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Abstract

Bandit problems constitute a sequential dynamic allocation problem. The pulling agent

has to explore its environment (i.e. the arms) to gather information on the one hand, and

it has to exploit the collected clues to increase its rewards on the other hand. How to

adequately balance the exploration phase and the exploitation phase is the crux of bandit

problems and most of the efforts devoted by the research community from this fields has

focused on finding the right exploitation/exploration tradeoff. In this dissertation, we focus

on investigating two specific bandit problems: the contextual bandit problem and the

multi-objective bandit problem.

This dissertation provides two contributions. The first contribution is about the classifi-

cation under partial supervision, which we encode as a contextual bandit problem with

side information. This kind of problem is heavily studied by researchers working on social

networks and recommendation systems. We provide a series of algorithms to solve the

Bandit feedback problem that pertain to the Passive-Aggressive family of algorithms. We

take advantage of its grounded foundations and we are able to show that our algorithms

are much simpler to implement than state-of-the-art algorithms for bandit with partial

feedback, and they yet achieve better performances of classification. For multi-objective

multi-armed bandit problem (MOMAB), we propose an effective and theoretically moti-

vated method to identify the Pareto front of arms. We in particular show that we can find

all elements of the Pareto front with a minimal budget.

Key words

Bandit feedback, Classification, Passive-Aggressive algorithm, Front Pareto, Multi-
objective Multi-armed Bandit
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Résumé en français

Des problèmes de Bandit constituent une séquence d’allocation dynamique. D’une part,

l’agent de système doit explorer son environnement ( à savoir des bras de machine) pour

recueillir des informations; d’autre part, il doit exploiter les informations collectées pour

augmenter la récompense. Comment d’équilibrer adéquatement la phase d’exploration

et la phase d’exploitation, c’est une obscurité des problèmes de Bandit, et la plupart des

chercheurs se concentrent des efforts sur les stratégies d’équilibration entre l’exploration et

l’exploitation. Dans cette dissertation, nous nous concentrons sur l’étude de deux problèmes

spécifiques de Bandit: les problèmes de Bandit contextuel et les problèmes de Bandit Multi-

objectives.

Des contributions

Cette dissertation propose deux aspects de contributions. La première concerne la classifi-

cation sous la surveillance partielle, laquelle nous codons comme le problème de Bandit

contextuel avec des informations partielles. Ce type des problèmes est abondamment étudié

par des chercheurs, en appliquant aux réseaux sociaux ou systèmes de recommandation.

Nous proposons une série d’algorithmes sur la base d’algorithme Passive-Aggressive pour

résoudre des problèmes de Bandit contextuel. Nous profitons de sa fondations, et montrons

que nos algorithmes sont plus simples à mettre en œuvre que les algorithmes en état de

l’art. Ils réalisent des biens performances de classification. Pour des problèmes de Bandit

Multi-objective (MOMAB), nous proposons une méthode motivée efficace et théoriquement

à identifier le front de Pareto entre des bras. En particulier, nous montrons que nous

pouvons trouver tous les éléments du front de Pareto avec un budget minimal dans le cadre

de PAC borne.
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RÉSUMÉ EN FRANÇAIS

Multi-class PA avec le Bandit contextuel (PAB)

PAB [111] est une variation de PA [33] dans le cas de Bandit contextuel. Étant semblable à

l’algorithme PA, la prédiction ŷt est choisi corrspondant le poids matriciel courant sur des

étiquettes [1, . . . ,K]. Contrairement au paradigme de l’apprentissage classique, si ŷt 6= yt, il

doit effectuer une exploration. Nous utilisons ε-greedy d’échantillonner ỹt au lieu de ŷt. Il

échantillonne selon une distribution de la probabilité P(Ỹ | ŷt)

∀i ∈ {1, . . . ,K},P(Ỹt = i| ŷt)=1( ŷt = i) · (1−ε)+ ε

K
Sa mise à jour contient deux items. Le premier item est controllé par l’indicateur

1( ỹt = yt), et il est différent de zéro matriciel uniquement lorsque l’étiquette est prédite

correctement. Le deuxième item joue le rôle de lisser le processus d’apprentissage lorsqu’il

y a peu de bonne prédiction. Cela signifie que la perte est estimée par un paramètre

fixe ρc, n’importe quand le processus est aveugle à la bonne étiquette. Lequel est choisi

empiriquement.

wt+1 = wt +UP AB(xt, ŷt, ỹt)= wt +Ut,1 +Ut,2

Ut,1 = 1( ỹt = yt)
P(Ỹ = ỹt| ŷt)

UP A(xt, ŷt, ỹt)

Ut,2 = 1( ỹt = yt)−P(Ỹ = ỹt| ŷt)
P(Ỹ = ỹt| ŷt)

·ρc
Φ(xt, ŷt)

2 ∥ xt ∥2 + 1
2C

Pour faciliter PAB, son paramètre ρc = 0. L’experience de l’item Ut,1 est égal auquel de

PA.

Lemma 0.1. On definit Ut,1 par la forme 1( ỹt=yt)
P(Ỹ= ỹt| ŷt)

UP A(xt, ŷt, ỹt), en sachant que UP A(xt, ŷt, yt)=
τt (Φ(xt, yt)−Φ(xt, ŷt)) dépendant de l’algorithme PA. On peut dire que EỸ [Ut,1]=UP A(xt, ŷt, yt).

La mise à jour de PAB Simple se comporte comme celui de l’algorithme PA, quand

ŷt = yt. Et il fonctionne très bien avec des données linéaires, mais il n’a pas de capacité

d’apprendre sur des données réelles et bruyantes. Alors, on y ajoute le item Ut,2 pour

augmenter la stabilité de l’algorithme et réduire la variance de la mise à jour.

Lemma 0.2. EỸ [Ut,2]= 0.

Lemma 0.3. EỸ [<Ut,1,Ut,2 >]≤ 0

PAB fournit un item de la mise à jour dont l’espérance est égale à celle de PA. Il

dispose de deux variantes, PAB simple et PAB complète. L’avantage de PAB simple est
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DES CONTRIBUTIONS

sa simplicité et bonne efficace sur l’ensemble des données linéaires et séparables, mais il

ne s’adapte pas à traiter de données non-séparables. Par conséquent, nous ajoutons un

item anti-interférences, l’espérance duquel est nul. Il fonctionne bien de stabiliser des

classifieurs, de réduire la variance de la mise à jour, et performe meilleur que PAB Simple

sur des données non-séparables.

Le Bandit contextuel dans la borne de Passive-Aggressive (BPA)

BPA [110] est aussi une variation de PA. Différant d’algorithme de PAB, BPA a une

borne d’erreur autant que laquelle de PA. Pour cet algorithme, nous redéfinissons la perte

instantanée dans le cas de Bandit:

l t = [1+ (
1−21 ỹt=yt

)〈wt,Φ(xt, ỹt)〉]+
avec

(
1−21 ỹt=yt

)
est −1 quand ỹt = yt et 1 d’autre cas.Cette perte est la standard “Hinge

Loss” lorsque la prédiction est correcte: il reste à 0 pour 〈wt,Φ(xt, ỹt)〉> 1 puis augmente

suivant la valeur diminuée de 〈wt,Φ(xt, ỹt)〉.
Pour utiliser les outils de l’analyse convexe sous la contrainte ci-dessous,

wt+1 = arg min
w∈RK×d

1
2
∥ w−wt ∥2 s.t. l(w; (xt, yt))= 0.

Les classifieurs linéaires mettent en jour après chaque essai ,

wt+1 = wt +τ
(
21 ỹt=yt −1

)
Φ(xt, ỹt)

où

τ= l t

∥Φ(xt, ỹt) ∥2 .

Theorem 0.1. Soit (x1, y1), ..., (xT , yT ) une suite d’exemples séparables où xt ∈Rd, yt ∈Y et

∥ xt ∥6R pour tous t, et u ∈RK×d. Alors, l’ensemble de la perte carrée est limitée par,

T∑
t=1

l2
t 6R2· ∥ u ∥2

Theorem 0.2. Soit (x1, y1), ..., (xT , yT ) une suite d’exemples non-séparables où xt ∈Rd, yt ∈
[1, ...,K] et ∥ xt ∥6 R pour tous t. Alors, n’importe quel vecteur u ∈ RK×d l’ensemble de la

perte carrée est limitée par,

T∑
t=1

l2
t 6

R ∥ u ∥ +2

√√√√ T∑
t=1

(l∗t )2

2
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RÉSUMÉ EN FRANÇAIS

Nous reconstruisons “ Hinge loss” pour s’adapter au cas de Bandit. L’algorithme BPA

est fondée sur cette fonction de perte. Par l’analyse théorique, nous trouvons que l’ensemble

de la perte carrée de BPA est limitée par la même borne autant que laquelle de l’algorithme

PA qui obtient la rétroaction complète. D’un point de vue empirique, nous avons réal-

isé des expériences numériques par l’aide de cet algorithme et quelques autres. Lors

de présenter une moindre complexité, la performance de notre algorithme est proche

de la performance de l’algorithme de Bandit en seconde ordre Perceptron sur tous les

types de données. D’ailleurs, cette performance est fréquentement mieux que laquelle des

classifieurs supervisés sur certains données non-séparables.

Le Bandit contextuel aux noyaux fonctions

À cette partie, nous proposons deux algorithme en noyau à résoudre des problèmes

d’apprentissage en ligne avec rétroaction partielle.

Compte tenu de l’algorithme BPA, sa mise à jour pour RKHS (Reproducing Kernel

Hilbert Space) sera présentée comme ci-dessous:

f ỹt
t+1 = f ỹt

t +τt · (21( ỹt=yt) −1) ·k(xt, ·)
où, τt = l t(xt,1( ỹt=yt ))

k(xt,xt)
avec la perte

l t(xt,1( ỹt=yt))= [1( ỹt 6=yt) + (1−21( ỹt=yt)) f ỹt
t (xt)]+.

Nous avons besoin de prendre attention à cette perte, qui est différente de la perte de

BPA. Il contient un indicateur au lieu d’une paramètre constante, laquelle travaille à max-

imiser la marge. Notre but est de réduire la complexité et d’éviter certains vecteurs inutiles.

Alors que, suite à la croissance des exemples d’apprentissage, nous aurons l’hypothèse

F = { f 1, . . . , f K }:

∀k ∈ {1, . . . ,K}, f k
t =

t−1∑
i=1

1(k = ỹi)τi · (21( ỹi = yi)−1) ·k(xi, ·).

Une autre méthode se réfère à SGD [64]. Comme SGD en espace de RKHS, le but de

SGD est de minimiser le risque régularisé:

R[F ]= E[l t(xt,1( ỹt=yt))]+
λ

2
∥F ∥2

H

Ici, la perte devrait être remplacée par la perte de l’algorithme BPA. En considérant

l’algorithme SGD classique, nous prenons le gradient sur chaque hypothèse f i de F .

∀k ∈ [K], f k
t+1 = f k

t −ηt∂ f k R[F ]| f k= f k
t
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où pour k ∈ [K], t ∈N, f k
t ∈H , ∂ f k dénote ∂/∂ f k et ηt > 0 est le taux d’apprentissage.

Donc,

∂ f k R[F ]= λ

2
∂ f k ∥F ∥2

H +∂ f k (E[l(xt, ỹt)])

= 2 f k +∂ f k l t(xt,1( ỹt=yt))

∂ f k l t(xt,1( ỹt=yt))=
1−21( ỹt=yt) if k = ỹt

0 else

f k
t+1 =

 f k
t · (1−λη)+η · (21( ỹt=yt) −1) ·k(xi, ·) if k = ỹt

f k
t else

Ici, nous proposons certains paramètres en compte (σ1
t , . . . ,σK

t ) avec

σk
t =

t∑
s=1

1( ỹs = k)

Par les paramètres σ, la mise à jour pourrait être exprimé en l’équation suivante: pour

∀k ∈ {1, . . . ,K}

f k
t+1 =

t∑
i=1

ηαk
i ·k(xi, ·)

où αk
i =1(k= ỹi)(21( ỹi = yi)−1) · (1−λη)σ

k
t −σk

i −1.

Les méthodes Kernel BPA et Kernel SGD avec la perte de Bandit s’adaptent à

la cadre de RKHS. Ces deux algorithmes sont spécials de traiter les problèmes avec la

rétroaction de Bandit sur des données non-linéaires. Dans la section 5.3, nous fournissons

des détails sur ces approches. La première est une dérivation directe de l’algorithme

BPA, qui correspond au produit des deux vecteurs dans RKHS. Cette méthode a une

bonne précision, mais la complexité des classifieurs augmente linéairement suivant des

exemplaires. Cela apporte des dérangements à l’efficacité. En se référant à SGD [21] et

Kernel en ligne [64], nous optimisons les classifieurs au noyau par la perte de Bandit. Bien

que sa précision ne parvient pas au niveau de Kernel BPA, sa complexité de calcul est

stable. Il peut facilement traiter toutes types de données.

Algorithme BPA pour la classification multi-étiquette

Ici, nous introduisons un nouvel algorithme d’apprentissage en ligne, qui est une variante

de l’algorithme BPA adapté à la classification multi-étiquette avec le Bandit contextuel.
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RÉSUMÉ EN FRANÇAIS

Dans ce cas, nous prenons la stratégie ε-greedy à équilibrer l’exploration et l’exploitation

sur l’ensemble des étiquette. À chaque tour t = 1,2, . . . , l’algorithme sélectionne un sous-

ensemble Ỹt selon la probabilité Pt =
(
P( ỹ1

t = 1| ŷ1
t ), . . . ,P( ỹK

t = 1| ŷK
t )

)
, avec:

p( ỹi
t = 1| ŷi

t )= (1−ε) ·1( ŷi
t=1) +ε ·

∑K
k=11( ŷk

t =1)

K
Laisser le cardinal de Ŷ être noté Card(Ŷ )=∑K

k=11( ŷk=1).

Lemma 0.4. Avec les notations introduites précétement, lorsque l’on sélectionne le sous-

ensemble Ỹt par la stratégie ε-greedy, E[Card(Ỹt)]= Card(Ŷt).

La perte instantanée de la classification multi-étiquettes est définie par morceaux

L t =∑K
k=1 lk

t , où

lk
t = [1 ỹk

t =1 +
(
1−2βk

t

)
〈wt,Φ(xt,k)〉]+

avec βi
t =+1 quand ỹi

t = yi
t = 1, −1 quand ỹi

t = 1 & yi
t = 0 et 0 pour autre cas. Cette perte

est le “Hinge loss” standard comme [1−〈wt,Φ(xt, ỹt)〉]+ quand la prédiction est positive

correcte: il reste à 0 pour 〈wt,Φ(xt, ỹt)〉> 1, puis augmente suivant la valeur diminuée

de 〈wt,Φ(xt, ỹt)〉. Au contraire, si la prédiction est positive incorrecte, la perte égal à

[1+ 〈wt,Φ(xt, ỹt)〉]+, il reste à 0 pour 〈wt,Φ(xt, ỹt)〉 ≤ 1, puis diminue suivant la valeur

augmentée de 〈wt,Φ(xt, ỹt)〉. Pour tous les prédictions négative ỹi
t = 0, la perte est toujours

nulle.

Pour la prédiction, nous sortie une sous-ensemble Ŷt ∈ {0,1}K correspondant aux prédic-

tions binaire suivantes:

ŷi
t = sign(< wt,Φ(x, i)>)

Ensuite, la stratégie ε-greedy fonctionne, où Ỹt ∈ {0,1}K est le résultat d’un tirage

random sur la distribution Pt (voit Eq.(5.15)).

Les classifieurs linéaires sont mis à jour à chaque essai en utilisant les outils standards

de l’analise convexe. Selon l’optimisation sous contrainte.

wt+1 = wt +τt

K∑
k=1

(
2βk

t −1
)
Φ(xt,k)

où

τt =
∑K

k=1 lk
t∑K

k=1(2βk
t −1)2 ∥ xt ∥2

.

Theorem 0.3. Soit (x1, y1), . . . , (xT , yT ) une suite d’exemples séparables où xt ∈ Rd, Yt ∈
{0,1}K et ∥ xt ∥6R pour tous t, et u ∈RK×d. Alors, l’ensemble de la perte carrée est limitée

par
T∑

t=1
l2
t 6K ·R2· ∥ u ∥2
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Theorem 0.4. Soit (x1,Y1), . . . , (xT ,YT ) une suite d’exemples non-séparables où xt ∈ Rd,

Yt ∈ {0,1}K et ∥ xt ∥6R pour tous t. Alors, n’importe quel matrice u ∈RK×d,

T∑
t=1

l2
t 6

pK R ∥ u ∥ +2

√√√√ T∑
t=1

(l∗t )2

2

Pour la classification multi-étiquette, nous proposons ce nouveau algorithme. Nous

transférons la classification multi-étiquette en plusieurs classifications binaires. En même

temps, il apprend des classifieurs multiples par BPA. Cet algorithme, à la fois de l’analyse

théorique et résultat empirique, se performe bien.

Un algorithme d’identifier le front d’ε-Pareto de MOMAB

Dans cette partie, nous proposons un algorithme pour identifier le front d’ε-Pareto de

MOMAB. Il étend l’algorithme du naïve (ε,δ)-PAC au réglage multi-objective. Ce nouvel

algorithme peut identifier les solutions optimales sous une tolérance δ.

Lemma 0.5 (Le borne inférieur). Si nous ne manquons pas de bras optimale du front

d’ε-Pareto sous une tolérance δ, nous avons besoin au moins de tirer nlower fois sur chaque

bras.

nlower =
2K
ε2 (ln2+ 1

D
ln

K
δ

)

Lemma 0.6 (Le borne supérieure). Si nous pouvons élimiter toutes les bras non-optimales

du front d’ε-Pareto sous une tolérance δ, nous devons tirer nupper fois sur chaque bras.

nupper = 2K
ε2 ln

2KD
δ

Algorithm 0.1 (ε-Pareto Identification algorithm).
Initiate parameters ε and δ

for Sample each arm a ∈A n1 = 2K
ε2 (ln2+ 1

D ln K
δ

) times do
p̂a = 1

n1

∑n1
t=1 ra,t

end for
Identify the set Aε = {a ∈A |∀a′ ∈A a′�ε a}.

for Sample each arm a ∈Aε n2 = 2K
ε2 ln 2KD

δ
− 2K

ε2 (ln2+ 1
D ln K

δ
) times do

p̂a = 1
n1+n2

∑n1+n2
t=1 ra,t

end for
Output A ∗

ε = {a ∈Aε|@a′ ∈Aε,a′ Âε a}

xi



RÉSUMÉ EN FRANÇAIS

Par le borne inférieur, l’algorithme peut sortir un ensemble d’ε-Pareto qui contient

tous les bras optimaux sous une tolérance δ, ensuite nous pouvons éliminer tous les bras

non-optimaux après tirer par le borne supérieure. Pour comparer l’ε-dominance entre les

bras, nous proposons une méthode rapide qui peut mettre en ordre des bras par l’ordre

partiel, laquelle est l’amélioration d’algorithme [69] (voit au Chapitre 6).

Les perspectives futures

Il y a certaines limitations de nos résultats à s’adresser dans le futur. En considérant le

sujet de la rétroaction de Bandit, nous devons se concentrer des forces sur l’équilibrement

entre exploration et exploitation. Nos algorithmes se sont basés sur la stratégie “ε-Gloudon”

(voit à la section 2.3.4 ) d’équilibrer entre exploration et exploitation. À chaque tour, il

explore des étiquettes par la probabilité fixe ε
K , et les exploite par la probabilité 1−ε. Nous

gaspillons le budget, si nous toujours faisons l’exploration par la même probabilité après

les classifieurs ont bien joué. Dans les figures 5.9, 5.10 et 5.11, nous observons que les

résultats d’algorithme BPA ont moins difference sur les valeurs différentes ε. Ce résultat

nous suggère naturellement d’utiliser d’ε partout les valeurs disponibles, tellement nous

pouvons explorer plus aux premières tours, ensuite mettons tous les efforts d’exploiter. À la

prochaine étape, nous pouvons essayer le “ε-glouton dynamique” [11], le paramètre ε duquel

attenue correspondant à 1/t. D’ailleurs, il y a une autre limitation de nos algorithmes:

comment de choisir les paramètre, e.g. dans l’algorithme PAB, C pour la frontière douce,

ε pour “ε-glouton”; du KBPA, les paramètre de noyau etc. En générale, c’est nécessite de

mettre la méthode “cross-validation” à déterminer des paramètres. Néanmoins, quand il y

a deux ou plus de paramètres pour un algorithme, la tâche devient plus difficile.

Le deuxième aspect est sur le problème du front Pareto de MOMAB. En ce moment,

nous utilisons l’exploration pure d’identifier les bras optimaux pour sélectionner le front

Pareto. Cette méthode peut garantir l’intégrité du front Pareto. Mais, il gaspille plus de

budgets que d’autres méthodes. Pour la prochaine étape, nous devons continuer à optimizer

cette méthode.

Cette dissertation existe quelques perspectives théoriques et pratiques dans le futur. Du

perspective pratique, elle a des prospects vastes. Nous avons mensionné des applications

aux réseaux sociaux et au système recommandation. D’autre exemple est prise de décision

aux ressources humaines [109]. En se considérant des problèmes comme le routage des

paquets Internet ou de distribution d’électricité de réseau intelligent, Bandit en Multi-

objective peut proposer une efficace encadrement qui puisse optimiser celles problèmes.

L’encadrement de Bandit peut aussi combiner avec d’autre encadrement d’apprentissage

xii



LES PERSPECTIVES FUTURES

automatique, e.g. “apprentissage profond”, Apprentissage active, apprentissage demi-

supervisé, et propose une principale commune pour celle-ci.

Enfin, pendant les années de préparer ma thèse, il non seulement influence ma vue en

recherche, mais aussi rectifie mon attitude de vie.
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Chapter 1

Introduction

“Bandit problems embody in essential form a conflict evident in all human

action: choosing actions which yield immediate reward vs. choosing actions

whose benefit will come only later.” – P. Whittle (1980)

Early in 1933, William R. Thompson described a method “Thompson Sampling” in [96],

for attempting to compare treatments having unknown effectiveness. This is the prototype

of bandit problems.

In 1952, H. Robbins introduced in [86] a problem about sequential selection experi-

ments, that became the foundation of Bandit problems.

In 1957, Richard Bellman wrote a first book [19] on this subject, formulating the

Multi-Armed Bandit problem as a class of dynamic programming.

Related to H. Robbins’s research, in 1979, Gittins and Jones [55] published a paper

to outline an allocation index for sequential experiment problems, and established the

stopping rule by a theorem. From then on, more and more proofs of “Gittins Index” have

been proposed, i.e. by Whittle [103], Weber [102], Tsitikis [98] etc.
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CHAPTER 1. INTRODUCTION

Nowadays, Further researches and applications of Bandit problems have been explored,

for example, in fields of Machine Learning by [20, 61, 95], Economy [8, 16, 94] , Cognitive

Science [37] etc.

1.1 Motivation

In this section, we present Bandit problems from the following questions:

What are Bandit problems?

Bandit problems, are some classic game problems. They can be imagined as the scenario

as follows.

In a casino, a gambler faces to many different slot machines. After pulling one arm,

he has a certain probability to earn a reward. Obviously, he does not know the rewarding

probability of each arm. To obtain the information of these slot machines, the gambler

should pull each arm several times. This process is called “Exploration”. Of course, more

explorations he takes, more reliable information he gets. For the gambler, his goal is to

earn the largest rewards rather than information. Normally, he should pull the arm with

highest estimated rewarding probability according to the current information. It is named

“Exploitation”. Bandit problems are how the gambler tells the optimal arm and gets the

largest rewards in limited time (or limited budget).

Why to research Bandit problems?

Actually, Bandit problems are not only a game theory, but it also plays a big role in

other fields. By solving Bandit problems, we can find the answer to solve other similar

problems, such as the following examples.

In the process of clinical trials, doctors often encounter a problem: Treating a same

disease, there may be two or even more solutions, but their effectiveness is unknown.

This is the prototype of Bandit problems. In 1933, Dr.Thompson proposed “Thompson

Sampling” (details in Chapter 2) which is a strategy to identify the most effective treatment,

preliminarily solving this problem.

4



1.1. MOTIVATION

Figure 1.1: Clinical Trials

With the rising development of Internet, Bandit problems have become extremely

popular, such as personalized search and Internet advertising service. For these applica-

tions, traditional way is to provide a certain number of recommendations by “Collaborative

filtering”. Compared with strategies of Bandit problems (refer to Chapter 3), “Collaborative

filtering” is unable to work without references in initial stage. However, Bandit strategies

are not affected by this problem.

Figure 1.2: Web Search

Otherwise, Google proposed an analytic service [56] based on the Multi-Armed Bandit

method (Chapter 2). The purpose of this analytic system is to compare and manage some on-

line experiments. For each experimentation, there maybe a variety of alternative solutions.

In the past, “A/B Test” was used to solve this problem, but it takes pure exploration during

the exploratory phase, and wastes resources with inferior options [81]. Taking the Bayes
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Theorem combined with the Multi-Armed Bandit, Google could reduce the computational

time and get a higher accuracy than before.

Figure 1.3: Google Analytic Service

Apart from Internet, Bandit problems also have very broad prospects in other domains.

During World War II, many countries tried to solve multi-objective multi-tasking attack,

and this one could be considered as Multi-Objective Multi-Armed Bandit problem (shown

in Chapter 4). Queueing and scheduling [45, 101] is a problem of index policies (refer to

Chapter 2), Stock is a Bandit problem in non-stationary environment [50] etc.

How to solve Bandit problems?
The core of Bandit problems is a trade-off between Exploration and Exploitation. Some

related strategies and methods will be presented in following Chapters 2, 3, 4, 5, and 6.

1.2 Modeling

From different point of views, Bandit problems can be divided into many categories. They

can not be generalized by a uniform modeling. According to the number of trials, Bandit

problems can be defined as “Finite horizon” and “Infinite horizon”. The former has a fixed

number of trials, the latter is usually unknown in advance. By the number of arms, it can

be divided into “Two Arms”, “K arms” and “Many arms”. From the view of system feedback,

it can be named “Stationary Bandit”: the distribution of arms is fixed and independant;

“Non-Stationary Bandit”: the distribution of arms can be changed during the period of

sampling; “Linear Bandit”: all arms are related with each other and satisfy a certain linear

function; “Contextual Bandit”: the feedback of arms is associated with side information.

Every Bandit problem owns its special model and different strategy. In the next chapters,

we will tell about each kind of bandits, their performance, properties and characteristics.

Especially, in Chapter 5 and Chapter 6, we propose some novel solutions and algorithms.

6



1.3. THESIS OUTLINE

Here, we address “Stationary Bandit problem” in order to explain the mechanism of Bandit

problems.

Considering Robbins’s sequential decision experiment [86], there are several possible

choices to be sampled. Generally, operator makes a choice from a set of options at each time.

After sampling, operator receives a boolean feedback 1 or 0 as reward. By observing each

option’s feedback, the fixed but unknown probability distribution of option can be estimated

empirically (ex. calculate the rewarding expectation). The goal of Bandit problems is to

maximize the received rewards from all steps, minimize the cumulative regret and find the

optimal option (or a set of optimal options).

In section 1.1, we have introduced that “Exploration” and “Exploitation” are two core

elements to solve Bandit problems. By exploration, operator tries different options to

get knowledge which one may be rewarding more frequently. By exploitation, operator

repeats to choose an option with better performance. Pursuing the goal of Bandit problems,

operator should know when to explore or to exploit. The decisions are always dependent on

the potential knowledge of the optimal arms. Performing well on Bandit problems requires

trading off between Exploration and Exploitation during all decisions. In early steps, it

makes sense to explore, to search for those with the highest reward rates. In the later, it

makes sense to exploit those arms which considered to be good, finally maximizing the

reward for each current decision.

From the theoretical prospect, we also care about how to find optimal solutions for

Bandit problems that make model evaluation and model comparisons more efficient. We

dedicate the next chapters of this dissertation to our effort on this problem.

1.3 Thesis Outline

This dissertation consists of 7 chapters by the discussion of Bandit problems.

Chapters 1, 2, 3 and 4, are about the general introduction and the state-of-the-art of

Bandit problems.

Chapter 1, introduces the background of Bandit problems.

Chapter 2, tells about Multi-Armed Bandit (simplified as MAB) problem and introduces

some probably effective strategies of trading-off between Exploration and Exploitation.

Chapter 3, describes the classification problem under Bandit Feedback. Here, we intro-

duce several algorithms in the state-of-the-art to solve the problems in multi-class/multi-

label classification.

7
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Chapter 4, extends Multi-Armed Bandit to the situation where arms are in Multi-

Objective (denoted as MOMAB). In this chapter, we introduce some traditional methods to

solve MOMAB problems.

Chapter 5 and 6, propose our contributions to Bandit problems.

Chapter 5, proposes some novel algorithms to solve classification with bandit feedback

problem, ex. multi-class, multi-label and in Reproducing Kernel Hilbert Space (RKHS).

Furthermore, we compare their effectiveness or regret bound by empirical experiments

based on some common datasets.

Chapter 6, proposes some optimization methods to find the Pareto front of MOMAB

Chapter 7, is the last part. It makes the conclusions of all chapters in this part and

proposes some new directions of research in the future.

8



Chapter 2

Multi-Armed Bandit

Bandit problem, just as expounded in Chapter 1, was formally proposed in 1952 by

H.Robbins. In this chapter, we focus on describing one classical Bandit problems – “Multi-

Armed Bandit” (MAB). The purpose of this chapter is to introduce some necessary notions,

present some effective strategies, define and analyze some specific issues.

2.1 Environment of Multi-Armed Bandit

The complexity of Multi-Armed Bandit problems, not only stems from the trade-off between

Exploration and Exploitation, but also from the wide range of its environments. Each

environment of Multi-Armed Bandit provides a different framework. In this section, we

address the characteristics of Multi-Armed Bandit in each environment, and take the

K-Armed Bandit as the typical case.

2.1.1 Stationary Bandit

Stationary Bandit [86] is the most classical and common bandit problem. The gambler

should pick up an arm from the arm setting, and receive a reward as response from the

picked arm. The reward obeys a fixed and independent probability distribution.

The K-Armed Bandit in stationary environment, can be defined as following setting.

The gambler faces a slot machine with K arms. Each arm k from the arm set K is

characterized by a distribution νk with its expected reward µk and a variance σ2
k. All of

these parameters are not changeable. In each round t> 1, the gambler selects an arm kt

and receives a sample drawn from νkt independently from the past and other arms. Here,

9



CHAPTER 2. MULTI-ARMED BANDIT

the goal of the gambler is to maximize rewards (minimize regret) or to identify the best

arm from all arms by estimating the empirical expected reward after T times pulling.

After T pulls and observations, the gambler samples each arm Tk times (denoted as

Tk =
∑T

t=11kt=k) and estimates the mean of each arm by µ̂k = 1
Tk

∑T
t=1 Xkt=k,t, where Xkt=k,t

denotes the reward when we pull arm k for the tth time. After T observations, we find the

optimal arm k∗:

(2.1) k∗ = argmax
k∈K

µ̂k and µ∗ =max
k∈K

µ̂k

Simple Regret In the sequel, ∆k = µ∗− µ̂k denotes the gap between the maximal

expected reward and the kth arm. The minimal gap can be noted by ∆= min
k:∆k>0

∆k. Therefore,

the simple regret in the round T equals to the regret on a one-shot instance for the chosen

arm kT , that is,

(2.2) rT =µ∗− µ̂kT =∆kT .

Regret In the stochastic framework, we define the cumulative regret by the following

formulate.

(2.3) RT =
T∑

t=1
(µ∗− µ̂kt )

2.1.2 Adversary Bandit

Adversary environment [12] is a challenging problem of Multi-Armed Bandit. In this

environment, rewards for each step are selected by an adversary rather than the stationary

environment where the rewards are picked from a fixed distribution. Any method of

MAB in adversary environment should assume that the information is not symmetric

between the gambler and the adversary. Similarly to the stationary environment, we

define K = {1, . . . ,K} as a set of arms, and T = {1,2, . . . ,T} denote the sequence of decision

epochs by the gambler. Compared Adversary environment with Stationary environment,

the difference is their rewarding distributions. In Adversarial environment, the reward

distribution ν is changeable at each epoch t under the controlling of an adversary, but the

distribution of Stationary case is stable. From another point of view, Adversarial Bandit

can be seen as a competition between the gambler and an omniscient adversary.

This issue can be summarized in the following main points:

• the adversary chooses a reward distributions µt = (µ1,t, . . . ,µK,t) ∈ [0,1]K

10



2.1. ENVIRONMENT OF MULTI-ARMED BANDIT

• the gambler picks one arm k with no knowledge of the adversary’s choice

• the rewards are assigned as Xk,t, it is drawn i.i.d. by the distribution µk,t.

Regret of Adversary environment can be presented as:

RT =
T∑

t=1
max

k=1,...,K
µk,t −

T∑
t=1

Xkt,t.

2.1.3 Contextual Bandit

Contextual Bandit [4, 80], is a natural extension of Multi-Armed Bandit. is obtained

by associating side information with each arm. Based on this side information, some

applications can be naturally modeled as Multi-Armed Bandit problems with context

information, also named as Bandit with side information. It is closely related to work on

supervised learning and reinforcement learning. In order to facilitate the presentation in

Chapter 3, the definitions of Contextual Bandit, will be described with some notations in

supervised learning.

For contextual bandit, there is a distribution P over (x, r1, r2, . . . , rK ). On each round

t ∈ T = {1,2, . . . }, the gambler receives a sample (xt, r t,1, r t,2, . . . , r t,K ) drawn from P and

makes decision ŷt ∈Y by observing the set of arms Y = {1, . . . ,K} with the feature vector

xt,yt ∈X . Where yt is the optimal arm for xt, but the gambler does not know this. With

the chosen arm ŷt, the gambler receives a reward r(xt, ŷt). One should emphasize that the

reward is only observed when the arm is chosen.

After T sequence, all rewards are defined as
∑T

t=1 r(xt, ŷt). Similarly referring to Station-

ary setting, we define the regret by the notations below:

R(T)= E[
T∑

t=1
r(xt,yt)]−E[

T∑
t=1

r(xt, ŷt)].

Contextual bandits naturally appear in many applications. For example, online recom-

mendation systems, advertisement push, personalized search etc.

2.1.4 Linear Bandit

The linear Bandit [1, 27] is also a sequential decision-making problem similar to the other

bandit problems, where the gambler has to choose an arm from the arms set at each step

t. As a response, the gambler receives a stochastic reward, whose expected value is an

unknown linear function of the chosen arm.

11
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Here, we formally present the definition of the linear Bandit problem. On the round t,

the gambler is given the arm set K ⊆Rd. He selects an arm kt ∈Rd from the set K . Then,

the gambler observes a reward r t =< kt,θ >+ηt, where θ ∈Rd is an unknown parameter

and ηt is a random noise satisfying the condition E[ηt|k1:t,η1:t−1]= 0.

As for other bandit problems, the goal of this problem is to maximize the cumulative

reward R = ∑T
t=1 < kt,θ > over all round T. Obviously, the gambler would choose the

optimal arm k∗ = argmax
k∈K

< k,θ > with the knowledge of θ. As a result, the regret of linear

bandit problem, can be formally denoted as

R =
(

T∑
t=1

< k∗
t ,θ >

)
−

(
T∑

t=1
< kt,θ >

)
=

T∑
t=1

< k∗
t −kt,θ >

.

2.2 Gittins index

Multi-Armed Bandit problem is concerned with sequential decisions. In this section, we

focus on the optimal decision process. A MAB problem can be treated as a Markov Decision

Process (MDP). However, no approach can scale well on it with the huge of dimensionality.In

that situation, Gittins and Jones [53] show that the problem can be reduced to solve K

1-dimensional problems from the K-dimensional Markov Decision Process with the state

space
∏K

k=1 X (k), where X (k) = (x(k,1), x(k,2), . . . ) presents the state of arm k. Therefore,

K-armed bandit returns denoted by

arm 1 : x(1,1), x(1,2), . . . , x(1, t), . . .

arm 2 : x(2,1), x(2,2), . . . , x(2, t), . . .

. . .

arm K : x(K ,1), x(K ,2), . . . , x(K , t), . . .

For each arm k, to compute

(2.4) Gk(X (k))= sup
τ>0

E[
∑τ−1

t=0 β
trk(x(k, t))|x(k,0)= x(k)]

E[
∑τ−1

t=0 β
t|x(k,0)= x(k)]

,

where τ is a stopping time constrained and Gk is the value of the Gittins index for arm k,

two parameters rk is the reward after pulling arm k and β is a attenuation parameters.

The stopping time τ represents the first time at which the index for this arm may be

optimal no more. By the way, the decision rule is then to simply choose arm kt, which can

be computed by kt = argmax
k∈K

Gk(X (k)).

12
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Theorem 2.1. The problem posed by a simple family of alternative bandit processes, as

setup above, is solved by always continuing the process with the largest Gittins Index.

Various proofs of this theorem have been given, the original proof is proposed by Gittins

and Jones[53], and a later proof by Gittins [54] relied on an interchange argument. Further

simplified by [98, 100]. More details about the proofs can be referred in their papers.

Gittins Index characterized the optimal strategy as Theorem 2.1, an equivalent inter-

pretation of the Gittins Index strategy is to select the arm with the largest Gittins Index

Gk(X (k)) and play it until its optimal stopping time and repeat. Thus, an alternative way

to implement the optimal way is to compute the value of Gittins index Gk(X (k)) and the

corresponding stopping time τ for the current state x(k, t).

Scott [89] points out two further concerns that the Gittinx Index strategy is only

optimal for the process in which arms are independent and can be far from optimal when

this is not the case.

2.3 The strategy of trade-off

The synopsis of Bandit problems have been introduced in Section 2.1. From this synop-

sis, the difficult point of Bandit problem is to keep a balance between Exploration and

Exploitation. That way, it becomes very important to trade off between exploration and

exploitation, where to exploit from the past knowledge to focus on the arms that seems

to yield the highest rewards, and to explore further the other arms to identify the real

optimal arms.

The easy way to solve this problem is to select an arm randomly. However, this way

mainly relies on luck. So it is not reliable. Another simple way is called “Naive Sampling”

approach. It samples each arm by the same number, and then measure the results on

comparing their rewards. This approach also has a problem. If the initial number of

samples is too small, the confidence is not believable; if the initial number is big enough, it

wastes budgets. So we introduce some effective strategies of tradeoff in this section.

2.3.1 Thompson Sampling

Thompson Sampling [96], a randomized algorithm based on Bayesian ideas, is one of the

oldest heuristic principle for Bandit problems. Recently, it has been considered having

better empirical performance compared to the state-of-the-art methods after several studies

demonstrated [3, 4, 30].

13
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The origins of Thompson Sampling has been introduced in Chapter 1, is from the

procedure’s inventor William R. Thompson. Thompson was interested in the general

problem of research planning. He was concerned with being able to utilize a small number

of observations in order to steer actions taken before more data could be collected. This was

in the context of a perceived objection to argument based on small numbers of observations

at the time. Thompson posed his problem in terms of deciding between two treatments

in a clinical trial. One of the treatments would be administered to a patient in the trial

population and the effect could be observed. These observations can then be incorporated

into the decision-making process to improve the odds of the most effective treatment being

administered to further patients.

For Bandit problems, this randomized strategy will choose an arm with some probability

which matches the probability that the arm is in fact the optimal arm, by giving all past

observations of all arm pulls. More reasonable for this random choice is to define the

probability that an arm is the best is a Bayesian estimate.

Let θ be a parameter vector to present the choices. The probability of the optimal arm

k is

(2.5) P(K = k∗)=
∫
θ
1(K = k∗|θ)P(θ)dθ.

An arm is thus pulled with the probability P(K = k∗). This Sampling way can be viewed

as a form of decision based on one-step Monte-Carlo Sample by estimating the probability

of an arm being the best.

Algorithm 2.1 (Thompson Sampling).
Initialise P(µ1,...,µK ), the prior belief of the mean payoffs of arms 1, . . . ,K.

Let Ht be the history of action, reward pairs (rτ,kτ) for 16 τ6 t, H1 = {}

for each round t = 1,2,. . . , T do
Sample θ1, . . . ,θK ∼ P(µ1, . . . ,µK |Ht).

Pull arm kt = argmaxk∈{1,...,K}θk

Receive reward 1r(kt)=1

Let Ht+1 = Ht ∪ (kt,1r(kt)=1).

end for

Optimism in Thompson Sampling(See in Appendix A.1) There is a question, what

is the tradeoff between exploration and exploitation for Thompson Sampling. May [80] tried

to separate these two aspects of this algorithm. To do this, he defined the exploitative value

of an arm to be the expected payoff of an arm conditioned on the rewards. The estimated

expected rewards of an arm could be seen as the sampling drawn from the posteriori
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distribution. With these, the exploratory value of an arm can be found by subtracting the

exploitative value from the estimated sample value. They observed that this exploratory

value could sometimes be negative and so there would be no value from an exploration

point of view to pull the arm. The exploratory value of an arm is only negative when the

sample estimate drawn from the posterior is less than the exploitative value of the arm.

In Thompson Sampling, samples are drawn from the posterior distribution of each

arm, that is θk(t) ∼ P(µk). Instead, Optimistic Thompson Sampling draws samples with

θk(t)= max(E[µk], sk(t)) where sk(t)∼ P(µk). In other words, if a sample from the posterior

distributions is less than the mean of the distribution, then we sample it. This ensures

that the exploratory value of an action is always positive.

2.3.2 Boltzmann Exploration

Boltzmann Exploration (also named Softmax) is based on the axiom of choice [78] and

picks each arm with a probability which is proportional of its choices. An arm with larger

empirical expected rewards is sampled with a higher probability. Softmax uses a Boltzmann

distribution to select the arms. Given the initial empirical means µ̂1(0), . . . , µ̂K (0),

(2.6) pk(t+1)= exp
(
µ̂k(t)/τ

)∑K
i=1 exp

(
µ̂i(t)/τ

) ,with k ∈ {1, . . . ,K}

Softmax depends on the task and on human factors by the only parameter τ. Where τ is

a temperature parameter, controlling the randomness of the choice. When τ= 0, Boltzmann

Exploration acts like pure greedy. On contrast, τ tends to infinity, the algorithms picks

arms uniformly at random. The choice of parameter τ generally depends on the knowledge

of similar action or quantity of the value exp µ̂/τ.

Algorithm 2.2 (SoftMax).
Parameter: real number τ> 0

Initialization: Set µ̂k(0)= 0 for ∀k ∈ [1, . . . ,K]

for each round t = 1,2,. . . , T do
Sample arms i according to the distribution Pk(t), where

Pk(t)= exp
(
µ̂k(t−1)/τ

)∑K
i=1 exp

(
µ̂i(t−1)/τ

)
Receive the reward rkt , here kt is the sampled arm at time t.

µ̂k(t)=∑
t rk,t/

∑
t1k=kt,t

end for
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Softmax can be modified in the same way as the ε-greedy strategy in Section 2.3.4

to attenuate the exploration probability, when the temperature τ decreases with the

number of rounds played. The decreasing Softmax is identical to the Softmax but with a

temperature τt = τ0/t that depends on the current round t. The initiation value of τ0 is set

by the user. The decreasing Softmax is analyzed by Cesa-Bianchi [29] with the “Soft-mix”

algorithm.

A more complicated variant of the Softmax algorithm, the EXP3 – “exponential weight

algorithm for Exploration/Exploitation” (see Appendix A.2) is introduced in [13]. The

probability of choosing arm k on round t is defined by

(2.7) Pk(t)= (1−γ)
wk(t)∑K

i=1 wi(t)
+ γ

K

where wi(t+1)= wi(t)exp
(
γ

r i(t)
Pi(t)K

)
, if arm i has a reward r i(t) on round t, wi(t+1)= wi(t)

otherwise. The choice of the value of the parameter γ ∈ (0,1] is left to the user. The main

idea is to divide the actual gain r i(t) by the probability Pi(t) that the action was chosen. A

modified version of EXP3, with γ decreasing over time, it is shown by [12], where a regret

of O(
√

KT logK ) is achieved.

2.3.3 Upper Confidence Bound

Upper Confidence Bound (UCB) was proposed by Lai [70], to deal with the Exploration and

Exploitation dilemma in Multi-Armed Bandit problem by using Upper Confidence Values.

Most strategies for trade-off between exploration and exploitation have one weakness: they

do not keep track of how much they know about the options. They only pay much more

attention to know how much reward they got, i.e. they under-explore options whose initial

experiences were not rewarding, even though they don’t have enough data to be confident

about those options. However, UCB pays attention to not only what it knows, but also how

much it knows.

For example, in the stochastic Multi-Armed Bandit problems, the gambler has to choose

in trial t ∈ {1,2, . . . ,T} an arm from a given set of arms K = {1, . . . ,K}. In each trial t, the

gambler obtains a random reward rk,t ∈ {0,1} by choosing the arm k. It is assumed that the

random reward rk,t is an i.i.d. random variables with an unknown mean µk for arm k.

The goal of the gambler is to get the arm with largest expected reward µ∗ := maxk∈K µk.

The best expected rewards of this arm µ̂∗ so far serves as a criteria, and other arms are

played only if their expected rewards within the confidence interval of µ̂∗. That way, within

T trials each suboptimal arm can be shown to be played at most
(

1
DKL

+ o(1)
)
logT times

in expectation, where DKL measures the Kullback-Leibler distance between the reward
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distributions of the optimal and the suboptimal arm, and o(1)→ 0 as T →∞. This bound

was also shown to be asymptotically optimal [70].

Auer [10] introduced the simple, yet efficient UCB algorithm. It is based on the ideas

of Lai’s. After playing each arm once for initialization, UCB chooses at trial t the arm k

that maximizes

(2.8) µ̂k +
√

2log t
nk

,

where µ̂k is the average reward obtained from arm k, and nk is the number of times of

arm k has been played up to trial t. The value in Equation 2.8 can be interpreted as the

Upper Bound of a confidence interval, so that the real mean reward of each arm k with

high probability is below this upper confidence bound.

In particular, the upper confidence value of the optimal arm will be higher than the real

optimal expected reward µ∗ with high probability. Consequently, as soon as a suboptimal

arm k has been played sufficiently often so that the length of the confidence interval√
2log t

nk
is small enough to guarantee that

µ̂k +
√

2log t
nk

<µ∗,

arm k will not be played anymore with high probability. As it also holds that with high

probability

µ̂k <µk +
√

2log t
nk

,

the arm k is not played as soon as

2

√
2log t

nk
<µ∗−µk,

that is, as soon as arm k has been played⌈
8log t

(r∗− rk)2

⌉
times. This informal argument can be made stringent to show that each suboptimal arm

k in expectation will not be played more often than logT
∆2

k
times within T trials, where

∆k :=µ∗−µk is the distance between the optimal mean reward and µk.

Algorithm 2.3 (Improved UCB algorithm).
Set arms K = {1, . . . ,K}, all playing times T = 1,2, . . . ,T
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Initialization: Set ∆̃0 := 1, and B0 :=K .

for each round t = 1,2, . . . ,
⌊1

2 log T
e
⌋

do
Select arm: if |Bm| > 1, choose each arm in Bm until the total number of times it has

been chosen is nm :=
⌈

2logT∆̃2
m

∆̃2
m

⌉
. Otherwise choose the single Bm until step T is reached.

Eliminate arm: Delete all arms i from Bm for whichµ̂i +
√

logT∆̃2
m

2nm

<max j∈Bm

µ̂ j −
√

logT∆̃2
m

2nm


in order to obtain Bm+1. Here µ̂ j is the average reward obtained from arm j.

Reset ∆̃m: Set ∆̃m+1 = ∆̃m
2

end for

In [14], Auer proposed an improved UCB algorithm (shown in Algorithm 2.3). In this

improved model, the gambler can access to the values ∆k, one could directly modify the

confidence intervals of UCB as given [2] to

√
2log t∆2

k
nk

, and the proof of the claimed regret

bound would be straightforward.

However, since the ∆k is unknown to the learner, the modified algorithm shown in

Algorithm 2.3 guesses the values ∆k by a value ∆̃, which is initialized to 1 and halved

each time the confidence intervals become shorter than ∆̃. Note that compared to the

original UCB algorithm the confidence intervals are shorter, in particular for arms with

high estimated reward. Unlike the original UCB algorithm, our modification eliminates

arms that perform bad. As the analysis will show, each suboptimal arm is eliminated

as soon as ∆̃< ∆k
2 , provided that the confidence intervals hold. Similar arm elimination

algorithms were already proposed in [48].

2.3.4 Epsilon-Greedy

In this section, we are going to introduce a simple algorithm for trading off exploration and

exploitation. This strategy is called ε-Greedy [95] (shown in Algorithm 2.4). In computer

science, a greedy algorithm is an algorithm that always takes whatever action seems best

at the present moment, even when that decision might lead to bad long term consequences.

The ε-greedy algorithm is almost a greedy algorithm because it generally exploits the best

available option, but also have some chance to explore the other available options.

Let be more concrete to the mechanism of ε-greedy algorithm. It works by randomly

oscillating between the purely randomized experimentation and instinct to maximize

profits. The ε-greedy is one of the easiest bandit algorithms to understand because it tries
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Figure 2.1: the mechanism of epsilon-greedy

to be fair to the two opposite goals of exploration and exploitation by using a mechanism

(see the Figure 2.1). Take a simple example to understand easily: it is just like flipping a

coin. If you flip a coin and it comes up heads, you should explore for a moment. But if the

coin comes up tails, you should exploit.

Algorithm 2.4 (ε-Greedy).
Initialise P(µ1,...,µK ), the prior belif of the mean payoffs of arms 1, . . . ,K.

for each round t = 1,2,. . . , T do

Pull arm kt =
argmaxk∈{1,...,K}P(µk) with probability ε

select randomly with probability 1−ε
Receive reward r(kt)

Update µkt by the reward r(kt).

end for

Auer [11] has proven that, if ε is allowed to be a certain function εt following the current

time step t, namely εt = K /(d2t), then the regret grows logarithmically like (K logT/d2),

provided d is less than the number of objects with minimum regret. Yet this bound has a

suboptimal dependence on d. In Auer’s [11] same paper, it is shown that this algorithm

performs well in practice, but the performance degrades quickly if d is not chosen as a

tight lower bound.
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Compared to other more complex methods, ε-greedy is often hard to beat and reported

to be often the method of the first choice as stated. In practice, however, a drawback of

ε-greedy is that it is unclear which setting of ε leads to good results for a given learning

problem. For this reason, the experimenter has to rigorously hand tune ε for obtaining

good results, which can be a very time-consuming a task in practice depending on the

complexity of the target application.

One method that aims at overcoming the above mentioned limitation of ε-greedy is

“Value-Difference Based Exploration”(VDBE) [97]. In contrast to pure ε-greedy, VDBE

adapts a state-dependent exploration-probability. The basic idea of VDBE is to extend

the ε-greedy method by controlling a state-dependent exploration probability, ε(s), which

is according to the value of error function. The desired behavior is to have the agent

more explorative in situations when the knowledge about the environment is uncertain,

i.e. at the beginning of the learning process, which is recognized as large changes in the

value function. On the other hand, the exploration rate should be reduced as the agent’s

knowledge becomes certain about the environment, which can be recognized as very small

or no changes in the value function.

2.4 Regret Lower bound

Lai and Robbins [70] provided asymptotic lower bounds of the expected regret for the

stochastic Multi-Armed Bandit problem. In their work, it shows that R(T) = o(Ta) can

applies to any strategy for MAB, for all a > 0 as T →∞.

Kaufmann et al. [63] call this condition strongly consistent, since that limT→∞E[S(T)]/T =
µmax. When the reward distribution are Bernoulli, for arms i, j, their reward average

µi,µ j ∈ [0,1]. To define the Kullback-Leibler divergence between two Bernoulli distribu-

tions with parameters µi and µ j

DKL(µi,µ j)=µi ln
µi

µ j
+ (1−µi) ln

1−µi

1−µ j

The Theorem of asymptotic lower bounds states that

Theorem 2.2. Distribution-dependent lower bound Consider a strategy that satisfies

R(T)= o(Ta) for any set of Bernoulli reward distributions, any arm k with ∆k =µ∗−µk > 0,

and any a > 0. Then, for any set of Bernoulli reward distributions the following holds

(2.9) lim
T→∞

inf
R(T)
lnT

>
∑

k∈K :∆k>0

∆k

DKL(µk,µ∗)
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Let Nk,T be the number of times the strategy pulled arm k up to time T, the bound can

be written as,

lim
T→∞

inf
∑

k∈K E[Nk,T (µmax −µk)]
lnT

They call any strategy that meets this lower bound with equality asymptotically

efficient. It’s also useful to note that for a strategy that satisfies

lim
T→∞

E[Nk,T ]
lnT

>
1

DKL(K ,µmax)
,

with equality for all k ∈ K then refer to Equation 2.9 satisfy with equality and the strategy

is asymptotically optimal.

2.5 Pure Exploration and Best Armed Identification

Bubeck [24, 25] and Chen [31] proposed to investigate the problem where the gambler may

sample arms a given number of times T which may be not necessary known in advance,

and be asked to output recommended arm. They advocate to evaluate the performance of a

gambler by the simple regret (refer the section 2.1.1). The distinction from the classical

MAB’s modeling is to separate the exploration phase and the exploitation phase. This is

the pure exploration problem. Its process is shown as the following modeling,

Algorithm 2.5 (Pure exploration).
Set rounds T and a arm set K.

for each arm k=1,2,. . . , K do
for each round t = 1,2,. . . , T do

Pull arm k and get reward r(k,t) which is drawn i.i.d. randomly

end for
µ̂k = 1

T
∑T

t=1 r(k,t)

end for
Output the optimal arm k∗

t = argmax
k=1,2,...,K

µ̂k

The pure exploration problem is about the design of strategies which makes the best

use of the limited budget in order to optimize the performance and identify their best

choice in a decision-making task. Audibert [9] proposed two algorithms to address this

problem: UCB-E and Successive Rejects. The former is a pure exploring strategy based on

Upper Confidence Bounds, the latter is a parameter-free method based on progressively

rejecting the arms which seem to be suboptimal. Audibert shows that these two algorithms

are essentially optimal since the regret decrease exponentially at a rate up to a logarithmic

factor.
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UCB-E algorithm

This algorithm is an exploration policy based on Upper Confidence bounds (UCB-E). When

the exploration parameter a (shown in Appendix A.3) is taken to be of order logT, the

algorithm obviously corresponds to the UCB algorithm with the cumulative regret of

order logT. Bubeck[24] has shown that algorithms having at most logarithmic cumulative

regret, have at least a (non-cumulative) regret of order T−γ for some γ> 0. Following the

demonstration of cumulative regret [9], if UCB-E takes the parameter a of order logT, its

probability of error converges to O(1/T) instead of exponential decay.

And taking parameter a in O(T) can explore much more than ever. If UCB-E runs with

parameter a ∈]0, 25
36

T−K
H1

], the probability of error is at most of order exp−a for a6 logT,

where H1 denotes a quantity H1 =∑K
k=1

1
∆2

k
(the definition of ∆k in Section 2.1.1).

Considering the parameter a, if a6 25
36

T−K
H1

, it essentially says: the more it explores,

the smaller the regret is. Besides, the smallest upper bound on the probability of error

is obtained for an order of T/H1, and is therefore exponentially decreasing with T. The

constant H1 depends not only on how close the mean rewards of the two best arms are,

but also on the number of arms and how close their mean reward is to the optimal mean

reward. This constant can be seen as the order of the minimal number nkT for which the

recommended arm is the optimal one with high probability.

Successive Rejects algorithm

This other algorithm identifies the best arm in MAB by pure exploration. The details are

shown in Appendix A.4. Informally it proceeds as follows. First the algorithm divides the

time (i.e., the T rounds) in K −1 phases. At the end of each phase, the algorithm dismisses

the arm with the lowest empirical mean. During the next phase, it equally pulls all arms

which have not been dismissed yet. The recommended arm kT is the last surviving arm.

The length of the phases are carefully chosen to obtain an optimal (up to a logarithmic

factor) convergence rate. More precisely, one arm is pulled n1 =
⌈

1
logK

T−K
K

⌉
times, one

n2 =
⌈

1
logK

T−K
K−1

⌉
times, . . . , nK−1 =

⌈
1

logK
n−K

2

⌉
times. SR does not exceed the budget of T

pulls, since, from the definition log(K)= 1
2 +

∑K
k=2

1
k , we have

n1 + . . . ,+nK−16K + T −K

log(K)

(
1
2
+

K−1∑
k=1

1
K +1−k

)
= T

For K = 2, up to rounding effects, SR is just the uniform allocation strategy. Here, it denotes

H2 as a quantity H2 =max
k∈K

k∆−2
k , the upper error is bounded by K(K−1)

2 exp
(
− T−K

log(K)H2

)
, and

it could be proved has a lower bound of sampling times by T−K
4log(K)H2∆

2
k
.
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Chapter 3

Bandit with side information

Contextual Bandit, also named Bandit problem with side information, has been intro-

duced in Section 2.1.3. Since it is closely related to work on supervised learning and

reinforcement learning, it is usually applied to solve the problem of supervised learning

with partial feedback. The classification with partial feedback is a novel and influential

problem. This Classification can be traced back to online supervised classification and

Multi-Armed Bandit Reinforcement learning, as Multi-Armed Bandit problem with side

information. Langford [71] extended Multi-Armed Bandit setting to the case where some

side information is provided. However, this setting has a high level of abstraction and its

application to the classification bandit learning is not straightforward. In this chapter, we

restate the setting of online learning under the frame of Contextual Bandit, and recall

some outstanding researches and contributions.

Classification with Bandit Feedback is composed by two parts: Online learning and

Bandit set. Firstly, we formally introduce online learning [90]. Online learning is a fun-

damental task of machine learning. Different to the batch learning, the dataset of online

learning usually comes to be sampled and trained in a sequential order. Otherwise, for

some special constraints, e.g. limited memory or partial information, machine learning

should take online learning as first choice. In this chapter, Classification with Bandit

feedback is the latter.

We here introduce the framework of online supervised learning. Let ((x1, y1), . . . , (xt−1, yt−1))⊂(
Rd ×Y

)t−1 be an ordered sequence of training instances. Let F = ( f1, f2, . . . ) be an ordered

sequence of linear mappings. After the previous t−1 instances, a mapping f t−1 :Rd →R,

that maps the training space to the reals, has been learned. A new instance (xt, yt) is

read from the environment. The learner makes its prediction ŷt from the values of the

mapping f t−1(xt). Here, the instance xt is not only for testing, but also for training. There
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is an algorithm π, which updates the mapping at each new instance: πxt,yt : f t−1 → f t. This

completes the process of Online supervised learning.

To estimate the algorithm π, we introduce here some evaluation criterion.

Mistakes: For instance t, if the prediction ŷt 6= yt, it makes an incorrect prediction.

Therefore, mistakes can be accounted as

mistakes(π,F )=
t∑

i=1
1( ŷi 6= yi).

The goal of algorithm π is to bound the total number of mistakes, it also calls mistake

bounds M. This mistake bound can be presented as

M = max
((x1,y1),...,(xt,yt))⊂(Rd×Y )t

mistakes(π,F ).

Margin: If the dataset D is separable, there exist a mapping f such that ∀(x, y) ∈
D, ŷ= y. Then the full dataset is separated into different classes. The decision rule used

to separate the dataset defines the boundary between classes. A useful quantity, called

the margin, is then the minimal distance between the elements of a class and the class

boundary. The objective of many learning algorithms is thus to maximize this margin by

designing the appropriate class boundaries (e.g. SVM, PA algorithm, Weighted Perceptron).

Loss, also named as instantaneous loss, indicates the penalty for an incorrect predic-

tion, let l t(xt, ŷt, yt) be the loss for prediction ŷt instead of yt. For all losses of past instances,

it called cumulative loss, denoted as L t =∑t
i=1 l i(xi, ŷi, yi).

For loss function, there are varieties of expressions, e.g. zero-one loss, non-symmetric

loss, squared loss and hinge loss. Here, we introduce binary hinge loss [17, 51] as an

example. For a linear mapping f , the max margin for datasets is γ. The hinge loss in the

binary case (i.e. y ∈ {−1,1}) for an instance (xt, yt) is :

l f (xt, ŷt, yt)=max
(
0,γ− yt. f (xt)

)= [γ− yt. f (xt)]+

Regret of an online learning algorithm presents the difference between the loss of

classifier f t and the optimal classifier f ∗ who is a classifier with largest margin.

R(F ,T)=
T∑

t=1
l(xt, f t(xt), yt)−

T∑
t=1

l(xt, f ∗(xt), yt).

Regret bound measures the performance of an online algorithm relative to the perfor-

mance of optimal classifier.

Sometimes, datasets are non-linearly separable. So, Vapnik [99]proposes an explicit

mapping Kernel function to get linear learning algorithms to learn a nonlinear function
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or decision boundary. For two variables x and x′ from the input space X , let certain

functions K(x,x′) be an inner product in another space X †. For simplicity understand,

this kernel mapping can be written in the form of a feature mapping φ : X →X † which

satifies

K(x,x′)= 〈φ(x),φ(x′)〉

, where x and x′ are primal variables, and φ(x) and φ(x′) are dual variables. The dual

space is also named Reproducing Kernel Hilbert Space (RKHS). More details are given in

section 5.3.

In the next sections, we focus on introducing some supervised classification algorithms

in state-of-the-art. From the side of Bandit feedback, we present some important clas-

sification algorithms working with Bandit Feedback, most of them being based on the

supervised learning algorithm combining some bandit strategies. After completing the

description of the Multi-class classification with Bandit Feedback, we pose a novel problem,

the Multi-Labels classification working with partial feedback. Then, we provide some

analysis and an effective algorithm on this issue.

3.1 Multi-class Classification with Bandit feedback

Online classification with bandit feedback, is a bandit variant of the online classification

protocol, where the goal is to sequentially learn a mapping from the context space X ⊆Rd

to the label space Y = {1, . . . ,K}, with K ≥ 2. In this protocol, forecaster keeps classifiers

parameterized w = (w1,w2, . . . ,wK ) from the hypothesis space W ⊆ RK×d. At each steps

t = 1,2, . . . ,T, the side information xt ∈ X is sampled i.i.d. at random, then forecaster

predicts the label ŷt, by the linear hypothesis wt:

(3.1) ŷt = argmax
k∈{1,...,K}

< wt,Φ(xt,k)>

In the standard online protocol, the forecaster observes the true label yt associated

with xt after each prediction and uses this full information to adjust the classifier wt.

However, in the bandit version, the forecaster only observes an indicator 1( ŷt = yt), that is

whether the prediction at time t is correct or not. With Bandit feedback, its cumulative loss

is defined as the following format. And the one with Bandit Feedback is defined as below:

(3.2) LBF =
T∑

t=1
lBF (wt,xt,1( ŷt = yt))
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3.1.1 Multiclass Classification

Multiclass Classification is a problem of classifying the samples into several different

classes and online learning is performed as a sequence of trials experiment. To solve this

problem, the algorithms aim at learning a predictor h : X →Y , which maps the instances

to the classes space. The simplest approach to tackle multiclass prediction problem is

by reduction from multiclass classification to binary classification. That is the methods

often mentioned: One-versus-All and All-versus-All. See Figure 3.1, consider some points

classified into three classes (classified as their colors), by the method One vs All, it is

necessary to find three binary classifiers who can only identify one class see Figure 3.2.

Crammer has introduced several additive and multiplicative algorithms in [35], where

Perceptron [87] and Winnow [75] are two such important algorithms. Much analysis has

been done, Kivinen and Warmuth developed potential functions that can be used to analyze

different online algorithm [65]. The goal of all classification algorithms, is to minimize the

mistake bound M or regret R. To achieve this goal, the algorithms update the classifiers at

each trial.

Figure 3.1: Multiclass task
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Figure 3.2: Reduction from multiclass classification to binary classification (One vs All)

Here, we make some definitions for simplifying the writing: the feature vector represen-
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tation Φ(x, y) induced by the instance label pair (x, y). Here, Φ(x, y) is a K×d matrix which

is composed of K columns of feature size d. All columns but the y’th column of Φ(x, y) are

set to the zero vector while the y’th column is set to x. A multi-class algorithm produces a

hypothesis w ∈RK×d from W on every online round. Like for the construction of Φ(x, y), w

is composed of K columns of size d and we denote column r by wr. By construction, we set

< w,Φ(xt, r)>=< wr, xt >.

The binary hinge loss has been introduced at the head of this chapter. We here present

a variant of this loss function in Multi-class frame.

(3.3) l(wt; (xt, yt, ŷt))= [γ+< wt,Φ(xt, ŷt)>−< wt,Φ(xt, yt)>]+,

where parameter γ is the margin of this algorithm. The hinge loss is a convex function. It

is not differentiable, but has a subgradient with respect to different classifiers. So many

quadratic optimization can work with it, e.g. algorithm SVM. For binary hinge loss, its

subgradient to classifier w can be represented as:

∂l t(w,xt, yt)
∂w

=
− ŷt ·xt if ŷt · yt < γ

0 otherwise

And the subgradient for the Multi-class hinge loss:

∂l t(w,xt, yt)
∂w

=
Φ(xt, yt)−Φ(xt, ŷt) if l t > 0

0 otherwise

After introducing the principal multiclass definitions, we study in the following some

approaches for learning multiclass classifiers. Most of them are linear multiclass predictors.

Perceptron was proposed by F. Rosenblatt [87]. It is a general computational model

with some numerical weights. By Minsky and Papert [83], it was refined and perfected in

1960s. For the simplest binary model, the input space X ⊆Rd can be separated into two

sets P and N. The Perceptron algorithm looks for a weight vector w ∈ R with a product

function h, where h(xt) =< w, xt >∈ R. If the P and N are linear separated, the ideal

weighted vector be assumed that all points of P holds the product h(xP )> 0 and all points

of N holds h(xN )< 0.

Generally, the initial weights vector w0 is chosen randomly. For the binary state, if the

instance on round tth xt belongs to the set P, the class yt of instance xt is +1, else yt equals

to −1. Then, yt ·h(xt)> 0, it means the weight vector make a good prediction, and continue

to predict a new instance; from the opposite direction, when it predicts wrong, the value of
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product yt ·h(xt)< 0, it should take an update to the weight vector with the instance vector

xt

wt+1 =
wt if yt ·h(xt)> 0

wt + yt · xt elsewhere

The Perceptron in Multi-class Classification with K classes looks for a set of K weight

vectors W = (w1,w2, . . . ,wK ) ∈ W ⊆ RK×d. The prediction way should be referred to the

Function 3.1. However, with non-separable datasets, there is no soft margin. Perceptron

updates according to the incorrect classification for those vague instances. In that case, it

will affect the classification result.

wt+1 =
wt if 〈wt,Φ(xt, yt)〉 > 0

wt +Φ(xt, yt)−Φ(xt, ŷt) elsewhere

Its mistake bound convergence in (R/γ)2 where R = max ∥ xt ∥ and γ= min| < u, xt > |
with optimal classifier u. More details of Perceptron see Appendix A.5.

Second-order Perceptron[28]. In the previous part, we talked about a popular, local

and greedy linear algorithm– Perceptron. Instead of Perceptron, a second order variant of

Perceptron proposed by Cesa-Bianchi sets a correlation matrix St, where St =∑t
s=1 xsxT

s ∈
Rd×d is positive, there exists a matrix S−1

t , s.t.S−1
t St = I t, I t is an identity matrix. This

matrix can measure the correlation of instances by a quadratic form xT
t M−1xt, i.e. if the

quadratic tends to quite small, they are correlated tightly.

In the basic form, Second-order Perceptron algorithm takes an input parameter a > 0.

To compute its prediction in trial t the algorithm uses a matrix St−1 ∈Rd×d and a classifier

wt−1 ∈RK×d, where subscript t−1 indicates the number of updates. Initially, the algorithm

sets S0 = 0 and w0 = 0. Upon receiving the tth instance xt, the algorithm predicts the label

of xt as ŷt. If ŷt 6= yt, then a mistake occurs and the algorithm updates, if ŷt = yt, no update

takes place, and hence the algorithm is mistake driven.

The second-order Perceptron algorithm retains the properties of large scale and efficient

dual variable representation . This allows us to efficiently run the algorithm in any

reproducing Kernel Hillbert space for the non-linear situation . By introducing the second-

order matrix, Second Order Perceptron can effectively reduce the misclassification around

the boundary and assumed to get a mistake upper bound. Confidence weighted [41] can

maintain each feature with a different confidence level, for the features with low degree of

confidence need to update more than the one with high level.

29



CHAPTER 3. BANDIT WITH SIDE INFORMATION

Passive-Aggressive Algorithm[33] is an effective framework for performing max-

margin online learning. Here, we address Online Passive-Aggressive algorithms, who learn

the classifiers from the linear hypothesis space with a set of ordered instances.

Here, all definitions are consistent with other sections. e (wt; (xt, yt)) is used to present

the margin between each labels.

e (wt; (xt, yt))=< wt,Φ(xt, yt)>−max
s 6=yt

< wt ·Φ(xt, s)> .

The margin is positive only if the product of the relevant label < wt,Φ(xt, yt)> is bigger

than the one of other irrelevant labels. This definition of margin computes an instantaneous

loss by hinge-loss function as follows,

(3.4) l(w; (x, y))=
0 e(w; (x, y))> γ

1− e(w; (x, y)) otherwise

The PA update rule is derived by defining the new weight wt+1 as the solution to the

optimization problem:

(3.5) wt+1 = argmin
w∈RK×d

1
2
∥ w−wt ∥2 s.t. l(w; (xt, yt))= 0.

Intuitively, if wt suffers no loss from the new instance, i.e. the hinge loss l t(wt; (xt, yt))

equals to 0, the algorithm passively assigns wt+1 = wt; otherwise, it aggressively makes

the new classifiers wt+1 satisfying that l t(wt+1; (xt, yt)) attains no loss.

The single constraint satisfies w ·Φ(xt, yt)−w ·Φ(xt, st)> γ and thus wt+1 is set to be

the solution of the following simplified constrained optimization problem,

(3.6) wt+1 = argmin
w

1
2
∥ w−wt ∥2 s.t. 〈w,Φ(xt, yt)−Φ(xt, st)〉> γ

The apparent benefit of this simplification lies in the fact that Eq. 3.6 has a closed

form solution. To draw the connection between the multiclass and binary classification,

considering the vector Φ(xt, yt)−Φ(xt, ŷt) as a virtual instance of a binary classification.

Therefore, the closed form solution of Eq. 3.6 is

(3.7) wt+1 = wt +τt (Φ(xt, yt)−Φ(xt, ŷt))

with

τt = l t

∥Φ(xt, yt)−Φ(xt, ŷt) ∥2

Although it’s essentially neglecting all but two labels on each step of the multiclass

update, it can still obtain multiclass cumulative loss bounds. The key observation in the

analysis it that,

l t = l(wt; (xt, yt))= [〈wt,Φ(xt, yt)−Φ(xt, ŷt)〉+γ]+
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For the bounds of multiclass PA algorithm, one needs to cast the assumption that

for all t, ∥Φ(xt, yt)−Φ(xt, ŷt) ∥6R holds. This bound can immediately be converted into a

bound on the norm of the feature set since ∥Φ(xt, yt)−Φ(xt, ŷt) ∥6∥Φ(xt, yt) ∥ + ∥Φ(xt, ŷt) ∥
. Thus, if the norm of the mapping Φ(xt,k) is bounded for all t and k ∈ Y then so is

∥Φ(xt, yt)−Φ(xt, ŷt) ∥, and the bounds on the cumulative loss of the algorithms is relative

to the smallest loss that can be attained by any fixed hypothesis.

3.1.2 Algorithms for Multi-class Classification with Bandit Feedback

In the conventional supervised learning paradigm, the forecaster has access to a data

set in which the true labels of the inputs are provided. Sometimes, the environment just

provides a partial feedback instead of a full one. Such problems are a natural extension of

the multiclass problems, called the bandit versions of multiclass prediction problems.

Here, K denotes the number of classes, and (x1, y1), . . . , (xT , yT ) denotes the sequence

of training examples received over trials, where xi ∈Rd and T is the number of training

instances. In each trial, ŷt ∈ {1, . . . ,K} denotes the prediction. Unlike the classical online

learning setup where an oracle provides the true class label yi ∈ {1, . . . ,K} to the learner,

the learner only receives a one bit response telling whether the prediction equals the true

label, i.e., 1[yt = ŷt]. The Bandit feedback is a special case of a Contextual Bandit with

side information. So the goal of this problem is not only to minimize the error bound, but

also to keep the balance between Exploration and Exploitation. Some popular strategies

of this issue have been introduced in Section 2.3, i.e. UCB, Thompson, ε-greedy etc. To

apply trade-off strategies to this issue, we need to understand the relationship between

the prediction ŷt and the label set Y . The prediction ŷt is the result of exploitation by the

past information, being optimal or sub-optimal depending on the hypothesis. Unlike the

supervised learning case, we have no knowledge about the true label yt. So, it is necessary

to sample other labels to explore more label information.

In this section, we introduce few traditional multiclass classification approaches com-

bined with Bandit policies.

Banditron [62] (see in Appendix A.8), is a simple but effective learning strategy for

online classification with bandit feedback, which is based on the Perceptron algorithm.

Despite its age and simplicity, the Perceptron has proven to be quite effective in practical

problems (more details about Perceptron see the previous section or [87] ).

Similar to the Perceptron, at each round, the prediction ŷt can be the best label accord-

ing to the current weight matrix wt, i.e. ŷt = argmax
i∈{1,...,K}

< wt,Φ(xt, i) > . Mostly, Banditron
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exploits the quality of the current weight matrix to predict the label ŷt. Unlike the Per-

ceptron, if ŷt 6= yt, then it’s difficult to make an update since it’s blind to the identity

of yt. Roughly speaking, it is difficult to learn when to exploit using wt . Since that, on

some of rounds it’s necessary to let the algorithm explore and uniformly predict a random

label from the label set Y . It’s denoted by ỹt the predicted label. On rounds, in which

it explores, (where ỹt 6= ŷt), if the forecaster additionally receives a positive feedback, i.e.

ỹt = yt, then it indirectly obtains the full information regarding the identity of yt, therefore

it could update the weight matrix using this positive instance. The parameter ε controls the

exploration-exploitation tradeoff, this is the ε-greedy strategy (refer to the Section 2.3.4).

With the randomized prediction ỹt, the above intuitive argument formalize the update

matrix Ũt.

Ũt = 1( ỹt = yt)
P(Ỹ = ỹt| ŷt)

Φ(xt, ỹt)−Φ(xt, ŷt)

where P(Ỹ = ỹt| ŷt) is the probability of predicting ỹt, it is according to ŷt. We emphasize

that Ũt accesses the correct label yt only through the indicator 1[yt = ỹt] and is thus

adequate for the bandit setting. Kakade[62] show that the expected value of the Banditron’s

update matrix Ũt is exactly the Perceptron’s update matrix Ut. Banditron is a linear

predictor with ε-Greedy strategy with Bandit feedback. Its mistake bound is bounded by

O(T2/3).

Confidit[34] proposes a different strategy of exploration. It uses the same principles

as UCB( see in Section 2.3.3), which is to maintain additional confidence information

about the predictions. Specifically, given an input xt, the algorithm not only computes the

score values, but also a non-negative uncertainty values for these scores, denotes by εi,t,

which is an upper bound of confidence interval. Intuitively, high values of εi,t indicate that

the algorithm is less confident in the value of the score wT
i xt. Given a new example, the

algorithm outputs the label with the highest upper confidence bound (UCB), computed as

the sum of score and uncertainty as following,

ŷt = argmax
i∈{1,...,K}

(wT
i xt +εi,t).

Intuitively, a label ŷt is output by the algorithm if either its score is high or the

uncertainty in predicting is high, and there is necessity to obtain information about it.

Specifically, this algorithm is based on the Second Order Perceptron (see section 3.1.1), i.e.

it maintains is a positive semi-definite matrix per label, A i,t ∈Rd×d to compute the upper

confidence to each label. More details on this algorithm is given in Appendix A.9. Confidit

develops the Second Order Perceptron with UCB strategy to solve the classification problem
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with Bandit feedback. And it uses the correlation matrix to estimate the uncertainty of

label set. Its regret bound is of O(
p

T logT), which is better than the one of Banditron.

3.2 Multi-label Classification with Bandit feedback

After introducing the problem of Multi-class Classification with Bandit feedback, we here

address another problem of Bandit feedback: Multi-label Classification with Bandit feed-

back. This problem exists in many fields, for example in recommender systems. Generally,

the number of locations is limited on a web-page to show ads. The goal of a recommender

system is to find the user’s favorite ads, and push them on the web-page. Like other Bandit

problems, the system can not observe the user’s favorites ads directly. Actually, during the

phase of exploration, the system can obtain some knowledge about the user by a Bandit

feedback.

Learning proceeds in rounds: at each step t, the system receives an instance xt and

outputs a subset Ŷt of labels from a finite set of all possible labels Y = {1,2, . . . ,K}. The

restriction of the size of Ŷt corresponds to the limited locations of web-page or other

conditions. The system intends to find the true set associated with xt. However, it can

never observe the true label set. Instead of the true label set, the system can receive a

feedback from the user: Yt ∩ Ŷt, where Yt ⊆ Y is a label set associated with xt. In the

restricted case |Ŷt| = 1 for all t, it becomes a familiar problem: Multi-class Classification

with bandit feedback.

3.2.1 Multilabel Classification

Different to Multi-class Classification, Multi-label Classification is more complicated. This

section first introduces the supervised learning Multi-label Classification. Multi-class

Classification has been introduced in section 3.1, the goal of this problem is to learn from

a set of instances associated with unique label yt ∈Y . Unlike this problem, Multi-label

Classification is to learn from a set of instances where each instance belongs to a set of

classes Yt ⊆Y where |Yt|> 1.

Here we define some notations of Multi-label Classification. Let X be an instance

space, and Y be a finite set of class labels. An instance xt ∈X is represented in terms

of features vector xt = (x1, . . . , xd) ∈ Rd. A subset Yt, associated to the instance xt, can be

denoted as a binary vector Yt = (y1
t , . . . , yK

t ), where yi
t = 1 if and only if label yi

t is associated

to the instance xt.
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Given a training set S = {(xi,Yi)}, 16 i 6 T, consisting of T training instances. All

instances are i.i.d. drawn from an unknown distribution D, and the goal of Multi-label

Classification is to produce a classifier h : X →Y that optimizes some specific evaluation

function (i.e. loss function).

Refer to [93], it presents a number of basic transformation methods. Some of them trans-

form Multi-label problem into multiple Multi-class problem, some address this problem by

ranking.

Here, we take some methods to explain how to solve Multi-label problem. To describe

more easily the methods, we use an example multi-label data in Table 3.1. There are four

instances that belong to at least one of 4 classes {1,2,3,4}.

Table 3.1: Example of multi-label dataset

Instance Label Set
x1 {1,4}
x2 {2,3,4}
x3 {1,3}
x4 {2,4}

Copy transformation this method replaces each example (xt,Yt) with |Yt| copies

(xt, yk
t ), for each label yk

t ∈ Yt. So, instance (x1, {1,4}) represented as (x1, {1}) and (x1, {4}).

There is an extension to this, it is to use a weight of 1
|Yt| to each created examples.

Ignore transformation simply ignores the multi-label of each instance, only left

single label for running. For each instance, labels will be selected depending on use

reference. There can be several versions: select-min (least frequent), select-max (most

frequent), and select-random (randomly selected).

Binary Relevance (BR) is one of the most popular transformation methods. It first

creates K datasets (K = |Y |), each for one label, and trains a classifier on each of these

datasets. All new datasets contain the same number of instances as the original data, but

each dataset Dk, 16 k6K positively labels instances that belong to class yk and negative

otherwise. Table 3.2 shows the example dataset for BR.

Once these datasets are ready, it is easy to train a binary classifier for each. For any

new instance, BR outputs a set of the labels Ŷt that are predicted by K binary classifiers.

Calibrated Label Ranking (CLR) proposed by Furnkranz[77]. He argues that pro-

viding a relative order of the labels though ranking does not have a natural “zero-point”

and therefore, does not provide any information about the absolute preference. CLR can
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Table 3.2: Transformed data produced by Binary Relevance (BR) method

Instance Label 1
x1 1
x2 −1
x3 1
x4 −1

Instance Label 2
x1 −1
x2 1
x3 −1
x4 1

Instance Label 3
x1 −1
x2 1
x3 1
x4 −1

Instance Label 4
x1 1
x2 1
x3 −1
x4 1

distinguish all labels between relevant and non-relevant classes on label ranking. Introduc-

ing an additional label to the original label set, which can be interpreted as a “zero-point” (

between relevant and non-relevant). Thus a calibrated ranking,

yσ(1)
t Â yσ(2)

t Â ·· · Â yσ( j)
t Â y0 Â yσ( j+1)

t Â ·· · Â yσ(K)
t

Clearly, this ranking of labels (ignore the “zero-point” label y0) creates a bipartition

of relevant set (yσ(1)
t . . . yσ( j)

t ) and irrelevant set (yσ( j+1)
t . . . yσ(K)

t ). Then, each example can

be annotated by a calibration label. For the labels of relevant set, it could be treated as a

positive example, for the labels of non-relevant set, it could be treated negatively. Thus, it

can be treated by some binary relevance methods.

3.2.2 Algorithm for Multi-label Classification with Bandit feedback

There are so many literature to introduce Multi-label Classification [49, 67, 79, 93]. Such

problems are collectively referred to the supervised learning. As opposed to the supervised

case, in this section, we introduce an algorithm proposed by Gentile [32], who firstly propose

a framework to solve the problem of Multi-label Classification with Bandit feedback.

Algorithm of Multi-label Classification with Bandit feedback

This algorithm is based on 2nd-order descent method (shown in Appendix A.10). It

uses a linear predictor with a cost-sensitive Multi-label loss. This loss is generalized from

the standard Hamming loss, and can be taken into account the distance between Yt and

Ŷt. Otherwise, it proposes a cost function C(Ŷt) to calculate the cost for the prediction set

Ŷt. Associated with Ŷt, it possibly takes into account the order in which i occurs within Ŷt.

Specifically, given a constant parameter a ∈ [0,1] and costs c = {c(i, s), i = 1, . . . , s, s ∈ [K]},

such that 1> c(1, s)> c(2, s)> · · ·> c(s, s)> 0, for all s ∈ [K], this algorithm considers the

loss function like below:

la,c(Yt, Ŷt)= a|Yt \ Ŷt|+ (1−a)
∑

i∈Ŷt\Yt

c( j i, |Ŷt|)
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, where j i is the position of class i in Ŷt, and c(i i, ·) depends on Ŷt only through its size |Ŷt|.
Working with this cost-sensitive Multi-label loss function, it can output the prediction

set Ŷt to be a ranked label list. Due to the Bandit feedback, only the relevance labels can

be observed, i.e. Yt ∩ Ŷt. So the ranking is restricted to the deemed relevant labels only,

and to provide a no supervised ranking information within this set. Furthermore, this loss

function provides an effective method to explore the predictions.

Let Pt(·) be a shorthand for the conditional probability Pt(·|xt). This marginal function

Pt(yi
t = 1) can present the Bayes optimal ranking (see in [40]). It satisfies,

(3.8) Pt(yi
t = 1)= g(−uT

i xt)

g(uT
i xt)+ g(−uT

i xt)
, i = 1, . . . ,K

for K vectors u1, . . . ,uK ∈ Rd and functions g : D ⊆ R→ R+. The model is well defined if

uT
i xt ∈ D for all i and all xt ∈Rd. For the sake of simplicity, it assumes that ∥ xt ∥= 1 for all

t.

This algorithm proposes a novel problem: Multi-label Classification with Bandit feed-

back. It generalizes a linear hypothesis relied on UCB to solve this problem. It formalizes

a method to set apart the Multi-label loss from the supervised settings. Thanks to the

cost-sensitive multi-label loss, it can split the labels sets into relevant and no-relevant sets.

This operation is totally automatic, and bounded regret by O(T1/2 logT).
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Chapter 4

Multi-Objective Multi-Armed
Bandit

Multi-Armed Bandit is a machine learning paradigm used to study and analyze resource

allocation in stochastic and uncertain environment. We have introduced this game theory

in Chapter 2. Let’s consider a special case that the slot machine of MAB responses a

vector instead of scalar as reward. Furthermore, every element of this vector corresponds

to a certain distribution. Then, MAB problem becomes a Multi-Objective Optimization

problem (MOO) in Bandit environment, this kind problem is denoted as Multi-Objective

Multi-Armed Bandit (MOMAB). In this chapter, we firstly introduce the MOO problem,

after that, we will introduce several concepts and some solutions of MOMAB problem.

4.1 Multi-Objective Optimization

A simultaneous optimization of two or more conflicting objectives is called Multi-Objective

Optimization(MOO). This kind problem is much more complicated than problems of single

objective optimization, however many practical optimization problems, especially some

engineering design optimization problems, exist naturally in the form of MOO. For ex-

ample, designing a supply chain should consider many factors: time cost, economic cost,

human resource and other possible constrains. From one aspect to optimize, it may cause

some waste of other aspects. As a result, MOO problems usually require a collaborative

optimization of multiple aspects. It can be described as the following mathematical model.

A MOO problem has a variable espace X = (x1, . . . ,xn) and an objective espace Y

with a mapping f : X → Rd. Here, we optimize f with each objective f i to be maximized,
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i ∈ {1, . . . ,d}.

This optimization problem is formulated as follows:

(4.1) y= f(x)= ( f1(x), . . . , fd(x)) s.t. {max f1(x), . . . ,max fd(x)}

where a variable vector x ranges in the variable space X , y is an objective vector with a

mapping f= { f1, . . . , fd} where f i mapping X onto R. The objective function is the mapping

f : X →Rd.

4.1.1 Front Pareto setting

To solve an MOO problem, the key is to trade the conflict off between all objectives f i

with i = 1,2, . . . ,d. This subsection concentrates on some concepts of “Pareto optimization”,

which is considered as the core of MOO. Pareto optimization is proposed by the engineer

and economist Vilfredo Pareto[84]. It states that:

“Multiple criteria solutions could be partially ordered without making any

preference choices a prior.”

Several definitions related to Pareto optimization are frequently used in MOO literature

(referring to [15, 38, 39, 46, 72] ) as the following.

Definition 4.1. Weak Pareto dominance Given two objective vectors y= (y1, . . . , yd),y′ =
(y′1, . . . , y′d), y is said to weakly dominate y′( denoted yº y′) iff yi > y′i,∀i ∈ [1, . . . ,d].

Definition 4.2. Pareto dominance Objective vector y dominated objective vector y′

(denoted yÂ y′) is yº y′ and ∃i ∈ [1, . . . ,d], s.t.yi > y′i.

Definition 4.3. Incomparability dominance Objective vectors y and y′ are incompara-

ble (denoted y||y′) iff y� y′ and y′� y.

Definition 4.4. Pareto optimality The solution x∗ is Pareto optimality iff its correspon-

dent objective vector f(x∗) does not dominate by any other objective vector f(x), that x@X
s.t. f(x)Â f(x∗).

Definition 4.5. Pareto front Given a set P ⊆X , P∗ is a subset of P. Any element of the

set P∗ is not dominated by elements of P, referred to as Pareto front w.r.t. P.

P∗ = {x ∈ P : @x′ ∈ P s.t. f(x′)Â f(x)}
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Definition 4.6. Comparison between non-dominated sets A non-dominated set P1

is said to be better than another non-dominated set P2 (denoted P1 Â P2) iff every x ∈ P2 is

weakly dominated by at least one x′ ∈ P1 and P1 6= P2.

Definition 4.7. Pareto rank There is a set of variables P with their objective vectors

f(x)⊆Rd where x ∈X . Pareto rank is determined by an iterative manner as following. All

non-dominated variables of P (denoted as F1(P)) are given rank 1. Then this set F1(P)

will be removed from set P. From the set of all rest variables, to find a set of non-dominated

variables of P/F1(P), this set is given rank 2 (denoted as F2(P)). This iterative action

stops until all variables of P have their rank.

By Pareto rank, we can directly and easily compare two variables sets, i.e. Fi(P) Â
F j(P) if i < j. However, how to identify the Pareto front is the most difficult problem of

MOO. Normally, this problem is solved from two aspects, one is from its definition as the

starting point [39, 112], through comparing dominance relationship to find the elements of

Pareto Front. Another is to aggregate Multi-Objective problem to Single-Objective problem

[82, 91, 105]. The former can traverse all optimal solutions of Pareto front, but it has higher

complexity. While the latter is more effective to find an optimal solution, unfortunately it

is difficulty to traverse all optimal solutions. In the next sections, we will introduce some

methods to identify the Pareto front of MOO from these two aspects.

4.1.2 Dominance method

Dominance method is a way to identify Pareto front of MOO, it is started with the def-

inition of Pareto front (see the Definition 4.5). Here, we quote it again by the following

mathematical model.

Let x be a variable from the variable espace X with a mapping f : X →Rd. The Pareto

front is a set P∗ of all variables x∗ ∈X , where @x s.t. ∀i ∈ [1, . . . ,d] f i(x)> f i(x∗).

Global Simple Evolutionary Multi-objective Optimization (Global SEMO) [59],

is based on Evolutionary Algorithms to solve the problems of Multi-Objective Optimization.

Global SEMO creates a set P of non-dominated variables. For the initialization of this set,

it is drawn uniformly at random from the variables espace. At each iterative time, a new

variable x is drawn uniformly at random from the set of X . An offspring y is created by

applying a mutation operator to x. Resorting to the global mutation operator which flips

each bit of x with probability 1/n. The offspring is added to the set P if it is not dominated

by any other variables of P. Some variables will be deleted from the set P, if they are
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weakly dominated by y. This iterative action will continue until all variavles of set X have

been drawn., and output the set P to be Pareto front. (see in Appendix A.11)

For theoretical statistic, the number of all rounds is called the runtime of algorithm.

The expected runtime refers to the expectation of its random variables. The run-time of

this algorithm has been analyzed by [23, 52], performs as well as classical combination

optimization problems.

Global Diversity Evolutionary Multi-objective Optimizer (Global DEMOε) (shown

in Appendix A.12) combines algorithm Global SEMO and the concept of ε-dominance [59].

The principle of Global DEMOε is to partition all variables into several area with ε-

dominated relationship. It measure each variables of ε-dominated area by an index vector.

Then, it runs the same process of algorithm Global SEMO, and compares the index value

instead of each objective of variable.

This method has two important properties. The first one is to identify an ε-Pareto front.

This is useful for some MOO problems under an unstable environment. And the second

one is its size of evolutionary generation is bounded.

4.1.3 Aggregation method

Besides the dominance method, another useful method is to aggregate the Multi-objective

into a Single-objective. Scalarization is the most common way to solve this problem.

However, a single-objective environment only results in a single target. To generate all

elements of Pareto front, we need a set of scalarization functions to run. In this case, it

exposes its shortcomings that it is blindness to search all optimal solutions. Of course, its

advantage is obvious that it can quickly find a certain solution with special weight. There

are several types of scalarization functions. We here introduce three scalarization function.

The linear Scalarization is the most popular scalarization function due to its sim-

plicity. It weights each value of the objective vector and the result is the sum of these

weighted values. The optimal target is to maximize the linear scalarization:

x∗ = arg max
x∈X

f (x)= arg max
x∈X

ω1x1 +·· ·+ωdxd

where (ω1, . . . ,ωd) is a set of predefined weights with reference and
∑d

j=1ω
j = 1. Here,

we point out its weakness is unable to solve a non-convex Pareto front.

The Chebyshev scalarization[82] has the capacity to overcome the problem of non-

convex Pareto front in certain conditions. The objective target of Chebyshev scalarization
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is formulated as following.

f (x)= max
16 j6d

ω j(x j − z j),∀x ∈X

where z = (z1, . . . , zd) is a reference point that dominates all other the optimal vector x∗.

For each objective j, this reference point is the maximum of the current optimal plus a

small positive value, ε j > 0. Then:

(4.2) z j = max
16i6n

x j +ε j,∀ j

[42] shows that all the optimal solutions of Pareto front can be found by moving the

reference point z.

The optimum solution x∗ is the variable for which the scalarization function f , linear

or Chebyshev, attains its maximum value

(4.3) f (x∗) :=max
x∈X

f (x)

Ordered Weighted Averaging aggregation method (OWA) was proposed by Ronald

R. Yager[105] in 1988. It introduces a new aggregation technique based on the Ordered

Weighted Averaging(OWA) operators. OWA operators have been discussed in a large

number of references [26, 68, 76, 104, 106].

Definition 4.8. An OWA operator of dimension d is a mapping F : Rd → R, that has an

associated n vector

w= {w1, . . . ,wd}

such as wi ∈ [0,1],16 i6 d, and

d∑
i=1

wi = w1 +·· ·+wd = 1.

Furthermore,

F(x)=
d∑

i=1
wixσ(i) = w1xσ(1) +·· ·+wd xσ(d)

where σ(i) is according to the order of x all elements.

A fundamental aspect of this operator is the re-ordering step, in particular an aggregate

xσi is not associated with a fixed and particular weight wi but rather a weight is associated

with a particular ordered position. Different OWA operators are distinguished by their

different weights. We her point out some special cases of OWA weights:
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• Max: In this case w∗ = (1,0, . . . ,0) and

MAX(x)=max {x1, . . . , xd}.

• Min: In this case w∗ = (0, . . . ,0,1) and

MIN(x)=min {x1, . . . , xd}

• Average: In this case wA = (1/d, . . . ,1/d) and

FA(x)= x1 +·· ·+ xd

d

To solve the problem of MOO, OWA chooses several weights function following the

reference, and optimizes the objective target:

(4.4) F(x∗) :=max
x∈X

f (x)=max
x∈X

d∑
i=1

wixσ(i)

To compare the effect of these three scalarized methods, we take some simulations with

different Multi-objective sets. See Fig 4.1, Fig 4.2, Fig 4.3, each figure contains four graphs,

they are in order as the original Pareto front, the linear scalarization, owa aggregation

and Chebyshev. From the result, the Pareto front by Chebyshev scalarization is most

approximate to the original one. And it is obviously that the linear scalarization mostly

does not work on concave dataset.

4.2 Multi-Objective Optimization in Bandit environment

MOO in Section 4.1 is an optimization problem in a stable environment. If the objective

space is allocated in a stochastic and uncertain environment, MOO problem becomes a

particular Bandit problem, Multi-Objective Multi-Armed Bandit problem (MOMAB). To

solve this problem, it should consider the objective vector space and import some useful

techniques from MOO into MAB algorithms.

As MOO, A reward vector of MOMAB can be optimal in one objective and sub-optimal

in others. To optimize MOMAB, it should find the Pareto front who contains all optimal

arms according to their reward vectors. Refer to the Multi-Objective Optimization problem,

the Pareto front of MOMAB can be identified by the dominance method or an aggregation

method. Here, we construct a model of MOMAB problem.

Consider an initial set A with K arms, where K > 2. Let the vector reward space be

defined as a d-dimensional vector of [0,1]d. When arm i is played, a random rewarding
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Figure 4.1: On linear datasets.

vector x is received, each component of this vector is drawn i.i.d from un certain dis-

tribution. For example this certain distribution is Bernoulli distribution. For arm i, its

distribution is B(pi). At time steps t1, t2, . . . , the corresponding reward vectors xt1
i t1

,xt2
i t2

, . . .

are independently and identically distributed according to the distribution with unknown

expectation vector pi = (p1
i , . . . , pd

i ). Reward values obtained from different arms are also

assumed to be independent. For MOO problem, we can directly optimize the objective

vector pi. However, the expected vector p is unknown to be identified. Refer to the solution

of MAB, we can estimated pi by an empirical expected vector p̂i. Let Ti(N) be the number

that the arm i has been played during all first N plays. The expected reward vectors are

computed by averaging the empirical reward vectors observed over the time. The mean

reward of an arm i is estimated to p̂i(N)=∑Ti(N)
s=1 xi(s)/Ti(N), where xi(s) is the sampled

value for arm i at time s. Here, we ideally think that if N →∞, pi = p̂i(N)

4.2.1 Algorithms for MOMAB

In this section, we introduce some algorithms to optimize MOMAB problem. They are

divided from two aspects: dominance and aggregation.
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Figure 4.2: On convex datasets.

The scalarized PAC algorithm Refer to the paper[43]. This is a typical aggregation

algorithm to identify the Pareto front in a stochastic environment. It tolerates an error

ε and can find the Pareto front with probability at 1−δ. Here, ε and δ are two tolerant

parameters. An arm i is optimal for a given scalarization function fw iff

fw(p̂i)>max
k∈A

fw(p̂k)−ε

The algorithm scalarized PAC (denoted as sPAC) is given in Appendix A.13. It as-

sumes a fixed number of weight vectors W ← {w1, . . . ,w|W |}. Under the stationary Bandit

environment, the expected reward vector pi of an arm i is not the same as its empirical

reward vector p̂i. There is some probability to bound the difference of pi and p̂i with the

confidence value ε> 0 and a small error probability δ> 0, where fw(µ̂i)− fw(µi)> ε, for any

scalarization function fw (shown in Appendix A.13).

For the set A , each arm of this set is pulled for an equal and fixed number of times
1

(ε/2)2 log(2|W |K
δ

). For each weight vector w, it identifies the optimal arms using the K arm

pulls. The output for this algorithm is a reunion of the optimal set of arms for each

scalarization function fw. If an optimal arm is not already in the Pareto front, then that
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Figure 4.3: On concave datasets.

arm is added to the Pareto front A ∗. The optimal arms are maintained in Pareto front A ∗,

and the dominated arms are deleted from A ∗

UCB1 in MOMAB This is a dominance method. In the MAB problems, Upper Confi-

dence Bound(UCB) policy [11] plays firstly each arm, then adds an exploration bound to

the estimated mean p̂ of each arm i. The exploration bound is an upper confidence bound

which depends on the number of times arm i has been pulled. UCB pulls the optimal arm

i∗ that maximizes the function p̂i +
√

2ln(t)
Ti(N) as follows:

i∗ = argmax
16i6|A |

(
p̂i +

√
2ln(t)
Ti(N)

)
where Ti(N) is the number of times arm i has been pulled.

For the MOMAB problems, [42] extends the UCB policy to find the Pareto optimal arm

set either by using UCB in Pareto order relationship or in scalarized functions. Where,

Pareto-UCB plays initially each arm once. At each time step t, it estimates the mean

vector of each of multi-objective arms i, i.e. p̂i = [p̂1
i , . . . , p̂d

i ] and adds to each dimension an

upper confidence bound. Pareto-UCB uses a Pareto Partial order relationships. The Pareto
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optimal arm set A ∗, for all the non-optimal arms k, where k ∉A ∗ there exists a Pareto

optimal arm i ∈A ∗ not dominates by the arms k:

∀ j ∈ {1, . . .K}, p̂ j
k +

√
2ln(t

p
[ 4]d|A ∗|)

Tk(N)
≯ p̂ j

i +
√

2ln(t
p

[ 4]d|A ∗|)
Ti(N)

Pareto-UCB uniformly and randomly selects one arm of the set A ∗. During the explo-

ration phase, the principal idea is to select more times an arm j ∉A ∗ that is closer to the

Pareto front set than the arm k ∉A ∗ that is far from A ∗. During the exploitation phase,

it should pull most of times the optimal arm in the Pareto optimal set A ∗.

Annealing Linear Scalarized Based MOMAB algorithm This algorithm is pro-

posed by [107]. It aggregates Multi-objective space into a Single-objective one by using

linear scalarized function. The annealing linear scalarized algorithm trades off efficiently

between exploration and exploitation by using a decaying parameter εt, where εt ∈ (0,1) in

combination with the Pareto dominance relation. The εt parameter has a top value at the

beginning of time step t to explore all the available arms and increase the confidence in

the estimated mean vectors, but as the time step t increases, the εt parameter decreases

to exploit the arms that have maximum estimated mean vectors. To keep trak on all the

optimal arms in the Pareto front A ∗, at each time step t, the annealing linear scalarized

function uses Pareto dominance relation. If εt → 0, then the annealing algorithm selects

uniformly at random one of the available arms. (shown in Appendix A.14)
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Chapter 5

Passive-Aggressive Classification
with Bandit Feedback

In this chapter, we address the problem of Classification with Bandit Feedback, which has

been introduced in chapter 3. Based on the Passive-Aggressive algorithm, we here propose

some novel algorithms to solve the problems from Multi-class, Multi-label and Reproducing

Kernel Hilbert Space. Thanks to an effective framework of Online Passive-Aggressive, our

algorithms can perform max-margin for online learning. By analyzing theoretically, we find

the upper bound of cumulative squared loss, some of them even reached the level as same

as Online Passive-Aggressive. Finally, we provide several exprimentations to compare the

novel algorithms with synthetic and real world datasets.

5.1 Multi-class PA with Bandit feedback

In Chapter 3, we have introduced some multiclass classification algorithm with Ban-

dit feedback, i.e. Banditron, Confidit. Here, we present a novel algorithm PAB[111] in

Algorithm 5.1, which is an adaptation of PA for the bandit case.

Similar to PA algorithm, at each round the prediction ŷt is chosen by a random draw

according to the current weight matrix wt from the label set [1, . . . ,K] (refer to Eq. 3.1).

Unlike the conventional learning paradigm, if ŷt 6= yt, it needs to perform an exploration,

here we use ε-greedy (see in section 2.3.4) to sample ỹt instead of ŷt. It samples according

to a probability distribution P(Ỹ | ŷt)

(5.1) ∀i ∈ {1, . . . ,K},P(Ỹt = i| ŷt)=1( ŷt = i) · (1−ε)+ ε

K
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The parameter ε ∈ [0,1] in the probability P is an exploration factor, i.e. every label will

be sampled with same probabilities ε
K except the label ŷt with 1−ε+ ε

K .

The above intuitive argument is formalized to define the update matrix. Let Ũt be the

update matrix with a random prediction ỹt. By recalling the section 3.1.1, the update for

PA algorithm is UP A, where

UP A(xt, ŷt, yt)= τt (Φ(xt, yt)−Φ(xt, ŷt))

with

l t = [γ−< wt,Φ(xt, yt)>+< wt,Φ(xt, ŷt)>]+

and

τt = l t

∥Φ(xt, yt)−Φ(xt, ŷt) ∥2 + 1
2C

.

We show in the following that the expectation of PAB update equals to the one of PA.

PAB starts with the initiation of matrix w1 = 0. Its update contains two items:

wt+1 = wt +UP AB(xt, ŷt, ỹt)= wt +Ut,1 +Ut,2

Ut,1 = 1( ỹt = yt)
P(Ỹ = ỹt| ŷt)

UP A(xt, ŷt, ỹt)

Ut,2 = 1( ỹt = yt)−P(Ỹ = ỹt| ŷt)
P(Ỹ = ỹt| ŷt)

·ρc
Φ(xt, ŷt)

2 ∥ xt ∥2 + 1
2C

(5.2)

PAB’s update contains two items. The first item is controlled by the indicator 1( ỹt = yt),

and is nonzero only when the true label is predicted. The role of second term is to smooth

the learning process when few correct labels are available. It means that whenever the

process is blind to the true label, the loss is estimated to a fixed number ρc; this parameter

is chosen empirically.

5.1.1 Simple PAB

A simple choice is ρc = 0. The item Ut,1 is very similar to the PA’s update. The following

lemma is easy to prove:

Lemma 5.1. Let Ut,1 be defined as in eq.(5.2) and let UP A(xt, ŷt, yt) be defined according to

eq.(3.7). Then, EỸ [Ut,1]=UP A(xt, ŷt, yt).
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Proof.

EỸ [Ut,1]=
K∑

i=1
P(i| ŷ) ·Ut,1

=
K∑

i=1
P(i| ŷ)1(i = yt)

UP A(xt, ŷt, i)
P(i| ŷ)

=
K∑

i=1
1(i = yt)UP A(xt, ŷt, i)

=UP A(xt, ŷt, yt)

�

By the way, simple PAB is much easy and quick to learn data, also good enough to deal

with the synthetic data by the expectation UP A.

5.1.2 Full PAB

Without item Ut,2, Ũ behaves like the UP A, when ỹt = yt . And it works very well with

some linear data, but it has no capacity to learn on real and noisy data. So, we add an item

Ut,2 to the update of Simple PAB, for increasing the stability of algorithm and reducing the

variance of the update.

When ρc > 0, we need both EỸ [Ut,2] = 0 (so that EỸ [UP AB(xt, ŷt, Ỹ )] = UP A(xt, ŷt, yt)))

and EỸ [<Ut,1,Ut,2 >]≤ 0.

Lemma 5.2. Let Ut,2 be defined as in eq.(5.2), EỸ [Ut,2]= 0.

Proof. For each round t, we have

EỸ [Ut,2]=
K∑

i=1
P(i| ŷt) ·Ut,2

=
K∑

i=1
P(i| ŷt)

I(i = yt)−P(i| ŷt)
P(i| ŷt)

ρc

2 ∥ xt ∥2 + 1
2C

Φ(xt, ŷt)

=
K∑

i=1
(I(i = yt)−P(i| ŷt))

ρc

2 ∥ xt ∥2 + 1
2C

Φ(xt, ŷt)

= (1−P(yt| ŷt))
ρc

2 ∥ xt ∥2 + 1
2C

Φ(xt, ŷt)

− ∑
i 6=yt

P(i| ŷt)
ρc

2 ∥ xt ∥2 + 1
2C

Φ(xt, ŷt)

= 0.

�
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Lemma 5.3. EỸ [<Ut,1,Ut,2 >]≤ 0

Proof.

EỸ [〈Ut,1,Ut,2〉]=
K∑

i=1
P(i| ŷt)

〈
1(i = yt)

UP A(xt, ŷt, i)
P(i| ŷt)

,
1(i = yt)−P(i| ŷt)

P(i| ŷ)
ρcΦ(xt, ŷt)

2 ∥ xt ∥2 + 1
2C

〉

=
K∑

i=1
1(i = yt)

1(i = yt)−P(i| ŷt)
P(i| ŷt)

ρc

2 ∥ xt ∥2 + 1
2C

〈UP A(xt, ŷt, i),Φ(xt, ŷt)〉

= ∑
i= ŷt

1( ŷt = yt)
1( ŷt = yt)−P( ŷt| ŷt)

P( ŷt| ŷt)
ρc

2 ∥ xt ∥2 + 1
2C

〈UP A(xt, ŷt, ŷt),Φ(xt, ŷt)〉

+ ∑
i 6= ŷt

1(i = yt)
1(i = yt)−P(i| ŷt)

P(i| ŷt)
ρc

2 ∥ xt ∥2 + 1
2C

〈UP A(xt, ŷt, i),Φ(xt, ŷt)〉

with 〈Φ(xt, y),Φ(xt, z)〉 =∥ xt ∥2 if y= z, and 0 for others (refer to the definition of feature

vector in section 3.1.1).

Due to

UP A(xt, ŷt, ŷt)= τt(Φ(xt, ŷt)−Φ(xt, ŷt))= 0

and ∀i 6= ŷt,

〈UP A(xt, ŷt, i),Φ(xt, ŷt)〉 = τt〈Φ(xt, i)−Φ(xt, ŷt),Φ(xt, ŷt)〉 =−τt ∥ xt ∥2 .

EỸ [〈Ut,1,Ut,2〉]=− ∑
i 6= ŷt

1(i = yt)
1(i = yt)−P(i| ŷt)

P(i| ŷt)
ρc ∥ xt ∥2

2 ∥ xt ∥2 + 1
2C

where the following items si are always positive.

si =1(i = yt)
1(i = yt)−P(i| ŷt)

P(i| ŷt)
ρc ∥ xt ∥2

2 ∥ xt ∥2 + 1
2C

EỸ [<U1
t ,U2

t >]=− ∑
i 6= ŷt

si ≤ 0

�

For an appropriate value of ρc, the role of Ut,2 is thus to reduce the variance of the PAB

update, and thus improve the speed of the learning process.

Algorithm 5.1 (PAB).
Initiation w1 =~0.

for for each instance t = 1, ...,T do
Receive xt ∈Rd
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Set ŷt = argmax
r∈{1,...,K}

〈wt,Φ(xt, r)〉

∀i ∈ {1, . . . ,K},P(Ỹt = i| ŷt)=1( ŷt = i) · (1−ε)+ ε

K

Randomly sample ỹt according to P(Ỹt = i| ŷt)

Receive the feedback 1( ỹt = yt)

Ut,1 = 1( ỹt = yt)
P(Ỹ = ỹt| ŷt)

UP A(xt, ŷt, ỹt)

Ut,2 = 1( ỹt = yt)−P(Ỹ = ỹt| ŷt)
P(Ỹ = ỹt| ŷt)

· ρc

2 ∥ xt ∥2 + 1
2C

Φ(xt, ŷt)

UP AB,t(xt, ŷt, ỹt)=Ut,1 +Ut,2

Update:wt+1 = wt +UP AB,t(xt, ŷt, ỹt)

end for

5.1.3 Experiments

In this section, we present experimental results for the PAB and other bandit algorithms

on two synthetic and one real world data sets. The cumulative loss is presented for each

data set.

The first data set, denoted by SynSep, is a 9-classes, 400-dimensional synthetic data

set of size 105. The method to generate the sample is found in [62]. The second data set,

denoted by SynNonSep, is constructed in the same way as SynSep except that a 5% label

noise is added, which makes the data set non-separable. The third data set is collected

from the Reuters RCV1 collection [73]. This set is made of 47236-dimensional vectors,

contains 4 classes (to choose the first level categorization.) with the size of 105. To different

datasets, the parameters of different algorithms refer to Table 5.1.

In the Figure 5.1 gives the cumulative errors obtained on the dataset SynSep for

different online learning algorithm. Here, the Confidit algorithm (see in Appendix A.9)

provides the best results, but the Simple PAB takes the second. Three out of five algorithms

attain a zero loss. The worst in that case is the Banditron (see in Appendix A.8).
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Table 5.1: The summary of algorithm parameters for different datasets. B. denotes Al-
gorithm Banditron, C. is Confidit, PG presents Policy Gradient and S.PAB is Simple
PAB.

Dataset B. C. (α= 1) PG (λ= 10−3) S.PAB (ρ = 0) PAB (ρ = 1)
SynSep ε= 0.014 η= 103 η= 0.01 C = 10−3,ε= 0.7 C = 10−3,ε= 0.7
SynNonSep ε= 0.006 η= 103 η= 0.01 C = 10−5,ε= 0.7 C = 10−5,ε= 0.7
Reuters ε= 0.05 η= 102 η= 0.1 C = 10−4,ε= 0.6 C = 10−4,ε= 0.6

Figure 5.1: Cumulative errors of each algorithm under the SynSep data.

In the Figure 5.2, it shows the result on the SynNonSep data set, the results are rather

poor in general. The Confidit and Policy Gradient [36] obtain the best performances, with

a stable final error rate around 5%.

In the Figure 5.3, it’s on the Reuters data with the first level categorization. On contrast
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Figure 5.2: Cumulative errors of each algorithm under the SynNonSep data.

with the synthetic datasets, the full PAB overtakes the other methods, with a final error

rate around 2.5% while the other algorithms attain 5% error, and even worse in the case

of Confidit (8% error rate). Besides, the PAB error rate is constantly reducing during the

learning process.

5.1.4 Conclusion

With the advantage of the Passive-Aggressive max-margin principle, the simple and full

PAB appear effective to address the bandit online learning setting. Their first advantage

is their linear complexity in space that allows to treat high dimensional datasets on the

contrary to second-order methods. On separable data samples, the basic PAB overtakes

most of the other approaches, at the exception of the Confidit algorithm, with a much

lower complexity. It is however found to perform rather poorly on noisy and real world
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Figure 5.3: Cumulative errors of each algorithm under the RCV1-v2 data.

datasets. In contrast, the full PAB is expected to vary more smoothly over time, and is

found to perform particularly well on the Reuters dataset. In that case, Confidit and Policy

Gradient seem to fall in a local stable solution, while the full PAB constantly improves,

issuing a better classifier. However, the performance of the algorithm is found to depend on

three free parameters ε, ρc and C. In order to avoid fastidious cross-validation, additional

investigation is needed in order to find analytic estimates of their optimal values.
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5.2 Bandit feedback in Passive-Aggressive bound

Different to the PAB algorithm, BPA [110] also an adaptation of PA, its error even has a

same bound as PA. Similar to PAB, at each round it outputs a prediction ŷt to be the label

with the highest score of 〈wt,Φ(xt, i)〉, is defined as below:

(5.3) ŷt = ht(xt)= argmax
i∈{1,...,K}

〈wt,Φ(xt, i)〉

where wt ∈RK×d like previously. Like previously, it needs to perform an exploration, i.e.,

sample a label randomly {1, ...,K} with parameter ε and contrast this random prediction

with a bandit return 1 ỹt=yt , where ỹt is the result of a random draw from a certain

distribution (see eq. 5.1) The instantaneous loss is given by the following function,

(5.4) l t = [γ+ (
1−21 ỹt=yt

)〈wt,Φ(xt, ỹt)〉]+
Here, we define the parameter γ equals to 1. Otherwise

(
1−21 ỹt=yt

)
equal to -1 when

ỹt = yt and 1 elsewhere. This loss is the standard hinge loss when the prediction is correct:

it stays at 0 for 〈wt,Φ(xt, ỹt)〉> 1 and then increases for decreasing values of 〈wt,Φ(xt, ỹt)〉.
In contrast, when the prediction is incorrect, the loss is equal to [1+〈wt,Φ(xt, ỹt)〉]+, i.e.,

stays at 0 for 〈wt,Φ(xt, ỹt)〉 ≤−1 and then increases for increasing values of 〈wt,Φ(xt, ỹt)〉.
The linear classifiers are updated at each trial using the standard tools from convex

analysis[22], Where wt satisfies the constraint in Eq. 3.5.

(5.5) L(w,τ)= 1
2
∥ w−wt ∥2 +τ(

1+ (1−21 ỹt=yt )〈wt,Φ(xt, i)〉)

(5.6) wt+1 = wt +τ
(
21 ỹt=yt −1

)
Φ(xt, ỹt)

Taking the derivative of L(τ) with respect to τ and also setting it to zero, we get that:

τ= l t

∥Φ(xt, ỹt) ∥2

Considering for instance the common phenomenon of label noise, a mislabeled exam-

ple may cause PA to drastically change its classifiers in the wrong direction. To derive

soft-margin classifiers [99] and a non-negative slack variable ξ is introduced into the

optimization problem in Equation 3.5. According with [33], the variable can be introduced

in two different ways.
wt+1 = argmin

w∈RK×d

1
2 ∥ w−wt ∥2 +Cξ s.t. l(w; (xt, yt))6 ξ and ξ> 0

wt+1 = argmin
w∈RK×d

1
2 ∥ w−wt ∥2 +Cξ2 s.t. l(w; (xt, yt))6 ξ
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By these optimization problems, we get the corresponding optimization solutions:wt+1 = wt + (21( ỹt=yt) −1) ·min
{
C, l t

∥Φ(xt, ỹt)∥2

}
·Φ(xt, ỹt)

wt+1 = wt + (21( ỹt=yt) −1) · l t
∥Φ(xt, ỹt)∥2+ 1

2C
·Φ(xt, ỹt)

Algorithm 5.2 (Bandit Passive-Aggressive).
Parameter: number ε ∈ (0,1).

Initialize: Set w1 to the zero K ×d matrix.

for each round t = 1,. . . , n do
Observe xt ∈Rd.

Set ŷt = argmax
i=1,...,K

〈wt,Φ(xt, i)〉
for all i ∈ [1, ...,K] do
P(Ỹ = i| ŷt)= pi,t = (1−ε)1i= ŷt + ε

K

end for
Draw ỹt randomly from distribution pt =

(
p1,t, . . . , pK ,t

)
.

Observe 1( ŷt=yt).

l t = [1+ (1−21 ỹt=yt )〈wt,Φ(xt, ỹt)〉]+
Update wt+1 = wt + (21 ỹt=yt −1) l t

∥Φ(xt, ỹt)∥2 ·Φ(xt, ỹt).

end for

5.2.1 Analysis

In this section, we prove the cumulative squared loss has a upper bound. To simplify, we

note l(wt; (xt, yt)) as l t and l(u; (xt, yt)) as l∗t .

Theorem 5.1. Let (x1, y1), ..., (xT , yT ) be a sequence of separable examples where xt ∈ Rd,

yt ∈ Y and ∥ xt ∥6 R for all t, and u ∈ RK×d. Then, the cumulative squared loss of this

algorithm is bounded by,

(5.7)
T∑

t=1
l2
t 6R2· ∥ u ∥2

Proof. Define ∆t to be:

∆t =∥ wt −u ∥2 − ∥ wt+1 −u ∥2

By summing ∆t over all t from 1 to T, that
∑

t∆t is a telescopic sum which collapses to,

T∑
t=1
∆t =

T∑
t=1

(∥ wt −u ∥2 − ∥ wt+1 −u ∥2)=∥ w1 −u ∥2 − ∥ wt+1 −u ∥2
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By the initiation of w1 =~0,

(5.8)
T∑

t=1
∆t =∥ u ∥2 − ∥ wt+1 −u ∥26∥ u ∥2

Using the definition of update :

∆t =−2
〈

(wt −u), (21 ỹt=yt −1)
l t

∥Φ(xt, ỹt) ∥2Φ(xt, ỹt)
〉
− ∥ l t

∥Φ(xt, ỹt) ∥2Φ(xt, ỹt) ∥2

With l t = [1+ (1−21( ỹt=yt)) · 〈wt,Φ(xt, ỹt)〉]+ and l∗t = [1+ (1−21( ỹt=yt)) · 〈u,Φ(xt, ỹt)〉]+ , So,

∆t = 2
l2
t − l tl∗t

∥Φ(xt, ỹt) ∥2 −
(

l t

∥Φ(xt, ỹt) ∥2 ∥Φ(xt, ỹt) ∥
)2

∆t =
l2
t −2l tl∗t

Φ(xt, ỹt) ∥2

If all examples are separable, ∃u such that ∀t ∈ [1, ...,T] , l∗t = 0 ,

⇒∥ u ∥2>
T∑

t=1
∆t>

T∑
t=1

(
l2
t

∥Φ(xt, ỹt) ∥2

)

⇒
T∑

t=1
l2
t 6∥ u ∥2 · ∥Φ(xt, ỹt) ∥2

T∑
t=1

l2
t 6R2· ∥ u ∥2

�

Theorem 5.2. Let (x1, y1), ..., (xT , yT ) be a sequence of non-separable examples where xt ∈Rd,

yt ∈ [1, ...,K] and ∥ xt ∥6R for all t. Then for any matrix u ∈RK×d the cumulative squared

loss of this algorithm is bounded by:

T∑
t=1

l2
t 6

R ∥ u ∥ +2

√√√√ T∑
t=1

(l∗t )2

2

Proof. By the proof of Theorem 5.1,

T∑
t=1

l2
t 6R2· ∥ u ∥2 +2

T∑
t=1

l tl∗t

To upper bound the right side of the above inequality, we denote L t =
√∑T

t=1 l2
t and

Ut =
√∑T

t=1(l∗t )2 ,

2(L tUt)2 −2(
T∑

t=1
l tl∗t )2 =

T∑
i=1

T∑
j=1

l2
i (l∗j )2 +

T∑
i=1

T∑
j=1

l2
j (l

∗
i )2 −2

T∑
i=1

T∑
j=1

l i l j l∗i l∗j
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=
T∑

i=1

T∑
j=1

(l i l∗j − l j l∗i )2> 0

T∑
t=1

l2
t 6R2· ∥ u ∥2 +2

T∑
t=1

l tl∗t 6R2· ∥ u ∥2 +2L tUt

L t6Ut +
√

R2 ∥ u ∥2 +U2
t

Using the fact that
p

a+b 6
p

a +p
b ,

L t6R ∥ u ∥ +2Ut

T∑
t=1

l2
t 6

R ∥ u ∥ +2

√√√√ T∑
t=1

(l∗t )2

2

�

5.2.2 Experiments

Here, we evaluate the algorithms over two synthetic and three real world data sets. Their

characteristics are summarized in Table 5.2.

Table 5.2: Summary of the five data sets, including the numbers of instances, features,
labels and whether the number of examples in each class are balanced.

Dataset Instances Features Labels Balanced
SynSep 105 400 9 Y
SynNonSep 105 400 9 Y
RCV1-v2 105 47236 53 N
Letter 2∗104 16 26 N
Pen-Based 1.32∗104 16 10 N

Data sets: The first data set, denoted by SynSep, is a 9-class, 400-dimensional synthetic

data set of size 105. More details about the method to generate this data set can be found

in [62]. The SynSep idea is to have a simple simulation of generating a text document. The

coordinates represent different words in a small vocabulary of size 400. We ensure that

SynSep is linearly separable.

The second data set, denoted by SynNonSep, is constructed the same way as SynSep

except that a 5% label noise is introduced, which makes the data set non-separable.

The third data set is collected from the Reuters RCV1-v2 collection[73]. The original

data set is composed by multi-label instances. So we make some preprocessing likes [18].

60



5.2. BANDIT FEEDBACK IN PASSIVE-AGGRESSIVE BOUND

First, its label hierarchy is reorganized by mapping the data set to the second level of

RCV1 topic hierarchy. The documents that have labels of the third or forth level only are

mapped to their parent category of the second level; Second, all multi-labelled instances

have been removed. This RCV1-v2 is a 53-class, 47236-dimensional real data set of size

105.

The fourth and fifth data sets are collected from [5, 60]. The fourth data set is to

identify each of a large number of black-and-white rectangular pixel displays as one of the

26 capital letters in the English alphabet. The character images were based on 20 different

fonts and each letter within these 20 fonts was randomly distorted to produce a file of

20000 unique stimuli. Each stimuli was converted into 16 primitive numerical attributes

(statistical moments and edge counts). It forms a 26-class, 16-dimensional real data set

of size 20000. The fifth data set is a digit data base made by collecting 250 samples from

44 writers, using only (x,y) coordinate information represented as constant length feature

vectors, which were resampled to 8 points per digit (therefore the data set contains 8 points

× 2 coordinates = 16 features). This one is a 10-class, 16-dimensional real data set of size

10992.

Results Figures 5.4 and 5.5 show the experimental results on two synthetic data sets.

For SynSep, a separable linear data set, all algorithms except Banditron obtain a good

performance; with the non-separable SynNonSep data, Confidit and BPA outperform the

other algorithms, even the supervised algorithms. To different datasets, the parameters of

different algorithms refer to Table 5.3.

Table 5.3: The summary of algorithm parameters for different datasets. P. denotes Per-
ceptron, PA is Passive-Aggressive online algorithm, B. is Banditron, C. is Confidit and
BPA.

Dataset P. PA B. C. BPA
SynSep null C = 0 ε= 0.014 η= 103 ε= 0.4,C = 0
SynNonSep null C = 10−2 ε= 0.65 η= 103 ε= 0.8,C = 10−2

Reuters null C = 10−2 ε= 0.4 η= 102 ε= 0.2,C = 10−2

LR(26 letters) null C = 0.1 ε= 0.2 η= 102 ε= 0.8,C = 1
LR(10 numbers) null C = 0.1 ε= 0.4 η= 10 ε= 0.6,C = 1

Figures 5.6, 5.7 and 5.8 present the result on three real data sets. With the three real

data sets, the supervised algorithms, despite their competitive advantage with respect to

the ones with bandit feedback, do not significantly depart from BPA and Confidit, with clas-

sification results that clearly outperform Banditron. While having a lower computational
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complexity, BPA approach is even found to outperform Confidit in the most challenging

situation, i.e. the high-dimensional case with a large number of classes (RCV1-v2 data set).

The ε parameter represents the exploration rate in Banditron and BPA algorithms. We

compare on Figure 3 the average error rates obtained on the two algorithms for different

values of ε on the different data sets. In contrast with Banditron, BPA shows that ε has

a very little influence on the final error rate, indicating a capability to deal with small

exploration rates.
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Figure 5.4: Cumulative Errors on the synthetic data set of SynSep.

5.2.3 Conclusion

In this section, we proposed a novel algorithm for online multiclass classification with

bandit feedback. By the advantage of PA max-margin principle, BPA appears effective to

address the bandit online learning setting. Its main advantage is its linear complexity in

space that allows to deal with high dimensional data sets and a large number of classes,

on the contrary to second-order methods. The practicability of this algorithm is verified

theoretically by showing a competitive loss bound.

Moreover, experimental evaluation shows that BPA performs better than other algo-

rithms on some real sets, even better than the algorithms with full feedback on the data
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Figure 5.5: Cumulative Errors on the synthetic data set of SynNonSep.

sets non-separable. In the next section, we will take BPA to deal with non-linear data sets

by combining the Kernel method.
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Figure 5.7: Cumulative Errors on the real data set of Letter Recognition (10 numbers).
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Figure 5.8: Cumulative Errors on the real data set of Letter Recognition (26 Letters).
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Figure 5.11: Average error of Banditron and BPA for parameter’s value ε on the data set of
Letter Recognition.
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5.3 Bandit feedback with kernel

5.3.1 BPA Online Kernel

For some non-linear datasets, Kernel function who transfers the data from Euclidean Space

into Reproducing Kernel Hilbert Space (RKHS), has achieved great success in various

problems where all of the training data could be observed in advance. And some kernel

based algorithms, i.e. SVM, exhibit extraordinary performance. In recent years, this issue

has been studied by more and more researcher. In [64, 88, 92], they focus on another kind

of kernel framework, the kernel in an online setting suitable for real-time application. They

propose the method to take the online learning in a Reproducing Kernel Hilbert Space, by

considering the classical stochastic gradient descent.

In this section, we proposed two kernel based algorithms to solve the problem of online

learning with partial feedback. Before to introduce the method, we present some notions

will be used later. The goal of online learning is to output a set of classifier F = [ f 1, . . . , f K ],

from the sets of all hypothesis H , where f i : X →R.

We assume that H is a Reproducing Kernel Hilbert Space. It means there exists a

kernel function k : X ×X ↔R and a dot product < ·, · >H such that

• k(x1, x2)=< x1, x2 >

• < f ,k(x, ·)>H = f (x), for x ∈X

• ∥ f ∥H =< f , f >
1
2
H .

Refer to the definitions of BPA algorithm, at each round, the output ŷt is to be predicted

by the Function 3.1. To adapt to the environment of RKHS:

ŷt = arg max
i∈[1,..,K]

f i(x).

Considering the update of BPA algorithm Function 5.6, its update for RKHS will be

shown as below:

f ỹt
t+1 = f ỹt

t +τt · (21( ỹt=yt) −1) ·k(xt, ·)

where, τt = l t(xt,1( ỹt=yt ))
k(xt,xt)

with the loss function

l t(xt,1( ỹt=yt))= [1( ỹt 6=yt) + (1−21( ỹt=yt)) f ỹt
t (xt)]+.

We need take attention to this formulate of loss function, it is different to the loss function

in Section 5.1 and Section 5.2. It takes an indicator instead of a constant, which also works

68



5.3. BANDIT FEEDBACK WITH KERNEL

to maximize the margin. Our goal is to reduce the computational complexity and avoid

some useless support vector.

So that, following the growth of learning examples, we will get the hypothesis F :

(5.9) ∀k ∈ {1, . . . ,K}, f k
t =

t−1∑
i=1

1(k = ỹi)τi · (21( ỹi = yi)−1) ·k(xi, ·)

Algorithm 5.3 (The BPA algorithm in RKHS).
A sequence of learning data x1, . . . , xT

Creat K containers C = {C1, . . . ,CK }, ∀i ∈ [1, . . . ,K],Ci = 0 ∈Rd

for On each round t ∈ {1,2, . . . , } do
Receive the instance data xt

Predict ŷt = argmax
i∈{1,...,K}

∑|C |
s=1α

i
s f i

s (xt) where f i
s is the sth support vector from Ci container.

for all i ∈ {1, . . . ,K} do
P(Ỹ = i| ŷt)= pi,t = (1−ε)1i= ŷt + ε

K

end for
Draw ỹt randomly according to the distribution pt = (p1,t, . . . , pK ,t)

Observe BF =1 ỹt=yt

l t = [1 ỹt 6=yt + (1−21 ỹt=yt )
∑|C |

s=1α
ỹt
s f ỹt

s (xt)]+
if l t 6= 0 then

C ỹt ← C ỹt ∪ {xt} with α
ỹt
|C+1| = τt · (21( ỹt = yt)−1)

end if
end for

By the rule of update, it clearly shows that the hypothesis is composed by limited

support vectors if the data is separable. If not, the number of support vectors grows

without bounds. In that case, we can use another way to solve this issue in the next part.

5.3.2 Kernel Stochastic Gradient Descent with BPA loss

This method should refer to Kivinen’s [64] Stochastic Gradient Descent. Like the SGD in

Hilbert Space, the goal of SGD is to minimize the regularized risk:

R[F ]= E[l t(xt,1( ỹt=yt))]+
λ

2
∥F ∥2

H

Here, the loss function should be replaced by the function 5.4 the loss function of algorithm

BPA. Consider the classical stochastic gradient descent, take the gradient gradient to each

hypothesis f i of F .

(5.10) ∀k ∈ [K], f k
t+1 = f k

t −ηt∂ f k R[F ]| f k= f k
t
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where for k ∈ [K], t ∈N, f k
t ∈H , ∂ f k denote ∂/∂ f k and ηt > 0 is the learning rate (in this

section, it is considered as a constant ηt = η).

Since,

∂ f k R[F ]= λ

2
∂ f k ∥F ∥2

H +∂ f k (E[l(xt, ỹt)])

= 2 f k +∂ f k l t(xt,1( ỹt=yt))

∂ f k l t(xt,1( ỹt=yt))=
1−21( ỹt=yt) if k = ỹt

0 else

(5.11) f k
t+1 =

 f k
t · (1−λη)+η · (21( ỹt=yt) −1) ·k(xi, ·) if k = ỹt

f k
t else

Here, we propose some ordered parameters (σ1
t , . . . ,σK

t ) with

(5.12) σk
t =

t∑
s=1

1( ỹs = k)

By the parameters σ, the update function 5.11 could be expressed as the following equation:

for ∀k ∈ {1, . . . ,K}

(5.13) f k
t+1 =

t∑
i=1

ηαk
i ·k(xi, ·)

where αk
i =1(k= ỹi)(21( ỹi = yi)−1) · (1−λη)σ

k
t −σk

i −1.

Consider that the update 5.13 contains σt kernel expansion terms, since the amount

of computation terms grows linearly in the size of the expansion as same as the method

we just mentioned in the head of this section. We learn the way from [64] proposed by

Kivinen, at each iteration the coefficients αk
i are shrunk by 1−λη except i = t. Thus after τ

iterations the coefficients αk
i will be reduced to (1−λη)τ. Hence it could drop small terms

and incur little error as the following lemma.

Lemma 5.4. Truncation Error
Suppose l t(xt,1( ỹt = yt)) is the loss function which satisfies the condition |∂ f k l t(xt,1( ỹt=yt))|6

C for all k ∈ [K] and k(·, ·) is a kernel function with bounded norm ∥ k(x, ·) ∥6 X where ∥ · ∥
denotes ∥ · ∥H . Let f k

trunc =
∑t

i=max(1,t−σk
i′ )
ηαik(xi, ·) denote the kernel expansion truncated

to
∑t

s=σk
i′
1( ỹs = k)= τ terms. The truncation error satisfies that for each k ∈ [K]

∥ f k − f k
trunc ∥6

t−σk
i′∑

i=1
η(1−λη)t−σk

i CX < (1−λη)τCX /λ
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Obviously the approximation quality increases exponentially with the number of terms

retained.

Algorithm 5.4 (SGD with BPA loss in RKHS).
A sequence of learning data x1, . . . , xT

Initialize the parameters λ> 0, a truncation parameter τ ∈N, a learning rate η ∈ (0,1/λ)

for On each round t ∈ {1,2, . . . , } do
Receive the instance data xt

Predict ŷt = argmax
i∈{1,...,K}

f i
t (xt)

for all i ∈ {1, . . . ,K} do
P(Ỹ = i| ŷt)= (1−ε)1i= ŷt + ε

K

end for
Draw ỹt randomly from the distribution pt = (p1,t, . . . , pK ,t)

Observe 1 ỹt=yt

l t = [1 ỹt 6=yt + (1−21 ỹt=yt ) f ỹt
t (xt)]+

f ỹt
t+1 =

∑t
s=max(0,τ)ηα

ỹt
s ·k(xi, ·)

where α ỹt
s =1k= ỹs (21 ỹs=ys −1) · (1−λη)σ

ỹs
t −σ ỹs

s −1 and σk
t =

∑t
s=11( ỹs = k)

end for

5.3.3 Experiments

In this section, we take two datasets to evaluate and analyze the effect of these algorithm

in Reproducing Kernel Hilbert Space.

Data description The first dataset denoted by Pendigits, is a real data and created by

E.Alpaydin and Fevzi.Alimoglu [6, 7]. It collected 250samples from 44 writers. All writers

are asked to write 250 digits in random order inside boxes of 500 by 500 tablet pixel

resolution. Here, the dataset is part of original one. It contains 7494 instances, 16 features

and 10 classes.

The second dataset denoted by ‘Segment’[74]. This dataset contains 2310 instances,

all of them were drawn randomly from a database of 7 outdoor images. The images were

handsegmented to create a clasification for every pixel. Each instance is a 3×3 region. It’s

a real dataset, with 19 features and 7 classes. More details could be referred to the data

site “UCI”.

Algorithm Here, we take algorithms Banditron (in RKHS), KBPA and KSGD to

compare. In order to perform the effect of RKHS, we choose KBPA in linear model as

the reference object and choose Laplace for the kernel function. Its form looks like the
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following formulate.

KLaplace(x, y)= exp
(
−∥ x− y ∥

σ

)
So, all participant algorithms contains: KBanditron, KBPA (linear), KBPA (Laplace), and

KSGD (Laplace). For each dataset, the parameter of kernel function is different. By cross-

validation way, we choose η = 1 of model ‘Laplace’ for dataset Pendigits and η = 10 for

dataset ‘Segment’. For KSGD, the truncated number is 500 for dataset Pendigits, and 200

for Segment.

Result We mainly analyze these experiments from the following aspects.

Average training time for each instance: we observe the training time of every instance

{t1, t2, . . . , tn}; then divide 100 ordering examples into one group g1 = {t1, . . . , t100}, . . . ,

g i = {t1+100∗(i−1), . . . , t100∗i}; finally, the average training time for instances of group g i can

be calculated by ti = 1
100

∑100∗i
s=1+100∗(i−1) ts.

Average error rate: e i =∑100∗i
s=1+100∗(i−1)1[ ŷt = yt]/100 this measure is calculated by the

same way.

Cumulative Errors: calculate the total number of past errors.

In Figure 5.12, it gives the result of average training time on based dataset “Pendigits”.

From this result, the training time of three kernel algorithms increases linearly along with

the number of training instances. Only the linear model is stable. From the theoretical

perspective, Banditron always adds a new example passively for its support vector. Algo-

rithm KSGD only adds a new example for its support vector if its classifier makes a bad

prediction, otherwise the number of support vector is limited by the truncated parameter.

Algorithm KBPA adds a new example for its support vector if and only if its predicted loss

not equals to zero. So its number of support vector will increase all the time until it can

make good prediction with no loss.

In Figure 5.13 and Figure 5.14, accumulative errors of algorithm KBPA firstly tend to

a stable, others still increase linearly. That is because KBPA accumulates all good support

vectors, KSGD only accumulates several recent support vectors and Kernel Banditron

always accumulates new instance as negative support vector.

In Figure 5.15, it is about the average training time on dataset “Segment”. The training

time of Kernel Banditron still increases linearly, while the training time of KSGD and

KBPA are as stable as linear model after a small period of increasing linearly. KSGD

reaches the limited number of support vector, and KBPA quickly gets enough support

vectors to make a good prediction. It could show that this dataset is separable.

In Figure 5.16 and Figure 5.17, we can observe that KBPA and KSGD performed

obviously better than the other two. Two kernel algorithms have ability to solve non-linear
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classification with Bandit Feedback. Considering the scale of classifier, we can use more

efficient algorithm KBPA if dataset is separable, otherwise we use KSGD.

Figure 5.12: Average training time for each instance of Data Pendigits.
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Figure 5.13: Average error rate for each instance of Data Pendigits

Figure 5.14: Cumulative Errors of Data Pendigits

74



5.3. BANDIT FEEDBACK WITH KERNEL

Figure 5.15: Average training time for each instance of Data Segment.

Figure 5.16: Average error rate for each instance of Data Segment
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Figure 5.17: Cumulative Errors of Data Segment
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5.4 Bandit PA algorithm for Multi-label Classification

5.4.1 Preliminaries

In this section, we mainly introduce the problem of Multi-label classification with Bandit

feedback. In Chapter 3, we have introduced some methods. We here propose a novel

algorithm based on Online Passive-Aggressive.

Before introduce this algorithm, let’s get some notations and preliminaries. It is applied

in a sequence of consecutive rounds. On round t, the learner is given an instance vector

xt ∈X and outputs a binary vector Ŷt ∈ {0,1}K representing a label subset from the set

of all labels. In the general setting, the true response Yt ∈ {0,1}K associated with xt is

generated after the prediction. In the bandit setting, the learner can not observe Yt, only

receive βt ∈ {0, 1
2 ,1}K as partial feedback, where for ∀k ∈ {1, . . . ,K}:

(5.14) βk
t =


1 ŷk

t = yk
t = 1

0 ŷk
t = 1&yk

t = 0
1
2 ŷk

t = 0

The widely known Binary relevance Method(BM) [85] transfers the multi-label task into

several single independent binary classification tasks for each label. BM approach is

theoretically simple and intuitive. Its assumption of label independence makes it ignores

label correlations that exist in the training data. The most important advantage of BM is

its low computational complexity compared to other methods.

We consider a multilabel classification model f (x) is a mapping function X → {0,1}K .

The output of the model is a binary vector:

h(x)= (h1(x), . . . ,hK (x))

here h(x) is taken from a class of hypothesis H parameterized by a K ×d matrix of real

weights w. Hence, ∀i ∈ [1, ..,K],hi(x)= 1
2 (1+sign< wi,x>) where wi is the ith row of w. If

the score < wi, x > is positive, the prediction is ŷi
t = 1, else it equals 0.

The algorithm BPA is based on the online Passive-Aggressive approach. Consistently

with paper [33]’s writing, a feature function: Φ(x, i) is a K ×d matrix which is composed

of K features vectors of size d. All rows of Φ(x, i) are zero except the ith row which is set

to x. It can be remarked that <Φ(x, i),Φ(x, j)>=∥ x ∥2 if i = j and 0 otherwise. In our case,

< w,Φ(x, i)> is equal to < wi, x >.

In the bandit setting, a strategy needs to be set to address the exploration/exploitation

trade off. Here we use, like in previous sections, the ε-greedy strategy. At each round t =

77



CHAPTER 5. PASSIVE-AGGRESSIVE CLASSIFICATION WITH BANDIT FEEDBACK

1,2, . . . the algorithm selects a subset Ỹt according to the probabilities Pt =
(
P( ỹ1

t = 1| ŷ1
t ), . . . ,P( ỹK

t = 1| ŷK
t )

)
,

with:

(5.15) p( ỹi
t = 1| ŷi

t )= (1−ε) ·1( ŷi
t=1) +ε ·

∑K
k=11( ŷk

t =1)

K

Let the cardinality of Ŷ be noted Card(Ŷ )=∑K
k=11( ŷk=1).

Lemma 5.5. With the notations introduced so far, when following an ε-greedy random

selection, the expected cardinality of Ỹt is equal to Card(Ŷt).

Proof.

E[Card(Ỹt)]=
K∑

k=1
P( ỹk

t = 1| ŷk
t )

E[Card(Ŷt)]= (1−ε)
K∑

k=1
1 ŷk

t =1 +ε
K∑

k=1
1 ŷk

t =1

E[Card(Ỹt)]=
K∑

k=1
1 ŷk

t =1 = Card(Ŷt)

�

5.4.2 Analysis

The instantaneous loss is defined as a piece-wise hinge loss function L t =∑K
k=1 lk

t , where

(5.16) lk
t = [1 ỹk

t =1 +
(
1−2βk

t

)
〈wt,Φ(xt,k)〉]+

with 1−2βi
t equals to −1 when ỹi

t = yi
t = 1, +1 when ỹi

t = 1 & yi
t = 0 and 0 otherwise (see

Algorithm 5.5). This loss is the standard hinge loss [1−〈wt,Φ(xt, ỹt)〉]+ when the prediction

is positive correct: it stays at 0 for 〈wt,Φ(xt, ỹt)〉> 1 and then increases for decreasing

values of 〈wt,Φ(xt, ỹt)〉. In contrast, when the prediction is positive incorrect, the loss is

equal to [1+〈wt,Φ(xt, ỹt)〉]+, i.e., stays at 0 for 〈wt,Φ(xt, ỹt)〉 ≤ 1 and then increases for

increasing values of 〈wt,Φ(xt, ỹt)〉. For the negative prediction ỹi
t = 0, the loss equals to 0.

In this section, we introduce a novel online learning algorithm (see algorithm 5.5),

which is a variant of the Online Passive-Aggressive algorithm adapted to the multi-label

classification in the bandit setting. It is named BPAs (Bandit Passive-Aggressive with

multiple labels).

The goal of online learning is to minimize the cumulative loss for a certain prediction

task from sequentially arriving training samples. Online Passive-Aggressive achieves this

goal by updating some parameterized model w in an online manner with the instantaneous
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losses from the arriving data xt and corresponding responses yt, with t > 0. The loss

l(wt; (xt, yt)) can be the hinge loss. The solution will be derived from the optimization

problem:

wt+1 = argmin
w∈RK×d

1
2
∥ w−wt ∥2

s.t. L t =
K∑

k=1
l t

(
w; (xt, yk

t = 1)
)
= 0

(5.17)

Intuitively, if wt suffers no loss from new data, i.e., l (w; (xt, yt)) = 0, the algorithm

passively assigns wt+1 = wt; otherwise, it aggressively projects wt to the feasible zone of

parameter vectors that attain zero loss.

Similarly to Online Passive-Aggressive, we output at each round a subset prediction

Ŷt ∈ {0,1}K according to the binary prediction as following:

ŷi
t = sign(< wt,Φ(x, i)>)

Then an ε-greedy exploration is performed, where Ỹt ∈ {0,1}K is the result of a random

draw from Pt (see Eq.(5.15)).

The linear classifiers are updated at each trial using the standard tools from convex

analysis [22]. According the instantaneous loss (see Eq.(5.16)), the constrained optimization

problem of Eq.(5.17) is solved by the Lagrangian method, i.e.:

(5.18) L (w,τt)= 1
2
∥ w−wt ∥2 +τt

K∑
k=1

lk
t

∂L (w,τt)
∂w

= w−wt +τt

K∑
k=1

(1−2βk
t )Φ(xt,k)

(5.19) ⇒ w = wt +τt

K∑
k=1

(
2βk

t −1
)
Φ(xt,k)

∂L (τt)
∂τt

= 0

⇒ τt = L t

∥∑K
k=1(2βk

t −1)Φ(xt,k) ∥2

(5.20) τt = L t∑K
k=1(2βk

t −1)2 ∥ xt ∥2

With L t =∑K
k=1 lk

t .
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Consider for instance the common phenomenon of label noise, a mislabeled instance

may cause classifiers to be drastically changed in a wrong direction like Passive-Aggressive

algorithm. Refer to [99], a non-negative slack variable ξ is used to derive soft-margin into

the optimization problem in Eq. 5.18.

Algorithm 5.5 (BPAs: online Bandit Passive-Aggressive algorithm for Multi-labels).

Parameter: ε ∈ (0,1)
Set w1 to the zero K ×d matrix

for each t = 1,2, ...,T do
Receive xt ∈Rd;

for each k = 1,2, . . . ,K do
Set ŷk

t = 1
2 (1+sign〈wt,Φ(xt,k)〉)

end for
for each k = 1,2, . . . ,K do

P( ỹk
t = 1| ŷk

t )= (1−ε) ·1( ỹk
t =1) +ε ·

∑K
k=11( ŷk

t =1)

K

end for
Draw ỹt randomly from P

Receive the feedback βt

l t =∑K
k=1[1 ŷk

t =1 + (1−2βk
t )〈wt,Φ(xt,k)〉]+

Update: wt+1 = wt +∑K
k=1(2βk

t −1) · l t∑K
j=1(1−2β j

t )2∥xt∥2
·Φ(xt,k)

end for

In this part, we prove the cumulative squared loss has an upper bound. Simplify, l t

denoted l
(
wt; (xt, Ỹt,βt)

)
and l

(
u; (xt, Ỹt,βt)

)
by l∗t .

Theorem 5.3. Let (x1, y1), . . . , (xT , yT ) be a sequence of separable examples where xt ∈Rd,

Yt ∈ {0,1}K and ∥ xt ∥6R for all t, and u ∈RK×d. Then, the cumulative squared loss of this

algorithm is bounded by,

(5.21)
T∑

t=1
l2
t 6K ·R2· ∥ u ∥2

Proof. Define ∆t =∥ wt −u ∥2 − ∥ wt+1 −u ∥2.
∑

t∆t is a telescopic sum which collapses to

T∑
t=1
∆t =

T∑
t=1

(∥ wt −u ∥2 − ∥ wt+1 −u ∥2)
=∥ w1 −u ∥2 − ∥ wt+1 −u ∥2
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Considering w1 = 0,
T∑

t=1
∆t =∥ u ∥2 − ∥ wt+1 −u ∥26∥ u ∥2

Now considering Eqs.(5.19) and (5.20),

∆t =−2

〈
(wt −u),τt

K∑
k=1

(2βk
t −1)Φ(xt,k)

〉
−

〈
τt

K∑
k=1

(2βk
t −1)Φ(xt,k),τt

K∑
k=1

(2βk
t −1)Φ(xt,k)

〉

where τt = l t∑K
k=1(2βk

t −1)2∥xt∥2 .

Taking l t =∑K
k=1[1 ỹk

t =1+(1−2βk
t )〈wt,Φ(xt,k)〉]+ and l∗t =∑K

k=1[1 ỹk
t =1+(1−2βk

t )〈u,Φ(xt,k)〉]+
We find

∆t =
l2
t − l tl∗t∑K

k=1(1−2βk
t )2 ∥ xt ∥2

If the examples are separable, ∃u such that ∀t ∈ [1, . . . ,T], l∗t = 0,

T∑
t=1

(
l2
t∑K

k=1(1−2βk
t )2 ∥ xt ∥2

)
6∥ u ∥2

T∑
t=1

l2
t 6

K∑
k=1

(1−2βk
t )2R2 ∥ u ∥2

Because βk
t ∈ {0, 1

2 ,1}
T∑

t=1
l2
t 6KR2 ∥ u ∥2

�

Proof. By the proof of Theorem 5.2,

T∑
t=1

l2
t 6KR2 ∥ u ∥2 +2

T∑
t=1

l tl∗t

To upper bound the right side of the above inequality, and denotes L t =
√∑T

t=1 l2
t and

Ut =
√∑T

t=1(l∗t )2 ,

2(L tUt)2 −2(
T∑

t=1
l tl∗t )2

=
T∑

i=1

T∑
j=1

l2
i (l∗j )2 +

T∑
i=1

T∑
j=1

l2
j (l

∗
i )2

−2
T∑

i=1

T∑
j=1

l i l j l∗i l∗j

=
T∑

i=1

T∑
j=1

(l i l∗j − l j l∗i )2> 0

81



CHAPTER 5. PASSIVE-AGGRESSIVE CLASSIFICATION WITH BANDIT FEEDBACK

T∑
t=1

l2
t 6KR2 ∥ u ∥2 +2

T∑
t=1

l tl∗t

6KR2 ∥ u ∥2 +2L tUt

(L t −Ut)26KR2 ∥ u ∥2 +U2
t

L t6Ut +
√

KR2 ∥ u ∥2 +U2
t

Using the fact that
p

a+b 6
p

a +p
b ,

L t6
p

K R ∥ u ∥ +2Ut

T∑
t=1

l2
t 6

pK R ∥ u ∥ +2

√√√√ T∑
t=1

(l∗t )2

2

�

5.4.3 Experiments

Data In this part, we take some experiments to evaluate some algorithms over two

datasets.

Reuters RCV1-v2 collection [73], it is a text data set. Its label is organized by mapping

the data set to the Reuters topic hierarchy, has 101 labels, and its cardinality number is

2.88. It contains 23149 instances. It is a truly high dimension data sets, the number of

features D is 47236.

Yeast prepocessed by Elisseeff[47], where only the known structure of the functional

classes are used. This multilabel dataset contains 2417 genes each represented by a 103-

dimensional feature vector. There are 14 possible class labels and average cardinality is

between 4.3 and 5.9.

Algorithm All participants to the experiment have been introduced, and multi-

class/multilabel classification algorithm Passive-Aggressive online(PA), BPA for multilabel,

and Second Order algorithm with UCB.

Evaluation Metric In multilabel classification, the predictions for an instance is a

set of labels. The prediction can be fully correct, partially correct or fully wrong. That

makes evaluate a multilabel classifier more challenge than multiclass classification. In

this experimentation, we use the following metric to evaluate the algorithms’ performance.

• Precision is the proportion of predicted correct labels to the total number of actual

predicted labels, averaged over all instances.

P = 1
N

N∑
t=1

|Yt ∩ Ŷt |
| Ŷt |
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• Recall is the proportion of predicted correct labels to the total number of true labels,

averaged over all instances.

R = 1
N

N∑
t=1

|Yt ∩ Ŷt |
|Yt |

• One Error determines whether the top-ranked label is the true labels, and ignores

the relevancy of all other labels, averaged over all instances.

O = 1
N

N∑
t=1

1[ ŷρt
t ∉Yt], where ρt = argmax

i∈[K]
〈wt,Φ(xt, i)〉

• Hamming loss reports how many times on average, the relevance of an example to

a class label is incorrectly predicted. It takes into account the prediction error and

the missing error.

H = 1
K N

N∑
t=1

K∑
k=1

1[yk
t 6= ŷk

t ]

Results. Our results are summarized in Table 5.4 for the dataset RCV1-v2 and in

Table 5.5 for the dataset Yeast.

Fig. 5.18, Fig. 5.19 and Fig. 5.20 show the result on the dataset RCV1-v2. We observe

the algorithm OD-UCB and BPAs have better performance than PA in precision metric;

however, both of two bandit algorithms play inferior to PA in recall metric. From the

number of average cardinality, we can get the reason. Less cardinality has little chance

to explore other labels. From the result of OneError measure, all of them optimize along

with training. By Fig. 5.21, it obviously shows that the cumulative loss tends to
p

T as

theoretical result.

Fig. 5.22, Fig. 5.23 and Fig. 5.24 show the result on the dataset Yeast. After a phase of

training, OneError measure of BPAs declines more quickly than others. So it has the most

effective optimization.

By the advantage of PA max-margin principle, BPAs appears effective to address the

bandit setting for multi-label classification. Its main advantage is its linear complexity

in space allows to deal with high dimensional data sets and a large number of labels, on

the contrary to 2nd-order descend method. The practicability of this algorithm is verified

theoretically by showing competitive loss bound. Moreover, Experimental evaluation shows

that BPAs performs very well, it is flexibility to control the performance between the

precision and the recall by changing ε value. And in some dataset, it is even better than

the algorithm based on 2nd-order descend. For the OneError metric, it could converge on

the bound of the algorithm PA working in full-side information.
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Table 5.4: The summary of RCV1-v2, here Algo present Algorithm, P is precision, R is
Recall, O denotes OneError, Hloss is Hamming loss and Card means Cardinality

Algo P R O Hloss Card Time
PA 0.629 0.185 0.07 0.021 2.001 4.21∗10−4

BPAs 0.990 0.159 0.151 0.027 1.37 5.37∗10−4
2OD 0.983 0.172 0.202 0.040 1.0044 2.13∗10−1

Table 5.5: The summary of Yeast dataset.

Algo P R O Hloss Card Time
PA 0.692 0.452 0.415 0.36 6.1 6.12∗10−7

BPAs 0.718 0.459 0.243 0.31 6.8 6.5∗10−7

2OD 0.840 0.488 0.312 0.29 5.4 3.88∗10−5
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Figure 5.18: Precision of algorithms on RCV1-v2
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Figure 5.19: Recall of algorithms on RCV1-v2
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Figure 5.23: Recall of algorithms on Yeast

Figure 5.24: OneError of algorithms on Yeast
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Chapter 6

Optimized Identification
algorithm
for ε-Pareto Front

In Chapter 4, we have introduced some definitions and methods about the Multi-Objective

Multi-Armed Bandit problems. In this chapter, we continue to discuss this problem. We

optimize the naive (ε,δ) algorithm of MAB to identify the ε-Pareto Front of MOMAB, and

calculate two budget bounds in the pure exploration framework. These two bounds ensure

the correctness and completeness of the ε-Pareto front.

6.1 Identification the ε-Pareto front

In this section, we propose a simple algorithm to find the Pareto front of Multi-Objective

Multi-Armed Bandits. It extends the naive (ε,δ)-algorithm [48] to the Multi-Objective

setting. The novel algorithm accurately identifies the optimal solutions with a tolerance

δ. For the ε-dominance, we propose a novel fast algorithm to partially order the arm set,

which is an improvement from [69].

There are several dominance relations that can partially order vectors in Multi-

Objective Optimization. The Pareto dominance is the natural one, which has been in-

troduced in Chapter 4. Here, we concentrates on MOO problems in the Bandit setting.

Because of the stochastic characteristic of Bandit problems, the distribution probability

vectors of arms are unknown to us. Therefore, we need to pull arms to approximate these

vectors by empirical ones. Here, we use the method PAC [57] to calculate the number of
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times that we have to pull each arm, so that we control the accuracy to be tolerable. The

first related notion is ε-dominance (shown in many references [44, 46, 59, 66])

ε-Dominance. Let two vectors a and b be from the d-dimensional space X ⊆ Rd, if

∀i ∈ [1, . . . ,d],ai > bi +ε with ε> 0, i.e. the vector a ε-dominates vector b denotes as aÂε b.

ε-Pareto Front. Given a set A ∗ ⊆ A . ∀a ∈ A ∗, there is no vector b ∈ A , s.t. b Âε a.

Therefore, this set A ∗ is called ε-Pareto front of set A (denoted as A ∗
ε ). This set contains

all arms which are not ε-dominated by any other arms of A . The ε-Pareto front is formally

given by

A ∗
ε = {a ∈A |@a′ ∈A s.t. a′

i Âε ai}

Confidence Interval [11] means that the average reward within which the true

expected reward falls with overwhelming probability.

The Hoeffding Inequality [58], is an useful tool to analyse the relationship between

required number of samples and a confidence interval.

Theorem 6.1 (Hoeffding Inequlity). Let X be a set, and D be a fixed distribution on X.

There is a mapping f : xi → [ai,bi] for i = [1, . . . ,n], where ai and bi are two real numbers

and ai < bi. Let x1, . . . , xn ∈ X be drawn i.i.d. by distrbution D. We define the empirical

mean of these variables by X = 1
n (x1 + . . . , xn).Then, the number of samples and tolerant

error obeys the following inequality.

P[X −E[X ]> ε]6 e
− 2ε2n2∑

i (bi−ai )2

P[X −E[X ]6−ε]6 e
− 2ε2n2∑

i (bi−ai )2

(6.1)

Consider a set A with K arms, where K > 2. Each arm has D independent objec-

tives. On round t, the player selects one arm ak and receives a vector reward rk,t =
(r1

k,t, r
2
k,t, . . . , r

D
k,t) ∈ {0,1}D , which corresponds to a probability distribution vector pk, where

pk = (p1
k, . . . , pD

k ). By drawing arm ak, the player estimates its empirical probability p̂k. Let

Tk(N) be the number of arm ak has been played during the first N pulls. The empirical

probability p̂k is the current expected reward. It is estimated as p̂k = ∑Tk(N)
t=1 rk,t/Tk(N),

where rk,t is the reward vector of arm ak on round t. Our target is to identify all optimal

arms of set A with a minimal budget. In the algorithm, we propose pure exploration to

obtain the information of all arms. It gives the ε-Pareto front with δ error probability. If

all arms are pulled of the same times, it exists a lower bound and an upper bound for its

complexity.
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6.1. IDENTIFICATION THE ε-PARETO FRONT

Lemma 6.1 (Lower bound). If we do not miss any optimal arm of the ε-Pareto front with

δ-tolerant error probability, we need at least to pull nlower times for each arm.

(6.2) nlower =
2K
ε2 (ln2+ 1

D
ln

K
δ

)

Proof. There are an optimal arm a and a non-optimal arm a′ with distribution pa and pa′ ,

so pa Âpa′ . After n pulls, their empirical distribution are estimated as p̂a and p̂a′ . Let the

arm a′ ε-dominates the arm a (p̂a′ Âε p̂a), iff ∀i ∈ [1, . . . ,D], p̂i
a′ > p̂i

a +ε. Here, we calculate

the probability of p̂a′ Âε p̂a.

P(p̂a′ Âε p̂a)=P
(
(p̂1

a′ > p̂1
a +ε)∩·· ·∩ (p̂D

a′ > p̂D
a +ε)

)
For all objectives of each vector are independent, there are the following deduction.

P(p̂a′ Âε p̂a)=P(
p̂1

a′ > p̂1
a +ε

)∗·· ·∗P
(
p̂D

a′ > p̂D
a +ε

)
=

D∏
i=1

P(p̂i
a′ > p̂i

a +ε)

6
D∏

i=1
P(p̂i

a′ > pi
a′ + ε

2
ou p̂i

a < pi
a −

ε

2
)

6
D∏

i=1

(
P(p̂i

a′ > pi
a′ + ε

2
)+P(p̂i

a < pi
a −

ε

2
)
)

6
(
2exp(−2(

ε

2
)2n)

)D

If we make an assumption that all arms may be this optimal arm a, the error probability

for an arm a is bounded as P(p̂a′ Âε p̂a)6 δ
K . So,

(
2exp(−2(

ε

2
)2n)

)D = δ

K
,

where n is the number that we pull arm a. For all arms, the number that they should be

pulled

nlower =
2K
ε2 (ln2+ 1

D
ln

K
δ

)

�

Lemma 6.2 (Upper bound). If we can eliminate all non-optimal arms from the ε-Pareto

front with δ-tolerant error probability, we need pull nupper times for each arm.

(6.3) nupper = 2K
ε2 ln

2KD
δ
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Proof. There is a non-optimal arm a′ and optimal arm a with distribution pa′ and pa

with pa Âpa′ . After n times pulling, the empirical distribution can be estimated as p̂a′ and

p̂a. There is δ error probability to leave arm a′ in ε-Pareto front. We here calculate the

probability P(p̂a�ε p̂a′).

P(p̂a�ε p̂a′)6P
(
∃i ∈ [1, . . . ,D], p̂i

a′ +ε> p̂i
a

)
6P

(
p̂1

a′ +ε> p̂1
a ∪·· ·∪ p̂D

a′ +ε> p̂D
a

)
6

D∑
i=1

P
(
p̂i

a′ +ε> p̂i
a

)
6

D∑
i=1

(
P(p̂i

a′ > pi
a′ + ε

2
or p̂i

a < pi
a −

ε

2
)
)

6
D∑

i=1
2 ·exp

(
−2(

ε

2
)2n

)
If each non-optimal arm a′ has the probability δ

K that could appear in the ε-Pareto front.

So that

2D exp
(
−2(

ε

2
)2n

)
= δ

K
For all arms, the number that they should be pulled

nupper = 2K
ε2 ln

2KD
δ

.

�

ε-Pareto Identification algorithm
Firstly, we proposed the ε-Pareto Identification algorithm (see Algorithm 6.1). By

improving the (ε,δ)-PAC algorithm of MAB, it can adapt Multi-Objective problems under

Bandit environment and identify ε-Pareto front. By the lower bound, the algorithm can

output an ε-Pareto which contains all true optimal arms with δ error probability. And we

can eliminate all non-optimal arms from the ε-Pareto front after upper bound pulls. So,

this algorithm starts with the lower bound. Every arm should be pulled nlower times, then,

we compare the empirical distribution of all arms with ε-dominance. After eliminating

the ε-dominated arms, we pull the rest arms by
(
nupper −nlower

)
times to identify the rest

non-optimal arms in ε-Pareto front.

Algorithm 6.1 (ε-Pareto Identification algorithm).
Initiate parameters ε and δ

for Sample each arm a ∈A n1 = 2K
ε2 (ln2+ 1

D ln K
δ

) times do
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6.1. IDENTIFICATION THE ε-PARETO FRONT

p̂a = 1
n1

∑n1
t=1 ra,t

end for
Identify the set Aε = {a ∈A |∀a′ ∈A a′�ε a}.

for Sample each arm a ∈Aε n2 = 2K
ε2 ln 2KD

δ
− 2K

ε2 (ln2+ 1
D ln K

δ
) times do

p̂a = 1
n1+n2

∑n1+n2
t=1 ra,t

end for
Output A ∗

ε = {a ∈Aε|@a′ ∈Aε,a′ Âε a}

In Algorithm 6.1, how to compare arms with ε-domiance is a crucial step that affects

the final result. Under usual circumstances, it should compare all objectives of arms. When

the number of arms or objectives increases, it will truly be a difficult task to complete.

Therefore, we here propose a fast way to identify the ε-Pareto front, which is based on

Kung’s method [69] to find the maximal elements of a set of vectors. In [69], it proved

that kung’s method has lest complexity to find the maxima vector. For example, there are

N D-dimensional vectors, if D = 2,3, its complexity is O(N log N), and O
(
N log ND−2)

for

D> 4. Here, we provide an improvement of Kung’s algorithm to find the maxima vectors

for the ε-Pareto front. This method mostly reduces the complexity of searching and satisfies

the requirement of comparing ε-dominance. It is classified by the number of objectives, e.g.

D = 2,D = 3 or D> 4.

Look back to the model of MOMAB problem at the beginning of this chapter, this fast

algorithm is to compare these empirical expected rewards vectors p̂. When D = 2, for K

arms, their empirical vectors are p̂i ∈R2, with i = [1, . . . ,K]. We arrange these vectors by

the first objective such that

p̂1
σ(1)> p̂1

σ(2)> · · ·> p̂1
σ(K)

where σ is a permutation function. It arranges these vectors by a descendant order.

Set parameters Indicator i = 1, z2 = p̂2
σ(1) and the ε-Pareto front Aε1 = Ø. Make a

sequence, compared p̂2
σ(i) with z2. If p̂2

σ(i) +ε> z2, this arm will be added to the ε-Pareto,

and the reference z2 will be replaced by the maximum of p̂2
σ(i) and z2. Move the indicator i

to i+1. Until the indicator arrives to K , it output the set Aε1.

Then, this algorithm will start a new arrangement. It sorts descendant this vector set

in second dimension

p̂2
σ′(1)> p̂2

σ′(2)> · · ·> p̂2
σ′(K),

and compared p̂σ′(i) with another reference z1, where z1 is initiated by z1 = p̂1
σ′(1), and it

outputs a vector set Aε2. Finally, it merges these two sets Aε1and Aε2 to be ε-Pareto front

(more details in Algorithm 6.2). The complexity of sorting algorithm is O(K logK) for one
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dimension, and the comparison steps of another dimension requires K −1 times, so the

complexity of this fast algorithm with D = 2 is O(K logK).

Algorithm 6.2 (Fast ε-Pareto Finder (D = 2)).
Require: Set Aε1 =Ø, Aε2 =Ø, z= [z1, z2];

Arrange all vectors p̂ ∈R2,

such that p̂1
σ(1) > p̂1

σ(2) > ·· · > p̂1
σ(N);

for each i = 1, . . . , N do
if p̂2,σ(i) +ε> z2 then

Aε1 =Aε1 ∪ p̂σ(i)

z2 = max(z2, p̂2
σ(i))

end if
end for
Arrange all vectors p̂ ∈R2,

such that p̂2
σ′(1) > p̂2

σ′(2) > ·· · > p̂2
σ′(K);

for each i = 1, . . . , N do
if p̂1

σ′(i) +ε> z1 then
Aε2 =Aε2 ∪ p̂σ(i)

z1 = max(z1, p̂1
σ(i))

end if
end for
Output A ∗

ε =Aε1 ∪Aε2

The fast algorithm for D = 3 (see Algorithm 6.3) is an extension of the one with D = 2.

After arranging the first dimension, there are

p̂1
σ(1)> p̂1

σ(2)> · · ·> p̂1
σ(K).

Set an ε-Pareto front Aε1 = Ø. Firstly, let the indicator i equals to 1, Aε1 = {p̂σ(1)}. When

the indicator goes to k, it arranges the Pareto set with the vector p̂σ(k) on the second

dimension,

p̂2
∗,σ′(1)> p̂2

∗,σ′(2)> · · ·> p̂2
σ′(k)> · · ·> p̂2

∗,σ′( j)> . . . .

Here, the vectors p̂∗,σ′(1), p̂∗,σ′(2), . . . , p̂∗,σ′( j), . . . belong to the ε-Pareto front Aε. By the new

order σ′, we find a vector p̂∗,σ′( j), if p̂2
σ′(k) > p̂2

∗,σ′( j)+ε, add p̂σ′(k) to the ε-Pareto front. After

that, it compares the third dimension of these vectors p̂3
∗,σ′( j+1), p̂3

∗,σ′( j+2), . . . with p̂3
σ′(k), if

p̂3
∗,σ′(s)+ε< p̂3

σ′(k) with s> j. We will delete the vector p̂∗,σ′(s) from the ε-Pareto; otherwise,if

in the ε-Pareto front, there is no such vector that p̂2
∗,σ′( j) + ε< p̂2

σ′(k), we compared p̂3
σ′(k)

with
(
max{p̂3

∗,σ′(1), p̂3
∗,σ′(2), . . . }−ε

)
, if p̂3

σ′(k) is much bigger, add p̂3
σ′(k) to the ε-Pareto front.
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6.1. IDENTIFICATION THE ε-PARETO FRONT

Algorithm 6.3 (Fast ε-Pareto Finder (D = 3)).
Arrange all vectors p̂ ∈R3,

such that p̂1
σ(1) > p̂1

σ(2) > ·· · > p̂1
σ(K)

Set ε-Pareto front Aε = p̂σ(1), max3= p̂3
σ(1)

for each arm k =σ(1), . . . ,σ(K) do
Arrange all vectors of Aε, p̂2

∗,σ′(1)> p̂2
∗,σ′(2)> · · ·> p̂2

∗,σ′( j)> . . .

for each arm σ′( j) of Aε do
if p̂2

σ′(k) > p̂2
∗,σ′( j) +ε then

Aε =Aε∪ p̂σ′(k)

if p̂3
σ′(k) > p̂3

∗,σ′( j) +ε then
Aε =Aε/ p̂∗,σ′( j)

end if
max3= max(p̂3

σ′(k),max3)

else
if p̂3

σ′(k) +ε> max3 then
Aε =Aε∪ p̂σ′(k)

max3= max(p̂3
σ′(k)max3,)

end if
end if

end for
end for
Output A ∗

ε =Aε1 ∪Aε2

When D> 4, the problem could be decomposed into two subproblems and then combined

the results together. The first step for this algorithm is also to arrange the vectors with

first dimension descendent, like the following sequence

p̂1
σ(1) > p̂1

σ(2) > . . .> p̂1
σ(K)

To segment the set into two sets by A∗ = (p̂1
σ(1), . . . , p̂1

σ(s)) and A∗ = (p̂1
σ(s+1), . . . , p̂1

σ(K)), with

s = arg max
i∈[1,...,K]

b(i6K /2)c, s.t. p̂1
σ(s) − p̂1

σ(s+1) > ε.

Then we find A∗ and A∗ the ε-Pareto front of A∗and A∗, respectively. Here, to identify

the ε-Pareto front of subset A∗ and A∗ is with (D−1)-dimension. This recurrent process

can be reused until that the subproblem can be resolved with the Fast ε-Pareto Finder

D = 2 or D = 3. There is no doubt A∗ is also the ε-Pareto for the set A∗. If we can find a set

T ⊂ A∗, who contains the arms are not ε-dominated by the elements of A∗. So, the set T is

also the ε-Pareto of set A . Then, we combine the set A∗ and T to output the final ε-Pareto.
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Table 6.1: The parameters of algorithm “ε-Pareto Identification” and “Annealing Scalar-
ized”.

Algorithm Parameters
ε-Pareto Identification (10) ε= 0.1 δ= 0.05
Annealing Scalarized (10) εdecay = 0.5 S = 10
ε-Pareto Identification (30) ε= 0.1 δ= 0.1
Annealing Scalarized (30) εdecay = 0.3 S = 30

The principle of this algorithm is just to convert a problem from unknown to known, from

complex to simple. Its process is shown in Algorithm 6.4. In this situation, the complexity

of this algorithm is O(N(log N)D−2) (the demonstration refers to [69]).

Algorithm 6.4 (Fast ε-Pareto Finder (D> 4)).
Arrange all vectors p̂ ∈RD ,

such that p̂1
σ(1) > p̂1

σ(2) > ·· · > p̂1
σ(K);

Find s = arg max
i∈[1,...,K]

b(i6K /2)c, s.t. p̂1
σ(s) − p̂1

σ(s+1) > ε
Set A∗ = (p̂1

σ(1), . . . , p̂1
σ(s)) and A∗ = (p̂1

σ(s+1), . . . , p̂1
σ(K))

Find respectively the ε-Pareto front A∗ for set A∗ and A∗ for set A∗
Find a set T = {a ∈ A∗|a′�ε a, where a′ ∈ A∗}

Output the ε-Pareto front A ∗
ε = A∗∪T.

6.2 Experiments

Method. This experimentation is used to demonstrate the theoretical analysis. All points

are generated at random in the range [0,1]2. Datasets could be divided into three kinds:

e.g. ‘linear’, ‘convex’ and ‘concave’. For each data state, the points are bounded by a linear

frontier, convex frontier and concave frontier, respectively. Let the coordinates of arm x be

(x1, x2), which are considered as the expected reward of arm x. During the experimental

process, the reward for arm x is given randomly according its probability (x1, x2). Then

we calculate the empirical expected probability by their rewards. Here, we compare our

algorithm “ε-Pareto Identification” with the Annealing Scalarized approach [108], which is

a UCB-scalarization method. The goal of this experimentation is to prove that the
Pareto front identified by our algorithm matches very well the real Pareto front,
and we make less errors. Some useful parameters of these algorithms are reported in

Table 6.1
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Graphic. From Fig. 6.1 to Fig. 6.3, each graph contains 10 points. And from Fig. 6.4 to

Fig. 6.6, each graph contains 30 points. Each figure contains 4 graphs. According to the

order, they are the original points; the points with the real Pareto front; ε-Pareto front of

“ε-Pareto Identification”; the Pareto front of “Annealing Scalarized”.

Figure 6.1: 10 points in linear state

Result. In Table 6.2, some place marked as “10/7′′, it means that this algorithm

identifies “10” arms as optimal arms in the Pareto front, “7” means there are only 7 arms

in the real Pareto set. And from the results, we find both algorithms ε-Pareto Identification

and Annealing Scalarized perform very well when there are only 10 points. However, when

the number of points reaches 30, the scalarized algorithm shows its shortcomings that it is

difficulty to find all optimal solutions with limited aggregation functions. Therefore, the

ε-Pareto Identification algorithm does not have this kind problem. Under the theoretical

analysis, if we can pull nlower times for each arm, it can find all optimal arms. In fact, the

empirical results can prove the theoretical analysis. Sometimes, the ε-Pareto Identification

finds some wrong solutions, but this error is tolerant within the error probability δ.
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Figure 6.2: 10 points in convex state

Table 6.2: The results of algorithm “ε-Pareto Identification” and “Annealing Scalarized”.

Algorithm Linear Convex Concave
Real Pareto (10) 7 5 6
ε-Pareto Identification (10) 7/7 5/5 7/6
Annealing Scalarized (10) 4/4 5/5 3/3
Real Pareto (30) 7 7 12
ε-Pareto Identification (30) 8/7 7/7 12/12
Annealing Scalarized (30) 15/7 13/5 14/7



6.2. EXPERIMENTS

Figure 6.3: 10 points in concave state

Figure 6.4: 30 points in linear state
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FOR ε-PARETO FRONT

Figure 6.5: 30 points in convex state

Figure 6.6: 30 points in concave state
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Chapter 7

Conclusions

Bandit problems constitute a sequential dynamic allocation problem. The pulling agent

has to explore its environment (i.e. the arms) to gather information on the one hand, and

it has to exploit the collected clues to increase its rewards on the other hand. How to

adequately balance the exploration phase and the exploitation phase is the crux of bandit

problems and most of the efforts devoted by the research community from this field has

focused on finding the right exploitation/exploration tradeoff. In this dissertation, we focus

on investigating two specific bandit problems: the contextual bandit problems and the

multi-objective bandit problems.

7.1 Summary of contributions

This dissertation provides two contributions. The first contribution is about the classifi-

cation under partial supervision, which we encode as a contextual bandit problem with

side information. This kind of problem is heavily studied by researchers working on social

networks and recommendation systems. We provide a series of algorithms to solve the

Bandit feedback problem that pertain to the Passive-Aggressive family of algorithms. We

take advantage of its grounded foundations and we are able to show that our algorithms

are much simpler to implement than state-of-the-are algorithms for bandit with partial

feedback, and they yet achieve better performances of classification. The second contri-

bution is about multi-objective multi-armed bandit problem (MOMAB). We propose an

effective and theoretically motivated method to identify the Pareto front of arms. We in

particular show that we can find all elements of the Pareto front with a minimal budget.

PBA provides an update item whose expectation equals to the PA one. It has two
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variants, Simple PAB and Full PAB. The advantage of Simple PAB is its simplicity and

perform very well on the linear separable dataset, but it is not fit to treat the non-separable

datasets. Therefore, we add an anti-interference item, the expectation of this item being

zero. It works well in stabilizing the classifiers, reducing the variance of the update and

performing better than Simple PAB on non-separable dataset.

BPA, we design a hinge-loss function to adapt the problem of classification with Bandit

feedback. The BPA algorithm is grounded on this loss function. By a theoretical analysis, we

find the squared loss of BPA to be bounded by the same bound than the Passive-Aggressive

algorithm, which works in supervised setting. From an empirical perspective, we performed

numerical experiments using this algorithm and some others. While displaying a lesser

complexity, the performance of our algorithm is close to the performance of the second

order perceptron Bandit algorithm for all datasets. This performance is moreover often

better than the performance of supervised classifiers on some non-separable datasets.

Kernel BPA and Kernel SGD with Bandit loss are two algorithms adapted to the

RKHS framework. Those two algorithms are devoted to learning with Bandit feedback on

non-linear datasets. In section 5.3, we provide details on those approaches. The first one is

a direct derivation of the BPA algorithm, i.e. it directly maps the product of two vectors

into RKHS. This method has good accuracy, but the complexity of classifiers increases

linearly along with the proportion of non-separable instances. This brings some trouble

to the computational efficiency. Referring to Stochastic Gradient Descent [21] and Online

Kernel method [64], we optimized the kernel classifiers by Bandit loss function. Though its

accuracy do not reach the level of Kernel BPA, its computational complexity is stable. It

can easily face to any kind of datasets.

Multi-label BPA, for Multi-label Classification, we also propose a novel algorithm. We

transfer the Multi-label classification into multiple Multi-class classifications, at the same

time, it trains the multiple classifiers by the BPA algorithms. This algorithm, both from

the theoretical analysis and empirical result, is found to perform very well.

ε-Pareto Identification. In Chapter 6, we propose a method to treat the optimal

solutions of MOMAB problem. Different to Multi-Objective Optimization, MOMAB approx-

imates the expected value of each options by calculating the rewards. So the values of each

option has some stochastic difference to the true one. Therefore, we replace the Pareto front

by the ε-Pareto front. Through a theoretical analysis, we get a bound, assuming that all

optimal arms can be posed in the ε-Pareto front if the number of each arm pulling reaches

this bound. Otherwise, there is another bound to delete all non-optimal arms from the

ε-Pareto front. By the rule of these two bounds, we propose an algorithm to identify the

ε-Pareto front. At the same time, according to the Algorithm of Kung [69], we design a fast
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algorithm to compare the ε-dominance across all arms. When there is a huge set of arms,

this method can locate the ε-Pareto front quickly.

7.2 Research in the future

Several limitations of our results need to be adressed in the future. Regarding the con-

textual with side information, we should put a stronger focus on the tradeoff between

exploration and exploitation. Our algorithms is based on the ε-greedy strategy (see in

section 2.3.4) to keep the balance between exploration and exploitation. At each round, it

samples the labels with a fixed probability ε
K to explore, and 1−ε to exploit. If we always

have some probability to explore, this results in wasting the budgets, after the classifier has

performed very well. In Figure 5.9, 5.10 and 5.11, we observe that the result of algorithm

BPA has less difference between the different of value ε. This result naturally suggests us

to use variable ε across the learning session, allowing more exploration in the first trials

and more exploitation in the last ones. Next step, we can try the dynamic ε-greedy [11],

that parameter ε attenuate according to 1/t. Otherwise, there is another limitation for our

algorithms, it is how to choose the parameters, e.g. in algorithm PAB, there are C for the

soft-margin, ε for ε-greedy; in KBPA, the parameters of kernel function. Generally, we need

to take a cross-validation to determine these parameters. However, when an algorithm has

two or more parameters to choose, the comparing work becomes very difficult.

The second aspect is about the Pareto front of MOMAB problem. At present, we use

pure exploration to identify the optimal arms for getting the Pareto front. This way can

ensure the integrity of the Pareto set, however it wastes some budgets compared with

other methods. So next step, we need to continue to optimize this method.

The work of this dissertation opens several theoretical and applicative perspectives

for the future. From the applicative perspective, this work has a very broad prospect.

We already mentioned the applications in social networks and recommendation systems.

Another example is decision making in labor markets [109]. Problems like Internet packet

routing or smart grid electricity distribution can also be considered, where the Multi-

objective bandit framework may provide an effective framework for routing optimization.

Bandit framework can also combine with other machine learning frameworks, e.g. deep

learning, active learning, semi-supervised learning, for they share a common principles.

Finally, those three years of PhD preparation, not only influenced my view on research

and work, but also changed my attitude toward life and philosophy.
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Appendix A

Algorithms

Multi-Armed Bandit

The strategy of trade-off

Thompson Sampling

Algorithm A.1 (Optimistic Thompson Sampling for Bernoulli Bandits).
Let α1,k = 1 and β1,k = 1, where k ∈ {1, . . . ,K}

for each round t = 1,2,. . . , T do
Sample θi ∼ B(αt,i,βt,i), for i ∈ {1, . . . ,K}

Pull arm kt = argmaxk∈{1,...,K}max
(
θi,

αt,i
αt,i+βt,i

)
Let α(t+1,kt) =α(t,kt) +1(rkt (t)= 1) and β(t+1,kt) =β(t,kt) +1(rkt (t)= 0).

end for

Boltzmann Exploration (Softmax)

Algorithm A.2 (Exp3).
Parameter: real number τ> 0 and γ ∈ (0,1]

Initialization: set wk(1)= 1 for k = 1, . . . ,K.

for each round t = 1,2,. . . , T do
Let pk(t)= (1−γ) wk(t)∑K

i=1 wi(t)
+ γ

K for k = 1, . . . ,K.

Pull arm kt s.t. P(kt = k)= pk(t) for k = 1, . . . ,K

Receive reward rkt ∈ [0,1]

Let r̂k(t)= rk(t)/pk(t) if k = kt, 0 for others.

Let wk(t+1)= wk(t)eγr̂k(t)/K .

end for
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Best Armed Identification in stationary MAB

Algorithm A.3 (UCB-E algorithm).
Parameter: exploration parameter a > 0

for k ∈ {1, . . . ,K} do
let Bk,s = X̂k,s +

√
a
s for s> 1 and Bi,0 =+∞

end for
for each round t = 1, . . . ,T do

Draw kt ∈ argmaxk∈{1,...,K}Bk,Tk(t−1)

end for
Let kT ∈ argmaxk∈{1,...,K} X̂k,Tk(T)

Algorithm A.4 (Successive Rejects algorithm).
Input: K1 = {1, . . . ,K}, log(K)= 1

2 +
∑K

k=2
1
k , n0 = 0 and for k ∈ {1, . . . ,K −1}

nk =
⌈

1
log(K)

n−K
K+1−k

⌉
for for each step k = 1, . . . ,K −1 do

for each k ∈Kk, select arm k for nk −nk−1 rounds do
Let Kk+1 =Kkarg mink∈Kk

X̂k,nk .

end for
end for
Output: the unique element of kT of K

Bandit feedback

Multiclass Classification

Algorithm A.5 (Perceptron).
Initialize: Set w1 to the zero K ×d matrix.

for each round t = 1,2,. . . , T do
Observe xt ∈Rd.

Predict ŷt = argmax
{i=1,...,K}

〈
wi

t, xt
〉

Update wt+1 = wt + (Φ(yt, xt)−Φ( ŷt, xt)).

end for

Algorithm A.6 (the Second-Order Perceptron).
Parameter: a > 0

Initialize: Set X0 = ø; W1 to the zero K ×d matrix;

for each round t = 1,2,. . . , T do
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Observe xt ∈Rn.

Set St = [X t−1xt]

Predict ŷt = arg maxi∈{1,...,K} < wi,t, xt >, where wt = (aIn +StST
t )−1wt−1

Receive feedback yt ∈ {1, . . . ,K}

if ŷt 6= yt then
wt = wt−1 +Φ(xt, yt)−Φ(xt, ŷt)

end if
end for

Algorithm A.7 (PA algorithm in multiclass classification online learning).
Initialize: Set W1 to the zero K ×d matrix.

for each round t = 1,2,. . . , T do
Observe xt ∈Rd.

Predict ŷt = argmax
i={1,...,K}

〈Wt,Φ(xt, yt)〉
suffer loss: l t = [wt ·Φ(xt, ŷt)−wt ·Φ(xt, yt)+1]+
set: τt = l t

∥Φ(xt,yt)−Φ(xt, ŷt)∥2

Update Wt+1 =Wt +τt (Φ(xt, yt)−Φ(xt, ŷt)).

end for

Banditron

Algorithm A.8 (Banditron).
Parameter: number γ ∈ (

0, 1
2
)
.

Initialize: Set W1 to the zero K ×d matrix.

for each round t = 1,2,. . . , n do
Observe xt ∈Rd.

Set ŷt = argmax
i=1,...,K

〈
W i

t , xt
〉

Prediction Yt ∈ {1, . . . , } drawn from distribution pt =
(
p1,t, . . . , pK ,t

)
such that pi,t =

(1−γ)1 ŷt=i + γ

K .

Observe 1( ŷt=yt).

Update Wt+1 =Wt +
(
1 ỹt=yt

pi,t
Φ( ỹt, xt)−Φ( ŷt, xt)

)
.

end for

Algorithm A.9 (Confidit).
Parameter: α ∈ (−1,1]

Initialization: A0 = (1+α)2I ∈RdK×dK , Wo = (w1,0, . . . ,wK ,0)= 0 ∈RdK ;

for each round (x1, y1), . . . , (xT , yT ) do

109



APPENDIX A. ALGORITHMS

Get instance xt ∈Rd, and normalized it ∥ xt ∥= 1;

Set:

W ′
t−1 = argmin

W∈RdK
dt−1(W ,Wt−1)

s.t.∀i ∈ [K]−α6wT
i xt and

K∑
i=1

wT
i xt = 1+α−Kα

Set: ∀i ∈ [K]∆̂′
i,t = xT

t w′
i,t−1;

Output:

ŷt = arg maxi(∆̂
′
i,t +εi,t),whereε2

i,t =
(
2xT

t A−1
i,t xt

)
×ηt

andηt = 1
2

(1+α)2 ∥U ∥2
2 +

(1+α)2

2

t−1∑
s=1

xT
s A−1

ŷs,sxs +9(1+α)2 log
t+4
δ

Get feedback Mt = {yt 6= ŷt};

if Mt = 1 then
with probability (1−α)/2 set

X t = (0, . . . ,0, xt︸︷︷︸
position ŷt

,0, . . . ,0)

with probability (1+α)/2 set

X t = (0, . . . ,0, −xt︸︷︷︸
position ŷt

,0, . . . ,0)

else

X t = (0, . . . ,0, xt︸︷︷︸
position ŷt

,0, . . . ,0)

end if
Update:

At = At−1 + X tX T
t

Wt = A−1
t (At−1W ′

t−1 + X t).

end for
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Multi-labels Classification

Multi-labels Classification in bandit setting

Algorithm A.10 (The algorithm based on 2nd order in bandit setting).
Parameters: loss parameter a ∈ [0,1], cost value c(i, s), interval D = [−R,R], function

g → R, confidence level δ ∈ [0,1]

Initialization: A i,0 = I ∈Rd×d, i = 1, . . . ,K, wi,1 =∈Rd, i = 1, . . . ,K;

for for each instance (x1, y1), . . . , (xT , yT ) do
Get instance xt ∈Rd: ∥ xt ∥2= 1;

∀i ∈ [K], set ∆̂′
i,t = xT

t w′
i,t, where

w′
i,t =


wi,t if wT

i,txt ∈ [−R,R],

wi,t −
(

wT
i,txt−Rsign(wT

i,txt)

xT
t A−1

i,t−1xt

)
A−1

i,t−1xt otherwise;

Output

Ŷt = arg minY=( j1, j2,..., j|Y |)⊆[K]

(∑
i∈Y

(c( j i, |Y |)− (
a

1−a
+ c( j i, |Y |))p̂i,t)

)

, where: p̂i,t =
g(−[∆̂′

i,t+εi,t]D )

g(−[∆̂′
i,t+εi,t]D+g([∆̂′

i,t+εi,t]D
, and ε2

i,t = ηxT
t A−1

i,t xt

Get bandit feedback Yt ∩ Ŷt;

∀i ∈ [K], update A i,t = A i,t−1 +|si,t|xtxT
t , wi,t+1 = w′

i,t − 1
c′′L

A−1
i,tOi,t, where

si,t =


1 if i ∈Yt ∩ Ŷt

−1 if i ∈ Ŷt \Yt = Ŷt \ (Yt ∩ Ŷt)

0 otherwise;

with Oi,t =−g(si,t∆̂i,t′)si,txt.

end for

Multi-Objective Multi-Armed Bandit

Dominance method

Algorithm A.11 (Global SEMO).
Choose x ∈Bn uniformly at random.

Initialize P := {x}.
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repeat
Choose x ∈ P uniformly at random

Create an offspring y by flipping each bit of x with probability 1/n.

if {z ∈ P|z Â y}= ø then
Update P := (P = {z ∈ P|y� z})∪ {y}

end if
until all x ∈Bn be chosen.

Algorithm A.12 (Global DEMOε).
Choose x ∈Bn uniformly at random.

Initialize P := {x}.

repeat
Choose x ∈ P uniformly at random

Create an offspring y by flipping each bit of x with probability 1/n.

if {z ∈ P|b(z)Â b(y)∨ z Â y}= ø then
Update P := (P = {z ∈ P|b(y)� b(z)})∪ {y}

end if
until all x ∈Bn be chosen.

Multi-Objective Multi-Armed Bandit

Algorithm A.13 (The scalarized PAC algorithm sPAC(ε,δ,W)).
for all arms k = {1, . . . ,K} do

Pull each arm k for l = 1
(ε/2)2 log(2|W |K

δ
) times:

Compute the expected mean reward vectors µ̂k

end for
Initiates A ∗ →Ø;

for all weight vectors w ∈W do
select an optimal arm i∗ for function fw;

Add arm i∗ to the Pareto front A ∗ →A ∗∪ {i∗}

Delete dominated arms from A ∗

end for
return A ∗

Algorithm A.14 (Annealing Scalarized Algorithm).
Input: number of arms |A |, horizon of times T, number of objectives |d|, set of linear

scalarized function S = { f 1, f 2, . . . , f |S|}, decay parameter ε0 ∈ (0,1), the reward distribu-

tion.
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Initialize: for each scalarized function s = 1 to S, each arm i played initial times to get

the estimated vector µ̂s
i , set annealing set A s

ε =A

for time step t = 1, . . . ,T do
set the parameter εt = εt

0/(|A ||d|)
select f s uniformly at random

Compute: the weight set ws → (w1,s, . . . ,wd,s)

f s(µ̂s)=max16i6|A | f s(µ̂s)

for arm i = 1, . . . , |A | do
if f s(µ̂s) ∈ [ f s(µ̂s)−εt, f s(µ̂s)] then

A ∗
ε (t)→A ∗

ε (t)∪ i

end if
end for
Sdi f f erence ← (A ∗

ε (t−1))−A ∗
ε (t)

for arm j ∈ Sdi f f erence do
if µ̂k� µ̂ j,∀k ∈A then

A ∗
ε (t)←A ∗

ε (t)∪ j

end if
end for
(A ∗)s(t−1)←A ∗

ε (t)

Pull an optimal arm (i∗)s from (A∗
ε )s

Observe: rs
i∗ ;

Update: µ̂s
i∗

end for
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