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Abstract

This thesis contributes to the problem of 3D reconstruction for deformable surfaces using a single

camera. In order to model surface deformation, we use the isometric prior because many real object

deformations are near-isometric. Isometry implies that the surface cannot stretch or compress. We

tackle two different problems.

The first is called Shape-from-Template where the object’s deformed shape is computed from a

single image and a texture-mapped 3D template of the object surface. Previous methods propose a

differential model of the problem and compute the local analytic solutions. In the methods the solution

related to the depth-gradient is discarded and only the depth solution is used. We demonstrate that

the depth solution lacks stability as the projection geometry tends to affine. We provide alternative

methods based on the local analytic solutions of first-order quantities, such as the depth-gradient or

surface normals. Our methods are stable in all projection geometries.

The second type of problem, called Non-Rigid Shape-from-Motion is the more general template-

free reconstruction scenario. In this case one obtains the object’s shapes from a set of images where

it appears deformed. We contribute to this problem for both local and global solutions using the per-

spective camera. In the local or point-wise method, we solve for the surface normal at each point

assuming infinitesimal planarity of the surface. We then compute the surface by integration. In the

global method we find a convex relaxation of the problem. This is based on relaxing isometry to in-

extensibility and maximizing the surface’s average depth. This solution combines all constraints into

a single convex optimization program to compute depth and works for a sparse point representation

of the surface.

We detail the extensive experiments that were used to demonstrate the effectiveness of each of

the proposed methods. The experiments show that our local template-free solution performs better

than most of the previous methods. Our local template-based method and our global template-free

method performs better than the state-of-the-art methods with robustness to correspondence noise.

In particular, we are able to reconstruct difficult, non-smooth and articulating deformations with the

latter; while with the former we can accurately reconstruct large deformations with images taken at

very long focal lengths.
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Résumé

Cette thèse contribue au problème de la reconstruction 3D pour les surfaces déformables avec une

seule caméra. Afin de modéliser la déformation de la surface, nous considérons l’isométrie puisque

de nombreuses déformations d’objets réels sont quasi-isométriques. L’isométrie implique que, lors

de sa déformation, la surface ne peut pas être étirée ou compressée. Nous étudions deux problèmes.

Le premier est le problème basé sur une modèle 3D de référence et une seule image. L’état

de l’art propose une méthode locale et analytique de calcul direct de profondeur sous l’hypothèse

d’isométrie. Dans cette méthode, la solution pour le gradient de la profondeur n’est pas utilisée.

Nous prouvons que cette méthode s’avère instable lorsque la géométrie de la caméra tend à être

affine. Nous fournissons des méthodes alternatives basées sur les solutions analytiques locales des

quantités de premier ordre, telles que les gradients de profondeur ou les normales de la surface. Nos

méthodes sont stables dans toutes les géométries de projection.

Dans le deuxième type de problème de reconstruction sans modèle 3D de référence, on obtient

les formes de l’objet à partir d’un ensemble d’images où il apparaît déformé. Nous fournissons des

solutions locales et globales basées sur le modéle de la caméra perspective. Dans la méthode locale ou

par point, nous résolvons pour la normale de la surface en chaque point en supposant que la surface

est infinitésimalement plane. Nous calculons ensuite la surface par intégration. Dans la méthode

globale, nous trouvons une relaxation convexe du problème. Celle-ci est basée sur la relaxation de

l’isométrie en constrainte d’inextensibilité et sur la maximisation de la profondeur en chaque point

de la surface. Cette solution combine toutes les contraintes en un seul programme d’optimisation

convexe qui calcule la profondeur et utilise une représentation éparse de la surface.

Nous détaillons les expériences approfondies qui ont été réalisées pour démontrer l’efficacité

de chacune des méthodes. Les expériences montrent que notre solution libre de modèle de réference

local fonctionne mieux que la plupart des méthodes précédentes. Notre méthode local avec un modèle

3D de réference et notre méthode globale sans modèle 3D apportent de meilleurs résultats que les

méthodes de l’état de l’art en etant robuste au bruit de la correspondance. En particulier, nous sommes

en mesure de reconstruire des déformations complexes, non-lisses et d’articulations avec la seconde

méthode; alors qu’avec la première, nous pouvons reconstruire avec précision de déformations larges

à partir d’images prises avec des très longues focales.
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Chapter 1
Introduction

1.1 Background

Computer Vision is a multidisciplinary branch of computer science, mathematics and others, whose

ultimate goal is to make computers see and understand the world around us. One of the fundamental

steps for this ultimate goal is making computers see in 3D. Although we humans effortlessly see

the world in 3D, this is far from trivial for a computer. The level of details, speed and robustness

our eyes and brain show in attaining this task, looks mind-bogglingly futuristic for computer vision.

This thesis concerns with a small but an important aspect of the aforementioned fundamental step:

finding a method that can make a computer see non-rigid objects in 3D. In the jargon of computer

vision, making a computer see in 3D is referred to as 3D reconstruction. We present our contributions

towards reconstructing 3D of deformable or non-rigid surfaces using a single camera. To put the task

in perspective, we first discuss the established and widely used methods in 3D reconstruction and

the challenges of non-rigid 3D reconstruction. We shall use the term non-rigid interchangeably with

deformable to describe objects or methods of reconstruction of deformable surfaces.

Structure-from-Motion and stereo. The 3D reconstruction of rigid objects from their multiple

images is one of the cornerstones of computer vision. The solution to this problem consists of a

sequence of steps known as Structure-from-Motion (SfM). An SfM pipeline is shown in figure 1.1.

The inputs are images and the intrinsics of the camera. With these inputs SfM simultaneously gives

the reconstructed 3D of the object and the camera poses relative to a fixed coordinate frame. SfM

consists of two major steps: feature point matching and reconstruction. Feature point matching gives

the point matches between the images via methods such as Scale Invariant Feature Transform (SIFT)

matching followed by a geometric verification. There is still a lot of room for improvement in feature

point matching but for most cases, current state-of-the-art methods have been proven to be effective.

The reconstruction step of SfM (Hartley and Zisserman, 2004) can be considered to be largely solved.

A significant number of commercial software and hardware products such as Photoscan have been

developed that use SfM to compute the 3D of a scene.

The reason SfM works so well is because it considers the scene to be rigid and the relative motion
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Figure 1.1: Rigid 3D reconstruction and SfM.

between the scene objects to be zero. Rigidity is a strong prior. It allows the scene on each image to be

related to that of any other image in each camera’s coordinate reference, by using only six parameters:

three for rotation and three for translation. The six degrees of freedom are fixed irrespective of the

number of scene points we want to reconstruct.

Depth sensors. There are several types of depth sensors that have been developed to capture the

object’s depth at each point. Stereo vision uses the same principles as SfM to triangulate depth using

two or multiple cameras at the same instant. One interesting modification of stereo is the structured

light sensor. A structured light sensor projects one or many patterns on the object surface and matches

the original pattern with the projected one densely. It then uses these point matches to triangulate

depth in the same way as the stereo. The KINECT sensor is a structured light sensor and it obtains

the dense matches using a single pattern. The most recent version of KINECT, called the KINECT

One uses a time-of-flight (TOF) sensor. TOF sensors obtain 3D by measuring the phase changes due

to the time delay between the emitted and reflected light pulses. Other technologies for measuring

3D use lasers to obtain a very high resolution and accurate 3D of objects. Except for KINECT and

stereo, almost all 3D sensing technologies work only on static scenes. The other important problem

with 3D sensors is that they always tend to be bulky and expensive. Despite the rapid evolution of

such sensors, it is quite possible that we may not have a depth sensor as small as miniature cameras

in the near future.
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Non-rigidity. When we consider deformable surfaces, the rigidity prior no longer holds true. As a

consequence, the change of 3D scenes across the images cannot be described by only 6 parameters.

Thus SfM no longer yields the correct 3D of the deforming scene. We can draw analogy from the

rigid 3D reconstruction and describe the non-rigid 3D reconstruction problem by figure 1.2.
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Figure 1.2: Problem formulation for 3D reconstruction of non-rigid scenes.

Fundamentally, the major bottleneck here is not in establishing point correspondences between

images. Instead it is in the theoretical framework to compute the 3D surfaces from matched image

points. For this reason, 3D reconstruction of deforming objects with a single camera is still a very

open problem and a subject of great interest. Addressing non-rigidity in the problem of 3D recon-

struction is important because much of the scenes that are of practical importance such as the human

body, organs, cloths are non-rigid. Being able to reconstruct such deforming scenes would open a lot

of applications, particularly in augmentation for entertainment or medical procedures. Some appli-

cations of monocular 3D reconstruction of deforming scenes have already been explored in medical

endoscopic augmented reality (Collins and Bartoli, 2015; Maier-Hein et al., 2014). The difficulty in

monocular non-rigid reconstruction stems from the fact that it is a severely under-constrained prob-

lem without additional priors on the surface deformation or shape space. This is due to the fact that a

wide spectrum of deformations of an object can yield the same image projections. Furthermore, it is

not yet quite clear which priors work better for typical deforming surfaces.

In this thesis, we use the isometric prior exclusively because it is a physical prior like rigidity

but being much weaker it can also model many real deformations. In an isometric deformation, the

surface deforms such that the geodesic distance between any pair of points remains unchanged. In
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other words, the surface does not stretch or compress anywhere in isometric deformation. The notion

of isometry is well established in the field of differential geometry where a number of theorems and

properties have been developed. In the real world, object deformations may not be exactly isometric

but most of them show a near-isometric property. Examples include paper like surfaces, cloths, human

pose or body parts, some human organs, etc. Even though isometry cannot relate surfaces with a few

transformation parameters as in rigidity, we show in the thesis that with the right formulation of

isometry and camera geometry, we can obtain accurate reconstructions of deformable surfaces. There

are two important problems in deformable 3D reconstruction, one where a textured 3D template is

known and a single input image of the deformed surface is given and the other when only the images

are given. We explore both problems in the thesis. We introduce and describe these two problems

below.

1.2 Shape-from-Template

Context. In Shape-from-Template (SfT) (Bartoli and Collins, 2013; Bartoli et al., 2015; Ngo et al.,

2016; Perriollat et al., 2011; Salzmann and Fua, 2011a), the 3D shape is obtained from a single image

and a template of the object. The template is a textured 3D model of the object in a known reference

position. Figure 1.3 gives the inputs and outputs of the SfT problem. SfT is a considerably easier

�
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Figure 1.3: The SfT problem. In this example, we describe the template as a mesh but in general, any texture-
mapped 3D model can be used.
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problem among the two deformable reconstruction problems. Remarkable reconstructions using only

point matches were shown in (Salzmann and Fua, 2011a) and its solvability using the first-order

and zeroth-order registration terms was studied in (Bartoli et al., 2015). It was shown in the latter

that the isometric model provides locally as many constraints as the rigid planar model. Here we

study the shape inference step of SfT, assuming that registration between the template and image

is solved using, for example, point correspondences (Collins and Bartoli, 2014b; Pilet et al., 2008;

Pizarro and Bartoli, 2012). In particular we explore the shape reconstruction when the projection

geometry becomes close to affine. A scene’s projection geometry can range from strongly perspective

to virtually affine. In the latter case, this happens when the object is very small or viewed from a large

distance. We define a stable method as one that gives an accurate 3D reconstruction for all projection

geometries. We propose two stable methods that require no initialization and are fast.

Several successful SfT methods that have been proposed are based on the isometric constraint.

In essence, these methods differ from each other by the way isometry is imposed and how the final

constraints are optimized. (Bartoli and Collins, 2013; Bartoli et al., 2015) describe isometric SfT as a

Partial Differential Equation (PDE) system, giving local analytical solutions and a proof that isometric

SfT is well-posed. (Brunet et al., 2014) finds the shape by minimizing a statistically optimal cost

while imposing isometric constraints. (Collins and Bartoli, 2015) propose a real-time tracking-based

approach for the perspective cameras. A different class of methods (Ngo et al., 2016; Perriollat et al.,

2011; Salzmann and Fua, 2011a) relaxes isometry with inextensibility. Using the so-called Maximum

Depth Heuristic (MDH), (Perriollat et al., 2011; Salzmann and Fua, 2011a) choose the shape that

maximizes depth under the inextensibility constraint. Inextensibility means the distance between the

neighboring points remain inferior to their geodesic distance in the template. Recently (Ngo et al.,

2016) modified the approach of (Salzmann and Fua, 2011a) by enforcing Laplacian smoothness in

the solution. The methods discussed form a solid foundation for the SfT problem. However they

lack accuracy and applicability in many scenarios. We claim that the following qualities are desired

of an SfT method: a) it should be robust to noise and outliers in correspondences, b) it should be

accurate even with a low number of matched feature points, c) it should work with camera focal

lengths that are very small to very large (stability) and d) it should be fast and analytical with no

requirement for an initialization. The correspondence outliers mentioned in the property a) can be

either tackled at the registration step or the reconstruction step. There are several successful methods

that remove outliers during registration (Collins and Bartoli, 2014b; Pilet et al., 2008; Pizarro and

Bartoli, 2012) while small noise in correspondences has to be dealt with in the reconstruction step. For

that reason, we focus our further discussions of property a) in the context of noise in correspondences

for the reconstruction step. The inextensibility-based methods (Ngo et al., 2016; Perriollat et al., 2011;

Salzmann and Fua, 2011a) fail to capture the property in c) and do not entirely satisfy d), while the

analytical solutions in (Bartoli and Collins, 2013; Bartoli et al., 2015) fail to capture the requirements

in c). Similarly the statistically optimal cost minimization in (Brunet et al., 2014; Collins and Bartoli,

2015) does not satisfy d). Thus there is a clear need for a method that satisfies all four criteria.

Local analytical methods. The local analytical solutions for SfT were first given in (Bartoli et al.,

2015), where a set of non-holonomic solutions was obtained for a PDE system with a change of vari-



6 Chapter 1. INTRODUCTION

able. The solutions of a PDE system are called the non-holonomic solutions when they are obtained

by treating any quantities and their derivatives as separate independent unknowns. Specifically, the

non-holonomic solutions give the radial component of the depth and its gradient in the spherical co-

ordinate system. Despite the fact that the local analytical depth solution is unique, we show that it

is not well-constrained when the camera projection tends to affine. On the other hand, we prove that

the depth-gradient solution is always stable. This is a significant discovery because most methods

for SfT rely on computing a solution for the depth (Bartoli and Collins, 2013; Bartoli et al., 2015;

Collins et al., 2014; Ngo et al., 2016; Salzmann and Fua, 2011a). We further give an alternative ap-

proach to isometric SfT, which gives an equivalent but different PDE system, inspired from the work

of (Collins and Bartoli, 2014a) on plane-based pose estimation. In (Collins and Bartoli, 2014a) the

pose of a rigid plane is estimated using the non-holonomic solutions of a PDE system. While (Collins

and Bartoli, 2014a) does not give solutions for a deforming surface, we adapt the PDE system for SfT

for both planar and non-planar templates. The resulting PDE system is equivalent to the PDE system

proposed in (Bartoli et al., 2015) but its non-holonomic solutions describe different quantities. In par-

ticular its second non-holonomic solution is used differently in the subsequent steps of reconstruction

that yields slightly different results. It also gives a more intuitive description of SfT and its solutions

in terms of rigid transforms of tangent planes on the surface, and surface normals.

Stable solutions and stable methods We define a stable solution as a non-holonomic solution of

the SfT PDE system that remains well-constrained regardless of the projection geometry involved

(i.e., perspective or affine). We define a stable method as one which solves SfT accurately for all

projection geometries. We propose two stable methods that satisfy properties a) to d) described

previously. We achieve this by using the stable solutions based on two first-order quantities: the

depth-gradient and surface normal. In our first method, which we refer to as the stable type-I method,

we specifically use the radial depth-gradient solution. We obtain this from the PDE system of (Bartoli

et al., 2015). However, the radial depth gradient is only known up to sign. We resolve the sign from

the depth solution, and then integrate the quantity over the surface to obtain the radial depth values.

Because this is from the integration, the values are up to a global scale factor. We compute the scale

factor from the average of the depth solution. Finally we obtain the depth values by a change of

variable. Our second method, the stable type-II method is similar, however we use non-holonomic

solution for the surface normal. Like the radial depth gradient, the surface normal also has a two-fold

ambiguity. We resolve this again by using the depth solution. Finally we integrate the normals, then

resolve the reconstruction’s scale using the average of the depth solution. In practice, the results of

the two stable methods differ slightly due to the influence of noise on the subsequent steps. We find

the stable type-II method to be slightly superior to the stable type-I. Both of the proposed methods

rival the accuracy of statistically optimal approaches (Brunet et al., 2014; Collins and Bartoli, 2015),

are stable under any projection geometry and require no initialization. Our proposed stable methods

were first described in our article (Chhatkuli et al., 2016b). We describe our proposed solution to SfT

in chapter 4.
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1.3 Non-Rigid Shape-from-Motion

Non-Rigid Shape-from-Motion (NRSfM) is the problem of finding the 3D shape of a deforming ob-

ject given a set of monocular images. Unlike in SfT, we do not have a 3D template but a number of

images of the deforming surface and is therefore, a much harder problem. We again refer the reader

to figure 1.2, which can be considered as a general description of the NRSfM problem. This prob-

lem is naturally under-constrained because there can be many different deformations and shapes that

produce the same images. Consequently, we again need priors to disambiguate the correct shapes.

Depending on the type of priors used, different modelling approaches can be considered in order to

solve NRSfM. Several methods have been proposed in the last decade to tackle NRSfM with a variety

of deformation priors. There are two main categories of methods based on the deformation priors:

statistics-based (Bregler et al., 2000; Dai et al., 2012; Garg et al., 2013a; Gotardo and Martínez, 2011;

Torresani et al., 2008) and physical model-based (Agudo and Moreno-Noguer, 2015; Chhatkuli et al.,

2014b; Taylor et al., 2010; Varol et al., 2009; Vicente and Agapito, 2012) methods. In the former

group one assumes that the space of deformations is low-dimensional. These methods can recover

deformations such as body gestures, facial expressions and simple smooth deformations. However

they tend to perform poorly for objects with high-dimensional deformation spaces or atypical defor-

mations. They can also be difficult to use when there is missing data due to e.g. occlusions. In the

latter group one finds deformation models based on isometry (Taylor et al., 2010; Varol et al., 2009;

Vicente and Agapito, 2012), elasticity (Agudo et al., 2014) or particle-interaction models (Agudo

and Moreno-Noguer, 2015). As in SfT, the isometric model is especially interesting and is an ac-

curate model for a great variety of real objects. However in NRSfM, approaches based on isometry

still lack in several aspects. For example solutions tend to be complex and often require very good

initialization. We propose two solutions based on isometry.

In our first work on NRSfM, we give a new formulation of isometric NRSfM as a nonlinear system

of first-order Partial Differential Equations (PDE) involving the shapes’ normal and depth functions.

Our formulation includes an unknown template, and has SfT as a special case. Second, we show that

independent solutions for depth and normal in our system of PDEs are underconstrained. This is an

important result since it tells us that NRSfM cannot be solved locally using only first-order PDEs, in

contrast to SfT (Bartoli et al., 2012). Finally we provide a solution to NRSfM using an assumption

of infinitesimal planarity on top of isometry. Infinitesimal planarity implies the surfaces to be locally

planar so that the curvature can be safely ignored. This allows us to model the relation between the

projected points with a differential homography. By decomposing the homography, we obtain the

possible solutions of the surface normals. We then provide an algorithm to disambiguate the normals

using a number of views (greater than 2). Finally we obtain the shapes by integrating the normals.

This work was first proposed in (Chhatkuli et al., 2014b).

Our second and final work is based on the solution of NRSfM using a convex relaxation of isom-

etry and can be considered to be the state of the art in NRSfM. Here, we use the inextensibility con-

straint for approximating isometry. Inextensibility is a relaxation of isometry where one assumes that

the Euclidean distances between points on the surface do not exceed their geodesic distances. Inexten-

sibility alone is insufficient because the reconstruction can arbitrarily shrink to the camera’s center. In
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template-based reconstruction inextensibility has been combined with the so-called Maximum-Depth

Heuristic (MDH), where one maximizes the average depth of the surface subject to inextensibility

constraints. This approach has been successfully applied in (Salzmann and Fua, 2011a), providing

very accurate results for isometrically deforming objects. The main feature of MDH in template-based

scenarios is that it can be efficiently solved with convex optimization. However, in NRSfM, the tem-

plate is unknown and thus MDH cannot be used out-of-the-box. Our main contribution is to show how

to solve NRSfM using MDH for isometric deformations. The problem is solved globally with con-

vex optimization, and handles perspective projection and difficult cases such as non-smooth objects

and/or deformations and large amounts of missing data (e.g. 50% or more due to self-occlusions).

Furthermore, our solution is far easier to implement than all state-of-the-art methods and has only

one hyperparameter. It can be implemented in MATLAB using only 25 lines of code. We also incor-

porate robustness and temporal smoothness in the original formulation to obtain better results (with

robustness) and better speed (with temporal smoothness). This work is for the most part, based on

our recent paper (Chhatkuli et al., 2016a). In summary, our global NRSfM solution has the follow-

ing properties. 1) a perspective camera model is used (unlike in low-rank models and few others),

2) the isometry constraint is used, 3) a global solution is guaranteed with a convex problem and no

initialization (unlike in the recent methods which use local energy minimization) 4) we can handle

non-smooth surfaces and do not require temporal continuity 5) we handle missing correspondences

and 6) the complete set of constraints are tied together in a single problem. We provide extensive

experiments where we show that we outperform existing work by a large margin in most cases.

Summary of contributions. The thesis deals with two different problems in deformable surface

reconstruction: SfT and NRSfM. We list the summary of the contributions on these problems below.

1. In the template-based reconstruction scenario of SfT, we prove that the depth solutions are

unconstrained as the projection geometry tends to affine. We then give a different method for

obtaining the shape based on the integration of a first-order quantity such as depth-gradient or

surface normal (Chhatkuli et al., 2016b).

2. We give a local solution for surface normals using the isometric prior and thus obtain the un-

known shapes in the template-less reconstruction problem of NRSfM (Chhatkuli et al., 2014b).

3. We provide the first physical prior-based convex formulation of NRSfM using the inextensibil-

ity prior (Chhatkuli et al., 2016a).

Thesis layout. We divide the thesis into 7 chapters. Chapter 2 discusses the prerequisites, such as

the two-view geometry, registration, surface modelling and optimization. These concepts are used as

mathematical tools in the chapters that follow and therefore we do not give their detailed explanations.

We discuss the state of the art and the related concepts specific to non-rigid 3D reconstruction in

chapter 3. We give our solutions and contributions to the SfT problem in chapter 4. In chapter 5 we

discuss our finding of solvability of NRSfM using zeroth and first-order registration quantities and

present our own point-wise (local) solution. We present our global formulation for convex NRSfM
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using the inextensibility prior in chapter 6. Finally we conclude and give our perspective for future

work on the presented problems in chapter 7.
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Chapter 2
Modelling and Mathematical Tools

The solution to the non-rigid 3D reconstruction problem begins with the basics of camera geometry

and a modelling of the surface deformation. In this chapter we describe these prerequisites which

will help us progress smoothly to the actual solutions of SfT and NRSfM. We begin by recalling the

camera geometry and image registration. They can be considered as the basics which are ubiquitous

in various problems of computer vision. Then we briefly discuss surface representation and surface

deformation priors. The deformation priors mandate a brief description of the basic concepts from

differential geometry. The final part of the chapter gives an overview of some optimization techniques.

This is in no way a detailed description of the mathematical optimization methods but simply a brief

outline of some concepts required for the understanding of the following chapters. An understanding

on the subject matter discussed here is required to fully comprehend the previous work or our own

proposed work.
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Mathematical notations

For better readability, we define a set of rules to denote mathematical quantities throughout the thesis.

In several cases, however, we slightly part from these rules. We make a note on such exceptions

for each type of quantities. Additionally, despite the rules, often, some ambiguities will be made

clear with the help of the context in which the notation is used. When discussing about standard

mathematical tools and objects, we let the standard notations in the field supersede our own notations

to avoid any misunderstanding. Such notations are made clear at the point when they appear.

Scalars. We write all scalar quantities as Latin letters in italics, e.g., s. Exceptions: We use λi to

denote the ith eigenvalue of a matrix, which is a scalar. We assume the eigenvalues to be in descending

order: λi ≥ λj with i < j. We therefore reserve the symbol λ exclusively for eigenvalues of a matrix.

Similarly, we use σi for the ith singular value of a matrix.

Vectors and matrices. We use lowercase Latin letters in bold for vectors, e.g., x. Its compo-

nents which are scalar quantities, are written as the vector name in italics followed by a numeral

or Latin subscript. For example, the components of a vector x of dimension n could be written as

x1, x2, . . . , xn. We represent matrices as uppercase Latin letters in bold, e.g. M. The ith eigenvalue

of a matrix M, as mentioned before, is represented by λi whereas, the ith eigenvector is represented

by vi(M). For a matrix M of size m × n, we denote its sub-matrix made of the first i rows and j

columns as [M]ij . We write the jth column of a matrix M as [M]j . Additionally, the identity matrix

of dimension n is written as In. Exceptions: We write the vector quantities representing a small or

differential change as δ and ε. Because of widely accepted notations, we denote the metric tensor as

g even though it is a matrix. We often denote 3D point vectors on surfaces as Q, i.e., in upper case

bold letter even if they are not matrices.

Functions. All functions, whether scalar, vector or matrix-valued are represented using Greek let-

ters of lower or upper case, e.g., ψ(x). For readability we will often drop the function argument and

write the same function as ψ. We use the operator Jψ to write the function giving the Jacobian matrix

of ψ.

Operators. We use diag(s1, . . . , sn) to define a diagonal matrix from the scalars s1, . . . , sn. We

use the operator Jψ to write the function giving the Jacobian matrix of ψ. We often drop the variable

of the function in such cases. We write φ ∈ Cd(Rn,Rm) to denote that the function φ : Rn → Rm

is d times differentiable. We use the ‘min’ or ‘max’ operator to represent the minimum or maximum

of a set respectively. We write ‘minimize’ or ‘maximize’ for minimizing or maximizing an objective

function respectively. Finally ‘arg min’ and ‘arg max’ operators represent the optimal value of the

variables of a minimization and maximization problem respectively.

Others. We write the lth norm of a vector p as ‖p‖l, and when l is not specified as in ‖p‖, it

represents the L2 norm of p. Objects such as spaces, surfaces, sets and cameras are denoted in

calligraphic math fonts such as P , S or C. Additionally point sets are also represented by putting the
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concerned variable in curly braces, e.g., {p} represents the set of all vectors p. We denote the general

linear group of dimension n as GLn and the special group of rotation matrices of order n as SOn.

We write the set of all symmetric matrices of order n as Sn and the set of all positive real number as

R++. In describing NRSfM, we use the subscripts and superscripts to denote the corresponding point

index and the image or surface index respectively. Thus qki may denote the ith image correspondence

for the kth image.

2.1 The Camera Model

In computer vision, we reason about the world based on the images obtained from a camera. We first

briefly recall how the image formation in cameras can be modelled. Although, modern cameras have

a very complex lens system, for most purposes, the imaging can be very accurately modelled using

a pinhole camera model. The pinhole camera, also known as the camera obscura is not just a model

but an actual camera. The first published description of the camera can be found in an 1856 book

by the Scottish inventor David Brewstor. The device is made with a single small hole on a hollow

opaque box. Figure 2.1 illustrates a pinhole camera and its preferred mathematical representation.

The hole acts as an aperture which lets the light into the camera in a controlled fashion. From each

point in an object the hole allows a very narrow bundle of rays to hit the screen or image plane.

The narrower the hole is, the sharper will be the image formed. When used as a model, we assume

that from each point on the 3D object a single ray of light hits the screen. Consider a 3D point

Q =
[
Qx Qy Qz

]>
∈ R3 is projected onto the image plane. If we assume the distance between

the camera center and the screen to be 1 unit and the image coordinate axes to be centered at the

physical center of the screen, the projected point is given by q =
[
qu qv

]>
= 1

Qz

[
Qx Qy

]>
.

In effect, the pinhole camera projections are formed by perspective projection as shown in the

bottom row of figure 2.1. In order to exactly know the projection of a 3D point on the image, we need

to know beforehand certain parameters of the camera.

Camera extrinsics. In order to mathematically define the projection of a 3D point onto the image

plane, first the 3D point coordinates have to be in the same coordinate system as the camera. The

former or the 3D object’s coordinate system is called the world coordinate system while the latter is

called the camera coordinate system. When these coordinate systems do not align, we first transform

the point and its reference axis via a rotation and translation so that the two coordinate systems align

and then project the point. These transformation parameters required to align the axes are collectively

called the extrinsics of the camera. For each camera, the camera extrinsics will consist of the 6

rigid-transform parameters. In the context of deformable 3D reconstruction with physical priors,

we generally assume that the world coordinate system is the same as the camera’s for each image.

Therefore we only consider the camera coordinate system here and it makes the camera extrinsics

irrelevant for our purpose.

Camera intrinsics. By looking at figure 2.1, we can observe that the projection of a fixed 3D point

can be different depending on the relative placement of the image plane and the camera center as
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Figure 2.1: The schematic of a simple pinhole camera (top, source: wikipedia) and its mathematical representation
(bottom).

well as the shape of the image plane. This relative placement defines 5 different properties that are

internal to the camera. Therefore the parameters are termed as the camera intrinsics. They are: the

focal length in number of x-direction pixels fx, the focal length in terms of y-direction pixels fy,

the principal point pc =
[
cx cy

]�
. The final parameter called the skew sK is relevant if the image

axes on the image plane are not exactly perpendicular. Camera calibration is the process in which

we compute these five intrinsic parameters. The camera calibration matrix is a 3 × 3 matrix of the

intrinsic parameters as written below:

K =



fx sK cx

0 fy cy

0 0 1


 . (2.1)

Besides these parameters built in the calibration matrix K, there are other parameters that model the

distortion of lens. This is of particular importance in wide-angle lens cameras such as the fish-eye

camera.
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2.2 Camera Projection

There are three important projection models defined in the literature that are relevant to our problems.

The perspective projection was briefly introduced when we explained the pinhole camera. Depending

on the purpose and the object-camera configuration, there are other projection models which can be

useful: the orthographic projection and the weak-perspective projection. We briefly discuss all three

of them below.

2.2.1 Perspective camera

The perspective camera is the most commonly used camera model as it accurately describes the

imaging projections and is yet simple enough. Leaving out the relatively negligible distortions, our

eyes and cameras project the world onto the retina or image sensors by perspective projection. The

projection in a pinhole camera is exactly a perspective projection where rays coming from the object

converge at a focal point, i.e., the camera center. Effectively, it means that parallel lines can intersect

at a point after the projection. Figure 2.2 shows an example of the perspective projection of a cube.

���������	�

Figure 2.2: Perspective projection of a cube. Lines parallel on the 3D cube are not parallel in the projected image.

Mathematically, a perspective camera is denoted by a 3 × 4 matrix acting on a 3D point. The

camera projects any 3D point existing in a world coordinate frame in position Q ∈ R3 to an image

point coordinate q ∈ R2.

s

[
q

1

]
= M

[
Q

1

]
. (2.2)

Equation (2.2) describes the perspective projection in homogeneous coordinates for the 3D and image

point. The scalar s ∈ R\{0} is introduced here because a point in the homogeneous coordinate system

remains the same after multiplying with a nonzero scalar. The projection matrix encodes the camera

extrinsic and intrinsic parameters. The camera orientation with respect to the world coordinate frame

can be defined by its extrinsics: a rotation R ∈ SO3 and a translation t ∈ R3. Similarly consider

K ∈ R3×3 to be the matrix of the camera intrinsics. The projection matrix can be written as:

M = K
[
R t

]
. (2.3)
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When considering non-rigid surfaces, it is often convenient to express the 3D surface points in the

camera frame so that the world coordinate system is aligned to the camera frame i.e. R = I3 and

t = 0. The perspective projection in that case can be written as:

s

[
q

1

]
= K

[
I3 0

] [Q
1

]
. (2.4)

Pre-multiplying equation (2.4) by K−1 gives us the following expression for the image point:

s

[
qn

1

]
=
[
I3 0

] [Q
1

]
. (2.5)

Equation (2.5) describes the relation for the retinal or normalized coordinates of the image points

represented by the vector qn. It gives the projected image coordinates in the Euclidean camera frame

for a given perspective camera. Effectively, the image coordinates are transformed so that the focal

length is 1 and the physical center of the image is p = [0 0 1]>. Equation (2.5) can be written in a

different way that reveals the depth parametrization of a 3D point as below:QxQy
Qz

 = Qz

[
qn

1

]
, (2.6)

where Q = [Qx Qy Qz]
>. Equation (2.6) essentially implies that a 3D point expressed in the camera

frame can be parametrized by the depth and the retinal image coordinate. It also reveals that the 3D

point Q lies on the sightline along the direction of the vector

[
qn

1

]
. We will exploit these properties

of the perspective camera extensively when we discuss the reconstruction problem.

2.2.2 Orthographic camera

The orthographic camera is an approximation of the perspective camera for the conditions when

projection sightlines are close-to-parallel. This happens when the depth is very large (in which case,

a large focal length is used). In such cases the projection rays can be approximated to be parallel to

the depth (z) axis resulting in a very simple set of projection equations. Figure 2.3 illustrates how the

projection rays form an image in orthographic projection. Analytically, the u and v coordinates of the

projected point q are given as: [
qu

qv

]
=

[
Qx

Qy

]
. (2.7)

Although the orthographic camera does not accurately describe a real image formation, it renders

certain problems much simpler. One example commonly seen in the literature of non-rigid recon-

struction is the projective factorization, as described in chapter 2.6.3. A more general camera model
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Figure 2.3: Image formation in an orthographic projection. The projection rays are parallel to the depth or z axis.

is the scaled orthographic camera model where an additional scale factor is considered as below:

[
qu

qv

]
= sa

[
Qx

Qy

]
. (2.8)

2.2.3 Weak-perspective camera

The weak-perspective projection is an example of a hybrid projection. A 3D point is first projected

orthographically to a fixed plane that is parallel to the image plane. The points obtained on the plane

are then projected to the actual perspective camera from the average depth of the object. This is

illustrated in figure 2.4. The weak-perspective camera is often used to approximate the perspective

projection without completely resorting to an orthographic projection. In particular, the depth scaling

is fixed because all the points before perspective projection are at a fixed depth (i.e., the average

depth). The projection equation is given by:

[
qu

qv

]
=

[
Qx

Qav
z

Qy

Qav
z

]�
. (2.9)

Here, Qav
z represents the average depth of the object. The weak-perspective camera is essentially a

scaled orthographic camera where the scaling quantity sa in equation (2.8) is fixed to the average

depth Qav
z . In most cases, conclusions drawn on the orthographic camera often hold for the weak-

perspective camera. Another hybrid camera model related to the weak-perspective camera is the

paraperspective camera. Here, an affine projection is used in place of the orthographic projection so

that projection rays are parallel to each other but not necessarily to the depth axis.

2.3 Two-view Algebraic Relationship

Multiple images or views are the inputs of NRSfM. We briefly outline three important 2-view epipolar

entities for calibrated and uncalibrated cameras. A more thorough discussion of them can be found in

any literature related to the multiview geometry such as (Hartley and Zisserman, 2004). We assume
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Figure 2.4: Weak-perspective projection of a cube. It involves two steps of projection: first orthographic and
second perspective.

the object viewed in images to be rigid in this discussion. A description of how some of these concepts

have been used in non-rigid reconstruction methods is given in chapter 3.

2.3.1 Fundamental matrix

Description. For any pair of uncalibrated cameras viewing the same rigid scene, the corresponding

points in images constrain each other due to the camera geometry. The resulting constraints does not

provide a point-to-point but rather a point-to-line relation. The transformation matrix that describes

these constraints is the fundamental matrix. In other words, the fundamental matrix constrains the

corresponding point to lie on a specific line called the epipolar line. The fundamental matrix is used

for the projective reconstruction of scenes by triangulation. The result can be upgraded to a metric

reconstruction by using the intrinsic calibration matrix. Consider a point q1 on an image of camera

C1 and its corresponding point q2 on the image of camera C2. This is illustrated in figure 2.5.

The fundamental matrix F is a 3×3 rank-2 matrix and it constrains any two corresponding points

such that: [
q�
1 1

]
F

[
q2

1

]
= 0. (2.10)
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Figure 2.5: Illustration of how a fundamental matrix acts on points. The first row shows the projection of a 3D point
onto two images along with the induced epipolar lines. The second row illustrates the effect of the fundamental
matrix on the corresponding point.

Computation. The fundamental matrix has 7 degrees of freedom in 9 parameters. The scale ambi-

guity in equation (2.10) means that one of the 9 parameters can be fixed arbitrarily while the rank-2

constraint removes yet another degree of freedom. The most common way to compute a fundamen-

tal matrix between two images (cameras) using rigid scenes is to linearize the matrix and use the

so-called 8 point method (Hartley, 1997). The 8-point method uses at least 8 pairs of corresponding

points to compute F by linear least-squares (LLS). Since, all 8 points must come from the same rigid

scene, using it for non-rigid reconstruction has some difficulties.

2.3.2 Essential matrix

Description. The essential matrix describes the same relation as the fundamental matrix but for cor-

responding point pairs in the retinal coordinates. Recall that the retinal image points can be obtained

by normalization with the camera calibration matrix K as:

s

[
qn

1

]
= K−1

[
q

1

]
. (2.11)

Computation and decomposition. Unlike the fundamental matrix, the essential matrix has only 5

degrees of freedom. The first two singular values of the essential matrix are equal while the third is 0.

In a highly influential paper, (Nistér, 2004) presented a method for the computation of the essential
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matrix using only 5 points. It can also be expressed in terms of the rotation and translation of the rigid

scenes as:

E = R[t]×. (2.12)

Here [t]× denotes the skew symmetric matrix used in cross products, defined in terms of the compo-

nents of the translation vector [t1 t2 t3]> as:

[t]× =

 0 −t3 t2

t3 0 −t1
−t2 t1 0

 .
Due to this relation, computing the essential matrix allows the estimation of the relative camera

positions. However, there still does not exist a non-rigid reconstruction method that exploits the

Essential matrix structure.

2.3.3 Homography

The homography is a general linear transform of dimension 3×3. In particular, any 3D plane induces

a homography between its projections on images. Such a homography is called a plane induced

homography. All the projected points from the plane therefore share the same homography. Unlike

the fundamental or the essential matrix, the homography is a point to point transform. In general, it

is full rank and has 8 degrees of freedom after removing one for the scale. Given a homography H

between the corresponding pair of points q1 and q2, we write:

H
[
q>1 1

]
= sh

[
q2

1

]
. (2.13)

A plane induced homography H can be expressed as the following:

H = shK(R + tn>)K−1, (2.14)

where, K is the matrix of camera intrinsics, R the relative rotation between the corresponding 3D

points (planes), t the relative translation and n the surface normal on the plane in the first camera

reference axis. sh is the scale factor due to the scale ambiguity of the metric space.

Computation and decomposition. Equation (2.13) gives two constraints for each point pair. Con-

sequently the computation of a homography requires at least 4 corresponding point pairs projected

from the same 3D plane. The homography is also directly related to the surface normal of the 3D

plane. It can be decomposed into the surface normal and a rigid transform describing the relative

transformation of the plane with respect to the camera coordinate frame. When the corresponding

points in the images are expressed in the retinal coordinates, the homography between corresponding

points on a plane can be written as:

Ĥ = R + tn>. (2.15)
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Homography decomposition refers to the computation of the corresponding right hand side quantities

in equation (2.15) of a given homography. There are methods for the decomposition of Ĥ using the

Singular Value Decomposition (SVD) (Faugeras and Lustman, 1988; Zhang and Hanson, 1996) or

with closed-form analytical expression (Malis and Vargas, 2007). However, the decomposition results

in the two-fold ambiguity of the quantities, even after removing physically incoherent solutions. We

introduce our local method for NRSfM in chapter 5 by computing the homography point-wise and

giving a method to disambiguate the normals.

2.4 Registration

One of the fundamental problems of computer vision along with 3D reconstruction is solving the

registration between images. For example, the computation of the 2-view geometric entities and

consequently the 3D, relies on having corresponding image points. Registration is about establishing

mapping between points in two images. We use the term registration loosely to mean any kind of pair-

ing of points between images, whether they are dense or sparse. Thus registration between images

could also be represented by a lookup table with entries of correspondences. In other cases, a func-

tion could represent the transformation of points from one image to another. The most appropriate

representation of registration depends on the kind of reconstruction method that is being used.

2.4.1 Point matching

Wide-baseline point matching implies establishing correspondences between two images using the

invariant properties of objects in images. Scale Invariant Feature Transform (SIFT) (Lowe, 2004) is

probably the most used method in that respect. SIFT uses orientation of gradients as features to match

certain points (keypoints) between images and is a sparse point matching method. However, sparse

point matches occur irregularly and can prove insufficient for reconstruction problems, particularly

in non-rigid scenarios. There are matching methods that provide dense matches (Liu et al., 2011) or

semi-dense matches as in (Weinzaepfel et al., 2013).

2.4.2 Optical flow

Optical flow is the estimation of apparent motion of scene points in consecutive images in a sequence.

These methods usually compute a dense flow field over each image, thus giving a dense set of point

correspondences. However, they can only use very short base-line images, such as those from a video

sequence. Optical flow computation is a difficult non-convex optimization problem. Nonetheless,

efficient methods have been developed that use convex relaxations (Brox et al., 2004; Garg et al.,

2013b; Sundaram et al., 2010).

2.4.3 Functional modelling of registration

Often it is necessary or advantageous to model the image correspondence or registration with a math-

ematical function instead of a simple lookup table. The functional representations can be computed
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directly from the image-intensities, from the matched points or by combining both (Pizarro and Bar-

toli, 2012). Computation based on the matched points only is generally preferred for the low cost of

computation and decent accuracy. There are some important reasons to compute a functional repre-

sentation for registration:

1. It can give a dense or regular grid of correspondences. This in turn can mean some methods

that use point correspondences behave better than with irregular or sparse set of point corre-

spondences.

2. Moreover, the functional represention can be differentiated to compute the first-order or second-

order derivatives of the registration. We use these quantities, for example, in the methods we

propose in chapters 4 and 5.

3. These representations can be made robust to outliers so that the generated correspondences

have very small amount of noise.

There are various methods for spline-based registration. Among them the Thin Plate Spline (TPS)

and Bicubic B-Spline (BBS) are the most common. BBS has compact support and is considered

to give better registration derivatives (Pizarro et al., 2016). We use BBS to compute a functional

representation of the registration whenever necessary (in chapters 4 and 5). We give the basics of the

BBS registration below.

Consider a BBS registration function ω : R2 → R2 going from the first image to the second

image. ω at a given point p = [u v]> ∈ R2 in the first image is then expressed as a linear combination

of the basis functions lp ∈ Rb×1 at the point p and the control points C ∈ Rb×2. The evalution of the

registration function ω will give the corresponding point in the second image q as:

q> = ω(p,C) = l>pC. (2.16)

Let us modify equation (2.16) so that we evaluate ω on all points in the first image at a time. We

represent the n point correspondences on the first image as {pi}, i = 1 . . . n and on the second image

as {qi}, i = 1 . . . n. For convenience we write these correspondences in matrix form as:

P =


p>1

...

p>n

 , Q =


q>1

...

q>n

 . (2.17)

The evaluation of ω on all points gives the matrix Q as:

ω(P,C) = L>C = Q, (2.18)

where L =
[
lp1 . . . lpn

]
∈ Rb×n. In a given warp, the vector of basis functions can be com-

puted directly from the points to be evaluated for a uniform cubic B-spline warp. Consequently, only

the control points are actual unknowns. Therefore, we pose the computation of the warp function
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ωa(C,L) as the estimation of the control points matrix C.

C = arg min
C

‖L>C−Q‖2. (2.19)

Given the matrix L, equation (2.19) is solved by LLS as:

C =
(
L>L

)−1
L>Q. (2.20)

In practice, we construct the warp by imposing smoothness constraints that regularizes the solution.

We ensure smoothness by minimizing its second derivatives. This modifies problem (2.20) into the

following one:

C = arg min
C

‖L>C−Q‖2 + ‖BC‖2, (2.21)

where B is a matrix that gives the second derivatives of the BBS warp when multiplied by the control

points. B can be estimated analytically. It is commonly referred to as the bending energy of the BBS

warp. Finally, the control points can again be computed with LLS as:

C =
(
L>L + B

)−1
L>Q. (2.22)

We refer the reader to (Brunet, 2010; Dierckx, 1993) for the exact expression of the L and B ma-

trices. Such a BBS registration function is not robust to mismatches between points. A more robust

formulation can be constructed using an L1 M estimator as described in Appendix C or using other

M-estimators.

2.5 Surface Representation

Objects in 3D can be represented in several ways. The type and complexity of the representation

partly depends on the task at hand. In nonrigid 3D reconstruction, we will use surfaces as the basic

objects in 3D. We here focus on the discussion of surface representation for the purpose of non-rigid

3D reconstruction. Below we list and describe the types of surface representation.

2.5.1 Point set

The point set representation provides the most basic way of describing surfaces. Point sets are syn-

onymous to the more commonly used term point clouds. For deformable objects, the 3D points on

the surface at different time are assumed to belong to different surfaces. Consider a surface Sk at a

time instance k. If Qk
i is a point on the surface, we write: Sk = {Qk

i }, i = 1, . . . n, where n is the

number of points used to represent the surface. Most of the state-of-the-art methods in NRSfM use

this representation.
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2.5.2 Point set with nearest neighborhood graph (NNG)

There are many methods in surface 3D reconstruction which represent surfaces with not only points

but also their neighborhood relation. By neighborhood relation, we mean the closest neighbors in-

formation for each point in terms of the L2 metric distance. Many surface priors depend on having

such relations. This representation is closely related to a mesh representation. Mesh consists of a set

of vertex points along with edges and faces. The point set with neighborhood on the other hand only

defines directional edges, but not faces. We term the neighborhood relationship as Nearest Neigh-

borhood Graph (NNG). The graph is truncated so that each point only has a small finite number of

neighbors. However, given a mesh, it is trivial to construct the point set with NNG representation.

Figure 2.6 illustrates such a representation with a simple example.
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Figure 2.6: Surface parametrization with points and their neighborhood. The neighborhood table is truncated to
have 4 neighbors per point.

2.5.3 Surface mesh

A mesh represents a surface with vertices, edges and faces. Unlike the edges in the point set with

NNG representation, the edges in a mesh are non-directional. Several edges constitute a face which

can be a triangle or a quadrilateral. For example, a quadrilateral mesh is composed of vertices, edges

and quadrilateral faces (polygons) formed by the edges. Meshes allow easy texturing and rendering of

objects and is a highly versatile way to represent surfaces or even volumetric objects. Many numerical

methods have been developed to define mathematical operators such as the differentials and geodesic

lengths in a mesh. In fact, most of the methods in computer graphics are built around the mesh

representation of objects. This is due to the fact that mesh representations are very easy to store and

process in a computer. Figure 2.7 shows a simple mesh representation of a dolphin.
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Figure 2.7: Surface parametrization with a mesh of a dolphin (Source: Wikipedia).

2.5.4 Differential modelling of surfaces

Although the point set with neighborhood representation is a powerful representation, in many situa-

tions a more complete description of a surface is required. Many additional surface properties exist,

which require the differential modelling. As the name implies, the differential modelling describes

surfaces at the differential or infinitesimal level at any point. This requires some basic understanding

of the differential geometry and manifolds. We briefly mention the following three quantities that

come from the differential geometry of surfaces.

Global and local embedding. In differential geometry, the physical surface that we see in the

world is an intrinsically 2-D object embedded in R3 and is therefore a 2-D manifold. This implies

that the surface can be parametrized on a 2-D flat space as shown in figure 2.8. In the figure, the

globe (excluding its poles), which is an object in R3 is parametrized by the world map in R2. There

exists a one-to-one mapping between the globe (excluding the poles) and the world map due to the

parametrization. In the language of manifolds, the function going from the world map to the globe

(excluding the poles) is a global embedding. In simple terms, the embedding is a function going

from one object X to another object Y in different spaces, while preserving some structure. Since

a single function is enough to go from the world map to the globe, it is a global embedding. The

local embedding on the other hand is a one-to-one mapping valid only for a point and its local or

infinitesimal neighborhood. We will make use of both global and local embeddings extensively in

chapter 4. In practice we establish the smooth manifold representation using a BBS representation of

the embedding function ϕ from the point set representation similar to image registration described in

chapter 2.4. A closer look at equation (2.18) will reveal that it is trivial to extend it for a 2D-to-3D

mapping from 2D-to-2D registration.
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Figure 2.8: Surface parametrization with a flat space. The top represents the globe (excluding poles) which is a
spherical surface embedded in R3. It is parametrized with a 2D flat space shown on the bottom.

The tangent space. For any embedded manifold, such as the surface, we can define tangent vectors

at a point on the surface that pass through the surface by touching only the given point locally. At

each point on the embedding, the equivalence class of these vectors forms a subspace on the embedded

space R3, which is called the tangent space. This is an affine subspace as the affine combination of

any two vectors lies on the tangent space as well. For the embedded manifold, this subspace is a

plane. The tangent space is always of the same dimension as the intrinsic dimension of the manifold.

Figure 2.9 depicts a surface S and its tangent space at a point p. The tangent space is denoted as TpS .

The tangent vector can also be defined in a different way using a curve on the surface. In that case,

the tangent vector at a point on the curve is the rate of change of a curve at the given point.

The first fundamental form. Roughly speaking, the first fundamental form describes the ‘rule’ to

measure inner product on the tangent space of a surface. Consequently, the first fundmental form

allows us to measure metric properties such as length or angle on the particular embedding (a surface

is a 2-D manifold in R3) from a parametrization space P ∈ R2. Given two vectors a,b ∈ P , the dot
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Figure 2.9: A surface S and its tangent space TpS at a point p.

product between them can be measured from P as:

I (a,b) = 〈a,b〉 = a�

[
E F

F G

]
b. (2.23)

Here E, F , G and H are scalars. The first fundamental form is closely related to the metric tensor on

the parametrization space P . The metric tensor is given by:

g = [gij ] =

[
E F

F G

]
. (2.24)

In order to measure the length of a curve on the surface, consider a parametric curve u = u(t)

and v = v(t) on the parameter t where u and v are the coordinates on the surface. We first define an

elemental length ds using the first fundamental form as:

ds2 = E (u(t), v(t)) du2 + 2F (u(t), v(t)) du dv +G (u(t), v(t)) dv2 (2.25)

Thus the squared length is given by an integration between the ends of the curve as:

s2 =

∫
E (u(t), v(t))

(
du

dt

)2

+ 2F (u(t), v(t))
du

dt

dv

dt
+G (u(t), v(t))

(
dv

dt

)2

dt. (2.26)

Surface deformation map. We define a surface deformation map or function as a bijective function

going from a surface and its deformed version. If the map is differentiable i.e. a diffeomorphism, we

can describe how infinitesimal lengths on the first surface change in the second. Let us consider a

metric tensor gS1 defined on a surface S1 ∈ R3. Suppose S1 is deformed to another surface S2 ∈ R3

by a deformation map ψ ∈ C2(S1,S2) as shown in figure 2.10.
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Figure 2.10: Surface deformation and the induced change in metric tensor.

Consider x to be a point on surface S1 and y = ψ(x) the corresponding point on surface S2. As

we are considering ψ to be a diffeomorphism, it induces isomorphism between the two tangent spaces:

TxS1 and TxS2. This simply means that the two tangent spaces are equal up to a transformation. This

transformation in differential geometry is referred to as the pushforward ψ∗gS1 . When the surfaces

are embedded in fixed coordinates as in our example, we can define the pushforward with the Jacobian

of the deformation map ψ as below:

ψ∗gS1 = Jψ(x). (2.27)

The pushforward induces a new metric on the tangent space of S1 that allows us to measure metric

quantities on S2.

gS2 = Jψ(x)
�gS1Jψ(x). (2.28)

Note that the tensor gS2 defined as such takes vectors in TxS1 to give the inner product of the corre-

sponding vectors in S2.

2.6 Surface Deformation Priors

Reconstructing a non-rigid object from its image is considered an ill-posed problem because several

deformations can result in the same projection even when a template or multiple images are known.

To tackle these ambiguities, either the complete space of the observed shapes or the deformations

between them have to be limited by additional deformation priors. Such priors are analogous to the

rigidity prior for rigid SfM. Methods in deformable 3D reconstruction all solve the problem of the

aforementioned ambiguities using the surface deformation priors. We briefly outline a few of the

important priors below.

2.6.1 Isometry

Isometry was introduced when we discussed about the first fundamental form in the last section.

Essentially, isometry is a physical or geometric prior. In simple terms, it implies that the surface

deforms in a way so that all the geodesic distance between points on the surface remain the same.

Thus, in isometry, the surface deforms without any stretching or compression in any region. Many

natural surfaces deform isometrically and being able to exploit such a prior could potentially solve
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non-rigid reconstruction for many practical scenarios. Isometry is also a strong geometrical prior,

albeit far weaker than rigidity. Note that all rigid objects are also isometric. In fact isometry can be

thought of as infinitesimal rigidity. This becomes clearer in chapter 4. We now discuss various ways

isometry has been modelled in the literature.

Zeroth-order approximation. It is difficult to accurately represent isometry with zeroth-order rep-

resentations. The reason is that representing the geodesic distance on an arbitrary unknown surface

poses a great challenge. To solve the problem, many methods first establish a neighborhood of points.

Then they assume that the euclidean distance between the neighboring points are equal for all defor-

mations of the surface. For example, if Qk
i and Qk

j are neighboring points on surface k and Ql
i and

Ql
j on surface l, we write the isometric constraint as:

‖Qk
i −Qk

j ‖2 = ‖Ql
i −Ql

j‖2. (2.29)

Equation (2.29) is only Euclidean approximation of the exact geodesic distance and is also a non-

convex constraint.

Differential representation. Deformation maps and the metric tensor were introduced in section

2.5. In differential geometry, isometry is defined as a function that preserves the first fundamental

form. Although there are various ways to define isometry including the change of metric due to a

pushforward in equation (2.28), it is much simpler to define isometry by introducing a parametrization

space of the surfaces.

Figure 2.11: Isometry and surface parametrization.

Consider the example shown in figure 2.11, where the surface is parametrized on a set P ∈ R2.

∆ is the embedding function that maps the surface S1 from the parametrization space P and ϕ is the
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embedding function that maps the surface S2 from the same parametrization space P . In that case,

the first fundamental forms due to the two parametrization functions can be equated in an isometry

ψ. This gives us the following equation:

Jϕ(p)>Jϕ(p) = J∆(p)>J∆(p), p ∈ P. (2.30)

Intuitively, this means that for the surfaces embedded in an Euclidean space, the change in the metric

tensor as we move from P to S1 should be equal to the change when we move from P to S2. This

is due to the fact that ψ introduces no change in the metric tensor because it is an isometry between

Euclidean spaces.

2.6.2 Inextensibility

Inextensibility is another geometric constraint on surfaces that is closely linked to isometry. It simply

means that the Euclidean distances between the neighboring points on the deformed surfaces are

always less than or equal to the corresponding geodesic distances on the original surface. It requires

a notion of template (original surface) where distances between neighboring points are given by a

variable. Let’s suppose dij represents the geodesic distance between point index i and j on the

template. Qk
i and Qk

j are neighboring points on a surface k. We write inextensibility as:

‖Qk
i −Qk

j ‖2 ≤ dij . (2.31)

Equation (2.31) is a relaxation of isometry. If the surfaces are isometric, it holds true for any pair of

points, close neighbors or not. Furthermore it is also a convex constraint, more specifically a cone

constraint.

2.6.3 Low-rank model

The low rank model is a statistical prior on the set of point matches in several images in the NRSfM

setting (Bregler et al., 2000). In other words, it puts a small fixed rank on the matrix of correspon-

dences so that it can be factorized into a matrix of shape bases and coefficients. Consider a set of

image point correspondences {qki }. The sub-index i denotes the point index and the super-index k

denotes the image index, i.e., q1
i ,q

2
i , . . . ,q

m
i are the matched points for the point i. The observation

matrix for m images and n points can be written as:

W =


q1

1 . . . q1
n

...
. . .

...

qm1 . . . qmn

 =


R1S1

...

RmSm

 . (2.32)

Sk ∈ R3×n is the set of corresponding 3D points for
[
qk1 . . .q

k
n

]
which forms the surface k. Rk is the

camera projection that projects each 3D point of Sk. Two important assumptions are made to recover

R and S matrices. The first is the orthographic camera assumption. Orthography means that a matrix
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Rk is orthonormal. The second assumption is written as:

Sk = l1B1 + · · ·+ llBl. (2.33)

where l1, . . . , ll are scalar coefficients and B1, . . . ,Bl ∈ R3×n are the shape bases. l ∈ R is the

number of shape bases. We fix l to an integer (l � m) and this is the low rank prior. With these

assumptions, the observation matrix is represented as:

W =


q1

1 . . . q1
n

...
. . .

...

qm1 . . . qmn

 =


l11 . . . l1l
...

. . .
...

lm1 . . . lml




B1

...

Bl

 = LV. (2.34)

Consequently the NRSfM problem transforms into finding a unique factorization of the known matrix

W into matrices L and V.

2.6.4 Others

Priors other than the ones mentioned have been used to model deformable surfaces. Two important

examples are conformality and linear elasticity. Conformality is closely related to isometry. If two

surfaces can be mapped to each other so that the angles between intersecting curves are preserved, we

define these surfaces as conformal. It is a theoretical model more general than isometry. Conformality

is easily expressed by using the metric tensor as in the case of isometry. Given the example shown in

figure 2.11, where ψ is now a conformal deformation rather than isometry, we write:

Jϕ(p)>Jϕ(p) = sc J∆(p)>J∆(p), p ∈ P. (2.35)

Here sc is a positive scalar that defines how the lengths are scaled. If there is stretching involved

sc > 1 and if there is contraction, sc < 1.

Linear elasticity (Malti et al., 2013) is another physical prior but it is based on how solid objects

deform based on forces acting on it. It models the deformation based on the forces acting on it and

the object’s own tendency to retain its original shape. Such a tendency is called elasticity. Thus linear

elasticity implies that the forces or stress leading to deformation or strain have a linear relationship.

2.7 Local Optimization

Most of the solutions discussed in the thesis rely on basics of linear algebra. These mainly involve

computation of eigenvalues, linear least-squares and solving a set of linear equations. In some situ-

ations however, the solution is obtained from a mathematical optimization. A problem can be posed

as a mathematical optimization when analytical solutions are either too difficult to obtain or when

they do not exist. This happens to be the case in non-rigid reconstruction as most physical priors

result in a highly nonlinear and difficult optimization problem. Nonetheless, the works done in the

thesis can be understood by treating optimizations as black-box processes. Understanding the basics

of the type of optimization used should be enough to comprehend the consequences on the solution.
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An optimization problem consists of minimizing an objective function based on certain constraints.

Perhaps the epitome of such problems in computer vision is the Bundle Adjustment (BA). Bundle

Adjustment is a highly nonlinear problem where the 3D points and camera extrinsics are refined at

the same time from an initial solution. We briefly describe some basic principles and methods used

for a local optimization problem and in the next section we introduce a special class of problems

called convex optimization. In this context we use the phrase locally optimal to mean that the ob-

tained solution is optimal around obtained point but may not be the global minimum. Consequently a

local optimization method is one which is used to obtain a locally optimal solution. Note that we are

not usually interested in the minimum value of the function, but the value or state of the variable at

which we can obtain such a minimum.

Given an optimization variable in a vector space, x = [x1, x2, . . . , xn]> ∈ Rn, we express an

optimization problem as follows:

minimize
x

φ (x)

subject to,

θi (x) ≤ bi, i = 1 . . . nc,

(2.36)

where, φ (x) is the objective function to be minimized and θi (x) is any function of x. bi represents

a constant vector for each constraint and nc is the number of constraints.

No single method exists that can solve problem (2.36). By solving, we mean finding the global

optimum of the given problem.

In solving a general optimization problem, it is a standard practice to start with an initial solution

and employ one of many methods that gives a locally optimal minimum. The accuracy or relevance

of the obtained solution obtained by many things, one of which is how close the initial solution was

to the actual global minimum. We discuss one important case of problem (2.36) when the objective

function is a square of a vector-valued function. Such an objective function is often referred to as

an energy function. We also assume the problem to have no constraints. Such a problem is simply

expressed as:

minimize
x

‖φ (x)‖2. (2.37)

Problem (2.37) is an unconstrained energy minimization. Such problems occurs frequently in com-

puter vision because many of the functions to be minimized are L2 norms of various error functions.

In essence, this is simply a least-squares minimization but with a nonlinear objective. We assume

φ ∈ C2(Rn,Rm), i.e., φ is a vector valued function and at least once differentiable. We mention two

closely related methods that can be used to solve such problems.

2.7.1 Gauss-Newton algorithm

The Gauss-Newton algorithm is an efficient method to compute a local minimum of a non-linear

least squares problem such as problem (2.37). The reason it is preferred over other methods such

as Newton’s method is because it does not require the computation of second derivatives. Gauss-
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Newton algorithm, in each step of its iterations, finds the required change in variables for minimizing

the first-order approximation of φ around the current point x0. This is written as:

sx = arg min
sx
‖φ (x0) + Jφsx‖2. (2.38)

The Jacobian Jφ here is evaluated at the current point x0. Equation (2.38) can be solved by LLS, for

each iteration as follows:

sx = −
(
J>φ Jφ

)−1
J>φ . (2.39)

It can be shown that the direction of each step given by equation (2.39) is towards the descent direc-

tion. Such an iterative scheme, however, may or may not converge to a local optimum depending on

the provided initial solution and the nature of the function. Under some conditions, Gauss-Newton

shows quadratic convergence and in other cases linear. The convergence is not guaranteed specifically

when J>φ Jφ is ill-conditioned.

2.7.2 The Levenberg-Marquardt algorithm

Levenberg-Marquardt algorithm is a modification of Gauss-Newton algorithm that adds a regular-

ization on equation (2.39) so that the new equation is always well-conditioned even when J>φ Jφ ap-

proaches singularity. Thus the new step is obtained as follows:

sx = −
(
J>φ Jφ + s diag

(
J>φ Jφ

))−1
J>φ . (2.40)

Equation (2.40) has a single scalar s that controls the amount of regularization. In general, we start

with a high regularization when the initial solution can be far from the optimal solution. In that case,

the iterations behave as gradient descent. In every iteration we reduce s by a constant factor if we

obtain an improvement on the cost function. As s becomes smaller, the iterations behave as in Gauss-

Newton algorithm. Because, Gauss-Newton shows better convergence when the current state of the

variable is near the optimum, this gives a very balanced strategy.

2.8 Convex Optimization

An overwhelming number of optimization problems in computer vision are highly nonlinear and have

several minima or maxima. In general, when there is a nonlinear optimization problem, we resort

to one of many local optimization strategies discussed in the previous section, such as Levenberg-

Marquardt to compute a locally optimal solution. However, for a certain class of problems known as

the convex problems there exists more efficient optimization methods that can guarantee a globally

optimal solution. Given the optimization vector x, a convex optimization problem can be expressed
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as:

minimize
x

φ(x)

subject to,

ηi(x) ≥ 0, i = 1, . . . ,m

Ax + b = 0.

(2.41)

The primary condition for problem (2.41) to be convex is that the function φ(x) has to be convex

and ηi(x) ≥ 0 must define a convex set of the variable x. The affine equality constraints are al-

ways convex and in fact, they are the only convex equality constraints. Here, φ(x) ∈ C2(Rn,R) and

ηi(x) ∈ C2(Rn,R). The twice differentiability of the functions are assumed for computational pur-

pose as most algorithms that are efficient in convex optimization require this condition. Some impor-

tant convex optimization problems are Linear Programming (LP), Second-Order Cone Programming

(SOCP) and Semi-Definite Programming (SDP) in increasing order of complexity and generality.

These three problems are important because they can be solved in polynomial time using methods

of convex optimization. Later in chapter 6, we make use of convex optimization by formulating the

NRSfM problem as an SOCP. In this section, we first give the basic definitions of the three important

classes of convex optimization problems. We then provide some descriptions of the interior point

method that is often the method of choice for solving convex optimization problems.

Linear Programming. An LP is one of the simplest problems that is solved using techniques in

convex optimization. Many other problems such as LLS or even simple linear systems are naturally

convex but closed form solutions for such problem are usually the preferred approach. We define an

LP as the following convex problem.

minimize
x

c>x + d

subject to,

Gx ≤ h,

Ax = b.

(2.42)

We can summarize a Linear Program (LP) or problem (2.42) as follows. An LP is a minimization

of an affine function subject to affine equality and inequality constraints. Historically, LP refers to a

more specific version of problem (2.42), where a linear function is minimized under affine inequality

and non-negative variable constraint. However problem (2.42) is the most general form of an LP.
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Second-Order Cone Programming. An SOCP is an extension of LP where there are, in addition

to affine constraints, cone inequality constraints. Mathematically we express an SOCP problem as:

minimize
x

c>x

subject to,

‖Aix + bi‖ ≤ c>i x + di, i = 1, . . . ,m

Fx = g.

(2.43)

Essentially, it involves minimizing a linear function subject to conic and affine inequality and equal-

ity constraints. Cone inequality constraints are defined as the L2-norm of an affine function of the

optimization variable being less than or equal to an affine function of the same optimization variable.

They are so named because the feasible region of the constraint form a cone in Rn, where n is the

dimension of x. There are various methods that can solve SOCP almost as fast as LP (Boyd and

Vandenberghe, 2004).

Semi-Definite Programming. Semi-Definite Programs (SDPs) form a more general class of convex

problems that can be expressed as the following:

minimize
X

〈C,X〉, X,C ∈ Sn

subject to,

〈Ai,X〉 = bi, Ai ∈ Sn, i = 1, . . . ,m

X � 0.

(2.44)

Here the inner product between any two matrices A ∈ Sn and B ∈ Sn is defined as:

〈A,B〉 = trace(A>B) =
n∑
i=1

n∑
j=1

AijBij . (2.45)

Problem (2.44) is also referred to as Linear Matrix Inequalities (LMI) as the optimization variable is

now a matrix rather than a vector. The nonlinearity is encoded in the fact that the matrix X has to be

positive semi-definite, hence the name SDP. Both LP and SOCP can be written as an SDP, which is a

generalization of many convex programs. One very well known problem that comes up in computer

vision as an SDP is the max-cut problem in graph theory.

2.8.1 Interior point methods

Interior point methods are a class of iterative methods that can be used to solve constrained linear or

nonlinear convex problems. Although unconstrained convex optimization problems can be solved by

any local optimization methods such as the Levenberg-Marquardt algorithm, the constrained problems

require a different strategy. Interior point methods fall into a class of methods called the barrier

methods. Perhaps the most remarkable aspect of these methods is their polynomial time complexity.

This is in contrast to older methods, for example, the simplex method for solving LPs. We explain
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briefly a widely used interior point method known as the primal dual interior point method. Most

convex optimization tools use a variation of this method for solving convex problems such as LPs,

SOCPs or SDPs. Other variations of interior point methods include the barrier method and the central

path method.

Primal-dual interior point method. Several versions of description exist for the primal-dual inte-

rior point method and interior point methods in general. We follow the most widely used description

of the method, as illustrated in (Boyd and Vandenberghe, 2004) and others. Consider the following

constrained convex optimization problem with only inequality constraints.

minimize φ(x), x ∈ Rn, φ ∈ C2(Rn,R)

subject to,

ηi(x) ≥ 0, ηi ∈ C2(Rn,R), i = 1, . . . ,m.

(2.46)

Interior point methods use a logarithmic barrier function defined as:

B(x, u) = φ(x)− u
m∑
i=1

log (ηi(x)) , u ∈ R++. (2.47)

Recall that R++ represents the set of all nonzero and positive real numbers. The small value of u

ensures that minimizing B(x, u) is almost equivalent to minimizing φ(x). Therefore, as u → 0, the

minimum of B(x, u) gives the minimum of φ(x). We now describe how we can minimize equation

(2.47) under the inequality constraints of problem (2.46).

Using the chain rule for differentiation, the Jacobian of the barrier function is obtained as:

JB = Jφ − u
m∑
i=1

1

ηi(x)
Jηi . (2.48)

Recall that Jφ and Jηi denote the Jacobian matrices (in this case, they are row vectors) of φ(x) and

ηi(x). We add one more constraint on u by introducing a vector l ∈ Rm, l = [l1, . . . , lm]> such that,

ηi(x)li = u. (2.49)

Here li is a Lagrange multiplier for the constraint function ηi. We now substitute equation (2.49) into

equation (2.48). This lets us establish condition similar to the Karush-Kuhn-Tucker (KKT) conditions

for the minimum of a constrained optimization problem as follows.

Jφ(x) = J>η (x)l. (2.50)

For convenience we assume η = [η1 . . . ηm]> so that we can define the Jacobian of η as Jη. The iter-

ative algorithm now proceeds by applying Newton’s method to equations (2.49) and (2.50). Suppose,
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δx and δl are the required small steps on x and l respectively, we obtain the following:[
H −Jη

diag(l)Jη diag(η)

][
δx

δl

]
=

[
−Jφ + J>η l

u1m − diag(η)

]
(2.51)

where H is the Hessian matrix of the barrier function B(x, u). The steps are then found by solving

the linear system of equations (2.51). An important practical consideration overlooked here is the

choice of u and the Lagrange multipliers l. Choosing a high value of u requires a large number of

outer iterations and a low value implies a large number of Newton iterations. We refer the reader to

(Boyd and Vandenberghe, 2004) for more details.
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Chapter 3
Previous Work

In this chapter we give a detailed discussion on the previous work in SfT and NRSfM separately. We

organize related work in SfT and NRSfM into separate sections. In the first section we describe the

state-of-the-art in SfT based on physcial priors and in the second section we give a brief overview

of the different NRSfM methods. We emphasize and elaborate the following two important points in

the discussion. First, the state-of-the-art methods in SfT show good performance in reconstructing

isometric or near-isometric surfaces, except when the projection rays forming the image are close to

affine. Second, very few NRSfM methods work with the perspective camera model, and there is a

lack of physical-prior based methods. A thorough discussion on previous work in SfT and NRSfM

can also be found in (Salzmann and Fua, 2011b) and (Tao, 2014).
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3.1 Shape-from-Template

In the timeline of non-rigid 3D reconstruction, SfT methods were proposed much later than the

NRSfM methods. For example, (Bregler et al., 2000) is widely credited for one of the first meth-

ods proposed for NRSfM. However, the SfT methods have evolved rapidly and matured to realtime

applicable methods (Collins and Bartoli, 2015; Ngo et al., 2016). One simple reason for such progress

on SfT is the fact that it is far more well-constrained than the NRSfM problem. Nonetheless, it is use-

ful in several scenarios. The methods are mostly based on physical models of surfaces, mainly the

isometric model. We here discuss the major work on SfT, needless to say that this does not include

every proposed method of SfT. All of the SfT methods discussed here are based on the physical prior

of isometry. In order to organize the discussion on previous works in isometric SfT, we classify the

methods based on their surface priors and the way they are optimized: i) zeroth-order methods based

on inextensibility (Ngo et al., 2016; Perriollat et al., 2011; Salzmann and Fua, 2011a), ii) statistically

optimal cost refinement (Brunet et al., 2014; Collins and Bartoli, 2015) and iii) analytical solutions

from quadratic PDEs (Bartoli and Collins, 2013; Bartoli et al., 2015). Table 3.1 summarizes important

characteristics of these methods.

3.1.1 Zeroth-order methods based on inextensibility

Zeroth-order implies no differential quantities are used for the shape estimation. These methods either

represent the surface as a point set with NNG or a mesh. The MDH-based methods in i) (Brunet et al.,

2014; Perriollat et al., 2011; Salzmann and Fua, 2011a) solve the SfT problem by maximizing depth

while putting an upper bound on the distance between neighboring points.

(Perriollat et al., 2011) proposed the Maximum Depth Heuristic (MDH) with the inextensibility

as described in equation (2.31). The inextensibility is used as a relaxation of the isometric constraint

for computational purposes. In order to apply inextensibility, it considers a point Qi at a distance ui
from the camera. Any neighboring point at a distance of uj from the camera is then parametrized

with an angle αij between the sightlines for Qi and Qj . This gives the following parametrization.

Qi =

ui0
0

 , Qj =

uj cos (αij)

uj sin (αij)

0

 . (3.1)

Applying equation (3.1) on the inextensibility constraint directly gives the upper bound for ui as:

ui ≤
dij

sinαij
, (3.2)

where dij is the geodesic distance between the 3D points Qi and Qj . It should be noted here that

taking the upper bound for ui is equivalent to taking the upper bound of depth for each point. The

estimated value for ui is chosen using all the neighbors as the minimum value of the set of all the

upper bounds:

ûi = min
j=1,...,ni, j 6=i

(
dij

sinαij

)
. (3.3)
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However, the computed values of ûi require a few iterations of refinement to make all the bounds

coherent with the inextensibility constraint of equation (2.31).

(Salzmann and Fua, 2011a) reformulated the MDH as a convex problem and applied Second-

Order Cone Programming (SOCP) to compute depth. The method uses a more natural parametrization

of the 3D points using the perspective back-projection of a 2D image point as in equation (2.6). We

rewrite the equation here in a more relevant notation as:

Qi = zi

[
qi

1

]
, (3.4)

where zi is the depth at the ith point and qi is the normalized image correspondence at the point. The

basics of the method can be explained with the following optimization problem.

maximize
{zi}

n∑
i=1

zi,

subject to, ∀i ∈ {1 . . . n}, j ∈ N (i)

zi ≥ 0∥∥∥∥∥zi
[
qi

1

]
− zj

[
qj

1

]∥∥∥∥∥
2

≤ dij .

(3.5)

Here N (i) denotes the set of indices j for which Qj is in the neighborhood of a point Qi. In problem

(3.5), the sum of all depths are maximized subject to the inextensibility constraint of equation (2.31).

Figure 3.1 illustrates the MDH with a single deformed image and a known template. It is clear from

the figure that MDH methods work due to the perspective effect, i.e., the diverging sightlines as depths

are increased also increase the distances between points on the sightlines. In practice (Salzmann and

Fua, 2011a) imposes robustness in problem (3.5) and performs the optimization also introducing a

reprojection error. It also makes use of a learned space of deformations using a linear local model for
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Figure 3.1: Illustration of MDH showing the 3D template distances (on the left) and the sightlines where depths
are maximized (on the right).

each small patch on the mesh. Although such an approach limits the method to the use of surfaces
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where learned models for patches already exist, the global convex formulation does give it an edge

over several other methods. However, the method requires enough perspective for a stable solution.

(Ngo et al., 2016) proposed a modified approach, where the method uses the inextensibility con-

straints but does not maximize the depth explicitly. Instead, the method solves for the deformed

surface by finding a transformation of the original mesh to the deformed mesh with mesh vertices

represented by x ∈ RNv×1, Nv being the total number of vertices. It uses a mesh Laplacian to

parametrize the surface up to a rigid transform. This is given by:

‖Ax‖2 = 0. (3.6)

The method gives a unique solution to the Laplacian A that can be found using the reference or

template mesh. For that purpose, the vertices on the mesh are linearly parametrized with control

mesh vertices. Let us assume c is the vector of Nc control mesh vertices (Nc � Nv) written as:

c =


vi1

...

viNc

 . (3.7)

Then the linear parametrization of x is written with a matrix P ∈ R3Nv×3Nc :

x = Pc. (3.8)

This effectively reduces the size of the actual problem while at the same time introduces smoothness to

the structure of x. The Laplacian parametrization removes the learning mechanism of (Salzmann and

Fua, 2011a) and puts a smoothness prior on the space of deformations. The parametrization described

in equations (3.6) and (3.8) is inspired from methods proposed in computer graphics (Sorkine et al.,

2004; Sumner and Popović, 2004). Such priors are well suited for most applications because they

do not make statistical assumptions about the material properties of surfaces. However, the method

requires solving a non-convex problem in the end. The solution requires an iterative approach and the

computation time does not scale up linearly with increase in the mesh size. The zeroth-order methods

are non-analytical and consequently some of their theoretical aspects are still not well understood. On

the one hand, it is clear that inextensibility does not constrain depth strongly in near-affine conditions

as well as in perspective conditions. On the other hand, zeroth-order inextensibility-based methods

can be formulated and solved in the point set with neighborhood representation, i.e., no differential

quantities are required. We will describe inextensibility and MDH again in more details, as we revisit

them in our solution for NRSfM in chapter 6.

3.1.2 Statistically optimal cost refinement

A complete statistically optimal cost for isometric SfT was proposed in (Brunet et al., 2014). The

method optimizes a statistically optimal cost that includes the 3D back-projection constraint, differ-
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ential isometric constraint and smoothness. The problem is written as:

minimize
φ(p)

Edata + lisoEiso + lsmoothEsmooth. (3.9)

Problem (3.9) minimizes three error terms to compute the embedding of the deformed surface φ(p) ∈
C2(R2,R3). The embedding is represented using a BBS function of a point on the flat template

p ∈ R2. Edata denotes back-projection error. Eiso is the error measured using the differential

isometric constraint (2.30) at each point. The smoothness Esmooth is measured using the bending

energy of the BBS representing φ. These error terms are weighted by using the scalars liso and

lsmooth. On the one hand problem (3.9) is non-convex and relies on iterative local optimization

such as Levenberg-Marquardt. Such a refinement involves the use of an initialization and requires a

much higher computation time. Apart from that, the optimization requires relative weighting of the

three constraints with two parameters liso and lsmooth that need to be precisely tuned to get optimal

results. On the other hand, it carries the advantage of having a holonomic solution of depth, where

the relationship between depth and its Jacobian is taken into account. This also means that it does not

suffer from the depth instability in near-affine conditions as is the case for other methods. The method

of (Collins and Bartoli, 2015) is more general than (Brunet et al., 2014) and works in real-time. It

handles arbitrary surface meshes and solves the registration and shape inference problem together

using dense point matches. However, it also requires an initial solution, which is obtained by tracking

the object frame-to-frame.

There is also a class of methods which do tracking and reconstruction together (Malti et al.,

2011; Ngo et al., 2015; Yu et al., 2015) similar to (Collins and Bartoli, 2015). (Malti et al., 2011)

introduced the pixel intensity error instead of the feature-based reprojection error in equation (3.9)

to obtain simulaneous tracking and reconstruction. A conformal deformation prior was chosen here

which is more general than the isometric prior. (Ngo et al., 2015) does the same with a better method

for initialization proposed in (Ngo et al., 2016) and M-estimators to handle occlusions and poorly

textured surfaces. (Yu et al., 2015) uses an energy for temporal smoothness apart from the remaining

costs to get a dense reconstruction and tracking in RGB videos.

3.1.3 Analytical solutions from quadratic PDEs

The analytical methods (Bartoli and Collins, 2013; Bartoli et al., 2015) use a flat template-to-image

registration warp and the surface parametrization function derivatives to directly compute the sur-

face’s depth analytically. At each surface point, the depth is obtained as the non-holonomic solutions

to a PDE system. It uses the zeroth and first-order information like the methods in section 3.1.2 but

the solutions are obtained analytically. This requires computing the gradient of the local image warp.

Methods of this type discard the depth-gradient solution and keep only the depth solution. The local

analytical nature of the solutions means that the methods are very fast and can be parallelized effi-

ciently as the solution for each point is found independently. As an advantage of being analytical,

these methods also form a powerful tool to analyze the effect of different projection geometries on

the recovered shape. We will elaborate the analytical solutions of (Bartoli et al., 2015) in details when
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Table 3.1: SfT methods and their characteristics.

Methods Surface
Representation Surface Prior Constraint type Primary

computation
Affine
Stability

(Perriollat et al.,
2011)

Point set with
NNG Inextensibility Zeroth-order Non-convex

optimization Not stable

(Salzmann and Fua,
2011a)

Point set with
NNG Inextensibility Zeroth-order Convex (SOCP) Not stable

(Ngo et al., 2016) Mesh Inextensibility Zeroth-order Non-convex
optimization Not stable

(Brunet et al.,
2014)

2D Riemannian
Manifold Isometry First-order Non-convex

optimization Stable

(Bartoli et al.,
2015)

2D Riemannian
Manifold Isometry First-order Analytic Not stable

Proposed Methods
2D Riemannian
Manifold Isometry First-order LLS Stable

we discuss our method for SfT in chapter 4.

Our proposed methods for SfT are analytical for the most part and yet do not suffer from depth

instability at near affine conditions. Table 3.1 lists some basic characteristics of the state-of-the-art

methods in SfT and compares them to the proposed methods in these characteristics.

3.2 Non-Rigid Shape-from-Motion

In contrast to SfT methods, NRSfM has seen very few methods based on physical models such as

isometry. The factorization-based approaches using the low-rank deformation model have been the

focus of research in NRSfM for a long time. NRSfM methods can be divided in many ways. For

clarity we classify them as methods based on statistical priors (low-rank methods) and methods based

on physical priors.

3.2.1 Methods based on statistical priors

Starting from the work of Bregler et al. (Bregler et al., 2000), the low rank model has been the most

commonly used shape prior in NRSfM. The low-rank shape model was described in chapter 2.6.3,

which is a statistical prior on a set of surfaces. As shown before, the low rank prior is used to obtain

surface 3D reconstructions by factorizing the matrix of point correspondences or observation matrix

into a coefficient matrix and shape basis matrix. However, such a factorization under the low rank

constraint is non-convex and suffers from ambiguities. Many works have been proposed to include

additional priors in resolving the ambiguities of factorization-based NRSfM. Additional priors are

important here even after applying the low-rank constraint because some shape ambiguities remain in

affine projections (Collins and Bartoli, 2010; Pizarro et al., 2013). We discuss the priors and methods

introduced to solve the inherent problems of low-rank NRSfM below.

i) Shape basis priors. Shape basis priors were introduced in (Del Bue, 2008) to constrain better

the shape basis matrix V in equation (2.34). The basic assumption is that a collection of known 3D
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shapes are generated from a subset of the same shape basis as the unknown shapes to be reconstructed.

This puts limits on the shape basis of the unknown shapes, consequently constraining the unknown

shapes. It proposes to modify equation (2.34) so that the unknown shapes are obtained in part from

a known shape basis. The known part, say b number of basis shapes are precomputed from a known

sequence of 3D shapes. This gives us the following equation.

W =
[
Lb Ll−b

] [ Bb

Bl−b

]
(3.10)

A linear basis of the known 3D shapes is given by:

P = NBb (3.11)

where the matrix P ∈ Rb×n is the shape prior obtained from the linear basis Bb of the known

3D shapes. Extending the idea described in (Del Bue, 2008), (Tao and Matuszewski, 2013) proposed

representing a non-linear shape prior with few parameters in a low-dimensional manifold. This allows

the shapes to have non-linear complex deformations.

ii) Spatio-temporal smoothness prior. Smoothness, whether spatial/surface smoothness or tempo-

ral smoothness, is a natural property of many real objects and can be modelled in the reconstruction

process in various ways. Spatial smoothness was first used in NRSfM in (Torresani et al., 2001) using

a regularizer for neighboring points. (Olsen and Bartoli, 2008) proposed to use spatial as well as

temporal terms. Spatio-temporal smoothness was also exploited by (Torresani et al., 2008) using a

Probabilistic Principal Component Analysis (PCA) model of shape. A Gaussian prior is then used on

the weights (matrix L of the shape basis). An alternative method to impose temporal smoothness was

proposed by (Akhter et al., 2008). It models the shape coefficients with Discrete Cosine Transform

(DCT) as W = LV = D(C)V. D consists of rotations while C contains basis of the time-trajectory

of 3D points. However this limits the number of DCT coefficients by the selected rank l of the matrix

W. (Gotardo and Martínez, 2011) proposed an alternative formulation by which it models W with

high and low frequency DCT coefficients and the basis matrix without increasing the rank parameter

l.

iii) Linear and nonlinear combination of shape basis. Most low-rank methods express the un-

known shapes as a linear combination of the basis shapes. In other words, the unknown shapes lie on

the linear subspace of the basis shapes. This demands the deformations to be limited to small linear

ones. To model larger complicated deformations (Gotardo and Martínez, 2011) proposed to apply

a kernel transformation. The kernel transformation generalizes the inner product with a kernel such

as the radial basis function. As such, this itself is not a prior and rather expands the solution space

making the problem more difficult to solve. In order to find the solution in such cases, (Gotardo and

Martinez, 2011) proposed the shape trajectory analysis. Linear shape basis problem on the other hand,

have the advantage that they can be solved more efficiently. (Dai et al., 2012) showed that a convex

relaxation of the linear shape basis problem performs better than many other low-rank methods with
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additional constraints.

iv) Choice of rank. Another problem in low-rank NRSfM is the choice of the rank parameter l.

In general, the choice of the rank l affects the solution due to the way the problem is solved. (Garg

et al., 2013a) proposed a joint optimization that computes the rank parameter as well as the unknown

shapes. However, there is still no guarantee that a given set of surfaces can be accurately represented

by a matrix with the chosen rank.

3.2.2 Methods based on physical priors

Physical model-based approaches have been introduced to avoid the difficulties and problems with

statistical priors. As in the case of SfT, efforts have been made on using isometry to constrain the

problem in NRSfM (Chhatkuli et al., 2014b; Taylor et al., 2010; Varol et al., 2009; Vicente and

Agapito, 2012). Physical model-based methods, in general, can handle larger complex deformations

and at the same time work with very small number of images than methods that use statistical priors.

The isometric prior can be used in the NRSfM problem locally (point-wise) or semi-locally (patch-

wise) or even globally by considering the whole set of surfaces and image points together. We describe

the physical model-based methods below in two categories, local or semi-local and global:

i) Local or semi-local approaches. Local approaches do not combine constraints at different points

or set of points. They evaluate the constraints independently to obtain point-wise or point set-wise

reconstruction. A semi-local method using a perspective camera and homographies was proposed

in (Varol et al., 2009). It can reconstruct surfaces that are composed of large planar patches. As

described in chapter 2.3.3, a homography obtained from normalized image points of a plane can be

decomposed to obtain the surface normal of the plane. (Varol et al., 2009) first divides the surface

into planar patches and estimates the homography for each planar patch. It then decomposes the

homography obtained at each plane to obtain the solutions for surface normal. However, the obtained

solutions have a two-fold ambiguity and consequently it resorts to spatial smoothness of surfaces

for disambiguating the surface normals. The final shapes are then obtained by integrating surface

normals. The deformation is modelled using only a rotation and translation, i.e. a rigid transform for

each region of the surface. This is can be regarded as a special case of isometry.

A more general isometric model with local rigidity is exploited by (Collins and Bartoli, 2010;

Taylor et al., 2010) using the affine camera model. (Taylor et al., 2010) proposed a 3-point rigid SfM

solution with a convex relaxation and gave an NRSfM method by assuming each 3-point set is rigid,

i.e. the surface is locally rigid. This is more general than the assumption of piece-wise rigidity of

(Varol et al., 2009) but requires a minimum of 4 images. (Collins and Bartoli, 2010) at the same

time proposed a similar solution with the assumption of local rigidity but without using a convex

relaxation. It used automatically clustered point sets and solved the general case of three or more

images.

An interesting semi-local solution was proposed in (Russell et al., 2014) based on local fundamen-

tal matrices computed from small point sets. However it also uses piecewise rigidity assumption over
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the more general local rigidity prior. Thus, it is more suitable for articulated objects than for smoothly

deforming surfaces. A recent method for local solution of NRSfM was proposed in (Parashar et al.,

2016). It shares the local (infinitesimal) planarity assumption made in the proposed local solution of

the thesis but goes further by using the manifold representation of surfaces. The local solutions to the

surface normals are computed by exploiting the properties of the metric tensor. The metric tensors

are transferred across different images which involves second-order quantities called the Christoffel

symbols.

ii) Global approaches. Global approaches combine all the constraints in all the points together

to form the problem formulation. The use of the combined constraints means that the methods can

possibly handle difficult conditions if an optimal solution can be found. However, to optimize such a

large system of constraints most methods have to employ an energy minimization scheme. (Vicente

and Agapito, 2012) proposed one such global approach. It uses the isometric constraints under the

assumption of an orthographic camera. The method also provides a way to include the perspective

camera. However, the solutions are obtained with discrete non-convex optimization on an initial

solution and are not globally optimal. Furthermore, it is a complex method to implement and test.

Some global approach also mix the physical models with the statistical low-rank model. For example,

(Agudo and Moreno-Noguer, 2015) uses a shape basis as well as an isometry-like prior but the method

requires an initialization, obtained from rigid factorization on the first set of frames. In that regard, it

could be argued that the core of the method is rather like a template-based approach.

Table 3.2 lists some important methods and their characteristics in comparison to the proposed

methods. We propose two different solutions. Our local solution gives pointwise solution to surface

normals and disambiguates them using additional views rather than smoothness. The method is based

on the perspective camera model. Compared to all previous methods, our global method is the first to

formulate a convex problem by relaxing isometry to inextensibility in NRSfM, from which we obtain

a globally optimal solution using SOCP. The method is fast, accurate, simple to understand and uses

a perspective camera model.
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Table 3.2: NRSfM methods and their characteristics.

Methods Surface
Representation Surface Prior Camera Model Constraint

type
Primary
computation

(Gotardo and
Martínez, 2011) Point sets

Low-rank and
temporal
smoothness

Orthographic Global Non convex

(Dai et al., 2012) Point sets Low-rank Orthographic Global
Convex with
non-convex
refinement

(Taylor et al., 2010) Mesh Isometry Orthographic Local Small systems
(Vicente and
Agapito, 2012)

Point sets with
NNG Isometry Orthographic

and perspective Global Non-convex

(Parashar et al.,
2016)

2D Riemannian
Manifold Isometry Perspective Local Small quartic

systems

Proposed local
method

2D Riemannian
Manifold
(implicit)

Isometry Perspective Local Small systems

Proposed global
method

Point sets with
NNG Inextensibility Perspective Global Convex
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Chapter 4
Shape-from-Template

We give our problem modelling for SfT and describe two important related methods for the template-

based reconstruction from a single image. While doing that, we also establish why previous meth-

ods are not suited as local projection geometry tends to affine. The methods we provide here are

initialization-free and for the most part analytic. We detail our experiments and results on devel-

opable and non-developable surfaces undergoing smooth deformations, which show that the proposed

methods perform better than the state-of-the-art in perspective as well as near-affine conditions. This

chapter is based on our published work (Chhatkuli et al., 2016b).
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4.1 Differential Geometric and PDE-based Modelling

We follow the problem modelling of (Bartoli et al., 2015) as depicted in figure 4.1. We start with

the 3D template T ⊂ R3. The flat template is a 2D domain Ω ⊂ R2 obtained from T , which is

parametrized with ∆ ∈ C1(Ω,R3). Consequently the flattening function is ∆−1. In practice it is

obtained from a conformal flattening of a texture-mapped mesh or often simply by taking an image

of the 3D object. The 3D template T is transformed by an isometric deformation ψ ∈ C1(T ,R3).

The deformed surface S ⊂ R3 is projected by a known camera projection function Π onto an image

I ⊂ R2. We define S in the camera’s coordinate frame. We denote the registration between Ω and

I as η ∈ C1(Ω,R2). We parametrize the deformed surface S by an unknown embedding function

ϕ ∈ C1(Ω,R3).
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Figure 4.1: Differential geometric modelling of Shape-from-Template.

Our goal is to solve the SfT problem, represented by ψ. In practice we work with the embedding

ϕ. This is equivalent since ϕ = ψ ◦∆. We obtain ϕ from the known functions ∆, η and Π , and the

fact that the surface deforms isometrically. Below we describe the differential constraints and then

define the SfT problem with a set of PDEs.

4.1.1 Differential constraints

We divide the constraints on ϕ into the deformation constraint and the reprojection constraint. The

deformation constraint imposes the isometric prior while the reprojection constraint is analogous

to a data term, which ensures that the reprojection of the surface matches the input image. This

information is related to the camera geometry and imaging via the known projection function Π . We

give details for both constraints as presented in (Bartoli and Collins, 2013; Bartoli et al., 2015) and
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additionally generalize them for different camera models with which we obtain a generalized equation

in section 4.2.

4.1.1.1 Deformation constraint

We start with the equation for the embedding ϕ = ψ ◦∆; its differentiation leads to:

Jϕ = (Jψ ◦∆) J∆. (4.1)

Pre-multiplying equation (4.1) by its transpose gives us:

J>ϕ Jϕ = J>∆ (Jψ ◦∆)> (Jψ ◦∆) J∆. (4.2)

Isometric deformations preserve geodesic distances and for such deformations we have:

(Jψ ◦∆)> (Jψ ◦∆) = I3, (4.3)

which simply states that the metric tensor on the surface remains unchanged with an isometry de-

scribed by ψ. Substituting equation (4.3) in equation (4.2) gives:

J>ϕ Jϕ = J>∆J∆. (4.4)

Equation (4.4) states that the first fundamental form is preserved in an isometry. Thus it remains the

same for the surface embedding ϕ and the template parametrization ∆.

4.1.1.2 Reprojection constraint

The reprojection constraint is obtained with the reprojection equation:

η = Π ◦ ϕ. (4.5)

Equation (4.5) enforces consistency between the warp η and the projection of the embedding in the

image. Without loss of generality we assume that the world coordinate frame is the camera’s and we

denote as f > 0 the camera’s focal length. We then use the reprojection constraint to express the

embedding ϕ = [ϕx ϕy ϕz]
> with the depth function ϕz ∈ C1(Ω,R). We consider two possible

camera models: the perspective camera and the infinitesimal weak-perspective camera.

The perspective camera. With perspective projection ΠP we have:

η = ΠP ◦ ϕ =
[
f ϕx

ϕz
f
ϕy

ϕz

]>
. (4.6)
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Using equation (4.6) the embedding ϕ may be parametrized by the depth function ϕz and the

template-to-image warp function in homogeneous coordinates η̃> = [η> 1] as:

ϕ = ΦPη̃ with ΦP = diag

(
ϕz
f
,
ϕz
f
, ϕz

)
. (4.7)

The infinitesimal weak-perspective camera. This camera model was proposed to simplify the

PDEs by approximating the gradient (Bartoli et al., 2013). It is based on the weak-perspective

model, which approximates the perspective camera (Hartley and Zisserman, 2004). It first projects

the scene orthographically onto a fronto-parallel plane placed at the scene’s average depth and then

scales it. The infinitesimal weak-perspective camera instantiates a weak-perspective camera at each

point. This gives the same projection as the perspective camera but simplifies the expression for the

depth-gradient. It is non-analytic. The infinitesimal weak-perspective projection ΠWP yields:

η = ΠWP ◦ ϕ =
[
f ϕx

ζ f
ϕy

ζ

]>
. (4.8)

In this model ζ represents the depth. It is different at each point and given by ϕz , while preserving

the property that Jζ = 01×2. The back-projection equation with the infinitesimal weak-perspective

model is:

ϕ = ΦWPη̃ with ΦWP = diag

(
ζ

f
,
ζ

f
, ϕz

)
. (4.9)

Unified camera model. We give a unified model for a general camera by rewriting the reprojection

constraint with the back-projection matrix as:

ϕ = Φη̃ with Φ ∈ {ΦP, ΦWP}. (4.10)

The partial derivatives of the back-projection matrix Φ is:

M =
∂Φ

∂ϕz
=


MP = diag( 1

f ,
1
f , 1) perspective

MWP = diag(0, 0, 1) infinitesimal weak-perspective.

(4.11)

4.1.2 General PDE

The constraints described in section 4.1.1 were first used in (Bartoli et al., 2015) to analytically solve

isometric SfT and to show that it is a well-posed problem. Here, we give the following generalized

PDE system to describe SfT:

Find ϕ s.t.

J>ϕ Jϕ = J>∆J∆

Π ◦ ϕ = η.
(4.12)

In the following sections we reformulate system (4.12) and show that it intrinsically has three non-

holonomic unknowns and three equations. The holonomic solutions for system (4.12), which enforces
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the differential dependency between the solutions may not exist in practice in the presence of noise.

We study the space of solutions of system (4.12) using two different PDE formulations, which result

in type-I solutions and type-II solutions. The type-I solutions provide the radial component of depth

and its gradient. The type-II solutions give the depth and the surface normal. The two formulations

provide the same direct depth solution, however as we will show, the second non-holonomic solutions

for type-I and type-II solutions are used differently in the subsequent steps that produce accurate but

slightly different reconstructions.

4.2 Type-I Solutions Stability and Type-I Stable Method

The well-posedness of isometric SfT defined by the PDE system (4.12) was proved in (Bartoli et al.,

2015) where the local non-holonomic solutions for the PDE system were derived. We first describe

the analytic method to obtain the non-holonomic solutions as given by (Bartoli and Collins, 2013;

Bartoli et al., 2015). In order to achieve that, they reformulate system (4.12) so that it consists of

three non-holonomic unknowns: the depth and its gradient with respect to the flat template. Our

contribution here is that we generalize the equations for two different camera models and derive

solutions for both models.

4.2.1 Type-I solutions

We consider the embedding parametrized by the depth function ϕz as shown in equation (4.7) or (4.9).

The problem of SfT can be viewed as that of finding the depth function ϕz so that the deformation

constraints (4.4) are met. We derive a non-linear PDE system that holds for both perspective and in-

finitesimal weak-perspective projection (4.10) and deformation constraints (4.4). We first differentiate

equations (4.7) and (4.9) and use the expressions defined in equation (4.11) to get Jϕ:

Jϕ = Mη̃Jϕz + ΦJη̃, (4.13)

To verify equation (4.13) one can expand equation (4.7) or (4.9) before differentiating them. Similarly,

following through the matrix multiplications in equation (4.13) we reach the same result.

We introduce equation (4.13) in the deformation constraint (4.4) to obtain the following non-linear

PDE system:

J>ϕz
η̃>M2η̃Jϕz + J>ϕz

η̃>MΦJη̃ + J>η̃ ΦMη̃Jϕz + J>η̃ Φ
2Jη̃ = J>∆J∆. (4.14)

System (4.14) models SfT in terms of ϕz and Jϕz for perspective and infinitesimal weak-perspective

projections. Assuming Jϕz and ϕz are independent variables, we obtain the non-holonomic solutions

of system (4.14) analytically. We denote them as ϕ̄z ∈ C1(Ω,R) and κ̄ ∈ C0(Ω,R2). Despite the

fact that system (4.14) admits exact solutions for both ϕ̄z and κ̄, they are not generally consistent

since Jϕ̄z 6= κ̄. With errors in η, system (4.14) is in fact an overdetermined PDE system with no

general (i.e. holonomic) solutions.
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4.2.1.1 Perspective camera

The PDE system (4.14) is specialized to perspective projection by choosing ΦP from equation (4.7)

and MP from equation (4.11):(
1 +

η>η

f2

)
J>ϕz

Jϕz +
ϕz
f2

(J>ϕz
η>Jη + J>η ηJϕz) +

ϕ2
z

f2
J>η Jη = J>∆J∆.

We simplify this system by changing variables with:

α = ϕzν and ν =

√
1 +

η>η

f2
, (4.15)

giving Jα = νJϕz + ϕz

νf2
η>Jη. This leads to an equivalent but simpler PDE system in α and Jα:

J>α Jα + α2γ = J>∆J∆, (4.16)

where:

γ =
1

ν2f2

(
J>η Jη −

1

ν2f4
J>η ηη

>Jη

)
. (4.17)

In order to obtain the non-holonomic solutions we subsitute Jα by an independent vector function

β ∈ C0(Ω,R2) in equation (4.16). This gives us:

β>β + α2γ = J>∆J∆. (4.18)

Following (Bartoli and Collins, 2013; Bartoli et al., 2015) we can always find a single algebraic

solution of system (4.18). We denote the non-holonomic solutions of α and β as ᾱ and β̄. To obtain

them we first modify equation (4.18) as:

β>βγ−1 = J>∆J∆γ
−1 − α2I2. (4.19)

The left-hand side of equation (4.19) clearly has rank 1 and therefore the second eigenvalue of the

right hand side is 0 as well. With that we obtain:

ᾱ =
√
λ2

(
J>∆J∆γ

−1
)
. (4.20)

Substituting the solution for α in equation (4.18) the non-holonomic solution β̄ is obtained as:

β̄ = ±
√
λ1(Υ )v1(Υ ), (4.21)

where:

Υ = J>∆J∆ − λ2

(
J>∆J∆γ

−1
)
γ. (4.22)

We may recover ϕ̄z from equation (4.20) followed by the change of variable (4.15). Instead of κ̄,

we recover β̄ from equation (4.21). The solutions ᾱ and β̄ are the non-holonomic solutions of the

perspective type-I PDE system (4.18) obtained algebraically and thus they exist in all practical cir-



4.2 TYPE-I SOLUTIONS STABILITY AND TYPE-I STABLE METHOD 55

cumstances. In our stable type-I method we give an alternative for obtaining the depth at each point

using β̄.

4.2.1.2 Infinitesimal weak-perspective camera

The PDE for the infinitesimal weak-perspective camera is found by choosing ΦWP from equation (4.9)

and MWP from equation (4.11):

J>ϕz
Jϕz +

ζ2

f2
J>η Jη = J>∆J∆, (4.23)

where we set ζ = ϕz in the infinitesimal weak-perspective model as ζ gives the ‘average’ depth at a

differential level.

System (4.23) has exactly the same structure as system (4.16), the simplified PDE system for

perspective projection. We directly obtain the non-holonomic solutions of the system ϕ̄z and κ̄,

without any change of variable. To obtain ϕ̄z and κ̄ in the infinitesimal weak-perspective model we

first assign γWP = f−2J>η Jη. This transforms equation (4.23) into the following:

κ>κ+ ϕ2
zγ

WP = J>∆J∆. (4.24)

Noting the similarity of equation (4.24) with equation (4.18), we give the non-holonomic solutions

for equation (4.24) as:

ϕ̄z =

√
λ2

(
J>∆J∆ (γWP)−1

)
and κ̄ = ±

√
λ1(ΥWP)v1(ΥWP), (4.25)

where:

ΥWP = J>∆J∆ − λ2

(
J>∆J∆

(
γWP)−1

)
γWP.

4.2.1.3 Obtaining the embedding

(Bartoli and Collins, 2013; Bartoli et al., 2015) use ϕ̄z directly to get the embedding ϕ through

equation (4.7) or (4.9), neglecting the information contained in β̄ and consequently κ̄. At first glance

this direct-depth method seems to be sensible as β̄ is known only up to sign and requires integration to

recover depth. We show in section 4.2.2 however, that the depth solution ϕ̄z is not well-constrained,

unlike the depth-gradient. We give a method of obtaining a better 3D reconstruction using β̄ in section

4.2.3.

4.2.2 Stability

We prove two important results regarding the stability of the type-I non-holonomic solutions of PDEs

(4.16) and (4.23). We list them as propositions below.

Proposition 1. The non-holonomic solution for depth ϕ̄z is weakly constrained when the projection

geometry tends to affine.
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Proposition 2. The non-holonomic solution for the depth-gradient κ̄ is well-constrained in all pro-

jection geometries.

Figure 4.3 gives a general diagram showing the effect of different projection geometries on SfT.

We prove these results for the perspective and infinitesimal weak-perspective cameras.

We define a projection function Πs on a 3D point Q = [Qx Qy Qz]
>, depending on a parameter

s that allows us to continuously select the amount of perspective:

Πs(Q) =
(s+ 1) f

Qz + sf

[
Qx Qy

]>
. (4.26)

We obtain a perspective projection with the focal length f when s = 0, and an orthographic projec-

tion1 when s→∞:

lim
s→∞

Πs(Q) =
[
Qx Qy

]>
. (4.27)

The infinitesimal weak-perspective approximation of Πs is:

ΠWP
s (Q) =

(s+ 1) f

ζ + sf

[
Qx Qy

]>
. (4.28)

Proof of propositions 1 and 2 for the perspective camera. We first substitute the projection modelΠs

into the PDE system (4.14) by simply redefining the back-projection matrix Φ for perspective projec-

tion as:

Φs = diag

(
ϕz + sf

(s+ 1)f
,
ϕz + sf

(s+ 1)f
, ϕz + sf

)
. (4.29)

Introducing Φs in the type-I PDE system (4.14) we obtain:(
1 +

η>η

((s+ 1)f)2

)
J>ϕz

Jϕz +
ϕz + sf

((s+ 1)f)2
(J>ϕz

η>Jη) +
ϕz + sf

((s+ 1)f)2
(J>η ηJϕz)+

(ϕz + sf)2

((s+ 1)f)2
J>η Jη = J>∆J∆.

(4.30)

We first prove proposition 1. By taking the limit s→∞ in equation (4.30) we find the following

system:

J>ϕz
Jϕz + J>η Jη = J>∆J∆, (4.31)

which represents the general PDE system for affine projection (Pizarro et al., 2013). In equation

(4.31) the depth variable ϕz vanishes, which means that in affine projection depth is not any more

constrained. This can be also proved in the space of solutions after the change of variable with

equation (4.15). ᾱ depends on the eigenvalues of matrix J>∆J∆γ
−1. When s is a large number, the

1The orthographic projection and affine projection are equivalent up to an affine image transform. Thus the discussion
is still valid for any affine projection although described for an orthographic projection.
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solution of ᾱ in equation (4.20) is ill-conditioned. We write γ from equation (4.17) as a function of s:

γs =
1

ν2
s ((s+ 1)f)2

(
J>η Jη −

1

ν2
s ((s+ 1)f)4 J

>
η ηη

>Jη

)
, (4.32)

with:

νs =

√
1 +

η>η

((s+ 1)f)2
. (4.33)

Taking the limit of equation (4.32) we find lims→∞ γs = 02×2. ᾱ is then computed from a matrix

whose elements tend to infinity.

As for proposition 2, although ϕz has already vanished from equation (4.31), the solution to its

gradient can still be recovered by applying the rank-1 constraint to equation (4.31). Thus κ̄ is simply

given by:

κ̄ = ±λ1

(
J>∆J∆ − J>η Jη

)
v1

(
J>∆J∆ − J>η Jη

)
. (4.34)

which means that depth-gradient is equally well constrained with affine projection.

Proof of propositions 1 and 2 for the infinitesimal weak-perspective camera. By taking the infinites-

imal weak-perspective approximation of the projection model ΠWP
s and plugging it into equation

(4.23) after setting ζ = ϕz we reach the following system:

J>ϕz
Jϕz +

(
ϕz + sf

(s+ 1)f

)2

J>η Jη = J>∆J∆. (4.35)

Again by taking the limit s → ∞ on both sides of equation (4.35), we reach system (4.31) of affine

projection. If there is no perspective effect and the camera is affine we cannot compute the average

depth of the scene as it vanishes from the equations. The proof of proposition 1 follows in the same

way as in the perspective camera by using γs = 1
((s+1)f)2

J>η Jη. For proposition 2 the solution of κ̄ in

equation (4.35) is identical to that for the perspective model when s→∞.

4.2.3 Stable type-I methods

In sections 4.2.1 and 4.2.2 we revisited the non-holonomic type-I solutions and proved that the depth

solution was unstable. However obtaining the embedding using the stable solution is not straight-

forward mainly due to the two-fold ambiguity of the solution. Furthermore, an integration step is

also required before we can obtain depth from the disambiguated solution. We give the details of

the proposed stable type-I method as follows. We propose to use β̄ which is stable in perspective

and affine conditions to solve SfT. In order to obtain depth ϕ̂z from β̄ we need to go through the

following four steps: i) sign disambiguation for β̄, ii) numerical integration of β̄, iii) arbitrary inte-

gration constant computation and iv) variable change, for the perspective camera. For the infinitesimal

weak-perspective camera the last step is not required and we use φ̄z, κ̄ instead of ᾱ, β̄.
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Algorithm 1: Stable type-I method for the perspective camera.
Input: warp η, template embedding ∆, domain Ω
Output: deformed embedding ϕ̂

• PDE solution
1 Compute the Jacobians Jη and J∆
2 Solve the PDE system (4.16) to obtain ᾱ and ±β̄

• Sign disambiguation
3 Compute the Jacobian Jᾱ for the solution ᾱ
4 Select the sign for β̄ so that the largest component of β̄ has the same sign as that

component of Jᾱ
5 Compute the two absolute angles between the vectors Jᾱ and β̄
6 Discard β̄ in points where the best angle is greater than a threshold (sum of the mean

angle for all points and two times the standard deviation)
7 Interpolate to compute β̄ for the discarded values

• Numerical integration
8 Integrate the disambiguated value of β̄ to obtain α̂+ kα

• Integration constant
9 Compute the integration constant:

kα = median
Ω

((α̂+ kα)− ᾱ)

• Change of variable
10 Apply the change of variable ϕ̂z = α̂

ν and compute ϕ̂ using the perspective camera
model

4.2.3.1 Sign disambiguation

According to equation (4.21), the non-holonomic solutions β̄ and κ̄ are known up to a local sign

change. (Bartoli et al., 2015; Pizarro et al., 2013) mention a few ways to disambiguate the sign

for different but related problems, based on external cues, such as shading, temporal smoothing, or

surface smoothing. We show below that we can do without these additional cues, which may be

unavailable or even unstable in practice.

If there is some perspective, even very loose, we know that a non-holonomic solution for ϕz
exists. We thus propose to disambiguate the sign of β̄ or κ̄ by using the non-holonomic solution to

depth ϕ̄z . In the perspective camera the process has four steps: 1) We first differentiate ᾱ to obtain Jᾱ.

2) We select the sign of β̄ so that the resulting vector is closest to Jᾱ. 3) We discard the computed β̄

at regions of the template where Jᾱ differs substantially from β̄. This can occur due to the instability

of the depth solution. We use the angle between the two vectors as a metric:

](p) =

∣∣∣∣acos
(

Jᾱβ̄

‖Jᾱ‖‖β̄‖

)∣∣∣∣ . (4.36)

The above computed angle is simply an angle between vectors and does not have a physical signif-

icance. It is only used as a metric to choose among the solutions ±β̄. We use the sum of the mean

angle for all points and twice the standard deviation as the threshold. 4) We use smoothing to compute
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Algorithm 2: Stable type-I method for the infinitesimal weak-perspective camera.
Input: warp η, template embedding ∆, domain Ω
Output: deformed embedding ϕ̂

• PDE solution
1 Compute the Jacobians Jη and J∆
2 Solve the PDE system (4.23) to obtain ϕ̄z and ±κ̄

• Sign disambiguation
3 Compute the Jacobian Jϕ̄z for the solution ϕ̄z
4 Select the sign for κ̄ so that the largest component of κ̄ has the same sign as that

component of Jϕ̄z

5 Compute the two absolute angles between the vectors Jϕ̄z and ±κ̄
6 Discard κ̄ in points where the best angle is greater than a threshold (sum of the mean

angle for all points and two times the standard deviation)
7 Interpolate to compute κ̄ for the discarded values

• Numerical integration
8 Integrate the disambiguated value of κ̄ to obtain ϕ̂z + kz

• Integration constant
9 Compute the integration constant:

kz = median
Ω

((ϕ̂z + kz)− ϕ̄z)

10 Find the embedding ϕ̂ using the perspective camera model

values for β̄ for the regions where they were discarded.

4.2.3.2 Numerical integration

The non-holonomic solution β̄ is not guaranteed to be integrable. We thus need a numerical inte-

gration method to estimate ϕ̂z . We propose to use a parametric function represented by a Bicubic

B-Spline (BBS). With a BBS, or any other linear basis expansion model, we can integrate β̄ by means

of sparse linear least-squares. The solution is defined up to an additive integration constant. We define

the LLS integration as:

α̂+ kα = arg min
αs

∫
Ω
‖Jαs − β̄‖2 dp. (4.37)

We evaluate the integral by using a summation over a dense grid of points p on the flat template space

Ω.

4.2.3.3 Integration constant

After integration we obtain α̂+ kα, where kα is an arbitrary integration constant. We propose to use

ᾱ to estimate kα. First we take samples from α̂ + kα and ᾱ. We then obtain kα by using the median

of the differences between the samples. This is expressed as:

kα = median
Ω

((α̂+ kα)− ᾱ) . (4.38)
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4.2.3.4 Change of variable

We apply the change of variable given by equation (4.15) on the estimate of α̂ obtained above. This

gives us the depth estimate at each point and thus the final surface embedding is obtained by estimat-

ing the surface point coordinates using the perspective camera model. Algorithm 1 summarizes the

steps for the stable type-I method for the perspective camera.

For the infinitesimal weak-perspective camera, all the steps are very similar except that we directly

obtain ϕ̄z and κ̄ as the non-holonomic solutions instead of ᾱ and β̄ respectively. This means that while

the rest of the steps remain the same, the final depth and shape are obtained without the change of

variable. For clarity, we describe these steps separately for the infinitesimal weak-perspective camera

in algorithm 2.

4.3 Type-II Solutions, Stability and Type-II Stable Method

The type-I solutions discussed in section 4.2 involve a change of variable of the depth and its deriva-

tives where the non-holonomic solutions are measured in a modified space for the perspective camera.

We present a new interpretation of SfT using the type-II solutions and type-II stable methods for two

important reasons. First type-II PDE for SfT has not been studied before; it describes explicitly how

tangent planes on the embedding are related by rigid transforms from the template to the deformed

surface. Additionally, as we show in the experimental results, it can lead to slightly different results

from the stable type-I method. This is primarily due to the use of different spaces for numerical

integration, which is further explained in chapter 4.5 and Appendix B. In this section we propose

non-holonomic solutions of the general PDE (4.12) involving depth and the surface normal, which

provide a more intuitive geometrical interpretation despite being equivalent to type-I solutions up to

a change of variable.

4.3.1 Type-II solutions

To use the PDE system proposed in (Collins and Bartoli, 2014a) for SfT, we need to ensure that the

template shape is locally planar with normals pointing towards the positive depth axis. Such case is

easily realized for a flat template. For a general 3D template, we make use of a locally isometric flat-

tening operator, which provides a new flat parametrization space that is related to the 3D template by a

locally isometric map. We then exploit the fact that isometric deformations induce a rigid transforma-

tion between the tangent plane in the template and the one in the surface embedding. Thus, from the

deformation constraint (4.4), we have that the embedding’s Jacobian is a Stiefel matrix. We use this

property to find the non-holonomic solutions. For general 3D templates, the flattening is not necessar-

ily an isometric map. Therefore we first show that one can always change the parametrization space

so that locally the template parametrization (flattening) is isometric. We call the new parametrization

space as the locally isometric flattening. This change involves computing the Cholesky factorization

of J>∆J∆ at every point. We first present the locally isometric flattening and then describe the new set

of non-holonomic solutions for the depth and the surface normal.
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4.3.1.1 Locally isometric flattening

For a generic flattening with parametrization ∆, the columns of the embedding’s Jacobian Jϕ are in

general not orthonormal. However we prove here that we can still get a local embedding using a

different parametrization space such that the embedding’s Jacobian will have orthonormal columns.

We consider the required local embedding as φp′ ∈ C1(Ω′,R3) parametrized with a new flat template

space Ω′ such that the new flat template is locally isometric to the 3D template T . This leads us to

the following equation:

J�φp′Jφp′ = J�∆′
p′
J∆′

p′
= I2 (4.39)

where ∆′
p′ ∈ C1(Ω′,R3) is a locally isometric parametrization that uses the new flat template and

maps each point on Ω′ isometrically to the 3D template T . Here the domain Ω′ of ∆′
p′ in general is

not a connected space. We also map each point on the original flat template space Ω to the new flat

template space Ω′ using a local function ρp ∈ C1(Ω,R2). As it is a one to one mapping between

subsets of R2, its inverse ρ−1
p′ ∈ C1(Ω′,R2) is well defined. We show the complete parametrization

in figure 4.2. In the following discussion, we show that such a template can be constructed for any

surface embedded in R3 in a disc topology. To simplify the notations, we drop the subscripts p and

p′ from the local functions.
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Figure 4.2: Differential geometric modelling of Shape-from-Template with the locally isometric flattening. The new
space depicted in the middle is locally isometric to the 3D template and the deformed surface. This property is
required to construct the type-II SfT PDE.

The only new restriction that needs to be imposed for the new flattening is equation (4.39). ∆′

can be expressed in terms of ∆ and ρ−1 as ∆′ = ∆ ◦ ρ−1. This gives us the first-order relation:

J∆′ = (J∆ ◦ ρ−1)Jρ−1 , (4.40)
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where J∆ ◦ ρ−1 is the Jacobian of the known parametrization function of the 3D template evaluated

in Ω. Combining equations (4.39) and (4.40) we obtain:

J−>
ρ−1J

−1
ρ−1 = (J∆ ◦ ρ−1)>(J∆ ◦ ρ−1). (4.41)

Our goal here is to find the Jacobian of the new template-to-image warp Jη′ and for that purpose it

suffices for us to compute the Jacobian Jρ−1 . Any ρ−1 that satisfies equation (4.41) will lead to a

J∆′ which will in turn satisfy equation (4.39). As equation (4.39) is the only requirement for the

locally isometric template, finding Jρ−1 is equivalent to obtaining the new parametrization. To obtain

a value for Jρ−1 that is consistent with equation (4.41) we perform the Cholesky decomposition of the

right-hand side of equation (4.41) which is a symmetric positive definite matrix. This gives us:

Chol
((

J∆ ◦ ρ−1
)> (

J∆ ◦ ρ−1
))

= χχ>

where χ ∈ C0(Ω′, GL2) is a lower triangular matrix-valued function. A value for Jρ−1 that satisfies

equation (4.41) is:

Jρ−1 = χ−>. (4.42)

There is in fact a class of matrices that differ by a single rotation, which satisfy equation (4.41). For

all purposes, the value of the Jacobian Jρ−1 given by equation (4.42) corresponds to a valid ρ−1. We

proceed further by considering the new flat template-to-image warp as η′ : Ω′ → R2. η′ is related to

the known flat template-to-image warp η as:

η′ = η ◦ ρ−1. (4.43)

Thus the Jacobian of the new template-to-image warp η′ is obtained as:

Jη′ =
(
Jη ◦ ρ−1

)
Jρ−1 . (4.44)

4.3.1.2 SfT PDE with locally isometric flattening

After changing the parametrization space to a locally isometric flattening, we are now ready to give

the analytic solutions for the depth φz and the surface normal n ∈ C0(Ω′,R3) for each point on S.

Note that the new flat template space implies no changes in the function values of the embedding

or the template-to-image warp but their derivatives are however different from those of the original

functions. Thus we have η(p) = η′(p′) and ϕ(p) = φ(p′) but Jη′ 6= Jη and Jφ 6= Jϕ in general. The

new deformation constraint is given as:

J>φ Jφ = I2. (4.45)

Considering the change in the parametrization space, the new reprojection constraint in the PDE

system (4.12) becomes:

Π ◦ φ = η′. (4.46)
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Differentiating equation (4.46) we obtain:

(JΠ ◦ φ) Jφ = Jη′ . (4.47)

We write the generalized type-II PDE system for SfT by combining equations (4.45) and (4.47) as:

Find φz, Jφ s.t.

(JΠ ◦ φ) Jφ = Jη′

J>φ Jφ = I2.
(4.48)

We select perspective or infinitesimal weak-perspective systems by substituting the value of JΠ ◦ φ
accordingly in the PDE system (4.48).

4.3.1.3 Perspective camera

We parametrize the surface 3D points on S using the depth function φz as φ = φz[
η′>

f 1]>. This

allows us to expand the Jacobian of the projection matrix evaluated on the surface as:

JΠ ◦ φ =
f

φz

[
I2 −η′

f

]
. (4.49)

Combining equations (4.47) and (4.49) we obtain the following reprojection constraint:

f

φz

[
I2 −η′

f

]
Jφ = Jη′ . (4.50)

With equation (4.50) we can rewrite our new PDE system for SfT as:

Find φz, Jφ s.t.


f
φz

[
I2 −η′

f

]
Jφ = Jη′

J>φ Jφ = I2.
(4.51)

We denote the embedding’s Jacobian Jφ as τ32 where τ ∈ C0(Ω′, SO3) is a function giving a rotation

matrix. The third column of τ gives the solution for the surface normal n̄ and the first two columns

form the embedding’s Jacobian Jφ. If we obtain Jφ and thus the first two columns of τ , the surface

normal n̄ can be retrieved from the cross-product of the two columns of τ32. We give the steps for

computing the non-holonomic solutions of system (4.51) below.

We first compute a rotation function θ ∈ C0(Ω′, SO3) such that:[
I2 −η′

f

]
θ =

[
ω 0

]
(4.52)

where ω ∈ C0(Ω′,R2×2) is a matrix-valued function. θ and ω can be computed directly from equa-

tion (4.52). The actual steps are provided in Appendix A. Next we multiply the left-hand side of

equation (4.50) by θθ> to obtain:

f

φz

[
ω 0

]
θ>τ32 = Jη′ . (4.53)
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We simplify equation (4.53) by introducing another rotation function ξ ∈ C0(Ω′, SO3) such that

ξ32 = θ>τ32. This gives us the following new equation with the unknown depth φz and the unknown

sub-Stiefel matrix ξ22:
f

φz
ξ22 = ω−1Jη′ . (4.54)

To solve equation (4.54) we use the fact that ξ22 ∈ SS2×2 is a sub-Stiefel matrix and thus its largest

singular value is 1. Equating the largest singular values for both sides of equation (4.54), we obtain:

φz =
1

f
σ−1

1

(
ω−1Jη′

)
(4.55)

where σ1(M) is an operator giving the largest singular value of the matrix M. Similarly ξ22 can be

recovered from the relation ξ22 = 1
f φzω

−1Jη′ .

We parametrize the Stiefel matrix ξ32 by using the computed sub-Stiefel part ξ22 and an unknown

vector r so that ξ>32 = [ξ>22 r]. Using the orthogonality of the Stiefel matrix we have:

I2 − ξ>22ξ22 = rr>. (4.56)

Since r is a vector, both sides of equation (4.56) have rank 1. Consequently, r can be obtained

by taking the SVD of the left-hand side of equation (4.56) and choosing the right singular vector

corresponding to its non-zero singular value as below:

r = ±v1(I2 − ξ>22ξ22). (4.57)

However, this results in two solutions for ξ32; we write them as: ξa32 and ξb32. The two solutions for

the embedding’s Jacobian are now simply given by:

Jφ = τ32 =

θξa32

θξb32.
(4.58)

Finally we can also obtain the two solutions for the surface normal n̄1 and n̄2 from the cross product

of the columns of the two solutions for τ32.

4.3.1.4 Infinitesimal weak-perspective camera

The infinitesimal weak-perspective camera model can be used in place of the perspective model by

parametrizing the 3D image points with the infinitesimal weak-perspective depth function ζ and the

template-to-image warp in homogeneous coordinates η̃′ = [η′> 1]>:

φ =
ζ

f
η̃′. (4.59)
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Here ζ varies over the template while its gradient Jζ = 0. This gives us the Jacobian of the projection

matrix evaluated on the surface as:

JΠ ◦ φ =
f

ζ

[
I2 0

]
. (4.60)

Allowing ζ = φz , i.e. to be different for each point while keeping the Jacobian of the projection

matrix as in equation (4.60) gives us the infinitesimal weak-perspective system. Thus combining

equations (4.47) and (4.60) we obtain the following reprojection constraint for the infinitesimal weak-

perspective model:
f

φz

[
I2 0

]
Jφ = Jη′ . (4.61)

As in the perspective solutions we form the PDE system by considering Jφ as a Stiefel matrix. Thus

the problem becomes:

Find φz, Jφ s.t.
f

φz

[
I2 0

]
τ32 = Jη′ , (4.62)

where τ ∈ C1(Ω′, SO3) is a rotation matrix such that Jφ = τ32. Simplifying problem (4.62) leads to

the following:
f

φz
τ22 = Jη′ . (4.63)

Equation (4.63) is identical to the perspective system described by equation (4.54) except that we

do not have a rotation θ involved in the infinitesimal weak-perspective system and thus the equation

is much simpler. As we are allowing φz to change at each point and solving for the pose and scale

simultaneously the solutions are infinitesimal weak-perspective solutions. We obtain φz as:

φz =
1

f
σ−1

1

(
Jη′
)
. (4.64)

Similarly τ22 can be obtained as:

τ22 =
1

f
φzJη′ . (4.65)

We recover the two solutions for τ32 in the same way as we did for ξ32 for the perspective camera and

thus obtain the non-holonomic solutions for the surface normal using the cross product.

4.3.1.5 Obtaining the embedding

Solving the generalized type-II SfT PDE system (4.48) gives us the set of non-holonomic solutions:

φ̄z and n̄1,2. One obvious way to obtain the embedding φ is to use the direct depth solution φ̄z and the

normalized points obtained from η as: φ̄ = φ̄z[
η′>

f 1]>. This solution is identical to the direct-depth

method proposed in (Bartoli et al., 2015) as both of them are the non-holonomic solutions for the

depth. However in doing so, we essentially discard the solution for the Jacobian or the normal and

make use of only one non-holonomic solution i.e. the depth φz . In section 4.3.2 we describe how

the solution for the Jacobian τ̄32 and thus the normal n̄ is better constrained than the depth solution

φ̄z . We provide the actual algorithm for obtaining a stable 3D reconstruction with the stable type-II

method in section 4.3.3.
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4.3.2 Stability

We show here that the amount of perspective affects how depth is constrained in the type-II solutions

in the same way as in the type-I solutions. We prove two important results for the type-II solutions.

Proposition 3. The non-holonomic solution for depth φ̄z is weakly constrained when the projection

geometry tends to affine.

Proposition 4. The non-holonomic solution for the embedding’s Jacobian and thus the surface nor-

mal n̄ is well-constrained in all projection geometries.

Type-I PDE system

Infinitesimal weak-perspective 
camera

Non-holonomic 
solutions

Uniquely defined

Two solutions per point

Affine projection

UnconstrainedUnconstrained

Non-holonomic 
solutions

Uniquely defined

Two solutions per point

Two solutions per point

Perspective SfT Infinitesimal weak-perspective 
SfT

Affine SfT

General SfT PDE system

Type-II PDE system

UnconstrainedUnconstrained

General SfT PDE system

Perspective camera
(change of variable)

Infinitesimal weak-perspective 
camera

Perspective camera
(change of variable)

Perspective SfT Infinitesimal weak-perspective 
SfT

Non-holonomic 
solutions

Non-holonomic 
solutions

Uniquely defined
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Uniquely defined
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Affine projection
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Non-holonomic 
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Non-holonomic 
solutions

Two solutions per point

Figure 4.3: SfT type-I solutions (left) and type-II solutions (right) for different projection models and amount of
perspective.

Figure 4.3 illustrates the effect of projection geometries on the type-I and type-II solutions of SfT.

As in section 4.2.2 we make use of the projection function Πs that depends on a parameter s and the

initial focal length f to continuously select the amount of perspective. The only difference being that

we now use the symbol φ instead of ϕ for the embedding.

Proof of propositions 3 and 4 for the perspective camera. We take the first-order derivatives of equa-

tion (4.26) on the surface, which gives us:

JΠs (Q) = f
s+ 1

Qz + sf

[
I2

−η′
f(s+1)

]
. (4.66)

Combining equation (4.47) with equation (4.66), we obtain:

f
s+ 1

Qz + sf

[
I2

−η′
f(s+1)

]
τ32 = Jη′ . (4.67)
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We first prove proposition 3. Evaluating the limit s→∞ for equation (4.67) gives us:[
I2 0

]
τ32 = Jη′ ⇔ τ22 = Jη′ . (4.68)

The depth Qz is now no longer constrained in equation (4.68) at the limit. This proves our first result

that depth is not constrained for affine projection in SfT.

The proof of proposition 4 follows directly from the fact that τ22 is well-constrained in equation

(4.68) despite the projection geometry. Following the steps in (Collins and Bartoli, 2014a) or in

section 4.3.1, one can easily derive the two solutions for Jφ and thus the two solutions for the normal

from equation (4.68).

Proof of propositions 3 and 4 for the infinitesimal weak-perspective camera. Here we start with the

infinitesimal weak-perspective approximation for the projection function given by equation (4.28).

Taking the limit s→∞ in equation (4.28) leads to an expression identical to an expression identical

to equation (4.68). The proof for propositions 3 and 4 then follows with the same arguments as in the

perspective camera.

4.3.3 Stable type-II methods

We presented the non-holonomic type-II solutions for the general SfT PDE system (4.12) and proved

that the depth solution was unstable. We give the method for obtaining the final embedding using the

stable solution as follows. The stable type-II methods use the solution to the surface normal directly

to obtain the final embedding. We first obtain the surface normal by taking the cross product of

the Jacobian columns and then to use Shape-from-Normals to obtain depth and the final embedding.

The two steps are almost identical but having an analytic surface normal gives a better geometrical

appeal to the problem. Furthermore, one can imagine several scenarios where the required end result

from SfT would be a surface normal rather than the embedding itself. However, the non-holonomic

solution to the embedding’s Jacobian or the normal have a two-fold ambiguity. Therefore we solve the

following problems in our type-II methods to obtain the 3D embeddding: i) normal disambiguation,

ii) Shape-from-Normals and iii) scale computation. All of these steps are identical for the perspective

and infinitesimal weak-perspective cameras. Figure 4.4 illustrates the specifics and similarities of

stable type-I and stable type-II methods together.

4.3.3.1 Normal disambiguation

In type-II solutions we obtain two different non-holonomic solutions for the embedding’s Jacobian

ø32 and thus two different values for the normal vector: n̄1 and n̄2. To disambiguate the surface

normal, we go through the following list of steps. 1) We first compute a surface embedding φ̄ from

the direct depth solution and a normal field nd using the surface φ̄. 2) For each point on the surface,

we compute the following dot product with the normal vector nd: |n>d n̄1| and |n>d n̄2|. 3) We select

the highest dot product among the two and choose the corresponding normal vector n̄1 or n̄2. This

process can be expressed as: n̄ = n̄k, such that, k = arg max k∈{1,2} |n>d n̄k|. Unlike in the type-I

methods we do not remove regions or points here, as it gives little or no improvement.
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Figure 4.4: Direct-depth method and stable type-I and type-II methods for SfT. The existing solution represents the
results from the direct-depth method and the proposed solutions represent the results from the stable methods.

4.3.3.2 Shape-from-Normals

Once we disambiguate the normals at each point, the next step is to obtain an embedding by integrat-

ing the normals. This can be done very efficiently in a least-squares manner using spline functions

such as the B-splines. With the integration we obtain depth at each evaluated point. The integration

of normals is defined as:

φ̂k = kzφ̂ = argmin
φs

∫

Ω′

((
n̄� [Jφs ]1

)2
+

(
n̄� [Jφs ]2

)2
)

dp′ (4.69)

where kz represents the unknown scale of reconstruction due to the integration of unit normals and

φ̂k ∈ C1(Ω′,R3) is the shape obtained after integration and p′ represents a point on Ω′. We represent

the jth column of the Jacobian matrix Jφs as [Jφs ]j .

4.3.3.3 Scale computation

The surface embedding obtained by integrating the unit surface normals are not in the correct scale.

To fix the scale, we first compute an approximate embedding φ̄ from the direct-depth solution. We

parametrize the obtained shape as φ̂k = [Qx Qy Qz]
�. We then use φ̄ and the shape φ̂k obtained from

Shape-from-Normals to fix the scale as follows:

kz =

(∫
Ω′

(
Qxφ̄x +Qyφ̄y +Qzφ̄z

)
dp′

∫
Ω′

(
Q2

x +Q2
y +Q2

z

)
dp′

)−1

. (4.70)

Thus after the scale correction we obtain a stable reconstruction from the stable type-II method. These

steps are summarized in algorithm 3.
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Algorithm 3: Stable type-II methods for the perspective and infinitesimal weak-perspective
camera.

Input: warp η, template embedding ∆, domain Ω
Output: deformed embedding φ̂

• PDE Solution
1 Compute the Jacobians Jη and J∆
2 Change the parametrization space and compute Jη′

3 Solve the PDE system (4.51) or (4.62) to obtain φ̄z and n̄1, n̄2

• Normal disambiguation
4 Compute a surface embedding φ̄ from the direct depth solution φ̄z
5 Find a normal field nd on the surface using the embedding φ̄
6 Select the analytic normal that is closest in angle to nd corresponding to the highest

dot-product, i.e. n̄ = n̄k, such that k = arg max k∈{1,2} |n>d n̄k|.
• Shape-from-Normals

7 Integrate the disambiguated surface normal field n̄ by solving the minimization
problem (4.69)

• Scale computation
8 Correct the scale of the surface embedding to obtain φ̂

4.4 Experimental Results

4.4.1 Compared methods and error measurements

We performed the experiments using MATLAB. The results of the experiments were used to obtain

plots for the depth error (3D error) and the normal error in different conditions. We computed the

depth error by taking the root mean square error of the reconstructed 3D point coordinates. We

measured the normal error by taking the root mean square deviation in angle of the reconstructed

surface normals from the ground-truth surface normals. Our set of proposed methods consists of the

stable type-I method (typeI-P, typeI-WP) and the stable type-II method (typeII-P, typeII-WP). The

suffixes ‘P’ and ‘WP’ stand for the perspective and infinitesimal weak-perspective camera models

respectively. We ran the methods based on the infinitesimal weak-perspective camera model only for

the scenes with changing focal length as they are expected to work only for large focal lengths. We

use direct-P for the analytic direct-depth method (Bartoli et al., 2015). We also compared against

the zeroth-order methods based on inextensibility, denoted here as inext-mdh-P (Salzmann and Fua,

2011a) and inext-lap-P (Ngo et al., 2016). Finally we tested the statistically optimal cost optimization

(Brunet et al., 2014) with the direct depth solution as input. We denote the refined solution as refined-

P. We tuned each method with the best set of parameters for each dataset. We describe the complete

algorithm for SfT, experimental setup and the results on each dataset separately below.

4.4.2 Complete algorithm

The SfT framework used for the analytic methods requires a 3D template and template-to-image reg-

istration warps. Here we briefly list the steps for inferring the deformed shape starting from the 3D
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template and an input image for real datasets where outliers appear naturally: 1) We compute the

∆ parametrization from the template flattening to the 3D template using Bicubic B-Splines (BBS)

with a smoothness prior (Dierckx, 1993). This is an LLS problem. When the 3D template is not flat,

we make use of a template image as the flattening. 2) We obtain point correspondences between the

template image and the input image using SIFT (Lowe, 2004) or KAZE (Alcantarilla et al., 2012) or

a combination of them. An alternative approach is to match using a denser graph matching method

such as (Collins et al., 2014). For most real datasets, these correspondences will in general contain

some outliers. In either case, outliers are removed using (Pizarro and Bartoli, 2012). 3) The corre-

spondences thus established will have none or very few outliers even in difficult conditions. In more

difficult situations such as the example shown in Appendix C, we opt for a convex L1-minimization

in place of the LLS problem in (Dierckx, 1993) to reduce the effect of outliers while estimating the

template-to-image warp. If the registrations are still not good enough, a robust M-estimator may be

used but we found an L1 estimation to be sufficient for the examples. Optionally methods such as

the pixel intensity based registration refinement also given in (Pizarro and Bartoli, 2012) or the affine

transform based outlier rejection (Puerto and Mariottini, 2013) can be used to improve the registration

if necessary. 4) We use the registration obtained in the above step to generate 2D correspondences

and the registration derivatives. 5) Finally we obtain the reconstructed points from SfT.
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Figure 4.5: Plots for the synthetic dataset. We show the depth errors in the first column and the normal errors in
the second column.
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4.4.3 Synthetic data

We simulated 10 different surfaces generated by isometric deformation of a flat template surface (Per-

riollat and Bartoli, 2013). The template size used was 640 px × 480 px. The images for each defor-

mation were taken using a virtual pin-hole camera of varying focal length. We fixed the focal length

using a single parameter as: f = (s+ 1)500 px. While changing the focal length, we also translated

the object so that the size of its projection remained fixed in the image. In the experiments we varied

s from 0 to 8. The number of correspondences N used to estimate the warp η was varied from 50

to 300. We added Gaussian noise in the images with a standard deviation σ varying between 0 and

2.4 px. In each experiment we changed only one parameter, fixing the others. The default values of

the parameters were s = 1, N = 100 and σ = 1.0 px. The resulting plots from the experiments are

shown in figure 4.5.

The plots show that the stable methods typeI-P and typeII-P have the best performance among

all methods, after refined-P. The stable method typeII-P has a slight edge over typeI-P in most con-

ditions. This is because compared to typeI-P, typeII-P uses integration in the space of normals rather

than a space of quantity containing the registration η term. Even so, both of these methods show

better performance than the original analytic solution direct-P and also compared to the zeroth-order

methods inext-mdh-P and inext-lap-P. Both the direct-depth method and zeroth-order methods per-

form poorly against the increasing focal length. On the other hand our proposed methods typeI-P and

typeII-P show remarkable stability and have performance similar to refined-P. Another interesting

observation is the convergence of the infinitesimal weak-perspective camera model to the perspective

accuracy with the increase in the focal length. These observations validate the theoretical results we

obtained in sections 4.2.2 and 4.3.2. The zeroth-order method inext-lap-P performs well against the

increasing number of correspondences and the image noise. The analytic solution direct-P shows

poor performance against increasing noise while, on the other hand, both typeI-P and typeII-P are

robust against noise in correspondences. Similar observations also hold for the normal error.

4.4.4 Real data

We tested all methods with four different real datasets. We used one more dataset to make an exper-

iment where we show how a robust registration can help the reconstruction in appendix C. The first

two were built with developable surfaces with a flat 3D template. We constructed the others out of

non-developable surfaces. We describe each of these datasets and observations independently below.

Table 4.1 summarizes the results on all real datasets.

The KINECT Paper dataset. The KINECT Paper dataset (Varol et al., 2012a) consists of 191

frames taken with about the same angle and focal length of a sheet of paper being deformed. The

number of matched features in each frame of the sequence is around N = 1300 but varies from

frame to frame. The image size is 640 px × 480 px with focal length of approximately 526 px. The

performance of different methods for each frame is plotted in figure 4.6.

As the dataset is highly perspective and has a large number of feature correspondences distributed

more or less uniformly over the scenes, all of the methods perform well. The mean depth errors for
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our stable methods, however, are significantly lower than those for the others, including refined-P, as

shown in table 4.1.

The Zooming dataset. In order to test the performance of methods with varying focal length, we

used a real dataset with a single deformation (Bartoli et al., 2013) and known template. The dataset

shows a folded sheet of paper with different focal lengths and views. The focal length varies from

2696 px to 7875 px with an image size of 1728 px × 1552 px. Each zoom level has 7 to 10 images

with different viewing angles. We computed the ground-truth from each view in camera coordinates

using stereo triangulation and feature correspondences from SIFT. Figure 4.6 shows the computed

plots for the shape and the depth errors for different methods. We also show the qualitative results

with error coded texture maps for three images of different focal lengths in figure 4.7.
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Figure 4.6: Plots for the KINECT Paper dataset and the Zooming dataset.
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Figure 4.7: Rendered 3D results with error coded texture maps for the Zooming dataset. We use the normal error
to generate the texture maps.

The error plots show that both typeI-P and typeII-P perform the best in the dataset while direct-P,

inext-mdh-P and inext-lap-P do not perform very well. In particular, there could be two important

reasons behind the low accuracy of inext-lap-P for this dataset. First the images do not have very

short focal lengths and since it requires some perspective, the results can be expected to be less

accurate in such conditions. Second, the optimal parameters for the method change from image to

image. We used a single set of parameters for all images in the dataset. We impose smoothness for

all reconstructions using a BBS warp. The results further confirm that direct-P is more susceptible to

noise in image correspondences.

The Cushion dataset. The datasets tested so far are all developable surfaces. Thus a flat template

could be used so that ∆ was always an identity. A slightly different situation occurs when the template

is not flat and its given flattening is non-isometric. In this dataset we allowed a cushion to deform

into several shapes. The deformations were largely isometric since there was very little stretching or

expansion of the textured cloth. We made 5 different deformations of the cushion and we used one

of the deformation as the template. Making an isometric flattening was not possible in this case and

therefore we used the template image as the flattening. This also entailed the use of a locally isometric

flattening for typeII-P and a nontrivial ∆. The size of the images used is 3456 px × 2304 px. The

focal length of the camera is about 2700 px, thus the images contain a moderately large amount of

perspective.

The feature correspondences here were computed by combining SIFT and KAZE (Alcantarilla

et al., 2012) features. Due to the lack of point correspondences in some regions, the computed warps

have less accuracy than in all other datasets. We present the results for three of the deformations in

figure 4.8 using error coded texture maps along with the shape and depth error for each reconstruction.

We observe again that the stable methods typeI-P and typeII-P have the best performance. The
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Table 4.1: Mean depth errors in real datasets.

Depth error measurements for different methods in mm
Datasets direct-P typeI-P typeII-P inext-mdh-P inext-lap-P refined-P

KINECT Paper 4.57 3.98 3.82 7.78 4.43 4.02
Zooming 7.28 3.54 2.22 20.16 12.47 0.82
Cushion 14.37 5.02 3.48 7.71 7.39 5.99
Can 3.03 1.38 1.07 4.07 1.91 1.31

Table 4.2: Compared methods and their characteristics.

Methods Constraints Primary computation Time (sec) Stability in affine condition

direct-P Differential first-order Small systems 0.13 Not stable
typeI-P Differential first-order LLS Integration 0.53 Stable
typeII-P Differential first-order LLS Integration 1.74 Stable
inext-mdh-
P Zeroth-order MDH Convex optimization SOCP 2.96 Not stable

inext-lap-P Zeroth-order
inextensibility

LLS, non-convex
optimization 7.18 Not stable

refined-P Differential first-order Non-convex optimization 26.37 Stable

zeroth-order methods inext-mdh-P and inext-lap-P also show good performance as the images have

high perspective. However we failed to obtain good results with direct-P. This further confirms the

greater sensitivity of direct-P to noise in the feature correspondences due to the instability of the

depth solution.

The Can dataset. We prepared a dataset by deforming a can made of a cardboard material. The

dataset consists of 3 different deformations of different degrees and a template surface made with

the original surface. As it was not possible to flatten the surface physically, we again used the tem-

plate image as the flattening. The size of the images used is 4800 px × 3200 px with a focal length

of 11000 px. We computed the flat template-to-image warps again by combining SIFT and KAZE

feature correspondences. We present the qualitative results with error coded texture maps and error

measurements in figure 4.8. The results show that our proposed methods are again the best perform-

ing. Similarly direct-P shows a medium accuracy while inext-mdh-P performs poorly in 2 out of 3

scenes.

4.5 Discussions

Isometric SfT methods are close to achieving reconstruction accuracies that give them applicability

in real scenarios. However, as we showed here, several aspects of current state-of-the-art methods,

specifically their poor performance in low perspective and their sensitivity to noise in image corre-

spondences pose major problems to achieving useful SfT results. We proposed methods that push the

boundary of the state of the art further in terms of reconstruction accuracy while extending applica-

bility in different projection geometries. We found that obtaining depth directly to get the 3D shape
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Figure 4.8: Rendered 3D results with error coded texture maps for the Cushion and the Can datasets.

is not the best approach despite its appeal. In contrast, we proposed the use of stable solutions (based

on depth-gradient or surface normal) that proved to be accurate in perspective as well as affine condi-

tions. We provided theoretical proofs to their stability. Though being very similar, they differ in two

important aspects: disambiguation and integration. In particular we use numerical integration with

bending energy of the BBS, which imposes smoothness in the given space. Compared to the stable

type-I method, the stable type-II method uses the space of surface normals for integration that gives
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a slightly better performance seen in the experiments. Both of these two new methods we presented

used analytic solutions and obtained near or sometimes better than the statistically optimal results.

In short, we found the first-order solution of the SfT PDE to be more stable than the zeroth-order

solution. However, reconstruction by integration for the proposed methods implies that we can only

use them for smooth surfaces.

Our results also show that the inextensibility-based methods are not stable in near-affine projection

geometries. Although we do not theoretically prove this point, an intuitive understanding can be

obtained from the fact that inextensibility prior is strong when the sightlines passing through the

point correspondences are diverging and not close to parallel. When such is not the case as in near

affine cases, a large range of change in depth only implies a small change in the Euclidean distances

between points. This affects the conditioning of the problem.

For all the experiments with the analytic methods, we computed the template-to-image warp re-

quired for the analytic methods globally. In future works, the warp could be computed locally. By

nature, a local warp would possibly capture the local changes better than a global one, thus giving

better reconstruction in cases of large local deformations. Table 4.2 shows a summary of the main

characteristics for different methods. It is true that the zeroth-order methods are affected by inaccu-

racies of the computed warp depending on the presence of outliers but such conditions are rare in

our experiments. The time noted is the average time taken to reconstruct a single scene for the real

datasets using a standard desktop PC. The parameters used in our methods for the global warps are

very easy to tune and the methods themselves give local solutions meaning that they can be paral-

lelized if needed for higher speed.

4.6 Conclusion

In this chapter we discussed the SfT problem and its local analytic solutions proposed in (Bartoli

et al., 2015). In that context we presented two important results regarding the local analytic solutions.

First the depth solution is not well-constrained when the projection geometry tends to affine whereas

the first-order solution related to the surface normal or depth-gradient remains stable in near-affine

conditions. We thus presented our methods based on the stable non-holonomic solutions of the SfT

PDE proposed in (Bartoli et al., 2015). We found from several experiments that our proposed methods

are able to give better reconstructions than the state-of-the-art methods for smooth objects. In the next

chapter we will reformulate the non-rigid 3D reconstruction problem of SfT into the template-less

case of NRSfM.



78 Chapter 4. SHAPE-FROM-TEMPLATE



79

Chapter 5
Local Solution for Non-Rigid
Shape-from-Motion

In this chapter we first describe the local isometric constraints for NRSfM similar to that of SfT.

We here prove that unlike in SfT, the first-order local NRSfM constraints are under-constrained. We

then give a local method of solving NRSfM using the second-derivatives of the registration warp. We

achieve this by equating the registration warp and its derivatives to that of a differential homography at

each point. We introduce differential homography as an alternative way to compute homography other

than using four or more point-correspondences. This is possible due to the assumption of infinitesimal

planarity and isometry. Instead we use the differential information of the image registration warps

to compute the homography at each point. We then use the computed homography for obtaining the

solution to NRSfM. For the sake of completeness, we start by describing the SfT problem formulation.

This chapter is based on our published work (Chhatkuli et al., 2014b).
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5.1 A General Framework for Isometric Surfaces

We first review isometric SfT as in (Bartoli and Collins, 2013; Bartoli et al., 2012). We extend SfT to

NRSfM by adding more views and keeping the template as an additional unknown. This allows us to

analyze the existence of local solutions of the NRSfM system.

5.1.1 Shape-from-Template

Figure 5.1.a shows a general diagram for SfT whose solution is based on the reprojection and the

deformation constraints (Bartoli et al., 2012). The known template is represented by a 2D domain

T corresponding to the 3D template’s conformal flattening. The deformed shape S is modeled by

an unknown embedding ϕ ∈ C2(T ;R3), and I is an image of S. We use Π to denote perspective

projection to coordinates normalized with respect to the camera intrinsics. The registration between

T and I is known and modelled by an image warp η ∈ C2(T ;R2). The reprojection constraint is

then η = Π ◦ ϕ. Let ϕ = (ϕx ϕy ϕz)
> where ϕx, ϕy, ϕz ∈ C2(T ;R) model each dimension of ϕ.

If S results of an isometric deformation of the 3D template, and since T was obtained by confor-

mal flattening, the deformation constraint is that the first fundamental form of ϕ is a scaled identity

matrix (Bartoli et al., 2015):

J>ϕ Jϕ = λ2I2, (5.1)

where J is again the first-order partial derivatives operator and λ ∈ C2(T ;R+) is the flattening scale.

As the two columns of Jϕ are orthogonal we may rewrite equation (5.1) as:

(Jϕ λξ)(Jϕ λξ)
> = λ2I3×3. (5.2)

where ξ ∈ C2(T ;R3) models the surface normal field. Note that ξ depends on ϕ, as it is a unitary

vector orthogonal to the two columns of Jϕ. To summarize, SfT consists of finding the embedding ϕ

and normal field ξ given the warp η, the flattening scale λ and the projectionΠ , by solving a nonlinear

PDE system:

Find ϕ ∈ C2(T ;R3) st

(Jϕ λξ)(Jϕ λξ)
> = λ2I3 Deformation

η = Π ◦ ϕ Reprojection.
(5.3)

equation (5.3) involves first-order derivatives of the unknown function ϕ. Following (Bartoli and

Collins, 2013), differentiating the reprojection constraint and substituting it into the deformation con-

straint yields:

JηJ
>
η + λ2(JΠ ◦ ϕ)ξξ>(JΠ ◦ ϕ)> = λ2(JΠ ◦ ϕ)(JΠ ◦ ϕ)>, (5.4)

where JΠ ◦ ϕ is a 2 × 3 matrix that only depends on the surface depth ϕz . Equation (5.4) is a

PDE system of 3 independent equations in ϕz and ξ. Very recently, (Bartoli et al., 2012) obtained

the pointwise solutions of equation (5.4), by ignoring the differential relationship between ϕz and ξ.

Those solutions are called non-holonomic and (Bartoli et al., 2012) showed that they can be obtained
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Figure 5.1: Geometric modelling of SfT and NRSfM.

analytically.

5.1.2 From SfT to NRSfM: no known template, but more images

To extend the first-order differential modelling of SfT to NRSfM we introduce n images showing a

different deformation and keep the template T as an unknown. We use the index i = 1, . . . , n to

define the i-th shape Si, image Ii, warp ηi and embedding ϕi. The inter-image registration warp ηi,j

is known and related to the unknown warps ηi and ηj as:

ηi,j = ηj ◦ η−1
i . (5.5)

We denote the unknown isometric deformation between Si and Sj as ψi,j ∈ C2(Si;Sj), where ϕj =

ψi,j ◦ ϕi. From equation (5.1), it is clear that ψi,j preserves the first fundamental form between ϕi

and ϕj :

J�ϕi
Jϕi = J�ϕj

Jϕj (5.6)

In NRSfM the objective is to find the embeddings ϕi, i = 1, . . . , n and the unknown template T
given the pairwise image warps:

Find
∣∣∣∣
T ⊂ R2

ϕi ∈ C2(T ;R3)

i = 1, . . . , n

st




ηi,j = ηj ◦ η−1
i j = 1, . . . , n j 	= i Consistency

ηi = Π ◦ ϕi Reprojection

(Jϕi λξi)(Jϕi λξi)
� = λ2I3 Deformation.

(5.7)

5.1.3 Isometric NRSfM is not locally solvable at first-order

We show that system (5.7) can be expressed as a nonlinear PDE system in terms of the surfaces’ depth

and normal, and the unknown template. Our main result is that the resulting system is not locally

solvable, which means that its non-holonomic solutions are underconstrained. We first derive the

NRSfM system for two views i and j. We start from equation (5.4), which combines the reprojection

and deformation constraints of equation (5.7). We parametrize Jηi ∈ C2(T ;R2×2) in the following
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general form:

Jηi = σMRθ with RθR
>
θ = I2,

M =

[
1 β

0 α

]
(5.8)

where Rθ is a 2D rotation of angle θ. Invoking Cholesky decomposition, the 4 dimensions of R2×2

are equivalent to (σ, θ, β, α). Multiplying Jηi by its transpose we obtain:

JηiJ
>
ηi = σ2MM>. (5.9)

Equation (5.9) reveals that equation (5.4) is invariant to the 2D rotation Rθ. To use equation (5.4)

with ϕj while following the consistency relation in equation (5.7), we differentiate (5.5) as:

(
Jηj ◦ η−1

i

)
J−1
ηi = Jηi,j . (5.10)

We then combine equations (5.8) and (5.10) to obtain

Jηj ◦ η−1
i = σJηi,jMRθ. (5.11)

By multiplying each side of equation (5.11) to the right by its transpose, the rotation vanishes:

(
Jηj ◦ η−1

i

) (
Jηj ◦ η−1

i

)>
= σ2Jηi,jMM>J>ηi,j . (5.12)

As T is just required to be a conformal flattening of the 3D template we may choose the scale factor

σ = λ. Introducing equation (5.8) and (5.12) in equation (5.4) we obtain the isometric NRSfM system

of PDEs for two unknown surfaces ϕi and ϕj :MM> + (JΠ ◦ ϕ1)ξiξ
>
i (JΠ ◦ ϕi)> = (JΠ ◦ ϕi)(JΠ ◦ ϕi)>

Jηi,jMM>J>ηi,j + (JΠ ◦ ϕj)ξjξ>j (JΠ ◦ ϕj)> = (JΠ ◦ ϕj)(JΠ ◦ ϕj)>.
(5.13)

equation (5.13) is an algebraic system of 6 equations and 8 unknowns (ϕi,z, ξi, ϕj,z, ξj , α, β) at every

point. The non-holonomic solutions of system (5.13) are thus underconstrained for two views. In

the general case of n views the system has 3n + 2 unknowns and 3n independent equations. Its

non-holonomic solutions are thus underconstrained for n > 2 views as well. Our main result is that

without further assumptions, one cannot solve isometric NRSfM by relaxing the relationship between

depth and normal, as was done in SfT (Bartoli and Collins, 2013; Bartoli et al., 2012).

5.2 Infinitesimally Planar Isometric NRSfM

We show isometric NRSfM can be solved locally (and analytically) if we assume that the surfaces are

infinitesimally planar. This approximation is equivalent to representing the surfaces with triangular

meshes, where the size of the triangles is infinitesimally small. The result is that higher order surface
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derivatives are locally zero.

5.2.1 Infinitesimal projective structure

We define ϕ̂i as the locally planar approximation of the embedding ϕi:

ϕ̂i = ϕi + Jϕiδ, (5.14)

where δ ∈ R2 are local 2D coordinates around each point in T . Equation (5.14) parametrizes the

tangent planes of Si. We show next that two corresponding tangent planes on Si and Sj are related

by a rigid transform when ψi,j is an isometry.

Differentiating ϕj = ψi,j ◦ ϕi gives:

Jϕj = (Jψi,j
◦ ϕi)Jϕi . (5.15)

Pre-multiplying equation (5.15) by its transpose and using equation (5.6), we show that the 3 × 3

matrix
(
Jψi,j

◦ ϕi
)

is indeed orthonormal:

J>ϕj
Jϕj = J>ϕi

(Jψi,j
◦ ϕi)>(Jψi,j

◦ ϕi)Jϕi = J>ϕi
Jϕi

=⇒ (Jψi,j
◦ ϕi)>(Jψi,j

◦ ϕi) = I3.
(5.16)

Using equation (5.16) we represent ϕ̂j as a rigid transformation of ϕ̂i:

ϕ̂j = ϕj + Jϕjδ = ψi,j ◦ ϕi + (Jψi,j
◦ ϕi)Jϕiδ = tij + Rijϕi. (5.17)

where Rij = Jψi,j
◦ϕi is a 3D rotation from equation (5.16) and tij = ψi,j ◦ϕi−Rijϕi = ϕj−Rijϕi

represents a translation. Equation (5.17) means that two corresponding tangent planes in Si and Sj
are related by a rigid transform.

We modify the reprojection constraint in equation (5.7) for an infinitesimally planar surface as

η̂i = Π ◦ ϕ̂i. η̂i as a function of δ is the warp between the template and the projection of the

tangent plane. Using homogeneous coordinates we have

[
η̂i

1

]
∝ ϕ̂i and from equation (5.14)

[
η̂i

1

]
∝

Hi

[
δ

1

]
, with Hi = [Jϕi ϕi]. The warp η̂i is therefore a homography induced by the tangent plane.

The image warp η̂i,j = η̂j ◦ η̂−1
i too is thus a homography given by Hi,j = HjH

−1
i .

The structure of Hi,j is well-known (Malis and Vargas, 2007): it represents the transformation

between two images showing the projection of two planes related by a rigid transform (the above-

derived Rij and tij). From (Malis and Vargas, 2007), Hi,j can be decomposed as:

Hi,j = Rij + ξit
>
ij , (5.18)

where

Rij = Jψ ◦ ϕi and tij = ϕj −Rijϕi. (5.19)
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Given Hi,j , we can thus extract the normal field of the surface and ϕi, However, (Malis and Vargas,

2007) shows that there is always a two-fold solution for ξi, Rij and tij . With two views it is thus

not possible to disambiguate reconstruction. Extra cues must be introduced. (Varol et al., 2009)

proposes to use smoothness but it is not guaranteed to give the correct solution. If we use three or

more views we get a collection of normals for each point (i.e. two for each pair of views). We can thus

disambiguate the normals using more than 2 views and clustering the normals to find an agreement

with the dot-product measure. A more detailed explanation is given in chapter 5.2.3.

5.2.2 Differential homography computation

We propose a method to obtain Hi,j from the registration warp ηi,j . This has also been used in

(Bartoli and Özgür, 2016). Given a point p = [u v]> ∈ Ii, we assume that ηi,j(p + ε) = η̂i,j(ε) for a

small ε = [εu εv]
>. We also consider Ĥi,j(ε) = Hi,j(p + ε), which gives:

[
ρ(ε)ηi,j(p + ε)

ρ(ε)

]
= Ĥi,j

[
ε

1

]
where Ĥi,j =

a b c

g h k

d e 1

 , (5.20)

and ρ(ε) = dεx + eεy + 1 is an unknown linear function. When ε = 0 then ρ = 1 and ηi,j(p) =

(c k)>, from which we obtain c and k. By taking first and second derivatives with respect to ε on both

sides of equation (5.20) and evaluating them at ε = 0 we obtain the following system of equations in

the elements of Ĥi,j :

ηi,j =

[
c

k

]
Jηi,j =

[
a− cd b− ce
g − kd h− ke

]
∂2ηi,j
∂u2

=

[
−2d(a− cd)

−2d(g − kd)

]
∂2ηi,j
∂v2

=

[
−2e(b− ce)
−2e(h− ke)

]
∂2ηi,j
∂u∂v

=

[
−d(b− ce)− e(a− cd)

−d(h− ke)− e(g − kd)

]
. (5.21)

Once the value of c and k are obtained from the warp ηi,j , we formulate a system of 10 equations in

6 from system (5.21). We vectorize the 6 unknowns and solve for them using linear least-squares.

The homography Hi,j can be found from Ĥi,j by a coordinate transfer. This changes the third

column of the matrix Hi,j . We write Hi,j as:

Hi,j =

a b c′

g h k′

d e f ′

 . (5.22)

Thus at ε = 0, both Hi,j and Ĥi,j should evaluate to the same point, i.e.,

Hi,j

uv
1

 = Ĥi,j

0

0

1

 . (5.23)



5.3 EXPERIMENTAL EVALUATION 85

Expanding equation (5.23) gives us the following relation for the third column of Hi,j as:c
′

k′

f ′

 =

c− au− bvk − gu− hv
1− du− ev

 . (5.24)

5.2.3 Algorithm

Our algorithm involves the following steps given n views of the surface: 1) Select one view as the

reference and compute the registration warp with respect to all other views using e.g. (Dierckx, 1993).

2) For every point in the reference view and every possible pair (n−1 pairs) we obtain a homography

using first and second order derivatives of the registration warp (equation (5.21)). 3) Decompose

the n − 1 homographies that we obtain for each point between the reference image to the others.

Thus we have two normals from each homography at this step. 4) Remove normals that are not front

facing. 5) Cluster the normals and obtain two normals corresponding to the two largest clusters: if the

two largest clusters are similarly supported, then disambiguate using agreement with neighbours (e.g.

smoothness). Otherwise keep the normal of the largest cluster. 6) Integrate the normal field to obtain

the reference surface embedding up to an unknown scale. 7) To reconstruct the (n − 1) remaining

surfaces we can either change the reference surface or use SfT given that the surface computed for

the reference image is now the known template.

Even though 3 views is the minimal case, in practice we use more views to avoid ambiguities due

to the presence of noise and deformations. Note that we can use any image as the reference image for

each point.

5.3 Experimental Evaluation

We tested our method with synthetic data along with two real datasets of a deforming piece of paper

and cloth. The different views show large deformations and wide baseline viewpoints. We com-

puted image warps using SIFT keypoints (Lowe, 2004) followed by robust registration (Pizarro and

Bartoli, 2012). We modelled the inter-image warps with Bicubic B-Splines (BBS) with 20× 20 con-

trol points (Brunet et al., 2011). We compared our method (DiffH) with four other: DiscH is our

pipeline with discrete homography computation from 4 point correspondences hallucinated using η

at a distance r from the central point, p-phom (Varol et al., 2009), o-lrigid (Taylor et al., 2010) and

o-sinext (Vicente and Agapito, 2012). The comparison was done for various numbers of views and

noise levels for the synthetic data and for different numbers of views for the real datasets. Quantita-

tive evaluations were obtained by measuring the shape error (mean error of the computed normals in

degrees) and the depth error (mean error in the reconstructed 3D coordinates).

5.3.1 Synthetic data

We simulated 10 different scenes of an isometrically deformed sheet of paper (Perriollat and Bartoli,

2013). The images were taken at a focal length of 200 px and their dimensions are 640 px× 480 px.
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We randomly selected 400 correspondences computed with a Gaussian noise of standard deviation σ

in px. We varied the number of views from n = 4 to n = 10 and the noise standard deviation from

σ = 0 to σ = 4 px. We fixed n = 10 for the evaluation in varying noise and σ = 1.2 px for the

evaluation in varying number of views. The results are shown in figure 5.2.

���������	����

Figure 5.2: Plots for the synthetic data.

The results show that o-lrigid and o-sinext do not produce correct reconstructions with the shape

error around 80 degrees. The reason for this is for the most part, the perspective nature of the images.

Both o-lrigid and o-sinext methods use the orthographic camera. The depth errors for these two

methods are not shown as they go beyond the scale used in the graphs. Using 10 views and no added

noise, we observed a depth error of 194.14 mm for o-lrigid and 209.2 mm for o-sinext. p-phom
also failed to produce good results as its approach to normal disambiguation using solely smoothness

is too weak. The shape error for DiffH on the other hand, remains lower than 10 degrees for n > 4.

DiscH follows behind with shape error about 4 degrees larger than that for DiffH. Clearly DiscH
is able to reconstruct the surfaces in most circumstances but we observe better reconstructions with

DiffH owing to the more stable local homographies. As DiscH estimates the homographies using a

radius parameter that determines how many points or the area of the object are considered for a single

homography, the accuracy of the result for a particular value of the radius parameter depends heavily

on the deformation. We use the optimal value for r in DiscH, while we also observed that at the limit

with very small values of r the reconstructions were worse.
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5.3.2 Real data

We have constructed two different real datasets. The first shows a sheet of paper (the Hulk dataset)

and the second shows a T-shirt (the T-shirt dataset). The Hulk dataset consists of a set of 10 images

taken at different unrelated smooth deformations. We use the cover of a comics as texture. The image

size is 4928 px× 3264 px with a focal length of 3800 px. The T-shirt dataset also consists of a set of

10 images taken at different deformations. The image size is 4800 px× 3200 px with a focal length

of 3800 px. We used SfM using several images to compute the ground truth 3D shape for both of

these datasets.

���������	������
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Figure 5.3: Plots for the real data.

We evaluated the five different methods with varying number of views. The results are shown in

figure 5.3 and confirm our observations for the synthetic data. Again the depth errors are shown only

for the three methods: DiffH, DiscH and p-phom. With 10 views, the mean depth error for o-lrigid
is 48.4 mm and for o-sinext it is 86.5 mm in the Hulk dataset, and in the T-shirt dataset they are

47.3 mm and 76.9 mm respectively.

We also show the texture mapped reconstructions obtained using 10 views for all the compared

methods on three simple examples for each real dataset in figure 5.4. The results show that o-lrigid
and o-sinext miscalculated the flips and thus reconstructed the wrong shape because they use the

orthographic camera. p-phom does not disambiguate the normals properly in most cases, thus pro-

ducing good shape only for some parts of the object or for some specific deformations. These obser-

vations can also be confirmed by the shape and depth error measurements given below each recon-
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struction.

5.4 Discussions

We proposed a point-wise or local NRSfM method for smooth objects. As in the case of the pro-

posed SfT method, the smoothness assumption is required to recover surface from its normals at each

point. We represented both the surface embedding and the registration functions using BBS. Even

though using splines means non-smoothness cannot be modelled in the obtained embedding func-

tion, additional refinement could be introduced to recover the exact surface. As an example a recent

work (Gallardo et al., 2016) proposes an SfT method based on nonlinear optimization to recover non-

smooth creases on surfaces. The optimization is performed starting with a smooth initial solution

and combining isometry with shading cues. However, a recent local method for NRSfM (Parashar

et al., 2016) has also been proposed that provides a better solution using a more complete differential

model. It also uses the infinitesimal planarity on the embedding to simplify the differential model.

One drawback in our method is that the computation of homography uses linear equations which are

not always well-constrained, specifically when the perspective is very low. Thus it requires a very

strong perspective.

5.5 Conclusion

We have presented in this chapter the first differential modelling and study of isometric NRSfM. Our

model unifies SfT and NRSfM and shows that non-holonomic solutions in the first-order NRSfM are

under-constrained: the relationship between depth and normal cannot be directly relaxed as in SfT.

This was an important result because it gave clear indications that isometric NRSfM can be solved

with two possible approaches (i) using second-order quantities related to registration and constraining

NRSfM locally or (ii) constraining NRSfM globally but with only zeroth-order registration quantities.

In this chapter we followed the first approach. We showed that the local isometric NRSfM problem

has a solution for n > 2 views if we consider the surface embeddings to be infinitesimally planar.

Our solution involves only linear least-squares and analytical homography decompositions. We have

given a method to deal with ambiguities in the general case of n views. We showed that our method

outperforms several state-of-the-art methods and produces very accurate results in sparse unordered

datasets that show wide-baseline viewpoints and large deformations. In the next chapter we will

consider the second approach and indeed show that much better results can be obtained by solving a

global formulation of isometric NRSfM.
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Figure 5.4: Qualitative results for three examples in the Hulk dataset and the T-shirt dataset: es is the shape error
in degrees and ed is the depth error in mm.
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Chapter 6
Non-Rigid Shape-from-Motion with
Inextensibility

In this chapter, we describe our global approach to the isometric NRSfM problem. Rather than using

local or point-wise constraints independently, we combine all the constraints into a single optimiza-

tion. In order to make such an optimization tractable, we relax isometry to inextensibility so that the

whole problem becomes that of a convex optimization. We maximize the point depth for each image

correspondence in the retinal frame under the inextensibility constraints. We bound the sum of the

unknown template distances, thus in effect bounding the point depths. This guarantees that we obtain

a global minimum. The global formulation means that even if constraints at a point might not be

strong enough, combining them all together gives a tighter bound to the solution. Apart from that

we show that the formulation is flexible enough to have robustness and temporal smoothness. This

chapter is partly based on our published work (Chhatkuli et al., 2016a).
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6.1 Modelling

Unlike in the previous chapters, we model the NRSfM problem using only the zeroth-order quantities

of registration and the embedding. As before we express all surface 3D points in their respective

camera coordinate frame. Figure 6.1 illustrates the modelling and the associated geometric terms that

are described further in this section.
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Figure 6.1: The NRSfM problem and its associated geometric terms. We use O to represent the camera center
from which we draw the sight lines. We show only three points for clarity. In practice there can be virtually any
number of points and each point can have many neighbours.

6.1.1 Point-based reconstruction

We define image measurements as a set of n normalized point correspondences in m images denoted

by C � {qk
i }. The 2D vector qk

i �
(
uki vki

)�
denotes the ith point seen in the kth image. We define

the unknown set of 3D points by R � {Qk
i }, where Qk

i �
(
xki yki zki

)�
denotes the unknown 3D

position of qk
i in camera coordinates. Because we are using the perspective camera, Qk

i and qk
i are

related by

Qk
i = zki

(
qk�
i 1

)�
+ εki (6.1)

where εki is measurement noise. The NRSfM problem is solved by determining the unknown set

Z � {zki }.

6.1.2 The intrinsic template

In chapter 3 we briefly explained the Maximum Depth Heuristic (MDH) and described how previous

method (Salzmann and Fua, 2011a) solved the SfT problem using inextensibility prior and maximiz-

ing point depths. We start with the MDH-based SfT problem and migrate to the NRSfM problem.

We formalize the 3D template with what we call the intrinsic template. This is used to solve the

set of point depths Z . We use the term intrinsic because it models properties of the surface that
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are invariant to isometric deformations. The intrinsic template is an undirected graph that links the

n scene points through its edges. This is defined by a nearest-neighbourhood graph (NNG) whose

edges store the geodesic distances between pairs of points. The NNG is denoted as N with n points

(or nodes) and K edges per node. We denote N (i) as the set of K-neighbours of the ith point. Each

edge eij , (i, [N (i)]j) of the graph has an associated geodesic distance dij . Because we assume

the surface deforms isometrically, we can assume dij is constant for any deformation. We denote the

intrinsic template as the pair T , {N ,D}, with D , {dij}.

6.1.3 Template-based reconstruction

MDH for reconstructing a deformable surface was first proposed in the template-based scenario.

We therefore first describe the template-based reconstruction with MDH and move to the generic

NRSfM problem. In template-based reconstruction (i.e. Shape-from-Template), T is known from the

object’s reference shape, which is usually built from a geometric mesh. We now describe the MDH

for reconstructing an object from a single image. Without loss of generality we assume this is image

1, so the goal is to solve for {z1
i }. A solution was first proposed in (Perriollat et al., 2008), then solved

with convex optimization in (Salzmann and Fua, 2009). In MDH the deformation model is based on

surface inextensibility, which says that the Euclidean distance between any two points Qk
i and Qk

j is

upper bounded by the geodesic distance dij . The geodesic distance dij is known because the template

shape is known. For simplicity we neglect the effect of the measurement noise εki as in (Salzmann

and Fua, 2009). The problem formulation is as follows:

maximize
{z1i }

n∑
i=1

z1
i

subject to,

z1
i ≥ 0∥∥∥∥∥z1
i

[
q1
i

1

]
− z1

j

[
q1
j

1

]∥∥∥∥∥
2

≤ dij

∀i ∈ {1 . . . n}, j ∈ N (i).

(6.2)

The main properties of problem (6.2) are the following. 1) It is a Second Order Cone Program

(SOCP) that can be solved efficiently and globally with modern optimization tools such as MOSEK

and SeDuMi. 2) The neighbour order K in the intrinsic template can be any. A larger K introduces

more cone constraints, however it also significantly increases the computational time. Keeping a

lower K is thus important for efficiency purposes.

6.2 MDH-based NRSfM

6.2.1 Initial formulation

The MDH for NRSfM can be expressed as the maximization of the sum of all depths {zki } under the

inextensibility constraint and the condition that all depths and the unknown geodesic distances of the
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intrinsic template are positive. Unlike in template-based reconstruction, we require multiple images

and in general point correspondences will not be found in all images due to occlusions, missed tracks

in optical flow, etc. We therefore introduce the visibility set V , {vki }, where vki = 1 if the ith point

is visible in the kth image and vki = 0 otherwise. We assume the visibility set to be known, meaning

that we know which points are missing in each image. We formulate the problem as follows:

maximize
{zki },{dij}

m∑
k=1

n∑
i=1

vki z
k
i

subject to,

zki ≥ 0, dij ≥ 0

vki v
k
j

∥∥∥∥∥zki
[
qki
1

]
− zkj

[
qkj
1

]∥∥∥∥∥
2

≤ vki vkj dij

∀k ∈ {1 . . .m}, i ∈ {1 . . . n}, j ∈ N (i).

(6.3)

To handle missing correspondences, we fix zki = 0 if vki = 0 and therefore we do not reconstruct

the points that are not visible. The known visibility set is used in problem (6.2) to disconnect the

inextensibility conditions when any of the points involved is not visible. In contrast to the template-

based problem (6.2), in the template-less problem (6.3) we do not know the intrinsic template T . It

is clear that solving problem (6.3) directly is not possible for two reasons: 1) the optimization is not

well posed because dij is unbounded (one can keep increasing dij and the constraints will still be

satisfied), 2) the NNG is an unknown. We now give the solutions to both issues.

6.2.2 Bounding the distances

In order to bound the problem, our idea is to fix the scale of the intrinsic template, by fixing the sum

of the geodesic distances to a positive scalar (1 in our case). Formally we include in problem (6.3)

the following linear constraint:
n∑
i=1

∑
j∈N (i)

dij = 1. (6.4)

By including equation (6.4), {zki } cannot increase indefinitely without violating equation (6.4), yet

the problem is still an SOCP. We illustrate this in figure 6.2. The effect of equation (6.4) is to fix the

scale of the reconstruction. In NRSfM we are free to fix the scale of the reconstruction arbitrarily,

because just like in rigid SfM, it is never recoverable. Having fixed the scale, the reconstructed depths

cannot increase arbitrarily, because with a perspective camera as the depths increase so do Euclidean

distances between pairs of points. At some point, the Euclidean distances will exceed the geodesic

distances and the inextensibility constraints (last line of problem (6.3)) will be violated.

6.2.3 The nearest-neighbour graph

The function of the NNG is to constrain the depths between pairs of points on the object’s surface

(problem (6.3), last line). These pairs can be any pairs of points, however they give the strongest
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Figure 6.2: Illustration of the bounds set by equation (6.4) for NRSfM using three points and one image. This is a
modification of figure 3.1 for NRSfM.

constraints when the points are close together on the surface. This is because for closer points the

inextensibility inequalities become tighter. Of course, we do not know exactly which points are close

together a priori. A good estimate can be made from the distance of the correspondences in the

images, because nearby points on the surface tend to be close in the images. We denote the Euclidean

distance between two points qk
i and qk

j in image k by δkij , and we use these to build the NNG. The

specific algorithm we propose is as follows:

1. Compute distances {δkij} ∀i ∈ {1 . . . n},
j ∈ {1 . . . n}, k ∈ {1 . . .m}, and i 	= j.

2. If the ith or jth point is not visible in image k, set δkij = −∞.

3. Take the maximum distance over the images.

δ̂ij = maxk{δkij} ∀i ∈ {1 . . . n}, j ∈ {1 . . . n}.

4. For each point i put into N (i) the points j with the K smallest values of δ̂ij (j 	= i).

5. We find the connected components using each point index i and its neighborhood N (i). We

reconstruct each component separately.

The above algorithm keeps only those points in a neighborhood that are close to each other in all

the images. This implies that if a material is torn apart or an object splits, we treat them as separate

objects. In that case, they could be reconstructed separately and the scale could be fixed after the

reconstruction to merge them in images when they are a single object. The only parameter that needs

to be selected here is the neighbourhood size K. Our method is not very sensitive to this parameter

but a reasonable value (e.g., 20) should be chosen depending on the density of the correspondences

and required speed of optimization.



96 Chapter 6. NON-RIGID SHAPE-FROM-MOTION WITH INEXTENSIBILITY

6.2.4 NRSfM with temporal smoothness

One potential application of NRSfM is to reconstruct surfaces from a video sequence of a deforming

object. In such a setup, the surface points can be assumed to move smoothly over time. This can be

expressed by replacing the maximization term in problem (6.3) with the following:

maximize
{zki },{dij}

m∑
k=1

n∑
i=1

vki z
k
i − st

m−1∑
k=1

n∑
i=1

‖vk+1
i vki (zk+1

i − zki )‖1 (6.5)

subject to the same constraints as in problem (6.3). The added term in problem (6.5) causes the depth

values to change slowly between consecutive views, albeit with an added computational complexity.

Many methods including (Salzmann and Fua, 2011a; Vicente and Agapito, 2012) use such first-order

approach to impose temporal smoothness. However, using a large number of views (say, greater than

100) can increase the size of problem (6.3) making it very time consuming to solve. Using the for-

mulation of problem (6.5) can make it possibly intractable in such situation. We introduce a different

approach to impose temporal smoothness that attempts on reduction of the size of problem (6.3).

We define temporal smoothness as the smooth evolution of depth over time and use uniform cubic

B-splines to represent depth as a function of time. Thus for each 3D point over the time sequence, the

unknown variables are the set of control points representing the evolution of depth in the sequence.

1-D uniform cubic B-splines. B splines can be used to parametrize an N-D function using weight-

ing parameters known as the control points. We use a 1-D spline to parametrize the depth function

zi(k) ∈ R+. Note that it is a function of a single variable, i.e., the image number k. The spline is

evaluated as a linear function of control points at each image, given by:

zki = zi(k) = η>k wi, i = 1 . . . n, k = 1 . . .m (6.6)

where ηk is a function of time (image number) k and wi is the vector of control points for the point i.

Given that we use mc < m number of control points to represent each point depth on the surface, the

set of control points is wi = [w1 w2 . . . wmc ]
> ∈ Rmc . The lifting function ηk can be precomputed

and is the same for all points on a surface. A good description of the lifting function and its com-

putation can be found in (Brunet, 2010). For our purpose, it is a known sparse vector with at most

4 non-zero values and of the same size as the vector of control points. Using equation (6.6), we can
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rewrite the NRSfM problem in terms of the new unknowns as below:

maximize
{wi},{dij}

m∑
k=1

n∑
i=1

vki η
>
k wi

s.t.

η>k wi ≥ 0

dij ≥ 0
n∑
i=1

∑
j∈N (i)

dij = 1

vki v
k
j

∥∥∥∥∥η>k wi

[
qki
1

]
− η>k wj

[
qkj
1

]∥∥∥∥∥
2

≤ vki vkj dij

i = 1 . . . n, k = 1 . . .m, j ∈ N (i).

(6.7)

We solve for the set of unknown control points {wi} and the set of geodesic distances {dij}. The

final depth values are obtained from equation (6.6) after the control points are obtained by solving

problem (6.7). The total number of unknowns in problem (6.7) is thusKn+nmc instead ofKn+nm.

Usually we set mc < 0.3m and thus for a large problem this can result in a significant reduction of

computation time with a negligible drop in accuracy.

6.3 MDH-based Robust NRSfM

The basic problem formulation presented in chapter 6.2 gives very good reconstructions when the

input correspondences have no outliers. However in presence of a few outlier correspondences, they

break down easily. One reason for it is that the method works globally, in the sense that all the

constraints are used together to solve for all the depths in a single optimization. Thus the constraints

at a point, for instance on the outlier point, can affect the solution of all other points. This is in

contrast to local methods (Chhatkuli et al., 2014b) that solve the NRSfM problem one point at a time

independently. Several strategies exist on dealing with outlier correspondences. Recovering inlier

correspondences is most efficient with a dedicated outlier removal method such as (Pilet et al., 2008;

Pizarro and Bartoli, 2012). However these methods often miss a few outlier points. Consequently, an

outlier rejection strategy is necessary but not sufficient for the MDH-based NRSfM, as even a very

few missed outliers can result in a completely wrong solution. We thus require a method that gives

good reconstructions even in the presence of a small percentage of outlier image correspondences. In

the SfT method (Ngo et al., 2016), the authors introduce an outlier removal strategy using a Laplacian

framework. They then solve the final step of reconstruction using an iterative non linear refinement

with slack variables to handle outliers. We here show that robustness with slack variables can be

added into problem (6.3) without losing its convexity so that a global solution is obtained. We achieve

robustness by introducing slack variables in the inextensibility constraint that can ‘capture’ outliers.

We introduce sets of scalar variables {aki } and {bki } for each point in each view so that the back
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projection function is:

Qk
i =

a
k
i

bki
0

+ zki

[
qki
1

]
. (6.8)

Equation (6.8) allows the optical rays from the corresponding point on image qki to move in order to

‘correct’ for the outlier correspondences. We further assume that the first image correspondences are

correct and thus no such correction is required on the first image. This is due to the nature of optical

flow or point matching methods we use for experiments. Thus, we set a1
i = 0 and b1i = 0. Given that

only few of the points are actually outliers, a correct NRSfM solution should result in sparse sets of

{aki } and {bki }. We modify problem (6.3) to include equation (6.8) and perform an L1-minimization

of the slack variables as below:

maximize
{zki },{dij},{aki },{bki }

M∑
k=1

N∑
i=1

zki − sr
M∑
k=1

N∑
i=1

∣∣∣aki ∣∣∣+
∣∣∣bki ∣∣∣+

∣∣∣xki bki − yki aki ∣∣∣
s.t.

zki ≥ 0

dij ≥ 0

a1
i = 0, b1i = 0

N∑
i=1

∑
j∈N (i)

dij = 1

∥∥∥∥∥∥∥zki
[
qki
1

]
+

a
k
i

bki
0

− zkj
[
qkj
1

]
−

a
k
j

bkj
0


∥∥∥∥∥∥∥

2

≤ dij

i = 1 . . . N, k = 1 . . .M, j ∈ N (i).

(6.9)

The L1-minimization of the slack variables in the cost function in fact favors solutions where small

corrections in the sightline are made for only some of the points, i.e., it favors sparse and small valued

solutions for the set of slack variables {aki } and {bki }. We now require a single hyperparameter sr
to balance the depth maximization w.r.t. the correction for outliers. The term containing the slack

variables aki and bki in the maximization is chosen so as to minimize the correction of sightline. We

found such an error measurement to give more favorable results compared to the reprojection error.

Problem (6.9) is much better constrained than problem (6.3) when the image point correspondences

have noise or outliers.
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6.4 Experimental Results

6.4.1 Implementation details

We have implemented all of our methods1 in MATLAB which uses the MOSEK (ApS, 2015) SOCP

solver. MOSEK is faster than many other SOCP solvers, especially for large scale problems. All

of the methods can be implemented in very few lines of code (25 to 35) with the YALMIP interface

(Löfberg, 2004) for MATLAB. However we use our optimized interface to solve NRSfM for the

proposed methods in favor of their speed. For example, we can solve with 60 images, 300 points

and K = 20 in about 4 minutes in a standard 2012 desktop PC. This computation time is the fastest

among the compared methods for the number of images and points considered. The robust version of

the method takes about 13 minutes for the same problem. On the other hand, the method imposing

temporal smoothness based on splines as in problem (6.7) takes only 130 seconds for the same task.

6.4.2 Method comparison and error metrics

We compare our results against five other methods whose source code is provided by the authors.

We name our first NRSfM formulation that implements problem (6.3) and equation (6.4) as tlmdh
and its robust version of problem (6.9) as r-tlmdh. We name the implementation of our NRSfM

with temporal smoothness described by equation (6.5) as t-tlmdh and our NRSfM with temporal

smoothness based on 1D splines as s-tlmdh. We name the non-convex soft inextensibility based

method for orthographic camera (Vicente and Agapito, 2012) as o-sinext and the local homography

method for perspective camera (Chhatkuli et al., 2014b) as p-isolh. We write the local method of

(Parashar et al., 2016) based on the metric tensor as p-isomet. We name the prior free factorization

method of (Dai et al., 2012) as o-spfac and the kernel based factorization method (Gotardo and

Martinez, 2011) as o-kfac. We name the locally rigid method based on 3-point SfM (Taylor et al.,

2010) as o-lrigid. Each method requires one or more parameters to be tuned. We fix these parameters

to optimal values for each dataset and keep them constant for all experiments. For our methods we

fix a single hyperparameter for all datasets. We set st = 0.2 for t-tlmdh and sr = 25 for r-tlmdh.

Similarly, we set the number of control points for depth in s-tlmdh to 20% of the total number of

images.

We measure a method’s accuracy with two metrics: 3D Root Mean Square Error (RMSE) and the

%3D error often used in most NRSfM literature (Agudo and Moreno-Noguer, 2015). The 3D RMSE

is computed from the ground truth 3D point positions. Because NRSfM has a scale ambiguity no

method can reconstruct the absolute scale of the object. For methods which use perspective camera

(tlmdh and p-isolh) we scale their reconstructions to best align them with the ground truth. For the

methods which use affine cameras (o-sinext, o-lrigid and o-spfac), we transform their reconstructions

with a similarity transform to best align them with the ground truth. The % 3D error is defined as

follows:

% 3D error =
‖PGT −PREC‖fro
‖PGT ‖fro

(6.10)

1The optimized codes are available at http://isit.u-clermont1.fr/~ab/Research/

http://isit.u-clermont1.fr/~ab/Research/
http://isit.u-clermont1.fr/~ab/Research/
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where PGT represents the ground truth 3D shape (3 × n matrix) and PREC represents the recon-

structed 3D shape.
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Figure 6.3: Plots for synthetic Flag dataset. The 3D errors are shown in the left column and the % 3D errors in the
right column. Legend is shown on the top.
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Figure 6.4: Plot of 3D error against noise in pixels. The 3D errors shown in the left column and the % 3D errors in
the right column. Legend is shown on the top.
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6.4.3 Developable Surfaces

Most non-rigid reconstruction methods focus on developable surfaces for experiments. A developable

surface, such as a piece of paper or cloth, can be flattened into a planar surface without tearing or

stretching. Obtaining continuous tracks of correspondences without partial images is relatively easy

for such surfaces. While the surfaces often appear simple, they sometimes have high frequency and

non-linear deformations. We experiment with 7 different datasets representing such surfaces.

The Flag dataset. We use the cloth capture data (mocap) (White et al., 2007) to generate semi-

synthetic data. Even though the object is real, the input data for all the methods are generated from

a virtual camera with perspective projection. The data shows a flag waving with wind with some

changes in the camera viewpoint, making it perhaps the simplest of all datasets. The images are

generated with dimensions 640 px × 480 px using a camera focal length of 640 px. The data has

altogether 450 frames. We use this data to test the performance of our method and the competitive

methods in several practical scenarios: with changing number of images, changing number of cor-

responding points and missing correspondences. For changing the number of images, we randomly

draw a subset ofm images from the 450 images withm varying from 5 to 60. For varying the number

of points, we randomly select a subset of n points varying from 50 to 300. Finally, for varying the

amount of missing correspondences for each image we randomly remove a percentage of correspon-

dences ranging from 5 to 60. For the default conditions, we use 40 images, 300 points and no missing

data. In order to fill the missing correspondences required by some methods we follow (Hu et al.,

2013) for matrix completion. Note that our method tlmdh works with incomplete data and therefore

we do not complete missing correspondences for our method. p-isolh computes registration functions

with B-splines and so we use them to fill in the missing correspondences for that method. Figure 6.4

shows the plots for the dataset.

The results show that our method tlmdh performs very well with just 5 images and considerably

better than all other methods. However, in high noise, p-isomet shows the best performance. Its use

of the registration warps makes it robust to random noise to some extent. The same is true for high

percentage of missing data. p-isomet also uses registration warps and performs very well in high

noise. The factorization-based method o-spfac and the local homography based method p-isolh also

does better compared to the remaining methods. We obtain an RMSE 3D error of 6.3 mm using 40

images. Similarly, it can be seen that our method is able to reconstruct the surface with as many

as 60% random missing data. We also consider the effect of noise in correspondences and use our

r-tlmdh method to show how it performs under correspondence noise.

The KINECT Paper dataset. We use the KINECT Paper dataset (Varol et al., 2012b) as one of

our real datasets for evaluation, originally used for template-based reconstruction (Ngo et al., 2016).

The dataset shows a VGA resolution sequence of a large piece of textured paper undergoing smooth

deformations. Some example images were shown in figure 6.1 and 6.2. We generate correspondences

by tracking points in the sequence using an optical flow-based method (Garg et al., 2013a) designed

for non-rigid surfaces. The tracks are outlier free and semi-dense. Due to the large number of frames
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we again subsample them for all methods except o-kfac, which requires temporal continuity. Fig-

ure 6.5 shows the plots of 3D error and % 3D error for all the images in the dataset. We obtain very

accurate reconstructions that in fact compares with template-based reconstructions (Chhatkuli et al.,

2014a; Ngo et al., 2016). The best performing methods are r-tlmdh, tlmdh and s-tlmdh with mean
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Figure 6.5: Mean 3D errors and percentage errors for all images in the KINECT Paper dataset. The top row shows
errors for tlmdh against the compared methods and the bottom row shows tlmdh against the other proposed
methods.

3D errors of 4.62 mm, 5.41 mm and 7.15 mm respectively. The local isometric method based on the

metric tensor p-isomet is the best performing state-of-the-art method with 7.63 mm 3D error. The

factorization-based methods: o-kfac and o-spfac have 3D errors of 13.93 mm and 14.66 mm respec-

tively while p-isolh shows an error of 13.64 mm. The mean 3D and %3D errors for all methods in

the dataset are given in table 6.1 and 6.2 respectively.

The Hulk and the T-Shirt dataset. The Hulk dataset (Chhatkuli et al., 2014b) consists of a comic

cover printed on a piece of paper in 21 different deformations. Similarly, the t-shirt dataset (Chhatkuli

et al., 2014b) consists of a textured t-shirt with 10 different deformations. We show a few example

images of the dataset in figure 6.6. These datasets provide images with wide-baseline matches. We do
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not test the factorization-based methods on these datasets as they have very few images and also do

not form a temporal sequence. Large number of images (m > 3/2L), where L is the number of shape

basis here, are required by o-spfac and a continuous video sequence is required by o-kfac. We give

the mean error results in table 6.1 and 6.2. The best performing methods are tlmdh and r-tlmdh with

mean 3D errors of 3.51 mm and 3.45 mm for the hulk dataset; 5.41 mm and 5.39 mm for the t-shirt

dataset respectively. Among the state-of-the-art methods, p-isomet shows the best performance with

10.76 mm and 10.60 mm error for the hulk and t-shirt datasets respectively. The next best performing

method is p-isolh that gives a mean depth error of 14.53 mm and 8.94 mm for the Hulk and t-shirt

datasets respectively.

Figure 6.6: Example of images present in the Hulk dataset (top row) and the T-Shirt dataset (bottom row).

The Cardboard dataset. We construct a dataset using non-smooth deformations of a cardboard

object. The dataset consists of 8 different deformations and images where the groundtruth 3D for

each was obtained with stereo. The object used consists of repeating texture and large amount of

texture-less regions. The images are taken with a focal length of about 3800 px and have a resolution

of 4800 × 3200 px. We give some example images from the dataset in figure 6.7 below. We use a

dense wide-baseline matching (Weinzaepfel et al., 2013) to compute correspondences between the

images. The resulting correspondences are noisy and contains several outliers, more specifically in

the texture-less regions. Among our methods we test only tlmdh and r-tlmdh as we do not have a

temporal continuity in the dataset images. The performance of r-tlmdh is particularly noteworthy

with 8.35 mm RMS error in contrast to 14.86 mm for tlmdh. The next best performing method is

p-isolh with an RMS error of 10.02 mm. It handles the effect of outliers to some extent by the use

of BBS spline-based registration. The local isometric method based on the metric tensor p-isomet
failed to give any results for the dataset, possibly due to non-smooth surfaces and registration warps.

Detailed results are provided in table 6.1 and 6.2. We also show a comparison plot using different

number of images in figure 6.8.
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Figure 6.7: Example images from the Cardboard dataset.

The Rug and the Table-mat datasets. We make use of existing datasets used in (Parashar et al.,

2016). The datasets are recorded with Kinect for X-box One and its images have a resolution of

1920 × 1080 px. They are taken with a focal length of 1054 px. Some example images for both

the datasets are shown in figure 6.9. The Rug dataset shows a rug being deformed smoothly in

159 images, while the Table-mat dataset shows a table-mat being deformed smoothly in 60 images.

The correspondences are provided with the ground truth and there are no missing correspondences.

However, due to the low frame-rate of the recorded sequences, the correspondences provided are not

very accurate and contain outliers. We show the comparison of the proposed methods with the state-

of-the-art methods for all the frames in figure 6.11 for the rug dataset and figure 6.10 for the table

mat dataset. We show the mean accuracy measures in table 6.1 and 6.2. We obtain the best results

from r-tlmdh and tlmdh with 3D errors of 25.72 mm and 26.60 mm for the rug dataset; while for the

table-mat dataset the compared method p-isomet shows the best performance with 9.6 mm compared

to 14.80 mm and 16.91 mm for r-tlmdh and tlmdh respectively. We also obtain good results from

s-tlmdh with a mean 3D error of 27.54 mm for the Rug dataset and 16.74 mm for the Table-mat

dataset. The compared methods o-spfac and o-kfac have a mean 3D error of 31.01 mm and 34.62

mm for the Rug dataset; 17.51 mm and 16.25 mm for the Table-mat dataset. Note that the datasets are

constructed with optical flow tracking on a very low frame rate sequence and thus all methods have a

relatively high absolute mean error. Perhaps for the same reason, we failed to reconstruct the surfaces

with o-lrigid using all the views. The proposed methods do not show the same level of accuracy as

in the other datasets. This is also due to the relatively smaller viewpoint change and deformations

present in these datasets.
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Figure 6.8: Mean 3D errors and percentage errors for different number of images in the Cardboard dataset.

Figure 6.9: Example images for the Table-mat (top, cropped to the size of 592 × 349 px) and the Rug (bottom,
original images) datasets.
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Figure 6.10: Mean 3D errors and percentage errors for all the images in the Table-mat dataset. The top row shows
errors for tlmdh against the compared methods and the bottom row shows tlmdh against our other methods.
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Figure 6.11: Mean 3D errors and percentage errors for all the images in the Rug dataset. The top row shows
errors for tlmdh against the compared methods and the bottom row shows tlmdh against our other methods.



110 Chapter 6. NON-RIGID SHAPE-FROM-MOTION WITH INEXTENSIBILITY

Newspaper sequence. We construct a video sequence of a tearing piece of newspaper that consists

of deformation as well as articulated movement. We record the sequence using KINECT for Xbox

One at full frame rate using the libfreenect2 library (Xiang et al., 2016). The sequence has 460 images

of resolution 1920 × 1080 px, taken at a focal length of about 1054 px. Some example images are

shown in figure 6.12. We track points on the sequence again using dense point tracking (Sundaram

Figure 6.12: Example images from the Newspaper sequence.

et al., 2010). We randomly select 900 points that are tracked in all frames. Figure 6.13 shows the

error plots of different methods for each image in the sequence. Table 6.1 gives the mean accuracy

measure for different methods in the sequence. The results clearly show high accuracy of the proposed

methods. The mean 3D errors for tlmdh, r-tlmdh and s-tlmdh are 11.63 mm, 11.62 mm and 13.35

mm respectively. The closest compared method p-isomet has a mean 3D error of 18.40 mm. o-spfac
shows a 3D error of 24.94 mm. There are two important reasons the proposed methods work well

in this dataset: first is that the point tracking gives very good set of correspondences here due to the

higher frame rate of the dataset. More importantly, the tearing of the piece of newspaper and the

articulated movement tend to produce a good amount of viewpoint change. These conditions, at the

same time are difficult for the compared methods to handle.

Failure cases. Failure cases occur in NRSfM due to the problem being ill-posed due to lack of

motion and deformation. Naturally any method would fail when the problem is ill-posed. However,

a method can also fail to give good results with a well-posed problem. We found one such example

for our method from (Salzmann et al., 2007). The dataset is a bending piece of paper imaged from

a fixed camera viewpoint with a relatively longer focal length, and it contains no ground truth. We

use optical flow (Sundaram et al., 2010) to obtain correspondences. The qualitative reconstructions

for three frames are shown in figure 6.14. The general shape of the paper looks reasonable but in

Table 6.1: Mean 3D errors in real datasets.

3D error measurements for different methods in mm
Datasets tlmdh r-tlmdh p-isomet p-isolh o-spfac o-kfac o-sinext o-lrigid

KINECT Paper 5.41 4.62 7.63 13.64 14.66 13.93 21.45 18.65
Hulk 3.51 3.45 10.76 14.54 22.98 - 26.37 24.20
T-Shirt 5.41 5.39 10.60 8.94 - - 18.23 -
Cardboard 14.56 8.43 - 12.95 - - 35.34 20.54
Rug 26.60 25.72 26.15 38.26 31.01 34.62 49.14 -
Table mat 16.91 14.80 14.21 20.71 17.51 16.24 19.15 -
Newspaper 11.63 11.62 18.40 37.21 24.94 30.74 31.01 30.74
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Figure 6.13: Mean 3D errors and percentage errors for all the images in the Newspaper sequence. The top
row shows errors for tlmdh against the compared methods and the bottom row shows tlmdh against the other
proposed methods.

the first image it is bent when it should be flat and the degree of bending is not properly captured

in the second image. We know that better reconstructions are possible on this dataset (Vicente and

Agapito, 2012), so the problem is not itself ill-posed. The imperfect reconstruction from our method

is probably caused by the lack of change in camera viewpoint.
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Table 6.2: Mean % 3D errors in real datasets.

% 3D error measurements for different methods
Datasets tlmdh r-tlmdh p-isomet p-isolh o-spfac o-kfac o-sinext o-lrigid

KINECT Paper 0.97 0.83 1.38 2.37 2.64 2.49 3.82 3.30
Hulk 0.62 0.62 2.81 4.17 5.10 - 5.82 5.31
T-Shirt 1.69 1.69 3.32 3.11 - - 5.45 -
Cardboard 3.49 2.06 - 3.22 - - 9.11 4.94
Rug 3.41 3.30 3.35 4.90 3.98 4.45 6.30 -
Table mat 1.40 1.22 1.17 1.71 1.45 1.34 1.58 -
Newspaper 1.63 1.63 2.63 5.20 3.50 4.24 4.34 4.31

Figure 6.14: Failure cases: Images (top row) and their respective reconstructions (bottom row). The first two
shapes appear largely incorrect.

6.4.4 Non-developable objects

We use two different datasets to perform NRSfM on non-developable surfaces. They are complex

objects where some of the compared methods are not even applicable, for example, both p-isolh and

p-isomet requires registration warps, which is non-trivial to implement in volumetric objects. We

perform experiments here to show what we can obtain in highly difficult non-rigid reconstruction

applications with our proposed tlmdh method. Below we describe the datasets and the experiments

performed.

The Stepping Trousers dataset. The dataset (White et al., 2007) is constructed from motion cap-

ture ground truth data with perspective projection. The data shows a pair of trousers stepping

around with considerable rapid deformations of the cloth. The images are obtained at a resolution

of 640 px × 480 px with a perspective camera of focal length 320 px. The dataset is semi-synthetic

but due to articulations, volume/partial views and rapid nonlinear deformations, it is arguably the

most complex data used for NRSfM to date. Unlike the flag dataset, missing correspondences are

significant due to self-occlusions. The missing correspondences are handled by filling in the corre-
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spondences using (Hu et al., 2013) for all methods except ours. Figure 6.15 shows three reconstructed

frames. From top to bottom, it shows our best reconstruction, a reconstruction with medium accu-

racy and our worst reconstruction. Alongside we show the reconstructions for the compared method

o-spfac. Note that it is non-trivial to implement the compared methods in the missing data scenario

without using a low-rank prior. Thus we only test the best performing low-rank method o-spfac.

The plots of 3D error for each image for these two methods are shown in figure 6.16. Because this

is a large object, the 3D RMSE error can be large, yet the reconstructions can appear reasonable. We

therefore also measure accuracy with a %3D error. We obtain a mean 3D error of 22.54 mm and %

3D error of 2.37% for our method while for o-spfac those are 51.5 mm and 11.56%respectively. Our

results indeed show that large objects with complex deformations in small scale can be reconstructed

with our method, although some difficulties can be seen primarily due to high surface curvature. The

reconstructions and the plot show that our method can capture a large portion of the deformations

correctly even though the parts of the object undergoing deformation are very small in the image,

making the projections almost affine. In certain cases, however, it estimates the shapes incorrectly on

those parts as shown in the third reconstruction of the sequence in figure 6.15.

The hand dataset. In tasks such as gesture recognition, several applications require reconstructing

a moving hand. When such a task is done, usually a specialized modelling of hand motion and its

articulations is used. We show that an accurate reconstruction of a deforming hand can be done solely

with the inextensibility prior using our method. We test with two sequences of a deforming hand

recorded by an endoscopic camera. The camera images are of dimensions 960× 540 px, taken with a

focal length of 462 px and capture detailed texture. We obtain ground truth reconstructions of the first

and last frame using stereo and post processing. We compute correspondences by densely tracking

the hand’s texture using (Sundaram et al., 2010). Note that the correspondences are not perfect due

to image noise and weak texture. Because most methods cannot handle a huge number of points,

we uniformly subsample to 1000 points. Figure 6.17 shows reconstructions of the hand compared

to ground truth for our method, o-spfac, p-isolh and p-isomet. The results show that our method

can handle complex deformations of a hand. All three compared methods were unable to capture

the second deformation where they have a 3D error of over 30 mm. On the other hand we obtain a

slightly higher 3D error of 7.38 mm in the third column.
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Figure 6.15: Reconstructions of the stepping trousers dataset for our method and o-spfac. Top row shows the
reconstructed meshes overlaid on top of the ground truth. Bottom row shows the reconstructed mesh texture
mapped with 3D error for each face in the color code shown. Note that we show our best result in the first column
and the worst in the last column with a medium accuracy result in the middle.
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Figure 6.16: Plot of the depth error in trousers for each sampled image (tlmdh in black and o-spfac in blue).
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Figure 6.17: Results on the hand dataset. We use the best performing methods in other datasets for comparison:
o-spfac, p-isolh and p-isomet. Ground truth is shown for three images, overlaid on top of the reconstructions.
We texture map the meshes and show qualitative results for the two other images where ground truth 3D is not
available.
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6.4.5 NRSfM with rigid objects

All rigid objects are isometric, therefore our NRSfM method can be used to reconstruct rigid scenes.

However isometry is weaker than rigidity, so it can be expected to perform slightly worse. Nonethe-

less it is interesting to study such cases for two reasons. First our method gives a convex solution

to the problem with a general number of images, which has not been seen before in rigid SfM with

perspective cameras. It may therefore find uses for initialising rigid bundle adjustment. The second

reason is for a theoretical understanding of our method using rigid scenes, which may be simpler to

analyse than for deformable scenes. For example, it may be interesting to study the critical motions

associated with the inextensibility relaxation. We show some results from the public dataset (Jensen

et al., 2014) on the house sequence using SIFT correspondences. We plot the average % 3D error

for each of the 49 images for our method and compare this to a state-of-the-art rigid SfM method

(VisualSfM (Wu, 2013)). We see that a reasonable error is obtained for the majority of the images.
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Figure 6.18: Results on rigid scenes. VisualSfM results are shown in cyan dots.

6.5 Discussions

We presented four different convex formulations for solving NRSfM. The first formulation presented

in problem (6.3), named tlmdh should be the method of choice when the point correspondences for

different images have no outliers and small noise. The robust formulation r-tlmdh, like tlmdh works

with wide baseline large deformations and as few as four images, albeit with an added computational

cost. Both of these methods show very good performance in the experiments. However, we found

that the method t-tlmdh of using first-order temporal smoothness as described in problem (6.5) pro-

vides no real improvement over the original problem. The 1D spline-based method s-tlmdh on the

other hand, gave significant reduction in the size of the problem. It is interesting to note that enforc-

ing temporal smoothness does not usually improve the resulting reconstruction because the original

problem (6.3) is already well constrained. Similarly, in case of no outliers, the solution of problem

(6.9) is similar to that of problem (6.3). In regard to the computational complexity of solving these

problems, the worst case scenario is O(n3) per iteration where n is the number of unknowns and

we require about 30 iteration to solve any problem. However, the sparsity of the problem means the

actual computational complexity is much lower than O(n3) per iteration.
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6.6 Conclusion

We have brought forward the MDH-based formulation, which has enjoyed great success in inextensi-

ble template-based reconstruction, to the more general problem of templateless non-rigid reconstruc-

tion known as NRSfM. We have shown that this leads to a convex formulation, which can be solved

globally and optimally as an SOCP problem. This forms the first convex, global and optimal NRSfM

formulation based on physical constraints. Results on synthetic and real images have shown that the

proposed methods outperform existing ones by a large margin in many cases. In future work, we

plan to study alternative relaxations of isometry apart from inextensibility. It may also be possible to

formulate our approach into a sequential or incremental NRSfM so that realtime performance can be

achieved. In the next chapter we give a broad perspective of all the works presented in the thesis as

well as directions for possible future works.
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Chapter 7
Conclusion and Future Work

In this thesis we described our contributions in feature point based approaches to the 3D reconstuc-

tion of deformable surfaces. We formulated our methods based on the isometric prior because most

real object deformations can be modelled as being isometric. Strictly speaking, these deformations

are near-isometric rather than exactly isometric. However, we found in our work that the isometric

prior when used in our formulations can handle many real world surface deformations. In rigid SfM,

there now exists methods that give a dense 3D reconstruction starting from a rough camera calibration

and images of the scene. Several software and hardware products perform 3D reconstruction using

these methods. They first compute feature points and then use the established feature point correspon-

dences to pose the geometric constraints. Having point correspondences makes it easier to express

the reconstruction problem geometrically in both rigid and deformable cases. This is also the reason a

large majority of the deformable reconstruction methods rely on feature points. Furthermore, current

progress in optical flow and feature point matching gives a strong motivation to have a reconstruction

step relying on feature points. However, there is still a lacking of robust and accurate methods that

can solve real world problems in deformable 3D reconstruction. The methods we proposed in the

thesis provide a step forward in achieving good reconstructions in well textured surfaces.

Specifically, we studied two different problems of deformable 3D reconstruction. The first prob-

lem, Shape-from-Template (SfT) is nearing real-world applicability. Nearly all of the state-of-the-art

methods use one or other forms of the isometric prior. The second problem is the more general

Non-Rigid Shape-from-Motion where we do not have a 3D template as in SfT. There is still a sig-

nificant interest in various ways of modelling the deformation for NRSfM. Below we describe our

contributions and possible directions for future work for each problem.

7.1 Shape-from-Template

We exploited the differential formulation first proposed by (Bartoli et al., 2015) and established im-

portant results concerning the stability of the proposed local solutions. In summary, we found that the

local solution for depth is not stable at near affine conditions. With experiments we also showed that

inextensibility-based methods do not remain stable in such conditions. In order to be robust in near-
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affine conditions, we proposed two similar methods based on the local solutions for the depth gradient

and surface normal, which are first-order differential quantities. We discovered that the reconstruction

obtained from the solutions of these quantities are better and more stable than the direct computation

of depth. Our proposed methods work with smooth thin-shelled surfaces. Adapting the method to

non-smooth or volumetric objects is non-trivial but can be done with nonlinear optimization. One

other direct improvement that can be introduced here is by the use of better registration functions.

It has been shown that Schwarps (Pizarro et al., 2016) can provide better registration derivatives.

However, one important issue with our proposed method is that it cannot be easily adapted for large

non-isometric deformations. It remains to be seen how first-order isometry can be imposed in a robust

way so that non-isometric deformations can be better modelled. One more work that could be done

in near future is to perform joint tracking and reconstruction using the local analytic solutions.

7.2 Non-Rigid Shape-from-Motion

We presented our local as well as global formulations for solving NRSfM. We studied the local

solutions for NRSfM using the isometric prior. However, we found that the first-order constraints were

not enough to compute the non-holonomic local solutions. Thus we opted for finding a homography

at each point using the second and lower order quantities of the registration warps. For that purpose,

we assumed isometry and infintesimal planarity of the surfaces. Such approach works in several

cases of sparse sets of images with large deformation scenes. However newer and more complete

differential modelling has been proposed recently that should be the preferred approach for obtaining

local solutions of NRSfM. The method (Parashar et al., 2016) models the change in metric tensor

using the first-order and second-order surface deformation properties.

We also presented our global formulation of NRSfM that is convex and performs better than the

previous methods including our own local solution. We relaxed the isometric constraint to zeroth-

order inextensibility and combined all camera projection and the inextensibility constraints into a

single optimization. The problem formulation was inspired from a well-established approach in

template-based methods of maximizing depth under the inextensibility constraints. The formulation

is flexible enough to impose temporal smoothness and add robustness in the problem. The methods

proposed here work with rigid as well as non-rigid scenes with the point set representation of surfaces

and registration. However, similar to the inextensibility-based methods in SfT, the proposed NRSfM

methods are also not well-constrained in near-affine cases. One simple way to tackle such cases is by

using a nonlinear refinement similar to (Vicente and Agapito, 2012) or (Brunet et al., 2014) starting

with our solution as an initial solution.

Last but not the least, other possible directions that could be explored in the 3D reconstruction

of deformable surfaces are the use of learning methods. As discussed in chapter 3, the statistics-

based methods already use linear bases that can be learned and some work has already been done in

combining physical model and the linear bases. On the other hand, several learning methods based

on the Convolutional Neural Network (CNN) are attempting the problem. One direct approach to

use CNN is to use the registration warps seen in chapter 4 and 5 as input images to the CNNs. In

that case the network could be trained using simulated point correspondences. It is also important to
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understand the difficulties and limits of the direct approaches of learning point depths directly from

images. Using the geometric structure of deformable 3D reconstruction as explored in the thesis,

alongside a large data learning-based method could possibly provide an accurate and robust solution

to the problem.
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APPENDIX A

Computation of θ and ω in SfT

We need to find θ ∈ C0(Ω′, SO3) such that it satisfies equation (4.52):[
I2 −η′

f

]
θ =

[
ω 0

]
for some ω ∈ C0(Ω′,R2×2). Equation (4.52) implies that the third column θ3 of θ is orthonormal to

both rows of [I2 − η′

f ]. Note that we represent the ith column of the matrix function θ as θi. This

gives us a closed form solution for θ3 as:

θ3 =
η̃′f
‖η̃′f‖2

, (i)

where η̃′f ∈ C1(Ω′,R3) is the local flat template-to-image warp function giving normalized homo-

geneous coordinates. Its components can be written as η̃′f = [η
′
x
f

η′y
f 1]>. The columns of θ will have

the following orthonormality relations:

[θ3]× θ1 = θ2

[θ3]>× θ2 = θ1.
(ii)

Any combination of vectors θ1 and θ2 that satisfy equation (ii) will form the required rotation θ. First

we can choose θ1 orthogonal to θ3 as:

θ1 =
1√

η′x
2

f2
+ 1

−1

0
η′x
f

 . (iii)

Using the values of θ3 and θ1, we obtain θ2 using θ2 = θ3 × θ1. We obtain ω by simply expanding

the left-hand side of equation (4.52) using the computed θ.
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APPENDIX B

Similarities and differences of type-I and type-II PDEs in SfT

We discussed the type-I and type-II PDEs, their solutions and the stable methods in sections IV and

V. Here we first show that the type-I direct depth solution and type-II direct depth solution are exactly

the same. Then we describe how the stable type-I and stable type-II methods can differ in their final

reconstructions.

Equivalence of type-I and type-II solutions The first non-holonomic solution of type-I PDE α and

type-II PDE ϕz are given by equation (4.20) and equation (4.55) respectively. The type-I and type-II

PDEs are obtained using the same deformation and reprojection constraints. With the equivalence of

type-I and type-II PDEs, the non-holonomic solutions are directly related by the change in variable

rewritten below:

ϕz =
α

ν
and ν =

√
1 +

η>η

f2
. (iv)

The quantity ν involved in the change of variable is a known quantity and thus it proves that the direct

depth reconstructions using type-I and type-II PDEs are the same.

In order to prove the equivalence of the second non-holonomic solutions, we consider the case of

flat template, where we have Jφ = Jϕ. The result can be extended to non-flat templates by using the

locally isometric flattening. We differentiate equation (iv) on both sides that gives us:

Jα = νJϕz + ϕzJν . (v)

Furthermore we already have the relation between Jϕz and Jϕ from equation (13) in section IV-A,

rewritten below:

Jϕ = Mη̃Jϕz + ΦJη̃. (vi)

Thus substituting the value of Jϕz from equation (v) in equation (vi), we have:

Jϕ = Mη̃
(Jα − ϕzJν)

ν
+ ΦJη̃. (vii)

In other words, one can go from the type-I set of solutions for (α, Jα) to type-II set of solutions for
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(ϕz, Jϕ) using equations (iv) and (vii). Similarly to go from type-II set of solutions to type-I set we

note the fact that Jϕz is given by the third row of Jϕ and thus obtain (α, Jα) by using equations (4.15)

and (v).

Difference in stable type-I and stable type-II reconstructions As shown above, the non-

holonomic solutions of the type-I and type-II PDES are equivalent up to some change in variable.

Nevertheless, the second non-holonomic solutions measure different quantities. This naturally leads

to differences in the subsequent steps: the resolution of the two-fold ambiguity and the numerical

integration. The second non-holonomic solution of type-I PDE β or Jα has a sign ambiguity, whereas

that of type-II PDE: Jφ or n has a two-fold ambiguity. The resolution of ambiguities in these two cases

can produce outcomes that influence the further steps differently. More importantly, the numerical

integration involved in the steps differ as the integrand in stable type-I method β is a 2-vector while

the integrand in stable type-II method n is a vector describing the shape normal, i.e. a 3-vector. Noise

can influence the numerical integration in the different spaces differently. The numerical integration

is done by using LLS with the bending energy of BBS. It enforces smoothness on the integrand’s

space. Such smoothness is better suited on the space of surface normals than on the radial depth gra-

dient where the norm of the image coordinates is involved. Thus the small but consistent difference

seen in the reconstructions is originate from the influence of noise in the sequence of steps after the

non-holonomic solutions are found and not from the stable PDE solutions themselves.



129

APPENDIX C

SfT in the presence of outliers

We use a sugar bottle with a non-developable 3D template to test how outliers affect the reconstruction

and how they can be dealt with. The bottle is used to create a deformation which we use to test the

effect of outliers on our best performing method, i.e. typeII-P. We take the images with the same

camera focal length as the Can dataset shown in figure I. We combine SIFT and KAZE features

to obtain the template image to input image warp. Outliers appear naturally in the matching due

to deformation and repeated texture. We show that with outliers, SfT will fail if a standard BBS

registration (Dierckx, 1993) is used, while on the other hand using an automatic outlier removal

method (Pilet et al., 2008; Pizarro and Bartoli, 2012) followed by a robust registration can suffice to

have a good reconstruction.

Registration under outliers

We briefly describe the registration problem when there are outliers in the corresponding points. Let

{pi ∈ R2} be the set of corresponding points in the template image and {qi ∈ R2} be the set of

corresponding points in the input image obtained from feature point matching, with i = 1 . . . N . We

define the BBS registration function going from the template image to the input image as:

Ψ(pi, l) = qi (viii)

where l ∈ R2nc is the parametrization vector of the warp function Ψ and nc is the number of the

control centers. The warp is estimated from the correspondence points by minimizing the following

least-squares problem:

l̄ = arg min
l

N∑
i=1

‖Ψ(pi, l)− qi‖2. (ix)

For BBS registration the function Ψ is a linear function given by Ψ(pi, l) = Al where A is a matrix

of basis vectors constructed from the set of points {pi ∈ R2} by imposing smoothness and is a known

matrix. Thus equation (ix) is in fact a LLS problem for a standard BBS registration. However the

presence of outliers in the correspondence points means one cannot correctly estimate l with the LLS
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problem of equation (ix). We can remove a large number of outliers using existing methods such

as (Pilet et al., 2008; Pizarro and Bartoli, 2012). This allows us to compute l using the remaining

set of correspondences. However because these methods are not perfect, a small number of outliers

may remain. To tackle this, we first employ the outlier rejection method (Pizarro and Bartoli, 2012)

and fit l with a robust cost function, otherwise known as an M-estimator. Specifically we use the L1

M-estimator. Thus the minimization problem of equation (ix) is modified as follows:

l̂ = arg min
l

N∑
i=1

‖Ψ(pi, l)− qi‖1. (x)

We choose the L1 M-estimator because the resulting problem is convex and can be solved using an

off-the-shelf solver such as the L1-magic (Candes and Tao, 2005). It is fast to optimize and contains

no addtional free parameter. However, it is a non-redescending M-estimator and can only handle a

small percentage of outliers. When there is a higher percentage of outliers even after outlier rejection,

one can use redescending M-estimators such as Tukey’s bisquare M-estimator.

In the example, 174 out of 1617 points are actual outliers. We remove a set of 172 points with

the outlier rejection method (Pizarro and Bartoli, 2012) and perform the robust registration. After the

outlier rejection we estimate 44 out of 1445 points to be actual outliers. For better visualization we

select one out of every 40 initial matches and show them along with the detected inlier matches in

figure I. We also show one out of every 5 detected outliers in the bottom row of figure I.

Reconstruction

Despite outlier removal and robust registration, some inaccuracies persist naturally in the final reg-

istration. The reconstruction step needs to be robust to noisy correspondences to be able to produce

a good reconstruction in such scenario as mentioned in property a) in section I. We show the sta-

ble type-II texture mapped reconstructions with and without the outlier rejection (Pizarro and Bartoli,

2012) and the robust registration steps in figure II. The example proves the point that handling outliers

in the registration step is enough to produce good reconstructions with the proposed method even in

difficult cases.
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Figure I: Cropped images and point matches with outliers
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Figure II: Results: (a) ground truth (b) typeII-P reconstruction with standard registration (c) typeII-P reconstruction
with robust registration.
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