme des isosurfaces autour des ces minima. Les points
critiques du RDG sont utilisés comme des indicateurs des interactions chimiques,
ses minima étant dans la même position que celles de la densité électronique, et
avec des interactions très faibles non montrées par points critiques de la densité
électronique. Cet avantage respect la densité électronique est la conséquence que
le RDG contient information du gradient et de la laplacien de la densité.
À l’origine le RDG a été proposé comme une mesure de la inhomogénéité de un
système quantique. Depuis un perspective chimique cet interprétation n’est pas
très util. Une autre interprétation a été proposée en terme de la densité de énergie
cinétique de von Weizsäcker. Les minima de ce terme identifié les régions où les
comportement des électrons ressemblent à ceux des bosons. Les systèmes fermion-
iques montrent ce comportement dans régions où la répulsion de Pauli n’est pas
très haute, comme par example dans régions décrites par une unique orbital, c’est
à dire, où l’appariement électronique est très fort.
Indépendant de la méthode NCI, le descripteur des électrons localisés (LED) ou
l’indicateur de régions de recouvrement de la densité (DORI) montrent des résul-
tats similaires aux RDG. LED est dérivé de la théorie quantique local, et DORI est
désigné pour bénéficié les propriétés géométrique de la densité électronique. Les
ressemblances entre les résultats obtenus par RDG, LED et DORI sont la con-
séquence de leurs liens avec le vecteur d’onde local.
Dans la méthode NCI, l’information provenant du ρ et RDG est représentée en deux
dimensions. En modifiant l’intervalle de ρ, différentes interactions sont visualisées,
interactions non-covalentes apparaissent à basses valeurs de la densité (< 0.1 a.u.),
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interactions covalentes à valeurs intermédiaire et à plus hautes valeurs les noyaux.
Les dépressions dans le diagramme sont associés avec des interactions chimique.
Les points dans la dépression sont ensuite représentés dans l’espace réel. L’analyse
de ces diagrammes est semblable à l’analyse spectroscopie, où les transitions ont
été remplacées par interactions chimiques. Trouver la correspondance entre les
dépressions et les interactions chimiques est le sujet principal de la méthode NCI.
Le premier point est de définir les limites de ces dépressions, c’est à dire, la ligne de
base. Dans notre code pour faire des calculs NCI, NCIPLOT, on définit la ligne de
base à partir du RDG de pseudodensités crées à partir des fragments du système.
Tous les points sous la ligne de base forment les régions NCI.
Après avoir identifié les interactions, on propose deux solutions pour les différencier.
i) La première utilise la forme des isosurface du RDG. ii) La deuxième est basée
sur la valeur propres de la matrice hessienne de la densité électronique.

i) Car les minima du RDG normalement appareillent à basse valeurs de la densité
électronique, la forme des isosurfaces qui contient celles minima est déterminée
par les valeurs propres de la matrice hessienne de la densité électronique. Les
interactions covalentes sont caractérisées par isosurfaces cylindriques. Par
contre les interactions non-covalentes et ioniques entre deux paire des atomes
ont des isosurfaces en forme de disque. Si la interaction est non-covalente et
entre plusieurs atomes au même temps, les isosurfaces du RDG sont amorphes
et très allongées. Les isosurfaces qui entourent point critiques d’anneau et de
cage ont des formes ellipsoïdales.

ii) La laplacien de la densité électronique a des valeurs positives pour toutes NCIs.
Donc elle n’est pas capable de différentier parmi les types de NCIs. Par contre,
la deuxième valeur propre de la Hessian de la densité électronique λ2, change
de signe dans les points critiques de liaison et les points critiques de cage. Car
les derniers appareillent dans régions où il y a un encombrement stérique. En
général les régions avec value positive de λ2 sont considères comme répulsive.
Les régions avec value négative de λ2 attractives.

Si ont colorie les isosurfaces de RDG par correspondance à la valeur de sign(λ2)ρ
il est possible d’identifier et classer les différent interaction chimiques. La force de
l’interaction est proportionnelle au valeur de ρ et par conséquent les isosurfaces
avec la colleur plus pure représente l’interaction plus forte.
Dans ce manuscrit montré à travers de huit chapitres l’état actuelle de la méthode
NCI et on la cadre parmi les approximations dans l’espace réel.

Chapitre 1

Dans le premier chapitre le problème à plusieurs corps est traité brièvement. Ce
problème implique la résolution de l’équation de Schrödinger. Il est dirigé aux
lecteurs non-familiarisés avec la chimie quantique. On se focalise spécialement sur
les méthodes que plus on a utilisé le plus fréquemment dans ce manuscrit. On com-
mence pour les approximations plus simples, c’est à dire, sans tenir en compte de la
corrélation électronique et progressivement on introduit la corrélations électronique
de une façon variationnelle à travers de fonctions d’onde décrit par la combinaison
linéaire de déterminants de Slater et de manière perturbative avec la théorie de
perturbations de Moller-Plesset. Malgré l’utilisation de la méthode couple-cluster
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dans le chapitre 5, on ne le décrit pas car il est un cas ponctuelle. Dans le chapitre
7 on décris les résultats obtenus avec des systèmes périodiques, les méthodes pour
résoudre l’équation de Schrödinger pour des systèmes infinies ne sont pas inclus. La
théorie de la fonctionnelle électronique (DFT) est aussi traitée, avec tout d’abord
ses fondements théoriques données par les théorèmes de Hohenberg et Kohn puis
l’approche de Kohn et Sham. Les différentes fonctionnelles d’échange et corréla-
tion sont aussi décrites, en commençant pour la plus simple comme LDA jusque les
approximation plus complexes comme la séparation de portée de l’interaction élec-
tronique. Le lecteur est dirigé aux livres plus didactiques comme Modern Quantum
Chemistry: Introduction to Advanced Electronic Structure Theory de Atila Szabo
and Neil S. Ostlund, Molecular Electronic-Structure Theory par Trygve Helgaker,
Poul Jorgensen et Jeppe Olsen, Density-Functional Theory of Atoms and Molecules
by Robert G. Parr et Weitao Yang et A Chemist’s Guide to Density Functional
Theory par Wolfram Koch et Max C. Holthausen.

Chapitre 2

La liaison chimique et son analyse topologique sont les principaux sujets de cette
thèse. Dans le chapitre 2 on fait une bref introduction à la topologie et notamment
à la théorie de Morse. L’application des idées de la théorie de Morse à l’étude
de différents phénomènes physiques, surtout de la mécanique des fluides a donne
des résultats très intéressants. Cette théorie permet la partition de l’espace en
différentes régions liés à entités physiques. Par exemple dans la figure 9 nous
analysons la fonction f(x,y) = −x4 +4(x2−y2)−3 montre deux maxima à (

√
2,0)

et (-
√

2,0) et un point de selle à (0,0). L’analyse de son champ gradient permet
diviser le domaine de cette fonction R2 en deux régions Ωa et Ωb.
Pour bien comprendre la théorie de Morse, tout d’abord les notions de espaces
topologiques et variétés sont traitées puis la théorie de Morse ainsi que ses con-
séquent dans la visualisation des champs scalaires. Dans la pratique on travaille
avec des échantillonnages des fonctionnes linéaires par morceau et la théorie de
Morse ne peut être pas applicable. Ce problème à été déjà traité par la com-
munauté de la visualisation scientifique et sa solution est montrée ici brièvement.
Pour une introduction plus complète on recommande le livre Computational Topol-
ogy: An Introduction par Herbert Edelsbrunner et John L. Harer. En appliquant
les méthodes topologiques à la chimique, on applique la théorie de systèmes dy-
namiques. À la fin de cette chapitre on rappellé cette théorie brièvement et on la
lie avec la théorie de Morse.

Chapitre 3

Dans ce chapitre le problème de la liaison chimique est étudié, c’est à dire, l’absence
d’une définition unique. Traditionnellement la liaison chimique à été étudié par la
théorie des orbital moléculaires ou au travers de différentes décompositions énergé-
tiques. Il n’est pas possible de comprendre la liaison chimique sans la théorie des
orbitales moléculaires, la liaison π ou σ naquirent du langage orbitale. Néanmoins,
pendant les orbitas ont été définies dans un espace de Hilbert, la chimie a été
développé dans l’espace réel R3. Les partitions énergétiques décrivent la liaison à
partir des différentes contributions énergétiques, ainsi on peut dire que une liaison
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Figure 1: Fonction f(x,y) = −x4 + 4(x2 − y2) − 3 (gauche) et la partition induite par
son champ de gradient (droite).

ionique est formée à partir d’interactions plutôt électrostatique. Bien que néces-
saires, les approximations énergétiques sont globales et est dure à extraire quelle
contribution est la dominante quand un atome est lié à plusieurs atomes au même
temps. Les approximations topologiques donnent une solution a ces problèmes. En
utilisant des fonctions dans R3 on peut étudier la topologie de cet fonctions, c’est
à dire analyser son comportement dans chaque point de l’espace et son rapport
avec son voisinage. Si la fonction a en plus une signification chimique on peut
récupérer des idées chimiques dans R3. Le systèmes sont divisés en régions autour
des noyaux, et par conséquence elles sont liées aux atomes. Cet est l’idée de la
théorie chimique quantique, analyser le système dynamique défini par le gradient
de un champ scalaire pour diviser les système en différent régions. Parmi tous
les fonctions proposés par la QCT, on étudions le plus utilisée pour l’analyse des
interactions chimique. Tout d’abord nous étudions la fonction plus basique pour la
QCT, la densité électronique, après nous continuons avec la fonction de localisation
électronique. Puis nous focalisons sûr de fonctions dérivées des densités de énergie
cinétique. Ces fonctions ont résulté très outil pour visualiser la liaison chimique.
Nous terminons avec des fonctions liées au vecteur d’onde local. Cet type de fonc-
tions permettent la visualisation des interaction covalent et non-covalent; le sujet
principal de cette thèse. Pour aller plus loin, on recommande Atoms in Molecules, A
Quantum Theory par Richard F. W. Bader et Applications of Topological Methods
in Molecular Chemistr par R. Chauvin, C. Lepetit, B. Silvi et E. Alikhani.

Chapitre 4

Ici on introduit la méthode NCI; la théorie et son modus operandi. Les interactions
non-covalentes jouent un rôle fondamental dans les chimie. Les interactions entre
un catalyseur et son substrat, le synthèse de énantiomers et plusieurs réactions
chimiques sont régies par interactions non-covalentes. Également la réorganisation
moléculaire résultante la cristallisation de un matériel, est guidée par interactions
non-covalentes. Par conséquence elles déterminent les propriétés du matériel. La
compréhension des forces qui contrôlent la cristallisation permet le conception des
matières premières avec les propriétés désirées. Parmi les interaction non-covalentes
on peut trouver les liaison d’hydrogène, interactions dipôle- dipôle et la dispersion
de London. Dans les dernières années les interaction non-covalents directionnelles
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ont été très étudiées comme les interactions pnictogène, halogène, chalcogène et les
liaisons carbone-hydrogène.
Traditionnellement les interaction non-covalentes s’ont visualisé à partir de fonc-
tions qui dépendent de la distance entre les atomes et du rayon de van der Waals.
Ces approximations ne permettent pas inclure les effet de l’environnement. Les
approximations topologiques offrent une visualisation beaucoup plus réaliste des
interaction non-covalentes.
La topologie du gradient réduit de la densité identifie les interaction chimiques
(covalents et non-covalents) comme minima de sa fonction. Après les interactions
sont classées à partir des courbures de la densité électronique. Notamment la
deuxième valeur propre de la matrice hessienne de la densité électronique permet de
différentier les interaction non-covalents. Dans le figure 2 on montre l’analyse NCI
pour le dimère de phénol. Le diagramme de RDG versus sign(λ2)ρ présente quatre
pics colorés en fonction du valeur de sign(λ2)ρ. Le isosurface du RDG colorées à
partir des valeur de sign(λ2)ρ sont montrées à droite. On peut voir que le pic bleu
à -0.03 a.u. est associé à une liaison d’hydrogène montrée par le composante de
l’isosurface en bleu à droite. Les deux pics en vert correspondent à interactions de
dispersion entre les anneaux de phénol. Les encombrements stériques au milieu de
chaque anneau sont identifiés par le pic jaune-orange.
Dans ce chapitre on montre le lien entre le gradient réduit de la densité et la densité
d’énergie cinétique de von Weizäcker. À partir de cette lien il est possible associé
les minima du gradient réduit de la densité avec des régions où le comportement des
électrons ressemble à celui des bosons et par conséquent la répulsion de Pauli est
assez basse. Le comportement bosonique est caractéristique des régions de noyaux,
pair-libres, liaisons covalente et régions d’interaction en général.

Figure 2: Analyses NCI pour le dimére de phénol. (Gauche) Diagramme de RDG versus
sign(λ2)ρ coloré avec les valuers de sign(λ2)ρ. (Droite) RDG=0.5 isosurface coloré avec
les valuers de sign(λ2)ρ.

Chapitre 5

Tous les calculs NCI présentés dans le manuscrit ont été faits avec le code NCI-
PLOT. Ce chapitre résume tous les aspects techniques de la méthode. La méthode
NCI a été introduit comme une approximation plus visuelle que quantique. À par-
tir des diagrammes du gradient réduit de densité versus la densité électronique
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on peut définir régions de NCI, où régions de interaction. En calculant des pro-
priétés dans tous les points qui forment ces régions, est possible computer la valeur
moyenne d’une opérateur dans cette région. La figure 3 montre la région NCI pour
le dimére de méthane.
Un des avantages de la méthode NCI est la stabilité des dessins par rapport avec
la qualité de la densité électronique. Dans ce chapitre on étude la dépendance des
résultats de la méthode par rapport à la méthode et à la basse de calcul.

0.0

0.5

1.0

1.5

0.010 0.020 0.030

s

ρ(a.u.)

Methane dimer
Methane

ΩNCI

Figure 3: (Left) ΩNCI pour le dimére de methane. Dans le diagramme de RDG versus
la densité électronique (gauche) et dans la représentation tridimensionnel (droite) ΩNCI .

Chapitre 6

Trois chapitres sont dédiés à l’application de la méthode NCI afin d’analyser les
différents types de interactions. Dans le chapitre 6 on traite les liaisons covalentes,
ioniques et transfer de charge. Malgré la méthode NCI fut proposée et spéciale-
ment conçue pour visualiser les interactions non-covalentes, les propriétés de gradi-
ent réduit de la densité permettent l’analyses de toutes les interactions chimiques
indépendamment de leur force.
D’abord la forme des isosurfaces du gradient réduit de la densité est déterminée par
la laplacien de la densité électronique et par conséquent à la accumulation et la fuit
de densité autour des minima du gradient réduit de la densité. Puis on ajoute des
informations provenant de la fonction sign(λ2)ρ pour colorer les isosurfaces, c’est à
dire, on applique la méthode NCI. Le but de ce chapitre est montré la validité de
la méthode NCI pour analyser toutes les types d’interactions chimique. La figure 4
montre l’analyse NCI pour la molécule de FBR

Chapitre 7

Dans le Chapitre 7 on analyse diverses interactions faibles. Ce chapitre est di-
visé en deux parties. Dans la première partie on applique la méthode NCI de
une façon quantitative à l’analyse des interactions non-covalents directionnelles:
liaisons pnictogène, halogène et liaison hydrogènes faibles. On compare la taille
des régions de NCI, avec l’énergie d’interactions et la contribution de dispersion à
l’énergie d’interaction. Nous trouvons une corrélation acceptable entre la taille de
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Figure 4: Analyses NCI pour la molécule de FBr. (Gauche) Diagramme de RDG versus
sign(λ2)ρ coloré avec les valuers de sign(λ2)ρ. (Droite) RDG=0.5 isosurface coloré avec
les valuers de sign(λ2)ρ.

la région NCI et l’énergie de dispersion: au plus l’énergie de dispersion est impor-
tante, au plus la région NCI será étendue. Également la forme de las isosurfaces
est liée à la contributions énergétique qui domine la stabilisation du system. Ces
interactions sont plutôt électrostatique, comme les liaison d’hydrogène, pnictogène
ou chalcogène ont de surfaces en forme de disque. Par contre, celles où la dis-
persion est la contributions la plus importante ont de surfaces étendues, effet de
l’addition de beaucoup interactions faibles. Après, on utilise la même méthode pour
l’analyses d’auto-assemblée couches et metallocènes. Les systèmes d’auto-assemble
sont très importants pour le conception de nano-matériaux. Ils sont constitués par
des chaines organiques sur une surface métallique. L’interaction entre les chaines
organiques et entre celles et le support métallique déterminent les propriétés des
nano-matériaux. Dans ce chapitre nous étudions les interaction entre les chaînes
organiques comme complement d’un analyse énergétique. Les metallocènes sont
structures très communes dans les basses de données cristallographiques et nous
trouvions intéressant d’analyser les interactions entre les monomères. La figure 5
présente les isosurfaces à valuer 0.5 du RDG pour les deux dimières de ferrocène
étudiés dans ce chapitre.

Tous les résultats sont résumés afin de montrer notre avis sur le problème qu’induit
la nomenclature des interactions chimiques.

Chapitre 8

Les réaction chimiques sont caractérisées par une transformation continue des inter-
actions fortes en faibles et viceversa. Dans ce dernier chapitre on applique la méth-
ode NCI à l’étude de la réactivité chimique. D’abord nous étudions le phénomène
connu comme “Torquo” sélectivité. Nous montrons le rôle des interactions non-
covalentes entre les substituents (Figure 6 (gauche)).

En suit on analyse l’état de transition de Houk-List dans les réactions catalysées par
prolines, et on montre la importance des interactions secondaires pour la stabilité
de l’état de transition Figure 6 (droite).
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Figure 5: RDG=0.5 isosurfaces pour les dimères de ferrocene en configuration orthogo-
nale (gauche) et parallele (droite)

Figure 6: États de transition analyses dans les chapitre 8. (Gauche) État de transition
étudié pour analyser l’effet TORQUO avec l’isosurface du RDG à valuer 0.5. (Droite)
État de Transition de Houk-List avec l’isosurface du RDG à valeur 0.5.
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Contributions

Les principales contributions de cette thèse sont:

i) Une nouvelle interprétation du RDG en terme de la densité d’énergie cinétique
de von Weizsäcker. Les points critiques du RDG ont été liés à la théorie des
atomes en molécules (AIM) et le potentielle mono-électronique (OEP).

ii) On a proposé une algorithme pour définir les régions de NCI et calculer pro-
priétés dedans. Cet algorithme a été implémenté dans le code NCIPLOT. En
l’appliquant à différents systèmes on a démontré l’existence d’une correlation
entre l’energie de dispersion et la taille des régions NCI.

iii) Les résultats de la méthode NCI ont été testé à différentes niveaux de théorie.
La visualisation des isosurfaces ne montré pas un gros depéndance avec la
qualité de la densité électronique. Par contre, quand on calcule des propriétes
dans les régiones de NCI il y a une variation non-négligeable par rapport au
niveau de théorie.

iv) On applique la méthode NCI pour l’analyse des interactions covalents. À
travers de la relation entre RDG et le vecteur d’onde local on le lié avec
d’autres descripteurs proposés dans la littérature.

v) On propose une caractérisation des interactions non-covalentes en utilisant la
forme des isosurfaces du RDG, les valeurs de sign(λ2)ρ et l’énergie.

Difficultés

Parmi tous les outils disponibles pour l’analyse de la liaison chimique, on a choisi
la topologie chimique quantique (QCT). QCT comprend toutes les méthodologies
utilisant la champ de gradient de un des champs scalaire avec une signification
chimique pour diviser un system quantique en différents régions. Toute la théorie
nécessaire pour bien comprend la QCT a été introduite dans le Chapitre 3. Par
contre la méthode NCI n’utilise pas le gradient d’aucune fonctions pour diviser
l’espace. Ce point empêche de parler de la méthode NCI comme une partie de
la QCT. Dans le courant de cette thèse on a trouvé les problèmes suivants pour
implémenter une partition du type QCT avec la méthode NCI

i) La valeur absolut dans le numérateur du RDG fait cette fonction “smooth” par
morceau, et par conséquent la recherche de ses points critiques n’est pas le
suffisamment précise pour garantir la règle de Morse.

ii) Notre code principal de calcul NCIPLOT écrit en Fortran, la plupart des li-
brairies nécessaires pour implementer les méthodes combinatoires introduites
dans le chapitre 2 sont écrites en C++. Pour les utiliser il faudrait récrire
notre code NCIPLOT en C++.

À partir des analyses des isosurfaces du RDG on peut avoir une idée de les positions
des point critiques. Les arbres de bifurcartion on déjà été introduits pour l’analyse
de l’ELF et le RDG. En visualisuant le RDG, une isosurface de 0.5 est normalement
suffisante pour obtenir un isosurface qui contient tous les minima du RDG.
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Aussi important que la topologie, la QCT se focalise dans fonctions avec significa-
tion chimique. On a montré que les minima du RDG identifient des régions où le
caractère bosonique est remarquable.
Une des limitations de la méthode NCI est l’extraction de l’information des dia-
grammes de RDG versus ρ. Par exemple les régions identiques par symétrie sont
représentées par le même pic dans le diagramme, et elles ne peuvent pas être ex-
traites à partir du diagramme. Cette difficulté est intrinsèque à la méthode. Carret
al ont proposé un algorithme pour obtenir des surfaces à partir des régions arbi-
traires du le diagramme.

Perspectives

Il est difficile de mettre un point final à cette thèse où tant de choses restent à faire
et à explorer. En ayant établi les bases théoriques de la méthode NCI, la future
recherche sur la méthode devrait se focaliser sur la partie computationnelle. Je vais
essayer ici de résumer les perspectives que ce travail a engendrées et qui restent sur
ma “TO DO” liste et aussi pour les prochains membres du project NCI:

i) D’abord il faudra développer un code capable de obtenir le complexe de Morse du
RDG. Malgré on connais déjà beaucoup de ses caractéristiques, personne n’a
fait ce type de partition. Les basins du RDG (notamment les basins de -RDG,
car ils sont définis à partir des maxima) divisent l’espace en régions atomiques
et de interaction. Une fois que cette partition sera effectuée, le diagrammes
de RDG versus resteront dans un plaine secondaire, car les points critiques
du RDG seront localisés directement dans R3 .

ii) Les méthodes d’intégrations dans les régions de NCI devront être améliorées
pour obtenir des résultats précis. Malgré le but final de la méthode NCI
sont des gros systèmes, les intégrations devront être testées avec des systèmes
atomique, puis petites molécule et augmenter la taille du système d’une façon
graduelle.

iii) Une des principales difficultés de la QCT, a été les gros systèmes. Mal-
gré l’accéleration de méthodes d’intégrations durant ces dis dernières années,
elle ne sont pas suffisamment rapide et précis pour traiter de gros systèmes
d’intérêt dans la biologie ou les sciences de la matière. Un des avantages du
RDG est sa capacité pour calculer au niveaux promolecular les principales car-
actéristiques des NCIs. On peut envisager un algorithme en deux étapes: une
première analyse NCI rapide pour localiser les NCIs, et une deuxième pour
accomplir des analyses topologiques précises dans las régions NCI. Tierny et
al on proposé un algorithme pour chercher point critiques de la densité dedans
les régions de NCI.

iv) Lorsque je travaillais avec chercheurs de la communauté de la visualisation
scientifique, j’a constaté le potentielle de la topologie pour l’analyse de la
liaison chimique. Poperlier avait déjà noté les concepts topologiques que on
a utilisés dans la QCT, sont tellement limitées que on est plus proche à la
topographie que à la topologie. Depuis les travaux de Bader, il y 40 ans déjà,
la quantité des idées outils topologiques utilisés par la QCT ont été assez
limitées. À mon avis il faudra une collaboration plus forte entre les deux
communautés pour réussir garantir le futur de la QCT.
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Cette liste pourrait être plus longue et je suis sure qu’elle le sera. Le temps me
manque pour mener à bien tous ces fascinants projets et j’espère qu’elles seront
accomplis dans les prochains mois, soit par moi ou par mes collaborateurs.
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