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Aspects of confinement in Yang-Mills theories

Abstract: In this thesis, we investigate the infrared regime of Yang-Mills theories. In
particular, we follow a recently proposed novel gauge-fixing procedure that aims at dealing
with the presence of the so-called Gribov copies. These copies correspond to additional
solutions to the gauge equation that are disregarded in the standard Faddeev-Popov proce-
dure. This novel gauge-fixing approach was first implemented in the Landau gauge, where
the low momentum regime was investigable by means of simple perturbation theory and
the one-loop gluon and ghost propagators were found in good agreement with lattice simu-
lations. In a first part, we extend this proposal to a class of nonlinear covariant gauges (the
Curci-Ferrari-Delbourgo-Jarvis gauges). We prove that these gauges are renormalizable in
four dimensions and we provide explicit expression of the renormalization constants at
one-loop order. Then we compute the various propagators of the theory at one-loop order
with and without renormalization group improvement.
The second part of the thesis concerns the finite temperature case and in particular the
study of the confinement-deconfinement phase transition. We work in the Landau-DeWitt
gauge (a background field extension of the Landau gauge), which allows for an explicit
presence of an order parameter of the phase transition. This gauge is implemented follow-
ing the previous gauge-fixing procedure. In particular it has been shown that the phase
transition can be studied in perturbation theory. Here, we compute at one-loop order the
gluon and ghost propagators (for SU(2) gauge group) and show that they display clear
signals of the phase transition. This is to be put in regards with the results obtained for
the Landau gauge propagators.

Keywords : Yang-Mills theories, gauge-fixing, infrared correlation functions, Gribov am-
biguities, QFT at finite temperatures, deconfinement phase transition



Contents

Introduction v

I Aspects of Yang-Mills correlation functions 1
I.1 Quantum Chromodynamic and the confinement problem . . . . . . . . . 2

I.1.1 The QCD Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . 2
I.1.2 The phenomenon of confinement . . . . . . . . . . . . . . . . . . 3

I.2 Gauge-fixing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
I.2.1 The Faddeev-Popov gauge-fixing procedure . . . . . . . . . . . . 6
I.2.2 Ghost and BRST symmetries of the FP gauge-fixed action . . . . 7
I.2.3 Aspects of Green’s functions . . . . . . . . . . . . . . . . . . . . 8

I.3 The infrared regime of Yang-Mills theories . . . . . . . . . . . . . . . . . 12
I.3.1 Functional methods . . . . . . . . . . . . . . . . . . . . . . . . . 12
I.3.2 The Neuberger problem . . . . . . . . . . . . . . . . . . . . . . . 16

I.4 Beyond the FP gauge-fixing procedure . . . . . . . . . . . . . . . . . . . 17
I.4.1 Gribov ambiguities and Gribov regions . . . . . . . . . . . . . . . 17
I.4.2 The Gribov-Zwanziger approach . . . . . . . . . . . . . . . . . . 20
I.4.3 Gauge-fixed lattice simulations. . . . . . . . . . . . . . . . . . . . 24

I.5 A novel approach to deal with Gribov copies . . . . . . . . . . . . . . . 26
I.5.1 The Curci-Ferrari model . . . . . . . . . . . . . . . . . . . . . . . 27
I.5.2 The Serreau-Tissier proposal . . . . . . . . . . . . . . . . . . . . 28

II Nonlinear covariant gauges without Gribov ambiguities 31
II.1 Gauge-fixing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

II.1.1 Gauge-fixing functional . . . . . . . . . . . . . . . . . . . . . . . 33
II.1.2 Lattice implementation of the CFDJ gauges . . . . . . . . . . . . 35

II.2 The CFDJ gauges in the Serreau-Tissier proposal . . . . . . . . . . . . . 36
II.2.1 The Serreau-Tissier gauge-fixing procedure . . . . . . . . . . . . 37
II.2.2 Field theoretical formulation . . . . . . . . . . . . . . . . . . . . 38

II.3 The ST action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
II.3.1 Supersymmetric formulation of the CF action . . . . . . . . . . . 42
II.3.2 Renormalizability of the ST action . . . . . . . . . . . . . . . . . 44

II.4 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
II.4.1 Feynman rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
II.4.2 One-loop two-point vertex functions . . . . . . . . . . . . . . . . 56
II.4.3 One-loop renormalization . . . . . . . . . . . . . . . . . . . . . . 59
II.4.4 Non-supersymmetric formalism . . . . . . . . . . . . . . . . . . . 62

II.5 One-loop propagators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
II.5.1 Renormalization of the finite parts . . . . . . . . . . . . . . . . . 66
II.5.2 Infrared-safe scheme . . . . . . . . . . . . . . . . . . . . . . . . . 70
II.5.3 Zero-momentum renormalization scheme . . . . . . . . . . . . . . 72
II.5.4 Renormalization of the coupling constant . . . . . . . . . . . . . 72

i



ii CONTENTS

II.6 One-loop results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
II.6.1 Gluon and ghost sectors . . . . . . . . . . . . . . . . . . . . . . . 75
II.6.2 Replica sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

II.7 Renormalization-group analysis . . . . . . . . . . . . . . . . . . . . . . . 81
II.7.1 UV behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
II.7.2 Renormalization group flows . . . . . . . . . . . . . . . . . . . . 82
II.7.3 RG-improved ghost and gluon propagators . . . . . . . . . . . . 86
II.7.4 Correlation among Gribov copies . . . . . . . . . . . . . . . . . . 89

II.8 Summary and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 90

IIIYang-Mills theories at finite temperature 93
III.1 Yang-Mills theories at finite temperature: the framework . . . . . . . . . 95
III.2 The confinement-deconfinement phase transition . . . . . . . . . . . . . 97

III.2.1 The Polyakov loop as an order parameter . . . . . . . . . . . . . 97
III.2.2 Spontaneous breaking of the center symmetry . . . . . . . . . . 97

III.3 Landau gauge correlation functions and the phase transition . . . . . . . 98
III.3.1 The lattice results . . . . . . . . . . . . . . . . . . . . . . . . . . 98
III.3.2 Perturbative results in the massive Landau gauge . . . . . . . . . 101

III.4 The (massive) Landau-DeWitt gauge . . . . . . . . . . . . . . . . . . . . 103
III.4.1 The general set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 104
III.4.2 The background potential in SU(2) . . . . . . . . . . . . . . . . . 106
III.4.3 The background potential at two-loop order and the phase tran-

sition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
III.5 Propagators at one-loop order in the LDW gauge . . . . . . . . . . . . . 111

III.5.1 Canonical basis and Feynman rules . . . . . . . . . . . . . . . . . 111
III.5.2 One-loop calculations . . . . . . . . . . . . . . . . . . . . . . . . 115
III.5.3 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
III.5.4 Results for the SU(2) theory . . . . . . . . . . . . . . . . . . . . 121

III.6 RG improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
III.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Conclusion and perspectives 139

A Dyson-Schwinger equation for the ghost propagator 143

B Miscellaneous identities 145
B.1 Identities among renormalization constants . . . . . . . . . . . . . . . . 145
B.2 Slavnov-Taylor identities in the CF model . . . . . . . . . . . . . . . . . 148

C One-loop expressions of the Feynman diagrams 149
C.1 Feynman rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
C.2 Expression of the one-loop Feynman diagrams . . . . . . . . . . . . . . . 150

C.2.1 Gluon sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.2.2 Ghost sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C.2.3 ih− ih and A− ih sectors . . . . . . . . . . . . . . . . . . . . . . 152
C.2.4 Λ− Λ sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
C.2.5 A− Λ sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



CONTENTS iii

D Complete propagators 155

E Superfield and ih sectors 157

F Nonrenormalization theorem for the mass 161

G Background field (in)dependence of the partition function 165

H Generalization to SU(3) and other groups 167

I Details on the evaluation of the gluon self-energy 169

J Sum-integrals 175

K Gluon susceptibilities 177
K.0.6 Neutral sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
K.0.7 Charged sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

List of Figures 181



iv CONTENTS



Introduction

The strong interaction is one of the four fundamental interactions in Nature (along
with the electromagnetic, weak and gravitational ones). It is responsible for the cohe-
sion of atomic nuclei in spite of the presence of the repulsive electromagnetic interaction
between charged protons. The particles submitted to the strong interaction are called
hadrons, among which, on top of the protons, are for instance the neutrons and the
pions. The dynamics of hadrons have been investigated for decades both theoretically
and experimentally, leading to the quark model first proposed by Gell-Mann and Zweig
in 1964 [1, 2]. The quark model states that hadrons are not the most fundamental par-
ticles but are formed of spin 1/2 particles, called the quarks. The existence of quarks
was confirmed experimentally and they were found in six different types, called flavors.
Later on, Gell-Mann and Fritszch [3, 4] proposed the existence of an underlying SU(3)
symmetry group, called the color group, which, accordingly, gives to the quarks extra
quantum numbers. Eventually, the color group was taken as a gauge group and the
theory was called quantum chromodynamics (QCD). Nowadays, this is the admitted
theory to describe the strong interaction at the microscopic level. The gauge bosons,
called gluons, are the mediators of the strong interaction and have a similar role to
photons in quantum electrodynamic. Although at high energies the colored quarks and
gluons are the relevant degrees of freedom, the physical spectrum of QCD is observed
to be made only of colorless hadrons and is free from quarks and gluons. This is known
as the phenomenon of confinement. In particular, for QCD to be a fundamental theory
(as it is believed), the confinement shall naturally emerge from the microscopic action.
However, one of the main obstacles one has to face is the fact that the energy regime
of QCD that is relevant for confinement is often called nonperturbative and one has to
resort to more sophisticated approches than perturbation theory (which is the simplest
tool of investigation in quantum field theory (QFT)).

This is a consequence of the pure gauge sector of QCD (part of the QCD action
that depends only on the gauge bosons). Indeed, QCD is a non-Abelian gauge theory
and, at the difference of quantum electrodynamic, gluons present self-interactions.
These self-interactions dramatically change the dynamics of the fundamental degrees
of freedom, which, for instance, become more weakly coupled as the energy increases:
the so-called asymptotic freedom property discovered by Politzer, Gross and Wilzeck
[5, 6]. However, as one goes at lower energies, standard perturbation theory predicts
that the coupling constant increases without bound and eventually diverges at a finite
energy scale (Landau pole) ΛQCD (which is typically of the order of the proton mass).
The divergence of the coupling constant is usually considered as being an artifact of
perturbation theory since the latter cannot be trusted at finite but large coupling.

v
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This feature along with the property of asymptotic freedom are believed to be the two
sides of the same coin and are consequences of the pure gauge dynamics. Because
of this origin, it is believed that most of the features of QCD, and in particular the
mechanism of confinement, are generic to non-Abelian gauge theories and can thus
be understood by studying their archetype, namely the Yang-Mills theories [7] that
consist in the pure gauge sector of QCD.

Nonperturbative numerical (lattice) Monte-Carlo simulations, proposed by Wilson
[8] and initiated by Creutz [9], have been extensively used in order to investigate the
infrared physics of the strong interactions. The latter is now fairly well described by
lattice simulations that are commonly used to determine for instance the spectrum of
particles, or important matrix elements entering in the evaluation of scattering ampli-
tudes or decay rates (see e.g. [10]). Although they have provided definite confirmation
that confinement does occur [9], there is still no fully satisfactory description nor ex-
planation of the underlying mechanisms starting from first principles, despite the many
proposals that have been put forward, see e.g. [11, 12] for a review.

Another lead may lie at finite temperature, which has been the subject of intense
studies for the past three decades. QCD is believed to admit a very rich phase diagram
whose study is an important theoretical challenge with numerous phenomenological
implications for astrophysics, early Universe cosmology or heavy-ion collision experi-
ments. In particular, along the temperature axis, the theory presents a confinement-
deconfinement phase transition, where, at high temperatures, hadrons turn into a
plasma of quarks and gluons. Thanks to the property of asymptotic freedom, the high
temperature regime can be investigated by means of perturbative development sup-
plemented by resummation techniques, the so-called hard thermal loops [13, 14, 15].
Within this approach, the high temperature properties of thermodynamic quantities
of the deconfined plasma, such as the entropy, can be reached, though the physics
of the phase transition remain inaccessible [16, 17, 18]. Again, the presence of the
Landau pole prevents the use of standard perturbation theory in the low temperature
confining phase as well as in the vicinity of the transition, which are widely accepted
as being nonperturbative. Owing to its achievements in the vacuum, one naturally
resorts to lattice simulations, which, after several decades of studies [19, 20, 21], have
clearly established the existence of a phase transition in pure SU(N) Yang-Mills the-
ories. The latter is related to the nonvanishing expectation value that the Polyakov
loop (the order parameter) [22] develops in the high temperature phase, which, in turn,
is associated with the spontaneous breaking of a global symmetry, called the center
symmetry of the gauge group. Eventually, these studies were extended to the case
of QCD where a crossover was found [23, 24]. On top of its inherent interest, the
confinement-deconfinement phase transition can be viewed as a great opportunity for
the search of the mechanisms at the origin of confinement. Indeed, the passage from
the deconfined to the confined phase shall highlight some important features of the
dynamics responsible of the phenomenon.

Nevertheless, the phase diagram along the chemical potential axis is much less un-
derstood because, in particular, lattice simulations suffer from a severe sign problem
[25, 26]. Although, great efforts are made in order to circumvent the sign problem on
the lattice [25, 27, 28], so far one has to resort to analytical/continuum approaches in
which the sign problem, though not completely absent, is less severe. More generally,
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one of the drawbacks of numerical simulations is their "black-box" character. Indeed,
although they provide exact results starting from the microscopic theory, they hardly
allow one to access the essential ingredients that actually lead to these results. To
tackle this question, one can rely upon analytical approaches, which, although they
are approximate in general, are more suited to develop/bring explanations of the ob-
served phenomenon. Among others, the ones that were the most used for the study of
the infrared regime of Yang-Mills theories, as well as for the confinement-deconfinement
phase transition, are the nonperturbative functional methods based either on trunca-
tions of Dyson-Schwinger equations (DSEs), or the functional renormalization group
(FRG) [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. In particular, the FRG has been
shown to correctly reproduce the phase diagram of Yang-Mills theories with transition
temperatures in agreement with lattice results [33, 35].

Such approaches, as most of the continuum ones, use, as basic building blocks,
the Green’s functions (correlation functions) of the elementary fields of the theory.
These quantities are not gauge invariant and require one to fix the gauge that amounts
to choose one gauge field configuration that stands as a representative among each
set of physically equivalent configurations. The standard manner to fix the gauge in
the continuum is to follow the Faddeev-Popov gauge-fixing procedure [40], which, in
particular, introduces auxiliary fields: the so-called Faddeev-Popov ghosts. Working
directly on the Green’s functions yields an additional difficulty since now the problem
becomes specific to the gauge under consideration. In particular, this renders compar-
isons between different approaches more intricate since it is mandatory to be certain
that all the results are derived in the same gauge (which can be a not so trivial task
once approximations are made or when comparing numerical to analytical approches).
In continuum methods, comparisons with other approaches, and especially with lat-
tice simulations, are of topical importance. Indeed, the nonperturbative DSEs or FRG
equations cannot be solved exactly, but require one to make additional approximations.
Hence, in order to trust such approaches, it is necessary to quantify the effects of the
employed approximation schemes. A general criticism such nonperturbative methods
have to face is that, even when well motivated, approximations are hard to check ex-
plicitly and it is difficult to compute corrections to the obtained results. Hereby, it is
desirable to test them against ab initio methods. These are provided by gauge-fixed
lattice simulations that aim at the direct calculation of the Green’s function both at
zero and finite temperature [41, 42, 43, 41, 44, 45, 46]. In the context of correla-
tion functions, lattice simulations are the analogous of the experiments, and provide
an important benchmark for continuum approaches. However, the implementation of
lattice gauge-fixing procedures is far from being a trivial task. This is particularly
true for covariant gauges (which are the most convenient for continuum approaches)
because imposing the gauge condition amounts to solve a large set of coupled nonlin-
ear differential equations. More severely, Yang-Mills actions that are gauge-fixed à la
Faddeev-Popov cannot be directly implemented on the lattice since averages of gauge-
invariant quantities are of the indefinite 0/0 form. This is known as the Neuberger zero
problem [47, 48]. In this regard, the Landau gauge stands as a peculiar case. Indeed,
the covariant Landau gauge condition can be formulated as an extremization procedure
of an auxiliary functional. Thereby, using powerful minimization algorithms one can
accordingly fix the gauge on the lattice in a different gauge-fixing procedure than the
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Faddeev-Popov one and, in turn, the Neuberger problem is avoided [49, 50, 51, 52].
More generally, beyond the fact that Green’s functions are at the basis of con-

tinuum approaches, they constitute the basic building blocks of any QFT since they
contain all the information of the theory. Hence, the fundamental mechanisms at the
origin of confinement shall be encoded into them. Their study in the Landau gauge has
received even more attention since the seminal work of Kugo and Ojima [53]. Indeed,
in the Landau gauge, Kugo and Ojima were able to derive a consistent confinement
scenario based on the deep infrared behavior of the ghost and gluon propagators. This
is known as the so-called scaling solution, which, in Euclidean space, is characterized
by a divergent zero-momentum ghost dressing function (the ghost propagator times
its momentum squared). Hereby, their proposal motivated the direct calculation of
the correlation functions in the deep infrared regime to see whether or not the system
realizes the scaling solution. Although, in the Landau gauge, the scaling solution is
found consistent with both the DSEs and the FRG, gauge-fixed lattice simulations
have shown that it is actually not realized. Instead, the Landau gauge Yang-Mills
correlation functions follow the decoupling solution, where, both the ghost dressing
function and the gluon propagator remain finite at zero momentum. Although this
suggests a massive behavior for the gluons, it has been well established that the asso-
ciated Källen-Lhemann spectral function is not definite positive and, in turn, gluons
cannot be interpreted as stable massive particles, which is consistent with confinement
[54, 55]. Later on, the decoupling solution was also proved to be consistent with DSEs
and FRG equations, though it is not possible to discard the scaling from the decoupling
solution in an internal way within these approaches [56, 57, 58, 59, 60, 43, 61, 62].

All in all, these results tend to show that our understanding of the infrared behav-
ior of the correlation functions, though they constitute the basic building blocks of the
theory, is far from being complete. One possible missing ingredient could be nontrivial
effects of the gauge-fixing procedure itself that are disregarded by the Fadeev-Popov
construction. Indeed, in his seminal work, Gribov showed that, in the case of non-
Abelian gauge theories, the solution of the gauge condition is not unique [63]. Instead,
there exists an infinite discrete set of solutions, related to one another by gauge trans-
formations, which are called Gribov copies. These copies are not taken into account
in the standard Faddeev-Popov procedure. In this case, Gribov copies are shown to
give degenerate contributions with alternating signs to the partition function, which
eventually cancel out and lead to the Neuberger problem. Although they are believed
to be irrelevant at high energies, their presence might dramatically change the infrared
behavior of the correlation functions. Gribov copies are consistently dealt with in
gauge-fixed lattice simulation, where the algorithms used to fix the gauge actually se-
lect a unique copy. However, taking into account these copies in analytical approaches
is a fundamental difficulty since it is not known how to build a local gauge-fixed action
free of them [64]. This problem was faced by Gribov and later on by Zwanziger in the
Landau gauge, where they proposed to restrict the path-integral used in the calculation
of the correlation functions to a particular subspace of the gauge field configuration
space [63, 65]. In doing so, the number of Gribov copies decreases considerably though
several are still present in the gauge-fixed theory. This approach is called the Gribov-
Zwanziger scenario and predicts that the gluon and ghost correlation functions follow
the scaling solution. The Gribov-Zwanziger scenario has been extended to what is
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known as the refined Gribov-Zwanziger scenario [66], where the presence of dimension
two condensates is taken into account. In particular, in this last case, one obtains the
decoupling solution observed in gauge-fixed lattice simulations. This suggests that, at
least in the Landau gauge, Gribov copies are a key ingredient of the infrared dynamics
of the correlation functions. Nevertheless, the Landau gauge is only one representative
of the covariant gauges and it displays additional symmetries. To gain better insights
into the importance of Gribov copies it is therefore desirable to investigate their ef-
fects on the correlation functions in other gauges. Only very recently, the covariant
linear gauges were studied in lattice simulations [67, 68, 69, 70, 71] and in the (refined)
Gribov-Zwanziger proposal (as well as the nonlinear Curci-Ferrari gauges for this latter
case) [72, 73].

Recently, a novel gauge-fixing procedure that aims at taking into account the Gri-
bov copies has been put forward by Serreau and Tissier in [74] in the Landau gauge.
The central idea consists in dealing with the Gribov copies by averaging over them
with a (pseudo) nonuniform statistical weight such that their degeneracy is lifted and
the Neuberger problem is avoided. To do so, averages of gauge invariant quantities
are defined by a two-step averaging procedure. The first step consists in the (pseudo)
nonuniform average over the Gribov copies of a given gauge orbit, while, in the second
step, an average over the gauge field configurations with the Yang-Mills action is per-
formed. This results in a genuine gauge-fixing procedure that can be cast under the
form of a local field theory by means of the method of replica [75] borrowed from the
field of disordered systems in statistical physics. The resulting local action is renormal-
izable in four space-time dimensions. For what concerns the ghost and gluon sectors,
in the Landau gauge, the procedure boils down to have an effective gluon mass. In par-
ticular, the gauge-fixed theory is (perturbatively) equivalent to the Landau limit of the
Curci-Ferrari model [76, 77]. This has the advantage that, under a suitable choice of
renormalization conditions, infrared-safe renormalization group trajectories exist (i.e.
without a Landau pole) and the deep infrared regime can be probed perturbatively if
the coupling constant remains small enough [78, 79]. In particular, one-loop calcula-
tions of the two- and three-point correlation functions show very good agreement with
lattice data [79, 80, 81, 82]. This shows that (in the vacuum and in the Landau gauge)
most of the nonperturbative dynamics are accurately captured by the presence of such
an effective gluon mass. These works constitute the underlying ground of the studies
to be presented in this thesis.

The general study of the Landau gauge Yang-Mills correlation functions has been
naturally extended at finite temperature in the context of continuum methods [83,
36, 37, 38, 33, 32, 35, 34] as well as in gauge-fixed lattice simulations [84, 85, 86,
87, 88, 89, 90, 91, 46, 92]. As emphasized above, the basic correlation functions are
the building blocks of the continuum methods relevant e.g. to the study of the QCD
phase diagram. Although the first results obtained from lattice simulations were quite
controversial due to the large systematic errors, recent large volume simulations show
that, disappointingly, the Landau gauge correlation functions are rather insensitive
to the phase transition [90]. Hereby, the Landau gauge does not seem to be the
best candidate to study the effects of the deconfinement phase transition by means of
approximate methods. In particular, in this gauge, the order parameter of the phase
transition does not enter directly into the definition/calculation of the gluon and ghost
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propagators, which may explain their poor sensitivity to the phase transition. Recently,
it has been put forward in [33, 35, 34] that one can efficiently incorporate the order
parameter of the phase transition directly into the microscopic gauge-fixed action by
means of background field methods. This eventually amounts to work in a background
field extension of the Landau gauge, known as the Landau-DeWitt gauge, where, in
particular, the phase transition was correctly described in the framework of the FRG
[33, 35, 34]. This background field gauge approach, has been extended in the context of
the Serreau-Tissier gauge-fixing proposal in Yang-Mills theories at finite temperature
[93, 94, 95, 96] and at finite chemical potential for heavy quarks [97], where, by means
of standard perturbation theory, the phase structure was correctly reproduced.

In this thesis, we study various aspects of Yang-Mills theories that are gauge-fixed
by the Serreau-Tissier procedure both in the vacuum [98, 99] and at finite temperature
[96]. In Chapter I, by starting with the physical problem of confinement in QCD,
we review what appears to us to be the main motivations for studying Yang-Mills
correlation functions. In particular, in the Landau gauge, we highlight the impor-
tance of the effects of Gribov copies on the dynamics of the correlation functions both
in lattice simulations and in the continuum through the (refined) Gribov-Zwanziger
proposal [63, 65, 66]. As a complementary approach of the latter, we introduce the
Serreau-Tissier gauge-fixing proposal and review its main results obtained in the Lan-
dau gauge, along the lines of [78, 79, 80, 81, 82]. Then, in Chapter II, we present
our works realized in the vacuum. We propose a one-parameter family of nonlinear
covariant gauges that can be formulated as an extremization procedure that may be
amenable to lattice simulations. When the Gribov ambiguities can be ignored, these
gauges reduce to the Curci-Ferrari-Delbourgo-Jarvis gauges [77, 100]. We further pro-
pose, following the Serreau-Tissier gauge-fixing procedure, a continuum formulation
in terms of a local action which is free of Gribov ambiguities and avoids the Neu-
berger zero problem of the standard Faddeev-Popov construction. We show that the
proposed gauge-fixed action is perturbatively renormalizable in four dimensions and
we provide explicit expressions of the renormalization factors at one-loop order. We
further compute the various propagators of the theory at one-loop order and we study
their momentum dependence down to the deep infrared regime, with and without
renormalization-group improvement. In particular, we show that the theory admits
infrared-safe renormalization-group trajectories with no Landau pole. Both the gluon
and the ghost behave as massive fields at low energy, and the gluon propagator is
transverse even away from the Landau gauge limit. We pinpoint the specific effects
arising from our treatment of Gribov copies in the gluon and ghost sectors. Finally,
in Chapter III, we consider the finite temperature case. After presenting the main
features of the confinement-deconfinement phase transition, we review the results ob-
tained in the Landau gauge for the basic gluon and ghost propagators from both lattice
simulations [101, 91, 46, 92] and the Curci-Ferrari model [83]. As emphasized above,
the poor sensitivity of the correlators to the phase transition leads to consider the
Landau-DeWitt gauge where a nontrivial background field value (that stands as an or-
der parameter for the phase transition) explicitly enters in the microscopic action. We
expose the main consequences of the presence of a nonvanishing background field and
present our works that consist in computing at one-loop order the finite temperature
gluon and ghost propagators [96]. We show that, in the Landau-DeWitt gauge, these
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display characteristic effects at the phase transition.
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Chapter I

Aspects of Yang-Mills correlation func-
tions

The main objective of this thesis consists in studying the infrared (IR) behavior of
the correlation functions in Yang-Mills (YM) theories [7]. First of all, in this chapter,
we would like to motivate our approach and the interests of our work presented in
detail in the following chapters. To do so, we propose to follow step by step what we
consider to be a red wire, starting with the physical issue of confinement in Quantum
Chromodynamic (QCD) to finish with the study of YM correlation functions in the
Serreau-Tissier proposal [74] presented in Sec. I.5.2. Obviously, we do not pretend to
present an exhaustive overview of the approaches and the results related to the study
of confinement and YM correlation functions, this is way beyond the scope of this
thesis. Rather, we choose to present what appears to us as the main ingredients upon
which our work relies, how they emerge, and influence, the dynamics of YM theories
and how they can be related to the issue of confinement in QCD.

In this spirit, we start in Sec. I.1 by introducing the QCD Lagrangian and YM
theories as well as some aspects of confinement. An important result is provided by
numerical Monte Carlo simulations [10], which have shown that confinement does oc-
cur with the YM Lagrangian as sole input. This motivates to investigate what are the
fundamental mechanisms from which confinement originates. To do so, one can resort
on continuum methods which, however, are in general not based directly on phys-
ical observables but instead rely upon gauge-dependent Green’s functions. Hereby,
one needs to fix the gauge in order to access such gauge-dependent quantities. This
amounts to choose one gauge field configuration that stands as a representative among
each set of physically equivalent configurations. We are mostly interested in the co-
variant gauges, and in particular in the Landau gauge, which can be investigated both
numerically and analytically. Thus, in Sec. I.2.1, we review the standard Faddev-
Popov gauge-fixing procedure [40] employed in usual perturbative approaches. Then,
in Sec. I.2.3, we present possible scenarios that directly connect the behavior of the
YM correlation functions to confinement. In particular, we review the key elements of
the Kugo-Ojima (KO) scenario [53, 102] based on the so-called Becchi-Rouet-Stora-
Tyutin (BRST) symmetry [103, 104, 105]. The KO confinement scenario demands a
peculiar behavior of the correlation functions in the deep IR, where the FP gauge-fixed

1
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YM theory cannot be investigated perturbatively and one has to rely upon nonpertur-
bative techniques. Among the continuum ones, the functional renormalization group
(FRG) [106] and Dyson-Schwinger equations (DSEs) [107, 108] are briefly introduced
in Sec. I.3.1. Their applications to the Landau gauge have shown that two solutions
for the YM correlation functions are possible in this gauge. To discard one or another,
one is led to proceed to numerical simulations. However, lattice simulations cannot
be applied to the FP Lagrangian because of the Neuberger problem [47, 48], discussed
in Sec. I.3.2, which is a consequence of the gauge-fixing procedure a la FP. Indeed,
the FP procedure neglects additional solutions of the gauge equation as first pointed
out by Gribov [63]. The existence of Gribov copies and the Gribov-Zwanziger proposal
[63, 109, 110, 111] that aims at dealing with them are presented in Sec. I.4. This allows
us to stress the effects of Gribov copies on correlation functions, and thus the impor-
tance of taking them into account. These results are confirmed in Sec. I.4.3 where we
discuss the gauge-fixed lattice simulations which provide a complete way of fixing the
gauge. Finally, we are led to present the Serreau-Tissier proposal [74] that consists
in a novel approach that consistently deals with the Gribov copies. We emphasize
the advantages and the main results of this proposal in Sec. I.5, which stands as the
starting point of this thesis.

I.1 Quantum Chromodynamic and the confinement problem

I.1.1 The QCD Lagrangian

Non-Abelian gauge theories are characterized by a non-Abelian gauge group G. In
the following we only consider the SU(N) groups. We note by ta the N2−1 generators
of SU(N) in the fundamental representation, which are N×N matrices that we choose
Hermitians. Our normalization for the generators is such that tr

(
tatb

)
= δab

2 ,
[
ta, tb

]
=

ifabctc, with fabc the usual totally antisymmetric SU(N) structure constant. For later
convenience we also introduce the totally symmetric SU(N) tensor dabc such that

tatb = δab

2N 1 + ifabc + dabc

2 tc. (I.1.1)

Quarks and gluons are represented by local fields in different representations of the
gauge group. As in QED, matter fields (here the quarks) are associated with Dirac
fields (noted Ψ in the following) in the fundamental representation, while the gauge
field Aµ (here the gluons) is in the adjoint representation. Our conventions are such
that, fields in the adjoint representation that are written without explicit color index
are understood to be contracted with the SU(N) generators: Aµ = Aaµt

a and are thus
N × N matrices. The QCD Lagrangian is defined in d-dimensional Euclidean space-
time as (we use everywhere the convention that repeated Lorentz and color indices are
summed over)

LQCD = LYM +
Nf∑
f=1

Ψ̄f [γµ (∂µ − ig0Aµ) +mf ] Ψf , (I.1.2)
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where LYM is the pure gauge or YM sector, f , Nf and mf are respectively the flavor
index, the number of flavors, and the associated quark mass, g0 is the coupling constant
and γµ are the Dirac matrices (here in Euclidean space). At the difference of QED, in
the case of non-Abelian gauge theories, the pure gauge sector is nontrivial due to the
presence of nonvanishing structure constant:

LYM = 1
4F

a
µνF

a
µν ,

F aµν = ∂µA
a
ν − ∂νAaµ + g0f

abcAbµA
c
ν .

(I.1.3)

We work in Euclidean space throughout this manuscript. This amounts to perform at
the very beginning a Wick rotation from the Minkowskian theory. In general, such an
analytic continuation is not trivial because of the complex analytic structure of the
various quantities present in the theory (e.g. presence of poles and branch cuts). Nev-
ertheless, we shall directly work in the Euclidean version (imaginary time) and wonder
about such analytical continuations only when looking for real-time quantities. As
we shall see, the underlying motivation is that the nonperturbative lattice simulations
are performed in Euclidean space. The QCD Lagrangian, Eq. (I.1.2), with six flavors
(Nf = 6) and SU(3) gauge group is the case relevant for the physical description of the
strong interactions. It is invariant under the gauge transformations, which correspond
to (local) transformations of the fields Ψ and A under the action of an element of the
gauge group SU(N){

Aµ(x) → AUµ (x) = U (x)Aµ(x)U † (x) + i
g0
U (x) ∂µU † (x) ,

Ψ(x) → U(x)Ψ(x) , (I.1.4)

with U(x) a local element of SU(N). By Noether theorem, the peculiar case of global
transformations (color transformations) induces the existence of a conserved global
charge Qc, namely the color charge.

It is now widely believed that QCD is the correct fundamental description of the
strong interaction and is part of the Standard Model of Particles. However, it presents
a long-standing unanswered question: why do we only observe hadrons (colorless bound
states) while the fundamental degrees of freedom of QCD are the colored quarks and
gluons? The confinement mechanism is invoked to cope with this issue.

I.1.2 The phenomenon of confinement

The description of the confinement mechanism should explain how these two asymp-
totic limits of the strong interactions are related to one another, namely, the ultraviolet
(UV) regime accurately described in terms of the colored quarks and gluons, and the
infrared (IR) regime where only massive colorless hadrons exist. Loosely speaking, the
confinement mechanism can be defined as the fact that free observable particles must
be colorless with the (gluonic) massless excitations removed from the physical spec-
trum (existence of a mass gap). However, a rigorous definition of confinement is still
under discussion [11, 12]. For instance, a Higgs-like phase would satisfy the previous
definition of a confining theory [11, 112]. A generally accepted sufficient criterion for
signaling confinement is the area-law falloff for Wilson loops in the case where the
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quarks are statics and of infinitely heavy mass (quenched approximation) [8]. In this
case, the Wilson loop is defined as [8]

WWilson[C] = tr P exp
{∮

C
dxµA

a
µ(x)ta

}
, (I.1.5)

where P is the path ordering operator and C ≡ C(R, T ) is a rectangular closed contour
of extent R and T respectively in the spatial and temporal directions. Note that this
is a gauge-invariant observable. It is related to the static quark potential as

Vquark(R) = − lim
T→∞

ln 〈WWilson[C]〉
T

. (I.1.6)

Hereby, the area-law falloff implies that the potential energy of a static quark-antiquark
pair grows linearly with the spatial pair separation [12]. According to the definition
(I.1.6), for what concerns confinement, one is thus interested to access the large time
behavior of the Wilson loop, or more generally, the large distance/low energy properties
of the theory. Using the standard perturbative tools of QFT one access easily the UV
behavior of the theory thanks to the so-called asymptotic freedom property [113].
On the contrary, perturbation theory predicts that, in the IR, the coupling constant
increases without bounds and eventually hits a Landau pole (diverges at finite energy).
This may be viewed as a first insight of the confinement phenomenon: the fundamentals
degrees of freedom become more and more strongly coupled and eventually cease being
the physically relevant ones. It follows that the IR regime is strongly coupled and
requires to account for nonperturbative effects, which, in turns, make its investigation
a difficult problem that has prevented for more than forty years a fully consistent
description of confinement.

UV asymptotic freedom and Landau pole in the IR are thought to be the two sides
of the same coin and are consequences of the pure gauge sector. For this reason (among
others) it is widely believed that the phenomenon of confinement is generated in the
YM sector of QCD. A reliable nonperturbative tool for its investigation is provided by
numerical Monte Carlo simulations [9, 114]. They were first proposed by Wilson [8] in
order to provide a gauge-invariant, first principle method of computation. One uses a
finite space-time discretized into an hyper-cubic lattice of finite lattice spacing noted a
in the following. The key idea of Wilson is to introduce the gauge link variablesWµ(x)
defined as [8], 1

Wµ(x) = exp {−ig0aAµ (x)} , (I.1.7)
whose transformation under the action of the gauge group is simpler than that of Aµ.
One has

WU
µ (x) = U(x)Wµ(x)U †(x+ aµ̂) , (I.1.8)

where µ̂ is a unit vector pointing in the space-time direction µ. Accordingly, the
discretized YM action writes [8]

Slatt.[W ] = 2N
g2

0

∑
x

∑
µ,ν

(
1− 1

N
Re
[
tr Wµ(x)Wν(x+ aµ̂)W †µ(x+ aν̂)W †ν (x)

])
. (I.1.9)

1More precisely, the gauge link is defined as the parallel transport between two adjacent space-time
points: Wµ(x) = P exp

{
ig
∫ 1

0 dtAµ(x+ atµ̂)
}
, which is equivalent to the definitions (I.1.7) and (I.1.8)

in the continuum limit (a→ 0).
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In order to compute the expectation value of an observableO, one generates a collection
of Nlinks gauge link configurations according to the distribution exp(−Slatt.[W ]) and
performs a statistical average:

〈O〉 ' 1
Nlinks

Nlinks∑
l=1
O
[
W (l)
µ

]
, (I.1.10)

where the approximate equality becomes exact in the limit of infinite number of gauge
links. In particular, this can be done to access the Wilson loop, Eq. (I.1.5), which is
found to display the area-law falloff [9].2 However, although this result proves that
confinement occurs in YM theories, it does not explain neither why nor how. Possible
confinement mechanisms were proposed and investigated numerically, such as center-
vortex dominance [11] and others; see [12] for a review.

To gain more insights into the basic mechanisms underlying the confinement, one
possible way is to investigate whether relevant information is encoded in the correlation
functions of the basic (gluon) fields.

I.2 Gauge-fixing procedure
In the present manuscript we intend to investigate the YM correlation functions by

means of a particular continuum approach. It is well known that correlation functions
cannot be directly accessed in gauge theories but require one to fix the gauge first.
Moreover, the quadratic part of LYM is not invertible, preventing the definition of the
tree-level propagators. Equivalently, the conjugate momentum of Aµ, Πµ = F0µ is zero
for the temporal mode µ = 0 preventing the use of canonical quantization. These are
standard features of gauge theories and are consequences of the presence of degenerate
field configurations: two field configurations Aµ and AUµ that are related by a gauge
transformation are physically equivalent. Indeed, in the functional integral formalism,
the expectation value of a gauge-invariant observable Oinv is defined by

〈Oinv[A]〉 =
∫
DAOinv[A] e−SYM[A]∫
DAe−SYM[A] . (I.2.1)

Obviously, by gauge invariance, two field configurations Aµ and AUµ that are re-
lated by a gauge transformation contribute the same to both the numerator and
the denominator of the right-hand side of Eq. (I.2.1). We define the gauge orbit
{Aµ}U =

{
A
′
µ

∣∣∣A′Uµ = Aµ
}

as the set of field configurations that are all related to
one another by gauge transformations. One tries to select only one representative per
gauge orbit by imposing a gauge condition (an additional constraint), for instance the
Landau gauge condition

∂µAµ = 0 . (I.2.2)

This is schematically pictured on Fig. I.1, where the gauge condition (blue dashed line)
intersects once and only once each gauge orbits (plain black lines). A gauge condition

2Let us mention that numerical simulations have also computed (part of) the hadronic spectrum
starting with the QCD Lagrangian [115].
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A

Equivalent configs AU
µ

Field configs satisfying
gauge cond. (∂µAU

µ = 0)

Figure I.1: Gauge-fixing procedure. Black lines represent different gauge orbits.
Dashed blue line represents the gauge condition.

that selects a unique representative per gauge orbit is called an ideal gauge condition.
The choice of the gauge is arbitrary since gauge-invariant physical observables are

insensitive to this choice. Continuum approaches are more conveniently formulated in
covariant gauges, and we shall focus our discussion on this case. The Landau gauge
has received a lot of attention, also because it displays additional interesting properties
as for instance a purely transverse gluon propagator, or the nonrenormalization of
the ghost-gluon vertex [116, 117]. Moreover, as we shall see in Sec. I.4, the Landau
gauge can be formulated as an extremization procedure of an external functional. This
peculiar property is of utmost importance when discussing its implementation on the
lattice [see Sec. I.4.3] or how to deal with the presence of Gribov copies [63]; see
Secs. I.4.1, I.4.2 and I.5.

I.2.1 The Faddeev-Popov gauge-fixing procedure

The strategy proposed by Faddeev and Popov (FP) to restrict, in the path-integrals
of (I.2.1), the integration over the field configurations that satisfy the gauge equation,
is to insert unity written in the form [118]

1 =
∫
DUδ

(
f
[
AU
])

DetF
[
AU
]
, (I.2.3)

with DU the Haar measure on the gauge group, f [A] = 0 is the gauge condition, here
taken in the Landau gauge fa = ∂µA

a
µ, and DetF

[
AU
]
is the associated Jacobian.

Writing λa(x) such that U(x) = exp(ig0λ
a(x)ta), one defines the so-called FP operator

[118]

Fab [A] (x, y) = δfa[Aλ](x)
δλb(y)

∣∣∣∣∣
λ=0

, (I.2.4)
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where we noted Aλ the gauge-transformed gauge field by the gauge transformation
U(x) = exp(ig0λ

a(x)ta), that is,(
Aλµ

)a
= Aaµ + ∂µλ

a + g0f
abcAbµλ

c +O(λ2) . (I.2.5)

The Jacobian arising in Eq. (I.2.3) is obtained from the FP operator. To be more
explicit, we consider the path-integral corresponding to the numerator on the right-
hand side of Eq. (I.2.1), where we introduced Eq. (I.2.3):

I =
∫
DADU Oinv[A] e−SYM[A]δ

(
f
[
AU
])

DetF
[
AU
]
. (I.2.6)

The case of the denominator of the right-hand side of Eq. (I.2.1) follows trivially
by repeating the present discussion for Oinv[A] = 1. Using the gauge invariance of
DAe−SYM[A] and of Oinv[A], the last equality reduces to

I =
∫
DU

∫
DAOinv[A] e−SYM[A]δ (f [A]) DetF [A] , (I.2.7)

so that the infinite volume of the gauge group
∫
DU can now be factorized out, and

only the configurations satisfying the gauge equation f [A] = 0 are integrated over.
In order to apply the machinery of continuum methods, one needs to recast this last
expression under the form of a functional integral with a local action. To do so, one
introduces the so-called FP ghost and antighost fields (scalar anticommuting fields)
ca and c̄a as well as a Nakanishi-Lautrup field iha that enforces the gauge condition
[119, 120]. Eventually, one obtains that the expectation value of a gauge-invariant
quantity Oinv[A] are given by

〈Oinv[A]〉 =
∫
DϕOinv[A] e−Sgf [ϕ]∫
Dϕe−Sgf [ϕ] , (I.2.8)

where the brackets 〈 〉 correspond to perform the average over the fields ϕ = Aµ, c, c̄, ih
with weight Sgf which is the Landau gauge FP YM gauge-fixed action. The latter is
given by the initial YM action plus a gauge-fixing term

Sgf = SYM + SFP ,

SFP =
∫
x

{
iha∂µA

a
µ + ∂µc̄

aDab
µ c

b
}
,

(I.2.9)

where
∫
x =

∫
ddx and where in the last equation we used the explicit expression of the

FP operator in the Landau gauge, namely −∂µDab
µ , with Dab

µ = δab∂µ + g0f
acbAcµ the

covariant derivative. For simplicity, in the following, we note Dµϕ
a ≡ Dab

µ ϕ
b.

I.2.2 Ghost and BRST symmetries of the FP gauge-fixed action

The gauge-fixed action Eq. (I.2.9) is invariant under the U(1) global transforma-
tions

c→ eiεc , c̄→ e−iεc̄, (I.2.10)
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while all other fields are left untouched. The corresponding conserved charge is the
so-called ghost number, defined as follows: ghosts have +1 ghost number, antighosts
−1 and the other fields have zero charge.

By construction, the (FP) gauge-fixed action Eq. (I.2.9) is no longer gauge invari-
ant. Nevertheless, it was shown by Becchi, Rouet, Stora [105, 104], and, independently,
by Tyutin [103] that there exists a remnant of the original gauge symmetry in the
gauge-fixed action, namely the so-called BRST symmetry. Its action on the various
fields is

δBRST ϕ = ηsϕ , ϕ = {Aµ, c̄, c, ih} , (I.2.11)

with η a constant Grassmannian parameter and s is the BRST operator defined as

sAaµ = Dµc
a

sc̄a = iha

sca = −1
2g0f

abccbcc

siha = 0 .

(I.2.12)

Note in particular that the operator s is of mass dimension 1 and has ghost number
1 according to our convention. Straightforwardly, one can use these relations to prove
the nilpotency of the BRST transformation: s2 = 0. Note also that, the BRST trans-
formation of the gauge field Aµ corresponds to a gauge transformation of infinitesimal
parameter ηc. In particular, this implies that the BRST transformation is a symmetry
of any gauge-invariant functional of the gauge field only.

Alternatively, one can conveniently generalize the FP gauge-fixing procedure by
taking as first requirement the existence of the BRST symmetry at the level of the
gauge-fixed action [118]. This corresponds to start from a fermionic functional Ψ of
mass dimension d − 1 and ghost number −1 such that sΨ is the gauge-fixing action.
This yields the YM gauge-fixed action

Sgf = SYM[A] +
∫
x
sΨ[ϕ] . (I.2.13)

Owning to the nilpotent character of the BRST symmetry and to the gauge invariance
of SYM, one is insured that Sgf is BRST symmetric. For instance, in the Landau gauge
we have Ψ = c̄a∂µA

a
µ. Having a nilpotent BRST symmetry is commonly considered as

a necessary requirement for having a consistent theory. Indeed, the proof of renormal-
izability and unitarity, originally performed respectively by ’t Hooft [121, 122] and by
Kugo and Ojima [53], strongly rely on it.

I.2.3 Aspects of Green’s functions

I.2.3.1 Gluon or ghost infrared dominance

According to its definition, the Wilson loop Eq. (I.1.5) seems directly connected
to the behavior of the gluon. It was thus first thought that the gluon sector should
display IR singularities in order to enforce an area-law falloff for the Wilson loop. In
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this first confinement scenario, known as the IR slavery scenario, the gluon propagator
is believed to be IR enhanced, that is, to diverge as 1/p4 at low momentum. Assuming
an IR ghost suppression, Mandelstam was the first to investigate nonperturbatively
(in the context of Dyson-Schwinger equations [107, 108], see also Sec. I.3.1.2 for a
brief overview) the Landau gauge gluon propagator that he found to be IR enhanced
[123]. This scenario initially received much attention [124, 125] but was eventually
discarded since it was proved that the Landau gauge gluon propagator cannot diverge
more severely than 1/p2 as p→ 0 [126].

Another proposal put forward in [30, 127] favors an IR ghost enhancement and an
IR gluon suppression. This proposal agrees with the Kugo-Ojima [53] and the Gribov-
Zwanziger [63, 109, 110, 111] scenarios. Further studies of the IR regime of the Landau
gauge, by means of either nonperturbative functional methods [128, 129, 126, 130, 131,
132, 133] (see Sec. I.3.1), or (gauge-fixed) lattice simulations [134, 135, 136, 137, 138,
139, 140, 44, 141, 142, 143, 144, 43, 42, 145, 146, 147, 148, 149, 45] (see Sec. I.4.3)
tend to support an IR ghost dominance, though not necessarily a ghost enhancement.
Nevertheless, the hypothesis of an IR enhanced ghost (though not in agreement with
the most recent lattice data [137, 134, 138, 139, 140, 44, 141, 142, 143, 144, 43, 42, 145,
146, 147, 148, 149, 45]) has received a lot of attention for years [30, 29, 150, 60, 151]
since it allows for many practical advantages in solving the Dyson-Schwinger equa-
tions, and perhaps more importantly, since it is believed3 to satisfy the Kugo-Ojima
scenario. This last point is important on the conceptual level because, on top of provid-
ing a confinement scenario, it insures the unitarity of the gauge-fixed theory Eq. (I.2.9)
(however the proof of Kugo-Ojima should not be taken as fully satisfactory since, the
presence of Gribov copies is not faced).

I.2.3.2 The Kugo-Ojima proposal

In their seminal work, Kugo and Ojima (KO) addressed the question of unitar-
ity in YM theories [53, 102]. This issue is general to gauge theories and manifests
more explicitly in covariant gauges: part of the excitations described by the fields do
not belong to the physical spectrum but are artifacts of the gauge-fixing procedure.
This is already the case in QED in the Landau gauge where temporal photon states
have negative norms [157], thus ruling out the standard probabilistic interpretation.
One encounters alaogous problems in the FP YM gauge-fixed theory Eq. (I.2.9). For
instance, ghost fields are zero spin bosonic fields but assume anticommuting commuta-

3Here we prefer to take some cautions. If it is true that an IR enhanced ghost is a necessary
condition for the Kugo-Ojima proposal, the way the ghost enhancement is implemented into the
Dyson-Schwinger equations might be deceitful regarding the realization of the Kugo-Ojima scenario.
Indeed, according to Zwanziger [152], in this case the ghost enhancement may signal the realization
of the Gribov-Zwanziger scenario. Although both scenarios share close ties [153, 154, 155], the latter
breaks the (local) nilpotent BRST symmetry, Eq. (I.2.12), while the former relies on the existence
of a conserved nilpotent BRST charge. It shall be mentioned that very recently a nonlocal nilpotent
BRST symmetry has been discovered in the context of the Gribov-Zwanziger proposal [156] from
which one may succeed in redoing the Kugo-Ojima construction. To our knowledge this has not been
performed yet. Thereby, we believe that the interpretation of the ghost enhancement that emerges in
the framework of Dyson-Schwinger equations should be taken with care. To our knowledge, this issue
has not been fully settled yet.
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tion relations which is inconsistent with the spin-statistic theorem [158]. Thereby, such
unphysical states must be removed from the physical space of states in order to insure
that the physical spectrum contains solely positive norm states which agree with the
principles of QFT.

To achieve this, KO proposed the so-called quartet mechanism that relies upon
the presence of a nilpotent BRST symmetry. One defines the conserved BRST charge
QBRST associated with the global BRST symmetry. From the total space of states of
the theory V (which presents an indefinite metric) they construct the physical Hilbert
space Hphys. A prerequisite for a state |Ψ〉 to belong to Hphys is that it is annihilated
by the BRST charge

QBRST |Ψ〉 = 0. (I.2.14)

States that belong to the BRST kernel can be categorized into two families: the daugh-
ter states |Ψd〉 ∈ V0 are BRST exact in the sense that there exists (by definition) a
parent state4 |Ψp〉 such that |Ψd〉 = QBRST |Ψp〉. The nilpotency of the BRST charge
(Q2

BRST = 0) implies that the daughter states do belong to the BRST kernel but
are of zero norm. The other family contains genuine physical states which satisfy
|Ψg〉 ∈ KerBRST but are not daughter states. Owing to this last definition, one sees
that V0, which contains the daughter states, is orthogonal to KerBRST. Moreover, since
daughter states are of zero norm they do not contribute to the norm of the states in
KerBRST. According to this, KO defined the physical Hilbert space as the so-called
BRST cohomology

Hphys = KerBRST/V0 , (I.2.15)

which presents a positive definite metric and thus allows for a probabilistic interpre-
tation according to the principles of quantum mechanics. Finally they proved that
transition amplitudes between two physical states 〈Ψg|Φg〉 are not affected by con-
tributions from the unphysical ones. This is known as the quartet mechanism, which
states that all unphysical states are either a parent or a daughter state. Each pair of
parent and daughter states defines a BRST doublet that falls into a quartet along with
the BRST doublet of conjugated ghost number. Owing to this quartet structure, in
transition amplitudes between physical states, each contribution from an unphysical
state cancels out with those of the same quartet. Note in particular how the KO proof
relies on the existence of an unbroken nilpotent BRST charge.

In the KO confinement scenario, not only auxiliary fields states but also the lon-
gitudinal gluon states fall into quartets representation and thus are not part of the
physical spectrum. Hence, in the KO’s vision, gluon confinement can be understood
from an "unitarity issue" picture. However, up to this point nothing insures that gen-
uine physical states carry zero color charge. KO investigated this point and derived
criteria for color confinement. Their argument is based on the existence of a conserved
color charge associated to color transformations. The color charge is given by [53]

Qac =
∫
d3x ∂iF

a
0i + {QBRST, D0c̄

a} . (I.2.16)

4Remark that by the prerequisite of belonging to the BRST kernel, a parent state cannot be a
physical state.
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For it to be well defined, the first term must not present any (discrete) massless pole5

(first KO criterion). In such a case, the first contribution vanishes as it consists in a
total derivative. The second KO criterion is that the second contribution in Eq. (I.2.16)
is also well defined. For the moment, let us assume this to be the case. Since any
physical states are annihilated by the BRST charge, color confinement is realized in
the sense that Qac = 0 in Hphys. On the other hand, the case where Qac cannot be
defined would signal a spontaneous breaking of color symmetry and hereby a Higgs-like
phase. In the peculiar case of the Landau gauge, in [159], Kugo proved that the second
contribution in Eq. (I.2.16) is well defined if the ghost propagator is IR enhanced, which
thus appears as a necessary condition for the KO confinement scenario.

The KO relation between the BRST and color charge has attracted a lot of attention
to the studies of the Landau gauge Green’s functions to see, whether or not, the latter
display an IR enhanced ghost6. Indeed, as stressed for instance in [151], according
to KO, the absence of an IR enhanced ghost leads to a gauge-fixed YM theory that
is either not color-confining (global color charge broken) or without nilpotent BRST
charge and it is then unclear in general how one can construct the physical space or
physical observables out of Green’s functions [151].

We would like to end the discussion on the KO proposal by making two remarks.
First of all, the KO framework assumes a well defined conserved nilpotent BRST
charge, which is motivated by its existence at the perturbative level [Eq. (I.2.12)],
however, it could happen that such a charge does not exist at the nonperturbative
level7. On the other hand, the KO derivation uses as a starting point the FP gauge-
fixed action that ignores certain ambiguities in the gauge-fixing procedure called Gribov
copies [63]. We come back to the issue of Gribov copies in a later section, see Sec. I.4.1.

I.2.3.3 Positivity violation

Here, we want to briefly mention a way to probe directly from the correlation
functions if the excitations produced by the associated fields belong to the physical
spectrum or not. Given an Euclidean two-point correlation function of a field Φ in
momentum space, that we note here generically G(p), for its poles to be interpreted as
stable particles created by the field Φ once the analytical continuation to Minkowski
space has been performed, then, G(p) must admit a Källen-Lehman representation
[29, 160, 55]

G(p) =
∫ ∞

0
dµ2 ρ(µ2)

p2 + µ2 , (I.2.17)

where the spectral density ρ(µ2) is a non-negative function. On the contrary, if the
spectral density admits negative values, it implies that the states created by the field
Φ cannot be part of the physical spectrum, this is referred to as violation of positivity.

5If this is not so, the integral in Eq. (I.2.16) is ill defined.
6It has been shown that such a solution is actually unique [129, 133].
7Remark that the KO criterion of having an enhanced ghost does not check the existence of such

a nonperturbative BRST charge. Rather, it is a consistency condition for having both globally well-
defined nilpotent BRST and color charges.
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An exhaustive discussion of the confinement scenarios and their relationship with
the YMGreen’s functions is beyond the scope of this manuscript. Rather, by presenting
in this section how different IR phenomenologies can lead to very different explanations
of the confinement mechanism, we intended to motivate that an accurate knowledge of
the YM correlation functions in the IR regime may be important in order to construct
possible confinement scenario.

I.3 The infrared regime of Yang-Mills theories

The IR behavior of YM correlation functions is difficult to access because of the
presence of a Landau pole at finite energy arising in the FP gauge-fixed theory. Pertur-
bation theory cannot be used to probe the low momentum regime and one has to resort
to nonperturbative approaches. Among continuum ones are the functional methods
either by truncation of Dyson-Schwinger equations (DSEs) or the functional renormal-
ization group (FRG). Both allow one to derive systems of exact functional equations,
which however cannot be solved as such since they involve infinitely many equations.
One needs additional truncations in order to put them under a manageable form [130].
However, it is difficult to construct controlled systematic expansion/truncation schemes
beside perturbation theory. As a consequence, it is not clear how to estimate the error
of a given approximation. One reliable way to cope with this issue is to compare to
lattice simulations.

I.3.1 Functional methods

Let us first present the general ideas of some of the main functional methods used
in the literature, namely, the FRG [106] and DSEs [107, 108]. We start with some
definitions and notations. Given a generic action S[φ], where φ denotes collectively
the field content of the theory. One defines the partition function in presence of sources
J for all independent fields φ of the theory

Z[J ] =
∫
Dφ e−S[φ]+

∫
x
φJφ

= eW [J ] ,
(I.3.1)

where W [J ] is the generating functional for connected Green’s functions. Accordingly,
one defines the generating functional for the one-particle irreducible (1PI) vertex func-
tions, or quantum effective action (referred to as the effective action for shortness)

Γ[φ] = −W [J ] +
∫
x
φJφ . (I.3.2)

The various 1PI Green’s functions are obtained by differentiation of the generating
functionals, for instance, the propagator Gφφ of the field φ is given by

Gφφ = δ2W [J ]
δJφδJφ

∣∣∣∣∣
J=0

=
(
δ2Γ[φ]
δφδφ

)−1
∣∣∣∣∣∣
J=0

. (I.3.3)
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I.3.1.1 The functional renormalization group

The purpose of the FRG [106] is to construct flow equations for the effective action Γ
in the spirit of the Wilsonian’s renormalization group. One first introduces a UV cutoff
scale8 Λ, at which the bare action S is defined. One also defines the average effective
action Γk at an IR momentum scale k. It corresponds to the effective action obtained
after the system’s fluctuations of momentum higher than k have been integrated out.
In particular, taking k → 0 corresponds to integrating out all fluctuations so that one
recovers the full effective action: lim

k→0
Γk = Γ. Instead, taking k → Λ corresponds to

the case where no fluctuations are taken into account and one recovers the bare action:
lim
k→Λ

Γk = S. Thus, if one is able to derive a flow equation for Γk with respect to the
cutoff scale k, one can start with the classical action S and progressively integrate the
fluctuations down to the IR and access the full effective action Γ. First, it is needed
to freeze the degrees of freedom below the scale k, while those of higher momenta are
left unaltered. This is achieved by adding a k dependent mass term Rk, called the IR
regulator, to the bare action

S →S + ∆Sk ,

∆Sk =
∫
x

1
2φRkφ .

(I.3.4)

The regulator acts as a large mass that freezes excitations below k while it vanishes
for momenta p� k. Accordingly, the renormalization group (RG) flow of the effective
action Γk is given by the Wetterich equation [106]

k∂kΓk [φ] =
∫
p

1
2G

k
φφ k∂kRk , (I.3.5)

with
∫
p =

∫ ddp
(2π)d . Here, the propagator appearing in Eq. (I.3.5) is the fully dressed

propagator at the scale k and is given by

Gkφφ(p) = 1
Γ(2)
k (p) +Rk(p)

, (I.3.6)

with Γ(2)
k = δ2Γk/δφ2. The presence in the propagator Gkφφ of the regulator Rk is

inherited from the addition to the initial action of the term ∆Sk, see (I.3.4). In
particular, as observed in Eq. (I.3.6), Rk acts as a momentum-dependent mass term
which allows to regulate the IR regime. Flow equations for higher 1-PI vertex functions
Γ(n)
k = δnΓk/δφn are obtained by differentiating further both sides of the Wetterich

equation (I.3.5). Although this provides exact equations for the fully dressed vertex
functions Γ(n)

k , the corresponding system cannot be integrated exactly since the flow
equation for Γ(n)

k depends on Γ(n+2)
k with n unbounded. This infinite "tower" of coupled

equations needs to be truncated in order to get a closed system. This situation is similar
to the one encountered in the case of DSEs, that we now present.

8In the context of statistical physics, such a UV cutoff scale is naturally provided by the (inverse)
lattice spacing for instance.
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I.3.1.2 The Dyson-Schwinger equations

The essence of the DSEs [107, 108] is to provide the exact equations of motion for
the full Green’s functions of the theory at hand. One way to achieve this, is to remark
that, the integral of a total derivative being zero, one has

0 =
∫
Dφe−S[φ]+

∫
x
Jφφ

(
−δS[φ]

δϕ
+ Jϕ

)
, (I.3.7)

where ϕ is any of the fields of the theory. This equality immediately yields the DSE〈
−δS[φ]

δϕ
+ Jϕ

〉
J

= 0 , (I.3.8)

where the subscript J means that the average 〈 〉J is performed in presence of the
sources. This equation can be further derived with respect to the sources to obtain a
whole set of DSEs.

The DSEs can be derived for the Landau gauge FP action, Eq. (I.2.9). Here, as
an example, we display the DSE for the ghost propagator, see also Appendix. A. It is
obtained for ϕ = c̄a(x) in Eq. (I.3.8) and by differentiating once with respect to Jc. It
reads (

G−1
gh

)ab
(p) = p2δas − ig0pµf

acd
∫
k
Gceµν(k)Gdngh(k)Γnsecc̄Aν (p,−k, k), (I.3.9)

where Ggh and Gµν are respectively the fully dressed ghost and gluon propagators,
and Γcc̄Aν is the fully dressed ghost-antighost-gluon (ghost-gluon for short) vertex. In
particular, one recognizes a typical one-loop structure for this equation, where δabp2

and −ipµg0f
scd can be identified to the tree-level inverse ghost propagator and to the

tree-level ghost-gluon vertex respectively. Hereby, this equation can conveniently be
represented by means of Feynman diagrams as depicted on Fig. I.2. The other DSEs

= −
−1 −1

Figure I.2: Diagrammatic representation of the DSE for the ghost propagator
Eq. (I.3.9). Dashed lines represent ghost propagators and wiggly lines gluon prop-
agators. Bold lines and dots are full propagators and full vertices respectively, while
normal ones are bare quantities. Original figure taken from [126].

are obtained for the gluon propagator and interaction vertices by performing different
derivatives with respect to the sources. For instance, the diagrammatic DSE for the
gluon propagator is shown in Fig. I.3.

Although DSEs are exact equations, they cannot be solved exactly in general be-
cause, just as the flow equations in the previous section, the nth derivative of Γ is
expressed in terms of higher points vertex functions. For instance, solving Eq. (I.3.9)
to get the full ghost propagator requires as input the full three-point vertex function
Γcc̄Aν . As emphasized earlier, a model on which one can base truncation schemes is
necessary to put the DSEs under a tractable form.
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Figure I.3: Diagrammatic representation of the DSE for the gluon propagator. Dashed
lines represent ghost propagator and wiggly lines gluon propagators. Bold lines and
dots are full propagators and full vertices respectively, while normal ones are bare
quantities. Original figure taken from [126].

Mandelstam was the first to use DSEs to reach nonperturbative results on the gluon
propagator [123]. Based on the perturbative behavior of the ghost at high energies,
which gives the smallest contributions to the gluon sector, Mandelstam assumed an
IR gluon dominance. Following this assumption, he proposed to truncate the DSEs by
neglecting ghost loops and the full four-gluon vertex (arising only in two-loop diagrams)
in the DSE for the gluon propagator depicted in Fig. I.3. As confirmed later on, e.g.
in [124], the Mandelstam’s truncation scheme is indeed consistent with an IR gluon
dominance. However, the very assumption of an IR regime dominated by the gluon
sector was actually erroneous. Indeed, further studies of the DSEs [128, 129, 126, 130,
131, 132, 133] revealed that ghost contributions dominate the IR regime of the DSEs.
This is also supported by lattice results [134, 135, 136, 137, 138, 139, 140, 44, 141, 142,
143, 144, 43, 42, 145, 146, 147, 148, 149, 45]. In particular, it was eventually shown
that an IR enhanced gluon propagator is actually inconsistent with the DSEs [126].

I.3.1.3 The scaling and decoupling solutions

A better understanding of the Landau gauge DSEs led to better truncation schemes.
For instance, the effects of three-point functions on the propagators are by now much
better understood [131, 161, 61]. In particular, these works have revealed the impor-
tance of two-loop diagrams for the gluon propagator [131]. Following these studies,
a one-parameter family of solution emerges of the DSEs, and are confirmed by the
FRG analysis [162, 163, 164, 165, 166, 31, 151]. The family of solutions is continuously
indexed by the renormalization prescription (boundary condition) of the ghost dress-
ing function (see below) at zero momentum. The solutions are given according to the
infrared exponent of the gluon and ghost dressing functions, J(p) and F (p), that read
(in four dimensional space-time)

J(p) ∼ (p2)κA−1, and F (p) ∼ (p2)−κc as p→ 0 , (I.3.10)

where J(p) ≡ p2G(p) and F (p) ≡ p2Ggh(p), with G and Ggh the gluon and the ghost
propagator respectively. The solutions can be classified according to two different
qualitative behaviors. The first one, called the scaling solution [30], corresponds to
the scaling relation κA = 2κc. It is unique, in the sense that only one boundary
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condition, namely a divergent zero momentum ghost dressing function, leads to this
solution [30, 127, 151]. In particular it satisfies the KO criterion9, see above. Hereby,
as emphasized earlier, this solution is very appealing from a theoretical point of view
and received a lot of attention [30, 29, 150, 60, 151]. In this peculiar case, the full
tower of DSEs can be analyzed without truncation schemes [129, 133].

The other type of solutions are called the decoupling solutions and do not present
the scaling relation κA = 2κc. In particular the ghost dressing function is IR finite and
the gluon propagator does not vanish10 though the solution still displays an IR ghost
dominance as the gluon propagator remains IR suppressed. The decoupling solution
is obtained for any boundary condition corresponding to a finite IR ghost dressing
function, and hence, this solution is not unique but parametrized by one parameter.
It was studied, among others, in [56, 57, 58, 59, 60, 43, 61, 62]. The finiteness of
the zero momentum gluon propagator suggests a massive behavior. Nevertheless the
decoupling solutions violate positivity, see e.g. [167, 151]. Thereby, the behavior of
the gluon propagator cannot be interpreted as the one of a standard massive particle,
though, for shortness, we still refer to this as a massive behavior. Finally we mention
that both the decoupling and the scaling solutions differ only in the deep IR regime
while both agree with the perturbative results in the UV.

In this section we presented two nonperturbative functional approaches. It shall
be mentioned that others exist such as the Hamiltonian approach of [168, 169], or
two-particle-irreducible (2PI) inspired approaches [170, 35]. We have emphasized the
necessity of using (model dependent) truncation schemes. The validity of the latter
is challenging to verify as these approaches rely on autoconsistent equations (see for
instance the case of IR gluon dominance), and one thus needs to compare with other
approaches, e.g., lattice simulations.

Moreover, both the scaling and the decoupling solutions were found consistent with
the functional approaches, and additional information is needed in order to know which
solution the system realizes. This is a complicated task since they differ only in the
nonperturbative regime. Again, the best predictive tool is lattice simulations that
provide an exact solution of the dynamics at work.

I.3.2 The Neuberger problem

Another concern of the approaches described above that we have not discussed so
far, is the fact that, these nonperturbative approaches are applied to the FP, or more
generally, to BRST quantization of the YM action, which may not include all nonper-

9It should be stressed that in the KO proposal, a singular ghost dressing function is not a condition
that one should impose but rather a consistency criterion that should be investigated/checked through
explicit computations/simulations in order to observe whether or not the KO confinement scenario
is realized [154]. Moreover, imposing particular boundary conditions might correspond to change
the symmetry content of the initial theory [152], and notably the nilpotency of the BRST symmetry
[153, 154, 155]. Hence, we believe that one should be cautious in interpreting such a solution in the
KO framework. This is further discussed in Sec. I.4.2.

10Note that the difference between the scaling and the decoupling solution lies in the IR behavior of
the ghost dressing function since an IR nonvanishing gluon propagator is possible with κA = 1 which,
in turns, yields an IR enhanced ghost if the scaling relation κA = 2κc holds.
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turbative effects. At least the presence of multiple solutions of the gauge equations, the
so-called Gribov copies [63], are not included. We further present the Gribov copies
and review some proposals that intend to deal with them in the next sections. For the
moment, in order to motivate the need of taking into account Gribov copies effects, let
us proceed in a naive way by assuming that one wants to perform lattice simulations
directly from the FP action Eq. (I.2.9). As we now present, this is not possible due to
the 0/0 Neuberger problem [47, 48]. In the next section, we link this issue with the
fact that the gauge has been fixed according to the FP procedure/BRST quantization.

A crucial point in fixing the gauge (for instance in the FP procedure) is to keep
unchanged the expectation value of gauge-invariant operators while the degeneracy,
induced by the gauge symmetry, of physically equivalent field configurations is removed.
Keeping this in mind, Neuberger proposed to have a closer look at the expectation
value of BRST-invariant quantities (among which there are gauge-invariant operators)
computed with a BRST gauge-fixed action, that is a gauge-fixed action of the form
(see also Eq. (I.2.13))

Sgf = SYM[A] +
∫
x
sΨ[ϕ] , ϕ = {Aµ, c̄, c, ih} , (I.3.11)

with Ψ = c̄a∂µA
a
µ for the peculiar case of the Landau gauge. Let OBRST = Oinv+sO be

a BRST invariant operator where Oinv is gauge invariant and O has nothing specific.
Neuberger showed that ∫

Dϕe−SYM[A]+
∫
x
sΨ[ϕ]OBRST [ϕ] = 0, (I.3.12)

assuming that the nilpotent BRST charge is unbroken. Therefore, averages of gauge-
invariant quantities are of the indefinite form 0/0. Here, one might hope for cancel-
lation between zeros of the numerator and the denominator to occur. However, the
presence of the zeros prevents from a numerical implementation of Eq. (I.3.12). Hereby,
the absence of a straightforward nonperturbative method to compute gauge-invariant
quantities is uncomfortable as it rises the question whether is it possible to have a
well-defined BRST gauge-fixing procedure of the form (I.3.11). This indefinite form is
actually a consequence of nonperturbative aspects of the gauge-fixing issue that were
neglected in the FP gauge-fixing procedure. The latter fixes the gauge only up to a
discrete set of configurations whose contributions in Eq. (I.3.12) exactly cancel out for
gauge group of zero Euler character [29].

I.4 Beyond the FP gauge-fixing procedure

I.4.1 Gribov ambiguities and Gribov regions
Let us take a step back in the gauge-fixing procedure. Up to now, we have always

assumed that the gauges we were considering (and in particular the Landau gauge)
were ideal gauges, that is, the gauge condition admits one and only one solution per
gauge orbit. However this is not true in the Landau gauge, as first pointed out by
Gribov in his seminal work [63]. The problem is even more sever as Singer showed
that in non-Abelian gauge theories it is not possible to find a unique and local gauge
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condition that intersects once and only once each gauge orbit [64]. To see this in the
Landau gauge, let us consider the following functional

HLandau[A,U ] =
∫
x
tr
[(
AUµ

)2
]
. (I.4.1)

We look at its stationary points with respect to the gauge transformation U for
fixed gauge field configuration A. This can be done by writing U → V U with
V infinitesimally close to the identity V ∼ eig0λ and making an expansion in λ:
AVµ = Aµ + Dµλ + O(λ2). Plugging this expansion into (I.4.1) yields the variation
of HLandau with respect to an (infinitesimal) gauge transformation

δλHLandau[A,U ] = −2ig0

∫
x
tr
[
λ
(
∂µA

U
µ

)
+O(λ2)

]
. (I.4.2)

The condition of being at an extremum requires that the variation of δλHLandau be
zero for all λ which is realized for

∂µA
U
µ = 0. (I.4.3)

Therefore the extrema (for a given A) of the functional (I.4.1) correspond to different
solutions of the Landau gauge condition that belong to the same gauge orbit. The
situation is depicted schematically on Fig. I.4. Gribov proved that, indeed, the Lan-
dau gauge condition admits multiple solutions known as Gribov copies. For instance,
"infinitesimal" copies correspond to the zero modes of the FP operator. Indeed, con-
sidering a field configuration Aµ that satisfies the Landau gauge condition and its
(infinitesimal) gauge transformation A

′
µ = Aµ + Dµλ, then A

′
µ is a Gribov copy if

∂µDµλ = 0, that is, if λ is a zero mode of the FP operator. On top of these "infinites-
imal" copies, there also exist copies that are related by finite gauge transformations
[171, 172, 173]. The presence of these copies spoils the FP construction presented in

A

Gribov copies
Gauge condition

equivalent configs

Figure I.4: Gauge-fixing procedure. The black line represents one gauge orbit. Dashed
blue line represents the gauge condition.

Sec. I.2.1. Indeed, the writing of the identity a la FP, Eq. (I.2.3), is justified under two
assumptions, namely that
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• the gauge equation f
[
AU
]

= 0 is invertible (i.e. has a unique solution),

• DetF
[
AU
]
is positive definite,

which are not satisfied due to the presence of Gribov copies (see below). Instead, in
the presence of Gribov copies, the FP construction amounts to sum over all copies
multiplied by the sign of the FP determinant

ZFP ≡
∫
DUδ

(
f
[
AU
])

DetF
[
AU
]

=
∫
DU

∑
i

δ (U − Ui)
|DetF [AU ]|DetF

[
AUi

]

=
∑
i

DetF
[
AUi

]
|DetF [AUi ]|

=
∑
i

sign
[
DetF

[
AUi

]]
≡
∑
i

s(i),

(I.4.4)

where here, the sum runs over all Gribov copies AUi belonging to the gauge orbit
of A. It is precisely this type of sum which is responsible for the Neuberger problem
[29, 174]. At this point we need to study in more details the structure of Gribov copies,
or equivalently the extrema of HLandau. We go to the next order in (I.4.2)

δλa(x)
(
δλb(y)HLandau

)
∝
∫
x,y

λa(x)
(
−∂xµ

(
∂xµδ

ab + g0f
acbAcµ(x)

)
δ(x− y)λb(y)

)
=
∫
x
λa(x)Fab(x)λb(x).

(I.4.5)

Hence, the FP operator F corresponds to the Hessian of the functional HLandau along
the gauge orbit. Accordingly, Gribov copies that are minima of HLandau, correspond to
a FP operator with only positive eigenvalues (and thus a positive sign in (I.4.4)), while
those that are saddle points of HLandau with p unstable directions yields a FP operator
with p negative eigenvalues (and thus contribute for (−1)p in (I.4.4)), for a review see
[155]. Following the work of Gribov [63], the set of field configurations satisfying the
gauge condition can thus be folded into regions according to the number of unstable
directions of the FP operator. This is schematically represented on Fig. I.5, where Ω
is the set of minima of HLandau:

Ω = {A : ∂µAµ = 0, F > 0} . (I.4.6)

Ω is called the first Gribov region, while Ω2 is the analogous of Ω but for copies that
correspond to a FP operator with one unstable direction, Ω3 those with two unstable
directions, and so on. Different regions are separated by the boundaries δΩk. On the
latter, the lowest positive eigenvalue of the FP operator in Ωk−1 vanishes.

The first Gribov region Ω presents two important properties: every gauge orbit
passes through [175] and it contains A = 0, that is, the perturbative region [176]. Other
properties of the Gribov region can be found in [176]. Still, Ω contains many different
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Ω

Ω2

Ω3

. . .

δΩ

δΩ2

δΩ3

Figure I.5: The different Gribov regions. The kth region Ωk is the set of Gribov copies
with FP operator that admits k−1 negative eigenvalues. The boundaries δΩk separates
the Gribov region Ωk and Ωk+1 while the kth negative eigenvalue of the FP operator
on Ωk+1 is zero on the boundary. Figure taken from [155].

gauge copies corresponding to different local minima of HLandau [171, 172, 173], which
is verified by lattice simulations [174]. In order to select a unique representative per
gauge orbit, one can look for the absolute minimum of HLandau. By construction the
set of absolute minima (if degenerate) is included in the Gribov region and is commonly
referred to as the First Modular Region (FMR) [177].

I.4.2 The Gribov-Zwanziger approach

Gribov copies are ignored in the FP gauge-fixing procedure. Although this is be-
lieved to be well justified at high energies (in the perturbative regime), they constitute
an important ingredient of the IR domain (at least in the Landau gauge). In order to
take this into account, Gribov proposed to revisit the FP procedure by restricting the
path-integral over the first Gribov region Ω [63]

ZGZ =
∫

Ω
Dφ e−Sgf , (I.4.7)

with φ = {Aµ, c̄, c, ih}, and Sgf is the Landau gauge FP gauge-fixed action Eq. (I.2.9).
This insures that the Neuberger problem is avoided since, by construction, the FP
operator is positive on Ω. Nevertheless, Ω is plagued by multiple Gribov copies. As
emphasized in the previous section, for such a procedure to be fully consistent one
should select only one copy per gauge orbit, e.g. by restricting the path-integral to the
FMR. However, it is not known so far how to include such a strict restriction. Still,
one may hope that the restriction to Ω is sufficient for practical purposes. In order
to formulate this restriction into a tractable field theory, Gribov computed in [63] the
ghost propagator in a semiclassical approximation (up to second order in perturbation
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theory) where the gauge field A is taken as an external background field

Gabgh(p,A) = δab

p2
1

1− σ(p,A) =
(
F−1

)ab
(p,A), (I.4.8)

where, on the right-hand side, there is the inverse of the FP operator and σ is found
to decrease as the momentum p increases [155]. Following from the relation between
the ghost propagator and the FP operator, one sees that the external configuration
A lies within Ω as long as Gabgh(p,A) is strictly positive while the first horizon δΩ is
crossed when Gabgh(p,A) develops a pole more singular than 1/p2 (which corresponds
to the vanishing of the lowest eigenvalue of the FP operator on the border δΩ). This
yields the so-called no-pole condition introduced by Gribov in [63]

1− σ(0, A) > 0, (I.4.9)

where the equality is reached on the boundary δΩ. The no-pole condition can be
embodied into the functional integral Eq. (I.4.7) by inserting θ(1 − σ(0, A)), where θ
is the Heaviside distribution. Under the functional integral, it was motivated that the
Heaviside distribution can be replaced by a Dirac delta [63, 65, 178]. This implies in
particular that the leading contributions from Gribov copies are given by those located
on the boundary δΩ. Later on, Zwanziger generalized the Gribov no-pole condition to
all orders [65, 178, 177, 154] and expressed the restriction to Ω through the introduction
of a nonlocal "horizon" action Sh ∫

Ω
→
∫
e−Sh ,

Sh = γ4
∫
x
h(x) ,

(I.4.10)

where γ is known as the Gribov parameter and has the dimension of a mass, h(x) is
the (nonlocal) horizon function

h(x) = g2
0f

abcAbµ(x)
∫
y

(
F−1(x, y)

)ad
fdecAeµ(y) . (I.4.11)

The Gribov parameter γ is considered as nonperturbative since it encodes the re-
striction of the path-integral to the first Gribov region Ω. It is determined by a gap
equation, the horizon condition [65, 178],

〈h(x)〉 = 4
(
N2 − 1

)
, (I.4.12)

where here the average is to be computed with FP gauge-fixed YM action supplemented
by the additional horizon action Eq. (I.4.10).11 The horizon function, along with the
horizon condition Eqs. (I.4.11)-(I.4.12) are equivalent to a generalization at all orders
of the ghost form factor σ(p,A) (see Eq. (I.4.8)) and the Gribov no-pole condition
Eq. (I.4.9) [180]. The equality in the horizon condition Eq. (I.4.12) (instead of an
inequality as in Eq. (I.4.9)) corresponds to take into account only the Gribov copies

11As pointed out in [179], the computation of the horizon condition should be performed only once
the horizon action Sh has been made local.
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located near the boundary δΩ [181]. The nonlocal horizon action Eq. (I.4.10) can be
rendered local by the introduction of two pairs of complex conjugate auxiliary fields
(see [155] for a review), namely the bosonic ϕ̄abµ , ϕabµ and Grassmann ω̄abµ , ωabµ fields
which form BRST doublets

sϕabµ = ωabµ , sωabµ = 0 ,
sω̄abµ = ϕ̄abµ , sϕ̄abµ = 0 .

(I.4.13)

In terms of these fields, one gets [65, 178, 177] in d = 4

e−Sh =
∫
DϕDϕ̄DωDω̄ e−Sloc ,

Sloc =
∫
x

{
ϕ̄acµ Fabϕbcµ − ω̄acµ Fabωbcµ + γ2g0f

abcAaµ

(
ϕbcµ + ϕ̄bcµ

)
− 4γ4(N2 − 1)

}
.

(I.4.14)

Hereby, a nonperturbative gauge-fixed YM action in the Landau gauge is given by the
(local) Gribov-Zwanziger (GZ) action [63, 65, 155]

SGZ = SYM + SFP + Sloc , (I.4.15)

where in this expression the Landau gauge expression of the FP operator Fab(x) =
−∂µDab

µ (x) is used.
An important remark is that the perturbative BRST symmetry, Eq. (I.2.12), is

softly broken by the presence of the Gribov parameter γ. Nevertheless, the local action
admits a modified (non-nilpotent) BRST symmetry according to which it remains
renormalizable [65, 182, 183, 178, 179] though the definition of the physical space (if
it exists) is unclear as one cannot repeat the KO treatment.12 In the GZ theory, the
gluon and ghost propagators realize the scaling solution. Indeed, the tree-level gluon
propagator is

Gabµν(p) = δabP Tµν(p) p2

p4 + 2Ng2
0γ

4 , (I.4.16)

where we introduced the transverse projector P Tµν(p) = δµν − pµpν/p2. Therefore, al-
ready at tree-level, the gluon propagator vanishes at zero momentum. The tree-level
ghost propagator behaves as 1/p2 at low momenta. The no-pole condition (or equiva-
lently the horizon condition) leads, by construction (see Eq. (I.4.9) and its enforcement
with the Dirac delta), to the disparition of the 1/p2 behavior at one loop-order. In-
stead, it turns out that, as p goes to zero, the ghost propagator behaves as 1/p4, as first
pointed out by Gribov [63] and checked up to two loops later on [185], thus realizing
the scaling solution. This prediction has been extended beyond perturbation theory
by Zwanziger [181]. Moreover, it was asserted by Zwanziger that, in principle, the re-
striction of the path-integral to a subdomain should not change the form of functional
equations, e.g. DSEs, but is inherited into the boundary conditions that one uses
as initial conditions [152]. As we just saw, the restriction to the first Gribov region

12We mention again that, recently, it has been discovered that the GZ action is symmetric under a
nonlocal but nilpotent BRST-like transformation [184].
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is encoded into the horizon condition which, in turns, is transcribed into the IR en-
hancedment of the ghost propagator, namely that13 lim

p→0

[
p2Ggh(p)

]−1 = 0. Therefore,
according to the previous argument of Zwanziger, in the DSEs of the standard Lan-
dau gauge FP action, the boundary condition of a divergent ghost dressing function
at zero momentum may actually implement the GZ action [152, 155]. Thereby, the
interpretation of the scaling solution obtained through the DSEs as the realization of
the KO scenario (we recall that the scaling solution was obtained by imposing as initial
condition a diverging ghost dressing function, see Sec. I.3.1) seems compromised, as
the BRST symmetry (I.2.12) (central in the KO proposal) is broken in the GZ action.
Nevertheless, it should be mentioned here that recently it has been discovered that
the GZ action admits a nilpotent nonlocal BRST symmetry [184, 156], though to our
knowledge, its link to the KO proposal has not been fully settled yet.

As already mentioned, the restriction to the Gribov region Ω implies the presence
of the Gribov parameter γ of mass dimension 1 that softly breaks the initial nilpo-
tent BRST symmetry. It turns out, as pointed out in [66], that composite operators
can develop nonvanishing expectation values which were previously prevented by the
nilpotent BRST symmetry. In particular, it was proposed to take into account the di-
mension two condensate 〈0| ϕ̄abµ ϕabµ − ω̄abµ ωabµ |0〉 by adding an appropriate source term
to the GZ action. This is known as the refined Gribov-Zwanziger (RGZ) action, which
was proved to be renormalizable in four dimensions [66]. In particular, due to the
effects of the condensate, the gluon propagator does not vanish at zero momentum
(even if it stays IR suppressed) and the ghost dressing function remains finite, thus
realizing the decoupling solution. The price to pay is the introduction of (at least) one
new dimensional parameter related to the nontrivial condensate.

Let us make a few comments on the results presented in this section. First, both
the GZ and the RGZ actions are renormalizable despite their breaking of the initial
(perturbative) nilpotent BRST symmetry. This is because they admit a modified (non-
nilpotent) BRST symmetry which allows one to control the divergences. On the other
hand, one cannot do the KO construction of the physical Hilbert space. However, as
argued in [66], this might be not such an issue. Gluons are not part of the physical
Hilbert space (as can be seen by the violation of positivity in the GZ and RGZ cases
[154, 155]) and, therefore, not being able to define the physical space out of them may
be not so surprising. Of course, the definition of a physical Hilbert space is mandatory
for the consistency of the approach, but the solution might not lie in the gluon and
ghost sectors.

With this section we wanted to put forward the striking consequences of the pres-
ence of Gribov copies on the IR behavior of the correlation functions and on their
interpretation in the Landau gauge. On the one hand, the KO interpretation of the
scaling solution is not clear due to the breaking of the initial BRST symmetry and,
on the other hand, the RGZ action predicts the decoupling solution. This motivates
to better understand the effects of the Gribov copies as there is an increasing belief
that they play a crucial role in the IR domain of YM theories and perhaps even for

13We drop off the trivial diagonal color structure of the propagators for clarity of the notations.
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confinement [186]. We mention that, the Landau gauge is only one representative of
the covariant gauges and it displays additional properties, among others for instance
the absence of a longitudinal gluon propagator. It would thus be interesting to in-
vestigate whether or not the presence of Gribov copies plays such an important role
as in the Landau gauge in other covariant gauges. The GZ construction presented
here can be applied to gauges that can be defined from the minimization of a func-
tional, akin the Landau gauge with the functional (I.4.1). Accordingly, some of Gribov
copies effects have been studied for instance in the (non-covariant) Coulomb gauge
[187, 188, 189, 190, 191].14 However, the Coulomb and Landau gauges are so different
that there is no point in making comparisons between the two (though the meaning of
comparing gauge dependent quantities in two different gauges is unclear in general).
It was thus motivated in [186] that investigations in covariant gauges that are continu-
ously connected to the Landau one are of greater interests. In this line of thoughts, the
authors attempted to extend the GZ proposal to the covariant linear gauges. This is
not an easy task, the main reason being the fact that the FP operator is not Hermitian
and thus has not a real spectrum. Accordingly, one loses the geometrical construction
used in the Landau gauge, and, in particular, the identification of a region to restrict
the path-integral domain is unclear. Nevertheless, recently, based on the presence of
the nonperturbative (and nonlocal) BRST symmetry [184, 156], a BRST-like quan-
tization was employed and the (R)GZ proposal was amended to the linear covariant
gauges, see [72] and references herein.

We saw in this section that, in the Landau gauge, taking into account Gribov
copies leads to either the scaling or the decoupling solutions depending if condensates
are included or not, though both type of solutions were found consistent with the
tower of DSEs (and confirmed by the FRG). We shall thus rely on lattice simulations
to confirm which solution is chosen by the system, which is the topic of the next section.

I.4.3 Gauge-fixed lattice simulations.

In Sec. I.3.2, we introduced the Gribov ambiguity problem and created the need
to take into account Gribov copies through the Neuberger problem that prevents a
consistent implementation of the FP gauge-fixed action on the lattice. Gribov copies
contribute degenerately with alternating signs in the path-integral yielding the indefi-
nite 0/0 form for expectation value of gauge-invariants quantities. To tackle this issue,
one may select a unique Gribov copy. However, this cannot be achieved by means of
a local action principle [64], the basis of any continuum formulation. Instead, one has
to rely on approximate restriction such as the (R)GZ proposals.15 On the contrary,
this can be done in some case in lattice simulations which, consequently, completely
fix the gauge as only one copy is selected.

Recalling that in the Landau gauge the Gribov copies correspond to the extrema

14For completeness, we also mention that the maximal Abelian gauge was also investigated in this
framework [192, 193, 194, 195].

15We recall that the first Gribov region Ω still contains Gribov copies.
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of the functional HLandau[A,U ] (I.4.1), whose discrete version is

HLandau latt.[W,U ] = Re tr
∑
x

−
d∑

µ=1
WU
µ (x)

, (I.4.17)

withWµ(x) the lattice gauge link (I.1.7) and where we recall that the gauge-transformed
link reads WU

µ (x) = U(x)Wµ(x)U †(x+ aµ̂). Fixing the Landau gauge thus boils down
to select an extremum (in practice a minimum) of this functional, which can be achieved
by using powerful minimization algorithms [49, 50, 51, 52]. Then, the lattice procedure
to compute average of a quantity O can be sketched as follows:

• First, simulate a collection of gauge links
{
W

(l)
µ

}
l=1,...Nlinks

with the discretized
YM weight (I.1.9);

• For each gauge linkW (l)
µ , apply repeatedly gauge transformationsW (l)

µ →W
(l),U
µ

according to the minimization algorithms until a minimum of (I.4.17) is reached.
The resulting gauge link thus satisfies the gauge equation;

• Perform the statistical average over the the previously obtained gauge-fixed links
〈O〉 ' 1

Nlinks

∑Nlinks
l=1 O

[
W

(l)
µ

]
.

Note that by fixing the gauge according to this procedure, one does not need to include
extra auxiliary fields such as ghosts, or the GZ ϕ, ω fields. Nevertheless, quantities
that in the continuum depend on such fields can, in some cases, still be accessed in
lattice simulations. For instance, the ghost propagator is obtained through the average
of the inverse FP operator F−1. Computing correlation functions according to this
procedure thus provides results from a first principle nonperturbative computational
method in a gauge-fixed version of YM theories where the gauge has been completely
fixed since only one Gribov copy per gauge orbit has been selected. Therefore, a lot of
interests were devoted to such numerical simulations and many results were obtained
in the Landau gauge, e.g. [137, 134, 138, 139, 140, 44, 141, 142, 143, 144, 43, 42,
145, 146, 147, 148, 149, 45]. In particular, they provide an important benchmark
for continuum approaches. For instance, numerical studies of the various vertices
confirmed the ghost IR dominance truncation schemes used in DSEs [135, 136]. For
our present concerns, we are mostly interested in results for the Landau gauge gluon
and ghost propagators. Results from large volume simulations are depicted in Fig. I.6.
In particular, one clearly sees a finite ghost dressing function at zero momentum, and
a massive gluon propagator. These results go along with the decoupling solution and
discard the scaling one. It follows that the RGZ thus agrees (at least qualitatively)
with lattice data. Note, however, that both approaches implement the Landau gauge
in different ways.

The lattice gauge-fixing procedure presented here relies on the existence of an
auxiliary functional to be minimized. Investigation of other covariant gauges connected
to the Landau one would be of great interests to infer possible gauge (in)dependent
features of the propagators and possible systematic Gribov copies effects, though this
would require to define such a family of gauges by means of an extremization procedure.
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Figure I.6: Lattice results for the gluon propagator G(p) and the ghost dressing func-
tion F (p) as function of the momentum p in four dimensions for SU(2) gauge group.
Original figure from [79]. Blue crosses are lattice data taken from [196]. Red curves
are analytical results obtained in [79], see Sec. I.5.1.

We also mention that, recently, following the proposal put forward in [67] numerical
implementations of the covariant linear gauges were achieved [68, 69, 70, 71] but do
not actually correspond to the extremization of a local functional. Another related
issue is that the FP operator in such gauges is not Hermitian which complicates the
discussion of Gribov copies and Gribov regions [186] as well as numerical calculation
of the ghost propagator.

I.5 A novel approach to deal with Gribov copies
In the previous sections we intended to motivate that nonperturbative methods,

e.g. DSEs, are not completely sufficient to access the IR properties of YM correlation
functions. We illustrated this with the Neuberger problem, see Sec. I.3.2, to put for-
ward that one also needs to take into account aspects of the gauge-fixing procedure
that are disregarded by the FP procedure in order to tackle the problem of Gribov am-
biguities. On the lattice, in certain gauges such as the Landau one, this can be realized
completely (only one copy is selected) and reliable results for the correlation functions
are obtained. However, the lattice gauge-fixing procedure is purely algorithmic and
one does not know the corresponding continuum limit, while selecting a unique copy
is not possible in terms of a local QFT. Still, one can cope with the Gribov ambiguity
issue through the GZ proposal and obtain good agreement with lattice simulations in
the case of the RGZ [197, 198].

In this manuscript, we study an alternative proposal made by Serreau and Tissier
(ST) [74] that intends to consistently deal with Gribov copies. Our main work is
developed in the next chapters. The ST treatment of Gribov copies has the main
advantage that the resulting (Gribov ambiguity free) gauge-fixed action can be studied
by simple perturbative tools and presents very good agreement with the available
lattice results. We would like to emphasize these points in the next sections. For
completeness, it shall be mentioned that one point of the proposal is not fully justified
yet. It is related to the technique used to cast under the form of a local QFT the ST
procedure: a number n of extra auxiliary fields have to be introduced while averages
of physical observable must be evaluated in the limit n→ 0. In practice, it is assumed
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that one can freely interchange the order the this limit and the path-integral. This
will become clear in the next chapter.

I.5.1 The Curci-Ferrari model
Before presenting the ST proposal we first describe the phenomenological Curci-

Ferrari (CF) model [76, 77]. Once large volume lattice simulations have well established
that it is the decoupling solution which is realized, Tissier, Wschebor, and, later, Peláez
reconsidered the CF model. The general model consists in a massive extension of the
(FP) gauge-fixed YM action in nonlinear covariant gauges [100]. Tissier Wschebor and
Peláez considered the Landau limit of the model

SCF =
∫
x

{1
4F

a
µνF

a
µν + ∂µc̄

aDµc
a + iha∂µA

a
µ + m2

0
2 AaµA

a
µ

}
, (I.5.1)

with m0 a (bare) mass parameter. The standard Landau gauge FP action is recovered
for m0 = 0. In particular, the mass term does not change the YM one-loop universal
beta function for the coupling constant, thereby the model is asymptotically free. Just
like in the (R)GZ cases, the mass term softly breaks the nilpotent BRST symmetry
Eq. (I.2.12). Nevertheless, the CF model remains renormalizable in four dimension
[77] and the renormalization factors were computed up to three loops in a MS scheme
in [199]. In fact, despite the soft breaking of the BRST symmetry, the CF action
Eq. (I.5.1) displays a large set of symmetries. In particular, it admits a modified (non-
nilpotent) BRST symmetry, that we note ŝ, defined by its action on the fundamental
fields

ŝAaµ = ∂µc
a + g0f

abcAbµc
c , ŝca = −g0

2 f
abccbcc , ŝc̄a = iha , ŝiha = m2

0c
a . (I.5.2)

The usual Slavnov-Taylor identities [116, 200] associated with the nilpotent BRST
symmetry can be accordingly modified and used to constrain possible UV divergences.
We shall make an extensive use of such modified Slavnov-Taylor identities in the next
chapter when proving the renormalizability of the ST gauge-fixed action, see Sec. II.3.2.
Modified Slavnov-Taylor identities can be derived along standard lines [118]. These
identities consist in deriving from the symmetries of the problem various constraints
on the Green’s functions. For later use, let us proceed to their derivation here. We
introduce independent sources for all independent fields and their (modified) BRST
variations16 as

S1 =
∫
x

{
JaµA

a
µ+η̄aca+c̄aηa+ihaMa+K̄a

µŝA
a
µ+L̄aŝca

}
. (I.5.3)

According to the definition of the effective action Γ, Eq. (I.3.2), we have that
δΓ
δAaµ

= Jaµ ,
δΓ
δca

= −η̄a , δΓ
δc̄a

= ηa ,

δΓ
δK̄a

µ

= −ŝAaµ ,
δΓ
δL̄a

= −ŝca ,
(I.5.4)

16Since ŝc̄a = iha and ŝiha = m2
0c
a, there is no need to introduce additional sources for the (modified)

BRST variations of c̄ and ih. Remark also that ŝ2(Aµ, c) = 0, ŝ2c̄a = m2
0c
a and ŝ2iha = m2

0ŝc
a such

that the variations ŝ2 do not require additional sources neither.
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where φ = {Aµ, c, c̄, ih} are understood to be the mean value of the corresponding
fields in presence of the sources. Performing the transformation φ → φ + θŝφ, with θ
an "infinitesimal" Grassmann parameter, in

Z =
∫
DADcDc̄Dh e−SCF+S1 , (I.5.5)

yields the modified Slavnov-Taylor identity

0 =
∫
Dφ e−SCF+S1

∫
x

{
Jaµ ŝA

a
µ − η̄aŝca + ŝc̄aηa +Maŝiha

}
=
∫
x

{
− δΓ
δAaµ

δΓ
δK̄a

µ

− δΓ
δca

δΓ
δL̄a

+ iha
δΓ
δc̄a

+m2
0
δΓ
δiha

ca
}
.

(I.5.6)

Such an identity, coupled with others derived from the remaining symmetries, e.g.,
ghost number conservation, allowed Tisser and Wschebor to reduce the number of in-
dependent renormalization factors from the five naively suggested by (I.5.1) down to
three [201, 202]. In particular, the renormalization factors lead, in a MS renormaliza-
tion scheme, to a UV vanishing mass, and one recovers, at high energies, the standard
FP theory.

One of the most important features of the CF model is that it presents IR safe
renormalization groups (RG) flows, as first pointed out in [78]. Hereby, one can use
standard perturbation theory down to arbitrarily low momentum, which allows one
to probe perturbatively the IR regime. Following this observation, Tissier, Wschebor
and Peláez computed, at one-loop order in perturbation theory, the various two-point
correlation functions as well as the vertices with and without quarks. Remarkably,
their one-loop results were found to accurately reproduce the nonperturbative lattice
data [79, 80, 81, 82, 203]. For instance, on Fig. I.6, the one-loop gluon propagator and
ghost dressing function (red curves) are compared with lattice data (blue crosses). It is
remarkable that, at the cost of introducing only one new parameter, such perturbative
one-loop calculations accurately describe the IR regime of YM theories. This suggests
that most of the nonperturbative dynamics are accurately captured by the effective
gluon mass and the residual dynamics can then be treated perturbatively. As we shall
see in the next section, the Serrau-Tissier proposal provides a possible origin to such
a mass term in relation with the treatment of Gribov copies.

I.5.2 The Serreau-Tissier proposal
The effective approach of Tissier, Wschebor and Peláez can be founded on more

solid theoretical grounds according to Serreau and Tissier. Recently, they developed,
in the Landau gauge, a new gauge-fixing procedure that consistently deals with the
presence of Gribov copies [74]. In the Landau gauge, for what concerns the gluon and
ghost sectors, their procedure boils down to the inclusion of an effective gluon mass
and the resulting YM gauge-fixed action is perturbatively equivalent to the Landau
limit of the CF model Eq. (I.5.1) [74].

The spirit of this proposal is quite different from those of the lattice gauge-fixing
procedure and the GZ proposal. In the latter, in order to tackle the presence of
Gribov copies, one tries to enforce the initial gauge condition by restricting further the
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configuration space and eventually selects a unique Gribov copy as achieved by the
lattice. On the contrary, Serreau and Tissier proposed to take into account all Gribov
copies, but to provide them with different weights in the path-integral such that their
degeneracy is lifted. Applied to the Landau gauge, this legitimate procedure provides
another implementation of this gauge in which the resulting gauge-fixed action is free
of Gribov ambiguities. The details of the construction are given in the next chapter,
see Sec. II.2.1. Let us here draw the main features of the ST gauge-fixing procedure.

In order to cope with the issue of Gribov ambiguities, in the computation of expec-
tation value of an operator O, one first performs a (pseudo) average with a nonuniform
statistical weight over the copies belonging to the same gauge orbit.17 That is, given a
field configuration A, along its gauge orbit, one performs the following pseudo average
(note the presence of the sign s(i) of the FP operator)∑

i

O[AUi ]s(i)e−β0HLandau[A,Ui] , (I.5.7)

where the sum runs over all extrema of HLandau, that is, over all Gribov copies18,
s(i) is the sign of the FP operator and β0 > 0 is a new gauge parameter, that has
the dimension of a square mass. The nonuniform weight e−β0HLandau[A,Ui] thus lifts
the degeneracy of the copies according to the landscape of the extrema of HLandau.
Then, one averages over the gauge field configurations A with the YM weight. This
gauge-fixing procedure can be put under the form of a local gauge-fixed YM action
by introducing auxiliary fields. The resulting (Gribov ambiguity free) gauge-fixed
action turns out to be renormalizable in four dimensions [74], see also Sec. II.3.2.
Remarkably, in the Landau gauge, most of the auxiliary fields introduced to take into
account the presence of Gribov copies essentially decouple from the YM sector and the
gluon and ghost sectors are perturbatively equivalent to those of the Landau limit of
the CF model presented above. This means that, at least in the Landau gauge, the
ST gauge-fixed action can be investigated by means of simple perturbative tools and
the results reproduce accurately the lattice data. We believe this is a strong result
that such a Gribov ambiguity free implementation of the Landau gauge allows one
to access perturbatively the IR regime of YM theories (we recall our previous remark
concerning a possible loophole of the present proposal).

Remark that, the ST proposal is, again, another way of implementing the Landau
gauge. Hence, as emphasized above, the comparison between different approaches
might be unclear. In particular, the lattice selects a unique copy that corresponds to
a minimum of HLandau while the ST proposal averages over all copies, that is, minima,
maxima and saddle points of HLandau. Hence, depending on the landscape of HLandau,
comparisons between the lattice and the ST results might be meaningful or not. In
particular, for both approaches to be compared, HLandau shall satisfy

HLandau [A,Umin.] < HLandau
[
A,Usdl.pts./max.

]
, (I.5.8)

17We mention that a similar idea was proposed along the lines of [204, 205] but, there, it was
proposed to average with a nonuniform weight over the whole gauge orbit and not solely over the
Gribov copies. This proposal was tractable in lattice simulations [206, 207] but it was shown that the
corresponding continuum action was nonrenormalizable [205, 208].

18Remark that the sum runs over minima, maxima and saddle points, such that all Gribov copies
are taken into account.
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where Umin, Usdl.pts., Umax are respectively minima, saddle points and maxima. In
such a case, for a value of β0 not too small, the contribution of Gribov copies that
are not minima (i.e. outside the first Gribov region Ω) are exponentially suppressed in
Eq. (I.5.7). It remains to select a β0 not too large such that randomly picking one min-
imum is equivalent to averaging over them with a small lifting. Checking this scenario
would require lattice investigations of the landscape of HLandau. This could be done
on small lattices [174] but did not provide any firm answer yet regarding the scenario
(I.5.8). Indeed, the number of copies grows exponentially with increasing volume and,
so far, lattice procedures are doomed to find only minima of HLandau and remain blind
to maxima and saddle points. Nevertheless, lattice simulations display small depen-
dences of the correlators with respect to the choice of the copy [43], thus arguing in
favor of that scenario (regarding the assumption that selecting one minimum is equiv-
alent to averaging over them). It remains that these are gauge-dependent features,
and hereby a priori proper to the Landau gauge as they depend on the peculiar form
of HLandau.

Generalization of the ST proposal to other covariant gauges constitutes one of
the main purpose of the work presented in this thesis. In Chapter II, we present a
generalization of the Landau functional HLandau. We show that its extrema define a
one-parameter family of nonlinear covariant gauges that are continuously connected
to the Landau one. Thus, it opens the way to investigations of covariant gauges for
approaches such as the ST proposal or lattice simulations. We briefly study how exist-
ing minimization algorithms can be adapted to this case. Then, we implement these
gauges within the ST proposal whose details are displayed in Chapter II. In particular,
we prove that the resulting local gauge-fixed action is renormalizable in four dimen-
sions for the whole family of gauges (that includes the Landau one). Remarkably, a
massive extension the usual FP gauge-fixing procedure applied to these gauges yields
a one-parameter family of (massive) nonlinear covariant actions known as the general
ξ-gauges CF model. Henceforth, we have at our disposal two actions that differ only by
our treatment of Gribov copies and which can be both investigated in perturbation the-
ory. Comparisons of correlation functions between the two thus provide a benchmark
to study Gribov copies effects. We perform the calculations in perturbation theory,
up to one-loop order. Eventually we show that, in these gauges, both the ST and CF
actions present IR safe RG trajectories thus justifying the perturbative approach.



Chapter II

Nonlinear covariant gauges without
Gribov ambiguities

In the previous chapter, we motivated that a detailed understanding of the long
distance properties of correlation functions in non-Abelian gauge theories is a manda-
tory step in order to investigate the IR physics of the strong interactions in analytical
methods. In particular, the interplay between both lattice and continuum approaches
is of key importance, the former providing a benchmark for the latter. Of course, both
approaches must be performed in the same gauge in order to do meaningful compar-
isons. However, as we saw previously, finding gauges which can be investigated in
both cases is not an easy task, in part due to the presence of Gribov copies. In this
regard, the Landau gauge stands as peculiar since both continuum and lattice stud-
ies were performed extensively. In particular, among the former, the revisiting of the
(Landau limit of the) Curci-Ferrari (CF) model [77] by Peláez, Tissier and Wschebor
has shown recently that most of the nonperturbative gluon dynamics can accurately
be accounted for by the presence of an effective mass term [78, 79, 80, 81, 82]. In this
massive approach, the absence of a Landau pole allows for perturbative development
down to the deep IR and simple perturbative one-loop calculations are found in very
good agreement with the lattice data. Moreover, Serreau and Tissier developed a new
proposal (hereafter referred to as the ST proposal), which fixes the gauge while the
Gribov copies are consistently accounted for, as opposed to the standard FP procedure.
The ST proposal was successfully applied to the Landau gauge where it was possible to
recast the gauge-fixing procedure under the form of a local field theory [74]. In partic-
ular, in the Landau gauge, the resulting gauge-fixed action is perturbatively equivalent
to the Landau limit of the CF model for what concerns the gluon and the ghost sectors.
Altogether, these two series of works therefore provide a bona fide Landau gauge-fixed
version of the YM action that can be investigated with simple perturbation theory
and whose results agree with those obtained in lattice simulations. This is an exciting
result since the common belief is that the IR regime of YM theories is accessible only
through nonperturbative techniques. One of the main advantages of this approach is
its simplicity at the computational level in comparison to other continuum approaches
such as DSEs.

Nevertheless, the Landau gauge is solely one representative of the covariant gauges

31
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and displays additional symmetries and a peculiar geometrical structure of the Gribov
copies space. With results only in such a peculiar gauge, it is thus difficult to infer
possible gauge-(in)dependent features as well as possible systematic Gribov copies
effects on the basic correlators. In this sense, research of other gauges that would
allow for both numerical simulations and continuum approaches that handle Gribov
ambiguities are interesting. This is the purpose of the present work.

Here, among other works, we describe our studies presented in [209, 99] where we
intend to investigate a class of covariant gauges continuously connected to the Landau
one. To do so, we define our gauge condition through an extremization procedure
of a functional H that slightly generalizes the one employed for the Landau gauge
HLandau, see (I.4.1). In a first step, in order to gain more insights into these gauges,
we neglect the presence of Gribov copies (which is at best valid at high energies) and
apply the standard FP procedure. We show in Sec. II.1.1 that the minimization of the
functional H implements the Curci-Ferrari-Delbourgo-Jarvis (CFDJ) gauges [77, 100]
that consist in a one-parameter family of nonlinear gauges continuously connected to
the Landau one. Although these gauges are known to be both renormalizable and
unitary, they are plagued by Gribov ambiguities. In a second time, after discussing
the possible lattice implementation of these gauges in Sec. II.1.2, we apply the ST
proposal to CFDJ gauges in Sec. II.2. The core of the procedure consists in a (pseudo)
average over Gribov copies with a nonuniform weight in order to lift their degeneracy.
This provides a continuum formulation of these gauges that consistently deals with
Gribov ambiguities. We present in detail the ST approach and show that, eventually,
the gauge-fixing procedure can be cast under the form of a local field theory. To
achieve this, we introduce the technique of replicas [75], which is commonly used in
the context of disordered systems in statistical field theory. As we shall see, replicas are
an essential ingredient of the (localized) ST procedure as they insure that the resulting
local ST action is a bona fide gauge-fixed version of YM theories. Their consequences is
exhaustively discussed all along the present manuscript. On top of it, our treatment of
Gribov copies introduces also a gauge parameter that controls the lifting of the copies’
degeneracy. Eventually, this lifting parameter acts as a mass term for the various fields.
Remarkably, the resulting gauge-fixed ST action corresponds to a massive extension
of the CFDJ gauges known as the CF action [77], supplemented by a nontrivial replica
sector. We show in Sec. II.3.2 that the ST action is multiplicatively renormalizable in
four dimensions.

The difference between the bona fide gauge-fixed ST action and the CF model lies
in the replica sector. Therefore, Gribov copies effects can be accessed by investigating
the possible effects of the replica sector. This is achieved by comparing the gluon
and ghost correlators obtained from both the ST procedure and the CF model. In
the Landau gauge, where the gluon and ghost sectors are equivalent in both the ST
and the CF cases, the theory admits IR safe RG trajectories under suitable choices
of renormalization prescriptions. It is therefore natural to adapt such renormalization
schemes to the case of the CFDJ gauges, which is done in Sec. II.5. We compute at
one-loop order in perturbation theory the gluon and ghost propagators in both the ST
procedure and the CF model for the whole family of CFDJ gauges. Apart in the Landau
gauge, we observe clear differences between the ST and the CF cases. In particular,
even away from the Landau limit, the gluon propagator remains transverse in the ST
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case, while a longitudinal gluon propagator develops in the CF model. We investigate
in Sec. II.7 the possible presence of IR safe RG trajectories. Although present in both
the ST and the CF cases, these are radically different due to the presence of massless
modes in the replica sector of the ST action that are absent from the CF model. This
highlights another effect of our treatment of Gribov copes. Finally, we end this chapter
in Sec. II.7.4 by opening some leads for further investigations that intend to relate more
directly the role of Gribov copies with the correlators of the present theory.

II.1 Gauge-fixing procedure

II.1.1 Gauge-fixing functional
We consider the following functional

H[A, η, U ] =
∫
x
tr
[(
AUµ

)2
+ U †η + η†U

2

]
, (II.1.1)

where η is an arbitrary N ×N matrix field, g0 is the (bare) coupling constant and we
recall that

AUµ = UAµU
† + i

g0
U∂µU

† , (II.1.2)

with U(x) ∈ SU(N).1 The functional H is a slight generalization of the functional
HLandau:

HLandau = H[A, 0, U ]. (II.1.3)

By analogy with the Landau gauge, we define our gauge condition as (one of) the
extrema of H with respect to U . The gauge equation can be derived along the same
lines as for the Landau gauge, see (I.4.2): performing the gauge transformation U →
V U , with V infinitesimally close to the identity V ∼ 1+ig0λ and making an expansion
in λ: AVµ = Aµ +Dµλ+O(λ2), with the usual covariant derivative

Dac
µ = ∂µδ

ac + fabcAbµ . (II.1.4)

Plugging these expressions into (II.1.1) yields the equation satisfied by the stationary
points of H or, equivalently, to the covariant gauge condition(

∂µA
U
µ

)a
= ig0

2 tr
[
ta
(
Uη† − ηU †

)]
. (II.1.5)

For η = 0 we recover the Landau gauge condition as expected from Eq. (II.1.3). The
condition Eq. (II.1.5) can be used as a gauge equation for all η. However, this would
lead to a field theory that depends on the external η field. Since gauge-invariant
quantities are independent of η, one can equivalently average over all realizations of
η according to a given probability distribution P [η]. In principle, the choice for P [η]

1We recall our conventions for the SU(N) group: the {ta}a=1,...,N2−1 form a basis of the su(N) Lie
algebra and our convention is that tr tatb = δab/2,

[
ta, tb

]
= ifabctc, with fabc the totally antisimmetric

structure constant. The totally symmetric structure constant dabc is defined by: tatb = 1δab/2N +
tc(ifabc + dabc)/2.
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is arbitrary but might lead to additional technical difficulties or even worse, to a non-
renormalizable field theory if P [η] contains derivative terms for instance. In practice
we choose a gaussian weight that introduces a (bare) gauge parameter ξ0:

P [η] = N exp
(
− g2

0
4ξ0

∫
x
tr η†η

)
, (II.1.6)

with N a normalization factor. Note that, the Landau gauge (η = 0) is recovered by
taking ξ0 → 0 in P [η].

Just like in the Landau gauge, for a given A and η, the functional H admits many
extrema Ui corresponding to Gribov copies. In order to gain better insights into the
field theory that describes the gauges (II.1.5), we first neglect these copies (which is at
best justified in the UV regime) and apply the standard FP gauge-fixing procedure.
Setting again U → (1 + ig0λ)U in (II.1.5) and expanding in λ, we obtain the FP
operator

Fac(x, y) =
{
∂µ
(
DU
µ

)ac
+ g2

0
2 tr

(
tatcUη† + ηU †tcta

)}
δ(x− y) , (II.1.7)

with DU
µ ϕ ≡ Dµ[AU ]ϕ = ∂µϕ− ig0[AUµ , ϕ]. The corresponding FP gauge-fixed action,

for fixed η, is

Sηgf [A, c, c̄, h, U ] = SYM[A] + SηFP[A, c, c̄, h, U ],

SηFP[A, c, c̄, h, U ] =
∫
x

{
∂µc̄

aDU
µ c

a + iha
(
∂µA

U
µ

)a
+ g0

2 tr
[
η†R+R†η

] }
,

(II.1.8)

with R = (h − g0c̄c)U . Note in particular that U appears on its own through R
and not only through the gauge transformed gauge field AU . Thus the standard FP
trick, that aims at factorizing out the volume of the gauge group, cannot be applied
here. This is where the choice of the weight P[η] used to average over the external
η field becomes crucial as R (and so the "problematic" U) appears always along η in
Eq. (II.1.8). Indeed, for the gaussian choice of P[η], Eq. (II.1.6), we have∫

DηP[η] e−
g0
2

∫
x
tr[η†R+R†η] ∝ e ξ0

∫
x
tr[R†R], (II.1.9)

which is independent of U , and hence the FP trick can be applied to factorize out the
volume of the gauge group. The resulting effective FP gauge-fixed action is

Sgf [A, c, c̄, h] =SYM[A] + SCFDJ[A, c, c̄, h],

SCFDJ[A, c, c̄, h]=
∫
x

{
∂µ̄c

aDµc
a+iha∂µAaµ+ξ0

[
− (iha)2

2 − g0
2 f

abcihac̄bcc− g
2
0
4
(
fabcc̄bcc

)2
]}
.

(II.1.10)

The gauge-fixing term SCFDJ corresponds to the Curci-Ferrari-Delbourgo-Jarvis gauges,
which were extensively studied in the literature [77, 100, 210, 201, 211]. They corre-
spond to covariant nonlinear gauges (note the difference with the covariant linear
gauges by the presence of the four-ghost term in Eq. (II.1.10)). In particular they were
shown to be renormalizable in four dimensions, and unitary as they possess a nilpotent
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BRST symmetry. However, these gauges are plagued by the presence of Gribov copies
which correspond to the different extrema of the functional (II.1.1). Thus, akin for the
Landau gauge, in order to completely fix the gauge, one may select a unique extremum
of H. As emphasized earlier, up to now, this is not possible in the continuum. In the
next section we discuss the possible implementation of the CFDJ gauges on the lattice.

II.1.2 Lattice implementation of the CFDJ gauges

Covariant gauges are very difficult to implement in lattice simulations because
solving the gauge condition amounts to solve a large set of coupled nonlinear partial
differential equations. The Landau gauge stands as a peculiar case because it can
be formulated as an extremization procedure, which is much easier to implement on
the lattice, provided that the extremization algorithms converge. As presented in
Sec. I.4.3 of the previous chapter, the Landau gauge was successfully implemented on
the lattice by minimization of the functional HLandau and, in turn, was extensively
studied [41, 42, 139, 140, 44, 147, 148, 149, 45]. We saw in the previous section that
the CFDJ gauges also correspond to the extrema of an external functional, namely
H [see (II.1.1)], which slightly generalizes the one used in the Landau gauge. This
thus keeps open the possibility that the CFDJ gauges might be implemented on the
lattice by extrimizing the functional H following the minimization algorithms routinely
employed for the implementation of the Landau gauge. Of course, this would require
to generalize/adapt all the latter to the present case. These consist in algorithms that
minimize HLandau both globally and locally, whose detailed discussion is beyond the
scope of the present thesis. Here, instead, as an illustration, we propose a possible
generalization of the Los Alamos algorithm [51], which is routinely employed to locally
minimize HLandau in lattice gauge-fixing procedure.

Many numerical minimization techniques, such as the Los Alamos algorithm, re-
quire, as a necessary (but not sufficient) condition, that the (discretized) functional to
be minimized be linear in the gauge transformation U at each space-time point. It is
the case for the Landau gauge part ofH (left term on the right hand side of Eq. (II.1.1))
[41], and it is obviously so for the η part. We believe that this is an encouraging point
regarding the feasibility of the algorithm to be presented below. In the following, we
propose a simple and straightforward generalization to the CFDJ gauges of the Los
Alamos (locally minimizing) algorithm.

We restrain ourselves to the SU(2) case. For SU(3), the general strategy consists
in applying successively the minimization algorithm on the three (non-independent)
SU(2) subgroups of SU(3). Introducing the rescaled matrix M(x) = a2g2

0η(x)/2,
the discrete version of the minimizing functional (II.1.1) in terms of the gauge link
WU
µ (x) = U(x)Wµ(x)U †(x+ aµ̂) is, up to an irrelevant constant [41, 51, 209],

Hlatt.[W,M,U ] = Re tr
∑
x

M †(x)U(x)−
d∑

µ=1
WU
µ (x)

 . (II.1.11)

The Landau gauge functional is recovered for η = 0, i.e. M = 0 [41]. Owing to the
linearity of Hlatt. in U at each lattice point, we can use the Los Alamos algorithm by
generalizing it from the Landau gauge case. This algorithm aims at minimizing the
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functional site by site by successive gauge transformations. We first define

B(x) = −M †(x) +
d∑

µ=−d
Wµ(x)U †(x+ aµ̂), (II.1.12)

and
C(x) = 1

4 tr(B(x) +B†(x)) + σa
4 tr[σa(B(x)−B†(x))] , (II.1.13)

where σa=1,2,3 are the Pauli matrices. The Los Alamos algorithm states that applying
iteratively on each lattice site the gauge transformation

Umin(x) = C†(x)√
detC(x)

, (II.1.14)

systematically decreases the functional Hlatt. [212, 98]. In the present case, the only
difference with the Landau gauge is the presence of the M term in the definition of B,
see Eq. (II.1.12). Therefore, the minimization is done for a given η, while we showed
in the last section that the CFDJ gauges are obtained after averaging over the η field
with the gaussian weight (II.1.6). In the lattice version, this yields an average over the
M matrix field with the discretized gaussian weight

Platt.[M ] = exp
{
− 1
ξ0g2

0
tr
∑
x

[
M †(x)M(x)

]}
. (II.1.15)

In conclusion, to compute the averages of an operator O in the CFDJ gauges on the
lattice, one should first simulate a collection of gauge links

{
W

(l)
µ

}
l=1,...Nlinks

with the

discretized YM weight, and a collection
{
M (k)

}
k=1,...Nη

of matrix fieldsM with weight
(II.1.15). Then, apply iteratively the gauge transformation (II.1.14) until a minimum
is reached2. For the same gauge link configuration, repeat the operation for the Nη

configurations of M and average over them. Finally, repeat the whole process for all
simulated link configurations and perform the average over them.

We stress that the previous discussion is far from being an actual proof of the
feasibility of the lattice implementation of the CFDJ gauges. Rather, we aimed at
illustrating how algorithms employed in the Landau gauge could be extended to the
CFDJ gauges with an explicit example. In particular, a definite proof of the fea-
sibility of the previous procedure would require an actual implementation in lattice
simulations. More generally, the Landau gauge implementation requires, on top of
local minimization procedures (akin the one presented above), global ones. We did not
perform the generalization of the global procedures to the present case.

II.2 The CFDJ gauges in the Serreau-Tissier proposal
In this section, we apply the ST proposal to the gauges defined by the extrema of

the functional (II.1.1) in order to formulate a continuum version of the CFDJ gauges
2In practice the lattice is split into odd and even lattice sites. The first step is to apply the

transformation (II.1.14) on all even sites while the odd ones are left untouched. Then a second gauge
transformation is performed that consists in (II.1.14) on odd sites while even ones are left untouched.
This procedure is repeated until a minimum is reached.
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free of Gribov ambiguities. We then prove that the resulting gauge-fixed action is
renormalizable in dimension d = 4.

II.2.1 The Serreau-Tissier gauge-fixing procedure
The functional (II.1.1) admits many extrema (indexed by i in the following) Ui ≡

Ui[A, η] for given A and η. The extrema Ui correspond to the Gribov copies. As
emphasized earlier, the ST proposal consistently deals with these copies by defining
averages through a two-step procedure. First, we perform a pseudo average over the
Gribov copies of a given gauge orbit and we simultaneously average over the η field
with the gaussian weight (II.1.6). The degeneracy of the copies is lifted by using a
nonuniform weight to perform the average over the Gribov copies. More precisely, we
define the first step of the procedure as

〈O[A]〉 =
∫
DηP[η]

∑
iO[AUi ]s(i)e−β0H[A,η,Ui]∫

DηP[η]
∑
i s(i)e−β0H[A,η,Ui]

, (II.2.1)

where the sum runs over all Gribov copies Ui (i.e. all extrema of H), s(i) is the sign
of the determinant of the FP operator (II.1.7) evaluated at the ith copy, and β0 > 0
is a (bare) gauge parameter that controls the lifting over the copies. We shall assume
that the sets of copies that present the same value of H are of zero measure such that
none of the copies contribute degenerately in the sum Eq. (II.2.1) and the Neuberger
problem is thus avoided. The presence of the integration over η with the weight (II.1.6)
introduces another (bare) gauge parameter ξ0 for which the Landau gauge is recovered
when ξ0 = 0. Remark the crucial property that gauge-invariant quantities are blind to
this first-step average

〈Oinv [A]〉 = Oinv [A] , (II.2.2)

as it should be since it corresponds to the average over a given gauge orbit (the one
that supports the fixed field configuration A in Eq. (II.2.2)). Note in particular that,
for this property to hold, the presence of the denominator in the definition (II.2.1) is
mandatory. On the one hand, the peculiar case of β0 = 0 corresponds to a flat weight
over the copies so that their degeneracy is not lifted. According to the property (II.2.2),
due to the cancellation among the FP signs, the case β0 = 0 leads to the indefinite
Neuberger 0/0 form of Eq. (II.2.1) when considering gauge invariant quantities. On
the other hand, the limit β0 →∞ corresponds to select only the absolute minimum of
H and thus generalizes the absolute Landau gauge.

Notice that the way to average over η is not unique. For instance, one could have
performed the η integration after having averaged over the copies, that is

〈O[A]〉′ =
∫
DηP[η]

∑
iO[AUi ]s(i)e−β0H[A,η,Ui]∑

i s(i)e−β0H[A,η,Ui]
. (II.2.3)

As we describe below, once the replicas are introduced, this way of performing the η
integration leads to a more complicated effective gauge-fixed action, and this is not
pursued further in this thesis.

Once the contribution of the Gribov copies has been taken into account in Eq. (II.2.1),
the second step of the ST procedure consists in averaging over the gauge field A with
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the YM weight, that we note hereafter with an overall bar

O[A] =
∫
DAO[A]e−SYM[A]∫
DAe−SYM[A] . (II.2.4)

All in all, the procedure
〈O[A]〉 (II.2.5)

defines average values of quantities in the CFDJ gauges implemented in a Gribov
ambiguity free manner as long as the lifting parameter β0 is strictly positive. In
particular, owing to the denominator in Eq. (II.2.1), the procedure (II.2.5) corresponds
to a genuine gauge-fixing procedure as gauge-invariant quantities are sensible only to
the second step average Eq. (II.2.4), that is, the average performed with the gauge
invariant YM weight.

II.2.2 Field theoretical formulation

Although mandatory for having a bona fide gauge-fixing procedure, the presence
of the denominator in Eq. (II.2.1) makes (II.2.5) nonlocal, and thus requires additional
work to be cast under the form of a local field theory. This is the purpose of this
section following the steps of [74].

Owing to the standard FP procedure, by introducing the auxiliary fields c, c̄, ih
(ghost, antighost and Nakanishi-Lautrup fields), we have the following identity

∑
i

X [A, η, Ui]s(i) =
∫
DUDcDc̄DhX [A, η, U ] e−S

η
FP[AU,c,c̄,h] , (II.2.6)

whereby the sum on the left-hand side runs over all Gribov copies, SηFP has been de-
fined in Eq. (II.1.8), DU is the Haar measure over the gauge group and X [A, η, U ]
is any functional of A, U and η. The sign s(i) was introduced for the purpose
of (II.2.6). In the following, we collect the set of fields U , c, c̄ and h in a single
symbol V for reasons that will soon become clear. Using the identity (II.2.6) for
X [A, η, U ] = O[AU ] exp{−β0H[A, η, U ]} or X [U ] = exp{−β0H[A, η, U ]}, the first step
of the procedure, Eq. (II.2.1), rewrites

〈O[A]〉 =
∫
DVDηP[η]O[AU ] e−S

η
FP[A,V]−β0H[A,η,U ]∫

DVDηP[η] e−S
η
FP[A,V]−β0H[A,η,U ] . (II.2.7)

We get, using (II.1.9) with R = (h− g0c̄c+ β0/g0)U ,

〈O[A]〉 =
∫
DVO[AU ] e−SCF[A,V]∫
DV e−SCF[A,V] , (II.2.8)

with
SCF[A,V] ≡ SCF[AU, c, c̄, h], (II.2.9)
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and where the CF action SCF is given by

SCF[A, c, c̄, h] =SCFDJ[A, c, c̄, h] + Sβ0 [A, c, c̄]

=
∫
x

{
∂µc̄

aDµc
a + iha∂µA

a
µ + β0

[1
2(Aaµ)2 + ξ0c̄

aca
]

+ ξ0

[
− (iha)2

2 − g0
2 f

abcihac̄bcc− g
2
0
4
(
fabcc̄bcc

)2
]}
.

(II.2.10)

It corresponds to the CFDJ action (II.1.10) supplemented by a mass term for the
gluon and ghost fields. Notice that Eq. (II.2.8) involves AU instead of A. Let us
stress the difference between the pure CF model, Eq. (II.2.10), and the CFDJ gauges
implemented through the ST proposal. Averages in the CF model are obtained as

〈O[A]〉CF =
∫
DADcDc̄DhO[A] e−SYM−SCF[A,c,c̄,ih]∫
DADcDc̄Dh e−SYM−SCF[A,c,c̄,ih] , (II.2.11)

while for the ST proposal

〈O[A]〉 =

∫
DA

∫
DV O[AU ] e−SCF[A,V]∫
DV e−SCF[A,V] e−SYM∫
DAe−SYM

. (II.2.12)

Again, the presence of the denominator 1/
∫
DV e−SCF[A,V] in the ST proposal in-

sures that Eq. (II.2.12) is a genuine gauge-fixed theory as opposed to the CF case,
Eq. (II.2.11). However, as noticed earlier, this renders the right hand side of Eq. (II.2.12)
nonlocal in A. In order to bypass this issue, we use the method of replicas [75] that is
commonly used in the context of disordered systems. It consists in rewriting formally
a denominator as

1
X

= lim
n→0

Xn−1

= lim
n→0

n−1∏
k=1

Xk,
(II.2.13)

where n− 1 independent copies of X, indexed by the replica index k, are introduced.
We use this technique to put the expression (II.2.12) under the form of a local field
theory. We begin by rewriting the denominator 1/

∫
DV e−SCF[A,V] as

1∫
DV e−SCF[A,V] = lim

n→0

(∫
DV e−SCF[A,V]

)n−1
. (II.2.14)

Introducing n − 1 independent replicas Vk, indexed hereafter by the replica index k,
we get

1∫
DV e−SCF[A,V] = lim

n→0

∫ n−1∏
k=1

(
DVk e−SCF[A,Vk]

)
. (II.2.15)

Here, the n→ 0 limit is to be understood as the limit of the right-hand side analytically
continued to continuous values of n. We thus finally obtain the first step average,



40 Chapter II. Nonlinear covariant gauges without Gribov ambiguities

Eq. (II.2.8), in the replica formalism

〈O[A]〉 = lim
n→0

∫
DV O[AU ] e−SCF[A,V]

∫ n−1∏
k=1

(
DVk e−SCF[A,Vk]

)
= lim

n→0

∫ n∏
k=1
DVkO[AU1 ] e−SCF[A,Vk],

(II.2.16)

where the choice of the replica 1 is totally arbitrary because of the obvious permutation
symmetry among the replicas. In the following of this manuscript, we shall assume
everywhere that the n→ 0 limit and the path-integral over A commute. Accordingly,
the ST procedure (II.2.5) is formally written as

〈O[A]〉 = lim
n→0

∫
DA

∏n
k=1DVkO[AU1 ]e−S[A,{V}]∫
DAe−SYM[A] , (II.2.17)

with the action S[A, {V}]

S[A, {V}] = SYM[A] +
n∑
k=1

SCF[A,Vk] . (II.2.18)

This action satisfies the identity∫
DAe−SYM[A] ∼

n→0

∫
DA

n∏
k=1
DVk e−S[A,{V}], (II.2.19)

as seen by taking O = 1 in (II.2.17). Using this last property, the ST procedure is put
under the form of a local field theory, with action S, Eq. (II.2.18),

〈O[A]〉 = lim
n→0

∫
DA (

∏n
k=1DVk) O[AU1 ] e−S[A,{V}]∫

DA (
∏n
k=1DVk) e−S[A,{V}] . (II.2.20)

Finally, the volume of the gauge group,
∫
DU , still needs to be factorized out for

perturbative calculations (in order to being able to invert the quadratic part of the
gauge-fixed action and access the free propagators). This is achieved by singularizing
one of the replicas, say the replica 1, by performing the change of variables A→ AU1

and Uk → UkU
−1
1 , ∀ k > 1. Renaming (c1, c̄1, h1) → (c, c̄, h) for later convenience,

Eq. (II.2.20) reduces to

〈O[A]〉 = lim
n→0

∫
D(A, c, c̄, h, {V})O[A] e−S[A,c,c̄,h,{V}]∫
D(A, c, c̄, h, {V}) e−S[A,c,c̄,h,{V}] , (II.2.21)

with D(A, c, c̄, h, {V}) ≡ D(A, c, c̄, h) (
∏n
k=2DVk) and the ST action S[A, c, c̄, h, {V}]

is given by

S[A, c, c̄, h, {V}] = SYM[A] + SCF[A, c, c̄, h] +
n∑
k=2

SCF[A,Vk] . (II.2.22)

To summarize, Eq. (II.2.21) provides a continuum implementation of the CFDJ
gauges, which is free of Gribov ambiguities. In particular, the procedure consists in a
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bona fide gauge-fixing procedure as averages of gauge-invariant observables are equals
to those computed with the YM weight only. For such property to hold, the n → 0
limit is crucial as it accounts for the presence of the denominator in Eq. (II.2.1). The
only assumption made so far was the interchange of the n → 0 limit with the path-
integral over A. Although the writing Eq. (II.2.21) remains somewhat formal, the ST
procedure can be understood as follow: compute averages for fixed n with the ST
action (II.2.22), noted hereafter with square brackets [ . ]. In perturbative calculations
these result in analytic functions of n, to which we then take the n→ 0 limit such as

〈O[A]〉 = lim
n→0

[O [A] (n)] . (II.2.23)

Let us briefly comment the ST action S, (II.2.22). Obviously, the usual CF model
is recovered for n = 1 so that

〈O[A]〉CF = [O [A] (n = 1)] . (II.2.24)

This shows that the CF model cannot correspond to a gauge-fixed version of YM
theories where the Gribov copies were taken into account according to the ST proposal.
Indeed, independence of gauge-invariant quantities w.r.t. the gauge-fixing part requires
to take the limit n → 0. Nevertheless, comparisons of quantities in the n → 0 limit
with n = 1 allow one to conveniently access the effects of our treatment of Gribov
copies.

Note that the replica sector of the ST action (the part
∑n
k=2 SCF[A,Vk]) does not

involve any mixing between different replicas. This is a consequence of our way of
averaging over the η field, Eq. (II.2.1). The study would be different if we would
average over η as

〈O[A]〉′ =
∫
DηP[η]

∑
iO[AUi ]s(i)e−β0H[A,η,Ui]∑

i s(i)e−β0H[A,η,Ui]
. (II.2.25)

Following the same techniques as earlier, see (II.2.6), we get

〈O[A]〉′ =
∫
DηP[η]

∫
DV O[AU ] e−S

η
FP[A,V]−β0H[A,η,U ]∫

DV e−S
η
FP[A,V]−β0H[A,η,U ] . (II.2.26)

In order to perform the η integral, we first need to introduce the replicas yielding

〈O[A]〉′ = lim
n→0

∫
DηP[η]

∫ ( n∏
k=1
DVk

)
O[AU1 ] e−

∑n

k=1 S
η
FP[A,Vk]−β0H[A,η,Uk].

(II.2.27)
Using again (II.1.9), now with R =

∑n
k=1(β0/g0 + hk − g0c̄kck)Uk, eventually leads to

〈O[A]〉′ = lim
n→0

∫ ( n∏
k=1
DVk

)
O[AU1 ] e−

∑n

k=1 SCF[A,Vk]−
∑

k 6=l Sk,l , (II.2.28)

with

Sk,l=ξ0tr
{
U−1
k

[
β0

(
ck c̄k+c̄lcl−

hk+hl
g0

−β0
g2

0

)
−hkhl−g2

0ck c̄k c̄lcl+g0 (hk c̄lcl+ck c̄khl)
]
Ul

}
.

(II.2.29)
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In particular, this introduces couplings between different replicas in the bare action.
This is a common feature in disordered systems (e.g. spin glasses) [75]. Here this yields
a much more complicated theory and this way of performing the integration over η
was not pursued further.

II.3 The ST action
In the last section we applied the ST proposal to the CFDJ gauges. Eventually, by

introducing the replicas, we recast the procedure into a form suited for the use of local
quantum field theory techniques. In particular, accessing averages in the ST gauge-
fixed theory amounts to: first compute them with the ST action (II.2.22), and then
perform the limit of vanishing replica number. This implies that the computations are
to be performed for fixed n. In this section, we are thus lead to investigate further
the ST which, here and in the following, is always considered for finite n. We first
rewrite the ST action under an equivalent and elegant supersymmetric (SUSY) form.
This allows one to exhibit nontrivial symmetries of the theory. Exploiting the latter,
we prove that it is renormalizable in four dimensions.

II.3.1 Supersymmetric formulation of the CF action
It is known that the CF action (II.2.10) can be recast into a SUSY form [202]. It

is therefore not surprising that the ST action (II.2.22) also admits such a formulation
[74, 98], that we now review. We start from the CF action evaluated at AU (that is
for the replica sector of the ST action, see (II.2.22)) and we recast it under a more
symmetric form by introducing ĥa = iha + g0

2 f
abcc̄bcc

SCF =
∫
x

{
β0
2 (AU,aµ )2 + 1

2
(
∂µc̄

aDU
µ c

a +DU
µ c̄

a∂µc
a
)

+ ĥa∂µA
U,a
µ + ξ0

[
β0c̄

aca − (ĥa)2

2 − g2
0
8
(
fabcc̄bcc

)2 ]}
,

(II.3.1)

where AU,a = (AU )a and we recall that DU
µ ϕ = ∂µϕ− ig0

[
AUµ , ϕ

]
. We then introduce

a couple of Grassmannian coordinates (θ, θ̄) = θ that satisfy θ2 = θ̄
2 = θθ̄ + θ̄θ = 0.

The Grassmann space spanned by θ is taken to be curved and its geometry is defined
by its line element ds2 = gMNdNdM = 2gθθ̄dθ̄dθ, where the Grassmann metric gMN

is given by [202]

gθ̄θ = −gθθ̄ = β0θ̄θ + 1 ,

gθ̄θ = −gθθ̄ = β0θ̄θ − 1 .
(II.3.2)

Accordingly, one defines the invariant integration measure∫
θ

=
∫
dθdθ̄ g1/2(θ, θ̄) , (II.3.3)

with
g1/2(θ, θ̄) = β0θ̄θ − 1, (II.3.4)
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such that ∫
θ

1 = β0. (II.3.5)

On the superspace (x, θ, θ̄), made of the d-dimensional Euclidean space supplemented
by the Grasmmann space, one defines the SU(N) supermatrix field

V(x, θ) = exp
{
ig0
(
θ̄c+ c̄θ + θ̄θĥ

)}
U. (II.3.6)

Let us consider now the following SUSY nonlinear (NL) sigma model defined on the
superspace (x, θ)

SSUSY[A,V]= 1
g2

0

∫
x,θ

tr
{
DµV†DµV + ξ0

2 g
MN∂NV†∂MV

}
, (II.3.7)

where DµV = ∂µV+ ig0VAµ. Plugging the definition (II.3.6) into (II.3.7) and perform-
ing the Grassmann integration, one gets that [98]

SSUSY[A,V] = SCF[AU , c, c̄, h]. (II.3.8)

This relation makes obvious the interest of introducing V (II.3.6). Finally, for later
purposes, it is useful to rewrite, again, Eq. (II.3.7) as

SCF[A,V] =
∫
x,θ

{1
2
(
Laµ −Aaµ

)2
+ ξ0

4 g
MNLaNL

a
M

}
, (II.3.9)

where we introduced the vector fields

Lµ = i

g0
V†∂µV and LM = i

g0
V†∂MV (II.3.10)

which belong to the adjoint representation of SU(N). Aspects of this SUSY formulation
for the CF model were discussed in great details in [202]. In particular, it is worth
mentioning the geometrical interpretation of the ST lifting parameter β0 that appears
here as the curvature of the Grassmann space.

The action (II.3.7) inherits the Grasmann subspace isometries given by the in-
variance under the transformations according to the five independent Killing vectors
χM

χθ = as(1 + β0θ̄θ) + θ̄at − θac
χθ̄ = as̄(1 + β0θ̄θ) + at̄θ + θ̄ac,

(II.3.11)

where as, as̄, at, at̄, ac are free parameters, see [202] for details. The SUSY action
(II.3.7) is invariant under the linear transformations Vk → Vk +χM∂MVk and so is the
associated quantum effective action ΓSUSY [118]. Eventually, these isometries insure
that ΓSUSY is covariant in Grassmann coordinates, that is, covariant derivatives3 are
contracted with the metric4 gMN and integrals over the Grassmann subspace come
with the proper measure Eq. (II.3.3).

3In the present case under consideration, covariant derivatives reduce to standard derivatives ∂M .
4In principle, contractions with the Riemann tensor RMN should also be considered. However, this

situation is not encountered in the present case.
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In conclusion, the ST action can be expressed according to the SUSY form of the
CF action as

S[A, c, c̄, h, {V}] =SYM[A] + SCF[A, c, c̄, h] +
n∑
k=2

SSUSY[A,Vk],

=
∫
x

{1
4(F aµν)2 + β0

2 (AU,aµ )2 + ξ0β0c̄
aca + ∂µc̄

aDµc
a + iha∂µA

a
µ

+ ξ0

[
− (iha)2

2 − g0
2 f

abcihac̄bcc− g
2
0
4
(
fabcc̄bcc

)2
]}

+
n∑
k=2

1
g2

0

∫
x,θ

tr
{
DµV†DµV + ξ0

2 g
MN∂NV†∂MV

}
,

(II.3.12)

The ST action thus corresponds to a set of n − 1 replicated gauged SUSY NL-sigma
models coupled to a gauge-fixed YM field with gauge-fixing action SCF[A, c, c̄, h]. Each
replica k of NL-sigma model comes with its own set of Grassmann variables (θk) and
its corresponding isometries.

II.3.2 Renormalizability of the ST action

II.3.2.1 Symmetries

We now list the symmetries of the ST action. This will allow us to constrain the
UV divergences of the theory and eventually to prove its multiplicative renormaliz-
ability. We begin by enumerating the linear symmetries. There are the global SU(N)
color symmetries and the isometries of the Euclidean space R4. The ghost symmetry
corresponds to the invariance of the ST action under

c→ eiεc, c̄→ e−iεc̄, (II.3.13)

yielding the ghost number conservation. There are the isometries associated to each
curved Grassmann space replica that were described above. As emphasized earlier,
they insure that the effective action is covariant on each Grassmann subspace. There
is also a discrete symmetry under the permutation of the replicas: Vk ↔ Vl for k, l =
2, . . . , n.

The ST action (II.3.12) also admits nonlinear symmetries which yield Slavnov-
Taylor identities. One, inherited from the initial gauge symmetry, is the modified
BRST symmetry ŝ of the CF model presented in the previous chapter, see (I.5.2),
that can be enlarged to the SUSY sector. For simplicity, from now on, we refer to this
enlarged modified BRST symmetry as the BRST symmetry and denote it s. The fields
of the ST action transform under s as

sAaµ = ∂µc
a + g0f

abcAbµc
c,

sca = −g0
2 f

abccbcc,

sc̄a = iha,

siha = β0c
a

(II.3.14)
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and
sVk = −ig0Vkc , k = 2, . . . , n . (II.3.15)

In the sector (A, c,Vk) this simply corresponds to a gauge transformation with Grass-
mann parameter ca. In particular, s2 = 0 when restricted to this sector while its
nilpotency is softly broken by the mass term β0 on the sector (c̄, ih). Accordingly, we
define the t transformation such that s2 = β0t, whose explicit action on the primary
fields is given by

tc̄a = ca,

tiha = −g0
2 f

abccbcc
(II.3.16)

and tAaµ = tca = tVk = 0.
There is a last family of symmetries that concern only the SUSY sector. They

consist in global left color rotations of the NL-sigma model fields Vk → VL,kVk with
VL,k ∈ SU(N), whose generators δak are defined by [98]

δakVl = iδklt
aVl, (II.3.17)

so that each replica superfield can be transformed independently from the others. This
last family of symmetries thus contains (N2−1)×(n−1) independent generators. Note
that, these symmetries are actually nonlinear since the Vk are superfields constrained
to belong to the SU(N) group. To make this more explicit, it turns out to be more
convenient to use the following linear parametrization for the SU(N) superfields given
in terms of 2N2 superfields

(
a0
k, b

0
k, a

a
k, b

a
k

)
:

Vk = (a0
k + ib0k)1 + i(aak + ibak)ta. (II.3.18)

The constraint that Vk ∈ SU(N) implies that there are only N2 − 1 unconstrained
superfields among the 2N2 ones appearing in Eq. (II.3.18). We choose the aak as the
N2 − 1 unconstrained superfields while a0

k, b0k, and bak are functions of aak such that Vk
in Eq. (II.3.18) belongs to the SU(N) group. In practice we will not need their explicit
expressions. In this representation, the generators of the (N2− 1)× (n− 1) global left
color rotations act on the superfields aak as [98]

δaka
b
l = δkl

(
δaba0

k + 1
2f

abcack −
1
2d

abcbck

)
(II.3.19)

and on the constrained ones as

δaka
0
l = −δkl

aak
2N , δakb

0
l = −δkl

bak
2N ,

δakb
b
l = δkl

(
δabb0k + 1

2f
abcbck + 1

2d
abcack

)
.

(II.3.20)

For later use, we also write down the BRST action on those superfields

saak = g0

(
−a0

kc
a + 1

2f
abcabkc

c + 1
2d

abcbbkc
c
)
,

sa0
k = g0

2N abkc
b , sb0k = g0

2N bbkc
b ,

sbak = g0

(
−b0kca + 1

2f
abcbbkc

c − 1
2d

abcabkc
c
)
.

(II.3.21)
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We mention that the generators of the nonlinear symmetries considered above induce
a closed (super)algebra:

{s, s} = 2β0t ,

[δak , δbl ] = iδklf
abcδck ,

[δak , s] = [δak , t] = [s, t] = [t, t] = 0 .
(II.3.22)

We are now in position to prove the perturbative renormalizability in d = 4 of
the ST action. Our proof relies on standard arguments where, using the symmetries
listed above, we constrain the possible divergent terms Γdiv appearing in the quantum
effective action Γ [118]. First, we introduce sources for all independent fields and their
variations under the symmetries

S1 =
∫
x

{
JaµA

a
µ+η̄aca+c̄aηa+ihaMa+K̄a

µsA
a
µ+L̄asca

}
+

n∑
k=2

∫
x,θ

{
P 0
k a

0
k + P ak a

a
k +R0

kb
0
k +Rakb

a
k

+Q̄0
ksa

0
k + Q̄aksa

a
k + T̄ 0

k sb
0
k + T̄ ak sb

a
k

}
. (II.3.23)

Since tc̄a = ca, tiha = −g0
2 f

abccbcc = sca there is no need to introduce associated
independent sources for the t variations. The same is true on the SUSY sector
for s2, sδak = δaks, and δakδ

b
l which can be fully expressed in terms of either the

(super)fields themselves or their variations under s or δak , see Eq. (II.3.22). From
Eq. (II.3.23) and the ST action, we define the connected generating functional W =
ln
∫
D(A, c, c̄, h, {V}) e−S+S1 . By performing a Legendre transform of W with re-

spect to the sources Jaµ , η̄a, ηa, Ma, P ak , we get the 1-PI vertex generating func-
tional or quantum effective action Γ in presence of sources for the composite fields
a0
k, b

0
k, b

a
k, sA

a
µ, sc

a, sa0
k, saak, sb0k, sbak associated to the ST action.

Γ inherits all the linear symmetries of the ST action [118]. In particular, ghost
number conservation insures that all terms belonging to Γ have zero ghost number.
We recall that each replica superspace comes with its own set of Grassmann variables
and so its own set of isometries. The constraints induced by the nonlinear symmetries
are more complicated. To handle them we follow the standard procedure of [118]
and introduce the renormalized transformations s̃, t̃, δ̃ak defined by their action on the
primary fields

s̃Aaµ = − δΓ
δK̄a

µ

, s̃ca = − δΓ
δL̄a

, s̃aak = − δθΓ
δQ̄ak

s̃c̄a = iha , s̃iha = β0c
a,

(II.3.24)

where we have defined the covariant functional derivative δθΓ/δφ = (g−1/2)δΓ/δφ with
any superfield φ, and g is the determinant of the Grassmann metric defined in (II.3.3).
This accounts for the curved Grassmann directions. We also define

t̃c̄a = ca , t̃iha = − δΓ
δL̄a

(II.3.25)
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and
δ̃aka

b
l = δkl

(
−δab δθΓ

δP 0
k

+ 1
2f

abcack + 1
2d

abc δθΓ
δRak

)
(II.3.26)

with all other variations being zero.
The original symmetries sS = tS = δakS = 0 imply the following Zinn-Justin

equations

s̃Γ =
n∑
k=2

∫
x,θ

{
P 0
k

δθΓ
δQ̄0

k

+R0
k

δθΓ
δT̄ 0

k

+Rak
δθΓ
δT̄ ak

}
, (II.3.27)

t̃Γ = 0 , (II.3.28)

and

δ̃akΓ =
∫
x,θ

{ 1
2N

(
P 0
k a

a
k −R0

k

δθΓ
δRak

− Q̄0
k

δθΓ
δQ̄ak

− T̄ 0
k

δθΓ
δT̄ ak

)
+
(
Rak

δθΓ
δR0

k

+ Q̄ak
δθΓ
δQ̄0

k

+ T̄ ak
δθΓ
δT̄ 0

k

)

+ fabc

2

(
Rbk

δθΓ
δRck

+ Q̄bk
δθΓ
δQ̄ck

+ T̄ bk
δθΓ
δT̄ ck

)
− dabc

2

(
Rbka

c
k + Q̄bk

δθΓ
δT̄ ck
− T̄ bk

δθΓ
δQ̄ck

)}
.

(II.3.29)

We now use these equations in order to constrain the possible divergent terms arising
in Γ.

II.3.2.2 Constraining the UV divergences

We note Γdiv =
∫
d4xLdiv(x) the divergent part of the effective action and define

Ldiv(x) the most general local Lagrangian density which, by power counting, includes
operators of mass dimension lower than or equal to 4 compatible with the symmetries
of the problem. Moreover, we shall assume that Γdiv can be written under the form of
a (local) series in the various fields.

Γdiv must satisfy the symmetry identities Eqs. (II.3.27)–(II.3.29) that we use as
constraints on the possible terms that appear in Ldiv(x). Listing all the possible
terms appearing in Ldiv(x) is straightforward but lengthy and not illuminating, so we
present the key arguments. First, note that Grassmann variables have mass dimension
−1. Indeed, the Grassmann metric g must be dimensionless which implies that [θ̄] =
[θ] = −1. The identities

∫
dθ θ =

∫
dθ̄ θ̄ = 1 further imply that [dθ] = [dθ̄] = 1.

Hereby, for the terms of the form
∫
θ L2(x, θ),

∫
θ,θ′ L3(x, θ, θ′) be of mass dimension

lower than or equal to 4, the Lagrangian densities L2 and L3 must be respectively of
mass dimension lower than or equal to 2 and 0. Recalling that s is of mass dimension 1
and of ghost number 1, with the same kind of reasoning we deduce the mass dimension
and ghost number of the fields, sources, and Grassmann coordinates that we resume
in Table II.1. Let us present an example in order to illustrate the strategy. We list
the possible terms appearing in Γdiv that involve the source K̄a

µ and which are of
mass dimension lower than or equal to 4. A first possibility is g̃K̄a

µf
abcAbµc

c, where
g̃ is an unknown renormalization constant. Another possibility is κ1K̄

a
µ∂µc

a with κ1
another unknown renormalization constant. By inspection of Table II.1, using power
counting, ghost number conservation, Euclidean covariance and the isometries of the
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A c c̄ ih a K̄ L̄ P R Q̄ T̄ θ ∂θ dθ θ̄ ∂θ̄ dθ̄

dim. 1 1 1 2 0 2 2 2 2 1 1 -1 1 1 -1 1 1
ghost nb. 0 1 -1 0 0 -1 -2 0 0 -1 -1 1 -1 -1 -1 1 1

Table II.1: Mass dimension and ghost number of the fields, sources, and Grassmann
coordinates.

replica Grassmann spaces, these are the only possible couplings of K̄ with the fields
A, c̄, c, ih, a. For instance, power counting tells us that the only possibility to couple
K̄µ to ih is through the combination ihK̄µ without additional derivatives, though it
breaks covariance and ghost number conservation. One might have though to include
Grassmann coordinates: θθ̄ih∂µK̄µc which is of mass dimension 4, ghost number 0 and
satisfies the Euclidean covariance. However Grassmann isometries implies that such
an operator must appear in Γ with proper integration measure, that is, of the form∫
θ L2(x, θ). In L2(x, θ), only the terms of mass dimension lower than and equal to 2
contribute to Γdiv. Hence, K̄µ cannot be coupled to ih in Γdiv. Similarly, covariance
requires that possible couplings to the superfields a are of the form K̄µ∂µa, which is of
mass dimension 3, while Grassmann isometries require that such a term appear in Γ
under the form of

∫
θ L2(x, θ). Accordingly, there is no term in Γdiv that couples K̄ to

the superfields a. Along the same lines, one deduces that it is not possible to couple
K̄ to c̄ nor to any sources of Table II.1.

Eventually, the inspection of Table II.1 shows that terms in Γdiv are at most linear
in the (super)sources and we can thus write

Γdiv = Γ0 − Γ1, (II.3.30)

where Γ0 and Γ1 are respectively independent of and linear in the sources. According
to the definitions (II.3.24), we define

Γ1 =
∫
x

{
K̄a
µs̃A

a
µ + L̄as̃ca

}
+

n∑
k=2

∫
x,θ

{
P 0
k ã

0
k +R0

k b̃
0
k +Rak b̃

a
k + Q̄0

kX
0
k + Q̄aks̃a

a
k + T̄ 0

kY
0
k + T̄ ak Y

a
k

}
.

(II.3.31)

Note however that, the unknown functions s̃Aaµ, s̃ca, and s̃aak are formally defined in
Eq. (II.3.24) but here with Γ→ Γdiv. ã0

k, b̃
0
k, b̃

a
k are unknown functions of the uncon-

strained aak fields and stand as the renormalized versions of the functions a0
k, b

0
k and bak.

Note that a0
k, b

0
k and bak are of mass-dimension zero, null ghost number, and depend

only on the unconstrained aak superfields.5 Along the same lines, we have introduced
X0
k , Y

0
k and Y a

k to account for the renormalized versions of sa0
k, sb

0
k, sb

a
k. A priori,

since s̃ is unknown apart from its formal definition Eq. (II.3.24), akin for the renor-
malized functions ã0

k, b̃
0
k, b̃

a
k, nothing guaranties at this stage that the renormalized

functions X0
k , Y

0
k , Yk are given by s̃ã0

k, s̃b̃
0
k, s̃b̃

a
k.

5Indeed, any term that depends on the other fields would require to come along with some com-
bination of θ, θ̄ to insure a zero mass-dimension. Such combination will violate either ghost number
conservation or the Grassmannian isometries. For instance a term of the form A2

µθθ̄ is consistent with
zero mass dimension and ghost number, but violates the isometry under the Killing vector χ =

(
−θ, θ̄

)
.
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We are now looking for the expressions of the unknown transformations s̃, t̃, δ̃ak in
terms of the primary fields. Let us first consider the case of δ̃ak . Applying its formal
definition (II.3.26) to Γdiv with Γ1 given by Eq. (II.3.31), we immediately get from the
source terms

δ̃aka
b
l = δkl

(
δabã0

k + 1
2f

abcack −
1
2d

abcb̃ck

)
. (II.3.32)

Since ã0
k, b̃

0
k, b̃

a
k are functions of only the aak, this last equality does consist in a

(implicit) definition of the transformation δ̃ak in terms of the fundamental fields aak.
Inserting Eq. (II.3.31) in the symmetry identity (II.3.29) and extracting the terms
linear in P 0

k , R0
k, and Rak, we find that

δ̃ak ã
0
l = −δkl

aak
2N , δ̃ak b̃

0
l = −δkl

b̃ak
2N ,

δ̃ak b̃
b
l = δkl

(
δabb̃0k + 1

2f
abcb̃ck + 1

2d
abcack

)
.

(II.3.33)

The superfield aak along with the unknown functions ã0
k, b̃

0
k, b̃

a
k can be grouped alto-

gether into a matrix superfield

Ṽk = (ã0
k + ib̃0k)1 + i(aak + ib̃ak)ta. (II.3.34)

From (II.3.32) and (II.3.33), we get that

δ̃akṼl = iδklt
aṼl , (II.3.35)

which shows that Ṽk transforms linearly under a transformation of SU(N). It follows
that

Ṽ†kṼk = Z1, (II.3.36)

with Z a constant.
We now move to the case of the renormalized BRST transformation s̃. We already

saw above that the most general terms that can be coupled to the source K̄µ in Γdiv

are given by κ1K̄
a
µ∂µc

a and g̃K̄a
µf

abcAbµc
c, so that using (II.3.24)

s̃Aaµ = κ1∂µc
a + g̃fabcAbµc

c. (II.3.37)

Similar considerations lead to6

s̃ca = − g̃2f
abccbcc. (II.3.38)

Along the same lines, one eventually gets the most general form of the renormalized
BRST symmetry acting on the matrix superfield Ṽk [98]

s̃Ṽk = −ig̃Ṽkc , k = 2, . . . , n . (II.3.39)
6More precisely, by the same kind of considerations one arrives at the conclusion that s̃ca is of the

form s̃ca = − g̃
′

2 f
abccbcc, where g̃

′
is a priori a new renormalization constant, independent of g̃. Then,

by investigating the constraint Eq. (II.3.27), particularly the K̄ dependent part, one realizes that this
constraint reduces in this sector to s̃s̃Aaµ = 0. Applying twice the transformation s̃ to Aaµ and isolating
the ∂µc part, one immediately gets 0 = κ1f

abc
(
g̃ − g̃

′
)
∂µc

bcc, yielding g̃
′

= g̃.
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From the action of the renormalized symmetries on the elementary fields Eqs. (II.3.37),
(II.3.38), (II.3.39) and Eq. (II.3.35), we are now able to determine the form of Γ0, which
satisfies

s̃Γ0 = t̃Γ0 = δ̃akΓ0 = 0. (II.3.40)

Using the fact that, by power counting, there can be at most two sets of Grassmann
variables, we parametrize the solution as

Γ0 =
∫
x
L1(A, c, c̄, h) +

n∑
k=2

∫
x,θ
L2(A, c, c̄, h, ak(θ)) +

n∑
k,k′=2

∫
x,θ,θ′

L3(ak(θ), ak′(θ′)).

(II.3.41)

Power counting implies that L3 is of mass dimension zero. Therefore, it cannot involve
the fields A, c, c̄, or h. Similarly, it cannot involve any derivatives ∂µ or ∂M . It
is thus a potential term for the superfields ak and ak′ (or equivalently Ṽk and Ṽk′).
The only possible such term compatible with the symmetry (II.3.35) is a function of
Ṽ†kṼk and Ṽ†k′Ṽk′ , which is trivial due to (II.3.36) so that L3 = 0. Notice that, in the
sector (A, c, Ṽk), the transformation s̃ is, up to a multiplicative factor κ1, a (left) gauge
transformation with Grassmannian gauge parameter ca and effective coupling constant
g̃/κ1. A solution to s̃L1 = 0 is thus a YM-like term with an appropriate field-strength
tensor, see below. Apart from this term, the combinations

X = β0
2κ1

(
Aaµ

)2
− s̃

(
Aaµ∂µc̄

a
)
, (II.3.42)

Y = β0c̄
aca − s̃

[
c̄a
(
iha + g̃

2f
abcc̄bcc

)]
(II.3.43)

are the only independent solutions to s̃L1 = 0 with the correct dimension, symmetries,
and ghost number. Thus

L1 = Z1
4 (F̃ aµν)2 + κ2X + κ3

2 Y, (II.3.44)

with
F̃ aµν = ∂µA

a
ν − ∂νAaµ + g̃

κ1
fabcAbµA

c
ν . (II.3.45)

Explicitly, one has

L1 =Z1
4 (F̃ aµν)2+κ2

{
β0
2κ1

(Aaµ)2 − iAaµ∂µha + ∂µc̄
as̃Aaµ

}
+ κ3

{
β0c̄

aca + (ha)2

2 − g̃

2f
abcihac̄bcc − g̃2

4 (fabcc̄bcc)2
}
,

(II.3.46)

with s̃Aaµ given in (II.3.37). This is trivially invariant under t̃ and δ̃ak .
Let us now consider the NL-sigma model sector L2. The constraint δ̃akL2 = 0 is

accounted for by using the SUR(N) invariants Ṽ†k∂ . . . ∂Ṽk, with an arbitrary number
of bosonic and Grassmannian derivatives, as building blocks. The term with no deriva-
tives is trivial due to (II.3.36). The isometries of the embedding superspace and the
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fact that L2 can only contain local terms of mass dimension lower than 2 restricts the
set of possible invariants to (M = θ, θ̄)

L̃k,µ = i

g̃
Ṽ†k∂µṼk and L̃k,M = i

g̃
Ṽ†k∂M Ṽk . (II.3.47)

Both L̃k,µ and L̃k,M have mass dimension one. Their ghost numbers are 0 for L̃k,µ, 1
for L̃k,θ̄ and −1 for L̃k,θ. The variation of L̃k,µ under s̃ is

s̃L̃ak,µ = Z∂µc
a + g̃fabcL̃bk,µc

c (II.3.48)

It follows that L̃k,µ/Z −Aµ/κ1 transforms covariantly

s̃

(
L̃ak,µ −

Z

κ1
Aaµ

)
= g̃fabc

(
L̃bk,µ −

Z

κ1
Abµ

)
cc. (II.3.49)

Similarly, L̃k,M transforms covariantly:

s̃L̃ak,M = −g̃fabcL̃bk,Mcc. (II.3.50)

The most general dimension-two Lagrangian L2 satisfying s̃L2 = 0 is thus

L2 = Z2
2

(
L̃ak,µ −

Z

κ1
Aaµ

)2
+ Z3

4 gMN L̃ak,N L̃
a
k,M (II.3.51)

We see that the most general divergent part compatible with the symmetries eventually
reads

L = Z1
4 (F̃ aµν)2+κ2

{
β0
2κ1

(Aaµ)2 − iAaµ∂µha + ∂µc̄
as̃Aaµ

}
+ κ3

{
β0c̄

aca + (ha)2

2 − g̃

2f
abcihac̄bcc − g̃2

4 (fabcc̄bcc)2
}

+
n∑
k=2

∫
x,θ

{
Z2
2

(
L̃ak,µ −

Z

κ1
Aaµ

)2
+ Z3

4 gMN L̃ak,N L̃
a
k,M

}
,

(II.3.52)

which has the same form as the bare Lagrangian (II.3.12) (see also (II.3.9)). This
demonstrates the (multiplicative) renormalizability of the present theory. So far we
have eight independent renormalization constants κ1,2,3, Z1,2,3, Z, and g̃. As described
in Appendix B.1, the original symmetry between the replicas k = 1 and k ≥ 2 leads
to the relations

Z2Z
2 = κ1κ2 and Z3Z

2 = κ3 (II.3.53)

which reduce the number of independent renormalization constants to six. In partic-
ular, it follows that all replicas contribute a mass term for the gauge field

Z2Z
2

2κ2
1

∫
θ
(Aaµ)2 = β0κ2

2κ1
(Aaµ)2, (II.3.54)

identical to the one in (II.3.46). The total A2 contribution is thus proportional to n,
as expected from the replica symmetry.
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Notice that the proof is valid for arbitrary n and does not rely on taking the limit
n → 0 (though the renormalization factors might depend on n and actually does, see
below). It is a crucial point for the consistency of the present approach. Indeed, one
may have though that, since the ST proposal corresponds to a gauge-fixing procedure
only for n → 0, it would be sufficient to have proved the renormalizability only in
this limit. However, as emphasized above, in computing averages, we should first work
in the finite n theory and eventually take the limit n → 0 (and in particular, the
perturbative series is constructed for finite n).

II.4 Perturbation theory
We now intend to compute the basic correlation functions of the CFDJ gauges

in perturbation theory. As we saw earlier, the ST proposal requires to first compute
these correlation functions for finite n with the ST action (II.3.12) and ultimately to
perform the limit n → 0. In the last section, we have proved that the ST action
is multiplicatively renormalizable for finite n allowing us to construct a meaningful
perturbative series. In this section, we compute the various one-loop contributions
to the two-point vertex functions of the present theory. To do so, we first derive the
Feynman rules corresponding to the SUSY formulation of the ST action and go through
actual calculations. As a check of our proof of renormalizability we extract the various
divergent parts arising in the loop contributions to the two-point vertex functions and
show how they can be absorbed in the renormalization constants introduced in the
previous section. Finally, we present also the calculations performed in the non-SUSY
formalism, see Eq. (II.2.22), that we used to check our computations.

II.4.1 Feynman rules
We are primarily interested in computing at one-loop order the various two-point

vertex functions defined as the second derivatives of the effective action Γ at fixed n:

ΓXY (p, θ, θ′) = δ
(2)
θ Γ

δX(p, θ)δY (−p, θ′)

∣∣∣∣∣
0
, (II.4.1)

where X and Y denote any of the (super)fields, the subscript 0 means that the deriva-
tive is evaluated at vanishing fields, and δθ/δX is the covariant functional derivative
defined in the previous section if X is a superfield, and reduces to a standard functional
derivative otherwise.

We use the exponential representation of SU(N) matrix superfield. Accordingly,
we introduce the superfield Λak for each replica, such that

Vk(x, θk) = exp [ig0t
aΛak(x, θk)] . (II.4.2)

In the SUSY formulation that we are considering here, the superfields Λak stand as the
basic fields in terms of which we want to derive the Feynman rules. To access the
relevant ones for one-loop order calculations, we need to expand Vk(x, θk) in powers
of g0Λk up to order g2

0 in the SUSY part of the ST action, Eq. (II.3.12). In practice,
we work in momentum Euclidean space with the Fourier convention ∂µ → −ipµ. Since
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the Grassmann spaces are curved, it is not useful to introduce the associated Fourier
variables. The first step is to access the various free or tree-level propagators obtained
by inversion of the two-point vertex functions. For instance, in the ghost sector of the
ST action (II.3.12), we obtain the bare tree-level two-point ghost vertex function

Γcc̄(p) = p2 + β0ξ0, (II.4.3)

which can be trivially inverted to get the free (bare) ghost propagator

[
ca(−p) c̄b(p)

]
0

= δab

p2 + β0ξ0
, (II.4.4)

where the square brackets mean that we are working at finite n and the subscript
0 denotes an average with the quadratic part of the action (II.3.12). On the other
hand, the quadratic part of the action (II.3.12) couples the different fields in the
sector (A, ih,Λk) and therefore its inversion is not trivial. Nevertheless, spacetime and
Grassmann isommetries imply the following decomposition of the one-loop two-point
vertex functions in the (A, ih,Λk) sector7

ΓAµAν (p) = P Tµν(p)ΓT (p) + PLµν(p)ΓL(p) (II.4.5)

and
ΓihAµ(p) = −ΓAµih(p) = ipµΓihA(p), (II.4.6)

where we introduced the longitudinal and transverse projectors PLµν(p) = pµpν/p
2,

P Tµν(p) = δµν − pµpν/p2. We define the covariant Dirac delta function on the curved
Grassmann space that satisfies

∫
θ δ(θ, θ

′)f(θ) = f(θ′).8 In particular, one has
δθX(θ)/δX(θ′) = δ(θ, θ′) for a given superfield X. We also define the Laplace operator
on the curved Grassmann space �θ = 1√

g(θ)
∂M
√
g(θ)gMN∂N that satisfies the identity

�θδ(θ, θ′) = −2+2β0δ(θ, θ′).9 This definition of the Laplace operator corresponds to a
natural extension to the case of a curved superspace of the formulas usually used when
considering curved space-time, e.g. in General Relativity, [213]. With these definitions,
and using further the replica symmetry, the two-point vertex functions involving the
superfields read

ΓΛkΛl(p, θ, θ
′) = δkl

[
Γ1(p)δ(θ, θ′) + Γ2(p)�θδ(θ, θ′)

]
+ (δkl − 1)Γ3(p) (II.4.7)

and
ΓΛkAµ(p, θ) = −ipµΓ4(p), (II.4.8)

Note that we have extracted everywhere a unit matrix in color space. These two-point
vertex functions can be grouped altogether in a matrix representation

7Possible non zero ΓΛkih term can only appear at least at two-loop order.
8Explicitly it is defined as δ(θ, θ′) = g−1/2(θ) (θ̄ − θ̄′)(θ − θ′).
9Explicitly, �θ = 2β0(θ∂θ + θ̄∂θ̄) + 2(1− β0θ̄θ)∂θ∂θ̄.
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Γ(2) =

ΓTP Tµν + ΓLPLµν −ipµΓihA ipµΓ4
ipνΓihA Γihih 0
−ipνΓ4 0 δkl

[
Γ1δ(θk, θ′l) + Γ2�θkδ(θk, θ

′
l)
]

+ (δkl − 1)Γ3

 .
(II.4.9)

This matrix representation makes sense only for n > 0 due to the presence of the n−1
replicas. On the other hand, for n = 1, which corresponds to the usual CF model, all
the SUSY sector is absent.

At tree-level, the scalar functions ΓT , ΓL, ΓihA and Γ1,...,4 are trivially extracted
from the quadratic part of the action Eq. (II.3.12) and we find

ΓT (p) = p2 + nβ0

ΓL(p) = nβ0

ΓihA(p) = 1
Γihih(p) = −ξ0

Γ1(p) = p2

Γ2(p) = ξ0/2
Γ3(p) = 0
Γ4(p) = 1.

(II.4.10)

Details of the inversion of the two-point vertex matrix Γ(2) is postponed to Appendix D.
After inversion, we obtain the remaining (bare) tree-level propagators of the ST action:

[
Aaµ(−p)Abν(p)

]
0

= δab
(
P Tµν(p)
p2 + nβ0

+
ξ0P

L
µν(p)

p2 + β0ξ0

)
, (II.4.11)

[
iha(−p)ihb(p)

]
0

= −β0δ
ab

p2 + β0ξ0
, (II.4.12)

[
iha(−p)Abµ(p)

]
0

= iδabpµ
p2 + β0ξ0

. (II.4.13)

We observe that, in the (A, ih) sector, the only consequence of the replicas is through
the n factor in the square mass nβ0 of the transverse gluon propagator. The correlator
of the superfields Λk reads

[
Λak(−p, θ) Λbl (p, θ′)

]
0

= δab
[
δklδ(θ, θ′)
p2 + β0ξ0

+ ξ0(1 + δkl)
p2(p2 + β0ξ0)

]
. (II.4.14)

Note in particular that nontrivial correlations between different replicas can only ap-
pear for ξ0 6= 0. Finally, there are nontrivial mixed correlators[

iha(−p)Λbk(p, θ)
]
0

= δab

p2 + β0ξ0
(II.4.15)

and [
Λak(−p, θ)Abµ(p)

]
0

= iξ0δ
abpµ

p2(p2 + β0ξ0) . (II.4.16)
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We can already observe how the Landau gauge (ξ0 = 0) and the ξ0 6= 0 cases
differ by inspection of the different masses of the tree-level propagators. Indeed, for
ξ0 = 0 all modes are massless apart from the transverse gluons. The latter are purely
transverse while in the general ξ-gauges they also display a longitudinal propagator.
For what concerns the SUSY sector, the mixed correlator

[
Λak(−p, θ)Abµ(p)

]
0
vanishes in

the Landau gauge. Moreover, as already noticed, the correlator
[
Λak(−p, θ) Λbl (p, θ

′)
]
0

becomes diagonal in replica but also ultra-local (∝ δ(θ, θ′)) in Grasmann space.
We now proceed to the derivation of the interaction vertices relevant for one-loop

calculations. As usual they are obtained from terms in Eq. (II.3.12) with more than
two powers in the fields. In the non-supersymmetric (A, c, c̄, ih) sector, the vertices
are identical to those of the CF model. These include the usual YM ones, namely
the three and four gluon interactions as well as the standard ghost-antighost-gluon
vertex. For ξ0 6= 0 there are also a four-ghost vertex as well as an ihcc̄ interaction
[see Eq. (C.1.1)]. To get the vertices of the SUSY NL-sigma models, we again have to
expand the exponential parametrization Vk(x, θk) = exp [ig0t

aΛak(x, θk)] in powers of
g0Λk. There is thus an infinite number of SUSY vertices. They involve an arbitrary
number of Λk legs and either one or zero gluon leg. An important remark is to note
that all these vertices always involve the same replica. Among this infinity of SUSY
vertices, only those that contribute up to order g2

0 are relevant for one-loop calculations.
For instance, there is an AΛkΛk vertex that reads

δθ
δΛak(p1, θ)

δθ′

δΛbl (p2, θ
′)

δ

δAcµ(p3)S = i
g0
4 f

abcδkl(2π)dδ(d)(p1 + p2 + p3)δ(θ, θ′)(p1 − p2)µ

(II.4.17)
Note that this vertex is also present in the Landau gauge. There is no cubic Λ3

interaction. This is easily understood as follow. Vertices involving the superfields,
but no gluon leg, come along with two derivatives (normal or Grassmannian ones).
Cubic vertices only involve the antisymmetric structure constant fabc∂µΛak∂µΛbkΛck =
fabcgMN∂NΛak∂MΛbkΛck = 0. Finally, at this order of approximation there are the two
quartic vertices AΛ3

k and Λ4
k [see Eqs.(C.1.3), (C.1.4)].

Before applying this set of rules to perform actual computations, let us make few
comments on the Landau gauge (ξ0 = 0) case. We recover the Landau gauge Feynman
rules of [74] for ξ0 = 0. In this case, drastic simplifications occur. The part of the
SUSY sector, (II.3.7), that involves Grassmann derivatives vanishes for ξ0 = 0 and
Eq. (II.3.7) becomes local in Grassmann variables. Consequently, the propagators and
vertices do not involve Grassmann derivatives. Therefore, closed loops of superfields
that involve p SUSY vertices show the following Grassmann structure:∫

θ1,...,θp

δ(θ1, θ2) . . . δ(θp, θ1) = 0. (II.4.18)

Hence, in the Landau gauge, neither the gluon nor the ghost sectors receive any loop
contribution from the replica superfields. The replica sector only gives contribution to
the bare tree-level gluon mass nβ0. Henceforth, for what concerns the gluon and ghost
sectors, the Landau gauge ST action is perturbatively equivalent to the Landau limit
of the CF model.
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II.4.2 One-loop two-point vertex functions

We now proceed to the one-loop computations of the two-point vertex functions
of the ST action in the CFDJ gauges, that is the one-loop contributions to the scalar
functions (II.4.3) and (II.4.10). As emphasized before, we keep n finite untill the
end of the calculations. We apply the Feynman rules derived in the previous section.
Calculations are straightforward but lengthy and not particularly enlightening. We
thus only display the one-loop Feynman diagrams in Figs. II.1 – II.5 and illustrate
their computations with a couple of examples, in particular in order to present how
the dependences in Grassmann parameters are treated. Most of these diagrams are
UV divergent in d ≥ 4 and we regularize them by using dimensional regularization
setting d = 4− ε.

Figure II.1: One-loop diagrams for the vertex ΓAA. We use the standard graphical
conventions for the gluon (wiggly) and ghost (dashed) lines. The plain line represents
the superfield correlator (II.4.14). The second diagram on the second line involves a
mixed A-Λ correlator (II.4.16). The diagrams of the first line are present in the Landau
gauge and a fortiori in the CF model. The diagrams of the second line involve the
superfield sector and are thus specific of the present gauge fixing (they are proportional
to n− 1 and thus vanish in the CF model). The first one is proportional to β0ξ0 and
the second one to β0ξ

2
0 .

We treat explicitly the contribution to the gluon two-point vertex function of the
first diagram on the second line of Fig. II.1, which involves the vertex Eq. (II.4.17) and
a loop of superfields. Its contribution to the gluon self-energy is given by

ΓΛ−loop
AaµA

b
ν

(p) =g2
0
8

n∑
i,j=2

∫
k

∫
θi,θj

facd(kν + `ν)
{
δijδ(θi, θj)
k2 + β0ξ0

+ (1 + δij)ξ0
k2(k2 + β0ξ0)

}

× f bdc(kµ + `µ)
{
δijδ(θi, θj)
`2 + β0ξ0

+ (1 + δij)ξ0
`2(`2 + β0ξ0)

}
,

(II.4.19)

where a, b and µ, ν are respectively the color and Lorentz indices of the external gluon
legs carrying momentum p and where `µ = kµ−pµ. We use the notation

∫
k = µε

∫ ddk
(2π)d ,

with d = 4 − ε in dimensional regularization. The arbitrary scale µ is introduced for
dimensional reasons. The replica indices i, j are associated with the internal superfield



II.4. Perturbation theory 57

Figure II.2: One-loop diagrams for the vertex Γcc̄. We use the standard graphical
conventions for the gluon (wiggly) and ghost (dashed) lines. The double plain line
represents the ih − ih correlator (II.4.12). The fourth and fifth diagrams involve a
mixed ih-A correlator (II.4.13). Only the first diagram on the first line is present in
the Landau gauge. All the others are present in the CF model. There is no diagram
involving the superfields.

lines. The Grassmannian integrals are trivially performed using the identities∫
θ
δ(θ, θ′)f(θ) = f(θ′) , δ (θ, θ) = 0 and

∫
θ

1 = β0. (II.4.20)

After summing over the replica indices, we obtain the following momentum integral:

ΓΛ−loop
AaµA

d
ν

(p)=−δad(n−1)g
2
0Nβ0ξ0

8 ×
∫
k

(kµ+`µ) (kν+`ν)
(k2+β0ξ0) (`2 + β0ξ0)

( 2
k2 + 2

`2
+ (n+2)β0ξ0

k2`2

)
,

(II.4.21)
which is logarithmically divergent in the UV.

For later use, let us show the result obtained for the second diagram on the second
line of Fig. II.1, which also involves the replica sector. A similar calculation yields

Γmixed
AaµA

d
ν
(p) = −δad(n−1)g

2
0Nβ0ξ

2
0

d−1 P Tµν(p)×
∫
k

k2p2−(k · p)2

k2`2 (k2 + β0ξ0) (`2 + β0ξ0) . (II.4.22)

It is transverse and UV finite. As expected, both replica contributions are ∝ n−1 and
vanish identically in the CF model (n = 1).

We remark that the two sunset diagrams contributing to the superfield two-point
vertex function, namely the last two ones in Fig. II.4, present non-diagonal terms in
replicas so that ΓΛkΛl develops nontrivial correlations between different replicas at one-
loop order as compared to the tree-level case (see Eq. (II.4.9) and (II.4.10)). However
the off-diagonal divergent part of diagram three and four of Fig. II.4 are respectively
g2Nξ2

0/32π2ε and −g2Nξ2
0/32π2ε. Therefore correlations between different replicas are

UV finite as required by renormalizability.
We mention that in the inversion of the two-point vertex function matrix (II.4.9) we

considered a possible nonzero value for correlations between different replicas (Γ3 6= 0)
but no correlation between ih and the superfields. Indeed, such correlations are absent
at one-loop order, but we stress that they might appear at two-loop.
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Figure II.3: One-loop diagrams for the vertices Γihih (left) and ΓihA (right). We use
the standard graphical conventions for the gluon (wiggly) and ghost (dashed) lines.
The double plain lines represent the ih legs. Both diagrams are present in the CF
model. There is no diagram involving the superfields.

Figure II.4: One-loop diagrams for the vertex ΓΛΛ. We use the standard graphical
conventions for the gluon (wiggly) and ghost (dashed) lines. The plain line represents
the superfield correlator (II.4.14). The second and fourth diagrams involve a mixed
A-Λ correlator (II.4.16).

Figure II.5: One-loop diagrams for the vertex ΓAΛ. We use the standard graphical con-
ventions for the gluon (wiggly) and ghost (dashed) lines. The plain line represents the
superfield correlator (II.4.14). The two last diagrams involve a mixed A-Λ correlator
(II.4.16).
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II.4.3 One-loop renormalization

II.4.3.1 UV divergences

The calculation of the other diagrams of Figs. II.1 – II.5 goes along the same lines
and consists in standard one-loop momentum integrals once the Grassmannian integra-
tions are performed. Although their expressions are pretty cumbersome and therefore
given in Appendix C, the divergent parts can easily be evaluated. Altogether, the
one-loop Feynman diagrams, Figs. II.1 – II.5, yield nine divergent structures

Γdiv
AµAν (p) = nβ0δµν

{
1 + κ

3 + ξ0
4

}
+ p2P Tµν(p)

{
1− κ

(13
6 −

ξ0
2

)}
,

Γdiv
ih ih(p) = −ξ0

(
1 + κ

ξ0
4

)
,

Γdiv
ihAµ(p) = ipµ

(
1 + κ

ξ0
4

)
,

Γdiv
cc̄ (p) = p2

(
1− κ3− ξ0

4

)
+ β0ξ0

(
1 + κ

ξ0
4

)
,

Γdiv
ΛkAµ(p, θ) = −ipµ

(
1 + κ

ξ0
6

)
,

Γdiv
ΛkΛl(p, θ, θ

′) = p2δklδ(θ, θ′)
{

1− κ
(3

4 −
ξ0
12

)}
+ ξ0

2 δkl�θδ(θ, θ
′)
{

1 + κ
ξ0
12

}
.

(II.4.23)

where κ = g2
0N/8π2ε. Note that the proof of renormalizability states that only six

independent renormalization factors are necessary to eliminate the UV divergences
while nine different divergent structures are found at one-loop order for the two-point
vertex functions.

II.4.3.2 Renormalization of the divergent parts

We define renormalized fields and constants in the standard way

Aaµ =
√
ZAA

aµ
r , ca =

√
Zc c

a
r , c̄a =

√
Zc c̄

a
r , ha =

√
Zhh

a
r , (II.4.24)

and
β0 = Zββ , ξ0 = Zξξ , g0 = Zgg. (II.4.25)

It is useful to also introduce rescaled Grassmann variables θr and θ̄r such that the
measure (II.3.4) reads β0θ̄θ − 1 = βθ̄rθr − 1. We thus define

θ = Z
−1/2
β θr , ∂θ = Z

1/2
β ∂θr , dθ = Z

1/2
β dθr ,

θ̄ = Z
−1/2
β θ̄r , ∂θ̄ = Z

1/2
β ∂θ̄r , dθ̄ = Z

1/2
β dθ̄r .

(II.4.26)

Accordingly, we introduce a renormalized metric as

gMrNr
r (θr) = gMN (θ), (II.4.27)
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with Mr, Nr ∈
{
θr, θ̄r

}
. In particular, this implies∫

θ
= Zβ

∫
θr
, (II.4.28)

where
∫
θr

=
∫
dθrdθ̄r(βθ̄rθr − 1). Finally, we define the corresponding renormalized

superfields as

Λk =
√
ZΛ
Zβ

Λr,k. (II.4.29)

such that the kinetic term of the fields Λar,k is normalized as

1
2

∫
θ

(∂µΛak)
2 = ZΛ

2

∫
θr

(
∂µΛar,k

)2
. (II.4.30)

These definitions of the renormalized constants are convenient for actual perturbative
calculations but are different from the constants κ1,2,3, Z1,2,3, Z, and g̃ used in the
proof of renormalizability, see Sec. II.3.2. The dictionary between these two sets can
easily be done by rewriting Eqs. (II.3.46), (II.3.51) in terms of renormalized quantities
(according to the definitions (II.4.24), (II.4.25) and (II.4.29)) and by demanding that
the effective action be finite. For instance, let us have a look to the gluon mass term
appearing in L1 [Eq. (II.3.46)]:

κ2
β0
2κ1

(Aaµ)2 = κ2
β

2κ1
ZAZβ(Aaµr )2. (II.4.31)

Demanding that the renormalized effective action be finite leads to

κ2
κ1

= 1
ZAZβ

. (II.4.32)

Following the same argument, and using the identities (II.3.53), eventually yields

Z1 = 1/ZA ,
κ2κ1 = 1/Zc ,
κ3 = ξ0/(ZβZξZc) ,

g̃/κ1 = g0/(Zg
√
ZA) ,

Z = ZΛZ
2
g/Zβ .

(II.4.33)

Furthermore, inspection of the term κ2A
a
µ∂µih

a in (II.3.46) with the above identities
leads to the constraint

Zh = ZβZc . (II.4.34)

Although in practice we do not need explicitly this dictionary, we remark that, owing to
the constraint (II.4.34), there are only six independent renormalization factors among
the seven defined in (II.4.24), (II.4.25) and (II.4.29), in agreement with our proof of
renormalizability. Notice that the relations (II.4.32), (II.4.33) and (II.4.34) are valid
only for the divergent parts. Let us also mention that in the case of the Landau gauge
(ξ0 = 0), the number of independent renormalization constants is even further reduced
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down to three owing to three additional constraints, namely ZAZcZβ = Zg
√
ZAZc =

ZΛ/Zc = 1, see Appendix B.1.
In the following, we only refer to renormalized fields and correlators and we suppress

the index r for simplicity. The explicit one-loop expressions of the (divergent parts
of) the renormalization constants can be straightforwardly read off Eq. (II.4.23). For
instance the divergent parts of the renormalized Λ−Λ two-point vertex function reads

Γdiv
ΛkΛl(p, θ, θ

′)=p2δklδ(θ, θ′)ZΛ

{
1− κ

(3
4−

ξ

12

)}
+ ξ

2δkl�θδ(θ, θ
′)ZΛZξZβ

{
1 + κ

ξ

12

}
,

(II.4.35)
yielding

δZdiv
Λ = 1 + κ

(3
4 −

ξ

12

)
,

δZdiv
Λ + δZdiv

ξ + δZdiv
β = 1− κ ξ12 ,

(II.4.36)

where we defined δZα = Zα − 1 and div denotes the divergent part.
Eventually, the nine divergent structures of Eq. (II.4.23) are renormalized by the

five independent counterterms

δZdiv
A =

(13
6 −

ξ

2

)
κ , (II.4.37)

δZdiv
c =

(3
4 −

ξ

4

)
κ , (II.4.38)

δZdiv
β =

(
−35

12 + ξ

4

)
κ , (II.4.39)

δZdiv
ξ =

(13
6 −

ξ

4

)
κ , (II.4.40)

δZdiv
Λ =

(3
4 −

ξ

12

)
κ , (II.4.41)

We also verify the constraint Eq. (II.4.34) at one-loop order:

Zh = ZβZc = 1− κ13
6 . (II.4.42)

The sixth constant required to fully renormalize the theory is the renormalization of the
bare coupling constant g0 but we do not need it at the present order of approximation.
We notice that the divergent parts of the renormalization factors are independent of
n at one loop. We thus recover the expressions of the independent factors ZA, Zc, Zβ,
Zξ of the CF model (which, we recall, corresponds to n = 1), where Zβ is identified to
the square mass renormalization factor, see [199]. We do not see any reason for this
trivial n dependence to hold beyond one loop and we expect explicit differences with
the CF model to arise at higher loop orders.
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II.4.4 Non-supersymmetric formalism
We recall that, the ST action admits another formulation than the SUSY one, see

Eq. (II.2.22), where the auxiliary fields ck, c̄k, ihk, Uk of the replica sector are not
merged into a supermatrix field. In this formalism the ST action reads

S[A, c, c̄, h, {V}] = SYM[A] + SCF[A, c, c̄, h] +
n∑
k=2

SCF[AUk, ck, c̄k, hk], (II.4.43)

with

SCF[AU, c, c̄, h], =
∫
x

{
∂µc̄

aDU
µ c

a + iha∂µ(AUµ )a + β0

[1
2(AUµ )a(AUµ )a + ξ0c̄

aca
]}

+ ξ0

∫
x

{
− (iha)2

2 − g0
2 f

abcihac̄bcc− g
2
0
4
(
fabcc̄bcc

)2
}
.

(II.4.44)

In order to use a perturbative development, we introduce the fields λk (one for each
replica k) to parametrize the matrix fields Uk = exp[ig0λ

a
kt
a]. In the same way as

we did previously, we expend the Uk in powers of g0λk to get the relevant one-loop
Feynman rules. It is interesting to have a look at the tree-level bare propagators in
the sector (Aµ, ih, ihk, λk). As in the SUSY case, the quadratic part of the ST action
is not diagonal in the fields, leading to mixed correlators. The (A, ih) sector is the
same as in the SUSY case Eqs. (II.4.11)–(II.4.13). However, mixed correlators in the
(ih, ihk, λk) read[

iha(−p)Abµ(p)
]
0

= iδabpµ
p2 + β0ξ0

, (II.4.45)[
ihak(−p)Abµ(p)

]
0

= 0, (II.4.46)[
iha(−p)λbk(p)

]
0

= −
[
ihak(−p)λbk(p)

]
0

= δab

p2 + β0ξ0
. (II.4.47)

Note the sign difference between the correlators involving ih and ihk. It turns out to
be more convenient to rewrite the action in a more symmetric form by performing the
following shifts: ĥa → ĥa + ∂µA

a
µ/ξ0, where we recall that ĥa = iha + g0

2 f
abcc̄bcc, and

similarly for ĥk. In doing so the ĥa, ĥak decouple and can be integrated out. Note that
this is also advantageous for practical calculations as the number of different fields
reduces. The ST action (II.4.43) becomes

S = SYM[A] + SCF[A, c, c̄] +
n∑
k=2

SCF[AUk, ck, c̄k], (II.4.48)

where

SCF[A, c, c̄] =
∫
x

{
β0
2 (Aaµ)2 +

(∂µAaµ)2

2ξ0
+ 1

2
(
∂µc̄

aDµc
a +Dµc̄

a∂µc
a
)

+ β0ξ0c̄
aca − g2

0ξ0
8 (fabcc̄bcc)2

}
.

(II.4.49)
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Again, parametrizing Uk = exp[ig0λ
a
kt
a] we get the Feynman rules relevant for one-

loop computations. In particular, note the obvious symmetry between replicas on the
tree-level propagators

[
cak(−p)c̄bl (p)

]
0

= δkl
[
ca(−p)c̄b(p)

]
= δab

δkl
p2 + β0ξ0

, (II.4.50)[
λak(−p)λbl (p)

]
0

= δab
ξ0(1 + δkl)
p2(p2 + β0ξ0) , (II.4.51)[

λak(−p)Abµ(p)
]

0
= δab

iξ0pµ
p2(p2 + β0ξ0) . (II.4.52)

The vertices are obtained in a straightforward manner.

II.4.4.1 One-loop calculations

Our point here, is to compute the one-loop divergent parts of the various two-
point vertex functions in the non-SUSY formalism as a crosscheck of our one-loop
SUSY calculations performed previously. In this formalism, beside the presence of the
mixed correlator

[
λak(−p)Abµ(p)

]
, calculations are very standard since there is neither

Grassmannian nor SUSY terms. Although the loss of the explicit SUSY character
leads to more standard calculations, they are more numerous (forty four one-loop
Feynman diagrams for the two-point vertex functions). Let us mention that our calcu-
lations satisfied several nontrivial checks. For instance, replica symmetry requires that
Γck c̄l(p) = δklΓcc̄(p). However, at one-loop order, Γck c̄l(p) involves the same Feynman
diagrams as those in Γcc̄(p), plus diagrams that involve the λk fields. It is therefore
a very nontrivial check of our calculations to verify that the contributions of the dia-
grams involving the fields λk exactly cancel out (not only the divergent parts, but also
the finite ones).

Eventually, we extract the one-loop divergent parts of the various two-point vertex
functions

Γdiv
AµAν (p) = nβ0δµν

{
1 + κ

3 + ξ0
4

}
+ p2P Tµν(p)

{
1− κ

(13
6 −

ξ0
2

)}
− n

ξ0
p2PLµν(p)

{
1 + κ

ξ0
4

}
.

(II.4.53)

The first two lines are identical to those of Eq. (II.4.23) and the last line is the renor-
malization of the (∂µAaµ)2/ξ term in the formalism with the ih, ihk fields integrated
out. For the ghost sector, we get

Γdiv
ck c̄l

(p) = δkl Γdiv
cc̄ (p) = δkl

{
p2
(

1− κ3− ξ0
4

)
+ β0ξ0

(
1 + κ

ξ0
4

)}
, (II.4.54)

which is unchanged as compared to the previous calculation in Eq. (II.4.23). Finally,
in the replicated sigma model sector, we have
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Γdiv
λkAµ

(p) = −ipµβ0

(
1 + κ

ξ0
6

)
− ipµ

p2

ξ0

{
1− κ

(3
4 −

ξ0
6

)}
(II.4.55)

and

Γdiv
λkλl

(p) = δklβ0p
2
{

1− κ
(3

4 −
ξ0
12

)}
+ δkl

p4

ξ0

{
1− κ

(3
2 −

ξ0
12

)}
. (II.4.56)

II.4.4.2 Relation to superfield formalism

The relation with the SUSY formalism is not trivial. According to the represen-
tation (II.3.6) and (II.4.2), we can identify the relation (for each replica) between the
superfield Λk and the basic fields ck, c̄k, hk, λk. We get

Λk = λk + θ̄c′k + c̄′kθ + θ̄θĥ′k (II.4.57)

with

c′k = ck + ig0
2 [ck, λk]−

g2
0

12[[ck, λk], λk] + . . . , (II.4.58)

c̄′k = c̄k + ig0
2 [c̄k, λk]−

g2
0

12[[c̄k, λk], λk] + . . . (II.4.59)

and

ĥ′k = ĥk + ig0
2 [ĥk, λk]−

g2
0

12
{

[[ĥk, λk], λk]− [[c̄k, ck], λk]
}

+ . . . , (II.4.60)

where the dots denote higher order (nonlinear terms). The above relations highlight
the fact that the superfield Λk is a nonlinear composite of the fields λk, ck , c̄k, and hk.
These relations concern the basic fields that are integrated over in the path-integral.
However, although written with the same notations, the variables of the effective action
Γ correspond to averages of these fields variables in the presence of nontrivial sources,
e.g., as in Eq. (II.3.23). At the level of the effective action, we thus need to take
into account the nontrivial renormalization of the nonlinear composite fields (II.4.58)-
(II.4.60). In particular, one has, at linear order,

c′k =
√
Z ′cck + . . . , (II.4.61)

c̄′k =
√
Z ′cc̄k + . . . , (II.4.62)

ĥ′k =
√
Z ′hihk + . . . , (II.4.63)

where the dots stand for nonlinear and/or nonlocal contributions and where the com-
posite field renormalization factors Z ′c and Z ′h do not depend on the replica index due
to the replica symmetry. At linear order, we write

Λk = λk +
√
Z ′cθ̄ck +

√
Z ′cc̄kθ +

√
Z ′hθ̄θihk + . . . (II.4.64)
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This shows that both λk and Λk renormalize in the same way. For instance, defining
λak =

√
Zλλ

a
r,k, in terms of renormalized quantities, Eq. (II.4.64) reads (where for

clarity we reintroduced the index r) according to (II.4.24), (II.4.25) and (II.4.29)√
ZΛ
Zβ

Λr,k =
√
Zλλr,k +

√
ZcZ ′c
Zβ

(
θ̄rcr,k + c̄r,kθr +

√
Z ′h
Z ′c
θ̄rθrihr,k

)
+ . . . , (II.4.65)

where we used Zh = ZβZc, see Eq. (II.4.34). For the quadratic part of the effective
action to have the desired expressions in terms of either the renormalized superfields
Λr,k or the renormalized fields λr,k, cr,k, c̄r,k, and hr,k, we must have

Λr,k = λr,k + θ̄rcr,k + c̄r,kθr + θ̄rθrihr,k + . . . (II.4.66)

This leads to relations among the renormalization factors of the two formalisms. We
conclude that

Z ′h = Z ′c (II.4.67)

and that
Zλ = ZΛ

Zβ
= ZcZ

′
c

Zβ
. (II.4.68)

In particular, the first equality in Eq. (II.4.68) is satisfied at one loop, see Eqs.
(II.4.37)–(II.4.41). Accordingly, the composite field renormalization factor Z ′c appear-
ing in the second equality in Eq. (II.4.68) can be obtained from the first equality, we
find,

Z ′c = 1 + κ
ξ

6 . (II.4.69)

We now conclude Sec. II.4. Here we have investigated the two-point vertex func-
tions of the ST action at one-loop order in perturbation theory. In particular, we have
explicitly checked at one-loop order our proof of renormalizability by eliminating all
the UV divergences by means of five independent renormalization constants. These
computations were performed in two equivalent formalisms as a nontrivial crosscheck.
An important remark to be made is that, so far, we remained at finite n while the
n → 0 limit is yet to be performed. Although elimination of the divergences can be
done at finite n, the renormalization of the finite parts display a nontrivial interplay
with the n→ 0 limit, which is discussed in the next sections.

II.5 One-loop propagators.

Now that we have computed the one-loop contributions and have explicitly shown
how to eliminate their UV divergences we can move forward and investigate the various
(one-loop) propagators of the ST action. This demands in particular to invert the
renormalized two-point vertex function matrix, the analogous of (II.4.9) but where
all the Γα functions are renormalized vertex functions. Let us stress again that the
inversion, has to be performed prior to the n→ 0 limit, see Appendix D. For instance,
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the one-loop ghost and gluon propagators are given in terms of the various one-loop
renormalized vertex functions Γα as

Ggh(p) = lim
n→0

Γ−1
cc̄ (p) (II.5.1)

and
GT (p) = lim

n→0
Γ−1
T (p), (II.5.2)

GL(p) = lim
n→0

Γihih (Γ1 + β0 (n− 2) Γ3)
(ΓLΓihih − (ΓihA)2p2) (Γ1 + β0 (n− 2) Γ3)− Γihihp2β0(Γ4)2(n− 1) ,

(II.5.3)
where we have decomposed the gluon propagator Gµν(p) into transverse and longitu-
dinal parts as in Eq. (II.4.5). Here, GL(p) is obtained through the inversion of the
two-point vertex functions matrix Eq. (II.4.9). Details of the inversion and definition
of the other propagators are provided in Appendix D.

II.5.1 Renormalization of the finite parts

II.5.1.1 n-dependent renormalization schemes

Before that we define a set of renormalization prescriptions for the two-point vertex
functions, let us come back for a moment to the Landau gauge (ξ0 = 0). We saw in
the previous section that, in this case, the ST proposal is perturbatively equivalent
to the (Landau limit of the) CF model if the bare gluon square masses of both mod-
els are identified, namely nβ0 for the ST case and m2

0 for the CF model. We recall
that a very important feature of the CF model is that, under suitable renormalization
prescriptions, it displays IR safe renormalization group (RG) flows and can thus be
investigated perturbatively down to (deep) infrared momenta [78]. This motivates to
consider renormalization schemes where such an equivalence is preserved at the level of
the renormalized theory. It was therefore proposed in [74] to consider renormalization
schemes for the ST action where, instead of renormalizing the gauge-fixing parameter
β0 as β0 = Zββ (which yields the usual FP theory in the limit n → 0), it is nβ0
which is renormalized as nβ0 = Zm2m2. Consequently, part of the n dependence is ab-
sorbed into the bare parameter and the n→ 0 limit is performed at fixed renormalized
(transverse) gluon mass. In doing so, the equivalence with the CF model holds for the
renormalized theory. The consequence is that the renormalized ST action displays the
same IR safe RG trajectories as those of the CF model. We thus have a genuine gauge-
fixed version of YM theories that can be investigated perturbatively at all momentum
scales.

For ξ0 6= 0, we shall adopt similar renormalization schemes (with nβ0 = Zm2m2).10

Consequently, the difference between the renormalized ST gauge-fixed action and the
CF action (for arbitrary ξ0) lies in the SUSY replica sector, which is absent from the
latter. The replica sector therefore encodes the effects of our treatment of Gribov copies
and differentiates the CF model (n = 1) from the genuine gauge-fixed YM theory (ST

10Although the discussion of possible IR safe RG trajectories will appear later on, we mention here
that we investigated renormalization schemes where β0 = Zββ also for ξ0 6= 0. In the n→ 0 limit we
have always found a Landau pole thus preventing a perturbative investigation of the IR regime.
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proposal n→ 0). On the one hand, these effects are not conveniently accessed through
a direct investigation of the correlators of the SUSY sector since this sector is proper
to the present proposal and has no equivalent to be compared with. This is further
discussed in Sec. II.7.4. Moreover, it is not clear what is the meaning of the replica
sector once the limit n → 0 has been performed. On the other hand, comparisons
between the correlators of the gluon and ghost sectors, which are shared by both the
ST and the CF actions, highlight the effects of our treatment of Gribov copies.

Nevertheless, for ξ0 6= 0, the SUSY sector does not decouple and "auxiliary" modes
(others than the transverse gluons) are massive already at tree-level, with bare square
mass β0ξ0, see Eqs. (II.4.11)-(II.4.16). Defining the renormalized gauge parameter
ξ as ξ0 = Zξξ would lead to a renormalized auxiliary square mass of m2ξZm2Zξ/n
that eventually blows up in the limit n → 0. Alternatively, we can absorb some of
the n dependence into the bare gauge parameter ξ0 such that the n → 0 limit is
performed at fixed renormalized auxiliary square mass, namely ξ0/n = Zξ ξ leading to
β0ξ0 = ZξZm2m2ξ.11 We thus define

nβ0 = Zm2m2 and ξ0
n

= Zξ ξ, (II.5.4)

and Zg, ZA, Zc, ZΛ, and Zh are defined as in (II.4.24), (II.4.25).12 We note that these
definitions can be equally used to renormalize the CF model (n = 1) since the proof of
renormalizability and the one-loop results obtained in Eqs. (II.4.37)-(II.4.41) are valid
for arbitrary n.

The absorption of partial n dependence into the bare parameters (II.5.4) leads to
drastic simplifications of the perturbative series in the n→ 0 limit as we now show.

II.5.1.2 Consequences of the n→ 0 limit

Important consequences follow directly from the choice (II.5.4), which enables us
to make firm predictions that could compared with possible future lattice simulations.
First, not only transverse gluons are massive, but also the auxiliary fields and in
particular the ghosts which acquire a renormalized tree-level square mass Zm2Zξξm

2.
Moreover, various correlators which are proportional to ξ0 now vanish in the limit
n → 0. For instance, the renormalized tree-level longitudinal gluon propagator (see
Eq. (II.4.11)) vanishes in this limit and the gluon propagator is exactly transverse as in
the Landau gauge. We expect this property to remain valid to all orders of perturbation
theory. We can easily convince ourselves of it at one-loop order by counting powers of
n as follow: any combination of nβ0, ξ0β0 counts to zero power of n while any ξ0 alone
counts to one power of n and β0 to n−1. For instance, inspection of the ST action

11Note that such choices are arbitrary and one could have also chosen a renormalization of the
kind ξ0/n

2 = Zξ ξ, in such a way that auxiliary masses still vanish outside the Landau gauge. All
these renormalizations schemes are acceptable with the proof of renormalizability but lead to different
phenomenologies. Comparisons with lattice data would be needed to discard different scenarios. Here,
we choose to consider ξ0/n = Zξ ξ because it corresponds to a "minimal" n dependence, in the sense
that the limit ξ → 0 is smooth and yields the Landau limit of the CF model studied in [79].

12We note that in the present scheme, Zm2 = Zβ
[
β → m2/n, ξ → nξ

]
. In particular we have Λk =√

ZΛ/Zm2 Λr,k. For a more detailed discussion on the renormalization of the Grassmann parameters
see Appendix E.
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(II.3.12) tells us that the ihcc̄ vertex counts for ξ0 ∝ n, while the tree-level expression
of the bare ghost propagator, Eq. (II.4.4), tells us that the ghost propagator counts
to 0 power of n. Accordingly, we easily see that Γihih(p), which is given by the left
diagram of Fig. II.3, is proportional to ξ0 up to functions of ξ0β0 and nβ0. Following
our power counting rule, the renormalized one-loop vertex Γihih(p) thus scales as n
and hence vanishes in the limit n → 0. The same argument leads to conclude that
ΓihA(p) is finite in this limit, see (II.4.10). According to Eq. (II.5.3), we see that the
one-loop longitudinal gluon propagator vanishes in the n→ 0 limit:

GL(p) = 0. (II.5.5)

This is a remarkable nontrivial effect of our treatment of Gribov copies since Eq. (II.5.5)
is a pure consequence of the n→ 0 limit and therefore of our average over the copies.
For instance, in the CF model, with the definitions Eq. (II.5.4), one gets (see Ap-
pendix B.2)

GCF
L (p) = − m2Γihih(p)

ΓL(p)Γcc̄(p)

∣∣∣∣∣
n=1

. (II.5.6)

Eq. (II.5.6) is only valid for n = 1 since it uses Slavnov-Taylor identities that are
proper to the CF model, see Appendix. B.2. This consists in a strong prediction of the
present theory as the transversality of the gluon propagator is believed to be a Landau
gauge feature. Note that this is a consequence of the present class of renormalization
schemes (II.5.4), and is independent of the peculiar renormalization prescriptions that
we use below to fix the finite parts of the renormalization constants.

Gribov copies effects influence also other sectors of the theory, though in a less
dramatic manner than for the longitudinal gluons. For instance, the transverse gluon
sector receives contributions from the superfields (and so from Gribov copies) in the
n → 0 limit through the diagram involving a superfield loop (first diagram of the
second line of Fig. II.1). According to Eq. (II.4.21), this contribution reads, in the
limit n→ 0, as

lim
n→0

ΓΛ−loop
T (p) = g2Nξm2

(d− 1) P
T
µν(p)

∫
k

kµkν
(k2 + ξm2) (`2 + ξm2)

(
1
k2 + 1

`2
+ ξm2

k2`2

)
.

(II.5.7)

On the contrary, the superfield contribution (II.4.22) is proportional to β0ξ
2
0 ∝ nm2ξ2

and vanishes in the limit n→ 0. We stress again that the contribution (II.5.7) is absent
in the CF model (remark the (n−1) prefactor in Eq. (II.4.21)). As an illustration, from
Eq. (II.5.7), we observe that this superfield loop diagram contributes to the transverse
gluon two-point vertex function at zero momentum

lim
n→0

ΓΛ−loop
T (p = 0) = g2Nξm2

d

∫
k

2k2 + ξm2

k2(k2 + ξm2)2

= g2Nξm2

32π2

{
2
ε

+ 1 + ln
(
µ̄2

ξm2

)}
, (II.5.8)
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where we neglected terms O(ε) in the last equality and µ̄2 = 4πe−γµ2 with γ the Euler
constant. It thus renormalizes the one-loop transverse gluon mass at the difference of
the CF model where such contribution is absent.

It is interesting to note that the finite ξ case displays many features similar to the
Landau gauge due to the n → 0 limit. A first one is that, as already mentioned, the
gluon propagator is purely transverse. Moreover, many diagrams are proportional to
ξ0 and hence vanish in the n → 0 limit just like the superfield contribution (II.4.22)
to the gluon two-point vertex as we discussed above. For instance a typical feature of
the Landau gauge is that the h sector does not receive any contribution from the loops
(to any order), see (B.1.7) of Appendix B.1. In the present case, as emphasized above,
the contributions of the one-loop diagrams of Fig. II.3 are respectively proportional to
ξ2

0 and to ξ0 (see also (C.2.18) and (C.2.20)), so that the h sector of the theory is not
renormalized in the limit n→ 0. We thus have

lim
n→0

ΓihA(p) = lim
n→0

√
ZAZh (II.5.9)

and
lim
n→0

Γihih(p)
nξ

= − lim
n→0

ZhZξ. (II.5.10)

Remark however that, so far, we have only checked this to be true at one-loop order,
while this is true to any order in the Landau gauge. However, we expect the general
argument developed here to be valid at any loop order.

Let us also mention that the ghosts receive small loop corrections in the IR regime.
One can easily see this in the present case even for finite ξ by inspection of the dia-
grams contributing to the ghost two-point vertex depicted in Fig. II.2 (see also Ap-
pendix C.2.2). The diagrams which are not present in the Landau gauge vanish when
n is taken to zero. These include, the tadpole diagram (second diagram of Fig. II.2,
see (C.2.12)) and the diagrams involving the ih correlators (third, fourth and fifth
diagrams of Fig. II.2, see (C.2.14) and (C.2.16)) which are all proportional to ξ0 up to
powers of β0ξ0 and thus vanish for n→ 0. The gluon sunset (first diagram of Fig. II.2)
is already present in the Landau gauge. Here, the difference is that both the internal
ghost and the internal gluon propagators are massive. Finally it can be shown that
this last diagram is proportional to p2. We conclude that, in the limit n → 0, the
ghost two-point vertex function at vanishing momentum does not receive corrections
at one-loop order, that is,

lim
n→0

Γcc̄(p = 0) =
(

lim
n→0

ZcZξZm2

)
ξm2. (II.5.11)

Finally, we employ the same definitions of the renormalized square masses as de-
scribed above for the CF model. In that case n = 1 and there is no issue with the
n dependence of the renormalized parameters. Note also that the nonrenormalization
relations (II.5.9)–(II.5.11) do not hold in that case. Instead a relation which is known
to hold at all orders in perturbation theory in the CF model is that the combination
(Z2

ξZcZm2/ZA)n=1 is finite [214, 201, 202].
In what follows, we consider additional renormalization prescriptions in order to fix

the finite parts of the various renormalization constants. We explicitly show that, in-
deed, this scheme is consistent with renormalizability and we compute the renormalized
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two-point vertex functions. Finally, we obtain the renormalized one-loop propagators
of the ST proposal and of the CF model.

II.5.2 Infrared-safe scheme

This set of renormalization prescriptions is inspired from the infrared-safe scheme
put forward in [79, 78, 74], that we adapt to the case ξ 6= 0. In the Landau gauge,
this renormalization scheme leads to IR safe RG trajectories [78, 74]. That is, RG
trajectories without a Landau pole. As we shall see below, this is also true in the
present case for ξ 6= 0. In order to adapt the prescription used in [79, 78], we consider
the following relation

Z2
ξZcZm2 = ZA. (II.5.12)

In the CF model (n = 1), Eq. (II.5.12) is shown to be true to all order of perturbation
theory for the divergent parts [214, 201, 202]. The infrared-safe scheme is defined
by imposing this equality also at the level of the finite parts of the renormalization
constants. We remark from Eqs. (II.4.37)–(II.4.41) that the relation Eq. (II.5.12) is
also satisfied by the divergent parts at one-loop order for arbitrary n. We thus use
this relation for the ST case as a renormalization prescription by imposing it also for
the finite parts.13 In order to fix the remaining renormalization factors, we impose
that the following renormalized vertex functions assume their tree-level expressions at
a renormalization scale µ:

ΓT (µ) = m2 + µ2, (II.5.13)
Γcc̄(µ) = ξm2 + µ2, (II.5.14)
Γ1(µ) = µ2, (II.5.15)

Γihih(µ) = −nξ (II.5.16)
ΓihA(µ) = 1. (II.5.17)

Defining Πα(p) as the loop diagrams contributions to the corresponding (renormalized)
two-point vertex with the same index, such that for instance ΓT (p) = ZA(p2+Zm2m2)+
ΠT (p), this set of renormalization prescriptions along with Eq. (II.5.12) are used to
get the expressions of the renormalization constants in terms of the (renormalized)

13However, here, we are not able to prove that the divergent part will satisfy it beyond one-loop
order. We can still use it to fix the finite parts at all orders of perturbation theory. Indeed, one can
always replace Eq. (II.5.12) by Z2

ξZcZm2 = ZAẐ, with Ẑ = 1 +O(g4) chosen such that Zm2 , ZA, Zc,
and Zξ have the correct divergent parts required by renormalizability, but in such a way that Ẑ does
not affect the finite parts.
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one-loop contributions. Their divergent parts are

δZdiv
A =

(13
6 −

nξ

2

)
κ → 13

6 κ, (II.5.18)

δZdiv
c =

(3
4 −

nξ

4

)
κ → 3

4κ, (II.5.19)

δZdiv
m2 =

(
−35

12 + nξ

4

)
κ → −35

12κ, (II.5.20)

δZdiv
ξ =

(13
6 −

nξ

4

)
κ → 13

6 κ, (II.5.21)

δZdiv
Λ =

(3
4 −

nξ

12

)
κ → 3

4κ, (II.5.22)

δZdiv
h = −13

6 κ, (II.5.23)

where we indicated the various n → 0 limits, and correspond to those required by
renormalibility, see Eqs. (II.4.37)–(II.4.41). In particular we verify that we can use
this renormalization scheme for n = 1 in which case we recover the divergent parts of
the CF model [210, 199, 98] except, of course, for ZΛ. One can check explicitly that
in the n→ 0 limit we do verify the relations (II.5.9) and (II.5.10). Note also that, due
to our definition of ξ (II.5.4), we trivially recover the divergent parts of the Landau
gauge [74] in this limit.

An important remark to be made is that in this renormalization scheme, the pa-
rametersm2 and ξm2 do not correspond to the square masses of the (transverse) gluons
and ghosts respectively. Instead, the transverse gluon square mass is given by the value
of the inverse gluon propagator at zero momentum14

m2
gluon = G−1

T (0)

= lim
n→0

{
m2 + ΠT (0)

}
,

(II.5.24)

and likewise for the ghost square mass.
Remark that, the infrared-safe renormalization prescriptions, Eqs. (II.5.12)-(II.5.17),

lead to several identities among the renormalization factors in the n→ 0 limit. For in-
stance, the renormalization prescription (II.5.16) combined with the identity (II.5.10)
yields

lim
n→0

ZhZξ = 1 . (II.5.25)

Similarly, the relation (II.5.9) with the prescription Eq. (II.5.17) implies that

lim
n→0

ZhZA = 1 . (II.5.26)

Combining this with Eq. (II.5.25), we obtain that

lim
n→0

ZA
Zξ

= 1 . (II.5.27)

14Notice that we did not define it as the the value at zero momentum of the corresponding renor-
malized two-point vertex function because of a possible non trivial n→ 0 limit.
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Finally, this last relation along with the prescription Eq. (II.5.12) leads to

lim
n→0

ZcZξZm2 = 1 . (II.5.28)

II.5.3 Zero-momentum renormalization scheme
We have also investigated other renormalization schemes. In particular, we have

studied the zero-momentum scheme put forward in the Landau gauge in [78]. This
scheme was adapted to the ξ 6= 0 case and we investigated it in great details in [99]. In
the present thesis, we only detail the infrared-safe scheme and make a few comments
on the one at zero-momentum. In the latter, both m2 and ξm2 correspond respectively
to the gluon and ghost square masses by replacing the renormalization prescriptions
Eqs. (II.5.12), and (II.5.17) by

ΓT (0) = m2 and Γcc̄(0) = ξm2. (II.5.29)

This renormalization scheme is consistent with renormalizability. However, once RG
improvement is taken into account a Landau pole develops thus spoiling the perturba-
tive approach for low momentum scales. It was argued, first in the peculiar case of the
Landau gauge [78] and then for finite ξ [99], that such a Landau pole is an artifact due
to inconsistent renormalization prescriptions. Indeed, in this scheme, for small mo-
menta, the one-loop gluon propagator is found to be a nonmonotonous function of the
momentum while the two renormalization conditions Eq. (II.5.13) and Eq. (II.5.29),
when imposed simultaneously, require that G−1

T (0) < G−1
T (µ). When RG improvement

is turned on and a renormalized sliding scale µ = p is used, where p is the momentum
scale at which we evaluate the correlators, the last inequality becomes inconsistent for
small p with the one-loop behavior of the gluon propagator. Consequently, as the IR is
probed deeper, larger RG corrections arise and, eventually, a Landau pole develops. In
order to cope with this issue, it was proposed, in the Landau gauge, to use a renormal-
ization scale of the form µ2 = M2 +p2, where M is a "freezing" scale. Performing such
a running for the renormalization scale µ leads to RG corrections for momenta higher
than M while these are frozen below and strict perturbation theory is then used, see
[79]. Such a procedure is, in general, legitimate in massive theories where we expect
the RG flow to freeze below the mass scale of the problem. However, as we shall see in
the next section, due to the presence of massless excitations in the SUSY sector, see
Eqs. (II.4.14), (II.4.16), the RG flow never freezes out in this case. This is to be put in
contrast with the CF model (n = 1) where all modes are effectively massive for ξ 6= 0.
Hence, such a freezing put by hand appears not justified in the ST case (n→ 0). We
therefore do not present in details the zero-momentum scheme and refer the reader to
[99].

II.5.4 Renormalization of the coupling constant
There remains to renormalize the coupling constant. We adopt the so-called Taylor

scheme [116] which consists in fixing the value of Zg, Eq. (II.4.25), from the ghost-
antighost-gluon vertex at vanishing ghost momentum

ΓAcc̄(p, 0,−p) = g (II.5.30)
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The Feynman diagrams contributing to ΓAcc̄ at one-loop order are shown in Fig. II.6.

Figure II.6: One-loop contributions to the ghost-antighost-gluon vertex function ΓAcc̄.
The diagrams on the first line are present in the standard Landau gauge (but here with
massive gluon and ghost propagators) and are proportional to the antighost external
momentum. The topologies on the second and third lines are present in the standard
CFDJ gauges and give contributions proportional to ξ0. The replicated superfield
sector only contributes in the diagrams of the last two lines.

The two usual YM diagrams (first line of Fig. II.6) involve, at the vertex where the
external ghost leg is attached, a Lorentz contraction between a gluon propagator and
the (internal) antighost momentum. For vanishing external ghost momentum, both
the antighost and the gluon propagators in the loop carry the same momentum (up
to a sign). It follows that only the longitudinal gluon propagator contributes to these
diagrams, which are thus proportional to ξ0 ∝ nξ and vanish in the limit n → 0.
One can use the n power counting argument developed previously for the remaining
diagrams. Inspection of the ST action (II.3.12) and of the tree-level bare propagators,
Eq. (II.4.4) and Eqs. (II.4.11)-(II.4.16) yields that
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• the cc̄cc̄ vertex counts for ξ0 ∝ n

• the ihcc̄ vertex counts for ξ0 ∝ n

• the mixed correlator Λ−A counts for ξ0 ∝ n

• the ih− ih correlator counts for β0 ∝ n−1

all other vertices or correlators involved in Fig. II.6 count for 0 power of n. Accordingly,
the digram involving the ih− ih correlator (last diagram of the second line of Fig. II.6)
counts for ξ2

0β0 ∝ n. All the remaining diagrams count for either ξ0 ∝ n or ξ2
0 ∝ n2.

Hereby, they all vanish in the n→ 0 limit. We conclude that the vertex ΓAcc̄(p, 0,−p)
does not receive any radiative corrections at one-loop order in the limit n → 0. The
renormalization factors Zg, ZA and Zc thus satisfy the relation

lim
n→0

ZgZc
√
ZA = 1, (II.5.31)

which completely fixes the factor Zg. In particular one has

δZdiv
g = −11

6 κ. (II.5.32)

It is worth mentioning that in the Landau gauge, the relation (II.5.31) holds for the
divergent parts to all orders of perturbation theory [116]. We have only checked that
this is so at one-loop order in the present case (ξ 6= 0). In particular, we do not know
whether or not it is compatible with the renormalizability of the theory at higher
orders. But, as in the case of the renormalization prescription (II.5.12), we can always
impose the prescription Eq. (II.5.31) for the finite parts only.

The identity (II.5.31) is valid only in the limit n→ 0 with the definitions (II.5.4). It
does not hold in the CF case (n = 1), where the contributions to the ghost-antighost-
gluon vertex proportional to ξ0 do not vanish. For the purpose of comparing the n→ 0
and n = 1 results, we employ a renormalization scheme for n = 1 as close as possible
to that used for n→ 0, namely

ZgZcZ
2
ξ = Z

3/2
A , (II.5.33)

valid for the divergent parts of the CF model [202].15 As discussed above, we extend
this equality to the finite parts, which gives us a definition of the renormalization
coefficient Zg in the CF model. It can be checked that this definition coincides with
Eq. (II.5.31) in the limit ξ → 0.

II.6 One-loop results
We present our results for the gluon and the ghost propagators at one-loop order

in the SU(3) theory.16 In the following, in strict perturbation theory where there is
no running, we set the renormalization scale µ = 1 GeV and we use the values of the

15The definition of the renormalization factor Zξ used here differs from that of [202].
16Results for SU(2) are qualitatively similar.
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parameters m and g that provide the best fits to the lattice results in the Landau
gauge in [79], that is, m = 0.39 GeV and g = 3.7 in the infrared-safe scheme. Notice
that the relevant expansion parameter is 3g2/(16π2) . 1. We have no reason, a priori,
to exclude a dependence of the parameters m and g at a certain scale with the value
of ξ at the same scale. Such dependences would have to be inferred from fits to lattice
data. In the absence of such data, we assume fixed values of m and g adjusted from
lattice data at ξ = 0.

II.6.1 Gluon and ghost sectors

The ghost and the transverse gluon propagators in the infrared-safe scheme are
shown in Fig. II.7.

Landau

ξ=1

ξ=2

ξ=3

ξ=4

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6

7

p [GeV]

G
gh

(p
)

Landau

ξ=1

ξ=2

ξ=3

ξ=4

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

p [GeV]

G
T
(p
)

Figure II.7: The ghost (top) and the transverse gluon (bottom) propagator as a func-
tion of momentum for various values of ξ in the infrared-safe renormalization scheme
with m = 0.39 GeV and g = 3.7.
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We check that we recover the results of [79] (in the appropriate renormalization scheme)
for ξ = 0. In particular, we observe that the ghost propagator develops a zero-
momentum pole as ξ → 0. For higher values of ξ, the ghost propagator is very
similar to the one obtained in the CF model (n = 1); see Fig. II.8. This is expected
for one-loop order results. Indeed all the diagrams contributing to the one-loop ghost
propagator (see Fig. II.2) are present in the CF model. In particular there is no con-
tribution from the replica sector at this order. Moreover, one can easily show that
the three diagrams involving the ih fields (last three diagrams of Fig. II.2) cancel each
other. The ghost tadpole is the same in both n → 0 and n = 1 cases. So that even-
tually the only difference comes from the absence (n → 0) or presence (n = 1) of the
internal longitudinal gluon propagator in the sunset diagram of Fig. II.2.
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Figure II.8: The ghost propagator computed in either the present gauge fixing (n→ 0)
or the CF model (n = 1) in the infrared-safe scheme with m = 0.39 GeV and g = 3.7
for various values of ξ.

The value of the gluon propagator at vanishing momentum is not fixed and varies
strongly with ξ. This can be traced to the fact that the zero-momentum value of
the gluon propagator is not fixed by the renormalization prescriptions Eqs.(II.5.13)-
(II.5.17), but instead admit an implicit ξ-dependence through the second equation in
Eq. (II.5.12). This has to be put in regards with our previous comment at the end
of Sec. II.5.2, see (II.5.24). We observe that the approach to the p = 0 value flattens
as ξ is increased. This appears to be a consequence of our treatment of the Gribov
copies, see e.g. the discussion above (II.5.8). Indeed, a comparison of the transverse
gluon propagator computed in the present gauge-fixed theory (n → 0) and in the CF
model (n = 1) is shown in Fig. II.9. The CF model does not display the flattening as p
approaches zero. This effect is more important for increasing ξ, which is consistent with
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the fact the cases n→ 0 and n = 1 are equivalent in the Landau gauge. Equivalently,
in the gluon sector, the difference between both cases comes from the superfield sector
which decouples for ξ = 0.
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Figure II.9: The transverse gluon propagator computed in either the present gauge
fixing (n→ 0) or the CF model (n = 1) in the infrared-safe scheme with m = 0.39 GeV
and g = 3.7 for various values of ξ.

We notice also that in the CF case, the gluon propagator also presents a longitudinal
part, which for completeness is displayed in Fig. II.10 (while it is identically null for
n→ 0).
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Figure II.10: The longitudinal gluon propagator in the CF model (n = 1) as a function
of momentum for various values of ξ in the infrared-safe scheme.
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It is worth mentioning that the transverse gluon propagator presents a nonmonotonous
behavior at small momenta (though the effect is too small to be observed on Fig. II.7
with the scale used) and hence displays a violation of positivity, see Sec. I.2.3. The
same analysis was performed in the zero-momentum renormalization scheme and can
be found in [99].

II.6.2 Replica sector
We now move to the the replica sector. Notice that, the meaning of this sector in

the limit n → 0 is somewhat unclear. Nevertheless, we present here our results for
completeness. As emphasized earlier, there are massless excitations in the replica sector
even for ξ 6= 0. They correspond to the λk fields present in the SUSY representation
Eq. (II.4.57) that we recall here for simplicity:

Λk = λk + θ̄c′k + c̄′kθ + θ̄θĥ′k . (II.6.1)

Notice that the mass dimension of λk is zero. It turns out convenient to rescale it prior
to the n→ 0 limit

λ̃k =

√
m2

n
λk, (II.6.2)

in such a way that λ̃k has canonical mass dimension. This is discussed in details in
Appendix E. We define the λ̃− λ̃ propagator17 as

Gλ̃kl(p) = lim
n→0

[
λ̃k(−p)λ̃l(p)

]
0

= δklGdiag(p) + (1− δkl)Gnon diag(p).
(II.6.3)

At tree-level, Eq. (II.4.51), we have that

Gdiag(p) = 2Gnon diag(p) = 2m2ξ

p2 (p2 +m2ξ) . (II.6.4)

Since there are massless excitations, we accordingly define the λ̃− λ̃ dressing function

Fdiag(p) = p2

2m2ξ
Gdiag(p),

Fnon diag(p) = p2

m2ξ
Gnon diag(p).

(II.6.5)

On Fig. II.11 we display the (diagonal) one-loop λ̃ − λ̃ dressing function. Remark
that the correlator λ̃k − λ̃l is identically null18 for ξ = 0 (see also Eq. (II.4.51)),
though its dressing function, seen as a continuous function of the parameter ξ, admits
a nontrivial limit for ξ → 0. In particular, in this limit, the λ̃ − λ̃ dressing function
develops a zero-momentum pole. Notice that the tree-level property (II.6.4), namely

17We extract everywhere a trivial unit color matrix.
18Indeed, the correlator λ̃ − λ̃ is given by the θk, θl independent part of the correlator [ΛkΛl] (see

Appendix E and Eq. (E.0.2) for instance) while the SUSY sector becomes ultra-local (∝ δ
(
θ̃k, θ̃l

)
) in

the Landau gauge.



II.6. One-loop results 79

that Fdiag(p)/Fnon diag(p) = 1 is observed to remain true at one-loop order. The zero
momentum value is quite sensitive to the value of ξ. This is due to the presence in
Fdiag of the tree-level square mass m2ξ. In order to get rid of this somehow artificial ξ
dependence, it is interesting to compare Fdiag to its tree-level value in order to focus on
loop effects. On Fig. II.12 is shown the difference F−1

diag(p)−(p2+m2ξ). The apparently
crossing point between the various curves is actually an artifact of our choices of ξ that
are close to one another, while for higher or lower values they do not cross all at the
same point. As we see on Fig. II.12, the loop contributions are actually negatives
for small momenta and increase with ξ. Hereby, there is a competition between loop
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Figure II.11: The diagonal λ̃ − λ̃ dressing function Fdiag as a function of momentum
for various values of ξ in the infrared-safe scheme. It is divergent at zero-momentum
in the Landau gauge.
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Figure II.12: Comparison of F−1
diag with its tree-level value as a function of momentum

for various values of ξ in the infrared-safe scheme.
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and tree-level effects. In general, this is a dangerous situation for the perturbative
approach since it might result in a pole if loop effects become too large. However,
for the range of parameters considered here we do not encounter such a pole at finite
momenta. The zero momentum pole in the Landau gauge is already present at tree-
level, see Eq. (II.4.51), as confirmed in Fig. II.12 where the Landau gauge λ̃−λ̃ dressing
function does not receive loop corrections at zero momentum.

Notice also that the SUSY sector contains replicated ghost and antighost fields
c′k and c̄′k, see Eq. (II.6.1). Ghost correlators of two different replicas k and l are
obviously equal due to the replica permutation symmetry, while the relation between
the correlators of replicated and non-replicated ghosts is less obvious. On Fig. II.13
is shown the ratio Ggh(p)/Gkgh(p) where Gkgh(p) is the propagator of the replicated
ghosts. Both coincide in the Landau gauge while this is not so for ξ 6= 0. Remark
already that, the replicated ghost correlator is not null in the Landau gauge. This
stresses that, although in the Landau gauge the replica sector decouples from the
ghost and gluon sectors, it remains nontrivial. The difference mentioned above is due
to the fact that the non-replicated ghost fields correspond to the replica that was
singled out in the gauge-fixing procedure. Moreover, let us recall that the replicated
c′k and c̄′k fields that appear in the decomposition Eq. (II.6.1) differ from the ck and c̄k
fields appearing in the non-SUSY version of the ST action, see Sec. II.4.4. Both sets
are related in perturbation theory by the relations Eq. (II.4.58) that we recall here

c′k = ck + ig0
2 [ck, λk]−

g2
0

12[[ck, λk], λk] + . . . , (II.6.6)

c̄′k = c̄k + ig0
2 [c̄k, λk]−

g2
0

12[[c̄k, λk], λk] + . . . . (II.6.7)

One-loop calculations in the non-SUSY version of the theory showed that [c(−p) c̄(p)]0 =
[ck(−p) c̄k(p)]0 for arbitrary ξ as expected from the replica symmetry which simply re-
duces to the relabeling c↔ ck, c̄↔ c̄k in the ghost sector. Turning back to the c′k, c̄′k
case, using the relations (II.6.6), (II.6.7) and Wick theorem, we get at one-loop order
(for simplicity we work in direct space)

[
c
′a
k (x) c̄′bk (y)

]
0

=
[
ca(x) c̄b(y)

]
0
− g2

2
m2

n

{
facdf buv [cu(x)c̄c(y)]0

[
λ̃vk(x)λ̃dk(y)

]
0

+1
6f

bcefedu [ca(x)c̄u(y)]0
[
λ̃ck(y)λ̃dk(y)

]
0

+1
6f

acefedu
[
cu(x)c̄b(y)

]
0

[
λ̃ck(x)λ̃dk(x)

]
0

}
,

(II.6.8)

where we used that [c(x) c̄(y)]0 = [ck(x) c̄k(y)]0. The first line corresponds to a sunset
diagram with one ghost and one λ̃− λ̃ propagators. The two last lines of Eq. (II.6.8)
correspond to one ghost propagator to which is attached at one edge a λ̃−λ̃ tadpole. We
saw previously, in discussing the λ̃− λ̃ correlator, that it actually vanishes identically
in the Landau gauge so that for ξ = 0 we have

[
c
′a
k (−p) c̄′bk (p)

]
0

=
[
ca(−p) c̄b(p)

]
0
as

observed on Fig. II.13.
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Figure II.13: Comparison of the replicated ghost propagator Gkgh(p) to the non-
replicated one Ggh(p) a function of momentum for various values of ξ in the infrared-
safe scheme. Both coincide in the Landau gauge.

II.7 Renormalization-group analysis

We now perform the RG analysis. One of the main strength of the ST approach
in the Landau gauge, is that, perturbation theory is justified down to zero momentum
thanks to IR safe RG trajectories as opposed to the standard FP case. Therefore,
investigation of such possible RG flows also at ξ 6= 0 seems crucial to us and necessary
to justify the previous perturbative calculations. Moreover, the ST approach relies
on taking into account the Gribov copies. Henceforth, it is interesting to investigate
whether the copies affect the UV sector or not as it is the common belief.

In the following, we define the RG beta functions βα for the parameters α = m2, g, ξ
as

βα = dα

d lnµ

∣∣∣∣
0

= −α d lnZα
d lnµ

∣∣∣∣
0
, (II.7.1)

as well as the anomalous dimension for the various fields Φ

γΦ = d lnZΦ
d lnµ

∣∣∣∣
0
, (II.7.2)

where the subscript 0 means that the right-hand side is evaluated at fixed bare quan-
tities.

II.7.1 UV behavior

Let us first briefly consider the high energy limit. In this regime, we can simply
use the MS scheme in which the beta functions are straightforwardly obtained from
the divergent parts of the renormalization constants Zg, Zm2 and Zξ. We note that,
this UV behavior is insensitive to the details of the renormalization prescriptions used
since it depends only on the divergent parts. In particular, we recover the universal
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one-loop beta function for the coupling constant

βUV
g = −g11

6
g2N

8π2 , (II.7.3)

so that asymptotic freedom is preserved (as it should). Remark that for our (perturba-
tive) proof of renormanilazability to be meaningful, an asymptotically UV free theory
is necessary. According to Eq. (II.5.20) the beta function of the mass parameter m2 is

βUV
m2 = −m2 35

12
g2N

8π2 , (II.7.4)

and, therefore, m vanishes at high energies. We remark also that UV flows of both g
and m are identical to those of the Landau gauge. The beta function for ξ reads

βUV
ξ = ξ

13
6
g2N

8π2 , (II.7.5)

hence, the Landau gauge is an unstable UV fixed point. We also define the ghost (or
auxiliary) square mass parameter m2

gh as

m2
gh(µ) = m2(µ)ξ(µ). (II.7.6)

Its beta function is straightforwardly obtained from those of ξ and m2 and reads, in
the UV, as

βUV
m2

gh
= −m2

gh
3
4
g2N

8π2 , (II.7.7)

so that m2
gh also vanishes at high energies. We thus finally recover a massless theory

in the high energy regime. Moreover, in this regime, the ghost and gluon propagators
follow the standard one-loop behavior [99]

GUV
gh (p) ∝ 1

p2

[
1 + 11Ng2(µ∗)

48π2 ln
(
p2

µ2
∗

)]− 9
44

(II.7.8)

GUV
T (p) ∝ 1

p2

[
1 + 11Ng2(µ∗)

48π2 ln
(
p2

µ2
∗

)]− 13
22

, (II.7.9)

where µ∗ and p are UV scales, that is, µ∗, p� m, mgh. Remark, however, that these
results are independent of ξ, and hence we do not recover exactly the FP case (in
particular there is no longitudinal gluon propagator in the present case). Note that
this is a consequence of the n-dependent renormalization scheme (II.5.4) employed
here. Indeed, following a renormalization scheme as in (II.4.25), we then recover the
standard FP theory in the UV from a MS scheme, see Eqs (II.4.39), (II.4.40).

II.7.2 Renormalization group flows
We now investigate the RG flows down to the deep IR regime in the infrared-safe

renormalization scheme. Explicit expressions of the beta functions and anomalous
dimensions are gathered in the supplemental material (Mathematica file) of [99], see
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Ref. [51] of it. Note that, the prescription (II.5.31) implies at one-loop order that the
ghost anomalous dimension is given by

γc = d lnZc
d lnµ

∣∣∣∣
0

= −1
2γA + βg

g
. (II.7.10)

For later use, we also mention that Eq. (II.5.27) yields

γA = −βξ
ξ
, (II.7.11)

We integrate numerically the flow equations Eqs. (II.7.1), (II.7.2) with initial conditions
at the scale µ0 = 1 GeV. We use as initial conditions the values of the mass and coupling
parameters of the previous section, namely m(µ0) = 0.39 GeV and g(µ0) = 3.7, and
we vary the gauge-fixing parameter ξ(µ0). We find that the infrared-safe RG flows can
be integrated down to arbitrarily small scales µ without encountering a Landau pole,
depending on the choice of initial conditions19, as it was first pointed out in [79, 74] in
the case ξ = 0.

Figure II.14 and II.15 show the RG flows of the parameters g, m and ξ for various
values of ξ(µ0). We observe that both the coupling and the mass first increase for de-
creasing µ and then are attracted towards zero in the IR. We also see that the maximal
values of both parameters decrease with increasing ξ(µ0) and are, therefore, maximal in
the Landau gauge. In all cases we have considered, the coupling remains small enough
for perturbation theory to be (qualitatively) meaningful: we recall that the relevant
expansion parameter is 3g2/(16π2). We thus expect that our perturbative calculations
would provide even more agreements with lattice data (if lattice implementation is
possible) in the present case than in the Landau gauge. Finally, we observe that the
gauge-fixing parameter ξ is first attracted towards zero as µ decreases but eventually
diverges in the limit µ→ 0. In particular, we find that the Landau gauge fixed point
(ξ = 0) is unstable in the IR.

Landau

ξ=1

ξ=2

ξ=3

ξ=4

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

μ [GeV]

g(
μ
)

Figure II.14: Running of the parameter g(µ) in the infrared-safe scheme, for various
values of ξ(µ0) ≡ ξ.

19For instance, it is clear that in the case m(µ0) = ξ(µ0) = 0 (which implies m(µ) = ξ(µ) = 0 for
all µ and thus corresponds to the standard FP Landau gauge) one gets a Landau pole.
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Figure II.15: Running of the parameters m(µ) and ξ(µ) in the infrared-safe scheme,
for various values of ξ(µ0) ≡ ξ.

It is interesting to check the running of the ghost mass parameter mgh(µ) shown
in Fig. II.16, which is attracted towards a nontrivial fixed point in the IR so that
ξ(µ) ∼ 1/m2(µ) when µ→ 0. The product ξ(µ)g2(µ) (right panel of Fig. II.16) is also
attracted toward a nontrivial fixed point as µ→ 0 such that ξ(µ) ∼ 1/m2(µ) ∼ 1/g2(µ)
in this regime. This illustrates a key difference between the Landau gauge and the
present case. Indeed, according to the flows of Fig. II.15 (see also [79]), in the Landau
gauge, the gluon effective IR action corresponds to the (trivial) massless free Gaussian
theory while, for ξ 6= 0, gluons remain coupled to the replica sector through the effective
coupling constant ξ(µ)g2(µ). In the latter case, the IR effective theory thus remains
nontrivial.
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Figure II.16: Left panel: Running of the ghost mass parameter mgh(µ) = m(µ)
√
ξ(µ)

in the infrared-safe scheme, for various values of ξ(µ0) ≡ ξ. Right panel: Running
of the product ξ(µ)g2(µ) in the infrared-safe scheme, for various values of ξ(µ0) ≡ ξ.
Remark that we have 3ξ(µ)g2(µ)/16π2 . 1.

We remark that, as emphasized in Sec. II.5.3, the RG flows of the independent
parameters g and m never freeze out because of the presence of massless excitations.
Therefore, a possible freezing of the RG flow put by hand (as proposed for the zero-
momentum scheme) does not seem justified for ξ(µ0) 6= 0. This is a peculiar feature of
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the present theory and, more precisely, of the way Gribov copies are handled since the
remaining massless modes are present only in the superfield sector as seen in Fig. II.11.
Indeed, things are different in the CF model (n = 1) in which the SUSY sector is absent.
We observe that the RG flow freezes below a certain scale, see Fig. II.17. This is to be
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Figure II.17: The RG flow of the parameters g(µ), m(µ), and ξ(µ) in the CF model
(n = 1) with the infrared-safe scheme.

expected since, for ξ(µ0) 6= 0, the CF model only contains massive degrees of freedom
that decouple in the deep IR. On the contrary, in the Landau gauge where the ghosts
are massless, the CF model is equivalent to the case n → 0, as already discussed,
and we see that the RG flow does not freeze. As a consequence of the RG freezing
for ξ(µ0) 6= 0, the coupling and mass parameters g and m do not vanish in the IR
and the gauge-fixing parameter ξ does not diverge. All the parameters reach constant
values. We mention that the renormalized coupling constant is defined differently in
both cases. For n → 0 we used Eq. (II.5.31), which is not valid for n = 1 and was
replaced by Eq. (II.5.33). This difference might influence the RG flows. Nevertheless,
the infrared-safety of this renormalization scheme in the CF model is also verified, and
the flows can be integrated down to zero momentum.
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II.7.3 RG-improved ghost and gluon propagators
Notice that, although for n → 0 the mass parameter m(µ) is attracted towards

zero, it does not imply that gluons become effectively massless in the IR. Indeed,
in the infrared-safe scheme, the renormalized mass parameter m is defined through
Eq. (II.5.13) and does not correspond to the actual gluon mass. The latter is, instead,
given by Eq. (II.5.24). The same remark can be made for the ghosts (apart from the
Landau gauge). Indeed, these propagators do not diverge as p→ 0 (exect for the ghost
propagator in the Landau gauge), as observed on Fig. II.18 where it is displayed the
RG-improved ghost and (transverse) gluon propagators for the n → 0 case. We used
for the RG scale µ = p. We explicitly verify on Fig. II.18 that the ghost propagator at
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Figure II.18: RG-improved ghost (left) and transverse gluon (right) propagators as
functions of momentum in the infrared-safe scheme with µ = p, for various values of
ξ(µ0) ≡ ξ.

zero momentum does not receive any RG correction, namely

Ggh(0) = 1
m2

gh(µ0)
, (II.7.12)

as expected from the nonrenormalization relation (II.5.11).
In the gluon sector, however, we observe strong differences between the RG-improved

propagator and the one obtained in strict perturbation theory, see Fig. II.7. In par-
ticular, for ξ 6= 0 the flattening near p = 0 observed earlier is turned into a linear
behavior. This is a consequence of the equality (II.7.11) which yields, for µ = p

GT (p) = ξ(µ0)
ξ(p)

1
p2 +m2(p) , (II.7.13)

which rewrites as
GT (p) = ξ(µ0)

m2
gh(p)

m̃2(p)
1 + m̃2(p) , (II.7.14)

where we have defined the dimensionless mass parameter m̃(µ) = m(µ)/µ. The fact
that the ghost mass parameter (II.7.6) reaches a plateau for sufficiently small µ and not
too small ξ(µ0) implies that the p → 0 behavior of the gluon propagator is governed
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Figure II.19: Running of the dimensionless mass parameter m̃(µ) = m(µ)/µ in the
infrared-safe scheme, for various values of ξ(µ0) ≡ ξ.

by the function m̃2(p)/[1 + m̃2(p)], a monotonously increasing function of m̃2(p). The
running of the latter is shown in Fig. II.19, where we observe that it is a monotonously
decreasing function of p and that, for ξ(µ0) not too small, it reaches an IR fixed point,
which is approached linearly. We conclude that, for ξ(µ0) not too small,

GT (p→ 0) = ξ(µ0)
m2

gh(0)
m̃2(0)

1 + m̃2(0) [1 +O(p)] , (II.7.15)

where the linear term in p is negative.
This peculiar behavior for ξ(µ0) 6= 0 in the n→ 0 case is to be put in regard with

the one observed in the case of the CF model20 (n = 1) displayed on Fig. II.20. The
RG-improved ghost and gluon propagators for the CF model present little change as
compared to the results from strict perturbation theory (Figs. II.8 – II.10), for ξ not
too small, despite the relatively important change of the running parameters in the
range of momenta considered here. RG corrections seem more important for small
ξ. This is to be expected since as ξ gets smaller the CF results come closer (and
eventually coincide) with those of the n→ 0 case where RG corrections are important.
Alternatively, as ξ decreases, the masses of the auxiliary modes get smaller so that
the scale below which the RG is frozen is reduced. Nevertheless, the RG-improved
results in the CF model are dramatically different from those of the theory considered
here (n→ 0), in particular for the gluon sector. Although these qualitative differences
might have diverse origins, such as, for instance, the difference in the definition of the
coupling constant, altogether they illustrate the important role played by the replica
sector of the theory and, in turn, by the Gribov copies, particularly in the IR.

20We recall that, in the CF model, our prescription for the renormalized coupling constant is given
by Eq. (II.5.33).
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Figure II.20: The RG-improved ghost and gluon propagators in the CF model (n = 1)
with the infrared-safe scheme.
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II.7.4 Correlation among Gribov copies

So far, we were mainly interested in the ghost and gluon sectors while the SUSY
sector encodes our treatment of Gribov copies. However, the computation of this sector
was mandatory in order to perform the n→ 0 limit since the two-point vertex functions
Γ1, Γ3, Γ4 (see (II.4.9)) appear in the definition of the longitudinal gluon propagator
(see Eq. (II.5.3)), or for the computation of the renormalization factor ZΛ needed to
compute the RG flows for instance. Still, the relationship between the superfields Λ, or
more precisely the scalar λ fields, with the Gribov copies remains somewhat unclear.
This makes possible interpretations of the λ sector uneasy. In particular, once the
limit n → 0 has been performed, it is not clear what meaning should be granted
to the replica sector.21 Moreover, this sector is, a priori, not accessible in (would
be) lattice simulations.22 All in all, this suggests that attempting to get information
on Gribov copies directly from the replica sector is probably not the wisest choice.
Again, studying nontrivial effects of this sector onto the gluon and/or ghost correlation
functions seems the most suited.

One way of realizing this program would consist in computing the variance asso-
ciated with the 〈 〉 average of the ST procedure, see (II.2.1). For instance 〈A〉 〈A〉
corresponds to correlation among different gauge orbits at the difference of 〈AA〉 (for
a moment, we drop off the Lorentz and color indices for clarity) and can be accessed in
lattice simulations (assuming such simulations are feasible and will be perform accord-
ing to II.1.2). More precisely, let us consider C := 〈A〉 〈A〉 − 〈AA〉, which, according
to Eq. (II.2.1), is given by

C =
∫
Dη1Dη2P[η1]P[η2]

∑
i,j s(i)s(j)e−β0H[A,η1,Ui]−β0H[A,η2,Uj ]

(
AUiAUj −AUiAUi

)
∫
Dη1Dη2P[η1]P[η2]

∑
i,j s(i)s(j)e−β0H[A,η,Ui]−β0H[A,η,Uj ]

,

(II.7.16)
where i, j index Gribov copies and we choose the same gauge parameter β0. C thus
represents correlations between different Gribov copies i 6= j. Using the identities
(II.2.6), (II.1.9) and (II.2.8) yields

C =
∫
DV1DV2

(
AU1AU2 −AU1AU1

)
e−SCF[A,V1,ξ1

0 ]−SCF[A,V2,ξ2
0 ]∫

DV1DV2 e
−SCF[A,V1,ξ1

0 ]−SCF[A,V2,ξ2
0 ] , (II.7.17)

where ξ1
0 and ξ2

0 are two free (bare) gauge parameters appearing once the integra-
tions over η1, η2 have been performed. According to general ST procedure presented
in II.2.1, by taking ξ1

0 = ξ2
0 ≡ ξ0 and introducing the replicas, we thus have, after

21We recall that, in the initial ST gauge-fixing procedure, see Eq. (II.2.12), there is no replica sector.
The latter is introduced in order to formulate the ST procedure as a local field theory, but it is merely
a matter of convenience for the continuum methods.

22Indeed, auxiliary fields are introduced in order to have a local field theory. This is for convenience
(if not mandatory) for continuum methods though they are not necessary for lattice simulations. For
instance, the lattice action does not involve ghost fields. Nevertheless, the propagator of the latter
can be obtained through the FP operator which is present in the lattice procedure. However, in the
present case, there is no such equivalent of the FP operator for the λ fields and hence, the possibility
that their correlator be measured on the lattice is not guaranteed.
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factorization of the volume of the gauge group,

C = lim
n→0

∫
DA

(∏2n
k=2DVk

) (
AAU2 −AA

)
e−S[A,{V}]∫

DA
(∏2n

k=2DVk
)
e−S[A,{V}]

, (II.7.18)

where we explicitly let 2n replicas in order to stress that the previous derivation simply
amounts to introduce 2n replicas instead of n. This is obviously equivalent to redefining
n = 2n in the limit n→ 0. Eventually, we have that C is given through the following
correlator

C = lim
n→0

{[
AAUk

]
− [AA]

}
, (II.7.19)

that can be computed in perturbation theory. For instance, putting back Lorentz and
color indices, Cabµν(x, y) is given at lowest order in perturbation theory by

C
ab
µν(x, y) = lim

n→0
∂yν

[
Aaµ(x)λbk(y)

]
0
. (II.7.20)

Higher order terms will involve composite operators of the kind [A(x)λ(y) . . . λ(y)]
and [A(x)A(y)λ(y) . . . λ(y)], and were not computed. Note however that, they always
involve either λ− λ or λ−A correlators, which are null in the Landau gauge (ξ0 = 0),
see Eqs. (II.4.51), (II.4.52). Hereby, in the peculiar case of the Landau gauge, we have
that Cabµν(x, y) = 0. Hence we interpret this result as the fact that there is no cross
contribution from two different Gribov copies to the gluon sector. This turns out to
be a peculiar feature of the Landau gauge.

II.8 Summary and discussions
We now conclude this chapter. We have proposed a formulation of a class of

nonlinear covariant gauges as an extremization procedure. Ignoring Gribov ambiguities
this class of gauges is equivalent to the CFDJ gauges. We have applied the ST gauge-
fixing procedure proposed in [74] to deal with Gribov ambiguities in an analytical way.
This procedure amounts to averaging over the Gribov copies along each gauge orbit
with a suitable weight. This lifts the degeneracy between the different copies and avoids
the usual Neuberger zero problem. We have shown that our averaging procedure can be
formulated as a local field theory which is perturbatively renormalizable in d = 4. This
requires a set of six independent renormalization factors. We have provided explicit
expressions of the latter at one-loop order in perturbation theory. The presence of
a modified (non-nilpotent) BRST symmetry (see (II.3.14) and (II.3.15)) insures the
renormalizability of the present theory though we do not know how to construct the
physical space since one cannot redo the Kugo-Ojima construction.

The resulting gauge-fixed theory has the form of the CF model augmented by a
nontrivial sector of replicated scalar, ghost, and antighost fields, which can be written
as SUSY nonlinear sigma models coupled to the gauge field, see Eq. (II.3.12). This
extends the proposal of [74] away from the particular case of the Landau gauge and
provides a more generic framework. For instance, unlike in the Landau gauge, the
nonlinear sigma model fields do not decouple in the perturbative calculation of ghost



II.8. Summary and discussions 91

and gluon correlators and the present gauge-fixed version of the YM theory exhibits
explicit differences with the standard CF model.

A key ingredient of the continuum formulation is the replica technique and the
interplay between the limit n→ 0 and renormalization. Indeed, part of the n depen-
dence of the theory can be absorbed in the definition of the renormalized parameters
[74, 98, 99]. In the present work, we have employed a minimal scheme which, first,
allows one to reproduce the results of [79] in the Landau gauge (ξ = 0) and, second,
has a smooth ξ → 0 limit. In the present manuscript, we have studied the infrared-safe
renormalization scheme and have presented results for the ghost and gluon propaga-
tors at one-loop order with and without RG improvement. For completeness we have
also presented our results for the replica sector. Finally, we have compared our re-
sults to those of the CF model, obtained by simply setting the number of replicas to
n = 1. This allows one to pinpoint the peculiar effects of the superfield sector of our
theory, which is related to our particular treatment of Gribov ambiguities. As empha-
sized above, more information on the effects of Gribov copies might be captured by
studying nontrivial averages of the kind 〈A〉 〈A〉.

The first important aspect of the present treatment of Gribov copies is the fact
that the basic fields of the theory acquire effective masses, related to the gauge-fixing
parameters β0 and ξ0. In contrast to the Landau gauge (ξ0 = 0), not only the transverse
gluons, but also the FP ghosts are massive. A striking difference between the CF
model (n = 1) and the gauge-fixed theory (n → 0) is the fact that, in the latter
case, the gluon propagator remains transverse in momentum space even away from
the Landau gauge. This is already visible at tree level. At one-loop order in a strict
perturbative expansion—i.e., without RG improvement—we also observe important
differences between the n = 1 and the n → 0 cases, mainly in the transverse gluon
propagator, which receives direct contributions from the replica sector. It is important
to note that these contain massless degrees of freedom, which lead to nonanalyticities at
small momentum. These are absent in the case n = 1. The role of massless excitations
in the gauge-fixed theory is further illustrated by implementing RG improvement where
it is found that the RG flows never freeze out. These results of the gauge-fixed theory
are to be compared to the corresponding ones in the CF model, where all degrees of
freedom are massive and the RG flow freezes in the IR, resulting in quantitative but
not qualitative changes as compared to the strict perturbative results.

One drawback of the present approach is that (up to now) we do not know how fix
the mass parameter in an internal way. This has to be put in regard with the Gribov-
Zwanziger approach where the Gribov parameter is fixed by a self-consistent equation
while here we have to resort to fit the lattice data when available. The fact that, the
present class of gauges is formulated as an extremization procedure, keeps open the
possibility that these gauges be amenable in lattice simulations by generalization of
the lattice gauge-fixing procedures employed in the Landau gauge. This amounts to
generalize the minimization algorithms used on the Landau functional HLandau. We
have proposed a possible generalization to the present case of the Los Alamos algo-
rithm that aims at locally minimizing the functional H (see Eq. (II.1.1)), though an
actual procedure would require also the generalization of global minimization algo-
rithms. However (assuming for a moment that such simulations are possible and will
be performed), beside the systematic difficulties of interpretation between numerical
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and continuum results for what concerns gauge-dependent quantities23 several reasons
might lead to a disagreement of the present previous results with lattice data. As we
already mentioned, our choice of renormalization, Sec. II.5, might have been chosen
differently and we need actual lattice data to discriminate one or another. This can
be inferred from the strong predictions of the present proposal as, for instance, the
transversallity of the gluon propagator for ξ 6= 0. Also, it is possible that we did illegit-
imate operations such as the interchange of the n→ 0 limit with the path-integral (see
Eq. (II.2.14)). Nevertheless, if disagreement of the present results with lattice data
is observed one may wonder first about the spectrum of Gribov copies with respect
to the value of the functional H. Indeed, in the ST procedure, we average over all
of them while the lattice gauge-fixing procedure pinpoints a unique copy which is, in
particular, a minimum of H (we recall that the copies correspond to any extrema, not
only minima). For both approaches to be comparable therefore, it shall be equivalent
to either randomly pick one minimum (as the lattice does) or to average over the whole
set of Gribov copies with a suitable weight (as the ST proposal does). This assumes
the following inequality to be true

H [A,Umin.] < H
[
A,Usdl.pts./max.

]
. (II.8.1)

In the Landau gauge, indications suggest that this is not exactly the case but that
the value of HLandau admits overlaps between minima and saddle points [174]. Nev-
ertheless, due to the good agreement between perturbative calculations and lattice
results, it is reasonable to assume in this case that these overlaps do not compromise
the comparison of the perturbative calculation with the lattice data. However, we have
no clue of what happens for ξ 6= 0. If these inequalities are violated too strongly, it
would probably result in a disagreement between our present results and the lattice
ones. Remark however that (II.8.1) being violated does not imply a strong dependence
of the lattice results in the choice of the Gribov copy selected, though it is most likely.
Hereby, in order to clarify these issues, it would be desirable to perform a numerical
investigation of the gauges presented in this chapter.

23Comparisons of gauge-dependent quantities between numerical and continuum approaches are
never easy. Indeed, both gauge-fixed theories are not equivalent. One can easily convinced of that by
inspection of the lattice gauge-fixing procedure that selects exactly one Gribov copy. The continuum
equivalent (if it exists at all) is hence a highly nonlocal action. Otherwise said, strictly speaking,
the gauge-fixed action used in continuum approaches is actually never the continuum version of the
associated gauge-fixed lattice simulations that one intends to compare with. Note this is a very general
issue one cannot cope with, and is also present in the Landau gauge. Since we are comparing gauge-
dependent quantities, it might result from it differences which are hardly quantifiable.



Chapter III
Yang-Mills theories at finite temper-
ature

In the last chapter, we discussed in detail the studies of YM theories in the vacuum
realized in [98, 99, 209]. They are to be included in a larger series of works, along with
[79, 78, 74, 81, 80, 82]. For our present purpose, the main conclusion of these studies
is that, in the vacuum and in the Landau gauge, the most relevant IR aspects of the
YM correlation functions are accurately captured by an effective gluon mass (which
might be related to a peculiar treatment of the Gribov copies) and the deep IR regime
can be accessed perturbatively.

As emphasized earlier, a great challenge is the study of the complete QCD phase
diagram. On the one hand, lattice simulations undergo a severe sign problem [25, 26]
and calculations with realistic quark masses are limited to small values of the chem-
ical potential in units of temperature. On the other hand, continuum approaches
have to face the nonperturbative character of the theory for not too large tempera-
tures. Although a lot of efforts are dedicated at circumventing the sign problem on
the lattice [25, 27, 28], we shall focus here on an alternative strategy. In general,
continuum methods are not submitted to such a severe sign problem, and hence, a
possible path-way consists in generalizing at finite temperature/chemical potential the
continuum approaches used to investigate the (vacuum) IR regime of YM theories.
As emphasized earlier, these approaches rely upon approximation schemes, which, for
being trustable, should be checked, e.g., by confrontation against lattice simulations
when they are available. The latter, now, describe well the phase diagram at vanishing
chemical potential along the temperature axis. Indeed, lattice simulations have now
firmly established that there exists a confinement-deconfinement phase transition in
YM theories [19, 215], whose mains aspects are reviewed in Sec. III.2. In particu-
lar, it is now understood that the order of the phase transition depends on the color
symmetry group under consideration and is found of first order for SU(3) and second
order for SU(2).1 A relevant order parameter for the phase transition is provided by
the Polyakov loop [22] whose nonvanishing expectation value signals the spontaneous
breaking of the center symmetry [216] associated to the phase transition. Thereby, in

1We also mention that lattice simulations have also established that, in the presence of light dy-
namical quarks with realistic masses, the phase transition becomes a crossover [24].

93



94 Chapter III. Yang-Mills theories at finite temperature

this regime, lattice simulations provide a benchmark for continuum methods. Hence,
on top of its inherent interest, the detailed description by means of continuum meth-
ods of the confinement-deconfinement phase transition in YM theories also provides a
laboratory for continuum approaches where they can be checked against lattice data.
If successful, this would consist in a good starting point to extend the former also at
finite chemical potential.

In this spirit, nonperturbative continuum methods were amended to the finite tem-
perature case such as the FRG [33, 32, 34, 35], truncations of DSEs [36, 37, 38], the
Hamiltonian approach of [168], two-particle-irreducible techniques [35, 170], or the GZ
proposal [217, 218]. It is therefore natural to extend at finite temperature the per-
turbative approach of the CF model presented previously. This has been done in a
series of works [83, 93, 94, 95] and recently also for QCD at finite chemical potential
[97] in the presence of heavy quark masses. However, although the phase transition is
a physical phenomenon, its effects on the YM correlators might depend on the gauge
under consideration. Therefore, for gauge-dependent approximate methods, such as
the continuum ones, it might be to choose a gauge in which the Green’s functions on
which the approach is based be sensitive to the phase transition in order to consistently
keep tracks of its effects.

Owing to the numerous studies performed in the vacuum, the Landau gauge ap-
pears as a natural candidate and, accordingly, has received a lot of attention also at
finite temperature. In this gauge, and in the vicinity of the phase transition, the YM
correlators have been investigated by means of both numerical [101, 91, 46, 92] and
continuum methods, e.g., with the FRG [33, 219, 35], the GZ proposal [218], trunca-
tions of DSEs [220, 89, 221], two-particle-irreducible inspired approximations [170, 35],
the Hamiltonian approach [222, 223], or perturbative calculations in the CF model
[83], see [45] for a review. The main results for the Landau gauge gluon and ghost
propagators are presented in Sec. III.3. On the one hand, lattice calculations in the
Landau gauge found no sign of the phase transition, neither in the ghost propaga-
tor (which is in fact essentially independent of the temperature) nor in the magnetic
gluon propagator, which is roughly speaking associated with the correlation function
for the space-components of the gluons, see below for more details. The situation is
less clear for the electric sector, which involves the time-component of the gluon field,
more directly connected to the Polyakov loop, see Sec. III.2. Early results in the SU(2)
theory, where the phase transition is second order, seemed to show a clear singularity
of the electric susceptibility (i.e., the electric propagator at vanishing frequency and
momentum) [46] at the critical temperature. However, these data present an extreme
sensitivity to both the lattice size and the lattice spacing for temperatures slightly
below the transition temperature [101, 224], for reasons that are not fully understood
yet, see however [225]. Nevertheless, more recent lattice simulations indicate that this
signal disappears at larger volumes [90]. On the other hand, all the continuum ap-
proaches typically find a slight nonmonotonous behavior of the electric susceptibility
below the transition, but no clear sign of the transition, in qualitative agreement with
the latest lattice results of, e.g., [90].

The disappointing conclusion was that, in the Landau gauge, the basic correlators
show few, if any, signals of the phase transition. It has been argued that this is a con-
sequence of some drawbacks of the Landau gauge. Indeed, this gauge breaks explicitly
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the center symmetry of the finite temperature problem. Moreover, the correlators do
not present an explicit dependence in the order parameter of the phase transition (the
Polyakov loop), which might explain their small response to the phase transition [93].
Although the Polyakov loop is a complicated object, it has been argued in [33, 34, 35]
that one can alternatively incorporate to the YM action a nontrivial background value
for the gauge field that acts as an equivalent order parameter; see also [94, 226]. A
definite proof has been given in [95]. More precisely, this corresponds to work in
the Landau-DeWitt (LDW) gauge, which is a straightforward generalization of the
Landau gauge in presence of a nontrivial background field. This gauge has the main
advantage that the center symmetry is explicit [33]. In fact, one can show that cer-
tain background field configurations obtained by minimizing a particular potential to
be defined below, provide alternative order parameters for the center symmetry, that
are equivalent to the (gauge-invariant but more difficult to access) Polyakov loop [95].
Within this framework, the FRG predicts the correct order of the phase transition, as
well as convincing transition temperatures [33, 35, 34]. It is worth mentioning that,
the GZ proposal has also been implemented within such a background field formalism,
where it was found that the Gribov mass directly feels the confinement-deconfinement
phase transition [217].

The LDW gauge has been implemented in the massive perturbative approach [93,
94, 95, 96, 97], where, in particular, the phase transition was accessed perturbatively
as we review in Sec. III.4. This general set-up consists in our starting point for the
calculations of the YM correlators and the investigation of their possible response to
the phase transition. This study corresponds to our work of [96] and is presented in
detail in Sec. III.5 along with our results.

III.1 Yang-Mills theories at finite temperature: the framework
For later convenience, let us proceed by introducing the massive extension of the

Landau gauge FP action at finite temperature in d-dimensional Euclidean space-time.2
It reads

S0 =
∫
x

{1
4F

a
µνF

a
µν + m2

0
2 A2

µ + ∂µc̄
aDµc

a + iha∂µA
a
µ

}
, (III.1.1)

where the field strength tensor F aµν , the covariant derivative Dµ and the auxiliary
fields, namely the FP ghost and antighost c and c̄, and Nakanishi-Lautrup field ih,
were introduced in Chapter. I. The standard Landau gauge FP action is recovered for
m0 = 0. At finite temperature, the Euclidean time, that we note τ , is bounded such
that ∫

x
=
∫ β

0
dτ

∫
dd−1x , (III.1.2)

where β = 1/T is the inverse temperature. Despite their commuting or anticommuting
character, both type of fields present in Eq. (III.1.1) are periodic in time

ϕ(τ,x) = ϕ(τ + β,x). (III.1.3)
2Details and pedagogical lecture notes can be found in [227].
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In the following we note with capital letters, e.g. K, the momenta with the Fourier
convention that ∂µ → −iKµ. The periodic boundary condition (III.1.3), implies that
their time component, K0, is discrete and given by the so-called Matsubara frequencies
ωn = 2πnT , n ∈ Z, such that K = (ωn,k). In the following, we drop the suffix n
and simply note ω the Matsubara frequencies, except when summing over in loop
calculations where we explicitly reintroduce the suffix.

Since the time direction is singularized with respect to the spatial ones, the general
"Lorentz" decomposition is more complicated at finite temperature than in the vacuum.
For a generic symmetric rank-two tensor Tµν(K), that depends on the four momentum
K, one has

Tµν(K) = δµνTδ(K)+KµKνTK(K)+(nµKν + nνKµ)TnK(K)+nµnνTn(K) , (III.1.4)

where nµ characterizes the thermal bath frame. Everywhere in the following, we work
in the frame where the thermal bath is at rest, that is, n = (1,0). One also defines in
this context the transverse P Tµν(K) and longitudinal PLµν(K) projectors

P Tµν(K) = (1− δµ0) (1− δν0)
(
δµν −

KµKν

k2

)
(III.1.5)

and
PLµν(K) + P Tµν(K) = P⊥µν(K) = δµν −

KµKν

K2 , (III.1.6)

where we noted k2 = k2 and K2 = ω2 + k2.
In the (massive) Landau gauge, the gluon propagator Gabµν(K) = δabGµν(K) is

diagonal in color space and transverse with respect to K: KµGµν(K) = 0. Hereby, it
admits the decomposition

Gµν(K) = P Tµν(K)GT (K) + PLµν(K)GL(K). (III.1.7)
In the following, we refer in an equivalent way to GT as the transverse or magnetic
(gluon) sector and GL as the longitudinal or electric (gluon) sector. They can be
accessed from the gluon polarization tensor Πab

µν(K) and, for later convenience, we use
a perturbative-like writing: Πab

µν(K) = g2
0Nδ

abΠµν(K), with N the number of color of
the fundamental representation of the SU(N) group. The expressions of the magnetic
and electric gluon propagators are

GT/L(K) = 1
K2 +m2

0 + g2
0N ΠT/L(K)

, (III.1.8)

where

ΠT (K) =
P Tµν(K)Πµν(K)

d− 2 , (III.1.9)

ΠL(K) = PLµν(K)Πµν(K). (III.1.10)

Similarly, we define the ghost self-energy Σab(K) = g2
0Nδ

abΣ(K) as well as the ghost
propagator Gab(K) = δabG(K), which reads

G(K) = 1
K2 + g2

0N Σ(K)
. (III.1.11)
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For later convenience, we also define the ghost dressing function at zero Matsubara
frequency

F (k) = k2G(ω = 0, k). (III.1.12)

III.2 The confinement-deconfinement phase transition
In the previous section we introduced the basic ingredients of YM theories at finite

temperature and we chose deliberately to present the massive Landau gauge. This
turns convenient for the discussions to come in Sec. III.5, but first, we would like to
introduce some aspects of the confinement-deconfinement phase transition, which, as
emphasized earlier, occurs in YM theories at finite temperature.

III.2.1 The Polyakov loop as an order parameter

We consider the case where the quarks are statics and of infinitely heavy masses
(quenched approximation). Within this approximation, starting at zero temperature
(vacuum) where quarks and gluons are confined, by increasing the temperature one
eventually ends in a phase where the free energy of an isolated static quark becomes
finite and, in turn, is interpreted as the deconfined phase. The traced Polyakov loop
[228] (referred as the Polyakov loop for shortness) provides a relevant order parameter
for the confinement-deconfinement phase transition [22]. It is defined as

` = 1
N

tr
〈
P exp

{
ig0

∫ β

0
dτ A0(τ,x)

}〉
, (III.2.1)

where P is the path ordering operator (matrices are ordered from left to right according
to the decreasing value of their time argument). The free energy Fq of an isolated static
(of infinitely heavy mass) quark in the thermal gluon bath is related to the expectation
value of the Polyakov loop as [216, 229, 11]

exp {−βFq} = ` . (III.2.2)

Hereby, a vanishing Polyakov loop (as found in the low temperature phase) corresponds
to Fq → ∞, that is, an infinite static quark free energy signaling the confined phase.
On the contrary, a finite value of ` yields a deconfined static quark state.

III.2.2 Spontaneous breaking of the center symmetry

The Polyakov loop (III.2.1) transforms under the action of a local group element
U(τ,x) ∈ SU(N) as [216, 229, 11]

`→ 1
N

tr
[
U(0,x)

〈
P exp

{
ig0

∫ β

0
dτ A0(τ,x)

}〉
U †(β,x)

]
, (III.2.3)

and hence, is invariant under the transformations that admit periodic boundary condi-
tions: U(τ+β,x) = U(τ,x). These correspond to the standard gauge transformations.
Nevertheless, the gauge-invariant YM action admits a larger group of symmetries than
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the above periodic transformations [230]. These consist in gauge transformations with
twisted periodic boundary conditions:

U(τ + β,x) = U(τ,x)Z, (III.2.4)

where Z is an element of a global and discrete group, namely the center of SU(N).
One recovers the standard gauge transformations for Z = 1. The center is defined
as the quotient group of the group of generalized gauge transformations (III.2.4) by
the subgroup of standard gauge transformations. In the case of SU(N), the center is
isomorphic to ZN =

{
zk1 : zk = ei2πk/N , k = 0, . . . N − 1

}
.

According to Eq. (III.2.3), the Polyakov loop gets multiplied by the phase zk under
the generalized gauge transformations (III.2.4)

` = zk` , (III.2.5)

so that the deconfined phase, signaled by a nonvanishing Polyakov loop, corresponds
to a phase where the center symmetry is spontaneously broken. Note that, one could
imagine (although this situation is not expected) that the Polyakov loop vanishes in
the phase where the center is broken. In such a case, the corresponding phase would
still be a confined phase since the static quark free energy would be infinite. Thence,
it is really the zero or nonzero value of the Polyakov loop which signals the confined
or deconfined phase rather than the spontaneous breaking of the ZN symmetry.3

III.3 Landau gauge correlation functions and the phase transi-
tion

Lattice studies performed in the pure gauge case have confirmed the occurrence
of the confinement-deconfinement phase transition. The order of the phase transition
depends on the gauge group under consideration and on the dimensionality (in d = 4
it is second order phase transition for SU(2), first order for SU(3)) [231, 23, 215, 24].
After such a confirmation, some attention was dedicated to investigate the possible
signals of the phase transition on the basic gluon and ghost correlators. Although
the high-temperature regime can be accessed in perturbation theory (supplemented by
resummation techniques, the so-called Hard Thermal Loops [14, 13, 15]), one cannot
access the domain of temperature lower than a few times the transition temperature
[16, 18, 17]. in turn, as emphasized above, various nonperturbative techniques, as well
as the perturbative study of the CF model, were extended at finite temperature in
order to calculate the Landau gauge correlation functions.

III.3.1 The lattice results

Gauge-fixed lattice simulations were performed for thermal YM theories in the
Landau gauge in d = 4 for gauge groups SU(2) and SU(3), see e.g. [84, 85, 86, 87, 88,

3Remark that here we restrain the discussion to the case where all the static matter sources are in
the fundamental representation. For an enlarged discussion in the case where different representations
are considered see e.g. [12, 95].
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89, 90, 91, 46, 92]. However, they display strong systematic uncertainties in particular
near the transition temperature [101, 224]. Nevertheless, some general qualitative
features have emerged:

• The ghost propagator displays very small temperature dependence [88]. This
feature is also captured in the framework of DSEs [220] and FRG [219].

• The magnetic mass, defined as the square root of the inverse correlator at zero
Matsubara frequency and momentum, remains finite and increases monotonously
with the temperature. In the extreme infrared, the magnetic correlator is found
to increase linearly with momentum, a behavior characteristic of the zero tem-
perature gluon propagator in the Landau gauge in d = 3 [88].

• Finally, the electric gluon sector represents the correlation of the temporal gluon
field, see Eq. (III.1.6). Owing to the definition of the Polyakov loop Eq. (III.2.1),
the electric sector is widely believed to be the most sensitive to the phase transi-
tion. Unfortunately, this correlator presents the largest uncertainties due to lat-
tice artifacts, particularly near the phase transition, see Fig. III.1 and [101, 224].
In particular, the electric (Debye) mass is nonmonotonous with respect to the
temperature [89]. Although early lattice simulations in SU(2) suggested that
the Debye mass is minimum (even vanishing) at the transition temperature [46],
larger volume simulations now favor a finite minimum (with a rather small mass
ratio of 1.1 − 1.5 with respect to the vacuum value) at a temperature T such
that T ' 0.86Tc, with Tc the critical temperature [101]. This is summarized in
Fig. III.2 where, as the lattice volume increases, the minimum value of the Debye
mass increases and the position of the minimum is shifted to lower temperatures.
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Figure III.1: The longitudinal gluon propagator at zero Matsubara frequency and at
the transition temperature Tc as a function of the momentum p in d = 4 for SU(2).
Results are given for different lattice spacing a and lattice sizes L (both in fm) labeled
in parentheses (a, L), and for different discretization N3

s ×Nt. The most reliable data
are obtained for the largest value of Nt (black curve). Original figure taken from [90].



100 Chapter III. Yang-Mills theories at finite temperature

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

D
L
(0

) 
(G

e
V

-2
)

T/Tc

"DL0_4"

"DL0_6"

"DL0_8"

"DL0_16"
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data are obtained for the largest value of Nt (blue points). Original figure taken from
[90].

All in all, as the lattice results become more reliable, they tend to suggest that
the basic correlators are little sensitive to the phase transition, and in particular no
dramatic signal is observed in the electric sector at Tc, see Figs. III.1-III.2. These
results are now fairly well described by continuum methods. For instance, in Fig. III.3
is displayed the FRG results of [219] for the magnetic (transverse) and electric (longi-
tudinal) gluon propagators which are compared with the corresponding lattice results.
As we present in the next section, the perturbative calculations performed in the CF
model also reproduce these results.
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Figure III.3: Left panel: Transversal gluon propagator in comparison with lattice
results [46, 89]. Right panel: Longitudinal gluon propagator in comparison with lattice
results [39]. The lattice data have been rescaled such that the T = 0 propagators match
at intermediate momenta p & 1GeV. Original figure taken from [219].
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III.3.2 Perturbative results in the massive Landau gauge

The massive approach of the series of works of [79, 78, 74, 81, 80, 82, 98, 209] has
been extended at finite temperature in the Landau gauge [83]. It consists in considering
the action Eq. (III.1.1) introduced in Sec. III.1 that corresponds to a gauge-fixed version
of the YM action where the Landau gauge is implemented according to the ST gauge-
fixing procedure [74], see Sec. I.5 and Sec. II.2.

We recall that, in the Landau gauge, the SUSY sector appearing in the gauge-
fixing procedure decouples (in perturbation theory) from the ghost and gluon sectors.
This remains true at finite temperature because all fields (SUSY and non-SUSY ones)
have the same periodic boundary conditions. Therefore, there is no need to intro-
duce the SUSY sector explicitly here; see Eq. (II.4.18) of Sec. II.4.1. The mass term4

m0 appearing in the action Eq. (III.1.1) accounts for the presence of Gribov copies.
We remark that, a priori, it should present a temperature dependence since the dis-
tribution of Gribov copies depends on the temperature. We again mention that, in
principle, it should be possible to fix this mass in an ab initio way (akin the Gribov
parameter through the horizon condition, see Eq. (I.4.12) of Sec. I.4.2). However, so
far, such analogous condition has not been derived and m0 thus appears as an external
parameter, which is to be fixed by comparisons with lattice simulations for instance.

In [83], the authors computed the finite temperature gluon and ghost propagators
from the massive action (III.1.1) at one-loop order in perturbation theory. The thermal
contributions do not yield divergences so that only the vacuum contributions need
to be renormalized. The one-loop transverse gluon propagator reproduces the same
behavior as the one found in lattice simulations and FRG [see Fig. III.3], namely a
3d-behavior for small momenta and a monotonously increasing magnetic mass with
respect to the temperature. This is depicted in Fig. III.4. The monotonous increase of
the magnetic mass yields a dramatic consequence, namely a pole in the ghost sector.
This is a consequence of a nonrenormalization theorem (see [232, 201, 79, 78] for the
case T = 0, see also Appendix F)

G−1
T,0(K)F−1

0 (K)
∣∣∣
ω=0,k→0

= m2
0, (III.3.1)

where we explicitly added a suffix 0 to stress that these are bare quantities, and F0
is the (bare) ghost dressing function defined in Eq. (III.1.12). In particular, it is
understood in (III.3.1) that one has to take ω = 0 prior to perform the limit k → 0.
After renormalization (in the zero-momentum renormalization scheme [see Eq. (II.5.29)
of Sec. II.5.3] used in [83]), this identity implies the following one-loop IR behavior of

4Remark that according to the ST gauge-fixing procedure, the mass term is proportional to the
number of replica n which eventually has to be taken to zero, see Sec. II.2 of Chapter. II. Nevertheless,
as we saw, the n dependence of the mass term can be reabsorbed into the bare parameters of the
theory under a suitable choice of renormalization scheme, see Sec. II.5.1 of Chapter. II. Here and in
the following, we only consider such kind of renormalization schemes, so that, in a short-hand notation,
we do not write explicitly the n dependence of the bare mass that will be trivially absorbed in the
renormalization. Accordingly, the gluon and ghost sectors are effectively equivalent to those of the CF
model.
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Figure III.4: One-loop transverse gluon propagator as a function of the momentum for
different temperatures. Computations performed in the massive action Eq. (III.1.1).
Original figure taken from [83].

the thermal part of the ghost self-energy

g2N Σth(0, k → 0) ∼ − k
2

m2 g
2N ΠT,th(0, k → 0)

∼ k2
(

1−
M2

mag(T )
m2

)
. (III.3.2)

The last line eventually turns negative because of the (linearly increasing) behavior
of the magnetic mass at large temperatures. In particular, this leads to the appear-
ance of a pole in the ghost dressing function at sufficiently high temperatures [83], see
Fig. III.5. This pole can be overcome by allowing the (renormalized) parameters to
depend on the temperature. In practice, the temperature dependence was fixed by
finding, for each temperature, the value of the parameters for which the perturbative
results agree the best with lattice data. Similar treatment was needed in other ap-
proaches, as for instance in [218]. In the present case, it results in a slightly decreasing
(renormalized) coupling constant with respect to the temperature that ranges from
g = 7 for T = 0 to g = 5 at T = Tc. With these temperature-dependent parameters,
the previous pole is avoided and both the magnetic gluon propagator and the ghost
dressing function are found in good agreement with lattice results. On the other hand,
in the electric sector, although the Debye mass shows the nonmonotonous behavior
observed in lattice data, it initially does not reproduce well the latter at the quanti-
tative level, with a too small mass ratio and a lower temperature at which the Debye
mass is minimum. Let us mention though that, as lattice simulations are performed
on larger volumes, their results get closer to the perturbative ones [233].

In this section, the main point we wanted to stress is that, in the Landau gauge,
YM correlators display poor signals of the confinement-deconfinement phase transition.
In this regard, the Landau gauge seems to be not the best choice of gauge to study
the phase transition by means of approximate continuum methods. In particular, the
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Figure III.5: Ghost dressing function as a function of the momentum, for different
temperatures, ranging from 0 to 0.25 GeV. The infrared dressing function is strongly
enhanced as the temperature is increased. It even shows a pole for temperatures larger
than 0.25 GeV. Original figure taken from [83].

Polyakov loop (the order parameter of the phase transition) does not enter at any level
in the definition nor in the calculation of the correlators. On top of it, we presented in
Sec. III.2 that the phase transition displays tight links with the ZN symmetry, which,
in turn, is explicitly broken in the Landau gauge [95] (see Sec.III.4.2).

Moreover, for what concerns the perturbative approach, although the results of
[83] provide fairly good agreement with the lattice, in general, near a phase transition,
one expects the critical fluctuations of some order parameter to play an important
role. The latter are usually not captured by a perturbative calculation as presented
above and require another ingredient related to the presence of a nontrivial order
parameter. For instance, one can think to the Ising model where one attempts to
study the phase transition in a perturbative approach. Of course, as it is well known,
one would add to the initial Hamiltonian an external small magnetic field in order
to account for a possible nonzero value of the magnetization. In this case, the phase
transition can be accessed for instance in the mean-field approximation. In the case of
the confinement-deconfinement phase transition, this motivates further the inclusion
of an order parameter into the action for the perturbative approach.

III.4 The (massive) Landau-DeWitt gauge

As emphasized above, it would be desirable to have an approach where the order
parameter and the ZN symmetry are explicitly accounted for, and which can be inves-
tigated by means of both lattice simulations and continuum methods. Such a proposal
has been put forward in [33, 35, 34] where the authors used background field methods
that allow to maintain explicitly the ZN -center symmetry at the level of the effective
action Γ. Accordingly, in the framework of the FRG, they studied the confinement-
deconfinement phase transition for N = 2 and N = 3 in a background field extension
of the Landau gauge (the Landau-DeWitt gauge, see below). Their results predict the
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correct order of the phase transition as well as transition temperatures in agreement
with the lattice. These background field methods were implemented in the framework
of the massive approach of [79, 78, 74, 81, 80, 82, 98, 209, 83] first in [93, 94, 95] which
we now review.

III.4.1 The general set-up
The theory is quantized by means of background field methods [234, 235, 236, 118].

One introduces an a priori arbitrary background field configuration Āµ and accordingly
defines the fluctuating field aµ = Aµ−Āµ. The Landau-DeWitt (LDW) gauge is defined
by the condition

D̄µaµ = 0, (III.4.1)

where D̄µ is the background covariant derivative defined as

D̄µϕ = ∂µϕ− ig0[Āµ, ϕ] . (III.4.2)

Note in particular that, for vanishing background field the Landau gauge is recovered.
The gauge transformation of the gauge field Aµ = Āµ + aµ can be decomposed in two
ways: either

Āµ → Āµ

aµ → aUµ = UaµU
−1 + i

g0
UD̄µU

−1 ,
(III.4.3)

or

Āµ → ĀUµ = UĀµU
† + i

g0
U∂µU

†

aµ → UaµU
−1 .

(III.4.4)

The condition (III.4.1) fixes the symmetry (III.4.3), but (III.4.4) remains a symmetry
of the family of gauge-fixed actions labeled by Ā, namely SĀ[ϕ] = SĀU [UϕU−1] with
ϕ = (a, c, c̄, h). Observe that the transformation a → aU is very similar to the usual
gauge transformation (see (I.1.4)) except that the partial derivative is replaced by the
background covariant derivative: ∂µ → D̄µ.

Similarly to Landau, the LDW gauge can be obtained by extremizing the functional

HLDW[a, U ] =
∫
x

tr
{
aUµ a

U
µ

}
, (III.4.5)

which is a simple generalization of the Landau functional HLandau[A,U ], see (I.4.1) of
Sec. I.4. Hereby, it is expected (and confirmed in [237]) that the methods routinely
employed to implement the Landau gauge in lattice simulations can be adapted to the
LDW gauge.

Here, we apply the ST procedure to the LDW gauge, all the same as in Landau
with Aµ → aµ and Dµ → D̄µ. We arrive at the following effective gauge-fixed action
[93]

SĀ =
∫
x
tr
{1

2FµνFµν +m2
0aµaµ + 2D̄µc̄Dµc+ 2ihD̄µaµ

}
. (III.4.6)
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In terms of the field aµ, we have

Fµν = F̄µν + D̄µaν − D̄νaµ − ig0[aµ, aν ], (III.4.7)

with F̄ aµν = F aµν [Ā] the field strength tensor evaluated at A = Ā, and

Dµϕ = ∂µϕ− ig0[Aµ, ϕ] = D̄µϕ− ig0[aµ, ϕ]. (III.4.8)

Remark the important point that, it is the fluctuating field aµ which appears with
a mass term in (III.4.6) and not Aµ. In the context of the ST proposal, this comes
from the form of the minimization functional (III.4.5) (see Sec.II.2.1). This property is
crucial in order to insure that the action Eq. (III.4.6) admits the following symmetry
[118]

SĀ[ϕ] = SĀU [UϕU−1] , ϕ = (a, c, c̄, h) , (III.4.9)
where U is a local SU(N) matrix, and ĀU was defined in (III.4.4). Due to its close
resemblance with a gauge transformation, the symmetry (III.4.9) is often called back-
ground gauge symmetry. Introducing sources Jϕ for the fields ϕ = (a, c, c̄, h), one
defines [118]

eWĀ[Jϕ] =
∫
Dϕ exp

[
−SĀ[ϕ] +

∫
x
Jϕϕ(x)

]
, (III.4.10)

and the Legendre transformation ofWĀ[Jϕ] with respect to the sources Jϕ leads to the
effective action ΓĀ[ϕ]. Here, the fields ϕ are now to be understood as average values
in the presence of sources. Moreover, since the background gauge transformations,
Eq. (III.4.4), are linear, one has

ΓĀ[ϕ] = ΓĀU [UϕU−1] . (III.4.11)

In particular, by taking U(x) as a local element of SU(N) with twisted periodic bound-
ary conditions (Eq. (III.2.4) with Z 6= 1), one sees that the center symmetry is encoded
into the background gauge symmetry at the level of the effective action.

To evaluate physical observables at zero sources, one should minimize ΓĀ[ϕ] with
respect to ϕ at a given background field configuration Ā. Still, according to the LDW
gauge condition, Eq. (III.4.1), the choice of the background Ā is merely a choice of
gauge, which should thus be chosen for convenience. In particular, in presence of the
background, the Polyakov loop, Eq. (III.2.1), reads

` = 1
N

tr
〈
P exp

{
ig0

∫ β

0
dτ
(
Ā0(τ,x) + a0(τ,x)

)}〉
min

, (III.4.12)

where the brackets stand for an average with the gauge-fixed theory (III.4.6), and the
suffix min means that the right-hand side of Eq. (III.4.12) is evaluated at an absolute
minimum ϕmin[Ā] of ΓĀ[ϕ]. Hereby, it turns out convenient to choose (if it exists)
a background Ā = Ās such that ϕmin[Ās] = 0. Henceforth, we shall refer to such
background field configurations as self-consistent backgrounds since they correspond
to 〈a〉min = 0 or equivalently to 〈A〉min = Ās. One should consider the following
functional of the background field

Γ̃[Ā] = ΓĀ[0] , (III.4.13)
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which is invariant under the background gauge transformations Eq. (III.4.4) owing to
Eq. (III.4.11). An important remark is to note that Γ̃[Ā] is not a Legendre transform
but, according to its definition Eq. (III.4.13), it corresponds to the effective action ΓĀ
evaluated for vanishing ϕ in presence of the background configuration Ā. Thus, in the
definition Eq. (III.4.13), Ā is in general not a self-consistent background field and ΓĀ[0]
is not the minimum of ΓĀ[ϕ]. Nevertheless, it has been argued that self-consistent
background fields are absolute minima of Γ̃[Ā] [93, 94, 95] (see also Appendix G).
Therefore, for the evaluation of physical observables, one can either minimize ΓĀ[ϕ]
with respect to ϕ for a given Ā, or, alternatively, minimize Γ̃[Ā] with respect to Ā.
The main lines of the proof goes as follow:5 consider the functional Γ̃[Ā] evaluated for
a self-consistent background Ās. By construction, one has that6

Γ̃[Ās] = ΓĀs
[0] = ΓĀs

[amin[Ās]] . (III.4.14)

The right-hand side is related to the free energy of the system according to − lnZ =
ΓĀ[amin[Ā]] and thus does not depend on the "gauge choice" Ā.7Therefore, the back-
ground independence of the partition function yields ΓĀs

[amin[Ās]] = ΓĀ [amin[Ā]] ∀Ā.
Since the right-hand side of this last equality is evaluated at the minimum, one has that
ΓĀ [amin[Ā]] ≤ ΓĀ [a] ∀a. In particular, this is true by taking a = 0 on the right-hand
side. Eventually, this leads to

Γ̃[Ās] ≤ ΓĀ[0] = Γ̃[Ā] ∀ Ā , (III.4.15)

that is, a self-consistent background is necessarily an absolute minimum of the func-
tional Γ̃[Ā]. The rest of the proof follows the same lines and one shows that either
the absolute minima of Γ̃[Ā] correspond exactly to the self-consistent backgrounds or
there is no self-consistent background at all [95]. This finally shows the equivalence for
the evaluation of gauge-invariant quantities either by minimizing ΓĀ[a] with respect
to a for fixed background Ā or by minimizing the functional of the background Γ̃[Ā]
with respect to Ā.

III.4.2 The background potential in SU(2)

In the following, we consider only self-consistent background fields. Moreover, since
by definition a self-consistent background satisfies Ās(τ,x) = 〈A〉min, it is sufficient to
consider homogeneous background fields in the temporal direction, that is

Āµ(τ,x) = Ā0δµ0 . (III.4.16)

With no loss of generality, the (Hermitian) matrix Ā0 can be restricted to belong
to the Cartan subalgebra8 of the color group [34]. Here, for simplicity, we consider

5We shall assume for the sake of clarity that ϕmin = 0 for all fields ϕ = c̄, c, ih.
6It is important to note here that Ās is not assumed to be a minimum of Γ̃[Ā]. On the contrary,

by definition of a self-consistent background, a = 0 is the minimum of ΓĀs [a].
7This property can be shown in the m0 = 0 case, though, it is not clear how to enforce it in the

present m0 6= 0 case. See discussion in Appendix. G.
8We recall that the Cartan subalgebra of a group is defined by the generators of the Lie algebra taC

that satisfy [taC , tbC ] = 0.
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only the case of SU(2). For a generalization to SU(3) and other groups see [95] and
Appendix H. Among the three SU(2) generators (in the Cartesian basis) (t1, t2, t3)
defined in Sec. I.1 of Chapter. I, we choose t3 = σ3/2, where σ3 = diag(1,−1) is the
third Pauli matrice, as the generator of the one-dimensional SU(2) Cartan subalgebra.
Hereby, we set Ā0 = Ā3

0t
3. We also define

r = g0βĀ
3
0 , (III.4.17)

as well as the background field potential [93, 33, 35]

V (r) = 1
βΩΓ̃[Ā] , (III.4.18)

where Ω is the spatial volume. Accordingly, one tries to find rmin that minimizes V (r),
which can be computed by means of continuum methods, e.g. in perturbation theory
as done in [93, 94].

As emphasized earlier, the center symmetry is encoded into the background gauge
symmetry Eq. (III.4.9). To see this, consider gauge transformations of the peculiar
form

U(τ,x) = exp {iτφ/β} , (III.4.19)

where φ = φ3t3 is a constant element of the SU(2) Cartan subalgebra. For U(τ,x)
of the form (III.4.19), the background field is changed under a background gauge
transformation (III.4.4) as

Ā3
0 → Ā3

0 + φ3

βg0
⇒ r → r + φ3 . (III.4.20)

Moreover, for U(τ,x) of the form (III.4.19), we have that

U(τ + β,x)†U(τ,x) = exp
[
iφ3t3

]
= 1 cos

[
φ3

2

]
+ σ3i sin

[
φ3

2

]
.

(III.4.21)

Thus, standard periodic boundary conditions require that φ3 = 0 mod[4π], while
periodic boundary conditions up to a center element (for SU(2) the center is given by
Z2 = {+1,−1}) necessitate φ3 = 2π mod[4π]. Therefore, owing to the background
gauge symmetry, Eq. (III.4.11), the Z2-center symmetry implies that the background
potential V (r) is 2π-periodic in r. Moreover, the gauge-fixed action is invariant under
the charge-conjugation transformation9 [93] Āµ → −Āµ, ϕ → −ϕ† that yields the
parity symmetry of the potential (III.4.18) under r → −r. Hereby, it is sufficient
to study the background potential V (r) on the interval r ∈ [0, π] [93, 94, 95]. In
particular, the above properties of parity and 2π-periodicity imply that r = 0 and
r = π are always extrema of V (r), where r = π is the Z2-center symmetric point [95]
(see also Eq. (III.4.22) below).

We recall that, physical observables have to be evaluated at the physical point
r = rmin (or equivalently, Ā = Āmin). Following the discussion above, the value rmin

9In SU(2), this corresponds to a global color rotation.
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(or equivalently, Āmin) constitutes an order parameter for the realization of the center
symmetry [95, 226]. In the present case, for gauge group SU(2), rmin = π corresponds
to the phase where the center symmetry is realized, while it is spontaneously broken
for rmin ∈ [0, π[. Note that, in particular, the Landau gauge corresponds to Ā = 0.
The general discussion presented here has been generalized for SU(3) and other gauge
groups in [95], see also [34].

III.4.3 The background potential at two-loop order and the phase transition
In the previous sections, we saw that the inclusion of a background field configura-

tion Āµ eventually leads to the calculation of the background field potential V (r) that
needs to be minimized in order to evaluate physical observables. In particular, it is
interesting to investigate the behavior of the Polyakov loop. At tree-level, it is given
by, see Eq. (III.4.12),

` =1
2tr exp[irmint

3] = cos rmin
2 . (III.4.22)

Hence, as expected, the center symmetric point rmin = π yields a vanishing Polyakov
loop, which signals the confined phase. In contrast, for rmin ∈ [0, π[ the Z2-center
symmetry is spontaneously broken and a nonzero Polyakov loop develops, signaling
the deconfined phase.

In practice, the background field potential has been computed up to two-loop order
in [94] for SU(2) and in [95] for SU(3) and other gauge groups. A second-order phase
transition was found, as expected, for SU(2), see Fig. III.6, with a critical temperature
of Tc = 0.285 GeV for m ' 0.68 GeV and g ' 7.5. These values of the parameter were
inferred from lattice calculations of ghost and gluon propagators in the Landau gauge
at vanishing temperature. The second order character of the phase transition can
directly be observed at the level of the order parameter rmin(T ), which is a continuous
function of T but presents a cusp at the critical temperature, as depicted in Fig. III.7.
It is worth mentioning that, at asymptotically high temperatures, the background

reaches a finite value r∞ given by [94]

r∞
π

= 1−
√

8π2 + g2

8π2 + 7g2 . (III.4.23)

This is a two-loop feature, while at one-loop order one has r∞ = 0 [93]. Notice that,
the limit (III.4.23) ignores possible high temperature RG or resummation effects. In
particular, with the development (III.4.23), one has that r∞ → 0 as g → 0. Remark
that, after the critical temperature, rmin(T ) displays a slight nonmonotonous behavior
before reaching its asymptotic value r∞.



III.4. The (massive) Landau-DeWitt gauge 109

 0

 1

π/20 π
r

V (T, r)/T 4

Figure III.6: Rescaled two-loop background field potential V (T, r)/T 4 for various tem-
peratures, below (blue) and above (red) the critical temperature (dashed black). The
green curve corresponds to a higher temperature and shows the approach to the asymp-
totic infinite temperature limit (dotted line). All curves have been shifted by their
respective values at r = π for clarity. Original figure taken from [94].
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Figure III.7: The physical background rmin(T ) and its asymptotic value r∞,
Eq. (III.4.23), for the SU(2) theory as a function of the temperature, obtained from the
minimization of the potential (III.4.18) at two-loop order (top panel). For T < Tc, the
minimum sits at the Z2-symmetric point r = π. The symmetry is spontaneously broken
for T > Tc and the transition is continuous. The bottom plot shows the dimensionful
background = rmin(T )T ∝ Āmin(T ).
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III.5 Propagators at one-loop order in the LDW gauge

In this section we present in detail our work realized in [96]. It consists in the com-
putation of the YM propagators at one-loop order (that is next-to-leading order) in the
massive LDW gauge for the SU(2) theory. We are mostly interested in investigating
the possible signals of the phase transition that the correlators might display. Here
and in the following, we note the background r but it is implicitly understood that
eventually all the quantities computed shall be evaluated for r = rmin. For practical as-
pects, we use rmin that minimizes the two-loop (i.e. next-to-leading order) background
potential computed in [94]. The obtained rmin(T ) is depicted in Fig. III.7. First, in
Sec. III.5.1, we review some implications of the presence of the background field and
in particular we give the Feynman rules of the theory [94]. Then, we proceed to the
one-loop calculations of the various correlators in Sec. III.5.2 and finally present our
results in Sec. III.5.4.

III.5.1 Canonical basis and Feynman rules

The background field Āµ = Ā3
0t

3δµ0 introduces a preferred direction in color space.
For instance, let us consider the action of the background covariant derivative D̄µ on
a field ϕ. It reads in color component(

D̄µϕ
)a

= ∂µϕ
a + g0δµ0f

a3cĀ3
0ϕ

c . (III.5.1)

Hereby, the different color modes couple differently to the background that lifts their
degeneracy and induces a nontrivial color structure of the various correlators (in par-
ticular the color mode 3 does not receive any contribution from the background in
Eq. (III.5.1)). Thus, one sees that the standard Cartesian basis ta is not the most
appropriate to derive the Feynman rules. Instead, we work in the so-called canonical
(or Cartan-Weyl) bases [94, 95], which diagonalize the background covariant derivative
D̄µ. In the following, we work with the same choice of SU(2) Cartan subalgebra as
previously, with generator t3 = σ3/2. A canonical basis is given by

t0 = t3 , t± = t1 ± it2√
2

, (III.5.2)

which satisfies
[tκ, tλ] = εκλτ t−τ and tr{tκt−λ} = δκλ

2 , (III.5.3)

with κ, λ, τ ∈ {0,+,−} and where εκλτ is the completely antisymmetric tensor, with
ε0+− = 1. Nevertheless, for the sake of keeping notations as closed as possible to the
standard ones, in the following we note the structure constant fκλτ . In particular, the
structure constant satisfies

(fκλτ )∗ = −f (−κ)(−λ)(−τ) = fκλτ . (III.5.4)

Fields that are in the adjoint representation can accordingly be decomposed as ϕ =
ϕκtκ. From now on, we shall always assume that we are in the canonical basis. In
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Fourier space, with the convention ∂µ → −iKµ, the action of the background covariant
derivative reduces to

(D̄µϕ)κ → −iKκ
µϕ

κ(K), (III.5.5)

where Kκ
µ = Kµ+κrTδµ0 defines a generalized momentum.10 As explained in [94], the

latter is conserved by virtue of the invariance under translations in Euclidean space
and under the residual global SO(2) symmetry corresponding to those color rotations
that leave the background invariant. The index κ = 0,± labels the corresponding
Noether charges and we see that the covariant derivative simply shifts the Matsubara
frequencies of the charged color modes by ±rT . Hereby, we shall sometimes use a
short-hand notation for the background covariant derivative in the canonical basis as
(no sum over κ)

(D̄µϕ)κ ≡ ∂κµϕκ . (III.5.6)

We now present the Feynman rules in the canonical basis. We use the same no-
tations and conventions as those introduced in Sec. III.1. The tree-level propagators,
see Fig. III.8, read

〈c−κ(−K)c̄κ(K)〉 = G0(Kκ) , (III.5.7)
〈a−κµ (−K)aκν(K)〉 = P⊥µν(Kκ)Gm0(Kκ) , (III.5.8)

where P⊥µν(K) = δµν −KµKν/K
2 was defined in Eq. (III.1.6) and

Gm0(K) ≡ 1
K2 +m2

0
. (III.5.9)

The gluon propagator in each color mode is transverse with respect to the correspond-
ing generalized momentum. Notice also that, thanks to the identity

(−Kµ)−κ = −Kκ
µ , (III.5.10)

the orientation of the generalized momentum in the diagrams of Fig. III.8 is arbitrary.

K, κ

K, κ

νµ

Figure III.8: Diagrammatic representation of the ghost (dashed) and gluon (wiggly)
propagators for momentum K and color charge κ. The common orientation of the flow
of momentum and color charge is arbitrary.

The interaction vertices are displayed in Figs. III.9 and III.10 and are the standard
YM ones, that is, the ghost-antighost-gluon vertex, as well as the three- and four-gluon
vertices. The conservation of the color charge is encoded in the fact that fκλτ is zero
unless κ+ λ+ τ = 0. The expression of the ghost-anthighost-gluon vertex is
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K, κ Q, τ

L, λ, ν

K, κ, µ Q, τ, ρ

L, λ, ν

Figure III.9: Diagrammatic representation of the cubic vertices. All momenta and
color charges are either outgoing or ingoing.

K, κ, µ L, λ, ν

Q, τ, ρP, ξ, σ

Figure III.10: Diagrammatic representation of the four-gluon vertex. All momenta
and color charges are either outgoing or ingoing.

g0fκλτK
κ
µ , (III.5.11)

where we use as convention that momenta and color charges are all either outgoing or
ingoing. With similar conventions, the three gluon vertex reads

g0
6 fκλτ

[
δµρ(Kκ

ν −Qτν)+δµν
(
Lλρ −Kκ

ρ

)
+δρν

(
Qτµ − Lλµ

) ]
. (III.5.12)

The structure constants ensure that the color charges are conserved at both cubic
vertices, which, together with the usual conservation of momenta, leads to the conser-
vation rule for the generalized momenta: Kκ + Qτ + Lλ = 0. Finally, the four-gluon
vertex, represented in Fig. III.10 with all momenta and charges outgoing/ingoing, is
given by

g2
0

24
∑
η

[
fκληfτξ(−η) (δµρδνσ − δµσδνρ)+fκτηfλξ(−η) (δµνδρσ − δµσδνρ)

+fκξηfτλ(−η) (δµρδνσ − δµνδσρ)
]
.

(III.5.13)

10We reserve the set of greek letters (µ, ν, ρ, σ) to denote Euclidean space indices and the other
set (κ, λ, η, ξ, τ) to denote color states. With this convention, Kµ denotes the µ component of the
four-vector K, whereas Kκ refers to the shifted momentum K + κg0Ān with n = (1,0).
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Again, color charge and momentum conservation lead to Kκ +Qτ +Lλ +P ξ = 0. We
now apply these Feynman rules to the computation of the two-point correlators of the
theory at one-loop order.

We follow the same definitions for the propagators and self-energies as those pre-
sented in Sec. III.1, but here we take care of the nontrivial color structure. The residual
global SO(2) symmetry, corresponding to the color rotations that leave the background
invariant, guarantees that these are "diagonal" in color space [94], in the sense

Gκλ(K) = δ−κ,λGλ(K) , Gκλµν (K) = δ−κ,λGλµν(K) (III.5.14)

and (note the different choice of label for the diagonal components)

Σκλ(K) = δ−κ,λΣκ(K) , Πκλ
µν(K) = δ−κ,λΠκ

µν(K). (III.5.15)

With these conventions, we have for the ghost propagator

Gλ(K) = 1
(Kλ)2 + g2

0Σλ(K)
(III.5.16)

and for the ghost dressing function at vanishing Matsubara frequency (no sum over λ)

F λ(ω = 0, k) =
[
K2
λ Gλ(K)

]∣∣∣∣
ω=0

, (III.5.17)

where we noted K2
λ = (Kλ)2 = Kλ

µK
λ
µ (no sum over λ) and where we have extracted

a factor g2
0 for later convenience. As for the Landau gauge gluon propagator, the

LDW gauge condition (III.4.1) implies that Gλµν(K) is transverse with respect to the
generalized momentum (no sum over λ): Kλ

µ Gλµν(K) = Gλµν(K)Kλ
ν = 0. It thus admits

the following tensorial decomposition

Gλµν(K) = GλT (K)P Tµν(Kλ) + GλL(K)PLµν(Kλ) , (III.5.18)

where P Tµν(K) and PLµν(K) are the transverse and longitudinal projectors (III.1.5),
(III.1.6). It follows, in particular, that Gλµν(K) = Gλνµ(K). In terms of the projected
self-energies

Πλ
T (K) =

P Tµν(Kλ)Πλ
µν(K)

d− 2 , (III.5.19)

Πλ
L(K) = PLµν(Kλ)Πλ

µν(K) , (III.5.20)

the scalar components of the gluon propagator read

GλT/L(K) = 1
(Kλ)2 +m2

0 + g2
0Πλ

T/L(K)
. (III.5.21)

Finally, from Eq. (III.5.14), the propagators are real and have the property

Gλ(K) = G−λ(−K) , (III.5.22)
GλT/L(K) = G−λT/L(−K) , (III.5.23)

and similarly for the self-energies.11

11According to the definition of the group generators in the canonical basis, (III.5.2), one has that
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III.5.2 One-loop calculations

In this section, we compute the one-loop contribution to the ghost and gluon
self-energies. The corresponding Feynman diagrams are depicted in Fig. III.11 and
Fig. III.12. The diagrams are identical to those of the usual Landau gauge, but the
rules are those of the LDW gauge. We detail here the computation of the diagram
depicted in Fig. III.11 that contributes to the ghost self-energy. The calculation for the
gluon sector goes along the same lines and is detailed in Appendix. I. Remarkably, the
expressions of the various one-loop self-energies can be written into a readable form by
means of simple scalar sum-integrals, see Eqs. (III.5.32), (III.5.36). The calculation of
the relevant sum-integrals are detailed in Appendix J.

III.5.2.1 One-loop Feynman diagrams

Figure III.11: One-loop contribution to the ghost self-energy. We take the convention
that all momenta and color charges flow from the right vertex to the left vertex.

We note K = (ω,k) and λ the external momentum and color charge, and Kλ =
(ωλ,k) the corresponding shifted/generalized momentum. The internal loop momen-
tum is denoted Q ≡ (ωn,q) and the shifted/generalized one Qκ = (ωκn,q), with the
Matsubara frequency ωn ≡ 2πnT , n ∈ Z. Finally we use the notation

∫
Q
f(Q) ≡ µ2ε T

∑
n∈Z

∫
dd−1q

(2π)d−1 f(ωn,q) , (III.5.24)

where µ is the arbitrary scale associated with dimensional regularization (d = 4− 2ε).
A direct application of the Feynman rules of Sec. III.5.1 to the diagram of Fig. III.11

t†κ = t−κ. We thus have ϕ∗κ = ϕ−κ for the Hermitian matrix fields ϕ = (aµ, c, c̄, h) or, in momentum
space, ϕ∗κ(Q) = ϕ−κ(−Q). Using the ghost conjugaison symmetry (c, c̄)→ (c̄,−c), one concludes that
Gκλ(K) = Gλκ(−K) =

[
G(−λ)(−κ)(K)

]∗ and Gκλµν (K) = Gλκνµ (−K) =
[
G(−λ)(−κ)
νµ (K)

]∗
. Eqs. (III.5.22)

and (III.5.23) then follow from the properties (III.5.10) and (III.5.14) and the decomposition (III.5.18).
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yields12

Σλ(K) = −
∑
κ,τ

fλκτf (−τ)(−κ)(−λ)
∫
Q
P⊥µν(Qκ)(−L)−τµ Kλ

νGm(Qκ)G0(Lτ ) , (III.5.25)

where K + Q + L = 0 and where the sum runs over all color states. Using the
anti-symmetry of the structure constant tensor as well as the identities (III.5.4) and
(III.5.10), we arrive at

Σλ(K) = −
∑
κ,τ

Cκλτ
∫
Q
P⊥µν(Qκ)LτµKλ

νGm(Qκ)G0(Lτ ) , (III.5.26)

with the totally symmetric tensor Cκλτ = |fκλτ |2. As discussed previously, fκλτ van-
ishes if κ+ λ+ τ 6= 0, so does Cκλτ , which implies the conservation of the generalized
momentum at the vertices: Qκ +Kλ +Lτ = 0. We note the close ressemblance of the
above expression with the corresponding one-loop expression in the Landau gauge, see
Eq. (15) of [83]. For instance, one checks that Eq. (III.5.26) reduces to the Landau
gauge expression in the case of a vanishing background field. Using the conservation
of the generalized momentum and the definition of P⊥µν , Eq. (III.1.6), the expression
of the ghost self-energy reads

Σλ(K) =
∑
κ,τ

Cκλτ
∫
Q

(
K2
λ −

(Qκ ·Kλ)2

Q2
κ

)
Gm(Qκ)G0(Lτ ) , (III.5.27)

where Qκ ·Kλ = QκµK
λ
µ and where, for simplicity, we noted K2

λ = (Kλ)2 = Kλ
µK

λ
µ (no

sum over λ) and similarly for Q2
κ. The denominator 1/Q2

κ can be eliminated by using
that (for m1 6= m2)

Gm1(Qκ)Gm2(Qκ) = 1
m2

2 −m2
1

[
Gm1(Qκ)−Gm2(Qκ)

]
. (III.5.28)

Furthermore, writing

2Qκ ·Kλ = L2
τ −K2

λ − (Q2
κ +m2) +m2, (III.5.29)

we obtain

2Qκ ·KλGm(Qκ)G0(Lτ ) = Gm(Qκ)−G0(Lτ )− (K2
λ−m2)Gm(Qκ)G0(Lτ ) (III.5.30)

and, applying the same trick twice,

4(Qκ ·Kλ)2Gm(Qκ)G0(Lτ ) =
(
K2
λ −m2 + 2Qκ ·Kλ

)
(Gm(Qκ)−G0(Lτ ))

+ (K2
λ −m2)2Gm(Qκ)G0(Lτ ) .

(III.5.31)

Finally, according to (III.5.28) and (III.5.31), the ghost self-energy rewrites as

Σλ(K) =
∑
κ,τ

Cκλτ

[
K2
λ −m2

4m2 (Jκm − Jκ0 )− ωλ

2m2 (J̃κm − J̃κ0 )

+ K4
λ

4m2 I
κτ
00 (K)−

(
K2
λ +m2)2
4m2 Iκτm0(K)

]
, (III.5.32)

12Remark that, all quantities appearing here are bare quantities. Nevertheless, for the sake of clarity
we anticipate the renormalization and note m instead of m0 as previously.
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where K4
λ = (K2

λ)2 and where we introduced the following scalar tadpole sum-integrals

Jκm =
∫
Q
Gm(Qκ), (III.5.33)

J̃κm =
∫
Q
ωκGm(Qκ), (III.5.34)

as well as the scalar bubble sum-integral (K +Q+ L = 0)

Iκτm1m2(K) =
∫
Q
Gm1(Qκ)Gm2(Lτ ). (III.5.35)

Clearly, Iκτm1m2(K) = Iτκm2m1(K). Moreover, it follows from the identity (III.5.10) and
from Gm(Q) = Gm(−Q) that Iκτm1m2(−K) = I

(−κ)(−τ)
m1m2 (K). Similarly, one shows that

Jκm = J−κm and J̃κm = −J̃−κm . Expression (III.5.32) resembles formally to its Landau
gauge counterpart which is recovered for r = 0 (see Eq. (22) of [83]). Apart from the
expected presence of the background in the sum-integrals and external momentum,
there is a specific contribution of the LDW gauge, namely the second term between
brackets proportional to the shifted frequency13 ωλ.

More generally, the relationship between loop calculations in the Landau and
in the LDW gauges has been discussed in [94]. In particular, the manipulations
Eqs. (III.5.28)-(III.5.31), rely only on the conservation of the (here, generalized) mo-
mentum. The only difference concerns the fact that the integral

∫
Q(K · Q)[G0(Q) −

Gm(Q)] = 0, which appeared in the Landau gauge calculation, generalizes to
∫
Q(Kλ ·

Qκ)[G0(Qκ)−Gm(Qκ)] 6= 0 in the LDW gauge, from which arises in Eq. (III.5.32) the
term proportional to the external shifted frequency ωλ.

The one-loop Feynman diagrams contributing to the gluon self-energy are shown in
Fig. III.12. The calculation of each diagram proceeds along the same lines as for the one
appearing in the ghost self-energy. As before, the obtained expressions are similar to
the corresponding ones in the Landau gauge, with the various momenta in the internal
lines replaced by appropriate generalized momenta. The reduction to simple tadpole
and bubble loop integrals is detailed in Appendix. I. Although the complete tensorial
expression of the self-energy is shown there, it follows from Eqs. (III.5.19)–(III.5.21)
that it is sufficient to retain only those contributions that are transverse with respect
to the external generalized momentum Kλ. These read, using the same notational
conventions as before,

Πλ
T/L(K) =

∑
κ,τ

Cλκτ

{(
1− K4

λ

2m4

)
{IλT/L}

κτ
00 (K)+

(
1+K2

λ

m2

)2

{IλT/L}
κτ
m0(K)+ (K2

λ+m2)2

m2 Iκτm0(K)

−2

d− 2+
(

1+ K2
λ

2m2

)2
{IλT/L}κτmm(K)−K2

λ

(
4 + K2

λ

m2

)
Iκτmm(K)

+ (d− 2)Jκm + K2
λ +m2

m2 (Jκm − Jκ0 )− 2ωλ

m2 (J̃κm − J̃κ0 )
}
,

(III.5.36)
13This term vanishes in the Landau gauge since J̃κm = 0 for r = 0, see (III.5.34).
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Figure III.12: One-loop diagrams for the gluon self-energy. For the last two diagrams,
we take the convention that all momenta and color charges flow from the right vertex
to the left vertex.

where we have introduced the following integrals

{IλT }κτm1m2(K) =
P Tµν(Kλ){Iµν}κτm1m2(K)

d− 2 , (III.5.37)

{IλL}κτm1m2(K) = PLµν(Kλ){Iµν}κτm1m2(K) , (III.5.38)

where
{Iµν}κτm1m2(K) ≡

∫
Q
QκµQ

κ
νGm1(Qκ)Gm2(Lτ ), (III.5.39)

with K +Q+ L = 0. Using similar arguments as before, one easily shows that
{IλT/L}

κτ
m1m2(K) = {IλT/L}

τκ
m2m1(K) = {IλT/L}

(−κ)(−τ)
m1m2 (−K). As for the ghost self-

energy, only the third contribution on the second line, proportional to the external
shifted frequency ωλ is structurally new in the LDW gauge, see also Eq. (28) of [83].

III.5.2.2 Calculation of the sum-integrals

It remains to evaluate the scalar sum-integrals (III.5.33)–(III.5.35), and (III.5.37)–
(III.5.38). This is detailed in Appendix. J. As an illustration, we explicitly compute
here the simple tadpole integral Eq. (III.5.33). The Matsubara sum can be calculated
analytically by means of standard integration contour technique [238, 83]: if f(z) is a
complex function with poles away from the Matsubara frequencies and that decreases
fast enough as |z| → ∞, we have

T
∑
n

f(iωn) = −
∑

ω∈{poles of f}
n(ω) Res f |ω , (III.5.40)
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where nx = 1/(exp(βx)− 1) is the Bose-Einstein distribution function. In this way we
obtain for Jκm

Jκm =
∫

q

nεm,q−iκrT − n−εm,q−iκrT
2εm,q

, (III.5.41)

where εm,q ≡
√
q2 +m2 and

∫
q =

∫ dd−1q
(2π)d−1 . Using that n−x = −1− nx, Eq. (III.5.41)

rewrites
Jκm =

∫
q

1 + 2nεm,q
2εm,q

, (III.5.42)

where the term 1 in the numerator of (III.5.42) corresponds to the vacuum contribution.
The thermal contribution reads

Jκm =̂
∫

q
Re

nεm,q−iκrT

εm,q
= 1

2π2

∫ ∞
0

dq q2Re
nεm,q−iκrT

εm,q
. (III.5.43)

where the symbol =̂ means that we disregard vacuum contributions.14 Vacuum contri-
butions can be computed in a standard way by replacing Matsubara sums by frequency
integrals

∫
Q →

∫ ddq
(2π)d . The previous tadpole integral reads in dimensional regulariza-

tion (d = 4− 2ε)

Jvac
m =

µ2εΓ
(
1− d

2

)
(4π)

d
2

(m2)
d
2−1 = − m2

16π2

(
1
ε

+ ln µ̄2

m2 + 1
)

+O(ε) , (III.5.44)

where we defined µ̄2 ≡ 4πµ2e−γ with γ the Euler constant. The vacuum part of the
other sum-integrals (III.5.33)–(III.5.35), and (III.5.37)–(III.5.39) have been computed
in [83]. Nevertheless, as emphasized below, in practice one does not need them explic-
itly. Indeed, at zero temperature the LDW reduces to the usual Landau gauge. For
the present case, one can thus take them from the existing literature, see e.g. [79].

III.5.2.3 Background effects

A first nontrivial effect of the background can be directly read-off the loop contribu-
tions. As we have just presented, these can be recast under the form of sum-integrals
that involve the Bose-Einstein distribution nx. More precisely, the background ap-
pears as an imaginary chemical potential into the Bose-Einstein distribution: nx−iκrT ,
see Eq. (III.5.42) and Appendix J. In particular, in the low temperature phase where
r = π, this leads to

nx−iκπT = − 1
exp(βx) + 1 , (III.5.45)

and one recognizes a Fermi-Dirac (with a wrong sign) distribution. Hereby, in the
low temperature phase, the background changes the colorly charged bosonic degrees of
freedom that run inside the loop into fermion-like fields15. Note that this feature holds
true as long as the temperature is nonvanishing. Hence, although the Landau and
LDW gauges are the same at zero temperature, they display a fundamental difference
even at infinitely small temperatures.

14These are defined as the limit of the above expression as T → 0 for fixed Ā.
15Remark that, although ghosts are Grassmann fields, their thermal statistic follows the Bose-

Einstein distribution [239].
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III.5.3 Renormalization
We introduce renormalized parameters and fields, related to the corresponding bare

quantities in the usual way:

m2
0 = Zm2m2 , g0 = Zgg , (III.5.46)

and
Ā =

√
ZĀ ĀR , a =

√
Za aR ,

c =
√
Zc cR , c̄ =

√
Zc c̄R ,

(III.5.47)

Notice that the background field Ā and the fluctuating field a receive independent
renormalizations [240]. The background field gauge symmetry (III.4.11) implies that
the product g0Ā is finite [118]. Imposing the renormalization condition

Zg
√
ZĀ = 1 (III.5.48)

for the finite parts as well, we have g0Ā = gĀR.
We define the renormalized self-energies Σλ

R(K) and Πλ
R,T/L(K) from the renor-

malized propagators

GλR(K) = Z−1
c Gλ(K) (III.5.49)

GλR,T/L(K) = Z−1
A G

λ
T/L(K) (III.5.50)

as in Eqs. (III.5.16) and (III.5.21) by simply replacing m2
0 → m2 and g0 → g (we al-

ready anticipated this replacement in the loop expressions evaluated above). Following
the structure of the sum-integrals defined in the previous section, [see Appendix J],
one can separate a thermal and a vacuum contribution as

Σλ
R(K) = Σλ,th

R (K) + Σvac
R (K2

λ), (III.5.51)

and similarly for Πλ
R,T/L(K), with Πvac

R,T/L(K2) = Πvac
R (K2) by Euclidean symmetry.

The vacuum parts are defined as the T = 0 contributions at fixed background field ĀR.
The background-field gauge symmetry (III.4.11) guarantees that these only depend
on ĀR through the shifted momentum, as emphasized in the notation of Eq. (III.5.51).
The functions Σvac

R (K2) and Πvac
R (K2) are thus nothing but the renormalized self-

energies in the (massive) Landau gauge and one can write

GλR(K) = 1
K2
λF
−1
R,vac(K2

λ) + g2Σλ,th
R (K)

(III.5.52)

GλR,T/L(K) = 1
G−1
R,vac(K2

λ) + g2Πλ,th
R,T/L(K)

(III.5.53)

where FR,vac(K2) and GR,vac(K2) are, respectively, the zero-temperature renormalized
ghost dressing function and gluon propagator in the Landau gauge. For later conve-
nience, we also define the renormalized ghost dressing function at vanishing Matsubara
frequency (no sum over λ)

F λR(ω = 0, k) =
[
K2
λ GλR(K)

]∣∣∣∣
ω=0

. (III.5.54)
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The zero-temperature Landau gauge FR,vac(K2) and GR,vac(K2) have been computed
at one-loop order in the CF model (i.e., the Landau gauge limit of the present model)
for the groups SU(N) in [79] using the set of renormalization conditions

Σvac
R (K2 = µ2) = Πvac

R (K2 = 0) = Πvac
R (K2 = µ2) = 0, (III.5.55)

where µ is the renormalization scale. In principle one could implement temperature
and/or background-field dependent renormalization conditions. For instance we have
investigated a renormalization scheme defined as Σλ=0

R (K2 = µ2) = Πλ=0
R,L (K2 = 0) =

Πλ=0
R,L (K2 = µ2) = 0 ∀T but no qualitative changes were observed. Remark however

that there is a large number of choices of such renormalization schemes owing to the
number of nondegenerate color modes λ and the thermal asymmetry T/L of the gluon
self-energy. For simplicity we use the set of renormalization conditions (III.5.55). The
one-loop vacuum ghost dressing function and gluon propagator in Eqs. (III.5.52) and
(III.5.53) can thus be taken from Eqs. (17) of [79], which we recall here for complete-
ness:

F−1
R,vac(p) = 1 + g2N

64π2

[
f(p2/m2)− f(µ2/m2)

]
(III.5.56)

G−1
R,vac(p) = p2 +m2 + g2Np2

384π2

[
g(p2/m2)− g(µ2/m2)

]
, (III.5.57)

where
f(s) = −s log s+ (s+ 1)3s−2 log(s+ 1)− s−1 (III.5.58)

and

g(s) = 111s−1 − 2s−2 + (2− s2) log s+ 2(s−1 + 1)3
(
s2 − 10s+ 1

)
log(1 + s)

+ (4s−1 + 1)3/2
(
s2 − 20s+ 12

)
log
(√

4 + s−
√
s√

4 + s+
√
s

)
. (III.5.59)

In general, a fifth prescription is needed for the coupling renormalization factor Zg.
One could, for instance, use a background field generalization of the Taylor scheme
[116] often used in the Landau gauge and its massive extension [79], see also Sec. II.5.4
of Chapter. II. However, this is not needed at the order of approximation considered
here. In the following, we simply set Zg → 1 in the one-loop expressions.

III.5.4 Results for the SU(2) theory
At the order of approximation considered here, we minimize the two-loop back-

ground field potential of the SU(2) theory computed in [94]. As already discussed
above, the parameters used in this article, namely g = 7.5, m = 0.68 GeV, and
µ = 1 GeV, were taken from fits of the lattice ghost and gluon propagators in the
Landau gauge at zero temperature [79]. This choice was motivated by the fact that,
since the background Ā ∝ T , the LDW gauge reduces to the Landau gauge at T = 0,
see also [83]. However, in the present case, this set of parameters leads to unphysical
features for temperatures around Tc: the susceptibility of neutral color modes, defined
below, turns negative, which yields a pole at nonvanishing momentum in the Euclidean
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propagator at zero Matsubara frequency. This is a consequence of the too large value
of the coupling [96].

Here, it is worth emphasizing that, although it makes sense to fit the zero tem-
perature propagators of the LDW gauge against the lattice data in the Landau gauge,
there is a priori no reason to expect the parameters not to vary with temperature. This
could arise, for example, from renormalization group effects or from our assumption
that the present massive model effectively accounts for Gribov ambiguities, which do
depend on the Euclidean spacetime volume and thus on the temperature. As a matter
of fact, fitting the one-loop propagators against lattice data in the Landau gauge at
finite temperature [83] indeed reveals that the best value for the coupling decreases
from g ≈ 7 at T = 0 to about g ≈ 5 close to Tc. At present, we have no way to pre-
dict the possible temperature dependence of our parameters and there exists no lattice
data in the present LDW gauge. As a rough guide, we shall use the value g(µ) = 5
at µ = 1 GeV obtained for temperatures in the vicinity of Tc in [83] in the Landau
gauge. We adjust the mass parameter accordingly to the value m(µ) = 0.75 GeV such
that the transition temperature remains fixed to T 2loop

c = 0.285 GeV, obtained from
the minimization of the background effective potential at two-loop order [94], which
agrees with the lattice results.

The background field r = rmin(T ) that minimizes the two-loop potential of [94] is
shown in Fig. III.7 as a function of temperature. It presents the characteristic cusp
at the second order transition of the SU(2) theory. We also show the behavior of
the dimensionful background rT , that is, the effective frequency shift for charged
color modes, which contributes a term (rT )2 to the tree-level square mass of the
corresponding propagators at zero frequency, see Eqs. (III.5.16) and (III.5.21).

III.5.4.1 Gluon susceptibilities across the phase transition

Before discussing the complete momentum dependence of the various propagators,
we consider the electric and magnetic gluon inverse square masses (susceptibilities)
of the neutral gluon mode, which have simple expressions and which already exhibit
the most salient features of the influence of the background field on the correlation
functions. They are defined as

χ0
T/L = G0

T/L(ω = 0,k→ 0) = 1
m2 + g2Π0,th

T/L(0,k→ 0)
. (III.5.60)

In contrast, the thermal dependence of the zero momentum value of the (zero
Matsubara frequency) charged gluon propagators does not come only from thermal
loops but also receive a contribution from the vacuum part due to the frequency shift
ω ± rT . Indeed, as emphasized above, the vacuum part of the self-energies is defined
as their T = 0 contributions evaluated at fixed background Ā, such that

G±T/L(ω = 0,k→ 0) = 1
G−1

vac ((rT )2) + g2Π±,thT/L (0,k→ 0)
. (III.5.61)

In order to get rid of the thermal dependence coming from the nonvanishing shifted
external frequency we also define, by analogy with Eq. (III.5.60), the inverse charged
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gluon square masses from the corresponding propagators at vanishing shifted fre-
quency:

χλT/L = GλT/L(ω = −λrT,k→ 0), (III.5.62)

where the right-hand side is to be understood as the renormalized propagators (III.5.53)
analytically continued to arbitrary (i.e., non Matsubara) Euclidean frequencies.16 By
abuse of language, we shall call these susceptibilities as well. By definition, their
temperature dependence entirely comes from thermal loop effects since, just as for
the neutral mode, their one-loop expressions involve diagrams with vanishing external
frequency and momentum. In what follows, we shall use a more standard terminology
and refer to the Debye and magnetic square masses,17 respectively defined as M2

D,λ ≡
1/χλL and M2

mag,λ ≡ 1/χλT . We thus have

M2
D,λ(T ) = m2 + g2Πλ,th

L (ω = −λrT,k→ 0), (III.5.63)

M2
mag,λ(T ) = m2 + g2Πλ,th

T (ω = −λrT,k→ 0). (III.5.64)

In particular, Eq. (III.5.23) guarantees that M2
D,+ = M2

D,− and M2
mag,+ = M2

mag,−. All
these quantities involve loop integrals with vanishing external frequency/momentum,
which at one-loop order, admit relatively simple expressions. These are derived in
Appendix. K. Here, we give the results:

M2
D,0(T ) = m2 − g2T 2

8

{(
1− r

π

)2
− 1

3 −
π2T 2

m2

[(
1− r

π

)4
− 2

(
1− r

π

)2
+ 7

15

]}

+ g2m2

π2

∫ ∞
0
dq

Renεm,q−irT
εm,q

(
3 + 6 q

2

m2 + q4

m4

)
(III.5.65)

and

M2
mag,0(T ) = m2 + g2T 2

8

{(
1− r

π

)2
− 1

3 −
π2T 2

3m2

[(
1− r

π

)4
− 2

(
1− r

π

)2
+ 7

15

]}

− g2m2

π2

∫ ∞
0
dq

Renεm,q−irT
εm,q

(
q2

m2 + q4

3m4

)
(III.5.66)

for the neutral sector, and

M2
D,±(T ) = m2 − g2T 2

16

{(
1− r

π

)2
+ 1

3 −
π2T 2

m2

[(
1− r

π

)4
− 2

(
1− r

π

)2
− 1

15

]}

+ g2m2

2π2

∫ ∞
0
dq
nεm,q + Renεm,q−irT

εm,q

(
3 + 6 q

2

m2 + q4

m4

)
, (III.5.67)

16The analytical continuation has to be understood after the Matsubara sums have been performed
and the external Matsubara frequency has been removed from the thermal factors by means the identity
nε+iωn = nε.

17Strictly speaking the Debye and magnetic masses are the pole masses of the corresponding electric
and magnetic propagators. Nevertheless, it is common to use this terminology for the zero momentum
masses/susceptibilities [45].
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M2
mag,±(T ) = m2 + g2T 2

16

{(
1− r

π

)2
+ 1

3 −
π2T 2

3m2

[(
1− r

π

)4
− 2

(
1− r

π

)2
− 1

15

]}

− g2m2

2π2

∫ ∞
0
dq
nεm,q + Renεm,q−irT

εm,q

(
q2

m2 + q4

3m4

)
, (III.5.68)

for the charged ones.
We shall also consider the charged gluon at vanishing frequency in the limit of zero

momentum Eq. (III.5.61). From the property (III.5.23), and using spatial isotropy, we
conclude that the charged propagators at vanishing frequency are degenerate:

G+
T/L(0,k) = G−T/L(0,k). (III.5.69)

Moreover, the general tensorial decomposition Eq. (III.1.4) is trivially generalized to
the present case. In particular, according to (III.1.4), and using the definitions of the
transverse and longitudinal projections Eqs. (III.1.5) and (III.1.6), we have

T λT (K) = T λδ (K), (III.5.70)

T λL(K) = T λδ (K) + k2

(ω + λrT )2 + k2T
λ
n (K). (III.5.71)

For the charged modes, λ 6= 0, this implies

T±L (0,k→ 0) = T±T (0,k→ 0). (III.5.72)

Hereby, at zero Matsubara frequency and for vanishing momentum, the gluon propa-
gator in the charged sector satisfies

G±L (0,k→ 0) = G±T (0,k→ 0). (III.5.73)

Accordingly, we define G±T/L(0,k→ 0) = 1/M2
ch, that is,

M2
ch(T ) = G−1

vac

(
(rT )2

)
+ g2Π±,thT/L (0,k→ 0). (III.5.74)

One checks from Eq. (III.5.36) that M2
ch reduces to the (Landau gauge) magnetic

square mass at vanishing background, as expected from Eq. (III.5.70).

We now present our results for the various square masses and susceptibilities defined
above. We use the previous definitions Eqs. (III.5.65)–(III.5.68) and (III.5.74) where,
it is understood that r is to be taken at the minimum rmin(T ) of the background field
potential. In order to quantify the effects of the nontrivial background, it is interesting
to compare these results with those obtained in the Landau gauge (see Eqs. (31) and
(35) of [83] with N = 2, which we recover for r = 0).

The temperature dependence of the neutral gluon inverse square masses (suscep-
tibilities) across the phase transition is shown in Fig. III.13. We observe that the
magnetic susceptibility is monotonously increasing with the temperature below Tc,
whereas the electric one first slightly decreases at low temperatures and then increases
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Figure III.13: Temperature dependence of the electric and magnetic inverse square
masses in the neutral mode normalized to their common zero temperature value. To
emphasize the effect of the Polyakov loop, we compare with the corresponding results
at vanishing background field (r = 0), which corresponds to the Landau gauge.

to its maximum value at T = Tc. Both present a cusp at the transition. The electric
square mass rapidly approaches a quadratic behavior M2

D,0 ∝ T 2, whereas the mag-
netic mass remains essentially bounded in the range of temperature considered here.

The cusp reflects the nonanalytic behavior of the order parameter rmin(T ) across
the transition and is in sharp contrast with the corresponding perturbative results in
the Landau gauge. The electric susceptibility in the Landau gauge showed a slight
nonmonotonous behavior below Tc, but no cusp, in qualitative agreement with lattice
results [90], see also Sec. III.3. As for the magnetic susceptibility, both the (mas-
sive) perturbative approach and the gauge-fixed lattice simulations show a smooth
monotonous behavior in the Landau gauge, with a rapid decrease above Tc. This con-
trasts with the present results, where the magnetic susceptibility is essentially constant
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in this range of temperature, see the bottom panel of Fig. III.13. More precisely, in the
high temperature regime, the magnetic square mass was shown to increase as g2mT
in the Landau gauge [83]. This unbounded linear increasing eventually leads to a pole
in the ghost dressing function as emphasized above, see also [83]. In the present case,
the magnetic neutral mass remains bounded from above [96], thus avoiding the pole
in the ghost sector, see below. Its high temperature behavior is given, by

M2
mag,0(T ) = m2

{
1+ g2T (4M++5rT )

12π(M++rT )2 −
3g2

32π2

[
ln
(4πT
m

)2
+Ψ

(
r

2π

)
+ 5

6

]
+O

(
m2

T 2

)}
,

(III.5.75)
whereM+ =

√
m2 + (rT )2 and Ψ(z) = ψ(1+z)+ψ(1−z) with ψ(z) = Γ′(z)/Γ(z), see

Appendix E of [96]. Hereby, for r 6= 0, the leading term in Eq. (III.5.75) is the negative
logarithm.18 Eventually this leads at very high temperatures (T ≥ 10m ' 25Tc) to a
negative square mass, see Fig. III.14. Remark that it is expected in perturbation theory
to encounter troubles at very high energies/temperatures if we do not add higher order
terms or implement resummation techniques or RG effects. As a proof of principle, we
employ the standard one-loop result for the running coupling constant in SU(2) and
put by hand a temperature-dependent running

g(T ) = g√
1 + 11

12π2 g2 ln
(
T 2+m2

µ

) , (III.5.76)

with µ = 1 GeV. As shown in Fig. III.14, with RG improvement, the magnetic square
mass then remains positive.

The behavior of the charged square masses (III.5.67)and (III.5.68) can be readily
understood from the various features of the curves shown in Fig. III.13, since, at one-
loop order, from Eqs. (III.5.65)–(III.5.68), one has that [see Appendix. K]

M2
D,± =

M2
D,0 + M2

D,0

∣∣∣
r=0

2 , (III.5.77)

and similarly for the magnetic mass. For completeness, these are plotted in Fig. III.15
together with the corresponding values in the absence of background.

18Remark that for r = 0, the first term becomes g2T (4M+ + 5rT )/12π(M+ + rT )2 →
r→0

g2T/3πm
which overwhelms the logarithmic term and one recovers the linear increased found in the Landau
gauge.
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Figure III.14: The neutral magnetic gluon square mass as a function of T/m in the
high temperature regime. We used r = r∞(g), see Eq. (III.4.23). The magnetic square
mass Eq. (III.5.66) (blue plain curve) is compared to its high temperature behavior
Eq. (III.5.75) (yellow plain curve) both computed for g = 5. One sees that the leading
logarithm eventually leads to negative values for sufficiently high temperatures. This
artifact is cured by RG effects. To illustrate this, we put by hand a temperature
dependent running coupling constant (dashed green curve) according to Eq. (III.5.76).

Finally we present in Fig. III.16 the temperature dependence of the charged square
masse M2

ch(T ). Again here, the presence of a cusp at the critical temperature is in-
herited from that of the background. Note that, in contrast with what happens with
the susceptibilities Figs. III.13, III.15, the cusp in the inverse zero-momentum square
charged mass is oriented downwards. This can be understood from the fact that, M2

ch
possesses a background dependent tree-level part, namely m2 + (rT )2, which gives the
dominant contribution, see Fig. III.7. We observe a rapid increase of 1/M2

ch above 2Tc
and a pole at about T ≈ 0.9 GeV. This results from the competition between the (pos-
itive) vacuum contribution and the (negative) thermal contribution in Eq. (III.5.74):
M2

ch turns negative in a finite range of temperature, before the positive vacuum con-
tribution dominates again at asymptotically large temperatures. For the parameters
used here, this range is m . T . 10m. This unphysical behavior may simply be an
artifact of the present perturbative calculation which could be resolved at higher orders
(which become relevant anyway at high temperatures) and/or by taking into account
a possible temperature dependence of the parameters, as already mentioned. However,
we cannot exclude that this behavior be a sign of a deeper problem. A study of these
questions is certainly needed but it is beyond the scope of the present work. Here,
we have simply checked that the temperature where the square mass turns negative is
pushed to higher values when the coupling is decreased.
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Figure III.15: Same as Fig. III.13 for the charged gluon modes, where the corresponding
square masses are defined in Eqs. (III.5.63) and (III.5.64).

III.5.4.2 Gluon propagators

We now study the momentum-dependence of the gluon propagators at zero Matsub-
ara frequency. We first consider the neutral sector. We plot the electric and magnetic
propagators of the neutral color mode G0

T/L(0,k) as functions of k = |k| for various
temperatures on Fig. III.17. Both are smooth, monotonously decreasing functions of
k. This is to be contrasted with the corresponding results in the Landau gauge, where
both propagators exhibited a nonmonotonous behavior, more pronounced for higher
temperatures, eventually resulting in an effective 3d behavior in the magnetic sector
at high temperatures. In the present case, the main effect of the temperature can be
read off the value of the propagators at vanishing momentum, respectively given by
the susceptibilities M−2

D,0 and M−2
mag,0 and discussed in detail in the previous section.
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Figure III.16: Normalised inverse of the zero-momentum gluon square mass in any of
the charged modes (this differs from the charged susceptibilities defined above).

We now come to the charged sector. As emphasized earlier, the charged propagators
at vanishing frequency are degenerate, see (III.5.23). The electric and magnetic prop-
agators of the charged color modes are plotted for various temperatures in Fig. III.18.
They display very small differences, which is expected since both coincide for k = 0.
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Figure III.17: The one-loop electric and magnetic propagators in the neutral sector at
vanishing frequency as functions of the spatial momentum k for various temperatures.
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Figure III.18: The one-loop electric and magnetic propagators of the charged gluons at
vanishing frequency as functions of the spatial momentum k for various temperatures.
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III.5.4.3 Ghost sector

We now turn to the ghost sector. Despite the presence of a nonvanishing back-
ground, there remains an antighost shift symmetry for the neutral mode c̄0 → c̄0+const
which, together with spatial isotropy, implies

Σ0(0,k) = k2σ(k), (III.5.78)

where σ(0) < ∞. We define the ghost dressing function at vanishing frequency as
F (k) = k2G0(0,k), that is,

F−1(k) = 1 + g2σ(k) = F−1
vac(k2) + g2σth(k). (III.5.79)

One striking result in the case of vanishing background [83] is the fact that the ghost
dressing function develops a pole for sufficiently high temperatures, see Fig. III.5. As
emphasized in Sec. III.3.2 (see Eqs. (III.3.1), (III.3.2)), this is a direct consequence of
the Slavnov-Taylor identities of the present model in the Landau gauge and of the fact
that the magnetic mass grows unboundedly with the temperature [83]. In the LDW
gauge with a nontrivial background field, the situation is very different and we do not
observe any pole, neither in the dressing function of the neutral ghost mode, shown
in Fig. III.19 nor in the charged sector, discussed below. For the neutral mode, this
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Figure III.19: The dressing function (III.5.79) of the neutral ghost color mode as a
function of the momentum k for various temperatures. The pole of the vanishing-
background case is absent.

can again be understood from the Slavnov-Taylor identities and the behavior of the
magnetic susceptibility of the color-neutral gluon mode discussed above. Indeed, the
discussion of [83] at vanishing background can be easily generalized to the present case
in the neutral color sector, see Appendix F. The LDW generalization of Eq. (40) of
[83] yields

G0
T,B(K)F 0

B(K)
∣∣∣ω=0,k→0 = 1/m2

0, (III.5.80)



III.5. Propagators at one-loop order in the LDW gauge 133

where the index B denotes bare correlators19 and it is understood that the limit k → 0
has to be taken after that ω = 0. In the renormalization scheme considered here, this
identity becomes, at one-loop order,

m2σth(0) = −Π0,th
T (0,k→ 0). (III.5.81)

Finally, we have

F−1(0) = F−1
R,vac(0) + 1−

M2
mag,0
m2 , (III.5.82)

see Eq. (III.5.56).
As mentioned above, at vanishing background, the magnetic mass grows linearly

with the temperature, which, eventually, leads to a pole in the ghost dressing func-
tion, with F−1(0) = 0. As discussed in Sec. III.5.4.1, the situation is different in the
presence of a nontrivial background, where M2

mag,0 remains bounded from above, thus
preventing the appearance of a pole in the neutral ghost dressing function. Finally, we
see from Eq. (III.5.82) that the value of the neutral ghost dressing function at vanish-
ing momentum is controlled by that of the neutral gluon magnetic mass. In particular,
the nonmonotonic behavior of the latter at Tc (see Fig. III.13) is directly visible in
Fig. III.19.

As for the gluon case, the charged ghost modes at zero Matsubara frequency are
degenerate,

G+(0,k) = G−(0,k), (III.5.83)

as follows from Eq. (III.5.22) and spatial isotropy. At nonvanishing background field,
there is no antighost shift symmetry in the charged sector and we shall thus directly
study the propagators in this case. The charged ghost propagator at zero frequency
is shown as a function of k for various temperatures in Fig. III.20. As for the neu-
tral mode, it presents a nonmonotonic behavior in temperature with two changes of
monotony at Tc and around T = 0.4 GeV, see also Fig. III.21. This corresponds to
the change of monotony of its effective tree-level mass rT . In the limit T → 0, the
background field Ā ∝ rT → 0 and we recover the original antighost shift symmetry
at vanishing background, which implies that the ghost propagator diverges at zero
momentum.

19Remark that, here, we changed our notations. Indeed, in Eq. (III.3.1) we noted bare quantities
with a 0 index in order to be consistent thourhgout the present manuscript. However, in the present
case, we prefer to use the B index in order to not confuse with the neutral color mode.
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Figure III.20: The ghost propagator at vanishing frequency in the charged color sector
as a function of momentum k for various temperatures.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

T [GeV]

m
2
/
M
2
gh
,+
(T
)

Figure III.21: The (normalized) ghost propagator for charged color modes at vanishing
frequency and zero momentum as a function of temperature.
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III.6 RG improvement
In this section we open some leads for further studies, namely the implementation

of temperature-dependent RG effects. As we saw in the case of the neutral magnetic
mass (see Fig. III.14), these are of great importance to extend the present results to
higher temperatures, and would require a dedicated study. Here, as an illustration, we
define the beta functions of the parameters α = m, g as20

βµα = dα

d lnµ

∣∣∣∣
0

= −α d lnZα
d lnµ

∣∣∣∣
0
, (III.6.1)

where we explicitly note by the exponent µ that these correspond to the beta functions
along the renormalization scale µ axis. Nevertheless, at finite temperature, we also
need to take into account the RG flows of the parameters along the temperature axis.
Henceforth, we define

βTα = dα

dT

∣∣∣∣
0

= −α d lnZα
dT

∣∣∣∣
0
. (III.6.2)

It remains to define the beta functions for rmin. To do so, we first use the independence
of the (renormalized) effective action Γ with respect to the renormalization scale µ,
that is

dµΓ = 0 =
(
∂µ + βµm2∂m2 + βµg ∂g + βµr ∂r

)
Γ. (III.6.3)

Differentiating this last equality with respect to r leads to

0 =
(
∂µ + βµm2∂m2 + βµg ∂g + βµr ∂r

)
Γ′

+
(
∂µ + βµ

′

m2∂m2 + βµ
′

g ∂g + βµ
′

r ∂r
)

Γ,
(III.6.4)

where f ′ = ∂f/∂r. Evaluating this last expression for r = rmin yields

βµrmin = −

(
∂µ + βµm2∂m2 + βµg ∂g

)
Γ′ +

(
∂µ + βµ,

′

m2∂m2 + βµ,
′

g ∂g + βµ,
′

r ∂r
)

Γ
Γ′′

∣∣∣∣∣∣
r=rmin
(III.6.5)

where f ′′ = ∂2
rf and where we used the fact that 0 = Γ′

∣∣∣
r=rmin

. This last equation
defines explicitly βµrmin since all the terms of the right-hand side are known and the (two-
loop order) expression of Γ can be taken from [94]. However, since the temperature is
a physical scale, Γ has no reason to be independent of the temperature and one cannot
derive the temperature counterpart of Eq. (III.6.3). Nevertheless, we can use the fact
that ∀T, 0 = Γ′

∣∣∣
r=rmin

. Accordingly, one has[(
∂T + βTm2∂m2 + βTg

)
Γ′ + βTr Γ′′

]∣∣∣
r=rmin

= 0 , (III.6.6)

which defines βTrmin . In the case we considered here, where we adopted a temperature-
independent renormalization scheme (see (III.5.55)), Eq. (III.6.6) reduces to

βTrmin = −∂TΓ′

Γ′′

∣∣∣∣∣
r=rmin

, (III.6.7)

20At the present level of approximation we did not need to explicitly renormalize the coupling
constant. Nevertheless, this can be done by e.g. following the Taylor scheme presented in Sec. II.5.4.
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and we explicitly checked that, using this RG equation, we reproduce the values of the
background obtained by minimization of the background field potential that are de-
picted in Fig. III.7. The implementation of RG improvement in temperature-dependent
renormalization schemes is beyond the scope of the present thesis. Nevertheless, ow-
ing to the numerous independent sectors (e.g. Π0

L, Π+
L , Π−T , . . . ) a large variety of

temperature-dependent renormalization prescriptions can be investigated. Moreover,
we note that, for having a fully consistent picture, in order to recover the IR safe RG
trajectories of [79] at zero temperature, one should use the infrared-safe renormaliza-
tion scheme (see Sec. II.5.2 of Chapter. II) instead of the zero-momentum one used
here to renormalize the vacuum parts.

III.7 Summary and discussion

In this chapter, we investigated YM theories at finite temperature close to the
phase transition. We worked in the LDW gauge, which is a background field extension
of the usual Landau one. In particular, the LDW gauge can be formulated as the
extrema of an external functional, see (III.4.5), which allows us to implement this
gauge according to the ST gauge-fixing procedure. For what concerns the gluon and
ghost sectors studied here, it results effectively in a simple massive extension of the
LDW FP gauge-fixed action. In particular, the massive gauge-fixed action (III.4.6)
preserves the center symmetry and the background field stands as an equivalent order
parameter for the confinement-deconfinement phase transition. The latter has been
investigated perturbatively at next-to-leading order in thist context in [94] for SU(2)
and in [95] for SU(3) and other groups. In the present case, we studied the SU(2)
theory and computed the gluon and ghost propagators at one-loop order (i.e. next-
to-leading order) in perturbation theory. In particular, due to the presence of the
background field that singles out a particular color direction (the one of the Cartan
subalgebra), the various color modes are not degenerate as in the usual Landau gauge.
Our most stringent result concerns the neutral mode of the electric gluon propagator
which presents a clear signal of the phase transition at the critical temperature, see
Fig. III.13. More generally, the nonanalityc behavior of the order parameter of the
phase transition (see Fig. III.7) is imprinted in the temperature dependence of all
corelators, see e.g. Figs. III.13, III.21.

Moreover, the presence of the background circumvent some of the issues related
to the perturbative approach that one encounters in the Landau gauge. In the lat-
ter case, one finds at one-loop order a pole in the ghost dressing function due to the
unbounded increase of the magnetic mass [83], see also Fig. III.5. Although in the
LDW gauge, for the neutral mode, the ghost dressing function remains related to the
magnetic gluon sector, see Eq. (III.5.80), the presence of a nontrivial background dra-
matically changes the high temperature behavior of the latter. Indeed, the magnetic
mass remains bounded from above and the (neutral) ghost dressing function does not
develop a pole, see Fig. III.19. However, as observed in Fig. III.14, for sufficiently
large temperatures the magnetic mass turns negative. This feature could be a conse-
quence of the fact that RG effects were not taken into account. This hypothesis can
be substantiated by introducing by hand a temperature-dependent running coupling
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constant (III.5.76), which actually leads to a positive magnetic mass for the range of
temperatures investigated, see Fig. III.14. This suggests that, as expected, the present
perturbative approach requires to take into account higher loop contributions/RG
effects to be extended at higher temperatures. This can be done for instance, by in-
cluding RG effects in a temperature-dependent renormalization scheme as described
in Sec. III.6. Nevertheless, the fact that, at high temperatures in the charged sector,
M2

ch turns negative (see Fig. III.16) could be a deeper problem. Indeed, as emphasized
in the main text, our attempts by putting by hand a running coupling constant did
not cure completely this issue. It should be mentioned again that we have checked
that as the coupling is reduced, the temperature at which this mass turns negative is
increased. This may signals that other effects than RG are needed to circumvent this
problem and which are missed in the strict one-loop calculations presented here.

Another possibility may lie in the possible background dependence of the mass.
Indeed, in the present context, the mass term appears due to the treatment of Gribov
copies in the ST gauge-fixing procedure, and hence, should, in principle, depend on the
background. As emphasized earlier, so far, we have not derived a kind of gap equation
that would allow to fix the value of the mass in an ab initio way. Instead, for the time
being, we are left with an additional free parameter. In the case where lattice data are
available, one can fix the value of the mass by performing fits against the lattice results.
This strategy has been used in the case of the Landau gauge in [83], where it leads
to temperature-dependent mass and coupling that have eventually cured the presence
of a pole in the ghost dressing function. One may think that, following the same
strategy, a background dependence of the mass would be revealed and, in turn, would
cure the appearance of the pole in M2

ch. Such a scenario, however, requires to have
lattice data at our disposal. Lattice simulations can be performed in the LDW gauge
[237] by minimizing the functional (III.4.5). The formal resemblance of the latter with
the functional used to implement the Landau gauge, see (I.4.1) of Chapter. I, allows
one to use the minimization algorithms routinely employed in the case of the Landau
gauge. The situation is even more simple in the low temperature phase where, we
know that, rmin = π. Hereby, one can use the already existing numerical codes that
compute the propagators in Landau gauge at finite temperature, and simply performs
the shift Aµ → Aµ+δµ0t

3πT/g0 to get those of the LDW gauge in the low temperature
regime.
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Conclusion and perspectives

In this thesis, in a first part, we extended the Serreau-Tissier (ST) gauge-fixing
proposal of [74] to a one-parameter family of nonlinear covariant gauges. The cen-
tral idea of this procedure consists in defining expectation values of gauge-invariant
quantities by a two-step averaging procedure that includes a pseudo average over the
Gribov copies along each gauge orbit in order to lift their degeneracy. The resulting
gauge-fixed theory is free of Gribov ambiguities and can be cast under the form of
a local field theory at the cost of introducing the replicas [75]. In the present case,
the replica sector consists in n− 1 copies of supersymmetric nonlinear sigma models.
Eventually, the resulting local gauge-fixed action corresponds to a massive extension
of the Curci-Ferrari-Delbourgo-Jarvis gauges [77, 100] coupled to the replica sector,
while average values of gauge-invariant quantities are obtained in the limit of vanish-
ing replica number n → 0. In particular, we have proved that the local gauge-fixed
action is renormalizable in d = 4 for any value of n and we provided explicit expres-
sion of the relevant counter-terms at one-loop order. In particular, renormalizability
is insured by the presence of a modified non-nilpotent BRST symmetry that allows to
control the UV divergences, though it is not known up to now how to construct the
physical space of the theory.

In the case of the Landau gauge, the gluon and ghost sectors effectively reduce
to those of the Curci-Ferrari (CF) model [76, 77], which consists in a simple massive
extension of the Landau gauge Faddeev-Popov gauge-fixed Yang-Mills action. On the
contrary, away from the Landau limit, clear differences appear between the present
gauge-fixed theory and the CF model. These differences can conveniently be investi-
gated in the gluon and ghost sectors by studying them either in the limit n → 0, or
for n = 1, which correspond respectively to the ST and the CF cases. For instance,
in the former case, the gluon propagator remains transverse even away of the Landau
gauge and the renormalization group (RG) flows never freeze in the infrared because
of the presence of massless modes in the replica sector. These behaviors are to be
put in regard with the case n = 1 where the gluon propagator develops a longitudinal
part and all the modes are massive, which lead to the freezing of the RG flows below
the mass scale of the problem. In practice, we computed, with and without RG im-
provement, the various propagators of the ST and the CF actions at one-loop order in
perturbation theory. In particular, we have shown, for the gauges investigated and for
the infrared-safe renormalization scheme considered here, that both the ST and the
CF cases admit infrared safe RG trajectories and the perturbative RG flows can be
integrated down to zero momentum.

The massive and perturbative approach is mainly supported by the fact that, in the
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Landau gauge, one-loop calculations of various correlation functions in the CF model
reproduce accurately the lattice results, see [79, 80, 81, 82, 203]. However, a definite
rigorous proof that the effective CF mass actually comes from a treatment of the Gri-
bov copies à la ST is still missing. Indeed, as mentioned earlier, one of the possible
loophole of the ST procedure lies in the assumption that one can freely interchange the
n → 0 limit and the path-integral over the gauge field A. Although a rigorous proof
would require a detailed mathematical treatment of the path-integral, we believe that
a strong argument in favor of the ST approach would be to have an ab initio way to
fix the renormalized mass. One lead is to construct, in the Landau gauge for instance,
a multiplicatively renormalizable effective potential for the local composite operator
A2, following the lines of e.g. [241, 242]. In the present framework, investigation of
such an effective potential can be done in perturbation theory. A possible scenario
would be that, since the gauge parameter β0 > 0, introduced to lift the degeneracy
of the Gribov copies, softly breaks the initial nilpotent BRST symmetry (though a
modified non-nilpotent one remains), some operators can now develop nonvanishing
expectation values, while these were prevented in the presence of the initial nilpotent
BRST symmetry. Hereby, one may expect that, due to such a soft-breaking of the
BRST symmetry, nontrivial minima of the effective potential for A2 now exist. The
latter corresponding to nonvanishing renormalized gluon mass, this would further en-
force the choice of considering n-dependent renormalization schemes as considered in
Sec. II.5.2. We find worth mentioning that, in the context of the FRG, recently a bare
gluon mass was introduced to the bare action in order to account for the soft breaking
of the initial nilpotent BRST symmetry due to the presence of the regulator [243].

In the second part of this thesis, we extended to the finite temperature case the
massive approach (or equivalently the ST proposal under the assumption mentioned
above) to a background field extension of the Landau gauge, namely the Landau-
DeWitt (LDW) gauge. This consists in working in presence of a nontrivial background
value Ā for the gauge field, which (when evaluated at the value that minimizes a cer-
tain potential) stands as an order parameter for the confinement-deconfinement phase
transition. In particular, the LDW gauge allows to work in an approach where the
ZN -center symmetry is preserved, which is probably a crucial property for approxi-
mate methods since the spontaneous breaking of the former is associated to the phase
transition. We considered the SU(2) theory whose deconfinement phase transition was
accurately described in perturbation theory [93, 94]. More precisely, in the present
background field approach, physical observables must be evaluated at the value of the
background that minimizes the background field potential (III.4.18), and the value of
the former signals whether the center symmetry is realized or spontaneously broken. In
practice, the background field potential was computed up to two-loop order in [94] for
the SU(2) theory, and a second order phase transition was observed, in agreement with
the lattice. The presence of a nontrivial background field defines preferred color direc-
tions (those of the Cartan subalgebra of the color symmetry group), and the various
color modes couple differently with the background, which, in turn, lifts their degener-
acy. Regarding practical aspects, the standard Cartesian color basis becomes not the
best suited for actual calculations and, instead, we used the Feynman rules derived in
the canonical basis. In this basis, for the SU(2) theory, the three color modes of the
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adjoint representation correspond to one neutral mode (the color direction singled by
the background) and two charged ones. In the present manuscript, we computed at
one-loop order the gluon and ghost propagators for the various color modes. At the
difference of the Landau gauge, we observed characteristic signals of the phase tran-
sition directly at the level of the correlators. This is particularly clear for the neutral
electric gluon susceptibility (electric gluon propagator evaluated at zero Matsubara
frequency and vanishing momentum) which displays a peak at the critical tempera-
ture. More generally, although less impressive, all the temperature dependences of
the zero Matsubara/momentum value of the correlators present a cusp at the phase
transition. This is because, at the difference of the Landau gauge, in the LDW gauge
the non-analyticity of the order parameter at the phase transition is directly imprinted
into the correlators.

The first natural extension of this work is to investigate the correlators in the
SU(3) case, where we expect to observe, instead of a cusp, a discontinuity owing to the
first order character of the phase transition in the SU(3) theory. Also, as emphasized
earlier, one should consider temperature-dependent renormalization schemes, and then,
the study of temperature-dependent RG flows in order to investigate possible infrared
safe (i.e. without a Landau pole) RG trajectories along the temperature axis. We
believe that, these are necessary studies in order to confirm the consistency of the
present perturbative approach.

Another case of interest is the investigation of the QCD phase diagram. The
present approach has already been extended at finite chemical potential for static
quarks of infinitely heavy masses (quenched approximation) in [97]. In this case,
although much less severe than on the lattice, there exists a sign problem for real
chemical potential. Indeed, the generating functional becomes, in general, not real
and so does the average value of A. Hence, for having self-consistent background
fields (as our approach requires, see Sec. III.4) that satisfy 〈A〉 = Ā one thus needs to
consider complex background fields. The fact that, in this case, the action is complex is
not an obstacle to perform actual perturbative calculations (at the difference of lattice
simulations). However, the background field potential is now a complex function of
complex variables, and, in turn, it is not clear which of its extrema actually identify
the physical values of the background (in the case of zero chemical potential these
are identified by the absolute minima of the background field potential). In [97], the
extrema were chosen such that the limit of vanishing chemical potential is smooth, and
such that in this limit one recovers the results of the pure temperature case. Although
this (arbitrary) criterion seems quite fair for small values of the chemical potential, its
extension to the high chemical potential region should deserved dedicated study.

The next stage would be to consider dynamical light quarks. In a first step, one
could for instance study the effects of the nontrivial background on the quark propaga-
tor as well as on the quark-antiquark-gluon vertex. Nevertheless, the study of the QCD
phase diagram in the light quark region requires the treatment of the chiral symme-
try breaking that is currently not accounted for in the present approach, and requires
some refinement. A possible way would be to construct an effective potential for an
order parameter associated to the chiral phase transition, as for instance in [244]. The
possible implementation of such an order parameter at the level of the microscopic
action should be, in principle, possible by using again background field methods [118].
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This would result in an effective action where the pure gauge sector corresponds to
the massive LDW action presented in this thesis (that contains the relevant order pa-
rameter for the deconfinement phase transition), supplemented by the action for the
matter fields that depends on a background field value associated to order parameter
of the chiral phase transition.



Appendix A
Dyson-Schwinger equation for the ghost
propagator

Here we derive explicitly the DSE for the ghost propagator in the Landau gauge.
The starting point is the DSE Eq. (I.3.8). We introduce a set of sources for the different
fields: two scalar ones Jaµ for the gauge field and Ma for iha, as well as a couple of
Grassmann sources η̄a and ηa for the FP ghost ca and anthighost c̄a fields. We thus
have for generating functional

Z[J,M, η̄, η] =
∫
DADhDc̄Dc exp

{
−Sgf +

∫
x
JaµA

a
µ +Maiha + c̄aηa + η̄aca

}
,

(A.0.1)
with Sgf the Landau gauge FP action that was defined in Eq. (I.2.9)

Sgf =
∫
x

{1
4F

a
µνF

a
µν + ∂µc̄

aDµc
a + iha∂µA

a
µ

}
. (A.0.2)

Using Eq. (I.3.8) with ϕ(x) = c̄a(x) yields

〈∂µDµc
a(x) + ηa(x)〉Jµ,M,η,η̄ = 0, (A.0.3)

with the convention of left derivatives for fermionic quantities and we have identified
δS/δc̄a = −∂µDµc

a in Eq. (A.0.3). In the following we use a short-hand notation
where space-time coordinates are put as indices, such that Aaµ(x) ≡ Aaµ,x. Accordingly
Eq. (A.0.3) writes

0 =
〈
∂2
xc
a
x + g0f

acd∂µ,x
(
Acµ,xc

d
x

)
+ ηax

〉
Jµ,M,η,η̄

= ∂2
x

δW

δη̄ax
+ g0f

acd∂µ,x
δ2W

δJcµ,xδη̄
d
x

+ ηax ,
(A.0.4)

where the generating functional W [Jµ,M, η, η̄] has been defined in (I.3.1). Differenti-
ating further this last equality with respect to the source ηby one gets

0 = −∂2
x

δ2W

δη̄axδη
b
y

− g0f
acd∂µ,x

δ3W

δJcµ,xδη̄
d
xδη

b
y

+ δabδx,y . (A.0.5)
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Finally, performing the Legendre transformation with respect to the sources Jµ, M, η, η̄
and ultimately taking the limit of vanishing sources leads to the following relations

δϕ

δJφ
= δ2W

δJφδJϕ
for φ, ϕ = (Aµ, ih, c, c̄) ,

δ2W

δη̄axδη
b
y

= −
(

δ2Γ
δcaxδc̄

b
y

)−1

,

δ2W

δJaµ,xδJ
e
ν,z

=
(

δ2Γ
δAaµ,xδA

e
ν,z

)−1

.

(A.0.6)

Using these relations one gets

δ

δJaµ,x
=

∑
φ=Aµ,ih,c,c̄

∫
z

δφez
δJaµ,x

δ

δφez
=
∫
z

(
δ2Γ

δAaµ,xδA
e
ν,z

)−1
δ

δAeν,z
, (A.0.7)

which, along with the relations (A.0.6) yields

δ

δJcµ,x

(
δ2W

δη̄dxδη
b
y

)
=−

∫
z

(
δ2Γ

δAcµ,xδA
e
ν,z

)−1
δ

δAeν,z

(
δ2Γ
δcdxδc̄

b
y

)−1

=−
∫
z,t,u

(
δ2Γ

δAcµ,xδA
e
ν,z

)−1(
δ2Γ
δcdxδc̄

n
t

)−1
δ3Γ

δcnt δc̄
m
u δA

e
ν,z

(
δ2Γ

δcmu δc̄
b
y

)−1

.

(A.0.8)

Applying a Fourier transformation with the convention that ∂µ → −ipµ and plugging
this identity into the DSE Eq. (A.0.5) eventually leads to

− p2Gabgh(p) + δab + ig0pµf
acd
∫
k
Gceµν(k)Gdngh(k)Γnmecc̄Aν (p,−k, k)Gmbgh (p) = 0 , (A.0.9)

where Ggh and Gµν are respectively the fully dressed ghost and gluon propagators,
and Γcc̄Aν is the fully dressed ghost-antighost-gluon vertex. This equation is more
conveniently written under the following form

δab =
[
p2δas − ig0pµf

acd
∫
k
Gceµν(k)Gdngh(k)Γnsecc̄Aν (p,−k, k)

]
Gsbgh(p) , (A.0.10)

which eventually leads to(
G−1

gh

)ab
(p) = p2δas − ig0pµf

acd
∫
k
Gceµν(k)Gdngh(k)Γnsecc̄Aν (p,−k, k) , (A.0.11)

that displays explicitly the one loop structure of Fig. I.2.



Appendix B

Miscellaneous identities

In this appendix, we present various identities used throughout the main text of
Chapter. II. We preferred to report them in a separated appendix in order to not
encumber the main discussion.

B.1 Identities among renormalization constants

First of all, we consider the renormalization constants appearing in the proof of
renormalizability, see Sec. II.3.2. There is an obvious permutation symmetry among
the replicas k > 2. The latter guarantees for instance that Z2 and Z3 do not depend
on k, see Eq. (II.3.53). There is also a less obvious permutation symmetry between
the replicas k > 2 and k = 1, which has been (arbitrarily) singled out to factor out the
volume of the gauge group. To exploit this symmetry we employ a parametrization of
Ṽk similar to (II.3.6)

Ṽk =
√
Z exp

{
ig̃
(
C̄kθ + θ̄Ck + θ̄θĤk

)}
Ũk. (B.1.1)

with Ĥa
k = iHa

k+ g̃
2f

abcC̄bkC
c
k and Ũ †kŨk = 1. Here, we introduced the fields Ck, C̄k, Hk

and Ũk in order to take into account a possible renormalization between the bare
fields introduced in (II.3.6) and the variables of the effective action Γ. Using this
parametrization in Eq. (II.3.51) leads to

∫
θ
L2 = Z2Z

2

κ1

{
β0
2κ1

(Aaµ)2 − iAaµ∂µHa
k

+ ∂µC̄
a
k

(
κ1∂µC

a
k + g̃fabcAbµC

c
k

)}
A=AŨk

+ Z3Z
2
{
β0C̄

a
kC

a
k + (Ha

k )2

2

− g̃

2f
abciHa

k C̄
b
kC

c
k −

g̃2

4 (fabcC̄bkCck)2
}
. (B.1.2)
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146 Appendix B. Miscellaneous identities

To make contact with the original fields (ck, c̄k, hk) to which the replica symmetry
applies, we introduce possible renormalization factors as

Cak = Ẑcc
a
k + . . .

C̄ak = Ẑcc̄
a
k + . . . (B.1.3)

iHa
k = Ẑhih

a
k + ẐA∂µA

a
µ + g0Ẑcc̄f

abcc̄bkc
c
k + . . .

where the dots stand for terms involving λk and nonlocal contributions. Here we
included all possible local terms having the correct dimension, ghost number, and
symmetry properties. The replica symmetry guarantees that the factors Ẑc,h,A,cc̄ above
do not depend on k. Inserting (B.1.3) in the equation above, setting Ũk = 1, and
identifying terms involving (ck, c̄k, hk) with the corresponding ones involving (c, c̄, h)
in (II.3.46), we obtain, after some algebra,

Ẑc = Ẑh = 1 and Ẑcc̄ = ẐA = 0, (B.1.4)

as well as the two relations

Z2Z
2 = κ1κ2 and Z3Z

2 = κ3, (B.1.5)

which reduce the number of independent renormalization constants to six. Note that
ZA = 0 guarantees that there is no term (∂µAaµ)2. The relation Z2Z

2 = κ1κ2 guaran-
tees that all replicas contribute the same to the gluon mass squared, which thus scales
as n.

The definitions of the renormalized constants κ1,2,3, Z1,2,3, Z, and g̃ used above
and in the proof of renormalizability, see Sec. II.3.2 differ from those used in pertur-
bative calculations, namely ZA, Zc, Zh, ZΛ, Zβ, Zξ and Zg, see (II.4.24), (II.4.25)
and (II.4.29). The dictionary between the two sets is given in (II.4.32), (II.4.33). In
particular, the renormalization constants of the second set [Eqs.(II.4.24), (II.4.25) and
(II.4.29)] satisfy the constraint

Zh = ZβZc , (B.1.6)

which leads to six independent renormalization constants among the seven defined.
This number of independent renormalization constants is further reduced in the Landau
gauge (ξ0 = 0). Indeed, the case ξ0 = 0 studied in [74] exhibits various simplifications
as compared to the general class of gauges studied here. The first obvious one is the
fact that the h sector does not receive any loop corrections, i.e.,

δΓ
δiha

= δS

δiha
= ∂µA

a
µ. (B.1.7)

This can be seen, e.g., by applying a infinitesimal shift ih → ih + f under the defin-
ing path integral for Γ (see also Appendix. F). In terms of the divergent constants
introduced in Sec. II.3.2.2, this implies that κ2 = 1 or, equivalently [232, 202],

ZAZβZc = 1, (B.1.8)
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where we used the relation (B.1.6).
The next simplification comes from the fact that for ξ0 = 0, the superfield correlator

(II.4.14) is ultralocal in Grassmann space, i.e., it is proportional to δ(θ, θ′) and the
mixed correlator (II.4.16) vanishes. As pointed out in [74] and emphasized in the main
text, since all vertices of the theory are also local in Grassmann space (for ξ0 = 0 there
are no term involving Grassmann derivatives) it follows that closed loops involving
superfields are proportional to δ(θ, θ) = 0, see Eq. (II.4.18). An important consequence
is that the Λk sector effectively decouples in the (perturbative) calculation of correlators
in the sector (A, c, c̄, h) at all orders. The only effect of the superfields Λk is the mass
term nβ0 for the gauge field.

A first consequence of this dramatic simplification for the renormalizability of the
theory is that the usual nonrenormalization theorems of the CF model with ξ0 = 0
are valid. One of them is the relation (B.1.8) above. The second one comes from
the Taylor theorem, which states that the ghost-antighost-gluon vertex in a particular
momentum configuration does not receive loop corrections [116]. It follows that

Zg
√
ZAZc = 1. (B.1.9)

We observe that Eqs. (B.1.8) and (B.1.9) together with the last relation in Eq. (II.4.33)
imply that Z = ZΛ/Zc. Another consequence of the absence of loops of the superfield
is the fact that there can be no loop diagram with only one external Λk leg. This is
easy to show by direct inspection. It follows that those vertices are tree-level exact,
i.e.,

δθΓ
δΛak

∣∣∣∣∣
Λk=0

= δθS

δΛak

∣∣∣∣∣
Λk=0

= −∂µAaµ. (B.1.10)

Taking into account the rescaling (II.4.26) of Grassmann variables, which implies,
together with (II.4.29), that

δF [Λ] =
∫
x,θ

δθF
δΛ δΛ =

√
ZβZΛ

∫
x,θr

δθF
δΛ δΛr, (B.1.11)

for any given functional F [Λ], we conclude that ZAZΛZβ = 1. When combined with
Eq. (B.1.8), this gives

ZΛ = Zc, (B.1.12)

or, equivalently, Z = 1. Equations (II.3.41), (II.3.46), (II.3.51), together with the
relations (II.3.53), (II.4.33), (B.1.8), (B.1.9), and (B.1.12), the results of [74]. In the
Landau gauge, the number of independent renormalization factors is reduced from 6
to 3. The relations (B.1.8), (B.1.9), and (B.1.12) are readily checked from the one-loop
results of Sec. II.4.3.2 for ξ = 0.

In order to summarize, in the case of the Landau gauge (ξ0 = 0), the number of
independent renormalization constants in reduced from 6 down to 3 due to the three
additional constraints ZAZcZβ = Zg

√
ZAZc = ZΛ/Zc = 1.
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B.2 Slavnov-Taylor identities in the CF model
As already discussed, the CF model can be obtained from the theory considered

here by setting the number of replicas n = 1. Its action is given by

S[A, c, c̄, h] = SYM[A] + SCF[A, c, c̄, h] (B.2.1)

where SYM is the YM action and SCF is given in Eq. (II.2.10). This model possesses
a (non-nilpotent) BRST symmetry, whose action on the fields is

sAaµ = Dµc
a , sca = −g2f

abccbcc (B.2.2)

and
sc̄a = iha , siha = β0c

a. (B.2.3)

The Zinn-Justin equation corresponding to this symmetry is obtained as usual, i.e., by
introducing external sources for the fields and for all the independent BRST variations,
S → S − S1 with

S1 =
∫
x

{
JaµA

a
µ+η̄aca+c̄aηa+Maiha+K̄a

µsA
a
µ+L̄asca

}
, (B.2.4)

and by performing a Legendre transform with respect to the sources Jaµ , ηa, η̄a, and
Ma. It reads ∫

x

{
δΓ
δK̄a

µ

δΓ
δAaµ

+ δΓ
δL̄a

δΓ
δca
− iha δΓ

δc̄a
− β0c

a δΓ
δiha

}
= 0. (B.2.5)

Taking two derivatives of this equation with respect either to iha and ca or to Aaµ and
ca and setting the sources to zero, one obtains the following symmetry identities for
the two-point vertex functions in momentum space:

ΓcK̄µ(p)ΓAµih(p)− Γcc̄(p)− β0Γihih(p) = 0 (B.2.6)

and
ΓcK̄µ(p)ΓAµAν (p)− β0ΓihAν (p) = 0. (B.2.7)

Eliminating ΓcK̄µ(p), we obtain, finally,

p2 [ΓihA(p)]2 − ΓL(p)Γihih(p) = ΓL(p)Γcc̄(p)
β0

. (B.2.8)

Taking n = 1 in Eq. (II.5.3), and further using the above identity leads to

GCF
L (p) = − m2Γihih(p)

ΓL(p)Γcc̄(p)

∣∣∣∣∣
n=1

. (B.2.9)



Appendix C

One-loop expressions of the Feyn-
man diagrams

Here, we present the Feynman rules associated to the non-standard vertices, namely
cc̄cc̄, ihcc̄ and the supersymmetric ones AΛ3 and Λ4. Then, we report the one-loop
expressions of the Feynman diagrams of Figs. II.1 – II.5 once the Grassmann variables
internal to the loops (if any) have been integrated out. The resulting expressions are
standard one-loop momentum integral that we treat by means of the introduction
Feynman parameters. In practice, only one parameter is needed. However, the full
expression of the finite parts is too cumbersome and was treated using Mathemat-
ica. These, are reported into a Mathematica file corresponding to the supplemental
material, Ref. [51], of [99]. Nevertheless, the divergent parts of the diagrams can be
straightforwardly extracted from their one-loop expressions displayed below and are
explicitly reported. In the following, we use the notation

∫
k = µε

∫ ddk
(2π)d , with d = 4−ε

in dimensional regularization, κ = g2
0N/8π2ε and k · p = kµpµ.

C.1 Feynman rules

The four ghost vertex and the ihcc̄ interaction reads respectively

δ

δcd(p4)
δ

δc̄c(p3)
δ

δcb(p2)
δ

δc̄a(p1)S = g2
0ξ0
2 (feabfecd − feadfecb)(2π)dδ(d)(p1 + p2 + p3 + p4) ,

δ

δcc(p3)
δ

δc̄b(p2)
δ

δiha(p1)S = g0ξ0
2 fabc(2π)dδ(d)(p1 + p2 + p3) .

(C.1.1)

We also recall the AΛkΛk vertex

δθ
δΛak(p1, θ)

δθ′

δΛbl (p2, θ
′)

δ

δAcµ(p3)S = i
g0
4 f

abcδkl(2π)dδ(d)(p1 + p2 + p3)δ(θ, θ′)(p1 − p2)µ .

(C.1.2)
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Finally, the two quartic vertices AΛ3
k and Λ4

k reads respectively

δθ3
δΛcj(p3, θ3)

δθ2
δΛbl (p2, θ2)

δθ1
δΛak(p1, θ1)

δ

δAdµ(p4)S =−ig
2
0
6 δklδkj(2π)dδ(d)(p1+p2+p3+p4)

× δ(θ1, θ2)δ(θ1, θ3)
{
feabfecd (p1−p2)µ + fecafebd(p3 − p1)µ

+feadfebc(p2 − p3)µ + feadfebc(p2−p3)µ
}
,

(C.1.3)

and

δθ4
δΛdm(p4, θ4)

δθ3
δΛcj(p3, θ3)

δθ2
δΛbl (p2, θ2)

δθ1
δΛak(p1, θ)

S

=− g2
0

12δklδkjδkm(2π)dδ(d)(p1 + p2 + p3 + p4)
{
δ(θ1, θ2)δ(θ1, θ3)δ(θ1, θ4)

[
feadfecb(p1 · p2−p1 · p3−p2 · p4+p3 · p4)

+feacfebd(−p1 · p2+p1 · p4+p2 · p3−p3 · p4)

+feabfedc(p1 · p3−p1 · p4 − p2 · p3+p2 · p4)
]

+ξ0g
MN

∫
θ

[
(feadfecb−feacfebd)(δ(θ, θ3)δ(θ, θ4)∂Nδ(θ, θ1)∂Mδ(θ, θ2)

+ δ(θ, θ1)δ(θ, θ2)∂Nδ(θ, θ3)∂Mδ(θ, θ4))
+ (feabfedc − feadfecb)(δ(θ, θ4)δ(θ, θ2)∂Nδ(θ, θ1)∂Mδ(θ, θ3)

+ δ(θ, θ3)δ(θ, θ1)∂Nδ(θ, θ2)∂Mδ(θ, θ4))
+ (feabfecd − feacfedb)(δ(θ, θ2)δ(θ, θ3)∂Nδ(θ, θ1)∂Mδ(θ, θ4)

+ δ(θ, θ1)δ(θ, θ4)∂Nδ(θ, θ2)∂Mδ(θ, θ3))
]}
.

(C.1.4)

C.2 Expression of the one-loop Feynman diagrams

C.2.1 Gluon sector

Expression of the first diagram of Fig. II.1 is, for external legs carrying momentum
p, color indices a, b, and Lorentz indices µ, ν

g2
0N

2 δab
∫
k

(2δµνδρσ − δµρδνσ − δµσδρν)
(
P Tρσ(k)
k2 + nβ0

+ ξ0
PLρσ(k)
k2 + β0ξ0

)
, (C.2.1)

it yields the divergent part

− 3κ
4 δµν(3nβ0 + β0ξ

2
0) . (C.2.2)
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Expression of the second diagram of Fig. II.1 is, for external legs carrying momen-
tum p, color indices a, b, and Lorentz indices µ, ν

g2
0N

2 δab
∫
k

(pτδµσ − pσδµτ − kµδτσ + kτδµσ + (k − p)σδµτ − (k − p)µδστ )

× (−pλδνρ + pρδνλ + kνδλρ − kλδνρ − (k − p)ρδνλ + (k − p)νδρλ)

×
(
P Tσρ(k)
k2 + nβ0

+ ξ0
PLσρ(k)
k2 + β0ξ0

)(
P Tτλ(k − p)

(k − p)2 + nβ0
+ ξ0

PLτλ(k − p)
(k − p)2 + β0ξ0

)
(C.2.3)

it yields the divergent part

κ

12
(
δµν(9β0ξ

2
0 + 9nβ0(4 + ξ0) + p2(6ξ0 − 25))− 2pµpν(3ξ0 − 14)

)
. (C.2.4)

Expression of the third diagram of Fig. II.1 is, for external legs carrying momentum
p, color indices a, b, and Lorentz indices µ, ν

g2
0Nδ

ab
∫
k

kµ
k2 + β0ξ0

(k − p)ν
(k − p)2 + β0ξ)

, (C.2.5)

it yields the divergent part

− κ

12
[
δµν(6β0ξ0 + p2) + 2pµpν

]
. (C.2.6)

Expression of the fourth diagram of Fig. II.1 is, for external legs carrying momen-
tum p, color indices a, b, and Lorentz indices µ, ν

− δad(n−1)g
2
0Nβ0ξ0

8

∫
k

(kµ+(k−p)µ) (kν+(k−p)ν)
(k2 + β0ξ0) ((k − p)2 + β0ξ0)

( 2
k2 + 2

(k − p)2 + (n+2)β0ξ0
k2(k − p)2

)
,

(C.2.7)
it yields the divergent part

− κ

2 (n− 1)β0ξ0δµν . (C.2.8)

Expression of the fifth diagram of Fig. II.1 is, for external legs carrying momentum
p, color indices a, b, and Lorentz indices µ, ν

− δad(n− 1)g
2
0Nβ0ξ

2
0

d− 1 P Tµν(p)×
∫
k

k2p2 − (k · p)2

k2(k − p)2 (k2 + β0ξ0) ((k − p)2 + β0ξ0) , (C.2.9)

it is finite in d = 4 dimensions.

C.2.2 Ghost sector
Expression of the first diagram of Fig. II.2 is, for external legs carrying momentum

p, color indices a, b

g2
0Nδ

ab
∫
k

(k − p)µpν
(k − p)2 + β0ξ0

(
P Tµν(k)
k2 + nβ0

+ ξ0
PLµν

k2 + β0ξ0

)
, (C.2.10)
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it yields the divergent part
κ

4p
2(ξ0 − 3) . (C.2.11)

Expression of the second diagram of Fig. II.2 is, for external legs carrying momen-
tum p, color indices a, b

g2
0N

2 δabξ0

∫
k

1
k2 + β0ξ0

, (C.2.12)

it yields the divergent part
− κ

2 ξ
2
0β0 . (C.2.13)

Expression of the third diagram of Fig. II.2 is, for external legs carrying momentum
p, color indices a, b

−g
2
0N

4 δabξ2
0β0

∫
k

1
k2 + β0ξ0

1
(k − p)2 + β0ξ0

, (C.2.14)

it yields the divergent part
− κ

4 ξ
2
0β0 . (C.2.15)

Expression of the sum of the fourth and fifth diagrams of Fig. II.2 is, for external
legs carrying momentum p, color indices a, b

−g
2
0N

2 δabξ0

∫
k

k2

k2 + β0ξ0

1
(k − p)2 + β0ξ0

, (C.2.16)

it yields the divergent part
κξ2

0β0 . (C.2.17)

C.2.3 ih− ih and A− ih sectors

Expression of the first diagram of Fig. II.3 is, for external legs carrying momentum
p, color indices a, b

−g
2
0N

4 δabξ2
0

∫
k

1
k2 + β0ξ0

1
(k − p)2 + β0ξ0

, (C.2.18)

it yields the divergent part
− κ

4 ξ
2
0 . (C.2.19)

Expression of the first diagram of Fig. II.5 is, for external legs carrying momentum
p, color indices a, b and for the gluon leg carrying the Lorentz index µ

g2
0N

2 δabξ0i

∫
k

kµ
k2 + β0ξ0

1
(k − p)2 + β0ξ0

, (C.2.20)

it yields the divergent part
κ

4 ξ0ipµ . (C.2.21)
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C.2.4 Λ− Λ sector
Expression of the first diagram of Fig. II.4 is, for external legs carrying momentum

p, color indices a, b and replica indices i, j

−g
2
0N

6 δabδij

∫
k

(
δ(θi, θj)

p2 + k2

2
k2(k2 + β0ξ0) + ξ0

2
�θiδ(θi, θj)
k2(k2 + β0ξ0)

)
, (C.2.22)

it yields the divergent part

− κ

12δijξ0
(
δ(θi, θj)(2p2 − β0ξ0) + ξ0�θiδ(θi, θj

)
. (C.2.23)

Expression of the second diagram of Fig. II.4 is, for external legs carrying momen-
tum p, color indices a, b and replica indices i, j

g2
0N

3 δabδij

∫
k
ξ0δ(θi, θj)

1
(k2 + β0ξ0) ,

(C.2.24)

it yields the divergent part
− κ

3 δijβ0ξ
2
0δ(θi, θj) . (C.2.25)

Expression of the third diagram of Fig. II.4 is, for external legs carrying momentum
p, color indices a, b and replica indices i, j

−g
2
0N

4 δab
∫
k

4
p2 − (k·p)2

k2

k2 + nβ0
+ ξ0

(k2 + 4(−k · p+ (k·p)2

k2

k2 + β0ξ0


×
(

δijδ(θi, θj)
(k − p)2 + β0ξ0

+ ξ0
1 + δij

(k − p)2((k − p)2 + β0ξ0)

)
,

(C.2.26)

it yields the divergent part

δijδ(θi, θj)
(
κ

4 (p2(ξ0 − 3) + 2β0ξ
2
0)
)
− (1 + δij)

κ

4 ξ
2
0 . (C.2.27)

Expression of the fourth diagram of Fig. II.4 is, for external legs carrying momen-
tum p, color indices a, b and replica indices i, j

−(1 + δij)
g2

0N

4 ξ2
0δ
ab
∫
k

(
2k · p− k2

k2(k2 + ξ0β0)
k2 − p2

(k − p)2((k − p)2 + β0ξ0)

)
, (C.2.28)

it yields the divergent part
(1 + δij)

κ

4 ξ
2
0 . (C.2.29)

C.2.5 A− Λ sector
Expression of the first diagram of Fig. II.5 is, for external legs carrying momentum

p, color indices a, b and for the gluon leg carrying the Lorentz indiex µ

g2
0N

3 δabξ0

∫
k

ipµ
k2(k2 + β0ξ0) ,

(C.2.30)
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it yields the divergent part
κ

3 ξ0ipµ . (C.2.31)

Expression of the first diagram of Fig. II.5 is, for external legs carrying momentum
p, color indices a, b and for the gluon leg carrying the Lorentz index µ

−g
2
0N

4 δabξ0

∫
k

i(2kµ − pµ)(p2 − k2)
(k − p)2((k − p)2 + β0ξ0)

( 1
k2 + β0ξ0

+ nβ0ξ0
k2(k2 + β0ξ0)

)
, (C.2.32)

it yields the divergent part
κ

4 ξ0ipµ . (C.2.33)

Expression of the third diagram of Fig. II.5 is, for external legs carrying momentum
p, color indices a, b and for the gluon leg carrying the Lorentz index µ

i
g2

0N

2 ξ0δ
ab
∫
k

(pρδµν − pνδµρ − kµδρν + kρδµν + (k − p)νδρµ − (k − p)µδρν)

×
(
P Tνσ(k)
k2 + nβ0

+ ξ0
PLνσ(k)
k2 + β0ξ0

)
(k − 2p)σ(k − p)ρ

(k − p)2((k − p)2 + β0ξ0) ,
(C.2.34)

it yields the divergent part
− 3κ4 ξ0ipµ . (C.2.35)



Appendix D
Complete propagators

We detail the inversion of the one-loop two-point vertex function matrix Eq. (II.4.9)
that reads

Γ(2) =

ΓTP Tµν + ΓLPLµν −ipµΓihA ipµΓ4
ipνΓihA Γihih 0
−ipνΓ4 0 δkl

[
Γ1δ(θk, θ′l) + Γ2�θkδ(θk, θ

′
l)
]

+ (δkl − 1)Γ3

 ,
(D.0.1)

where the scalar functions ΓT , ΓL, ΓihA and Γ1,...,4 only depend on p2 and where �θ
is the Laplace operator on the curved Grassmann space, defined as [202, 98]

�θ = 1√
g(θ)

∂M

√
g(θ)gMN∂N = 2β0(θ∂θ + θ̄∂θ̄) + 2(1− β0θ̄θ)∂θ∂θ̄, (D.0.2)

and which satisfies �θδ(θ, θ′) = −2 + 2β0δ(θ, θ′). In particular, in (D.0.1), we used the
fact that, at one-loop order, there is no contribution to ΓihΛk . Note that, since there
are n − 1 replicas, the matrix representation (II.4.9) only makes sense for n > 0 and
the limit n→ 0 must be done after the inversion. Using the symmetries of the problem
, the most general form of the inverse matrix (Γ(2))−1 reads

(Γ(2))−1 =

∆TP
T
ρν+∆LP

L
ρν ipρ∆ihA −ipρ∆4

−ipν∆ihA ∆ihih ∆5

ipν∆4 ∆5 δlm
[
∆1δ (θl, θm)+∆2�θlδ (θl, θm)

]
+(1− δlm) ∆3

 ,
(D.0.3)

where the unknown scalar functions ∆T , ∆L, ∆ihA, and ∆1,...,5 only depend on p2.
The inversion is defined by

Γ(2) ×
(
Γ(2)

)−1
=

δµρ 0 0
0 1 0
0 0 δkmδ (θk, θm)

 , (D.0.4)

where the product × involves a sum over Lorentz and replica indices and an integral
over the Grassmann variable θl. The calculation is straightforward. We get, for the
gluon sector,

∆T = 1
ΓT

and ∆L = Γihih (Γ1 + (n− 2)β0Γ3)
(ΓLΓihih − p2Γ2

ihA) (Γ1 + (n− 2)β0Γ3)− (n− 1)β0p2ΓihihΓ2
4
.

(D.0.5)
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The other components in the (A, ih) sector are obtained from these as

∆ihA = ΓihA
Γihih

∆L and ∆ihih = 1 + p2ΓihA∆ihA

Γihih
. (D.0.6)

Finally, the components in the superfield sector read

∆4 = − 1
(n− 1)β0p2Γ4

{
1− ∆ihA(ΓLΓihih − p2Γ2

ihA)
ΓihA

}
(D.0.7)

∆5 = −p2 ΓihA
Γihih

∆4 (D.0.8)

∆3 = 1
Γ1 + (n− 2)β0Γ3

{
p2Γ4∆4 −

Γ3
(Γ1 − β0Γ3)

}
(D.0.9)

∆1 = 1
Γ1 − Γ3β0

+ β0∆3 (D.0.10)

∆2 = 1
2β0(Γ1 + 2β0Γ2) −

∆1
2β0

. (D.0.11)

The propagators are obtained by taking the limit n→ 0. For instance, the longitudinal
gluon propagator is given by

GL(p) = lim
n→0

∆L(p), (D.0.12)

which is Eq. (II.5.3).



Appendix E
Superfield and ih sectors

In this Appendix, we consider the propagators of the superfield and ih sectors. We
recall the decomposition of the superfireld Eq. (II.4.57), namely

Λk = λk + θ̄c′k + c̄′kθ + θ̄θĥ′k, (E.0.1)

where the primes are to be distinguished from the basic fields ck, c̄k, ĥk appearing in
the non supersymmetric version of the ST action, Eqs. (II.4.48) and (II.4.49). One
easily extracts the correlators of the fields λk, c′k, c̄′k, ĥ′k from the Λ − Λ correlator.
For instance we have that [λkλl]0 is given by the θk, θl independent part of [ΛkΛl]0.
According to the definition of the previous section we have

[λk(−p)λl(p)]0 = −2δkl∆2(p) + (1− δkl)∆3(p). (E.0.2)

In the n→ 0 limit one finds1

[λk(−p)λl(p)]0 → 0 (E.0.3)[
ĥ′k(−p)ĥ′l(p)

]
0
→ ∞ (E.0.4)

[ih(−p)ih(p)]0 → ∞ (E.0.5)

[ck(−p) c̄l(p)]0 → δklG
(k)
gh , (E.0.6)

where G(k)
gh is the propagator of the replica ghost, as well as for the mixed correlators

[λk(−p)Aµ(p)]0 → 0 (E.0.7)
[ih(−p)Aµ(p)]0 → 0 (E.0.8)
[ih(−p)λl(p)]0 → Gihλ. (E.0.9)

Note in particular the indefinite limits Eqs. (E.0.4), (E.0.5) and the trivial one Eq. (E.0.3).
These are consequences of the renormalization definitions for the (bare) gauge param-
eters β0 and ξ0 Eq. (II.5.4) and can be related to the non-canonical mass dimension

1For simplicity we extracted everywhere a trivial unit color matrix δab and do not write explicitly
the color indices.
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of the λk and ĥ′k, ih fields which are respectively 0, 2 and 2. For instance, if we con-
sider Γihih at tree-level, we have Γihih = ξn which trivially vanishes for n → 0. On
the other hand, remark that the (renormalized) Grassmann measure gets an explicit
n dependence as it reads, in terms of renormalized quantities, θ̄θm2/n − 1. One can
cope with this issue by rescaling the fields with non-canonical dimensions as well as the
Grassmann variables. For simplicity we note β = m2/n and denote with a tilda the
rescaled (renormalized) quantities. We define the rescaled Grassmannian parameters
θ̃k =

√
βθ, ˜̄θk =

√
βθ̄ such that the Grassmann integration reads, in terms of rescaled

parameters, ∫
θ

=
∫

dθ dθ̄(βθ̄θ − 1) = β

∫
dθ̃ d ˜̄θ(˜̄θθ̃ − 1) = β

∫
θ̃
, (E.0.10)

along with the following identities

δ (θk, θl) = 1
β
δ
(
θ̃k, θ̃l

)
, �θkδ (θk, θl) = �θ̃kδ

(
θ̃k, θ̃l

)
. (E.0.11)

Accordingly we define
Λ̃k = λ̃k + ˜̄θc̃′k + ˜̄c′kθ̃ + ˜̄θθ̃ ˆ̃h′k, (E.0.12)

with Λ̃k =
√
βΛk. A direct comparison with Eq. (E.0.1) shows that

λ̃k =
√
βλk ,

ˆ̃h′k = ĥ′k√
β
,

c̃′k = c′k , ˜̄c′k = c̄′k .

(E.0.13)

Remark that, in doing so, we do nothing more than absorbing the n dependence that
arises when performing the renormalization Eq. (II.5.4) directly into the Feynman rules
of the rescaled fields. Equivalently, this amounts to reabsorb part of the n dependence
into the bare fields. For instance the Λ− Λ sector of the effective action reads∫
p,θk,θl

Λk (−p, θk) ΓΛkΛl (p, θk, θl) Λl (p, θl)=
∫
p,θ̃k,θ̃l

Λ̃k
(
−p, θ̃k

)
β ΓΛ̃kΛ̃l (p, θk, θl) Λ̃l

(
p, θ̃l

)
,

(E.0.14)

which yields
ΓΛ̃kΛ̃l

(
p, θ̃k, θ̃l

)
= β ΓΛkΛl (p, θk, θl) . (E.0.15)

Using the identities (E.0.11) along with the decomposition of ΓΛkΛl from (D.0.1) we
finally obtain

Γ̃1(p) = Γ1(p) ,
Γ̃2(p) = βΓ2(p) ,
Γ̃3(p) = βΓ3(p) .

(E.0.16)

Along the same lines we define ih̃ = ih/
√
β. Eventually the remaining one-

loop rescaled scalar functions appearing into the various two-point vertex functions
Eq. (D.0.1) read
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Γ̃ih̃A(p) =
√
βΓihA(p) ,

Γ̃4(p) = 1√
β

Γ4(p) ,

Γ̃ih̃ih̃(p) = βΓihih(p) .

(E.0.17)

Note for instance that, at tree-level, Γ̃ih̃ih̃(p) = m2ξ. Accordingly, we obtain the various
∆̃χ functions for the rescaled fields appearing in (D.0.3) and perform the n→ 0 limit
to get the various rescaled propagators. We note the propagators as G̃χ = limn→0 ∆̃χ.
In particular we have that

G̃L(p) = G̃ihA(p) = G̃4(p) = 0, (E.0.18)

while none is divergent anymore.
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Appendix F
Nonrenormalization theorem for the
mass

Here we derive the nonrenormalization theorem (III.5.80) for the neutral color
mode by adapting the proof provided in [78] to the LDW gauge. As in Eq. (I.5.3) of
Sec. I.5.1, we introduce sources (with periodic boundary conditions) for the various
fields and their independent (modified) BRST transformations and we work in the
canonical basis (III.5.3)

S1 =
∫
x

∑
κ

{
J−κµ aκµ+η̄−κcκ+c̄κη−κ+ihκM−κ+K̄−κµ saκµ+L̄−κscκ

}
, (F.0.1)

where, for clarity, we explicitly write the sums over color modes, and where the modified
BRST symmetry is given by[95]

saκµ = Dµc
κ , scκ = −g0

2 f
κλτ cλcτ , (F.0.2)

and
sc̄κ = ihκ , sihκ = m2

0c
κ. (F.0.3)

We define the effective action Γ as the Legendre transform, with respect to the sources
Jµ, η, η̄, M , of the functional W = ln

∫
D (a, c, c̄, h) e−SĀ+S1 , where SĀ has been

defined in Eq. (III.4.6), keeping the sources K̄ and L̄ fixed. It is implicitly assumed
here that we a use self-consistent background, which, at vanishing sources, is given by
the minimum of the background potential (III.4.18). In the following all quantities are
bare ones.

First of all, one performs the shift of the antighost field c̄κ(x) → c̄κ(x) + θ̄κ(x).
Since it is merely a change of variable the partition function is not changed and one
gets

0 =
∫
D (a, c, c̄, h) e−SĀ+S1

[(
D̄µDµc

)−κ
(x) + η−κ(x)

]
= −∂−κµ

δΓ
δK̄κ

µ(x)
+ δΓ
c̄κ(x) ,

(F.0.4)
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where there is no sum over κ and in the second line we took the limit of vanishing
sources. The short-hand notation ∂λµ has been defined in Eq. (III.5.6). Differentiat-
ing this equation with respect to cλ(y) and taking the Fourier transform, with the
convention of Eq. (III.5.5), namely ∂κµ → −iP κµ , leads to

Γc̄κcλ(ω,p) = −iP−κµ ΓK̄κ
µc
λ(ω,p) , (F.0.5)

where P = (ω,p).
Secondly, performing the shift ihκ → ihκ + ξκ yields (no sum over κ)

δΓ
δihκ(x) = ∂−κµ a−κµ (x) , (F.0.6)

which guarantees that the h sector is not renormalized, just as in the Landau gauge.
Taking, in the last equality, one derivative with respect to aλν (y) leads, in Fourier space,
to

δΓ
δaλνδih

κ
(ω,p) = −iP−κν δ−κ,λ . (F.0.7)

Moreover, the Slavnov-Taylor identity (I.5.6) of Sec. I.5.1 is accordingly adapted
to the LDW gauge in a straightforward manner∫

x

∑
κ

{
− δΓ
δaκµ

δΓ
δK̄−κµ

− δΓ
δcκ

δΓ
δL̄−κ

+ ihκ
δΓ
δc̄−κ

+m2
0
δΓ
δihκ

cκ = 0
}
, (F.0.8)

which, after differentiation with respect to aλν (y) and cτ (z), yields, at vanishing sources
and in Fourier space,

∑
κ

{
δ2Γ

δaλνδa
κ
µ

(ω,p) δ2Γ
δK̄−κµ δcτ

(ω,p) +m2
0δ
κ,τ δ2Γ
δaλνδih

κ
(ω,p)

}
= 0 . (F.0.9)

Using Eq. (F.0.7) and contracting with P λν , we have

∑
κ

P λν
δ2Γ

δaλνδa
κ
µ

(ω,p) δ2Γ
δK̄−κµ δcτ

(ω,p) = im2
0P

2
λδ

λ,−τ . (F.0.10)

Following our conventions for the self-energies, Eq. (III.5.15), we have that δ2Γ/δaλνδaκµ =
δ−λκΓλνµ. Furthemore, the general tensorial decomposition Eq. (III.1.4) yields for
P λν Γλνµ

P λν Γλνµ =δµνΓλδ + nµω
λΓλn + P λµP

2
λΓλP + (nµP 2

λ + P λµω
λ)ΓλnP

=
ω=0

δµνΓλδ (0, p) + nµλrTΓλn (0, p) + P λµ

(
(λrT )2 + p2

)
ΓλP (0, p)

+ (nµ
(
(λrT )2 + p2

)
+ P λµλrT )ΓλnP (0, p) ,

(F.0.11)

where the second line is evaluated at zero Matsubara frequency, p = |p|, and it is
understood that r = rmin. The discussion cannot be pushed much further for the
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charged modes. On the contrary, for λ = 0, the analiticity of Γ0
νµ(0,p) as p → 0

requires that lim
p→0

ΓλP (0, p) = lim
p→0

ΓλnP (0, p) = 0. Hereby,

∑
κ

P 0
ν

δ2Γ
δa0
νδa

κ
ν

(ω,p) δ2Γ
δK̄−κµ δcτ

(ω,p) =
ω=0,
p→0

lim
p→0

Γ0
δ (0, p)P 0

ν

δ2Γ
δK̄0

µδc
τ

(0,p)

=
ω=0,
p→0

ilim
p→0

Γ0
δ (0, p) Γc̄0cτ (0, p) ,

(F.0.12)

where we used Eq. (F.0.5) in the second line and it is understood that the limit p→ 0
is performed after that ω = 0. Noting that

(
G0
T

)−1 = Γ0
δ , one finally gets, by using the

last line of Eq. (F.0.12) in Eq. (F.0.10), that(
G0
T

)−1 (
F 0
)−1

∣∣∣∣
ω=0, p→0

= m2
0 . (F.0.13)
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Appendix G
Background field (in)dependence of
the partition function

It is worth mentioning here the discussion put forward in [95], that investigates the
background (in)dependence of the partition function. In particular, it was shown that,
at vanishing sources,

δ lnZ[Ā]
δĀaµ

=m2
0

〈
aaµ

〉
min

= m2
0 a

a
min,µ[Ā] , (G.0.1)

where Z[Ā] is the partition function in presence of an arbitrary background Ā. Hereby,
the presence of the mass term softly breaks the exact background field independence
of the partition function which is recovered locally for self-consistent backgrounds. We
interpret this as an argument to consider self-consistent backgrounds.

On the other hand, the relationship between self-consistent background and the
absolute minima of Γ̃[Ā] is unclear as the arguments developed in Sec. III.4 relied upon
the background independence of the partition function. In fact, the statement that
self-consistent backgrounds are absolute minima of Γ̃[Ā] has to be milded as follows:
we introduce a source Jaµ for the fluctuating field ā and define the partition function
in presence of the source

Z[J, Ā] =
∫
D (a, c, c̄, h) e−SĀ+

∫
x
Jaµa

a
µ , (G.0.2)

where SĀ has been defined in Eq. (III.4.6). Accordingly, we define the usual Legendre
transform Γ[a, Ā] (here for the sake of clarity we change our notations from those of
the main text and put Ā as an argument of Γ)

Γ[a, Ā] = − lnZ[J, Ā] +
∫
x
Jaµ [a, Ā]aaµ . (G.0.3)

Owing to the definition of Γ̃[Ā] = Γ[0, Ā], one has, for a self-consistent background
and at vanishing sources, that

δΓ̃[Ā]
δĀaµ

∣∣∣∣∣
Ā=Ās

= − δ lnZ[0, Ā]
δĀaµ

∣∣∣∣∣
Ā=Ās

, (G.0.4)
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such that, according to Eq. (G.0.1),

δΓ̃[Ā]
δĀaµ

∣∣∣∣∣
Ā=Ās

= 0 . (G.0.5)

Hereby, self-consistent backgrounds are always extrema of Γ̃[Ā].
We find it worth mentioning that the bare massm0 comes from the ST gauge-fixing

proposal. In particular, we recall that m2
0 = nβ0, where n is the number of replicas

and should be ultimately taken to 0. Moreover, in this proposal, the parameter m0
accounts for the presence of Gribov copies and thus may in principle depend on Ā
which would lead to additional terms in Eq. (G.0.1). Following these two remarks, one
may thus recover the exact background independence of the partition function. This
requires further investigation.



Appendix H

Generalization to SU(3) and other
groups

The calculations of the one-loop correlators in the LDW gauge for the SU(2) theory
can be generalized to the SU(3) case and other groups. Details on the generalization
of the present procedure to general groups is given in [95], while, here, we shall focus
on the aspects concerning the calculation of the propagators. The main difference
with the SU(2) case rises from the fact that, in general, the Cartan subalgebra is of
dimension dC . Hence, in the canonical basis, there are dC neutral modes that we note
κ = 0(j) , j = 1, . . . , dC , and accordingly we note t0(j) the generators of the Cartan
subalgebra. In the canonical basis, we note tα the remaining generators that do not
belong to the Cartan subalgebra. One defines the root α by the equation of the root
system [

t0
(j)
, tα
]

= iαjtα , ∀j (H.0.1)

with α =
(
α1, . . . , αj

)
. Accordingly, a field ϕ in the adjoint representation decomposes

in the canonical basis as

ϕ = ϕκtκ , (H.0.2)

with κ = 0(j) or κ = α. Furthermore, the action of the covariant background derivative
is

D̄µϕ =
(
∂µ + δµ0g0Ā · κ

)
ϕκtκ , (H.0.3)

where Ā · κ = Ājκj , j = 1, . . . , dC and a sum over repeated indices is understood.
To be more specific, let us take the example of SU(3) whose Cartan subalgebra is of

dimension two. The standard Cartan subalgebra directions correspond to the Carte-
sian directions a = 3, 8 and, accordingly, the two generators of the Cartan subalgebra
are chosen as t3 = 1/2 diag(1,−1, 0) and t8 = 1/(2

√
3) diag(1, 1,−2). The six roots cor-

responds to the six vectors ±α(1) = ±(1/2,−
√

3/2) , ±α(2) = ±(1/2,
√

3/2) , ±α(3) =
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±(−1, 0). For instance, we have for κ = +α(1)

(
D̄µϕ

)α(1) =
(
∂µ + g0

Ā0(1)

2 − g0

√
3Ā0(2)

2

)
ϕα(1)

(
D̄µϕ

)α(1) =
(
∂µ + g0

Ā3

2 − g0

√
3Ā8

2

)
ϕα(1) .

(H.0.4)

The Feynman rules are formally the same as those of the SU(2) theory presented
in Sec. III.5.1, but, now, the generalized momentum is defined as

Kκ
µ ≡ Kµ + δµ0g0Ā · κ . (H.0.5)

Thus, the calculations of the Feynman diagrams are similar to those performed in
Sec. III.5.2, where the main difference lies in the expression of the group coefficient
Cκλτ = |fκλτ |2. The self-energies assume the same expressions in terms of the sum-
integrals, see Eqs. (III.5.32), (III.5.36), but now, instead of the usual product κr in
the SU(2) case, the latters depend on the scalar product κ · r = κjrj with rj =
βg0Āj . Finally, the self-energies are to be evaluated for rj = rj,min that minimizes the
background field potential of the appropriate group.

We mention that, following this procedure the phase transition was studied for
SU(3) [93] and was found to be of first order. In the present case, we did not extended
the calculation of the propagators to this group. Nevertheless, akin for the SU(2)
case, we expect to observe strong signals of the phase transition at the level of the
susceptibilities and in particular we expect to observe a discontinuity at the transition
temperature since it is a first order phase transition.



Appendix I
Details on the evaluation of the gluon
self-energy

The gluon self-energy has three one-loop contributions, Πtad,λ
µν , Πgh,λ

µν and Πgl,λ
µν ,

which stand respectively for the tadpole diagram, the ghost bubble diagram and the
gluon bubble diagram. A direct application of the Feynman rules given in the main
text leads to

Πgl,λ
µν (K)=

∑
κ,τ

Cκλτ
1
2

{[
−1

2

∫
Q

(Qκ−Lτ )µ(Qκ−Lτ )νTr
[
P⊥(Qκ) · P⊥(Lτ )

]
×Gm(Qκ)Gm(Lτ )

− 4
∫
Q

[
Qκ · P⊥(Lτ ) ·Qκ

]
P⊥µν(Qκ)Gm(Qκ)Gm(Lτ )

+ 2
∫
Q

{
(Qκ − Lτ )µ

[
Qκ · P⊥(Lτ ) · P⊥(Qκ)

]
ν

+ (µ↔ ν)
}
Gm(Qκ)Gm(Lτ )

+ 4
∫
Q

[
Lτ · P⊥(Qκ)

]
µ

[
Qκ · P⊥(Lτ )

]
ν
Gm(Qκ)Gm(Lτ )

]
+ (κ↔ τ)

}
,(I.0.1)

where, for convenience, we have symmetrized the summand in κ ↔ τ by using that
Cκλτ is totally symmetric. Evaluating the trace and using (Qκ − Lτ )µ(Qκ − Lτ )ν =
2LτµLτν + 2QκµQκν −Kλ

µK
λ
ν , the factor multiplying Gm(Qκ)Gm(Lτ ) in the first integral

becomes (for this integral symmetrization in κ↔ τ does not change anything)

− 1
2(2QκµQκν + 2LτµLτν −Kλ

µK
λ
ν )
(
d− 2 + (Qκ · Lτ )2

Q2
κL

2
τ

)
. (I.0.2)

The similar factor in the second integral becomes, after symmetrization,

− 2δµν

(
Q2
κ + L2

τ −
(Qκ · Lτ )2

L2
τ

− (Qκ · Lτ )2

Q2
κ

)
+ 2

(
QκµQ

κ
ν + LτµL

τ
ν

)(
1− (Qκ · Lτ )2

Q2
κL

2
τ

)
.

(I.0.3)
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For the third integral, we obtain

(
QκµQ

κ
ν + 3LτµLτν −Kλ

µK
λ
ν

) Qκ · Lτ
L2
τ

+
(
3QκµQκν + LτµL

τ
ν −Kλ

µK
λ
ν

) Qκ · Lτ
Q2
κ

+
(
4QκµQκν + 4LτµLτν − 2Kλ

µK
λ
ν

) (Qκ · Lτ )2

Q2
κL

2
τ

(I.0.4)

and for the fourth

2
(
Kλ
µK

λ
ν −QκµQκν − LτµLτν

)(
1 + (Qκ · Lτ )2

Q2
κL

2
τ

)
− 4QκµQκν

Qκ · Lτ

Q2
κ

− 4LτµLτν
Qκ · Lτ

L2
τ

.

(I.0.5)
Putting all these pieces together, we arrive at

Πgl,λ
µν (K) =

∑
κ,τ

Cκλτ

{
− 4δµν

∫
Q

(
L2
τ −

(Qκ · Lτ )2

Q2
κ

)
Gm(Qκ)Gm(Lτ )

+ 2
∫
Q

(−QκµQκν + LτµL
τ
ν −Kλ

µK
λ
ν )Q

κ · Lτ

Q2
κ

Gm(Qκ)Gm(Lτ )

+
∫
Q

(1
2K

λ
µK

λ
ν −QκµQκν − LτµLτν

) (Qκ · Lτ )2

Q2
κL

2
τ

Gm(Qκ)Gm(Lτ )

+
∫
Q

[(
d− 2

2 + 2
)
Kλ
µK

λ
ν − (d− 2)(QκµQκν + LτµL

τ
ν)
]
Gm(Qκ)Gm(Lτ )

}
.

(I.0.6)

The next step uses the identity

Qκ · Lτ

Q2
κ

Gm(Qκ)Gm(Lτ ) = K2
λ +m2

2m2 G0(Qκ)Gm(Lτ )− K2
λ + 2m2

2m2 Gm(Qκ)Gm(Lτ )

− 1
2m2

[
G0(Qκ)−Gm(Qκ)

]
,

(I.0.7)

as well as

(Qκ · Lτ )2

Q2
κL

2
τ

Gm(Qκ)Gm(Lτ ) = (K2
λ + 2m2)2

4m4 Gm(Qκ)Gm(Lτ ) + K4
λ

4m4G0(Qκ)G0(Lτ )

− (K2
λ +m2)2

4m4

[
Gm(Qκ)G0(Lτ ) +G0(Qκ)Gm(Lτ )

]
+ 1

4m2

[
G0(Qκ) +G0(Lτ )−Gm(Qκ)−Gm(Lτ )

]
, (I.0.8)
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and

(
L2
τ −

(Qκ · Lτ )2

Q2
κ

)
Gm(Qτ )Gm(Lτ ) = K2

λ(K2
λ + 4m2)
4m2 Gm(Qκ)Gm(Lτ )− 1

4Gm(Lτ )

− (K2
λ +m2)2

4m2 G0(Qκ)Gm(Lτ )

− K2
λ

4m2Gm(Qκ) + K2
λ +m2

4m2 G0(Qκ)

− (Kλ ·Qκ)
2m2

[
G0(Qκ)−Gm(Qκ)

]
. (I.0.9)

These identities allow us to express Eq. (I.0.6) in terms of the sum-integrals (III.5.33),
(III.5.35), and (III.5.39). Using the symmetry properties of the latter and of the tensor
Cκλτ , we obtain

Πgl,λ
µν (K) =

∑
κ,τ

Cκλτ

{
δµν

[
(K2

λ +m2)2

m2 Iκτm0(K)− K2
λ(K2

λ + 4m2)
m2 Iκτmm(K)

+ K2
λ +m2

m2 (Jκm − Jκ0 ) + 2 ω
λ

m2 (J̃κ0 − J̃κm)
]

+Kλ
µK

λ
ν

[(
d− 2

2 + (K2
λ + 6m2)2

8m4

)
Iκτmm(K) + K4

λ

8m4 I
κτ
00 (K)

−(K2
λ +m2)(K2

λ + 5m2)
4m4 Iκτm0(K) + 5

4m2 (Jκ0 − Jκm)
]

+
(

4− 2d− (K2
λ + 2m2)2

2m4

)
{Iµν}κτmm (K)− K4

λ

2m4 {Iµν}
κτ
00 (K)

+ (K2
λ +m2)(K2

λ + 3m2)
2m4 {Iµν}κτm0 (K) + (K4

λ −m4)
2m4 {Iµν}κτ0m (K)

+ 1
2m2

∫
Q

(QκµQκν − 3LτµLτν)[G0(Qκ)−Gm(Qκ)]
}
. (I.0.10)
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To treat the last integral, we use QκµQκν − 3LτµLτν = −2QκµQκν − 3Kλ
µK

λ
ν − 3(Kλ

µQ
κ
ν +

Kλ
νQ

κ
µ) to get

Πgl,λ
µν (K) =

∑
κ,τ

Cκλτ

{
δµν

[
(K2

λ +m2)2

m2 Iκτm0(K)− K2
λ(K2

λ + 4m2)
m2 Iκτmm(K)

+ K2
λ +m2

m2 (Jκm − Jκ0 ) + 2 ω
λ

m2 (J̃κ0 − J̃κm)
]

+Kλ
µK

λ
ν

[(
d− 2

2 + (K2
λ + 6m2)2

8m4

)
Iκτmm(K) + K4

λ

8m4 I
κτ
00 (K)

−(K2
λ +m2)(K2

λ + 5m2)
4m4 Iκτm0(K)− Jκ0 − Jκm

4m2

]

+
(

4− 2d− (K2
λ + 2m2)2

2m4

)
{Iµν}κτmm (K)− K4

λ

2m4 {Iµν}
κτ
00 (K)

+ (K2
λ +m2)(K2

λ + 3m2)
2m4 {Iµν}κτm0 (K) + (K4

λ −m4)
2m4 {Iµν}κτ0m (K)

− 3
2
(
Kλ
µnν +Kλ

ν nµ
) J̃κ0 − J̃κm

m2 −
{Jµν}κ0 − {Jµν}

κ
m

m2

}
, (I.0.11)

where we defined

{Jµν}κm =
∫
Q
QκµQ

κ
νGm(Qκ). (I.0.12)

Similarly, we obtain

Πtad,λ
µν =

∑
κ,τ

Cκλτ

[
(d− 2)δµνJκm +

{Jµν}κ0 − {Jµν}
κ
m

m2

]
, (I.0.13)

and

Πgh,λ
µν (K) =

∑
κ,τ

Cκλτ

[
{Iµν}κτ00 (K)−

Kλ
µK

λ
ν

2 Iκτ00 (K)
]
. (I.0.14)
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The total gluon self-energy is then

Πλ
µν(K) =

∑
κ,τ

Cκλτ

{
δµν

[
(K2

λ +m2)2

m2 Iκτm0(K)− K2
λ(K2

λ + 4m2)
m2 Iκτmm(K)

+(d− 2)Jκm + K2
λ +m2

m2 (Jκm − Jκ0 ) + 2 ω
λ

m2 (J̃κ0 − J̃κm)
]

+
(

4−2d− (K2
λ+2m2)2

2m4

)
{Iµν}κτmm (K)−

(
K4
λ

2m4−1
)
{Iµν}κτ00 (K)

+ (K2
λ +m2)
2m4

[
(K2

λ + 3m2) {Iµν}κτm0 (K) + (K2
λ −m2) {Iµν}κτ0m (K)

]
+Kλ

µK
λ
ν

[(
d− 2

2 + (K2
λ + 6m2)2

8m4

)
Iκτmm(K)− Jκ0 − Jκm

4m2

−(K2
λ +m2)(K2

λ + 5m2)
4m4 Iκτm0(K)

(
K4
λ

8m4 −
1
2

)
Iκτ00 (K)

]

−3
2
(
Kλ
µnν +Kλ

ν nµ
) J̃κ0 − J̃κm

m2

}
. (I.0.15)

The transverse and longitudinal projections of this formula leads to Eq. (III.5.36) after
using {IλT/L}

κτ
m0(K) = {IλT/L}

τκ
0m(K) and the fact that Cκλτ is totally symmetric. Note,

in particular, that the last two lines are not transverse (with respect to the generalized
momentum Kλ) and, hence, do not contribute to Πλ

T/L(K).
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Appendix J
Sum-integrals

In what follows, we define κrT ≡ κrT . The Matsubara sums of all the elementary
integrals defined in the main text can be performed using standard integration contour
techniques, see for instance [83, 238]. For the tadpole-like sum-integrals, this yields

Jκm =̂
∫

q
Re

nεm,q−iκrT

εm,q
= 1

2π2

∫ ∞
0

dq q2Re
nεm,q−iκrT

εm,q
(J.0.1)

and

J̃κm =
∫

q
Imnεm,q−iκrT = 1

2π2

∫ ∞
0

dq q2Imnεm,q−iκrT , (J.0.2)

where
∫

q =
∫ d3q

(2π)3 , εm,q =
√
q2 +m2, and nz = (expβz − 1)−1 is the Bose-Einstein

distribution function, which satisfies n−z = −1 − nz. The symbol =̂ means that we
disregard vacuum contributions defined as the limit of the above expressions as T → 0
for fixed r. The reason why we can do so is that, as explained in the main text, the
vacuum contributions to the self-energies can be very easily obtained from the results
of [79].

For the bubble-like sum-integrals, we similarly obtain

Iκτm1m2(K) =̂
∫

q
Re
[
nεm1,q+iκrT

εm1,q
Gm2(ωλ+iεm1,q, l)

+ (m1, κ↔ m2, τ)
]
, (J.0.3)

2{IλT }κτm1m2(K) =̂
∫

q

(
q2 − (k · q)2

k2

)
Re
[
nεm1,q+iκrT

εm1,q
Gm2(ωλ + iεm1,q, l) ,

+ (m1, κ↔ m2, τ)
]

(J.0.4)

k2K2
λ{IλL}κτm1m2(K) =̂

∫
q

Re
[
nεm1,q+iκrT

εm1,q

(
−ik2εm1,q+ωλ(k · q)

)2
Gm2(ωλ+iεm1,q, l)

+ (m1, κ↔ m2, τ)
]

(J.0.5)
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where we have introduced λ = τ − κ and ωλ = ω + λrT . An angular integration leads
then to

Iκτm1m2(K) =̂ − 1
8π2k

∫ ∞
0
dq qRe

[
nεm1,q+iκrT

εm1,q
gm2(ωλ + iεm1,q; q,Kλ)

+(m1, κ↔ m2, τ)
]
, (J.0.6)

{IλT }κτm1m2(K) =̂ 1
64π2k3

∫ ∞
0
dq qRe

[nεm1,q+iκrT

εm1,q

{
4kq

(
K2
λ + 2iωλεm1,q +m2

2 −m2
1

)
+ `m2

T (ωλ + iεm1,q; q,Kλ)
}

+ (m1, κ↔ m2, τ)
]
, (J.0.7)

{IλL}κτm1m2(K) =̂ − ω2
λ

32π2K2
λk

3

∫ ∞
0
dq qRe

[nεm1,q+iκrT

εm1,q

{
`m2
L (ωλ + iεm1,q; q,Kλ)

+4kq
(
K2
λ +m2

2 −m2
1 + 2iωλεm1,q

(
1− 2kq

ω2
λ

)) }
+(m1, κ↔ m2, τ)

]
, (J.0.8)

where we introduced the functions

gβ(z; q,K) = ln
z2 + ε2

β,k−q
z2 + ε2

β,k+q
, (J.0.9)

`βT (z; q,K) =
(
ε2
β,k+q + z2

) (
ε2
β,k−q + z2

)
gβ(z; q,K) (J.0.10)

and
`βL(z; q,K) =

[
ε2
β,q + z2 + k2

(2z
ω
− 1

)]2
gβ(z; q,K). (J.0.11)



Appendix K
Gluon susceptibilities

In this section, we derive the expressions of the gluon susceptibilities (III.5.63) and
(III.5.64) in terms of simple one-dimensional integrals. We consider the neutral and
charged color sectors separately.

K.0.6 Neutral sector

From Eq. (III.5.36), we obtain

Π0
T/L(0,0) = 2(d− 1)J+

m − 2J+
0 + 2m2I+−

m0 (0,0)
+ 2{I0

T/L}
+−
00 (0,0) + 2{I0

T/L}
+−
m0 (0,0)

− 4(d− 1){I0
T/L}

+−
mm(0,0), (K.0.1)

where we used the symmetry properties of the integrals (III.5.33)–(III.5.35) and (III.5.37)–
(III.5.39). Here and in the following, we write 0 for k→ 0 for simplicity but we warn
the reader that it is sometimes important to take this limit after setting ω = 0; see
below.

This can be simplified as follows. First, using the identity (III.5.10) as well as
Gm(Q) = Gm(−Q), we have

I+−
m1m2(0,0) =

∫
Q
Gm1(Q+)Gm2(Q+), (K.0.2){

I0
T

}+−

m1m2
(0,0) = 1

d− 1

∫
Q
q2Gm1(Q+)Gm2(Q+), (K.0.3)

and {
I0
L

}+−

m1m2
(0,0) =

∫
Q

(
Q2

+ − q2
)
Gm1(Q+)Gm2(Q+)

= J+
m1 −m

2
2I

+−
m1m2(0,0)− (d− 1)

{
I0
T

}+−

m1m2
(0,0). (K.0.4)

Note that {
I0
T/L

}+−

m1m2
(0,0) =

{
I0
T/L

}+−

m2m1
(0,0). (K.0.5)
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For m1 6= m2, we use the identity

Gm1(Q)Gm2(Q) = −Gm1(Q)−Gm2(Q)
m2

1 −m2
2

(K.0.6)

which leads to

I+−
m0 (0,k→ 0) = J+

0 − J+
m

m2 , (K.0.7){
I0
T

}+−

m0
(0,0) = 1

d− 1
N+

0 −N+
m

m2 , (K.0.8){
I0
L

}+−

m0
(0,0) = J+

m + N+
m −N+

0
m2 , (K.0.9)

and allows us to rewrite the above integrals in terms of

J+
m ≡

∫
Q
Gm(Q+) =̂ 1

2π2

∫ ∞
0

dq
q2

εm,q
Renεm,q−irT (K.0.10)

and
N+
m ≡

∫
Q
q2Gm(Q+) =̂ 1

2π2

∫ ∞
0

dq
q4

εm,q
Renεm,q−irT , (K.0.11)

where the symbol =̂ means that we only keep the thermal contributions, since our
renormalization scheme is anyway such that the vacuum corrections to the gluon masses
of the neutral mode, are zero. When m1 = m2 = m, we can use∫

Q
q2nG2

m(Q+) = −
∫
Q
q2ndGm(Q+)

dq2

=̂ 2n+ 1
2

∫
Q
q2n−2Gm(Q+)

=̂ 2n+ 1
4π2

∫ ∞
0

dq
q2n

εm,q
Renεm,q−irT . (K.0.12)

In particular, in addition to J+
m and N+

m, we are lead to consider

S+
m ≡

∫
Q
G2
m(Q+) =̂ 1

4π2

∫ ∞
0

dq
1
εm,q

Renεm,q−irT . (K.0.13)

We have then {
I0
T

}+−

mm
(0,0) =̂ 1

2J
+
m , (K.0.14){

I0
L

}+−

mm
(0,0) =̂ − 1

2J
+
m −m2S+

m , (K.0.15)

which, together with Eqs. (K.0.7)–(K.0.9) allow us to rewrite Eq. (K.0.1) as

Π0,th
L (0,k→ 0) =̂ 12m2S+

m + 12J+
m − J+

0 + 2N
+
m −N+

0
m2 (K.0.16)

and
Π0,th
T (0,k→ 0) =̂ J+

0 − 2J+
m + 2

3
N+

0 −N+
m

m2 , (K.0.17)
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We have, explicitly, for ε, r ∈ R,

Renε−irT = eβε cos r − 1
e2βε − 2eβε cos r + 1 . (K.0.18)

The massless integrals J+
0 and N+

0 can be determined analytically. For r ∈ [0, 2π],
we get1

Jλ0
T 2 = 1

8

[(
1− λr

π

)2
− 1

3

]
, (K.0.19)

Nλ
0

T 4 = −π
2

16

[(
1− λr

π

)4
− 2

(
1− λr

π

)2
+ 7

15

]
. (K.0.20)

We mention that the same results can be obtained from the formulae derived in Ap-
pendix J after performing the Matsubara sums but it is then important to take the
limit k→ 0 only after setting ω = 0.

K.0.7 Charged sector
Similarly, we obtain

Π+
T/L(−rT,0) = 2{I+

T/L}
0−
00 (−rT,0) + {I+

T/L}
0−
m0(−rT,0) + {I+

T/L}
0−
0m(−rT,0)

− 4(d− 1)[{I+
T/L}

0−
mm(−rT,0) +m2

[
I0−
m0(−rT,0) + I0−

0m(−rT,0)
]

+ (d− 1)
(
J+
m + J0

m

)
− J+

0 − J
0
0 , (K.0.21)

where all quantities are appropriate analytical continuations (after the Matsubara sums
have been performed and the external Matsubara frequency has been removed from
the thermal factors using nε+iωn = nε) evaluated at ω = −rT and k → 0. As before,
we write 0 for k → 0 for simplicity but it is important to perform the continuation
and set ω = −rT before taking the limit k→ 0. For m1 6= m2, we obtain

I0−
m1m2(−rT,0) =̂

J+
m2 − J

0
m1

m2
1 −m2

2
, (K.0.22)

{
I+
T

}0−

m1m2
(−rT,0) =̂ 1

d− 1
N+
m2 −N

0
m1

m2
1 −m2

2
, (K.0.23)

{
I+
L

}0−

m1m2
(−rT,0) =̂

N+
m2−N

0
m1 +m2

2J
+
m2−m

2
1J

0
m1

m2
2 −m2

1
, (K.0.24)

where we have used2{
I+
L

}0−

m1m2
(−rT,0) =

∫
Q
ω2
nGm1(Q)Gm2(Q+K+)

∣∣∣∣
ω=−rT,k→0

(K.0.25)

1 We have Jλ0 /T
2 = P2(λr)/(2π2) and Nλ

0 /T
4 = P4(λr)/(2π2), where P2n+2(z) =

Re
∫∞

0 dx/[exp(x − iz) − 1]. In the interval z ∈ [0, 2π], these integral can be expressed as simple
polynoms; see, e.g. [94].

2We exploit the fact that the replacement ω → −rT can be done before the Matsubara sum for
any occurence of ω, except that in the denominators.
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For m1 = m2 = m, we obtain (note that these are not the limits m1 → m2 of the
formulae given above)

{
I+
T

}0−

mm
(−rT,0) =̂ J+

m + J0
m

4 , (K.0.26){
I+
L

}0−

mm
(−rT,0) =̂ − J+

m + J0
m + 2m2(S+

m + S0
m

)
4 , (K.0.27)

We finally obtain

Π+
L (−rT,0) =̂ 6m2

(
S0
m + S+

m

)
+ 6(J0

m + J+
m)− 1

2(J0
0 + J+

0 ) + N0
m +N+

m −N0
0 −N+

0
m2 (K.0.28)

and

Π+
T (−rT,0) =̂ 1

2
(
J0

0 + J+
0

)
−
(
J0
m + J+

m

)
+ 1

3
(
N0

0 +N+
0 −N

0
m −N+

m

)
. (K.0.29)

which are nothing but the average between the respective neutral components and the
corresponding expressions at r = 0. We thus obtain

M2
D,± =

M2
D,0 + M2

D,0

∣∣∣
r=0

2 . (K.0.30)
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Aspects du confinement dans les théories de Yang-Mills

Résumé long : L’interaction forte est l’une des quatres interactions fondamentales de la
Nature (avec les interactions électromagnétiques, faibles et gravitationnelles). Les inter-
actions fortes sont responsables de la cohésion des noyaux d’atomes malgré la présence
d’interactions électromagnétiques répulsives entre les protons du noyau. Les particules
soumises à l’interaction forte se nomment hadrons, parmi lesquelles, en plus des protons,
on trouve par exemple les neutrons et les pions. La physique des hadrons a été étudiée
pendant des années, aussi bien expérimentalement que théoriquement, ce qui amena Gell-
Mann et Zweig à proposer en 1964 le modèle des quarks [1, 2]. Ce dernier postule que
les hadrons ne sont pas des particules élémentaires mais sont formés de particules de spin
1/2 nommées quarks. Différents types, ou saveures, de quarks existent, et aujourd’hui il
en a été observé six différentes expérimentalement. Plus tard, Gell-Mann et Fritszch [3, 4]
proposèrent que la théorie décrivant les interactions fortes admette un groupe de symétrie
SU(3), appelé groupe de couleur. Ce dernier induit l’existence de nouveaux nombres quan-
tiques, la couleur, portés par les quarks. Finalement, le groupe de symétrie de couleur a été
pris comme groupe de jauge ce qui donna lieu à la chromodynamique quantique (QCD). De
nos jours, la QCD est largement admise comme étant la théorie décrivant les interactions
fortes au niveau microscopique. Les bosons de jauges associés, appelés gluons, sont les mé-
diateurs de l’interaction forte, d’une manière analogue aux photons en électrodynamique
quantique. Cependant, bien qu’à haute énergie les quarks et les gluons (les deux portant
des nombres quantiques de couleur) soient les degrés de liberté pertinents pour la descrip-
tion de l’interaction forte, ils ne font pas partie du spectre physique de QCD qui est, quant
à lui, uniquement composé d’hadrons incolores. Ce phénomène est appelé phénomène de
confinement (ou simplement confinement). En particulier, c’est un phénomène concernant
le domaine de basse énergie de la théorie. Cependant, un obstacle de taille est le fait que
le domaine infrarouge de QCD est couramment considéré comme étant non perturbatif,
du fait que l’utilisation de la théorie de perturbation (l’outil habituel en théorie quantique
des champs (TQC)) n’est pas possible.
Cet aspect est une conséquence du secteur de "pure jauge" de QCD. En effet, QCD est une
théorie de jauge non-Abélienne ce qui, à la différence de l’électrodynamique quantique,
induit des auto-couplages entre les gluons. Ces derniers changent drastiquement la dy-
namique des degrés de liberté fondamentaux (les quarks et les gluons) qui, par exemple,
deviennent de plus en plus faiblement couplés à hautes energies. C’est la propriété de
liberté asymptotique découverte par Politzer, Gross et Wilzeck [5, 6]. En revanche, en
allant dans l’infrarouge, on trouve que la constante de couplage diverge à une énergie finie
(pôle de Landau) ΛQCD (qui est typiquement de l’ordre de la masse du proton). Cette
divergence de la constante de couplage est en général considérée comme un artéfact de
la théorie de perturbation, cette dernière ne pouvant déjà plus être fiable à couplage fini
mais grand. Ainsi, le domaine infrarouge de QCD est couramment considéré comme non-
perturbatif. Cet aspect est généralement considéré comme étant intimement relié à la
propriété de liberté asymptotique, et qu’ils sont tous les deux une des conséquences du
secteur de pure jauge de QCD. Ceci constitue une des raisons pour lesquelles on pense
qu’une grande partie des caractéristiques de QCD, et en particulier le phénomène de con-
finement, sont génériques aux théories de jauge non-Abélienne. Ainsi, dans un premier
temps, il est naturel d’étudier leur archétype correspondant aux théories de Yang-Mills
(YM) qui constituent le secteur de pure jauge de QCD.
Les simulations numériques ("sur le réseau") Monte-Carlo, proposées par Wilson [8] et



initiées par Creutz [9], constituent une méthode de calcul non-perturbatif et invariant de
jauge et ont été intensément utilisées pour l’investigation du domaine infrarouge de QCD.
Ce dernier est de nos jours raisonnablement bien décrit par les simulations réseaux qui
ont, par exemple, permis de déterminer le spectre des particules de la théorie, ainsi que de
calculer certains éléments de matrices entrant dans les calculs d’amplitudes de diffusions,
voir par exemple [10]. Bien que ces simulations aient clairement établi que le confinement a
lieu (en utilisant uniquement la théorie microscopique comme point de départ), elles n’ont
pour l’instant pas permis d’en expliquer les mécanismes fondamentaux malgré le grand
nombre de scénarios possibles avancés, voir par exemple [11, 12] pour des revues.
Une autre piste peut consister à étudier la théorie à température finie. On pense que QCD
admet un diagramme de phase particulièrement riche dont l’étude est un défi théorique avec
de nombreuses applications phénoménologiques pour l’astrophysique, la cosmologie primor-
diale, ou les expériences de collisions d’ions lourds utrarelativistes. En particulier, selon
l’axe de température, la théorie admet une transition de phase confinement-déconfinement,
où, à hautes températures, les hadrons se transforment en un plasma de quarks et de glu-
ons. Grâce à la propriété de liberté asymptotique, le régime de hautes températures peut
être étudié perturbativement (à la condition d’utiliser des techniques de resommation, les
bien connues dites "hard thermal loops" [13, 14, 15]). Ainsi, on peut accéder aux propriétés
thermodynamiques du plasma déconfiné, tandis que la présence du pôle de Landau empêche
l’utilisation de la théorie de perturbation à basses températures et dans le voisinage de la
transition, qui sont généralement considérées comme étant non-perturbatifs. Au vu de ses
succès pour l’étude du cas à température nulle, il est naturel d’avoir de nouveau recours
aux simulations réseau, qui ont aujourd’hui clairement établi l’existence d’une transition
de phase confiement-déconfinement dans le cas des théories de YM SU(N). Cette dernière
est reliée à la valeur moyenne de la boucle de Polyakov (qui constitue le paramètre d’ordre
de la transition de phase [22]) qui devient non nulle dans la phase de hautes températures,
ce qui est associé à la brisure spontanée de la symétrie du centre (ZN ) du groupe de jauge.
Finalement, l’étude a pu être étendue au cas de QCD où, dans ce cas, il a été trouvée un
crossover [23, 24]. En plus de son intérêt propre, la transition confinement-déconfinement
peut être considérée comme une opportunité pour la recherche des mécanismes à l’origine
du confinement. En effet, le passage de la phase confinée à la déconfinée devrait mettre en
lumière certaines propriétés clés de la dynamique responsable du confinement.
Néanmoins, le diagramme de phase est beaucoup moins bien compris dans le cas d’un po-
tentiel chimique fini car les simulations réseaux souffrent d’un problème de signe [25, 26].
Ainsi, dans ce cas, les approches analytiques semblent plus appropriées car, bien qu’elles
aussi soient soumises à un problème de signe, ce dernier est moins sévère. Plus générale-
ment, un des inconvénients des simulations numériques est leur caractère "boite noire".
En effet, bien que ces simulations fournissent des résultats exacts à partir de la théorie
microscopique, elles ne permettent pas toujours de saisir les aspects essentiels/dominants
de la dynamique qui amènent à ces résultats. En revanche, les approches analytiques,
bien qu’approximatives en général, sont bien plus appropriées pour développer un raison-
nement explicatif des phénomènes observés. Parmi les plus utilisées pour l’étude du do-
maine infrarouge des theories de YM, on compte, entre autres, les approches fonctionnelles
(non-perturbatives) telles que les équations de Dyson-Schwinger (DS), ou le groupe de
renormalisation fonctionnel (FRG) [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. En par-
ticulier, le FRG a montré qu’il reproduisait le diagramme de phase des théories de YM
avec des valeurs pour les températures de transition en accord avec les simulations réseaux
[33, 35].
Cependant, de telles approches analytiques (de même que la plupart des approches contin-
ues) ne sont pas basées directement sur le calcul d’observables physiques, mais, à la place,
se reposent sur les fonctions de Green (fonctions de corrélations) des champs élémentaires.



Ces quantités ne sont pas invariantes de jauge et il faut "fixer la jauge" pour pouvoir y
accéder. La procédure de fixation de jauge standard pour les approches continues est
donnée par celle de Faddeev-Popov [40]. Néanmoins, travailler directement avec/sur les
fonctions de Green amène des difficultés additionnelles car, la théorie étant fixée de jauge,
le problème devient spécifique à la jauge considérée. En particulier, comparer les résultats
obtenus par deux méthodes différentes devient plus compliqué car il faut s’assurer que cha-
cune a bien été menée dans la même jauge (ce qui peut être particulièrement délicat lorsque
des approximations sont réalisées ou pour comparer des méthodes numériques et analy-
tiques). Il est particulièrement important de réaliser de telles comparaisons (en particulier
avec des résultats du réseau) dans le cas des approches continues. En effet, ces dernières,
pour pouvoir être menées à bien, demandent en pratique d’avoir recours à des approxima-
tions dont il est nécessaire de savoir en quantifier les effets. Par exemple, les équations
(non-perturbatives) du FRG ou de DS ne peuvent pas être résolues exactement et, en pra-
tique, doivent être tronquées pour pouvoir obtenir une solution approchée. En particulier,
une critique généralement portée à l’encontre de telles approches non-perturbatives est
qu’elles n’offrent pas de schémas d’approximation dont les effets peuvent être quantifiés
d’une manière systématique et, donc, il n’est pas clair comment calculer les corrections aux
résultats approchés obtenus. Ainsi, il est désirable de pouvoir tester ces résultats directe-
ment contre ceux de méthodes ab initio. Ces dernières sont données par les simulations
réseaux réalisées à jauge fixée et qui, en particulier, produisent des résultats exacts pour
les fonctions de corrélations. Dans ce contexte, ces simulations sont considérées comme
étant "l’expérience", et apportent un support important pour guider les approches con-
tinues. Cependant, fixer la jauge sur le réseau n’est pas simple. C’est particulièrement
vrai pour les jauges covariantes (les mieux adaptées pour les approches analytiques) car
imposer leur condition de jauge revient à résoudre un système comportant de nombreuses
équations différentielles non-linéaires couplées entre elles. Pire, la théorie fixée de jauge à
la Faddeev-Popov ne peut pas être directement implémentée dans les simulations réseau
car les valeurs moyennes d’observables invariantes de jauge sont données par la forme in-
définie 0/0. Ceci est connu en tant que problème de Neuberger [47, 48]. Concernant ces
points, la jauge de Landau est un cas particulier car elle est covariante et elle peut être
définie comme correspondant aux extrema d’une certaine fonctionnelle. Par conséquent,
elle peut être implémentée sur le réseau (via une extremisation numérique d’une certaine
fonctionnelle) par une procédure de fixation de jauge alternative à celle de Faddev-Popov
ce qui permet ainsi d’éviter le problème de Neuberger [49, 50, 51, 52].

Plus généralement, au-delà du fait que les fonctions de corrélation soient à la base des ap-
proches continues, elles constituent les quantités élémentaires de toute théorie des champs
et, par conséquent, contiennent toutes les informations de la théorie. Cela suggère no-
tamment que, d’une manière ou d’une autre, elles contiennent toute l’information relative
au phénomène de confinement. Elles ont été particulièrement étudiées dans la jauge de
Landau après les travaux de Kugo et Ojima [53]. En effet, ces derniers ont dérivé dans la
jauge de Landau un scénario cohérent expliquant le confinement qui se base sur le com-
portement des fonctions de corrélations dans l’infrarouge profond. Ce comportement est
dit de scaling et, dans l’Euclidien, est caractérisé par une "fonction de dressing" du ghost
dans l’espace des impulsions (propagateur normalisé par sa valeur dans la théorie sans
intéraction) qui diverge à impulsion nulle. Ces travaux amènent donc à étudier le com-
portement des fonctions de corrélation dans l’infrarouge profond pour voir si le système
réalise la solution de scaling. Bien que cette dernière soit une solution des équations de DS
et du FRG, les simulations réseau (à jauge fixée) ont montré qu’en pratique, la solution
de scaling n’est pas réalisée. Au contraire, les fonctions de corrélation suivent la solution
dite de decoupling où la fonction de dressing du ghost ainsi que le propagateur des gluons
restent tous deux finis à moment nul. Dans l’Euclidien, un propagateur fini à moment



nul est en général associé à des champs massifs. Cependant, il a été clairement établi que
la fonction spectrale associée au propagateur des gluons n’est pas définie positive et, par
conséquent, ces derniers ne peuvent pas être interprétés comme des états asymptotiques
[54, 55]. Ceci est en accord avec le confinement. Il a été montré que la solution de de-
coupling est une solution des équations de DS et du FRG, cependant, dans ces approches,
rien ne permet de déterminer laquelle, entre les solutions de decoupling ou de scaling, est
réalisée par le système [56, 57, 58, 59, 60, 43, 61, 62].

Finalement, mis ensemble, ces résultats suggèrent que nous sommes loin de complètement
comprendre le comportement infrarouge des fonctions de Green, bien que ces dernières
soient les quantités élémentaires de la théorie. Un ingrédient manquant pourrait provenir
de certains effets non triviaux de la procédure de fixation de jauge elle-même qui sont
ignorés dans la construction de Faddeev-Popov. En effet, dans ses travaux, Gribov a
montré que, dans le cas de théories de jauge non-Abélienne, la solution de la condition de
jauge n’est pas unique [63]. Au contraire, il existe un ensemble infini et discret de solutions
qui sont reliées les unes aux autres par des transformations de jauge. Ces ambiguités,
appelées copies de Gribov, ne sont pas prises en compte dans la procédure de Faddeev-
Popov. Dans ce cas, elles donnent à la fonction de partition des contributions dégénérées
qui consistent en une somme infinie de signes alternés qui finalement se compensent et
conduisent au problème de Neuberger. Les copies de Gribov sont négligeables dans le
domaine ultraviolet, mais leur présence pourrait changer drastiquement le comportement
infrarouge des fonctions de corrélations. Dans le cas des simulations réseau à jauge fixée,
les algorithmes de minimisation utilisés permettent de sélectionner une unique copie et
donc d’éviter le problème de l’ambiguité de Gribov mentionné ci-dessus. En revanche,
il n’est pas possible analytiquement de construire une action locale (qui est à la base
de toute approche continue) qui ne contienne pas de copie de Gribov [64]. Gribov et
Zwanziger se sont confrontés à ce problème et proposèrent de restreindre à un sous espace
de configurations l’intégrale de chemin utilisée dans le calcul des fonctions de corrélations
[63, 65]. Ainsi, la restriction à un tel sous espace permet de réduire grandement le nombre
de copies de Gribov bien que certaines soient encore présentes dans la théorie fixée de
jauge. Cette construction est appelée scénario de Gribov-Zwanziger et prédit que les
fonctions de corrélations suivent la solution de scaling. Cette construction a été par la
suite étendue à ce qui est connu comme le scénario de Gribov-Zwanziger "raffiné" [66],
où les effets de condensats de dimension deux due à la présence des copies sont pris en
compte. En particulier, ce raffinement prédit la réalisation de la solution de decoupling, ce
qui est en accord avec le réseau. Tout ceci suggère que, au moins dans la jauge de Landau,
la présence des copies de Gribov est un ingrédient clé du comportement infrarouge des
fonctions de corrélations. Néanmoins, la jauge de Landau est une seule représentante des
jauges covariantes et présente un certain nombre de symétries qui lui sont propres. Ainsi,
pour mieux comprendre l’importance générale de prendre en compte les copies de Gribov,
il serait intéréssant d’étudier leurs effets sur les fonctions de corrélations dans d’autres
jauges. Seulement récemment les jauges linéaires covariantes ont pu être implémentées
sur le réseau [67, 68, 69, 70, 71], et dans la construction de Gribov-Zwanziger (raffinée)
[72, 73]. Un premier point important de la thèse présentée ici concerne l’implémentation
des jauges covariantes non-linéaires dans une approche alternative qui vise à prendre en
compte la présence des copies de Gribov (voir ci-dessous).

Récemment, une nouvelle procédure de fixation de jauge prenant en compte les copies de
Gribov a été proposée par Serreau et Tissier dans le cas de la jauge de Landau [74]. L’idée
centrale consiste à lever la dégénérescence des contributions des copies en réalisant une
moyenne sur ces dernières avec un (pseudo) poids statistique non-uniforme. Ce faisant,
l’ambiguité de Gribov est levée et il n’y a pas de problème de Neuberger. Pour ce faire, on
définit les valeurs moyennes des observables invariantes de jauge par une procédure en deux



temps. Dans une première étape, on réalise une (pseudo) moyenne avec un poids statistique
non-uniforme sur les copies appartenant à une même orbite de jauge et où ainsi leur
dégénérescence est levée. Puis, dans un second temps, la moyenne sur les configurations du
champs de jauge est réalisée avec l’action de YM. Cette construction définit une authentique
fixation de jauge qui peut être formulée sous la forme d’une théorie quantique des champs
locale. Pour ce faire, on a recours à la méthode dite des répliques [75] qui est utilisée
dans l’étude des systèmes désordonnés en théorie statistique des champs. En particulier,
la théorie locale fixée de jauge que l’on obtient est renormalisable en d = 4. En ce qui
concerne les secteurs des ghosts et des gluons, dans le cas de la jauge de Landau, la
procédure se réduit de manière effective à la seule introduction d’un terme de masse pour
les gluons. Ainsi la théorie effective est (perturbativement) équivalente au modèle de Curci
et Ferrari (CF) [76, 77] pris dans la limite de Landau, qui correspond à une simple extension
massive de l’action de YM en jauge de Landau obtenue par la procédure de Faddeev-
Popov. Le modèle de CF a l’avantage de présenter, dans l’infrarouge, des trajectoires
du groupe de renormalisation (RG) sans pôle de Landau dites "saines" ou "infrarouge
saines". De ce fait, le régime infrarouge du modèle peut être étudié perturbativement
jusqu’à moment nul. En particulier, dans ce modèle, les calculs à une boucle des fonctions
de vertex à deux et trois points reproduisent avec une bonne précision les résultats du
réseau [79, 80, 81, 82]. Ceci montre que (dans le vide et dans la jauge de Landau) la
majeure partie de la dynamique non-perturbative est précisément saisie par la présence
d’une masse effective pour les gluons. Cette série de travaux constitue la base des études
réalisées dans la thèse ici présente.

L’étude des fonctions de corrélations en jauge de Landau a naturellement été étendue à
températures finies, aussi bien dans les cadre des approches continues [83, 36, 37, 38, 33, 32,
35, 34] que dans celui des simulations réseau [84, 85, 86, 87, 88, 89, 90, 91, 46, 92]. Comme
nous l’avons mentionné avant, les fonctions de corrélations sont à la base des approches
analytiques, et leur étude est donc une étape nécessaire pour pouvoir ensuite étudier par
exemple le diagramme de phase de QCD. Les premiers résultats réseau en jauge de Landau
étaient très controversés dû au fait que les erreurs systématiques associées à la discrétisation
sont grandes. Finalement, les récentes simulations réalisées à grands volumes ont montré
que les fonctions de corrélation en jauge de Landau sont essentiellement insensibles à la
transition de phase [90], ce qui est problématique pour les méthodes approchées qui tentent
de décrire cette transition. Il est possible que cette faible sensibilité soit due au fait que,
dans la jauge de Landau, le paramètre d’ordre de la transition de phase (la boucle de
Polyakov) n’entre pas directement ni dans les définitions ni dans les calculs des fonctions
de corrélation. Récemment, il a été proposé que le paramètre d’ordre de la transition peut
être efficacement pris en compte dans les calculs analytiques grâce à l’introduction d’un
champs "de fond" dans la théorie microscopique fixée de jauge [33, 35, 34]. Ceci revient
à travailler dans une extension de la jauge de Landau en présence d’un champ de fond,
communément appelée jauge de Landau-DeWitt (LDW). En particulier, il a été montré
que le FRG reproduit correctement la transition de phase dans cette jauge [33, 35, 34].
Cette approche en présence d’un champ de fond a naturellement été étendue au cas massif
et perturbatif présenté ci-dessus [93, 94, 95, 96] où la transition de phase a été décrite en
théorie de perturbation, ainsi qu’à potentiel chimique non-nul en présence de quarks lourds
[97].

Dans cette thèse, nous concentrons notre étude sur les théories de YM fixées de jauge par
la méthode de Serreau et Tissier. Dans un premier temps, en Chapitre I, nous passons
en revue certains aspects pertinents pour l’étude du confinement et décrire comment il
peuvent être reliés au comportement des fonctions de corrélations. Pour ce faire, nous
prenons comme exemple la jauge de Landau où nous présentons brièvement les travaux de
Kugo et Ojima [53]. Comme mentionné ci-dessus, ces derniers conduisent naturellement à



l’étude des propriétés infrarouge des fonctions de corrélation. Ainsi nous revoyons certains
aspects des approches fonctionnelles, en particulier de DS et du FRG. Ces deux approches
combinées ne permettant pas de discriminer la solution de decoupling ou de scaling, nous
sommes amenés à considérer les simulations réseau à jauge fixée. Cependant, comme
nous le présentons, ces dernières ne sont pas directement réalisables à partir de la théorie
fixée de jauge à la Faddeev-Popov à cause du problème de Neuberger. Ce dernier est
dû à la présence des copies de Gribov. Nous présentons les généralités concernant ces
dernières dans le cas de la jauge de Landau ainsi que le scénario de Gribov-Zwanziger
(raffiné). Ensuite, nous montrons comment, par une procédure d’extrémisation (qui revient
à sélectionner une unique copie de Gribov), la jauge de Landau peut être implémentée sur
le réseau et échappe au problème de Neuberger. Nous présentons le modèle de CF qui
correspond à une extension massive de l’action fixée de jauge à la Faddeev-Popov. En
particulier nous discutons les résultats perturbatifs obtenus dans ce modèle et mettons en
avant leurs accords avec les résultats réseau. Finalement, nous présentons brièvement la
procédure de Serreau et Tissier qui consiste à lever la dégénérescence des contributions
des copies de Gribov par une pseudo moyenne réalisée sur ces dernières le long de l’orbite
de jauge. Appliquée à la jauge de Landau, la procédure se réduit d’une manière effective
à inclure un terme de masse pour les gluons, et l’action fixée de jauge est effectivement
équivalente (pour les secteurs des ghosts et des gluons) au modèle de CF.

Dans le Chapitre II, nous généralisons la procédure de Serreau-Tissier à une famille de
jauge covariantes non-linéaires. Pour cela, nous proposons de considérer une certaine
fonctionnelle covariante (qui est une généralisation simple de celle utilisée pour la jauge de
Landau lors de la fixation de jauge sur le réseau) et nous définissons la condition de jauge
comme correspondant à ses extrema. Les différents extrema de cette fonctionnelle sont, par
construction, tous des solutions de la condition de jauge et correspondent donc aux copies
de Gribov. Lorsqu’on néglige la présence des copies (ce qui est au mieux valide à hautes
énergies) et qu’on implémente la condition de jauge via Faddeev-Popov, on obtient les
jauges (covariantes et non-linéaires) de Curci-Ferrari-Delbourgo-Jarvis (CFDJ) [77, 100].
Ces dernières ont été étudiées dans la littérature [77, 100, 210, 201, 211]. En particulier
elles sont renormalisables (en d = 4) et unitaires mais présentent des ambiguités de Gribov.
Du fait que ces jauges peuvent être formulées comme les extrema d’une fonctionnelle,
leur implémentation réseau via une généralisation des techniques utilisées dans Landau
est envisageable. Ceci demanderait de réaliser une généralisation détaillée des différents
algorithmes de minimisations (locaux et globaux) qui sont utilisés dans le cas de la jauge de
Landau. Une telle discussion ne rentre pas dans les objectifs de la thèse ci-présente, et nous
discutons seulement d’une généralisation possible d’un algorithme de minimisation locale
utilisé dans Landau. Ensuite, nous appliquons la procédure de Serreau-Tissier aux jauges
sus-mentionnées. La procédure se décompose en deux temps. Une première étape est une
pseudo moyenne le long des orbites de jauges réalisée sur les copies de Gribov où elles
sont pourvues d’un poids statistique non-uniforme de sorte à lever leur dégénérescence. La
seconde étape est une moyenne sur les configurations du champ jauge avec l’action de YM.
Mises ensembles, ces deux étapes constituent une authentique fixation de jauge dans le sens
que les valeurs moyennes d’observables invariantes de jauges sont insensibles à la moyenne
sur les copies de Gribov. Cependant cette procédure ne correspond pas directement à une
TQC locale. Pour pallier à ce problème, on a recours à la technique des répliques [75].
Finalement, la procédure peut être mise sous forme d’une action locale qui correspond à
une extension massive des jauges CFDJ (ce qui correspond au modèle de CF dans les jauges
ξ) augmenter d’un nombre n − 1 (avec n arbitraire) de répliques de modèle sigma non-
linéaire supersymmetrique. En particulier, l’évaluation des quantités dans la construction
de Serreau-Tissier correspond à faire n→ 0 tandis que pour n = 1 le secteur des répliques
découple et on retrouve le modèle de CF. Ceci nous permet d’étudier simplement l’effet de



notre traitement des copies de Gribov en réalisant des comparaisons entre les cas n→ 0 et
n = 1. Une fois cette construction présentée nous prouvons que la théorie fixée de jauge est
renormalisable en d = 4 pour toutes valeurs de n et nous calculons explicitement à l’ordre
d’une boucle les contre-termes. Nous poursuivons le calcul perturbatif pour calculer à
une boucle les différents propagateurs de la théorie. Plus précisément, nous considérons
des schémas de renormalisation où une part de la dépendance en n est absorbée dans les
paramètres "nus" de la théorie. Nous montrons que dans ce cas, la théorie admet des
trajectoires de RG qui sont saines dans l’infrarouge. Nous comparons nos résultats pour
les propagateurs, avec et sans implémentation du RG, entre la théorie fixée de jauge et le
modèle de CF. En particulier nous observons de nettes différences dues à notre traitement
des copies de Gribov. Par exemple, dans le cas Serreau-Tissier, le propagateur du gluon
est toujours transverse même loin de la jauge de Landau alors que, pour le modèle de CF,
il présente une composante longitudinale à part dans le cas particulier de Landau. Nous
observons aussi de nettes différences entre les deux cas dans les flots de RG où, pour le
modèle de CF, ces derniers se gèlent sous l’échelle de masse de la théorie tandis que, dans
le cas Serreau-Tissier, le secteur des répliques contient des modes sans masses et les flots de
RG ne se gèlent jamais. Dans les deux cas nous pouvons intégrer les flots jusqu’à moment
nul.

Finalement, au Chapitre III, nous nous intéressons au cas à température finie. Dans un
premier temps nous revoyons les généralités concernant la transition de phase confinement-
déconfinement et en particulier son lien avec la boucle de Polyakov et la brisure spontanée
de la symétrie du centre. Nous présentons ensuite les résultats obtenus dans le cas de la
jauge de Landau où, comme mentionné précédament, les simulations réseau et les approches
continues trouvent des propagateurs essentiellement insensibles à la transition de phase.
Nous introduisons ensuite les méthodes de jauge de champ de fond ("background gauge
fields methods") où une valeur de fond du champ de jauge est introduite. Cela correspond à
travailler dans une généralisation de la jauge de Landau connue comme la jauge de Landau-
DeWitt (LDW). En particulier, cette valeur du champ de fond constitue un paramètre
d’ordre pour la transition de phase. Nous présentons aussi le fait que dans le cas LDW
la symétrie du centre est explicitement préservée au niveau de l’action nue alors qu’elle
est explicitement brisée dans le cas de Landau. Nous revoyons comment dans l’extension
massive de la jauge de LDW (ce qui d’un point de vue effectif correspond à l’implémenter
selon la procédure de Serreau-Tissier) la transition de phase peut être étudiée en théorie de
perturbation. En particulier dans la théorie SU(2) on trouve que la transition de phase est
du second ordre [94] en accord avec les résultats réseau. Une des conséquences importantes
de la présence du champ de fond est que des directions de couleur sont privilégiées (celles
dans lesquelles le champ de fond pointe). Ainsi, les différents modes de couleurs des
différents champs, par exemple des ghosts et des gluons, ne se couplent pas de la même
manière avec le champ de fond et leur habituelle dégénérescence est levée. Nous calculons
dans la théorie SU(2), à l’ordre d’une boucle en théorie de perturbation, les propagateurs
des gluons et des ghosts pour les différents modes de couleurs et nous nous concentrons
sur leur comportement dans la région de température autour de la transition de phase.
Pour SU(2), la transition de phase est second ordre, et donc le paramètre d’ordre, bien
que continu, présente une non-analitycité à la température critique. On observe cette non-
analyticité dans tous les propagateurs et susceptibilités (valeur du propagateur à fréquence
de Matsubara nulle et à impulsion nulel). Ceci est particulièrement marqué dans le secteur
électrique du gluon du mode de couleur neutre (mode de couleur dans lequel le champ de
fond pointe), où sa susceptibilité présente un pic très marqué à la température critique.
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