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Résumé

L’une des grandes applications de la statistique est la validation et la comparai-

son de modèles probabilistes au vu des données. Cette branche des statistiques a

été développée depuis la formalisation de la fin du 19ième siècle par des pionniers

comme Gosset, Pearson et Fisher. Dans le cas particulier de l’approche bayésienne,

la solution à la comparaison de modèles est le facteur de Bayes, rapport des vraisem-

blances marginales, quelque soit le modèle évalué. Cette solution est obtenue par

un raisonnement mathématique fondé sur une fonction de coût.

Ce facteur de Bayes pose cependant problème et ce pour deux raisons. D’une

part, le facteur de Bayes est très peu utilisé du fait d’une forte dépendance à la loi

a priori (ou de manière équivalente du fait d’une absence de calibration absolue).

Néanmoins la sélection d’une loi a priori a un rôle vital dans la statistique bayésienne

et par consequent l’une des difficultés avec la version traditionnelle de l’approche

bayésienne est la discontinuité de l’utilisation des lois a priori impropres car ils ne

sont pas justifiées dans la plupart des situations de test. La première partie de

cette thèse traite d’un examen général sur les lois a priori non informatives, de

leurs caractéristiques et montre la stabilité globale des distributions a posteriori en

réévaluant les exemples de [Seaman III 2012].

Le second problème, indépendant, est que le facteur de Bayes est difficile à

calculer à l’exception des cas les plus simples (lois conjuguées). Une branche des

statistiques computationnelles s’est donc attachée à résoudre ce problème, avec des

solutions empruntant à la physique statistique comme la méthode du path sam-

pling de [Gelman 1998] et à la théorie du signal. Les solutions existantes ne sont

cependant pas universelles et une réévaluation de ces méthodes suivie du développe-

ment de méthodes alternatives constitue une partie de la thèse. Nous considérons

donc un nouveau paradigme pour les tests bayésiens d’hypothèses et la comparaison

de modèles bayésiens en définissant une alternative à la construction traditionnelle

de probabilités a posteriori qu’une hypothèse est vraie ou que les données provi-

ennent d’un modèle spécifique. Cette méthode se fonde sur l’examen des modèles

en compétition en tant que composants d’un modèle de mélange. En remplaçant

le problème de test original avec une estimation qui se concentre sur le poids de

probabilité d’un modèle donné dans un modèle de mélange, nous analysons la sensi-

bilité sur la distribution a posteriori conséquente des poids pour divers modélisation

préalables sur les poids et soulignons qu’un intérêt important de l’utilisation de cette

perspective est que les lois a priori impropres génériques sont acceptables, tout en

ne mettant pas en péril la convergence. Pour cela, les méthodes MCMC comme

l’algorithme de Metropolis-Hastings et l’échantillonneur de Gibbs et des approxi-

mations de la probabilité par des méthodes empiriques sont utilisées. Une autre

caractéristique de cette variante facilement mise en oeuvre est que les vitesses de

convergence de la partie postérieure de la moyenne du poids et de probabilité a

posteriori correspondant sont assez similaires à la solution bayésienne classique.

Dans la dernière partie de la thèse, nous sommes intéressés à la construction

d’une analyse bayésienne de référence pour mélanges de gaussiennes par la création
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d’une nouvelle paramétrisation centrée sur la moyenne et la variance de ces mod-

èles, ce qui nous permet de développer une loi a priori non-informative pour les

mélanges avec un nombre arbitraire de composants. Nous démontrons que la distri-

bution postérieure associée à ce préalable est propre et fournissons des implémenta-

tions MCMC qui exhibent l’échangeabilité attendu. L’analyse repose sur des méth-

odes MCMC comme l’algorithme de Metropolis-within-Gibbs, Adaptive MCMC et

l’algorithme de “Parallel Tempering”. Cette partie de la thèse est suivie par une

package R nommée Ultimixt qui met en œuvre une description de notre analyse

bayésienne générique de mélanges de gaussiennes unidimensionnelles obtenues par

une paramétrisation moyenne–variance du modèle. Ultimixt peut être appliqué

à une analyse bayésienne des mélanges gaussiennes avec un nombre arbitraire de

composants, sans avoir besoin de définir la loi a priori.

Mots clés: Distribution de mélange, Loi a priori non-informative, Analyse bayési-

enne, A priori impropre, Choix du modèle bayésien, Méthodes de MCMC.
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Abstract

One of the major applications of statistics is the validation and comparing proba-

bilistic models given the data. This branch statistics has been developed since the

formalization of the late 19th century by pioneers like Gosset, Pearson and Fisher.

In the special case of the Bayesian approach, the comparison solution of models is

the Bayes factor, ratio of marginal likelihoods, whatever the estimated model. This

solution is obtained by a mathematical reasoning based on a loss function.

Despite a frequent use of Bayes factor and its equivalent, the posterior probability

of models, by the Bayesian community, it is however problematic in some cases.

First, this rule is highly dependent on the prior modeling even with large datasets

and as the selection of a prior density has a vital role in Bayesian statistics, one

of difficulties with the traditional handling of Bayesian tests is a discontinuity in

the use of improper priors since they are not justified in most testing situations.

The first part of this thesis deals with a general review on non-informative priors,

their features and demonstrating the overall stability of posterior distributions by

reassessing examples of [Seaman III 2012].

Beside that, Bayes factors are difficult to calculate except in the simplest cases

(conjugate distributions). A branch of computational statistics has therefore emerged

to resolve this problem with solutions borrowing from statistical physics as the path

sampling method of [Gelman 1998] and from signal processing. The existing solu-

tions are not, however, universal and a reassessment of the methods followed by

alternative methods is a part of the thesis. We therefore consider a novel paradigm

for Bayesian testing of hypotheses and Bayesian model comparison. The idea is to

define an alternative to the traditional construction of posterior probabilities that

a given hypothesis is true or that the data originates from a specific model which

is based on considering the models under comparison as components of a mixture

model. By replacing the original testing problem with an estimation version that

focus on the probability weight of a given model within a mixture model, we ana-

lyze the sensitivity on the resulting posterior distribution of the weights for various

prior modelings on the weights and stress that a major appeal in using this novel

perspective is that generic improper priors are acceptable, while not putting con-

vergence in jeopardy. MCMC methods like Metropolis-Hastings algorithm and the

Gibbs sampler are used. From a computational viewpoint, another feature of this

easily implemented alternative to the classical Bayesian solution is that the speeds of

convergence of the posterior mean of the weight and of the corresponding posterior

probability are quite similar.

In the last part of the thesis we construct a reference Bayesian analysis of mix-

tures of Gaussian distributions by creating a new parameterization centered on the

mean and variance of those models itself. This enables us to develop a genuine

non-informative prior for Gaussian mixtures with an arbitrary number of compo-

nents. We demonstrate that the posterior distribution associated with this prior

is almost surely proper and provide MCMC implementations that exhibit the ex-

pected component exchangeability. The analyses are based on MCMC methods as
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the Metropolis-within-Gibbs algorithm, adaptive MCMC and the Parallel tempering

algorithm. This part of the thesis is followed by the description of R package named

Ultimixt which implements a generic reference Bayesian analysis of unidimensional

mixtures of Gaussian distributions obtained by a location-scale parameterization of

the model. This package can be applied to produce a Bayesian analysis of Gaussian

mixtures with an arbitrary number of components, with no need to specify the prior

distribution.

Keywords: Mixture distribution, Non-informative prior, Bayesian analysis, Im-

proper prior, Bayesian model choice, MCMC methods.
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Chapter 1

General Introduction

1.1 Overview

In several areas of science, statistics is a powerful tool to analyze data both from con-

trolled experiments such as natural sciences and from observational studies, mainly

in the human sciences. Basically, a researcher expects to find methods which can

provide means to judge a population from a subset of it, named a sample. Statistics

has developed many different theories to be applied in different situations, and all

of them have a characteristic in common and that is, given the uncertainty, they try

to find the best strategy to answer scientists’ queries.

In order to apply statistics to a problem, it is a common practice to start with

a population or process to be studied. When the entire population is not available

and only samples are studied, the inferential statistics is needed. These inferences

can take the form of testing hypotheses, estimation, regression analysis, prediction

and some other technics that have been recently developed such as spatial data

and data mining. Furthermore, statistical inference defines random samples and

describes the population being examined by a probability distribution that may

have unknown parameters. Indeed, the main purpose of statistical theories is to

infer properties about the probability distribution of the population of interest us-

ing observations. To do so, different paradigms of statistical inference have become

established. Bayesian inference is considered as an important statistical technique

especially in mathematical statistics because of its application in science beside a

wide range of activities such as engineering, philosophy, medicine, sport, and law.

In this thesis, we focus on the Bayesian inference. Although the original Bayesian

theory was settled in the 18th century, due to various previous computational diffi-

culties, only in the last 30 years, the Bayesian method has grown substantially. This

growth in research and applications of Bayesian methods refers to the 1980s which

mostly attributed to the discovery of Markov Chain Monte Carlo methods which

removed many of the computational problems.

This thesis consists of four general parts which are briefly introduced in the

following sections.

1.2 Prior distribution

The Bayesian theory deals with probability statements which are conditional on the

observed value and this conditional feature introduces the main difference between

Bayesian and classical inferences. Despite the differences between these statistical
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methods, in many simple analysis we get superficially similar conclusions from the

two approaches. A Bayesian statistical inference is based on a prior probability

distribution of an uncertain quantity that expresses one’s beliefs about this quantity

before some evidence is taken into account. In other words, a prior distribution is

the distribution of this uncertain quantity, named parameter, before any data is

observed. Once this prior distribution is set, Bayesian inference is straightforward

in terms of minimizing posterior losses, computing higher posterior density or finding

the predictive distribution [Robert 2001]. But in general, a prior distribution is not

easy to precisely find out and most of critics of the Bayesian analysis focussed on the

choice of the prior distributions. Furthermore, different perspectives are available

to choose a prior while the impact of this choice on the resulting posterior inference

should not be omitted even in the case it is negligible. The main point here is about

the existence of a prior or the determination of an exact or even a parametrized

distribution for the prior on the parameter, which is never unique.

However, the prior plays a fundamental role in drawing Bayesian inference be-

cause of its exploitation combined with the probability distribution of data to yield

the posterior distribution. Bayesian inference is fundamentally based on the pos-

terior distribution which is used for future inference and decisions involving the

parameter. [Gelman 2002] pointed out the assessment of the information that can

be included in prior distributions and the properties of the resulting posterior dis-

tributions, as key issues in setting a prior. He also mentioned prior distributions

as the key part of Bayesian inference and classified them to three categories: Non-

informative priors, highly informative and moderately informative hierarchical prior

distributions.

In fact, the existence of fairly precise scientific or lack of information about the

parameter of interest leads to two classes of priors: Informative or subjective prior,

and non-informative or objective priors. One method of determining the prior is a

subjective evaluation of the prior probability that can be done by using past exper-

iments of the same problem that is considered as an approximation to the real prior

distribution [Robert 2001]. Another methods are based on the maximum entropy de-

veloped in [Jaynes 1980, Jaynes 1983] and as well as parametric approximations for

priors resulting from restricting the choice of prior to a parametrized density and

characterize the corresponding parameters using classical methods [Robert 2001].

Finally, other techniques such as empirical and hierarchical Bayes incorporate un-

certainty about the prior distribution (for details see [Robert 2001]). All these meth-

ods depend on the availability of the information on the parameter of interest. In

the case of limited prior input, conjugate priors can be used to construct the prior

distribution, which originated in [Raiffa 1961] and even if this choice may influence

the resulting Bayesian inference, conjugate priors are not considered as part of the

non-informative prior class [Robert 2001]. The most popular conjugate priors are

related to the distributions associated with the exponential families which are called

natural conjugate priors [Robert 2001]. This family of distributions is the only case

where conjugate priors are guaranteed to exist. Despite the advantages such as

being easy to deal with in both cases mathematically and computationally, the con-
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jugate priors are not away from criticism. One reason is that these distributions are

overly restrictive and also they are not necessarily considered as the most robust

prior distributions.

The non-informative priors are requested when no information about the pa-

rameter is available. While informative priors are far from enough to allow hopes

of achieving, the use of non-informative priors also underwent vary criticisms be-

cause of their influences on the relative posterior distribution. Laplace’s prior is the

simplest and oldest non-informative prior that is based on the principle of indiffer-

ence by assigning equal probabilities to all possibilities. This prior was criticized

because it results in improper resulting distributions in the case where the param-

eter space is infinite. This is not always a serious problem since it may lead to

proper posteriors. However, the use of improper non-informative priors may also

cause problem such as the marginalization paradox shown by [Stone 1972]. Some

others are the possible inadmissibility of resulting Bayes estimators, Stein’s paradox

[Syversveen 1998] and in addition to the possibility of resulting improper posteriors

[Kass 1996], considering equal probabilities for possible events is not coherent under

partitioning as pointed out by [Robert 2001]. Another issue is the lack of invariance

under the reparametrization of the parameter. The invariance of a prior is necessary

when more than one inference about the parameter is needed. The best solution

for obtaining invariant non-informative priors was represented by Jeffreys’ distribu-

tions [Jeffreys 1939] where the information matrix of the sampling model is turned

into a prior distribution. Jeffreys’ prior is most often improper which means that it

does not integrate to a finite value. Another method that was initially described by

[Bernardo 1979] and further developed by [Berger 1979] is the reference prior. The

advantages of this method compared with Jeffreys’ method appear in the case of

multidimensional problems [Syversveen 1998]. Some other methods have been also

suggested by [Box 2011, Rissanen 2012, Welch 1963].

Since there is no best prior that one should use, research aims at acceding a

prior so that posterior distribution is well behaved and proper while all available

information about the parameter is taken into account. Recently, due to theoretical

developments on sensitivity analysis, the dependence of posteriors on prior distri-

butions can be checked by methods such as comparing posterior inferences under

different reasonable choices of prior distribution. The first part of this thesis deals

with selecting non-informative priors based on a critical review of [Seaman III 2012]

and the main result of this work is to show that the Bayesian data analysis remains

stable under different choices of non-informative prior distributions. A related paper

was published in the journal of Applied and Computational Mathematics in July 21,

2014.

In the literature we can find a lot of theoretical and applied overviews of Bayesian

statistics about the uses of non-informative priors (see [Bernardo 1994, Carlin 1996,

Gelman 2013a]). A variety of methods of driving non-informative priors have been

covered by [Yang 1996]. He also listed known properties of these prior distributions.

Despite the wide application of non-informative priors by Bayesian community, the

handling of non-informative Bayesian testing is mostly unresolved. In the following
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section, we briefly address hypotheses testing and related concepts.

1.3 Bayesian model choice

As mentioned at the beginning of this chapter, among many other types of sta-

tistical inference, hypotheses testing or equivalently model selection techniques are

widely applied for data analysis. Statistical hypothesis tests define a procedure of

controlling the probability of incorrectly deciding that a so-called null hypothesis is

false.

Differences among statistical paradigms such as frequency-based or Bayesian

methods are generally much more pronounced in model checking and selection than

in fitting. In a Bayesian paradigm the typical method for comparing two models

involves the Bayes factors or the posterior probability of the models which are based

on a specification of both likelihood and prior distribution and both are compared to-

gether. Unlike standard frequency-based methods both Bayes factors and posterior

probability treat the models under comparison essentially symmetrically. However,

from both classical and Bayesian points of view, model selection is the problem in

which we have to choose between some models on the basis of observed data but

the Bayesian model comparison based on the Bayes factors does not depend on the

parameters because of the integration over all parameters in each model. On the

other hand, the use of Bayes factors has the advantage of automatically including a

penalty for too much model structure [Kass 1995].

The literature on Bayesian model choice is considerable by now and one of the

earlier, reasonably thorough reviews, appears in [Gelfand 1992]. The Bayes factors

have also been the subject of much discussion in the literature in recent years and

one of the comprehensive review of Bayes factors, their computation and usage in

Bayesian hypothesis testing goes back to 1995 by [Kass 1995] who proposed this

criterion as a solution for the comparison of models problem. However, the decision

based on the Bayes factors requires a zero-one loss and [Kadane 1980] shows that

these criterions are sufficient if and only if a zero-one loss obtains. Many other

works on Bayesian model selection, Bayes factors and their features can be found in

[Good 1950, Berger 1996].

Because of the difficulties caused by prior specification, the Bayesian approach

to test hypotheses is not always straightforward especially in the case of an absolute

lack of information. In fact, the use of non-informative prior distributions for testing

hypotheses is delicate because of the sensitivity of Bayes factors to the choice of the

prior. The typical strategy of using non-informative prior distributions with large

variances clearly affects the Bayes factors [Robert 2001]. Furthermore, improper

prior distributions result in improper prior predictive distributions and undefined

Bayes factors. Among some other difficulties caused by Bayes factors that will be

addressed in Chapter 4, a principal drawback from which both criterions, Bayes

factors and posterior probability of models, suffer is that they can be difficult to

compute. In all but the simplest cases, Bayes factors must be evaluated numerically
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using methods such as importance sampling, bridge sampling and reversible jump

Markov Chain Monte Carlo [Green 1995]. Another method has also been recently

produced by [O’Neill 2014] for computing Bayes factors that avoids the need to use

reversible jump approaches. [O’Neill 2014] show that Bayes factors for the models

can be expressed in terms of the posterior means of the mixture probabilities, and

thus estimated from the MCMC output. In the other hand, one solution in the

case that the likelihood is not available or too costly to evaluate numerically, is

the approximate Bayesian computation. Some of related works can be found in

[Csilléry 2010, Toni 2010, Rattan 2013] for instance. Other proposals have been

made to solve particular problems with the ordinary Bayes factor such as intrinsic

Bayes factors [Berger 1996] with further modifications such as the trimmed and

median variants, fractional Bayes factors [O’Hagan 1995] and posterior Bayes factors

[Aitkin 1991]. Consideration of Bayes factors also leads to two of the more common

criteria used for model selection such as the Bayes Information Criterion (BIC) or

Schwartz’s criterion that provides a cursory first-order approximation to the Bayes

factor [Robert 2001] and the Akaike Information Criterion (or AIC) [Akaike 1973]. A

Bayesian alternative to both BIC and AIC based on the deviance has been developed

by [Spiegelhalter 1998] which takes into account the prior information.

Because the existing solutions are not, however, universal in the second part of this

thesis our focus is towards addressing the difficulties with the traditional handling

of Bayesian model selection using Bayes factors by proposing a method which goes

some way to removing these complications. The key idea is to consider a mixture

model whose components are the competing models of interest and the traditional

method for the model choice is replaced by a kind of Bayesian estimation problem

that focuses on the probability weight of the mixture model. The method includes a

novel strategy of reparametrizing the competing models towards common meaning

parameters in all models, that allows for using the non-informative priors at least

on the common parameters. Two substantial advantages of our method are the

usability of the non-informative priors for Bayesian model choice and the other is

that due to the standard MCMC algorithms, the Bayesian estimation of the model is

straightforward and there is no need to compute the marginal likelihoods. A related

paper was submitted for publication.

The third part of this thesis focuses on the parametrization of the mixture dis-

tributions. In the following we briefly introduce the motivation of this work.

1.4 Mixture distributions

The earliest study about the mixture models was done by [Pearson 1894] who inves-

tigated the estimation of parameters in the finite mixture model by the use of the

method of moments. In 1894, [Pearson 1894] studied the dissection of asymptotic

and symmetric frequency curves into two components of normal distributions. Many

other papers have appeared related to the problem of statistical inference about the

parameters and probabilistic properties of these densities. Since this early work,
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finite mixture models have been widely used in many disciplines and there is a large

body of literature on these distributions. For example in biology it is often desired

to measure certain characteristics in natural populations of some particular species

when the distribution of such characteristics may vary markedly with age of the

individuals. Since age is difficult to ascertain in samples from populations, the biol-

ogist is dealing with a mixture of distributions and the mixing in this case is done

over a parameter depending on the unobservable variate, age. Some other appli-

cations can be found in astronomy, ecology, genetics and so on due to the feature

that they are easily applied to the data set in which two or more subpopulations

are mixed together. In statistical applications, the mixture of densities can be used

to approximate some parameters associated with a density.

The finite mixture models have also enjoyed intensive attentions over the re-

cent years from both practical and theoretical viewpoints due to their flexibility in

modeling. Some basic properties of mixtures were studied by [Robbins 1948] and

[Robbins 1961] initiated the study of identifiability problem. Despite the popular-

ity of mixtures, model estimation can be difficult when the number of components

is unknown. In 1966, [Hasselblad 1966] first considered the estimation problem of

mixtures by the method of maximum likelihood. [Rolph 1968] first considered Bayes

estimation of the mixture parameters in the special case where the observations from

the mixture population are restricted to the positive integers. In the framework of

the Bayesian approach, one needs to assume that a prior distribution on component

parameters is available. As summarized in [Frühwirth-Schnatter 2006], there are

two main reasons why people may be interested in using the Bayesian method in

finite mixture models. Firstly, including a suitable prior distribution or the param-

eters in the framework of the Bayesian approach may avoid spurious modes when

maximizing the log-likelihood function. Secondly, when the posterior distribution

for the unknown parameters is available, the Bayesian method can yield valid infer-

ence without relying on asymptotic normality. This is an advantage of the Bayesian

method for estimating the parameters of a mixture distribution without the need

of sample sizes very large. As mentioned before, the use of the conjugate prior pro-

duces the posterior distribution that may belong to the tractable distribution family.

However, because of the complexity of mixtures, it is impossible to find a conjugate

prior for the component parameters. While the posterior distributions derived from

the mixture models are non standard, MCMC methods are used to generate samples

from these complex distributions [Marin 2006, Frühwirth-Schnatter 2006]. Because

the main idea of Bayesian estimation using MCMC methods followed by realizing a

mixture model is considered as a special case of incomplete data problem with the

missing component indicator variables, the problem with conjugate priors no longer

poses serious obstacles to the application of Bayesian method.

In fact, the Bayesian estimators in mixture models are always well defined as

long as priors are proper. Furthermore, the unidentifiability may be resolved by well

defining the parameter space or using informative priors on parameters. However, in

the case where no information is available for the component parameters, the choice

of the prior is more delicate. [Marin 2006] demonstrates that specifying improper
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prior to the component parameters results in improper posterior distribution that

prohibits this kind of prior to be used for mixtures. In addition, non-informative

priors assigned to the parameter of a specific component can also lead to identifia-

bility problems. Because if each component has its own prior parameters and few

observations are allocated to this component, there will be no information at all to

estimate the parameter and in the case of Gibbs sampling, the sampler gets trapped

in a local mode corresponding to this component.

This problem of non-identifiability in the posterior distribution can also be due

to an overfitting phenomenon. Basically this happens when some components have

weights equal to zero or merged together [Frühwirth-Schnatter 2006]. A full dis-

cussion about how over fitted mixtures behave can be found in [Rousseau 2011]

who proved that the posterior behavior of overfitted mixtures generally depends

on both the choice of the prior on the weights and the number of free parameters.

[van Havre 2015] treated the issues such as non-identifiability due to overfitting, la-

bel switching and also the problem of lack of mixing caused by applying standard

MCMC sampling techniques when the posterior contains multiple well separated

modes.

Given the difficulty with non-informative priors, one solution is to use proper pri-

ors with the prior parameters chosen such that the prior is suitably weakly informa-

tive priors [Richardson 1997]. This method is not always applicable because of the

problem of multiple prior specifications. Another method proposed by [Diebolt 1994]

is to use an improper prior under the condition of forcing each component to always

have a minimal number of data points assigned to it. A related work has been re-

cently developed by [Stoneking 2014] which does not result in any data dependence

of the priors.

In the third part of this thesis we define a novel reparametrisation for the mix-

ture of distributions based on the mean and standard deviation of the mixture

itself, namely global parameters. The main feature of our method is that the non-

informative prior distribution can be used on the global parameters of the mixture

while the resulting posterior distribution is proper. A related paper was submitted

for publication.

The reparametrized mixture model will be fitted with our R package named

Ultimixt. Ultimixt provides the functionality for estimating reparametrized Gaus-

sian mixture models with MCMC methods. The last part of this thesis pertains to

the description of the implementation and the functions of Ultimixt. This package

can accurately compute the posterior estimate of the parameters of reparametrized

univariate Gaussian mixture distribution beside having the ability of graphically

summarizing the posterior results.





Chapter 2

Reflecting about Selecting

Noninformative Priors

Joint work with Christian P. Robert

Abstract
Following the critical review of [Seaman III 2012], we reflect on what is presumably

the most essential aspect of Bayesian statistics, namely the selection of a prior den-

sity. In some cases, Bayesian inference remains fairly stable under a large range

of noninformative prior distributions. However, as discussed by [Seaman III 2012],

there may also be unintended consequences of a choice of a noninformative prior

and, these authors consider this problem ignored in Bayesian studies. As they

based their argumentation on four examples, we reassess these examples and their

Bayesian processing via different prior choices. Our conclusion is to lower the de-

gree of worry about the impact of the prior, exhibiting an overall stability of the

posterior distributions. We thus consider that the warnings of [Seaman III 2012],

while commendable, do not jeopardize the use of most noninformative priors.

Keywords: Induced prior, Logistic model, Bayesian methods, Stability, Prior

distribution

2.1 Introduction

The choice of a particular prior for the Bayesian analysis of a statistical model

is often seen more as an art than as a science. When the prior cannot be derived

from the available information, it is generally constructed as a noninformative prior.

This derivation is mostly mathematical and, even though the corresponding poste-

rior distribution has to be proper and hence constitutes a correct probability density,

it nonetheless leaves the door open to criticism. The focus of this note is the paper

by [Seaman III 2012], where the authors consider using a particular noninformative

distribution as a problem in itself, often bypassed by users of these priors: “if param-

eters with diffuse proper priors are subsequently transformed, the resulting induced

priors can, of course, be far from diffuse, possibly resulting in unintended influence

on the posterior of the transformed parameters” (p.77). Using the inexact argument

that most problems rely on MCMC methods and hence require proper priors, the

authors restrict the focus to those priors.

In their critical study, [Seaman III 2012] investigate the negative side effects

of some specific prior choices related with specific examples. Our note aims at
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re-examining their investigation and at providing a more balanced discussion on

these side effects. We first stress that a prior is considered as informative by

[Seaman III 2012] “to the degree it renders some values of the quantity of inter-

est more likely than others” (p.77), and with this definition, when comparing two

priors, the prior that is more informative is deemed preferable. In contrast with

this definition, we consider that an informative prior expresses specific, definite

(prior) information about the parameter, providing quantitative information that is

crucial to the estimation of a model through restrictions on the prior distribution

[Robert 2007]. However, in most practical cases, a model parameter has no sub-

stance per se but instead calibrates the probability law of the random phenomenon

observed therein. The prior is thus a tool that summarizes the information available

on this phenomenon, as well as the uncertainty within the Bayesian structure. Many

discussions can be found in the literature on how appropriate choices between the

prior distributions can be decided. In this case, robustness considerations also have

an important role to play [Lopes 2011, Stojanovski 2011]. This point of view will be

obvious in this note as, e.g., in processing a logistic model in the following section.

Within the sole setting of the examples first processed in [Seaman III 2012], we do

exhibit a greater stability in the posterior distributions through various noninfor-

mative priors.

The plan of the note is as follows: we first provide a brief review of noninfor-

mative priors in Section 4.2. In Section 2.3, we propose a Bayesian analysis of a

logistic model (Seaman III et al.’s (2012) first example) by choosing the normal

distribution N(0,σ2) as the regression coefficient prior. We then compare it with a

g-prior, as well as flat and Jeffreys’ priors, concluding to the stability of our results.

The next sections cover the second to fourth examples of [Seaman III 2012], model-

ing covariance matrices, treatment effect in biomedical studies, and a multinomial

distribution. When modeling covariance matrices, we compare two default priors

for the standard deviations of the model coefficients. In the multinomial setting,

we discuss the hyperparameters of a Dirichlet prior. Finally, we conclude with the

argument that the use of noninformative priors is reasonable within a fair range

and that they provide efficient Bayesian estimations when the information about

the parameter is vague or very poor.

2.2 Noninformative priors

As mentioned above, when prior information is unavailable and if we stick to Bayesian

analysis, we need to resort to one of the so-called noninformative priors. Since

we aim at a prior with minimal impact on the final inference, we define a non-

informative prior as a statistical distribution that expresses vague or general in-

formation about the parameter in which we are interested. In constructive terms,

the first rule for determining a noninformative prior is the principle of indiffer-

ence, using uniform distributions which assign equal probabilities to all possibilities

[Laplace 1820]. This distribution is however not invariant under reparametrization
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,(see [Berger 1980, Robert 2007] for references). If the problem does not allow for

an invariance structure, Jeffreys’ priors [Jeffreys 1939], then reference priors, ex-

ploit the probabilistic structure of the problem under study in a more formalized

way. Other methods have been advanced, like the little-known data-translated likeli-

hood of [Box 2011], maxent priors [Jaynes 2003], minimum description length priors

[Rissanen 2012] and probability matching priors [Welch 1963].

[Bernardo 2009] envision noninformative priors as a mere mathematical tool,

while accepting their feature of minimizing the impact of the prior selection on

inference: “Put bluntly, data cannot ever speak entirely for themselves, every prior

specification has some informative posterior or predictive implications and vague

is itself much too vague an idea to be useful. There is no “objective" prior that

represents ignorance” (p.298). There is little to object against this quote since,

indeed, prior distributions can never be quantified or elicited exactly, especially when

no information is available on those parameters. Hence, the concept of “true" prior

is meaningless and the quantification of prior beliefs operates under uncertainty.

As stressed by [Berger 1994], noninformative priors enjoy the advantage that they

can be considered to provide robust solutions to relevant problems even though “the

user of these priors should be concerned with robustness with respect to the class

of reasonable noninformative priors” (p.59).

2.3 Example 1: Bayesian analysis of the logistic model

The first example in [Seaman III 2012] is a standard logistic regression modeling the

probability of coronary heart disease as dependent on the age x by

ρ(x) =
exp(α+ βx)

1 + exp(α+ βx)
. (2.1)

First we recall the original discussion in [Seaman III 2012] and then run our own

analysis by selecting some normal priors as well as the g-prior, the flat prior and

Jeffreys’ prior.

2.3.1 Seaman et al.’s (2012) analysis

For both parameters of the model (2.1), [Seaman III 2012] chose a normal prior

N(0,σ2). A first surprising feature in this choice is to opt for an identical prior

on both intercept and slope coefficients, instead of, e.g., a g-prior (discussed in the

following) that would rescale each coefficient according to the variation of the cor-

responding covariate. Indeed, since x corresponds to age, the second term βx in

the regression varies 50 times more than the intercept. When plotting logistic cdf’s

induced by a few thousands simulations from the prior, those cumulative functions

mostly end up as constant functions with the extreme values 0 and 1. This be-

havior is obviously not particularly realistic since the predicted phenomenon is the

occurrence of coronary heart disease. Under this minimal amount of information,
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the prior is thus using the wrong scale: the simulated cdfs should have a reasonable

behavior over the range (20, 100) of the covariate x. For instance, it should focus

on a −5 log-odds ratio at age 20 and a +5 log-odds ratio at 100, leading to the

comparison pictured in Figure 2.1 (left versus right). Furthermore, the fact that

the coefficient of x may be negative also bypasses a basic item of information about

the model and answers the later self-criticism in [Seaman III 2012] that the prior

probability that the ED50 is negative is 0.5. Using instead a flat prior would answer

the authors’ criticisms about the prior behavior, as we now demonstrate.

Figure 2.1: Logistic cdfs across a few thousand simulations from the normal prior, when us-

ing the prior selected by [Seaman III 2012] (left) and the prior defined as the G-prior(right)

We stress that [Seaman III 2012] produce no further justification for the choice

of the prior variance σ2 = 252, other than there is no information about the

model parameters. This is a completely arbitrary choice of prior, arbitrariness that

does have a considerable impact on the resulting inference, as already discussed.

[Seaman III 2012] further criticized the chosen prior by comparing both posterior

mode and posterior mean derived from the normal prior assumption with the MLE.

If the MLE is the golden standard there then one may wonder about the relevance

of a Bayesian analysis! When the sample size N gets large, most simple Bayesian

analyses based on noninformative prior distributions give results similar to standard

non-Bayesian approaches [Gelman 2013a]. For instance, we can often interpret clas-

sical point estimates as exact or approximate posterior summaries based on some

implicit full probability model. Therefore, as N increases, the influence of the prior

on posterior inferences decreases and, when N goes to infinity, most priors lead

to the same inference. However, for smaller sample sizes, it is inappropriate to
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σ = 10

α̂ β̂

mean s.d mean s.d

3.482 11.6554 -0.0161 0.0541

σ = 25

18.969 24.119 -0.0882 0.1127

σ = 100

137.63 64.87 -0.6404 0.3019

σ = 900

237.2 86.12 -1.106 0.401

Table 2.1: Posterior estimates of the logistic parameters using a normal prior when

σ = 10, 25, 100, 900

summarize inference about the parameter by one value like the mode or the mean,

especially when the posterior distribution of the parameter is more variable or even

asymmetric.

The dataset used here to infer on (α,β) is the Swiss banknote benchmark (avail-

able in R). The response variable y indicates the state of the banknote, i.e. whether

the bank note is genuine or counterfeit. The explanatory variable is the bill length.

This data yields the maximum likelihood estimates α̃ = 233.26 and β̃ = −1.09. To

check the impact of the normal prior variance, we used a random walk Metropolis-

Hastings algorithm as in [Marin 2007] and derived the estimators reproduced in

Table 2.1. We can spot definitive changes in the results that are caused by moves

in the coefficient σ, hence concluding to the clear sensitivity of the posterior to the

choice of hyperparameter σ (see also Figure 2.2).

2.3.2 Larger classes of priors

Normal priors are well-know for their lack of robustness (see e.g. [Berger 1994]) and

the previous section demonstrates the long-term impact of σ. However, we can limit

variations in the posteriors, using the g-priors of [Zellner 1986],

α,β | X ∼ N2(0, g(X
TX)−1). (2.2)

where the prior variance-covariance matrix is a scalar multiple of the information

matrix for the linear regression. This coefficient g plays a decisive role in the anal-

ysis, however large values of g imply a more diffuse prior and, as shown e.g. in

[Marin 2007], if the value of g is large enough, the Bayes estimate stabilizes. We

will select g as equal to the sample size 200, following [Liang 2008], as it means

that the amount of information about the parameter is equal to the amount of

information contained in one single observation.

A second reference prior is the flat prior π(α,β) = 1. And Jeffreys’ prior

constitutes our third prior as in [Marin 2007]. In the logistic case, Fisher’s in-

formation matrix is I(α,β, X) = XTWX, where X = {xir} is the design matrix,
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Figure 2.2: Posterior distributions of the logistic parameter α when priors are N(0,σ) for

σ = 10, 25, 100, 900, based on 104 MCMC simulations.

W = diag{miπi(1−πi)} and mi is the binomial index for the ith count [Firth 1993].
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This is a nonstandard distribution on (α,β) but it can be easily approximated by a

Metropolis-Hastings algorithm whose proposal is the normal Fisher approximation

of the likelihood, as in [Marin 2007].

Bayesian estimates of the regression coefficients associated with the above three

noninformative priors are summarized in Table 2.2. Those estimates vary quite

moderately from one choice to the next, as well as relatively to the MLEs and to the

results shown in Table 2.1 when σ = 900. Figure 2.3 is even more definitive about

this stability of Bayesian inferences under different noninformative prior choices.

2.4 Example 2: Modeling covariance matrices

The second choice of prior criticized by [Seaman III 2012], was proposed by [Barnard 2000]

for the modeling of covariance matrices. However the paper falls short of demon-

strating a clear impact of this prior modeling on posterior inference. Furthermore

the adopted solution of using another proper prior resulting in a “wider" dispersion

requires a prior knowledge of how wide is wide enough. We thus run Bayesian analy-

ses considering prior beliefs specified by both [Seaman III 2012] and [Barnard 2000].
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g-prior

α̂ β̂

mean s.d mean s.d

237.63 88.0377 -1.1058 0.4097

Flat prior

236.44 85.1049 -1.1003 0.3960

Jeffreys’ prior

237.24 87.0597 -1.1040 0.4051

Table 2.2: Posterior estimates of the logistic parameters under a g-prior, a flat prior

and Jeffreys’ prior for the banknote benchmark. Posterior means and standard

deviations remain quite similar under all priors. All point estimates are averages of

MCMC samples of size 104.

Figure 2.3: Posterior distributions of the parameters of the logistic model when the prior

is N(0, 9002), g-prior, flat prior and Jeffreys’ prior, respectively. The estimated posterior

distributions are based on 104 MCMC iterations.

2.4.1 Setting

The multivariate regression model of [Barnard 2000] is

Yj | Xj ,βj , τj ∼ N(Xjβj , τ
2
j Inj ), j = 1, 2, . . . ,m. (2.3)

where Yj is a vector of nj dependent variables, Xj is an nj×k matrix of covariate vari-

ables, and βj is a k-dimensional parameter vector. For this model, [Barnard 2000]

considered an iid normal distribution as the prior

βj ∼ N(β̄,Σ)
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conditional on β̄,Σ where β̄, τ2j for j = 1, 2, . . . ,m are independent and follow a

normal and inverse-gamma priors, respectively. Assuming that β̄, τ2j ’s and Σ are a

priori independent, [Barnard 2000] firstly provide a full discussion on how to choose

a prior for Σ because it determines the nature of the shrinkage of the posterior of

the individual βj is towards a common target. The covariance matrix Σ is defined

as a diagonal matrix with diagonal elements S, multiplied by a k × k correlation

matrix R,

Σ = diag(S)Rdiag(S) .

Note that S is the k × 1 vector of standard deviations of the βjs, (S1, . . . , Sk).

[Barnard 2000] propose lognormal distributions as priors on Sj . The correlation

matrix could have (1) a joint uniform prior p(R) ∝ 1, or (2) a marginal prior

obtained from the inverse-Wishart distribution for Σ which means p(R) is derived

from the integral over S1, . . . , Sk of a standard inverse-Wishart distribution. In the

second case, all the marginal densities for rij are uniform when i �= j [Barnard 2000].

Considering the case of a single regressor, i.e. k = 2, [Seaman III 2012] chose a

different prior structure, with a flat prior on the correlations and a lognormal prior

with means 1 and −1, and standard deviations 1 and 0.5 on the standard deviations

of the intercept and slope, respectively. Simulating from this prior, they concluded at

a high concentration near zero. They then suggested that the lognormal distribution

should be replaced by a gamma distribution G(4, 1) as it implies a more diffuse prior.

The main question here is whether or not the induced prior is more diffuse should

make us prefer gamma to lognormal as a prior for Sj , as discussed below.

2.4.2 Prior beliefs

First, Barnard et al.’s (2000) basic modeling intuition is “that each regression is

a particular instance of the same type of relationship" (p.1292). This means an

exchangeable prior belief on the regression parameters. As an example, they sup-

pose that m regressions are similar models where each regression corresponds to a

different firm in the same industry branch. Exploiting this assumption, when βj

has a normal prior like βij ∼ N(β̄i,σ
2
i ), j = 1, 2, . . . ,m, the standard deviation of

βij (Si = σi) should be small as well so “that the coefficient for the ith explana-

tory variable is similar in the different regressions" (p.1293). In other words, Si

concentrated on small values implies little variation in the ith coefficient. Toward

this goal, [Barnard 2000] chose a prior concentrated close to zero for the standard

deviation of the slope so that the posterior of this coefficient would be shrunken

together across the regressions. Based on this basic idea and taking tight priors

on Σ for βj , j = 1, . . . ,m, they investigated the shrinkage of the posterior on βj as

well as the degree of similarity of the slopes. Their analysis showed that a stan-

dard deviation prior that is more concentrated on small values results in substantial

shrinkage in the coefficients relative to other prior choices.

Consider for instance the variation between the choices of lognormal and gamma

distributions as priors of S2, standard deviation of the regression slope. Figure 2.4
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compares the lognormal prior with mean −1 and standard deviation 0.5 and the

gamma distribution G(4, 1).

Figure 2.4: Comparison of lognormal and gamma priors for the standard deviation of the

regression slope.

In this case, most of the mass of the lognormal prior is concentrated on values

close to zero whereas the gamma prior is more diffuse. The 10, 50, 90 percentiles of

LN(−1, 0.5) and G(4, 1) are 0.19, 0.37, 0.7 and 1.74, 3.67, 6.68, respectively. Thus,

choosing LN(−1, 0.5) as the prior of S2 is equivalent to believe that values of β2 in

the m regressions are much closer together than the situation where we assume S2 ∼
G(4, 1). To assess the difference between both prior choices on S2 and their impact

on the degree of similarity of the regression coefficients, we resort to a simulated

example, similar to [Barnard 2000], except that m = 4 and nj = 36.

The explanatory variables are simulated standard normal variates. We also take

τj ∼ IG(3, 1) and β̄ ∼ N(0, 1000I). The prior for Σ is such that π(R) ∝ 1 and we

run Seaman et al.’s (2012) analyses under S2 ∼ LN(−1, 0.5) and S2 ∼ G(4, 1).
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Si ∼ LN(−1, 0.5)

Regression 1 Regression 2 Regression 3 Regression 4

Estimate mean s.d mean s.d mean s.d mean s.d

Intercept 16.74 0.17 16.72 0.17 16.79 1.09 16.82 0.69

Slope -9.27 0.42 -9.47 0.25 -9.66 0.98 -9.63 0.45

Si ∼ G(4, 1)

Regression 1 Regression 2 Regression 3 Regression 4

Estimate mean s.d mean s.d mean s.d mean s.d

Intercept 16.73 0.23 16.73 0.22 16.85 0.37 16.76 0.32

Slope -9.30 0.30 -9.47 0.34 -9.73 0.23 -9.64 0.80

Table 2.3: Posterior estimations of regression coefficients when their standard devi-

ations are distributed as LN(−1, 0.5) and G(4, 1).

Si ∼ LN(−1, 0.5)

Regression 1 Regression 2 Regression 3 Regression 4

Estimate mean s.d mean s.d mean s.d mean s.d

S1 0.43 0.27 0.44 0.26 0.42 0.26 0.41 0.24

S2 0.42 0.27 0.43 0.25 0.42 0.25 0.43 0.32

Si ∼ G(4, 1)

Regression 1 Regression 2 Regression 3 Regression 4

Estimate mean s.d mean s.d mean s.d mean s.d

S1 2.31 1.28 2.33 1.29 2.29 1.29 2.29 1.26

S2 2.32 1.29 2.23 1.28 2.25 1.23 2.30 1.26

Table 2.4: Posterior estimations standard deviations of the regression coefficients

when their priors are distributed as LN(−1, 0.5) versus G(4, 1).

2.4.3 Comparison of posterior outputs

As seen in Tables 2.3 and 2.4, respectively. The differences between the regression

estimates are quite limited from one prior to the next, while the estimates of the

standard deviations vary much more. In the lognormal case, the posterior of Si

is concentrated on smaller values relative to the gamma prior. Figure 2.5 displays

the posterior distributions of those parameters. The impact of the prior choice

is quite clear on the standard deviations. Therefore, since the posteriors of both

intercepts and slopes for all four regressions are centered in (16.5, 17) and (−10,−9),

respectively, we can conclude at the stability of Bayesian inferences on βj when

selecting two different prior distributions on Sj . That the posteriors on the Si’s

differ is in fine natural since those are hyperparameters that are poorly informed by

the data, thus reflecting more the modeling choices of the experimenter.
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Figure 2.5: Estimated posterior densities of the regression intercept (top left), slope (top

right), standard deviation of the intercept (down left) and standard deviation of the slope

(down right), respectively for 4 different normal regressions. All estimates based on 105

iterations simulated from Metropolis-withing-Gibbs algorithm.

2.5 Examples 3 and 4: Prior choices for a proportion

and the multinomial coefficients

This section considers more briefly the third and fourth examples of [Seaman III 2012].

The third example relates to a treatment effect analyzed by [Cowles 2002] and the

fourth one covers a standard multinomial setting.

2.5.1 Proportion of treatment effect captured

In [Cowles 2002] two models are compared for surrogate endpoints, using a link

function g that either includes the surrogate marker or not. The quantity of interest

is a proportion of treatment effect captured: it is defined as PTE ≡ 1 − β1/βR,1,

where β1,βR,1 are the coefficients of an indicator variable for treatment in the first

and second regression models under comparison, respectively. [Seaman III 2012]

restricted this proportion to the interval (0, 1) and under this assumption they pro-

posed to use a generalized beta distribution on β1,βR,1 so that PTE stayed within

(0, 1).

We find this example most intriguing in that, even if PTE could be turned into

a meaningful quantity (given that it depends on parameters from different models),

the criticism that it may take values outside (0, 1) is rather dead-born since it suffices

to impose a joint prior that ensures the ratio stays within (0, 1). This actually is
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the solution eventually proposed by the authors. If we have prior beliefs about the

parameter space (which depends on β1/βR,1 in this example) the prior specified

on the quantity of interest should integrate these beliefs. In the current setting,

there is seemingly no prior information about (β1,βR,1) and hence imposing a prior

restriction to (0, 1) is not a logical specification. For instance, using normal priors

on β1 and βR,1 lead to a Cauchy prior on β1/βR,1, which support is not limited to

(0, 1). We will not discuss this rather artificial example any further.

2.5.2 Multinomial model and evenness index

The final example in [Seaman III 2012] deals with a measure called evenness index

H(θ) = −� θi log(θi)
�
log(K) that is a function of a vector θ of proportions θi,

i = 1, . . . ,K. The authors assume a Dirichlet prior on θ with hyperparameters first

equal to 1 then to 0.25. For the transform H(θ), Figure 2.6 shows that the first

prior concentrates on (0.5, 1) whereas the second does not. Since there is nothing

special about the uniform prior, re-running the evaluation with the Jeffreys prior

reduces this feature, which anyway is a characteristic of the prior distribution, not

of a posterior distribution that would account for the data. The authors actually

propose to use the Dir(1/4, 1/4, . . . , 1/4) prior, presumably on the basis that the

induced prior on the evenness is then centered close to 0.5. If we consider the

more generic Dir(γ1, . . . , γK) prior, we can investigate the impact of the γi’s when

they move from 0.1 to 1. In Figure 2.6, the induced priors on H(θ) indeed show a

decreasing concentration of the posterior on (0.5, 1) as γi decreases towards zero. To

further the comparison, we generated datasets of size N = 50, 100, 250, 1000, 10, 000.

Figure 2.7 shows the posteriors associated with each of the four Dirichlet priors for

these samples, including modes that are all close to 0.4 when N = 104. Even for

moderate sample sizes like 50, the induced posteriors are almost similar. When the

sample size is 50, Table 2.5 shows there is some degree of variation between the

posterior means, even though, as expected, this difference vanishes when the sample

size increases.

Note that, while Dirichlet distributions are conjugate priors, hence potentially

lacking in robustness, Jeffreys’s prior is a special case corresponding to γi = 1/K

(here K is equal to 8). Figure 2.8 reproduces the transform of Jeffreys’ prior for the

evenness index (left) and the induced posterior densities for the same values of N .

Since it is a special case of the above, the same features appear. A potential alter-

native we did not explore is to set a non-informative prior on the hyperparameters

of the Dirichlet distribution.

2.6 Conclusion

In this note, we have reassessed the examples supporting the critical review of

[Seaman III 2012], mostly showing that off-the-shelf noninformative priors are not

suffering from the shortcomings pointed out by those authors. Indeed, according to



2.6. Conclusion 21

Figure 2.6: Priors induced on the evenness index: Four Dirichlet prior are assigned to θ

with hyperparameters all equal to 0.1, 0.25, 0.5, 1, based on 104 simulations.

Figure 2.7: Estimated posterior densities of H(θ) considering sample sizes of

50, 100, 250, 1000, 10, 000. They correspond to the priors on θ shown in Figure 2.6 and are

based on 104 posterior simulations. The vertical line indicates the mode of all posteriors

when sample size is large enough.

the outcomes produced therein, those noninformative priors result in stable poste-

rior inferences and reasonable Bayesian estimations for the parameters at hand. We

thus consider the level of criticism found in the original paper rather unfounded, as it

either relies on a highly specific choice of a proper prior distribution or on bypassing

basic prior information later used for criticism. The paper of [Seaman III 2012] con-

cludes with recommendations for prior checks. These recommendations are mostly

sensible if mainly expressing the fact that some prior information is almost always
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Sample size 50 100 250 1000 10,000

Dirichlet prior when γi = 0.1

Posterior mean 0.308 0.336 0.403 0.383 0.395

Dirichlet prior when γi = 0.25

Posterior mean 0.317 0.438 0.417 0.387 0.396

Dirichlet prior when γi = 0.5

Posterior mean 0.378 0.368 0.423 0.387 0.397

Dirichlet prior when γi = 1

Posterior mean 0.454 0.425 0.441 0.390 0.396

Jeffreys’ prior: γi = 0.125

Posterior mean 0.413 0.411 0.406 0.390 0.396

Posterior s.d 0.058 0.057 0.037 0.018 0.006

Table 2.5: Posterior means of H(θ) for the priors shown in Figure 2.6 and Jeffreys’

prior on θ for sample sizes 50, 100, 250, 1000, 10, 000.

Figure 2.8: Jeffreys’ prior and estimated posterior densities of H(θ) considering sample

sizes 50, 100, 250, 1000, 10, 000. The posterior distributions are based on 104 posterior draws.

The vertical line indicates the mode of the posterior density when the sample size is 104.

available on some quantities of interest. Our sole point of contention is the repeated

and recommended reference to MLE, if only because it implies assessing or building

the prior from the data. The most specific (if related to the above) recommendation

is to use conditional mean priors as exposed by [Christensen 2011]. For instance, in

the first (logistic) example, this meant putting a prior on the cdfs at age 40 and age

60. The authors picked a uniform in both cases, which sounds inconsistent with the

presupposed shape of the probability function.

In conclusion, we find there is nothing pathologically wrong with either the paper

of [Seaman III 2012] or the use of “noninformative" priors! Looking at induced priors

on more intuitive transforms of the original parameters is a commendable suggestion,

provided some intuition or prior information is already available on those. Using
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a collection of priors including reference or invariant priors helps as well towards

building a feeling about the appropriate choice or range of priors and looking at the

dataset induced by simulating from the corresponding predictive cannot hurt.





Chapter 3

Supplementary material:

Reflecting about Selecting

Noninformative Priors

This chapter contains the statistical tools, computational details and some more

data analyses related to the examples studied in the chapter 2.

3.1 Example 1

The first example of Chapter 2 is about the Bayesian analysis of the logistic model.

The non standard posterior distributions resulted by assigning different non-informative

priors to the parameters of the model are given as follows

� for a flat prior π(α,β) = 1:

f(α,β|ρ, x) = exp(
�n

i=1 ρi(α+βxi))/
�n

i=1(1+exp(α+βxi))

� for g-prior α,β|X ∼ N (0, g(XTX)−1):

f(α,β|ρ, x) = |XTX|1/2 exp
�
−g/2(αβ)

T
XTX(αβ)+

�n
i=1 ρi(α+βxi)

�
/2π√g

�n
i=1(1+exp(α+βxi))

� and for the Jeffrey’s prior, the log-likelihood of the logistic model is given by

�(α,β) =

n�

i=1

(ρi(α+ βxi)− ln(1 + exp(α+ βxi)))

The second derivate of � with respect to α and β is

∂2�(α,β)

∂α2
= −

n�

i=1

exp(α+βxi)/(1+exp(α+βxi))
2

∂2�(α,β)

∂β2
= −

n�

i=1

x2
i exp(α+βxi)/(1+exp(α+βxi))

2

∂2�(α,β)

∂α∂β
= −

n�

i=1

xi exp(α+βxi)/(1+exp(α+βxi))
2
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and the matrix of Fisher information can be written as following:

I(α,β, x) =

�
−�n

i=1
exp(α+βxi)

(1+exp(α+βxi))2
−�n

i=1
xi exp(α+βxi)

(1+exp(α+βxi))2

−�n
i=1

xi exp(α+βxi)
(1+exp(α+βxi))2

−�n
i=1

x2
i exp(α+βxi)

(1+exp(α+βxi))2

�

� The invariant Jeffreys prior computed from
�
det(I(α,β, x)) yields the follow-

ing posterior distribution for α and β

f(α,β|ρ, x) =

����
n�

i=1

exp(α+ βxi)

(1 + exp(α+ βxi))2

n�

i=1

x2i exp(α+ βxi)

(1 + exp(α+ βxi))2
− {

n�

i=1

xi exp(α+ βxi)

(1 + exp(α+ βxi))2
}2

×
exp (

�n
i=1 ρi(α+ βxi))�n

i=1(1 + exp (α+ βxi))
.

We can sample from the posterior distributions above using the Metropolis-

Hastings algorithm for each prior specification in which the proposal distribution is

a random walk multivariate normal distribution based on the maximum likelihood

estimate as starting value and the asymptotic covariance matrix of the maximum

likelihood estimate as the covariance matrix of the proposal. The implementation

in R can be found in [Kamary 2016a].

We run the Metropolis-Hastings algorithm with 104 iterations for the bank

dataset by considering the bill length as the explanatory variable, and we test three

different proposal scales, τ = 0.1, 1, 5. As shown in Figures 3.1, 3.2 and 3.3, for all

values of τ , the chains simulated for α and β are convergent to the target distribu-

tion and able to move around the normal range with decreasing autocorrelations.

However, in the case where τ = 5, the acceptance rate is low and the histograms of

the output are far from the target distribution even after 104 iterations. The auto-

correlation graph for τ = 1 decreases quicker than the cases where τ = 0.1, 5. By

comparing the raw sequences and the autocorrelation graphs provided by three algo-

rithms above and also the corresponding acceptance rates, the best mixing behavior

is related to τ = 1.

By comparing the plots shown in Figures 3.1, 3.2 and 3.3, despite the fact that

three different non informative priors were assigned to the parameters of the logistic

model, there is no visible difference between the posterior draws.

3.2 Example 2

Bayesian inference of multivariate regression model 2.3 using the prior modeling

defined in section 2.4 derives the following joint posterior probability
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Figure 3.1: Simulation of posterior distribution of α and β with a multivariate normal

random walk when the proposal scale τ takes values 0.1, 1, 5 and a flat prior is assigned

to α and β. From top to bottom: Sequence of 104 iterations; Empirical autocorrelation;

Histogram of the last 9000 iterations compared with the target density.

Figure 3.2: Simulation of posterior distribution of α and β with a multivariate normal

random walk when the proposal scale τ takes values 0.1, 1, 5 and a g-prior is assigned to

α and β. From top to bottom: Sequence of 104 iterations; Empirical autocorrelation;

Histogram of the last 9000 iterations compared with the target density.

π(βj , τ
2
j , β̄, S,R|Yj , Xj) ∝ �(βj , τ

2
j , β̄|Yj , Xj)× π(βj |β̄, S,R)π(τ2j )π(β̄)π(S,R)

∝ 1/(τ2j )
nj/2−a−1 exp

�
−(Yj−Xjβj)

T (Yj−Xjβj)/2τ2j
�

× |diag(S)Rdiag(S)|−1/2 exp
�
−(βj−β̄)T (diag(S)Rdiag(S))−1(βj−β̄)/2

�

× exp(−b/τ2j − β̄T β̄/2000)π(S)
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Figure 3.3: Simulation of posterior distribution of α and β with a multivariate normal

random walk when the proposal scale τ takes values 0.1, 1, 5 and a Jeffreys prior is assigned

to α and β. From top to bottom: Sequence of 104 iterations; Empirical autocorrelation;

Histogram of the last 9000 iterations compared with the target density.

that is resulted under the assumption of independence between the parameter

S and R and π(R) ∝ 1. The conditional posterior distribution of the parameter βj

can be obtained as following

π(βj |τ
2
j , β̄, S,R, Yj , Xj) ∝ exp

�
−(Yj−Xjβj)

T (Yj−Xjβj)/2τ2j − (βj−β̄)T (diag(S)Rdiag(S))−1(βj−β̄)/2
�

∝ exp
�
−(Yj−Xjβj)

T (τ2j Ik)
−1(Yj−Xjβj)−(βj−β̄)T (diag(S)Rdiag(S))−1(βj−β̄)/2

�

where Ik is the identity matrix of size k. If we replace diag(S)Rdiag(S) by Σ,

dropping multiplicative terms that do not involve βj gives

π(βj |τ
2
j , β̄, S,R, Yj , Xj) ∝ exp(−1/2

�
Xjβj − Yj

βj − β̄

�T �
τ2j Ik 0

0 Σ

�−1�
Xjβj − Yj

βj − β̄

�
)

or

π(βj |τ
2
j , β̄, S,R, Yj , Xj) ∝ exp(−1/2(

�
Xj

Ik

�
βj−
�
Yj

β̄

�
)T
�

τ2j Ik 0

0 Σ

�−1

(

�
Xj

Ik

�
βj−
�
Yj

β̄

�
))

As shown in [Christensen 2011], if we define

β̃j =
�
τ−2
j XT

j Xj + Σ
−1
�−1

(τ−2
j XT

j Yj + Σ
−1β̄)

we can rewrite the posterior density as
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π(βj |τ
2
j , β̄, S,R, Yj , Xj) ∝ exp

�
−1/2(βj − β̃j)

T
�
τ−2
j XT

j Xj + Σ
−1
�
(βj − β̃j)

�

which implies a multivariate Gaussian distribution as following

βj |τ
2
j , β̄, S,R, Yj , Xj ∼ N

�
β̃j ,
�
τ−2
j XT

j Xj + Σ
−1
�−1
�
.

The posterior density of the parameter τ 2
j given βj , β̄, S, R, Yj , Xj is inverse

gamma distribution

τ2j |βj , β̄, S,R, Yj , Xj ∼ IG
�
nj+2a/2, (Yj−Xjβj)

T (Yj−Xjβj)+2b/2
�

when the prior distribution is supposed to be IG(a, b). To obtain the full condi-

tional for β̄, we can write

β̄|βj , τ
2
j , S, R, Yj , Xj ∝ exp

�
−(βj−β̄)T (diag(S)Rdiag(S))−1(βj−β̄)/2 − β̄T β̄/2

�

∝ exp(−1/2

�
β̄ − βj

β̄ − 0

�T �
Σ 0

0 1000Ik

�−1�
β̄ − βj

β̄ − 0

�
)

which implies a multivariate Gaussian distribution with the following form

β̄|βj , τ
2
j , S, R, Yj , Xj ∼ N

�
β0, (Σ

−1 + 1/1000Ik)
−1
�

(3.1)

where β0 = (Σ−1 + 1/1000Ik)
−1Σ−1βj . For the correlation matrix R, the full

conditional density will therefore be

R|βj , β̄, τ
2
j , S, Yj , Xj ∝ |diag(S)Rdiag(S)|−1/2 exp

�
−(βj−β̄)T (diag(S)Rdiag(S))−1(βj−β̄)/2

�
.

When the prior of the standard deviations, S, is log normal LN (µ,σ), the con-

ditional posterior is given by

S|βj , β̄, τ
2
j , R, Yj , Xj ∝ |diag(S)Rdiag(S)|−1/2 exp

�
−(βj−β̄)T (diag(S)Rdiag(S))−1(βj−β̄)/2

�

×
k�

j=1

1/sj exp(−(ln(sj)−µ)2/2σ2)

and in the case where gamma G(δ, ζ) prior is placed on the elements of S, we

will have

S|βj , β̄, τ
2
j , R, Yj , Xj ∝ |diag(S)Rdiag(S)|−1/2 exp

�
−(βj−β̄)T (diag(S)Rdiag(S))−1(βj−β̄)/2

�

×
k�

j=1

sδ−1
j exp(−sj/ζ)
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The analyses of this example in Chapter 2 are based on the Metropolis-within-

Gibbs algorithm in which the correlations rij ; i �= j are independently simulated

from uniform proposal distributions. For both prior specifications of S, log normal

and gamma distributions, the implementation in R can be seen in [Kamary 2016a].

In the algorithm, the parameter βj and Σ = diag(S)Rdiag(S) are initialized

by the maximum likelihood estimate and the asymptotic covariance matrix of the

maximum likelihood estimate and the other parameters are started from a random

value simulated from their prior distributions. The proposal distribution of log-

arithm function of S is a random walk multivariate normal distribution with the

possibility of calibrating the proposal scale. As discussed in Chapter 2, replacing

log normal distribution assigned to the hyper parameter S by gamma distribution

does not influence the conditional posterior distribution of the regression intercept

and slope. Here, we deal with the convergence of the simulated samples obtained by

implementing the Metropolis-within-Gibbs algorithm and also the impact of both

prior choices on Bayesian inference of the other parameters. To do so, we simulate

n1 = 36 data points from normal regression model with an explanatory variable and

run the program over 104 iterations when the scale of the proposal distribution of

sj is equal to 1.

Figure 3.4: Simulation of posterior distribution of the parameters of the normal regression

model when standard deviations of the intercept and slope have log normal distribution.

From top to bottom: Sequence of last 9000 iterations; Empirical autocorrelation; His-

tograms. True values of the parameters are indicated at the top of sequence plots.

Figures 3.4 and 3.5 give an assessment of the convergence of the algorithm and

show that for both priors, log normal and gamma distributions, the distributions of

the chains visually cover the whole support of the target distribution with sufficient

regularity for 104 MCMC iterations. The autocorrelation plots show high mixing

behavior of the chains and from the histograms, the distributions of the generated
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Figure 3.5: Simulation of posterior distribution of the parameters of the normal regression

model when standard deviations of the intercept and slope have gamma distribution. From

top to bottom: Sequence of last 9000 iterations; Empirical autocorrelation; Histograms.

True values of the parameters are indicated at the top of sequence plots.

Figure 3.6: Empirical density of simulated draws from conditional posterior density of β̄11

and β̄12 based on last 9000 iterations when (Top) log normal prior and (Bottom) gamma

prior are assigned to the hyper parameter sj ’s. True values of the parameters are indicated

at the top of each graph.

samples are slightly concentrated over the true values. By comparing the range of

the histograms of β̄1j and s1j in Figure 3.4 with those of Figure 3.5, we can see that

when the distribution of s1j ; j = 1, 2 is tightened up near zero (which corresponds to
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the output of the simulation run in the case of log normal prior) the chains simulated

for β̄1j have a lot of density over a narrow interval near the true values while the

distribution of β̄1j spreads out over a wide range in the case of gamma prior.

This impact of the prior choices for the standard deviations on the posterior

distribution of β̄ becomes more visible when comparing the empirical density plotted

in Figure 3.6. In both cases, the empirical densities are centered over the true values

of the parameter β̄ while the dispersion of two cases is impacted by the change in

the prior choice for sj ’s. The main reason for this effect is that as shown in (3.1),

the conditional posterior distribution of β̄ depends on Σ and so on S. A stretched

or squeezed prior choice allocated to sj ’s influences the posterior results of standard

deviation S and therefore impacts those of β̄.



Chapter 4

Testing hypotheses as a mixture

estimation model

Joint work with Kerrie Mengersen, Christian P. Robert and Judith

Rousseau

Abstract
We consider a novel paradigm for Bayesian testing of hypotheses and Bayesian model

comparison. Our alternative to the traditional construction of posterior probabilities

that a given hypothesis is true or that the data originates from a specific model is to

consider the models under comparison as components of a mixture model. We there-

fore replace the original testing problem with an estimation one that focus on the

probability weight of a given model within a mixture model. We analyze the sensi-

tivity on the resulting posterior distribution on the weights of various prior modeling

on the weights. We stress that a major appeal in using this novel perspective is that

generic improper priors are acceptable, while not putting convergence in jeopardy.

Among other features, this allows for a resolution of the Lindley–Jeffreys paradox.

When using a reference Beta B(a0, a0) prior on the mixture weights, we note that

the sensitivity of the posterior estimations of the weights to the choice of a0 vanishes

with the sample size increasing and advocate the default choice a0 = 0.5, derived

from Rousseau and Mengersen (2012). Another feature of this easily implemented

alternative to the classical Bayesian solution is that the speeds of convergence of

the posterior mean of the weight and of the corresponding posterior probability are

quite similar.

Keywords: Noninformative prior, Mixture of distributions, Bayesian analysis,

testing statistical hypotheses, Dirichlet prior, Posterior probability

4.1 Introduction

While a if not the central problem of statistical inference and a dramatically differen-

tiating feature between classical and Bayesian paradigms [Neyman 1933, Berger 1987,

Casella 1987, Gigerenzer 1991, Berger 2003a, Mayo 2006, Gelman 2008], the han-

dling of hypothesis testing by Bayesian theory is wide open to controversy and diver-

gent opinions, even within the Bayesian community [Jeffreys 1939, Bernardo 1980,

Berger 1985, Aitkin 1991, Berger 1992, De Santis 1997, Bayarri 2007, Christensen 2011,



34 Chapter 4. Testing hypotheses as a mixture estimation model

Johnson 2010, Gelman 2013a, Robert 2014]. In particular, the handling of the non-

informative Bayesian testing case is mostly unresolved and has produced much de-

bate, witness the specific case of the Lindley or Jeffreys–Lindley paradox [Lindley 1957,

Shafer 1982, DeGroot 1982, Robert 1993, Lad 2003, Spanos 2013, Sprenger 2013,

Robert 2014].

Bayesian model selection is understood here as the comparison of several poten-

tial statistical models towards the selection of the model that fits the current data

the “best". For instance, [Christensen 2011] consider this is a decision issue that

pertains to testing, while [Robert 2001] expressed it as a model index estimation

setting and [Gelman 2013a] do not agree about the decisional aspect. A mostly ac-

cepted perspective is however that Bayesian model selection does not primarily seek

to identify which model is “true" (if any), but rather to indicate which model fits the

data better given all the available information. As discussed in the Bayesian litera-

ture (see, e.g. [Berger 1992, Madigan 1994, Balasubramanian 1997, MacKay 2002,

Consonni 2013]), tools like the Bayes factor [Jeffreys 1939] naturally include a pe-

nalization factor addressing model complexity, penalization mimicked by approx-

imations like the Bayes Information (BIC) and the Deviance Information (DIC)

criteria [Schwarz 1978, Csiszár 2000, Spiegelhalter 2002, Plummer 2008]. Posterior

predictive tools have been successfully advocated in [Gelman 2013a], even though

they can be criticized for multiple uses of the (same) data.

Let us recall very briefly ( referring to [Berger 1985, Robert 2001]) that the

standard Bayesian approach to testing is to consider two families of models, one for

each of the hypotheses under comparison,

M1 : x ∼ f1(x|θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x|θ2) , θ2 ∈ Θ2 ,

and to associate with each of those models a prior distribution,

θ1 ∼ π1(θ1) and θ2 ∼ π2(θ2) ,

in order to compare the marginal likelihoods

m1(x) =

�

Θ1

f1(x|θ1)π1(θ1) dθ1 and m2(x) =

�

Θ2

f2(x|θ2)π1(θ2) dθ2

either through the Bayes factor or through the posterior probability, respectively:

B12 =
m1(x)

m2(x)
, P(M1|x) =

ω1m1(x)

ω1m1(x) + ω2m2(x)
;

the latter depends on the prior weights ωi of both models. Both testing and model

selection are thus expressed as a comparison of models. The Bayesian decision

step proceeds by comparing the Bayes factor B12 to the threshold value of one

or comparing the posterior probability P(M1|x) to a bound derived from a 0–1

loss function (or a “golden" bound like α = 0.05 inspired from frequentist practice

[Berger 1987, Berger 1997, Berger 1999, Berger 2003a, Ziliak 2008]. As a general

rule, when comparing more than two models, the model with the highest posterior
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probability is the one selected, but this rule is highly dependent on the prior model-

ing, even with large datasets, which makes it hard to promote as the default solution

in practical studies.

Some well-documented difficulties with this traditional handling of Bayesian

tests and Bayesian model choices via posterior probabilities are, among others

[Vehtari 2002, Vehtari 2012]:

� a tension between using posterior probabilities as justified by a binary loss

function but depending on unnatural prior weights and using Bayes factors

[Jeffreys 1939] that eliminate this dependence but escape as well the direct

connection with the posterior distribution, unless the prior weights are inte-

grated within the loss function [Berger 1985, Robert 2001];;

� a subsequent and delicate interpretation (or calibration) of the strength of

the Bayes factor [Jeffreys 1939, Dickey 1978, Kass 1995, Lavine 1999] towards

supporting a given hypothesis or model, mostly due to the fact that it is not

a Bayesian decision rule (once more, unless the loss function is artificially

modified to incorporate the prior weights);

� a similar difficulty with posterior probabilities, with the correlated tendency

to interpret them as p-values (rather than the opposite) when they only report

through a marginal likelihood ratio the respective strengths of fitting the data

to both models (and nothing about the “truth" of either model);

� a long-lasting impact of the prior modeling, meaning the choice of the prior dis-

tributions on the parameter spaces of both models under comparison, despite

the existence of an overall consistency proof for the Bayes factor [Berger 2003b,

Rousseau 2007, McVinish 2009];

� a discontinuity in the use of improper priors since they are not justified in most

testing situations [DeGroot 1970, DeGroot 1973, Robert 2001, Robert 2014],

leading to many alternative if ad hoc solutions, where the data is either

used twice [Aitkin 1991, Aitkin 2010, Gelman 2013b]; or split in artifial ways

[O’Hagan 1995, Berger 1996, Berger 1998, Berger 2001];

� a binary (accept vs.reject) outcome more suited for immediate decision (if any)

than for model evaluation, in connection with the use of a rudimentary binary

loss function that many deem unnatural [Gelman 2013a];

� a related impossibility to ascertain simultaneous misfit (i.e., a lack of fit for

both models under comparison) or to detect the presence of outliers;

� a lack of assessment of the uncertainty associated with the decision itself;

� a difficult computation of marginal likelihoods in most settings [Chen 2000,

Marin 2011] with further controversies about which solution to adopt [Newton 1994,

Neal 1994, Green 1995, Chib 1995, Neal 1999, Skilling 2006, Steele 2006, Chopin 2010];
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� a strong dependence of the values of posterior probabilities on conditioning

statistics, which in turn undermines their validity for model assessment, as ex-

hibited in Approximate Bayesian computation (ABC) settings by [Robert 2011]

and [Marin 2014];

� a temptation to create pseudo-frequentist equivalents such as q-values [Johnson 2010,

Johnson 2013b, Johnson 2013a] with even less Bayesian justifications.

Rather than vainly attempting to solve those numerous issues in the light of the

many attempts listed above, which clearly failed to produce a consensus, we there-

fore propose a paradigm shift in the Bayesian processing of hypothesis testing and

of model selection, namely to adopt a completely novel perspective on this issue,

perspective that provides a convergent and naturally interpretable solution, while al-

lowing for a more extended use of improper priors. This approach relies on the simple

representation of (or embedding into) the problem as a two-component mixture esti-

mation problem where the weights are formally equal to 0 or 1. The mixture model

[Frühwirth-Schnatter 2006] thus contains both models under comparison as extreme

cases. This approach is inspired from the consistency result of [Rousseau 2011] on es-

timated overfitting mixtures, where the authors established that over-parameterised

mixtures can be consistently estimated, despite the parameter standing on a (or sev-

eral) boundary(ies) of the parameter space. While this mixture representation is not

directly equivalent to the use of a posterior probability, i.e., the posterior estimator

of the mixture weight cannot be considered as a proxy to the posterior probability

value, we do not perceive this as a negative feature but rather as a new tool having

the potential of a better approach to testing, with a further valuable property of

not expanding the number of parameters in the model (and hence keeping in line

with Occam’s razor, see, e.g., [Adams 1987, Jefferys 1992, Rasmussen 2001]). Our

new paradigm to Bayesian testing requires a calibration of the posterior distribu-

tion of the weight of a model, while moving from the admittedly artificial and rarely

understood notion of the posterior probability of a model.

The plan of the paper is as follows: Section 4.2 provides a description of the

mixture model specifically created for this setting, while Section 6.2 details the im-

plementation issues with estimating the parameters of the mixture. Section 4.3

details at great length how the mixture approach performs in the most standard

i.i.d. models. Section 4.4 demonstrates its application on a survival dataset. Sec-

tion 4.5 expands [Rousseau 2011] to provide conditions on the hyperameters of the

mixture model that are sufficient to achieve convergence. Section 4.6 concludes on

the generic applicability of the above principle.
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4.2 Testing problems as estimating mixture models

4.2.1 A new paradigm for testing

Given two classes of statistical models,

M1 : x ∼ f1(x|θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x|θ2) , θ2 ∈ Θ2 ,

which may correspond to an hypothesis to be tested and its alternative, respectively,

it is always possible to embed both models within an encompassing mixture model

Mα : x ∼ αf1(x|θ1) + (1− α)f2(x|θ2) , 0 ≤ α ≤ 1 . (4.1)

Indeed, both models correspond to very special cases of the mixture model, one

for α = 1 and the other for α = 0 (with a slight notational inconsistency in the

indices).1

When considering a sample (x1, . . . , xn) from one of the two models, the mixture

representation still holds at the likelihood level, namely the likelihood for each model

is a special case of the weighted sum of both likelihoods. However, this is not directly

appealing for estimation purposes since it corresponds to a mixture with a single

observation. See however [O’Neill 2014] for a computational solution based upon

this representation.

What we propose in this paper is to draw inference on the individual mixture rep-

resentation (6.1), acting as if each observation was individually and independently2

produced by the mixture model. While this apparently constitutes an approxima-

tion to the real (unknown) model, except in the cases when α = 0, 1, we see several

definitive advantages to this paradigm shift:

� relying on a Bayesian estimate of the weight α rather than on the posterior

probability of model M1 does produce an equally convergent indicator of which

model is “true" (see Section 4.5), while removing the need of overwhelmingly

artificial prior probabilities on model indices, ω1 and ω2;

� the interpretation of this estimator of α is at least as natural as handling

the posterior probability, while avoiding the caricatural zero-one loss setting

[DeGroot 1970, DeGroot 1973, Berger 1985]. The quantity α and its posterior

distribution provide a measure of proximity to both models for the data at

1The choice of possible encompassing models is obviously unlimited: for instance, a Geometric

mixture

x ∼ fα(x) ∝ f1(x|θ1)
α
f2(x|θ2)

1−α

is a conceivable alternative. However, such alternatives are less practical to manage, starting with

the issue of the intractable normalizing constant. Note also that when f1 and f2 are Gaussian

densities, the Geometric mixture remains Gaussian for all values of α. Similar drawbacks can be

found with harmonic mixtures.
2An extension to the iid case will be considered in Example 4.3.6 for linear models. Dependent

observations like Markov chains can be modeled by a straightforward extension of (6.1) where both

terms in the mixture are conditional on the relevant past observations.
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hand, while being also interpretable as a propensity of the data to stand

with (or to stem from) one of the two models. This representation further

allows for alternative perspectives on testing and model choice, through the

notions of predictive tools [Gelman 2013a], cross-validation [Vehtari 2002], and

information indices like WAIC [Vehtari 2012];

� the highly problematic computation [Chen 2000, Marin 2011] of the marginal

likelihoods is bypassed, standard algorithms being available for Bayesian mix-

ture estimation [Richardson 1997, Berkhof 2003, Frühwirth-Schnatter 2006,

Lee 2009];

� the extension to a finite collection of models to be compared is straight-

forward, as this simply involves a larger number of components. This ap-

proach further allows to consider all models at once rather than engaging

in pairwise costly comparisons and thus to eliminate the least likely mod-

els by simulation, those being not explored by the corresponding algorithm

[Carlin 1995, Richardson 1997];

� the (simultaneously conceptual and computational) difficulty of “label switch-

ing" [Celeux 2000, Stephens 2000, Jasra 2005] that plagues both Bayesian es-

timation and Bayesian computation for most mixture models completely van-

ishes in this particular context, since components are no longer exchangeable.

In particular, we compute neither a Bayes factor3 nor a posterior probability

related with the substitute mixture model and we hence avoid the difficulty

of recovering the modes of the posterior distribution [Berkhof 2003, Lee 2009,

Rodriguez 2014]. Our perspective is solely centered on estimating the param-

eters of a mixture model where both components are always identifiable;

� the posterior distribution of α evaluates more thoroughly the strength of the

support for a given model than the single figure outcome of a Bayes factor or

of a posterior probability. The variability of the posterior distribution on α

allows for a more thorough assessment of the strength of the support of one

model against the other;

� an additional feature missing from traditional Bayesian answers is that a mix-

ture model also acknowledges the possibility that, for a finite dataset, both

models or none could be acceptable. This possibility will be seen in some

illustrations below (Section 4.3)

� while standard (proper and informative) prior modeling can be painlessly re-

produced in this novel setting, non-informative (improper) priors now are man-

ageable therein, provided both models under comparison are first reparame-

terised towards common-meaning and shared parameters, as for instance with

3Using a Bayes factor to test for the number of components in the mixture (6.1) as in

[Richardson 1997] would be possible. However, the outcome would fail to answer the original

question of selecting between both (or more) models.
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location and scale parameters. In the special case when all parameters can be

made common to both models4, the mixture model (6.1) can read as

Mα : x ∼ αf1(x|θ) + (1− α)f2(x|θ) , 0 ≤ α ≤ 1 .

For instance, if θ is a location parameter, a flat prior π(θ) ∝ 1 can be used with

no foundational difficulty, in opposition to the testing case [DeGroot 1973,

Berger 1998];

� continuing from the previous argument, using the same parameters or some

identical parameters on both components is an essential feature of this re-

formulation of Bayesian testing, as it highlights the fact that the opposition

between the two components of the mixture is not an issue of enjoying dif-

ferent parameters, but quite the opposite. As further stressed below, this or

even those common parameter(s) is (are) nuisance parameters that need be

integrated out (as they also are in the traditional Bayesian approach through

the computation of the marginal likelihoods);

� even in the setting when the parameters of the mixture components, θ1 and

θ2, differ, they can be integrated out by mere Monte Carlo methods;

� the choice of the prior model probabilities is rarely discussed in a classical

Bayesian approach, even though those probabilities linearly impact the pos-

terior probabilities and can be argued to promote the alternative of using the

Bayes factor instead. In the mixture estimation setting, prior modeling only

involves selecting a prior on α, for instance a Beta B(a0, a0) distribution, with

a wide range of acceptable values for the hyperparameter a0, as demonstrated

in Section 4.5. While the value of a0 impacts the posterior distribution of α,

it can be argued that (a) it nonetheless leads to an accumulation of the mass

near 1 or 0, i.e. to favor the most likely or the true model over the other one,

and (b) a sensitivity analysis on the impact of a0 is straightforward to carry

on;

� in most settings, this approach can furthermore be easily calibrated by a para-

metric boostrap experiment providing a posterior distribution of α under each

of the models under comparison. The prior predictive error can therefore be

directly estimated and can drive the choice of the hyperparameter a0, if need

be.

4While this may sound like an extremely restrictive requirement in a traditional mixture model,

let us stress here that the presence of common parameters becomes quite natural within a testing

setting. To wit, when comparing two different models for the same data, moments like E[X γ ] are

defined in terms of the observed data and hence should be the same for both models. Reparametris-

ing the models in terms of those common meaning moments does lead to a mixture model with

some and maybe all common parameters. We thus advise the use of a common parameterisation,

whenever possible.
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4.2.2 Mixture estimation

Before studying the application of the above principle to some standard examples in

Section 4.3, we point out a few specificities of mixture estimation in such a particular

setting. While the likelihood is a regular mixture likelihood, the fact that the weights

are a priori close to the boundaries means that the usual completion approach of

[Diebolt 1994] is bound to be quite inefficient as soon as the sample size grows to

moderate values. More precisely, if we consider a sample x = (x1, x2, . . . , xn) from

(6.1) (or assumed to be from (6.1)), the completion of the sample by the latent

component indicators ζi (i = 1, . . . , n) leads to the completed likelihood

L(θ,α1,α2 | x, ζ) =
n�

i=1

αζif(xi | θζi) = αn1(1− α)n2

n�

i=1

f(xi | θζi) , (4.2)

where (n1, n2) = (
�n

i=1 Iζi=1,
�n

i=1 Iζi=2) under the constratin n =
�2

j=1

�n
i=1 Iζi=j .

This decomposition leads to a natural Gibbs implementation [Diebolt 1994] where

the latent variables ζi and the parameters are generated from their respective con-

ditional distributions. For instance, under a Beta Be(a1, a2) prior, α is generated

from a Beta Be(a1 + n1, a2 + n2).

However, while this Gibbs sampling scheme is valid from a theoretical point of

view, it faces convergence difficulties in the current setting, especially with large

samples, due to the prior concentration on the boundaries of (0, 1) for the mixture

weight α. This feature is illustrated by Figure 4.1: as the sample size n grows, the

Gibbs sample of the α’s shows less and less switches between the vicinity of zero

and the vicinity of one. The lack of label switching for regular mixture models is

well-know, see, e.g., [Celeux 2000] and [Lee 2009]. It is due to the low probability

of switching all component labels ζi at once. This issue is simply exacerbated on

the current case due to extreme values for α.

Therefore, an alternative to the Gibbs sampler is needed [Lee 2009] and we

resort to a simple Metropolis-Hastings algorithm where the model parameters θi
are generated from the respective posteriors of both models (that is, based on the

entire sample) and where the mixture weight α is generated either from the prior

distribution or from a random walk proposal on (0, 1). It is indeed a quite rare

occurrence for mixtures when we can use independent proposals. In the testing

setting, the parameter θi can be considered independently within each model and its

posterior can be based on the whole dataset. (In cases when a common parameter is

used in both components, one of the two available posteriors is chosen at random at

each iteration, either uniformly or based on the current value of α.) The equivalent

of Figure 4.1 for this Metropolis–Hastings implementation, Figure 4.2 exhibits a

clear difference in the exploration abilities of the resulting chain.

We also point out that, due to the specific pattern of the posterior distribution

on α accumulating most of its weight on the endpoints of (0, 1), the use of the

posterior mean is highly inefficient and thus we advocate that the posterior median

be instead used as the relevant estimator of α.
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Figure 4.1: Gibbs sequences (αt) on the first component weight for the mixture model

αN(µ, 1) + (1−α)N(0, 1) for a N(0, 1) sample of size N = 5, 10, 50, 100, 500, 103 (from top

to bottom) based on 105 simulations. The y-range range for all series is (0, 1).
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Figure 4.2: Metropolis–Hastings sequences (αt) on the first component weight for the mix-

ture model αN(µ, 1)+(1−α)N(0, 1) for a N(0, 1) sample of size N = 5, 10, 50, 100, 500, 103

(from top to bottom) based on 105 simulations.The y-range for all series is (0, 1).
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4.3 Illustrations

In this Section, we proceed through a series of experiments in highly classical statis-

tical settings in order to assess the performances of the mixture estimation approach

for separating the models under comparison. As we will see throughout those exam-

ples, this experimentation brings a decisive confirmation of the consistency results

obtained in Section 4.5. The first two examples are direct applications of Theorem

1 while the third is an application of Theorem 2.

Example 4.3.1 For a model choice test between a Poisson P(λ) and a Geometric

Geo(p) (defined as a number of failures, hence also starting at zero) distribution,

we can model the mixture (6.1) towards using the same parameter λ in the Poisson

P(λ) and in the Geometric Geo(p) distribution if we set p = 1/1+λ. The resulting

mixture, to be estimated, is then defined as

Mα : αP(λ) + (1− α)Geo(1/1+λ)

This common parameterisation allows for the call to Jeffreys’ (1939) improper prior

π(λ) = 1/λ since the resulting posterior is then proper. Indeed, in a Gibbs sampling

implementation, the full posterior distribution on λ, conditional on the allocation

vector ζ is given by

π(λ | x, ζ) ∝ exp(−n1(ζ)λ+ log{λ} (nx̄n − 1) (λ+ 1)−{n2(ζ)+s2(ζ)} , (4.3)

where n1(ζ) = n − n2(ζ) is the number of observations allocated to the Poisson

component, while s2(ζ) is the sum of the observations that are allocated to the

Geometric component. This conditional posterior is well-defined for every ζ when

n > 0, which implies that the marginal posterior is similarly well-defined since ζ

takes its values in a finite set. The distribution (4.3) can easily be simulated via a

independent Metropolis-within-Gibbs step where the proposal distribution on λ is

the Gamma distribution corresponding to the Poisson posterior. (The motivation

for this choice is that, since both distributions share the same mean parameter,

using the posterior distribution associated with either one of the components and

all the observations should be realistic enough to produce high acceptance rates,

even when the data is Geometric rather than Poisson. This is what happens in

practice with acceptance rates higher than 75% in the Geometric case and close

to 1 in the Poisson case. This strategy of relying on a model-based posterior as a

proposal will be used throughout the examples. It obviously would not work in a

regular mixture model.)

Under a Be(a0, a0) prior on α, the full conditional posterior density on α is

a Be(n1(ζ) + a0, n2(ζ) + a0) distribution and the exact Bayes factor opposing the

Poisson to the Geometric models is given by

B12 = nnx̄n

n�

i=1

xi!Γ

�
n+ 2 +

n�

i=1

xi

�
�
Γ(n+ 2).
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This Bayes factor is however undefined from a purely mathematical viewpoint, since

it is associated with an improper prior on the parameter [Jeffreys 1939, DeGroot 1973,

Berger 1998, Robert 2009b]. The posterior probability of the Poisson model is then

derived as

P(M1|x) =
B12

1 +B12

when adopting (without much of a justification) identical prior weights on both

models.

A first experiment in assessing our approach is based on 100 datasets simulated

from a Poisson P(4) distribution. As shown in Figure 4.3, not only is the parameter

λ properly estimated, but the estimation of α is very close to 1 for a sample size

equal to n = 1000. In this case, the smaller the value of a0, the better in terms of

proximity to 1 of the posterior distribution on α. Note that the choice of a0 does not

significantly impact the posterior distribution of λ. Figure 4.4 gives an assessment

of the convergence of the Metropolis-Hastings for λ and the mixture model weight

α even if the sample size is very small (n=5).

Figure 4.3: Example 4.3.1: Boxplots of the posterior means (wheat) of λ and the

posterior medians (dark wheat) of α for 100 Poisson P(4) datasets of size n = 1000

for a0 = .0001, .001, .01, .1, .2, .3, .4, .5. Each posterior approximation is based on 104

Metropolis-Hastings iterations.

Figure 4.5 highlights the convergence of the posterior means and posterior medi-

ans of α as the sample sizes n increase for the same Poisson P(4) simulated samples.

The sensitivity of the posterior distribution of α on the hyperparameter a0 is clearly

expressed by that graph. While all posterior means and medians converge to 1 in

this simulation, the impact of small values of a0 on the estimates is such that we

consider values a0 ≤ .1 as having too strong and too lengthy an influence on the

posterior distribution to be acceptable.

We can also compare the outcome of a traditional (albeit invalid, since relying

on improper priors) Bayesian analysis with our estimates of α. Figure 4.6 shows how

the posterior probability of model M1 and the posterior median of α relate as the

sample size grows to 1000. The shaded areas indicate the range of all estimates of

α, which varies between .2 and .8 for a0 = .5 and between 0 and 1 for a0 ≤ .1. This
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Figure 4.4: Example 4.3.1: Dataset from a Poisson distribution P(4): Estimations of

(Top) λ and (Bottom) α via Metropolis-Hastings algorithm over 104 iterations for 5 samples

of size n = 5, 50, 100, 500, 10, 000.

Figure 4.5: Example 4.3.1: Posterior means (sky-blue) and medians (grey-dotted) of the

posterior distributions on α, displayed over 100 Poisson P(4) datasets for sample sizes from

1 to 1000. The shaded and dotted areas indicate the range of the estimates. Each plot

corresponds to a Beta prior on α with parameter a0 = .1, .2, .3, .4, .5 and each posterior

approximation is based on 104 iterations.

difference reinforces our earlier recommendation that smaller values of a0 should be

avoided, as they overwhelm the information contained in the data for small sample



46 Chapter 4. Testing hypotheses as a mixture estimation model

(a) a0=.0001 (b) a0=.1 (c) a0=.5

Figure 4.6: Example 4.3.1: Comparison between the ranges of P(M1|x) (red dotted area)

and of the posterior medians of α for 100 Poisson P(4) datasets with sample sizes n ranging

from 1 to 1000 and for several values of the hyperparameter a0.

sizes.

A symmetric experiment is to study the behavior of the posterior distribution on

α for data from the alternative model, i.e., a Geometric distribution. Based on 100

datasets from a Geometric G(0.1) distribution, Figure 4.7 displays the very quick

convergence of the posterior median to 0 for all values of a0 considered, even though

the impact of this hyperprior is noticeable.

Example 4.3.2 For the model comparison of a normal N (θ1, 1) with a normal

N (θ2, 2) distribution, we again model the mixture so that the same location pa-

rameter θ is used in both the normal N (θ, 1) and the normal N (θ, 2) distribution.

Therefore, Jeffreys’ (1939) noninformative prior π(θ) = 1 can be used, in contrast

with the corresponding Bayes factor. Indeed, when considering the mixture of nor-

mal models, αN (θ, 1)+(1−α)N (θ, 2), and a Beta B(a0, a0) prior on α, considering

the posterior distribution on (α, θ), conditional on the allocation vector ζ, leads to

conditional independence between θ and α:

θ|x, ζ ∼ N

�
n1x̄1 + .5n2x̄2

n1 + .5n2
,

1

n1 + .5n2

�
, α|ζ ∼ Be(a0 + n1, a0 + n2) ,

where ni and x̄i denote the number of observations and the empirical mean of

the observations allocated to component i, respectively (with the convention that

nix̄i = 0 when ni = 0. Since this conditional posterior distribution is well-defined

for every possible value of ζ and since the distribution ζ has a finite support, π(θ|x)

is proper.5

For the same purpose of evaluating the convergence rates of the estimates of the

mixture weights, we simulated 100 N (0, 1) datasets. Figure 4.8 displays the range

of the posterior means and medians of α when either a0 or n varies, showing the

5For this example, the conditional evidence π(x|ζ) can easily be derived in closed form, which

means that a random walk on the allocation space {1, 2}n could be implemented. We did not

follow that direction, as it seemed unlikely such a random walk would have been more efficient

than a Metropolis–Hastings algorithm on the parameter space only.
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Figure 4.7: Example 4.3.1: Boxplots of the posterior medians of α for 100 geometric

Geo(.1) datasets of size n = 5, 50, 500. Boxplots are plotted using four beta priors for α

with a0 = .1, .2, .4, .5. Each posterior approximation is based on 104 iterations.
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same concentration effect (if a lingering impact of ao) when n increases. We also

included the posterior probability of M1 in the comparison, derived from the Bayes

factor

B12 = 2
n−1/2

�
exp 1/4

n�

i=1

(xi − x̄)2 ,

with equal prior weights, even though it formally is not well-defined since based on

an improper prior. The shrinkage of the posterior expectations towards 0.5 confirms

our recommendation to use the posterior median instead. The same concentration

phenomenon occurs for the N (0, 2) case, as illustrated on Figure 4.10 for a single

N (0, 2) dataset.

Figure 4.8: Example 4.3.2: Boxplots of the posterior means (wheat) and medians of α

(dark wheat), compared with a boxplot of the exact posterior probabilities of M0 (gray) for

a N (0, 1) sample, derived from 100 datasets for sample sizes equal to 15, 50, 100, 500. Each

posterior approximation is based on 104 MCMC iterations.

In order to better understand the nature of the convergence of the posterior

distribution of α towards the proper limiting value, we plotted in Figure 4.9 a

zoomed version of this convergence, by comparing log(n) log(1−E[α|x]) with log(1−
p(M1|x)) as the sample size n grows. Most interestingly, the variation range is of the

same magnitude for both procedures, even though the choice of the hyperparameter

a0 impacts the variability of the mixture solution. This is due to the fact that the

asymptotic regime is not quite reached for those sample sizes, as 1−P(M1|x) ≤ e−cn

for some positive c with high probability, while E[α|x] = O(n−1/2), leading to

log(n) log(1− E[α|x]) � −(logn)2.
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Furthermore, the alternative of considering the posterior probability of having the

entire sample being generated from a single component is not relevant for the com-

parison as this estimate is always very close to zero. This means that, while α cap-

tures the model preferred by the data, the mixture modelling itself never favours a

completely homogeneous sample that would come from one and only one component.

By comparison, note that if we had instead called the algorithm of [van Havre 2014],

we would have obtained mostly homogeneous samples for very small values of a0.

Their algorithm is a special type of tempering MCMC, where tempering is obtained

by choosing successive values of a0, ranging from large to very small.

Figure 4.9: Example 4.3.2: Plots of ranges of log(n) log(1 − E[α|x]) (gray color) and

log(1 − p(M1|x)) (red dotted) over 100 N (0, 1) samples as sample size n grows from 1 to

500. and α is the weight of N (0, 1) in the mixture model. The shaded areas indicate the

range of the estimations and each plot is based on a Beta prior with a0 = .1, .2, .3, .4, .5, 1

and each posterior approximation is based on 104 iterations.

Example 4.3.3 We now consider a setting where we oppose a N (0, 1) model against

a N (µ, 1) model, hence testing whether or not µ = 0. This being an embedded case,

we cannot use an improper prior on µ and thus settle for a µ ∼ N (0, 1) prior. As

discussed above in Section 6.2, Gibbs sampling applied to this mixture posterior

model shows poor performances and should be replaced with a Metropolis–Hastings

algorithm.

The resulting inference on the weight of the N (µ, 1) component, α, is unsurpris-

ingly contrasted between the case when the data is distributed as N (0, 1) and when

it is not from this null distribution. In the former case, obtaining values of α close

to one requires larger sample sizes than in the latter case. Figure 4.11 displays the
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Figure 4.10: Example 4.3.2: (left) Posterior distributions of the mixture weight α

and (right) of their logarithmic transform log{α} under a Beta B(a0, a0) prior when a0 =

.1, .2, .3, .4, .5, 1 and for a normal N (0, 2) sample of 103 observations. The MCMC outcome

is based on 104 iterations.

behavior of the posterior distribution of α when the sample comes from a normal

distribution N (1, 1). For a sample of size 102, the accumulation of α on (.8, 1) illus-

trates the strength of the support for the model N (µ, 1) which is reduced with the

increase of a0. The impact of the small sample size on the posterior distributions of

α is shown in the right side of Figure 4.11 for the case where a0 = .1 such that for

n = 5 we can not recognize which model is fitter to the data.

Example 4.3.4 Inspired from [Marin 2014], we oppose the normal N (µ, 1) model

to the double-exponential L(µ,
√
2) model. The scale

√
2 is intentionally chosen to

make both distributions share the same variance. As in the normal case in Example

4.3.2, the location parameter µ can be shared by both models and allows for the use

of the flat Jeffreys’ prior. As in all previous examples, Beta distributions B(a0, a0)

are compared wrt their hyperparameter a0.

While, in those previous examples, we illustrated that the posterior distribution

of the weight of the true model converged to 1, we now consider the setting of a

dataset produce by another model than those in competition, using, e.g., N (0, .72)

to simulate the data. In this specific case, both posterior means and medians of α fail

to concentrate near 0 and 1 as the sample size increases, as shown on Figure 4.12. So

in a majority of cases in this experiment, the outcome indicates that neither of both

models is favored by the data. This example does not exactly follow the assumptions

of Theorem 1 since the Laplace distribution is not differentiable everywhere, however

it is almost surely differentiable and it is differentiable in quadratic mean and so we

expect to see the same types of behavior as predicted by Theorem 1.
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Figure 4.11: Example 4.3.3 Posterior distributions of the N (µ, 1) component weight α

under a Beta B(a0, a0) prior (left) for a0 = 1/n, .1, .2, .3, .4, .5, 1 with 102 N (1, 1) observations

and (right) for a0 = .1 with n = 5, 10, 50, 100, 500, 103 N (1, 1) observations. In both cases

each posterior approximation is based on 105 MCMC iterations.

Figure 4.12: Example 4.3.4: Ranges of posterior means (skyblue) and medians (dotted)

of the weight α of model N (θ, 1) over 100 N (0, .72) datasets for sample sizes from 1 to

1000. Each estimate is based on a Beta prior with a0 = .1, .3, .5 and 104 MCMC iterations.

In this example. the Bayes factor associated with Jeffreys’ prior is defined as

B12 =
exp {−

�n
i=1(xi−x̄)2/2}

(
√
2π)n−1

√
n

�� ∞

−∞

exp {−
�n

i=1 |xi−µ|/
√
2}

(2
√
2)n

dµ

where the denominator is available in closed form (see 5.5). Since the prior is

improper, it is formally undefined. Using nonetheless the above expression, we can

compare Bayes estimators of α with the posterior probability of the model being a

N (µ, 1) distribution. Based on a Monte Carlo experiment involving 100 replicas of

a N (0, .72) dataset, Figure 4.13 demonstrates how the mixture estimate mostly stay

away from 0 and 1 while P(M1|x) varies all over between 0 and 1 for all sample sizes

considered here. While this is a weakly informative indication, the right hand side

of Figure 4.13 shows that, on average, the posterior estimates of α converge toward

a value between .1 and .4 for all a0 while the posterior probabilities converge to .6.

In that respect, both criteria offer a similar interpretation about the data because
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neither α nor P (M1|x) confirm that either of the models is true.

Figure 4.13: Example 4.3.4: (left) Boxplot of the posterior means (wheat) and medians

(dark wheat) of α, and of the posterior probabilities of model N (µ, 1) over 100 N (0, .72)

datasets for sample sizes n = 10, 40, 100, 500; (right) averages of the posterior means and

posterior medians of α against the posterior probabilities P(M1|x) for sample sizes going

from 1 to 1000. Each posterior approximation is based on 104 Metropolis-Hastings itera-

tions.

In the following two examples we consider regression models. Although they do

not strictly speaking follow the identically setup, the methodology can be extended

to this case and so can the theory, asuming that the design is random. Hence

example 4.3.5 is an application of Theorem 1 while example 4.3.6 is an application

of Theorem 2.

Example 4.3.5 In this example, we apply our testing strategy to a binary dataset,

using the R dataset about diabetes in Pima Indian women [R Development Core Team 2006]

as a benchmark [Marin 2007]. This dataset contains a randomly selected table of

200 women tested for diabetes according to WHO criteria. The response variable

y is “Yes” or “No”, for presence or absence of diabetes and the explanatory variable

x is restricted here to the bmi, body mass index weight in kg/(height in m)2. For

this binary dataset, either logistic or probit regression models could be suitable. We

are thus comparing both fits via our method. If y = (y1 y2 . . . yn) is the vector of

binary responses and X = [In x1] is the n×2 matrix of corresponding explanatory

variables, the models in competition can be defined as (i = 1, . . . , n)

M1 : yi | x
i, θ1 ∼ B(1, pi) where pi =

exp(xiθ1)

1 + exp(xiθ1)

M2 : yi | x
i, θ2 ∼ B(1, qi) where qi = Φ(xiθ2) (4.4)

where xi = (1 xi1) is the vector of explanatory variables and where θj , j = 1, 2, is

a 2 × 1 vector made of the intercept and of the regression coefficient under either

M1 or M2. We once again consider the case where both models share the same

parameter.
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However, the model is a generalized linear model and there is no moment equa-

tion that relates θ1 and θ2. We thus adopt a local reparameterisation strategy by

rescaling the parameters of the probit model M2 so that the MLE’s of both models

coincide. This strategy follows from [Choudhury 2007] remark on the connection

between the normal cdf and a logistic function

Φ(xiθ2) ≈
exp(kxiθ2)

1 + exp(kxiθ2)

and we attempt to find the best estimate of k to bring both parameters into co-

herency. Given

(k0, k1) = (�θ01/�θ02, �θ11/�θ12) ,

ratios of the maximum likelihood estimates of the logistic model parameters to those

for the probit model, we reparameterise M1 and M2 defined in (4.4) as

M1 : yi | x
i, θ ∼ B(1, pi) where pi =

exp(xiθ)

1 + exp(xiθ)

M2 : yi | x
i, θ ∼ B(1, qi) where qi = Φ(xi(κ−1θ)) ,

(4.5)

where κ−1θ = (θ0/k0, θ1/k1).

Once the mixture model is thus parameterised, we set our now standard Beta

B(a0, a0) on the weight of M1, α, and choose the default g-prior on the regression

parameter (see, e.g., Chapter 4.[Marin 2007]),

θ ∼ N2(0, n(X
TX)−1)

In a Gibbs representation (not implemented here), the full conditional posterior

distributions given the allocation vector ζ are that α ∼ B(a0+n1, a0+n2) and that

π(θ | y, X, ζ) ∝ exp
��

i Iζi=1yix
iθ
�

�
i;ζi=1[1 + exp(xiθ)]

exp
�
−θT (XTX)θ

�
2n
�

×
�

i;ζi=2

Φ(xi(κ−1θ))yi(1− Φ(xi(κ−1θ)))(1−yi)
(4.6)

where n1 and n2 are the number of observations allocated to the logistic and pro-

bit models, respectively. This conditional representation shows that the posterior

distribution is then clearly defined, which is obvious when considering that for once

the chosen prior is proper.

For the Pima dataset, the maximum likelihood estimates of the GLMs are θ̂1 =

(−4.11, 0.10) and θ̂2 = (−2.54, 0.065), respectively, and so k = (1.616, 1.617). We

compare the outcomes of this Bayesian analysis when a0 = .1, .2, .3, .4, .5 in Table

4.1. As clearly shown by the Table, the estimates of α are close to 0.5, no matter

what the value of a0 while the estimates of θ0 and θ1 are very stable (and quite similar

to the MLEs). We note a slight increase of α towards 0.5 as a0 increases, but do not

want to over-interpret the phenomenon. This behavior leads us to conclude that (a)

none or both of the models are appropriate for the Pima Indian data; (b) the sample
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Logistic model parameters Probit model parameters

a0 α θ0 θ1
θ0
k0

θ1
k1

.1 .352 -4.06 .103 -2.51 .064

.2 .427 -4.03 .103 -2.49 .064

.3 .440 -4.02 .102 -2.49 .063

.4 .456 -4.01 .102 -2.48 .063

.5 .449 -4.05 .103 -2.51 .064

Table 4.1: Dataset Pima.tr: Posterior medians of the mixture model parameters.

M
1
α M

2
α

True model: logistic with θ1 = (5, 1.5) probit with θ2 = (3.5, .8)

a0 α θ0 θ1
θ0
k0

θ1
k1

α θ0 θ1
θ0
k0

θ1
k1

.1 .998 4.940 1.480 2.460 .640 .003 7.617 1.777 3.547 .786

.2 .972 4.935 1.490 2.459 .650 .039 7.606 1.778 3.542 .787

.3 .918 4.942 1.484 2.463 .646 .088 7.624 1.781 3.550 .788

.4 .872 4.945 1.485 2.464 .646 .141 7.616 1.791 3.547 .792

.5 .836 4.947 1.489 2.465 .648 .186 7.596 1.782 3.537 .788

Table 4.2: Simulated dataset: Posterior medians of the mixture model parameters.

size may be insufficiently large for allowing a discrimination between the logit and

the probit models.

Since the benchmark dataset is apparently too small to reach the asymptotic

regime, we ran a second experiment with simulated logit and probit datasets and

a larger sample size n = 10, 000. For the logit model, we used the regression co-

efficients (5, 1.5) and for the probit model the regression coefficients (3.5, .8). The

estimates of the parameters of both Mα1 and Mα2 and for both datasets are pro-

duced in Table 4.2. For every a0, the estimates in the true model are quite close to

the true values and the posterior estimates of α are either close to 1 in the logit case

and to 0 in the probit case. For this large setting, there is thus consistency in the

selection of the proper model. In addition, Figure 4.14 shows that when the sample

size is large enough, the posterior distribution of α concentrates its mass near 1 and

0 when the data is simulated from a logit and a probit model, respectively.

Example 4.3.6 We now examine the classical issue of variable selection in a Gaus-

sian linear regression model. Given a vector of outcomes (y1, y2, . . . , yn) and the

corresponding explanatory variables represented by the n × (k + 1) matrix X =

[1n X1 . . . Xk] (including 1n, a first column of 1’s), we assume that

y | X,β,σ2 ∼ Nn(Xβ,σ2In) (4.7)

where β = (β0,β1, . . . ,βk)
T is a k+1-vector of k+1 elements with β0 the intercept.

If we consider the generic case where any covariate could be removed from the model,
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(a) Pima dataset (b) Data from logistic (c) Data from probit

Figure 4.14: Example 4.3.5: Posterior distributions of α in favor of the logistic model

based on 104 Metropolis-Hastings iterations where a0 = .1, .2, .3, .4, .5.

we are facing the comparison of 2k+1 − 1 models, corresponding to every possible

subset of explanatory variables. In our framework, this means evaluating a mixture

model (6.1) with γ = 2k+1 − 1 components. For j = 1, . . . , γ, Mj will denote the

corresponding model, υj the number of explanatory variables used in Mj , β
j the

vector of the υj regression coefficients and X j the sub-matrix of X derived from the

covariate variables included in Mj .

The corresponding mixture model used for testing is therefore given by

Mα : y ∼
γ�

j=1

αjN (Xjβj ,σ2In)

γ�

j=1

αj = 1 . (4.8)

When introducing a missing variable representation, each observation yi is associated

with a missing variable ζi taking values in 1, 2, . . . , γ. The weights of the mixture

(4.8) are associated with a symmetric Dirichlet prior (α1, . . . ,αγ) ∼ Dγ(a0, . . . , a0).

Contrary to the previous examples of this section, we now consider two different

settings, corresponding to the separate versus common parameterisations of the

different models Mj .

Case 1. If Mf denotes the full regression model, including all k explanatory vari-

ables, we impose that βj is a subvector of βf for all j’s. Therefore the models

Mj and therefore the mixture model (4.8) all are parameterised in terms of

the same βf . To simplify the notation, we will denote this common parameter

vector by β = (β0,β1, . . . ,βk)
T . Therefore, conditional on ζi = j, we have

yi ∼ N
�
X(i) · j2β,σ

2
�
,

where X(i) denotes the i-th row of X and j2 is the binary (base 2) representa-

tion of the integer j, with the convention that X(i) · j2 means a term-by-term

multiplication, i.e., that this vector contains zero entries for the components

of j2 that are equal to zero:

X(i) · j2 = (X(i)1j2[1], . . . , X(i)kj2[k]) .
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Assuming υj > 0 and gathering all observations such that ζi = j under the

notation yi;ζi=j and the corresponding covariates by Xi;ζi=j , we then have

yi;ζi=j ∼ Nυj

�
Xi;ζi=j · j2β,σ

2Iυj
�
,

with the same convention about the term-by-term multiplication. The over-

all model conditional on ζ = (ζ1, . . . , ζn), the conditional distribution of the

dataset is therefore




yi;ζi=1

yi;ζi=2
...

yi;ζi=γ




n×1

=




1i;ζi=1 12[1][X1]i;ζi=1 . . . 12[k][Xk]i;ζi=1

1i;ζi=2 22[1][X1]i;ζi=2 . . . 22[k][Xk]i;ζi=2
...

...
...

1i;ζi=γ γ2[1][X1]i;ζi=γ . . . γ2[k][Xk]i;ζi=γ




n×(k+1)




β0
β1
...

βk




(k+1)×1

+εn×1

where 1i;ζi=j is a υj-dimensional vector of 1’s. By convention, any value of j

such that υj = 0 does not appear in the above. If we summarize the above

equation as yζ = Xζβ + ε and use a Zellner’s [Zellner 1986] G-prior,

β|σ ∼ Nk+1

�
Mk+1, cσ

2(XTX)−1
�
, π(σ2) ∝ 1/σ2 ,

the full conditional posterior distribution on the parameters is defined as

(α1, . . . ,αγ)|ζ ∼ Dγ(υ1+a0, . . . , υγ+a0) ,β|y, ζ,σ ∼ Nk+1(β̄, Σ̄) ,σ
2|y,β ∼ IG(a, b) ,

where

β̄ = Σ̄
�
XTXM/cσ2 + Xζ

Tyζ/σ2
�

Σ̄ =
�
XTX/cσ2 + Xζ

TXζ/σ2
�−1

a = (n+ k + 1)/2

b = (yζ−Xζβ)
T (yζ−Xζβ)/2 + (β−M)T (XTX)(β−M)/2c .

The MCMC implementation of this version of the model then leads to a

straightforward Gibbs sampler.

Case 2. The alternative parameterisation of the mixture (6.1) is to consider all

regression coefficients as independent between models. This means that, for

j = 1, . . . , γ, the regression model Mj is written as y = XjβMj + ε and that

the βMj ’s are independent. We still assume σ is common to all components. In

this representation, we allocate a Zellner’s G-prior to each parameter vector,

βMj ∼ Nυj (Mj , cσ
2({Xj}TXj)−1)

and, conditional on the allocation vector ζ, the full conditional posterior dis-

tributions are easily derived:

(α1, . . . ,αγ)|ζ ∼ Dγ(υ1+a0, . . . , υγ+a0) ,βMj |y,σ, ζ ∼ Nυj (ηj ,ϕj) ,σ
2|y,β ∼ IG(a, b) ,
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where

η = ϕ
�
{Xj}TXjMj/cσ2 + Xj

i;ζi=jyi;ζi=j/σ2
�

ϕ =
�
{Xj}TXj/cσ2 + {Xj

i;ζi=j}
TXj

i;ζi=j/σ2
�−1

a = (n+ s)/2

b =
1

2

n�

i=1

γ�

j=1

c(yi;ζi=j −Xj
i;ζi=jβMj )

T (yi;ζi=j −Xj
i;ζi=jβMj )

+ c−1(βMj −Mj)
T ({Xj}TXj)(βMj −Mj)

where s is the total number of the regression coefficients of all models under

comparison and where the indexing conventions are the same as in Case 1.

The comparison of the performances of the mixture approach in both cases is

conducted via simulated data with k = 3 covariates, meaning that (1 ≤ i ≤ n)

E[yi | β, X] = β0 + β1xi1 + β2xi2 + β3xi3 .

This setting thus involves 15 models to be compared (since the model where the

mean of the observations is zero is of no interest). The parameters used for the data

simulation are (β0,β1,β2,β3) = (2,−3, 0, 0), σ = 1, with X1, X2 and X3 simulated

from N (0, 1),B(1, .5) and U(10, 11), respectively. We are seeking to identify the

true regression model

M2 : yi = 2− 3Xi1 + εi ,

by running (Gibbs) mixture estimations algorithms.

Based on a single simulated dataset, Figure 4.15 summarizes the results of those

simulations by representing the convergence of the posterior medians of the true

model weight in both cases as the sample size n increases. Comments that stem

from these results are that

� all posterior medians of the true model weight α2 converge to 1 when the

sample size increases to n = 10, 000, which means that the mixture procedure

eventually supports M2 against the other models;

� in those graphs, the impact of the prior modeling, i.e., of the value of a0 is

such that the convergence is faster when a0 is smaller;

� even for small sample sizes, the posterior medians of α2 are close to 1;

� the difference between both mixture parameterisations, i.e., Case 1 and Case

2, are negligible;

� for almost every sample size and prior hyperparameter, the method concludes

that M2 is likely to be more appropriate than the others.
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Figure 4.15: Example 4.3.6: (top) Posterior medians of the true model weight over 5 val-

ues of a0 = .1, .2, .3, .4, .5 for sample sizes ranging from 1 to 104 and (bottom) from 1 to 200.

Case 1 (left) and Case 2 (right) correspond to common and independent parameterisations

of the mixture components. Each approximation is based on 104 Gibbs iterations.

The most interesting conclusion is therefore that using completely independent

parameterisation between the components of the mixture does not induce a strong

degradation in the performances of the method, although the convergence to 1 is

slightly slower on the right hand side of Figure 4.15. Table 4.3 produces the posterior

means of α2 under different Dirichlet hyperparameters a0, which shows a stronger

difference only for a0 = 0.5, which then appears as a less reliable upper bound.

In order to assess the difference with the classical Bayesian analysis of this model,

we compare our posterior means of 1−α2 with the posterior probability of M2 com-

puted using G-prior for the regression parameters in Figure 4.16. This picture shows

that the convergence of log(1− E(α2|y,X)) is faster than for log(1− P(M2|y,X)).

It also exhibits a difference between Cases 1 and 2 for the larger sample size, with

log(1 − E(α2|y,X)) concentrated between −6.5 and −5 in Case 1 method, about

−4 in Case 2, and about −2 for log(1 − P(M2|y,X)). Although those pictures are
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a0: .1 .2 .3 .4 .5

Case 1:

E[α2|y,X] 0.9836 0.9104 0.8043 0.7190 0.5190

Case 2:

E[α2|y,X] 0.9611 0.9018 0.7743 0.6780 0.3905

Table 4.3: Example 4.3.6: Posterior means of α2, weight of model M2, when the sample

size is n=30

based on a single dataset, they are conclusive about the performances of the mixture

approach.

Figure 4.16: Example 4.3.6: log(1 − E(α2|y,X)) and log(1 − P(M2|y,X)) (red lines)

over logarithm of the sample size for a0 = .1, .2, .3, .4, .5. Each posterior approximation is

based on 104 iterations.

As a second check on the performances of the mixture approach for linear models,

for the same set of three regressors, we simulated 50 datasets with 500 observations

from each of the models M1, . . . ,M15 and looked at the respective averages of the

Bayes estimates and of the posterior probabilities. In all cases reported in Table

4.4, the posterior means and medians support much more strongly the correct model

than the posterior probability, which may sometimes get close to zero.

4.4 Case study : a survival analysis

Survival and reliability models are employed in a large number of disciplines ranging

from engineering to health. An important modeling decision in these problems is the

choice of the survival function. Among the many parametric alternatives, common

choices include the Weibull, log-Normal, logistic, log-logistic, exponential, hypo- and

hyper-exponential extensions, Gompertz, Birnhaum-Saunders, Erlang, Coxian, and

Pareto distributions. The Weibull distribution is also a representative of the class
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True model E(αj |y) med(αj |y) P(Mj |y)

a0 .1 .3 .5 .1 .3 .5

M1 .952 .843 .791 1 1 .936 .465

M2 .983 .962 .786 .989 .994 .915 .411

M3 .976 .973 .821 1 1 .921 .494

M4 .991 .867 .902 1 .987 .934 .503

M5 .940 .952 .896 .978 .975 .909 .591

M6 .974 .939 .898 1 1 .940 .617

M7 .973 .899 .906 1 1 1 .888

M8 .991 .918 .924 1 1 1 .938

M9 .953 .940 .878 1 .993 .956 .505

M10 .951 .967 .849 .988 .988 .947 .663

M11 .958 .951 .820 1 .989 .971 .099

M12 .969 .964 .951 .995 .967 .943 .196

M13 .919 .951 .872 1 .962 .926 .547

M14 .952 .964 .890 .998 .981 .911 .126

M15 .991 .991 .955 1 .994 .908 .164

Table 4.4: Example 4.3.6: Comparison between posterior probabilities of the true

linear models, posterior means and medians of the mixture model weights, averaged over

50 replicas of samples of size 500.

of models used for extreme value modelling. Other models in this class include the

extreme value, Stable, Gumbel and Frechet.

We apply here our testing paradigm to choosing between three potential survival

models. Given data (x1, ..., xn) with corresponding censoring indicators (c1, .., cn),

we wish to test the hypothesis that the data are drawn from a log-Normal(φ,κ2),

a Weibull(α,λ), or a log-Logistic(γ, δ) distribution. The corresponding mixture is

thus given by the density

α1 exp{−(log x− φ)2/2κ2}/
√
2πxκ+ α2

α

λ
exp{−(x/λ)α}((x/λ)α−1+

α3(δ/γ)(x/γ)
δ−1/(1 + (x/γ)δ)2

where α3 = 1− α1 − α2. A more amenable version can be obtained by working on

the scale Y = − log(X), which then provides a comparison between the N(θ,σ2),

Gumbel(µ,β), and Logistic(ξ, ζ) distributions. This gives rise to the mixture density

fθ,α(y) = α1 exp{−(y − φ)2/2σ2}
�
(
√
2πσ)+

α2/β exp{−(y − µ)/β)} exp
�
−e−(y−µ)/β

�
+

α3 exp{−(y − ξ)/ζ}
�
{ζ(1 + exp{−(y − ξ)/ζ}))2} .

If we opt for a common parameterisation of those different models, we have the



4.4. Case study : a survival analysis 61

following moments matching equations

φ = µ+ γβ = ξ

σ2 = π2β2/6 = ζ2π2/3

where γ ≈ 0.5772 is EulerâĂŞMascheroni constant. As above, this choice allows the

use of a noninformative prior on the common location scale parameter, π(φ,σ2) =

1/σ2. Once more, we use a Dirichlet prior D(a0, a0, a0) on (α1,α2,α3). Appendix 2

establishes that the corresponding posterior is proper provided the observations are

not all equal.

A common feature in survival data is the presence of censoring. In this case, the

mixture equation becomes

fθ,α(y, c) = α1

�
e−(y−φ)2/2σ2

/
√
2πσ
�c

Φ[(y − φ)/σ]1−c+

α2

�
1/βe−(y−µ)/β exp

�
−e−(y−µ)/β

��c �
exp
�
−e−(y−µ)/β

��1−c
+

α3

�
e−(y−ξ)/ζ

��
ζ(1 + e−(y−ξ)/ζ)2

��c �
1/
�
(1 + e−(y−ξ)/ζ)

��1−c

Three experiments were performed. First, the performance of the model selection

approach in distinguishing between the Weibull, lognormal and log-logistic distri-

butions was assessed by simulating 1000 observations from a Normal(0, 1) density

(with no censoring), and testing a Normal versus Gumbel and Logistic distribu-

tions as described above. The experiment was then repeated using 1000 simulations

from a Gumbel and then from a Logistic distribution. For illustration, the moment-

matched Normal, Gumbel and Logistic densities are depicted Figure 4.17 by solid,

dashed and dotted lines, respectively.

The Gibbs sampler was run for 10,000 iterations using a prior value of a0 = 1.0 for

the hyperparameter on the mixture weights. The resultant probabilities of selecting

the various distributions are shown in Figure 4.17, left panel. It can be seen that

in all cases, the correct model was overwhelmingly identified. As expected, the

probabilities of a correct selection increase with the sample size; in an analogous

experiment with n = 105, all probabilities were larger than 0.90 (figures not shown).

A second experiment was undertaken to assess the influence of the hyperpa-

rameter, a0. The above Monte Carlo experiment was repeated with n = 1000

simulated observations, comparing the impact of four values of a0, namely a0 =

0.01, 0.1, 1.0, 10.0, for all three distributions and for each pair of distributions. As

illustrated on Figure 4.18 and 4.19, the probabilities of selecting a (true) Normal or

(true) Gumbel model, and in agreement with earlier comparisons, the value of a0
impacts the probability of a correct model selection, although in all cases covered

by this Figure, the correct model was overwhelmingly identified (as the most likely

one). Note further that in this experiment the values of a0 were higher than those we

recommender above, namely a+0 ≤ 0.5. As before, increasing the sample size from

n = 1, 000 to n = 10, 000 pushes the posterior probabilities toward the boundaries.
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Figure 4.17: Case study: (left) Normal (solid), Gumbel (dashed) and Logistic (dotted)

densities with (0, 1) parameter; (bottom) Boxplots of the posterior distributions of the

weights under the 3 scenario: truth = Normal (left panel), truth = Gumbel (middle panel),

truth = logistic (right panel).

Figure 4.18: Case study: Boxplots of the posterior distributions of the Normal weight

α1 under the two scenarii: truth = Normal (left panel), truth = Gumbel (right panel),

a0=0.01, 0.1, 1.0, 10.0 (from left to right in each panel) and n = 1, 000 observations.

In addition to this Monte Carlo evaluation of the mixture approach, we consid-

ered a real case study involving modeling survival times for breast cancer in Queens-

land, Australia. A sample of 25125 individuals with breast cancer was provided by

Cancer Council Queensland. Among the subjects, 83.5% were recorded as censored

and the remainder (n = 4155) were recorded as deaths from any cause. The median

survival times were 4.35 and 2.02 years for each of these groups, respectively.

The response variable used in the following analyses is the hazard function, de-

fined as the probability of death at t+Δ years given survival to t years, adjusted for

age, sex and the expected mortality rate, that is, the age- and sex-adjusted back-

ground population risk of death. Of interest is whether or not this distribution is
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Figure 4.19: Case study: Boxplots of the posterior distributions of the Normal weight α1

under the two scenarii: truth = Normal (left panel), truth = Gumbel (right panel), a0=0.01,

0.1, 1.0, 10.0 (from left to right in each panel) and n = 10, 000 simulated observations.

best fitted by a log Normal, Weibull, or log-Logistic distribution, or, equivalently,

whether or not the log hazard is best fitted by a Normal, Gumbel, or Logistic dis-

tribution. Alternatively, it may be preferable to follow a model averaged approach,

which is intrinsically part of the mixture model approach since the MCMC outcome

provides in addition a posterior approximation of the overall mixture. (It could

actually be argued that this approach is even better than standard model averaging

as each observation in the sample selects the best fitted component of the mixture.)

The choice of an appropriate model or of a combination of models is important for

the prediction of survival for cancer patients, which then impacts on decisions about

personalized management and treatment options.

Figure 4.20 provides histograms of both hazard and log hazard for all data and

for deaths only (i.e., excluding censored observations). The corresponding q-q plots

associated with fitting the three distributions, ignoring censoring, are also shown.

The result of the modeling is that these distributions have different fit characteristics:

whereas the Normal (and hence the log Normal) distribution fits the centre of the

distribution more closely, the Weibull (and hence the Gumbel) distribution captures

the tail behavior more accurately. The logistic distribution appears to have a similar

fit to the Normal, but it accommodates slightly more diffuse tails. Based on a choice

of hyperparameter a0 = 1.0, the mixture test for the breast cancer data resulted in

the choice of the logistic distribution with probability 0.996 (s.d. 1.4 10−3), with the

remaining probability mass almost equally split between the Normal and Gumbel

distributions.

4.5 Asymptotic consistency

In this section we prove posterior consistency for our mixture testing procedure.

More precisely we study the asymptotic behavior of the posterior distribution of α.

We consider two different cases. In the first case, the two models, M1 and M2, are

well separated while, in the second case, model M1 is a submodel of M2. We denote
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Figure 4.20: Case study: (top panel) Histograms of the hazard (left) and log hazard

(right) for the non-censored data; (bottom panel) q-q plots for fitting the three distributions

by π the prior distribution on (α, θ1, θ2) and assume that θj ∈ Θj ⊂ R
dj . We first

prove that, under weak regularity conditions on each model, we can obtain posterior

concentration rates for the marginal density fθ,α(·) = αf1,θ1(·)+ (1−α)f2,θ2(·). Let

xn = (x1, · · · , xn) a n sample with true density f ∗.

Proposition 1 Assume that, for all C1 > 0, there exist Θn a subset of Θ1 × Θ2

and B > 0 such that

π [Θc
n] ≤ n−C1 , Θn ⊂ {�θ1�+ �θ2� ≤ nB} (4.9)

and that there exist H ≥ 0 and L, δ > 0 such that, for j = 1, 2,

sup
θ,θ�∈Θn

�fj,θj − f
j,θ

�
j
�1 ≤ LnH�θj − θ�j�, θ = (θ1, θ2), θ

�
= (θ

�

1, θ
�

2) ,

∀�θj − θ∗j� ≤ δ; KL(fj,θj , fj,θ∗j ) � �θj − θ∗j� .
(4.10)

We then have that, when f ∗ = fθ∗,α∗ , with α∗ ∈ [0, 1], there exists M > 0 such that

π
�
(α, θ); �fθ,α − f∗�1 > M

�
log n/n|xn

�
= op(1) .
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The proof of Proposition 1 is a direct consequence of Theorem 2.1 of [Ghosal 2000]

and is omitted for the sake of conciseness. Condition (4.10) is a weak regularity con-

dition on each of the candidate models. Combined with condition (4.9) it allows to

consider noncompact parameter sets in the usual way, see for instance [Ghosal 2000].

It is satisfied in all examples considered in Section 4.3. We build on Proposition 1

to describe the asymptotic behavior of the posterior distribution on the parameters.

4.5.1 The case of separated models

Assume that both models are separated in the sense that there is identifiability:

∀α,α� ∈ [0, 1], ∀θj , θ
�

j , j = 1, 2 Pθ,α = Pθ
� ,α� ⇒ α = α

�
, θ = θ

�
, (4.11)

where Pθ,α denotes the distribution associated with fθ,α. We assume that (4.11)

also holds on the boundary of Θ1 ×Θ2. In other words, the following

inf
θ1∈Θ1

inf
θ2∈Θ2

�f1,θ1 − f2,θ2�1 > 0

holds. We also assume that, for all θ∗j ∈ Θj , j = 1, 2, if Pθj converges in the weak

topology to Pθ∗j
, then θj converges in the Euclidean topology to θ∗j . The following

result then holds:

Theorem 1 Assume that (4.11) is satisfied, together with (4.9) and (4.10), then

for all ε > 0

π [|α− α∗| > ε|xn] = op(1).

In addition, assume that the mapping θj → fj,θj is twice continuously differentiable

in a neighborhood of θ∗j , j = 1, 2, and that

f1,θ∗1 − f2,θ∗2 ,∇f1,θ∗1 ,∇f2,θ∗2

are linearly independent as functions of y and that there exists δ > 0 such that

∇f1,θ∗1 , ∇f2,θ∗2 , sup
|θ1−θ∗1 |<δ

|D2f1,θ1 |, sup
|θ2−θ∗2 |<δ

|D2f2,θ2 | ∈ L1 .

Then

π
�
|α− α∗| > M

�
log n/n|xn

�
= op(1). (4.12)

Theorem 1 allows for the interpretation of the quantity α under the posterior distri-

bution. In particular, if the data xn is generated from model M1 (resp. M2), then

the posterior distribution on α concentrates around α = 1 (resp. around α = 0),

which establishes the consistency of our mixture approach.
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Proof: Using Proposition 1, we have that

π (An|x
n) = 1 + op(1)

with An = {(α, θ); �fθ,α − fθ∗,α∗�1 ≤ δn} and δn = M
�
log n/n. Consider a sub-

sequence αn, P1,θ1n , P2,θ2n which converges to α, µ1, µ2 where convergence holds in

the sense that αn → α and Pj,θjn converges weakly to µj . Note that µj(X ) ≤ 1 by

precompacity of the unit ball under the weak topology. At the limit

αµ1 + (1− α)µ2 = α∗P1,θ∗1
+ (1− α∗)P2,θ∗2

The above equality implies that µ1 and µ2 are probabilities. Using (4.11), we obtain

that

α = α∗, µj = Pj,θ∗j
,

which implies posterior consistency for α. The proof of (4.12) follows the same line

as in [Rousseau 2011]. Consider first the case where α∗ ∈ (0, 1). Then the posterior

distribution on θ concentrates around θ∗.

Writing

L� = (f1,θ∗1 − f2,θ∗2 ,α
∗∇f1,θ∗1 , (1− α∗)∇f2,θ∗2 ) := (Lα, L1, L2)

L” = diag(0,α∗D2f1,θ∗1 , (1−α∗)D2f2,θ∗2 ) and η = (α−α∗, θ1−θ∗1, θ2−θ∗2), ω = η/|η| ,

we then have

�fθ,α − fθ∗,α∗�1 = |η|
���ωTL� + |η|/2ωTL”ω + |η|ω1

�
ω2L

�

2 + ω3L
�

3

�
+ o(|η|)

��� (4.13)

For all (α, θ) ∈ An, set η = (α−α∗, θ1−θ∗1, θ2−θ∗2) goes to 0 and for n large enough

there exists ε > 0 such that |α− α∗|+ |θ− θ∗| ≤ ε. We now prove that there exists

c > 0 such that for all (α, θ) ∈ An

v(ω) =

����ω
TL� +

|η|

2
ωTL”ω + |η|ω1

�
ωT
2 L

�

2 + ωT
3 L

�

3

�
+ o(|η|)

���� > c,

where ω is defined with respect to α, θ. Were it not the case, there would exist a

sequence (αn, θn) ∈ An such that the associated v(ωn) ≤ cn with cn = o(1). As ωn

belongs to a compact set we could find a subsequence converging to a point ω̄. At

the limit we would obtain

ω̄TL
�
= 0

and by linear independence ω̄ = 0 which is not possible. Thus for all (α, θ) ∈ An

|α− α∗|+ |θ − θ∗| � δn.

Assume now instead that α∗ = 0. Then define L
�
= (Lα, L2) and

L” = diag(0, D2f2,θ∗2 ) and η = (α− α∗, θ2 − θ∗2), ω = η/|η|
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and consider a Taylor expansion with θ1 fixed, θ∗1 = θ1 and |η| going to 0. This

leads to

�fθ,α − fα∗,θ∗�1 = |η|

����ω
TL� +

|η|

2
ωTL”ω + |η|ω1ω3L

�

3

����+ o(|η|) (4.14)

in place of (4.13) and the posterior concentration rate δn is obtained in the same

way. �

We now consider the embedded case.

4.5.2 Embedded case

In this section we assume that M1 is a submodel of M2, in the sense that θ2 = (θ1,ψ)

with ψ ∈ S ⊂ R
d and that f2,θ2 ∈ M1 when θ2 = (θ1,ψ0) for some given value ψ0,

say ψ0 = 0. Condition (4.11) is no longer verified for all α’s: we assume however

that it is verified for all α,α∗ ∈ (0, 1] and that θ∗2 = (θ∗1,ψ
∗) satisfies ψ∗ �= 0. In

this case, under the same conditions as in Theorem 1, we immediately obtain the

posterior concentration rate
�
log n/n for estimating α when α∗ ∈ (0, 1) and ψ∗ �= 0.

We now treat the case where ψ∗ = 0; in other words, f ∗ is in model M1.

As in [Rousseau 2011], we consider both possible paths to approximate f ∗: either

α goes to 1 or ψ goes to ψ0 = 0. In the first case, called path 1, (α∗, θ∗) =

(1, θ∗1, θ
∗
1,ψ) with ψ ∈ S, in the second, called path 2, (α∗, θ∗) = (α, θ∗1, θ

∗
1, 0) with

α ∈ [0, 1]. In either case, we write P ∗ the distribution. We also denote F ∗g =�
f∗(x)g(x)dµ(x) for any integrable function g. For sparsity reasons, we consider

the following structure for the prior on (α, θ):

π(α, θ) = πα(α)π1(θ1)πψ(ψ), θ2 = (θ1,ψ).

This means that the parameter θ1 is common to both models, i.e., that θ2 shares

the parameter θ1 with f1,θ1 .

Condition (4.11) is replaced by

Pθ,α = P ∗ ⇒ α = 1, θ1 = θ∗1, θ2 = (θ∗1,ψ) or α ≤ 1, θ1 = θ∗1, θ2 = (θ∗1, 0)
(4.15)

Let Θ∗ the above parameter set.

As in the case of separated models, the posterior distribution concentrates on Θ∗.
We now describe more precisely the asymptotic behavior of the posterior distribu-

tion, using [Rousseau 2011]. We cannot apply directly Theorem 1 of [Rousseau 2011],

hence the following result is an adaptation of it. We require the following assump-

tions with f∗ = f1,θ∗1 . For the sake of simplicity, we assume that Θ1 and S are com-

pact. Extension to non compact sets can be handled similarly to [Rousseau 2011].

B1 Regularity : Assume that θ1 → f1,θ1 and θ2 → f2,θ2 are 3 times continuously

differentiable and that

F ∗


 f̄3

1,θ∗1

f3
1,θ∗1


 < +∞, f̄1,θ∗1 = sup

|θ1−θ∗1 |<δ

f1,θ1 , f
1,θ∗1

= inf
|θ1−θ∗1 |<δ

f1,θ1
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F ∗


sup|θ1−θ∗1 |<δ |∇f1,θ∗1 |

3

f3
1,θ∗1


 < +∞, F ∗

�
|∇f1,θ∗1 |

4

f4
1,θ∗1

�
< +∞,

F ∗


sup|θ1−θ∗1 |<δ |D

2f1,θ∗1 |
2

f2
1,θ∗1


 < +∞, F ∗

�
sup|θ1−θ∗1 |<δ |D

3f1,θ∗1 |

f
1,θ∗1

�
< +∞

B2 Integrability : There exists S0 ⊂ S ∩ {|ψ| > δ0}, for some positive δ0 and

satisfying Leb(S0) > 0, and such that for all ψ ∈ S0,

F ∗
�
sup|θ1−θ∗1 |<δ f2,θ1,ψ

f4
1,θ∗1

�
< +∞, F ∗

�
sup|θ1−θ∗1 |<δ f

3
2,θ1,ψ

f3
1,θ1∗

�
< +∞,

B3 Stronger identifiability : Set

∇f2,θ∗1 ,ψ∗(x) =
�
∇θ1f2,θ∗1 ,ψ∗(x)T,∇ψf2,θ∗1 ,ψ∗(x)T

�T
.

Then for all ψ ∈ S with ψ �= 0, if η0 ∈ R, η1 ∈ R
d1

η0(f1,θ∗1−f2,θ∗1 ,ψ)+ηT
1 [∇θ1f1,θ∗1−∇θ1f2,θ∗1 ,ψ(x)] = 0 ⇔ η1 = 0, η2 = 0 (4.16)

We can now state the main theorem:

Theorem 2 Given the model

fθ1,ψ,α = αf1,θ1 + (1− α)f2,θ1,ψ,

assume that the data is made of the n sample xn = (x1, · · · , xn) issued from f1,θ∗1
for some θ∗1 ∈ Θ1, that assumptions B1 − B3 are satisfied, and that there exists

M > 0 such that

π
�
(α, θ); �fθ,α − f∗�1 > M

�
log n/n|xn

�
= op(1).

If the prior πα on α is a Beta B(a1, a2) distribution, with a2 < d2, and if the prior

πθ1,ψ is absolutely continuous with positive and continuous density at (θ∗1, 0), then

for all Mn going to infinity,

π
�
|α− α∗| > Mn(log n)

γ/
√
n|xn

�
= op(1), γ = max((d1 + a2)/(d2 − a2), 1)/2,

(4.17)

Proof: We must find a precise lower bound on

Dn :=

�

α

�

Θ

eln(fθ,α)−ln(f∗)dπθ(θ)dπα(α)

Consider the approximating set

Sn(ε) = {(θ,α),α > 1− 1/
√
n, |θ1 − θ∗1| ≤ 1/

√
n, |ψ − ψ̄| ≤ ε}
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with |ψ̄| > 2ε some fixed parameter in S. Using the same computations as in

[Rousseau 2011], it holds that for all δ > 0 there exists Cδ > 0 such that

P ∗ �Dn < e−Cδπ(Sn(ε))/2
�
< δ. (4.18)

So that with probability greater than 1 − δ, Dn � n−(b+d1)/2. Denote Bn =

{(θ,α); �fθ,α − f∗�1 ≤ M
�
log n/n} and An = {(θ,α) ∈ Bn; 1 − α > zn/

√
n}

with zn = Mn(log n)
γ/
√
n and Mn a sequence increasing to infinity. We split Bn

into

Bn,1(ε) = Bn ∩ {(θ,α), θ = (θ1,ψ); |ψ| < ε}, Bn,2(ε) = Bn ∩Bn,1(ε)
c.

To prove Theorem 2 it is enough to verify that

π(An) = o(n−(a2+d1)/2).

To simplify notations we also write δn = M
�
log n/n. First we prove that for

all ε > 0, An ∩ Bn,2(ε) = ∅, when n is large enough. Let ε > 0, then for any

(θ,α) ∈ An ∩ Bn,2(ε), We thus have |ψ| �= o(1), α = 1 + o(1) and |θ1 − θ∗1| = o(1).

Consider a Taylor expansion of fθ,α around α = 1 and θ1 = θ∗1 , with ψ fixed. This

leads to

fθ,α − f∗ = (α− 1)[f1,θ∗1 − f2,θ∗1 ,ψ] + (θ1 − θ∗1)[∇θ1f1,θ∗1 −∇θ1f2,θ∗1 ,ψ(x)]

+
1

2
(θ1 − θ∗1)

T
�
ᾱD2

θ1
f1,θ̄1 + (1− ᾱ)D2

θ1
f2,θ̄1,ψ

�
(θ1 − θ∗1)

+ (α− 1)(θ1 − θ∗1)
T[∇θ1f1,θ̄1 −∇θ1f2,θ̄1,ψ]

= (α− 1)[f1,θ∗1 − f2,θ∗1 ,ψ] + (θ1 − θ∗1)∇θ1f1,θ∗1 + o(|α− 1|+ |θ1 − θ∗1|)

with ᾱ ∈ (0, 1) and θ̄1 ∈ (θ1, θ
∗
1) and the o(1) is uniform over An ∩ Bn,2(ε). Set

η = (α− 1, θ1 − θ∗1) and x = η/|η| if |η| > 0. Then

�fθ,α − f∗�1 = |η|
�
xTL1(ψ) + o(1)

�
, L1 = (f1,θ∗1 − f2,θ∗1 ,ψ,∇θ1f1,θ∗1 )

We now prove that on An ∩ Bn,2(ε), �fθ,α − f∗�1 � |η|. Assume that it is not the

case then there exist cn > 0 going to 0 and a sequence (θn,αn) such that along

that subsequence |xT
nL1(ψn) + o(1)| ≤ cn with xn = ηn/|ηn|. Since it belongs to a

compact, together with ψn, any converging subsequence satisfies at the limit (x̄, ψ̄),

x̄TL1(ψ̄) = 0 ,

which is not possible. Hence |α − 1| � M
√
log n/

√
n = o(Mn(log n)

γ/
√
n), which

is not possible so that An ∩ Bn,2(ε) = ∅ when n is large enough. We now bound

π(An ∩ Bn,1(ε)) for ε > 0 small enough but fixed. We consider a Taylor expansion

around θ∗ = (θ∗1, 0), leaving α fixed. Note that ∇θ1f2,θ∗ = ∇θ1f1,θ∗1 . We have

fθ,α − f∗ = (θ1 − θ∗1)
T∇θ1f2,θ∗ + (1− α)ψT∇ψf2,θ∗

1

2
(θ − θ∗)THα,θ̄(θ − θ∗)
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where Hα,θ̄ is the bloc matrix

Hα,θ̄ =

�
αD2

θ1
f1,θ̄1 + (1− α)D2

θ1,θ1
f2,θ̄ (1− α)D2

θ1,ψ
f2,θ̄

(1− α)D2
ψ,θ1

f2,θ̄ (1− α)D2
ψ,ψf2,θ̄

�

Since Hα,θ̄ is bounded in L1 (in the sense that each of its components is bounded

as functions in L1), uniformly in neighborhoods of θ∗, we have writing η = (θ1 −
θ∗1, (1− α)ψ) and x = η/|η|, that |η| = o(1) on An ∩Bn,1(ε) and

�fθ,α − f∗�1 � |η|
�
xT∇f2,θ∗ + o(1)

�
,

if ε is small enough. Using a similar argument to before, this leads to |η| � δn on

An ∩Bn,1(ε), so that

π (An ∩Bn,1(ε)) � δd1n

� 1

zn/
√
n
(δn/u)

d2ub−1du � δd1+b
n zb−d2

n � n−(d1+a2)/2Ma2−d2
n ,

which terminates the proof. �

4.6 Conclusion

Bayesian inference has been used in a very wide range over the past twenty years,

mostly thanks to enhanced computing abilities, and many of those applications of the

Bayesian paradigm have concentrated on the comparison of scientific theories and

on testing of null hypotheses. Due to the ever increasing complexity of the statistical

models handled in such applications, the natural and understandable tendency of

practitioners has been to rely on the default solution of the posterior probability

(or equivalently of the Bayes factor) without ever questioning its validity. It is only

in rare cases that warnings were heeded [Robert 2011] about the poorly understood

sensitivity of such tools to both prior modeling and posterior calibration. In this

area, objective Bayes solutions remain tentative and do not meet with consensus.

We thus believe Bayesian analysis has reached the time for a paradigm shift in

the matter of hypothesis testing and model selection, albeit the solution does not

have to be found outside the Bayesian paradigm, as for instance the frequentist

priors of [Johnson 2013b, Johnson 2013a] and the integrated likelihood setting of

[Aitkin 2010]. The novel paradigm we proposed here for Bayesian testing of hy-

potheses and Bayesian model comparison offers many incentives while answering

some of the classical attacks against posterior probabilities and Bayes factors. Our

alternative to the construction of traditional posterior probabilities that a given hy-

pothesis is true or that the data originates from a specific model is therefore to rely

on the encompassing mixture model. Not only do we replace the original testing

problem with a better controlled estimation target that focus on the frequency of

a given model within the mixture model, but we also allow for posterior variability

over this frequency as opposed to the deterministic characteristics of the standard
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Bayesian approach. The posterior distribution on the weights of both components

in the mixture offers a setting for deciding about which model is most favored by

the data that is at least as intuitive as the sole number corresponding to either the

posterior probability or the Bayes factor. The range of acceptance, rejection and

indecision conclusions can easily be calibrated by simulation under both models, as

well as by deciding on the values of the weights that are extreme enough in favor

of one model. The examples provided in this paper have showed that the posterior

medians of such weights are very quickly settling near the boundary values of 0

and 1, depending on which model is right. Even though we do not advocate such

practice, it is even possible to derive a Bayesian p-value by looking at the posterior

area under the tail of the distribution of the weight.

Besides decision making, another issue of potential concern about this new ap-

proach is the impact of the prior modeling. We demonstrated through all our ex-

amples that a partly common parameterisation is always feasible and hence allows

for reference priors, at least on the common parameters. This proposal thus allows

for a removal of the absolute prohibition of using improper priors in hypothesis test-

ing [DeGroot 1973], a problem which has plagued the objective Bayes literature for

decades. Concerning the prior on the weight parameter, we analyzed the sensitiv-

ity on the resulting posterior distribution of various prior Beta modelings on those

weights. While the sensitivity is clearly present, it naturally vanishes as the sample

size increases, in agreement with our consistency results, and remains of a moderate

magnitude, which leads us to suggest the default value of a0 = 0.5 in the Beta prior,

in connection with both the earlier result of [Rousseau 2011] and Jeffreys’ prior in

the simplest mixture setting.

A last point about our proposal is that it does not induce additional computa-

tional strain on the analysis. Provided algorithmic solutions exist for both models

under comparison, such solutions can be recycled towards estimating the encom-

passing mixture model. As demonstrated through the various examples in the pa-

per, the setting is actually easier than with a standard mixture estimation problem

[Diebolt 1994, Marin 2005] because of the existence of common parameters that al-

low for the original MCMC samplers to be turned into proposals. Gibbs sampling

completions are useful for assessing the potential outliers in a model but altogether

not essential to achieve a conclusion about the overall problem.





Chapter 5

Supplementary material: Testing

hypotheses as a mixture

estimation model

In Chapter 4, we expressed how Bayesian model choice via posterior probabilities

of models can be replaced by an estimation based on the probability weight of a

model within a mixture model and the reasonable performance of this transforma-

tion illustrated by several examples. This chapter deals with some more Bayesian

inferences, MCMC algorithms, the behavior of resulting Markov chains and also

statistical tools in more details.

5.1 Mixture weight distribution

Bayesian inference of the mixture model weights is based on a beta distribution as a

conjugate prior probability distribution with shape parameters that take values a0 =

.1, .2, .3, .4, .5 while a0 = .5 yields Jeffreys prior. The identical shape parameters lead

a symmetric density function about .5 that looks like a basin in a one-dimensional

curve and tends to infinity in the boundaries of unit interval as shown in Figure 5.1.

If n1 denotes the number of observations associated with the mixture component

M1, the evolution of the posterior probability over n1 based on the Jeffreys prior,

which is Beta(.5 + n1, .5 + n2), is shown on the right side of Figure 5.1. This

evolution implies that the smaller the value of n1 is the more the posterior density

of M1 tightens up near zero. This means that only in the case where a very large

number of the observations is allocated to the model M1, the Bayesian estimate of

corresponding mixture weight is very close to 1. This behavior plays a fundamental

role in replacing the posterior probabilities of the models by the posterior estimations

of the mixture model weights.

5.2 Poisson versus geometric

In the first example of Chapter 4, Poisson distribution is compared with Geometric

distribution under the assumption of using the same parameter in both models. This

allows us to consider a non-informative prior for the common parameter λ. Here, we

firstly study this case with more details in section 5.2.1 and then in section 5.2.2, we

proceed with comparing these distributions when they have deferent parameters in
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Figure 5.1: Mixture weights distribution 5.1: (Left) Probability density function of

beta prior for the weight of the mixture model. (right) Posterior probability of the mixture

weights as a function of n1 when a0 = .5 and n1 + n2 = 100.

order to assess the behavior of the mixture model weights in the case of informative

prior modeling.

5.2.1 Non-informative prior modeling

Let us to consider an i.i.d sample x1, . . . , xn from model Mα. With the assumption

of the same parameter in both components of the mixture model, the likelihood is

such that

�(λ,α|x) =
n�

i=1

α exp(−λ)λxi/xi! + (1−α)λxi/(1+λ)xi+1

and under the condition of the missing variable ζi associated with each xi, we

will have

�(λ,α|x, ζ) = αn1(1− α)n2
�

i;ζi=1

exp(−λ)λxi/xi!

�

i;ζi=2

(1/1+λ)(1− 1/1+λ)xi .

When λ and α are independent and π(λ) = 1/λ, the posterior distribution of λ

is given by

π(λ|x, ζ) ∝ exp(−n1λ)λ
�

i Iζi=1xi+
�

i Iζi=2xi−1
/(1+λ)

n2+
�

i Iζi=2xi

In order to simulate parameter λ from this non-standard posterior distribution,

we apply the Metropolis-within-Gibbs algorithm. The related R code is available

in [Kamary 2016b] in which α is simulated from the conditional posterior density

Beta(a0 + n1, a0 + n2) and λ from gamma proposal with parameter (
�n

i=1 xi/2, n/2).

The proposal distribution of λ results in an unbiased estimate for λ because the
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expected value is
�n

i=1 xi/n which converges to E(
�n

i=1 xi/n) = λ. This algorithm

works well in terms of accurately estimating the parameters λ and θ by comparing

them with the true values and the resulting distribution of α supports the true

model when the sample size is high enough. However, in the case where the sample

size is small, this algorithm results in poor estimation of α due to the problem of

label switching as shown in Figure 5.2.

Figure 5.2: Poisson versus geometric 5.2.1: Sequence of λ[t], p[t] and α[t] simulated by

GSmix function with 10, 000 iterations for a dataset of size 30 from P(.5) when a0 = .1.

Another R code can be written by considering the acceptance ratio of the

Metropolis-Hastings step based on the target distributions without associating any

indicator variable ζ to the observations. In other words, we can sample from the

following posterior densities

π(λ|x) =

�
n�

i=1

α exp(−λ)λxi/xi! + (1−α)λxi/(1+λ)xi+1

�
1/λ

π(α|x) ∝
�

n�

i=1

α exp(−λ)λxi/xi! + (1−α)λxi/(1+λ)xi+1

�
αa0−1(1− α)a0−1

which are both non-standard and require MCMC algorithm to sample. The

advantages of the implementation of corresponding algorithm in R is that it is almost

twice faster than the Gibbs sampler method and the label switching does not happen

anymore in the output of α even for small sample sizes. The R code is available

in [Kamary 2016b]. Our first check on convergence of Markov chains provided by

this algorithm is to consider four samples of size 50, 1000, 400, 600 simulated from

P(.64), P(10), Geo(.4) and P(.59), respectively, and to plot histories of λ[t], p[t],α[t],

as shown in Figures 5.3 and 5.4. The trace plots indicate that the Markov chains

have stabilized and appear constant over the graphs. Moreover, the chains have

good mixing and are dense in the sense that they quickly traverse the support of

the distribution. They are also able to explore both the tails and the mode areas

efficiently. The autocorrelation plots show a very small degree of autocorrelation

among the posterior samples, and the histograms estimate the posterior marginal

distributions for the parameters. Note that we observe the same behavior for the

simulated samples when a0 = .2, .3, .4, .5.

In order to evaluate the accuracy of the parameter estimations, we simulate 50

datasets of sizes from 10 to 1000 once from Poisson distribution with parameter
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Figure 5.3: Poisson versus geometric 5.2.1: Sequence (Top), empirical autocorrelations

using acf function in R (Middle) and histograms (Bottom) of λ[t], p[t] and α[t] with 10, 000

MCMC iterations for datasets of sizes 50, 1000 from P(.64) and P(10) when a0 = .1.

λ varied from .5 to 10 and another from geometric distribution with parameter p

diverse from .06 to 1. By running MCMC algorithm for all 100 datasets, the mean

absolute errors of the resulting estimates of λ and p based on the median of the

simulated samples are summarized in Table 5.1 . Very small values of MAE lead us

to conclude that the parameters of both models are accurately estimated in both

cases. In addition to that, the evolution of the corresponding posterior estimations

of α over the sample size shown in Figure 5.5 indicates the degree of the support of

α toward the true model.
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Figure 5.4: Poisson versus geometric 5.2.1: Sequence (Top), empirical autocorrelations

using acf function in R (Middle) and histograms (Bottom) of λ[t], p[t] and α[t] with 10, 000

MCMC iterations for datasets of sizes 400, 600 from Geo(.4) and P(.59) when a0 = .1.

5.2.2 Informative prior modeling

Suppose that P(λ) is tested against Geo(p). We consider the following conjugate

priors for the parameters λ and p,

λ ∼ G(β1,β2); p ∼ Beta(δ1, δ2).

The joint posterior distribution of λ and p is therefore given by

π(λ, p|x) ∝
�

n�

i=1

αexp(−λ)λxi/xi! + (1− α)(1− p)xip

�
λβ1−1 exp(−β2λ)p

δ1−1(1−p)δ2−1
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Datasets from Poisson distribution

a0 0.1 0.2 0.3 0.4 0.5

λ̃ .0064 .0077 .0085 .0082 .0101

θ̃ .0016 .0018 .0019 .0017 .0019

Datasets from Geometric distribution

a0 0.1 0.2 0.3 0.4 0.5

λ̃ .0531 .0602 .0580 .0648 .0701

θ̃ .0542 .0619 .0010 .0009 .0011

Table 5.1: Poisson versus Geometric 5.2.1: Mean absolute error.

Figure 5.5: Poisson versus geometric 5.2.1: Evolution of α over the sample size when

data is simulated from (left) Poisson distribution with parameter λ taking values from .5

to 10; (right) Geometric distribution with parameter p taking values from .06 to 1. Each

estimation is based on 10, 000 MCMC iterations.

The posterior samples from this non-standard posterior density are produced by

implementing the Metropolis-within-Gibbs in R [Kamary 2016b]. The candidate

values for λ and p are independently proposed by gamma and beta distributions.

Once again, we simulate two datasets of sizes 50, 500 from P(.64) and Geo(.49),

respectively, and for each dataset, we execute the R code 50 times by choosing

different initial values for the chains in order to assess the convergence of the sim-

ulated samples. For both datasets, the marginal posterior distributions of λ and

p are stable under 50 repetitions of the Metropolis-within-Gibbs algorithm with

10, 000 iterations, as shown in Figure 5.6. They are also identical and centered on

the true values whatever the value of a0 is. The estimated densities for α shown on

the right side of Figure 5.6 have the same behavior as the case where both models

under comparison share the same parameter. This means that the distributions are

concentrated over 1 for the true model and the smaller the value of a0 is, the more

the densities tighten up over the boundaries of unit interval. In addition to this, for

each value of a0, the generated samples of α resulted by 50 repetitions of MCMC

algorithm have the same behavior and this guarantees the convergence of the chains
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toward stationarity in this case.

Figure 5.6: Poisson versus geometric 5.2.2: Marginal posterior distributions of λ, p

and α obtained by running MCMC algorithm for 50 times with a0 = 0.1, 0.2, 0.3, 0.4, 0.5

for (Top) a sample of size 50 simulated from P(.64) when the true value of (β1,β2, δ1, δ2) is

(32, 50, 50, 32); (Bottom) a sample of size 500 simulated from Geo(.49) when the true value

of (β1,β2, δ1, δ2) is (505, 490, 490, 505). Each density is based on 10, 000 MCMC iterations.

5.3 N (θ, 1) versus N (θ, 2)

When comparing two normal distributions with the same location parameter θ, both

Gibbs sampler based on allocating missing variable ζ to the observations and the

Metropolis-Hastings algorithm based on following posterior

π(θ|x,α) ∝ �(θ,α|x)π(θ) (5.1)

=

n�

i=1

�
α exp(−(xi−θ)2/2) + (1− α) exp(−(xi−θ)2/4)/

√
2
�

(5.2)

yield the same Bayesian inference for the mixture model. The label switching

does not happen using Gibbs sampler in this case, as shown at the bottom of Figures

5.7 and 5.8. The implementations of both algorithms using programming language

R are given in [Kamary 2016b].

In the Metropolis-Hastings algorithm, the proposals of θ are drawn from a nor-

mal distribution centered on the empirical mean of the observations and its standard

deviation can be calibrated by an argument in the input of the corresponding func-

tion. By simulating 3 datasets of sizes 10, 510, 1000 once from N (θ, 1) and another
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from N (θ, 2), we analyze the output of both algorithms. Comparison between the

estimated marginal posterior distributions of θ derived from the outputs of both

Metropolis-Hastings and Gibbs sampler is shown in Figures 5.7 and 5.8. Both meth-

ods accurately estimate the common location parameter of the normal distribution

for any value of a0 while the resulting posterior densities of α are identical and in

favor of the true model in both cases even for samples of size 10.

Figure 5.7: N (θ, 1) versus N (θ, 2) 5.3: Marginal posterior densities of θ (Top) and α

(Bottom) obtained by running (dashed lines) Gibbs sampling algorithm and (solid lines)

Metropolis-Hastings algorithm with different values of a0 for samples of sizes 10, 510 and

1000 simulated from N (−10.15, 1),N (−0.03, 1) and N (9.97, 1), respectively. Each density

is based on 10, 000 MCMC iterations and the vertical dotted line in θ plots corresponds to

the true value.

Another data analysis is summarized in Tables 5.2 and 5.3. The tables report a

series of posterior summaries related to 11 datasets simulated from normal distribu-

tions, N (θ, 1) and N (θ, 2) such that the posterior median and standard deviation

of posterior draws for θ and α. The number of the observations N and the true

value of θ are also listed. Included in the tables is also a convergence test using

[Gelman 1992]’s criterion that is done by gelman.diag function in R, named gd..

This test is based on four MCMC chains produced in parallel starting from an arbi-

trary position for each parameter. Tables 5.2 and 5.3 display that for all datasets,

the parameter θ is accurately estimated by the median of the posterior draws with

a standard deviation less than .5 while the point estimate of α is always very close

to 1 for the true model. The results of gd. test shows a clear stabilization around

the target value 1 from 10,000 iterations which indicates that the four chains have

converged on the same region, resulting in a perfect fit to the target.
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D.1 D.2 D.3 D.4 D.5 D.6 D.7 D.8 D.9 D.10 D.11

N 10 30 40 50 70 90 110 310 510 810 1000

θ -10.6 -6.4 -3.9 -2.1 2.2 6 10 -4.1 0 6 10

a
0
=

0
.1

sd. 0.33 0.18 0.16 0.15 0.12 0.11 0.095 0.06 0.04 0.04 0.03

θ̂ md. -10.65 -6.38 -3.92 -2.09 2.17 6.01 10.02 -4.07 0.03 5.97 9.97

gd. 1 1 1 1.02 1.01 1 1 1 1 1 1.01

sd. 0.26 0.09 0.07 0.14 0.09 0.07 0.04 0.02 0.02 0.01 0.02

α̂ md. 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1 0.99

gd. 1 1.01 1 1 1.001 1 1 1.01 1 1 1

a
0
=

0
.2

sd. 0.33 0.19 0.16 0.15 0.12 0.11 0.09 0.06 0.05 0.04 0.03

θ̂ md. -10.64 -6.38 -3.93 -2.1 2.18 6.02 10.01 -4.06 -0.02 5.96 10.01

gd. 1.002 1 1 1 1.02 1 1 1 1 1 1

sd. 0.27 0.11 0.11 0.17 0.11 0.08 0.06 0.03 0.02 0.014 0.02

α̂ md. 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99

gd. 1.01 1 1 1 1 1 1.02 1 1 1.01 1

a
0
=

0
.3

sd. 0.34 0.19 0.16 0.15 0.12 0.11 0.098 0.06 0.04 0.04 0.03

θ̂ md. -10.54 -6.41 -3.91 -2.01 2.13 6.00 9.98 -4.09 0.01 6.01 9.97

gd. 1 1 1 1 1.01 1 1 1 1 1 1

sd. 0.28 0.13 0.12 0.17 0.12 0.10 0.07 0.03 0.03 0.02 0.02

α̂ md. 0.94 0.98 0.98 0.95 0.97 0.98 0.98 0.99 0.99 0.99 0.99

gd. 1 1 1 1 1 1 1 1.02 1 1 1.01

a
0
=

0
.4

sd. 0.34 0.19 0.16 0.15 0.12 0.11 0.10 0.06 0.05 0.03 0.03

θ̂ md. -10.63 -6.37 -3.90 -2.13 2.17 6.01 10.01 -4.1 0.03 5.97 9.98

gd. 1 1 1 1 1 1.01 1 1 1 1 1

sd. 0.27 0.14 0.12 0.18 0.13 0.11 0.08 0.03 0.03 0.02 0.03

α̂ md. 0.92 0.96 0.97 0.92 0.95 0.96 0.98 0.99 0.99 0.99 0.99

gd. 1 1 1 1 1 1 1 1 1.02 1.01 1

a
0
=

0
.5

sd. 0.34 0.19 0.16 0.15 0.12 0.11 0.10 0.06 0.04 0.04 0.03

θ̂ md. -10.65 -6.42 -3.89 -2.11 2.18 5.98 10 -4.07 -0.03 6 10.03

gd. 1 1.01 1 1 1 1 1 1 1 1 1

sd. 0.27 0.15 0.14 0.19 0.14 0.12 0.08 0.04 0.03 0.02 0.03

α̂ md. 0.88 0.95 0.96 0.89 0.93 0.95 0.97 0.99 0.99 0.99 0.98

gd. 1 1 1 1 1 1 1 1.02 1 1.01 1.01

Table 5.2: N (θ, 1) versus N (θ, 2) 5.3: Posterior summaries; Datasets (D.1, ..., D.11)

are simulated from N (θ, 1) and each point estimator is based on 10, 000 iterations of the

Metropolis-Hastings algorithm.
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D.1 D.2 D.3 D.4 D.5 D.6 D.7 D.8 D.9 D.10 D.11

N 10 30 40 50 70 90 110 310 510 810 1000

θ -9.3 -6.2 -3.9 -1.6 2 6.1 10.1 -3.9 0 6 10

a
0
=

0
.1

sd. 0.44 0.26 0.24 0.2 0.17 0.15 0.13 0.08 0.06 0.05 0.04

θ̂ md. -9.31 -6.18 -3.87 -1.62 1.97 6.12 10.12 -3.87 0.02 6.01 10.01

gd. 1 1 1.01 1 1 1 1 1 1 1 1

sd. 0.13 0.11 0.08 0.12 0.06 0.16 0.09 0.09 0.02 0.02 0.03

α̂ md. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6e-5 4e-5 2e-5

gd. 1 1 1 1 1 1 1.01 1 1 1.01 1

a
0
=

0
.2

sd. 0.44 0.24 0.22 0.21 0.17 0.14 0.13 0.08 0.06 0.05 0.04

θ̂ md. -9.33 -6.35 -3.88 -1.62 1.97 6.12 10.13 -3.88 0.01 6.01 10.01

gd. 1.01 1 1 1.02 1 1 1.01 1 1 1 1

sd. 0.16 0.14 0.11 0.14 0.08 0.18 0.12 0.10 0.03 0.02 0.03

α̂ md. 0.01 0.01 0.01 0.02 0.01 0.05 0.01 0.04 1e-3 1e-3 0.00

gd. 1 1 1 1 1 1 1 1 1 1.01 1

a
0
=

0
.3

sd. 0.45 0.24 0.24 0.18 0.17 0.14 0.14 0.08 0.06 0.05 0.05

θ̂ md. -9.36 -6.18 -3.88 -1.62 1.98 6.11 10.12 -3.87 0.02 6.02 10.01

gd. 1 1 1.01 1 1.01 1 1.01 1 1 1 1

sd. 0.18 0.15 0.11 0.16 0.1 0.19 0.13 0.10 0.04 0.03 0.04

α̂ md. 0.04 0.04 0.02 0.05 0.02 0.12 0.05 0.07 0.01 0.01 0.01

gd. 1 1 1 1 1 1 1 1 1.01 1 1

a
0
=

0
.4

sd. 0.45 0.24 0.22 0.2 0.16 0.14 0.14 0.08 0.06 0.05 0.04

θ̂ md. -9.37 -6.18 -3.88 -1.62 1.97 6.12 10.12 -3.87 0.02 6.00 10.01

gd. 1.01 1 1 1 1 1 1.01 1 1.01 1 1.01

sd. 0.18 0.17 0.13 0.17 0.11 0.19 0.13 0.11 0.04 0.03 0.02

α̂ md. 0.06 0.06 0.05 0.08 0.04 0.17 0.07 0.09 0.01 0.01 0.02

gd. 1 1 1 1 1 1 1.01 1 1 1 1

a
0
=

0
.5

sd. 0.45 0.24 0.21 0.19 0.16 0.14 0.13 0.08 0.06 0.05 0.04

θ̂ md. -9.35 -6.18 -3.87 -1.62 1.98 6.12 10.12 -3.79 -0.02 6.01 9.98

gd. 1.01 1 1 1 1 1 1.01 1 1 1 1

sd. 0.19 0.17 0.14 0.18 0.11 0.19 0.14 0.11 0.04 0.03 0.04

α̂ md. 0.09 0.08 0.07 0.11 0.05 0.18 0.09 0.12 0.02 0.01 0.02

gd. 1 1 1 1 1 1 1 1 1 1 1.02

Table 5.3: N (θ, 1) versus N (θ, 2) 5.3: Posterior summaries; Datasets (D.1, ..., D.11)

are simulated from N (θ, 2) and each point estimator is based on 10, 000 iterations of the

Metropolis-Hastings algorithm.
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Figure 5.8: N (θ, 1) versus N (θ, 2) 5.3: Marginal posterior densities of θ (Top) and α

(Bottom) obtained by running (dashed lines) the Gibbs sampling algorithm and (solid lines)

the Metropolis-Hastings algorithm with different values of a0 for samples of sizes 10, 510 and

1000 simulated from N (−9.72, 2),N (0.02, 2) and N (10.01, 2), respectively. Each density is

based on 10, 000 MCMC iterations and the vertical dotted line in θ plots corresponds to

the true value.

5.4 Standard normal distribution versus N (µ, 1)

The mixture of the standard normal distribution and N (µ, 1) is defined by Mα :

αN (0, 1)+(1−α)N (µ, 1) and the conditional posterior distributions of µ and α are

given by

π(µ|x) ∝
�

n�

i=1

α exp(−x2
i/2) + (1− α) exp(−(xi−µ)2/2)

�
exp(−µ2/2)

π(α|x) ∝
�

n�

i=1

α exp(−x2
i/2) + (1− α) exp(−(xi−µ)2/2)

�
αa0−1(1− α)a0−1.

The Metropolis-within-Gibbs algorithm will be applied to simulate from the con-

ditional posteriors above and the corresponding R code can be seen in [Kamary 2016b].

Convergence verification of the chains produced by this algorithm is done by plot-

ting the resulting posterior draws for some datasets simulated from both competing

models as shown in Figure 5.9. Small autocorrelations indicate very low degree of

correlation between the draws. The trace plots illustrate good mixing of the chains

which are moving around the parameter space. The marginal posterior distribution

of each parameter is also shown by the histograms in Figure 5.9. The plots are

related to a0 = .1 and we get the same results for the cases where a0 = .2, .3, .4, .5.
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Figure 5.9: N (0, 1) versus N (µ, 1) 5.4: Sequence, empirical autocorrelations using acf

function in R and histograms of µ[t] and α[t] simulated by the Metropolis-within-Gibbs

algorithm with 10, 000 iterations for: (Top) two datasets of sizes 5 (left) and 250 (right)

from N (−9, 1) and N (1.95, 1), respectively; (Bottom) two datasets of sizes 850 (left) and

50, 000 (right) simulated from standard normal distribution. a0 = .1.

Another experiment is to run the algorithm several times for different datasets

of different sizes simulated from each model under comparison. Table 5.4 lists the

information about datasets such as the number of observations and the true value of

the parameter µ in the case of simulating the data points from N (µ, 1). The table

reports also the posterior mean and standard deviation of µ which are accurately

estimated for all datasets.

Figure 5.10 displays that when N (µ, 1) is the model from which the dataset is

simulated, the posterior estimate of α strongly supports this model for the data
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Table (a)

Data: D.1 D.2 D.3 D.4 D.5 D.6 D.7 D.8

N 5 15 25 35 55 65 75 95

µ̂
Mean -0.17 0.16 0.2 0.09 -0.03 0.02 0.00 0.02

Sd. 0.83 0.82 0.9 0.84 0.86 0.89 0.86 0.85

Data: D.9 D.10 D.11 D.12 D.13 D.14 D.15 D.16

N 250 450 650 750 850 950 1000 5e+4

µ̂
Mean -0.02 -0.02 -0.01 -0.02 -0.08 0.05 -0.10 -0.03

Sd. 0.86 0.81 0.83 0.85 0.88 0.89 0.80 0.90

Table (b)

Data: D.1 D.2 D.3 D.4 D.5 D.6 D.7 D.8

N 5 15 25 35 45 55 65 250

µ -9 -8.3 -7.8 -6.8 -5.8 -5 -4.1 2

µ̂
Mean -8.93 -8.38 -7.75 -6.89 -5.75 -4.96 -4.06 1.94

Sd. 0.41 0.24 0.19 0.17 0.15 0.13 0.12 0.06

Data: D.9 D.10 D.11 D.12 D.13 D.14 D.15 D.16

N 350 450 550 650 750 850 950 1000

µ 3 4 4.9 6 6.9 8 8.9 10

µ̂
Mean 3.01 4.00 4.98 6.00 6.93 7.98 8.98 10.04

Sd. 0.05 0.05 0.04 0.04 0.04 0.03 0.03 0.03

Table 5.4: N (0, 1) versus N (µ, 1) 5.4: Observation information and posterior summaries;

Table (a) Datasets (D.1, ..., D.16) are simulated from N (0, 1); Table (b) Datasets (D.1, ...,

D.16) are simulated from N (µ, 1). a0 is supposed to be .1 and each point estimator is based

on 10, 000 MCMC iterations.
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whatever the sample size is. By comparing the posterior distributions of α related

to the datasets D.1, D.2, D.3 with N = 5, 15, 25 in the case where the datasets

are from standard normal distribution, we can see that the variation of the posterior

draws is high, especially for the sample of small size.

Figure 5.10: N (0, 1) versus N (µ, 1) 5.4: Posterior distribution of α[t], the weight of

the standard normal in the mixture model, under a beta prior with parameter a0 = 0.1

for (left) 16 standard normal datasets and (right) 16 datasets simulated from N (µ, 1) when

each posterior approximation is based on 104 MCMC iterations. Table 5.4 lists more details

about the datasets.

5.5 Normal versus double-exponential distribution

The mixture of a normal and a double-exponential distributions can be defined as

αN (µ, 1) + (1 − α)L(µ,
√
2) and the conditional posterior distributions of µ and α

are therefore given by

π(µ|x,α) ∝
�

n�

i=1

α exp(−(xi−µ)2/2) + (1− α) exp(−|xi−µ|/
√
2)

�

π(α|x, µ) ∝
�

n�

i=1

α exp(−(xi−µ)2/2) + (1− α) exp(−|xi−µ|/
√
2)

�
(α(1− α))a0−1.

An implementation of the Metropolis-within-Gibbs can be used to simulate from

these non-standard posteriors in which the parameter µ is simulated from a normal

distribution centered on the empirical mean of the dataset while the standard de-

viation is calibrated by the user. The code in R is available in [Kamary 2016b]. In

Chapter 4, we illustrated that the posterior estimates of the mixture model weights

fail to concentrate near 0 or 1 even for high sample sizes when the analyzed dataset

is produced by another model than those in competition. Here, we proceed by an-

alyzing the behavior of α for the datasets simulated from one of the models under

comparison. To do so, 21 samples of sizes from 5 to 1000 are simulated once from

standard normal distribution another time from L(0,
√
2). The trace plots of µ are

shown in Figure 5.11 and indicate the stabilization of the Markov chains over the

true value 0 for any sample sizes. Figure 5.11 also shows that the higher the sample

size is the more the concentration of the Markov chain is over the true value while
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the marginal posterior densities of α are always in favor of the true model even for

the samples of size 5. In other words, the marginal posterior densities of α tightenup

near 1 when the data comes from N (0, 1). We emphasize here that these results are

preliminary for the convergence check.

Figure 5.11: N (µ, 1) versus L(µ,
√
2) 5.5: (Top) Sequence of µ[t] and (Bottom) empirical

densities of the posterior draws of α for 21 datasets from N (0, 1) (Left) and from L(0,
√
2)

(Right), based on 104 iterations of MCMC algorithm when a0 = 0.5.

In order to check the convergence of the Markov chains, [Gelman 2003] suggests

to compute the statistic gelman.diag for each scalar estimate of interest, and to

continue running the chains until the statistics are all less than 1.1. We therefore

compute this criterion based on four chains produced for µ and for α and list the

values in Table 5.5. This table also displays a 97.5% upper limit of this diagnostic

for both parameters α and µ. The values of [Gelman 2003]’s statistics shown in this

table are all less than 1.1, that illustrate satisfactory convergence has been achieved.

When we test a normal M1 = N (µ, 1) against a double-exponential distribution

M2 = L(µ,
√
2) under the flat prior by using the Bayes factor, we need to compute

the marginal likelihood under both models. The marginal distribution under M1 is

π1(x) =

� ∞

−∞
(2π)−

n/2 exp (−�n
i=1(xi−µ)2/2) dµ

= exp(−
�n

i=1(xi−x̄)2/2)/(2π)−n/2

� ∞

−∞
exp(−n(µ−x̄)2/2)dµ

= exp(−
�n

i=1(xi−x̄)2/2)/(2π)−(n−1)/2√n
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Potential scale reduction factors:

µ α

Data N Point est. 97.5% quantile Point est. 97.5% quantile

D.1 5 1 1 1 1

D.2 15 1 1 1 1

D.3 25 1 1.01 1 1

D.4 35 1 1 1 1

D.5 45 1 1 1 1.02

D.6 55 1 1.01 1 1

D.7 65 1 1 1 1

D.8 75 1 1 1 1

D.9 85 1 1.01 1 1.01

D.10 95 1 1 1 1

D.11 110 1 1 1 1

D.12 150 1 1 1 1

D.13 250 1 1 1 1

D.14 350 1 1.01 1 1.01

D.15 450 1 1 1 1

D.16 550 1 1.01 1 1.01

D.17 650 1 1 1 1

D.18 750 1 1 1 1

D.19 850 1 1 1 1

D.20 950 1 1 1 1

D.21 1000 1 1 1 1

Table 5.5: N (µ, 1) versus L(µ,
√
2) 5.5: Datasets (D.1, ..., D.21) are simulated from

L(0,
√
2) and a0 is .5.
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and under M2, we have

π2(x) =

� ∞

−∞
(2
√
2)−n exp (−�n

i=1 |xi−µ|/
√
2) dµ

= (2
√
2)−n

� x(1)

−∞
exp (−�n

i=1 |xi−µ|/
√
2) dµ

+ (2
√
2)−n

n−1�

i=1

� x(i+1)

x(i)

exp (−�n
j=1 |xj−µ|/

√
2) dµ

+ (2
√
2)−n

� ∞

x(n)

exp (−�n
i=1 |xi−µ|/

√
2) dµ

where x(1) < . . . < x(n). From µ < x(1), we obtain |xi − µ| = xi − µ for

i = 1, . . . , n and we can rewrite the first integral as following

� x(1)

−∞
exp (−�n

i=1 |xi−µ|/
√
2) dµ = exp

�
−

n�

i=1

xi/
√
2

�� x(1)

−∞
exp (nµ/

√
2) dµ

=
√
2/n exp

�
−

n�

i=1

xi/
√
2 + nx(1)/

√
2

�

Since µ > x(n), |xi − µ| = µ− xi, the third integral can be rewritten as

� ∞

x(n)

exp (−�n
i=1 |xi−µ|/

√
2) dµ = exp

�
n�

i=1

xi/
√
2

�� ∞

x(n)

exp

�
−

n�

i=1

µ/
√
2

�
dµ

=
√
2/n exp

�
n�

i=1

xi/
√
2 − nx(n)/

√
2

�

For i = 1, . . . , n− 1, we also have x(i) < µ < x(i+1) from which we deduce

|x(j) − µ| =

�
µ− x(j) for j < i+ 1

x(j) − µ for j ≥ i+ 1

and we will therefore have

� x(i+1)

x(i)

exp (−�n
j=1 |xi−µ|/

√
2) dµ =

� x(i+1)

x(i)

exp


−

i�

j=1

µ−x(j)/
√
2 −

n�

j=i+1

x(j)−µ/
√
2


 dµ

= exp
��i

j=1 x(j)−
�n

j=i+1 x(j)/
√
2
�

� x(i+1)

x(i)

exp


−

i�

j=1

µ/
√
2 +

n�

j=i+1

µ/
√
2


 dµ

= exp
��i

j=1 x(j)−
�n

j=i+1 x(j)/
√
2
� � x(i+1)

x(i)

exp ((n−2i)µ/
√
2) dµ
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The last integral is equal to xn/2+1 − xn/2 when i = n/2 and we can therefore

write

n−1�

i=1

� x(i+1)

x(i)

exp (−�n
j=1 |xj−µ|/

√
2) dµ =

n−1�

i=1;i �=n/2

√
2/(n−2i) exp

��i
j=1 x(j)−

�n
j=i+1 x(j)/

√
2
�

exp ((n−2i)x(i+1)/
√
2)− exp ((n−2i)x(i)/

√
2)

+ exp




n/2�

j=1

x(j)/
√
2 −

n�

j=n/2+1

x(j)/
√
2


 (x(n/2+1) − x(n/2))

=

n−1�

i=1;i �=n/2

√
2/n−2i exp

�
−�n

j=i+1 x(j)−
�i

j=1 x(j)−(n−2i)x(i+1)/
√
2
�

− exp
�
−�n

j=i+1 x(j)−
�i−1

j=1 x(j)−(n−2i+1)x(i)/
√
2
�

+ exp




n/2�

j=1

x(j)/
√
2 −

n�

j=n/2+1

x(j)/
√
2


 (x(n/2+1) − x(n/2))

The Bayes factor in Example 4.3.4 can be derivate from the marginal likelihood

of the double-exponential L(µ,
√
2) model under a flat prior, that is:

� ∞

−∞
exp

�
−1/

√
2

n�

i=1

|xi − µ|

�
dµ =

√
2/n exp





−1/
√
2




n�

j=1

x(j) − nx(1)








+
√
2

n−1�

i=1

i �=n/2

1/n−2i exp





−1/
√
2




n�

j=i+1

x(j) −
i�

j=1

x(j) − (n− 2i)x(i+1)








−
√
2

n−1�

i=1

i �=n/2

1/n−2i exp





−1/
√
2




n�

j=i+1

x(j) −
i−1�

j=1

x(j) − (n− 2i+ 1)x(i)








+ (xn/2+1 − xn/2) exp





−1/
√
2




n�

j=n
2
+1

x(j) −
n
2�

j=1

x(j)








+
√
2/n exp





−1/
√
2


nx(n) −

n�

j=1

x(j)






 .

We computed the Bayes factor in Chapter 4 with the intention of comparing

it with the results of our approach. However, the use of the improper prior avoid

considering the Bayes factor as a validate criterion in this case.
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5.6 Logistic versus probit regression model

We return to the problem of testing a logistic against a probit model for the binary

outcomes. In chapter 4, we illustrated that when estimating a mixture of these

regression models, the posterior estimate of α strongly supports the true model.

This means that we can easily distinguish the true model when the sample size is

large enough. The analyses are based on the mixture model defined as

Mα : α(exp(yixiθ)/(1+exp(xiθ))) + (1− α)Φ(xi(κ−1θ))yi(1− Φ(xi(κ−1θ)))1−yi

The likelihood and the conditional posterior distributions of θ and α derived from

the g-prior and beta prior without considering missing variable ζ can be written as

�(θ,α|y,X) =

�
n�

i=1

α(exp(yixiθ)/(1+exp(xiθ))) + (1− α)Φ(xi(κ−1θ))yi(1− Φ(xi(κ−1θ)))1−yi

�

π(θ|y,X,α) ∝
n�

i=1

α(exp(yixiθ)/(1+exp(xiθ)))

+ (1− α)Φ(xi(κ−1θ))yi(1− Φ(xi(κ−1θ)))1−yi exp(−θT (XTX)θ/2n)

π(α|y,X, θ) ∝
n�

i=1

α(exp(yixiθ)/(1+exp(xiθ)))

+ (1− α)Φ(xi(κ−1θ))yi(1− Φ(xi(κ−1θ)))1−yi(α(1− α))a0−1

We can use the Metropolis-within-Gibbs algorithm to simulate from the condi-

tional posteriors above in which the parameter θ is simulated according to a random

walk multivariate normal distribution N (θ[t], τ Σ̂) starting from the maximum like-

lihood estimates. Σ̂ is the asymptotic covariance matrix of the maximum likelihood

estimates of the coefficients. For the R code, see [Kamary 2016b]. In chapter 4, two

models were analyzed with an explanatory variable. Here, we test the regression

models with intercept once over 3 another over 6 explanatory variables. The datasets

are simulated once from logistic another from probit model. The explanatory vari-

ables are simulated from N (0, 1), U(0, 1),U(−1, 1), N (1, 4), U(2, 3) and U(−1, 1).

The approximate Bayes estimates of θ are obtained by running the Metropolis-

within-Gibbs with scale τ = 1 over 104 iterations. The results summarized in Table

5.6 are slightly close to the true values.

Figure 5.12 gives an assessment of the convergence of the chains obtained for

104 data points simulated from the logistic model which is summarized in Table

5.6 in the case where a0 = .5. The row sequences and the autocorrelation graphs

illustrate the good mixing behavior of the chains. The posterior distributions of

α displayed in Figure 5.13 are related to the four datasets used to estimate the

regression coefficients in Table 5.6. Once again, the accumulation of the posterior

draws of α is over 1 for the true model even if the number of the explanatory

variables is more than 2.
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Sample of size 1e4

Data simulated from logistic model Data simulated from probit model

θ: 5 1.5 -0.5 2 -4.2 0.9 1.5 1.3

a0 θ̂0 θ̂1 θ̂2 θ̂3 θ̂0 θ̂1 θ̂2 θ̂3
0.1 4.86 1.46 -.49 1.95 -4.01 .92 1.55 -1.38

0.2 4.85 1.47 -.48 1.94 -4.00 .91 1.54 -1.38

0.3 4.86 1.46 -.49 1.96 -4.01 .92 1.54 -1.39

0.4 4.86 1.47 -.48 1.96 -4.01 .91 1.55 -1.38

0.5 4.86 1.47 -.49 1.95 -4.01 .91 1.55 -1.39

Sample of size 2e4

Data simulated from logistic model Data simulated from probit model

θ: 3 1.5 -0.5 2 -0.3 1.1 -0.8 -3.5 0.9 1.8 -1.2 0.7 2.6 -5.5

a0 θ̂0 θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 θ̂0 θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6
0.1 3.13 1.51 -.57 1.96 -.33 1.07 -.64 -3.7 .88 1.73 -1.2 .69 2.2 -5.3

0.2 3.15 1.51 -.56 1.97 -.33 1.07 -.63 -3.6 .88 1.73 -1.2 .70 2.3 -5.2

0.3 3.16 1.52 -.58 1.96 -.33 1.06 -.63 -3.7 .88 1.73 -1.2 .69 2.3 -5.3

0.4 3.15 1.51 -.56 1.97 -.32 1.07 -.64 -3.6 .89 1.72 -1.2 .69 2.3 -5.2

0.5 3.18 1.52 -.57 1.97 -.33 1.06 -.63 -3.7 .89 1.73 -1.2 .70 2.3 -5.2

Table 5.6: Logistic versus probit regression 5.6: Observation information and

Bayesian estimate of the regression coefficients, θ̂; Each point estimator is based on 10, 000

MCMC iterations.

Figure 5.12: Logistic versus probit 5.6: (Top) Sequence of θ[t]; (Center) Autocorrelation

over 104 iterations; Histogram over the last 9000 iterations. a0 = .5.
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Figure 5.13: Logistic versus probit 5.6: Posterior distributions of α in favor of the

logistic model based on 104 MCMC iterations where a0 = .1, .2, .3, .4, .5. (Left) Two datasets

of sizes 104, 20, 000 simulated from logistic model; (Right) Two datasets of sizes 104, 20, 000

simulated from probit model that are related to the analyses shown in Table 5.6.

5.7 Variable selection

The use of the mixture model for the variable selection in a Gaussian regression

model is considered as a decision problem in that all potential models have to be

considered as the mixture components against the mixture weights that ranks them

in this context. If k is the number of predictor variables to explain the output

y, every subset of explanatory variables can constitute a proper set of explanatory

variables for the regression of y and the related model should be considered as a

mixture model component. As an example, when k = 3, all possible models for y

are shown in Table 5.7.

In the case where the mixture model is parametrized in terms of the same poten-

tial parameter β, the regression model is denoted by yζ = Xζβ + ε. The likelihood

function is

�(β,σ2,α|yζ ,Xζ , ζ) =

γ�

j=1

α
υj
j (

√
2πσ)−n exp

�
−(yζ−Xζβ)

T (yζ−Xζβ)/2σ2
�

where υj =
�n

i=1 Iζi=j ; j = 1, . . . , γ. The joint prior for β,σ2 and α is the

improper prior
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M1 : yi = β0 + εi M9 : yi = β1Xi1 + εi
M2 : yi = β0 + β1Xi1 + εi M10 : yi = β1Xi1 + β2Xi2 + εi
M3 : yi = β0 + β2Xi2 + εi M11 : yi = β1Xi1 + β3Xi3 + εi
M4 : yi = β0 + β3Xi3 + εi M12 : yi = β1Xi1 + β2Xi2 + β3Xi3 + εi
M5 : yi = β0 + β1Xi1 + β2Xi2 + εi M13 : yi = β2Xi2 + εi
M6 : yi = β0 + β1Xi1 + β3Xi3 + εi M14 : yi = β2Xi2 + β3Xi3 + εi
M7 : yi = β0 + β2Xi2 + β3Xi3 + εi M15 : yi = β3Xi3 + εi
M8 : yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi

Table 5.7: Variable selection 5.7: All potential models for regression y when

k = 3 and i = 1, . . . , n.

π(β,σ2,α) ∝ (σ2)−
k+1/2−1 exp

�
−(β−Mk+1)

T (XTX)(β−Mk+1)/2cσ2
� γ�

j=1

αa0−1
j

where α = (α1, . . . ,αk) is the vector of γ component weights. The conditional

posterior distributions of β,σ2 and α given latent variable ζ can be computed as

follows

π(β|σ2,α,yζ ,Xζ , ζ) ∝ exp
�
−(yζ−Xζβ)

T (yζ−Xζβ)/2σ2 − (β−Mk+1)
T (XTX)(β−Mk+1)/2cσ2

�

∝ exp

�
−(Xζβ−yζ

β−Mk+1
)
T



 σ2In 0

0 cσ2(XTX)−1




−1

(Xζβ−yζ
β−Mk+1

)/2

�

∝ exp

�
−{( Xζ

Ik+1
)β−( yζ

Mk+1
)}T



 σ2In 0

0 cσ2(XTX)−1




−1

{( Xζ
Ik+1

)β−( yζ
Mk+1

)}/2

�

The last term of the equation above yields the following posterior density for β

π(β|σ2,α,yζ ,Xζ , ζ) ∝ exp
�
−(β−β̄)T (σ−2Xζ

TXζ+(XTX))(β−β̄)/2
�

β̄ = {σ−2Xζ
TXζ + (cσ2)−1XTX}−1{σ−2Xζ

Tyζ + (cσ2)−1XTXMk+1}

which implies the multivariate Gaussian distribution obtained in Chapter 4. By

dropping the term that does not involve σ2 from the multiplication of likelihood and

the joint prior of β,σ2 and α, we will obtain

π(σ2|β,α,yζ ,Xζ , ζ) ∝ (σ2)−
(n+k+1)/2−1 exp

�
−(yζ−Xζβ)

T (yζ−Xζβ)/2−(β−Mk+1)
T (XTX)(β−Mk+1)/2c/σ2

�

from which we can easily deduce inverse-gamma distribution for σ2. For mixture

weights, we have

π(α|ζ) =

γ�

j=1

α
υj+a0−1
j
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which results in a Dirichlet distribution with the concentration parameter υj +

a0; j = 1, . . . , γ. In Chapter 4, three stages Gibbs sampler algorithm is applied in

order to obtain samples from the conditional posterior distributions above and the

corresponding R code is available in [Kamary 2016b].

The example 4.3.6 illustrates the efficient performance of the Gibbs sampler in

this context because the weight of the potential model from which the outputs are

simulated converges to 1 with the sample size. However, in the case where the

sample size is small, Gibbs sampler needs a high number of MCMC iterations to

get the convergence of the chains and that extremely increases the system time. As

an example, we analyze caterpillar dataset extracted from a 1973 study on pine

processionary caterpillars [Marin 2007] when the response variable is the logarithmic

transform of the average number of nests of caterpillars per tree. Three explanatory

variables are considered for the regression model, which are supposed to be x1: the

altitude, x2: the slope and x3: the number of the pines in the area. According

to the classical analysis, the coefficient β3 is not significant. This means that the

appropriate model to y would have the form as M5 in Table 5.7 in this case and the

maximum likelihood estimate of the components, β̂0, β̂1, β̂2 is 4.94,−0.002,−0.035.

After running the Gibbs sampler algorithm by considering c equal to the sample

size and Mk+1 = 04, the convergence of the chains is achieved when the number of

the iterations is 105 as shown in Figure 5.15. In this case, the posterior distributions

of β0,β1,β2,β3 are centered on the same values obtained by maximum likelihood

method. α5 is concentrated over 1 which indicates that the posterior draws support

the model M5 for the output y. The result that is in agreement with the classical

conclusion.

We obtain the same results when we implement the Metropolis-within-Gibbs

algorithm to sample from the posterior distributions of the mixture parameters,

except that we do not need to consider a large number of iterations and the con-

vergence is achieved by producing 104 MCMC iterations. The code in R is also

shown in [Kamary 2016b] in which the parameters β,σ2 and α are simulated from

multivariate normal, inverse-gamma and Dirichlet proposal distributions when the

acceptance probabilities are based on the following posteriors

π(β|σ2,α, y,X) ∝
γ�

j=1

αj exp
�
−(y−Xjβj)T (y−Xjβj)/2σ2

�
exp
�
−(β−Mk+1)

T (XTX)(β−Mk+1)/2cσ2
�

π(σ2|β,α, y,X) ∝ (σ2)−
n+k+1/2−1

γ�

j=1

αj exp
�
−(y−Xjβj)T (y−Xjβj)/2σ2

�

exp
�
−(β−Mk+1)

T (XTX)(β−Mk+1)/2cσ2
�

π(α|β,σ2, y,X) ∝
γ�

j=1

αj exp
�
−(y−Xjβj)T (y−Xjβj)/2σ2

� γ�

j=1

αa0−1
j .

The second case studied in variable selection problem is related to the condition

that the possible regression models are independent in the sense that each model
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Figure 5.14: Case 1. Caterpillar dataset 5.7: (Top) Sequences of 1e5 Gibbs sampler

iterations; Empirical autocorrelations using acf R function; Histograms of the last 90, 000

iterations. (Bottom) Histograms of the posterior distributions of α1, . . . ,α15 based on 105

MCMC iterations when a0 = .1.

has the regression coefficients that should be independently estimated from those of

the other models. In this case, the number of the parameters rises very quickly by

increasing the number of the explanatory variables. It means that using a large num-

ber of explanatory variables requires a huge number of parameters to be estimated.

Consequently, the time system of the MCMC programs increases a lot. When we

have three explanatory variables for the response y, 32 regression coefficients should

be estimated for 15 potential models shown in Table 5.8.

The regression model is defined as y = X jβMj + ε for each model, Mj and the

likelihood conditional on missing variable ζ can therefore be written by
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M1 : yi = β1
0 + εi M9 : yi = β9

1Xi1 + εi
M2 : yi = β2

0 + β2
1Xi1 + εi M10 : yi = β10

1 Xi1 + β10
2 Xi2 + εi

M3 : yi = β3
0 + β3

2Xi2 + εi M11 : yi = β11
1 Xi1 + β11

3 Xi3 + εi
M4 : yi = β4

0 + β4
3Xi3 + εi M12 : yi = β12

1 Xi1 + β12
2 Xi2 + β12

3 Xi3 + εi
M5 : yi = β5

0 + β5
1Xi1 + β5

2Xi2 + εi M13 : yi = β13
2 Xi2 + εi

M6 : yi = β6
0 + β6

1Xi1 + β6
3Xi3 + εi M14 : yi = β14

2 Xi2 + β14
3 Xi3 + εi

M7 : yi = β7
0 + β7

2Xi2 + β7
3Xi3 + εi M15 : yi = β15

3 Xi3 + εi
M8 : yi = β8

0 + β8
1Xi1 + β8

2Xi2 + β8
3Xi3 + εi

Table 5.8: Variable selection 5.7: All potential models for regression y when

k = 3 and i = 1, . . . , n.

�(β,σ2,α|y,X, ζ) = (2πσ2)−
n/2

γ�

j=1

α
υj
j exp

�
−�n

i=1(yi;ζi=j−Xj
i;ζi=jβMj

)T (yi;ζi=j−Xj
i;ζi=jβMj

)/2σ2
�

where
�γ

j=1 υj = n and the joint prior of β,α and σ2 is

π(β,σ2,α) ∝ (σ2)−
s/2−1 exp


−

γ�

j=1

(βMj
−Mj)

T ({Xj}TXj)(βMj
−Mj)/2cσ2




γ�

j=1

αa0−1
j .

The conditional posterior distribution of βMj ; j = 1, . . . , γ is given by

π(βMj |σ
2,α, y,X, ζ) ∝ exp

�
−�n

i=1(yi;ζi=j−Xj
i;ζi=jβMj

)T (yi;ζi=j−Xj
i;ζi=jβMj

)/2σ2
�

exp
�
−(βMj

−Mj)
T ({Xj}TXj)(βMj

−Mj)/2cσ2
�

∝ exp
�
−(βMj

−η)T ({Xj}TXj/cσ2+{X
j
i;ζi=j

}TXi;ζi=j/σ2)(βMj
−η)/2

�

η =
�
{Xj}TXj/cσ2 + {Xj

i;ζi=j}
TXi;ζi=j/σ2

�−1
({Xj}TXjMj/cσ2 + Xj

i;ζi=jyi;ζi=j/σ2)

which leads us to deduce the multivariate Gaussian distribution for the regression

model coefficients as defined in the variable selection section 4.3.6. For σ2, we can

write

π(σ2|β,α, y,X, ζ) ∝ (σ2)−
(n+s)/2 exp

�
−�γ

j=1

�n
i=1(yi;ζi=j−Xj

i;ζi=jβMj
)T (yi;ζi=j−Xj

i;ζi=jβMj
)/2σ2

�

exp


−

γ�

j=1

(βMj
−Mj)

T ({Xj}TXj)(βMj
−Mj)/2cσ2




that results in inverse-gamma distribution with the parameters a, b as pointed

out in 4.3.6 and the posterior density of α is the same as the Case 1.. The R

program related to the Gibbs sampler algorithm that samples from the conditional
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E
π(β0|y,X) E

π(β1|y,X) E
π(β2|y,X) E

π(σ2|y,X) E
π(α5|y,X)

Case 1. 5.18 -0.003 -0.039 0.54 0.96

Case 2. 5.21 -0.003 -0.051 0.56 0.77

MLE. 4.94 -0.002 -0.035 0.65

Table 5.9: Variable selection 5.7: Point estimate of the regression coefficients of the

model M5, σ
2 and α5 based on 10, 000 MCMC iterations when a0 = 0.5.

posteriors of β,σ2 and α is indicated in [Kamary 2016b]. The analyses spoken of in

the Case 2. part of the variable selection section in Chapter 4 are based on this

Gibbs sampler algorithm. However, running this program is time consuming even for

a dataset with small sample sizes and with 104 MCMC iterations. For example, for

the Caterpillar dataset, the convergence of the chains is achieved when we produce

a large number of MCMC iterations. However, time system is much more than the

one for the Case 1.. We can also use the Metropolis-within-Gibbs algorithm in

this case where the acceptance probability of the proposal distributions of α,σ2 and

βMj ; j = 1, . . . , γ are based on the following posterior distributions

π(βMj |σ
2,α, y,X) ∝

γ�

j=1

αj exp
�
−(y−XjβMj

)T (y−XjβMj
)/2σ2

�

exp
�
−(βMj

−Mj)
T ({Xj}TXj)(βMj

−Mj)/2cσ2
�

π(σ2|β,α, y,X) ∝ (σ2)−
(n+s)/2

γ�

j=1

αj exp
�
−(y−XjβMj

)T (y−XjβMj
)/2σ2

�

exp


−

γ�

j=1

(βMj
−Mj)

T ({Xj}TXj)(βMj
−Mj)/2cσ2




π(α|β,σ2, y,X) ∝
γ�

j=1

αj exp
�
−(y−XjβMj

)T (y−XjβMj
)/2σ2

� γ�

j=1

αa0−1
j .

The related code in R is pointed out in [Kamary 2016b]. After running the algo-

rithm for the Caterpillar dataset, a graphical convergence check for the posterior

draws of the regression coefficients is shown in Figures 5.15 and 5.16 that illustrate

the Markov chains have stabilized and mixed very well in this case. The Bayes esti-

mates of the regression components of the model M5 and the maximum likelihood

estimates are displayed in Table 5.9. The Bayesian outputs of both cases are very

close to the maximum likelihood estimates while the posterior estimate of α5 is also

strongly in favor of M5 in both cases. Note that in Case 1., the point estimate of

α5 is closer to 1 than in Case 2..
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Figure 5.15: Case 2. Caterpillar dataset 5.7: Sequences, autocorrelations and his-

tograms of 104 Metropolis-within-Gibbs iterations for the regression coefficients β j of the

model Mj ; j = 1, . . . , 7 shown in Table 5.8 when a0 = .5.

5.8 Propriety of the posterior in the case study of Sec-

tion 4

To prove the propriety of the posterior it is enough to prove the propriety of the

subposterior distribution associated to each component since the parameter (θ,σ)

is shared between the components. It is known that in the case of a Gaussian

model N (θ,σ) the posterior associated to the prior π(θ,σ) = 1/σ is proper as soon

as n ≥ 2 and at least 2 observations are distinct. We now show that this results

extends to the case of a Gumbel(θ,σ2) and of a Logistic(θ,σ). Let I denote the
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Figure 5.16: Case 2. Caterpillar dataset 5.7: Sequences, autocorrelations and his-

tograms of 104 Metropolis-within-Gibbs sampler iterations for the regression coefficients β j

of the model Mj ; j = 8, . . . , 15 shown in Table 5.8 when a0 = .5.

marginal likelihood, in the Gumbel case.

I =

�

R×R+

1

σn+1
exp

�
−

n�

i=1

(Yi − θ)/σ

�
exp

�
−

n�

i=1

e−(Yi−θ)/σ

�
dθdσ

We set γn =
�n

i=1 e
−Yi/σ, then

I(σ) = e−nȲn/σ

�

R

exp(nθ/σ) exp(−γne
θ/σ)dθ ∝ e−nȲn/σσ

�

R

un−1 exp(−γnu)du

∝ e−nȲn/σσγ−n
n ∝ exp

�
−nȲn

σ

�� n�

i=1

e−
Yi
σ

�−n

.
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So

I ∝
�

R+

σ−n exp

�
−nȲn

σ

�� n�

i=1

e−
Yi
σ

�−n

dσ =

�

R+

σ−n

�
n�

i=1

e−
1
σ (Yi−Ȳn)

�−n

dσ < +∞

if only if mini
�
Yi − Ȳn

�
< 0. This is almost surely true when n ≥ 2. We now study

the Logistic case, using similar computations, so that

I ∝
�

R×R+

e−n Ȳn
σ

σ(n+1)

eθn/σ�
i(1 + e−Yi/σeθ/σ)2

dθdσ ∝
�

R+

e−n Ȳn
σ

σn

�

R

un−1

�
i(1 + e−Yi/σu)2

dudσ

≤
�

R+

e−n Ȳn
σ

σn

�

R

un−1

(1 + un−1e−(n−1)Ȳn/σ maxi e−(Yi−Ȳn)/σ)2
du

∝
�

R+

1

σn

�

R

un−1

(1 + un−1maxi e−(Yi−Ȳn)/σ)2
du

∝
�

R+

1

σn
e2nmini(Yi−Ȳn)/σdσ < +∞

if and only if mini
�
Yi − Ȳn

�
< 0. Thus means the observations cannot be all equal.





Chapter 6

Non-informative

reparameterisations for

location-scale mixtures

Joint work with Kate Lee and Christian P. Robert

Abstract
While mixtures of Gaussian distributions have been studied for more than a century

(Pearson, 1894), the construction of a reference Bayesian analysis of those models

still remains unsolved, with a general prohibition of the usage of improper priors

[Frühwirth-Schnatter 2006] due to the ill-posed nature of such statistical objects.

This difficulty is usually bypassed by an empirical Bayes resolution [Richardson 1997].

By creating a new parameterisation centered on the mean and variance of the mix-

ture distribution itself, we are able to develop here a genuine non-informative prior

for Gaussian mixtures with an arbitrary number of components. We demonstrate

that the posterior distribution associated with this prior is almost surely proper and

provide MCMC implementations that exhibit the expected exchangeability. While

we only study here the Gaussian case, extension to other classes of location-scale

mixtures is straightforward.

Keywords: Noninformative prior, improper prior, Mixture of distributions,

Bayesian analysis, Dirichlet prior, exchangeability, plane-sphere intersection, polar

coordinates

6.1 Introduction

A mixture density is traditionally represented as a weighted average of densities

from standard families, i.e.,

f(x|θ,p) =
k�

i=1

pif(x|θi)
k�

i=1

pi = 1 . (6.1)

Each component of the mixture is characterized by a component-wise parameter θi
and the weights pi of those components translate the importance of each of those

components in the model.

This particular representation gives a separate meaning to each component

through its parameter θi, even though there is a well-known lack of identifiability in
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such models, due to the invariance of the sum by permutation of the indices. This is-

sue relates to the equally well-known “label switching" phenomenon in the Bayesian

approach to the model, which pertains both to inference and to simulation of the cor-

responding posterior [Celeux 2000, Stephens 2000, Frühwirth-Schnatter 2001, Frühwirth-Schnatter 2004,

Jasra 2005]. From this Bayesian viewpoint, the choice of the prior distribution on the

component parameters is quite open, the only constraint being that the correspond-

ing posterior is proper [Diebolt 1994, Frühwirth-Schnatter 2004]. [Diebolt 1994] and

[Wasserman 1999] discussed the alternative approach of imposing proper posteriors

on improper priors by banning almost empty components from the likelihood func-

tion. While consistent, this approach induces dependence between the observations,

higher computational costs and is not handling overfitting very well. It has therefore

seen little following.

The prior distribution on the weights pi is equally open for choice, but a standard

version is a Dirichlet distribution with common hyperparameter a, Dir(a, . . . , a).

Recently, [Rousseau 2011] demonstrated that the choice of this hyperparameter a

relates to the inference on the total number of components, namely that a small

enough value of a manages to handle over-fitted mixtures in a convergent manner.

In a Bayesian non-parametric modeling, [Griffin 2010] showed that the prior on

the weights may have a higher impact when inferring about the number of compo-

nents, relative to the prior on the component-specific parameters. As indicated

above, the prior distribution on the θi’s has received less attention and conju-

gate choices are most standard, since they facilitate simulation via Gibbs samplers

[Diebolt 1990, Escobar 1995, Richardson 1997] if not estimation, since posterior mo-

ments remain unavailable in closed form. In addition, [Richardson 1997] among

others proposed data-based priors that derive some hyperparameters as functions

of the data, towards an automatic scaling of such priors. An R package, bayesm

[Rossi 2010] incorporates some of those ideas. In the case when θi = (µi,σi) is a

location-scale parameter, [Mengersen 1996] proposed a reparameterisation of (6.1)

that express each component as a local perturbation of the previous one, namely

(i > 1)

µi = µi−1 + σi−1δi , σi = τiσi−1 , τi < 1 ,

with µ1 and σ1 being the reference values. Based on this reparameterisation,

[Robert 1998] established that a particular improper prior on (µ1,σ1) still leads to

a proper prior. We propose here to modify further this reparameterisation towards

using the global mean and global variance of the mixture distribution as reference

location and scale, respectively. This modification has foundational consequences in

terms of using improper and non-informative priors over mixtures, in sharp contrast

with the existing literature (see, e.g. [Diebolt 1993, Diebolt 1994, O’Hagan 1994,

Wasserman 1999]).

Bayesian computing for mixtures covers a wide variety of proposals, starting with

the introduction of the Gibbs sampler [Diebolt 1990, Gelman 1990, Escobar 1995],

some concerned with approximations [Roeder 1990, Wasserman 1999] and MCMC

features [Richardson 1997, Celeux 2000, Casella 2002], and others with asymptotic
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justifications, in particular when over-fitting mixtures [Rousseau 2011, Kamary 2014],

but most attempting to overcome the methodological hurdles in estimating mixture

model [Chib 1995, Neal 1999, Berkhof 2003, Marin 2005, Frühwirth-Schnatter 2006,

Lee 2009, Mengersen 2011].

In this paper, we introduce and study the global mean-variance reparameteri-

sation (Section 6.2), which main consequence is to constrain all other parameters

to a compact space. We study several possible parameterisations of that kind and

demonstrate that the improper Jeffreys-like prior associated with them is proper.

In Section 6.3, we propose some MCMC implementation to estimate the parame-

ters of the mixture, discussing label switching (Section 6.3.2) and its resolution by

tempering. Extensions to non-Gaussian mixtures are briefly discussed in Section

6.6.

6.2 Mixture representation

6.2.1 Mean-variance reparameterisation

Let us first recall how both mean and variance of a mixture distribution can be

represented in terms of the mean and variance parameters of the component of the

mixture:

Lemma 1 If µi and σ2
i denote the mean and variance of the distribution with den-

sity f(·|θi), respectively, the mean of the mixture distribution (6.1) is given by

Eθ,p[X] =
k�

i=1

piµi

and its variance by

varθ,p(X) =

k�

i=1

piσ
2
i +

k�

i=1

pi(µ
2
i − Eθ,p[X]2)

Proof: The population mean given by

Eθ,p[X] =
k�

i=1

piEf(·|θi)[X] =
k�

i=1

piµi

where Ef(·|θi)[X] is the expected value component i. Similarly, the population vari-

ance is given by

varθ,p(X) =

k�

i=1

piEf(·|θi)[X
2]− Eθ,p[X]2 =

k�

i=1

pi(σ
2
i + µ2

i )− Eθ,p[X]2 ,

which concludes the proof �



106
Chapter 6. Non-informative reparameterisations for location-scale

mixtures

For any location-scale mixture, we then propose a reparameterisation of the

mixture model that starts by scaling all parameters in terms of its global mean µ

and global variance σ2. For instance, we can switch to the representation

µi = µ+ σαi and σi = στi (6.2)

of the component-wise parameters, where τi > 0 and αi ∈ R. This is formally

equivalent to the reparameterisation of [Mengersen 1996], except that they put no

special meaning on the global mean and variance parameters. Once the global

mean and variance are set, this imposes natural constraints on the other param-

eters of the model. For instance, setting the global variance to σ2 implies that

(µ1, . . . , µk,σ1, . . . ,σk) belongs to a specific ellipse conditional on the weights and

σ2, by virtue of Lemma 1.

Considering the αi’s and the τi’s in (6.2) as the new parameters of the compo-

nents, the following result states that the global mean and variance parameters are

the sole freely varying parameters. In other words, once both the global mean and

variance are set, there exists a parameterisation such that all remaining parameters

of a mixture distribution are restricted to a compact set, which is most helpful in

selecting a non-informative prior distribution.

Lemma 2 The parameters αi and τi in (6.2) are constrained by

k�

i=1

piαi = 0 and
k�

i=1

piτ
2
i +

k�

i=1

piα
2
i = 1 .

Proof: The result is a trivial consequence of Lemma 1. The population mean is

Eθ,p[X] =

k�

i=1

piµi =

k�

i=1

pi(µ+ σαi) = µ+

k�

i=1

piαi = µ

and the first constraint follows. The population variance is

varθ,p(X) =
k�

i=1

piσ
2
i +

k�

i=1

pi(µ
2
i − Eθ,p[X]2)

=

k�

i=1

piσ
2τ2i +

k�

i=1

pipi(µ
2 + 2σµαi + σ2α2

i − µ2)

=

k�

i=1

piσ
2τ2i +

k�

i=1

piσ
2α2

i = σ2

The last equation simplifies to the second constraint above. �

6.2.2 Reference priors

The constraints in Lemma 2 define a set of values of (p1, . . . , pk,α, . . . ,α, τ, . . . , τ)

that is obviously compact. From a Bayesian perspective, this allows for the call to
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uniform and other non-informative proper priors, conditional on (µ,σ). Further-

more, since (µ,σ) is a location-scale parameter, we may invoke [Jeffreys 1939] to

use the Jeffreys prior π(µ,σ) = 1/σ on this parameter, even though this is not

the genuine Jeffreys prior for the mixture model [Grazian 2015]. In the same spirit

as [Robert 1998] who established properness of the posterior distribution derived

by [Mengersen 1996], we now establish that this choice of prior produces a proper

posterior distribution for a minimal sample size of two.

Theorem 3 The posterior distribution associated with the prior π(µ,σ) = 1/σ and

with the likelihood derived from (6.1) is proper when the components f(·|µ,σ) are

Gaussian densities, provided (a) proper distributions are used on the other parame-

ters and (b) there are at least two observations in the sample.

Proof: When n = 1, it is easy to show that the Jeffreys posterior is not proper.

The marginal likelihood is then

Mk(x1) =

k�

i=1

�
pif(x1|µ+ σαi,σ

2τ2i )π(µ,σ,p,α, τ ) d(µ,σ,p,α, τ )

=

k�

i=1

� ��
pi√

2πσ2τi
exp

�−(x1 − µ− σαi)
2

2τ2i σ
2

�
d(µ,σ)

�
π(p,α, τ ) d(p,α, τ )

=
k�

i=1

� �� ∞

0

pi
σ

dσ

�
π(p,α, τ ) d(p,α, τ )

The integral against σ is then not defined.

For two data-points, x1, x2 ∼�k
i=1 pif(µ+ σαi,σ

2τ2i ), the associated marginal

likelihood is

Mk(x1, x2) =

� 2�

j=1

�
k�

i=1

pif(xj |µ+ σαi,σ
2τ2i )

�
π(µ,σ,p,α, τ ) d(µ,σ,p,α, τ )

=
k�

i=1

k�

j=1

�
pipjf(x1|µ+ σαi,σ

2τ2i )f(x2|µ+ σαj ,σ
2τ2j )π(µ,σ,p,α, τ ) d(µ,σ,p,α, τ ) .

If all those k2 integrals are proper, the Jeffrey posterior distribution is proper. An

arbitrary integral (1 ≤ i, j ≤ k) in this sum leads to
�

pipjf(x1|µ+ σαi,σ
2τ2i )f(x2|µ+ σαj ,σ

2τ2j )π(µ,σ,p,α, τ ) d(µ,σ,p,α, τ )

=

� ��
pipj

2πσ3τiτj
exp

�
−(x1 − µ− σαi)

2

2τ2i σ
2

+
−(x2 − µ− σαj)

2

2τ2j σ
2

�
d(µ,σ)

�
π(p,α, τ ) d(p,α, τ )

=

� �� ∞

0

pipj√
2πσ2

�
τ2i + τ2j

exp

�
−1

2(τ2i + τ2j )

�
1

σ2
(x1 − x2)

2 +
2

σ
(x1 − x2)(αi − αj)

+(αi − αj)
2

��
dσ

�
π(p,α, τ ) d(σ,p,α, τ ) .
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Substituting σ = 1/z, the above is integrated with respect to z, leading to

� �� ∞

0

pipj√
2π
�
τ2i + τ2j

exp

�
−1

2(τ2i + τ2j )

�
z2(x1 − x2)

2 + 2z(x1 − x2)(αi − αj)

+(αi − αj)
2

��
dz

�
π(p,α, τ ) d(p,α, τ )

=

� �� ∞

0

pipj√
2π
�
τ2i + τ2j

exp

�
−(x1 − x2)

2

2(τ2i + τ2j )

�
z +

αi − αj

x1 − x2

�2
�

dz

�
π(p,α, τ ) d(p,α, τ )

=

�
pipj

|x1 − x2|
Φ


−αi − αj

x1 − x2

|x1 − x2|�
τ2i + τ2j


π(p,α, τ ) d(p,α, τ ) ,

where Φ is the cumulative distribution function of the standardized Normal distri-

bution. Given that the prior is proper on all remaining parameters of the mixture

and that the integrand is bounded by 1/|x1−x2|, it integrates against the remaining

components of θ.

Let us now consider the case n ≥ 3. Since the posterior π(θ|x1, x2) is proper, it

constitutes a proper prior when considering only the observations x3, . . . , xn. There-

fore, the posterior is almost everywhere proper. �

6.2.3 Further reparameterisations

Before proposing relevant priors, let us note that the constraints in Lemma 2 suggest

a new reparameterisation (among many possible ones): this reparameterisations uses

the weights pi in the definition of the component parameters, as to achieve a more

generic constraint. The component location and scale parameters in (6.2) can indeed

be reparameterised as

αi = σγi/
√
pi and τi = σηi/

√
pi ,

leading to the mixture representation

f(x|θ,p) =
k�

i=1

pif(x|µ+ σγi/
√
pi,σηi/

√
pi) , ηi > 0 , (6.3)

Given (p1, · · · , pk), these new parameters are constrained by

k�

i=1

√
piγi = 0 and

k�

i=1

(η2i + γ2i ) = 1 ,

which means that (γ1, . . . , ηk) belongs to an hypersphere of R2k intersected with an

hyperplane of this space.

Given these constraints, further simplifications via new reparameterisations can

be contemplated, as for instance separating mean and variance parameters in (6.3)
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by introducing a radius ϕ such that

k�

i=1

γ2i = ϕ2 and
k�

i=1

η2i = 1− ϕ2 .

This choice naturally leads to a hierarchical prior where, e.g., ϕ2 and (p1, . . . , pk)

are distributed from a Be(a1, a2) and a Dir(α0, . . . ,α0) distributions, respectively,

while the vectors (γ1, . . . , γk) and (η1, . . . , ηk) are uniformly distributed on the

spheres of radius ϕ and
�
1− ϕ2, respectively, under the additional linear constraint�k

i=1

√
piγi = 0.

We now describe how this reparameterisation leads to a practical construction

of the constrained parameter space, for an arbitrary number of components k.

6.2.3.1 Spherical coordinate representation of the γ’s.

The vector (γ1, . . . , γk) belongs both to the hypersphere of radius ϕ and to the

hyperplane orthogonal to (
√
p1, . . . ,

√
pk). Therefore, (γ1, . . . , γk) can be expressed

in terms of spherical coordinates within that hyperplane. Namely, if (�1, . . . ,�k−1)

denotes an orthonormal basis of the hyperplane, (γ1, . . . , γk) can be written as

(γ1, . . . , γk) = ϕ cos(�1)�1+ϕ sin(�1) cos(�2)�2+. . .+ϕ sin(�1) · · · sin(�k−2)�k−1

with the angles �1, . . . ,�k−3 in [0,π] and �k−2 in [0, 2π]. The s-th orthonormal

base �s can be derived from the k-dimensional orthogonal vectors ��s where

��1,j =

� −√
p2, j = 1√
p1, j = 2

0, j > 2

and the s-th vector is given by

��s,j =





−(pjps+1)
1/2
���s

l=1
pl

�1/2
, s > 1, j ≤ s

��s

l=1
pl

�1/2
, s > 1, j = s+ 1

0, s > 1, j > s+ 1

Note the special case of k = 2 since the angle �1 is then missing. In this special

case, the mixture location parameter is defined by (γ1, γ2) = ϕ�1 and ϕ takes both

positive and negative values. In the general setting, the parameter vector (γ1 · · · , γk)

is a transform of (ϕ2, p1, · · · , pk,�1, · · · ,�k−2). A natural reference prior for � is

made of uniforms, �1, · · · ,�k−3 ∼ U [0,π] and �k−2 ∼ U [0, 2π], although other

choices are obviously possible and should be explored to test the sensitivity to the

prior.
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6.2.3.2 Dual representation of the ηi’s.

For the component variance parameters, the vector (η1, · · · , ηk) belongs to the k-

dimension sphere of radius
�
1− ϕ2. A natural prior is then a Dirichlet distribution

with common hyperparameter a,

π(η21, · · · , η
2
k,ϕ

2) = Dir(α, · · · ,α)

If k is small enough, (η1, · · · , ηk) can then be simulated from the corresponding

posterior with no computational challenge. However, as k increases, sampling may

become more delicate and benefits from a similar spherical reparameterisation. In

this approach, the vector (η1, · · · , ηk) is rewritten through spherical coordinates with

angle components (ξ1, · · · , ξk−1),

ηi =





�
1− ϕ2 cos(ξi) , i = 1

�
1− ϕ2

i−1�

j=1

sin(ξj) cos(ξi) , 1 < i < k

�
1− ϕ2

i−1�

j=1

sin(ξj) , i = k

Unlike �, the support for all angles ξ1, · · · , ξk−1 is limited to [0,π/2], due to the

positivity requirement on the ηi’s. In this case, a reference prior on the angles is

(ξ1, · · · , ξk−1) ∼ U([0,π/2]k−1) ,

while again other choices are possible.

6.3 MCMC implications

6.3.1 The Metropolis-within-Gibbs sampler

Given the reparameterisations introduced in Section 6.2, different MCMC imple-

mentations are possible and we investigate in this section some of these. To this

effect, we distinguish between two cases: (i) only (µ1, · · · , µk) is expressed in spher-

ical coordinates; and (ii) both the µi’s and the σi’s are associated with spherical

coordinates.

Although the target density is similar to the target explored by early Gibbs

samplers in [Diebolt 1990] and [Gelman 1990], simulating directly the new param-

eters implies managing constrained parameter spaces. The hierarchical nature of

the parameterisation also leads us to consider a block Gibbs sampler that coincides

with this hierarchy. Since the corresponding full conditional posteriors are not in

closed form, a Metropolis-within-Gibbs sampler is implemented here with random

walk proposals. In this approach, the scales of the proposal distributions are auto-

matically calibrated towards optimal acceptance rates [Roberts 1997, Roberts 2001,

Roberts 2009, Rosenthal 2011]. Convergence of a simulated chain is assessed based
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on the rudimentary convergence monitoring technique of [Gelman 1992]. The de-

scription of the algorithm is provided by the pseudo-code version in Figure 6.1.

Note that the Metropolis-within-Gibbs version does not rely on latent variables and

complete likelihood as in [Tanner 1987] and [Diebolt 1990]. Following the adaptive

MCMC method in Section 3 of [Roberts 2009], we derive the optimal scales asso-

ciated with proposal densities, based on 10 batches with size 50. The scales ε are

identified by a subscript with the corresponding parameter.

For the reparameterisation (i), all steps are the same except that steps 2.5 and

2.7 are combined together and that ((ϕ2)(t), (η21)
(t), . . . , (η2k)

(t)) is updated in the

same manner. One potential proposal density is a Dirichlet distribution,

((ϕ2)�, (η21)
�, . . . , (η2k)

�) ∼ Dir((ϕ2)(t−1)ε, (η21)
(t−1)ε, . . . , (η2k)

(t−1)ε) .

Alternative proposal densities will be discussed later along with simulation studies

in Section 4.

6.3.2 Removing and detecting label switching

The standard parameterisation of mixture models contains weights {pi}
k
i=1 and

component-wise parameters {θi}
k
i=1 as shown in (6.1). The likelihood function is

invariant under permutations of the component indices. If an exchangeable prior

is chosen on weights and component-wise parameters, the posterior density repro-

duces the likelihood invariance and component labels are not identifiable. This phe-

nomenon is called label switching and is well-studied in the literature [Celeux 2000,

Stephens 2000, Frühwirth-Schnatter 2001, Frühwirth-Schnatter 2004, Jasra 2005].

This means that the posterior distribution consists of k! symmetric modes and a

Markov chain with such target distribution is expected to explore all of them. How-

ever, a chain often fails and rather ends up exploring a particular mode.

In our reparameterisation of Gaussian mixture models, each component mean

and variance are functions of angular and radius parameters with weights. The

mapping between both parameterisations is a one-to-one map conditional on the

weights. In other words, there are unique component-wise means and variances

given particular values for angular and radius parameters and weights. Although

the new parameterisation is not exchangeable, due to the choice of the orthogonal

basis, adopting an exchangeable prior on the weights (e.g., a Dirichlet distribution

with a common parameter) and uniform priors on all angular parameters leads to an

exchangeable posterior on the natural parameters of the mixture. Therefore, label

switching should also occur with this prior modeling.

When an MCMC chain manages to jump between modes, the inference on each of

the mixture components becomes harder [Geweke 2007]. To get component-specific

inference and to give a meaning to each component, various relabelling methods

have been proposed in the literature (see, e.g., [Frühwirth-Schnatter 2004]). A first

available alternative is to reorder labels so that the mixture weights are in increas-

ing order [Frühwirth-Schnatter 2001]. A second alternative method proposed by,

e.g., [Lee 2009] is that labels are reordered towards producing the shortest distance
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Metropolis-within-Gibbs algorithm for reparameterised mixture model

1 Generate initial values (µ(0),σ(0),p(0),ϕ(0), ξ
(0)
1 , . . . , ξ

(0)
k−1,�

(0)
1 , . . . ,�

(0)
k−2).

2 For t = 1, . . . , T , the update of (µ(t),σ(t),p(t),ϕ(t), ξ
(t)
1 , . . . , ξ

(t)
k−1,�

(t)
1 , . . . ,�

(t)
k−2)

follows;

2.1 Generate a proposal µ� ∼ N (µ(t−1), εµ) and update µ(t) against

π(·|x,σ(t−1),p(t−1),ϕ(t−1), ξ(t−1),�(t−1)).

2.2 Generate a proposal log(σ)� ∼ N (log(σ(t−1)), εσ) and update σ(t) against

π(·|x, µ(t),p(t−1),ϕ(t−1), ξ(t−1),�(t−1)).

2.3 Generate proposals ξ�i ∼ U [0,π/2], i = 1, · · · , k − 1, and update

(ξ
(t)
1 , . . . , ξ

(t)
k−1) against π(·|x, µ(t),σ(t),p(t−1),ϕ(t−1),�(t−1)).

2.4 Generate proposals ��
i ∼ U [0,π], i = 1, · · · , k − 3, and ��

k−2 ∼ U [0, 2π].

Update (�
(t)
1 , . . . ,�

(t)
k−2) against π(·|x, µ(t),σ(t),p(t−1),ϕ(t−1), ξ(t)).

2.5 Generate a proposal (ϕ2)� ∼ Beta((ϕ2)(t)εϕ + 1, (1 − (ϕ2)(t))εϕ + 1) and

update ϕ(t) against π(·|x, µ(t),σ(t),p(t−1), ξ(t),�(t)).

2.6 Generate a proposal p� ∼ Dir(p
(t−1)
1 εp + 1, . . . , p

(t−1)
k εp + 1), and update

p(t) against π(·|x, µ(t),σ(t),ϕ(t), ξ(t),�(t)).

2.7 Generate proposals ξ�i ∼ U [ξ
(t)
i −εξ, ξ

(t)
i +εξ], i = 1, · · · , k−1, and update

(ξ
(t)
1 , . . . , ξ

(t)
k−1) against π(·|x, µ(t),σ(t),p(t),ϕ(t),�(t)).

2.8 Generate proposals ��
i ∼ U [�

(t)
i − ε�,�

(t)
i + ε�], i = 1, · · · , k − 2, and

update (�
(t)
1 , . . . ,�

(t)
k−2) against π(·|x, µ(t),σ(t),p(t),ϕ(t), ξ(t)).

Figure 6.1: Pseudo-code representation of the Metropolis-within-Gibbs algorithm

used in this paper for the reparameterisation (ii) based on two sets of spherical

coordinates. For simplicity’s sake, we denote p(t) = (p
(t)
1 , . . . , p

(t)
k ), x = (x1, . . . , xn),

ξ(t) = (ξ
(t)
1 , . . . , ξ

(t)
k−1) and �(t) = (�

(t)
1 , . . . ,�

(t)
k−2).
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between the current posterior sample and the (or a) maximum posterior probability

(MAP) estimate.

Let us denote by h the map from our reparameterisation to the standard param-

eterisation of (6.1), i.e.,

(µ1, . . . , µk,σ1, . . . ,σk,p) = h(p, θ) ,

with its inverse h−1 available as well. We also denote by Sk the set of permutations

of {1, . . . , k}. Then, given an MCMC sample {p(t),θ(t)}Tt=1, the above relabelling

technique procedure follows;

1. Reparameterise the MCMC sample {p(t),θ(t)}Tt=1 into component-wise means

and standard deviations via the function h, resulting in {µ
(t)
1 , . . . , µ

(t)
k ,σ

(t)
1 , . . . ,σ

(t)
k ,p(t)}Tt=1.

2. Find the MAP estimate by computing the posterior values of the sample;

denote the solution as (µ∗
1, . . . , µ

∗
k,σ

∗
1, . . . ,σ

∗
k,p

∗).

3. Reorder (µ
(t)
1 , . . . , µ

(t)
k ,σ

(t)
1 , . . . ,σ

(t)
k ,p(t)) as

(�µ(t)
1 , . . . , �µ(t)

k , �σ(t)
1 , . . . , �σ(t)

k , �p(t)) = δj(µ
(t)
1 , . . . , µ

(t)
k ,σ

(t)
1 , . . . ,σ

(t)
k ,p(t))

where δj = argminδ∈Sk
�δ(µ(t)

1 , . . . , µ
(t)
k ,σ

(t)
1 , . . . ,σ

(t)
k ,p(t))−(µ∗

1, . . . , µ
∗
k,σ

∗
1, . . . ,σ

∗
k,p

∗)�.

The resulting permutation is then denoted λ(t) ∈ Sk. Label switching occur-

rences in an MCMC sequence can be monitored via the changes in the sequence

λ(1), . . . ,λ(T ). If the chain fails to switch modes, the sequence is likely to remain at

the same permutation. On the opposite, if a chain moves between some of the k!

symmetric posterior modes, the λ(t)’s are expected to vary.

We proceed here by a simulation studies section and all algorithms used in this

section are publicly available within the R package Ultimixt [Kamary 2015]. The

package Ultimixt contains functions that implement adaptive determination of opti-

mal scales and convergence monitoring based on [Gelman 1992] criterion. In addi-

tion, Ultimixt includes functions that summarize the simulations and compute point

estimates of each parameter, such as posterior mean and median. It also produces

an estimated mixture density in numerical and graphical formats. The output fur-

ther includes graphical representations of the generated parameter samples. For the

potentially unimodal parameters µ, σ and ϕ, averaging and calculating the median

over the generated chains directly returns valid point estimators, as those param-

eters are not subjected to label switching. For the other parameters (component

weights, means and variances), since label switching is a possible issue, we need to

postprocess the MCMC draws as discussed earlier, by first relabelling these simula-

tions. We then derive point estimates by clustering over the parameter space, using

k-mean clustering [Hastie 2001].
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6.4 Simulation studies

In this section, we examine the performances of the above Metropolis-within-Gibbs

algorithm, when applied to both reparameterisations defined above. We also con-

sider the special case k = 2 in Section 6.4.1. All simulations were conducted using

the package Ultimixt [Kamary 2015].

6.4.1 The case k = 2

In this specific case, we do not have to simulate any angle. Two straightforward

proposals are compared over simulation experiments. One is based on Beta and

Dirichlet proposals:

p∗ ∼ Beta(p(t)εp, (1− p(t))εp) , (ϕ2∗, η21
∗
, η22

∗
) ∼ Dir(ϕ2(t)ε, η21

(t)
ε, η22

(t)
ε)

(this will be called Proposal 1) and another one is based on Gaussian random walks:

log(p∗/(1− p∗)) ∼ N (log(p(t)/(1− p(t))), εp)

(ϑ∗
1,ϑ

∗
2)

T ∼ N (χ
(t)
2 , εϑI2) with

(ϕ2∗, η21
∗
, η22

∗
) = (exp(ϑ∗

1)/ϑ̄
∗, exp(ϑ∗

2)/ϑ̄
∗, 1/ϑ̄∗) ,

χ
(t)
2 = (log(ϕ2(t)/η22

(t)
), log(η21

(t)
/η22

(t)
)

and ϑ̄∗ = 1 + exp(ϑ∗
1) + exp(ϑ∗

2)

(which will be called Proposal 2). The global parameters are proposed using Normal

and Inverse-Gamma proposals

µ∗ ∼ N (x̄, εµ) and σ2∗ ∼ IG((n+ 1)/2, (n− 1)σ̄2/2)

where x̄ and σ̄2 are sample mean and variance respectively. We present below some

analyses and also explain how MCMC methods can be used to fit the reparameterised

mixture distribution.

Example 6.4.1 In this experiment, a dataset of size 50 is simulated from the mix-

ture 0.65N (−8, 2) + 0.35N (−0.5, 1), which implies that while the true value of

(ϕ, η1, η2) is (0.91, 0.16, 0.38). Figure 6.2 illustrates the performances of a Metropolis-

within-Gibbs algorithm based on Proposal 1. It shows the outcomes of 10 parallel

chains, each started randomly from different starting values. The estimated densi-

ties are almost indistinguishable among the different chains and they all converge

to a neighborhood of the true values. The chains are well-mixed and the sampler

output covers the entire sample space in this case.

We also run the Metropolis-within-Gibbs algorithm based on Proposal 2 using

the same simulated dataset for comparison purposes. As shown in Figure 6.3, the

outputs for both proposals are quite similar but Proposal 1 produces more symmetric

chains on p,ϕ, η1, η2, thus suggesting higher mixing abilities.
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Figure 6.2: Example 6.4.1: Kernel estimates of the posterior densities of the

parameters µ, σ, p, ϕ, ηi, based on 10 parallel MCMC chains for Proposal 1 and

2 105 iterations, based on a single simulated sample of size 50. The true value of

(ϕ, η1, η2) is (0.91, 0.16, 0.38).

Figure 6.3: Example 6.4.1: Comparison between MCMC samples from our

Metropolis-within-Gibbs algorithm using Proposal 1 (solid line) or Proposal 2

(dashed line), with 90, 000 iterations and the same sample as in Figure 6.2. The

true value of (ϕ, η1, η2) is (0.91, 0.16, 0.38).
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Proposal 1 arµ arσ arp arϕ,η εµ εp ε

0.40 0.47 0.45 0.24 0.56 77.06 99.94

Proposal 2 arµ arσ arp arϕ,η εµ εp εϑ
0.38 0.46 0.45 0.27 0.55 0.29 0.35

Table 6.1: Example 6.4.1: Acceptance rate (ar) and corresponding proposal scale (ε)

when the adaptive Metropolis-within-Gibbs sampler is used.

The scales of the various proposals are determined by aiming at [Roberts 1997]

goal of an average acceptance rate of either 0.44 or 0.234 depending on the dimension

of the simulated parameter. As shown in Table 6.1, an adaptive Metropolis-within-

Gibbs strategy manages to recover acceptance rates close to optimal values. �

Having exposed how our sampler behaves we now discuss a second example, in

which we briefly outline how this method may behave for a benchmark dataset with

a slightly larger sample size.

Example 6.4.2 We now analyze the benchmark Old Faithful dataset, available

from R, using the 272 observations of eruption times and a mixture with two com-

ponents. The empirical mean and variance of the observations are (3.49, 1.30).

When using Proposal 1, the optimal scales εµ, εp, ε after 50, 000 burn-in iterations

are 0.07, 501.1, 802.19, respectively. The posterior distributions of the generated

samples shown in Figure 6.4 demonstrate a strong concentration of (µ,σ2) near the

empirical mean and variance. Trace plots for the other parameters indicate a high

dependence between successive iterations.There is a strong indication that the chain

gets trapped into a single mode of the posterior density. In Section 6.5, we reanalyse

this dataset when using parallel tempering. �

6.4.2 The general case

We now consider the general case of estimating a reparameterised mixture for any

k when the variance vector (η21, . . . , η
2
k) also has the spherical coordinate system as

represented in Section 6.2.3.

Example 6.4.3 We simulated 50 data points from the mixture

0.27N (−4.5, 1) + 0.4N (10, 1) + 0.33N (3, 1) .

Running our adaptive Metropolis-within-Gibbs algorithm shows that the simulated

samples are quite close to the true values. However, the sampler has apparently

visited only one of the posterior modes. This lack of label switching helps us in

producing point estimates directly from this MCMC output [Geweke 2007] but this

also shows an incomplete convergence of the MCMC sampler [Celeux 2000]. When

considering the new parameters of this mixture, the single � plays a significant role

in the lack of label switching since transforming � to π−� swaps first and second

components.
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Figure 6.4: Old Faithful dataset (Example 6.4.2): Posterior distributions of

the parameters of a two-component mixture distribution based on 50, 000 MCMC

iterations.

If we restrict the proposal on � to step 2.4 of the Metropolis-within-Gibbs algo-

rithm, namely using only a uniform U(0, 2π) distribution, Figure 6.5 shows that the

MCMC chains of the pi’s are both well-mixed and exhibiting strong exchangeability.

However, the corresponding acceptance rate is quite low at 0.051.

Figure 6.5: Example 6.4.3: (Left) Evolution of the sequence (�(t)) and (Right) his-

tograms of the simulated weights based on 105 iterations of an adaptive Metropolis-

within-Gibbs algorithm with independent proposal on �.

If we consider in addition the random walk proposal of Step 2.8 on �, namely

a U(�(t) − ε�,�
(t) + ε�) distribution, this step clearly improves performances, as

illustrated in Figure 6.6, with acceptance rates all close to 0.234 and 0.44. Almost

perfect label switching occurs in this case.

The marginal posterior distributions of the means and standard deviations are

shown in Figure 6.7. They are almost indistinguishable due to label switching. Point

estimates are once more produced by relabelling and k-mean clustering, to be com-
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Figure 6.6: Example 6.4.3: Traces of the last 70, 000 simulations from the posterior

distributions of the component means, standard deviations and weights, involving

an additional random walk proposal on �, based on 105 iterations.

Figure 6.7: Example 6.4.3: Estimated marginal posterior densities of component

means and standard deviations, based on 105 MCMC iterations.

pared with the MAP estimates automatically deduced from the simulation output.

Those estimate are shown on the left and right sides of Table 6.2, respectively. Esti-

mates computed by both methods are almost identical and all parameters are close

to the true values.

However, Bayesian inference for parameters related to individual components of

the mixture using averaging over posterior draws is not possible in this case since

the posterior means of the component specific parameters such as p, µi,σi; i = 1, 2, 3

are the same for all components. We therefore revert to both methods of k-means

clustering algorithm presented at the beginning of this section and removing label

switching based on the distance between posterior sample and MAP estimate which

are shown in left and right sides of Table 6.2, respectively. Bayesian estimations

computed by both methods are almost identical and all parameters of the mixture

distributions are accurately estimated in comparison with those of the true model
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Angular & component-wise parameters
k-means clustering MAP estimate
� ξ1 ξ2 � ξ1 ξ2

Median 3.54 0.97 0.73 3.32 0.94 0.83

Mean 3.53 0.98 0.72 3.45 0.94 0.82

p1 p2 p3 p1 p2 p3
Median 0.40 0.27 0.33 0.41 0.27 0.33

Mean 0.41 0.27 0.33 0.41 0.27 0.33

µ1 µ2 µ3 µ1 µ2 µ3

Median 10.27 -4.55 3.11 10.27 -4.55 3.11

Mean 10.27 -4.54 3.12 10.26 -4.45 3.11

σ1 σ2 σ3 σ1 σ2 σ3

Median 0.93 1.04 1.01 0.93 1.04 1.03

Mean 0.95 1.08 1.05 0.95 1.07 1.05

Global parameters
µ σ ϕ

Median 3.98 6.03 0.98

Mean 3.98 6.02 0.99

Proposal scales

εµ εσ εp εϕ ε� εξ
0.33 0.06 190 160 0.09 0.39

Acceptance rates

arµ arσ arp arϕ ar� arξ
0.22 0.34 0.23 0.43 0.42 0.22

Table 6.2: Example 6.4.3: Point estimators of the parameters of a mixture of 3 compo-

nents, proposal scales and corresponding acceptance rates.

with the acceptance rates of the proposal distributions of the Metropolis-within-

Gibbs very close to the optimal ones.

Example 6.4.4 We now consider an 8 component mixture,

0.08N (0, 0.8) + 0.12N (1.5, 1.1) + 0.2N (3, 0.9) + 0.1N (5, 1.2)

+ 0.15N (7.5, 2) + 0.1N (9, 1.3) + 0.13N (10.2, 0.7) + 0.12N (11.5, 1.1) ,

from which we simulated 20 samples of size 250. Calibration of the random walks

is achieved after 104 for almost all samples.

When computing point estimates of the natural parameters of the components,

we obtain the maximum errors of 0.08 and 0.11 for µ and σ, respectively. The average

absolute error over the 20 samples is quite low. Furthermore, when comparing the

true and estimated mixtures, we can resort to the Kullback-Leibler divergence. For

the 20 simulated samples, the maximum value is 0.02, which means an information

loss of at most 2%. If we consider the upper bound introduced by [Sayyareh 2011] on

Kullback-Leibler divergence, the obtained values indicates a good similarity between

Ptrue and Pestimated and illustrates the consistency of the estimates resulting from

our Metropolis-within-Gibbs algorithm. �

Example 6.4.5 When an MCMC chain converges to a very small value for at

least one component weight pi, this may lead to an extremely large mean or large

variance in the corresponding component. This happens partly because there is

hardly any information from the data for this component and partly because the

new parameters are functions of 1/
√
pi. We may thus face extreme points in the

simplex parameter spaces. This phenomenon is illustrated with the Galaxy dataset,

a constant benchmark for mixture estimation [Roeder 1990, Richardson 1997], when

we impose k = 6 components. The MCMC sample is again summarized by k-means

clustering and MAP estimates, as presented in Section 6.3.2. The resulting means,

medians and 95% credible intervals of the parameters of the mixture components
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are displayed in Table 6.3. Unsurprisingly, global mean and standard deviation are

quite similar to the empirical estimates. Table 6.3 also displays estimates based

on the Gibbs sampler of bayesm [Rossi 2010] and on the EM algorithms of mixtools

[Benaglia 2009], with our approach being produced by Ultimixt [Kamary 2015].

Obtaining very close estimations for two component means µi, as µ1 = 19.59

and µ5 = 19.93, and µ2 = 21.97 and µ6 = 22 and µ4 = 22.21 for bayesm, and

µ1 = 24.27 and µ6 = 24.26 for mixtools, signals that overfitting occurs: there are

more components than supported by the data. With our analysis, overfitting is

handled in a different way: the mean of one or more component weights is close

to zero. For instance, we obtained estimates of p1 very close to zero, inducing

estimates for µ1 and σ1 of 61.59 and 32.23 for µ1 and σ1 (obtained by k-means

clustering) and of 67.26 and 20.53 (using MAP estimates), as shown in Table 6.3.

If we examine the MCMC sequences in detail, the minimum simulated value for the

first component weight and the corresponding first component mean and standard

deviation are 1.045 10−6, 449.25 and 284.34, respectively. Such extreme values are

produced because of the extremely small weight. However, such large values have

no impact on the resulting estimate of the mixture itself. This is clearly exhibited

in Figure 6.8 for the Galaxy dataset, which shows that extreme values have no effect

on the predictive density plots due to the small weights. Using our modeling, the

resulting density estimate is remarkably smooth when considering that the number

of observations is 82 and a number of components equal to 6.

If we repeat running the algorithm on the Galaxy dataset for 50, 000 iterations

and a smaller number of components, for instance k = 4, summary and model fit

statistics are provided in Table 6.3. In this case, extreme values do not occur and the

predictive density plots show that a four component model fits the data equally well

as displayed in Figure 6.9. The posterior estimates of the component parameters

computed by three methods (k-means clustering, MAP, and EM estimates) are

almost similar, while the Gibbs sampler results from bayesm yield two very close

estimates of component means, µ2 = 21.05 and µ4 = 20.90 in this case.

The common priors for the standard parameters are

µi ∼ N(µ̄, 10σR) , σ2
R ∼ IW(ν, 3) and (p1, . . . . , pk) ∼ Dir(α0, . . . ,α0)

where IW(ν, 3) is the Inverse-Wishart distribution with the scale parameter of 3

and the degrees of freedom of ν. Unknown hyperparameters µ̄, σR, α0 and ν are

given by bayesm from the empirical estimation of data and, the comparison of the

proposed priors and the prior obtained from bayesm are graphically presented in

Figure 6.10.
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6 components, k = 6 4 components, k = 4

k-means clustering k-means clustering
p1 p2 p3 p4 p5 p6 p1 p2 p3 p4

Median 0.01 0.08 0.13 0.43 0.05 0.24 0.56 0.27 0.06 0.10

Mean 0.02 0.06 0.14 0.46 0.05 0.24 0.58 0.25 0.06 0.11

µ1 µ2 µ3 µ4 µ5 µ6 µ1 µ2 µ3 µ4

Median 25.95 9.72 22.06 19.83 32.71 22.87 20.19 21.52 32.79 9.72

Mean 61.59 9.725 22.09 19.84 32.70 22.93 20.27 21.48 33.29 9.73

σ1 σ2 σ3 σ4 σ5 σ6 σ1 σ2 σ3 σ4

Median 4.53 4.91 1.91 0.52 2.86 0.65 0.52 1.62 3.00 1.05

Mean 32.23 4.61 2.41 0.58 4.23 1.10 0.57 2.08 3.66 3.44

MAP estimate MAP estimate
p1 p2 p3 p4 p5 p6 p1 p2 p3 p4

Median 0.04 0.09 0.13 0.37 0.10 0.15 0.32 0.46 0.08 0.08

Mean 0.05 0.09 0.10 0.39 0.14 0.22 0.34 0.43 0.13 0.09

2.5% < 10−5 < 0.01 < 0.01 < 0.01 < 10−3 < 0.01 0.04 0.02 0.01 0.04

97.5% 0.2.1 0.13 0.69 0.39 0.56 0.68 0.87 0.82 0.51 0.15

µ1 µ2 µ3 µ4 µ5 µ6 µ1 µ2 µ3 µ4

Median 30.96 9.70 21.75 19.73 20.61 23.12 19.84 22.17 28.23 9.71

Mean 67.26 8.18 21.58 18.73 20.84 24.33 19.83 22.34 29.03 9.50

2.5% 22.87 -9.28 19.60 9.68 12.83 21.29 17.59 20.14 22.27 9.17

97.5% 606.16 10.21 23.44 20.47 25.69 33.07 21.47 26.87 36.20 10.21

σ1 σ2 σ3 σ4 σ5 σ6 σ1 σ2 σ3 σ4

Median 4.82 0.54 1.76 0.60 3.41 1.73 0.69 2.22 3.22 0.53

Mean 20.53 2.05 2.06 0.73 15.59 2.34 0.96 3.23 4.15 0.91

2.5% 0.79 0.30 0.31 0.19 0.41 0.17 0.29 0.87 0.68 0.29

97.5% 198.23 17.28 7.63 2.13 35.95 7.62 2.44 9.62 10.57 1.34

Gibbs sampler (bayesm) Gibbs sampler (bayesm)
p1 p2 p3 p4 p5 p6 p1 p2 p3 p4

0.17 0.09 0.14 0.23 0.19 0.19 0.33 0.31 0.18 0.18

µ1 µ2 µ3 µ4 µ5 µ6 µ1 µ2 µ3 µ4

19.59 21.97 20.83 22.21 19.93 22.00 20.53 21.05 21.75 20.90

σ1 σ2 σ3 σ4 σ5 σ6 σ1 σ2 σ3 σ4

0.35 0.23 0.22 0.24 0.26 0.31 0.22 0.19 0.21 0.27

EM estimate (mixtools) EM estimate (mixtools)
p1 p2 p3 p4 p5 p6 p1 p2 p3 p4

0.04 0.08 0.17 0.41 0.09 0.20 0.52 0.33 0.04 0.11

µ1 µ2 µ3 µ4 µ5 µ6 µ1 µ2 µ3 µ4

24.27 9.71 22.33 19.88 33.04 24.26 19.72 22.72 33.04 10.14

σ1 σ2 σ3 σ4 σ5 σ6 σ1 σ2 σ3 σ4

0.08 0.42 0.44 .70 0.19 8.33 0.62 1.77 0.92 2.73

Table 6.3: Galaxy dataset: Estimates of the parameters of a mixture of 6 and 4

components.
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Figure 6.8: Galaxy dataset: (Left) Representation of 500 MCMC iterations as

mixture distributions with the overlaid average curve for k = 6 components (dark

line); (Right) mixture density estimate based on 15, 000 MCMC iterations for k = 6

components.

Figure 6.9: Galaxy dataset: (left) Representation of 500 Metropolis-within-Gibbs

iterations for the mixture estimation and the overlay curve (dark line) obtained

by averaging over iterations; (right) The mixture density estimate to histogram of

dataset computed by averaging over 50, 000 MCMC iterations.

It is seen that the proposed prior is more dispersed for µ1 and p1 and is very

skewed toward 0 for σ1 with long tail. When k = 6, bayesm yields a more concen-

trated prior for p to accommodate all components and the proposed prior becomes

dispersed to give flexible support on component-wise location and scale.

6.5 Parallel tempering

In Example 6.4.2 we have seen that for the Old Faithful dataset, the multimodal-

ity of the mixture model is not reproduced in the MCMC output, which means

the adaptive Metropolis-within-Gibbs sampler cannot escape one of the modes. In

this case, parallel tempering may be used [Marinari 1992, Neal 1996]. This method

allows for better mixing in multimodal target distributions, when using straightfor-

ward Metropolis-Hastings algorithms fail [Miasojedow 2013]. It is indeed designed
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Figure 6.10: Galaxy dataset: Empirical prior densities based on 104 samples for

µ1, σ1 and p1 when (Top) k = 6 and (Bottom) k = 4. For the proposed prior

(solid lines), the priors induced are π(µ1) ∝ π(σγ1/
√
p1) and π(σ1) ∝ π(ση1/

√
p1).

For the prior by bayesm (dashed lines), hyperparameters are α0 = 5 for k = 4 and

α0 = 25 for k = 6 while µ̄ = 0 and ν = 3.

to overcome low probability regions between modal areas. Given the posterior den-

sity f(θ|x), we define tempered versions fβ(θ|x) ∝ f(θ|x)β , where 0 ≤ β ≤ 1

is the inverse temperature and β = 1 corresponds to the original target distri-

bution [Geyer 1991]. The tempered MCMC algorithm then runs a basic MCMC

algorithm on a range of tempered distribution and, at each iteration, the current

samples are considered for potential exchanges between adjacent temperatures, with

a Metropolis–Hastings acceptance probability

αh = min

�
1,

fβh−1
(θ

(t)
h )fβh

(θ
(t)
h−1)

fβh−1
(θ

(t)
h−1)fβh

(θ
(t)
h )

�
,

as the chances of accepting a swap are higher for nearby temperatures. Proposal

scales are calibrated by adaptive MCMC method and is used for all tempered ver-

sions of the target. Temperatures are chosen of the form 2j (j = 1, . . .) and the

sequence is determined according to the degree of symmetry in the distribution of

the pi’s or when the minimum acceptance rate for swaps between adjacent temper-

atures is larger than a default threshold.

Example 6.5.1 Considering again the Old Faithful benchmark, we set this symme-

try threshold to .1 and this acceptance threshold to 0.3. Using the same proposals

as in Example 6.4.2 and Nsim = 50, 000, the algorithm selects 4 temperatures, thus

equal to 1, 2, 4, 8. Figure 6.11 demonstrates that the parallel tempering sampler

visits all modes in the posterior distribution and that the mixing of the chains is

greatly improved. �
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Figure 6.11: Faithful dataset 6.4.2: Posterior distribution of the mixture dis-

tribution parameters and comparison between the lowest and highest temperatures

(target distribution and f(x|θ)1/8) of parallel tempering outputs based on 50, 000

iterations.

Example 6.5.2 We now implement parallel tempering for a mixture of k = 3

components applied to a benchmark dataset from [Marin 2007]. This dataset is

derived from an image of a car license plate, and made of 2625 observations. In

[Marin 2007], a lack of label switching is observed when using a Gibbs sampler.

Once again, this means each component can be estimated by its mean and standard

deviation. The sample size is larger here and more likely to mixing problems. This

is clearly exhibited in the six top plots of Figure 6.12 where the estimates provided

for the three components are quite distinct. When implementing parallel tempering,

the temperature increase stops when when all acceptance rates of swaps are above

.4, meaning for this dataset 7 temperatures ranging from 1 to 64.

The six bottom plots of Figure 6.12 show that parallel tempering immensely

improves the swaps between the posterior modes. The sample of �’s produced by

parallel tempering visits a much larger region in (0, 2π), when compared with the

highly peaked output of the original MCMC output.

The histograms in Figure 6.12 show that the posterior on p and η are now close

to identical for each component. Two-dimensional plots also highlight this correct

label switching behavior, which demonstrates better mixing and convergence of the

produced chain. �

6.6 Conclusion

This paper has introduced a new parametrisation for mixtures of location-scale mod-

els. By constraining the parameters in terms of the global mean and global variance
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Figure 6.12: Licence dataset (Example 6.5.2): Comparison between Metropolis-

within-Gibbs and parallel tempering outputs: The distributions of the samples of

104 last points and corresponding 2× 2 plots.

of the mixture, i.e., by recognizing the location-scale nature of such mixtures, it has

been shown that the remaining parameters can be expressed as varying within a

compact set. Therefore, it is possible to use a well-defined uniform prior on these

parameters (as well as any proper prior) and we established that an improper prior

of Jeffreys’ type on the global mean and global variance returns a proper posterior

distribution when handling at least two observations from the mixture. While the

notion of non-informative or objective prior is open to interpretations and sometimes

controversies, we believe we have defined in this paper what can be considered as

the first reference prior for mixture models.

We have demonstrated that relatively standard simulation algorithms are able
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to handle this new parametrisation and that they can manage the computing issues

connected with label switching. In case of poor switching, we also established that

parallel tempering can be easily implemented. As exhibited in the Ultimixt package,

relabelling techniques are readily available.

While the extension to non-Gaussian cases with location-scale parameterisation

(and beyond) is conceptually straightforward, considering this parameterisation in

higher dimensions is delicate in terms of the covariance matrix. Indeed, even though

we can easily set the global variance of the mixture as a parameter, reparameterising

the component variances against this reference matrix remains an open question that

we have not yet explored.



Chapter 7

Supplementary material:

Non-informative

reparameterisations for

location-scale mixtures

Chapter 6 focuses on the reparametrisation of a mixture of Gaussian distributions

with the purpose of using non-informative prior distributions on the parameters.

We proceed here by some theoretical aspects, more data analyses and discuss the

results.

The model of interest is a convex combination of the univariate Gaussian distri-

butions defined by

f(x|µi,σi) =

k�

i=1

piN (x|µi,σi)

A feature of this combination of densities is that it allows to produce a probability

density function because of preserving the properties of non negativity and integrat-

ing to 1. Multimodality of the produced density is another property which causes

the “label switching” issue in the Bayesian analysis of the model as mentioned before

while conditions for the number of modes have been explored by [Robertson 1969]

and [Behboodian 1970]. As Bayesian methods enable the uncertainty in the model

parameters to be directly quantified by examining the posterior distribution, they

are useful for fitting these models to data. Despite that the mixture distributions

have a range of applications, making an objective choice of prior for the component

parameters is difficult in the case where no information is available to determine a

subjective prior. Basically, assigning independent improper non-informative priors

to the parameters of the mixture components results in improper posterior dis-

tribution as shown by [Marin 2006] which unable these prior to be used for the

mixtures. This difficulty motivated the idea of shifting the parameters of ith mix-

ture component to two variability parameters αi and τi by defining linear functions

µi = µ+ σαi,σi = στi based on µ and σ acting as the intercept and slope of these

linear equations. This change leads to a proper posterior derived from a Jeffreys

prior for the global parameters of the mixtures, as demonstrated in Chapter 6. Since

σ is positive, both µi and σi are increasing with respect to the values of αi and τi.

In a special case where (αi, τi); i = 1, . . . , k converges toward (0, 1), the mixture is
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transformed to a simple normal distribution with mean and standard deviation µ

and σ, respectively.

7.1 Spherical coordinate concept

The modifications αi = σγi/√pi and τi = σηi/√pi bring about a hypersphere and

hyperplane equations due to the constraints obtained from the mean and variance of

the population that drive the resulting mixture model 6.3 more compact in terms of

specifying the prior distribution for the resulting variability parameters. In addition,

from the intersection of hypersphere
�k

i=1 γ
2
i = ϕ2 centered at the origin and the

hyperplane
�k

i=1

√
piγi = 0 which also passes through the origin, we deduce that

γis belong to a circle of radius ϕ centered at the origin, as mentioned before. For

example if we consider k = 3, ϕ = 0.5 and p = (0.35, 0.25, 0.4), we will have

HP3 : 0.59γ1 + 0.5γ2 + 0.63γ3 = 0; HS3 : γ
2
1 + γ22 + γ23 = 0.25,

and a 3-dimensional graphical representation of HP3 ∩HS3 is shown in Figure

7.1 which illustrates that the intersection is precisely a set of points in hyperplane

at a distance of ϕ from the origin.

Figure 7.1: Intersection between 3-dimensional hyperplane and hypersphere.

For any k, here we represent the spherical coordinate of γ’s obtained in Chapter

6 in more details. Suppose that

HPk : γ1
√
p1 + γ2

√
p2 + . . .+ γk

√
pk = 0

HSk : γ21 + γ22 + . . .+ γ2k = ϕ2

Where
�n

i=1 pi = 1. From HPk, two vectors

(
√
p1, . . . ,

√
pk); Γ = (γ1, . . . , γk)
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are orthogonal. Let

�k = (
√
p1, . . . ,

√
pk)/

����
k�

i=1

pi

= (
√
p1, . . . ,

√
pk) (7.1)

be a unit-length vector. Since E denotes any Euclidean space of finite dimension

k, the hyperplane HPk has dimension k − 1 and we can find an orthonormal basis

for HPk as (�1, . . . ,�k−1) orthogonal to �k, [Gallier 2011].

An orthonormal basis including �k based on the orthogonal basis {�̃1, . . . , �̃k} is

given by

�1 = (−√
p2,

√
p1,0,...,0,0)/

√
p1+p2

�2 = (−√
p1p3/

√
p1+p2,−

√
p2p3/

√
p1+p2,

√
p1+p2,0,...,0)/

√
p1+p2+p3

�3 = (−√
p1p4/

√
p1+p2+p3,−

√
p2p4/

√
p1+p2+p3,−

√
p3p4/

√
p1+p2+p3,

√
p1+p2+p3,0,...,0)/

√
p1+p2+p3+p4

. . .

�k−1 = (−√
p1pk/

√�k−1
i=1

pi,−
√

p2pk/
√�k−1

i=1
pi,...,−

√
pk−1pk/

√�k−1
i=1

pi,
��k−1

i=1 pi)/
��k

i=1 pi

�k = (
√
p1, . . . ,

√
pk)

We can easily show that for all i ∈ 1, . . . , k; �i has unit-length and for all i �= j,

dot product of �i and �j is zero. Using this orthonormal basis, any point on the

hyperplane can therefore be expressed as

Γ = b1�1 + b2�2 + . . .+ bk�k

which gives

γ1 = −b1
√
p2/

√
p1+p2 − b2

√
p1p3/

√
p1+p2

√�3
i=1 pi − . . .− bk−1

√
p1pk/

��k−1
i=1 pi

��k
i=1 pi + bk

√
p1

γ2 = b1
√
p1/

√
p1+p2 − b2

√
p2p3/

√
p1+p2

√�3
i=1 pi − . . .− bk−1

√
p2pk/

��k−1
i=1 pi

��k
i=1 pi + bk

√
p2

γ3 = b2
√
p1+p2/

√
p1+p2+p3 − b3

√
p3p4/

√�3
i=1 pi

√�4
i=1 pi − . . .− bk−1

√
p3pk/

��k−1
i=1 pi

��k
i=1 pi + bk

√
p3

. . .

γk−1 = bk−2

��k−2
i=1 pi/

��k−1
i=1 pi − bk−1

√
pk−1pk/

��k−1
i=1 pi

��k
i=1 pi + bk

√
pk−1

γk = bk−1

��k−1
i=1 pi/

��k
i=1 pi + bk

√
pk.

(γ1, . . . , γk) belongs to both HPk and HSk and thus replacing it in hyperplane

results in
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√
p1γ1 +

√
p2γ2 + . . .+

√
pkγk = −b1

√
p1p2/

√
p1+p2 + . . .+ bkp1

+ b1
√
p1p2/

√
p1+p2 + . . .+ bkp2

+ . . .

− bk−1pk−1
√
pk/

��k−1
i=1 pi

��k
i=1 pi + bkpk−1

+ bk−1
√
pk

��k−1
i=1 pi/

��k
i=1 pi + bkpk

and by canceling positive and negative similar terms we obtain
�k

i=1 bkpi = 0

that ends up with bk = 0. In this case, replacing γi’s in HSk leads to a hypersphere

of radius ϕ in k − 1-dimensional Euclidean space

b21 + b22 + . . .+ b2k−1 = ϕ2

and thus any reparametrization of this object such as spherical coordinate system

may be considered.

In the special case of k = 2, the orthonormal basis is defined by two following

vectors

�1 = (−√
p2/

√
p1+p2,

√
p1/

√
p1+p2); �2 = (

√
p1,

√
p2)

where p1 = p; p2 = 1− p and we can therefore write

(γ1, γ2) = b1�1 + b2�2

= (−b1
�
1− p+ b2

√
p, b1

√
p+ b2

�
1− p)

Replacing γ1 and γ2 above in both

HP2 :
√
pγ1 +

�
1− pγ2 = 0; HS2 : γ

2
1 + γ22 = ϕ2

yields

−b1
�

p(1− p) + b2p+ b1
�

p(1− p) + b2(1− p) = 0; b2 = 0

b21(1− p) + b21p = ϕ2; b21 = ϕ2

b21 = ϕ2 can be considered as a sphere in 1-dimensional Euclidean space that

represents a pair of points {−ϕ,+ϕ} which is the boundary of a line segment (a

part of a line that is bounded by two distinct end points, and contains every point

on the line between its endpoints). We can therefore rewrite γi’s as

(γ1, γ2) = (±ϕ
�
1− p,±ϕ

√
p).

Since η21 + η22 = 1− ϕ2, spherical coordinate representation of η1 and η2 will be

η1 =
�
1− ϕ2 cos(ξ); η2 =

�
1− ϕ2 sin(ξ)
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where ξ ∈ [0, π/2]. In example 6.4.1, the analyses related to 50 data points simu-

lated from the mixture 0.65N (−8, 2) + 0.35N (−0.5, 1) are based on the case where

a Dirichlet prior Dir(0.5, 0.5, 0.5) is assigned to (ϕ2, η21, η
2
2). It means that only the

component means are expressed in spherical coordinates. Here, we reanalyze this

model by considering the spherical coordinates above for ηi’s. In this case, we place

a beta prior on the parameter ϕ2 with the same hyper parameters 0.5, 0.5. Figure

7.2 shows that the estimates of the marginal posterior distributions of means and

standard deviations are symmetric and each µi (σi) is very similar to one another

due to the label switching phenomenon. As the component parameters are not

identifiable marginally, estimating them on the basis of these MCMC output is not

straightforward and we thus revert to the k-means clustering algorithm. The proce-

dure is implemented by using the package Ultimixt in Chapter 8. The estimations

of the component parameters displayed in Table 7.1 are quite similar to those of the

true model while the calibration of the proposal scale results in the acceptance rates

close to the optimal.

Figure 7.2: Mixture of two normal distributions 7.1: Estimated marginal posterior

densities of component means µ1, µ2 and standard deviations σ1,σ2 based on 105 MCMC

iterations.

On the other hand, since the estimate of the predictive density based on the

MCMC output does not depend on the labelling of the components, Figure 7.3 shows

that the estimated mixture is very smooth and unaffected by the label switching.

Note that the black line is the estimate of the density that is obtained by averaging

the simulated densities over the last 500 iterations.
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Figure 7.3: Mixture of two normal

distributions 7.1: Representation of 500

MCMC iterations as mixture distributions

with the overlaid average curve (dark line).

k-means clustering
µ σ ϕ ξ

Med. -5.35 3.89 0.89 .747

Mean -5.34 3.89 0.87 .810

p1 p2 µ1 µ2 σ1 σ2

Med. 0.64 0.36 -7.99 -0.75 1.12 2.05

Mean 0.64 0.36 -7.95 -0.79 1.18 2.09

Proposal scales
sµ sσ εp εϕ εξ

0.56 0.11 65 540 0.29

Acceptance rates
arµ arσ arp arϕ arξ
0.38 0.48 0.43 0.43 0.43

Table 7.1: Mixture of two normal distribu-

tions 7.1: Point estimates, proposal scales and

acceptance rates.

The results of the example above illustrates that when k = 2, the Bayes estimates

of the mixture parameters based on the spherical coordinate of ηi’s are identical to

the case where (ϕ2, η21, η
2
2) is supposed to be from Dirichlet distribution. In both

cases, the parameters are accurately estimated as long as the convergence towards

the stationary distribution is achieved as shown in Figure 7.2.

In the following, we apply the reparametrisation of the mixture distribution

based on the spherical coordinate of the component parameters for some other

datasets and summarize the resulting Bayesian analyses by implementing the func-

tions of Ultimixt package, Chapter 8.

7.2 Data analyses

Two datasets Acidity dataset and Enzyme dataset were initially used by [Richardson 1997]

while Fishery dataset and Darwin’s dataset are taken from [Frühwirth-Schnatter 2006].

For all datasets, we run the MCMC algorithm with 104 iterations and in Figures

7.4, 7.5, 7.6 and 7.7, the predictive mixture densities are computed once for the last

500 iterations another by averaging over 104 iterations (dark line in the figures).

7.2.1 Acidity data

The Acidity dataset is related to an acidity index measured in a sample of 155 lakes

in the Northeastern United States. A histogram of the data points is shown in 7.4

and so a mixture of 2 components is well suited to model the data. In Figure 7.4

the histogram of the data is overlaid with the predictive density estimate obtained

by applying Ultimixt package 8 that indicates the model represents the data well,

with no need for any more components.
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Angular & component-wise parameters
Acidity data Enzyme data Darwin’s data

ξ ξ ξ

Med 0.71 1.39 0.13

Mean 0.75 1.4 0.12

p1 p2 p3 p1 p2 p3
Med 0.40 0.60 0.41 0.59 0.85 0.15

Mean 0.41 0.59 0.40 0.60 0.84 0.16

µ1 µ2 µ1 µ2 µ1 µ2

Med 6.24 4.32 1.25 0.19 21.68 12.0

Mean 6.23 4.33 1.24 0.19 21.63 12.2

σ1 σ2 σ1 σ2 σ1 σ2

Med 0.53 0.38 0.52 0.08 0.33 1.5

Mean 0.54 0.37 0.53 0.08 0.47 1.4

Global parameters

A
c
id

it
y Obs. 5.1 1.04

µ σ ϕ

Med 5.1 1.04 0.90

Mean 5.1 1.04 0.89

E
n
z
y
m

e Obs. 0.62 0.62

µ σ ϕ

Med 0.62 0.63 0.84

Mean 0.62 0.62 0.83

D
a
r
w

in Obs. 20.2 3.6

µ σ ϕ

Med 20.2 3.7 0.92

Mean 20.2 3.6 0.92

Table 7.2: Data analyses 7.2: Point estimators of the parameters of a mixture of two

components. Each estimate is obtained based on 104 MCMC iterations. Med indicates

the estimate based on the median of draws and two values behind Obs. are the mean and

standard deviation of the dataset x̄ =
�n

j=1
xj/n; s = (

�n
j=1

(xj−x̄)/(n−1))1/2, respectively.

7.2.2 Enzyme data

Enzyme dataset concerns the distribution of enzymatic activity in the blood, for an

enzyme involved in the metabolism of carcinogenic substances, among of group of

245 unrelated individuals with the purpose of identifying subgroups of slow or fast

metabolizers as a marker of genetic polymorphism in the general population. This

dataset has been reanalyzed by [van Havre 2014] who compared the probabilities

that this data can be modeled by two or three components. [van Havre 2014] showed

that fitting a mixture model with two components to the data is more likely than

three components. We therefore analyze Enzyme dataset with our reparametrized

mixture distribution by considering k = 2. The predictive density estimates shown

in Figure 7.5 illustrate a good fitting of the mixture with two components to the

data.

7.2.3 Darwin’s data

Darwin’s data consists of 15 observations of differences in heights between pairs

of self-fertilized and cross-fertilized plants grown under the same condition. The

histogram of the data overlaid with the predictive density estimates based on fitting

a mixture of two normal components to the data is shown in Figure 7.7. Despite

that the sample size is small, the mixture estimate fits very well the data.

Table 7.2 shows the point estimates of the component parameters including

mean and median for the datasets Acidity, Enzyme and Darwin. The table reveals

very negligible difference between the estimates based on mean and median of the

posterior draws and the errors between the point estimates of µ and x̄ are zero for

all datasets while for σ the error between the median of the posterior draws and the

standard deviations of datasets are negligible (the error of posterior estimates based

on the average of draws is also zero for all datasets).
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Global parameters; k = 4
µ σ ϕ

Med 6.1 1.90 0.81

Mean 6.1 1.89 0.80

Angular & component parameters
�1 �2

Med 2.5 5.3

Mean 2.4 5.4

ξ1 ξ2 ξ3
Med 0.27 0.49 0.73

Mean 0.28 0.48 0.73

p1 p2 p3 p4
Med 0.58 0.25 0.14 0.03

Mean 0.56 0.26 0.14 0.04

µ1 µ2 µ3 µ4

Med 5.2 7.7 3.5 3.2

Mean 5.2 7.9 3.6 3.2

σ1 σ2 σ3 σ4

Med 0.24 0.68 1.02 0.74

Mean 0.25 0.71 1.23 0.74

Global parameters; K = 3
Obs. 6.1 1.9

µ σ ϕ

Med 6.1 1.90 0.71

Mean 6.1 1.90 0.70

Angular & component parameters
� ξ1 ξ2

Med 3.9 0.34 0.22

Mean 3.7 0.34 0.21

p1 p2 p3
Med 0.38 0.53 0.09

Mean 0.38 0.54 0.08

µ1 µ2 µ3

Med 7.3 5.2 3.2

Mean 7.3 5.2 3.3

σ1 σ2 σ3

Med 0.53 0.29 1.8

Mean 0.52 0.30 1.8

Table 7.3: Fishery data 7.2: Point estimators of the parameters of a mixture of two

components. Each estimate is obtained based on 104 MCMC iterations. Med indicates

the estimate based on the median of draws and two value behind Obs. are the mean and

standard deviation of the dataset x̄ =
�n

j=1
xj/n; s = (

�n
j=1

(xj−x̄)/(n−1))1/2, respectively.

7.2.4 Fishery data

We fit a Gaussian mixture model on the Fishery data which consists of data on the

lengths of 256 snappers. The heterogeneity in the data comes from the different age

groups a fish might belong to depending if it comes from the current year’s spawning

or the previous, and so on.

Overfitting the Fishery dataset produces two possible alternate configurations

with four or three components and we therefore analyze this data once by considering

k = 4 another by modeling a mixture of k = 3 components. Table 7.3 displays the

posterior parameters describing each configuration. When k = 4, we obtain two

almost similar component means µ3 = 3.6 and µ4 = 3.2 and since one of them has

an estimated weight close to zero this case can be considered as overfitted model.

The Bayes estimates of the parameters of a mixture with three components exhibit

a better performance as shown on the right of Table 7.3. We note here that the

point estimates of global parameters µ and σ in the case where k = 4 are almost

identical to the ones for k = 3. This indicates that the change of the component

number of the mixture model does not impact the Bayesian inference of these two

parameters. The radius ϕ decreases when k diminishes from 4 to 3 and since σi’s are

expressed by spherical coordinate with radius (1 − ϕ2)1/2, the component standard

deviations naturally increase in comparison with the case of k = 4.

Figure 7.6 shows the posterior predictive densities based on MCMC output for

the case where k = 4 that is almost identical to the one for k = 3. This illus-

trates that the estimated mixtures are unaffected by the overfitting phenomenon as

mentioned before for Galaxy data in Chapter 6.
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Figure 7.4: Acidity data 7.2.1. Figure 7.5: Enzyme data 7.2.2.

Figure 7.6: Fishery data 7.2.4. Figure 7.7: Darwin’s data 7.2.3.

Note that in both Tables 7.2 and 7.3, for the global parameters, the means and

medians are computed based the obtained MCMC draws. These summary statistics

are considered as the posterior estimations while for the angular and component-wise

parameters the estimates are obtained by applying k-means clustering algorithm on

the related posterior samples.

7.3 Parallel tempering algorithm

Last part of Chapter 6 deals with the analyses based on parallel tempering method.

We showed that this method greatly improves mixing of MCMC chains. In some

examples, we have seen that for a sample of size large enough, multimodality of

the mixture model causes mixing problem or eventuates a good fit of one of the

components to the extent that it is difficult for the Metropolis-within-Gibbs sampler

to escape. In this case, using parallel tempering or replica exchange is suggested

[Gill 2004] which can be tracked down in a paper written by [Swendsen 1986]. The

applications of this method has used not only for problems in statistical physics but

in chemistry, biology, engineering and materials science [Earl 2005]. The important
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feature is preventing the Markov chain from sticking in minor modal areas for long

periods of time. Parallel tempering MCMC as a method for generating candidate

samples from all over a distribution is designed to overcome low probability regions

between areas of importance. This means that a temperature parameter could be

used to flatten out the target distribution such that the more temperature raised the

more distribution flattens out and this makes the random chain more likely to mix

quickly, for that temperature [Lewandowski 2014, Gill 2004, Earl 2005, Neal 1996,

Wang 2011, Li 2009, Swendsen 1986].

The method is that the target distribution is transformed to the Boltzmann

distribution for a given temperature which is called “replicas”. In order to simu-

late parameter θ from a posterior distribution non-standard f(θ|x), in tempera-

ture 1/β, the replicas is defined as fβ(θ|x) = f(θ|x)β where 0 ≤ β ≤ 1. This

means that the chains can be constructed from “tempered" versions of the target

of interest by raising it to a power between 0 and 1, with 0 corresponding to a

complete flattening of the distribution, and 1 corresponding to the desired target

[Altekar 2004, Geyer 2011, Geyer 1991]. [Miasojedow 2013] argue that for a tar-

get distribution f(), tempering of f() often provides better mixing within modes

of the target distribution. However, this method is often more effective than the

non-tempered approach [Hamze 2010].

Having this expression for the target distribution, we run the basic MCMC algo-

rithm on each distribution and in each iteration, the current samples are considered

probabilistically for exchanges between different temperature levels with probabil-

ity αh as shown in parallel tempering algorithm below. Note that here only pairs

between neighboring temperatures are considered for swapping because the chances

of accepting a trade are more likely to be higher. Before performance of paral-

lel tempering MCMC becomes optimal, we should tune the number of replicas h

and their temperatures which are not actually evident and besides this, the simu-

lation of multiple chains does increase the computation time. Several suggestions

for the number of replicas and temperature of the replicas have been offered. An

example is a geometric progression of temperatures [Miasojedow 2013, Earl 2005].

[Miasojedow 2013] propose an adaptive algorithm in order to tune the temperature

schedule and the parameters of the random-walk Metropolis kernel. Here, we con-

sider that the proposal scale is automatically calibrated using adaptive Metropolis-

within-Gibbs algorithm for the target distribution according to the optimal accep-

tance rates as explained before and it is simultaneously used for the proposal dis-

tribution of all tempered versions of the target distribution. The number of tem-

peratures is automatically chosen according to the degree of the symmetry of the

generated samples of p to 0.5 in the case where the number of mixture components is

k = 2. The number of temperatures is also determined according to the acceptance

rate of the swaps between the neighboring temperatures, arswap.

Let θ = (µ,σ, p,ϕ, ξ,�), εθ be the scale of the proposal distribution in Metropolis-

within-Gibbs step. We suppose that δ1 is the symmetry threshold and δ2 acceptance

rate of swaps threshold. We therefore define parallel tempering algorithm in 7.8.

Note that if R1 and R2 indicate the ratios of the simulated samples for p, greater
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Parallel tempering algorithm for reparameterised mixture when k = 2:

1 Generate initial values θ(0);

2 Compute εθ by implementing the adaptive Metropolis-within-Gibbs algorithm

9.1.

3 Input Nβ = 2 and choose β = (β1,β2) such that 2−Nβ < β2 < β1.

4 For t = 1, . . . , T , the update of θ(t) follows

4.1 For h = 1, . . . , Nβ

� Generate θ
(t)
h from MCMC(θ

(t)
h ,πβh

).

� Accept θ
[t]
h−1 = θ

[t]
h with probability

αh = min
�
1, fβh−1

(θ
[t]
h )fβh (θ

[t]
h−1)/fβh−1

(θ
[t]
h−1)fβh (θ

[t]
h )

�
.

5 Stop if d(R1, R2) < δ1 or min(arswap) > δ2.

6 Otherwise compute β = (β, 2−Nβ ), Nβ = Nβ + 1 and go to line 4.

Figure 7.8: MCMC(θ,π) denotes a Metropolis-within-Gibbs step defined in 6.1 with

starting point θ and target distribution π and Nβ is the number of temperatures.

than and less than 0.5 to the total number of iterations, respectively, the degree of

symmetry of draws of p to 0.5 is computed by |R1 −R2|.

The output of the algorithm 7.8 consists of the chain of samples for θ, the number

of replicas and the temperature set, 1/β. Both examples 6.4.2 and 6.5.2 illustrate the

good performance of this algorithm in terms of improving the mixing of the MCMC

chains.
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8.1 Ultimixt

Type Package

Title Bayesian Analysis of a Non-Informative Parametrization for Gaussian Mix-

ture Distributions

Version 1.0

Date 2015-12-10

Author Kaniav Kamary, Kate Lee

Maintainer Kaniav Kamary <kamary@ceremade.dauphine.fr>

Depends coda, gtools, graphics, grDevices, stats

Description A generic reference Bayesian analysis of unidimensional mixtures of

Gaussian distributions obtained by a location-scale parameterisation of the model is

implemented. Included functions can be applied to produce a Bayesian analysis of

Gaussian mixtures with an arbitrary number of components, with no need to define

the prior distribution.

License GPL (>=2.0)

R topics documented:
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Index

Ultimixt-package

set of R functions for estimating the parameters of a

Gaussian mixture distribution with a Bayesian non-

informative prior

Description

Despite a comprehensive literature on estimating mixtures of Gaussian distributions,
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there does not exist a well-accepted reference Bayesian approach to such models.

One reason for the difficulty is the general prohibition against using improper priors

(Fruhwirth-Schnatter, 2006) due to the ill-posed nature of such statistical objects.

Kamary, Lee and Robert (2015) took advantage of a mean-variance reparametrisa-

tion of a Gaussian mixture model to propose improper but valid reference priors

in this setting. This R package implements the proposal and computes posterior

estimates of the parameters of a Gaussian mixture distribution. The approach ap-

plies with an arbitrary number of components. The Ultimixt R package contains

an MCMC algorithm function and further functions for summarizing and plotting

posterior estimates of the model parameters for any number of components.

Details

Package: Ultimixt

Type: Package

Version: 1.0

Date: 2015-10-30

License: GPL (>=2.0)
Beyond simulating MCMC samples from the posterior distribution of the Gaus-

sian mixture model, this package also produces summaries of the MCMC outputs

through numerical and graphical methods.

Note: The proposed parameterisation of the Gaussian mixture distribution is

given by

f(x|µ,σ,p,ϕ,�, ξ) =

k�

i=1

pif (x|µ+ σγi/
√
pi,σηi/

√
pi)

under the non-informative prior π(µ,σ) = 1/σ. Here, the vector of the γi =

ϕΨi

�
�,p

�

i
’s belongs to an hypersphere of radius ϕ intersecting with an hyperplane.

It is thus expressed in terms of spherical coordinates within that hyperplane that de-

pend on k−2 angular coordinates �i. Similarly, the vector of ηi =
�

1− ϕ2Ψi

�
ξ
�

i
’s

can be turned into a spherical coordinate in a k-dimensional Euclidean space, in-

volving a radial coordinate
�

1− ϕ2 and k − 1 angular coordinates ξi. A natural

prior for � is made of uniforms, �1, . . . ,�k−3 ∼ U [0,π] and �k−2 ∼ U [0, 2π], and

for ϕ, we consider a beta prior Beta(α,α). A reference prior on the angles ξ is

(ξ1, . . . , ξk−1) ∼ U [0,π/2]k−1 and a Dirichlet prior Dir(α0, . . . ,α0) is assigned to

the weights p1, . . . , pk

Author(s)

Kaniav Kamary

Maintainer: <kamary@ceremade.dauphine.fr>

References

Fruhwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models.

Springer-Verlag, New York, New York.

Kamary, K., Lee, J.Y., and Robert, C.P. (2015) Non-informative reparameterisation
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of location-scale mixtures. arXiv.

See Also

Ultimixt

Examples

data(faithful)

xobs=faithful[,1]

estimate=K.MixReparametrized(xobs, k=2, alpha0=.5, alpha=.5, Nsim=1e4)

8.2 K.MixReparametrized function

K.MixReparametrized

Sample from a Gaussian mixture posterior associ-

ated with a noninformative prior and obtained by

Metropolis-within-Gibbs sampling

Description

This function returns a sample simulated from the posterior distribution of the pa-

rameters of a Gaussian mixture under a non-informative prior. This prior is derived

from a mean-variance reparameterisation of the mixture distribution, as proposed

by Kamary et al. (2015). The algorithm is a Metropolis-within-Gibbs scheme with

an adaptive calibration of the proposal distribution scales. Adaptation is driven by

the formally optimal acceptance rates of 0.44 and 0.234 in one and larger dimen-

sions, respectively (Roberts et al.,1997). This algorithm monitors the convergence

of the MCMC sequences via Gelman’s and Rubin’s (1992) criterion.

Usage

K.MixReparametrized(xobs, k, alpha0, alpha, Nsim)

Arguments
xobs vector of the observations or dataset

k number of components in the mixture model

alpha0
hyperparameter of Dirichlet prior distribution of the mixture model

weights which is .5 by default

alpha
hyperparameter of beta prior distribution of the radial coordinate which

is .5 by default

Nsim number of MCMC iterations after calibration step of proposal scales
Details

The output of this function contains a simulated sample for each parameter of the

mixture distribution, the evolution of the proposal scales and acceptance rates over

the number of iterations during the calibration stage, and their final values after

calibration.
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Value

The output of this function is a list of the following variables, where the dimension

of the vectors is the number of simulations:

mean global
vector of simulated draws from the conditional posterior of

the mixture model mean

sigma global
vector of simulated draws from the conditional posterior of

the mixture model standard deviation

weights

matrix of simulated draws from the conditional posterior of

the mixture model weights with a number of columns equal

to the number of components k

angles xi

matrix of simulated draws from the conditional posterior of

the angular coordinates of the component standard devia-

tions with a number of columns equal to k − 1

phi
vector of simulated draws from the conditional posterior of

the radian coordinate

angles varpi

matrix of simulated draws from the conditional posterior of

the angular coordinates defined for component means with

a number of columns equal to k − 2

accept rat
vector of resulting acceptance rates of the proposal distribu-

tions without calibration step of the proposal scales

optimal para
vector of resulting proposal scales after optimization ob-

tained by adaptive MCMC

adapt rat

list of acceptance rates of batch of 50 iterations obtained

when calibrating the proposal scales by adaptive MCMC.

The number of columns depends on the number of proposal

distributions.

adapt scale

list of proposal scales calibrated by adaptive MCMC for each

batch of 50 iterations with respect to the optimal acceptance

rate. The number of columns depends on the number of

proposal distribution scales.

component means
matrix of MCMC samples of the component means of the

mixture model with a number of columns equal to k

component sigmas

matrix of MCMC samples of the component standard devia-

tions of the mixture model with a number of columns equal

to k

Note: The number of the iterations in this algorithm is automatically deter-

mined depending on the convergence of the generated samples for the means and

standard deviations of the components.

Author(s)

Kaniav Kamary

References

Kamary, K., Lee, J.Y., and Robert, C.P. (2015) Non-informative reparameterisation
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of location-scale mixtures. arXiv.

Robert, C. and Casella, G. (2009). Introducing Monte Carlo Methods with R.

Springer-Verlag.

Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and op-

timal scaling of random walk Metropolis algorithms. Ann. Applied Probability, 7,

110–120.

Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using multi-

ple sequences (with discussion). Statistical Science, 457–472.

See Also

Ultimixt

Examples

data(faithful)

xobs=faithful[,1]

estimate=K.MixReparametrized(xobs, k=2, alpha0=.5, alpha=.5, Nsim=10000)

8.3 Plot.MixReparametrized function

Plot.MixReparametrized

plot of the MCMC output produced by

K.MixReparametrized

Description

This is a generic function for a graphical rendering of theMCMCsamples produced

by K.MixReparametrized function. The function draws boxplots for unimodal vari-

ables and for multimodal arguments after clustering them by applying a k-means

algorithm. It also plots line charts for other variables..

Usage

plot.MixReparametrized(xobs, estimate)

Arguments
xobs vector of the observations

estimate output of the K. MixReparametrized function

Details

Boxplots are produced using the boxplot.default method.

Value

The output of this function consists of
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boxplot

three boxplots for the radial coordinates, the mean and the stan-

dard deviation of the mixture distribution, k boxplots for each

of the mixture model weights, component means and component

standard deviations.

histogram

an histogram of the observations against an overlaid curve of the

density estimate, obtained by averaging over all mixtures corre-

sponding to the MCMC draws,

line chart
line charts that report the evolution of the proposal scales and of

the acceptance rates over the number of batch of 50 iterations.
Note: The mixture density estimate is based on the draws simulated of the

parameters obtained by K.MixReparametrized function.

Author(s)

Kaniav Kamary

References

Kamary, K., Lee, J.Y., and Robert, C.P. (2015) Non-informative reparameterisation

of location-scale mixtures. arXiv.

See Also

K.MixReparametrized

Examples

data(faithful)

xobs=faithful[,1]

estimate=K.MixReparametrized(xobs, k=2, alpha0=.5, alpha=.5, Nsim=20000)

plo=Plot.MixReparametrized(xobs, estimate)

8.4 SM.MAP.MixReparametrized function

SM.MixReparametrized

summary of the output produced by

K.MixReparametrized

Description

Label switching in a simulated Markov chain produced by K.MixReparametrized

is removed by the technique of Marin et al. (2004). Namely, component labels

are reordered by the shortest Euclidian distance between a posterior sample and

the maximum a posteriori (MAP) estimate. Let θi be the i-th vector of computed

component means, standard deviations and weights. The MAP estimate is derived

from the MCMC sequence and denoted by θMAP . For a permutation τ ∈ �k the

labelling of θi is reordered by

θ̃i = τi(θi)
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where τi = argminτ∈�k
|| τ(θi)− θMAP ||.

Angular parameters ξ
(i)
1 , . . . , ξ

(i)
k−1 and �

(i)
1 , . . . ,�

(i)
k−2s are derived from θ̃i. There

exists an unique solution in �
(i)
1 , . . . ,�

(i)
k−2 while there are multiple solutions in ξ(i)

due to the symmetry of | cos(ξ) | and | sin(ξ) |. The output of ξ
(i)
1 , . . . , ξ

(i)
k−1 only

includes angles on [−π,π].

The label of components of θi (before the above transform) is defined by

τ∗i = arg min
τ∈�k

|| θi − τ(θMAP ) || .

The number of label switching occurrences is defined by the number of changes in τ ∗.

Usage

SM.MAP.MixReparametrized(estimate, xobs, alpha0, alpha)

Arguments
estimate output of K.MixReparametrized

xobs Data set

alpha0 Hyperparameter of Dirichlet prior distribution of the mixture model weights

alpha Hyperparameter of beta prior distribution of the radial coordinate
Details

Details.

Value

MU
Matrix of MCMC samples of the component means of the mixture

model

SIGMA
Matrix of MCMC samples of the component standard deviations

of the mixture model

P
Matrix of MCMC samples of the component weights of the mixture

model

Ang–SIGMA Matrix of computed ξ’s corresponding to SIGMA

Ang–MU
Matrix of computed �’s corresponding to MU. This output only

appears when k > 2

Global–mean
Mean, median and 95% credible interval for the global mean pa-

rameter

Global–Std
Mean, median and 95% credible interval for the global standard

deviation parameter

Phi Mean, median and 95% credible interval for the radius parameter

component–mu Mean, median and 95% credible interval of MU

component–sigma Mean, median and 95% credible interval of SIGMA

component–p Mean, median and 95% credible interval of P

l–stay Number of MCMC iterations between changes in labelling

n–switch Number of label switching occurrences
Note:

Note.
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Author(s)

Kate Lee

References

Marin, J.-M., Mengersen, K. and Robert, C. P. (2004) Bayesian Modelling and In-

ference on Mixtures of Distributions, Handbook of Statistics, Elsevier, Volume 25,

Pages 459–507.

See Also

K.MixReparametrized

Examples

data(faithful)

xobs=faithful[,1]

estimate=K.MixReparametrized(xobs, k=2, alpha0=.5, alpha=.5, Nsim=20000)

result=SM.MAP.MixReparametrized(estimate,xobs,alpha0=0.5,alpha=0.5)

8.5 SM.MixReparametrized function

SM.MixReparametrized

summary of the output produced by

K.MixReparametrized

Description

This is a generic function that summarizes the MCMC samples produced by K.MixReparametrized.

The function invokes several estimation methods which choice depends on the uni-

modality or multimodality of the argument.

Usage

SM.MixReparametrized(xobs, estimate)

Arguments
xobs vector of the observations

estimate output of K.MixReparametrized
Details

This function outputs posterior point estimates for all parameters of the mixture

model. They mostly differ from the generaly useless posterior means. The output

summarizes unimodal MCMC samples by computing measures of centrality, includ-

ing mean and median, while multimodal outputs require a pre-processing, due to

the label switching phenomenon (Jasra et al., 2005). The summary measures are

then computed after performing a multi-dimensional k-means clustering (Hartigan

and Wong, 1979) following the suggestion of Fruhwirth-Schnatter (2006).
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Value

Mean
vector of mean and median of simulated draws from the conditional

posterior of the mixture model mean

Sd
vector of mean and median of simulated draws from the conditional

posterior of the mixture model standard deviation

Phi
vector of mean and median of simulated draws from the conditional

posterior of the radial coordinate

Angles. 1.
vector of means of the angular coordinates used for the component

means in the mixture distribution

Angles. 2.
vector of means of the angular coordinates used for the component

standard deviations in the mixture distribution

weight.i

vector of mean and median of simulated draws from the conditional

posterior of the component weights of the mixture distribution;

i = 1, . . . , k

mean.i

vector of mean and median of simulated draws from the conditional

posterior of the component means of the mixture distribution; i =

1, . . . , k

sd.i

vector of mean and median of simulated draws from the conditional

posterior of the component standard deviations of the mixture dis-

tribution; i = 1, . . . , k

Acc rat
vector of final acceptance rate of the proposal distributions of the

algorithm with no calibration stage for the proposal scales

Opt scale vector of optimal proposal scales obtained by calibration stage

Note: For multimodal outputs such as the mixture model weights, compo-

nent means, and component variances, for each MCMC draw, first the labels of

the weights pi, i = 1, . . . , k and corresponding component means and standard de-

viations are permuted in such a way that p1 ≤ . . . ≤ pk. Then the component

means and standard deviations are jointly partitioned into k clusters by applying

a standard k-means algorithm with k clusters to a sample of size Tk (where T is

the number of iterations), following Fruhwirth-Schnatter (2006) method. For each

group, cluster centers are considered as parameter estimates.
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See Also

K.MixReparametrized

Examples

data(faithful)

xobs=faithful[,1]

estimate=K.MixReparametrized(xobs, k=2, alpha0=.5, alpha=.5, Nsim=20000)

summari=SM.MixReparametrized(estimate)



Chapter 9

Supplementary material: Ultimixt

package

Mixture models as a popular method for modeling unobserved heterogeneity, find

application in a very wide number of applied fields. As mentioned before, they can

be used to model a statistical population with subpopulations with the densities on

the subpopulations as the mixture components and the proportions of each subpop-

ulation in the overall population as the weights. For maximum likelihood estimation

of the mixture model parameters, the Expectation-Maximization (EM) algorithm is

most frequently used by the classical community which is provided in R by pack-

ages such as mclust [Fraley 2002], flexmix [Gruen 2008] and mixtools [Benaglia 2009].

Bayesian estimation has become feasible with the advent of Markov chain Monte

Carlo (MCMC) simulation and R packages such as BayesMix [Gruen 2015] and

bayesm [Rossi 2010] have been made for estimating univariate Gaussian finite mix-

tures with MCMC methods. However, the model class that is implemented in these

packages only allows informative structure of the prior distributions.

This chapter involves the algorithms of Ultimixt package described in Chapter

8.

9.1 Description of implementation

The first function of the package, K.MixReparametrized, provides the functionality

for estimating univariate Gaussian mixture models regarding the non-informative

parameterization expressed in Chapter 6 with MCMC methods. Within a given

model class users can modify the prior specification of the mixture distribution

weights and the number of the components for developing a suitable model for the

dataset. K.MixReparametrized function shares the following features:

Calibration step which consists of determining the scales of the proposal distri-

butions by applying adaptive Metropolis-within-Gibbs algorithm;

The motivation of this step is to avoid using the method of trial and er-

ror in order to obtain proposal scales. In some special cases, the method of

trial and error can be useful to make some ideas about which value could

work well in the sense that the proposal distribution results in good mix-

ing MCMC chains. However, trial and error method is time consuming and

sometimes fails to attain a satisfactory value to get the convergence with

the movements in the support of the target distribution. Adaptive MCMC
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algorithm determines the scales such a way that the chain does not move

neither too slowly (most of the proposals are accepted) nor very quickly

(says most of the proposals will usually be rejected). This method asks

the computer to automatically learn better parameter values while an algo-

rithm runs. Under some conditions this method updates the scale of each

proposal (different for each parameter) at each iteration with the intention

of finding the best value. In other words, the scale of the proposal distri-

bution is automatically calibrated according to the optimal acceptance rate

(the fraction of the proposed moves which are accepted) and with a factor

that decreases to 0 in such a way that the convergence conditions are held

[Robert 2009a, Rosenthal 2011, Roberts 2001, Roberts 2009, Roberts 1997].

So when the acceptance rate on batches of 50 iterations (by default) is too

high, the proposal variance is automatically increased whereas in the case

of the acceptance rate too small, it will decrease by adding or subtracting

min(0.01, 1/
√
t) after the tth iterations. [Roberts 1997] show that for a ran-

dom walk Metropolis-Hastings with a d-dimensional target distribution which

consists of i.i.d components, when the number of the parameters to simulate

tends to ∞ the optimal acceptance rate is 0.234 and for a one dimensional

problem, the optimal acceptance rate is approximately 0.44. With this de-

scription, the adaptive Metropolis-within-Gibbs algorithm can be summarized

as follows:

For simplicity’s sake, let θ = (µ,σ, p,ϕ, ξ,�) be the mixture parameters and

εθ = (εµ, εσ, εp, εϕ, εξ, ε�) be the scale of the proposal distribution qθ() in

Metropolis-within-Gibbs step from which the proposals of θ are generated. We

also create an associated variable log(εθ) giving the logarithm of the standard

deviation to be used when simulating a proposal increment to parameter θ.

For a total number of iterations T , suppose that aropt denotes the optimal

acceptance rate of the proposals and after the j th batch of 50 and lth batch

of 500 iterations, nj and Nl are supposed to be the number of times that

the proposals have been accepted while arj = nj/50 and ARl = Nl/500 are the

related acceptance rate, respectively, for j = 1, . . . , T/50 and l = 1, . . . , T/500.

If Tt denotes the number of the batch of 500 iterations from which we start

testing ARTt towards optimal acceptance rate with threshold values δ, the

adaptive Metropolis-within-Gibbs algorithm will be defined in Figure 9.1.

In the programs of Ultimixt, Tt = 30 by default and so after 15, 000 iterations,

the algorithm starts comparing the acceptance rate of the last 500 iterations

with the optimal acceptance rate. The calibration step is terminated when

the resulting acceptance rate is located in a small neighborhood of the op-

timal acceptance rate. Note that the total number of MCMC iterations at

most is T = 30, 000 by default in adaptive Metropolis-within-Gibbs step of

K.MixReparametrized function.

Convergence monitoring of the chain provided for all the parameters of the mix-

ture distribution by applying [Gelman 1992] criterion;



9.1. Description of implementation 151

Adaptive Metropolis-within-Gibbs algorithm for reparameterised mix-

ture:

1 Initialize θ(0), ε
(0)
θ ; d1 = 0; d2 = 0; j = 1; l = 1.

2 For t = 1, . . . , T , the update of θ(t) and ε
(t)
θ follows

2.1 Generate a proposal θ� ∼ q(·|θ(t−1)) and update θ(t) against π(·|x).

2.2 If d1 = 50 compute arj

� If arj < aropt do log(εθ)−min(0.01, 1/
√
t), d1 = 0 and j = j + 1;

� If arj > aropt do log(εθ) + min(0.01, 1/
√
t), d1 = 0 and j = j + 1;

� Otherwise d1 = d1 + 1.

2.3 If t ≥ Tt and d2 = 500 compute ARl

� Compute dl(ARl, aropt) = |ARl − aropt|;

� Stop the algorithm if dl(ARl, aropt) < δ;

� Otherwise d2 = d2 + 1 and l = l + 1. Go to line 2.1.

Figure 9.1: Pseudo-code representation of the Adaptive Metropolis-within-Gibbs

algorithm used in K.MixReparametrized function of Ultimixt. Note that for each

t, line [2.1] is done according to a Metropolis-within-Gibbs algorithm step described

in Figure 6.1 of Chapter 6.

This step is started after calibrating the proposal scales and in each 1000

additional iterations, [Gelman 1992] criterion is automatically computed for

the posterior draws of the component parameters, each one based on 4 chains

produced in parallel. The simulation is stopped when this criterion is close to

1 for all produced chains. [Gelman 1992] criterion is a convergence monitoring

diagnostic and this method allows us not to continue simulating the parameters

after achieving the convergence.

Thus the Ultimixt package calls function gelman.diag() from package coda

for the convergence monitoring step.

SM.MixReparametrized and SM.MAP.MixReparametrized are able to analyze the

output of the MCMC simulations by numerical methods. For the unimodal terms

such as the mean µ, the variance σ and the radius coordinate ϕ, the draws are

regarded as posterior draws and averaging and calculating median over these draws

will be considered as the point estimator.

This method is not satisfactory in the case where the label switching problem

occurs in the posterior draws because of the multimodality of the posterior distri-

bution as discussed before. The label switching occurs for the parameters such as

component weights, means and variances pi, µi and σi; i = 1, . . . , k. In this case,

the function SM.MixReparametrized eliminates the resulting unidentifiability using

a method of post processing the MCMC draws by imposing a restriction on the
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ordering of the mixture component parameters, as, e.g., the constraint that the

weights of the component distributions are ascending. After that, a clustering pro-

cedure is applied to permute the MCMC draws of component means and standard

deviations by applying a two dimensional k-means type algorithm with k! clusters.

This method is a combination of model identification methods such as identifiabil-

ity constrain and unsupervised clustering suggested in [Frühwirth-Schnatter 2006].

The simulated draws of the angles are also summarized by applying two one-line

k-means algorithm with k − 2 and k − 1 clusters to a sample of size T (k − 2) for

�i; i = 1, . . . , k−2 and a sample of size T (k−1) for ξi; i = 1, . . . , k−1, respectively.

Note that in order to avoid the problem caused by unidentifiability, the number of

the mixture components should initially be properly chosen.

Using Plot.MixReparametrized function, the MCMC results can be visually

analyzed by using trace plots and by plotting the estimated densities for the mixture

distribution over the draws. With the functions of Ultimixt package the user can

comfortably reproduce some of the results presented in simulation study section 6.4

of Chapter 6.

9.2 Application

In the following we illustrate the use of Ultimixt on an example for a simulated

dataset with 50 data points for which the histogram is shown in Figure 9.2. The

sample mean and standard deviation are 4.06, 3.38, respectively. We therefore fit a

Gaussian mixture model on the data by choosing k = 5. In order to sample from

the posterior distribution of the mixture model parameters, we apply the function

K.MixReparametrized. To do so, we have to specify the hyper parameters α0,α

and the total number of MCMC iterations. We therefore choose α0 = 0.5, α = 0.5

and 104 iterations. The output is firstly summarized by Plot.MixReparametrized

function. The distribution of the draws of µ and σ shown in Figures 9.3 are cen-

tered on the empirical mean and standard deviation of the dataset. The posterior

distribution of each component parameter is evaluated by plotting boxplot in Figure

9.3 that helps us to quickly examine the output of K.MixReparametrized from a

graphical way. Figure 9.2 also shows the related estimate of the predictive density

that is efficiently fitted the data.

The evolution of the scales of the proposal distributions in the Metropolis-within-

Gibbs algorithm is one of the outputs of Plot.MixReparametrized function that is

displayed in Figure 9.4. This figure shows that the update of the proposal scales is

terminated for 300 batch of 50 iterations of the adaptive Metropolis-within-Gibbs

step. This means that the acceptance rates attain the stability over the optimal one

after 15000 MCMC iterations.
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Figure 9.2: Mixture of 5 normal distributions 9.2: (Left) Histogram of a sample

of size 50; (Right) Representation of 500 MCMC iterations as mixture distributions with

the overlaid average curve (dark line) over 104 MCMC iterations obtained by applying

Plot.MixReparametrized function.

Finally, calling two functions SM.MixReparametrized and SM.MAP.MixReparametrized

leads to the following results for the component specific parameters:

> SM.MixReparametrized(xobs, estimate)

Mean: Mean of mixture distribution

Median 3.996

Mean 4.007

##############################

Sd: Sd of mixture distribution

Median 3.382

Mean 3.381

##############################

Phi

Median 0.9915

Mean 0.9829

##############################

$‘Angles. 1.‘

[1] 0.8438176 0.9496362 3.8469520

##############################

$‘Angles. 2.‘

[1] 1.3154771 0.3632422 1.0788443 0.8003213

##############################

Component means, standard deviations and weights:

weight weight.1 weight.2 weight.3 weight.4

Median 0.23842 0.3437 0.2859 0.04079 0.09119

mean 0.23283 0.3473 0.2860 0.04080 0.09307
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Figure 9.3: Mixture of 5 normal distributions 9.2: Posterior distributions

of the global and component wise parameters of the mixture model by applying

Plot.MixReparametrized function on the MCMC output.
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Figure 9.4: Mixture of 5 normal distributions 9.2: Evolution of the proposal scales

and related acceptance rates over the number of the batch of size 50.

mean mean.1 mean.2 mean.3 mean.4

Median 5.066 8.046 0.071 -6.051 1.9103

mean 5.066 8.047 0.080 -5.817 1.8954

sd sd.1 sd.2 sd.3 sd.4

Median 0.248 0.103 0.292 1.529 0.328

mean 0.257 0.107 0.290 2.115 0.402

##############################

$‘Acceptance rate of proposals‘

mu sigma p phi theta xi

0.2116 0.2322 0.1713 0.5156 0.2285 0.2250

##############################

$‘Optimal proposal scales‘

s_mu s_sigma eps_p eps_phi eps_theta eps_xi

5.7e-02 1.6e-02 2.2e+03 5.2e+02 3.1e-02 1.6e-01

> SM.MAP.MixReparametrized(estimate, xobs, .5, .5)

##############################

Global mean

Mean Median 2.5% 97.5%

4.007435 3.995590 3.878364 4.189164

##############################

Global standard deviation

Mean Median 2.5% 97.5%
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3.381317 3.381742 3.226926 3.521489

##############################

Radius(phi)

Mean Median 2.5% 97.5%

0.9829364 0.9915425 0.9302170 0.9978621

##############################

Component means, standard deviations and weights:

weight weight.1 weight.2 weight.3 weight.4

Mean 0.0413 0.3335 0.2472 0.0926 0.2855

Median 0.0408 0.3399 0.2422 0.0910 0.2866

2.5% 0.0196 0.1680 0.1984 0.0489 0.2155

97.5% 0.0669 0.4380 0.3255 0.1410 0.3533

mean mean.1 mean.2 mean.3 mean.4

Mean -6.067 5.066 8.047 0.082 1.959

Median -6.056 5.066 8.046 0.062 1.961

2.5% -9.509 4.956 7.988 -0.270 1.780

97.5% -3.002 5.180 8.106 0.598 2.135

sd sd.1 sd.2 sd.3 sd.4

Mean 2.233 0.221 0.107 0.336 0.351

Median 1.750 0.214 0.103 0.275 0.343

2.5% 0.232 0.156 0.071 0.126 0.248

97.5% 7.450 0.321 0.167 0.853 0.503

##############################

Angle components associated with component means

and standard deviations:

angle_sigma angle_sigma.1 angle_sigma.2 angle_sigma.3

Mean 0.717 1.048 1.323 1.099

Median 0.646 1.057 1.333 1.134

2.5% 0.217 0.789 1.157 0.613

97.5% 1.389 1.260 1.438 1.390

angle_mu angle_mu.1 angle_mu.2

Mean 0.8918079 0.8981641 2.436233

Median 0.8900492 0.8961931 2.446848

2.5% 0.7619400 0.7793419 2.245740

97.5% 1.0952951 1.0577988 2.586439

$‘Acceptance rate of proposals‘

mu sigma p phi theta xi

0.2116 0.2322 0.1713 0.5156 0.2285 0.2250
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##############################

$‘Optimal proposal scales‘

s_mu s_sigma eps_p eps_phi eps_theta eps_xi

5.7e-02 1.6e-02 2.2e+03 5.2e+02 3.1e-02 1.6e-01

The output of the last two functions helps us to easily make inference for

the parameter of the mixture model. If we compare the results of the functions

SM.MixReparametrized and SM.MAP.MixReparametrized, we can see that both

methods of k-means clustering algorithm and the one based on MAP estimate result

in the same Bayesian inference about the mixture parameters.
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Résumé 
 
Dans le cas particulier de l’approche 

bayésienne, la solution à la comparaison de 
modèles est le facteur de Bayes. Le facteur 
de Bayes est très peu utilisé. La première 
partie de cette thèse traite d’un examen 

général sur les lois a priori non informatives, 
et montre la stabilité globale des distributions 
postérieures. Dans la deuxième partie de la 
thèse, nous considérons un nouveau 
paradigme pour les tests bayésiens 
d’hypothèses en définissant une alternative à 

la construction traditionnelle de probabilités a 
posteriori qu’une hypothèse est vraie. Cette 

méthode se fonde sur l’examen des modèles 

en compétition en tant que composants d’un 

modèle de mélange. Dans la dernière partie 
de la thèse, nous sommes intéressés à la 
construction d’une analyse bayésienne de 
référence pour mélanges de gaussiennes par 
la création d’une nouvelle paramétrisation 
centrée sur la moyenne et la variance de ces 
modèles, ce qui nous permet de développer 
une loi a priori non-informative pour les 
mélanges avec un nombre arbitraire de 
composants. Cette partie de la thèse est 
suivie par une package R nommée Ultimixt 
qui met en œuvre une description de notre 
analyse bayésienne générique de mélanges 
de gaussiennes. 
 

Mots Clés 
 
Distribution de mélange, Loi a priori non-
informative, Analyse bayésienne, A priori 
impropre, Choix du modèle bayésien, 
Méthodes de MCMC.	

Abstract 
 
In the special case of the Bayesian approach, 
the solution of model comparison is the Bayes 
factor. The Bayes factor is however 
problematic in some cases. The first part of 
this thesis deals with a general review on 
non-informative priors and demonstrating the 
overall stability of posterior distributions. In 
the second part, we consider a novel 
paradigm for Bayesian testing of hypotheses 
and Bayesian model comparison. The idea is 
to define an alternative to the traditional 
construction of posterior probabilities that a 
given hypothesis is true and to replace the 
original testing problem with estimation that 
focus on the probability weight of a given 
model within a mixture model. In the last part, 
we construct a reference Bayesian analysis of 
mixtures of Gaussian distributions by creating 
a new parameterization centered on the mean 
and variance of those models itself. This 
enables us to develop a genuine non-
informative prior for Gaussian mixtures with 
an arbitrary number of components. This part 
of the thesis is followed by the description of 
R package, Ultimixt, which implements a 
generic reference Bayesian analysis of 
unidimensional mixtures of Gaussian 
distributions obtained by a location-scale 
parameterization of model.  
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Mixture distribution, Non-informative prior, 
Bayesian analysis, Improper prior, Bayesian 
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