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u i = [u X i , u Y i ] T = σ M (ū i ) + ûi u
Full input vector as u = [u 1 , . . . , u n ] T z i First, the mathematical modeling of a single quadrotor and of the formation of quadrotors is developed. The trajectory tracking problem for a single quadrotor is investigated. Through the analysis of the atness of the quadrotor dynamical model, the desired trajectory for each quadrotor is transferred to the design of the desired at outputs. A atness-based trajectory tracking controller is, then, proposed. Considering the double-loop property of the closed-loop quadrotor dynamics, a high-gain attitude controller is designed, according to the singular perturbation system theory. Since the closed-loop quadrotor dynamics performs in two time scales, the rotational dynamics (boundary-layer model) is controlled in a fast time scale. The formation controller design is then only considered for the translational dynamics: reduced model in a slow time scale. This result has simplied the formation controller design such that the reduced model of the quadrotor is considered instead of the complete model.

Since the reduced model of the quadrotor has a double-integrator characteristic, consensus algorithm for multiple double-integrator systems is proposed. Dealing with the leader-follower formation problem, an interaction matrix is originally proposed based on the Laplacian matrix. We prove that the convergence condition and convergence speed of the formation error are in terms of the smallest eigenvalue of the interaction matrix. Three formation control strategies with xed formation topology are then proposed. The atness-based formation control is proposed to deal with the aggressive formation problem, while the high-order derivatives of the desired trajectory for each UAV are estimated by using an observer; the Lyapunov redesign is developed to deal with the nonlinearities of the translational dynamics of the quadrotors; the hyperbolic tangent-based bounded control with composite nonlinear feedback is developed in order to improve the performance of the formation.

In an additional way, a saturated switching control of the formation is inves-tigated, where the formation topology is switching. The stability of the system is obtained by introducing the convex hull theory and the common Lyapunov function.

This switching control strategy permits the change of the leaders in the formation.

Inspired by some existing works, such as the anonymous neighbor-based formation control, we nally propose a weighted neighbor-based control, which shows better robustness than the anonymous neighbor-based control.

Simulation results using Matlab primarily illustrate our proposed formation control strategies. Furthermore, using C++ programming, our strategies are implemented on the simulator-experiment framework, developed at Heudiasyc laboratory.

Through a variety of tests on the simulator and real-time experiments, the eciency and the advantages of our proposed formation control strategies are shown. Finally, a vision-based inter-distance detection system is developed. This system is composed by an on-board camera, infrared LEDs and an infrared lter. The idea is to detect the UAVs and calculate the inter-distance by calculating the area of the special LEDs patterns. This algorithm is validated on a PC, with a webcam and primarily implemented on a real quadrotor.

Chapter 1 Introduction

General introduction

The formation control problem has been progressively studied in mobile robotics, in the elds such as ground vehicles, unmanned aerial vehicles and aircrafts to name a few. The formation aims at controlling the relative distance and the orientation of the robots within a group while allowing the group to move as a whole.

In general, two main formation control congurations appear in the literature: leaderless and leader-follower congurations. The behavior-based ocking control is one famous leaderless conguration, where the advantages are their scalability and robustness. On the other hand, it is dicult to mathematically study the stability analysis of the multi-robot system using the behavior-based approach. The leaderfollower conguration depends on the leader for achieving the goal. This approach has advantages such as eciency and simplicity.

This thesis presents the development of several formation control strategies of multiple Unmanned Aerial Vehicles (UAVs) with leader-follower conguration. A four-propeller multirotor, which is called quadrotor, is taken into account.

The potential applications of the quadrotors have attracted the attention of researchers in the last decade. The cooperation of multiple quadrotors is promising in order to accomplish complex tasks that are impossible to be completed by a single quadrotor. In this thesis, the cooperation of quadrotors are especially considered in the aspect of formation control.

One of the diculties in this work is that the multi-UAV system has a complex unit dynamics. The characteristics such as high-order dynamic model, nonlinearity and actuators saturation are considered in this thesis. Furthermore, the existing simple consensus algorithms of the literature do not have satisfactory formation performance.

Hence, this work is proposed to develop quadrotors formation strategies.

1.2 Motivation and applications

Unmanned Aerial Vehicles

An Unmanned Aerial Vehicle (UAV) is known as a powered ying vehicle that does not carry a human operator, that can be operated remotely or autonomously and that can carry a payload (denition similar to the one given in [START_REF] Devalla | Developments in unmanned powered parachute aerial vehicle: A review[END_REF]). The UAVs can be used in both military and civilian applications. UAVs can carry out tasks without placing human pilots in jeopardy.

Additionally, UAVs can operate in hazardous conditions or require tedious or onerous piloting during lengthy operations.

Dierent types of Unmanned Aerial Vehicles (UAVs) have become available in recent years, namely, xed-wing UAVs and rotary-wing UAVs. Compared with xed-wing UAVs, the rotary-wing UAVs have advantages such as Vertical Taking-O and Landing (VTOL) ability. The rotary-wing UAVs cover helicopters and multirotors. A multirotor is a rotorcraft with more than two rotors. Compared to helicopters, a multirotor has the simplicity of rotor mechanics required for ight control. Unlike conventional helicopters, which are mechanically very complex, the multirotor usually uses xed-pitch blades. The control of vehicle motion is achieved by varying the relative speed of each rotor in order to change the thrust and torques.

The most famous multirotor is the quadrotor, which has four rotors. In addition to the ability of VTOL, quadrotors also have advantages such as maneuverability, low-cost, small size, and easy handling. These advantages motivate researchers to pay attentions on quadrotors. Other advantages of quadrotors are reliability and compactness [Pounds, 2007], which are essential for a system that will be portable and useful in close proximity to people and structures for commercial applications.

In the last decade, the research on quadrotors has substantially increased.

Some prototypes of quadrotor of dierent laboratories are shown in Fig. 1.1. Some commercial prototypes are also seen such as in Fig. 1.2.

The quadrotors are promising in many applications, such as trac monitoring [Panagiotopoulou, 2004], payloads transportation [Sreenath et al., 2013], targets searching [START_REF] Tomic | Toward a fully autonomous uav: Research platform for indoor and outdoor urban search and rescue[END_REF] and also for educational purposes.

Formation of quadrotors

In some cases, a single UAV cannot well perform some complex missions, such as large payloads transportation, searching objects in large area, etc. Motivated by these potential applications, researchers are more and more attracted by the cooperation of multiple UAVs. The quadrotors have a fundamental payload limitation that is dicult to overcome in many practical applications, especially in large payloads transportations.

GRASP laboratory at University of Pennsylvania has investigated the payload limitations of micro aerial robots and they proposed to manipulate and transport the large payloads by multiple UAVs [START_REF] Kushleyev | Towards a swarm of agile micro quadrotors[END_REF]] [Michael et al., 2009] [ Michael et al., 2011] [Sreenath andKumar, 2013], which are shown in Fig. 1.4.

Within the project of Flying Machine Arena at ETH Zurich, the researchers carry out a exible payload transportation task using the cooperation of multiple quadrotors [Ritz and D'Andrea, 2013], which is shown in Fig. 1.3(a).

In the same laboratory, the cooperative quadrotors are also used for architecture (see Fig.1.3(b)).

In these works, the cooperation of quadrotors are achieved under the help of a localization system1 . This system is widely used in the research of multiple quadrotor cooperations, other experimental works can also be found in papers such as [START_REF] Turpin | Capt: Concurrent assignment and planning of trajectories for multiple robots[END_REF]] [Turpin et al., 2012] [Roldao et al., 2014]. The in [START_REF] Saska | Coordination and navigation of heterogeneous mav-ugv formations localized by a `hawk-eye'-like approach under a model predictive control scheme[END_REF]. proposed in [START_REF] Saska | Autonomous deployment of swarms of micro-aerial vehicles in cooperative surveillance[END_REF]. At Czech Technical University, the localization of quadrotors in outdoor environment are proposed by using an ecient vision-based method [START_REF] Krajnik | A practical multirobot localization system[END_REF].

At Max Planck Institute for Biological Cybernetics in German, the teleoperating multi-UAV system is investigated [Franchi et al., 2012a] [ [START_REF] Lee | Semi-autonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles[END_REF]. The environmental setup is shown in Fig. 1.6. This work permits human interventions in the cooperation of UAVs.

Some recent research on the applications of search and rescue aroused the interest of the authors for example in the GRASP laboratory at University of Pennsylvania [START_REF] Dames | Autonomous localization of an unknown number of targets without data association using teams of mobile sensors[END_REF]. They focus on searching of a large number of objects of interest by using teams of mobile robots such as UAVs. Theoretical works have Figure 1.5: Group of quadrotors deployed in the environment to cover the areas of interest by on-board surveillance cameras [START_REF] Saska | Autonomous deployment of swarms of micro-aerial vehicles in cooperative surveillance[END_REF].

Figure 1.6: Teleoperating multi-quadrotor system [Franchi et al., 2012a].

been done in this work and simulation results validate the proposed algorithm. The planning and design of trajectories for multiple UAVs are investigated for instance in GRASP laboratory [START_REF] Turpin | Capt: Concurrent assignment and planning of trajectories for multiple robots[END_REF]] [Turpin et al., 2012] and SCORE Lab of the Faculty of Science and Technology at the University of Macau [START_REF] Roldao | A leader-following trajectory generator with application to quadrotor formation ight[END_REF],

where experimental validations have been developed using a motion capture system in order to locate the UAVs and to obtain the orientations. In [START_REF] Turpin | Capt: Concurrent assignment and planning of trajectories for multiple robots[END_REF],

a collision free trajectory assignment method for UAVs to achieve dierent goal locations is proposed. The aggressive formation of quadrotors is accomplished by using geometric control for each UAV in [START_REF] Turpin | Trajectory design and control for aggressive formation ight with quadrotors[END_REF]. The real-time generation of formation trajectories of a ock of quadrotors is presented in [START_REF] Roldao | A leader-following trajectory generator with application to quadrotor formation ight[END_REF],

where the Leader-Follower (L-F) approach is considered. The Heudiasyc laboratory has proposed a scenario of searching persons in a large area by using multiple quadrotors with L-F formation conguration [Hou and Fantoni, 2015a], which is shown in Fig. 1.7. According to the authors, using a formation of quadrotors is a more ecient than using a single UAV to nd the object. The followers can be considered as the extended eyes of the leader. The natural behavior of animals operating as a team has inspired scientists in dierent disciplines to investigate the possibilities of networking a group of systems to accomplish a given set of tasks without requiring an explicit supervisor. Therefore, multi-agent systems have appeared broadly in several applications including multivehicle system, formation ight of unmanned air vehicles (UAVs), clusters of satellites, self-organization, automated highway systems, and congestion control in communication networks [Saber and Murray, 2003a]. A formation of multiple quadrotors can be modeled as a multi-agent system. The methodology in multiagent system can be used for reference in the study of multi-quadrotor formation problem, such as in [Guerrero and Lozano, 2012].

Systems of systems (SoS)

Systems of Systems (SoSs) are large-scale integrated systems which are heterogeneous and independently operable on their own, but are networked together for a common goal [Jamshidi, 2008]. These systems could be robotic, automatic or even human [START_REF] Joordens | Underwater swarm robotics consensus control[END_REF]. The Autonomous Control Engineering (ACE) lab at the University of Texas is trying to take systems of dierent types of robots (land, air and see) to build systems of systems, see Fig. 1.8 for example.

Within the concept of SoSs, a collision-free multi-robot formation problem is investigated in [START_REF] Ray | Decentralized motion coordination for a formation of rovers[END_REF]. The consensus problem of multi-UAV system is considered in [Jaimes B and Jamshidi, 2010], where a low-cost testbed for the swarm of UAVs is given.

(a) Courtesy Bureau of Industry and Security (b) SoS with water, infantry and air units Figure 1.8: Examples of modern application of SoS [START_REF] Ray | Decentralized motion coordination for a formation of rovers[END_REF] 1.4 Formation control

The formation control of a multi-UAV system is an important category of networked systems due to their commercial and military applications.

Formation objective

The control objective of the formation of multiple quadrotors contains the consensus and the formation pattern of the quadrotors. According to the dierent requirements on the patterns, the formation can be divided into two types, which are the rigid and exible formations.

Consensus

A general denition of consensus is given in the literature such as the one in [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF][Olfati- Saber and[START_REF] Olfati-Saber | [END_REF]Murray, 2003a]:

in networks of agents or dynamic systems, consensus means to reach an agreement regarding a certain quantity of interest that depends on the state of all agents.

The consensus problems can be classied by unconstrained consensus problems and constrained consensus problems. Both two problems aim at achieving an agreement of all agents in a MAS. In general, in a constrained consensus problem, an objective function exists such that the state of all agents has to asymptotically become equal to this function, while in an unconstrained consensus problem, it is sucient that the state of all agents asymptotically be the same without computing any objective function. For example, in a multi-vehicle system, an unconstrained consensus is achieved, if the goal of each vehicle is to minimize its local cost as follows

U i (x) = Σ j∈N i x j -x i -d ij 2 (1.1)
where x i is the position of vehicle i and d ij is a desired inter-vehicle relative-position vector. Vehicle j is the neighbor of vehicle i.

A consensus algorithm (or protocol) is an interaction rule that species the information exchange between an agent and all of its neighbors on the network. Ali Saberi, Xu Wang and Tao Yang [START_REF] Wang | Consensus in the network with uniform constant communication delay[END_REF]] [Yang et al., 2011] considered that the consensus is to deliberately drive the states of network components to a common value or trajectory. Jiahu Qin and Changbin Yu [START_REF] Qin | Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition[END_REF] have also claimed that the consensus algorithms cause all the agents in the MAS to converge to the same trajectory.

Consensus has become one of the most studied problems in the research of multi-agent systems [Li et al., June] [Zhongkui Li andFu, 2013] [Chen et al., 2012] [ [START_REF] Li | Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[END_REF]Beard, 2005], because many seemingly dierent problems that involve interconnection of dynamic systems in various areas of science and engineering happen to be closely related to consensus problems for multi-agent systems. To name a few consensus examples, we can nd: synchronization of coupled oscillators; ocking theory; fast consensus in small-worlds; rendezvous in space; distributed sensor fusion in sensor networks; distributed formation control.

Mathematical tools of the research of consensus mainly rely on algebraic graph theory, in which graph topologies are connected with the algebraic properties of the corresponding graph matrices. The graph theory is widely used in the research of MASs [Olfati- Saber et al., 2007] [Ren andBeard, 2005].

A problem related to consensus , which is so called cooperation or cooperative task, often appears in works such as [START_REF] Saber | Flocking with obstacle avoidance: cooperation with limited communication in mobile networks[END_REF] [Olfati- Saber et al., 2007]. An informally interpretation of cooperation is given by Olfati, namely giving consent to providing one's state and following a common protocol that serves the group objective. For example, a constrained consensus problem f -consensus problem is a cooperative task, where f represents an objective function of the initial values of all agents. An alignment problem is also a cooperation problem. A leader-follower multi-agent system belongs to cooperation problem if the MAS has one leader or multiple leaders that are in agreement. If two of leaders are in disagreement, then no consensus can be asymptotically reached.

Therefore, the problems of multiple leaders in disagreement are not a consensus or cooperation problem, such works can be found for instance in [START_REF] Cao | Distributed containment control with multiple stationary or dynamic leaders in xed and switching directed networks[END_REF] [ [START_REF] Notarstefano | Containment in leader-follower networks with switching communication topologies[END_REF] [Zhongkui [START_REF] Li | Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[END_REF].

Formation patterns

The formation can be normally classied as rigid or exible formations [START_REF] Kwon | Hierarchical formation control based on a vector eld method for wheeled mobile robots[END_REF]. The notion of exible formation is used more frequently in multi-robot systems [START_REF] Barfoot | Motion planning for formations of mobile robots[END_REF], which means that the robots in the formation keep variable inter-distances (d ij in (1.1) is variable). Dierent from the exible formation problem, a rigid formation of multi-vehicle system usually has a xed desired formation pattern, such that the inter-distances of the robots are usually constant (d ij in (1.1) is constant).

Leader-Follower formation conguration

The leader-follower, virtual leader and behavior-based congurations are seen in the literature. The formation control of multi-agent systems using the Leader-Follower (L-F) conguration is particularly attractive due to its simplicity and scalability [START_REF] Roldao | A leader-following trajectory generator with application to quadrotor formation ight[END_REF]. Within the L-F conguration, some agents are designated as leaders while others are treated as followers.

The states of the leader constitute the coordination variable, since the actions of the other vehicles in the formation are completely specied once the leader states are known [START_REF] Montenegro | A review on distributed control of cooperating mini uavs[END_REF], [Ren et al., 2005]. The L-F conguration has the advantage of simplicity, since the moving trajectory of the ock is clearly given to the leader(s) [Fax and Murray, 2004]. Then, the followers follow the leader(s) to keep the formation. Compared to the behavior-based approach, the L-F conguration is ecient and simple for applications in practice [Hou and Fantoni, 2015a]. In the behavior-based approach without leader, the agent in the ock usually has random behaviors to overcome local maxima or minima [START_REF] Balch | Behavior-based formation control for multirobot teams[END_REF]].

Standard L-F conguration

In the standard L-F formation conguration, the leader can aect the followers whenever it is in their neighboring set but there is no feedback from the followers to the leader. Such works can be found in papers [START_REF] Ni | Leader-following consensus of multi-agent systems under xed and switching topologies[END_REF], [START_REF] Hong | Tracking control for multi-agent consensus with an active leader and variable topology[END_REF], [START_REF] Ji | Interconnection topologies for multi-agent coordination under leader?follower framework[END_REF], where the leader is treated as a special agent whose motion is independent on other agents.

Advantages The rst advantage is the eciency. For example in Fig. 1.7, the searching trajectory is clearly specied by the leader(s), while the followers keep around the leader(s) for the purpose of extending the searching scope of the leader(s). Furthermore, the L-F conguration is considered as an energy saving mechanism [START_REF] Ni | Leader-following consensus of multi-agent systems under xed and switching topologies[END_REF] and [Hummel, 1995]. Additionally, the L-F formation conguration can avoid information-based instability according to John Baillieul and Panos J. Antsaklis [START_REF] Baillieul | Control and communication challenges in networked real-time systems[END_REF].

Disadvantages The standard L-F formation conguration is considered as a strategy lacking robustness, because the L-F conguration is often considered poorly robust with respect to leader's failure [START_REF] Montenegro | A review on distributed control of cooperating mini uavs[END_REF].

We have tried to improve the robustness of such an approach. For example in [START_REF] Hou | Leader-follower formation saturated control for multiple quadrotors with switching topology[END_REF], we propose an L-F formation with switchable multiple leaders, which permits the ock continue a formation even in the face of a failure of a leader. In [Hou and Fantoni, 2015a], we also propose a weighted neighbor-based formation method, which shows better robustness than the anonymous neighborbased formation [START_REF] Turpin | Capt: Concurrent assignment and planning of trajectories for multiple robots[END_REF].

1.4.2.2 Interactive L-F conguration E. Semsar-Kazerooni and K. Khorasani [Semsar-Kazerooni and Khorasani, 2008],

[Semsar-Kazerooni and Khorasani, 2011] have proposed a new L-F conguration. In this work, the leader is aware of the objective command for the group of agents, and the rest of the agents are connected to each other or to the leader with a predened topology. The objective command can be a set point reference or a time-varying signal specied for the output or a trajectory to be followed by the agents in the team. Additionally, the followers have the possibility to have interaction with the leader. In the team of agents, only one leader exists. This assumption has practical signicance, because in general, the states of leader(s) are not always available to the followers. Furthermore, for a MAS with a large number of agents, multiple leaders perform more ecient than one leader.

The L-F formation conguration has considerable applications in many elds, for example, in the research of management, social systems and robotic networks.

Within the eld of mobile robotics, L-F formations arise in applications ranging from searching, surveillance, inspection, and exploration [START_REF] Panagou | Maintaining visibility for leader-follower formations in obstacle environments[END_REF].

Centralized, decentralized and distributed control

In general, the control schema of the formation of multiple robots has three types: centralized, decentralized and distributed control strategies.

The centralized control strategy is primitively proposed, where a central processor or a decision making component exists (shown in Fig. 1.9). The central processor is responsible for collecting data of subsystems and return decisions to them. This control strategy is usually considered as a simple, easy implementing and ecient approach, but has weak robustness with respect to the fault of the central processor. This weakness may cause very serious problems in large-scale practical systems.

The standard leader-follower formation conguration is intuitively considered as a centralized method, where the leader is independent of the followers. For instance, in [START_REF] Ji | Leader-based multi-agent coordination: controllability and optimal control[END_REF], a centralized L-F formation problem is considered, the leaders are permitted to move freely and are able to access to global information. If the leader makes the organization decisions using little or no input from followers, then the organization is centralized [Coulter, 2011]. The decentralized control strategy is proposed in order to deal with the robustness problems, and considering the complexities and diculties of the research on the overall system, the researchers are more and more interested in the approach that can divide the analysis and synthesis of the overall system into independent or almost independent subproblems. The idea is that each subsystem in the overall system has its own processing unit and makes its own decisions based on its own measurements. Decentralization allows the overall system to take advantage of division of labor by sharing decision-making load by the subsystems.

In a decentralized control system, the overall system is no longer controlled by a single controller but by several independent controllers, which all together consist decentralized controllers implemented on each module. In general, the decentralized control is used in a large-scale system, which has coupled subsystems.

J. Tsitsiklis has given a general denition of the decentralized system in discrete time in [Tsitsiklis, 1984]. According to the denition, the decentralized system has some modules, which are coupled by interconnection. Each module has a corresponding controller, which depends on the states of the current module.

In a multi-UAV system, if each UAV has its own controller and moves according to its own measurement (detection or sensing), the formation control strategy is decentralized.

The distributed control strategy evolves from the decentralized control with sharing local information (see Fig.1.10(b)).

The distributed control has the potential of being superior to centralized control when data delays are present [START_REF] Baillieul | Control and communication challenges in networked real-time systems[END_REF]. In addition, according to Olfati Saber [Olfati- Saber and Murray, 2004] and Ren

Wei [START_REF] Ren | Information consensus in multivehicle cooperative control[END_REF], the consensus algorithms are distributed, if only neighborto-neighbor interactions between UAVs are needed. In other words, if each UAV communicates with all the other UAVs in the formation, the control strategy is not distributed.

Therefore, in a multi-UAV system, if the communication issues are considered in the decentralized control design framework, the formation control strategy is distributed.

The behavior-based formation conguration is considered as a decentralized method or a distributed method depending on the communications or interactions between UAVs.

Switching control

In a multi-agent system, if the neighbors of each agents are permanent and the leader(s) does not need to change, the xed formation controller can make the agents 

Dynamic interconnections

In many applications, the interconnections between agents may change dynamically.

For example, communication links between agents may be unreliable due to disturbances and/or subject to communication range limitations. Furthermore, if information is being exchanged by direct sensing, the locally visible neighbors of a vehicle will likely change over time [Ren and Beard, 2005]. The switching topology of multiagents systems have been considered in [START_REF] Cao | Distributed containment control with multiple stationary or dynamic leaders in xed and switching directed networks[END_REF], [START_REF] Ni | Leader-following consensus of multi-agent systems under xed and switching topologies[END_REF], [START_REF] Hong | Tracking control for multi-agent consensus with an active leader and variable topology[END_REF], [START_REF] Notarstefano | Containment in leader-follower networks with switching communication topologies[END_REF].

The L-F multi-agent system with switching topology problems are investigated in [START_REF] Ni | Leader-following consensus of multi-agent systems under xed and switching topologies[END_REF],

[Semsar-Kazerooni and Khorasani, 2011]. In [START_REF] Cao | Distributed containment control with multiple stationary or dynamic leaders in xed and switching directed networks[END_REF], the authors focus on a multi-agent system with a directed graph, which is strongly connected. Then, the observability of the tracking errors between the leader and the followers is investigated. The Riccati and Lyapunov inequalities are used to design the controller for a MAS with switching topology in [START_REF] Ni | Leader-following consensus of multi-agent systems under xed and switching topologies[END_REF], where the authors have found that the multi-agent system is stable if the graph is jointly connected.

In [START_REF] Hong | Tracking control for multi-agent consensus with an active leader and variable topology[END_REF], with considering a variable interconnection topology, a distributed neighbor-based state-estimation rule is given to each agent. By using this control method, the consensus problem of the agents without detecting the velocity of the leader has been solved. In [START_REF] Notarstefano | Containment in leader-follower networks with switching communication topologies[END_REF], an L-F formation problem with a stationary leader is investigated, where an intermittent connected communication topology is considered.

Changeable leaders

As mentioned in section 1.4.2.1, the greatest weakness for the standard L-F method is the lack of robustness in terms of leader failure. Nevertheless, an L-F formation with changeable leaders can solve this problem. Some relative recent works such as [START_REF] Franchi | Online leader selection for multi-robot collective tracking and formation maintenance[END_REF], [START_REF] Franchi | Distributed online leader selection in the bilateral teleoperation of multiple uavs[END_REF], [START_REF] Clark | Minimizing convergence error in multi-agent systems via leader selection: A supermodular optimization approach[END_REF] and [START_REF] Hou | Leader-follower formation saturated control for multiple quadrotors with switching topology[END_REF] investigate the changeable leader problems, where the teleoperation is considered. In [START_REF] Franchi | Online leader selection for multi-robot collective tracking and formation maintenance[END_REF] and [START_REF] Franchi | Distributed online leader selection in the bilateral teleoperation of multiple uavs[END_REF], the online leader selection problem is investigated. In [START_REF] Clark | Minimizing convergence error in multi-agent systems via leader selection: A supermodular optimization approach[END_REF], the authors focus on the leader selection problem in order to minimize convergence errors of agents.

In [START_REF] Hou | Leader-follower formation saturated control for multiple quadrotors with switching topology[END_REF], the convergence of formation error is achieved by assigning an additive leader.

Stability of the switching system

Resulting from the switching formation control, the multi-agent system can be attributed as a switching system. The stability and the controller design for switching systems have been tackled such as in the book [Liberzon, 2003]. Some recent developments on switching linear systems are introduced in [START_REF] Lin | Stability and stabilizability of switched linear systems: A survey of recent results[END_REF]. In [START_REF] Zhao | Stability of dynamical networks with non-identical nodes: A multiple v-lyapunov function method[END_REF], the authors have proposed a multiple Lyapunov function method to analyze the stability of dynamical networks. They also studied the sucient and necessary condition of the stability for a switching system. In [Branicky, 1998],

the stability of the hybrid dynamic system by using multiple Lyapunov method is discussed. The work in [Hespanha, 2004] proposes the uniform stable conditions by introducing the LaSalle's invariance principle. The analysis about the switching singular system and the controller design have been given by [Juixinq et al., Oct], [START_REF] Chadli | Admissibility of singular switched systems: LMI formulation[END_REF]]. For a system with arbitrary switching, the common Lyapunov function method is carried out to prove the stability of the system [START_REF] Zhao | Stability of dynamical networks with non-identical nodes: A multiple v-lyapunov function method[END_REF].

Vision-based quadrotors formation

For each UAV, the decentralized formation control is designed using the measurement (detection) to its neighbors (see section 1.4.3). This detection contains the relative positions and velocities. In general, these states can be obtained through the following two methods.

External localization method

The localization of the robots remains one of the central problems of the multi-robot systems. The commercial external localization systems, such as the motion capture system Vicon [http://www.vicon.com/] and OptiTrack [http://www.optitrack.

com/], have been widely used in many elds. In the eld of multi-robot system, the external localization system is used to obtain the position, velocity and orientation data of the robots.

In the outdoor environment, the localization of robots are accomplished by the components such as GPS, which gives meter, decimeter or centimeter precisions when using a DGPS or RTK GPS.

On-board localization method

The on-board localization methods are also attractive because of the potential applications in unknown or outdoor environments. The on-board camera based localization methods are promising in the application of the outdoor formation of the UAVs (without GPS or GPS unavailable), although it is challenging and dicult.

Recently, the visual odometry is used to determine the position and orientation of a robot by analyzing the associated camera images [START_REF] Forster | Svo: Fast semi-direct monocular visual odometry[END_REF] Heudiasyc laboratory [START_REF] Fantoni | Optic ow-based control and navigation of mini aerial vehicles[END_REF]]. An on-board sensing strategy using camera is proposed by [START_REF] Hausman | Cooperative control for target tracking with onboard sensing[END_REF] to estimate the position of a moving target (see Fig.1.11.(a)), where a centralized multi-robot control approach is given. The collision avoidance strategy of two quadrotors is proposed by [START_REF] Conroy | 3-d reciprocal collision avoidance on physical quadrotor helicopters with on-board sensing for relative positioning[END_REF], where the on-board camera is used for each quadrotor to detect the relative positions and velocities of other quadrotors (see Fig.1.11.(b)).

Authors [START_REF] Faessler | A monocular pose estimation system based on infrared leds[END_REF] have developed a monocular attitude estimation based on infrared LEDs. The idea is to detect LEDs mounted on the target, through a camera with an infrared-pass lter. This method is simple to implement and robust with respect to illumination changes.

Contributions

This thesis aims at developing the formation control strategies of multi-quadrotor system. The rigid and exible formation problems are investigated. Inspired by the swarms of animals in the nature such as shown in Fig. 1.12, We develop the decentralized/distributed formation control strategies for multi-quadrotor systems.

Interactive L-F formation

A new type of leader-follower formation is considered in the thesis, in which the leader(s) has interactions with the followers. Only part of the followers can sense the leader(s). A UAV, although the leader, senses its neighbors instead of all the UAVs in the ock. Each leader has interactions with neighboring UAVs (leaders or followers).

L-F consensus analysis for multiple-quadrotor systems

Resulting from the proposed high-gain attitude controller, the closed-loop dynamics of the quadrotor performs in fast and slow time scales. Then, the complete dynamics of the quadrotor is simplied as a reduced model. Since the reduced model of the quadrotor has a double-integrator characteristic, consensus algorithm for multiple double-integrator systems is proposed. Dealing with the leader-follower formation problems, an interaction matrix is originally proposed based on the Laplacian matrix.

We prove that the converging condition and converging speed of the formation error are in terms of the smallest eigenvalue of the interaction matrix. Finally, this work is ended by some conclusions and propositions of future works. A quadrotor usually has a thin and light cross structure. The structure of the quadrotor contains two arms of type X and four rotors attached at the ends of the arms with a symmetric frame. All the propellers axes of rotation are xed and parallel (shown in Fig. 2.1). The total thrust force and moments acting on the quadrotor are given by propellers driven by motors. According to the selection of the body-frame of a quadrotor, there are two basic types of quadrotor congurations: plus and cross-congurations shown in Fig. 2.1). The × type conguration provides higher momentum than the + conguration [START_REF] Gupte | A survey of quadrotor unmanned aerial vehicles[END_REF].

Additionally, the × type conguration can improve the maneuverability performance [START_REF] Zhang | A survey of modelling and identication of quadrotor robot[END_REF].

It is recognized that a quadrotor is a highly nonlinear, multi-variable, strongly coupled and basically an unstable system. The dynamics of the quadrotor evolves in a nonlinear manifold, namely the special orthogonal group SO(3). Additionally, the quadrotor is an under-actuated system, whose six DOF (Degree Of Freedom) motion is regulated by the speed of four rotors. The dierence in thrusts of the four rotors causes the quadrotor to pitch or roll. When the quadrotor tilts, a component of the total thrust is directed sideways and the aircraft translates horizontally. In this thesis, since we are concerned by the multi-quadrotor system, we basically begin with the study on a single quadrotor model in order to deduce the model of the multi-quadrotor system.

The dynamics of a quadrotor is modeled as the motion of a rigid body in a threedimensional space with a thrust force and three moments. Generally, the dynamics of the quadrotor is modeled based on the following representations The two other representations are proposed for the modeling of quadrotors to deal with the problem of gimbal lock [START_REF] Harrison | An algorithm providing all-attitude capability for three-gimballed inertial systems[END_REF], which means the loss of one degree of freedom in a three-dimensional space. The gimbal lock problem occurs when two of rotational axes align and lock together. For example, if the pitch angle is equal to π/2, then, the roll angle will become the yaw angle according to the denition of Euler angles. The gimbal lock problem is caused by kinematic singularities. To overcome this problem, the DCM and the quaternion representations are applied on the modeling of quadrotors dynamics.

The idea of the DCM is to represent the rotation matrix in terms of direction cosines instead of Euler angles. The DCM is an 3 × 3 orthogonal matrix whose entries are the cosines of the angles between each basis vector of the inertial frame and the body-xed frame.

The DCM has nine parameters where six of them are redundant. In general, only three parameters are required to represent an orientation, such as using the Euler angles. The DCM representation can lead to an higher computational consumption than Euler angles representation.

The quaternion representation is also promising to overcome the kinematic singularities. The drawback of the quaternion is that it is hard to get an intuitive feeling for what it represents. Furthermore, there are exactly two unit quaternions representing each element in SO(3) [START_REF] Mayhew | Robust global asymptotic attitude stabilization of a rigid body by quaternion-based hybrid feedback[END_REF]. Therefore, although the quaternions do not have problem of singularities, they have ambiguities in representing the attitude dynamics [Lee, 2011].

According to the authors, the attitude feedback controller designed in terms of quaternions could yield dierent control inputs depending on the choice of quaternion vectors. The convergence to a single attitude implies the convergence to either of the two antipodal points.

However, these diculties can be eliminated by using the rotation matrix with Euler-angle representation in the controller design and in the stability analysis.

According to the foregoing statements, we can conclude that the DCM and quaternion representations are suitable for the quadrotor with special movement requirement, such as ip.

In this thesis, the quadrotors are expected to y with the absolute value of the attitude angle smaller than π/2. Therefore, we use the Euler angles-based modeling, while without the problem of gimbal lock.

In the theoretical research of multi-agent systems, a simplied agent model is usually considered in literature, such as [START_REF] Vela | Vision-based range regulation of a leader-follower formation[END_REF], [Jinhuan and Xiaoming, July], [START_REF] Cao | Distributed containment control with multiple stationary or dynamic leaders in xed and switching directed networks[END_REF] and [START_REF] Guo | Second-order tracking control for leader-follower multi-agent ocking in directed graphs with switching topology[END_REF], where the agent model is supposed to be a rst-order model or double integrator model or some simplied nonlinear models.

A quadrotor can be simplied as a linear system or a simple nonlinear system when keeping hovering state or the attitude angle pitch and yaw vary around zero. Three nonlinear control methods are given in [START_REF] Carrillo | Hovering quadrotor control: A comparison of nonlinear controllers using visual feedback[END_REF], where a simplied model of the quadrotor is considered.

However, the eect of nonlinearities will not be negligible, such as in the aggressive formation ight of quadrotors.

In this thesis, a complete nonlinear quadrotor system is studied.

Newton-Euler based modeling

A quadrotor contains two pairs of counter-rotating rotors and propellers, located at the vertices of the crossed arms, as shown in Fig. 2.2. When a propeller rotates, an upward thrust and a torque parallel to the plane of the rotor are generated.

The thrusts of the four rotors compose a total thrust The structure of the quadrotor is symmetric in the plane o b x b y b . We do not consider the dynamics of rotors and propellers. We assume that the thrust of each propeller is directly controlled. For each propeller, the thrust and the torque are proportional to its rotating velocity with respect to the coecients k T and k τ . Then, the rotating velocities of the four propellers ω 1 , ω 2 , ω 3 and ω 4 are related to the total thrust F T and three moments τ φ , τ θ , τ ψ as follows,

F T = f 1 + f 2 + f 3 + f 4 .
      F T τ φ τ θ τ ψ       =       k T k T k T k T k T l a k T l a -k T l a -k T l a -k T l a k T l a k T l a -k T l a k τ -k τ k τ -k τ       •       ω 1 ω 2 ω 3 ω 4       (2.1)
where l a represents the length of the arm of the quadrotor. We note that the foregoing related matrix is constant and invertible, because the coecients k T , k τ and l a are constant and nonzero. Since we use the same quadrotors in the ock, it is feasible to suppose that these coecients are the same for all quadrotors.

We know that the inputs of a quadrotor are its propellers rotating velocities.

Nevertheless, the relation between the thrusts and the propellers rotating velocities is not considered in this thesis. Furthermore, using equation (2.1), we consider that F T i , τ φ i , τ θ i and τ ψ i are the control inputs of the quadrotor i, where i refers to the indexing number of the quadrotor in a formation.

The dynamical model of the quadrotor is given in the literature such as [Lee, 2011], [START_REF] Carrillo | Hovering quadrotor control: A comparison of nonlinear controllers using visual feedback[END_REF] and [Guerrero et al., 2012]. In this section, we will deepen the calculation in order to better understand the characteristic of the quadrotor dynamics. The orientation of the quadrotor with respect to the inertial frame is represented by the rotation matrix, R i ∈ SO(3), where SO(3) represents a special orthogonal group, and whose determinant is one. Note that R T i R i = I, where I represents an identical matrix. The dynamics of a quadrotor i is shown as

follows      m Ẍi = -mge 3 + R i F T i e 3 Ṙi = R i S(Ω i ) J Ωi + S(Ω i )JΩ i = τ i (2.2)
where X i = [X i , Y i , Z i ] T represents the coordinates of the center of mass of a quadrotor in the xed inertial frame. The Euler angles (pitch, roll and yaw) are represented by the vector Θ i = [φ i , θ i , ψ i ] T . The rst equation of (2.2) represents the translational dynamics in the inertial frame, where m represents the mass of a quadrotor and g represents the gravity. The rotation matrix R i in the second equation of (2.2) can transform the coordinates of a point from the body-xed frame to the inertial frame. The third equation of (2.2) represents the rotational dynamics of the quadrotor i. The inertia matrix J of a quadrotor i is represented in the body-xed frame, according to the assumptions on the physical structure of a quadrotor, we can obtain that J = diag{I x b , I y b , I z b } is diagonal, where scalars I x b , I y b and I z b represent the moments of inertia with respect to x b , y b and z b respectively. Additionally, we assume that all the quadrotors in the ock have the same physical coecients such as the mass and the inertia matrix. The angular velocity of the quadrotor i in the body-xed frame is represented by Ω i ∈ R 3 . The function S(•) : R 3 → R 3×3 represents an operation that transforms a vector in R 3 to a skew-symmetric matrix R 3×3 . Given two arbitrary vectors v 1 , v 2 ∈ R 3 , the function S(•) satises the property S(v 1 ) • v 2 = v 1 × v 2 . Then, according to the denition of cross product and the operation S(•), we conclude that S(Ω i ) ∈ R 3×3 is skew-symmetric matrix in terms of the members of

Ω i = [p i , q i , r i ] T as follows S(Ω i ) =    0 -r i q i r i 0 -p i -q i p i 0    (2.3)
where p i , q i and r i represent the angular velocities with respect to the body-xed frame of the quadrotor i.

We refer to φ i , θ i , ψ i as the roll, pitch and yaw angles,

τ i = [τ φ i , τ θ i , τ ψ i ] T ∈ R
3 represents the roll, pitch and yaw moments. The thrust force is represented by F T i . We note that e 3 = [0, 0, 1] T is a constant vector. The attitude dynamics of each quadrotor is generated by moments τ φ i , τ θ i and τ ψ i and thrust force F T i .

The rotation matrices of yaw, pitch and roll are given by

R z (ψ)=    cos ψ -sin ψ 0 sin ψ cos ψ 0 0 0 1    R y (θ)=    cos θ 0 sin θ 0 1 0 -sin θ 0 cos θ    R x (φ)=    1 0 0 0 cos φ -sin φ 0 sin φ cos φ   
The rotation R i from the body-xed frame to the inertial frame is the sequence of roll-pitch-yaw (namely φ -

θ -ψ), thus R i = R z (ψ i )R y (θ i )R x (φ i ).
The dierent sequence of these operations will lead to dierent rotation matrices R i . Here, the rotation matrix is shown as follows

R i =    cos ψ i cos θ i cos ψ i sin θ i sin φ i -cos φ i sin ψ i sin ψ i sin φ i + cos ψ i cos φ i sin θ i cos θ i sin ψ i cos ψ i cos φ i + sin ψ i sin θ i sin φ i cos φ i sin ψ i sin θ i -cos ψ sin φ i -sin θ i cos θ i sin φ i cos θ i cos φ i   
Note that the rotation matrix from the inertial frame to the body-xed frame is R T i .

According to the rotation matrix R i and the rst equation of (2.2), we can write the translational dynamics as follows Ẍi = (sin ψ i sin φ i + cos ψ i cos φ i sin θ i )

F T i m Ÿi = (cos φ i sin ψ i sin θ i -cos ψ i sin φ i ) F T i m Zi = -g + (cos θ i cos φ i ) F T i m (2.4)
It is not dicult to verify that the derivative (with respect to time) of the basic rotation matrices R z 

(ψ i ), R y (θ i ), R x (φ i ) ∈ SO(3) satisfy that Ṙz (ψ i ) = ψi S(e 3 )R z (ψ i ), Ṙy (θ i ) = θi S(e 2 )R y (θ i ) and R x (φ i ) = φi S(e 1 )R x (φ i ).
Ṙi = Ṙz (ψ i )R y (θ i )R x (φ i ) + R z (ψ i ) Ṙy (θ i )R x (φ i ) + R z (ψ i )R y (θ i ) Ṙx (φ i ) = ψi S(e 3 )R z (ψ i )R y (θ i )R x (φ i ) + R z (ψ i ) θi S(e 2 )R y (θ i )R x (φ i ) + R z (ψ i )R y (θ i ) φi S(e 1 )R x (φ i ) = ψi S(e 3 )R i + θi R z (ψ i )S(e 2 )R T z (ψ i )R i + φi R z (ψ i )R y (θ i )S(e 1 )(R z (ψ i )R y (θ i )) T R i = ψi S(e 3 )R i + θi S(R z (ψ i )e 2 )R i + φi S(R z (ψ i )R y (θ i )e 1 )R i =( ψi S(e 3 ) + θi S(R z (ψ i )e 2 ) + φi S(R z (ψ i )R y (θ i )e 1 ))R i =S( ψi e 3 + θi R z (ψ i )e 2 + φi R z (ψ i )R y (θ i )e 1 )R i
where we use the properties (a) and (b) of the skew-symmetric matrix as follows (a) AS(v)A T = S(Av) for a vector v ∈ R 3 and a matrix A ∈ SO(3)

(b) αS(v 1 ) + βS(v 2 ) = S(αv 1 + βv 2 ), for v 1 , v 2 ∈ R 3 and α, β ∈ R (c) S(v)v = 0 3
, where 0 3 ∈ R 3 represents a zero vector.

Then, according to the second equation in (2.2), we obtain

S( ψi e 3 + θi R z (ψ i )e 2 + φi R z (ψ i )R y (θ i )e 1 )R i = R i S(Ω i ) such that R T i S( ψi e 3 + θi R z (ψ i )e 2 + φi R z (ψ i )R y (θ i )e 1 )R i = S(Ω i )
Using the property (a) of the skew-symmetric matrix and considering that R T i = R T

x (φ i )R T y (θ i )R T z (ψ i ), then, we obtain

Ω i =    p i q i r i    =R T i ψi e 3 + θi R T x (φ i )R T y (θ i )e 2 + φi R T x (φ i )e 1 = R T x (φ i )e 1 R T x (φ i )R T y (θ i )e 2 R T i e 3 •    φi θi ψi    (2.5) If we denote by T i = R T x (φ i )e 1 R T x (φ i )R T y (θ i )e 2 R T
i e 3 , we can calculate that

T i = R T x (φ i )e 1 R T x (φ i )R T y (θ i )e 2 R T i e 3 =    1 0 -sin θ i 0 cos φ i cos θ i sin φ i 0 -sin φ i cos θ i cos φ i   
Then, by calculating the inverse of the foregoing matrix, we have the relationship of the angular velocity of quadrotor i with respect to inertial frame and body-xed frame as follows

   φi θi ψi    = T -1 i •    p i q i r i    =    1 sin φ i tan θ i cos φ i tan θ i 0 cos φ i -sin φ i 0 sin φ i / cos θ i cos φ i / cos θ i    •    p i q i r i    (2.6)
We obtain that the pitch angle should satisfy that θ = ± π 2 , such that T i is invertible. When θ = ± π

2

, the problem of singularity emerges.

According to (2.3), the third equation of (2.2) can be rewritten as follows

I x b • ṗi + (I z b -I y b )q i r i = τ φ i I y b • qi + (I x b -I z b )p i r i = τ θ i I z b • ṙi + (I y b -I x b )p i q i = τ ψ i (2.7)
The dynamics of a quadrotor is derived from (2.2). The translational dynamics

(2.4) with respect to the inertial frame is obtained according to the rst equation of (2.2). The rotational dynamics in the body-xed frame (2.7) is obtained according to the third equation of (2.2). The quadrotor attitudes represented in the inertial frame and in the body-xed frame are related by the second equation of (2.2).

State-space representation of a quadrotor dynamics

In this section, the nonlinear model of the quadrotor i is represented in state space with respect to the inertial frame for the purpose of controller design. According to (2.5), we have

   ṗi qi ṙi    = T i •    φi θi ψi    + Ṫi •    φi θi ψi    (2.8) where Ṫi =    0 0 -θi cos θ i 0 -φi sin φ i -θi sin θ i sin φ i + φi cos θ i cos φ i 0 -φi cos φ i -θi sin θ i cos φ i -φi cos θ i sin φ i    We rewrite Ṫi as Ṫi = Ti •    0 φi 0 0 0 φi 0 0 θi    where Ti =    0 0 -cos θ i -sin φ i cos θ i cos φ i -sin θ i sin φ i -cos φ i -cos θ i sin φ i -sin θ i cos φ i    (2.9)
Then, (2.8) can be rewritten as

   ṗi qi ṙi    = T i •    φi θi ψi    + Ti •    φi θi φi ψi θi ψi   
Then, the rotation dynamics from (2.2) and (2.7) in body-xed frame can be represented in the inertial frame as follows

T i •    φi θi ψi    + Ti •    φi θi φi ψi θi ψi    + J -1 S    T i •    φi θi ψi       JT i •    φi θi ψi    = J -1 τ i (2.10) We denote Ti = -T -1 i Ti , then, Ti yields Ti = -T -1 i Ti = -    1 sin φ i tan θ i cos φ i tan θ i 0 cos φ i -sin φ i 0 sin φ i / cos θ i cos φ i / cos θ i    •    0 0 -cos θ i -sin φ i cos θ i cos φ i -sin θ i sin φ i -cos φ i -cos θ i sin φ i -sin θ i cos φ i    =    tan θ i 0 cos θ i + tan θ i sin θ i 0 -cos θ i 0 sec θ i 0 tan θ i    (2.11)
Then, (2.13) can be rewritten as follows

   φi θi ψi    = (JT i ) -1 τ i + Ti •    φi θi φi ψi θi ψi    + (JT i ) -1 S T    T i •    φi θi ψi       JT i •    φi θi ψi   
(2.12)

We assume that θ = ± π 2 . According to (2.2), (2.4) and (2.12) the quadrotor dynamics in inertial frame is represented in state space as equation (2.13). We denote the state of a quadrotor i by κ i ∈ R 12 , which is dened by

κ i = [X T i , Ẋ T i , Θ T i , ΘT i ] T . Recall that Θ i = [φ i , θ i , ψ i ] T . We denote the control input of the quadrotor i by u i = [F T i , τ T i ] T ∈ R 4 . Recall that τ i = [τ φ i , τ θ i , τ ψ i ] T ∈ R 3 . The state space quadrotor i dynamics is given by κi = f(κ i ) + g(κ i )u i (2.13)
where f : R 12 → R 12×12 and g : R

12 → R 12×4 satisfy f(κ i ) =            Ẋi ge 3 Θi Ti •    φi θi φi ψi θi ψi    + (JT i ) -1 S T T i • Θi JT i • Θi            g(κ i ) =       0 3×1 0 3×3 -1 m R i e 3 0 3×3 0 3×1 0 3×3 0 3×1 (JT i ) -1      
The output vector y i of the quadrotor i is composed by the positions, linear velocities, angles and the angular velocities, which will be used in the controller design. Then, y i is given as follows

y i = C i κ i (2.14)
where

C i = C t C r i , where C t = I 6 0 6×6 and C r i = 0 3×3 0 3×3 I 3 0 3×3 0 3×3 0 3×3 0 3×3 T i
It is important to note that the translational dynamics are modeled in the inertial frame while the rotational dynamics are modeled in the body-xed frame, although the states (X i , Ẋi , Θ i and Θi ) of the quadrotor model (2.13) are represented in the inertial frame. Indeed, in the body-xed frame, the inertia matrix J is diagonal and then the rotational dynamics are easier to calculate than in the inertial frame, where J is not diagonal and time-variant. Note that in this thesis, the dynamics of the motors are omitted for the sake of simplicity.

The identication of the quadrotor parameters is not detailed here. Therefore, in the sequel, the parameters of the quadrotor, such as mass, inertias and physical size are supposed to be known.

Analysis of model nonlinearities

In this section, the characteristic of the model of the quadrotor is investigated.

Hovering and slow navigation cases

As a vertical take-o and landing spacecraft, the quadrotor has the ability of hovering above a xed point. Inspired by this property, the quadrotor is used for the application of surveillance. Ideally, the attitude roll and pitch angles keep zero when the quadrotor is at hovering state. In practice, the attitude angles cannot be maintained precisely at zero. They vary around zero because of the sensors noise and external disturbances, if the quadrotor is under control. We refer to a quadrotor is under control as that the state of the quadrotor can follow some given desired values by using some controllers. If a quadrotor is under control, no accident happens. A quadrotor with slow translational motion also has small pitch and roll angles. In both of these two cases, the small angle assumption is proposed to simplify the model and the controller design.

Assumption 2.1 (Hovering and slow navigation). The attitude angles pitch θ i and roll φ i vary around zero (less than 5 • ) in hovering and slow navigation modes.

We rewrite the term R i e 3 in (2.13) as follows

R i e 3 =    φ i sin ψ i + θ i cos ψ i θ i sin ψ i -φ i cos ψ i 1    + δ R i e 3 (2.15)
where

δ R i e 3 =    sin ψ i (sin φ i -φ i ) + cos ψ i (cos φ i sin θ i -θ i ) sin ψ i (cos φ i sin θ i -θ i ) -cos ψ i (sin φ i -φ i ) cos θ i cos φ i -1    (2.16)
According to the hovering and slow moving assumption 2.1, we have sin θ i ≈ θ i , sin φ i ≈ φ i , cos θ i ≈ 1 and cos φ i ≈ 1. Thus, we obtain that δ R i e 3 ≈ 0 3 .

Then, according to (2.13) and (2.15), the translational dynamics of quadrotor i can be simplied as follows

Ẍi =    0 0 -g    +    φ i sin ψ i + θ i cos ψ i θ i sin ψ i -φ i cos ψ i 1    F T i m + δ R i e 3 F T i m (2.17)
We observe that the term δ R i e 3 F T i m is negligible when the quadrotor remains hovering and slow moving mode. Specically, if the yaw angle (heading) is xed, without loss of generality, if ψ i = 0 and we omit the eect of the term δ R i e 3

F T i m , we have Ẍi =    0 0 -g    +    θ i -φ i 1    F T i m (2.18)
Then, we obtain a very simple linear translational dynamic model, which has the characteristic of double-integrator system. When the yaw angle keeps zero, the translational motions along x and y axes are stimulated by the pitch and roll angles multiplying by the thrust force.

Aggressive navigation case

In some cases, the quadrotor performs aggressive maneuvers according to some given desired moving trajectories. In [START_REF] Huang | Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering[END_REF], the authors investigate the problem that a quadrotor ight in regimes beyond hover conditions, e.i., the aggressive ight. The experimental results are given, where the roll angle of the quadrotor achieves ±15 • . The aggressive formation problem of multiple quadrotors is investigated in [START_REF] Turpin | Trajectory design and control for aggressive formation ight with quadrotors[END_REF], where the quadrotors are permitted to move quickly in 3-D environment with a tight formation. A tight formation means that the inter-distances of the neighboring UAVs are small. Additionally, in the case where external disturbances exist, such as wind, the quadrotor may greatly deviate from the equilibrium of the attitude dynamics. The external disturbance problem is considered in [START_REF] González-Vázquez | Motion control of a quadrotor aircraft via singular perturbations[END_REF]. In these cases, the hovering and slow navigation assumption 2.1 will not be satised since the term δ R i e 3 ≈ 0 3 . Then, the simplied models in (2.17) and (2.18) are not precise enough and the performance of the system will become less satisfactory. A representation of a leader-follower multi-UAV system is shown in Fig. 2.3, where a multi-UAV system with four quadrotors are shown. The RFT is given to UAV 1, which is a leader. UAVs 2,3 are followers. Each UAV has identical sensing capacity (the maximum sensing ranges are the same). The UAV 4 is isolated, because no UAV is within its sensing range, in other words, the behaviors of UAV 4 cannot be aected by the others in this case.

We can also observe from Fig. 2.3 that the UAVs cannot access the overall information about the whole system. When we refer to whole system, we mean the system containing all the UAVs in the formation.

It is important to note that the multiple leaders cases are also considered in this thesis, but without loss of generality, we have shown a multi-UAV system with one leader in Fig. 2.3. If the RFT is not available for any UAVs, the formation structure is leaderless. In this section, the model of the multi-quadrotor system is given by using the basic notations and concepts in graph theory. The results and properties of graph theory is widely used in the research of multi-agent systems, [START_REF] Hong | Tracking control for multi-agent consensus with an active leader and variable topology[END_REF], [Fax and Murray, 2004] and [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF] to name a few. The formation problem for the multi-agent system with L-F conguration is an application of consensus problem. The notions and representations in graph theory are useful for the analysis of convergence with some consensus protocols.

Graph theory

The content of this section is mainly based on the material presented in references [START_REF] Hong | Tracking control for multi-agent consensus with an active leader and variable topology[END_REF] and [Fax and Murray, 2004].

In multi-agent systems, the interaction topologies of agents are represented using a graph G = (V, E) with the sets of vertices V and edges E. The set of vertices V = {1, 2, . . . , n} is composed of the indices of agents. |V| represents the cardinality of the set V, which satises |V| = n. The set of edges is represented by E ⊆ V × V.

If an edge exists between two vertices, the two vertices are called adjacent. A graph is simple if it has no self-loops or repeated edges. In other words, the edge (i, i) does not exist. The graph G is said to be undirected if (i, j) ∈ E ⇔ (j, i) ∈ E. In this thesis, simple and undirected graphs are considered.

A path between two vertices i, j is a sequence of edges in a graph of the form (i, i 1 ), (i 1 , i 2 ), . . ., (i k , j). A graph G is connected if there is a path between any two vertices, otherwise it is disconnected. The adjacency matrix of G is denoted by

G A = [ω a ij ] ∈ R n×n
, where ω a ij represents the entry on the ith row jth column of matrix G A . Since the simple graph is considered, we have ω a ii = 0. Since the graph is undirected, we have ω a ij = ω a ji and ω a ij > 0 if (i, j) ∈ E, otherwise, ω a ij = 0. The degree matrix of G is denoted by G D = diag{ n j=1 ω a 1j , . . . , n j=1 ω a nj }. The neighbor set N i = {j ∈ V : (i, j) ∈ E} of agent i, is composed of the indices of the agents j, which has interaction with the agent i. In other words, if ω a ij > 0, then, agent j is a neighbor of agent i. The number of the neighbors of the agent i is equal to |N i |.

We also dene a diagonal matrix G L = diag{ω l 1 , . . . , ω l n } representing the status of agents. If ω l i > 0, then agent i is a leader. Otherwise, if ω l i = 0, agent i is a follower, for i ∈ V. Then, the leader set is dened as V L = {i ∈ V : ω l i > 0}. The leader set V L ⊂ V is a subset of V, which contains the indices of the leaders. Particularly, all the quadrotors are leaders, when V L = V. The indices of the followers are contained in the complementary set of V L , namely, V -V L .

The interaction matrix G for L-F formation is dened as follows

G = G D -G A + G L (2.19)
Let us note that the part G D -G A is normally called the Laplacian in graph theory.

Since we are concerned by the L-F formation here, we use the interaction matrix G to represent the interactions of agents. The interaction matrix G is symmetric.

Obviously, if no leader exists in the group, namely, leaderless formation structure, the matrix G L will be equal to zero. In this case, the matrix G is equal to the Laplacian of the graph.

The interaction matrix G satises

• G ij ≤ 0, for i ∈ V and i = j. • n j=1 G ij = ω l i , for i ∈ V.
About the Laplacian G D -G A , a lemma will be of use in the following part of analysis.

Lemma 2.1. [START_REF] Ren | Information consensus in multivehicle cooperative control[END_REF] 

Let L = G D -G A be a Laplacian of a connected undirected graph G, then, rank(L) = n -1.
The proof is shown in [Biggs, 1974].

In some works, such as [Fax and Murray, 2004], the special case of Laplacian is used, which is dened as

(G D ) -1 (G D -G A ) = I n -(G D ) -1 G A . In graph theory, (G D ) -1 G A is called normalized adjacency matrix.

Formation measurement

Each UAV makes the measurements of relative positions and velocities with respect to its neighbors, which can be represented by vectors X i -X j and Ẋi -Ẋj , j ∈ N i .

If the UAV is a leader, besides the foregoing measurements, it can also obtain the relative position and velocity with respect to the reference formation trajectory (RFT) X i -R , where we denote by R = [r X , r Y , r Z ] T the representation of the RFT.

Weighted error measurement

The nonlinear model of a quadrotor is derived by equation (2.13) and its output vector is given by (2.14). In the cooperation of a group of quadrotors, each UAV can obtain the states (position and velocity) of its neighboring UAVs. Then, this UAV is aected by its neighbors and makes correct behaviors with respect to them.

Therefore, we assume that besides (2.14), each UAV can calculate the relative position and velocity measurements z ij ∈ R 6 as follows

z ij = X i -X j Ẋi -Ẋj = C t (κ i -κ j ), i ∈ V, j ∈ N i (2.20)
Recall that C t = I 6 0 6×6 . Additionally, if a quadrotor is a leader, it can also obtain z i0 ∈ R 6 as follows

z i0 = X i -R Ẋi -Ṙ = C t κ i - R Ṙ , i ∈ V L (2.21)
Following the denition of error measurement in [Fax and Murray, 2004], we proposed a weighted error measurement z i ∈ R 6 as follows,

z i = n j=1 ω a ij z ij + ω l i z i0 (2.22)
The equally weighted relative position and velocity vectors are usually considered in the consensus problem research, such as in the existing works [Saber and Murray, 2003a]. According to this method, the weights ω a ij are dened as follows:

For a quadrotor i ∈ V,

• If ω a ij = 1, then j ∈ N i ; If ω a ij = 0, j / ∈ N i . • If ω l i = 1, then i ∈ V L ; If ω l i = 0, i ∈ V -V L .
Then, (2.22) can be rewritten as follows

z i = j∈N i z ij + z i0 (2.23)
If a normalized Laplacian is taken into account [Fax and Murray, 2004], the foregoing error measurement becomes

z i = 1 |N i | j∈N i z ij + z i0 (2.24) where j ∈ N i , if ω a ij = 1 |N i | . If ω a ij = 0, j / ∈ N i . If the weights ω l i = 1, then i ∈ V L . If ω l i = 0, then i ∈ V -V L .
It is important to note that the weights ω a ij and ω l i have dierent physical meanings. The former one with superscript a represents a UAV's knowledge of other UAVs. In detail, if ω a ij is a positive scalar, then, UAV j is identied as a neighbor of i. Otherwise, ω a ij = 0 means that the UAV j is not considered as a neighbor of UAV i. The weight ω l i of UAV i represents the knowledge of the RFT. In detail, if ω l i is a positive scalar, then, i ∈ V L , otherwise, UAV i is a follower.

In this work, we have considered a more general case, where dierent weighted relative position and velocity vectors are used. The weights ω a ij in (2.22) are not necessarily equal. The details about the calculation of the weights are shown in chapter 7.

Overall weighted error measurement

Let us dene a vector g a i = [ω a i1 , . . . , ω a i(i-1) , 0, ω a i(i+1) . . . , ω a in ] T , where ω a ij are the entries of matrix G A and used in (2.22). The UAV j with a nonzero ω a ij is a neighbor of UAV i. We dene a vector g d i = [0, . . . , 0, n j=1 ω a ij , 0, . . . , 0] T , whose entries are zero except the i-th entry. We also dene a vector g l i = [0, . . . , 0, ω l i , 0, . . . , 0] T , which implies whether the current quadrotor is a leader. A UAV, which is a leader (ω l i > 0 in other words), can obtain the reference formation trajectory R, while the followers cannot. Let us dene a full state vector as x = κ T 1 , κ T 2 , . . . , κ T n T , the error measurement (2.22) can be rewritten as follows

z i = g d i -g a i + g l i T ⊗ I 6 • (I n ⊗ C t ) • x -g l i T ⊗ I 6 • 1 n ⊗ R Ṙ (2.25)
where I 6 ∈ R 6×6 represents the identity matrix and 1 n ∈ R n represents a vector with all the entries equivalent to 1. We recall that C t ∈ R 6×12 . The symbol ⊗ represents the Kronecker product. Note that the denition of the Kronecker product and the main calculations using it are developed in Annexe A.

According to the denitions of the members of matrix G A and G L in section II, we conclude that

G A = [g a 1 , . . . , g a n ] T , G D = [g d 1 , . . . , g d n ] T and G L = g l 1 , . . . , g l n T .
we can rewrite these two weighted topology matrices as follows

G A =       0 ω a 12 . . . ω a 1n ω a 21 0 . . . ω a 2n . . . . . . . . . . . . ω a n1 ω a n2 . . . 0       G L =        ω l 1 0 . . . 0 0 ω l 2 . . . 0 . . . . . . . . . . . . 0 0 . . . ω l n        (2.26)
These weights satisfy ω f ij ≥ 0, ω l i ≥ 0, and

• ω f ij = 0, only if i = j or j / ∈ N i • ω l ij = 0, only if i = j or i / ∈ V L .

Overall model of the quadrotors cooperation

Let us dene a full state vector as x = κ T 1 , κ 

z = (G ⊗ I 6 ) • (I n ⊗ C t ) • x -G L ⊗ I 6 • 1 n ⊗ R Ṙ
According to proposition A.4, the dynamics of the multi-UAV systems as follows

       ẋ = [f T (κ 1 ), f T (κ 2 ), . . . , f T (κ n )] T + diag{g(κ 1 ), g(κ 2 ), . . . , g(κ n )} • u y = diag{C 1 , C 2 , . . . , C n }x z = (G ⊗ C t ) • x -G L • 1 n ⊗ R T ṘT T (2.27)
Remark 2.1. In (2.27), the dynamics of the quadrotors are completely independent if the control input u i for each quadrotor is designed only depending on its output y i in (2.14). However, a controller u i , which is in terms of its output y i and the measurement z i in (2.22), makes the quadrotor performing in a formation. Such an independently operating system is a System of Systems (SoS) according to [Jamshidi, 2008].

Then, the overall model of the multi-UAV system is obtained. In the controller design of u i (y i , z i ), the objective is to design the decentralized/distributed controllers u = u T 1 , u T 2 , . . . , u T n T for the UAVs such that the formation task is achieved. This will be the purpose of chapters 5 to 7.

Conclusion

In this chapter, the complete quadrotor model is presented using Euler angle representation. Using the notion of Kronecker product, the overall model of the formation of quadrotors is given.

The graph theory is used to represent the interaction of the quadrotors in a formation. Since the L-F conguration is used in the formation control, we propose an interaction matrix in 2.19, which will be used in the following chapters for analyzing the stability of the formation.

In the next chapter, let us rst present control laws for a single quadrotor system. The quadrotor control problems are increasingly investigated in the aspects such as attitude control [START_REF] Guerrero-Castellanos | Bounded attitude control of rigid bodies: Real-time experimentation to a quadrotor mini-helicopter[END_REF], navigation and guidance [START_REF] Kendoul | Real-time nonlinear embedded control for an autonomous quadrotor helicopter[END_REF] and hovering control [START_REF] Carrillo | Hovering quadrotor control: A comparison of nonlinear controllers using visual feedback[END_REF]. Some linear control laws, such as PID and LQR [Bresciani, 2008], [START_REF] Khatoon | Pid amp; lqr control for a quadrotor: Modeling and simulation[END_REF], [START_REF] Tran | Quadrotor control in a wind eld[END_REF] are applied to the attitude stabilization of quadrotors. Some nonlinear controllers such as fuzzy control [START_REF] Varga | Fuzzy-lyapunov based quadrotor controller design[END_REF], backstepping feedback linearization [Choi andAhn, 2015] [Gong et al., 2012] and robust control [START_REF] Hao | Robust attitude control of a quadrotor helicopter with unknown parameters[END_REF] are proposed considering the eects of dynamic nonlinearities and unknown parameters. The control law based on atness approach is developed and implemented on quadrotors for the trajectory tracking task [START_REF] Thorel | Practical identication and atness based control of a terrestrial quadrotor[END_REF]. The geometric control method is applied in the control of quadrotors to deal with the problem of singularity [Lee, 2011], [START_REF] Consolini | A geometric characterization of leader-follower formation control[END_REF], [Sreenath et al., 2013].

Control structure of a quadrotor

In section 2.1, we have investigated in detail the dynamic model of the quadrotor, which can be depicted by the Fig. 3.1.

According to Fig. 3.1, the inputs of the quadrotor are the thrusts generated by the four rotors. In most of the applications of quadrotor, the objective is to control the 3D positions of the quadrotor, which is known as a navigation control problem. Navigation is a eld of study that focuses on the process of monitoring and controlling the movement of an aircraft or vehicle from one place to another. In the application of quadrotor, which is an aircraft, the navigation is accomplished using the desired trajectory tracking control.

The desired motion of a quadrotor can be uniquely specied by the 3D states (X i , Y i and Z i ) and the yaw (ψ i ), which compose a at output vector, as it will be shown in subsection 3.2.1.

Two navigation control schemas of a quadrotor are shown in Fig. 3.2. The torques and the thrust force are calculated according to the desired moving trajectory and the desired yaw angle.

We observe from Fig. 3.2(b) that the navigation control of a quadrotor has a double-loop property. The rotational dynamics control is in the inner loop, while the translational dynamics control is in the outer loop. The output of the position controller is the input of the attitude controller.

Specically, in the formation task of a multiple quadrotors system, the trajectory tracking problem is also adapted for each quadrotor in the formation. However, in this thesis, the trajectories planning for the quadrotors are not processed in a central component such as a PC. The desired trajectory for each quadrotor is calculated on-board based on the states of its neighbors.

In this thesis, we assume that the absolute value of the attitude angles pitch and roll for a quadrotor in the multi-UAV system keep smaller than π/2.

Denition 3.1. A quadrotor performs properly, if φ i < π 2 , θ i < π 2 and the tracking error of the altitude with respect to the desired value should not diverge. Otherwise, the quadrotor is at failure status.

According to denition 3.1, a quadrotor in the hover or slow navigation state (mentioned in assumption 2.1) and in the aggressive navigation state (mentioned in assumption 2.2) performs properly.

A quadrotor at failure state is out of control. In other words, the controller instance, in the application of electric wire surveillance, the quadrotors are required to y closely above the electric wires. In this case, a big altitude tracking error can make the quadrotor hitting the electric wires and destroy the quadrotor. Therefore, the objective is to design a controller such that the quadrotor is always under control and works properly.

Flatness-based trajectory tracking control

In the formation of multiple UAVs, the task of formation can be accomplished by real-time trajectory planning for each UAV. The atness-based trajectory planning strategy for quadrotors is recently increasingly studied. Dierential atness was primarily introduced by Michel Fliess [START_REF] Fliess | Flatness and defect of nonlinear systems: Introductory theory and examples[END_REF]. A time optimal trajectory is developed in [START_REF] Bouktir | Trajectory planning for a quadrotor helicopter[END_REF].

In the works of [START_REF] Chamseddine | Flatness-based trajectory planning/replanning for a quadrotor unmanned aerial vehicle[END_REF], [START_REF] Chamseddine | Flatness-based trajectory planning for a quadrotor unmanned aerial vehicle test-bed considering actuator and system constraints[END_REF], the trajectory tracking problems are investigated in terms of atness-based ight path planing and re-planning strategy. In the literature, a simplied model of quadrotor is usually used.

The assumptions such as small angle are taken into account.

In this section, we will develop two atness-based navigation control strategies, which are based on the single-loop control structure (see Fig. 

Flatness-based navigation control in single-loop

We will rstly introduce the denition of the atness, according to the material in the paper [START_REF] Fliess | Flatness and defect of nonlinear systems: Introductory theory and examples[END_REF].

Denition 3.2. A system dened by the equation

ẋ(t) =f (x(t), u(t)) y =h(x(t))
where x(t) is the state and u(t) is the controller, is at if there exists a vector

z(x(t), u(t), u (1) (t), u (2) (t), . . . , u (δ) (t))
, where the components are dierentially independent, such that

x(t) = Ξ 1 (z(t), z (1) (t), z (2) (t), . . . , , z (α) (t)) u(t) = Ξ 2 (z(t), z (1) (t), z (2) (t), . . . , , z (β) (t))
where α, β and δ are nite integers. Notations Ξ 1 and Ξ 2 represent two smooth maps, z (i) (t) is the ith derivative of z(t).

The vector z(t) in the foregoing denition is called the at output of the system. By introducing the functions of Ξ 1 and Ξ 2 , the at output is composed by the variables which permit to parameterize all the other variables of the system. For a quadrotor system, the at output can be selected according to the following proposition.

Proposition 3.1. The vector i = [X T i , ψ i ] T is a at output of system (2.13) Proof. According to 2.4, we obtain that

F T i = ( Zi + g)m cos θ i cos φ i (3.1)
Replacing F T i by (3.1) in the rst two equations in (2.4), we obtain

Ẍi = sin ψ i tan φ i cos θ i + cos ψ i tan θ i ( Zi + g) Ÿi = sin ψ i tan θ i -cos ψ i tan φ i cos θ i ( Zi + g) (3.2)
We assume that Zi = -g. Then, according to (3.2), we obtain that

tan φ i cos θ i = Ẍi sin ψ i -Ÿi cos ψ i Zi + g tan θ i = Ẍi cos ψ i + Ÿi sin ψ i Zi + g
Then, we have

θ i = arctan Ẍi cos ψ i + Ÿi sin ψ i Zi + g φ i = arctan Ẍi sin ψ i -Ÿi cos ψ i Zi + g • cos arctan Ẍi cos ψ i + Ÿi sin ψ i Zi + g (3.3) Since i = [X T i , ψ i ] T , we denote i1 = X i , i2 = Y i , i3 = Z i and i4 = ψ i .
Then, the state of the quadrotor κ i yields

X i = i1 , Y i = i2 , Z i = i3 , Ẋi = ˙ i1 , Ẏi = ˙ i2 , Żi = ˙ i3 , θ i = arctan ¨ i1 cos i4 + ¨ i2 sin i4 ¨ i3 +g φ i = arctan ¨ i1 sin i4 -¨ i2 cos i4 ¨ i3 +g
• cos arctan

¨ i1 cos i4 + ¨ i2 sin i4 ¨ i3 +g ψ i = i4 θi = arctan ¨ i1 cos i4 + ¨ i2 sin i4 ¨ i3 +g (1) φi = arctan ¨ i1 sin i4 -¨ i2 cos i4 ¨ i3 +g
• cos arctan

¨ i1 cos i4 + ¨ i2 sin i4 ¨ i3 +g (1) ψi = ˙ i4 (3.4)
Equations (3.4) imply that the state κ i can be parameterized by variable i and its derivatives. According to (2.14), the output y i is in terms of X i , Ẋi , Θ i and Θi , therefore y i can also be parameterized by i . Additionally, according to (2.13), the control input u i is in terms of Z i , Żi , Θ i , Θi and Θi . Therefore, the variable i is the at output of system (2.13).

Controller design

Then, according to proposition 3.1, we conclude that the desired motion of a quadrotor can be uniquely specied by the 3D coordinates X i and the yaw angle ψ i . Therefore, the desired trajectory planning problem is to nd the vector

[X d i , Y d i , Z d i , ψ d i ] T . The control input u i = [F T i , τ φ i , τ θ i , τ ψ i ] T is designed in order to minimize the tracking errors of X i -X d i and ψ i -ψ d i , where X d i and ψ d i represent the desired 3D
position and the heading direction (yaw angle). According to (3.1), the controller for the altitude is designed as follows

F T i = ( Zd i -k 2Z ( Żi -Żd i ) -k 1Z (Z i -Z d i ) + g)m cos θ i cos φ i (3.5)
where Z d i is the desired trajectory of the altitude. Let us denote by e

Z i = Z i -Z d i the
tracking error of the altitude and substitute (3.5) into the third equation in (2.4).

Then, we have

ëZ i = -k 2Z ėZ i -k 1Z e Z i
Obviously, the altitude can exponentially track the given desired altitude trajectory Z d i for some selected positive scalars k 1z and k 2z . The desired altitude trajectory should be smooth enough and be twice dierentiable. Then, the altitude dynamics are decoupled with the other states of the quadrotor.

We rewrite the dynamic of the attitude angles in (2.12) as follows

Θi = Ti •    φi θi φi ψi θi ψi    + (JT i ) -1 S T T i • Θi JT i • Θi + (JT i ) -1 τ i (3.6) Recall that Ti = -T -1 i Ti (in chapter 2, equation (2.11))
, where Ti is given in (2.9), the inputs τ i = [τ φ i , τ θ i , τ ψ i ] T are designed as follows 4) , it is trivial to observe that the attitude angles can exponentially track the desired attitude angles that are in terms of i and its derivatives. However, the controller (3. 7) is open-loop on the translational dynamics, because the position feedback is not used in the controller design. If the dynamics of the quadrotor is precisely modeled and no external disturbances and sensors noise exist, this controller can perfectly perform. However, in practice, the dynamics of the system can be never precisely modeled, additionally, the noise and disturbance always exist. Therefore, the closed-loop control should be used, such that the feedback of the positions and translational velocities are required.

τ i = JT i τi + J Ti    φi θi φi ψi θi ψi    -S T T i • Θi JT i • Θi (3.7) Substituting (3.7) into (3.6), we obtain Θi = τi (3.8) where τi = Θd i -k 2Θ i ( Θi -Θd i ) -k 1Θ i (Θ i -Θ d i ). Notations k 1Θ i and k 2Θ i represent two diagonal gain matrices. If Θ d i , Θd i and Θd i are calculated according to (3.4), namely, replacing i , ˙ i , ¨ i , (3) i and (4) i by d i , ˙ d i , ¨ d i , ( d i ) (3) and ( d i ) (
We observe from (3.4) that the yaw angle is a component of the at output i , then, the desired values of the yaw angle (ψ d i , ψd i and ψd i ) are trivial to obtain.

However, the desired pitch and roll angles are not explicitly given by the components of the at output d i and its derivatives. We will discuss how to obtain the terms

φ d i , φd i φd i , θ d i , θd i and θd i as follows.
As analyzed before, the design of τ ψ i is simple. Normally, in order to represent the control input by using the atness output, the high-order derivatives of i are calculated. Specically, in our case, in order to represent the torques τ φ i and τ θ i , two supplementary derivatives of Ẍi and Ÿi in (3.2) are necessary and we obtain

X i Y i (4) = A φi θi + (Θ i , Θi , ψi , Z (2) 
i , Z

i , Z

i ) = v i where matrix A satises A = ( Zi + g) sin ψ i sec 2 φ i sec θ i cos ψ i sec 2 θ i + sin ψ i tan φ i tan θ i sec θ i -cos ψ i sec 2 φ i sec θ i sin ψ i sec 2 θ i -cos ψ i tan φ i tan θ i sec θ i (4) 
The function represents the terms of the second-order derivative of the right side of (3.2) except the term that contains φi and θi .

The

vector v i = [v i1 v i2 ]
T is composed by the new control inputs v i1 and v i2 , which are decoupled on axes X and Y . Then, the new trajectory tracking controllers in closed loop on the plane X -Y are given as follows

v i1 = (X d i ) (4) -k 4X (X (3) i -(X d i ) (3) ) -k 3X ( Ẍi -Ẍd i ) -k 2X ( Ẋi -Ẋd i ) -k 1X (X i -X d i ) v i2 = (Y d i ) (4) -k 4Y (Y (3) i -(Y d i ) (3) ) -k 3Y ( Ÿi -Ÿ d i ) -k 2Y ( Ẏi -Ẏ d i ) -k 1Y (Y i -Y d i ) (3.9) Observe that det A = ( Zi + g)sec 2 φ i sec 3 θ i . Therefore, when Zi = -g and |φ i | < π 2 , |θ i | < π 2 , det A is nite and positive such that A is invertible. In fact, if |φ i | < π 2 , |θ i | < π 2
, we have Zi > -g. Zi will be never equal to -g, unless that all the rotors of the quadrotor stop rotating. This case is not considered in this thesis.

Then, according to equation (3.8), we can design the torque τi =

[τ φ i τθ i τψ i ] T as follows    τφ i τθ i τψ i    = A -1 (v i -) ψd i -k 2ψ i ( ψi -ψd i ) -k 1ψ i (ψ i -ψ d i ) (3.10)
Then, substituting (3.10) into (3.7), we obtain the three torques.

In practice the derivatives X

(2)

i , X

i , Y

(2) i and Y

(3) i are not directly measurable (not contained in the output y i (2.14)), they are obtained by using (3.2) and its derivatives. We will present in the following subsection how to obtain the terms

X (2) i , X (3) 
i , Y

(2) i and Y

(3) i .

Controller simplication

Under the assumptions 2.1 and 2.2, we can assume that tan

θ i ≈ θ i , tan φ i ≈ φ i , cos θ i ≈ 1 and cos φ i ≈ 1.
The desired yaw angle is zero. Using controller (3.6), ψ i ≈ 0. Then, cos ψ i ≈ 1 and sin ψ i ≈ 0. We also assume that the altitude is stabilized and keep constant, such that Z i ≈ Z d i and Z i ≈ 0. Then we have, Zi ≈ 0.

Therefore, according to (3.2) we obtain

Ẍi = θ i g Ÿi = -φ i g (3.11)
Then, the controllers in (3.9) becomes

v i1 = (X d i ) (4) -k 4X ( θi g-(X d i ) (3) ) -k 3X (θ i g -Ẍd i )- k 2X ( Ẋi -Ẋd i ) -k 1X (X i -X d i ) v i2 = (Y d i ) (4) -k 4Y (-φi g-(Y d i ) (3) ) -k 3Y (-φ i g -Ÿ d i )- k 2Y ( Ẏi -Ẏ d i ) -k 1Y (Y i -Y d i ) (3.12)
Then, we obtain

   τφ i τθ i τψ i    =    -1 g v i2 1 g v i1 ψd i -k 2ψ i ( ψi -ψd i ) -k 1ψ i (ψ i -ψ d i )    (3.13)

Simulation results

We give a simulation to validate the proposed navigating controller. The physical coecients of each quadrotor are given as follows (note that the international system of units are used): the mass m = 1, the gravity g = 9.8, the inertia matrix J = diag{0.05, 0.05, 0.09}. The parameters of the controllers are given in table 3.1.

k 4X 1.0 k 3X 2.5 k 2X 1.8 k 1X 1.3 k 4Y 1.0 k 3Y 2.5 k 2Y 1.8 k 1Y 1.3 k 2ψ 17.3 k 1ψ 10.2 k 2Z 3.1 k 1Z 2.2 Table 3.1: The controllers parameters
The simulation results are shown in Fig. 3.3 and 3.4. We observe that by using the atness-based navigating controller, the quadrotor can precisely track the given trajectory, which is a circle. However, the high-order derivatives of the desired trajectory should be known. The desired trajectory is r(t) = [10 sin(0.5t), 10 cos(0.5t), 5] T

Flatness-based navigation control in double-loop

Satisfactory performance of the circular trajectory tracking is obtained by using the proposed atness-based navigating controller in the foregoing subsection. However, the process of the parameters selection is not trivial, because we have to tune the parameters k iX and k iY , i = {1, 2, 3, 4} together. This is not explicit to have the direction of tuning the parameters according to the appearance of the quadrotor.

Therefore, motivated by the objective of simplifying the parameters tuning process, we give a modied atness-based controller in this subsection. The control of the dynamics of the quadrotor can be divided into two parts, which are translational and rotational controller shown in Fig. (3.2). This property permits us to separate the navigation controller design for the quadrotor into the controllers design for two low-order subsystems.

Controller design

Since the design of controllers F T i and τ ψ i for the altitude and the yaw angles are trivial, we follow the design given in the foregoing subsection. In this subsection, we will concentrate on the design of τ φ i and τ θ i . We rewrite (3.2) as follows Ẍi = (φ i sin

ψ i + θ i cos ψ i ) ( Zi + g) + sin ψ i tan φ i cos θ i -φ i + cos ψ i (tan θ i -θ i ) ( Zi + g) Ÿi = (θ i sin ψ i -φ i cos ψ i ) ( Zi + g) + sin ψ i (tan θ i -θ i ) -cos ψ i tan φ i cos θ i -φ i ( Zi + g)
The foregoing equations can be rewritten in matrix form as follows

X i Y i (2) = A ψ i , Zi φ i θ i + A ψ i , Zi tan φ i cos θ i -φ i tan θ i -θ i = v i (3.14)
where

A ψ i , Zi = ( Zi + g) sin ψ i cos ψ i -cos ψ i sin ψ i . Vector v i ∈ R 2 is composed by two new
controllers v i1 and v i2 . These two new controllers are designed as follows

v i1 = Ẍd i -k 2X ( Ẋi -Ẋd i ) -k 1X (X i -X d i ) v i2 = Ÿ d i -k 2Y ( Ẏi -Ẏ d i ) -k 1Y (Y i -Y d i ) (3.15)
We assume that Zi > -g, then, matrix

A ψ i , Zi is invertible, since det A ψ i , Zi = Zi + g. Let us denote by δ φ i ,θ i = tan φ i cos θ i -φ i tan θ i -θ i
, then the desired pitch and roll angles are obtained and shown as follows.

φ d i θ d i = A -1 ψ i , Zi v i -δ φ i ,θ i (3.16)
Note that the term δ φ i ,θ i will be very small and negligible, if the assumptions 2.1 and 2.2 are taken into account. In this case, we assume that tan φ i ≈ φ i , tan θ i ≈ θ i and cos θ i ≈ 1, therefore, we have δ φ i ,θ i ≈ 0, in order to simplify the controller design, the term δ φ i ,θ i can be omitted. Additionally, the altitude is stabilized and keeps constant, such that Zi ≈ 0. Then, a simplied desired pitch and roll angles are derived, shown as follows

φ d i θ d i = 1 g sin ψ i -cos ψ i cos ψ i sin ψ i v i (3.17)
where

v i = [v i1 , v i2 ] T .
Then, the controllers design for the rotational dynamics can be simply designed as follows

τi = Θd i -k 2Θ i ( Θi -Θd i ) -k 1Θ i (Θ i -Θ d i ) (3.18)
where Θ d i is composed by φ d i , θ d i (shown in (3.16) or (3.17)) and

ψ d i = d i4 . The terms X (2) i , Y (2) 
i , X

(3) i and Y

(3) i are needed to calculate Θd i and Θd i .

We take the example as given in section 3.2.1, where the desired yaw angle is zero. Then, we have (3.11). According to (3.17) and (3.15), we can calculate

Θd i =    φd i θd i ψd i    =    -1 g ((Y d i ) (3) -k 2Y (-gφ i -Ÿ d i ) -k 1Y ( Ẏi -Ẏ d i )) 1 g ((X d i ) (3) -k 2X (gθ i -Ẍd i ) -k 1X ( Ẋi -Ẋd i )) 0    (3.19) and Θd i =    φd i θd i ψd i    =    -1 g ((Y d i ) (4) -k 2Y (-g φi -(Y d i ) (3) ) -k 1Y (-gφ i -Ÿ d i )) 1 g ((X d i ) (4) -k 2X (g θi -(X d i ) (3) ) -k 1X (gθ i -Ẍd i )) 0    (3.20)
Then, the parameter tuning is processed by the following steps 1. Setting Θ d i = 0, Θd i = 0 and Θd i = 0, we tune gains k 1Θ i and k 2Θ i to have satisfactory performance of attitude angles.

2. Adding desired trajectories, we close the loop of translation dynamics and select proper gains in equations (3.15).

Comparison with the single-loop control

We can observe that if we substitute Θ d i (3.17), Θd i (3.19) and Θd i (3.20) into (3.18), we will obtain a similar form as equations (3.13). We take τθ i for example,

τθ i = θd i -k 2θ i ( θi -θd i ) -k 1θ i (θ i -θ d i ) = 1 g ((X d i ) (4) -k 2X (g θi -(X d i ) (3) ) -k 1X (gθ i -Ẍd i ))- 1 g (gk 2θ i θi -k 2θ i ((X d i ) (3) -k 2X (gθ i -Ẍd i ) -k 1X ( Ẋi -Ẋd i )))- 1 g (gk 1θ i θ i -k 1θ i ( Ẍd i -k 2X ( Ẋi -Ẋd i ) -k 1X (X i -X d i )))
Then, we obtain

τθ i = 1 g (X d i ) (4) -(k 2X + k 2θ i )(g θi -(X d i ) (3) ) -(k 1X + k 2θ i k 2X + k 1θ i )(gθ i -Ẍd i )+ (k 2θ i k 1X + k 1θ i k 2X )( Ẋi -Ẋd i ) -(k 1θ i + k 1X )(X i -X d i )
which has the same form of τθ i in (3.13). Therefore, the atness-based double- loop navigating control will have the same performance as the single-loop control introduced in the former subsection, if the gains are properly selected. However, the modied controller has practical signicance. It reduces the diculties in parameters tuning.

Conclusions and remarks

The atness-based trajectory tracking problems both using the single-loop and double-loop control structures have been investigated in this section. The navigation problem for a quadrotor has been translated into the desired trajectory tracking problem, using the atness-based strategy. The navigation task has been specied

by a desired at outputs vector, which is composed by the desired 3D translational trajectory and the yaw angle. About the atness-based control, we have the following remarks.

Remark 3.1. The atness-based control strategy requires high-order derivatives of the desired trajectory. For the quadrotor trajectory tracking problems, the twice order derivatives of Z d i and ψ d i are required, while X d i and Y d i should be fourth-order dierentiable.

Remark 3.2. The proportional-derivative (PD) control technique is used (see such as in (3.5), (3.9) and (3.15)). It is important to note that these mentioned controller designs are not limited by the PD technique. Other control techniques such as LQR, adaptive control and robust control can also be applied.

Remark 3.3. When the denition 3.1 and the limits of the actuators are taken into account, the convergence of the tracking error i -d i is locally obtained such that the initial condition of the quadrotor should be suciently near to the desired value.

In the following section, we will focus on the latter control structure and introduce the singular perturbed system theory to simplify the dynamic model of the quadrotor for the purpose of control.

Singular perturbed system

The quadrotor is a high-order system, as shown in the subsection 3.2.1, the translational dynamics in o e x e y e plane is a fourth-order system. The motivation of modeling the quadrotor system as a singular perturbation system is to reduce the complexity of the formation controller design in a multi-UAV system.

According to Khalil [Hassan K., 2002], the singular perturbation model of a dynamical system is a state model where the derivatives of some of the states are multiplied by a small positive parameter ε, such as

ẋ = f (t, x, z, ε) ε ż = g(t,
x, z, ε)

A system with multiple loops control structure can be usually modeled by a singular perturbed system, for example, the double-loop control, which is common in practice. The controller of the inner-loop is usually designed by high-gain feedback, such that the inner-loop dynamics are intuitively much faster than the outer-loop dynamics. Singular perturbations cause a multiple time-scale behaviors of dynamical systems characterized by the presence of slow and fast transients in the system's response to external stimuli. The slow response is approximated by the reduced model while the discrepancy between the response of the reduced model and that of the full model is the fast transient.

High-gain based attitude control

As mentioned before, the closed-loop dynamics of a quadrotor can be divided into rotational and translational dynamics, which are respectively controlled in inner loop and outer loop. The motions on o e x e y e plane are stimulated by the attitude angles.

Therefore, we can design a high-gain feedback control in the closed-loop system for the attitude control, then the small parameter ε is obtained as the reciprocal of the control gains. The quadrotor closed-loop dynamics perform therefore in two time scales, namely, the fast and slow time scales. This technique permits to design the formation controller with considering only the reduced model. We will detail this procedure as follows.

In the foregoing section, the torques are designed by (3.7) and (3.18), which make the rotation dynamics

(3.6) in closed loop becoming Θi = Θd i -k 2Θ i ( Θi - Θd i ) -k 1Θ i (Θ i -Θ d i ). Let us denote the attitude error by e Θ i = Θ i -Θ d i , then, we have ëΘ i = -k 2Θ i ėΘ i -k 1Θ i e Θ i (3.21)
The attitude errors can converge to zero exponentially with some diagonal and positive gain matrices

k 2Θ i , k 1Θ i ∈ R 3×3 . Denoting by e Θ i = [e φ i , e θ i , e ψ i ] = [φ i - φ d i , θ i -θ d i , ψ i -ψ d i ]
, the translational dynamics in o e x e y e plane (3.14) in closed loop is shown as follows 

X i Y i (2) = A ψ d i , Zi φ d i θ d i + A ψ i , Zi e φ i e θ i + (A ψ i , Zi -A ψ d i , Zi ) φ d i θ d i + A ψ i , Zi tan φ i cos θ i -φ i tan θ i -θ i (3.
ψ i = d i4 , then, e φ i = 0, e θ i = 0 and A ψ i , Zi -A ψ d i , Zi = 0. Substituting (3.16) into (3.22), we have X i Y i (2) = v i (3.23)
However, during the navigation, the attitude errors are rarely equal to zero such that for most of the time, (3.23) is perturbed by a nonlinearity term (the sum of the last three parts in (3.22)) caused by the attitude error. In order to improve the performance of tracking the desired navigation trajectory for a quadrotor, the high-gain attitude controller based on singular perturbation theory is proposed as follows.

Let us introduce a notation ẽΘ i = εe Θ i , where ε ∈ (0, 1]. Let us dene a high-gain attitude controller as follows τi = Θd i -

k 2Θ i ε ( Θi -Θd i ) - k 1Θ i ε 2 (Θ i -Θ d i ) (3.24)
Then, (3.21) can be rewritten as follows

ε d dt e Θ i ėΘ i = 0 3×3 I 3 -k 1Θ i -k 2Θ i e Θ i ėΘ i (3.25)
Setting ε = 0, we solve (3.25) to obtain e Θ i = 0 and ėΘ i = 0 for some positive scalars k 1Θ i and k 2Θ i . Then, we have φ i -

φ d i = 0, θ i -θ d i = 0, ψ i -ψ d i = 0, which result a reduced model of (3.22) as follows X i Y i (2) = A ψ d i , Zi φ d i θ d i + A ψ i , Zi tan φ i cos θ i -φ i tan θ i -θ i (3.26)
According to (3.16), the foregoing reduced translational model yields

X i Y i (2) = v i = Ẍd i -k 2X ( Ẋi -Ẋd i ) -k 2X (X i -X d i ) Ÿ d i -k 2Y ( Ẏi -Ẏ d i ) -k 2Y (Y i -Y d i )
Let us dene a motion trajectory tracking error of a quadrotor in o e x e y e plane as e

X i = X i -X d i and e Y i = Y i -Y d
i , the translational dynamics presented in the foregoing equations yields

e X i e Y i (2) = -k 2X ėX i -k 2X e X i -k 2Y ėY i -k 2Y e Y i (3.27)
If we dene d t/dt = 1/ε and set

d εe Θ i ε ėΘ i T dt = d e Θ i ( t) ėΘ i ( t) T d t
The initial value t0 = 0 is dened at t = t k , where t k is an arbitrary time instant in time scale t. Then the new time variable satises t = (t -t k )/ε. Then we obtain t = t k + ε t. Since ε is very small, the variable t will be slowly varying in time scale t.

Intuitively, the time variable t is not sensitive to the change of t because ε small. In the t time scale, (3.25) is represented by

d e Θ i ( t) ėΘ i ( t) T d t = 0 3×3 I 3 -k 1Θ i -k 2Θ i e Θ i ( t) ėΘ i ( t) (3.28)
It is trivial to verify that the origin of (3.28) is exponentially stable, such that we obtain

e Θ i ( t) ėΘ i ( t) = exp 0 3×3 I 3 -k 1Θ i -k 2Θ i t e Θ i ( t0 ) ėΘ i ( t0 ) Since 0 3×3 I 3 -k 1Θ i -k 2Θ i is negative denite, exp 0 3×3 I 3 -k 1Θ i -k 2Θ i t converges to
zero when t → ∞. This convergence dose not depend on the time variable t and the states X i (t) and Y i (t). Thus, the equilibrium point e Θ i ėΘ i = 0 6 of system

(3.28) is exponentially stable, uniformly in (t, X i (t), Y i (t)).
Since the states X i (t) and Y i (t) are in time scale t, thus, X i (t) is a slowly varying variable with respect to t. According to the reduced model (3.27), the translational states X i (t) and Y i (t) can exponentially track some desired trajectories X d i (t) and Y d i (t). Then, according to [Hassan K., 2002], the state of the singular perturbed model of the quadrotor can exponentially track the given desired trajectory.

Simulation results

The quadrotor has the same coecients as given in subsection 3.2.1. The objective is also to track a circular trajectory. The tracking curves of the quadrotor with dierent ε is given in Fig. 3.5. We can observe from Fig. 3.5 that the real outputs of the complete model approach the outputs of the reduced model faster, if ε is selected smaller. Thus, by selecting some proper ε, we can use the reduced model instead of the complete model in the study of the formation controller design, which will greatly simplify the problem.

Conclusions and remarks

A quadrotor system has a double-loop property. By using the attitude controller the maximum saturation value, when the initial tracking errors of the angles are too large. In this case, the quadrotor may have an unsatisfactory performance or may be at failure state. Therefore, the initial state of the quadrotor should be selected suciently close to the desired value such that the quadrotor works properly. From this point of view, the stability of the system is locally obtained.

3.4

Actuator saturation As a practical system, the quadrotor has actuator saturations. In detail, the thrust force of each rotor cannot be arbitrarily large, then, the total thrust force F T i and the torques τ φ i , τ θ i and τ ψ i are limited. Therefore, when the actuators (four rotors) hit the limits of the maximum value, the control signal cannot be performed. This may cause the performance of the closed-loop system getting unsatisfactory.

According to the denition 3.1 and the actuator saturations, we consider the following constrains on the quadrotor: i) The absolute value of the pitch and roll angles are smaller than π/2; ii) The torques and thrust force are limited such that

τ φ i ≤ τ max φ i , τ θ i ≤ τ max θ i , τ ψ i ≤ τ max ψ i and F T i ≤ F max T i
, where τ max

φ i , τ max θ i , τ max ψ i
and F max T i are some positive nite scalars.

The power of the actuator cannot be arbitrarily high. The thrust force of the propellers have saturations. In this case, we conclude that the attitude angles (roll or pitch) cannot be too big, otherwise, the quadrotor will not be able to overcome the gravity and will not able to keep the desired altitude.

This fact can be shown, for instance, in Fig. 3.6, where the angles of roll and yaw are supposed to be zero. Since

F T i ≤ F max T i
, the maximum value of the component 

max |θ i | ≤ arccos mg F max T i < π 2
Note that the maximum thrust should satisfy F max

T i
> mg, otherwise, the quadrotor cannot take-o. As analyzed before, the rotational dynamics control is in inner loop.

The inputs of the rotational dynamics are the desired attitude values. These inputs should be bounded to guarantee that the pitch and roll angles are limited.

Conclusion

In this chapter, the controller design for a single quadrotor has been investigated.

The research of this chapter has a great importance for the formation control of multi-quadrotor system. This research has started with the navigation problem of a quadrotor, which has been attributed as a trajectory tracking problem. Through the analysis of atness of the quadrotor model, we found that a desired trajectory can be transfered to the design of the desired at output. Then, the tracking controller has been derived.

Considering the double-loop property of the quadrotor dynamics, a high-gain attitude controller has been designed according to the singular perturbation system theory.

Then, the closed-loop quadrotor dynamics has performed in two time scales. This result will greatly simplify the formation control problem in the following chapters. Since the rotational dynamics (boundary-layer model) performs in fast time scale, the formation controller design can be considered only for the translational dynamics (reduced model).

Finally, the actuator saturations have been considered, where we conclude that the attitude pitch and roll angles should be limited. Then, the requirement on the formation controller design is proposed, namely, the output of the formation controller of each quadrotor should be bounded. The formation control problem can be categorized into two types. Namely, the formation producing problem and the formation tracking problem [START_REF] Cao | An overview of recent progress in the study of distributed multi-agent coordination[END_REF].

The former problem refers to the algorithm design for a group of vehicles to reach a predened geometric pattern without a group reference, while the latter problem refers to the same task and meanwhile following a predened trajectory. Therefore, the latter formation problem is more complex than the rst one. In this thesis, the latter problem, i.e., the formation tracking problem is considered.

The predened trajectory for the group of UAVs is called formation trajectory.

It represents the common interest of the group of quadrotors. Considering the formation trajectory, we give the denition about the formation task as follows Denition 4.1 (Formation task). A formation task for a multi-quadrotor system with L-F architecture is represented by a desired formation trajectory (given to the leader(s)) and a desired geometric pattern (desired inter-distance and orientation between neighboring quadrotors) for the group of quadrotors.

In denition 4.1, the formation task is rigid if the desired geometric pattern is xed. Otherwise, the formation task is exible.

The formation task describes the desired integral behaviors of the multiple quadrotors. The objective of the formation control is to accomplish the formation task, i.e., the quadrotors keep the desired pattern and track a given trajectory by using the formation controllers.

The formation control strategies is based on the formation structures. According to the dierent formation structures, which are introduced in chapter 1 of introduction, we detail the following three formation control strategies, i.e., the hierarchical centralized, decentralized and distributed formation control strategies. In this case, a central component, or in other words, a central decision maker exists to manage the state of the quadrotors and to generate the desired trajectories for them. This formation control strategy is considered as a completely centralized method, which is commonly based on a central trajectories generator.

The centralized method is known as an ecient and simple implementation approach. However, a wide bandwidth communication channel and fast processors are required to guarantee the performance of the system. This formation control structure can be depicted in Fig. 4.1 . This method is simple and quite easy to implement. The formation controller design is trivial, because no interaction between UAVs is considered. The experiments of the formation of four micro quadrotors using this structure is shown in [START_REF] Kushleyev | Towards a swarm of agile micro quadrotors[END_REF], where an excellent performance is achieved. The role of the trajectory generator is played by a desktop base station. In [START_REF] Valenti | Embedding health management into mission tasking for uav teams[END_REF],

a task management unit is proposed to plan the real-time trajectories for the quadrotors. The collisions between the quadrotors are avoided by replanning the trajectories.

Hierarchical centralized formation control with L-F conguration

The centralized formation structure highly depends on the performance of the central component (trajectory generator). In order to reduce the burden of the central According to the authors in [START_REF] Kushleyev | Towards a swarm of agile micro quadrotors[END_REF], the collision avoidance do not need to be considered explicitly, if the controllers are well-designed. In other words, since the collision-free trajectories are planned for the quadrotors and they can precisely track these trajectories, the collisions between the quadrotors are avoided.

Decentralized formation control

In some cases, the collision should be considered explicitly, when the systems are in presence of disturbances for example.

The quadrotors should have the ability of sensing/detecting other UAVs around them. Concerning this problem, a decentralized formation structure is proposed in the literature such as in [START_REF] Saif | Real-time ocking of multiple-quadrotor system of systems[END_REF]. In this formation structure, the leader does not exist. This control structure is shown in • The navigational feedback should be available for each quadrotor,

• The state (positions and velocities) should be interacted between quadrotors, where the rst point is for the achievement of navigation objective, while the second The distributed formation control structure evolves from the decentralized structure.

In general, in the both cases, the robots in the group are homogeneous, i.e., the leader does not exist. The terminology distributed is usually used in the domain of computer science. In multi-robot systems, the term distributed is used, when the communication issues are added between the robots. Some authors assert that the centralized control is better than a distributed control [START_REF] Baillieul | Control and communication challenges in networked real-time systems[END_REF], if we have assumptions such as, the central component is always reliable and capable for calculations; time delays do not exist;

the wireless communication bandwidth is suciently large, and additionally, the dynamics of the quadrotor are perfectly controlled. However, in practice, these assumptions are too strict and sometimes impossible to be guaranteed. In these cases, the distributed control has the potential of being superior to centralized control. The distributed control protocols have two important characteristics, a) no central decision maker exists; b) only local information are available for each agent [Olfati- Saber and Murray, 2004]. According to Olfati, in the multi-agent system, if all the agents are considered as neighbors in the formation controller design, the formation protocol cannot be attributed as distributed, even though the central component does not exist.

Decentralized/Distributed formation control with L-F conguration

In this thesis, a challenging problem is considered, where only part of the quadrotors have the knowledge of the formation trajectory. This special subgroup of quadrotors which know the desired formation trajectory, are called leader group. The quadrotors in the leader group are called leaders. In some special formation task, the leaders are changeable (this case will be detailed in chapter 6). Both the decentralized and distributed formation control are developed. In chapter 5 and 6, the decentralized formation control for quadrotors is considered. In chapter 7, the distributed formation control is investigated, where the communication issues are taken into account.

An example of the L-F decentralized formation structure is depicted in Fig.

4.4.

The red quadrotors represent the leaders, while the others are followers.

The diculty of this formation structure is that the followers have no knowledge about the formation trajectory. They only depend on the states of their neighbors (positions and velocities) in order to accomplish the formation task. Therefore, the interactions are important for the followers, not only for the reason of collision avoidance but also for the reason of formation. Dierent from the existing research, for instance [START_REF] Ni | Leader-following consensus of multi-agent systems under xed and switching topologies[END_REF], [START_REF] Hong | Tracking control for multi-agent consensus with an active leader and variable topology[END_REF], [START_REF] Ji | Interconnection topologies for multi-agent coordination under leader?follower framework[END_REF], the leaders have interactions with the followers in this work. Then, in the sequel, the leaderfollower decentralized/distributed formation problems are investigated, in both the considerations of exible formation and the rigid formation. The proposed leaderfollower formation has the following novelties comparing to the existing works. • Multiple and changeable leaders: the number of leaders may be greater than one, the statue (leader or follower) of the agent is changeable.

• Interactions between leaders and followers: the leader(s) can be aected by their neighboring followers.

Remark 4.1. In the investigated leader-follower formation problem, only the leader is aware of the formation task, the remaining UAVs interact with each other or with the leaders through a rigid or switching topology.

Remark 4.2. The rigid or switching topology do not correspond to the rigid or exible formation. Although a formation is rigid, it may have rigid or switching topology.

Consensus algorithm for multiple double-integrator systems

As introduced in the chapter of introduction, the consensus is a major problem in the research of multi-UAV systems. As analyzed in section 3.3, the planar translational dynamics of the quadrotor can be approximately represented by a reduced model, which is a double-integrator model (3.27).

Numerous consensus algorithms are investigated in terms of single-integrator system in the literature. We will give the basic consensus algorithms for doubleintegrator systems in the following subsection and investigate the consensus condition and the consensus speed, which are in terms of the interaction matrix.

Note that this section will then be used and extended in the following chapters.

Basic consensus algorithm

Graph Laplacians are important graph-related matrices that play a critical role in the analysis of consensus problems [Olfati- Saber et al., 2007], [START_REF] Aguilar | Graph controllability classes for the laplacian leader-follower dynamics[END_REF].

In this thesis, since a leader-follower formation problem is investigated, the convergence of the consensus algorithm is analyzed by using the interaction matrix.

This notion is introduced in chapter 2. It is important to note that the interaction matrix is formed to analyze the consensus of the UAVs, but not directly used in the formation controller design.

According to Olfati [Olfati- Saber et al., 2007], a consensus algorithm (or protocol) is an interaction rule that species the information exchange between an agent and all of its neighbors on the network.

As analyzed in chapter 3, the dynamics of the quadrotor perform in two time scales. Sometimes, the eect of the fast dynamics (rotation) (3.28) can be omitted in order to reduce the complexity of the formation controller design. The reduced dynamics, i.e., the translational dynamics have the characteristics of a doubleintegrator system. Therefore, we start with the simplest consensus algorithm for the formation of double-integrator agents.

Let us assume a multi-agent system with n agents, each agent i has the following

dynamics ẍi = u i (4.1)
The neighbor-based consensus algorithm u i is given as follows

• For a follower

u i = -k i2 j∈N i ( ẋi -ẋj ) -k i1 j∈N i (x i -x j ) (4.2)
• For a leader

u i = -k i2 j∈N i ( ẋi -ẋj ) -k i1 j∈N i (x i -x j ) + r -k i2 ( ẋi -ṙ) -k i1 (x i -r) (4.3)
where k i2 and k i1 , i ∈ V are some positive scalars.

We rewrite (4.2) as follows

u i = -k i2 j∈N i ( ẋi -ṙ -ẋj + ṙ) -k i1 j∈N i (x i -r -x j + r) (4.4)
We denote by

e i = x i -r (4.5)
the tracking error of agent i and the reference trajectory r(t). The objective of the neighbor-based consensus algorithm for the leader-follower formation of multiple agents is to guarantee that the errors e i , i ∈ V converge to zero.

Substituting (4.4) into (4.1), then, for a follower, we have

ëi = -k i2 j∈N i ( ėi -ėj ) -k i1 j∈N i (e i -e j ) -r (4.6)
Similarly, for a leader, we obtain

ëi = -k i2 j∈N i ( ėi -ėj ) -k i1 j∈N i (e i -e j ) -k i2 ėi -k i1 e i (4.7)
Remark 4.3. Comparing the dynamics of the tracking errors in (4.6) and (4.7), we observe that the second derivative of the reference trajectory exists in the error dynamics of the followers. Knowing that the reference trajectory is not available for the follower, the term r is an uncertain term for the followers.

Following the denition of the adjacency matrix in section 2.2.1, we give the detailed form of G A as follows

ω a ij = 1, if (i, j) ∈ E 0, if (i, j) / ∈ E (4.8)
Since the neighbor set of agent i is dened by N i = {j ∈ V : (i, j) ∈ E} , the degree matrix yields

G D = diag{|N 1 |, |N 2 |, . . . , |N n |} (4.9)
Note that | • | represents the cardinality of the neighbor sets N i , i ∈ V. The cardinality of a set is equal to the number of the members in this set.

The elements of the status matrix

G L = diag{ω l 1 , ω l 2 , . . . , ω l n } yields ω l i = 1, then i ∈ V L 0, then i ∈ V -V L (4.10)
Let us denote by e = [e 1 , e 2 , . . . , e n ] T a collective tracking error for all the agents. Then, the dynamics of e in state space yields 

d dt e ė = 0 n×n I n -K 1 (G D -G A ) -K 2 (G D -G A ) e ė + 0 n×n 0 n×n -K 1 G L -K 2 G L e ė + 0 n×n (I n -G L )(r1 n ) where K 2 = diag{k 12 , k 22 , . . . , k n2 } and K 1 = diag{k 11 , k 21 , . . . , k n1 }. According to (2.19), G = G D -G A + G L ,
I n -K 1 G -K 2 G e ė + 0 n×n (I n -G L )(r1 n ) (4.11)
where 1 n ∈ R n represents a vector whose elements are equal to 1.

Convergence analysis

In order to analyze the convergence of the tracking error in (4.11), we propose the following lemma.

Lemma 4.1. For a linear system

ẋ = A c x + δ (4.12)
where A c is Hurwitz, δ represents a bounded uncertain vector such that δ ≤ δ max where δ max is a nite scalar. Then, the state of system (4.12) is ultimately bounded.

Proof. See A.2.1.

We note that

(I n -G L )(r1 n ) ≤ (I n -G L )1 n • |r|, where (I n -G L )1 n is a constant nite scalar. Since r is bounded, (I n -G L )(r1 n ) is bounded. Let us dene A G = 0 n×n I n -K 1 G -K 2 G (4.13)
According to lemma 4.1, the solution of the tracking error dynamics in (4.11) is ultimately bounded, if matrix A G is Hurwitz and |r| is bounded. Now we will investigate when the matrix A G is Hurwitz. The interaction matrix G in A G describes the information exchange among the agents in a multi-agent system. Since the graph is undirected, G is symmetric. We will give an example to explicitly interpret the construction of the interaction matrix G according to the neighbor-based consensus algorithm.

Example 4.1. A multi-agent system is controlled by the neighbor-based consensus algorithm in (4.2) and (4.3), such that the agents have an L-F conguration. The corresponding graph is shown in Fig. 4.5. Among the four agents, we have one leader and three followers. Note that since the graph is undirected, the direction of the information ow is not indicated in the gure. According to (4.8), (4.9) and (4.10), the adjacency matrix G A , degree matrix and the status matrix yield respectively

G A =       0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 0       , G D =       1 0 0 0 0 2 0 0 0 0 1 0 0 0 0 2       and G L =       1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      
Then, the interaction matrix yields

G = G D -G A + G L =       2 -1 0 0 -1 2 0 -1 0 0 1 -1 0 -1 -1 2       (4.14)
Observe that G is symmetric.

We will give some general properties of the interaction matrix as follows. It is important to note that G D -G A is a Laplacian of the graph. Let us denote by L = G D -G A the Laplacian matrix. Since the interaction matrix is constructed by using the Laplacian, we will introduce some important properties of the Laplacian for future use. Lemma 4.2. [Olfati- Saber and Murray, 2004] Let G be an undirected graph with Laplacian L. Then, G is connected if and only if rank(L) = n -1.

According to the denition of the degree matrix, the row sum of L satisfy n j=1 L (i•j) = 0, i ∈ V. Thus, the Laplacian L has a zero eigenvalue corresponding to the eigenvector 1 n . Lemma 4.3. A Laplacian matrix is semi-denite positive.

Proof. See A.2.2. Now, we give a property of the interaction matrix as follows Proposition 4.1. Let G be an undirected simple graph, then the interconnection matrix G in equation (2.19), is positive-denite, if i) G is connected; ii) the multiagent system has at least one leader.

Proof. See A.2.3.

According to the proposition 4.1, we have the following corollary.

Corollary 4.1. When the condition i) is not satised such that G is not connected, the graph can be divided into several connected sub-graphs, then, the interaction matrix G is positive-denite, if each sub-group of the agents, which is described by a connected sub-graph, has at least one leader.

Proof. See A.2.4.

We will investigated here the consensus condition, i.e., the stability of system (4.11).

Theorem 4.1. For a multi-agent system with the consensus algorithms (4.2) and (4.3), the interaction topology can be represented by a graph G. The agent dynamics yield double-integrator shown in (4.1). The gain matrices are selected as K 1 = k 1 I n and K 2 = k 2 I n , where I n is a real positive diagonal matrix. The dynamics of the collective tracking error (4.11) of the agents with respect to a smooth reference trajectory r(t) is i) ultimately bounded, if the conditions in proposition 4.1 or in corollary 4.1 are satised, ii) asymptotically stable, if i) is satised and r = 0.

Proof. Since

K 1 = k 1 I n and K 2 = k 2 I n , we obtain A G = 0 n×n I n -k 1 I n G -k 2 I n G .
Note that I n G may be not symmetric, we carry out similarity transformation by

using matrix T = I 1 2 n 0 n×n 0 n×n I 1 2 n , i.e., ÃG = T -1 A G T = 0 n×n I n -k 1 I 1 2 n GI 1 2 n -k 2 I 1 2 n GI 1 2 n
Then, ÃG has the same eigenvalues as the matrix A G . We observe that G = I

1 2 n GI 1 2 n is symmetric, since G is symmetric.
Additionally, G has the same eigenvalues as I n G.

Since condition i), the eigenvalues of G are real and positive according to proposition (4.1) and corollary (4.1). Since I n is positive denite, then, we have G is positive denite. Note that the gains k 1 and k 2 are positive scalars. Let us

denote x = [x T 1 , x T 2 ]
T by the eigenvector with respect to the eigenvalue λ of matrix ÃG . Then, we have x 2 = λx 1 and

(λ 2 I n + λk 2 G + k 1 G)x 1 = 0
We left multiply the foregoing equation by x * 1 , where x *

1 represents the conjugate transpose of x 1 . Denoting x * 1 x 1 = a, k 2 x * 1 Gx 1 = b and k 1 x * 1 Gx 1 = c, we obtain aλ 2 + bλ + c = 0
The solution of the foregoing matrix yields

λ =        -b ± √ b 2 -4ac 2a , if b 2 -4ac ≥ 0 -b ± i √ b 2 -4ac 2a , if b 2 -4ac < 0 (4.15)
Since G is positive denite, then, a > 0, b > 0 and c > 0. We obtain that the eigenvalues of ÃG are negative or have negative real part. Therefore, the matrix A G is Hurwitz. Then, according to lemma (4.1), the solution of the error dynamics (4.11) is ultimately bounded. Furthermore, if r = 0 the tracking error (4.1) is asymptotically stable. Now, we will investigate the condition for which the convergence speed can be increased. This will be the purpose of theorem 4.2. This property will be used for the switching and the weighted neighbor-based formation controls in chapters 6 and 7.

Theorem 4.2. In a multi-agent system with agent dynamics (4.1), the consensus algorithms referred in theorem 4.1 are used for each agent. We assume that the conditions in proposition 4.1 or corollary 4.1 are satised such that the corresponding interaction matrix G is positive denite. Let us denote λ min (I n G) = λmin , then, the converging speed of the tracking error e is proportional to λmin .

Proof. Let us set x = [x T 1 , x T 2 ] T by the eigenvector with respect to the eigenvalue λ of matrix ÃG . Then, we have -k

1 Gx 1 -k 2 Gx 2 = λx 2 . Since x 2 = λx 1 , then we obtain Gx 2 = - λ 2 k 2 λ + k 1 x 2 (4.16) We denote λ = -λ 2 k 2 λ+k 1
. Equation (4.16) implies that λ is an eigenvalue of matrix G with corresponding eigenvector x 2 . It is worth to note that λ is real, since G is symmetric matrix. According to λ, we have

λ 2 + k 2 λλ + k 1 λ = 0
If we dene Re(λ max ) := f ( λ), according to the solution of the foregoing equation, f ( λ) yields

f ( λ) =          -k 2 λ + k 2 2 λ2 -4k 1 λ 2 , if k 2 2 λ2 -4k 1 λ ≥ 0 -k 2 λ 2 , if k 2 2 λ2 -4k 1 λ < 0 Let us denote f 1 ( λ) = -k 2 λ + k 2 2 λ2 -4k 1 λ and f 2 ( λ) = -k 2 λ. Since the gains k 1 > 0 and k 2 > 0, then -4k 2 1 < 0 ⇒k 4 2 λ2 -4k 2 2 k 1 λ -4k 2 1 < k 4 2 λ2 -4k 2 2 k 1 λ ⇒(k 2 2 λ -2k 1 ) 2 < k 2 2 (k 2 2 λ2 -4k 1 λ) ⇒k 2 2 λ -2k 1 < k 2 k 2 2 λ2 -4k 1 λ ⇒ k 2 2 λ -2k 1 k 2 2 λ2 -4k 1 λ < k 2 ⇒ -k 2 + k 2 2 λ -2k 1 k 2 2 λ2 -4k 1 λ < 0 ⇒ f 1 ( λ) < 0 and f 2 ( λ) = -k 2 < 0 Therefore, f 1 ( λ) and f 2 ( λ) are decreasing functions. When k 2 2 λ2 -4k 1 λ = 0, since λ = 0, this implies λ = 4k 1 k 2 2
, since the graph is connected and a leader exists, e.i. λ > 0. We assume λ-

< 4k 1 k 2 2 . Then, lim λ-→ 4k 1 k 2 2 f 1 ( λ-) 2 = 2k 1 k 2 = f 2 ( 4k 1 k 2 2 ) 2 which indicates that f ( λ) is continuous at point λ = 4k 1 k 2 2 . Therefore, f ( λ) is decreasing.
Then, we can conclude that Re(λ max ) is equal to f ( λmin ). Note that λmin represents the minimum eigenvalue of the interaction matrix G. Therefore, the multi-agent system with a relatively big λmin will have a relatively small λ max , i.e., the maximum eigenvalue of A G will be farer away from the imaginary axis. Then, the worst-case speed of convergence (dened in [Olfati- Saber and Murray, 2004] and used in our multi-agent system) will increase.

In the literature, for instance in [Fax and Murray, 2004], where a leaderless multi-agent system is considered, the proposed consensus algorithm leads to a normalized Laplacian matrix. In this thesis, since an L-F conguration is considered, a normalized interaction matrix is dened by

Ḡ = (G D + G L ) -1 • G (4.17)
Then, we have the following corollary.

Corollary 4.2. Let us select the gain matrices as I n = (G D + G L ) -1 , then the formation controller will render a normalized interaction matrix Ḡ.

According to corollary 4.2, the matrix A c in (4.13) becomes

A G = 0 n×n I n -k 1 (G D + G L ) -1 • G -k 2 (G D + G L ) -1 • G = 0 n×n I n -k 1 Ḡ -k 2 Ḡ (4.18)
Thus, the results in theorems 4.1 and 4.2 can be adapted for the case when the normalized interaction matrix is considered.

In theorem 4.2, the converging rate of the formation error is proven to be related to the minimum eigenvalue of matrix I n G. Particularly, if the gains are selected as K 1 = k 1 I n and K 2 = k 2 I n , the converging rate is uniquely related to the minimum eigenvalue of matrix G. In the sequel, we will investigate the cases that cause the minimum eigenvalue of G increasing.

Proposition 4.2. The minimum eigenvalue of the interaction matrix G for an undirected connected graph G will increase, if extra edges are added.

Proof. See A.2.5.

Corollary 4.3. The minimum eigenvalue of the interaction matrix for an undirected connected graph G will increase, if more agent(s) are assigned as leader(s).

Proof. The proof of is similar to the proof of proposition 4.2.

Let us give an example to illustrate the foregoing results. same vertices constitute the graph G e = (V, (E) e ). Then, G e and G yield

G e =       1 0 0 -1 0 1 -1 0 0 -1 1 0 -1 0 0 1       , G = G + G e =       3 -1 0 -1 -1 3 -1 -1 0 -1 2 -1 -1 -1 -1 3      
Then, we can obtain that λ min ( G) = 0.1864 > λ min (G). The simulation results are given by Fig. 4.7. We can observe that the converging speed with extra edges is faster than the original formation.

• More assigned leaders Let us assume that agent 3 is assigned as a new leader, such that agents 1 and 3 are leaders, while 2 and 4 are followers. Then, we can write the new interaction matrix as follows

G e =       0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0       , G = G + G e =       2 -1 0 0 -1 2 0 -1 0 0 2 -1 0 -1 -1 2      
Then, we can obtain λ min ( G) = 0.382 > λ min (G). We can observe from Fig. 4.8 that the converging speed with an extra leader is faster than the original formation.

Conclusion

In this subsection, the interaction matrix is proposed to describe the interaction relations in a leader-follower multi-agent formation. The agents (quadrotors) are modeled by a double-integrator system. A basic neighbor-based consensus algorithm for such a multi-agent system is given. Some important properties, such as the stability, the converging rate are proven to be related to the interaction matrix.

It is worth to note that if the changeable edges of the graph and the changeable leaders are taken into account in the formation control, the multi-quadrotor system will have a switching topology.

The multi-quadrotor systems with xed and switching formation control strategies will be discussed respectively in the following two chapters.

Chapter 5

Formation controllers with xed topology The UAVs keep a certain pattern and track a desired formation trajectory. This type of formation has applications such as object transportation [Sreenath and Kumar, 2013] and surveillance of area of interest [START_REF] Saska | Autonomous deployment of swarms of micro-aerial vehicles in cooperative surveillance[END_REF].

In this chapter, we will give three formation control approaches, where the xed topology of the multi-UAV system is considered, e.i., in the formation controller design, we assume that the neighbors of each UAV do not change.

The atness-based formation control is considered for the aggressive formation.

The Lyapunov redesign is used when the nonlinearities of the translational dynamics are taken into account.

In order to improve the formation performance, the composite nonlinear feedback control with hyperbolic tangent function is proposed.

Flatness-based formation control

In section 3.2, the simulation results have shown satisfactory performance of the circular trajectory tracking using a atness-based trajectory tracking control for a single quadrotor (see Fig. 3.3 and 3.4). However, this control strategy is based on the knowledge of high-order derivatives of the desired trajectory, i.e., (X d i ) (2) , (X d i ) (3) and (X d i ) (4) . In a formation of quadrotors, the high-order derivatives are normally not available. According to chapter 4, for each quadrotor, its trajectory depends on neighbors states (and the reference formation trajectory (RFT), if the quadrotor is a leader). These states contain their positions and velocities, but without the higher-order derivatives. If the quadrotors move slowly and the RFT varies slowly, we can assume that the higher-order derivatives are null. However, the performance will not be satisfactory for aggressive formations. Let us reconsider the example proposed in section 3.2, and suppose that the higher-order derivatives in (3.9) are zero. Then, the tracking curves are given in Fig. 5.1. We can observe that the tracking performance is not satisfactory, because the delays are too large. These delays are expected to be reduced by augmenting the gains, but such proper gains are very dicult to be found and the performance is always unsatisfactory. We will propose in the next subsection an observer to estimate these high-order derivatives.

High-order derivatives estimation of UAVs trajectories

In order to use the atness-based formation strategy, an observer of the desired trajectory for each quadrotor is proposed to estimate the higher-order derivatives.

We take x d i for example, according to v i1 in (3.12), we have to estimate (X d i ) (2) , (X d i ) (3) and (X d i ) (4) . Therefore, we construct an observer to estimate the high-order derivatives of the desired trajectory. Denoting that x

d i = [X d i , Ẋd i , (X d i ) (2) , (X d i ) (3) , (X d i ) (4) ] T and xd i = [ Xd i , Ẋd i , ( Xd i ) (2) , ( Xd i ) (3) , ( Xd i ) (4) ] T , ẋd i =A t x d i + B t (X d i ) (5) y i =C t x d i (5.1)
where (X d i ) (5) is unknown but supposed to be bounded. The matrices A t , B t and C t are given by

A t =         0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0         , B t =         0 0 0 0 1         and C t = 1 0 0 0 0 0 1 0 0 0
Then, we propose the observing model as follows

ẋd i = A t xd i -L t ( xd i ẋd i -C t x d i ) (5.2)
where L t represents the gain matrix which satises

L t = k o1 k o2 k o3 k o4 k o5 k o6 k o7 k o8 k o9 k o10 T .
Let us denote xd i = xd i -x d i , then, according to (5.1) and (5.2), ẋd i satises

ẋd i = (A t -L t C t )x d i + B t (X d i ) (5)
The gains of L t should be selected such that A t -L t C t is Hurwitz. According to lemma 4.1, the observing error xd i will not diverge, because |(X d i ) (5) | is bounded. In particular, the observing error xd i will asymptotically converge to the origin, if (X d i ) (5) is identically zero.

Since in sections 3.2.1 and 3.2.2, we have proposed the trajectory tracking controllers for a single quadrotor, where the high-order derivatives of the trajectory are used. In this section, the high-order derivatives are replaced by the estimated values by using the observer (5.2). Then, the controller (3.12) becomes

v i1 = ( Xd i ) (4) -k 4X ( θi g-( Xd i ) (3) ) -k 3X (θ i g -( Xd i ) (2) )- k 2X ( Ẋi -Ẋd i ) -k 1X (X i -X d i ) v i2 = ( Ŷ d i ) (4) -k 4Y (-φi g-( Ŷ d i ) (3) ) -k 3Y (-φ i g -( Ŷ d i ) (2) )- k 2Y ( Ẏi -Ẏ d i ) -k 1Y (Y i -Y d i ) (5.3)
where the parameters k iX and k iY , i ∈ {1, 2, 3, 4} can be selected according to the methods introduced in chapter 3.

In order to validate the atness-based navigation with observer, we reconsider the simulation in section 3.2.1. The same coecients and controller parameters are used, while the high-order derivatives of the RFT is replaced by the estimation given by (5.2). The initial state of the observer is xd i = 0 5×1 . The gain matrix of the observer is selected as follows

L t = 3 1 1 1 0.2 0.4 2 3 1.5 0.2
The simulation results are shown in Fig. In this subsection, we have introduced a atness-based navigation control for a single quadrotor using the estimated high-order derivatives. In the following two subsections, we implement this method to the formation of quadrotors. Firstly, we try to nd the desired trajectory for each UAV according to a rigid formation task.

Rigid formation task

We consider the planar formation of UAVs, since the altitude control is decoupled with the planar motion control. We denote by x i = [X i , Y i ] T and ẋi = [ Ẋi , Ẏi ] T the planar position and velocity vectors for UAV i. The formation controller of each UAV uses the relative positions and velocities with respect to its neighbors, which can be represented by vectors [(x i -x j ) T , ( ẋi -ẋj ) T ] T , j ∈ N i . If the UAV is a leader, besides the foregoing measurements, its formation controller also uses the relative position and velocity with respect to the reference trajectory [(x i -r(t)) T , ( ẋi -ṙ(t)) T ] T , where we denote by r(t) = [r X (t), r Y (t)] T the reference formation trajectory (RFT).

The objective of the rigid formation is to guarantee that all the quadrotors track the RFT with some constant biases

d i0 = [d X i0 , d Y i0 ] ∈ R 2
, such that the quadrotors keep a constant formation pattern.

We are now ready to state a (slightly modied) version of the L-F consensus scheme proposed in [START_REF] Ni | Leader-following consensus of multi-agent systems under xed and switching topologies[END_REF].

Denition 5.1. The L-F consensus of system (5.22), is said to be achieved if, for each UAV i ∈ V,

lim t→∞ x i -r(t) -d i0 = 0 lim t→∞ ẋi -ṙ(t) = 0 where i = 1, . . . , n (5.4) 
for some initial condition x i (0), i = 1, . . . , n.

Therefore, the desired position of UAV i ∈ V evolves according to x d i (t) -r(t) = d i0 and ẋd i (t) -ṙ(t) = 0, then, we obtain

x d i (t) = d i0 + r(t) and ẋd i (t) = ṙ(t)
Then, the rigid formation task contains two parts, i) the desired trajectory RFT r(t);

ii) the biases away from the RFT. An example of four UAVs with rigid formation task is shown in Fig. 5.3(a), where the solid red circle represents the RFT at time t a .

The dashed red circles represent the desired positions x d i (t a ) for the UAVs i ∈ V at t a . The solid black circles represent the quadrotors real positions at t a , i.e., x i (t a ), i ∈ V.

However, the RFT r(t) is not available for the followers, therefore the desired trajectory x d i (t) for UAV i is not available, in other words, x d i (t) cannot be used in the formation controller design for the followers. For the followers, only the neighbors states are available for the formation controller design, as shown in Fig. 5.3(b). Then, the formation problem becomes: how to nd the available trajectories for UAVs i ∈ V in order to attain the formation task. 

Generation of the desired trajectory for a quadrotor

Let us make a sum of the relative position state vectors. Note that we drop the explicit expression of time in the expressions for the sake of simplicity.

j∈N i (x i -x j -d ij ) if i ∈ V -V L j∈N i (x i -x j -d ij ) + x i -r -d i0 if i ∈ V L (5.5)
The inter-distance is given by d ij = d i0 -d j0 . Then, equations (5.5) can be rewritten as follows

j∈N i (x i -r -d i0 -(x j -r -d j0 )) if i ∈ V -V L j∈N i (x i -r -d i0 -(x j -r -d j0 )) + x i -r -d i0 if i ∈ V L
We introduce the available desired trajectory for each UAV as follows

xd i =      1 |N i | j∈N i (x j + d ij ) if i ∈ V -V L 1 |N i +1| j∈N i (x j + d ij ) + r + d i0 if i ∈ V L (5.6)
We then observe that xd i is available for UAV i. We rewrite the equation (5.5) in matrix form for all the quadrotors as follows

    x 1 -xd 1 . . . x n -xd n     = ( Ḡ ⊗ I 2 )     x 1 -x d 1 . . . x n -x d n     (5.7)
where Ḡ represents the normalized interaction matrix. According to proposition 4.1, corollary 4.1 and the denition in equation (4.17), we know that Ḡ is invertible if the graph of the multi-UAV system is connected with at least one leader. Therefore, if each UAV can precisely track the desired trajectory xd i (t), the formation task is achieved. Its time derivative ẋd i (t) can be obtained by taking the derivative of (5.6), which are in terms of the velocities of the neighbors (and the RFT, if UAV i a leader). Note that d ij is constant in a rigid formation task. Now, we have obtained the available trajectory xd i (t) and its rst-order derivative ẋd i (t) for each UAV. However, the higher-order derivatives ( 4) are not available. We can either assume that the higher-order derivatives are equal to zero or estimate them by using observer (5.2).

x d i (t)) (2) , (x d i (t)) (3) and (x d i (t)) ( 
The formation problem degrades into the problem of navigation such that the atness-based navigation control can be applied. We note that for the second solution, the tuning process of the parameters in the observation gain matrix is not trivial. The incorrect estimations may lead the system to instability. The estimation errors are usually high at t = 0s, when the initial condition of the observer is not suciently close to the real values (x d i and its derivatives). In order to implement this method for the distributed formation structure, we add saturation functions to the estimated high-order derivatives to prevent great observation errors.

Denition 5.2 (Standard saturation function). Let us dene a function σ b : R n → R n as follows

• If n = 1, σ b (α) = sign(α) • min{ α , b}
where sign(•) represents the sign function.

• If n > 1 and α = [α 1 , . . . , α n ] T , σ b (α) = [σ b (α 1 ), . . . , σ b (α n )] T
To deal with the high initial observation error problem, we propose a modied controller in equations (5.8) using saturation function, where we denote

xd i = [ Xd i , Ȳ d i ] T . v i1 = σ b3 (( Xd i ) (4) ) -k 4X ( θi g -σ b2 (( Xd i ) (3) )) -k 3X (θ i g -σ b1 (( Xd i ) (2) )) -k 2X ( Ẋi -Ẋd i ) -k 1X (X i -Xd i ) v i2 = σ b3 (( Ŷ d i ) (4) ) -k 4Y (-φi g -σ b1 (( Ŷ d i ) (3) )) -k 3Y (-φ i g -σ b1 (( Ŷ d i ) (2) )) -k 2Y ( Ẏi -Ẏ d i ) -k 1Y (Y i -Ȳ d i ) (5.8) The bounds b 3 , b 2 and b 1 should satisfy b 3 ≥ (x d i ) (4) , b 2 ≥ (x d i ) (3) and b 1 ≥ (x d i ) (2)
. The proof of the convergence of the formation error is shown in A.3.1.

Remark 5.1. The performance of the multi-UAV system with the formation controller (5.8) depends on the selection of the bounds of the saturation function. In general, these bounds should not be selected too high, otherwise, the formation error may be diverge.

In the experiment, the saturation function σ is not needed, when the initial condition of the observer is close to the real value.

In this section, we present the atness-based formation control with estimated high-order derivatives of the trajectory of each UAV. We will illustrate this proposed method by the following simulations.

Simulation results

We reconsider the formation of four quadrotors in Fig. 5.3(a). The formation task is to track the RFT r(t) = [3 sin(0.1t), 3 cos(0.1t)] T with the desired constant biases d i0 , i ∈ {1, 2, 3, 4}. Note that the planar formation is considered, since the altitude control is simple and dropped for the sake of simplicity. The desired altitude is without estimation of high-order derivatives and ii) with estimation of high-order derivatives. We observe from Fig. 5.4 that the UAVs track the RFT with delays and the inter-distances are not well maintained. On the contrary, in Fig. 5.5, the delays are small and the UAVs keep around the desired inter-distances.

Z d i = 1m. It is
It is worth to note that in the latter method, the parameters tuning process is not simple. This may be a disadvantage of this method, nevertheless, the performance of the formation is satisfactory as shown in the simulation.

In this section, the atness-based formation control strategy is shown in this subsection.

The formation problem is degraded into a navigation problem by deriving the desired trajectory for each UAV. An observer is proposed to estimate the high-order derivatives of the desired trajectory of each UAV. Saturation functions are added to avoid the divergence of the formation errors caused by the initial observation errors.

In this section, the formation controller design is derived by using the property of atness of the quadrotors. In the following section, we will introduce a formation controller based on the consideration of nonlinearities in the translational dynamics of each UAV. 

Formation control with Lyapunov redesign

According to [START_REF] Cao | An overview of recent progress in the study of distributed multi-agent coordination[END_REF], the system dynamics plays an important role in determining the nal consensus state.

The multi-robot systems with dierent individual dynamics may have dierent consensus results. For a more complex case, when we consider the nonlinearities and uncertainties of the model of the quadrotor, the problem may become dicult. Although the objective is always the same, i.e., to guarantee reaching agreement on some nal states, the problem is more complicated due to the nonlinearities of the complete systems.

As analyzed in section 3, the attitudes of the quadrotor have faster dynamics than the translational states. In the literature, for instance [START_REF] Cao | Inner-outer loop control with constraints for rotary-wing uavs[END_REF],

the rotation dynamics is sometimes supposed to be fast stabilized, such that the attitude angle can precisely track the desired angles. However, in practice, the tracking errors of the attitude angles always exist, although they are small. In this section, we investigated that the formation controller design is processed on the reduced model of the quadrotor with considering the eect of the tracking errors of the attitude angles. Secondly, the nonlinearity of the translational dynamics is also taken into account. Then, a formation controller with Lyapunov redesign is developed.

The attitude is controlled by the controllers proposed in equations (3.7), where τi is given as follows τi = -k

2Θ i Θi -k 1Θ i (Θ i -Θ d i )
(5.10) which guarantee that the tracking errors of the attitude angles (∆θ i , ∆φ i and ∆ψ i )

will not diverge with some bounded desired inputs (φ d i , θ d i and ψ d i ). The controller (5.10) does not contain high-order derivatives, such that the observer is not needed.

The following assumptions about the rotational dynamics are necessary for UAV i ∈ V.

Assumption 5.1. The gains k 2Θ i and k 1Θ i in controller (5.10) are selected such that the origin of the rotational dynamics is stable with some bounded Θ d i .

Let us denote by θ d b , φ d b and ψ d b the bounds of the desired angles, then,

|θ d i | ≤ θ d b < π/2, |φ d i | ≤ φ d b < π/2, and |ψ d i | ≤ ψ d b < π/2.
Assumption 5.1 implies that the rotational dynamics is stable in closed loop.

Such an attitude stabilization problem was also treated in the literature, for instance in [START_REF] Guerrero-Castellanos | Bounded attitude control of rigid bodies: Real-time experimentation to a quadrotor mini-helicopter[END_REF]. If we denote the real output angles as θ i = θ d i + ∆θ i , φ i = φ d i + ∆φ i , and ψ i = ψ d i + ∆ψ i , we can state the following assumption in accordance to the precedent one.

Assumption 5.2. The attitude angles are able to track some bounded desired values with bounded tracking errors.

Thus, ∆θ i , ∆φ i and ∆ψ i are bounded and satisfy Ẍi = u X i + (sin ψ i sin φ i + cos ψ i cos φ i sin θ i )

|θ i | ≤ |θ d i | + |∆θ i | ≤ θ b < π/2, |φ i | ≤ |φ d i | + |∆φ i | ≤ φ b < π/2, and |ψ i | ≤ |ψ d i | + |∆ψ i | < π/2. We introduce a virtual control input u i = [u X i , u Y i ] T ∈ R 2 ,
F T i m -u X i Ÿi = u Y i + (cos φ i sin ψ i sin θ i -cos ψ i sin φ i ) F T i m -u Y i Zi = -g + (cos θ i cos φ i ) F T i m
(5.11)

The control process for the quadrotor is shown in Fig. 5.6. The attitude angles are measurable, then, let us dene the thrust force generator as follows

F T i = mg + m • u Z i (Z d i , Z i , Żi ) cos θ i cos φ i (5.12)
The φ d i , θ d i and ψ d i generator block (shown in Fig. 5.6) is used to assign the appropriate desired pitch, roll and yaw angles of a UAV, in order to stimulate a correct motion of the UAV in the ock. The input of this block is u 

i = [u X i , u Y i ] T ∈ R 2 ,
θ d i = u X i /g, φ d i = -u Y i /g
, and ψ d i = 0

(5.13)

Replacing F T i and ψ d i by using equations (5.12) and (5.13), we can rewrite (5.11) as follows

Ẍi = u X i + sin ∆ψ i • tan(φ d i +∆φ i ) cos(θ d i +∆θ i) • (g + u Z i ) + cos ∆ψ i • tan θ d i + ∆θ i • (g + u Z i ) -gθ d i Ÿi = u Y i -cos ∆ψ i • tan(φ d i +∆φ i ) cos(θ d i +∆θ i ) • (g + u Z i ) + sin ∆ψ i • tan θ d i + ∆θ i • (g + u Z i ) + gφ d i Zi = u Z i (5.14)
where we observe that the altitude is decoupled with respect to the attitude angles.

The altitude control is trivial.

In the formation, the desired altitude value is constant, we propose a bounded altitude controller as follows, where the standard saturation function dened in (5.2) is used

u Z i = σ 1 (-k 2Z Żi -k 1Z (Z i -Z d i ))
(5.15)

Proposition 5.1. The controller (5.15) can asymptotically stabilize the altitude.

Proof. See A.3.2

Figure 5.6: Distributed control scheme for UAV i in a multi-quadrotor system

The altitude controller |u Z i | is bounded by 1, which is lower than the gravity g. We denote the state vector for UAV i as follows

x i = [X i , Y i , Ẋi , Ẏi ] T (5.16)
Then, the state-space representation of (5.14 

) (without Z i ) is shown as follows ẋi = f (x i , δ i ) + g • u i (5.
δ i = (g + u Z i ) •   sin ∆ψ i • tan(φ d i +∆φ i ) cos(θ d i +∆θ i) + cos ∆ψ i • tan θ d i + ∆θ i -g g+u Z i θ d i -cos ∆ψ i • tan(φ d i +∆φ i ) cos(θ d i +∆θ i ) + sin ∆ψ i • tan θ d i + ∆θ i + g g+u Z i φ d i   (5.18)

Uncertainty analysis

In this paragraph, we will show that the uncertainty δ i is bounded that is required in the Lyapunov redesign analysis.

Fact 5.1. If the angles θ i , φ i , and ψ i are bounded, i) the norm of δ i is bounded.

δ i 2 ≤ l • u i 2 + ξ T ∆Θ i (5.19) where l = g+u Z i g • tan(M/g) (M/g) cos(M/g) -g g+u Z i
. Scalar M ≥ max{gθ i , gφ i }. Notation ξ = [ξ 1 , ξ 2 , ξ 3 ] T represents a positive vector. The magnitude of the angular errors are denoted by

∆Θ i = [|∆θ i |, |∆φ i |, |∆ψ i |] T . ii) the scalar l < 1, when tan(M/g) (M/g) cos(M/g) < g g+u Z i 2 + g g+u Z i . Proof. See A.3.3.
According to equation (5.19), we conclude that the nonlinear term δ i for quadrotor i is generated by the tracking errors of attitude angles (∆θ i , ∆φ i and ∆ψ i ) and the desired attitude angles (θ d i , φ d i and

ψ d i ), recall that u i = [u X i , u Y i ] T ,
which is used to assign the desired pitch and roll in (5.13).

In the foregoing part, we have considered the nonlinear model of the translational dynamics of quadrotor, which is represented by a linear part and a nonlinear part.

We dene a collective state as x = [x 1 , . . . , x n ] T , a collective input vector as u = [u 1 , . . . , u n ] T , and a collective nonlinear vector as ∆ = [δ 1 , . . . , δ n ] T , where n is the number of UAVs.

We recall that the notation x i is dened in equation (5.16). Each quadrotor can sense its neighbors and receive the relative state measurements (x i -x j ), j ∈ N i .

According to equation (2.22), we can rewrite the error measurement in 2D as follows

z i = n j=1 ω a ij (x i -x j ) + ω l i [x i -r(t)]
(5.20)

where r(t) represents the Reference Formation Trajectory (RFT).

r(t) = [r X (t), r Y (t), ṙX (t), ṙY (t)] T

(5.21)

We suppose that rX (t) and rY (t

) are bounded such that |r X | ≤ r b X and |r Y | ≤ r b Y .
Then, the model of a multi-quadrotor system in (2.27) is simplied (without the consideration of the rotation dynamics) by

     ẋ = Ax + B(u + ∆) y = x z = (G ⊗ I 4 ) x -G L ⊗ I 4 • [1 n ⊗ r(t)]
(5.22)

where A = I n ⊗ A and B = I n ⊗ B, z ∈ R 4n is the error measurements of all the quadrotors.

Considering the nonlinear translational dynamics of quadrotors (represented by ∆ in equation (5.22)), an L-F consensus problem of a formation of UAVs is investigated in this section. We develop a decentralized bounded controller such that the L-F consensus is achieved. The technique of Lyapunov redesign is integrated in the controller design to deal with the nonlinearities of the UAVs. In the following section, we will introduce the notion of formation error.

Formation error

Some desired inter-distances between a UAV and its neighbors are added to form some desired formation pattern. We denote by d

ij = [d X ij , d Y ij , 0, 0] T ∈ R 4 a constant
nonzero oset vector with the third and fourth elements identically equal to zero, which represents the desired inter-distance of the quadrotor i and j ∈ N i .

Since in the foregoing subsection, the notation x i is dened in (5.16), the L-F consensus proposed in 5.1 can be represented by the following simple expression lim t→∞

x i -r(t) -d i0 = 0

(5.23)

In a formation, the tracking error of the UAV i is dened by x i -r(t) -d i0 .

Let us note that r(t) (which is the RFT) is not known except for the leaders. Therefore, the tracking error x i -r(t) -d i0 in denition 5.23 cannot be used in the formation controller design for the followers. Therefore, the formation error is introduced in (5.24) using (5.20) and we will try to nd the relationship between the tracking error and the formation error.

The objective is to obtain the consensus of a formation by means of minimizing the formation error for each UAV.

e i = z i -n j=1 ω a ij d ij -ω l i d i0 (5.24)
where d ij represents the desired inter-distance between UAV i and j ∈ N i . The formation error e i represents the error vector, containing position and velocity, of UAV i ∈ V with respect to its neighbors and the RFT (if i is a leader).

We call a vector d s = [d T 10 , . . . , d T n0 ] T , which is composed by the oset vector of each quadrotor with respect to the RFT. Since d ij = d i0 -d j0 , we can rewrite (5.24) as follows

e i = z i -(g d i -g a i + g l i ) T ⊗ I 4 • d s (5.25)
According to (2.25), the planar error measurement yields

z i = g d i -g a i + g l i T ⊗ I 4 x -g l i T ⊗ I 4 • [1 n ⊗ r(t)]
(5.26)

where we note that in x = [x 1 , . . . , x n ] T . The notation x is dened as the vector of the planar positions and velocities of all UAVs without rotational dynamics.

Then, we can rewrite (5.25) as follows

e i = (g d i -g a i + g l i ) T ⊗ I 4 (x -d s ) -(g l i ) T ⊗ I 4 • (1 n ⊗ r(t))
and the error vector of the ock of UAVs as follows

e = (G D -G A + G L ) ⊗ I 4 (x -d s ) -G L ⊗ I 4 • [1 n ⊗ r(t)] = (G ⊗ I 4 ) (x -d s ) -G L • 1 n ⊗ r(t) Recall that G D -G A is the Laplacian matrix, therefore, 1 n is an eigenvector of G D -G A , thus, (G D -G A ) • 1 n = 0. Therefore, e becomes e = (G ⊗ I 4 ) • (x -d s -1 n ⊗ r(t)) (5.27)
which reveals the relationship between the tracking error and the formation error in (5.27). According to proposition 4.1, if a formation of UAVs has a connected topology and at least a leader, the interaction matrix G is invertible. Then, we can conclude that if lim t→∞ e = 0, then, lim t→∞ (x -d s -1 n ⊗ r(t)) = 0, which means the L-F consensus (see denition 5.1) is achieved.

Thus, if we can design a control which renders the formation error e converging at the origin, the L-F consensus will be achieved.

In the formation controller design, we can also use the normalized interaction matrix (the diagonal entries are one), which is represented by Ḡ

= (G D + G L ) -1 • G.
We note that although G is symmetric for an undirected graph, (G D + G L ) -1 • G is not always symmetric. Therefore, we demonstrate the following lemma to show that a normalized interaction matrix for the undirected graph is similar to a symmetric matrix. Furthermore, it has real eigenvalues.

Lemma 5.1. Let Ḡ ∈ R n×n be a normalized interaction matrix for an undirected graph. Then, i) Ḡ is similar to a symmetric matrix ii) Ḡ has real eigenvalues;

Proof. See A.3.4.

In general, a normalized interaction matrix is not symmetric, but according to lemma 5.1, a diagonal transformation matrix (G D + G L ) -1 2 exists to make the interaction matrix similar to a symmetric matrix. In the case where the normalized interaction matrix is used, we can apply the change of variable e in (5.27) by using the diagonal matrix (G D + G L ) -1 2 . Then, the stability analysis process will be similar to the case where the symmetric interaction matrix is used. Therefore, in the sequel, we consider that an ordinary interaction matrix is used, which is symmetric. Now, we are ready to introduce the formation controller in the following subsection.

Controller design

According to (5.21), the RFT satises ṙ(t) = A • r(t) + B[r X (t), rY (t)] T . In this section, we focus on the formation with constant topology, then, according to (5.22), the collective error dynamics (5.27) yields

ė =(G ⊗ I 4 ) A(x -d s ) + B(u + ∆) -1 n ⊗ Ar(t) + B[r X (t), rY (t)] T =(G ⊗ I 4 ) A(x -d s ) -A [1 n ⊗ r(t)] + B(u + ∆) -B{1 n ⊗ [r X (t), rY (t)] T }
By using the mixed-product of a Kronecker product, we have

(G ⊗ I 4 ) • A =(G ⊗ I 4 ) • (I n ⊗ A) = G ⊗ A = I n • G ⊗ A • I 4 = (I n ⊗ A) • (G ⊗ I 4 ) =A • (G ⊗ I 4 )
Then, we can rewrite ė as

ė =Ae + (G ⊗ I 4 )B (u + ∆ ) (5.28) where ∆ = [δ 1 , . . . , δ n ] T and δ i = δ i -[r X (t), rY (t)] T , i = 1, . . . , n. Therefore ∆ = ∆ -1 n ⊗ [r X (t), rY (t)] T .
For system (5.28), we propose a distributed controller for UAV i ∈ V, which is given by

u i = σ M (ū i ) + ûi (5.29)
where M < M is a positive scalar. Inside the saturation function σ M (ū i ), we dene ūi = -γB T P e i

(5.30)

where e i is given by (5.24), γ is a positive scalar, P is a positive symmetric matrix, which is obtained by solving the following Algebraic Riccati Equation (ARE),

A T P + P A -2γ P BB T P + Q = 0

(5.31)

where Q represents a positive denite matrix. The positive scalar γ is selected according to the number of agents in a group.

For a multi-UAV system with n UAVs, we are able to list all of the possible connected graphs and the corresponding interaction matrices, such that we can calculate the minimum eigenvalues of these matrices. We denote by Λ n the smallest one of these minimum eigenvalues.

We give an example to illustrate this fact. In Table 5.1, we list all the possible graphs of formations with three quadrotors. The UAVs are unlabeled. The letter L represents the leader and F represents the follower. The minimum eigenvalues of the interaction matrices are 0.1981, 0.2679, and 0.2679 respectively. Note that we do not explicitly give the indices of the agents, because they have no eect on the eigenvalues of the interaction matrices with the same conguration ((a), (b) or (c)). According to the presentation of graph theory in section II, we formulate the interaction matrices in the table. Then, we obtain that Λ 3 = 0.1981.

G =      2 -1 0 -1 2 -1 0 -1 1      G =      3 -1 -1 -1 1 0 -1 0 1      G =      3 -1 -1 -1 2 -1 -1 -1 2      (a) (b) (c) 
Table 5.1: Possible graphs and the corresponding interaction matrices of formation of three

UAVs

In equation (5.30), we select the positive gain as γ ≥ γ

Λn

. The second term ûi in (5.29) is dened, following the Lyapunov redesign method, as

ûi = -η • ζ i / ζ i if η ζ i ≥ ε -η 2 • ζ/ε if η ζ i < ε (5.32)
where η and ε are positive scalars. Using V j (e j ) = e T j P e j , the vector ζ i is given by

ζ T i = n j=1 ∂V j ∂e j G ij B
(5.33)

Since according to equation (5.13), u i = [gθ d i , -gφ d i ] T , the selected M (the bound of the saturation function in equation (5.29)) and η should satisfy M + η ≤ min{gθ d b , gφ d b }, where assumptions 5.1 and 5.2 are being considered. Let us introduce F = -γB T P and F = I n ⊗ F = -γB T P, where P = I n ⊗ P . We denote by f k the kth line of F, then, we have

F T F = 2n k=1 f T k f k . Let H = I n ⊗ H for some nonzero matrix H ∈ R 2×4 . The row vectors of H are represented by h k ∈ R 1×4n , k ∈ {1, . . . , 2n}. The matrix H satises 2 γ G ⊗ (F T F -F T H) ≤ Q (5.34)
where Q = I n ⊗ Q. Now, we are ready to propose our main result as the following theorem.

Theorem 5.1. Consider system (5.28), for all e ∈ {e | e i ≤ ρ , for any i ∈ V} ⊆ {e | |h k e| ≤ M, k ∈ {1, . . . , 2n}}, where ρ is positive, and h k satises (5.34). The system (5.28) will be uniformly stable if the controller (5.29) is used.

Remark 5.2. Particularly, if we change ûi in (5.32) as

ûi = -η • ζ i / ζ i if η ζ i > 0 0 if η ζ i = 0 , (5.35)
the equilibrium point will be uniformly asymptotically stable.

Proof. See A.3.5.

Remark 5.3. The correct selections of matrix H can guarantee that the initial formation error of the quadrotors is suciently small such that the collisions can be avoided in the transient period during the formation.

The matrix H can be selected as H = κF , where κ > 0 is a constant scalar such that (5.34) is satised. According to theorem 5.1, |h k e| ≤ M , therefore, the initial formation error e will be suciently small if the scalar κ is suciently large. Such a κ must exist, because when κ > 1, the eigenvalues of F T F -F T H are negative and since the eigenvalues of G are positive, we can conclude that (5.34) is obviously satised.

Improved Lyapunov Redesign

In the previous section, we have proposed the decentralized formation controller by using Lyapunov design and Lyapunov redesign. From the proof of theorem 5.1, we can observe that the Lyapunov redesign could be conservative, because a worst case is considered such that the term σ M (ū i ) is always saturated. However, during a formation, the saturation function σ M does not saturate when the formation error e i is not very large. Therefore, it is conservative to use the maximum value √ 2M

instead of σ M (ū i ) in the formation controller, when the saturation function is not saturated. Therefore, in this section, we give an improved Lyapunov redesign controller.

The uncertainty is represented by δ i = δ i -[r X , rY ] T , where δ i is the nonlinearity of the quadrotor. We rewrite δ i as follows

δ i =(g + u Z i ) •   sin ∆ψ i • tan(φ d i +∆φ i ) cos(θ d i +∆θ i) + cos ∆ψ i • tan θ d i + ∆θ i -g g+u Z i θ d i -cos ∆ψ i • tan(φ d i +∆φ i ) cos(θ d i +∆θ i ) + sin ∆ψ i • tan θ d i + ∆θ i + g g+u Z i φ d i   =g • tan θ i -θ i φ i -tan φ i cos θ i + u Z i • tan θ i -θ i φ i -tan φ i cos θ i + (g + u Z i ) • sin ∆ψ i • tan φ i cos θ i + (cos ∆ψ i -1) • tan θ i + ∆θ i + u z i g+u Z i θ d i (1 -cos ∆ψ i ) • tan φ i cos θ i + sin ∆ψ i • tan θ i -∆φ i - u z i g+u Z i φ d i (5.36)
Let us denote the last two parts of the right side of equation ( 5.36) by δi = δX

i δY i =g • ∆θ i -∆φ i + u Z i • tan θ i -tan φ i cos θ i + (g + u Z i ) • sin ∆ψ i • tan φ i cos θ i + (cos ∆ψ i -1) • tan θ i (1 -cos ∆ψ i ) • tan φ i cos θ i + sin ∆ψ i • tan θ i
Therefore, δi is mainly caused by the tracking errors of the attitude angles (∆θ i , ∆φ i and ∆ψ) and u Z i . Note that ∆ψ i = ψ i . Particularly, if ∆θ i = ∆φ i = ∆ψ = u Z i = 0, then δi = 0. Since ∆θ i , ∆φ i , ∆ψ i and u Z i are bounded, we have

| δX i | ≤ k X 1 |∆θ i | + k X 2 |ψ i | + k X 3 |u Z i | | δY i | ≤ k Y 1 |∆φ i | + k Y 2 |ψ i | + k Y 3 |u Z i |
where k X i and k Y i , i = {1, 2, 3} are positive bounded scalars. Let us denote ūi = [ū X i , ūY i ] T . We note that the Lyapunov redesign part ûi is small. Note that the attitude angles θ i and φ i are measurable.

In δ i (recall that δ i = δ i -[r X , rY ] T , δ i is shown by (5.36)), the second derivative of RFT, [r X , rY ] T , is available only for the leader quadrotors. Each quadrotor is able to obtain its attitude angles θ i , φ i and ψ i . Therefore, we propose the following Lyapunov redesign controllers.

• Lyapunov redesign for the leaders

ûi = g θ i -tan θ i + rX /g -(η X 1 • ∆θ b i + η X 2 |ψ i | + η X 3 |u Z i |) • sgn(ζ X i ) tan φ i cos θ i -φ i + rY /g -(η Y 1 • ∆φ b i + η Y 2 |ψ i | + η Y 3 |u Z i |) • sgn(ζ Y i )
(5.37) Then, we have

where ζ i = [ζ X i , ζ Y i ] T , sgn ( 
W i = -e i T Qe i + ζ T i ûi + ζ T i δ i = -e i T Qe i - g(η X 1 • ∆θ b i + η X 2 |ψ i | + η X 3 |u Z i |) • |ζ X i | -δX i ζ X i g(η Y 1 • ∆φ b i + η Y 2 |ψ i | + η Y 3 |u Z i |) • |ζ Y i | -δY i ζ Y i Selecting η X i ≥ k X i /g, η Y i ≥ k Y i /g, where i = {1, 2, 3}, then we have g(η X 1 •∆θ b i + η X 2 |ψ i | + η X 3 |u Z i |) • |ζ X i | ≥ (k X 1 |∆θ i | + k X 2 |ψ i | + k X 3 |u Z i |) • |ζ X i | ≥ | δX i ||ζ X i | ≥ δX i ζ X i . Similarly, g(η Y 1 •∆φ b i +η Y 2 |ψ i |+η Y 3 |u Z i |)•|ζ Y i | ≥ (k Y 1 |∆φ i |+k Y 2 |ψ i |+k Y 3 |u Z i |)•|ζ Y i | ≥ | δY i ||ζ Y i | ≥ δY i ζ Y i . Thus, we have W i ≤ -e i T Qe i .
• Lyapunov redesign for the followers

ûi = g θ i -tan θ i -(η X 1 • ∆θ b i + η X 2 |ψ i | + η X 3 |u Z i | + r b X /g) • sgn(ζ X i ) tan φ i cos θ i -φ i -(η Y 1 • ∆φ b i + η Y 2 |ψ i | + η Y 3 |u Z i | + r b Y /g) • sgn(ζ Y i ) (5.38) The scalars η X i ≥ k X i /g, η Y i ≥ k Y i /g, i = {1, 2, 3} are selected. Additionally, r b X |ζ X i | = |r b X | • | -ζ X i | ≥ -r X ζ X i , then, r b X |ζ X i | + r X ζ X i ≥ 0, similarly, we have r b Y |ζ Y i | + r Y ζ Y i ≥ 0. Then, W i ≤ -e i T Qe i . Note that r b X and r b
X are usually very small, we sometimes ignore them in practice.

Therefore, we have W i ≤ -e i T Qe i for every UAV. Thus, the dynamics of the formation error (5.28) is asymptotically stable. The L-F consensus is achieved.

Simulation results

In this section, simulation results are shown. In this scenario, we have one leader (UAV 1) and two followers (UAVs 2 and 3). These UAVs have a constant interaction topology as shown in Table 5.1.a.

Coecients of quadrotor

The physical coecients are shown as follows: mass m = 1kg, the body moments of inertia around the x, y, and z-axis are 0.05, 0.05, and 0.09 respectively. We suppose that the maximum take-o acceleration is 5m/s 2 , and the maximum rotational accelerations around the x, y, and z-axes of the body frame are 4rad/s 2 .

Parameters of the proposed controller By calculating the eigenvalues of G in Table 5.1.a, we get Λ 3 λ min (G) = 0.1981. According to (A.17), we can infer that the cooperation of agents with graph in Table 5.1.a is more dicult to control compared to other congurations (shown in Table 5.1.b and 5.1.c). In the following simulations, the complete dynamics of quadrotor (2.13) are used. The rotational dynamics (including pitch, roll and yaw dynamics) for each UAV is controlled by (5.10). The altitude of each UAV is stabilized by using 5.15. The selection of the parameters of our proposed controller is shown as follows.

In equation (5.29), we select M = 4. Then, we have θ d i ≤ 0.4rad and φ d i ≤ 0.4rad, i ∈ V, recall that ψ d i ≡ 0. We consider that the gravity is g = 10m/s 2 . In order to obtain the matrix P in ūi , we have to calculate the ARE equation (5.31). We select γ = 0.1981 and matrix Q as follows we select γ = 1. For ûi in (5.37) and (5.38), we select η

Q =       0.1 0 0 0 0 0.1 0 0 0 0 0.1 0 0 0 0 0.1       P =       0.
X 1 = η Y 1 = 0.4. We approximately consider θ d i ≈ σ M (ū X i )/g+θ i -tan θ i and φ d i ≈ -σ M ūY i /g-tan φ i cos θ i +φ i such that ∆θ b i = |θ d i -θ i | = |σ M (ū X i )/g -tan θ i | and ∆φ b i = |σ M ūY i /g + tan φ i cos θ i |.
Since ψ i (t 0 ) = 0 and then ψ i keeps around zero, we set η X 2 = η Y 2 = 0. Since we assume that the formation begins after the altitude has stabilized, we have |u Z i | ≈ 0, then, we set η X 3 = η Y 3 = 0.

Simulation results Simulation results of three quadrotors formation are given.

Among the UAVs, UAV 1 is the leader, while UAV 2 and 3 are followers. The objective is to track a circular RFT . The UAVs are expected to maintain an interdistance of 5m. The desired altitude is 1m. The RFT is presented as follows r(t) = [-5 sin(ωt), 5 cos(ωt), -5ω cos(ωt), -5ω sin(ωt)] T Although the formation using our proposed controller does not perform as well as the PD controller when ω 1 = 0.05rad/s, the performance is acceptable.

We can observe from Fig. 5.8(a), the UAVs cannot precisely follow the RFT by using the PD formation controller. However, by using our proposed controller, the tracking error with respect to the RFT is smaller than Fig. 5.8(a), shown in The inter-distance of the UAVs are shown in Fig. 5.9. Fig. 5.9(a) and Fig. 5.9(b) correspond to Fig. 5.7, where the angular velocity of the RFT is ω = 0.05rad/s. u i = -0.13 0 0.39 0 0 0.13 0 0.39 e i

(5.40)

We can see the eect of the saturation functions of the controller, which leads to small uctuations as seen in Fig. 5.7(b), Fig. 5.8(b), Fig. 5.9(b) and Fig. 5.9(c).

Nevertheless, our proposed controller is more robust than the PD controller when we increase the angular velocity of the RFT. 

Composite nonlinear feedback-based formation control

The use of UAVs able to maintain hovering ight for surveillance implies that the power of actuators is sucient. As stated in section 3.4, the motors of a quadrotor have a limited power. Therefore, the inputs of a quadrotor are subject to actuator saturations.

The saturated control is progressively implemented on quadrotors in order to prevent the control signal from hitting the actuator saturations.

For instance, in [START_REF] Cao | Inner-outer loop control with constraints for rotary-wing uavs[END_REF], a nested saturation controller is proposed to generate bounded inner-loop inputs, assuming that the inner-loop dynamics can perfectly track its input.

Originally proposed by Teel [Teel, 1992], the nested saturation control technique is used for the control of the quadrotor or the PVTOL (Planar Vertical Take-o and Landing) aircraft in the literature, for instance, [START_REF] Kendoul | Real-time nonlinear embedded control for an autonomous quadrotor helicopter[END_REF], [START_REF] Zamudio | Vision based stabilization of a quadrotor using nested saturation control approach[END_REF], [Guerrero et al., 2012] and [START_REF] Lopez-Araujo | Global stabilization of the pvtol aircraft with lateral force coupling and bounded inputs[END_REF] to name a few. In [Hehn, 2011], the authors propose an algorithm of feasible trajectories planning, considering the input constraints of the quadrotors.

To the best of our knowledge, the input saturations are not very much considered in multi-quadrotor systems control. In [START_REF] Su | Semi-global leaderfollowing consensus of linear multi-agent systems with input saturation via low gain feedback[END_REF], a low gain feedback control is proposed to avoid the saturation of the system, such that a semi-global leaderfollower consensus of linear multi-agent system is achieved. In the formation control of multi-UAV systems, a large formation error can generate a large control output.

This could lead to big attitude angles for the UAVs of the formation. Although the low gain controller [START_REF] Su | Semi-global leaderfollowing consensus of linear multi-agent systems with input saturation via low gain feedback[END_REF] can guarantee the control output small, the response speed of the closed-loop system is low.

In this section, the formation of quadrotors with Leader-Follower (L-F) structure is investigated.

Considering the input saturation of the quadrotor, a bounded formation controller is developed. The formation control strategy is proposed aiming at: i) investigating a bounded dierentiable formation controller, and ii) obtaining the closed-loop system with fast response speed and small overshoot.

Saturated control-based on hyperbolic tangent function

The attitude controller is designed by (3.7) and (3.24), where (3.24) is a high gain proportional and derivative (HGPD) controller. The rotational dynamics in closed loop yields

ëΘ i = - k 2Θ i ε ėΘ i - k 1Θ i ε 2 e Θ i
(5.41)

where ε < 1.

The HGPD controller makes the rotational and translational dynamics performing in two time scales. Theoretically, the smaller the parameter ε is selected, the more distinguishable the two time scales are (shown in Fig. 3.5). We can use this property to simplify the formation control problem, through supposing that the desired attitude angles are perfectly tracked. Thus, the reduced model can be used to represent the dynamics of a quadrotor. Therefore, in this subsection, the reduced model of quadrotor is taken into account for the formation controller design.

According to Fig. 5.6, the outputs of the formation controller for each UAV produce the desired attitude angles. As analyzed in section 3.4, the formation controller output should be bounded to guarantee that the pitch and roll angles are limited. Therefore, in this section, we investigate the bounded control by introducing a dierentiable hyperbolic tangent saturated function.

The hyperbolic tangent function is a continuous and dierentiable function, as follows

tanh x = e x -e -x e x + e -x
The curves of the tanh x is plotted in Fig. 5.11 (a). where tanh represents the hyperbolic tangent function.

If we assign the desired attitude angles as follows

θ d i = arctan u X i g φ d i = arctan -u Y i cos(arctan(u X i /g)) g ψ d i = 0 (5.42)
where u X i and u Y i represent the formation controllers in x e and y e directions in the inertial frame. Then, the planar translational dynamics of UAV i in (2.4) yields

Ẍi =u

X i + δ X i Ÿi =u Y i + δ Y i (5.43)
where the control of Z i is dropped for the same reason as stated in section 5.2. The altitude Z i is controlled by (5.15).

The terms δ X i and δ Y i have the following expression.

δ X i =(g + u Z i ) • sin ∆ψ i • tan(φ d i + ∆φ i ) cos θ d i + ∆θ i + cos ∆ψ i • tan θ d i + ∆θ i - g g + u Z i tan θ d i δ Y i =(g + u Z i ) • -cos ∆ψ i • tan(φ d i + ∆φ i ) cos(θ d i + ∆θ i ) + sin ∆ψ i • tan θ d i + ∆θ i + g g + u Z i tan φ d i cos θ d i
Then, we can observe that δ iX and δ iY are in terms of u Z i , ∆φ i , ∆θ i and ∆ψ i .

We will rstly simplify the formation controller design process by the following analysis. According to section 3.3, the attitude angles are in fast time scale and the quadrotors can be approximately represented by the reduced model, such that ∆φ i = 0, ∆θ i = 0 and ∆ψ i = 0. Additionally, we consider the formation in 2-D, where the quadrotors y at a constant altitude. Knowing that by using (5.12), the altitude is decoupled with the planar dynamics (X i and Y i ). In (5.12), u Z i is given by (5.15), which is null when the altitude achieves the desired constant value. Then,

Composite nonlinear feedback control

In linear control theory, the performance of a system is generally specied in terms of the rising time and the overshoot of a unit step response of the system. In order to ensure a short rising time, the damping ratio should not be too large, however, if the damping ratio is too small, the overshoot will be great. This is a contradiction.

Therefore, a compromise between a fast response and a small overshoot should be made by choosing the damping ratio as a certain xed number.

In recent years, authors in [START_REF] Lin | Toward improvement of tracking performance nonlinear feedback for linear systems[END_REF]] [Chen et al., 2003] have proposed and implemented a composite nonlinear feedback (CNF) control to improve the performance of a system. The objective of this control method is to reduce the overshoot and meanwhile, keep a rapid rising response.

The CNF control is composed by two parts. One part is the linear feedback law and the other part is the nonlinear feedback law. The linear feedback part is designed to yield a closed-loop system with a small damping ratio for a quick response, while the nonlinear feedback law is used to increase the damping ratio of the closed-loop system when the system output approaches the target reference [START_REF] Chen | Composite nonlinear feedback control for linear systems with input saturation: theory and an application[END_REF].

In this thesis, we are inspired by the CNF control method to improve the performance of the formation of UAVs.

Considering the input saturation of the quadrotors, a hyperbolic tangent function is used instead of the standard saturated function as shown in (5.2). The standard saturated function has two non-dierentiable points when the function gets saturated. As shown in section 5.1, the high-order derivatives of the desired trajectory of each UAV are needed for the attitude control. Then, if we use the saturated function (5.2), an innite derivative ( Xd i ) (3) will be generated at the non-dierentiable points of (5.2) (a = b or a = -b). In contrary, the hyperbolic tangent function is always dierentiable and has bounded high-order derivatives. Therefore, a hyperbolic tangent based CNF controller is proposed in this subsection.

Let us dene a nonlinear function ρ : R 2 → R. Then, we give the following proposition.

Proposition 5.4. Consider the system in (5.44), the formation controller is designed as follows

u i = -M tanh (ū i ) -M tanh(ρ(e i )) + Ẍd i ρ(e i ) = k N ėiX (5.48)
where k N is a nonnegative nonlinear gain. If the gains satisfy k 1 ≥ kN k 2 M , where kN = sup e i k N , then, for any initial conditions e i = [e iX , ėiX ] T ∈ R 2 , the tracking error e iX = X i -Xd i asymptotically converges to zero.

Proof. See A.3.8.

Remark 5.4. The decoupled property of X and Y dynamics permits us to design the formation controller separately, the design procedure of u Y i is the same as u X i , such that

u Y i = -M tanh(k 2 ėiY + k 1 e iY ) -M tanh ρ(e i ) + Ÿ d i (5.49)
Remark 5.5. The desired attitude angles for each UAV are obtained by substituting (5.48) and ( 5.49) into (5.42). Owing to the use of the hyperbolic tangent function,

u X
i and u Y i are high-order dierentiable, such that the derivatives θd i , θd i and φd i , φd Conjecture 1. Let G be the interaction matrix of an L-F formation of quadrotors with constant topology. The formation controllers are given in (5.48) and (5.49).

The attitude is controlled by using (3.24). The altitude is controlled by (5.12) where

u Z
i is given in (5.15). Then, e iX and e iY converge to zero asymptotically, if i) G is invertible, ii) the initial velocity of each UAV is nite.

Proof. The terms δ iX and δ iY are in terms of the tracking errors of the attitude angles (∆φ i , ∆θ i and ∆ψ i ) and u Z i . According to (A.18), (5.48), (5.49) and (5.15), the controllers u X i , u Y i and u Z i are bounded. Then, according to (5.42), we know that θ d i , φ d i and ψ d i are bounded. The attitude angles are controlled by (3.24), then, ∆φ i , ∆θ i and ∆ψ i are bounded. Therefore, δ iX and δ iY are bounded.

We take e Vi = tanh ūi

• ui + k 1 M ėiX ëiX = tanh ūi (k 2 ëiX + k 1 ėiX ) + k 1 M ėiX (-M tanh ūi -M tanh ρ i + δ iX ) = tanh ūi (k 2 (-M tanh ūi -M tanh ρ i + δ iX ) + k 1 ėiX ) -k 1 ėiX (tanh ūi + tanh ρ i + δ iX M ) = -k 2 M tanh 2 ūi -k 2 M tanh ūi tanh ρ i -k 1 ėiX tanh ρ i + k 2 tanh ūi δ iX - k 1 M ėiX δ iX ≤ -k 2 M tanh 2 ūi -k 2 M tanh ūi tanh ρ i -k 1 ėiX tanh ρ i + (k 2 | tanh ūi | + k 1 M | ėiX |)|δ iX |
Since the states of a linear system will not diverge to innite within nite time interval with bounded control input, then, if the initial condition is in the compact set {(e iX (t 0 ), ėiX (t 0 ))| ėiX (t 0 ) < ∞}, we obtain that ėiX is bounded in nite time interval [t 0 , t 1 ), where t 1 < ∞. As analyzed in section 3.3, the rotational dynamics of a quadrotor is in the fast time scale t with controller (3.24). Then, there exists a nite time ta t 1 such that the attitude errors e Θ i enter in the neighborhood of the origin, which renders |δ iX ( ta )| ≤ ζ, where ζ is a scalar. Then, for t > ta , we have

k 2 | tanh ūi | + k 1 M | ėiX | |δ iX | ≤ |k 2 M tanh 2 ūi + k 2 M tanh ūi tanh ρ i + k 1 ėiX tanh ρ i | (5.51)
Then, Vi ≤ 0, when t > ta . Therefore, the semi-global asymptotic stability of the origin of system (5.50) is derived, when t > ta .

Remark 5.6. In conjecture 1, if the condition (5.51) is satised when ta = t 0 , the semi-global stability of the system (5.50) is obtained.

In the following section, we will give some simulation results by using our proposed formation controller.

Simulation results

In order to illustrate the advantage of the proposed formation controller, we give several simulation results in this section. We reconsider the formation of four UAVs shown in Fig. 5.3(a).

The altitude and attitude are controlled by using (5.15) and (3.24) respectively.

The formation controllers in (5.48) and (5.49) are used. Controller 5 represents a standard nested saturation formation control.

Aggregation to a stationary point

In order to obtain a fast rising response, the high gains should be selected when we use a bounded PD controller. For instance, we can observe from Fig. 5.12 and Fig. 5.13 that by augmenting k 1 the rising response time decreases and by augmenting k 2 the overshoot is reduced. However, we found that the output curves have small and high frequency oscillations when high gains in controller 2 are used. In this case, the system will be very sensitive to sensor noise. The bounded formation control with CNF is given in Fig. 5.14 and Fig. 5.15. We observe that by using the controller with CNF, the response time is rapid while the overshoot is small. In these formation controllers, high control parameters are avoided.

It is worth to note that the selection of function ρ i is not xed. It only needs to satisfy constrains in proposition (5.4). In this simulation, the selection of ρ i has a physical meaning. We observe that ρ i is small if the formation error e iX is large such that the rapid rising response is guaranteed. When e iX becomes small, the quadrotor approaches the desired position. Then, ρ i increases in order to reduce the overshoot.

The formation with the standard nested saturation control is shown in Fig. 5.16.

We observe that the oscillation is greater than the other controllers.

Circular trajectory tracking

We carry out another simulation, which is to track a circular trajectory r(t) = [5 sin(0.1t), 5 cos(0.1t)] T . In this test, we use controller 4 in table 5. We have also carried out the simulation of tracking a circular trajectory by using controller 2. Although the tracking performance is satisfactory, the torques of the roll and pitch have great oscillations (see Fig. 5.19 on the left). The oscillations on the torques are caused by high gains. If we reduce these gains, the performance will become less satisfactory.

Conclusion

In .19: Left: the torques τ θ i and τ φ i of each quadrotor with controller 2 in table 5.2;

Right: the torques τ θ i and τ φ i of each quadrotor with controller 4 feedback is developed. By using this formation controller, the performance of the formation is improved, which is illustrated by the simulation results. We note that the proposed formation controllers are also validated by the real-time experiment, which are carried out based on the simulator-experiment framework developed by the Heudiasyc laboratory.

In the next chapter, we will extend the study to the switching formation control, which leads to a switching interaction topology of the multi-UAV system.

Chapter 6

Formation with switching control 

Problem statement

A formation of UAVs with switching control can be modeled as a multi-UAV system with switching topology. The problem of multi-vehicle systems with switching topology interests researchers in [Olfati- Saber and Murray, 2004], [START_REF] Ren | Information consensus in multivehicle cooperative control[END_REF].

In chapter 4, we have indicated that the switching topology can be caused by the change of the edges or the change of leaders during a formation task. We reconsider the example 4.2, where we observe that the converging rate of the formation error will increase if extra edges or leaders are added. To further explain this example, we give the following scenario of four quadrotors formation. Note that the rigid formation is also considered in this chapter.

We assume that each quadrotor has limited sensing range of 2.5m. The initial velocities of the four UAVs are zero. The initial inter-distances of quadrotors are 2m, as shown in Fig. 6.1. The UAV 1 cannot detect UAV 3, because their inter-distance (2.83m) is bigger than the sensing range (2.5m). The desired inter-distance is 1m, then, by using the formation controllers proposed in chapter 5, the inter-distances will decrease such that the inter-distance of UAV 1 and 3 (2 and 4) will be within the sensing range. Then, four extra edges are available, i.e., edges (1, 3), (3, 1), (2, 4) and (4, 2). If these four edges are used in the formation controller, the interaction We are concerned by these two cases with switching topologies in this thesis.

Researchers, such as in [START_REF] Ni | Leader-following consensus of multi-agent systems under xed and switching topologies[END_REF], [START_REF] Hong | Tracking control for multi-agent consensus with an active leader and variable topology[END_REF] and [START_REF] Hong | Lyapunovbased approach to multiagent systems with switching jointly connected interconnection[END_REF], have proven that the consensus of agents can be achieved with jointly connected graphs. Dierent from the foregoing mentioned works, we consider a formation with arbitrary switching topology. It has been proved that the switching system with an arbitrary switching law is stable if and only if a common Lyapunov function exists [START_REF] Zhao | On stability, l 2 -gain and h ∞ control for switched systems[END_REF]. Therefore, in order to prove the stability of the multi-UAV system with switching topology, we have to nd a proper common Lyapunov function.

Switching formation controller design

We suppose that there is an innite sequence of non-overlapping, continuous time- 

intervals T k = [t k , t k+1 ), k = 0, 1, • • • . We
G T k . Within a time interval T k , G T k keeps constant.
In this chapter, the limited sensing range (see denition 2.1) is taken into account.

In detail, we have

(i, j) ∈ E, if [X i , Y i ] T -[X j , Y j ] T ≤ d sr (6.1)
where d sr represents the maximum sensing distance. The desired attitude angles are given in (5.42). The total thrust force is given in (5.12). We assume that the dynamics of a quadrotor can be approximately represented by the reduced model.

Then, in (5.43), δ iX ≈ 0 and δ iY ≈ 0, such that the planar translational dynamics are decoupled. We will consider, in the sequel, the reduced dynamics model of each UAV on x e -axis. We dene a collective states vector as

x = [X 1 , . . . , X n , Ẋ1 , . . . , Ẋn ] T ∈ R 2n . Since (G D -G A ) • 1 n = 0 n , we obtain that G L • 1 n = G • 1 n .
Then, according to this fact and the complete model (2.27), we can rewrite the collective dynamics of

x as follows      ẋ = Ax + Bu y = x z = (I 2 ⊗ G T k ) • (x -[r X , ṙX ] ⊗ 1 n ) (6.2)
where matrices A and B have the following expressions A = 0 n×n I n 0 n×n 0 n×n and B = 0 n×n

I n

The notation u = [u 1 , . . . , u n ] T represents the collective control inputs of UAVs.

According to the output vector y i (member of y in (6.2)) and error measurement vector z i (member of z in (6.2)) of UAV i, we can propose a distributed saturated switching control law u i for UAV i (either a leader or a follower) as follows

u i = -σ b K n j=1 ω a ij X i -X j -d X ij Ẋi -Ẋj + ω l i X i -r X -d X i0
Ẋi -ṙX

(6.3)
where d X ij is the desired inter-distance of UAV i and j on x e -axis. The notation d X i0 is rstly introduced in denition 5.1. The function σ b is dened in denition (5.2). K = [k 1 , k 2 ] is a row gain vector.

According to section 2.2.1, and equation (6.1), the assignments of weights ω a ij in the adjacent matrix G A are given to dene the neighbors of UAV i, which are shown as follows

ω a ij = 1 then, j ∈ N i 0 then, j / ∈ N i
The assignments of weights ω l i in the leader matrix G l are given to dene UAVs as leaders, which are shown as follows

ω l i = 1 then, i ∈ V L 0 then, i / ∈ V L (6.4)
The objective of the formation control is to achieve the L-F consensus dened in denition 5.1.

Recall that the rigid formation is considered in this chapter, so d X i0 , i ∈ V are constant. Similar to (5.23), the tracking error of UAV i is dened by e i = X i -r Xd X i0 , then, ėi = Ẋi -ṙX . We can rewrite (6.3) as follows

u i = -σ b K 1 + ω l i e i ėi -n j=1 ω a ij e j ėj (6.5) 
In this work, the weights ω l i are used to assign a UAV as a leader or as a follower.

For instance, if we need UAV i to take the role of leader, we set ω l i = 1, otherwise, we set ω l i = 0. We note that the switch in the controller u i contains two cases,

• Case 1: Change of neighbors. For each UAV, we predene a sensing range d sr used in (6.1), within which the UAV can precisely sense the states of the UAVs. The switches of ω a ij take place, when UAV j enters or exits the sensing range of UAV i.

In Fig. 6.3 on the left, UAV 1 is entering the sensing range of UAV 2. In a Figure 6.3: The neighborhood is given equal or smaller than the sensing range.

xed formation control, UAV 2 will not consider UAV 1 as a new neighbor (ω a 21 will keep zero). In contrary, in the switching formation control, UAV 2 will consider UAV 1 as a new neighbor (ω a 21 will switch from 0 to 1).

On the right of Fig. 6.3, the UAV 4 is leaving the sensing range of UAV 2, The UAV 2 then cannot correctly detect the states of UAV 4. In xed formation control, ω a 24 keeps 1, the incorrect states detections of UAV 4 can cause the failure of the formation. In contrary, in the switching formation control, ω a 24 will switch from 1 to 0, such that the incorrect detection data will not aect the formation.

• Case 2: Change of leaders. The switches of ω l i take place, when we want to assign a UAV as a leader (or a follower). In this work, all the UAVs are left free to be assigned as leaders at any time instance.

If we denote σ b ([u 1 , . . . , u n ] T ) = [σ b (u 1 ), . . . , σ b (u n )] T , the collective control input u yields u = -σ b ((K ⊗ I n ) • (I 2 ⊗ G T k ) • e) (6.6) Note that u ∈ R n . The collective formation error vector is dened as e = [e 1 , • • • , e n , ė1 , • • • , ėn ] T .
We assume that the reference signal given to the leader (or leaders) is slowly changing such that we have rX ≈ 0 and rY ≈ 0. We can write the error dynamics for the overall system as follows ė = Ae + Bu (6.7) Note that rX ≈ 0 and rY ≈ 0. According to denition 5.1, we conclude that the consensus of an L-F formation corresponds to the stability of the origin of system (6.7).

Stability analysis

We observe from (6.6) that the collective control input for the overall system is a vector of saturated functions. The stability analysis of (6.7) is not trivial. To analyze the stability of the system (6.7) by using the proposed formation controller (6.5) for each UAV, we use the theories of convex hull and perturbed matrix. The common Lyapunov function method is used for the formation with arbitrary switching.

Constant topology

In this subsection, we investigate the convergence of the formation error e within a time interval T k = [t k , t k+1 ), where the topology is constant and the interaction matrix G T k keeps constant. We require that the matrix G T k is positive-denite. We replace u in (6.7) by (6.6), then, we obtain

ė = 0 I n 0 0 e - 0 I n • σ b k 1 G T k k 2 G T k • e (6.8)
We observe that when the control inputs u 1 , . . . , u n are all unsaturated, the foregoing system will become an ordinary linear system as ė = A c e, where A c is represented as follows

A c = 0 I n -k 1 G T k -k 2 G T k
According to theorem 4.1, we know that A c is Hurwitz, if G T k is positive-denite (for instance, the graph G T k is connected and at least one leader exists). Then, we can select proper gains k 1 and k 2 to assign the poles such that the origin of system (6.7) is asymptotically stable. We will not give the procedure of selecting gains k 1 and k 2 , some techniques such as LQR can be used to obtain proper gains.

Since A c is Hurwitz, the Lyapunov equation A T c P + PA c = -Q has an unique solution P 0, for a given positive symmetric matrix Q.

To introduce the convex hull representation of a bounded variable, we rstly give the following lemma. Lemma 6.1. For an arbitrary scalar |a| < ∞, a ∈ R, and a scalar |c| < b, we have σ b (a) ∈ co{c, a}, where co{c, a} represents the convex hull of the scalar set {c, a}.

Proof. The convex hull co{c, a} is the set of convex combinations of the scalars in the set {c, a}, then, the members in co{c, a} can be represented by

α 1 • c + α 2 • a
where α 1 and α 2 are two nonnegative scalar coecients that satisfy α 1 + α 2 = 1.

• If |a| ≤ b, σ b (a) = a. Then, σ b (a) can be represented by σ b (a) = 0 • c + 1 • a,
where α 1 = 0 and α 2 = 1.

• If a > b, σ b (a) = b. Then, σ b (a) can be represented by σ b (a) = a-b a-c • c + b-c a-c • a. α 1 = a-b a-c and α 2 = b-c a-c . • If a < -b, σ b (a) = -b. Then, σ b (a) can be represented by σ b (a) = a+b a-c •c+ b+c c-a •a. α 1 = a+b a-c and α 2 = b+c c-a .
Therefore, σ b (a) can always be represented by the convex combination of a, c. Thus, σ b (a) ∈ co{c, a}. Additionally, the coecients satisfy α 1 ≥ 0 and α 2 > 0.

According to lemma 6.1, u i can be represented by a member of a convex hull. Now, we investigate the representation of u in (6.6) by using a convex hull.

For some selected gains k 1 , k 2 , the domain of attraction of the equilibrium point (origin) of system (6.8) is estimated in the sequel. We employ the denition of a diagonal matrix Φ s in [START_REF] Bateman | An analysis and design method for discrete-time linear systems under nested saturation[END_REF]. We dene a set = {l κ ∈ R n : l κ (i) ∈ {1, 2}}, where l κ (i) represents the i-th element of vector l κ ∈ . The set contains 2 n vectors.

Let us use an l κ ∈ to dene a diagonal matrix Φ s such that

Φ s (l κ ) = diag{δ(l κ (1) -s), δ(l κ (2) -s), . . . , δ(l κ (n) -s)}, s ∈ {1, 2} where δ(l κ (i) -s) = 1, if l κ (i) = s, otherwise, δ(l κ (i) -s) = 0.
We dene a matrix H ∈ R n×2n . Let H i represent the i-th row of H. The matrix H is selected such that |H i e| < b, i ∈ V and for all e < ∞ (6.9) Then, using lemma 2.3 of [START_REF] Bateman | An analysis and design method for discrete-time linear systems under nested saturation[END_REF], we obtain that the control inputs u is in the convex hull as follows

u = -σ b k 1 G T k k 2 G T k • e ∈ co -Φ 1 (l κ )He -Φ 2 (l κ )([k 1 G T k k 2 G T k ] • e) : l κ ∈ , ∀ e < ∞ such that u is an element of the convex hull co{-Φ 1 (l κ )He -Φ 2 (l κ )([k 1 G T k k 2 G T k ] • e) : l κ ∈ }. The convex hull of the nite vector set vec = {-Φ 1 (l κ )He - Φ 2 (l κ )([k 1 G T k k 2 G T k ] • e) : l κ ∈ } is the
set of all convex combinations of the vectors in vec. Then, the control input u can be represented by the combination of the vectors in the vector set vec, where the vectors are weighted by some nonnegative coecients.

Therefore, the control input (6.6) can be represented by u = -

2 n κ=1 α κ (Φ 1 (l κ )He+ Φ 2 (l κ )([k 1 G T k k 2 G T k ] • e))
, where α κ , κ ∈ {1, . . . , 2 n } are some nonnegative scalars.

They satisfy

2 n κ=1 α κ = 1. Then, the error dynamics (6.7) in closed-loop form can be rewritten as ė = Ãc e (6.10)

where Ãc is represented as follows

Ãc = A -B 2 n κ=1 α κ Φ 1 (l κ )H + Φ 2 (l κ )([k 1 G T k k 2 G T k ]) Let us rewrite the matrix H = [H 1 H 2 ] in a partitioned form, where H 1 , H 2 ∈ R n×n . We denote Φ = 2 n κ=1 α κ Φ 2 (l κ ).
According to lemma 6.1, Φ 0. Note that Φ 1 (l κ ) + Φ 2 (l κ ) = I n , we can rewrite the foregoing matrix as follows

Ãc = 0 I n -(I n -Φ)H 1 -k 1 ΦG T k -(I n -Φ)H 2 -k 2 ΦG T k
We can observe that Ãc is a variant matrix, because the coecients α κ in Φ depends on the error e. For instance, if e does not hit the saturation, Φ = I n . Then, Ãc = A c .

If we denote ∆A c = 0 0 -(I n -Φ)(H 1 -k 1 G T k ) -(I n -Φ)(H 2 -k 2 G T k )
, then, Ãc = A c +∆A c . The system (6.10) is asymptotically stable if we have ÃT c P +P Ãc ≺ 0. Since we already know that the eigenvalues of matrix A T c P + PA c are negative, we should verify that ∆A T c P + P∆A c is suciently small to guaranty that the origin of ė = Ãc e is asymptotically stable. We rstly give the following lemma. Lemma 6.2. [Hogben, 2007] Let A be Hermitian, X ∈ C n×k have full column rank, and M ∈ C k×k be Hermitian having eigenvalues

µ 1 ≤ µ 2 ≤ • • • ≤ µ k . Set R = AX -XM . There exist k eigenvalues λ i 1 ≤ λ i 2 ≤ • • • ≤ λ i k of A such
that the following inequalities hold. Note that subset {λ i j } k j=1 may be dierent at dierent occurrences. Then,

max 1≤j≤k |µ j -λ i j | ≤ R 2 ξ min (X)
.

Note that we use ξ min (•) to represent the minimum singular value of matrix inside the parenthesis. The notation • 2 represents the induced 2-norm, which is dened by A 2 = λ max (A * A), where A * is the conjugate transpose of A.

A quadratic Lyapunov function V = e T Pe is selected to prove the stability of the overall system. Its derivative yields V = ėT Pe + e T P ė = e T ( ÃT c P + P Ãc )e

To ensure that the system (6.10) asymptotically stable, we have to make sure that ÃT c P + P Ãc ≺ 0, i.e., λ max ( ÃT c P + P Ãc ) < 0. Since ∆A T c P + P∆A c = ( ÃT c P + P Ãc ) -(A T c P + PA c ) and according to lemma 6.2, we have

|λ max (A T c P + PA c ) -λ max ( ÃT c P + P Ãc )| ≤ ∆A T c P + P∆A c 2
Therefore, system (6.10) is asymptotically stable, if

∆A T c P + P∆A c 2 ≤ |λ max (A T c P + PA c )| (6.11)
According to the property of 2-norm, we have ∆A T

c P + P∆A c 2 ≤ ∆A T c P 2 + P∆A c 2 = 2 P∆A c 2 . If we rewrite ∆A c as follows ∆A c = 0 0 0 I n -Φ • 0 0 -H 1 + k 1 G T k -H 2 + k 2 G T k Knowing that 0 0 0 I n -Φ 2 = I n -Φ 2 = 1 -λ min ( Φ)
, where 1 ≥ λ min > 0 and the 2-norm is used, we obtain

∆A c 2 ≤ (1 -λ min ( Φ)) 0 0 -H 1 + k 1 G T k -H 2 + k 2 G T k 2
Therefore, inequality (6.11) is satised if 0 0

-H 1 + k 1 G T k -H 2 + k 2 G T k 2 ≤ |λ max (A T c P + PA c )| 2λ max (P)(1 -λ min ( Φ))
(6.12) Thus, the system (6.10) is asymptotically stable, if inequality (6.12) is satised. Specically, λ min ( Φ) = 1 means that the controller (6.5) is unsaturated for all i ∈ V. Then, the stability is directly obtained if G T k is positive denite.

Without loss of generality, we set

H 1 = εk 1 G T k and H 2 = εk 2 G T k (6.13)
where ε > 0. From (6.9), we observe that the initial error e is nearer to the origin, if the scalar ε is selected greater. According to (6.13), the condition (6.12) becomes 0 0

k 1 (1 -ε)G T k k 2 (1 -ε)G T k 2 ≤ |λ max (A T c P + PA c )| 2λ max (P)(1 -λ min ( Φ)) Let us denote η = 0 0 k 1 G T k k 2 G T k 2
, the foregoing inequality becomes

ε ≥ 1 - |λ max (A T c P + PA c )| 2ηλ max (P)(1 -λ min ( Φ)) (6.14)
Let us denote a nite set Ω(P, ρ) = {e ∈ R 2n : e T Pe ≤ ρ}. Then, if the initial error e(t k ) ∈ Ω(P, ρ) ⊆ {e ∈ R 2n : |H i e| ≤ b, i ∈ V}, the error will asymptotically converge to the origin. The set Ω(P, ρ) is shown in Fig. 6.4, where o represents the origin. Now we recall the procedure of the controller design as follows.

• Design the gain matrix [k 1 k 2 ] of the system without saturations. Once k 1 and k 2 are selected, the right-hand side of (6.12) is xed.

• Select matrix H, shown in (6.13) for instance. Then, x ε using (6.14).

• Select the matrix Q and calculate P.

• Verify that the initial condition satises e(t 0 ) ∈ Ω(P, ρ).

The region of attraction Ω(P, ρ) of the origin of (6.8) is shown in Fig. 6.4. Figure 6.4: The region of attraction Ω(P, ρ), shown in region II. Region I represents the region that inequality (6.12) is satised. Region III represents the region that the control inputs u 1 , . . . , u 2 are all unsaturated.

Thus, we obtain that when the initial condition satises e(t k ), the origin of (6.10) is asymptotically stable.

Switching topology

As interpreted in the section 6.1, the switching of the topology can be caused by the change of edges in the graph or the change of leaders. This kind of switches have the property of arbitrary switching. The stability of a system with arbitrary switching is usually proven by using the method of a common Lyapunov function [START_REF] Zhao | On stability, l 2 -gain and h ∞ control for switched systems[END_REF].

For a formation with switching topology, the interaction matrices are represented by G T k . Then, we observe that the closed-loop system (6.8) is a switching system.

Within any time interval T k ∈ Γ, the system (6.10) is asymptotically stable when the interaction matrix G T k is positive-denite. Let us denote Then, the objective is to prove that

A c,T k = 0 I n -k 1 G T k -k 2 G T k
A c,T k P + PA c,T k = -Q T k , T k ∈ Γ
where Q T k represents a positive-denite matrix. Since in any time interval T k , we have

A T c,T 0 P + PA c,T 0 + ∆A T c,T k P + P∆A c,T k (6.15) Then, if ∆A T c,T k P + P∆A c,T k 2 ≤ |λ max (A T c,T 0 P + PA c,T 0 )| (6.16)
The positive-denite matrix Q T k exists, for T k ∈ Γ. Then, within any time interval T k ∈ Γ, the analysis is the same as the foregoing section 6.3.1. The invariant set for T k is represented by Ω(P, ρ k ).

If the following condition is satised, e(t k ) ∈ Ω(P, ρ k ) k = 0, 1, . . . (6.17) where t k represents the time instance of the k-th switching (shown in Fig. 6.2), then, the derivative of the common Lyapunov function V = e T Pe will be semi-negative denite. Thus, system (6.8) with arbitrary switching is asymptotically stable. The L-F formation task with switching topology is achieved.

We summarize the procedure of the stability analysis for a multi-UAV system with switching topology as follows

• Fix the gains k 1 and k 2 .

• Given a Q T 0 0, we obtain the solution P. The common Lyapunov function is V = e T Pe.

• Verify that A c,T k P + PA c,T k ≺ 0

• Calculate the invariant sets Ω(P, ρ k ).

• Verify the condition (6.17) is satised.

Then, the stability of (6.8) is guaranteed. It is worth to note that the stability conditions are sucient. The selection of matrix Q T 0 aects the calculation of the region of attraction Ω(P, ρ k ).

Simulation results

In this section, we present two simulation results by using MATLAB. They are respectively formations with i) change of neighbors, ii) change of leader. In both simulations, the comparisons of using xed and switching formation control are given.

Change of neighbors

A formation of four UAVs is shown in Fig. 6.1. The initial coordinates of these UAVs are given as follows: UAV 1 (-1.3, 1.1, 0), UAV 2 (-1, -1, 0), UAV 3 (1, -1, 0) and UAV 4 (1.2, 0.8, 0). The formation task of these UAVs is to aggregate on the stationary point (0, 0, 1), meanwhile keeping the desired inter-distances to form a formation pattern.

The complete dynamics model of a quadrotor in (2.2) is used in the simulation, the physical coecients of the quadrotor are the same as the simulation in section 3.2.1. The control parameters in (6.5) are selected as follows, b = 4 and K = [0.4, 0.8].

A xed formation control is shown in Fig. 6.7, where the added edges are not taken into account in the controller. The interaction matrix keeps constant in controller (6.6). The topology is described by the rst graph in Fig. 6.6.

Figure 6.6: The evolution of the topology.

Contrary to the rst simulation, the switching formation control is shown in Fig. 6.8, where the added edges are considered in the controller. According to (6.13), we obtain that ε > 1, then, (6.14) is satised. Selecting Q T 1 = diag{1, 1, 1, 1, 20, 1, 1, 1}, we obtain that (6.16) is satised for T k = {0, 1, 2}. Thus, the switching system is stable. The rst switch occurs at t 1 = 0.4508s, where the edges (1, 4) and (4, 1) are available. The second switch takes place at t 2 = 1.4511, where the edges (1, 3), (3, 1), (2, 4) and (4, 2) are available. The switching time instance is shown in Fig. 6.9. Comparing to Fig. 6.7, the performance of the formation with switching control is more satisfactory, the overshoot is smaller. Additionally, the converging speed is slightly faster. This result can be proven by using theorem 4.2.

We give the desired aggregating point on (3, 3, 1), the formation with x control is shown in Fig. 6.10. The formation with switching control is shown in Fig. 6.11.

The formation with switching control has smaller overshoot and faster converging speed, since the extra edges are taken into account in the controller design.

According to this simulation we have the following remarks.

0 1 2 -1.5 -1 -0.5 0 0.5 1 1.5 t (s) x r X X 1 X 2 X 3 X 4 t 1 t 2 0 1 2 -1.5 -1 -0.5 0 0.5 1 1.5 t (s) y r Y Y 1 Y 2 Y 3 Y 4 t 1 t 2 Figure 6
.9: The switches take place at t 1 = 0.4508 and t 2 = 1.4511. Remark 6.2. If some edges are broken, for instance, the inverse process of this simulation, the interaction matrix should be invertible after switching, in order to achieve the formation task.

Change of leader

In this simulation, we consider a scenario that the leader of the formation is changeable. The initial positions of the UAVs are given in section 6.4.1. The formation task of the UAVs is to move towards a destination point while maintaining desired inter-distances. We suppose that at time t 1 , the edges (2, 3) and (3, 2) are broken. The interaction matrix becomes singular (see G 1 in (6.18)). Then, we assign UAV 3 as a new leader in the formation such that the interaction matrix keeps invertible (see G 2 in (6.18)). We give two simulation results as follows. In 6.12, the leader is always the UAV 1, while in Fig. 6.13, UAV 3 is assigned as a new leader as soon as the edges (2, 3) and (3, 2) are broken.

G 1 =       2 -1 0 0 -1 1 0 0 0 0 1 -1 0 0 -1 1       G 2 =       2 -1 0 0 -1 1 0 0 0 0 2 -1 0 0 -1 1       (6.18)
We observe that in Fig. 6.12, the UAVs 3 and 4 can not aggregate around the desired point, since the interaction matrix has been singular after t 1 . However, in Fig. 6.13, a new assigned leader makes the interaction matrix invertible after t 1 , therefore, the formation task is accomplished.

Conclusion

In this chapter, we investigate the switching formation control problems of multiple UAVs, which leads to a switching interaction topology. This control strategy permits The proposed control strategy is illustrated by MATLAB simulations. In chapter 8, we will show the corresponding experimental results by using the simulatorexperiment framework.

Chapter 7

Formation with weighted topologies 

Anonymous neighbor-based formation control

For a multi-robot system, the robots are anonymous if they are priori indistinguishable [START_REF] Prencipe | Distributed algorithms for autonomous mobile robots[END_REF].

In other words, the robots are not distinguished by their appearance or special identiers. The anonymous formation is a distributed formation control strategy.

The conception of anonymity is rstly introduced and implemented on quadrotors by the GRASP laboratory [START_REF] Grocholsky | Anonymous cooperation in robotic sensor networks[END_REF], [START_REF] Turpin | Capt: Concurrent assignment and planning of trajectories for multiple robots[END_REF]. In [Franchi et al., 2013], the authors also developed a decentralized method to perform mutual localization for multiple mobile robots with anonymous relative measurement. This type of formation has advantages because of the scalable agents number and the robustness with respect to agents failure. This method is usually used in the leader-less formations.

Inspired by the existing work as mentioned before, we have applied the anonymous neighbor-based formation strategy in the L-F formation. In the foregoing chapters, for instance, in chapters 5 and 6, the anonymous neighbor-based formation is investigated. In the formation controllers (5.8) and (5.45), the desired trajectories for UAV i are generated by using the average of the neighbors states (and the reference r(t), if UAV i is a leader). If UAV i is a follower, its neighbors states are weighted by the same scalar

1 |N i |
. In this chapter, we develop a weighted neighbor-based formation.

In chapters 5 and 6, the rigid formation is considered. In the following subsection, we will introduce a exible formation.

Flexible formation control

In this section, we develop a formation controller for a exible formation, where the

desired inter-distances d ij = [d X ij , d Y ij ] ∈ R 2 , j ∈ N i are not necessarily constant. We only require that d ij is constant.
We note that the formation controllers proposed in chapter 5 can also be used in the control of exible formations. However, we observe that the derivatives of d ij and d i0 are not zero. We take the hyperbolic tangent based CNF control for example. Since the terms d X ij and d Y ij are not constant in (5.6), we have

ẋd i =      1 |N i | j∈N i ( ẋj + ḋij ) if i ∈ V -V L 1 |N i +1| j∈N i ( ẋj + ḋij ) + ṙ + ḋi0 if i ∈ V L (7.1)
and

ẍd i =      1 |N i | j∈N i (ẍ j + dij ) if i ∈ V -V L 1 |N i +1| j∈N i (ẍ j + dij ) + r + di0 if i ∈ V L (7.2)
Let us introduce a constant scalar c ij . The terms d X ij and d Y ij are proposed as follows

d X ij = X i -X j (X i -X j ) 2 + (Y i -Y j ) 2 • c ij d Y ij = Y i -Y j (X i -X j ) 2 + (Y i -Y j ) 2 • c ij (7.3)
We denote a constant scalar c i0 . Then, d X i0 and d Y i0 are given as follows

d X i0 = X i -r X (X i -r X ) 2 + (Y i -r Y ) 2 • c i0 d Y i0 = Y i -r Y (X i -r X ) 2 + (Y i -r Y ) 2 • c i0 (7.4)
We observe that c ij = d ij and c i0 = d i0 . Since the inter-distance and the relative velocity of a UAV and its neighbor are detectable, ḋij and dij are available. When UAV i is a leader, ḋi0 and di0 are available.

The formation controller is completely decentralized, because each UAVs only have the knowledge of its neighbors. The UAVs with the formation controllers with variable d ij in (7.3) do not have to keep a xed formation pattern. This exible formation without a xed pattern looks likes the swarm of animals in the nature, such as the swam of birds.

Simulation results

In this simulation, we give a formation of three UAVs, where the exible formation controllers using (7.3) and (7. 

7.2

Weighted neighbor-based formation control

In this section, we develop a distributed formation control, where the communication between UAVs is added: in our case, it is the communicated data. They are priority coecients that will be introduced in this section.

As analyzed in chapter 3, the dynamics of a quadrotor perform in two time-scales by using the attitude controller (3.24). Then, the formation problems of multiple quadrotors can be simplied by the formation controller design for the translational dynamics, which is the dynamics in slow time scale, such that for the outputs of the rotational dynamics

θ i = θ d i + ∆θ i , φ i = φ d i + ∆φ i , and ψ i = ψ d i + ∆ψ i ,
where ∆θ i , ∆φ i and ∆ψ i are the tracking errors of the angles, which are bounded and approximately equal to zero by the attitude controller investigated in chapter 3.

In this section, we assume that the tracking errors are zero. Then, using (5.42), the planar dynamics of a quadrotor becomes Ẍi = u X i and Ÿi = u Y i . Since the dynamics on x e , y e -axes are decoupled, we only consider the dynamics on one axis (x e -axis for example) in the following analysis. The result on the other axis can be obtained with the same analysis. Let us denote x i = [X i , Ẋi ] T , then, we can rewrite dynamics of x i in state space as follows ẋi = Ax i + Bu i (7.5) where we abbreviate u X i by u i . This abbreviation will be used throughout the rest of the paper. Matrices A and B satisfy A = 0 1 0 0 and B = 0 1

In this section, we represent the system in discrete-time. We denote by T the sample period. Then, we can obtain an approximate discrete-time model of (7.5) as follows

x i ((k + 1)T ) = A x i (kT ) + B u i (kT )
where we suppose that the sample time T is suciently small such that A ≈ I 2 +AT , B ≈ BT . The notation I 2 represents the identity.

Weighted error measurement

We have previously mentioned the weighted error measurement in subsection 2.2.2.

In this chapter, we consider the simplied model of quadrotors on x e -axis. Then, the weighted error measurement of UAV i (either a leader or a follower) can be rewritten in (7.6). Recall that x i = [X i , Ẋi ] T and r(t) = [r X (t), ṙX (t)] T .

z i = ω l i (x i -r(t)) + j∈N i ω a ij (x i -x j ) (7.6)
We assume that the reference formation trajectory r(t) given to the leader (or leaders) is slowly changing such that we have rX ≈ 0 and rY ≈ 0. The scalars ω a ij and ω l i are some weights. Note that ω a ij compose the matrix G A . The weights ω l i compose the matrix G L .

The assignments of the weights ω l i are given in equation 6.4.

In order to introduce the assignments of the weights ω a ij , we rstly introduce the notion of distance between two vertices in a graph. In graph theory, the distance between two vertices is the length of a shortest path between them. For example, in Fig. 7.2, a topology of seven UAVs is shown. Between vertices 1 and 5, the distance is equal to 2, because the shortest path is 1 -3 -5. The assignments of the weights ω a ij has a practical meaning. The weights ω a ij embody which neighbor j ∈ N i is more believable for UAV i. For example, among the neighbors of UAV i, there are one leader and several followers, thus, the leader is more believable and the leader's weight ω a ij is greater. In Fig. 7.2, UAV 3 has 4 neighbors (UAVs 1, 2, 5 and 6). Among the neighbors of UAV 3, the weights of UAV 1 is the biggest, since it is the leader (the distance between itself and the leader satises d 1 = 0). Then, the weights of the neighbors of UAV 3 should satisfy ω a 31 > ω a 32 > ω a 35 = ω a 36 .

In order to calculate the weights ω a ij , we rst dene a Priority Coecient (abbreviated by `PrC') for each UAV, which is a positive scalar represented by p i .

The PrC is given by p i = d i + 1. The leader's PrC is 1. The PrCs of the followers that are the neighbors of the leader, are equal to 2, etc.

The PrCs are calculated on-line. We use p i (k) to represent the PrC of UAV i at the k-th sampling instant. The calculation of p i (k) is given by algorithm 7.1.

According to algorithm 7.1, a UAV, which has a smaller PrC, is closer to the leader.

The weights ω a ij , j ∈ N i are calculated according to the PrCs (p j (k), j ∈ N i ) of the neighbors of UAV i.

The detailed calculation of the weights and the weighted error measurement (7.6) can be found in algorithm 7.2, and detailed for an example below.

The formation control algorithm runs in every UAV instead of running in a central UAV or ground station. Furthermore, each UAV takes its own decision depending only on neighboring UAVs' positions and velocities (and the RFT, if it is a leader) instead of all the other UAVs. In addition, the PrCs are diused by Algorithm 7.1: Update PrC p i for UAV i Require:

PrCs of neighbors: p j (k), j ∈ N i .

Ensure:

Updated PrC of UAV i: p i (k + 1).

1: for j = 1; j <= n; j + + do 2:

if UAV j is a neighbor of i then 3:

per[j] = p j (k) 

p i (k + 1) = σ n {min{per[j]} + 1} // σ n is dened in denition 5.2.
12: end if 13: return p i (k + 1) //UAV i transmits p i (k + 1) to others within its neighborhood. using communication (through WiFi), therefore, the formation control strategy is distributed. We give the ow chart of the program on a UAV in Fig. 7.3. Now we give an example to explain how to calculate the weighted error measurement (dened in (7.6)) by using algorithms 7.1 and 7.2.

Example 7.1. A multi-UAV system has four UAVs. There are one leader UAV 1 and three followers UAV 2, UAV 3, and UAV 4, which are shown in Fig. 7.4. Now, let us study two cases in Fig. 7.4(a) and (b).

Case 1: In Fig. 7.4.(a), the inter distance of leader UAV 1 and 2 is smaller than d, therefore, UAV 1 is a neighbor of UAV 2. Similarly, UAV 1 and UAV 3 are the neighbors of UAV 2. UAV 3 has two neighbors UAV 2 and 4. UAV 4 has only one neighbor UAV 3.

According to Fig. 7.3, all the PrCs are initialized by p i (0) = 4, i = 1, 2, 3, 4. According to algorithm 7.1, we have p 1 (1) = 1, p 2 (1) = 4, p 3 (1) = 4, p 4 (1) = 4. After the second sampling time, we have p 1 (2) = 1, p 2 (2) = 2, p 3 (2) = 4, p 4 (2) = 4. Then, after the third sampling time, we have p 1 (3) = 1, p 2 (3) = 2, p 3 (3) = 3, p 4 (3) = 4. The PrCs will not change after the forth sampling time in a formation control with xed interaction topology. It is worth to note that our proposed strategy can also be applied in the switching formation control (proposed in chapter 6), where the interaction topology switches.

We can write out the weighted error measurement for UAVs by algorithm 7.2: Algorithm 7.2: Calculate weighted error measurement for UAV i Require:

Positions (X j , Y j ), velocities ( Ẋj , Ẏj ) and PrCs p j (k) where j ∈ N i Ensure:

Weighted error measurement z i // shown in equation (7.6) 1: for j = 1; j <= n; j + + do 2: if UAV j is a neighbor of i then 3:

ω a ij (k) = 1 p j (k) j∈N i 1 p j (k) 4: else 5: ω a ij (k) = 0 6:
end if 7: end for 8: if UAV i is a leader then 9:

ω l i (k) = 1
10: else 11:

ω l i (k) = 0 12: end if 13: return z i = j∈N i ω a ij (x i -x j ) + ω l i (x i -r(t)) z 1 = (x 1 -x 2 ) + r,
where ω a 12 = 1 and ω l

1 = 1; z 2 = 3 4 (x 2 -x 1 ) + 1 4 (x 2 -x 3 ),
where Case 2: In the second example Fig. 7.4(b), according to algorithm 7.1, we can obtain the PrCs will keep invariable after one sampling time, such that p 1 (k) = 1, p 2 (k) = 4, p 3 (k) = 4, p 4 (k) = 4, k = 2, 3, . . . . Then, we can also rewrite out the weighted error measurement as follows:

z 1 = x 1 -r, where ω l 1 = 1; z 2 = x 2 -x 3 , where ω a 23 = 1; z 3 = 1 2 (x 3 -x 2 )+ 1 2 (x 3 -x 4 )
, where ω a 32 = 1 2 and ω a 34 = 1 2 ; z 4 = x 4 -x 3 , where ω a 43 = 1.

To introduce the proposed weighted formation control strategy, we suppose that the rigid formation is taken into account, such that the second member of the vector

d ij = [d X ij , ḋX ij ]
T is zero. According to (5.23), let us dene tracking error vector (only considering x e -axis) as follows

e i (k) = x i (k) -r(k) -d i0 (7.7) where d i0 = [d X i0
, 0] T is a constant oset vector introduced in denition 5.1. Then, we can write the error dynamics for UAV i (on x e -axis) as follows e i (k + 1) = A e i (k) + B u i (k) (7.8) where u(k) = [u 1 , u 2 , • • • , u n ] T . According to equation (7.7), (7.9) and denition 5.1, we can include that the L-F consensus will be achieved, if the overall error e converges to zero.

Distributed weighted formation control

The distributed controller design is given in this subsection to guaranty that the error e in equation (7.8) converges to zero.

We propose a distributed control law u i (k) for UAV i (either a leader or a follower) as follows

u i (k) = -K z i (k) -n j=1 ω a ij d ij -ω l i d i0 (7.10)
where K ∈ R 1×2 is the gain matrix. The weights ω a ij and ω l i are calculated by using When ω a ij = 0, we have j / ∈ N i . We can rewrite

j∈N i ω a ij (x i (k) -x j (k)) = n j=1 ω a ij (x i (k) -x j (k)) (7.11)
If we replace z i (k) in (7.10) by (7.6) and using (7.11) and (7.7), we obtain that, for each instant k

u i = -K ω l i (x i -r -d i0 ) + n j=1 ω a ij (x i -x j -d ij ) = -K ω l i e i + n j=1 ω a ij (x i -r -x j + r -(d i0 + d 0j )) = -K ω l i e i + n j=1 ω a ij (x i -r -d i0 -(x j -r -d j0 )) = -K ω l i e i + n j=1 ω a ij (e i -e j ) = -K ( n j=1 ω a ij + ω l i )e i -n j=1 ω a ij e j
According to the foregoing equation, we can write out the overall control input u as

follows u = -K •         n j=1 ω f 1j + ω l 11 . . . -ω f 1n . . . . . . . . . -ω f n1 . . . n j=1 ω f nj + ω l nn     ⊗ I 2     • e (7.12)
where K = I n ⊗ K.

We denote the matrix before the Kronecker product symbol in the foregoing equation by interaction matrix G, which is composed of the weights ω a ij and ω l i . The matrix G describes the weighted topology of the multi-UAV system. We can rewrite equation (7.12) by

u(k) = -K • (G ⊗ I 2 ) • e(k) (7.13)
It is important to note that the interaction matrix G is not symmetric when the dierent weights are used in the formation controller. In order to show the stability of the system (7.9), we need the matrix G is invertible. Therefore, we introduce the following lemma.

Lemma 7.1. Let G be an undirected simple graph, then the interconnection matrix G in equation (2.19), is positive denite, if i) G is connected; ii) the multi-agent system has at least one leader.

Proof. See A.4.1.

We introduce two weighted matrix W 1 and W 2 , which are given as follows.

W

1 = diag j∈N 1 p -1 j (k), j∈N 2 p -1 j (k), . . . , j∈Nn p -1 j (k) (7.14) W 2 = diag {p 1 (k), p 2 (k), . . . , p n (k)} (7.15)
where the scalar p i (k) represents the PrC of the UAV i ∈ V.

We recall that the general interaction matrix is dened in (2.19), where G D -G A is the Laplacian of the graph. In this chapter, according to the weights calculated depending on the algorithm 7.2, the weighted interaction matrix is obtained as follows

G = G L + I n -W -1 1 • G A • W -1 2 (7.16)
In general, an interaction matrix G of a weighted topology is not symmetric, although the graph is undirected. However, we can prove that the eigenvalues of G are always real, which is shown in the following lemma.

Lemma 7.2. The eigenvalues of interaction matrix G are real.

Proof. See A.4.2.

The distribution of the eigenvalues of the interaction matrix on the real-axis is investigated by the following corollary.

Corollary 7.1. If the weights ω a ij and ω l i are calculated according to algorithm 7.2, the eigenvalues of an interaction matrix is real and within the interval 0 < λ(G) ≤ 3.

Proof. See A.4.3. We also denote by G the interaction matrix of the multiple quadrotors with anonymous formation control. Then, G yields

G = G L + I n -(G D ) -1 • G A (7.17)
Proposition 7.1. In the weighted and anonymous neighbor-based formation control strategies, the corresponding interaction matrices are respectively (7.16) and (7.17). Then, their smallest eigenvalues yield

λ min (G) ≥ λ min (G )
Proof. See A.4.4. Then, according to theorem 4.2 and proposition 7.1, we have the following conclusion.

For a multiple quadrotors system, if the weighed neighbor-based formation controller is used, the converging speed of the tracking error (5.25) is greater than using the anonymous neighbor-based formation controller.

We replace u in equation (7.9) by equation (7.13), then we have e(k + 1) = (A -B K • (G ⊗ I 2 )) • e(k). By using the mixed-product property of Kronecker product, we can rewrite the foregoing equation as follows e(k + 1) = (I n ⊗ A -(G ⊗ B K)) • e(k). According to matrices B and K, we are able to nd n elementary matrices S 1 , . . . , S n , which render G ⊗ B K as follows

(Π n i=1 S i ) (G ⊗ B K) (Π n i=1 S i ) T = 0 0 k 1 T G k 2 T G
We recall that T is the sampling period. If we denote S = Π n i=1 S i and set ẽ = Se, then, we have ẽ(k + 1) = A c ẽ(k), where A c satises

A c = I n T I n -k 1 T G I n -k 2 T G (7.18) We denote vector [E T 1 , E T 2 ]
T by an eigenvector of matrix A c , where E 1 , E 2 ∈ R n .

Then, we have

E 1 + T E 2 = λE 1 -k 1 T GE 1 + E 2 -k 2 T GE 2 = λE 2
where λ represents a eigenvalue of A c . Thus, we simplify the foregoing equation as follows Equation (7.19) means that E 1 is a eigenvector of matrix G with eigenvalue λ i (G). In this notation, we have (-k 1 T 2 -k 2 T λ + k 2 T )λ i (G) = (λ -1) 2 . We rewrite this equation as follows

(-k 1 T 2 -k 2 T λ + k 2 T )GE 1 = (λ -1) 2 E 1 (7.19)
λ 2 + (k 2 T λ i (G) -2)λ + (k 1 T 2 -k 2 T )λ i (G) + 1 = 0 (7.20)
According to the denition of L-F consensus of multiple UAVs system (see denition 5.1), the origin of (7.9) should be asymptotically stable such that the eigenvalues of matrix A c should satisfy |λ| < 1. Then, the following conditions should be satised

1 + (k 2 T λ i (G) -2) + (k 1 T 2 -k 2 T )λ i (G) + 1 > 0 1 -(k 2 T λ i (G) -2) + (k 1 T 2 -k 2 T )λ i (G) + 1 > 0 such that k 1 T 2 λ i (G) > 0 4 -2k 2 T λ i (G) + k 1 T 2 λ i (G) > 0 (7.21)
According to the rst inequality in (7.21), the eigenvalues of G should satisfy λ i (G) > 0. The second inequality is usually satised in practice, since the sampling time T is very small comparing to k 1 , k 2 and λ i (G).

Simulation results

To illustrate the performance of the proposed distributed controller for L-F formation, we present here the results of simulation. A multi-UAV system with 4 UAVs are considered. Among the UAVs, there are one leader (UAV 1) and three followers (UAV 2, 3, and 4). Only the leader knows the destination point.

The interaction topology of the four UAVs are shown in Fig. 7.5 (on the left). In this scenario, we will give a comparison of the formation controllers with anonymous neighbors and weighted neighbors.

The interaction matrix of anonymous neighbors-based formation is given by G u . We recall that in the interaction matrix, the row i, i ∈ V represents the interactions between UAV i and its neighbors. We observe from G u that each UAV has indierent neighbors.

G u =       2 -1 2 0 -1 2 -1 2 1 -1 2 0 0 -1 2 1 -1 2 -1 2 0 -1 2 1       G w =       2 -1 2 0 -1 2 -3 4 1 -1 4 0 0 -1 2 1 -1 2 -3 4 0 -1 4 1       (7.22)
According to algorithm 7.1, we know that p 1 = 1. Since UAV 1 is the neighbor of UAV 2 and 4, then, we obtain p 2 = 2 and p 4 = 2. UAV 4 has neighbors 2 and 3, so p 4 = 3. Then, according to algorithm 7.2, we can write the weighted topology G w in (7.22). Right: altitude of the UAVs

The formation objective is to aggregate to a stationary point (3, 3, 1). The control gains are selected as follows k 1 = 0.157 and k 2 = 0.394.

We can observe from Fig. 7.6 and Fig. 7.7 that both formation objectives are achieved.

However, the weighted neighbor-based formation control has better performance. We can calculate that λ min (G u ) = 0.1454 and λ min (G w ) = 0.2429.

The smallest eigenvalue of G w is greater, therefore, according to theorem 4.2, the converging speed of the latter formation with weighted neighbor-based controller is faster. The proposed formation control law can be also applied to the case that multiple leaders exist. In Fig. 7.8, a formation with 2 leaders (UAVs 1 and 2) and 3 followers The task of the ock is to move from the initial place to the point of destination.

We note that in Fig. 7.8.(a), the UAVs arrive to the desired point (-4, 2) after about 5 seconds. Fig.7.8.(b) shows that the UAVs keep desired formation pattern.

Conclusion

In this chapter, we have investigated the formation of quadrotors with weighted The experimental setup is shown in Fig. 8.2. In the experiments, the motion capture system Optitrack is used to localize the UAVs in the formation.

The Optitrack system is composed of infrared cameras placed around the room of experimentation that collect the motions of the UAVs and sends these data to a PC via Ethernet cables. On the PC, the software Motive is responsible for processing the images of the cameras. Since the quadrotors are modeled as rigid bodies, the streaming VRPN data mode is selected. Then, the position, velocity and orientation data of the UAVs are sent to the UAVs and to the ground station PC via WiFi. In this thesis, we use the data of positions, velocities and the yaw angles of the UAVs. The pitch and roll measurements are provided by the on-board IMU of the UAVs.

Although the system Optitrack is a global localization system, we just use it to obtain the coordinates or inter-distances of the quadrotors. For instance, a UAV can use its on-board cameras to detect other UAVs and calculate their inter-distances.

Additionally, the self-localization can be realized by using GPS or other sensors (laser, etc). The system Optitrack is used here to simplify the study.

The ArDrone2 quadrotors manufactured by Parrot are used for real-time experiments. Some techniques in the Paparazzi Project2 , such as communication protocol, are applied here in order to implement our algorithms on the drones.

Soldering or other modications in the electronics are not necessary, we can use the available sensors and the materials of the Parrot drone. We have completely change the software in the Parrot. We delete the on-board Linux system and implement the Poky 12.0 system.

The procedure of using the simulator-experiment framework is stated as follows:

• Program the algorithms by using C++

• Compile the program into executable les for the UAVs in the simulator and for the real UAVs.

• Test the algorithm in the simulator, adjust the parameters of the controller

• Send the executable le to each UAV 

Flatness-based formation control

This subsection corresponds to section 5.1 of chapter 5.

Tests on simulator

In this test, the atness-based formation controller in (5.8) is used. The high-order derivatives are estimated by using (5.2). In the simulator and the experiment, the control frequency is 50Hz. Then, the states of the observer (5.2) are updated as follows

Xd i (k + 1) = (I 5 + T • A t ) Xd i (k) -T • L t • C t ( Xd i (k) -Xd i (k)) (8.1)
where T = 1 50 = 0.02s. The gain vector L t is shown in (5.9).

In this test, the initial formation error should not be too large, according to remark 3.3. Since controller (5.8) is not a bounded formation controller, a large formation error will generate a large control output, which can lead the UAVs loss of control. In order to deal with this problem, we suppose that the initial UAVs pattern is suciently close to the desired formation pattern. Additionally, the control gains should not be selected too large.

We carry out two tests on the simulator for the sake of comparison. In both tests, the objective is to track a circular trajectory (Radius: 2m; Maximum linear velocity:

1.3m/s; Linear acceleration 0.1m/s 2 ). The leader is UAV 1. In Fig. 8.3, a standard PD controller is used to control the formation. The gains of the formation controller are k p = 1.5 and k d = 0.1. We observe from Fig. 8.3 that at the beginning (when t < 20s), the UAVs can follow the given trajectory. But after 20s, although the formation errors keep stable, the performance becomes not satisfactory. On the contrary, by using the atness-based formation control with the same controller gains, the performance is greatly improved and the UAVs can always follow the given trajectory (see Fig. 8.4). The video is shown on the site https://youtu.be/m2DMZraaFxY.

The desired altitude is 1m for all the UAVs. The curves of the altitudes of the UAVs are given in Fig. 8.5. We can observe from Fig. 8.5(a) that the altitude of the UAV 2 oscillates after t = 25s. It is important to note that this phenomena is caused by the actuator saturation of the UAVs as interpreted in section 3.4. Considering this problem, we have proposed several bounded formation controllers in this thesis. 

Real-time experiment

Here, we show a real-time experiment where we replace the controller in (5.2) by the hyperbolic tangent function-based CNF (HT-CNF) controller. In Fig. 8.6, the magnitudes of the inter-distances of the UAVs are given. Fig. 8.6 shows a comparison of the formation control assuming that the high-order derivatives are equal to zero (left) and the formation control with the estimation of the high-order derivatives (right). The formation objective is to track a circular trajectory. We observe that the formation control with the high-order derivatives estimation has better performance, e.i., the inter-distance errors with respect to the desired value are smaller. This experimental results shown in this subsection correspond to the subsection 5.2, where the formation controllers (5.37) and (5.38) are used. We note that the advantage of this formation controller is shown by the simulation results in section 5.2. Here, we implement this formation controller in real time to show that this controller works, but we have to note that the selection of the control gains is quite complicated.

In this test, a formation of three quadrotors are given. The RFT is a rectangle.

The objective is that all the UAVs track the RFT with maintaining inter-distances between each other. The desired rectangular trajectory is given such that r ≈ 0 (except the vertex points). The attitude dynamics is controlled such that ∆Θ i ≈ 0.

The formation starts after the altitude of each quadrotor approaches the desired value such that we can assume u Z i ≈ 0. Then, we select η X i = 0 and η Y i = 0, i = {1, 2, 3}. The planar translational curves are given in Fig. 8.7. Among these UAVs, UAV 1 is the leader while UAV 2 and 3 are followers. We note that only the leader can obtain the RFT, while the followers move according to their neighbors behaviors. We observe from Fig. 8.7 that the formation of UAVs can track the given rectangular trajectory, while maintaining their desired inter-distance. We note that the perturbations, which are caused by the Optitrack system, exist during the formation. We can observe that the proposed algorithm has robustness with respect to the measurement perturbations. The RFT is a rectangle. The objective is that all the UAVs track the RFT with maintaining inter-distances between each other. 

Ẍd

i = 0 and Ÿ d i = 0. We observe that in both these two formations, the quadrotors are able to converge to the desired positions. However, with the hyperbolic tangent based CNF control, the performance is greatly improved.

Real-time experiment

The foregoing tests validated by using the simulator are carried out in the realtime experiments. The output curves are shown in Fig. 8.12. We observe that the formation with the hyperbolic tangent based CNF controller (on the right) has small overshoot and rapid response. 

Anonymous neighbor-based formation control

The results shown in this subsection corresponds to section 7.1.

Tests on simulator

We carry out the anonymous neighbor-based formation by using the simulator. In this scenario, the desired inter-distance is c ij = 2m and the sensing range is 3m.

The objective is to aggregate to a xed point (0, 0, 1), which is given to the leader. In the rst period (when 0 < t < t 1 ), there are two followers. Using the formation controller proposed in (5.48) and ( 5 After t 1 , the fourth UAV joints UAVs 1, 2 and 3. We can observe from Fig. 8.21 that these four UAVs nally form a rectangular pattern. It is worth to note that after t 1 , the inter-distances of the UAVs become smaller, shown in Fig. 8.20 on the right. This phenomenon is caused by the sensing between UAV 1, 3 and UAV 2, 4.

Real-time experiment

A real-time experiment is shown in Fig. 8.22, the corresponding video is available on the site https://youtu.be/tvqFNGyfa2Q. In this video, the experiment shows that the formation controller permits a scalable quadrotor number (see Fig. The results shown in this subsection correspond to section 7.2.

Tests on simulator

Test 1: Four UAVs with rectangular formation pattern In this test, we assume that the sensing range is d = 3m, and the desired interdistance is 1.5m.

We present two simulations in Fig. 8.24 with the same initial positions as follows:

UAV 1, (0, 0); UAV 2, (-1.49, -2.6); UAV 3, (1.49, -2.6); and UAV 4, (0, -4). All 

i (k) = -K j∈N i 1 |N i | (x i -x j -d ij ) , if i is a follower u i (k) = -K(x i -r(t)), if i is a leader (8.2)
We note that in the formation controller (8.2), the neighbors of one UAV have no special weights and they are undierentiated. Therefore, we call it anonymous neighbor-based formation control method. The motion of the leader only depends on the reference signal, as dened in [START_REF] Ni | Leader-following consensus of multi-agent systems under xed and switching topologies[END_REF]. The corresponding interaction matrix is represented by G 1 in (8.3).

In Fig. 8.24.(b), our proposed formation controller in (6.3) is used. In this formation controller, the neighbors are weighted by dierent weights. Therefore, we call it weighted neighbor-based formation control. Since the interactive L-F conguration is considered in our strategy, the leader has interaction with the followers. Then, according to example 7.1 and the denition of the interaction matrix in section 2.2, we obtain the G 2 as follows.

G

1 =        1 0 0 0 -1 3 1 -1 3 -1 3 -1 3 -1 3 1 -1 3 0 -1 2 -1 2 1        G 2 =        2 -1 2 -1 2 0 -6 11 1 -3 11 -2 11 -6 11 -3 11 1 -2 11 0 -1 2 -1 2 1        (8.3)
According to equation (7.20), the controller gain for each UAV is selected as k = [1.39, 1.2], which ensures the spectral radius of the matrix A c in (7.18) smaller than 1. In this scenario, our task is to make all the UAVs to achieve consensus around a destination point at (2, 3, 1) and keep some inter-distances to form a rectangular formation pattern. In Fig. 8.24, we give the comparison between the formation controllers with anonymous neighbors and with weighted neighbors. In 

Real-time experiment

The test 2 on simulator in the foregoing subsection is also carried out in real time. This algorithm is also implemented on the real-time experiment with exible formation, which is shown in Fig. 8.30. We can observe from Fig. 8.30 that with the weighted neighbor-based strategy, the formation task, which is to track a given circular trajectory is achieved. The delay of the followers with respect to the leader is small.

The test 1 on simulator and the real-time experiment corresponding to Fig. 8.30 are available on https://youtu.be/Du2Kzx_bfPQ. Additionally, the proposed weighted neighbor-based formation control is also implemented on the formation of four quadrotors, where a rectangular formation trajectory is given to the leader.

https://youtu.be/HFDlnqbcbLA. 

Calculation of inter-distance using vision

Since the proposed formation algorithms are neighbor-based, only the relative positions, velocities and orientations are need for the formation control. Therefore, we carry out the vision-based inter-distance detection by using on-board camera of each UAV. This work is mainly inspired by the work in [START_REF] Faessler | A monocular pose estimation system based on infrared leds[END_REF].

The idea is to install a board on each UAV, with infrared LEDs on it. Then, the UAV behind can detect the infrared LEDs on the front UAV. This process is illustrated in Fig. 8.31. Since the monocular camera is used, the absolute inter-distance cannot be obtained. The idea is to detect the size of the target in an image. For example, in Fig. 8.32, we calculate the area (number of pixels, denoted by n p ) of the green rectangles, which represent the target. We calibrate the camera and obtain the relation between n p and the real distance (X i -X j ) 2 + (Y i -Y j ) 2 . We found that within some predened sensing range, they have the following linear relation.

n p = k pixel (X i -X j ) 2 + (Y i -Y j ) 2
where the scalar k pixel can be obtained by the calibration.

Then, the problem becomes: how to detect the target. Since each UAV has LEDs with dierent geometric arrangement, we detect the target according to the We have implemented this image treatment algorithm on the real quadrotor Parrot AR.2. However, the combination with the formation controller has not been applied, which should be one of the directions of the future work.

8.4

Discussion and conclusions

Diculty of the experiments

During the period of experiment, we have met many problems of the Optitrack localization system. Indeed, the system is very sensitive to sunshine, which can cause failures of experiments. The coverage of the 3D space should be appropriate with a sucient number of cameras, which was not the case at the beginning. We have suered problem of heat in our new ight room, since the air-conditioner was not installed yet. The temperature dierence in day and night causes the materials on which the cameras installed changing the size. More calibrations of the Optitrack system were therefore necessary for precise detection. Finally, these problems have been recently solved and our recent tests can be realized in proper conditions.

Conclusions

The experiments are carried out for the sake of validating the proposed algorithms in this thesis. The obtained results show that our proposed formation control strategies can improve the formation performance. For instance the hyperbolic tangent based composite nonlinear feedback formation controller permits the quadrotors to track the RFT with smaller overshoot comparing to the frequently used controllers such as a bounded PD controller. To the best of our knowledge, switching formation control with changeable neighbors and changeable leaders has not been implemented in the literature in real time in a decentralized and autonomous way as presented here. Additionally, the actuator saturations are considered. The proposed weighted neighbor-based formation control can prevent some quadrotors from splitting the group.

In the experiments, the system Optitrack is used for each UAV to obtain the relative inter-distance (contains magnitude and orientation) of its neighbors, because our proposed algorithms are neighbor-based, which are decentralized. Therefore, if the UAVs have on-board sensors to detect its neighbors, the global localization system (Optitrack) is not necessary any more.

It is worth to note that the control algorithms are all calculated on-board each UAV. We do not need a PC to send control command to the UAVs. This is dierent from most of the existing works.

In addition, we have carried out many experiments that are not all shown in this thesis. For instance, the formation of quadrotors with centralized formation control, and the cooperation of quadrotors for transporting exible payloads. These experiments also validate our proposed algorithms.

Chapter 9

Conclusions and Future work

Conclusions

In this thesis, we have been concerned with the problems of the formation control strategies of multiple quadrotors.

A new interactive leader-follower formation has been considered, in which the leader(s) have interaction with the followers. This new conguration of the formation permits us to design decentralized formation control strategies. In existing works, the leader is usually considered as a free unit without any constraints. The task of the followers consists of following the leader by interactions. Therefore, in such a case, the leader can be attributed as a centralized unit in a multi-agent system. In this work, the leader has been treated as a neighbor of some followers (not all of them).

Then, the neighbor-based decentralized control strategies have been proposed.

The model analysis of a quadrotor has been rstly carried out, then, the trajectory tracking control problem for a single quadrotor has been investigated.

Through the analysis of the atness of the quadrotor dynamical model, the desired trajectory for each quadrotor has been transferred to the design of desired at outputs. Then, a atness-based trajectory tracking controller has been proposed. To the best of our knowledge, switching formation control with changeable neighbors and changeable leaders has not been implemented in the literature in real time in a decentralized and autonomous way as presented here. Note that we are aware of the works [START_REF] Franchi | Distributed online leader selection in the bilateral teleoperation of multiple uavs[END_REF] and [START_REF] Franchi | Bilateral teleoperation of groups of mobile robots with time-varying topology[END_REF], where teleoperating control strategies for multi-UAVs or multi-mobile systems are proposed.

Inspired by the existing work, i.e., the anonymous neighbor-based formation control, we have nally proposed a weighted neighbor-based control, which shows better formation robustness than the anonymous neighbor-based control. The proposed control strategy has been proven to have faster converging speed of the tracking error such that it can prevent some quadrotors from splitting the group.

Simulation results using Matlab has primarily illustrated our proposed formation control strategies. Furthermore, using C++ programming, our strategies have been implemented on the simulator-experiment framework, developed at Heudiasyc laboratory. Through a variety of tests on the simulator and real-time experiments, the eciency and the advantages of our proposed formation control strategies have been shown. Finally, a vision-based inter-distance detection system has been developed. This system is composed by an on-board camera, infrared LEDs and an infrared lter. The idea is to detect the UAVs and calculate the inter-distance by calculating the area of the special LEDs patterns. This algorithm has been validated on a PC, with a webcam and primarily implemented on a real quadrotor.

Perspectives

Although the formation control problem of quadrotors has been proposed and validated on the ways of simulation and real-time experiment, the implementation without the help of localization system (such as Optitrack) could be concerned in further work. Therefore, in this section, several perspectives (not exhaustive) in the near future and some open problems in the remote future are shown as follows.

9.2.1 Perspectives in the near future

• Inter-distance detection

The algorithms proposed in this thesis are mainly based on the inter-distance of the quadrotors. These data are provided by the Optitrack system. Therefore, one direction of future work is to investigate the relative distance detection of the quadrotors in the 3D environment. Within this aspect, some directions then emerge in terms of detection methods. For instance, the relative distance and orientations can be detected by using on-board cameras, lasers, ultrasonic sensors and other sensors.

Actually, the inter-distance detection is primarily carried out in this thesis (the inter-distance detection by using infrared LED and on-board cameras).

Some basic inter-distance detection platform and the calculating algorithms are proposed. The next step is to implement them on the formation control of quadrotors in the near future.

• Self-localization problem

The knowledge of the inter-distances of the quadrotors is not sucient to accomplish a formation task, such as a navigation of the formation. In order to achieve the navigation of a formation of quadrotors, some quadrotors should also have the knowledge of the environment. Within this aspect, some dierent A Lyapunov function is selected as V = x T P x. Then, its time derivative yields V =x T (A T c P + P A c )x + 2x T P δ ≤ -x T Qx + 2 x • λ max (P ) δ ≤ -λ min (Q) x 2 + 2 x • λ max (P ) δ = x (-λ min (Q) x + 2δ max λ max (P ))

Then, V < 0, if x > 2δmaxλmax(P ) λ min (Q)

. For any initial condition x(t 0 ), the state x will nally stay in the set S b = {x| x ≤ 2δmaxλmax(P ) λ min (Q) }. Then, the state of system (4.12) is ultimately bounded.

A.2.2 Proof of Lemma 4.3

Proof. The Laplacian matrix is a diagonally dominant matrix (the magnitude of the diagonal entry in a row is larger than or equal to the sum of the magnitudes of the non-diagonal entries in that row). The result is then detailed in the Gershgorin circle theorem in a geometrical way [Richard S., 2004].

A.2.3 Proof of Proposition 4.1

Proof. The interaction matrix can be rewritten as G = L + G L . According to lemma 4.3, we have L ≥ 0. Considering the denition of G L in section 2.2.1, we have G L ≥ 0. We prove this proposition by contradiction. Firstly, we suppose that there exists a nonzero vector x ∈ R n , which renders

x T Gx = x T (L + G L )x = x T Lx + x T G L x = 0 Therefore, we must have x T Lx = 0 and x T G L x = 0. Since x T Lx = 0, we obtain that x = α1 n , where α is a nonzero scalar. According to the fact that a leader exists, then, G L = 0. As a result, x T G L x = α 2 1 T n G L 1 n > 0, which contradicts x T G L x = 0. Therefore, such a nonzero vector x does not exist. Thus, for any nonzero vector x, x T Gx > 0, namely, G is positive-denite.

A.2.4 Proof of Corollary 4.1

Proof. If a multi-agent system has several connected sub-group of agents, then, the interaction matrix is block diagonal. Since each sub-group is connected and has at least one leader, then, the block in the interaction matrix is positive denite. Then, the interaction matrix is positive denite. 

σ b3 (( Xd i ) (4) ) -( Xd i ) (4) + σ b2 (( Xd i ) (3) ) -( Xd i ) (3) + σ b1 (( Xd i ) (2) ) -( Xd i ) (2)      
The control gains are selected such that A is Hurwitz. Since δ is bounded, then the error e X in (A.1) is ultimately bounded according to lemma 4.1. The same result on Y can be obtained similarly.

A.3.2 Proof of Proposition 5.1

u Z i = σ 1 (-k 2Z Żi -k 1Z (Z i -Z d i )) (A.2)
Proof. Substituting u Z i in (5.12) by (A.2) and substituting F T i in (5.11) by (5.12), we obtain the closed-loop altitude dynamics as follows

Zi = σ 1 (-k 2Z Żi -k 1Z (Z i -Z d i ))
Let us denote e iZ = Z i -Z d i . Note that Żd i = 0, we have ėiZ = Żi . We select the Lyapunov function candidate as follows

V iZ = s 0 σ 1 (s)ds + k 1Z 2 ė2
iZ where s = -k 2Z ėiZ -k 1Z e iZ . We note that V iZ is positive denite, V iZ = 0 if and only if e iZ = 0 and ėiZ = 0. The derivative of V iZ satises

ViZ =σ 1 (s) ṡ + k 1Z ėiZ ëiZ

=σ 1 (s) ṡ + k 1Z ėiZ σ 1 (s) = -k 2Z ëiZ σ 1 (s) -k 1Z ėiZ σ 1 (s) + k 1Z ėiZ σ 1 (s) = -k 2Z σ 2 1 (s) (A.3)
We obtain that ViZ is semi-denite negative. We then invoke here the LaSalle's invariance principle. Let us compute the largest invariant set where ViZ = 0, such that equation (A.3) equal to zero. Then, we obtain s = 0, which implies Let us dene an uncertain term δ s i (∆θ i , ∆φ i , ∆ψ i ), which is abbreviated by δ s i , satisfying

δ s i 2 2 = tan 2 φ i cos 2 θ i - tan 2 φ d i cos 2 θ d i + 2 • g g + u Z i • φ d i tan φ d i cos θ d i - tan φ i cos θ i + tan 2 θ i -tan 2 θ d i + 2 • g g + u Z i • θ d i tan θ d i -tan θ i -2 • g g + u Z i • θ d i sin ∆ψ i + φ d i (cos ∆ψ i -1) • tan φ i cos θ i - 2 • g g + u Z i • θ d i (cos ∆ψ i -1) -φ d i sin ∆ψ i • tan θ i • (g + u Z i ) 2
Observe that the term δ s i is generated by the attitude errors ∆θ i , ∆φ i , and ∆ψ i . Additionally, it satises δ s i (0, 0, 0) 2 = 0. As we mentioned before, the rotational dynamics are stable such that the attitude errors are bounded. Therefore, we can found a positive row vector ξ = [ξ 1 , ξ 2 , ξ 3 ] such that δ s i 2 ≤ ξ∆Θ i , where ∆Θ i = tan (M/g) (M/g) cos (M/g)

- g g + u Z i • g + u Z i g 2 • u i 2 2 + (ξ∆Θ i ) 2 such that δ i 2 ≤ tan (M/g) (M/g) cos (M/g) - g g + u Z i • g + u Z i g • u i 2 + ξ∆Θ i =l • u i 2 + ξ T ∆Θ i (A.6)
Since the constant M satises tan(M/g) (M/g) cos(M/g) < g g+u Z i 2 + g g+u Z i then, we have l < 1.

A.3.4 Proof of Lemma 5.1

Proof. Since Ḡ is a normalized interaction matrix, then, Ḡ = (G D + G L ) -1 • G. We recall that G is symmetric. i) Using (G D +G L ) -12 , we apply a similarity transformation to Ḡ, then, we obtain that (G D + G L )

1 2 • Ḡ • (G D + G L ) -1 2 = (G D + G L ) -1 2 • G • (G D + G L ) -1 2 is symmetric, because G D + G L are diagonal and G is symmetric. ii) Since Ḡ is similar to (G D + G L ) -1 2 • G • (G D + G L ) -1 2
, the eigenvalues of Ḡ are real, moreover, they are equal to the eigenvalues of (G

D + G L ) -1 2 • G • (G D + G L ) -1
Note that U • T T ⊗ I 2 = (U ⊗ I 2 )(T T ⊗ I 2 ). We replace ū by (A.8). Using property (A.1), we have (T T ⊗ I 2 )B T P = (T T ⊗ I 2 )(I n ⊗ B T P ) = B T P(T T ⊗ I 4 ) and (T ⊗ I 4 )PB = PB(T ⊗ I 2 ). Then, the rst term on the right hand side of equation When -e T (G ⊗ I 4 ) f T k < 0, We set W i = -e T i Qe i + ζ T i ûi + ζ T i δ i , then, we have V ≤ n i=1 W i . Since the uncertain terms δ i appear exactly at the same point where ûi appears, according to the matching condition, it is possible to use a Lyapunov redesign term ûi to cancel the eect of the uncertainty. Due to the model of the UAV, the uncertainty satises δ i ≤ δ i + [r X , r Y ] T ( • represents 2-norm here and in the following part).

• If f k e ≥ M ,
If we note z i = [r X , rY ] T , we know that z i is bounded (since rX (t) and rY (t) are bounded). According to inequality (5.19), we can estimate the bound of the uncertain term, which is shown as follows δ i ≤ l • u i + ξ∆Θ i + z i where l = tan(M/g) (M/g) cos(M/g) -1. Now we replace ûi by equations in (5.32). When ηζ i ≥ ε, we have ûi = η.

W i ≤ -e T i Qe i -

η ζ i ζ T i ζ i + lη ζ i + ζ i l • √ 2M + ξ∆Θ i + z i ≤ -e T i Qe i -η ζ i + (lη) • ζ i + ζ i l • √ 2M + ξ∆Θ i + z i = -e T i Qe i -(1 -l)η ζ i + ζ i l • √ 2M + ξ∆Θ i + z i
According to assumption 5.2, the tracking errors of the attitude angles are bounded, we suppose that ξ∆Θ i < δ s b . The second derivative of the RFT is bounded, then, we suppose that z i is bounded by z b , if the selected scalar η satises

l • √ 2M + ξ∆Θ i + z i ≤ l • √ 2M + δ s b + z b ≤ (1 -l)η (A.13)
Then, we obtain the result that W i ≤ -e T i Q i e i .

When η ζ i < ε, we have

W i ≤ -e T i Qe i -η 2 ζ T i ζ i /ε + l ζ i ûi + ζ i l • √ 2M + ξ∆Θ i + z i ≤ -e T i Qe i -η 2 i /ε (1 -l) ζ i 2 + ζ i l • √ 2M + ξ∆Θ i + z i
According to (A.13), we have

ε η ≥ l • √ 2M + ξ∆Θ i + z i ε (1 -l)η 2 ≥ l • √ 2M + ξ∆Θ i + z i ε 2(1 -l)η 2 ≥ 0
The term -(η 2 i /ε) (1 -l) ζ i 2 + ζ i (lM + δ s i + z i ) attains a maximum value at These analysis show that the trajectory of the error e will enter and nally stay in Ω ε .

ζ i = l • √ 2M + ξ∆Θ i + z i • ε 2 (1 -l) η 2 i (A.14)
e ∈ Ω ε ⇒ e i ≤ µ ≤ λ min (P ) λ max (P ) r

Since ε, P , and Q are independent of time, we have the conclusion that the equilibrium point (origin) of the error dynamics (5.28) is uniformly stable. In (A.15), the term lM + δ s i + z i is not necessarily vanished while e i → 0, therefore, the formation error e will nally remain in a nite ball, which implies that the formation error is ultimately bounded but not asymptotic stable.

If we use ûi in (5.35) instead of (5.32), we can conclude that the equilibrium point is uniformly asymptotically stable according to (A.16). However, sometimes a system with a controller that is not Lipschitz continuous could probably cause Such that

Ẍd

i -1

|N i | j∈N i Ẍd j = -1 |N i | j∈N i M tanh (k 2 ėjX + k 1 e jX ) if i ∈ V -V L Ẍd i -1 |N i +1| j∈N i Ẍd j = -1 |N i +1| j∈N i (M tanh (k 2 ėjX + k 1 e jX ) + rX ) if i ∈ V L
Without loss of generality, we assume that UAVs 1 ∼ i are leaders, while i + 1 ∼ n are followers. Then, we rewrite the foregoing equations for all the quadrotors in matrix form as follows The RFT is usually selected such that its derivatives are bounded. Then, we observe that Ẍd i , i ∈ V are bounded, since rX is bounded. Similarly, Ÿ d i , i ∈ V are bounded. Therefore, we conclude that u X i , u Y i , i ∈ V are bounded. Note that for any given initial condition e i (t 0 ) = [e iX (t 0 ), ėiX (t 0 )] T ∈ R 2 , which contains the origin, the derivative Vi ≤ 0. We then invoke here the LaSalle's invariance principle. Let us compute the largest invariant set where Vi = 0. According to (A.19) We denote the four sub-blocks in the foregoing matrix by G ul (upper-left), G ur (upper-right), G ll (lower-left) and G lr (lower-right).

    Ẍd 1 . . . Ẍd n     = G -1 •                 -1 |N 1 +1| j∈N 1 (M
We prove this lemma by contradiction. Firstly, we suppose that G is singular. Therefore, it has a zero eigenvalue associated with the eigenvector v = [v T u , v T l ] T , which satises

G ul G ur G ll G lr v u v l = 0
Without loss of generality, we denote the maximum absolute value of the member of the nonzero eigenvector v by v max , where `vmax ' is the i-th member of v.

• If i ≤ m, then v max in v u . We have (1 + ω l i )v max = which implies that a `|v max |' exists in v u . That contradicts the fact that v max should not be in v u . Therefore, |v max | is not the (m+1)-th member of v. If we continue to take the example that i = m + 2, . . . , i = n, we will nd that such an i exists unless there is G(i, α i ) = 1 (i = m+1 . . . n-1) in the sub-block G lr . It means that there are n -i + 1 UAVs isolated, which contradicts condition (b). Thus, if conditions (a) and (b) are satised, the eigenvector that renders the matrix G singular does not exist. Then, the matrix G is nonsingular.

A.4.2 Proof of Lemma 7.2 Proof. We can observe that the matrix W 1 and W 2 are invertible and positivedenite. We set T = W 

T -1 GT = W -1 2 1 W 1 2 2 -1 G W -1 2 1 W 1 2 2 = G L + I n -W -1 2 2 W -1 2 1 G A W -1 2 1 W -1 2 2
We recall that the matrices G L , G D , W 1 and W 2 are diagonal, G A is symmetric. We obtain that T -1 GT is symmetric, whose eigenvalues are real. Therefore, the interaction matrix G is similar to a symmetric matrix, such that the eigenvalues of G are real.

A.4.3 Proof of Corollary 7.1

Proof. According to lemma 7.1, lemma 7.2 and the Gershgorin circle theorem [Varga, 2004], we can draw the Gershgorin circle as follows Without loss of generality, we assume that the vertices 1, 2, . . . , n (which correspond to UAVs 1, 2, . . . , n) are sorted in increasing order of distances in graph. Then, we conclude that in each row of the weighted interaction matrix G, the magnitude of the non-diagonal and nonzero entries are decreasing. On the contrary to G, in the unweighted interaction matrix G , the non-diagonal entries in a row are equal. For both matrices G and G , we found that their Gershgorin circles are the same as shown in In order to illustrate the distribution of the smallest eigenvalues of matrices G and G , we carry out a similar transformation on the interaction matrices G and G . The idea is to increase the radius of the Gershgorin circle, whose center is (1 + ω l i , 0), -ω a n-1n v n-1 v -1

n -ω a n1 v n v -1 1 . . . -ω a nn-1 v n v -1 n-1 1          T G T -1 =           1 + ω l 1 -1 |N 1 | v 1 v -1 2 . . . -1 |N 1 | v 1 v -1 n -1 |N 2 | v 2 v -1 1 1 -1 |N 2 | v 2 v -1 3 . . . -1 |N 2 | v 2 v -1 n -1 |N 3 | v 3 v -1 1 -1 |N 3 | v 3 v -1 2 1 . . . . . . . . . . . . . . . . . . -1 |N n-1 | -1 |Nn| v n v -1 1 . . . -1 |Nn| v n v -1 n-1 1          
According to algorithm 7.2, we know that • In the rst rows of T GT -1 and T G T -1 , the sums of the magnitudes of the non-diagonal entries of T GT -1 and T G T -1 are equal.

• In the rows i = {2, . . . , n}, since ω a ij is decreasing and v i v j are increasing, we have n j=1,j =i ω ij v i v -1 j ≤ n j=1,j =i 1

|N i | v i v -1 j
• According to (A.26), the radius of the Gershgorin circles whose center is (1,0) is smaller than 1.

Therefore, if we draw the Gershgorin circle of matrices T GT -1 and T G T -1 , we 

GY

  A , G D , G L Adjacency, degree and leader matrices of graph G g gravity g a i , g d i , g l i i-th row of G A , G D and G L I n Matrix of identity with size n I x b , I y b , I z b , Moments of inertia with respect to body-xed frame V Set of vertices in the graph G N i Indices of the neighbors of agent i σ b (•) Standard saturation function, |σ b(•)| ≤ b ω a , ω l Member of G A , G L ω Angular velocity of the circular RFT r(t) λ max (•), λ min (•)Maximum and minimum eigenvalue of a matrix inside λ i (•) The i-th eigenvalues of a matrix inside M Bound of the saturation function σ M (•) P Solution of ARE equation ξ Positive row vector ξ = [ξ 1 , ξ 2 , ξ 3 ] Bounds of |r X | and |r Y | Ω i Angular velocity in the body-xed frame φ i , θ i , ψ i Roll, pitch and yaw angles of UAV i φ d i , θ d i , ψ d i Desired roll, pitch and yaw angles of UAV i φ b , θ b , ψ b Bound of the roll, pitch and yaw angles of UAV i ∆φ i , ∆θ i , ∆ψ i Tracking errors of roll, pitch and yaw angles ∆φ b i , ∆θ b i Bounds of ∆φ i , ∆θ i τ φ i , τ θ i , τ ψ i Moments of roll, pitch and yaw J Inertia matrix of a quadrotor κ The state vector of a quadrotor, κ ∈ R 12 X The translational state of a quadrotor X = [X, Y, Z] T x e , y e , z e Inertial frame of quadrotor x b , y b , z b Body-xed frame of quadrotor x The state vector of the quadrotors in a formation u Z i Altitude controller ūi Riccati equation based controller for UAV i ûi Lyapunov Redesign for UAV i u i Formation controller

  Figure 1.1: Quadrotors prototypes developed by some laboratories

  Figure 1.3: Cooperation of multiple quadrotors

Figure 1 . 4 :

 14 Figure 1.4: Large objects transportation by using multiple quadrotors

  Figure 1.7: Object searching in a large area

  Figure 1.9: Centralized control strategy for large-scale systems

  Distributed control is related to the areas of decentralized control and of large-scale systems. Distributed control strategies have been proposed to include communication issues into the decentralized control design framework. Such extensions concern the communication among subsystems, local controllers, and communication in the feedback loop. The notions of decentralized and distributed control are illustrated in Fig. 1.10, where dashed lines correspond with o-diagonal blocks given by communication links.

  Figure 1.10: Feedback structures

  Figure 1.11: Vision-based formation of quadrotors

Fixed

  formation control strategies for the quadrotors Three formation control strategies with xed formation topology are proposed. The atness-based formation control is proposed to deal with the aggressive formation problem. The high-order derivatives of the desired trajectory for each UAV are estimated by using an observer. Considering the nonlinearities of the translational dynamics of the quadrotors, the Lyapunov redesign is developed. The hyperbolic tangent-based bounded control with composite nonlinear feedback is developed in order to improve the performance of the formation. These proposed formation control strategies are validated by MATLAB simulations and simulator-experiment framework.Decentralized switching formation controlThe saturated switching control of the formation is investigated, where the formation topology is switching. The stability of the system is obtained by introducing the convex hull theory and the common Lyapunov function. This switching control strategy permits the change of the leaders in the formation.Distributed weighted neighbor-based formation controlInspired by some existing works, such as the anonymous neighbor-based formation control, we propose a weighted neighbor-based control. In this formation control strategy, the communication between the neighbors is added. Each UAV diuses a special scalar (perception coecient: PrC) to its neighbors, while for each UAV, its neighbors are weighted according to their PrCs. The simulation results and the simulator tests show better robustness than the anonymous neighbor-based control.

Figure 1 .

 1 Figure 1.12: Leader-Follower patten in swarms of animals

  Figure 2.1: Congurations of a quadrotor, where subscript b represents the body frame of the quadrotor

  The torques of the four rotors compose a moment, which can generate the yaw movement. The dierent thrusts of the four rotors can generate the moments for pitch and roll movements. Then, the dynamics of a quadrotor is modeled as the motion of rigid body in 3-D space under a thrust force and three moments. As Euler angles representation is used, the state of quadrotors is represented in an inertial frame o e x e y e and a body-xed frame o b x b y b . We denote the unit directional vectors of the inertial reference frame by {e 1 , e 2 , e 3 }, while the unit directional vectors of the body-xed frame by {b 1 , b 2 , b 3 }.

Figure 2 . 2 :

 22 Figure 2.2: Quadrotor schema. The inputs are four thrust forces generated by the four propellers. The attitude is represented by the Euler angles φ, θ and ψ, giving the rotation matrix R.

Figure 2

 2 Figure 2.3: Leader-follower multi-UAV system

Figure 3 . 1 :

 31 Figure 3.1: Schema of the dynamics of a quadrotor

  Figure 3.2: The navigation control schemes of a quadrotor

  3.2(a)) and the doubleloop control structure (see Fig.3.2(b)).

Figure 3

 3 Figure 3.3: Flatness-based quadrotor navigation in 3-D.

  Figure 3.4: Flatness-based quadrotor navigation.

  Equation (3.28) is called the boundary-layer model of the quadrotor, which represents the fast dynamics. If the control gains in (3.25) are selected suciently large (ε is suciently small, in other words) and the stability of (3.25) can be obtained, the dynamics of a quadrotor has a two time-scale property. The model of the quadrotor can be decomposed into the slow (reduced) model (3.27) and fast (boundary-layer) model (3.28).

Figure 3

 3 Figure 3.5: Navigation control based on singular perturbed theory

Figure 3

 3 Figure 3.6: The pitch angle θ i cannot be too large due to the actuator saturation

  quadrotor, the formation is achieved, if each quadrotor is assumed to track perfectly its given desired trajectory. Thus, the formation problem degrades into navigation problems of each quadrotor.The planed trajectories of the quadrotors should guarantee that the collisions are avoided during the formation.

Figure 4

 4 Figure 4.1: Centralized formation control structure of quadrotors

  component, a hierarchical formation structure is proposed. The calculation and data transmission are shared by some low-level components. As shown in Fig 4.2, the desired formation trajectory is given to some of the quadrotors in the group, which can be attributed as leaders of the group. This hierarchical formation strategy is proposed in[START_REF] Kwon | Hierarchical formation control based on a vector eld method for wheeled mobile robots[END_REF], where a subgroup of vehicles in the multivehicle system performs as leaders. The desired formation trajectory is given to the leaders, then, the leaders guide the other vehicles, which are called followers. The position and orientation states of the leaders are transfered to the followers through communication modules including Bluetooth and Zigbee.

Figure 4

 4 Figure 4.2: Hierarchical formation control structure of quadrotors

  Fig.4.3, where the quadrotors share a common formation objective (a destination position or a desired trajectory) [Olfati-Saber, 2006]. The desired position or trajectory is predened for each quadrotor. In other words, they are stored in the quadrotors. The navigation of the quadrotors is achieved based on the following two conditions:

  point is for the collision avoidance. Control laws are adapted on board each UAV by using the detected states of the nearby UAVs. The dashed lines in Fig. 4.3 represent the possible detections between the UAVs. The idea is to keep some inter-distances between the UAVs.

Figure 4

 4 Figure 4.3: Decentralized formation control structure of quadrotors

Figure 4

 4 Figure 4.4: Leader-follower distributed formation control structure of quadrotors

  then, we obtain the collective tracking error dynamics in closed loop as follows

Figure 4

 4 Figure 4.5: A multi-agent system with a leader (represented by red point) and three followers (represented by blue points). The graph is undirected.

  Figure 4.6: The graph of a multi-agent system with a leader (represented by vertex 1) and three followers (represented by vertices 2, 3 and 4). The extra edges are added.

Figure 4 Figure 4

 44 Figure 4.7: Simulation results for x i , i = {1, 2, 3, 4} with extra edges on graph G on the right.

  formation control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 In this chapter, the rigid formation problem is investigated. A formation is rigid if the desired inter-distance between each pair of UAVs does not change over time.

Figure 5

 5 Figure 5.1: The planar positions of a quadrotor that tracks a circle without the knowledge of high-order derivatives of the desired trajectory.

Figure 5 . 2 :

 52 Figure 5.2: The planar positions of a quadrotor that tracks a circular trajectory with highorder derivatives observer

  Figure 5.3: Rigid formation task for four UAVs, where UAV 1 is a leader. The objective is to track the trajectory r(t) with constant biases d 10 = [0, √ 2] T , d 20 = [-√ 2, 0] T , d 30 = [0, -√ 2] T and d 40 = [ √ 2, 0] T .

Figure 5

 5 Figure 5.4: Rigid formation of 4 quadrotors without high-order derivatives estimation, the objective is to track the RFT r(t) and meanwhile keep inter-distance between UAVs.

Figure 5

 5 Figure 5.5: Rigid formation of 4 quadrotors with high-order derivatives estimation, the objective is to track the RFT r(t) and meanwhile keep inter-distance between UAVs.
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  )where f (x i , δ i ) = Ax i + Bδ i and g = B. The matrices A and B are given as The nonlinear term δ i is represented as follows

  •) represents the sign function. Symbols η X i , η Y i , where i = {1, 2, 3}, represent nonnegative scalars. Scalars ∆θ b i and ∆φ b i satisfy ∆θ b i ≥ |∆θ b i | and ∆φ b i ≥ |∆φ i |.

  Fig.5.8. Observe from Fig.5.7(a) and Fig.5.7(b) that both controllers have a satisfactory performance. The responses in Fig.5.7(a) are a little smoother than the responses using our proposed controller in Fig.5.7(b). Although the formation

Fig

  Fig.5.8(b).

Fig. 5

 5 Fig.5.9(c) and Fig.5.9(d) correspond to Fig.5.8, where the angular velocity of the RFT is ω = 0.1rad/s. In Fig.5.9(d), the inter-distances are well maintained around 5m while Fig.5.9(c) is less satisfactory especially for d 31 . Note that the parameters of these two controllers and the initial conditions of the UAVs keep the same for these two tests. The attitude angles of each UAV during the formation are shown in Fig.5.10 (a), (b) and (c). The altitude control outputs u Z i are shown

Figure 5

 5 Figure 5.7: The angular velocity of the RFT (shown in (5.39)) is ω 1 = 0.05rad/s. Left: PD formation controller; Right: Our proposed controller

  Figure 5.10: The desired attitude angles and the real attitude angles by using PD attitude controllers.

Figure 5

 5 Figure 5.11: Output of functions hyperbolic tangent and hyperbolic cosine

  D formation of UAVs are considered before, where the reduced model is used to represent the model of a UAV. A conjecture about a 2-D formation of UAVs is given as follows, considering the complete model of UAV.

  iX for example. If the complete model of the UAVs are considered, then the rst equation in (5.43) yields ëiX = -M tanh (k 2 ėiX + k 1 e iX ) -M tanh(ρ(e i )) + δ iX (5.50) We abbreviate ρ(e i ) by ρ i . The time derivative of the positive-denite function V i in (5.47) yields

Figure 5

 5 Figure5.12: Formation of four UAVs with controller 1 in table 5.2.

Figure 5

 5 Figure5.13: Formation of four UAVs with controller 2 in table 5.2.

Figure 5

 5 Figure 5.15: Formation of four UAVs with controller 4 in table 5.2.

Figure 5

 5 Figure 5.16: Formation of four UAVs with controller 5 in table 5.2.

Figure 5

 5 Figure5.17: Formation of four UAVs with bounded CNF control. The RFT is a circle.

Figure 5

 5 quadrotors.The simulation results show its advantage with respect to a PD controller; The hyperbolic tangent-based bounded control with composite nonlinear

Figure 6 . 1 :

 61 Figure 6.1: The initial inter-distances of four quadrotors

  Figure 6.2: Switching signal Γ, t k , t k+1 and t k+2 represent the switching time instants. i and j represent the indices of two possible graphs.

Figure 6 . 5 :

 65 Figure 6.5: The circles represent the estimated region of attraction for the time intervals in Γ. The letter o represents the origin.

Figure 6

 6 Figure 6.7: The formation of four quadrotors without switch.
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 6 Figure 6.8: The formation of four quadrotors with switching topology

Figure 6

 6 Figure 6.10: Aggregation on the stationary point (3, 3, 1), with constant topology

Figure 6

 6 Figure 6.11: Aggregation on the stationary point (3, 3, 1), with switching topology

Figure 6

 6 Figure6.12: Formation of UAVs with edges (2, 3) and (3, 2) broken at t 1 = 10s.

Figure 6

 6 Figure6.13: Formation of UAVs with edges (2, 3) and (3, 2) broken at t 1 = 10s. UAV 3 is assigned as a new leader after t 1 .
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  Figure 7.1: The exible formation of three UAVs.

Figure 7 . 2 :

 72 Figure 7.2: The interaction topology of multiple quadrotors

  x 4 -x 3 where ω a 43 = 1.

Figure 7 . 3 :

 73 Figure 7.3: The program ow chart of a UAV in the ock.

For

  the overall system, the error dynamics (on x e -axis) is e(k + 1) = A e(k) + B u(k) (7.9)

  Figure 7.4: Examples of possible topologies. The leader is UAV 1, and the followers are represented by UAV 2, UAV 3, and UAV 4. The sensing range is represented by d.

Figure 7

 7 Figure 7.5: Left: Interaction topology of 4 UAVs. ω l ij , ω a ij represent some nonzero weights.

Figure 7

 7 Figure 7.6: Formation of 4 UAVs using anonymous neighbor-based control.

Figure 7 Figure 7

 77 Figure 7.7: Formation of 4 UAVs using weighted neighbor-based control.

  neighbors.Inspired by the existing works, i.e., the anonymous neighbor-based formation control, we propose a weighted neighbor-based control, which shows faster converging speed than the anonymous neighbor-based control by using the MATLAB simulation. The implementation on the simulator or the real-time experiments are shown in chapter 8. framework . . . . . . . . . . . . . . 141 8.2 Experimental results . . . . . . . . . . . . . . . . . . . . . 144 8.3 Calculation of inter-distance using vision . . . . . . . . . 160 8.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . 161In chapter 5, we have proposed three formation control strategies, which treat dierent problems in the formation of quadrotors with xed topology. In chapter 6, the switching formation control strategy is developed, which leads to a switching topology. In chapter 7, the weighted neighbor-based formation strategy is proposed to improve the robustness of the formation. This chapter is devoted to the implementation of these strategies on the simulator-experiment framework in order to validate our results. 8.1 Simulator-Experiment framework Heudiasyc laboratory has developed a PC-based simulator-experiment framework 1 for controlling a quadrotor and also a formation of quadrotors. The structure of the simulator-experiment framework is shown in Fig.8.1. The programs (written in C++) running in the UAVs are the same, both in the simulator and in the embedded processors of real UAVs. The goal of the framework is to rstly validate a program on the simulator before implementing on real UAVs, in order to avoid destroying the real drones. It is important to note that within this framework, the control algorithms are implemented on the UAVs rather than on a PC. There does not exist a central controller that sends control signals to the UAVs. 1 This framework is designed and developed by engineer Guillaume Sanahuja under the help of other colleagues in the laboratory In the simulator, the complete UAV dynamics are used. As shown in Fig.8.1, the ight of the UAVs are animated in a virtual 3D environment, which permits us to observe the behavior of the UAVs under some formation control laws. This framework permits the simulation to reect better the real-time experiment. Both the simulator and the real-time experiment share the ground station interface on the PC, which is responsible for displaying and sending instructions such as taking o and landing. The UAVs are all autonomous. The ground station is able to display the real-time ying data of the UAVs, such as the positions and the angles of the UAVs and also the battery information.
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 81 Figure 8.1: Structure of the simulator-experiment framework.
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 8 Figure 8.2: The experimental setup of the real-time experiments

Figure 8

 8 Figure 8.3: PD formation control.

Figure 8 . 6 :

 86 Figure 8.6: The magnitudes of the inter-distance of the UAVs. Left: Assuming that the high-order derivatives are equal to zero; Right: With high-order derivatives estimation

Fig. 8

 8 Fig.8.8(a) shows the real-time ight of the UAVs, the UAV with red propellers is the leader, while the others are followers. The 3D translational curves of the UAVs are shown in Fig.8.8(b), where we observe that the formation of tracking a rectangular RFT is achieved.The attitude angles tracking curves for UAV 1 are given in Fig.8.9. We can observe that the tracking errors are small. The altitude controller u Z 1 gets saturated
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 88 Figure 8.8: Real-time formation of 3 quadrotors. The UAV with red propellers is the leader in the group.

Figure 8

 8 Figure 8.12: Real-time formation of four quadrotors. Left: bounded PD control; Right: hyperbolic tangent based CNF control

Figure 8 .Figure 8 Figure 8

 888 Figure 8.14: X and Y curves of four UAVs in presence of detection failure. Left: xed formation control. Right: switching formation control

Figure 8 .

 8 Figure 8.19: Real-time experiment: switching leaders

Figure 8

 8 Figure 8.20: Flexible formation of four UAVs. Left: X and Y curves. Right: Interdistances of the UAVs.

  8.22).Additionally, the formation pattern is exible, which is shown in Fig.8.23.

Figure 8 .

 8 Figure 8.21: Flexible formation in simulator https://youtu.be/tTJYmcVvefA

Figure 8 .

 8 Figure 8.23: Real-time experiment of exible formation

  u

Fig. 8 .

 8 Fig.8.24.(a) the UAVs fail to maintain the formation. The followers are outside of the leader's neighborhood few seconds after the formation has begun. In Fig.8.24.(b), with the same initial positions and velocities, the followers always follow the leader.This simulation shows that our control strategy with weighted neighbors has better robustness than the strategy with anonymous neighbors.

Fig. 8 .

 8 Fig.8.28 and Fig.8.29 respectively show the translational curves and the magnitudes

Figure 8

 8 Figure 8.28: X and Y curves of the platooning of four quadrotors

Figure 8 .

 8 Figure 8.31: Inter-distance detection by using infrared LEDs

Figure 8 .

 8 Figure 8.32: Object detection by using infrared LEDs

  quadrotor is considered instead of the complete model.The actuator saturations have been considered, where we have concluded that the attitude angles pitch and roll should be limited. Then, the bounded formation controller of each quadrotor is designed.Since the reduced model of the quadrotor has a double-integrator characteristic, consensus algorithm for multiple double-integrator systems has been proposed.
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 2 k 1Z and k 2Z are two positive gains, e iZ in (A.4) will converge to zero• θ d i (cos ∆ψ i -1) -φ d i sin ∆ψ i • tan θ i • (g + u Z i )

  (A.10) can be rewritten as follows∂V ∂ẽAẽ+ B U • T T ⊗ I 2 ū = ∂V ∂ẽ Aẽ -γB(U ⊗ I 2 )(T T ⊗ I 2 )B T Pe = ∂V ∂ẽ Aẽ -γB(U ⊗ I 2 )B T P(T T ⊗ I 4 )e = ∂V ∂ẽ Aẽ -γB(U ⊗ I 2 )B T Pẽ = ẽT A T P + PA -2γPB(U ⊗ I 2 )B T P ẽ = ẽT A T P + PA -2γ(U ⊗ I 4 )PBB T P ẽFor each UAV i, we dene a matrix Q = 1 2 Q . Then, according to (5.31), we obtainA T P + P A -2γλ i (G)P BB T P = A T P + P A -2γ P BB T P + Q +2γ P BB T P -Q -2γλ i (G)P BB T P ≤2γ P BB T P -2γΛ n P BB T P -Q ≤ -Q = -2Qfor any connected graph G. We rewrite the foregoing inequality for the collective system as followsA T P + PA -2γ(U ⊗ I 4 )PBB T P ≤ -2Q Thus, we obtain V ≤ -2ẽ T Qẽ -2e T PB T • U • T T ⊗ I 2 [ū -σ M (ū)] + ∂V ∂ẽ (T T • G ⊗ I 4 )B(û + ∆ ) = -2ẽ T Qẽ + 2 γ ūT (G ⊗ I 2 ) [ū -σ M (ū)] + ∂V ∂ẽ (T T • G ⊗ I 4 )B(û + ∆ )Since F = I n ⊗ F = -γB T P and using property (A.1), the second term in the right side of the foregoing inequality yieldsūT (G ⊗ I 2 ) [ū -σ M (ū)] = (-γB T Pe) T (G ⊗ I 2 ) (-γB T Pe) -σ M (-γB T Pe) = (Fe) T (G ⊗ I 2 ) [Fe -σ M (Fe)] = e T F T (G ⊗ I 2 ) Fe -e T F T (G ⊗ I 2 ) σ M (F e) = e T (G ⊗ I 4 ) F T Fe -e T (G ⊗ I 4 ) F T σ M (Fe) = 2n k=1 e T (G ⊗ I 4 ) f T k f k e -e T (G ⊗ I 4 ) f T k σ M (f k e)Since {e | e i ≤ ρ , for any i ∈ V} ⊆ {e | |h k e| ≤ M, k ∈ {1, . . . , 2n}}, we have -M ≤ h k e ≤ M . For the term -e T (G ⊗ I 4 ) f T k σ M (f k e), we have the following discussions.When -e T (G ⊗ I 4 ) f T k ≥ 0,• If f k e ≤ -M , then, -e T (G ⊗ I 4 ) f T k σ M (f k e) = -e T (G ⊗ I 4 ) f T k (-M ) ≤ -e T (G ⊗ I 4 ) f T k h k e.• If f k e > -M , then, -e T (G ⊗ I 4 ) f T k σ M (f k e) ≤ -e T (G ⊗ I 4 ) f T k f k e.

  then, -e T (G ⊗ I 4 ) f T k σ M (f k e) = -e T (G ⊗ I 4 ) f T k M ≤ -e T (G ⊗ I 4 ) f T k h k e. • If f k e < M , then, -e T (G ⊗ I 4 ) f T k σ M (f k e) ≤ -e T (G ⊗ I 4 ) f T k f k e.Then, we conclude that-e T (G ⊗ I 4 ) f T k σ M (f k e) ≤ max{-e T (G ⊗ I 4 ) f T k h k e, -e T (G ⊗ I 4 ) f T k f k e} Therefore, we have ūT (G ⊗ I 4 ) [ū -σ M (ū)] ≤ 2n k=1 e T (G ⊗ I 4 ) f T k f k e + max{-e T (G ⊗ I 4 ) f T k h k e, -e T (G ⊗ I 4 ) f T k f k e} If -e T (G ⊗ I 4 ) f T k h k e < -e T (G ⊗ I 4 ) f T k f k e, we have e T (G ⊗ I 4 ) f T k f k e + max{-e T (G ⊗ I 4 ) f T k h k e, -e T (G ⊗ I 4 ) f T k f k e} = 0 If -e T (G ⊗ I 4 ) f T k h k e ≥ -e T (G ⊗ I 4 ) f T k f k e, we have e T (G ⊗ I 4 ) f T k f k e + max{-e T (G ⊗ I 4 ) f T k h k e, -e T (G ⊗ I 4 ) f T k f k e} = e T (G ⊗ I 4 ) f T k f k e -e T (G ⊗ I 4 ) f T k h k e ≥ 0Then, we have the following result2 γ ūT (G ⊗ I 4 ) [ū -σ M (ū)] ≤ 2 γ 2n k=1 e T (G ⊗ I 2 ) f T k f k e -e T (G ⊗ I 2 ) f T k h G ⊗ I 4 ) (F T F -F T H)e = 2 γ e T (G ⊗ I 4 ) [I n ⊗ (F T F -F T H)]e =e T 2 γ G ⊗ (F T F -F T H) e ≤ e T Qe = ẽT Qẽ Then, V satises V ≤ -ẽT Qẽ + ∂V ∂ẽ (T T • G ⊗ I 4 )B(û + ∆ ) = -e T Qe + ∂V ∂e ∂e ∂ẽ (T T • G ⊗ I 4 )B(û + ∆ ) = -e T Qe + ∂V ∂e (G ⊗ I 4 )B(û + ∆ ) ji B(û i + δ i ) Recall that ∆ = [δ 1 , . . . , δ n ] T and δ i = δ i -[r X , rY ]T . Using equation (5.33) and considering G ji = G ij , we can rewrite the last inequality as Qe i + ζ T i ûi + ζ T i δ i

  W i ≤ (1 -l) ε 4 -λ min (Q) e i 2 Now if we choose ε ≤ 2λ min (Q) λ min (P ) λmax(P )•(1-l) r 2 i ∈ Vwhere r ≤ ρ and set µ =ε(1-l) 2λ min (Q), then, we have,W i ≤ λ min (i ≤ rThus, for any i ∈ V and µ ≤ e i ≤ ρ, we conclude that (Q) e i 2 /2 = -λ min (Q) e 2 /2

A. 3 . 7

 37 Proof of Proposition 5.3 Proof. Let us denote ūi by ūi = k 2 ėiX + k 1 e iX (A.19)such that u i = -M tanh(ū i ) + Ẍd i , which is bounded. Then, the derivative of V i yields Vi = tanh ūi • ui + k 1 M ėiX ëiX = tanh ūi (k 2 ëiX + k 1 ėiX ) + k 1 M ėiX (-M tanh ūi ) = tanh ūi (k 2 (-M tanh ūi ) + k 1 ėiX ) -k 1 ėiX tanh ūi = -k 2 M tanh 2 ūi ≤ 0 (A.20) which is semidenite.

  =i ω a ij v j . Since ω l i > 0 (UAV i ≤ m are leaders and ω l i = 1), we have |(1+ ω l i )v max | = (1 + ω l i )|v max | = n j=1,j =i ω a ij |v j | and 1 + ω l i ≤ n j=1,j =i ω a ij |v j | |vmax| ≤ 1. This inequality contradicts 1 + ω l i > 1.Therefore, v max should not be contained in v u and the absolute value of the members of v u should be smaller than v max .• If i > m, we have |v max | = n j=1,j =i ω a ij |v j | such that |v j | = |v max |, for all j ∈ N i . Then, for example, if i = m + 1, there exists |v j | = |v max |, j < m + 1,

2

  and carry out similarity transformation T -1 GT , which yields

Figure

  Figure A.1: Gershgorin circle

  Fig.A.1.

  while at the same time, to reduce the radius of the Gershgorin circle whose center 1

Figure A. 2 :

 2 Figure A.2: Gershgorin circles of matrices T G T -1 (left) and T GT -1 (right). The distribution of the eigenvalues of the weighted matrix G is tighter than the distribution of the eigenvalues of G , which implies that the smallest eigenvalue of G is greater than G

  

  the controller u i (y i , z i ) for each UAV are in terms of the output vector y i and the weighted error measurement z i rather than y and z.

				T 2 , . . . , κ T n	T	, a full control input
	vector as u = u T 1 , u T 2 , . . . , u T n	T	, a full output vector as y = [y T 1 , . . . , y T n ] T and a full
	weighted error measurement z = z T 1 , z T 2 , . . . , z T n	T	for convenience. It is important
	to note that In other words, the
	controller for each UAV is designed depending on its own measurements, therefore,
	the controller is decentralized. In addition, if the communication issues are taken
	into account, the controller is distributed. In contrary, the controllers, which are
	designed in terms of y and z, are centralized.
	According to (2.25), (2.19) and (2.26), we can write z as follows

Table 5

 5 

	.2: Formation controllers and parameters
	In table 5.2, the controllers 1 and 2 represent bounded PD controllers with
	dierent gains, where the hyperbolic tangent functions are used. Controllers 3 and
	4 are two bounded formation control with hyperbolic tangent function and CNF.

  Then, we haveW i = -e i T Qe i + ζ T i ûi + ζ T i δ i ≤ -e i T Qe i + ζ T i ûi + ζ i δ i ≤ -e i T Qe i + ζ T i ûi + l ζ i u i + ζ i (ξ∆Θ i ) + ζ i • z i Then, we have W i ≤ -e i T Qe i + ζ T i ûi + l ζ i ûi + ζ i (lM + ξ∆Θ i + z i ).

						(A.11)
	According to equation (5.29), we obtain			
	u i ≤ σ M ( ūi ) + ûi ≤	√	M 2 + M 2 + ûi =	√	2M + ûi	(A.12)

  Actually, the inequality (A.16) is satised independent of the value of η ζ i . Therefore, the inequality (A.16) is always satised when e i < ρ.

	Then, we have	W i ≤	l •	√	2M + ξ∆Θ i + z i 4 (1 -l) η 2	2 • ε	-e i	T Qe i	(A.15)
	Considering condition (A.13), we have		
				W i ≤	(1 -l) ε 4	-e i	T Qe i	(A.16)
	Since we have								
		λ min (P ) e i	2 ≤ e T i P e i ≤ λ max (P ) e i	2
	We can rewrite (A.16) as follows				

  tanh (k 2 ėjX + k 1 e jX ) + rX ) (M tanh (k 2 ėjX + k 1 e jX ) + rX ) tanh (k 2 ėjX + k 1 e jX )

			
	. . . . . . M tanh (k 2 ėjX + k 1 e jX ) j∈N i+1 j∈N i |N i+1 | -1 |N i +1| -1 -1 j∈Nn |Nn|	              	(A.18)

M

  and (A.20), we obtain the largest invariant matrix G can be represented as the following general form

		1 + ω l 11	. . .	-ω a 1m	-ω a 1(m+1)	. . .	1n -ω a	
	          	. . . -ω a m1 0 . . . 0	. . . . . . . . . -ω a (m+1)α m+1 . . . . . .	. . . 1 + ω l mm -ω a m(m+1) . . . . . . 1 . . . . . . 0 . . .	. . . . . . . . . -ω a . . . nαn . . .	. . . -ω a mn -ω a (m+1)n . . . 1	          

Vicon Motion Systems http://www.vicon.com

http://wiki.paparazziuav.org/wiki/Main_Page

in a short time interval. The video of this experiment is available on https: //youtu.be/tDBiRAGp6r0?list=PLNaMpVTj9DFQdAbn1r9Bo0dqTxRNyvnwe.

, which is symmetric.

Remerciements

we obtain δ X i = 0 and δ Y i = 0, if the reduced model is used and the 2-D formation is considered. Note that the terms δ X i and δ Y i will be reconsidered in the subsection 5.3.2. Now, we consider the model of (5.43), setting δ X i and δ Y i null, to design the proper u X i and u Y i . According to (5.43), the dynamics of X i and Y i are similar, then, we consider the dynamics of X i for example. Note that in the sequel, the superscript X is omitted for the sake of simplicity. Then, we have Ẍi = u i (5.44)

We propose the formation controller as follows

where M represents a positive constant scalar. The scalars k 1 and k 2 represent two positive gains.

Proposition 5.2. The formation controller u i (5.45) is bounded.

Proof. See A.3.6.

Substituting (5.45) into the rst equation in (5.43), we obtain ëiX = -M tanh (k 2 ėiX + k 1 e iX )

(5.46)

We will apply the Lyapunov analysis to prove the stability of system (5.46). Firstly, let us dene a continuously dierentiable, radially unbounded positive-denite function as follows

where V i = 0, if and only if e iX = 0 and ėiX = 0.

Proposition 5.3. The origin of (5.46) is globally asymptotically stable.

Proof. See A.3.7.

In this subsection, the hyperbolic tangent function-based saturated formation control is presented. The global stability of closed-loop system with the reduced quadrotor model is obtained. In the following subsection, we will investigate a controller, which can improve the performance of the formation.

Formation with switching topology

The experimental results shown in this subsection correspond to chapter 6.

Test on simulator

In this test, a formation of four UAVs are presented. We suppose that some edges are broken during the formation, which renders the interaction matrix singular. Thanks to the switching controller, we are able to assign a new leader in the group such that the interaction matrix becomes invertible again.

Note that the initial positions of the quadrotors are given suciently close to the desired positions in the formation. The initial velocities are zero. Then, the formation controller is unsaturated, such that the stability is guaranteed when the interaction matrix G is invertible. In Fig. 8.14, the detection failure occurs at t 1 = 32s, where UAV 1 loses connection with UAV 4 and UAV 2 loses connection with UAV 3. With the xed formation controller, the UAV 3 and 4 cannot track the desired trajectory (rectangle), shown in Fig. 8.14(left). On the contrary, using our proposed switching formation control, the formation task is achieved, as shown in Fig. 8.14(right), where UAV 4 is assigned as a leader after t 1 = 32s.

The inter-distances of the UAVs and the 2D formation curves are shown in Fig. 8.15 and Fig. 8.16 respectively. We can observe that with xed formation controller, the UAVs will exit the formation.

Fig. 8.17 shows the process of switch of the topology. In Fig. 8.17(2), UAVs 1 and 4 fail to detect each other. UAVs 2 and 3 cannot detect each other too. In Fig. 8.17(3), a new leader (UAV 4) is assigned. Then, the formation task can be accomplished, shown in Fig. 8.17(4). The test on simulator is available on the site: https://youtu.be/lUS4P2mOSPQ.

Real-time experiment

In the real-time experiment, we implement a formation of four quadrotors tracking a trajectory of 8. The leader changes between UAV 1 and UAV 2, shown in Fig. 8.18.

The UAV 1 is initially assigned as a leader (see Fig.8.19), the corresponding video is available on the site https://youtu.be/-_w5tFS2tvU.

directions then could be proposed such as the navigation with GPS, camerabased environment perceptions, etc. In detail, within the L-F conguration, the inter-distance detection can be applied to precisely keep a formation pattern of the quadrotors, while at the same time, the leader quadrotor guides the formation to follow the desired trajectory, under the help of way points

given by GPS or on-board SLAM strategies for example.

Perspectives in the remote future

In this thesis, we have frequently mentioned a notion of: reference formation trajectory. One should wonder how to nd a reference formation trajectory. In other words, which reference strategy should follow quadrotors? A common direction is the trajectory planning according to specic tasks. The objective is usually to nd an optimal trajectory by means of minimizing consumptions, avoiding obstacles, etc.

In our laboratory, a project DIVINA has recently started aiming at realizing collaborative simultaneous localization and mapping in totally or partially unknown and GPS-denied environment.

We are looking for a strategy using multiple quadrotors to accomplish the task of collaborative SLAM. Such a strategy should improve the communication and energy consumption when emergent behaviors arise.

These concerns become promising perspectives in the remote future. Denition A.1 (Kronecker product [Bernstein, 2005]). Let A ∈ R n×m and B ∈ R l×k . Then, the Kronecker product A ⊗ B ∈ R nl×mk of A is the partitioned matrix

The Kronecker product extends the dimension of the matrix A by matrix B. It does not entail a restriction on either the size of A or the size of B. Normally, A ⊗ B = B ⊗ A. The following properties are frequently used in this thesis.

row of A and the j-column of C, is given by

Since i, j can be any numbers in {1, . . . , n} and {1, . . . , q}, then, the result in the proposed proposition can be obtained.

Note that the priority of the operation • is higher than the Kronecker product.

A corollary of proposition A.4 is given as follows Corollary A.1. Let A ∈ R r×s and B ∈ R n×n . Then

Proposition A.5. Assume that A ∈ R n×n and B ∈ R m×m are nonsingular. Then,

Proof. According to proposition A.4, we have that 

According to Courant-Fischer theorem [Hogben, 2007],

Then, the result is obtained.

A.3 Proof materials in Chapter 5

A.3.1 Proof of the atness-based formation control with saturations

Proof. According to (3.11), (3.8), (3.13) and (5.8), the simplied closed-loop dynamics of a quadrotor yields

Then, we can write the dynamics of e X in state-space form as follows ėX = Ae X + δ

asymptotically. Therefore, by using controller (A.2), the origin of the altitude error dynamics will be asymptotically stable.

A.3.3 Proof of Fact 5.1

The norm of the δ i yields Using (A.7), we can rewrite (5.28) as follows

Since the topology is undirected, G is symmetric. Let T be a unitary matrix that renders a matrix U = T T GT diagonal. The terms along the diagonal of U are the eigenvalues of G. Let e = (T ⊗ I 4 )ẽ and replacing ū by equation (A.8), the error dynamics will become

Since the Lyapunov function for each agent is given by V j (e j ) = e T j P e j , for the overall system, we can rewrite the collective Lyapunov function as follows where P = I n ⊗ P is a positive denite symmetric matrix with proper size.

Since V (e) = V (ẽ), we use uniformly the symbol V for convenience to represent the Lyapunov function. By using (A.1), we have (U

Therefore, the ûi in (5.32) is more suitable in practice to avoid uctuations.

As the analysis above, the derivative of the selected Lyapunov function is seminegative denite when µ ≤ e i ≤ ρ, i ∈ N . The error dynamics in (5.28) is uniformly stable (because µ is uniform in t and e i ) such that the L-F consensus is approximately achieved. According to (5.27), we conclude that x s -

where

We note that the consensus will not be achieved if the topology is not connected (which renders the interaction matrix singular, such that Λ n = 0, δ µ is innite). We would like to reconsider the examples in Table .5.1. The minimum eigenvalue (Λ 3 ) of the interaction matrix of the graph in Table .5.1.a is smaller than the other two (Table .5.1.b and Table .5.1.c), which means the corresponding δ µ of the formation with Table .5.1.a is bigger than the two others.

Particularly, if (5.35) is used, we will obtain W i ≤ -e T i Q i e i for sucient small error e i ≤ ρ, such that (5.24) is asymptotically stable and the L-F consensus will be exactly achieved. This ends the proof. A.3.6 Proof of Proposition 5.2 Proof. According to (5.6), the desired trajectory Xd i for UAV i satises

Let us denote e iX = X i -Xd i . Then, we have 

According to (5.48), ρ i has the same sign as ėiX . Then, -k 1 ėiX tanh ρ i ≤ 0.

We obtain that Vi is semi-denite negative. We then invoke here the LaSalle's invariance principle. Let us compute the largest invariant set where Vi = 0, such that equation (A.23) equal to zero. We consider the following cases.

Case a: if ėiX = 0, then, according to (A.24), Vi < 0, which contradicts Vi = 0.

Case b: if ėiX = 0, then, according to (A.23), Vi = -k 2 M tanh 2 (k 1 e iX ) = 0, which implies e iX = 0.

Therefore, in Case 1, the largest invariant set contains only the origin.

• Case 2:

We obtain that Vi is semi-denite negative. As mentioned before, we compute the largest invariant set where Vi = 0, such that equation (A.23) equal to zero.

We consider the following cases.

Case a: if |ū i | = 0, then, according to (A.25), Vi < 0, which contradicts Vi = 0.

Case b: if |ū i | = 0, then, according to (A.23), Vi = -k 1 ėiX tanh ρ i = 0, which implies ėiX = 0. Since ūi = 0, we obtain that e iX = 0.

Therefore, in Case 2, the largest invariant set contains only the origin.

Since the largest invariant set contains only the origin, then, according to the LaSalle's invariance principle, the origin of the system (5.46) is globally asymptotically stable.

A.4 Proof materials in Chapter 7

A.4.1 Proof of Lemma 7.1

Proof. According to the denition of the degree matrix, we obtain that n j=1 ω a ij = 1, i ∈ V.

According to the condition (a), the ock has at least one leader. Without loss of generality, we suppose that the UAV 1 ∼ m are leaders and UAV m + 1 ∼ n are followers.

For the followers m + 1 ∼ n, we denote the rst nonzero members of each line is G(m + 1, α m+1 ), . . . , G(n, α n ). We suppose that α m+1 ≤ α m+2 ≤ • • • ≤ α n . According to condition (b), we conclude that α m+1 < m + 1, . . . , α n < n. Then, the is (1, 0). Then, the transformation matrix T is the product of n diagonal matrices