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In this thesis, we investigate the infrared regime of Yang-Mills theories. In particular, we follow a recently proposed novel gauge-fixing procedure that aims at dealing with the presence of the so-called Gribov copies. These copies correspond to additional solutions to the gauge equation that are disregarded in the standard Faddeev-Popov procedure. This novel gauge-fixing approach was first implemented in the Landau gauge, where the low momentum regime was investigable by means of simple perturbation theory and the one-loop gluon and ghost propagators were found in good agreement with lattice simulations. In a first part, we extend this proposal to a class of nonlinear covariant gauges (the Curci-Ferrari-Delbourgo-Jarvis gauges). We prove that these gauges are renormalizable in four dimensions and we provide explicit expression of the renormalization constants at one-loop order. Then we compute the various propagators of the theory at one-loop order with and without renormalization group improvement.

The second part of the thesis concerns the finite temperature case and in particular the study of the confinement-deconfinement phase transition. We work in the Landau-DeWitt gauge (a background field extension of the Landau gauge), which allows for an explicit presence of an order parameter of the phase transition. This gauge is implemented following the previous gauge-fixing procedure. In particular it has been shown that the phase transition can be studied in perturbation theory. Here, we compute at one-loop order the gluon and ghost propagators (for SU(2) gauge group) and show that they display clear signals of the phase transition. This is to be put in regards with the results obtained for the Landau gauge propagators.

Introduction

The strong interaction is one of the four fundamental interactions in Nature (along with the electromagnetic, weak and gravitational ones). It is responsible for the cohesion of atomic nuclei in spite of the presence of the repulsive electromagnetic interaction between charged protons. The particles submitted to the strong interaction are called hadrons, among which, on top of the protons, are for instance the neutrons and the pions. The dynamics of hadrons have been investigated for decades both theoretically and experimentally, leading to the quark model first proposed by Gell-Mann and Zweig in 1964 [START_REF] Gell-Mann | A Schematic Model of Baryons and Mesons[END_REF][START_REF] Zweig | An SU(3) model for strong interaction symmetry and its breaking. Version 2[END_REF]. The quark model states that hadrons are not the most fundamental particles but are formed of spin 1/2 particles, called the quarks. The existence of quarks was confirmed experimentally and they were found in six different types, called flavors. Later on, Gell-Mann and Fritszch [START_REF] Fritzsch | Advantages of the Color Octet Gluon Picture[END_REF][START_REF] Bardeen | Light cone current algebra, pi0 decay, and e+ e-annihilation[END_REF] proposed the existence of an underlying SU(3) symmetry group, called the color group, which, accordingly, gives to the quarks extra quantum numbers. Eventually, the color group was taken as a gauge group and the theory was called quantum chromodynamics (QCD). Nowadays, this is the admitted theory to describe the strong interaction at the microscopic level. The gauge bosons, called gluons, are the mediators of the strong interaction and have a similar role to photons in quantum electrodynamic. Although at high energies the colored quarks and gluons are the relevant degrees of freedom, the physical spectrum of QCD is observed to be made only of colorless hadrons and is free from quarks and gluons. This is known as the phenomenon of confinement. In particular, for QCD to be a fundamental theory (as it is believed), the confinement shall naturally emerge from the microscopic action. However, one of the main obstacles one has to face is the fact that the energy regime of QCD that is relevant for confinement is often called nonperturbative and one has to resort to more sophisticated approches than perturbation theory (which is the simplest tool of investigation in quantum field theory (QFT)). This is a consequence of the pure gauge sector of QCD (part of the QCD action that depends only on the gauge bosons). Indeed, QCD is a non-Abelian gauge theory and, at the difference of quantum electrodynamic, gluons present self-interactions. These self-interactions dramatically change the dynamics of the fundamental degrees of freedom, which, for instance, become more weakly coupled as the energy increases: the so-called asymptotic freedom property discovered by Politzer, Gross and Wilzeck [START_REF] Politzer | Reliable Perturbative Results for Strong Interactions?[END_REF][START_REF] Gross | Ultraviolet Behavior of Nonabelian Gauge Theories[END_REF]. However, as one goes at lower energies, standard perturbation theory predicts that the coupling constant increases without bound and eventually diverges at a finite energy scale (Landau pole) Λ QCD (which is typically of the order of the proton mass). The divergence of the coupling constant is usually considered as being an artifact of perturbation theory since the latter cannot be trusted at finite but large coupling. v Introduction This feature along with the property of asymptotic freedom are believed to be the two sides of the same coin and are consequences of the pure gauge dynamics. Because of this origin, it is believed that most of the features of QCD, and in particular the mechanism of confinement, are generic to non-Abelian gauge theories and can thus be understood by studying their archetype, namely the Yang-Mills theories [START_REF] Yang | Conservation of Isotopic Spin and Isotopic Gauge Invariance[END_REF] that consist in the pure gauge sector of QCD.

Nonperturbative numerical (lattice) Monte-Carlo simulations, proposed by Wilson [START_REF] Wilson | Confinement of Quarks[END_REF] and initiated by Creutz [START_REF] Creutz | Monte Carlo Study of Quantized SU(2) Gauge Theory[END_REF], have been extensively used in order to investigate the infrared physics of the strong interactions. The latter is now fairly well described by lattice simulations that are commonly used to determine for instance the spectrum of particles, or important matrix elements entering in the evaluation of scattering amplitudes or decay rates (see e.g. [START_REF] Montvay | Quantum fields on a lattice[END_REF]). Although they have provided definite confirmation that confinement does occur [START_REF] Creutz | Monte Carlo Study of Quantized SU(2) Gauge Theory[END_REF], there is still no fully satisfactory description nor explanation of the underlying mechanisms starting from first principles, despite the many proposals that have been put forward, see e.g. [START_REF] Greensite | The Confinement problem in lattice gauge theory[END_REF][START_REF] Greensite | An introduction to the confinement problem[END_REF] for a review.

Another lead may lie at finite temperature, which has been the subject of intense studies for the past three decades. QCD is believed to admit a very rich phase diagram whose study is an important theoretical challenge with numerous phenomenological implications for astrophysics, early Universe cosmology or heavy-ion collision experiments. In particular, along the temperature axis, the theory presents a confinementdeconfinement phase transition, where, at high temperatures, hadrons turn into a plasma of quarks and gluons. Thanks to the property of asymptotic freedom, the high temperature regime can be investigated by means of perturbative development supplemented by resummation techniques, the so-called hard thermal loops [START_REF] Braaten | Deducing Hard Thermal Loops From Ward Identities[END_REF][START_REF] Braaten | Soft Amplitudes in Hot Gauge Theories: A General Analysis[END_REF][START_REF] Braaten | Simple effective Lagrangian for hard thermal loops[END_REF]. Within this approach, the high temperature properties of thermodynamic quantities of the deconfined plasma, such as the entropy, can be reached, though the physics of the phase transition remain inaccessible [START_REF] Blaizot | The Entropy of the QCD plasma[END_REF][START_REF] Blaizot | Quark number susceptibilities from HTL resummed thermodynamics[END_REF][START_REF] Blaizot | Approximately selfconsistent resummations for the thermodynamics of the quark gluon plasma. 1. Entropy and density[END_REF]. Again, the presence of the Landau pole prevents the use of standard perturbation theory in the low temperature confining phase as well as in the vicinity of the transition, which are widely accepted as being nonperturbative. Owing to its achievements in the vacuum, one naturally resorts to lattice simulations, which, after several decades of studies [START_REF] Engels | High Temperature SU(2) Gluon Matter on the Lattice[END_REF][START_REF] Mclerran | A Monte Carlo Study of SU(2) Yang-Mills Theory at Finite Temperature[END_REF][START_REF] Kuti | Monte Carlo Study of SU(2) Gauge Theory at Finite Temperature[END_REF], have clearly established the existence of a phase transition in pure SU(N ) Yang-Mills theories. The latter is related to the nonvanishing expectation value that the Polyakov loop (the order parameter) [START_REF] Fingberg | Scaling and asymptotic scaling in the SU(2) gauge theory[END_REF] develops in the high temperature phase, which, in turn, is associated with the spontaneous breaking of a global symmetry, called the center symmetry of the gauge group. Eventually, these studies were extended to the case of QCD where a crossover was found [START_REF] Bazavov | Equation of state in ( 2+1 )-flavor QCD[END_REF][START_REF] Borsanyi | Full result for the QCD equation of state with 2+1 flavors[END_REF]. On top of its inherent interest, the confinement-deconfinement phase transition can be viewed as a great opportunity for the search of the mechanisms at the origin of confinement. Indeed, the passage from the deconfined to the confined phase shall highlight some important features of the dynamics responsible of the phenomenon.

Nevertheless, the phase diagram along the chemical potential axis is much less understood because, in particular, lattice simulations suffer from a severe sign problem [START_REF] De Forcrand | Simulating QCD at finite density[END_REF][START_REF] Philipsen | Lattice QCD at non-zero temperature and baryon density[END_REF]. Although, great efforts are made in order to circumvent the sign problem on the lattice [START_REF] De Forcrand | Simulating QCD at finite density[END_REF][START_REF] Sexty | Progress in complex Langevin simulations of full QCD at non-zero density[END_REF][START_REF] Tanizaki | Evading the sign problem in the mean-field approximation through Lefschetz-thimble path integral[END_REF], so far one has to resort to analytical/continuum approaches in which the sign problem, though not completely absent, is less severe. More generally, vii one of the drawbacks of numerical simulations is their "black-box" character. Indeed, although they provide exact results starting from the microscopic theory, they hardly allow one to access the essential ingredients that actually lead to these results. To tackle this question, one can rely upon analytical approaches, which, although they are approximate in general, are more suited to develop/bring explanations of the observed phenomenon. Among others, the ones that were the most used for the study of the infrared regime of Yang-Mills theories, as well as for the confinement-deconfinement phase transition, are the nonperturbative functional methods based either on truncations of Dyson-Schwinger equations (DSEs), or the functional renormalization group (FRG) [START_REF] Alkofer | The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states[END_REF][START_REF] Smekal | The Infrared behavior of gluon and ghost propagators in Landau gauge QCD[END_REF][START_REF] Ellwanger | The Heavy quark potential from Wilson's exact renormalization group[END_REF][START_REF] Marhauser | Confinement in Polyakov Gauge[END_REF][START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF][START_REF] Epple | Confining Solution of the Dyson-Schwinger Equations in Coulomb Gauge[END_REF][START_REF] Alkofer | Dynamically induced scalar quark confinement[END_REF][START_REF] Fischer | Deconfinement phase transition and the quark condensate[END_REF][START_REF] Fischer | Chiral and deconfinement transition from Dyson-Schwinger equations[END_REF]. In particular, the FRG has been shown to correctly reproduce the phase diagram of Yang-Mills theories with transition temperatures in agreement with lattice results [START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF].

Such approaches, as most of the continuum ones, use, as basic building blocks, the Green's functions (correlation functions) of the elementary fields of the theory. These quantities are not gauge invariant and require one to fix the gauge that amounts to choose one gauge field configuration that stands as a representative among each set of physically equivalent configurations. The standard manner to fix the gauge in the continuum is to follow the Faddeev-Popov gauge-fixing procedure [START_REF] Faddeev | Feynman Diagrams for the Yang-Mills Field[END_REF], which, in particular, introduces auxiliary fields: the so-called Faddeev-Popov ghosts. Working directly on the Green's functions yields an additional difficulty since now the problem becomes specific to the gauge under consideration. In particular, this renders comparisons between different approaches more intricate since it is mandatory to be certain that all the results are derived in the same gauge (which can be a not so trivial task once approximations are made or when comparing numerical to analytical approches). In continuum methods, comparisons with other approaches, and especially with lattice simulations, are of topical importance. Indeed, the nonperturbative DSEs or FRG equations cannot be solved exactly, but require one to make additional approximations. Hence, in order to trust such approaches, it is necessary to quantify the effects of the employed approximation schemes. A general criticism such nonperturbative methods have to face is that, even when well motivated, approximations are hard to check explicitly and it is difficult to compute corrections to the obtained results. Hereby, it is desirable to test them against ab initio methods. These are provided by gauge-fixed lattice simulations that aim at the direct calculation of the Green's function both at zero and finite temperature [START_REF] Boucaud | The Infrared Behaviour of the Pure Yang-Mills Green Functions[END_REF][START_REF] Bogolubsky | Lattice gluodynamics computation of Landau gauge Green's functions in the deep infrared[END_REF][START_REF] Boucaud | On the IR behaviour of the Landau-gauge ghost propagator[END_REF][START_REF] Boucaud | The Infrared Behaviour of the Pure Yang-Mills Green Functions[END_REF][START_REF] Cucchieri | Landau-gauge propagators in Yang-Mills theories at beta = 0: Massive solution versus conformal scaling[END_REF][START_REF] Maas | Describing gauge bosons at zero and finite temperature[END_REF][START_REF] Maas | The Gluon propagator close to criticality[END_REF]. In the context of correlation functions, lattice simulations are the analogous of the experiments, and provide an important benchmark for continuum approaches. However, the implementation of lattice gauge-fixing procedures is far from being a trivial task. This is particularly true for covariant gauges (which are the most convenient for continuum approaches) because imposing the gauge condition amounts to solve a large set of coupled nonlinear differential equations. More severely, Yang-Mills actions that are gauge-fixed à la Faddeev-Popov cannot be directly implemented on the lattice since averages of gaugeinvariant quantities are of the indefinite 0/0 form. This is known as the Neuberger zero problem [START_REF] Neuberger | NONPERTURBATIVE BRS INVARIANCE[END_REF][START_REF] Neuberger | Nonperturbative BRS Invariance and the Gribov Problem[END_REF]. In this regard, the Landau gauge stands as a peculiar case. Indeed, the covariant Landau gauge condition can be formulated as an extremization procedure of an auxiliary functional. Thereby, using powerful minimization algorithms one can accordingly fix the gauge on the lattice in a different gauge-fixing procedure than the Introduction Faddeev-Popov one and, in turn, the Neuberger problem is avoided [START_REF] Mandula | Efficient gauge fixing via overrelaxation[END_REF][START_REF] Davies | Fourier Acceleration in Lattice Gauge Theories. 1. Landau Gauge Fixing[END_REF][START_REF] Gupta | The Hadron Spectrum on a 18**3 X 42 Lattice[END_REF][START_REF] Cucchieri | Critical slowing down in SU(2) Landau gauge fixing algorithms[END_REF].

More generally, beyond the fact that Green's functions are at the basis of continuum approaches, they constitute the basic building blocks of any QFT since they contain all the information of the theory. Hence, the fundamental mechanisms at the origin of confinement shall be encoded into them. Their study in the Landau gauge has received even more attention since the seminal work of Kugo and Ojima [START_REF] Kugo | Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem[END_REF]. Indeed, in the Landau gauge, Kugo and Ojima were able to derive a consistent confinement scenario based on the deep infrared behavior of the ghost and gluon propagators. This is known as the so-called scaling solution, which, in Euclidean space, is characterized by a divergent zero-momentum ghost dressing function (the ghost propagator times its momentum squared). Hereby, their proposal motivated the direct calculation of the correlation functions in the deep infrared regime to see whether or not the system realizes the scaling solution. Although, in the Landau gauge, the scaling solution is found consistent with both the DSEs and the FRG, gauge-fixed lattice simulations have shown that it is actually not realized. Instead, the Landau gauge Yang-Mills correlation functions follow the decoupling solution, where, both the ghost dressing function and the gluon propagator remain finite at zero momentum. Although this suggests a massive behavior for the gluons, it has been well established that the associated Källen-Lhemann spectral function is not definite positive and, in turn, gluons cannot be interpreted as stable massive particles, which is consistent with confinement [START_REF] Bowman | Scaling behavior and positivity violation of the gluon propagator in full QCD[END_REF][START_REF] Cucchieri | Positivity violation for the lattice Landau gluon propagator[END_REF]. Later on, the decoupling solution was also proved to be consistent with DSEs and FRG equations, though it is not possible to discard the scaling from the decoupling solution in an internal way within these approaches [START_REF] Aguilar | Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger-Dyson equations[END_REF][START_REF] Aguilar | Power-law running of the effective gluon mass[END_REF][START_REF] Boucaud | Is the QCD ghost dressing function finite at zero momentum?[END_REF][START_REF] Aguilar | A Dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations[END_REF][START_REF] Bloch | Two loop improved truncation of the ghost gluon Dyson-Schwinger equations: Multiplicatively renormalizable propagators and nonperturbative running coupling[END_REF][START_REF] Boucaud | On the IR behaviour of the Landau-gauge ghost propagator[END_REF][START_REF] Huber | On the influence of three-point functions on the propagators of Landau gauge Yang-Mills theory[END_REF][START_REF] Rodriguez-Quintero | On the massive gluon propagator, the PT-BFM scheme and the low-momentum behaviour of decoupling and scaling DSE solutions[END_REF].

All in all, these results tend to show that our understanding of the infrared behavior of the correlation functions, though they constitute the basic building blocks of the theory, is far from being complete. One possible missing ingredient could be nontrivial effects of the gauge-fixing procedure itself that are disregarded by the Fadeev-Popov construction. Indeed, in his seminal work, Gribov showed that, in the case of non-Abelian gauge theories, the solution of the gauge condition is not unique [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF]. Instead, there exists an infinite discrete set of solutions, related to one another by gauge transformations, which are called Gribov copies. These copies are not taken into account in the standard Faddeev-Popov procedure. In this case, Gribov copies are shown to give degenerate contributions with alternating signs to the partition function, which eventually cancel out and lead to the Neuberger problem. Although they are believed to be irrelevant at high energies, their presence might dramatically change the infrared behavior of the correlation functions. Gribov copies are consistently dealt with in gauge-fixed lattice simulation, where the algorithms used to fix the gauge actually select a unique copy. However, taking into account these copies in analytical approaches is a fundamental difficulty since it is not known how to build a local gauge-fixed action free of them [START_REF] Singer | Some Remarks on the Gribov Ambiguity[END_REF]. This problem was faced by Gribov and later on by Zwanziger in the Landau gauge, where they proposed to restrict the path-integral used in the calculation of the correlation functions to a particular subspace of the gauge field configuration space [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF][START_REF] Zwanziger | Local and Renormalizable Action From the Gribov Horizon[END_REF]. In doing so, the number of Gribov copies decreases considerably though several are still present in the gauge-fixed theory. This approach is called the Gribov-Zwanziger scenario and predicts that the gluon and ghost correlation functions follow the scaling solution. The Gribov-Zwanziger scenario has been extended to what is ix known as the refined Gribov-Zwanziger scenario [START_REF] Dudal | A Refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results[END_REF], where the presence of dimension two condensates is taken into account. In particular, in this last case, one obtains the decoupling solution observed in gauge-fixed lattice simulations. This suggests that, at least in the Landau gauge, Gribov copies are a key ingredient of the infrared dynamics of the correlation functions. Nevertheless, the Landau gauge is only one representative of the covariant gauges and it displays additional symmetries. To gain better insights into the importance of Gribov copies it is therefore desirable to investigate their effects on the correlation functions in other gauges. Only very recently, the covariant linear gauges were studied in lattice simulations [START_REF] Cucchieri | Covariant gauge on the lattice: A New implementation[END_REF][START_REF] Cucchieri | Simulating linear covariant gauges on the lattice: A New approach[END_REF][START_REF] Cucchieri | Gluon Propagators in Linear Covariant Gauge[END_REF][START_REF] Cucchieri | Feynman gauge on the lattice: New results and perspectives[END_REF][START_REF] Bicudo | Lattice gluon propagator in renormalizable ξ gauges[END_REF] and in the (refined) Gribov-Zwanziger proposal (as well as the nonlinear Curci-Ferrari gauges for this latter case) [START_REF] Capri | More on the nonperturbative Gribov-Zwanziger quantization of linear covariant gauges[END_REF][START_REF] Pereira | Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges[END_REF].

Recently, a novel gauge-fixing procedure that aims at taking into account the Gribov copies has been put forward by Serreau and Tissier in [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] in the Landau gauge. The central idea consists in dealing with the Gribov copies by averaging over them with a (pseudo) nonuniform statistical weight such that their degeneracy is lifted and the Neuberger problem is avoided. To do so, averages of gauge invariant quantities are defined by a two-step averaging procedure. The first step consists in the (pseudo) nonuniform average over the Gribov copies of a given gauge orbit, while, in the second step, an average over the gauge field configurations with the Yang-Mills action is performed. This results in a genuine gauge-fixing procedure that can be cast under the form of a local field theory by means of the method of replica [START_REF] Young | Spin glasses and random fields[END_REF] borrowed from the field of disordered systems in statistical physics. The resulting local action is renormalizable in four space-time dimensions. For what concerns the ghost and gluon sectors, in the Landau gauge, the procedure boils down to have an effective gluon mass. In particular, the gauge-fixed theory is (perturbatively) equivalent to the Landau limit of the Curci-Ferrari model [START_REF] Curci | A Theory of Massive Yang-Mills Field[END_REF][START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF]. This has the advantage that, under a suitable choice of renormalization conditions, infrared-safe renormalization group trajectories exist (i.e. without a Landau pole) and the deep infrared regime can be probed perturbatively if the coupling constant remains small enough [START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF][START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF]. In particular, one-loop calculations of the two-and three-point correlation functions show very good agreement with lattice data [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Pelaez | Three-point correlation functions in Yang-Mills theory[END_REF][START_REF] Peláez | Two-point correlation functions of QCD in the Landau gauge[END_REF][START_REF] Peláez | Quark-gluon vertex from the Landau gauge Curci-Ferrari model[END_REF]. This shows that (in the vacuum and in the Landau gauge) most of the nonperturbative dynamics are accurately captured by the presence of such an effective gluon mass. These works constitute the underlying ground of the studies to be presented in this thesis.

The general study of the Landau gauge Yang-Mills correlation functions has been naturally extended at finite temperature in the context of continuum methods [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF][START_REF] Epple | Confining Solution of the Dyson-Schwinger Equations in Coulomb Gauge[END_REF][START_REF] Alkofer | Dynamically induced scalar quark confinement[END_REF][START_REF] Fischer | Deconfinement phase transition and the quark condensate[END_REF][START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Marhauser | Confinement in Polyakov Gauge[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF][START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF] as well as in gauge-fixed lattice simulations [START_REF] Heller | The Gluon propagator at high temperature[END_REF][START_REF] Heller | The Gluon propagator at high temperature: Screening, improvement and nonzero momenta[END_REF][START_REF] Cucchieri | Magnetic screening in hot non-Abelian gauge theory[END_REF][START_REF] Cucchieri | Propagators and dimensional reduction of hot SU(2) gauge theory[END_REF][START_REF] Cucchieri | Infrared properties of propagators in Landau-gauge pure Yang-Mills theory at finite temperature[END_REF][START_REF] Fischer | Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3)[END_REF][START_REF] Cucchieri | Electric and Magnetic Screening Masses around the Deconfinement Transition[END_REF][START_REF] Aouane | Landau gauge gluon and ghost propagators at finite temperature from quenched lattice QCD[END_REF][START_REF] Maas | The Gluon propagator close to criticality[END_REF][START_REF] Silva | Gluon screening mass at finite temperature from the Landau gauge gluon propagator in lattice QCD[END_REF]. As emphasized above, the basic correlation functions are the building blocks of the continuum methods relevant e.g. to the study of the QCD phase diagram. Although the first results obtained from lattice simulations were quite controversial due to the large systematic errors, recent large volume simulations show that, disappointingly, the Landau gauge correlation functions are rather insensitive to the phase transition [START_REF] Cucchieri | Electric and Magnetic Screening Masses around the Deconfinement Transition[END_REF]. Hereby, the Landau gauge does not seem to be the best candidate to study the effects of the deconfinement phase transition by means of approximate methods. In particular, in this gauge, the order parameter of the phase transition does not enter directly into the definition/calculation of the gluon and ghost x Introduction propagators, which may explain their poor sensitivity to the phase transition. Recently, it has been put forward in [START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF][START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF] that one can efficiently incorporate the order parameter of the phase transition directly into the microscopic gauge-fixed action by means of background field methods. This eventually amounts to work in a background field extension of the Landau gauge, known as the Landau-DeWitt gauge, where, in particular, the phase transition was correctly described in the framework of the FRG [START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF][START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF]. This background field gauge approach, has been extended in the context of the Serreau-Tissier gauge-fixing proposal in Yang-Mills theories at finite temperature [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF][START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF][START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF][START_REF] Reinosa | Yang-Mills correlators across the deconfinement phase transition[END_REF] and at finite chemical potential for heavy quarks [START_REF] Reinosa | Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential[END_REF], where, by means of standard perturbation theory, the phase structure was correctly reproduced.

In this thesis, we study various aspects of Yang-Mills theories that are gauge-fixed by the Serreau-Tissier procedure both in the vacuum [START_REF] Serreau | Covariant gauges without Gribov ambiguities in Yang-Mills theories[END_REF][START_REF] Serreau | Influence of Gribov ambiguities in a class of nonlinear covariant gauges[END_REF] and at finite temperature [START_REF] Reinosa | Yang-Mills correlators across the deconfinement phase transition[END_REF]. In Chapter I, by starting with the physical problem of confinement in QCD, we review what appears to us to be the main motivations for studying Yang-Mills correlation functions. In particular, in the Landau gauge, we highlight the importance of the effects of Gribov copies on the dynamics of the correlation functions both in lattice simulations and in the continuum through the (refined) Gribov-Zwanziger proposal [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF][START_REF] Zwanziger | Local and Renormalizable Action From the Gribov Horizon[END_REF][START_REF] Dudal | A Refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results[END_REF]. As a complementary approach of the latter, we introduce the Serreau-Tissier gauge-fixing proposal and review its main results obtained in the Landau gauge, along the lines of [START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF][START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Pelaez | Three-point correlation functions in Yang-Mills theory[END_REF][START_REF] Peláez | Two-point correlation functions of QCD in the Landau gauge[END_REF][START_REF] Peláez | Quark-gluon vertex from the Landau gauge Curci-Ferrari model[END_REF]. Then, in Chapter II, we present our works realized in the vacuum. We propose a one-parameter family of nonlinear covariant gauges that can be formulated as an extremization procedure that may be amenable to lattice simulations. When the Gribov ambiguities can be ignored, these gauges reduce to the Curci-Ferrari-Delbourgo-Jarvis gauges [START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF][START_REF] Delbourgo | Extended BRS Invariance and Osp(4/2) Supersymmetry[END_REF]. We further propose, following the Serreau-Tissier gauge-fixing procedure, a continuum formulation in terms of a local action which is free of Gribov ambiguities and avoids the Neuberger zero problem of the standard Faddeev-Popov construction. We show that the proposed gauge-fixed action is perturbatively renormalizable in four dimensions and we provide explicit expressions of the renormalization factors at one-loop order. We further compute the various propagators of the theory at one-loop order and we study their momentum dependence down to the deep infrared regime, with and without renormalization-group improvement. In particular, we show that the theory admits infrared-safe renormalization-group trajectories with no Landau pole. Both the gluon and the ghost behave as massive fields at low energy, and the gluon propagator is transverse even away from the Landau gauge limit. We pinpoint the specific effects arising from our treatment of Gribov copies in the gluon and ghost sectors. Finally, in Chapter III, we consider the finite temperature case. After presenting the main features of the confinement-deconfinement phase transition, we review the results obtained in the Landau gauge for the basic gluon and ghost propagators from both lattice simulations [START_REF] Cucchieri | Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU(2) gauge theory[END_REF][START_REF] Aouane | Landau gauge gluon and ghost propagators at finite temperature from quenched lattice QCD[END_REF][START_REF] Maas | The Gluon propagator close to criticality[END_REF][START_REF] Silva | Gluon screening mass at finite temperature from the Landau gauge gluon propagator in lattice QCD[END_REF] and the Curci-Ferrari model [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF]. As emphasized above, the poor sensitivity of the correlators to the phase transition leads to consider the Landau-DeWitt gauge where a nontrivial background field value (that stands as an order parameter for the phase transition) explicitly enters in the microscopic action. We expose the main consequences of the presence of a nonvanishing background field and present our works that consist in computing at one-loop order the finite temperature gluon and ghost propagators [START_REF] Reinosa | Yang-Mills correlators across the deconfinement phase transition[END_REF]. We show that, in the Landau-DeWitt gauge, these xi display characteristic effects at the phase transition.

xii Chapter I

Aspects of Yang-Mills correlation functions

The main objective of this thesis consists in studying the infrared (IR) behavior of the correlation functions in Yang-Mills (YM) theories [START_REF] Yang | Conservation of Isotopic Spin and Isotopic Gauge Invariance[END_REF]. First of all, in this chapter, we would like to motivate our approach and the interests of our work presented in detail in the following chapters. To do so, we propose to follow step by step what we consider to be a red wire, starting with the physical issue of confinement in Quantum Chromodynamic (QCD) to finish with the study of YM correlation functions in the Serreau-Tissier proposal [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] presented in Sec. I.5.2. Obviously, we do not pretend to present an exhaustive overview of the approaches and the results related to the study of confinement and YM correlation functions, this is way beyond the scope of this thesis. Rather, we choose to present what appears to us as the main ingredients upon which our work relies, how they emerge, and influence, the dynamics of YM theories and how they can be related to the issue of confinement in QCD.

In this spirit, we start in Sec. I.1 by introducing the QCD Lagrangian and YM theories as well as some aspects of confinement. An important result is provided by numerical Monte Carlo simulations [START_REF] Montvay | Quantum fields on a lattice[END_REF], which have shown that confinement does occur with the YM Lagrangian as sole input. This motivates to investigate what are the fundamental mechanisms from which confinement originates. To do so, one can resort on continuum methods which, however, are in general not based directly on physical observables but instead rely upon gauge-dependent Green's functions. Hereby, one needs to fix the gauge in order to access such gauge-dependent quantities. This amounts to choose one gauge field configuration that stands as a representative among each set of physically equivalent configurations. We are mostly interested in the covariant gauges, and in particular in the Landau gauge, which can be investigated both numerically and analytically. Thus, in Sec. I.2.1, we review the standard Faddev-Popov gauge-fixing procedure [START_REF] Faddeev | Feynman Diagrams for the Yang-Mills Field[END_REF] employed in usual perturbative approaches. Then, in Sec. I.2.3, we present possible scenarios that directly connect the behavior of the YM correlation functions to confinement. In particular, we review the key elements of the Kugo-Ojima (KO) scenario [START_REF] Kugo | Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem[END_REF][START_REF] Nakanishi | Covariant operator formalism of gauge theories and quantum gravity[END_REF] based on the so-called Becchi-Rouet-Stora-Tyutin (BRST) symmetry [START_REF] Tyutin | Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism[END_REF][START_REF] Becchi | Renormalization of the Abelian Higgs-Kibble Model[END_REF][START_REF] Becchi | Renormalization of Gauge Theories[END_REF]. The KO confinement scenario demands a peculiar behavior of the correlation functions in the deep IR, where the FP gauge-fixed 1 2
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YM theory cannot be investigated perturbatively and one has to rely upon nonperturbative techniques. Among the continuum ones, the functional renormalization group (FRG) [START_REF] Wetterich | Exact evolution equation for the effective potential[END_REF] and Dyson-Schwinger equations (DSEs) [START_REF] Dyson | The S matrix in quantum electrodynamics[END_REF][START_REF] Schwinger | On the Green's functions of quantized fields. 1[END_REF] are briefly introduced in Sec. I.3.1. Their applications to the Landau gauge have shown that two solutions for the YM correlation functions are possible in this gauge. To discard one or another, one is led to proceed to numerical simulations. However, lattice simulations cannot be applied to the FP Lagrangian because of the Neuberger problem [START_REF] Neuberger | NONPERTURBATIVE BRS INVARIANCE[END_REF][START_REF] Neuberger | Nonperturbative BRS Invariance and the Gribov Problem[END_REF], discussed in Sec. I.3.2, which is a consequence of the gauge-fixing procedure a la FP. Indeed, the FP procedure neglects additional solutions of the gauge equation as first pointed out by Gribov [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF]. The existence of Gribov copies and the Gribov-Zwanziger proposal [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF][START_REF] Zwanziger | Vanishing of zero momentum lattice gluon propagator and color confinement[END_REF][START_REF] Zwanziger | Renormalizability of the critical limit of lattice gauge theory by BRS invariance[END_REF][START_REF] Zwanziger | Fundamental modular region, Boltzmann factor and area law in lattice gauge theory[END_REF]] that aims at dealing with them are presented in Sec. I. [START_REF] Bardeen | Light cone current algebra, pi0 decay, and e+ e-annihilation[END_REF]. This allows us to stress the effects of Gribov copies on correlation functions, and thus the importance of taking them into account. These results are confirmed in Sec. I.4.3 where we discuss the gauge-fixed lattice simulations which provide a complete way of fixing the gauge. Finally, we are led to present the Serreau-Tissier proposal [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] that consists in a novel approach that consistently deals with the Gribov copies. We emphasize the advantages and the main results of this proposal in Sec. I.5, which stands as the starting point of this thesis.

I.1 Quantum Chromodynamic and the confinement problem I.1.1 The QCD Lagrangian

Non-Abelian gauge theories are characterized by a non-Abelian gauge group G. In the following we only consider the SU(N ) groups. We note by t a the N 2 -1 generators of SU(N ) in the fundamental representation, which are N × N matrices that we choose Hermitians. Our normalization for the generators is such that tr t a t b = δ ab 2 , t a , t b = if abc t c , with f abc the usual totally antisymmetric SU(N ) structure constant. For later convenience we also introduce the totally symmetric SU(N ) tensor d abc such that

t a t b = δ ab 2N 1 + if abc + d abc 2 t c . (I.1.1)
Quarks and gluons are represented by local fields in different representations of the gauge group. As in QED, matter fields (here the quarks) are associated with Dirac fields (noted Ψ in the following) in the fundamental representation, while the gauge field A µ (here the gluons) is in the adjoint representation. Our conventions are such that, fields in the adjoint representation that are written without explicit color index are understood to be contracted with the SU(N ) generators: A µ = A a µ t a and are thus N × N matrices. The QCD Lagrangian is defined in d-dimensional Euclidean spacetime as (we use everywhere the convention that repeated Lorentz and color indices are summed over)

L QCD = L YM + N f f =1 Ψf [γ µ (∂ µ -ig 0 A µ ) + m f ] Ψ f , (I.1.2)
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where L YM is the pure gauge or YM sector, f , N f and m f are respectively the flavor index, the number of flavors, and the associated quark mass, g 0 is the coupling constant and γ µ are the Dirac matrices (here in Euclidean space). At the difference of QED, in the case of non-Abelian gauge theories, the pure gauge sector is nontrivial due to the presence of nonvanishing structure constant:

L YM = 1 4 F a µν F a µν , F a µν = ∂ µ A a ν -∂ ν A a µ + g 0 f abc A b µ A c ν .
(I. 1.3) We work in Euclidean space throughout this manuscript. This amounts to perform at the very beginning a Wick rotation from the Minkowskian theory. In general, such an analytic continuation is not trivial because of the complex analytic structure of the various quantities present in the theory (e.g. presence of poles and branch cuts). Nevertheless, we shall directly work in the Euclidean version (imaginary time) and wonder about such analytical continuations only when looking for real-time quantities. As we shall see, the underlying motivation is that the nonperturbative lattice simulations are performed in Euclidean space. The QCD Lagrangian, Eq. (I.1.2), with six flavors (N f = 6) and SU(3) gauge group is the case relevant for the physical description of the strong interactions. It is invariant under the gauge transformations, which correspond to (local) transformations of the fields Ψ and A under the action of an element of the gauge group SU(N )

A µ (x) → A U µ (x) = U (x) A µ (x)U † (x) + i g 0 U (x) ∂ µ U † (x)
, Ψ(x) → U (x)Ψ(x) , (I. 1.4) with U (x) a local element of SU(N ). By Noether theorem, the peculiar case of global transformations (color transformations) induces the existence of a conserved global charge Q c , namely the color charge.

It is now widely believed that QCD is the correct fundamental description of the strong interaction and is part of the Standard Model of Particles. However, it presents a long-standing unanswered question: why do we only observe hadrons (colorless bound states) while the fundamental degrees of freedom of QCD are the colored quarks and gluons? The confinement mechanism is invoked to cope with this issue.

I.1.2 The phenomenon of confinement

The description of the confinement mechanism should explain how these two asymptotic limits of the strong interactions are related to one another, namely, the ultraviolet (UV) regime accurately described in terms of the colored quarks and gluons, and the infrared (IR) regime where only massive colorless hadrons exist. Loosely speaking, the confinement mechanism can be defined as the fact that free observable particles must be colorless with the (gluonic) massless excitations removed from the physical spectrum (existence of a mass gap). However, a rigorous definition of confinement is still under discussion [START_REF] Greensite | The Confinement problem in lattice gauge theory[END_REF][START_REF] Greensite | An introduction to the confinement problem[END_REF]. For instance, a Higgs-like phase would satisfy the previous definition of a confining theory [START_REF] Greensite | The Confinement problem in lattice gauge theory[END_REF][START_REF] Justo | Confinement interpretation in a Yang-Mills + Higgs theory when considering Gribov's ambiguity[END_REF]. A generally accepted sufficient criterion for signaling confinement is the area-law falloff for Wilson loops in the case where the Chapter I. Aspects of Yang-Mills correlation functions quarks are statics and of infinitely heavy mass (quenched approximation) [START_REF] Wilson | Confinement of Quarks[END_REF]. In this case, the Wilson loop is defined as [START_REF] Wilson | Confinement of Quarks[END_REF] W Wilson [C] = tr P exp C dx µ A a µ (x)t a , (I. 1.5) where P is the path ordering operator and C ≡ C(R, T ) is a rectangular closed contour of extent R and T respectively in the spatial and temporal directions. Note that this is a gauge-invariant observable. It is related to the static quark potential as

V quark (R) = -lim T →∞ ln W Wilson [C] T . (I.1.6)
Hereby, the area-law falloff implies that the potential energy of a static quark-antiquark pair grows linearly with the spatial pair separation [START_REF] Greensite | An introduction to the confinement problem[END_REF]. According to the definition (I. 1.6), for what concerns confinement, one is thus interested to access the large time behavior of the Wilson loop, or more generally, the large distance/low energy properties of the theory. Using the standard perturbative tools of QFT one access easily the UV behavior of the theory thanks to the so-called asymptotic freedom property [START_REF] Coleman | Price of asymptotic freedom[END_REF].

On the contrary, perturbation theory predicts that, in the IR, the coupling constant increases without bounds and eventually hits a Landau pole (diverges at finite energy). This may be viewed as a first insight of the confinement phenomenon: the fundamentals degrees of freedom become more and more strongly coupled and eventually cease being the physically relevant ones. It follows that the IR regime is strongly coupled and requires to account for nonperturbative effects, which, in turns, make its investigation a difficult problem that has prevented for more than forty years a fully consistent description of confinement.

UV asymptotic freedom and Landau pole in the IR are thought to be the two sides of the same coin and are consequences of the pure gauge sector. For this reason (among others) it is widely believed that the phenomenon of confinement is generated in the YM sector of QCD. A reliable nonperturbative tool for its investigation is provided by numerical Monte Carlo simulations [START_REF] Creutz | Monte Carlo Study of Quantized SU(2) Gauge Theory[END_REF][START_REF] Landau | A guide to Monte Carlo simulations in statistical physics[END_REF]. They were first proposed by Wilson [8] in order to provide a gauge-invariant, first principle method of computation. One uses a finite space-time discretized into an hyper-cubic lattice of finite lattice spacing noted a in the following. The key idea of Wilson is to introduce the gauge link variables W µ (x) defined as [START_REF] Wilson | Confinement of Quarks[END_REF],

1 W µ (x) = exp {-ig 0 aA µ (x)} , (I.1.7)
whose transformation under the action of the gauge group is simpler than that of A µ . One has

W U µ (x) = U (x)W µ (x)U † (x + aμ) , (I.1.8)
where μ is a unit vector pointing in the space-time direction µ. Accordingly, the discretized YM action writes [START_REF] Wilson | Confinement of Quarks[END_REF] 

S latt. [W ] = 2N g 2 0 x µ,ν 1 - 1 N Re tr W µ (x)W ν (x + aμ)W † µ (x + aν)W † ν (x) . (I.1.9)
In order to compute the expectation value of an observable O, one generates a collection of N links gauge link configurations according to the distribution exp(-S latt.

[W ]) and performs a statistical average:

O 1 N links N links l=1 O W (l) µ , (I.1.10)
where the approximate equality becomes exact in the limit of infinite number of gauge links. In particular, this can be done to access the Wilson loop, Eq. (I.1.5), which is found to display the area-law falloff [START_REF] Creutz | Monte Carlo Study of Quantized SU(2) Gauge Theory[END_REF]. 2 However, although this result proves that confinement occurs in YM theories, it does not explain neither why nor how. Possible confinement mechanisms were proposed and investigated numerically, such as centervortex dominance [START_REF] Greensite | The Confinement problem in lattice gauge theory[END_REF] and others; see [START_REF] Greensite | An introduction to the confinement problem[END_REF] for a review.

To gain more insights into the basic mechanisms underlying the confinement, one possible way is to investigate whether relevant information is encoded in the correlation functions of the basic (gluon) fields.

I.2 Gauge-fixing procedure

In the present manuscript we intend to investigate the YM correlation functions by means of a particular continuum approach. It is well known that correlation functions cannot be directly accessed in gauge theories but require one to fix the gauge first. Moreover, the quadratic part of L YM is not invertible, preventing the definition of the tree-level propagators. Equivalently, the conjugate momentum of A µ , Π µ = F 0µ is zero for the temporal mode µ = 0 preventing the use of canonical quantization. These are standard features of gauge theories and are consequences of the presence of degenerate field configurations: two field configurations A µ and A U µ that are related by a gauge transformation are physically equivalent. Indeed, in the functional integral formalism, the expectation value of a gauge-invariant observable O inv is defined by

O inv [A] = DA O inv [A] e -S YM [A] DA e -S YM [A] . (I.2.1)
Obviously, by gauge invariance, two field configurations A µ and A U µ that are related by a gauge transformation contribute the same to both the numerator and the denominator of the right-hand side of Eq. (I.2.1). We define the gauge orbit that selects a unique representative per gauge orbit is called an ideal gauge condition. The choice of the gauge is arbitrary since gauge-invariant physical observables are insensitive to this choice. Continuum approaches are more conveniently formulated in covariant gauges, and we shall focus our discussion on this case. The Landau gauge has received a lot of attention, also because it displays additional interesting properties as for instance a purely transverse gluon propagator, or the nonrenormalization of the ghost-gluon vertex [START_REF] Taylor | Ward Identities and Charge Renormalization of the Yang-Mills Field[END_REF][START_REF] Marciano | Quantum Chromodynamics: A Review[END_REF]. Moreover, as we shall see in Sec. I.4, the Landau gauge can be formulated as an extremization procedure of an external functional. This peculiar property is of utmost importance when discussing its implementation on the lattice [see Sec. I. 4.3] or how to deal with the presence of Gribov copies [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF]; see Secs. I.4.1, I.4.2 and I.5.

{A µ } U = A µ A U µ = A µ

I.2.1 The Faddeev-Popov gauge-fixing procedure

The strategy proposed by Faddeev and Popov (FP) to restrict, in the path-integrals of (I.2.1), the integration over the field configurations that satisfy the gauge equation, is to insert unity written in the form [START_REF] Weinberg | The quantum theory of fields[END_REF] 

1 = DU δ f A U DetF A U , (I.2.3)
with DU the Haar measure on the gauge group, f [A] = 0 is the gauge condition, here taken in the Landau gauge f a = ∂ µ A a µ , and DetF A U is the associated Jacobian. Writing λ a (x) such that U (x) = exp(ig 0 λ a (x)t a ), one defines the so-called FP operator [START_REF] Weinberg | The quantum theory of fields[END_REF] 

F ab [A] (x, y) = δf a [A λ ](x) δλ b (y) λ=0 , (I.2.4)
where we noted A λ the gauge-transformed gauge field by the gauge transformation U (x) = exp(ig 0 λ a (x)t a ), that is,

A λ µ a = A a µ + ∂ µ λ a + g 0 f abc A b µ λ c + O(λ 2 ) . (I.2.5)
The Jacobian arising in Eq. (I.2.3) is obtained from the FP operator. To be more explicit, we consider the path-integral corresponding to the numerator on the righthand side of Eq. (I.2.1), where we introduced Eq. (I.2.3):

I = DADU O inv [A] e -S YM [A] δ f A U DetF A U . (I.2.6)
The case of the denominator of the right-hand side of Eq. (I.2.1) follows trivially by repeating the present discussion for O inv [A] = 1. Using the gauge invariance of DA e -S YM [A] and of O inv [A], the last equality reduces to

I = DU DA O inv [A] e -S YM [A] δ (f [A]) DetF [A] , (I.2.7)
so that the infinite volume of the gauge group DU can now be factorized out, and only the configurations satisfying the gauge equation f [A] = 0 are integrated over.

In order to apply the machinery of continuum methods, one needs to recast this last expression under the form of a functional integral with a local action. To do so, one introduces the so-called FP ghost and antighost fields (scalar anticommuting fields) c a and ca as well as a Nakanishi-Lautrup field ih a that enforces the gauge condition [START_REF] Nakanishi | Indefinite metric quantum field theory[END_REF][START_REF] Lautrup | CANONICAL QUANTUM ELECTRODYNAMICS IN COVARI-ANT GAUGES[END_REF]. Eventually, one obtains that the expectation value of a gauge-invariant quantity O inv [A] are given by

O inv [A] = Dϕ O inv [A] e -S gf [ϕ] Dϕ e -S gf [ϕ] , (I.2.8)
where the brackets correspond to perform the average over the fields ϕ = A µ , c, c, ih with weight S gf which is the Landau gauge FP YM gauge-fixed action. The latter is given by the initial YM action plus a gauge-fixing term

S gf = S YM + S FP , S FP = x ih a ∂ µ A a µ + ∂ µ ca D ab µ c b , (I.2.9)
where x = d d x and where in the last equation we used the explicit expression of the FP operator in the Landau gauge, namely -∂ µ D ab µ , with D ab µ = δ ab ∂ µ + g 0 f acb A c µ the covariant derivative. For simplicity, in the following, we note D µ ϕ a ≡ D ab µ ϕ b .

I.2.2 Ghost and BRST symmetries of the FP gauge-fixed action

The gauge-fixed action Eq. (I.2.9) is invariant under the U(1) global transformations c → e i c , c → e -i c, (I.2.10)
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while all other fields are left untouched. The corresponding conserved charge is the so-called ghost number, defined as follows: ghosts have +1 ghost number, antighosts -1 and the other fields have zero charge. By construction, the (FP) gauge-fixed action Eq. (I.2.9) is no longer gauge invariant. Nevertheless, it was shown by Becchi, Rouet, Stora [START_REF] Becchi | Renormalization of Gauge Theories[END_REF][START_REF] Becchi | Renormalization of the Abelian Higgs-Kibble Model[END_REF], and, independently, by Tyutin [103] that there exists a remnant of the original gauge symmetry in the gauge-fixed action, namely the so-called BRST symmetry. Its action on the various fields is

δ BRST ϕ = ηsϕ , ϕ = {A µ , c, c, ih} , (I.2.11)
with η a constant Grassmannian parameter and s is the BRST operator defined as

sA a µ = D µ c a sc a = ih a sc a = - 1 2 g 0 f abc c b c c sih a = 0 . (I.2.12)
Note in particular that the operator s is of mass dimension 1 and has ghost number 1 according to our convention. Straightforwardly, one can use these relations to prove the nilpotency of the BRST transformation: s 2 = 0. Note also that, the BRST transformation of the gauge field A µ corresponds to a gauge transformation of infinitesimal parameter ηc. In particular, this implies that the BRST transformation is a symmetry of any gauge-invariant functional of the gauge field only. Alternatively, one can conveniently generalize the FP gauge-fixing procedure by taking as first requirement the existence of the BRST symmetry at the level of the gauge-fixed action [START_REF] Weinberg | The quantum theory of fields[END_REF]. This corresponds to start from a fermionic functional Ψ of mass dimension d -1 and ghost number -1 such that sΨ is the gauge-fixing action. This yields the YM gauge-fixed action

S gf = S YM [A] + x sΨ[ϕ] . (I.2.13)
Owning to the nilpotent character of the BRST symmetry and to the gauge invariance of S YM , one is insured that S gf is BRST symmetric. For instance, in the Landau gauge we have Ψ = ca ∂ µ A a µ . Having a nilpotent BRST symmetry is commonly considered as a necessary requirement for having a consistent theory. Indeed, the proof of renormalizability and unitarity, originally performed respectively by 't Hooft [START_REF] Hooft | Renormalizable Lagrangians for Massive Yang-Mills Fields[END_REF][START_REF] Hooft | Renormalization of Massless Yang-Mills Fields[END_REF] and by Kugo and Ojima [START_REF] Kugo | Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem[END_REF], strongly rely on it.

I.2.3 Aspects of Green's functions

I.2.3.1 Gluon or ghost infrared dominance

According to its definition, the Wilson loop Eq. (I.1.5) seems directly connected to the behavior of the gluon. It was thus first thought that the gluon sector should display IR singularities in order to enforce an area-law falloff for the Wilson loop. In this first confinement scenario, known as the IR slavery scenario, the gluon propagator is believed to be IR enhanced, that is, to diverge as 1/p 4 at low momentum. Assuming an IR ghost suppression, Mandelstam was the first to investigate nonperturbatively (in the context of Dyson-Schwinger equations [START_REF] Dyson | The S matrix in quantum electrodynamics[END_REF][START_REF] Schwinger | On the Green's functions of quantized fields. 1[END_REF], see also Sec. I.3.1.2 for a brief overview) the Landau gauge gluon propagator that he found to be IR enhanced [START_REF] Mandelstam | Approximation Scheme for QCD[END_REF]. This scenario initially received much attention [START_REF] Brown | Studies of Confinement: How the Gluon Propagates[END_REF][START_REF] Hauck | Solving the gluon Dyson-Schwinger equations in the Mandelstam approximation[END_REF] but was eventually discarded since it was proved that the Landau gauge gluon propagator cannot diverge more severely than 1/p 2 as p → 0 [START_REF] Alkofer | Infrared singularities in Landau gauge Yang-Mills theory[END_REF].

Another proposal put forward in [START_REF] Smekal | The Infrared behavior of gluon and ghost propagators in Landau gauge QCD[END_REF][START_REF] Smekal | A Solution to Coupled Dyson-Schwinger Equations for Gluons and Ghosts in Landau Gauge[END_REF] favors an IR ghost enhancement and an IR gluon suppression. This proposal agrees with the Kugo-Ojima [START_REF] Kugo | Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem[END_REF] and the Gribov-Zwanziger [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF][START_REF] Zwanziger | Vanishing of zero momentum lattice gluon propagator and color confinement[END_REF][START_REF] Zwanziger | Renormalizability of the critical limit of lattice gauge theory by BRS invariance[END_REF][START_REF] Zwanziger | Fundamental modular region, Boltzmann factor and area law in lattice gauge theory[END_REF] scenarios. Further studies of the IR regime of the Landau gauge, by means of either nonperturbative functional methods [START_REF] Alkofer | Vertex functions and infrared fixed point in Landau gauge SU(N) Yang-Mills theory[END_REF][START_REF] Fischer | Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory II[END_REF][START_REF] Alkofer | Infrared singularities in Landau gauge Yang-Mills theory[END_REF][START_REF] Huber | On gauge fixing aspects of the infrared behavior of Yang-Mills Green functions[END_REF][START_REF] Blum | Gluonic three-point correlations in pure Landau gauge QCD[END_REF][START_REF] Cyrol | A Dyson-Schwinger study of the four-gluon vertex[END_REF][START_REF] Huber | On Dyson-Schwinger studies of Yang-Mills theory and the four-gluon vertex[END_REF] (see Sec. I.3.1), or (gauge-fixed) lattice simulations [START_REF] Ilgenfritz | Landau gauge gluon and ghost propagators from lattice QCD[END_REF][START_REF] Cucchieri | Exploratory study of three-point Green's functions in Landau-gauge Yang-Mills theory[END_REF][START_REF] Cucchieri | Three-point vertices in Landau-gauge Yang-Mills theory[END_REF][START_REF] Bloch | Propagators and running coupling from SU(2) lattice gauge theory[END_REF][START_REF] Cucchieri | Infrared behavior of gluon and ghost propagators from asymmetric lattices[END_REF][START_REF] Cucchieri | Constraints on the IR behavior of the gluon propagator in Yang-Mills theories[END_REF][START_REF] Cucchieri | Constraints on the IR behavior of the ghost propagator in Yang-Mills theories[END_REF][START_REF] Cucchieri | Landau-gauge propagators in Yang-Mills theories at beta = 0: Massive solution versus conformal scaling[END_REF][START_REF] Furui | Infrared features of the Landau gauge QCD[END_REF][START_REF] Leinweber | Gluon propagator in the infrared region[END_REF][START_REF] Bonnet | Infrared behavior of the gluon propagator on a large volume lattice[END_REF][START_REF] Boucaud | The Infrared behaviour of the pure Yang-Mills green functions[END_REF][START_REF] Boucaud | On the IR behaviour of the Landau-gauge ghost propagator[END_REF][START_REF] Bogolubsky | Lattice gluodynamics computation of Landau gauge Green's functions in the deep infrared[END_REF][START_REF] Sternbeck | Comparing SU(2) to SU(3) gluodynamics on large lattices[END_REF][START_REF] Sternbeck | Another look at the Landau-gauge gluon and ghost propagators at low momentum[END_REF][START_REF] Bornyakov | Infrared behavior and Gribov ambiguity in SU(2) lattice gauge theory[END_REF][START_REF] Bornyakov | SU(2) lattice gluon propagator: Continuum limit, finite-volume effects and infrared mass scale m(IR)[END_REF][START_REF] Dudal | Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate A 2 in the Landau gauge[END_REF][START_REF] Maas | Describing gauge bosons at zero and finite temperature[END_REF] (see Sec. I.4.3) tend to support an IR ghost dominance, though not necessarily a ghost enhancement. Nevertheless, the hypothesis of an IR enhanced ghost (though not in agreement with the most recent lattice data [START_REF] Bloch | Propagators and running coupling from SU(2) lattice gauge theory[END_REF][START_REF] Ilgenfritz | Landau gauge gluon and ghost propagators from lattice QCD[END_REF][START_REF] Cucchieri | Infrared behavior of gluon and ghost propagators from asymmetric lattices[END_REF][START_REF] Cucchieri | Constraints on the IR behavior of the gluon propagator in Yang-Mills theories[END_REF][START_REF] Cucchieri | Constraints on the IR behavior of the ghost propagator in Yang-Mills theories[END_REF][START_REF] Cucchieri | Landau-gauge propagators in Yang-Mills theories at beta = 0: Massive solution versus conformal scaling[END_REF][START_REF] Furui | Infrared features of the Landau gauge QCD[END_REF][START_REF] Leinweber | Gluon propagator in the infrared region[END_REF][START_REF] Bonnet | Infrared behavior of the gluon propagator on a large volume lattice[END_REF][START_REF] Boucaud | The Infrared behaviour of the pure Yang-Mills green functions[END_REF][START_REF] Boucaud | On the IR behaviour of the Landau-gauge ghost propagator[END_REF][START_REF] Bogolubsky | Lattice gluodynamics computation of Landau gauge Green's functions in the deep infrared[END_REF][START_REF] Sternbeck | Comparing SU(2) to SU(3) gluodynamics on large lattices[END_REF][START_REF] Sternbeck | Another look at the Landau-gauge gluon and ghost propagators at low momentum[END_REF][START_REF] Bornyakov | Infrared behavior and Gribov ambiguity in SU(2) lattice gauge theory[END_REF][START_REF] Bornyakov | SU(2) lattice gluon propagator: Continuum limit, finite-volume effects and infrared mass scale m(IR)[END_REF][START_REF] Dudal | Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate A 2 in the Landau gauge[END_REF][START_REF] Maas | Describing gauge bosons at zero and finite temperature[END_REF]) has received a lot of attention for years [START_REF] Smekal | The Infrared behavior of gluon and ghost propagators in Landau gauge QCD[END_REF][START_REF] Alkofer | The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states[END_REF][START_REF] Fischer | Nonperturbative propagators, running coupling and dynamical quark mass of Landau gauge QCD[END_REF][START_REF] Bloch | Two loop improved truncation of the ghost gluon Dyson-Schwinger equations: Multiplicatively renormalizable propagators and nonperturbative running coupling[END_REF][START_REF] Fischer | On the infrared behavior of Landau gauge Yang-Mills theory[END_REF] since it allows for many practical advantages in solving the Dyson-Schwinger equations, and perhaps more importantly, since it is believed3 to satisfy the Kugo-Ojima scenario. This last point is important on the conceptual level because, on top of providing a confinement scenario, it insures the unitarity of the gauge-fixed theory Eq. (I.2.9) (however the proof of Kugo-Ojima should not be taken as fully satisfactory since, the presence of Gribov copies is not faced).

I.2.3.2 The Kugo-Ojima proposal

In their seminal work, Kugo and Ojima (KO) addressed the question of unitarity in YM theories [START_REF] Kugo | Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem[END_REF][START_REF] Nakanishi | Covariant operator formalism of gauge theories and quantum gravity[END_REF]. This issue is general to gauge theories and manifests more explicitly in covariant gauges: part of the excitations described by the fields do not belong to the physical spectrum but are artifacts of the gauge-fixing procedure. This is already the case in QED in the Landau gauge where temporal photon states have negative norms [START_REF] Itzykson | Quantum Field Theory, International Series In Pure and Applied Physics[END_REF], thus ruling out the standard probabilistic interpretation. One encounters alaogous problems in the FP YM gauge-fixed theory Eq. (I.2.9). For instance, ghost fields are zero spin bosonic fields but assume anticommuting commuta-10
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tion relations which is inconsistent with the spin-statistic theorem [START_REF] Weinberg | The Quantum theory of fields[END_REF]. Thereby, such unphysical states must be removed from the physical space of states in order to insure that the physical spectrum contains solely positive norm states which agree with the principles of QFT.

To achieve this, KO proposed the so-called quartet mechanism that relies upon the presence of a nilpotent BRST symmetry. One defines the conserved BRST charge Q BRST associated with the global BRST symmetry. From the total space of states of the theory V (which presents an indefinite metric) they construct the physical Hilbert space H phys . A prerequisite for a state |Ψ to belong to H phys is that it is annihilated by the BRST charge

Q BRST |Ψ = 0. (I.2.14)
States that belong to the BRST kernel can be categorized into two families: the daughter states |Ψ d ∈ V 0 are BRST exact in the sense that there exists (by definition) a parent state 4 |Ψ p such that |Ψ d = Q BRST |Ψ p . The nilpotency of the BRST charge (Q 2 BRST = 0) implies that the daughter states do belong to the BRST kernel but are of zero norm. The other family contains genuine physical states which satisfy |Ψ g ∈ Ker BRST but are not daughter states. Owing to this last definition, one sees that V 0 , which contains the daughter states, is orthogonal to Ker BRST . Moreover, since daughter states are of zero norm they do not contribute to the norm of the states in Ker BRST . According to this, KO defined the physical Hilbert space as the so-called BRST cohomology

H phys = Ker BRST /V 0 , (I.2.15)
which presents a positive definite metric and thus allows for a probabilistic interpretation according to the principles of quantum mechanics. Finally they proved that transition amplitudes between two physical states Ψ g | Φ g are not affected by contributions from the unphysical ones. This is known as the quartet mechanism, which states that all unphysical states are either a parent or a daughter state. Each pair of parent and daughter states defines a BRST doublet that falls into a quartet along with the BRST doublet of conjugated ghost number. Owing to this quartet structure, in transition amplitudes between physical states, each contribution from an unphysical state cancels out with those of the same quartet. Note in particular how the KO proof relies on the existence of an unbroken nilpotent BRST charge.

In the KO confinement scenario, not only auxiliary fields states but also the longitudinal gluon states fall into quartets representation and thus are not part of the physical spectrum. Hence, in the KO's vision, gluon confinement can be understood from an "unitarity issue" picture. However, up to this point nothing insures that genuine physical states carry zero color charge. KO investigated this point and derived criteria for color confinement. Their argument is based on the existence of a conserved color charge associated to color transformations. The color charge is given by [START_REF] Kugo | Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem[END_REF] 

Q a c = d 3 x ∂ i F a 0i + {Q BRST , D 0 ca } . (I.2.16)
For it to be well defined, the first term must not present any (discrete) massless pole5 (first KO criterion). In such a case, the first contribution vanishes as it consists in a total derivative. The second KO criterion is that the second contribution in Eq. (I.2.16) is also well defined. For the moment, let us assume this to be the case. Since any physical states are annihilated by the BRST charge, color confinement is realized in the sense that Q a c = 0 in H phys . On the other hand, the case where Q a c cannot be defined would signal a spontaneous breaking of color symmetry and hereby a Higgs-like phase. In the peculiar case of the Landau gauge, in [START_REF] Kugo | The Universal renormalization factors Z(1) / Z(3) and color confinement condition in nonAbelian gauge theory[END_REF], Kugo proved that the second contribution in Eq. (I.2.16) is well defined if the ghost propagator is IR enhanced, which thus appears as a necessary condition for the KO confinement scenario.

The KO relation between the BRST and color charge has attracted a lot of attention to the studies of the Landau gauge Green's functions to see, whether or not, the latter display an IR enhanced ghost 6 . Indeed, as stressed for instance in [START_REF] Fischer | On the infrared behavior of Landau gauge Yang-Mills theory[END_REF], according to KO, the absence of an IR enhanced ghost leads to a gauge-fixed YM theory that is either not color-confining (global color charge broken) or without nilpotent BRST charge and it is then unclear in general how one can construct the physical space or physical observables out of Green's functions [START_REF] Fischer | On the infrared behavior of Landau gauge Yang-Mills theory[END_REF].

We would like to end the discussion on the KO proposal by making two remarks. First of all, the KO framework assumes a well defined conserved nilpotent BRST charge, which is motivated by its existence at the perturbative level [Eq. (I.2.12)], however, it could happen that such a charge does not exist at the nonperturbative level 7 . On the other hand, the KO derivation uses as a starting point the FP gaugefixed action that ignores certain ambiguities in the gauge-fixing procedure called Gribov copies [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF]. We come back to the issue of Gribov copies in a later section, see Sec. I.4.1.

I.2.3.3 Positivity violation

Here, we want to briefly mention a way to probe directly from the correlation functions if the excitations produced by the associated fields belong to the physical spectrum or not. Given an Euclidean two-point correlation function of a field Φ in momentum space, that we note here generically G(p), for its poles to be interpreted as stable particles created by the field Φ once the analytical continuation to Minkowski space has been performed, then, G(p) must admit a Källen-Lehman representation [START_REF] Alkofer | The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states[END_REF][START_REF] Aiso | Towards understanding of confinement of gluons[END_REF][START_REF] Cucchieri | Positivity violation for the lattice Landau gluon propagator[END_REF] 

G(p) = ∞ 0 dµ 2 ρ(µ 2 ) p 2 + µ 2 , (I.2.17)
where the spectral density ρ(µ 2 ) is a non-negative function. On the contrary, if the spectral density admits negative values, it implies that the states created by the field Φ cannot be part of the physical spectrum, this is referred to as violation of positivity.

An exhaustive discussion of the confinement scenarios and their relationship with the YM Green's functions is beyond the scope of this manuscript. Rather, by presenting in this section how different IR phenomenologies can lead to very different explanations of the confinement mechanism, we intended to motivate that an accurate knowledge of the YM correlation functions in the IR regime may be important in order to construct possible confinement scenario.

I.3 The infrared regime of Yang-Mills theories

The IR behavior of YM correlation functions is difficult to access because of the presence of a Landau pole at finite energy arising in the FP gauge-fixed theory. Perturbation theory cannot be used to probe the low momentum regime and one has to resort to nonperturbative approaches. Among continuum ones are the functional methods either by truncation of Dyson-Schwinger equations (DSEs) or the functional renormalization group (FRG). Both allow one to derive systems of exact functional equations, which however cannot be solved as such since they involve infinitely many equations. One needs additional truncations in order to put them under a manageable form [START_REF] Huber | On gauge fixing aspects of the infrared behavior of Yang-Mills Green functions[END_REF]. However, it is difficult to construct controlled systematic expansion/truncation schemes beside perturbation theory. As a consequence, it is not clear how to estimate the error of a given approximation. One reliable way to cope with this issue is to compare to lattice simulations.

I.3.1 Functional methods

Let us first present the general ideas of some of the main functional methods used in the literature, namely, the FRG [START_REF] Wetterich | Exact evolution equation for the effective potential[END_REF] and DSEs [START_REF] Dyson | The S matrix in quantum electrodynamics[END_REF][START_REF] Schwinger | On the Green's functions of quantized fields. 1[END_REF]. We start with some definitions and notations. Given a generic action S[φ], where φ denotes collectively the field content of the theory. One defines the partition function in presence of sources J for all independent fields φ of the theory

Z[J] = Dφ e -S[φ]+ x φJ φ = e W [J] , (I.3.1)
where W [J] is the generating functional for connected Green's functions. Accordingly, one defines the generating functional for the one-particle irreducible (1PI) vertex functions, or quantum effective action (referred to as the effective action for shortness)

Γ[φ] = -W [J] + x φJ φ . (I.3.2)
The various 1PI Green's functions are obtained by differentiation of the generating functionals, for instance, the propagator G φφ of the field φ is given by

G φφ = δ 2 W [J] δJ φ δJ φ J=0 = δ 2 Γ[φ] δφδφ -1 J=0 . (I.3.3)

I.3.1.1 The functional renormalization group

The purpose of the FRG [START_REF] Wetterich | Exact evolution equation for the effective potential[END_REF] is to construct flow equations for the effective action Γ in the spirit of the Wilsonian's renormalization group. One first introduces a UV cutoff scale8 Λ, at which the bare action S is defined. One also defines the average effective action Γ k at an IR momentum scale k. It corresponds to the effective action obtained after the system's fluctuations of momentum higher than k have been integrated out. In particular, taking k → 0 corresponds to integrating out all fluctuations so that one recovers the full effective action: lim k→0 Γ k = Γ. Instead, taking k → Λ corresponds to the case where no fluctuations are taken into account and one recovers the bare action: lim k→Λ Γ k = S. Thus, if one is able to derive a flow equation for Γ k with respect to the cutoff scale k, one can start with the classical action S and progressively integrate the fluctuations down to the IR and access the full effective action Γ. First, it is needed to freeze the degrees of freedom below the scale k, while those of higher momenta are left unaltered. This is achieved by adding a k dependent mass term R k , called the IR regulator, to the bare action

S →S + ∆S k , ∆S k = x 1 2 φR k φ . (I.3.4)
The regulator acts as a large mass that freezes excitations below k while it vanishes for momenta p k. Accordingly, the renormalization group (RG) flow of the effective action Γ k is given by the Wetterich equation [START_REF] Wetterich | Exact evolution equation for the effective potential[END_REF] 

k∂ k Γ k [φ] = p 1 2 G k φφ k∂ k R k , (I.3.5) with p = d d p (2π) d .
Here, the propagator appearing in Eq. (I.3.5) is the fully dressed propagator at the scale k and is given by

G k φφ (p) = 1 Γ (2) k (p) + R k (p) , (I.3.6) with Γ (2) k = δ 2 Γ k /δφ 2 .
The presence in the propagator G k φφ of the regulator R k is inherited from the addition to the initial action of the term ∆S k , see (I.3.4). In particular, as observed in Eq. (I.3.6), R k acts as a momentum-dependent mass term which allows to regulate the IR regime. Flow equations for higher 1-PI vertex functions Γ

(n) k = δ n Γ k /δφ n
are obtained by differentiating further both sides of the Wetterich equation (I. 3.5). Although this provides exact equations for the fully dressed vertex functions Γ (n) k , the corresponding system cannot be integrated exactly since the flow equation for Γ

(n) k depends on Γ (n+2) k
with n unbounded. This infinite "tower" of coupled equations needs to be truncated in order to get a closed system. This situation is similar to the one encountered in the case of DSEs, that we now present.
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I.3.1.2 The Dyson-Schwinger equations

The essence of the DSEs [START_REF] Dyson | The S matrix in quantum electrodynamics[END_REF][START_REF] Schwinger | On the Green's functions of quantized fields. 1[END_REF] is to provide the exact equations of motion for the full Green's functions of the theory at hand. One way to achieve this, is to remark that, the integral of a total derivative being zero, one has

0 = Dφe -S[φ]+ x J φ φ - δS[φ] δϕ + J ϕ , (I.3.7)
where ϕ is any of the fields of the theory. This equality immediately yields the DSE

- δS[φ] δϕ + J ϕ J = 0 , (I.3.8)
where the subscript J means that the average J is performed in presence of the sources. This equation can be further derived with respect to the sources to obtain a whole set of DSEs.

The DSEs can be derived for the Landau gauge FP action, Eq. (I.2.9). Here, as an example, we display the DSE for the ghost propagator, see also Appendix. A. It is obtained for ϕ = ca (x) in Eq. (I. 3.8) and by differentiating once with respect to J c . It reads

G -1 gh ab (p) = p 2 δ as -ig 0 p µ f acd k G ce µν (k)G dn gh (k)Γ nse ccAν (p, -k, k), (I.3.9)
where G gh and G µν are respectively the fully dressed ghost and gluon propagators, and Γ ccAν is the fully dressed ghost-antighost-gluon (ghost-gluon for short) vertex. In particular, one recognizes a typical one-loop structure for this equation, where δ ab p 2 and -ip µ g 0 f scd can be identified to the tree-level inverse ghost propagator and to the tree-level ghost-gluon vertex respectively. Hereby, this equation can conveniently be represented by means of Feynman diagrams as depicted on Although DSEs are exact equations, they cannot be solved exactly in general because, just as the flow equations in the previous section, the n th derivative of Γ is expressed in terms of higher points vertex functions. For instance, solving Eq. (I.3.9) to get the full ghost propagator requires as input the full three-point vertex function Γ ccAν . As emphasized earlier, a model on which one can base truncation schemes is necessary to put the DSEs under a tractable form. Mandelstam was the first to use DSEs to reach nonperturbative results on the gluon propagator [START_REF] Mandelstam | Approximation Scheme for QCD[END_REF]. Based on the perturbative behavior of the ghost at high energies, which gives the smallest contributions to the gluon sector, Mandelstam assumed an IR gluon dominance. Following this assumption, he proposed to truncate the DSEs by neglecting ghost loops and the full four-gluon vertex (arising only in two-loop diagrams) in the DSE for the gluon propagator depicted in Fig. I.3. As confirmed later on, e.g. in [START_REF] Brown | Studies of Confinement: How the Gluon Propagates[END_REF], the Mandelstam's truncation scheme is indeed consistent with an IR gluon dominance. However, the very assumption of an IR regime dominated by the gluon sector was actually erroneous. Indeed, further studies of the DSEs [START_REF] Alkofer | Vertex functions and infrared fixed point in Landau gauge SU(N) Yang-Mills theory[END_REF][START_REF] Fischer | Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory II[END_REF][START_REF] Alkofer | Infrared singularities in Landau gauge Yang-Mills theory[END_REF][START_REF] Huber | On gauge fixing aspects of the infrared behavior of Yang-Mills Green functions[END_REF][START_REF] Blum | Gluonic three-point correlations in pure Landau gauge QCD[END_REF][START_REF] Cyrol | A Dyson-Schwinger study of the four-gluon vertex[END_REF][START_REF] Huber | On Dyson-Schwinger studies of Yang-Mills theory and the four-gluon vertex[END_REF] revealed that ghost contributions dominate the IR regime of the DSEs. This is also supported by lattice results [START_REF] Ilgenfritz | Landau gauge gluon and ghost propagators from lattice QCD[END_REF][START_REF] Cucchieri | Exploratory study of three-point Green's functions in Landau-gauge Yang-Mills theory[END_REF][START_REF] Cucchieri | Three-point vertices in Landau-gauge Yang-Mills theory[END_REF][START_REF] Bloch | Propagators and running coupling from SU(2) lattice gauge theory[END_REF][START_REF] Cucchieri | Infrared behavior of gluon and ghost propagators from asymmetric lattices[END_REF][START_REF] Cucchieri | Constraints on the IR behavior of the gluon propagator in Yang-Mills theories[END_REF][START_REF] Cucchieri | Constraints on the IR behavior of the ghost propagator in Yang-Mills theories[END_REF][START_REF] Cucchieri | Landau-gauge propagators in Yang-Mills theories at beta = 0: Massive solution versus conformal scaling[END_REF][START_REF] Furui | Infrared features of the Landau gauge QCD[END_REF][START_REF] Leinweber | Gluon propagator in the infrared region[END_REF][START_REF] Bonnet | Infrared behavior of the gluon propagator on a large volume lattice[END_REF][START_REF] Boucaud | The Infrared behaviour of the pure Yang-Mills green functions[END_REF][START_REF] Boucaud | On the IR behaviour of the Landau-gauge ghost propagator[END_REF][START_REF] Bogolubsky | Lattice gluodynamics computation of Landau gauge Green's functions in the deep infrared[END_REF][START_REF] Sternbeck | Comparing SU(2) to SU(3) gluodynamics on large lattices[END_REF][START_REF] Sternbeck | Another look at the Landau-gauge gluon and ghost propagators at low momentum[END_REF][START_REF] Bornyakov | Infrared behavior and Gribov ambiguity in SU(2) lattice gauge theory[END_REF][START_REF] Bornyakov | SU(2) lattice gluon propagator: Continuum limit, finite-volume effects and infrared mass scale m(IR)[END_REF][START_REF] Dudal | Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate A 2 in the Landau gauge[END_REF][START_REF] Maas | Describing gauge bosons at zero and finite temperature[END_REF]. In particular, it was eventually shown that an IR enhanced gluon propagator is actually inconsistent with the DSEs [START_REF] Alkofer | Infrared singularities in Landau gauge Yang-Mills theory[END_REF].

I.3.1.3 The scaling and decoupling solutions

A better understanding of the Landau gauge DSEs led to better truncation schemes. For instance, the effects of three-point functions on the propagators are by now much better understood [START_REF] Blum | Gluonic three-point correlations in pure Landau gauge QCD[END_REF][START_REF] Aguilar | Ghost propagator and ghostgluon vertex from Schwinger-Dyson equations[END_REF][START_REF] Huber | On the influence of three-point functions on the propagators of Landau gauge Yang-Mills theory[END_REF]. In particular, these works have revealed the importance of two-loop diagrams for the gluon propagator [START_REF] Blum | Gluonic three-point correlations in pure Landau gauge QCD[END_REF]. Following these studies, a one-parameter family of solution emerges of the DSEs, and are confirmed by the FRG analysis [START_REF] Pawlowski | Aspects of the functional renormalisation group[END_REF][START_REF] Gies | Introduction to the functional RG and applications to gauge theories[END_REF][START_REF] Ellwanger | Flow equations and BRS invariance for Yang-Mills theories[END_REF][START_REF] Bonini | BRS symmetry for Yang-Mills theory with exact renormalization group[END_REF][START_REF] Ellwanger | Flow equations for the relevant part of the pure Yang-Mills action[END_REF][START_REF] Ellwanger | The Heavy quark potential from Wilson's exact renormalization group[END_REF][START_REF] Fischer | On the infrared behavior of Landau gauge Yang-Mills theory[END_REF]. The family of solutions is continuously indexed by the renormalization prescription (boundary condition) of the ghost dressing function (see below) at zero momentum. The solutions are given according to the infrared exponent of the gluon and ghost dressing functions, J(p) and F (p), that read (in four dimensional space-time) [START_REF] Smekal | The Infrared behavior of gluon and ghost propagators in Landau gauge QCD[END_REF][START_REF] Smekal | A Solution to Coupled Dyson-Schwinger Equations for Gluons and Ghosts in Landau Gauge[END_REF][START_REF] Fischer | On the infrared behavior of Landau gauge Yang-Mills theory[END_REF]. In particular it satisfies the KO criterion9 , see above. Hereby, as emphasized earlier, this solution is very appealing from a theoretical point of view and received a lot of attention [START_REF] Smekal | The Infrared behavior of gluon and ghost propagators in Landau gauge QCD[END_REF][START_REF] Alkofer | The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states[END_REF][START_REF] Fischer | Nonperturbative propagators, running coupling and dynamical quark mass of Landau gauge QCD[END_REF][START_REF] Bloch | Two loop improved truncation of the ghost gluon Dyson-Schwinger equations: Multiplicatively renormalizable propagators and nonperturbative running coupling[END_REF][START_REF] Fischer | On the infrared behavior of Landau gauge Yang-Mills theory[END_REF]. In this peculiar case, the full tower of DSEs can be analyzed without truncation schemes [START_REF] Fischer | Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory II[END_REF][START_REF] Huber | On Dyson-Schwinger studies of Yang-Mills theory and the four-gluon vertex[END_REF].

J(p) ∼ (p 2 ) κ A -
The other type of solutions are called the decoupling solutions and do not present the scaling relation κ A = 2κ c . In particular the ghost dressing function is IR finite and the gluon propagator does not vanish10 though the solution still displays an IR ghost dominance as the gluon propagator remains IR suppressed. The decoupling solution is obtained for any boundary condition corresponding to a finite IR ghost dressing function, and hence, this solution is not unique but parametrized by one parameter. It was studied, among others, in [START_REF] Aguilar | Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger-Dyson equations[END_REF][START_REF] Aguilar | Power-law running of the effective gluon mass[END_REF][START_REF] Boucaud | Is the QCD ghost dressing function finite at zero momentum?[END_REF][START_REF] Aguilar | A Dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations[END_REF][START_REF] Bloch | Two loop improved truncation of the ghost gluon Dyson-Schwinger equations: Multiplicatively renormalizable propagators and nonperturbative running coupling[END_REF][START_REF] Boucaud | On the IR behaviour of the Landau-gauge ghost propagator[END_REF][START_REF] Huber | On the influence of three-point functions on the propagators of Landau gauge Yang-Mills theory[END_REF][START_REF] Rodriguez-Quintero | On the massive gluon propagator, the PT-BFM scheme and the low-momentum behaviour of decoupling and scaling DSE solutions[END_REF]. The finiteness of the zero momentum gluon propagator suggests a massive behavior. Nevertheless the decoupling solutions violate positivity, see e.g. [START_REF] Sternbeck | Lattice study of the infrared behavior of QCD Green's functions in Landau gauge[END_REF][START_REF] Fischer | On the infrared behavior of Landau gauge Yang-Mills theory[END_REF]. Thereby, the behavior of the gluon propagator cannot be interpreted as the one of a standard massive particle, though, for shortness, we still refer to this as a massive behavior. Finally we mention that both the decoupling and the scaling solutions differ only in the deep IR regime while both agree with the perturbative results in the UV.

In this section we presented two nonperturbative functional approaches. It shall be mentioned that others exist such as the Hamiltonian approach of [START_REF] Reinhardt | The effective potential of the confinement order parameter in the Hamilton approach[END_REF][START_REF] Reinhardt | Effective potential of the confinement order parameter in the Hamiltonian approach[END_REF], or two-particle-irreducible (2PI) inspired approaches [START_REF] Fukushima | Polyakov loop and QCD thermodynamics from the gluon and ghost propagators[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF]. We have emphasized the necessity of using (model dependent) truncation schemes. The validity of the latter is challenging to verify as these approaches rely on autoconsistent equations (see for instance the case of IR gluon dominance), and one thus needs to compare with other approaches, e.g., lattice simulations.

Moreover, both the scaling and the decoupling solutions were found consistent with the functional approaches, and additional information is needed in order to know which solution the system realizes. This is a complicated task since they differ only in the nonperturbative regime. Again, the best predictive tool is lattice simulations that provide an exact solution of the dynamics at work.

I.3.2 The Neuberger problem

Another concern of the approaches described above that we have not discussed so far, is the fact that, these nonperturbative approaches are applied to the FP, or more generally, to BRST quantization of the YM action, which may not include all nonper-turbative effects. At least the presence of multiple solutions of the gauge equations, the so-called Gribov copies [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF], are not included. We further present the Gribov copies and review some proposals that intend to deal with them in the next sections. For the moment, in order to motivate the need of taking into account Gribov copies effects, let us proceed in a naive way by assuming that one wants to perform lattice simulations directly from the FP action Eq. (I.2.9). As we now present, this is not possible due to the 0/0 Neuberger problem [START_REF] Neuberger | NONPERTURBATIVE BRS INVARIANCE[END_REF][START_REF] Neuberger | Nonperturbative BRS Invariance and the Gribov Problem[END_REF]. In the next section, we link this issue with the fact that the gauge has been fixed according to the FP procedure/BRST quantization.

A crucial point in fixing the gauge (for instance in the FP procedure) is to keep unchanged the expectation value of gauge-invariant operators while the degeneracy, induced by the gauge symmetry, of physically equivalent field configurations is removed. Keeping this in mind, Neuberger proposed to have a closer look at the expectation value of BRST-invariant quantities (among which there are gauge-invariant operators) computed with a BRST gauge-fixed action, that is a gauge-fixed action of the form (see also Eq. (I.2.13)) 

S gf = S YM [A] + x sΨ[ϕ] , ϕ = {A µ , c, c,
-S YM [A]+ x sΨ[ϕ] O BRST [ϕ] = 0, (I.3.12)
assuming that the nilpotent BRST charge is unbroken. Therefore, averages of gaugeinvariant quantities are of the indefinite form 0/0. Here, one might hope for cancellation between zeros of the numerator and the denominator to occur. However, the presence of the zeros prevents from a numerical implementation of Eq. (I.3.12). Hereby, the absence of a straightforward nonperturbative method to compute gauge-invariant quantities is uncomfortable as it rises the question whether is it possible to have a well-defined BRST gauge-fixing procedure of the form (I. 3.11). This indefinite form is actually a consequence of nonperturbative aspects of the gauge-fixing issue that were neglected in the FP gauge-fixing procedure. The latter fixes the gauge only up to a discrete set of configurations whose contributions in Eq. (I.3.12) exactly cancel out for gauge group of zero Euler character [START_REF] Alkofer | The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states[END_REF].

I.4 Beyond the FP gauge-fixing procedure I.4.1 Gribov ambiguities and Gribov regions

Let us take a step back in the gauge-fixing procedure. Up to now, we have always assumed that the gauges we were considering (and in particular the Landau gauge) were ideal gauges, that is, the gauge condition admits one and only one solution per gauge orbit. However this is not true in the Landau gauge, as first pointed out by Gribov in his seminal work [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF]. The problem is even more sever as Singer showed that in non-Abelian gauge theories it is not possible to find a unique and local gauge Chapter I. Aspects of Yang-Mills correlation functions condition that intersects once and only once each gauge orbit [START_REF] Singer | Some Remarks on the Gribov Ambiguity[END_REF]. To see this in the Landau gauge, let us consider the following functional

H Landau [A, U ] = x tr A U µ 2 .
(I.4.1)

We look at its stationary points with respect to the gauge transformation U for fixed gauge field configuration A. This can be done by writing U → V U with V infinitesimally close to the identity V ∼ e ig 0 λ and making an expansion in λ:

A V µ = A µ + D µ λ + O(λ 2
). Plugging this expansion into (I.4.1) yields the variation of H Landau with respect to an (infinitesimal) gauge transformation

δ λ H Landau [A, U ] = -2ig 0 x tr λ ∂ µ A U µ + O(λ 2 ) . (I.4.2)
The condition of being at an extremum requires that the variation of δ λ H Landau be zero for all λ which is realized for

∂ µ A U µ = 0. (I.4.3)
Therefore the extrema (for a given A) of the functional (I.4.1) correspond to different solutions of the Landau gauge condition that belong to the same gauge orbit. The situation is depicted schematically on Fig. I.4. Gribov proved that, indeed, the Landau gauge condition admits multiple solutions known as Gribov copies. For instance, "infinitesimal" copies correspond to the zero modes of the FP operator. Indeed, considering a field configuration A µ that satisfies the Landau gauge condition and its (infinitesimal) gauge transformation A µ = A µ + D µ λ, then A µ is a Gribov copy if ∂ µ D µ λ = 0, that is, if λ is a zero mode of the FP operator. On top of these "infinitesimal" copies, there also exist copies that are related by finite gauge transformations [START_REF] Van Baal | More (thoughts on) Gribov copies[END_REF][START_REF] Van Baal | Gribov ambiguities and the fundamental domain[END_REF][START_REF] Dell'antonio | All gauge orbits and some gribov copies encompassed by the gribov horizon[END_REF]. The presence of these copies spoils the FP construction presented in

A

Gribov copies Gauge condition equivalent configs Sec. I.2.1. Indeed, the writing of the identity a la FP, Eq. (I.2.3), is justified under two assumptions, namely that

• the gauge equation f A U = 0 is invertible (i.e. has a unique solution),

• DetF A U is positive definite, which are not satisfied due to the presence of Gribov copies (see below). Instead, in the presence of Gribov copies, the FP construction amounts to sum over all copies multiplied by the sign of the FP determinant

Z FP ≡ DU δ f A U DetF A U = DU i δ (U -U i ) |DetF [A U ]| DetF A U i = i DetF A U i |DetF [A U i ]| = i sign DetF A U i ≡ i s(i), (I.4.4)
where here, the sum runs over all Gribov copies A U i belonging to the gauge orbit of A. It is precisely this type of sum which is responsible for the Neuberger problem [START_REF] Alkofer | The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states[END_REF][START_REF] Hughes | Enumerating Gribov copies on the lattice[END_REF]. At this point we need to study in more details the structure of Gribov copies, or equivalently the extrema of H Landau . We go to the next order in (I.4.2)

δ λ a (x) δ λ b (y) H Landau ∝ x,y λ a (x) -∂ x µ ∂ x µ δ ab + g 0 f acb A c µ (x) δ(x -y)λ b (y) = x λ a (x)F ab (x)λ b (x).
(I.4.5)

Hence, the FP operator F corresponds to the Hessian of the functional H Landau along the gauge orbit. Accordingly, Gribov copies that are minima of H Landau , correspond to a FP operator with only positive eigenvalues (and thus a positive sign in (I.4.4)), while those that are saddle points of H Landau with p unstable directions yields a FP operator with p negative eigenvalues (and thus contribute for (-1) p in (I.4.4)), for a review see [START_REF] Vandersickel | The Gribov problem and QCD dynamics[END_REF]. Following the work of Gribov [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF], the set of field configurations satisfying the gauge condition can thus be folded into regions according to the number of unstable directions of the FP operator. This is schematically represented on Fig. I.5, where Ω is the set of minima of H Landau :

Ω = {A : ∂ µ A µ = 0, F > 0} . (I.4.6)
Ω is called the first Gribov region, while Ω 2 is the analogous of Ω but for copies that correspond to a FP operator with one unstable direction, Ω 3 those with two unstable directions, and so on. Different regions are separated by the boundaries δΩ k . On the latter, the lowest positive eigenvalue of the FP operator in Ω k-1 vanishes. The first Gribov region Ω presents two important properties: every gauge orbit passes through [START_REF] Dell'antonio | Every gauge orbit passes inside the gribov horizon[END_REF] and it contains A = 0, that is, the perturbative region [START_REF] Zwanziger | Nonperturbative Faddeev-Popov formula and infrared limit of QCD[END_REF]. Other properties of the Gribov region can be found in [START_REF] Zwanziger | Nonperturbative Faddeev-Popov formula and infrared limit of QCD[END_REF]. Still, Ω contains many different The different Gribov regions. The k th region Ω k is the set of Gribov copies with FP operator that admits k-1 negative eigenvalues. The boundaries δΩ k separates the Gribov region Ω k and Ω k+1 while the k th negative eigenvalue of the FP operator on Ω k+1 is zero on the boundary. Figure taken from [START_REF] Vandersickel | The Gribov problem and QCD dynamics[END_REF].

gauge copies corresponding to different local minima of H Landau [START_REF] Van Baal | More (thoughts on) Gribov copies[END_REF][START_REF] Van Baal | Gribov ambiguities and the fundamental domain[END_REF][START_REF] Dell'antonio | All gauge orbits and some gribov copies encompassed by the gribov horizon[END_REF], which is verified by lattice simulations [START_REF] Hughes | Enumerating Gribov copies on the lattice[END_REF]. In order to select a unique representative per gauge orbit, one can look for the absolute minimum of H Landau . By construction the set of absolute minima (if degenerate) is included in the Gribov region and is commonly referred to as the First Modular Region (FMR) [START_REF] Zwanziger | Fundamental modular region, Boltzmann factor, and area law in lattice theory[END_REF].

I.4.2 The Gribov-Zwanziger approach

Gribov copies are ignored in the FP gauge-fixing procedure. Although this is believed to be well justified at high energies (in the perturbative regime), they constitute an important ingredient of the IR domain (at least in the Landau gauge). In order to take this into account, Gribov proposed to revisit the FP procedure by restricting the path-integral over the first Gribov region Ω [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF] Z GZ = Ω Dφ e -S gf , (I.4.7)

with φ = {A µ , c, c, ih}, and S gf is the Landau gauge FP gauge-fixed action Eq. (I.2.9). This insures that the Neuberger problem is avoided since, by construction, the FP operator is positive on Ω. Nevertheless, Ω is plagued by multiple Gribov copies. As emphasized in the previous section, for such a procedure to be fully consistent one should select only one copy per gauge orbit, e.g. by restricting the path-integral to the FMR. However, it is not known so far how to include such a strict restriction. Still, one may hope that the restriction to Ω is sufficient for practical purposes. In order to formulate this restriction into a tractable field theory, Gribov computed in [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF] the ghost propagator in a semiclassical approximation (up to second order in perturbation theory) where the gauge field A is taken as an external background field

G ab gh (p, A) = δ ab p 2 1 1 -σ(p, A) = F -1 ab (p, A), (I.4.8)
where, on the right-hand side, there is the inverse of the FP operator and σ is found to decrease as the momentum p increases [START_REF] Vandersickel | The Gribov problem and QCD dynamics[END_REF]. Following from the relation between the ghost propagator and the FP operator, one sees that the external configuration A lies within Ω as long as G ab gh (p, A) is strictly positive while the first horizon δΩ is crossed when G ab gh (p, A) develops a pole more singular than 1/p 2 (which corresponds to the vanishing of the lowest eigenvalue of the FP operator on the border δΩ). This yields the so-called no-pole condition introduced by Gribov in [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF] 1 -σ(0, A) 0, (I.4.9)

where the equality is reached on the boundary δΩ. The no-pole condition can be embodied into the functional integral Eq. (I.4.7) by inserting θ(1 -σ(0, A)), where θ is the Heaviside distribution. Under the functional integral, it was motivated that the Heaviside distribution can be replaced by a Dirac delta [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF][START_REF] Zwanziger | Local and Renormalizable Action From the Gribov Horizon[END_REF][START_REF] Zwanziger | Renormalizability of the critical limit of lattice gauge theory by BRS invariance[END_REF]. This implies in particular that the leading contributions from Gribov copies are given by those located on the boundary δΩ. Later on, Zwanziger generalized the Gribov no-pole condition to all orders [START_REF] Zwanziger | Local and Renormalizable Action From the Gribov Horizon[END_REF][START_REF] Zwanziger | Renormalizability of the critical limit of lattice gauge theory by BRS invariance[END_REF][START_REF] Zwanziger | Fundamental modular region, Boltzmann factor, and area law in lattice theory[END_REF][START_REF] Vandersickel | A Study of the Gribov-Zwanziger action: from propagators to glueballs[END_REF] where γ is known as the Gribov parameter and has the dimension of a mass, h(x) is the (nonlocal) horizon function

h(x) = g 2 0 f abc A b µ (x) y F -1 (x, y) ad f dec A e µ (y) . (I.4.11)
The Gribov parameter γ is considered as nonperturbative since it encodes the restriction of the path-integral to the first Gribov region Ω. It is determined by a gap equation, the horizon condition [START_REF] Zwanziger | Local and Renormalizable Action From the Gribov Horizon[END_REF][START_REF] Zwanziger | Renormalizability of the critical limit of lattice gauge theory by BRS invariance[END_REF],

h(x) = 4 N 2 -1 , (I.4.12)
where here the average is to be computed with FP gauge-fixed YM action supplemented by the additional horizon action Eq. (I.4.10). 11 The horizon function, along with the horizon condition Eqs. (I.4.11)-(I.4.12) are equivalent to a generalization at all orders of the ghost form factor σ(p, A) (see Eq. (I.4.8)) and the Gribov no-pole condition Eq. (I.4.9) [START_REF] Gomez | Equivalence between Zwanziger's horizon function and Gribov's no-pole ghost form factor[END_REF]. The equality in the horizon condition Eq. (I.4.12) (instead of an inequality as in Eq. (I.4.9)) corresponds to take into account only the Gribov copies

Chapter I. Aspects of Yang-Mills correlation functions located near the boundary δΩ [START_REF] Zwanziger | Some exact infrared properties of gluon and ghost propagators and long-range force in QCD[END_REF]. The nonlocal horizon action Eq. (I.4.10) can be rendered local by the introduction of two pairs of complex conjugate auxiliary fields (see [START_REF] Vandersickel | The Gribov problem and QCD dynamics[END_REF] for a review), namely the bosonic φab µ , ϕ ab µ and Grassmann ωab µ , ω ab µ fields which form BRST doublets

sϕ ab µ = ω ab µ , sω ab µ = 0 , sω ab µ = φab µ , s φab µ = 0 . (I.4.13)
In terms of these fields, one gets [START_REF] Zwanziger | Local and Renormalizable Action From the Gribov Horizon[END_REF][START_REF] Zwanziger | Renormalizability of the critical limit of lattice gauge theory by BRS invariance[END_REF][START_REF] Zwanziger | Fundamental modular region, Boltzmann factor, and area law in lattice theory[END_REF] 

in d = 4 e -S h = DϕD φDωD ω e -S loc , S loc = x φac µ F ab ϕ bc µ -ωac µ F ab ω bc µ + γ 2 g 0 f abc A a µ ϕ bc µ + φbc µ -4γ 4 (N 2 -1) . (I.4.14)
Hereby, a nonperturbative gauge-fixed YM action in the Landau gauge is given by the (local) Gribov-Zwanziger (GZ) action [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF][START_REF] Zwanziger | Local and Renormalizable Action From the Gribov Horizon[END_REF][START_REF] Vandersickel | The Gribov problem and QCD dynamics[END_REF] S GZ = S YM + S FP + S loc , (I. 4.15) where in this expression the Landau gauge expression of the FP operator F ab (x) = -∂ µ D ab µ (x) is used. An important remark is that the perturbative BRST symmetry, Eq. (I.2.12), is softly broken by the presence of the Gribov parameter γ. Nevertheless, the local action admits a modified (non-nilpotent) BRST symmetry according to which it remains renormalizable [START_REF] Zwanziger | Local and Renormalizable Action From the Gribov Horizon[END_REF][START_REF] Maggiore | Landau gauge within the Gribov horizon[END_REF][START_REF] Dudal | The Gribov parameter and the dimension two gluon condensate in Euclidean Yang-Mills theories in the Landau gauge[END_REF][START_REF] Zwanziger | Renormalizability of the critical limit of lattice gauge theory by BRS invariance[END_REF][START_REF] Dudal | More on the renormalization of the horizon function of the Gribov-Zwanziger action and the Kugo-Ojima Green function(s)[END_REF] though the definition of the physical space (if it exists) is unclear as one cannot repeat the KO treatment. 12 In the GZ theory, the gluon and ghost propagators realize the scaling solution. Indeed, the tree-level gluon propagator is

G ab µν (p) = δ ab P T µν (p) p 2 p 4 + 2N g 2 0 γ 4 , (I.4.16)
where we introduced the transverse projector P T µν (p) = δ µν -p µ p ν /p 2 . Therefore, already at tree-level, the gluon propagator vanishes at zero momentum. The tree-level ghost propagator behaves as 1/p 2 at low momenta. The no-pole condition (or equivalently the horizon condition) leads, by construction (see Eq. (I.4.9) and its enforcement with the Dirac delta), to the disparition of the 1/p 2 behavior at one loop-order. Instead, it turns out that, as p goes to zero, the ghost propagator behaves as 1/p 4 , as first pointed out by Gribov [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF] and checked up to two loops later on [START_REF] Gracey | Two loop correction to the Gribov mass gap equation in Landau gauge QCD[END_REF], thus realizing the scaling solution. This prediction has been extended beyond perturbation theory by Zwanziger [START_REF] Zwanziger | Some exact infrared properties of gluon and ghost propagators and long-range force in QCD[END_REF]. Moreover, it was asserted by Zwanziger that, in principle, the restriction of the path-integral to a subdomain should not change the form of functional equations, e.g. DSEs, but is inherited into the boundary conditions that one uses as initial conditions [START_REF] Zwanziger | Nonperturbative Landau gauge and infrared critical exponents in QCD[END_REF]. As we just saw, the restriction to the first Gribov region is encoded into the horizon condition which, in turns, is transcribed into the IR enhancedment of the ghost propagator, namely that13 lim p→0 p 2 G gh (p)

-1 = 0. Therefore, according to the previous argument of Zwanziger, in the DSEs of the standard Landau gauge FP action, the boundary condition of a divergent ghost dressing function at zero momentum may actually implement the GZ action [START_REF] Zwanziger | Nonperturbative Landau gauge and infrared critical exponents in QCD[END_REF][START_REF] Vandersickel | The Gribov problem and QCD dynamics[END_REF]. Thereby, the interpretation of the scaling solution obtained through the DSEs as the realization of the KO scenario (we recall that the scaling solution was obtained by imposing as initial condition a diverging ghost dressing function, see Sec. I.3.1) seems compromised, as the BRST symmetry (I.2.12) (central in the KO proposal) is broken in the GZ action. Nevertheless, it should be mentioned here that recently it has been discovered that the GZ action admits a nilpotent nonlocal BRST symmetry [START_REF] Capri | Exact nilpotent nonperturbative BRST symmetry for the Gribov-Zwanziger action in the linear covariant gauge[END_REF][START_REF] Capri | A local and BRST-invariant Yang-Mills theory within the Gribov horizon[END_REF], though to our knowledge, its link to the KO proposal has not been fully settled yet.

As already mentioned, the restriction to the Gribov region Ω implies the presence of the Gribov parameter γ of mass dimension 1 that softly breaks the initial nilpotent BRST symmetry. It turns out, as pointed out in [START_REF] Dudal | A Refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results[END_REF], that composite operators can develop nonvanishing expectation values which were previously prevented by the nilpotent BRST symmetry. In particular, it was proposed to take into account the dimension two condensate 0| φab µ ϕ ab µ -ωab µ ω ab µ |0 by adding an appropriate source term to the GZ action. This is known as the refined Gribov-Zwanziger (RGZ) action, which was proved to be renormalizable in four dimensions [START_REF] Dudal | A Refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results[END_REF]. In particular, due to the effects of the condensate, the gluon propagator does not vanish at zero momentum (even if it stays IR suppressed) and the ghost dressing function remains finite, thus realizing the decoupling solution. The price to pay is the introduction of (at least) one new dimensional parameter related to the nontrivial condensate.

Let us make a few comments on the results presented in this section. First, both the GZ and the RGZ actions are renormalizable despite their breaking of the initial (perturbative) nilpotent BRST symmetry. This is because they admit a modified (nonnilpotent) BRST symmetry which allows one to control the divergences. On the other hand, one cannot do the KO construction of the physical Hilbert space. However, as argued in [START_REF] Dudal | A Refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results[END_REF], this might be not such an issue. Gluons are not part of the physical Hilbert space (as can be seen by the violation of positivity in the GZ and RGZ cases [START_REF] Vandersickel | A Study of the Gribov-Zwanziger action: from propagators to glueballs[END_REF][START_REF] Vandersickel | The Gribov problem and QCD dynamics[END_REF]) and, therefore, not being able to define the physical space out of them may be not so surprising. Of course, the definition of a physical Hilbert space is mandatory for the consistency of the approach, but the solution might not lie in the gluon and ghost sectors.

With this section we wanted to put forward the striking consequences of the presence of Gribov copies on the IR behavior of the correlation functions and on their interpretation in the Landau gauge. On the one hand, the KO interpretation of the scaling solution is not clear due to the breaking of the initial BRST symmetry and, on the other hand, the RGZ action predicts the decoupling solution. This motivates to better understand the effects of the Gribov copies as there is an increasing belief that they play a crucial role in the IR domain of YM theories and perhaps even for confinement [START_REF] Sobreiro | A Study of the Gribov copies in linear covariant gauges in Euclidean Yang-Mills theories[END_REF]. We mention that, the Landau gauge is only one representative of the covariant gauges and it displays additional properties, among others for instance the absence of a longitudinal gluon propagator. It would thus be interesting to investigate whether or not the presence of Gribov copies plays such an important role as in the Landau gauge in other covariant gauges. The GZ construction presented here can be applied to gauges that can be defined from the minimization of a functional, akin the Landau gauge with the functional (I.4.1). Accordingly, some of Gribov copies effects have been studied for instance in the (non-covariant) Coulomb gauge [START_REF] Cucchieri | Static color -Coulomb force[END_REF][START_REF] Zwanziger | No confinement without Coulomb confinement[END_REF][START_REF] Greensite | Coulomb energy, remnant symmetry, and the phases of nonAbelian gauge theories[END_REF][START_REF] Feuchter | Variational solution of the Yang-Mills Schrodinger equation in Coulomb gauge[END_REF][START_REF] Reinhardt | On the Yang-Mills wave functional in Coulomb gauge[END_REF]. 14 However, the Coulomb and Landau gauges are so different that there is no point in making comparisons between the two (though the meaning of comparing gauge dependent quantities in two different gauges is unclear in general). It was thus motivated in [START_REF] Sobreiro | A Study of the Gribov copies in linear covariant gauges in Euclidean Yang-Mills theories[END_REF] that investigations in covariant gauges that are continuously connected to the Landau one are of greater interests. In this line of thoughts, the authors attempted to extend the GZ proposal to the covariant linear gauges. This is not an easy task, the main reason being the fact that the FP operator is not Hermitian and thus has not a real spectrum. Accordingly, one loses the geometrical construction used in the Landau gauge, and, in particular, the identification of a region to restrict the path-integral domain is unclear. Nevertheless, recently, based on the presence of the nonperturbative (and nonlocal) BRST symmetry [START_REF] Capri | Exact nilpotent nonperturbative BRST symmetry for the Gribov-Zwanziger action in the linear covariant gauge[END_REF][START_REF] Capri | A local and BRST-invariant Yang-Mills theory within the Gribov horizon[END_REF], a BRST-like quantization was employed and the (R)GZ proposal was amended to the linear covariant gauges, see [START_REF] Capri | More on the nonperturbative Gribov-Zwanziger quantization of linear covariant gauges[END_REF] and references herein.

We saw in this section that, in the Landau gauge, taking into account Gribov copies leads to either the scaling or the decoupling solutions depending if condensates are included or not, though both type of solutions were found consistent with the tower of DSEs (and confirmed by the FRG). We shall thus rely on lattice simulations to confirm which solution is chosen by the system, which is the topic of the next section.

I.4.3 Gauge-fixed lattice simulations.

In Sec. I.3.2, we introduced the Gribov ambiguity problem and created the need to take into account Gribov copies through the Neuberger problem that prevents a consistent implementation of the FP gauge-fixed action on the lattice. Gribov copies contribute degenerately with alternating signs in the path-integral yielding the indefinite 0/0 form for expectation value of gauge-invariants quantities. To tackle this issue, one may select a unique Gribov copy. However, this cannot be achieved by means of a local action principle [START_REF] Singer | Some Remarks on the Gribov Ambiguity[END_REF], the basis of any continuum formulation. Instead, one has to rely on approximate restriction such as the (R)GZ proposals. 15 On the contrary, this can be done in some case in lattice simulations which, consequently, completely fix the gauge as only one copy is selected.

Recalling that in the Landau gauge the Gribov copies correspond to the extrema of the functional H Landau [A, U ] (I.4.1), whose discrete version is

H Landau latt. [W, U ] = Re tr x    - d µ=1 W U µ (x)    , (I.4.17)
with W µ (x) the lattice gauge link (I.1.7) and where we recall that the gauge-transformed link reads W U µ (x) = U (x)W µ (x)U † (x + aμ). Fixing the Landau gauge thus boils down to select an extremum (in practice a minimum) of this functional, which can be achieved by using powerful minimization algorithms [START_REF] Mandula | Efficient gauge fixing via overrelaxation[END_REF][START_REF] Davies | Fourier Acceleration in Lattice Gauge Theories. 1. Landau Gauge Fixing[END_REF][START_REF] Gupta | The Hadron Spectrum on a 18**3 X 42 Lattice[END_REF][START_REF] Cucchieri | Critical slowing down in SU(2) Landau gauge fixing algorithms[END_REF]. Then, the lattice procedure to compute average of a quantity O can be sketched as follows:

• First, simulate a collection of gauge links W according to the minimization algorithms until a minimum of (I.4.17) is reached.

The resulting gauge link thus satisfies the gauge equation;

• Perform the statistical average over the the previously obtained gauge-fixed links

O 1 N links N links l=1 O W (l) µ .
Note that by fixing the gauge according to this procedure, one does not need to include extra auxiliary fields such as ghosts, or the GZ ϕ, ω fields. Nevertheless, quantities that in the continuum depend on such fields can, in some cases, still be accessed in lattice simulations. For instance, the ghost propagator is obtained through the average of the inverse FP operator F -1 . Computing correlation functions according to this procedure thus provides results from a first principle nonperturbative computational method in a gauge-fixed version of YM theories where the gauge has been completely fixed since only one Gribov copy per gauge orbit has been selected. Therefore, a lot of interests were devoted to such numerical simulations and many results were obtained in the Landau gauge, e.g. [START_REF] Bloch | Propagators and running coupling from SU(2) lattice gauge theory[END_REF][START_REF] Ilgenfritz | Landau gauge gluon and ghost propagators from lattice QCD[END_REF][START_REF] Cucchieri | Infrared behavior of gluon and ghost propagators from asymmetric lattices[END_REF][START_REF] Cucchieri | Constraints on the IR behavior of the gluon propagator in Yang-Mills theories[END_REF][START_REF] Cucchieri | Constraints on the IR behavior of the ghost propagator in Yang-Mills theories[END_REF][START_REF] Cucchieri | Landau-gauge propagators in Yang-Mills theories at beta = 0: Massive solution versus conformal scaling[END_REF][START_REF] Furui | Infrared features of the Landau gauge QCD[END_REF][START_REF] Leinweber | Gluon propagator in the infrared region[END_REF][START_REF] Bonnet | Infrared behavior of the gluon propagator on a large volume lattice[END_REF][START_REF] Boucaud | The Infrared behaviour of the pure Yang-Mills green functions[END_REF][START_REF] Boucaud | On the IR behaviour of the Landau-gauge ghost propagator[END_REF][START_REF] Bogolubsky | Lattice gluodynamics computation of Landau gauge Green's functions in the deep infrared[END_REF][START_REF] Sternbeck | Comparing SU(2) to SU(3) gluodynamics on large lattices[END_REF][START_REF] Sternbeck | Another look at the Landau-gauge gluon and ghost propagators at low momentum[END_REF][START_REF] Bornyakov | Infrared behavior and Gribov ambiguity in SU(2) lattice gauge theory[END_REF][START_REF] Bornyakov | SU(2) lattice gluon propagator: Continuum limit, finite-volume effects and infrared mass scale m(IR)[END_REF][START_REF] Dudal | Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate A 2 in the Landau gauge[END_REF][START_REF] Maas | Describing gauge bosons at zero and finite temperature[END_REF]. In particular, they provide an important benchmark for continuum approaches. For instance, numerical studies of the various vertices confirmed the ghost IR dominance truncation schemes used in DSEs [START_REF] Cucchieri | Exploratory study of three-point Green's functions in Landau-gauge Yang-Mills theory[END_REF][START_REF] Cucchieri | Three-point vertices in Landau-gauge Yang-Mills theory[END_REF]. For our present concerns, we are mostly interested in results for the Landau gauge gluon and ghost propagators. Results from large volume simulations are depicted in Fig. I. [START_REF] Gross | Ultraviolet Behavior of Nonabelian Gauge Theories[END_REF]. In particular, one clearly sees a finite ghost dressing function at zero momentum, and a massive gluon propagator. These results go along with the decoupling solution and discard the scaling one. It follows that the RGZ thus agrees (at least qualitatively) with lattice data. Note, however, that both approaches implement the Landau gauge in different ways.

The lattice gauge-fixing procedure presented here relies on the existence of an auxiliary functional to be minimized. Investigation of other covariant gauges connected to the Landau one would be of great interests to infer possible gauge (in)dependent features of the propagators and possible systematic Gribov copies effects, though this would require to define such a family of gauges by means of an extremization procedure. [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF]. Blue crosses are lattice data taken from [START_REF] Cucchieri | Numerical test of the Gribov-Zwanziger scenario in Landau gauge[END_REF]. Red curves are analytical results obtained in [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF], see Sec. I.5.1.

We also mention that, recently, following the proposal put forward in [START_REF] Cucchieri | Covariant gauge on the lattice: A New implementation[END_REF] numerical implementations of the covariant linear gauges were achieved [START_REF] Cucchieri | Simulating linear covariant gauges on the lattice: A New approach[END_REF][START_REF] Cucchieri | Gluon Propagators in Linear Covariant Gauge[END_REF][START_REF] Cucchieri | Feynman gauge on the lattice: New results and perspectives[END_REF][START_REF] Bicudo | Lattice gluon propagator in renormalizable ξ gauges[END_REF] but do not actually correspond to the extremization of a local functional. Another related issue is that the FP operator in such gauges is not Hermitian which complicates the discussion of Gribov copies and Gribov regions [START_REF] Sobreiro | A Study of the Gribov copies in linear covariant gauges in Euclidean Yang-Mills theories[END_REF] as well as numerical calculation of the ghost propagator.

I.5 A novel approach to deal with Gribov copies

In the previous sections we intended to motivate that nonperturbative methods, e.g. DSEs, are not completely sufficient to access the IR properties of YM correlation functions. We illustrated this with the Neuberger problem, see Sec. I.3.2, to put forward that one also needs to take into account aspects of the gauge-fixing procedure that are disregarded by the FP procedure in order to tackle the problem of Gribov ambiguities. On the lattice, in certain gauges such as the Landau one, this can be realized completely (only one copy is selected) and reliable results for the correlation functions are obtained. However, the lattice gauge-fixing procedure is purely algorithmic and one does not know the corresponding continuum limit, while selecting a unique copy is not possible in terms of a local QFT. Still, one can cope with the Gribov ambiguity issue through the GZ proposal and obtain good agreement with lattice simulations in the case of the RGZ [START_REF] Dudal | The Landau gauge gluon and ghost propagator in the refined Gribov-Zwanziger framework in 3 dimensions[END_REF][START_REF] Dudal | The dynamical origin of the refinement of the Gribov-Zwanziger theory[END_REF].

In this manuscript, we study an alternative proposal made by Serreau and Tissier (ST) [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] that intends to consistently deal with Gribov copies. Our main work is developed in the next chapters. The ST treatment of Gribov copies has the main advantage that the resulting (Gribov ambiguity free) gauge-fixed action can be studied by simple perturbative tools and presents very good agreement with the available lattice results. We would like to emphasize these points in the next sections. For completeness, it shall be mentioned that one point of the proposal is not fully justified yet. It is related to the technique used to cast under the form of a local QFT the ST procedure: a number n of extra auxiliary fields have to be introduced while averages of physical observable must be evaluated in the limit n → 0. In practice, it is assumed that one can freely interchange the order the this limit and the path-integral. This will become clear in the next chapter.

I.5.1 The Curci-Ferrari model

Before presenting the ST proposal we first describe the phenomenological Curci-Ferrari (CF) model [START_REF] Curci | A Theory of Massive Yang-Mills Field[END_REF][START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF]. Once large volume lattice simulations have well established that it is the decoupling solution which is realized, Tissier, Wschebor, and, later, Peláez reconsidered the CF model. The general model consists in a massive extension of the (FP) gauge-fixed YM action in nonlinear covariant gauges [START_REF] Delbourgo | Extended BRS Invariance and Osp(4/2) Supersymmetry[END_REF]. Tissier Wschebor and Peláez considered the Landau limit of the model

S CF = x 1 4 F a µν F a µν + ∂ µ ca D µ c a + ih a ∂ µ A a µ + m 2 0 2 A a µ A a µ , (I.5.1)
with m 0 a (bare) mass parameter. The standard Landau gauge FP action is recovered for m 0 = 0. In particular, the mass term does not change the YM one-loop universal beta function for the coupling constant, thereby the model is asymptotically free. Just like in the (R)GZ cases, the mass term softly breaks the nilpotent BRST symmetry Eq. (I.2.12). Nevertheless, the CF model remains renormalizable in four dimension [START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF] and the renormalization factors were computed up to three loops in a MS scheme in [START_REF] Gracey | Three loop MS-bar renormalization of the Curci-Ferrari model and the dimension two BRST invariant composite operator in QCD[END_REF]. In fact, despite the soft breaking of the BRST symmetry, the CF action Eq. (I.5.1) displays a large set of symmetries. In particular, it admits a modified (nonnilpotent) BRST symmetry, that we note ŝ, defined by its action on the fundamental fields

ŝA a µ = ∂ µ c a + g 0 f abc A b µ c c , ŝc a = - g 0 2 f abc c b c c , ŝc a = ih a , ŝih a = m 2 0 c a . (I.5.2)
The usual Slavnov-Taylor identities [START_REF] Taylor | Ward Identities and Charge Renormalization of the Yang-Mills Field[END_REF][START_REF] Slavnov | Ward Identities in Gauge Theories[END_REF] associated with the nilpotent BRST symmetry can be accordingly modified and used to constrain possible UV divergences. We shall make an extensive use of such modified Slavnov-Taylor identities in the next chapter when proving the renormalizability of the ST gauge-fixed action, see Sec. II.3.2. Modified Slavnov-Taylor identities can be derived along standard lines [START_REF] Weinberg | The quantum theory of fields[END_REF]. These identities consist in deriving from the symmetries of the problem various constraints on the Green's functions. For later use, let us proceed to their derivation here. We introduce independent sources for all independent fields and their (modified) BRST variations 16 as

S 1 = x J a µ A a µ + ηa c a +c a η a +ih a M a + Ka µ ŝA a µ + La ŝc a . (I.5.3)
According to the definition of the effective action Γ, Eq. (I.3.2), we have that

δΓ δA a µ = J a µ , δΓ δc a = -η a , δΓ δc a = η a , δΓ δ Ka µ = -ŝA a µ ,
δΓ δ La = -ŝc a , (I.5.4) 16 Since ŝc a = ih a and ŝih a = m 2 0 c a , there is no need to introduce additional sources for the (modified) BRST variations of c and ih. Remark also that ŝ2 (Aµ, c) = 0, ŝ2 ca = m 2 0 c a and ŝ2 ih a = m 2 0 ŝc a such that the variations ŝ2 do not require additional sources neither.

where φ = {A µ , c, c, ih} are understood to be the mean value of the corresponding fields in presence of the sources. Performing the transformation φ → φ + θŝφ, with θ an "infinitesimal" Grassmann parameter, in Such an identity, coupled with others derived from the remaining symmetries, e.g., ghost number conservation, allowed Tisser and Wschebor to reduce the number of independent renormalization factors from the five naively suggested by (I.5.1) down to three [START_REF] Wschebor | Some non-renormalization theorems in Curci-Ferrari model[END_REF][START_REF] Tissier | Gauged supersymmetries in Yang-Mills theory[END_REF]. In particular, the renormalization factors lead, in a MS renormalization scheme, to a UV vanishing mass, and one recovers, at high energies, the standard FP theory. One of the most important features of the CF model is that it presents IR safe renormalization groups (RG) flows, as first pointed out in [START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF]. Hereby, one can use standard perturbation theory down to arbitrarily low momentum, which allows one to probe perturbatively the IR regime. Following this observation, Tissier, Wschebor and Peláez computed, at one-loop order in perturbation theory, the various two-point correlation functions as well as the vertices with and without quarks. Remarkably, their one-loop results were found to accurately reproduce the nonperturbative lattice data [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Pelaez | Three-point correlation functions in Yang-Mills theory[END_REF][START_REF] Peláez | Two-point correlation functions of QCD in the Landau gauge[END_REF][START_REF] Peláez | Quark-gluon vertex from the Landau gauge Curci-Ferrari model[END_REF][START_REF] Peláez | Infrared correlation functions in Quantum Chromodynamics[END_REF]. For instance, on Fig. I.6, the one-loop gluon propagator and ghost dressing function (red curves) are compared with lattice data (blue crosses). It is remarkable that, at the cost of introducing only one new parameter, such perturbative one-loop calculations accurately describe the IR regime of YM theories. This suggests that most of the nonperturbative dynamics are accurately captured by the effective gluon mass and the residual dynamics can then be treated perturbatively. As we shall see in the next section, the Serrau-Tissier proposal provides a possible origin to such a mass term in relation with the treatment of Gribov copies.

Z = DADcDcDh e -S CF

I.5.2 The Serreau-Tissier proposal

The effective approach of Tissier, Wschebor and Peláez can be founded on more solid theoretical grounds according to Serreau and Tissier. Recently, they developed, in the Landau gauge, a new gauge-fixing procedure that consistently deals with the presence of Gribov copies [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF]. In the Landau gauge, for what concerns the gluon and ghost sectors, their procedure boils down to the inclusion of an effective gluon mass and the resulting YM gauge-fixed action is perturbatively equivalent to the Landau limit of the CF model Eq. (I.5.1) [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF].

The spirit of this proposal is quite different from those of the lattice gauge-fixing procedure and the GZ proposal. In the latter, in order to tackle the presence of Gribov copies, one tries to enforce the initial gauge condition by restricting further the configuration space and eventually selects a unique Gribov copy as achieved by the lattice. On the contrary, Serreau and Tissier proposed to take into account all Gribov copies, but to provide them with different weights in the path-integral such that their degeneracy is lifted. Applied to the Landau gauge, this legitimate procedure provides another implementation of this gauge in which the resulting gauge-fixed action is free of Gribov ambiguities. The details of the construction are given in the next chapter, see Sec. II.2.1. Let us here draw the main features of the ST gauge-fixing procedure.

In order to cope with the issue of Gribov ambiguities, in the computation of expectation value of an operator O, one first performs a (pseudo) average with a nonuniform statistical weight over the copies belonging to the same gauge orbit. 17 That is, given a field configuration A, along its gauge orbit, one performs the following pseudo average (note the presence of the sign s(i) of the FP operator

) i O[A U i ]s(i)e -β 0 H Landau [A,U i ] ,
(I.5.7)

where the sum runs over all extrema of H Landau , that is, over all Gribov copies18 , s(i) is the sign of the FP operator and β 0 > 0 is a new gauge parameter, that has the dimension of a square mass. The nonuniform weight e -β 0 H Landau [A,U i ] thus lifts the degeneracy of the copies according to the landscape of the extrema of H Landau .

Then, one averages over the gauge field configurations A with the YM weight. This gauge-fixing procedure can be put under the form of a local gauge-fixed YM action by introducing auxiliary fields. The resulting (Gribov ambiguity free) gauge-fixed action turns out to be renormalizable in four dimensions [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF], see also Sec. II.3.2. Remarkably, in the Landau gauge, most of the auxiliary fields introduced to take into account the presence of Gribov copies essentially decouple from the YM sector and the gluon and ghost sectors are perturbatively equivalent to those of the Landau limit of the CF model presented above. This means that, at least in the Landau gauge, the ST gauge-fixed action can be investigated by means of simple perturbative tools and the results reproduce accurately the lattice data. We believe this is a strong result that such a Gribov ambiguity free implementation of the Landau gauge allows one to access perturbatively the IR regime of YM theories (we recall our previous remark concerning a possible loophole of the present proposal). Remark that, the ST proposal is, again, another way of implementing the Landau gauge. Hence, as emphasized above, the comparison between different approaches might be unclear. In particular, the lattice selects a unique copy that corresponds to a minimum of H Landau while the ST proposal averages over all copies, that is, minima, maxima and saddle points of H Landau . Hence, depending on the landscape of H Landau , comparisons between the lattice and the ST results might be meaningful or not. In particular, for both approaches to be compared, H Landau shall satisfy

H Landau [A, U min. ] < H Landau A, U sdl.pts./max. , (I.5.8)
where U min , U sdl.pts. , U max are respectively minima, saddle points and maxima. In such a case, for a value of β 0 not too small, the contribution of Gribov copies that are not minima (i.e. outside the first Gribov region Ω) are exponentially suppressed in Eq. (I.5.7). It remains to select a β 0 not too large such that randomly picking one minimum is equivalent to averaging over them with a small lifting. Checking this scenario would require lattice investigations of the landscape of H Landau . This could be done on small lattices [START_REF] Hughes | Enumerating Gribov copies on the lattice[END_REF] but did not provide any firm answer yet regarding the scenario (I.5.8). Indeed, the number of copies grows exponentially with increasing volume and, so far, lattice procedures are doomed to find only minima of H Landau and remain blind to maxima and saddle points. Nevertheless, lattice simulations display small dependences of the correlators with respect to the choice of the copy [START_REF] Boucaud | On the IR behaviour of the Landau-gauge ghost propagator[END_REF], thus arguing in favor of that scenario (regarding the assumption that selecting one minimum is equivalent to averaging over them). It remains that these are gauge-dependent features, and hereby a priori proper to the Landau gauge as they depend on the peculiar form of H Landau .

Generalization of the ST proposal to other covariant gauges constitutes one of the main purpose of the work presented in this thesis. In Chapter II, we present a generalization of the Landau functional H Landau . We show that its extrema define a one-parameter family of nonlinear covariant gauges that are continuously connected to the Landau one. Thus, it opens the way to investigations of covariant gauges for approaches such as the ST proposal or lattice simulations. We briefly study how existing minimization algorithms can be adapted to this case. Then, we implement these gauges within the ST proposal whose details are displayed in Chapter II. In particular, we prove that the resulting local gauge-fixed action is renormalizable in four dimensions for the whole family of gauges (that includes the Landau one). Remarkably, a massive extension the usual FP gauge-fixing procedure applied to these gauges yields a one-parameter family of (massive) nonlinear covariant actions known as the general ξ-gauges CF model. Henceforth, we have at our disposal two actions that differ only by our treatment of Gribov copies and which can be both investigated in perturbation theory. Comparisons of correlation functions between the two thus provide a benchmark to study Gribov copies effects. We perform the calculations in perturbation theory, up to one-loop order. Eventually we show that, in these gauges, both the ST and CF actions present IR safe RG trajectories thus justifying the perturbative approach.

Chapter II

Nonlinear covariant gauges without Gribov ambiguities

In the previous chapter, we motivated that a detailed understanding of the long distance properties of correlation functions in non-Abelian gauge theories is a mandatory step in order to investigate the IR physics of the strong interactions in analytical methods. In particular, the interplay between both lattice and continuum approaches is of key importance, the former providing a benchmark for the latter. Of course, both approaches must be performed in the same gauge in order to do meaningful comparisons. However, as we saw previously, finding gauges which can be investigated in both cases is not an easy task, in part due to the presence of Gribov copies. In this regard, the Landau gauge stands as peculiar since both continuum and lattice studies were performed extensively. In particular, among the former, the revisiting of the (Landau limit of the) Curci-Ferrari (CF) model [START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF] by Peláez, Tissier and Wschebor has shown recently that most of the nonperturbative gluon dynamics can accurately be accounted for by the presence of an effective mass term [START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF][START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Pelaez | Three-point correlation functions in Yang-Mills theory[END_REF][START_REF] Peláez | Two-point correlation functions of QCD in the Landau gauge[END_REF][START_REF] Peláez | Quark-gluon vertex from the Landau gauge Curci-Ferrari model[END_REF]. In this massive approach, the absence of a Landau pole allows for perturbative development down to the deep IR and simple perturbative one-loop calculations are found in very good agreement with the lattice data. Moreover, Serreau and Tissier developed a new proposal (hereafter referred to as the ST proposal), which fixes the gauge while the Gribov copies are consistently accounted for, as opposed to the standard FP procedure. The ST proposal was successfully applied to the Landau gauge where it was possible to recast the gauge-fixing procedure under the form of a local field theory [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF]. In particular, in the Landau gauge, the resulting gauge-fixed action is perturbatively equivalent to the Landau limit of the CF model for what concerns the gluon and the ghost sectors. Altogether, these two series of works therefore provide a bona fide Landau gauge-fixed version of the YM action that can be investigated with simple perturbation theory and whose results agree with those obtained in lattice simulations. This is an exciting result since the common belief is that the IR regime of YM theories is accessible only through nonperturbative techniques. One of the main advantages of this approach is its simplicity at the computational level in comparison to other continuum approaches such as DSEs.

Nevertheless, the Landau gauge is solely one representative of the covariant gauges and displays additional symmetries and a peculiar geometrical structure of the Gribov copies space. With results only in such a peculiar gauge, it is thus difficult to infer possible gauge-(in)dependent features as well as possible systematic Gribov copies effects on the basic correlators. In this sense, research of other gauges that would allow for both numerical simulations and continuum approaches that handle Gribov ambiguities are interesting. This is the purpose of the present work.

Here, among other works, we describe our studies presented in [START_REF] Serreau | A class of nonperturbative nonlinear covariant gauges in Yang-Mills theories[END_REF][START_REF] Serreau | Influence of Gribov ambiguities in a class of nonlinear covariant gauges[END_REF] where we intend to investigate a class of covariant gauges continuously connected to the Landau one. To do so, we define our gauge condition through an extremization procedure of a functional H that slightly generalizes the one employed for the Landau gauge H Landau , see (I.4.1). In a first step, in order to gain more insights into these gauges, we neglect the presence of Gribov copies (which is at best valid at high energies) and apply the standard FP procedure. We show in Sec. II.1.1 that the minimization of the functional H implements the Curci-Ferrari-Delbourgo-Jarvis (CFDJ) gauges [START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF][START_REF] Delbourgo | Extended BRS Invariance and Osp(4/2) Supersymmetry[END_REF] that consist in a one-parameter family of nonlinear gauges continuously connected to the Landau one. Although these gauges are known to be both renormalizable and unitary, they are plagued by Gribov ambiguities. In a second time, after discussing the possible lattice implementation of these gauges in Sec. II.1.2, we apply the ST proposal to CFDJ gauges in Sec. II.2. The core of the procedure consists in a (pseudo) average over Gribov copies with a nonuniform weight in order to lift their degeneracy. This provides a continuum formulation of these gauges that consistently deals with Gribov ambiguities. We present in detail the ST approach and show that, eventually, the gauge-fixing procedure can be cast under the form of a local field theory. To achieve this, we introduce the technique of replicas [START_REF] Young | Spin glasses and random fields[END_REF], which is commonly used in the context of disordered systems in statistical field theory. As we shall see, replicas are an essential ingredient of the (localized) ST procedure as they insure that the resulting local ST action is a bona fide gauge-fixed version of YM theories. Their consequences is exhaustively discussed all along the present manuscript. On top of it, our treatment of Gribov copies introduces also a gauge parameter that controls the lifting of the copies' degeneracy. Eventually, this lifting parameter acts as a mass term for the various fields. Remarkably, the resulting gauge-fixed ST action corresponds to a massive extension of the CFDJ gauges known as the CF action [START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF], supplemented by a nontrivial replica sector. We show in Sec. II.3.2 that the ST action is multiplicatively renormalizable in four dimensions.

The difference between the bona fide gauge-fixed ST action and the CF model lies in the replica sector. Therefore, Gribov copies effects can be accessed by investigating the possible effects of the replica sector. This is achieved by comparing the gluon and ghost correlators obtained from both the ST procedure and the CF model. In the Landau gauge, where the gluon and ghost sectors are equivalent in both the ST and the CF cases, the theory admits IR safe RG trajectories under suitable choices of renormalization prescriptions. It is therefore natural to adapt such renormalization schemes to the case of the CFDJ gauges, which is done in Sec. II.5. We compute at one-loop order in perturbation theory the gluon and ghost propagators in both the ST procedure and the CF model for the whole family of CFDJ gauges. Apart in the Landau gauge, we observe clear differences between the ST and the CF cases. In particular, even away from the Landau limit, the gluon propagator remains transverse in the ST case, while a longitudinal gluon propagator develops in the CF model. We investigate in Sec. II.7 the possible presence of IR safe RG trajectories. Although present in both the ST and the CF cases, these are radically different due to the presence of massless modes in the replica sector of the ST action that are absent from the CF model. This highlights another effect of our treatment of Gribov copes. Finally, we end this chapter in Sec. II.7.4 by opening some leads for further investigations that intend to relate more directly the role of Gribov copies with the correlators of the present theory.

II.1 Gauge-fixing procedure II.1.1 Gauge-fixing functional

We consider the following functional

H[A, η, U ] = x tr A U µ 2 + U † η + η † U 2 , (II.1.1)
where η is an arbitrary N × N matrix field, g 0 is the (bare) coupling constant and we recall that

A U µ = U A µ U † + i g 0 U ∂ µ U † , (II.1.2)
with U (x) ∈ SU(N ). 1 The functional H is a slight generalization of the functional H Landau :

H Landau = H[A, 0, U ]. (II.1.3)
By analogy with the Landau gauge, we define our gauge condition as (one of) the extrema of H with respect to U . The gauge equation can be derived along the same lines as for the Landau gauge, see (I.4.2): performing the gauge transformation U → V U , with V infinitesimally close to the identity V ∼ 1+ig 0 λ and making an expansion in λ:

A V µ = A µ + D µ λ + O(λ 2
), with the usual covariant derivative

D ac µ = ∂ µ δ ac + f abc A b µ . (II.1.4)
Plugging these expressions into (II.1.1) yields the equation satisfied by the stationary points of H or, equivalently, to the covariant gauge condition

∂ µ A U µ a = ig 0 2 tr t a U η † -ηU † . (II.1.5)
For η = 0 we recover the Landau gauge condition as expected from Eq. (II.1.3). The condition Eq. (II.1.5) can be used as a gauge equation for all η. However, this would lead to a field theory that depends on the external η field. Since gauge-invariant quantities are independent of η, one can equivalently average over all realizations of η according to a given probability distribution P [η]. In principle, the choice for P [η]

1 We recall our conventions for the SU(N ) group: the {t a } a=1,...,N 2 -1 form a basis of the su(N ) Lie algebra and our convention is that tr t a t b = δ ab /2, t a , t b = if abc t c , with f abc the totally antisimmetric structure constant. The totally symmetric structure constant d abc is defined by:

t a t b = 1δ ab /2N + t c (if abc + d abc )/2.
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is arbitrary but might lead to additional technical difficulties or even worse, to a nonrenormalizable field theory if P [η] contains derivative terms for instance. In practice we choose a gaussian weight that introduces a (bare) gauge parameter ξ 0 :

P [η] = N exp - g 2 0 4ξ 0 x tr η † η , (II.1.6)
with N a normalization factor. Note that, the Landau gauge (η = 0) is recovered by

taking ξ 0 → 0 in P [η].
Just like in the Landau gauge, for a given A and η, the functional H admits many extrema U i corresponding to Gribov copies. In order to gain better insights into the field theory that describes the gauges (II.1.5), we first neglect these copies (which is at best justified in the UV regime) and apply the standard FP gauge-fixing procedure. Setting again U → (1 + ig 0 λ)U in (II.1.5) and expanding in λ, we obtain the FP operator

F ac (x, y) = ∂ µ D U µ ac + g 2 0 2 tr t a t c U η † + ηU † t c t a δ(x -y) , (II.1.7) with D U µ ϕ ≡ D µ [A U ]ϕ = ∂ µ ϕ -ig 0 [A U µ , ϕ]. The corresponding FP gauge-fixed action, for fixed η, is S η gf [A, c, c, h, U ] = S YM [A] + S η FP [A, c, c, h, U ], S η FP [A, c, c, h, U ] = x ∂ µ ca D U µ c a + ih a ∂ µ A U µ a + g 0 2 tr η † R + R † η , (II.1.8)
with R = (h -g 0 cc)U . Note in particular that U appears on its own through R and not only through the gauge transformed gauge field A U . Thus the standard FP trick, that aims at factorizing out the volume of the gauge group, cannot be applied here. This is where the choice of the weight P[η] used to average over the external η field becomes crucial as R (and so the "problematic" U) appears always along η in Eq. (II.1.8). Indeed, for the gaussian choice of P[η], Eq. (II.1.6), we have

DηP[η] e -g 0 2 x tr[η † R+R † η] ∝ e ξ 0 x tr[R † R] , (II.1.9)
which is independent of U , and hence the FP trick can be applied to factorize out the volume of the gauge group. The resulting effective FP gauge-fixed action is

S gf [A, c, c, h] =S YM [A] + S CFDJ [A, c, c, h], S CFDJ [A, c, c, h] = x ∂ µ ca D µ c a +ih a ∂ µ A a µ +ξ 0 - (ih a ) 2 2 - g 0 2 f abc ih a cb c c - g 2 0 4 f abc cb c c 2 .
(II.1.10)

The gauge-fixing term S CFDJ corresponds to the Curci-Ferrari-Delbourgo-Jarvis gauges, which were extensively studied in the literature [START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF][START_REF] Delbourgo | Extended BRS Invariance and Osp(4/2) Supersymmetry[END_REF][START_REF] De Boer | On the renormalizability and unitarity of the Curci-Ferrari model for massive vector bosons[END_REF][START_REF] Wschebor | Some non-renormalization theorems in Curci-Ferrari model[END_REF][START_REF] Tissier | A linear realization of the BRST symmetry[END_REF]. They correspond to covariant nonlinear gauges (note the difference with the covariant linear gauges by the presence of the four-ghost term in Eq. (II.1.10)). In particular they were shown to be renormalizable in four dimensions, and unitary as they possess a nilpotent BRST symmetry. However, these gauges are plagued by the presence of Gribov copies which correspond to the different extrema of the functional (II.1.1). Thus, akin for the Landau gauge, in order to completely fix the gauge, one may select a unique extremum of H. As emphasized earlier, up to now, this is not possible in the continuum. In the next section we discuss the possible implementation of the CFDJ gauges on the lattice.

II.1.2 Lattice implementation of the CFDJ gauges

Covariant gauges are very difficult to implement in lattice simulations because solving the gauge condition amounts to solve a large set of coupled nonlinear partial differential equations. The Landau gauge stands as a peculiar case because it can be formulated as an extremization procedure, which is much easier to implement on the lattice, provided that the extremization algorithms converge. As presented in Sec. I.4.3 of the previous chapter, the Landau gauge was successfully implemented on the lattice by minimization of the functional H Landau and, in turn, was extensively studied [START_REF] Boucaud | The Infrared Behaviour of the Pure Yang-Mills Green Functions[END_REF][START_REF] Bogolubsky | Lattice gluodynamics computation of Landau gauge Green's functions in the deep infrared[END_REF][START_REF] Cucchieri | Constraints on the IR behavior of the gluon propagator in Yang-Mills theories[END_REF][START_REF] Cucchieri | Constraints on the IR behavior of the ghost propagator in Yang-Mills theories[END_REF][START_REF] Cucchieri | Landau-gauge propagators in Yang-Mills theories at beta = 0: Massive solution versus conformal scaling[END_REF][START_REF] Bornyakov | Infrared behavior and Gribov ambiguity in SU(2) lattice gauge theory[END_REF][START_REF] Bornyakov | SU(2) lattice gluon propagator: Continuum limit, finite-volume effects and infrared mass scale m(IR)[END_REF][START_REF] Dudal | Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate A 2 in the Landau gauge[END_REF][START_REF] Maas | Describing gauge bosons at zero and finite temperature[END_REF]. We saw in the previous section that the CFDJ gauges also correspond to the extrema of an external functional, namely H [see (II.1.1)], which slightly generalizes the one used in the Landau gauge. This thus keeps open the possibility that the CFDJ gauges might be implemented on the lattice by extrimizing the functional H following the minimization algorithms routinely employed for the implementation of the Landau gauge. Of course, this would require to generalize/adapt all the latter to the present case. These consist in algorithms that minimize H Landau both globally and locally, whose detailed discussion is beyond the scope of the present thesis. Here, instead, as an illustration, we propose a possible generalization of the Los Alamos algorithm [START_REF] Gupta | The Hadron Spectrum on a 18**3 X 42 Lattice[END_REF], which is routinely employed to locally minimize H Landau in lattice gauge-fixing procedure.

Many numerical minimization techniques, such as the Los Alamos algorithm, require, as a necessary (but not sufficient) condition, that the (discretized) functional to be minimized be linear in the gauge transformation U at each space-time point. It is the case for the Landau gauge part of H (left term on the right hand side of Eq. (II.1.1)) [START_REF] Boucaud | The Infrared Behaviour of the Pure Yang-Mills Green Functions[END_REF], and it is obviously so for the η part. We believe that this is an encouraging point regarding the feasibility of the algorithm to be presented below. In the following, we propose a simple and straightforward generalization to the CFDJ gauges of the Los Alamos (locally minimizing) algorithm.

We restrain ourselves to the SU(2) case. For SU(3), the general strategy consists in applying successively the minimization algorithm on the three (non-independent) SU(2) subgroups of SU [START_REF] Fritzsch | Advantages of the Color Octet Gluon Picture[END_REF]. Introducing the rescaled matrix M (x) = a 2 g 2 0 η(x)/2, the discrete version of the minimizing functional (II.1.1) in terms of the gauge link [START_REF] Boucaud | The Infrared Behaviour of the Pure Yang-Mills Green Functions[END_REF][START_REF] Gupta | The Hadron Spectrum on a 18**3 X 42 Lattice[END_REF][START_REF] Serreau | A class of nonperturbative nonlinear covariant gauges in Yang-Mills theories[END_REF],

W U µ (x) = U (x)W µ (x)U † (x + aμ) is, up to an irrelevant constant
H latt. [W, M, U ] = Re tr x    M † (x)U (x) - d µ=1 W U µ (x)    . (II.1.11)
The Landau gauge functional is recovered for η = 0, i.e. M = 0 [START_REF] Boucaud | The Infrared Behaviour of the Pure Yang-Mills Green Functions[END_REF]. Owing to the linearity of H latt. in U at each lattice point, we can use the Los Alamos algorithm by generalizing it from the Landau gauge case. This algorithm aims at minimizing the functional site by site by successive gauge transformations. We first define

B(x) = -M † (x) + d µ=-d W µ (x)U † (x + aμ), (II.1.12) and C(x) = 1 4 tr(B(x) + B † (x)) + σ a 4 tr[σ a (B(x) -B † (x))] , (II.1.13)
where σ a=1,2,3 are the Pauli matrices. The Los Alamos algorithm states that applying iteratively on each lattice site the gauge transformation

U min (x) = C † (x) det C(x) , (II.1.14)
systematically decreases the functional H latt. [START_REF] De Forcrand | Multigrid Techniques for Quark Propagator[END_REF][START_REF] Serreau | Covariant gauges without Gribov ambiguities in Yang-Mills theories[END_REF]. In the present case, the only difference with the Landau gauge is the presence of the M term in the definition of B, see Eq. (II.1.12). Therefore, the minimization is done for a given η, while we showed in the last section that the CFDJ gauges are obtained after averaging over the η field with the gaussian weight (II.1.6). In the lattice version, this yields an average over the M matrix field with the discretized gaussian weight

P latt. [M ] = exp - 1 ξ 0 g 2 0 tr x M † (x)M (x) . (II.1.15)
In conclusion, to compute the averages of an operator O in the CFDJ gauges on the lattice, one should first simulate a collection of gauge links W ). Then, apply iteratively the gauge transformation (II.1.14) until a minimum is reached2 . For the same gauge link configuration, repeat the operation for the N η configurations of M and average over them. Finally, repeat the whole process for all simulated link configurations and perform the average over them. We stress that the previous discussion is far from being an actual proof of the feasibility of the lattice implementation of the CFDJ gauges. Rather, we aimed at illustrating how algorithms employed in the Landau gauge could be extended to the CFDJ gauges with an explicit example. In particular, a definite proof of the feasibility of the previous procedure would require an actual implementation in lattice simulations. More generally, the Landau gauge implementation requires, on top of local minimization procedures (akin the one presented above), global ones. We did not perform the generalization of the global procedures to the present case.

II.2 The CFDJ gauges in the Serreau-Tissier proposal

In this section, we apply the ST proposal to the gauges defined by the extrema of the functional (II.1.1) in order to formulate a continuum version of the CFDJ gauges free of Gribov ambiguities. We then prove that the resulting gauge-fixed action is renormalizable in dimension d = 4.

II.2.1 The Serreau-Tissier gauge-fixing procedure

The functional (II.1.1) admits many extrema (indexed by i in the following) U i ≡ U i [A, η] for given A and η. The extrema U i correspond to the Gribov copies. As emphasized earlier, the ST proposal consistently deals with these copies by defining averages through a two-step procedure. First, we perform a pseudo average over the Gribov copies of a given gauge orbit and we simultaneously average over the η field with the gaussian weight (II. 1.6). The degeneracy of the copies is lifted by using a nonuniform weight to perform the average over the Gribov copies. More precisely, we define the first step of the procedure as

O[A] = DηP[η] i O[A U i ]s(i)e -β 0 H[A,η,U i ] DηP[η] i s(i)e -β 0 H[A,η,U i ] , (II.2.1)
where the sum runs over all Gribov copies U i (i.e. all extrema of H), s(i) is the sign of the determinant of the FP operator (II.1.7) evaluated at the i th copy, and β 0 > 0 is a (bare) gauge parameter that controls the lifting over the copies. We shall assume that the sets of copies that present the same value of H are of zero measure such that none of the copies contribute degenerately in the sum Eq. (II.2.1) and the Neuberger problem is thus avoided. The presence of the integration over η with the weight (II.1.6) introduces another (bare) gauge parameter ξ 0 for which the Landau gauge is recovered when ξ 0 = 0. Remark the crucial property that gauge-invariant quantities are blind to this first-step average

O inv [A] = O inv [A] , (II.2.2)
as it should be since it corresponds to the average over a given gauge orbit (the one that supports the fixed field configuration A in Eq. (II.2.2)). Note in particular that, for this property to hold, the presence of the denominator in the definition (II.2.1) is mandatory. On the one hand, the peculiar case of β 0 = 0 corresponds to a flat weight over the copies so that their degeneracy is not lifted. According to the property (II.2.2), due to the cancellation among the FP signs, the case β 0 = 0 leads to the indefinite Neuberger 0/0 form of Eq. (II.2.1) when considering gauge invariant quantities. On the other hand, the limit β 0 → ∞ corresponds to select only the absolute minimum of H and thus generalizes the absolute Landau gauge. Notice that the way to average over η is not unique. For instance, one could have performed the η integration after having averaged over the copies, that is

O[A] = DηP[η] i O[A U i ]s(i)e -β 0 H[A,η,U i ] i s(i)e -β 0 H[A,η,U i ] . (II.2.3)
As we describe below, once the replicas are introduced, this way of performing the η integration leads to a more complicated effective gauge-fixed action, and this is not pursued further in this thesis.

Once the contribution of the Gribov copies has been taken into account in Eq. (II.2.1), the second step of the ST procedure consists in averaging over the gauge field A with the YM weight, that we note hereafter with an overall bar

O[A] = DA O[A]e -S YM [A] DA e -S YM [A] . (II.2.4)
All in all, the procedure

O[A] (II.2.5)
defines average values of quantities in the CFDJ gauges implemented in a Gribov ambiguity free manner as long as the lifting parameter β 0 is strictly positive. In particular, owing to the denominator in Eq. (II.2.1), the procedure (II.2.5) corresponds to a genuine gauge-fixing procedure as gauge-invariant quantities are sensible only to the second step average Eq. (II.2.4), that is, the average performed with the gauge invariant YM weight.

II.2.2 Field theoretical formulation

Although mandatory for having a bona fide gauge-fixing procedure, the presence of the denominator in Eq. (II.2.1) makes (II.2.5) nonlocal, and thus requires additional work to be cast under the form of a local field theory. This is the purpose of this section following the steps of [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF].

Owing to the standard FP procedure, by introducing the auxiliary fields c, c, ih (ghost, antighost and Nakanishi-Lautrup fields), we have the following identity

i X [A, η, U i ]s(i) = DU DcDcDh X [A, η, U ] e -S η FP [A U ,c,c,h] , (II.2.6)
whereby the sum on the left-hand side runs over all Gribov copies, S η FP has been defined in Eq. (II.1.8), DU is the Haar measure over the gauge group and X [A, η, U ] is any functional of A, U and η. The sign s(i) was introduced for the purpose of (II.2.6). In the following, we collect the set of fields U , c, c and h in a single symbol V for reasons that will soon become clear. Using the identity (II.2.6) for

X [A, η, U ] = O[A U ] exp{-β 0 H[A, η, U ]} or X [U ] = exp{-β 0 H[A, η, U ]}, the first step of the procedure, Eq. (II.2.1), rewrites O[A] = DVDη P[η] O[A U ] e -S η FP [A,V]-β 0 H[A,η,U ] DVDη P[η] e -S η FP [A,V]-β 0 H[A,η,U ] . (II.2.7)
We get, using (II.1.9) with R = (h

-g 0 cc + β 0 /g 0 )U , O[A] = DVO[A U ] e -S CF [A,V] DV e -S CF [A,V] , (II.2.8) with S CF [A, V] ≡ S CF [A U , c, c, h], (II.2.9)
and where the CF action S CF is given by

S CF [A, c, c, h] =S CFDJ [A, c, c, h] + S β 0 [A, c, c] = x ∂ µ ca D µ c a + ih a ∂ µ A a µ + β 0 1 2 (A a µ ) 2 + ξ 0 ca c a + ξ 0 - (ih a ) 2 2 - g 0 2 f abc ih a cb c c - g 2 0 4 f abc cb c c 2 .
(II. 

O[A] CF = DADcDcDh O[A] e -S YM -S CF [A,c,c,ih] DADcDcDh e -S YM -S CF [A,c,c,ih] , (II.2.11)
while for the ST proposal

O[A] = DA DV O[A U ] e -S CF [A,V] DV e -S CF [A,V] e -S YM DA e -S YM . (II.2.12)
Again, the presence of the denominator 1/ DV e -S CF [A,V] in the ST proposal insures that Eq. (II.2.12) is a genuine gauge-fixed theory as opposed to the CF case, Eq. (II.2.11). However, as noticed earlier, this renders the right hand side of Eq. (II.2.12) nonlocal in A. In order to bypass this issue, we use the method of replicas [START_REF] Young | Spin glasses and random fields[END_REF] that is commonly used in the context of disordered systems. It consists in rewriting formally a denominator as

1 X = lim n→0 X n-1 = lim n→0 n-1 k=1 X k , (II.2.13)
where n -1 independent copies of X, indexed by the replica index k, are introduced. We use this technique to put the expression (II.2.12) under the form of a local field theory. We begin by rewriting the denominator 1/ DV e -S CF [A,V] as

1 DV e -S CF [A,V] = lim n→0 DV e -S CF [A,V] n-1 .
(II.2.14)

Introducing n -1 independent replicas V k , indexed hereafter by the replica index k,

we get 1 DV e -S CF [A,V] = lim n→0 n-1 k=1 DV k e -S CF [A,V k ] . (II.2.15)
Here, the n → 0 limit is to be understood as the limit of the right-hand side analytically continued to continuous values of n. We thus finally obtain the first step average,
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Eq. (II.2.8), in the replica formalism

O[A] = lim n→0 DV O[A U ] e -S CF [A,V] n-1 k=1 DV k e -S CF [A,V k ] = lim n→0 n k=1 DV k O[A U 1 ] e -S CF [A,V k ] , (II.2.16)
where the choice of the replica 1 is totally arbitrary because of the obvious permutation symmetry among the replicas. In the following of this manuscript, we shall assume everywhere that the n → 0 limit and the path-integral over A commute. Accordingly, the ST procedure (II.2.5) is formally written as

O[A] = lim n→0 DA n k=1 DV k O[A U 1 ]e -S[A,{V}] DA e -S YM [A] , (II.2.

17) with the action S[A, {V}]

S[A, {V}] = S YM [A] + n k=1 S CF [A, V k ] . (II.2.18)
This action satisfies the identity

DA e -S YM [A] ∼ n→0 DA n k=1 DV k e -S[A,{V}] , (II.2.19)
as seen by taking O = 1 in (II.2.17). Using this last property, the ST procedure is put under the form of a local field theory, with action S, Eq. (II.2.18),

O[A] = lim n→0 DA ( n k=1 DV k ) O[A U 1 ] e -S[A,{V}] DA ( n k=1 DV k ) e -S[A,{V}] . (II.2.20)
Finally, the volume of the gauge group, DU , still needs to be factorized out for perturbative calculations (in order to being able to invert the quadratic part of the gauge-fixed action and access the free propagators). This is achieved by singularizing one of the replicas, say the replica 1, by performing the change of variables

A → A U 1 and U k → U k U -1 1 , ∀ k > 1. Renaming (c 1 , c1 , h 1 ) → (c, c, h) for later convenience, Eq. (II.2.20) reduces to O[A] = lim n→0 D(A, c, c, h, {V}) O[A] e -S[A,c,c,h,{V}] D(A, c, c, h, {V}) e -S[A,c,c,h,{V}] , (II.2.21) with D(A, c, c, h, {V}) ≡ D(A, c, c, h) ( n k=2 DV k ) and the ST action S[A, c, c, h, {V}] is given by S[A, c, c, h, {V}] = S YM [A] + S CF [A, c, c, h] + n k=2 S CF [A, V k ] . (II.2.22)
To summarize, Eq. (II.2.21) provides a continuum implementation of the CFDJ gauges, which is free of Gribov ambiguities. In particular, the procedure consists in a bona fide gauge-fixing procedure as averages of gauge-invariant observables are equals to those computed with the YM weight only. For such property to hold, the n → 0 limit is crucial as it accounts for the presence of the denominator in Eq. (II.2.1). The only assumption made so far was the interchange of the n → 0 limit with the pathintegral over A. Although the writing Eq. (II.2.21) remains somewhat formal, the ST procedure can be understood as follow: compute averages for fixed n with the ST action (II.2.22), noted hereafter with square brackets [ . ]. In perturbative calculations these result in analytic functions of n, to which we then take the n → 0 limit such as

O[A] = lim n→0 [O [A] (n)] . (II.2.23)
Let us briefly comment the ST action S, (II.2.22). Obviously, the usual CF model is recovered for n = 1 so that

O[A] CF = [O [A] (n = 1)] . (II.2.24)
This shows that the CF model cannot correspond to a gauge-fixed version of YM theories where the Gribov copies were taken into account according to the ST proposal. Indeed, independence of gauge-invariant quantities w.r.t. the gauge-fixing part requires to take the limit n → 0. Nevertheless, comparisons of quantities in the n → 0 limit with n = 1 allow one to conveniently access the effects of our treatment of Gribov copies.

Note that the replica sector of the ST action (the part n k=2 S CF [A, V k ]) does not involve any mixing between different replicas. This is a consequence of our way of averaging over the η field, Eq. (II.2.1). The study would be different if we would average over η as

O[A] = DηP[η] i O[A U i ]s(i)e -β 0 H[A,η,U i ] i s(i)e -β 0 H[A,η,U i ] . (II.2.25)
Following the same techniques as earlier, see (II.2.6), we get

O[A] = Dη P[η] DV O[A U ] e -S η FP [A,V]-β 0 H[A,η,U ] DV e -S η FP [A,V]-β 0 H[A,η,U ] . (II.2.26)
In order to perform the η integral, we first need to introduce the replicas yielding

O[A] = lim n→0 Dη P[η] n k=1 DV k O[A U 1 ] e -n k=1 S η FP [A,V k ]-β 0 H[A,η,U k ] .
(II.2.27) Using again (II.1.9), now with

R = n k=1 (β 0 /g 0 + h k -g 0 ck c k )U k , eventually leads to O[A] = lim n→0 n k=1 DV k O[A U 1 ] e - n k=1 S CF [A,V k ]-k =l S k,l , (II.2.28) with S k,l = ξ 0 tr U -1 k β 0 c k ck +c l c l - h k +h l g 0 - β 0 g 2 0 -h k h l -g 2 0 c k ck cl c l +g 0 (h k cl c l +c k ck h l ) U l . (II.2.
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In particular, this introduces couplings between different replicas in the bare action. This is a common feature in disordered systems (e.g. spin glasses) [START_REF] Young | Spin glasses and random fields[END_REF]. Here this yields a much more complicated theory and this way of performing the integration over η was not pursued further.

II.3 The ST action

In the last section we applied the ST proposal to the CFDJ gauges. Eventually, by introducing the replicas, we recast the procedure into a form suited for the use of local quantum field theory techniques. In particular, accessing averages in the ST gaugefixed theory amounts to: first compute them with the ST action (II.2.22), and then perform the limit of vanishing replica number. This implies that the computations are to be performed for fixed n. In this section, we are thus lead to investigate further the ST which, here and in the following, is always considered for finite n. We first rewrite the ST action under an equivalent and elegant supersymmetric (SUSY) form. This allows one to exhibit nontrivial symmetries of the theory. Exploiting the latter, we prove that it is renormalizable in four dimensions.

II.3.1 Supersymmetric formulation of the CF action

It is known that the CF action (II.2.10) can be recast into a SUSY form [START_REF] Tissier | Gauged supersymmetries in Yang-Mills theory[END_REF]. It is therefore not surprising that the ST action (II.2.22) also admits such a formulation [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF][START_REF] Serreau | Covariant gauges without Gribov ambiguities in Yang-Mills theories[END_REF], that we now review. We start from the CF action evaluated at A U (that is for the replica sector of the ST action, see (II.2.22)) and we recast it under a more symmetric form by introducing ĥa = ih a + g 0 2 f abc cb c c

S CF = x β 0 2 (A U,a µ ) 2 + 1 2 ∂ µ ca D U µ c a + D U µ ca ∂ µ c a + ĥa ∂ µ A U,a µ + ξ 0 β 0 ca c a - ( ĥa ) 2 2 - g 2 0 8 f abc cb c c 2 , (II.3.1)
where A U,a = (A U ) a and we recall that

D U µ ϕ = ∂ µ ϕ -ig 0 A U µ , ϕ .
We then introduce a couple of Grassmannian coordinates (θ, θ) = θ that satisfy θ 2 = θ2 = θ θ + θθ = 0.

The Grassmann space spanned by θ is taken to be curved and its geometry is defined by its line element ds 2 = g M N dN dM = 2g θ θd θdθ, where the Grassmann metric g M N is given by [START_REF] Tissier | Gauged supersymmetries in Yang-Mills theory[END_REF] 

g θθ = -g θ θ = β 0 θθ + 1 , g θθ = -g θ θ = β 0 θθ -1 . (II.3.2)
Accordingly, one defines the invariant integration measure

θ = dθd θ g 1/2 (θ, θ) , (II.3.3) with g 1/2 (θ, θ) = β 0 θθ -1, (II.3.4) such that θ 1 = β 0 . (II.3.5)
On the superspace (x, θ, θ), made of the d-dimensional Euclidean space supplemented by the Grasmmann space, one defines the SU(N ) supermatrix field V(x, θ) = exp ig 0 θc + cθ + θθ ĥ U.

(II.3.6)

Let us consider now the following SUSY nonlinear (NL) sigma model defined on the superspace (x, θ)

S SUSY [A, V] = 1 g 2 0 x,θ tr D µ V † D µ V + ξ 0 2 g M N ∂ N V † ∂ M V , (II.3.7)
where 

D µ V = ∂ µ V + ig 0 VA µ .
S SUSY [A, V] = S CF [A U , c, c, h]. (II.3.8)
This relation makes obvious the interest of introducing V (II.3.6). Finally, for later purposes, it is useful to rewrite, again, Eq. (II.3.7) as

S CF [A, V] = x,θ 1 2 L a µ -A a µ 2 + ξ 0 4 g M N L a N L a M , (II.3.9)
where we introduced the vector fields

L µ = i g 0 V † ∂ µ V and L M = i g 0 V † ∂ M V (II.3.10)
which belong to the adjoint representation of SU(N ). Aspects of this SUSY formulation for the CF model were discussed in great details in [START_REF] Tissier | Gauged supersymmetries in Yang-Mills theory[END_REF]. In particular, it is worth mentioning the geometrical interpretation of the ST lifting parameter β 0 that appears here as the curvature of the Grassmann space.

The action (II.3.7) inherits the Grasmann subspace isometries given by the invariance under the transformations according to the five independent Killing vectors

χ M χ θ = a s (1 + β 0 θθ) + θa t -θa c χ θ = a s(1 + β 0 θθ) + a tθ + θa c , (II.3.11)
where a s , a s, a t , a t, a c are free parameters, see [START_REF] Tissier | Gauged supersymmetries in Yang-Mills theory[END_REF] for details. The SUSY action (II.3.7) is invariant under the linear transformations

V k → V k + χ M ∂ M V k
and so is the associated quantum effective action Γ SUSY [START_REF] Weinberg | The quantum theory of fields[END_REF]. Eventually, these isometries insure that Γ SUSY is covariant in Grassmann coordinates, that is, covariant derivatives3 are contracted with the metric4 g MN and integrals over the Grassmann subspace come with the proper measure Eq. (II.3.3).
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In conclusion, the ST action can be expressed according to the SUSY form of the CF action as

S[A, c, c, h, {V}] =S YM [A] + S CF [A, c, c, h] + n k=2 S SUSY [A, V k ], = x 1 4 (F a µν ) 2 + β 0 2 (A U,a µ ) 2 + ξ 0 β 0 ca c a + ∂ µ ca D µ c a + ih a ∂ µ A a µ + ξ 0 - (ih a ) 2 2 - g 0 2 f abc ih a cb c c - g 2 0 4 f abc cb c c 2 + n k=2 1 g 2 0 x,θ tr D µ V † D µ V + ξ 0 2 g M N ∂ N V † ∂ M V , (II.3.12)
The ST action thus corresponds to a set of n -1 replicated gauged SUSY NL-sigma models coupled to a gauge-fixed YM field with gauge-fixing action S CF [A, c, c, h]. Each replica k of NL-sigma model comes with its own set of Grassmann variables (θ k ) and its corresponding isometries.

II.3.2 Renormalizability of the ST action

II.3.2.1 Symmetries

We now list the symmetries of the ST action. This will allow us to constrain the UV divergences of the theory and eventually to prove its multiplicative renormalizability. We begin by enumerating the linear symmetries. There are the global SU(N ) color symmetries and the isometries of the Euclidean space R 4 . The ghost symmetry corresponds to the invariance of the ST action under c → e i c, c → e -i c, (II. 3.13) yielding the ghost number conservation. There are the isometries associated to each curved Grassmann space replica that were described above. As emphasized earlier, they insure that the effective action is covariant on each Grassmann subspace. There is also a discrete symmetry under the permutation of the replicas:

V k ↔ V l for k, l = 2, . . . , n.
The ST action (II.3.12) also admits nonlinear symmetries which yield Slavnov-Taylor identities. One, inherited from the initial gauge symmetry, is the modified BRST symmetry ŝ of the CF model presented in the previous chapter, see (I.5.2), that can be enlarged to the SUSY sector. For simplicity, from now on, we refer to this enlarged modified BRST symmetry as the BRST symmetry and denote it s. The fields of the ST action transform under s as

sA a µ = ∂ µ c a + g 0 f abc A b µ c c , sc a = - g 0 2 f abc c b c c , sc a = ih a , sih a = β 0 c a (II.3.14)
and

sV k = -ig 0 V k c , k = 2, . . . , n . (II.3.15)
In the sector (A, c, V k ) this simply corresponds to a gauge transformation with Grassmann parameter c a . In particular, s 2 = 0 when restricted to this sector while its nilpotency is softly broken by the mass term β 0 on the sector (c, ih). Accordingly, we define the t transformation such that s 2 = β 0 t, whose explicit action on the primary fields is given by

tc a = c a , tih a = - g 0 2 f abc c b c c (II.3.16)
and tA a µ = tc a = tV k = 0. There is a last family of symmetries that concern only the SUSY sector. They consist in global left color rotations of the NL-sigma model fields

V k → V L,k V k with V L,k ∈ SU(N ), whose generators δ a k are defined by [98] δ a k V l = iδ kl t a V l , (II.3.17)
so that each replica superfield can be transformed independently from the others. This last family of symmetries thus contains (N 2 -1)×(n-1) independent generators. Note that, these symmetries are actually nonlinear since the V k are superfields constrained to belong to the SU(N ) group. To make this more explicit, it turns out to be more convenient to use the following linear parametrization for the SU(N ) superfields given in terms of 2N

2 superfields a 0 k , b 0 k , a a k , b a k : V k = (a 0 k + ib 0 k )1 + i(a a k + ib a k )t a . (II.3.18)
The constraint that V k ∈ SU(N ) implies that there are only N 2 -1 unconstrained superfields among the 2N 2 ones appearing in Eq. (II. 3.18). We choose the a a k as the N 2 -1 unconstrained superfields while a 0 k , b 0 k , and b a k are functions of a a k such that V k in Eq. (II.3.18) belongs to the SU(N ) group. In practice we will not need their explicit expressions. In this representation, the generators of the (N 2 -1) × (n -1) global left color rotations act on the superfields a a k as [98]

δ a k a b l = δ kl δ ab a 0 k + 1 2 f abc a c k - 1 2 d abc b c k (II.3.19)
and on the constrained ones as

δ a k a 0 l = -δ kl a a k 2N , δ a k b 0 l = -δ kl b a k 2N , δ a k b b l = δ kl δ ab b 0 k + 1 2 f abc b c k + 1 2 d abc a c k . (II.3.20)
For later use, we also write down the BRST action on those superfields

sa a k = g 0 -a 0 k c a + 1 2 f abc a b k c c + 1 2 d abc b b k c c , sa 0 k = g 0 2N a b k c b , sb 0 k = g 0 2N b b k c b , sb a k = g 0 -b 0 k c a + 1 2 f abc b b k c c - 1 2 d abc a b k c c .
(II.3.21)
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We mention that the generators of the nonlinear symmetries considered above induce a closed (super)algebra:

{s, s} = 2β 0 t , [δ a k , δ b l ] = iδ kl f abc δ c k , [δ a k , s] = [δ a k , t] = [s, t] = [t, t] = 0 .
(II. 3.22) We are now in position to prove the perturbative renormalizability in d = 4 of the ST action. Our proof relies on standard arguments where, using the symmetries listed above, we constrain the possible divergent terms Γ div appearing in the quantum effective action Γ [START_REF] Weinberg | The quantum theory of fields[END_REF]. First, we introduce sources for all independent fields and their variations under the symmetries

S 1 = x J a µ A a µ + ηa c a +c a η a +ih a M a + Ka µ sA a µ + La sc a + n k=2 x,θ P 0 k a 0 k + P a k a a k + R 0 k b 0 k + R a k b a k + Q0 k sa 0 k + Qa k sa a k + T 0 k sb 0 k + T a k sb a k . (II.3.23)
Since tc a = c a , tih a = -g 0 2 f abc c b c c = sc a there is no need to introduce associated independent sources for the t variations. The same is true on the SUSY sector for s 2 , sδ a k = δ a k s, and δ a k δ b l which can be fully expressed in terms of either the (super)fields themselves or their variations under s or δ a k , see Eq. (II.3.22). From Eq. (II.3.23) and the ST action, we define the connected generating functional W = ln D(A, c, c, h, {V}) e -S+S 1 . By performing a Legendre transform of W with respect to the sources J a µ , ηa , η a , M a , P a k , we get the 1-PI vertex generating functional or quantum effective action Γ in presence of sources for the composite fields a 0 k , b 0 k , b a k , sA a µ , sc a , sa 0 k , sa a k , sb 0 k , sb a k associated to the ST action. Γ inherits all the linear symmetries of the ST action [START_REF] Weinberg | The quantum theory of fields[END_REF]. In particular, ghost number conservation insures that all terms belonging to Γ have zero ghost number. We recall that each replica superspace comes with its own set of Grassmann variables and so its own set of isometries. The constraints induced by the nonlinear symmetries are more complicated. To handle them we follow the standard procedure of [START_REF] Weinberg | The quantum theory of fields[END_REF] and introduce the renormalized transformations s, t, δa k defined by their action on the primary fields

sA a µ = - δΓ δ Ka µ , sc a = - δΓ δ La , sa a k = - δ θ Γ δ Qa k sc a = ih a , sih a = β 0 c a , (II.3.24)
where we have defined the covariant functional derivative δ θ Γ/δφ = (g -1/2 )δΓ/δφ with any superfield φ, and g is the determinant of the Grassmann metric defined in (II. 3.3). This accounts for the curved Grassmann directions. We also define

tc a = c a , tih a = - δΓ δ La (II.3.25) and δa k a b l = δ kl -δ ab δ θ Γ δP 0 k + 1 2 f abc a c k + 1 2 d abc δ θ Γ δR a k (II.3.26)
with all other variations being zero. The original symmetries sS = tS = δ a k S = 0 imply the following Zinn-Justin equations sΓ = n k=2 x,θ

P 0 k δ θ Γ δ Q0 k + R 0 k δ θ Γ δ T 0 k + R a k δ θ Γ δ T a k , (II.3.27) tΓ = 0 , (II.3.28)
and

δa k Γ = x,θ 1 2N P 0 k a a k -R 0 k δ θ Γ δR a k -Q0 k δ θ Γ δ Qa k -T 0 k δ θ Γ δ T a k + R a k δ θ Γ δR 0 k + Qa k δ θ Γ δ Q0 k + T a k δ θ Γ δ T 0 k + f abc 2 R b k δ θ Γ δR c k + Qb k δ θ Γ δ Qc k + T b k δ θ Γ δ T c k - d abc 2 R b k a c k + Qb k δ θ Γ δ T c k -T b k δ θ Γ δ Qc k . (II.3.29)
We now use these equations in order to constrain the possible divergent terms arising in Γ.

II.3.2.2 Constraining the UV divergences

We note Γ div = d 4 x L div (x) the divergent part of the effective action and define L div (x) the most general local Lagrangian density which, by power counting, includes operators of mass dimension lower than or equal to 4 compatible with the symmetries of the problem. Moreover, we shall assume that Γ div can be written under the form of a (local) series in the various fields.

Γ div must satisfy the symmetry identities Eqs. (II.3.27)-(II.3.29) that we use as constraints on the possible terms that appear in L div (x). Listing all the possible terms appearing in L div (x) is straightforward but lengthy and not illuminating, so we present the key arguments. First, note that Grassmann variables have mass dimension -1. Indeed, the Grassmann metric g must be dimensionless which implies that

[ θ] = [θ] = -1. The identities dθ θ = d θ θ = 1 further imply that [dθ] = [d θ] = 1.
Hereby, for the terms of the form θ L 2 (x, θ), θ,θ L 3 (x, θ, θ ) be of mass dimension lower than or equal to 4, the Lagrangian densities L 2 and L 3 must be respectively of mass dimension lower than or equal to 2 and 0. Recalling that s is of mass dimension 1 and of ghost number 1, with the same kind of reasoning we deduce the mass dimension and ghost number of the fields, sources, and Grassmann coordinates that we resume in Table II.1. Let us present an example in order to illustrate the strategy. We list the possible terms appearing in Γ div that involve the source Ka µ and which are of mass dimension lower than or equal to 4. A first possibility is g Ka 

µ f abc A b µ c c ,
A c c ih a K L P R Q T θ ∂ θ dθ θ ∂ θ d θ dim. 1 1 1 2 0 2 2 2 2 1 1 -1 1 1 -1 1 1 ghost nb. 0 1 -1 0 0 -1 -2 0 0 -1 -1 1 -1 -1 -1 1 1
Table II.1: Mass dimension and ghost number of the fields, sources, and Grassmann coordinates.

replica Grassmann spaces, these are the only possible couplings of K with the fields A, c, c, ih, a. For instance, power counting tells us that the only possibility to couple Kµ to ih is through the combination ih Kµ without additional derivatives, though it breaks covariance and ghost number conservation. One might have though to include Grassmann coordinates: θ θih∂ µ Kµ c which is of mass dimension 4, ghost number 0 and satisfies the Euclidean covariance. However Grassmann isometries implies that such an operator must appear in Γ with proper integration measure, that is, of the form θ L 2 (x, θ). In L 2 (x, θ), only the terms of mass dimension lower than and equal to 2 contribute to Γ div . Hence, Kµ cannot be coupled to ih in Γ div . Similarly, covariance requires that possible couplings to the superfields a are of the form Kµ ∂ µ a, which is of mass dimension 3, while Grassmann isometries require that such a term appear in Γ under the form of θ L 2 (x, θ). Accordingly, there is no term in Γ div that couples K to the superfields a. Along the same lines, one deduces that it is not possible to couple K to c nor to any sources of Table II.1.

Eventually, the inspection of Table II.1 shows that terms in Γ div are at most linear in the (super)sources and we can thus write

Γ div = Γ 0 -Γ 1 , (II.3.30)
where Γ 0 and Γ 1 are respectively independent of and linear in the sources. According to the definitions (II.3.24), we define

Γ 1 = x Ka µ sA a µ + La sc a + n k=2 x,θ P 0 k ã0 k + R 0 k b0 k + R a k ba k + Q0 k X 0 k + Qa k sa a k + T 0 k Y 0 k + T a k Y a k .
(II. 

ã0 l = -δ kl a a k 2N , δa k b0 l = -δ kl ba k 2N , δa k bb l = δ kl δ ab b0 k + 1 2 f abc bc k + 1 2 d abc a c k . (II.3.33)
The superfield a a k along with the unknown functions ã0 k , b0 k , ba k can be grouped altogether into a matrix superfield with Z a constant. We now move to the case of the renormalized BRST transformation s. We already saw above that the most general terms that can be coupled to the source Kµ in Γ div are given by κ 1 Ka µ ∂ µ c a and g Ka µ f abc A b µ c c , so that using (II.3.24)

Ṽk = (ã 0 k + i b0 k )1 + i(a a k + i ba k )t
sA a µ = κ 1 ∂ µ c a + gf abc A b µ c c . (II.3.37) Similar considerations lead to 6 sc a = - g 2 f abc c b c c . (II.3.38)
Along the same lines, one eventually gets the most general form of the renormalized BRST symmetry acting on the matrix superfield Ṽk [START_REF] Serreau | Covariant gauges without Gribov ambiguities in Yang-Mills theories[END_REF] s Ṽk = -ig Ṽk c , k = 2, . . . , n .

(II.3.39)

From the action of the renormalized symmetries on the elementary fields Eqs. (II.3.37), (II.3.38), (II.3.39) and Eq. (II.3.35), we are now able to determine the form of Γ 0 , which satisfies sΓ 0 = tΓ 0 = δa k Γ 0 = 0. (II.3.40)

Using the fact that, by power counting, there can be at most two sets of Grassmann variables, we parametrize the solution as

Γ 0 = x L 1 (A, c, c, h) + n k=2 x,θ L 2 (A, c, c, h, a k (θ)) + n k,k =2 x,θ,θ L 3 (a k (θ), a k (θ )).
(II. ) so that L 3 = 0. Notice that, in the sector (A, c, Ṽk ), the transformation s is, up to a multiplicative factor κ 1 , a (left) gauge transformation with Grassmannian gauge parameter c a and effective coupling constant g/κ 1 . A solution to sL 1 = 0 is thus a YM-like term with an appropriate field-strength tensor, see below. Apart from this term, the combinations

X = β 0 2κ 1 A a µ 2 -s A a µ ∂ µ ca , (II.3.42) Y = β 0 ca c a -s ca ih a + g 2 f abc cb c c (II.3.43)
are the only independent solutions to sL 1 = 0 with the correct dimension, symmetries, and ghost number. Thus

L 1 = Z 1 4 ( F a µν ) 2 + κ 2 X + κ 3 2 Y, (II.3.44) with F a µν = ∂ µ A a ν -∂ ν A a µ + g κ 1 f abc A b µ A c ν . (II.3.45)
Explicitly, one has

L 1 = Z 1 4 ( F a µν ) 2 +κ 2 β 0 2κ 1 (A a µ ) 2 -iA a µ ∂ µ h a + ∂ µ ca sA a µ + κ 3 β 0 ca c a + (h a ) 2 2 - g 2 f abc ih a cb c c - g2 4 (f abc cb c c ) 2 , (II.3.46)
with sA a µ given in (II. 3.37). This is trivially invariant under t and δa k . Let us now consider the NL-sigma model sector L 2 . The constraint δa k L 2 = 0 is accounted for by using the SU R (N ) invariants Ṽ † k ∂ . . . ∂ Ṽk , with an arbitrary number of bosonic and Grassmannian derivatives, as building blocks. The term with no derivatives is trivial due to (II. 3.36). The isometries of the embedding superspace and the fact that L 2 can only contain local terms of mass dimension lower than 2 restricts the set of possible invariants to (M = θ, θ)

Lk,µ = i g Ṽ † k ∂ µ Ṽk and Lk,M = i g Ṽ † k ∂ M Ṽk . (II.3.47)
Both Lk,µ and Lk,M have mass dimension one. Their ghost numbers are 0 for Lk,µ , 1 for Lk, θ and -1 for Lk,θ . The variation of Lk,µ under s is

s La k,µ = Z∂ µ c a + gf abc Lb k,µ c c (II.3.48) It follows that Lk,µ /Z -A µ /κ 1 transforms covariantly s La k,µ - Z κ 1 A a µ = gf abc Lb k,µ - Z κ 1 A b µ c c . (II.3.49)
Similarly, Lk,M transforms covariantly:

s La k,M = -gf abc Lb k,M c c . (II.3.50)
The most general dimension-two Lagrangian L 2 satisfying sL 2 = 0 is thus

L 2 = Z 2 2 La k,µ - Z κ 1 A a µ 2 + Z 3 4 g M N La k,N La k,M (II.3.51)
We see that the most general divergent part compatible with the symmetries eventually reads

L = Z 1 4 ( F a µν ) 2 +κ 2 β 0 2κ 1 (A a µ ) 2 -iA a µ ∂ µ h a + ∂ µ ca sA a µ + κ 3 β 0 ca c a + (h a ) 2 2 - g 2 f abc ih a cb c c - g2 4 (f abc cb c c ) 2 + n k=2 x,θ Z 2 2 La k,µ - Z κ 1 A a µ 2 + Z 3 4 g M N La k,N La k,M , (II.3.52)
which has the same form as the bare Lagrangian (II.3.12) (see also (II.3.9)). This demonstrates the (multiplicative) renormalizability of the present theory. So far we have eight independent renormalization constants κ 1,2,3 , Z 1,2,3 , Z, and g. As described in Appendix B.1, the original symmetry between the replicas k = 1 and k ≥ 2 leads to the relations

Z 2 Z 2 = κ 1 κ 2 and Z 3 Z 2 = κ 3 (II.3.53)
which reduce the number of independent renormalization constants to six. In particular, it follows that all replicas contribute a mass term for the gauge field

Z 2 Z 2 2κ 2 1 θ (A a µ ) 2 = β 0 κ 2 2κ 1 (A a µ ) 2 , (II.3.54)
identical to the one in (II. 3.46). The total A 2 contribution is thus proportional to n, as expected from the replica symmetry.

Chapter II. Nonlinear covariant gauges without Gribov ambiguities

Notice that the proof is valid for arbitrary n and does not rely on taking the limit n → 0 (though the renormalization factors might depend on n and actually does, see below). It is a crucial point for the consistency of the present approach. Indeed, one may have though that, since the ST proposal corresponds to a gauge-fixing procedure only for n → 0, it would be sufficient to have proved the renormalizability only in this limit. However, as emphasized above, in computing averages, we should first work in the finite n theory and eventually take the limit n → 0 (and in particular, the perturbative series is constructed for finite n).

II.4 Perturbation theory

We now intend to compute the basic correlation functions of the CFDJ gauges in perturbation theory. As we saw earlier, the ST proposal requires to first compute these correlation functions for finite n with the ST action (II.3.12) and ultimately to perform the limit n → 0. In the last section, we have proved that the ST action is multiplicatively renormalizable for finite n allowing us to construct a meaningful perturbative series. In this section, we compute the various one-loop contributions to the two-point vertex functions of the present theory. To do so, we first derive the Feynman rules corresponding to the SUSY formulation of the ST action and go through actual calculations. As a check of our proof of renormalizability we extract the various divergent parts arising in the loop contributions to the two-point vertex functions and show how they can be absorbed in the renormalization constants introduced in the previous section. Finally, we present also the calculations performed in the non-SUSY formalism, see Eq. (II.2.22), that we used to check our computations.

II.4.1 Feynman rules

We are primarily interested in computing at one-loop order the various two-point vertex functions defined as the second derivatives of the effective action Γ at fixed n:

Γ XY (p, θ, θ ) = δ (2) θ Γ δX(p, θ)δY (-p, θ ) 0 , (II.4.1)
where X and Y denote any of the (super)fields, the subscript 0 means that the derivative is evaluated at vanishing fields, and δ θ /δX is the covariant functional derivative defined in the previous section if X is a superfield, and reduces to a standard functional derivative otherwise. We use the exponential representation of SU(N ) matrix superfield. Accordingly, we introduce the superfield Λ a k for each replica, such that

V k (x, θ k ) = exp [ig 0 t a Λ a k (x, θ k )] . (II.4.2)
In the SUSY formulation that we are considering here, the superfields Λ a k stand as the basic fields in terms of which we want to derive the Feynman rules. To access the relevant ones for one-loop order calculations, we need to expand V k (x, θ k ) in powers of g 0 Λ k up to order g 2 0 in the SUSY part of the ST action, Eq. (II.3.12). In practice, we work in momentum Euclidean space with the Fourier convention ∂ µ → -ip µ . Since the Grassmann spaces are curved, it is not useful to introduce the associated Fourier variables. The first step is to access the various free or tree-level propagators obtained by inversion of the two-point vertex functions. For instance, in the ghost sector of the ST action (II.3.12), we obtain the bare tree-level two-point ghost vertex function

Γ cc (p) = p 2 + β 0 ξ 0 , (II.4.3)
which can be trivially inverted to get the free (bare) ghost propagator

c a (-p) cb (p) 0 = δ ab p 2 + β 0 ξ 0 , (II.4.4)
where the square brackets mean that we are working at finite n and the subscript 0 denotes an average with the quadratic part of the action (II.3.12). On the other hand, the quadratic part of the action (II.3.12) couples the different fields in the sector (A, ih, Λ k ) and therefore its inversion is not trivial. Nevertheless, spacetime and Grassmann isommetries imply the following decomposition of the one-loop two-point vertex functions in the (A, ih, Λ k ) sector7 

Γ AµAν (p) = P T µν (p)Γ T (p) + P L µν (p)Γ L (p) (II.4.5) and Γ ihAµ (p) = -Γ Aµih (p) = ip µ Γ ihA (p), (II.4.6)
where we introduced the longitudinal and transverse projectors P L µν (p) = p µ p ν /p 2 , P T µν (p) = δ µν -p µ p ν /p 2 . We define the covariant Dirac delta function on the curved Grassmann space that satisfies θ δ(θ, θ )f (θ) = f (θ ). 8 In particular, one has δ θ X(θ)/δX(θ ) = δ(θ, θ ) for a given superfield X. We also define the Laplace operator on the curved Grassmann space θ = 1 √ 9 This definition of the Laplace operator corresponds to a natural extension to the case of a curved superspace of the formulas usually used when considering curved space-time, e.g. in General Relativity, [START_REF] Nath | Generalized Supergauge Symmetry as a New Framework for Unified Gauge Theories[END_REF]. With these definitions, and using further the replica symmetry, the two-point vertex functions involving the superfields read

g(θ) ∂ M g(θ)g M N ∂ N that satisfies the identity θ δ(θ, θ ) = -2 + 2β 0 δ(θ, θ ).
Γ Λ k Λ l (p, θ, θ ) = δ kl Γ 1 (p)δ(θ, θ ) + Γ 2 (p) θ δ(θ, θ ) + (δ kl -1)Γ 3 (p) (II.4.7) and Γ Λ k Aµ (p, θ) = -ip µ Γ 4 (p), (II.4.8)
Note that we have extracted everywhere a unit matrix in color space. These two-point vertex functions can be grouped altogether in a matrix representation [START_REF] Bowman | Scaling behavior and positivity violation of the gluon propagator in full QCD[END_REF] Chapter II. Nonlinear covariant gauges without Gribov ambiguities

Γ (2) =    Γ T P T µν + Γ L P L µν -ip µ Γ ihA ip µ Γ 4 ip ν Γ ihA Γ ihih 0 -ip ν Γ 4 0 δ kl Γ 1 δ(θ k , θ l ) + Γ 2 θ k δ(θ k , θ l ) + (δ kl -1)Γ 3    .
(II.4.9)

Γ 1 (p) = p 2 Γ 2 (p) = ξ 0 /2 Γ 3 (p) = 0 Γ 4 (p) = 1.
(II.4.10)

Details of the inversion of the two-point vertex matrix Γ (2) is postponed to Appendix D. After inversion, we obtain the remaining (bare) tree-level propagators of the ST action:

A a µ (-p) A b ν (p) 0 = δ ab P T µν (p) p 2 + nβ 0 + ξ 0 P L µν (p) p 2 + β 0 ξ 0 , (II.4.11) ih a (-p)ih b (p) 0 = -β 0 δ ab p 2 + β 0 ξ 0 , (II.4.12) ih a (-p)A b µ (p) 0 = iδ ab p µ p 2 + β 0 ξ 0 . (II.4.13)
We observe that, in the (A, ih) sector, the only consequence of the replicas is through the n factor in the square mass nβ 0 of the transverse gluon propagator. The correlator of the superfields Λ k reads

Λ a k (-p, θ) Λ b l (p, θ ) 0 = δ ab δ kl δ(θ, θ ) p 2 + β 0 ξ 0 + ξ 0 (1 + δ kl ) p 2 (p 2 + β 0 ξ 0 ) . (II.4.14)
Note in particular that nontrivial correlations between different replicas can only appear for ξ 0 = 0. Finally, there are nontrivial mixed correlators

ih a (-p)Λ b k (p, θ) 0 = δ ab p 2 + β 0 ξ 0 (II.4.15)
and

Λ a k (-p, θ)A b µ (p) 0 = iξ 0 δ ab p µ p 2 (p 2 + β 0 ξ 0 ) . (II.4.16)
We can already observe how the Landau gauge (ξ 0 = 0) and the ξ 0 = 0 cases differ by inspection of the different masses of the tree-level propagators. Indeed, for ξ 0 = 0 all modes are massless apart from the transverse gluons. The latter are purely transverse while in the general ξ-gauges they also display a longitudinal propagator. For what concerns the SUSY sector, the mixed correlator Λ a k (-p, θ)A b µ (p) 0 vanishes in the Landau gauge. Moreover, as already noticed, the correlator Λ a k (-p, θ) Λ b l (p, θ ) 0 becomes diagonal in replica but also ultra-local (∝ δ(θ, θ )) in Grasmann space.

We now proceed to the derivation of the interaction vertices relevant for one-loop calculations. As usual they are obtained from terms in Eq. (II.3.12) with more than two powers in the fields. In the non-supersymmetric (A, c, c, ih) sector, the vertices are identical to those of the CF model. These include the usual YM ones, namely the three and four gluon interactions as well as the standard ghost-antighost-gluon vertex. For ξ 0 = 0 there are also a four-ghost vertex as well as an ihcc interaction [see Eq. (C.1.1)]. To get the vertices of the SUSY NL-sigma models, we again have to expand the exponential parametrization

V k (x, θ k ) = exp [ig 0 t a Λ a k (x, θ k )] in powers of g 0 Λ k .
There is thus an infinite number of SUSY vertices. They involve an arbitrary number of Λ k legs and either one or zero gluon leg. An important remark is to note that all these vertices always involve the same replica. Among this infinity of SUSY vertices, only those that contribute up to order g 2 0 are relevant for one-loop calculations. For instance, there is an

AΛ k Λ k vertex that reads δ θ δΛ a k (p 1 , θ) δ θ δΛ b l (p 2 , θ ) δ δA c µ (p 3 ) S = i g 0 4 f abc δ kl (2π) d δ (d) (p 1 + p 2 + p 3 )δ(θ, θ )(p 1 -p 2 ) µ
(II.4.17) Note that this vertex is also present in the Landau gauge. There is no cubic Λ 3 interaction. This is easily understood as follow. Vertices involving the superfields, but no gluon leg, come along with two derivatives (normal or Grassmannian ones). Cubic vertices only involve the antisymmetric structure constant Before applying this set of rules to perform actual computations, let us make few comments on the Landau gauge (ξ 0 = 0) case. We recover the Landau gauge Feynman rules of [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] for ξ 0 = 0. In this case, drastic simplifications occur. The part of the SUSY sector, (II.3.7), that involves Grassmann derivatives vanishes for ξ 0 = 0 and Eq. (II.3.7) becomes local in Grassmann variables. Consequently, the propagators and vertices do not involve Grassmann derivatives. Therefore, closed loops of superfields that involve p SUSY vertices show the following Grassmann structure:

f abc ∂ µ Λ a k ∂ µ Λ b k Λ c k = f abc g M N ∂ N Λ a k ∂ M Λ b k Λ c k = 0. Finally,
θ 1 ,...,θ p δ(θ 1 , θ 2 ) . . . δ(θ p , θ 1 ) = 0. (II.4.18)
Hence, in the Landau gauge, neither the gluon nor the ghost sectors receive any loop contribution from the replica superfields. The replica sector only gives contribution to the bare tree-level gluon mass nβ 0 . Henceforth, for what concerns the gluon and ghost sectors, the Landau gauge ST action is perturbatively equivalent to the Landau limit of the CF model.

II.4.2 One-loop two-point vertex functions

We now proceed to the one-loop computations of the two-point vertex functions of the ST action in the CFDJ gauges, that is the one-loop contributions to the scalar functions (II.4.3) and (II.4.10). As emphasized before, we keep n finite untill the end of the calculations. We apply the Feynman rules derived in the previous section. Calculations are straightforward but lengthy and not particularly enlightening. We thus only display the one-loop Feynman diagrams in lines. The Grassmannian integrals are trivially performed using the identities

Γ Λ-loop A a µ A b ν (p) = g 2 0 8 n i,j=2 k θ i ,θ j f acd (k ν + ν ) δ ij δ(θ i , θ j ) k 2 + β 0 ξ 0 + (1 + δ ij )ξ 0 k 2 (k 2 + β 0 ξ 0 ) × f bdc (k µ + µ ) δ ij δ(θ i , θ j ) 2 + β 0 ξ 0 + (1 + δ ij )ξ 0 2 ( 2 + β 0 ξ 0 ) , (II.4.19)
θ δ(θ, θ )f (θ) = f (θ ) , δ (θ, θ) = 0 and θ 1 = β 0 .
(II.4.20)

After summing over the replica indices, we obtain the following momentum integral:

Γ Λ-loop A a µ A d ν (p) = -δ ad (n-1) g 2 0 N β 0 ξ 0 8 × k (k µ + µ ) (k ν + ν ) (k 2 +β 0 ξ 0 ) ( 2 + β 0 ξ 0 ) 2 k 2 + 2 2 + (n+2)β 0 ξ 0 k 2 2 ,
(II.4.21) which is logarithmically divergent in the UV.

For later use, let us show the result obtained for the second diagram on the second line of Fig. II.1, which also involves the replica sector. A similar calculation yields

Γ mixed A a µ A d ν (p) = -δ ad (n-1) g 2 0 N β 0 ξ 2 0 d-1 P T µν (p) × k k 2 p 2 -(k • p) 2 k 2 2 (k 2 + β 0 ξ 0 ) ( 2 + β 0 ξ 0 ) . (II.4.22)
It is transverse and UV finite. As expected, both replica contributions are ∝ n -1 and vanish identically in the CF model (n = 1). We remark that the two sunset diagrams contributing to the superfield two-point vertex function, namely the last two ones in Fig. II.4, present non-diagonal terms in replicas so that Γ Λ k Λ l develops nontrivial correlations between different replicas at oneloop order as compared to the tree-level case (see Eq. (II.4.9) and (II.4.10)). However the off-diagonal divergent part of diagram three and four of Fig. II.4 are respectively g 2 N ξ 2 0 /32π 2 and -g 2 N ξ 2 0 /32π 2 . Therefore correlations between different replicas are UV finite as required by renormalizability.

We mention that in the inversion of the two-point vertex function matrix (II.4.9) we considered a possible nonzero value for correlations between different replicas (Γ 3 = 0) but no correlation between ih and the superfields. Indeed, such correlations are absent at one-loop order, but we stress that they might appear at two-loop. 

II.4.3 One-loop renormalization

II.4.3.1 UV divergences

The calculation of the other diagrams of Figs. II.1 -II.5 goes along the same lines and consists in standard one-loop momentum integrals once the Grassmannian integrations are performed. Although their expressions are pretty cumbersome and therefore given in Appendix C, the divergent parts can easily be evaluated. Altogether, the one-loop Feynman diagrams, Figs. II.1 -II.5, yield nine divergent structures

Γ div AµAν (p) = nβ 0 δ µν 1 + κ 3 + ξ 0 4 + p 2 P T µν (p) 1 -κ 13 6 - ξ 0 2 , Γ div ih ih (p) = -ξ 0 1 + κ ξ 0 4 , Γ div ihAµ (p) = ip µ 1 + κ ξ 0 4 , Γ div cc (p) = p 2 1 -κ 3 -ξ 0 4 + β 0 ξ 0 1 + κ ξ 0 4 , Γ div Λ k Aµ (p, θ) = -ip µ 1 + κ ξ 0 6 , Γ div Λ k Λ l (p, θ, θ ) = p 2 δ kl δ(θ, θ ) 1 -κ 3 4 - ξ 0 12 + ξ 0 2 δ kl θ δ(θ, θ ) 1 + κ ξ 0 12 .
(II. 4.23) where κ = g 2 0 N/8π 2 ε. Note that the proof of renormalizability states that only six independent renormalization factors are necessary to eliminate the UV divergences while nine different divergent structures are found at one-loop order for the two-point vertex functions.

II.4.3.2 Renormalization of the divergent parts

We define renormalized fields and constants in the standard way

A aµ = Z A A aµ r , c a = Z c c a r , ca = Z c ca r , h a = Z h h a r , (II.4.24)
and

β 0 = Z β β , ξ 0 = Z ξ ξ , g 0 = Z g g. (II.4.25)
It is useful to also introduce rescaled Grassmann variables θ r and θr such that the measure (II.3.4) reads β 0 θθ -1 = β θr θ r -1. We thus define where θr = dθ r d θr (β θr θ r -1). Finally, we define the corresponding renormalized superfields as

θ = Z -1/2 β θ r , ∂ θ = Z 1/2 β ∂ θr , dθ = Z 1/2 β dθ r , θ = Z -1/2 β θr , ∂ θ = Z 1/2 β ∂ θr , d θ = Z
Λ k = Z Λ Z β Λ r,k . (II.4.29)
such that the kinetic term of the fields Λ a r,k is normalized as 

1 2 θ (∂ µ Λ a k ) 2 = Z Λ 2 θr ∂ µ Λ a r,
κ 2 β 0 2κ 1 (A aµ ) 2 = κ 2 β 2κ 1 Z A Z β (A aµ r ) 2 . (II.4.31)
Demanding that the renormalized effective action be finite leads to

κ 2 κ 1 = 1 Z A Z β . (II.4.32)
Following the same argument, and using the identities (II.3.53), eventually yields

Z 1 = 1/Z A , κ 2 κ 1 = 1/Z c , κ 3 = ξ 0 /(Z β Z ξ Z c ) , g/κ 1 = g 0 /(Z g Z A ) , Z = Z Λ Z 2 g /Z β .
(II.4.33)

Furthermore, inspection of the term κ 2 A a µ ∂ µ ih a in (II. 3.46) with the above identities leads to the constraint

Z h = Z β Z c . (II.4.34)
Although in practice we do not need explicitly this dictionary, we remark that, owing to the constraint (II.4.34), there are only six independent renormalization factors among the seven defined in (II.4.24), (II.4.25) and (II.4.29), in agreement with our proof of renormalizability. Notice that the relations (II.4.32), (II.4.33) and (II.4.34) are valid only for the divergent parts. Let us also mention that in the case of the Landau gauge (ξ 0 = 0), the number of independent renormalization constants is even further reduced down to three owing to three additional constraints, namely

Z A Z c Z β = Z g √ Z A Z c = Z Λ /Z c = 1, see Appendix B.1.
In the following, we only refer to renormalized fields and correlators and we suppress the index r for simplicity. The explicit one-loop expressions of the (divergent parts of) the renormalization constants can be straightforwardly read off Eq. (II.4.23). For instance the divergent parts of the renormalized Λ -Λ two-point vertex function reads

Γ div Λ k Λ l (p, θ, θ ) = p 2 δ kl δ(θ, θ )Z Λ 1 -κ 3 4 - ξ 12 + ξ 2 δ kl θ δ(θ, θ )Z Λ Z ξ Z β 1 + κ ξ 12 ,
(II.4.35) yielding

δZ div Λ = 1 + κ 3 4 - ξ 12 , δZ div Λ + δZ div ξ + δZ div β = 1 -κ ξ 12 , (II.4.36)
where we defined δZ α = Z α -1 and div denotes the divergent part.

Eventually, the nine divergent structures of Eq. (II.4.23) are renormalized by the five independent counterterms We also verify the constraint Eq. (II.4.34) at one-loop order:

δZ div A = 13 
Z h = Z β Z c = 1 -κ 13 6 . (II.4.42)
The sixth constant required to fully renormalize the theory is the renormalization of the bare coupling constant g 0 but we do not need it at the present order of approximation. We notice that the divergent parts of the renormalization factors are independent of n at one loop. We thus recover the expressions of the independent factors Z A , Z c , Z β , Z ξ of the CF model (which, we recall, corresponds to n = 1), where Z β is identified to the square mass renormalization factor, see [START_REF] Gracey | Three loop MS-bar renormalization of the Curci-Ferrari model and the dimension two BRST invariant composite operator in QCD[END_REF]. We do not see any reason for this trivial n dependence to hold beyond one loop and we expect explicit differences with the CF model to arise at higher loop orders.

II.4.4 Non-supersymmetric formalism

We recall that, the ST action admits another formulation than the SUSY one, see Eq. (II. 2.22), where the auxiliary fields c k , ck , ih k , U k of the replica sector are not merged into a supermatrix field. In this formalism the ST action reads

S[A, c, c, h, {V}] = S YM [A] + S CF [A, c, c, h] + n k=2 S CF [A U k , c k , ck , h k ],
(II.4.43)

with

S CF [A U , c, c, h], = x ∂ µ ca D U µ c a + ih a ∂ µ (A U µ ) a + β 0 1 2 (A U µ ) a (A U µ ) a + ξ 0 ca c a + ξ 0 x - (ih a ) 2 2 - g 0 2 f abc ih a cb c c - g 2 0 4 f abc cb c c 2 .
(II.4.44)

In order to use a perturbative development, we introduce the fields λ k (one for each replica k) to parametrize the matrix fields

U k = exp[ig 0 λ a k t a ].
In the same way as we did previously, we expend the U k in powers of g 0 λ k to get the relevant one-loop Feynman rules. It is interesting to have a look at the tree-level bare propagators in the sector (A µ , ih, ih k , λ k ). As in the SUSY case, the quadratic part of the ST action is not diagonal in the fields, leading to mixed correlators. The (A, ih) sector is the same as in the SUSY case Eqs. (II. 

ih a (-p)λ b k (p) 0 = -ih a k (-p)λ b k (p) 0 = δ ab p 2 + β 0 ξ 0 . (II.4.47)
Note the sign difference between the correlators involving ih and ih k . It turns out to be more convenient to rewrite the action in a more symmetric form by performing the following shifts: ĥa → ĥa + ∂ µ A a µ /ξ 0 , where we recall that ĥa = ih a + g 0 2 f abc cb c c , and similarly for ĥk . In doing so the ĥa , ĥa k decouple and can be integrated out. Note that this is also advantageous for practical calculations as the number of different fields reduces. The ST action (II.4.43) becomes

S = S YM [A] + S CF [A, c, c] + n k=2 S CF [A U k , c k , ck ],
(II. 4.48) where

S CF [A, c, c] = x β 0 2 (A a µ ) 2 + (∂ µ A a µ ) 2 2ξ 0 + 1 2 ∂ µ ca D µ c a + D µ ca ∂ µ c a + β 0 ξ 0 ca c a - g 2 0 ξ 0 8 (f abc cb c c ) 2 .
(II.4.49)
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Again, parametrizing U k = exp[ig 0 λ a k t a ] we get the Feynman rules relevant for oneloop computations. In particular, note the obvious symmetry between replicas on the tree-level propagators

c a k (-p)c b l (p) 0 = δ kl c a (-p)c b (p) = δ ab δ kl p 2 + β 0 ξ 0 , (II.4.50) λ a k (-p)λ b l (p) 0 = δ ab ξ 0 (1 + δ kl ) p 2 (p 2 + β 0 ξ 0 ) , (II.4.51) λ a k (-p)A b µ (p) 0 = δ ab iξ 0 p µ p 2 (p 2 + β 0 ξ 0 ) . (II.4.52)
The vertices are obtained in a straightforward manner.

II.4.4.1 One-loop calculations

Our point here, is to compute the one-loop divergent parts of the various twopoint vertex functions in the non-SUSY formalism as a crosscheck of our one-loop SUSY calculations performed previously. In this formalism, beside the presence of the mixed correlator λ a k (-p)A b µ (p) , calculations are very standard since there is neither Grassmannian nor SUSY terms. Although the loss of the explicit SUSY character leads to more standard calculations, they are more numerous (forty four one-loop Feynman diagrams for the two-point vertex functions). Let us mention that our calculations satisfied several nontrivial checks. For instance, replica symmetry requires that Γ c k cl (p) = δ kl Γ cc (p). However, at one-loop order, Γ c k cl (p) involves the same Feynman diagrams as those in Γ cc (p), plus diagrams that involve the λ k fields. It is therefore a very nontrivial check of our calculations to verify that the contributions of the diagrams involving the fields λ k exactly cancel out (not only the divergent parts, but also the finite ones).

Eventually, we extract the one-loop divergent parts of the various two-point vertex functions

Γ div AµAν (p) = nβ 0 δ µν 1 + κ 3 + ξ 0 4 + p 2 P T µν (p) 1 -κ 13 6 - ξ 0 2 - n ξ 0 p 2 P L µν (p) 1 + κ ξ 0 4 . (II.4.53)
The first two lines are identical to those of Eq. (II.4.23) and the last line is the renormalization of the (∂ µ A a µ ) 2 /ξ term in the formalism with the ih, ih k fields integrated out. For the ghost sector, we get

Γ div c k cl (p) = δ kl Γ div cc (p) = δ kl p 2 1 -κ 3 -ξ 0 4 + β 0 ξ 0 1 + κ ξ 0 4 , (II.4.54)
which is unchanged as compared to the previous calculation in Eq. (II.4.23). Finally, in the replicated sigma model sector, we have 64 Chapter II. Nonlinear covariant gauges without Gribov ambiguities

Γ div λ k Aµ (p) = -ip µ β 0 1 + κ ξ 0 6 -ip µ p 2 ξ 0 1 -κ 3 4 - ξ 0 6 (II.4.55)
and

Γ div λ k λ l (p) = δ kl β 0 p 2 1 -κ 3 4 - ξ 0 12 + δ kl p 4 ξ 0 1 -κ 3 2 - ξ 0 12 .
(II.4.56)

II.4.4.2 Relation to superfield formalism

The relation with the SUSY formalism is not trivial. According to the representation (II.3.6) and (II.4.2), we can identify the relation (for each replica) between the superfield Λ k and the basic fields c k , ck , h k , λ k . We get

Λ k = λ k + θc k + c k θ + θθ ĥ k (II.4.57) with c k = c k + ig 0 2 [c k , λ k ] - g 2 0 12 [[c k , λ k ], λ k ] + . . . , (II.4.58) c k = ck + ig 0 2 [c k , λ k ] - g 2 0 12 [[c k , λ k ], λ k ] + . . . (II.4.59)
and

ĥ k = ĥk + ig 0 2 [ ĥk , λ k ] - g 2 0 12 [[ ĥk , λ k ], λ k ] -[[c k , c k ], λ k ] + . . . , (II.4.60)
where the dots denote higher order (nonlinear terms). The above relations highlight the fact that the superfield Λ k is a nonlinear composite of the fields λ k , c k , ck , and h k . These relations concern the basic fields that are integrated over in the path-integral. However, although written with the same notations, the variables of the effective action Γ correspond to averages of these fields variables in the presence of nontrivial sources, e.g., as in Eq. (II. 3.23). At the level of the effective action, we thus need to take into account the nontrivial renormalization of the nonlinear composite fields (II.4.58)-(II.4.60). In particular, one has, at linear order,

c k = Z c c k + . . . , (II.4.61) c k = Z c ck + . . . , (II.4.62) ĥ k = Z h ih k + . . . , (II.4.63)
where the dots stand for nonlinear and/or nonlocal contributions and where the composite field renormalization factors Z c and Z h do not depend on the replica index due to the replica symmetry. At linear order, we write This leads to relations among the renormalization factors of the two formalisms. We conclude that

Λ k = λ k + Z c θc k + Z c ck θ + Z h θθih k + . . . ( II 
Z Λ Z β Λ r,k = Z λ λ r,k + Z c Z c Z β θr c r,k + cr,k θ r + Z h Z c θr θ r ih
Z h = Z c (II.4.67)
and that

Z λ = Z Λ Z β = Z c Z c Z β . (II.4.68)
In particular, the first equality in Eq. (II.4.68) is satisfied at one loop, see Eqs.

(II.4.37)-(II.4.41). Accordingly, the composite field renormalization factor Z c appearing in the second equality in Eq. (II.4.68) can be obtained from the first equality, we find,

Z c = 1 + κ ξ 6 .
(II.4.69)

We now conclude Sec. II.4. Here we have investigated the two-point vertex functions of the ST action at one-loop order in perturbation theory. In particular, we have explicitly checked at one-loop order our proof of renormalizability by eliminating all the UV divergences by means of five independent renormalization constants. These computations were performed in two equivalent formalisms as a nontrivial crosscheck. An important remark to be made is that, so far, we remained at finite n while the n → 0 limit is yet to be performed. Although elimination of the divergences can be done at finite n, the renormalization of the finite parts display a nontrivial interplay with the n → 0 limit, which is discussed in the next sections.

II.5 One-loop propagators.

Now that we have computed the one-loop contributions and have explicitly shown how to eliminate their UV divergences we can move forward and investigate the various (one-loop) propagators of the ST action. This demands in particular to invert the renormalized two-point vertex function matrix, the analogous of (II.4.9) but where all the Γ α functions are renormalized vertex functions. Let us stress again that the inversion, has to be performed prior to the n → 0 limit, see Appendix D. For instance, 

G L (p) = lim n→0 Γ ihih (Γ 1 + β 0 (n -2) Γ 3 ) (Γ L Γ ihih -(Γ ihA ) 2 p 2 ) (Γ 1 + β 0 (n -2) Γ 3 ) -Γ ihih p 2 β 0 (Γ 4 ) 2 (n -1) , (II.5.
3) where we have decomposed the gluon propagator G µν (p) into transverse and longitudinal parts as in Eq. (II.4.5). Here, G L (p) is obtained through the inversion of the two-point vertex functions matrix Eq. (II.4.9). Details of the inversion and definition of the other propagators are provided in Appendix D.

II.5.1 Renormalization of the finite parts

II.5.1.1 n-dependent renormalization schemes

Before that we define a set of renormalization prescriptions for the two-point vertex functions, let us come back for a moment to the Landau gauge (ξ 0 = 0). We saw in the previous section that, in this case, the ST proposal is perturbatively equivalent to the (Landau limit of the) CF model if the bare gluon square masses of both models are identified, namely nβ 0 for the ST case and m 2 0 for the CF model. We recall that a very important feature of the CF model is that, under suitable renormalization prescriptions, it displays IR safe renormalization group (RG) flows and can thus be investigated perturbatively down to (deep) infrared momenta [START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF]. This motivates to consider renormalization schemes where such an equivalence is preserved at the level of the renormalized theory. It was therefore proposed in [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] to consider renormalization schemes for the ST action where, instead of renormalizing the gauge-fixing parameter β 0 as β 0 = Z β β (which yields the usual FP theory in the limit n → 0), it is nβ 0 which is renormalized as nβ 0 = Z m 2 m 2 . Consequently, part of the n dependence is absorbed into the bare parameter and the n → 0 limit is performed at fixed renormalized (transverse) gluon mass. In doing so, the equivalence with the CF model holds for the renormalized theory. The consequence is that the renormalized ST action displays the same IR safe RG trajectories as those of the CF model. We thus have a genuine gaugefixed version of YM theories that can be investigated perturbatively at all momentum scales.

For ξ 0 = 0, we shall adopt similar renormalization schemes (with nβ 0 = Z m 2 m 2 ). 10 Consequently, the difference between the renormalized ST gauge-fixed action and the CF action (for arbitrary ξ 0 ) lies in the SUSY replica sector, which is absent from the latter. The replica sector therefore encodes the effects of our treatment of Gribov copies and differentiates the CF model (n = 1) from the genuine gauge-fixed YM theory (ST proposal n → 0). On the one hand, these effects are not conveniently accessed through a direct investigation of the correlators of the SUSY sector since this sector is proper to the present proposal and has no equivalent to be compared with. This is further discussed in Sec. II.7.4. Moreover, it is not clear what is the meaning of the replica sector once the limit n → 0 has been performed. On the other hand, comparisons between the correlators of the gluon and ghost sectors, which are shared by both the ST and the CF actions, highlight the effects of our treatment of Gribov copies.

Nevertheless, for ξ 0 = 0, the SUSY sector does not decouple and "auxiliary" modes (others than the transverse gluons) are massive already at tree-level, with bare square mass β 0 ξ 0 , see Eqs. (II.4.11)-(II.4.16). Defining the renormalized gauge parameter ξ as ξ 0 = Z ξ ξ would lead to a renormalized auxiliary square mass of m 2 ξZ m 2 Z ξ /n that eventually blows up in the limit n → 0. Alternatively, we can absorb some of the n dependence into the bare gauge parameter ξ 0 such that the n → 0 limit is performed at fixed renormalized auxiliary square mass, namely ξ 0 /n = Z ξ ξ leading to 11 We thus define

β 0 ξ 0 = Z ξ Z m 2 m 2 ξ.
nβ 0 = Z m 2 m 2 and ξ 0 n = Z ξ ξ, (II.5.4)
and Z g , Z A , Z c , Z Λ , and Z h are defined as in (II.4.24), (II.4.25). 12 We note that these definitions can be equally used to renormalize the CF model (n = 1) since the proof of renormalizability and the one-loop results obtained in Eqs. (II.4.37)-(II.4.41) are valid for arbitrary n.

The absorption of partial n dependence into the bare parameters (II.5.4) leads to drastic simplifications of the perturbative series in the n → 0 limit as we now show.

II.5.1.2 Consequences of the n → 0 limit

Important consequences follow directly from the choice (II.5.4), which enables us to make firm predictions that could compared with possible future lattice simulations. First, not only transverse gluons are massive, but also the auxiliary fields and in particular the ghosts which acquire a renormalized tree-level square mass Z m 2 Z ξ ξm 2 . Moreover, various correlators which are proportional to ξ 0 now vanish in the limit n → 0. For instance, the renormalized tree-level longitudinal gluon propagator (see Eq. (II.4.11)) vanishes in this limit and the gluon propagator is exactly transverse as in the Landau gauge. We expect this property to remain valid to all orders of perturbation theory. We can easily convince ourselves of it at one-loop order by counting powers of n as follow: any combination of nβ 0 , ξ 0 β 0 counts to zero power of n while any ξ 0 alone counts to one power of n and β 0 to n -1 . For instance, inspection of the ST action 68 Chapter II. Nonlinear covariant gauges without Gribov ambiguities (II.3.12) tells us that the ihcc vertex counts for ξ 0 ∝ n, while the tree-level expression of the bare ghost propagator, Eq. (II.4.4), tells us that the ghost propagator counts to 0 power of n. Accordingly, we easily see that Γ ihih (p), which is given by the left diagram of Fig. II.3, is proportional to ξ 0 up to functions of ξ 0 β 0 and nβ 0 . Following our power counting rule, the renormalized one-loop vertex Γ ihih (p) thus scales as n and hence vanishes in the limit n → 0. The same argument leads to conclude that Γ ihA (p) is finite in this limit, see (II.4.10). According to Eq. (II.5.3), we see that the one-loop longitudinal gluon propagator vanishes in the n → 0 limit:

G L (p) = 0. (II.5.5)
This is a remarkable nontrivial effect of our treatment of Gribov copies since Eq. (II.5.5) is a pure consequence of the n → 0 limit and therefore of our average over the copies. For instance, in the CF model, with the definitions Eq. (II.5.4), one gets (see Appendix B.2)

G CF L (p) = - m 2 Γ ihih (p) Γ L (p)Γ cc (p) n=1 . (II.5.6)
Eq. (II.5.6) is only valid for n = 1 since it uses Slavnov-Taylor identities that are proper to the CF model, see Appendix. B.2. This consists in a strong prediction of the present theory as the transversality of the gluon propagator is believed to be a Landau gauge feature. Note that this is a consequence of the present class of renormalization schemes (II.5.4), and is independent of the peculiar renormalization prescriptions that we use below to fix the finite parts of the renormalization constants.

Gribov copies effects influence also other sectors of the theory, though in a less dramatic manner than for the longitudinal gluons. For instance, the transverse gluon sector receives contributions from the superfields (and so from Gribov copies) in the n → 0 limit through the diagram involving a superfield loop (first diagram of the second line of Fig. II.1). According to Eq. (II.4.21), this contribution reads, in the limit n → 0, as

lim n→0 Γ Λ-loop T (p) = g 2 N ξm 2 (d -1) P T µν (p) k k µ k ν (k 2 + ξm 2 ) ( 2 + ξm 2 ) 1 k 2 + 1 2 + ξm 2 k 2 2 .
(II.5.7)

On the contrary, the superfield contribution (II.4.22) is proportional to β 0 ξ 2 0 ∝ nm 2 ξ 2 and vanishes in the limit n → 0. We stress again that the contribution (II.5.7) is absent in the CF model (remark the (n-1) prefactor in Eq. (II.4.21)). As an illustration, from Eq. (II.5.7), we observe that this superfield loop diagram contributes to the transverse gluon two-point vertex function at zero momentum

lim n→0 Γ Λ-loop T (p = 0) = g 2 N ξm 2 d k 2k 2 + ξm 2 k 2 (k 2 + ξm 2 ) 2 = g 2 N ξm 2 32π 2 2 + 1 + ln μ2 ξm 2 , (II.5.8)
where we neglected terms O( ) in the last equality and μ2 = 4πe -γ µ 2 with γ the Euler constant. It thus renormalizes the one-loop transverse gluon mass at the difference of the CF model where such contribution is absent.

It is interesting to note that the finite ξ case displays many features similar to the Landau gauge due to the n → 0 limit. A first one is that, as already mentioned, the gluon propagator is purely transverse. Moreover, many diagrams are proportional to ξ 0 and hence vanish in the n → 0 limit just like the superfield contribution (II. 4.22) to the gluon two-point vertex as we discussed above. For instance a typical feature of the Landau gauge is that the h sector does not receive any contribution from the loops (to any order), see (B. Remark however that, so far, we have only checked this to be true at one-loop order, while this is true to any order in the Landau gauge. However, we expect the general argument developed here to be valid at any loop order. Let us also mention that the ghosts receive small loop corrections in the IR regime. One can easily see this in the present case even for finite ξ by inspection of the diagrams contributing to the ghost two-point vertex depicted in Here, the difference is that both the internal ghost and the internal gluon propagators are massive. Finally it can be shown that this last diagram is proportional to p 2 . We conclude that, in the limit n → 0, the ghost two-point vertex function at vanishing momentum does not receive corrections at one-loop order, that is,

lim n→0 Γ cc (p = 0) = lim n→0 Z c Z ξ Z m 2 ξm 2 .
(II.5.11)

Finally, we employ the same definitions of the renormalized square masses as described above for the CF model. In that case n = 1 and there is no issue with the n dependence of the renormalized parameters. Note also that the nonrenormalization relations (II.5.9)-(II.5.11) do not hold in that case. Instead a relation which is known to hold at all orders in perturbation theory in the CF model is that the combination [START_REF] Browne | Renormalization group aspects of the local composite operator method[END_REF][START_REF] Wschebor | Some non-renormalization theorems in Curci-Ferrari model[END_REF][START_REF] Tissier | Gauged supersymmetries in Yang-Mills theory[END_REF].

(Z 2 ξ Z c Z m 2 /Z A ) n=1 is finite
In what follows, we consider additional renormalization prescriptions in order to fix the finite parts of the various renormalization constants. We explicitly show that, indeed, this scheme is consistent with renormalizability and we compute the renormalized two-point vertex functions. Finally, we obtain the renormalized one-loop propagators of the ST proposal and of the CF model.

II.5.2 Infrared-safe scheme

This set of renormalization prescriptions is inspired from the infrared-safe scheme put forward in [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF][START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF], that we adapt to the case ξ = 0. In the Landau gauge, this renormalization scheme leads to IR safe RG trajectories [START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF][START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF]. That is, RG trajectories without a Landau pole. As we shall see below, this is also true in the present case for ξ = 0. In order to adapt the prescription used in [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF], we consider the following relation

Z 2 ξ Z c Z m 2 = Z A .
(II.5.12)

In the CF model (n = 1), Eq. (II.5.12) is shown to be true to all order of perturbation theory for the divergent parts [START_REF] Browne | Renormalization group aspects of the local composite operator method[END_REF][START_REF] Wschebor | Some non-renormalization theorems in Curci-Ferrari model[END_REF][START_REF] Tissier | Gauged supersymmetries in Yang-Mills theory[END_REF]. The infrared-safe scheme is defined by imposing this equality also at the level of the finite parts of the renormalization constants. We remark from Eqs. (II.4.37)-(II.4.41) that the relation Eq. (II.5.12) is also satisfied by the divergent parts at one-loop order for arbitrary n. We thus use this relation for the ST case as a renormalization prescription by imposing it also for the finite parts. 13 In order to fix the remaining renormalization factors, we impose that the following renormalized vertex functions assume their tree-level expressions at a renormalization scale µ: In particular we verify that we can use this renormalization scheme for n = 1 in which case we recover the divergent parts of the CF model [START_REF] De Boer | On the renormalizability and unitarity of the Curci-Ferrari model for massive vector bosons[END_REF][START_REF] Gracey | Three loop MS-bar renormalization of the Curci-Ferrari model and the dimension two BRST invariant composite operator in QCD[END_REF][START_REF] Serreau | Covariant gauges without Gribov ambiguities in Yang-Mills theories[END_REF] except, of course, for Z Λ . One can check explicitly that in the n → 0 limit we do verify the relations (II.5.9) and (II.5.10). Note also that, due to our definition of ξ (II.5.4), we trivially recover the divergent parts of the Landau gauge [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] in this limit.

Γ T (µ) = m 2 +
An important remark to be made is that in this renormalization scheme, the parameters m 2 and ξm 2 do not correspond to the square masses of the (transverse) gluons and ghosts respectively. Instead, the transverse gluon square mass is given by the value of the inverse gluon propagator at zero momentum14 

m 2 gluon = G -1 T (0) = lim n→0 m 2 + Π T (0) , (II.5.24)
and likewise for the ghost square mass. Remark that, the infrared-safe renormalization prescriptions, Eqs. (II.5.12)-(II.5.17), lead to several identities among the renormalization factors in the n → 0 limit. For instance, the renormalization prescription (II.5.16) combined with the identity (II.5.10) yields

lim n→0 Z h Z ξ = 1 .
(II.5.25)

Similarly, the relation (II.5.9) with the prescription Eq. (II.5.17 

II.5.3 Zero-momentum renormalization scheme

We have also investigated other renormalization schemes. In particular, we have studied the zero-momentum scheme put forward in the Landau gauge in [START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF]. This scheme was adapted to the ξ = 0 case and we investigated it in great details in [START_REF] Serreau | Influence of Gribov ambiguities in a class of nonlinear covariant gauges[END_REF]. In the present thesis, we only detail the infrared-safe scheme and make a few comments on the one at zero-momentum. In the latter, both m 2 and ξm 2 correspond respectively to the gluon and ghost square masses by replacing the renormalization prescriptions Eqs. (II.5.12), and (II.5.17) by Γ T (0) = m 2 and Γ cc (0) = ξm 2 .

(II.5.29)

This renormalization scheme is consistent with renormalizability. However, once RG improvement is taken into account a Landau pole develops thus spoiling the perturbative approach for low momentum scales. It was argued, first in the peculiar case of the Landau gauge [START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF] and then for finite ξ [START_REF] Serreau | Influence of Gribov ambiguities in a class of nonlinear covariant gauges[END_REF], that such a Landau pole is an artifact due to inconsistent renormalization prescriptions. Indeed, in this scheme, for small momenta, the one-loop gluon propagator is found to be a nonmonotonous function of the momentum while the two renormalization conditions Eq. (II.5.13) and Eq. (II.5.29), when imposed simultaneously, require that G -1 T (0) < G -1 T (µ). When RG improvement is turned on and a renormalized sliding scale µ = p is used, where p is the momentum scale at which we evaluate the correlators, the last inequality becomes inconsistent for small p with the one-loop behavior of the gluon propagator. Consequently, as the IR is probed deeper, larger RG corrections arise and, eventually, a Landau pole develops. In order to cope with this issue, it was proposed, in the Landau gauge, to use a renormalization scale of the form µ 2 = M 2 + p 2 , where M is a "freezing" scale. Performing such a running for the renormalization scale µ leads to RG corrections for momenta higher than M while these are frozen below and strict perturbation theory is then used, see [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF]. Such a procedure is, in general, legitimate in massive theories where we expect the RG flow to freeze below the mass scale of the problem. However, as we shall see in the next section, due to the presence of massless excitations in the SUSY sector, see Eqs. (II.4.14), (II.4.16), the RG flow never freezes out in this case. This is to be put in contrast with the CF model (n = 1) where all modes are effectively massive for ξ = 0. Hence, such a freezing put by hand appears not justified in the ST case (n → 0). We therefore do not present in details the zero-momentum scheme and refer the reader to [START_REF] Serreau | Influence of Gribov ambiguities in a class of nonlinear covariant gauges[END_REF].

II.5.4 Renormalization of the coupling constant

There remains to renormalize the coupling constant. We adopt the so-called Taylor scheme [START_REF] Taylor | Ward Identities and Charge Renormalization of the Yang-Mills Field[END_REF] which consists in fixing the value of Z g , Eq. (II. counts for ξ 2 0 β 0 ∝ n. All the remaining diagrams count for either ξ 0 ∝ n or ξ 2 0 ∝ n 2 . Hereby, they all vanish in the n → 0 limit. We conclude that the vertex Γ Acc (p, 0, -p) does not receive any radiative corrections at one-loop order in the limit n → 0. The renormalization factors Z g , Z A and Z c thus satisfy the relation

lim n→0 Z g Z c Z A = 1, (II.5.31)
which completely fixes the factor Z g . In particular one has

δZ div g = - 11 6 κ. (II.5.32)
It is worth mentioning that in the Landau gauge, the relation (II.5.31) holds for the divergent parts to all orders of perturbation theory [START_REF] Taylor | Ward Identities and Charge Renormalization of the Yang-Mills Field[END_REF]. We have only checked that this is so at one-loop order in the present case (ξ = 0). In particular, we do not know whether or not it is compatible with the renormalizability of the theory at higher orders. But, as in the case of the renormalization prescription (II.5.12), we can always impose the prescription Eq. (II.5.31) for the finite parts only.

The identity (II.5.31) is valid only in the limit n → 0 with the definitions (II.5.4). It does not hold in the CF case (n = 1), where the contributions to the ghost-antighostgluon vertex proportional to ξ 0 do not vanish. For the purpose of comparing the n → 0 and n = 1 results, we employ a renormalization scheme for n = 1 as close as possible to that used for n → 0, namely

Z g Z c Z 2 ξ = Z 3/2
A , (II.5.33) valid for the divergent parts of the CF model [START_REF] Tissier | Gauged supersymmetries in Yang-Mills theory[END_REF]. 15 As discussed above, we extend this equality to the finite parts, which gives us a definition of the renormalization coefficient Z g in the CF model. It can be checked that this definition coincides with Eq. (II.5.31) in the limit ξ → 0.

II.6 One-loop results

We present our results for the gluon and the ghost propagators at one-loop order in the SU(3) theory. 16 In the following, in strict perturbation theory where there is no running, we set the renormalization scale µ = 1 GeV and we use the values of the II.6. One-loop results
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parameters m and g that provide the best fits to the lattice results in the Landau gauge in [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF], that is, m = 0.39 GeV and g = 3.7 in the infrared-safe scheme. Notice that the relevant expansion parameter is 3g 2 /(16π 2 ) 1. We have no reason, a priori, to exclude a dependence of the parameters m and g at a certain scale with the value of ξ at the same scale. Such dependences would have to be inferred from fits to lattice data. In the absence of such data, we assume fixed values of m and g adjusted from lattice data at ξ = 0. We check that we recover the results of [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF] (in the appropriate renormalization scheme) for ξ = 0. In particular, we observe that the ghost propagator develops a zeromomentum pole as ξ → 0. For higher values of ξ, the ghost propagator is very similar to the one obtained in the CF model (n = 1); see The value of the gluon propagator at vanishing momentum is not fixed and varies strongly with ξ. This can be traced to the fact that the zero-momentum value of the gluon propagator is not fixed by the renormalization prescriptions Eqs.(II.5.13)-(II.5.17), but instead admit an implicit ξ-dependence through the second equation in Eq. (II.5.12). This has to be put in regards with our previous comment at the end of Sec. II.5.2, see (II.5.24). We observe that the approach to the p = 0 value flattens as ξ is increased. This appears to be a consequence of our treatment of the Gribov copies, see e.g. the discussion above (II.5.8). Indeed, a comparison of the transverse gluon propagator computed in the present gauge-fixed theory (n → 0) and in the CF model (n = 1) is shown in Fig. II.9. The CF model does not display the flattening as p approaches zero. This effect is more important for increasing ξ, which is consistent with the fact the cases n → 0 and n = 1 are equivalent in the Landau gauge. Equivalently, in the gluon sector, the difference between both cases comes from the superfield sector which decouples for ξ = 0. We notice also that in the CF case, the gluon propagator also presents a longitudinal part, which for completeness is displayed in Fig. II.10 (while it is identically null for n → 0). It is worth mentioning that the transverse gluon propagator presents a nonmonotonous behavior at small momenta (though the effect is too small to be observed on Fig. II.7 with the scale used) and hence displays a violation of positivity, see Sec. I.2.3. The same analysis was performed in the zero-momentum renormalization scheme and can be found in [START_REF] Serreau | Influence of Gribov ambiguities in a class of nonlinear covariant gauges[END_REF].

II.6.1 Gluon and ghost sectors

II.6.2 Replica sector

We now move to the the replica sector. Notice that, the meaning of this sector in the limit n → 0 is somewhat unclear. Nevertheless, we present here our results for completeness. As emphasized earlier, there are massless excitations in the replica sector even for ξ = 0. They correspond to the λ k fields present in the SUSY representation Eq. (II.4.57) that we recall here for simplicity:

Λ k = λ k + θc k + c k θ + θθ ĥ k . (II.6.1)
Notice that the mass dimension of λ k is zero. It turns out convenient to rescale it prior to the n → 0 limit

λk = m 2 n λ k , (II.6.2)
in such a way that λk has canonical mass dimension. This is discussed in details in Appendix E. We define the λλ propagator 17 as

G λ kl (p) = lim n→0 λk (-p) λl (p) 0 = δ kl G diag (p) + (1 -δ kl )G non diag (p).
(II.6.3)

At tree-level, Eq. (II.4.51), we have that

G diag (p) = 2G non diag (p) = 2m 2 ξ p 2 (p 2 + m 2 ξ) . (II.6.4)
Since there are massless excitations, we accordingly define the λλ dressing function

F diag (p) = p 2 2m 2 ξ G diag (p), F non diag (p) = p 2 m 2 ξ G non diag (p).
(II.6.5)

On Fig. II.11 we display the (diagonal) one-loop λλ dressing function. Remark that the correlator λkλl is identically null 18 for ξ = 0 (see also Eq. (II.4.51)), though its dressing function, seen as a continuous function of the parameter ξ, admits a nontrivial limit for ξ → 0. In particular, in this limit, the λλ dressing function develops a zero-momentum pole. Notice that the tree-level property (II.6.4), namely that F diag (p)/F non diag (p) = 1 is observed to remain true at one-loop order. The zero momentum value is quite sensitive to the value of ξ. This is due to the presence in F diag of the tree-level square mass m 2 ξ. In order to get rid of this somehow artificial ξ dependence, it is interesting to compare F diag to its tree-level value in order to focus on loop effects. On Fig. II.12 is shown the difference F -1 diag (p)-(p 2 +m 2 ξ). The apparently crossing point between the various curves is actually an artifact of our choices of ξ that are close to one another, while for higher or lower values they do not cross all at the same point. As we see on Fig. II.12, the loop contributions are actually negatives for small momenta and increase with ξ. Hereby, there is a competition between loop Figure II.12: Comparison of F -1 diag with its tree-level value as a function of momentum for various values of ξ in the infrared-safe scheme. and tree-level effects. In general, this is a dangerous situation for the perturbative approach since it might result in a pole if loop effects become too large. However, for the range of parameters considered here we do not encounter such a pole at finite momenta. The zero momentum pole in the Landau gauge is already present at treelevel, see Eq. (II.4.51), as confirmed in Fig. II.12 where the Landau gauge λ-λ dressing function does not receive loop corrections at zero momentum.

Notice also that the SUSY sector contains replicated ghost and antighost fields c k and c k , see Eq. (II.6.1). Ghost correlators of two different replicas k and l are obviously equal due to the replica permutation symmetry, while the relation between the correlators of replicated and non-replicated ghosts is less obvious. On Fig. II.13 is shown the ratio G gh (p)/G k gh (p) where G k gh (p) is the propagator of the replicated ghosts. Both coincide in the Landau gauge while this is not so for ξ = 0. Remark already that, the replicated ghost correlator is not null in the Landau gauge. This stresses that, although in the Landau gauge the replica sector decouples from the ghost and gluon sectors, it remains nontrivial. The difference mentioned above is due to the fact that the non-replicated ghost fields correspond to the replica that was singled out in the gauge-fixing procedure. Moreover, let us recall that the replicated c k and c k fields that appear in the decomposition Eq. (II.6.1) differ from the c k and ck fields appearing in the non-SUSY version of the ST action, see Sec. II.4.4. Both sets are related in perturbation theory by the relations Eq. (II.4.58) that we recall here

c k = c k + ig 0 2 [c k , λ k ] - g 2 0 12 [[c k , λ k ], λ k ] + . . . , (II.6.6) c k = ck + ig 0 2 [c k , λ k ] - g 2 0 12 [[c k , λ k ], λ k ] + . . . . (II.6.7)
One-loop calculations in the non-SUSY version of the theory showed that [c(-p) c(p)] 0 = [c k (-p) ck (p)] 0 for arbitrary ξ as expected from the replica symmetry which simply reduces to the relabeling c ↔ c k , c ↔ ck in the ghost sector. Turning back to the c k , c k case, using the relations (II.6.6), (II.6.7) and Wick theorem, we get at one-loop order (for simplicity we work in direct space) 

c a k (x) c b k (y) 0 = c a (x) cb (y) 0 - g 2 2 m 2 n f acd f buv [c u (x)c c (y)] 0 λv k (x) λd k (y) 0 + 1 6 f bce f edu [c a (x)c u (y)] 0 λc k (y) λd k (y) 0 + 1 6 f ace f edu c u (x)c b (y) 0 λc k (x) λd k (x)

II.7 Renormalization-group analysis

We now perform the RG analysis. One of the main strength of the ST approach in the Landau gauge, is that, perturbation theory is justified down to zero momentum thanks to IR safe RG trajectories as opposed to the standard FP case. Therefore, investigation of such possible RG flows also at ξ = 0 seems crucial to us and necessary to justify the previous perturbative calculations. Moreover, the ST approach relies on taking into account the Gribov copies. Henceforth, it is interesting to investigate whether the copies affect the UV sector or not as it is the common belief.

In the following, we define the RG beta functions β α for the parameters α = m 2 , g, ξ as

β α = d α d ln µ 0 = -α d ln Z α d ln µ 0 , (II.7.1)
as well as the anomalous dimension for the various fields Φ

γ Φ = d ln Z Φ d ln µ 0 , (II.7.2)
where the subscript 0 means that the right-hand side is evaluated at fixed bare quantities.

II.7.1 UV behavior

Let us first briefly consider the high energy limit. In this regime, we can simply use the MS scheme in which the beta functions are straightforwardly obtained from the divergent parts of the renormalization constants Z g , Z m 2 and Z ξ . We note that, this UV behavior is insensitive to the details of the renormalization prescriptions used since it depends only on the divergent parts. In particular, we recover the universal one-loop beta function for the coupling constant

β UV g = -g 11 6 g 2 N 8π 2 , (II.7.3)
so that asymptotic freedom is preserved (as it should). Remark that for our (perturbative) proof of renormanilazability to be meaningful, an asymptotically UV free theory is necessary. According to Eq. (II.5.20) the beta function of the mass parameter m 2 is

β UV m 2 = -m 2 35 12 g 2 N 8π 2 , (II.7.4)
and, therefore, m vanishes at high energies. We remark also that UV flows of both g and m are identical to those of the Landau gauge. The beta function for ξ reads

β UV ξ = ξ 13 6 g 2 N 8π 2 , (II.7.5)
hence, the Landau gauge is an unstable UV fixed point. We also define the ghost (or auxiliary) square mass parameter m 2 gh as

m 2 gh (µ) = m 2 (µ)ξ(µ). (II.7.6)
Its beta function is straightforwardly obtained from those of ξ and m 2 and reads, in the UV, as

β UV m 2 gh = -m 2 gh 3 4 
g 2 N 8π 2 , (II.7.7)
so that m 2 gh also vanishes at high energies. We thus finally recover a massless theory in the high energy regime. Moreover, in this regime, the ghost and gluon propagators follow the standard one-loop behavior [START_REF] Serreau | Influence of Gribov ambiguities in a class of nonlinear covariant gauges[END_REF] G UV gh (p) ∝

1 p 2 1 + 11N g 2 (µ * ) 48π 2 ln p 2 µ 2 * - 9 44 
(II.7.8)

G UV T (p) ∝ 1 p 2 1 + 11N g 2 (µ * ) 48π 2 ln p 2 µ 2 * - 13 
22 , (II.7.9)

where µ * and p are UV scales, that is, µ * , p m, m gh . Remark, however, that these results are independent of ξ, and hence we do not recover exactly the FP case (in particular there is no longitudinal gluon propagator in the present case). Note that this is a consequence of the n-dependent renormalization scheme (II.5.4) employed here. Indeed, following a renormalization scheme as in (II.4.25), we then recover the standard FP theory in the UV from a MS scheme, see Eqs (II.4.39), (II.4.40).

II.7.2 Renormalization group flows

We now investigate the RG flows down to the deep IR regime in the infrared-safe renormalization scheme. Explicit expressions of the beta functions and anomalous dimensions are gathered in the supplemental material (Mathematica file) of [START_REF] Serreau | Influence of Gribov ambiguities in a class of nonlinear covariant gauges[END_REF], see Ref. [START_REF] Gupta | The Hadron Spectrum on a 18**3 X 42 Lattice[END_REF] of it. Note that, the prescription (II.5.31) implies at one-loop order that the ghost anomalous dimension is given by

γ c = d ln Z c d ln µ 0 = - 1 2 γ A + β g g .
(II.7.10)

For later use, we also mention that Eq. (II.5.27) yields

γ A = - β ξ ξ , (II.7.11)
We integrate numerically the flow equations Eqs. (II.7.1), (II.7.2) with initial conditions at the scale µ 0 = 1 GeV. We use as initial conditions the values of the mass and coupling parameters of the previous section, namely m(µ 0 ) = 0.39 GeV and g(µ 0 ) = 3.7, and we vary the gauge-fixing parameter ξ(µ 0 ). We find that the infrared-safe RG flows can be integrated down to arbitrarily small scales µ without encountering a Landau pole, depending on the choice of initial conditions 19 , as it was first pointed out in [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] in the case ξ = 0. Figure II.14 and II.15 show the RG flows of the parameters g, m and ξ for various values of ξ(µ 0 ). We observe that both the coupling and the mass first increase for decreasing µ and then are attracted towards zero in the IR. We also see that the maximal values of both parameters decrease with increasing ξ(µ 0 ) and are, therefore, maximal in the Landau gauge. In all cases we have considered, the coupling remains small enough for perturbation theory to be (qualitatively) meaningful: we recall that the relevant expansion parameter is 3g 2 /(16π 2 ). We thus expect that our perturbative calculations would provide even more agreements with lattice data (if lattice implementation is possible) in the present case than in the Landau gauge. Finally, we observe that the gauge-fixing parameter ξ is first attracted towards zero as µ decreases but eventually diverges in the limit µ → 0. In particular, we find that the Landau gauge fixed point (ξ = 0) is unstable in the IR. ) is also attracted toward a nontrivial fixed point as µ → 0 such that ξ(µ) ∼ 1/m 2 (µ) ∼ 1/g 2 (µ) in this regime. This illustrates a key difference between the Landau gauge and the present case. Indeed, according to the flows of Fig. II.15 (see also [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF]), in the Landau gauge, the gluon effective IR action corresponds to the (trivial) massless free Gaussian theory while, for ξ = 0, gluons remain coupled to the replica sector through the effective coupling constant ξ(µ)g 2 (µ). In the latter case, the IR effective theory thus remains nontrivial. Remark that we have 3ξ(µ)g 2 (µ)/16π 2 1.

We remark that, as emphasized in Sec. II.5.3, the RG flows of the independent parameters g and m never freeze out because of the presence of massless excitations. Therefore, a possible freezing of the RG flow put by hand (as proposed for the zeromomentum scheme) does not seem justified for ξ(µ 0 ) = 0. This is a peculiar feature of expected since, for ξ(µ 0 ) = 0, the CF model only contains massive degrees of freedom that decouple in the deep IR. On the contrary, in the Landau gauge where the ghosts are massless, the CF model is equivalent to the case n → 0, as already discussed, and we see that the RG flow does not freeze. As a consequence of the RG freezing for ξ(µ 0 ) = 0, the coupling and mass parameters g and m do not vanish in the IR and the gauge-fixing parameter ξ does not diverge. All the parameters reach constant values. We mention that the renormalized coupling constant is defined differently in both cases. For n → 0 we used Eq. (II.5.31), which is not valid for n = 1 and was replaced by Eq. (II.5.33). This difference might influence the RG flows. Nevertheless, the infrared-safety of this renormalization scheme in the CF model is also verified, and the flows can be integrated down to zero momentum.

II.7.3 RG-improved ghost and gluon propagators

Notice that, although for n → 0 the mass parameter m(µ) is attracted towards zero, it does not imply that gluons become effectively massless in the IR. Indeed, in the infrared-safe scheme, the renormalized mass parameter m is defined through Eq. (II.5.13) and does not correspond to the actual gluon mass. The latter is, instead, given by Eq. (II.5.24). The same remark can be made for the ghosts (apart from the Landau gauge). Indeed, these propagators do not diverge as p → 0 (exect for the ghost propagator in the Landau gauge), as observed on In the gluon sector, however, we observe strong differences between the RG-improved propagator and the one obtained in strict perturbation theory, see Fig. II.7. In particular, for ξ = 0 the flattening near p = 0 observed earlier is turned into a linear behavior. This is a consequence of the equality (II.7.11) which yields, for µ = p

G T (p) = ξ(µ 0 ) ξ(p) 1 p 2 + m 2 (p) , (II.7.13)
which rewrites as

G T (p) = ξ(µ 0 ) m 2 gh (p) m2 (p) 1 + m2 (p) , (II.7.14)
where we have defined the dimensionless mass parameter m(µ) = m(µ)/µ. The fact that the ghost mass parameter (II.7.6) reaches a plateau for sufficiently small µ and not too small ξ(µ 0 ) implies that the p → 0 behavior of the gluon propagator is governed [START_REF] Engels | High Temperature SU(2) Gluon Matter on the Lattice[END_REF], where we observe that it is a monotonously decreasing function of p and that, for ξ(µ 0 ) not too small, it reaches an IR fixed point, which is approached linearly. We conclude that, for ξ(µ 0 ) not too small,

G T (p → 0) = ξ(µ 0 ) m 2 gh (0) m2 (0) 1 + m2 (0) [1 + O(p)] , (II.7.15)
where the linear term in p is negative. This peculiar behavior for ξ(µ 0 ) = 0 in the n → 0 case is to be put in regard with the one observed in the case of the CF model 20 (n = 1) displayed on Fig. II.20. The RG-improved ghost and gluon propagators for the CF model present little change as compared to the results from strict perturbation theory (Figs. II.8 -II.10), for ξ not too small, despite the relatively important change of the running parameters in the range of momenta considered here. RG corrections seem more important for small ξ. This is to be expected since as ξ gets smaller the CF results come closer (and eventually coincide) with those of the n → 0 case where RG corrections are important. Alternatively, as ξ decreases, the masses of the auxiliary modes get smaller so that the scale below which the RG is frozen is reduced. Nevertheless, the RG-improved results in the CF model are dramatically different from those of the theory considered here (n → 0), in particular for the gluon sector. Although these qualitative differences might have diverse origins, such as, for instance, the difference in the definition of the coupling constant, altogether they illustrate the important role played by the replica sector of the theory and, in turn, by the Gribov copies, particularly in the IR. 

II.7.4 Correlation among Gribov copies

So far, we were mainly interested in the ghost and gluon sectors while the SUSY sector encodes our treatment of Gribov copies. However, the computation of this sector was mandatory in order to perform the n → 0 limit since the two-point vertex functions Γ 1 , Γ 3 , Γ 4 (see (II.4.9)) appear in the definition of the longitudinal gluon propagator (see Eq. (II.5.3)), or for the computation of the renormalization factor Z Λ needed to compute the RG flows for instance. Still, the relationship between the superfields Λ, or more precisely the scalar λ fields, with the Gribov copies remains somewhat unclear. This makes possible interpretations of the λ sector uneasy. In particular, once the limit n → 0 has been performed, it is not clear what meaning should be granted to the replica sector. 21 Moreover, this sector is, a priori, not accessible in (would be) lattice simulations. 22 All in all, this suggests that attempting to get information on Gribov copies directly from the replica sector is probably not the wisest choice. Again, studying nontrivial effects of this sector onto the gluon and/or ghost correlation functions seems the most suited.

One way of realizing this program would consist in computing the variance associated with the average of the ST procedure, see (II.2.1). For instance A A corresponds to correlation among different gauge orbits at the difference of AA (for a moment, we drop off the Lorentz and color indices for clarity) and can be accessed in lattice simulations (assuming such simulations are feasible and will be perform according to II.1.2). More precisely, let us consider C := A A -AA , which, according to Eq. (II.2.1), is given by

C = Dη 1 Dη 2 P[η 1 ]P[η 2 ] i,j s(i)s(j)e -β 0 H[A,η 1 ,U i ]-β 0 H[A,η 2 ,U j ] A U i A U j -A U i A U i Dη 1 Dη 2 P[η 1 ]P[η 2 ] i,j s(i)s(j)e -β 0 H[A,η,U i ]-β 0 H[A,η,U j ] ,
(II.7.16) where i, j index Gribov copies and we choose the same gauge parameter β 0 . C thus represents correlations between different Gribov copies i = j. Using the identities (II.2.6), (II.1.9) and (II.2.8) yields

C = DV 1 DV 2 A U 1 A U 2 -A U 1 A U 1 e -S CF [A,V 1 ,ξ 1 0 ]-S CF [A,V 2 ,ξ 2 0 ] DV 1 DV 2 e -S CF [A,V 1 ,ξ 1 0 ]-S CF [A,V 2 ,ξ 2 0 ]
, (II.7.17)

where ξ 1 0 and ξ 2 0 are two free (bare) gauge parameters appearing once the integrations over η 1 , η 2 have been performed. According to general ST procedure presented in II.2.1, by taking ξ 1 0 = ξ 2 0 ≡ ξ 0 and introducing the replicas, we thus have, after 21 We recall that, in the initial ST gauge-fixing procedure, see Eq. (II.2.12), there is no replica sector. The latter is introduced in order to formulate the ST procedure as a local field theory, but it is merely a matter of convenience for the continuum methods. 22 Indeed, auxiliary fields are introduced in order to have a local field theory. This is for convenience (if not mandatory) for continuum methods though they are not necessary for lattice simulations. For instance, the lattice action does not involve ghost fields. Nevertheless, the propagator of the latter can be obtained through the FP operator which is present in the lattice procedure. However, in the present case, there is no such equivalent of the FP operator for the λ fields and hence, the possibility that their correlator be measured on the lattice is not guaranteed. 

,

(II. 7.18) where we explicitly let 2n replicas in order to stress that the previous derivation simply amounts to introduce 2n replicas instead of n. This is obviously equivalent to redefining n = 2n in the limit n → 0. Eventually, we have that C is given through the following correlator

C = lim n→0 AA U k -[AA] , (II.7.19)
that can be computed in perturbation theory. For instance, putting back Lorentz and color indices, C ab µν (x, y) is given at lowest order in perturbation theory by

C ab µν (x, y) = lim n→0 ∂ y ν A a µ (x)λ b k (y) 0 .
(II.7.20)

Higher order terms will involve composite operators of the kind [A(x)λ(y) . . . λ(y)] and [A(x)A(y)λ(y) . . . λ(y)], and were not computed. Note however that, they always involve either λ -λ or λ -A correlators, which are null in the Landau gauge (ξ 0 = 0), see Eqs. (II.4.51), (II.4.52). Hereby, in the peculiar case of the Landau gauge, we have that C ab µν (x, y) = 0. Hence we interpret this result as the fact that there is no cross contribution from two different Gribov copies to the gluon sector. This turns out to be a peculiar feature of the Landau gauge.

II.8 Summary and discussions

We now conclude this chapter. We have proposed a formulation of a class of nonlinear covariant gauges as an extremization procedure. Ignoring Gribov ambiguities this class of gauges is equivalent to the CFDJ gauges. We have applied the ST gaugefixing procedure proposed in [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] to deal with Gribov ambiguities in an analytical way. This procedure amounts to averaging over the Gribov copies along each gauge orbit with a suitable weight. This lifts the degeneracy between the different copies and avoids the usual Neuberger zero problem. We have shown that our averaging procedure can be formulated as a local field theory which is perturbatively renormalizable in d = 4. This requires a set of six independent renormalization factors. We have provided explicit expressions of the latter at one-loop order in perturbation theory. The presence of a modified (non-nilpotent) BRST symmetry (see (II.3.14) and (II.3.15)) insures the renormalizability of the present theory though we do not know how to construct the physical space since one cannot redo the Kugo-Ojima construction.

The resulting gauge-fixed theory has the form of the CF model augmented by a nontrivial sector of replicated scalar, ghost, and antighost fields, which can be written as SUSY nonlinear sigma models coupled to the gauge field, see Eq. (II.3.12). This extends the proposal of [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] away from the particular case of the Landau gauge and provides a more generic framework. For instance, unlike in the Landau gauge, the nonlinear sigma model fields do not decouple in the perturbative calculation of ghost II.8. Summary and discussions 91 and gluon correlators and the present gauge-fixed version of the YM theory exhibits explicit differences with the standard CF model.

A key ingredient of the continuum formulation is the replica technique and the interplay between the limit n → 0 and renormalization. Indeed, part of the n dependence of the theory can be absorbed in the definition of the renormalized parameters [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF][START_REF] Serreau | Covariant gauges without Gribov ambiguities in Yang-Mills theories[END_REF][START_REF] Serreau | Influence of Gribov ambiguities in a class of nonlinear covariant gauges[END_REF]. In the present work, we have employed a minimal scheme which, first, allows one to reproduce the results of [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF] in the Landau gauge (ξ = 0) and, second, has a smooth ξ → 0 limit. In the present manuscript, we have studied the infrared-safe renormalization scheme and have presented results for the ghost and gluon propagators at one-loop order with and without RG improvement. For completeness we have also presented our results for the replica sector. Finally, we have compared our results to those of the CF model, obtained by simply setting the number of replicas to n = 1. This allows one to pinpoint the peculiar effects of the superfield sector of our theory, which is related to our particular treatment of Gribov ambiguities. As emphasized above, more information on the effects of Gribov copies might be captured by studying nontrivial averages of the kind A A .

The first important aspect of the present treatment of Gribov copies is the fact that the basic fields of the theory acquire effective masses, related to the gauge-fixing parameters β 0 and ξ 0 . In contrast to the Landau gauge (ξ 0 = 0), not only the transverse gluons, but also the FP ghosts are massive. A striking difference between the CF model (n = 1) and the gauge-fixed theory (n → 0) is the fact that, in the latter case, the gluon propagator remains transverse in momentum space even away from the Landau gauge. This is already visible at tree level. At one-loop order in a strict perturbative expansion-i.e., without RG improvement-we also observe important differences between the n = 1 and the n → 0 cases, mainly in the transverse gluon propagator, which receives direct contributions from the replica sector. It is important to note that these contain massless degrees of freedom, which lead to nonanalyticities at small momentum. These are absent in the case n = 1. The role of massless excitations in the gauge-fixed theory is further illustrated by implementing RG improvement where it is found that the RG flows never freeze out. These results of the gauge-fixed theory are to be compared to the corresponding ones in the CF model, where all degrees of freedom are massive and the RG flow freezes in the IR, resulting in quantitative but not qualitative changes as compared to the strict perturbative results.

One drawback of the present approach is that (up to now) we do not know how fix the mass parameter in an internal way. This has to be put in regard with the Gribov-Zwanziger approach where the Gribov parameter is fixed by a self-consistent equation while here we have to resort to fit the lattice data when available. The fact that, the present class of gauges is formulated as an extremization procedure, keeps open the possibility that these gauges be amenable in lattice simulations by generalization of the lattice gauge-fixing procedures employed in the Landau gauge. This amounts to generalize the minimization algorithms used on the Landau functional H Landau . We have proposed a possible generalization to the present case of the Los Alamos algorithm that aims at locally minimizing the functional H (see Eq. (II.1.1)), though an actual procedure would require also the generalization of global minimization algorithms. However (assuming for a moment that such simulations are possible and will be performed), beside the systematic difficulties of interpretation between numerical and continuum results for what concerns gauge-dependent quantities 23 several reasons might lead to a disagreement of the present previous results with lattice data. As we already mentioned, our choice of renormalization, Sec. II.5, might have been chosen differently and we need actual lattice data to discriminate one or another. This can be inferred from the strong predictions of the present proposal as, for instance, the transversallity of the gluon propagator for ξ = 0. Also, it is possible that we did illegitimate operations such as the interchange of the n → 0 limit with the path-integral (see Eq. (II.2.14)). Nevertheless, if disagreement of the present results with lattice data is observed one may wonder first about the spectrum of Gribov copies with respect to the value of the functional H. Indeed, in the ST procedure, we average over all of them while the lattice gauge-fixing procedure pinpoints a unique copy which is, in particular, a minimum of H (we recall that the copies correspond to any extrema, not only minima). For both approaches to be comparable therefore, it shall be equivalent to either randomly pick one minimum (as the lattice does) or to average over the whole set of Gribov copies with a suitable weight (as the ST proposal does). This assumes the following inequality to be true

H [A, U min. ] < H A, U sdl.pts./max. . (II.8.1)
In the Landau gauge, indications suggest that this is not exactly the case but that the value of H Landau admits overlaps between minima and saddle points [START_REF] Hughes | Enumerating Gribov copies on the lattice[END_REF]. Nevertheless, due to the good agreement between perturbative calculations and lattice results, it is reasonable to assume in this case that these overlaps do not compromise the comparison of the perturbative calculation with the lattice data. However, we have no clue of what happens for ξ = 0. If these inequalities are violated too strongly, it would probably result in a disagreement between our present results and the lattice ones. Remark however that (II.8.1) being violated does not imply a strong dependence of the lattice results in the choice of the Gribov copy selected, though it is most likely. Hereby, in order to clarify these issues, it would be desirable to perform a numerical investigation of the gauges presented in this chapter. 23 Comparisons of gauge-dependent quantities between numerical and continuum approaches are never easy. Indeed, both gauge-fixed theories are not equivalent. One can easily convinced of that by inspection of the lattice gauge-fixing procedure that selects exactly one Gribov copy. The continuum equivalent (if it exists at all) is hence a highly nonlocal action. Otherwise said, strictly speaking, the gauge-fixed action used in continuum approaches is actually never the continuum version of the associated gauge-fixed lattice simulations that one intends to compare with. Note this is a very general issue one cannot cope with, and is also present in the Landau gauge. Since we are comparing gaugedependent quantities, it might result from it differences which are hardly quantifiable.

Chapter III

Yang-Mills theories at finite temperature

In the last chapter, we discussed in detail the studies of YM theories in the vacuum realized in [START_REF] Serreau | Covariant gauges without Gribov ambiguities in Yang-Mills theories[END_REF][START_REF] Serreau | Influence of Gribov ambiguities in a class of nonlinear covariant gauges[END_REF][START_REF] Serreau | A class of nonperturbative nonlinear covariant gauges in Yang-Mills theories[END_REF]. They are to be included in a larger series of works, along with [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF][START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF][START_REF] Peláez | Two-point correlation functions of QCD in the Landau gauge[END_REF][START_REF] Pelaez | Three-point correlation functions in Yang-Mills theory[END_REF][START_REF] Peláez | Quark-gluon vertex from the Landau gauge Curci-Ferrari model[END_REF]. For our present purpose, the main conclusion of these studies is that, in the vacuum and in the Landau gauge, the most relevant IR aspects of the YM correlation functions are accurately captured by an effective gluon mass (which might be related to a peculiar treatment of the Gribov copies) and the deep IR regime can be accessed perturbatively.

As emphasized earlier, a great challenge is the study of the complete QCD phase diagram. On the one hand, lattice simulations undergo a severe sign problem [START_REF] De Forcrand | Simulating QCD at finite density[END_REF][START_REF] Philipsen | Lattice QCD at non-zero temperature and baryon density[END_REF] and calculations with realistic quark masses are limited to small values of the chemical potential in units of temperature. On the other hand, continuum approaches have to face the nonperturbative character of the theory for not too large temperatures. Although a lot of efforts are dedicated at circumventing the sign problem on the lattice [START_REF] De Forcrand | Simulating QCD at finite density[END_REF][START_REF] Sexty | Progress in complex Langevin simulations of full QCD at non-zero density[END_REF][START_REF] Tanizaki | Evading the sign problem in the mean-field approximation through Lefschetz-thimble path integral[END_REF], we shall focus here on an alternative strategy. In general, continuum methods are not submitted to such a severe sign problem, and hence, a possible path-way consists in generalizing at finite temperature/chemical potential the continuum approaches used to investigate the (vacuum) IR regime of YM theories. As emphasized earlier, these approaches rely upon approximation schemes, which, for being trustable, should be checked, e.g., by confrontation against lattice simulations when they are available. The latter, now, describe well the phase diagram at vanishing chemical potential along the temperature axis. Indeed, lattice simulations have now firmly established that there exists a confinement-deconfinement phase transition in YM theories [START_REF] Engels | High Temperature SU(2) Gluon Matter on the Lattice[END_REF][START_REF] Boyd | Equation of state for the SU(3) gauge theory[END_REF], whose mains aspects are reviewed in Sec. III.2. In particular, it is now understood that the order of the phase transition depends on the color symmetry group under consideration and is found of first order for SU(3) and second order for SU(2).1 A relevant order parameter for the phase transition is provided by the Polyakov loop [START_REF] Fingberg | Scaling and asymptotic scaling in the SU(2) gauge theory[END_REF] whose nonvanishing expectation value signals the spontaneous breaking of the center symmetry [START_REF] Svetitsky | Symmetry Aspects of Finite Temperature Confinement Transitions[END_REF] associated to the phase transition. Thereby, in 94 Chapter III. Yang-Mills theories at finite temperature this regime, lattice simulations provide a benchmark for continuum methods. Hence, on top of its inherent interest, the detailed description by means of continuum methods of the confinement-deconfinement phase transition in YM theories also provides a laboratory for continuum approaches where they can be checked against lattice data. If successful, this would consist in a good starting point to extend the former also at finite chemical potential.

In this spirit, nonperturbative continuum methods were amended to the finite temperature case such as the FRG [START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Marhauser | Confinement in Polyakov Gauge[END_REF][START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF], truncations of DSEs [START_REF] Epple | Confining Solution of the Dyson-Schwinger Equations in Coulomb Gauge[END_REF][START_REF] Alkofer | Dynamically induced scalar quark confinement[END_REF][START_REF] Fischer | Deconfinement phase transition and the quark condensate[END_REF], the Hamiltonian approach of [START_REF] Reinhardt | The effective potential of the confinement order parameter in the Hamilton approach[END_REF], two-particle-irreducible techniques [START_REF] Fister | Confinement from Correlation Functions[END_REF][START_REF] Fukushima | Polyakov loop and QCD thermodynamics from the gluon and ghost propagators[END_REF], or the GZ proposal [START_REF] Canfora | Effect of the Gribov horizon on the Polyakov loop and vice versa[END_REF][START_REF] Fukushima | Stabilizing perturbative Yang-Mills thermodynamics with Gribov quantization[END_REF]. It is therefore natural to extend at finite temperature the perturbative approach of the CF model presented previously. This has been done in a series of works [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF][START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF][START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF][START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF] and recently also for QCD at finite chemical potential [START_REF] Reinosa | Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential[END_REF] in the presence of heavy quark masses. However, although the phase transition is a physical phenomenon, its effects on the YM correlators might depend on the gauge under consideration. Therefore, for gauge-dependent approximate methods, such as the continuum ones, it might be to choose a gauge in which the Green's functions on which the approach is based be sensitive to the phase transition in order to consistently keep tracks of its effects.

Owing to the numerous studies performed in the vacuum, the Landau gauge appears as a natural candidate and, accordingly, has received a lot of attention also at finite temperature. In this gauge, and in the vicinity of the phase transition, the YM correlators have been investigated by means of both numerical [START_REF] Cucchieri | Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU(2) gauge theory[END_REF][START_REF] Aouane | Landau gauge gluon and ghost propagators at finite temperature from quenched lattice QCD[END_REF][START_REF] Maas | The Gluon propagator close to criticality[END_REF][START_REF] Silva | Gluon screening mass at finite temperature from the Landau gauge gluon propagator in lattice QCD[END_REF] and continuum methods, e.g., with the FRG [START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Fister | Yang-Mills correlation functions at finite temperature[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF], the GZ proposal [START_REF] Fukushima | Stabilizing perturbative Yang-Mills thermodynamics with Gribov quantization[END_REF], truncations of DSEs [START_REF] Huber | On two-and three-point functions of Landau gauge Yang-Mills theory[END_REF][START_REF] Fischer | Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3)[END_REF][START_REF] Fischer | Propagators and phase structure of Nf=2 and Nf=2+1 QCD[END_REF], two-particle-irreducible inspired approximations [START_REF] Fukushima | Polyakov loop and QCD thermodynamics from the gluon and ghost propagators[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF], the Hamiltonian approach [START_REF] Quandt | Covariant variational approach to Yang-Mills theory[END_REF][START_REF] Quandt | A covariant variational approach to Yang-Mills Theory at finite temperatures[END_REF], or perturbative calculations in the CF model [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF], see [START_REF] Maas | Describing gauge bosons at zero and finite temperature[END_REF] for a review. The main results for the Landau gauge gluon and ghost propagators are presented in Sec. III.3. On the one hand, lattice calculations in the Landau gauge found no sign of the phase transition, neither in the ghost propagator (which is in fact essentially independent of the temperature) nor in the magnetic gluon propagator, which is roughly speaking associated with the correlation function for the space-components of the gluons, see below for more details. The situation is less clear for the electric sector, which involves the time-component of the gluon field, more directly connected to the Polyakov loop, see Sec. III.2. Early results in the SU(2) theory, where the phase transition is second order, seemed to show a clear singularity of the electric susceptibility (i.e., the electric propagator at vanishing frequency and momentum) [START_REF] Maas | The Gluon propagator close to criticality[END_REF] at the critical temperature. However, these data present an extreme sensitivity to both the lattice size and the lattice spacing for temperatures slightly below the transition temperature [START_REF] Cucchieri | Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU(2) gauge theory[END_REF][START_REF] Mendes | Systematic Effects at Criticality for the SU(2)-Landau-Gauge Gluon Propagator[END_REF], for reasons that are not fully understood yet, see however [START_REF] Silva | Gluon Dynamics, Center Symmetry and the Deconfinement Phase Transition in SU(3) Pure Yang-Mills Theory[END_REF]. Nevertheless, more recent lattice simulations indicate that this signal disappears at larger volumes [START_REF] Cucchieri | Electric and Magnetic Screening Masses around the Deconfinement Transition[END_REF]. On the other hand, all the continuum approaches typically find a slight nonmonotonous behavior of the electric susceptibility below the transition, but no clear sign of the transition, in qualitative agreement with the latest lattice results of, e.g., [START_REF] Cucchieri | Electric and Magnetic Screening Masses around the Deconfinement Transition[END_REF].

The disappointing conclusion was that, in the Landau gauge, the basic correlators show few, if any, signals of the phase transition. It has been argued that this is a consequence of some drawbacks of the Landau gauge. Indeed, this gauge breaks explicitly the center symmetry of the finite temperature problem. Moreover, the correlators do not present an explicit dependence in the order parameter of the phase transition (the Polyakov loop), which might explain their small response to the phase transition [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF]. Although the Polyakov loop is a complicated object, it has been argued in [START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF] that one can alternatively incorporate to the YM action a nontrivial background value for the gauge field that acts as an equivalent order parameter; see also [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF][START_REF] Herbst | Confinement order parameters and fluctuations[END_REF]. A definite proof has been given in [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF]. More precisely, this corresponds to work in the Landau-DeWitt (LDW) gauge, which is a straightforward generalization of the Landau gauge in presence of a nontrivial background field. This gauge has the main advantage that the center symmetry is explicit [START_REF] Braun | Quark Confinement from Color Confinement[END_REF]. In fact, one can show that certain background field configurations obtained by minimizing a particular potential to be defined below, provide alternative order parameters for the center symmetry, that are equivalent to the (gauge-invariant but more difficult to access) Polyakov loop [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF]. Within this framework, the FRG predicts the correct order of the phase transition, as well as convincing transition temperatures [START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF][START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF]. It is worth mentioning that, the GZ proposal has also been implemented within such a background field formalism, where it was found that the Gribov mass directly feels the confinement-deconfinement phase transition [START_REF] Canfora | Effect of the Gribov horizon on the Polyakov loop and vice versa[END_REF].

The LDW gauge has been implemented in the massive perturbative approach [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF][START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF][START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF][START_REF] Reinosa | Yang-Mills correlators across the deconfinement phase transition[END_REF][START_REF] Reinosa | Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential[END_REF], where, in particular, the phase transition was accessed perturbatively as we review in Sec. III.4. This general set-up consists in our starting point for the calculations of the YM correlators and the investigation of their possible response to the phase transition. This study corresponds to our work of [START_REF] Reinosa | Yang-Mills correlators across the deconfinement phase transition[END_REF] and is presented in detail in Sec. III.5 along with our results.

III.1 Yang-Mills theories at finite temperature: the framework

For later convenience, let us proceed by introducing the massive extension of the Landau gauge FP action at finite temperature in d-dimensional Euclidean space-time. 2It reads

S 0 = x 1 4 F a µν F a µν + m 2 0 2 A 2 µ + ∂ µ ca D µ c a + ih a ∂ µ A a µ , (III.1.1)
where the field strength tensor F a µν , the covariant derivative D µ and the auxiliary fields, namely the FP ghost and antighost c and c, and Nakanishi-Lautrup field ih, were introduced in Chapter. I. The standard Landau gauge FP action is recovered for m 0 = 0. At finite temperature, the Euclidean time, that we note τ , is bounded such that In the following we note with capital letters, e.g. K, the momenta with the Fourier convention that ∂ µ → -iK µ . The periodic boundary condition (III.1.3), implies that their time component, K 0 , is discrete and given by the so-called Matsubara frequencies ω n = 2πnT , n ∈ Z, such that K = (ω n , k). In the following, we drop the suffix n and simply note ω the Matsubara frequencies, except when summing over in loop calculations where we explicitly reintroduce the suffix. Since the time direction is singularized with respect to the spatial ones, the general "Lorentz" decomposition is more complicated at finite temperature than in the vacuum. For a generic symmetric rank-two tensor T µν (K), that depends on the four momentum K, one has

T µν (K) = δ µν T δ (K)+K µ K ν T K (K)+(n µ K ν + n ν K µ ) T nK (K)+n µ n ν T n (K) , (III.1.4)
where n µ characterizes the thermal bath frame. Everywhere in the following, we work in the frame where the thermal bath is at rest, that is, n = (1, 0). One also defines in this context the transverse P T µν (K) and longitudinal P L µν (K) projectors

P T µν (K) = (1 -δ µ0 ) (1 -δ ν0 ) δ µν - K µ K ν k 2 (III.1.5) and P L µν (K) + P T µν (K) = P ⊥ µν (K) = δ µν - K µ K ν K 2 , (III.1.6)
where we noted

k 2 = k 2 and K 2 = ω 2 + k 2 .
In the (massive) Landau gauge, the gluon propagator G ab µν (K) = δ ab G µν (K) is diagonal in color space and transverse with respect to K: K µ G µν (K) = 0. Hereby, it admits the decomposition

G µν (K) = P T µν (K)G T (K) + P L µν (K)G L (K). (III.1.7)
In the following, we refer in an equivalent way to G T as the transverse or magnetic (gluon) sector and G L as the longitudinal or electric (gluon) sector. They can be accessed from the gluon polarization tensor Π ab µν (K) and, for later convenience, we use a perturbative-like writing: Π ab µν (K) = g 2 0 N δ ab Π µν (K), with N the number of color of the fundamental representation of the SU(N ) group. The expressions of the magnetic and electric gluon propagators are

G T /L (K) = 1 K 2 + m 2 0 + g 2 0 N Π T /L (K) , (III.1.8)
where

Π T (K) = P T µν (K)Π µν (K) d -2 , (III.1.9) Π L (K) = P L µν (K)Π µν (K). (III.1.10)
Similarly, we define the ghost self-energy Σ ab (K) = g 2 0 N δ ab Σ(K) as well as the ghost propagator G ab (K) = δ ab G(K), which reads

G(K) = 1 K 2 + g 2 0 N Σ(K) . (III.1.11)
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For later convenience, we also define the ghost dressing function at zero Matsubara frequency

F (k) = k 2 G(ω = 0, k).
(III.1.12)

III.2 The confinement-deconfinement phase transition

In the previous section we introduced the basic ingredients of YM theories at finite temperature and we chose deliberately to present the massive Landau gauge. This turns convenient for the discussions to come in Sec. III.5, but first, we would like to introduce some aspects of the confinement-deconfinement phase transition, which, as emphasized earlier, occurs in YM theories at finite temperature.

III.2.1 The Polyakov loop as an order parameter

We consider the case where the quarks are statics and of infinitely heavy masses (quenched approximation). Within this approximation, starting at zero temperature (vacuum) where quarks and gluons are confined, by increasing the temperature one eventually ends in a phase where the free energy of an isolated static quark becomes finite and, in turn, is interpreted as the deconfined phase. The traced Polyakov loop [START_REF] Polyakov | Thermal Properties of Gauge Fields and Quark Liberation[END_REF] (referred as the Polyakov loop for shortness) provides a relevant order parameter for the confinement-deconfinement phase transition [START_REF] Fingberg | Scaling and asymptotic scaling in the SU(2) gauge theory[END_REF]. It is defined as where P is the path ordering operator (matrices are ordered from left to right according to the decreasing value of their time argument). The free energy F q of an isolated static (of infinitely heavy mass) quark in the thermal gluon bath is related to the expectation value of the Polyakov loop as [START_REF] Svetitsky | Symmetry Aspects of Finite Temperature Confinement Transitions[END_REF][START_REF] Pisarski | Notes on the deconfining phase transition[END_REF][START_REF] Greensite | The Confinement problem in lattice gauge theory[END_REF] exp {-βF q } = .

(III.2.2)

Hereby, a vanishing Polyakov loop (as found in the low temperature phase) corresponds to F q → ∞, that is, an infinite static quark free energy signaling the confined phase.

On the contrary, a finite value of yields a deconfined static quark state.

III.2.2 Spontaneous breaking of the center symmetry

The Polyakov loop (III.2.1) transforms under the action of a local group element U (τ, x) ∈ SU (N ) as [START_REF] Svetitsky | Symmetry Aspects of Finite Temperature Confinement Transitions[END_REF][START_REF] Pisarski | Notes on the deconfining phase transition[END_REF][START_REF] Greensite | The Confinement problem in lattice gauge theory[END_REF]]

→ 1 N tr U (0, x) P exp ig 0 β 0 dτ A 0 (τ, x) U † (β, x) , (III.2.3)
and hence, is invariant under the transformations that admit periodic boundary conditions: U (τ +β, x) = U (τ, x). These correspond to the standard gauge transformations. Nevertheless, the gauge-invariant YM action admits a larger group of symmetries than 98Chapter III. Yang-Mills theories at finite temperature the above periodic transformations [START_REF] Hooft | A Property of Electric and Magnetic Flux in Nonabelian Gauge Theories[END_REF]. These consist in gauge transformations with twisted periodic boundary conditions:

U (τ + β, x) = U (τ, x)Z, (III.2.4)
where Z is an element of a global and discrete group, namely the center of SU(N ). One recovers the standard gauge transformations for Z = 1. The center is defined as the quotient group of the group of generalized gauge transformations (III.2.4) by the subgroup of standard gauge transformations. In the case of SU(N ), the center is isomorphic to

Z N = z k 1 : z k = e i2πk/N , k = 0, . . . N -1 .
According to Eq. (III.2.3), the Polyakov loop gets multiplied by the phase z k under the generalized gauge transformations (III.2.4) = z k , (III.2.5) so that the deconfined phase, signaled by a nonvanishing Polyakov loop, corresponds to a phase where the center symmetry is spontaneously broken. Note that, one could imagine (although this situation is not expected) that the Polyakov loop vanishes in the phase where the center is broken. In such a case, the corresponding phase would still be a confined phase since the static quark free energy would be infinite. Thence, it is really the zero or nonzero value of the Polyakov loop which signals the confined or deconfined phase rather than the spontaneous breaking of the Z N symmetry.3 

III.3 Landau gauge correlation functions and the phase transition

Lattice studies performed in the pure gauge case have confirmed the occurrence of the confinement-deconfinement phase transition. The order of the phase transition depends on the gauge group under consideration and on the dimensionality (in d = 4 it is second order phase transition for SU(2), first order for SU(3)) [START_REF] Engels | Gauge Field Thermodynamics for the SU(2) Yang-Mills System[END_REF][START_REF] Bazavov | Equation of state in ( 2+1 )-flavor QCD[END_REF][START_REF] Boyd | Equation of state for the SU(3) gauge theory[END_REF][START_REF] Borsanyi | Full result for the QCD equation of state with 2+1 flavors[END_REF]. After such a confirmation, some attention was dedicated to investigate the possible signals of the phase transition on the basic gluon and ghost correlators. Although the high-temperature regime can be accessed in perturbation theory (supplemented by resummation techniques, the so-called Hard Thermal Loops [START_REF] Braaten | Soft Amplitudes in Hot Gauge Theories: A General Analysis[END_REF][START_REF] Braaten | Deducing Hard Thermal Loops From Ward Identities[END_REF][START_REF] Braaten | Simple effective Lagrangian for hard thermal loops[END_REF]), one cannot access the domain of temperature lower than a few times the transition temperature [START_REF] Blaizot | The Entropy of the QCD plasma[END_REF][START_REF] Blaizot | Approximately selfconsistent resummations for the thermodynamics of the quark gluon plasma. 1. Entropy and density[END_REF][START_REF] Blaizot | Quark number susceptibilities from HTL resummed thermodynamics[END_REF]. in turn, as emphasized above, various nonperturbative techniques, as well as the perturbative study of the CF model, were extended at finite temperature in order to calculate the Landau gauge correlation functions.

III.3.1 The lattice results

Gauge-fixed lattice simulations were performed for thermal YM theories in the Landau gauge in d = 4 for gauge groups SU(2) and SU [START_REF] Fritzsch | Advantages of the Color Octet Gluon Picture[END_REF], see e.g. [84, 85, 86, 87, 88, 99 89, 90, 91, 46, 92]. However, they display strong systematic uncertainties in particular near the transition temperature [START_REF] Cucchieri | Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU(2) gauge theory[END_REF][START_REF] Mendes | Systematic Effects at Criticality for the SU(2)-Landau-Gauge Gluon Propagator[END_REF]. Nevertheless, some general qualitative features have emerged:

III.3. Landau gauge correlation functions and the phase transition

• The ghost propagator displays very small temperature dependence [START_REF] Cucchieri | Infrared properties of propagators in Landau-gauge pure Yang-Mills theory at finite temperature[END_REF]. This feature is also captured in the framework of DSEs [START_REF] Huber | On two-and three-point functions of Landau gauge Yang-Mills theory[END_REF] and FRG [START_REF] Fister | Yang-Mills correlation functions at finite temperature[END_REF].

• The magnetic mass, defined as the square root of the inverse correlator at zero Matsubara frequency and momentum, remains finite and increases monotonously with the temperature. In the extreme infrared, the magnetic correlator is found to increase linearly with momentum, a behavior characteristic of the zero temperature gluon propagator in the Landau gauge in d = 3 [START_REF] Cucchieri | Infrared properties of propagators in Landau-gauge pure Yang-Mills theory at finite temperature[END_REF].

• Finally, the electric gluon sector represents the correlation of the temporal gluon field, see Eq. (III. 1.6). Owing to the definition of the Polyakov loop Eq. (III.2.1), the electric sector is widely believed to be the most sensitive to the phase transition. Unfortunately, this correlator presents the largest uncertainties due to lattice artifacts, particularly near the phase transition, see Fig. III.1 and [101,[START_REF] Mendes | Systematic Effects at Criticality for the SU(2)-Landau-Gauge Gluon Propagator[END_REF].

In particular, the electric (Debye) mass is nonmonotonous with respect to the temperature [START_REF] Fischer | Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3)[END_REF]. Although early lattice simulations in SU(2) suggested that the Debye mass is minimum (even vanishing) at the transition temperature [START_REF] Maas | The Gluon propagator close to criticality[END_REF], larger volume simulations now favor a finite minimum (with a rather small mass ratio of 1.1 -1.5 with respect to the vacuum value) at a temperature T such that T 0.86 T c , with T c the critical temperature [START_REF] Cucchieri | Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU(2) gauge theory[END_REF]. This is summarized in 
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T/T c "DL0_4" "DL0_6" "DL0_8" "DL0_16" Figure III.2: The longitudinal gluon propagator at zero frequency and zero momentum as a function of the temperature, in d = 4 for SU [START_REF] Zweig | An SU(3) model for strong interaction symmetry and its breaking. Version 2[END_REF]. Results are given for different discretization of the temporal direction N t and labeled as "DL0_N t ". The most reliable data are obtained for the largest value of N t (blue points). Original figure taken from [START_REF] Cucchieri | Electric and Magnetic Screening Masses around the Deconfinement Transition[END_REF].

All in all, as the lattice results become more reliable, they tend to suggest that the basic correlators are little sensitive to the phase transition, and in particular no dramatic signal is observed in the electric sector at T c , see Figs. III.1-III.2. These results are now fairly well described by continuum methods. For instance, in Fig. III.3 is displayed the FRG results of [START_REF] Fister | Yang-Mills correlation functions at finite temperature[END_REF] for the magnetic (transverse) and electric (longitudinal) gluon propagators which are compared with the corresponding lattice results. As we present in the next section, the perturbative calculations performed in the CF model also reproduce these results. [START_REF] Maas | The Gluon propagator close to criticality[END_REF][START_REF] Fischer | Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3)[END_REF]. Right panel: Longitudinal gluon propagator in comparison with lattice results [START_REF] Fischer | Chiral and deconfinement transition from Dyson-Schwinger equations[END_REF]. The lattice data have been rescaled such that the T = 0 propagators match at intermediate momenta p 1GeV. Original figure taken from [START_REF] Fister | Yang-Mills correlation functions at finite temperature[END_REF].

III.3.2 Perturbative results in the massive Landau gauge

The massive approach of the series of works of [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF][START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF][START_REF] Peláez | Two-point correlation functions of QCD in the Landau gauge[END_REF][START_REF] Pelaez | Three-point correlation functions in Yang-Mills theory[END_REF][START_REF] Peláez | Quark-gluon vertex from the Landau gauge Curci-Ferrari model[END_REF][START_REF] Serreau | Covariant gauges without Gribov ambiguities in Yang-Mills theories[END_REF][START_REF] Serreau | A class of nonperturbative nonlinear covariant gauges in Yang-Mills theories[END_REF] has been extended at finite temperature in the Landau gauge [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF]. It consists in considering the action Eq. (III.1.1) introduced in Sec. III.1 that corresponds to a gauge-fixed version of the YM action where the Landau gauge is implemented according to the ST gaugefixing procedure [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF], see Sec. I.5 and Sec. II.2.

We recall that, in the Landau gauge, the SUSY sector appearing in the gaugefixing procedure decouples (in perturbation theory) from the ghost and gluon sectors. This remains true at finite temperature because all fields (SUSY and non-SUSY ones) have the same periodic boundary conditions. Therefore, there is no need to introduce the SUSY sector explicitly here; see Eq. (II.4.18) of Sec. II.4.1. The mass term4 m 0 appearing in the action Eq. (III.1.1) accounts for the presence of Gribov copies. We remark that, a priori, it should present a temperature dependence since the distribution of Gribov copies depends on the temperature. We again mention that, in principle, it should be possible to fix this mass in an ab initio way (akin the Gribov parameter through the horizon condition, see Eq. (I.4.12) of Sec. I.4.2). However, so far, such analogous condition has not been derived and m 0 thus appears as an external parameter, which is to be fixed by comparisons with lattice simulations for instance.

In [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF], the authors computed the finite temperature gluon and ghost propagators from the massive action (III.1.1) at one-loop order in perturbation theory. The thermal contributions do not yield divergences so that only the vacuum contributions need to be renormalized. The one-loop transverse gluon propagator reproduces the same behavior as the one found in lattice simulations and FRG [see Fig. III.3], namely a 3d-behavior for small momenta and a monotonously increasing magnetic mass with respect to the temperature. This is depicted in Fig. III.4. The monotonous increase of the magnetic mass yields a dramatic consequence, namely a pole in the ghost sector. This is a consequence of a nonrenormalization theorem (see [START_REF] Dudal | The Anomalous dimension of the composite operator A**2 in the Landau gauge[END_REF][START_REF] Wschebor | Some non-renormalization theorems in Curci-Ferrari model[END_REF][START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF] for the case T = 0, see also Appendix F)

G -1 T,0 (K)F -1 0 (K) ω=0,k→0 = m 2 0 , (III.3.1)
where we explicitly added a suffix 0 to stress that these are bare quantities, and F 0 is the (bare) ghost dressing function defined in Eq. (III.1.12). In particular, it is understood in (III.3.1) that one has to take ω = 0 prior to perform the limit k → 0. After renormalization (in the zero-momentum renormalization scheme [see Eq. (II.5.29) of Sec. II.5.3] used in [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF]), this identity implies the following one-loop IR behavior of Original figure taken from [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF].

the thermal part of the ghost self-energy

g 2 N Σ th (0, k → 0) ∼ - k 2 m 2 g 2 N Π T,th (0, k → 0) ∼ k 2 1 - M 2 mag (T ) m 2 . (III.3.2)
The last line eventually turns negative because of the (linearly increasing) behavior of the magnetic mass at large temperatures. In particular, this leads to the appearance of a pole in the ghost dressing function at sufficiently high temperatures [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF], see Fig. III.5. This pole can be overcome by allowing the (renormalized) parameters to depend on the temperature. In practice, the temperature dependence was fixed by finding, for each temperature, the value of the parameters for which the perturbative results agree the best with lattice data. Similar treatment was needed in other approaches, as for instance in [START_REF] Fukushima | Stabilizing perturbative Yang-Mills thermodynamics with Gribov quantization[END_REF]. In the present case, it results in a slightly decreasing (renormalized) coupling constant with respect to the temperature that ranges from g = 7 for T = 0 to g = 5 at T = T c . With these temperature-dependent parameters, the previous pole is avoided and both the magnetic gluon propagator and the ghost dressing function are found in good agreement with lattice results. On the other hand, in the electric sector, although the Debye mass shows the nonmonotonous behavior observed in lattice data, it initially does not reproduce well the latter at the quantitative level, with a too small mass ratio and a lower temperature at which the Debye mass is minimum. Let us mention though that, as lattice simulations are performed on larger volumes, their results get closer to the perturbative ones [START_REF] Cucchieri | To be buplished[END_REF].

In this section, the main point we wanted to stress is that, in the Landau gauge, YM correlators display poor signals of the confinement-deconfinement phase transition. In this regard, the Landau gauge seems to be not the best choice of gauge to study the phase transition by means of approximate continuum methods. In particular, the Polyakov loop (the order parameter of the phase transition) does not enter at any level in the definition nor in the calculation of the correlators. On top of it, we presented in Sec. III.2 that the phase transition displays tight links with the Z N symmetry, which, in turn, is explicitly broken in the Landau gauge [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF] (see Sec.III.4.2).

Moreover, for what concerns the perturbative approach, although the results of [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF] provide fairly good agreement with the lattice, in general, near a phase transition, one expects the critical fluctuations of some order parameter to play an important role. The latter are usually not captured by a perturbative calculation as presented above and require another ingredient related to the presence of a nontrivial order parameter. For instance, one can think to the Ising model where one attempts to study the phase transition in a perturbative approach. Of course, as it is well known, one would add to the initial Hamiltonian an external small magnetic field in order to account for a possible nonzero value of the magnetization. In this case, the phase transition can be accessed for instance in the mean-field approximation. In the case of the confinement-deconfinement phase transition, this motivates further the inclusion of an order parameter into the action for the perturbative approach.

III.4 The (massive) Landau-DeWitt gauge

As emphasized above, it would be desirable to have an approach where the order parameter and the Z N symmetry are explicitly accounted for, and which can be investigated by means of both lattice simulations and continuum methods. Such a proposal has been put forward in [START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF][START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF] where the authors used background field methods that allow to maintain explicitly the Z N -center symmetry at the level of the effective action Γ. Accordingly, in the framework of the FRG, they studied the confinementdeconfinement phase transition for N = 2 and N = 3 in a background field extension of the Landau gauge (the Landau-DeWitt gauge, see below). Their results predict the correct order of the phase transition as well as transition temperatures in agreement with the lattice. These background field methods were implemented in the framework of the massive approach of [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF][START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF][START_REF] Peláez | Two-point correlation functions of QCD in the Landau gauge[END_REF][START_REF] Pelaez | Three-point correlation functions in Yang-Mills theory[END_REF][START_REF] Peláez | Quark-gluon vertex from the Landau gauge Curci-Ferrari model[END_REF][START_REF] Serreau | Covariant gauges without Gribov ambiguities in Yang-Mills theories[END_REF][START_REF] Serreau | A class of nonperturbative nonlinear covariant gauges in Yang-Mills theories[END_REF][START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF] first in [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF][START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF][START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF] which we now review.

III.4.1 The general set-up

The theory is quantized by means of background field methods [START_REF] Dewitt | Quantum Theory of Gravity. 2. The Manifestly Covariant Theory[END_REF][START_REF] Abbott | The Background Field Method Beyond One Loop[END_REF][START_REF] Abbott | Introduction to the Background Field Method[END_REF][START_REF] Weinberg | The quantum theory of fields[END_REF]. One introduces an a priori arbitrary background field configuration Āµ and accordingly defines the fluctuating field a µ = A µ -Āµ . The Landau-DeWitt (LDW) gauge is defined by the condition Dµ a µ = 0, (III.4.1)

where Dµ is the background covariant derivative defined as

Dµ ϕ = ∂ µ ϕ -ig 0 [ Āµ , ϕ] . (III.4.2)
Note in particular that, for vanishing background field the Landau gauge is recovered. The gauge transformation of the gauge field A µ = Āµ + a µ can be decomposed in two ways: either

Āµ → Āµ a µ → a U µ = U a µ U -1 + i g 0 U Dµ U -1 , (III.4.3) or Āµ → ĀU µ = U Āµ U † + i g 0 U ∂ µ U † a µ → U a µ U -1 .
(III.4.4)

The condition (III.4.1) fixes the symmetry (III.4.3), but (III.4.4) remains a symmetry of the family of gauge-fixed actions labeled by Ā, namely S Ā[ϕ] = S ĀU [U ϕU -1 ] with ϕ = (a, c, c, h). Observe that the transformation a → a U is very similar to the usual gauge transformation (see (I.1.4)) except that the partial derivative is replaced by the background covariant derivative: ∂ µ → Dµ . Similarly to Landau, the LDW gauge can be obtained by extremizing the functional

H LDW [a, U ] = x tr a U µ a U µ , (III.4.5)
which is a simple generalization of the Landau functional H Landau [A, U ], see (I.4.1) of Sec. I.4. Hereby, it is expected (and confirmed in [START_REF] Cucchieri | The Minimal Landau Background Gauge on the Lattice[END_REF]) that the methods routinely employed to implement the Landau gauge in lattice simulations can be adapted to the LDW gauge.

Here, we apply the ST procedure to the LDW gauge, all the same as in Landau with A µ → a µ and D µ → Dµ . We arrive at the following effective gauge-fixed action [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF] 

S Ā = x tr 1 2 F µν F µν + m 2 0 a µ a µ + 2 Dµ cD µ c + 2ih Dµ a µ . (III.4.6)
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In terms of the field a µ , we have

F µν = Fµν + Dµ a ν -Dν a µ -ig 0 [a µ , a ν ], (III.4.7)
with F a µν = F a µν [ Ā] the field strength tensor evaluated at A = Ā, and

D µ ϕ = ∂ µ ϕ -ig 0 [A µ , ϕ] = Dµ ϕ -ig 0 [a µ , ϕ]. (III.4.8)
Remark the important point that, it is the fluctuating field a µ which appears with a mass term in (III.4.6) and not A µ . In the context of the ST proposal, this comes from the form of the minimization functional (III.4.5) (see Sec.II.2.1). This property is crucial in order to insure that the action Eq. (III.4.6) admits the following symmetry

[118] S Ā[ϕ] = S ĀU [U ϕU -1 ] , ϕ = (a, c, c, h) , (III.4.9)
where U is a local SU(N ) matrix, and ĀU was defined in (III.4.4). Due to its close resemblance with a gauge transformation, the symmetry (III.4.9) is often called background gauge symmetry. Introducing sources J ϕ for the fields ϕ = (a, c, c, h), one defines [START_REF] Weinberg | The quantum theory of fields[END_REF] e

W Ā[Jϕ] = Dϕ exp -S Ā[ϕ] + x J ϕ ϕ(x) , (III.4.10)
and the Legendre transformation of W Ā[J ϕ ] with respect to the sources J ϕ leads to the effective action Γ Ā[ϕ]. Here, the fields ϕ are now to be understood as average values in the presence of sources. Moreover, since the background gauge transformations, Eq. (III.4.4), are linear, one has

Γ Ā[ϕ] = Γ ĀU [U ϕU -1 ] . (III.4.11)
In particular, by taking U (x) as a local element of SU(N ) with twisted periodic boundary conditions (Eq. (III.2.4) with Z = 1), one sees that the center symmetry is encoded into the background gauge symmetry at the level of the effective action.

To evaluate physical observables at zero sources, one should minimize Γ Ā[ϕ] with respect to ϕ at a given background field configuration Ā. Still, according to the LDW gauge condition, Eq. (III.4.1), the choice of the background Ā is merely a choice of gauge, which should thus be chosen for convenience. In particular, in presence of the background, the Polyakov loop, Eq. (III.2.1), reads

= 1 N tr P exp ig 0 β 0 dτ Ā0 (τ, x) + a 0 (τ, x) min , (III.4.12)
where the brackets stand for an average with the gauge-fixed theory (III.4.6), and the suffix min means that the right-hand side of Eq. (III.4.12) is evaluated at an absolute minimum

ϕ min [ Ā] of Γ Ā[ϕ].
Hereby, it turns out convenient to choose (if it exists) a background Ā = Ās such that ϕ min [ Ās ] = 0. Henceforth, we shall refer to such background field configurations as self-consistent backgrounds since they correspond to a min = 0 or equivalently to A min = Ās . One should consider the following functional of the background field

Γ[ Ā] = Γ Ā[0] , (III.4.13)
which is invariant under the background gauge transformations Eq. (III.4.4) owing to Eq. (III. 4.11). An important remark is to note that Γ[ Ā] is not a Legendre transform but, according to its definition Eq. (III.4.13), it corresponds to the effective action Γ Ā evaluated for vanishing ϕ in presence of the background configuration Ā. Thus, in the definition Eq. (III.4.13), Ā is in general not a self-consistent background field and Γ Ā[0] is not the minimum of Γ Ā[ϕ]. Nevertheless, it has been argued that self-consistent background fields are absolute minima of Γ[ Ā] [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF][START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF][START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF] (see also Appendix G). Therefore, for the evaluation of physical observables, one can either minimize Γ Ā[ϕ] with respect to ϕ for a given Ā, or, alternatively, minimize Γ[ Ā] with respect to Ā.

The main lines of the proof goes as follow:5 consider the functional Γ[ Ā] evaluated for a self-consistent background Ās . By construction, one has that6 

Γ[ Ās ] = Γ Ās [0] = Γ Ās [a min [ Ās ]] . (III.4.14)
The right-hand side is related to the free energy of the system according toln Z = Γ Ā[a min [ Ā]] and thus does not depend on the "gauge choice" Ā. 7 Therefore, the background independence of the partition function yields

Γ Ās [a min [ Ās ]] = Γ Ā [a min [ Ā]] ∀ Ā.
Since the right-hand side of this last equality is evaluated at the minimum, one has that

Γ Ā [a min [ Ā]] ≤ Γ Ā [a] ∀a.
In particular, this is true by taking a = 0 on the right-hand side. Eventually, this leads to

Γ[ Ās ] ≤ Γ Ā[0] = Γ[ Ā] ∀ Ā , (III.4.15)
that is, a self-consistent background is necessarily an absolute minimum of the functional Γ[ Ā]. The rest of the proof follows the same lines and one shows that either the absolute minima of Γ[ Ā] correspond exactly to the self-consistent backgrounds or there is no self-consistent background at all [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF]. This finally shows the equivalence for the evaluation of gauge-invariant quantities either by minimizing Γ Ā[a] with respect to a for fixed background Ā or by minimizing the functional of the background Γ[ Ā] with respect to Ā.

III.4.2 The background potential in SU(2)

In the following, we consider only self-consistent background fields. Moreover, since by definition a self-consistent background satisfies Ās (τ, x) = A min , it is sufficient to consider homogeneous background fields in the temporal direction, that is Āµ (τ, x) = Ā0 δ µ0 .

(III. 4.16) With no loss of generality, the (Hermitian) matrix Ā0 can be restricted to belong to the Cartan subalgebra 8 of the color group [START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF]. Here, for simplicity, we consider only the case of SU [START_REF] Zweig | An SU(3) model for strong interaction symmetry and its breaking. Version 2[END_REF]. For a generalization to SU(3) and other groups see [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF] and Appendix H. Among the three SU(2) generators (in the Cartesian basis) (t 1 , t 2 , t 3 ) defined in Sec. I.1 of Chapter. I, we choose t 3 = σ 3 /2, where σ 3 = diag(1, -1) is the third Pauli matrice, as the generator of the one-dimensional SU(2) Cartan subalgebra. Hereby, we set Ā0 = Ā3 0 t 3 . We also define r = g 0 β Ā3 0 , (III.4.17)

as well as the background field potential [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF][START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF]]

V (r) = 1 βΩ Γ[ Ā] , (III.4.18)
where Ω is the spatial volume. Accordingly, one tries to find r min that minimizes V (r), which can be computed by means of continuum methods, e.g. in perturbation theory as done in [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF][START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF].

As emphasized earlier, the center symmetry is encoded into the background gauge symmetry Eq. (III.4.9). To see this, consider gauge transformations of the peculiar form U (τ, x) = exp {iτ φ/β} , (

where φ = φ 3 t 3 is a constant element of the SU(2) Cartan subalgebra. For U (τ, x) of the form (III.4.19), the background field is changed under a background gauge transformation (III.4.4) as

Ā3 0 → Ā3 0 + φ 3 βg 0 ⇒ r → r + φ 3 . (III.4.20)
Moreover, for U (τ, x) of the form (III.4.19), we have that

U (τ + β, x) † U (τ, x) = exp iφ 3 t 3 = 1 cos φ 3 2 + σ 3 i sin φ 3 2 .
(III.4.21)

Thus, standard periodic boundary conditions require that φ 3 = 0 mod[4π], while periodic boundary conditions up to a center element (for SU(2) the center is given by

Z 2 = {+1, -1}) necessitate φ 3 = 2π mod[4π]
. Therefore, owing to the background gauge symmetry, Eq. (III.4.11), the Z 2 -center symmetry implies that the background potential V (r) is 2π-periodic in r. Moreover, the gauge-fixed action is invariant under the charge-conjugation transformation 9 [93] Āµ → -Āµ , ϕ → -ϕ † that yields the parity symmetry of the potential (III.4.18) under r → -r. Hereby, it is sufficient to study the background potential V (r) on the interval r ∈ [0, π] [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF][START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF][START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF]. In particular, the above properties of parity and 2π-periodicity imply that r = 0 and r = π are always extrema of V (r), where r = π is the Z 2 -center symmetric point [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF] (see also Eq. (III.4.22) below). We recall that, physical observables have to be evaluated at the physical point r = r min (or equivalently, Ā = Āmin ). Following the discussion above, the value r min 108 Chapter III. Yang-Mills theories at finite temperature (or equivalently, Āmin ) constitutes an order parameter for the realization of the center symmetry [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF][START_REF] Herbst | Confinement order parameters and fluctuations[END_REF]. In the present case, for gauge group SU(2), r min = π corresponds to the phase where the center symmetry is realized, while it is spontaneously broken for r min ∈ [0, π[. Note that, in particular, the Landau gauge corresponds to Ā = 0. The general discussion presented here has been generalized for SU(3) and other gauge groups in [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF], see also [START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF].

III.4.3 The background potential at two-loop order and the phase transition

In the previous sections, we saw that the inclusion of a background field configuration Āµ eventually leads to the calculation of the background field potential V (r) that needs to be minimized in order to evaluate physical observables. In particular, it is interesting to investigate the behavior of the Polyakov loop. At tree-level, it is given by, see Eq. (III.4.12), In practice, the background field potential has been computed up to two-loop order in [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF] for SU [START_REF] Zweig | An SU(3) model for strong interaction symmetry and its breaking. Version 2[END_REF] and in [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF] for SU(3) and other gauge groups. A second-order phase transition was found, as expected, for SU [START_REF] Zweig | An SU(3) model for strong interaction symmetry and its breaking. Version 2[END_REF], see Fig. III.6, with a critical temperature of T c = 0.285 GeV for m 0.68 GeV and g 7.5. These values of the parameter were inferred from lattice calculations of ghost and gluon propagators in the Landau gauge at vanishing temperature. The second order character of the phase transition can directly be observed at the level of the order parameter r min (T ), which is a continuous function of T but presents a cusp at the critical temperature, as depicted in Fig. III.7.

It is worth mentioning that, at asymptotically high temperatures, the background reaches a finite value r ∞ given by [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF] 

r ∞ π = 1 - 8π 2 + g 2 8π 2 + 7g 2 . (III.4.23)
This is a two-loop feature, while at one-loop order one has r ∞ = 0 [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF]. Notice that, the limit (III.4.23) ignores possible high temperature RG or resummation effects. In particular, with the development (III.4.23), one has that r ∞ → 0 as g → 0. Remark that, after the critical temperature, r min (T ) displays a slight nonmonotonous behavior before reaching its asymptotic value r ∞ .
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Figure III.6: Rescaled two-loop background field potential V (T, r)/T 4 for various temperatures, below (blue) and above (red) the critical temperature (dashed black). The green curve corresponds to a higher temperature and shows the approach to the asymptotic infinite temperature limit (dotted line). All curves have been shifted by their respective values at r = π for clarity. Original figure taken from [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF]. 

III.5 Propagators at one-loop order in the LDW gauge

In this section we present in detail our work realized in [START_REF] Reinosa | Yang-Mills correlators across the deconfinement phase transition[END_REF]. It consists in the computation of the YM propagators at one-loop order (that is next-to-leading order) in the massive LDW gauge for the SU(2) theory. We are mostly interested in investigating the possible signals of the phase transition that the correlators might display. Here and in the following, we note the background r but it is implicitly understood that eventually all the quantities computed shall be evaluated for r = r min . For practical aspects, we use r min that minimizes the two-loop (i.e. next-to-leading order) background potential computed in [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF]. The obtained r min (T ) is depicted in Fig. III.7. First, in Sec. III.5.1, we review some implications of the presence of the background field and in particular we give the Feynman rules of the theory [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF]. Then, we proceed to the one-loop calculations of the various correlators in Sec. III.5.2 and finally present our results in Sec. III.5.4.

III.5.1 Canonical basis and Feynman rules

The background field Āµ = Ā3 0 t 3 δ µ0 introduces a preferred direction in color space. For instance, let us consider the action of the background covariant derivative Dµ on a field ϕ. It reads in color component

Dµ ϕ a = ∂ µ ϕ a + g 0 δ µ0 f a3c Ā3 0 ϕ c . (III.5.1)
Hereby, the different color modes couple differently to the background that lifts their degeneracy and induces a nontrivial color structure of the various correlators (in particular the color mode 3 does not receive any contribution from the background in Eq. (III.5.1)). Thus, one sees that the standard Cartesian basis t a is not the most appropriate to derive the Feynman rules. Instead, we work in the so-called canonical (or Cartan-Weyl) bases [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF][START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF], which diagonalize the background covariant derivative Dµ . In the following, we work with the same choice of SU(2) Cartan subalgebra as previously, with generator t 3 = σ 3 /2. A canonical basis is given by

t 0 = t 3 , t ± = t 1 ± it 2 √ 2 , (III.5.2) which satisfies [t κ , t λ ] = ε κλτ t -τ and tr{t κ t -λ } = δ κλ 2 , (III.5.3)
with κ, λ, τ ∈ {0, +, -} and where ε κλτ is the completely antisymmetric tensor, with ε 0+-= 1. Nevertheless, for the sake of keeping notations as closed as possible to the standard ones, in the following we note the structure constant f κλτ . In particular, the structure constant satisfies

(f κλτ ) * = -f (-κ)(-λ)(-τ ) = f κλτ . (III.5.4)
Fields that are in the adjoint representation can accordingly be decomposed as ϕ = ϕ κ t κ . From now on, we shall always assume that we are in the canonical basis. In where we use as convention that momenta and color charges are all either outgoing or ingoing. With similar conventions, the three gluon vertex reads

K, κ Q, τ L, λ, ν K, κ, µ Q, τ, ρ L, λ, ν
g 0 6 f κλτ δ µρ (K κ ν -Q τ ν )+δ µν L λ ρ -K κ ρ +δ ρν Q τ µ -L λ µ .
(III.5.12)

The structure constants ensure that the color charges are conserved at both cubic vertices, which, together with the usual conservation of momenta, leads to the conservation rule for the generalized momenta:

K κ + Q τ + L λ = 0.
Finally, the four-gluon vertex, represented in Fig. III.10 with all momenta and charges outgoing/ingoing, is given by

g 2 0 24 η f κλη f τ ξ(-η) (δ µρ δ νσ -δ µσ δ νρ )+f κτ η f λξ(-η) (δ µν δ ρσ -δ µσ δ νρ ) +f κξη f τ λ(-η) (δ µρ δ νσ -δ µν δ σρ ) .
(III.5.13) 10 We reserve the set of greek letters (µ, ν, ρ, σ) to denote Euclidean space indices and the other set (κ, λ, η, ξ, τ ) to denote color states. With this convention, Kµ denotes the µ component of the four-vector K, whereas K κ refers to the shifted momentum K + κg0 Ān with n = (1, 0). Again, color charge and momentum conservation lead to K κ + Q τ + L λ + P ξ = 0. We now apply these Feynman rules to the computation of the two-point correlators of the theory at one-loop order.

We follow the same definitions for the propagators and self-energies as those presented in Sec. III.1, but here we take care of the nontrivial color structure. The residual global SO(2) symmetry, corresponding to the color rotations that leave the background invariant, guarantees that these are "diagonal" in color space [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF], in the sense

G κλ (K) = δ -κ,λ G λ (K) , G κλ µν (K) = δ -κ,λ G λ µν (K) (III.5.14)
and (note the different choice of label for the diagonal components)

Σ κλ (K) = δ -κ,λ Σ κ (K) , Π κλ µν (K) = δ -κ,λ Π κ µν (K). (III.5.15)
With these conventions, we have for the ghost propagator

G λ (K) = 1 (K λ ) 2 + g 2 0 Σ λ (K) (III.5.16)
and for the ghost dressing function at vanishing Matsubara frequency (no sum over λ)

F λ (ω = 0, k) = K 2 λ G λ (K) ω=0 , (III.5.17) 
where we noted K 2 λ = (K λ ) 2 = K λ µ K λ µ (no sum over λ) and where we have extracted a factor g 2 0 for later convenience. As for the Landau gauge gluon propagator, the LDW gauge condition (III.4.1) implies that G λ µν (K) is transverse with respect to the generalized momentum (no sum over λ): K λ µ G λ µν (K) = G λ µν (K) K λ ν = 0. It thus admits the following tensorial decomposition

G λ µν (K) = G λ T (K)P T µν (K λ ) + G λ L (K)P L µν (K λ ) , (III.5.18)
where P T µν (K) and P L µν (K) are the transverse and longitudinal projectors (III.1.5), (III.1.6). It follows, in particular, that G λ µν (K) = G λ νµ (K). In terms of the projected self-energies

Π λ T (K) = P T µν (K λ )Π λ µν (K) d -2 , (III.5.19) Π λ L (K) = P L µν (K λ )Π λ µν (K) , (III.5.20)
the scalar components of the gluon propagator read

G λ T /L (K) = 1 (K λ ) 2 + m 2 0 + g 2 0 Π λ T /L (K) . (III.5.21)
Finally, from Eq. (III.5.14), the propagators are real and have the property

G λ (K) = G -λ (-K) , (III.5.22) G λ T /L (K) = G -λ T /L (-K) , (III.5.23)
and similarly for the self-energies. 11

III.5.2 One-loop calculations

In this section, we compute the one-loop contribution to the ghost and gluon self-energies. The corresponding Feynman diagrams are depicted in 

III.5.2.1 One-loop Feynman diagrams

Figure III.11: One-loop contribution to the ghost self-energy. We take the convention that all momenta and color charges flow from the right vertex to the left vertex.

We note K = (ω, k) and λ the external momentum and color charge, and K λ = (ω λ , k) the corresponding shifted/generalized momentum. The internal loop momentum is denoted Q ≡ (ω n , q) and the shifted/generalized one Q κ = (ω κ n , q), with the Matsubara frequency ω n ≡ 2πnT , n ∈ Z. Finally we use the notation

Q f (Q) ≡ µ 2 T n∈Z d d-1 q (2π) d-1 f (ω n , q) , (III.5.24)
where µ is the arbitrary scale associated with dimensional regularization (d = 4 -2 ).

A direct application of the Feynman rules of Sec. 

(Q) = ϕ-κ(-Q). Using the ghost conjugaison symmetry (c, c) → (c, -c), one concludes that G κλ (K) = G λκ (-K) = G (-λ)(-κ) (K) * and G κλ µν (K) = G λκ νµ (-K) = G (-λ)(-κ) νµ
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yields 12 Σ λ (K) = - κ,τ f λκτ f (-τ )(-κ)(-λ) Q P ⊥ µν (Q κ )(-L) -τ µ K λ ν G m (Q κ )G 0 (L τ ) , (III.5.25)
where K + Q + L = 0 and where the sum runs over all color states. Using the anti-symmetry of the structure constant tensor as well as the identities (III.5.4) and (III.5.10), we arrive at

Σ λ (K) = - κ,τ C κλτ Q P ⊥ µν (Q κ )L τ µ K λ ν G m (Q κ )G 0 (L τ ) , (III.5.26)
with the totally symmetric tensor C κλτ = |f κλτ | 2 . As discussed previously, f κλτ vanishes if κ + λ + τ = 0, so does C κλτ , which implies the conservation of the generalized momentum at the vertices:

Q κ + K λ + L τ = 0.
We note the close ressemblance of the above expression with the corresponding one-loop expression in the Landau gauge, see Eq. ( 15) of [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF]. For instance, one checks that Eq. (III.5.26) reduces to the Landau gauge expression in the case of a vanishing background field. Using the conservation of the generalized momentum and the definition of P ⊥ µν , Eq. (III.1.6), the expression of the ghost self-energy reads

Σ λ (K) = κ,τ C κλτ Q K 2 λ - (Q κ • Kλ) 2 Q 2 κ G m (Q κ )G 0 (L τ ) , (III.5.27)
where

Q κ • K λ = Q κ µ K λ µ
and where, for simplicity, we noted K 2 λ = (K λ ) 2 = K λ µ K λ µ (no sum over λ) and similarly for Q 2 κ . The denominator 1/Q 2 κ can be eliminated by using that (for

m 1 = m 2 ) G m 1 (Q κ )G m 2 (Q κ ) = 1 m 2 2 -m 2 1 G m 1 (Q κ ) -G m 2 (Q κ ) .
(III.5.28) Furthermore, writing

2Q κ • K λ = L 2 τ -K 2 λ -(Q 2 κ + m 2 ) + m 2 , (III.5.29)
we obtain

2Q κ • K λ G m (Q κ )G 0 (L τ ) = G m (Q κ ) -G 0 (L τ ) -(K 2 λ -m 2 )G m (Q κ )G 0 (L τ ) (III.5.30
) and, applying the same trick twice,

4(Q κ • K λ ) 2 G m (Q κ )G 0 (L τ ) = K 2 λ -m 2 + 2Q κ • K λ (G m (Q κ ) -G 0 (L τ )) + (K 2 λ -m 2 ) 2 G m (Q κ )G 0 (L τ ) .
(III.5.31)

Finally, according to (III.5.28) and (III.5.31), the ghost self-energy rewrites as

Σ λ (K) = κ,τ C κλτ K 2 λ -m 2 4m 2 (J κ m -J κ 0 ) - ω λ 2m 2 ( Jκ m -Jκ 0 ) + K 4 λ 4m 2 I κτ 00 (K) - K 2 λ + m 2 2 4m 2 I κτ m0 (K) , (III.5.32)
where K 4 λ = (K 2 λ ) 2 and where we introduced the following scalar tadpole sum-integrals

J κ m = Q G m (Q κ ), (III.5.33) Jκ m = Q ω κ G m (Q κ ), (III.5.34)
as well as the scalar bubble sum-integral (K + Q + L = 0)

I κτ m 1 m 2 (K) = Q G m 1 (Q κ )G m 2 (L τ ). (III.5.35)
Clearly, I κτ m 1 m 2 (K) = I τ κ m 2 m 1 (K). Moreover, it follows from the identity (III.5.10) and from

G m (Q) = G m (-Q) that I κτ m 1 m 2 (-K) = I (-κ)(-τ ) m 1 m 2 (K).
Similarly, one shows that J κ m = J -κ m and Jκ m = -J-κ m . Expression (III.5.32) resembles formally to its Landau gauge counterpart which is recovered for r = 0 (see Eq. ( 22) of [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF]). Apart from the expected presence of the background in the sum-integrals and external momentum, there is a specific contribution of the LDW gauge, namely the second term between brackets proportional to the shifted frequency13 ω λ .

More generally, the relationship between loop calculations in the Landau and in the LDW gauges has been discussed in [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF]. In particular, the manipulations Eqs. (III.5.28)-(III.5.31), rely only on the conservation of the (here, generalized) momentum. The only difference concerns the fact that the integral 12. The calculation of each diagram proceeds along the same lines as for the one appearing in the ghost self-energy. As before, the obtained expressions are similar to the corresponding ones in the Landau gauge, with the various momenta in the internal lines replaced by appropriate generalized momenta. The reduction to simple tadpole and bubble loop integrals is detailed in Appendix. I. Although the complete tensorial expression of the self-energy is shown there, it follows from Eqs. (III.5.19)-(III.5.21) that it is sufficient to retain only those contributions that are transverse with respect to the external generalized momentum K λ . These read, using the same notational conventions as before, where we have introduced the following integrals

Q (K • Q)[G 0 (Q) - G m (Q)] = 0, which appeared in the Landau gauge calculation, generalizes to Q (K λ • Q κ )[G 0 (Q κ ) -G m (Q κ )] =
Π λ T /L (K) = κ,τ C λκτ 1- K 4 λ 2m 4 {I λ T /L } κτ 00 (K)+ 1+ K 2 λ m 2 2 {I λ T /L } κτ m0 (K)+ (K 2 λ +m 2 ) 2 m 2 I κτ m0 (K) -2   d -2+ 1+ K 2 λ 2m 2 2   {I λ T /L } κτ mm (K)-K 2 λ 4 + K 2 λ m 2 I κτ mm (K) + (d -2)J κ m + K 2 λ + m 2 m 2 (J κ m -J κ 0 ) -
{I λ T } κτ m 1 m 2 (K) = P T µν (K λ ){I µν } κτ m 1 m 2 (K) d -2
, (III.5.37)

{I λ L } κτ m 1 m 2 (K) = P L µν (K λ ){I µν } κτ m 1 m 2 (K) , (III.5.38)
where

{I µν } κτ m 1 m 2 (K) ≡ Q Q κ µ Q κ ν G m 1 (Q κ )G m 2 (L τ
), (III.5.39)

with K + Q + L = 0. Using similar arguments as before, one easily shows that

{I λ T /L } κτ m 1 m 2 (K) = {I λ T /L } τ κ m 2 m 1 (K) = {I λ T /L } (-κ)(-τ ) m 1 m 2 (-K).
As for the ghost selfenergy, only the third contribution on the second line, proportional to the external shifted frequency ω λ is structurally new in the LDW gauge, see also Eq. ( 28) of [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF].

III.5.2.2 Calculation of the sum-integrals

It remains to evaluate the scalar sum-integrals (III.5.33)-(III.5.35), and (III.5.37)-(III. 5.38). This is detailed in Appendix. J. As an illustration, we explicitly compute here the simple tadpole integral Eq. (III.5.33). The Matsubara sum can be calculated analytically by means of standard integration contour technique [START_REF] Bellac | Thermal Field Theory[END_REF][START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF]: if f (z) is a complex function with poles away from the Matsubara frequencies and that decreases fast enough as |z| → ∞, we have where n x = 1/(exp(βx) -1) is the Bose-Einstein distribution function. In this way we obtain for J κ m J κ m = q n εm,q-iκrT -n -εm,q-iκrT 2ε m,q , (III. 5.41) where ε m,q ≡ q 2 + m 2 and q = d d-1 q (2π) d-1 . Using that n -x = -1 -n x , Eq. (III.5.41) rewrites J κ m = q 1 + 2n εm,q 2ε m,q , (III. 5.42) where the term 1 in the numerator of (III.5.42) corresponds to the vacuum contribution.

T n f (iω n ) = -
The thermal contribution reads

J κ m = q Re n εm,q-iκrT ε m,q = 1 2π 2 ∞ 0 dq q 2 Re n εm,q-iκrT ε m,q .
(III. 5.43) where the symbol = means that we disregard vacuum contributions. 

J vac m = µ 2 Γ 1 -d 2 (4π) d 2 (m 2 ) d 2 -1 = - m 2 16π 2 1 + ln μ2 m 2 + 1 + O( ) , (III.5.44)
where we defined μ2 ≡ 4πµ 2 e -γ with γ the Euler constant. The vacuum part of the other sum-integrals (III.5.33)-(III.5.35), and (III.5.37)-(III.5.39) have been computed in [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF]. Nevertheless, as emphasized below, in practice one does not need them explicitly. Indeed, at zero temperature the LDW reduces to the usual Landau gauge. For the present case, one can thus take them from the existing literature, see e.g. [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF].

III.5.2.3 Background effects

A first nontrivial effect of the background can be directly read-off the loop contributions. As we have just presented, these can be recast under the form of sum-integrals that involve the Bose-Einstein distribution n x . More precisely, the background appears as an imaginary chemical potential into the Bose-Einstein distribution: n x-iκrT , see Eq. (III.5.42) and Appendix J. In particular, in the low temperature phase where r = π, this leads to

n x-iκπT = - 1 exp(βx) + 1 , (III.5.45)
and one recognizes a Fermi-Dirac (with a wrong sign) distribution. Hereby, in the low temperature phase, the background changes the colorly charged bosonic degrees of freedom that run inside the loop into fermion-like fields 15 . Note that this feature holds true as long as the temperature is nonvanishing. Hence, although the Landau and LDW gauges are the same at zero temperature, they display a fundamental difference even at infinitely small temperatures.

III.5.3 Renormalization

We introduce renormalized parameters and fields, related to the corresponding bare quantities in the usual way:

m 2 0 = Z m 2 m 2 , g 0 = Z g g , (III.5.46) and Ā = Z Ā ĀR , a = √ Z a a R , c = √ Z c c R , c = √ Z c cR , (III.5.47)
Notice that the background field Ā and the fluctuating field a receive independent renormalizations [START_REF] Binosi | Anti-BRST symmetry and background field method[END_REF]. The background field gauge symmetry (III.4.11) implies that the product g 0 Ā is finite [START_REF] Weinberg | The quantum theory of fields[END_REF]. Imposing the renormalization condition

Z g Z Ā = 1 (III.5.48)
for the finite parts as well, we have g 0 Ā = g ĀR . We define the renormalized self-energies Σ λ R (K) and Π λ R,T /L (K) from the renormalized propagators

G λ R (K) = Z -1 c G λ (K) (III.5.49) G λ R,T /L (K) = Z -1 A G λ T /L (K) (III.5.50)
as in Eqs. (III.5.16) and (III.5.21) by simply replacing m 2 0 → m 2 and g 0 → g (we already anticipated this replacement in the loop expressions evaluated above). Following the structure of the sum-integrals defined in the previous section, [see Appendix J], one can separate a thermal and a vacuum contribution as

Σ λ R (K) = Σ λ,th R (K) + Σ vac R (K 2 λ ), (III.5.51)
and similarly for Π λ R,T /L (K), with Π vac R,T /L (K 2 ) = Π vac R (K 2 ) by Euclidean symmetry. The vacuum parts are defined as the T = 0 contributions at fixed background field ĀR . The background-field gauge symmetry (III. 4.11) guarantees that these only depend on ĀR through the shifted momentum, as emphasized in the notation of Eq. (III.5.51). The functions Σ vac R (K 2 ) and Π vac R (K 2 ) are thus nothing but the renormalized selfenergies in the (massive) Landau gauge and one can write

G λ R (K) = 1 K 2 λ F -1 R,vac (K 2 λ ) + g 2 Σ λ,th R (K) (III.5.52) G λ R,T /L (K) = 1 G -1 R,vac (K 2 λ ) + g 2 Π λ,th R,T /L (K) (III.5.53)
where F R,vac (K 2 ) and G R,vac (K 2 ) are, respectively, the zero-temperature renormalized ghost dressing function and gluon propagator in the Landau gauge. For later convenience, we also define the renormalized ghost dressing function at vanishing Matsubara frequency (no sum over λ)

F λ R (ω = 0, k) = K 2 λ G λ R (K) ω=0 .
(III.5.54)

The zero-temperature Landau gauge F R,vac (K 2 ) and G R,vac (K 2 ) have been computed at one-loop order in the CF model (i.e., the Landau gauge limit of the present model) for the groups SU(N ) in [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF] using the set of renormalization conditions

Σ vac R (K 2 = µ 2 ) = Π vac R (K 2 = 0) = Π vac R (K 2 = µ 2 ) = 0, (III.5.55)
where µ is the renormalization scale. In principle one could implement temperature and/or background-field dependent renormalization conditions. For instance we have investigated a renormalization scheme defined as

Σ λ=0 R (K 2 = µ 2 ) = Π λ=0 R,L (K 2 = 0) = Π λ=0
R,L (K 2 = µ 2 ) = 0 ∀T but no qualitative changes were observed. Remark however that there is a large number of choices of such renormalization schemes owing to the number of nondegenerate color modes λ and the thermal asymmetry T /L of the gluon self-energy. For simplicity we use the set of renormalization conditions (III.5.55). The one-loop vacuum ghost dressing function and gluon propagator in Eqs. (III.5.52) and (III.5.53) can thus be taken from Eqs. ( 17) of [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF], which we recall here for completeness: In general, a fifth prescription is needed for the coupling renormalization factor Z g . One could, for instance, use a background field generalization of the Taylor scheme [START_REF] Taylor | Ward Identities and Charge Renormalization of the Yang-Mills Field[END_REF] often used in the Landau gauge and its massive extension [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF], see also Sec. II.5.4 of Chapter. II. However, this is not needed at the order of approximation considered here. In the following, we simply set Z g → 1 in the one-loop expressions.

F -1 R,vac (p) = 1 + g 2 N 64π 2 f (p 2 /m 2 ) -f (µ 2 /m 2 ) (III.5.56) G -1 R,vac (p) = p 2 + m 2 + g 2 N p 2 384π 2 g(p 2 /m 2 ) -g(µ 2 /m 2 )

III.5.4 Results for the SU(2) theory

At the order of approximation considered here, we minimize the two-loop background field potential of the SU(2) theory computed in [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF]. As already discussed above, the parameters used in this article, namely g = 7.5, m = 0.68 GeV, and µ = 1 GeV, were taken from fits of the lattice ghost and gluon propagators in the Landau gauge at zero temperature [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF]. This choice was motivated by the fact that, since the background Ā ∝ T , the LDW gauge reduces to the Landau gauge at T = 0, see also [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF]. However, in the present case, this set of parameters leads to unphysical features for temperatures around T c : the susceptibility of neutral color modes, defined below, turns negative, which yields a pole at nonvanishing momentum in the Euclidean Chapter III. Yang-Mills theories at finite temperature propagator at zero Matsubara frequency. This is a consequence of the too large value of the coupling [START_REF] Reinosa | Yang-Mills correlators across the deconfinement phase transition[END_REF].

Here, it is worth emphasizing that, although it makes sense to fit the zero temperature propagators of the LDW gauge against the lattice data in the Landau gauge, there is a priori no reason to expect the parameters not to vary with temperature. This could arise, for example, from renormalization group effects or from our assumption that the present massive model effectively accounts for Gribov ambiguities, which do depend on the Euclidean spacetime volume and thus on the temperature. As a matter of fact, fitting the one-loop propagators against lattice data in the Landau gauge at finite temperature [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF] indeed reveals that the best value for the coupling decreases from g ≈ 7 at T = 0 to about g ≈ 5 close to T c . At present, we have no way to predict the possible temperature dependence of our parameters and there exists no lattice data in the present LDW gauge. As a rough guide, we shall use the value g(µ) = 5 at µ = 1 GeV obtained for temperatures in the vicinity of T c in [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF] in the Landau gauge. We adjust the mass parameter accordingly to the value m(µ) = 0.75 GeV such that the transition temperature remains fixed to T 2loop c = 0.285 GeV, obtained from the minimization of the background effective potential at two-loop order [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF], which agrees with the lattice results.

The background field r = r min (T ) that minimizes the two-loop potential of [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF] is shown in Fig. III.7 as a function of temperature. It presents the characteristic cusp at the second order transition of the SU(2) theory. We also show the behavior of the dimensionful background rT , that is, the effective frequency shift for charged color modes, which contributes a term (rT ) 2 to the tree-level square mass of the corresponding propagators at zero frequency, see Eqs. (III.5.16) and (III.5.21).

III.5.4.1 Gluon susceptibilities across the phase transition

Before discussing the complete momentum dependence of the various propagators, we consider the electric and magnetic gluon inverse square masses (susceptibilities) of the neutral gluon mode, which have simple expressions and which already exhibit the most salient features of the influence of the background field on the correlation functions. They are defined as

χ 0 T /L = G 0 T /L (ω = 0, k → 0) = 1 m 2 + g 2 Π 0,th T /L (0, k → 0) . (III.5.60)
In contrast, the thermal dependence of the zero momentum value of the (zero Matsubara frequency) charged gluon propagators does not come only from thermal loops but also receive a contribution from the vacuum part due to the frequency shift ω ± rT . Indeed, as emphasized above, the vacuum part of the self-energies is defined as their T = 0 contributions evaluated at fixed background Ā, such that

G ± T /L (ω = 0, k → 0) = 1 G -1 vac ((rT ) 2 ) + g 2 Π ±,th T /L (0, k → 0) . (III.5.61)
In order to get rid of the thermal dependence coming from the nonvanishing shifted external frequency we also define, by analogy with Eq. (III.5.60), the inverse charged III.5. Propagators at one-loop order in the LDW gauge 123 gluon square masses from the corresponding propagators at vanishing shifted frequency:

χ λ T /L = G λ T /L (ω = -λrT, k → 0), (III.5.62)
where the right-hand side is to be understood as the renormalized propagators (III.5.53) analytically continued to arbitrary (i.e., non Matsubara) Euclidean frequencies. 16 By abuse of language, we shall call these susceptibilities as well. By definition, their temperature dependence entirely comes from thermal loop effects since, just as for the neutral mode, their one-loop expressions involve diagrams with vanishing external frequency and momentum. In what follows, we shall use a more standard terminology and refer to the Debye and magnetic square masses, 17 respectively defined as M 2 D,λ ≡ 1/χ λ L and M 2 mag,λ ≡ 1/χ λ T . We thus have

M 2 D,λ (T ) = m 2 + g 2 Π λ,th L (ω = -λrT, k → 0), (III.5.63) M 2 mag,λ (T ) = m 2 + g 2 Π λ,th T (ω = -λrT, k → 0). (III.5.64)
In particular, Eq. (III.5.23) guarantees that M 2 D,+ = M 2 D,-and M 2 mag,+ = M 2 mag,-. All these quantities involve loop integrals with vanishing external frequency/momentum, which at one-loop order, admit relatively simple expressions. These are derived in Appendix. K. Here, we give the results:

M 2 D,0 (T ) = m 2 - g 2 T 2 8 1 - r π 2 - 1 3 - π 2 T 2 m 2 1 - r π 4 -2 1 - r π 2 + 7 15 
+ g 2 m 2 π 2 ∞ 0 dq
Re n εm,q-irT ε m,q 3 + 6 q 2 m 2 + q 4 m 4 (III.5.65) and

M 2 mag,0 (T ) = m 2 + g 2 T 2 8 1 - r π 2 - 1 3 - π 2 T 2 3m 2 1 - r π 4 -2 1 - r π 2 + 7 15 
- g 2 m 2 π 2 ∞ 0 dq
Re n εm,q-irT ε m,q q 2 m 2 + q 4 3m 4 (III.5.66)

for the neutral sector, and

M 2 D,± (T ) = m 2 - g 2 T 2 16 1 - r π 2 + 1 3 - π 2 T 2 m 2 1 - r π 4 -2 1 - r π 2 - 1 15 
+ g 2 m 2 2π 2 ∞ 0
dq n εm,q + Re n εm,q-irT ε m,q 3 + 6 q 2 m 2 + q 4 m 4 , (III.5.67) 16 The analytical continuation has to be understood after the Matsubara sums have been performed and the external Matsubara frequency has been removed from the thermal factors by means the identity nε+iω n = nε. 17 Strictly speaking the Debye and magnetic masses are the pole masses of the corresponding electric and magnetic propagators. Nevertheless, it is common to use this terminology for the zero momentum masses/susceptibilities [START_REF] Maas | Describing gauge bosons at zero and finite temperature[END_REF].
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M 2 mag,± (T ) = m 2 + g 2 T 2 16 1 - r π 2 + 1 3 - π 2 T 2 3m 2 1 - r π 4 -2 1 - r π 2 - 1 15 
- g 2 m 2 2π 2 ∞ 0
dq n εm,q + Re n εm,q-irT ε m,q q 2 m 2 + q 4 3m 4 , (III. 5.68) for the charged ones. We shall also consider the charged gluon at vanishing frequency in the limit of zero momentum Eq. (III.5.61). From the property (III.5.23), and using spatial isotropy, we conclude that the charged propagators at vanishing frequency are degenerate:

G + T /L (0, k) = G - T /L (0, k). (III.5.69)
Moreover, the general tensorial decomposition Eq. (III.1.4) is trivially generalized to the present case. In particular, according to (III.1.4), and using the definitions of the transverse and longitudinal projections Eqs. (III.1.5) and (III.1.6), we have

T λ T (K) = T λ δ (K), (III.5.70) T λ L (K) = T λ δ (K) + k 2 (ω + λrT ) 2 + k 2 T λ n (K). (III.5.71)
For the charged modes, λ = 0, this implies

T ± L (0, k → 0) = T ± T (0, k → 0). (III.5.72)
Hereby, at zero Matsubara frequency and for vanishing momentum, the gluon propagator in the charged sector satisfies

G ± L (0, k → 0) = G ± T (0, k → 0). (III.5.73)
Accordingly, we define

G ± T /L (0, k → 0) = 1/M 2 ch , that is, M 2 ch (T ) = G -1 vac (rT ) 2 + g 2 Π ±,th T /L (0, k → 0). (III.5.74)
One checks from Eq. (III.5.36) that M 2 ch reduces to the (Landau gauge) magnetic square mass at vanishing background, as expected from Eq. (III.5.70).

We now present our results for the various square masses and susceptibilities defined above. We use the previous definitions Eqs. (III.5.65)-(III.5.68) and (III.5.74) where, it is understood that r is to be taken at the minimum r min (T ) of the background field potential. In order to quantify the effects of the nontrivial background, it is interesting to compare these results with those obtained in the Landau gauge (see Eqs. [START_REF] Ellwanger | The Heavy quark potential from Wilson's exact renormalization group[END_REF] and [START_REF] Fister | Confinement from Correlation Functions[END_REF] of [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF] with N = 2, which we recover for r = 0).

The temperature dependence of the neutral gluon inverse square masses (susceptibilities) across the phase transition is shown in Fig. III.13. We observe that the magnetic susceptibility is monotonously increasing with the temperature below T c , whereas the electric one first slightly decreases at low temperatures and then increases to its maximum value at T = T c . Both present a cusp at the transition. The electric square mass rapidly approaches a quadratic behavior M 2 D,0 ∝ T 2 , whereas the magnetic mass remains essentially bounded in the range of temperature considered here.

The cusp reflects the nonanalytic behavior of the order parameter r min (T ) across the transition and is in sharp contrast with the corresponding perturbative results in the Landau gauge. The electric susceptibility in the Landau gauge showed a slight nonmonotonous behavior below T c , but no cusp, in qualitative agreement with lattice results [START_REF] Cucchieri | Electric and Magnetic Screening Masses around the Deconfinement Transition[END_REF], see also Sec. III.3. As for the magnetic susceptibility, both the (massive) perturbative approach and the gauge-fixed lattice simulations show a smooth monotonous behavior in the Landau gauge, with a rapid decrease above T c . This contrasts with the present results, where the magnetic susceptibility is essentially constant 126 Chapter III. Yang-Mills theories at finite temperature in this range of temperature, see the bottom panel of Fig. III.13. More precisely, in the high temperature regime, the magnetic square mass was shown to increase as g 2 mT in the Landau gauge [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF]. This unbounded linear increasing eventually leads to a pole in the ghost dressing function as emphasized above, see also [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF]. In the present case, the magnetic neutral mass remains bounded from above [START_REF] Reinosa | Yang-Mills correlators across the deconfinement phase transition[END_REF], thus avoiding the pole in the ghost sector, see below. Its high temperature behavior is given, by

M 2 mag,0 (T ) = m 2 1+ g 2 T (4M + +5rT ) 12π(M + +rT ) 2 - 3g 2 32π 2 ln 4πT m 2 +Ψ r 2π + 5 6 +O m 2 T 2 ,
(III.5.75) where M + = m 2 + (rT ) 2 and Ψ(z [START_REF] Reinosa | Yang-Mills correlators across the deconfinement phase transition[END_REF]. Hereby, for r = 0, the leading term in Eq. (III.5.75) is the negative logarithm. 18 Eventually this leads at very high temperatures (T ≥ 10m 25T c ) to a negative square mass, see Fig. III.14. Remark that it is expected in perturbation theory to encounter troubles at very high energies/temperatures if we do not add higher order terms or implement resummation techniques or RG effects. As a proof of principle, we employ the standard one-loop result for the running coupling constant in SU(2) and put by hand a temperature-dependent running ). The magnetic square mass Eq. (III.5.66) (blue plain curve) is compared to its high temperature behavior Eq. (III.5.75) (yellow plain curve) both computed for g = 5. One sees that the leading logarithm eventually leads to negative values for sufficiently high temperatures. This artifact is cured by RG effects. To illustrate this, we put by hand a temperature dependent running coupling constant (dashed green curve) according to Eq. (III.5.76).

) = ψ(1 + z) + ψ(1 -z) with ψ(z) = Γ (z)/Γ(z), see Appendix E of
g(T ) = g 1 + 11 12π 2 g 2 ln T 2 +m 2
Finally we present in Fig. III.16 the temperature dependence of the charged square masse M 2 ch (T ). Again here, the presence of a cusp at the critical temperature is inherited from that of the background. Note that, in contrast with what happens with the susceptibilities Figs. III.13, III.15, the cusp in the inverse zero-momentum square charged mass is oriented downwards. This can be understood from the fact that, M 2 ch possesses a background dependent tree-level part, namely m 2 + (rT ) 2 , which gives the dominant contribution, see Fig. III.7. We observe a rapid increase of 1/M 2 ch above 2T c and a pole at about T ≈ 0.9 GeV. This results from the competition between the (positive) vacuum contribution and the (negative) thermal contribution in Eq. (III.5.74): M 2 ch turns negative in a finite range of temperature, before the positive vacuum contribution dominates again at asymptotically large temperatures. For the parameters used here, this range is m T 10m. This unphysical behavior may simply be an artifact of the present perturbative calculation which could be resolved at higher orders (which become relevant anyway at high temperatures) and/or by taking into account a possible temperature dependence of the parameters, as already mentioned. However, we cannot exclude that this behavior be a sign of a deeper problem. A study of these questions is certainly needed but it is beyond the scope of the present work. Here, we have simply checked that the temperature where the square mass turns negative is pushed to higher values when the coupling is decreased. 

III.5.4.2 Gluon propagators

We now study the momentum-dependence of the gluon propagators at zero Matsubara frequency. We first consider the neutral sector. We plot the electric and magnetic propagators of the neutral color mode G 0 T /L (0, k) as functions of k = |k| for various temperatures on Fig. III.17. Both are smooth, monotonously decreasing functions of k. This is to be contrasted with the corresponding results in the Landau gauge, where both propagators exhibited a nonmonotonous behavior, more pronounced for higher temperatures, eventually resulting in an effective 3d behavior in the magnetic sector at high temperatures. In the present case, the main effect of the temperature can be read off the value of the propagators at vanishing momentum, respectively given by the susceptibilities M -2 D,0 and M -2 mag,0 and discussed in detail in the previous section. We now come to the charged sector. As emphasized earlier, the charged propagators at vanishing frequency are degenerate, see (III.5.23). The electric and magnetic propagators of the charged color modes are plotted for various temperatures in Fig. III.18. They display very small differences, which is expected since both coincide for k = 0. 130 Chapter III. Yang-Mills theories at finite temperature 
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▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ Figure III.17: The one-loop electric and magnetic propagators in the neutral sector at vanishing frequency as functions of the spatial momentum k for various temperatures.
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III.5.4.3 Ghost sector

We now turn to the ghost sector. Despite the presence of a nonvanishing background, there remains an antighost shift symmetry for the neutral mode c0 → c0 +const which, together with spatial isotropy, implies Σ 0 (0, k) = k 2 σ(k), (III. 5.78) where σ(0) < ∞. We define the ghost dressing function at vanishing frequency as

F (k) = k 2 G 0 (0, k), that is, F -1 (k) = 1 + g 2 σ(k) = F -1 vac (k 2 ) + g 2 σ th (k).
(III.5.79)

One striking result in the case of vanishing background [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF] is the fact that the ghost dressing function develops a pole for sufficiently high temperatures, see Fig. 
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▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ can again be understood from the Slavnov-Taylor identities and the behavior of the magnetic susceptibility of the color-neutral gluon mode discussed above. Indeed, the discussion of [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF] at vanishing background can be easily generalized to the present case in the neutral color sector, see Appendix F. The LDW generalization of Eq. ( 40) of [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF] yields where the index B denotes bare correlators 19 and it is understood that the limit k → 0 has to be taken after that ω = 0. In the renormalization scheme considered here, this identity becomes, at one-loop order, m 2 σ th (0) = -Π 0,th T (0, k → 0). (III.5.81)
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G 0 T,B (K)F 0 B (K) ω=0,k→0 = 1/m
Finally, we have

F -1 (0) = F -1 R,vac (0) + 1 - M 2 mag,0 m 2 , (III.5.82)
see Eq. (III.5.56).

As mentioned above, at vanishing background, the magnetic mass grows linearly with the temperature, which, eventually, leads to a pole in the ghost dressing function, with F -1 (0) = 0. As discussed in Sec. III.5.4.1, the situation is different in the presence of a nontrivial background, where M 2 mag,0 remains bounded from above, thus preventing the appearance of a pole in the neutral ghost dressing function. Finally, we see from Eq. (III.5.82) that the value of the neutral ghost dressing function at vanishing momentum is controlled by that of the neutral gluon magnetic mass. In particular, the nonmonotonic behavior of the latter at T c (see Fig. . This corresponds to the change of monotony of its effective tree-level mass rT . In the limit T → 0, the background field Ā ∝ rT → 0 and we recover the original antighost shift symmetry at vanishing background, which implies that the ghost propagator diverges at zero momentum.
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III.6 RG improvement

In this section we open some leads for further studies, namely the implementation of temperature-dependent RG effects. As we saw in the case of the neutral magnetic mass (see Fig. III.14), these are of great importance to extend the present results to higher temperatures, and would require a dedicated study. Here, as an illustration, we define the beta functions of the parameters α = m, g as20 

β µ α = d α d ln µ 0 = -α d ln Z α d ln µ 0 , (III.6.1)
where we explicitly note by the exponent µ that these correspond to the beta functions along the renormalization scale µ axis. Nevertheless, at finite temperature, we also need to take into account the RG flows of the parameters along the temperature axis. Henceforth, we define

β T α = d α dT 0 = -α d ln Z α dT 0 . (III.6.2)
It remains to define the beta functions for r min . To do so, we first use the independence of the (renormalized) effective action Γ with respect to the renormalization scale µ, that is

d µ Γ = 0 = ∂ µ + β µ m 2 ∂ m 2 + β µ g ∂ g + β µ r ∂ r Γ. (III.6.3)
Differentiating this last equality with respect to r leads to

0 = ∂ µ + β µ m 2 ∂ m 2 + β µ g ∂ g + β µ r ∂ r Γ + ∂ µ + β µ m 2 ∂ m 2 + β µ g ∂ g + β µ r ∂ r Γ, (III.6.4) 
where f = ∂f /∂ r . Evaluating this last expression for r = r min yields . This last equation defines explicitly β µ r min since all the terms of the right-hand side are known and the (twoloop order) expression of Γ can be taken from [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF]. However, since the temperature is a physical scale, Γ has no reason to be independent of the temperature and one cannot derive the temperature counterpart of Eq. (III.6.3). Nevertheless, we can use the fact that ∀ T, 0 = Γ r=r min . Accordingly, one has

β µ r min = - ∂ µ + β µ m 2 ∂ m 2 + β µ g ∂ g Γ + ∂ µ + β µ, m 2 ∂ m 2 + β µ, g ∂ g + β µ, r ∂ r Γ Γ
∂ T + β T m 2 ∂ m 2 + β T g Γ + β T r Γ r=r min = 0 , (III.6.6)
which defines β T r min . In the case we considered here, where we adopted a temperatureindependent renormalization scheme (see (III.5.55)), Eq. (III.6.6) reduces to

β T r min = -∂ T Γ Γ r=r min , (III.6.7)
and we explicitly checked that, using this RG equation, we reproduce the values of the background obtained by minimization of the background field potential that are depicted in Fig. III.7. The implementation of RG improvement in temperature-dependent renormalization schemes is beyond the scope of the present thesis. Nevertheless, owing to the numerous independent sectors (e.g. Π 0 L , Π + L , Π - T , . . . ) a large variety of temperature-dependent renormalization prescriptions can be investigated. Moreover, we note that, for having a fully consistent picture, in order to recover the IR safe RG trajectories of [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF] at zero temperature, one should use the infrared-safe renormalization scheme (see Sec. II.5.2 of Chapter. II) instead of the zero-momentum one used here to renormalize the vacuum parts.

III.7 Summary and discussion

In this chapter, we investigated YM theories at finite temperature close to the phase transition. We worked in the LDW gauge, which is a background field extension of the usual Landau one. In particular, the LDW gauge can be formulated as the extrema of an external functional, see (III.4.5), which allows us to implement this gauge according to the ST gauge-fixing procedure. For what concerns the gluon and ghost sectors studied here, it results effectively in a simple massive extension of the LDW FP gauge-fixed action. In particular, the massive gauge-fixed action (III.4.6) preserves the center symmetry and the background field stands as an equivalent order parameter for the confinement-deconfinement phase transition. The latter has been investigated perturbatively at next-to-leading order in thist context in [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF] for SU [START_REF] Zweig | An SU(3) model for strong interaction symmetry and its breaking. Version 2[END_REF] and in [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF] for SU(3) and other groups. In the present case, we studied the SU(2) theory and computed the gluon and ghost propagators at one-loop order (i.e. nextto-leading order) in perturbation theory. In particular, due to the presence of the background field that singles out a particular color direction (the one of the Cartan subalgebra), the various color modes are not degenerate as in the usual Landau gauge. Our most stringent result concerns the neutral mode of the electric gluon propagator which presents a clear signal of the phase transition at the critical temperature, see Moreover, the presence of the background circumvent some of the issues related to the perturbative approach that one encounters in the Landau gauge. In the latter case, one finds at one-loop order a pole in the ghost dressing function due to the unbounded increase of the magnetic mass [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF], see also Fig. III.5. Although in the LDW gauge, for the neutral mode, the ghost dressing function remains related to the magnetic gluon sector, see Eq. (III.5.80), the presence of a nontrivial background dramatically changes the high temperature behavior of the latter. Indeed, the magnetic mass remains bounded from above and the (neutral) ghost dressing function does not develop a pole, see Fig. III.19. However, as observed in Fig. III.14, for sufficiently large temperatures the magnetic mass turns negative. This feature could be a consequence of the fact that RG effects were not taken into account. This hypothesis can be substantiated by introducing by hand a temperature-dependent running coupling III.7. Summary and discussion 137 constant (III.5.76), which actually leads to a positive magnetic mass for the range of temperatures investigated, see Fig. III.14. This suggests that, as expected, the present perturbative approach requires to take into account higher loop contributions/RG effects to be extended at higher temperatures. This can be done for instance, by including RG effects in a temperature-dependent renormalization scheme as described in Sec. III.6. Nevertheless, the fact that, at high temperatures in the charged sector, M 2 ch turns negative (see Fig. III.16) could be a deeper problem. Indeed, as emphasized in the main text, our attempts by putting by hand a running coupling constant did not cure completely this issue. It should be mentioned again that we have checked that as the coupling is reduced, the temperature at which this mass turns negative is increased. This may signals that other effects than RG are needed to circumvent this problem and which are missed in the strict one-loop calculations presented here.

Another possibility may lie in the possible background dependence of the mass. Indeed, in the present context, the mass term appears due to the treatment of Gribov copies in the ST gauge-fixing procedure, and hence, should, in principle, depend on the background. As emphasized earlier, so far, we have not derived a kind of gap equation that would allow to fix the value of the mass in an ab initio way. Instead, for the time being, we are left with an additional free parameter. In the case where lattice data are available, one can fix the value of the mass by performing fits against the lattice results. This strategy has been used in the case of the Landau gauge in [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF], where it leads to temperature-dependent mass and coupling that have eventually cured the presence of a pole in the ghost dressing function. One may think that, following the same strategy, a background dependence of the mass would be revealed and, in turn, would cure the appearance of the pole in M 2 ch . Such a scenario, however, requires to have lattice data at our disposal. Lattice simulations can be performed in the LDW gauge [START_REF] Cucchieri | The Minimal Landau Background Gauge on the Lattice[END_REF] by minimizing the functional (III.4.5). The formal resemblance of the latter with the functional used to implement the Landau gauge, see (I.4.1) of Chapter. I, allows one to use the minimization algorithms routinely employed in the case of the Landau gauge. The situation is even more simple in the low temperature phase where, we know that, r min = π. Hereby, one can use the already existing numerical codes that compute the propagators in Landau gauge at finite temperature, and simply performs the shift A µ → A µ + δ µ0 t 3 πT /g 0 to get those of the LDW gauge in the low temperature regime.

Conclusion and perspectives

In this thesis, in a first part, we extended the Serreau-Tissier (ST) gauge-fixing proposal of [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] to a one-parameter family of nonlinear covariant gauges. The central idea of this procedure consists in defining expectation values of gauge-invariant quantities by a two-step averaging procedure that includes a pseudo average over the Gribov copies along each gauge orbit in order to lift their degeneracy. The resulting gauge-fixed theory is free of Gribov ambiguities and can be cast under the form of a local field theory at the cost of introducing the replicas [START_REF] Young | Spin glasses and random fields[END_REF]. In the present case, the replica sector consists in n -1 copies of supersymmetric nonlinear sigma models. Eventually, the resulting local gauge-fixed action corresponds to a massive extension of the Curci-Ferrari-Delbourgo-Jarvis gauges [START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF][START_REF] Delbourgo | Extended BRS Invariance and Osp(4/2) Supersymmetry[END_REF] coupled to the replica sector, while average values of gauge-invariant quantities are obtained in the limit of vanishing replica number n → 0. In particular, we have proved that the local gauge-fixed action is renormalizable in d = 4 for any value of n and we provided explicit expression of the relevant counter-terms at one-loop order. In particular, renormalizability is insured by the presence of a modified non-nilpotent BRST symmetry that allows to control the UV divergences, though it is not known up to now how to construct the physical space of the theory.

In the case of the Landau gauge, the gluon and ghost sectors effectively reduce to those of the Curci-Ferrari (CF) model [START_REF] Curci | A Theory of Massive Yang-Mills Field[END_REF][START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF], which consists in a simple massive extension of the Landau gauge Faddeev-Popov gauge-fixed Yang-Mills action. On the contrary, away from the Landau limit, clear differences appear between the present gauge-fixed theory and the CF model. These differences can conveniently be investigated in the gluon and ghost sectors by studying them either in the limit n → 0, or for n = 1, which correspond respectively to the ST and the CF cases. For instance, in the former case, the gluon propagator remains transverse even away of the Landau gauge and the renormalization group (RG) flows never freeze in the infrared because of the presence of massless modes in the replica sector. These behaviors are to be put in regard with the case n = 1 where the gluon propagator develops a longitudinal part and all the modes are massive, which lead to the freezing of the RG flows below the mass scale of the problem. In practice, we computed, with and without RG improvement, the various propagators of the ST and the CF actions at one-loop order in perturbation theory. In particular, we have shown, for the gauges investigated and for the infrared-safe renormalization scheme considered here, that both the ST and the CF cases admit infrared safe RG trajectories and the perturbative RG flows can be integrated down to zero momentum.

The massive and perturbative approach is mainly supported by the fact that, in the 139
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Landau gauge, one-loop calculations of various correlation functions in the CF model reproduce accurately the lattice results, see [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Pelaez | Three-point correlation functions in Yang-Mills theory[END_REF][START_REF] Peláez | Two-point correlation functions of QCD in the Landau gauge[END_REF][START_REF] Peláez | Quark-gluon vertex from the Landau gauge Curci-Ferrari model[END_REF][START_REF] Peláez | Infrared correlation functions in Quantum Chromodynamics[END_REF]. However, a definite rigorous proof that the effective CF mass actually comes from a treatment of the Gribov copies à la ST is still missing. Indeed, as mentioned earlier, one of the possible loophole of the ST procedure lies in the assumption that one can freely interchange the n → 0 limit and the path-integral over the gauge field A. Although a rigorous proof would require a detailed mathematical treatment of the path-integral, we believe that a strong argument in favor of the ST approach would be to have an ab initio way to fix the renormalized mass. One lead is to construct, in the Landau gauge for instance, a multiplicatively renormalizable effective potential for the local composite operator A 2 , following the lines of e.g. [START_REF] Verschelde | The Nonperturbative groundstate of QCD and the local composite operator A(mu)**2[END_REF][START_REF] Dudal | Dimension two gluon condensates in a variety of gauges and a gauge invariant Yang-Mills action with a mass[END_REF]. In the present framework, investigation of such an effective potential can be done in perturbation theory. A possible scenario would be that, since the gauge parameter β 0 > 0, introduced to lift the degeneracy of the Gribov copies, softly breaks the initial nilpotent BRST symmetry (though a modified non-nilpotent one remains), some operators can now develop nonvanishing expectation values, while these were prevented in the presence of the initial nilpotent BRST symmetry. Hereby, one may expect that, due to such a soft-breaking of the BRST symmetry, nontrivial minima of the effective potential for A 2 now exist. The latter corresponding to nonvanishing renormalized gluon mass, this would further enforce the choice of considering n-dependent renormalization schemes as considered in Sec. II.5.2. We find worth mentioning that, in the context of the FRG, recently a bare gluon mass was introduced to the bare action in order to account for the soft breaking of the initial nilpotent BRST symmetry due to the presence of the regulator [START_REF] Cyrol | On Landau gauge Yang-Mills correlation functions[END_REF].

In the second part of this thesis, we extended to the finite temperature case the massive approach (or equivalently the ST proposal under the assumption mentioned above) to a background field extension of the Landau gauge, namely the Landau-DeWitt (LDW) gauge. This consists in working in presence of a nontrivial background value Ā for the gauge field, which (when evaluated at the value that minimizes a certain potential) stands as an order parameter for the confinement-deconfinement phase transition. In particular, the LDW gauge allows to work in an approach where the Z N -center symmetry is preserved, which is probably a crucial property for approximate methods since the spontaneous breaking of the former is associated to the phase transition. We considered the SU(2) theory whose deconfinement phase transition was accurately described in perturbation theory [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF][START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF]. More precisely, in the present background field approach, physical observables must be evaluated at the value of the background that minimizes the background field potential (III.4.18), and the value of the former signals whether the center symmetry is realized or spontaneously broken. In practice, the background field potential was computed up to two-loop order in [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF] for the SU(2) theory, and a second order phase transition was observed, in agreement with the lattice. The presence of a nontrivial background field defines preferred color directions (those of the Cartan subalgebra of the color symmetry group), and the various color modes couple differently with the background, which, in turn, lifts their degeneracy. Regarding practical aspects, the standard Cartesian color basis becomes not the best suited for actual calculations and, instead, we used the Feynman rules derived in the canonical basis. In this basis, for the SU(2) theory, the three color modes of the adjoint representation correspond to one neutral mode (the color direction singled by the background) and two charged ones. In the present manuscript, we computed at one-loop order the gluon and ghost propagators for the various color modes. At the difference of the Landau gauge, we observed characteristic signals of the phase transition directly at the level of the correlators. This is particularly clear for the neutral electric gluon susceptibility (electric gluon propagator evaluated at zero Matsubara frequency and vanishing momentum) which displays a peak at the critical temperature. More generally, although less impressive, all the temperature dependences of the zero Matsubara/momentum value of the correlators present a cusp at the phase transition. This is because, at the difference of the Landau gauge, in the LDW gauge the non-analyticity of the order parameter at the phase transition is directly imprinted into the correlators.

The first natural extension of this work is to investigate the correlators in the SU(3) case, where we expect to observe, instead of a cusp, a discontinuity owing to the first order character of the phase transition in the SU(3) theory. Also, as emphasized earlier, one should consider temperature-dependent renormalization schemes, and then, the study of temperature-dependent RG flows in order to investigate possible infrared safe (i.e. without a Landau pole) RG trajectories along the temperature axis. We believe that, these are necessary studies in order to confirm the consistency of the present perturbative approach.

Another case of interest is the investigation of the QCD phase diagram. The present approach has already been extended at finite chemical potential for static quarks of infinitely heavy masses (quenched approximation) in [START_REF] Reinosa | Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential[END_REF]. In this case, although much less severe than on the lattice, there exists a sign problem for real chemical potential. Indeed, the generating functional becomes, in general, not real and so does the average value of A. Hence, for having self-consistent background fields (as our approach requires, see Sec. III.4) that satisfy A = Ā one thus needs to consider complex background fields. The fact that, in this case, the action is complex is not an obstacle to perform actual perturbative calculations (at the difference of lattice simulations). However, the background field potential is now a complex function of complex variables, and, in turn, it is not clear which of its extrema actually identify the physical values of the background (in the case of zero chemical potential these are identified by the absolute minima of the background field potential). In [START_REF] Reinosa | Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential[END_REF], the extrema were chosen such that the limit of vanishing chemical potential is smooth, and such that in this limit one recovers the results of the pure temperature case. Although this (arbitrary) criterion seems quite fair for small values of the chemical potential, its extension to the high chemical potential region should deserved dedicated study.

The next stage would be to consider dynamical light quarks. In a first step, one could for instance study the effects of the nontrivial background on the quark propagator as well as on the quark-antiquark-gluon vertex. Nevertheless, the study of the QCD phase diagram in the light quark region requires the treatment of the chiral symmetry breaking that is currently not accounted for in the present approach, and requires some refinement. A possible way would be to construct an effective potential for an order parameter associated to the chiral phase transition, as for instance in [START_REF] Pisarski | Remarks on the Chiral Phase Transition in Chromodynamics[END_REF]. The possible implementation of such an order parameter at the level of the microscopic action should be, in principle, possible by using again background field methods [START_REF] Weinberg | The quantum theory of fields[END_REF].

with the convention of left derivatives for fermionic quantities and we have identified δS/δc a = -∂ µ D µ c a in Eq. (A.0.3). In the following we use a short-hand notation where space-time coordinates are put as indices, such that A a µ (x) ≡ A a µ,x . Accordingly Eq. (A.0.3) writes

0 = ∂ 2 x c a x + g 0 f acd ∂ µ,x A c µ,x c d x + η a x Jµ,M,η,η = ∂ 2 x δW δ ηa x + g 0 f acd ∂ µ,x δ 2 W δJ c µ,x δ ηd x + η a x , (A.0.4)
where the generating functional W [J µ , M, η, η] has been defined in (I. Finally, performing the Legendre transformation with respect to the sources J µ , M, η, η and ultimately taking the limit of vanishing sources leads to the following relations 

δϕ δJ φ = δ 2 W δJ φ δJ ϕ for φ, ϕ = (A µ , ih, c, c) , δ 2 W δ ηa x δη b y = - δ 2 Γ δc a x δc b y -1 , δ 2 W δJ a µ,x δJ e ν,z = δ 2 Γ δA a µ,
δ δJ c µ,x δ 2 W δ ηd x δη b y = - z δ 2 Γ δA c µ,x δA e ν,z -1 δ δA e ν,z δ 2 Γ δc d x δc b y -1 = - z,t,u δ 2 Γ δA c µ,x δA e ν,z -1 δ 2 Γ δc d x δc n t -1 δ 3 Γ δc n t δc m u δA e ν,z δ 2 Γ δc m u δc b y -1 . (A.0.8)
Applying a Fourier transformation with the convention that ∂ µ → -ip µ and plugging this identity into the DSE Eq. (A.0.5) eventually leads to

-p 2 G ab gh (p) + δ ab + ig 0 p µ f acd k G ce µν (k)G dn gh (k)Γ nme ccAν (p, -k, k)G mb gh (p) = 0 , (A.0.9)
where G gh and G µν are respectively the fully dressed ghost and gluon propagators, and Γ ccAν is the fully dressed ghost-antighost-gluon vertex. This equation is more conveniently written under the following form

δ ab = p 2 δ as -ig 0 p µ f acd k G ce µν (k)G dn gh (k)Γ nse ccAν (p, -k, k) G sb gh (p) , (A.0.10)
which eventually leads to charged modes. On the contrary, for λ = 0, the analiticity of Γ 0 νµ (0, p) as p → 0 requires that lim p→0

G -1 gh ab (p) = p 2 δ as -ig 0 p µ f acd k G ce µν (k)G dn gh (k)Γ nse ccAν (p, -k, k) , ( A 
Γ λ P (0, p) = lim p→0 Γ λ nP (0, p) = 0. Hereby, κ P 0 ν δ 2 Γ δa 0 ν δa κ ν (ω, p) δ 2 Γ δ K-κ µ δc τ (ω, p) = ω=0, p→0 lim p→0 Γ 0 δ (0, p) P 0 ν δ 2 Γ δ K0 µ δc τ (0, p) = ω=0, p→0 ilim p→0 Γ 0 δ (0, p) Γ c0 c τ (0, p) , (F.0.12)
where we used Eq. (F.0.5) in the second line and it is understood that the limit p → 0 is performed after that ω = 0. Noting that G 0 T -1 = Γ 0 δ , one finally gets, by using the last line of Eq. (F.0.12) in Eq. (F.0.10), that

G 0 T -1 F 0 -1 ω=0, p→0 = m 2 0 . (F.0.13) 1 2 K λ µ K λ ν -Q κ µ Q κ ν -L τ µ L τ ν (Q κ • L τ ) 2 Q 2 κ L 2 τ G m (Q κ )G m (L τ ) + Q d -2 2 + 2 K λ µ K λ ν -(d -2)(Q κ µ Q κ ν + L τ µ L τ ν ) G m (Q κ )G m (L τ ) . (I.0.6)
The next step uses the identity

Q κ • L τ Q 2 κ G m (Q κ )G m (L τ ) = K 2 λ + m 2 2m 2 G 0 (Q κ )G m (L τ ) - K 2 λ + 2m 2 2m 2 G m (Q κ )G m (L τ ) - 1 2m 2 G 0 (Q κ ) -G m (Q κ ) , (I.0.7)
as well as

(Q κ • L τ ) 2 Q 2 κ L 2 τ G m (Q κ )G m (L τ ) = (K 2 λ + 2m 2 ) 2 4m 4 G m (Q κ )G m (L τ ) + K 4 λ 4m 4 G 0 (Q κ )G 0 (L τ ) - (K 2 λ + m 2 ) 2 4m 4 G m (Q κ )G 0 (L τ ) + G 0 (Q κ )G m (L τ ) + 1 4m 2 G 0 (Q κ ) + G 0 (L τ ) -G m (Q κ ) -G m (L τ ) , (I.0.8)
and

L 2 τ - (Q κ • L τ ) 2 Q 2 κ G m (Q τ )G m (L τ ) = K 2 λ (K 2 λ + 4m 2 ) 4m 2 G m (Q κ )G m (L τ ) - 1 4 G m (L τ ) - (K 2 λ + m 2 ) 2 4m 2 G 0 (Q κ )G m (L τ ) - K 2 λ 4m 2 G m (Q κ ) + K 2 λ + m 2 4m 2 G 0 (Q κ ) - (K λ • Q κ ) 2m 2 G 0 (Q κ ) -G m (Q κ ) . (I.0.9)
These identities allow us to express Eq. (I.0.6) in terms of the sum-integrals (III.5.33), (III.5.35), and (III.5.39). Using the symmetry properties of the latter and of the tensor C κλτ , we obtain

Π gl,λ µν (K) = κ,τ C κλτ δ µν (K 2 λ + m 2 ) 2 m 2 I κτ m0 (K) - K 2 λ (K 2 λ + 4m 2 ) m 2 I κτ mm (K) + K 2 λ + m 2 m 2 (J κ m -J κ 0 ) + 2 ω λ m 2 ( Jκ 0 -Jκ m ) + K λ µ K λ ν d -2 2 + (K 2 λ + 6m 2 ) 2 8m 4 I κτ mm (K) + K 4 λ 8m 4 I κτ 00 (K) - (K 2 λ + m 2 )(K 2 λ + 5m 2 ) 4m 4 I κτ m0 (K) + 5 4m 2 (J κ 0 -J κ m ) + 4 -2d - (K 2 λ + 2m 2 ) 2 2m 4 {I µν } κτ mm (K) - K 4 λ 2m 4 {I µν } κτ 00 (K) + (K 2 λ + m 2 )(K 2 λ + 3m 2 ) 2m 4 {I µν } κτ m0 (K) + (K 4 λ -m 4 ) 2m 4 {I µν } κτ 0m (K) + 1 2m 2 Q (Q κ µ Q κ ν -3L τ µ L τ ν )[G 0 (Q κ ) -G m (Q κ )] . (I.0.10)
To treat the last integral, we use

Q κ µ Q κ ν -3L τ µ L τ ν = -2Q κ µ Q κ ν -3K λ µ K λ ν -3(K λ µ Q κ ν + K λ ν Q κ µ ) to get Π gl,λ µν (K) = κ,τ C κλτ δ µν (K 2 λ + m 2 ) 2 m 2 I κτ m0 (K) - K 2 λ (K 2 λ + 4m 2 ) m 2 I κτ mm (K) + K 2 λ + m 2 m 2 (J κ m -J κ 0 ) + 2 ω λ m 2 ( Jκ 0 -Jκ m ) + K λ µ K λ ν d -2 2 + (K 2 λ + 6m 2 ) 2 8m 4 I κτ mm (K) + K 4 λ 8m 4 I κτ 00 (K) - (K 2 λ + m 2 )(K 2 λ + 5m 2 ) 4m 4 I κτ m0 (K) - J κ 0 -J κ m 4m 2 + 4 -2d - (K 2 λ + 2m 2 ) 2 2m 4 {I µν } κτ mm (K) - K 4 λ 2m 4 {I µν } κτ 00 (K) + (K 2 λ + m 2 )(K 2 λ + 3m 2 ) 2m 4 {I µν } κτ m0 (K) + (K 4 λ -m 4 ) 2m 4 {I µν } κτ 0m (K) - 3 2 K λ µ n ν + K λ ν n µ Jκ 0 -Jκ m m 2 - {J µν } κ 0 -{J µν } κ m m 2 , (I.0.11)
where we defined

{J µν } κ m = Q Q κ µ Q κ ν G m (Q κ ). (I.0.12)
Similarly, we obtain

Π tad,λ µν = κ,τ C κλτ (d -2)δ µν J κ m + {J µν } κ 0 -{J µν } κ m m 2 , (I.0.13) and Π gh,λ µν (K) = κ,τ C κλτ {I µν } κτ 00 (K) - K λ µ K λ ν 2 I κτ 00 (K) . (I.0.14)
The total gluon self-energy is then

Π λ µν (K) = κ,τ C κλτ δ µν (K 2 λ + m 2 ) 2 m 2 I κτ m0 (K) - K 2 λ (K 2 λ + 4m 2 ) m 2 I κτ mm (K) +(d -2)J κ m + K 2 λ + m 2 m 2 (J κ m -J κ 0 ) + 2 ω λ m 2 ( Jκ 0 -Jκ m ) + 4-2d- (K 2 λ +2m 2 ) 2 2m 4 {I µν } κτ mm (K)- K 4 λ 2m 4 -1 {I µν } κτ 00 (K) + (K 2 λ + m 2 ) 2m 4 (K 2 λ + 3m 2 ) {I µν } κτ m0 (K) + (K 2 λ -m 2 ) {I µν } κτ 0m (K) + K λ µ K λ ν d -2 2 + (K 2 λ + 6m 2 ) 2 8m 4 I κτ mm (K) - J κ 0 -J κ m 4m 2 - (K 2 λ + m 2 )(K 2 λ + 5m 2 ) 4m 4 I κτ m0 (K) K 4 λ 8m 4 - 1 2 I κτ 00 (K) - 3 2 K λ µ n ν + K λ ν n µ Jκ 0 -Jκ m m 2 . (I.0.15)
The transverse and longitudinal projections of this formula leads to Eq. (III.5.36) after using {I λ T /L } κτ m0 (K) = {I λ T /L } τ κ 0m (K) and the fact that C κλτ is totally symmetric. Note, in particular, that the last two lines are not transverse (with respect to the generalized momentum K λ ) and, hence, do not contribute to Π λ T /L (K).

where we have introduced λ = τ -κ and ω λ = ω + λrT . An angular integration leads then to

I κτ m 1 m 2 (K) = - 1 8π 2 k ∞ 0 dq q Re n εm 1 ,q +iκrT ε m 1 ,q g m 2 (ω λ + iε m 1 ,q ; q, K λ ) +(m 1 , κ ↔ m 2 , τ ) , (J.0.6) {I λ T } κτ m 1 m 2 (K) = 1 64π 2 k 3 ∞ 0 dq q Re n εm 1 ,q +iκrT ε m 1 ,q 4kq K 2 λ + 2iω λ ε m 1 ,q + m 2 2 -m 2 1 + m 2 T (ω λ + iε m 1 ,q ; q, K λ ) + (m 1 , κ ↔ m 2 , τ ) , (J.0.7) {I λ L } κτ m 1 m 2 (K) = - ω 2 λ 32π 2 K 2 λ k 3 ∞ 0 dq q Re n εm 1 ,q +iκrT ε m 1 ,q m 2 L (ω λ + iε m 1 ,q ; q, K λ ) +4kq K 2 λ + m 2 2 -m 2 1 + 2iω λ ε m 1 ,q 1 - 2kq ω 2 λ +(m 1 , κ ↔ m 2 , τ ) , (J.0.8)
where we introduced the functions

g β (z; q, K) = ln z 2 + ε 2 β,k-q z 2 + ε 2 β,k+q , (J.0.9) β T (z; q, K) = ε 2 β,k+q + z 2 ε 2 β,k-q + z 2 g β (z; q, K) (J.0.10) and β L (z; q, K) = ε 2 β,q + z 2 + k 2 2z ω - 1 
2 g β (z; q, K). (J.0.11)

Appendix K

Gluon susceptibilities

In this section, we derive the expressions of the gluon susceptibilities (III.5.63) and (III.5.64) in terms of simple one-dimensional integrals. We consider the neutral and charged color sectors separately.

K.0.6 Neutral sector

From Eq. (III.5.36), we obtain

Π 0 T /L (0, 0) = 2(d -1)J + m -2J + 0 + 2m 2 I +- m0 (0, 0) + 2{I 0 T /L } +- 00 (0, 0) + 2{I 0 T /L } +- m0 (0, 0) -4(d -1){I 0 T /L } +- mm (0, 0), (K.0.1)
where we used the symmetry properties of the integrals (III.5.33)-(III.5.35) and (III.5.37)-(III.5.39). Here and in the following, we write 0 for k → 0 for simplicity but we warn the reader that it is sometimes important to take this limit after setting ω = 0; see below. This can be simplified as follows. First, using the identity (III.5.10) as well as

G m (Q) = G m (-Q), we have I +- m 1 m 2 (0, 0) = Q G m 1 (Q + )G m 2 (Q + ), (K.0.2) I 0 T +- m 1 m 2 (0, 0) = 1 d -1 Q q 2 G m 1 (Q + )G m 2 (Q + ), (K.0.3)
and

I 0 L +- m 1 m 2 (0, 0) = Q Q 2 + -q 2 G m 1 (Q + )G m 2 (Q + ) = J + m 1 -m 2 2 I +- m 1 m 2 (0, 0) -(d -1) I 0 T +- m 1 m 2 (0, 0). (K.0.4) Note that I 0 T /L +- m 1 m 2 (0, 0) = I 0 T /L +- m 2 m 1 (0, 0). (K.0.5)
For m 1 = m 2 , we use the identity

G m 1 (Q)G m 2 (Q) = - G m 1 (Q) -G m 2 (Q) m 2 1 -m 2 2 (K.0.6)
which leads to

I +- m0 (0, k → 0) = J + 0 -J + m m 2 , (K.0.7) I 0 T +- m0 (0, 0) = 1 d -1 N + 0 -N + m m 2 , (K.0.8) I 0 L +- m0 (0, 0) = J + m + N + m -N + 0 m 2 , (K.0.9)
and allows us to rewrite the above integrals in terms of

J + m ≡ Q G m (Q + ) = 1 2π 2 ∞ 0 dq q 2 ε m,q
Re n εm,q-irT (K.0.10)

and

N + m ≡ Q q 2 G m (Q + ) = 1 2π 2 ∞ 0 dq q 4 ε m,q
Re n εm,q-irT , (K.0.11)

where the symbol = means that we only keep the thermal contributions, since our renormalization scheme is anyway such that the vacuum corrections to the gluon masses of the neutral mode, are zero. When m 1 = m 2 = m, we can use

Q q 2n G 2 m (Q + ) = - Q q 2n dG m (Q + ) dq 2 = 2n + 1 2 Q q 2n-2 G m (Q + ) = 2n + 1 4π 2 ∞ 0 dq q 2n ε m,q
Re n εm,q-irT . (K.0.12)

In particular, in addition to J + m and N + m , we are lead to consider

S + m ≡ Q G 2 m (Q + ) = 1 4π 2 ∞ 0 dq 1 ε m,q
Re n εm,q-irT . (K.0.13)

We have then

I 0 T +- mm (0, 0) = 1 2 J + m , (K.0.14) I 0 L +- mm (0, 0) = - 1 2 J + m -m 2 S + m , (K.0.15)
which, together with Eqs. (K.0.7)-(K.0.9) allow us to rewrite Eq. (K.0.1) as

Π 0,th L (0, k → 0) = 12m 2 S + m + 12J + m -J + 0 + 2 N + m -N + 0 m 2 (K.0.16) and Π 0,th T (0, k → 0) = J + 0 -2J + m + 2 3 N + 0 -N + m m 2 , (K.0.17)
We have, explicitly, for ε, r ∈ R,

Re n ε-irT = e βε cos r -1 e 2βε -2e βε cos r + 1 .

(K.0.18)

The massless integrals J + 0 and N + 0 can be determined analytically. For r ∈ [0, 2π], we get 1

J λ 0 T 2 = 1 8 1 - λr π 2 - 1 3 , (K.0.19) N λ 0 T 4 = - π 2 16 1 - λr π 4 -2 1 - λr π 2 + 7 15 . (K.0.20)
We mention that the same results can be obtained from the formulae derived in Appendix J after performing the Matsubara sums but it is then important to take the limit k → 0 only after setting ω = 0.

K.0.7 Charged sector

Similarly, we obtain where all quantities are appropriate analytical continuations (after the Matsubara sums have been performed and the external Matsubara frequency has been removed from the thermal factors using n ε+iωn = n ε ) evaluated at ω = -rT and k → 0. As before, we write 0 for k → 0 for simplicity but it is important to perform the continuation and set ω = -rT before taking the limit k → 0. For m 1 = m 2 , we obtain

I 0- m 1 m 2 (-rT, 0) = J + m 2 -J 0 m 1 m 2 1 -m 2 2
, (K.0.22)

I + T 0- m 1 m 2 (-rT, 0) = 1 d -1 N + m 2 -N 0 m 1 m 2 1 -m 2 2
, (K.0.23)

I + L 0- m 1 m 2 (-rT, 0) = N + m 2 -N 0 m 1 + m 2 2 J + m 2 -m 2 1 J 0 m 1 m 2 2 -m 2 1 , (K.0.24)
where we have used 2

I + L 0- m 1 m 2 (-rT, 0) = Q ω 2 n G m 1 (Q)G m 2 (Q + K + )
ω=-rT,k→0

(K.0.25) 1 We have J λ 0 /T 2 = P2(λr)/(2π 2 ) and N λ 0 /T 4 = P4(λr)/(2π 2 ), where P2n+2(z) = Re ∞ 0 dx/[exp(x -iz) -1]. In the interval z ∈ [0, 2π], these integral can be expressed as simple polynoms; see, e.g. [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF]. 2 We exploit the fact that the replacement ω → -rT can be done before the Matsubara sum for any occurence of ω, except that in the denominators.

For m 1 = m 2 = m, we obtain (note that these are not the limits m 1 → m 2 of the formulae given above) 

I +

Aspects du confinement dans les théories de Yang-Mills

Résumé long : L'interaction forte est l'une des quatres interactions fondamentales de la Nature (avec les interactions électromagnétiques, faibles et gravitationnelles). Les interactions fortes sont responsables de la cohésion des noyaux d'atomes malgré la présence d'interactions électromagnétiques répulsives entre les protons du noyau. Les particules soumises à l'interaction forte se nomment hadrons, parmi lesquelles, en plus des protons, on trouve par exemple les neutrons et les pions. La physique des hadrons a été étudiée pendant des années, aussi bien expérimentalement que théoriquement, ce qui amena Gell-Mann et Zweig à proposer en 1964 le modèle des quarks [START_REF] Gell-Mann | A Schematic Model of Baryons and Mesons[END_REF][START_REF] Zweig | An SU(3) model for strong interaction symmetry and its breaking. Version 2[END_REF]. Ce dernier postule que les hadrons ne sont pas des particules élémentaires mais sont formés de particules de spin 1/2 nommées quarks. Différents types, ou saveures, de quarks existent, et aujourd'hui il en a été observé six différentes expérimentalement. Plus tard, Gell-Mann et Fritszch [START_REF] Fritzsch | Advantages of the Color Octet Gluon Picture[END_REF][START_REF] Bardeen | Light cone current algebra, pi0 decay, and e+ e-annihilation[END_REF] proposèrent que la théorie décrivant les interactions fortes admette un groupe de symétrie SU(3), appelé groupe de couleur. Ce dernier induit l'existence de nouveaux nombres quantiques, la couleur, portés par les quarks. Finalement, le groupe de symétrie de couleur a été pris comme groupe de jauge ce qui donna lieu à la chromodynamique quantique (QCD). De nos jours, la QCD est largement admise comme étant la théorie décrivant les interactions fortes au niveau microscopique. Les bosons de jauges associés, appelés gluons, sont les médiateurs de l'interaction forte, d'une manière analogue aux photons en électrodynamique quantique. Cependant, bien qu'à haute énergie les quarks et les gluons (les deux portant des nombres quantiques de couleur) soient les degrés de liberté pertinents pour la description de l'interaction forte, ils ne font pas partie du spectre physique de QCD qui est, quant à lui, uniquement composé d'hadrons incolores. Ce phénomène est appelé phénomène de confinement (ou simplement confinement). En particulier, c'est un phénomène concernant le domaine de basse énergie de la théorie. Cependant, un obstacle de taille est le fait que le domaine infrarouge de QCD est couramment considéré comme étant non perturbatif, du fait que l'utilisation de la théorie de perturbation (l'outil habituel en théorie quantique des champs (TQC)) n'est pas possible.

Cet aspect est une conséquence du secteur de "pure jauge" de QCD. En effet, QCD est une théorie de jauge non-Abélienne ce qui, à la différence de l'électrodynamique quantique, induit des auto-couplages entre les gluons. Ces derniers changent drastiquement la dynamique des degrés de liberté fondamentaux (les quarks et les gluons) qui, par exemple, deviennent de plus en plus faiblement couplés à hautes energies. C'est la propriété de liberté asymptotique découverte par Politzer, Gross et Wilzeck [START_REF] Politzer | Reliable Perturbative Results for Strong Interactions?[END_REF][START_REF] Gross | Ultraviolet Behavior of Nonabelian Gauge Theories[END_REF]. En revanche, en allant dans l'infrarouge, on trouve que la constante de couplage diverge à une énergie finie (pôle de Landau) Λ QCD (qui est typiquement de l'ordre de la masse du proton). Cette divergence de la constante de couplage est en général considérée comme un artéfact de la théorie de perturbation, cette dernière ne pouvant déjà plus être fiable à couplage fini mais grand. Ainsi, le domaine infrarouge de QCD est couramment considéré comme nonperturbatif. Cet aspect est généralement considéré comme étant intimement relié à la propriété de liberté asymptotique, et qu'ils sont tous les deux une des conséquences du secteur de pure jauge de QCD. Ceci constitue une des raisons pour lesquelles on pense qu'une grande partie des caractéristiques de QCD, et en particulier le phénomène de confinement, sont génériques aux théories de jauge non-Abélienne. Ainsi, dans un premier temps, il est naturel d'étudier leur archétype correspondant aux théories de Yang-Mills (YM) qui constituent le secteur de pure jauge de QCD.

Les simulations numériques ("sur le réseau") Monte-Carlo, proposées par Wilson [START_REF] Wilson | Confinement of Quarks[END_REF] et initiées par Creutz [START_REF] Creutz | Monte Carlo Study of Quantized SU(2) Gauge Theory[END_REF], constituent une méthode de calcul non-perturbatif et invariant de jauge et ont été intensément utilisées pour l'investigation du domaine infrarouge de QCD. Ce dernier est de nos jours raisonnablement bien décrit par les simulations réseaux qui ont, par exemple, permis de déterminer le spectre des particules de la théorie, ainsi que de calculer certains éléments de matrices entrant dans les calculs d'amplitudes de diffusions, voir par exemple [START_REF] Montvay | Quantum fields on a lattice[END_REF]. Bien que ces simulations aient clairement établi que le confinement a lieu (en utilisant uniquement la théorie microscopique comme point de départ), elles n'ont pour l'instant pas permis d'en expliquer les mécanismes fondamentaux malgré le grand nombre de scénarios possibles avancés, voir par exemple [START_REF] Greensite | The Confinement problem in lattice gauge theory[END_REF][START_REF] Greensite | An introduction to the confinement problem[END_REF] pour des revues.

Une autre piste peut consister à étudier la théorie à température finie. On pense que QCD admet un diagramme de phase particulièrement riche dont l'étude est un défi théorique avec de nombreuses applications phénoménologiques pour l'astrophysique, la cosmologie primordiale, ou les expériences de collisions d'ions lourds utrarelativistes. En particulier, selon l'axe de température, la théorie admet une transition de phase confinement-déconfinement, où, à hautes températures, les hadrons se transforment en un plasma de quarks et de gluons. Grâce à la propriété de liberté asymptotique, le régime de hautes températures peut être étudié perturbativement (à la condition d'utiliser des techniques de resommation, les bien connues dites "hard thermal loops" [START_REF] Braaten | Deducing Hard Thermal Loops From Ward Identities[END_REF][START_REF] Braaten | Soft Amplitudes in Hot Gauge Theories: A General Analysis[END_REF][START_REF] Braaten | Simple effective Lagrangian for hard thermal loops[END_REF]). Ainsi, on peut accéder aux propriétés thermodynamiques du plasma déconfiné, tandis que la présence du pôle de Landau empêche l'utilisation de la théorie de perturbation à basses températures et dans le voisinage de la transition, qui sont généralement considérées comme étant non-perturbatifs. Au vu de ses succès pour l'étude du cas à température nulle, il est naturel d'avoir de nouveau recours aux simulations réseau, qui ont aujourd'hui clairement établi l'existence d'une transition de phase confiement-déconfinement dans le cas des théories de YM SU(N ). Cette dernière est reliée à la valeur moyenne de la boucle de Polyakov (qui constitue le paramètre d'ordre de la transition de phase [START_REF] Fingberg | Scaling and asymptotic scaling in the SU(2) gauge theory[END_REF]) qui devient non nulle dans la phase de hautes températures, ce qui est associé à la brisure spontanée de la symétrie du centre (Z N ) du groupe de jauge. Finalement, l'étude a pu être étendue au cas de QCD où, dans ce cas, il a été trouvée un crossover [START_REF] Bazavov | Equation of state in ( 2+1 )-flavor QCD[END_REF][START_REF] Borsanyi | Full result for the QCD equation of state with 2+1 flavors[END_REF]. En plus de son intérêt propre, la transition confinement-déconfinement peut être considérée comme une opportunité pour la recherche des mécanismes à l'origine du confinement. En effet, le passage de la phase confinée à la déconfinée devrait mettre en lumière certaines propriétés clés de la dynamique responsable du confinement.

Néanmoins, le diagramme de phase est beaucoup moins bien compris dans le cas d'un potentiel chimique fini car les simulations réseaux souffrent d'un problème de signe [START_REF] De Forcrand | Simulating QCD at finite density[END_REF][START_REF] Philipsen | Lattice QCD at non-zero temperature and baryon density[END_REF]. Ainsi, dans ce cas, les approches analytiques semblent plus appropriées car, bien qu'elles aussi soient soumises à un problème de signe, ce dernier est moins sévère. Plus généralement, un des inconvénients des simulations numériques est leur caractère "boite noire". En effet, bien que ces simulations fournissent des résultats exacts à partir de la théorie microscopique, elles ne permettent pas toujours de saisir les aspects essentiels/dominants de la dynamique qui amènent à ces résultats. En revanche, les approches analytiques, bien qu'approximatives en général, sont bien plus appropriées pour développer un raisonnement explicatif des phénomènes observés. Parmi les plus utilisées pour l'étude du domaine infrarouge des theories de YM, on compte, entre autres, les approches fonctionnelles (non-perturbatives) telles que les équations de Dyson-Schwinger (DS), ou le groupe de renormalisation fonctionnel (FRG) [START_REF] Alkofer | The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states[END_REF][START_REF] Smekal | The Infrared behavior of gluon and ghost propagators in Landau gauge QCD[END_REF][START_REF] Ellwanger | The Heavy quark potential from Wilson's exact renormalization group[END_REF][START_REF] Marhauser | Confinement in Polyakov Gauge[END_REF][START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF][START_REF] Epple | Confining Solution of the Dyson-Schwinger Equations in Coulomb Gauge[END_REF][START_REF] Alkofer | Dynamically induced scalar quark confinement[END_REF][START_REF] Fischer | Deconfinement phase transition and the quark condensate[END_REF][START_REF] Fischer | Chiral and deconfinement transition from Dyson-Schwinger equations[END_REF]. En particulier, le FRG a montré qu'il reproduisait le diagramme de phase des théories de YM avec des valeurs pour les températures de transition en accord avec les simulations réseaux [START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF].

Cependant, de telles approches analytiques (de même que la plupart des approches continues) ne sont pas basées directement sur le calcul d'observables physiques, mais, à la place, se reposent sur les fonctions de Green (fonctions de corrélations) des champs élémentaires.

Ces quantités ne sont pas invariantes de jauge et il faut "fixer la jauge" pour pouvoir y accéder. La procédure de fixation de jauge standard pour les approches continues est donnée par celle de Faddeev-Popov [START_REF] Faddeev | Feynman Diagrams for the Yang-Mills Field[END_REF]. Néanmoins, travailler directement avec/sur les fonctions de Green amène des difficultés additionnelles car, la théorie étant fixée de jauge, le problème devient spécifique à la jauge considérée. En particulier, comparer les résultats obtenus par deux méthodes différentes devient plus compliqué car il faut s'assurer que chacune a bien été menée dans la même jauge (ce qui peut être particulièrement délicat lorsque des approximations sont réalisées ou pour comparer des méthodes numériques et analytiques). Il est particulièrement important de réaliser de telles comparaisons (en particulier avec des résultats du réseau) dans le cas des approches continues. En effet, ces dernières, pour pouvoir être menées à bien, demandent en pratique d'avoir recours à des approximations dont il est nécessaire de savoir en quantifier les effets. Par exemple, les équations (non-perturbatives) du FRG ou de DS ne peuvent pas être résolues exactement et, en pratique, doivent être tronquées pour pouvoir obtenir une solution approchée. En particulier, une critique généralement portée à l'encontre de telles approches non-perturbatives est qu'elles n'offrent pas de schémas d'approximation dont les effets peuvent être quantifiés d'une manière systématique et, donc, il n'est pas clair comment calculer les corrections aux résultats approchés obtenus. Ainsi, il est désirable de pouvoir tester ces résultats directement contre ceux de méthodes ab initio. Ces dernières sont données par les simulations réseaux réalisées à jauge fixée et qui, en particulier, produisent des résultats exacts pour les fonctions de corrélations. Dans ce contexte, ces simulations sont considérées comme étant "l'expérience", et apportent un support important pour guider les approches continues. Cependant, fixer la jauge sur le réseau n'est pas simple. C'est particulièrement vrai pour les jauges covariantes (les mieux adaptées pour les approches analytiques) car imposer leur condition de jauge revient à résoudre un système comportant de nombreuses équations différentielles non-linéaires couplées entre elles. Pire, la théorie fixée de jauge à la Faddeev-Popov ne peut pas être directement implémentée dans les simulations réseau car les valeurs moyennes d'observables invariantes de jauge sont données par la forme indéfinie 0/0. Ceci est connu en tant que problème de Neuberger [START_REF] Neuberger | NONPERTURBATIVE BRS INVARIANCE[END_REF][START_REF] Neuberger | Nonperturbative BRS Invariance and the Gribov Problem[END_REF]. Concernant ces points, la jauge de Landau est un cas particulier car elle est covariante et elle peut être définie comme correspondant aux extrema d'une certaine fonctionnelle. Par conséquent, elle peut être implémentée sur le réseau (via une extremisation numérique d'une certaine fonctionnelle) par une procédure de fixation de jauge alternative à celle de Faddev-Popov ce qui permet ainsi d'éviter le problème de Neuberger [START_REF] Mandula | Efficient gauge fixing via overrelaxation[END_REF][START_REF] Davies | Fourier Acceleration in Lattice Gauge Theories. 1. Landau Gauge Fixing[END_REF][START_REF] Gupta | The Hadron Spectrum on a 18**3 X 42 Lattice[END_REF][START_REF] Cucchieri | Critical slowing down in SU(2) Landau gauge fixing algorithms[END_REF].

Plus généralement, au-delà du fait que les fonctions de corrélation soient à la base des approches continues, elles constituent les quantités élémentaires de toute théorie des champs et, par conséquent, contiennent toutes les informations de la théorie. Cela suggère notamment que, d'une manière ou d'une autre, elles contiennent toute l'information relative au phénomène de confinement. Elles ont été particulièrement étudiées dans la jauge de Landau après les travaux de Kugo et Ojima [START_REF] Kugo | Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem[END_REF]. En effet, ces derniers ont dérivé dans la jauge de Landau un scénario cohérent expliquant le confinement qui se base sur le comportement des fonctions de corrélations dans l'infrarouge profond. Ce comportement est dit de scaling et, dans l'Euclidien, est caractérisé par une "fonction de dressing" du ghost dans l'espace des impulsions (propagateur normalisé par sa valeur dans la théorie sans intéraction) qui diverge à impulsion nulle. Ces travaux amènent donc à étudier le comportement des fonctions de corrélation dans l'infrarouge profond pour voir si le système réalise la solution de scaling. Bien que cette dernière soit une solution des équations de DS et du FRG, les simulations réseau (à jauge fixée) ont montré qu'en pratique, la solution de scaling n'est pas réalisée. Au contraire, les fonctions de corrélation suivent la solution dite de decoupling où la fonction de dressing du ghost ainsi que le propagateur des gluons restent tous deux finis à moment nul. Dans l'Euclidien, un propagateur fini à moment nul est en général associé à des champs massifs. Cependant, il a été clairement établi que la fonction spectrale associée au propagateur des gluons n'est pas définie positive et, par conséquent, ces derniers ne peuvent pas être interprétés comme des états asymptotiques [START_REF] Bowman | Scaling behavior and positivity violation of the gluon propagator in full QCD[END_REF][START_REF] Cucchieri | Positivity violation for the lattice Landau gluon propagator[END_REF]. Ceci est en accord avec le confinement. Il a été montré que la solution de decoupling est une solution des équations de DS et du FRG, cependant, dans ces approches, rien ne permet de déterminer laquelle, entre les solutions de decoupling ou de scaling, est réalisée par le système [START_REF] Aguilar | Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger-Dyson equations[END_REF][START_REF] Aguilar | Power-law running of the effective gluon mass[END_REF][START_REF] Boucaud | Is the QCD ghost dressing function finite at zero momentum?[END_REF][START_REF] Aguilar | A Dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations[END_REF][START_REF] Bloch | Two loop improved truncation of the ghost gluon Dyson-Schwinger equations: Multiplicatively renormalizable propagators and nonperturbative running coupling[END_REF][START_REF] Boucaud | On the IR behaviour of the Landau-gauge ghost propagator[END_REF][START_REF] Huber | On the influence of three-point functions on the propagators of Landau gauge Yang-Mills theory[END_REF][START_REF] Rodriguez-Quintero | On the massive gluon propagator, the PT-BFM scheme and the low-momentum behaviour of decoupling and scaling DSE solutions[END_REF].

Finalement, mis ensemble, ces résultats suggèrent que nous sommes loin de complètement comprendre le comportement infrarouge des fonctions de Green, bien que ces dernières soient les quantités élémentaires de la théorie. Un ingrédient manquant pourrait provenir de certains effets non triviaux de la procédure de fixation de jauge elle-même qui sont ignorés dans la construction de Faddeev-Popov. En effet, dans ses travaux, Gribov a montré que, dans le cas de théories de jauge non-Abélienne, la solution de la condition de jauge n'est pas unique [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF]. Au contraire, il existe un ensemble infini et discret de solutions qui sont reliées les unes aux autres par des transformations de jauge. Ces ambiguités, appelées copies de Gribov, ne sont pas prises en compte dans la procédure de Faddeev-Popov. Dans ce cas, elles donnent à la fonction de partition des contributions dégénérées qui consistent en une somme infinie de signes alternés qui finalement se compensent et conduisent au problème de Neuberger. Les copies de Gribov sont négligeables dans le domaine ultraviolet, mais leur présence pourrait changer drastiquement le comportement infrarouge des fonctions de corrélations. Dans le cas des simulations réseau à jauge fixée, les algorithmes de minimisation utilisés permettent de sélectionner une unique copie et donc d'éviter le problème de l'ambiguité de Gribov mentionné ci-dessus. En revanche, il n'est pas possible analytiquement de construire une action locale (qui est à la base de toute approche continue) qui ne contienne pas de copie de Gribov [START_REF] Singer | Some Remarks on the Gribov Ambiguity[END_REF]. Gribov et Zwanziger se sont confrontés à ce problème et proposèrent de restreindre à un sous espace de configurations l'intégrale de chemin utilisée dans le calcul des fonctions de corrélations [START_REF] Gribov | Quantization of Nonabelian Gauge Theories[END_REF][START_REF] Zwanziger | Local and Renormalizable Action From the Gribov Horizon[END_REF]. Ainsi, la restriction à un tel sous espace permet de réduire grandement le nombre de copies de Gribov bien que certaines soient encore présentes dans la théorie fixée de jauge. Cette construction est appelée scénario de Gribov-Zwanziger et prédit que les fonctions de corrélations suivent la solution de scaling. Cette construction a été par la suite étendue à ce qui est connu comme le scénario de Gribov-Zwanziger "raffiné" [START_REF] Dudal | A Refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results[END_REF], où les effets de condensats de dimension deux due à la présence des copies sont pris en compte. En particulier, ce raffinement prédit la réalisation de la solution de decoupling, ce qui est en accord avec le réseau. Tout ceci suggère que, au moins dans la jauge de Landau, la présence des copies de Gribov est un ingrédient clé du comportement infrarouge des fonctions de corrélations. Néanmoins, la jauge de Landau est une seule représentante des jauges covariantes et présente un certain nombre de symétries qui lui sont propres. Ainsi, pour mieux comprendre l'importance générale de prendre en compte les copies de Gribov, il serait intéréssant d'étudier leurs effets sur les fonctions de corrélations dans d'autres jauges. Seulement récemment les jauges linéaires covariantes ont pu être implémentées sur le réseau [START_REF] Cucchieri | Covariant gauge on the lattice: A New implementation[END_REF][START_REF] Cucchieri | Simulating linear covariant gauges on the lattice: A New approach[END_REF][START_REF] Cucchieri | Gluon Propagators in Linear Covariant Gauge[END_REF][START_REF] Cucchieri | Feynman gauge on the lattice: New results and perspectives[END_REF][START_REF] Bicudo | Lattice gluon propagator in renormalizable ξ gauges[END_REF], et dans la construction de Gribov-Zwanziger (raffinée) [START_REF] Capri | More on the nonperturbative Gribov-Zwanziger quantization of linear covariant gauges[END_REF][START_REF] Pereira | Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges[END_REF]. Un premier point important de la thèse présentée ici concerne l'implémentation des jauges covariantes non-linéaires dans une approche alternative qui vise à prendre en compte la présence des copies de Gribov (voir ci-dessous).

Récemment, une nouvelle procédure de fixation de jauge prenant en compte les copies de Gribov a été proposée par Serreau et Tissier dans le cas de la jauge de Landau [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF]. L'idée centrale consiste à lever la dégénérescence des contributions des copies en réalisant une moyenne sur ces dernières avec un (pseudo) poids statistique non-uniforme. Ce faisant, l'ambiguité de Gribov est levée et il n'y a pas de problème de Neuberger. Pour ce faire, on définit les valeurs moyennes des observables invariantes de jauge par une procédure en deux temps. Dans une première étape, on réalise une (pseudo) moyenne avec un poids statistique non-uniforme sur les copies appartenant à une même orbite de jauge et où ainsi leur dégénérescence est levée. Puis, dans un second temps, la moyenne sur les configurations du champs de jauge est réalisée avec l'action de YM. Cette construction définit une authentique fixation de jauge qui peut être formulée sous la forme d'une théorie quantique des champs locale. Pour ce faire, on a recours à la méthode dite des répliques [START_REF] Young | Spin glasses and random fields[END_REF] qui est utilisée dans l'étude des systèmes désordonnés en théorie statistique des champs. En particulier, la théorie locale fixée de jauge que l'on obtient est renormalisable en d = 4. En ce qui concerne les secteurs des ghosts et des gluons, dans le cas de la jauge de Landau, la procédure se réduit de manière effective à la seule introduction d'un terme de masse pour les gluons. Ainsi la théorie effective est (perturbativement) équivalente au modèle de Curci et Ferrari (CF) [START_REF] Curci | A Theory of Massive Yang-Mills Field[END_REF][START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF] pris dans la limite de Landau, qui correspond à une simple extension massive de l'action de YM en jauge de Landau obtenue par la procédure de Faddeev-Popov. Le modèle de CF a l'avantage de présenter, dans l'infrarouge, des trajectoires du groupe de renormalisation (RG) sans pôle de Landau dites "saines" ou "infrarouge saines". De ce fait, le régime infrarouge du modèle peut être étudié perturbativement jusqu'à moment nul. En particulier, dans ce modèle, les calculs à une boucle des fonctions de vertex à deux et trois points reproduisent avec une bonne précision les résultats du réseau [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF][START_REF] Pelaez | Three-point correlation functions in Yang-Mills theory[END_REF][START_REF] Peláez | Two-point correlation functions of QCD in the Landau gauge[END_REF][START_REF] Peláez | Quark-gluon vertex from the Landau gauge Curci-Ferrari model[END_REF]. Ceci montre que (dans le vide et dans la jauge de Landau) la majeure partie de la dynamique non-perturbative est précisément saisie par la présence d'une masse effective pour les gluons. Cette série de travaux constitue la base des études réalisées dans la thèse ici présente.

L'étude des fonctions de corrélations en jauge de Landau a naturellement été étendue à températures finies, aussi bien dans les cadre des approches continues [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF][START_REF] Epple | Confining Solution of the Dyson-Schwinger Equations in Coulomb Gauge[END_REF][START_REF] Alkofer | Dynamically induced scalar quark confinement[END_REF][START_REF] Fischer | Deconfinement phase transition and the quark condensate[END_REF][START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Marhauser | Confinement in Polyakov Gauge[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF][START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF] que dans celui des simulations réseau [START_REF] Heller | The Gluon propagator at high temperature[END_REF][START_REF] Heller | The Gluon propagator at high temperature: Screening, improvement and nonzero momenta[END_REF][START_REF] Cucchieri | Magnetic screening in hot non-Abelian gauge theory[END_REF][START_REF] Cucchieri | Propagators and dimensional reduction of hot SU(2) gauge theory[END_REF][START_REF] Cucchieri | Infrared properties of propagators in Landau-gauge pure Yang-Mills theory at finite temperature[END_REF][START_REF] Fischer | Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3)[END_REF][START_REF] Cucchieri | Electric and Magnetic Screening Masses around the Deconfinement Transition[END_REF][START_REF] Aouane | Landau gauge gluon and ghost propagators at finite temperature from quenched lattice QCD[END_REF][START_REF] Maas | The Gluon propagator close to criticality[END_REF][START_REF] Silva | Gluon screening mass at finite temperature from the Landau gauge gluon propagator in lattice QCD[END_REF]. Comme nous l'avons mentionné avant, les fonctions de corrélations sont à la base des approches analytiques, et leur étude est donc une étape nécessaire pour pouvoir ensuite étudier par exemple le diagramme de phase de QCD. Les premiers résultats réseau en jauge de Landau étaient très controversés dû au fait que les erreurs systématiques associées à la discrétisation sont grandes. Finalement, les récentes simulations réalisées à grands volumes ont montré que les fonctions de corrélation en jauge de Landau sont essentiellement insensibles à la transition de phase [START_REF] Cucchieri | Electric and Magnetic Screening Masses around the Deconfinement Transition[END_REF], ce qui est problématique pour les méthodes approchées qui tentent de décrire cette transition. Il est possible que cette faible sensibilité soit due au fait que, dans la jauge de Landau, le paramètre d'ordre de la transition de phase (la boucle de Polyakov) n'entre pas directement ni dans les définitions ni dans les calculs des fonctions de corrélation. Récemment, il a été proposé que le paramètre d'ordre de la transition peut être efficacement pris en compte dans les calculs analytiques grâce à l'introduction d'un champs "de fond" dans la théorie microscopique fixée de jauge [START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF][START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF]. Ceci revient à travailler dans une extension de la jauge de Landau en présence d'un champ de fond, communément appelée jauge de Landau-DeWitt (LDW). En particulier, il a été montré que le FRG reproduit correctement la transition de phase dans cette jauge [START_REF] Braun | Quark Confinement from Color Confinement[END_REF][START_REF] Fister | Confinement from Correlation Functions[END_REF][START_REF] Braun | On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory[END_REF]. Cette approche en présence d'un champ de fond a naturellement été étendue au cas massif et perturbatif présenté ci-dessus [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF][START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF][START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF][START_REF] Reinosa | Yang-Mills correlators across the deconfinement phase transition[END_REF] où la transition de phase a été décrite en théorie de perturbation, ainsi qu'à potentiel chimique non-nul en présence de quarks lourds [START_REF] Reinosa | Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential[END_REF].

Dans cette thèse, nous concentrons notre étude sur les théories de YM fixées de jauge par la méthode de Serreau et Tissier. Dans un premier temps, en Chapitre I, nous passons en revue certains aspects pertinents pour l'étude du confinement et décrire comment il peuvent être reliés au comportement des fonctions de corrélations. Pour ce faire, nous prenons comme exemple la jauge de Landau où nous présentons brièvement les travaux de Kugo et Ojima [START_REF] Kugo | Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem[END_REF]. Comme mentionné ci-dessus, ces derniers conduisent naturellement à l'étude des propriétés infrarouge des fonctions de corrélation. Ainsi nous revoyons certains aspects des approches fonctionnelles, en particulier de DS et du FRG. Ces deux approches combinées ne permettant pas de discriminer la solution de decoupling ou de scaling, nous sommes amenés à considérer les simulations réseau à jauge fixée. Cependant, comme nous le présentons, ces dernières ne sont pas directement réalisables à partir de la théorie fixée de jauge à la Faddeev-Popov à cause du problème de Neuberger. Ce dernier est dû à la présence des copies de Gribov. Nous présentons les généralités concernant ces dernières dans le cas de la jauge de Landau ainsi que le scénario de Gribov-Zwanziger (raffiné). Ensuite, nous montrons comment, par une procédure d'extrémisation (qui revient à sélectionner une unique copie de Gribov), la jauge de Landau peut être implémentée sur le réseau et échappe au problème de Neuberger. Nous présentons le modèle de CF qui correspond à une extension massive de l'action fixée de jauge à la Faddeev-Popov. En particulier nous discutons les résultats perturbatifs obtenus dans ce modèle et mettons en avant leurs accords avec les résultats réseau. Finalement, nous présentons brièvement la procédure de Serreau et Tissier qui consiste à lever la dégénérescence des contributions des copies de Gribov par une pseudo moyenne réalisée sur ces dernières le long de l'orbite de jauge. Appliquée à la jauge de Landau, la procédure se réduit d'une manière effective à inclure un terme de masse pour les gluons, et l'action fixée de jauge est effectivement équivalente (pour les secteurs des ghosts et des gluons) au modèle de CF.

Dans le Chapitre II, nous généralisons la procédure de Serreau-Tissier à une famille de jauge covariantes non-linéaires. Pour cela, nous proposons de considérer une certaine fonctionnelle covariante (qui est une généralisation simple de celle utilisée pour la jauge de Landau lors de la fixation de jauge sur le réseau) et nous définissons la condition de jauge comme correspondant à ses extrema. Les différents extrema de cette fonctionnelle sont, par construction, tous des solutions de la condition de jauge et correspondent donc aux copies de Gribov. Lorsqu'on néglige la présence des copies (ce qui est au mieux valide à hautes énergies) et qu'on implémente la condition de jauge via Faddeev-Popov, on obtient les jauges (covariantes et non-linéaires) de Curci-Ferrari-Delbourgo-Jarvis (CFDJ) [START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF][START_REF] Delbourgo | Extended BRS Invariance and Osp(4/2) Supersymmetry[END_REF]. Ces dernières ont été étudiées dans la littérature [START_REF] Curci | On a Class of Lagrangian Models for Massive and Massless Yang-Mills Fields[END_REF][START_REF] Delbourgo | Extended BRS Invariance and Osp(4/2) Supersymmetry[END_REF][START_REF] De Boer | On the renormalizability and unitarity of the Curci-Ferrari model for massive vector bosons[END_REF][START_REF] Wschebor | Some non-renormalization theorems in Curci-Ferrari model[END_REF][START_REF] Tissier | A linear realization of the BRST symmetry[END_REF]. En particulier elles sont renormalisables (en d = 4) et unitaires mais présentent des ambiguités de Gribov.

Du fait que ces jauges peuvent être formulées comme les extrema d'une fonctionnelle, leur implémentation réseau via une généralisation des techniques utilisées dans Landau est envisageable. Ceci demanderait de réaliser une généralisation détaillée des différents algorithmes de minimisations (locaux et globaux) qui sont utilisés dans le cas de la jauge de Landau. Une telle discussion ne rentre pas dans les objectifs de la thèse ci-présente, et nous discutons seulement d'une généralisation possible d'un algorithme de minimisation locale utilisé dans Landau. Ensuite, nous appliquons la procédure de Serreau-Tissier aux jauges sus-mentionnées. La procédure se décompose en deux temps. Une première étape est une pseudo moyenne le long des orbites de jauges réalisée sur les copies de Gribov où elles sont pourvues d'un poids statistique non-uniforme de sorte à lever leur dégénérescence. La seconde étape est une moyenne sur les configurations du champ jauge avec l'action de YM. Mises ensembles, ces deux étapes constituent une authentique fixation de jauge dans le sens que les valeurs moyennes d'observables invariantes de jauges sont insensibles à la moyenne sur les copies de Gribov. Cependant cette procédure ne correspond pas directement à une TQC locale. Pour pallier à ce problème, on a recours à la technique des répliques [START_REF] Young | Spin glasses and random fields[END_REF]. Finalement, la procédure peut être mise sous forme d'une action locale qui correspond à une extension massive des jauges CFDJ (ce qui correspond au modèle de CF dans les jauges ξ) augmenter d'un nombre n -1 (avec n arbitraire) de répliques de modèle sigma nonlinéaire supersymmetrique. En particulier, l'évaluation des quantités dans la construction de Serreau-Tissier correspond à faire n → 0 tandis que pour n = 1 le secteur des répliques découple et on retrouve le modèle de CF. Ceci nous permet d'étudier simplement l'effet de notre traitement des copies de Gribov en réalisant des comparaisons entre les cas n → 0 et n = 1. Une fois cette construction présentée nous prouvons que la théorie fixée de jauge est renormalisable en d = 4 pour toutes valeurs de n et nous calculons explicitement à l'ordre d'une boucle les contre-termes. Nous poursuivons le calcul perturbatif pour calculer à une boucle les différents propagateurs de la théorie. Plus précisément, nous considérons des schémas de renormalisation où une part de la dépendance en n est absorbée dans les paramètres "nus" de la théorie. Nous montrons que dans ce cas, la théorie admet des trajectoires de RG qui sont saines dans l'infrarouge. Nous comparons nos résultats pour les propagateurs, avec et sans implémentation du RG, entre la théorie fixée de jauge et le modèle de CF. En particulier nous observons de nettes différences dues à notre traitement des copies de Gribov. Par exemple, dans le cas Serreau-Tissier, le propagateur du gluon est toujours transverse même loin de la jauge de Landau alors que, pour le modèle de CF, il présente une composante longitudinale à part dans le cas particulier de Landau. Nous observons aussi de nettes différences entre les deux cas dans les flots de RG où, pour le modèle de CF, ces derniers se gèlent sous l'échelle de masse de la théorie tandis que, dans le cas Serreau-Tissier, le secteur des répliques contient des modes sans masses et les flots de RG ne se gèlent jamais. Dans les deux cas nous pouvons intégrer les flots jusqu'à moment nul.

Finalement, au Chapitre III, nous nous intéressons au cas à température finie. Dans un premier temps nous revoyons les généralités concernant la transition de phase confinementdéconfinement et en particulier son lien avec la boucle de Polyakov et la brisure spontanée de la symétrie du centre. Nous présentons ensuite les résultats obtenus dans le cas de la jauge de Landau où, comme mentionné précédament, les simulations réseau et les approches continues trouvent des propagateurs essentiellement insensibles à la transition de phase. Nous introduisons ensuite les méthodes de jauge de champ de fond ("background gauge fields methods") où une valeur de fond du champ de jauge est introduite. Cela correspond à travailler dans une généralisation de la jauge de Landau connue comme la jauge de Landau-DeWitt (LDW). En particulier, cette valeur du champ de fond constitue un paramètre d'ordre pour la transition de phase. Nous présentons aussi le fait que dans le cas LDW la symétrie du centre est explicitement préservée au niveau de l'action nue alors qu'elle est explicitement brisée dans le cas de Landau. Nous revoyons comment dans l'extension massive de la jauge de LDW (ce qui d'un point de vue effectif correspond à l'implémenter selon la procédure de Serreau-Tissier) la transition de phase peut être étudiée en théorie de perturbation. En particulier dans la théorie SU(2) on trouve que la transition de phase est du second ordre [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF] en accord avec les résultats réseau. Une des conséquences importantes de la présence du champ de fond est que des directions de couleur sont privilégiées (celles dans lesquelles le champ de fond pointe). Ainsi, les différents modes de couleurs des différents champs, par exemple des ghosts et des gluons, ne se couplent pas de la même manière avec le champ de fond et leur habituelle dégénérescence est levée. Nous calculons dans la théorie SU(2), à l'ordre d'une boucle en théorie de perturbation, les propagateurs des gluons et des ghosts pour les différents modes de couleurs et nous nous concentrons sur leur comportement dans la région de température autour de la transition de phase. Pour SU(2), la transition de phase est second ordre, et donc le paramètre d'ordre, bien que continu, présente une non-analitycité à la température critique. On observe cette nonanalyticité dans tous les propagateurs et susceptibilités (valeur du propagateur à fréquence de Matsubara nulle et à impulsion nulel). Ceci est particulièrement marqué dans le secteur électrique du gluon du mode de couleur neutre (mode de couleur dans lequel le champ de fond pointe), où sa susceptibilité présente un pic très marqué à la température critique.

Mots clés : Théories de Yang-Mills, fixation de jauge, fonctions de corrélation infrarouge, ambiguités de Gribov, TQC à températures finies, transition de phase confinement-déconfinement

  Figure I.1: Gauge-fixing procedure. Black lines represent different gauge orbits. Dashed blue line represents the gauge condition.

Fig. I. 2 .Figure I. 2 :

 22 Figure I.2: Diagrammatic representation of the DSE for the ghost propagator Eq. (I.3.9). Dashed lines represent ghost propagators and wiggly lines gluon propagators. Bold lines and dots are full propagators and full vertices respectively, while normal ones are bare quantities. Original figure taken from [126].

Figure I. 3 :

 3 Figure I.3: Diagrammatic representation of the DSE for the gluon propagator. Dashed lines represent ghost propagator and wiggly lines gluon propagators. Bold lines and dots are full propagators and full vertices respectively, while normal ones are bare quantities. Original figure taken from [126].

Figure I. 4 :

 4 Figure I.4: Gauge-fixing procedure. The black line represents one gauge orbit. Dashed blue line represents the gauge condition.

  Figure I.5: The different Gribov regions. The k th region Ω k is the set of Gribov copies with FP operator that admits k-1 negative eigenvalues. The boundaries δΩ k separates the Gribov region Ω k and Ω k+1 while the k th negative eigenvalue of the FP operator on Ω k+1 is zero on the boundary. Figure taken from [155].

S h = γ 4 x

 4 and expressed the restriction to Ω through the introduction of a nonlocal "horizon" action S h Ω → e -S h ,

•

  For each gauge link W (l) µ , apply repeatedly gauge transformations W (l) µ → W (l),U µ

  Dφ e -S CF +S 1 x J a µ ŝA a µ -ηa ŝc a + ŝc a η a + M a ŝih a

  weight, and a collection M (k) k=1,...Nη of matrix fields M with weight (II.1.15

  Figs. II.1 -II.5 and illustrate their computations with a couple of examples, in particular in order to present how the dependences in Grassmann parameters are treated. Most of these diagrams are UV divergent in d ≥ 4 and we regularize them by using dimensional regularization setting d = 4 -.

Figure II. 1 :

 1 Figure II.1: One-loop diagrams for the vertex Γ AA . We use the standard graphical conventions for the gluon (wiggly) and ghost (dashed) lines. The plain line represents the superfield correlator (II.4.14). The second diagram on the second line involves a mixed A-Λ correlator (II.4.16). The diagrams of the first line are present in the Landau gauge and a fortiori in the CF model. The diagrams of the second line involve the superfield sector and are thus specific of the present gauge fixing (they are proportional to n -1 and thus vanish in the CF model). The first one is proportional to β 0 ξ 0 and the second one to β 0 ξ 2 0 .

  Figure II.2: One-loop diagrams for the vertex Γ cc . We use the standard graphical conventions for the gluon (wiggly) and ghost (dashed) lines. The double plain line represents the ih -ih correlator (II.4.12). The fourth and fifth diagrams involve a mixed ih-A correlator (II.4.13). Only the first diagram on the first line is present in the Landau gauge. All the others are present in the CF model. There is no diagram involving the superfields.

Figure II. 3 :

 3 Figure II.3: One-loop diagrams for the vertices Γ ihih (left) and Γ ihA (right). We use the standard graphical conventions for the gluon (wiggly) and ghost (dashed) lines. The double plain lines represent the ih legs. Both diagrams are present in the CF model. There is no diagram involving the superfields.

Figure II. 4 :

 4 Figure II.4: One-loop diagrams for the vertex Γ ΛΛ . We use the standard graphical conventions for the gluon (wiggly) and ghost (dashed) lines. The plain line represents the superfield correlator (II.4.14). The second and fourth diagrams involve a mixed A-Λ correlator (II.4.16).

Figure II. 5 :

 5 Figure II.5: One-loop diagrams for the vertex Γ AΛ . We use the standard graphical conventions for the gluon (wiggly) and ghost (dashed) lines. The plain line represents the superfield correlator (II.4.14). The two last diagrams involve a mixed A-Λ correlator (II.4.16).

1 / 2 β

 12 d θr . (II.4.26) Accordingly, we introduce a renormalized metric as g MrNr r (θ r ) = g M N (θ), (II.4.27) 60 Chapter II. Nonlinear covariant gauges without Gribov ambiguities with M r , N r ∈ θ r , θr . In particular, this implies θ

= iδ ab p µ p 2 + β 0 ξ 0 ,

 20 4.11)-(II.4.13). However, mixed correlators in the (ih, ih k , λ k ) read ih a (-p)A b µ (p) 0

  .4.64) II.5. One-loop propagators. 65 This shows that both λ k and Λ k renormalize in the same way. For instance, defining λ a k = √ Z λ λ a r,k , in terms of renormalized quantities, Eq. (II.4.64) reads (where for clarity we reintroduced the index r) according to (II.4.24), (II.4.25) and (II.4.29)

  r,k + . . . , (II.4.65) where we used Z h = Z β Z c , see Eq. (II.4.34). For the quadratic part of the effective action to have the desired expressions in terms of either the renormalized superfields Λ r,k or the renormalized fields λ r,k , c r,k , cr,k , and h r,k , we must have Λ r,k = λ r,k + θr c r,k + cr,k θ r + θr θ r ih r,k + . . .(II.4.66)
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  Chapter II. Nonlinear covariant gauges without Gribov ambiguities the one-loop ghost and gluon propagators are given in terms of the various one-loop renormalized vertex functions Γ α as G gh (p) = lim n→0

  1.7) of Appendix B.1. In the present case, as emphasized above, the contributions of the one-loop diagrams of Fig. II.3 are respectively proportional to ξ 2 0 and to ξ 0 (see also (C.2.18) and (C.2.20)), so that the h sector of the theory is not renormalized in the limit n → 0. We thus have lim n→0 Γ ihA (p) = lim n→0 Z A Z h (II.5.9) and lim n→0 Γ ihih (p) nξ = -lim n→0 Z h Z ξ . (II.5.10)

  Fig. II.2 (see also Appendix C.2.2). The diagrams which are not present in the Landau gauge vanish when n is taken to zero. These include, the tadpole diagram (second diagram of Fig. II.2, see (C.2.12)) and the diagrams involving the ih correlators (third, fourth and fifth diagrams of Fig. II.2, see (C.2.14) and (C.2.16)) which are all proportional to ξ 0 up to powers of β 0 ξ 0 and thus vanish for n → 0. The gluon sunset (first diagram of Fig. II.2) is already present in the Landau gauge.

  last relation along with the prescription Eq. (II.5.12) leads tolim n→0 Z c Z ξ Z m 2 = 1 .(II.5.28)

  4.25), from the ghostantighost-gluon vertex at vanishing ghost momentum Γ Acc (p, 0, -p) = g (II.5.30) The Feynman diagrams contributing to Γ Acc at one-loop order are shown in Fig. II.6.

Figure II. 6 :

 6 Figure II.6: One-loop contributions to the ghost-antighost-gluon vertex function Γ Acc . The diagrams on the first line are present in the standard Landau gauge (but here with massive gluon and ghost propagators) and are proportional to the antighost external momentum. The topologies on the second and third lines are present in the standard CFDJ gauges and give contributions proportional to ξ 0 . The replicated superfield sector only contributes in the diagrams of the last two lines.

Figure II. 7 :

 7 Figure II.7: The ghost (top) and the transverse gluon (bottom) propagator as a function of momentum for various values of ξ in the infrared-safe renormalization scheme with m = 0.39 GeV and g = 3.7.

Fig. II. 8 .Figure II. 8 :

 88 Figure II.8: The ghost propagator computed in either the present gauge fixing (n → 0) or the CF model (n = 1) in the infrared-safe scheme with m = 0.39 GeV and g = 3.7 for various values of ξ.

Figure II. 9 :

 9 Figure II.9: The transverse gluon propagator computed in either the present gauge fixing (n → 0) or the CF model (n = 1) in the infrared-safe scheme with m = 0.39 GeV and g = 3.7 for various values of ξ.

Figure II. 10 :

 10 Figure II.10: The longitudinal gluon propagator in the CF model (n = 1) as a function of momentum for various values of ξ in the infrared-safe scheme.

Figure II. 11 :

 11 Figure II.11: The diagonal λλ dressing function F diag as a function of momentum for various values of ξ in the infrared-safe scheme. It is divergent at zero-momentum in the Landau gauge.

  that [c(x) c(y)] 0 = [c k (x) ck (y)] 0 . The first line corresponds to a sunset diagram with one ghost and one λλ propagators. The two last lines of Eq. (II.6.8) correspond to one ghost propagator to which is attached at one edge a λ-λ tadpole. We saw previously, in discussing the λλ correlator, that it actually vanishes identically in the Landau gauge so that for ξ = 0 we have c a k (-p) c b k (p) 0 = c a (-p) cb (p) 0 as observed on Fig. II.13.

Figure II. 13 :

 13 Figure II.13: Comparison of the replicated ghost propagator G k gh (p) to the nonreplicated one G gh (p) a function of momentum for various values of ξ in the infraredsafe scheme. Both coincide in the Landau gauge.

Figure II. 14 :Figure II. 15 :

 1415 Figure II.14: Running of the parameter g(µ) in the infrared-safe scheme, for various values of ξ(µ 0 ) ≡ ξ.

Figure II. 16 :

 16 Figure II.16: Left panel: Running of the ghost mass parameter m gh (µ) = m(µ) ξ(µ) in the infrared-safe scheme, for various values of ξ(µ 0 ) ≡ ξ. Right panel: Running of the product ξ(µ)g 2 (µ) in the infrared-safe scheme, for various values of ξ(µ 0 ) ≡ ξ. Remark that we have 3ξ(µ)g 2 (µ)/16π 2 1.

II. 7 .Figure II. 17 :

 717 Figure II.17: The RG flow of the parameters g(µ), m(µ), and ξ(µ) in the CF model (n = 1) with the infrared-safe scheme.

Figure II. 18 :

 18 Figure II.18: RG-improved ghost (left) and transverse gluon (right) propagators as functions of momentum in the infrared-safe scheme with µ = p, for various values of ξ(µ 0 ) ≡ ξ.

Figure II. 19 :

 19 Figure II.19: Running of the dimensionless mass parameter m(µ) = m(µ)/µ in the infrared-safe scheme, for various values of ξ(µ 0 ) ≡ ξ.

Figure II. 20 :

 20 Figure II.20: The RG-improved ghost and gluon propagators in the CF model (n = 1) with the infrared-safe scheme.
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  Chapter II. Nonlinear covariant gauges without Gribov ambiguities factorization of the volume of the gauge group, C = lim n→0 DA 2n k=2 DV k AA U 2 -AA e -S[A,{V}] DA 2n k=2 DV k e -S[A,{V}]

  β = 1/T is the inverse temperature. Despite their commuting or anticommuting character, both type of fields present in Eq. (III.1.1) are periodic in time ϕ(τ, x) = ϕ(τ + β, x). (III.1.3) 96 Chapter III. Yang-Mills theories at finite temperature

  Fig. III.2 where, as the lattice volume increases, the minimum value of the Debye mass increases and the position of the minimum is shifted to lower temperatures.

Figure III. 1 :

 1 Figure III.1: The longitudinal gluon propagator at zero Matsubara frequency and at the transition temperature T c as a function of the momentum p in d = 4 for SU(2).Results are given for different lattice spacing a and lattice sizes L (both in fm) labeled in parentheses (a, L), and for different discretization N 3 s × N t . The most reliable data are obtained for the largest value of N t (black curve). Original figure taken from[START_REF] Cucchieri | Electric and Magnetic Screening Masses around the Deconfinement Transition[END_REF].

  FRG: T = 0 FRG: T = 0.361 Tc FRG: T = 0.903 Tc FRG: T = 1.81 Tc Lattice: T = 0 Lattice: T = 0.361 Tc Lattice: T = 0.903 Tc Lattice: T = 1.81 Tc FRG: T = 0 FRG: T = 0.361 Tc FRG: T = 0.903 Tc FRG: T = 1.81 Tc Lattice: T = 0 Lattice: T = 0.361 Tc Lattice: T = 0.903 Tc Lattice: T = 1.81 Tc

Figure III. 3 :

 3 Figure III.3: Left panel: Transversal gluon propagator in comparison with lattice results[START_REF] Maas | The Gluon propagator close to criticality[END_REF][START_REF] Fischer | Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3)[END_REF]. Right panel: Longitudinal gluon propagator in comparison with lattice results[START_REF] Fischer | Chiral and deconfinement transition from Dyson-Schwinger equations[END_REF]. The lattice data have been rescaled such that the T = 0 propagators match at intermediate momenta p 1GeV. Original figure taken from[START_REF] Fister | Yang-Mills correlation functions at finite temperature[END_REF].

102 ChapterFigure III. 4 :

 1024 Figure III.4: One-loop transverse gluon propagator as a function of the momentum for different temperatures. Computations performed in the massive action Eq. (III.1.1).Original figure taken from[START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF].

Figure III. 5 :

 5 Figure III.5: Ghost dressing function as a function of the momentum, for different temperatures, ranging from 0 to 0.25 GeV. The infrared dressing function is strongly enhanced as the temperature is increased. It even shows a pole for temperatures larger than 0.25 GeV. Original figure taken from [83].

  ir min t 3 ] = cos r min 2 . (III.4.22) Hence, as expected, the center symmetric point r min = π yields a vanishing Polyakov loop, which signals the confined phase. In contrast, for r min ∈ [0, π[ the Z 2 -center symmetry is spontaneously broken and a nonzero Polyakov loop develops, signaling the deconfined phase.

Figure III. 7 :

 7 Figure III.7: The physical background r min (T ) and its asymptotic value r ∞ , Eq. (III.4.23), for the SU(2) theory as a function of the temperature, obtained from the minimization of the potential (III.4.18) at two-loop order (top panel). For T < T c , the minimum sits at the Z 2 -symmetric point r = π. The symmetry is spontaneously broken for T > T c and the transition is continuous. The bottom plot shows the dimensionful background = r min (T )T ∝ Āmin (T ).

Figure III. 9 :Figure III. 10 :

 910 Figure III.9: Diagrammatic representation of the cubic vertices. All momenta and color charges are either outgoing or ingoing.

  Fig. III.11 and Fig. III.12. The diagrams are identical to those of the usual Landau gauge, but the rules are those of the LDW gauge. We detail here the computation of the diagram depicted in Fig. III.11 that contributes to the ghost self-energy. The calculation for the gluon sector goes along the same lines and is detailed in Appendix. I. Remarkably, the expressions of the various one-loop self-energies can be written into a readable form by means of simple scalar sum-integrals, see Eqs. (III.5.32), (III.5.36). The calculation of the relevant sum-integrals are detailed in Appendix J.

  III.5.1 to the diagram of Fig. III.11 t † κ = t-κ. We thus have ϕ * κ = ϕ-κ for the Hermitian matrix fields ϕ = (aµ, c, c, h) or, in momentum space, ϕ * κ

(

  K) * . Eqs. (III.5.22) and (III.5.23) then follow from the properties (III.5.10) and (III.5.14) and the decomposition (III.5.18).

  0 in the LDW gauge, from which arises in Eq. (III.5.32) the term proportional to the external shifted frequency ω λ . The one-loop Feynman diagrams contributing to the gluon self-energy are shown in Fig. III.

2ω λ m 2

 2 Figure III.12: One-loop diagrams for the gluon self-energy. For the last two diagrams, we take the convention that all momenta and color charges flow from the right vertex to the left vertex.

  ω∈{poles of f} n(ω) Res f | ω , (III.5.40)

Figure III. 13 :

 13 Figure III.13: Temperature dependence of the electric and magnetic inverse square masses in the neutral mode normalized to their common zero temperature value. To emphasize the effect of the Polyakov loop, we compare with the corresponding results at vanishing background field (r = 0), which corresponds to the Landau gauge.

µ = 1 III. 5 . 127 MFigure III. 14 :

 1512714 Figure III.14: The neutral magnetic gluon square mass as a function of T /m in the high temperature regime. We used r = r ∞ (g), see Eq. (III.4.23). The magnetic square mass Eq. (III.5.66) (blue plain curve) is compared to its high temperature behavior Eq. (III.5.75) (yellow plain curve) both computed for g = 5. One sees that the leading logarithm eventually leads to negative values for sufficiently high temperatures. This artifact is cured by RG effects. To illustrate this, we put by hand a temperature dependent running coupling constant (dashed green curve) according to Eq. (III.5.76).

Figure III. 15 :

 15 Figure III.15: Same as Fig. III.13 for the charged gluon modes, where the corresponding square masses are defined in Eqs. (III.5.63) and (III.5.64).

III. 5 .Figure III. 16 :

 516 Figure III.16: Normalised inverse of the zero-momentum gluon square mass in any of the charged modes (this differs from the charged susceptibilities defined above).
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 2829318 Figure III.18: The one-loop electric and magnetic propagators of the charged gluons at vanishing frequency as functions of the spatial momentum k for various temperatures.

◆ T=0. 28 ▲ T=0. 29 ▼ T=0. 3 ○Figure III. 19 :

 2829319 Figure III.19: The dressing function (III.5.79) of the neutral ghost color mode as a function of the momentum k for various temperatures. The pole of the vanishingbackground case is absent.

  III.13) is directly visible in Fig. III.19. As for the gluon case, the charged ghost modes at zero Matsubara frequency are degenerate, G + (0, k) = G -(0, k), (III.5.83) as follows from Eq. (III.5.22) and spatial isotropy. At nonvanishing background field, there is no antighost shift symmetry in the charged sector and we shall thus directly study the propagators in this case. The charged ghost propagator at zero frequency is shown as a function of k for various temperatures in Fig. III.20. As for the neutral mode, it presents a nonmonotonic behavior in temperature with two changes of monotony at T c and around T = 0.4 GeV, see also Fig. III.21

. 25 ◆. 28 ▲ T=0. 29 ▼ T=0. 3 ○Figure III. 20 :

 252829320 Figure III.20: The ghost propagator at vanishing frequency in the charged color sector as a function of momentum k for various temperatures.

Figure III. 21 :

 21 Figure III.21: The (normalized) ghost propagator for charged color modes at vanishing frequency and zero momentum as a function of temperature.

  r=r min (III.6.5) where f = ∂ 2 r f and where we used the fact that 0 = Γ r=r min

  Fig. III.13. More generally, the nonanalityc behavior of the order parameter of the phase transition (see Fig. III.7) is imprinted in the temperature dependence of all corelators, see e.g. Figs. III.13, III.21.
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 31 . Differentiating further this last equality with respect to the source η b y one gets 0 = -∂ 2 x δ 2 W δ ηa x δη b y -g 0 f acd ∂ µ,x δ 3 W δJ c µ,x δ ηd x δη b y + δ ab δ x,y . (A.0.5) 144 Appendix A. Dyson-Schwinger equation for the ghost propagator

  with the relations (A.0.6) yields

  .0.11) that displays explicitly the one loop structure of Fig. I.2.

  Π + T /L (-rT, 0) = 2{I + T /L } 0- 00 (-rT, 0) + {I + T /L } 0- m0 (-rT, 0) + {I + T /L } 0- 0m (-rT, 0) -4(d -1)[{I + T /L } 0- mm (-rT, 0) + m 2 I 0- m0 (-rT, 0) + I 0- 0m (-rT, 0) + (d -1) J + m + J 0 m -J + 0 -J 0 0 , (K.0.21)

  + 0 -N 0 m -N + m . (K.0.29)which are nothing but the average between the respective neutral components and the corresponding expressions at r = 0. We thus obtain

  BRST = O inv +sO be a BRST invariant operator where O inv is gauge invariant and O has nothing specific.

	Neuberger showed that
	Dϕe

ih} , (I.

3.11) 

with Ψ = ca ∂ µ A a µ for the peculiar case of the Landau gauge. Let O

  2.10) It corresponds to the CFDJ action (II.1.10) supplemented by a mass term for the gluon and ghost fields. Notice that Eq. (II.2.8) involves A U instead of A. Let us stress the difference between the pure CF model, Eq. (II.2.10), and the CFDJ gauges implemented through the ST proposal. Averages in the CF model are obtained as

  where g is an unknown renormalization constant. Another possibility is κ 1 Ka µ ∂ µ c a with κ 1 another unknown renormalization constant. By inspection of Table II.1, using power counting, ghost number conservation, Euclidean covariance and the isometries of the 48 Chapter II. Nonlinear covariant gauges without Gribov ambiguities

  We are now looking for the expressions of the unknown transformations s, t, δa k in terms of the primary fields. Let us first consider the case of δa k . Applying its formal definition (II.3.26) to Γ div with Γ 1 given by Eq. (II.3.31), we immediately get from the

	source terms	δa k a b l = δ kl δ ab ã0 k +	1 2	f abc a c k -	1 2	d abc bc k .	(II.3.32)
	Since ã0 k , b0 k , ba k are functions of only the a a k , this last equality does consist in a (implicit) definition of the transformation δa k in terms of the fundamental fields a a k .
	Inserting Eq. (II.3.31) in the symmetry identity (II.3.29) and extracting the terms
	linear in P 0 k , R 0 k , and R a k , we find that					
		δa k					
							3.31)
	Note however that, the unknown functions sA a µ , sc a , and sa a k are formally defined in Eq. (II.3.24) but here with Γ → Γ div . ã0 k , b0 k , ba k are unknown functions of the uncon-strained a a k fields and stand as the renormalized versions of the functions a 0 k , b 0 k and b a k . Note that a 0 k , b 0 k and b a k are of mass-dimension zero, null ghost number, and depend only on the unconstrained a a k superfields. 5 Along the same lines, we have introduced X 0 k , Y 0 k and Y a k to account for the renormalized versions of sa 0 k , sb 0 k , sb a k . A priori,
	since s is unknown apart from its formal definition Eq. (II.3.24), akin for the renor-
	malized functions ã0 k , b0 k , ba k , nothing guaranties at this stage that the renormalized functions X 0 k , Y 0 k , Y k are given by sã 0 k , sb 0 k , sb a k .

  3.41) Power counting implies that L 3 is of mass dimension zero. Therefore, it cannot involve the fields A, c, c, or h. Similarly, it cannot involve any derivatives ∂ µ or ∂ M . It is thus a potential term for the superfields a k and a k (or equivalently Ṽk and Ṽk ). The only possible such term compatible with the symmetry (II.3.35) is a function of Ṽ †

k Ṽk and Ṽ † k Ṽk , which is trivial due to (II.

3.36

  These definitions of the renormalized constants are convenient for actual perturbative calculations but are different from the constants κ 1,2,3 , Z 1,2,3 , Z, and g used in the proof of renormalizability, see Sec. II.3.2. The dictionary between these two sets can easily be done by rewriting Eqs. (II.3.46), (II.3.51) in terms of renormalized quantities

	k	2	.	(II.4.30)

(according to the definitions (II.4.24), (II.4.25) and (II.4.29)) and by demanding that the effective action be finite. For instance, let us have a look to the gluon mass term appearing in L 1 [Eq. (II.3.46)]:

  14 Vacuum contributions can be computed in a standard way by replacing Matsubara sums by frequency integrals Q →

	d d q (2π) d . The previous tadpole integral reads in dimensional regulariza-
	tion (d = 4 -2 )

  III.5. As emphasized in Sec. III.3.2 (see Eqs. (III.3.1), (III.3.2)), this is a direct consequence of the Slavnov-Taylor identities of the present model in the Landau gauge and of the fact that the magnetic mass grows unboundedly with the temperature [83]. In the LDW gauge with a nontrivial background field, the situation is very different and we do not observe any pole, neither in the dressing function of the neutral ghost mode, shown in Fig. III.19 nor in the charged sector, discussed below. For the neutral mode, this

More precisely, the gauge link is defined as the parallel transport between two adjacent space-time points: Wµ(x) = P exp ig 1 0 dtAµ(x + atμ) , which is equivalent to the definitions (I.1.7) and (I.1.8) in the continuum limit (a → 0).

Let us mention that numerical simulations have also computed (part of) the hadronic spectrum starting with the QCD Lagrangian[START_REF] Aoki | Quenched light hadron spectrum[END_REF].

Here we prefer to take some cautions. If it is true that an IR enhanced ghost is a necessary condition for the Kugo-Ojima proposal, the way the ghost enhancement is implemented into the Dyson-Schwinger equations might be deceitful regarding the realization of the Kugo-Ojima scenario. Indeed, according to Zwanziger[START_REF] Zwanziger | Nonperturbative Landau gauge and infrared critical exponents in QCD[END_REF], in this case the ghost enhancement may signal the realization of the Gribov-Zwanziger scenario. Although both scenarios share close ties[START_REF] Dudal | Gribov no-pole condition, Zwanziger horizon function, Kugo-Ojima confinement criterion, boundary conditions, BRST breaking and all that[END_REF][START_REF] Vandersickel | A Study of the Gribov-Zwanziger action: from propagators to glueballs[END_REF][START_REF] Vandersickel | The Gribov problem and QCD dynamics[END_REF], the latter breaks the (local) nilpotent BRST symmetry, Eq. (I.2.12), while the former relies on the existence of a conserved nilpotent BRST charge. It shall be mentioned that very recently a nonlocal nilpotent BRST symmetry has been discovered in the context of the Gribov-Zwanziger proposal[START_REF] Capri | A local and BRST-invariant Yang-Mills theory within the Gribov horizon[END_REF] from which one may succeed in redoing the Kugo-Ojima construction. To our knowledge this has not been performed yet. Thereby, we believe that the interpretation of the ghost enhancement that emerges in the framework of Dyson-Schwinger equations should be taken with care. To our knowledge, this issue has not been fully settled yet.

Remark that by the prerequisite of belonging to the BRST kernel, a parent state cannot be a physical state.

If this is not so, the integral in Eq. (I.2.16) is ill defined.

It has been shown that such a solution is actually unique[START_REF] Fischer | Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory II[END_REF][START_REF] Huber | On Dyson-Schwinger studies of Yang-Mills theory and the four-gluon vertex[END_REF].

Remark that the KO criterion of having an enhanced ghost does not check the existence of such a nonperturbative BRST charge. Rather, it is a consistency condition for having both globally welldefined nilpotent BRST and color charges.

In the context of statistical physics, such a UV cutoff scale is naturally provided by the (inverse) lattice spacing for instance.

It should be stressed that in the KO proposal, a singular ghost dressing function is not a condition that one should impose but rather a consistency criterion that should be investigated/checked through explicit computations/simulations in order to observe whether or not the KO confinement scenario is realized[START_REF] Vandersickel | A Study of the Gribov-Zwanziger action: from propagators to glueballs[END_REF]. Moreover, imposing particular boundary conditions might correspond to change the symmetry content of the initial theory[START_REF] Zwanziger | Nonperturbative Landau gauge and infrared critical exponents in QCD[END_REF], and notably the nilpotency of the BRST symmetry[START_REF] Dudal | Gribov no-pole condition, Zwanziger horizon function, Kugo-Ojima confinement criterion, boundary conditions, BRST breaking and all that[END_REF][START_REF] Vandersickel | A Study of the Gribov-Zwanziger action: from propagators to glueballs[END_REF][START_REF] Vandersickel | The Gribov problem and QCD dynamics[END_REF]. Hence, we believe that one should be cautious in interpreting such a solution in the KO framework. This is further discussed in Sec. I.4.2.

Note that the difference between the scaling and the decoupling solution lies in the IR behavior of the ghost dressing function since an IR nonvanishing gluon propagator is possible with κA = 1 which, in turns, yields an IR enhanced ghost if the scaling relation κA = 2κc holds.

As pointed out in[START_REF] Dudal | More on the renormalization of the horizon function of the Gribov-Zwanziger action and the Kugo-Ojima Green function(s)[END_REF], the computation of the horizon condition should be performed only once the horizon action S h has been made local.

We mention again that, recently, it has been discovered that the GZ action is symmetric under a nonlocal but nilpotent BRST-like transformation[START_REF] Capri | Exact nilpotent nonperturbative BRST symmetry for the Gribov-Zwanziger action in the linear covariant gauge[END_REF].

We drop off the trivial diagonal color structure of the propagators for clarity of the notations.

For completeness, we also mention that the maximal Abelian gauge was also investigated in this framework[START_REF] Capri | Study of the properties of the Gribov region in SU(N) Euclidean Yang-Mills theories in the maximal Abelian gauge[END_REF][START_REF] Capri | The Gluon and ghost propagators in Euclidean Yang-Mills theory in the maximal Abelian gauge: Taking into account the effects of the Gribov copies and of the dimension two condensates[END_REF][START_REF] Capri | The Influence of the Gribov copies on the gluon and ghost propagators in Euclidean Yang-Mills theory in the maximal Abelian gauge[END_REF][START_REF] Capri | A Study of the maximal Abelian gauge in SU(2) Euclidean Yang-Mills theory in the presence of the Gribov horizon[END_REF].

We recall that the first Gribov region Ω still contains Gribov copies.

We mention that a similar idea was proposed along the lines of[START_REF] Parrinello | A Modified Faddeev-Popov formula and the Gribov ambiguity[END_REF][START_REF] Zwanziger | Quantization of Gauge Fields, Classical Gauge Invariance and Gluon Confinement[END_REF] but, there, it was proposed to average with a nonuniform weight over the whole gauge orbit and not solely over the Gribov copies. This proposal was tractable in lattice simulations[START_REF] Fachin | Global gauge fixing in lattice gauge theories[END_REF][START_REF] Henty | Soft covariant gauges on the lattice[END_REF] but it was shown that the corresponding continuum action was nonrenormalizable[START_REF] Zwanziger | Quantization of Gauge Fields, Classical Gauge Invariance and Gluon Confinement[END_REF][START_REF] Fachin | Quantization of Yang-Mills theory without Gribov copies: Perturbative renormalization[END_REF].

Remark that the sum runs over minima, maxima and saddle points, such that all Gribov copies are taken into account.

In practice the lattice is split into odd and even lattice sites. The first step is to apply the transformation (II.1.14) on all even sites while the odd ones are left untouched. Then a second gauge transformation is performed that consists in (II.1.14) on odd sites while even ones are left untouched. This procedure is repeated until a minimum is reached.

In the present case under consideration, covariant derivatives reduce to standard derivatives ∂M .

In principle, contractions with the Riemann tensor RMN should also be considered. However, this situation is not encountered in the present case.

Indeed, any term that depends on the other fields would require to come along with some combination of θ, θ to insure a zero mass-dimension. Such combination will violate either ghost number conservation or the Grassmannian isometries. For instance a term of the form A 2 µ θ θ is consistent with zero mass dimension and ghost number, but violates the isometry under the Killing vector χ = -θ, θ .

More precisely, by the same kind of considerations one arrives at the conclusion that sc a is of the form sc a = -g 2 f abc c b c c , where g is a priori a new renormalization constant, independent of g. Then, by investigating the constraint Eq. (II.3.27), particularly the K dependent part, one realizes that this constraint reduces in this sector to ssA a µ = 0. Applying twice the transformation s to A a µ and isolating the ∂µc part, one immediately gets 0 = κ1f abc gg ∂µc b c c , yielding g = g.

Possible non zero Γ Λ k ih term can only appear at least at two-loop order.

Explicitly it is defined as δ(θ, θ ) = g -1/2 (θ) ( θθ )(θ -θ ).

Explicitly, θ = 2β0(θ∂ θ + θ∂θ) + 2(1 -β0 θθ)∂ θ ∂θ.

This matrix representation makes sense only for n > 0 due to the presence of the n -1 replicas. On the other hand, for n = 1, which corresponds to the usual CF model, all the SUSY sector is absent.At tree-level, the scalar functions Γ T , Γ L , Γ ihA and Γ 1,...,4 are trivially extracted from the quadratic part of the action Eq. (II.3.12) and we findΓ T (p) = p 2 + nβ 0 Γ L (p) = nβ 0 Γ ihA (p) = 1 Γ ihih (p) = -ξ 0

Although the discussion of possible IR safe RG trajectories will appear later on, we mention here that we investigated renormalization schemes where β0 = Z β β also for ξ0 = 0. In the n → 0 limit we have always found a Landau pole thus preventing a perturbative investigation of the IR regime.

Note that such choices are arbitrary and one could have also chosen a renormalization of the kind ξ0/n 2 = Z ξ ξ, in such a way that auxiliary masses still vanish outside the Landau gauge. All these renormalizations schemes are acceptable with the proof of renormalizability but lead to different phenomenologies. Comparisons with lattice data would be needed to discard different scenarios. Here, we choose to consider ξ0/n = Z ξ ξ because it corresponds to a "minimal" n dependence, in the sense that the limit ξ → 0 is smooth and yields the Landau limit of the CF model studied in[START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF].

We note that in the present scheme,Z m 2 = Z β β → m 2 /n, ξ → nξ . In particular we have Λ k = Z Λ /Z m 2 Λ r,k .For a more detailed discussion on the renormalization of the Grassmann parameters see Appendix E.

However, here, we are not able to prove that the divergent part will satisfy it beyond one-loop order. We can still use it to fix the finite parts at all orders of perturbation theory. Indeed, one can always replace Eq. (II.5.12) by Z 2 ξ ZcZ m 2 = ZA Ẑ, with Ẑ = 1 + O(g 4 ) chosen such that Z m 2 , ZA, Zc, and Z ξ have the correct divergent parts required by renormalizability, but in such a way that Ẑ does not affect the finite parts.

Notice that we did not define it as the the value at zero momentum of the corresponding renormalized two-point vertex function because of a possible non trivial n → 0 limit.

The definition of the renormalization factor Z ξ used here differs from that of[START_REF] Tissier | Gauged supersymmetries in Yang-Mills theory[END_REF].

We extract everywhere a trivial unit color matrix.

Indeed, the correlator λλ is given by the θ k , θ l independent part of the correlator [Λ k Λ l ] (see Appendix E and Eq. (E.0.2) for instance) while the SUSY sector becomes ultra-local (∝ δ θk , θl ) in the Landau gauge.

For instance, it is clear that in the case m(µ0) = ξ(µ0) = 0 (which implies m(µ) = ξ(µ) = 0 for all µ and thus corresponds to the standard FP Landau gauge) one gets a Landau pole.

We recall that, in the CF model, our prescription for the renormalized coupling constant is given by Eq. (II.5.33).

We also mention that lattice simulations have also established that, in the presence of light dynamical quarks with realistic masses, the phase transition becomes a crossover[START_REF] Borsanyi | Full result for the QCD equation of state with 2+1 flavors[END_REF].

Details and pedagogical lecture notes can be found in[227].

Remark that here we restrain the discussion to the case where all the static matter sources are in the fundamental representation. For an enlarged discussion in the case where different representations are considered see e.g.[START_REF] Greensite | An introduction to the confinement problem[END_REF][START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF].

Remark that according to the ST gauge-fixing procedure, the mass term is proportional to the number of replica n which eventually has to be taken to zero, see Sec. II.2 of Chapter. II. Nevertheless, as we saw, the n dependence of the mass term can be reabsorbed into the bare parameters of the theory under a suitable choice of renormalization scheme, see Sec. II.5.1 of Chapter. II. Here and in the following, we only consider such kind of renormalization schemes, so that, in a short-hand notation, we do not write explicitly the n dependence of the bare mass that will be trivially absorbed in the renormalization. Accordingly, the gluon and ghost sectors are effectively equivalent to those of the CF model.

We shall assume for the sake of clarity that ϕmin = 0 for all fields ϕ = c, c, ih.

It is important to note here that Ās is not assumed to be a minimum of Γ[ Ā]. On the contrary, by definition of a self-consistent background, a = 0 is the minimum of Γ Ās [a].

This property can be shown in the m0 = 0 case, though, it is not clear how to enforce it in the present m0 = 0 case. See discussion in Appendix. G.

In SU[START_REF] Zweig | An SU(3) model for strong interaction symmetry and its breaking. Version 2[END_REF], this corresponds to a global color rotation.

Remark that, all quantities appearing here are bare quantities. Nevertheless, for the sake of clarity we anticipate the renormalization and note m instead of m0 as previously.

This term vanishes in the Landau gauge since Jκ m = 0 for r = 0, see (III.5.34).

These are defined as the limit of the above expression as T → 0 for fixed Ā.

Remark that, although ghosts are Grassmann fields, their thermal statistic follows the Bose-Einstein distribution[START_REF] Laine | Finite temperature field theory -with applications to cosmology[END_REF].

Remark that, here, we changed our notations. Indeed, in Eq. (III.3.1) we noted bare quantities with a 0 index in order to be consistent thourhgout the present manuscript. However, in the present case, we prefer to use the B index in order to not confuse with the neutral color mode.

At the present level of approximation we did not need to explicitly renormalize the coupling constant. Nevertheless, this can be done by e.g. following the Taylor scheme presented in Sec. II.5.4.

For simplicity we extracted everywhere a trivial unit color matrix δ ab and do not write explicitly the color indices.

G m 2 (ω λ +iε m 1 ,q , l) + (m 1 , κ ↔ m 2 , τ ) (J.0.5)

Chapter III. Yang-Mills theories at finite temperature Fourier space, with the convention ∂ µ → -iK µ , the action of the background covariant derivative reduces to ( Dµ ϕ) κ → -iK κ µ ϕ κ (K), (III. 5.5) where K κ µ = K µ + κrT δ µ0 defines a generalized momentum. 10 As explained in [START_REF] Reinosa | Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study[END_REF], the latter is conserved by virtue of the invariance under translations in Euclidean space and under the residual global SO(2) symmetry corresponding to those color rotations that leave the background invariant. The index κ = 0, ± labels the corresponding Noether charges and we see that the covariant derivative simply shifts the Matsubara frequencies of the charged color modes by ±rT . Hereby, we shall sometimes use a short-hand notation for the background covariant derivative in the canonical basis as (no sum over κ) ( Dµ ϕ) κ ≡ ∂ κ µ ϕ κ . (III. 5.6) We now present the Feynman rules in the canonical basis. We use the same notations and conventions as those introduced in Sec. III.1. The tree-level propagators, see Fig. III.8, read c -κ (-K)c κ (K) = G 0 (K κ ) , (III.5.7)

where P ⊥ µν (K) = δ µν -K µ K ν /K 2 was defined in Eq. (III. 1.6) and

(III.5.9)

The gluon propagator in each color mode is transverse with respect to the corresponding generalized momentum. Notice also that, thanks to the identity (-K µ ) -κ = -K κ µ , (III. The interaction vertices are displayed in Figs. III.9 and III.10 and are the standard YM ones, that is, the ghost-antighost-gluon vertex, as well as the three-and four-gluon vertices. The conservation of the color charge is encoded in the fact that f κλτ is zero unless κ + λ + τ = 0. The expression of the ghost-anthighost-gluon vertex is This would result in an effective action where the pure gauge sector corresponds to the massive LDW action presented in this thesis (that contains the relevant order parameter for the deconfinement phase transition), supplemented by the action for the matter fields that depends on a background field value associated to order parameter of the chiral phase transition.

Appendix A Dyson-Schwinger equation for the ghost propagator

Here we derive explicitly the DSE for the ghost propagator in the Landau gauge. The starting point is the DSE Eq. (I.3.8). We introduce a set of sources for the different fields: two scalar ones J a µ for the gauge field and M a for ih a , as well as a couple of Grassmann sources ηa and η a for the FP ghost c a and anthighost ca fields. We thus have for generating functional Z[J, M, η, η] = DADhDcDc exp -S gf + x J a µ A a µ + M a ih a + ca η a + ηa c a , (A.0.1) with S gf the Landau gauge FP action that was defined in Eq. (I.2.9)

Using Eq. (I.3.8) with ϕ(x) = ca (x) yields ∂ µ D µ c a (x) + η a (x) Jµ,M,η,η = 0, (A.0.3)

Appendix B

Miscellaneous identities

In this appendix, we present various identities used throughout the main text of Chapter. II. We preferred to report them in a separated appendix in order to not encumber the main discussion.

B.1 Identities among renormalization constants

First of all, we consider the renormalization constants appearing in the proof of renormalizability, see Sec. II.3.2. There is an obvious permutation symmetry among the replicas k > 2. The latter guarantees for instance that Z 2 and Z 3 do not depend on k, see Eq. (II. 3.53). There is also a less obvious permutation symmetry between the replicas k > 2 and k = 1, which has been (arbitrarily) singled out to factor out the volume of the gauge group. To exploit this symmetry we employ a parametrization of Ṽk similar to (II. [START_REF] Fritzsch | Advantages of the Color Octet Gluon Picture[END_REF] 

Here, we introduced the fields C k , Ck , H k and Ũk in order to take into account a possible renormalization between the bare fields introduced in (II. 3.6) and the variables of the effective action Γ. Using this parametrization in Eq. (II.3.51) leads to

Appendix B. Miscellaneous identities

To make contact with the original fields (c k , ck , h k ) to which the replica symmetry applies, we introduce possible renormalization factors as as well as the two relations

which reduce the number of independent renormalization constants to six. Note that Z A = 0 guarantees that there is no term (∂ µ A a µ ) 2 . The relation Z 2 Z 2 = κ 1 κ 2 guarantees that all replicas contribute the same to the gluon mass squared, which thus scales as n.

The definitions of the renormalized constants κ 1,2,3 , Z 1,2,3 , Z, and g used above and in the proof of renormalizability, see Sec. II.3.2 differ from those used in perturbative calculations, namely Z A , Z c , Z h , Z Λ , Z β , Z ξ and Z g , see (II.4.24), (II.4.25) and (II. 4.29). The dictionary between the two sets is given in (II.4.32), (II.4.33). In particular, the renormalization constants of the second set [Eqs.(II.4.24), (II.4.25) and (II.4.29)] satisfy the constraint

which leads to six independent renormalization constants among the seven defined. This number of independent renormalization constants is further reduced in the Landau gauge (ξ 0 = 0). Indeed, the case ξ 0 = 0 studied in [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] exhibits various simplifications as compared to the general class of gauges studied here. The first obvious one is the fact that the h sector does not receive any loop corrections, i.e.,

This can be seen, e.g., by applying a infinitesimal shift ih → ih + f under the defining path integral for Γ (see also Appendix. F). In terms of the divergent constants introduced in Sec. II.3.2.2, this implies that κ 2 = 1 or, equivalently [START_REF] Dudal | The Anomalous dimension of the composite operator A**2 in the Landau gauge[END_REF][START_REF] Tissier | Gauged supersymmetries in Yang-Mills theory[END_REF],

B.1. Identities among renormalization constants
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where we used the relation (B.1.6).

The next simplification comes from the fact that for ξ 0 = 0, the superfield correlator (II.4.14) is ultralocal in Grassmann space, i.e., it is proportional to δ(θ, θ ) and the mixed correlator (II.4.16) vanishes. As pointed out in [START_REF] Serreau | Lifting the Gribov ambiguity in Yang-Mills theories[END_REF] and emphasized in the main text, since all vertices of the theory are also local in Grassmann space (for ξ 0 = 0 there are no term involving Grassmann derivatives) it follows that closed loops involving superfields are proportional to δ(θ, θ) = 0, see Eq. (II. 4.18). An important consequence is that the Λ k sector effectively decouples in the (perturbative) calculation of correlators in the sector (A, c, c, h) at all orders. The only effect of the superfields Λ k is the mass term nβ 0 for the gauge field.

A first consequence of this dramatic simplification for the renormalizability of the theory is that the usual nonrenormalization theorems of the CF model with ξ 0 = 0 are valid. One of them is the relation (B. 1.8) above. The second one comes from the Taylor theorem, which states that the ghost-antighost-gluon vertex in a particular momentum configuration does not receive loop corrections [START_REF] Taylor | Ward Identities and Charge Renormalization of the Yang-Mills Field[END_REF]. It follows that

We observe that Eqs. (B.1.8) and (B.1.9) together with the last relation in Eq. (II. 4.33) imply that Z = Z Λ /Z c . Another consequence of the absence of loops of the superfield is the fact that there can be no loop diagram with only one external Λ k leg. This is easy to show by direct inspection. It follows that those vertices are tree-level exact, i.e., In order to summarize, in the case of the Landau gauge (ξ 0 = 0), the number of independent renormalization constants in reduced from 6 down to 3 due to the three additional constraints

B.2 Slavnov-Taylor identities in the CF model

As already discussed, the CF model can be obtained from the theory considered here by setting the number of replicas n = 1. Its action is given by

where S YM is the YM action and S CF is given in Eq. (II.2.10). This model possesses a (non-nilpotent) BRST symmetry, whose action on the fields is

and

The Zinn-Justin equation corresponding to this symmetry is obtained as usual, i.e., by introducing external sources for the fields and for all the independent BRST variations, S → S -S 1 with

and by performing a Legendre transform with respect to the sources J a µ , η a , ηa , and M a . It reads Taking two derivatives of this equation with respect either to ih a and c a or to A a µ and c a and setting the sources to zero, one obtains the following symmetry identities for the two-point vertex functions in momentum space:

Eliminating Γ c Kµ (p), we obtain, finally,

Taking n = 1 in Eq. (II.5.3), and further using the above identity leads to

Appendix C

One-loop expressions of the Feynman diagrams

Here, we present the Feynman rules associated to the non-standard vertices, namely cccc, ihcc and the supersymmetric ones AΛ 3 and Λ 4 . Then, we report the one-loop expressions of the Feynman diagrams of Figs. II.1 -II.5 once the Grassmann variables internal to the loops (if any) have been integrated out. The resulting expressions are standard one-loop momentum integral that we treat by means of the introduction Feynman parameters. In practice, only one parameter is needed. However, the full expression of the finite parts is too cumbersome and was treated using Mathematica. These, are reported into a Mathematica file corresponding to the supplemental material, Ref. [START_REF] Gupta | The Hadron Spectrum on a 18**3 X 42 Lattice[END_REF], of [START_REF] Serreau | Influence of Gribov ambiguities in a class of nonlinear covariant gauges[END_REF]. Nevertheless, the divergent parts of the diagrams can be straightforwardly extracted from their one-loop expressions displayed below and are explicitly reported. In the following, we use the notation k = µ

C.1 Feynman rules

The four ghost vertex and the ihcc interaction reads respectively

We also recall the

Appendix C. One-loop expressions of the Feynman diagrams

Finally, the two quartic vertices AΛ 3 k and Λ 4 k reads respectively

and 

C.2 Expression of the one-loop

it yields the divergent part 

it yields the divergent part 

C.2.2 Ghost sector

Expression of the first diagram of 

Expression of the sum of the fourth and fifth diagrams of 

it yields the divergent part 

it yields the divergent part 

Appendix D

Complete propagators

We detail the inversion of the one-loop two-point vertex function matrix Eq. (II.4.9) that reads

(D.0.1) where the scalar functions Γ T , Γ L , Γ ihA and Γ 1,...,4 only depend on p 2 and where θ is the Laplace operator on the curved Grassmann space, defined as [START_REF] Tissier | Gauged supersymmetries in Yang-Mills theory[END_REF][START_REF] Serreau | Covariant gauges without Gribov ambiguities in Yang-Mills theories[END_REF] 

and which satisfies θ δ(θ, θ ) = -2 + 2β 0 δ(θ, θ ). In particular, in (D.0.1), we used the fact that, at one-loop order, there is no contribution to Γ ihΛ k . Note that, since there are n -1 replicas, the matrix representation (II.4.9) only makes sense for n > 0 and the limit n → 0 must be done after the inversion. Using the symmetries of the problem , the most general form of the inverse matrix (Γ (2) ) -1 reads

(D.0.3) where the unknown scalar functions ∆ T , ∆ L , ∆ ihA , and ∆ 1,...,5 only depend on p 2 . The inversion is defined by

where the product × involves a sum over Lorentz and replica indices and an integral over the Grassmann variable θ l . The calculation is straightforward. We get, for the gluon sector,

(D.0.5)

Appendix D. Complete propagators

The other components in the (A, ih) sector are obtained from these as

Finally, the components in the superfield sector read

The propagators are obtained by taking the limit n → 0. For instance, the longitudinal gluon propagator is given by

which is Eq. (II.5.3).

Appendix E Superfield and ih sectors

In this Appendix, we consider the propagators of the superfield and ih sectors. We recall the decomposition of the superfireld Eq. (II.4.57), namely

where the primes are to be distinguished from the basic fields c k , ck , ĥk appearing in the non supersymmetric version of the ST action, Eqs. (II.4.48) and (II.4.49). One easily extracts the correlators of the fields λ k , c k , c k , ĥ k from the Λ -Λ correlator. For instance we have that [

According to the definition of the previous section we have

In the n → 0 limit one finds 1

where

gh is the propagator of the replica ghost, as well as for the mixed correlators

Note in particular the indefinite limits Eqs. (E.0.4), (E.0.5) and the trivial one Eq. (E.0.3). These are consequences of the renormalization definitions for the (bare) gauge parameters β 0 and ξ 0 Eq. (II.5.4) and can be related to the non-canonical mass dimension Appendix E. Superfield and ih sectors of the λ k and ĥ k , ih fields which are respectively 0, 2 and 2. For instance, if we consider Γ ihih at tree-level, we have Γ ihih = ξn which trivially vanishes for n → 0. On the other hand, remark that the (renormalized) Grassmann measure gets an explicit n dependence as it reads, in terms of renormalized quantities, θθm 2 /n -1. One can cope with this issue by rescaling the fields with non-canonical dimensions as well as the Grassmann variables. For simplicity we note β = m 2 /n and denote with a tilda the rescaled (renormalized) quantities. We define the rescaled Grassmannian parameters θk = √ βθ, θk = √ β θ such that the Grassmann integration reads, in terms of rescaled parameters,

along with the following identities

Accordingly we define Λk = λk + θc k + c k θ + θ θ ĥ k , (E.0.12)

with Λk = √ βΛ k . A direct comparison with Eq. (E.0.1) shows that λk = βλ k , ĥ k = ĥ

Remark that, in doing so, we do nothing more than absorbing the n dependence that arises when performing the renormalization Eq. (II.5.4) directly into the Feynman rules of the rescaled fields. Equivalently, this amounts to reabsorb part of the n dependence into the bare fields. For instance the Λ -Λ sector of the effective action reads (E.0.17) Note for instance that, at tree-level, Γi hi h(p) = m 2 ξ. Accordingly, we obtain the various ∆χ functions for the rescaled fields appearing in (D.0.3) and perform the n → 0 limit to get the various rescaled propagators. We note the propagators as Gχ = lim n→0 ∆χ .

In particular we have that

while none is divergent anymore.

Appendix F Nonrenormalization theorem for the mass

Here we derive the nonrenormalization theorem (III.5.80) for the neutral color mode by adapting the proof provided in [START_REF] Tissier | An Infrared Safe perturbative approach to Yang-Mills correlators[END_REF] to the LDW gauge. As in Eq. (I.5.3) of Sec. I.5.1, we introduce sources (with periodic boundary conditions) for the various fields and their independent (modified) BRST transformations and we work in the canonical basis (III.5.3)

where, for clarity, we explicitly write the sums over color modes, and where the modified BRST symmetry is given by [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF] sa κ µ = D µ c κ , sc κ = -

We define the effective action Γ as the Legendre transform, with respect to the sources J µ , η, η, M , of the functional W = ln D (a, c, c, h) e -S Ā+S 1 , where S Ā has been defined in Eq. (III.4.6), keeping the sources K and L fixed. It is implicitly assumed here that we a use self-consistent background, which, at vanishing sources, is given by the minimum of the background potential (III.4.18). In the following all quantities are bare ones.

First of all, one performs the shift of the antighost field cκ (x) → cκ (x) + θκ (x). Since it is merely a change of variable the partition function is not changed and one gets

where there is no sum over κ and in the second line we took the limit of vanishing sources. The short-hand notation ∂ λ µ has been defined in Eq. (III.5.6). Differentiating this equation with respect to c λ (y) and taking the Fourier transform, with the convention of Eq. (III.5.5), namely ∂ κ µ → -iP κ µ , leads to

where P = (ω, p). Secondly, performing the shift ih κ → ih κ + ξ κ yields (no sum over κ)

which guarantees that the h sector is not renormalized, just as in the Landau gauge. Taking, in the last equality, one derivative with respect to a λ ν (y) leads, in Fourier space, to δΓ δa λ ν δih κ (ω, p) = -iP -κ ν δ -κ,λ . (F.0.7)

Moreover, the Slavnov-Taylor identity (I.5.6) of Sec. I.5.1 is accordingly adapted to the LDW gauge in a straightforward manner

which, after differentiation with respect to a λ ν (y) and c τ (z), yields, at vanishing sources and in Fourier space,

(F.0.9)

Using Eq. (F.0.7) and contracting with P λ ν , we have

Following our conventions for the self-energies, Eq. (III.5.15), we have that δ 2 Γ/δa λ ν δa κ µ = δ -λκ Γ λ νµ . Furthemore, the general tensorial decomposition Eq. (III.1.4) yields for

where the second line is evaluated at zero Matsubara frequency, p = |p|, and it is understood that r = r min . The discussion cannot be pushed much further for the

Appendix G Background field (in)dependence of the partition function

It is worth mentioning here the discussion put forward in [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF], that investigates the background (in)dependence of the partition function. In particular, it was shown that, at vanishing sources,

where Z[ Ā] is the partition function in presence of an arbitrary background Ā. Hereby, the presence of the mass term softly breaks the exact background field independence of the partition function which is recovered locally for self-consistent backgrounds. We interpret this as an argument to consider self-consistent backgrounds.

On the other hand, the relationship between self-consistent background and the absolute minima of Γ[ Ā] is unclear as the arguments developed in Sec. III.4 relied upon the background independence of the partition function. In fact, the statement that self-consistent backgrounds are absolute minima of Γ[ Ā] has to be milded as follows: we introduce a source J a µ for the fluctuating field ā and define the partition function in presence of the source

where S Ā has been defined in Eq. (III.4.6). Accordingly, we define the usual Legendre transform Γ[a, Ā] (here for the sake of clarity we change our notations from those of the main text and put Ā as an argument of Γ) We find it worth mentioning that the bare mass m 0 comes from the ST gauge-fixing proposal. In particular, we recall that m 2 0 = nβ 0 , where n is the number of replicas and should be ultimately taken to 0. Moreover, in this proposal, the parameter m 0 accounts for the presence of Gribov copies and thus may in principle depend on Ā which would lead to additional terms in Eq. (G.0.1). Following these two remarks, one may thus recover the exact background independence of the partition function. This requires further investigation.

Appendix H Generalization to SU(3) and other groups

The calculations of the one-loop correlators in the LDW gauge for the SU(2) theory can be generalized to the SU(3) case and other groups. Details on the generalization of the present procedure to general groups is given in [START_REF] Reinosa | Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond[END_REF], while, here, we shall focus on the aspects concerning the calculation of the propagators. The main difference with the SU(2) case rises from the fact that, in general, the Cartan subalgebra is of dimension d C . Hence, in the canonical basis, there are d C neutral modes that we note κ = 0 (j) , j = 1, . . . , d C , and accordingly we note t 0 (j) the generators of the Cartan subalgebra. In the canonical basis, we note t α the remaining generators that do not belong to the Cartan subalgebra. One defines the root α by the equation of the root system t 0 (j) , t α = iα j t α , ∀j (H.0.1)

with α = α 1 , . . . , α j . Accordingly, a field ϕ in the adjoint representation decomposes in the canonical basis as

with κ = 0 (j) or κ = α. Furthermore, the action of the covariant background derivative is

where Ā • κ = Āj κ j , j = 1, . . . , d C and a sum over repeated indices is understood. To be more specific, let us take the example of SU(3) whose Cartan subalgebra is of dimension two. The standard Cartan subalgebra directions correspond to the Cartesian directions a = 3, 8 and, accordingly, the two generators of the Cartan subalgebra are chosen as t 3 = 1/2 diag(1, -1, 0) and t 8 = 1/(2 √ 3) diag(1, 1, -2). The six roots corresponds to the six vectors ±α

Appendix H. Generalization to SU [START_REF] Fritzsch | Advantages of the Color Octet Gluon Picture[END_REF] and other groups ±(-1, 0). For instance, we have for κ = +α (1) 1) .

(H.0.4)

The Feynman rules are formally the same as those of the SU(2) theory presented in Sec. III.5.1, but, now, the generalized momentum is defined as

Thus, the calculations of the Feynman diagrams are similar to those performed in Sec. III.5.2, where the main difference lies in the expression of the group coefficient

The self-energies assume the same expressions in terms of the sumintegrals, see Eqs. (III.5.32), (III.5.36), but now, instead of the usual product κr in the SU(2) case, the latters depend on the scalar product κ • r = κ j r j with r j = βg 0 Āj . Finally, the self-energies are to be evaluated for r j = r j,min that minimizes the background field potential of the appropriate group. We mention that, following this procedure the phase transition was studied for SU(3) [START_REF] Reinosa | Deconfinement transition in SU(N ) theories from perturbation theory[END_REF] and was found to be of first order. In the present case, we did not extended the calculation of the propagators to this group. Nevertheless, akin for the SU(2) case, we expect to observe strong signals of the phase transition at the level of the susceptibilities and in particular we expect to observe a discontinuity at the transition temperature since it is a first order phase transition.

Appendix I

Details on the evaluation of the gluon self-energy

The gluon self-energy has three one-loop contributions, Π tad,λ µν , Π gh,λ µν and Π gl,λ µν , which stand respectively for the tadpole diagram, the ghost bubble diagram and the gluon bubble diagram. A direct application of the Feynman rules given in the main text leads to

where, for convenience, we have symmetrized the summand in κ ↔ τ by using that C κλτ is totally symmetric. Evaluating the trace and using

) in the first integral becomes (for this integral symmetrization in κ ↔ τ does not change anything)

The similar factor in the second integral becomes, after symmetrization,

(I.0.3)

Appendix I. Details on the evaluation of the gluon self-energy

For the third integral, we obtain

and for the fourth

(I.0.5) Putting all these pieces together, we arrive at

Sum-integrals

In what follows, we define κrT ≡ κrT . The Matsubara sums of all the elementary integrals defined in the main text can be performed using standard integration contour techniques, see for instance [START_REF] Reinosa | Yang-Mills correlators at finite temperature: A perturbative perspective[END_REF][START_REF] Bellac | Thermal Field Theory[END_REF]. For the tadpole-like sum-integrals, this yields

and

where q = d 3 q (2π) 3 , ε m,q = q 2 + m 2 , and n z = (exp βz -1) -1 is the Bose-Einstein distribution function, which satisfies n -z = -1 -n z . The symbol = means that we disregard vacuum contributions defined as the limit of the above expressions as T → 0 for fixed r. The reason why we can do so is that, as explained in the main text, the vacuum contributions to the self-energies can be very easily obtained from the results of [START_REF] Tissier | Infrared propagators of Yang-Mills theory from perturbation theory[END_REF].

For the bubble-like sum-integrals, we similarly obtain
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