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Chapter 1

Introduction

1.1 Motivations.

1.2 The Estampille project

1.2.1 Participant organizations

1.2.2 The authentication setup in Estampille

1.3 Sketch of the thesis

1.4 Publications related to the thesis

�Books aren't written, they're

rewritten. Including your own. It is

one of the hardest things to accept,

especially after the seventh rewrite

hasn't quite done it...�

Michael Crichton

1.1 Motivations.

Authentication of genuine goods is a problem which is nowadays more and more con-
cerning in our Society. According to the news channel CNN [10]: �The global trade in
counterfeit goods is booming, and it's shifting from relatively innocuous items like shoes
and handbags to things like medicine and pesticides that can carry serious health and
safety implications.�

The economic impact of counterfeiting industry is also signi�cant. A report of The
Organization for Economic Co-operation and Development (OECD) written in 2009
states that the pro�t from counterfeit goods was responsible for more than $250 billion
in total pro�t of the world trade [5, 2]. This amount can be compared with the pro�t

7



CHAPTER 1. INTRODUCTION 8

of international trade in illegal drugs such as heroin, cocaine, methamphetamine or
ecstasy,...and is even more important than other underworld economies such as weapons
smuggling, money laundering and human tra�cking [10].

According to other sources, the �gures are di�erent but still impressive: for example
the Commercial Crime Services (CCS), a specialized division of the world business
organization International Chamber of Commerce (ICC) declares that the pro�ts of
counterfeiting could reach an estimated $600 billion a year [1] on average and accounts
for between 5− 7% of international trade around the world. For example, in 2008 CCS
approximated counterfeit goods were worth up to $650 billion.

From the assessment of CCS, specialists of ICC state that the revenue of counterfeit
goods across the world market could surpass $1.7 trillion and contribute over 2% of
the world's total output by 2015 [10]. It gives a huge pro�t for those who produce
and distribute counterfeit goods but it's also a disaster for both the consumers and the
current economy.

Several examples are presented below to show the aftermath of counterfeiting in-
dustry to the global consumers and world economy.

According to CNBC [9], among all counterfeit items imported to the United States
in 2009, there was $260 million coming from clothing and accessories. Especially, in
New York the counterfeit market bene�ted approximately $34 billion for imitations,
robbing $1.6 billion in tax revenue. Disappointingly in the anti-counterfeiting �ght, the
results have been poor so far despite many e�orts done by the governments and security
companies. For example in 2002 the U.S Federal o�cials only con�scated $138 million
knocko�s in which counterfeit clothing is the most popular product. This accounts 18%
of all counterfeit items (see Fig. 1.1). As a matter of fact, this amount of money was
much smaller than the revenue of counterfeit goods.

Figure 1.1: Growth in seizures of counterfeit goods by U.S. Taken from [13].

The problem of counterfeiting is even more worrying within the pharmaceutical
industry: with $206.2 billion pharmaceutical sales in Europe per year the pro�ts based
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on counterfeit products account for 16%, while in Asia this rate reaches 39% [9]. In 2005,
the World Health Organization (WHO) reported that among the medicines produced
in developing countries, there was nearly 25% of forgery [4]. Interpol [3] warned that
such products nowadays are threatening public health at an international alert level and
day by day the consumption of fake drugs, medicines and medical devices endangers
the health and life of patients across the world, especially across developing countries.
Why?

According to Interpol [3]: �Illicit drugs can contain the wrong dose of active ingre-
dient, or none at all, or a di�erent ingredient. They are associated with a number of
dangers and, at worst, can result in heart attack, coma or death�. Also declared in [3],
due to the growing of number of Internet users as well as untrusted sale-online web
pages, patients can buy medicines easily, cheaply without prescription of the doctor
and this fact makes the �ght against counterfeit medicines even more di�cult.

The Nato O�ce on Drugs and Crime stated in a recent report titled �Transnational
Organized Crime in East Asia and the Paci�c�, in which there was nearly 70% of
all counterfeits con�scated coming from China in the period 2008-2010, while in U.S,
according to the Customs, this percentage was 87% for the same period [12]. We can
see in the chart 1.2 the ten countries with the most important seizure values of products
violating the Intellectual Property Rights (IPR):

Figure 1.2: Ten largest contributors of value of IPR seizures, taken from [11].

In another report [8], the U.S International Trade Commission investigated U.S
businesses and they observed that there was approximately $48 billion lost by the
infringement of IPR by China in 2009 (see Fig. 1.3).

We can see that the problem of counterfeit prevention and authentication of physical
products such as documents, goods, drugs, jewels, ... becomes a major concern in a
world of global exchanges, and one important task is to protect the legal manufacturers
and consumers. This is the main motivation of the ANR �Estampille� project which is
presented in the next section and with which this thesis is related.
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Figure 1.3: Chart showing the rising number of complaints lodged in the US against
imported goods suspected of infringing intellectual property rights [8].

1.2 The Estampille project

The general framework of the Estampille project is to �ght against forged printed
documents and counterfeited products by protecting their packages [7]. In order to do
so, the project proposes to insert Graphical Codes (GC) on the document or the package
of the commercial product (see an example of such a code in Figure 1.4). The use of GC
in security framework enables both to perform integrity check of the printed document
(detecting that a document has not been tempered) and to perform authentication
(detecting which document is a counterfeit). In fact, CG have already been used by
di�erent companies, among which the company Advanced Track and Trace belongs to,
on millions of commercial products in the pharmaceutical industry, cosmetics, wines
and spirits, valuable documents and parts

Figure 1.4: A simulated Graphical Code before being printed.

1.2.1 Participant organizations

This project is a four years industrial research project �nanced by the French National
Research Agency (ANR) and led by Dr Patrick Bas in a collaboration of 6 partners:
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� ATT (Advanced Track & Trace) is an industrial company working on authenti-
cation, protection against counterfeit and products tracking. In Estampille, ATT
provides technical part in 2D graphical code.

� LAGIS (Laboratoire d'Automatique, Génie Informatique et Signal) is a scienti�c
laboratory in Ecole Centrale de Lille working on automatic systems, computer
engineering and signal processing. LAGIS provides the expertise about authenti-
cation and stochastic modeling of printing processes. The work presented in this
memoir has been conducted within this laboratory.

� GIPSA (Grenoble Images Parole Signal Automatique) is a joint laboratory be-
tween CNRS and university of Grenoble working on theoretical and applied re-
search on signals and systems. GIPSA provides expertise about security analysis
and integrity control.

� LGP2 (Laboratoire Génie des Procédés Papetiers) is a laboratory in university of
Grenoble working on intelligent processes, materials chemistry, solid mechanics,
mechanics of materials and printing processes. LGP2 provides expertise about
description and analysis of printing processes at the microscopic level.

� LATA is an industrial company working on printing technologies. LATA provides
expertise and Data from various printing processes.

� CERDI (Centre d'Etudes et de Recherche en Droit de l'Immatériel) is belongs to
university Paris 11 working on the law in intellectual property of new technologies.
CERDI provides legal basis for the use of graphical code.

1.2.2 The authentication setup in Estampille

The general framework of Estampille project can be depicted in the Figure (1.5). We
recall here the main step of the authentication process:

� In step (1), we generate a simulated GC from a random source and model the
legitimate printing channel to print this GC out, called printed original GC, then
we insert it into the legal product in step (2).

� The opponent observes the printed original GC, and tries to process it in order to
be able to print it by his printing channel in step (3) creating a reprinted forged
GC.

� He then inserts it into his illegal product in step (4).

� Both printed original and reprinted forged GC are observed by the receiver, and
in order to detect the fake product, �rstly the receiver has to process these GCs
in step (5) and then to perform the authentication test in step (6).
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Figure 1.5: Description of the works of Estampille project

Generally speaking, the Estampille's setup can be summarized brie�y in three main
tasks as follow:

� Analysis and modeling of the printing processes from a physical and signal pro-
cessing approaches.

� Achieving global security of the authentication system.

� Design of e�cient GC for authentication.

The company ATT has developed the technology for making 2D GC in order to
maximize the quantity of information lost by the forgers. This design is based on the
fact that the printing process in the real environment comes from complex phenomena.
For example, it can be governed by the intrinsic features of the printers, the physical
properties of the ink drop, the randomness of the paper's �ber, etc... Viewed under a
microscope, we can see in Figure (1.6), the surface of a sheet of paper is not perfectly
�at but is tangled. In fact, it is like a mixture of wood �bers which is highly random
and di�cult to reproduce [28]. Because of this randomness, a scanner will produce a
di�erent image depending on the orientation of the page and the printer will cause a
stochastic non-invertible noise when conducting a printing process in the paper to print
a GC out.

Randomness a�ects the authentic process and may degrade the accuracy of authen-
tication performance. Consequently, the opponent can try to take advantage of this
objective factor to entrap the detector (the receiver). It is consequently important
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Figure 1.6: An ordinary piece of paper viewed under a microscope [6, 28].

to evaluate both the security and authentication performances of this complex system
more accurately.

Our team in LAGIS proposes two directions of development to Estampille project:
1) the modeling of the printing processes as well as the characterization of the parame-
ters for the printer and 2) the analysis of the authentication performances for di�erent
possible types of attacks that the opponent develop to forge the graphical codes and
the impact of coding theory in authentication.

� The �rst direction is carried out by my colleague Quoc Thong Nguyen and his
advisors Prof. Yves Delignon and Lionel Chagas. Their works mainly consist in
characterizing the intrinsic features of the printer. Motivated from the microscopic
analysis of paper printing, in [76, 77] they propose to model the micrometric scan
of document printing by a binary response model whose the parameters depend
on the location and the shape of ink dots. Ink dots viewed under microscope
are shown in Figure (1.7). They provide a maximum likelihood identi�cation
algorithm, its performance is assessed through simulations and true data.

Figure 1.7: Left: Ink dots in uncoated paper printed in Laser printer (600dpi). Right:
Ink dots in coated paper printed in Laser printer (600dpi).
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Furthermore, they illustrate the bene�t of a such model and estimation algorithm
in the case of authentication of printer from micro-tag made of one dot in [76]
and multiple dots in [77].

� The second direction is mostly taken into account by my colleague Anh Thu Phan
Ho and me with our advisors Dr. Wadih Sawaya and Dr. Patrick Bas. While the
work of Anh Thu is to consider the bene�t of information theory, channel coding
and coding schemes for authentication, my researches focus on the use of signal
processing, statistical estimation and hypothesis testing to improve authentication
performance while guaranteeing security.

1.3 Sketch of the thesis

This thesis is a part of my researches that aims to answer the second direction of
the Estampille project. We study an authentication system on a 2D GC, which will
be presented in details within the next chapter, based on the fact that a printing
process at very high resolution can be seen as a stochastic process. This is due to
the nature of di�erent elements such as the paper �bers, the ink heterogeneity, or
the dot addressability of the printer as mentioned above. Our solution to perform
authentication is to use the hypothesis testing on the observed memoryless sequences
of a printed GC, by considering the assumption that we are able to perfectly model
the printing process [81, 53] and by deriving an optimal test for which the probabilities
of error can be accurately approximated. Moreover, when looking for a more practical
scenario, we take into account the estimation of the printing process used to generate the
GC of the opponent and we see how it impacts the performance of authentication [66].
We also try to optimize the printing channel controlled by the legitimate manufacturers
in order to maximize the ability of detecting a forged GC [53, 54].

The main context of the thesis begins with Chapter 2 in order to present the neces-
sary theoretical backgrounds and state of the art for the thesis.

In Chapter 3, the theoretical analysis of the authentication test and associated error
probabilities, together with numerical implementations are proposed.

In Chapter 4, security constraints are taken into account by the fact that the receiver
tries to optimize of the parameters of the original printing channel while the adversary
tries to optimize his own channel. This is modeled as a min-max game which is solved
by using optimization tools.

The thesis is ended in Chapter 5 with the overall conclusions, the existing drawbacks
and perspectives as well as the indication for the directions of future researches.

1.4 Publications related to the thesis

A part of works presented in this thesis has been published in one journal paper and
three conferences papers:
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� Document Authentication Using Graphical Codes: Reliable Performance Analysis
and Channel Optimization,
Anh Thu Phan Ho, Bao An Hoang Mai, Wadih Sawaya and Patrick Bas,
EURASIP Journal on Information Security, 2014, pp. 10.1186/1687

� Image Model and Printed Document Authentication: a Theoretical Analysis,
Bao An Hoang Mai, Wadih Sawaya and Patrick Bas
IEEE International Conference on Image Processing, Oct 2014, France. IEEE
International Conference on Image Processing, IEEE ICIP

� Authentication using Graphical Codes: Optimisation of the Print and Scan Chan-
nels,
Anh Thu Phan Ho, Bao An Hoang Mai, Wadih Sawaya and Patrick Bas
EUSIPCO 2014, Sep 2014, Portugal.

� Document Authentication Using Graphical Codes: Impacts of the Channel Model,
Anh Thu Phan Ho, Bao An Hoang Mai, Wadih Sawaya and Patrick Bas
ACMWorkshop on Information Hiding and Multimedia Security, Jun 2013, Mont-
pellier, France. ACM IH-MMSEC



Chapter 2

Fundamental backgrounds and

Related works

2.1 Fundamental backgrounds

2.1.1 Hypothesis testing for known parameters

2.1.2 Hypothesis testing for unknown parameters

2.1.3 Parameter estimation

2.2 Previous works related to authentication of GC

2.2.1 Overview of authentication processes

2.2.2 Authentication of physical products

2.2.3 Hypothesis testing in authentication and forensics

2.2.4 Printing-scanning models

2.3 Conclusions of Chapter 2

�We can only see a short distance

ahead, but we can see plenty there

that needs to be done.�

Alan Turing

In this chapter we presents two important aspects in mathematical statistics which
are used in the entire thesis: Parameter estimation and hypothesis testing. They are
essential and very useful in a vast area of research �eld in signal processing. From
the practical point of view, we have to use estimation theory in order to extract infor-
mation about the printing channel and hypothesis testing to derive a test to perform
authentication.

16
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We also introduce some aspects of authentication, especially the authentication
of printed objects, and we remind several advances in this �eld and in modeling the
printing-scanning process.

2.1 Fundamental backgrounds

2.1.1 Hypothesis testing for known parameters

In the entire thesis we de�ne �Authentication� as the problem of classifying between
two groups: one contains authentic objects and the other contains inauthentic objects.
To solve it, it is common to use machine learning or hypothesis testing.

Hypothesis testing problem arises in many context (statistical signal processing,
communication, life sciences, social sciences....) and is an active topic in statistics.
The primary task of hypothesis testing is to use observed data to take decisions by
distinguishing the true hypothesis among the set of M surveyed hypotheses.

Classical binary hypothesis testing

We can consider two di�erent testing approaches: classical and Bayesian hypothesis
testing. The Bayesian approach considers that the prior distributions of the hypoth-
esis are concerned while for other approach the prior distributions are assumed to be
equiprobable.

Because it is di�cult to gather information on the prior distribution, we focus our
work on the classical binary hypothesis testing (see Fig. 2.1) to test two kinds of
hypotheses: 1) the null hypothesis H0 and 2) the alternative hypothesis H1. A decision
d is derived based on the observed data in order to decide if H0 is true or not. For any
decision, there are two types of error called type I and type II error (Fig. 2.2).

Figure 2.1: Classical (non-Bayesian) binary hypothesis testing.

A type I error is equivalent to rejecting the null hypothesis H0 while H0 is true. In
hypothesis testing, the probability of type I error α is often referred as the signi�cance
level of the test or the probability of false alarm (PFA). On the other hand, accepting
H0 when H1 is true will cause a type II error whose probability β is often called the
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probability of type II error or probability of non-detection (PND). We de�ne the power
of a test PD = 1− β as the probability of rejecting H0 while H1 is indeed true.

Figure 2.2: Graphical description of a decision rule for classical binary hypothesis test-
ing.

In hypothesis testing, it is desired to make α and β as small as possible. Nevertheless,
there is an interplay between α and β and both cannot be negligible at the same time.
It means that when α is increased, β decreases and vice versa. Hence we have to accept
�a trade-o�� between α and β, for example by using Receiver Operating Characteristic
(ROC) curves which show the evolution of β (or power PD) w.r.t α. A ROC curve has
several important properties:

1. (α, β) moves continuously along the ROC curve.

2. All points on a ROC curve satisfy PD ≥ α.

An example of the ROC curves is shown in Fig. 2.3, in which we consider the null
hypothesis H0 : P (X|H0) ≡ BSC(p) and alternative hypothesis H1 : P (X|H1) ≡
BSC(2p(1−p)) (BSC means the Binary Symmetric Channel with transition probability
p), and we use Monte Carlo simulation to compute α and β.

In classical binary testing, the Neyman-Pearson theorem plays an essential role for
getting an optimum decision rule. This theorem states that the optimum decision rule
that minimizes β for a given α (see in [63]) is given by comparing the likelihood ratio
between the two hypothesis with a threshold. We recall it below:

Neyman-Pearson theorem : Suppose we have random variables xN distributed by an
unknown probability density in a sample space in X ⊆ RN . Among all the procedures
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Figure 2.3: ROC curves of test between two hypothesis: H0 : P (X|H0) ≡ BSC(p)
and H1 : P (X|H1) ≡ BSC(2p(1− p)), the length of i.i.d sequence X is 500, p is equal
to 0.2, 0.25 and 0.3 respectively. The number of trials is 106.

applied to xN to test if the distribution of xN comes from the hypothesis H0 : θ = θ0 or
H1 θ = θ1, the likelihood-ratio test between H0 and H1 with a threshold λ satisfying:

Λ(x) =
L(θ1 | xN , H1)

L(θ0 | xN , H0)

H1

≷
H0

λ

is the most powerful test of a signi�cance level α given by Pr [Λ(x) > λ | H0]. Thus,
β or the probability of non-detection PND is de�ned as Pr [Λ(x) < λ | H1]. Herein,
L(θi | xN , Hi) is likelihood function based on hypothesis Hi (i = 0, 1) and the most
powerful test means the test with the largest power (1-β) for a given signi�cant level α.
If the logarithm of the likelihood ratio is used, the test is known as a log-likelihood ratio
test (LLR test).

The optimum solution coming from the Neyman-Pearson problem requires to select
the threshold λ to obtain the smallest possible β while keeping α ≤ α∗, α∗ is �xed. The
ROC curve is then used to analyse the performances of the test for di�erent thresholds
and the area under the curve (AUC):

ˆ 1

0

βdα,

can be used to measure its average performance.
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If now we want to apply hypothesis testing using the LLR test for authentication,
we assume that the receiver observes an unknown i.i.d sequence vN = (v1, v2, ..., vN)
of length N in the observation space VN . In order to perform authentication he
assumes that H0 is the hypothesis that vN comes from the legitimate source with
probability distribution Q0 while H1 is the hypothesis that v

N is sent by the opponent
with probability distribution Q1, then the receiver can use the LLR test between H0

and H1 to map the N dimensional problem into a one dimensional problem (see also
Fig. 2.4):

LR = log
Q1

(
vN
∣∣H1

)
Q0 (vN |H0)

H1

≷
H0

λ. (2.1)

If two densities Q0 and Q1 are known, the probability of type I and type II error are
given by:

α =
´ +∞
λ

PLR|H0(l)dl

β =
´ λ
−∞ PLR|H1(l)dl.

(2.2)

Here, in Fig. 2.4, we de�ne:

H0 =
{
vN ∈ V ⊆ RN : LR(vN) < λ

}
(2.3)

and

H0 = {LR ∈ R : LR < λ} . (2.4)

Figure 2.4: Classical (non-Bayesian) binary hypothesis testing using LLR test.

For example, a signal sequence v = (v1, v2, . . . , vn) with {vi}n1 is n i.i.d random
variables is sent to the receiver. We assume that the receiver knows that vi is only
distributed by Q0 ∼ N (µ1, σ

2) or Q1 ∼ N (µ2, σ
2), and he has to determine where x

comes from by considering a test:
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H0 : vi ∼ N (µ1, σ
2),

H1 : vi ∼ N (µ2, σ
2),

where µ1, µ2 > 0. The receiver can use an LLR test given in this case by:

LR(v) = log
Q1(vn | H1)

Q0(vn | H0)
=

1

(2πσ2)n/2
e−

1
2σ2

∑n
i=1(vi−µ2)2

1

(2πσ2)n/2
e−

1
2σ2

∑n
i=1(vi−µ1)2

H1

≷
H0

λ. (2.5)

It leads to

n∑
i=1

vi
H1

≷
H0

σ2

µ2 − µ1

log(λ) +
n

2
(µ2 + µ1) ≡ ζ. (2.6)

The probability of type I error is given by:

α = Pr

[
n∑
i=1

vi > ζ | H0

]
= Q

(
ζ − nµ1

σ
√
n

)
. (2.7)

and probability of type II error is given by:

β = Pr

[
n∑
i=1

vi < ζ | H1

]
= 1−Q

(
ζ − nµ2

σ
√
n

)
. (2.8)

where Q(x) is error function. In this particular case, we can rewrite β as the function
of α as follow:

β = 1−Q
(
Q−1(α) +

√
n
µ1 − µ2

σ

)
. (2.9)

However, generally it is di�cult to compute α and β because the densities of
PLR|H1(l) and PLR|H0(l) are unknown and both the probability of error and the likeli-
hoods have to be approximated numerically. In this case, because of the approximations
and the numerical computation, the test is not optimal anymore.

Asymptotic properties of LLR test

In order to derive asymptotic properties for the LLR, if we set qk = log Q1(vk|H1)
Q0(vk|H0)

and

SN = 1
N

ΣN
k=1qk. From strong law of large number, when N → +∞, we consequently

have:

H0 : SN
a.s→ E [qk|H0] =

´
log Q1(x|H1)

Q0(x|H0)
Q0 (x|H0) dx,

H1 : SN
a.s→ E [qk|H1] =

´
log Q1(x|H1)

Q0(x|H0)
Q1 (x|H1) dx.

(2.10)
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It is equivalent to write, using DKL (P‖Q) =
´
P (x) log P (x)

Q(x)
dx the Kullback - Leibler

divergence between two densities P (x) and Q(x), that:

H0 : SN
a.s→ −DKL (Q0‖Q1) ,

H1 : SN
a.s→ DKL (Q1‖Q0) .

(2.11)

Therefore as long as we can collect an arbitrarily large number of i.i.d observations, we
can separate perfectly H0 and H1 (Q0 and Q1 are completely di�erent).

If one of the probabilities of error goes to zero arbitrarily slowly, the Stein's lemma
[30] provides the best exponent bound to minimize the other probability of error. It
means that when α is very close to zero then

1

N
lim
N→∞

log β = −DKL (Q0‖Q1) , (2.12)

or similarly when β tends to zero, it gives

1

N
lim
N→∞

logα = −DKL (Q1‖Q0) . (2.13)

However, in a realistic manner, the Stein's lemma cannot be considered as an ap-
proximation of the probabilities of error due to the fact that N is limited and every
practical detector has to cope with a value of α or β that may be small but not very
close to zero.

Uniformly Most Powerful Test

In statistics, the classical binary hypothesis testing (or NP-test) based on likelihood
ratio test statistic can be seen as a speci�c case of a more general testing problem called
the uniformly most powerful test (UMP test) which can be used to test between simple
hypothesis H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1 with Θ0 ∪Θ1 = Θ and Θ0 ∩Θ1 = ∅.

An hypothesis test is called an UMP test of a signi�cance level α∗ with any test
statistic T ∗(x) satisfying:

sup
θ∈Θ0

Eθ [T ∗(X)] = α∗, (2.14)

if for any other test statistic T (x) of size α such that:

sup
θ∈Θ0

Eθ [T (X)] = α ≤ α∗, (2.15)

we always su�er a loss in power, i.e.,

Eθ [T (X)] ≤ Eθ [T ∗(X)] ∀θ ∈ Θ1. (2.16)

An UMP test in general does not always exist. For example, we can let X ∼
Binom(n, θ) and suppose we want to test:
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H0 : θ = θ0 v.s H1 : θ 6= θ0 (2.17)

at some level α. There is no UMP test in this case [63].
However when the test exists, it can be found by two methods. The �rst one comes

from Neyman-Pearson theorem as we have stated above. The second method, used in
case of scalar parameter and based on the concept of monotone likelihood ratio, can be
understood as an extension of Neyman-Pearson theorem and it is called Karlin-Rubin
theorem [60].

Another di�culty with the optimality in NP-test or UMP test (if it exists) is that
the density of the population must be assumed to be known, except for a �nite number
of parameters. This assumption makes the testing problem easier to solve, but in the
real scenario it will rarely be true.

2.1.2 Hypothesis testing for unknown parameters

As we know from the previous subsection, the main requirement for a NP-test of an
observed sequence vN

H0 : vN
i.i.d∼ f0 (x| θ0) θ0 ∈ Θ0

H1 : vN
i.i.d∼ f1 (x| θ1) θ1 ∈ Θ1

(2.18)

is the knowledge of the underlying distributions f0 (x| θ0) and f1 (x| θ1) as well as the
speci�c parameters θ0 and θ1, where

Θ0 ∪Θ1 = Θ
Θ0 ∩Θ1 = ∅ (2.19)

However, in a realistic situation we do not know exactly the densities of f0 and f1 as
well as the true parameters θ0 and θ1. In this case, we can use a generalized likelihood
ratio test (GLRT).

The GLRT is a general procedure for composite testing problems. The fundamental
idea is to compare the maximum likelihood of the model in class H1 to the maximum
likelihood of the model in class H0 . The test statistic based on the observation vN is

Λ̂(vN) =

sup
θ1∈Θ1

L(θ1 | vN , H1)

sup
θ0∈Θ0

L(θ0 | vN , H0)

H1

≷
H0

λ, (2.20)

or equivalently

log Λ̂(vN)
H1

≷
H0

λ. (2.21)

It can be supposed in practice that the null hypothesis H0 is completely known, i.e. θ0

is �xed, the expression can be written as
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Λ̂(vN) =

sup
θ1∈Θ1

L(θ1 | vN , H1)

L(θ0 | vN , H0)

H1

≷
H0

λ. (2.22)

If we want to perform a GLRT, we have to solve �rst with a maximum likelihood
estimation (MLE) problem (which will be discussed more clearly in the next subsection)
because the test statistics logΛ̂(vN) cannot be expressed explicitly unless we estimate
θi (i = 1, 2). Instead, if we �nd θ̂i which maximizes the corresponding likelihood
L(θi | vN , Hi), i.e.,

θ̂i = argmax
θi∈Θi

L(θi | vN , Hi), (2.23)

then we may write

Λ̂(vN) =
L(θ̂1 | vN , H1)

L(θ̂0 | vN , H0)

H1

≷
H0

λ. (2.24)

The quantity θ̂i is called the restricted maximum likelihood estimate of θi under Hi.

Although the law of Λ̂(vN) is unknown, the following theorem hopefully unveils the
method to approximate the threshold given a signi�cance level α.

Wilks's theorem : [98] Let θ0 = (θ0,1, θ0,2, ..., θ0,m) ∈ Θ0 ⊂ Rm be a vector of param-
eters of a density family p(x | θ0) in which θ0,1, ..., θ0,l ∈ R are free parameters that need
to be estimated using MLE, and θ0,l+1 = tl+1, ..., θ0,m = tm are �xed at the real values
tl+1, ..., tm. Assume that p(x | θ1) is a density family parametrized by θ1 ∈ Θ1 ⊂ Rm

with θ1 includes all free parameters. Consider a composite testing problem

H0 : vN
i.i.d∼ p (x| θ0)

H1 : vN
i.i.d∼ p (x| θ1)

(2.25)

where the parametric density has the same form in each hypothesis. If the 1st and 2nd

order derivatives of p(x | θi) w.r.t θi exist, then the test statistic

Ŵ (vN) =

sup
θ1∈Θ1

p
(
vN
∣∣ θ1

)
sup
θ0∈Θ0

p (vN | θ0)

H1

≷
H0

λ, (2.26)

has the following asymptotic distribution when H0 is true and the sample size N →∞

2 log Ŵ (vN)
d→ χ2

m−l. (2.27)

Thus, for large N

α = Pr
{
χ2
m−l(x) ≥ 2 log(λ)

∣∣H0

}
. (2.28)
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Sometimes it is easy to compute only one of the true parameters θ̂0 or θ̂1 but di�cult
or impossible to compute the other one. This motivates the birth of two other tests
that are asymptotically equivalent to the Wilks test. The �rst one is the Rao test [32]
with test statistic:

R̂(vN) =
(
∇L(θ̂0 | vN , H0)

)T
J−1
N (θ̂0)

(
∇L(θ̂0 | vN , H0)

)
, (2.29)

where

JN (θ) = −∇2L(θ | vN , H0), (2.30)

is the observed Fisher information matrix for sample size N . The Rao test statistic is
asymptotically equivalent to the Wilks test statistic in the order op(1) under the same
conditions for Wilks's theorem, i.e.,

R̂(vN) = Ŵ (vN) + op(1). (2.31)

The most important property of Rao test is that the test statistic depends only on the
MLE for the null hypothesis H0.

The second one is Wald test [32, 62] with test statistic is

Û(vN) =
(
g(θ̂1)

)T [
∇g(θ̂1)J−1

N (θ̂1)
(
∇g(θ̂1)

)T]−1

g(θ̂1), (2.32)

where g : RN → RN is a constrain function on the set of θ0 such that g(θ0) = 0. Like
the Rao test, the Wald test under the same conditions for Wilks test is asymptotically
equivalent to the Wilks test in the order op(1).

Û(vN) = Ŵ (vN) + op(1). (2.33)

Contrarily, the important point about Wald test statistic is that it depends only on
the MLE for the alternative hypothesis H1.

All these tests above asymptotically may give us a tool to estimate the probability
of type I error α but nevertheless it is still far from being enough to propose a general
solution for authentication problems:

� Firstly, most of GLRT fails in obtaining optimality [43, 101].

� The second important point is that even if we accept a arbitrarily large sample
size, when α is very small, i.e. when the threshold is far from the means (it can
happen for a highly accurate detector), the calculation of the tail probability of
chi-squared distribution may be incorrect [33].
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� The asymptotic property of the test statistic only occurs in case when the para-
metric density has the same form in each hypothesis.

� Moreover we need also to compute the asymptotic distribution of the test statistic
when the alternative hypothesis happens in order to approximate the probability
of type II error β.

This is why another approach proposed to overcome these drawbacks is discussed in
the main content of Chapter 3 and Chapter 4.

2.1.3 Parameter estimation

When the receiver observes two GCs how could he certi�es that a GC is original or
is forged? A proposed solution is to use statistical decision to perform authentication.
In our scenario, we assume that the physical process that generate the original GC is
known while the other one used by the opponent is di�erent and unknown. From the
previous subsection, we know that one way for the receiver to perform authentication
is �rstly to estimate the generating process of the GC and secondly to use hypothesis
testing.

This section presents consequently the theoretical background related to parameter
estimation.

Parameter estimation is a branch of statistics in which the parameters, describing
the whole underlying physical setting of a population, are supposed to be unknown
and need to be estimated based on empirical measured data that are supposed to be
outcomes of random variables. Although our proposed analysis does not depend on the
estimation method, we consider mostly in this thesis Maximum Likelihood Estimation
in order to achieve optimal estimation.

Maximum likelihood estimation

Given a statistical model, Maximum Likelihood Estimation (MLE) relates to a popular
class of methods in statistical estimation that use sample of empirical data to estimate
the model's parameters [89]. The aim of MLE is to �nd an estimated parameter θ̂,
given the sample x, that maximizes the likelihood function L(θ | x).

We consider a n-length sample x = (x1, x2, ..., xn) of n i.i.d observations coming
from a distribution in which its density function f (x| θ) is supposed to belong to a
certain parametric family indexed by the unknown parameters θ ∈ Θ ⊂ Rm, called the
parametric model. The likelihood of the whole sample is de�ned as the product of the
individual likelihoods:

L(θ | x) =
n∏
i=1

L(θ | xi),

=
n∏
i=1

f(xi | θ).
(2.34)
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Instead of working directly with the likelihood function, we can use the log-likelihood
L(θ) = logL(θ | x). Since all individual likelihoods are always positive, the likelihood
function and its log version achieve the maxima at the same point

θ̂ML = argmax
θ∈Θ

L(θ), (2.35)

which is the solution for a MLE and called maximum likelihood estimator (ML estima-
tor) for θ.

Let us denote Hm(θ) the Hessian matrix of the log-likelihood with respect to the
parameters:

Hm(θ) =

(
∂2L(θ)

∂θi∂θj

)
i,j=1,..,m

, (2.36)

and let Im(θ) be the Fisher information matrix [40] de�ned as:

Im(θ) = E
[(

∂L(θ)
∂θ

)2
∣∣∣∣ θ]

= −Ef(x|θ) [Hm(θ)] ,
(2.37)

where Ef(x|θ) or simply Eθ is the expectation taken w.r.t f(x | θ).
From the Cramer-Rao theorem [88] for a large sample size, it can be stated that the

covariance matrix of any unbiased ML estimator θ̂ of a parameter θ0 satis�es:

Cov(θ̂) ' I−1
m (θ0). (2.38)

Since θ̂ML is an unbiased estimator, we have:

Cov(θ̂ML) ' I−1
m (θ0), (2.39)

i.e., the covariance of a unbiased ML estimator can be approximated by the inverse
of the Fisher information matrix at the true parameters θ0, and θ̂ML is an estimator
yielding the smallest variance. The asymptotic distribution of θ̂ML is then given by:

θ̂ML
asym∼ N (θ, I−1

m (θ0)). (2.40)

The normality of θ̂ML helps us to provide a measure of how the estimated parameters
spread w.r.t the true value. The quadratic form of the error (the variation of the
estimation) is chi-squared distributed:

ρ(θ̂ML) =
(
θ̂ML − θ0

)T
Cov−1(θ̂ML)

(
θ̂ML − θ0

)
asym∼ χ2

κ, (2.41)

or equivalently

ρ(θ̂ML) =
(
θ̂ML − θ0

)T
Im(θ)

(
θ̂ML − θ0

)
asym∼ χ2

κ, (2.42)
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where χ2
κ is the chi-squared distribution with κ degree of freedom. Here, κ is the

number of free parameters that govern the proposed model. One may observe that
ρ(θ̂ML) = cte is an ellipsoid in the κ-dimensional space. In practice, the true parameters
are always unknown, hence the Fisher information need to be estimated, for example
by the observed Fisher information matrix [40, 65] at θ = θ̂ML

Jm(θ̂ML) = −Hm(θ̂ML)

= −
(
∂2L(θ)
∂θi∂θj

)∣∣∣
θ=θ̂ML

.
(2.43)

Another important property of MLE is the invariant property, i.e. if g is a continuous
function w.r.t θ, then ηML = g(θ̂ML) is a ML estimator of η = g(θ). Thenceforth, rather
than estimating directly a parameter θ, we can �rst estimate some function g(θ) using
MLE and then recover an estimate of θ from g(θ).

Expectation Maximization

The Expectation Maximization (EM) algorithm [34, 69, 22] is an iterative method for
�nding maximum likelihood in cases where the equations in a MLE problem cannot be
solved directly. Suppose that we have a given statistical model with a set of observation
xN , a set of unobserved latent or missing data uN , and a vector of unknown parameters
θ. The EM algorithm is used to �nd a ML estimator for θ by iteratively applying two
steps:

1. The Expectation step (E step) computes the expected value of the log likelihood
function w.r.t the conditional distribution of UN given XN and the estimate θ(t)

of the parameters θ at iteration (t):

Q(θ| θ(t)) = EUN |XN ,θ(t)

[
L
(
θ|xN , uN

)]
. (2.44)

2. The Maximization steps (M step) �nds the estimated parameters at iteration
(t+ 1) that maximizes this quantity:

θ(t+1) = argmax
θ

Q(θ| θ(t)). (2.45)

The algorithm repeats these two steps and assigns, at each iteration T , the estimated
θ̂ = θ(T ) of θ until convergence.

In some certain cases, it is more convenient to express EM algorithm under an
alternative form. Let us denote

F (q, θ) = Eg
[
L
(
θ|xN , uN

)]
+H(q),

= −DKL

(
q‖ pUN |XN

(
uN
∣∣xN , θ))+ L

(
θ|xN

)
,

(2.46)

where pUN |XN

(
uN
∣∣xN , θ) is the conditional distribution of the unobserved or missing

data uN given the observation xN ; q is an arbitrary probability density over uNand H
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is the entropy function of q. Then the EM algorithm can be reformulated by the two
following steps:

1. Expectation step: select q satisfying

q(t) = argmax
q

F (q, θ(t)). (2.47)

2. Maximization step: choose θ satisfying

θ(t+1) = argmax
θ

F (q(t), θ). (2.48)

It should be noted that an EM algorithm only yields to a local solution for the estima-
tion, so that it requires an initialization value that is close enough to the true model's
parameters to run the algorithm and to insure the convergence of the algorithm.

The EM algorithm has very large applications in many research directions. It can
be used for data clustering in data mining [27, 57, 71, 78], in signal processing [45], in
computer vision [72] or even psychology and social researches [14, 24], etc. One of the
most important application of EM algorithm is to �t the mixtures of distributions by
using what we might call �pseudo missing data� [50, 70, 73], i.e. the data that we never
obtain but they can be considered as missing in order to facilitate the computation of
ML estimators.

In chapter 4, we propose a modi�cation of the EM algorithm for a mixture of
truncated Gaussian distributions. This algorithm is used to estimated the parameters
of the opponent channel.

2.2 Previous works related to authentication of GC

In this section, we present the connections between this thesis and previous works that:

� have the same general goals of authenticating items,

� use directly Graphical Codes to perform authentication,

� use the same methodology, i.e. hypothesis testing, for security related applica-
tions,

� are related with modeling the print and scan channel.
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2.2.1 Overview of authentication processes

Authentication processes are used in a lot of di�erent �elds, often related to computer
sciences, such as:

� Access control on a network/intelligent systems to check the authority of the right
users [87, 46].

� Password protection based on RSA system [35, 41], considered as a digital signa-
ture. It is used, for example, to access to bank accounts.

� Authentication between objects based on the interaction between all objects which
are belongs to the same user [39, 47].

� Digital image authentication based on watermarking. Note that �image authen-
tication� in this case is related to the problem of integrity check and not to
authentication per se since a digital plain copy is always authentic. One examples
for this approach can be found, for instance in Ho et al [55].

� Authentication of physical materials where the goal is to distinguish genuine prod-
ucts from forged ones. This approach is extremely active nowadays due to the
explosion of counterfeiting industry.

The following section proposes more examples of this last application.

2.2.2 Authentication of physical products

As introduced brie�y in Chapter 1, the authentication of physical products can generally
be obtained by using the stochastic structure of either the materials that compose the
product or the stochasticity of a physical process that is associated to the generation
of the product.

Authentication of physical objects can be for example performed by recording the
random patterns of the �ber of a paper: in [51], the authors combine the optical de-
tection method with recorded digital signatures based on public key codes in order
to protect not only banknotes but also credit- and chip-cards, checks, contracts, etc.,
against counterfeiting. The general idea, depicted in Fig. 2.5, is separated into two
parts:

1. Protection: the image is detected then compressed and a digital signature is
attached. The result is encoded.

2. Veri�cation: the �ber structure of the banknote to be veri�ed is extracted and
then compared with the �ber structure of the original object stored in a available
database.
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Figure 2.5: Protection and Veri�cation of banknote (taken from [51])

The authors claim that they can obtain a high security without using any expensive
production techniques due to the fact that the complicated features, used for veri�ca-
tion, are already included in the object. Instead of using random features of objects,
they can also detect, code and store the characteristics such as �ngerprints, speech,
faces... of those who are authorized to access the objects. However, such a system is
practically heavy to deploy since each product needs to be linked to its high de�nition
capture stored in a database.

Another solution is to rely on the degradation induced by the interaction between
the product and a physical process such as printing, marking, embossing, carving ...

Because of both the defaults of the physical process and the stochastic nature of
the matter, this interaction can be considered as a Physically Unclonable Function
(PUF) [94] that cannot be reproduced by the forger and can consequently be used to
perform authentication. According to [94], rigorously a PUF is de�ned as a �random�
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assignment that maps a set of challenges to a set of responses based on an intractably
complex physical system. The authors indicate that PUF can be originally described
as a innovative circuit primitives that enable signi�cantly higher physical security with
low-cost authentication of individual integrated circuits (ICs) by deriving secrets from
complex physical characteristics of ICs rather than storing them in non-volatile digital
memory.

According to Fig. 2.6, an authentic device A includes the pairs Challenges-Response
stored in the database of A for future authentication operations. To check the authen-
ticity of an unknown device, �rstly a challenge that had been recorded but has never
been used is selected, and the corresponding response is obtained by PUF. This response
is then compared with the one already stored in the database of A for authentication.

Figure 2.6: Description of PUF-based authentication (taken from [94])

Connections with authentication using GC

It is important to note that the Integrated Circuits presented above act in a similar
way than the features characterizing the physical printing process in this thesis. The
particularity of our system is the fact that this mapping may be understood as a �one
time PUF� or a physical unclonable process because it can be called only once for each
object. There are no challenge-response processes in this case but the authentication
still relies on a physical unclonable process.

A similar example to our problem can be found in [91]. The authors propose another
marking technique, called Laser-written PUF or simply LPUF, in order to characterize
the random pro�les of laser marks on materials such as metals. From a technological
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achievement of TOMO3D project [15], LPUF is generated based on 3-D pro�le of
laser marks using a diameter of 60µm and carved on the surface of a physical object.
They also provide an anti-counterfeiting system based on LPUF and use them for
authentication. This scheme is split in two parts:

1. The registration is executed once on the object before it is released to the market.

2. The veri�cation can be executed whenever someone wants to check whether the
product is a genuine one or not.

Their approach can be used to protect small objects or to be linked with other authen-
tication methods.

The unclonable process can also be represented solely by the interaction between
paper and ink. In [49], the authors measure the degradation of the inks within printed
color-tiles, and use the discrepancy between the statistics of the authentic and print-
and-scan tiles to perform authentication. They try to estimate whether a printed im-
pediment will authenticate without imploring the actual authentication process. Several
algorithms are also proposed to predict the result of the authentication process. The
used AOC (area over the curve) statistic shows that there are two metrics, called no-
reference metric and full-reference metric respectively, which are particularly useful for
estimating authentication performance in the existence of distortions caused via di�er-
ent choices of print-and-scan systems. Surprisingly, by using AOC, they show that a
no-reference metric gives the best performance for authentication.

Another e�ective authentication system has been proposed by Picard et al. [82, 83]
and uses 2D pseudo random binary codes that are printed at the native resolution of
the printer (2400 dpi on a standard o�set printer or 812 dpi on a digital HP Indigo
printer). It is important to notice that this system is very similar to the one that will
be studied in the next chapter.

At the authentication step, in order to perform authentication the receiver computes
a test on the observed scanned code, being either the scanned version of the original
printed code or the scanned version of the reprinted forged code.

One advantage of this system over previously cited ones is that it is easy to deploy
since the authentication process needs only a scan of the graphical code under scrutiny
and the seed used to generate the original one: no �ngerprint database is required in
this case.

Security analyses

The security of this system relies on the fact that the opponent is not able to accurately
estimate the original binary code due to solely relying on the use of a PUF. Di�erent
security analysis have already been performed w.r.t. this authentication system, or to
very similar ones.
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The authors have studied in [18] the impact of multiple printed observations of the
same graphical codes and the authors have shown that the in�uence of the noise due
to the printing process can be reduced in this particular setup, but not completely
removed. Here, the authors consider a batch attack where the product manufacturer
(Bob) generates a batch of printed GCs coming from the same original code. Eve can
access a number Nc of printed versions of a genuine 2D-GC and tries to estimate the
original one. The goal of Eve is to convince the receiver that her reproduced GC is a
genuine one. This paper shows also that the original code cannot be totally removed
even with a large number of observations, which leaves room for secure authentication
even under batch attacks.

In [38], a print and scan model is proposed to be adapted to graphical code and a
smart attack based on the model is analyzed to show that it can be used to corrupt
the e�ectiveness of authentication (precisely authentication using GC). To handle this
type of attack, the authors propose four new detection metrics which are sensitive to
print-scan distortions. Through experimental analysis, they show that their proposed
features can be employed to improve signi�cantly the authentication accuracy.

In [37], the authors propose to study the security of authentication considering GCs
by using machine learning techniques in order to extract the original code from an
observation of the printed code. Their results show that the estimation accuracy can
be improved without recovering perfectly the original code. A �black box� strategy is
employed to analyze the security. They propose to use a set of observations and try to
invert the printing system by inferring a linear classi�er based on these observations.

In [19], the considered security analysis is quite similar to the setup of passive
�ngerprinting using binary �ngerprints, which is similar to binary GCs, under informed
attacks (the channel between the original code and the copied code is assumed to be
a BSC). In this case, the security is shown to increase w.r.t the code length and the
authors propose a practical threshold when type I error (original detected as a forgery)
and type II error (forgery detected as an original) are equal. A information-theoretic
analysis is also derived based on the assumption of the code length.

2.2.3 Hypothesis testing in authentication and forensics

A lot of research papers related to hypothesis testing and information security have been
written over last several decades. In this thesis, we deal with authentication considering
hypothesis testing technique for detecting the genuineness of products.

Although hypothesis testing is a classical methodology, it is still very e�ective in
many application researches of authentication and forensic. For instance, in [96], the
fundamental idea is also the use of hypothesis testing, albeit the authors deal with
the identi�cation of camera models. They are successful to design a camera model
considering only two camera parameters (a, b). They then develop an estimation of
these parameters based on the weighted least squares estimation. A binary statistical
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test based on GLRT is developed to analyze the performance of identi�cation problem
using heteroscedastic noise which is stated to describe more precisely the acquisition
noise of a natural raw image. Numerical experiments are carried out based on both
simulated and real images taken from Nikon D70 and Nikon D200 show that

� The performance of proposed tests depends on the discriminability of camera
parameters (a, b).

� Only a small number of pixels is required to achieve a perfect detection perfor-
mance which proves the sharpness of the tests.

The authors claim that their proposed method is the only one which employs raw
images to identify camera model. However, because the main limitation is that raw
images may not be available in practice, they consider to extend their approach to
other image formats that are related to the post-acquisition and compression processes.

Hypothesis testing is also used in steganalysis, a branch in computer sciences used to
detect hidden information in the cover media such as image, audio, video, etc,.. using
steganography. In [102], the authors propose to use the classical binary hypothesis
testing and show how it is useful for detecting hidden information. Both simple and
composite hypothesis testing schemes based on likelihood ratio tests are used to analyze
the performance of hidden information detection. Their approach is strictly based on
the parametric statistical model of the media object. Both theoretical and numerical
results show not only the impact of observation quantization on the probabilities of
type I and type II error but also the bene�ts of using statistical decision on hidden
information detection.

In [68], the authors propose to interpret message authentication as a hypothesis test-
ing problem coming from an information-theoretic point of view based on the concept
of discrimination whose expression is related to mutual information in channel coding
theory [23]. They provide a generalized scheme to evaluate the information-theoretic
lower bounds on an opponent's probability of fooling the receiver by forging one of the
messages in the sequence shared between sender and receiver. Two types of cheating,
impersonation and substitution attacks, are analyzed and lower bounds on cheating
probability are also obtained for any authentication system.

2.2.4 Printing-scanning models

Because the principle of our authentication system relies on the degradation induced
by the print and scan process, we draw here an overview of the di�erent works in this
domain.

We recall �rst a list of the most important printing techniques (see Fig. 2.7 for
examples of each type)
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� O�set printing in which the inked image is spread on a metal plate then transferred
to a surface of rubber blanket and �nally pressed to the paper (see in [61]).

� Laser printing [61] in which the printer uses a laser beam to carve an image on
a charged drum. The drum is then rolled through a reservoir of ink. The ink is
then transferred to the paper using a combination of heat and pressure.

� Inkjet printing in which the printer spray droplets of ionized ink on a paper. A
inkjet printer can print at a moderately high resolution (300 dots per inch or
more). Because of both its outstanding properties and low cost, inkjet printing
nowadays is used widely as a printing tool [93].

Figure 2.7: From left to right: o�set, laser and inkjet printing dots on uncoated papers.

As a matter of fact, the printed images are always degraded by the sequence of
printing, scanning, copying,... Even if the humans eyes cannot distinguish the di�er-
ence between the printed images and the digital, the quality of printed images can be
evaluated using text recognition systems [16] because the microscopic view contains
more details that can be used to measure the quality of the printed image. Many
methods are consequently based on observations from a microscope to estimate the
parameters of the printer.

From the aspect of modeling, in [79] the authors propose to use a probabilistic model
to generate the images having the toner location (the toner is a special ink used in laser
printing technology) that is similar with the one of actual printed images. Using a so
called �geometric probability� described by measuring the area �lled by toner and its
complementary area, they can develop a deterministic model to describe the average
amount of paper to be covered by toner. Simulations show that the results of their
model �t well with the average coverage of printed images.

Another feature which needs to be modeled is the ink spreading, a phenomenon of
dot gain that produces high color deviations in ink jet printing. In [42], the authors
propose a new model of ink spreading by extending the drop impact w.r.t the shape of
its neighbors and the condition of the surface to improve the prediction of the re�ec-
tion spectra of halftoned samples printed on various inkjet printers. By using Pólya's



CHAPTER 2. FUNDAMENTAL BACKGROUNDS AND RELATED WORKS 37

counting theory in combinatorics, they can reduce the number of all possible ink drop
con�gurations to a signi�cantly small number of cases. For instance, in a three-ink-
color printing, they show that only 30 important cases must be considered instead of
3× 46 = 12288 cases.

Printer modeling can be also carried out using purely the techniques from signal
processing [97] in which a signal processing model is proposed to model multi-level
halftoning and resolution enhancement, as well as traditional halftoning.

Recently, in [76, 77], using statistical signal processing techniques, the authors pro-
vide a model for the scanning and printing process through a binary response scheme
based on the shape and the location of the ink dots. They also develop an algorithm
called maximum likelihood unsupervised identi�cation to show the accuracy of printing
process at the microscopic scale. The algorithm's performance is evaluated through
simulation using the true data collected by microscope of various types of papers and
printing modes.

2.3 Conclusions of Chapter 2

This chapter has presented elements of the theoretical background needed in order
to conduct this thesis. Hypothesis testing will be used in the next chapter to derive
authentication test, and its combination with parameter estimation in chapter 4 to
evaluate the impact of estimation on authentication.

The related works also show that this thesis is connected to multiple domains:
authentication schemes, physical unclonable functions, forensics and printing modeling.
The di�erent security analyses presented here are also connected to the one presented
in chapter 5.
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Authentication using hypothesis

testing

3.1 The authentication system

3.2 Proposed models for print and scan

3.3 Receiver strategies

3.3.1 Authentication via binary thresholding

3.3.2 Authentication via grey level observations

3.3.3 Comparison between the two strategies

3.4 Reliable computation for error probabilities

3.4.1 Gaussian approximation

3.4.2 Asymptotic expression

3.5 Conclusion of Chapter 3

�Essentially, all models are wrong,

but some are useful. �

George E. P. Box

The goal of this chapter is �rst to present an authentication system for GC that
relies on hypothesis testing, and then to provide accurate computations of the error
probabilities of this system. The authentication system is de�ned in the �rst section of
this chapter, then the print and scan model is presented. We afterwards present two
possible strategies for the receivers, which consist in thresholding or not the observed
code before applying the hypothesis test and we show that the authentication is more
performant without thresholding. Finally we end this chapter by presenting reliable
computations of the errors probabilities for this setup. These computations are based

38
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on an asymptotic expression and they will be further extended in the next chapter to
take into account the estimation of the opponent channel.

3.1 The authentication system

As stated in Chapter 1 with the general framework described in Figure 1.5, we focus
here on the authentication aspect of the GC , so that the principle of the studied system
in this thesis can be depicted more accurately by Figure 3.1 .
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Figure 3.1: Principle of authentication using graphical codes.

Based on Fig. 3.1, let us introduce our setup for authentication. Our authentica-
tion system is based on printed graphical 2D codes using very high resolution printers
(2400dpi). Each printed and scanned set of dots (a dot being a binary element) su�ers
from a stochastic non-invertible noise which makes the reproduction of the original GC
impossible (see Fig. 3.2 for an example of real the GCs after printing and reprinting).
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The opponent's goal is then to reproduce a printed and scanned code similar to the
original printed one using a printer that will also generate a non-invertible noise.

In the whole of thesis the authentication model involves two channels X → (Y ,Z),
we de�ne the main channel as the channel between the original source and the receiver,
while the opponent channel as the channel between the original source and the receiver
but passing through the counterfeiter (or opponent) channel (see in Fig. 3.1).

Figure 3.2: Left: an original printed and scanned GC. Right: a re-printed and scanned
(forged) GC.

The authentication system works as follow: A binary graphical code can be con-
sidered as an authentication sequence xN chosen randomly from the message set XN

(XN mostly is {0, 1}N) by the legitimate sender and shared secretly with the legitimate
receiver. In our authentication model, xN is published as a noisy version yN , taking
values in the set of points VN , modeling the original printed and scanned graphical
code (see Fig. 3.2 on the left). An opponent may observe yN and, naturally, tries to
retrieve the original authentication sequence using his skills in data estimation. After
his processing, he obtains an estimated sequence x̂N which is supposed practically to be
di�erent from the original xN (see (2) in Fig. 3.1). He then prints it using his printing
process to create a forged observable noisy image zN taking values in the same set of
points VN . He publishes zN hoping that it will be accepted by the receiver as coming
from the original source (see Fig. 3.2 on the right). The observed images yN and zN are
8 bits grey level images. In practice, this attack will be used to create false documents
or fake packages that could be considered as authentic.

The whole physical process, precisely printing and scanning devices used by the
legitimate parts (see (1) in Fig. 3.1) and by the counterfeiter (see (3) in Fig. 3.1),
are respectively modeled by probability distributions conditioned to the original data
PY |X,θ and PZ|X,θ̄ in which θ and θ̄ are set of parameters, taken in Θ, specifying the
devices in each case.

When observing a sequence vN , which may be one of the two possible sequences yN

or zN , the detector has to determine whether this observed sequence comes from the
legitimate source or not (see (5) in Fig. 3.1) supposed that the models PY |X,θ is known.
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The print and scan process in this particular setup for example can be modeled by an
AWGN channel or an additive i.i.d. lognormal noise as in [17].

As mentioned before, our authentication is based on NP-test in which the receiver
considers two hypothesis H0 and H1. The former hypothesis attests authenticity, i.e.
that the received sequence is generated by PY |X,θ and the latter one unveils a fake code,
i.e. that the observed sequence is driven from PZ|X,θ̄. Performances are evaluated via
computing accurately the probability of type I error and the probability of type II error.

3.2 Proposed models for print and scan

The two channels X → (Y ,Z) are considered being discrete and memoryless with condi-
tional probability distribution PY Z|X,θ,θ̄(y z|x, θ, θ̄). The marginal main and opponent

channels PY |X,θ(y|x, θ) and PZ|X,θ̄(z|x, θ̄) are de�ned by the transition probability
matrices of the main channel and the opponent channel, respectively.

Let TV |X,θ be the generic transition matrix modeling the printing and scanning
devices. The entries of this matrix are conditional probabilities TV |X,θ(v|x, θ) or simply
TV |X(v|x) relating an input alphabet X and the output alphabet V . In practice, X is
a digital value, i.e., a binary alphabet standing for black bit (0) and white bit (1), and
the channel output set V stands for the set of grey level values in the set {0, 1, ..., 255}.

The marginal distribution of the main channel PY |X,θ is equivalent to one print and
scan process, represents a grey level distribution of the authentic image conditioned
to the knowledge of both the authentication dots and the parameters governing the
legitimate print and scan process. On the other hand, PZ|X,θ̄ depends on the opponent
processing while he tries to recover the original sequence XN by the estimated sequence
X̂N before reprinting it, hoping that Pr(X̂N 6= XN) = ε with ε > 0 is arbitrarily small.

Practically, when performing a detection to obtain an estimated sequence X̂N , the
opponent always undergoes errors coming from the realistic fact that he is not able
to infer the original code. It is important to note that the opponent will have to
print a binary version of its observation because an industrial printer at this very high
resolution can only print binary images. These errors yield to the probability Pe,W for
the confusion between an original white dot with a black one and to the probabilityPe,B
for the confusion between an original black dot with a white one. This distinction is
due to the fact that the distribution TV |X,θ of the physical devices is arbitrary and not
necessarily symmetric. Let DW be the optimal decision region for guessed white dots
using thresholding:

DW =
{
v ∈ V : PY |X,θ(v|x = 1, θ) > PY |X,θ(v|x = 0, θ)

}
, (3.1)

and DcW is the complementary region in the set V . Error probabilities Pe,B and Pe,W
are then equal to
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Pe,B =
∑
v∈DW

PY |X,θ(v|x = 0, θ), (3.2)

and

Pe,W =
∑
v∈DcW

PY |X,θ(v|x = 1, θ). (3.3)

The channel XN → X̂N can be modeled as a binary input binary output (BIBO)
channel with transition probability matrix P X̂|X :

[
P X̂|X( x̂ = 0|x = 0) P X̂|X( x̂ = 1|x = 0)

P X̂|X( x̂ = 0|x = 1) P X̂|X( x̂ = 1|x = 1)

]
=

[
1− Pe,B Pe,B
Pe,W 1− Pe,W

]
(3.4)

As depicted in Fig. 3.1, because the opponent channel XN → ZN is a physically
degraded version of the main channel, XN → X̂N → ZN forms a Markov chain with the
relation P X̂ Z|X( x̂ z|x) = P X̂|X( x̂|x)TZ|X̂(z| x̂) where TZ|X̂ ≡ TZ|X̂,θ̄ is the transition

matrix of the counterfeiter physical device. Therefore, given PZ|X,θ̄ a grey level dis-
tribution of the forged image conditioned to the knowledge of both the authentication
dots and the parameters governing opponent print and scan process, we have:

PZ|X,θ̄(Z = v|X = 0, θ̄)

= (1− Pe,B)PZ|X̂,θ̄(v| X̂ = 0, θ̄)

+ Pe,BPZ|X̂,θ̄(v| X̂ = 1, θ̄),

(3.5)

and

PZ|X,θ̄(Z = v|X = 1, θ̄)

= (1− Pe,W )PZ|X̂,θ̄(v| X̂ = 1, θ̄)

+ Pe,WPZ|X̂,θ̄(v| X̂ = 0, θ̄).

(3.6)

Without loss of generality, a generalized symmetric exponential family (or general-
ized Gaussian distributions) can be used to model the physical device in our analysis,
i.e., the association of a printer with a scanner, used by the legitimate source TY |X(v|x)
and by the opponent TZ|X̂(v| x̂) which may be expressed as follow:

p(v|x) =
b

2aΓ(1/b)
e−( |v−µ(x)|

a )
b

(3.7)

where µ(x) is the mean and the parameter a can be derived from the variance σ2 =
Var(V ) by using below formula

a =
√
σΓ(1/b)Γ(3/b). (3.8)
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The parameter b is used to control the sparsity of the distribution, for example,
when b = 1 the distribution is Laplacian, b = 2 the distribution is Gaussian, and
b→ +∞ the distribution is uniform. The resulting distributions PY |X,θ and PZ|X,θ̄ are
�rst discretized then truncated to provide values within the �nite set [0, 1, ..., 255] to
model a reasonable scanning process. Each channel is de�ned by four parameters, two
per each type of dots, µb = µ(0) and σb for black dots and µw = µ(1) and σw for white
dots.

Fig. 3.3 illustrates the di�erent types of GCs using generalized Gaussian distribu-
tions on the main and the opponent channels of same mean and variance and with
b = 1, b = 2 and b = 6 (a distribution which is close to uniform).

Figure 3.3: Examples of 20 × 20 code which are generated (XN) and printed (Y N)

by the main channel, then estimated (X̂N) and reprinted (ZN) by an opponent using
generalized Gaussian distributions in case b = 1, b = 2 and b = 6. Main and opponent
channels are identical, µb = 50, µw = 150, σb = 42 and σw = 42.

Another choice to model the print and scan channel, mentioned in [17], is the use
of Lognormal distribution:

p(v | x) =
1

vs(x)
√

2π
e
− (log v−µ(x))2

2s2(x) (3.9)

with the mode of the distribution is de�ned as M = eµ(x)−s2(x), and the variance is
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given by σ2 =
(
es

2(x) − 1
)
e2µ(x)+s2(x). In our case, the Lognormal distribution can be

parametrized by the standard deviations σb, σw and the modesMb, Mw respectively for
black and white dots. Fig. 3.4 depicts truncated Lognormal distributions having same
modes but di�erent standard deviations.
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Figure 3.4: Representation of the print and scan model for the black dots (on the
left) and the white parts of the paper (on the right) for di�erent standard deviations
σb = σw = σ with Mb = 70 and Mw = 150 for the Lognormal distribution.

Note that other print and scan models that deal with the gamma transfer function
or additive noise with input dependent variance can be found in [64], but the general
methodology considered in this thesis is not dependent on the model and can still be
applied.

3.3 Receiver strategies

In this subsection we introduce the testing strategies to check whether, for a given
�xed codeword (x1, ..., xN) in {0, 1}N , an observed i.i.d sequence (o1, ..., oN |x1, ..., xN)
(with (oi|xi) belonging to a discrete �nite set V) is generated from a given distribution
PY |X,θ of the main channel or if it comes from an alternative hypothesis associated to
distribution PZ|X,θ̄ of the opponent channel. Generally, we are interested in performing
authentication after observing a sequence of N samples (oi|xi) checking whether this
sequence comes from a original source or from a counterfeiter. Similar to the example
presented in subsection (2.1.1), the strategy of receiver is to establish a decision based on
binary testing problems between two hypothesis H0 and H1 corresponding respectively
to each of the former cases. As a matter of fact, the sample space VN will be partitioned
into two regions H0 and H1 and it leads to two kinds of errors as being introduced from
the previous chapter: type I error with occurred probability α and type II error with
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occurred probability β. According to Neyman-Pearson theorem, under the constraint
α ≤ α∗, β is minimized if and only if the following log-likelihood test deduces the choice
of H1:

L = log
PZN |XN ,θ̄

(
oN
∣∣xN , H1

)
PY N |XN ,θ (oN |xN , H0)

≥ λ (3.10)

where λ is a threshold verifying the constraint α ≤ α∗.

However, the test statistic (3.10) is just a general expression while in practice, the
receiver does not know exactly the true parameters θ̄ related to the print and scan
process of the opponent or even the distribution PZ|X,θ̄ of this process. Therefore, the
receiver who want to perform authentication can use two possible strategies:

� Firstly, it is assumed that he does not know anything about PZ|X,θ̄, in this case
the receiver can use a threshold to count the number of errors between yN and
xN or zN andxN respectively. He can after build a test based on the distributions
of the number of errors in yN and zN to perform authentication. We call this
strategy authentication via binary thresholding.

� Secondly, if the underlying distribution PZ|X,θ̄ is known or may be guessed, the

receiver can use the knowledge of the true parameters θ̄ to establish a test statis-
tic (see subsection 2.1.2) . This strategy is called authentication via grey level
observations (see section 3.3.2).

� The last scenario is indeed similar with the second strategy but in the case where
the receiver has to �rst estimate the opponent channel parameters before designing
the authentication test. The impact of the estimation of these parameters on the
performance of the authentication system is detailed in the next chapter.

3.3.1 Authentication via binary thresholding

The legitimate receiver �rst observes sequence oN and uses a threshold based on the
main channel marginal distribution PY |X,θ to restore a binary version x̃N , called the
decoded sequence of the original message xN using the same decision region as de�ned
by (3.1), which naturally generates errors.

� In the main channel, i.e., when ON = Y N , error probabilities are equivalent to
(3.2) and (3.3).

� In the opponent channel, i.e., when ON = ZN , we make use of (3.5) and (3.6) to
express the corresponding error probabilities:

P̃e,B =
∑
v∈DW

PZ|X,θ̄(v|X = 0, θ̄) (3.11)
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hence

P̃e,B = (1− Pe,B)
∑

v∈DW
TZ|X̂,θ̄(v| X̂ = 0, θ̄)

+Pe,B
∑

v∈DW
TZ|X̂,θ̄(v| X̂ = 1, θ̄)

= (1− Pe,B)P
′
e,B + Pe,B(1− P ′e,W )

(3.12)

where P
′
e,B =

∑
v∈DW

TZ|X̂,θ̄(v| X̂ = 0, θ̄) and P
′
e,W =

∑
v∈DcW

TZ|X̂,θ̄(v| X̂ = 1, θ̄). The

same development yields:

P̃e,W = (1− Pe,W )P
′

e,W + Pe,W (1− P ′e,B) (3.13)

For this �rst strategy, the opponent channel may be viewed as the cascade of two binary
input/binary output channels:

[
1− P̃e,B P̃e,B
P̃e,W 1− P̃e,W

]
=

[
1− Pe,B Pe,B
Pe,W 1− Pe,W

]
×
[

1− P ′e,B P
′
e,B

P
′
e,W 1− P ′e,W

]
(3.14)

We realize that the test used to decide whether the observed decoded sequence
x̃N comes from the original source or not is equivalent to counting the number of
erroneous decoded dots. It should be noted that the conditional distribution of each
random component (X̃i | xi) of the random i.i.d sequence (X̃N | xN) is the same
for each given type. We compute then the probabilities describing the random i.i.d
sequence (X̃N | xN) for each of the two possible hypothesis H0 and H1, and we derive
the corresponding test based on the general expression (3.10). Under hypothesis Hj,
j ∈ {1, 2}, these probabilities are formulated conditionally to the known original code
xN . Let NB = {i : xi = 0} and NW = {i : xi = 1} with NB = |NB|, NW = |NW | and
N = NB +NW . From the property of i.i.d sequences we have:

P
(
x̃N
∣∣xN , Hj

)
=

N∏
i=1

P ( x̃i|xi, Hj)

=
∏
i∈NB

P ( x̃i| 0, Hj)×
∏

i∈NW
P ( x̃i| 1, Hj)

(3.15)

Particularly,

� Under hypothesis H0, the channel X → X̃ has distribution given by (3.2) and
(3.3) and we have:

P
(
x̃N
∣∣xN , H0

)
= (Pe,B)ne,B (1− Pe,B)NB−ne,B

× (Pe,W )ne,W (1− Pe,W )NW−ne,W ,
(3.16)

where ne,B and ne,W are the number of error (x̃i 6= xi) when black is decoded into
white and when white is decoded into black respectively.
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� Under hypothesis H1, the channel X → X̃ has distribution given by (3.12) and
(3.13) and we have:

P
(
x̃N
∣∣xN , H1

)
=

(
P̃e,B

)ne,B (
1− P̃e,B

)NB−ne,B
×

(
P̃e,W

)ne,W (
1− P̃e,W

)NW−ne,W
,

(3.17)

Applying now the Neyman-Pearson decision (3.10) the test is expressed as:

L1 = log
P( x̃N |xN ,H1)
P ( x̃N |xN ,H0)

H1

≷
H0

λ (3.18)

or

L1 = ne,Blog
(P̃e,B(1−Pe,B))
(Pe,B(1−P̃e,B))

+ ne,W log
(P̃e,W (1−Pe,W ))
(Pe,W (1−P̃e,W ))

H1

≷
H0

λ1, (3.19)

where λ1 = λ − NBlog
(1−P̃e,B)
(1−Pe,B)

− NW log
(1−P̃e,W )
(1−Pe,W )

. This expression has the practical

advantage to only count the number of errors in order to perform the authentication
task but at a cost of a loss of optimality.

3.3.2 Authentication via grey level observations

In the second strategy, the receiver performs his test directly on the received sequence
oN without using any given threshold or decoding. We will see in the next subsection
(3.4) that this strategy is better than the previous one. Here again, the conditional
distribution of each random component (Oi | xi) of the random i.i.d sequence (ON | xN)
is the same for each type of data of X. The Neyman-Pearson test is expressed as:

L2 = log
P(oN |xN ,H1)
P (oN |xN ,H0)

H1

≷
H0

λ2, (3.20)

which can be developed as

L2 =
∑
i∈NB

log
PZ|X,θ̄(oi|0)

PY |X,θ(oi|0)
+
∑

i∈NW
log

PZ|X,θ̄(oi|1)

PY |X,θ(oi|1)

H1

≷
H0

λ2, (3.21)

or more speci�cally,

L2 =
∑
i∈NB

log
[
(1− Pe,W )

TZ|X̂,θ̄(oi|0)

TY |X,θ(oi|0)
+ Pe,W

TZ|X̂,θ̄(oi|1)

TY |X,θ(oi|0)

]
+∑

i∈NW
log
[
(1− Pe,B)

TZ|X̂,θ̄(oi|1)

TY |X,θ(oi|1)
+ Pe,B

TZ|X̂,θ̄(oi|0)

TY |X,θ(oi|1)

] H1

≷
H0

λ2.
(3.22)

Note that the expressions of the transition matrix modeling the physical processes
TY |X,θ and TZ|X̂,θ̄ are required in order to perform the optimal test, i.e., the receiver
needs to know or to estimate the print and scan processes of the opponent.
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3.3.3 Comparison between the two strategies

For this comparison and without loss of generality, we consider only the Gaussian model
with variance σ2 for the physical devices TY |X,θ and TZ|X̂,θ̄. and we compare the receiver
operating characteristic (ROC) curves associated with the two di�erent strategies. Note
that the error probabilities are computed using the results given in the next subsection
(see 3.4). We can notice that the gap between the two strategies is signi�cant in the
variation of magnitude. This is not surprising since the binary thresholding removes
information from the gray-level observation, yet this has a practical impact because
one practitioner can be tempted to count the number of errors as given in (3.19) as an
authentication score for its easy implementation or in case when he cannot estimate
the opponent channel. The information theoretical analysis presented in [53] con�rms
also that authentication is more accurate without thresholding.

Figure 3.5: ROC curves for two di�erent strategies in case N = 2.103, σb = σw = 52

3.4 Reliable computation for error probabilities

In the previous subsection we have expressed explicitly the Neyman-Pearson test for
the two proposed receiver's strategies summarized by (3.19) and (3.20). These tests
may then be practically performed on the observed sequence of size N coming from
an observed GC in order to decide about its authenticity. We aim now at expressing
the error probabilities of types I and II and comparing the authentication performance
of two possible strategies described previously. It should be reminded that throughout
the thesis we deal with discrete case for the main and the opponent densities although
the results can be extended to the continuous case. So if we let m = 1, 2 be the index
denoting the strategy, a straightforward calculation gives exactly
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αm =
∑
l>λm

PLm(l | H0) (3.23)

βm =
∑
l<λm

PLm(l | H1) (3.24)

where PLm(l | Hj) is the density of the log-likelihood ratio Lm under hypothesis Hj.

3.4.1 Gaussian approximation

As the length N of the sequence is generally large enough, we commonly use the central
limit theorem (CLT) to approximate the distributions PLm , m = 1, 2 (a similar strategy
was considered in [84]).

� For the binary thresholding strategy, we know that ne,B and ne,W in (3.19) are
binomial random variables depending on the origin of the observed sequence. Let
Nx stands for the number of data of type x in the original code, ne,x stands for
ne,B or ne,W , and Pe,x stands for the cross-over probabilities emerging from type
x in the BIBO channels (3.4) or (3.14). When N is large enough, using CLT the
binomial random variables can be computed from a Gaussian distribution. We
have thus:

ne,x ∼ N (NxPe,x, NxPe,x(1− Pe,x)) (3.25)

From (3.19), L1 is a weighted sum of Gaussian random variables and one can
obviously infer the parameters of the normal approximation describing the log-
likelihood L1.

� For authentication via grey level observations, , i.e. when the receiver applies
the test directly on the observed gray-level sequence, the log-likelihood L2 in Eq.
(3.22) may be expressed as two sums of i.i.d variables and becomes:

L2 =
∑
i∈NB

l(oi | 0) +
∑
i∈NW

l(oi | 1)
H1

≷
H0

λ2, (3.26)

where l(v | t) is a function l : V | X → R having a distribution with mean and
variance respectively equal to:

µx = E [l(V | x) | Hj] =
∑
v∈V

l(v | x)P (v | x,Hj), (3.27)

and
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σ2
x = Var [l(V | x) | Hj] =

∑
v∈V

(l(v | x)− µx)2P (v | x,Hj), (3.28)

with P = PY |X (respectively P = PZ|X) for j = 0 (respectively 1). The CLT can
then be used again to approximate the distribution of L2 and compute type I and
type II error probabilities.

3.4.2 Asymptotic expression

In this part, for the shake of simplicity we drop the subscript m denoting the strategy
as all the subsequent analysis is common for both of them.

One important problem is the fact that the Gaussian approximation proposed pre-
viously provides inaccurate error probability values when the threshold λ in (3.23) and
(3.24) is far from the mean of the log-likelihood random variable L. Instead Cherno�
bound and large deviation theory [33] can be employed in this context as very small
error probabilities of types I and II may be desired [48]. Given a real number s, the
Cherno� bound on type I and type II errors may be expressed as:

α = Pr (L ≥ λ | H0) ≤ e−sλgL(s | H0) for any s > 0, (3.29)

β = Pr (L ≤ λ | H1) ≤ e−sλgL(s | H1) for any s < 0, (3.30)

where the function gL(s | Hj), j = 0, 1 is the moment generating function of L de�ned
as:

gL(s | Hj) = EPL(L|Hj)
[
esL
]
, (3.31)

and the expectation is calculated w.r.t distribution PL(L | Hj).
Because L is a sum of N independent random variables, asymptotic analysis in prob-

ability theory (when N is large enough) shows that bounds similar to (3.29) and (3.30)
are much more appropriate for estimating α and β than the Gaussian approximation
especially when λ is far from E[L], namely when bounding the tails of a distribution
[33, 48]. The tightest bound is obtained by �nding the value of s that provides the
minimum of the right hand side (RHS) of (3.29) and (3.30), i.e. for the minimum of
e−sλgL(s | Hj) for each j = 0, 1. Taking the derivative, the value s that provides the
tightest bound under each hypothesis is such that1:

λ =
dgL(s|Hj)

ds

gL(s|Hj)

∣∣∣∣
s=sj

= d
ds

log gL(s | Hj)
∣∣
s=sj

= d
ds
µL(s | Hj)

∣∣
s=sj

(3.32)

where

1one can show that e−sλgL(s | Hj) is a convex function of s
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µL(s | Hj) = log gL(s | Hj), (3.33)

is the semi-invariant moment generating function or cumulant generating function. This
function has many interesting properties that ease the extraction of an asymptotic
expression for (3.29) and (3.30) [48]. For instance, this function is additive for the sum
of independent random variables, and we have

µL(s | Hj) =
∑
i∈NB

µi|0(s | Hj) +
∑
i∈NW

µi|1(s | Hj) (3.34)

where µi|x(s | Hj) is the cumulant generating function of the random variable l(Oi | x)
when the observed sequence comes from the distribution associated to hypothesis Hj.
Additionally, the relation (3.32) may be interpreted as the sum of the derivatives at the
value sj optimizing the bounds of α and β as:

λ =
∑
i∈NB

µ′i|0(sj | Hj) +
∑
i∈NW

µ′i|1(sj | Hj). (3.35)

The Cherno� bounds on α and β in (3.29) and (3.30) may thus be expressed as:

α = Pr (L ≥ λ | H0)

≤ exp

[ ∑
i∈NB

(
µi|0(s0 | H0)− s0µ

′
i|0(s0 | H0)

)
+

∑
i∈NW

(
µi|1(s0 | H0)− s0µ

′
i|1(s0 | H0)

)]
.

(3.36)

and

β = Pr (L ≤ λ | H1)

≤ exp

[ ∑
i∈NB

(
µi|0(s1 | H1)− s1µ

′
i|0(s1 | H1)

)
+

∑
i∈NW

(
µi|1(s1 | H1)− s1µ

′
i|1(s1 | H1)

)]
.

(3.37)

From our assumption, the distribution of each random component (Oi | xi) in the i.i.d
sequence (ON | xN) is the same for each type of data X, and consequently, µi|x(s |
Hj) = µx(s | Hj), i.e. µi|x(s | Hj) is independent from i for each type of data x. The
RHS in (3.36) and (3.37) can be simpli�ed as

exp [NB (µ0(sj | Hj)− sjµ′0(sj | Hj)) +NW (µ1(sj | Hj)− sjµ′1(sj | Hj))] . (3.38)

Roughly speaking, Cramér's theorem [33] states that for su�ciently large N , the upper
bounds expressed for j = 0, 1 in (3.38) are also lower bounds for α and β respectively.
Thus without loss of generality, one can suppose that NB = NW = N/2; we have then:
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lim
N→∞

2

N
logα = [µ(s0 | H0)− s0µ

′(s0 | H0)] , (3.39)

lim
N→∞

2

N
log β = [µ(s1 | H1)− s1µ

′(s1 | H1)] , (3.40)

where s0 > 0, s1 < 0, µ(sj | Hj) = µ0(sj | Hj) + µ1(sj | Hj) and µ′(sj | Hj) = µ′0(sj |
Hj)+µ′1(sj | Hj). One can show also that s1 = s0−1. A modi�ed asymptotic expression
including a correction factor is evaluated for the sum of an i.i.d random sequence (see
[48], Appendix 5A), and for large N we have:

α = Pr(L ≥ λ | H0)

→
N→∞

1

|s0|
√
Nπµ′′(s0|H0)

exp
{
N
2

[µ(s0 | H0)− s0µ
′(s0 | H0)]

}
,

(3.41)

and

β = Pr(L ≤ λ | H1)

→
N→∞

1

|s1|
√
Nπµ′′(s1|H1)

exp
{
N
2

[µ(s1 | H1)− s1µ
′(s1 | H1)]

}
.

(3.42)

where µ′′(sj | Hj) = µ′′0(sj | Hj) + µ′′1(sj | Hj) is the second derivative of cumulant
generating function l(V | x) de�ned by:

l(v | 0) = log

(
(1− Pe,B)

TZ|X̂,θ̄(v | 0)

TY |X,θ(v | 0)
+ Pe,B

TZ|X̂,θ̄(v | 1)

TY |X,θ(v | 0)

)
, (3.43)

l(v | 1) = log

(
(1− Pe,W )

TZ|X̂,θ̄(v | 1)

TY |X,θ(v | 1)
+ Pe,W

TZ|X̂,θ̄(v | 0)

TY |X,θ(v | 1)

)
. (3.44)

We give below the numerical results for the di�erence between Gaussian approxima-
tion and Asymptotic Expression and for the comparison with Monte-Carlo simulation
in order to see which is the best choice for authentication performance.

In order to assess the accuracy of the computations of α and β using either the
Gaussian approximation given by (3.23) and (3.24), the Asymptotic Expression given by
(3.39) and (3.42) and the Monte-Carlo simulations using importance sampling given in
our paper [53], we respectively derive ROC curves for generalized Gaussian distributions
and b = {1, 2, 6}. The ROCs are practically computed by �rst setting a threshold λ and
then deriving the probabilities associated to this threshold.

Fig. 3.6 illustrates the gap between the estimation of α and β using the Gaussian
approximation and the asymptotic expression or the Monte-Carlo simulations. The
Monte-Carlo simulations con�rm the fact that the derived Cramér Cherno� bounds are
tight, and the di�erence between the results obtained with the Gaussian approxima-
tion are very important especially for close to uniform channels. This sheds light on
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an important conclusion that using Cherno� bounds are more reliable to perform au-
thentication than using Gaussian approximation when the code length is large enough.
From Fig. 3.6 we can also notice that for a same channel power, the authentication
performances are better for b = 6 then for b = 2 and b = 1.
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Figure 3.6: Comparison between the Gaussian approximation, the Asymptotic expres-
sion and Monte-Carlo simulations via importance sampling for b = 1, b = 2 and b = 6.
Main and opponent channels are identical, µb = 50, µw = 150, σb = 40, σw = 40.

3.5 Conclusion of Chapter 3

In this chapter, rigorously we have introduced the general model for print and scan
channels. We have also proposed the receiver's strategies to perform authentication
relying on the classical binary hypothesis testing. We have made the comparisons for
all strategies and indicated the best strategy for the receiver. A reliable computation
of the authentication performance based on Asymptotic Expression method has been
derived and compared with the Monte-Carlo simulation (see also in [81, 53]).

From the practical point of view, the next chapter studies the impact of the esti-
mation on authentication performance. Another expression of Asymptotic Expression,
based on a well-known distribution in statistical physic, will be proposed to ful�ll this
study.



Chapter 4

Impact of estimation on

authentication performances

4.1 Asymptotic expression employing Boltzmann's distribution

4.2 Approximation of authentication performance up to the

second order

4.2.1 Second order approximation

4.2.2 Distribution of log β(ˆ̄θ)

4.3 Approximation of authentication performance up to the

third order

4.4 Numerical results

4.4.1 EM algorithms on truncated data

4.4.2 Fisher information for mixture of truncated discrete normal

distribution

4.4.3 Impact of estimation on authentication performance

4.4.4 A more accurate approximation for log β(α, ˆ̄θ) using third or-

der expansion

4.4.5 Asymptote of authentication performance w.r.t the sample size

4.5 Conclusions of chapter 4

�There is no end to education. It is

not that you read a book, pass an

examination, and �nish with

education. The whole of life, from the

moment you are born to the moment

you die, is a process of learning. �

Jiddu Krishnamurti
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In this chapter we extend our analysis to the case where the receiver does not know
the true parameter θ̄ related to the opponent print and scan process, but establishes a
test statistic using estimated ones obtained by a maximum likelihood based algorithm.
The estimated parameters are computed from several codes identi�ed previously as fake
codes which represent a set of printed and scanned dots driven from PZ|X,θ̄ (see (4) in
Fig. 3.1).

4.1 Asymptotic expression employing Boltzmann's dis-

tribution

As we have mentioned in the setup, practically the receiver have only a partial knowl-
edge about the opponent channel. We assume indeed that the receiver has an a-priori
knowledge about the families of distributions that govern the opponent channel. Fur-
thermore we assume that the receiver observes several identi�ed fake GCs, he then uses
these observed data to estimate the parameters of the opponent channel. Because every
estimation yields noise, the loss in authentication performance is computed by compar-
ing the error probabilities obtained for the true and estimated channel. A rigorous
study of this loss is consequently needed due to the natural fact that the receiver in
this chapter performs authentication based on the estimated opponent channel instead
of the true one that gives the optimal performance.

It is important to compare our study with a direct use of the Generalized Likelihood
Ratio Tests (GLRT, see 2.1.2). Or analysis is motived by the following points:

� In our setup, the opponent channel parameters are not estimated directly from
the received code (as for the GLRT) but they are estimated beforehand from a
batch of codes which are known to be fake.

� Because we are interested in computing an accurate estimation of the error proba-
bilities, we cannot invoke a variation of the Wilks' theorem (see eq. (2.26)), since
it is only accurate for large N or small false alarm probabilities.

� Moreover, our setup is di�erent from the assumptions of the Wilks's theorem
since the parametric de�nition of densities under H0 and H1 can be di�erent in
our case.

� There is one connection however: in the case where the observation used by the
GLRT comes from only fake codes, then the test that we use in this chapter and
the GLRT are equivalent.

In this section, we develop an essential tool to ful�ll this study, which is originally
related to the more general concepts of f -divergence in information theory and Boltz-
mann's distribution in statistical physics.
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There exists di�erent expressions for the asymptotic tail probabilities of sum of i.i.d
random variables, for example, in the part �Asymptotic expression� of section (3.4)
or in [30] on Sanov's theorem that uses information theoretical arguments. Here, we
present a uni�ed tool employing the Boltzmann's distribution, that allows to derive
these expressions and to use them to link the probability errors of the tests obtained
for true parameters and for estimated ones. All these expressions or proofs use a twisted
distribution (see in [31, 26]) which is centered on the desired threshold when optimized.
This desired threshold is bounded from above and below by the quantities related to
the Kullback-Leibler divergences between the distribution of the main and opponent
channels. By the use of Boltzmann's distribution, we can generalize the concept of
this twisted distribution. The most important fact is that the generalized tool helps us
approximate accurately the losses on β via a very simple expression when the opponent
channel is estimated.

The goal of this part is to show the relation between the Boltzmann's distribution
and the Cherno� bounds mentioned in the previous part and to deduce several inter-
esting properties. We start with generating a property related to the f -divergence. For
simplicity, we denote:

p0 ≡ PV |H0 , (4.1)

the parametric density of the sequence coming from the null hypothesis H0, and

p1 ≡ PV |H1 , (4.2)

for the one coming from the alternative hypothesis H1.

Generally, we can consider two densities p0(v) and p1(v) de�ned on a space Ω. The
requirement is that the n-moment of the log-likelihood ratio w.r.t p0 and p1 are �nite,
i.e.,

ˆ
Ω

(
log

p1(v)

p0(v)

)n
p1(v)d(v) <∞, (4.3)

ˆ
Ω

(
log

p0(v)

p1(v)

)n
p0(v)d(v) <∞, (4.4)

which implies that DKL(p1||p0) <∞ and DKL(p0||p1) <∞ by taking n = 1.Hence p0(v)
and p1(v) have common support on Ω, i.e., both p0 and p1 are absolutely continuous
w.r.t a common Lebesgue measure on Ω. So the following parametric density, called a
Boltzmann distribution, is well-de�ned:

pt(v) =
[p0(v)]1−t [p1(v)]t

Nt

, (4.5)

on Ω with Nt is normalized constant Nt =
´

Ω
[p0(v)]1−t[p1(v)]tdv (0 ≤ t ≤ 1). We are

then able to de�ne the f -divergence between pt and pu as:
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Df (pt||pu) =

ˆ
Ω

f

(
pt(v)

pu(v)

)
pu(v)dv, (4.6)

with f is a convex function.

Equations (A.2) and (A.1) developed in Appendix A.1 are interesting from the
mathematical point of view because each of them merges the cumulant generating
function and the Kullback-Leibler divergence in a same formula. Expressions for the
tail probabilities α and β of the sum of Nr i.i.d random variables expressed in (3.39)
and (3.42) may be expressed then by, after pointing that s1 = s0 − 1:

α ' exp {Nr [µ(s)− sµ′(s)]} ,
β ' exp {Nr [µ(s) + (1− s)µ′(s)]} . 0 < s < 1 (4.7)

or equivalently:

logα ' Nr(µ(s)− sµ′(s)) = −NrDKL(ps||p0), (4.8)

and

log β ' Nr(µ(s) + (1− s)µ′(s)) = −NrDKL(ps||p1). (4.9)

Now we apply this general development in our case in which DKL(ps ‖ p0) and
DKL(ps ‖ p1) (0 < s < 1) are de�ned as:

DKL(ps ‖ p0) = DKL(ps(· | 0) ‖ p0(· | 0)) +DKL(ps(· | 1) ‖ p0(· | 1)), (4.10)

and

DKL(ps ‖ p1) = DKL(ps(· | 0) ‖ p1(· | 0)) +DKL(ps(· | 1) ‖ p1(· | 1)), (4.11)

where

p0(v | x) = PY |X,θ (v|x,H0)
p1(v | x) = PZ|X,θ̄ (v|x,H1)

x = 0, 1 (4.12)

and

ps(v | x) = [p0(v|x)]1−s[p1(v|x)]s∑
v∈V

[p0(v|x)]1−s[p1(v|x)]s
x = 0, 1. (4.13)

As we have mentioned above, we can consider without loss of generality that NB =
NW = N/2 (N is the sample size), the formulas (4.8) and (4.9) are then:

logα ' −N
2
DKL(ps||p0) (4.14)
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log β ' −N
2
DKL(ps||p1), (4.15)

which gives us an explicit approximation of the error probabilities w.r.t. the Boltz-
mann's distribution ps.

4.2 Approximation of authentication performance up

to the second order

In this section we analyze how the set of estimated parameters impacts the performance

of the probability of type II error β(α, ˆ̄θ) for a �xed value of α. Precisely, we provide

a relation between the variation on log β(α, ˆ̄θ) and the variation on ˆ̄θ. To do this,
we assume that the proposed estimation scheme is able to provide unbiased estimated

parameters ˆ̄θ that are close to the true parameters θ̄ of the opponent channel.

4.2.1 Second order approximation

Here, we suppose that ˆ̄θ is a vector of m unknown parameters, i.e., ˆ̄θ = (ˆ̄θ1, ...,
ˆ̄θm).

Without loss of generality, we can take into account our analysis on the codes with the
same number of bits 0 (Nb) and bits 1 (Nw), i.e., Nb = Nw = N

2
. Furthermore, for

large enough N , the changes of correcting factors 1

|sj |
√
Nπµ′′(sj |Hj)

(j = 0, 1) in (3.41)

and (3.42) are negligible and we drop their analysis.

According to the Taylor expansion we can write:

β∗(ˆ̄θ) ∼= β∗(θ̄) + ∇β∗(ˆ̄θ)
∣∣∣
ˆ̄θ=θ̄

(ˆ̄θ − θ̄) +
1

2
(ˆ̄θ − θ̄)T ∇2β∗(ˆ̄θ)

∣∣∣
ˆ̄θ=θ̄

(ˆ̄θ − θ̄) + ... (4.16)

where

β∗(ˆ̄θ) ≡ β∗(α, ˆ̄θ) =
2

N
log β(α, ˆ̄θ) = µ(s1(ˆ̄θ) | H1)− s1(ˆ̄θ)µ′(s1(ˆ̄θ) | H1),

and ∇β∗(ˆ̄θ) and ∇2β∗(ˆ̄θ) are the gradient vector and Hessian matrix of β∗(ˆ̄θ) respec-

tively. For simplicity, we denote D = ∇β∗(ˆ̄θ) and H = ∇2β∗(ˆ̄θ).

Let's denote also:

α∗(ˆ̄θ) ≡ 2

N
logα(ˆ̄θ) = µ(s0(ˆ̄θ) | H0)− s0(ˆ̄θ)µ′(s0(ˆ̄θ) | H0),

We have for each ˆ̄θi the �rst partial derivative of α
∗(ˆ̄θ) w.r.t ˆ̄θi as:
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∂α∗(ˆ̄θ)

∂ ˆ̄θi
=

Ep0

[
s0(ˆ̄θ)l′i(

ˆ̄θ)es0(ˆ̄θ)l(ˆ̄θ)
]

Ep0

[
es0(ˆ̄θ)l(ˆ̄θ)

] − s0(ˆ̄θ)

∂λ0(ˆ̄θ)

∂ ˆ̄θi

N/2
, (4.17)

where l(ˆ̄θ) = log p1(v| ˆ̄θ)
p0(v| ˆ̄θ)

and l′i(
ˆ̄θ) = ∂l(ˆ̄θ)

∂ ˆ̄θi
. Because α is �xed, ∂α∗(ˆ̄θ)

∂ ˆ̄θi
= 0 (i = 1, ...,m),

and hence:

∂λ0(ˆ̄θ)

∂ ˆ̄θi

N/2
=

Ep0

[
l′i(

ˆ̄θ)es0(ˆ̄θ)l(ˆ̄θ)
]

Ep0

[
es0(ˆ̄θ)l(ˆ̄θ)

] . (4.18)

Similarly, the �rst partial derivative of β∗(ˆ̄θ) w.r.t ˆ̄θi is

∂β∗(ˆ̄θ)

∂ ˆ̄θi
=

Ep1

[
s1(ˆ̄θ)l′i(

ˆ̄θ)es1(ˆ̄θ)l(ˆ̄θ)
]

Ep1

[
es1(ˆ̄θ)l(ˆ̄θ)

] − s1(ˆ̄θ)

∂λ1(ˆ̄θ)

∂ ˆ̄θi

N/2
. (4.19)

We always choose the same threshold for the test, so λ0(ˆ̄θ) = λ1(ˆ̄θ) ∀ ˆ̄θ and then

∂β∗(ˆ̄θ)

∂ ˆ̄θi
= s1(ˆ̄θ)

Ep1

[
l′i(

ˆ̄θ)es1(ˆ̄θ)l(ˆ̄θ)
]

Ep1

[
es1(ˆ̄θ)l(ˆ̄θ)

] −
Ep0

[
l′i(

ˆ̄θ)es0(ˆ̄θ)l(ˆ̄θ)
]

Ep0

[
es0(ˆ̄θ)l(ˆ̄θ)

]
 . (4.20)

By using two Boltzmann's distributions ps0(ˆ̄θ) ≡ ps0(v | ˆ̄θ) and ps1(ˆ̄θ) ≡ ps1(v | ˆ̄θ)
de�ned as follow:

ps0(ˆ̄θ) = es0(ˆ̄θ)l(ˆ̄θ)p0(ˆ̄θ)

Ep0
[
es0(ˆ̄θ)l(ˆ̄θ)

] ,

ps1(ˆ̄θ) = es1(ˆ̄θ)l(ˆ̄θ)p1(ˆ̄θ)

Ep1
[
es1(ˆ̄θ)l(ˆ̄θ)

] .
(4.21)

and with the approximation that p1(ˆ̄θ) ≈ p1(θ̄), we can simplify Eq. 4.20 with:

∂β∗(ˆ̄θ)

∂ ˆ̄θi
≈ s1(ˆ̄θ)

[
Eps1

(
l′i(

ˆ̄θ)
)
− Eps0

(
l′i(

ˆ̄θ)
)]
. (4.22)

Note that this approximation does not impair our results since in the following, we

compute the expectation of all derivatives for ˆ̄θ = θ̄. As pointed out previously, at the
true parameters θ̄, we know that :

s1(θ̄) = s0(θ̄)− 1. (4.23)

This property leads to the following lemma:
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Lemma 1. For every integrable function f(θ), whenever the Cherno�'s bounds are
optimized we have:

Eps1
(
f(θ̄)

)
= Eps0

(
f(θ̄)

)
(4.24)

at the true parameters θ̄.

Proof. The proof is directly obtained when plugging property (4.23) in (4.24).

Now we respectively compute the values of D and H at the actual model parameters
θ̄ of opponent's printing process.

Value of D at θ̄:

Applying this lemma we can directly imply the following equality for the gradient of
β∗ at the true parameter θ̄:

∇β∗(ˆ̄θ)
∣∣∣
ˆ̄θ=θ̄

= 0, (4.25)

hence D = 0. The equation (4.25) is not surprising since the NP-test is known to reach
the optimum when applied on the true parameter.

Value of H at θ̄:

In order to compute the value ofH at θ̄, we respectively derive the analytical formulas

for ∂2β∗(ˆ̄θ)

∂ ˆ̄θ2
i

∣∣∣∣
ˆ̄θ=θ̄

and ∂2β∗(ˆ̄θ)

∂ ˆ̄θi∂
ˆ̄θk

∣∣∣
ˆ̄θ=θ̄

. Now let us �rst denote:

cov(l, l′i) = Eps0
[
l(θ̄)l′i(θ̄)

]
− Eps0

[
l(θ̄)
]
Eps0

[
l′i(θ̄)

]
cov(l′i, l

′
k) = Eps0

[
l′i(θ̄)l

′
k(θ̄)

]
− Eps0

[
l′i(θ̄)

]
Eps0

[
l′k(θ̄)

]
Var(l) = Eps0

[
l2(θ̄)

]
− E2

ps0

[
l(θ̄)
]

Var(l′i) = Eps0
[(
l′i(θ̄)

)2
]
− E2

ps0

[
l′i(θ̄)

]
.

Then we can prove the two lemmas presented below that give expression of the the

second partial derivatives of β∗(ˆ̄θ):

Lemma 2. At ˆ̄θ = θ̄ we have, for each parameter ˆ̄θi :

∂2β∗(ˆ̄θ)

∂ ˆ̄θ2
i

∣∣∣∣
ˆ̄θ=θ̄

= s1(θ̄)
[

cov2(l,l′i)

Var(l)
− Var(l′i)

]
(4.26)

Proof. See A.2 in Appendix.
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Similar to the above lemma, we can prove the following result for the second partial

derivatives of β∗(ˆ̄θ) w.r.t the parameters ˆ̄θi and
ˆ̄θk:

Lemma 3. At ˆ̄θ = θ̄ we get, for each couple of parameter (ˆ̄θi,
ˆ̄θk), the following result:

∂2β∗(ˆ̄θ)

∂ ˆ̄θi∂
ˆ̄θk

∣∣∣
ˆ̄θ=θ̄

= s1(θ̄)
[

cov(l,l′i)cov(l,l′k)

Var(l)
− cov(l′i, l

′
k)
]

(4.27)

Proof. Taking the partial derivative on both sides of (4.22) w.r.t ˆ̄θk and follow the same
way as in lemma (2).

From Taylor expansion, the property (4.23), the lemma (2), (3) and Eq. 4.25, we
get the close form formula for the Hessian matrix H (i.e., we do not have to use any
sample to compute H) and obtain the important theorem below:

Theorem 4. The expansion for the log of the probability of type II error w.r.t the
estimated parameters close to the true parameters θ̄, can be expressed as a quadratic
form:

log β(ˆ̄θ) ∼= log β(θ̄) +
N

4
(ˆ̄θ − θ̄)TH(θ̄)(ˆ̄θ − θ̄) (4.28)

where

Hi,i(θ̄) = s1(θ̄)
[

cov2(l,l′i)

Var(l)
− Var(l′i)

]
Hi,k(θ̄) = s1(θ̄)

[
cov(l,l′i)cov(l,l′k)

Var(l)
− cov(l′i, l

′
k)
]
.

(4.29)

All quantities cov and Var in (4.29) are taken w.r.t the Boltzmann density ps0 de�ned
in (4.21).

It should be reminded that in order to analyze the authentication performance, we

try to analyze the variation of log β(ˆ̄θ) w.r.t the set of estimated parameters ˆ̄θ . It means

that we want to approximate the distribution of log β(ˆ̄θ) considering the distribution

of ˆ̄θ. Because we consider an unbiased MLE in order to achieve optimal estimation,
ˆ̄θ asymptotically tends to a normal distribution and consequently the distribution of

log β(ˆ̄θ) can be determined.

4.2.2 Distribution of log β(ˆ̄θ)

Distribution for one estimated parameter

For the sake of simplicity, we can start with the assumption that there is only one
parameter θ̄i0 that needs to be estimated. In this case the formula (4.28) in Theorem
(4) becomes:
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log β(ˆ̄θ) ∼= log β(θ̄) +
N

4

∂2β∗(ˆ̄θ)

∂ ˆ̄θ2
i0

∣∣∣∣∣
ˆ̄θ=θ̄

(
4θ̄
)2
, (4.30)

where 4θ̄ = (ˆ̄θi0 − θ̄i0) and

∂2β∗(ˆ̄θ)

∂ ˆ̄θ2
i0

∣∣∣∣∣
ˆ̄θ=θ̄

= s1(θ̄)

[
cov2(l, l′i0)

Var(l)
− Var(l′i0)

]
.

Let

γ(α, θ̄) =
N

4

∂2β∗(ˆ̄θ)

∂ ˆ̄θ2
i0

∣∣∣∣∣
ˆ̄θ=θ̄

× Var(ˆ̄θi0), (4.31)

and the normalized module be:

ρ(ˆ̄θi0) =

(
4θ̄
)2

Var(ˆ̄θi0)
, (4.32)

where Var(ˆ̄θi0) is the variance of the estimated parameter ˆ̄θi0 . is the variation of the
estimation . The expression (4.30) is then:

log β(ˆ̄θ) ∼= log β(θ̄) + γ(α, θ̄)ρ(ˆ̄θi0). (4.33)

From the property of NP-test, we always have log β(ˆ̄θ) ≥ log β(θ̄) for all ˆ̄θ so γ(α, θ̄)

is always nonnegative. By using (2.41), we can see ρ(ˆ̄θi0) has normalized chi-squared

distribution with 1 degree of freedom. Therefore, from (4.33) we show that log β(ˆ̄θ)

follows a shifted and scaled chi-squared distribution. The mean and variance of log β(ˆ̄θ)

for an unbiased estimator ˆ̄θ are then:

E
[
log β(ˆ̄θ)

]
= log β(θ̄) + γ(α, θ̄),

Var
[
log β(ˆ̄θ)

]
= 2γ2(α, θ̄).

(4.34)

Now if we take 100(1− η)% of an error spread region
[
χ2

1, η
2
, χ2

1,1− η
2

]
for θ̄i0 satisfying:

Pr
[
ρ(ˆ̄θi0) ≤ χ2

1, η
2

]
= η

2

Pr
[
ρ(ˆ̄θi0) ≤ χ2

1,1− η
2

]
= 1− η

2
.

We thus have a corresponding 100(1− η)% error spread region for log β(ˆ̄θ):[
log β(θ̄) + γ(α, θ̄)χ2

1, η
2
, log β(θ̄)γ(α, θ̄)χ2

1,1− η
2

]
, (4.35)
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and derive two critical ROC curves that bound 100(1− η)% error spread region for the
losses in authentication performance.

Distribution for several estimated parameters

The extension of this analysis for vectors of estimated parameters of size m is more

practical and needs to be taken into account. Hopefully, in this case if ˆ̄θ is unbiased
ML estimator and if we de�ne:

H∗ ≡ N

2
H (4.36)

then

log β(ˆ̄θ) ∼= log β(θ̄) +
1

2
(ˆ̄θ − θ̄)TH∗(θ̄)(ˆ̄θ − θ̄) (4.37)

is called a quadratic form of normal distribution and sometimes its distribution is called
generalized chi-squared distribution, say Gχ2

m, in statistical literature [58, 59, 67, 86, 92].
Generally, its density has no explicit form but it can be approximated numerically in
[86, 92]. For such quadratic models, which are extremely popular in �nancial risk
calculation [58], the quantiles can be estimated in [58]. Based on these developments,

we can deduce the con�dence regions for log β(ˆ̄θ) which are important to analyze the
losses in authentication performance.

We can obtain the explicit formulas for the expectation and variance of the quadratic
form (4.37) by using the following proposition:

Proposition 5. If ˆ̄θ is unbiased ML estimator with mean θ̄ and covariance matrix Σ ˆ̄θ
,

H∗ is a symmetric matrix with constant terms in R, then the expectation and variance

of log β(ˆ̄θ) are

E
[
log β(ˆ̄θ)

]
= log β(θ̄) + 1

2
tr
(
H∗Σ ˆ̄θ

)
,

Var
[
log β(ˆ̄θ)

]
= 1

2
tr
[(
H∗Σ ˆ̄θ

)2
]
.

(4.38)

Proof. See in Appendix A.3.

In our case, the 100(1−η)% con�dence region for log β(ˆ̄θ) is
[
Gχ2

m, η
2
,Gχ2

m,1− η
2

]
, where

two critical points (or quantiles) Gχ2
m, η

2
and Gχ2

m,1− η
2
can be computed numerically in

[58]. The approximations for the probabilities of log β(ˆ̄θ) can be provided using the
method described in [92].
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4.3 Approximation of authentication performance up

to the third order

Note that for authentication purposes only, our goal is to obtain a good approximation
of the distribution of the error probability as we have done in the previous section.

We are also interested here in analyzing the loss of accuracy due to the rest of the

Taylor expansion of log β(ˆ̄θ) w.r.t. the estimation error, especially the most important
term after the second derivative, i.e. the third order derivative. We show in this section
that if we take into account the third derivative, we are able to obtain a better match
with the asymptotic expression, however its impact is rather marginal compared with
the in�uence of the second order derivative. As a perspective we foresee that the use of

the third derivative might lead to a better approximation of the distribution of log β(ˆ̄θ).

This development help us obtain such a more accurate behavior of log β(ˆ̄θ) w.r.t to

ρ(ˆ̄θ).

For the sake of simplicity, we start this analysis for only one estimated parameter
�rst and then, as above, we provide an extension for the case of multiple estimated
parameters. Precisely, we suppose that there is only unknown parameter θ̄i0 and the

aim is to compute analytically the third partial derivative of log β(ˆ̄θ) w.r.t ˆ̄θi0 .
From (A.12) we have:

∂3β∗(ˆ̄θ)

∂ ˆ̄θ3
i0

= s̈
(i0)
1 (ˆ̄θ)A(ˆ̄θ) + 2ṡ

(i0)
1 (ˆ̄θ)

[
∂A(ˆ̄θ)

∂ ˆ̄θi0

]
(ˆ̄θ) + s1(ˆ̄θ)

[
∂2A(ˆ̄θ)

∂ ˆ̄θ2
i0

]
(ˆ̄θ),

with s̈
(i0)
j (ˆ̄θ) =

[
∂s2j (

ˆ̄θ)

∂ ˆ̄θ2
i0

]
(ˆ̄θ) (j = 0, 1). By using the the lemma (1), the third partial

derivative of β∗(ˆ̄θ) w.r.t ˆ̄θi0 at the true parameter θ̄ is then

∂3β∗(ˆ̄θ)

∂ ˆ̄θ3
i0

∣∣∣∣∣
ˆ̄θ=θ̄

= 2ṡ
(i0)
1 (θ̄)

∂A(ˆ̄θ)

∂ ˆ̄θi0

∣∣∣∣∣
ˆ̄θ=θ̄

+ s1(θ̄)
∂2A(ˆ̄θ)

∂ ˆ̄θ2
i0

∣∣∣∣∣
ˆ̄θ=θ̄

, (4.39)

where

∂2A(ˆ̄θ)

∂ ˆ̄θ2
i0

=
{
Eps1

[
l′′′i (ˆ̄θ)

]
− Eps0

[
l′′′i (ˆ̄θ)

]}
+ 2

∑
v∈V

l′′i0(ˆ̄θ)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θi0
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θi0

]

+
∑
v∈V

l′i0(ˆ̄θ)

[
∂2ps1 (ˆ̄θ)

∂ ˆ̄θ2
i0

− ∂2ps0 (ˆ̄θ)

∂ ˆ̄θ2
i0

]
.

(4.40)

From lemma (1), we also get:
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∂2A(ˆ̄θ)

∂ ˆ̄θ2
i0

∣∣∣∣
ˆ̄θ=θ̄

= 2
∑
v∈V

l′′i0(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θi0
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θi0

]
ˆ̄θ=θ̄

+
∑
v∈V

l′i0(θ̄)

[
∂2ps1 (ˆ̄θ)

∂ ˆ̄θ2
i0

− ∂2ps0 (ˆ̄θ)

∂ ˆ̄θ2
i0

]
ˆ̄θ=θ̄

.

(4.41)

In order to derive an explicit formula for the third partial derivative of β∗(ˆ̄θ) w.r.t ˆ̄θi0

at the true parameter θ̄ we need to compute analytically ∂2A(ˆ̄θ)

∂ ˆ̄θ2
i0

∣∣∣∣
ˆ̄θ=θ̄

and ṡ
(i0)
1 (θ̄). Their

expressions are presented in the theorem 8 in Appendix A.4.

Part (v) in Theorem (8) especially highlights the importance of the proposed devel-
opment on expressing Cherno� bound by using the concept of Boltzmann's distribu-
tions. We will see in the numerical part how these developments can be used to ful�ll
our proposed analysis.

And last but not least, in A.5 of Appendix we discuss about how to approximate

log β(ˆ̄θ) in the case of multiple estimated parameters using Taylor expansion up to
the third order. To do this, we have to rewrite the Taylor expansion (4.28), plus the
appearance of the third order term, as follow:

log β(ˆ̄θ) ∼= log β(θ̄) + N
4

m∑
i=1

m∑
j=1

∂2 log β(ˆ̄θ)

∂ ˆ̄θi∂
ˆ̄θj

∣∣∣
ˆ̄θ=θ̄

(ˆ̄θi − θ̄i)(ˆ̄θj − θ̄j)

+ N
12

m∑
i=1

m∑
j=1

m∑
k=1

∂3 log β(ˆ̄θ)

∂ ˆ̄θi∂
ˆ̄θj∂

ˆ̄θk

∣∣∣
ˆ̄θ=θ̄

(ˆ̄θi − θ̄i)(ˆ̄θj − θ̄j)(ˆ̄θk − θ̄k)
(4.42)

and this reduces to calculate ∂3 log β(ˆ̄θ)

∂ ˆ̄θi∂
ˆ̄θj∂

ˆ̄θk

∣∣∣
ˆ̄θ=θ̄

. Remind that we let:

β∗(ˆ̄θ) =
2

N
log β(ˆ̄θ),

so we just have to �nd to formula for ∂3β∗(ˆ̄θ)

∂ ˆ̄θi∂
ˆ̄θj∂

ˆ̄θk

∣∣∣
ˆ̄θ=θ̄

which is presented in Appendix A.5.

However, it should be emphasized here that until now we cannot derive the prob-

ability distribution for the expansion of log β(ˆ̄θ) up to the third order due to the fact
that the cube of a normal distribution is indeterminate (see [20, 95]). It is reminded

that the aim of this part is to �nd a better estimation of the behavior of log β(ˆ̄θ) w.r.t

the variation ρ(ˆ̄θ) of the estimated parameters.

4.4 Numerical results

In order to perform our analysis numerically, we have to construct a MLE scheme for
parameter estimation. It is known from the subsection (2.1.3) that the Expectation
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Maximization (EM) algorithm is an iterative method for �nding maximum likelihood.
Without loss of generality we assume that TZ|X̂=0,θ̄ and TZ|X̂=1,θ̄ are modeled by trun-

cated discrete normal distributions with θ̄ = (µ̄b, σ̄
2
b , µ̄w, σ̄

2
w) such that TZ|X̂,θ̄ is a mix-

ture of two truncated Gaussians (for instance, see (3.7) for b = 2). We then develop an
EM algorithm for this particular mixture to estimate the set of unknown parameters.

4.4.1 EM algorithms on truncated data

First, in order to interpret why we have to develop and to adapt the EM algorithm
to ful�ll our analysis, let's see in Fig. 4.1 that if we use the classical EM algorithm
for a mixture of two continous Gaussians the results are completely inaccurate even
when the number of observation Nobs is large. For example, in Fig. 4.1, the estimated
values ˆ̄µb of the true mean of black bits µ̄b = 50 are mostly on the range [80, 95] and
the estimated values ˆ̄σb of the true standard deviation σ̄b = 42 are mostly on the range
[44, 54]. Similarly, ˆ̄µw ∈ [157, 172] while the true mean of white bits µ̄w = 150 and
ˆ̄σw ∈ [44, 54] while the true standard deviation of white bits σ̄w = 42.

(a) Histogram of ˆ̄µb (b) Histogram of ˆ̄µw

(c) Histogram of ˆ̄σb (d) Histogram of ˆ̄σw

Figure 4.1: Histogram of four estimated parameters ˆ̄µb, ˆ̄σb, ˆ̄µw, ˆ̄σw of true parameters
(50, 150, 42, 42) via classical EM algorithm for truncated data. Here, Nobs = 104, Niter =
5.103, parameters of the main channel are (55, 155, 40, 40).
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In our setup, the observations, collected from the identi�ed fake codes of opponent's
channel, as supposed, are restricted to be integer (grey level) in the range [0, 255]. As
introduced in (3.2), the probability density function of the opponent channel has the
form:

PZ|X,θ̄(Z = v | X = 0, θ̄)

= (1− Pe,B)TZ|X̂,θ̄(v | X̂ = 0, θ̄)

+ Pe,BTZ|X̂,θ̄(v | X̂ = 1, θ̄)

or

PZ|X,θ̄(Z = v | X = 1, θ̄)

= (1− Pe,W )TZ|X̂,θ̄(v | X̂ = 1, θ̄)

+ Pe,WTZ|X̂,θ̄(v | X̂ = 0, θ̄).

Let call the mixing weights π0,B = 1−Pe,B, π1,B = Pe,B and π0,W = Pe,W , π1,W = 1−Pe,W .
The j-th (j = 0, 1) component truncated density function TZ|X̂,θ̄(v | X̂ = j, θ̄) =

fj(v|θ̄)∑255
u=0 fj(u|θ̄)

where fj(v | θ̄) are discrete normal distributions. Recall that zj,n be indicator

random variables for the component membership. We can express the log-likelihood
functions for complete data of size N = Nb +Nw as

LT (θ̄) = LT (θ̄ | B) + LT (θ̄ | W ) (4.43)

where

LT (θ̄ | B) =
Nb∑
n=1

∑
j=0,1

〈zj,n〉B
[
log πj,B + log TZ|X̂,θ̄(vn | X̂ = j, θ̄)

]

=
Nb∑
n=1

∑
j=0,1

〈zj,n〉B
[
log πj,B + log fj(vn | θ̄)− log

255∑
u=0

fj(u | θ̄)
]

(4.44)
and

LT (θ̄ | W ) =
Nw∑
n=1

∑
j=0,1

〈zj,n〉W
[
log πj,W + log TZ|X̂,θ̄(vn | X̂ = j, θ̄)

]

=
Nw∑
n=1

∑
j=0,1

〈zj,n〉W
[
log πj,W + log fj(vn | θ̄)− log

255∑
u=0

fj(u | θ̄)
]

(4.45)
After some steps of mathematical computation we can have in E-step:

〈zj,n〉B =
πj,BTZ|X̂,θ̄(vn | X̂ = j, θ̄)∑

k=0,1

πk,BTZ|X̂,θ̄(vn | X̂ = k, θ̄)
(4.46)
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and

〈zj,n〉W =
πj,BTZ|X̂,θ̄(vn | X̂ = j, θ̄)∑

k=0,1

πk,BTZ|X̂,θ̄(vn | X̂ = k, θ̄)
(4.47)

and in M-step the following update rules

µ̄j =

Nb∑
n=1
〈zj,n〉Bvn+

Nw∑
n=1
〈zj,n〉W vn

Nb∑
n=1
〈zj,n〉B+

Nw∑
n=1
〈zj,n〉W

−M1
j

σ̄2
j =

Nb∑
n=1
〈zj,n〉B(vn−µ̄j)2+

Nb∑
n=1
〈zj,n〉W (vn−µ̄j)2

Nb∑
n=1
〈zj,n〉B+

Nw∑
n=1
〈zj,n〉W

−M2
j

(4.48)

where

M1
j =

∑255
u=0(u−µ̄j)fj(u|θ̄)∑255

u=0 fj(u|θ̄)

M2
j =

∑255
u=0[(u−µ̄j)2−σ̄2

j ]fj(u|θ̄)∑255
u=0 fj(u|θ̄)

(4.49)

In Fig. 4.2, we can see that the parameter estimations are accurate: the means of
estimated parameters are close to the actual parameters and the standard deviations
are not important compared with the range of possible values of the model parameters.
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(a) Histogram of ˆ̄µb (b) Histogram of ˆ̄µw

(c) Histogram of ˆ̄σb (d) Histogram of ˆ̄σw

Figure 4.2: Histogram of four estimated parameters ˆ̄µb, ˆ̄σb, ˆ̄µw, ˆ̄σw of true parameters
(50, 150, 42, 42) via modi�ed EM algorithm for truncated data. Here, Nobs = 104,
Niter = 5.103, parameters of the main channel are (55, 155, 40, 40).

4.4.2 Fisher information for mixture of truncated discrete nor-

mal distribution

In our analysis, in order to compute the mean of log β(α, ˆ̄θ) and express the error spread
region for the authentication performance, it is required to compute the covariance

matrix Σ ˆ̄θ
associated with the ML estimators ˆ̄θ. Using the Cramer-Rao lower bound, it

is known that Σ ˆ̄θ
can be approximated by the inverse of the Fisher information Im(θ̄)

of a sequence of N i.i.d random variables conditioned by the vector of parameter θ̄ of
size m (see (2.37)). This matrix, in general, cannot be computed explicitly because θ̄

is unknown but it may be approximated by the observed Fisher information Jm(ˆ̄θ) at

the ML estimators ˆ̄θ (2.43) when N is su�ciently large. However, in order to conduct
our analysis, we suppose that we know the true parameters θ̄ of the main channels.
Therefore, we can numerically calculate the actual Fisher information matrices Im(θ̄)
and use it as an approximation for Σ ˆ̄θ

.
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In our setting, generally we consider θ̄ = (µ̄b, σ̄
2
b , µ̄w, σ̄

2
w) hence m = 4 and we need

to express the formulas for each I4(θ̄h, θ̄k) (h, k = 1, ..., 4):

I4(θ̄h, θ̄k) = IB4 (θ̄h, θ̄k) + IW4 (θ̄h, θ̄k)

where IB4 (θ̄h, θ̄k) and IW4 (θ̄h, θ̄k) are respectively the (h, k)-entries of the Fisher infor-
mation matrix I4 calculated by using Nb observed data from black bits and Nw ob-
served data from white bits. Without loss of generality, we show here the formulas for
IW4 (θ̄h, θ̄k) and obtain the similar ones for IB4 (θ̄h, θ̄k). If we take gθ̄ ≡ PZ|X=1,θ̄ and we
can easily �nd (for i ∈ {0, 1}):

∂ log gθ̄(v)

∂µi
=

πi,W
Biσi

[(
v−µi
σi

)
+ Ai

Bi

]
fi(v|θ̄)
gθ̄(v)

∂ log gθ̄(v)

∂σ2
i

=
πi,W
Biσ2

i

[
1
2

(
v−µi
σi

)2

+ Ci
Bi
− 1

2

]
fi(v|θ̄)
gθ̄(v)

(4.50)

where

Ai = fi(255 | θ̄)− fi(0 | θ̄)

Bi =
∑255

u=1 fi(u | θ̄)

Ci =
(

255−µi
2σ2
i

)
fi(255 | θ̄) + µi

2σ2
i
f(0 | θ̄).

(4.51)

Let's denote

M(i,j)
i1j1

=
u=255∑
u=0

(
u− µi
σi

)i1 (u− µj
σj

)j1 fi(u | θ̄)fj(u | θ̄)
f(u | θ̄)

, i1, j1 ∈ {0, 1, 2},

then we have the following formulas after several steps of calculation:

IW4 (µi, µj) =
πi,W πj,W
BiBjσiσj

M(i,j)
11 +

Ajπi,W πj,W
BiB2

j σiσj
M(i,j)

10

+
AiAjπi,W πj,W
B2
iB

2
j σiσj

M(i,j)
00 +

Aiπi,W πj,W
B2
iBjσiσj

M(i,j)
01

(4.52)

IW4 (µ0, σ
2
i ) =

π0,W πi,W
2B0Biσ0σ2

i

[
M(0,i)

12 −M
(0,i)
10

]
+

Ciπ0,W πi,W
B0B2

i σ0σ2
i
M(0,i)

10

+
A0π0,W πi,W
2B2

0Biσ0σ2
i

[
M(0,i)

02 −M
(0,i)
00

]
+

A0Ciπ0,W πi,W
B2

0B
2
i σ0σ2

i
M(0,i)

00

(4.53)
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IW4 (µ1, σ
2
i ) =

π1,W πi,W
2B1Biσ1σ2

i

[
M(i,1)

21 −M
(i,1)
01

]
+

Ciπ1,W πi,W
B1B2

i σ1σ2
i
M(i,1)

01

+
A1π1,W πi,W
2B2

1Biσ1σ2
i

[
M(i,1)

20 −M
(i,1)
00

]
+

A1Ciπ1,W πi,W
B2

1B
2
i σ1σ2

i
M(i,1)

00

(4.54)

IW4 (σ2
i , σ

2
i ) =

π2
i,W

4B2
i σ

4
i

[
M(i,i)

22 − 2M(i,i)
11 +M(i,i)

00

]
+

Ciπ
2
i,W

B3
i σ

4
i

[
M(i,i)

11 −M
(i,i)
00

]
+

C2
i π

2
i,W

B4
i σ

4
i
M(i,i)

00

(4.55)

IW4 (σ2
0, σ

2
1) =

π0,W π1,W

4B0B1σ2
0σ

2
1

[
M(0,1)

22 −M(0,1)
20 −M(0,1)

02 +M(0,1)
00

]
+

C1π0,W π1,W

2B0B2
1σ

2
0σ

2
1

[
M(0,1)

20 −M(0,1)
00

]
+

C0C1π0,W π1,W

B2
0B

2
1σ

2
0σ

2
1
M(0,1)

00

+
C0π0,W π1,W

2B1B2
0σ

2
1σ

2
0

[
M(0,1)

02 −M(0,1)
00

]
.

(4.56)

The quadratic form of the error ρ(ˆ̄θ) in (2.42) is then:

ρ(ˆ̄θ) =
(

ˆ̄θ − θ̄
)T

I4(θ̄)
(

ˆ̄θ − θ̄
)

asym∼ χ2
4 (4.57)

which is bounded by two 4-dimensional ellipsoids:

R =
{

ˆ̄θ : χ2
4,γ1
≤ ρ(ˆ̄θ) ≤ χ2

4,γ2

}
, (4.58)

where χ2
4,γ1

and χ2
4,γ2

are critical values w.r.t γ1 and γ2, i.e., Pr[ρ(ˆ̄θ) ≤ χ2
4,γ1

] = γ1 and

Pr[ρ(ˆ̄θ) ≤ χ2
4,γ2

] = γ2.

4.4.3 Impact of estimation on authentication performance

First, in case of one parameter, we can show the interplay between the error spread
region ρ and the probability of type II error log β. Precisely, based on the statistical
quantities of ρ, we can derive the corresponding statistical quantities of log β and vice
versa.

Figs. (4.3) and (4.4) show that in the case of one estimated parameter, log β(α, ˆ̄σb)
and log β(α, ˆ̄σw) precisely follow a shifed-scaled chi-squared distributions of 1-degree
of freedom (see Eq. 4.33), given that ρ(ˆ̄σb) and ρ(ˆ̄σw) are chi-squared distributions of
1-degree.
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(a) Histogram of the second order expansion of
log β(α, ˆ̄σb) via Monte Carlo sampling.

(b) Histogram of log β(α, ˆ̄σb), and the pdf curve
via Monte Carlo sampling of the second order
expansion.

Figure 4.3: Comparison of histograms of log β(α, ˆ̄σb) and its second order expansion.
Here, θ = (70, 302, 160, 302), θ̄ = (70, 352, 160, 352), σ̄b is unknown. Nobs = 8.103,
Niter = 5.103, N = 2.103, α = 10−16.

In Fig. 4.5, we suppose that only µ̄w is unknown and we run the EM algorithm Niter

times using each time Nobs observations and obtain a set of ˆ̄µw. The scatter plot of
Figure [4.5] represents the computed values of log β(α, ˆ̄µw) coming from the Asymptotic
Expression and is compared with the analytical expression ((4.33)). Here ρ(ˆ̄µw) ∼ χ2

1,
covariance matrix of the estimators becomes the variance Var(ˆ̄µw), hence Var−1(ˆ̄µw) '
I1(µ̄w). The �rst derivative of log-likelihood ratio l′3(θ̄) w.r.t ˆ̄µw at ˆ̄µw = µ̄w is then:

∂ logPZ|X=0,θ̄

∂ ˆ̄µw

∣∣∣∣
ˆ̄µw=µ̄w

=
Pe,B

PZ|X=0,θ̄

[
(v − µ̄w)2

2σ̄4
wS1

− S2

S2
1

]
e
− (v−µ̄w)2

2σ̄2
w (4.59)

or

∂ logPZ|X=1,θ̄

∂ ˆ̄µw

∣∣∣∣
ˆ̄µw=µ̄w

=
(1− Pe,W )

PZ|X=1,θ̄

[
(v − µ̄w)2

2σ̄4
wS1

− S2

S2
1

]
e
− (v−µ̄w)2

2σ̄2
w (4.60)

where

S1 =
∑255

u=0 e
− (u−µ̄w)2

2σ̄2
w

S2 =
∑255

u=0
(u−µ̄w)2

2σ4
w

e
− (u−µ̄w)2

2σ̄2
w .

(4.61)

The slope of the analytical expression (see Eq. 4.31) of log β(α, ˆ̄µw) w.r.t ρ(ˆ̄µw) can be
found as:
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(a) Histogram of the second order expansion of
log β(α, ˆ̄σw) via Monte Carlo sampling.

(b) Histogram of log β(α, ˆ̄σw), and the pdf curve
via Monte Carlo sampling of the second order
expansion.

Figure 4.4: Comparison of histograms of log β(α, ˆ̄σw) and its second order expansion.
Here, θ = (70, 302, 160, 302), θ̄ = (70, 352, 160, 352), σ̄w is unknown. Nobs = 8.103,
Niter = 5.103, N = 2.103, α = 10−16.

γ(α, µ̄w) =
N

4

 ∂2β∗(ˆ̄θ | X = 0)

∂ ˆ̄µ2
w

∣∣∣∣∣
ˆ̄µw=µ̄w

+
∂2β∗(ˆ̄θ | X = 1)

∂ ˆ̄µ2
w

∣∣∣∣∣
ˆ̄µw=µ̄w

× Var(ˆ̄µw). (4.62)

For additional comparisons, we represent the statistical linear regression estimated
from the set of ˆ̄µw and expressed as log β(α, ˆ̄µw) = 0.1463ρ(ˆ̄µw) − 44.4586 with the
goodness of �t coe�cient 0.9994. We see that the slope of statistical linear regression is
quite the same with γ(α, µ̄w) and hence the analytical line and statistical line coincide.

In Fig. 4.6, we analyze the impact of the estimation error on the ROC curves. We
select a 95% of error region for ˆ̄µw, i.e., ρ(ˆ̄µw) is bounded by two critical levels χ2

1,0.025

and χ2
1,0.975 such that Pr[ρ(ˆ̄µw) ≤ χ2

1,0.025] = 0.025 and Pr[ρ(ˆ̄µw) ≤ χ2
1,0.975] = 0.975, and

we thus obtain a corresponding 95% error region for log β(α, ˆ̄µw). We then derive two
critical ROC curves C0.025

min and C0.975
max computed analytically from χ2

1,0.025 and χ2
1,0.975

and we choose the mean value for ρ(ˆ̄µw) to �nd the mean ROC curve Cmean. After that,
we compare three analytical ROC curves C0.025

min , C0.975
max and Cmean with the three ones

(�Min ROC�, �Max ROC� and �Mean ROC�) computed from the dataset of ρ(ˆ̄µw) (see
the legend in the Figs. 4.6, 4.8 and 4.13) and we observe that our approximation is
accurate.

In Fig. 4.7, we execute the same analysis as in Fig. 4.5 but now when µ̄b is unknown.
Similarly, we can �nd the �rst derivative of log-likelihood ratio l′1(θ̄) w.r.t ˆ̄µb at ˆ̄µb = µ̄b
as follow:
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Figure 4.5: Comparison of the log-form of the probability of type II error β(α, θ̄) (hor-
izontal line) based on true opponent's parameters θ̄, the probability of type II error

β(α, ˆ̄θ) (dots) based on estimated opponent's parameters ˆ̄θ with their statistical regres-
sion (stars) and the analytical line (straight line) for dataset θ = (80, 632, 170, 632),
θ̄ = (85, 652, 160, 652), supposed that only one parameter µ̄w is unknown by the re-

ceiver, i.e, ˆ̄θ = (85, 652, ˆ̄µw, 652). The vertical straight and dash line show the critical
value χ2

1,0.025 and χ2
1,0.975. Here, Nobs = 3.103, α = 10−16, Niter = 5.103, N = 2.103,

ρ = ρ(ˆ̄θ) = ρ(ˆ̄µw) and γ(α, µ̄w) = 0.14186.

∂ logPZ|X=0,θ̄

∂ ˆ̄µb

∣∣∣∣
ˆ̄µb=µ̄b

=
(1− Pe,B)

PZ|X=0,θ̄

[
(v − µ̄b)2

2σ̄4
bS3

− S4

S2
3

]
e
− (v−µ̄b)

2

2σ̄2
b (4.63)

or

∂ logPZ|X=1,θ̄

∂ ˆ̄µb

∣∣∣∣
ˆ̄µb=µ̄b

=
Pe,W

PZ|X=1,θ̄

[
(v − µ̄b)2

2σ̄4
bS3

− S4

S2
3

]
e
− (v−µ̄b)

2

2σ̄2
b (4.64)

where

S3 =
∑255

u=0 e
− (u−µ̄b)

2

2σ̄2
b

S4 =
∑255

u=0
(u−µ̄b)2

2σ4
b
e
− (u−µ̄b)

2

2σ̄2
b .

(4.65)

Moreover, the statistical linear regression can be found from the dataset of ˆ̄µb and
expressed as log β(α, ˆ̄µb) = 0.1987ρ(ˆ̄µb)− 40.10725. We also analyze the impact of the
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Figure 4.6: Comparison between three analytical ROC curves C0.025
min (squares), C0.975

max

(stars) and Cmean (circles) with true min ROC curve (dash line), true max ROC curve
(red line) and true mean ROC curve (black line) computed directly from Niter = 5000
data of ˆ̄µw.

estimation of µ̄b on the ROC curves in Fig. 4.8. Again, in this �gure, we can see the
accuracy of our analysis.

For the case of multiple estimated parameters, without loss of generality, we suppose
that there are four unknown parameters, ie., θ̄ = (µ̄b, σ̄

2
b , µ̄w, σ̄

2
w). Here, we want to

present the numerical results for the implementation of the CDF and the quantile of

log β(α, ˆ̄θ) in order to analyze the losses in authentication performance.

Generally, in the case of multiple parameters, we cannot theoretically relate the
impact of variation of error estimation to the probability of type II error as in the case
of one parameter estimation, albeit in Fig. 4.9 when the standard deviations of the

opponent channels σ̄b, σ̄w are small, we observe that log β(α, ˆ̄θ) are quite linear w.r.t

ρ(ˆ̄θ).

To see more clearly the di�erence, Fig. 4.10 shows that the log of probability of

type II error log β(α, ˆ̄θ) is absolutely nonlinear w.r.t the variation ρ(ˆ̄θ).
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Figure 4.7: Comparison of the log-form of the probability of type II error β(α, θ̄) (hor-
izontal line) based on true opponent's parameters θ̄, the probability of type II error

β(α, ˆ̄θ) (dots) based on estimated opponent's parameters ˆ̄θ with their statistical re-
gression (plus) and the analytical line (straight line) for dataset θ = (80, 632, 170, 632),
θ̄ = (85, 652, 160, 652), supposed that only one parameter µ̄b is unknown by the re-

ceiver, i.e, ˆ̄θ = (ˆ̄µb, 652, 160, 652). The vertical straight and dash line show the critical
value χ2

1,0.025 and χ2
1,0.975. Here, Nobs = 2.103, α = 10−18, Niter = 5.103, N = 2.103,

ρ = ρ(ˆ̄θ) = ρ(ˆ̄µb) and γ(α, µ̄b) = 0.20969.

(a) log β(ˆ̄θ) via Asymptotic Expression (b) log β(ˆ̄θ) via Taylor expansion (4.37)

Figure 4.10: Comparison of the log-form of the probability of type II error β(α, θ̄)
(horizontal line) based on true opponent's parameters θ̄, the probability of type II error

β(α, ˆ̄θ) (dots) based on estimated opponent's parameters ˆ̄θ. Here we consider θ =
(80, 632, 170, 632), θ̄ = (80, 602, 170, 602) and ˆ̄µb, ˆ̄σ

2
b , ˆ̄µw, ˆ̄σ

2
w are unknown. Nobs = 3.103,

α = 10−16, Niter = 5.103, N = 2.103.
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Figure 4.8: Comparison between three analytical ROC curves C0.025
min (squares), C0.975

max

(stars) and Cmean (circles) with true min ROC curve (dash line), true max ROC curve
(red line) and true mean ROC curve (black line) computed directly from Niter = 5000
data of ˆ̄µb.

Hopefully, we can directly derive the con�dence region for log β(α, ˆ̄θ) without using

indirectly the role of the total variation ρ(ˆ̄θ) using [92] and [58].

From these results, we can extend our analysis on the ROC curves for one esti-
mated parameter to the analysis of ROC curves in general case of vector of estimated

parameters. First, let us show the histogram for log β(α, ˆ̄θ) in Fig. 4.11 to see how the

distribution of log β(α, ˆ̄θ) looks like.
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(a) log β(ˆ̄θ) via Asymptotic Expression (b) log β(ˆ̄θ) via Taylor expansion (4.37)

Figure 4.9: Comparison of the log-form of the probability of type II error β(α, θ̄)
(horizontal line) based on true opponent's parameters θ̄, the probability of type II

error β(α, ˆ̄θ) (dots) based on estimated opponent's parameters ˆ̄θ. Here we con-
sider θ = (55, 402, 155, 402), θ̄ = (50, 422, 150, 422) and ˆ̄µb, ˆ̄σ

2
b , ˆ̄µw, ˆ̄σ

2
w are unknown.

Nobs = 4.103, α = 10−16, Niter = 5.103, N = 2.103.

(a) θ = (55, 402, 155, 402); θ̄ = (50, 422, 150, 422) (b) θ = (80, 632, 170, 632); θ̄ = (80, 602, 170, 602)

Figure 4.11: Histogram of log β(α, ˆ̄θ) via Asymptotic Expression. Here, Niter = 5.103

and a) Nobs = 4.103, b) Nobs = 3.103.

In Fig. 4.12, it can be shown that the distribution of log β(α, ˆ̄θ) could be accurately
approximated by a generalized chi-squared distribution Gχ2

4 (see Eq. 4.37).

Based on the algorithm proposed in [58], we �nd that the quantile for log β(α, ˆ̄θ) in
Fig. 4.9 at level 2.5% is x0.025 = −49.2083 and at 97.5% is x0.975 = −48.35566. We also

obtain the average value xmean = −49.01286 for log β(α, ˆ̄θ) using Proposition 5. Let Fβ
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(a) Histogram of the second order expansion

of log β(α, ˆ̄θ) via Monte Carlo sampling (see
(4.37)).

(b) Histogram of log β(α, ˆ̄θ), and the pdf curve
via Monte Carlo sampling of the second order
expansion.

Figure 4.12: Comparison of histograms of log β(α, ˆ̄θ) and its second order expansion.
Here, θ = (55, 402, 155, 402), θ̄ = (50, 422, 150, 422), θ̄ is unknown. Nobs = 8.103,
Niter = 5.103, N = 2.103, α = 10−16.

be the CDF for log β(α, ˆ̄θ), we can get back the values for Fβ at x0.025 and at x0.975,
based on the algorithm proposed in [92], as:

Fβ(x0.025) = Fβ(−49.2083) = 0.02432 ≈ 0.025

and

Fβ(x0.975) = Fβ(−48.35566) = 0.977808 ≈ 0.975.

Similarly, in Fig. 4.10 the quantile for log β(α, ˆ̄θ) at level 2.5% is x0.025 = −19.9603

and at 97.5% is x0.975 = −18.8928. The average value of log β(α, ˆ̄θ) is xmean = −19.5283.
And based on [92], it yields to:

Fβ(x0.025) = Fβ(−19.9603) = 0.02502 ≈ 0.025

and

Fβ(x0.975) = Fβ(−18.8928) = 0.975094 ≈ 0.975.

As in the case of one estimated parameter, we now analyze the impact of the es-
timation of four parameters in authentication performance in Fig. 4.13based on the
dataset used in Fig. 4.10. We also derive the analytical ROC curves C0.025

min , C0.975
max

and Cmean from using x0.025, x0.975 and xmean based on the quadratic form (4.37) and
the computation of the quantile uses a numerical method derived from [58]. We then
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compare with the true ones attained from Niter data used in Fig. 4.10, and once again
we can see that our analysis is accurate.

Figure 4.13: Comparison between three analytical ROC curves C0.025
min (squares), C0.975

max

(stars) and Cmean (circles) with true min ROC curve (dash line), true max ROC curve
(red line) and true mean ROC curve (black line) computed directly from Niter = 5000
data used in Fig. 4.10 of four estimated parameters ˆ̄µb, ˆ̄σ

2
b , ˆ̄µw, ˆ̄σ

2
w.

4.4.4 A more accurate approximation for log β(α, ˆ̄θ) using third

order expansion

In this part, we show the numerical results for the expansion of log β(α, ˆ̄θ) up to the
third order and see how this development �ts with the direct computation based on
Asymptotic Expression.

In Fig. (4.14), we assume that there is only µ̄w in the set of parameters θ̄ needs to be
estimated and we will show how a worse estimation for µ̄w impacts the authentication
performance, and how our development in Theorem (8) can be used to approximate
accurately the performance of log β(α, ˆ̄µw). In Fig. 4.14, the blue dots are the values of
log β(α, ˆ̄µw) using directly Asymptotic Expression while the red dots are the ones using
Taylor expansion up to third order of log β(α, ˆ̄µw) around the true value µ̄w. We can
see two set of dots are very close to each other and this shows that our development is
reliable.
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Figure 4.14: Scatter plot of the probability of type II error v.s the Taylor expansion
up to the third derivative in case of one estimated parameter ˆ̄µw. The parameters
set of the main and opponent channels are dataset θ = (80, 632, 170, 632) and θ̄ =
(85, 652, 160, 652). Here we use a �xed probability of type I error α = 10−18 and
Nobs = 2.103, Niter = 5.103, N = 2.103.

A similar analysis is carried out in Fig. 4.15 in the case where σ̄w is unknown.We can
notice that the Taylor expansion up to the second order around the true parameter σ̄w
(the black line) is not accurate enough to approximate log β(α, ˆ̄σw) (blue dots), while
the one up to third order (red dots), once again, provides a rather accurate match
between the Asymptotic expression and the approximation up to the third derivative.
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Figure 4.15: Scatter plot of the probability of type II error v.s the Taylor expansion
up to the third derivative in case of one estimated parameter ˆ̄σw. The parameters
set of the main and opponent channels are dataset θ = (80, 632, 170, 632) and θ̄ =
(80, 602, 170, 602). Here we use a �xed probability of type I error α = 10−16 and
Nobs = 2.103, Niter = 5.103, N = 2.103.

Continue analyzing the accuracy of third order expansion of log β(α, ˆ̄θ) in case of
multiple estimated parameters, without loss of generality, we consider the case when
µ̄b, µ̄w are unknown and need to be estimated in Fig. 4.16. In this case the Taylor
expansion has the form:

log β(ˆ̄µb, ˆ̄µw) = 1
2

[
∂2β
∂ ˆ̄µ2

b
(a)v2

b + 2 ∂2β
∂ ˆ̄µb∂ ˆ̄µw

(a)vbvw + ∂2β
∂ ˆ̄µ2

w
(a)v2

w

]
+ 1

6

[
∂3β
∂ ˆ̄µ3

b
(a)v3

b + 3 ∂3β
∂ ˆ̄µ2

b∂ ˆ̄µw
(a)v2

bvw + 3 ∂3β
∂ ˆ̄µb∂ ˆ̄µ2

w
(a)vbv

2
w + ∂3β

∂ ˆ̄µ3
w

(a)v3
w

]
(4.66)

where a = (µ̄b, µ̄w), vb = (ˆ̄µb − µ̄b), vw = (ˆ̄µw − µ̄w).

We can obviously see in Fig. 4.16 that the 3rd order expansion approximates the
values of log β(ˆ̄µb, ˆ̄µw) better than 2nd order expansion.
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(a) log β(α, ˆ̄θ) with estimated ˆ̄µb, ˆ̄µw (b) 3rd order expansion of log β(α, ˆ̄θ)

(c) log β(α, ˆ̄θ) v.s 2nd order expansion (d) log β(α, ˆ̄θ) v.s 3rd order expansion

Figure 4.16: Scatter plot of the probability of type II error v.s the Taylor expansion up
to the second and the third order in case of two estimated parameters (ˆ̄µb, ˆ̄µw). The
parameters set of the main and opponent channels are dataset θ = (80, 632, 170, 632)
and θ̄ = (85, 652, 160, 652). Here we use a �xed probability of type I error α = 10−16

and Nobs = 2.103, Niter = 5.103, N = 2.103.

All �gures (4.14), (4.15) and (4.16) show that the development of the third order

expansion of log β(α, ˆ̄θ) is meaningful and necessary to achieve a better approximation

for the behavior of log β(α, ˆ̄θ) w.r.t the estimation error.

4.4.5 Asymptote of authentication performance w.r.t the sam-

ple size

Last but not least, we want to show the asymptotic property of authentication perfor-
mance w.r.t the number of observations. As we've already known that the larger the
number of observation, the better the estimation and thus it is obviously to see that the
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authentication performance will be better as well. Moreover, this consequently makes

the con�dence region of log β(α, ˆ̄θ) more and more smaller. Here, we show this property
numerically in Fig. 4.17. Note that Min ROC is denoted for the ROC curve computed
at level 2.5%, Max ROC for the one computed at level 97.5% and Mean ROC for the

average values computed from using (5) of log β(α, ˆ̄θ).

To do this, �rst we run EM algorithm described in (4.4.1) for di�erent numbers of
observations to estimate four unknown parameters of the opponent channel. For each
Nobs, we use the number of iteration Niter = 5.103. In order to compute the critical

points of log β(α, ˆ̄θ) at levels 2.5% and 97.5%, we use the same way as we did in Fig.
4.13.

Figure 4.17: The asymptotic property of log10 β(α, ˆ̄θ) w.r.t the number of observations
Nobs. Here, θ = (70, 502, 160, 502) and θ̄ = (70, 522, 160, 522), α = 10−16, Niter = 5.103,
N = 2.103.

We can easily see in Fig. 4.17 whenNobs is increased, the authentication performance

(here, without loss of generality we use log10 β(α, ˆ̄θ) instead of log β(α, ˆ̄θ) ) is more and
more better. According to this �gure, when Nobs = 104, the Min Roc is quite the same
with the the actual ROC curve and the Max ROC curve is very close to it. While in

the case of small Nobs (for example, Nobs = 2.103), the con�dence region of log10 β(α, ˆ̄θ)
is really signi�cant.
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4.5 Conclusions of chapter 4

In this chapter we have proposed to analyze the impact of parameter estimation on the
authentication performances. This was possible by relying on the asymptotic expression
of the error probability presented in the previous chapter, and by computing a Taylor
expansion linking the estimation error and the error probability.

The quadratic approximation derived from the expansion enables to compute the
distributions of the error probabilities and to derive critical or average Receiver Oper-
ating Curves. Moreover, a higher order expansion is considered to approximate better
the behavior of the authentication performance w.r.t the estimation error.

We also show practically the asymptotic property of the authentication w.r.t the
number of observations used to estimate the opponent parameters. This suggests that if
we get a large enough number of observations, the impact of estimation is not important
anymore.

The next chapter explain how the accurate expression of the error probabilities can
be used in order to optimize the print and scan channel.



Chapter 5

Optimization of the printing-scanning

Channels

5.1 Passive and active opponents

5.2 Min-max games as optimization problems

5.3 Numerical results

5.3.1 Passive game

5.3.2 Active deterministic game

5.3.3 Active random game

5.4 Conclusions of Chapter 5

�(Game theory) is essentially a

structural theory. It uncovers the

logical structure of a great variety of

con�ict situations and describes this

structure in mathematical terms.

Sometimes the logical structure of a

con�ict situation admits rational

decisions; sometimes it does not.�

Anatol Rapoport

In this chapter we propose to cast the problem of authentication of printed docu-
ments using binary graphical codes into an optimization game (called min-max game)
between the legitimate source and the opponent, each player tries to select the best
print and scan channel to minimize or maximize his authentication performance. This
game is popularly used in many disciplines such as game theory, economics, engineering
and technology, etc. This game is possible when considering accurate computations of

86
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the type I and type II probability errors and by using stochastic processes to model the
print and scan channel.

Moreover, we also propose a mathematical interpretation to ful�ll the min-max game
analytically based on the theory of nonlinear constrained optimization.

5.1 Passive and active opponents

We adopt in this chapter a methodology related to security by considering that the
legitimate source or/and the adversary may try to modify their print and scan channel in
order to maximize/minimize the authentication performances of the system. Practically
this means that the channel can be chosen by using a given quality of paper, an ink of
appropriate density and/or by adopting a given resolution. For example if the legitimate
source wants to decrease the noise variance, he can choose to use oversampling to
replicate the dots, on the contrary if the legitimate source wants to increase the noise
variance, he can use a paper of lesser quality. It is important to recall that because the
opponent will have to print a binary version of its observation, and because a printing
device at this very high resolution can only print binary images, the opponent will in
any case have to print with decoding errors after estimation X̂N .

From a mathematical point of view, this game can be considered as an optimization
problem where the main goal of the designer of the authentication system (or the sender)
is the achievement of the optimal ROC curves, i.e., for a given probability of type I
error α, he tries to �nd a channel that minimizes the probability of type II error β.

We analyze three practical scenarios that are described below:

� The legitimate source and the opponent have identical printing and scanning
devices (by devices we mean printer, ink, paper, scanner), practically this means
that they use exactly the same setup. Therefore, we can suppose that the set
of possible channels used by the opponent is the same than the one used by the
legitimate source. In this case the legitimate source will try to look for the channel
Cp such that for a given probability of type I error α, the legitimate party will
have a probability of type II error β∗ which is the smallest value among all the
possible probabilities of type II β involved in the set of channels C, i.e.,

β∗ ≡ β(Cp) = min
C
β(α). (5.1)

In this case, opponent is de�ned to be passive and has no strategy but duplicating
the graphical code. We can refer this game as a passive game.

� The opponent can modify its printing channel Co, practically it means that he
can modify one or several parameters of his printing setup. As a matter of fact,
we can assume that he changes the variance of its noise given that it will be
the most e�cient way for him to confuse the receiver. The opponent thus tries
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to maximize the probability of type II error by choosing his adequate printing
channel, whereas the legitimate source will adopt a printing channel Cl which
minimizes the probability of type II error. We end up with so-called a min-max
game (or minimax game) in game theory, where the optimal β∗ (obtained by a
couple of channels Cla, Coa) is not only the largest value among all the possible
probabilities of type II β involved in the set of channels C0, but also the smallest
value among all the possible probabilities of type II β involved in the set of
channels Cl, i.e.,

β∗ ≡ β(Cla, Coa) = min
Cl

max
Co

β(α). (5.2)

Because for this scenario we assume that the receiver has a perfect knowledge of
the opponent channel, we will denote it as an active opponent facing an informed
receiver since the opponent tries to adapt his strategy by selecting exactly Coa in
order to degrade the authentication performance. This game can be seen as a
deterministic minimax game.

� The last scenario is more general in the sense that we assume here that the receiver
will have to estimate the opponent channel. Because of the Kerckho�s' principle
we assume that the opponent knows also this fact and that he will try to maximize

a statistic of the type II probability β, such as for example E[β(ˆ̄θ)], to conduct
the game. i.e.,

β∗ = min
Cl

max
Co

E
[
β(ˆ̄θ)

]
. (5.3)

Here, the scenario presents an active opponent facing a non-informed receiver, the
term �non-informed� coming from the fact that the receiver needs to estimate the
opponent parameters beforehand in oder to compute the hypothesis test. We will
use the results obtained from the preposition (5) in the previous chapter in order
to conduct this analysis.This game can be seen as a random minimax game..

In order to study the this game rigorously, we would like to develop the problems
(5.1) and (5.2) more explicitly in the next section.

5.2 Min-max games as optimization problems

If the problems formulated by equations (5.1), (5.2) and (5.3) can be easily intuitively
solved when the opponent vector parameter θ̄ is one dimensional, it is necessary to
provide a formulation to �nd a solution in the N -dimensional case mathematically. We
consequently aim to provide the mathematical expressions of the passive game (5.1)
and the active deterministic game (5.2). Because the active random game (5.3) is more
complicated, we postpone its mathematical analysis for future researches.
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We can consider these games as constrained optimization problems. The constraint
comes from the fact that in the entire thesis, we suppose that the probability of type I
error α is �xed. Taking into account this fact, here we let α = α0 with α0 is a constant
and �nd the optimization for the probability of type II error β.

We know that we can solve a constrained optimization problem by means of La-
grange multiplier method (see [21], [56]) and for any function f(x) > 0, we can look for
the optimum using log f(x) instead of f(x). Therefore, our problem turns to �nd the
optimal log β given �xed logα = logα0. Remind that logα and log β can be approxi-
mated from (4.8) and (4.9) and hence we can rewrite:

� For the passive game,

minimize
C

−NcDKL(ps0 ‖ p1)

subject to −NcDKL(ps0 ‖ p0) = logα0

(5.4)

� For the active deterministic game,

min
Cl

max
Co

−NcDKL(ps0 ‖ p1)

subject to −NcDKL(ps0 ‖ p0) = logα0

(5.5)

where Nc = N
2
.

First, we start to conduct the constrained optimization problem for the case of
passive game. Suppose that θ0 is such parameter governing the channel C in the problem
(5.4), we consider the Lagrange multiplier function of (5.4) as:

F (s0, θ0, λ) = −NcDKL(ps0 ‖ p1)− λ [−NcDKL(ps0 ‖ p0)− logα0] . (5.6)

If we put

f(s0, θ0) = −NcDKL(ps0 ‖ p0)− logα0

g(s0, θ0) = s0E(l′0) + E
[
∂ log p0

∂θ0

]
= s0E

[
∂ log p1

∂θ0

]
+ (1− s0)E

[
∂ log p0

∂θ0

] (5.7)

where l′0 = ∂l(θ0)
∂θ0

and the expectation is taken w.r.t ps0 , then in order to solve (5.4), it
necessarily leads to solve the system of nonlinear equations below (see detail computa-
tion in Appendix A.6): {

f(s0, θ0) = 0
g(s0, θ0) = 0

(5.8)

For the deterministic active game, the scenario is more complicated and we cannot
take advantage of the Lagrange multiplier. However, because the legitimate channel Cl
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and the opponent channel Co are independent, we can solve this problem by splitting
Cl into M discreet setups (C1

l , C2
l , ..., CMl ) to perform the minimization and we can use

the result of the maximization can be solved by Lagrangian formulation. Therefore,
the game (5.5) can be rewritten as:

min
(C1
l ,C

2
l ,...,C

M
l )

max
Co

−NcDKL(ps0 ‖ p1)

subject to −NcDKL(ps0 ‖ p0) = logα0.
(5.9)

and the pseudo algorithm can be written as:

Algorithme 5.1 Optimization algorithm for the deterministic active game.

For each legitimate channel Cil do:\\

Compute max
Co

−NcDKL(ps0 ‖ p1) subject to −NcDKL(ps0 ‖ p0) = logα0

end For

Choose the minimum as the solution

If we assume that θ1 is the parameter governing the opponent channel Cowe will use
the Lagrange multiplier method for each Cil . This leads to the fact that we need to
solve M corresponding systems of nonlinear equations:{

−NcDKL(ps0 ‖ p0)− logα0 = 0

E
[
∂ log p1

∂θ1

]
= 0

(5.10)

Numerical methods

Because it is not possible to obtain close form solution of these sets of equations, it
is required to use numerical optimizers such as the Newton-Raphson method which is
based on the computation of the Jacobian matrix J (see Appendix A.6) and then �nd
J−1 to approximate the actual solution through an iterative procedure.

However, sometimes it is di�cult to compute J−1 because J is close to singular
and over�ows the number range. We can overcome this issue by using quasi Newton
algorithm (see [36, 77]) which approximate J−1 through an iterative formula instead of
calculating it directly. We can also use function �fsolve� in Matlab toolbox (see [25, 29])
to �nd the solution for the system of nonlinear equations (5.8) or (5.10).

Another approach for solving passive game is applying a certain class of algorithms
which is best known for solving nonlinear constrained optimization problems (see in
[85, 99, 75]). Taking into account this advantage, we can practically use �fmincon� and
�fminimax� functions from Matlab optimization toolbox in order to �nd the solution
for the games (5.1) and (5.2) (see [25, 29]).
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5.3 Numerical results

For the sake of simplicity, in this part, we conduct this analysis for the generalized
Gaussian model and Lognormal model, where we assume respectively that the means
µb, µw and the modes Mb, Mw (see Eqs. 3.7 and 3.9) are constant for the main and the
opponent channels (which implies that the scanning process has the same calibration
for the two types of images). We also assume that the main channel and the opponent
channel variances σ2 and σ̄2 are identical for black and white dots.

5.3.1 Passive game

Here the opponent has to undergo a channel identical to the main channel, the only
parameter of the optimization problem 5.1 is consequently σ = σm. If the generalized
Gaussian channels are used, Fig. 5.1 presents the evolution of β(α) w.r.t. σm for
α = 10−6 and µb = 50, µw = 150. For each channel con�guration, we can �nd an
optimal con�guration, this con�guration o�ers a smaller probability of error for b = 6
than for b = 2 or b = 1. It is not surprising to notice that in each case, β is important
whenever σm is very small (i.e. when the print and scan noise is very small hence the
estimation of the original code is easy) or very large (i.e. when the print and scan noise
is so important that the original and forgery become equally noisy).

It is not surprising to notice that in each case β(α) is important whenever σm is
very small, i.e. when the print and scan noise is negligible hence the estimation of the
original code by the opponent is easy; or very large; i.e. when the print and scan noise
is so important that the original and forgery become equally noisy. The legitimate
source will consequently avoid a channel that generates noise of very small or very large
variance.
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Figure 5.1: Evolution of β(α) w.r.t. σm (α = 10−6) in case of generalized Gaussian
distribution. Main and opponent channels are identical, µb = 50, µw = 150.

Similarly, Fig. 5.2 shows the evolution of the probability of type II error w.r.t the
standard deviation in case of using Lognormal channels for di�erent modes.

Fig. 5.3 shows the result of the optimization for di�erent setups in the case of
truncated Gaussian distributions when the variance is optimized. We can notice the



CHAPTER 5. OPTIMIZATION OF THE PRINTING-SCANNING CHANNELS 92

20 40 60 80 100 120 140
10−30

10−25

10−20

10−15

10−10

σm

m
ax σ
o

β

M(0) = 70, M(1) = 150

M(0) = 50, M(1) = 170

M(0) = 40, M(1) = 180

Figure 5.2: Evolution of β(α) w.r.t. σm (α = 10−6) in case of Lognormal distribution
for di�erent modes.

existence of a minimum in each case, however the variations of β w.r.t. σm can be
rather small, as for the setup proposed in Figure 5.3b.
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(a) µb = µ̄b = 70, µw = µ̄w = 160, σm ≈ 43.7,
β∗ ≈ 10−29.7.

(b) µb = µ̄b = 50, µw = µ̄w = 150, σm ≈ 41.63,
β∗ ≈ 10−15.77.

(c) µb = µ̄b = 50, µw = 150, µ̄w = 160, σm ≈
41.89, β∗ ≈ 10−33.07.

(d) µb = 70, µ̄b = 80, µw = 158, µ̄w = 160,
σm ≈ 39.07, β∗ ≈ 10−38.82.

Figure 5.3: Evolution of β(α) w.r.t. σm (α = 10−6) in case of Gaussian distributions
for di�erent setups of main and opponent channels.

5.3.2 Active deterministic game

First, the opponent is supposed to be able to use the generalized Gaussian channel with
di�erent variance σ̄2 = σ2

o than the main channel σ2 = σ2
m and we try to solve the game

de�ned in (5.2). Fig. 5.4 shows the evolutions of β(α) w.r.t σo for di�erent σm. We
can see that in each case it is in the opponent interest to optimize his channel, i.e., he
tries to select such channels that maximize the possibility of getting type II error of the
receiver.

Note that even if we assume that the opponent print and scan channel is perfect
(X̂N = ZN), because the input of the printer has to be binary and because the opponent
will make decoding errors by estimating the original code, the copied printed code will
be necessarily di�erent from the original printed code (see Figure 3.1), which implies a
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perfect discrimination between the two hypotheses.

Fig. 5.5 shows the evolution of best opponent strategy max
σo

β(α) w.r.t σm. This

�gure re�ects the purpose of the receiver when he wants to minimize the possibility of
getting type II error considering the best setup of the opponent. By comparing it with
Fig. 5.1, we can see that the opponent's probability of type II error can be multiplied
by one or several orders of magnitude (×107 for b = 1, ×105 for b = 2 and ×10 for
b = 6).

The active scenario o�ers a saddle point satisfying (5.2) either for generalized Gaus-
sian or Lognormal distribution. This means that even if the opponent owns ideally
perfect print and scan devices (σ0 → 0, oN = x̂N), it is not to his advantage to use
it since the authentication is still e�cient due to the decoding errors he will create by
generating the binary code X̂N .

Another general remark is to notice that the optimal opponent parameters are very
close to the optimal parameters of the passive scenario, which means that the opponent
has little room to maneuver when choosing his best attack (see Fig. 5.1 and Fig. 5.5,
5.6) and nearly no room when the noise is close to uniform (for example, b = 6).
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Figure 5.4: Evolution of the probability of type II error β(α) w.r.t σo for di�erent σm
in case of generalized Gaussian distribution. The plots arriving from left to right show
σm varying from 20 to 80 with an increment of 10. Here, µb = 50, µw = 150, α = 10−6.

For the generalized Gaussian distribution, it is important to notice that for distribu-
tions of same variance, dense distributions yields to better authentication performance
than sparse distributions for both scenarios (see Fig. 5.1 and Fig. 5.5). Unsurprisingly,
this is due to the fact that a distribution close to uniform tend to create a bigger over-
lap between the two decision regions than a sparse distribution that will generate codes
mainly lying in the original one.

For the Lognormal distribution we can easily see that the authentication perfor-
mances are almost similar for di�erent values of modes, both for a passive and an
active opponent (see Fig. 5.2 and Fig. 5.6). However, the larger the di�erence, the
larger the optimal standard deviation, which means that it is in the designer strategy
to force the opponent to generate decoding errors in this case.
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We have shown practically that for both the generalized Gaussian and Lognormal
distributions the game can be tractable, and that it is in the interest of the legitimate
source to adopt a channel which is close to the uniform distribution.

Figs. 5.7 and 5.8 shows the result of the optimization for di�erent setups in the case
of truncated Gaussian distributions when the variance is optimized. It is interesting to
notice that in some cases (the setups considered in Fig. 5.8) the local minimum occurs
for the minimal standard deviation of the selected range. This happens particularly for
the setup where the parameters µ of the legitimate channel and the opponent channel
are di�erent, which means that for such setups, this di�erence between other charac-
teristics of the channel is enough to enable accurate authentication. In this case the
optimal strategy is to adopt the print-and-scan system presenting the best �delity for
the legitimate printer, because the opponent di�ers w.r.t to parameters that he cannot
control.
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Figure 5.5: Evolution of best opponent strategy max
σo

β w.r.t σm in case of generalized

Gaussian distribution. Here, µb = 50, µw = 150, α = 10−6.

For the Lognormal distribution, we can notice in Fig. 5.6 that the opponent's
probability of type II error stays the same when the distribution is close to uniform.
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Figure 5.6: Evolution of best opponent strategy max
σo

β w.r.t σm (α = 10−6) in case of

Lognormal distribution for di�erent modes.
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(a) Evolution β(α) w.r.t σo for di�erent σm.
Here, µb = µ̄b = 60, µw = µ̄w = 150.

(b) Evolution of best opponent strategy max
σo

β

w.r.t σm. Here, µb = µ̄b = 60, µw = µ̄w = 150.

(c) Evolution β(α) w.r.t σo for di�erent σm.
Here, µb = 65, µw = 170, µ̄b = 70, µ̄w = 160.

(d) Evolution of best opponent strategy max
σo

β

w.r.t σm. Here, µb = 65, µw = 170, µ̄b = 70,
µ̄w = 160.

Figure 5.7: Left: Evolution β(α) w.r.t σo for di�erent σm, right: Evolution of the best
opponent strategy max

σo
β. α = 10−6.
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(a) Evolution β(α) w.r.t σo for di�erent σm.
Here, µb = 50, µw = 170, µ̄b = 70, µ̄w = 160.

(b) Evolution of best opponent strategy max
σo

β

w.r.t σm. Here, µb = 50, µw = 170, µ̄b = 70,
µ̄w = 160.

(c) Evolution β(α) w.r.t σo for di�erent σm.
Here, µb = 50, µw = 170, µ̄b = 80, µ̄w = 155.

(d) Evolution of best opponent strategy max
σo

β

w.r.t σm. Here, µb = 50, µw = 170, µ̄b = 80,
µ̄w = 155.

Figure 5.8: Left: Evolution β(α) w.r.t σo for di�erent σm, right: Evolution of the best
opponent strategy max

σo
β. α = 10−6.

5.3.3 Active random game

In Fig. 5.9, we see the di�erence between the evolutions of the active deterministic game
and the active random game for a setup where the standard deviation σm is tuned. It is
not surprising to notice that the larger σm, the more important the di�erence between
the deterministic and the random game since it is well known that large variances are
more di�cult to be estimated than small ones.

The di�erence between these two games is however relatively small, and the optimal
parameter is only slightly modi�ed (σm ≈ 36.5 for the random game vs σm ≈ 37 for
the deterministic game).
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Figure 5.9: Evolution of best opponent strategy max
σo

β and max
σo

E(β) w.r.t σm in case of

Gaussian distribution. Here, µb = µ̄b = 70, µw = µ̄w = 160, α = 10−12. The horizontal
line (σm ≈ 36.5) presents the minimum of max

σo
E(β). It is very close to the minimum

of max
σo

β (σm ≈ 37).

We analyze another numerical result in Fig. 5.10 for the case where there is no
saddle point and the means of black and white dots are close to each other. Here, the
optimal points of the active deterministic game and the active random game are exactly
the same.

Similarly to the former example, the di�erence between the deterministic and the
random game is signi�cant for only large σm.

In this case, we can notice that the probabilities of type II error of both games
gradually goes to 1 when σm increases. This fact is not surprising since the means of
black and white dots are close to each other, the distributions of black and white dots
tend to be very similar for large variances.
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Figure 5.10: Evolution of best opponent strategy max
σo

β and max
σo

E(β) w.r.t σm in case

of Gaussian distribution. Here, µb = µ̄b = 100, µw = µ̄w = 140, α = 10−12. The
minimum of max

σo
E(β) and the minimum of max

σo
β are the same.

5.4 Conclusions of Chapter 5

In this chapter, we have modeled the optimization of the print and scan channels as a
min-max game between the legitimate receiver and the opponent.

Our �rst conclusions are the facts that (i) the authentication performance is better
for dense noises than for sparse noises for both scenarios, and (ii) for both families
of distribution, the opponent optimal parameters are close to the legitimate source
parameters, and (iii) the legitimate source can �nd a con�guration which maximizes
the authentication performance.

Moreover, the results obtained within the two previous chapters lead us to per-
form optimization in the more general context that includes the problem of parameter
estimation and it's impact on this security game.



Chapter 6

Conclusions and perspectives

6.1 Conclusions

6.2 Perspectives

�In the end, it's not the years in

your life that count. It's the life in

your years. �

Abraham Lincoln

We summarize here all the achievements of this thesis and we provide general con-
clusions and comments regarding the results we have achieved.

Last but not least, we would like also present our current works, several ideas in
preparation and sketch out the directions for the future researches.

6.1 Conclusions

This thesis has presented a framework for authentication using graphical codes that is
based on statistical hypothesis testing. The main advantages of such a methodology
are:

� the possibility to rely on the Neyman-Pearson lemma and to derive optimal tests
(i.e. test minimizing a type II error for a given type I error) whenever the model of
the legitimate printer and the model of the opponent are known. This strategy has
the advantage to be very �exible since it can be used for various distributions and
it helps us to compare the performances of di�erent printing models, as proposed
in the chapter 5.
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� the computation of accurate approximations of the error probabilities based on the
asymptotic expression that we have derived in chapter 3. Theses approximations
are based on the Cherno�'s bound and are useful whenever the error probabilities
are very small (e.g. < 10−3).

� the fact that, using Boltzmann's distributions, it is possible to approximate the
distribution of the error probabilities when the opponent channel has to be es-
timated beforehand. This analysis derived in chapter 4 enables to compute the
average performance of the authentication system or the bounds of a con�dence
interval, but also to analyze the evolution of theses statistics w.r.t. the number
of observed codes.

� the possible optimization of the channel of a legitimate printing facing a passive
or an active adversary. In the case where the opponent can tune his channel and
the receiver has to estimate the opponent channel, we deal with a random game
with an active adversary that is solvable (at least numerically) by using the results
of chapter 3 and chapter 4. This analysis enables to point out the categories of
distributions that are compatible with our authentication problem.

6.2 Perspectives

In this section, we would like to indicate several objective limitation of our analysis and
possible approach that can be used to overcome these drawbacks.

Throughout the thesis, we propose and analyze e�ectively the classical binary testing
for the sequences of i.i.d discrete random variables and its application to the analysis of
authentication performance. However, until now we have not come up yet to the case in
which graphical codes are composed from such a memory source sequences. One of the
possible problem that can be considered is to generate the graphical codes from using a
Markov chain. In [74], an asymptotic approximation for the probabilities of type I and
type II error is proposed based on the ideas of large deviation principle. In Fig. 6.1,
we can implement to obtain the ROC curve of a test between two transition matrices.
However, the values of logα and log β are still very important in comparison with
the i.i.d cases. This may be due to the fact that the con�gurations for the matrices
are realistic. Therefore, the study for this problem will be taken into account in an
upcoming research.

Another perspective stems from the fact that, due to the assumption of the print
and scan process, we have only dealt with the case of discrete distributions for the main
and the opponent channels. In order to extend our analysis in this thesis to a larger
class of forensic or signal processing problems, it is required to consider a large family of
continuous distributions for H0 and H1. It leads to look for the approximations schemes
for the formulas (4.8) and (4.9). In the literature, there are several authors that have
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Figure 6.1: ROC curve computed from the test between two �nite Markov chains. The
size of transition matrices are 500 × 500. Each row of these matrices is generated by
uniform distributions in [a, b] (a, b > 0).

worked on this problem, for example [52, 80]. Based on their works, we believe that we
could apply our analysis to many other applications.

In the case when the distributions of the opponent channels are completely unknown
by the receiver, our problem somehow is related to the problem of universal hypothesis
testing which has already discussed in literature, for example [100, 44]. However, these
study are still very deep in theory and have not been used for applications. We hope
that we could bring these study to applications in the future research.

As a �nal remark, a more general perspective is to test the presented methodology
on real print-and-scanned graphical codes. This is a complicated problem since in order
to derive robust tests, we will need to select more realistic print and scan models (that
probably are not i.i.d) and to infer their parameters, but also to test them on real
acquisitions that need to be resynchronized and calibrated.



Chapitre 7

Résumé en Français

7.1 Contexte de la thèse

7.1.1 Les enjeux de l'authenti�cation et l'authenti�cation par

codes graphiques

Les travaux de cette thèse analysent un système qui vise à endiguer la contrefaçon
de documents et d'emballages via l'utilisation d'un code graphique authenti�ant ; ce
système cherche ainsi à faire face au problème majeur de la falsi�cation.

La motivation pratique est d'importance : à titre d'exemple ce problème est extrê-
mement préoccupant lorsqu'il s'agit de contrefaçons d'emballages de médicaments, et
donc à fortiori de médicaments. En 2005 l'Organisation Mondiale de la Santé a rap-
porté que 25% des médicaments vendus dans le tiers monde étaient des contrefaçons [4].
Depuis, ce phénomène n'a fait que s'ampli�er, notamment via la commande de médi-
caments par Internet qui rend les possibilités de contrefaçon encore plus importantes [3].

Il existe plusieurs stratégies pour authenti�er des contenants ou contenus qu'ils
soient numériques ou physiques, nous pouvons par exemple citer :

� l'utilisation de la cryptographie asymétrique, qui permet d'authenti�er l'émetteur
d'un contenu numérique [35, 41],

� l'utilisation de données biométriques pour authenti�er des documents liées à une
personne, comme par exemple les passeports.

� l'utilisation de techniques de tatouage pour authenti�er par exemple des images
numériques [55]. Dans ce cas particulier il s'agit plus précisément d'un contrôle
d'intégrité, c'est à dire à une véri�cation que le contenu n'a pas été modi�é.

� en�n, l'utilisation de fonction physiques non clônables (PUF) qui proviennent sou-
vent de circuits électroniques, et qui sont utilisées pour authenti�er des matériels
[94].
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Le procédé que nous étudions dans cette thèse est semblable aux PUF car il repose sur
l'utilisation d'un procédé non clônable puisque relevant d'un processus stochastique. Il
s'agit ici d'un processus d'impression-acquisition d'un code graphique 2D imprimé à une
dé�nition très élevée (autour de 2400 points par pouce). Il permet alors d'authenti�er
n'importe quel support papier comme l'étiquette d'une bouteille de vin, une boite de
médicaments, une facture ou un billet de banque.

7.1.2 Système étudié

Cette thèse s'inscrit dans le cadre du projet ANR Estampille [7] et le système étudié
est proche du système d'authenti�cation développé par l'entreprise Advanced Track &
Trace. Le principe de fonctionnement de ce schéma d'authenti�cation est illustré sur la
�gure 7.2. Il peut se décomposer en 3 étapes :

� Etape 1 : Un code graphique, représenté par une matrice 2D binaire est généré
à partir d'une clé secrète, puis est imprimé sur le contenu à protéger. Le proces-
sus d'impression peut être considéré comme non inversible, c'est à dire qu'il est
impossible de reconstituer le code graphique binaire original à partir d'un code
imprimé puis scanné. Cette propriété est essentielle et permet l'authenti�cation :
elle est due au fait que le code une fois imprimé subit un processus stochastique
de part les propriétés aléatoires des particules composant l'encre à l'échelle mi-
croscopique (chaque point du code mesurant autour de 10µm), mais aussi des
procédés d'impressions, des positionnements aléatoires des �bres de papiers (voir
�gure 7.3), et de l'acquisition par un capteur numérique (voir �gure 7.1).

� Etape 2 : Le contrefacteur (aussi appelé adversaire) de son coté va également
chercher à dupliquer le code graphique. Pour cela il doit dans un premier temps
générer une version binaire à partir de l'observation du code imprimé. C'est étape
est obligatoire car l'imprimante utilisant sa résolution native, chaque élément du
code binaire étant représenté par un point d'impression. Dans cette con�guration
l'imprimante ne peut imprimer qu'à partir d'une version binaire du code, chaque
bit indiquant la présence ou l'absence d'un point d'impression. Puisque le procédé
d'impression n'est pas inversible, le code binaire généré sera di�érent du code
original. Cette étape se termine par une nouvelle impression du code graphique
binaire généré par le contrefacteur, qui subit comme pour l'étape 1 un processus
d'impression stochastique.

� Etape 3 : Le receveur (c'est à dire la personne qui authenti�e les contenus),
compare le code original, qu'il génère à nouveau au moyen de la clé secrète, au
code observé provenant d'un code original ou d'un code contrefait. Comme nous le
verrons par la suite, un test d'hypothèse peut lui permettre de décider si le code
observé est authentique ou s'il provient d'une copie. Dans notre étude ce test
est basé sur la connaissance à priori des modèles statistiques liées aux processus
d'acquisition et de copie du code (voir section (3.1)).



CHAPITRE 7. RÉSUMÉ EN FRANÇAIS 105

(a) (b)

Figure 7.1: E�et du processus d'impression acquisition : (a) Code graphique avant
impression. (b) Code graphique après impression (les segments autour des coins sont
utilisés pour des besoins de synchronisation).

7.1.3 Liens avec les travaux existants

D'autres systèmes d'authenti�cation sont semblables, le plus proche étant celui proposé
par Picard et al. [82, 83] . Ce système di�ère essentiellement par le test d'hypothèse
qui est basé dans ce cas ci sur le comptage du nombre d'erreurs des codes acquis puis
binarisés. Nous montrons dans la section 3.3 que cette stratégie n'est pas optimale au
sens de l'authenti�cation.

La sécurité de ce système a été étudiée par Baras et Cayre [18] dans le cadre d'une
attaque par lots (attaque où l'adversaire essaye d'estimer le code graphique original
à partir d'un lot de code graphiques imprimés). Les auteurs montrent que, même si
le système est sensible à ce type d'attaques et que les performances d'authenti�cation
sont moindres, la présence d'éléments déterministes mais non inversibles dans le système
d'impression permet de garantir la sécurité de ce système. Une autre étude menée par
Diong et al. [37] a cherché à inférer la fonction permettant à partir d'éléments du code
imprimé de retrouver des éléments du code original. Cette étude a montré qu'il est
possible de diminuer l'erreur d'estimation par rapport à l'utilisation d'une binarisation
optimale, sans pour autant garantir un taux d'erreur nul. Le caractère non-inversible
du procédé d'impression-acquisition n'a donc pas pu être remis en cause.

Il existe également d'autres systèmes d'authenti�cation similaires, mais reposant sur
des supports di�érents. Dans [91] les auteurs proposent un procédé d'authenti�cation
utilisant la gravure laser des métaux comme procédé non inversible. Dans [51] le procédé
d'authenti�cation repose sur l'enregistrement des structures aléatoires des �bres de
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1: Impression

3: Authentification

2: Contrefaçon

Figure 7.2: Description of the works of Estampille project

papier. Il est a noté toutefois que ce procédé nécessite l'appel à une base de données
contenant l'ensemble des structures à authenti�er alors que le procédé étudié dans cette
thèse ne requière que la connaissance de la clé servant à générer le code original pour
e�ectuer l'authenti�cation.

Comme nous le verrons dans les sections 7.2 et 7.3, cette thèse repose sur l'utili-
sation d'une part de la théorie des tests d'hypothèses statistiques via l'utilisation du
rapport de vraisemblance et d'autre de la théorie de l'estimation via l'utilisation de mé-
thodes d'estimations classiques comme le maximum de vraisemblance ou l'algorithme
�Expectation Maximization�.

Notre méthodologie se rapproche de celle utilisée par [102] en stéganalyse et [96]
en identi�cation de modèles de capteurs, à savoir l'utilisation de tests d'hypothèses
statistiques et de modélisation de procédés pour détecter dans le premier cas la présence
d'information cachée et dans le second identi�er un modèle d'appareil photo numérique.

Figure 7.3: Caractère aléatoire des �bres de papier vues sous microscope. [6, 28].
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Figure 7.4: (a) : Authenti�cation en utilisant des codes graphiques. (b) Modèles
d'impression-acquisition pour les points d'encres (sur la gauche) et les parties blanches
du papier pour des distributions Lognormales.

7.2 Authenti�cation et tests d'hypothèses

7.2.1 Principes du système d'authenti�cation

Dans un premier temps, nous sommes partis de l'hypothèse que le receveur a en sa
connaissance :

� d'une part le modèle statistique d'impression-acquisition des codes imprimés origi-
naux PY N |XN

(
vN
∣∣xN) oùXN est le vecteur aléatoire représentant le code original

et Y N le vecteur aléatoire représentant le code original imprimé,

� d'autre part le modèle statistique d'impression-acquisition des codes contrefaits
PZN |XN

(
vN
∣∣xN) où ZN est le vecteur aléatoire représentant le code contrefait.

Ces deux hypothèses se traduisent pratiquement par le fait que si les codes sont im-
primés dans des conditions constantes (même papier, même encre, même imprimante,
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...) à la fois chez l'imprimeur légitime et le contrefacteur, il sera possible d'estimer pré-
cisément les modèles d'impression-acquisition. Nous supposons que ces deux modèles
d'impression-acquisition sont i.i.d., et notre méthodologie peut s'appliquer pour di�é-
rentes distributions comme par exemples des modèles Gaussien ou Lognormaux (voir
Figure 7.4 (b)). Le modèle du contrefacteur pour une valeur de code x donnée est calculé
à partir d'un mélange de deux distributions, l'une pour l'impression-acquisition d'un
point noir, l'autre pour l'impression-acquisition d'une zone restée blanche et les para-
mètres de ce mélange sont déterminés à partir de l'erreur commise par le contrefacteur
lors de la binarisation du code original.

Soit H0 l'hypothèse traduisant le fait que l'observation du code reçu oN est un
code original et soit H1 l'hypothèse traduisant le fait que l'observation du code reçu
oN est un code contrefait. Dans ces conditions, le receveur peut utiliser la stratégie de
Neyman-Pearson qui consiste à calculer le rapport de vraisemblance :

L = log
PZN |XN

(
oN
∣∣xN , H1

)
PY N |XN (oN |xN , H0)

, (7.1)

et à décider H0 ou H1 en comparant ce rapport à un seuil λ garantissant une probabilité
de non détection minimale pour une probabilité de fausse alarme inférieure à un niveau
α :

L
H1

≷
H0

λ. (7.2)

Nous avons dans un premier temps comparé deux types d'observations, le premier
suppose que le receveur binarise le code observé avant de calculer son test d'hypothèse,
alors que le second type suppose que c'est l'image scannée en niveau de gris qui est
directement utilisée comme observation oN . Nous avons montré que la stratégie consis-
tant à utiliser un code binaire n'est pas optimale dans le sens où pour une probabilité
de fausse alarme donnée, la probabilité de non-détection d'un code contrefait est plus
importante qu'avec l'utilisation d'un code scanné en niveau de gris. Par contre, d'un
point de vue pratique cette stratégie peut comporter plusieurs avantages puisqu'elle
ne nécessite pas la connaissance du canal d'impression du contrefacteur et qu'elle se
traduit par un comptage du nombre d'erreurs entre le code observé et le code original.

7.2.2 Calcul précis des probabilités d'erreur

La probabilité de fausse alarme α, c'est à dire la probabilité de détecter un code original
comme faux, s'exprime comme :

α = Pr (L ≥ λ | H0) . (7.3)

Classiquement, cette probabilité est calculée en invoquant le théorème central limite qui
approxime la distribution de la variable aléatoire L par une distribution Gaussienne. Il
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Figure 7.5: Comparaison des courbes ROC avec et sans binarisation. Ici l'utilisation
directe de codes scannés en niveau de gris permet d'obtenir des performances en au-
thenti�cation bien supérieures. Modèle Gaussien, N = 2.103, σb = σw = 52.

s'avère cependant que pour une valeur très faible de cette probabilité, cette approxima-
tion n'est pas réaliste. Ce problème est identique pour la probabilité de non-détection
β.

Nous avons ici utilisé la borne de Cherno� qui propose un encadrement supérieur
de α ou de β à partir de la fonction génératrice des moments gL(s | H0) de la variable
L, ainsi :

α ≤ e−sλgL(s | H0) pour tout s > 0, (7.4)

avec gL(s | H0) = EPL(L|H0)

[
esL
]
, la borne la plus précise étant obtenue pour la valeur s0

minimisant e−sλgL(s | H0) sousH0. En introduisant la fonction génératrice des moments
semi-invariante µ(s ; H0) = ln gL(s | H0) et en invoquant le théorème de Cramer [33, 48]
pour N su�samment grand, nous obtenons l'expression asymptotique suivante :

α →
N→∞

1

s0
√
Nπµ′′(s0)

exp
{
N
2

[µ(s0)− s0µ
′(s0)]

}
. (7.5)

Il est également possible d'obtenir une formule similaire pour la probabilité de non
détection β.

7.2.3 Résultats obtenus

La �gure 7.6 présente une comparaison entre les courbes ROC obtenues via l'expression
asymptotique et via l'approximation Gaussienne et ce pour di�érents paramètres de
la distribution Gaussienne généralisée. Nous pouvons constater que dans certains cas,
notamment pour des distributions approchant la loi uniforme, que cette di�érence est
conséquente. La précision de l'expression asymptotique est également corroborée par
des simulations de Monté-Carlo qui utilisent un échantillonnage d'importance.
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Figure 7.6: Comparaison entre l'approximation Gaussienne, l'expression asymptotique
et les simulations de Monte-Carlo via échantillonage d'importance dans le cas de distri-
butions Gaussienne généralisées b = 1, b = 2 and b = 6. Les canaux d'impression-
acquisition pour l'imprimeur légitime et le contrefacteur sont identiques, µb = 50,
µw = 150, σb = 40, σw = 40.

7.3 Impact de l'estimation du canal du contrefacteur

sur les performances d'authenti�cation

7.3.1 Cadre et objectifs de l'étude

Dans la section précédente nous faisions l'hypothèse que les systèmes d'impression-
acquisition de l'imprimeur légitime et du contrefacteur étaient tous les deux connus.
Nous prenons maintenant le cas plus réaliste où le modèle de l'imprimeur légitime reste
connu, mais où celui du contrefacteur reste à estimer. Dans ce scénario, le receveur
cherche, à partir d'un ensemble de Nobs codes contrefaits qu'il a en sa possession, à
estimer les paramètres du modèle d'impression-acquisition du contrefacteur.

Puisque les paramètres d'estimation sont entachés d'une erreur, nous cherchons ici
à quanti�er l'impact de cette erreur d'estimation sur les performances globales du sys-
tème d'authenti�cation, l'objectif étant pour une probabilité de fausse alarme donnée,
de calculer les performances moyennes en terme de probabilité de non-détection du sys-
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tème, ou encore les performances minimales ou maximales pour un taux de con�ance
donné.

7.3.2 Relation entre l'erreur d'estimation et la probabilité de

fausse détection

Après avoir constater une relation quasi-linéaire entre le carré de l'erreur d'estimation
||θ̂− θ||2 et le logarithme de la probabilité de non-détection log β, nous avons cherché à
l'expliquer en analysant le développement limité de log β pour des erreurs d'estimation
faibles. Pour cela nous avons calculé la dérivée première, seconde et troisième interve-
nant dans le développement. De part l'optimalité du test pour une erreur d'estimation
nulle, il est facile de montrer que la dérivée première est nulle. Les variations par rap-
port à l'erreur quadratique et celle du troisième ordre nécessitent l'utilisation de la
distribution de Boltzmann ps0(θ̂) au point s0 (voir équation (4.21)), et en introduisant
le rapport de vraisemblance l(θ̂) = log p1(v | θ̂)/p0(v | θ̂) nous obtenons la dépendance
quadratique suivante :

log β(θ̂) ≈ log β(θ) +
N

4
(θ̂ − θ)TH(θ)(θ̂ − θ) (7.6)

où H(θ) est la matrice Hessienne de la fonction log β(θ) explicitée par :

Hi,i(θ) = s1(θ)
[

cov2(l,l′i)

Var(l)
− Var(l′i)

]
,

Hi,k(θ) = s1(θ)
[

cov(l,l′i)cov(l,l′k)

Var(l)
− cov(l′i, l

′
k)
]
,

cov(l, l′i) = Eps0
[
l(θ̄)l′i(θ̄)

]
− Eps0

[
l(θ̄)
]
Eps0

[
l′i(θ̄)

]
,

cov(l′i, l
′
k) = Eps0 [l′i(θ)l

′
k(θ)]− Eps0 [l′i(θ)]Eps0 [l′k(θ)] ,

Var(l) = Eps0 [l2(θ)]− E2
ps0

[l(θ)] ,

Var(l′i) = Eps0
[(
l′i(θ̄)

)2
]
− E2

ps0

[
l′i(θ̄)

]
.

(7.7)

Une étude plus précise de la dérivée troisième montre d'une part que celle-ci est
dans la plupart des cas négligeable, d'autre part qu'elle permet d'expliquer en grande
partie des di�érence entre l'approximation quadratique et les mesures pratiques.

7.3.3 Modélisation de la distribution des probabilités de fausse

détection

Une fois l'approximation quadratique établie, il est possible de modéliser la distribu-
tion des log β en partant du principe qu'un estimateur utilisant une estimation par
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maximum de vraisemblance ou bien par algorithme EM génère une erreur d'estimation
dont les marginales sont Gaussiennes. Après normalisation, il en ressort donc que le
terme quadratique de 7.6 se comporte comme une loi χ2 et donc que log β peut être
s'approximer par une loi χ2 généralisée, comme illustrée sur la Figure 7.7.

Figure 7.7: Histogramme et densité de probabilité de log β(α, θ) pour 4 paramètres..

7.3.4 Résultats obtenus

Nous sommes à présent capables de calculer des statistiques de log β pour un α donné,
comme notamment sa valeur moyenne, ou encore ses valeurs minimales ou maximales
à un seuil de con�ance de 95%, et d'analyser l'évolution décroissante de ses statistiques
en fonction du nombre de codes graphiques observés. A partir de là, il est possible de
quanti�er précisément les performances du système d'authenti�cation dans un scénario
pratique donné.
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Figure 7.8: Courbes ROC obtenues après l'estimation de quatre paramètres du canal
du contrefacteur via l'algorithme EM (modélisation Gaussienne) ˆ̄µb, ˆ̄σ

2
b , ˆ̄µw, ˆ̄σ

2
w pour dif-

férentes statistiques (moyenne, minimum, maximum pour un seuil de con�ance de 95%)
en utilisant les formules litérales en via simulations. Comparaison avec la connaissance
des paramètres du canal (courbe �True�).

7.4 Optimisation du canal d'impression

7.4.1 Scénarios envisagés

Nous cherchons ici à optimiser le système d'authenti�cation via la spéci�cation de ses
procédés d'impression-acquisition. Nous analysons trois scénarios pratiques :

1. A partir d'un modèle d'impression-acquisition donné, nous cherchons dans un
premier temps à trouver les paramètres du modèle qui permettront de minimiser la
probabilité de non-détection β du système d'authenti�cation. Cette optimisation
revient en pratique à sélectionner le type d'imprimante, d'encre, ou de papier
qui permettront d'obtenir de bonnes performances. Dans ce cas ci, nous faisons
l'hypothèse que l'adversaire est passif et qu'il se contentera d'utiliser le même
système d'impression-acquisition que l'imprimeur légitime.

2. Le deuxième scénario correspond à un scénario de sécurité à proprement dit puis-
qu'ici nous prenons en compte un adversaire cherchant à modi�er son modèle
d'impression-acquisition a�n de détériorer les performances du système d'authen-
ti�cation. L'objectif ici est d'envisager une attaque au pire des cas en cherchant le
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Figure 7.9: Evolution de log10 β(α, ˆ̄θ) en fonction du nombre d'observations Nobs, α =
10−16.

modèle d'impression-acquisition de l'imprimeur légitime qui permettra d'obtenir
les meilleurs performances de détection une fois que l'adversaire aura sélectionné
son modèle le plus néfaste. Dans ce scénario l'adversaire est actif puisqu'il est ca-
pable de modi�er son canal d'impression-acquisition et nous partons du principe
que le receveur connait le canal du contrefacteur.

3. Le troisième scénario est similaire au second dans le sens où encore une fois
l'adversaire est actif, mais nous faisons l'hypothèse ici que le receveur doit estimer
le canal du contrefacteur avant de procéder à l'authenti�cation.

7.4.2 Formalisation des problèmes

Le premier problème peut être formalisé par la recherche au sein d'une famille paramé-
trique donnée de canaux d'impression-acquisition C, les paramètres du canal minimisant
la probabilité de non détection β, nous cherchons donc la probabilité β∗ telle que :

β∗ = min
C
β(α). (7.8)

Dans le second cas, l'optimisation consiste à résoudre un jeu min max pour deux
familles de canaux, l'un appelé Cl pour l'imprimeur légitime, l'autre appelé Co pour
le contrefacteur. Dans le cas où le receveur connait le canal du contrefacteur, nous
cherchons donc la probabilité β∗ telle que :



CHAPITRE 7. RÉSUMÉ EN FRANÇAIS 115

β∗ = min
Cl

max
Co

β(α). (7.9)

Dans le cas où le receveur doit estimer le canal du contrefacteur, nous utilisons les
résultats sur les performances après estimation du canal pour, par exemple, optimiser
les performances moyennes E[β(α)], nous cherchons donc la probabilité β∗ telle que :

β∗ = min
Cl

max
Co

E[β(α)]. (7.10)

7.4.3 Résultats obtenus

La �gure 7.10 présente un exemple de résultats obtenus dans le scénario qui considère un
contrefacteur actif. Nous voyons que pour chacun de ces exemples (ce n'est cependant
pas vrai dans tous les cas), la stratégie optimale pour l'imprimeur certi�ée est d'éviter
un procédé d'impression-acquisition peu bruité qui favoriserai une estimation facile du
code original par le contrefacteur, mais d'éviter également un procédé trop dégradé
pour lequel le bruit important empêcherait la distinction entre code originaux et codes
contrefaits. Ces résultats montrent également l'intérêt d'utiliser un canal proche de la
loi uniforme, c'est à dire paramètre b grand qui amène un β faible, par rapport à un
canal proche d'une loi parcimonieuse, c'est à dire unb faible qui amène un β grand.

La �gure 7.11 illustre la di�érence entre l'optimisation e�ectuée sans et avec estima-
tion du canal. Nous notons que dans cet exemple la di�érence de performance croit en
fonction du paramètre σm mais que le résultat de l'optimisation est peu di�érent d'un
scénario à l'autre.
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Figure 7.10: Evolution de la meilleure stratégie du contrefacteur max
σo

β en fonction de

l'écart type σm d'une distribution Gaussienne généralisée pour di�érents paramètres b
de cette distribution. µb = 50, µw = 150, α = 10−6.

7.5 Conclusions

Cette thèse nous a permis d'appréhender des problèmes théoriques d'importance en au-
thenti�cation, et qui plus est pour une méthode d'authenti�cation utilisant des codes
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Figure 7.11: Comparaisons entre les optimisations max
σo

β et max
σo

E(β) en fonction de

σm pour une distribution Gaussienne. Ici, µb = µ̄b = 70, µw = µ̄w = 160, α = 10−12.

graphiques. En utilisant la stratégie du test de Neyman-Pearson comme test d'au-
thenti�cation, nous avons dans un premier temps chercher à mesurer précisément les
probabilités de fausse alarme et de non détection de ce test, et ce pour des probabilités
faibles. Dans un second temps nous avons voulu quanti�er l'impacte d'une étape préa-
lable d'estimation des paramètres d'estimation sur les performances de ce test, et pour
cela nous avons cherché à estimer la distribution des probabilité de non-détection pour
une probabilité de fausse alarme donnée. Notre dernière contribution a cherché à trou-
ver les paramètres des systèmes d'impression-acquisition qui permettent de maximiser
les performances du système d'authenti�cation et ceci pour trois scénarios distincts.

Nous avons comme perspectives d'utiliser ces di�érentes méthodologies sur des codes
graphiques imprimés et non pas générés à partir de modèles statistiques.
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Appendix A

Materials, Proofs and Extensions

A.1 Boltzmann's distributions and probabilities of error

A.2 Proof of lemma 2

A.3 Proof of proposition 5

A.4 The third order expansion of log β(α, ˆ̄θ) - one parameter

A.5 The third order expansion of log β(α, ˆ̄θ) - multiple parameters

A.6 Constrained optimization using Lagrange multiplier method

�Appendix usually means "small

outgrowth from large intestine," but

in this case it means "additional

information accompanying main

text." Or are those really the same

things? Think carefully before you

insult this book. �

Pseudonymous Bosch

A.1 Boltzmann's distributions and probabilities of er-

ror

Proposition 6. We always have for any s ∈ (0, 1):

µ(s) + (1− s)µ′(s) = −DKL(ps||p1), (A.1)

Similarly we can obtain :
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µ(s)− sµ′(s) = −DKL(ps||p0). (A.2)

Proof. These equations, (A.2) and (A.1), are very important in our analysis, and they
are true also ∀s:

DKL(ps||p0) =

ˆ
ps(v) log

ps(v)

p0(v)
dv,

=

ˆ
p1−s

0 (v)ps1(v)

Ns

log

p1−s
0 (v)ps1(v)

Ns

p0(v)
dv,

=

´
p0(v)

(
p1(v)
p0(v)

)s
log
(
p1(v)
p0(v)

)s
dv

Ns

− logNs,

=
sEp0 [l(V ) exp(sl(V )]

Ep0 [exp(sl(V )]
− logEp0 [exp(sl(V )] ,

= sµ′(s)− µ(s).

where l(v) = log
(
p1(v)
p0(v)

)
.

Proposition 7. Let Xt be a random variable with density function pt, the mean and
variance of Xt satisfy

Ept(Xt) = µ′(t) (A.3)

and

Varpt(Xt) = µ′′(t) (A.4)

Proof. Taking directly the �rst and second derivatives of µ(t), and using the de�nition
of mean and variance of Xt w.r.t pt.

A.2 Proof of lemma 2

Proof. We choose the same threshold for the LLR test so we can rewrite this condition
mathematically as:

Eps1
[
l(ˆ̄θ)
]

= Eps0
[
l(ˆ̄θ)
]

(A.5)

Taking derivative on both sides of (A.5) yields:
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∑
v∈V

l′i(
ˆ̄θ)ps1(ˆ̄θ) +

∑
v∈V

l(ˆ̄θ)
∂ps1(ˆ̄θ)

∂ ˆ̄θi
=
∑
v∈V

l′i(
ˆ̄θ)ps0(ˆ̄θ) +

∑
v∈V

l(ˆ̄θ)
∂ps0(ˆ̄θ)

∂ ˆ̄θi
. (A.6)

At ˆ̄θ = θ̄, using lemma (1), Eq. A.6 becomes

∑
v∈V

l(θ̄)
∂ps1(ˆ̄θ)

∂ ˆ̄θi

∣∣∣∣∣
ˆ̄θ=θ̄

=
∑
v∈V

l(θ̄)
∂ps0(ˆ̄θ)

∂ ˆ̄θi

∣∣∣∣∣
ˆ̄θ=θ̄

. (A.7)

Because it is easy to see

∂pt(
ˆ̄θ)

∂ ˆ̄θi
=

[
∂K(t, ˆ̄θ)

∂ ˆ̄θi
−
∑
v∈V

∂K(t, ˆ̄θ)

∂ ˆ̄θi
pt(

ˆ̄θ)

]
pt(

ˆ̄θ)

where

K(t, ˆ̄θ) = t(ˆ̄θ)l(ˆ̄θ)

So (A.7) is equivalent to

Eps1
[
l(θ̄) ∂K(s1,

ˆ̄θ)

∂ ˆ̄θ

∣∣∣
ˆ̄θ=θ̄

]
− Eps1

[
l(θ̄)
]
Eps1

[
∂K(s1,

ˆ̄θ)

∂ ˆ̄θ

∣∣∣
ˆ̄θ=θ̄

]
= Eps0

[
l(θ̄) ∂K(s0,

ˆ̄θ)

∂ ˆ̄θ

∣∣∣
ˆ̄θ=θ̄

]
− Eps0

[
l(θ̄)
]
Eps0

[
∂K(s0,

ˆ̄θ)

∂ ˆ̄θ

∣∣∣
ˆ̄θ=θ̄

]
.

(A.8)

Since:

∂K(s1,
ˆ̄θ)

∂ ˆ̄θ
= t′(ˆ̄θ)l(ˆ̄θ) + t(ˆ̄θ)l′(ˆ̄θ) (A.9)

and using (4.23), it can be shown that (A.8) is equivalent to[
ṡ

(i)
1 (θ̄)− ṡ(i)

0 (θ̄)
]{

Eps0
[
l2(θ̄)

]
− E2

ps0

[
l(θ̄)
]}

−
{
Eps0

[
l(θ̄)l′i(θ̄)

]
− Eps0

[
l(θ̄)
]
Eps0

[
l′i(θ̄)

]}
= 0

with ṡ
(i)
j (θ̄) =

∂sj(
ˆ̄θ)

∂ ˆ̄θi

∣∣∣
ˆ̄θ=θ̄

(j = 0, 1), and hence

ṡ
(i)
1 (θ̄)− ṡ(i)

0 (θ̄) =
cov(l, l′i)

Var(l)
. (A.10)

Let

A(ˆ̄θ) = Eps1
[
l′i(

ˆ̄θ)
]
− Eps0

[
l′i(

ˆ̄θ)
]
, (A.11)

from (4.22), we have
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∂2β∗(ˆ̄θ)

∂ ˆ̄θ2
i

=
∂s1(ˆ̄θ)

∂ ˆ̄θi
A(ˆ̄θ) + s1(ˆ̄θ)

∂A(ˆ̄θ)

∂ ˆ̄θi
(A.12)

in which

∂A(ˆ̄θ)

∂ ˆ̄θi
= Eps1

[
l′′i (

ˆ̄θ)
]
− Eps0

[
l′′i (

ˆ̄θ)
]

+
∑
v∈V

l′i(
ˆ̄θ)
∂ps1(ˆ̄θ)

∂ ˆ̄θi
−
∑
v∈V

l′i(
ˆ̄θ)
∂ps0(ˆ̄θ)

∂ ˆ̄θi
.

Then at ˆ̄θ = θ̄,

∂A(ˆ̄θ)

∂ ˆ̄θi

∣∣∣
ˆ̄θ=θ̄

=
[
ṡ

(i)
1 (θ̄)− ṡ(i)

0 (θ̄)
] {

Eps0
[
l(θ̄)l′i(θ̄)

]
− Eps0

[
l(θ̄)
]
Eps0

[
l′i(θ̄)

]}
−

{
Eps0

[(
l′i(θ̄)

)2
]
− E2

ps0

[
l′i(θ̄)

]}
.

(A.13)

Finally, it is trivial to �nish the proof and obtain (4.26).

A.3 Proof of proposition 5

Below we give the analytical computation stated in preposition 5 for the mean and
variance of the quadratic form (4.28):

Proof. Let Y = ˆ̄θ− θ̄, we have E(Y ) = 0 and E(Y Y T ) = Σ ˆ̄θ
. Since Y TH∗Y is a scalar,

it is equal to its trace, hence:

E
[
Y TH∗Y

]
= E

[
tr
(
Y TH∗Y

)]
= E

[
tr
(
H∗Y Y T

)]
= tr

[
E
(
H∗Y Y T

)]
= tr

(
H∗Σ ˆ̄θ

)
.

Apply theorem 1 in page 55 of the book [90], we then have:

Var
[
Y TH∗Y

]
= 2tr

[(
H∗Σ ˆ̄θ

)2
]
.

So the proposition is proven.
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A.4 The third order expansion of log β(α, ˆ̄θ) - one pa-

rameter

Let �rst denote generally:

cov(l
(m)
i0
, l

(n)
i0

) = Eps0
[
l
(m)
i0

(θ̄)l
(n)
i0

(θ̄)
]
− Eps0

[
l
(m)
i0

(θ̄)
]
Eps0

[
l
(n)
i0

(θ̄)
]

for m 6= n

Var(l
(m)
i0

) = Eps0

[(
l
(m)
i0

(θ̄)
)2
]
− E2

ps0

[
l
(m)
i0

(θ̄)
]

where l
(m)
i0

= ∂ml(ˆ̄θ)

∂ ˆ̄θmi

∣∣∣∣
ˆ̄θ=θ̄

and if m is equal 1, 2 or 3 then l
(m)
i0

becomes l′i0 , l
′′
i0

or l′′′i0

respectively.

In order to achieve a better approximation for the authentication performance we
need to come up the following theorem:

Theorem 8. At the point ˆ̄θ = θ̄, these below equalities are always true:

(i)
∑
v∈V

l′′i0(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θi0
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θi0

]
ˆ̄θ=θ̄

=
(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
)

cov(l, l′′i0)− cov(l′′i0 , l
′
i0

),

(ii)
∑
v∈V

l′i0(θ̄)

[
∂2ps1 (ˆ̄θ)

∂ ˆ̄θ2
i0

− ∂2ps0 (ˆ̄θ)

∂ ˆ̄θ2
i0

]
ˆ̄θ=θ̄

=
(
s̈

(i0)
1 (θ̄)− s̈(i0)

0 (θ̄)
)

cov(l, l′i0)

+ 2
(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
)

Var(l′i0)− cov(l′′i0 , l
′
i0

)

+

[(
ṡ

(i0)
1 (θ̄)

)2

−
(
ṡ

(i0)
0 (θ̄)

)2
] [

cov(l′i0 , l
2)− 2E(l)cov(l, l′i0)

]
+ 2s0(θ̄)

(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
) [

cov(l, (l′i0)2)− 2E(l′i0)cov(l, l′i0)
]

− 2ṡ
(i0)
1 (θ̄)

[
cov(l, (l′i0)2)− 2E(l′i0)cov(l, l′i0)

]
−

(
s1(θ̄) + s0(θ̄)

) [
cov(l′i0 , (l

′
i0

)2)− 2E(l′i0)Var(l′i0)
]
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(iii)
∑
v∈V

l(θ̄)

[
∂2ps1 (ˆ̄θ)

∂ ˆ̄θ2
i0

− ∂2ps0 (ˆ̄θ)

∂ ˆ̄θ2
i0

]
ˆ̄θ=θ̄

=
(
s̈

(i0)
1 (θ̄)− s̈(i0)

0 (θ̄)
)

Var(l)

+ 2
(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
)

cov(l, l′i0)− cov(l′′i0 , l)

+

[(
ṡ

(i0)
1 (θ̄)

)2

−
(
ṡ

(i0)
0 (θ̄)

)2
]

[cov(l, l2)− 2E(l)Var(l)]

+ 2s0(θ̄)
(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
) [

cov(l′i0 , l
2)− 2E(l)cov(l, l′i0)

]
− 2ṡ

(i0)
1 (θ̄)

[
cov(l′i0 , l

2)− 2E(l)cov(l, l′i0)
]

−
(
s1(θ̄) + s0(θ̄)

) [
cov(l, (l′i0)2)− 2E(l′i0)cov(l, l′i0)

]
(iv) 2 ∂A(ˆ̄θ)

∂ ˆ̄θi0

∣∣∣∣
ˆ̄θ=θ̄

+
∑
v∈V

l(θ̄)

[
∂2ps1 (ˆ̄θ)

∂ ˆ̄θ2
i0

− ∂2ps0 (ˆ̄θ)

∂ ˆ̄θ2
i0

]
ˆ̄θ=θ̄

= 0

(v) ṡ
(i0)
0 (θ̄) = −s0(θ̄)

cov(l,l′i0
)

Var(l)

(vi)
[
ṡ

(i0)
1 (θ̄)

]2

−
[
ṡ

(i0)
0 (θ̄)

]2

= 2ṡ
(i0)
0 (θ̄)

cov(l,l′i0
)

Var(l)
+
[

cov(l,l′i0
)

Var(l)

]2

Proof. We respectively prove (i) to (vi) as follow
(i) We follow the same way as in the proof in lemma 2.

(ii) Remind that:

K(t, ˆ̄θ) = t(ˆ̄θ)l(ˆ̄θ)

and

∂pt(
ˆ̄θ)

∂ ˆ̄θi0
=

[
∂K(t, ˆ̄θ)

∂ ˆ̄θi0
−
∑
v∈V

∂K(t, ˆ̄θ)

∂ ˆ̄θi0
pt(

ˆ̄θ)

]
pt(

ˆ̄θ),

we then have

∂K(t, ˆ̄θ)

∂ ˆ̄θi0
= t′i0(ˆ̄θ)l(ˆ̄θ) + t(ˆ̄θ)l′i0(ˆ̄θ)

∂2K(t, ˆ̄θ)

∂ ˆ̄θ2
i0

= t′′i0(ˆ̄θ)l(ˆ̄θ) + 2t′i0(ˆ̄θ)l′i0(ˆ̄θ) + t(ˆ̄θ)l′′i0(ˆ̄θ)

[
∂K(t, ˆ̄θ)

∂ ˆ̄θ

]2

=
[
t′i0(ˆ̄θ)

]2

l2(ˆ̄θ) + t2(ˆ̄θ)
[
l′i0(ˆ̄θ)

]2

+ 2l(ˆ̄θ)l′i0(ˆ̄θ)t(ˆ̄θ)t′i0(ˆ̄θ)

(A.14)

where t′i0(ˆ̄θ) = ∂t(ˆ̄θ)

∂ ˆ̄θi0
, t′′i0(ˆ̄θ) = ∂2t(ˆ̄θ)

∂ ˆ̄θ2
i0

and l′i0(ˆ̄θ) = ∂l(ˆ̄θ)

∂ ˆ̄θi0
, l′′i0(ˆ̄θ) = ∂2l(ˆ̄θ)

∂ ˆ̄θ2
i0

. Moreover, we obtain

the general formula for the second derivative of pt(
ˆ̄θ) w.r.t ˆ̄θi0 as:
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∂2pt(
ˆ̄θ)

∂ ˆ̄θ2
i0

= pt(
ˆ̄θ)

{
∂2K(t, ˆ̄θ)

∂ ˆ̄θ2
i0

−
∑
v∈V

∂2K(t, ˆ̄θ)

∂ ˆ̄θ2
i0

pt(
ˆ̄θ)

+

[
∂K(t, ˆ̄θ)

∂ ˆ̄θi0

]2

−
∑
v∈V

[
∂K(t, ˆ̄θ)

∂ ˆ̄θi0

]2

pt(
ˆ̄θ)

− 2

[∑
v∈V

∂K(t, ˆ̄θ)

∂ ˆ̄θi0
pt(

ˆ̄θ)

] [
∂K(t, ˆ̄θ)

∂ ˆ̄θi0
−
∑
v∈V

∂K(t, ˆ̄θ)

∂ ˆ̄θi0
pt(

ˆ̄θ)

]}
.

(A.15)

We have denoted:

ps0(ˆ̄θ) = es0(ˆ̄θ)l(ˆ̄θ)p0(ˆ̄θ)

Ep0
[
es0(ˆ̄θ)l(ˆ̄θ)

]

ps1(ˆ̄θ) = es1(ˆ̄θ)l(ˆ̄θ)p1(ˆ̄θ)

Ep1
[
es1(ˆ̄θ)l(ˆ̄θ)

] ,
(A.16)

hence

∑
v∈V

l′i0(ˆ̄θ)

[
∂2ps1(ˆ̄θ)

∂ ˆ̄θ2
i0

− ∂2ps0(ˆ̄θ)

∂ ˆ̄θ2
i0

]
= B1(ˆ̄θ)−B3(ˆ̄θ) +B2(ˆ̄θ)−B4(ˆ̄θ) + 2

[
B6(ˆ̄θ)−B5(ˆ̄θ)

]
(A.17)

where

B1(ˆ̄θ) = Eps1

[
l′i0(ˆ̄θ)∂

2K(s1(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θ2
i0

]
− Eps0

[
l′i0(ˆ̄θ)∂

2K(s0(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θ2
i0

]
(A.18)

B2(ˆ̄θ) = Eps1

[
l′i0(ˆ̄θ)

(
∂K(s1(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θi0

)2
]
− Eps0

[
l′i0(ˆ̄θ)

(
∂K(s0(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θi0

)2
]

(A.19)

B3(ˆ̄θ) = Eps1
[
l′i0(ˆ̄θ)

]
Eps1

[
∂2K(s1(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θ2
i0

]
− Eps0

[
l′i0(ˆ̄θ)

]
Eps0

[
∂2K(s0(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θ2
i0

]
(A.20)

B4(ˆ̄θ) = Eps1
[
l′i0(ˆ̄θ)

]
Eps1

[(
∂K(s1(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θi0

)2
]
− Eps0

[
l′i0(ˆ̄θ)

]
Eps0

[(
∂K(s0(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θi0

)2
]

(A.21)

B5(ˆ̄θ) = Eps1

[
∂K(s1(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θi0

]
Eps1

[
l′i0(ˆ̄θ)∂K(s1(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θi0

]

− Eps0

[
∂K(s0(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θi0

]
Eps1

[
l′i0(ˆ̄θ)∂K(s0(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θi0

] (A.22)
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B6(ˆ̄θ) = Eps1
[
l′i0(ˆ̄θ)

]{
Eps1

[
∂K(s1(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θi0

]}2

− Eps0
[
l′i0(ˆ̄θ)

]{
Eps0

[
∂K(s0(ˆ̄θ), ˆ̄θ)

∂ ˆ̄θi0

]}2

.

(A.23)

At ˆ̄θ = θ̄, using (4.23) and (A.14) we have:

B1(θ̄) =
(
s̈

(i0)
1 (θ̄)− s̈(i0)

0 (θ̄)
)
Eps0

[
l(θ̄)l′i0(θ̄)

]
− Eps0

[
l′i0(θ̄)l′′i0(θ̄)

]
+ 2

(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
)
Eps0

[(
l′i0(θ̄)

)2
] (A.24)

B2(θ̄) =

([
ṡ

(i0)
1 (θ̄)

]2

−
[
ṡ

(i0)
0 (θ̄)

]2
)
Eps0

[
l′i0(θ̄)l2(θ̄)

]
+ 2s0(θ̄)

(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
)
Eps0

[
l(θ̄)

(
l′i0(θ̄)

)2
]

−
(
s

(i0)
1 (θ̄) + s

(i0)
0 (θ̄)

)
Eps0

[(
l′i0(θ̄)

)3
]
− 2ṡ

(i0)
1 (θ̄)Eps0

[
l(θ̄)

(
l′i0(θ̄)

)2
]

(A.25)

B3(θ̄) = Eps0
[
l′i0(θ̄)

] [(
s̈

(i0)
1 (θ̄)− s̈(i0)

0 (θ̄)
)
Eps0

[
l(θ̄)
]
− Eps0

[
l′′i0(θ̄)

]
+ 2

(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
)
Eps0

[
l′i0(θ̄)

]] (A.26)

B4(θ̄) = Eps0
[
l′i0(θ̄)

]{([
ṡ

(i0)
1 (θ̄)

]2

−
[
ṡ

(i0)
0 (θ̄)

]2
)
Eps0

[
l2(θ̄)

]
+ 2s0(θ̄)

(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
)
Eps0

[
l(θ̄)l′i0(θ̄)

]
−

(
s

(i0)
1 (θ̄) + s

(i0)
0 (θ̄)

)
Eps0

[(
l′i0(θ̄)

)2
]
− 2ṡ

(i0)
1 (θ̄)Eps0

[
l(θ̄)l′i0(θ̄)

]}
(A.27)
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B5(θ̄) =

([
ṡ

(i0)
1 (θ̄)

]2

−
[
ṡ

(i0)
0 (θ̄)

]2
)
Eps0

[
l(θ̄)
]
Eps0

[
l(θ̄)l′i0(θ̄)

]
+ s0(θ̄)

(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
)
Eps0

[
l(θ̄)
]
Eps0

[(
l′i0(θ̄)

)2
]

+ s0(θ̄)
(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
)
Eps0

[
l′i0(θ̄)

]
Eps0

[
l(θ̄)l′i0(θ̄)

]
−

(
s

(i0)
1 (θ̄) + s

(i0)
0 (θ̄)

)
Eps0

[
l′i0(θ̄)

]
Eps0

[(
l′i0(θ̄)

)2
]

− ṡ
(i0)
1 (θ̄)

{
Eps0

[
l(θ̄)
]
Eps0

[(
l′i0(θ̄)

)2
]

+ Eps0
[
l′i0(θ̄)

]
Eps0

[
l(θ̄)l′i0(θ̄)

]}
(A.28)

B6(θ̄) =

([
ṡ

(i0)
1 (θ̄)

]2

−
[
ṡ

(i0)
0 (θ̄)

]2
){

Eps0
[
l(θ̄)
]}2 Eps0

[
l′i0(θ̄)

]
+ 2s0(θ̄)

(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
)
Eps0

[
l(θ̄)
] {

Eps0
[
l′i0(θ̄)

]}2

−
(
s

(i0)
1 (θ̄) + s

(i0)
0 (θ̄)

){
Eps0

[
l′i0(θ̄)

]}3

− 2ṡ
(i0)
1 (θ̄)Eps0

[
l(θ̄)
] {

Eps0
[
l′i0(θ̄)

]}2
.

(A.29)

We then get

B1(θ̄)−B3(θ̄) =
(
s̈

(i0)
1 (θ̄)− s̈(i0)

0 (θ̄)
){

Eps0
[
l(θ̄)l′i0(θ̄)

]
− Eps0

[
l(θ̄)
]
Eps0

[
l′i0(θ̄)

]}
+ 2

(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
){

Eps0
[(
l′i0(θ̄)

)2
]
−
(
Eps0

[
l′i0(θ̄)

])2
}

−
{
Eps0

[
l′i0(θ̄)l′′i0(θ̄)

]
− Eps0

[
l′i0(θ̄)

]
Eps0

[
l′′i0(θ̄)

]}
(A.30)
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B2(θ̄)−B4(θ̄) =([
ṡ

(i0)
1 (θ̄)

]2

−
[
ṡ

(i0)
0 (θ̄)

]2
){

Eps0
[
l2(θ̄)l′i0(θ̄)

]
− Eps0

[
l2(θ̄)

]
Eps0

[
l′i0(θ̄)

]}
+

2s0(θ̄)
(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
){

Eps0
[
l(θ̄)

(
l′i0(θ̄)

)2
]
− Eps0

[
l′i0(θ̄)

]
Eps0

[
l(θ̄)l′i0(θ̄)

]}
−

(
s

(i0)
1 (θ̄) + s

(i0)
0 (θ̄)

){
Eps0

[(
l′i0(θ̄)

)3
]
− Eps0

[
l′i0(θ̄)

]
Eps0

[(
l′i0(θ̄)

)2
]}
−

2ṡ
(i0)
1 (θ̄)

{
Eps0

[
l(θ̄)

(
l′i0(θ̄)

)2
]
− Eps0

[
l′i0(θ̄)

]
Eps0

[
l(θ̄)l′i0(θ̄)

]}
(A.31)

2
[
B6(θ̄)−B5(θ̄)

]
=

2

([
ṡ

(i0)
1 (θ̄)

]2

−
[
ṡ

(i0)
0 (θ̄)

]2
)
Eps0

[
l(θ̄)
] {

Eps0
[
l(θ̄)
]
Eps0

[
l′i0(θ̄)

]
− Eps0

[
l(θ̄)l′i0(θ̄)

]}
+

2s0(θ̄)
(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
){

2Eps0
[
l(θ̄)
] {

Eps0
[
l′i0(θ̄)

]}2

−Eps0
[
l(θ̄)
]
Eps0

[(
l′i0(θ̄)

)2
]
− Eps0

[
l′i0(θ̄)

]
Eps0

[
l(θ̄)l′i0(θ̄)

]}
−

2
(
s

(i0)
1 (θ̄) + s

(i0)
0 (θ̄)

) [{
Eps0

[
l′i0(θ̄)

]}3 − Eps0
[
l′i0(θ̄)

]
Eps0

[(
l′i0(θ̄)

)2
]]
−

2ṡ
(i0)
1 (θ̄)

{
2Eps0

[
l(θ̄)
] {

Eps0
[
l′i0(θ̄)

]}2

−Eps0
[
l(θ̄)
]
Eps0

[(
l′i0(θ̄)

)2
]
− Eps0

[
l′i0(θ̄)

]
Eps0

[
l(θ̄)l′i0(θ̄)

]}
.

(A.32)
Because we get

∑
v∈V

l′i0(θ̄)

[
∂2ps1 (ˆ̄θ)

∂ ˆ̄θ2
i0

− ∂2ps0 (ˆ̄θ)

∂ ˆ̄θ2
i0

]
ˆ̄θ=θ̄

= B1(θ̄)−B3(θ̄) +B2(θ̄)−B4(θ̄) + 2
[
B6(θ̄)−B5(θ̄)

]
hence it yields
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∑
v∈V

l′i0(θ̄)

[
∂2ps1 (ˆ̄θ)

∂ ˆ̄θ2
i0

− ∂2ps0 (ˆ̄θ)

∂ ˆ̄θ2
i0

]
ˆ̄θ=θ̄

= B1(θ̄)−B3(θ̄) +B2(θ̄)−B4(θ̄) + 2
[
B6(θ̄)−B5(θ̄)

]
=

(
s̈

(i0)
1 (θ̄)− s̈(i0)

0 (θ̄)
)

cov(l, l′i0)

+ 2
(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
)

Var(l′i0)− cov(l′′i0 , l
′
i0

)

+

[(
ṡ

(i0)
1 (θ̄)

)2

−
(
ṡ

(i0)
0 (θ̄)

)2
] [

cov(l′i0 , l
2)− 2E(l)cov(l, l′i0)

]
+ 2s0(θ̄)

(
ṡ

(i0)
1 (θ̄)− ṡ(i0)

0 (θ̄)
) [

cov(l, (l′i0)2)− 2E(l′i0)cov(l, l′i0)
]

− 2ṡ
(i0)
1 (θ̄)

[
cov(l, (l′i0)2)− 2E(l′i0)cov(l, l′i0)

]
−

(
s1(θ̄) + s0(θ̄)

) [
cov(l′i0 , (l

′
i0

)2)− 2E(l′i0)Var(l′i0)
]
.

(A.33)

So, (ii) is proven.

(iii) Similar to (ii).

(iv) Taking the second derivative from both sides of (A.5) yields:∑
v∈V

l′′i0(ˆ̄θ)ps1(ˆ̄θ) + 2
∑
v∈V

l′i0(ˆ̄θ)
∂ps1 (ˆ̄θ)

∂ ˆ̄θi0
+
∑
v∈V

l(ˆ̄θ)
∂2ps1 (ˆ̄θ)

∂ ˆ̄θ2
i0

=
∑
v∈V

l′′i0(ˆ̄θ)ps0(ˆ̄θ) + 2
∑
v∈V

l′i0(ˆ̄θ)
∂ps0 (ˆ̄θ)

∂ ˆ̄θi0
+
∑
v∈V

l(ˆ̄θ)
∂2ps0 (ˆ̄θ)

∂ ˆ̄θ2
i0

.

(A.34)

At ˆ̄θ = θ̄, from (A.11), the above equation is equivalent to:

2
∂A(ˆ̄θ)

∂ ˆ̄θi0

∣∣∣∣∣
ˆ̄θ=θ̄

+
∑
v∈V

l(θ̄)

[
∂2ps1(ˆ̄θ)

∂ ˆ̄θ2
i0

− ∂2ps0(ˆ̄θ)

∂ ˆ̄θ2
i0

]
ˆ̄θ=θ̄

= 0. (A.35)

Fom (iii) and (iv), we can calculate exactly s̈
(i0)
1 (θ̄)− s̈(i0)

0 (θ̄).

(v) In our analysis, we suppose that α∗(ˆ̄θ) = 2
N

logα(ˆ̄θ) is �xed, hence logα∗(ˆ̄θ) is �xed
and so

∂ logα∗(ˆ̄θ)

∂ ˆ̄θi0
= 0. (A.36)

From using (4.8), we can express:
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logα∗(ˆ̄θ) = −DKL(ps0||p0). (A.37)

It is able to see:

DKL(ps0 ||p0) = s0(ˆ̄θ)
∑
v∈V

l(ˆ̄θ)ps0(ˆ̄θ)− log
∑
v∈V

eK(s0,
ˆ̄θ)p0(ˆ̄θ) (A.38)

∂DKL(ps0||p0)

∂ ˆ̄θ
= s0(ˆ̄θ)

∑
v∈V

l(ˆ̄θ)
∂ps0(ˆ̄θ)

∂ ˆ̄θi0
. (A.39)

We know that at ˆ̄θ = θ̄,

∑
v∈V

l(θ̄)
∂ps0 (ˆ̄θ)

∂ ˆ̄θi0

∣∣∣∣
ˆ̄θ=θ̄

= ṡ
(i0)
0 (θ̄)Eps0

[
l2(θ̄)

]
+ s0(θ̄)Eps0

[
l(θ̄)l′i0(θ̄)

]
− ṡ

(i0)
0 (θ̄)

{
Eps0

[
l(θ̄)
]}2

+ s0(θ̄)Eps0
[
l(θ̄)
]
Eps0

[
l′i0(θ̄)

]
.

(A.40)

Therefore,

∂DKL(ps0||p0)

∂ ˆ̄θ

∣∣∣∣
ˆ̄θ=θ̄

= s0(θ̄)ṡ
(i0)
0 (θ̄)Var

[
l(θ̄)
]

+ s2
0(θ̄)cov

[
l(θ̄)l′i0(θ̄)

]
. (A.41)

From (A.36), we have:

s0(θ̄)ṡ
(i0)
0 (θ̄)Var

[
l(θ̄)
]

+ s2
0(θ̄)cov

[
l(θ̄)l′i0(θ̄)

]
= 0. (A.42)

Consequently,

ṡ
(i0)
0 (θ̄) = −s0(θ̄)

cov(l, l′i0)

Var(l)
, (A.43)

and (v) is proven.

(vi) From (A.10), we get:[
ṡ

(i0)
1 (θ̄)

]2

=
[
ṡ

(i0)
0 (θ̄)

]2

+
cov2(l, l′i0)

Var2(l)
+ 2ṡ

(i0)
0 (θ̄)

cov(l, l′i0)

Var(l)
(A.44)

and so [
ṡ

(i0)
1 (θ̄)

]2

−
[
ṡ

(i0)
0 (θ̄)

]2

= 2ṡ
(i0)
0 (θ̄)

cov(l, l′i0)

Var(l)
+

[
cov(l, l′i0)

Var(l)

]2

. (A.45)

From (v) and (vi), we can rewrite:
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[
ṡ

(i0)
1 (θ̄)

]2

−
[
ṡ

(i0)
0 (θ̄)

]2

=

[
cov(l, l′i0)

Var(l)

]2 [
1− 2s0(θ̄)

]
. (A.46)

Finally, using (i)−(vi) in the above theorem, we can easily obtain the explicit formula

for ∂3β∗(ˆ̄θ)

∂ ˆ̄θ3
i0

∣∣∣∣
ˆ̄θ=θ̄

and hence for ∂3 log β(ˆ̄θ)

∂ ˆ̄θ3
i0

∣∣∣∣
ˆ̄θ=θ̄

.

A.5 The third order expansion of log β(α, ˆ̄θ) - multiple

parameters

In order to compute ∂3β∗(ˆ̄θ)

∂ ˆ̄θi∂
ˆ̄θj∂

ˆ̄θk

∣∣∣
ˆ̄θ=θ̄

, we follow the same steps as in the case of computing

∂3β∗(ˆ̄θ)

∂ ˆ̄θ3
i0

∣∣∣∣
ˆ̄θ=θ̄

with some modi�cation. First, generally we have:

∂3β∗(ˆ̄θ)

∂ ˆ̄θi∂
ˆ̄θj∂

ˆ̄θk

= ṡ
(j)
1 (ˆ̄θ)

{
Eps1

[
l′′ik(

ˆ̄θ)
]
− Eps0

[
l′′ik(

ˆ̄θ)
]

+
∑
v∈V

l′i(
ˆ̄θ)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θk
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θk

]}
+ ṡ

(k)
1 (ˆ̄θ)

{
Eps1

[
l′′ij(

ˆ̄θ)
]
− Eps0

[
l′′ij(

ˆ̄θ)
]

+
∑
v∈V

l′i(
ˆ̄θ)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θj
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θj

]}
+ s1(ˆ̄θ)

{
Eps1

[
l′′′ijk(

ˆ̄θ)
]
− Eps0

[
l′′′ijk(

ˆ̄θ)
]

+
∑
v∈V

l′′ij(
ˆ̄θ)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θk
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θk

]}
+ s1(ˆ̄θ)

{∑
v∈V

l′′ik(
ˆ̄θ)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θj
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θj

]
+
∑
v∈V

l′i(
ˆ̄θ)

[
∂2ps1 (ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk
− ∂2ps0 (ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk

]}
+ s̈

(ij)
1 (ˆ̄θ)

{
Eps1

[
l′i(

ˆ̄θ)
]
− Eps0

[
l′i(

ˆ̄θ)
]}

.

(A.47)

Thus at ˆ̄θ = θ̄, using lemma 1 we similarly get:

∂3β∗(ˆ̄θ)

∂ ˆ̄θi∂
ˆ̄θj∂

ˆ̄θk

∣∣∣
ˆ̄θ=θ̄

= ṡ
(j)
1 (θ̄)

∑
v∈V

l′i(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θk
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θk

]
ˆ̄θ=θ̄

+ ṡ
(k)
1 (θ̄)

∑
v∈V

l′i(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θj
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θj

]
ˆ̄θ=θ̄

+ s1(θ̄)
∑
v∈V

l′′ij(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θk
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θk

]
ˆ̄θ=θ̄

+ s1(θ̄)
∑
v∈V

l′′ik(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θj
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θj

]
ˆ̄θ=θ̄

+ s1(θ̄)
∑
v∈V

l′i(θ̄)

[
∂2ps1 (ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk
− ∂2ps0 (ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk

]
ˆ̄θ=θ̄

(A.48)

where for x = 0, 1
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∂psx(
ˆ̄θ)

∂ ˆ̄θu
=

[
∂K(sx,

ˆ̄θ)

∂ ˆ̄θu
−
∑
v∈V

∂K(sx,
ˆ̄θ)

∂ ˆ̄θu
psx(

ˆ̄θ)

]
psx(

ˆ̄θ) u = j, k

and

∂2psx (ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk

= psx(
ˆ̄θ)

{
∂2K(sx,

ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk
−
∑
v∈V

∂2K(sx,
ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk
psx(

ˆ̄θ)

+ ∂K(sx,
ˆ̄θ)

∂ ˆ̄θj

∂K(sx,
ˆ̄θ)

∂ ˆ̄θk
−
∑
v∈V

[
∂K(sx,

ˆ̄θ)

∂ ˆ̄θj

∂K(sx,
ˆ̄θ)

∂ ˆ̄θk

]
psx(

ˆ̄θ)

−
[∑
v∈V

∂K(sx,
ˆ̄θ)

∂ ˆ̄θj
psx(

ˆ̄θ)

] [
∂K(sx,

ˆ̄θ)

∂ ˆ̄θk
−
∑
v∈V

∂K(sx,
ˆ̄θ)

∂ ˆ̄θk
psx(

ˆ̄θ)

]

−
[∑
v∈V

∂K(sx,
ˆ̄θ)

∂ ˆ̄θk
psx(

ˆ̄θ)

] [
∂K(sx,

ˆ̄θ)

∂ ˆ̄θj
−
∑
v∈V

∂K(sx,
ˆ̄θ)

∂ ˆ̄θj
psx(

ˆ̄θ)

]}
.

To obtain the explicit formula for (A.48), we need the following equations (for the sake
of simplicity, we drop out the index of parameter θ̄):

∑
v∈V

l′i(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θj
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θj

]
ˆ̄θ=θ̄

=
[
ṡ

(j)
1 − ṡ

(j)
0

]
cov(l, l′i)− cov(l′i, l

′
j)

∑
v∈V

l′j(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θk
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θk

]
ˆ̄θ=θ̄

=
[
ṡ

(k)
1 − ṡ

(k)
0

]
cov(l, l′j)− cov(l′j, l

′
k)

∑
v∈V

l′k(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θj
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θj

]
ˆ̄θ=θ̄

=
[
ṡ

(j)
1 − ṡ

(j)
0

]
cov(l, l′k)− cov(l′k, l

′
j)

(A.49)

and

∑
v∈V

l′′ij(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θk
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θk

]
ˆ̄θ=θ̄

=
[
ṡ

(k)
1 − ṡ

(k)
0

]
cov(l, l′′ij)− cov(l′k, l

′′
ij)

∑
v∈V

l′′ik(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θj
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θj

]
ˆ̄θ=θ̄

=
[
ṡ

(j)
1 − ṡ

(j)
0

]
cov(l, l′′ik)− cov(l′j, l

′′
ik)

(A.50)

where [
ṡ

(u)
1 − ṡ

(u)
0

]
=

cov(l, l′u)

Var(l)
, u = j, k (A.51)
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∑
v∈V

l′i(θ̄)

[
∂2ps1 (ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk
− ∂2ps0 (ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk

]
ˆ̄θ=θ̄

=
[
s̈

(jk)
1 − s̈(jk)

0

]
cov(l, l′i)− cov(l′i, l

′′
jk)

+
[
ṡ

(j)
1 − ṡ

(j)
0

]
cov(l′i, l

′
k) +

[
ṡ

(k)
1 − ṡ

(k)
0

]
cov(l′i, l

′
j)

+
[
s1ṡ

(j)
1 − s0ṡ

(j)
0

]
[cov(l′i, ll

′
k)− E(l)cov(l′i, l

′
k)− E(l′k)cov(l, l′i)]

+
[
s1ṡ

(k)
1 − s0ṡ

(k)
0

] [
cov(l′i, ll

′
j)− E(l)cov(l′i, l

′
j)− E(l′j)cov(l, l′i)

]
+

[
ṡ

(j)
1 ṡ

(k)
1 − ṡ

(j)
0 ṡ

(k)
0

]
[cov(l2, l′i)− 2E(l)cov(l, l′i)]

− [s1 + s0]
[
cov(l′i, l

′
jl
′
k)− E(l′j)cov(l′i, l

′
k)− E(l′k)cov(l′i, l

′
j)
]

(A.52)

where s̈
(jk)
1 − s̈(jk)

0 is computed by using:

0 =
∑
v∈V

l′j(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θk
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θk

]
ˆ̄θ=θ̄

+
∑
v∈V

l′k(θ̄)

[
∂ps1 (ˆ̄θ)

∂ ˆ̄θj
− ∂ps0 (ˆ̄θ)

∂ ˆ̄θj

]
ˆ̄θ=θ̄

+
∑
v∈V

l(θ̄)

[
∂2ps1 (ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk
− ∂2ps0 (ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk

]
ˆ̄θ=θ̄

.

(A.53)

The condition (A.53) comes from the fact that we use the same threshold for the
hypothesis testing. Note that similar to (A.52), we also have:

∑
v∈V

l(θ̄)

[
∂2ps1 (ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk
− ∂2ps0 (ˆ̄θ)

∂ ˆ̄θj∂
ˆ̄θk

]
ˆ̄θ=θ̄

=
[
s̈

(jk)
1 − s̈(jk)

0

]
Var(l)− cov(l, l′′jk)

+
[
ṡ

(j)
1 − ṡ

(j)
0

]
cov(l, l′k) +

[
ṡ

(k)
1 − ṡ

(k)
0

]
cov(l, l′j)

+
[
s1ṡ

(j)
1 − s0ṡ

(j)
0

]
[cov(l2, l′k)− E(l)cov(l, l′k)− E(l′k)Var(l)]

+
[
s1ṡ

(k)
1 − s0ṡ

(k)
0

] [
cov(l2, l′j)− E(l)cov(l, l′j)− E(l′j)Var(l)

]
+

[
ṡ

(j)
1 ṡ

(k)
1 − ṡ

(j)
0 ṡ

(k)
0

]
[cov(l2, l)− 2E(l)Var(l, )]

− [s1 + s0]
[
cov(l, l′jl

′
k)− E(l′j)cov(l, l′k)− E(l′k)cov(l, l′j)

]

(A.54)

All E, Var and cov are taken w.r.t the Boltzmann's distribution ps0(ˆ̄θ).
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A.6 Constrained optimization using Lagrange multi-

plier method

We remind that the Lagrange multiplier function of the passive game (5.4) is de�ned
as:

F (s0, θ0, λ) = log β − λ [logα− logα0]

= −NcDKL(ps0 ‖ p1)− λ [−NcDKL(ps0 ‖ p0)− logα0] .
(A.55)

In order to solve the problem (5.4), we need to solve a system of non-linear equations
below: 

∂F (s0,θ0,λ)
∂s0

= 0

∂F (s0,θ0,λ)
∂θ0

= 0

∂F (s0,θ0,λ)
∂λ

= 0

. (A.56)

First we have �nd the explicit formulas for the partial derivatives of F (s0, θ0, λ) w.r.t
s0, θ0 and λ respectively. Remember that logα and log β can be performed as (see
(4.7)):

logα = Nc [µ(s0)− s0µ
′(s0)]

log β = Nc [µ(s0) + (1− s0)µ′(s0)]
0 < s0 < 1, (A.57)

so

∂ logα
∂s0

= −Ncs0µ
′′(s0)

∂ log β
∂s0

= Nc(1− s0)µ′′(s0)

. (A.58)

Using (A.4), we then have:

∂ logα
∂s0

= −Ncs0F (s0)

= −Ncs0

{
E [l2(θ0)]− (E [l(θ0)])2}

= −Ncs0Var [l(θ0)]

(A.59)

and similarly,

∂ log β
∂s0

= Nc(1− s0) Var [l(θ0)] . (A.60)

Thus
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∂F (s0,θ0,λ)
∂s0

= ∂ log β
∂s0
− λ∂ logα

∂s0

= Nc [1− s0 + λs0] Var [l(θ0)] .

(A.61)

From ∂F (s0,θ0,λ)
∂s0

= 0, we derive:

λ =
s0 − 1

s0

. (A.62)

Next, we try to �nd ∂F (s0,θ0,λ)
∂θ0

by �rst noting that:

1
Nc

∂ logα
∂θ0

= −s0

∑
v∈V

l′(θ0)ps0(θ0)− s0

∑
v∈V

l(θ0)
∂ps0 (θ0)

∂θ0

+
∑
v∈V

s0l
′(θ0)ps0(θ0) +

∑
v∈V

∂ log p0

∂θ0
ps0(θ0)

= −s0

∑
v∈V

s0l(θ0)l′(θ0)ps0(θ0) +
∑
v∈V

∂ log p0

∂θ0
ps0(θ0)

+ s0

(∑
v∈V

l(θ0)ps0(θ0)

)(∑
v∈V

s0l
′(θ0)ps0(θ0)

)

− s0

∑
v∈V

l(θ0)∂ log p0

∂θ0
ps0(θ0) + s0

(∑
v∈V

l(θ0)ps0(θ0)

)(∑
v∈V

∂ log p0

∂θ0
ps0(θ0)

)
,

(A.63)
hence (for the sake of simplicity we drop out the index of parameter θ0)

∂ logα
∂θ0

= Ncs0

{
−s0E [ll′] + s0E [l]E [l′]− E

[
l ∂ log p0

∂θ0

]
+ E [l]E

[
∂ log p0

∂θ0

]}
+ NcE

[
∂ log p0

∂θ0

]
= Nc

{
−s2

0cov(l, l′)− s0cov
(
l, ∂ log p0

∂θ0

)
+ E

[
∂ log p0

∂θ0

]}
.

(A.64)

Similarly,

∂ log β
∂θ0

= Nc

{
E [l′]− (s0 − 1)s0cov(l, l′)− (s0 − 1)cov

(
l, ∂ log p0

∂θ0

)
+ E

[
∂ log p0

∂θ0

]}
.

(A.65)
Therefore,
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∂F (s0,θ0,λ)
∂θ0

= −Nc {−E [l′] + (s0 − 1)s0cov(l, l′)

+ (s0 − 1)cov
(
l, ∂ log p0

∂θ0

)
− E

[
∂ log p0

∂θ0

]
+ −λs2

0cov(l, l′)− λs0cov
(
l, ∂ log p0

∂θ0

)
+ λE

[
∂ log p0

∂θ0

]}
.

(A.66)

From (A.62) we easily get:

∂F (s0,θ0,λ)
∂θ0

= Nc

{
E [l′] + 1

s0
E
[
∂ log p0

∂θ0

]}
. (A.67)

Finally,

∂F (s0,θ0,λ)
∂λ

= NcDKL(ps0 ‖ p0) + logα0 . (A.68)

From (A.61), (A.67), (A.68) and (A.56), it reduces to solve the following system of
non-linear equations: 

−NcDKL(ps0 ‖ p0)− logα0 = 0

s0E [l′] + E
[
∂ log p0

∂θ0

]
= 0

. (A.69)

In order to solve (A.69), we �rst try to use Newton-Raphson method, hence we need
to compute the Jacobian matrix. Let's call:

f(s0, θ0) = −NcDKL(ps0 ‖ p0)− logα0

g(s0, θ0) = s0E [l′] + E
[
∂ log p0

∂θ0

]
.

(A.70)

Similar to (A.59), we get:

∂f(s0, θ0)

∂s0

= −Ncs0Var [l(θ0)] , (A.71)

and we can easily obtain:

∂g(s0, θ0)

∂s0

= E [l′] + s0cov(l, l′) + cov

(
l,
∂ log p0

∂θ0

)
. (A.72)

Now we have only compute ∂f(s0,θ0)
∂θ0

and ∂g(s0,θ0)
∂θ0

. From (A.64), we have:

∂f(s0, θ0)

∂θ0

= Nc

{
−s2

0cov(l, l′)− s0cov

(
l,
∂ log p0

∂θ0

)
+ E

[
∂ log p0

∂θ0

]}
. (A.73)
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Note that:

∂g(s0,θ0)
∂θ0

= s0

{∑
v∈V

l′′(θ0)ps0(θ0) +
∑
v∈V

l′(θ0)
∂ps0 (θ0)

∂θ0

}

+
∑
v∈V

∂2 log p0

∂θ2
0

ps0(θ0) +
∑
v∈V

∂ log p0

∂θ0

∂ps0 (θ0)

∂θ0

(A.74)

where we have

l′(θ0)
∂ps0 (θ0)

∂θ0
= s0l

′2ps0 − l′ps0E [s0l
′]

+ l′ ∂ log p0

∂θ0
ps0 − l′ps0E

[
∂ log p0

∂θ0

] (A.75)

hence ∑
v∈V

l′(θ0)
∂ps0(θ0)

∂θ0

= s0Var [l′] + cov

(
l′,
∂ log p0

∂θ0

)
. (A.76)

And similarly,∑
v∈V

∂ log p0

∂θ0

∂ps0(θ0)

∂θ0

= s0cov

(
l′,
∂ log p0

∂θ0

)
+ Var

[
∂ log p0

∂θ0

]
. (A.77)

From (A.74), (A.76) and (A.77), we obtain:

∂g(s0,θ0)
∂θ0

= s0

{
E [l′′] + s0Var [l′] + cov

(
l′, ∂ log p0

∂θ0

)}
+

{
E
[
∂2 log p0

∂θ2
0

]
+ s0cov

(
l′, ∂ log p0

∂θ0

)
+ Var

[
∂ log p0

∂θ0

]}
.

(A.78)

From (A.71), (A.73), (A.72) and (A.78) we obtain the explicit formula of the Jaco-
bian matrix of the problem (A.70) as:

J =

[
∂f(s0,θ0)
∂s0

∂f(s0,θ0)
∂θ0

∂g(s0,θ0)
∂s0

∂g(s0,θ0)
∂θ0

]
. (A.79)



1

Analyse de performance d'un système d'authenti�cation utilisant des codes graphiques

Résumé:

Nous étudions dans cette thèse l'in�uence d'un système d'authenti�cation utilisant des codes gra-

phiques 2D modi�és lors de l'impression par un procédé physique non-clônable. Un tel procédé part

du principe qu'à très haute résolution le système d'impression acquisition peut être modélisé comme

un processus stochastique, de part le caractère aléatoire de la disposition des �bres de papiers, de mé-

lange des particules d'encre, de l'adressabilité de l'imprimante ou encore du bruit d'acquisition. Nous

considérons un scénario où l'adversaire pourra estimer le code original et essaiera de le reproduire

en utilisant son propre système d'impression. La première solution que nous proposons pour arriver à

l'authenti�cation est d'utiliser un test d'hypothèse à partir des modèles à priori connus et sans mémoire

des canaux d'impression-acquisition de l'imprimeur légitime et du contrefacteur. Dans ce contexte nous

proposons une approximation �able des probabilités d'erreur via l'utilisation de bornes exponentiels

et du principe des grandes déviations. Dans un second temps, nous analysons un scénario plus réaliste

qui prends en compte une estimation a priori du canal du contrefacteur et nous mesurons l'impact de

cette étape sur les performances du système d'authenti�cation. Nous montrons qu'il est possible de

calculer la distribution des probabilité de non-détection et d'en extraire par exemple ses performances

moyennes. La dernière partie de cette thèse propose d'optimiser, au travers d'un jeu minmax, le canal

de l'imprimeur légitime a�n de maximiser ses performances d'authenti�cation tout en envisageant une

attaque au pire des cas de la part du contrefacteur.

Mots-clefs : authenti�cation, codes graphiques, tests d'hypothèses, probabilités d'erreurs,

théorie de l'estimation

Performance Analysis of an Authentication Method relying on Graphical Codes

Abstract:

We study in this thesis the impact of an authentication system based on 2D graphical codes that

are corrupted by a physically unclonable noise such as the one emitted by a printing process. The core

of such a system is that a printing process at very high resolution can be seen as a stochastic process

and hence produces noise, this is due to the nature of di�erent elements such as the randomness

of paper �bers, the physical properties of the ink drop, the dot addressability of the printer, etc.

We consider a scenario where the opponent may estimate the original graphical code and tries to

reproduce the forged one using his printing process in order to fool the receiver. Our �rst solution

to perform authentication is to use hypothesis testing on the observed memoryless sequences of a

printed graphical code considering the assumption that we are able to perfectly model the printing

process. The proposed approach arises from error exponent using exponential bounds as a direct

application of the large deviation principle. Moreover, when looking for a more practical scenario, we

take into account the estimation of the printing process used to generate the graphical code of the

opponent, and we see how it impacts the performance of the authentication system. We show that it

is both possible to compute the distribution of the probability of non-detection and to compute the

average performance of the authentication system when the opponent channel has to be estimated.

The last part of this thesis addresses the optimization problem of the printing channel controlled by

the legitimate manufacturer in order to maximize his ability to detect a forged graphical code within

a min-max game.

Key words : authentication, graphical codes, hypothesis testing, error probabilities,

estimation theory
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