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Bandit problems constitute a sequential dynamic allocation problem. The pulling agent has to explore its environment (i.e. the arms) to gather information on the one hand, and it has to exploit the collected clues to increase its rewards on the other hand. How to adequately balance the exploration phase and the exploitation phase is the crux of bandit problems and most of the efforts devoted by the research community from this fields has focused on finding the right exploitation/exploration tradeoff. In this dissertation, we focus on investigating two specific bandit problems: the contextual bandit problem and the multi-objective bandit problem.

This dissertation provides two contributions. The first contribution is about the classification under partial supervision, which we encode as a contextual bandit problem with side information. This kind of problem is heavily studied by researchers working on social networks and recommendation systems. We provide a series of algorithms to solve the Bandit feedback problem that pertain to the Passive-Aggressive family of algorithms. We take advantage of its grounded foundations and we are able to show that our algorithms are much simpler to implement than state-of-the-art algorithms for bandit with partial feedback, and they yet achieve better performances of classification. For multi-objective multi-armed bandit problem (MOMAB), we propose an effective and theoretically motivated method to identify the Pareto front of arms. We in particular show that we can find all elements of the Pareto front with a minimal budget.
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Les classifieurs linéaires mettent en jour après chaque essai , w t+1 = w t + τ 21 ỹt =y t -1 Φ(x t , ỹt )

où τ = l t ∥ Φ(x t , ỹt ) ∥ 2 .
Theorem 0.1. Soit (x 1 , y 1 ), ..., (x T , y T ) une suite d'exemples séparables où x t ∈ R d , y t ∈ Y et ∥ x t ∥ R pour tous t, et u ∈ R K×d . Alors, l'ensemble de la perte carrée est limitée par,
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Theorem 0.2. Soit (x 1 , y 1 ), ..., (x T , y T ) une suite d'exemples non-séparables où x t ∈ R d , y t ∈ [1, ..., K] et ∥ x t ∥ R pour tous t. Alors, n'importe quel vecteur u ∈ R K×d l'ensemble de la perte carrée est limitée par,

T t=1 l 2 t   R ∥ u ∥ +2 T t=1 (l * t ) 2   2 vii RÉSUMÉ EN FRANÇAIS
Nous reconstruisons " Hinge loss" pour s'adapter au cas de Bandit. L'algorithme BPA est fondée sur cette fonction de perte. Par l'analyse théorique, nous trouvons que l'ensemble de la perte carrée de BPA est limitée par la même borne autant que laquelle de l'algorithme PA qui obtient la rétroaction complète. D'un point de vue empirique, nous avons réalisé des expériences numériques par l'aide de cet algorithme et quelques autres. Lors de présenter une moindre complexité, la performance de notre algorithme est proche de la performance de l'algorithme de Bandit en seconde ordre Perceptron sur tous les types de données. D'ailleurs, cette performance est fréquentement mieux que laquelle des classifieurs supervisés sur certains données non-séparables.

Le Bandit contextuel aux noyaux fonctions

À cette partie, nous proposons deux algorithme en noyau à résoudre des problèmes d'apprentissage en ligne avec rétroaction partielle.

Compte tenu de l'algorithme BPA, sa mise à jour pour RKHS (Reproducing Kernel Hilbert Space) sera présentée comme ci-dessous:

f ỹt t+1 = f ỹt t + τ t • (21 ( ỹt =y t ) -1) • k(x t , •) où, τ t = l t (x t ,1 ( ỹt =y t ) ) k(x t ,x t )
avec la perte l t (x t , 1 ( ỹt =y t ) ) = [1 ( ỹt =y t ) + (1 -21 ( ỹt =y t ) ) f ỹt t (x t )] + .

Nous avons besoin de prendre attention à cette perte, qui est différente de la perte de BPA. Il contient un indicateur au lieu d'une paramètre constante, laquelle travaille à maximiser la marge. Notre but est de réduire la complexité et d'éviter certains vecteurs inutiles.

Alors que, suite à la croissance des exemples d'apprentissage, nous aurons l'hypothèse

F = { f 1 , . . . , f K }: ∀k ∈ {1, . . . , K}, f k t = t-1 i=1 1(k = ỹi )τ i • (21( ỹi = y i ) -1) • k(x i , •).
Une autre méthode se réfère à SGD [START_REF] Kivinen | Online learning with kernels[END_REF]. Comme SGD en espace de RKHS, le but de SGD est de minimiser le risque régularisé:

R[F ] = E[l t (x t , 1 ( ỹt =y t ) )] + λ 2 ∥ F ∥ 2 H
Ici, la perte devrait être remplacée par la perte de l'algorithme BPA. En considérant l'algorithme SGD classique, nous prenons le gradient sur chaque hypothèse f i de F .

∀k ∈ [K], f k t+1 = f k t -η t ∂ f k R[F ]| f k = f k t viii DES CONTRIBUTIONS où pour k ∈ [K], t ∈ N, f k t ∈ H , ∂ f k dénote ∂/∂ f k et η t > 0 est le taux d'apprentissage. Donc, ∂ f k R[F ] = λ 2 ∂ f k ∥ F ∥ 2 H +∂ f k (E[l(x t , ỹt )]) = 2 f k + ∂ f k l t (x t , 1 ( ỹt =y t ) ) ∂ f k l t (x t , 1 ( ỹt =y t ) ) =    1 -21 ( ỹt =y t ) if k = ỹt 0 else f k t+1 =    f k t • (1 -λη) + η • (21 ( ỹt =y t ) -1) • k(x i , •) if k = ỹt f k t else
Ici, nous proposons certains paramètres en compte (σ 1 t , . . . , σ K t ) avec

σ k t = t s=1 1( ỹs = k)
Par les paramètres σ, la mise à jour pourrait être exprimé en l'équation suivante: pour ∀k ∈ {1, . . . , K}

f k t+1 = t i=1 ηα k i • k(x i , •) où α k i = 1 (k= ỹi ) (21( ỹi = y i ) -1) • (1 -λη) σ k t -σ k i -1 .
Les méthodes Kernel BPA et Kernel SGD avec la perte de Bandit s'adaptent à la cadre de RKHS. Ces deux algorithmes sont spécials de traiter les problèmes avec la rétroaction de Bandit sur des données non-linéaires. Dans la section 5.3, nous fournissons des détails sur ces approches. La première est une dérivation directe de l'algorithme BPA, qui correspond au produit des deux vecteurs dans RKHS. Cette méthode a une bonne précision, mais la complexité des classifieurs augmente linéairement suivant des exemplaires. Cela apporte des dérangements à l'efficacité. En se référant à SGD [START_REF] Bottou | Large-scale machine learning with stochastic gradient descent[END_REF] et Kernel en ligne [START_REF] Kivinen | Online learning with kernels[END_REF], nous optimisons les classifieurs au noyau par la perte de Bandit. Bien que sa précision ne parvient pas au niveau de Kernel BPA, sa complexité de calcul est stable. Il peut facilement traiter toutes types de données.

Algorithme BPA pour la classification multi-étiquette

Ici, nous introduisons un nouvel algorithme d'apprentissage en ligne, qui est une variante de l'algorithme BPA adapté à la classification multi-étiquette avec le Bandit contextuel.

ix Dans ce cas, nous prenons la stratégie -greedy à équilibrer l'exploration et l'exploitation sur l'ensemble des étiquette. À chaque tour t = 1, 2, . . . , l'algorithme sélectionne un sousensemble Ỹt selon la probabilité P t = P( ỹ1 t = 1| ŷ1 t ), . . . , P( ỹK t = 1| ŷK t ) , avec:

p( ỹi t = 1| ŷi t ) = (1 -) • 1 ( ŷi t =1) + • K k=1 1 ( ŷk t =1)

K

Laisser le cardinal de Ŷ être noté Card( Ŷ ) = K k=1 1 ( ŷk =1) .

Lemma 0.4. Avec les notations introduites précétement, lorsque l'on sélectionne le sousensemble Ỹt par la stratégie -greedy, E[Card( Ỹt )] = Card( Ŷt ).

La perte instantanée de la classification multi-étiquettes est définie par morceaux

L t = K k=1 l k t , où l k t = [1 ỹk t =1 + 1 -2β k t 〈w t , Φ(x t , k)〉] +
avec β i t = +1 quand ỹi t = y i t = 1, -1 quand ỹi t = 1 & y i t = 0 et 0 pour autre cas. Cette perte est le "Hinge loss" standard comme [1 -〈w t , Φ(x t , ỹt )〉] + quand la prédiction est positive correcte: il reste à 0 pour 〈w t , Φ(x t , ỹt )〉 1, puis augmente suivant la valeur diminuée de 〈w t , Φ(x t , ỹt )〉. Au contraire, si la prédiction est positive incorrecte, la perte égal à [1 + 〈w t , Φ(x t , ỹt )〉] + , il reste à 0 pour 〈w t , Φ(x t , ỹt )〉 ≤ 1, puis diminue suivant la valeur augmentée de 〈w t , Φ(x t , ỹt )〉. Pour tous les prédictions négative ỹi t = 0, la perte est toujours nulle.

Pour la prédiction, nous sortie une sous-ensemble Ŷt ∈ {0, 1} K correspondant aux prédictions binaire suivantes: ŷi t = sign(< w t , Φ(x, i) >)

Ensuite, la stratégie -greedy fonctionne, où Ỹt ∈ {0, 1} K est le résultat d'un tirage random sur la distribution P t (voit Eq.(5.15)).

Les classifieurs linéaires sont mis à jour à chaque essai en utilisant les outils standards de l'analise convexe. Selon l'optimisation sous contrainte.

w t+1 = w t + τ t K k=1 2β k t -1 Φ(x t , k) où τ t = K k=1 l k t K k=1 (2β k t -1) 2 ∥ x t ∥ 2 .
Theorem 0.3. Soit (x 1 , y 1 ), . . . , (x T , y T ) une suite d'exemples séparables où x t ∈ R d , Y t ∈ {0, 1} K et ∥ x t ∥ R pour tous t, et u ∈ R K×d . Alors, l'ensemble de la perte carrée est limitée tous les bras optimaux sous une tolérance δ, ensuite nous pouvons éliminer tous les bras non-optimaux après tirer par le borne supérieure. Pour comparer l' -dominance entre les bras, nous proposons une méthode rapide qui peut mettre en ordre des bras par l'ordre partiel, laquelle est l'amélioration d'algorithme [START_REF] Kung | On finding the maxima of a set of vectors[END_REF] (voit au Chapitre 6).

Les perspectives futures

Il y a certaines limitations de nos résultats à s'adresser dans le futur. En considérant le sujet de la rétroaction de Bandit, nous devons se concentrer des forces sur l'équilibrement entre exploration et exploitation. Nos algorithmes se sont basés sur la stratégie " -Gloudon" (voit à la section 2.3.4 ) d'équilibrer entre exploration et exploitation. À chaque tour, il explore des étiquettes par la probabilité fixe K , et les exploite par la probabilité 1 -. Nous gaspillons le budget, si nous toujours faisons l'exploration par la même probabilité après les classifieurs ont bien joué. Dans les figures 5.9, 5.10 et 5.11, nous observons que les résultats d'algorithme BPA ont moins difference sur les valeurs différentes . Ce résultat nous suggère naturellement d'utiliser d' partout les valeurs disponibles, tellement nous pouvons explorer plus aux premières tours, ensuite mettons tous les efforts d'exploiter. À la prochaine étape, nous pouvons essayer le " -glouton dynamique" [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF], le paramètre duquel attenue correspondant à 1/t. D'ailleurs, il y a une autre limitation de nos algorithmes: comment de choisir les paramètre, e.g. dans l'algorithme PAB, C pour la frontière douce, pour " -glouton"; du KBPA, les paramètre de noyau etc. En générale, c'est nécessite de mettre la méthode "cross-validation" à déterminer des paramètres. Néanmoins, quand il y a deux ou plus de paramètres pour un algorithme, la tâche devient plus difficile. 

Introduction

"Bandit problems embody in essential form a conflict evident in all human action: choosing actions which yield immediate reward vs. choosing actions whose benefit will come only later." -P. [START_REF] Whittle | Multi-armed bandits and the gittins index[END_REF] Early in 1933, William R. Thompson described a method "Thompson Sampling" in [START_REF] Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF],

for attempting to compare treatments having unknown effectiveness. This is the prototype of bandit problems.

In 1952, H. Robbins introduced in [START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF] a problem about sequential selection experiments, that became the foundation of Bandit problems.

In 1957, Richard Bellman wrote a first book [START_REF] Bellman | A markovian decision process[END_REF] on this subject, formulating the Multi-Armed Bandit problem as a class of dynamic programming.

Related to H. Robbins's research, in 1979, Gittins and Jones [START_REF] Gittins | A dynamic allocation index for the discounted multiarmed bandit problem[END_REF] published a paper to outline an allocation index for sequential experiment problems, and established the stopping rule by a theorem. From then on, more and more proofs of "Gittins Index" have been proposed, i.e. by Whittle [START_REF] Whittle | Multi-armed bandits and the gittins index[END_REF], Weber [START_REF] Weber | On the gittins index for multiarmed bandits[END_REF], Tsitikis [START_REF] Tsitsiklis | A short proof of the gittins index theorem[END_REF] etc.

Nowadays, Further researches and applications of Bandit problems have been explored, for example, in fields of Machine Learning by [START_REF] Berry | Bandit problems: sequential allocation of experiments[END_REF][START_REF] Kaelbling | Reinforcement learning: A survey[END_REF][START_REF] Sutton | Reinforcement learning: An introduction[END_REF], Economy [START_REF] Anderson | Behavioral models of strategies in multi-armed bandit problems[END_REF][START_REF] Banks | An experimental analysis of the bandit problem[END_REF][START_REF] Steyvers | A bayesian analysis of human decision-making on bandit problems[END_REF] , Cognitive Science [START_REF] Daw | Cortical substrates for exploratory decisions in humans[END_REF] etc.

Motivation

In this section, we present Bandit problems from the following questions:

What are Bandit problems?

Bandit problems, are some classic game problems. They can be imagined as the scenario as follows.

In a casino, a gambler faces to many different slot machines. After pulling one arm, he has a certain probability to earn a reward. Obviously, he does not know the rewarding probability of each arm. To obtain the information of these slot machines, the gambler should pull each arm several times. This process is called "Exploration". Of course, more explorations he takes, more reliable information he gets. For the gambler, his goal is to earn the largest rewards rather than information. Normally, he should pull the arm with highest estimated rewarding probability according to the current information. It is named "Exploitation". Bandit problems are how the gambler tells the optimal arm and gets the largest rewards in limited time (or limited budget).

Why to research Bandit problems?

Actually, Bandit problems are not only a game theory, but it also plays a big role in other fields. By solving Bandit problems, we can find the answer to solve other similar problems, such as the following examples.

In the process of clinical trials, doctors often encounter a problem: Treating a same disease, there may be two or even more solutions, but their effectiveness is unknown. This is the prototype of Bandit problems. In 1933, Dr.Thompson proposed "Thompson

Sampling" (details in Chapter 2) which is a strategy to identify the most effective treatment, preliminarily solving this problem. Otherwise, Google proposed an analytic service [START_REF] Google | Google analytic service[END_REF] based on the Multi-Armed Bandit method (Chapter 2). The purpose of this analytic system is to compare and manage some online experiments. For each experimentation, there maybe a variety of alternative solutions.

In the past, "A/B Test" was used to solve this problem, but it takes pure exploration during the exploratory phase, and wastes resources with inferior options [START_REF] Mcfarland | Experiment!: Website conversion rate optimization with A/B and multivariate testing[END_REF]. Taking the Bayes Theorem combined with the Multi-Armed Bandit, Google could reduce the computational time and get a higher accuracy than before. 

How to solve Bandit problems?

The core of Bandit problems is a trade-off between Exploration and Exploitation. Some related strategies and methods will be presented in following Chapters 2, 3, 4, 5, and 6.

Modeling

From different point of views, Bandit problems can be divided into many categories. They can not be generalized by a uniform modeling. According to the number of trials, Bandit problems can be defined as "Finite horizon" and "Infinite horizon". The former has a fixed number of trials, the latter is usually unknown in advance. By the number of arms, it can be divided into "Two Arms", "K arms" and "Many arms". From the view of system feedback, it can be named "Stationary Bandit": the distribution of arms is fixed and independant; "Non-Stationary Bandit": the distribution of arms can be changed during the period of sampling; "Linear Bandit": all arms are related with each other and satisfy a certain linear function; "Contextual Bandit": the feedback of arms is associated with side information.

Every Bandit problem owns its special model and different strategy. In the next chapters, we will tell about each kind of bandits, their performance, properties and characteristics.

Especially, in Chapter 5 and Chapter 6, we propose some novel solutions and algorithms.

THESIS OUTLINE

Here, we address "Stationary Bandit problem" in order to explain the mechanism of Bandit problems.

Considering Robbins's sequential decision experiment [START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF], there are several possible choices to be sampled. Generally, operator makes a choice from a set of options at each time.

After sampling, operator receives a boolean feedback 1 or 0 as reward. By observing each option's feedback, the fixed but unknown probability distribution of option can be estimated empirically (ex. calculate the rewarding expectation). The goal of Bandit problems is to maximize the received rewards from all steps, minimize the cumulative regret and find the optimal option (or a set of optimal options).

In section 1.1, we have introduced that "Exploration" and "Exploitation" are two core elements to solve Bandit problems. By exploration, operator tries different options to get knowledge which one may be rewarding more frequently. By exploitation, operator repeats to choose an option with better performance. Pursuing the goal of Bandit problems, operator should know when to explore or to exploit. The decisions are always dependent on the potential knowledge of the optimal arms. Performing well on Bandit problems requires trading off between Exploration and Exploitation during all decisions. In early steps, it makes sense to explore, to search for those with the highest reward rates. In the later, it makes sense to exploit those arms which considered to be good, finally maximizing the reward for each current decision.

From the theoretical prospect, we also care about how to find optimal solutions for Bandit problems that make model evaluation and model comparisons more efficient. We dedicate the next chapters of this dissertation to our effort on this problem.

Thesis Outline

This dissertation consists of 7 chapters by the discussion of Bandit problems. 

Environment of Multi-Armed Bandit

The complexity of Multi-Armed Bandit problems, not only stems from the trade-off between Exploration and Exploitation, but also from the wide range of its environments. Each environment of Multi-Armed Bandit provides a different framework. In this section, we address the characteristics of Multi-Armed Bandit in each environment, and take the K-Armed Bandit as the typical case.

Stationary Bandit

Stationary Bandit [START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF] is the most classical and common bandit problem. The gambler should pick up an arm from the arm setting, and receive a reward as response from the picked arm. The reward obeys a fixed and independent probability distribution.

The K-Armed Bandit in stationary environment, can be defined as following setting.

The gambler faces a slot machine with K arms. Each arm k from the arm set K is characterized by a distribution ν k with its expected reward µ k and a variance σ 2 k . All of these parameters are not changeable. In each round t 1, the gambler selects an arm k t and receives a sample drawn from ν k t independently from the past and other arms. Here, the goal of the gambler is to maximize rewards (minimize regret) or to identify the best arm from all arms by estimating the empirical expected reward after T times pulling.

After T pulls and observations, the gambler samples each arm T k times (denoted as

T k = T t=1 1 k t =k
) and estimates the mean of each arm by μk = 1 T k T t=1 X k t =k,t , where X k t =k,t denotes the reward when we pull arm k for the t th time. After T observations, we find the optimal arm k * : ∆ k . Therefore, the simple regret in the round T equals to the regret on a one-shot instance for the chosen arm k T , that is,

(2.2) r T = µ * -μk T = ∆ k T .
Regret In the stochastic framework, we define the cumulative regret by the following formulate.

(2.3)

R T = T t=1 (µ * -μk t )

Adversary Bandit

Adversary environment [START_REF] Auer | The nonstochastic multiarmed bandit problem[END_REF] is a challenging problem of Multi-Armed Bandit. In this environment, rewards for each step are selected by an adversary rather than the stationary environment where the rewards are picked from a fixed distribution. Any method of MAB in adversary environment should assume that the information is not symmetric between the gambler and the adversary. Similarly to the stationary environment, we define K = {1, . . . , K} as a set of arms, and T = {1, 2, . . . , T} denote the sequence of decision epochs by the gambler. Compared Adversary environment with Stationary environment, the difference is their rewarding distributions. In Adversarial environment, the reward distribution ν is changeable at each epoch t under the controlling of an adversary, but the distribution of Stationary case is stable. From another point of view, Adversarial Bandit can be seen as a competition between the gambler and an omniscient adversary.

This issue can be summarized in the following main points:

• the adversary chooses a reward distributions µ t = (µ 1,t , . . . , µ K,t ) ∈ [0, 1] K

ENVIRONMENT OF MULTI-ARMED BANDIT

• the gambler picks one arm k with no knowledge of the adversary's choice

• the rewards are assigned as X k,t , it is drawn i.i.d. by the distribution µ k,t .

Regret of Adversary environment can be presented as:

R T = T t=1 max k=1,...,K µ k,t - T t=1 X k t ,t .

Contextual Bandit

Contextual Bandit [START_REF]Thompson sampling for contextual bandits with linear payoffs[END_REF][START_REF] May | Optimistic bayesian sampling in contextual-bandit problems[END_REF], is a natural extension of Multi-Armed Bandit. is obtained by associating side information with each arm. Based on this side information, some applications can be naturally modeled as Multi-Armed Bandit problems with context information, also named as Bandit with side information. It is closely related to work on supervised learning and reinforcement learning. In order to facilitate the presentation in Chapter 3, the definitions of Contextual Bandit, will be described with some notations in supervised learning.

For contextual bandit, there is a distribution P over (x, r 1 , r 2 , . . . , r K ). On each round t ∈ T = {1, 2, . . . }, the gambler receives a sample (x t , r t,1 , r t,2 , . . . , r t,K ) drawn from P and makes decision ŷt ∈ Y by observing the set of arms Y = {1, . . . , K} with the feature vector x t,y t ∈ X . Where y t is the optimal arm for x t , but the gambler does not know this. With the chosen arm ŷt , the gambler receives a reward r (x t , ŷt ) . One should emphasize that the reward is only observed when the arm is chosen.

After T sequence, all rewards are defined as T t=1 r (x t , ŷt ) . Similarly referring to Stationary setting, we define the regret by the notations below:

R(T) = E[ T t=1 r (x t ,y t ) ] -E[ T t=1 r (x t , ŷt ) ].
Contextual bandits naturally appear in many applications. For example, online recommendation systems, advertisement push, personalized search etc.

Linear Bandit

The linear Bandit [START_REF] Abbasi-Yadkori | Improved algorithms for linear stochastic bandits[END_REF][START_REF] Carpentier | Bandit theory meets compressed sensing for high dimensional stochastic linear bandit[END_REF] is also a sequential decision-making problem similar to the other bandit problems, where the gambler has to choose an arm from the arms set at each step t. As a response, the gambler receives a stochastic reward, whose expected value is an unknown linear function of the chosen arm. CHAPTER 2. MULTI-ARMED BANDIT Here, we formally present the definition of the linear Bandit problem. On the round t, the gambler is given the arm set K ⊆ R d . He selects an arm k t ∈ R d from the set K . Then, the gambler observes a reward r t =< k t , θ > +η t , where θ ∈ R d is an unknown parameter and η t is a random noise satisfying the condition E[η t |k 1:t , η 1:t-1 ] = 0.

As for other bandit problems, the goal of this problem is to maximize the cumulative reward R = T t=1 < k t , θ > over all round T. Obviously, the gambler would choose the optimal arm k * = argmax k∈K < k, θ > with the knowledge of θ. As a result, the regret of linear bandit problem, can be formally denoted as

R = T t=1 < k * t , θ > - T t=1 < k t , θ > = T t=1 < k * t -k t , θ > .

Gittins index

Multi-Armed Bandit problem is concerned with sequential decisions. In this section, we focus on the optimal decision process. A MAB problem can be treated as a Markov Decision Process (MDP). However, no approach can scale well on it with the huge of dimensionality.In that situation, Gittins and Jones [START_REF] Gittins | A Dynamic Allocation Index for the Sequential Allocation of Experiments[END_REF] show that the problem can be reduced to solve K 1-dimensional problems from the K-dimensional Markov Decision Process with the state space K k=1 X (k), where X (k) = (x(k, 1), x(k, 2), . . . ) presents the state of arm k. Therefore, K-armed bandit returns denoted by arm 1 : x(1, 1), x(1, 2), . . . , x(1, t), . . . arm 2 : x(2, 1), x(2, 2), . . . , x(2, t), . . . . . . arm K : x(K, 1), x(K, 2), . . . , x(K, t), . . .

For each arm k, to compute (2.4) G k (X (k)) = sup τ>0 E[ τ-1 t=0 β t r k (x(k, t))|x(k, 0) = x(k)] E[ τ-1 t=0 β t |x(k, 0) = x(k)]
,

where τ is a stopping time constrained and G k is the value of the Gittins index for arm k, two parameters r k is the reward after pulling arm k and β is a attenuation parameters.

The stopping time τ represents the first time at which the index for this arm may be optimal no more. By the way, the decision rule is then to simply choose arm k t , which can be computed by

k t = argmax k∈K G k (X (k)).
Theorem 2.1. The problem posed by a simple family of alternative bandit processes, as setup above, is solved by always continuing the process with the largest Gittins Index.

Various proofs of this theorem have been given, the original proof is proposed by Gittins and Jones [START_REF] Gittins | A Dynamic Allocation Index for the Sequential Allocation of Experiments[END_REF], and a later proof by Gittins [START_REF] Gittins | Bandit processes and dynamic allocation indices[END_REF] relied on an interchange argument. Further simplified by [START_REF] Tsitsiklis | A short proof of the gittins index theorem[END_REF][START_REF] Varaiya | Extension of the multi-armed bandit problem[END_REF]. More details about the proofs can be referred in their papers.

Gittins Index characterized the optimal strategy as Theorem 2.1, an equivalent interpretation of the Gittins Index strategy is to select the arm with the largest Gittins Index G k (X (k)) and play it until its optimal stopping time and repeat. Thus, an alternative way to implement the optimal way is to compute the value of Gittins index G k (X (k)) and the corresponding stopping time τ for the current state x(k, t).

Scott [START_REF] Scott | A modern bayesian look at the multi-armed bandit[END_REF] points out two further concerns that the Gittinx Index strategy is only optimal for the process in which arms are independent and can be far from optimal when this is not the case.

The strategy of trade-off

The synopsis of Bandit problems have been introduced in Section 2.1. From this synopsis, the difficult point of Bandit problem is to keep a balance between Exploration and Exploitation. That way, it becomes very important to trade off between exploration and exploitation, where to exploit from the past knowledge to focus on the arms that seems to yield the highest rewards, and to explore further the other arms to identify the real optimal arms.

The easy way to solve this problem is to select an arm randomly. However, this way mainly relies on luck. So it is not reliable. Another simple way is called "Naive Sampling" approach. It samples each arm by the same number, and then measure the results on comparing their rewards. This approach also has a problem. If the initial number of samples is too small, the confidence is not believable; if the initial number is big enough, it wastes budgets. So we introduce some effective strategies of tradeoff in this section.

Thompson Sampling

Thompson Sampling [START_REF] Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF], a randomized algorithm based on Bayesian ideas, is one of the oldest heuristic principle for Bandit problems. Recently, it has been considered having better empirical performance compared to the state-of-the-art methods after several studies demonstrated [START_REF] Goyal | Analysis of thompson sampling for the multi-armed bandit problem[END_REF][START_REF]Thompson sampling for contextual bandits with linear payoffs[END_REF][START_REF] Li | An empirical evaluation of thompson sampling[END_REF]. For Bandit problems, this randomized strategy will choose an arm with some probability which matches the probability that the arm is in fact the optimal arm, by giving all past observations of all arm pulls. More reasonable for this random choice is to define the probability that an arm is the best is a Bayesian estimate.

Let θ be a parameter vector to present the choices. The probability of the optimal arm k is (2.5)

P(K = k * ) = θ 1(K = k * |θ)P(θ)dθ.
An arm is thus pulled with the probability P(K = k * ). This Sampling way can be viewed as a form of decision based on one-step Monte-Carlo Sample by estimating the probability of an arm being the best.

Algorithm 2.1 (Thompson Sampling).

Initialise P (µ 1 ,...,µ K ) , the prior belief of the mean payoffs of arms 1, . . . , K.

Let H t be the history of action, reward pairs (r τ , k τ ) for

1 τ t, H 1 = {} for each round t = 1,2,. . . , T do Sample θ 1 , . . . , θ K ∼ P(µ 1 , . . . , µ K |H t ). Pull arm k t = ar gmax k∈{1,...,K} θ k Receive reward 1 r(k t )=1 Let H t+1 = H t ∪ (k t , 1 r(k t )=1 ).

end for

Optimism in Thompson Sampling(See in Appendix A.1) There is a question, what

is the tradeoff between exploration and exploitation for Thompson Sampling. May [START_REF] May | Optimistic bayesian sampling in contextual-bandit problems[END_REF] tried to separate these two aspects of this algorithm. To do this, he defined the exploitative value of an arm to be the expected payoff of an arm conditioned on the rewards. The estimated expected rewards of an arm could be seen as the sampling drawn from the posteriori distribution. With these, the exploratory value of an arm can be found by subtracting the exploitative value from the estimated sample value. They observed that this exploratory value could sometimes be negative and so there would be no value from an exploration point of view to pull the arm. The exploratory value of an arm is only negative when the sample estimate drawn from the posterior is less than the exploitative value of the arm.

In Thompson Sampling, samples are drawn from the posterior distribution of each arm, that is θ k (t) ∼ P (µ k ) . Instead, Optimistic Thompson Sampling draws samples with

θ k (t) = max(E[µ k ], s k (t)) where s k (t) ∼ P (µ k ) .
In other words, if a sample from the posterior distributions is less than the mean of the distribution, then we sample it. This ensures that the exploratory value of an action is always positive.

Boltzmann Exploration

Boltzmann Exploration (also named Softmax) is based on the axiom of choice [START_REF] Luce | Individual choice behavior: A theoretical analysis[END_REF] and picks each arm with a probability which is proportional of its choices. An arm with larger empirical expected rewards is sampled with a higher probability. Softmax uses a Boltzmann distribution to select the arms. Given the initial empirical means μ1 (0), . . . , μK (

p k (t + 1) = exp μk (t)/τ K i=1 exp μi (t)/τ 0), (2.6) 
, with k ∈ {1, . . . , K} Softmax depends on the task and on human factors by the only parameter τ. Where τ is a temperature parameter, controlling the randomness of the choice. When τ = 0, Boltzmann Exploration acts like pure greedy. On contrast, τ tends to infinity, the algorithms picks arms uniformly at random. The choice of parameter τ generally depends on the knowledge of similar action or quantity of the value exp μ/τ.

Algorithm 2.2 (SoftMax).

Parameter: real number τ > 0

Initialization: Set μk (0) = 0 for ∀k ∈ [1, . . . , K]
for each round t = 1,2,. . . , T do Sample arms i according to the distribution P k (t), where

P k (t) = exp μk (t -1)/τ K i=1 exp μi (t -1)/τ
Receive the reward r k t , here k t is the sampled arm at time t.

μk (t) = t r k,t / t 1 k=k t ,t

end for

Softmax can be modified in the same way as the -greedy strategy in Section 2.3.4

to attenuate the exploration probability, when the temperature τ decreases with the number of rounds played. The decreasing Softmax is identical to the Softmax but with a temperature τ t = τ 0 /t that depends on the current round t. The initiation value of τ 0 is set by the user. The decreasing Softmax is analyzed by Cesa-Bianchi [START_REF] Cesa-Bianchi And | Finite-time regret bounds for the multiarmed bandit problem[END_REF] with the "Soft-mix" algorithm.

A more complicated variant of the Softmax algorithm, the EXP3 -"exponential weight algorithm for Exploration/Exploitation" (see Appendix A.2) is introduced in [START_REF] Auer | Gambling in a rigged casino: The adversarial multi-armed bandit problem[END_REF]. The probability of choosing arm k on round t is defined by

(2.7) P k (t) = (1 -γ) w k (t) K i=1 w i (t) + γ K
where w i (t + 1) = w i (t)exp γ r i (t) P i (t)K , if arm i has a reward r i (t) on round t, w i (t + 1) = w i (t) otherwise. The choice of the value of the parameter γ ∈ (0, 1] is left to the user. The main idea is to divide the actual gain r i (t) by the probability P i (t) that the action was chosen. A modified version of EXP3, with γ decreasing over time, it is shown by [START_REF] Auer | The nonstochastic multiarmed bandit problem[END_REF], where a regret of O( K T log K ) is achieved.

Upper Confidence Bound

Upper Confidence Bound (UCB) was proposed by Lai [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF], to deal with the Exploration and Exploitation dilemma in Multi-Armed Bandit problem by using Upper Confidence Values.

Most strategies for trade-off between exploration and exploitation have one weakness: they do not keep track of how much they know about the options. They only pay much more attention to know how much reward they got, i.e. they under-explore options whose initial experiences were not rewarding, even though they don't have enough data to be confident about those options. However, UCB pays attention to not only what it knows, but also how much it knows.

For example, in the stochastic Multi-Armed Bandit problems, the gambler has to choose in trial t ∈ {1, 2, . . . , T} an arm from a given set of arms K = {1, . . . , K}. In each trial t, the gambler obtains a random reward r k,t ∈ {0, 1} by choosing the arm k. It is assumed that the random reward r k,t is an i.i.d. random variables with an unknown mean µ k for arm k.

The goal of the gambler is to get the arm with largest expected reward µ * := max k∈K µ k .

The best expected rewards of this arm μ * so far serves as a criteria, and other arms are played only if their expected rewards within the confidence interval of μ * . That way, within T trials each suboptimal arm can be shown to be played at most 1 D K L + o(1) log T times in expectation, where D K L measures the Kullback-Leibler distance between the reward distributions of the optimal and the suboptimal arm, and o(1) → 0 as T → ∞. This bound was also shown to be asymptotically optimal [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF].

Auer [START_REF] Auer | Using confidence bounds for exploitation-exploration trade-offs[END_REF] introduced the simple, yet efficient UCB algorithm. It is based on the ideas of Lai's. After playing each arm once for initialization, UCB chooses at trial t the arm k that maximizes

(2.8) μk + 2 log t n k ,
where μk is the average reward obtained from arm k, and n k is the number of times of arm k has been played up to trial t. The value in Equation 2.8 can be interpreted as the Upper Bound of a confidence interval, so that the real mean reward of each arm k with high probability is below this upper confidence bound.

In particular, the upper confidence value of the optimal arm will be higher than the real optimal expected reward µ * with high probability. Consequently, as soon as a suboptimal arm k has been played sufficiently often so that the length of the confidence interval

2 log t n k is small enough to guarantee that μk + 2 log t n k < µ * ,
arm k will not be played anymore with high probability. As it also holds that with high probability μk < µ k + 2 log t n k , the arm k is not played as soon as

2 2 log t n k < µ * -µ k ,
that is, as soon as arm k has been played

8 log t (r * -r k ) 2
times. This informal argument can be made stringent to show that each suboptimal arm k in expectation will not be played more often than log T ∆ 2 k times within T trials, where

∆ k := µ * -µ k
is the distance between the optimal mean reward and µ k . Eliminate arm: Delete all arms i from B m for which

   μi + log T ∆2 m 2n m    < max j∈B m    μ j - log T ∆2 m 2n m   
in order to obtain B m+1 . Here μ j is the average reward obtained from arm j.

Reset ∆m : Set ∆m+1 = ∆m 2 end for

In [START_REF] Ortner | Ucb revisited: Improved regret bounds for the stochastic multi-armed bandit problem[END_REF], Auer proposed an improved UCB algorithm (shown in Algorithm 2.3). In this improved model, the gambler can access to the values ∆ k , one could directly modify the confidence intervals of UCB as given [START_REF] Agrawal | Sample mean based index policies with o (log n) regret for the multiarmed bandit problem[END_REF] to

2 log t∆ 2 k n k
, and the proof of the claimed regret bound would be straightforward.

However, since the ∆ k is unknown to the learner, the modified algorithm shown in Algorithm 2.3 guesses the values ∆ k by a value ∆, which is initialized to 1 and halved each time the confidence intervals become shorter than ∆. Note that compared to the original UCB algorithm the confidence intervals are shorter, in particular for arms with high estimated reward. Unlike the original UCB algorithm, our modification eliminates arms that perform bad. As the analysis will show, each suboptimal arm is eliminated as soon as ∆ < ∆ k 2 , provided that the confidence intervals hold. Similar arm elimination algorithms were already proposed in [START_REF] Even-Dar | Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems[END_REF].

Epsilon-Greedy

In this section, we are going to introduce a simple algorithm for trading off exploration and exploitation. This strategy is called -Greedy [START_REF] Sutton | Reinforcement learning: An introduction[END_REF] (shown in Algorithm 2.4). In computer science, a greedy algorithm is an algorithm that always takes whatever action seems best at the present moment, even when that decision might lead to bad long term consequences.

The -greedy algorithm is almost a greedy algorithm because it generally exploits the best available option, but also have some chance to explore the other available options.

Let be more concrete to the mechanism of -greedy algorithm. It works by randomly oscillating between the purely randomized experimentation and instinct to maximize profits. The -greedy is one of the easiest bandit algorithms to understand because it tries 

Algorithm 2.4 ( -Greedy).

Initialise P (µ 1 ,...,µ K ) , the prior belif of the mean payoffs of arms 1, . . . , K.

for each round t = 1,2,. . . , T do

Pull arm k t =    argmax k∈{1,...,K} P (µ k ) with probability select randomly with probability 1 - Receive reward r (k t )
Update µ k t by the reward r (k t ) .

end for

Auer [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF] has proven that, if is allowed to be a certain function t following the current time step t, namely t = K/(d 2 t), then the regret grows logarithmically like (K log T/d 2 ), provided d is less than the number of objects with minimum regret. Yet this bound has a suboptimal dependence on d. In Auer's [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF] same paper, it is shown that this algorithm performs well in practice, but the performance degrades quickly if d is not chosen as a tight lower bound.

Compared to other more complex methods, -greedy is often hard to beat and reported to be often the method of the first choice as stated. In practice, however, a drawback of -greedy is that it is unclear which setting of leads to good results for a given learning problem. For this reason, the experimenter has to rigorously hand tune for obtaining good results, which can be a very time-consuming a task in practice depending on the complexity of the target application.

One method that aims at overcoming the above mentioned limitation of -greedy is "Value-Difference Based Exploration"(VDBE) [START_REF] Tokic | Adaptive ε-greedy exploration in reinforcement learning based on value differences[END_REF]. In contrast to pure -greedy, VDBE adapts a state-dependent exploration-probability. The basic idea of VDBE is to extend the -greedy method by controlling a state-dependent exploration probability, (s), which is according to the value of error function. The desired behavior is to have the agent more explorative in situations when the knowledge about the environment is uncertain, i.e. at the beginning of the learning process, which is recognized as large changes in the value function. On the other hand, the exploration rate should be reduced as the agent's knowledge becomes certain about the environment, which can be recognized as very small or no changes in the value function.

Regret Lower bound

Lai and Robbins [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF] provided asymptotic lower bounds of the expected regret for the stochastic Multi-Armed Bandit problem. In their work, it shows that R(T) = o(T a ) can applies to any strategy for MAB, for all a > 0 as T → ∞.

Kaufmann et al. [START_REF] Kaufmann | Thompson sampling: An asymptotically optimal finite-time analysis[END_REF] call this condition strongly consistent, since that lim T→∞ E[S(T)]/T = µ max . When the reward distribution are Bernoulli, for arms i, j, their reward average

µ i , µ j ∈ [0, 1].
To define the Kullback-Leibler divergence between two Bernoulli distributions with parameters µ i and

µ j D K L (µ i , µ j ) = µ i ln µ i µ j + (1 -µ i ) ln 1 -µ i 1 -µ j
The Theorem of asymptotic lower bounds states that Theorem 2.2. Distribution-dependent lower bound Consider a strategy that satisfies R(T) = o(T a ) for any set of Bernoulli reward distributions, any arm k with

∆ k = µ * -µ k > 0,
and any a > 0. Then, for any set of Bernoulli reward distributions the following holds

(2.9) lim T→∞ inf R(T) ln T k∈K :∆ k >0 ∆ k D K L (µ k , µ * ) 20 2.

PURE EXPLORATION AND BEST ARMED IDENTIFICATION

Let N k,T be the number of times the strategy pulled arm k up to time T, the bound can be written as, lim

T→∞ inf k∈K E[N k,T (µ max -µ k )]
ln T They call any strategy that meets this lower bound with equality asymptotically efficient. It's also useful to note that for a strategy that satisfies

lim T→∞ E[N k,T ] ln T 1 D K L (K, µ max ) ,
with equality for all k ∈ K then refer to Equation 2.9 satisfy with equality and the strategy is asymptotically optimal.

Pure Exploration and Best Armed Identification

Bubeck [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF][START_REF]Pure exploration in finitely-armed and continuous-armed bandits[END_REF] and Chen [START_REF] Chen | Combinatorial pure exploration of multi-armed bandits[END_REF] proposed to investigate the problem where the gambler may sample arms a given number of times T which may be not necessary known in advance, and be asked to output recommended arm. They advocate to evaluate the performance of a gambler by the simple regret (refer the section 2.1.1). The distinction from the classical MAB's modeling is to separate the exploration phase and the exploitation phase. This is the pure exploration problem. Its process is shown as the following modeling, The pure exploration problem is about the design of strategies which makes the best use of the limited budget in order to optimize the performance and identify their best choice in a decision-making task. Audibert [START_REF] Bubeck | Best arm identification in multi-armed bandits[END_REF] proposed two algorithms to address this problem: UCB-E and Successive Rejects. The former is a pure exploring strategy based on Upper Confidence Bounds, the latter is a parameter-free method based on progressively rejecting the arms which seem to be suboptimal. Audibert shows that these two algorithms are essentially optimal since the regret decrease exponentially at a rate up to a logarithmic factor.

UCB-E algorithm

This algorithm is an exploration policy based on Upper Confidence bounds (UCB-E). When the exploration parameter a (shown in Appendix A.3) is taken to be of order log T, the algorithm obviously corresponds to the UCB algorithm with the cumulative regret of order log T. Bubeck [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF] has shown that algorithms having at most logarithmic cumulative regret, have at least a (non-cumulative) regret of order T -γ for some γ > 0. Following the demonstration of cumulative regret [START_REF] Bubeck | Best arm identification in multi-armed bandits[END_REF], if UCB-E takes the parameter a of order log T, its probability of error converges to O(1/T) instead of exponential decay.

And taking parameter a in O(T) can explore much more than ever. If UCB-E runs with parameter a ∈]0, 25 36

T-K H 1 ]
, the probability of error is at most of order exp -a for a log T, where H 1 denotes a quantity

H 1 = K k=1 1 ∆ 2 k (the definition of ∆ k in Section 2.1.1).
Considering the parameter a, if a 25 36 T-K H 1 , it essentially says: the more it explores, the smaller the regret is. Besides, the smallest upper bound on the probability of error is obtained for an order of T/H 1 , and is therefore exponentially decreasing with T. The constant H 1 depends not only on how close the mean rewards of the two best arms are, but also on the number of arms and how close their mean reward is to the optimal mean reward. This constant can be seen as the order of the minimal number n k T for which the recommended arm is the optimal one with high probability.

Successive Rejects algorithm

This other algorithm identifies the best arm in MAB by pure exploration. The details are shown in Appendix A.4. Informally it proceeds as follows. First the algorithm divides the time (i.e., the T rounds) in K -1 phases. At the end of each phase, the algorithm dismisses the arm with the lowest empirical mean. During the next phase, it equally pulls all arms which have not been dismissed yet. The recommended arm k T is the last surviving arm.

The length of the phases are carefully chosen to obtain an optimal (up to a logarithmic factor) convergence rate. More precisely, one arm is pulled

n 1 = 1 log K T-K K times, one n 2 = 1 log K T-K K-1 times, . . . , n K-1 = 1 log K n-K 2 
times. SR does not exceed the budget of T pulls, since, from the definition log(K)

= 1 2 + K k=2 1 k , we have n 1 + . . . , +n K-1 K + T -K log(K) 1 2 + K-1 k=1 1 K + 1 -k = T
For K = 2, up to rounding effects, SR is just the uniform allocation strategy. Here, it denotes

H 2 as a quantity H 2 = max k∈K k∆ -2 k , the upper error is bounded by K(K-1) 2 exp -T-K log(K)H 2
, and it could be proved has a lower bound of sampling times by

T-K 4log(K)H 2 ∆ 2 k .
Chapter 3

Bandit with side information

Contextual Bandit, also named Bandit problem with side information, has been introduced in Section 2.1.3. Since it is closely related to work on supervised learning and reinforcement learning, it is usually applied to solve the problem of supervised learning with partial feedback. The classification with partial feedback is a novel and influential problem. This Classification can be traced back to online supervised classification and Multi-Armed Bandit Reinforcement learning, as Multi-Armed Bandit problem with side information. Langford [START_REF] Langford | The epoch-greedy algorithm for multi-armed bandits with side information[END_REF] extended Multi-Armed Bandit setting to the case where some side information is provided. However, this setting has a high level of abstraction and its application to the classification bandit learning is not straightforward. In this chapter, we restate the setting of online learning under the frame of Contextual Bandit, and recall some outstanding researches and contributions.

Classification with Bandit Feedback is composed by two parts: Online learning and Bandit set. Firstly, we formally introduce online learning [START_REF] Shamir | Fundamental limits of online and distributed algorithms for statistical learning and estimation[END_REF]. Online learning is a fundamental task of machine learning. Different to the batch learning, the dataset of online learning usually comes to be sampled and trained in a sequential order. Otherwise, for some special constraints, e.g. limited memory or partial information, machine learning should take online learning as first choice. In this chapter, Classification with Bandit feedback is the latter.

We here introduce the framework of online supervised learning. Let ((x 1 , y 1 ), . . . , (

x t-1 , y t-1 )) ⊂ R d × Y
t-1 be an ordered sequence of training instances. Let F = ( f 1 , f 2 , . . . ) be an ordered sequence of linear mappings. After the previous t -1 instances, a mapping f t-1 : R d → R, that maps the training space to the reals, has been learned. A new instance (x t , y t ) is read from the environment. The learner makes its prediction ŷt from the values of the mapping f t-1 (x t ). Here, the instance x t is not only for testing, but also for training. There is an algorithm π, which updates the mapping at each new instance: π x t ,y t : f t-1 → f t . This completes the process of Online supervised learning.

To estimate the algorithm π, we introduce here some evaluation criterion.

Mistakes: For instance t, if the prediction ŷt = y t , it makes an incorrect prediction.

Therefore, mistakes can be accounted as

mistakes(π, F ) = t i=1 1( ŷi = y i ).
The goal of algorithm π is to bound the total number of mistakes, it also calls mistake bounds M. This mistake bound can be presented as

M = max ((x 1 ,y 1 ),...,(x t ,y t ))⊂(R d ×Y ) t mistakes(π, F ).
Margin: If the dataset D is separable, there exist a mapping f such that ∀(x, y) ∈ D, ŷ = y. Then the full dataset is separated into different classes. The decision rule used to separate the dataset defines the boundary between classes. A useful quantity, called the margin, is then the minimal distance between the elements of a class and the class boundary. The objective of many learning algorithms is thus to maximize this margin by designing the appropriate class boundaries (e.g. SVM, PA algorithm, Weighted Perceptron).

Loss, also named as instantaneous loss, indicates the penalty for an incorrect prediction, let l t (x t , ŷt , y t ) be the loss for prediction ŷt instead of y t . For all losses of past instances, it called cumulative loss, denoted as L t = t i=1 l i (x i , ŷi , y i ). For loss function, there are varieties of expressions, e.g. zero-one loss, non-symmetric loss, squared loss and hinge loss. Here, we introduce binary hinge loss [START_REF] Bartlett | Classification with a reject option using a hinge loss[END_REF][START_REF] Gentile | Linear hinge loss and average margin[END_REF] as an example. For a linear mapping f , the max margin for datasets is γ. The hinge loss in the binary case (i.e. y ∈ {-1, 1}) for an instance (x t , y t ) is :

l f (x t , ŷt , y t ) = max 0, γ -y t . f (x t ) = [γ -y t . f (x t )] +
Regret of an online learning algorithm presents the difference between the loss of classifier f t and the optimal classifier f * who is a classifier with largest margin.

R(F , T) = T t=1 l(x t , f t (x t ), y t ) - T t=1 l(x t , f * (x t ), y t ).
Regret bound measures the performance of an online algorithm relative to the performance of optimal classifier. Sometimes, datasets are non-linearly separable. So, Vapnik [START_REF] Vapnik | Statistical learning theory[END_REF]proposes an explicit mapping Kernel function to get linear learning algorithms to learn a nonlinear function or decision boundary. For two variables x and x from the input space X , let certain functions K(x, x ) be an inner product in another space X † . For simplicity understand, this kernel mapping can be written in the form of a feature mapping φ : X → X † which satifies

K(x, x ) = 〈φ(x), φ(x )〉
, where x and x are primal variables, and φ(x) and φ(x ) are dual variables. The dual space is also named Reproducing Kernel Hilbert Space (RKHS). More details are given in section 5.3.

In the next sections, we focus on introducing some supervised classification algorithms in state-of-the-art. From the side of Bandit feedback, we present some important classification algorithms working with Bandit Feedback, most of them being based on the supervised learning algorithm combining some bandit strategies. After completing the description of the Multi-class classification with Bandit Feedback, we pose a novel problem, the Multi-Labels classification working with partial feedback. Then, we provide some analysis and an effective algorithm on this issue.

Multi-class Classification with Bandit feedback

Online classification with bandit feedback, is a bandit variant of the online classification protocol, where the goal is to sequentially learn a mapping from the context space X ⊆ R d to the label space Y = {1, . . . , K}, with K ≥ 2. In this protocol, forecaster keeps classifiers parameterized w = (w 1 , w 2 , . . . , w K ) from the hypothesis space W ⊆ R K×d . At each steps t = 1, 2, . . . , T, the side information x t ∈ X is sampled i.i.d. at random, then forecaster predicts the label ŷt , by the linear hypothesis w t :

(3.1) ŷt = argmax k∈{1,...,K} < w t , Φ(x t , k) >
In the standard online protocol, the forecaster observes the true label y t associated with x t after each prediction and uses this full information to adjust the classifier w t .

However, in the bandit version, the forecaster only observes an indicator 1( ŷt = y t ), that is whether the prediction at time t is correct or not. With Bandit feedback, its cumulative loss is defined as the following format. And the one with Bandit Feedback is defined as below:

(3.2) L BF = T t=1
l BF (w t , x t , 1( ŷt = y t ))

Multiclass Classification

Multiclass Classification is a problem of classifying the samples into several different classes and online learning is performed as a sequence of trials experiment. To solve this problem, the algorithms aim at learning a predictor h : X → Y , which maps the instances to the classes space. The simplest approach to tackle multiclass prediction problem is by reduction from multiclass classification to binary classification. That is the methods often mentioned: One-versus-All and All-versus-All. See Figure 3.1, consider some points classified into three classes (classified as their colors), by the method One vs All, it is necessary to find three binary classifiers who can only identify one class see Figure 3.2.

Crammer has introduced several additive and multiplicative algorithms in [START_REF] Crammer | Ultraconservative online algorithms for multiclass problems[END_REF], where

Perceptron [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF] and Winnow [START_REF] Littlestone | Learning quickly when irrelevant attributes abound: A new linearthreshold algorithm[END_REF] are two such important algorithms. Much analysis has been done, Kivinen and Warmuth developed potential functions that can be used to analyze different online algorithm [START_REF] Warmuth | Additive versus exponentiated gradient updates for linear prediction[END_REF]. The goal of all classification algorithms, is to minimize the mistake bound M or regret R. To achieve this goal, the algorithms update the classifiers at each trial. The binary hinge loss has been introduced at the head of this chapter. We here present a variant of this loss function in Multi-class frame.

(3.3) l(w t ; (x t , y t , ŷt )) = [γ+ < w t , Φ(x t , ŷt ) > -< w t , Φ(x t , y t ) >] + ,
where parameter γ is the margin of this algorithm. The hinge loss is a convex function. It is not differentiable, but has a subgradient with respect to different classifiers. So many quadratic optimization can work with it, e.g. algorithm SVM. For binary hinge loss, its subgradient to classifier w can be represented as:

∂l t (w, x t , y t ) ∂w =    -ŷt • x t if ŷt • y t < γ 0 otherwise
And the subgradient for the Multi-class hinge loss:

∂l t (w, x t , y t ) ∂w =    Φ(x t , y t ) -Φ(x t , ŷt ) if l t > 0 0 otherwise
After introducing the principal multiclass definitions, we study in the following some approaches for learning multiclass classifiers. Most of them are linear multiclass predictors.

Perceptron was proposed by F. Rosenblatt [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF]. It is a general computational model with some numerical weights. By Minsky and Papert [START_REF] Minsky | Perceptrons -Expanded Edition: An Introduction to Computational Geometry[END_REF], it was refined and perfected in 1960s. For the simplest binary model, the input space X ⊆ R d can be separated into two sets P and N. The Perceptron algorithm looks for a weight vector w ∈ R with a product function h, where h(x t ) =< w, x t >∈ R. If the P and N are linear separated, the ideal weighted vector be assumed that all points of P holds the product h(x P ) > 0 and all points of N holds h(x N ) < 0.

Generally, the initial weights vector w 0 is chosen randomly. For the binary state, if the instance on round t th x t belongs to the set P, the class y t of instance x t is +1, else y t equals to -1. Then, y t • h(x t ) > 0, it means the weight vector make a good prediction, and continue to predict a new instance; from the opposite direction, when it predicts wrong, the value of 3.1. MULTI-CLASS CLASSIFICATION WITH BANDIT FEEDBACK product y t • h(x t ) < 0, it should take an update to the weight vector with the instance vector

x t w t+1 =    w t if y t • h(x t ) > 0 w t + y t • x t elsewhere
The Perceptron in Multi-class Classification with K classes looks for a set of K weight vectors W = (w 1 , w 2 , . . . , w K ) ∈ W ⊆ R K×d . The prediction way should be referred to the Function 3.1. However, with non-separable datasets, there is no soft margin. Perceptron updates according to the incorrect classification for those vague instances. In that case, it will affect the classification result.

w t+1 =    w t if 〈w t , Φ(x t , y t )〉 > 0 w t + Φ(x t , y t ) -Φ(x t , ŷt ) elsewhere
Its mistake bound convergence in (R/γ) 2 where R = max ∥ x t ∥ and γ = min| < u, x t > | with optimal classifier u. More details of Perceptron see Appendix A.5.

Second-order Perceptron[28].

In the previous part, we talked about a popular, local and greedy linear algorithm-Perceptron. Instead of Perceptron, a second order variant of Perceptron proposed by Cesa-Bianchi sets a correlation matrix S t , where S t = t s=1 x s x T s ∈ R d×d is positive, there exists a matrix S -1 t , s.t.S -1 t S t = I t , I t is an identity matrix. This matrix can measure the correlation of instances by a quadratic form x T t M -1 x t , i.e. if the quadratic tends to quite small, they are correlated tightly.

In the basic form, Second-order Perceptron algorithm takes an input parameter a > 0.

To compute its prediction in trial t the algorithm uses a matrix S t-1 ∈ R d×d and a classifier w t-1 ∈ R K×d , where subscript t -1 indicates the number of updates. Initially, the algorithm sets S 0 = 0 and w 0 = 0. Upon receiving the t th instance x t , the algorithm predicts the label of x t as ŷt . If ŷt = y t , then a mistake occurs and the algorithm updates, if ŷt = y t , no update takes place, and hence the algorithm is mistake driven.

The second-order Perceptron algorithm retains the properties of large scale and efficient dual variable representation . This allows us to efficiently run the algorithm in any reproducing Kernel Hillbert space for the non-linear situation . By introducing the secondorder matrix, Second Order Perceptron can effectively reduce the misclassification around the boundary and assumed to get a mistake upper bound. Confidence weighted [START_REF] Dredze | Confidence-weighted linear classification[END_REF] can maintain each feature with a different confidence level, for the features with low degree of confidence need to update more than the one with high level. [START_REF] Crammer | Online passive-aggressive algorithms[END_REF] is an effective framework for performing maxmargin online learning. Here, we address Online Passive-Aggressive algorithms, who learn the classifiers from the linear hypothesis space with a set of ordered instances.

Passive-Aggressive Algorithm

Here, all definitions are consistent with other sections. e (w t ; (x t , y t )) is used to present the margin between each labels. e (w t ; (x t , y t )) =< w t , Φ(x t , y t ) > -max

s =y t < w t • Φ(x t , s) > .
The margin is positive only if the product of the relevant label < w t , Φ(x t , y t ) > is bigger than the one of other irrelevant labels. This definition of margin computes an instantaneous loss by hinge-loss function as follows, The apparent benefit of this simplification lies in the fact that Eq. 3.6 has a closed form solution. To draw the connection between the multiclass and binary classification, considering the vector Φ(x t , y t ) -Φ(x t , ŷt ) as a virtual instance of a binary classification.

Therefore, the closed form solution of Eq. 3.6 is

(3.7) w t+1 = w t + τ t (Φ(x t , y t ) -Φ(x t , ŷt ))
with

τ t = l t ∥ Φ(x t , y t ) -Φ(x t , ŷt ) ∥ 2
Although it's essentially neglecting all but two labels on each step of the multiclass update, it can still obtain multiclass cumulative loss bounds. The key observation in the analysis it that,

l t = l(w t ; (x t , y t )) = [〈w t , Φ(x t , y t ) -Φ(x t , ŷt )〉 + γ] + 3.1. MULTI-CLASS CLASSIFICATION WITH BANDIT FEEDBACK
For the bounds of multiclass PA algorithm, one needs to cast the assumption that for all t, ∥ Φ(x t , y t ) -Φ(x t , ŷt ) ∥ R holds. This bound can immediately be converted into a bound on the norm of the feature set since ∥ Φ(x t , y t ) -Φ(x t , ŷt ) ∥ ∥ Φ(x t , y t ) ∥ + ∥ Φ(x t , ŷt ) ∥ . Thus, if the norm of the mapping Φ(x t , k) is bounded for all t and k ∈ Y then so is ∥ Φ(x t , y t ) -Φ(x t , ŷt ) ∥, and the bounds on the cumulative loss of the algorithms is relative to the smallest loss that can be attained by any fixed hypothesis.

Algorithms for Multi-class Classification with Bandit Feedback

In the conventional supervised learning paradigm, the forecaster has access to a data set in which the true labels of the inputs are provided. Sometimes, the environment just provides a partial feedback instead of a full one. Such problems are a natural extension of the multiclass problems, called the bandit versions of multiclass prediction problems.

Here, K denotes the number of classes, and (x 1 , y 1 ), . . . , (x T , y T ) denotes the sequence of training examples received over trials, where x i ∈ R d and T is the number of training instances. In each trial, ŷt ∈ {1, . . . , K} denotes the prediction. Unlike the classical online learning setup where an oracle provides the true class label y i ∈ {1, . . . , K} to the learner, the learner only receives a one bit response telling whether the prediction equals the true label, i.e., 1[y t = ŷt ]. The Bandit feedback is a special case of a Contextual Bandit with side information. So the goal of this problem is not only to minimize the error bound, but also to keep the balance between Exploration and Exploitation. Some popular strategies of this issue have been introduced in Section 2.3, i.e. UCB, Thompson, -greedy etc. To apply trade-off strategies to this issue, we need to understand the relationship between the prediction ŷt and the label set Y . The prediction ŷt is the result of exploitation by the past information, being optimal or sub-optimal depending on the hypothesis. Unlike the supervised learning case, we have no knowledge about the true label y t . So, it is necessary to sample other labels to explore more label information.

In this section, we introduce few traditional multiclass classification approaches combined with Bandit policies.

Banditron [START_REF] Kakade | Efficient bandit algorithms for online multiclass prediction[END_REF] (see in Appendix A.8), is a simple but effective learning strategy for online classification with bandit feedback, which is based on the Perceptron algorithm.

Despite its age and simplicity, the Perceptron has proven to be quite effective in practical problems (more details about Perceptron see the previous section or [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF] ). Similar to the Perceptron, at each round, the prediction ŷt can be the best label according to the current weight matrix w t , i.e. ŷt = argmax i∈{1,...,K} < w t , Φ(x t , i) > . Mostly, Banditron exploits the quality of the current weight matrix to predict the label ŷt . Unlike the Perceptron, if ŷt = y t , then it's difficult to make an update since it's blind to the identity of y t . Roughly speaking, it is difficult to learn when to exploit using w t . Since that, on some of rounds it's necessary to let the algorithm explore and uniformly predict a random label from the label set Y . It's denoted by ỹt the predicted label. On rounds, in which it explores, (where ỹt = ŷt ), if the forecaster additionally receives a positive feedback, i.e. ỹt = y t , then it indirectly obtains the full information regarding the identity of y t , therefore it could update the weight matrix using this positive instance. The parameter controls the exploration-exploitation tradeoff, this is the -greedy strategy (refer to the Section 2.3.4).

With the randomized prediction ỹt , the above intuitive argument formalize the update matrix Ũt .

Ũt = 1( ỹt = y t ) P( Ỹ = ỹt | ŷt ) Φ(x t , ỹt ) -Φ(x t , ŷt )
where P( Ỹ = ỹt | ŷt ) is the probability of predicting ỹt , it is according to ŷt . We emphasize that Ũt accesses the correct label y t only through the indicator 1[y t = ỹt ] and is thus adequate for the bandit setting. Kakade [START_REF] Kakade | Efficient bandit algorithms for online multiclass prediction[END_REF] show that the expected value of the Banditron's update matrix Ũt is exactly the Perceptron's update matrix U t . Banditron is a linear predictor with -Greedy strategy with Bandit feedback. Its mistake bound is bounded by O(T 2/3 ).

Confidit [START_REF] Crammer | Multiclass classification with bandit feedback using adaptive regularization[END_REF] proposes a different strategy of exploration. It uses the same principles as UCB( see in Section 2.3.3), which is to maintain additional confidence information about the predictions. Specifically, given an input x t , the algorithm not only computes the score values, but also a non-negative uncertainty values for these scores, denotes by i,t , which is an upper bound of confidence interval. Intuitively, high values of i,t indicate that the algorithm is less confident in the value of the score w T i x t . Given a new example, the algorithm outputs the label with the highest upper confidence bound (UCB), computed as the sum of score and uncertainty as following,

ŷt = argmax i∈{1,...,K} (w T i x t + i,t ).
Intuitively, a label ŷt is output by the algorithm if either its score is high or the uncertainty in predicting is high, and there is necessity to obtain information about it.

Specifically, this algorithm is based on the Second Order Perceptron (see section 3.1.1), i.e.

it maintains is a positive semi-definite matrix per label, A i,t ∈ R d×d to compute the upper confidence to each label. More details on this algorithm is given in Appendix A.9. Confidit develops the Second Order Perceptron with UCB strategy to solve the classification problem 

Multi-label Classification with Bandit feedback

After introducing the problem of Multi-class Classification with Bandit feedback, we here address another problem of Bandit feedback: Multi-label Classification with Bandit feedback. This problem exists in many fields, for example in recommender systems. Generally, the number of locations is limited on a web-page to show ads. The goal of a recommender system is to find the user's favorite ads, and push them on the web-page. Like other Bandit problems, the system can not observe the user's favorites ads directly. Actually, during the phase of exploration, the system can obtain some knowledge about the user by a Bandit feedback.

Learning proceeds in rounds: at each step t, the system receives an instance x t and outputs a subset Ŷt of labels from a finite set of all possible labels Y = {1, 2, . . . , K}. The restriction of the size of Ŷt corresponds to the limited locations of web-page or other conditions. The system intends to find the true set associated with x t . However, it can never observe the true label set. Instead of the true label set, the system can receive a feedback from the user: Y t ∩ Ŷt , where Y t ⊆ Y is a label set associated with x t . In the restricted case | Ŷt | = 1 for all t, it becomes a familiar problem: Multi-class Classification with bandit feedback. Here we define some notations of Multi-label Classification. Let X be an instance space, and Y be a finite set of class labels. An instance x t ∈ X is represented in terms of features vector x t = (x 1 , . . . , x d ) ∈ R d . A subset Y t , associated to the instance x t , can be denoted as a binary vector Y t = (y 1 t , . . . , y K t ), where y i t = 1 if and only if label y i t is associated to the instance x t . Refer to [START_REF] Sorower | A literature survey on algorithms for multi-label learning[END_REF], it presents a number of basic transformation methods. Some of them transform Multi-label problem into multiple Multi-class problem, some address this problem by ranking.

Multilabel Classification

Here, we take some methods to explain how to solve Multi-label problem. To describe more easily the methods, we use an example multi-label data in Table 3.1. There are four instances that belong to at least one of 4 classes {1, 2, 3, 4}. Ignore transformation simply ignores the multi-label of each instance, only left single label for running. For each instance, labels will be selected depending on use reference. There can be several versions: select-min (least frequent), select-max (most frequent), and select-random (randomly selected). Once these datasets are ready, it is easy to train a binary classifier for each. For any new instance, BR outputs a set of the labels Ŷt that are predicted by K binary classifiers.

Binary Relevance (BR

Calibrated Label Ranking (CLR)

proposed by Furnkranz [START_REF] Loza | Pairwise learning of multilabel classifications with perceptrons[END_REF]. He argues that providing a relative order of the labels though ranking does not have a natural "zero-point" and therefore, does not provide any information about the absolute preference. CLR can Table 3.2: Transformed data produced by Binary Relevance (BR) method

Instance Label 1

x 1 1 x 2 -1 x 3 1 x 4 -1 Instance Label 2 x 1 -1 x 2 1 x 3 -1 x 4 1 Instance Label 3 x 1 -1 x 2 1 x 3 1 x 4 -1 Instance Label 4 x 1 1 x 2 1 x 3 -1 x 4 1
distinguish all labels between relevant and non-relevant classes on label ranking. Introducing an additional label to the original label set, which can be interpreted as a "zero-point" ( between relevant and non-relevant). Thus a calibrated ranking,

y σ(1) t y σ(2) t • • • y σ( j) t y 0 y σ( j+1) t • • • y σ(K) t
Clearly, this ranking of labels (ignore the "zero-point" label y 0 ) creates a bipartition of relevant set (y σ(1) t . . . y σ( j) t

) and irrelevant set (y

σ( j+1) t . . . y σ(K) t
). Then, each example can be annotated by a calibration label. For the labels of relevant set, it could be treated as a positive example, for the labels of non-relevant set, it could be treated negatively. Thus, it can be treated by some binary relevance methods.

Algorithm for Multi-label Classification with Bandit feedback

There are so many literature to introduce Multi-label Classification [START_REF] Zhou | On the consistency of multi-label learning[END_REF][START_REF] Kong | An ensemble-based approach to fast classification of multilabel data streams[END_REF][START_REF] Madjarov | An extensive experimental comparison of methods for multi-label learning[END_REF][START_REF] Sorower | A literature survey on algorithms for multi-label learning[END_REF]. Such problems are collectively referred to the supervised learning. As opposed to the supervised case, in this section, we introduce an algorithm proposed by Gentile [START_REF] Gentile | On multilabel classification and ranking with bandit feedback[END_REF], who firstly propose a framework to solve the problem of Multi-label Classification with Bandit feedback.

Algorithm of Multi-label Classification with Bandit feedback

This algorithm is based on 2nd-order descent method (shown in Appendix A.10). It uses a linear predictor with a cost-sensitive Multi-label loss. This loss is generalized from the standard Hamming loss, and can be taken into account the distance between Y t and Ŷt . Otherwise, it proposes a cost function C( Ŷt ) to calculate the cost for the prediction set Ŷt . Associated with Ŷt , it possibly takes into account the order in which i occurs within Ŷt .

Specifically, given a constant parameter a ∈ [0, 1] and costs c = {c(i, s), i = 1, . . . , s, s

∈ [K]}, such that 1 c(1, s) c(2, s) • • • c(s, s) 0, for all s ∈ [K],
this algorithm considers the loss function like below:

l a,c (Y t , Ŷt ) = a|Y t \ Ŷt | + (1 -a) i∈ Ŷt \Y t c( j i , | Ŷt |)
, where j i is the position of class i in Ŷt , and c(i i , •) depends on Ŷt only through its size | Ŷt |.

Working with this cost-sensitive Multi-label loss function, it can output the prediction set Ŷt to be a ranked label list. Due to the Bandit feedback, only the relevance labels can be observed, i.e. Y t ∩ Ŷt . So the ranking is restricted to the deemed relevant labels only, and to provide a no supervised ranking information within this set. Furthermore, this loss function provides an effective method to explore the predictions.

Let P t (•) be a shorthand for the conditional probability P t (•|x t ). This marginal function P t (y i t = 1) can present the Bayes optimal ranking (see in [START_REF] Ński | On label dependence and loss minimization in multi-label classification[END_REF]). It satisfies,

(3.8) P t (y i t = 1) = g(-u T i x t ) g(u T i x t ) + g(-u T i x t ) , i = 1, . . . , K for K vectors u 1 , . . . , u K ∈ R d and functions g : D ⊆ R → R + .
The model is well defined if u T i x t ∈ D for all i and all x t ∈ R d . For the sake of simplicity, it assumes that ∥ x t ∥= 1 for all t.

This algorithm proposes a novel problem: Multi-label Classification with Bandit feedback. It generalizes a linear hypothesis relied on UCB to solve this problem. It formalizes a method to set apart the Multi-label loss from the supervised settings. Thanks to the cost-sensitive multi-label loss, it can split the labels sets into relevant and no-relevant sets. This operation is totally automatic, and bounded regret by O(T 1/2 log T).

Chapter 4

Multi-Objective Multi-Armed Bandit

Multi-Armed Bandit is a machine learning paradigm used to study and analyze resource allocation in stochastic and uncertain environment. We have introduced this game theory in Chapter 2. Let's consider a special case that the slot machine of MAB responses a vector instead of scalar as reward. Furthermore, every element of this vector corresponds to a certain distribution. Then, MAB problem becomes a Multi-Objective Optimization problem (MOO) in Bandit environment, this kind problem is denoted as Multi-Objective Multi-Armed Bandit (MOMAB). In this chapter, we firstly introduce the MOO problem, after that, we will introduce several concepts and some solutions of MOMAB problem.

Multi-Objective Optimization

A simultaneous optimization of two or more conflicting objectives is called Multi-Objective Optimization(MOO). This kind problem is much more complicated than problems of single objective optimization, however many practical optimization problems, especially some engineering design optimization problems, exist naturally in the form of MOO. For example, designing a supply chain should consider many factors: time cost, economic cost, human resource and other possible constrains. From one aspect to optimize, it may cause some waste of other aspects. As a result, MOO problems usually require a collaborative optimization of multiple aspects. It can be described as the following mathematical model.

A MOO problem has a variable espace X = (x 1 , . . . , x n ) and an objective espace Y with a mapping f : X → R d . Here, we optimize f with each objective f i to be maximized, i ∈ {1, . . . , d}.

This optimization problem is formulated as follows:

(4.1) y = f(x) = ( f 1 (x), . . . , f d (x)) s.t. {max f 1 (x), . . . , max f d (x)}
where a variable vector x ranges in the variable space X , y is an objective vector with a mapping f = { f 1 , . . . , f d } where f i mapping X onto R. The objective function is the mapping f : X → R d .

Front Pareto setting

To solve an MOO problem, the key is to trade the conflict off between all objectives f i with i = 1, 2, . . . , d. This subsection concentrates on some concepts of "Pareto optimization", which is considered as the core of MOO. Pareto optimization is proposed by the engineer and economist Vilfredo Pareto [START_REF] Pareto | Cours d'economies politique, volume ? and ?[END_REF]. It states that:

"Multiple criteria solutions could be partially ordered without making any preference choices a prior."

Several definitions related to Pareto optimization are frequently used in MOO literature (referring to [START_REF] Wiecek | Advancing equitability in multiobjective programming[END_REF][START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF][START_REF] Deb | A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii[END_REF][START_REF] Eichfelder | An adaptive scalarization method in multiobjective optimization[END_REF][START_REF] Legriel | Approximating the pareto front of multi-criteria optimization problems[END_REF] ) as the following. is said to be better than another non-dominated set P 2 (denoted P 1 P 2 ) iff every x ∈ P 2 is weakly dominated by at least one x ∈ P 1 and P 1 = P 2 .

Definition 4.7. Pareto rank

There is a set of variables P with their objective vectors f(x) ⊆ R d where x ∈ X . Pareto rank is determined by an iterative manner as following. All non-dominated variables of P (denoted as F 1 (P)) are given rank 1. Then this set F 1 (P) will be removed from set P. From the set of all rest variables, to find a set of non-dominated variables of P/F 1 (P), this set is given rank 2 (denoted as F 2 (P)). This iterative action stops until all variables of P have their rank.

By Pareto rank, we can directly and easily compare two variables sets, i.e. F i (P) F j (P) if i < j. However, how to identify the Pareto front is the most difficult problem of MOO. Normally, this problem is solved from two aspects, one is from its definition as the starting point [START_REF] Deb | A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii[END_REF][START_REF] Zitzler | Performance assessment of multiobjective optimizers: an analysis and review[END_REF], through comparing dominance relationship to find the elements of Pareto Front. Another is to aggregate Multi-Objective problem to Single-Objective problem [START_REF] Miettinen | Nonlinear multiobjective optimization[END_REF][START_REF] Shan | An efficient pareto set identification approach for multiobjective optimization on black-box functions[END_REF][START_REF] Yager | On ordered weighted averaging aggregation operators in multicriteria decisionmaking[END_REF]. The former can traverse all optimal solutions of Pareto front, but it has higher complexity. While the latter is more effective to find an optimal solution, unfortunately it is difficulty to traverse all optimal solutions. In the next sections, we will introduce some methods to identify the Pareto front of MOO from these two aspects.

Dominance method

Dominance method is a way to identify Pareto front of MOO, it is started with the definition of Pareto front (see the Definition 4.5). Here, we quote it again by the following mathematical model.

Let x be a variable from the variable espace X with a mapping f : X → R d . The Pareto front is a set P * of all variables x * ∈ X , where x s.t. ∀i ∈ [1, . . . , d] f i (x) > f i (x * ).

Global Simple Evolutionary Multi-objective Optimization (Global SEMO) [59],

is based on Evolutionary Algorithms to solve the problems of Multi-Objective Optimization.

Global SEMO creates a set P of non-dominated variables. For the initialization of this set, it is drawn uniformly at random from the variables espace. At each iterative time, a new variable x is drawn uniformly at random from the set of X . An offspring y is created by applying a mutation operator to x. Resorting to the global mutation operator which flips each bit of x with probability 1/n. The offspring is added to the set P if it is not dominated by any other variables of P. Some variables will be deleted from the set P, if they are weakly dominated by y. This iterative action will continue until all variavles of set X have been drawn., and output the set P to be Pareto front. (see in Appendix A.11) For theoretical statistic, the number of all rounds is called the runtime of algorithm.

The expected runtime refers to the expectation of its random variables. The run-time of this algorithm has been analyzed by [START_REF] Brockhoff | Do additional objectives make a problem harder?[END_REF][START_REF] Lehre | On the effect of populations in evolutionary multi-objective optimisation*[END_REF], performs as well as classical combination optimization problems.

Global Diversity Evolutionary Multi-objective Optimizer (Global DEMO ) (shown in Appendix A.12) combines algorithm Global SEMO and the concept of -dominance [START_REF] Horoba | Benefits and drawbacks for the use of epsilondominance in evolutionary multi-objective optimization[END_REF].

The principle of Global DEMO is to partition all variables into several area withdominated relationship. It measure each variables of -dominated area by an index vector.

Then, it runs the same process of algorithm Global SEMO, and compares the index value instead of each objective of variable. This method has two important properties. The first one is to identify an -Pareto front. This is useful for some MOO problems under an unstable environment. And the second one is its size of evolutionary generation is bounded.

Aggregation method

Besides the dominance method, another useful method is to aggregate the Multi-objective into a Single-objective. Scalarization is the most common way to solve this problem.

However, a single-objective environment only results in a single target. To generate all elements of Pareto front, we need a set of scalarization functions to run. In this case, it exposes its shortcomings that it is blindness to search all optimal solutions. Of course, its advantage is obvious that it can quickly find a certain solution with special weight. There are several types of scalarization functions. We here introduce three scalarization function.

The linear Scalarization is the most popular scalarization function due to its simplicity. It weights each value of the objective vector and the result is the sum of these weighted values. The optimal target is to maximize the linear scalarization:

x * = arg max x∈X f (x) = arg max x∈X ω 1 x 1 + • • • + ω d x d
where (ω 1 , . . . , ω d ) is a set of predefined weights with reference and d j=1 ω j = 1. Here, we point out its weakness is unable to solve a non-convex Pareto front.

The Chebyshev scalarization [START_REF] Miettinen | Nonlinear multiobjective optimization[END_REF] has the capacity to overcome the problem of nonconvex Pareto front in certain conditions. The objective target of Chebyshev scalarization 4.1. MULTI-OBJECTIVE OPTIMIZATION is formulated as following.

f (x) = max 1 j d ω j (x j -z j ), ∀x ∈ X
where z = (z 1 , . . . , z d ) is a reference point that dominates all other the optimal vector x * .

For each objective j, this reference point is the maximum of the current optimal plus a small positive value, j > 0. Then:

(4.2) z j = max 1 i n
x j + j , ∀ j [START_REF] Drugan | Designing multi-objective multi-armed bandits algorithms: A study[END_REF] shows that all the optimal solutions of Pareto front can be found by moving the reference point z.

The optimum solution x * is the variable for which the scalarization function f , linear or Chebyshev, attains its maximum value

(4.3) f (x * ) := max x∈X f (x)
Ordered Weighted Averaging aggregation method (OWA) was proposed by Ronald R. Yager [START_REF] Yager | On ordered weighted averaging aggregation operators in multicriteria decisionmaking[END_REF] 

w i = w 1 + • • • + w d = 1.
Furthermore,

F(x) = d i=1 w i x σ(i) = w 1 x σ(1) + • • • + w d x σ(d)
where σ(i) is according to the order of x all elements.

A fundamental aspect of this operator is the re-ordering step, in particular an aggregate

x σi is not associated with a fixed and particular weight w i but rather a weight is associated with a particular ordered position. Different OWA operators are distinguished by their different weights. We her point out some special cases of OWA weights:

• Max: In this case w * = (1, 0, . . . , 0) and MAX(x) = max {x 1 , . . . , x d }.

• Min: In this case w * = (0, . . . , 0, 1) and

MIN(x) = min {x 1 , . . . , x d }
• Average: In this case w A = (1/d, . . . , 1/d) and

F A (x) = x 1 + • • • + x d d
To solve the problem of MOO, OWA chooses several weights function following the reference, and optimizes the objective target:

(4.4) F(x * ) := max x∈X f (x) = max x∈X d i=1 w i x σ(i)
To compare the effect of these three scalarized methods, we take some simulations with different Multi-objective sets. See 

Multi-Objective Optimization in Bandit environment

MOO in Section 4.1 is an optimization problem in a stable environment. If the objective space is allocated in a stochastic and uncertain environment, MOO problem becomes a particular Bandit problem, Multi-Objective Multi-Armed Bandit problem (MOMAB). To solve this problem, it should consider the objective vector space and import some useful techniques from MOO into MAB algorithms.

As MOO, A reward vector of MOMAB can be optimal in one objective and sub-optimal in others. To optimize MOMAB, it should find the Pareto front who contains all optimal arms according to their reward vectors. Refer to the Multi-Objective Optimization problem, the Pareto front of MOMAB can be identified by the dominance method or an aggregation method. Here, we construct a model of MOMAB problem.

Consider an initial set A with K arms, where K 2. Let the vector reward space be defined as a d-dimensional vector of [0, 1] d . When arm i is played, a random rewarding vector x is received, each component of this vector is drawn i.i.d from un certain distribution. For example this certain distribution is Bernoulli distribution. For arm i, its distribution is B(p i ). At time steps t 1 , t 2 , . . . , the corresponding reward vectors x

t 1 i t1 , x t 2 i t2
, . . . are independently and identically distributed according to the distribution with unknown expectation vector p i = (p 1 i , . . . , p d i ). Reward values obtained from different arms are also assumed to be independent. For MOO problem, we can directly optimize the objective vector p i . However, the expected vector p is unknown to be identified. Refer to the solution of MAB, we can estimated p i by an empirical expected vector pi . Let T i (N) be the number that the arm i has been played during all first N plays. The expected reward vectors are computed by averaging the empirical reward vectors observed over the time. The mean reward of an arm i is estimated to pi (N) = T i (N) s=1 x i (s)/T i (N), where x i (s) is the sampled value for arm i at time s. Here, we ideally think that if N → ∞, p i = pi (N)

Algorithms for MOMAB

In this section, we introduce some algorithms to optimize MOMAB problem. They are divided from two aspects: dominance and aggregation. The algorithm scalarized PAC (denoted as sPAC) is given in Appendix A.13. It assumes a fixed number of weight vectors W ← {w 1 , . . . , w |W| }. Under the stationary Bandit environment, the expected reward vector p i of an arm i is not the same as its empirical reward vector pi . There is some probability to bound the difference of p i and pi with the confidence value > 0 and a small error probability δ > 0, where f w ( μi ) -f w (µ i ) > , for any scalarization function f w (shown in Appendix A.13).

For the set A , each arm of this set is pulled for an equal and fixed number of times 1 ( /2) 2 log ( 2|W|K δ ). For each weight vector w, it identifies the optimal arms using the K arm pulls. The output for this algorithm is a reunion of the optimal set of arms for each scalarization function f w . If an optimal arm is not already in the Pareto front, then that UCB1 in MOMAB This is a dominance method. In the MAB problems, Upper Confidence Bound(UCB) policy [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF] plays firstly each arm, then adds an exploration bound to the estimated mean p of each arm i. The exploration bound is an upper confidence bound which depends on the number of times arm i has been pulled. UCB pulls the optimal arm i * that maximizes the function pi + 2 ln (t)

T i (N) as follows:

i * = argmax 1 i |A | pi + 2 ln (t) T i (N)
where T i (N) is the number of times arm i has been pulled.

For the MOMAB problems, [START_REF] Drugan | Designing multi-objective multi-armed bandits algorithms: A study[END_REF] extends the UCB policy to find the Pareto optimal arm set either by using UCB in Pareto order relationship or in scalarized functions. Where, Pareto-UCB plays initially each arm once. At each time step t, it estimates the mean vector of each of multi-objective arms i, i.e. pi = [ p1 i , . . . , pd i ] and adds to each dimension an upper confidence bound. Pareto-UCB uses a Pareto Partial order relationships. The Pareto optimal arm set A * , for all the non-optimal arms k, where k ∉ A * there exists a Pareto optimal arm i ∈ A * not dominates by the arms k:

∀ j ∈ {1, . . . K}, p j k + 2 ln (t [ 4]d|A * |) T k (N) ≯ p j i + 2 ln (t [ 4]d|A * |) T i (N)
Pareto-UCB uniformly and randomly selects one arm of the set A * . During the exploration phase, the principal idea is to select more times an arm j ∉ A * that is closer to the Pareto front set than the arm k ∉ A * that is far from A * . During the exploitation phase, it should pull most of times the optimal arm in the Pareto optimal set A * .

Annealing Linear Scalarized Based MOMAB algorithm This algorithm is proposed by [START_REF] Yahyaa | The scalarized multi-objective multiarmed bandit problem: an empirical study of its exploration vs. exploitation tradeoff[END_REF]. It aggregates Multi-objective space into a Single-objective one by using linear scalarized function. The annealing linear scalarized algorithm trades off efficiently between exploration and exploitation by using a decaying parameter t , where t ∈ (0, 1) in combination with the Pareto dominance relation. The t parameter has a top value at the beginning of time step t to explore all the available arms and increase the confidence in the estimated mean vectors, but as the time step t increases, the t parameter decreases Part II

Contributions

Proof.

E Ỹ [U t,1 ] = K i=1 P(i| ŷ) • U t,1 = K i=1 P(i| ŷ)1(i = y t ) U P A (x t , ŷt , i) P(i| ŷ) = K i=1 1(i = y t )U P A (x t , ŷt , i) = U P A (x t , ŷt , y t )
By the way, simple PAB is much easy and quick to learn data, also good enough to deal with the synthetic data by the expectation U P A .

Full PAB

Without item U t,2 , Ũ behaves like the U P A , when ỹt = y t . And it works very well with some linear data, but it has no capacity to learn on real and noisy data. So, we add an item U t,2 to the update of Simple PAB, for increasing the stability of algorithm and reducing the variance of the update.

When

ρ c > 0, we need both E Ỹ [U t,2 ] = 0 (so that E Ỹ [U P AB (x t , ŷt , Ỹ )] = U P A (x t , ŷt , y t )))
and

E Ỹ [< U t,1 ,U t,2 >] ≤ 0.
Lemma 5.2. Let U t,2 be defined as in eq.(5.2), E Ỹ [U t,2 ] = 0.

Proof. For each round t, we have

E Ỹ [U t,2 ] = K i=1 P(i| ŷt ) • U t,2 = K i=1 P(i| ŷt ) I(i = y t ) -P(i| ŷt ) P(i| ŷt ) ρ c 2 ∥ x t ∥ 2 + 1 2C Φ(x t , ŷt ) = K i=1 (I(i = y t ) -P(i| ŷt )) ρ c 2 ∥ x t ∥ 2 + 1 2C Φ(x t , ŷt ) = (1 -P(y t | ŷt )) ρ c 2 ∥ x t ∥ 2 + 1 2C Φ(x t , ŷt ) - i =y t P(i| ŷt ) ρ c 2 ∥ x t ∥ 2 + 1 2C Φ(x t , ŷt ) = 0. Lemma 5.3. E Ỹ [< U t,1 ,U t,2 >] ≤ 0 Proof. E Ỹ [〈U t,1 ,U t,2 〉] = K i=1 P(i| ŷt ) 1(i = y t ) U P A (x t , ŷt , i) P(i| ŷt ) ,
1(i = y t ) -P(i| ŷt )

P(i| ŷ) ρ c Φ(x t , ŷt ) 2 ∥ x t ∥ 2 + 1 2C = K i=1 1(i = y t ) 1(i = y t ) -P(i| ŷt ) P(i| ŷt ) ρ c 2 ∥ x t ∥ 2 + 1 2C 〈U P A (x t , ŷt , i), Φ(x t , ŷt )〉 = i= ŷt 1( ŷt = y t ) 1( ŷt = y t ) -P( ŷt | ŷt ) P( ŷt | ŷt ) ρ c 2 ∥ x t ∥ 2 + 1 2C 〈U P A (x t , ŷt , ŷt ), Φ(x t , ŷt )〉 + i = ŷt 1(i = y t ) 1(i = y t ) -P(i| ŷt ) P(i| ŷt ) ρ c 2 ∥ x t ∥ 2 + 1 2C 〈U P A (x t , ŷt , i), Φ(x t , ŷt )〉
with 〈Φ(x t , y), Φ(x t , z)〉 =∥ x t ∥ 2 if y = z, and 0 for others (refer to the definition of feature vector in section 3.1.1).

Due to

U P A (x t , ŷt , ŷt ) = τ t (Φ(x t , ŷt ) -Φ(x t , ŷt )) = 0
and ∀i = ŷt ,

〈U P A (x t , ŷt , i), Φ(x t , ŷt )〉 = τ t 〈Φ(x t , i) -Φ(x t , ŷt ), Φ(x t , ŷt )〉 = -τ t ∥ x t ∥ 2 . E Ỹ [〈U t,1 ,U t,2 〉] = - i = ŷt 1(i = y t ) 1(i = y t ) -P(i| ŷt ) P(i| ŷt ) ρ c ∥ x t ∥ 2 2 ∥ x t ∥ 2 + 1 2C
where the following items s i are always positive.

s i = 1(i = y t ) 1(i = y t ) -P(i| ŷt ) P(i| ŷt ) ρ c ∥ x t ∥ 2 2 ∥ x t ∥ 2 + 1 2C E Ỹ [< U 1 t ,U 2 t >] = - i = ŷt s i ≤ 0
For an appropriate value of ρ c , the role of U t,2 is thus to reduce the variance of the PAB update, and thus improve the speed of the learning process.

Algorithm 5.1 (PAB).

Initiation w 1 = 0.

for for each instance t = 1, ..., T do with the synthetic datasets, the full PAB overtakes the other methods, with a final error rate around 2.5% while the other algorithms attain 5% error, and even worse in the case of Confidit (8% error rate). Besides, the PAB error rate is constantly reducing during the learning process.

Receive x t ∈ R d

Conclusion

With the advantage of the Passive-Aggressive max-margin principle, the simple and full PAB appear effective to address the bandit online learning setting. Their first advantage is their linear complexity in space that allows to treat high dimensional datasets on the contrary to second-order methods. On separable data samples, the basic PAB overtakes most of the other approaches, at the exception of the Confidit algorithm, with a much lower complexity. It is however found to perform rather poorly on noisy and real world datasets. In contrast, the full PAB is expected to vary more smoothly over time, and is found to perform particularly well on the Reuters dataset. In that case, Confidit and Policy Gradient seem to fall in a local stable solution, while the full PAB constantly improves, issuing a better classifier. However, the performance of the algorithm is found to depend on three free parameters , ρ c and C. In order to avoid fastidious cross-validation, additional investigation is needed in order to find analytic estimates of their optimal values.

BANDIT FEEDBACK IN PASSIVE-AGGRESSIVE BOUND

Bandit feedback in Passive-Aggressive bound

Different to the PAB algorithm, BPA [START_REF] Zhong | Passive-aggressive bounds in bandit feedback classification[END_REF] also an adaptation of PA, its error even has a same bound as PA. Similar to PAB, at each round it outputs a prediction ŷt to be the label with the highest score of 〈w t , Φ(x t , i)〉, is defined as below:

(5.3) ŷt = h t (x t ) = argmax i∈{1,...,K} 〈w t , Φ(x t , i)〉
where w t ∈ R K×d like previously. Like previously, it needs to perform an exploration, i.e., sample a label randomly {1, ..., K} with parameter and contrast this random prediction with a bandit return 1 ỹt =y t , where ỹt is the result of a random draw from a certain distribution (see eq. 5.1) The instantaneous loss is given by the following function,

(5.4)

l t = [γ + 1 -21 ỹt =y t 〈w t , Φ(x t , ỹt )〉] +
Here, we define the parameter γ equals to 1. Otherwise 1 -21 ỹt =y t equal to -1 when ỹt = y t and 1 elsewhere. This loss is the standard hinge loss when the prediction is correct: it stays at 0 for 〈w t , Φ(x t , ỹt )〉 1 and then increases for decreasing values of 〈w t , Φ(x t , ỹt )〉.

In contrast, when the prediction is incorrect, the loss is equal to [1 + 〈w t , Φ(x t , ỹt )〉] + , i.e., stays at 0 for 〈w t , Φ(x t , ỹt )〉 ≤ -1 and then increases for increasing values of 〈w t , Φ(x t , ỹt )〉.

The linear classifiers are updated at each trial using the standard tools from convex analysis [START_REF] Boyd | Convex optimization[END_REF], Where w t satisfies the constraint in Eq. 3.5.

(5.5)

L(w, τ) = 1 2 ∥ w -w t ∥ 2 +τ 1 + (1 -21 ỹt =y t ) 〈w t , Φ(x t , i)〉 (5.6) w t+1 = w t + τ 21 ỹt =y t -1 Φ(x t , ỹt )
Taking the derivative of L(τ) with respect to τ and also setting it to zero, we get that:

τ = l t ∥ Φ(x t , ỹt ) ∥ 2
Considering for instance the common phenomenon of label noise, a mislabeled example may cause PA to drastically change its classifiers in the wrong direction. To derive soft-margin classifiers [START_REF] Vapnik | Statistical learning theory[END_REF] and a non-negative slack variable ξ is introduced into the optimization problem in Equation 3.5. According with [START_REF] Crammer | Online passive-aggressive algorithms[END_REF], the variable can be introduced in two different ways. By the initiation of w 1 = 0, (5.8)

T t=1 ∆ t =∥ u ∥ 2 -∥ w t+1 -u ∥ 2 ∥ u ∥ 2
Using the definition of update :

∆ t = -2 (w t -u), (21 ỹt =y t -1) l t ∥ Φ(x t , ỹt ) ∥ 2 Φ(x t , ỹt ) -∥ l t ∥ Φ(x t , ỹt ) ∥ 2 Φ(x t , ỹt ) ∥ 2 With l t = [1 + (1 -21 ( ỹt =y t ) ) • 〈w t , Φ(x t , ỹt )〉] + and l * t = [1 + (1 -21 ( ỹt =y t ) ) • 〈u, Φ(x t , ỹt )〉] + , So, ∆ t = 2 l 2 t -l t l * t ∥ Φ(x t , ỹt ) ∥ 2 - l t ∥ Φ(x t , ỹt ) ∥ 2 ∥ Φ(x t , ỹt ) ∥ 2 ∆ t = l 2 t -2l t l * t Φ(x t , ỹt ) ∥ 2
If all examples are separable, ∃u such that ∀t ∈ [1, ..., T] , l * t = 0 ,

⇒∥ u ∥ 2 T t=1 ∆ t T t=1 l 2 t ∥ Φ(x t , ỹt ) ∥ 2 ⇒ T t=1 l 2 t ∥ u ∥ 2 • ∥ Φ(x t , ỹt ) ∥ 2 T t=1 l 2 t R 2 • ∥ u ∥ 2
Theorem 5.2. Let (x 1 , y 1 ), ..., (x T , y T ) be a sequence of non-separable examples where x t ∈ R d , y t ∈ [1, ..., K] and ∥ x t ∥ R for all t. Then for any matrix u ∈ R K×d the cumulative squared loss of this algorithm is bounded by:

T t=1 l 2 t   R ∥ u ∥ +2 T t=1 (l * t ) 2   2
Proof. By the proof of Theorem 5.1,

T t=1 l 2 t R 2 • ∥ u ∥ 2 +2 T t=1 l t l * t
To upper bound the right side of the above inequality, we denote

L t = T t=1 l 2 t and U t = T t=1 (l * t ) 2 , 2(L t U t ) 2 -2( T t=1 l t l * t ) 2 = T i=1 T j=1 l 2 i (l * j ) 2 + T i=1 T j=1 l 2 j (l * i ) 2 -2 T i=1 T j=1 l i l j l * i l * j = T i=1 T j=1 (l i l * j -l j l * i ) 2 0 T t=1 l 2 t R 2 • ∥ u ∥ 2 +2 T t=1 l t l * t R 2 • ∥ u ∥ 2 +2L t U t L t U t + R 2 ∥ u ∥ 2 +U 2 t
Using the fact that a + b a + b ,

L t R ∥ u ∥ +2U t T t=1 l 2 t   R ∥ u ∥ +2 T t=1 (l * t ) 2   2

Experiments

Here, we evaluate the algorithms over two synthetic and three real world data sets. Their characteristics are summarized in Table 5.2. Data sets: The first data set, denoted by SynSep, is a 9-class, 400-dimensional synthetic data set of size 10 5 . More details about the method to generate this data set can be found in [START_REF] Kakade | Efficient bandit algorithms for online multiclass prediction[END_REF]. The SynSep idea is to have a simple simulation of generating a text document. The coordinates represent different words in a small vocabulary of size 400. We ensure that

SynSep is linearly separable.

The second data set, denoted by SynNonSep, is constructed the same way as SynSep except that a 5% label noise is introduced, which makes the data set non-separable.

The third data set is collected from the Reuters RCV1-v2 collection [START_REF] Lewis | Rcv1: A new benchmark collection for text categorization research[END_REF]. The original data set is composed by multi-label instances. So we make some preprocessing likes [START_REF] Bekkerman | Data weaving: Scaling up the state-of-the-art in data clustering[END_REF].

First, its label hierarchy is reorganized by mapping the data set to the second level of RCV1 topic hierarchy. The documents that have labels of the third or forth level only are mapped to their parent category of the second level; Second, all multi-labelled instances have been removed. This RCV1-v2 is a 53-class, 47236-dimensional real data set of size 10 5 .

The fourth and fifth data sets are collected from [START_REF] Alcala-Fdez | Keel: A software tool to assess evolutionary algorithms to data mining problems[END_REF][START_REF] Alcala-Fdez | Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework[END_REF]. The fourth data set is to identify each of a large number of black-and-white rectangular pixel displays as one of the 

Conclusion

In this section, we proposed a novel algorithm for online multiclass classification with bandit feedback. By the advantage of PA max-margin principle, BPA appears effective to address the bandit online learning setting. Its main advantage is its linear complexity in space that allows to deal with high dimensional data sets and a large number of classes, on the contrary to second-order methods. The practicability of this algorithm is verified theoretically by showing a competitive loss bound.

Moreover, experimental evaluation shows that BPA performs better than other algorithms on some real sets, even better than the algorithms with full feedback on the data to maximize the margin. Our goal is to reduce the computational complexity and avoid some useless support vector.

So that, following the growth of learning examples, we will get the hypothesis F :

(5.9) ∀k ∈ {1, . . . , K}, for all i ∈ {1, . . . , K} do

f k t = t-1 i=1 1(k = ỹi )τ i • (21( ỹi = y i ) -1) • k(x i
P( Ỹ = i| ŷt ) = p i,t = (1 -)1 i= ŷt + K end for
Draw ỹt randomly according to the distribution p t = (p 1,t , . . . , p K,t )

Observe BF = 1 ỹt =y t l t = [1 ỹt =y t + (1 -21 ỹt =y t ) |C | s=1 α ỹt s f ỹt s (x t )] + if l t = 0 then C ỹt ← C ỹt ∪ {x t } with α ỹt |C +1| = τ t • (21( ỹt = y t ) -1) end if end for
By the rule of update, it clearly shows that the hypothesis is composed by limited support vectors if the data is separable. If not, the number of support vectors grows without bounds. In that case, we can use another way to solve this issue in the next part.

Kernel Stochastic Gradient Descent with BPA loss

This method should refer to Kivinen's [START_REF] Kivinen | Online learning with kernels[END_REF] Stochastic Gradient Descent. Like the SGD in Hilbert Space, the goal of SGD is to minimize the regularized risk:

R[F ] = E[l t (x t , 1 ( ỹt =y t ) )] + λ 2 ∥ F ∥ 2 H
Here, the loss function should be replaced by the function 5.4 the loss function of algorithm BPA. Consider the classical stochastic gradient descent, take the gradient gradient to each hypothesis f i of F .

(5.10)

∀k ∈ [K], f k t+1 = f k t -η t ∂ f k R[F ]| f k = f k t where for k ∈ [K], t ∈ N, f k t ∈ H , ∂ f k denote ∂/∂
f k and η t > 0 is the learning rate (in this section, it is considered as a constant η t = η).

Since,

∂ f k R[F ] = λ 2 ∂ f k ∥ F ∥ 2 H +∂ f k (E[l(x t , ỹt )]) = 2 f k + ∂ f k l t (x t , 1 ( ỹt =y t ) ) ∂ f k l t (x t , 1 ( ỹt =y t ) ) =    1 -21 ( ỹt =y t ) if k = ỹt 0 else (5.11) f k t+1 =    f k t • (1 -λη) + η • (21 ( ỹt =y t ) -1) • k(x i , •) if k = ỹt f k t else
Here, we propose some ordered parameters (σ 1 t , . . . , σ K t ) with (5.12)

σ k t = t s=1 1( ỹs = k)
By the parameters σ, the update function 5.11 could be expressed as the following equation:

for ∀k ∈ {1, . . . , K} (5.13) 
f k t+1 = t i=1 ηα k i • k(x i , •)
where

α k i = 1 (k= ỹi ) (21( ỹi = y i ) -1) • (1 -λη) σ k t -σ k i -1
. Consider that the update 5.13 contains σ t kernel expansion terms, since the amount of computation terms grows linearly in the size of the expansion as same as the method we just mentioned in the head of this section. We learn the way from [START_REF] Kivinen | Online learning with kernels[END_REF] proposed by Kivinen, at each iteration the coefficients α k i are shrunk by 1 -λη except i = t. Thus after τ iterations the coefficients α k i will be reduced to (1 -λη) τ . Hence it could drop small terms and incur little error as the following lemma.

Lemma 5.4. Truncation Error

Suppose l t (x t , 1( ỹt = y t )) is the loss function which satisfies the condition

|∂ f k l t (x t , 1 ( ỹt =y t ) )| C for all k ∈ [K] and k(•, •) is a kernel function with bounded norm ∥ k(x, •) ∥ X where ∥ • ∥ denotes ∥ • ∥ H . Let f k trunc = t i=max(1,t-σ k i ) ηα i k(x i , •) denote the kernel expansion truncated to t s=σ k i 1( ỹs = k) = τ terms. The truncation error satisfies that for each k ∈ [K] ∥ f k -f k trunc ∥ t-σ k i i=1 η(1 -λη) t-σ k i C X < (1 -λη) τ C X /λ
Obviously the approximation quality increases exponentially with the number of terms retained.

Algorithm 5.4 (SGD with BPA loss in RKHS).

A sequence of learning data x 1 , . . . , x T Initialize the parameters λ > 0, a truncation parameter τ ∈ N, a learning rate η ∈ (0, 1/λ) 

l t = [1 ỹt =y t + (1 -21 ỹt =y t ) f ỹt t (x t )] + f ỹt t+1 = t s=max(0,τ) ηα ỹt s • k(x i , •) where α ỹt s = 1 k= ỹs (21 ỹs =y s -1) • (1 -λη) σ ỹs t -σ ỹs s -1 and σ k t = t s=1 1( ỹs = k) end for

Experiments

In this section, we take two datasets to evaluate and analyze the effect of these algorithm in Reproducing Kernel Hilbert Space.

Data description

The first dataset denoted by Pendigits, is a real data and created by E.Alpaydin and Fevzi.Alimoglu [START_REF] Alpaydin | Methods of combining multiple classifiers based on different representations for pen-based handwritten digit recognition[END_REF][START_REF] Alimoglu | Combining multiple classifiers for pen-based handwritten digit recognition[END_REF]. It collected 250samples from 44 writers. All writers are asked to write 250 digits in random order inside boxes of 500 by 500 tablet pixel resolution. Here, the dataset is part of original one. It contains 7494 instances, 16 features and 10 classes.

The second dataset denoted by 'Segment' [START_REF] Lichman | UCI machine learning repository[END_REF]. This dataset contains 2310 instances, all of them were drawn randomly from a database of 7 outdoor images. The images were handsegmented to create a clasification for every pixel. Each instance is a 3 × 3 region. It's a real dataset, with 19 features and 7 classes. More details could be referred to the data site "UCI".

Algorithm Here, we take algorithms Banditron (in RKHS), KBPA and KSGD to compare. In order to perform the effect of RKHS, we choose KBPA in linear model as the reference object and choose Laplace for the kernel function. Its form looks like the classification with Bandit Feedback. Considering the scale of classifier, we can use more efficient algorithm KBPA if dataset is separable, otherwise we use KSGD. Similarly to Online Passive-Aggressive, we output at each round a subset prediction Ŷt ∈ {0, 1} K according to the binary prediction as following:

ŷi t = sign(< w t , Φ(x, i) >)
Then an -greedy exploration is performed, where Ỹt ∈ {0, 1} K is the result of a random draw from P t (see Eq.(5.15)).

The linear classifiers are updated at each trial using the standard tools from convex analysis [START_REF] Boyd | Convex optimization[END_REF]. According the instantaneous loss (see Eq.(5.16)), the constrained optimization problem of Eq.(5.17) is solved by the Lagrangian method, i.e.:

(5.18)

L (w, τ t ) = 1 2 ∥ w -w t ∥ 2 +τ t K k=1 l k t ∂L (w, τ t ) ∂w = w -w t + τ t K k=1 (1 -2β k t )Φ(x t , k) (5.19) ⇒ w = w t + τ t K k=1 2β k t -1 Φ(x t , k) ∂L (τ t ) ∂τ t = 0 ⇒ τ t = L t ∥ K k=1 (2β k t -1)Φ(x t , k) ∥ 2 (5.20) τ t = L t K k=1 (2β k t -1) 2 ∥ x t ∥ 2 With L t = K k=1 l k t .
Considering

w 1 = 0, T t=1 ∆ t =∥ u ∥ 2 -∥ w t+1 -u ∥ 2 ∥ u ∥ 2
Now considering Eqs. (5.19) and (5.20),

∆ t = -2 (w t -u), τ t K k=1 (2β k t -1)Φ(x t , k) -τ t K k=1 (2β k t -1)Φ(x t , k), τ t K k=1 (2β k t -1)Φ(x t , k)
where

τ t = l t K k=1 (2β k t -1) 2 ∥x t ∥ 2 . Taking l t = K k=1 [1 ỹk t =1 +(1-2β k t ) 〈w t , Φ(x t , k)〉] + and l * t = K k=1 [1 ỹk t =1 +(1-2β k t ) 〈u, Φ(x t , k)〉] + We find ∆ t = l 2 t -l t l * t K k=1 (1 -2β k t ) 2 ∥ x t ∥ 2 If the examples are separable, ∃u such that ∀t ∈ [1, . . . , T], l * t = 0, T t=1 l 2 t K k=1 (1 -2β k t ) 2 ∥ x t ∥ 2 ∥ u ∥ 2 T t=1 l 2 t K k=1 (1 -2β k t ) 2 R 2 ∥ u ∥ 2 Because β k t ∈ {0, 1 2 , 1} T t=1 l 2 t K R 2 ∥ u ∥ 2
Proof. By the proof of Theorem 5.2,

T t=1 l 2 t K R 2 ∥ u ∥ 2 +2 T t=1 l t l * t
To upper bound the right side of the above inequality, and denotes

L t = T t=1 l 2 t and U t = T t=1 (l * t ) 2 , 2(L t U t ) 2 -2( T t=1 l t l * t ) 2 = T i=1 T j=1 l 2 i (l * j ) 2 + T i=1 T j=1 l 2 j (l * i ) 2 -2 T i=1 T j=1 l i l j l * i l * j = T i=1 T j=1 (l i l * j -l j l * i ) 2 0 T t=1 l 2 t K R 2 ∥ u ∥ 2 +2 T t=1 l t l * t K R 2 ∥ u ∥ 2 +2L t U t (L t -U t ) 2 K R 2 ∥ u ∥ 2 +U 2 t L t U t + K R 2 ∥ u ∥ 2 +U 2 t
Using the fact that a + b a + b ,

L t K R ∥ u ∥ +2U t T t=1 l 2 t   K R ∥ u ∥ +2 T t=1 (l * t ) 2   2 

Experiments

Data In this part, we take some experiments to evaluate some algorithms over two datasets.

Reuters RCV1-v2 collection [START_REF] Lewis | Rcv1: A new benchmark collection for text categorization research[END_REF], it is a text data set. Its label is organized by mapping the data set to the Reuters topic hierarchy, has 101 labels, and its cardinality number is 2.88. It contains 23149 instances. It is a truly high dimension data sets, the number of features D is 47236.

Yeast prepocessed by Elisseeff [START_REF] Elisseeff | A kernel method for multi-labelled classification[END_REF], where only the known structure of the functional classes are used. This multilabel dataset contains 2417 genes each represented by a 103dimensional feature vector. There are 14 possible class labels and average cardinality is between 4.3 and 5.9.

Algorithm All participants to the experiment have been introduced, and multiclass/multilabel classification algorithm Passive-Aggressive online(PA), BPA for multilabel, and Second Order algorithm with UCB.

Evaluation Metric

In multilabel classification, the predictions for an instance is a set of labels. The prediction can be fully correct, partially correct or fully wrong. That makes evaluate a multilabel classifier more challenge than multiclass classification. In this experimentation, we use the following metric to evaluate the algorithms' performance.

• Precision is the proportion of predicted correct labels to the total number of actual predicted labels, averaged over all instances. In Chapter 4, we have introduced some definitions and methods about the Multi-Objective Multi-Armed Bandit problems. In this chapter, we continue to discuss this problem. We optimize the naive ( , δ) algorithm of MAB to identify the -Pareto Front of MOMAB, and calculate two budget bounds in the pure exploration framework. These two bounds ensure the correctness and completeness of the -Pareto front.

P = 1 N N t=1 | Y t ∩ Ŷt | | Ŷt |

Identification the -Pareto front

In this section, we propose a simple algorithm to find the Pareto front of Multi-Objective Multi-Armed Bandits. It extends the naive ( , δ)-algorithm [START_REF] Even-Dar | Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems[END_REF] to the Multi-Objective setting. The novel algorithm accurately identifies the optimal solutions with a tolerance δ. For the -dominance, we propose a novel fast algorithm to partially order the arm set, which is an improvement from [START_REF] Kung | On finding the maxima of a set of vectors[END_REF].

There are several dominance relations that can partially order vectors in Multi-Objective Optimization. The Pareto dominance is the natural one, which has been introduced in Chapter 4. Here, we concentrates on MOO problems in the Bandit setting.

Because of the stochastic characteristic of Bandit problems, the distribution probability vectors of arms are unknown to us. Therefore, we need to pull arms to approximate these vectors by empirical ones. Here, we use the method PAC [START_REF] Haussler | Probably approximately correct learning[END_REF] to calculate the number of Lemma 6.1 (Lower bound). If we do not miss any optimal arm of the -Pareto front with δ-tolerant error probability, we need at least to pull n lower times for each arm.

(6.2)

n lower = 2K 2 (ln 2 + 1 D ln K δ )
Proof. There are an optimal arm a and a non-optimal arm a with distribution p a and p a , so p a p a . After n pulls, their empirical distribution are estimated as pa and pa . Let the arm a -dominates the arm a ( pa pa ), iff ∀i ∈ [1, . . . , D], pi a > pi a + . Here, we calculate the probability of pa pa .

P( pa pa ) = P ( p1 a > p1 a + ) ∩ • • • ∩ ( pD a > pD a + )
For all objectives of each vector are independent, there are the following deduction.

P( pa pa ) = P p1 a > p1 a + * • • • * P pD a > pD a + = D i=1 P( pi a > pi a + ) D i=1 P( pi a > p i a + 2 ou pi a < p i a - 2 ) D i=1 P( pi a > p i a + 2 ) + P( pi a < p i a - 2 ) 2 exp (-2( 2 ) 2 n) D
If we make an assumption that all arms may be this optimal arm a, the error probability for an arm a is bounded as P( pa pa ) δ K . So,

2 exp (-2( 2 ) 2 n) D = δ K ,
where n is the number that we pull arm a. For all arms, the number that they should be pulled

n lower = 2K 2 (ln 2 + 1 D ln K δ )
Lemma 6.2 (Upper bound). If we can eliminate all non-optimal arms from the -Pareto front with δ-tolerant error probability, we need pull n u p per times for each arm. 

2K D δ

Proof. There is a non-optimal arm a and optimal arm a with distribution p a and p a with p a p a . After n times pulling, the empirical distribution can be estimated as pa and pa . There is δ error probability to leave arm a in -Pareto front. We here calculate the probability P( pa pa ). Therefore, we here propose a fast way to identify the -Pareto front, which is based on Kung's method [START_REF] Kung | On finding the maxima of a set of vectors[END_REF] to find the maximal elements of a set of vectors. In [START_REF] Kung | On finding the maxima of a set of vectors[END_REF], it proved that kung's method has lest complexity to find the maxima vector. For example, there are 

• • • p2 σ (K) ,
and compared pσ (i) with another reference z 1 , where z 1 is initiated by z 1 = p1 σ (1) , and it outputs a vector set A 2 . Finally, it merges these two sets A 1 and A 2 to be -Pareto front (more details in Algorithm 6.2). The complexity of sorting algorithm is O(K log K) for one Table 6.1: The parameters of algorithm " -Pareto Identification" and "Annealing Scalarized".

Algorithm Parameters -Pareto Identification [START_REF] Auer | Using confidence bounds for exploitation-exploration trade-offs[END_REF] = 0.1 δ = 0.05 Annealing Scalarized [START_REF] Auer | Using confidence bounds for exploitation-exploration trade-offs[END_REF] deca y = 0.5 S = 10 -Pareto Identification [START_REF] Li | An empirical evaluation of thompson sampling[END_REF] = 0.1 δ = 0.1 Annealing Scalarized [START_REF] Li | An empirical evaluation of thompson sampling[END_REF] deca y = 0.3 S = 30

The principle of this algorithm is just to convert a problem from unknown to known, from complex to simple. Its process is shown in Algorithm 6.4. In this situation, the complexity of this algorithm is O(N(log N) D-2 ) (the demonstration refers to [START_REF] Kung | On finding the maxima of a set of vectors[END_REF]). 

Experiments

Method. This experimentation is used to demonstrate the theoretical analysis. All points are generated at random in the range [0, 1] 2 . Datasets could be divided into three kinds: e.g. 'linear', 'convex' and 'concave'. For each data state, the points are bounded by a linear frontier, convex frontier and concave frontier, respectively. Let the coordinates of arm x be (x 1 , x 2 ), which are considered as the expected reward of arm x. During the experimental process, the reward for arm x is given randomly according its probability (x 1 , x 2 ). Then we calculate the empirical expected probability by their rewards. Here, we compare our algorithm " -Pareto Identification" with the Annealing Scalarized approach [START_REF] Yahyaa | Annealing linear scalarized based multi-objective multi-armed bandit algorithm[END_REF], which is a UCB-scalarization method. The goal of this experimentation is to prove that the Pareto front identified by our algorithm matches very well the real Pareto front, and we make less errors. Some useful parameters of these algorithms are reported in Result. In Table 6.2, some place marked as "10/7 , it means that this algorithm identifies "10" arms as optimal arms in the Pareto front, "7" means there are only 7 arms in the real Pareto set. And from the results, we find both algorithms -Pareto Identification and Annealing Scalarized perform very well when there are only 10 points. However, when the number of points reaches 30, the scalarized algorithm shows its shortcomings that it is difficulty to find all optimal solutions with limited aggregation functions. Therefore, the -Pareto Identification algorithm does not have this kind problem. Under the theoretical analysis, if we can pull n lower times for each arm, it can find all optimal arms. In fact, the empirical results can prove the theoretical analysis. Sometimes, the -Pareto Identification finds some wrong solutions, but this error is tolerant within the error probability δ. 

Conclusions

Bandit problems constitute a sequential dynamic allocation problem. The pulling agent has to explore its environment (i.e. the arms) to gather information on the one hand, and it has to exploit the collected clues to increase its rewards on the other hand. How to adequately balance the exploration phase and the exploitation phase is the crux of bandit problems and most of the efforts devoted by the research community from this field has focused on finding the right exploitation/exploration tradeoff. In this dissertation, we focus on investigating two specific bandit problems: the contextual bandit problems and the multi-objective bandit problems.

Summary of contributions

This dissertation provides two contributions. The first contribution is about the classification under partial supervision, which we encode as a contextual bandit problem with side information. This kind of problem is heavily studied by researchers working on social networks and recommendation systems. We provide a series of algorithms to solve the Bandit feedback problem that pertain to the Passive-Aggressive family of algorithms. We take advantage of its grounded foundations and we are able to show that our algorithms are much simpler to implement than state-of-the-are algorithms for bandit with partial feedback, and they yet achieve better performances of classification. The second contribution is about multi-objective multi-armed bandit problem (MOMAB). We propose an effective and theoretically motivated method to identify the Pareto front of arms. We in particular show that we can find all elements of the Pareto front with a minimal budget.

PBA provides an update item whose expectation equals to the PA one. It has two 7.2. RESEARCH IN THE FUTURE algorithm to compare the -dominance across all arms. When there is a huge set of arms, this method can locate the -Pareto front quickly.

Research in the future

Several limitations of our results need to be adressed in the future. Regarding the contextual with side information, we should put a stronger focus on the tradeoff between exploration and exploitation. Our algorithms is based on the -greedy strategy (see in section 2.3.4) to keep the balance between exploration and exploitation. At each round, it samples the labels with a fixed probability K to explore, and 1 -to exploit. If we always have some probability to explore, this results in wasting the budgets, after the classifier has performed very well. In Figure 5.9, 5.10 and 5.11, we observe that the result of algorithm BPA has less difference between the different of value . This result naturally suggests us to use variable ε across the learning session, allowing more exploration in the first trials and more exploitation in the last ones. Next step, we can try the dynamic -greedy [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF],

that parameter attenuate according to 1/t. Otherwise, there is another limitation for our algorithms, it is how to choose the parameters, e.g. in algorithm PAB, there are C for the soft-margin, for -greedy; in KBPA, the parameters of kernel function. Generally, we need to take a cross-validation to determine these parameters. However, when an algorithm has two or more parameters to choose, the comparing work becomes very difficult.

The second aspect is about the Pareto front of MOMAB problem. At present, we use pure exploration to identify the optimal arms for getting the Pareto front. This way can ensure the integrity of the Pareto set, however it wastes some budgets compared with other methods. So next step, we need to continue to optimize this method.

The work of this dissertation opens several theoretical and applicative perspectives for the future. From the applicative perspective, this work has a very broad prospect.

We already mentioned the applications in social networks and recommendation systems.

Another example is decision making in labor markets [109]. Problems like Internet packet routing or smart grid electricity distribution can also be considered, where the Multiobjective bandit framework may provide an effective framework for routing optimization.

Bandit framework can also combine with other machine learning frameworks, e.g. deep learning, active learning, semi-supervised learning, for they share a common principles.

Finally, those three years of PhD preparation, not only influenced my view on research and work, but also changed my attitude toward life and philosophy.
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 46111121 Soit (x 1 , Y 1 ), . . . , (x T , Y T ) une suite d'exemples non-séparables où x t ∈ R d , Y t ∈ {0, 1} K et ∥ x t ∥ R pour tous t. Alors, n'importe quel matrice u ∈ R K×d , multi-étiquette, nous proposons ce nouveau algorithme. Nous transférons la classification multi-étiquette en plusieurs classifications binaires. En même temps, il apprend des classifieurs multiples par BPA. Cet algorithme, à la fois de l'analyse théorique et résultat empirique, se performe bien. Un algorithme d'identifier le front d' -Pareto de MOMAB Dans cette partie, nous proposons un algorithme pour identifier le front d' -Pareto de MOMAB. Il étend l'algorithme du naïve ( , δ)-PAC au réglage multi-objective. Ce nouvel algorithme peut identifier les solutions optimales sous une tolérance δ. Lemma 0.5 (Le borne inférieur). Si nous ne manquons pas de bras optimale du front d' -Pareto sous une tolérance δ, nous avons besoin au moins de tirer n lower fois sur chaque bras. Le borne supérieure). Si nous pouvons élimiter toutes les bras non-optimales du front d' -Pareto sous une tolérance δ, nous devons tirer n u p per fois sur chaque bras. n u p per = 2K 2 ln 2K D δ Algorithm 0.1 ( -Pareto Identification algorithm).Initiate parameters and δfor Sample each arm a∈ A n 1 = 2K 2 (ln 2 + 1 D ln K δ ) times do pa = r a,t end for Identify the set A = {a ∈ A |∀a ∈ A a a}. for Sample each arm a ∈ A n 2 = 2K 2 ln 2K D δ -2K 2 (ln 2 + 1 D ln K δ ) times do pa = +n2 t=1 r a,t end for Output A * = {a ∈ A | a ∈ A , a a} xi Par le borne inférieur, l'algorithme peut sortir un ensemble d' -Pareto qui contient
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 14263791911912 Le deuxième aspect est sur le problème du front Pareto de MOMAB. En ce moment, nous utilisons l'exploration pure d'identifier les bras optimaux pour sélectionner le front Pareto. Cette méthode peut garantir l'intégrité du front Pareto. Mais, il gaspille plus de budgets que d'autres méthodes. Pour la prochaine étape, nous devons continuer à optimizer cette méthode. Cette dissertation existe quelques perspectives théoriques et pratiques dans le futur. Du perspective pratique, elle a des prospects vastes. Nous avons mensionné des applications aux réseaux sociaux et au système recommandation. D'autre exemple est prise de décision aux ressources humaines [109]. En se considérant des problèmes comme le routage des paquets Internet ou de distribution d'électricité de réseau intelligent, Bandit en Multiobjective peut proposer une efficace encadrement qui puisse optimiser celles problèmes. L'encadrement de Bandit peut aussi combiner avec d'autre encadrement d'apprentissage xii Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MultiEnvironment of Multi-Armed Bandit . . . . . . . . . . . . . . . . . . . . . . . Stationary Bandit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adversary Bandit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 xv
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 11 Figure 1.1: Clinical Trials

Figure 1 . 2 :

 12 Figure 1.2: Web Search
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 13 Figure 1.3: Google Analytic Service
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 1 k * = argmax k∈K μk and µ * = max k∈K μk Simple Regret In the sequel, ∆ k = µ * -μk denotes the gap between the maximal expected reward and the k th arm. The minimal gap can be noted by ∆ = min k:∆ k >0

CHAPTER 2 .

 2 MULTI-ARMED BANDITThe origins of Thompson Sampling has been introduced in Chapter 1, is from the procedure's inventor William R. Thompson. Thompson was interested in the general problem of research planning. He was concerned with being able to utilize a small number of observations in order to steer actions taken before more data could be collected. This was in the context of a perceived objection to argument based on small numbers of observations at the time. Thompson posed his problem in terms of deciding between two treatments in a clinical trial. One of the treatments would be administered to a patient in the trial population and the effect could be observed. These observations can then be incorporated into the decision-making process to improve the odds of the most effective treatment being administered to further patients.

Algorithm 2 . 3 (m.

 23 Improved UCB algorithm). Set arms K = {1, . . . , K}, all playing times T = 1, 2, . . . , T Initialization: Set ∆0 := 1, and B 0 := K . for each round t = 1, 2, . . . , 1 2 log T e do Select arm: if |B m | > 1, choose each arm in B m until the total number of times it has been chosen is n m := 2 log T ∆2 m ∆2 Otherwise choose the single B m until step T is reached.
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 21 Figure 2.1: the mechanism of epsilon-greedy

Algorithm 2 . 5 (

 25 Pure exploration).Set rounds T and a arm set K. for each arm k=1,2,. . . , K do for each round t = 1,2,. . . , T do Pull arm k and get reward r (k,t) which is drawn i.i.d. randomly end for μk = 1 T T t=1 r (k,t) end for Output the optimal arm k * t = argmax k=1,2,...,K μk

Figure 3 . 1 :Figure 3 . 2 :

 3132 Figure 3.1: Multiclass task

  ; (x, y)) γ 1 -e(w; (x, y)) otherwise The PA update rule is derived by defining the new weight w t+1 as the solution to the optimization problem: (3.5) w t+1 = argmin w∈R K×d

CHAPTER 3 .

 3 BANDIT WITH SIDE INFORMATION Given a training set S = {(x i , Y i )}, 1 i T, consisting of T training instances. All instances are i.i.d. drawn from an unknown distribution D, and the goal of Multi-label Classification is to produce a classifier h : X → Y that optimizes some specific evaluation function (i.e. loss function).

  ) is one of the most popular transformation methods. It first creates K datasets (K = |Y |), each for one label, and trains a classifier on each of these datasets. All new datasets contain the same number of instances as the original data, but each dataset D k , 1 k K positively labels instances that belong to class y k and negative otherwise. Table3.2 shows the example dataset for BR.

Definition 4 . 1 .Definition 4 . 2 .Definition 4 . 3 .Definition 4 . 4 .Definition 4 . 5 .Definition 4 . 6 .

 414243444546 Weak Pareto dominance Given two objective vectors y = (y 1 , . . . , y d ), y = (y 1 , . . . , y d ), y is said to weakly dominate y ( denoted y y ) iff y i y i , ∀i ∈ [1, . . . , d]. Pareto dominance Objective vector y dominated objective vector y (denoted y y ) is y y and ∃i ∈ [1, . . . , d], s.t.y i > y i . Incomparability dominance Objective vectors y and y are incomparable (denoted y||y ) iff y y and y y. Pareto optimality The solution x * is Pareto optimality iff its correspondent objective vector f(x * ) does not dominate by any other objective vector f(x), that x X s.t. f(x) f(x * ). Pareto front Given a set P ⊆ X , P * is a subset of P. Any element of the set P * is not dominated by elements of P, referred to as Pareto front w.r.t. P. P * = {x ∈ P : x ∈ P s.t. f(x ) f(x)} Comparison between non-dominated sets A non-dominated set P 1

Fig 4 . 1 ,

 41 Fig 4.2, Fig 4.3, each figure contains four graphs, they are in order as the original Pareto front, the linear scalarization, owa aggregation and Chebyshev. From the result, the Pareto front by Chebyshev scalarization is most approximate to the original one. And it is obviously that the linear scalarization mostly does not work on concave dataset.
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 41 Figure 4.1: On linear datasets.
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 42 Figure 4.2: On convex datasets.

Figure 4 . 3 :

 43 Figure 4.3: On concave datasets.

  to exploit the arms that have maximum estimated mean vectors. To keep trak on all the optimal arms in the Pareto front A * , at each time step t, the annealing linear scalarized function uses Pareto dominance relation. If t → 0, then the annealing algorithm selects uniformly at random one of the available arms. (shown in Appendix A.[START_REF] Ortner | Ucb revisited: Improved regret bounds for the stochastic multi-armed bandit problem[END_REF] 
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 165152 Figure 5.1: Cumulative errors of each algorithm under the SynSep data.
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 53 Figure 5.3: Cumulative errors of each algorithm under the RCV1-v2 data.

10 = 0. 6 , C = 1 Figures 5 . 6 , 5 . 7 Figure 5 . 4 :

 1061565754 Figures 5.6, 5.7 and 5.8 present the result on three real data sets. With the three real data sets, the supervised algorithms, despite their competitive advantage with respect to the ones with bandit feedback, do not significantly depart from BPA and Confidit, with classification results that clearly outperform Banditron. While having a lower computational
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 556 Figure 5.6: Cumulative Errors on the real data set of RCV1-v2 (53 classes).
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 57 Figure 5.7: Cumulative Errors on the real data set of Letter Recognition (10 numbers).
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 512 Figure 5.12: Average training time for each instance of Data Pendigits.
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 513514515 Figure 5.13: Average error rate for each instance of Data Pendigits
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  Figure 5.16: Average error rate for each instance of Data Segment
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 520855521522523524 Figure 5.20: OneError of algorithms on RCV1-v2
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 921111121 P( pa pa ) P ∃i ∈ [1, . . . , D], pi a + > pi a P p1 a + > p1 a ∪ • • • ∪ pD a + > pD If each non-optimal arm a has the probability δ K that could appear in the -Pareto front. Firstly, we proposed the -Pareto Identification algorithm (see Algorithm 6.1). By improving the ( , δ)-PAC algorithm of MAB, it can adapt Multi-Objective problems under Bandit environment and identify -Pareto front. By the lower bound, the algorithm can output an -Pareto which contains all true optimal arms with δ error probability. And we can eliminate all non-optimal arms from the -Pareto front after upper bound pulls. So, this algorithm starts with the lower bound. Every arm should be pulled n lower times, then, we compare the empirical distribution of all arms with -dominance. After eliminating the -dominated arms, we pull the rest arms by n u p per -n lower times to identify the rest non-optimal arms in -Pareto front. Algorithm 6.1 ( -Pareto Identification algorithm). Initiate parameters and δ for Sample each arm a ∈ A n 1 = 2K 2 (ln 2 + 1 D ln K δ IDENTIFICATION THE -PARETO FRONT pa = r a,t end for Identify the set A = {a ∈ A |∀a ∈ A a a}. for Sample each arm a ∈ A n 2 = 2K 2 ln 2K D δ -2K 2 (ln 2 + 1 D ln K δ ) times do pa = +n 2 t=1 r a,t end for Output A * = {a ∈ A | a ∈ A , a a} In Algorithm 6.1, how to compare arms with -domiance is a crucial step that affects the final result. Under usual circumstances, it should compare all objectives of arms. When the number of arms or objectives increases, it will truly be a difficult task to complete.

  N D-dimensional vectors, if D = 2, 3, its complexity is O(N log N), and O N log N D-2 for D 4. Here, we provide an improvement of Kung's algorithm to find the maxima vectors for the -Pareto front. This method mostly reduces the complexity of searching and satisfies the requirement of comparing -dominance. It is classified by the number of objectives, e.g. D = 2, D = 3 or D 4. Look back to the model of MOMAB problem at the beginning of this chapter, this fast algorithm is to compare these empirical expected rewards vectors p. When D = 2, for K arms, their empirical vectors are pi ∈ R 2 , with i = [1, . . . , K]. We arrange these vectors by the first objective such that p1 where σ is a permutation function. It arranges these vectors by a descendant order. Set parameters Indicator i = 1, z 2 = p2 σ(1) and the -Pareto front A 1 = Ø. Make a sequence, compared p2σ(i) with z 2 . If p2 σ(i) + > z 2 , this arm will be added to the -Pareto, and the reference z 2 will be replaced by the maximum of p2 σ(i) and z 2 . Move the indicator i to i + 1. Until the indicator arrives to K, it output the set A 1 .Then, this algorithm will start a new arrangement. It sorts descendant this vector set

Algorithm 6 . 4 (

 64 Fast -Pareto Finder (D 4)).Arrange all vectorsp ∈ R D , such that p1 σ(1) > p1 σ(2) > • • • > p1 σ(K) ; Find s = arg max i∈[1,...,K] (i K/2) , s.t. p1 σ(s) -p1 σ(s+1) > Set A * = ( p1 σ(1) , . . . , p1 σ(s) ) and A * = ( p1 σ(s+1) , . . . , p1 σ(K) ) Find respectively the -Pareto front A * for set A * and A * for set A * Find a set T = {a ∈ A * |a a, where a ∈ A * } Output the -Pareto front A * = A * ∪ T.

Graphic.

  Fig. 6.6, each graph contains 30 points. Each figure contains 4 graphs. According to the order, they are the original points; the points with the real Pareto front; -Pareto front of " -Pareto Identification"; the Pareto front of "Annealing Scalarized".
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  3.2. MULTI-LABEL CLASSIFICATION WITH BANDIT FEEDBACKwith Bandit feedback. And it uses the correlation matrix to estimate the uncertainty of label set. Its regret bound is of O( T log T), which is better than the one of Banditron.

Table 3 .

 3 

	1: Example of multi-label dataset
	Instance Label Set
	x 1	{1, 4}
	x 2	{2, 3, 4}
	x 3	{1, 3}
	x 4	{2, 4}

Copy transformation this method replaces each example (x t , Y t ) with |Y t | copies (x t , y k t ), for each label y k t ∈ Y t . So, instance (x 1 , {1, 4}) represented as (x 1 , {1}) and (x 1 , {4}). There is an extension to this, it is to use a weight of

1 

|Y t | to each created examples.

Table 5 .

 5 1: The summary of algorithm parameters for different datasets. B. denotes Algorithm Banditron, C. is Confidit, PG presents Policy Gradient and S.PAB is Simple PAB.

1 2

 1 ∥ ww t ∥ 2 +Cξ s.t. l(w; (x t , y t )) ξ and ξ 0

	w t+1 = ar gmin w∈R K×d	1 2 ∥ w -w t ∥ 2 +Cξ 2	s.t. l(w; (x t , y t )) ξ

Table 5 .

 5 2: Summary of the five data sets, including the numbers of instances, features, labels and whether the number of examples in each class are balanced.

	Dataset	Instances Features Labels Balanced
	SynSep	10 5	400	9	Y
	SynNonSep 10 5	400	9	Y
	RCV1-v2	10 5	47236	53	N
	Letter	2 * 10 4	16	26	N
	Pen-Based	1.32 * 10 4	16	10	N

Table 5 .

 5 26 capital letters in the English alphabet. The character images were based on 20 different fonts and each letter within these 20 fonts was randomly distorted to produce a file of 20000 unique stimuli. Each stimuli was converted into 16 primitive numerical attributes (statistical moments and edge counts). It forms a 26-class, 16-dimensional real data set of size 20000. The fifth data set is a digit data base made by collecting 250 samples from 44 writers, using only (x,y) coordinate information represented as constant length feature vectors, which were resampled to 8 points per digit (therefore the data set contains 8 points × 2 coordinates = 16 features). This one is a 10-class, 16-dimensional real data set of size 10992. Results Figures 5.4 and 5.5 show the experimental results on two synthetic data sets. For SynSep, a separable linear data set, all algorithms except Banditron obtain a good performance; with the non-separable SynNonSep data, Confidit and BPA outperform the other algorithms, even the supervised algorithms. To different datasets, the parameters of different algorithms refer to Table 5.3. 3: The summary of algorithm parameters for different datasets. P. denotes Perceptron, PA is Passive-Aggressive online algorithm, B. is Banditron, C. is Confidit and BPA.

  Cumulative Errors on the real data set of Letter Recognition (26 Letters).

					5.2. BANDIT FEEDBACK IN PASSIVE-AGGRESSIVE BOUND 5.3. BANDIT FEEDBACK WITH KERNEL
							Letter Recognition (26 letters)		
		16000								
				Perceptron					
				PA						
		14000		Banditron					
				Confidit					
				Bandit PA					
		12000								
	Cumulative errors	6000 8000 10000					Reuters Letters Recognition(10 numbers)		
		1		0.3						
		4000 0.9								Banditron Bandit PA Bandit PA Banditron
				0.25						
		2000 0.8								
		0 0.7	0.2	0.2	0.4	0.6	number of examples 0.8 1 1.2	1.4	1.6	1.8	×10 4 2
	0 0 Figure 5.8: epsilon 0.1 0.2 0.3 0.4 0.5 0 0.02 0.04 0.06 0.14 0.16 0.18 0.2 SynNonSep 0 0.1 0.2 0.3 0.4 ratio of errors 0 0.05 0.1 0.15 epsilon 0.1 0.2 0.3 0.4 0.5 0.6 ratio of errors 0 0.1 0.2 0.3 0.4 0.5 0.1 0.12 Figure 5.10: Average error of Banditron and BPA for parameter's value on the data set of 0.6 0.7 0.8 0.9 1 Banditron Bandit PA epsilon 0.5 0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1 Figure 5.11: Average error of Banditron and BPA for parameter's value on the data set of ratio of errors 0.08 Reuters. Letter Recognition.
	Figure 5.9: Average error of Banditron and BPA for parameter's value on the data set of
	SynNonSep.									

  , •) {C 1 , . . . , C K }, ∀i ∈ [1, . . . , K], C i = 0 ∈ R dfor On each round t ∈ {1, 2, . . . , } do

	Algorithm 5.3 (The BPA algorithm in RKHS).
	A sequence of learning data x 1 , . . . , x T
	Creat K containers C = Receive the instance data x t
	Predict ŷt = argmax i∈{1,...,K}	|C | s=1 α i s f i s (x t ) where f i s is the s th support vector from C i container.

  Draw ỹt randomly from the distribution p t = (p 1,t , . . . , p K,t ) Observe 1 ỹt =y t

	for On each round t ∈ {1, 2, . . . , } do
	Receive the instance data x t
	Predict ŷt = argmax i∈{1,...,K}	f i t (x t )
	for all i ∈ {1, . . . , K} do
	P( Ỹ = i| ŷt ) = (1 -)1 i= ŷt + K
	end for	

  5.16: Average error rate for each instance of Data Segment losses from the arriving data x t and corresponding responses y t , with t 0. The loss l(w t ; (x t , y t )) can be the hinge loss. The solution will be derived from the optimization Intuitively, if w t suffers no loss from new data, i.e., l (w; (x t , y t )) = 0, the algorithm passively assigns w t+1 = w t ; otherwise, it aggressively projects w t to the feasible zone of parameter vectors that attain zero loss.

	problem:	
	(5.17)	w t+1 = argmin w∈R K×d s.t. L t = l t w; (x t , y k 1 ∥ w -w t ∥ 2 2 t = 1) = 0 K
		k=1

Table 5 .

 5 4: The summary of RCV1-v2, here Algo present Algorithm, P is precision, R is Recall, O denotes OneError, Hloss is Hamming loss and Card means Cardinality

	Algo P	R	O	Hloss Card	Time
	PA	0.629 0.185 0.07	0.021	2.001	4.21 * 10 -4
	BPAs 0.990 0.159 0.151 0.027	1.37	5.37 * 10-4
	2OD	0.983 0.172 0.202 0.040	1.0044 2.13 * 10 -1

Table 5 .

 5 5: The summary of Yeast dataset.

	Algo P	R	O	Hloss Card Time
	PA	0.692 0.452 0.415 0.36	6.1	6.12 * 10 -7
	BPAs 0.718 0.459 0.243 0.31	6.8	6.5 * 10 -7
	2OD	0.840 0.488 0.312 0.29	5.4	3.88 * 10 -5

Table 6
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	.1
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Table 6 .

 6 2:The results of algorithm " -Pareto Identification" and "Annealing Scalarized".

	Algorithm	Linear Convex Concave
	Real Pareto (10)	7	5	6
	-Pareto Identification (10) 7/7	5/5	7/6
	Annealing Scalarized (10)	4/4	5/5	3/3
	Real Pareto (30)	7	7	12
	-Pareto Identification (30) 8/7	7/7	12/12
	Annealing Scalarized (30)	15/7	13/5	14/7

6.2. EXPERIMENTS Figure 6.3: 10 points in concave state

2.3. THE STRATEGY OF TRADE-OFF

3.1. MULTI-CLASS CLASSIFICATION WITH BANDIT FEEDBACK
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Chapter 5

Passive-Aggressive Classification with Bandit Feedback

In this chapter, we address the problem of Classification with Bandit Feedback, which has been introduced in chapter 3. Based on the Passive-Aggressive algorithm, we here propose some novel algorithms to solve the problems from Multi-class, Multi-label and Reproducing Kernel Hilbert Space. Thanks to an effective framework of Online Passive-Aggressive, our algorithms can perform max-margin for online learning. By analyzing theoretically, we find the upper bound of cumulative squared loss, some of them even reached the level as same as Online Passive-Aggressive. Finally, we provide several exprimentations to compare the novel algorithms with synthetic and real world datasets.

Multi-class PA with Bandit feedback

In Chapter 3, we have introduced some multiclass classification algorithm with Bandit feedback, i.e. Banditron, Confidit. Here, we present a novel algorithm PAB [START_REF] Zhong | Online multiclass learning with "bandit" feedback under a passive-aggressive approach[END_REF] in Algorithm 5.1, which is an adaptation of PA for the bandit case. Similar to PA algorithm, at each round the prediction ŷt is chosen by a random draw according to the current weight matrix w t from the label set [1, . . . , K] (refer to Eq. 3.1).

Unlike the conventional learning paradigm, if ŷt = y t , it needs to perform an exploration, here we use -greedy (see in section 2. The parameter ∈ [0, 1] in the probability P is an exploration factor, i.e. every label will be sampled with same probabilities K except the label ŷt with 1 -+ K .

The above intuitive argument is formalized to define the update matrix. Let Ũt be the update matrix with a random prediction ỹt . By recalling the section 3.1.1, the update for PA algorithm is U P A , where U P A (x t , ŷt , y t ) = τ t (Φ(x t , y t ) -Φ(x t , ŷt )) with l t = [γ-< w t , Φ(x t , y t ) > + < w t , Φ(x t , ŷt ) >] + and

We show in the following that the expectation of PAB update equals to the one of PA.

PAB starts with the initiation of matrix w 1 = 0. Its update contains two items:

1( ỹt = y t ) -P( Ỹ = ỹt | ŷt )

PAB's update contains two items. The first item is controlled by the indicator 1( ỹt = y t ), and is nonzero only when the true label is predicted. The role of second term is to smooth the learning process when few correct labels are available. It means that whenever the process is blind to the true label, the loss is estimated to a fixed number ρ c ; this parameter is chosen empirically.

Simple PAB

A simple choice is ρ c = 0. The item U t,1 is very similar to the PA's update. The following lemma is easy to prove: Lemma 5.1. Let U t,1 be defined as in eq.(5.2) and let U P A (x t , ŷt , y t ) be defined according to eq.(3.7). Then, E Ỹ [U t,1 ] = U P A (x t , ŷt , y t ).

Randomly sample ỹt according to P( Ỹt = i| ŷt )

Receive the feedback 1( ỹt = y t )

Update:w t+1 = w t +U P AB,t (x t , ŷt , ỹt ) end for

Experiments

In this section, we present experimental results for the PAB and other bandit algorithms on two synthetic and one real world data sets. The cumulative loss is presented for each data set.

The first data set, denoted by SynSep, is a 9-classes, 400-dimensional synthetic data set of size 10 5 . The method to generate the sample is found in [START_REF] Kakade | Efficient bandit algorithms for online multiclass prediction[END_REF]. The second data set, denoted by SynNonSep, is constructed in the same way as SynSep except that a 5% label noise is added, which makes the data set non-separable. The third data set is collected from the Reuters RCV1 collection [START_REF] Lewis | Rcv1: A new benchmark collection for text categorization research[END_REF]. This set is made of 47236-dimensional vectors, contains 4 classes (to choose the first level categorization.) with the size of 10 5 . To different datasets, the parameters of different algorithms refer to Table 5.1.

In the Figure 5.1 gives the cumulative errors obtained on the dataset SynSep for different online learning algorithm. Here, the Confidit algorithm (see in Appendix A.9)

provides the best results, but the Simple PAB takes the second. Three out of five algorithms attain a zero loss. The worst in that case is the Banditron (see in Appendix A.8).

By these optimization problems, we get the corresponding optimization solutions:

Parameter: number ∈ (0, 1).

Initialize: Set w 1 to the zero K × d matrix.

for each round t = 1,. . . , n do

end for

Draw ỹt randomly from distribution p t = p 1,t , . . . , p K,t .

Observe 1 ( ŷt =y t ) .

Analysis

In this section, we prove the cumulative squared loss has a upper bound. To simplify, we note l(w t ; (x t , y t )) as l t and l(u; (x t , y t )) as l * t .

Theorem 5.1. Let (x 1 , y 1 ), ..., (x T , y T ) be a sequence of separable examples where x t ∈ R d , y t ∈ Y and ∥ x t ∥ R for all t, and u ∈ R K×d . Then, the cumulative squared loss of this algorithm is bounded by,

Proof. Define ∆ t to be:

By summing ∆ t over all t from 1 to T, that t ∆ t is a telescopic sum which collapses to,

number of examples sets non-separable. In the next section, we will take BPA to deal with non-linear data sets by combining the Kernel method.

Bandit feedback with kernel

BPA Online Kernel

For some non-linear datasets, Kernel function who transfers the data from Euclidean Space into Reproducing Kernel Hilbert Space (RKHS), has achieved great success in various problems where all of the training data could be observed in advance. And some kernel based algorithms, i.e. SVM, exhibit extraordinary performance. In recent years, this issue has been studied by more and more researcher. In [START_REF] Kivinen | Online learning with kernels[END_REF][START_REF] Schuurmans | Implicit online learning with kernels[END_REF][START_REF] Slavakis | Online kernel-based classification using adaptive projection algorithms[END_REF], they focus on another kind of kernel framework, the kernel in an online setting suitable for real-time application. They propose the method to take the online learning in a Reproducing Kernel Hilbert Space, by considering the classical stochastic gradient descent.

In this section, we proposed two kernel based algorithms to solve the problem of online learning with partial feedback. Before to introduce the method, we present some notions will be used later. The goal of online learning is to output a set of classifier

from the sets of all hypothesis H , where f i : X → R.

We assume that H is a Reproducing Kernel Hilbert Space. It means there exists a

H .

Refer to the definitions of BPA algorithm, at each round, the output ŷt is to be predicted by the Function 3.1. To adapt to the environment of RKHS:

Considering the update of BPA algorithm Function 5.6, its update for RKHS will be shown as below:

where,

with the loss function

We need take attention to this formulate of loss function, it is different to the loss function in Section 5.1 and Section 5.2. It takes an indicator instead of a constant, which also works following formulate.

So, all participant algorithms contains: KBanditron, KBPA (linear), KBPA (Laplace), and KSGD (Laplace). For each dataset, the parameter of kernel function is different. By crossvalidation way, we choose η = 1 of model 'Laplace' for dataset Pendigits and η = 10 for dataset 'Segment'. For KSGD, the truncated number is 500 for dataset Pendigits, and 200

for Segment.

Result

We mainly analyze these experiments from the following aspects.

Average training time for each instance: we observe the training time of every instance Cumulative Errors: calculate the total number of past errors.

In Figure 5.12, it gives the result of average training time on based dataset "Pendigits".

From this result, the training time of three kernel algorithms increases linearly along with the number of training instances. Only the linear model is stable. From the theoretical perspective, Banditron always adds a new example passively for its support vector. Algorithm KSGD only adds a new example for its support vector if its classifier makes a bad prediction, otherwise the number of support vector is limited by the truncated parameter.

Algorithm KBPA adds a new example for its support vector if and only if its predicted loss not equals to zero. So its number of support vector will increase all the time until it can make good prediction with no loss.

In Figure 5.13 and Figure 5.14, accumulative errors of algorithm KBPA firstly tend to a stable, others still increase linearly. That is because KBPA accumulates all good support vectors, KSGD only accumulates several recent support vectors and Kernel Banditron always accumulates new instance as negative support vector.

In Figure 5.15, it is about the average training time on dataset "Segment". The training time of Kernel Banditron still increases linearly, while the training time of KSGD and KBPA are as stable as linear model after a small period of increasing linearly. KSGD reaches the limited number of support vector, and KBPA quickly gets enough support vectors to make a good prediction. It could show that this dataset is separable.

In Figure 5.16 and Figure 5.17, we can observe that KBPA and KSGD performed obviously better than the other two. Two kernel algorithms have ability to solve non-linear

Bandit PA algorithm for Multi-label Classification

Preliminaries

In this section, we mainly introduce the problem of Multi-label classification with Bandit feedback. In Chapter 3, we have introduced some methods. We here propose a novel algorithm based on Online Passive-Aggressive.

Before introduce this algorithm, let's get some notations and preliminaries. It is applied in a sequence of consecutive rounds. On round t, the learner is given an instance vector x t ∈ X and outputs a binary vector Ŷt ∈ {0, 1} K representing a label subset from the set of all labels. In the general setting, the true response Y t ∈ {0, 1} K associated with x t is generated after the prediction. In the bandit setting, the learner can not observe Y t , only receive β t ∈ {0, 1 2 , 1} K as partial feedback, where for ∀k ∈ {1, . . . , K}:

(5.14)

The widely known Binary relevance Method(BM) [START_REF] Read | A pruned problem transformation method for multi-label classification[END_REF] transfers the multi-label task into several single independent binary classification tasks for each label. BM approach is theoretically simple and intuitive. Its assumption of label independence makes it ignores label correlations that exist in the training data. The most important advantage of BM is its low computational complexity compared to other methods.

We consider a multilabel classification model f (x) is a mapping function X → {0, 1} K .

The output of the model is a binary vector:

here h(x) is taken from a class of hypothesis H parameterized by a K × d matrix of real weights w. Hence, ∀i ∈ [1, .., K], h i (x) = 1 2 (1 + sign < w i , x >) where w i is the i th row of w. If the score < w i , x > is positive, the prediction is ŷi t = 1, else it equals 0. The algorithm BPA is based on the online Passive-Aggressive approach. Consistently with paper [START_REF] Crammer | Online passive-aggressive algorithms[END_REF]'s writing, a feature function: Φ(x, i) is a K × d matrix which is composed of K features vectors of size d. All rows of Φ(x, i) are zero except the i th row which is set to x. It can be remarked that < Φ(x, i), Φ(x, j) >=∥ x ∥ 2 if i = j and 0 otherwise. In our case,

In the bandit setting, a strategy needs to be set to address the exploration/exploitation trade off. Here we use, like in previous sections, the -greedy strategy. At each round t = 1, 2, . . . the algorithm selects a subset Ỹt according to the probabilities P t = P( ỹ1 t = 1| ŷ1 t ), . . . , P( ỹK t = 1| ŷK t ) , with:

(5.15)

Lemma 5.5. With the notations introduced so far, when following an -greedy random selection, the expected cardinality of Ỹt is equal to Card( Ŷt ).

Proof.

Analysis

The instantaneous loss is defined as a piece-wise hinge loss function L t = K k=1 l k t , where (5.16)

with 1-2β i t equals to -1 when ỹi t = y i t = 1, +1 when ỹi t = 1 & y i t = 0 and 0 otherwise (see Algorithm 5.5). This loss is the standard hinge loss [1-〈w t , Φ(x t , ỹt )〉] + when the prediction is positive correct: it stays at 0 for 〈w t , Φ(x t , ỹt )〉 1 and then increases for decreasing values of 〈w t , Φ(x t , ỹt )〉. In contrast, when the prediction is positive incorrect, the loss is equal to [1 + 〈w t , Φ(x t , ỹt )〉] + , i.e., stays at 0 for 〈w t , Φ(x t , ỹt )〉 ≤ 1 and then increases for increasing values of 〈w t , Φ(x t , ỹt )〉. For the negative prediction ỹi t = 0, the loss equals to 0. In this section, we introduce a novel online learning algorithm (see algorithm 5. Parameter: ∈ (0, 1)

Set w 1 to the zero K × d matrix

Draw ỹt randomly from P

Receive the feedback

In this part, we prove the cumulative squared loss has an upper bound. Simplify, l t denoted l w t ; (x t , Ỹt , β t ) and l u; (x t , Ỹt , β t ) by l * t .

Theorem 5.3. Let (x 1 , y 1 ), . . . , (x T , y T ) be a sequence of separable examples where x t ∈ R d , Y t ∈ {0, 1} K and ∥ x t ∥ R for all t, and u ∈ R K×d . Then, the cumulative squared loss of this algorithm is bounded by,

• Recall is the proportion of predicted correct labels to the total number of true labels, averaged over all instances.

• One Error determines whether the top-ranked label is the true labels, and ignores the relevancy of all other labels, averaged over all instances.

〈w t , Φ(x t , i)〉

• Hamming loss reports how many times on average, the relevance of an example to a class label is incorrectly predicted. It takes into account the prediction error and the missing error.

Results. Our results are summarized in Table 5.4 for the dataset RCV1-v2 and in Table 5.5 for the dataset Yeast. By the advantage of PA max-margin principle, BPAs appears effective to address the bandit setting for multi-label classification. Its main advantage is its linear complexity in space allows to deal with high dimensional data sets and a large number of labels, on the contrary to 2nd-order descend method. The practicability of this algorithm is verified theoretically by showing competitive loss bound. Moreover, Experimental evaluation shows that BPAs performs very well, it is flexibility to control the performance between the precision and the recall by changing value. And in some dataset, it is even better than the algorithm based on 2nd-order descend. For the OneError metric, it could converge on the bound of the algorithm PA working in full-side information.

times that we have to pull each arm, so that we control the accuracy to be tolerable. The first related notion is -dominance (shown in many references [START_REF] Drugan | approximate pareto optimal set of arms identification in multi-objective multi-armed bandits[END_REF][START_REF] Eichfelder | An adaptive scalarization method in multiobjective optimization[END_REF][START_REF] Horoba | Benefits and drawbacks for the use of epsilondominance in evolutionary multi-objective optimization[END_REF][START_REF] Kollat | A new epsilon-dominance hierarchical bayesian optimization algorithm for large multiobjective monitoring network design problems[END_REF]) 

Confidence Interval [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF] means that the average reward within which the true expected reward falls with overwhelming probability.

The Hoeffding Inequality [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF], is an useful tool to analyse the relationship between required number of samples and a confidence interval.

Theorem 6.1 (Hoeffding Inequlity). Let X be a set, and D be a fixed distribution on X .

There is a mapping f :

, where a i and b i are two real numbers and a i < b i . Let x 1 , . . . , x n ∈ X be drawn i.i.d. by distrbution D. We define the empirical mean of these variables by X = 1 n (x 1 + . . . , x n ).Then, the number of samples and tolerant error obeys the following inequality.

P[X -E[X ]

] e

Consider a set A with K arms, where K 2. Each arm has D independent objectives. On round t, the player selects one arm a k and receives a vector reward r k,t = (r 1 k,t , r 2 k,t , . . . , r D k,t ) ∈ {0, 1} D , which corresponds to a probability distribution vector p k , where p k = (p 1 k , . . . , p D k ). By drawing arm a k , the player estimates its empirical probability pk . Let T k (N) be the number of arm a k has been played during the first N pulls. The empirical probability pk is the current expected reward. It is estimated as pk = T k (N) t=1 r k,t /T k (N), where r k,t is the reward vector of arm a k on round t. Our target is to identify all optimal arms of set A with a minimal budget. In the algorithm, we propose pure exploration to obtain the information of all arms. It gives the -Pareto front with δ error probability. If all arms are pulled of the same times, it exists a lower bound and an upper bound for its complexity. FOR -PARETO FRONT dimension, and the comparison steps of another dimension requires K -1 times, so the complexity of this fast algorithm with D = 2 is O(K log K). Algorithm 6.2 (Fast -Pareto Finder (D = 2)).

Require: Set

The fast algorithm for D = 3 (see Algorithm 6.3) is an extension of the one with D = 2.

After arranging the first dimension, there are p1

Set an -Pareto front A 1 = Ø. Firstly, let the indicator i equals to 1, A 1 = { pσ(1) }. When the indicator goes to k, it arranges the Pareto set with the vector pσ(k) on the second dimension,

p2 * ,σ (2)

. . . .

Here, the vectors p * ,σ (1) , p * ,σ (2) , . . . , p * ,σ ( j) , . . . belong to the -Pareto front A . By the new order σ , we find a vector p * ,σ ( j) , if p2 σ (k) > p2 * ,σ ( j) + , add pσ (k) to the -Pareto front. After that, it compares the third dimension of these vectors p3 * ,σ ( j+1) , p3 * ,σ ( j+2) , . . . with p3 σ (k) , if p3 * ,σ (s) + < p3 σ (k) with s j. We will delete the vector p * ,σ (s) from the -Pareto; otherwise,if in the -Pareto front, there is no such vector that p2 * ,σ ( j) + < p2 σ (k) , we compared p3 

Arrange all vectors

for each arm k = σ(1), . . . , σ(K) do Arrange all vectors of A , p2 * ,σ

p2 * ,σ (2)

. . .

When D 4, the problem could be decomposed into two subproblems and then combined the results together. The first step for this algorithm is also to arrange the vectors with first dimension descendent, like the following sequence

To segment the set into two sets by A * = ( p1 σ(1) , . . . , p1 σ(s) ) and

Then we find A * and A * the -Pareto front of A * and A * , respectively. Here, to identify the -Pareto front of subset A * and A * is with (D -1)-dimension. This recurrent process can be reused until that the subproblem can be resolved with the Fast -Pareto Finder D = 2 or D = 3. There is no doubt A * is also the -Pareto for the set A * . If we can find a set T ⊂ A * , who contains the arms are not -dominated by the elements of A * . So, the set T is also the -Pareto of set A . Then, we combine the set A * and T to output the final -Pareto.

CHAPTER 7. CONCLUSIONS variants, Simple PAB and Full PAB. The advantage of Simple PAB is its simplicity and perform very well on the linear separable dataset, but it is not fit to treat the non-separable datasets. Therefore, we add an anti-interference item, the expectation of this item being zero. It works well in stabilizing the classifiers, reducing the variance of the update and performing better than Simple PAB on non-separable dataset.

BPA, we design a hinge-loss function to adapt the problem of classification with Bandit feedback. The BPA algorithm is grounded on this loss function. By a theoretical analysis, we find the squared loss of BPA to be bounded by the same bound than the Passive-Aggressive algorithm, which works in supervised setting. From an empirical perspective, we performed numerical experiments using this algorithm and some others. While displaying a lesser complexity, the performance of our algorithm is close to the performance of the second order perceptron Bandit algorithm for all datasets. This performance is moreover often better than the performance of supervised classifiers on some non-separable datasets.

Kernel BPA and Kernel SGD with Bandit loss are two algorithms adapted to the RKHS framework. Those two algorithms are devoted to learning with Bandit feedback on non-linear datasets. In section 5.3, we provide details on those approaches. The first one is a direct derivation of the BPA algorithm, i.e. it directly maps the product of two vectors into RKHS. This method has good accuracy, but the complexity of classifiers increases linearly along with the proportion of non-separable instances. This brings some trouble to the computational efficiency. Referring to Stochastic Gradient Descent [START_REF] Bottou | Large-scale machine learning with stochastic gradient descent[END_REF] and Online

Kernel method [START_REF] Kivinen | Online learning with kernels[END_REF], we optimized the kernel classifiers by Bandit loss function. Though its accuracy do not reach the level of Kernel BPA, its computational complexity is stable. It can easily face to any kind of datasets. Parameter: real number τ > 0 and γ ∈ (0, 1]

Multi

for each round t = 1,2,. . . , T do

Let w k (t + 1) = w k (t)e γ rk (t)/K . 

end for

Best Armed Identification in stationary MAB

end for end for

Output: the unique element of k T of K 

Bandit feedback

end for

Banditron Algorithm A.8 (Banditron).

Parameter: number γ ∈ 0, 1 2 . Initialize: Set W 1 to the zero K × d matrix.

for each round t = 1,2,. . 

for each round (x 1 , y 1 ), . . . , (x T , y T ) do Get instance x t ∈ R d , and normalized it ∥ x t ∥= 1;

with probability (1 -α)/2 set X t = (0, . . . , 0, x t position ŷt , 0, . . . , 0)

with probability (1 + α)/2 set X t = (0, . . . , 0, -x t position ŷt , 0, . . . , 0) else X t = (0, . . . , 0, x t position ŷt , 0, . . . , 0)

end if

Update:

end for

Multi-labels Classification

Multi-labels Classification in bandit setting

Algorithm A.10 (The algorithm based on 2nd order in bandit setting).

Parameters: loss parameter a ∈ 

Multi-Objective Multi-Armed Bandit